0S/8

Language Reference Manual

Order No. AA-H609A-TA

0S/8
Language Reference Manual

Order No. AA-HG609A-TA

ABSTRACT

This dccument describes the following languages
supported by 0S/8: BASIC, FORTRAN IV,
PALS, FORTRAN Il, FLAP/RALF, SABR.

SUPERSESSION/UPDATE INFORMATION: This manual supersedes sections of the
0S/8 Handbook (DEC-S8-OSHBA-A-D).

OPERATING SYSTEM AND VERSION: 0s/8 V3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment

Corporation.

Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S
document requests the user's
paring future documentation.

The following are trademarks

DIGITAL
DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet

COMMENTS form on the last page of this
critical evaluation to assist us in pre-

of Digital Equipment Corporation:

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8
DECSYSTEM-~-20
RTS-8

VMS

IAS

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET~8
TYPESET-11
TMS-11
ITPS-10
SBI

10/82-15

CONTENTS

BASIC

FORTRAN |1V

PALS8

FORTRAN I

FLAP/RALF

SABR

0s/8

0S/8

0s/8

0S/8

0Ss/8

DOCUMENTATION SET FOR 0S/8

SYSTEM GENERATION NOTES (AA-H606A-TA)

The System Generation Notes provide the information you need
to get a new 0S/8 system running.

SYSTEM REFERENCE MANUAL (AA-H607A-TA)

The System Reference Manual describes 0S/8 system
conventions, keyboard commands, and utility programs.

TECO REFERENCE MANUAL (AA-H608A-TA)

The TECO Reference Manual describes the 0S/8 version of this
character-oriented text editing and correcting program.

LANGUAGE REFERENCE MANUAL (AA-H609A-TA)

The Language Reference Manual describes all languages
supported by 0S/8, including BASIC, FORTRAN IV, and the PALS
assembly language.

ERROR MESSAGES (AA-H610A-TA)

This manual 1

anu sts in alphabetical order all error messages
generated

11i
by 0S/8 system programs and languages.

BASIC

CONTENTS

Page
CHAPTER 1 0S/8 BASIC 1-1
1.1 OVERVIEW 1-1
1.1.1 Writing a BASIC Program 1-1
1.1.2 The BASIC Character Set 1-2
1.1.3 Entering and Running a BASIC Program 1-2
1.2 ELEMENTS OF BASIC 1-3
1.2.1 Constants 1-3
1.2.1.1 Numeric Constants 1-3
1.2.1.2 String Constants 1-4
1.2.2 Variables 1-5
1.2.2.1 Numeric Variables 1-5
1.2.2.2 String Variables 1-5
1.2.2.3 Subscripted Variables 1-6
1.2.3 Expressions 1-7
1.2.3.1 Arithmetic Expressions 1-7
1.2.3.2 Relational Expressions 1-8
1.2.3.3 String Concatenation 1-8
1.3 FORMATTING BASIC STATEMENTS 1-9
i.4 THE ASSIGNMENT STATEMENT -- LET 1-10
1.5 THE COMMENT STATEMENT -- REMARK 1-10
1.6 INPUT AND OUTPUT STATEMENTS 1-11
1.6.1 INPUT 1-11
1.6.2 READ, DATA, and RESTORE 1-12
1.6.3 DIMENSION 1-14
l1.6.4 PRINT 1-16
1.6.4.1 Printing Zones -- Format Control
Characters 1-17
l.6.4.2 Printing Numbers and Strings 1-17
1.6.4.3 Printing with the TAB and PNT Functions 1-18
1.7 CONTROL STATEMENTS 1-19
1.7.1 Unconditional Transfer -- GOTO 1-19
1.7.2 Conditional Transfer -- IF GOTO and
IF THEN 1-20
1.7.3 Looping -- FOR, STEP, and NEXT 1-20
1.7.3.1 Nested Loops 1-22
1.7.4 Stopping -- END and STOP 1-23
1.7.5 Jumping to Subroutines -- GOSUB and
RETURN 1-23
1.8 FUNCTIONS 1-24
1.8.1 Numeric Functions 1-25
1.8.1.1 Calculating Sine -- SIN 1-25
1.8.1.2 Calculating Cosine -- COS 1-26
1.8.1.3 Calculating the Arctangent -- ATN 1-26
1.8.1.4 Calculating the Tangent 1-27
1.8.1.5 Finding the Square Root -- SQR 1-27
1.8.1.6 The Exponential Function -~-- EXP 1-27
1.8.1.7 Calculating the Natural Logarithm -- LOG 1-28
1.8.1.8 The Integer Function -- INT 1-28

ijii

CHAPTER

.
.
.

W0
o

o e
00 00 00 O 00 O OO
.
[SCTRACRE RN (I OR el el

.

.« e
o .
P

= w N

1.8.2.5

[
©
N
(o))

.
~J

.
.

.
www

el
o 0 00 O
Ny

. . e
.« . .
Ut e
P
N

FHHRFRHFERRFRP -
.hh)'h.)l—‘

e
o
[

1.11.1
1.11.2

1.11.3
1.11.4
1.11.5
1.11.6
1.11.7

1.11.8
1.11.9
1.11.10
1.11.10.1

1.11.10.2
1.11.10.3
1.11.10.4

o

BN
NN

CONTENTS (Cont.)

The Absolute Value Function -- ABS

The Sign Function -- SGN

Random Numbers -- RND

String Functions

Finding the Length of a String -- LEN
Finding a Substring -- POS

Displaying a Substring -- SEGS$

Converting a Character to ASCII Code --
ASC

Converting ASCII Code to a Character --
CHRS

Converting Numbers from String to Numeric
Format -- VAL

Converting a Number to a String -- STRS
User-Defined Functions

The FNa Function and the DEF Statement
The UDEF Function Call and the USE
Statement

The Debugging Function -- TRC

Calling for the Date -~ the DATS$ Function

FILE STATEMENTS

File Control

Opening a File -- FILE#

Closing a File -- CLOSE#

File I/0

Reading Data from a File -- INPUT#
Writing Data on a File -- PRINT#
Resetting a File -- RESTORE#

Checking for End-of-File -- the IF END#
Statement

SEGMENTING PROGRAMS -- THE CHAIN STATEMENT
BASIC COMMANDS

Entering a New Program -- the NEW Command
Calling for an 0ld Program -- the OLD
Command

Running a Program -- the RUN Command
Displaying a Program -- the LIST Command
Storing a Program -- the SAVE Command
Renaming a Program -- the NAME Command
Erasing the Workspace -- the SCRATCH
Command

Leaving BASIC -- the BYE Command
Resequencing a Program -- Calling RESEQ
Key Commands

Correcting Typing and Format Errors --
DELETE, CTRL/U

Eliminating Program Lines -- RETURN
Interrupting Program Execution -- CTRL/C
Controlling Program Listings on the
Terminal -- CTRL/S, CTRL/Q, and CTRL/O

CREATING ASSEMBLY LANGUAGE FUNCTIONS

INTRODUCTION
THE BASIC RUN-TIME SYSTEM - BRTS

BRTS Symbol Tables

iv

2.2.1.1 The Scalar Table

2.2.1.2 The Array Symbol Table

2.2.1.3 The String Symbol Table

2.2.1.4 The String Array Table

2.2.2 String Storage

2.2.3 The String Accumulator

2.2.4 String Array Storage

2.2.5 The DATA List

2.2.6 Array Space

2.2.7 Compiler Pseudo-Code

2.2.8 File Buffer Space

2.2.9 Device Handler Space

2.2.10 The BRTS I/C Table

2.2.11 The BRTS Floating-Point Package

2.2.11.1 The Floating-Point Accumulator

2.2.11.2 Floating-Point Routines

2.2.12 BRTS Overlay Buffer

2.3 CALLING FLOATING-POINT ROUTINES

2.4 USING BRTS SUBROUTINES IN ASSEMBLY-LANGUAGE
FUNCTIONS

2.4.1 ARGPRE

2.4.2 XPUTCH

2.4.3 XPRINT

2.4.4 PSWAP

2.4.5 UNSFIX

2.4.6 STFIND

2.4.7 MPY

2.4.8 DLREAD

2.4.9 ABSVAL

2.5 PASSING ARGUMENTS TO THE USER FUNCTION

2.5.1 Using the USE Statement

2.6 BRTS INPUT/QOUTPUT

2.7 INTERFACING AN ASSEMBLY LANGUAGE FUNCTION
TO BRTS

2.8 SOME GENERAL CONSIDERATIONS

2.8.1 Routines Unusable by Assembly Language

Functions

2.8.2 Using 0S/8

2.8.3 Using Device Driver and File Buffer Space

2.8.4 Using the Interrupt Facility

2.8.5 Using Page 0

CHAPTER 3 OPTIMIZING SYSTEM PERFORMANCE

3.1 BYPASSING THE BASIC EDITOR

3.2 PLACING BASIC OVERLAYS ON THE SYSTEM DEVICE

3.3 GROUPING FUNCTION CALLS IN BASIC PROGRAMS

3.4 MAKING SAVE IMAGES OF BASIC SOURCE PROGRAMS

CHAPTER 4 0S/8 BASIC SYSTEM BUILD INSTRUCTIONS

4.1 THE BASIC SYSTEM

4.2 MAKING SAVE IMAGES FROM BINARY FILES

4,2.1 Non-EAE BASIC

4.2.2 EAE BASIC

4.3 ASSEMBLING THE BASIC SOURCES

T
foh)
Q
®

1
HHEWWOWW~JOUEWW

o

o

(=]
[

DN NDNNNDNNNODNNDNDNNNDN
[
[

(]
X8}

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

oo o;m
e o o o e o
AU W

e

w

1-1

CONTENTS (Cont.)

LAB8/E FUNCTIONS FOR 0S/8 BASIC
GENERAL DESCRIPTION

PREPARING BASIC FOR LAB8/E FUNCTIONS
DEFINITION OF LAB8/E SUPPORT FUNCTIONS
LAB8/E EXAMPLES

GETTING ON THE AIR WITH BASIC

LAB8/E FUNCTION SUMMARY

SUMMARY OF BASIC EDITOR COMMANDS
SUMMARY OF BASIC STATEMENTS

SUMMARY OF BASIC FUNCTIONS

BASIC ERROR MESSAGES

FIGURES

BRTS Configuration

TABLES

Alphanumeric Characters and Corresponding

ASCII Code Numbers
LAB8/E Function Summary

vi

Index-1

CHAPTER 1

0S/8 BASIC

1.1 OVERVIEW

BASIC (Beginner's All-Purpose Symbolic Instruction Code) is a
high-level computer language for scientific, commercial, and
educational applications.

e BASIC is all-purpose. You can use it to process large amounts
of data as well as to solve complex mathematical problems.

e BASIC is conversational. You write programs with simple
English keywords and common mathematical expressions. You
run, store, and retrieve programs with a set of simple
commands resembling English verbs.

e BASIC is interactive. You can input data while a program is
running and make changes and corrections in statements under
the direction of the BASIC editor. BASIC locates any
formatting errors you make in entering your program and prints
appropriate messages to help you correct them.

1.1.1 Writing. a BASIC Program

You write a BASIC program as a series of numbered 1lines, each
containing one or more instructions called statements.

The format of a typical one-line statement line is

(line number) Statement Line Terminator

Keyword Argument

For example:
10 FRINT "HOORAY " RETURN

The line number -- which may range from 1 to 99999 -- identifies the
line and indicates its position in the seguence of operations set out
in the program. You do not have to enter the 1lines 1in numerical
order. BASIC automatically sorts them before it executes the program.
You may remove or insert lines at any time to modify a program. For
this reason, it is good programming practice to leave room for later
additions by numbering lines in increments of five or ten.

The first element in the statement -- the keyword -- tells BASIC what
to do. For example, the keyword in the example -- PRINT -- instructs
BASIC to display output, such as a message or the result of a
computation, on the terminal.

0S/8 BASIC

The second element in the statement -- the argument -- may be a
formula, a word or phrase, a variable, a line number -- anything BASIC
can take action upon. In the example above, the argument 1is the
message "HOORAY!", which BASIC will display on the terminal.

The line terminator -- RETURN -- enters the program 1line into the
system. Even though you type the line on the keyboard and see it
echoed on your terminal screen, the BASIC editor does not receive it
until you strike the RETURN key.

The last line in every BASIC program must be an END statement. The
format is

(line number) END

BASIC statements are described in Sections 1.3 through 1.7.5.

1.1.2 The BASIC Character Set
The alphabet of the BASIC language is the full set of ASCII (American
Standard Code for Information Interchange) characters. This set
includes

e Upper-case letters A through Z

® Numbers 0 through 9

® Special characters (* and $, for example)

e Nonprinting characters (space and tab, for example)
You may include all ASCII characters in a progran. BASIC converts

lower~case letters to upper case, ignores nonprinting characters, and
leaves all other characters unchanged.

1.1.3 Entering and Running a BASIC Program
To run a BASIC program you must first enter it into a special area 1in
the memory of vyour computer -- called the workspace -- that BASIC
reserves for user-written programs. To do this, summon the BASIC
editor by typing

:BASIC
in response to the Monitor dot. BASIC will then display the message

NEW OR OLDI -~

to determine if you want to enter a program from the terminal or run
one that you have previously stored as a file.

Assume, for example, that you have a new program called CHEERS that
you want to enter and run. Type

NEW OR OLI ~- NEW CHEERS

0S/8 BASIC

As soon as BASIC displays a message to indicate that it 1is READY,
begin typing your program line by line.

10 FOR K=1 TO 3
20 PRINT "HOORAY!"
0 NEXT K

P9 EMD

This complete four-line program now resides in the workspace. To run
it, type the command

RUN
BASIC displays a header line, followed by the program output.
HOORAY !
HODRAY !
HOORAY!

In addition to the RUN command, BASIC provides commands that let vyou
display on the terminal the program that is in the workspace, store it
as a file on a peripheral device and retrieve it later for re-use,
change its name, renumber it, or erase it from the workspace. For a
complete description of BASIC commands, see Section 1.11.

1.2 ELEMENTS OF BASIC

The following sections define the elements of BASIC programming.

i.2.1 Constants

A constant is a gquantity with a fixed value. 1In BASIC, you may enter
constants from the terminal or instruct BASIC to read them from a data
list or from a file during program execution.

1.2.1.1 Numeric Constants - BASIC accepts numbers within the range
107-616<N<107+616

and treats all numbers as decimal numbers. That is, it accepts any
number containing a decimal and assumes a decimal point after any
integer.

BASIC wuses a second format -- called exponential or E-type
notation -- to express numbers outside the range +.00001<N<999999.
The format for an E-type number is

XXXX.XXXxXx E(+ or -)nnn

where E represents "times 10 to the power of." Thus, for the number
23.4E2, read "23.4 times 10 to the power of 2." Expressed another way,

23.4E2=23.4*10*%%2=2340
You may input data in either format. Results of computations with an

absolute value outside the range +.00001<N<9399999 are always output in
E-type format.

05/8 BASIC

BASIC prints six significant digits in normal operation as shown in
the following examples.

You enter: BASIC outputs:
.01 .01

.0099 .0099

999999 999999

1000000 1.00000E+006
.0000009 9.00000-007

BASIC automatically suppresses leading zeros in 1integer numbers and
trailing zeros in decimal fractions. BASIC outputs exponential
numbers in the form

(blank or =) x.xxxxxE(+ or -)nnn
For example:

-3.37021E+008 equals -337,021,000
7.26000E-004 equals 0.000726

BASIC stores numbers internally with a precision of 23 bits.
Arithmetic operations are accurate to 22 bits. No rounding is done.

BASIC does conversions from ASCII to internal format and vice-versa in

extended precision. Conversion to internal format is rounded to 23
bits. On output, BASIC rounds the result to 6 decimal digits.

1.2.1.2 String Constants - A string constant is any keyboard

character or group of characters -- letters, numbers, spaces,
symbols ~-- that you want to use as data. In BASIC programs, string
constants must be enclosed by quotation marks. The gquotation marks
instruct BASIC to treat characters within them exactly as you type

them in at the terminal.
For example, this program of PRINT statements

10 FRINT "1 aAM A STRING®
20 FRINT "RX$7X& $X&"

30 PRINT "$346.98"

40 PRINT *""HI THERE!"""
S50 PRINT "30 + 20°

&0 PRINT 30 + 20

29 ENI

will cause BASIC to display

I_AM A STRING
@Y% K2 $%%
$344.98
"HI THERE!"
30 + 20

[T ——

Note that BASIC does not consider the enclosing quotation marks to be

part of the string. As line 40 demonstrates, to display guotation
marks, you must place them within a double pair.

Lines 50 and 60 show the difference between string and numeric data.
The quotation marks cause BASIC to display the string "30 + 20"
exactly as you enter it. 1In line 60 BASIC performs a computation on
the expression 30 + 20 and prints the sum of 50.

0S/8 BASIC

1.2.2 Variables

In BASIC programm
number or a c¢

ng, a variable is a symbolic name representing a
h stri
value to a variab
re
e

aracter ng. When you assign a numeric or string
le (with a LET statement, for example), the value is
said to be "stored'
the value in a mem
variable name.

in the variable. This means that BASIC has placed

nory location —-- or locaticns -- associated with the

aosLeialeld

For example, the following statement stores the wvalue 37 1in the
variable N.

LET N=37
If N already contains a value, the new value replaces it.

Once you have assigned a value to a variable, BASIC will

u the value
in any expression in which the variable appears. For m

se
ample:
LET R=NX2

This statement evaluates the expression N*¥2 and stores the result 1in
the variable B.

You may instruct BASIC to change the value of a variable any number of
times during one execution of a program. BASIC always uses the most
recently assigned value when performing calculations.

The following sections describe numeric variables, string variables,
and subscripted variables.

1.2.2.1 Numeric Variables - A numeric variable name consists of a
letter or a letter followed by a digit. For example,

Acceptable Variables Unacceptable Variables
M 2C (A variable cannot begin with a digit.)
R2 AB (A variable may contain only one letter.)

Unless you specify otherwise, BASIC automatically sets all variables
to =zero before executing a program. However, if you wish to assign
zero, it is good programming practice to do the initializing yourself
at the beginning of the program. You can do this with a series of LET
statements or by using READ and DATA statements. For example, this
statement

10 LET A=0NE=0\[C=5

tells BASIC to assign 0 to A and B and 5 to C. (See Section 1.6.2 for
READ and DATA.)

1.2.2.2 String Variables - A string variable name consists of a
letter -- or a letter and a digit -- followed by a dollar sign. AS$S
and A2$ are both legitimate string variable names; 2AS$ and AA$§ are
not.

You may assign no more than eight characters to a string variable
unless vyou have first specified the dimensions with a DIM statement.
(See Section 1.6.3.)

0S/8 BASIC

1.2.2.3 Subscripted Variables - A subscripted variable consists of a
string or numeric variable name followed by a subscript in
parentheses. A subscript may be a number, a numeric variable, an
expression, or any two such elements separated by a comma. The
following are all legal subscripted variables:

A(2)

A (K)

M(3,4)

M(I,J)

G(K-1)

F$(3.4)
If the subscript is not a whole number, BASIC uses only the whole
number part. Thus, in the example above F$(3.4) is the same as F$(3).
BASIC permits a subscript value of zero.

The subscript in a numeric variable serves as a pointer to a location
in a list or table. For example, this subscripted numeric variable

X(3)
indicates the fourth position in the list
X(0), X(1), X(2), X(3), X(4), X(5)

Note that all subscripted variables in a list or table share the same
variable name.

Twec subscripts appended to a numeric variable (and separated by
commas) indicate a row and column number in a table. This variable

A(3,5)
points to row three column five.
One subscript appended to a string variable name indicates the length
of the string. Two subscripts indicate its position in a list and its
length. For example, this variable

R$ (35)
will accept a string constant 35 characters long. This variable

R$ (5,35)

indicates that the sixth position in a list (beginning with 0) holds a
string 35 characters long.

You cannot create a table of string variables in a BASIC program.

A program may contain the same variable in both a subscripted and an
unsubscripted form. For example, BASIC will recognize A(l) and A in
the same program. However, once subscripted, a variable must contain
the same number of subscripts throughout the program. If A(l) occurs,
for example, BASIC will not accept A(3,4).

For further discussion of lists and tables, see the DIM statement in
Section 1.6.3.

0S/8 BASIC

1.2.3 Expressions
An expression is a group of numerics or alphanumerics which, when
evaluated, equals a number or a string. Expressions contain special
symbols -- called operators -- which direct BASIC in its evaluation.
BASIC recognizes three types of operators:

e Arithmetic operators

® Relational operators

e String operators
1.2.3.1 Arithmetic Expressions - BASIC uses the following operators

to perform addition, subtraction, multiplication, division, and
exponentiation.

Symbol Meaning Example

+ Addition A+B

- Subtraction A-B

/ Division A/B

" or ** Exponentiation A/B or A**B

In any mathematical formula, BASIC first treats expressions enclosed
by parentheses. After parentheses, BASIC maintains the following
order of priority.

1. Exponentiation

2. Multiplication and Division (egual priority)

3. Addition and Subtraction (egual priority)
When all of the operators in an expression have egual claim to
priority, BASIC simply evaluates the expression from left to right.
For example, in this expression,

A+B-C
BASIC adds A to B and then subtracts C from the sum.
Parentheses let you control the order in which BASIC performs the
operations called for 1in an expression. You may nest parentheses
within parentheses. Where nesting occurs, BASIC will give first
attention to the elements contained in the innermost "nest."
In this example,

A=T7* ((B**2+4) /X)

the order of priority is

1. B**2 BASIC raises B to the power of 2.
2. B**2+4 BASIC adds 4 to B**2,
3. (B**2+4) /X BASIC divides the result so far by X.

4., T ((B**2+4) /X) BASIC multiplies by 7 and then assigns the
result to A.

1-7

0S/8 BASIC

Since BASIC ignores spaces, you may use them to make complex
expressions easier to read. Spacing will considerably improve the
appearance of the example above.

A = T*((B**2 + 4)/X)

1.2.3.2 Relational Expressions - Relational operators instruct BASIC
to determine the relationship between two values in an expression.
BASIC recognizes six relational operators.

= equal

< less than
=< or <= less than or equal to

> greater than
=> or >= (Jreater than or equal to
<> or >< not equal

Relational operators set the conditions in IF-THEN statements. This
statement

10 IF AR THEN 50

directs BASIC to determine the relationship between A and B and jump
to line 50 if A is greater.

You can use strings and string variables 1in relational expressions.
BASIC compares strings one alphanumeric character at a time, using
ASCII code numbers to determine if one character 1is ‘"greater" or
"less" than another. BASIC proceeds from 1left to right until it
reaches the end of the strings or until it discovers an 1ineguality.
If one string is shorter, BASIC adds spaces to it until both are the
same length. For example, in comparing AB to ABCD, BASIC will treat
AB as AB (space) (space).

1.2.3.3 8String Concatenation - BASIC recognizes the ampersand (&) as
an operator in string expressions. The ampersand allows you to
concatenate strings -- that is, to join them together. For example:

10 LET A$="REAN"

20 LET B$= *TOWN®

20 FRINT A% 3% E$

99 END
This program will cause BASIC to display:

BEANTOWN
You may use the ampersand to concatenate strings wherever a string 1is
legal -- with one exception. A concatenated string variable may not

appear to the left of the equal sign in a LET statement. Thus, this
statement is legal:

10 LET A$=E% & C$
this statement is not:

10 LET A% & B$ = C¢%

0S/8 BASIC

1.3 FORMATTING BASIC STATEMENTS

Every BASIC program consists of a sequence of numbered 1iines, each
containing one or more instructions called statements.

The format of a typical single-statement line is
(line number) keyword argument

where the keyword is an instruction to BASIC and the argument is some
element that BASIC can act upon.

Here are some examples of single-~statement lines.
10 FRINT *"HOORAY"
20 LET & = 8

4

4]

GOTO 20
B¢ INFUT R$

A multistatement 1line 1is one that contains more than one
keyword/argument combination. The format is

(line number) STATEMENT1\STATEMENT2\STATEMENT3

For example:

30 LET X=X 4+ 1 N FRINT X N IF X=25 GOQTO 80
BASIC executes the statements in a multistatement line from 1left to
right. The backslash -- like RETURN -- terminates a statement.
The line number -- which may range from 1 to 99999 -~ identifies the

line and any statement or statements it contains; it also indicates a
line's position in the sequence of operations set out in the program.
Keep in mind the following features and rules when entering and
numbering BASIC lines.

® You may enter lines in any order. The RUN command causes
BASIC to sort all lines into numerical order before executing
the program.

® You may add, delete, or shift lines at any time to modify your
program.

® You should number lines in increments of five or ten, in order
to leave room for additional statements you may want to insert
later.

e If your modified program contains consecutively numbered
lines, making it difficult to insert further statements, you
may renumber your program with the BASIC RESEQ program. The
RESEQ program lets vyou specify a suitable increment between
lines.

