0

VAX LISP/VMS
Editor Programming Guide

Order Number: AA-Y923C-TE

May 1986

This document contains information required by a LISP language
programmer to write-programs that extend the VAX LISP Editor.

Operating System and Version: VAX/VMS Version 4.2
Software Version: VAX LISP/VMS Version 2.0

" digital equipment corporation

maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be wused or copied only in accordance with the terms of such
license. :

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1985, 1986.
All Rights Reserved.

Printed in U.S.A.
A postage-paid READER’S COMMENTS form is included on the last page of
this document. Your comments will assist wus in preparing future

documentation.

The following are trademarks of Digital Equipment Corporation:

DEC UNIBUS PDP

DECUS vax VMS

MicroVAX MicrovVaAX II : MicroVMs
VAXstation VAXstation II Al VAXstation
DECnet " ULTRIX ULTRIX-11
ULTRIX-32

ULTRIX-32m mﬂgﬂnanm

@)

O

PREFACE

CONTENTS

SUMMARY OF NEW AND CHANGED INFORMATION

CHAPTER

O

CHAPTER

PART I GUIDE TO EDITOR PROGRAMMING

1 EDITOR OVERVIEW

1.1 SOME COMMON EDITOR EXTENSIONS

1.1.1 Changing the Frequency of Checkpointing

1.1.2 Changing the Number of Windows Displayed

1.1.3 Changing the Default Major Style

1.1.4 Binding a Command to a Key Sequence

1.1.5 Defining a Command to Change Screen Width

1.2 THE COMPONENTS OF THE EDITOR

1.2.1 Text Operations

1.2.2 Window and Display Operations

1.2.3 Binding Contexts

1.2.4 Other Subsystems and Utilities

1.3 REFERENCING EDITOR OBJECTS

1.3.1 Functions, Macros, and LISP Variables

1.3.2 Editor Objects

1.3.3 Named and Unnamed Editor Objects

1.3.3.1 Referencing Unnamed Objects

1.3.3.2 Referencing Named Objects

1.3.3.3 A Note On Efficiency)

1.3.4 Context-Independent and Context-Dependent
Editor Objects

1.3.4.1 Referencing Context-Independent Objects

1.3.4.2 Referencing Context-Dependent Objects

1.3.5 The "EDITOR" Package

1.3.5.1 The Package Prefix

1.3.5.2 Using USE-PACKAGE

1.3.5.3 Using IN-PACKAGE

N

CREATING EDITOR COMMANDS

COMMANDS AND THEIR ASSOCIATED FUNCTIONS
USING DEFINE-COMMAND
Specifying the Names
Specifying the Argument List
Supplying Documentation Strings
Specifying the Action
Modular Definition of Commands
Commands and Context
SOME SPECIAL COMMAND FACILITIES

e

L] .
. L] L]
AU W

(oSN U S S0 S S I N N S N)
L
WD
°

iii

ix

xiii

1
WHRFPOWWVWOJOOU N B WWNN

s e
1 PR RRBRRERRREPRREPRR RS
N) 1

SRy

[}
-
w w

1-14
1-14
1-15
1-15
1-16

MDD
| I |
WO dUTdWWN R,

2.3.1 ‘Errors 2-9
2.3.1.1 Getting The User's Attention 2-9
2.3.1.2 Signaling An Error 2-10
2.3.1.3 Error Handling 2-11
2.3.2 Prompting 2-12
2.3.2.1 Simple Prompting . 2-13
2.3.2.2 General Prompting - 2-14
2.3.3 Command Categories 2-16
CHAPTER 3 BINDING COMMANDS TO KEYS AND POINTER ACTIONS

3.1 USING BIND-COMMAND 3-2
3.2 THE COMMAND TO BE BOUND 3-3
3.3 THE KEY OR KEY SEQUENCE TO BE BOUND 3-4
3.3.1 Choosing a Key or Sequence 3-4
3.3.2 Specifying a Character Key or Sequence 3-5
3.3.3 Specifying a Function Key, Keypad Key, or

Sequence : 3-5
3.4 THE BINDING CONTEXT 3-6
3.4.1 Specifying the Binding Context 3-7
3.4.1.1 Global 3-7
3.4.1.2 Style 3-7
3.4.1.3 Buffer 3-8
3.4.2 Search Order and Shadowing 3-8
3.5 USING BIND-POINTER-COMMAND 3-9
3.5.1 Specifying a Pointer Action 3-10
3.5.1.1 Pointer Cursor Movement 3-10
3.5.1.2 Pointer Button Transitions 3-10
3.5.2 Specifying a Button State 3-11
3.5.3 Getting the State of the Pointer 3-12

CHAPTER ¢ TEXT OPERATIONS

4.1 OPERATIONS ON A CHARACTER POSITION 4-2
4.1.1 Retrieving and Changing a Character 4-3
4.1.2 Inserting a Character 4-3
4.1.3 Inserting a String of Characters 4-3
4.1.4 Deleting Characters 4-4
4.2 OPERATIONS ON A GROUP OF CHARACTERS 4-5
4.2.1 Inserting a Region . 4-6
4.2.2 Copying a Region 4-6
4.2.3 Deleting a Region 4-6
4.2.4 Writing a Region to a File 4-7
4.2.5 Operating on Buffers 4-7
4.2.5.1 Deleting The Text In A Buffer 4-8
4,2.5.2 Inserting One Buffer Into Another 4-8
4.2.5.3 Writing A Buffer To A File 4-8
4.2.5.4 Inserting A File Into A Buffer 4-8
4.3 MOVING AND SEARCHING OPERATIONS 4-9
4.3.1 Moving by Character Positions 4-9

iv

4.3.2 Searching by Pattern 4-11
<:> 4.3.2.1 Making A Search Pattern 4-11
4.3.2.2 Locating A Search Pattern 4-11
4.3.2.3 Replacing A Pattern 4-12
4.3.3 Searching by Attribute 4-13
4.3.3.1 Using LOCATE-ATTRIBUTE 4-14
4.3.3.2 Mark And Cursor Behavior 4-15
4,3.3.3 Using LOCATE-ATTRIBUTE Repeatedly 4-16
4.4 MISCELLANEOUS TEXT OPERATIONS 4-18
4.4.1 Creating Marks : 4-18
4.4.1.1 Mark Types And Their Behavior 4-18
4.4.1.2 Using COPY-MARK 4-19
4.4.1.3 Using WITH-MARK 4-20
4.4.2 Operating on Lines 4-21
4.4.2.1 Retrieving And Altering The Text In A Line 4-22
4.4.2.2 Retrieving And Altering A Single Character 4-22
<:> 4.4.2.3 Moving By Line 4-23
4.4.2.4 Testing Relative Line Positions 4-23
4.4.2.5 Retrieving And Testing Mark Positions 4-23
4.4.2.6 Example Of An Operation On Lines 4-24

wm

CHAPTER WINDOW AND DISPLAY OPERATIONS
ACCESSING WINDOWS
The Current Window
The Windows onto a Buffer
All the wWindows on the Screen
The "Next" Window
WINDOW CONTENT

O

oSwh e

1
POWOVWWOWOOOOO~NoOuUTds WWWN

I ottt ottt Ut
|

2.1 Window Position in a Buffer
.2.2 The Window Point
.2.3 Moving a Window in the Buffer -
.2.3.1 Scrolling -
<:> .2.3.2 Moving To A Specified Position -
.2.4 Wrapping the Lines in a Window -
. WINDOW APPEARANCE 1
1 Altering Window Rendition -1
.2 Making Highlight Regions -12
.3.3 Operations on Window Labels and Borders -14
.3.3.1 Borders, Labels, And Label Content -15
.3.3.2 Label Position -16
.3.3.3 Label Rendition -17

DISPLAY MANAGEMENT

oot untvtununnUtuutvnutunuTtuntuntunuTunuonuvtut oty
. .

BB BB LABDDBAEAEWWWWWWWINDNMNNNDNNODNDNDERE PR
.

oottt g
|
-
co

4.1 The Display Area
.4.1.1 Display Area Dimensions -20
.4.1.2 The Reserved Display Area -21
.4.1.3 The Available Display Area -23
.4.2 Window Types and Their Behavior -23
<:> .4.2.1 Display Behavior By Window Type . -23
.4.2.2 Window Size And Display Behavior -24
.4.2.3 Window Position And Display Behavior -25

5.4.2.4 Window Borders And Display Behavior 5-27
5+4-3 Displaying—and-—Removing—Windows 5=28—
5.4.3.1 Using SHOW-WINDOW 5-28
5.4.3.2 Using PUSH-WINDOW 5-29
5.4.3.3 Using REMOVE-WINDOW 5-29
5.5 MAKING AND DELETING WINDOWS / . 5-30
5.6 EXAMPLE OF WINDOW AND DISPLAY OPERATIONS 5-31
CHAPTER 6 OPERATIONS ON STYLES

6.1 ACTIVATING AND DEACTIVATING STYLES 6-2
6.1.1 The Styles in a New Buffer 6-4
6.1.2 The Editor’s Default Styles 6-4
6.1.2.1 The Default Major Style 6-5
6.1.2.2 The Default Minor Style(s) 6-5
6.1.2.3 Default Minor Style(s) By Type Of Buffer 6-6
6.1.2.4 Example Of Activating Default Styles 6-6
6.1.3 The Styles in an Existing Buffer 6-7
6.1.3.1 A Buffer’s Major Style- 6-8
6.1.3.2 A Buffer’s Minor Style(s) 6-8
6.2 MODIFYING A DIGITAL-PROVIDED STYLE 6-9
6.2.1 Binding Keys and Pointer Actions 6-9
6.2.1.1 Finding Key Bindings 6-9
6.2.1.2 Review Of BIND-COMMAND 6-10
6.2.1.3 Choosing Commands To Bind 6-11
6.2.2 Binding Variables and Setting Variable Values 6-11 <:>
6.2.2.1 Finding Style Variables 6-11
6.2.2.2 Altering Variable Values , 6-12
6.2.2.3 Binding A Variable In A Style 6-13
6.2.2.4 Defining New Variables 6-14
6.2.3 Binding Attributes and Setting Attribute Values 6-15
6.2.3.1 Finding Style Attributes 6-15
6.2.3.2 Altering Attribute Values 6-17
6.2.3.3 Binding An Attribute In A Style 6-17
6.2.3.4 Defining New Attributes 6-19 <:>
6.3 CREATING A NEW STYLE 6-20
6.3.1 Making a Style Object 6-20
6.3.2 Style Activation and Deactivation Hooks 6-21
6.3.3 Adding Capabilities to the Style 6-22
6.3.4 Activating the Style 6-24

PART II CONCEPTS IN EDITOR PROGRAMMING

ATTRIBUTES

BUFFERS

CHARACTERS

CHECKPOINTING (Subsystem)
COMMANDS

CONTEXT (Subsystem)
DEBUGGING SUPPORT

MO UTE N

[

vi

O

O

APPENDIX A

EDITOR VARIABLES
ERRORS (Subsystem)
HOOKS

INFORMATION AREA
LINES

MARKS

NAMED EDITOR OBJECTS
PROMPTING (Subsystem)
REGIONS

RINGS

STREAMS

STRING TABLES

STYLES

WINDOWS

PART III EDITOR OBJECT DESCRIPTIONS

EDITOR OBJECTS BY CATEGORY

ATTRIBUTES

ATTRIBUTES PROVIDED WITH VAX LISP
BUFFERS

BUFFERS PROVIDED WITH VAX LISP
COMMANDS

COMMANDS PROVIDED WITH VAX LISP
DISPLAY

EDITOR VARIABLES

EDITOR VARIABLES PROVIDED WITH VAX LISP
ERROR SIGNALING AND DEBUGGING

FILES

HELP

HOOKS

HOOK VARIABLES PROVIDED WITH VAX LISP
INVOKING AND EXITING THE EDITOR

KILL RING

LINES

LISP SYNTAX

MARKS

MISCELLANEOUS

POINTING DEVICE

PROMPTING AND TERMINAL INPUT

REGIONS

RINGS

SEARCHING

STRING TABLES :
STRING TABLES PROVIDED WITH VAX LISP
STYLES

STYLES PROVIDED WITH VAX LISP

STYLE BINDINGS, "EDT EMULATION" STYLE

vii

13
14
16
18
19
20
22
24
27
29
30
31
32
36

40

I I B |

[|

? b ? b I

]
PRPRPRRRRRPRR

rt

B WO R R R OWWOo U DS WWW

b B ? I I i

|
[
Ul

QPPENDIX B
APPENDIX C
APPENDIX D
INDEX

FIGURES

Uy U
1
w N -

TABLES

OO we
[
e

STYLE BINDINGS,
STYLE BINDINGS,
TEXT OPERATIONS
WINDOWS

EDITOR COMMANDS

"EMACS" STYLE
"VAX LISP" STYLE

AND BINDINGS

BOUND KEYS AND KEY SEQUENCES

FUNCTION KEYS AND KEYPAD KEYS

Display Area Coordinates

Altered Display Area Dimensions

A Window Display Position

"LISP Syntax" Attribute Values
Editor Commands and Key Bindings

Editor Key Bindings
Characters Generated by Keys

viii

A-19
A-21
A-22
A-23

5-19
5-20
5-26

()

O

PREFACE

Manual Objectives

The VAX LISP/VMS Editor Programming Guide provides the information
needed to program the VAX .LISP Editor in order to extend and customize
its capabilities.

Intended Audience

Readers of this manual are assumed to have a working knowledge of LISP
programming and to be able to use the VAX LISP Editor as provided.

e The VAX LISP language elements are described in COMMON
LISP: The Language.*

@ Instructions for using the VAX LISP Editor appear in the VAX
LISP/VMS User’s Guide.

Readers who are not familiar with LISP programming can use the VAX
LISP Editor as provided, but should not attempt to customize it.

Structure of This Document
This manual is organized in three parts:

e PART I, GUIDE TO EDITOR PROGRAMMING, introduces the techniques
of Editor programming in a task-oriented fashion: It contains
six chapters, each covering a major area of Editor
programming.

- Chapter 1 provides an overview of the subsystems of the
Editor and of the data types that each subsystem contains.
It also describes the methods of accessing Editor objects.

* Guy L. Steele, Jr., COMMON LISP: The Language, Digital Press
(1984), Burlington, Massachusetts. :

ix

- Chapter 2 describes the techniques of creating Editor.

commands.

- Chapter 3 describes the techniques of binding Editor
commands to keyboard keys and pointer actions.

- Chapter 4 introduces the Editor’s text operations subsystem
and the techniques of extending it.

- Chapter 5 introduces the Editor’s window and display
operations subsystem and the techniques of extending it.

- Chapter 6 describes the techniques of modifying the
Editor’s styles and of creating new styles.

PART II, CONCEPTS IN EDITOR PROGRAMMING, contains programming
information arranged for quick reference. This part consists
of separate, alphabetically arranged articles on each of the
major concepts and data types used in Editor programming.

PART III, EDITOR OBJECT DESCRIPTIONS, describes the individual
functions, variables, and other objects provided with the
Editor. The descriptions are arranged alphabetically by
object name.

This manual also contains four appendixes:

Appendix A, Editor Objects by Category, contains lists of the

- functions, variables, and other objects provided with the

Editor, categorized by the major concepts and data types wused
in Editor programming.

Appendixes B, C, and D list all the commands provided with the
Editor, all bound keys, and other information that is useful
in binding Editor commands to keys and key segquences. These
appendixes also appear in the VAX LISP/VMS User'’s Guide.

Associated Documents

The following documents are relevant to programming the VAX LISP

Editor:

The VAX LISP/VMS User’s Guide provides general information
about wusing VAX LISP, and serves as a guide to generally
helpful VMS documentation. This manual also presents
information on using the VAX LISP Editor as provided.

COMMON LISP: The Language provides a definition of the COMMON
LISP language.

~

N

U

O

e The VAX LISP/VMS Graphics Programming Guide explains the use
of the VAX LISP programming interface to VAXstation graphics.

Conventions Used in This Document

The following conventions are used in this manual:

Convention

()

UPPERCASE

lowercase
italics

&OPTIONAL

Meaning

Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

LISP symbols are printed in wuppercase characters;
however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply to a
function or macro; however, you can enter them in
lowercase, uppercase, or a combination of lowercase and
uppercase characters.

[]
In LISP code examples, a vertical ellipsis indicates
that 1lines of code not pertinent to the example are
omitted.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}
In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one unit of code and that can be
repeated zero or more times. For example:

{keyword value}*
In function and macro format specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example: '

COPY-MARK mark &OPTIONAL mark-type

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

xi

Convention

&REST

&KEY

CTRL/X

Meaning

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

INVOKE-HOOK name &REST args

Do not specify &REST when you invoke the function or
macro whose definition includes &REST.

In function and macro format specifications, the word

&KEY indicates that keyword arguments are accepted.
For example:

LOCATE-ATTRIBUTE mark-or-string attribute
&KEY :TEST :CONTEXT :DIRECTION :LIMIT

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

CTRL/x indicates a control character generated when you
hold down the key labeled CTRL while you press another
key. For example:

CTRL/Z or CTRL/Y

xii

O

SUMMARY OF NEW AND CHANGED INFORMATION

This section summarizes the ways in which the Version 2.0 VAX LISP/VMS
Editor and its documentation differ from previous versions.

Document Supersession

This document supersedes the VAX LISP Editor Manual. The relationship
of the VAX LISP/VMS Editor Programming Guide to the VAX LISP Editor
Manual is as follows:

e Part I of the Editor Programming Guide is new material.

e Part II of the Editor Programming Guide is a reorganization of
the material in the Editor Manual, Chapter 2.

@ Part III of the Editor Programming Guide corresponds to the
Editor Manual, Chapter 3, with additions and revisions as
noted below.

° Appendix A of the Editor Programming Guide cérresponds to the
Editor Manual, Appendix A, with additions and revisions as
noted below.

® Appendixes B, C, and D of the Editor Programming Guide are new
material. They contain tables that are identical to tables
included in the VAX LISP/VMS User’s Guide.

@ The Editor Manual, Chapter 1, has been revised and now appears
as Chapter 3 of the VAX LISP/VMS User’s Guide, Using the VAX
LISP Editor.

New and Revised Editor Features

The major additions and changes to the VAX LISP Editor for VAX
LISP/VMS Version 2.0 are the following:

e Improved speed of Editor operation

xiii

e Support for the pointing device on the AI VAXstation in the (ﬁj

Editor environment

e Revision of the Editor’s display architecture to support
VAXstation windowing

@ Recursive use of the ED function
@ Use of a permanently displayed window for all Editor prompting

e Some miscellaneous features under the control of the
programmer

A right margin setting that causes text inserted from the
keyboard to wrap

- A text overstrike mode

- The ability to specify the number of anchored windows the
Editor normally displays

- The ability to specify the buffer onto which the Editor
displays a window when it has no other window to display

New and Revised Editor Objects

The VAX LISP/VMS Editor Programming Guide documents the following
Editor objects for the first time with VAX LISP/VMS, Version 2.0.
These objects are described in Part III and 1listed under the
appropriate categories in Appendix A.

New Functions

BIND-POINTER-COMMAND
BUFFER-HIGHLIGHT-REGIONS
ENQUEUE-EDITOR-COMMAND
GET-POINTER-STATE
POINTER-STATE-ACTION
POINTER-STATE-BUTTONS
POINTER-STATE-P
POINTER-STATE-TEXT-POSITION
POINTER-STATE-WINDOW~-POSITION
POSITION-WINDOW-TO-MARK
UNBIND-POINTER-COMMAND

New Macro

RETURN-FROM-EDITOR

xiv

—"

New Commands

"Close Qutermost Form"
"Describe Word at Pointer"

"EDT Paste at Pointer"

"Exit Recursive Edit"

"Kill Enclosing List"

"Kill Next Form"

"Kill Previous Form"

"Kill Rest of List"

"Maybe Reset Select at Pointer"
"Move Point and Select Region"
"Move Point to Pointer"

"Page Previous Window"

"Select Enclosing Form at Pointer"
"Set Select Mark"

"Unset Select Mark"

"Yank at Pointer"

New Variable

EDITOR-DEFAULT-BUFFER

New Editor Variables

"anchored Window Show Limit"

"Buffer Right Margin"

“Current Window Pointer Pattern"
"Ccurrent Window Pointer Pattern X"
"Current Window Pointer Pattern Y"
"Editor Initialization Hook"
"Information Area Pointer Pattern"
"Information Area Pointer Pattern X"
"Information Area Pointer Pattern Y"
"Noncurrent Window Pointer Pattern”
"Noncurrent Window Pointer Pattern X"
"Noncurrent Window Pointer Pattern Y"
"Prompt Rendition Complement"

"Prompt Rendition Set"

"Select Region Rendition Complement"
"Select Region Rendition Set"

"Text Overstrike Mode"

XV

The VAX LISP/VMS Editor Programming Guide also documents the following
Editor objects that have been changed for VAX LISP/VMS, Version 2.0.

Functions

BUFFER-WRITABLE

ED

PROMPT-FOR-INPUT
REGION-READ-POINT
REMOVE-WINDOW
SHOW-WINDOW
SIMPLE-PROMPT-FOR-INPUT
WINDOW-DISPLAY-START

Commands

"EDT Deselect"”

"EDT Select"

"Insert Close Paren and Match"
"Remove Current Window"

Editor Variable

"Default Window Lines Wrap"

The documentation of the following objects has been revised to correct
documentation errors or omissions.

