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Abstract

Many fundamental multi-processor coordination problems can be expressed
as counting problems: processes must cooperate to assign successive values
from a given range, such as addresses in memory or destinations on an in-
terconnection network. Conventional solutions to these problems perform
poorly because of synchronization bottlenecks and high memory contention.

Motivated by observations on the behavior of sorting networks, we offer
a new approach to solving such problems, by introducing counting networks,
a new class of networks that can be used to count.

We give two counting network constructions, one of depth logn(l +
logn)/2 using nlogn(1+logn)/4 “gates,” and a second of depth log® n using
nlog®n/2 gates. These networks avoid the sequential bottlenecks inherent
to earlier solutions, and substantially lower the memory contention.

Finally, to show that counting networks are not merely mathematical
creatures, we provide experimental evidence that they outperform conven-
tional synchronization techniques under a variety of circumstances.

This report supersedes CRL Tech Report 90/11. A preliminary version of
this work appeared in the Proceedings of the 23rd ACM Symposium on the
Theory of Computing, New Orleans, May 1991.

Keywords: Counting Networks, Parallel Processing, Hot-Spots, Network
Routing.

(©Digital Equipment Corporation, James Aspnes, and Nir Shavit 1993. All
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1 Introduction

Many fundamental multi-processor coordination problems can be expressed
as counting problems: processors collectively assign successive values from
a given range, such as addresses in memory or destinations on an intercon-
nection network. In this paper, we offer a new approach to solving such
problems, by introducing counting networks, a new class of networks that
can be used to count.

Counting networks, like sorting networks [4, 7, 8], are constructed from
simple two-input two-output computing elements called balancers, connected
to one another by wires. However, while an n input sorting network sorts a
collection of n input values only if they arrive together, on separate wires,
and propagate through the network in lockstep, a counting network can count
any number N > n of input tokens even if they arrive at arbitrary times,
are distributed unevenly among the input wires, and propagate through the
network asynchronously.

Figure 2 provides an example of an execution of a 4-input, 4-output,
counting network. A balancer is represented by two dots and a vertical line
(see Figure 1). Intuitively, a balancer is just a toggle mechanism ', alternately
forwarding inputs to its top and bottom output wires. It thus balances the
number of tokens on its output wires. In the example of Figure 2, input tokens
arrive on the network’s input wires one after the other. For convenience we
have numbered them by the order of their arrival (these numbers are not
used by the network). As can be seen, the first input (numbered 1) enters
on line 2 and leaves on line 1, the second leaves on line 2, and in general,
the Nth token will leave on line N mod 4. (The reader is encouraged to try
this for him/herself.) Thus, if on the 7th output line the network assigns to
consecutive outputs the numbers 2,2 +4,1+2-4, .., it is counting the number
of input tokens without ever passing them all through a shared computing
element!

Counting networks achieve a high level of throughput by decomposing
interactions among processes into pieces that can be performed in parallel.
This decomposition has two performance benefits: It eliminates serial bottle-
necks and reduces memory contention. In practice, the performance of many

1One can implement a balancer using a read-modify-write operation such as Compare
& Swap, or a short critical section.
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shared-memory algorithms is often limited by conflicts at certain widely-
shared memory locations, often called hot spots [30]. Reducing hot-spot
conflicts has been the focus of hardware architecture design [15, 16, 22, 29]
and experimental work in software [5, 13, 14, 25, 27].

Counting networks are also non-blocking: processes that undergo halt-
ing failures or delays while using a counting network do not prevent other
processes from making progress. This property is important because ex-
isting shared-memory architectures are themselves inherently asynchronous;
process step times are subject to timing uncertainties due to variations in
instruction complexity, page faults, cache misses, and operating system ac-
tivities such as preemption or swapping.

Section 2 defines counting networks. In Sections 3 and 4, we give two
distinct counting network constructions, each of depth less than or equal to
log® n, each using less than or equal to (nlog®n)/2 balancers. To illustrate
that counting networks are useful we use counting networks to construct
high-throughput shared-memory implementations of concurrent data struc-
tures such as shared counters, producer/consumer buffers, and barriers. A
shared counter is simply an object that issues the numbers 0 to m — 1 in re-
sponse to m requests by processes. Shared counters are central to a number
of shared-memory synchronization algorithms (e.g., [10, 12, 16, 31]). A pro-
ducer/consumer buffer is a data structure in which items inserted by a pool
of producer processes are removed by a pool of consumer processes. A barrier
is a data structure that ensures that no process advances beyond a partic-
ular point in a computation until all processes have arrived at that point.
Compared to conventional techniques such as spin locks or semaphores, our
counting network implementations provide higher throughput, less memory
contention, and better tolerance for failures and delays. The implementations
can be found in Section 5.

Our analysis of the counting network construction is supported by exper-
iment. In Section 6, we compare the performance of several implementations
of shared counters, producer/consumer buffers, and barrier synchronization
on a shared-memory multiprocessor. When the level of concurrency is suffi-
ciently high, the counting network implementations outperform conventional
implementations based on spin locks, sometimes dramatically. Finally, Sec-
tion 7 describes how to mathematically verify that a given network counts.

In summary, counting networks represent a new class of concurrent al-
gorithms. They have a rich mathematical structure, they provide effective
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Figure 1: A Balancer.

solutions to important problems, and they perform well in practice. We
believe that counting networks have other potential uses, for example as in-
terconnection networks [32] or as load balancers[28], and that they deserve
further attention.

2 Networks That Count

2.1 Counting Networks

Counting networks belong to a larger class of networks called balancing net-
works, constructed from wires and computing elements called balancers, in a
manner similar to the way in which comparison networks [8] are constructed
from wires and comparators. We begin by describing balancing networks.

A balancer is a computing element with two input wires and two output
wires? (see Figure 1). Tokens arrive on the balancer’s input wires at arbitrary
times, and are output on its output wires. Intuitively, one may think of a bal-
ancer as a toggle mechanism, that given a stream of input tokens, repeatedly
sends one token to the top output wire and one to the bottom, effectively
balancing the number of tokens that have been output on its output wires.
We denote by z;, : € {0,1} the number of input tokens ever received on the
balancer’s sth input wire, and similarly by y;, ¢ € {0,1} the number of tokens
ever output on its 2th output wire. Throughout the paper we will abuse this
notation and use z; (y;) both as the name of the ¢th input (output) wire and
a count of the number of input tokens received on the wire.

Let the state of a balancer at a given time be defined as the collection of
tokens on its input and output wires. For the sake of clarity we will assume

In Figure 1 as well as in the sequel, we adopt the notation of [8] and and draw wires
as horizontal lines with balancers stretched vertically.
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that tokens are all distinct. We denote by the pair (¢, b), the state transition
in which the token ¢ passes from an input wire to an output wire of the
balancer b.

We can now formally state the safety and liveness properties of a balancer:

1. In any state zo + z1 > yo + 11 (i.e. a balancer never creates output
tokens).

2. Given any finite number of input tokens m = zo 4+ z; to the balancer,
it is guaranteed that within a finite amount of time, it will reach a
quiescent state, that is, one in which the sets of input and output
tokens are the same. In any quiescent state, g + 1 = yo + y1 = m.

3. In any quiescent state, yo = [m/2] and y; = |m/2].

A balancing network of width w is a collection of balancers, where out-
put wires are connected to input wires, having w designated input wires
Lo, &1, .., Tyw—1 (Which are not connected to output wires of balancers), w des-
ignated output wires yo,¥1, .., Yw—1 (similarly unconnected), and containing
no cycles. Let the state of a network at a given time be defined as the union
of the states of all its component balancers. The safety and liveness of the
network follow naturally from the above network definition and the proper-
ties of balancers, namely, that it is always the case that >¥ ' z; > Y% ' v,
and for any finite sequence of m input tokens, within finite time the network
reaches a quiescent state, i.e. one in which >¥ ' y; = m.