The keyword -- the first element in the statement -- tells BASIC what
it must do in order to successfully execute the instruction. The
argument of the statement is the entity that BASIC acts upon. It may
be a number, a string, an expression, a variable, or a line number.
For example, in the single-statement lines above, the keyword PRINT
tells BASIC to display the string HOORAY! on the screen, the keyword
LET to assign the value 8 to the variable A, the keyword GOTO to jump
to line 90, and the keyword INPUT to receive a value from the terminal
and assign it to the variable RS.

1-9

0S/8 BASIC

1.4 THE ASSIGNMENT STATEMENT —-- LET

The LET statement uses the egual sign (=) to assign a value to a
variable.

The format is

(line number) [LET] v = expression
where

v is a variable

expression is a number, a string, a vwvariable, or an
arithmetic expression

The LET statement is the only BASIC statement in which the keyword is
optional. For example, these two lines

10 LET A = &

Lo m o= G
will both cause BASIC to assign the value 5 to the variable A.
The equal sign in a LET statement indicates replacement rather than
equality. That 1is, the LET statement causes BASIC to evaluate the
expression on the right of the equal sign and assign the value to the
variable on the left, replacing its previous value. For example, the
statement

19 K = K + 1

causes BASIC to add one to the value of K and store the result in the
variable K.

BASIC performs any mathematical operations and functions that you call
for in a LET statement. In this statement

20 LET & = C + SQRE)

BASIC sets the variable A egual to the value of C plus the sguare root
of the variable B.

This statement
5 08¢ = "Yalr
assigns a string to a string variable.

The following statement causes BASIC to set element 3,2 in array A
equal to element 1,4 in array B.

20 LET AC3.2) = R{1l+4)

1.5 THE COMMENT STATEMENT -- REMARK

The REM statement lets you document your source program with notes and
comments, for example:

OREM SUEBROUTINE SWaAFPE VALUES A AND R

0S/8 BASIC

1.6 INPUT AND OUTPUT STATEMENTS
BASIC provides you with three ways to supply a program with data:

® The INPUT statement lets you type in data while the program is

running
running.

The READ, DATA, and RESTORE statements let you insert data
into the program before you run it.

& BASIC file statements make it possible for you to store data
outside the main program and retrieve it under ©program
control.

This section describes only the first two methods. See Section 1.9
for information on file input and output.

The BASIC PRINT statement causes BASIC to display strings and the
results of computations on the terminal.

1.6.1 INPUT

The INPUT statement allows you to enter data while the ©program is
running.

The format of the INPUT statement is

(line number) INPUT x1, x2,...,Xn
where x1 through xn represent numeric variables or string variables.
If the INPUT statement contains both numeric and string variables, vou
must enter the appropriate type of data in the proper seguence,
assigning numbers to numeric variables and data strings to string
variables.
For example, the following line

10 INPUT A By
requires a number, a string, and another number entered in that order.
The INPUT statement causes BASIC to pause during the execution of the
program, print a gquestion mark (?), and wait for you to type in one
value for each variable in the statement. Enter the values,
separating them with commas, and press the RETURN key. If you press
RETURN without typing in all the data requested, BASIC will display
another gquestion mark and await the rest of the data. If you provide
more data than the statement requests, BASIC saves the remaining or
unused data for use by the next INPUT statement.
BASIC recognizes only the following characters as numeric data.

digits 0 through 9

+ or -

the letter E {for use in floating-point numbers)

. (first decimal point)

0S/8 BASIC

BASIC ignores leading spaces and treats all other characters as
delimiters for separating numeric data. When BASIC encounters a
character other than those specified above, it will assume that it has
come to the end of the entry relating to the variable it is currently
reading and will apply any character typed in after that to the next
variable. Two delimiters in succession signify that the data between
delimiters is 0.

For example, the following program reguires five numbers:

10 ITNFUT AsBeCelisE

S OEND
BASIC prints a guestion mark to request data.

e
7

If, in response to the INPUT prompt, you type
=2y 3.7A4E3 941
BASIC will assign values to variables in the following manner:

A:-2, B:3.7, C:4000 (4E3=4x10"3=4000), D:9, E:1l

BASIC recognizes all characters -- including guotation marks =-- as
string data and assumes a string length of 8 characters unless vou
have defined the string variable with a DIM statement. (See Section

1.6.3.) Since it accepts all characters as string data, BASIC treats
only the carriage return as the delimiter of a string. To terminate a
data string, type the RETURN key.

1.6.2 READ, DATA, and RESTORE
The READ and DATA statements make it possible for you to include data
to a program before you run it. During execution, BASIC assigns
values listed in the DATA statement to the variables 1in the READ
statement. READ and DATA statements occur only in combination with
each other. RESTORE causes BASIC to reuse the wvalues in a DATA
statement.
The format of the READ statement is

(line number) READ x1, x2,..., Xn
where x1 through xn represent variable names separated by commas.
The format of the DATA statement is

(line number) DATA x1, x2,...,Xn

where x1 through xn represent values separated by commas.

1-12

Like the INPUT statement, the READ statement must occur in the program
before the point where the data is required. DATA statements normally
appear at the bottom of the program before the END statement, where
you can find them easily when you wish to change input data.

BASIC handles the items in READ and DATA statements sequentially.
That is, it assigns the first value in the DATA statement to the first
variable in the READ statement, the seccnd variable to the second
value, and so on.

A READ statement may contain more or fewer variables than there are
values in one DATA statement. READ causes BASIC to search all
available DATA statements in the order of their line numbers until it
has found values for all variables. When it has assigned values to
all of the variables in one READ statement, BASIC will hold the
remaining values in the DATA statement until it comes to the next READ

LR oY

statement.

All three of these routines will instruct BASIC to set variable A

~

equal to 1, variable B equal to 2, and variable C equal to 3.

10 READ AsRC

75 DATA 1:2+3
99 END

10 READ aAsR-C

75 UATA 1.2
80 DATA 3
29 END

10 READ A

30 READ EsC
75 DATA 1223
@2 END

A DATA statement may contain both string and numeric data. String
data in a DATA list must always be enclosed by quotation marks.

This program will cause BASIC to assign 5 to variable C, "AAA" to
variable D$, 12 to variable E, and "BEER" to variable FS.

10 READ Cy Iy Es F%

75 DATA Sy “AAA®s 12s "BEER"

The RESTORE statement makes it possible for you to use the same data
more than once in a program. RESTORE instructs BASIC to reset the
data pointer to the first value in the first DATA statement in the
program. Since BASIC then proceeds to read through the values as
though for the first time, you may use the same variable names on the
second pass through the data.

0S/8 BASIC

The following program reads a DATA list twice.

1O REAL deBCo D

20 FPRINT AsRBECHD
20 RESTORE

40 READ ESsFsGiH

HOOFRINT EvFeGeH
FH ODATA 1e2e3e4

P9 NI

1.6.3 DIMENSION

The DIM statement lets you create a 1list or table of subscripted
variables for storing data. (You can organize numeric data in both
lists and tables, but BASIC stores strings in lists only.) DIM also
defines the length of a string assigned to a string variable.

To create a list -- a one-dimensional array -- of subscripted numeric
variables, use the following format:

(line number) DIM x(n)

where
X is a numeric variable name. All subscripted variables
in the list share the same variable name.
n specifies the number of numeric elements in the 1list.
(Since BASIC assigns 0 as the subscript of the first
variable, the number of elements in the list is n + 1.)
For a table -- a two-dimensional array -- of subscripted numeric

variables, use the form

(line number) DIM x(n,m)

where
X is a numeric variable name
n specifies the number of rows in the table. (The actual
number of rows in the table is n + 1.)
m specifies the number of columns. (m + 1 equals the

number of columns.)

For example, this DIM statement introduces a list of six subscripted
numeric variables:

10 DIM AS)

10 DIM A(5)
LAw0) [Al1) [A2) TA3) TA4) T Al5)]

0S/8 BASIC

The following statement describes a table of 24 numeric elements.

10 DIM A(3:5)

SIX COLUMNS

A(0,0) |A(0,1) | Al0,2) | A(0,3) | AlG4) | Al0,5)
FOUR |Al1,0) |A(1,1) 1A(1,2) | A(1,3) 1 Al14)| A(1,5)
ROWS 1A20) LA(2,1)VA(22) |A(23) |Al2,4) | Al2,5)
A(3,0) |A(3,1) |A(3.2) | A(3,3) | A(3,4) | A(3,5)

The number of elements in a table is (n + 1)*(m + 1).

specify the length of a string, wuse the DIM statement 1in the
lowin

(line number) DIM X$(n)
where
X$ is a string variable
n is the length of the string. A string may contain no
more than 72 characters. All strings that exceed 8
characters in length must be dimensioned with a DIM
statement.

To introduce a list of subscripted string variables, use the format

(line number) DIM X$(n,m)

where
X$ is a string variable name
n specifies the number of strings in the 1list. (The
number of strings is n + 1.)
m is the length of each string -- up to 72 characters

For example, this DIM statement describes one string 12 characters
long:

10 DIM C$C12)

This statement describes 4 strings, each 20 characters long:
10 DIM D$(3520)

This program will fill variables from a DATA list:

10 DIM D$(3520)

20 FOR ¥Y=0 TO 3

30 READ DeY)

40 NEXT Y

50 FOR 2Z=0 TO 3

&0 PRINT D$(Z)

70 NEXT Z

80 DATA "ZERD"»"ONE"»"TWO"y "THREE"®

0S/8 BASIC

Keep in mind the following features and rules concerning the DIM
statement:

e Arrays are limited in size only by the amount of available
memory -- that 1is, space not wused by the monitor or the
program statements.

@ Subscripts n and m must be integer numbers. They may not be
variables.

e A variable may not appear in a program with subscripts higher
than the ones you have described in the DIM statement.

® BASIC assumes a string length of 8 characters or less unless
you define the string variable with a DIM statement. If you
wish to assign a string that is more than 8 characters 1long,
you must DIMension the string variable.

e BASIC will not accept two-dimensional string variables.

® BASIC assigns a subscript of 0 to the first element in every
array. Therefore, the number of elements in a one-dimensional
array is n + 1, and the number of elements in a
two-dimensional array is (n + 1)*(m + 1).

e You may define more than one array with a single DIM
statement. For example, this statement dimensions both the
one-dimensional array A and the two-dimensional array B.

10 IIM AC20)y RB(4»7)

1.6.4 PRINT

The PRINT statement lets you instruct BASIC to display the results of
computations, comments, and the values of variables, or to plot the
points of a graph on a terminal.

The format of the PRINT statement is
(line number) PRINT expression(s)

where expressions are numbers, variables, strings, or arithmetic
expressions separated by format control characters. Using the PRINT
statement without expressions will output a blank 1line on the
terminal.

To output the result of a computation or the value of a variable at
any point in the program, type the 1line number, PRINT, and the
variable name or names separated by a format control character. BASIC
will wuse the current value of the variables to evaluate any algebraic

expression in a PRINT statement. Thus, the program
10 A=146 \E=0 \C=4
20 FRINT A (CHBY/35 SAR (A)
99 ENI

will output the following values on the terminal:

14 3 4

0S/8 BASIC

To print a message or comment on the screen, type the text, enclosed
by guotation marks, as the expression of a PRINT statement. Use PRINT
message statements in combination with INPUT statements to specify the
data to be entered.

1O FRINT "NUMBER OF SHEEFR®
20 INFUT &

These lines in a program will produce the following output on the
screen.

NUMBER OF SHEEF

7
PRINT statements may contain a combination of messages and numeric
variables. This line

50 PRINT *"TOTAL NUMBER OF SHEEF =3 T

will (assuming that T=354) cause the following to be output during
execution of the program:

TOTAL NUMBER OF SHEEF = 354

1.6.4.1 Printing Zones -- Format Control Characters - 0S/8 BASIC
divides a terminal line into five fixed zones (called print zones) of
fourteen columns each. To output data in a five-zone format, separate
the variables in the PRINT statement with commas. To output data in a
single-space row, separate the variables with semicolons.

The following program illustrates the use of control characters in
PRINT statements:

10 READ ArEByC
15 FRINT ArBrCrAXK2s BXX2,Ck%2

20 PRINT

30 PRINT AsBiCsAXK2EKX25Ckk2

75 DATA 43554

9 END

RUNNH

A] b 1é
36

-
h

4 5 6 16 25 36

REALDY
As this example illustrates, when you list more than five variables in

a PRINT statement, BASIC automatically moves the sixth number to the
beginning of the next line.

1.6.4.2 Printing Numbers and Strings - BASIC prints all numbers
(integer, decimal, and E-type) in the following format:

sign number space

where the sign is either minus (-) or blank and the number 1is always
followed by a blank space.

0S/8 BASIC

BASICBASIC prints strings exactly as you type them with no 1leading or
trailing spaces. (To print quotation marks, you must delimit them
with a double pair.)

For example:
10 PRINT "*"FRINTING QUOTATION MARKS®®®
20 END
RUNNH

"FRINTING QUOTATION MARKS®

1.6.4.3 Printing with the TAB and PNT Functions - The TAB function
allows vyou to position characters anywhere on the terminal line. You
may use the TAB function only in combination with a PRINT statement.

The format of the TAB function is
TAB (X)

where X is the position (from 1 to 72 columns available on the
terminal) in which the next character will be displayed.

Each time the TAB function appears in a PRINT statement, BASIC counts
the positions from the beginning of the line, not from the current
position of the printing head. For example, the TAB function 1in the
following program causes BASIC to print the character "/" at 24
equally spaced positions across the line.

10 FOR K=3 TO 72 STEF 3

20 PRINT TABIKY& /"3

A0 NEXT K

Y2 END
If the argument X in the TAB function 1is 1less than the current
position of the printing head, BASIC starts printing at the current
position. If the argument is greater than 72 (the number of columns
available in an output line), BASIC executes a carriage return and a
line feed and then resumes printing at position 1.
The PNT function allows you to perform special nonprinting actions on
the terminal, such as ringing the buzzer, erasing the screen, moving
the cursor, etc.
The format of the PNT function is

PNT (X)

where the argument X represents the decimal value of the 7-bit ASCII
character to be output.

For example, to ring the buzzer on the terminal, type

IO FRINT FNT(GF)

0S/8 BASIC

1.7 CONTROL STATEMENTS

AT~

During the execution of a program, BASIC ordinarily passes from on
line to the next in ascending numerical order. BASIC control
statements make it possible for you to alter the normal
sequence -- either unconditionally or only when certain conditions are
met. Thus, you can:

e repeat a set of statements

e skip statements

e stop and check values

e terminate a program

This section describes the statements that allow you to change the
normal sequence of statement execution.

1.7.1 Unconditional Transfer -- GOTO

The GOTO (or GO TO) statement causes BASIC to jump to any line in the
program that you specify. The GOTO statement sets no conditions.

The format of the GOTO statement is
(1ine number) GOTO n
where n is the number of the line to which BASIC will jump.

When BASIC encounters a GOTO statement, it jumps immediately to the
line beginning with the number indicated. For example, this program

10 GOTO 40

20 PRINT "SECOND®
30 STOP

40 PRINT *FIRST®
50 GOTO 20

99 END

will display

If you specify a nonexecutable statement (such as REM) in a GOTO line,
BASIC will proceed to the next executable statement.
NOTE
If you inadvertently create an infinite

loop with a GOTO statement, halt BASIC
with the CTRL/C command.

1-19

0S/8 BASIC

1.7.2 Conditional Transfer -- IF GOTO and IF THEN

IF GOTC and IF THEN statements use relational operators to test for a
specified relationship between two variables, numbers, strings, or
expressions. When the relational expression is true, BASIC executes
the GOTO instruction. When the IF statement is false, BASIC proceeds
to the next line in the program.

The format of the IF GOTO (or IF THEN) statement is

(line number) IF vl relation v2 GOTO x

where
vl and v2 represent variable names, numbers, strings, or
expressions
relation is any relational operator
b4 is the number of the line to which BASIC will jump

if the relation is true
This example

10 LET A=5

20 IF A=2 GOTO 99
30 FRINT "NO*

29 END

will cause BASIC to display

NO

BASIC compares strings one alphanumeric character at a time, using
ASCII code numbers to determin if one character is "greater" or
"less" than another. BASIC proceeds from 1left to right wuntil it
reaches the ends of the strings or until it finds an inequality. 1If
one string is longer than the other, BASIC adds spaces to the shorter
string until both are the same length. For example, in comparing AB
to a four-letter string, BASIC will treat AB as "AB (space) (space)".

1.7.3 Looping -- FOR, STEP, and NEXT

Programs frequently require the repetition of some instruction or
sequence of instructions. One way to achieve this is to write out the
steps as many times as you wish BASIC to execute them. For example,
this program

10 FRINT "HOORAY!®
20 PRINT *HOORAY!®
30 FPRINT "HOORAY!"®
@9 END

will instruct BASIC to display HOORAY! in three 1lines on the
terminal.

A better way to achieve the same end is to write the PRINT statement
once and instruct BASIC to run through it three times, This type of
repetition, which requires BASIC to jump backward in the program and
retrace its steps, is called looping.

0S5/8 BASIC

To execute a loop in a program, BASIC must know two things: which
statements to repeat, and how many times to repeat them. FOR and STEP
statements let you supply this informaticn.

The format is
(line number) FOR v=x TO y[STEP z]
where

\ is a variable name. It is the index of the 1loop,
increased or decreased each time the locop is
executed.

X is an expression (numerical value, variable name,
or mathematical expression) indicating the initial
value of the index -- that 1is, the alue of v
before the loop is executed the first time.

o<

M o (

y is an expression indicating the terminal value of
the index -- the value of v after the last
execution of the loop.

STEP 2z is an optional statement used to specify the
increment. If you omit it, BASIC assumes a STEP
value of 1.

For example, this statement
1% FOR K=2 TO 20 8TEFR 2

tells BASIC to repeat the’loop as long as K is less than or equal to
20. Since K is incremented by 2 after each execution, BASIC will run
through the loop 10 times.

The NEXT statement marks the end of a program loop. It occurs only in
combination with a FOR statement.

The format of the NEXT statement is
(line number) NEXT v
where v is the index variable in the FOR statement.

The NEXT statement causes BASIC to add the STEP value to the index (or
to add 1 if the FOR statement contains no STEP value) and to check to
see if the value of the index exceeds the terminal value. If it does,
BASIC falls through the loop and executes the line following the NEXT
statement.

To cause BASIC to exit from a loop before the index has reached the
terminal value, use an IF-THEN statement. BASIC can reenter only
those loops that it has left before completion.

NOTE

Do not attempt to transfer control from
a loop to a subroutine located above it
in the program. Doing so may cause
BASIC to execute the loop a wrong number
of times.

0S/8 BASIC

The following example shows one way to use a FOR-NEXT loop to produce
the same results of the HOORAY! program above.

POOFDR K=32 TO & STER 3
19 PRINT "HOORAY!®

20 NEXT K

GO M

The FOR statement tells BASIC to repeat the loop as long as K is less
than or equal to 6. Since K is incremented by 2 after each execution,
BASIC will run through the loop three times.

1.7.3.1 Nested Loops - You may place one or more loops within a 1loop
provided that the inner loops are completely contained by the outer
and that no overlapping of loops occurs. Placing one 1loop within
another is called nesting. Each nested loop must have its own FOR and
NEXT statements and must terminate before the loop that contains it.

The following examples show legal and illegal types of nested loops:

Legal Legal Illegal
10 FOR A=1 TO 10 10 FOR A=1 TO 10 10 FOR M=1 TO 10
20 FOR B=2 TO 20 20 FOR B=2 TO 20 20 FOR N=2 TO 20
30 NEXT B 30 NEXT B 30 NEXT M
40 NEXT A 40 FOR C=3 TO 30 40 NEXT M

50 FOR D=4 TO 40

60 FOR E=5 TO 50

70 NEXT E

80 NEXT D

90 NEXT C

95 NEXT A
The following program contains a nested loop:

1O PRINT "IMNER" ¢ "OLTER"Y

1% F '
2OOFOR I=1 70 2
JO0 FOR Q=1 70 &
A0 FRINT Leol}
50 NEXT O
&HOONEXT

o “w

BASIC will execute the loops and display:

TNMER OUTER

IanPJ—ﬂ—l—
]ukshﬂaﬂmwﬁ

Note that each execution of the outer loop causes BASIC to run through
the inner loop three times.

0S/8 BASIC

1.7.4 Stopping -- END and STOP

Two statements -- END and STOP -- will cause BASIC to terminate the
execution of a program and return control to the editor.

The END statement informs the BASIC compiler that it has come to the
last 1line 1in the program. Every BASIC program must end with an END
statement. No program may contain more than one END statement. A
STOP statement cannot take the place of the END statement.
The format of the END statement is

{line number) END

which causes BASIC to return to the edit mode, display

READY

and await your next command.

The STOP statement also terminates a running program, but unlike END,
it may occur more than once in the same program.

The format of the STOP statement is
(line number) STOP
The following program demonstrates the use of the STOP statement:

10 INFUT A

20 READ B

30 IF A=R GOTO 50
40 STOF

50 PRINT "EQUAL*
&0 TIATA 3

2% END

The STOP statement here prevents BASIC from displaying EQUAL when A
does not equal B.

1.7.5 Jumping to Subroutines -- GOSUB and RETURN

A subroutine is a sequence of statements that performs some operation
required at more than one point in the program. Subroutines are
generally placed at the end of the program, usually before any DATA
lines and always before the END statement.

Two statements -- GOSUB and RETURN -- cause BASIC to Jjump to a
subroutine, execute it, and jump back to the point in the main program
where it left off. GOSUB and RETURN occur only in combination with
each other.
The format of the GOSUB statement is

(line number) GOSUB n
where n is the number of the first line in the subroutine.
When BASIC encounters a GOSUB, it records the number of the 1line

immediately following ‘it and jumps to the first 1line of the
subroutine.

05/8 BASIC

The format of the RETURN statement is
(line number) RETURN

The RETURN statement always occupies the last line in the subroutine.
RETURN causes BASIC to Jjump to the line following the last GOSUB
statement it has executed.

You may use the control statements described in this chapter to direct
BASIC from one line to another within a subroutine or even to a line
in another subroutine.

You may also "nest" subroutines -- use one subroutine to call
another -- up to ten levels. If you exceed the tenth level, BASIC
prints

GS AT LINE w

where y represents the line number where the error occurred.
The following sample program contains two simple subroutines:

10 GOSUR 40

20 PRINT "I‘M BACK FROM 1"
30 GOSUR 80

40 PRINT "I’'M RACK FROM 2°
a0 STOF

&0 PRINT *SUBROUTINE 1°

70 RETURN

B0 PRINT "SUBROUTINE 2*

20 RETURN

99 END

The STOP statement prevents BASIC from "falling into" the subroutines
and executing them after it has executed the PRINT statement in line

40. The program will produce:

SURROUTINE 1
I'M BACK FROM 1
SUBROUTINE 2
I'M BACK FROM 2

1.8 FUNCTIONS

Functions are special subroutines that perform frequently used
operations on numbers and strings.

The format of most functions is

NNN (X)
where
NNN is a three-letter name
(X) is an argument enclosed 1in parentheses. The

argument may be a number, a variable, an
expression, or another function.

Some functions require multiple arguments and take the form

NNN({X,Y,Z)

1-24

0S/8 BASIC

Most functions compute a value based on the value of the argument or
arguments 1involved. They are said to *return" this value. For
example, SQR(Z) returns the square root of Z.

Functions may return either strings or numbers. Functions that return

T -

character strings are distinquished from functions that return numbers
by the dollar sign ($) appended to their name. For example, the CHRS
function converts an ASCII code number to its equivalent character and
returns the character. The ASC function converts a character to its
code number.

Unlike conventional subroutines, functions do not require GOSUB and
RETURN statements. They produce their results "in place." For
example, the following line will assign the variable A a value of 2:

10 LET A=5QR(4)

1.8.1 Numeric Functions
BASIC provides numeric functions to perform standard mathematical
operations. For example, you may find it necessary to find the sine
of an angle. You can do this by looking it up in a table of sine
values or by using the BASIC SIN function.
BASIC provides the following trigonometric functions:

e Sine function (SIN)

e Cosine function (COS)

e Arctangent function (ATN)
BASIC provides algebraic functions to find:

e the square root of a number (SQR)

e the value of e —- 2.71828 —-- raised to any power (EXP)

e the natural logarithm of a number (LOG)

e the integral part of a number (INT)

e the absolute value of a number (ABS)

® a value based on the sign of a number (SGN).
BASIC also includes a function -- RND -- that returns a random number.

You <can wuse this function when you are +trying to simulate an
unpredictable situation with a BASIC program.

