's Manua

ULTRIX-32

Programmer

PR
QOO
OOOOO
QOO00

=
2
n..ME
a8 g
- <
<

*softare

~

ULTRIX-32™
Programmer’s Manual
Sections 2, 3, 5, and 7

Order No. AA-BG54A-TE

digital equipment corporation, merrimack, new hampshire

First printing, May 1984

Copyright © 1984 by Digital Equipment Corporation.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The postage-paid READER'S COMMENTS form on the last page of this docu-
ment requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX-32
DECUS UNIBUS
MASSBUS VAX

PDP VMS
ULTRIX

ULTRIX-11 éﬁaﬂnau ™

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley Soft-
ware Distribution under license from the Regents of the University of California.
We acknowledge the Electrical Engineering and Computer Sciences Departments
at the Berkeley Campus of the University of California for their role in its
development.

~——

~—

iii

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. We ack-
nowledge the following individuals for their role in its development:

Eric Allman, Ken Arnold, Ozalp Babaoglu, Scott B. Baden, Jerry Berkman, John
Breedlove, Earl T. Cohen, Robert P. Corbett, Mike Curry, Steve Feldman, Tom Fer-
rin, John Foderaro, Susan L. Graham, Charles Haley, Robert R. Henry, Andy
Hertzfeld, Mark Horton, S.C. Johnson, William Joy, Howard Katseff, Peter Kessler,
Jim Kleckner, J.E. Kulp, James Larus, Kevin Layer, Mike Lesk, Steve Levine, Jeff
Levinsky, Louise Madrid, M. Kirk McKusick, Colin L. McMaster, Mikey Olson,
Geoffrey Peck, Ed Pelegri-Llopart, Rob Pike, Dave Presotto, John F. Reiser, Asa
Romberger, Bill Rowan, Jeff Schreibman, Eric P. Scott, Greg Shenaut, Eric Shien-
brood, Kurt Shoens, Keith Sklower, Helge Skrivervik, Al Stanberger, Ken Thompson,
Michael C. Toy, Richard Tuck, Bill Tuthill, Mike Urban, Edward Wang, David Was-
ley, Joseph Weizenbaum, Jon L. White, Glenn Wichman, Niklaus Wirth.

N7

ULTRIX-32 Documentation Set

1. Organization

The ULTRIX-32 documentation set is organized into four separate binders. The docu-
mentation in each binder is so organized to better meet the needs of three separate
audiences in the performance of their respective tasks. The ULTRIX-32 documenta-

tion set comprises:

Programmer’s Manual Binder 1 — General Users

Section 1 — Commands
Documentation for all user-invoked programs (commands)

Section 6 — Games
Documentation for all user-invoked game programs

Programmer’s Manual Binder 2 — Programmers

Section 2 — System Calls
Documentation for the system calls (entries into the kernel)

Section 3 — Subroutines
Documentation for the library subroutines
Section 5 — File Formats and Conventions
Documentation for the output and system file structures

Section 7 — Macro Packages and Language Conventions
Documentation for miscellaneous information

Programmer’s Manual Binder 3A — System Managers

Installation Guide
Documentation for installing an ULTRIX-32 system

Building an ULTRIX-32 System with the Config Program
Documentation for configuring an executable kernel image

4.2BSD Line Printer Spooler
Documentation for installing the line printer spooling system

Sendmail Installation and Operations Guide
Documentation for installing and operating the sendmail system

vi

UUCEP Installation and Administration
Documentation for installing and administering the uucp system

Programmer’s Manual Binder 3B — System Managers

Guidelines for System Management
Documentation for maintaining an installed ULTRIX-32 system

Section 4 — Special Files
Documentation for the special files (I/0 devices and drivers)

Section 8 — Maintenance Commands
Documentation for the system maintenance programs (commands)

2. Man(1) Format

Each numbered section in Binder 1, Binder 2, and Binder 3B contains an introduction
and separate entries that correspond to those created by the man(1) command. Each
entry, following the order in their respective binders, describes a user command or
game; a system call, library subroutine, file structure, or macro package; and a special
file or maintenance command.

Regardless of their respective binder, all entries have a single, consistent format.
First, the header provides information that quickly identifies the entry: name and sec-
tion number (enclosed in parentheses). For example, AARDVARK(6) identifies the
aardvark (6) game (Binder 1). Then, the listed subsections provide specific informa-
tion about the entry. Although each entry lists only those subsections that are appli-
cable, seven main subsections may be used. Finally, the footer provides paging infor-
mation: section and consecutive page number. For example, the footers for section 6
(Binder 1) are 6-1 through 6-35.

The seven main subsections are:

NAME
This subsection lists the exact name and a short description of its function.

SYNTAX
This subsection lists the complete syntax. Boldface indicates literals. A
minus sign (-) indicates command options. Ellipses (...) indicate that the
preceding argument may be repeated. Square brackets [] indicate optional
arguments.

DESCRIPTION
This subsection provides a detailed description of function and background.

FILES
This subsection lists those related files that either are part of or are used
during execution.

—

N

S

vii

DIAGNOSTICS

This subsection lists those diagnostic messages that may be produced.
Since most self-explanatory messages are not listed, this subsection is not
comprehensive.

RESTRICTIONS

SEE

This subsection lists those restrictions that are known to apply.

ALSO
This subsection lists the names of the related entries and other documenta-
tion.

3. Conventions

The following conventions apply specifically to these documents:

bold

case

color

<CTRL/X>

<DELETE >

italics

<RETURN >

Installation Guide (Binder 3A)

Building an ULTRIX-32 System with the Config Program (Binder 3A)
UUCP Installation and Administration (Binder 3A)

Guidelines for System Management (Binder 3B)

Literals are printed in bold type. Literals frequently indicate a specific com-
mand option and should be entered exactly as printed.

The ULTRIX-32 system differentiates between uppercase and lowercase.
Therefore, enter uppercase only where specifically indicated by an example or

the command syntax.

Examples are printed in color. Examples represent command sequences or
information that the user enters from the terminal.

Terminal control characters are represented by <CTRL/X>, where X is a single
character. To generate a terminal control characters, hold down the CTRL
key while entering the character.

The DELETE key or ERASE character is represented by <DELETE >,

Substitutable parameters are printed in italics.

The RETURN key is printed as <RETURN>. To invoke a command, enter the
command sequence and depress the RETURN key.

viii

>>>

The superuser prompt (normally a #) is displayed at the console when the
system is in single-user mode or at a terminal when the superuser is logged in.

The console subsystem prompt is represented by three right angle brackets,
>>>. For further information about console commands, read the VAX
Hardware Manual.

\

o

INTRO(2)

NAME
intro. — introduction to system calls and error numbers

SYNTAX
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always —1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable
errno, which is not cleared on successful calls. Thus errno should be tested only after an
error has occurred.

The following is a complete list of the errors and their names as given in <errno.h>.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary
users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn’t, or when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is
already dead.

4 EINTR Interrupted system call :
An asynchronous signal (such as interrupt or quit), which the user has elected to
catch, occurred during a system call. If execution is resumed after processing the
signal, it will appear as if the interrupted system call returned this error condition.

5 EIO 1/0 error
Some physical I/O error occurred during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address v
I/0 on a special file refers to a subdevice which does not exist, or beyond the limits
of the device. It may also occur when, for example, an illegal tape drive unit
number is selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

2-1

INTRO(2)

8 ENOEXEC Exec format error

A request is made to execute a file which, although it has the appropriate permis-
sions, does not start with a valid magic number, see a.out(5).

9 EBADF Bad file number

10

11

12

13

14

15

16

17

18

19

20

Either a file descriptor refers to no open file, or d read (resp. write) request is
made to a file which is open only for writing (resp. reading).

ECHILD No children
Wait and the process has no living or unwaited-for children.

EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any
more processes.

ENOMEM Not enough core
During an execve or break, a program asks for more core or swap space than the
system is able to supply. A lack of swap space is normally a temporary condition,
however a lack of core is not a temporary condition; the maximum size of the text,
data, and stack segments is a system parameter.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of
a system call.

ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made
to dismount a device on which there is an active file directory. (open file, current
directory, mounted-on file, active text segment).

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

EXDEV Cross-device link
A hard link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

'ENOTDIR Not a directory

A non-directory was specified where a directory is required, for example in a path
name or as an argument to chdir.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

INTRO(2)

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unk-
nown signal in signal, reading or writing a file for which seek has generated a
negative pointer. Also set by math functions, see intro(3).

ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be
accepted.

EMFILE Too many open files
Customary configuration limit is 20 per process.

ENOTTY Not a typewriter
The file mentioned in an ioct! is not a terminal or one of the other devices to
which these calls apply.

ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writ-
ing (or reading!). Also an attempt to open for writing a pure-procedure program
that is being executed.

EFBIG File too large
The size of a file exceeded the maximum (about 10° bytes).

ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

ESPIPE Illegal seek
An lseek was issued to a pipe. This error may also be issued for other non-
seekable devices.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal is ignored.

EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within
machine precision.

INTRO(2)

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2-4

EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in
non-blocking mode (see ioctl (2)).

EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2)) was
attempted on a non-blocking object (see toctl (2)).

EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an opera-
tion in progress.

ENOTSOCK Socket operation on non-socket
Self-explanatory.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type

requested. For example you cannot use the ARPA Internet UDP protocol with
type SOCK_STREAM.

ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation
for it exists.

EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn’t necessarily expect to be able to use PUP Internet addresses with ARPA
Internet protocols.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49

50

51

52

53

54

55

56

57

58

59
60

61

62

INTRO(2)

EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer
executing a shutdown (2) call.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or
sendmsg request on a connected socket specified a destination other than the con-
nected party.

ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not con-
nected.

ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because the socket had already been shut
down with a previous shutdown(2) call.

unused

ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond
after a period of time. (The timeout period is dependent on the communication
protocol.)

ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This
usually results from trying to connect to a service which is inactive on the foreign
host.

ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

2-5

INTRO(2)

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 ENOTEMPTY Directory not empty
A directory with entries other than “.” and “..” was supplied to a remove directory
or rename call.

DEFINITIONS

2-6

Process ID
Each active process in the system is uniquely identified by a positive integer called a
process ID. The range of this ID is from 0 to {PROC_MAX]}.

Parent process ID
A new process is created by a currently active process; see fork(2). The parent pro-
cess ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive
integer called the process group ID. This is the process ID of the group leader. This
grouping permits the signalling of related processes (see killpg(2)) and the job control
mechanisms of csh(1).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a posi-
tive integer called the tty group ID. This grouping is used to arbitrate between multi-
ple jobs contending for the same terminal; see csh(1), and tty(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is dis-
tinguished from others and used in implementing accounting facilities. The positive
integer corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process’s real user ID
and real group ID respectively. Either may be modified through execution of a set-
user-ID or set-group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID’s used only in determining
resource accessibility. Access checks are performed as described below in “File Access
Permissions”.

Super-user

INTRO(2)

A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Special Processes
The processes with a process ID’s of 0, 1, and 2 are special. Process 0 is the
scheduler. Process 1 is the initialization process init, and is the ancestor of every
other process in the system. It is used to control the process structure. Process 2 is
the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open(2), dup(2), or
pipe(2) or a socket is referenced by socket(2) or socketpair(2) which uniquely
identifies an access path to that file or socket from a given process or any of its chil-
dren.

File Name
Names consisting of up to {FILENAME_MAX]} characters may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0
(null) and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, ?, [or] as part of file names because of the
special meaning attached to these characters by the shell.

Path Name
A path name is a null-terminated character string starting with an optional slash (/),
followed by zero or more directory names separated by slashes, optionally followed by
a file name. The total length of a path name must be less than {PATHNAME_MAX}
characters.