It is important to note that we make no assumptions about the timing
of token transitions from balancer to balancer in the network — the net-
work’s behavior is completely asynchronous. Although balancer transitions
can occur concurrently, it is convenient to model them using an interleaving
semantics in the style of Lynch and Tuttle [24]. An ezecution of a network
is a finite sequence sg, €1, S1, . . . €n, S, Or infinite sequence sy, €1, 81, . .. of al-
ternating states and balancer transitions such that for each (s;, €11, 8:41),
the transition e;;; carries state s; to s;41. A schedule is the subsequence of
transitions occurring in an execution. A schedule is valid if it is induced by
some execution, and complete if it is induced by an execution which results
in a quiescent state. A schedule s is sequential if for any two transitions
e; = (t;,b;) and e; = (¢;,b;), where ¢; and t; are the same token, then all
transitions between them also involve that token.
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Figure 2: A sequential execution for a BITONIC[4] counting network.

On a shared memory multiprocessor, a balancing network is implemented
as a shared data structure, where balancers are records, and wires are pointers
from one record to another. Each of the machine’s asynchronous processors
runs a program that repeatedly traverses the data structure from some input
pointer (either preassigned or chosen at random) to some output pointer,
each time shepherding a new token through the network (see section 5).

We define the depth of a balancing network to be the maximal depth of
any wire, where the depth of a wire is defined as 0 for a network input wire,
and

max(depth(zo), depth(z1)) + 1

for the output wires of a balancer having input wires zo and z;. We can thus
formulate the following straightforward yet useful lemma:

Lemma 2.1 If the transition of a token from the input to the output by any
balancer (including the time spent traversing the input wire) takes at most A
time, then any input token will exit the network within time at most A times
the network depth.

A counting network of width w is a balancing network whose outputs
Yo, --, Yw—1 satisfy the following step property:

In any quiescent state, 0 <y, —y; <1 for any 2 < j.
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To illustrate this property, consider an execution in which tokens traverse
the network sequentially, one completely after the other. Figure 2 shows such
an execution on a BITONIC[4] counting network which we will define formally
in Section 3. As can be seen, the network moves input tokens to output wires
in increasing order modulo w. Balancing networks having this property are
called counting networks because they can easily be adapted to count the
total number of tokens that have entered the network. Counting is done by
adding a “local counter” to each output wire z, so that tokens coming out of
that wire are consecutively assigned numbers 2,24+ w,...,74 (y; — 1)w. (This
application is described in greater detail in Section 5.)

The step property can be defined in a number of ways which we will use
interchangeably. The connection between them is stated in the following
lemma:

Lemma 2.2 If yo,...,yw_1 1S a sequence of non-negative integers, the fol-
lowing statements are all equivalent:

1. Forany1<3,0<y, —y; <1.

2. Eithery, =vy; for all+,j, or there exists some c such that for any 1 < ¢
and j > ¢, gi—y; = 1.

8. Ifm =320y, v = [m«;ﬂ'

It 1s the third form of the step property that makes counting networks usable
for counting.

Proof: We will prove that 3 implies 1, 1 implies 2, and 2 implies 3.

For any indexes a < b, since 0 < a < b < w, it must be that 0 <
[m ‘ﬂ — [ w < 1. Thus 3 implies 1.

Assume 1 holds for the sequence yo, ..., Yw_1. If for every 0 <1 < 7 < w,
y; —y; = 0, then 2 follows. Otherwise, there exists the largest a such that
there is a b for which a < b and y, — y» = 1. From a’s being largest we get
that Yo —ya+1 = 1, and from 1 we get y; = y, for any 0 <z < a and y; = Ya11
for any ¢ +1 < 2 < w. Choosing ¢ = a + 1 completes the proof. Thus 1
implies 2.

Assume by way of contradiction that 3 does not hold and 2 does. Without
loss of generality, there thus exists the smallest a such that m = ¥ ' y; and
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Yo F [Mw If y, < [m_ﬂ’ then since Y-} y; = m, by simple arithmetic

there m:st exista b > a :uch that y, > [’"T_bw Since 0 < [%W - [’"T_bw <1,

m—a

Y — Ya > 1, and no c as in 2 exists, a contradiction. Similarly, if y, > [ ,

there exists a b # a such that y, < ["LT_I’L and y, — yp > 2. Again no c as in
2 exists, a contradiction. Thus 2 implies 3.
|

The requirement that a quiescent counting network’s outputs have the
step property might appear to tell us little about the behavior of a counting
network during an asynchronous execution, but in fact it is surprisingly pow-
erful. Even in a state in which many tokens are passing through the network,
the network must eventually settle into a quiescent state if no new tokens
enter the network. This constraint makes it possible to prove such important
properties as the following:

Lemma 2.3 Suppose that in a given ezecution a counting network with out-
put sequence Yo, ..., Yuw_1 1S 10 a State where m tokens have entered the net-
work and m' tokens have left it. Then there exist non-negative integers d;,
0 <1 < w, such that Z;":—Ol di=m—-—m' and y; + d; = [%w

Proof: Suppose not. There is some execution e for which the non-negative
integers d;, 0 < 7 < w do not exist. If we extend e to a complete execution e’
allowing no additional tokens to enter the network, then at the end of €’ the
network will be in a quiescent state where the step property does not hold,
a contradiction. |

In a sequential execution, where tokens traverse the network one at a time,
the network is quiescent every time a token leaves. In this case the :-th token
to enter will leave on output 2 mod w. The lemma shows that in a concurrent,
asynchronous execution of any counting network, any “gap” in this sequence
of mod w counts corresponds to tokens still traversing the network. This
critical property holds in any execution, even if quiescent states never occur,
and even though the definition makes no explicit reference to non-quiescent
states.
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Figure 3: Recursive Structure of a BITONIC[8] Counting Network.

2.2 Counting vs. Sorting

A balancing network and a comparison network are isomorphic if one can
be constructed from the other by replacing balancers by comparators or vice
versa. The counting networks introduced in this paper are isomorphic to
the Bitonic sorting network of Batcher [7] and to the Periodic Balanced
sorting network of Dowd, Perl, Rudolph and Saks [9]. There is a sense in
which constructing counting networks is “harder” than constructing sorting
networks:

Theorem 2.4 If a balancing network counts, then its isomorphic compari-
son network sorts, but not vice versa.

Proof: It iseasy to verify that balancing networks isomorphic to the EVEN-
ODD or INSERTION sorting networks [8] are not counting networks.

For the other direction, we construct a mapping from the comparison
network transitions to the isomorphic balancing network transitions.

By the 0-1 principle [8], a comparison network which sorts all sequences
of 0’s and 1’s is a sorting network. Take any arbitrary sequence of 0’s and 1’s
as inputs to the comparison network, and for the balancing network place a
token on each 0 input wire and no token on each 1 input wire. We now show
that if we run both networks in lockstep, the balancing network will simulate
the comparison network, that is, the correspondence between tokens and 0’s

holds.
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The proof is by induction on the depth of the network. For level 0 the
claim holds by construction. Assuming it holds for wires of a given level k,
let us prove it holds for level £ + 1. On every gate where two 0’s meet in
the comparison network, two tokens meet in the balancing network, so one
0 leaves on each wire in the comparison network on level £ + 1, and one
token leaves on each line in the balancing network on level £ + 1. On every
gate where two 1’s meet in the comparison network, no tokens meet in the
balancing network, so a 1 leaves on each level £ + 1 wire in the comparison
network, and no tokens leave in the balancing network. On every gate where
a 0 and 1 meet in the comparison network, the 0 leaves on the lower wire
and the 1 on the upper wire on level £ + 1, while in the balancing network
the token leaves on the lower wire, and no token leaves on the upper wire.

If the balancing network is a counting network, i.e., it has the step prop-
erty on its output level wires, then the comparison network must have sorted
the input sequence of 0’s and 1’s. ]

Corollary 2.5 The depth of any counting network is at least Q(logn).

Though in general a balancing network isomorphic to a sorting network
is not guaranteed to count, its outputs will always have the step property if
the input sequence satisfies the following smoothness property:

A sequence zg, ..., Zy—1 is smooth if for all 7 < 7, |z; — z;| < 1.