1.8.1.1 Calculating Sine -- SIN - The BASIC SIN function lets vyou
calculate the sine of an angle specified in radians. The format is

SIN (X)
where
X is a number, numeric variable, expression, or

another function, representing the size of an
angle in radians

0S/8 BASIC

For example, this program

1O LET P o= 3,14189
20 PRINT SINCIOXP/180)
30 END

will display:

o
e

1.8.1.2 Calculating Cosine -- COS - The BASIC COS function 1lets vyou
calculate the cosine of an angle specified in radians. The format is

COS (X)
where
X is a number, numeric variable, expression, or
another function, representing the size of an
angle in radians

Thus, these lines

1O PRINT COS(AGXI. 1415971800
200 END

will display

]

o

1.8.1.3 Calculating the Arctangent —- ATN - The BASIC ATN function
lets you <calculate the angle (in radians) whose tangent is given as
the argument of the function.
The format is

ATN (X)

where

X is a number, variable, expression, or another
function representing the tangent of an angle

Thus, this two-line program

10 PRINT ATN(.G7735)
20 END

will display

0.523528

0S/8 BASIC

ting the Tangent - Although BASIC does not provide a
n, vou can find the tangent of an angle with the
ometric equation:

P Ve -S e

sine (angle)
cos (angle)
Translated into BASIC, this equation will read
10 T=8IN{RI/COSRY

where T is the tangent and R is an angle expressed in radians.

1.8.1.5 Finding the Sguare Root -- SQR - The BASIC SQR function
computes the positive square root of an expression. The format is

SOR (X)
where

X is a number, variable, expression, or another
function -

If the argument is negative, the absolute value of the number is used.
For example, this program

10 PRINT SQR(16)
20 PRINT SQR(-4)
30 END

will display

jr3|

1.8.1.6 The Exponential unction -- EXP - The BASIC EXP function
calculates the value of e raised to the X power, where e is egual to
2.71828. That is, EXP(X) is equivalent to 2.71828**X.
The format is

EXP (X)

where

X is a number, numeric variable, expression, or
another function

Thus, this program

10 PRINT EXF01.5)
20 END

will display

AL 481469

0S/8 BASIC
1.8.1.7 Calculating the Natural Logarithm -- LOG - The BASIC LOG
function calculates the natural logarithm of X (tc the base e).
The format 1is
LOG (X)
where

X is a number, numeric variable, expression, or
another function

EXP and LOG perform opposite functions. That is the exponent x (the
input 1in the EXP function) in the formula e"x=y is the logarithm of y
to the base e (the output of the LOG function) in the formula x=log(e)
y.

This BASIC formula demonstrates their relationship:

LOG(EXP (X)) =X

1.8.1.8 The Integer Function -- INT - The BASIC INT function returns
the value of the largest integer not greater than the argument. The
format is

INT (X)
where

X is a number, numeric variable, expression, or
another function

To round off a number to the nearest integer, specify INT(X+.5).
For example, this function

1O INTO3d 670
returns the value 34;

these functions

10 INT (34.67 + .5)
15 INT (34.36 + .5)

return the values 35 and 34;
this function
10 INT (-14.37)

returns the value -15.

-28

[

0S/8 BASIC

1.8.1.9 The Absolute Value Function -- ABS - The BASIC ABS function
returns the absolute value c¢f an expression. The format is
ABS(X)
czle o ae -
wilerec
X is a number, numeric variable, or numeric
expression

=2

By mathematical definition, the absolute value of a number whic
represents 1its magnitude is always positive. The absolute value of a
positive number is equal to the number; the absolute value of a
negative number is egqual to the number times -1. For example, this
programs:

i A
I

T # BN
N RSO L T

)i
NI

fel e
m T

i
2

will display

1.8.1.10 The Sign Function -- SGN - The SGN function lets you
determine if an expression is positive, negative, or egual to zero.
The format is

SGN (X)
where

X is a number, numeric variable, expression, or
another function

If the argument is any positive number, the SGN function will return a
value of 1. If the argument is negative, SGN returns -1. If it is O,
SGN returns 0. For example, these lines

10 LET A=S\LET E=O\LET C=-2

20 FRINT SGH{AYF SGHNIRY SGNIC)
will display

1 0 -1

because

1.8.1.11 Random Numbers -- RND - A random-number series is a series
of numbers that are not related to each other in any way. You can use
random numbers in a BASIC program to simulate a situation in which the
outcome is not predictable -- the flip of a coin, for example, or the
rolling of dice.

0S/8 BASIC

It is not possible to produce a series of truly random numbers on a
computer since, given the same starting conditions, a computer always
comes up with the same results. Instead, BASIC uses complex
calculations to generate a series of numbers that seem unrelated.
This is called a pseudo-random series.

The BASIC RND function produces pseudo-random numbers between -- but
not including -- 0 and 1. The format is

RND (X)
where

X is a dummy variable. Type the function just as it

appears above.

Each time BASIC encounters the RND function in a program, it produces
a different decimal number. However, if you run the program again,
BASIC will output the same set of numbers. To generate a different
set of numbers with each execution, use the RANDOMIZE statement in
your program.

The format of the RANDOMIZE statement is
(line number) RANDOMIZE

The following routine will print a different series of random numbers
each time you run it. (RANDOMIZE uses the value you enter to vary the
output.)

10 INFUT X

20 FOR L=1 TO 20

3¢ PRINT INT C(1OXRNDOXY)3
40 NEXT L.

50 IF X <0 GOTO 20

79 END

1.8.2 String Functions

BASIC string functions let you examine and modify strings and perform
certain conversions between numbers and strings. Functions that
return strings are distinguished from functions that return numbers by
the dollar sign ($) after their name.

BASIC provides three functions that allow you to analyze and
manipulate strings:

e LEN function ~- determines the length of a string

e POS function -- searches for the position of a set of
characters within a string

® SEGS$ function -- copies a segment from a string

0S/8 BASIC

Other functions enable you to convert strings to numbers and numbers
to strings: .

e ASC function -- converts a character to its ASCII code
equivalent

e CHRS -—- converts an ASCII code number to a character

® STR$ -- converts a number to its string representation

@ VAL —-- converts a string representation of a number to a
number

1.8.2.1 Finding the Length of a String -- LEN - The LEN function
returns the number of characters in a string.

The format is
LEN (X$)
where

X$ is a string, a string variable, or several
concatenated strings and/or string variables

For example,
(1) This line:
10 PRINT LEN(*DOG®)
will display
3
(2) This program:
10 Ag="UFy *
20 RBE="DOWNs AND °
SGOPRINT LEN(ASZRSELAROUND®)
40 END

will display

20

because
"gp," = 4 characters
"DOWN, AND" = 10 characters
"AROUND" = 6 characters
Total 20 characters

If a string has never been defined, it will have a length of 0.
This program:

20 FPRINT LENCL$)
$9 END

will display

0

1-31

0S/8 BASIC
1.8.2.2 Finding a Substring -- POS - The BASIC POS function returns
the location of a specified group of characters in a string.
The format is

POS (X$,Y$,2)

where
Xs is the string you want to search
Y$ is the substring you are searching for
Z is the position in the string at which you want to

begin the search
This function searches X$ for the first occurrence of YS$. It begins
the search with the Zth character in X$. Depending on what it finds,
POS returns the following results.

1. If it finds substring Y$, POS returns the position of the
first character in the series.

2. If it fails to find Y$, POS returns a 0.

3. If ¥Y$ is a null string (containing no characters), POS
returns a 1.

4, If X$ is a null string, POS returns a 0.

NOTE

If Z is less than 0 or greater than the
string, BASIC prints an error message
and stops the program.

These lines cause the POS function to start at the seventh character
in the string "ABCDEFGHIDEF" and search for the substring "DEF":

1O UM BRECL2D
200F = "ARCDEFGHIDEF®
FRINT FOS (B2%s *DEF". 7)

30

POS returns 10. (Change the 7 to a 1 in line 30 and POS will return a
4.)

1.8.2.3 Displaying a Substring -- SEG$ ~ The SEGS function searches
for a segment -- a substring -- of a string and returns it for
display.

1-32

0S/8 BASIC

where
X$ is the string containing the substring you want to
display. X$§ may be a variable or the string
itself.
Y is the position of the first character in the
substring
Z is the position of the last character in the

substring

SEG$ returns a null string (no characters) if
e Y is greater than the length of X
e 7 is less than 1
® 7 is less than Y

If Y is less than 1, SEGS$ sets it to 1. If %2 1is greater than the
length of X$, SEGS sets it equal to the length of X$.

These lines

Se w0
A0 FRINT

will display:

NI

1.8.2.4 Converting a Character to ASCII Code -- ASC - The ASC
function converts a one-character string to its ASCII code eqguivalent.
The format is

ASC (X)
where

X is a one-character string
ASC returns the equivalent decimal number for the argument. Table 1-1

lists all the alphanumeric characters available on the terminal and
their ASCII code numbers.

0S/8 BASIC

Table 1-1
Alphanumeric Characters and Corresponding ASCII Code Numbers

Character Decimal Character Decimal
Q 0 {space) 32
A 1 ! 33
B 2 " 34
C 3 # 35
D 4 S 36
E 5 3 37
F 6 & 38
G 7 ' 39
H 8 (40
I 9) 41
J 10 * 42
K 11 + 43
L 12 ! 44
M 13 - 45
N 14 . 46
0 15 / 47
P 16 0 48
Q 17 1 49
R 18 2 50
S 19 3 51
T 20 4 52
U 21 5 53
\Y 22 6 54
W 23 7 55
X 24 8 56
Y 25 9 57
A 26 : 58
{ 27 H 59
\ 28 < 60
] 29 = 61
- 30 > 62
_ 31 ? 63

Thus, this program
10 LET Ag=*%"
20 PRINT ASCC*F")sASC(AS) yASC(")
30 END

will display

16 4z 57

1.8.2.5 Converting ASCII Code to a Character -- CHR$S - The CHRS
function converts a code number to its equivalent character.

The format is
CHRS (X)
where

X is a number, a numeric expression, or a numeric
variable

0S/8 BASIC
CHRS$ returns the equivalent character for the argument. (See the ASC
function for the table of decimal/character conversions.)

If the argument is greater than 63, divide it by 64 and wuse the
remainder to search the table.

Thus, this line:

10 PRINT CHR$(1)sCHR$(40)
will display

A {
This line:

10 PRINT CHR$(207)CHR$(77)
will display

iy M

207/64
77/64

3, with a remainder of 15
1, with a remainder of 13

Using ‘15 and 13 to search the table yields the letters "O" and "M".

1.8.2.6 Converting Numbers from String to Numeric Format =- VAL - The
VAL function converts numbers in string form to numeric data. The
format is

VAL (X$)
where

X$ is a string made up of those values that BASIC
accepts as numeric data. These are:

digits 0 through 9

+ or - sign

the letter E

leading spaces -- BASIC ignores them
the first decimal point (.)

Keep in mind that BASIC does not consider numbers and numeric
expressions in string form as numeric data. It will not use them in
calculations or as arguments in mathematical <functions until vyou
convert them into numeric format with the VAL function.

This program instructs BASIC to read a string, convert it into numeric
form, and multiply it by two:

1O INFUT Ads
20 PRINT Val.{Aasik2
0 END

BASIC displays:

05/8 BASIC

1.8.2.7 Converting a Number to a String -- STR$ - The STR$ function
converts numerics to strings. The format is

STRS (X)
where
X is a numeric expression

The STR$ function returns the string value of the expression exactly
as BASIC would print it but without a leading or trailing space. Use
the STR$ function when you want to print a number without a leading or
trailing space and when vyou want to perform string operations or
functions on a number.

1.8.3 User-Defined Functions

1.8.3.1 The FNa Function and the DEF Statement - In some programs,
you may want to perform the same sequence of string or numeric
operations more than once. As an aid in such cases, BASIC lets you
define your sequence as a special function -~ called a user-defined
function -- that you can call for in the same way you would call for
any string or numeric function that BASIC provides.

The BASIC DEF statement lets you create user-defined functions. The
format of the DEF statement is

(line number) DEF FNa (list) = expression
where
(list) contains the dummy variable or variables that

appear in your operation. The same variables must
appear in the expression.

expression is the operation you want BASIC to perform each
time you call for the function. The operation may
contain numbers, several variables, other

functions, or mathematical expressions.
For example, if you write a program in which you repeatedly use the

operation e"-x2+5, you can introduce it as a user-defined function
with this DEF statement:

30 DEF FNE(X)=EXF (~-XXX2)+5

and then call for various values of the function -~ FNE(.1),
FNE (3.45), FNE(A+2), etc.

This statement:
10 DEF FNA(S)=5XX2

will cause the user-defined function in this line
20 LET R=FNAC4)

to return a 16.

0S/8 BASIC

If the function involves more than one variable, BASIC will identify
them by their ition. For example, this program

10 DEF FHH{NeP)Y=2%F{N

20 LET X=4\NLET Y=§

30 FRINT FNH{XsY?

4G BN

will display

14

BASIC takes the first value in the function (4) as "N", because "N"
appears first in the DEF statement. It takes the second value (5) as
"P", because "P" is in the second position.

DEF FNH (N,P) = 2*P+N
first position second position

PRINT FNH(X,Y)

You must introduce each user-defined function with a separate DEF
statement, taking care to place each DEF statement before the first
occurrence of the function it defines. For example, if you want to
use a special function called FNB(X) in your program, you must first
write a DEF statement with FNB as the parameter. You may define up to
26 FN functions in the same program (FNA, FNB...,FNZ).

1.8.3.2 The UDEF Function Call and the USE Statement - 0S/8 BASIC
lets you add one or more user-coded assembly-language functions to a
BASIC program and use them in the same way you would use any other
function. For complete instructions to write and interface such
functions, see Chapter 2.

To specify a user-coded function in an 0S/8 BASIC program, type
line number UDEF function name{a,b,c)
where

function name consists of alphabetic characters only and has at
least one argument (a dummy, if necessary)

(a,b,c) are arguments. User-written assembly-language
functions may contain up to four numeric and two
string arguments.

For example:

10

13

FORLTOX Y e)
J T DE=PLTOR Re Q)
A% PRINT 4%

A0 END

1-37

0S/8 BASIC

Line 25 introduces the function PLT to 0S/8 BASIC and 1indicates the
number and type of arguments associated with it. 1In line 30 the
function appears as any standard function might appear in a BASIC
program. If the function requires an array, a USE statement
identifying the array must precede the statement that calls the
function. Thus:

10 DIM SC(153)
LET Q=10

USE §
UDEF PLT(X:Y»Z)

PRI P
v e e ARG -

1.8.4 The Debugging Function -- TRC

The TRC function causes BASIC to print the line numbers of statements
in a program in the order that it executes them. This lets you follow
the course of loops and subroutines and provides a useful tool for
debugging a program.

The format of the TRC function is

v = TRC (X)
where
v is any letter. It has no purpose except to occupy
the position in the line.
X is 1 or 0. 1 turns the function on; 0 turns it

off.

When it comes upon a TRC(1l) in a program, BASIC begins displaying the
line number (enclosed by percent signs) of each statement it
executes -~ with the exception of the following types: DATA, DEF,
DIM, END, GOTO, NEXT, RANDOMIZE, REM, and STOP. Encountering a TRC(0)
will cause it to stop outputting 1line numbers and resume normal

operation.

0S/8 BASIC

For example, this program:

&0 T=TRC(1)

70 GOSUR 90

80 GOTO 140

20 FRINT "IN OUTER SUR"
100 GOSUR 120

110 RETURN
120 PRINT
130 RETURN
140 T=TRC(0)
150 END

"IN INNER SUR*®

will display

i 70 %

Z 90 %

IN QUTER SUR
% 100 %

X 120 %

IN INNER SUR
4 130 %

“ 110 %

X 140 %

1.8.5

Calling for the Date -- the DATS$ Function

The DATS$ function returns the current system date.

The format is
DATS {X)
where
X is a dummy variable

Enter this function exactly as it
eight-character string in the form

appears

mm/dd/yy
For example, these lines:

10 LET D% =
20 PRINT D%

NATH(X)

will display

07720777

above. DATS

if that date was entered with the monitor DATE command.

If you have not specified the date with the MONITOR date command,

function will return no characters.

1-39

returns an

the

0S/8 BASIC

1.9 FILE STATEMENTS

BASIC file statements -- which are distinguished from other BASIC
statements by the number sign (#) -- let you store data on peripheral
devices for later use in any BASIC program. They include:

e FILE# Describes the file, assigns it a channel number from
1 to 4 (the number of files that BASIC can handle at
one time), and opens it.

e INPUT# Reads data from the file.

e DPRINT# Writes data on the file.

® RESTORE# Resets the pointer to the beginning of the file.
e CLOSE# Closes the file and removes the channel number.
e IF END# Tests for end-of-file.

In most operations, you open a file (FILE#) for input or output, read
from it (INPUT#) or write on it (PRINT#), and close it (CLOSE#). You
may open only four files at a time -- excluding the terminal, which is
always open and available for use. However, the ability to open and
close files under program control gives you access to an unlimited
number of files. That is, when you close a file, you may reassign its
channel number to a newly opened file.

BASIC treats files in the same way it treats terminal input and
output. The INPUT statement causes BASIC to read a value that you
enter on the terminal and assign it to a variable; the INPUT#
statement causes it to read a value from a file. The PRINT statement
instructs BASIC to display data on the terminal; the PRINT# statement
tells it to write data in a file.

BASIC uses two types of file: string files and numeric files. You
may write numbers into a string file 1in both string and numeric
format. Numeric files, however, may contain numeric data only.

1.9.1 File Control

You must open a file with a FILE# statement before you can read or
write any data. You should close any files that you open during the
course of a program with a CLOSE# statement. The CLOSE# statement
cancels the channel number that you have assigned with the FILE#
statement, making the channel available to any other newly opened
file.

1.9.1.1 Opening a File -- FILE§ - The BASIC FILE# statement opens a
file for input or output, defines it, and assigns a channel number.
An input file is one you are reading from. An output file is one you
are writing to.

1-40

0S/8 BASIC

The format of the FILE# statement is

(line number) FILE t#n:"filespec"

where
t is one of the following:
(blank) for an input string file
v for an output string file
N for an input numeric file
VN for an output numeric file

n is the channel number (1 through 4) that you are
assigning to the file. It can be a numeric
variable.

"filespec" is an 0S/8 device, file name, and extension. It
must either be a string enclosed by quotation
marks or a string variable.

You must include a channel number (n) in all FILE# statements. (The

channel number of the terminal is always FILE#0.)

For example, this statement describes the string file RXAl:DATA2.AS as
file number 1 and opens it for output:

10 FILEVEL! “"RXALIDATAZ.AS"

This statement describes the numeric file MONEY.NU on RXAl as file
number 2 and opens it for output:

10 FILEVUN 21 "RXA1IMONEY.NU"

These statements describe the string file RXA1:TEST.AB as file number
3 and open it for input:

10 LET A$="RXA1!TEST.AR"
19 FILE#3: A%

men

ement describes the numeric file RXA1l:FIL3.CD as file number
ns it £

or input:

10 FILEN¥4: "RXALIFIL3.CD"

1.9.1.2 Closing a File -- CLOSE# - The CLOSE# statement closes any
file you specify and disassociates it from its channel number. This
allows BASIC to reassign the number to another file. After you close
a file, you cannot use it again until you reopen it.

The format of the CLOSE# statement is
(line number) CLOSE# n
where

n is the channel number of the file to be closed (or
a variable)

You must close all output files in a program before instructing BASIC
to execute an END, STOP, or CHAIN statement. If you do not close
them, they will be lost.

0S/8 BASIC

In the following program, the CLOSE# statement allows BASIC to
reassign the channel number of file SYS:TEST.XX to the newly opened
file RXA1l:FILD:DA:

50 FILEV #1:"8YSITEST.XX"
60 PRINT #1i®A"s"R"» 0", "0
70 CL.OSE #1

80 FILE #1:"RXALIFILD.OAT
QO INFUT #11.%

1.9.2 File 1/0

You use BASIC files 1in the same way vyou use the terminal for
sequential 1input and output. The difference is that files allow you
to manipulate much more data in much less time than the terminal.

You can open a file to supply input or to receive output, but you
cannot open it to do both at the same time. To update an existing
file, you must open it for input, open a new file for output, read the
data from the input file and write the data including any changes you
wish to make on the output file.

1.9.2.1 Reading Data from a File -- INPUT# - The INPUT# statement
instructs BASIC to read data from a file and assign values to
specified variables. BASIC reads file data serially. This means that
it must read through an entire list to get at the last item of data.

The format of the INPUT# statement is

(line number) INPUT#n:variables

where
n is the channel number of the file you are reading
(or a variable)
variables is the list of variables -- separated by

commas -~ into which BASIC will read data

The INPUT# statement automatically steps through the file item by item
to find values to satisfy its variables.

In most operations, you write numbers into numeric files and strings
into string files and then read them back into the corresponding
variables. If you wish, however, you may write numbers into string
files and read them back into either numeric or string variables,
depending on how you want to use them. If you assign numbers from a
string file to string variables, they will appear in string form and
be subject to the same rules as other strings. If you assign numbers
from a string file to numeric variables, BASIC will convert them into
numeric form. Keep in mind that string files contain carriage returns
and 1line feeds. These will appear as zeros if read into numeric
variables.

0S/8 BASIC

For example, the following program instructs BASIC to write numbers
into a string file and read them back as numeric data. The "C" and
"L" variables in the INPUT# statement in line 80 receive the zeros
generated by the carriage return and the line feed.

10 FILEVELI"SYSIFILALZZE
20 FORI#1 70 3

30 PFRINT #1:1

40 NEXT I

G0 CLOSE#1

&0 FILE#1:"SYSIFILALZZ"
70 FOR I=1 TO 5

80 INFUT#1:id.CyL

20 FRINT .J

100 NEXT I

110 END

It will display

e fd 3 1

1.9.2.2 Writing Data on a File -- PRINT# - The PRINT# statement lets
you write data on an output file. 1Its format is

(line number) PRINT# n: expression

where
n is the channel number or a wvariable representing
the channel number
expressions may be numerics or strings, depending on the type
of output file vyou have opened in the FILE%#
statement

e If you open a string output file (FILEV#),
the expressions may be string or numeric,
separated by commas or semicolons. You
may use the TAB and PNT functions when
writing on string files. (See Section
1.6.4.3.)

e If you open a numeric output file
(FILEVN#), the expressions must be numbers
or numeric variables, separated by commas
or semicolons.

When you use the PRINT# statement to write data into an output string
file, BASIC interprets commas, semicolons, and RETURNs the same way it
interprets them in PRINT statements. For example,

10 FRINT "a®y, *"R"
20 PRINT *C"F *D"5
30 FRINT "E"

will display

i)
|

DE

|

0S/8 BASIC

The following lines will cause the same display:

9 nIM J$30)

10 FILEV#2:"RXALIFROG,XX"
20 FPRINT #2:"A"» "R"

30 FPRINT #2:3°C"s "D"s

40 FRINT #2:1'E"

50 CLOSE#2

460 FILE#2!"RXALIFROG.XX"
70 INFUTE2:.J%

BO FRINT J¢

QO INFUTH2:.)4%

100 FRINT J%

When you use the PRINT# statement to write data into an output numeric
file, BASIC converts commas and semicolons to spaces. The file will
simply contain a "list" of numbers separated by spaces. For example,
this program

10 FILEUN#1:"SYSITST..XX"
20 FRINT#111.2

30 PRINTH1:3+4,

40 FPRINT#1:15+6

50 CLOSE#1

A0 FILEN#LI"SYSITST . XX
70 FOR X=1 TD &

80 INFUT#1:Z

?C¢ FRINT Z

100 NEXT X

PP END

will display

o fea s [e

1.9.2.3 Resetting a File -- RESTORE# - The RESTORE# statement resets
the file back to the beginning so that the next INPUT# statement will
cause BASIC to read the first item in the series. The format is

(line number) RESTORE# n

where

n is the channel number of the file to be reset or a
variable representing the channel number

If n is 0, BASIC resets the DATA list to the beginning.

In the following program, RXALl:FILB.LM 1is a numeric input file
containing the numbers 1 through 5. These instructions:

100 FILEN#3:1"RXAL1IFILEB.LM"

110 FOR I=1 TO 3

120 INFUT #3172

130 FRINT Z

140 NEXT I

150 RESTORE#3
160 INFUT#3:Z
170 PRINT Z
999 END

will display

1.9.2.4 Checking for End-of-File -- the IF END# Statement - The IF
END# statement lets you detect the end of a string file. The format
is

(line number) IF END# n THEN m

where
n is the channel number of the file in guestion or a
variable representing the number
m is the number of the line in the program to which
BASIC will Jjump if it has reached the end of the
file

The IF END# statement works only on string files and must immediately
follow the PRINT# or INPUT# statement for that file.