Functions

ALTER-WINDOW-HEIGHT
CURRENT-WINDOW
DESCRIBE-OBJECT~-COMMAND
EDIT-LISP-OBJECT-COMMAND
EXIT-EDITOR-COMMAND
INSERT-STRING
MAKE-BUFFER
MAKE-WINDOW
NEXT-WINDOW
UPDATE-WINDOW-LABEL
WINDOW-DISPLAY-COLUMN
WINDOW-DISPLAY-ROW
WINDOW-LABEL-RENDITION
WORD-OFFSET

xvi

~

N

O

O

Commands

"Beginning of Buffer"
"Beginning of Line"
"Describe Word"
"Downcase Region"
"EMACS Forward Search"
"EXit“

"Helpll

"Pause Editor"

"Set Screen Width"

Editor Variable

"Buffer Exit Hook"

Buffers

EDITOR-HELP-BUFFER
EDITOR-PROMPTING-BUFFER

Xxvii

PART |
GUIDE TO EDITOR PROGRAMMING

O

CHAPTER 1
EDITOR OVERVIEW

The VAX LISP Editor is an interactive LISP program that enables the
user to insert, display, and manipulate text. The behavior and
capabilities of the Editor as they appear to the interactive user are
described in the VAX LISP/VMS User’s Guide.

The Editor is designed to be easily modified and extended. Since the
Editor 1is written entirely in LISP, you can alter it by writing new
LISP code that

@ Modifies the behavior of Editor commands

e Binds commands to key sequences or actions of a pointing
device ‘

e Modifies the Editor’s initial features, such as the 1labeling
of its windows, the frequency of checkpointing, the size of
the information area, and so on

e Adds new capabilities, such as justification of text, parsing
of LISP code, recognition of the syntax of another programming
language, and so on

To write Editor-related code, you use the same functions and data
types that were used to develop the Editor originally. These include
some specially defined "Editor objects"; you can also use any object
defined in VAX LISP. :

This chapter provides an overview of the Editor as a LISP program and
of its data types. The intent is to orient you to the process of
extending the Editor and to the range of possible extensions. This
chapter also provides some basic programming information that is
needed to follow the discussion in later chapters.

EDITOR OVERVIEW

This chapter contains:
@ Some illustrations of simple Editor extensions
e An overview of the Editor’s subsystems and utilities

@ An introduction to Editor data types and the means of
referencing them

1.1 SOME COMMON EDITOR EXTENSIONS

This section includes the LISP code that implements several different
kinds of Editor extensions. These simple examples serve to illustrate
the process of programming the Editor.

The following Editor extensions are shown:

e Changing the frequency of checkpointing

e Changing the number of windows that the Editor normally
displays at one time

® Changing the default major style
e Binding a DIGITAL-supplied command to a key sequence

e Defining a new command to change the width of the terminal
screen ‘

If you wish to make any of these changes in your own Editor, you
simply execute the forms as shown. You can execute them either by
typing them at top level LISP or by loading them from a file.

Note in these examples that the symbols. for DIGITAL-supplied objects
that relate to the Editor are referenced with the package prefix
EDITOR:. For a full discussion of the package 1location of Editor
objects, see Section 1.3.5 below.

1.1.1 Changing the Frequency of Checkpointiﬁg

The Editor checkpoints buffers associated with files after every 350
commands that alter text (see VAX LISP/VMS User’s Guide). 1If you
would like checkpointing to occur either more or less frequently, you
can make this change by using SETF with the function
CHECKPOINT-FREQUENCY.

(SETF (EDITOR:CHECKPOINT-FREQUENCY) 1000)

1-2

O

O

O

EDITOR OVERVIEW

After you have executed this form, the Editor will checkpoint after
every 1000 commands that alter text.

To disable checkpointing completely, you set the value to NIL:

(SETF (EDITOR:CHECKPOINT-FREQUENCY) NIL)

1.1.2 Changing the Number of Windows Displayed

The Editor normally displays up to two anchored windows at a time. 1If
you call for a third anchored window (by selecting another buffer or
editing another file or LISP object), the Editor removes a window from
the screen to make room for the new window. (See VAX LISP/VMS User’s
Guide.)

If you would like the Editor to show up to three windows at a time,
you change the value of an Editor variable called "Anchored Window
Show Limit" from 2 to 3. 1If you want only one window shown at a time,
you set the value to 1.

An Editor variable differs slightly from a LISP variable (see Section
1.3.4 below). You reference an Editor variable by means of a
specifier (symbol or a string called a display name), and you access
the wvariable’s value with the function VARIABLE-VALUE. Using SETF,
you can then change the value of the Editor variable.

The code that changes the number of anchored windows that the Editor
can show is:

(SETF (EDITOR:VARIABLE-VALUE "Anchored Window Show Limit") 3)

After you have executed this form, the Editor will show up to three
anchored windows at a time. 1If you call for a fourth anchored window,
the Editor will remove a window from the screen to accommodate the new
window.

1.1.3 Changing the Default Major Style

The Editor activates "EDT Emulation" as the major style in all the
buffers that it creates for editing files and LISP objects. 1If you
prefer the behavior and key bindings of an EMACS-based editor, you can
make "EMACS" style the default major style instead. (See VAX LISP/VMS
User’s Guide.)

The default is stored as the value of the Editor variable "Default
Major Style". The possible values are Editor objects called styles,
which, like Editor variables, can be referenced by either their
symbols or their display names.

1-3

EDITOR OVERVIEW

The following form changes the Editor’s default major style to
"EMACS":

(SETF (EDITOR:VARIABLE-VALUE "Default Major Style") "EMACS")

Any new buffers that the Editor creates after you have executed this
form will have "EMACS" as their major style. Buffers that already
exist are not affected.

1.1.4 Binding a Command to a Key Sequence

Many DIGITAL-provided commands are not bound to keys or key sequences
and must therefore be invoked by name (see VAX LISP/VMS User’s Guide).
You might find it convenient to bind keys to the commands you use
frequently, such as "Write Current Buffer".

To establish a key binding, you can use the function BIND-COMMAND and
the display name of an Editor command. To specify the key or keys,
you can use the normal LISP syntax for a character or a vector
containing characters. (BIND-COMMAND is one of the few Editor-related
symbols that is accessible in the "USER" package; you need not prefix
it with the "EDITOR" package qualifier.) ‘

(BIND-COMMAND "Write Current Buffer" ’#(#\"X #\"W))

The sequence CTRL/X CTRL/W will now execute "Write Current Buffer". in
the Editor. To make sure that the key sequence you choose is not
already bound to an Editor command, you can consult Appendix C to this
manual, which lists the keys that are bound in the Editor as provided.

1.1.5 Defining a Command to Change Screen Width

In editing LISP code, you might occasionally want your terminal screen
to display more than 80 columns so that lines do not truncate. One
way to do this is to execute the command "Set Screen Width" after
specifying a prefix argument (such as 132). 1If you adjust screen
width frequently, you might prefer to have a command that you can
execute in one step.*

To implement a new command, you use the macro DEFINE-COMMAND. A
possible ‘implementation for a command that widens the screen to 132
columns is:

* On DIGITAL terminals without the Advanced Video Option, widening the
screen reduces available screen height to 12 rows.

1-4

EDITOR OVERVIEW

(EDITOR:DEFINE-COMMAND (WIDEN-SCREEN-COMMAND
<::> :DISPLAY-NAME "Widen Screen")
(PREFIX)

(SETF (EDITOR:VARIABLE-VALUE "Default Window Truncate Char")
NIL) ‘ :
(SETF (EDITOR:SCREEN-WIDTH) (OR PREFIX 132)))

The function SCREEN-WIDTH returns the current width of the screen.
Using SETF, you change the value to 132 or to a prefix value that you
can supply interactively. (If no prefix value is supplied
interactively, the Editor automatically passes a NIL value for this
parameter and the OR form will then return the value 132.)

This example also sets the wvalue- of the Editor wvariable "Default

Window Truncate Char" to NIL. This action dispenses with the
character that normally appears on the screen to indicate 1line
truncation. DEFINE-COMMAND creates a command named "Widen Screen"

that executes these two SETF forms.

To have another command that sets the screen back to 80 columns and
reestablishes > as the truncation character, you could write:

(EDITOR:DEFINE-COMMAND (SHRINK-SCREEN-COMMAND
:DISPLAY-NAME "Shrink Screen")

<:> (PREFIX)

(SETF (EDITOR:VARIABLE-VALUE "Default Window Truncate Char")
#\>)
(SETF (EDITOR:SCREEN-WIDTH) (OR PREFIX 80)))

The new commands created by these DEFINE-COMMAND forms can be invoked
by name within the Editor. To make the commands accessible from the
keyboard, you could bind them to key sequences:
<:> (BIND-COMMAND "Widen Screen" '#(#\ESCAPE #\w))
(BIND-COMMAND "Shrink Screen" ’#(#\ESCAPE #\s))

The new commands can now be invoked from the keyboard by means of
ESCAPE w and ESCAPE s.

1.2 THE COMPONENTS OF THE EDITOR

This section introduces the various subsystems and utilities of the
Editor. The purpose is to indicate the range of Editor behavior that
can be programmed and to introduce the data types that each subsystem

<::> contains.

Section 1.3 discusses the nature of the Editor data types and the
means of referencing them.

1-5

EDITOR OVERVIEW

1.2.1 Text Operations

Text in the Editor is made up of the 256 characters in the ASCII 8-bit
extended <character set (the DEC Multinational Character Set). The
Editor’s text operations are the operations that insert, copy, and
delete text and that indicate any given text position (for positioning
the cursor, for instance).

The text operations subsystem contains the following specially defined
data types, along with functions and macros that operate on them:

e Objects that contain text: BUFFERS, REGIONS, LINES
@ Objects that indicate text positions: MARKS

@ Objects that distinguish among characters for the purpose of
searching through text: EDITOR ATTRIBUTES

The text operations subsystem also contains EDITOR VARIABLES and
several LISP global variables.

Information on programming text operations appears in Chapter 4 and in
the descriptions of the above data types in Part II.

1.2.2 Window and Display Operations

The Editor’s window operations create, delete, and manipulate windows
that open onto the contents of buffers. The display operations make
windows (and thus buffer contents) visible on the screen or remove
windows from the screen. Display operations also manage the
allocation of the total screen area and the wuse of the information
area at the bottom of the screen.

The window and display operations subsystem contains the following
data types, along with the functions and macros that operate on them:

@ Text-containing objects that can be displayed: BUFFERS
® Objects that translate text into displayable form: WINDOWS

The subsystem also contains EDITOR VARIABLES and LISP global
variables, as well as functions that operate on the information area.

Information on programming window and display operations appears in
Chapter 5 and in the descriptions of the above data types in Part II.

O

O

EDITOR OVERVIEW

1.2.3 Binding Contexts

Contexts are separate programming environments within the Editor where
bindings can take place. Certain types of objects may have different
bindings simultaneously in different contexts:

e EDITOR VARIABLES
® EDITOR ATTRIBUTES

An Editor variable or an Editor attribute can reference more than one
value if the variable or attribute is bound in more than one Editor
context. The bindings of keyboard keys and pointer actions to Editor
commands are also context-dependent.

Two Editor data types can serve as binding contexts:
O @ Any BUFFER

® Any STYLE
In addition, the Editor supports a global binding context.

To determine which of several bindings to use in a given situation,
the Editor searches through the contexts in a predetermined order and
<:> uses the first binding it encounters. The search order is:

@ The current buffer

® The styles active in the current buffer, beginning with the
most recently activated minor style, if any, and ending with
the major style, if any (see VAX LISP/VMS User’s Guide)

@ The global Editor context

<:> When you reference a context-dependent object in LISP code, you can
specify the appropriate context.

Editor contexts implement a form of scoping that is unlike either the
dynamic or lexical scoping of COMMON LISP (see COMMON LISP: The
Language). The binding context determines the scope of Editor
variables, Editor attributes, keys, and pointer actions.

The extent of these context-dependent objects is indefinite (see
COMMON LISP: The Language). That is, the objects have extent that
begins when they are bound in a context and ends when they are unbound
from that context. To "bind" an Editor variable or an Editor
attribute is to establish it as usable in a certain context. You
cannot assign values unless the variable or attribute is bound
<:> ("established”) in one or more contexts -- buffer, style, or global.

1-7

EDITOR OVERVIEW

The use of binding contexts is pervasive in Editor programming.
Further detail and examples can be found 1in Chapter 3, Binding
Commands, and in Chapter 6, Operations on Styles. See also the
discussion of the context subsystem in Part II.

1.2.4 Other Subsystems and Utilities

The smaller subsystems of the Editor consist mainly of functions that
enable you to control certain types of Editor behavior:

e Prompting the user for a value necessary for the execution of
a command -- discussed in Chapter 2 and Part II

e Signaling errors in command execution and handling LISP errors
-- discussed in Chapter 2 and Part II

e Checkpointing buffers to save their contents in the event of
system failure -- discussed in Part II

In addition, the Editor has several 1low-level tools and wutilities.
The following items are all discussed in Part II:

e Input and output streams: LISP streams that permit normal
COMMON LISP input and output operations to be performed within
the Editor.

e String tables: specialized hash tables that store infor-
mation indexed by a string (such as the display name of a
.command or other Editor object).

® Hooks: functions that are invoked automatically by certain
Editor operations, such as activating 'a style or making a
buffer or window.

® Rings: circular caches of values that are used, for instance,
to store deleted text. Rings are used to implement the kill
ring -- a facility like those in certain EMACS editors that
stores deleted text.

1.3 REFERENCING EDITOR OBJECTS

The objects provided with the Editor include several new data types.
The Editor also contains definitions of LISP functions, macros, and
global variables. All these objects are LISP objects that can be
referenced in any LISP code.

1-8

O

O

O

EDITOR OVERVIEW
This section provides information on how to acceés these various kinds
<:> of objects. It introduces:
e Functions, macros, and variables
° Editér-specific data types
- Named and unnamed objects
- Context-independent and context-dependent objects

e The package location of Editor symbols

1.3.1 Functions, Macros, and LISP Variables
<::> The Editor contains definitions of LISP functions, macros, and global

variables. All the normal COMMON LISP rules concerning scope and
extent apply to the identifiers of these objects.

1.3.2 Editor Objects

<::> The specially defined Editor data types are:
e Editor attributes
e Buffers
e Commands
e Lines

<:> ® Marks B
e Regions
® Rings
e String tables
e Styles
e Editor variables

® Windows

1-9

EDITOR OVERVIEW

The methods of accessing Editor objects differ according to whether
the object in question is:

e Named or unnamed
@ Context-independent or context-dependent

These methods are outlined in the two sections that follow.

1.3.3 Named and Unnamed Editor Objects

Named objects are Editor objects that can have two special
specifiers: a string called a display name and a symbol. The
specifiers are associated with a named object at the time it is
defined, and they serve as a means of accessing the object under
certain circumstances.

It is important to recognize that the symbol specifier of a named
Editor object cannot be treated as an ordinary LISP symbol. That is,
the Editor object is not the symbol-value of the symbol. Editor
object specifiers behave somewhat 1like the symbol and string
specifiers of LISP packages. The function FIND-PACKAGE can take, for
instance, the symbol 'USER or the string "USER" and return the package
object; the symbol ’‘USER itself -does not evaluate to the package
object. :
The reference list in Part III of this manual identifies both the
display name and the symbol of all named objects provided with the
Editor. Section 1.3.3.2 outlines the use of these specifiers in
accessing named Editor objects.
The named object types are:

e Editor attribute

e Buffer

e Command

e Style

e Editor variable

The other Editor object types are unnamed. Unnamed Editor objects
have no special specifiers.

@ Line

® Mark

1-10

O

O

O

EDITOR OVERVIEW

e Region
<:> @ Ring
@ String table

@ Window

1.3.3.1 Referencing Unnamed Objects - Any Editor object -- named or
unnamed -- can be accessed in the usual LISP way: that is, by means
of a form that evaluates to the object. Unnamed objects can be

accessed only in this way.

For instance, the function CURRENT-WINDOW takes no arguments and
returns the window that is current in the Editor. You can access the
current window (an unnamed object) by writing:

(EDITOR:CURRENT-WINDOW)

Similarly, you can access a string table by ‘referencing the LISP
global variable to which it is bound. For instance, evaluating

EDITOR: *EDITOR-COMMAND-NAMES *

<:> returns the string table that contains the names of the commands that
are currently defined in the Editor.

1.3.3.2 Referencing Named Objects - Named Editor objects can be
accessed in the same way as unnamed objects: 'by means of an
expression that returns the object. For instance, the form

<:> (EDITOR:CURRENT-BUFFER)
returns the buffer (a named object) that is current in the Editor.

You can also reference named Editor objects by means of their
specifiers (symbols or display names) in certain circumstances:

® Interactively, when the Editor prompts for the name of a
command, buffer, or style, you supply the approrriate display
name. :

@ In LISP code, when calling a function that takes a named
Editor object specifier as an argument, you can supply any of
three specifiers of the named object:

<:> - The display name
-. The symbol
- Any form that evaluates to the object

1-11

EDITOR OVERVIEW

In contrast, some functions take a named Editor object but not a
specifier. When calling these functions, you must supply a form that<::>
evaluates to the object. The function descriptions in Part III of
this manual distinguish between functions that can take specifiers
(including objects) and functions that can only take objects.

For instance, the following functions are among those that can take
specifier .arguments: COMMAND-CATEGORIES, VARIABLE-VALUE, BUFFER-
MAJOR-STYLE, FIND-STYLE, and BIND-ATTRIBUTE. The following examples
show how you can call each of these functions from LISP code with the
specifier of a named Editor object as the argument. 1In each case, you
could use either the symbol or the display name of the named object;
you could also, of course, use any form that evaluates to the object
in question.

Using a command specifier:

(EDITOR:COMMAND-CATEGORIES 'EDITOR:END-OF-LINE-COMMAND) <:>
(EDITOR:COMMAND-CATEGORIES "End of Line")

Using an Editor variable specifier:

(EDITOR:VARIABLE-VALUE 'EDITOR:TARGET-COLUMN)
(EDITOR:VARIABLE-VALUE "Target Column")

Using a buffer specifier: <:>

(EDITOR:BUFFER-MAJOR-STYLE 'EDITOR:EDITOR-HELP-BUFFER)
(EDITOR:BUFFER-MAJOR-STYLE "Help")

Using a style specifier:

(EDITOR:FIND-STYLE ’'EDITOR:EDT-EMULATION)
(EDITOR:FIND-STYLE "EDT Emulation")

Using an Editor attribute specifier: <:>

(EDITOR:BIND-ATTRIBUTE 'EDITOR:WORD-DELIMITER)
(EDITOR:BIND-ATTRIBUTE "Word Delimiter")

Because these functions evaluate their arguments, the argument can
also be a form that evaluates to a specifier of a named Editor object.
For instance, the following pair of forms has the same effect as the
previous calls to BUFFER-MAJOR-STYLE.

(SETF b "Help")

(EDITOR:BUFFER-MAJOR-STYLE b)

O

O

EDITOR OVERVIEW

1.3.3.3 A Note On Efficiency - The display names of named Editor
objects are included for the convenience of the programmer and the
Editor user. If you wish to maximize the efficiency of your program,
however, you should be aware that accessing an object by using its
display name is less efficient than using its symbol. Further, wusing
either specifier is 1less efficient that wusing an expression that
evaluates to the object.

For example, the following three forms are equivalent when the buffer
named "Mybuffer.txt" is the current buffer. The forms are listed in
order from the least to the most efficient:

(EDITOR:BUFFER-MAJOR-STYLE "Mybuffer.txt")
(EDITOR:BUFFER-MAJOR-STYLE ’'MYBUFFER.TXT)
(EDITOR:BUFFER-MAJOR-STYLE (EDITOR:CURRENT-BUFFER))

The code examples in this manual frequently wuse display names for
convenience and readability. When you reference named objects in your
own code, however, you should consider the trade-off between
convenience and efficiency in each instance.

1.3.4 Context-Independent and Context-Dependent Editor Objects

Editor objects are either context-independent or context-dependent.
The context-dependent objects are actually specifiers that may be
associated with different objects in different Editor contexts (the
contexts are individual buffers, individual styles, and global).

Context-independent objects exist independently of Editor ‘context.
These objects are accessed according to the scoping rules defined in
COMMON LISP: The Language.

1.3.4.1 Referencing Context-Independent Objects - All the unnamed
Editor objects and most of the named objects (buffers, commands, and
styles) are context-independent. A context-independent object, once
created, exists within the Editor as a wunique object, and the
accessing functions appropriate to the data type 1locate and return
that unique object. '

For instance:

(EDITOR:FIND-BUFFER ’'FACTORIAL) ;Finds and returns the buffer
;object named FACTORIAL

1-13

EDITOR OVERVIEW

(EDITOR:FIND-STYLE "VAX LISP") ;Finds and returns the style
;object named "VAX LISP"

(EDITOR:NEXT-WINDOW) ;Finds and returns a unique
;window object (unnamed)

1.3.4.2 Referencing Context-Dependent Objects - The context-dependent
Editor objects are Editor attributes and Editor variables. Attributes
and variables are not unique objects. That is, a specifier <can be
associated with different values (or, in the case of variables, also
with different functions) in different Editor contexts.

It is important to recognize that these multiple associations can
exist simultaneously; leaving an Editor context makes an association
temporarily inaccessible, but it does not destroy it.

The following functions are used to access a value or function
associated with a context-dependent object:

e VARIABLE-VALUE takes a variable specifier and an optional
context and returns the wvalue (if any) of that variable in
that context.

® VARIABLE-FUNCTION takes a variable specifier and- an optional
context and returns the function definition (if any) of that
variable in that context.

e A CHARACTER-ATTRIBUTE takes an attribute specifier, a character,
and an optional context and returns that character’s value (if
any) for that attribute in that context.