If a path name begins with a slash, the path search begins at the root directory. Oth-
erwise, the search begins from the current working directory. A slash by itself names
the root directory. A null pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to
other files. Directory entries are called links. By convention, a directory contains at
least two links, . and .., referred to as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current work-
ing directory for the purpose of resolving path name searches. A process’s root direc-
tory need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are
used in determining whether a process may perform a requested operation on the file
(such as opening a file for writing). Access permissions are established at the time a

2-7

INTRO(2)

file is created. They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or exe-
cuted. Directory files use the execute permission to control if the directory may be
searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file’s group, anyone else.
Every file has an independent set of access permissions for each of these classes.
When an access check is made, the system decides if permission should be granted by
checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file,
and either the process’s effective group ID matches the group ID of the file, or the
group ID of the file is in the process’s group access list, and the group permissions
allow the access.

Neither the effective user ID nor effective group ID and group access list of the pro-
cess match the corresponding user ID and group ID of the file, but the permissions for
“other users” allow access.

Otherwise, permission is denied.

Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket has
queues for sending and receiving data.

Sockets are typed according to their communications properties. These properties
include whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, the format used in naming message reci-
pients, etc.

Each instance of the system supports some collection of socket types; consult
socket(2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications proto-
cols. Each protocol set supports addresses of a certain format. An Address Family is
the set of addresses for a specific group of protocols. Each socket has an address
chosen from the address family in which the socket was created.

SEE ALSO

2-8

intro(3), perror(3)

VRN

ACCEPT(2)

NAME
accept — accept a connection on a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr *addr;

int *addrlen;

DESCRIPTION
The argument s is a socket which has been created with socket(2), bound to an address
with bind(2), and is listening for connections after a listen(2). Accept extracts the first
connection on the queue of pending connections, creates a new socket with the same pro-
perties of s and allocates a new file descriptor, ns, for the socket. If no pending connections
are present on the queue, and the socket is not marked as non-blocking, accept blocks the
caller until a connection is present. If the socket is marked non-blocking and no pending
connections are present on the queue, accept returns an error as described below. The
accepted socket, ns, may not be used to accept more connections. The original socket s
remains open.

The argument addr is a result parameter which is filled in with the address of the connect-
ing entity, as known to the communications layer. The exact format of the addr parameter
is determined by the domain in which the communication is occurring. The addrlen is a
value-result parameter; it should initially contain the amount of space pointed to by addr;
on return it will contain the actual length (in bytes) of the address returned. This call is
used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for
read.

The call returns —1 on error. If it succeeds it returns a non-negative integer which is a
descriptor for the accepted socket.

DIAGNOSTICS
’ The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_ STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address

space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to
be accepted.

2-9

ACCEPT(2)

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

STATUS
ACCEPT (2) currently is not supported by Digital Equipment Corporation.

2-10

N~

ACCESS(2)

NAME
access — determine accessibility of file
SYNTAX
#include <sys/file.h>
#define R OK 4 /* test for read permission */
#define W.OK 2 /* test for write permission */
#define X_ OK 1 /* test for execute (search) permission */
#define F OK 0 /* test for presence of file */

accessible = access(path, mode)
int accessible;

char *path;

int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive
or of the bits R_OK, W_OK and X_OK. Specifying mode as F_OK (i.e. 0) tests whether the
directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verify-
ing permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by
access, but an attempt to open it for writing will fail (although files may be created there);
a file may look executable, but execve will fail unless it is in proper format.

If path cannot be found or if any of the desired access modes would not be granted, then a
—1 value is returned; otherwise a 0 value is returned.

DIAGNOSTICS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The argument path name was too long.

[ENOENT] Read, write, or execute (search) permission is requested for a null path
name or the named file does not exist.

[EPERM] The argument contains a byte with the high-order bit set.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is
being executed.

[EACCES] Permission bits of the file mode do not permit the requested access; or
search permission is denied on a component of the path prefix. The owner
of a file has permission checked with respect to the “owner” read, write,
and execute mode bits, members of the file’s group other than the owner

2-11

ACCESS(2)

have permission checked with respect to the “group” mode bits, and all
others have permissions checked with respect to the “other” mode bits.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat(2)

STATUS
ACCESS (2) currently is not supported by Digital Equipment Corporation.

2-12

e

"
J

A~

ACCT(2)

NAME

acct — turn accounting on or off

SYNTAX
acct(file)
char *file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it ter-
minates. This call, with a null-terminated string naming an existing file as argument, turns
on accounting; records for each terminating process are appended to file. An argument of 0
causes accounting to be turned off.

The accounting file format is given in acct (5).

This call is permitted only to the super-user. Accounting is automatically disabled when
the file system the accounting file resides on runs out of space; it is enabled when space
once again becomes available. On error —1 is returned. The file must exist and the call
may be exercised only by the super-user. It is erroneous to try to turn on accounting when
it is already on.

DIAGNOSTICS
Acct will fail if one of the following is true:

[EPERM] The caller is not the super-user.

[EPERM] The pathname contains a character with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[EFAULT] File points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] The file is a character or block special file.
SEE ALSO
acct(5), sa(8)
RESTRICTIONS

No accounting is produced for programs running when a crash occurs. In particular nonter-
minating programs are never accounted for.

STATUS
ACCT (2) currently is not supported by Digital Equipment Corporation.

2-13

BIND(2)

NAME
bind — bind a name to a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>
bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it
exists in a name space (address family) but has no name assigned. Bind requests the name,
be assigned to the socket.

Binding a name in the UNIX domain creates a socket in the file system which must be
deleted by the caller when it is no longer needed (using unlink(2)). The file created is a
side-effect of the current implementation, and will not be created in future versions of the
UNIX ipc domain.

The rules used in name binding vary between communication domains. Consult the
manual entries in section 4 for detailed information.

If the bind is successful, a 0 value is returned. A return value of —1 indicates an error,
which is further specified in the global errno.

DIAGNOSTICS
The bind call will fail if:

[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.
[EACCESS] The requested address is protected, and the current user has inade-
quate permission to access it.
[EFAULT] The name parameter is not in a valid part of the user address space.
SEE ALSO
connect(2), listen(2), socket(2), getsockname(2)
STATUS

BIND(2) currently is not supported by Digital Equipment Corporation.

2-14

™

7

N~

S~

BRK(2)

NAME

brk, sbrk — change data segment size

SYNTAX

caddr_t brk(addr)
caddr_t addr;

caddr_t sbrk(incr)
int incr;

DESCRIPTION

Brk sets the system’s idea of the lowest data segment location not used by the program
(called the break) to addr (rounded up to the next multiple of the system’s page size).
Locations greater than addr and below the stack pointer are not in the address space and
will thus cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined
by the program and data storage areas. Ordinarily, therefore, only programs with growing
data areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned
from a call to getrlimit, e.g. “etext + rlp=rlim_max.” (See end(3) for the definition of
etext.)

Zero is returned if the brk could be set; —1 if the program requests more memory than the
system limit. Sbrk returns —1 if the break could not be set.

DIAGNOSTICS

Sbrk will fail and no additional memory will be allocated if one of the following are true:
[ENOMEM] The limit, as set by setrlimit(2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system)
was exceeded.

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

SEE ALSO

execve(2), getrlimit(2), malloc(3), end(3)

RESTRICTIONS

Setting the break may fail due to a temporary lack of swap space. It is not possible to dis-
tinguish this' from a failure caused by exceeding the maximum size of the data segment
without consulting getrlimit.

STATUS

BRK (2) currently is not supported by Digital Equipment Corporation.

2-15

CHDIR(2)

NAME
chdir — change current working directory

SYNTAX
chdir(path)
char *path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current
working directory, the starting point for path names not beginning with “/”,

In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS ’
Chdir will fail and the current working directory will be unchanged if one or more of the
following are true:

[ENOTDIR] A component of the pathname is not a directory.
[ENOENT] The named directory does not exist.
[ENOENT] The argument path name was too long.

[EPERM] The argument contains a byte with the high-order bit set.
[EACCES] Search permission is denied for any component of the path name.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO
chroot(2)
STATUS

CHDIR (2) currently isnot supported by Digital Equipment Corporation.

N

CHMOD (2)

NAME
chmod — change mode of file

SYNTAX
chmod(path, mode)
char *path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode
changed to mode. Modes are constructed by or’ing together some combination of the fol-
lowing:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner
00070 read, write, execute (search) by group

00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the
system from abandoning the swap-space image of the program-text portion of the file when
its last user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of com-
patibility.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Chmod will fail and the file mode will be unchanged if:
[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The pathname was too long.

[ENOENT] The named file does not exist.

[EACCES]} Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective

2-17

CHMOD(2)

user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
Fchmod will fail if:
[EBADF] The descriptor is not:valid.
[EINVAL] Fd refers to a socket, not to a file.
[EROFS] The file resides on a read-only file system.
SEE ALSO
open(2), chown(2)
STATUS

CHMOD (2) currently is not supported by Digital Equipment Corporation.

2-18

CHOWN(2)

v

NAME

chown — change owner and group of a file

SYNTAX
chown(path, owner, group)
char *path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call, because if users were able to give files
away, they could defeat the file-space accounting procedures.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see

flock(2)).
Only one of the owner and group id’s may be set by specifying the other as —1.

Zero is returned if the operation was successful; —1 is returned if an error occurs, with a
more specific error code being placed in the global variable errno.

DIAGNOSTICS
Chown will fail and the file will be unchanged if:

[EINVAL] The argument path does not refer to a file.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The argument pathname is too long.

[EPERM] The argument contains a byte with the high-order bit set.
[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchown will fail if:

[EBADF] Fd does not refer to a valid descriptor.

[EINVAL] Fd refers to a socket, not a file.

2-19

CHOWN(2)

SEE ALSO
chmod(2), flock(2)

STATUS
CHOWN (2) currently is not supported by Digital Equipment Corporation.

2-20

™
J

CHROOT(2)

NAME
chroot — change root directory

SYNTAX
chroot(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot
causes this directory to become the root directory, the starting point for path names begin-
ning with “/”.
In order for a directory to become the root directory a process must have execute (search)
access to the directory.
This call is restricted to the super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate an error.

DIAGNOSTICS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The pathname was too long.

[EPERM] The argument contains a byte with the high-order bit set.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.
[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO
chdir(2)

STATUS
CHROOT (2) currently is not supported by Digital Equipment Corporation.

2-21

CLOSE(2)

NAME

close — delete a descriptor

SYNTAX

close(d)
int d;

DESCRIPTION

The close call deletes a descriptor from the per-process object reference table. If this is the
last reference to the underlying object, then it will be deactivated. For example, on the last
close of a file the current seek pointer associated with the file is lost; on the last close of a
socket (2) associated naming information and queued data are discarded; on the last close of
a file holding an advisory lock the lock is released; see further flock(2).

A close of all of a process’s descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with
many descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the
same objects as they did in the parent before the fork. If a new process is then to be run
using execve(2), the process would normally inherit these descriptors. Most of the descrip-
tors can be rearranged with dup2(2) or deleted with close before the execve is attempted,
but if some of these descriptors will still be needed if the execve fails, it is necessary to
arrange for them to be closed if the execve succeeds. For this reason, the call “fentl(d,
E_SETFD, 1)” is provided which arranges that a descriptor will be closed after a successful
execve; the call “fentl(d, F. SETFD, 0)” restores the default, which is to not close the
descriptor.

Upon successful completion, a value of 0 is returned. Otherwise, a value of ~1 is returned
and the global integer variable errno is set to indicate the error.

DIAGNOSTICS

Close will falil if:
[EBADF] D is not an active descriptor.