When you use the IF END# statement, you are asking BASIC to <check 1if
its last attempt to execute a PRINT# or INPUT# statement was
successful. If it was unsuccessful -- if nothing was written or
read -- BASIC jumps to line m.

For example, in this program

10 FILEV#iL! "SYSIFROGA.EBR"
20 FRINTH#1: "A"

30 PRINT#1: "R"

40 CLOSE# 1

S50 FILE#1: "SYS!FROGA.BB®
&0 INFUTHL IA%

70 IF ENIEL THEN 100

80 FRINT A%

20 GOTO &0

100 PRINT "END OF FILE®
110 CLOSER1

0S/8 BASIC

the lines will be executed in this sequence

so that the display will be

=|2

1.10 SEGMENTING PROGRAMS -- THE CHAIN STATEMENT

FILE# statements let you manipulate data files under program control.
The CHAIN statement (used in connection with the SAVE command) lets
you do the same thing with files that contain programs.

With the SAVE command, you can divide a 1long program into shorter
segments and then store the pieces in separate files. During program
execution, CHAIN statements cause BASIC to retrieve the segments one
after another and run them together in a chain.

The format of the CHAIN statement is
CHAIN "filespec"
where

"filespec" is the device and file name -- enclosed by
guotation marks —-- of the program you want to run

When BASIC encounters a CHAIN statement 1in a program, it stops
execution to retrieve, compile (if necessary), and run the program you
have called for. After BASIC has run all the programs in the chain,
the workspace and the BASIC.WS file will both contain the program it
started with.

Since BASIC removes each program from core memory before retrieving
the next one in the chain, you must be sure to CLOSE# all data files
in any program containing a CHAIN statement. If you do not, data will
be lost.

Programs for chaining must all be the same type. A BASIC source
program will chain only to another BASIC source program, and a memory
image file (identified by the .SV extension in the file name) to
another memory image file.

-46

(=]

05/8 BASIC

NOTE

When chaining BASIC memory image files,
you must place the program being chained
to on SYS. This is a restriction of the
USR CHAIN function.

[2 ¥ BPA) =

In the following example, during a run of program PROGl.BA, the CHAIN
statement causes BASIC to halt execution to retrieve and execute the
program called CHAINL1.BA., The CHAIN statement in this program, in
turn, causes CHAIN2.BA to run, completing the series.

NEW CHAIN1.RA

REALY

10 FRINT "FIRST LINK®

20 CHAIN *SYS!CHAIN2.RA"
99 END

SAVE SYS! CHAIN1.RA
READY
NEW CHAIN2.RA

10 PRINT "SECOND LINK®
9% END

SAVE SYS! CHAIN2.BA

READY

NEW FROG1.RA

10 FPRINT ®*CHAIN STARTS HERE®
20 CHAIN "SYSICHAINLI.ERA"
9 END

RUNNH
CHAIN STARTS HERE

FIRST LINK
SECOND L INK

In general, any departure from these procedures will produce a CX
error.

1.11 BASIC COMMANDS

BASIC commands let you create, modify, store, and run programs under
the direction of the BASIC editor. To summon the editor, type BASIC
in response to the 0S/80 monitor dot. The editor will respond with
the message

NEW OR OLD —-

indicating that it has assumed control of the system and reserved a
special area in memory -—- called the workspace -- for your program.
You may now tell BASIC whether you wish to enter a new program or call
for one that you have previously written and stored on a peripheral
device.

05/8 BASIC

1.11.1 Entering a New Program -- the NEW Command

The NEW command clears the workspace and tells the editor the name of
the program you are about to enter.

The format is
NEW filename!.ex]
where
filename.ex is the name and extension of the new program you
are about to enter. If the extension is omitted,

BASIC calls it ".BA".

If you strike the RETURN key immediately after typing NEW, BASIC
clears the workspace and prompts with the message

FILE NAME -—-—

You must now type the file name and extension and press the RETURN
key.

Thus, the following commands both instruct BASIC to <clear the
workspace and name a new program "TEST.BA":

NEW TEST
NEW TEST.BA

You enter a BASIC program line by line, keeping in mind that you must:
® begin each line with a number. Line numbers may range from 1
to 99999 and must contain no internal spaces or nonnumeric
characters.
e terminate each line with the RETURN key.
If you make a typing error, you may correct it by striking the DELETE

key once for each error you wish to erase. If you wish to delete the
entire line, press the CTRL/U key command.

1.11.2 Calling for an 014 Program -- the OLD Command

The OLD command instructs BASIC to clear the workspace, find a file on
a peripheral device, and place it in the workspace. The format is

OLD dev:filename[.ex]
where
dev:filename.ex is the device, file name, and extension of
the program you are calling for. If you omit

the extension, BASIC assumes ".BA".

If you strike the RETURN key immediately after typing OLD, BASIC
clears the workspace and prompts with the message

FILE NAME —-

You must now type the file name and extension and press the RETURN
key.

05/8 BASIC

These two commands both cause BASIC to clear the workspace and bring
TEST.BA into the workspace from RXAl:

OLn RXAl: TEST.EA
OL RXAlt! TEST

1.11.3 Running a Program -- the RUN Command

The RUN command instructs BASIC to display a header 1line (containing
the file name and extension, BASIC version number, and the date) and
execute the program in the workspace. The RUNNH command causes it to
run the program without the header.

The format is
RUN

or
RUNNH

To run a program, BASIC first reserves space in memory for all arrays
dimensioned in DIM statements, defines user functions in DEF
statements, and initializes all numeric variables at =zero and all
string variables at null string. Then it begins execution at the
lowest line number.

If BASIC encounters no errors, it will complete execution and display
any data you asked for in PRINT statements. When it has finished, it
will signal

READY

NOTE

The RUN and RUNNH commands also cause
BASIC to store a copy of the program it
is running in a file called BASIC.WS.

If you neglect to save the program with a SAVE command or if for some
reason you cannot retrieve it, call for OLD file BASIC.WS. Keep in
mind that the program in BASIC.WS is always the last one you have run.

1.11.4 Displaying a Program -- the LIST Command

The LIST command causes BASIC to print a header line (containing the
file name and extension, BASIC version number, and date) and display
the program currently in the workspace. The LISTNH command instructs
BASIC to suppress the header.

1-49

0S/8 BASIC

The format is

LIST [n]
or
LISTNH [n]
where
n is a line number in the program

If n is present, the LIST command will cause BASIC to display the line
number n and all the 1lines following it in the program. If n is
omitted, BASIC will display the entire program.
To terminate a listing, type the CTRL/O key command.
Use the LIST command when correcting or modifying the program in the
workspace. For example, if BASIC informs you that an error exists in
line 30, type LIST 30 to see the line.

30 IF A=X GOTO
When you have detected the error -- in this case the omission of a

line number after GOTO -- rewrite the entire line correctly and press
the RETURN key.

1.11.5 Storing a Program -- the SAVE Command

The SAVE command causes BASIC to take the file «currently in the
workspace and store it on any device you specify.

The format is
SAVE [dev:filename.ex]
where
dev:filename.ex is the device, file name, and extension of
the program you want to store. If you omit
the device, BASIC stores the file on DSK:.
If you omit the file name, BASIC uses the
name you gave it in a NEW or OLD command.

The SAVE command provides you with a way to list large programs on the
line printer rather than the terminal. Type

SAVE LFT?

to list the contents of the workspace on the line printer.

0S/8 BASIC

1.11.6 Renaming a Program -- the NAME Command
The NAME command lets you rename the file currently in the workspace.
The format is

NAME filename.ex
where

filename.ex is the new name of the program
Since this command changes only the name of the file 1in the
workspace -- not the file itself —-- you can use it to create and save
two similar versions of the same program. To do this:
. Read the program into the workspace with the OLD command.
2. Rename the contents of the workspace.

3. Make the changes.

4. Save the new version under the new name.

1.11.7 Erasing the Workspace -- the SCRATCH Command

The SCRATCH command tells BASIC to erase everything from the
workspace, leaving you a clean area in which to write.

The format is
SCRatch
The OLD and NEW commands also clean the workspace. Nevertheless, it

is good programming practice to use the SCRATCH command before
entering a new program or calling for an old one.

1.11.8 Leaving Basic -- the BYE Command

The BYE command dismisses the BASIC editor and returns control of the
system to the 0S/8 monitor.

The format is
BYE
Never give the BYE command without first saving the program in the

workspace. When vyou <call BASIC again and respond to the NEW or OLD
message, BASIC will erase the workspace, destroying the program.

1-51

0S/8 BASIC

1.11.9 Resequencing a Program -- Calling RESEQ

After you have made extensive modifications in a program, you may find
that some parts now contain consecutively numbered lines, making it
difficult to insert additional statements where you may need them.
The BASIC RESEQ program renumbers your program and lets you specify a
suitable increment between lines. RESEQ automatically changes the
line numbers in GOSUB and IF THEN statements to agree with the
renumbered program.

Programs for RESEQuencing must not exceed 350 lines. The 1lines must
not exceed 80 characters.

Here is an example of a typical reseguencing operation:
Command Meaning

SAVE [SKSAMFLE . RA You save SAMPLE (which 1is the program
you want to resequence).

REATY BASIC indicates it is ready to receive
your next command.

0L DSKIRESEQR You call for program RESEQ.

READY BASIC is ready for your next command.
RUNNH You tell BASIC to run RESEQ.

FILE® DSKISAMPLE . BA RESEQ program asks for file name. You

respond with device, name, and extension
of program you want to renumber.

STARTySTEFT 10010 RESEQ asks for a starting 1line number
(START) and an increment between line
numbers (STEP). You specify a starting
number of 100 and an increment of 10.

READY When RESEQ has finished renumbering your
program, BASIC indicates that it is
ready for your next command.

0L.0 DSKISAMFLE . BA You call back your program.
READY BASIC is ready for your next command.
LISTNH You tell BASIC to display program SAMPLE

on terminal.

Don't worry if renumbering seems slow. This is a characteristic of
the RESEQ program.

1.11.10 Key Commands

BASIC key commands let you delete characters and lines that you have
typed, interrupt execution of BASIC programs, and control listings on
the terminal. To type a CTRL command, hold down the CTRL key and
press the appropriate letter.

0S/8 BASIC

1.11.10.1 Correcting Typing and Format Errors -- DELETE, CTRL/U - To
correct typing errors, press the DELETE key. Each time you strike the
key, another character is deleted.

Sometimes you may find it easier to delete an entire line rather than
making corrections with a series of DELETEs. To erase an entire line,
type CTRL/U. This key command -- which is equivalent to typing DELETE
back to the beginning of the 1line -- erases the 1line, echoes
"DELETED", and performs a line feed.

1.11.10.2 Eliminating Program Lines —-- RETURN - To delete a line from
a BASIC program, type the line number and press the RETURN key. This
removes both the statement and the line number from the program.

1.11.10.3 Interrupting Program Execution -- CTRL/C - To stop a
program during execution, type CTRL/C. BASIC responds with READY,
allowing you to correct or modify the program.

NOTE

If you type CTRL/C after the READY
message appears, BASIC will return
control to the 0S/8 monitor.

1.11.10.4 Controlling Program Listings on the Terminal -- CTRL/S,
CTRL/Q, and CTRL/O - If your program exceeds a single display
frame -- 24 lines -- you may wish to stop the scrolling caused by the
LIST/LISTNH commands.

The following key commands let you control listings.

CTRL/S Suspends scrolling in the display frame.

CTRL/Q Resumes scrolling.

CTRL/OA Causes BASIC to abort listing and signal with READY
message.

CHAPTER 2

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.1 INTRODUCTION

Experienced programmers may write original routines and functions in
assembly language and run them with BASIC programs. Such operations
require knowledge of the BASIC run-time system (BRTS), since BRTS is
the part of BASIC that executes all user-written programs, functions,
and routines. ‘The following chapter, which includes a detailed
description of BRTS, assumes that the reader is familiar with the
0S8/80 assembly language PALS.

BASIC consists of five discrete parts:

1. The BASIC editor, which enables you to create and edit source
programs. When vou type a RUN command, the editor opens a
temporary file called BASIC.WS, stores the source program in
the file, and chains to the compiler.

2. The BASIC compiler, which translates the source program into
a pseudo-code.

3. The loader, which places the pseudo-code into memory along
with the run-time system.

4, The BASIC run-time system, which interprets pseudo-code and
calls overlays into core memory as it needs them.

5. The BRTS overlays, which consist mainly of BASIC functions.
BRTS reserves one of these for user-written assembly-language
functions and subroutines.

The following chart lists the names of the files in the BASIC system
and the file names of the programs each produces or uses during run
time.

BASIC Component File Name Associated File Use
Editor BASIC.SV BASIC.WS source program storage
Compiler BCOMP.SV BASIC.WS source program storage
BASIC.TM compiled code storage
Loader BLOAD.SV BASIC.TM compiled code storage
BRTS BRTS.SV BASIC.AF overlays of functions,
BASIC.SF if needed
BASIC.FF
BASIC.UF

Note that these file names identify programs in the BASIC system. You
must not use them to identify your own programs.

2-1

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2 THE BASIC RUN-TIME SYSTEM - BRTS

The BASIC run-time system executes all user-written programs,
including original assembly-language functions. The description in
this chapter of the configuration of BRTS during execution uses the
following conventions:

e Memory locations have symbolic names (always capitalized).
You may obtain the actual value of these symbols from the
symbol table for the version of BASIC you are using.

e The symbol table is for a non-EAE system. If the EAE overlay
is used, some minor symbols will change. The major routine
entry points, however, are the same in both systems.

® Variable names used in this chapter -- A, A(0,0), A$, and
AS$(0) -- represent the general case.

e All references to "page 0" indicate BRTS page 0 (page 0, field
0).

e All diagrams in this chapter locate the lowest memory address
at the top.

buring execution, BRTS has the following configuration in memory.

INTERPRETER
03400
OVERLAY AREA
04600
Fieldo | FLOATING POINT BRTS
PACKAGE
06677
FILE TABLE
07000
05/8 HANDLERS
07600
0S/8 RESIDENT
10000
Field 1 FILE BUFFERS
(E) 12000
PSEUDO CODE
®
ARRAY SPACE
Field N DATA LIST
(WHERE N =
HIGHEST
MEMORY | SYMBOL TABLES
FIELD IN THE N7400 OR N7600
MACHINE) | 0S/8 RESIDENT

Figure 2-1 BRTS Configuration

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.1 BRTS Symbol Tables

BRTS reserves space in the highest field in memory for its four symbol
tables, which it wuses to locate variables during run time. These
tables include the scalar table (for numeric variables such as A or
B3), the scalar array table (for numeric arrays -- A(1), B(3,4)), the
string symbol table (A$, B2S$), and the string array table (BS$(2)).
Location CDFIO of field 0 contains a CDF to the symbol table field.

2.2.1.1 The Scalar Table - The scalar table, the highest table in
memory, contains an entry for each numeric variable used in the
program. Each entry consists of a three-word floating-point number.
The table reserves a few extra entries for temporary results.
Location SCSTRT in field 0 contains a pointer to the start of the
scalar table.

The Scalar Table

Field 0
POINTER TO
SCSTRT | SCALAR TABLE
CDFIO I CDF X
Field X
SCALAR
CALAR | 3WORD F.P.NO.
+ EXP
+ HI MANT
LOW MANT

2.2.1.2 The Array Symbol Table - The array symbol table consists of
successive four-word entries. Each entry specifies the location and
size of a numeric array used in the program and has the following
format:

Word 1 POINTER TO A(0,0)
Word 2 CDF TO FIELD OF A(0,0)
Word 3 DIMENSION 1
Word 4 DIMENSION 2

CREATING ASSEMBLY LANGUAGE FUNCTIONS

Word 1 of each entry is a 12-bit pointer to the 1location of
the exponent word of the first element in the array.

Word 2 is a CDF n where n is the field for the pointer in the
first word.

Word 3 is the first dimension of the array -- obtained by
adding 1 to the M in a DIM A(M,N) statement, since the first
subscript is always O.

Word 4 is the second dimension of the array. If the array is
one-dimensional, the second dimension is 0.

To locate the nth element in an array, BRTS performs the following
calculation:

Addr of A(M,N)=3*[M+(DIM1 + 1)*N] + Addr of A(0,0)

A pointer to the start of the array symbol table less one (for use 1in
an index register) resides in field 0 at location ARSTRT.

The Array Symbol Table

ARSTRT l POINTER TO ARRAY TABLE -1

Field 0
corFio | CDF X J
START OF ARRAY ———=—=——= -
SYMBOL TABLE _ 1
A(0,0)
| A01)
ENTRY 1
A(2.0)
POINTER TO A{0,0) |
ARRAY SYMBOL COF Y ENTRY 2
TABLE (Field X) M+1 AMN)
N+

BRTS stores numeric arrays in memory as successive three-word entries
with the first subscript varying the fastest and A(0,0) occupying the
lowest address in memory.

2.2.1.3

The String Symbol Table - The string symbol table contains

successive three-word entries in the following format:

Word 1 POINTER TO STRING

Word 2 CDF FOR STRING

Word 3 —MAX = OF CHARS IN STRING

CREATING ASSEMBLY LANGUAGE FUNCTIONS

e Word 1 is a 12-bit pointer to the count word of the string.
e Word 2 in the entry is a CDF for the count word.

e Word 3 is the maximum length of the string (in characters)
stored as a two's complement negative number. {(Each string is
allocated INT((n + 1)2)+1 words, where n is the maximum length
specified in a DIM statement, whether that many words are
actually used or not.)

Note that the maximum number of characters in the string represents
the amount of space allocated for the string. The amount of space
actually used is represented by the count word, which BRTS stores with
the string.

Location SRSTRT in field 0 contains a pointer to the start of the
string symbol table (less one).

The String Symbol Table

STSTRT IT’OINTER TO STRING SYMBOﬂ_

Field 0
CDFIO L CDF X J
r __________ |
1 rt————————
COUNT FOR AS$
ENTRY 1
STRING AS
(Field Y)
p———
STRING CDF Y ENTRY 2
SYMBOL TABLE
(Field X) _MAX LENGTH

2
WORDS LONG

INT (MAX LENGTH+1) »

2.2.1.4 The String Array Table - The string array table consists of
consecutive four-word entries in the following format.

Word 1 POINTER TO AS(0)
Word 2 CDF FOR AS(0)

Word 3 —MAX = OF CHARS IN AS(0)
Word 4 DIMENSION OF AS(0)

CREATING ASSEMBLY LANGUAGE FUNCTIONS

e Word 1 contains a pointer to the count word of string AS$(0).

e Word 2 contains a CDF for the count word pointer.

® Word 3 is a two's complement negative number that specifies
the maximum 1length (in <characters) of each element in the
array.

@ Word 4 indicates the size of the string array, obtained by
adding 1 to M 1in the statement DIM AS$(M,N) since the first
element is always AS$(0). A pointer to the start of the string
array table less one resides in field 0 at location SASTRT.

To locate the nth element of a string array, BRTS performs the
following calculation:

addr of A$ (N)=addr of AS (0)+(INT(ABS(Z)+1l)/N+1)*N
where

Z = individual character length.

The String Array Table

SASTRT L POINTER TO START OF STRING ARRAY TABLE ~1J

Field 0
CDFIO [ii CDF X J
| | \
| - COUNT
Y
AS(0
ENTRY 1 > ©
STRING ARRAY
{ AS(CM,N)
POINTER TO AS(0) COUNT (Field Y)
CDF Y
0 ENTRY 2 >ASH)
STRING ARRAY —N
TABLE (Field X)
M+1
~

2.2.2 String Storage

BRTS stores strings as 6-bit ASCII characters. The first word in each
string 1is a character count -- a signed, two's complement number
representing the actual number of characters in the string, not the
number of words devoted to the string. BRTS fills the left half of
each word first, padding out the unused characters with spaces. The
minimum string is one character long.

2-6

CREATING ASSEMBLY LANGUAGE FUNCTIONS

BASIC" “BRTS"
NAAN AN A
COUNT 7773 7774 COUNT
AT “BR”
g v
g COUNT FOR
NEXT STRING
COUNT
COUNT FOR
NEXT STRING A Al

2 Mha v
2.2.3 The String Accunmulator

BRTS maintains a string accumulator (SAC) for all string operations.
String operations leave their results in the SAC and use it as one of
their operands. The SAC starts at location SAC in BRTS; it 1is 80
words long and contains one 6-bit character per word. BRTS stores the
length as a negative number in SACLEN and maintains a page 0 pointer
(less one) to the start of the SAC at SACPTR.

2.2.4 String Array Storage

BRTS stores string arrays in memory as successive strings, with A$(0)
occupying the lowest core address. BRTS allocates space for the
maximum length possible, even though not all of the space may be used.
The space is for the maximum length,

COUNT
AS(0) e
'NT(2) WORDS WHERE N IS THE
e MAXIMUM LENGTH OF
COUNT STRING SPECIFIED IN
AS(1) DIM STATEMENT
1 |
! l
I]
l |
' I
| i
I i
I I
|]
COUNT
AS(N)

CREATING ASSEMBLY LANGUAGE FUNCTIONS

NOTE

For any of the above data types, a field
boundary may fall anywhere within any
individual item. If your routines wuse
successive words 1in any data item they
must check for a field boundary within
that item.

2.2.5 The DATA List

BRTS stores the DATA list (created by the BASIC DATA statement) as
sequential items 1in the highest field 1in memory. BRTS allocates
strings an even number of words and assigns a count word as a prefix.

The DATA list always resides in the highest memory field. BRTS
maintains a page 0, field 0 pointer to the starting address of the
DATA list less one at DLSTRT. Location DLSTP contains the address of
the last word in the list.

IN BASIC:
DATA 1,2,"THREE" 4

IN CORE:
STARTING F—=———=————— 1
ADDRESS OF ra DLSTRT POINTER TO DATA LIST —1
DATA LIST] POINTER TO LAST WORD
IN DATA LIST
1
2000 Field 0

o N
s8]~
(w) ()
R G
N

COUNT STRING 7773
24 10 “THREE”
22 05
Field N 05 40
3
2000 4
0000 -

2.2.6 Array Space

BRTS reserves space for arrays in the highest memory field. The
bottom of the array space (line A in Figure 2-1) can exceed the field
boundary and proceed into lower fields, but this happens only in large
programs.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.7 Compiler Pseudo-Code

BRTS sends the pseudo-code generated by the BASIC compiler to the
highest field 1in memory. Note that if the bottom of the pseudo-code
extends below line B (12000) in Figure 2-1, the file space diminishes,
causing a loss 1in run-time file capabilities. As the bottom of the
pseudo-code approaches 10000, the number of files that you may
simultaneously open at run time approaches zero. (Each file opened at
run time regquires at least 400 words of buffer space.)

2.2.8 File Buffer Space

BRTS reserves locations 10000-12000 for file buffer space. It
allocates buffers as it needs them, starting with the lowest free
buffer., BRTS maintains a map of currently allocated buffers called
BMAP on page 0. Bits in the map are set if the buffer is in use, and
cleared if the buffer is free. Bit 11 represents the buffer from
10000 to 106377, bit 10 for 10400 to 10777, bit 9 for 11000 to 11377,
and bit 8 for 11400 to 11777. 1If any of the buffers are not available
because the pseudo-code or variable space extends below 12000, BRTS
sets the corresponding BMAP bits at run time.

BASIC files have the following format:
® Numeric files -- store data as consecutive 3-word

floating-point numbers, 85 to each 256-word block. The last
word in each block is unused. There is no end-of-file marker.

® ASCII files -- store data in 0S/8 ASCII format. Three 8-bit
characters are packed to every two words in the following
manner:
0 3 4 11
HI ORDER CHAR 3 CHAR 1
LO ORDER CHAR 3 CHAR 2

The end-of-file is marked with a CTRL/Z character.

2,2.9 Device Handler Space

BRTS reserves locations 7000-7577 for 1l-page and 2-page device
handlers and maintains a map of the 3 pages at DMAP. Bit 11
represents page 7000-7177, bit 10 represents page 7200-7377, and bit 9
page 7400-7577.

Assembly-language functions in programs that do not reguire more than
one or two files open at a time may use some of this handler and file
buffer space for their own purposes. You can allocate this space by
setting appropriate bits in BMAP and DMAP. After you set the bits,
BRTS will not use the space indicated in subsequent FILE operations.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.10 The BRTS I/0 Table

BRTS maintains an I/0 file table to keep track of the status of each
of the four files that may be open simultaneously in a BASIC program.
The table contains four 13-word entries, labeled FILEl, FILE2, FILE3,

and FILE4, in that

order.