The functions FIND-ATTRIBUTE and FIND-VARIABLE are different from the
FIND-object functions for the context-independent data types. The
FIND-object functions for context-dependent objects take a specifier
(symbol or display name) and return the symbol of an attribute or
variable. They do not return a value or function object associated
with the specifier.

Chapters 3 and 6 contain code examples that illustrate the nature and

use of context-dependent objects. Further explanation also appears in
Part II.

1.3.5 The "EDITOR” Package

The symbols for the objects that are defined in the Editor are located
in the "EDITOR" package and are external in that package.

1-14

O

O

O

EDITOR OVERVIEW

Most of these symbols are not exported to the "USER" package. (Only
the functions ED and BIND-COMMAND are accessible in the "USER"
package.) Any other symbols for DIGITAL-supplied Editor objects must
be referenced in the "EDITOR" package when you use them in writing
extensions.

There are three ways to reference symbols that are 1located in the
"EDITOR" package:

e By using the package prefix
@ By executing a USE-PACKAGE form
® By executing an IN-PACKAGE form

This section describes these three methods and the circumstances under
which you would use them.

1.3.5.1 The Package Prefix - When you are working in the "USER"
package, you can reference any symbol in the "EDITOR" package by
prefixing it with the package qualifier EDITOR:. For instance, if you
want to call VARIABLE-VALUE with the symbol of an Editor variable, you
would prefix both symbols with EDITOR:.

(EDITOR:VARIABLE-VALUE 'EDITOR:DEFAULT-MAJOR-STYLE)

This expression references two symbols in the "EDITOR" package, but it
can be evaluated in the "USER" package.

Note that using the display name of a named Editor object instead of
its symbol avoids the problem of package location, although at the
expense of efficiency:

(EDITOR:VARIABLE-VALUE "Default Major Style")

1.3.5.2 Using USE-PACKAGE - To avoid the inconvenience of using
qualified names, you can reference all the external symbols in the
"EDITOR" package by executing either of the forms:

(USE-PACKAGE "EDITOR") | (USE-PACKAGE 'EDITOR)
Note that the string argument ("EDITOR") must be upper case.
Executing either of these forms makes all 'Editor-related symbols

accessible in the "USER" package for the remainder of your current
LISP session.

EDITOR OVERVIEW

However, before executing a USE-PACKAGE form, you should consider
whether you will also be using symbols from other packages in the same <:>
LISP session. Because of possible name conflicts among packages, you
should use qualified names in sessions where you will be referencing
symbols in more than one package. 1In particular, there are several
name conflicts in VAX LISP between the "EDITOR" package and the "UIS"
package (see VAX LISP/VMS Graphics Programming Guide).

If you begin the file containing your completed Editor extensions with
a USE-PACKAGE form, you should end the file with a call to
UNUSE-PACKAGE. A call to USE-PACKAGE in your initialization file
makes all- symbols in that package accessible throughout every LISP
session; these symbols may then interfere with symbols you want to use
from other packages.

1.3.5.3 Using IN-PACKAGE - It is generally good programming practice <:>
to place your newly defined symbols in an appropriate package. You

can place your completed Editor extensions in a specified package by
heading the file that contains the extensions with a call to
IN-PACKAGE. An IN-PACKAGE form makes the specified package current
while your file is being loaded into LISP; it then returns you to the
"USER" package for the remainder of your session.

You can place your completed Editor extensions in the "EDITOR" package
by heading your file with either of the forms: <:>

(IN-PACKAGE "EDITOR") | (IN-PACKAGE 'EDITOR)

However, this use of the "EDITOR" package allows for possible name
conflicts (overwriting) between user-defined extensions and present or
future DIGITAL-supplied objects.

You can avoid overwriting by placing your extensions in a new, user-
defined package. To do so, and to have the "EDITOR" package symbols (:)
accessible in the new package, you begin the file with the following
forms:

(IN-PACKAGE "EDITOR-EXTENSIONS")
(USE-PACKAGE "EDITOR")

These forms place your extensions in the package "EDITOR-EXTENSIONS",
and make the symbols from the package "EDITOR" accessible in that
package. They do not make the symbols from either of these packages
accessible in the "USER" package.

O

1-16

CHAPTER 2
CREATING EDITOR COMMANDS

Commands are the means by which you control the VAX LISP Editor in an
interactive session. It is by executing commands that you insert and
revise text, display text or other information, activate a style, or
bring about any other Editor operation. (See VAX LISP/VMS User’s
Guide.)

The primary way to customize the Editor is to alter its commands:
replace existing commands or create entirely new ones. This chapter
introduces the techniques of implementing Editor commands. The topics

<::>it covers are:

e Commands and their associated LISP functions
® Creating commands with DEFINE-COMMAND
e Including some special features in a new command

The techniques of binding commands to keyboard keys and pointer
actions are covered in Chapter 3. '

O

2.1 COMMANDS AND THEIR ASSOCIATED FUNCTIONS

A command is a named Editor object that is associated with a
particular LISP function. For instance, the command "Forward Word" is
associated with the function FORWARD-WORD-COMMAND, and the command
"Execute Named Command" is associated with the function
EXECUTE-NAMED-COMMAND-COMMAND. (The nature of named Editor objects is
discussed in Chapter 1.)

Whenever you execute a command during an interactive Editor session,
the Editor <calls the associated function. Evaluating this function
brings about the specified change in the Editor. For instance, when
you execute the command "Forward Word" in the Editor, either by name
or by means of the key sequence bound to it, the Editor invokes the
function FORWARD-WORD-COMMAND. The result you see is that the cursor
moves to the next word in the text.

2-1

CREATING EDITOR COMMANDS

To implement an Editor command, you create both a new LISP function
and a named Editor command associated with it. Both these operations <:>
are performed by the macro DEFINE-COMMAND.

2.2 USING DEFINE-COMMAND

DEFINE-COMMAND is similar to DEFUN in that it creates a new LISP
function from the specified argument list and forms. 1In addition, it
creates a new Editor command with the specifiers (display name and
symbol) that you supply. The new command definition is a side effect
of a call to DEFINE-COMMAND; the return value 1is the associated
function definition.

The format of DEFINE-COMMAND is also similar to that of DEFUN:

DEFINE-COMMAND name <:>
arglist
&OPTIONAL command-documentation
&BODY forms

An example follows of a DEFINE-COMMAND expression that implements a

new Editor command named "My Next Screen". (This command differs
slightly from the DIGITAL-supplied "Next Screen" command; the
difference is <clarified in Section 2.2.4 below.) The remainder of
this section discusses the purpose and use of each of the parameters <:>
of DEFINE-COMMAND, using this expression as an example.

Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package (see Chapter 1).

(DEFINE-COMMAND ‘
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist <:>

" Scrolls the current window do&n one screen. If ; com-doc
a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative)."

" MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window ; func-doc

This function has an optional argument window which
defaults to the current Editor window. It scrolls

the window down one screen if the prefix argument

is NIL. 1If a positive integer prefix is supplied,

it scrolls down by that many screens (up if prefix

is negative). The modified window point is returned."

"(SCROLL-WINDOW WINDOW (* (OR PREFIX 1) . ;forms(ij)
(1- (WINDOW-HEIGHT WINDOW)))))

2-2

O

CREATING EDITOR COMMANDS

2.2.1 Specifying the Names

A command can have two special specifiers: a display name, which is a
string, and a symbol, which is identical to the symbol of the function
defined in the same form.

The display name of a command is provided as a convenience for the
interactive user. It serves, for instance, to invoke a command within
the Editor. 1In LISP code, you can use either the display name or the
symbol of a command, as well as_the associated function itself, as an
argument to a function that takes a command specifier argument. (See
Chapter 1 for referencing named Editor objects, including commands.)

You specify the names of a new command and function in the name
parameter to DEFINE-COMMAND. The name argument can be a symbol or a
list of the form:

(symbol :DISPLAY-NAME string)

The symbol argument serves the same purpose as the name argument for
DEFUN -- it names the function being defined. In a call to
DEFINE-COMMAND, symbol also becomes the symbol specifier of the new
command. The string argument becomes the display name of the new
command.

For example:

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name

This form creates a LISP function named MY-NEXT-SCREEN-COMMAND. It
also creates an Editor command with the display name "My Next Screen"
and the symbol MY-NEXT-SCREEN-COMMAND.

The display name can be any string you want to specify. For
DIGITAL-supplied commands, the convention is that display names are
identical to the associated symbols except for case and the omission
of the hyphens and the final element -COMMAND. If you do not specify
a display name, the default is the print name of the symbol. 1In this
example, the default display name would be "MY-NEXT-SCREEN-COMMAND", a
less convenient specifier than "My Next Screen".

2.2.2 Specifying the Argument List
When you execute a command within the Editor, the Editor always calls

the associated function with exactly one argument. This is the prefix
argument, which can be an integer or NIL. You can supply a prefix

2-3

CREATING EDITOR COMMANDS

value by previously executing the command "Supply Prefix Argument".
If you execute a command without supplying a prefix value, the Editor
passes NIL. ’

Because the Editor always passes one argument, the argument 1list of
every DEFINE-COMMAND expression must have at least one parameter. By
convention, the first parameter is designated as PREFIX. If you
supply other parameters, they must be optional. (You can supply
values for optional arguments only when calling the new function from
LISP code, not when executing the new command in the Editor.)

The argument list for MY-NEXT-SCREEN-COMMAND specifies that this
function can take two arguments: a prefix and a window.

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist

The prefix argument usually means the number of times the action is to
be repeated, although other meanings are possible. (In fact, the
difference between "My Next Screen" and the DIGITAL-supplied "Next
Screen" command 1is in the use they make of the prefix.) As with any
function parameter, the meaning of the prefix argument to any
particular command is specified in the body of that command’s
definition.

If you call the function MY-NEXT-SCREEN-COMMAND from LISP code, you
can also specify the window that is to be operated upon. 1If you do
not specify a window, then the function CURRENT-WINDOW will be
evaluated and will return the current window. Since you cannot
specify a window argqument when you execute "My Next Screen" in the
Editor, the Editor always applies the command’s action to the current
window. s

2.2.3 Supplying Documentation Strings

DEFINE-COMMAND takes two optional documentation strings. The first is
associated with the new command; the second, which is actually part of
the body, is associated with the new function. 1If you supply only one
documentation string, it becomes the command-documentation.

The command-documentation is normally used to describe the behavior of
the Editor when you execute the new command. You can retrieve this
documentation within the Editor by means of the "Describe" command,
using . the display name of the command in question. To retrieve
documentation at top-level LISP, you can call either the DESCRIBE

2-4

e

CREATING EDITOR COMMANDS

function or the DOCUMENTATION function and pass it the symbol of the
command. (If you use DOCUMENTATION, the doc-type is EDITOR-COMMAND.)

The function documentation is like the documentation string for DEFUN:
it normally gives the function’s format and return value and describes
its behavior when called from LISP code. You can retrieve this
documentation at top-level LISP by means of DESCRIBE or DOCUMENTATION,
using the symbol of the function. (The doc-type is FUNCTION.)

The two kinds of documentation string -- one addressed to the person
executing the command and the other to the person calling the function
-- are illustrated below:

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist

<:> " Scrolls the current window down one screen. If ;com-doc
a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative)."

" MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window ; func-doc

This function has an optional argument window which
defaults to the current Editor window. It scrolls
the window down one screen if the prefix argument
<:> is NIL. If a positive integer prefix is supplied,
it scrolls down by that many screens (up if prefix
is negative). The modified window point is returned."

Note the placement of whitespace and newline characters in both the
documentation strings in this example. As with DEFUN, you use these
characters to affect the appearance of a string when it is displayed
in response to "Describe", DESCRIBE, or DOCUMENTATION.

2.2.4 Specifying the Action

The forms that you supply to DEFINE-COMMAND are identical in purpose
to the forms for DEFUN: they constitute the body of the LISP function

that will be invoked when you execute the new command. The forms
include the function documentation, if any, and they may include
declarations. ’

Including the forms completes the definition of "My Next Screen":

<:> (DEFINE-COMMAND -
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist

2-5

CREATING EDITOR COMMANDS

Scrolls the current window down one screen. If ;com-doc
a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative)."

" MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window ; func-doc

This function has an optional argument window which
defaults to the current Editor window. It scrolls

the window down one screen if the prefix argument

is NIL. If a positive integer prefix is supplied,

it scrolls down by that many screens (up if prefix

is negative). The modified window point is returned."

(SCROLL-WINDOW WINDOW (* (OR PREFIX 1) ;forms
(1- (WINDOW-HEIGHT WINDOW)))))

This example uses the COMMON LISP functions *, OR, and 1- and the
Editor functions SCROLL-WINDOW and WINDOW-HEIGHT:

e SCROLL-WINDOW takes a window and a count. It scrolls the
specified window by the number of rows indicated by the count
and returns the window point. (The window point is an object
that indicates the position of the screen cursor in the
current window; see Chapter 5.)

e WINDOW-HEIGHT takes a window and returns the height (in rows)

of that window.
7

The action of the function MY-NEXT-SCREEN-COMMAND is to scroll the
specified window (or default window) by a number of rows that equals
one less than the height of the window. That is, the last row of the
current text display becomes the first row of the new text display.
If you supply a prefix argument, the action 1is repeated that many
times. Because SCROLL-WINDOW moves the window point, the cursor will
appear within the new text display when you execute "My Next Screen".

To see the difference between "My Next Screen" and the
DIGITAL-supplied "Next Screen" command, compare the last form in the
above example with the last form in the definition of "Next Screen":

(SCROLL-WINDOW WINDOW .
(OR PREFIX (1- (WINDOW-HEIGHT WINDOW))))

The prefix value in "My Next Screen" serves as a repetition count. 1In

"Next Screen" the prefix value is an alternative to the window height
in determining how many rows to scroll the window.

2-6

O

O

O

O

CREATING EDITOR COMMANDS

2.2.5 Modular Definition of Commands

You can define Editor commands of any degree of complexity. When
defining a complex command, it is good programming practice to write
the code in modules. You can, for instance, use DEFUN to create a new
function and then use that function in a DEFINE-COMMAND expression.

For example:
(DEFUN PRINT-TIME (STREAM)
" PRINT-TIME stream

Formats a record of the current date and time and writes
that record to the specified stream."

O (MULTIPLE-VALUE-BIND
(SECOND MINUTE HOUR DATE MONTH YEAR DAY-OF-WEEK)
(GET-DECODED-TIME)
(FORMAT STREAM
""D:72,’0D:"2, 'OD on " [Monday” ;Tuesday” ;Wednesday”
" ;Thursday” ;Friday™ ;" Saturday™ ;Sunday™], ~
"D " [7;January” ;February” ;March” ;April~ ;May” ;June”
”,July",August~ September"-Octcber“-November~
~ ;December™), “D" »
Q HOUR MINUTE SECOND DAY-OF-WEEK DATE MONTH YEAR)))

This form creates the function PRINT-TIME, which writes the current
date and time to a specified stream. To include this action in an
Editor command, you might write:

(DEFINE-COMMAND
(SHOW-TIME-COMMAND :DISPLAY-NAME "Show Time")
(PREFIX)

<:> " Displays the current time and date in the
information area."

" 'SHOW-TIME-COMMAND prefix

Displays the current time and date in the information
area. The prefix argument is ignored." .

(DECLARE (IGNORE PREFIX))

(CLEAR-INFORMATION-AREA) ,
(PRINT-TIME *INFORMATION-AREA-OUTPUT-STREAM*))

This form creates an Editor command named "Show Time". When you
<::> execute "Show Time", the Editor clears the information area of any
previous text and then directs the record formatted by PRINT-TIME to
the information area. Note the declaration that the prefix is

AN

2-7

CREATING EDITOR COMMANDS

IS
ignored, since the PREFIX parameter is not used in the body of the
expression.

2.2.6 Commands and Context

Many commands are normally used within a single Editor context
(buffer, style, or global), but commands are not context-dependent
objects. That is, commands are not bound in Editor contexts, as
keyboard keys and pointer actions are: any command can be invoked by
name no matter which contexts are visible in the Editor. For
instance, the command "EDT Change Case" 1is wusually used in "EDT
Emulation" style, but it could also be used in "EMACS" or "VAX LISP"
styles.

However, the definition of a command may reference another object that
is context-dependent: an Editor wvariable or an Editor attribute.
(See Chapter 1 for a discussion of context-dependent objects.) 1If so,
the command behaves differently when you execute it in contexts where
the context-dependent object is bound differently or not bound.

An example is the command "EDT Move Word", which moves the cursor by
one or more words. The body of this command begins with a test of
whether the Editor variable "EDT Direction Mode" is set to :FORWARD.
If so, it invokes FORWARD-WORD-COMMAND:

(IF (EQ (VARIABLE-VALUE "EDT Direction Mode") :FORWARD)
(FORWARD-WORD-COMMAND PREFIX)

.

If you execute this command outside of "EDT Emulation” style, it will
not invoke FORWARD-WORD-COMMAND because "EDT Direction Mode" is
unbound.

The behavior of FORWARD-WORD-COMMAND also differs in different
contexts. This function references the Editor attribute "Word
Delimiter", whose values are context-dependent. "Forward Word"
behaves differently in "EDT Emulation", "EMACS", and "VAX LISP" styles
because different characters are recognized as word delimiters in
these styles.

NOTE

Unlike commands themselves, the key and pointer
bindings of Editor commands are context-dependent (see
Chapter 3). "EDT Change Case" can be invoked by name
anywhere within the Editor, but, as provided, it is
only in "EDT Emulation" style that this command can be
invoked by means of keypad PF1 1.

2-8

CREATING EDITOR COMMANDS

2.3 SOME SPECIAL COMMAND FACILITIES

<::)Most of the new commands that you implement are likely to pertain to
text operations or to window and display management. Regardless of
the command’s primary purpose, however, you may also want to include
in it such features as a prompt or a particular error response. You
can also include the command in a command category, which facilitates
certain kinds of testing that may take place during command
processing.

This section introduces the following command subsystems/facilities:
e Errors
e Prompting

<:> e Command categories

2.3.1 Errors

By wusing functions from the Editor’s error subsystem, you can
implement commands that take some action in response to errors in
command processing. In addition, you can wuse the LISP variable
UNIVERSAL-ERROR-HANDLER to modify the way the Editor handles LISP

O errors.

This section introduces the following.error-related objects:
e The ATTENTION function
e The EDITOR-ERROR function
e The *UNIVERSAL-ERROR-HANDLER* variable

O

2.3.1.1 Getting The User’s Attention - The ATTENTION function,- the
simplest of the error-related functions, can be included in the body
of a command to gain the user’s attention if the command’s action is
not performed. On DIGITAL VT100- and VT200-series terminals and the
AI VAXstation, the action of ATTENTION is to ring the bell.

An example of the use of ATTENTION is:

(DEFINE-COMMAND (FORWARD-WORD-COMMAND
¢:DISPLAY-NAME "Forward Word")

(PREFIX)
<:> " Moves the buffer point forward one word. If a prefix
argument is supplied, the point is moved forward that

many words (backward if the prefix is negative)."

2-9

CREATING EDITOR COMMANDS

(UNLESS (WORD-OFFSET (CURRENT-BUFFER-POINT)
(OR PREFIX 1))
(ATTENTION))
(CURRENT-BUFFER-POINT))

The command "Forward Word" invokes the function WORD-OFFSET,- which
moves the current buffer point by one or more words. If this action

cannot be performed -- if too few words remain in the buffer, for
instance -- then the ATTENTION function is called to alert the user.
A command continues processing after evaluating ATTENTION. In this

case, the next form (CURRENT-BUFFER-POINT) is evaluated to return the
buffer point.

2.3.1.2 signaling An Error - The most generally useful error-
signaling function is EDITOR-ERROR. EDITOR-ERROR is typically used to
indicate an invalid command operation, invalid or incomplete user
input, or some other error that allows the Editor to continue
operation after ceasing to process the currently executing command.

The EDITOR-ERROR function invokes ATTENTION to signal a problem in
command processing. In addition, it can display an optional line of
text in the information area to explain the nature of the problem.
The arguments to EDITOR-ERROR are analogous to those for the LISP
ERROR function. However, EDITOR-ERROR allows the user to remain in
the Editor after it is called, rather than being placed in the
Debugger.

Unlike ATTENTION, which allows the Editor to continue processing the
command, EDITOR-ERROR terminates the processing of the current
command. The Editor then awaits the next command.

The use of EDITOR-ERROR is illustrated in the DIGITAL-supplied command
"EDT Special Insert". This command must be invoked with a prefix; it
inserts as text the character whose code is the prefix value supplied.

(DEFINE-COMMAND (EDT-SPECIAL-INSERT-COMMAND
:DISPLAY-NAME "EDT Special Insert")
(PREFIX)

" Takes the value supplied as the prefix argument
and inserts the character whose ASCII code is that
value at the current buffer point."

(UNLESS PREFIX
(EDITOR-ERROR "Character code not supplied"))

2-10

O

O

O

CREATING EDITOR COMMANDS

(UNLESS (AND (INTEGERP PREFIX)
(<= 0 PREFIX 255))
(EDITOR-ERROR "Invalid character code “A" PREFIX))

(INSERT-CHARACTER (CURRENT-BUFFER-POINT)
(CODE-CHAR PREFIX)))

Two errors that can occur when you invoke this command are (1) no
prefix value supplied, and (2) prefix value supplied that is not a
valid ASCII (extended) character code. Before attempting to evaluate
the INSERT-CHARACTER form, the command tests for each of these
possible errors. If an error has occurred, the appropriate
explanation string is displayed in the information area and the
processing of this command stops.