SEE ALSO

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fentl(2)

STATUS

2-22

CLOSE (2) currently is not supported by Digital Equipment Corporation.

CONNECT(2)

NAME

connect — initiate a connection on a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent; if it is of type SOCK STREAM, then
this call attempts to make a connection to another socket. The other socket is specified by
name which is an address in the communications space of the socket. Each communica-
tions space interprets the name parameter in its own way.

If the connection or binding succeeds, then 0 is returned. Otherwise a —1 is returned, and
a more specific error code is stored in errno.

DIAGNOSTICS
The call fails if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is a descriptor for a file, not a socket.
[EADDRNOTAVAIL]

The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this

socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connec-
tion.

[ECONNREFUSED]

The attempt to connect was forcefully rejected.
[ENETUNREACH] The network isn’t reachable from this host.
[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the process address
space.

[EWOULDBLOCK] The socket is non-blocking and the and the connection cannot be
completed immediately. It is possible to select(2) the socket while it
is connecting by selecting it for writing.

2-23

CONNECT(2)

SEE ALSO
accept(2), select(2), socket(2), getsockname(2)

STATUS
CONNECT (2) currently is not supported by Digital Equipment Corporation.

2-24

CREAT(2)

) NAME
creat — create a new file

SYNTAX
creat(name, mode)
char *name;

DESCRIPTION
This interface is obsoleted by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the
address of a null-terminated string. If the file did not exist, it is given mode mode, as
modified by the process’s mode mask (see umask(2)). Also see chmod(2) for the construc-
tion of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the
past by programs to construct a simple exclusive locking mechanism. It is replaced by the
Q_EXCL open mode, or flock(2) facilitity.

The value —1 is returned if an error occurs. Otherwise, the call returns a non-negative
descriptor which only permits writing.

DIAGNOSTICS
Creat will fail and the file will not be created or truncated if one of the following occur:
[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] A needed directory does not have search permission.
[EACCES] The file does not exist and the directory in which it is to be created is not

writable.
[EACCES] The file exists, but it is unwritable.
[EISDIR] The file is a directory.
[EMFILE] There are already too many files open.
[EROFS] The named file resides on a read-only file system.
[ENXIO] The file is a character special or block special file, and the associated device

does not exist.
[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.
[EFAULT] Name points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

2-25

CREAT(2)

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

STATUS
CREAT (2) currently is not supported by Digital Equipment Corporation.

2-26

DUP(2)

NAME
dup, dup2 — duplicate a descriptor

SYNTAX
newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative
integer index in the per-process descriptor table. The value must be less than the size of
the table, which is returned by getdtablesize(2). The new descriptor newd returned by the
call is the lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd
and newd in any way. Thus if newd and oldd are duplicate references to an open file,
read(2), write(2) and Iseek(2) calls all move a single pointer into the file. If a separate
pointer into the file is desired, a different object reference to the file must be obtained by
issuing an additional open(2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a close(2) call had been done first.

The value —1 is returned if an error occurs in either call. The external variable errno indi-
cates the cause of 'the error.

DIAGNOSTICS

Dup and dup?2 fail if:

[EBADF] Oldd or newd is not a valid active descriptor

[EMFILE] Too many descriptors are active.
SEE ALSO

accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)
STATUS

DUP (2) currently is not supported by Digital Equipment Corporation.

2-27

EXECVE(2)

NAME

execve — execute a file

SYNTAX

execve(name, argv, envp)
char *name, *argv|[], *envpl[];

DESCRIPTION

2-28

Execve transforms the calling process into a new process. The new process is constructed
from an ordinary file called the new process file. This file is either an executable object
file, or a file of data for an interpreter. An executable object file consists of an identifying
header, followed by pages of data representing the initial program (text) and initialized
data pages. Additional pages may be specified by the header to be initialize with zero data.
See a.out(5).

An interpreter file begins with a line of the form “#! interpreter”; When an interpreter file
is execve’d, the system execve’s the specified interpreter, giving it the name of the origi-
nally exec’d file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This
is the mechanism whereby different process images become active.

The argument argv is an array of character pointers to null-terminated character strings.
These strings constitute the argument list to be made available to the new process. By con-
vention, at least one argument must be present in this array, and the first element of this
array should be the name of the executed program (i.e. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the com-
mand, see environ(7).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set; see close(2). Descriptors which remain open are
unaffected by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to
their default values. The signal stack is reset to be undefined; see sigvec(2) for more infor-
mation.

Each process has real user and group IDs and a effective user and group IDs. The real ID
identifies the person using the system; the effective ID determines his access privileges.
Execve changes the effective user and group ID to the owner of the executed file if the file
has the “set-user-ID” or “set-group-ID” modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid (2)
parent process ID see getppid (2)
progess group 1D see getpgrp (2)
access groups see.getgroups (2)
working directory see chdir(2)

—

EXECVE(2)

root directory see chroot (2)
control terminal see tty (4)
resource usages see getrusage (2)
interval timers see getitimer(2)
resource limits see getrlimit (2)
file mode mask see umask (2)
signal mask see sigvec (2)

When the executed program begins, it is called as follows:

main(argc, argv, envp)

int argc;

char **argv, **envp;
where arge is the number of elements in argv (the “arg count”) and argv is the array of
character pointers to the arguments themselves.

Enuvp is a pointer to an array of strings that constitute the environment of the process. A
pointer to this array is also stored in the global variable “environ”. Each string consists of
a name, an “=", and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined
when the program is called. See environ(7) for some conventionally used names.

If execve returns to the calling process an error has occurred; the return value will be —1
and the global variable errno will contain an error code.

DIAGNOSTICS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOENT] One or more components of the new process file’s path name do not exist.

[ENOTDIR] A component of the new process file is not a directory.

[EACCES] Search permission is denied for a directory listed in the new process file’s
path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but has an
invalid magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the
imposed maximum (getrlimit(2)).

[E2BIG] The number of bytes in the new process’s argument list is larger than the
system-imposed limit of {ARG MAX]} bytes.

[EFAULT] The new process file is not as long as indicated by the size values in its
header.

2-29

EXECVE(2)

[EFAULT] Path, argv, or envp point to an illegal address.

RESTRICTIONS
If a program is setuid to a non-super-user, but is executed when the real uid is “root”, then
the program has the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)

STATUS
EXECVE(2) currently is not supported by Digital Equipment Corporation.

2-30

EXIT(2)

N

' NAME

_exit — terminate a process

SYNTAX
exit(status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or is interested in the
SIGCHLD signal, then it is notified of the calling process’s termination and the low-order
eight bits of status are made available to it; see wait(2).

The parent process ID of all of the calling process’s existing child processes are also set to
1. This means that the initialization process (see intro(2)) inherits each of these processes
as well.

Most C programs call the library routine exiz(3) which performs cleanup actions in the
standard i/o library before calling _exit.

SEE ALSO
fork(2), wait(2), exit(3)

STATUS
EXIT (2) currently is not supported by Digital Equipment Corporation.

2-31

FCNTL(2)

NAME
fentl — file control

SYNTAX
#include <fentlh>

DESCRIPTION

2-32

res = fentl(fd, emd, arg)

int res;

int fd, cmd, arg;

Fentl provides for control over descriptors. The argument fd is a descriptor to be operated
on by cmd as follows:

F_DUPFD

E GETFD

E_SETFD

E GETFL
E SETFL
F_.GETOWN

E_SETOWN

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.
Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.
Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status
flags).

The close-on-exec flag associated with the new file descriptor is set to
remain open across execv(2) system calls.

Get the close-on-exec flag associated with the file descriptor fd. If the
low-order bit is 0, the file will remain open across exec, otherwise the file
will be closed upon execution of exec.

Set the close-on-exec flag associated with fd to the low order bit of arg (0
or 1 as above).

Get descriptor status flags, as described below.
Set descriptor status flags.

Get the process ID or process group currently receiving SIGIO and
SIGURG signals; process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG signals;
process groups are specified by supplying arg as negative, otherwise arg is
interpreted as a process ID.

The flags for the E GETFL and E_SETFL flags are as follows:

FNDELAY

FAPPEND

Non-blocking I/0; if no data is available to a read call, or if a write opera-
tion would block, the call returns -1 with the error EWOULDBLOCK.

Force each write to append at the end of file; corresponds to the
Q.APPEND flag of open(2).

FCNTL(2)

FASYNC Enable the SIGIO signal to be sent to the process group when I/0 is possi-
ble, e.g. upon availability of data to be read.

Upon successful completion, the value returned depends on ¢md as follows:

E_DUPFD A new file descriptor.

E.GETFD Value of flag (only the low-order bit is defined).
F GETFL Value of flags.

F GETOWN Value of file descriptor owner.

other Value other than —1.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Fentl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Cmd is F_ DUPFD and the maximum allowed number of file descriptors are
currently open.

[EINVAL] Cmd is EDUPFD and arg is negative or greater the maximum allowable
number (see getdtablesize(2)).

SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

RESTRICTIONS
The asynchronous I/0 facilities of FNDELAY and FASYNC are currently available only for
tty operations. No SIGIO signal is sent upon draining of output sufficiently for non-
blocking writes to occur.

STATUS
FCNTL (2) currently is not supported by Digital Equipment Corporation.

2-33

FLOCK(2)

NAME

flock — apply or remove an advisory lock on an open file

SYNTAX

#include <sys/file.h>

ffdefine LOCK_SH 1 /* shared lock */

f#define LOCK_EX 2 /* exclusive lock */

f#define LOCK_NB 4 /* don’t block when locking */
ffdefine LOCK_UN 8 /* unlock */

ﬁock(fd, operation)
int fd, operation;

DESCRIPTION

Flock applies or removes an advisory lock on the file associated with the file descriptor fd.
A lock is applied by specifying an operation parameter which is the inclusive or of
LOCK_SH or LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation
should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do
not guarantee consistency (i.e. processes may still access files without using advisory locks
possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any
time multiple shared locks may be applied to a file, but at no time are multiple exclusive,
or both shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying
the appropriate lock type; this results in the previous lock being released and the new lock
applied (possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to
blocked until the lock may be acquired. If LOCKNB is included in operation, then this
will not happen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2)
or fork(2) do not result in multiple instances of a lock, but rather multiple references to a
single lock. If a process holding a lock on a file forks and the child explicitly unlocks the
file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

Zero is returned if the operation was successful; on an error a —1 is returned and an error
code is left in the global location errno.

DIAGNOSTICS

2-34

The flock call fails if:
[EWOULDBLOCK] The file is locked and the LOCK NB option was specified.
[EBADF] The argument fd is an invalid descriptor.

FLOCK(2)

[EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)
STATUS

FLOCK (2) currently is not supported by Digital Equipment Corporation.

2-35

FORK(2)

NAME

fork — create a new process

SYNTAX

pid = fork()
int pid;

DESCRIPTION

Fork causes creation of a new process. The new process (child process) is an exact copy of
the calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent
process).

The child process has its own copy of the parent’s descriptors. These descriptors
reference the same underlying objects, so that, for instance, file pointers in file objects
are shared between the child and the parent, so that a Iseek(2) on a descriptor in the
child process can affect a subsequent read or write by the parent. This descriptor
copying is also used by the shell to establish standard input and output for newly
created processes as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

Upon successful completion, fork returns a value of 0 to the child process and returns the
process ID of the child process to the parent process. Otherwise, a value of —1 is returned
to the parent process, no child process is created, and the global variable errno is set to
indicate the error.

DIAGNOSTICS

Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit {PROC_MAX]} on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit {KID MAX} on the total number of processes
under execution by a single user would be exceeded.