Each name corresponds to the number you

specify in the file statement that opened the file, and each entry has

the following format:

HEADER WORD

STARTING ADDRESS OF BUFFER (IN FIELD 1)
CURRENT BLOCK IN BUFFER
READ/WRITE POINTER INTO BUFFER

HANDLER ENTRY POINT

STARTING BLOCK NUMBER FOR FILE

ACTUAL FILE LENGTH
MAXIMUM FILE LENGTH

POSITION OF PRINT HEAD (FOR COLUMN FORMAT-

TING)

FILE NAME
FILE NAME
FILE NAME
FILE NAME

The header word bits have significance as follows:

Bit Positions

10

11

Meaning

0S/8 number for device

Current character number for unpacking ASCII
files

0 if the current buffer 1load has not been
changed

1

]
1

= o

if
if
if
if
if
if
if
if
if
if
if

current buffer load has been altered

device is file structured
device is read/write only

the handler is 1 page long
it is a 2 page handler

file is fixed length
variable length

more data in file
EOF has been seen

file numeric
file ASCII

2.2.11 The BRTS Floating-Point Package

The floating-point package

available for use
calculations.

by

is

permanently resident in memory and

assembly language routines for floating-point

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.11.1 The Floating-Point Accumulator - The floating-point
accumulator, FAC,; resides at locations EXP, HORD, and LORD on page 0
and has the standard PDP-8 23-bit floating-point format.

SIGN OF

EXPONENT
EX

PONENT

HORD —» HI MANTISSA

LORD LOW MANTISSA

L__“E=£$GNOF

MANTISSA

Floating-point operations use the FAC in the same way that PDP-8
machine-language instructions use the hardware accumulator. The FAC
is one of the operands in every floating-point calculation and holds
the result of all floating-point operations (with the exception of
FPUT -- see below).

2.2.11.2 Floating-Point Routines - BRTS provides the following
floating-point routines which you may use as subroutines in a program
(For information on calling these routines, see Section 2.,3.):

Function Starting Address Operation
ADD FFADD FAC<-FAC+QOPERAND
SUBTRACT FFSUB FACK-FAC-OPERAND
MULTIPLY FFMPY FAC<-FAC*OQOPERAND
DIVIDE FFDIV FAC<-FAC/OPERAND
INVERSE SUBTRACT FFSUB1 FAC<-OPERAND-FAC
INVERSE DIVIDE FFDIV1 FAC<-OPERAND/FAC
LOAD FAC FFGET FAC<-OPERAND
STORE FAC FFPUT OPERAND<K-FAC

There are also four simple floating-point operations that operate on
the FAC and are available to user subroutines.

Function Starting Address Operation
NEGATE FFNEG FAC<K-FAC
NORMALIZE FFNOR NORMALIZE<-FAC
SQUARE FFSQ FAC<-FAC*FAC
CLEAR FACCLR FACK=0

The functions are called with a JMS and return with the hardware AC=0.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.12 BRTS Overlay Buffer

BRTS allots locations 3400-4577 of field 0 as an overlay area, reading
in overlays as it needs them. The overlays, which consist mainly of
functions infrequently used, are organized in the following manner:

BASIC.AF Arithmetic Functions

SIN, COS, ATN, EXP, FIX, FLOAT, INT, RND,
EXPONENTIATION, SGN, SQR, LOG

BASIC.SF String Functions

ASC, CHRS, DATS, LEN, POS, SEGS$, STR$, VAL, Error
processing, TRC

BASIC.FF File Functions
CHAIN, CLOSE, FILE, STOP
BASIC.UF User Function
BRTS reserves the last overlay, BASIC.UF, for user-written assembly

language routines. Each time you call for one of these routines, BRTS
reads BASIC.UF into the overlay buffer.

2.3 CALLING FLOATING-POINT ROUTINES
There are two separate calling sequences for floating-point routines:

® Mode 1, which you use when the operand of the routine 1is in
field 0 (the same field as the FPP).

e Mode 2, which you use when the operand is in some other field.

The contents of the hardware accumulator at the time of entry also
determine the mode of the calling seguence. You may use Mode 1 only
if the accumulator is 0. If the AC is non-zero, you must use Mode 2.

You set a switch in the calling sequence -- location FF -- to tell the
floating-point package which mode to follow. For Mode 1, let FF egual
zero; for Mode 2, non-zero.

In a Mode 1 call, the address of the operand immediately follows the
JMS instruction. Thus:

ClLA

nea FF /SWITCH FF=0 FOR MODE 1

JMS T FOINTR /JUMF TO FLOATING-FOINT ROUTINE
(OFERAND ATITIR) Z12-BIT ADDRESS OF OFERAND

. /RETURNS HERE

*

FOINTRs (STARTING ANDR)
JFLOATING-FOINT ROUTINE
/8TARTING ADDRESS.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

In a Mode 2 call, the address of the operand is in the accumulator.
The CDF n instruction indicates the field of the operand. For
example,

CLA IAC

nca FF AFF SWITCH NOT EQUAL T0O O FOR MODE 2
ChF N JOF TO FIELD OF OFERANT

TAD OFADDR JADNDRESS OF OFERAND

JHMS I FOINTR AJUMP TO FLOATING-FPOINT ROUTINE
{UNUSEDR? /THIS LOCATION UNUSED

. YRETURNS HERE.
FOINTRy (STARTING AlDR) AADDRESS OF FLOATING-FOINT ROUTINE
OFADDRy (OFERANDD /ADNRESS OF OFERANID

Both modes return with a clear AC and the data field set to 0. Note
that the routine does not alter switch FF. Therefore, it is necessary
to change it only when you want to change modes, not before every
call.

Both modes return to the second instruction following the JMS call,
skipping the word immediately after the JMS. Since a Mode 2 call
never uses this location, you may use it as a location for storing
constants in Mode 2 operations.

The FF switch -- which might seem wunnecessary in most calling
sequences —-- makes it possible for the floating-point package to
obtain an operand for location 0 in a field other than zero. If you
did not include the FF switch, the FFP would examine the accumulator,
find it empty, and use the address in the word following the call,
since it has no way to tell an empty AC from an AC containing an
operand address of 0. The FF switch, then, simply tells the
floating-point package whether the =zero means "Mode-1 <call" or
"operand at 0."

BRTS contains Page 0 literals used by the FGET and FPUT routines.
These Page 0 literals can be found in the BRTS source listing. Page 0
literals reference the following routines (For more information on
Page 0 literals, refer to the section on BRTS subroutines.):

Page Zero Link Routine
FNEGL FFNEG
FNORL FFNOR
FCLR FACCLR

The following

routines.

1.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

sample programs

demonstrate uses of floating-point

This routine calculates X 2+2X+1.

*

CLA
LCA

JMS
X
JHMS
X
JME
Y
JHMS
X
JMS
TWO
JMs
ONE
JMS
Y

+

+

FALDDLKy FFAD
FMFYLKy FFMF
TWD» 0002
2000
Q000
(NE » 0001
2000
0000
X.' et

t e 4

Y QO
0
0

I FGETL

I FMPYLK

I FFPUTL

I FGETL

I FMPYLK

I FADDLK

I FADDLK

n
Y

/OFERAND ADDRESS WILL
/FOLLOW CALLS (MODE 1)
/LLINK IS ON FAGE O

/X % X

/SAVE X2

/1.0AD0 X AGAIN

/23X

/2X+1

/XT242X+1

/RESULT NOW IN FAC

ZLINK TO ADDN ROUTINE

JLINK TO FLOATING MULTIFLY
/FLOATING-FOINT CONSTANT

F2.0

ZFLOATING-FOINT CONSTANT
/1.0

AUARTARLE

FLOATING-FOINT TEMFORARY

This routine adds five successive floating-point
starting at location 0 field 2.

STaRTy ClLA
neea
JMG
Iac
UcaH
ALODFP s COF
TAan
JMS
MINUSSy -5
TAT
TAan
neA
I8%
JF
HILT
FALH I
OFADDRy 0
3 3

OFADIDR
I FCLR

F' F'

20
OFADDR

I FADDLK

OFADDR

K3

OF AR
MINUSE
Al OOF

FFE&nD

SFIRST OFERAND AT LOCATION O
/ZERQD FAC

JCALLS ARE MODE 2

AOFERAND ADDR IN AC

FCALL ADD ROUTINE

ALOCATION UNUSED, S0 WE USE
AIT AS A& COUNTER

ZUPDATE OFERAND ADDRESS

STONEF

SN0

AYES-ANSWER IN FAC,
SEOINTER TO ADD ROUTINE
SPOINTER TO OFERANTD

JEACH DFERAND I& 3 WORDS LONG.

numbers

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.4 USING BRTS SUBROUTINES IN ASSEMBLY-LANGUAGE FUNCTIONS

BRTS includes several subroutines that you may use 1in assembly
language functions. In the following discussion, each subroutine has
a symbolic tag for its starting address. These tags can be found in
the symbol table. Many routines are now addressed with Page 0
literals that can be found in the BRTS source listing. Note that
references to Page 0 pointers by name no longer apply. The purpose is
to shorten the size of the BRTS symbol table.

2.4.1 ARGPRE

ARGPRE locates scalar variables in the scalar table. You can wuse it
to pass arguments to and from a user subroutine. When you call it,
ARGPRE reads the rightmost eight bits (0-255 decimal) of location
INSAV as the position of the item you wish to locate in the array.
For example, if you place a 2 in INSAV, ARGPRE will locate the third
variable in the scalar table. (The first entry is zero.) On return,
ARGPRE sets the data field to the field of the variable and leaves the
location of the exponent word of the variable in the accumulator. To
call ARGPRE, use a JMS instruction.

For example, the following assembly-language sequence =-- which
includes a call to the ARGPRE subroutine -- loads the third variable
in the scalar table into the floating-point accumulator.

Cl.éA

Talh C2 ZWE WANT ENTRY #3» ERUT
/SINCE THE FIRST ONE IS 0O
ZLOAD INSAVE WITH 2

nCA INSAVE

IAac

nea FF /SET FF SWITCH

JMS I ARGFRL /Call. ARGFRE

JMS I FGETL /THE AC AND DATA FIELD
{UNUSELDD /ARE SETy 850 THIS IS A
HLT /HMODE 2 CALL.

cz 2

ARGFRLy ARGFRE

2.4.2 XPUTCH

XPUTCH reads an ASCII character from the accumulator and loads it into
the terminal ring buffer. To use XPUTCH, place an ASCII character in
the rightmost eight bits of the accumulator and call for the
subroutine with a JMS instruction.

On return, XPUTCH clears the accumulator. Note that XPUTCH does not
print the character; it simply puts the character in the ring buffer.

For example, this segquence uses XPUTCH to place a carriage return/line
feed combination into the terminal buffer:

CLA ALOADN CROINTO AC

TAll K215 /CALL XFUTCH VIa FAGE O LINK
SMES T XFUT ZLOAD LINE FEED INTO AC

TAD K212 /FUT IN RUFFER

SME T XPUT

HLT

215 FASCII CODE FOR CR

212 AASCITI CODE FOR LF

2-15

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.4.3 XPRINT

Subroutine XPRINT prints the next character in the ring buffer. If
the ring buffer contains characters waiting to be printed, XPRINT
returns to the instruction following the JMS that called it. If the
buffer 1is empty, XPRINT skips the instruction immediately following
the JMS. XPRINT will print a character only if the terminal 1is not
busy, so that a call to XPRINT means "print a character if possible"
rather than "print a terminal character."

The call to XPRINT in the following example keeps the terminal busy
during a compute-bound loop. At the end of the loop, XPRINT empties
the ring buffer.

LOOFy B
. ZCOMFUTING INSTRUCTIONS
JMES T FRINT ACALL XFRINT UIA FAGE O LINK
NOF ATHIS INSTRUCTION WILL BE
ZBRIFFED IF RING RUFFER IS EMFTY
ISZ LOOFCN JLOOF CONTROLLING INSTRUCTION
JEF OO Z
JMS T FRINT JLO0F I8 DONE -~ EMPTY RING
JMP 1 ARUFFER BEFORE CONTINUING

2.4.4 PSWAP

Under normal conditions, BRTS runs with the 0S/8 page 17600 portion of
the resident monitor moved to the highest page of memory (the
second-highest page in a TD8/E system). PSWAP lets you restore this
page to 17600 prior to doing any operations with 0S/8 and then swap it
back up to high memory when you are through. Note that this means you
must always use PSWAP an even number of times.

The following sequence of code -—- which directs the USR in 0S/8 to
perform a lookup on file BASIC.DA -- requires two JMS calls to PSWAP.

CLA AAC SHOULD RE O ON CALL

JMS T FLSWAR ZRESTORE 05/8 FAGE 17600 RESIDENT

CLa IAC JDEVICE # FOR S5YS5: IS 1

CIF 10

JME T K7700 /CALL USSR

2 ZLO0KUF

FNAME ZPFOINTER TO FILE NAME

¢] ZCONTAINS LENGTH ON RETURN

HL.T JERROR RETURN

JME T FLSWAF ABWAF 0578 RESTDENT RACK

* /TO HIGH CORE

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.4.5 OUNSFIX

UNSFIX fixes a positive, 12-bit, magnitude-only integer from the
floating-point accumulator and returns with the result in the hardware
accumulator. UNSFIX destroys the contents of the FAC.

The range of the fixed integer is 0-4095. Any attempt to fix a number
larger than 4095 or a negative number will produce an "FO" or "FM"
error message, respectively. To call UNSFIX, use a JMS instruction.

The following code -- which includes a call to INFIX via INTL -~ uses
the FAC as a counter for the number of times to ring a bell on the
terminal. .

*

s

ClLa

JME T INTL /FIX THE FAC TO 12-BIT INTEGER
Cin /HEGATE THE INTEGER
DCA COUNTR ZANIN STORE A8 COUNT
RBRELLOFy TAD K207 /ASCIT FOR BELL
JMES T XPUT ZFUT IN RING RUFFER
I5Z COUNTR /RIGHT NUMBER YET?
JHF RELLOF /NO-RING ANOTHER BELL
K207y 207

2.4.6 STFIND

Depending on the contents of the link bit, STFIND 1locates a string
variable or the first element in a string array.

e If you set the link to 0, STFIND accepts the rightmost eight
bits of 1location INSAV as the position of the variable you
wish to locate in the string symbol table.

e If you set the link at non-zero, STFIND accepts the rightmost
five bits in INSAV as a position in the string array table.

After STFIND returns, the AC contains a CDF to the field of the string

specified; location STRPTR points to the first word -- the count
word -- of the string; location STRMAX holds the maximum length of
the string as a negative number; and STRCNT contains the actual

number of characters in the string as a negative number. STFIND is
used most frequently to pass arguments to and from user functions.

The following sequence uses STFIND to locate string number seven:

TAD K& STHE NUMBERING STARTS WITH ©
DA INSAY ASET U STFIND FOINTER
CLL JUWE WANT SIMFLE STRING
Jds I STFINL ACALL STFIND
Kéy &
STFIMNLy STFIND

CREATING ASSEMBLY LANGUAGE FUNCTIONS

This example locates the first element of string array number two:

Talbl K1 /THE SECONDENTRY
DA INSAV
CLL CML /WE WANT STRING ARRAY

JME T STFINL /CALL STFIND
Kivy 1
STFINL Yy STFINID

2.4.7 MPY

MPY performs a 12-by-12-bit multiplication. It multiplies the
contents of the hardware accumulator by the contents of location TEMP3
{both numbers are treated as 12-bit unsigned 1integers). On return,
MPY stores the high-order bits of the result 1in TEMP6 and the
low-order bits in the AC.

2.4.8 DLREAD

DLREAD places the next word in the data list into the accumulator. 1If
the list contains no more data, a DA error message results.

The following sequence of instructions reads a number from a DATA list
into the hardware accumulator:

Cl.A

JME T DLREAL /READ EXFONENT WORD INTO AC
nca EXF /8TORE IN FAC

JME T DLREAL /REALN HIGH MANTISSA FROM LIST
Nnea WORN SSTORE HIGH MANTISSA WORD

JHG T DLREAL SREAD LOW MANTISSA FROM LIST
noca LORD AHTORE LOW MANTISSA WORD

+

¢

DLREAL Yy TLREAD

2.4.9 ABSVAL

ABSVAL determines the absolute value of the floating-point
accumulator. If the FAC is negative, ABSVAL negates it before return.
If the FAC is positive, ABSVAL is the eguivalent of a NOP.

2.5 PASSING ARGUMENTS TO THE USER FUNCTION

You call for a user assembly-language function with a JMS. Before
BRTS executes the instruction, it places the first numeric argument of
the function in the floating-point accumulator, the second in entry 0
of the scalar table, the third in entry 1, and so on through the list
of arguments. If the function uses string arguments, BRTS places the
first in the string accumulator, the second in entry zero of the
string table, the third in entry 1, and so on. The function obtains
these arguments as it needs them by calling ARGPRE and STFIND.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

For example, the following function takes the first two numeric
arguments and performs on them the operation specified in the string

argument, AS:

(Xeaks YO

(e TFLURT» 10

Legal values for A$ are strings beginning with *“PL* for "PLUS*” and
"MI" for "MINUS". Thus:

ExXMy 0 JENTRY FOINT
ZINDEX REGISTER 5 FOINTS TO SaC
Tall I SACK JGET FIRST 2 CHARS OF Ad¢ FROM SAC
Tal FL ACOMFAR THEM TO *PL"
5Za CLA
JMEEMINUS /ZNOT "PLUS*-CHECK FOR "MINUS®
LA INSAV JOPERATION IS FLUS-INIT ARGRE TO GET

/5CALAR O
JMS T ARGFRL AFIND Y. X IS ALREADY IN FaC

JHMS T FADDL SXEY
ARGFRLy ARGFRE /THIS LOC SKIFFED RY FADD
JHP T EXHM ZDONE-RETURN WITH RESULT IN FAC
EMINUS, TAD I SACF /FIRST TWO CHARS OF SAC AGAIN
Tal MI /COMFAR TO MI
5ZA CLA I8 IT "MINUS®T
JHMFO T TAl /HO-ERROR
NCA INSAY SYES-SET UF ARGFRE FOR ENTRY ©
JMS T ARGFRL ZFININ Yo X I8 ALREADY IN FAC
JME T FSURL XY
SACF SAC ATHIS LOC SKIFFED BY FSUR
JMP T EXM ZRETURN WITH VaALUE IN FAC
Fl. s =2014
MIs =1911

FaDhl.y FFADD
FSuURLy FFSUR
Taly I

If the function returns a value, it should 1leave it in the
floating-point accumulator. The function returns with a JMP I through
the entry point. (If you enter a JMP to location IA in BRTS, this
will generate a fatal IA -- an illegal argument.)

2.5.1 Using the USE Statement

If the assembly-language function needs to know the location of an
array (for buffer space, multiple argument passing, array argument),
you must use the USE statement. The USE statement places the octal
number for the array specified into location USECON. By using this
value as an index into the array symbol table, the function can locate
the data it requires.

2-19

CREATING ASSEMBLY LANGUAGE FUNCTIONS

For example, the hypothetical assembly-language function PLT requires
a 100-word buffer. To assure allocation of this buffer when you use
the PLT function in a BASIC program, you must create a 34-element
array and identify it with a USE statement before calling the PLT
function. Thus:

10 REM DEFINE THE USER FUNCTION

20 UDEF FLT (Xs7)

30 REM ALLOCATE A 34 ELEMENT (102 WORDS) ARRAY FOR A BUFFER
40 DIM R(34)

®

+

The function PLT finds B as follows:

| W Q
TAD USECOND /GET ENTRY NUMBER OF E
CLL TRL ZMULTIFLY BY 4 (EACH ARRAY TARLE ENTRY
/15 4 WORDS LONG)
TAD ARSBTRT /MARE FOINTER INTO ARRAY TARBLE
0CA XRS5 SAND SAVE IT
Tan COFIO0 ZGET CDF TO SYMROL TARLE FIELD
nea A+1 JZFUT INTO LINE
N JUHANGE DF 10 SYMROL TARLE FIELD
Tan I XRS JGET FPOINTER TO RO
nca BFTR /SAVE FOR LATER
Talh I XRS /GET ARRAY DIMENSION 1
nCa DMl
TAlr T XRS /GET ARRAY DIMENSION 2

*+
13

+

Note that the USE statement simply passes an array entry number to the
assembly-language function. The function must obtain all actual
parameters from the array symbol table, using that entry number as an
index. Note also that the arrays passed in such a fashion may reside
almost anywhere in memory and that a field boundary may fall within
the array.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.6 BRTS INPUT/OUTPUT

BRTS drives the terminal asynchronously by maintaining a 40-character
terminal output ring buffer and regularly calling subroutine XPRINT.
It operates in the following manner:

® BRTS calls subroutine XPUTCH, which inserts characters into
the terminal ring buffer. If the ring buffer is full, XPUTCH
waits until BRTS calls XPRINT to print a character, opening up
a place.

® BRTS regularly calls XPRINT (at least once every
pseudo-instruction). XPRINT works in the following manner:

e If the terminal flag is not set, XPRINT returns.

e If the flag is set, XPRINT checks the buffer for more
characters. If it finds a character, it prints it
(with a TLS) and returns.

If the ring buffer contains characters waiting to be printed, XPRINT
returns to the instruction immediately following the JMS that called
it. If the ring buffer is empty, XPRINT skips the instruction after
the IJMS upon returning. This technique allows BRTS to do other things
for most of the one hundred milliseconds without turning on the
interrupt facility. Although this method requires periodic calls to
XPRINT, it still consumes considerably less time than waiting for the
terminal flag.

Assembly language functions may use the ring buffer (BRTS empties it
before it calls the function), or they may perform simple terminal I/O
with TLS, TSF, and JMP.-1 instructions. If a function does not use
the ring buffer, it must make sure that the terminal flag is set
before it returns to BRTS.

Note that an assembly language function does not have to call XPRINT.
It may place a character in the ring buffer and let XPRINT take care
of it on its next regular call from BRTS.

2.7 INTERFACING AN ASSEMBLY LANGUAGE FUNCTION TO BRTS

You call an assembly language function the same way you call any other
subroutine -- with a JMS instruction. The JMS causes BRTS to use the
symbolic address of the function to look up its actual location in the
user function table. This table, which Dbegins at 1560 in BRTS,
contains absolute pointers to the starting address of each user
assembly language function. You must place all user functions between
3400 and 4577, the space which BRTS reserves for the wuser function
overlay, BASIC.UF. User functions must return to BRTS via a JMP I
through their starting address.

To run a set of user assembly language functions under BRTS, you must
perform the following operations:

1. Assemble all the user assembly language functions together.
You may include up to sixteen functions. They must fit
between 3400 and 4577 but may reside anywhere within that
space.

LR FALS
XUSER . EN<USER . FA

CREATING ASSEMBLY LANGUAGE FUNCTIONS

Load the user functions into memory with the absolute loader
(ABSLDR) and SAVE locations 3400-4577 as the file BASIC.UF,
which is the user overlay.

R AHSLIR
KUSER . EN$
LSAVE SYSIBASIC.UF 3400-4577

Modify the user function table in BRTS with ODT, entering
absolute pointers for the starting addresses of the
functions. All unmodified locations in the table <contain a
value of 240 octal. Replace this value with the starting
address pointer. Start at location 1560 and enter the
pointers in the same order in which the functions appear in
the UDEF statement that defines them.

LGET SYSIERTS
LonT

1540/240 3400
1561/240 3410

LBAVE SYSIRRTS

This procedure interfaces two functions that start at
locations 3400 and 3410 respectively.

For example, the following package contains three assembly language
functions: HI, PLT, and LO. You may define these in any order in the
DEF statement as long as you remember to enter them in the same order
in the user function table.

HI

FLTe

LOy

To enter

*3400

Q JENTRY FOINT FOR HI

. ZORDER OF ENTRY FOINTS IS
. /ZNOT CRITICAL.

SME T HI

O JENTRY FOINT FOR FLT

JHP I FLT

0 ZENTRY FOINT FOR 1.0

JMF T L0

these three functions into the user function table, follow

this procedure:

LGET SYSIBRTS

3607240 PRPF

0 HHHH
240 Ll

GYSIBRTS

where PPPP, HHHH, and LLLL represent octal starting addresses for PLT,
HI, and LO respectively.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

BRTS sets up a one-to-one correspondence between the pointers at 1560
and the function names in the UDEF statement for the package.
Therefore, the order of the pointers must correspond exactly to the

order of the function definitions in UDEF. If you wish to use only
the nth function in a given user package, you must still define n
functions in the UDEF statement, although the first n-1 may be
dummies.

For example, consider a package of eight assembly language functions
listed in the user function table in the following order:

ONE (X)

TWO (X,Y)

THR (X,Y,Z)

FOU (X,Y,Z,A)

FIV (X,Y,Z,A,AS)
SIX (X,Y,Z,A,A$,BS)
SEV (X)

EIG (Y)

If you want to use only function ONE in a BASIC program, vyour UDEF
statement will look like this:

10 UDEF ONECX)

If you want to use only functions ONE and EIG, the UDEF might 1look
like this:

(Y » DUACDY s BURLTY »
DECO Y » DUE ST o TUF (L) s

In this statement, DUA through DUF are dummy user function names that
have no effect on the program at run time. They simply set up the
right correspondence between names and pointers.