This observation is stated formally below:

Theorem 2.6 If a balancing network is isomorphic to a sorting network,
and its input sequence 1s smooth, then its output sequence tn any quiescent
state has the step property.

Proof: The proof follows along the lines of Theorem 2.4. We will show
the result by constructing a mapping, this time from the transitions of the
balancing network to the transitions of the isomorphic sorting network. How-
ever, unlike in the proof of Theorem 2.4, we will map sets of transitions of
the balancing network to single transitions of the isomorphic sorting network.
We do this by considering the number of tokens that have passed along each
wire of a balancing network in an execution ending in a quiescent state. From
this perspective the transitions of a balancer gate can be mapped to those of
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a mathematical device that receives integers zo and z; (numbers of tokens)
and outputs integers [%w and {%J

Given that the input sequence to the balancing network is smooth, there
is a quantity = such that each input wire carries either z or « + 1 tokens.
By simple induction on the depth of the network, one can prove that the
inputs and outputs of any balancer in a network with = or z + 1 tokens on
each input wire, will have as outputs z or z 4+ 1 tokens, and that for a given
balancer:

1. If both input wires have z tokens, then both outputs will have z.

2. If one input has z and the other has z + 1, then the output on the top
wire will be £ + 1 tokens and on the bottom wire it will be = tokens.

3. If both input wires have z 4 1 tokens, then both output wires will have
z + 1 tokens.

This behavior, if one considers z and z + 1 as integers, maps precisely
to that of comparators of numeric values in a comparison network. Conse-
quently, in a quiescent state of a balancing network isomorphic to a sorting
network, if the network as a whole was given a smooth input sequence, its
output sequence must map to a sorted sequence of integers z and = + 1,
implying that it has the step property. [ ]

3 A Bitonic Counting Network

Naturally, counting networks are interesting only if they can be constructed.
In this section we describe how to construct a counting network whose width
is any power of 2. The layout of this network is isomorphic to Batcher’s
famous Bitonic sorting network [7, 8], though its behavior and correctness
arguments are completely different. We give an inductive construction, as
this will later aid us in proving its correctness.

Define the width w balancing network MERGER[w] as follows. It has
two sequences of inputs of length w/2, z and ', and a single sequence of
outputs y, of length w. MERGER|w]| will be constructed to guarantee that in
a quiescent state where the sequences z and z’' have the step property, y will
also have the step property, a fact which will be proved in the next section.
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Figure 4: A MERGER [8] balancing network.

We define the network MERGER[w] inductively (see example in Figure 4).
Since w is a power of 2, we will repeatedly use the notation 2k in place of w.
When k is equal to 1, the MERGER[2k] network consists of a single balancer.
For k > 1, we construct the MERGER[2k] network with input sequences z
and z' from two MERGER|k] networks and k balancers. Using a MERGER[k]
network we merge the even subsequence zg, zs,...,zgx_2 of z with the odd
subsequence z7, 25, ..., z,_; of 2’ (i.e., the sequence zq, ..., Tg_2,2],..., 25
is the input to the MERGER[k] network) while with a second MERGER[]
network we merge the odd subsequence of z with the even subsequence of
z'. Call the outputs of these two MERGER[k]| networks z and 2. The final
stage of the network combines z and 2’ by sending each pair of wires z; and
2z, into a balancer whose outputs yield yy; and y2;41.

The MERGER|[w] network consists of log w layers of w/2 balancers each.
MERGER[w| guarantees the step property on its outputs only when its inputs
also have the step property— but we can ensure this property by filtering
these inputs through smaller counting networks. We define BITONIC|w] to
be the network constructed by passing the outputs from two BITONIC[w/2]
networks into a MERGER[w] network, where the induction is grounded in
the BITONIC[1] network which contains no balancers and simply passes its
input directly to its output. This construction gives us a network consisting

of (10512""'1) layers each consisting of w/2 balancers.

Yo

V2
Y3
Y
Ys
Ye
Y7
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3.1 Proof of Correctness

In this section we show that BITONIC|w]| is a counting network. Before ex-
amining the network itself, we present some simple lemmas about sequences
having the step property.

Lemma 3.1 If a sequence has the step property, then so do all its subse-
quences.

Lemma 3.2 If z,...,z5_1 has the step property, then its even and odd
subsequences satisfy:

k/2-1 k/2-1

Z Toi = {Z /Zw and Z Tait1 = {Z /ZJ

Proof: Either zy; = 3,41 for 0 <7 < k/2, or by Lemma 2.2 there exists a
unique j such that z3; = 29541 + 1 and z9; = @41 foralls # 7,0 <z < k/2.
In the first case, 3 z3; = 3 ©2,41 = Y. z;/2, and in the second case Y. zy; =
[ z;/2] and ¥ @1 = [ X 24:/2]. ]

Lemma 3.3 Let zo, .. mk 1 and Yo, ..., Yk_1 be arbitrary sequences having
the step property. If Ez ;= "ty then o, =y; for all 0 <1 < k.

Proof: Let m =3 z; =3 y;. By Lemma 2.2, z;, =y, = [mk—ﬂ =
Lemma 3.4 Let zo, .. mk 1 and Yo, ..., Yk_1 be arbitrary sequences having

the step property. If Ez da; = Yy, + 1, then there exists a unique j,
0<7<k, suchthatz; =y;+1, andz, =y, fori# 7, 0<1<k.

Proof: Let m = > z; = Yy, + 1. By Lemma 2.2, z; = [m_ﬂ and y; =

k
["L_Tl_ﬂ These two terms agree for all 2, 0 <2 < k, except for the unique 2

such that : =m —1 (mod k). |
We now show that the MERGER[w| networks preserves the step property.

Lemma 3.5 If MERGER[2k] is quiescent, and its inputs xo,...,Tk_1 and
Zgy, ..., L_; both have the step property, then its oulputs yo,...,Y2k—1 have
the step property.
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Proof: We argue by induction on log k.

If 2k = 2, MERGER/[2k] is just a balancer, so its outputs are guaranteed
to have the step property by the definition of a balancer.

If 2k > 2, let zp,..., 251 be the outputs of the first MERGER[k] subnet-
work, which merges the even subsequence of z with the odd subsequence of
z', and let zy,...,2,_; be the outputs of the second. Since z and z’ have
the step property by assumption, so do their even and odd subsequences
(Lemma 3.1), and hence so do z and 2’ (induction hypothesis). Furthermore,
Yzo= 2z /2]+ | X z/2] and X 2l = | Y z;/2| + [ z}/2] (Lemma 3.2). A
straightforward case analysis shows that } 2; and 3 2! can differ by at most
1.

We claim that 0 <y; —y; < 1foranyz < j. If ¥ 2 =3 2, then Lemma
3.3 implies that z; = 2! for 0 <1 < k/2. After the final layer of balancers,

Yi — Y5 = 2li/2) — 2l5/2)

and the result follows because z has the step property.

Similarly, if 2z, and Y 2! differ by one, Lemma 3.4 implies that z, = 2]
for 0 <17 < k/2, except for a unique £ such that z, and z; differ by one. Let
maz(zg,2;) = ¢ + 1 and min (24, 2;) = = for some non-negative integer z.
From the step property on z and 2’ we have, forall e < 4, z; =2/ =z + 1
and for all 2 > £ z; = z; = . Since z; and z; are joined by a balancer with
outputs ya¢ and youi1, it follows that yoy = = + 1 and yar41 = 2. Similarly,
z; and 2z, for = # £ are joined by the same balancer. Thus for any ¢ < ¢,
Y2i = Y2i+1 = ¢ + 1 and for any ¢ > ¥, ya; = y2:+1 = . The step property
follows by choosing ¢ = 2¢ + 1 and applying Lemma 2.2.

|

The proof of the following theorem is now immediate.

Theorem 3.6 In any quiescent state, the outputs of BITONIC|w]| have the
step property.