SEE ALSO

execve(2), wait(2)

STATUS

2-36

FORK (2) currently is not supported by Digital Equipment Corporation.

e

FSYNC(2)

NAME
fsync — synchronize a file’s in-core state with that on disk

SYNTAX
fsync(fd)
int fd;
DESCRIPTION
Fsync causes all modified data and attributes of fd to be moved to a permanent storage

device. This normally results in all in-core modified copies of buffers for the associated file
to be written to a disk.

Fsync should be used by programs which require a file to be in a known state; for example
in building a simple transaction facility.

A 0 value is returned on success. A —1 value indicates an error.

DIAGNOSTICS
The fsync fails if:
[EBADF] Fd is not a valid descriptor.
[EINVAL)] Fd refers to a socket, not to a file.
SEE ALSO
sync(2), sync(8), update(8)
STATUS

FSYNC (2) currently is not supported by Digital Equipment Corporation.

2-37

GETDTABLESIZE(2)

NAME
getdtablesize — get descriptor table size

SYNTAX
nds = getdtablesize()
int nds;

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at 0. The call
getdtablesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2)

STATUS
GETDTABLESIZE (2) currently is not supported by Digital Equipment Corporation.

2-38

GETGID(2)

NAME
getgid, getegid — get group identity
SYNTAX
gid = getgid()
int gid;
egid = getegid()
int egid;
DESCRIPTION
Getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission dur-
ing execution of a “set-group-ID” process, and it is for such processes that getgid is most
useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

STATUS
GETGID (2) currently is not supported by Digital Equipment Corporation.

2-39

GETGROUPS(2)

NAME
getgroups — get group access list
SYNTAX .
#include <sys/param.h>
getgroups(ngroups, gidset)
int *ngroups, *gidset;
DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array
gidset. The parameter ngroups indicates the number of entries which may be placed in

gidset and is modified on return to indicate the actual number of groups returned. No
more than NGRPS, as defined in <sys/param.h>, will ever be returned.

A value of 0 indicates that the call succeeded, and that the number of elements of gidset
and the set itself were returned. A value of —1 indicates that an error occurred, and the
error code is stored in the global variable errno.

DIAGNOSTICS
The possible errors for getgroup are:

[EFAULT] The arguments ngroups or gidset specify invalid addresses.

SEE ALSO
setgroups(2), initgroups(3)

STATUS
GETGROUPS(2) currently is not supported by Digital Equipment Corporation.

2-40

PN

~

GETHOSTID(2)

NAME
gethostid, sethostid — get/set unique identifier of current host

SYNTAX
hostid = gethostid()
int hostid;

sethostid(hostid)
int hostid;

DESCRIPTION ‘
Sethostid establishes a 32-bit identifier for the current processor which is intended to be
unique among all UNIX systems in existence. This is normally a DARPA Internet address
for the local machine. This call is allowed only to the super-user and is normally performed
at boot time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

STATUS ‘
GETHOSTID (2) currently is not supported by Digital Equipment Corporation.

2-41

GETHOSTNAME (2)

NAME
gethosthame, sethostname —~ get/set name of current host

SYNTAX
gethostname(name, namelen)
char *name;
int namelen;
sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen.
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

If the call succeeds a value of 0 is returned. If the call fails, then a value of —1 is returned
and an error code is placed int the global location errno.

DIAGNOSTICS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.
[EPERM] The caller was not the super-user.

SEE ALSO
gethostid(2)

RESTRICTIONS
Host names are limited to 255 characters.

STATUS -
GETHOSTNAME (2) currently is not supported by Digital Equipment Corporation.

2-42

A

GETITIMER(2)

NAME
getitimer, setitimer — get/set value of interval timer
SYNTAX
#include <sys/time.h>
#define ITIMER REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER PROF 2 /* user and system virtual time */

getitimer(which, value)

int which;

struct itimerval *value;
setitimer(which, value, ovalue)
int which;

struct itimerval *value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which, while the setitimer
call sets the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
|5
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is
non-zero, it specifies a value to be used in reloading it_value when the timer expires. Set-
ting it value to O disables a timer. Setting it interval to 0 causes a timer to be disabled
after its next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolu-
tion (on the VAX, 10 microseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER,_PROF timer decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by interpreters in statistically
profiling the execution of interpreted programs. Each time the ITIMER PROF timer
expires, the SIGPROF signal is delivered. Because this signal may interrupt in-progress
system calls, programs using this timer must be prepared to restart interrupted system
calls.

2-43

GETITIMER(2)

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two
time values (beware that >= and <= do not work with this macro).

If the calls succeed, a value of 0 is returned. If an error occurs, the value —1 is returned,
and a more precise error code is placed in the global variable errno.
DIAGNOSTICS

The possible errors are:

[EFAULT] The value structure specified a bad address.
[EINVAL] A value structure specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

STATUS
GETITIMER (2) currently is not supported by Digital Equipment Corporation.

2-44

GETPAGESIZE(2)

NAME

getpagesize — get system page size
SYNTAX

pagesize = getpagesize()

int pagesize;
DESCRIPTION

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of
many of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware
page size.

SEE ALSO
sbrk(2), pagesize(1)

STATUS
GETPAGESIZE (2) currently is not supported by Digital Equipment Corporation.

2-45

GETPEERNAME(2)

NAME

getpeername — get name of connected peer
SYNTAX

getpeername(s, name, namelen)

int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes).

A 0 is returned if the call succeeds, —1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the opera-
tion.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.
SEE ALSO
bind(2), socket(2), getsockname(2)

RESTRICTIONS

Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero
length name.

STATUS
GETPEERNAME (2) currently is not supported by Digital Equipment Corporation.

2-46

5/

GETPGRP(2)

NAME
getpgrp — get process group
SYNTAX
pgrp = getpgrp(pid)
int prgp;
int pid;
DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the
call applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests
for their input: processes which have the same process group as the terminal are foreground
and may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(1) to create process groups in implementing
job control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to
get/set the process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

STATUS
GETPGRP (2) currently is not supported by Digital Equipment Corporation.

2-47

GETPID(2)

NAME

getpid, getppid — get process identification
SYNTAX

pid = getpid()

long pid;

ppid = getppid()
long ppid;

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used with the host
identifier gethostid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

STATUS
GETPID (2) currently is not supported by Digital Equipment Corporation.

2-48

GETPRIORITY (2)

NAME
getpriority, setpriority — get/set program scheduling priority
SYNTAX
#include <sys/resource.h>
#define PRIO PROCESS 0 /* process */
ftdefine PRIO PGRP 1 /* process group */
#define PRIO USER 2 /* user id */

prio = getpriority(which, who)
int prio, which, who;
setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and
who is obtained with the getpriority call and set with the setpriority call. Which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIQ USER, and who is interpreted relative to which (a
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user
ID for PRIO_USER). Prio is a value in the range —20 to 20. The default priority is 0;
lower priorities cause more favorable scheduling.
The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of
the specified processes. The setpriority call sets the priorities of all of the specified
processes to the specified value. Only the super-user may lower priorities.

Since getpriority can legitimately return the value —1, it is necessary to clear the external
variable errno prior to the call, then check it afterward to determine if a —~1 is an error or a
legitimate value. The setpriority call returns 0 if there is no error, or —1 if there is.

DIAGNOSTICS
Getpriority and setpriority may return one of the following errors:

[ESRCH] No process(es) were located using the which and who values specified.
[EINVAL] Which was not one of PRIO PROCESS, PRIO PGRP, or PRIO USER.

In addition to the errors indicated above, setpriority may fail with one of the following
errors returned:

[EACCES] A process was located, but neither its effective nor real user ID matched
the effective user ID of the caller.

[EACCES] A non super-user attempted to change a process priority to a negative
value.

SEE ALSO
nice(l), fork(2), renice(8)

2-49

GETPRIORITY (2)

STATUS
GETPRIORITY (2) currently is not supported by Digital Equipment Corporation.

2-50

GETRLIMIT(2)

NAME

getrlimit, setrlimit — control maximum system resource consumption

SYNTAX
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rlp)
int resource;
struct rlimit *rlp;

setrlimit(resource, rlp)
int resource;
struct rlimit *rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getriimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by each
process.

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT DATA the maximum size, in bytes, of the data segment for a process; this
defines how far a program may extend its break with the sbrk(2) system
call.

RLIMIT STACK the maximum size, in bytes, of the stack segment for a process; this
defines how far a program’s stack segment may be extended, either
automatically by the system, or explicitly by a user with the sbrk(2) sys-
tem call.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

RLIMIT RSS the maximum size, in bytes, a process’s resident set size may grow to.
This imposes a limit on the amount of physical memory to be given to a
process; if memory is tight, the system will prefer to take memory from
processes which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded
a process may receive a signal (for example, if the cpu time is exceeded), but it will be
allowed to continue execution until it reaches the hard limit (or modifies its resource limit).
The rlimit structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int rlim_cur;/* current (soft) limit */
int rlim_max; /* hard limit */

2-51

GETRLIMIT(2)

Only the super-user may raise the maximum limits. Other users may only alter riim cur
within the range from 0 to rlim max or (irreversibly) lower rlim max.

An “infinite” value for a limit is defined as RLIMIT_INFINITY (0x7fffffff).

Because this information is stored in the per-process information, this system call must be
executed directly by the shell if it is to affect all future processes created by the shell; limit
is thus a built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in
the normal way: a break call fails if the data space limit is reached, or the process is killed
when the stack limit is reached (since the stack cannot be extended, there is no way to send
a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ
to be generated, this normally terminates the process, but may be caught. When the soft
cpu time limit is exceeded, a signal SIGXCPU is sent to the offending process.

A 0 return value indicates that the call succeeded, changing or returning the resource limit.
A return value of —1 indicates that an error occurred, and an error code is stored in the
global location errno.

DIAGNOSTICS
The possible errors are:

[EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
csh(l), quota(2)

STATUS
GETRLIMIT (2) currently is not supported by Digital Equipment Corporation.

2-52

—

GETRUSAGE (2)

NAME

getrusage — get information about resource utilization

SYNTAX

#include <sys/time.h>
#include <sys/resource.h>

f#fdefine RUSAGE_SELF 0 /* calling process */
#define RUSAGE_CHILDREN -1 /* terminated child processes */

getrusage(who, rusage)
int who;
struct rusage *rusage;

DESCRIPTION

Getrusage returns information describing the resources utilized by the current process, or
all its terminated child processes. The who parameter is one of RUSAGE SELF and
RUSAGE CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with
the following structure:

struct rusage {

struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
int ru_maxrss;
int ru_ixrss; /* integral shared memory size */
int ru_idrss; /* integral unshared data size */
int ru_isrss; /* integral unshared stack size */
int ruminflt; /* page reclaims */
int rumajfit; /* page faults */
int ru_nswap; /* swaps */
int ru_inblock; /* block input operations */
int ru_oublock; /* block output operations */
int ru_msgsnd; /* messages sent */
int TU_Mmsgreyv; /* messages received */
int ru_nsignals; /* signals received */
int ru_nvesw; /* voluntary context switches */
int ru_nivesw; /* involuntary context switches */
¥
The fields are interpreted as follows:
ru_utime the total amount of time spent executing in user mode.
ru_stime the total amount of time spent in the system executing on behalf of the
process(es).
ru_maxrss the maximum resident set size utilized (in kilobytes).
ru_ixrss an “integral” value indicating the amount of memory used which was also

shared among other processes. This value is expressed in units of kilobytes

2-53

GETRUSAGE(2)

* seconds-of-execution and is calculated by summing the number of shared
memory pages in use each time the internal system clock ticks and then
averaging over 1 second intervals.

ru_idrss an integral value of the amount of unshared memory residing in the data
segment of a process (expressed in units of kilobytes * seconds-of-
execution).

ru_isrss an integral value of the amount of unshared memory residing in the stack
segment of a process (expressed in units of kilobytes * seconds-of-
execution).

ru_minflt the number of page faults serviced without any i/o activity; here i/o activity
is avoided by “reclaiming” a page frame from the list of pages awaiting
reallocation.

ru_majflt the number of page faults serviced which required i/o activity.

ru_nswap the number of times a process was “swapped” out of main memory.

ru_inblock the number of times the file system had to perform input.

ru_outblock the number of times the file system had to perform output.

ru_msgsnd the number of ipc messages sent.

ru_msgrev the number of ipc messages received.

ru_nsignals the number of signals delivered.