The easiest and surest way to match up all function names and pointers
correctly is to write a UDEF statement for every function in the
package.

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.8 SOME GENERAL CONSIDERATIONS

2.8.1 Routines Unusable by Assembly Language Functions

Because the assembly language functions reside in the overlay buffer
during execution, they cannot use any routines that reside in any of
the other three overlays. These routines include:

Routine Name Function
FFATN Arctangent Function
FFCOS Cosine Function
FFEXP Exponential Function (e"x)
EXPON Power Function (A"B)
INT Signed integer Function
FFLOG Naperian log Function
SGN Sign Function
FFSIN Trigonometric Sine Function
RND Random Number generator
FROOT Square root Function
ASC String Function ASC
CHR CHRS$ Function
DATE DAT$ Function
LEN String length Function
POS String search Function
SEG String segmenting Function
STR STRS Function
VAL VAL Function
TRC Trace Function
CHAIN
CLOSE
OPENAF File manipulation Routines
OPENAV
OPENNF
OPENNV

2.8.2 Using 0S/8

A carefully designed assembly language function -- one that ©protects
all memory areas required by BRTS -- may use 0S/8 without restriction.
Once PSWAP has swapped the 17600 portion of the resident monitor out
of high memory, the assembly-language function may call the User
Service Routine and then locate, use, and close files at will.

2.8.3 Using Device Driver and File Buffer Space

If your BASIC program does not need full file capabilities, any
assembly-language function 1in the program may use the driver space
from 7000 to 7577 and the buffer space from 10000 to 17777. However,
the function must check the bit maps and status words on page 0 before
it uses any part of the space to make sure it is available.

2.8.4 Using the Interrupt Facility

0S/8 BASIC runs with the interrupt facility turned off. However, BRTS3
reserves locations 0-2 on page 0 for any assembly language function

CREATING ASSEMBLY LANGUAGE FUNCTIONS

that wishes to use the interrupt. Before turning on the interrupt
system, an assembly language function must clear all the flags set by
the 0S/8 handlers. Before returning, the function must turn off the
interrupt and set the TTY flag.

2.8.5 Using Page 0

The following map shows BRTS page 0 usage. An assembly language
function may wuse the locations marked with an asterisk (*) without
saving the contents.

Locations Usage

0-2 * Interrupt vector

3-7 System parameters and temps
10-15 * Index registers

16-17 System pointers

20-30 : Compiler=BRTS communication
30-36 System registers

37-62 Floating-point package area
63-67 System registers

73-107 Constants

110-161 Links to BRTS subroutines
162-177 I/0 Table pointers

Assembly language functions may use any of the pointers or constants
on page 0, but they must be intact when control returns to BRTS.

OPTIMIZING SYSTEM PERFORMANCE

You may take advantage of several ways to speed up the time it takes
to compile and run an 0S/8 BASIC program.

3.1 BYPASSING THE BASIC EDITOR

Running a source program according to standard BASIC procedure 1is a
three-step process. You must:

1. Call the BASIC EDITOR

2. Reguest the program with an OLD command

3. Run the program with RUN command
For a simpler and speedier method, bypass the BASIC editor and run the
program directly with a COMPILE or EXECUTE monitor command. The
format is

COMPILE indev:file.BA

where

.BA is an extension indicating that the input file contains a
BASIC source program.

Summoned in this manner, 0S/8 BASIC returns control to the Monitor
rather than the BASIC editor when it has finished running the program.

As a general rule, use the BASIC editor to:
e create new programs or modify old ones
e debug old programs
and use COMPILE and EXECUTE to:
e run existing programs
e run BASIC programs in BATCH stream

To run with a COMPILE or EXECUTE command, a BASIC source program must
conform to the following rules:

e It may contain no blank lines.

e All statements must appear in the order that BASIC will
execute them.

3-1

OPTIMIZING SYSTEM PERFORMANCE

If you intend to run your program from the Monitor only, vyou do not
have to begin every line with a line number. Only the lines that you
specify as destinations in IF, GOTO, and GOSUB commands require
numbering. The following example contains no unnecessary line
numbers:

FOR I=1 TO 10
IF I=2 THEN 400
FRINT I
GO TO 410

400 FRINT *"TWO®

410 NEXT I
END

Note that the BASIC editor will not accept unnumbered lines. To write
and enter a program without numbering every line, you must use the
0S/8 Editor or TECO. Experienced users will discover that these
editors provide many features not available from the BASIC editor.

3.2 PLACING BASIC OVERLAYS ON THE SYSTEM DEVICE

DECtape users can improve the performance of their system by following
these two procedures:

® Use a DECtape drive other than DTAO0 for DSK. (See the ASSIGN
command.)

e Place the 0S/8 BASIC system files as close together on the SYS
tape as possible. The best way is to make a "BASIC tape"
containing only the 0S/8 system, PIP, and the BASIC system
image files.

Both procedures speed up 0S/8 BASIC by reducing the tape motion
required for overlaying and compiling.

3.3 GROUPING FUNCTION CALLS IN BASIC PROGRAMS

Most of the BASIC functions and file operations reside in three system
overlays. Since the system overlay driver reads in an overlay only if
the function you call for does not reside on the currently resident
overlay, vyou can reduce program execution time simply by grouping
calls to functions that reside on the same overlay. For example:

10 INFUT A%

20 %= SEG$(A%s1+6)
30 FILEN #13 Z%

40 INFUT A%

50 Z$= SEGH(ASy1+6)
60 FILEN #2: Z%

This program accepts two strings that you enter at the terminal and
reads the first six characters of each as a file name to open a BASIC
file. To accomplish this, the program uses the SEG$ function, a file
statement, the SEG$ function, and the file statement again. Since
SEGS and the file statement reside on different overlays, the driver
must perform four separate operations. The following program produces

OPTIMIZING SYSTEM PERFORMANCE

the same result more efficiently by grouping function calls and file
statements together in such a way that the driver has to operate only
twice:

10 INFUT assB4$

20 Z$=SEGH(A$rlsb)
30 X$=8EGE(R$»1,4)
40 FILEN #1: 7%

50 FILEN #21 X%

The system overlays distribute the BASIC functions and file operations
in the following manner:

Overlay 1 (BASIC.AF): SIN,COS,ATN,LOG,EXP,RND,
SQR,SGN, POWER (A"B)

Overlay 2 (BASIC.SF): ASC,CHRS ,DATS,LEN, POS,
SEGS ,STRS ,VAL

Overlay 3 (BASIC.FF): CLOSE,FILE,FILEN,FILEV,
FILEVN

3.4 MAKING SAVE IMAGES OF BASIC SOURCE PROGRAMS

Normal BASIC program execution reguires a minimum of six file access
operations. By contrast, the execution of memory-image files reguires

no more than two file accesses —-- one to read the memory-image file
and one to read BRTS 1if the BCOMP /B option (see below) was not
specified. Memory-image file execution also eliminates

compiler/loader overhead, thus greatly reducing execution time,
especially on DECtape systems.

To create a memory-image file from a BASIC language source program,
type

LRORCOMP
ROEVIFROG . BA/K

where PROG.BA is the source. The K switch indicates that a
memory-image file is to be created.

The following BCOMP options apply to SAVE operations.

Option Meaning
/K Indicates that a memory-image file will be created.
/N Indicates that the memory-image program will never be

executed on a 12K TD8E system. This saves 400 words of
memory but reduces configuration independence.

/B Loads a copy of the run-time system into the memory
image. This increases the size of the memory-image
file by 10 to 50 percent (exactly 15 blocks) but
eliminates the need for a file access to read in BRTS
at run time. BRTS and its overlays must still exist on
the system device when the program runs.

OPTIMIZING SYSTEM PERFORMANCE

=n Indicates the highest field that the program will wuse
(up to 7 octal). Field n must fall in the range 1<n<m,
where m is the highest memory field (up to 7) available
on the host machine -- that is, the machine on which
the program is written. The highest memory field on
the target machine -- the machine on which the program
will ftun -- is n. This may reduce configuration
independence, since the resulting memory image will not
load correctly on a machine with fewer than n+l memory
fields. If n is omitted, n=1. If you specify n larger
than m, n=m is assumed.

/C In BCOMP, the /C option is used in conjunction with the
/K option to create a file that can be chained to from
a non-BASIC file. For example:

R RBRCOMF
KEXAM.BA/C/K

/v In BCOMP, the /V option is used to obtain the current
version number of COMP, BLOAD, and BRTS. For example:

LR ECOMF

KEXAM. BASY
This causes the system to print at the console the
current version numbers for BCOMP, BLOAD, and BRTS as
part of the output of the file being compiled.

In the absence of error conditions, the compiler post-processor
(BLOAD) will exit to 0S/8. At this time, type:

+SA DEVIFROG
to create an executable memory image. Additional arguments to the
SAVE command must not be specified. The memory image is executed by
typing:

LR PROG
or

SRUN DEVIFROG

The following error messages may occur during execution of a BASIC
memory-image file:

USER ERROR 1 AT nnnn

One of the files:
BRTS .SV
BASIC.AF
BASIC.SF
BASIC.FF

was missing from the system device.

OPTIMIZING SYSTEM PERFCRMANCE

USER ERROR 2 AT nnnn

An attempt was made to lcad a memory-image file produced under the /N
option on a 12K TD8E system (without ROM).
JSER ERROR 3 AT nnnn

Insufficient memory to load this core image file.

When executing BASIC memory-image files on a DECtape system, the
following techniques will ensure minimum execution time:

e Follow the recommended procedure for grouping calls to
functions according to the overlay in which the function
resides, to minimize overlaying at run time.

e Prepare a system DECtape that contains all of the BASIC
memory-image files, followed by:

BRTS.SV
BASIC.AF
BASIC.FF
BASIC.SF
BASIC.UF (optional)

The BASIC memory-image files should reside near the beginning of the
DECtape. If chaining is employed, the least frequently run programs
should appear first on the DECtape.

CHAPTER 4

0S/8 BASIC SYSTEM BUILD INSTRUCTIONS

4.1 THE BASIC SYSTEM

0S/8 BASIC is distributed on DECtape and paper tape. The DECtape
version contains SAVE images for each of the 0S/8 BASIC system
components as well as binaries. The paper tape distribution includes
binaries for each of the system components. 0S/8 BASIC comprises the
following files.

File Component
BASIC.SV Editor save image
BCOMP .SV Compiler save image
BLOAD.SV Loader save image
EABRTS.SV KE8/EAE version of Run-time System save image
EAEOVR.BN Overlay for KE8/E EAE

(8/E with KE-8E~EAE)

BRTS.SV Run-time System save image
BASIC.AF Arithmetic function overlay
BASIC.SF String function overlay
BASIC.FF File manipulation overlay

4,2 MAKING SAVE IMAGES FROM BINARY FILES

4.2.1 Non-EAE BASIC

To create SAVE images for each of the 0S/8 BASIC binary files, use the
following build procedure for 0S/8 BASIC (non-EAE). All system
programs must reside on the system device -- SYS:.

1. For the Editor:

LFAL BASIC
(LOAD BASIC
TSAVE SYS!RASICS3211

4.2.2

Use the following procedure to create SAVE image files

EAE.

0S/8 BASIC SYSTEM BUILD INSTRUCTIONS

For the Compiler:

+FAL BCOMF

L LOAD BCOMF

+SAVE S5YSIRCOMFF 7000

For the Loader:

JFAL BLOAD

«LOAD BLOAD

CHAVE SYSIBLOADS 7605

For the Run-time System:

FAaL BRTS/W

LLUQD BRTS

<SAVE BYSIBRTS 0-677737600

LHAVE SYSIRASIC.AF 3400-4577

LSAVE SYSIRBALGTID.GF 1200011

SOSAVE SYBIBASTIC.FF 1340014577 74605

At this point, BASIC is ready to run.
EAE BASIC

device -- SY¥S:.

1.

For the Editor:

ROFALS
KNEVIRASTC . BNSDEV I RASIC . FA
LROARSLIDR

EDEVIBASTC . BNS

LBAME BYSIBASICIE211

For the Compiler:

R FALS

ALEY ¢ BCOME » BN<DEV : RCOMP . FA
LR AESLIR

KDEV S BCOMF . BN$

2 SAVE SYSIRCOMFF7000
For the Loader:
R FalLs

ADEVIRBLOAD. BNTEVIRLOAD,FA
B ABSLIR

FUEVIRLOAD . BN$
CHAVE SYSIRBLOADF 7605

for 0S/8 BASIC
Note that all system programs must reside on

the system

CS/8 BASIC SYSTEM BUILD INSTRUGCTIONS

4, For the Run-time system:

R FALS

ADEVIEARBRTS.BN<TTY!»SYSIBRTS.FA/W
(rause)

EAE=1

-z
(Fause)

~Z

TR ABSLDR

ANEVIEARBRTS . BN%

TSAVE SYSIRRTS 0-47773 7405

ESAUF SYSIRASIC.AF 3400-4577576035

. SYGIRASIC.SF 12000-13177:#7605

SSAVE SYSIRASIC.FF 13400-14G7757405

NOTE
All BASIC system files must reside on

the system device (SYS).

5. At this point, BASIC is ready to run.

4.3 ASSEMBLING THE BASIC SOURCES

The following instructions show how to assemble each of the BASIC
sources with the PAL8 assembler. The descriptions represent 0S/8
keyboard commands. To assemble BASIC, you need a 12K machine.

The BASIC source files include

Name Component
BASIC.PA Editor Source
BCOMP.PA Compiler Source
BLOAD.PA Loader Source
BRTS.PA Run-time System Source

1. To assemble the editor:

ROFALS

FOEVIRASIC BNCTIEVIRASIC.FA
2. To assemble the compiler:

LJROPALS
KDEVELOAD . EN<DIEV $ ELOAD, FA

3. To assemble the loader:

ROPALE
ADEV I RCOMF BNTEY T BRCOHF A

4. The run-time system source 1is conditionalized for PDP-8/E

with EAE. Assembly instructions for each of the supported
configurations follow.

To assemble for PDP-12, PDP-8, PDP-8/1 or PDP-8/L, or PDP-8E without
EAE, type the following command:

+ROFALB
XOEVIBRTS BN DEVIBRTS.FA/W

4-3

CHAPTER 5

LAB8/E FUNCTIONS FOR 0S/8 BASIC

The addition of LAB8/E functions to 0S/8 BASIC enables the wuser to
solve a rang of real-time and pseudo-real-time problems using a
higher-level language. The benefits of approaching real-time problems
using BASIC are numerous: a novice programmer can solve problems with
little or no assembly langquage expertise; and 1in general, the
programming effort required for specific problems is dramatically
reduced.

The approach taken for specifying each function was to maximize
functional flexibility rather than to stress simplicity. Slaving the
computer to external events is accomplished by recognizing Schmitt
trigger firings. One of the design goals for the LAB8/E functions was
to utilize memory efficiently for single precision and displayable
data arrays. Another design goal was to incorporate a masking ability
for the recognition of bit patterns when reading digital data. This
feature allows easy conversion of decimal data into floating-point
format when data is received from decimal devices interfaced to the
LAB8/E's digital input registers (DR8-E's).

5.1 GENERAL DESCRIPTION

This program contains a set of 12 functions which enable a wuser of
0S/8 BASIC to wutilize the following peripherals on a LAB8/E: A/D
converter, VC8-E display contrcl, DK8-ES real-time clock, and DR8-EA
12-channel buffered digital 1I/0. All functions, contained in an
overlay called BASIC.UF, reside 1in the overlay area of BASIC
(3400-4577), with the understanding that the entire set of functions
is in core whenever a given function is 1in |use. Each function is
called by a suitable three-character name, followed by any necessary
arguments.

General regulations on arguments passed by the user functions in this
package:

e All arguments must be within the following range:
0<ARGUMENT<4095

Hence, negative arguments (<0) will cause a fatal error, FM;
and positive arquments greater than 4095 (>4095) will cause
the fatal error, FO. Fatal errors terminate program execution
and return the user to command mode.

e Additional restrictions to arguments will be stated, along
with the discussion of each function, later on. Argument
errors due to these added restrictions will cause the fatal
error, IA (illegal argument).

LAB8/E FUNCTIONS FOR 0S/8 BASIC

5.2 PREPARING BASIC FOR LAB8/E FUNCTIONS

The Basic Run-Time System (BRTS) provides for one overlay area and
divides a set of infrequently used functions into three separate
overlays; namely, BASIC.AF, BASIC.SF and BASIC.FF. Since a logical
need for user-written assembly 1language subroutines exists, a last
overlay, BASIC.UF was reserved. It is this last overlay that contains
the 12 functions for LAB8/E support. Since the subroutines of this
last overlay are determined apart from BRTS, it is necessary that BRTS
be given a 1list of core addresses for each of the user subroutines.
It is critical that these links or addresses be specified in the same
order that the UDEF statements will appear in the program that calls
the functions.

Before writing any program using these functions, it 1is absolutely
necessary to modify BRTS. The following example illustrates how to do
this. Notice that in the test programs at the end, the order in the
UDEF statements is the same as the ordering of the addresses here. A
list of the names of the functions associated with each address is
specified to the right for the sake of clarity only.

+BET SYS RRTS.S5V

L0n

1/7XKKK 5402 used for interrupts
Q0002 /XXXX 4456

1560/7%%%k%k 3400 INI
Q1561 7k%kX% 3454 PLY
QLSB62/7%Kkx 3473 DLY
015463 7%Xx%x 3600 DIS
01564 /X%kXX 4000 SAM
01565 /XkXkX 4100 CLK
01566 /7XXX%k 3541 CLW
01567 /XkkXx 3521 ADC
Q1570 /XXXkX 4400 GET
01571 /X%X%XX 4432 PUT
Q1572 /7XXkXx 4271 DRI
Q1573 /7XXkX 4313 DRO

~ C

«SAVE SYS BRTS.GV

Since many of BASIC's functions also reside in overlays, you should
take <care in wusing a function that may cause the current set of
functions to be overlayed and useful information to be destroyed. For
example, the wuser cannot calculate a set of cosine values and pass
them to the PLY function to be stored, because COS resides in BASIC.AF
overlay and PLY resides in BASIC.UF.

5.3 DEFINITION OF LAB/8E SUPPORT FUNCTIONS

Once you have modified BRTS to recognize the user function from the
BASIC.UF overlay, you may write BASIC programs making use of these
functions. If a program reguires the use of the Nth function 1in the
ordered 1list of links, the first (N-1) functions of the list must be
defined by UDEF statements or a set of (N-1) dummy-named functions
must precede the defining of the Nth function. For example, in

LAB8/E FUNCTIONS FOR 0S/8 BASIC

reference to the ordered list of functions in the previous section, if
the ADC function 1is the only one to be used in a particular BASIC
program, the UDEF statements must be:

+

*

1O UDEF ININY »PLY Y s DLY (M) o DISCSsEo Ny XD
11 UDEF SAM(CeNesF» T CLK(Rs Q28+ CLWINDY v ANC(ND

«
*
or

1O ULEF DUACNY »TURCH) » DUCTNDY TIUD(MD
11 UDEF DUENY »DUF CNT « DUG N s ADH (D

kY

3

However, in order to keep careless omissions to a minimum, you should
always use the complete set of UDEF's each time you require one or
more functions in a program.

INI(N)

The initialize function has a twofold purpose. 1Its main purpose is to
locate the address of the array specified by BASIC's USE statement and
retain that address until BASIC.UF is overlayed by one of the other
three overlays.

A secondary purpose is to set a pointer to the first location of the
array. Consequently, vyou may use an array to store one set of data
followed immediately by a second set of data, provided vyou call the
INI function once only. This means that displayable data (10 bits),
and fixed-point data (12 bits) may share the user array at the wuser's
discretion. If, however, vyou again specify the INI function at the
end of the first data run, you cause the first set of data to be
overwritten by the second set of data. Hence, INI effectively zeros
the array in this case. Whenever you want to wuse an array in
conjunction with one or more of the functions in the BASIC.UF overlay,
first dimension the array and then eventually employ the USE statement
before the INI function can have meaning. For example:

LM ad3d)

X=INL(0O)

LAB8/E FUNCTIONS FOR 0S/8 BASIC

The argument N, for INI, is a dummy argument and may be any integer;
0, 1, 2, ...

Whenever the functions PLY, DIS, SAM, GET, and PUT are used, make sure
that you have called the INI function at least once. When an array is
given the dimension N, BASIC allocates (N+1l) floating-point words of
memory which is actually 3(N+l) single-memory locations. Thus, in the
example above, BASIC allocates 4 floating-point words or 12
single-memory locations for the array. Each data value deposited into
the user's array by the user functions 1is a single-precision value
(uses one memory word).

PLY (Y)

The purpose of the plot function is to enable a BASIC program to
create y-data values and enter them into the user array seqguentially,
beginning with the first unused location of the array. Each
floating-point value 1is fixed to a 10-bit single-precision value
before it is put into the array. The range of the y-data values must
be:

0<y<1.0

This is easily accomplished by inserting a scaling factor. (Refer to
line numbers 26 and 64 of the example program TESTOA.PG at the end of
this chapter.)

The data in the user array can be displayed as it is being passed to
the array (see DLY function) and/or be refreshed continuously once all
values have been entered into the array (see DIS function).

DLY (N)

The delay function is used only in conjunction with the PLY function.
It causes the scope to be refreshed with the contents of the user
array after each point is processed, so that the graphical progress of
data can be observed.

N is an integer such that 1<N<1024. It specifies the maximum number
of points to be eventually displayed. Implied here is the fact that
the display will contain only the first N points even 1if the arrays
contain more than N points.

DIS(S,E,N,X)

You use the display function to set up parameters for the displaying
of y-data stored in the user array. The display will begin with the
desired starting point, S, of the array and display every Nth point
while not exceeding the desired endpoint, E (where N =1, 2, 3,...).

Depending on the value of X, the DIS function has two separate
operations:

Operation when X equals zero (X=0): 1Indication is given to the user
overlay functions that a SAM function will be the next BASIC
instruction. Consequently the parameters mentioned above are set up
so that exactly one of the sampled channels can be displayed "on the

LAB8/E FUNCTIONS FOR 0S/8 BASIC

fly". To understand the use of the arguments S,E,N,X, it is necessary
to know how the A/D data is stored in the user array. For example,
assume 100 samples/channel in each case:

Array Case 1 Case 2
SAM CH#0 SAM CH#3,4,5
WDl CH#0 CH#3
WD2 CH#0 CH#4
WD3 CH#0 CH#5
WD4 CH#0 CH#%3
WD5 CH#0 CH#4
WD6 CH#0 CH#5
wéloe CH%O CH#3

To display CASEl, once sampling begins:
DISCLe10021+0)
To display CH#4 of CASE2, once sampling begins:
NIGC2s 1003500
Operation when X is greater than zero (X>0): A user array of y-data
is to be displayed immediately. The display is continually refreshed

(no return to BASIC) until the operator types CTRL/N on the keyboard.

Displayable y-data values are assumed to be 10-bit single-precision
data words.

The x-coordinate for each y-data value is determined by a DELTAX value
found as follows:

DELTAX = 1023/ [E-S)/N]

Due to the outcome of DELTAX, the display may not always use the full
width of the scope. However, the display is always centered.

s>»1; E>S; (E-S)/N<1023. At least one point must be displayed, and
no more than 1024 points may be displayed.

SAM(C,N,P,T)

The sample function is used solely to set up parameters for subsequent
sampling of the ADC's or for subseguent sampling of digital input
registers (0,1,2), depending on the value of T.

TASK 1 (T=0): Sample the ADC's.

C = First channel # to be sampled; 0<C<17(8).
N = Number of consecutive channels to sample; 1<N<(20(8)-C).
P = Number of sample points/channel; P=0.

TASK 2 (T=0): Sample digital input registers.

C = First register # to be sampled; 0<C<K2.
N = Number of consecutive input registers to sample; 1<KN<(3-C).
P = Number of samples/register; P=0.

5-5

LAB8/E FUNCTIONS FOR 0OS/8 BASIC

Anytime a SAM instruction is used to sample the ADC's, exactly one
channel must be displayed on the fly. However, the sampling rate is
not slowed down by this requirement. Hence a DIS function call must
precede a SAM function call whenever TASK 1 is chosen.

It is possible to display digital input data so long as only the least
significant 10 bits will be displayed. However, this data cannot be
displayved on the fly and can only be displayed via the DIS function
once all data is in the array.

CLK (R,0,S)

The clock function sets up the clock to be used for A/D sampling, for
digital input sampling, or as a simple timing device.

R (rate) = desired frequency at which to run the clock
Value of R Frequency

External input
100 HZ
1K HZ
10K HZ
100K HZ
1M HZ

N Ul s W N

O (overflow CNT) = number of clock ticks per interrupt with the clock
running at the desired frequency, R. 0<0<4095.

