VAX APL
Reference Manual

AA-GV09C-TE

June 1991

This reference manual describes the VAX APL functions, operators,
variables, and system commands.

Revision/Update Information: This revised document supersedes the

VAX APL Reference Manual Vols. 1&II
. . AR -PIH 2D TE
Operating System: VMS Version 5.4
P 9>y AA- SNPAB-TE

Software Version: VAX APL 4.0

Digital Equipment Corporation
Maynard, Massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1982, 1983, 1985, 1987, 1991.
All Rights Reserved.

The Reader’s Comments form at the end of this document requests your critical evaluation to
assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, DECnet, DECwindows,
DECstation, VAX, VAXcluster, VMS, VT102, VT220, VT240, VT320, VT330, VT340, and the
DIGITAL logo.

HDSAVT, HDS201 and HDS221 are trademarks of Human Design Systems, Inc.
Tektronix is a trademark of Tektronix, Inc.

Contents

Preface e xi

1 VAX APL Primitive Functions and Operators

1.1 Primitive Scalar Functions. 1-2
1.11 Arithmetic Functions 1-10
1.1.1.1 +Conjugate 1-10
1.11.2 - Negative 1-11
1.1.1.3 * SIgNUIM 1-1
1.1.1.4 + Reciprocal 1-11
1.1.1.5 » Exponential 1-11
1.1.1.6 e Natural Logarithm 1-12
1117 o PiTimes e 1-12
1.1.1.8 LFloOr . ..ot e 1-12
1.1.1.9 T Ceilingt 1-13
1.1.1.10 | Magnitudettt tiinnnnn. 1-14
1.1.1.11 tFactorial e 1-14
1.1.1.12 2 ROl . . 1-14
1.1.1.13 +, -, x, and + Addition, Subtraction, Multiplication, and

DivVISION . . vttt e e e e e 1-16
1.1.1.14 x Power 1-16
1.1.1.15 e Logarithm 1-17
1.1.1.16 o Circle oo e e 1-17
1.1.1.17 L MINImum . ..ot it e e e e et e e e e e e 1-18
1.1.1.18 F Maximum . . .o e et e e e e e e et et et e 1-18
1.1.1.19 | Residue.o it e e e e e 1-18
1.1.1.20 1 Combinations ittt e 1-19
1.1.2 Logical Functions 1-21
1.1.3 Relational Functions0, 1-22

1.2

1

ECENIVAS ¥

U 1]

<«

n

- b b < < o o > [@E te m

~

]

[N 0o I o C]

U

o >IN © & & T H -«

and ; Catenate/Laminate.............................
Containst
Deal e
Depth

First . ..

Dyadic Format
Monadic Grade Down
Dyadic Grade Down
MonadicGrade Up
Dyadic Grade Up
Index Generator
Index Of e,

Pick ...
Ravel
Represent
Reshape
and e Reverse

1.3

1.3.1
1.3.2
1.3.3

& Dyadic Transpose
uUnion
vuUnique

~Without
APL Operators
/and # Slash
\and \ Backslash...................
. The Dot Operator
and # Compression and Replication

and # Reduction

N

and ¥ Expansion
and X Scan
. fOuter Product
f. gInner Product
[JAXIS
« Specification Function

~ -

o

Strand Assignment with the Specification Function
Selective Assignment with the Specification Function

2 VAX APL System Variables and Functions

2.1
2.1.1
2.1.2
2.2
2.21
222
2.3

System Variables

System Variable Names
System Variable Characteristics

System Functions.

System Function Names
Types of System Functions.
System Variables and Functions Reference . . .

OAI Accounting Information
OALPHA Alphabetic Characters
OALPHAL Lowercase Alphabetics
0ALPHAU Underscored Alphabetics
OARBOUT Arbitrary Output

04scII APL Approximation to the ASCII Character Set

04sSs Associating Files with Channels.
0AUS Automatic Save of the Workspace.
DAV AtomicVector
0B0oX Forming Character Matrices and Vectors

1-164
1-170
1-172
1-174
1-176
1-178
1-178
1-178
1-179
1-185
1-191
1-196
1-201
1-205
1-208
1-212
1-215
1-218
1-221

2-1
2-2
2-2
2-3
2-4
2-4
2-9
2-13
2-14
2-15
2-16
2-17
2-19
2-20
2-28
2-32
2-35

vi

OBREAK Suspending Execution
0CHANS Returning Channel Numbers
0cHS Returning File Organization and Open Status
0c¢IQ and 0¢0Q Packing and Unpacking Data...............
gcrsClosing Files
0CR Obtaining a Canonical Representation
gcT Comparison Tolerance cuuunn...
OCTRL Control Characters
ODAS Deassigning Files
ODc Display Control
ODL Delaying Execution.
0DpML Maximum Record Length
0DvC Returning Device Characteristics e
OEFR OEFS OEFC Event Flag System Functions
OERROR Exrror MeSsagecuuuuiimneenninnenennnns
O0EX Erasing a Named Object.

OEXP Expansion .

.....................................

OFI Converting Characters to Numerics
OFLS Returning File Information
OFMT The Report Formatter
OFx Establishing an Operation
OGAG Preventing Interruptions

010 Index Origin

.....................................

0L Monitoring Variable Changes

0Lc Line Counter

O0LXx Latent Expression00 iueenn...
OMAP Defining External Routinesto APL
OMBX Mailbox System Function
OMONITOR Gathering Data on Operations
O~c Returning a Name Classification
OFG Print High Minus 0ttt

ONL Constructing
OnNUM Digits

alistof Names........................

OoM Indexing a Boolean Vector
O0PACK Packing and Unpacking Data
OPP Print Precision e e

0PW Print Width

2-38
2-40
2-41
2-44
2-52
2-54
2-56
2-58
2-60
2-62
2-70
2-72
2-74
2-77
2-80
2-83
2-85
2-88
2-91
2-93
2-98
2-100
2-102
2-104
2-106
2-108
2-111
2-120
2-122
2-126
2-129
2-131
2-135
2-136
2—-138
2-142
2-144

0Qco Copying Objects from a Workspace

0QLD Loading a Workspace

gQPc Copying Objects with Protection
OR Monitoring Variable Changes
ORELEASE Unlocking Shared Records

OREP Replication
ORESET Resetting the State

Indicator

OREWIND Returning Next-Record Pointer to Start of File

ORL Link
0SF Quad Input Prompt ..
0SIGNAL Signaling Errors .
0SINK Discard Output. . . .
0SS String Search

0SToP Suspending Operation Execution
OTERSE Terse Error Messages

OTIMELIMIT User Response

Time Limit

OTIMEOUT Time Limit Report

OTLE Terminal Line Editing

Characteristics

0 TRACE Monitoring Operation Execution.

OTRAP Trap Expression . . .
07S Time Stamp
07T Terminal Type
gur User Load

0 VERSION Interpreter and Workspace Version

O vI Validating Input
O vPc Vector Process Control
[0 VR Visual Representation .
OwA Workspace Available . .

OWAIT Limiting Time on Read Functions
OWATCH Monitoring Variable Changes

0xqQ Executing Expressions

.............................

2-147
2-151
2-154
2-157
2-159
2-161
2-164
2-165
2-168
2-170
2-172
2-176
2-177
2-179
2-183
2-185
2-188
2-190
2-192
2-195
2-197
2-198
2-201
2-202
2-203
2-205
2-207
2-210
2-211
2-214
2-221

vii

3 VAX APL System Commands

viii

3.1
3.2
3.2.1
322
3.2.3
3.2.4
3.25
3.3

System Command Form.......
System Command Categories. . .
Query System Commands . .

Query/Change System Commands
APL Action System Commands
System Commands that Initiate System Action...........
Workspace Manipulation System Commands.............

System Command Reference . . .

YATTACH Interacting with Other Processes
) CHARGE Displaying Accounting Information................
) CLEAR Clearing the Active Workspace
) CONTINUE Saving the Workspace and Ending the Session.
) COPY Copying Objects from a Workspace

)DIGITS Output Precision
)DO Executing a DCL Command

YyDROP Deleting Stored Workspacesor Files.

yEDIT Editing with VAXTPU. . .
) ERASE Erasing Global Names .

)FNS Displaying a List of Functions
) GROUP Defining or Dispersinga Group
) GRP Displaying the Members of a Group
)GRPS Displaying a List of Groups
)HELP Obtaining Help on the VAX APL Language
) INPUT Diverting Input to Another Device

)LIB Listing Workspace Names .
) LOAD Retrieving a Workspace .

)MAXCORE Determining the Maximum Workspace Size
YMINCORE Determining the Minimum Workspace Size

) MON Returning to Operating System Command Level
)VMS Displaying Names in the Symbol Table
) OFF Terminating the APL Session
yOPS Displaying a List of Operators
YORIGIN Determining the Index Origin.
yoUTPUT Diverting Output to Another Device
) OWNER Displaying Information About Workspace Creation

) PASSWORD Workspace Password

3-2
3-2
3-3
3-3

3-5
3-5

3-8
3-10
3-11
3-13
3-15
3-17
3-19
3-21
3-22
3-28
3-31
3-33
3-35
3-36
3-38
3-45
3-47
3-50
3-53
3-54
3-56
3-57

3-62
3-64
3-65
3-68
3-70

) PcOPY Copying from a Workspace with Protection. 3-72

) PUSH Interacting with Operating System Programs.......... 3-74
) SAVE Saving a Copy of the Active Workspace 3-77
)SI Displaying the State Indicator 3-80
)SIC Clearing the State Indicator 3-82
)SINL Displaying the State Indicator and Local Symbols 3-83
) SIS Displaying the State Indicator and Executing Lines 3-84
) STEP Executing Lines of a Suspended Operation............ 3-85
) VARS Displaying a List of Variables 3-88
) VERSION Displaying the APL Version Number 3-90
YWIDTH Output Width 3-91
YWSID Workspace Identification 3-93
YXLOAD Retrieving a Workspace 3-95

A System Messages

Glossary

Index

Figures
1-1 Argument Corners Selected by Take Function 1-157

Tables
1 Documentation Conventions Table Xii
11 Arithmetic Scalar Functions 1-10
1-2 Trigonometric Functions Performed by o 1-17
1-3 Determining Result for Dyadic ! 1-20
1-4 Truth Table for Logical Functions 1-21
1-5 Primitive Mixed Functions........................... 1-23
1-6 Dyadic Transpose Definitions 1-167
1-7 APL Operatorso ittt e 1-177
2-1 System Variable Value Ranges 2-2
2-2 System Variables and Functions 2-9
2-3 File Organization Qualifiers.......................... 2-21

24
2-5
2-6

31

Elements of DAV(OIO0<0) «cve vt
Type Parameter Values
Device Characteristics Longword
Characteristics of External Data Types

System Commands

2-33
2-46
2-75
2-115
3-5

Preface

This manual describes the VAX APL interpreter, including VAX APL
language and programming elements, facilities for controlling the VAX APL
environment, the interaction between VAX APL and the VMS operating
system, and VAX APL’s I/O capabilities.