IU_NVCsw the number of times a context switch resulted due to a process voluntarily

giving up the processor before its time slice was completed (usually to
await availability of a resource).

ru_nivesw the number of times a context switch resulted due to a higher priority pro-
cess becoming runnable or because the current process exceeded its time
slice.

The numbers ru jnblock and ru_outblock account only for real i/o; data supplied by the
cacheing mechanism is charged only to the first process to read or write the data.
SEE ALSO
gettimeofday(2), wait(2)
RESTRICTIONS
There is no way to obtain information about a child process which has not yet terminated.

STATUS
GETRUSAGE (2) currently is not supported by Digital Equipment Corporation.

2-54

TN

MA
4

GETSOCKNAME (2)

NAME
getsockname — get socket name
SYNTAX
getsockname(s, name, namelen)
int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes).

A 0 is returned if the call succeeds, —1 if it fails.
DIAGNOSTICS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the opera-
tion.

[EFAULT] The name parameter poihtsjto memory not in a valid part of the process
address space. ‘

SEE ALSO
bind(2), socket(2)
RESTRICTIONS

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

STATUS
GETSOCKNAME (2) currently is not supported by Digital Equipment Corporation.

2-65

GETSOCKOPT(2)

NAME

getsockopt, setsockopt — get and set options on sockets

SYNTAX

#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; '

char *optval;

int optlen;

DESCRIPTION

Getsockopt and setsockopt manipulate options associated with a socket. Options may exist
at multiple protocol levels; they are always present at the uppermost “socket” level.

When manipulating socket options the level at which the option resides and the name of
the option must be specified. To manipulate options at the “socket” level, level is specified
as SOL SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate an option
is to be interpreted by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent (3N).

The parameters optval and optlen are used to access option values for setsockopt. For get-
sockopt they identify a buffer in which the value for the requested option(s) are to be
returned. For getsockopt, optlen is a value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return to indicate the actual size of the
value returned. If no option value is to be supplied or returned, optval may be supplied as
0. '

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for
“socket” level options; see socket(2). Options at other protocol levels vary in format and
name, consult the appropriate entries in (4P).

A 0 is returned if the call succeeds, —1 if it fails.

DIAGNOSTICS
The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] The option is unknown.
[EFAULT] The options are not in a valid part of the process address space.

2-56

GETSOCKOPT(2)

A\
/

SEE ALSO
socket(2), getprotoent(3N)

STATUS
GETSOCKOPT (2) currently is not supported by Digital Equipment Corporation.

2-57

GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday — get/set date and time

SYNTAX
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns the system’s notion of the current Greenwich time and the current

time zone. Time returned is expressed relative in seconds and microseconds since midnight
January 1, 1970.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
uwlong tvsec; - /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

1

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */
}s
The timezone structure indicates the local time zone (measured in minutes of time west-
ward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time
applies locally during the appropriate part of the year.

Only the super-user may set the time of day.

A 0 return value indicates that the call succeeded. A —1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

DIAGNOSTICS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.
SEE ALSO
date(1), ctime(3)
STATUS

GETTIMEOFDAY (2) currently is not supported by Digital Equipment Corporation.

2-58

~

GETUID(2)

NAME
getuid, geteuid — get user identity
SYNTAX
uid = getuid()
int uid;
euid = geteuid()
int euid;
DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the pro-
cess additional permissions during execution of “set-user-ID” mode processes, which use
getuid to determine the real-user-id of the process which invoked them.

SEE ALSO
getgid(2), setreuid(2)

STATUS
GETUID (2) currently is not supported by Digital Equipment Corporation.

2-59

I0CTL(2)

NAME
ioctl — control device
SYNTAX
#include <sys/ioctlL.h>
ioctl(d, request, argp)
int d, request;
char *argp;
DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating
characteristics of character special files (e.g. terminals) may be controlled with ioctl
requests. The writeups of various devices in section 4 discuss how ioct! applies to them.

An ioctl request has encoded in it whether the argument is an “in” parameter or “out”
parameter, and the size of the argument argp in bytes. Macros and defines used in specify-
ing an ioctl request are located in the file <sys/ioctl.h>.

If an error has occurred, a value of —1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Toctl will fail if one or more of the following are true:
[EBADF] D is not a valid descriptor.

[ENOTTY] D is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of object which the
descriptor d references.

[EINVAL] Request or argp is not valid.

SEE ALSO
execve(2), fentl(2), mt(4), tty(4), intro(4N)

STATUS
IOCTL(2) currently is not supported by Digital Equipment Corporation.

2-60

KILL(2)

NAME
kill — send signal to a process

SYNTAX
kill(pid, sig)
int pid, sig;
DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one

of the signals specified in sigvec(2), or it may be 0, in which case error checking is per-
formed but no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this
call is restricted to the super-user. A single exception is the signal SIGCONT which may
always be sent to any child or grandchild of the current process.

If the process number is 0, the signal is sent to all other processes in the sender’s process
group; this is a variant of killpg(2).

If the process number is —1, and the user is the super-user, the signal is broadcast univer-
sally except to system processes and the process sending the signal.

Processes may send signals to themselves.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Kill will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.
[EPERM] The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.
SEE ALSO
getpid(2), getpgrp(2), killpg(2), sigvec(2)
STATUS

KILL (2) currently is not supported by Digital Equipment Corporation.

2-61

KILLPG(2)

NAME
killpg — send signal to a process group
SYNTAX
killpg(pgrp, sig)
int pgrp, sig;
DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user
ID, otherwise this call is restricted to the super-user. As a single special case the continue
signal SIGCONT may be sent to any process which is a descendant of the current process.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global variable errno is set to indicate the error.

DIAGNOSTICS
Killpg will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending pro-
cess.

SEE ALSO
kill(2), getpgrp(2), sigvec(2)
STATUS

KILLPG(2) currently is not supported by Digital Equipment Corporation.

2-62

LINK(2)

NAME
link — make a hard link to a file

SYNTAX
link(namel, name2)
char *namel, *name2;

DESCRIPTION
A hard link to namel is created; the link has the name name2. Namel must exist.

With hard links, both namel and name2 must be in the same file system. Unless the caller
is the super-user, namel must not be a directory. Both the old and the new link share
equal access and rights to the underlying object.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Link will fail and no link will be created if one or more of the following are true:
[EPERM] Either pathname contains a byte with the high-order bit set.

[ENOENT] Either pathname was too long.

[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A corhponent of either path prefix does not exist.
[EACCES] A component of either path prefix denies search permission.
[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name2 does exist.

[EPERM] The file named by namel is a directory and the effective user ID is not
super-user.
[EXDEV] The link named by name2 and the file named by namel are on different

file systems.

[EACCES] The requested link requires writing in a directory with a mode that denies
write permission.

[EROFS] The requested link requires writing in a directory on a read-only file sys-
tem.

[EFAULT] One of the pathnames specified is outside the process’s allocated address
space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO
symlink(2), unlink(2)

2-63

LINK(2)

STATUS
LINK (2) currently is not supported by Digital Equipment Corporation.

2-64

LISTEN(2)

NAME

listen — listen for connections on a socket

SYNTAX
listen(s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for incoming con-
nections is specified with listen(2) and then the connections are accepted with accept(2).
The listen call applies only to sockets of type SOCK_STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client will receive an error
with an indication of ECONNREFUSED.

A 0 return value indicates success; —1 indicates an error.

DIAGNOSTICS
The call fails if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that supports the operation listen.
SEE ALSO
accept(2), connect(2), socket(2)
RESTRICTIONS
The backlog is currently limited to 5.
STATUS

LISTEN (2) currently is not supported by Digital Equipment Corporation.

2-65

LSEEK(2)

NAME
Iseek — move read/write pointer

SYNTAX
#define L SET 0 /* set the seek pointer */
#define L INCR 1 /* increment the seek pointer */
#define L XTND 2 /* extend the file size */

pos = lseek(d, offset, whence)

int pos;

int d, offset, whence;
DESCRIPTION

The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the
file pointer of d as follows:

If whence is L_SET, the pointer is set to offset bytes.
If whence is L_INCR, the pointer is set to its current location plus offset.
If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from begin-
ning of the file is returned. Some devices are incapable of seeking. The value of the
pointer associated with such a device is undefined.

Seeking far beyond the end of a file, then writing, creates a gap or “hole”, which occupies
no physical space and reads as zeros.

Upon successful completion, a non-negative integer, the current file pointer value, is
returned. Otherwise, a value of —1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Lseek will fail and the file pointer will remain unchanged if:
[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or a socket.

[EINVAL)] Whence is not a proper value.
[EINVAL)] The resulting file pointer would be negative.

SEE ALSO
dup(2), open(2)

STATUS
LSEEK (2) currently is not supported by Digital Equipment Corporation.

2-66

MKDIR(2)

NAME

mkdir — make a directory file

SYNTAX
mkdir(path, mode)
char *path;
int mode;

DESCRIPTION
MEdir creates a new directory file with name path. The mode of the new file is initialized
from mode. (The protection part of the mode is modified by the process’s mode mask; see
umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID
is set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits
set in the process’s file mode creation mask are cleared. See umask(2).

A 0 return value indicates success. A —1 return value indicates an error, and an error code
is stored in errno.

DIAGNOSTICS
MEdir will fail and no directory will be created if:

[EPERM] The process’s effective user ID is not super-user.

[EPERM] The path argument contains a byte with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EIO] An 1/0 error occured while writing to the file system.

SEE ALSO
chmod(2), stat(2), umask(2)

STATUS

MKDIR(2) currently is not supported by Digital Equipment Corporation.

2-67

MKNOD(2)

NAME

mknod — make a special file

SYNTAX

mknod(path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION

Mknod creates a new file whose name is path. The mode of the new file (including special
file bits) is initialized from mode. (The protection part of the mode is modified by the
process’s mode mask; see umask(2)). The first block pointer of the i-node is initialized
from dev and is used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent
specification of a character or block I/0 device. If mode does not indicate a block special or
character special device, dev is ignored.

MkEnod may be invoked only by the super-user.

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
MkEnod will fail and the file mode will be unchanged if:
[EPERM] The process’s effective user ID is not super-user.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.
[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO

chmod(2), stat(2), umask(2)

STATUS

2-68

MKNOD(2) currently is not supported by Digital Equipment Corporation.

MOUNT(2)

NAME
mount, umount — mount or remove file system

SYNTAX
mount(special, name, rwflag)
char *special, *name;
int rwflag;

umount(special)
char *special;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the
block-structured special file special; from now on, references to file name will refer to the
root file on the newly mounted file system. Special and name are pointers to null-
terminated strings containing the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while
the file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing
is allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file
systems must be mounted read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable
file system. The associated file reverts to its ordinary interpretation.

Mount returns 0 if the action occurred, —1 if special is inaccessible or not an appropriate
file, if name does not exist, if special is already mounted, if name is in use, or if there are
already too many file systems mounted.