4 A Periodic Counting Network

In this section we show that the bitonic network is not the only counting net-
work with depth O(log®n). We introduce a new counting network with the
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interesting property that it is periodic, consisting of a sequence of identical
subnetworks. Fach stage of this periodic network is interesting in its own
right, since it can be used to achieve barrier synchronization with low con-
tention. This counting network is isomorphic to the elegant balanced periodic
sorting network of Dowd, Perl, Rudolph, and Saks [9]. However, its behavior,
and therefore also our proof of correctness, are fundamentally different.

We start by defining chains and cochains, notions taken from [9]. Given
a sequence z = {z;[z = 0,...,n — 1}, it is convenient to represent each index
(subscript) as a binary string. A level i chain of z is a subsequence of  whose
indices have the same ¢ low-order bits. For example, the subsequence zZ of
entries with even indices is a level 1 chain, as is the subsequence 2 of entries
with odd indices. The A-cochain of x, denoted z4, is the subsequence whose
indices have the two low-order bits 00 or 11. For example, the A-cochain of
the sequence zo, . .., Z7 is o, T3, T4, T7. The B-cochain zP is the subsequence
whose low-order bits are 01 and 10.

Define the network BLOCK[k] as follows. When k is equal to 2, the
BLOCK|k| network consists of a single balancer. The BLOCK[2k] network for
larger k is constructed recursively. We start with two BLOCK[k] networks A
and B. Given an input sequence z, the input to A is z#, and the input to
B is zB. Let y be the output sequence for the two subnetworks, where y4
is the output sequence for A and y® the output sequence for B. The final
stage of the network combines each y# and y? in a single balancer, yielding
final outputs 2,; and 2s;11. Figure 5 describes the recursive construction of a
BLOCK [8] network. The PERIODIC[2k| network consists of log & BLOCK|[2k]
networks joined so that the :** output wire of one is the 7** wire of the next.
Figure 6 is a PERIODIC[8] counting network 3

This recursive construction is quite different from the one used by Dowd
et al. We chose this construction because it yields a substantially simpler
and shorter proof of correctness.

4.1 Proof of Correctness

In the proof we use the technical lemmas about input and output sequences
presented in Section 3. The following lemma will serve a key role in the

3Despite the apparent similarities between the layouts of the BLock and MERGER
networks, there is no permutation of wires that yields one from the other.
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inductive proof of our construction:

Lemma 4.1 For: > 1,
1. The level v chain of  1s a level 2 — 1 chain of one of x’s cochains.

2. The level v chain of a cochain of  is a level 1 + 1 chain of z.
Proof: Follows immediately from the definitions of chains and cochains. m

As will be seen, the price of modularity is redundancy, that is, balancers in
lower level blocks will be applied to sub-sequences that already have the de-
sired step property. We therefore present the following lemma that amounts
to saying that applying balancers “evenly” to such sequences does not hurt:

Lemma 4.2 If z and z' are sequences each having the step property, and
pairs z; and x are routed through a balancer, yielding outputs y; and y., then
the sequences y and y' each have the step property.

Proof: For any + < j, given that z and z’ have the step property, 0 <
z; —z; < land 0 < 2} — a:; < 1 and therefore the difference between any
two wires is 0 < z; 4z} — (z; + z}) < 2. By definition, for any 4, y; = [%ﬂﬂ
zi—l—zg
2
0 <y; —y; <1, implying the step property. [ |

and y! = { J, and so for any ¢ < 7, it is the case that 0 <y; —y,; <1 and

To prove the correctness of our construction for PERIODIC[k|, we will
show that if a block’s level ¢ input chains have the step property, then so
do its level 7 — 1 output chains, for ¢ in {0,...,logk—1}. This observation
implies that a sequence of log ¥ BLOCK[k] networks will count an arbitrary
number of inputs.

Lemma 4.3 Let BLOCK[2k] be quiescent with input sequence z and output
sequence y. If z€ and z° both have the step property, so doesy.

Proof: We argue by induction on log k. The proof is similar to that of
Lemma 3.5.

For the base case, when 2k = 2, BLOCK[2k] is just a balancer, so its out-
puts are guaranteed to have the step property by the definition of a balancer.
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Figure 5: A BLOCK [8] balancing network.

For the induction step, assume the result for BLOCK[k] and consider a
BLOCK|[2k]. Let z be the input sequence to the block, 2z the output sequence
of the nested blocks A and B, and y the block’s final output sequence. The

BE and 299, and the inputs to B are z%°

inputs to A are the level 2 chains z
and z°F. By Lemma 4.1, each of these is a level 1 chain of 24 or zZ. These
sequences are the inputs to A and B, themselves of size k, so the induction
hypothesis implies that the outputs z4 and 22 of A and B each has the step
property.

Lemma 3.2 implies that 0 < Y zf% — ¥ 27° < 1 and 0 < S 29% —
S 2929 < 1. Tt follows that the sum of A’s inputs, 3 zZ% + ¥ 299, and the
sum of B’s inputs, 3 279 + - 299, differ by at most 1. Since balancers do
not swallow or create tokens, 3. 24 and 3 2% also differ by at most 1. If they

are equal, then Lemma 3.3 implies that zzA = zf = Z9; = Z9i+1. For 2 < 3,

Yi = Y5 = Zlipa) — 2ipa)

and the result follows because z# has the step property.

Similarly, if 3" 22 and 3" 22 differ by one, Lemma 3.4 implies that z# = 22
for 0 <4 < k, except for a unique £ such that z;' and 2f differ by one. Let
maz(zf,2P) = z + 1 and min(z;, 2f) = z for some non-negative integer z.
From the step property on 24 and z® we have, foralls < £, 2 = 22 =z +1
and for all 7 > £ 224 = 22 = z. Since z{' and 2z are joined by a balancer with

Yo

V2
Y3
Y4
Ys
Ve
Y7
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outputs yoy and yagr1, 1t follows that yoy = z + 1 and yay; = z. Similarly,

2z and 2P for ¢+ # £ are joined by the same balancer. Thus for any i < £,

1

Y2i = Y2i+1 = ¢ + 1 and for any ¢ > ¥, ya; = y2:+1 = . The step property
follows by choosing ¢ = 2¢ + 1 and applying Lemma 2.2. ]

Theorem 4.4 Let BLOCK[2k] be quiescent with input sequence z and output
sequence y. If all the level 1 tnput chains to a block have the step property,
then so do all the level 1 — 1 output chains.

Proof: We argue by induction on 2. Lemma 4.3 provides the base case,
when 7 is 1.

For the induction step, assume the result for chains up toz— 1. Let = be
the input sequence to the block, z the output sequence of the nested blocks A
and B, and y the block’s final output sequence. If 2 > 1, Lemma 4.1 implies
that every level ¢ chain of z is entirely contained in one cochain or the other.
Each level 7 chain of z contained in z4 (z®) is a level 2 — 1 chain of z4 (28),
each has the step property, and each is an input to A (B). The induction
hypothesis applied to A and B implies that the level 7+ — 2 chains of 24 and
2B have the step property. But Lemma 4.1 implies that the level 1 — 2 chains
of z# and 2P are the level 1 — 1 chains of z. By Lemma 4.2, if the level ¢ — 1
chains of z have the step property, so do the level 2 — 1 chains of y. [ ]

By Theorem 2.4, the proof of Theorem 4.4 constitutes a simple alterna-
tive proof that the balanced periodic comparison network of [9] is a sorting
network.

5 Implementation and Applications

In a MIMD shared-memory architecture, a balancer can be represented as
a record with two fields: toggle is a boolean value that alternates between
0 and 1, and nezt is a 2-element array of pointers to successor balancers.
A balancer is a leaf if it has no successors. A process shepherds a token
through the network by executing the procedure shown in Figure 7. In our
implementations, we preassigned processes to input lines so that they were
evenly distributed. Thus, a given process always started shepherding tokens
from the same preassigned line. It toggles the balancer’s state, and visits
the next balancer, halting when it reaches a leaf. The network’s wiring



5 IMPLEMENTATION AND APPLICATIONS

st Block[8] 2nd Block[8] 3rd Block[8]
o —@ @ ® o — ® ®
K ¢ ¢ ¢
K2 ® ® ®
%3 I::
. i L
X5 ® o ®
X6 ® ® @
Ky —@ ® ® ® ® @

Periodic[8]
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balancer = [toggle: boolean, next: array [0..1] of ptr to balancer]
traverse(b: balancer)
loop until leaf(b)
i:= rmw(b.toggle := — b.toggle)
b := b.next[i]
end loop
end traverse

Figure 7: Code for Traversing a Balancing Network

information can be cached by each process, and so the transition time of
a balancer will be almost entirely a function of the efficiency of the toggle
implementation. Advancing the toggle state can be accomplished either by
a short critical section guarded by a spin lock?, or by a read-modify-write
operation (rmw for short) if the hardware supports it. Note that all values
are bounded.