A somewhat more complex error-signaling function is EDITOR-ERROR-WITH-
HELP. This function resembles EDITOR-ERROR except that it takes an
additional optional string argument. The additional string, which
supplies further information about the error, is displayed if the user
executes the command "Help on Editor Error" (see Part III).

2.3.1.3 Error Handling - When implementing a command, you can also
modify the way the Editor handles LISP errors that occur during
command processing.

As provided, the Editor responds to a LISP error by clearing the
screen, displaying the error message, and asking if you want to save
modified buffers. It then gives you the <choice of entering the
Debugger or returning to top-level LISP.

You can alter this behavior by defining a new error-handling function
and binding it to the variable *UNIVERSAL-ERROR-HANDLER* (see VAX
LISP/VMS User’s Guide). You can then reference this wvariable in a
command definition to invoke the new error-handling function.

For instance, suppose that you want to alter the command "Insert File"
to respond in a particular way when your response to the prompt is not
a valid file name. To achieve this, you define a new error-handling
function, and then write a file-insertion command that invokes this
function if it receives an invalid file name.

The following example shows a skeletal version of a function to be
invoked when the Editor cannot insert a file:

(DEFUN INSERT-FILE-ERROR-HANDLER (&REST ARGS)

(WITH-OUTPUT-TO-MARK (*ERROR-OUTPUT*
(BUFFER-POINT
(FIND-BUFFER "Error Record")))
(APPLY #’'PRINT-SIGNALED-ERROR ARGS))
(EDITOR-ERROR "Error reading file..."))

2-11

CREATING EDITOR COMMANDS

This function creates an output stream by means of the macro WITH-
OUTPUT-TO-MARK and binds it to the variable *ERROR-OUTPUT*. This
stream is directed to a user-defined buffer named "Erro Record". The
VAX LISP function PRINT-SIGNALED-ERROR formats an error message from
the supplied arguments and writes that message to *ERROR-OUTPUT*. The
message text is thus inserted at the buffer point of the "Error
Record" buffer. Once the formatting is done, INSERT-FILE-ERROR-
HANDLER calls EDITOR-ERROR to print a brief explanation and return to
the Editor command loop.

To write a new command that invokes INSERT-FILE-ERROR-HANDLER instead
of the Editor’s default error handler when a LISP error occurs, you
bind this new function to *UNIVERSAL-ERROR-HANDLER* in the definition
of the command. For instance, the relevant portion of a file-
inserting command might look like:

(DEFINE-COMMAND (MY-INSERT-FILE-COMMAND ...) (PREFIX)

(LET ((*UNIVERSAL-ERROR-HANDLER* #’INSERT-FILE-ERROR-HANDLER))
(INSERT-FILE-AT-MARK (PATHNAME...)
(CURRENT-BUFFER-POINT)))

This command invokes the Editor function INSERT-FILE-AT-MARK to insert
a specified file at the current buffer point. This action occurs
within the scope of a LET form that binds *UNIVERSAL-ERROR-HANDLER* to
INSERT-FILE-ERROR-HANDLER. If any LISP error occurs during the file-
insertion operation, the error system calls INSERT-FILE-ERROR-HANDLER
instead of the default error handler.

2.3.2 Prompting
The Editor’'s prompting subsystem enables you to write commands that
prompt for any additional user input needed for their execution. For
example, when you invoke the command "Select Buffer", the Editor
prompts for the name of the buffer that is to become current.
Commands prompt by invoking one of the following functions:

e SIMPLE-PROMPT-FOR-INPUT

e PROMPT-FOR-INPUT
Both functions display a prompt in the prompting window, which is a

window onto the DIGITAL-supplied buffer "General Prompting". User
interaction, including editing the response to the prompt, occurs in

2-12

O

O

O

CREATING EDITOR COMMANDS

this buffer. The more versatile of the two functions, PROMPT-FOR-
INPUT, also enables you to include some additional prompt-related
behavior, such as input completion, alternatives, and help.

’ -

2.3.2.1 Simple Prompting - SIMPLE-PROMPT-FOR-INPUT is less versatile
than PROMPT-FOR-INPUT, but it is generally more straightforward to
use. SIMPLE-PROMPT-FOR-INPUT prompts for input and returns the user’s
input as a string. 1Its format is:

SIMPLE-PROMPT-FOR-INPUT &OPTIONAL prompt default

The prompt argument is a string to be displayed as the prompt; the
default argument is a string to be returned by SIMPLE-PROMPT-FOR-INPUT
if the user presses RETURN without typing any input. The default
value for both arguments is a null string.

An example of a new command that invokes SIMPLE-PROMPT-FOR-INPUT 1is
"Visit File". This command is similar to the DIGITAL-supplied "View
File" command, except that it allows the user to edit the specified
file. '

(DEFINE-COMMAND (VISIT-FILE-COMMAND
) :DISPLAY-NAME "Visit File")
(PREFIX &OPTIONAL (FILE-NAME NIL))
" Prompts for a file name and then edits the specified
file. If the specified file is associated with a buffer,
it simply switches to that buffer; otherwise a new buffer
is created."

(DECLARE (IGNORE PREFIX))
(UNLESS FILE-NAME
(SETF FILE-NAME
(SIMPLE-PROMPT-FOR-INPUT "Enter file name: "))
(EDIT~-FILE-COMMAND NIL FILE-NAME))
The function VISIT-FILE-COMMAND, when called from LISP code, takes an

optional file-name argument that can be a pathname or a string. When
you invoke "Visit File" in the Editor, however, you cannot supply this

‘argument. To obtain the value, the command displays the specified

prompt, "Enter file name: ". SIMPLE-PROMPT-FOR-INPUT returns your
response to the prompt as a simple string. The string is bound to the
variable FILE-NAME and then passed to the function EDIT-FILE-COMMAND.

2-13

CREATING EDITOR COMMANDS

Even though SIMPLE-PROMPT-FOR-INPUT always returns a simple string,
you can use this function when the argument needed is some other data
type. In such a case, the command must coerce the user’s input into
the appropriate data type.

For example, the command "EDT Special Insert", shown above in Section
2.3.1.2, takes an integer argument. 1If you fail to execute "Supply
Prefix Argument" beforehand, "EDT Special Insert" displays an error
message and stops processing. You could rewrite this command to
prompt for the needed value instead of signaling an error. The code
for such a command might be:

(DEFINE-COMMAND (MY-SPECIAL-INSERT-COMMAND
:DISPLAY-NAME "My Special Insert")
(PREFIX)

" Takes the prefix value and inserts the character whose
ASCII code is that value at the current buffer point. If
no prefix is supplied, it prompts for a value."

(UNLESS PREFIX
(SETF PREFIX
(READ-FROM-STRING
(SIMPLE-PROMPT-FOR-INPUT " Entér ASCII code: "))))

(IF (AND (INTEGERP PREFIX) (<= 0 PREFIX 255))
(INSERT-CHARACTER (CURRENT-BUFFER-POINT)
(CODE-CHAR PREFIX))
(EDITOR-ERROR "Invalid character code: ~A" PREFIX)))

The COMMON LISP function READ-FROM-STRING is used here to coerce the
user’s input string to an integer. This integer is then bound to
PREFIX and passed to CODE-CHAR. Only if the input supplied does not
convert into a valid ASCII extended character code will this command
display an error message.

2.3.2.2 General Prompting - General prompting differs from simple
prompting in that (1) the prompting function can return any data type
(not only a string), and (2) you can include a greater range of
prompt-related behavior by specifying a number of keyword arguments.
The function you use for general prompting is PROMPT-FOR-INPUT.

What follows is a brief introduction to the use of PROMPT-FOR-INPUT.
Part III of this manual contains a fuller description of this function
and of its keyword arguments.

The basic format of PROMPT-FOR-INPUT is:

PROMPT-FOR-INPUT validation

2-14

CREATING EDITOR COMMANDS

The one required argument to PROMPT-FOR-INPUT is a validation
function. This function takes the user’s input string and returns a
value that will be returned by PROMPT-FOR-INPUT. If the wvalidation
function returns NIL, PROMPT-FOR-INPUT signals an error and awaits
further input.

For instance:
(PROMPT-FOR-INPUT #’'FIND-BUFFER)

This form prompts the user with a default prompting message and passes
the wuser’s input string to the function FIND-BUFFER. If the input
string is not a valid buffer name, FIND-BUFFER returns NIL.
PROMPT-FOR-INPUT then displays a default error message and waits for a
valid buffer name before command processing continues.

<::>PROMPT-FOR—INPUT can also make available the facilities for input

completion and alternatives to assist the user. By providing string
tables as arguments to the keywords :COMPLETION and :ALTERNATIVES, you
specify that those string tables are to be searched if the user
requests assistance from either of these facilities. In the above
example, the appropriate string table is bound to the variable
EDITOR-BUFFER-NAMES, and the form would look like:

(PROMPT~-FOR-INPUT #’'FIND-BUFFER
:COMPLETION *EDITOR-BUFFER-NAMES*
tALTERNATIVES *EDITOR-BUFFER-NAMES*)
(These two keyword arguments can also be values ‘other than string
tables; see the description of PROMPT-FOR-INPUT in Part III of this
manual.)
Other keywords allow you to specify, for instance:

<:> @ The prompt to be displayed

¢ An error message to be displayed if the wvalidation function
returns NIL

® Help text to be displayed if the user requests help
® Whether user input is required

e A default value to be returned if you specify that user input
is not required

These and other arguments to PROMPT-FOR-INPUT are described in full in
Part III. :

What follows is a comparatively simple example of this function, using

only a few of its possible keyword arguments. The new command "My
Insert Buffer" calls PROMPT-FOR-INPUT to prompt for a buffer name.

2-15

CREATING EDITOR COMMANDS

The command then inserts the text of that buffer into the current
buffer. 1Its code is: ‘

(DEFINE-COMMAND (MY-INSERT-BUFFER-COMMAND
:DISPLAY-NAME "My Insert Buffer")
(PREFIX)

(DECLARE (IGNORE PREFIX)

(INSERT-REGION
(CURRENT-BUFFER-POINT)
(BUFFER-REGION
(PROMPT-FOR-INPUT #'’FIND-BUFFER

:PROMPT "Enter Buffer Name: "
:REQUIRED T

:COMPLETION *EDITOR-BUFFER-NAMES*
:ALTERNATIVES *EDITOR-BUFFER-NAMES*))))

This command displays the string argument to :PROMPT in the prompting

window. Because the wvalue of :REQUIRED is T, the user must enter a
string for the action to continue (no default value can be returned by
PROMPT-FOR-INPUT). As in the example above, the string table

arguments to :COMPLETION and :ALTERNATIVES make available to the wuser
the names of all existing buffers.

The wuser’'s input string is passed to the wvalidation function,
FIND-BUFFER, which returns a buffer object if the input is a valid
buffer name. The buffer object returned by FIND-BUFFER is passed to
BUFFER-REGION, which returns the text-containing region of that
buffer. The region is passed to INSERT-REGION, which inserts it at
the buffer point of the current buffer. (The region-manipulating
functions and other text operations objects are described in Chapter 4
of this manual.) '

2.3.3 Command Categories

A command category indicates some property of a command that another
command may need to test for. The test is performed by checking
whether the command is a member of a specified category.

For example, the command "EMACS Forward Search" checks to see if the
last command executed was in the category :EMACS-SEARCH. 1If so, it
means that that command was also a search command and that the user
has already entered a search string. "EMACS Forward Search" will
therefore use the previous string rather than prompt again for one.
If the 1last command executed was not in the :EMACS-SEARCH category,
then "EMACS Forward Search" prompts for a search string.

2-16

O

O

O

O

O

O

O

CREATING EDITOR COMMANDS

The categories provided with the Editor are :GENERAL-PROMPTING, :LINE-
MOTION, :MOVE-TO-POINTER, :EMACS-SEARCH, :EMACS-PREFIX, and :KILL-
RING. Categories can also be user-defined.

You can place a command in one or more categories by including the
keyword :CATEGORY and a symbol or list of symbols as part of the name
argument of a DEFINE-COMMAND form. You can use existing categories,
or you can define new categories simply by specifying their symbols.
For example:

(DEFINE-COMMAND (EMACS-BACKWARD-SEARCH-COMMAND
:DISPLAY-NAME "EMACS Backward Search"
:CATEGORY :EMACS-SEARCH)

Or,

(DEFINE-COMMAND (MY-NEW-COMMAND-COMMAND
:DISPLAY-NAME "My New Command"
:CATEGORY (:LINE-MOTION 'MY-NEW-CATEGORY)
ces)

To check whether a given command is included in a specified category,
you call the function COMMAND-CATEGORIES. This function takes a
command specifier and returns a list of the categories that include
that command (or NIL if none is found). The variable *PREVIOUS-
COMMAND-FUNCTION* is bound to the function associated with the last
command executed; this variable is a command specifier acceptable to
COMMAND-CATEGORIES.

For instance, the following form tests whether the previous command
executed was in the category :EMACS-SEARCH.

(IF (MEMBER :EMACS-SEARCH
(COMMAND-CATEGORIES *PREVIOUS-COMMAND-FUNCTION*)
:TEST #'EQ)

wWwhat follows is a full command definition that illustrates both (1)
placing a command in a category, and (2) testing the previously
executed command for membership in that category. The example, "My
EMACS Forward Search", is a simplified version of the DIGITAL-provided
command "EMACS Forward Search". :

(DEFINE-COMMAND (MY-EMACS-FORWARD-SEARCH-COMMAND
:DISPLAY-NAME "My EMACS Forward Search"
:CATEGORY :EMACS-SEARCH)
(PREFIX)

2-17

CREATING EDITOR COMMANDS

Searches forward once or the number of times specified
by the prefix argument. Prompts for a search string only
if the previous command was not a searching command."

(IF (MEMBER :EMACS-SEARCH
(COMMAND-CATEGORIES *PREVIOUS-COMMAND-FUNCTIONY*)
:TEST #'EQ)

(FORWARD-SEARCH-COMMAND
PREFIX
(VARIABLE-VALUE "Last Search String"))

(FORWARD-SEARCH-COMMAND PREFIX)))

The Editor sets the user’s response to a search-command prompt to the
value of the Editor variable "Last Search String". "My EMACS Forward
Search" calls FORWARD-SEARCH-COMMAND, but only after determining
whether the previous command executed in the Editor was also in the
category :EMACS-SEARCH.

e If so, "My EMACS Forward Search" calls FORWARD-SEARCH-COMMAND
with two arguments: the prefix and a string that is the
current value of "Last Search String".

e If not, "My EMACS Forward Search" calls FORWARD-SEARCH-COMMAND

with only a prefix argument, thus requiring FORWARD-SEARCH-
COMMAND to prompt for the needed string.

2-18

O

CHAPTER 3
BINDING COMMANDS TO KEYS AND POINTER ACTIONS

The most common way to extend the VAX LISP Editor is to bind Editor
commands to keys and key sequences. You can then use the bound keys
or sequences to invoke the commands within the Editor.

Many of the commands provided with the Editor are bound. The bindings
may be to graphic or control characters, keyboard escape sequences,
function or keypad keys, or to some combination of these keys.
Commands can also be bound to actions of a pointing device provided
with the AI VAXstation. All DIGITAL-supplied bindings are 1listed in
Appendixes B and C of this manual, arranged both by command name and
by key or key sequence.

A key binding or pointer-action binding exists within an Editor

context, that is, within a particular style or buffer or in the global
Editor context. The key or pointer action will invoke the command
only when the appropriate context is active in the Editor. If more
than one context is active at a time and if a key or pointer action is
bound to different commands in these contexts, only one binding will
be visible. (See VAX LISP/VMS User’s Guide for a discussion of

<::fontext and shadowing as they appear to the interactive user.)

You can change the DIGITAL-supplied bindings and bind commands that
are not currently bound.

® To bind a key or key sequence to an Editor command, you call
the function BIND-COMMAND from LISP code. To delete a key
binding, call UNBIND-COMMAND.

® To bind a pointer action to an Edifor command, you call the

function BIND-POINTER-COMMAND from LISP code. .To delete a
pointer-action binding, call UNBIND-POINTER-COMMAND.

3-1

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

This chapter introduces the techniques of binding commands with these
two functions. The topics covered are: ‘

e Using BIND-COMMAND

- The command to be bound
- The key or key sequence to be bound
- The binding context

e Using BIND-POINTER-COMMAND

- Specifying a pointer action
- Specifying a button state
- Getting the state of the pointer

NOTE

The Editor’s cancel character (initially, CTRL/C) is
not established with BIND-COMMAND and is not
context-dependent. This global association cannot be
shadowed by Editor command bindings to the same
character. To change the Editor’s cancel character,
you use SETF with the function CANCEL-CHARACTER (see
Part III for a description of this function).

3.1 USING BIND-COMMAND

BIND-COMMAND takes a command specifier, a key or key sequence, and an
optional context specifier. 1Its format is:

BIND-COMMAND command key-sequence &OPTIONAL context

BIND-COMMAND binds the key-sequence to the command in the specified
(or default) context. For example:

(BIND-COMMAND "View File" #\°V)

This form binds the key CTRL/V to the DIGITAL-supplied command "View
File", which has no binding in the Editor as provided. Since no
context argument is specified, the binding is global by default.

Note that BIND-COMMAND is one of the few Editor-related symbols that
are accessible in the "USER" package. If you include any other
Editor-related symbols in a BIND-COMMAND form, you must reference them
in the "EDITOR" package (see Chapter 1).

3-2

BINDING COMMANDS TO KEYS AND POINTER ACTIONS
The sections that follow discuss each of the parameters of
<::>BIND-COMMAND in turn:
e The command to be bound
e The key or sequenée to be bound

e The binding context

3.2 THE COMMAND TO BE BOUND

You can specify any Editor command as an argument to BIND-COMMAND,
including: '

<:> e New user-defined commands -
e DIGITAL-defined commands that are not bound

e Any command that is currently bound to another key or
sequence. ‘

You reference the command to be bound by means of any of the three
kinds of command specifier (see Chapter 1):

<:> e The command’s display name
e The command’s symbol

e A form that evaluates to the function associated with the
command

For instance, the following three forms are equivalent. All three

(:) bind the command "View File" to CTRL/V in the global context. (The
first and third of these forms are equal in efficiency; the middle
form, which uses the symbol specifier, is very slightly faster.)

’

(BIND-COMMAND "View File" #\"V)
(BIND-COMMAND 'VIEW-FILE-COMMAND #\"V)
(BIND-COMMAND (FIND-COMMAND "View File") #\"V)

You change an existing binding to a command in the same way that you

establish a new binding. You may prefer to delete the old binding

(using the function UNBIND-COMMAND) before rebinding a command, but

this 1is not required. For instance, if you were to bind the command

"Pause Editor" to CTRL/A, then both CTRL/A and the original binding
<:> (CTRL/X CTRL/Z) would invoke "Pause Editor".

3-3

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

However, if you modify a DIGITAL-supplied command, any key bindings to
the original command continue to invoke the function associated with
original command rather than the function associated with the new
command. For instance, if you were to implement your own version of a
"Next Window" command, the sequence CTRL/X CTRL/N would continue to
invoke the DIGITAL-supplied function NEXT-WINDOW-COMMAND. To have the
sequence CTRL/X CTRL/N invoke the function associated with your new
"Next Window" command, you would need to rebind that key sequence to
the new command by means of a subsequent call to BIND-COMMAND.

3.3 THE KEY OR KEY SEQUENCE TO BE BOUND

Commands are actually bound not to keys but to the characters
generated by those keys. Most keyboard keys generate single
characters; function keys and keypad keys generate sequences of
characters.

You can bind a command to any character in the 8-bit extended ASCII
character set (the DEC Multinational Character Set), with the few
exceptions noted below. You can also bind a command to any valid LISP
sequence of these characters. LISP sequences include 1lists and
vectors containing characters, as well as strings.

The remainder of this section discusses the key-seguence argument to
BIND~-COMMAND:

e How to choose a key or sequence to bind

® ‘How to specify character keys, function and keypad keys, and
combinations of these keys

3.3.1 Choosing a Key or Sequence

In choosing a character key or key sequence to bind to a command,
there are several considerations to keep in mind:

@ You cannot bind the characters CTRL/S and CTRL/Q, which 1lock
and unlock your terminal. This. is a limitation of the
operating system.

@ You should not bind the current éancel character, which is
initially CTRL/C.

e It is generally not good practice to bind graphic characters
or sequences that begin with graphic characters. Every
graphic character key is bound to the command "Self 1Insert",
which inserts that character as text. Rebinding a character
will supersede the "Self Insert" binding and leave you wunable
to insert that character as text except by quoting it.

3-4

O

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

As the last item suggests, the operation of BIND-COMMAND destructively

(::>modifies any previous binding of a key or sequence to a command (in
the same context). For instance, if you were to rebind the sequence
CTRL/X CTRL/Z to a new command (assuming the global context), then
that sequence will no longer invoke "Pause Editor". 1In choosing keys
to bind, take care not to modify any previous bindings that you wish
to keep.

Similarly, you will lose bindings if you bind a key or sequence that
begins another bound sequence. For instance, if you were to bind
CTRL/X to a command, then the DIGITAL-supplied bindings (in the same
context) that begin with CTRL/X (such as CTRL/X CTRL/Z for "Pause
Editor") will be inaccessible.