Umount returns 0 if the action occurred; —1 if if the special file is inaccessible or does not
have a mounted file system, or if there are active files in the mounted file system.

DIAGNOSTICS
Mount will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no dev-
ice driver exists for the associated hardware).

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in name is not a directory.

[EROFS] Name resides on a read-only file system.

[EBUSY] Name is not a directory, or another process currently holds a reference to
it.

2-69

MOUNT(2)

[EBUSY]
[EBUSY]

[EBUSY]

[EBUSY]

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of
range block size.

Not enough memory was available to read the cylinder group information
for the file system.

An i/o error occurred while reading the super block or cylinder group infor-
mation.

Umount may fail with one of the following errors:

[NODEV] The caller is not the super-user.
[NODEV] Special does not exist.
[ENOTBLK] Special is not a block device.
[ENXIO] The major device number of special is out of range (this indicates no dev-
ice driver exists for the associated hardware).
[EINVAL] The requested device is not in the mount table.
[EBUSY] A process is holding a reference to a file located on the file system.
SEE ALSO
mount(8), umount(8)
STATUS

2-70

MOUNT (2) currently is not supported by Digital Equipment Corporation.

OPEN(2)

NAME
open — open a file for reading or writing, or create a new file

SYNTAX
#include <sys/file.h>

open(path, flags, mode)
char *path;
int flags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created
if it does not already exist (by specifying the O CREAT flag), in which case the file is
created with mode mode as described in chmod(2) and modified by the process’ umask
value (see umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated
by a null character. The flags specified are formed by or’ing the following values

O_RDONLY open for reading only
O_WRONLY open for writing only
O RDWR open for reading and writing
O NDELAY do not block on open
O_APPEND append on each write

O_CREAT create file if it does not exist
O_TRUNC truncate size to 0
0_EXCL error if create and file exists

Opening a file with Q APPEND set causes each write on the file to be appended to the end.
If O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL
is set with O_CREAT, then if the file already exists, the open returns an error. This can be
used to implement a simple exclusive access locking mechanism. If the Q NDELAY flag is
specified and the open call would result in the process being blocked for some reason (e.g.
waiting for carrier on a dialup line), the open returns immediately. The first time the pro-
cess attempts to perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned.
The file pointer used to mark the current position within the file is set to the beginning of
the file.

The new descriptor is set to remain open across execve system calls; see close(2).

No process may have more than {OPEN_MAX]} file descriptors open simultaneously.

DIAGNOSTICS
The named file is opened unless one or more of the following are true:
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

2-71

OPEN(2)

[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] The required permissions (for reading and/or writing) are denied for the
named flag.

[EISDIR] The named file is a directory, and the arguments specify it is to be opened
for writting.

[EROFS] The named file resides on a read-only file system, and the file is to be
modified.

[EMFILE] {OPEN_MAX] file descriptors are currently open.

[ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and
the open call requests write access.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EEXIST] 0 _EXCL was specified and the file exists.

[ENXIO] The O_NDELAY flag is given, and the file is a communications device on
which their is no carrier present.

[EOPNOTSUPP]
An attempt was made to open a socket (not currently implemented).

SEE ALSO ,
chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)
STATUS

OPEN (2) currently is not supported by Digital Equipment Corporation.

2-72

PIPE(2)

NAME
pipe — create an interprocess communication channel

SYNTAX
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/0 mechanism called a pipe. The file descriptors returned
can be used in read and write operations. When the pipe is written using the descriptor
fildes[1] up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor fildes[0] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes
(created by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as
such in the system.

A signal is generated if a write on a pipe with only one end is attempted.
The function value zero is returned if the pipe was created; —1 if an error occurred.

DIAGNOSTICS
The pipe call will fail if:

[EMFILE] Too many descriptors are active.
[EFAULT] The fildes buffer is in an invalid area of the process’s address space.

SEE ALSO
sh(1), read(2), write(2), fork(2), socketpair(2)

RESTRICTIONS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock
will occur.

STATUS
PIPE(2) currently is not supported by Digital Equipment Corporation.

2-73

PROFIL(2)

NAME

profil — execution time profile

SYNTAX

profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (10 milliseconds); offset is sub-
tracted from it, and the result multiplied by scale. If the resulting number corresponds to
a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0x10000 gives a 1-1 mapping of pc’s to words in buff; 0x8000 maps each pair of instruction
words together. 0x2 maps all instructions onto the beginning of buff (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a buf-
siz of 0. Profiling is turned off when an execve is executed, but remains on in child and
parent both after a fork. Profiling is turned off if an update in buff would cause a memory
fault.

A 0, indicating success, is always returned.

SEE ALSO

gprof(1), setitimer(2), monitor(3)

STATUS

2-74

PROFIL (2) currently is not supported by Digital Equipment Corporation.

4

PTRACE(2)

NAME

ptrace — process trace

SYNTAX

#include <signal.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may control the execution of a child
process, and examine and change its core image. Its primary use is for the implementation
of breakpoint debugging. There are four arguments whose interpretation depends on a
request argument. Generally, pid is the process ID of the traced process, which must be a
child (no more distant descendant) of the tracing process. A process being traced behaves
normally until it encounters some signal whether internally generated like “illegal instruc-
tion” or externally generated like “interrupt”. See sigvec(2) for the list. Then the traced
process enters a stopped state and its parent is notified via wait(2). When the child is in
the stopped state, its core image can be examined and modified using ptrace. If desired,
another ptrace request can then cause the child either to terminate or to continue, possibly
ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to
be traced by its parent. All the other arguments are ignored. Peculiar results will
ensue if the parent does not expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. Addr
must be even. The child must be stopped. The input data is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned.
Addr must be even and less than 512. This space contains the registers and other
information about the process; its layout corresponds to the user structure in the sys-
tem.

4,5 The given data is written at the word in the process’s address space corresponding to
addr, which must be even. No useful value is returned. If I and D space are
separated, request 4 indicates I space, 5 D space. Attempts to write in pure procedure
fail if another process is executing the same file.

6 The process’s system data is written, as it is read with request 3. Only a few locations
can be written in this way: the general registers, the floating point status and registers,
and certain bits of the processor status word.

7 The data argument is taken as a signal number and the child’s execution continues at
location addr as if it had incurred that signal. Normally the signal number will be
either 0 to indicate that the signal that caused the stop should be ignored, or that value
fetched out of the process’s image indicating which signal caused the stop. If addr is

2-75

PTR

ACE(2)

(int *)1 then execution continues from where it stopped.
The traced process terminates.

Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the VAX-11 the T-bit is used and just one instruction is executed.)
This is part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process
has stopped. The wait call is used to determine when a process stops; in such a case the
“termination” status returned by wait has the value 0177 to indicate stoppage rather than
genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on sub-
sequent execve(2) calls. If a traced process calls execve, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

On a VAX-11, “word” also means a 32-bit integer, but the “even” restriction does not
apply.

A 0 value is returned if the call succeeds. If the call fails then a —1 is returned and the glo-
bal variable errno is set to indicate the error.

DIAGNOSTICS

[EINVAL] The request code is invalid.

[EINVAL)] The specified process does not exist.
[EINVAL] The given signal number is invalid.
[EFAULT] The specified address is out of bounds.
[EPERM] The specified process cannot be traced.

SEE ALSO

wait(2), sigvec(2), adb(1)

STATUS

2-76

PTRACE (2) currently is not supported by Digital Equipment Corporation.

QUOTA(2)

NAME
quota — manipulate disk quotas

SYNTAX
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int emd, uid, arg;
caddr_t addr;

DESCRIPTION
The quota call manipulates disk quotas for file systems which have had quotas enabled
with setquota(2). The cmd parameter indicates a command to be applied to the user ID
uid. Arg is a command specific argument and addr is the address of an optional, command
specific, data structure which is copied in or out of the system. The interpretation of arg
and addr is given with each command below.

Q_SETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major-
minor device indicating a particular file system. Addr is a pointer to a struct
dgblk structure (defined in <sys/quota.h>). This call is restricted to the super-
user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remaining
parameters are as for Q_ SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID uid. Arg is a major-minor device indi-
cating a particular file system. Addr is a pointer to a struct dqusage structure
(defined in <sys/quota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are
ignored.

Q_SETUID
Change the calling process’s quota limits to those of the user with ID uid. The arg
and addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqwarn
structure (defined in <sys/quota.h>). This call is restricted to the super-user.

Q_DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the
system to check its current disc usage information and print a message on the ter-
minal of the caller for each file system on which the user is over quota. If the arg
parameter is specified as NODEYV, all file systems which have disc quotas will be

2-11

QUOTA(2)

checked. Otherwise, arg indicates a specific major-minor device to be checked.
This call is restricted to the super-user.

A successful call returns 0 and, possibly, more information specific to the cmd performed;

when an error occurs, the value —1 is returned and errno is set to indicate the reason.
DIAGNOSTICS

A quota call will fail when one of the following occurs:

[EINVAL] Cmd is invalid.

[ESRCH] No disc quota is found for the indicated user.
[EPERM] The call is priviledged and the caller was not the super-user.
[EINVAL] The arg parameter is being interpreted as a major-minor device and it indi-

cates an unmounted file system.

[EFAULT] An invalid addr is supplied; the associated structure could not be copied in
or out of the kernel.

[EUSERS] The quota table is full.

SEE ALSO
setquota(2), quotaon(8), quotacheck(8)

STATUS
QUOTA((2) currently is not supported by Digital Equipment Corporation.

2-78

READ(2)

NAME
read, readv — read input

SYNTAX
cc = read(d, buf, nbytes)
int ce, d;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovent)
int cc, d;

struct iovec *iov;

int iovent;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into
the buffer pointed to by buf. Readv performs the same action, but scatters the input data
into the iovcnt buffers specified by the members of the iovec array: iov[0], iov[l], ...,
iov[iovent —1].

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
|5
Each iovec entry specifies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d, see Iseek(2). Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and
placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references a file which has that many bytes left before the end-of-file, but in no
other cases.

If the returned value is 0, then end-of-file has been reached.

If successful, the number of bytes actually read is returned. Otherwise, a —1 is returned
and the global variable errno is set to indicate the error.

2-79

READ(2)

DIAGNOSTICS ‘
Read and readv will fail if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open for reading.
[EFAULT] Buf points outside the allocated address space.
[EINTR] A read from a slow device was interrupted before any data arrived by the

delivery of a signal.
In addition, readv may return one of the following errors:

[EINVAL] ITovcent was less than or equal to 0, or greater than 16.

[EiNVAL] One of the iov len values in the iov array was negative.

[EINVAL)] The sum of the iov len values in the iov array overflowed a 32-bit integer.
SEE ALSO

dup(2), open(2), pipe(2), socket(2), socketpair(2)
STATUS

READ(2) currently is not supported by Digital Equipment Corporation.

2-80

READLINK(2)

NAME

readlink — read value of a symbolic link
SYNTAX

cc = readlink(path, buf, bufsiz)

int cc;

char *path, *buf;
int bufsiz;
DESCRIPTION ‘
Readlink places the contents of the symbolic link name in the buffer buf which has size
bufsiz. The contents of the link are not null terminated when returned.

The call returns the count of characters placed in the buffer if it succeeds, or a —1 if an
error occurs, placing the error code in the global variable errno.

DIAGNOSTICS
Readlink will fail and the file mode will be unchanged if:
[EPERM] The path argument contained a byte with the high-order bit set.

[ENOENT] The pathname was too long.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT]) The named file does not exist.

[ENXIO] The named file is not a symbolic link.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective

user ID is not the super-user.
[EINVAL] The named file is not a symbolic link.
[EFAULT] Buf extends outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

stat(2), Istat(2), symlink(2)
STATUS

READLINK (2) currently is notsupported by Digital Equipment Corporation.