Intended Audience

This manual is intended for experienced APL programmers. This manual is
not a tutorial and is inappropriate for novice users. Programmers experienced
with other languages such as FORTRAN or BASIC can learn VAX APL from
this manual, but are advised to study it in conjunction with an APL language
primer.

Related Documents

The VAX APL User’s Guide describes the VAX APL interpreter and the
environment in which it operates. The VAX APL Installation Guide contains
instructions for installing VAX APL on the VMS operating system. The
VAX APL Installation Guide also explains how to install QAPL, the license-
free, execute only version of VAX APL.

To find out more about the VMS system, refer to the VMS system documents
listed in the Introduction to VMS or use the Help utility by entering HELP
at the system prompt ($). The VMS DCL Dictionary and the Introduction to
VMS System Management provide detailed information you may need to know
to use some of the features of VAX APL.

Product References
In this document, VAX APL is referred to as APL.

Xi

Conventions

The following conventions are used in this manual.

Xii

Table 1 Documentation Conventions Table

Conventions

Meaning

Default values used in
examples

Delimiting pairs

UPPERCASE

A B K

italics

Quotation mark (')

>

[l

[]

The default value for the index origin (010) is 1, unless
explicitly stated to be 0. Numeric print precision (0 PP)
is 10 digits. Enclosed arrays are displayed with boxes
around enclosed items and with all values in the top left
corner of the display areas. This is done using:

ODC+ (T17123) ++++]|[|--"

This manual uses n textr ; other delimiting pairs may be
any of the following pairs:

0o oo <> c>

Uppercase words and letters, used in format examples,
indicate that you should type the word or letter exactly
as shown.

The APL characters 4, B, and K are used in generic
descriptions of command formats. 4 represents a
left argument, B represents a right argument, and &
represents an axis argument.

Italicized lowercase words and letters, used in format
examples, indicate that you are to substitute a word or
value of your choice.

The term quotation mark refers to the APL single
quotation mark (').

The equivalence symbol means “is equivalent to”.

The double square brackets indicate that the item or
string of items inside the brackets is optional. Individual
items within a string of items are delimited by the .ab
character, which indicates that you may choose only one
item from the string.

Single square brackets that appear in the format
specification for a language element are required syntax
for the element being described.

(continued on next page)

Table 1 (Cont.) Documentation Conventions Table

Conventions Meaning

{} Braces are used to enclose lists from which one
item must be chosen. The items in such a list are
delimited by the | character. For some user-defined
operation headers, the braces are required syntax (this
requirement is described in Chapter 3 of the VAX APL
User’s Guide).

n/a and n/s These abbreviations indicate that something is Not
Applicable or Not Supported in the context being
discussed.

A horizontal ellipsis indicates that the preceding items
can be repeated one or more times. A comma preceding
the ellipsis indicates that successive items must be
separated by commas.

A vertical ellipsis indicates that not all of the statements
in an example or figure are shown.

Color Color in examples shows user input.

<CR><LF> The <CR><LF> symbol indicates the presence of a
control sequence representing a Carriage Return and a
Line Feed.

CtrI/X The Ctrl/X symbol indicates that you must press the key

labeled Ctrl while you simultaneously press another key,
for example, Ctrl/C, Ctrl/Y, Ctrl/O.

XXX A symbol such as @ indicates that you press a key on

the terminal. For example, the symbol represents
a single stroke of the Return key on a terminal.

Unless otherwise noted:
* All numeric values are represented in decimal notation.
* You terminate commands by pressing the Return key.

¢ All examples in the manual are executable, and comments beginning with
the lamp (a) symbol are part of the examples; comments surrounded by
parentheses are not part of the examples.

xiii

1

VAX APL Primitive Functions and
Operators

VAX APL provides functions that allow you to perform various operations with
arrays. These functions are termed primitive because they represent the basic
capabilities of the language. You do not have to write programs to perform
these operations; they are built in. That is, the APL interpreter already knows
how to perform them.

Primitive functions may be classified by the characteristics of their arguments
and results. One distinction is whether a function is scalar or mixed. The APL
primitive scalar functions perform scalar (or scalar-like) operations; the APL
primitive mixed functions perform mixed-rank operations.

Primitive functions are either monadic or dyadic. Monadic functions require
only one argument, which is placed immediately to the right of the function.
Dyadic functions require two arguments, one on either side of the function.

Primitive functions also have a domain and a range. The domain of a function
is the permissible type, shape, and values of its argument arrays; the range is
the permissible type, shape, and values of its result array.

In addition to describing the APL primitive functions, this chapter describes
the APL primitive operators (operations that produce functions as results), and
the specification function (a function used to associate values with identifiers).

APL also provides functions for system communication and for I/O. These are
explained in Chapter 2, Chapter 3, and in Chapter 5 of the VAX APL User’s
Guide.

APL Reference Manual 1-1

APL Primitive Functions
1.1 Primitive Scalar Functions

1.1 Primitive Scalar Functions

The primitive scalar functions include the arithmetic, relational, and logical
functions that almost everyone is familiar with—addition, subtraction, equality,
and, or, and so on—plus a few operations that are less familiar, such as residue
and roll. These functions are called scalar functions because they take scalar
arguments and return scalar results. For example:

'3 aFACTORIAL OF 3
6

2 + 2
n

The primitive scalar functions are extended on an item-by-item basis when
the argument array is not a scalar (the argument can be any shape, simple
or enclosed). In effect, APL operates on a sequence of scalar arguments and
returns one value for each argument. This process is known as scalar product.
For example:

345 AEACH ITEM IS TREATED AS A SCALAR
6 24 120

49 + 3 12 aEACH PAIR OF ITEMS IS ADDED
7 21

Here, APL applies the factorial (!) and addition (+) functions as if each item
were a scalar argument. For factorial, each of the three items in the argument
(a vector) returns a value. For addition, each corresponding pair of items is
added. The results are just as if five statements had been entered as follows:

24

15
120

4+ 3
7

9 + 12
21

Monadic scalar functions take only one argument, which is placed immediately
to the right of the function. The shape of the argument determines the shape
of the result. For example, a scalar argument returns a scalar result, and a
vector argument returns a vector result.

1-2 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

Dyadic scalar functions have two arguments that must conform to each other.
They conform if one of the following is true:

¢ Their shapes match.
e At least one of the arguments is a singleton.

When the shapes match, the function is applied a number of times equal to the
number of items in the arguments, and the resulting array has the same shape
as the argument arrays.

Each item in the left argument array is associated with the item that has the
same position in the right argument array, and the result is placed in that
same position in the resulting array. For example:

123+123 aSHAPES OF BOTH ARGUMENTS CONFORM
2 46
ASHAPES DO NOT CONFORM
123+123%4
10 LENGTH ERROR
123+123%4
A

When one of the arguments is a singleton, the shape of the result is the same
as the shape of the nonsingleton argument. Again, the function is applied on
an item-by-item basis, but either the right or left argument (whichever is the
singleton) is the same each time the function is applied. For example:

1+123 aSINGLETON EXTENSION LEFT ARGUMENT
2 34
456 + 2 ASINGLETON EXTENSION RIGHT ARGUMENT
67 8
0«A <+ 10 (15 18 (8 u4) 21) 30
10 +-----------=--~ + 30
[15 18 +---+ 21|
| I8 sl |
! oot
R ittt +
5+ A
15 4----mmmmmmm——e- + 35
|20 23 +----+ 26|
| [13 9] |
I to-mmt
R it +

APL Reference Manual 1-3

APL Primitive Functions
1.1 Primitive Scalar Functions

When both arguments are singletons, the shape of the result is the same as
the shape of the argument with the higher rank. For example:

B«(1 11 p2) B IS A RANK 3 SINGLETON

C<(1 1 p3) aC IS A RANK 2 SINGLETON

D«B + C ASMALLER RANK WILL CONFORM TO LARGER
D ADISPLAY D, A SINGLETON OF SHAPE 1 1 1

5

The primitive scalar functions are pervasive functions; that is, their operations
extend pervasively throughout the depth of enclosed arrays:

ABOTH ARGUMENTS HAVE DEPTH = 3
0« A« 10 (15 18 (8 4) 21) 30

10 4m=mmmm o + 30
|15 18 +---+ 21|
I 8 4l |
l t---t |
fommmmmmm e +
0« B+«5 (12 11 (3 3) 2) 25
5 pommmmmmm e + 25
[12 11 +---+ 2|
| 1331 |
I -t
tommmmo - ——---t
4 - B
5 t----mmmmmm - + 5
[3 7 +---+ 19|
l s 1] |
| bt
ittt +

The conformance rules for the arguments of the primitive scalar functions are
also pervasive; APL does a conformance check at each level of enclosed arrays.
During the check, APL performs singleton extension when necessary. The
following example uses the dyadic minimum function (|), which returns the
smaller of two arguments:

4 (53) L (286) 1
t---t t---t
[2 4] |1 1]
to--t +---+

In the preceding example, APL first pairs the corresponding items (through the
process of scalar product). The pairs are 4| (2 6) and (5 3) | 1. Second, APL
pairs the singleton argument with each element inside the enclosed arguments
(through the process of singleton extension). These pairs are ((412) (416))
and ((50L1) (3L1)). Finally, APL evaluates each pair of scalar arguments.

1-4 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

The following example shows two arguments that conform at the top level
of their nesting, but do not conform at a lower level. This example uses the
monadic enclose function (c), which encloses its argument, as well as the
dyadic minimum function (1).