S (Schmitt trigger) (S=0) = Activate all Schmitt triggers and start
the «clock when any one of the three Schmitt triggers fires. (5=0) Do
not activate any Schmitt triggers and start up the clock immediately.

As mentioned above, this single clock function 1is used to set the
clock for one of three separate tasks.

TASK1l: Sample the ADC's.

The interrupts are turned on and the program waits in the display loop
for a clock overflow, at which time the A/D channel(s) is (are)
sampled. The display loop will display the data for the channel
specified by the wuser in the DIS function. When all channels have
been sampled the requested number of times, the CLK function returns
to BASIC.

When interrupts are turned on, the only possible valid interrupts can
be caused by the keyboard or the clock. Hence, any other interrupt is
an uncontrollable, spurious interrupt (faulty hardware) that will
cause a HLT at location 4466. If this happens, do the following:

1. Set SWITCH REGISTER to 4476 and press ADDR LOAD.

2. Press the CLEAR and CONT switches to return to BASIC.

3. Type CTRL/C to return to the 0S/8 Monitor.
TASK2: Sample digital input registers.
At each «clock overflow, the digital input register(s) 1is (are)

sampled. When all registers have been sampled the reguested number of
times, the CLK function returns to BASIC.

LAB8/E FUNCTIONS FOR 0S/8 BASIC

NOTE
The sampled data from the ADC's or the
digital input registers is stored
sequentially in the user's array.
TASK3: A simple timing device.

The clock is set up and started (unless it is to be started when a
Schmitt trigger fires) and then returns to BASIC.

The following illustrates what sequence of instructions are needed for
each task.

TASK1 TASK2 TASK3
DIM A(n) DIM A(n) ' 72=CLK (R,0,S)
USE A USE A]
W=INI (0) W=INI (0)
X=DIS (C,N,P,T) Y=SAM(C,N,P,1)
Y=SAM(C,N,P,0) 72=CLK (R,0,S)
72=CLK (R,0,S) .
CLW (N)

After the clock has been set up by CLK as a simple timer, this clock
wait function, when called, simply returns to BASIC whenever a clock
overflow occurs, and/or whenever a Schmitt trigger fires, wprovided S
was a non-zero argument in CLK.

-

T

3

pon re is returned to the caller indicating

whether the return was due to a clock overflow, a Schmitt trigger, or
a clock overflow and the firing of a Schmitt trigger simultaneously.
The number also indicates whether one of the above conditions occurred
before or after the CLW function was called. N is a dummy argument
(N=0,1,2,...).

return tc BASIC, a number is re

C

The following table illustrates the various numbers returned.

Case 1: Clock overflowed or a Schmitt trigger fired after CLW 1is

called.
Overflow Only Schmitt Trigger Only Simultaneously
0 1 (Trigger 1 fired) -1
2 (Trigger 2 fired) -2
3 (Trigger 1 & 2 fired) -3
4 (Trigger 4 fired) -4
5 (Trigger 1 & 4 fired) -5
6 (Trigger 2 & 4 fired) -6
7 (Trigger 1,2 & 4 fired) -7

LAB8/E FUNCTIONS FOR 0S/8 BASIC

Case 2: Clock overflowed or a Schmitt trigger fired before CLW is

called.
Overflow Only Schmitt Trigger Only Simultaneously
-8 9 -9
10 -10
11 ~-11
12 ~12
13 -13
14 -14
15 -15

The TEST4A.PG and TEST5A.PG examples make use of the CLW function.

The CLW function has many useful applications. For example, you may
time subroutines by starting the clock with a specific rate and
overflow count. After you call the subroutine and the subroutine is
completed, <call the CLW function to see if an immediate return is
obtained. This timing is empirical in that you would keep changing
the rate and/or overflow count until Case 2 occurred. As a second
example, you may use Schmitt trigger firing to branch to a particular
subroutine or to notify the program to proceed with specific tasks
such as reading digital data or sampling an analog input. Thirdly,
time~interval histograms and post-stimulus histograms are also
possible (see TST20A.PG).

ADC (N)

This function is issued any time you wish to sample A/D channel N.
The 10-bit data value 1is floated and returned to the caller for
immediate examination. O0<N<17(8).

The BASIC statement W=ADC(3) asks that A/D channel #3 be sampled and
the floating-point value be assigned to W.

The TEST5A.PG example illustrates one use of the ADC function.
GET (M, L)

You use this function to get one 12-bit word from the user array, mask
out certain bits, and return the result as a floating-point number to
the caller.

L is Lth location of the user array. Hence, if an array has N
single-precision words, L can take on meaningful values of
1,2,3,...,N.

NOTE

Although BASIC allows O to be a
meaningful value in a dimension
statement such as DIM A(0), you must
remember that L always begins with 1,
where 1 stands for the first single-word
location of the array. Thus DIM A(0)
specifies an array of one floating-point
word (three one-word locations).

LAB8/E FUNCTIONS FOR 0S/8 BASIC

M is a masking number such that 0<M<4095. This floating-point number
is converted to a 12-bit binary number between 0 and 7777. Those bits
that are zero will mask out or eliminate those bits in the array
value. If M=0, then no masking is done and the 12 bit array value is

returned intact. M=0 and M=4095 have the same meaning.

The BASIC statement Y=GET(15,2) gets the second word of the user
array, masks out all bits except bits 8,9,10,11, and assigns the
floating-point result to Y. Consequently, if an array is as follows:

single prec WD1 5678
single prec WD2 1234 Fl. pt. word 0

single prec WD3 4455

WD2 = 1234(8) = 001010011100(2)
MASK = 15(10) = 17(8) - 000000001111 (2)
The 12 bit value after masking is:
000000001100¢(2) = 12(10)
Hence, Y=12

PUT (M, L)

This function enables a floating-point number to be fixed to a single
12-bit word and put into the user's array.

L is Lth 1location of the wuser's array. For an array of N
single-precision words, L can take on meaningful values of
1,2,3,...,N,

M is the floating-point number to be fixed and stored 1in the array.
0<M<4095.

NOTE

Both GET and PUT functions imply that a
user's array must not exceed 4096 memory
locations, because of the general
restriction on any arqgument for these
user functions.

The BASIC statement Y=PUT(128,4) means fix 128 to 12 bits
(000 010 000 000(2)) and put the wvalue into the fourth word of the
user array. TST15A.PG, TST16A.PG, TST17A.PG and TST18A.PG illustrate
the use of functions GET and PUT.

DRI (N)

This function is issued any time you wish to sample a digital input
register, N (0<KN<2). The 12-~bit digital value is returned to the user
as a floating-point number. Basic statement: X=DRI (0) means that
input register #0 is sampled and the floating-point result is assigned
to X.

DRO (M, N)

This function is issued any time you wish to set the bits of a digital
output register, N(0<KN<K2). The output register bits are set via the
value of M (1<M<4095). If M=0, the output register 1is cleared;
otherwise the bits of the register remain set. Hence, additional bits
of the register can be set while maintaining those set earlier.

LAB8/E FUNCTIONS FOR 0S/8 BASIC

Basic statement: Z=DRO(9,1) means set bits 8 and 11 of output
register #1 if not already set.

9(10) - 000000001001 (2)

TST13A.PG and TST15A.PG illustrate the wuse of the DRI and DRO
functions.

5.4 LAB8/E EXAMPLES

- The following set of BASIC programs illustrates a number of ways the
user functions may be implemented. Each program has been kept as
simple as possible.

Note that for TST12A.PG, TST13A.PG and TST15A.PG a battery-powered
black box was used to interact with the digital I/O registers. The
box contained a set of 12 switches which could set any combination of
bits for the digital input register; it also contains a row of 12
lights lighted by the contents of the 12-bit digital output register.
When running TST18A.PG, use the data from TST17A.PG.

1 REM -~ FROGRAM NAME: TESTOA.FG
2 REM -

3 UDEF INI(MN) s PLYCY) sDLY(N) »DIS(SrEr Ny X)
4 UDEF SAM(CryMNsFP»TI»CLK(Rs0+S) »CLW(N) » ADC (N)
S UDEF GET(MsL) +FUT(Ms L)y DRI(N) s DRO{M»N)
& DIM AC34D)

? REM -

10 REM ~ CALC 1024 PTS & DISFLAY ON FLY.
11 REM — WHEN DONE DISFLAY EVERY 10TH FT.
12 REM -

20 USE A

2 Z=TINICO)

24 FOR N=1 TO 1024

(== (3KN-2) /3071

LY (YD)

30 W=DLY(1024)

32 NEXT N

34 V=DRI5(1,1024,10+1)

49 REM -

50 REM - CALC 30 FTS & DISFLAY ONLY

91 REM —~ WHEN DONE.

SO Z=INTCO)

H2 FOR N=1 TO 30

o

70 U=DISCLy 3091512
80 END

1l REM - FROGRAM NAME:! TEST1A.FG

2 REM -

3 OUDEF INMIN) s PLY Y)Y b DLY(ND s DTS (S yE Ny XD

4 UDEF SAMCyNesFsTIsCLE(R» 095 »CLWINY v ALC TN)
BOUEF GETM» L) e PUTM LY IR (ND » DRO (M N2

& DIM A3

10 REM -~

11 REM -~ SAMPLE CHAN O (1024 TIMES) sDISFLAY
12 REM — all. PTS ON THE FLY.

13 REM - 10 INTERRURTHSSEC

14
Ve
Fravs
21
e

Al

24
26

LAB8/E FUNCTIONS FOR 0S/8 BASIC

D

NICO)

1T9(110241+0)

SAM(Oy151024-0)

Y =CLRK(3,10050)

Z=01I8(11024¢1»1)

REM -~

REM ~ SAMPLE CHANNELS 0s1 (100 TIMES EACH).

/\.EE.C:I'
HoHouuwm
JJHE—XFTZ

2 REM - 10 INTERRUPTS/SECFLDISPLAY CHAN ¢ WHILE

REM - SAMPLINGyWHEN DONE SHOW THREE DIFF

REM — DISFLAYS: DISFLAY CHAN O~--HIT "N DISFLAY
REM —~ CHAN 1--HIT "N DISFLAY CHAN 0%1.

UsE A

W=INT (0D

WIS 220092000

A=8AM{Q0:2+100:0)

Y=CLK(3,10050)

NISCL 200221

IT5C2+200¢2¢10
S(1e2000¢1 91

REM - FROGRAM NAME!: TEST2A.FG

REM -

UDEF INIC(ND sFLY (Y)Y sDLY(N) s DIS(SrE Ny X)

UDEF SAM(CyNyF»T) sCLK Ry D9 8) s CLWIND s ADC (N)

UDEF GET (Mel) s PUT ML) » DRI () » RO (o ND

IIM AC342)

REM -

KEM - CALC A& FARAROLA OF 401 FTS AND DISFLAY
REM - ON THE FLY., WHEN DONE DISFLAY EVERY 10TH

13 REM - FT OF PARAROLA.

REM

20 USE A

Z=INTCO)

FOR N=-300 T0 300
TNk L00000
)ﬂFLY‘f)

. (G (146011010
NN I

REM ~ CALC & CURIC OF 601 FTS & DISFLAY ON FLY
REM ~ WHEN DONE DISFLAY EVERY 10TH FT.
REM -

{4V

O T 300
CNKENKME2Z000000 754000010
LYY)

N CHOL S

N!KF N

P MRS Ly SO0L 100 1)

a0 FiRl

5-11

IR

34

49
50

LAB8/E FUNCTIONS FOR 0S/8 BASIC

REM - FROGRAM NAME: TEST3A.FG
REM —
UDEF INIC(ND) sFLYC(Y) sDLY(N) »DIS(SsEsNsX)
UDEF SAM(CyNsFyT) sCLK(R0r8) »CLWIN) yADCIND
UDEF GET(MsL) s FUT(MsL) » DRI (N) s DRO (M N)

NIM AC342)

REM ~

REM ~ ILLUSTRATE ABILITY TO ACCESS USER BUFFER.
REM ~ FUT NUMEERS 1-10 INTO BUF IN THAT ORDER.
REM ~ & READl THEM OUT IN THE REVERSE ORDER.
REM ~

Z=INI(0)

FOR N=1 TO 10

FRINT N

T=N

R=FUT (T ¥ ND

NEXT N

FOR N=1 TO 10

N=11-N

F=GET (0 M)

FRINT F

NEXT N

ENII
REM -~ FROGRAM NAME: TEST4A.FG
REM -

UBEF INI(ND »FLY(Y) »OLY(N) s DIS(SrEsNsX)
UDEF SAM(CsNeFsT)»CLK(Ry0rS) s CLW(N) s AIIC(N)
UDEF GET(MsL) sPUT(ML) s DRIC(N) » DRO(My N)
REM ~ SAMPLE CHAN O IF CLOCK O.F.

REM - SaMFLE CHAN 1 IF SCHMITT ONLY
REM -~ SaMPLE CHAN IF RBOTH FIRE

REM -~ IF EARLYs TELLL UBER

REM -~ ROUTINE ALSO QUTRUTS Z
X=GLK{3»40005 13

FOR N=1 T0 10
Z=CLW0)

FRINT "Z="3Z
IF Z=0 G070 30
220 G0TO 24

GOTO 34
2= GOTO 40
GOTO 40

IF Z<-8 GOTO 40
W=ATC 2)

GOTD 34

WD {Q)

GOTo 34

W=D (1)

FRINT W

GOTO 43

FRINT "EARLY"

PONEXT N

NI

£ ' lJ =

LAB8/E FUNCTIONS FOR 0S/8 BASIC

REM ~ FROGR&M NAME: TESTSALFG
UDEF INIGNY »PLY(Y) s DLY(N) s DIS(SsEs N2 X)
UDEF SAM{CsNsPyT) yCLK(Ry0+sS5) sCLWIN) s AIIC(ND
ULDEF GET(MeL) s PUT(MpL.) DRI CN) yDRO(M» N)

DIM A{342)

REM -~

REM - USE CLK AS A SIMFLE TIMER.

REM -~ SAaMFLE CHAN O EVERY 4TH SEC AND FUT YAl TO TTY
REM — DO THIS 10 TIMES

REM -~

X=CLK{32400050)

FOrR I=1 TO 10

Y=L W)

Z=ANC0)

FRINT Z

EM - USE CLK A8 A SIMPLE TIMER
REM ~ SAMPLE CHAN 1 TEN TIMES & SYNC OFF ANY
REM — SCHMITT TRIGGER
REM -
K45 400051)
I=1 TO 10
Y=CLWo0)
Z=ANGCL0)
FRINT Z
NEXT I
WD

REM - FROGRAM NAMED TEST7A.FG

UDEF INTENY o PLY (YD) »DLYON) s DIS(SsErNe X
; SAMICyNs P T e CLRK(Rs O« S) yCLWINI s ADC (N
GETOMe LY s FUT(Me L) e DRTONY s RO (M e N
P42
2]
- DIEFLAY A TRIANGLE
THIC0)
R

T 30

16

TO 29

30.1
LY (2
Py o118

¢ONEXT ©

LD L = O M I O A A
ENT

LAB8/E FUNCTIONS FOR 0S5/8 BASIC

1 REM -~ FROGRAM NAME! TESTBA.FG
2 REM -~

3 UDEF INI(N)sPLYCY) rDLY(N) yTIS(SyEsNyX)
4 ULEF SAMCCyNsF»T) yCLK(R»0¢8) yCLWI(N) yADC(N)
& DIM A(342)

10 REM -~

11 REM - SAMPLE CHAN O 100 TIMES;DISFLAYS
12 REM - HOWEVER SYNC OFF SCHMITT TRIGS.
14 REM ~

32 USE &

INTCO)

1IIS(1L»1002150)

28 AM{0s 121000

40 Y=ClLK(3s100:1)

42 Z=NT&8EC1,10021,1)

S50 END

Aé W=

1 REM - FROGRAM NAME:! TEST?A.FG

2 REM -

3 UDEF INIGND »FLYCY) s DLY (ND) s OIS(SsEr Ny X)

4 UDEF SAM(CeNsFoT)»CLK(R»0r8) yCLWIN) »ATIC (N)

D UDEF GET(MsL)»FUT(MsL)sDRI(N) yDRO(M»N)

& DIM AC342)

10 REM -

11 REM - CALT A FARABROLA OF 401 FTS AND DISFLAY ON FLY
13 REM -~

NI(O3
Nee-2 TO 200

S50 RE -
S1OREM - CaAlC A CURIC OF 401 PTS & DISFLAY ON FLY
52 REM ~ SHOW PARARBRDLA, WHEN DONE DISFLAY EVERY FT
B3 REM ~ & THEN EVERY 10TH FT
N4 REM -~

FOR Ne=-200 TO 200

= CNENKRNAE000000) 7146000010

REM -~ FROGRAM NAME:! TST10A.FG
REM -

UDEF INT(NY sPLY (Y)Y »ILY (ND) s DIS(SsErNs X)

ULEF SAM(CyNsFyT) s CLK(R20sS) s CLWIN) s ADIC (N)
UDEF GET(MyLD) o FUT(Ms L) s BRI (N) y DRO(M P ND

DIM AC3A)

FEM - THIS ROUTN RETURNS 4 DIGITS-3RITS/DIGIT
0 USE A

L Z=INTC0)

2 PRINT "VaLUE"

4 INFUT Y
T

1
2
3
4
3
&
7
1
1
1
1
1
1

19
20
21
22
23
24
25
26
30

PRSP RIS e O LD GRS

1
2
3
4

I
(&3]

[S =
PO S D RO B B = O

g

30

B

¥

LAB8/E FUNCTIONS FOR 0S/8 BASIC

FRINT F
FuBET (565 1)
FRINT F
F=GET(448s1)
FRINT F
PrGET (2504
FRINT F
GOTO 12

ENI

« 1)
Fas

REM - FROGRAM NAME: TST124.FG
REM -
REM - THIS ROUTN SAMFLES DIGITAL ROARD
REM —~ #1 TEM TIMESs ONCE EVERY 4 SECS & FUTS
REM - THE VaALUES INTD USER BUF THEN IT PRINTS
REM - QUT THE 10 VALUES

UDEF THIGNY s PLYCY) o TILY(N) s DIS (S ErN2 XD

UDEF SAM(CyNeF e TI»CLK(Rs08) s CLWINI s ADC (N
UDEF GET My L) o PUT ML) v ORI (NY s TRO (M N)

DIM AC342)

USE A

W=TNTCO)
AMCL e Lo 10w 1)
LEKCE 400000
FOR ®N=1 TQ 10
Wa=GET (O N
FRINT W

REM - FROGRAM NAME: T8TLI3A.FG
REM -
REM TEST THE QUTFUT REG-SEE THE LIGHTS LITE
REM - UF .« 0CTAL INFUT LIGHTS THE LIGHTS AND
REM THE LAMFT AN INFUT OF O CLEARS THE OUTFUT REG
UDEF INI(N) »PLY(Y) »OLY (NI »DIS(SrEsNs X))

UDEF SAMICyNeFe T CLK(R 0,582, CLWINY s AR (N
UDEF GET (ML) FUT(M» L) s ORT(N) s IRO (Mo ND
W=0ROC0e 13

FRINT "NUMBER®

INFUT Y
=0 GOTO 14
DROCY s 1)
GOTD 14
E i

i

H

REM - FROGRAM NAME @ TSTL1SAFG

REM -~

UDEF INLIND o PLYOY) s DLY (M) ¢ DTS (S sE e Ne XD

UDEF SAaM (CyNeFeTYoCLEIR» D5« CLWINI s ATIC (N)
UDEF GET(Mel) v PUT ML) pDRTCNY s TIRD (M e N2

ODIM AC3423

REM — THIS ROUTN RETURNS 3 DIGITS-4 RBRITS/DIGIT
REM - (MASKINGY IT FIRST OUTFUTS THE DECIMAL
REM - EQUIYV OF THE NUMBRER

10 USE @

12

NICO?

LAB8/E FUNCTIONS FOR 0S/8 BASIC

T3 PRINT W

1é ¥=FUT(Wy1)

18 P=GET{1%s1)
19 FRINT F
GET(240+1)
‘RINT F
PF=GETC3I840 1)
FRINT F

FRINT "WASTE TIME®
25 INFUT R

26 GOTO 12

¢ END

REM -~ FROGRAM NAME: TET16A.

REM -

UBEF INTNY sPLY (YD) »DLY (ND » DIS(SsEr Ny XD

ULEF SAMCCsNsF»T) yCLK(Rs 05 s CLWIN) s ALC(ND
ULDEF GET(MsL) s FUT (ML) » DRI (N) s BROC(MN)

DIM AC3)

REM -~ THIS ROUTN SHOWS THAT ANY NiQ<=NI=4093
REM - FUT INTO A USER EBUF IS RETURNED AS THE
? REM - SAME VaALUE.

10 USE A

11 Z=TINTCO?

12 FRINT "NUMRER®"

14 INFUT Y

Xa=PUT (Y 1)

. & GETCO»1)

20 PRINT Z

26 GOTO 12

30 END

N D R e

o
)

ot

REM - FROGRAM NAME: TSET17A.FG
REM — FILL AN aRRAY OF 30 WORDS WITH THE
REM - FIRST 30 INTEGERS. WRITE THE ARRAY

- QUT TO GECTAFE.

TNTNY s PLY CYY» LY (N » DTS (S E e Ny XD
MOCyNsFe T CLK(Ry Qe QY s CLWONDY » ATIC (R
SET Mo L) o PUT M LYy IRTOND s TRO (Mo ND

181

]

RN N

.....

13 XsFUT ON s ND
14 NEXT N

FVNELSTDTALITATA PG

REM
REM

REM
REM

ENERE Xy

IR R T

YN0 O 0A

IIT'IEI'—"
UDEF
UDEF GET(MsL)yPUT (ML) s DRI(N) » DIRO (M ND
niMm ade)

USE A

O FILEN #1:°LTALIDATA.FG"

22 FOR
INFUT #1:A(D)

LAB8/E FUNCTIONS FOR 0S/8 BASIC

- FROGRAM NAME: TET18A.FG
= READ INTO AN aARRaAY 10 FL PT WIS
- (30 INTEGERS FROM MS) WRITE OUT THE

= 30 INTEGERS ON TTY
INTOND) s PLYCY) »DILY (N) s DTS(SsEsNs X

SAM{CyNeF» Ty CLK{R»O53 »CLUIN) s ALC (N

I=0 TG 9

246 NEXT I

REM -

REM

A TiT M

Lo K 4

1
2
3 UDEF
4 UDEF
9 UREF

CLOSE #]

ur/n

IUI\ N=1 T!J 30
Ka=GET (DN
FRINT X

& NEXT N

40 B

FROGRAM NAME!: TST19A.FG
INICNY o PLY (YD) v ILY (M) 2 IS (S EsNe XD
SAMICyNeF s T s CLK(R Qe S v CLWIN) » ADC(N)
GET Mz L) s FUT M LD s DRI {ND) » IRO (Mo N)

Allal

10 REM - SAMPLE CHAN O 50 TIMES:;SYNC OFF SCHMITTS
L1 REM - 10 INTERRUFTS/SECIWHEN DONE DISFLAY TILL &

12 REH -

THEN WRITE OUT DATA TO DTAL:

(EAM. DAY

S B
- DTSPLAY A& PARARDLA
G TU 25

- READ DATA BACK IN & DISPLAY IT A% REFORE
FAOTALREAM . DA
Tey T L&

AT #Liadl)

-17

wm

LAB8/E FUNCTIONS FOR 0OS/8 BASIC

1 REM - FROGRAM NaME? TET20A.FG

2 REM -

I UDEF INTOMY e FLY (YD) s THLY (ND) » DIS(SyEr Ny X)

4 UDEF SAMCyNsFsT) s CLK(RyD#8) s CLW(N) »ADC(N)

S UDEF GET(MsL)sFUT(M»L) »yDRI(N) s RO (M N)

10 DIM X100 »YCLO0QY s ACET)

11 REM - J1=RING IN LATENCY(¥EFOCHS TILL DONE)D
12 REM ~ Tl=RIN WIDTH(TIH) IN MS(EMS/CLK 0.F.)
13 REM ~ T2=RIN WIDTH OF LATENCY(¥CLK O.F./EFOCHS)
16 FRINT "JisTL.T27%"

18 INFUT J1eT1,T2

=0 GOTO 100

X Z<Q GOTO 36

34 IF Z2<8 GOTO 200

35 GOTO 38

26 IF 25H-8 GOTO 200

A7 REM - INCR UNDERFLO RIN O

A8 I=0

39 GOTO 300

?¢ REM -~ CLK 0O.F. ONLYsRMF HIST RBIN
100 I=I+1

102 IF I<-100 GOTO 110

103 REM -~ END OF TIMEsEMF HIST RIN
104 X{100)=X(1002+1

108 I=0

109 REM - BMF LATENCY CTR

110 K=K+1

2G0T 2%
- AN EFOCH I8 DONE

=01 GOTO S00
MORE EFOCHS TO GO?