We illustrate the utility of counting networks by constructing highly con-
current implementations of three common data structures: shared counters,
producer/consumer buffers, and barriers. In Section 6 we give some experi-
mental evidence that counting network implementations have higher through-
put than conventional implementations when contention is sufficiently high.

5.1 Shared Counter

A shared counter [12, 10, 16, 31] is a data structure that issues consecutive
integers in response to increment requests. More formally, in any quiescent
state in which m increment requests have been received, the values 0 to
m — 1 have been issued in response. To construct the counter, start with
an arbitrary width-w counting network. Associate an integer cell ¢; with the
1th output wire. Initially, ¢; holds the value 7. A process requests a number
by traversing the counting network. When it exits the network on wire 7, 1t
atomically adds w to the value of ¢; and returns ¢;’s previous value.
Lemmas 2.1 and 2.3 imply that:

“A spin lock is just a shared boolean flag that is raised and lowered by at most one
processor at a time, while the other processors wait.
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Lemma 5.1 Let « be the largest number yet returned by any increment re-
quest on the counter. Let R be the set of numbers less than  which have not
been issued to any increment request. Then

1. The size of R is no greater than the number of operations still in
progress.

2. Ify € R, theny > z — w|R)|.

3. Fach number in R will be returned by some operation in time A-d+ A,
where d is the depth of the network, A\ is the mazimum balancer delay,
and A, 1s the mazimum time to update a cell on an output wire.

5.2 Producer/Consumer Buffer

A producer/consumer buffer is a data structure in which items inserted by a
pool of m producer processes are removed by a pool of m consumer processes.
The buffer algorithm used here is essentially that of Gottlieb, Lubachevsky,
and Rudolph [16]. The buffer is a w-element array buff[0..w — 1]. There
are two w-width counting networks, a producer network, and a consumer
network. A producer starts by traversing the producer network, leaving the
network on wire z. It then atomically inspects buff[¢], and, if it is L, replaces
it with the produced item. If that position is full, then the producer waits
for the item to be consumed (or returns an exception). Similarly, a consumer
traverses the consumer network, exits on wire 7, and if buff[7] holds an item,
atomically replaces it with 1. If there is no item to consume, the consumer
waits for an item to be produced (or returns an exception).
Lemmas 2.1 and 2.3 imply that:

Lemma 5.2 Suppose m producers and m' consumers have entered a pro-
ducer/consumer buffer built out of counting networks of depth d. Assume
that the ttime to update each buff[i] once a process has left the counting net-
work is negligible. Then if m < m/, every producer leaves the network in time
dA. Similarly, if m > m/, every consumer leaves the network in time dA.

5.3 Barrier Synchronization

A barrier is a data structure that ensures that no process advances beyond
a particular point in a computation until all processes have arrived at that
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point. Barriers are often used in highly-concurrent numerical computations
to divide the work into disjoint phases with the property that no process
executes phase 7z while another process concurrently executes phase 7 + 1.

A simple way to construct an n-process barrier is by exploiting the fol-
lowing key observation: Lemma 2.3 implies that as soon as some process
exits with value n, the last phase must be complete, since the other n — 1
processes must already have entered the network.

We present a stronger result: one does not need a full counting network
to achieve barrier synchronization. A threshold network of width w is a
balancing network with input sequence z; and output sequence y;, such that

the following holds:

In any quiescent state, y,_1 = m if and only if mw < Y} z; <

(m+ 1w.

Informally, a threshold network can “detect” each time w tokens have passed
through it. A counting network is a threshold network, but not vice-versa.

Both the BLOCK|w| network used in the periodic construction and the
MERGER[w] network used in the bitonic construction are threshold networks,
provided the input sequence satisfies the smoothness property. Recall that a
sequence Zo, ..., To—1 18 smooth if for all ¢ < j, |z; — z;| < 1. Every sequence
with the step property is smooth, but not vice-versa. The following two lem-
mas state that smoothness is “stable” under partitioning into subsequences
or application of additional balancers.

Lemma 5.3 Any subsequence of a smooth sequence is smooth.

Lemma 5.4 If the input sequence to a balancing network is smooth, so 1s
the output sequence.

Proof: Observe that if the inputs to a balancer differ by at most one, then
so do its outputs. By a simple induction on the depth of the network, the
output sequence from the balancers at any level of a balancing network with
a smooth input sequence, is a permutation of its input sequence, hence, the
network’s output sequence is smooth. [ ]

Theorem 5.5 If the input sequence to BLOCK[w] is smooth, then BLOCK[w]
15 a threshold network.
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Proof: Let z; be the block’s input sequence, z; the output sequence of
nested blocks A and B, and y; the block’s output sequence.

We first show that if y,,—1 = m, then mw < Y z; < (m + 1)w. We argue
by induction on w, the block’s width. If w = 2, the result is immediate.
Assume the result for w = k and consider BLOCK[2k] in a quiescent state
where ys,_1 = m. Since z is smooth by hypothesis, by Lemma 5.4 so are
z and y. Since ysx_1 and ysr_o are outputs of a common balancer, ysr_o is
either m or m + 1. The rest is a case analysis.

If yor_1 = yar_2 = m, then 23,1 = 221,_2 = m. By the induction hy-
pothesis and Lemma 5.3 applied to 4 and B, mk < Y. z# < (m + 1)k and
mk < Em? < (m 4+ 1)k, and therefore 2mk < Eazf‘ + Em? <2(m+ 1)k.

If yar_o = m + 1, then one of 2 and 2P is m, and the other is m + 1.
Without loss of generality suppose 24 = m+1 and z? = m. By the induction
hypothesis, (m+1)k < Eazf‘ < (m+2)k and mk < Emf < (m+1)k. Since z
is smooth, by Lemma 5.3 zB is smooth and some element of 28 must be equal
m, which in turn implies that no element of z4 exceeds m + 1. This bound
implies that (m + 1)k = Ea:f‘. It follows that 2mk + k£ < Eazf‘ + Em? <
2(m + 1)k, yielding the desired result.

We now show that if mw < Y} z; < (m + 1)w, then y,—1 = m. We again
argue by induction on w, the block’s width. If w = 2, the result is immediate.
Assume the result for w = k and consider BLOCK[2k] in a quiescent state
where 2mk < ¥ z;, < 2(m+1)k. Since z is smooth, by Lemma 5.4 m < yy;_;.
Furthermore, since z is smooth, by Lemma 5.3, either mk < 3" z# < (m+1)k
and mk < ¥ zP < (m + 1)k or vice versa, which by the induction hypothesis
implies that z,‘f_l + z,]f_l < 2m + 1. It follows that ysx_1 < m + 1, which
completes our claim. [ ]

The proof that the MERGER[w| network is also a threshold network if its
inputs are smooth is omitted because it is almost identical to that of Theorem
5.5. A threshold counter is constructed by associating a local counter ¢; with
each output wire z, just as in the counter construction.

We construct a barrier for n processes, where n = 0 mod w, using a
width-w threshold counter. The construction is an adaptation of the “sense-
reversing” barrier construction of [18] as follows. Just as for the counter
construction, we associate a local counter ¢; with each output wire z. Let F
be a boolean flag, initially false. Let a process’s phase at a given point in the
execution of the barrier algorithm be defined as 0 initially, and incremented



6 PERFORMANCE 23

by 1 every time the process begins traversing the network. With each phase
the algorithm will associate a sense, a boolean value reflecting the phase’s
parity: true for the first phase, false for the second, and so on. As illustrated
in Figure 8, the token for process P, after a phase with sense s, enters the
network on wire P mod w. If it emerges with a value not equal to n—1 mod n,
then it waits until F' agrees with s before starting the next phase. If it emerges
with value n — 1 mod n, it sets F' to s, and starts the next phase.