©3.3.2 Specifying a Character Key or Sequence

A character key can be specified with the usual LISP character syntax.
For control characters and other nongraphic characters, you use the
printed representation. For example, to bind the graphic character A,
you write: :

(BIND-COMMAND "Self Insert" #\A)
(::>To bind the nongraphic character CTRL/A, you write:
(BIND-COMMAND "Transpose Previous Characters" #\"A)

To bind a sequence of characters, you use the LISP syntax for the LISP

sequence you intend to wuse: vector, string, or list. A character

sequence can include a graphic character without interfering with the

"Self 1Insert" binding as long as the graphic character does not begin

the sequence. The following two examples show vectors that combine
<:>graphic and nongraphic characters:

(BIND-COMMAND "Name of Command" ’#(#\"X #\w))
(BIND-COMMAND "Name of Command" ’#(#\ESCAPE #\a))

The first form binds the specified command to the sequence CTRL/X w;
the second binds it to the sequence ESCAPE a. Note that case does not
matter in specifying the printed representations of nongraphic
characters (such as CTRL/X and ESCAPE). Case does matter, however, in
specifying graphic characters (such as w and a).

3.3.3 Specifying a Function Key, Keypad Key, or Sequence

There is no essential difference between binding a command to a
character sequence and binding it to a function key or keypad key (or
sequence), since these keys generate sequences of characters.

3-5

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

Appendix D to this manual identifies the character sequences that are
generated by the function keys and keypad keys on DIGITAL VT100 and (:)
LK-201 keyboards. You can specify these sequences as vectors (or
other LISP sequences) in BIND-COMMAND forms, as shown in the previous

section.
N

For instance, the GOLD key (keypad PFl) generates the character
sequence <ESCAPE>OP and keypad 1 generates <ESCAPE>0q. The form that
binds the sequence keypad PFl1 1 to the command "EDT Change Case" is:

(BIND-COMMAND "EDT Change Case"
"# (#\ESCAPE #\O #\P #\ESCAPE #\O #\q))

Note that this binding takes place in the Editor’s global context,
rather than in "EDT Emulation" style. See Section 3.4 for the means
of specifying a context argument to BIND-COMMAND.

You can also combine character keys and function or keypad keys in a <:>
LISP sequence and pass that sequence to BIND-COMMAND. For instance,

the following form binds a vector that contains the characters
generated by keypad PF1l and the character h.

(BIND-COMMAND “Name of Command" ’#(#\ESCAPE #\O #\P #\h))

The command will now be invoked by pressing the key sequence PFl1 h.

O

3.4 THE BINDING CONTEXT

BIND-COMMAND binds a key or sequence to a command within a particular
Editor context. The key or sequence will invoke the specified command
only when that context is active in the Editor. For instance, if you
try to use "EDT Emulation" keypad bindings when only "EMACS" style is
active, the Editor will consider the keys unbound. <:>

The binding context can be:

e Global, the default context, which means that the key binding
exists universally within the Editor

e A style, which means that the key will invoke the spécified
command only when that style is active is the current buffer

e A buffer, which means that the key will invoke the specified
command only when that buffer is current in the Editor

Since more than one context is often active in the Editor at any given
time -- global, a major style, one or more minor styles, and a buffer,
for instance -- some command bindings can be shadowed by other
bindings to the same keys in different contexts. The Editor searches
through the active contexts in a predetermined order to identify the
correct command for a key sequence.

3-6

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

This section describes the means of specifying a context in LISP code,
as well as the Editor’s search hierarchy for locating the correct
binding when you use a key sequence to invoke a command.

3.4.1 Specifying the Binding Context
The context argument to BIND-COMMAND is specified with either:
e The keyword :GLOBAL

@ A list beginning with the keyword :STYLE followed by a style
specifier

e A list beginning with the keyword :BUFFER followed by a buffer

BIND-COMMAND can take only one context argument at a time. To bind a
command in more than one style or other context, you need to write a
BIND-COMMAND form for each context.

3.4.1.1 Global - The global context is used for wvery basic Editor
commands that enable you to function in the Editor even with no style

(::>active. Examples are the commands bound to the arrow keys, the RETURN
key, and the DELETE key, as well as "Self Insert", "Pause Editor", and
"Execute Named Command".

Since :GLOBAL is the default context argument for BIND-COMMAND, the
following two examples are equivalent:

(BIND-COMMAND "Pause Editor" ’'#(#\"X #\"Z) :GLOBAL)
<:> (BIND-COMMAND "Pause Editor" ’"#(#\"X #\"2))

The two forms are also equal in efficiency.

3.4.1.2 Style - Styles are the most commonly used binding contexts.
Your major style would usually include bindings to all the commands
you commonly invoke for general editing. Minor styles can be seen as
smaller sets of special-purpose bindings, such as those you use only
for editing the syntax of a particular language.

A style argument to BIND-COMMAND is specified as a list beginning with
the keyword :STYLE followed by a style specifier. For example:

3-7

BINDING COMMANDS TO KEYS AND .POINTER ACTIONS

' (:STYLE "EDT Emulation")

' (:STYLE EDT-EMULATION)

(LIST :STYLE (VARIABLE-VALUE "Default Major Style"))
N(:STYLE , (VARIABLE-VALUE "Default Major Style"))

The Editor variable "Default Major Style" is set to a particular style
object (initially, "EDT Emulation").

3.4.1.3 Buffer - Some commands may be used only in the context of a
certain buffer, and it may be convenient to have their key bindings
local to that buffer. For instance, the DIGITAL-supplied buffer
"General Prompting" contains buffer-local bindings of commands that
pertain to interactive user input, such as "Prompt Complete String"
and "Prompt Help".

A buffer argument to BIND-COMMAND is specified as a 1list beginning
with the keyword :BUFFER followed by a buffer specifier. For example:

' (:BUFFER "General Prompting")
' (:BUFFER EDITOR-PROMPTING-BUFFER)
(LIST :BUFFER (CURRENT-BUFFER))

The function CURRENT-BUFFER returns the buffer that is current in the
Editor.. :

3.4.2 Search Order and Shadowing

To locate the correct command binding for a key sequence, the Editor
searches through all the active contexts in the following order:

1. Current buffer

2. Minor styles active in that buffer beginning with the most
recently activated

3. Major style of that buffer
4. Global context

The Editor will use the first command binding that it encounters in
this search; any other bindings will be shadowed.

3-8

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

For instance, if you have "EMACS" style active in the current buffer,

<:j}s either major or minor style, then you cannot use the global binding
of CTRL/Z to invoke "Execute Named Command". Because style precedes
global in the search order, the "EMACS" binding of CTRL/Z to "Scroll
Window Down" shadows the global binding.

For keys that do not have multiple bindings in the active contexts, no
shadowing occurs. For instance, the sequence CTRL/X CTRL/N invokes
its global binding, "Next Window", even when you have "EDT Emulation"
active as major style and both "EMACS" and "VAX LISP" as minor styles.
None of these styles has a conflicting binding for that sequence.

Because of the small number of conflicting bindings involved, it is
feasible to use all three DIGITAL-provided styles -- "EDT Emulation",
"EMACS", and "VAX LISP" -- at once. If only "EDT Emulation" and "VAX
LISP" are active, then most global bindings are visible as well.
<::;EMACS“, however, shadows a greater number of global bindings.

3.5 USING BIND-POINTER-COMMAND

By calling BIND-POINTER-COMMAND, you can bind various actions of a
mouse or other pointing device to Editor commands. When the pointer
cursor is in the current Editor window, the Editor will respond to
pointer actions by invoking the bound commands. You cannot program
Jhe Editor to respond to pointer actions that occur when the pointer
cursor is outside the current Editor window.

BIND-POINTER-COMMAND must be referenced in the "EDITOR" package. Its
format is:

BIND-POINTER-COMMAND command pointer-action &KEY :CONTEXT
:BUTTON-STATE

he command argument is a specifier of the command to be bound. Any
valid command argument for BIND-COMMAND can also be wused with
BIND-POINTER-COMMAND (see Section 3.2 above).

The possible values for the :CONTEXT keyword are identical to those
for the context parameter to BIND-COMMAND (see Section 3.4 above).
The default binding context is :GLOBAL. \

For instance, to invoke a command by means of a specified pointer
action in "VAX LISP" style, you would write:

(BIND-POINTER-COMMAND "Describe Word at Pointer"

pointer-action .
¢:CONTEXT '’ (:STYLE "VAX LISP"))

O

3-9

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

The remainder of this section discusses the pointer-action parameter

and the :BUTTON-STATE keyword. This section also explains the
procedure for storing and retrieving the state of the pointing device(::>
at a given point in time.

3.5.1 Specifying a Pointer Action
The pointer actions you can use to invoke Editor commands are:
e A movement of the pointer cursor

e A transition (depressing or releasing) of a pointer button

3.5.1.1 Pointer Cursor Movement - A pointer movement in the Editor is (:)
defined as a movement across at least one character in any direction.
Small movements of the pointer cursor (within a character) are not
significant.

You specify movement of the pointer cursor by supplying the keyword
:MOVEMENT as the pointer-action argument. For instance:

(BIND-POINTER-COMMAND "Name of Command" :MOVEMENT)

If you want to have the command invoked by a movement only when one or ::
more buttons is depressed, you supply a value for :BUTTON-STATE. See
Section 3.1.2 below. :

3.5.1.2 Pointer Button Transitions - The buttons on a supported
pointing device are indicated by the symbols for button constants.

The symbols are in the package "UIS", and they take the form<::>
POINTER-BUTTON-n, beginning with POINTER-BUTTON-1 for the leftmost
button. (See VAX LISP/VMS Graphics Programming Guide for further
information on button constants.)

To specify a downward transition of a particular button, you simply
supply the appropriate button constant as the pointer-action argument.
For instance, to bind a command to a downward transition of the middle
button on a three-button mouse, you would write:

(EDITOR:BIND-POINTER-COMMAND "Name of Command"
UIS:POINTER-BUTTON-2)

Note that this form uses symbols from both the "EDITOR" package and
the "UIS" package.

3-10

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

To specify an upward transition, you supply a list of one element that

<:> is the appropriate button constant. For instance, to bind a command
to an upward transition of the middle button on a three-button mouse,
you would write:

(EDITOR:BIND-POINTER-COMMAND "Name of Command"
(LIST UIS:POINTER-BUTTON-2))

(EDITOR:BIND-POINTER-COMMAND "Name of Command"
\(,UIS:POINTER-BUTTON-2))

These are the most common methods of specifying button transitions.
For other methods, see the description of BIND-POINTER-COMMAND in Part
III of this manual.

3.5.2 Specifying a Button State

In the examples above, the assumption is that all pointer buttons
except one specified in the pointer-action argument are in the up
state. The :BUTTON-STATE keyword permits chording of pointer buttons
to invoke commands. That is, you can specify that the pointer-action

<::> argument is to invoke the command only if one or more pointer buttons
are depressed at the time the pointer action occurs.

For instance, in the Editor as provided:

® Depressing the middle button invokes the command "EDT Cut" (in
"EDT Emulation" style)

® Depressing the middle button with the 1left button depressed
<:> invokes the command "EDT Paste at Pointer" (in "EDT Emulation"
style)
The value for the :BUTTON-STATE keyword is a button constant or the
LOGAND of two or more button constants. These indicate the button(s)
that must be in a down state at the time the specified pointer-action
occurs. :
For instance:
e To spécify that the left button is depressed:
:BUTTON-STATE UIS:POINTER-BUTTON-1
e To specify that the left and riéht buttons are depressed:
<::> :BUTTON-STATE (LOGAND UIS:POINTER-BUTTON-1
' UIS:POINTER-BUTTON-3)

3-11

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

If the pointer-action argument is a button transition, then any wvalue
supplied for that button in the :BUTTON-STATE argument is ignored. <:>

The binding of "EDT Paste at Pointer" -- depressing the middle button
with the left button depressed -- is established by:

(EDITOR:BIND-POINTER-COMMAND "EDT Paste at Pointer"
UIS:POINTER-BUTTON-2
:BUTTON-STATE UIS:POINTER-BUTTON-1
:CONTEXT ' (:STYLE "EDT Emulation"))

The global binding of "Move Point and Select Region" -- move pointer
with left button depressed -- is established by:

(EDITOR:BIND-POINTER-COMMAND "Move Point and Select Region"
: MOVEMENT
:BUTTON-STATE UIS:POINTER-BUTTON-1) Q

The button state in a chorded pointer binding is a static state of the
button or buttons indicated. You should, however, consider the
transitions (prior pressing and subsequent releasing) that establish
and end that state. Either of these transitions might be bound to a
DIGITAL-supplied command (see VAX LISP/VMS User’s Guide for initial
pointer bindings). Or, you might wish to bind one or both transitions
to commands.

3.5.3 Getting the State of the Pointer

You can retrieve the state of the pointing device -- which includes
the position of the pointer cursor, the up-or-down state of each
button, and other information -- for a given point in time by calling

GET-POINTER-STATE. This function is described in full in Part III.

GET-POINTER-STATE returns a pointer-state object that contains <:>
information about the state of the pointer at the time the function is
called. 1If GET-POINTER-STATE is called from within an Editor command

and if that command was invoked by a pointer action, the function
returns the state of the pointer at the time the pointer action
occurred. If the pointer action that invoked the command was a button
transition, then the pointer-state object contains the state of the
buttons at the end of the transition.

GET-POINTER-STATE is useful in commands that take different actions
depending on some feature of the pointer state. For instance, the
DIGITAL-supplied command "Yank at Pointer" tests to see whether the
pointer cursor is indicating a text position (line and character
position).

e If so, "Yank at Pointer" moves the current buffer point to <::>
that text position and inserts the current region in the kill
ring at the modified buffer point.

3-12

O

O

O

O

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

e If the pointer cursor is indicating an empty position in a
line, "Yank at Pointer" moves the current buffer point to the
last character position in that 1line and inserts the kill
region.

e If the pointer cursor is not indicating a 1line, "Yank at
Pointer" moves the current buffer point to the last character
position in the current buffer and inserts the kill region.

"Yank at Pointer" calls GET-POINTER-STATE to store the pointer-state
information, and calls POINTER-STATE-TEXT-POSITION to retrieve the
text position (line and character position) stored in the pointer-
state object. A possible way to implement "Yank at Pointer" is:

(DEFINE-COMMAND (YANK-AT-POINTER-COMMAND
+DISPLAY-NAME "Yank at Pointer")
(PREFIX)

(DECLARE (IGNORE PREFIX))
(LET ((STATE (GET-POINTER-STATE)))

; Get the text position of the pointer cursor and bind the

; two values to LINE and CHARPOS.

MULTIPLE-VALUE-BIND (LINE CHARPOS)
(POINTER-STATE-TEXT-POSITION STATE)

.
4
.
’
(

;3 If there is a line, move buffer point to the CHARPOS or
;7 to the end of that line.
(IF LINE
(MOVE-MARK-TO-POSITION (CURRENT-BUFFER-POINT)
(OR CHARPOS
(LINE-LENGTH LINE))
LINE)

;; If there is no line, move buffer point to end of
;; buffer.

(BUFFER-END (CURRENT-BUFFER-POINT)))

;; After buffer point is modified, call YANK-COMMAND.
(YANK-COMMAND NIL))))

If "Yank at Pointer" has been invoked by means of its pointer binding
in "EMACS" style (depress middle button with left button depressed),
the command uses the pointer state at the time this pointer action
occurred. If "Yank at Pointer" has been invoked by name, it uses the
pointer state at the time the command executes.

The command "Yank at Pointer" calls POINTER-STATE-TEXT-POSITION to
retrieve the line and character position of the pointer cursor. Other
information contained in the pointer-state object and the
corresponding accessing functions are:

3-13

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

e The window position (display row and display column in a given
window) -- POINTER-STATE-WINDOW-POSITION

e The pointer action, if any, that invoked the currently
executing command -- POINTER-STATE-ACTION

e The state of the pointer buttons at the time GET-POINTER-STATE
was called -- POINTER-STATE-BUTTONS

Further information on GET-POINTER-STATE and on each of these
accessing functions appears in Part III of this manual.

Note that the function POINTER-STATE-BUTTONS can be used to implement
chording in pointer bindings. When called from within an Editor
command, the following form

(POINTER-STATE-BUTTONS (GET-POINTER-STATE))

returns the state (up or down) of each pointer button at the time the
command was invoked (see Part III). You can use this information to
have the command take different actions depending on whether a
specified button was depressed at the time a pointer action invoked
the command.

3-14

O

O

O

CHAPTER 4
TEXT OPERATIONS

Text consists of the characters that you normally see when you enter
the Editor and display a buffer. The essential operations that any
editor must allow you to perform on text are:

e Indicating the position occupied by any given character
e Inserting, deleting, and changing characters
® Moving from one character position to another

This chapter introduces the data types and functions you use to
program these kinds of operations in the VAX LISP Editor.

You can envision text in the VAX LISP Editor as a group or region of
contiguous characters. The characters can be any of those in the
ASCII 8-bit extended set (the DEC Multinational Character Set); they
can include whitespace and nongraphic characters as well as
alphanumeric characters. ’

Each character in the Editor occupies a specifiable position. You can
access the characters either individually (that is, at one position)
or in groups (that 1is, between two positions). You <can also
manipulate characters -- insert them, delete them, copy them -- either
individually or in groups. Finally, you can move around within text
either by accessing specified character positions or by searching for
particular characters or sequences of characters.

These sets of text-related capabilities in the VAX LISP Editor are
introduced in the following order:

e Operations on a particular character position
e Operations on a group of contiquous characters
e Moving and searching operations

@ Miscellaneous operations

4-1

TEXT OPERATIONS

This chapter introduces the following Editor data types: <:>
® Marks
e Regions
e Attributes
e Lines
Part II of this manual describes these objects in more detail.
Reference information concerning the functions and macros that operate
on these objects appears in Part III.
Buffers are another relevant Editor data type: most text is contained
in buffers. However, most text operations are not operations on a
buffer object, but rather on marks, regions, lines, or characters that <:>
may be contained in a buffer object. Operations on buffers are
covered in Chapter 6 and in Part II.

Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package.

4.1 OPERATIONS ON A CHARACTER POSITION O
Editor objects called marks are used to reference the position of any
character in text. An example of a mark is the buffer point, which is
the point of attention in each buffer where most text operations
occur. In the current buffer, this mark -- the current buffer point
-- is tracked by the screen cursor.
Every buffer you enter or create in the Editor contains at least three
marks. Besides the buffer point, each buffer contains two marks that<::>
point to the beginning and end of text .in that buffer. To reference
positions in text, you can use the existing marks, or you can create
new marks. Creating marks is covered in Section 4.4.1 below.
By using a mark, you can:

@ Retrieve and change a character

e Insert a character

e Insert a string of characters

e Delete one or more characters

In the examples in this section, the variable MARK is assumed to be
bound to a mark. : <:>

4-2

TEXT OPERATIONS

4.1.1 Retrieving and Changing a Character

For the purpose of text operations, you should think of a mark as
pointing between two adjacent characters. A mark can also point
before the first character in a buffer or after the last character.
You can retrieve the characters on either side of a mark by means of
the functions NEXT-CHARACTER and PREVIOUS-CHARACTER. Using SETF, you
can also change the specified character.

(SETF (NEXT-CHARACTER MARK) #\W)
This form changes the character to the right of the mark to W. If

your text consists of ABCD and the mark is pointing between B and C,
this form changes the C to a W. 'The text then reads ABWD.

4.1.2 Inserting a Character

You can add a new character to text by means of the function
INSERT-CHARACTER. INSERT-CHARACTER takes a mark and a character. It
inserts the specified character at the mark, that is, between existing
characters.

For instance:

(INSERT-CHARACTER MARK #\W)

If the mark is pointing between B and C in the text ABCD, then
executing this form changes the text to ABWCD.

To perform the same operation at the current buffer point, you could
reference that mark by calling the function CURRENT-BUFFER-POINT with
no arguments:

(INSERT-CHARACTER (CURRENT-BUFFER-POINT) #\W)

4.1.3 Inserting a String of Characters
INSERT-CHARACTER allows you to insert only one character at a time.
By using INSERT-STRING, you can insert any number of characters at the
specified mark.

(INSERT-STRING MARK "ABCD EFGH IJKL")

If your text consists of XX and the mark is pointing between the two
characters, this form changes the text to XABCD EFGH IJKLX.

4-3

TEXT OPERATIONS

If the string argument to INSERT-STRING contains newline characters,
then multiple lines of text are inserted.

(INSERT-STRING MARK "ABCD
EFGH")

This form inserts ABCD at the mark, breaks the line, and inserts EFGH
at the beginning of the next line. Any text following the mark in the
original line will appear after EFGH. :

An example of a string that might be inserted in text is the string
that the user enters in response to a prompt. For instance: ‘

(INSERT-STRING (CURRENT-BUFFER-POINT)
(SIMPLE-PROMPT-FOR-INPUT "Enter input: "))

This form takes the user’s response to the prompt and inserts it as
text at the current buffer point.

4.1.4 Deleting Characters

DELETE-CHARACTERS takes a mark and an optional integer that defaults
to 1. It deletes the specified number of characters after the mark,
or before the mark if the integer is negative. If there are not
enough characters after (or before) the mark, DELETE-CHARACTERS does

not modify the text.

For example, to delete the next 5 characters after a specified mark,
you would write: '

(DELETE-CHARACTERS MARK 5)

To delete the character preceding the current buffer point, you would
write:

(DELETE-CHARACTERS (CURRENT-BUFFER-POINT) -1)
When deleting a character, you may want to save the character so that
you can reinsert it later. The following forms show a "delete and
save" operation and a subsequent reinsertion operation:

;:; Define a variable to which to bind a deleted character.

(DEFVAR *SAVED-CHARACTERY*)

777 Bind the character following the current buffer point to the
;7; variable.

(SETF *SAVED-CHARACTER* (NEXT-CHARACTER (CURRENT-BUFFER-POINT)))

4-4

O

O

TEXT OPERATIONS

;i Delete the character following the current buffer point.

<~> (DELETE-CHARACTERS (CURRENT-BUFFER-POINT))

;; Later, insert the character bound to the variable at the
;7 then-current buffer point.