4 (53) L2561
10 LENGTH ERROR

4 (53) Le261

A

In the preceding example, APL first pairs the corresponding items. The
pairs are 4| (2 6 1) and (5 3) L (2 6 1). Second, APL pairs the singleton
argument with each element inside the enclosed argument. These pairs are
((u12) (416) (ul1)). Third, APL recognizes the length error in the pair
of enclosed arguments (5 3 and 2 6 1) and signals the error. (If one of these
enclosed arguments had been a singleton, APL would have applied singleton
extension.)

Primitive scalar functions generally take numeric arguments. The argument
domain for relational functions (<, =, <, >, =, #), however, includes both
character and numeric arguments. The equal (=) and not equal (=) functions
can take both character and numeric arguments in the same expression. The
result domain for all primitive scalar functions is a scalar numeric array.

Primitive scalar functions return empty arrays when there is an empty
argument (provided that APL does not detect an error before evaluating the
result). For example:

1+2+3+4+10 a10 ALWAYS GENERATES AN EMPTY ARRAY
(APL outputs a blank line)
IAI(II
(APL outputs a blank line)
AARGUMENT SHAPES DO NOT CONFORM
(1 0 3p1) + 15
9 RANK ERROR
(1 0 3p1) + 15
A

You can specify an axis ([k]) with dyadic scalar functions. For example, this
allows you to apply a vector to each row or each column of a matrix. The
general form of axis is as follows: Af(K]1B, where 4 and B are the arguments
to f (a scalar function), and X is the axis argument. Note that X specifies the
axes of subarrays constructed from whichever argument has the larger rank.
The argument of smaller rank is combined with these subarrays.

APL Reference Manual 1-5

APL Primitive Functions
1.1 Primitive Scalar Functions

For example, if you specify axes [1 3], then the shape of the subarrays of the
larger rank argument is the lengths of that argument’s first and third axes,
and the smaller rank argument has the same shape as these subarrays. When
APL combines the two arguments, it does so along the second axis of the larger
rank argument of scalar extension. The length of the second axis in this case
is the number of subarrays involved.

In all cases, the axis argument must be near-integer in the vector domain. The
length of k¥ must be equal to the smaller of the ranks of the arguments, and
the values in ¥ must be between the index origin and the larger of the ranks
of the arguments (you cannot specify an axis that does not exist). The order
of the items in the axis argument makes no difference; however, ¥ may not
contain duplicates. The arguments to the function f must conform by having
their shapes match along the axes specified by k. The shape of the result is the
same as the argument with larger rank.

For an enclosed argument, the application of the axis does not pervade, but
works only at the top levels of nesting. See the following examples:

A < 10 100 1000 ACREATE 4
0« B« 3 4p112 aCREATE AND DISPLAY B
2 3 4
6 7 8
0 11 12
A +[1] B ad CONFORMS TO AXIS 1 OF B
11 12 13 1y
105 106 107 108
1009 1010 1011 1012
A « 1 10 100 1000 ACREATE NEW A
4 x[2] B a4 CONFORMS TO AXIS 2 OF B
1 20 300 4000
5 60 700 8000
9 100 1100 12000
0«4 <« 2 300.1x16 aCREATE NEW 4
3

1
5
91

o o

.2 0.
.5 0.6
0« B« 24 30124 aCREATE NEW B

O N F
= ;N

13 14 15
16 17 18
19 20 21
22 23 24

1-6 APL Reference Manual

T

-
o
& F F

o o
oo

oS N F e
.« e e e
= w N e

13.5
16.6
19.7
22.8

= O O o
~ F e

= o O O

O«Z«A+[3

2.
5.

8

11.

14,
17.
20.
23.

2 3.
2 6.
.29,
2 12,

o o1 o1 o

z[;15]

205251

Z[;3;]

AR

[

14,
17.
20.
23.

= oo N o N

15.
18.
21.
24,

3

3
3
3

o O Oy O

mn

= w N e

o =3 O O;

<«

APL Primitive Functions
1.1 Primitive Scalar Functions

AORDER OF AXIS ARGUMENT UNIMPORTANT
11B aA CONFORMS TO AXES 1 AND 3 OF B

aTHE FOLLOWING SUBSCRIPTS DEMONSTRATE
o SUBARRAY COMBINATIONS USED BY APL
aMATCH RETURNS 1 WHEN TRUE

A+ B[;1;]

A+ B[;2;]

A+ B[;3;]

A+ B[;u4;]

4p0.1x18 ACREATE NEW A

+[1 2] B A CONFORMS TO AXES 1 AND 2 OF B

oTHE FOLLOWING SUBSCRIPTS DEMONSTRATE
a SUBARRAY COMBINATIONS USED BY APL
A+ B[;;1]
A+ B[;;2]
A + B[;;3]

4 3p0,1x112 aCREATE NEW A

APL Reference Manual 1-7

APL Primitive Functions
1.1 Primitive Scalar Functions

0
2.
5.
8.
2.

=N E e
. e .
+=

1
13.1 14,
16.4 17,
19.7 20.
23 24,
(1531

AVERS

w W W
o e e
N WO O w

13.

15.
18.
21.
25,

«Z « A +[3 2] B wA CONFORMS TO AXES 2 AND 3 OF B

N O O w

ATHE FOLLOWING SUBSCRIPTS DEMONSTRATE
A SUBARRAY COMBINATIONS USED BY APL
= A + B[1;;]

= A + B[2;;]

PC«2 3p(13) (13) (13) (2 3p16) (2 3p16) (2 3p16)

PC

[2 3 4] |23
|56 7] |56

4] 12 3 4]
71 156 7]

23 4] [345] |45 6]
56 7] [678] |78 9]

t----- + ot
[«ER<«1
12 +----- +
12 3]
to---- +

1-8 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

aAXIS IS NOT PERVASIVE SO PLUS (+)
a WITH AXIS APPLIES BETWEEN
a 4PC[2:;3] AND +ER(3] WHICH
a IS A RANK ERROR
PC+[2]ER
9 RANK ERROR
PC+[2]ER

A

The individual descriptions of the primitive scalar functions are presented
in three sections. Section 1.1.1 describes arithmetic functions, Section 1.1.2
describes logical functions, and Section 1.1.3 describes relational functions.
Most of the individual descriptions include examples of how the functions
work.

APL Reference Manual 1-9

APL Primitive Functions
Arithmetic Functions

1.1.1 Arithmetic Functions

The arithmetic functions, which are summarized in Table 1-1, perform well-
known mathematical operations. All of them take numeric scalar arguments
and return numeric scalar results.

Table 1-1 Arithmetic Scalar Functions

Monadic Dyadic
Function Meaning Function Meaning

+B B A+B Add 4 to B

-B Negative of B A-B Subtract B from 4

x B Sign of B AxB Multiply 4 and B

+B Reciprocal of B A+B Divide 4 by B

*B e to the B th power AxB A to the B th power

| B Magnitude of B A|B A residue of B

IB Ceiling of B ATB Maximum of 4 and B

LB Floor of B ALB Minimum of 4 and B

@B Natural logarithm of B Ae B Logarithm of B to the base 4

'B Factorial of B A!'B Binomial coefficient (number of
combinations of B things taken 4
at a time)

oB Pi times B AoB Trigonometric functions (B is in

radians; see Table 1-2)
?B Random integer from 1 B

1.1.1.1 + Conjugate

The monadic + function returns a result that is the same as its argument;
thus, +B is identical to B. For example:

+5

1-10 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

1.1.1.2 - Negative

The monadic - function returns the negative of its argument; thus - B is the
. negative of B. Be careful not to confuse the negative function with the high
minus sign (7) used to denote a negative number. For example:

1.1.1.3 x Signum

The monadic x function identifies the sign of its argument; thus, x B is the sign
of B. The signum function returns ~ 1 if the argument is less than 0, 1 if the
argument is greater than 0, and o if the argument is equal to 0. For example:

x99
1

x0
0

x75

1

1.1.1.4 : Reciprocal

The monadic + function returns the reciprocal of its argument; thus, B is the
reciprocal of B. For example:

0

15 DOMAIN ERROR (DIVISION BY ZERO)
0
A

1.1.1.5 * Exponential

The monadic = function raises the value of e (2.71828182845904523536...)
to the power specified by its argument; thus, B is e to the B th power. For
example:

APL Reference Manual 1-11

APL Primitive Functions
Arithmetic Functions

*0
1
*1
2.718281828
*x10
22026.46579
*50
5.184705529E21

1.1.1.6 o Natural Logarithm

The monadic e function returns the natural logarithm of its argument; thus,
@B is the natural logarithm (base e) of B. For example:

®1
0

®2.718281828459
1

®22026,46579
10

®5,184705529E21
50

The @ symbol is formed with the o and * symbols.

1.1.1.7 o PiTimes

The monadic o function returns the product of its argument and the value of
m (3.14159265358979323846264...). For example:

o1l
3.141592654

03
9.424777961

1.1.1.8 | Floor

The monadic | function returns the greatest integer not greater than its
argument, within a tolerance defined by 0 ¢T. For example:

L72.5
[4.111

[4.999

1-12 APL Reference Manual

1.1.1.9

APL Primitive Functions
Arithmetic Functions

Note that the 0 CT setting may affect the result of . For example:

gcr«o
[4.9999999999

OCT«1E" 10
[4.9999999999
5

The following is a formal description of how the floor function is implemented:

VZ«FLOOR B ;0CT ;BXCT ;N
[1] BXCT+(CT ¢ [CT<«0
[2] N<«(xB)xl0.5 + |B
[3] Z«N-(N-B)>BXCT x *[|N
(4] v

[Ceiling
The monadic [function returns the smallest integer not less than its
argument, within a tolerance defined by 0 CT. For example:

[72.5

2
f4.111
5
[4,999
5

Note that the 0CT setting may affect the result of . For example:

[CT+0
[4.0000000001

0CT«1E" 10
[4.0000000001
y

The [and | functions are related in the following manner: [B<~- | - B. For
example:

f4.111

-(-4.111

APL Reference Manual 1-13

APL Primitive Functions
Arithmetic Functions

1.1.1.10

1.1.1.11

1.1.1.12

| Magnitude

The monadic | function returns the absolute value of its argument; thus, | B
is the absolute value of B (that is, B= | B, if B>0 and (-B) = | B, if B<0). For
example:

|9
9
|79
9
! Factorial
The ! of B (for integer arguments) is the product of the first B positive
integers. For example:

120

If the argument to the factorial function is 0, the result is 1. If the argument
is a negative integer, APL signals DOMATN ERROR. If the argument is not an
integer, ! B is defined in terms of the mathematical function GAMMA as follows:

!B <+ GAMMA(B+1)
The ! symbol is formed with the quote (') and period (.) symbols.