2-81

REBOOT(2)

NAME

reboot — reboot system or halt processor

SYNTAX

#include <sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION

Reboot reboots the system, and is invoked automatically in the event of unrecoverable sys-
tem failures. Howto is a mask of options passed to the bootstrap program. The system call
interface permits only RB_ HALT or RB AUTOBOOT to be passed to the reboot program;
the other flags are used in scripts stored on the console storage media, or used in manual
bootstrap procedures. When none of these options (e.g. RB AUTOBOOT) is given, the sys-
tem is rebooted from file “vmunix” in the root file system of unit 0 of a disk chosen in a
processor specific way. An automatic consistency check of the disks is then normally per-
formed.

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place. RB HALT should be used
with caution.

RB ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file
should be booted. Normally, the system is booted from the file “xx(0,0)vmunix”
without asking.

RB SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and
then multi-user operations. RB SINGLE prevents the consistency check, rather
simply booting the system with a single-user shell on the console. RB SINGLE is
interpreted by the init(8) program in the newly booted system. This switch is not
available from the system call interface.

Only the super-user may reboot a machine.

If successful, this call never returns. Otherwise, a —1 is returned and an error is returned
in the global variable errno.

DIAGNOSTICS

[EPERM] The caller is not the super-user.

SEE ALSO

crash(8), halt(8), init(8), reboot(8)

STATUS

2-82

REBOOT (2) currently is not supported by Digital Equipment Corporation.

~—

RECV(2)

NAME

recv, recvfrom, recvmsg — receive a message from a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;

char *buf;

int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char *buf;

int len, flags;

struct sockaddr *from;

int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgl[];
int flags;
DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2)), while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return
to indicate the actual size of the address stored there. The length of the message is
returned in cc. If a message is too long to fit in the supplied buffer, excess bytes may be
discarded depending on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive,
unless the socket is nonblocking (see ioct!(2)) in which case a cc of —1 is returned with the
external variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The flags argument to a send call is formed by or’ing one or more of the values,

#define MSG_PEEK 0x1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied
parameters. This structure has the following form, as defined in <sys/socket.h>:

2-83

RECV(2)

struct msghdr {

caddr t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iov *msg iov; /* scatter/gather array */

int msg_jovlen; /* # elements in msg jov */
caddr t msg accrights; /* access rights sent/received */
int msg_accrightslen;

b
Here msg_name and msg_namelen specify the destination address if the socket is uncon-
nected; msg name may be given as a null pointer if no names are desired or required. The
msgiov and msgiovlen describe the scatter gather locations, as described in read(2).

Access rights to be sent along with the message are specified in msg_accrights, which has
length msg_accrightslen.

These calls return the number of bytes received, or —1 if an error occurred. A

DIAGNOSTICS
The calls fail if:
[EBADF] The argument s is an invalid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.
[EINTR] The receive was interrupted by delivery of a signal before any data
was available for the receive.
[EFAULT] The data was specified to be received into a non-existent or protected
part of the process address space.
SEE ALSO
read(2), send(2), socket(2)
STATUS

RECV (2) currently is not supported by Digital Equipment Corporation.

2-84

7

RENAME(2)

NAME
rename — change the name of a file

SYNTAX
rename(from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If fo exists, then it is first
removed. Both from and to must be of the same type (that is, both directories or both
non-directories), and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash
in the middle of the operation.

A 0 value is returned if the operation succeeds, otherwise rename returns —1 and the global
variable errno indicates the reason for the failure.

DIAGNOSTICS
Rename will fail and neither of the argument files will be affected if any of the following
are true:

[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A component of either path prefix does not exist.
[EACCES] A component of either path prefix denies search permission.
[ENOENT] The file named by from does not exist.

[EPERM] The file named by from is a directory and the effective user ID is not
super-user.
[EXDEV] The link named by to and the file named by from are on different logical

devices (file systems). Note that this error code will not be returned if the
implementation permits cross-device links.

[EACCES] The requested link requires writing in a directory with a mode that denies
write permission.

[EROFS] The requested link requires writing in a directory on a read-only file sys-
tem. ’

[EFAULT] Path points outside the process’s allocated address space.
[EINVAL] From is a parent directory of to.

SEE ALSO
open(2)

RESTRICTIONS
The system can deadlock if a loop in the file system graph is present. This loop takes the
form of an entry in directory “a”, say “a/foo”, being a hard link to directory “b”, and an
entry in directory “b”, say “b/bar”, being a hard link to directory “a”. When such a loop
exists and two separate processes attempt to perform “rename a/foo b/bar” and “rename

2-85

RENAME(2)

b/bar a/foo”, respectively, the system may deadlock attempting to lock both directories for
modification. Hard links to directories should be replaced by symbolic links by the system
administrator.

STATUS
RENAME (2) currently is not supported by Digital Equipment Corporation.

2-86

x_7

RMDIR(2)

NAME

rmdir — remove a directory file

SYNTAX
rmdir(path)
char *path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have
any entries other than “.” and “..”.

A 0 is returned if the remove succeeds; otherwise a —1 is returned and an error code is
stored in the global location errno.

DIAGNOSTICS
The named file is removed unless one or more of the following are true:
[ENOTEMPTY]
The named directory contains files other than “.” and “..” in it.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Write permission is denied on the directory containing the link to be

removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EROFS] The directory entry to be removed resides on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO
mkdir(2), unlink(2)
STATUS

RMDIR (2) currently is notsupported by Digital Equipment Corporation.

2-87

SELECT(2)

NAME
select — synchronous i/o multiplexing

SYNTAX
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout; ‘

DESCRIPTION
Select examines the i/o descriptors specified by the bit masks readfds, writefds, and
execptfds to see if they are ready for reading, writing, or have an exceptional condition
pending, respectively. File descriptor f is represented by the bit “1<<f” in the mask. Nfds
desciptors are checked, i.e. the bits from 0 through nfds-1 in the masks are examined.
Select returns, in place, a mask of those descriptors which are ready. The total number of
ready descriptors is returned in nfound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of readfds, writefds, and execptfds may be given as 0 if no descriptors are of interest.

Select returns the number of descriptors which are contained in the bit masks, or —1 if an
error occurred. If the time limit expires then select returns 0.

DIAGNOSTICS
An error return from select indicates:
[EBADF] One of the bit masks specified an invalid descriptor.
[EINTR] An signal was delivered before any of the selected for events occurred or
the time limit expired. '
SEE ALSO
accept(2), connect(2), read(2), write(2), recv(2), send(2)
RESTRICTIONS

The descriptor masks are always modified on return, even if the call returns as the result of
the timeout. '

STATUS
SELECT (2) currently is not supported by Digital Equipment Corporation.

2-88

SEND(2)

NAME
send, sendto, sendmsg — send a message from a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

ce = send(s, msg, len, flags)
int cc, s;

char *msg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;
DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used
at any time. ‘

The address of the target is given by to with tolen specifying its size. The length of the
message is given by len. If the message is too long to pass atomically through the underly-
ing protocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of —1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking i/o mode. The
select(2) call may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF_ OOB to send “out-of-band” data on sockets which
support this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

The call returns the number of characters sent, or —1 if an error occurred.

DIAGNOSTICS
[EBADF] An invalid descriptor was specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT] An invalid user space address was specified for a parameter.

2-89

SEND(2)

[EMSGSIZE] The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation
would block.

SEE ALSO
recy(2), socket(2)

STATUS
SEND(2) currently is not supported by Digital Equipment Corporation.

2-90

SETGROUPS(2)

NAME
setgroups — set group access list

SYNTAX
#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gid-
set. The parameter ngroups indicates the number of entries in the array and must be no
more than NGRPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

A 0 value is returned on success, —1 on error, with a error code stored in errno.

DIAGNOSTICS

The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.
SEE ALSO

getgroups(2), initgroups(3X)
STATUS

SETGROUPS (2) currently is not supported by Digital Equipment Corporation.

2-91

SETPGRP(2)

NAME
setpgrp — set process group
SYNTAX
setpgrp(pid, pgrp)
int pid, pgrp;
DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is
zero, then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

Setpgrp returns when the operation was successful. If the request failed, —1 is returned
and the global variable errno indicates the reason.

DIAGNOSTICS
Setpgrp will fail and the process group will not be altered if one of the following occur:
[ESRCH] The requested process does not exist.
[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.
SEE ALSO
getpgrp(2)
STATUS

SETPGRP (2) currently is not supported by Digital Equipment Corporation.

2-92

SETQUOTA(2)

~x_ 7

NAME
setquota — enable/disable quotas on a file system

SYNTAX
setquota(special, file)
char *special, *file;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block spe-
cial device on which a mounted file system exists. If file is nonzero, it specifies a file in that
file system from which to take the quotas. If file is 0, then quotas are disabled on the file
system. The quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.

A 0 return value indicates a successful call. A value of —1 is returned when an error occurs
and errno is set to indicate the reason for failure.

DIAGNOSTICS
Setquota will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.
[ENOTBLK] Special is not a block device.
\ [ENXIO] The major device number of special is out of range (this indicates no dev-
/ ice driver exists for the associated hardware).
[EPERM] The pathname contains a character with the high-order bit set.
[ENOTDIR] A component of the path prefix in file is not a directory.
[EROFS] File resides on a read-only file system.

[EACCES] File resides on a file system different from special.
[EACCES] File is not a plain file.

SEE ALSO
quota(2), quotacheck(8), quotaon(8)

STATUS
SETQUOTA (2) currently is not supported by Digital Equipment Corporation.

~

2-93

SETREGID(2)

NAME
setregid — set real and effective group ID

SYNTAX
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
The real and effective group ID’s of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of —1 for either the real or effective group ID forces the system to substi-
tute the current ID in place of the —1 parameter.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
[EPERM] The current process is not the super-user and a change other than changing
the effective group-id to the real group-id was specified.
SEE ALSO
getgid(2), setreuid(2), setgid(3)
STATUS

SETREGID (2) currently is not supported by Digital Equipment Corporation.

2-94

SETREUID(2)

NAME
setreuid — set real and effective user ID’s

SYNTAX
setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION
The real and effective user ID’s of the current process are set according to the arguments.
If ruid or euid is —1, the current uid is filled in by the system. Only the super-user may
modify the real uid of a process. Users other than the super-user may change the effective
uid of a process only to the real uid.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
[EPERM] The current process is not the super-user and a change other than changing
the effective user-id to the real user-id was specified.
SEE ALSO
getuid(2), setregid(2), setuid(3)
STATUS

SETREUID(2) currently is not supported by Digital Equipment Corporation.

2-95

SHUTDOWN(2)

NAME
shutdown — shut down part of a full-duplex connection

SYNTAX
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated
with s to be shut down. If how is O, then further receives will be disallowed. If how is 1,
then further sends will be disallowed. If how is 2, then further sends and receives will be

disallowed.

A 0 is returned if the call succeeds, —1 if it fails.
DIAGNOSTICS

The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

STATUS
SHUTDOWN (2) currently is not supported by Digital Equipment Corporation.

2-96

SIGBLOCK(2)

NAME
sighlock — block signals -

SYNTAX
sigblock(mask);
int mask;

DESCRIPTION
Sigblock causes the signals specified in mask to be added to the set of signals currently
being blocked from delivery. Signal i is blocked if the -th bit in mask is a 1.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2),

STATUS
SIGBLOCK (2) currently is not supported by Digital Equipment Corporation.