(INSERT-CHARACTER (CURRENT-BUFFER-POINT) *SAVED-CHARACTERY*)

4.2 OPERATIONS ON A GROUP OF CHARACTERS

(:) Editor objects called regions indicate groups of contiguous
characters. The text in a region can be accessed and manipulated as a
unit.

A region is defined by two marks that indicate the character positions
where the region begins and ends. To create a region, you write:

(MAKE-REGION MARK1 MARK2)
<::>Every buffer contains at least one region, which is defined by the
marks that indicate the positions where text begins and ends in that
buffer. This region is called the buffer region.
Any number of regions can be created within a buffer region. They may
overlap in arbitrary ways, and one may be completely contained within

another. Since regions may share text, any alterations you do to the
text in one region will affect other regions that share that text.

<::>Using regions, you can:
e Insert a block of text
e Copy a block of text
e Delete a block of text
e Delete and save a block of text
e Write a block of text to a file

You can perform these operations on any region. To perform these
operations on a buffer, you perform them on the buffer region of that

<:> buffer.

4-5

TEXT OPERATIONS

4.2.1 Inserting a Region

The function INSERT-REGION enables you to insert a specified block of<::>
text as a unit. INSERT-REGION takes a region and a mark at which to
insert that region in text. The text inserted is a copy of the
specified region; the original region is not altered.

For example:
(INSERT-REGION (CURRENT-BUFFER-POINT) (MAKE-REGION MARK1 MARK2))

This form defines a region from the two specified marks, which allows
you to treat the text between those marks as a single unit. The text
in this region is copied, and the copy 1is inserted at the current

buffer point.

The function COPY-REGION takes a region and returns a new region that
contains a copy of the text in the specified region. The new region
is "disembodied," in that it is not contained in a buffer. Operations
performed on the copy do not affect the original region, and vice
versa.

4.2.2 Copying a Region

The following forms illustrate the process of copying and saving a
specified region for later insertion elsewhere. The original region
is not deleted or otherwise altered.
;7; Define a variable to which to bind a region.
(DEFVAR *SAVED-REGION*)
;:; Copy a region and bind it to the variable. <:>
(SETF *SAVED~-REGION* (COPY-REGION.(MAKB—REGION MARK1 MARK2)))

;;; Later, insert the copied region at the current buffer point.

(INSERT-REGION (CURRENT-BUFFER-POINT) *SAVED-REGION*)

4.2.3 Deleting a Region

Regions are commonly used to indicate blocks of text to be deleted.
You can delete the text in a region by calling either DELETE-REGION or
DELETE-AND-SAVE-REGION with a region argument.

TEXT OPERATIONS

The function DELETE-REGION takes a region and deletes the text in 1it,
leaving an empty region.

(DELETE-REGION (MAKE-REGION MARK1 MARK2))
If you wish to retain a copy of the text in a deleted region so that
you can reinsert it elsewhere, you call DELETE-AND-SAVE-REGION. This
function deletes the text in a region and returns a disembodied region
that contains a copy of the deleted text.

(INSERT-REGION (CURRENT-BUFFER-POINT)

(DELETE-AND-SAVE-REGION
(MAKE-REGION MARK1 MARK2)))

In this example, DELETE-AND-SAVE-REGION deletes the text in the region
between MARK1 and MARK2 and returns a copy of the deleted text. The

disembodied region containing the copied text is passed to
INSERT-REGION, which inserts it at the current buffer point.

4.2.4 Writing a Region to a File
The function WRITE-FILE-FROM-REGION takes a file name (pathname or
namestring) and a region. It writes the specified region to the
specified file. For instance:

(WRITE-FILE-FROM-REGION "Myfile.lsp"
(MAKE-REGION MARK1 MARK2))

This form writes the text between the specified marks to a file named
"Myfile.lsp".

4.2.5 Operating on Buffers
Text operations that appear to be performed on buffers are actually
performed on the buffer regions of those buffers. Some operations you
can perform on buffer regions are:

® Deleting the text in a buffer

e Inserting the contents of one buffer into another

@ Writing the contents of a buffer to a file

e Inserting the contents of a file into a buffer

4-7

TEXT OPERATIONS

These operations use the same region-manipulating functions that apply
to smaller regions within a buffer. The difference here is that the
region argument you supply is the buffer region. The function
BUFFER-REGION takes a buffer and returns the buffer region of that
buffer.

4.2.5.1 Deleting The Text In A Buffer - To delete all the text in a
buffer, you simply delete the text in the associated buffer region.

(DELETE-REGION (BUFFEﬁ-RBGION (CURRENT-BUFFER)))

This form deletes the text in the current buffer. The buffer itself
and the empty buffer region remain.

4.2.5.2 1Inserting One Buffer Into Another - To insert the text from
one buffer into another buffer, you call the function INSERT-REGION.
As arguments you supply a mark in one buffer and the buffer region of
another buffer.

(IﬁSERT-REGION (CURRENT-BUFFER-POINT) (BUFFEﬁ-REGION BUFFER2))

This form inserts a copy of the buffer region of BUFFER2Z into the
current buffer at the current buffer point. The content of BUFFER2 is
not affected by this operation, and subsequent changes to the text in
BUFFER2 and in the inserted region do not affect one another.

4.2.5.3 Writing A Buffer To A File - To write a buffer to a file, you
call WRITE-FILE-FROM-REGION and pass it a file name (pathname or
namestring) and the buffer region of a specified buffer.

(WRITE-FILE-FROM-REGION "Myfile.lsp"
(BUFFER-REGION (CURRENT-BUFFER)))

<

This form writes the contents of the current buffer to a file named
"Myfile.lsp". :

4.2.5.4 1Inserting A File Into A Buffer - The function
INSERT-FILE-AT-MARK is similar to INSERT-STRING in that it inserts
text at a specified mark. The mark can indicate any text position in
a buffer or disembodied region; the text inserted is the content of a
specified file. INSERT-FILE-AT-MARK is commonly used to insert a file
into a buffer. .

4-8

O

O

TEXT OPERATIONS

For example:

(INSERT-FILE-AT-MARK "Myfile.lsp" (CURRENT-BUFFER-POINT))
y

This form inserts the contents of the file "Myfile.lsp" into the
current buffer at the current buffer point. :

4.3 MOVING AND SEARCHING OPERATIONS

A number of functions exist that "move" marks. That 1is, these
functions modify a mark so that it specifies a different text
position.

There are three basic ways to move marks:

By specifying a new character position
By searching for a specified string of characters

By searching for a character with a particular property

04.3.1 Moving by Character Positions

O

O

Several functions take a mark and alter it to point to a specified
character position. The character position can be specified either by
"counting" from the mark’s initial position or by referencing another

mark.

To move a mark one or more character positions away from its current
position, you call:

MOVE-MARK-AFTER - moves a mark to the position that follows
its initial position
A

MOVE-MARK-BEFORE - moves a mark to the position that precedes
its initial position

CHARACTER-OFFSET - takes a count and moves the mark forward
that many positions (backward if the count is negative).

You can also move a mark to point to the position specified by another

mark.

Some functions you can use are:

BUFFER-END - moves a mark to. the end of the text in a
specified buffer

BUFFER-START - moves a mark to the beginning of the text in a
specified buffer

4-9

TEXT OPERATIONS

® MOVE-MARK - moves a mark to the position occupied by any other
specified mark <:>

Moving by character position is illustrated in a new function that
transposes the pair of characters before a specified mark. This
function also illustrates accessing and manipulating individual
characters.

(DEFUN TRANSPOSE-CHARACTERS (MARK)
" Transpose the pair of charécters before the specified mark."
;; Access the character before the ﬁark and bind it to CHAR2.
(LET ((CHAR2 (PREVIOUS-CHARACTER MARK)))

;; If there is a character before the mark, delete that <:>
:; character.

(WHEN CHARZ2
(DELETE-CHARACTERS MARK -1)

;3 If there is a character in the position now
;; preceding the mark, move to the position preceding
;; that character and reinsert the deleted character.

(COND ((PREVIOUS-CHARACTER MARK) <:>
(INSERT-CHARACTER (MOVE-MARK-BEFORE MARK)
CHAR2)
;3 Move the mark back to its initial position.

(MOVE-MARK-AFTER MARK))

;; If there is no character in the position
;; preceding the mark, reinsert the deleted (:)
;; character at its initial position.

(INSERT-CHARACTER MARK CHAR2))))))

The action of this function differs slightly from that of the
DIGITAL-supplied command "Transpose Previous Characters". One
difference is that the command suppresses screen display of the
separate text operations, showing only the completed action.
Display-related operations are discussed in Chapter 5. Also, the
command creates a new mark for the operation and disposes of the mark
after the operation is completed. Creating marks is discussed in
Section 4.4.1 below.

4-10

TEXT OPERATIONS

4.3.2 Searching by Pattern

Searching by pattern enables you to move a mark to a specified string
of characters within a region of text. The search can be forward or
backward from the mark’s initial position, and it can either consider
or ignore case in determining whether a text string matches the. search
string.

To perform a search by pattern, you call two functions:

© MAKE-SEARCH-PATTERN - computes a pattern, including the string
to be matched, the direction of the search, and whether the
search is case-sensitive

e LOCATE-PATTERN - initiates a search operation beginning at a
specified mark and searching according to the parameters of
the specified pattern

This section illustrates the use of these functions to implement
search operations.

4.3.2.1 Making A Search Pattern - Before beginning a search
operation, vyou call MAKE-SEARCH-PATTERN, which computes and returns a
<::)search pattern. 1Its format is:

MAKE-SEARCH-PATTERN kind direction string &OPTIONAL reuse-pattern
The kind argument can be either :CASE-SENSITIVE or :CASE-INSENSITIVE.
The direction argument can be either :FORWARD or :BACKWARD. The

string argument is the string to be searched for. (The optional
reuse-pattern argument is described in Part III.)

For instance, to search forward for the string ABCDE, disregarding
<::>case, you could begin with the following pattern:

(MAKE-SEARCH-PATTERN :CASE-INSENSITIVE :FORWARD "abcde")

4.3.2.2 Locating A Search Pattern - To initiate the search, you call
LOCATE-PATTERN. This function takes a search pattern, such as that
specified above, as well as a mark at which to begin the search:

LOCATE-PATTERN mark search-pattern
LOCATE-PATTERN searches for a text string that matches the specified

search pattern. 1If one is found, it changes the mark to point to the
<::)beginning of the matched string.

4-11

TEXT OPERATIONS

A very simple search operation is illustrated by the following
command: -

(DEFINE-COMMAND (MY-SIMPLE-SEARCH-COMMAND
:DISPLAY-NAME "My Simple Search")
(PREFIX)

(DECLARE (IGNORE PREFIX))
(LOCATE-PATTERN (CURRENT-BUFFER-POINT)

(MAKE-SEARCH-PATTERN
:CASE-INSENSITIVE

: FORWARD
(SIMPLE-PROMPT-FOR-INPUT
"Search for: "))))

"My Simple Search" prompts for a search string, which it wuses in
making a search pattern. It then searches forward for that string,
beginning at the current buffer point and disregarding case.

Note that this command searches only once. To locate more than one
occurrence of the string, you would need to invoke the command
repeatedly. To search in the opposite direction, . you would need to
write another command with :BACKWARD as the direction argument to
MAKE-SEARCH-PATTERN.

4.3.2.3 Replacing A Pattern - You can also program the Editor to
replace strings that it locates through a search operation. The
function REPLACE-PATTERN is similar to LOCATE-PATTERN except that it
takes a replacement argument -- a new string with which to replace the
string it locates in the text:

REPLACE-PATTERN mark search-pattern replacement &OPTIONAL n

For example:

(REPLACE-PATTERN (CURRENT-BUFFER-POINT)
(MAKE-SEARCH-PATTERN
:CASE-SENSITIVE
:BACKWARD
"This is a")
"This is not a")

This form searches backward through text from the current buffer point
for every case-matched instance of the search string. It deletes each
matching string and replaces it with the specified replacement string.
(Unlike LOCATE-PATTERN, REPLACE-PATTERN does not move the mark.)

The optional n argument to REPLACE-PATTERN allows- you to specify how
many occurrences of the string should be replaced (see the full

4-12

O

O

TEXT OPERATIONS

description of REPLACE-PATTERN in Part III). The default action is to
replace every instance in the direction specified 1in the search
pattern.

4.3.3 Searching by Attribute

Searching by attribute enables you to locate text entities such as
words, whitespace, LISP forms, and so on. The Editor recognizes these
entities by the characters that define or delimit them. For instance,
the Editor 1locates a word by searching for a character that it
recognizes as a word delimiter.

Characters acquire these added properties by means of Editor objects
called attributes. Some attributes provided with the Editor are "word
Delimiter", "Whitespace", and "LISP Syntax". (Attributes can also be
user-defined.) Once an attribute is established in the Editor, then
all 256 characters have a value for that attribute. "

NOTE

Editor attributes should not be confused with
character attributes in COMMON LISP. The Editor
ignores all COMMON LISP bit and font information about
characters. Editor attributes capture other, Editor-
specific information about the meaning of individual
characters.

You can think of Editor attributes on the analogy of a human
attribute, such as "Political Party Member". 1In contexts where you
apply this attribute to people, every person has a value for it. The
values might be specified as REPUBLICAN, DEMOCRAT, WHIG, TORY, and so
on. Another possible value is NOT-A-MEMBER.

Similarly, every character in the Editor has a value for the attribute
"Whitespace". The possible values in this case are 1 and 0, which you
can think of as IS-WHITESPACE and IS-NOT-WHITESPACE, respectively.

To carry out a search by attribute, the Editor tests each character in
turn until it 1locates one that has a particular value for the
specified attribute. For example:

e To skip over whitespace to the next non-whitespace character,
the Editor searches for the next character with the value 0
for the attribute "Whitespace". .

e To find word breaks, the Editor searches for characters with
the value 1 for the attribute "Word Delimiter".

4-13

TEXT OPERATIONS

e To find the next list in LISP code, the Editor searches for
the next character with the wvalue :LIST-INITIATOR for the
attribute "LISP Syntax".

To search by attribute in the Editor, you call the function LOCATE-
ATTRIBUTE. This section introduces: :

@ Using LOCATE-ATTRIBUTE
@ Mark and cursor behavior in an attribute search
e Using LOCATE-ATTRIBUTE repeatedly

" This discussion focuses on wusing DIGITAL-provided attributes and
attribute values. Information on creating new attributes and on
changing attribute values appears in Chapter 6 and in Part II.

4.3.3.1 Using LOCATE-ATTRIBUTE - The function LOCATE-ATTRIBUTE is
used to locate a character with a particular attribute value. This
function is described in full in Part III of this manual. 1Its format,
with only a few of its parameters, is:

LOCATE-ATTRIBUTE mark attribute &KEY
¢:TEST ‘
¢:DIRECTION

LOCATE-ATTRIBUTE scans the text in the specified direction to find a
character with a particular value for the specified attribute. The
value of interest is one for which the specified test function returns
a non-NIL value. If such a character is found, LOCATE-ATTRIBUTE moves
the mark to point to that character. The default wvalue for the
keyword argument :DIRECTION is :FORWARD; the default function used as
the :TEST is PLUSP.

For example, to find the next word delimiter in a region of text, you
could write:

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter"
-sTEST #'PLUSP
:DIRECTION :FORWARD)

This form moves the current buffer point forward to the next character
whose "Word Delimiter" value is 1. The values are tested by passing
them to the predicate function PLUSP. PLUSP returns NIL if its
argument is O and T if its argument is greater than 0. The first
character whose "Word Delimiter" value is 1 satisfies the test, and
the search stops.

4-14

O

O

O

O

O

O

TEXT OPERATIONS

LOCATE-ATTRIBUTE behaves the same way when called with the argument
:BACKWARD, but the search direction is reversed.

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter"
:DIRECTION :BACKWARD)

In this case, LOCATE-ATTRIBUTE moves the current buffer point backward
to the first character whose "Word Delimiter" value satisfies the
default test PLUSP.

To find the next character that is not a word delimiter, you change
the test function:

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter"”
:TEST #'ZEROP)

This form moves the current buffer point to the next character that
has the "Word Delimiter" value 0. The function ZEROP returns non-NIL
only when its argument is 0.

4.3.3.2 Mark And Cursor Behavior - When wusing LOCATE-ATTRIBUTE to
move a mark, it is important to remember that marks point between
characters rather than to characters. Depending on the direction of
the search, the modified (or "moved") mark points either just before
or just after the character that has satisfied the test. The screen
cursor, on the other hand, always appears on the character just after
the mark it is tracking (the current buffer point).

A mark’s behavior in an attribute search is symmetrical --
"mirror-image" -- forward and backward. The cursor’s behavior is not
symmetrical.

For instance, imagine that the following text string contains the
current buffer point in the position between J and K; the cursor
appears on K.

ABCD EFGH IJKL MNOP QRST

MLO-250-86
Then call LOCATE-ATTRIBUTE (with its default arguments) to search
ahead for the first character with the value 1 for the attribute "Word

Delimiter".

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT) "Word Delimiter") .

4-15

TEXT OPERATIONS

The test succeeds at the space after L, and the search stops. The
mark is left pointing just before the space and the cursor is on it. <:>

ABCD EFGH 1.3!!1, MNOP QRST

MLO-251-86

If you evaluate the form again, LOCATE-ATTRIBUTE does not move the
mark. It may appear, since the cursor is on the space, that the next
word delimiter is the space after P. However, the mark is actually
positioned just before the space indicated by the cursor. This
character satisfies the test. (The following section discusses how to
call LOCATE-ATTRIBUTE repeatedly.)

The backward-searching behavior of LOCATE-ATTRIBUTE is a mirror image <:>
of its forward-searching behavior. The symmetry is apparent when you
consider mark positions, but less apparent when you consider only
cursor positions.

For instance:

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT) .
"word Delimiter" <:>
:DIRECTION :BACKWARD)

M~

ABCD EFGH [IJJ[KlL MNOP QRST

MLO-252-86

If the mark points, as before, between J and K, the first character to<::>
satisfy the test 1is the space between H and I. Because the search
direction is backward, LOCATE-ATTRIBUTE moves the mark to the position
between the space and the I. The mark indicates the space character

to its left, but the cursor, which is always to the right of the mark,
stops on the 1I. (Compare this cursor behavior with the cursor
behavior when LOCATE-ATTRIBUTE searches forward.)

Again, LOCATE-ATTRIBUTE does not move the mark if called a second
time. The character that the mark is indicating is the space, which
satisfies the test.

4.3.3.3 Using LOCATE-ATTRIBUTE Repeatedly - Some higher level
functions and commands may invoke LOCATE-ATTRIBUTE more than once.
For instance, WORD-OFFSET takes an optional count that indicates the

4-16

TEXT OPERATIONS

number of word breaks to be located. It invokes LOCATE-ATTRIBUTE the
<::> number of times specified.
When you invoke LOCATE-ATTRIBUTE repeatedly, you need to consider the
cases where the mark is already indicating a character with the
attribute value in question. As shown above, LOCATE-ATTRIBUTE does
not move the mark when the first character in the specified direction
satisfies the test.

It is necessary, therefore, to include a test of the mark’s position
before invoking LOCATE-ATTRIBUTE. An example of such a test is the
following:

(DEFMACRO NEXT-CHAR-IN-WORD-P (MARK)
“(LET ((NEXT (NEXT-CHARACTER ,MARK)))
(AND NEXT
<:> (ZEROP (THE FIXNUM (CHARACTER-ATTRIBUTE
"Word Delimiter" NEXT))))))

The macro NEXT-CHAR-IN-WORD-P tests whether the character after the
mark is part of a word, and thus not a word delimiter. That is, it
tests whether that character has the value 0 for the attribute "word
Delimiter".

Using this test, you can now write a command that invokes
<:> LOCATE-ATTRIBUTE:

(DEFINE-COMMAND (CAPITALIZE-WORD-AND-TRAVEL-COMMAND
:DISPLAY-NAME "Capitalize Word and Travel")
(PREFIX) '

;; Repeat the action if a prefix argument is supplied.
(DOTIMES (INDEX (OR PREFIX 1))

<:> ;; If the next character is a word delimiter, find the next
;; one after it that is not a word delimiter.

(UNLESS (NEXT-CHAR-IN-WORD-P (CURRENT-BUFFER-POINT))
(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter"
:TEST #'ZEROP))

; If the next character is not a word delimiter, capitalize
; the word that contains it and move to the next word.

(WHEN (NEXT-CHAR-IN-WORD-P (CURRENT-BUFFER-POINT))

(CAPITALIZE-WORD-COMMAND 1) .
(FORWARD-WORD-COMMAND 1))))

4-17

TEXT OPERATIONS

4.4 MISCELLANEOUS TEXT OPERATIONS

The preceding sections have assumed that you are working with existing <:>

marks. You can, however, create new marks when you are programming
text operations. :

For some operations, you can also work with lines as text-containing
objects. Lines are sometimes less convenient to use than marks and
regions, but line operations may be more efficient to execute.

This section introduces the techniques of:

e Creating marks

e Operating on lines

4.4.1 Creating Marks

Marks are used primarily to indicate positions for insertions and
deletions in text. A single mark can indicate the position for an
insertion operation; a pair of marks can indicate a region of text to
be deleted or inserted.

The Editor supplies a number of marks automatically -- buffer points
and the marks that indicate the limits of buffer regions. If none of
these marks is suitable for the operation you want to perform, you can
create one or more new marks.