For more information on the Gamma function, see Milton Abramowitz and
Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (National Bureau of Standards, November
1964), pp. 255-293; or John F. Hart, et al., Computer Approximations (Robert
E. Krieger Publishing Company, 1978), pp. 130-136, 243-254.

? Roll
When applied to an argument B, the monadic ? function generates an integer
randomly selected from the integers 1 B (for a near-integer argument). For
example:

1-14 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

75 10 15 20 25

4L 7 86 25
75 10 15 20 25

293210
A«<2 3p1 6
A

74

7A
111
336

At the completion of the roll function, the value of DRL changes:

ORL
695197565

?5
i

0JRL
71133752294

If the argument is not a near-integer, or if a near-integer argument is less than
the value of 010, APL signals DOMAIN ERROR:

0I0+1
20
15 DOMAIN ERROR
20
A
0I0+0
20
0

Note that the roll function is [70-dependent: ?B when 010 is 1, is equivalent
to (for the same value of ORL) 1+ ?B when 0I0is 0.

The roll function is analogous to the rolling of several dice. Roll may generate
duplicate values; thus, it differs from the dyadic deal function (?), which
generates a set of unique random numbers.

APL Reference Manual 1-15

APL Primitive Functions
Arithmetic Functions

1.1.1.13 +, -, x, and = Addition, Subtraction, Multiplication, and Division
The dyadic +, -, x, and + functions return the sum, difference, product, and
quotient of their arguments, respectively.

The right argument for the division function may not be 0 unless the left
argument is also 0. For example:

0+0
1

1.1.1.14 x Power

The dyadic = function raises the value of its left argument to the power
specified by its right argument. For example:

5%3

125
T5%3

125
3%2.5

15.588u45727
T3%2.5

15 DOMAIN ERROR

“3%2.5

A

The power function’s domain is restricted to the following combinations of

arguments:

Left Right
Any 0

0 20

>0 Any
<0 Integer

Note that 0x0 is 1.

If the right argument of the » function is exactly 0.5, APL returns the square
root of the left argument.

1-16 APL Reference Manual

1.1.1.15

1.1.1.16

APL Primitive Functions
Arithmetic Functions

e Logarithm

The dyadic e function returns the logarithm of its right argument in the base
of its left argument; thus, 4e B is the logarithm of B in base 4. For example:

1081
0

10810
1

5810
1.430676558

Both arguments must be greater than zero. The left argument may not be 1
unless the right argument is also 1. For example: 1e1is 1.

The © symbol is formed with the o and = symbols.

o Circle
You use the dyadic o function to perform trigonometric functions.

The left argument of o specifies which trigonometric function is to be
performed. Only certain combinations of arguments are valid for the circle
function. For arguments 4 and B, Table 1-2 lists the possible values of 4
(near-integer argument), and indicates the operation associated with each
value.

Table 1-2 Trigonometric Functions Performed by o

Function
al (z<AoB)? Domain Result Domain
7 arc tanhB 1> | B
6 arc cosh B B>1 Z>0
s arc sinhB
Ty (T1+Bx)*x0.5 1< | B Z>0
”3 arc tan B (|1Z2)<00.5
T2 arc cos B 1> | B (0sZ)nZso1
1 arc sin B 1> | B (12)<00.5
0 (1-B*x2)=*0.5 1> | B (Zz0)nrZ<1
1 sin B (1z2)=1

!The value of A must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

(continued on next page)

APL Reference Manual 1-17

APL Primitive Functions
Arithmetic Functions

1.1.1.17

1.1.1.18

1.1.1.19

Table 1-2 (Cont.) Trigonometric Functions Performed by o

Function
Al (z<AoB)? Domain Result Domain
2 cos B (1Z)<1
3 tanB B#2|B+00.5
y (1+B*x2)*0.5 Z>1
5 sinh B
6 cosh B Z>1
7 tanh B (12)s1

IThe value of 4 must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

L Minimum
The dyadic | function returns the smaller of its two arguments. For example:

L5
n

L5 30126
123

[Maximum
The dyadic [function returns the greater of its two arguments. For example:

4rs
5

453126
456

| Residue
The dyadic | function returns the residue of the right argument with respect to
the left argument. The residue is obtained by adding or subtracting multiples
of the left argument from the right argument. The result of a residue operation
takes the sign of the left argument.

If the left and right arguments are equal, the residue is 0. (Note that the
residue function is 0 CT-dependent.) If the left argument is 0, then the residue
equals the value of the right argument. If the left argument is not 0, then the
residue is in the range of the left argument through o ; it may equal 0 but may
not equal the value of the left argument. For example:

1-18 APL Reference Manual

1.1.1.20

APL Primitive Functions
Arithmetic Functions

5|8
3
5|7
~3
717
0
710
0
01]7
7
2]5.8
1.8
1]123.4567
0.4567
55(8 8
33
55 5|2
222
512 2 2
222
A«3 0 73
B«6 5 4 7372710123456
Ao.|B
0 1 2 0 1 20 1 20 1 20
6 5 4 7372710 1 23 L4 5686
07271 072 7107271072710

! Combinations
For arguments 4 and B, the dyadic ! function returns the number of
combinations of B elements taken 4 at a time. For example:

214
6

10110
1

For arguments 4 and B, the function’s domain is described as follows:
~(B<0)A(~ INTEGER B)~n~ INTEGER A

INTEGER is a function that returns 1 if all the items in its argument are
integers, and 0 otherwise.

APL determines the result of the dyadic ! function based on the algorithms
explained in Table 1-3. The value 1 in the table for 4, B, or B- 4 means that
the argument or the difference between the arguments is a negative integer;
the value 0 means that the argument or the difference between them is not a
negative integer.

APL Reference Manual 1-19

APL Primitive Functions
Arithmetic Functions

Table 1-3 Determining Result for Dyadic !

A B B-4 Result

0 0 0 (!B)Y+(!A)x!B-4

0 0 1 0

0 1 0 APL signals DOMAIN ERROR

0 1 1 (T1xA) xA!'A-B+1

1 0 0 0

1 0 1 Not a possible case

1 1 0 (T1%B-A)x(|B+1)! (| 4+1)
1 1 1 0

Note that the dyadic ! function is related to the mathematical function BETA
as follows:

BETA(A,B)<> =Bx (A-1)!A+B-1 «»> +Ax (B-1)!A+B-1
The ! symbol is formed with the ' and . symbols.

For more information on the Beta function, see Milton Abramowitz and Irene

A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables (National Bureau of Standards, November 1964), pp.
255-293; or John F. Hart, et al., Computer Approximations (Robert E. Krieger

Publishing Company, 1978), pp. 130-136, 243-254.

1-20 APL Reference Manual

APL Primitive Functions
Logical Functions

1.1.2 Logical Functions

The monadic ~ (Not) and the dyadic A, v, ~, and ~» functions (And, Or, Nand,
Nor, respectively) are commonly called logical functions. The domain and range
of logical functions are restricted to the Boolean values 0 and 1.

Table 1-4 is a truth table that shows the results of logical operations for
arguments 4 and B.

Table 1-4 Truth Table for Logical Functions

Arguments Functions
And Or Nand Nor Not
A B AANB AVB A~B AvB -B
A B AAB AVB A~B A% B -5
° 0 0 0 1 1 _
° ! ° 1 1 0 _
! 0 0 1 1 0 _
! ! 1 1 0 0 _
_ o B ~ ~ i)
- 1 3 ~ ~ ~ i

The ~ symbol is formed with the » and ~ symbols. The » symbol is formed
with the v and ~ symbols.

APL Reference Manual 1-21

APL Primitive Functions
Relational Functions

1.1.3 Relational Functions

The dyadic <, <, =, #, >, and > functions are commonly called relational
functions. The domain of relational functions is not restricted; they can take
both numeric and character arguments. However, only the equal and not
equal functions can have mismatched arguments, that is, one numeric and one
character argument simultaneously. For example:

1A41=5
0

151=5
0

The result domain of relational functions is restricted to the Boolean values
0 and 1. A relational function returns the result 1 if true and o if false. For
example:

9>6
1

i>6
0

TC1stAY
1

When <, <, >, or > have character arguments, the order of characters in JAV
is used as a collating sequence, and the evaluation is based on the respective
positions of the arguments. When the relational functions have numeric
arguments, the comparisons between the arguments are affected by the value
ofOCT.

When you use relational functions with Boolean arguments, the relational
functions can perform logical operations. For example, the not equal (=)
function performs an exclusive OR operation if its arguments are 0 s and 1 s:

(0#0),(021),(120),1=21
0110

1.2 Primitive Mixed Functions

The primitive mixed functions allow more extensive array manipulation

than the scalar functions. Scalar functions take scalar arguments, return
scalar results, and are extended to arrays on an item-by-item basis. Mixed
functions are not as predictable. For example, depending on the values of their
arguments, mixed functions may do the following:

1-22 APL Reference Manual

APL Primitive Functions
Relational Functions

e Take a scalar argument and return a vector result:

19
1234567839

* Take a vector argument and return a scalar result:

211234
1234

e Take a matrix argument and return a vector result:

(«B<«4 3p112 ACREATE AND DISPLAY B
1 2 3
4 5 6
7 8 9
10 11 12
B ARAVEL B (MAKE B A VECTOR)

1234567891011 12

Table 1-5 summarizes the primitive mixed functions, which are described in
this section.

Table 1-5 Primitive Mixed Functions

Function Name Meaning

ALB Base Bases the representation of B in number system 4.

+B Branch Modifies the standard order of execution in a user-
defined operation.

A,B Catenate Catenates 4 to B along the last axis of 4.

A,[K1B Catenate/ Catenates/laminates 4 to B along the X th axis of 4.

A5 [K1B Laminate

AsB Catenate Catenates 4 to B along the first axis of 4.

A>B Contain Determines whether all the items in array B are
also found in array 4.

A?B Deal Deals 4 integers selected randomly in the range 1 B.

>B Disclose Reduces the depth in an array.

>[K1B Disclose Discloses B and arranges the substructure axes (X).

AVB Drop For 4> 0, drops the first 4 items of B;for A<0, drops

the last | 4 items of B.