2-97

SIGPAUSE(2)

NAME

sigpause — atomically release blocked signals and wait for interrupt
SYNTAX

sigpause(sigmask)

int sigmask;

DESCRIPTION

Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive;
on return the set of masked signals is restored. Sigmask is usually 0 to indicate that no
signals are now to be blocked. Sigpause always terminates by being interrupted, returning
EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to
be done, and the process pauses awaiting work by using sigpause with the mask returned
by sigblock.

SEE ALSO

sigblock(2), sigvec(2)

STATUS

2-98

SIGPAUSE (2) currently is not supported by Digital Equipment Corporation.

SIGSETMASK(2)

NAME
sigsetmask — set current signal mask

SYNTAX
sigsetmask(mask);
int mask;

DESCRIPTION
Sigsetmask sets the current signal mask (those signals which are blocked from delivery).
Signal i is blocked if the i-th bit in mask is a 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

STATUS
SIGSETMASK (2) currently is not supported by Digital Equipment Corporation.

2-99

SIGSTACK(2)

NAME

sigstack — set and/or get signal stack context

SYNTAX

#include <signal.h>

struct sigstack {
caddr t ss_sp;
int ss_onstack;
b
sigstack(ss, oss);
struct sigstack *ss, *oss;

DESCRIPTION

Sigstack allows users to define an alternate stack on which signals are to be processed. If
ss is non-zero, it specifies a signal stack on which to deliver signals and tells the system if
the process is currently executing on that stack. When a signal’s action indicates its
handler should execute on the signal stack (specified with a sigvec(2) call), the system
checks to see if the process is currently executing on that stack. If the process is not
currently executing on the signal stack, the system arranges a switch to the signal stack for
the duration of the signal handler’s execution. If oss is non-zero, the current signal stack
state is returned.

Signal stacks are not “grown” automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

DIAGNOSTICS

Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULT] Either ss or oss points to memory which is not a valid part of the process
address space.

SEE ALSO

sigvec(2), setjmp(3)

STATUS

SIGSTACK (2) currently is not supported by Digital Equipment Corporation.

2-100

SIGVEC(2)

NAME
sigvec — software signal facilities

SYNTAX
#include <signal.h>

struct sigvec {

int (*sv_handler)();
int sv_mask;
int sv_onstack;

b
sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process may
specify a handler to which a signal is delivered, or specify that a signal is to be blocked or
ignored. A process may also specify that a default action is to be taken by the system
when a signal occurs. Normally, signal handlers execute on the current stack of the process.
This may be changed, on a per-handler basis, so that signals are taken on a special signal
stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of
signals currently blocked from delivery to a process. The signal mask for a process is initil-
ized from that of its parent (normally 0). It may be changed with a sigblock(2) or sigset-
mask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending
for the process. If the signal is not currently blocked by the process then it is delivered to
the process. When a signal is delivered, the current state of the process is saved, a new sig-
nal mask is calculated (as described below), and the signal handler is invoked. The call to
the handler is arranged so that if the signal handling routine returns normally the process
will resume execution in the context from before the signal’s delivery. If the process wishes
to resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of
the process’ signal handler (or until a sigblock or sigsetmask call is made). This mask is
formed by taking the current signal mask, adding the signal to be delivered, and or’ing in
the signal mask associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler rou-
tine and mask to be used when delivering the specified signal. Further, if su_onstack is 1,
the system will deliver the signal to the process on a signal stack, specified with sig-
stack(2). If ovec is non-zero, the previous handling information for the signal is returned to

2-101

SIGVEC(2)

the user.
The following is a list of all signals with names as in the include file <signal.h>:
SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3* quit

SIGILL 4* illegal instruction
SIGTRAP 5% trace trap

SIGIOT 6* IOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception

SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket

SIGSTOP 17% stop (cannot be caught, blocked, or ignored)
SIGTSTP 181 stop signal generated from keyboard

SIGCONT 19 continue after stop (cannot be blocked)
SIGCHLD 20« child status has changed

SIGTTIN 211 background read attempted from control terminal
SIGTTOU 221 background write attempted to control terminal
SIGIO 23+ /0 is possible on a descriptor (see fcntl(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))

SIGPROF 27 profiling timer alarm (see setitimer(2))

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or
an execve(2) is performed. The default action for a signal may be reinstated by setting
sv handler to SIG_DFL; this default is termination (with a core image for starred signals)
except for signals marked with » or t. Signals marked with « are discarded if the action is
SIG_DFL; signals marked with { cause the process to stop. If su_handler is SIG_IGN the
signal is subsequently ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, causing the call to terminate prema-
turely, the call is automatically restarted. In particular this can occur during a read or
write(2) on a slow device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal
stack.

2-102

A

T

SIGVEC(2)

Execve(2) resets all caught signals to default action; ignored signals remain ignored; the sig-
nal mask remains the same; the signal stack state is reset.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This
is done silently by the system.

A 0 value indicated that the call succeeded. A —1 return value indicates an error occured
and errno is set to indicated the reason.

DIAGNOSTICS
Sigvec will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either vec or ovec points to memory which is not a valid part of the pro-
cess address space.

[EINVAL] Sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIG-
STOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).
SEE ALSO
kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2) sigstack(2), sigvec(2),
setjmp(3), tty(4)
NOTES (VAX-11)
The handler routine can be declared:
handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as
defined below. Code is a parameter which is either a constant as given below or, for compa-
tibility mode faults, the code provided by the hardware (Compatibility mode faults are dis-
tinguished from the other SIGILL traps by having PSL CM set in the psl). Scp is a
pointer to the sigcontext structure (defined in <signal.h>), used to restore the context
from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these
symbols are defined in <signal.h>:

Hardware condition Signal Code

Arithmetic traps:

Integer overflow SIGFPE FPE_INTOVF_TRAP
Integer division by zero SIGFPE FPE_INTDIV_TRAP
Floating overflow trap SIGFPE FPE FLTOVE TRAP
Floating/decimal division by zero SIGFPE FPE_FLTDIV_TRAP
Floating underflow trap SIGFPE FPE FLTUND_TRAP
Decimal overflow trap SIGFPE FPE_DECOVF_TRAP

2-103

SIGVEC(2)

Subscript-range SIGFPE FPE_SUBRNG_TRAP
Floating overflow fault SIGFPE FPE FLTOVF_FAULT
Floating divide by zero fault SIGFPE FPE FLTDIV_FAULT
Floating underflow fault SIGFPE FPE FLTUND FAULT

Length access control SIGSEGV

Protection violation SIGBUS

Reserved instruction SIGILL ILL_PRIVIN_FAULT

Customer-reserved instr. SIGEMT

Reserved operand SIGILL ILL, RESOP_FAULT

Reserved addressing SIGILL ILL_RESAD FAULT

Trace pending SIGTRAP

Bpt instruction SIGTRAP

Compatibility-mode SIGILL hardware supplied code

Chme SIGSEGV

Chms SIGSEGV

Chmu SIGSEGV

STATUS

SIGVEC (2) currently is not supported by Digital Equipment Corporation.

2-104

SOCKET(2)

NAME
socket — create an endpoint for communication

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;
DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The af parameter specifies an address format with which addresses specified in later opera-
tions using the socket should be interpreted. These formats are defined in the include file
<sys/socket.h>. The currently understood formats are

AFE_UNIX (UNIX path names),

AF INET (ARPA Internet addresses),

AF PUP (Xerox PUP-I Internet addresses), and
AF_IMPLINK (IMP “host at IMP” addresses).

The socket has the indicated type which specifies the semantics of communication.
Currently defined types are: :

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams with an out-of-band data transmission mechanism. A SOCK_DGRAM socket sup-
ports datagrams (connectionless, unreliable messages of a fixed (typically small) maximum
length). SOCK_RAW sockets provide access to internal network interfaces. The types
SOCK_RAW, which is available only to the super-user, and SOCK_SEQPACKET and
SOCK_RDM, which are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type using a given address format.
However, it is possible that many protocols may exist in which case a particular protocol
must be specified in this manner. The protocol number to use is particular to the “com-
munication domain” in which communication is to take place; see services(3N) and
protocols (3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A con-
nection to another socket is created with a connect(2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2)
calls. When a session has been completed a close(2) may be performed. Out-of-band data

2-106

SOCKET(2)

may also be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK STREAM insure that data is
not lost or duplicated. If a piece of data for which the peer protocol has buffer space can-
not be successfully transmitted within a reasonable length of time, then the connection is
considered broken and calls will indicate an error with —1 returns and with ETIMEDOUT
as the specific code in the global variable errno. The protocols optionally keep sockets
“warm” by forcing transmissions roughly every minute in the absence of other activity. An
error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken
stream; this causes naive processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents
named in send(2) calls. It is also possible to receive datagrams at such a socket with
recv(2).

An fentl(2) call can be used to specify a process group.to receive a SIGURG signal when
the out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in
the file <sys/socket.h> and explained below. Setsockopt and getsockopt(2) are used to set
and get options, respectively.

SO_DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse
SO_KEEPALIVEkeep connections alive

SO_DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present
SO_DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates the rules used in validating addresses supplied in a bind(2) call should allow reuse
of local addresses. SO_KEEPALIVE enables the periodic transmission of messages on a
connected socket. Should the connected party fail to respond to these messages, the con-
nection is considered broken and processes using the socket are notified via a SIGPIPE sig-
nal. SO_.DONTROUTE indicates that outgoing messages should bypass the standard rout-
ing facilities. Instead, messages are directed to the appropriate network interface according
to the network portion of the destination address. SO_LINGER and SO DONTLINGER
control the actions taken when unsent messags are queued on socket and a close(2) is per-
formed. If the socket promises reliable delivery of data and SO_LINGER is set, the system
will block the process on the close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period, termed the linger interval,
is specified in the setsockopt call when SO LINGER is requested). If SO DONTLINGER is
specified and a close is issued, the system will process the close in a manner which allows
the process to continue as quickly as possible.

A —1 is returned if an error occurs, otherwise the return value is a descriptor referencing
the socket.

2-106

SOCKET(2)

DIAGNOSTICS

The socket call fails if:
[EAFNOSUPPORT] The specified address family is not supported in this version of the

system.
[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.
[EPROTONOSUPPORT]
The specified protocol is not supported.
[EMFILE] The per-process descriptor table is full.
[ENOBUFS] No buffer space is available. The socket cannot be created.

SEE ALSO

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2),
select(2), send(2), shutdown(2), socketpair(2)
“A 4.2BSD Interprocess Communication Primer”.

STATUS

SOCKET (2) currently is not supported by Digital Equipment Corporation.

2-107

SOCKETPAIR(2)

NAME
socketpair — create a pair of connected sockets

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION

The socketpair call creates an unnamed pair of connected sockets in the specified domain
d, of the specified type, and using the optionally specified protocol. The descriptors used
in referencing the new sockets are returned in sv[0] and sv[1]. The two sockets are indis-
tinguishable.

A 0 is returned if the call succeeds, —1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.
[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULT] The address sv does not specify a valid part of the process address
space.
SEE ALSO
read(2), write(2), pipe(2)
STATUS

SOCKETPAIR (2) currently is not supported by Digital Equipment Corporation.

2-108

NAME

stat, Istat, fstat — get file status

SYNTAX

#include <sys/types.h>
#include <sys/stat.h>

stat(path, buf)
char *path;
struct stat *buf;
Istat(path, buf)
char *path;
struct stat *buf;
fstat(fd, buf)
int fd;

struct stat *buf;

DESCRIPTION

Stat obtains information about the file path.

STAT(2)

Read, write or execute permission of the

named file is not required, but all directories listed in the path name leading to the file

must be reachable.

Lstat is like stat except in the case where the named file is a symbolic link, in which case
Istat returns information about the link, while stat returns information about the file the

link references.

Fstat obtains the same information about an open file referenced by the argument descrip-

tor, s