New marks are most often created by "copying" existing marks. Both
the function COPY-MARK and the macro WITH-MARK create a new mark that
indicates the same text position as a specified mark. You can also
specify the type of mark you want to create; a mark’s type determines
its behavior in a text operation.
This section introduces:

@ Mark types and their behavior

e Using COPY-MARK

e Using WITH-MARK -

4.4.1.1 Mark Types And Their Behavior - Whenever you create a new
mark, you need to consider what becomes of that mark after a text
operation is performed on it. Marks are of two basic types:

4-18

O

TEXT OPERATIONS

<:> e Temporary marks, which become invalid after any operation upon
them

® Permanent marks, which remain valid after any operation upon
them

Temporary marks are useful for one-time operations; after any
operation that affects the mark or the text to which it points, the
mark becomes invelid and should not be reused. Temporary marks are
more efficient than permanent marks for some applications because they
require less overhead to make and use.

Permanent marks remain valid after any operation on them, including
deletion of the text to which they point. For instance, the current
buffer point and the two marks that indicate the beginning and end of
text in a buffer are permanent marks. If you delete all the text in a

<:> buffer, these three marks (and any other permanent marks in that
buffer) continue to point into that (empty) buffer. Permanent marks
can be removed only with the function DELETE-MARK.

When you insert text at a permanent mark, the mark’s behavior depends
on whether it is left-inserting or right-inserting:

® A left-inserting mark appears at the end of a new insertion.

That 1is, new text is inserted to the left of the mark. The

(::) current buffer point and the buffer-end mark are permanent
left-inserting marks.

e A right-inserting mark appears at the beginning of a new
insertion. That is, new text is inserted to the right of the
mark. The buffer-start mark is a permanent right-inserting
mark.

You can specify the type of mark you want to create when you call

COPY-MARK or WITH-MARK. Each takes an optional mark-type argqument
which may be :TEMPORARY, :LEFT-INSERTING, or :RIGHT-INSERTING.

4.4.1.2 Using COPY-MARK - The function COPY-MARK creates and returns
a new mark that points to the same position as a specified mark.

COPY-MARK mark &OPTIONAL mark-type
For instance:
(COPY-MARK (CURRENT-BUFFER-POINT) :TEMPORARY)

This form creates a new temporary mark that specifies the same text
<::>position as the current buffer point.

4-19

TEXT OPERATIONS

If no mark-type argument is specified, the new mark is of the same
type as the specified mark. 1In the following example, the new mark is <:>
a permanent left-inserting mark (like the current buffer point).

(COPY-MARK (CURRENT-BUFFER-POINT))

COPY-MARK is often used in defining a region between - the current
buffer point and some other character position in the buffer. The
procedure is:

1. 1Indicate the position of the buffer point by placing a new
mark there.

2. Move the buffer point with any of the mark-moving functions.

3. Define a region from the new mark and the modified buffer

point. <:>

For instance, to make a region from the current buffer point to the
end of a buffer, you could write: N

(MAKE-REGION (COPY-MARK (CURRENT-BUFFER-POINT))
(BUFFER-END (CURRENT-BUFFER-POINT)))

This form copies the current buffer point and then moves the buffer
point to the end of the buffer. It uses the copied mark and the <:>
altered buffer point to define a region.

If you perform an operation on this region, both marks will remain —
valid because both are permanent marks. For instance:

(DELETE-REGION
(MAKE-REGION (COPY-MARK (CURRENT-BUFFER-POINT))
(BUFFER-END (CURRENT-BUFFER-POINT)))

This form deletes all the text between the initial position of the <:>
current buffer point and the end of the buffer. Both the buffer point

and the new mark are left pointing to the end of the buffer. However,
because DELETE-REGION returns NIL, you have no access to either the

new mark or the new region.

g

4.4.1.3 Using WITH-MARK - When you are programming text operations,
you may want to dispose of a new mark after it has served its purpose.
In this situation, you can create the mark with the macro WITH-MARK.

WITH-MARK copies a mark and binds the new mark to a specified
variable. The new mark can be of any mark type; the default is
:TEMPORARY. The variable can be referenced within the body of the
macro. Upon exit from the form, the mark is deleted and the variable (:)
besgmes unbound.

4-20

TEXT OPERATIONS

WITH-MARK is analogous to the COMMON LISP macro WITH-OPEN-FILE. Its
<:>use guarantees that the overhead of creating a mark ends on exit from
the macro.

An example of the use of WITH-MARK follows. This form copies the
current buffer point for a file-insertion operation. 1Inserting a file
moves the current buffer point to the right and leaves it at the end
of the new insertion. 1If you want the current buffer point to end up
at the beginning of the new insertion, you could write:

;; Place a new right-inserting mark at the same position as the
;7 current buffer point.

(WITH-MARK ((NEW-MARK (CURRENT-BUFFER-POINT) :RIGHT-INSERTING))
;7 Insert the file at the current buffer point.
<:> (INSERT-FILE-AT-MARK FILE (CURRENT-BUFFER-POINT))

;7 Move the current buffer point back to the position of the
;; new mark.

(MOVE-MARK (CURRENT-BUFFER-POINT) NEW-MARK))

This form creates a new mark, bound to the variable NEW-MARK. Because
NEW-MARK is right-inserting, it remains in its initial position when
you insert a file. The current buffer point, which is left-inserting,
moves to the end of the new text. " After the insertion, the buffer
point moves back to the position indicated by the new mark. When the
action 1is completed, NEW-MARK becomes unbound and the new mark is
deleted.

©4.4.2 Operating on Lines

A line is an Editor object that points to a string of characters. The
text string in a 1line normally corresponds to the line of text
displayed on: the screen. A line also contains pointers to the 1lines
that precede and follow it. '

All text operations result, directly or indirectly, in the alteration
of lines or of their relative positions. For instance, marks point
into lines, and operations on marks alter the lines into which they
point. Also, the two marks that define a region point into the same
or different lines, and operations on the region alter the 1line or
lines that the region contains.

You may prefer, for reasons of efficiency, to perform some text
<:> operations directly on lines. These operations include:

4-21

TEXT OPERATIONS

e Retrieving and altering the string of text in a line :
@ Retrieving and altering a particular character <:>
e Moving from one line to another
e Testing the relative positions of lines
Lines are created as a result (side effect) of Editor operations such
as reading files, breaking 1lines, and so on. In the following

examples, the variables LINE, LINE1l, and LINE2 are assumed to be bound
to lines.

4.4.2.1 Retrieving And Altering The Text In A Line - The function ‘
LINE—STRIN§ takes a line and returns the string that is the text(::>
contained in that line. :

(LINE-STRING LINE)
This form returns the text in the specified line as a string.
You can use SETF with LINE-STRING to modify the téxt in a line.

(SETF (LINE-STRING LINE) "abcde") : (::)
This form accesses the text in LINE and replaces it with abcde.
To change the string from abcde to ABCDE, you could Qrite:

(SETF (LINE-STRING LINE) (NSTRING-UPCASE (LINE-STRING LINE)))

Note that you must use SETF to have the destructive operation
performed by NSTRING-UPCASE appropriately reflected in LINE. ‘ <:>

4.4.2.2 Retrieving And Altering A Single Character - The function
LINE-CHARACTER takes a line and an integer that indicates a character
position in that line. The character positions are numbered from the
left beginning with 0. LINE-CHARACTER returns the character in the
specified position (or NIL if no character is found). You can use
SETF with this function to alter the specified character.

For example:
(SETF (LINE-CHARACTER LINE 4) #\W)
In this form, LINE-CHARACTER returns the character in position 4 in <:>

LINE. Setting that value to W changes the text string in LINE from
ABCDE to ABCDW.

4-22

TEXT OPERATIONS

You can break a line, and thus create a new 1line, by replacing a
<:> character with a newline character:

(SETF (LINE-CHARACTER LINE 2) #\NEWLINE)

This form replaces the C in LINE with a newline character. The- result
of this operation is two lines, one containing the text AB and the
next containing the text DW.

4.4.2.3 Moving By Line - A line contains pointers to the 1lines that
precede and follow it. You can move from line to line by following
these links. LINE-NEXT and LINE-PREVIOUS take a line and return the
next line or the previous line (or NIL if no line is found).

<::> For example, assume that LINE1l is followed by LINE2. Then,
(LINE-NEXT LINE1l) ;returns LINE2

(LINE-PREVIOUS LINE2) ;returns LINEl

4.4.2.4 Testing Relative Line Positions - To check the relative

<:> positions of two 1lines, or to see if the two are the same line, you
use the functions LINE=, LINE<, LINE>=, and so on. These functions
are listed in Appendix A and described in full in Part III of this
manual.

For instance, the following form returns T only if LINE1 follows
LINE2:

(LINE> LINE1l LINE2)

<:> Because LINE2 is the second of the two lines in the example, this form
returns NIL.

4.4.2.5 Retrieving And Testing Mark Positions - Marks have been
introduced as objects that indicate positions in text. A mark
indicates a text position by pointing to a line and to an integer that
is a character position in that line. (Recall that character
positions are numbered from the left beginning with 0.)

You can determine a mark’s position by means of the functions’
MARK-LINE and MARK-CHARPOS:

® MARK-LINE takes a mark and returns the line into which that
mark points.

4-23

TEXT OPERATIONS

e MARK-CHARPOS takes a mark and returns its character position,
that 1is, the number of characters to the left of the mark in<::>
the same line.

To check the relative positions of two marks, you call a function such

as MARK=, MARK>, and so on. These functions are listed in Appendix A

and described in full in Part III of this manual.

4.4.2.6 Example Of An Operation On Lines - The following example
implements a function that performs a text operation directly on
lines. The new function, PREFIX-LINES, takes a string and a region;

it adds the specified string to the front of each line in the
specified region. This function could be used, for instance, to
indent text (by inserting a specified number of spaces at the
beginning of each line) or to indicate comments in any code (by <:>
inserting the appropriate comment-delimiters and spaces).

(DEFUN PREFIX-LINES (STRING REGION)

Adds the specified string to the beginning of each line
in the specified region."

;; Access each line in turn, beginning with the line that
;; contains the mark that starts the region. <:>

(DO* ((LINE (MARK-LINE (REGION-START REGION))
(LINE-NEXT LINE)))

; When LINE contains the mark that ends the region,
; end the loop.

-
’
-
’

((OR (NULL LINE)
(LINE> LINE (MARK-LINE (REGION -END REGION))))) <:>

;; Prefix each line with the specified string.

(SETF (LINE-STRING LINE)
(CONCATENATE ’'STRING STRING (LINE-STRING LINE)))))

4-24

CHAPTER 5
WINDOW AND DISPLAY OPERATIONS

Whenever you enter the VAX LISP Editor and select a buffer, the Editor
makes a window onto that buffer and displays it on the screen. A
window is an Editor object that translates some portion of the text in
a buffer into a form that is displayable. Displaying the window makes
that text visible.

NOTE

Editor windows are similar to virtual displays in the
VMS screen management facility (SMG).* Creating a
window is a separate operation from displaying it, and
windows can exist without being displayed. As these
features suggest, Editor windows are quite different
from windows in traditional EMACS editors, where a
window is a section of the screen.

During an interactive session, the Editor makes and displays windows
as a result of executing certain commands. For instance, you see a
window appear whenever you edit a file or function, select a buffer,
or execute "Help" or "Describe". Each of these windows is an Editor
object that includes certain information, such as its size, screen
position, display type (anchored versus floating), and the content and
position of its label. 1In LISP code, you can alter the features of a
particular window, and you can program the Editor to make windows with
the features you specify.

When multiple windows are displayed, a display manager within the
Editor determines how they are arranged on the screen. Depending on
the number of windows and their display types, some windows may
overlap others, and some may be resized or repositioned on the screen.
In all situations, space at the bottom of the screen is reserved for

* See VAX/VMS Run-Time Library Routines Reference Manual.

5-1

WINDOW AND DISPLAY OPERATIONS

the information area, which the Editor wuses to report on its
activities and to signal errors, and for the prompting window. <:>

A few DIGITAL-provided Editor commands enable you to operate directly
on windows or to override the automatic display management. For
instance, you can resize, scroll, and split the window you are working
in; you can resize the display area or remove windows from it; and you
can move the cursor from one window to another. If you want to exert
finer control over window and display operations, you can use the
functions and other objects in the Editor’s display subsystem to
implement new commands.

This chapter introduces the techniques of programming the Editor to
perform window and display operations. It also covers operations on

the display area (screen) and on the information area (a section of
the screen).

The topics covered in this chapter are: <:>
® Accessing windows | |
@ Operations on a window’s text content
e Operations on window appearance: video rendition and labeling
e Managing display, window size, and window screen position <:>
e Making and deleting windows

Part III of this. manual contains more detailed information concerning

the individual objects in the ‘display subsystem. An extended example
at the end of this chapter (Section 5.6) illustrates the use of many

of these objects.

Windows are not named Editor objects; that is, you can access an
Editor window only by means of an expression that evaluates to that
window object. This section introduces the functions that you use to
access some particular windows in LISP code:

5.1 ACCESSING WINDOWS

® The current window
e The windbws onto a buffer
e All the windows on the screen

® The "next" window on the screen <:>

5-2

WINDOW AND DISPLAY OPERATIONS

Many of the examples in this chapter use these functions to access
<:> windows. Otherwise, the variables WINDOW, WINDOW1, WINDOW2, and so on
are assumed to be bound to Editor windows.

Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package.

5.1.1 The Current Window

Windows are always associated with buffers, and more than one window
can open onto a single buffer. One window onto the current buffer is
the current window. This is the window that contains the cursor; it
is the "active" window where text operations commands are executed.

The current window is returned by the function CURRENT-WINDOW, which
C:) takes no arguments. You can use SETF with CURRENT-WINDOW to make
another window the current window:

(SETF (CURRENT-WINDOW) WINDOW2)

This form makes WINDOWZ2 the current window. If WINDOW2 is not already

displayed, the display manager makes it visible on the screen. The

buffer associated with WINDOW2 becomes the current buffer, and the
<::>cursor moves to WINDOW2.

5.1.2 The Windows onto a Buffer

The function BUFFER-WINDOWS returns a list of the windows that open
onto a specified buffer. The 1list contains all windows onto that
buffer, including any that are not currently displayed.

<::>For instance, another way to access the current window is:
(FIRST (BUFFER-WINDOWS (CURRENT-BUFFER)))

The current window is always the first element in the list of windows
onto the current buffer.

5.1.3 Ail the Windows on the Screen

The function VISIBLE-WINDOWS returns a list of all windows that are
currently displayed, regardless of what buffers they open onto.
Visible windows are those that have been displayed but not removed.
Even if a window is completely overlapped by other windows, it is

<:> still considered "visible" and is in the list returned by
VISIBLE-WINDOWS.

5-3

WINDOW AND DISPLAY OPERATIONS

An example wusing VISIBLE-WINDOWS is the DIGITAL-provided command
"Remove Other Windows". This command checks each element of the list
returned by VISIBLE-WINDOWS to determine if that window is the current
window. (The current window may be anywhere on the list.) Each
window that is not the current window is removed from the screen by
means of the function REMOVE-WINDOW. :

(DEFINE-COMMAND (REMOVE-OTHER-WINDOWS-COMMAND
:DISPLAY-NAME "Remove Other Windows")
(PREFIX)

" Removes all windows from the screen except the current
window."

(DECLARE (IGNORE PREFIX))

;; Display only the result of the operation, not intermediate
;; states.
(WITH-SCREEN-UPDATE

(LET ((CURRENT (CURRENT-WINDOW)))
(DOLIST (WINDOW (VISIBLE-WINDOWS))
(UNLESS (EQ WINDOW CURRENT)
(REMOVE-WINDOW WINDOW)))))
T)

O

5.1.4 The "Next” Window

The function NEXT-WINDOW returns a visible window other than the
current window (or NIL, if no other window is found). The format of
NEXT-WINDOW is:

NEXT-WINDOW &OPTIONAL window-type count <:>

The sequence in which windows are accessed is undefined, except that
you can 1limit the search to windows of a given window-type. The
window-type argument :ANCHORED or :FLOATING causes NEXT-WINDOW to
return a window of that type (or NIL, if none is found). The default
argument T causes NEXT-WINDOW to return a window of the same type as
the current window; if no such window is visible, then NEXT-WINDOW
returns one of the opposite type. 1If only one window is displayed,
then NEXT-WINDOW with argument T returns NIL (the prompting window is
not considered as a possible return value).

The optional count argument is an integer specifying the number of
windows to advance in the sequence to find the window to return. The
default count is 1. An argument of 0 returns the current window; a
negative argument advances through the sequence of windows in reverse
order.’ : <:>

5-4

O

WINDOW AND DISPLAY OPERATIONS

If called repeatedly with the same arguments, NEXT-WINDOW returns the
same window -- it does not advance through the sequence of windows.
However, you can circulate through all the displayed windows, or
through all those of a specified type, by repeatedly setting the
current window to the "next" window. This 1is the action of the
DIGITAL-provided command "Next Window", which moves the cursor to
another window on the screen. A possible implementation is:

(DEFINE-COMMAND (NEXT-WINDOW-COMMAND
:DISPLAY-NAME "Next Window")
(PREFIX)
" Switches the current window to be the next visible window
on the screen. If a prefix argument n is supplied, it goes
to the nth visible window."

(SETF (CURRENT-WINDOW)
(NEXT-WINDOW T (OR PREFIX 1))))

Since the window-type argument to NEXT-WINDOW is T, this command
circulates through all the visible windows when you execute it
repeatedly. :

The command "Previous Window" circulates in reverse order. Its
implementation is identical to that for "Next Window" except that the
count argument to NEXT-WINDOW is negative:

(NEXT-WINDOW T (- (OR PREFIX 1)))

5.2 WINDOW CONTENT

You can think of a window as a rectangular opening onto a portion of
text in a buffer: the window opens onto a group of contiguous lines
and a maximum number of characters per line. That portion of text is
the "content" of the window. To view other text in the buffer --
either other lines or more characters per line -- you perform certain
operations on the window, not on the text.

The operations you can perform on window content are:

e Retrieving window position in the buffer, that is, determining
where in the buffer the window begins and ends

® Repositioning a window within a buffer, that is, ."moving" a
window so that it contains different text lines

® Wrapping text within a window, that is, altering a window so

that it contains all the characters in text lines that extend
beyond the window

5-5

WINDOW AND DISPLAY OPERATIONS

Another way you can view text that overflows a window, either in
length or in width, is to alter the dimensions of the window -- making
it higher or wider. However, depending on screen size, window type,
and the number of windows to be displayed at once, the Editor’s
display manager may limit or override a window’s specified dimensions.
The techniques of resizing windows are covered in Section 5.4 below,
along with a discussion of display management. /

5.2.1 Window Position in a Buffer

The portion of text included in a window is delimited by two marks.
These marks are returned by the functions WINDOW-DISPLAY-START and
WINDOW-DISPLAY-END; both take a window argument.

Like all marks (see Chapter 4, "Text Operations"), eéch of these marks
indicates a character position in a buffer:

e The display-start mark points to the beginning (character
position 0) of the first line in the window.

@ The display-end mark points just after the last character in
the window.

The text between these two marks is the portion of the buffer’'s text
that the window translates into displayable form.

You can use the display-start and display-end marks is to indicate
text positions to which to move another mark. For instance, the
DIGITAL-supplied commands "Beginning of Window" and "End of Window"
move the current buffer point to coincide with the display-start mark
and the display-end mark, respectively, of the current window. A
possible implementation of "Beginning of Window" is:

(DEFINE-COMMAND (BEGINNING-OF-WINDOW-COMMAND
:DISPLAY-NAME "Beginning of Window") _
(PREFIX &OPTIONAL (MARK (CURRENT-BUFFER-POINT))
(WINDOW (CURRENT-WINDOW)))
"Moves the cursor to the beginning of the current window."
(DECLARE (IGNORE PREFiX))
(MOVE-MARK MARK (WINDOW-DISPLAYfSTART WINDOW)))

The code for "End of Window" can be the same except that it calls
WINDOW-DISPLAY-END.

You cannot move a window to a different position in the buffer by

moving the display-start and display-end marks. For the techniques of
moving windows, see Section 5.2.3 below.

5-6

WINDOW AND DISPLAY OPERATIONS

5.2.2 The Window Point

In addition to the display-start and display-end marks, each window
also contains a third mark called the window point. This mark is
created at the time the window is created, and you can access it by
means of the function WINDOW-POINT. The window point of a window
always indicates a character position that 1is within the text
contained in the window.

When the window is current, its window point is the same mark as the
current buffer point. That is, the following form always evaluates to
T:

(EQ (WINDOW-POINT (CURRENT-WINDOW))
(CURRENT-BUFFER-POINT))

(::>The screen cursor, which is always visible in the current window,
tracks the position of this mark. ‘

When the window is not current, its window point is not the same mark
as the buffer point of the associated buffer. 1Instead, the window
point indicates the last position occupied by the current buffer point
when the window was current. If the window becomes current again, the
buffer point (and therefore the cursor) move to the position indicated
by the window point.

<:>You can move the window point by means of any of the mark-moving
functions described in Chapter 4. If you move the window point to a
text position that is not within the window, the Editor moves the
window so that it always contains the window point. For instance:

(BUFFER-START (CURRENT-BUFFER-POINT))
Or,
<:> (BUFFER-START (WINDOW-POINT (NEXT-WINDOW T)))
Both these forms move the window point to the first text position in
the window’s associated buffer. If this position is not within the
window, the window moves automatically so that it does contain this

text position:

@ In the first form, the cursor remains visible in the current
window because the window content changes.

e In the second form, window content changes on the screen; if
you immediately make this window current, the cursor appears
at the new window-point position at -the beginning of the
buffer. ‘

5-7

WINDOW AND DISPLAY OPERATIONS

5.2.3 Moving a Window in the Buffer

When the text in a buffer is longer (i.e, has more 1lines) than a
window opening onto it, the window can be moved forward or backward
through the buffer. It appears that the text 1is moving past the
window, but in the VAX LISP Editor it is actually the window that is
moving.