(continued on next page)

APL Reference Manual 1-23

APL Primitive Functions

Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

AV [K1B Drop For 4> 0, drops the first 4 items along the axes of
B specified by «; for A< o0, drops the last | 4 items
along the axes of B specified by k.

cB Enclose Builds enclosed arrays. Returns a scalar containing
B.

< [K1B Enclose Builds enclosed arrays; subarrays along axes K
become scalars.

€B Enlist Builds a simple vector with all of the simple scalars
in its argument.

¢B Execute Executes the character string B.

@B File Input Reads records from an external file into an APL

B[X1B workspace.

ABB File Output Writes information to an external file from an APL

AB[KI1B workspace.

B [(K1B

BB

B Format Formats array B.

A% B Format Formats character array B with width and precision
specified by 4.

VB Grade Down Generates an index vector that can be used to sort B
in descending order.

Vv [K1B Grade Down Generates an index vector that can be used to sort
B in descending order, row by row or column by
column.

AVYB Grade Down Generates an index vector that can be used to sort B
in descending order using collating sequence 4.

AB Grade Up Generates an index vector that can be used to sort B
in ascending order.

A[K]B Grade Up Generates an index vector that can be used to sort B
in ascending order, row by row or column by column.

AAB Grade Up Generates an index vector that can be used to sort B

. in ascending order using collating sequence 4.
1B Index Generates the first B consecutive integers from the
Generator current index origin.
ALB Index Of Finds the first occurrence of B in vector 4.

1-24 APL Reference Manual

(continued on next page)

APL Primitive Functions
Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

AnB Intersection Returns a vector of the common items in the arrays
A and B.

A=B Match Determines whether arrays A and B are identical in
rank, shape, and value.

ABB Matrix Divide Performs matrix division, solves linear equations,
and finds a least-squares solution.

BB Matrix Inverse Inverts the matrix B.

AeB Membership Determines if 4 is a member of array B.

A>B Pick Discloses an item from any depth of an array.

,B Ravel Returns the ravel of B (makes B a vector).

,[K1B s [K1B Ravel Merges or adds axes to the shape of B depending on
the value of k.

ATB Represent Represents B in number system 4.

ApB Reshape Reshapes B to the shape specified by 4.

¢B Reverse Reverses along the last axis of B.

¢ [KIB Reverse Reverses along the k th axis of B.

e [K1B

B Reverse Reverses along the first axis of B.

AbB Rotate Rotates by 4 along the last axis of B.

A [KIB Rotate Rotates by 4 along the k th axis of B.

Ae [K1B

Ae B Rotate Rotates by 4 along the first axis of B.

pB Shape Returns the shape of B.

AcB Subset Determines whether all the items in array 4 are
also found in array B.

A+B Take For 4> 0, takes the first A items of B; ford< 0, takes
the last | 4 items of B.

A+ [K]B Take For 4> 0, takes the first 4 items along the axes of
B specified by X ; for A< o0, takes the last | 4 items
along the axes of B specified by « .

8B Transpose Transposes the axes of B (for a matrix, exchanges

the rows and columns).

(continued on next page)

APL Reference Manual 1-25

APL Primitive Functions
Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

ARB Transpose Transposes the axes of array B according to 4.

AuB Union Returns a vector of the items in the arrays 4 and B.
uB Unique Removes the duplicate items of array B.

A~B Without Returns a vector of the items of array 4 that are not

found in array B.

1-26 APL Reference Manual

Primitive Mixed Functions
1 Base

1 Base

Form
A1 B

Left Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank O 2+(ppA)+ppB
Shape (T1+p4) ,14p8B
Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic 1 function (known as base or decode) reduces a representation in
a number system to a value. More specifically, it converts to decimal those
vectors along the first axis of the right argument that are expressed in the
positional number bases of radices given by vectors along the last axis of the

left argument.

The base function is best explained as the converse of the represent function
(7). The following example shows the two functions operating on a quantity

expressed in yards, feet, and inches:

APL Reference Manual 1-27

Primitive Mixed Functions
1 Base

a1 YARD, 2 FEET, 3 INCHES IS 63 INCHES
1760 3 1211 2 3

63
1760 3 12763

123

The expressions AT B and 41 B differ only in the value included in B; 4 expresses
the number base in both cases.

The number of items in both arguments, for example 4 and B, must generally
be the same; the first item in A expresses the radix in which the first item in
B is decoded, and so on. However, if 4 is a singleton, it is extended so that its
length is the same as that of the first axis of B. For example, the following
expression has the effect of producing the base 10 value of the base 8 number
3777 (octal-to-decimal conversion):

8137 77
2047

For arguments A and B, the argument arrays for 1 must conform to one of the
following rules:

® 4 or B is a scalar.
e The results of "1+ p A and 1+ p B are equal.
e [Either " 1+p4 or 14p B equals 1.

If the argument arrays conform to the last rule, the axis that equals 1 is
extended to match the appropriate other axis. For example:

(2 3p5)L(3 U4p3)
93 93 93 93
93 93 93 93

(2 3p5)L(1 u4p3)
93 93 93 93
93 93 93 93

(2 1p5)L(3 4p3)
93 93 93 93
93 93 93 93

The following are some other uses of the base function:

1-28 APL Reference Manual

13

6

119

Primitive Mixed Functions
1 Base

ACONVERT 3 YDS. 2 FT. 4 IN. TO INCHES
13121324

RDETERMINE IF 2.5 IS A ZERO OF THE POLYNOMIAL
A ((6xX*2)-(7xX))-20
2.516 7 720

aYES
ABASE 10 EQUIVALENT OF BASE 5 NUMBER
514 3 4

You can use the base function to evaluate polynomials; the expression X1 C
evaluates a polynomial in X with coefficients given by the vector C.

For vectors 4 and B, the base function can be thought of as a form of the
inner product operator. The expression A1 B is equal to #+ . x B, where ¥ is the
weighting vector (W< ¢ x\ ~ 1+ 44, 1) given by the expression ¥[p 4] <> 1, and
WL(-N)+pA] isequal to AL (-N)+1p Al xW[(-N)+1+pA]l. The value of
A[1] isirrelevant. The following example shows two equivalent operations:

A«<1760 3 12
B«1 2 3
ALB
63
36 12 1+.xB
63
Note that if the right argument is empty, the type of the left argument is not
significant:
(3 2 1p'4")L !
00
00
00
(3 2 1p0)r 10

o

o

APL Reference Manual 1-29

Primitive Mixed Functions

1 Base

Possible Errors Generated

10

15

15

27

27

LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPFE)

LIMIT ERROR (FLOATING OVERFLOW)

LIMIT ERROR (VOLUME TOO LARGE)

1-30 APL Reference Manual

Primitive Mixed Functions
-+ Branch

- Branch

Form

+B

Argument Domain

Type Near-Integer
Shape Any
Depth 0 or 1 (simple)

Result Domain

None.
Implicit Arguments

None.

Description

The monadic +~ function (known as branch) modifies the standard order of

execution in a user-defined operation.

Normally, APL lines in operations are executed in the order of their line
numbers; execution begins at the first line following the operation header
and ends with the last line in the operation. Branch changes the sequence of
execution by transferring control to another line in the operation.

There are two types of branches: unconditional and conditional. Unconditional
branches specify the next line to be executed. The result of an expression
evaluation determines the next statement in a conditional branch.

Unconditional branches consist of a branch symbol (-), followed by a
representation of the number of the operation line to which you want to
transfer control. The argument can be a label, a constant, a variable, or

an expression. Its value (or, if it is a vector, the value of its first item) is
equivalent to an integer line number within the current definition. Execution

continues at that line.

APL Reference Manual 1-31

Primitive Mixed Functions

- Branch

Conditional branches can be expressed in one of the following three forms:

~> line-number x1 logical-expression

Here APL evaluates the logical expression that is the right argument

of 1. The logical expression returns either a 1 (true) and the control
passes to the specified line or a 0 (false) and the control passes to the next
statement. (This form only works when 070+0.) In the following example
a simple counter controls the number of times the statements in a loop are
executed. The example branches to line number 0, an out-of-range number,
and forces an exit from the operation:

vV COUNTER
[1] O<«'NUMBER OF ENTRIES:' o N+l
[2] C+0
[3] LOOP: »0xiC=N
[u] C+C+1
[5] ~+LOOP
[6] v

~logical-expression / line-numbers

This type of conditional branch specifies several line numbers and
associated logical expressions as possible branch destinations. Control
passes to the line number corresponding to the first logical expression that
evaluates to 1 (true). For example:

VF A
[11 +(4>0)/3
[2] "WILL NOT ACCEPT NEGATIVE NUMBERS' o 0
[3] '"FUNCTION CONTINUING NORMALLY'

IR
F5

FUNCTION CONTINUING NORMALLY
F 2

WILL NOT ACCEPT NEGATIVE NUMBERS

1-32 APL Reference Manual

Primitive Mixed Functions
- Branch

+line-numbers [K]

Here the value of X is used as an index to select the corresponding line
number. For example:

vV labs
[1] K+«2
[2] +(LAB1,LAB2,LAB3) [X]
[3] LAB1: 'LAB1 IS EXECUTED' o ~»0
4] LAB2: 'LAB2 IS EXECUTED' o +0
[5] LAB3: 'LAB3 IS EXECUTED' ¢ =0
[6] v

LABS
LAB2 IS EXECUTED

Note that ~ is described in greater detail in Chapter 3 of the VAX APL User’s
Guide along with other information on user-defined operations.

Possible Errors Generated

7 SYNTAX ERROR (BRANCH NOT ALLOWED IN MIDDLE OF AN EXPRESSION)

11

15

15

15

27

VALUE ERROR (BRANCH HAS NO RESULT)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-33

Primitive Mixed Functions
, and ; Catenate/Laminate

, and 5 Catenate/Laminate

Form

A,B A,[K]B A5 B A [K]B
5 1s formed with , and -

Left Argument Domain

Type Any
Shape -
Depth Any

Right Argument Domain

Type Any
Shape -
Depth Any

Result Domain

Type -

Rank 1T (ppA) [ppB (for catenate) or
1+ (ppA4) [pp B (for laminate)

Shape -

Depth (=4)T=B

Implicit Arguments

None.

Description

The dyadic APL function joins together the specified axis of two arrays. If, for
A,[K]B or A5 [K] B, K is a near-integer, the function is called catenation, and
A and B are joined along the ¥ th axis. If ¥ is not a near-integer, the function
is called lamination, and 4 and B are joined along a new axis lying between
the axes named by LX and 7 X. The forms 4,B and 45 B represent catenation
and join the arrays along their last or first axis, respectively.