As an aside, we note that a threshold counter implemented from a BLOCK %]
network can be optimized in several additional ways. For example, it is only
necessary to associate a local counter with wire w — 1, and that counter can
be modulo n rather than unbounded. Moreover, all balancers that are not
on a path from some input wire to exit wire w — 1 can be deleted.

Theorem 5.6 If P exits the network with value n after completing phase ¢,
then every other process has completed phase ¢, and no process has started

phase ¢ + 1.

Proof: We first observe that the input to BLOCK[w] is smooth, and there-
fore it is a threshold network. We argue by induction. When P receives value
v =n — 1 at the end of the first phase, exactly n tokens must have entered
BLocK|w]|, and all processes must therefore have completed the first phase.
Since the boolean F' is still false, no process has started the second phase.
Assume the result for phase ¢. If @) is the process that received value n — 1
at the end of that phase, then exactly ¢n tokens had entered the network
when () performed the reset of F'. If P receives value v = n — 1 at the end of
phase ¢+ 1, then exactly (¢ + 1)n tokens have entered the network, implying
that an additional n tokens have entered, and all n processes have finished
the phase. No process will start the next phase until F' is reset. [ ]

6 Performance

6.1 Overview

In this section, we analyze counting network throughput for computations
in which tokens are eventually spread evenly through the network. As men-
tioned before, to ensure that tokens are evenly spread across the input wires,
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barrier()
v := exit wire of traverse(wire P mod w)
ifv=n—-1 (modw)

then F' :— s
else wait until /' = s
end 1if

s = —s

end barrier

Figure 8: Barrier Synchronization Code

each processor could be assigned a fixed input wire. Alternatively, processors
could choose input wires at random.

The network saturation S at a given time is defined to be the ratio of
the number of tokens n present in the network (i.e. the number of proces-
sors shepherding tokens through it) to the number of balancers. If tokens
are spread evenly through the network, then the saturation is just the ex-
pected number of tokens at each balancer. For the BITONIC and PERIODIC
networks, § = 2n/wd. The network is oversaturated if S > 1, and undersat-
urated if § < 1.

An oversaturated network represents a full pipeline, hence its throughput
is dominated by the per-balancer contention, not by the network depth. If
a balancer with S tokens makes a transition in time A(S), then approxi-
mately w/2 tokens emerge from the network every A(S) time units, yielding
a throughput of w/2A(S). A is an increasing function whose exact form
depends on the particular architecture, but similar measures of degradation
have been observed in practice to grow linearly [5, 25]. The throughput of
an oversaturated network is therefore maximized by choosing w and d to
minimize S, bringing it as close as possible to 1.

The throughput of an undersaturated network is dominated by the net-
work depth, not by the per-balancer contention, since the network pipeline
is partially empty. Every 1/S time units, w/2 tokens leave the network,
yielding throughput “’2—5 The throughput of an undersaturated network is
therefore maximized by choosing w and d to increase .S, bringing it as close
as possible to 1.

This analysis is necessarily approximate, but it is supported by exper-
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Figure 9: Bitonic Shared Counter Implementations
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imental evidence. In the remainder of this section, we present the results
of timing experiments for several data structures implemented using count-
ing networks. As a control, we compare these figures to those produced by
more conventional implementations using spin locks These implementations
were done on an Encore Multimax, using Mul-T [21], a parallel dialect of
Lisp. The spin lock is a simple “test-and-test-and-set” loop [26] written in
assembly language, and provided by the Mul-T run-time system. In our
implementations, each balancer is protected by a spin lock.

6.2 The Shared Counter

We compare seven shared counter implementations: bitonic and periodic
counting networks of widths 16, 8, and 4, and a conventional spin lock im-
plementation (which can be considered a degenerate counting network of
width 2). For each network, we measured the elapsed time necessary for a
220 (approximately a million) tokens to traverse the network, controlling the
level of concurrency.

For the bitonic network, the width-16 network has 80 balancers, the
width-8 network has 24 balancers, and the width-4 network has 6 balancers.
In Figure 9, the horizontal axis represents the number of processes executing
concurrently. When concurrency is 1, each process runs to completion be-
fore the next one starts. The number of concurrent processes increases until
all sixteen processes execute concurrently. The vertical axis represents the
elapsed time (in seconds) until all 22° tokens had traversed the network. With
no concurrency, the networks are heavily undersaturated, and the spin lock’s
throughput is the highest by far. As saturation increases, however, so does
the throughput for each of the networks. The width-4 network is undersatu-
rated at concurrency levels less than 6. As the level of concurrency increases
from 1 to 6, saturation approaches 1, and the elapsed time decreases. Beyond
6, saturation increases beyond 1, and the elapsed time eventually starts to
grow. The other networks remain undersaturated for the range of the exper-
iment; their elapsed times continue to decrease. Each of the networks begins
to outperform the spin lock at concurrency levels between 8 and 12. When
concurrency is maximal, all three networks have throughputs at least twice
the spin lock’s. Notice that as the level of concurrency increases, the spin
lock’s performance degrades in an approximately linear fashion (because of
increasing contention).
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6 PERFORMANCE

spin | width 2 | width 4 | width 8
bitonic | 57.74 17.51 10.44 14.25
periodic 17.90 12.03 19.99

28

Figure 11: Producer/Consumer Buffer Implementations

The performance of the periodic network (Figure 10) is similar. The
width-4 network reaches saturation 1 at 8 processes; its throughput then
declines slightly as it becomes oversaturated. The other networks remain
undersaturated, and their throughputs continue to increase. Each of the
counting networks outperforms the spin lock at sufficiently high levels of
contention. At 16 processes, the width-4 and width-8 networks have almost
twice the throughput of the single spin-lock implementation. Each bitonic
network has a slightly higher throughput than its periodic counterpart.

6.3 Producer/Consumer Buffers

We compare the performance of several producer/consumer buffers imple-
mented using the algorithm of Gottlieb, Lubachevsky, and Rudolph [16] dis-
cussed in Section 5. Each implementation has 8 producer processes, which
continually produce items, and 8 consumer processes, which continually con-
sume items. If a producer (consumer) process finds its buffer slot full (empty),
it spins until the slot becomes empty (full).

We consider buffers with bitonic and periodic networks of width 2, 4,
and 8. As a final control, we tested a circular buffer protected by a single
spin lock, a structure that permits no concurrency between producers and
consumers. Figure 11 shows the time in seconds needed to produce and
consume 22° tokens. Not surprisingly, the single spin-lock implementation is
much slower than any of the others. The width-2 network is heavily over-
saturated, the bitonic width-4 network is slightly oversaturated, while the
others are undersaturated.
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Spin lock | Barrier 4 | Barrier 8 | Barrier 16
time (seconds) 62.05 43.53 41.27 42.32

Figure 12: Barrier Implementations

6.4 Barrier Synchronization

Figure 12 shows the time (in seconds) taken by 16 processes to perform 2'¢
barrier synchronizations. The remaining columns show BLOCK[k] networks
of width 4, 8, and 16. The last column shows a simple sense-reversing barrier
in which the BLOCK network is replaced by a single counter protected by a
spin lock. The three network barriers are equally fast, and each takes about
two-thirds the time of the spin-lock implementation.

7 Verifying That a Network Counts

The “0-1 law” states that a comparison network is a sorting network if (and
only if) it sorts input sequences consisting entirely of zeroes and ones, a
property that greatly simplifies the task of reasoning about sorting networks.
In this section, we present an analogous result: a balancing network having m
balancers is a counting network if (and only if) it satisfies the step property
for all sequential executions in which up to 2™ tokens have traversed the
network. This result simplifies reasoning about counting networks, since it
is not necessary to consider all concurrent executions. However, as we show,
the number of tokens passed through the network in the longest of these
sequential executions cannot be less than exponential in the network depth.