As shown in the preceding section, you can cause a window to move
within the buffer by operating on its window point. You can also
operate directly on a window to alter the portion of a buffer’s text
that it opens onto. The two ways to move a window are:

e Scrolling, or moving line-by-line in the buffer

e Moving to a specified position in the buffer

5.2.3.1 Scrolling - The function SCROLL-WINDOW moves a specified
window within its buffer by a specified number of rows. This action

changes the text line that appears in the first row of the window. A.

positive count argument to SCROLL-WINDOW indicates the number of rows
to move forward in the buffer; a negative count indicates backward
movement.

For instance:
(SCROLL-WINDOW (CURRENT-WINDOW) -20)

This form scrolls the current window backward through the text (text
moves down on the screen) for 20 rows. If this action moves the
window beyond the position indicated by the current buffer point, the
Editor automatically moves that mark to a position within the new
content of the window. The position of the updated mark is near the
center of the window. :

The window to be scrolled need not be the current window, of course.
For example:

(SCROLL-WINDOW (NEXT-WINDOW) 10)

This form scrolls the "next" window on the screen forward by 10 rows.
If this action moves the window beyond the position indicated by its
window point, then the Editor automatically moves that mark to
indicate a position within the new window content (again, near the
center of the window).

5-8

O

O

O

WINDOW AND DISPLAY OPERATIONS

5.2.3.2 Moving To A Specified Position - You can also move a window
to a specified position within its associated buffer. The function
POSITION-WINDOW-TO-MARK moves a specified window to the 1line that
contains a specified mark. That is, the line containing the mark is
placed in the first row of the window.

For instance:

(POSITION-WINDOW-TO-MARK (CURRENT-WINDOW)
(REGION-START (BUFFER-REGION
(CURRENT-BUFFER))))

This form moves the current window to the beginning of the current
buffer. The Editor automatically wupdates the window point if
necessary to keep it within the window.

5.2.4 Wrapping the Lines in a Window

A window can be narrower (fewer characters per line) than the text it
opens onto. Windows always include the beginnings of lines; that is,
the display-start mark is always at character position 0 of the 1line
it indicates. Any lines that are longer than the width of the window
are, by default, truncated on the right.

<:>To view text in positions beyond the width of the window, you cannot
move ‘the window to the right. 1Instead, you set the window to "wrap"
text lines onto one or more additional window rows.

The function WINDOW-LINES-WRAP-P takes a window and returns NIL 1if
that window truncates lines or T if it wraps lines. Using SETF, you
can change the behavior of a specified window: '

(SETF (WINDOW-LINES-WRAP-P (CURRENT-WINDOW)) T)

(SETF (WINDOW-LINES-WRAP-P (CURRENT-WINDOW)) NIL)
The first form causes the current window to wrap lines that are wider
than the window. The second form resets the current window to
truncate lines.

The above examples alter a particular existing window. If you want to
specify the 1line-handling behavior of newly created windows, you can
reset the value of the Editor variable "Default Window Lines Wrap".
Its possible values are T and NIL, which indicate wrapping and
truncating, respectively:

(SETF (VARIABLE-VALUE "Default Window Lines Wrap") T)

This form causes all newly created windows to wrap 1lines unless
otherwise specified.

5-9

WINDOW AND DISPLAY OPERATIONS

Truncation and wrapping in a window <are indicated by certain
characters that appear at the end of an affected line. The default
characters are an underlined > for truncation and an underlined < for
wrapping. You can change these characters for a specified window
using the functions WINDOW-TRUNCATE-CHAR and WINDOW-WRAP-CHAR. Both
these functions take a window and return a character, and both- can be
used with SETF:

(SETF (WINDOW-TRUNCATE-CHAR WINDOW1l) #\+)

(SETF (WINDOW-WRAP-CHAR WINDOW2) #\|)
Assuming that WINDOWl1l is set to truncate, the first form establishes
an underlined + as the character that signals that a line has been
truncated. Assuming that WINDOW2 is set to wrap, the second form
establishes an underlined | to signal wrapping.
To change the truncation or wrapping characters in newly created
windows, you can reset the Editor variables "Default Window Truncate
Char" and "Default Window Wrap Char". For example:

(SETF (VARIABLE-VALUE "Default Window Truncate Char") #\+)

(SETF (VARIABLE-VALUE "Default window Wrap Char") #\]|)

The wunderlining is a special video rendition of the selected
characters; you cannot change this feature. On terminals without

advanced video capabilities, the characters appear in reverse video

instead of underlined.

5.3 WINDOW APPEARANCE

Window appearance refers to the "look" of a window when it is
displayed: its wvideo rendition and whether it 1is bordered and
labeled. 2All these features are included in the window object itself.
You can change a window’s appearance by wusing the functions and
variables introduced in this section.

Most windows that the Editor creates are shown with no special video
rendition -- they share the video setting (dark-on-light or
light-on-dark) of the terminal or other display device. The window
onto the "Help" buffer, however, is shown in bold. Depending on the
video capabilities of your display device, you can specify that .a
window be shown in reverse video (the reverse of terminal setting) or
that the text in the window appear bold, underlined, or blinking.:

You can see all these video options on a VT200-series terminal, an AI
VAXstation, and on VT100-series terminals with the Advanced Video
Option. For the video rendition capabilities of foreign terminals
that are supported by the VAX LISP Editor, consult your terminal
manual.

5-10

O

le

WINDOW AND DISPLAY OPERATIONS

You can also specify the video rendition of a region of text. The
special rendition of a region can be either:

® Relative to the window that contains the region -- for
instance, bold if the window is not bold and vice versa

e Absolute -- for instance, always bold or always not bold,
regardless of the window rendition

Finally, you can specify whether a window is to have borders and a
label when it is displayed. You can also determine the content of a
window’s label, the label‘’s position on the window, and the label’s
video rendition.
This section introduces the techniques of:

@ Altering window rendition

@ Making highlight regions

e Operating on window labels and borders

5.3.1 Altering Window Rendition

The function WINDOW-RENDITION takes a window and returns a keyword or
a 1list of keywords that define the video characteristics of that
window when it is displayed. The keywords are :NORMAL, :BLINK, :BOLD,
:REVERSE, and :UNDERLINE. '

You can use SETF to change the rendition of a specified window to one
or more of the possible values. For instance:

(SETF (WINDOW-RENDITION (CURRENT-WINDOW)) :UNDERLINE)
Or,

(SETF (WINDOW-RENDITION (NEXT-WINDOW :FLOATING))
' (tREVERSE :BLINK))

The first form changes the rendition of the current window to
underlined. The second form alters the "next" floating window on the
screen to reverse video (the reverse of the terminal setting) with
blinking.

You can also specify the default window rendition features of newly
created windows, including those that the Editor creates
automatically. To do so, you set the value of the Editor wvariable
"Default Window Rendition”" to the desired keyword or list of keywords:

5-11

WINDOW AND DISPLAY OPERATIONS

(SETF (VARIABLE-VALUE "Default Window Rendition"
' (:BUFFER "Help"))
:REVERSE)

This buffer-local binding causes all newly created windows onto the
"Help" buffer to have the rendition value :REVERSE unless otherwise
specified. (The global binding of this variable in the Editor as
provided is :NORMAL.)

Recall that removing a window from the screen does not delete the

window object. If a window onto the "Help" buffer already exists,
changing the value of "Default Window Rendition" does not .affect the
rendition of that window.

5.3.2 Making Highlight Regions

Sometimes you might want to alter the rendition of a particular block
of text in a window, rather than the entire window. For example, the
select regions that the Editor makes in "EDT Emulation" and "EMACS"
styles are shown in reverse video (the reverse of the window).

To alter the rendition of a block of contiguous text, you wuse the
function MAKE-HIGHLIGHT-REGION. This function is similar to
MAKE-REGION (described in Chapter 4) except that it allows you to
specify the video rendition that the region will have when a window
containing it is displayed. Highlight regions can be used and treated
like any other Editor region, and all the region-manipulating
functions operate on them.

The format of MAKE-HIGHLIGHT-REGION is:
MAKE-HIGHLIGHT-REGION start end &OPTIONAL set complement

Like MAKE-REGION, MAKE-HIGHLIGHT-REGION takes two marks that indicate
the text positions where the region begins and ends. 1If you do not
supply optional arguments, the function makes a region with no special
video features.

The optional set and complement arguments specify the rendition
feature or features that you want the region to have. They can be any
of the keywords :BOLD, :BLINK, :REVERSE, or :UNDERLINE, or a 1list of
these keywords. (The default for both is NIL.) 1In deciding whether
to provide a set argument, a complement argument, or both, you need to
consider the desired rendition of the region in relation to the
rendition of the window where the region will be displayed.

You can think of a set argument with no complement argument as turning
"on" the specified feature in a highlight region. The region will
have that video feature regardless of the renditian of the window that
contains the region.

5-12

O

<:>‘

O

O

WINDOW AND DISPLAY OPERATIONS

For instance:
(MAKE-HIGHLIGHT-REGION MARK1 MARK2 :REVERSE)

This form makes a reverse-video region of the text between the two

specified marks. If this region 1is displayed in a reverse-video
window, then no difference will be apparent between the region and the
other text in the window -- all text in the window will appear in

reverse video. 1If this region is displayed in a blinking window, then
all the text in the window will blink, including that in the highlight
region. (In the latter case, the region will be distinguished f£from
the other text by its reverse video.)

You can achieve finer control over the video rendition of highlight
regions by providing a complement argument, either alone or in
conjunction with a set argument.

You use the complement parameter alone if you want the region to
contrast with the window rendition on the specified feature or
features but to share the window’s value for any other rendition
features. For instance:

(MAKE-HIGHLIGHT-REGION (COPY-MARK (CURRENT-BUFFER-POINT)
¢:RIGHT-INSERTING)
(CURRENT-BUFFER-POINT)
NIL :REVERSE)

This form is essentially the definition of the select regions that the
Editor makes. The form makes a new right-inserting mark at the same
position as the current buffer point and then makes a highlight region
from that mark and the buffer point. If you then move the buffer
point, the text in the region between the two marks is always shown in
reverse video with respect to the window that contains the region.
That is, if the window is dark-on-light, the region is 1light-on-dark,
and vice versa. The region shares any other special video
characteristics of the window -- bold, blink, or wunderline. (Note
that moving one of the region-defining marks causes the display of the
region to track the mark’s position.)

If, on the other hand, you want the highlight region not to share
specified rendition features that a window might happen.to have -- in
this example, the bold, blink, and underline -- you use the set and
complement parameters in conjunction. You can think of the complement
argument as turning "off" a video feature that is turned "on"
elsewhere -- either in the set argument or in the window that contains
the region.

For instance:
(MAKE-HIGHLIGHT-REGION MARK1 MARK2

" (:BOLD :BLINK :UNDERLINE)
" (:BOLD :BLINK :UNDERLINE :REVERSE))

5-13

WINDOW AND DISPLAY OPERATIONS

In this form, the :REVERSE value of the region "complements" the value
of the window for this feature, as in the form above. 'The other three
features are turned "on" by the set argument, but then turned "off" by
the complement argument. They remain "off" regardless of window
rendition; that is, if this region is displayed in a blinking w1ndow,
the text in the highlight region does not blink.

Like any regions, highlight regions can overlap or one can be
contained within another. The effect of overlapping on the video
rendition of the text shared between the regions 1is, however,
unpredictable. ‘

To remove the highlighting of a region, you wuse the function
REMOVE-HIGHLIGHT-REGION. This function takes a highlight region and
deletes the region object. The text in the region is not affected by
this operation, but its special video rendition is removed.

If you use the normal region-deleting functions, DELETE-REGION and
DELETE-AND-SAVE-REGION with a highlight region, the text is removed
from the region but the highlight region remains. If you insert new
text 1into the region, it will be displayed with the specified
rendition features of the region.

5.3.3 Operations on Window Labels and Borders

Editor windows can have borders on all four sides and a label on cne
of these Dborders. A border 1is a so0lid 1line that surrounds the
text-displaying area of the window. The border occupies the screen
rows above and below the window’s text area and the screen columns to
the right and left of the text area. A window label is a string of
text that overlays part or all of one of the window borders.

Most windows that the Editor makes have borders and labels. However,
depending on window size, window type, and the number of windows on
the screen at once, one or more of the borders -- including the one

with the 1label -- may "spill off" the display area or be obscured by
another window. Nonvisible borders and labels still exist as part of
the window object, however, and they might be made visible under other
display circumstances. In contrast, the prompting window, which
appears near the bottom of the screen, has no borders and no label.

This section introduces the functions and Editor variables that enable
you to perform operations on window borders and labels. Section
5.4.2.4 below identifies the circumstances under which a border or
label may be obscured when a window is displayed.

5-14

O

O

O

WINDOW AND DISPLAY OPERATIONS

<::§ome operations you can perform on window borders and labels are:

® Adding and removing borders and labels
e Specifying label content
@ Specifying label position

® Specifying label rendition

5.3.3.1 Borders, Labels, And Label Content - The function
WINDOW-LABEL takes a window and returns either a string, a function,
or NIL. The value returned indicates whether the specified window has
borders, whether it has a label, and, if it has a label, what text

(::}hat label contains.

You can use SETF with WINDOW-LABEL to alter any of these features for
a specified window. That is, you can add or remove borders, add or
remove a label, and specify label content for an existing window. The
meaning of each of possible return values of WINDOW-LABEL is shown in
the following examples.

If you supply the value NIL, the specified window then has no borders

<::>nd no label:

WINDOW1l has no borders
and no label.

(SETF (WINDOW-LABEL WINDOW1) NIL)

.
’
.
’

If you supply a null string (""), the window then has borders but no
label:

(SETF (WINDOW-LABEL WINDOW2) "") ;
; no label.

If you specify label content, then the window has borders and a 1label
with the content specified. One way to specify label content is to
specify the actual string that you want to label to contain:

WINDOW3 has borders and
a label that contains
the specified string.

'(SETF (WINDOW-LABEL WINDOW3) "String")

S

we Do wo

It is usually more useful, however, to have window label contents vary
according to the buffer the window opens onto. The label can say, for
instance, the name of the file or function being edited in the buffer,
and it can list the styles active in the buffer. To achieve this, you
specify a function that returns a string; the string becomes the

<:>window label.

5-15

WINDOW2 has borders but

WINDOW AND DISPLAY OPERATIONS

For instance, the following DEFUN form defines a simple function named
LABELER, which returns a string. LABELER is then used with SETF and
WINDOW-LABEL in a form corresponding to those shown above:

(DEFUN LABELER (WINDOW)
(LET ((BUFFER (WINDOW-BUFFER WINDOW)))
(FORMAT NIL "LISP EDITOR ~A"
(BUFFER-NAME BUFFER))))

(SETF (WINDOW-LABEL WINDOW4) #'LABELER)

LABELER invokes WINDOW-BUFFER to access the buffer object associated
with the specified window and BUFFER-NAME to find the name of that
buffer. LABELER returns a string that 1looks 1like "LISP EDITOR
Name-of-Buffer". The SETF form labels WINDOW4 with the string
returned by LABELER for that window.

The above examples all deal with alterations to a single existing<::>
window. By resetting the wvalue of the Editor variable "Default Window
Label", you can make corresponding specifications for newly created
windows. For example:

(SETF (VARIABLE-VALUE "Default Window Label" :GLOBAL) 'LABELER)

The possible values of "Default Window Label" -- NIL, a null string, a
string, or a function -- have the same meanings that they have as(i)
return values of WINDOW-LABEL. (Note that the function LABELER in

this example is set to the value slot of the variable.) 1In the Editor
as provided, the value of this variable is set to different functions
in "EDT Emulation" style and "EMACS" style. '

5.3.3.2 Label Position - For a given window that has a label, you can
specify which border the label is on and where on the border the label
is placed. The relevant functions are WINDOW-LABEL-EDGE and
WINDOW-LABEL-OFFSET. ’

In deciding where to place window labels, you need to consider whether
the border you choose will be visible when the window is displayed
and, if so, whether the entire label will be visible on the border.
For instance, the top borders of anchored windows are never visible; a
label placed on that border can never be seen. Or, a floating window
that spills off the screen on the right may "lose" the end of a label
that is placed on its top or bottom border. These considerations are
outlined in the Section 5.4 on display management.

WINDOW-LABEL-EDGE takes a window and returns the border on which that
window’s label appears. The possible values are :TOP, :BOTTOM, :LEFT,
and :RIGHT. You can use SETF with this function to alter the
placement of the label: . (::>

5-16

O

O

WINDOW AND DISPLAY OPERATIONS
(SETF (WINDOW-LABEL-EDGE WINDOW1) :TOP)

Assuming that WINDOW1 has a label, this form places the label on the
top border of WINDOW1.

The function WINDOW-LABEL-OFFSET, used with SETF, allows you to
specify where on a border the 1label is to appear. The value NIL
causes the label to be centered on the border; a nonnegative integer
value indicates how many character positions the label is offset from
the beginning of the border.

For instance, to center the 1label of WINDOWl1 (which the previous
example placed on that window’s top border), you would write:

(SETF (WINDOW-LABEL-OFFSET WINDOW1) NIL)

To place a label flush left (if it is on a top or bottom border) or to
make the label begin at the top of a side border, you would write:

(SETF (WINDOW-LABEL-OFFSET WINDOW) 0)

The above examples all deal with label placement in a single existing
window. To change the default label placement in windows created in
the future, you use the Editor variables "Default Window Label Edge"
and "Default Window Label Offset". The global bindings of these
variables in the Editor as provided are :BOTTOM and NIL, respectively.
Thus, window 1labels appear centered on the bottom border of a window
unless otherwise specified.

5.3.3.3 Label Rendition - For a given window that has a 1label, you
can retrieve and alter the wvideo rendition of that label. The
function WINDOW-LABEL-RENDITION takes a window and returns one of the
keywords :NORMAL, :REVERSE, :BLINK, :BOLD, or :UNDERLINE, or a list of
those keywords.

The rendition of a window label is an absolute wvalue that 1is not
relative to the rendition of the window itself. For instance, the
rendition of a reverse-video 1label is always the reverse of the
terminal setting (light-on-dark or dark-on-light), regardless of
whether the window rendition is normal or reverse. A window label set
to blink will always blink, regardless of whether the window also
blinks. :

WINDOW-LABEL-RENDITION is acceptable to SETF:
(SETF (WINDOW-LABEL-RENDITION WINDOW) :UNDERLINE)

This form underlines the label of WINDOW.

5-17

WINDOW AND DISPLAY OPERATIONS

To change the default rendition of the 1labels of newly created
windows, you reset the value of the Editor variable "Default Window<::>
Label Rendition". The possible values are any of the keywords 1listed
above, or a list of those keywords. The global binding in the Editor

as provided is :REVERSE.

5.4 DISPLAY MANAGEMENT

Once a window exists as an Editor object, you can cause it to. become
visible on the screen. You can also remove a window from the screen
without destroying the window object, and you can redisplay that
window at any time. Each window object contains information
concerning its size and the screen position it occupies when it is
displayed.

However, the Editor’s display manager retains control over many<::>
display-related decisions. The Editor guarantees, for instance, that

the display area is always filled, and that anchored windows do not
obscure each- other’s text content. The display manager will
reposition, resize, and even remove some windows from the screen in
order to meet these requirements.

Within the constraints set by the display manager, you have
considerable freedom to determine the total appearance of the screen:

the size of the display area, the number of windows displayed, and the<::>
size and screen positions of some individual windows.

This section introduces the following sets of techniques, each in
conjunction with the constraints set by the Editor’s automatic display
management:

e Operations on the display area -- including the information

area and the prompting window <:>
e Window types and their behavior -- wvisibility, size, and

screen position as they relate to a window’s display type

e Displaying windows and removing windows from the display

5.4.1 The Display Area

The Editor’s display area is the total space available on your display
device for showing Editor windows and the information area. . On VT100-
and VT200-series terminals, the display area is, by default, the full
terminal screen. Both these terminal screens are 24 rows in height,
and both permit screen widths of 80 or 132 columns.*. ,<::>

5-18

O

WINDOW AND DISPLAY OPERATIONS

The AI VAXstation permits an Editor dispiay area of up to 66 rows by
167 columns. The Editor display area provided by default on the AI
VAXstation is 50 rows by 80 columns.

You can think of the display area as an x-y coordinate system. You
use these coordinates to specify the screen positions at which windows
are displayed. Both the columns (x coordinate) and the rows (y
coordinate) are numbered from the upper left corner beginning with 1
(see Figure 5-1).

x=column number \

—

or
x=132

row number

y:

5 y=24

\ J

MLO-253-86

Figure 5-1: Display Area Coordinates

You have some latitude to alter the dimensions of the Editor’s display
area, and thus the total screen area available for Editor-related
displays. Within this total area, the Editor always reserves some
space for the information area and for the prompting window. The
space that remains in the display area after the prompting window and
the information area are accounted for is the total space available
for displaying other windows.

This section introduces the following concepts and techniques:

e Display area dimensions - retrieving and altering the height
and width of the display area

e The reserved display area - operating on the information area
and the prompting window A

@ The available display area - displaying and removing other
Editor windows

5-19

WINDOW AND DISPLAY OPERATIONS

5.4.1.1 Display Area Dimensions - The functions SCREEN-HEIGHT and
SCREEN-WIDTH return integers that are the number of rows and columns,
respectively, in the display area. The dimensions returned are not
necessarily those of the screen. By default, the display area
occupies the full screen on DIGITAL terminals, but you can wuse SETF
with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>