1-34 APL Reference Manual

Primitive Mixed Functions
, and 5 Catenate/Laminate

If one of the arguments is a scalar, its length is extended to match the shape
of the other argument. If both arguments are scalars, the result is a two-item
vector. For example:

5,6 ACATENATE 2 SCALARS, RESULT IS A VECTOR
56

B«2 3p16

B,[117 ACATENATE SCALAR TO FIRST AXIS OF B
123
L 56
777

B,7 ACATENATE SCALAR TO LAST AXIS OF B
1237
4 56 7

For catenation, the arguments’ ranks must differ after scalar extension by at
most 1. Note that a singleton argument is not extended to conform to the other
argument:

ACATENATE SINGLETONS OF DIFFERENT RANKS
(1 1p7),1 1 1 1p8
9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)
(1 1p7),1 1 1 1p8
A
aTRY AGAIN
0<«R <« (1 1p7), 1 1 1p8
78
oR
112

In the following example, two arrays of equal rank are catenated. The shapes
of the arguments match except for the axis [(k)] along which the arrays are
being joined:

B«3 4 5p12
pB

3 45
C+3 6 5plk
pC

365
R<B,[2]C
oR

310 5

Note that B isequal to R[; 14;] and C toR[; 4+16;1].

APL Reference Manual 1-35

Primitive Mixed Functions
, and ; Catenate/Laminate

The next example shows the catenation of two arrays whose ranks differ by 1.
Again, the shapes of the arguments match except for the axis along which the
arrays are being joined:

B+3 4 5p12
0B AB IS RANK 3
3 45
C+4 5p33
pC AC IS RANK 2
4 5
R<B,[1]C ACATENATE ALONG FIRST AXIS OF B
oR
445
AATTEMPT TO CATENATE ALONG SECOND AXIS
B,[2]C
10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)
B,[2]C

A
Here, B isequal to R[13; ;] and C to R[4; ;].

The following are more examples of catenation:

A<5 8 9
B«6 7
A,B ACATENATE TWO VECTORS
58967
10,4,B,12
10 58 96 7 12
'NAME' , ' XY!
NAMEXY
B«2 3p1 2 3 456 ACREATE B
C«2 3p7 8 9 10 11 12 ACREATE C
B

B,[11C ACATENATE ALONG FIRST AXIS

B,[2]¢ ACATENATE ALONG SECOND AXIS

1-36 APL Reference Manual

Primitive Mixed Functions
, and s Catenate/Laminate

B;C aUSE COLUMN CATENATE

-

o N F e

= OGN
O O W .

12

B,C ACATENATE ALONG SECOND AXIS
7 8 9

10 11 12

[«A+2 3 3p'ABCDEFGHIJKLMNOPQR'

123
4 56
ABC

DEF
GHI

JKL
MNO
PQR
[0+B«2 3 3p'SSSTTTUUUVVVNWHXXX'
S5S
TrT
uuu

244
WWW
0,04
A,B ACATENATE RANK 2 OBJECTS
ABCSSS
DEFTTT
GHIUUU

JKLVVV
MNOWWN
PQRXXX

Note that the catenation of scalars produces a vector:

pp4,5
1

For lamination (4, [X1 B and 45 [K] B where X is not a near-integer), the
arguments must have the same ranks and shapes after singleton extension.
The following are examples of lamination:

QCREATE NEW DIMENSION BEFORE THE FIRST
a DIMENSION WHEN [K]<1
O«X<«'ABC',[0.5]1'DEF' AADD A ROW
ABC
DEF
X
23

APL Reference Manual 1-37

Primitive Mixed Functions
, and 5 Catenate/Laminate

ACREATE NEW DIMENSION AFTER THE FIRST
A DIMENSION WHEN 1<[K]<2
O«X«'ABC',[1.3]'DEF' a ADD A COLUMN

aNOW TRY EXAMPLE WITH HIGHER RANK OBJECTS
aNOTE THAT APL RESHAPES EACH ARGUMENT
ABEFORE JOINING

(«E<3 2p'ABCDEF'

(«F<3 20" UVWXYZ'
uv
WX
YZ
ACREATE NEW DIMENSION BEFORE THE FIRST
A DIMENSION WHEN [K]<1
0«R<E,[.2]F AADD A PLANE
AB
CcD
EF

uv
WX
Yz
pR
2 32
ACREATE NEW DIMENSION AFTER THE FIRST
A DIMENSION WHEN 1<[K]<2
AADD A ROW, PREVIOUS ROWS BECOME PLANES
[O«R<E,[1.9]F
AB
uv

CD
WX

EF

oR
322

1-38 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

AaCREATE NEW DIMENSION AFTER THE SECOND
a DIMENSION WHEN 2<[K]1<3
aADD A COLUMN, PREVIOUS COLUMNS BECOME ROWS
O«R<E,[2.3]F
AU
BV

CW
DX

EY

oR
322
aTRY EXAMPLE USING SINGLETON EXTENSION
O«R«E,[.51'2" aADD A PLANE
AB
CcD
EF

27

77
PR

aADD A ROW, PREVIOUS ROWS BECOME PLANES
[O«R<E,[1.5]1'X!
AB
XX

cD
XX

EF
XX

R
322

'Y, [2.5]E aADD A COLUMN
YA
YB

re
YD

YE
IF

Note that if 070 «~0, then ~ .5 is valid as the axis value for lamination. This
is the only case in which an axis may take a negative argument (range: ~ 1<X).

APL Reference Manual 1-39

Primitive Mixed Functions
, and s Catenate/Laminate

Further examples:

O«4«(0 ('4B"))
0 +--+
[AB|
+--+
0«B+c,u
+-+
[4]
+-+
O«Cet?
(APL outputs a blank line)
O«MAX+2 3 p A 1 0 '"4B' B C

[0 +--+]
| 14B]|
[+--+]

+--+ t---+ +
|4B] [+-+] |
+--t [lel] +
[+-+]
+---+
MAX,[11B ACATENATE ALONG FIRST AXIS

[0 +--+]
| 14B]|
|-+

+--+ t---t o+
|4B| [+-+] |
to-t [ul] +
[+-+]
+--=t
+-+ +-+ +-t
[u] (4] 4]
+-+ t-+ -+
0«D«0 'DP!
0 +--+
|DP|
+--+

1-40 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

D, [2]MAX ACATENATE ALONG SECOND AXIS
0 t------ + 1 0
[0 +--+]
| 14B]|
| +--+]
pmmm—= +
+=-+ +--t t---+ t-+
|DP| |AB| [+=+] | |
+--+ +--+ [1a]] +-+
[+-+]
+--=t
aSHOW CATENATION OF TWO ARRAYS WHOSE RANKS DIFFER BY 1
pMAX
23
(«VIC+«B,D
+-+ 0 +--+
|| |DP|
+-+ +--t
pVIC
3
O«W«MAX, [1]VIC
to-m--- + 1 0
[0 +--+]|
| [4B]]
| +--t]
- +
+--+ +--=t +-+
|4B| [+-+] |
+--+ [lull +-+
[+-+]
R
-+ 0 +--+
[t |DP|
+-1 +--+
oW
3 3
ASHOW LAMINATION
OeX«d,c,1
4 +-+
[1]
+-+
pX
2
B
+-+
[u
+-+
pB

(APL outputs a blank line)

APL Reference Manual 1-41

Primitive Mixed Functions
, and ; Catenate/Laminate

0«Y«X,[0.5]B
+-+
[1]
+-+
-+
[4]
+-+
oY

0«Z«X,[1.91B
+-+
[4]
+-+
+-+
[4]
+-4
pZ

Possible Errors Generated

9 RANK ERROR

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

10

15

27

28

30

30

30

30

29

30

LENGTH ERROR (SHAPES OFF AXIS DO NOT MATC"H)

DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

142 APL Reference Manual

Primitive Mixed Functions
> Contains

> Contains

Form

A>B
> is formed with > and _

Left Argument Domain

Type Any

Shape Any

Depth Any
Type

Shape Any

Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

gcr (determines comparison precision)

Description

The dyadic > function determines whether the left argument contains all the
items found in the right argument. The result is a Boolean scalar: true, if
the left argument is a superset of the right argument, and false if it is not.
Duplicate items in either argument do not affect the result. For example:

A«3 4p 23 54 98 34 98 47 98 32 78 65 12 23
A > B«1100

B> A

[

APL Reference Manual 143

Primitive Mixed Functions
> Contains

The > function compares items in terms of the match (=) function, which uses
the value of 0 CT. Because = allows mixed-type arguments, you can compare
characters with numbers. However, such a comparison is always false, so that
if you use mixed-type arguments for dyadic o, the result will be zero. For
example:

123 24 25' 2 22 23 24 25 26
0

Further examples:

O«WRL«0 'AB' (c,3)
0 +--+ +---+
|AB] |+-+]
+--+ ||3]]
[+-+]
t---+
0«POOL«2 2 p O 'AB' 'EB' (c,3)
0 +--+
|4B|
+--+
t-=t +---+
|EB] |+-+]|
+-—+ |]3]]
[+-+]
+---t
POOL > WRL
1
O«VAN«O "QTH' "1 (<,3)
0 +---+ 1 +---+
[QTW| [+-+]
===+ [13]]
[+-+]
t---t
0«VIC«(c,4),0,(c'DP")
+=+ 0 +--+
4] |DP|
+-+ +--+
VAN > VIC
0

Possible Errors Generated

None.

144 APL Reference Manual

Primitive Mixed Functions
? Deal

? Deal

Form
A?B

Left Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Right Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape A

Depth 1 (simple)

Implicit Arguments
ORL OIO (4?8 when 0I0 « 1 isidentical to 1 + A?B when 0I0 « 0 for the
same (JRL)

Description

For 47 B, the dyadic ? function generates a vector of integers randomly selected
from 1 B; no number is selected more than once. The length of the result vector
is specified by 4. For example:

APL Reference Manual 1-45

Primitive Mixed Functions
? Deal

575

42315
571.0E7

2047059 8326627 1771140 853115 3809508
571.0E7

8895125 7387197 6272379 6940437 9062050
571.0E7

6693744 185074 2861354 853279 5088023

Unlike the roll function, dyadic ? is analogous to dealing a number of cards
from a deck with no two cards alike. Roll is analogous to rolling several dice
independently; roll may generate duplicates, but deal will not.