We begin by proving that it suffices to consider only sequential executions.

Lemma 7.1 Let s be a valid schedule of a given balancing network. Then
there ezists a valid sequential schedule s' such that the number of tokens which
pass through each balancer in s and s' is equal.

Proof: Let s = s¢-p-q-s1, where sg, s; are sequences of transitions, p and
q are individual transitions involving distinct tokens P and @), and where “.”
is the concatenation operator. If p and ¢ do not occur at the same balancer,
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then sq-q-p- sy is a valid schedule. If p and ¢ do occur at the same balancer,
then so-q-p-s] is a valid schedule where s} is constructed from s; by swapping
the identities of P and ). In each case we can swap p and g without changing
the preceding sequence of transitions sg and without changing the number
of tokens that pass through any balancer during the execution.

Now suppose that s is a complete schedule. We will transform it into a
sequential schedule by a process similar to selection sorting. Choose some
total ordering of the tokens in s. Split s into sg - o where sg is the empty
sequence and tg = s. Now repeatedly carry out the following procedure
which constructs s;11 - t;41 from s; - ¢;: while ¢; is nonempty let p be the
earliest transition in ¢; whose token is ordered as less than or equal to all
tokens in ¢;. Move p to the beginning of ¢; by swapping it with each earlier
token in t¢; as described above, and let s;11 = s; - p and ¢;.1 be the suffix of
the resulting schedule after p. This procedure is easily seen to maintain the
following invariant:

1. After stage 2, s; - ¢; is a valid schedule in which each balancer passes
the same number of tokens as in s.

2. After stage 2, s; is sorted by token.

Thus when the procedure terminates, we have a valid sequential schedule
s' in which each balancer passes the same number of tokens as in s. [ ]

Theorem 7.2 A balancing network with m balancers satisfies the step prop-
erty in all ezecutions if (and only if ) it satisfies it in all sequential ezecutions
wn which at most 2™ tokens traverse the network.

Proof: Since the step property depends only on the number of tokens that
pass through the network’s output wires, it follows from Lemma 7.1 that a
balancing network satisfies the step property in all executions if (and only
if) it satisfies it in all sequential executions.

We now show that any failure to satisfy the step property can be de-
tected in some execution involving at most 2™ tokens. Consider sequential
executions of a balancing network with m balancers. Any quiescent state is
characterized by specifying for each balancer the output wire to which it will
send the next token, yielding a maximum of 2™ distinct quiescent states. In
a sequential execution, each time a token traverses the network, it carries
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the network from one quiescent state to another. Thus, in any execution,
after at most 2™ traversals, the network must reenter its initial state. Let
H be the shortest sequential execution needed to detect a violation of the
step property. If H involves more than 2™ tokens, then H can be split into
a prefix Hy and a suffix H; such that Hy involves at most 2™ tokens and
leaves the network in its initial state. If Hy sends “illegal” numbers of tokens
through two output wires, then Hy alone suffices to detect the violation, and
otherwise H; alone suffices. [

How tight is this bound? We now construct a balancing network that is
not a counting network, yet satisfies the step property for any execution in
which the number of tokens is less than exponential in the network depth.
Through the remainder of this section we will only consider networks in
quiescent states, so that we can ignore issues of timing and concentrate solely
on the total number of tokens that have passed along each wire.

First, consider the following balancing network STAGE [2w]. Take two
counting networks A and B of width w having outputs wires ag through
ay—1 and by through b,,_; respectively. Add a layer of w balancers such that
the ¢-th balancer has inputs a; and b,_;_; and outputs a, and b, , ,. The
resulting network STAGE [2w] is not a counting network; however, it is easily
extended to one by virtue of the following lemma.

Lemma 7.3 For any input to STAGE [2w]|, there ezists a permutation m, of

! _1 and a permutation 7, of the output sequence

the output sequence ag,...,a.,

B, ... b

w—1

, a

such that the sequence Ta(ag,...,al,_1) - mo(bg, ..., b, 1) has the

)y Pw—1 y Yw—1

step property.

Proof: Observe that the total inputs to any two balancers in the last layer
differ by at most 1.

Thus there is always a k such that every balancer in the last layer outputs
either k or k + 1 tokens. If k is even, then b, = k/2 for all 7 and a] =
a; + by_1_; — k/2, which is either k/2 or k/2 4+ 1. One can obtain a sequence
with the step property by setting 7, to sort the values in o/. If k is odd,
then each a is (k+1)/2 and each b} is ay—1-; + b; — (k4 1)/2, which will be
either (k+1)/2 or (k+ 1)/2 — 1. In this case having 7 sort the values in o'
produces the desired result. [ ]

By Lemma 2.2 it follows that
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Corollary 7.4 For anym tokens input to STAGE [2w], ¥ al = ¥ [m—
1/2w] and YU = m — 1 /2w].

=w

In other words, the total number of tokens that end up on the af,...,al,_;
and b),...,b), , outputs wires is the same as in a proper counting network.
In fact, Lemma 7.3 guarantees an even stronger property: the actual number
of tokens on each wire correspond to the number of tokens that occur on
some wire in the output sequence of a proper counting network. However,
there is no guarantee that these numbers appear in the correct order (or
even the same order given different inputs). Because of Theorem 2.6, we can
extend the STAGE[2w] network into a (not very efficient) counting network
by passing the outputs ay,...,al, ; and b),...,b], | to two separate balanc-
ing networks isomorphic to sorting networks. But we are not interested in
getting a working counting network; instead we will use a modified version
of STAGE[2w] to construct a balancing network which counts all input se-
quences with up to some bounded number of tokens, but fails on sequences
with more tokens.

We construct such a balancing network (denoted ALMOST [2w]) as follows.
Take a STAGE [2w] network and modify it by picking some z other than 0 or
w — 1 and deleting the final balancer between a, and b,_;_,. Denote this
balancing network as STAGE®[2w]. Let ALMOST [2w] be the periodic network
constructed from k stages, for some k > 0, each a STAGE®[2w] network, with
the outputs of each stage connected to the inputs of the next.

Let A; and B; be the sums of the number of tokens input to each of the two
subnetworks A and B in the ¢-th stage of ALMOST [2w]|. Ag and By are thus
the numbers of tokens input to A and B respectively. Let y = {yo,...,Y2w_1}
be the sequence given by y; = [(Ao+Bo—1)/2w]|. Thus, y; counts the number
of tokens that would exit on output wire ¢ if ALMOST [2k] were a counting
network.

We now define the quantities A, and B, used in the proofs below. They
measure the number of tokens that would have come out of the respective
parts of network in the last stage (¢ = oo) if it were a counting network.
Formally, let Ao = %' ys, and Boe = S7*~1y,. Note that A, + B, =
Ag 4+ By = Aw + By for all t and that by Lemma 2.2, [(Aw —2)/w] = v
and [(Be — %2)/w] = Y for all 4.

Finally, let the imbalance 6, = A; — Ao = —(B: — Bo); this quantity
represents “how far” the network is from balancing the tokens between the
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A and B subnetworks in stage ¢, in other words, how many excess tokens
must be moved from the A part of the network to the B part (or, if the
quantity is negative, how many tokens should be moved from B to A).

The following lemma follows from arguments almost identical to those of
Lemma 5.4.

Lemma 7.5 If the input sequence to a balancing network has the step prop-
erty, then so does the output sequence.

Lemma 7.6 In the output sequence of stage t of ALMOST [2w]|, each a; is
equal to y; + e;, where e; < 0 when é; <0, and e; > 0 when é; > 0, and each
b; is equal to Yyyi + €yrs, where e; < 0 when 6 > 0, and e; > 0 when 6, < 0.

Proof: For 7 < w we have

€& = & —Y;
= (A —9)/w] = [(Aw —1)/w]
= (6 + Ao —0)fw] = [(Aeo —1)/w]

which 1s at least zero when § > 0 and at most zero when 6 < 0.
The claim for eyy; = b; — yuyys follows by a similar argument. [

Corollary 7.7 Ifé; = 0 then the output sequences of stage t of ALMOST [2w]
have the step property.

Proof: 1If §; = 0 then by the preceding lemma each a; = y; and b; = Yy,
so the output sequences of stage ¢ form the sequence y. Since y has the step
property it is left unchanged by the final layer of balancers (Lemma 7.5). m

Lemma 7.8 6,41 = {f(At—-'ﬂ)/UJ—f(zt—(w—l—z))/ﬂﬂJ_

Proof: If a balancer were placed between a/ and b, , _ after stage ¢, then
the STAGE®[2w] network would become a STAGE [2w] counting network, and
by Corollary 7.4, exactly A, tokens would emerge from the A half of the
network after stage t+1, giving an imbalance would be 0. The above quantity
641 1s simply the number of tokens that this balancer would move from the
A part of the network to the B part in order to bring the parts into balance,
and is thus the actual imbalance that results from deleting the balancer. =
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The following lemmas show that the imbalance tends toward zero as more
stages are added:

Lemma 7.9 If 5t Z 0 then 5t-|—1 Z 0. If 5t S 0 then 5t-|—1 S 0.
Proof: Suppose §; > 0. Then A; > A, and B; < B, and so

b = U(At —z)jw] = [(B; — (w1~ m))/qu

2
> V(Aoo —z)/w] = [(Bo —(w—-1- w))/uﬂJ
0

2

(The last equality holds because when the two parts of the network hold A
and B, tokens there is no imbalance.)
Reversing the inequalities gives the corresponding result for é; < 0. |

Lemma 7.10 If 6] > 0 then |641] < |&] — 1.

Proof: By virtue of Lemma 7.9 we need only show that § decreases when
positive and increases when negative.

Let ag,...,auw_1,b0,...,b,_1 be the outputs of the A and B subnetworks
of the (¢ 4 1)-th stage before the last layer of balancers. Because §; # 0,
this sequence does not have the step property; however, each of the two
subsequences ag, . . . @41 and b, . . ., by,_1 1s the output of a counting network
and so has the step property. Thus the step property of the whole sequence
must be violated by some a;, b; such that a, — b; is either less than 0 or
greater than 1.

We will consider two cases, depending on the sign of é;:

Case 1. 6; < 0. Then by Lemma 7.6 each a; < y; and each b; > y,4;. (Recall
that y; is the number of tokens that would exit from the z-th output
of a counting network with the same input sequence.) So for each
a; and each b; we have, using the step property of the y sequence,
a; <Y <Yypt; +1< b+ 1. Thus:

1. For each a; and by, _1_;, a; < by_1_; + 1, so the balancer between
these outputs moves no tokens from the A side to the B side.
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2. Given some a; and b; that violate the step property, it cannot
be the case that a;, > b; + 1 and thus it must be the case that
a; < b;. But then a,_1 < a; < bj < by, and since a,_1 and by are
connected by a balancer, that balancer moves at least one token

from the B side to the A side.

Hence at least one token moves from the B side to the A side and
5t—|—1 > 5t-

Case 2. 6; > 0. Then each a; > y; and each b; < yyii. S0 a; > Ys > Y1 > bi.
Thus:

1. For each a; and by,_1_;, a; > by_1_;, so no final-stage balancer
moves tokens from the B side to the A side.

2. Given some a; and b; that violate the step property, it must be
the case that a; > b; + 2. But ag > a; > b; +2 > by_1 + 2; so the
balancer between ag and b,,_1 moves at least one token from the

A side to the B side.

Hence at least one token moves from the A side to the B side and
5t—|—1 < 5t-

Lemma 7.11 §;11 = §;/w + ¢ where —3/2 < ¢ < 3/2.

Proof: From Lemma 7.8 we have:

b = U(At —z)/w] = [(Bs — (w —1— m))/qu

- 9

Looking more closely at the B; term, notice that [B_(wq;l_"”)w = [B""'”"‘lw —

w

1. If %2 is not an integer then this is just {%J, which is equal to

{BJEJ since subtracting 1 from the numerator cannot bring it below the next

integral multiple of w. Now if (B-|-w7z+1) 1s an integer then this is {%J -1

+x

which in this case is equal to {BTJ since subtracting 1 from the numerator

does bring it below an integral multiple of w. So in either case we have

[B—(w—l—z)

— w = {%J, and we can rewrite the original expression as:
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5t—|—1 =

V(At —z)/w] ; (B, + m)/wJJ
_ {(At —z)|w— (ZBt ta)jwt clJ
A—B z ¢

T Tow w2 @

260 + (Ao — Bw) = ¢

- W w2 ©

where 0 < ¢; < 2 and 0 < ¢; < 1. Using the fact that 0 < A, — Boo < w
(hence 0 < (Aeo — B )/2w < 1/2), and that 0 < z < w — 1 (hence 1/2 <
—z/w < 0), we can rewrite all of the terms not containing 6 as a single value
c and get

)
5t-|—1:_t‘|‘c
w

where the bound —3/2 < ¢ < 3/2 is obtained by summing the bounds on the
individual terms. |

Theorem 7.12 Let w be a power of 2 greater than 1. Then there exists a
width-2w balancing network that has the step property in all executions with
up to wk =Y tokens, yet is not a counting network.

Proof: From Lemma 7.11 we have |6;41| < |6¢|/w+3/2. Let U(t) be defined
by the recurrence U(0) = |6o|, U(t + 1) = U(t)/w + 3/2; then U(¢) is a strict
upper bound on |&| for ¢ > 0. Solving the recurrence using standard methods

yields U(t) = |bo|w ™t + % — (%) wt

Now suppose the network is given an input involving at most w* tokens.
Then |§o| cannot possibly exceed w’, and after ¢ stages |6 < U(¢) < 1+
% — (%%212) w™t, which is at most 4 if w > 2 and ¢ > 1. So by Lemma
7.10, |6;+4| = 0 and thus by Corollary 7.7 the outputs of stage ¢ +4 have the
step property. Thus a network with k& = ¢ + 4 stages will count up to w(*=4
tokens.

To see that this k-stage network is not a counting network, suppose |o| >

4w+ From Lemma 7.11 we have |6,41] > |8;|/w —3/2. Let L(t) be defined
by L(0) = |6o| and L(t + 1) = L(t)/w — 2; L(t)is a strict lower bound on |6
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for t > 0. Solving the recurrence gives L(¢) = |§glw™" — % + (%) wt
Dropping the last term and setting |8| > 4w(*+?) gives |6p11| > L(k +1) >
4 — % > 1. Since ég41 # 0, the outputs of stage k (and hence the entire
network) cannot have the step property. [ ]

8 Discussion

Counting networks deserve further study. We believe that they represent
a start toward a general theory of low-contention data structures. Work is
needed to develop other primitives, to derive upper and lower bounds and
new performance measures. We have made a start in this direction by deriv-
ing constructions and lower bounds for linearizable counting networks [20],
networks which guarantee that the values assigned to tokens reflect the real-
time order of their traversals. Aharonson and Attiya [3], Felton, LaMarca,
and Ladner [11], and Hardavellas, Karakos, and Mavronicolas [17] have in-
vestigated the structure of counting networks with fan-in greater than two.
Klugerman and Plaxton [23] have shown an explicit network construction of
depth O(c'°8 " logn) for some small constant ¢, and an existential proof of a
network of depth O(logn).

Work is also needed in experimental directions, comparing counting net-
works to other techniques, for example those based on exponential backoff
[1], and for understanding their behavior in architectures other than the
single-bus architecture provided by the Encore. We have made a start in
this direction by comparing the performance of counting networks to that of
known methods using the ASIM simulator of the MIT Alewife machine [19].
Preliminary results show that there is a substantial gain in performance due
to parallelism on such distributed memory machines.

Finally, we point out that smoothing networks, balancing networks that
smooth but do not necessarily count, are interesting in their own right since
they can be used as hardware solutions to problems such as load balancing

(ct. [28]).
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