The value of the system variable 0 RL affects the result of the deal operation,
and the value of JRL changes each time a deal operation completes
successfully. For more details about ORL, see Chapter 2.

Possible Errors Generated

9 RANK ERROR (NOT SINGLETON)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

15 DOMAIN ERROR (RIGHT ARGUMENT IS LESS THAN LEFT)

27 LIMIT FRROR (INTEGER TOO LARGE)

146 APL Reference Manual

Primitive Mixed Functions
= Depth

= Depth

Form
=B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Integer (non-negative)
Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Implicit Arguments

None.

Description

The monadic = function (known as depth) indicates the maximum level of
nesting in an array. A simple array has 1 level of nesting (0 if the array is
scalar). An enclosed array has a depth of at least 2.

Examples:

[«B+9 ACREATE A SIMPLE SCALAR

B

ACREATE A SIMPLE ARRAY
0«C<+'WHERE ARE YOU GOING?'
WHERE ARE YOU GOING?
=C
1

APL Reference Manual 1-47

Primitive Mixed Functions

= Depth
0«D«1 (5 6 7) 11 12 ACREATE AN ENCLOSED ARRAY
1 +----- + 11 12
156 7]
$o-—-- +
=D
2
ACREATE AN ENCLOSED ARRAY WITH MORE NESTING
O<«E«1 (56 7 (8 9 10)) 11 12
1 pmmmmmmmmooooe + 11 12
|56 7 +------ +]|
| |8 9 10]]
I to----- +]
tmmmmmm o +
=F
3

Possible Errors Generated

None.

1-48 APL Reference Manual

Primitive Mixed Functions
> Disclose

> Disclose

Form

>B >[K]B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as constituent items in B
Rank (ppB)+4T /0o 0" (,B),c*B
Shape (pB),47/(p"(,B),c4B)~c10

(pZ)L,K1+>4T/(p"(,B)~c10
Depth 0l 1+=B

Implicit Arguments

None.

Description

The monadic > function reduces the depth of an array. It reverses the building
action of the monadic enclose (c) function. Disclose is the left inverse of enclose
(B«+»>cB and B«+>[K]1<c[K]B).

The rank of the items in B must be the same (singleton items are extended).
However, the lengths of the corresponding axes do not need to match. For
example, three enclosed items of shape 1 3 1, 2 6 2, and 4 2 4 match in rank,
but not in shape. When the shapes do not match, each item is padded along
each axis, and the length of each of the result’s axes is equal to the longest
corresponding axis among the items of B. In the preceding example, the
portion of the result that corresponds to the three items would have the shape
46 4:

APL Reference Manual 1-49

Primitive Mixed Functions

> Disclose
aALL ITEMS SAME RANK
F+(3 2p16) (2 3p'ABCDEF') (2 u4p10 ¢19) (5 1p'TUVXY')
oF
[
o F

to--t oot +o--t +--4
|3 2] [2 3] |2 4] |5 1]
to-—t +---t oot t---%

0«DD+>F ANOTE FILL ITEMS

1200
3400
5600
0000
0000
ABC
DEF

2 345
67 829
0000
0000
0000

T

U

4

X

Y

pDD

L5

Disclose only reduces one level of enclosure:

A+(c13) '"ABC' 3

A
tommmm- + +---+ 3
[+-----+| |ABC|
[11 2 3] +---+
[4----- +
I +

pA
3

=4

1-50 APL Reference Manual

Primitive Mixed Functions

> Disclose

o4
++ -+ 4+t
[1 131 11
++ -t 4t

X+24

X
tm-=- I L +
[1 23]]000] |[000]
to---- e I +
4 B c
3 0 0

oX

Disclose with axis (form > [k] B) allows you to specify the placement of the
disclosed item’s axes. The number of axes specified by ¥ must be equal to the
rank of the items of B (ignoring the singleton items), and the axis numbers
must be less than the sum of the rank of B plus the rank of the items of

B (G (ppB)++T\,p p B). The axis numbers must also be unique. The
following example shows various combinations of axis arguments and the
resulting arrays:

R « (3 3p19) (2 3p'ON' 'TI" '"MA' 'NO' '"IT' 'AM')

[1 2 3] |+--+ +--+ +--+]|
|v 5 6] |[ON] |TI| |MA]]
[7 8 9] |+--+ +--+ +--+]|

o= + o[+t -t -]
[INO| [IT] |AM]|
[+--+ +--+ +--+]
oo +
A<>R
=4
2

APL Reference Manual 1-51

Primitive Mixed Functions

> Disclose

te=t -t +--+

|MA|

|TI]
to=t oot -t
to-t 4ot -t

|ON|

[IT| |AM|

to—t t--t t--t

I§O|

i

to-t t--t t--t
to-t -t -t

B+>[1 2]R

B

1 +--+

|ON|
+-—+
2 +--+

ITI|
+--+
3 +--+

[MA|

+--+

bo4--4

|§O|

+--+
5 4--+

[T

+--+
6 +--+

| AM|
+--+

7 4--4

|
+--+
8 +--+

|
t--+
9 +--+

|
+e-t

1-52 APL Reference Manual

Primitive Mixed Functions
> Disclose

1l
=

i
e}

pA

pB
332
C+>[1 3]R
=C
2
oC
323
c
1 2 3
t--t+ +-—+ +--+
|ON| |TI| |MA|
t--+ +--+ +--+

t-=t +--+ t--+
[NO| |IT| |AM|
ottt +--t
7 8 9

t-=t +--+ t--+

t--t +--t+ -1

D+>[2 3]R
=D

2
oD

2 33

APL Reference Manual 1-53

d Functions

itive Mi

imi

Pr

ixe

> Disclose

==t +--t+ +--+

[MA|

I7I]
t-—+ -t -t

t--t +--+ +--+

[ON|
|No|

[4M]

[IT|

o=t +--t f--1
to=t t--t -4

I

o=t +--+ +--1

E+>[2 11R

E

1 +--+

|oN|
+--+
I

[§0|

+--+
7 +-—+

+--+

2 +--+

|71
+-=+
5 +--+

[IT]

-t
8 +--+

+-—+

3 +--+

|MA|

t--+
6 +--+

|AM|
==t
9 +--+

+--+

1-54 APL Reference Manual

> Disclose

Primitive Mixed Functions

oE
Fe>[{3 11R
=F
oF

2

3

32

F

7

n

1

t--t t--t -t

[oN|

|NO|

o=ttt -1

8

5

2

to-t to-t -t

|TI]

| IT|

-t +--t 4--1

6 9
to-t oot 4ot

3
|MA|

|

| AM|

G+o[3 2]
=G

e R

to-t -t -t
[voi |

|ON|

oot bt 4ot
o=+ +-—t+ +--+

ITI]

| IT]

to-t ot -t
t--t +--t -+

l

| AM]
to=t o=t -t

[MA|

1-55

APL Reference Manual

Primitive Mixed Functions
> Disclose

If all the items of B are scalars, then the axis, if specified, must be empty:

Tc™(13) (14) (15)

T
R + ot I +
|+----- H I R ity I *
[11 2 3] 11123 4|} [|123¢45]]
[+----- + o [4----m-- o4 +]
tommm - il I +
=T
3
oT
3
="
222
p T
++
I
++ ++ ++
J«S«o[10]1T
oo + tm-mm--- B +
[1 23] 1234 |12 3u45]
omm - I I +
=S
2
pS
3

The disclose of an array which contains only scalars and empty arrays as item
will be an empty array:

Ee2 "1 3

it
==}

tE

1-56 APL Reference Manual

30

0

Primitive Mixed Functions
> Disclose

X+oF

(APL outputs a blank line)

X

The following expression describes the formal relationship between disclose
and disclose with axis: oB «> > [(ppB)+1pp+BIlB

Possible Errors Generated

9 RANK ERROR (ITEMS NOT SINGLETON OR ALL THE SAME RANK)

27

28

29

30

30

30

30

30

30

30

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-57

Primitive Mixed Functions
+ Drop

v Drop

Form
AV B Ay [KIB

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument

Rank (p,4)TppB

Shape 0ol (pB) -4 (if no explicit axis)
Depth =B

Implicit Arguments

None.

Description

The dyadic + function builds an array by dropping a specified number of items
from an existing array. The left argument specifies how many items are to be
dropped from each axis in the right argument array. Thus, for 4+ B, item A[K]
is used to drop values along the k¥ th axis of B.

Unless the right argument is a scalar, the left argument must have a number
of values equal to the rank of the right argument (for arguments 4 and B,

o ,A must equal o p B). For instance, if the right argument is a vector, the left
argument must have just one value. If that value is positive, APL drops the

1-58 APL Reference Manual

Primitive Mixed Functions
+ Drop

specified number of items from the beginning of the vector; if the value is
negative, APL drops items from the end of the vector. For example:

2v15
345

2415
123

If the right argument is a scalar, it is reshaped to a singleton with a rank
equal to the length of the left argument.

If the rank of the right argument is greater than 1, the result array is said to

be a "corner” of the argument array. The origin of the corner is determined by
the signs of the items of the left argument. For example, if the right argument
is a matrix, there are four possible corners, as shown in Figure 1-1.

The drop function leaves a corner that is diagonally opposite to the origin
specified by the signs of the items of the left argument. In the following
example, note how the order of the signs determines the "corner" selected from
the matrix:

0«C<+3 3 p19
123
456
789

2 24(
9

T2 2 3¢
1

T2 2iC
3

2 2 40

Note that for arguments 4 and B, the dimension of the remaining corner is the
complement of 4 with respect to pB, or | (pB) - A.

If the value of an item in the left argument is greater than the length of the
corresponding axis, then, for arguments 4 and B, A+ B returns an empty array
with shape o7 (pB) - | 4.

If the left argument is empty, the right argument must be a scalar, and the
result is the right argument.

When you use + with an axis argument, X is a vector of axis numbers whose
lengths are determined by corresponding items of the left argument, 4.
Formally, + with an axis argument can be described by the following:

7z « 0>pB o Z[K] « A 0 Z < IVB

APL Reference Manual 1-59

Primitive Mixed Functions
+ Drop

The value for ¥ must be in the vector domain, and each item must be a near-
integer in the set 1 p o B. Therefore, the values of ¥ are 010 dependent. The
items may be in any order, but they may not be duplicated. The length of k¥
must be less than or equal to the rank of the right argument, and it must
match the length of the left argument.

The value for ¥ does not have to specify all the axes in B. APL regards the
lengths of any missing axes as zero. This means that you can drop rows or
columns of a matrix without specifying zero for the length of the other axis.
For example:

(J«A«8 5p140
1 2 3 4% 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
34017 A ADROP 3 ROWS OF A
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
"2 4[2] 4 ADROP THE LAST 2 COLUMNS OF A
1 2 3
6 7 8
11 12 13
16 17 18
21 22 23
26 27 28
31 32 33
36 37 38
34 y[2 1] 4 aDROP 4 ROWS, 3 COLUMNS OF A
24 25
29 30
34 35
39 40
0I0 « o
4 3 4[0 1] 4 ADROP 4 ROWS, 3 COLUMNS OF A
24 25
29 30
34 35
39 40

1-60 APL Reference Manual

Primitive Mixed Functions
+ Drop

Further examples:

0«P0L«2 3p0,(c'ABC'),1,0,(<c'4B"),"!
0 +---+ 1
|ABC|
te-=t
0 +--+ 0
|4B|
+--+
POL
0 +---+ 1
|ABC|
===t
0 +--+ O
|AB|
==+
2 y[11P0L
(APL outputs a blank line)
“1 +[1]1P0L
0 +---+ 1
| ABC|
t---1
2 +[2]P0L
1
0
O«MEW<4 3 p'XY' 1 3 (c,1) "2 '" "A" "' ' 01 40
+--+ 1 3
|XY|
+--+
t---+ 2 ++
P+-+] I
NEYR t+
[+-+]
===t

2 14 [2 1IMEW

APL Reference Manual 1-61

Primitive Mixed Functions
+ Drop

2 0 v MEW
A 0
1740

The following expression describes the formal relationship between drop and
drop with axis: 4+B <> A+ [1ppBI1B

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN FRROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH FRROR (LEFT ARGUMENT HAS WRONG LENGTH)
30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN FRROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-62 APL Reference Manual

Primitive Mixed Functions
c Enclose

c Enclose

Form

cB c[K]B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as constituent items
Rank (ppB)-p.K

Shape (pB)[(1ppB)~K]
Depth (02=B)+=B

Implicit Arguments

None.

Description

The monadic = function builds enclosed arrays. For a nonsimple scalar
argument, the result of the form < B is always an enclosed scalar item. If the
argument is a simple scalar, the depth remains the same: B<+cB when B is a
simple scalar. The result of the form < [kK] B is an array of enclosed scalars:

APL Reference Manual 1-63

Primitive Mixed Functions
= Enclose

B « 4
C « 15
D+ 2 2 p "ABCD!'
(J«B+cB RENCLOSE A SIMPLE SCALAR, NOTHING HAPPENS
y
[J+B+c,B AMAKE A SINGLETON
+-+
[4]
+-+
O«C«cC
oo +
|1 234 5]
- +
0«D<+cD
+--+
|AB|
|CD|
+--+

pB ¢ pC ¢ pD aTHE NEW B C AND D ARE SCALAR
(APL outputs 3 blank lines)

Each time you use monadic <, you increase the depth of the argument by one
(unless the argument is a simple scalar). For example:

0«D<+2 2p 'ABCD!

AB
CD
)
22
=D ADEPTH OF D SHOWS A SIMPLE ARRAY
1
[«D<cD
+--+
[AB|
|CD]
+--+
oD
(APL outputs a blank line)
=D aDEPTH OF D HAS INCREASED T0O 1

2

Using the catenate function (,) with ¢ allows you to create arrays with
multiple items. In such an expression, you must use parentheses to prevent
the scope of « from extending to the rightmost end of the expression. You can
also enclose arrays that are already enclosed. The only limit to the depth you
create is the memory available to the workspace.

1-64 APL Reference Manual

Primitive Mixed Functions

< Enclose
For example:
B<l
C+«15
(J«E<«B , (<B) , cC aNOTE USE OF PARENTHESES
T +
j1 2 3 4 5]
Hommmmmmom +
oF
3
=F
2
D+«2 2 p '"ABCD'
O«E<B , (<B) , (<C) , D aNOTE USE OF PARENTHESES
b op-mmmmmm - + -+
|12 3 4 5| |4B]
e + |CD|
t--+
pE
N
=F
2
[J<«E+«cE
o mmmmmmmmm e +
I + +--t]
| [1 2 34 5| [4B]]
| tommomo- + [CDI|
! +o-t]
o mmmmmmm e +
ok aSHAPE OF E SHOWS IT IS NOW A SCALAR
(APL outputs a blank line)
=F
3

The result of the form « [X] B is in an array of items formed by enclosing
subarrays along the axes given by k. The axis numbers in ¥ must be a unique
set of numbers in 1 p o B:

«5+2 3p16
=}

APL Reference Manual 1-65

Primitive Mixed Functions
< Enclose

1-66

c[1]S
tomot ot -4
[1 4] |2 5] 13 6]
to-ot tooot b---t
c[218

SCHILLER«'AGAINST'

(«SCHILLER<+3 2pSCHILLER,'CONTEND'

o PHRASES

APL Reference Manual

'STUPIDITY!

ACHANGING AXIS ORDER TRANSPOSES SHAPE

'"THE GODS' 'THEMSELVES'

VIN VAIN'

Primitive Mixed Functions
< Enclose

If ¥ is empty, than it has no effect if B is a simple array. If B is enclosed,
then each item in B becomes enclosed one level deeper (¢ [1 0] B <~ <" B). For
example:

[«S«2 3p6 aCREATE S, A SIMPLE ARRAY
23
56

=

c[10]S aEMPTY K, NO CHANGE

123

4L 56

SCHILLER<'AGAINST' 'STUPIDITY' 'THE GODS' 'THEMSELVES'
0«SCHILLER<3 2p SCHILLER, 'CONTEND' 'IN VAIN'

c[10]SCHILLER oEMPTY K, ITEMS NESTED DEEPER

[=-===-- S R +

[4+--mmmm-- I +]
|| THE GODS|| ||THEMSELVES||
[4=-m=---- +] 4= +]

| +--——--- 4o +

[4----——- IR +|

Further examples:

APL Reference Manual 1-67

Primitive Mixed Functions
< Enclose

[«POL<+2 3 p 'ABC' 0 (c,2) 99 'A' '0'
t---+ 0 +---+

| ABC| [+-+]
+---+ |2]]
[+-+]
t---t
99 40
cPOL
tommmmm e +
[+---+ 0 +---+]
[[ABC| [+-+]|
[+---+ |[2]]]
I [+-+11
| +---t]
199 40 |
e il +

The first two of the following expressions describe the relationship between <
and < [X]. The third expression describes the relationship between < [X¥] and
the disclose (= [k1) function:

cB «» c[1ppBIlB
c[K]B +> c(JK)8B (only true when K includes all axes of B)

B <> o[K] <[K] B
B <> ocB

Possible Errors Generated

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN FRROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-68 APL Reference Manual

Primitive Mixed Functions
e Enlist

€ Enlist

Form

eB

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank 1

Shape Vector

Depth 1 (simple vector)

Implicit Arguments

None.

Description

¢ builds a simple vector by recursively raveling each of the items in its
argument. For example:

O«A«e (2 (2 2p5 6 7 8)) 'ABC' 'A' 2 56 7 8 "ABC!
2567 8 ABCA 2 56 7 8 ABC

Possible Errors Generated

None.

APL Reference Manual 1-69

Primitive Mixed Functions
¢ Execute

¢ Execute

Form

¢ B
¢ is formed with 1 and o

Argument Domain

Type Any
Shape Any (Vector domain for characters)
Depth Any (0 or 1 for characters)

Result Domain

Type Any
Rank Any
Shape Any
Depth Any

Implicit Arguments

None.

Description

The monadic ¢ function executes the expression represented by its character-
string argument as if that expression were entered in immediate mode or
included in a user-defined operation. For example, the expressions 1 5 and

¢ ' 15" return the same result:

15
12345

e'15!
12345

B<15

¢ !'B!
2 345

1-70 APL Reference Manual

Primitive Mixed Functions
¢+ Execute

For a numeric argument B, ¢ B returns B. For example:

020
20

B«15

°B
12345

For an enclosed or heterogeneous array B, ¢ B returns B. For example:

¢ 12 'A 3
1243

0<POL<2 3p ('4BC') 0 (=,2) 99 'A' 0
t---+ 0 +---+

|4BC| [+-+]
t---+ ||2]]
[+-+]
to--t
99 A0
s 'POL
t-==+ 0 +---+
|ABC| [+-+]
to-mt o Ll2]]
[+-+]
t---t
99 40
e POL
t--=t 0 +---+
[ABC| |+-+]
temmt o Ll2]]
[+-+
t---+
99 40

The ¢ function is similar to the 0XQ system function; however, there are
several differences.

One difference is that the 0xQ system function always returns a value, but
the o function returns a value only if the evaluation of its argument returns
a value. Another difference is that the Jx¢ function cannot execute a branch
function (=), and the ¢ function can.

The ¢ and 0 x@ functions also handle errors differently. Errors resulting from
the evaluation of the 0x¢Q function’s argument cannot be trapped; if an error
occurs during the evaluation of its argument, 0 XQ returns an empty array
whose shape indicates the number of the error. With the ¢ function, however,
you can use [J TRAP to trap errors. If an error occurs in the character string
being executed by ¢, APL generates—in addition to the normal three-line error
message—an execute error message for the line on which the actual execute
error occurred.

APL Reference Manual 1-71

Primitive Mixed Functions
¢ Execute

For example:

V GRIFF A
[1] B+
(21 v

GRIFF '3,'

7 ¢ SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)
3,
A

25 EXECUTE ERROR

GRIFF[1] B«gd
A
)SI
GRIFF[1]
B
11 VALUE ERROR
B
A
GRIFF' !
11 VALUE ERROR (REQUIRED VALUE NOT SUPPLIED BY EXECUTE)
GRIFF[1] B«2d

A

In the previous example, when the argument to the ¢ function was invalid
(v3, 1), APL generates six lines of error messages and suspends operation
execution. The blank argument is a valid one for the ¢« function, but ¢ ' ' does
not produce a value, so APL sign<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>