CLK0OWF . AN SCHMITT TRIG
X{Ir=X{Lat+1
Y=Y L
GOTO 100
299 REM - SCHMITT TRIG ONLY
300 XK{Ii=X(I)+1
302 YCOli=Y oAt
304 GOTO 26
P2 OREM ~ GET LARGEST BIN VALUE TO BE USED AS A
REM - SCALE FACTOR FOR DISFLAY
USE A
Q=)
FOR T=0 TO 100
Z=X (1)
sl GOTO 516

CALL BIN VALUES FOR MAX DISFLAY

LAB8/E FUNCTIONS FOR 0S/8 BASIC

REM ~ USED A8 A SCALE FACTOR FOR DISFLAY
Q=0

FOR I=0Q TO 100

Z=Y (1)

IF Qb= GOTO 410

EM -~ SCALE ALL LATENCY VALS FOR MAX DISFLAY
FOR I=0 TO 100

A2 =YD

Y=Z/C0+1)
W=FPLY OY)

08 MEXT I

5.5

REM — DISFLAY “TIH
U=DTSols101eleld

> REM — DISFLAY LATENCDY

UasTE01022020 15 1)
REHM -~ D ‘LaY BOTH “TIHY & LATENCY SIDE RY SIDE
V=DT8(1»2021 1)

0 END

GETTING ON THE AIR WITH BASIC

DECtape users:

Transfer the user overlays, BASIC.UF, from the DECtape provided
the software kit to the 0S/8 system device.

JROPIR
AEYEIBASIC UF<DTAR I RASTD UF /T (where n=0,1,2,...,7)
£

Papertape users:

with

Use the ABSLDR to read into core the user overlays that are in binary
format on the paper tape, provided with the software kit. Then create

a save file on the system device.

(where $ symbolizes striking the ALTMODE key)

SYS BASTO.UF 34004577

5.6 LAB8/E FUNCTION SUMMARY

Table 5-1
LAB8/E Function Summary

Function Explanation

INI(N) Locate the address of the wuser array
N is a dummy argument.
PLY (Y) Y-data created via the BASIC program

0<¥<.0

and
initialize a pointer to start of the array.

deposited into the user array sequentially.

is

(continued on next page)

5-19

LAB8/E FUNCTIONS FOR 0S/8 BASIC

Table 5-1 (Cont.)
LAB8/E Function Summary

Function Explanation

DLY (N) Used in conjunction with PLY, the scope is
refreshed with the contents of the user
array after each point is processed.
1<N<1024 and N specifies the maximum number
of points to be eventually displayed.

DIS(S,E,N,X) Meaning #1 (X=0). Set up parameters to
display ADC data once sampling begins.

Meaning #2 (X=0). An array of y-data is to
be displayed immediately. In both cases,
the display begins with point S of the
array, and every Nth point is displayed
while not exceeding the desired point E.

SAM(C,N,P,T) Used to set up parameters for subseguent
sampling of the ADC's (T=0) or sampling of
digital input registers (T=0). C 1is the
first channel # or digital input register
#. N is the number of consecutive channels
or registers to sample. P is the number of
samples per channel or register.

CLK(R,0,S) Set up the clock for A/D sampling, digital
input sampling or for use as a simple
timer. R is the desired rate, O 1is the
overflow count, and S activates the Schmitt

triggers.
CLW (N) This function returns to the caller a
number, indicating whether the clock

overflowed or a Schmitt trigger fired and
whether these occurred before or after CLW
was called.

ADC (N) This function is issued any time the user
wishes to sample A/D channel N.

GET (M,L) A 12-bit number from the user array at
location L is masked with the number M and
returned to the caller.

PUT (M,L) A floating-point number, M, is fixed to 12
bits and stored in the user array at
location L.

DRN (N) This function is used any time the -user
) wishes to sample a digital input register

N.
DRO (M, N) The bits of digital output register N are

set via the value of M.

Command

BYE

LIst

LISTNH

NAme

NEw

OLd

RUn

RUNNH

SAve

SCratch

APPENDIX A

SUMMARY OF BASIC EDITOR COMMANDS

Function

Exits from the editor and returns control to the
monitor

Displays the program statements in the workspace
with a header

Displays the program statements in the workspace,
without a header

Renames the program in the workspace

Clears the workspace and tells the editor the name
of the program the user is about to type

Clears the workspace, finds a program on the disk,
and puts in into the workspace

Executes the program in the workspace, after
displaying a header

Executes the program in the workspace, without
displaying a header

Puts the program in the workspace on a disk

Erases all statements from the workspace

Statement

CHAIN

CLOSE#

DATA

DEF

DIM

END

FILE#

FOR-TO-STEP

GOSUB

GOTO

APPENDIX B

SUMMARY OF BASIC STATEMENTS

Function

Executes another program

Example:
Closes a
Example:

Sets up a
statement

Example:

40 CHAIN "SYS:PROG.BA"

file

100 CLOSE#1

list of values to be used by the

240 DATA "FIRST",2,3

Defines functions

Example:

Describes
variables

Example:

10 DEF FND(S8)=S+5

READ

a string and/or any subscripted

50 DIM B(3,5),D$(3,72)

Terminates program compilation and execution

Example:

100 END

Defines and opens a file

Example:
Describes
Example:

Transfers
RETURN)

Example:
Transfers

Example:

20 FILEVN#2:"RXAl:DATA.NV"
program loops (used with NEXT)
60 FOR X=1 TO 10 STEP 2

control to a subroutine (used

50 GOSUB 100
control to another statement

1060 GOTO 50

with

IF

IF END#

INPUT

INPUT#

LET

NEXT

PRINT

PRINT#

RANDOMIZE

READ

REM

RESTORE

RESTORE#

SUMMARY OF BASIC STATEMENTS
Tests the relationship between two variables,
numbers, or expressions
Example: 20 IF A=0 THEN 50
Tests for the end of a string file
Example: 60 IF END#3 THEN 100
Accepts data from the terminal
Example: 80 INPUT A,B,C
Reads data from a file
Example: 50 INPUT#1:AS
Assigns a value to a variable
Example: 90 LET A$="XYz"

Indicates the end of a program 1loop (used with
FOR)

Example: 140 NEXT I
Displays data on the screen
Example: 200 PRINT A,"X";6
Writes data to a file
Example: 180 PRINT#1:J

Causes the RND function to produce a different set
of numbers each time the program is run

Example: 10 RANDOMIZE

Sets variables equal to the wvalues in DATA
statements

Example: 50 READ AS,B
Inserts comments into the program
Example: 30 REM COMPUTE EARNINGS

Sets program READ statements back to the beginning
of the DATA list

Example: 85 RESTORE

Resets a file pointer back to the beginning of
that file

Example: 130 RESTORE#3

RETURN

SUMMARY OF BASIC STATEMENTS
Returns control from a subroutine (used with
GOSUB)
Example: 115 RETURN
Terminates program execution
Example: 40 STOP

Defines the syntax of a call to a user-coded
function

Identifies 1lists and arrays referenced by a
user—coded function

ASC (X$)

ATN (X)

CHRS (X)

COS (X)

DATS (X)

EXP (X)

INT (X)

APPENDIX C

SUMMARY OF BASIC FUNCTIONS

Function
Returns the absolute value of an expression
Example: 10 LET X=ABS (-66)
will assign X a value of 66
Converts a one-character string to its code number
Example: 20 PRINT ASC("B") will display 2

Calculates the angle (in radians) whose tangent is
given as the argument

Example: 30 LET X=ATN(.57735)

will assign X a value of 0.523598

Converts a code number to its eguivalent character
Example: 40 PRINT CHR$ (1) will display A

Returns the <cosine of an angle specified 1in
radians

Example: 50 LET Y=CO0S(45*3.14159)/180

will assign Y a value of 0.707108

Returns the current system date

Eiample: 60 PRINT DATS (X)

will display the system date, such as 07/20/77

Calculates the value of e raised to a power, where
e is egual to 2.71828

Example: 30 IF Y>EXP(1.5) GOTO 70
will go to line 70 if Y is greater than 4.48169

Returns the value of the nearest integer not
greater than the argument

Example: 60 LET X=INT(34.67)

will assign X the value 34

LEN (X$)

LOG (X)

PNT (X)

POS (X$,Y$,7)

RND (X)

SEGS (X$,Y,2)

SGN (X)

SIN(X)

SQOR (X)

STRS (X)

SUMMARY OF BASIC FUNCTIONS

Returns the number of characters in a string
Example: 10 PRINT LEN ("DOG")

will display 3

Calculates the natural logarithm of the argument
Example: 10 PRINT LOG(959)

will display 6.86589

Outputs nonprinting characters for terminal
control

Example: 50 PRINT PNT(13)

will move the cursor to the 1left margin of the
current line

Returns the location of a specified group of
characters (Y$) 1in a string (X$) starting at a
character position (Z)

Example: 60 LET V=POS ("ABCDBC","BC",4)

will assign V a value of 5

Returns a random number between (but not
including) 0 and 1

Example: 70 PRINT RND(X)
will display a decimal number, such as 0.361572

Returns the seguence of characters 1in a string
(X$) between two positions in the string (X,Y)

Example: 30 LET R$=SEGS$ ("ABCDEF",2,4)
will assign RS a value of BCD

Returns 1 if the argument is positive, 0 if it 1is
zero, and -1 if it is negative

Example: 200 PRINT 5*SGN(-6)

will display =5

Returns the sine of an angle specified in radians
Example: 30 LET B=SIN(30%*3.14159/180)

will assign B a value of 0.5

Returns the positive sguare root of an expression
Example: 40 PRINT SQR(16)

will display 4

Converts a number into a string

Example: 120 PRINT STRS$(1.76111124)

will display the string 1.76111

c-2

TAB (X)

TRC (1)

VAL (X$)

SUMMARY OF

BASIC FUNCTIONS

Positions characters on a line

Example: 70
will display

Causes BASIC
statement in

Example: 10

will display

PRINT "A";TAB(5);:"B"
A B

to display the line number of each
the program as it is executed

V=TRC (1)

the line number of each statement

executed until a TRC(0) is encountered

Converts a string to a number

Example: 90

will display

PRINT VAL("2.46111")*2

4.,92222

APPENDIX D

BASIC ERROR MESSAGES

D.1 COMPILER ERROR MESSAGES
The following error messages are dgenerated by the BASIC compiler:

CH ERROR IN CHAIN STATEMENT

DE ERROR IN DEF STATEMENT

DI ERROR IN DIM STATEMENT

FN ERROR IN FILE NUMBER OR NAME
FP INCORRECT FOR STATEMENT

FR ERROR IN FUNCTION ARGS

IF ERROR IN IF STATEMENT

IC I/C ERROR

LS MISSING EQUALS SIGN IN LET
LT STATEMENT TOO LONG

MD MULTIPLY DEFINED LINE NUMBER
ME MISSING END STATEMENT

MO OPERAND EXPECTED, NOT FOUND
MP PARENTHESIS ERROR

MT OPERAND OF MIXED TYPE

NF NEXT STATEMENT WITHOUT FOR
NM MISSING LINE NUMBER

OF OUTPUT FILE ERROR

PD PUSHDOWN STACK OVERFLOW

QS STRING LITERAL TOO LONG

SS BAD SUBSZRIPT OR FUNCTION ARG
ST SYMBOL TABLE OVERFLOW

Sy SYSTEM INCOMPLETE

TB PROGRAM TOO BIG

TD TOO MUCH DATA IN PROGRAM

TS TOO MANY CHARS IN STRING

ubD ERROR IN UDEF STATEMENT

UF FOR STATEMENT WITHOUT NEXT
Us UNDEFINED STATEMENT NUMBER
U0 USE STATEMENT ERROR

XC CHARS AFTER END OF LINE

BASIC ERROR MESSAGES

D.2 RUN-TIME SYSTEM ERROR MESSAGES

The following error messages are generated by the BASIC run-time
system:

BO NO MORE BUFFERS AVAILABLE

CI IN CHAIN, DEVICE NOT FOUND

CL IN CHAIN, FILE NOT FOUND

CX CHAIN ERROR

DA READING PAST END OF DATA

DE DEVICE DRIVER ERROR

DC NO MORE ROOM FOR DRIVERS

DV ATTEMPT TO DIVIDE BY ZERO

EF LOGICAL END OF FILE

EM NEGATIVE NUMBER TO REAL POWER
EN ENTER ERROR

FB USING FILE ALREADY IN USE

FC CLOSE ERROR

FE FETCH ERROR

FI CLOSING OR USING UNOPENED FILE
FM FIXING NEGATIVE NUMBER

FN ILLEGAL FILE NUMBER

FO FIXING NUMBER>4095

GR RETURN WITHOUT GOSUB

GS TOO MANY NESTED GOSUBS

IA ILLEGAL ARG IN UDEF

IF ILLEGAL DEV:FILENAME

IN INQUIRE FAILURE

I0 TTY INPUT BUFFER OVERFLOW

LM TAKING LOG OF NEGATIVE NUMBER
OE DRIVER ERROR WHILE OVERLAYING
ov NUMERIC OR INPUT OVERFLOW

PA ILLEGAL ARG IN POS

RE READING PAST END OF FILE

SC CONCATENATED STRING TOO LONG
SL STRING TOO LONG OR UNDEFINED
SR READING STRING FROM NUMERIC FILE
ST STRING TRUNCATION ON INPUT

SU SUBSCRIPT OUT OF RANGE

SW WRITING STRING INTO NUMERIC FILE
VR READING VARIABLE LENGTH FILE
WE WRITING PAST END OF FILE

Absolute value function, 1-29
Addition, 1-7
Arctangent function, 1-26
Arithmetic operations, 1-7
Arrays,

numeric, 1l-14

string, 1-15
Array symbol table, 2-3
ASCII,

character set, 1-2, 1-34

conversion, 1-33

file format, 1-42, 1-43
Assembly language function, 2-1
Assignment statements, 1-10

BASIC Run-Time System (BRTS),
2-2 to 2-12
buffer storage, 2-9
floating point operations,
2-11, 2-12 to 2-18
input/output, 2-21
overlays, 2-12
passing arguments to user
functions, 2-18
symbol table structure, 2-3
to 2-5
system components, 2-2
Building a system, 4-1 to 4-3
BYE command, 1-51

Calling BASIC, 1-48
CHRS function, 1-34
CLOSE# statement, 1-41
Command,

BYE, 1-51

LIST, 1-49

NAME, 1-51

NEW, 1-48

OLD, 1-48

RUN, 1-49

SAVE, 1-50

SCRATCH, 1-51
Commands, key, 1-52 to 1-53
Compiler options, 3-3, 3-4
Constants,

numeric, 1-3

string, 1-4
Control (CTRL) key commands,

1-52 to 1-53
Control statements, 1-19 to
1-23

Conversion, string, 1-33, 1-34
Cosine function, 1-26

INDEX

Data formats,
DATA statement, 1-12

Debugging function, 1-38
Decimal format, 1-3, 1-4

DEF statement,

1-17

1-36

Device driver storage, 2-9

DIM statement,

1-14 to 1-16

Dimensioning strings, 1-15
Distribution media, 4-1
Division, 1-7

Editor,
1-53

END statement,

1-1 to 1-3, 1-47 to

1-23

Exponential format, 1-3
Exponential function, 1-27

Files,

formats,
statements,

1-33 to 1-44

1-40 to 1-45

Floating-point operations, 2-12

FOR statement,

to

2-18

1-20

Format control characters, 1-17
Function,

ABS,
ASC.,
ATN,
CHKS,
cos,
DATS,
EXP,
INT,
LEN,
LOG,
PNT,
POS,
RND,
SEGS,
SGN,
SIN,
SOR,
STRS,
TAB,
TRC,
vAL,

1-29
1-33
1-26
1-34
1-26
1-39
1-27
1-28
1-31
1-28
1-18
i-32
1-29
1-32
1-29
1-25
1-27
1-36
1-18
1-28
1-35

Functions,
arithmetic,

Index-1

string,

1-27 to 1-29

1-30 to 1-36

trigonometric, 1-25 to 1-27

INDEX

GET function, LAB8/E, 5-2
Getting on the air, 5-5
GOSUB statement, 1-23
GOTO statement, 1-19

IF END%# statement, 1-45
IF GOTO statement, 1-20
IF THEN statement, 1-20
In core DATA list, 2-8
Initialize function, LABS/E,
5-2
Input/output,
BASIC Run-Time System, 2-21
statements, 1-11 to 1-18
INPUT statement, 1-11
INPUT# statement, 1-42
INT function, 1-28
Integer format, 1-3

LAB8/E functions,
examples, 5-10 to 5-19
function summary, 5-19
preparation, 5-2
support functions, 5-2

LEN function, 1-31

LET statement, 1-10

LIST command, 1-49

Lists, 1-14

Logarithm function, 1-28

Memory image files, 3-3
Memory layout, BRTS, 2-2

NAME command, 1-51

Nested loops, 1-22

Nested subroutines, 1-23
NEW command, 1-48

NEXT statement, 1-20
Numbers, 1-3, 1-4

Numeric file format, 1-43

OLD command, 1-48
Operators,
arithmetic, 1-7
relational, 1-8
string, 1-8
Options, compiler, 3-3, 3-4
Overlays, BRTS, 2-12

(Cont.)

Plot function, LAB8/E, 5-2

PNT function, 1-18

POS function, 1-32

PRINT statement, 1-16 to 1-18

PRINT# statement, 1-43

Priority of operators, 1-7,
1-8

PUT function, LAB8/E, 5-2

Random number function, 1-30
RANDOMIZE statement, 1-30
READ statement, 1-12
Relational operators, 1-8
REMARK statement, 1-10

RESEQ program, 1-52

RESTORE statement, 1-12
RESTORE# statement, 1-44
RETURN statement, 1-23

RUN command, 1-49

Run-time system, 2-2 to 2-12

SAVE command, 1-50
Scalar table, 2-3
Scratch command, 1-53
SEGS$ function, 1-32
Semicolon, use of, 1-17
Sign function, 1-29
Sine function, 1-25
Square root function, 1-27
Statement,

CHAIN, 1-46

CLOSE#, 1-41

DATA, 1-12
DEF, 1-36
DIM, 1-14
END, 1-23

FILE#, 1-40
FOR-TO-STEP, 1-20
GOSUB, 1-23
GOTO, 1-19

IF END#, 1-45
INPUT, 1-11
INPUT#, 1-42
LET, 1-10

NEXT, 1-20
PRINT, 1-16
PRINT#, 1-43
RANDOMIZE, 1-29
READ, 1-12

REM, 1-10
RESTORE, 1-12
RESTORE#, 1-44
RETURN, 1-23

STOP, 1-23
UDEF, 1-37
USE, 1-37

Index-2

INDEX (Cont.)

STOP statement, 1-23 TAB function, 1-18
STRS function, 1-36 TRC function, 1-38
String,

array table, 2-5
concatenation, 1i-8

conventions, 1-4 USE statement, 1-37
handling functions, 1-30 to User-defined functions, 1-36,
1-36 1-37

storage, 2-6
symbol table, 2-4
Subroutines, 1-23

Subscripted variables, 1-6 VAL function, 1-35
Subtraction, 1-7 Variables,
System-build instructions, 4-1 numeric, 1-5

to 4-3 string, 1-5

subscripted, 1-6

Tables,
see Arrays

Index-3

FORTRAN IV

CONTENTS

YSTEM OVERVIEW

Q
jav}
h=d
Lav]
+3
1
2]
|_l
0
w0

THE FORTRAN COMPILER
Compiler Examples
Compiler Error Messages
THE RALF ASSEMBLER
RALF Examples
RALF Assembler Error Messages
THE LOADER
Loader Examples
Loader Error Messages
FORTRAN IV RUN-TIME SYSTEM (FRTS)
Run-Time System Error Messages

[\

=
BB WWWNDNN R H

[N

o e e e
. e
N

=

N

CHAPTER 2 FORTRAN IV SOURCE LANGUAGE

CHARACTERS AND LINES

[@]
jas]
o]
o
=
[3]
o)
w

THE FORTRAN CHARACTER SET

ELEMENTS OF A FORTRAN PROGRAM
Statements
Comments

FORTRAN LINES
Using a Text Editor
Statement Label Field
Comment Indicator and Comments
Continuation Indicator Field
Statement Field
Identification Field

BLANK LINES

LINE FORMAT SUMMARY

. .
N =

.
UL W

WWWwLwwwwwwwwww
UMb WwwWwwwwdhNo N
.

=

CHAPTER FORTRAN STATEMENT COMPONENTS
INTRODUCTION
SYMBOLIC NAMES
DATA TYPES
CONSTANTS
Integer Constants
Real Constants
Decimal Real Constants
Exponential Real Constants
Double-Precision Constants
Complex Constants
Logical Constants
Octal Constants
Hollerith Constants
Alphanumeric Literals

R I S N S S S St
. e
AR R D D D B W N

N

.
.

.
NN ouUre WD

[

iii

WWWwwwwwwwwwww
VU B WNNDNDND

=N
|2 L N A T A T R N B B | I
WO ~I~IOULE > WWN - [

[R S S A T S i S S

CONTENTS (Cont.)

Page

4.5 VARIABLES 4-9

4.5.1 Data Type Specification 4-10

4.5.2 Default Data Types 4-10
4.6 ARRAYS 4-11
4.6.1 Array Declarations 4-11
4.6.1.1 Array Storage 4-13

4.6.2 Subscripts 4-13

4.6.3 Data Type of an Array 4-14

4.6.4 Array Reference without Subscripts 4-14

4.6.5 Adjustable Arrays 4-15

CHAPTER 5 EXPRESSIONS 5-1
5.1 INTRODUCTION 5-1

5.2 ARITHMETIC EXPRESSIONS 5-1

5.2.1 Rules for Writing Arithmetic Expressions 5-2

5.2.2 Evaluation Hierarchy 5-3

5.2.3 Data Type of an Arithmetic Expression 5-3

5.3 RELATIONAL EXPRESSIONS 5-4

5.4 LOGICAL EXPRESSIONS 5-5

5.4.1 Logical Expression Hierarchy 5-6

5.5 USE OF PARENTHESES 5-7

CHAPTER 6 ASSIGNMENT STATEMENTS 6-1
6.1 INTRODUCTION 6-1

6.2 ARTTHMETIC ASSIGNMENT STATEMENT 6=1

6.3 LOGICAL ASSIGNMENT STATEMENT 6-3

CHAPTER 7 SPECIFICATION STATEMENTS 7-1
7.1 INTRODUCTION 7-1

7.2 TYPE DECLARATION STATEMENTS 7-1

7.3 DIMENSION STATEMENT 7-2

7.4 EXTERNAL STATEMENT 7-3

7.5 COMMON STATEMENT 7-4

7.5.1 COMMON Statements with Array Declarators 7-6

7.6 EQUIVALENCE STATEMENT 7-7

7.6.1 Making Arrays Equivalent 7-8

7.6.2 EQUIVALENCE and COMMON Interaction 7-9

CHAPTER 8 DATA STATEMENT AND BLOCK DATA SUBPROGRAMS 8-1
8.1 DATA STATEMENT 8-1

8.2 BLOCK DATA SUBPROGRAMS 8-2

CHAPTER 9 CONTROL STATEMENTS 9-1
9.1 INTRODUCTION 9-1

9.2 GOTO STATEMENTS 9-1

9.2.1 Unconditional GOTO Statement 9-1

9.2.2 Computed GOTO 9-2

9.2.3 ASSIGN and ASSIGNed GOTO Statements 9-3

9.2.3.1 ASSIGN Statement 9-3

9.2.3.2 ASSIGNed GOTO Statement 9-4

iv

. e e
N

=W N

W W W LW WWLWLWWWWOWY
.

QO ~JOY U B b WwWWwWw
.

.

CHAPTER 10

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.5
10.6

CHAPTER 11

11.1.2
11.1.3
11.2
11.2.1
11.2.2
11.3
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
11.4.2.1
11.4.3
11.5
11.5.1
11.5.2
11.5.3
11.6
1l.6.1
11.6.2
11.6.3
li.6.4

CHAPTER 12

IF STATEMENTS
Arithmetic IF Statement
Logical IF Statement

DO STATEMENT
DO Iteration Control
Nested DO Loops
Control Transfers in DO Loops
Extended Range

CONTINUE STATEMENT

PAUSE STATEMENT

STOP STATEMENT

END STATEMENT

SUBPROGRAMS

INTRODUCTION

SUBPROGRAM ARGUMENTS

USER-WRITTEN SUBPROGRAMS
Arithmetic Statement Functions (ASF)
FUNCTION Subprograms
SUBROUTINE Subprograms

CALL STATEMENT

RETURN STATEMENT

FORTRAN LIBRARY FUNCTIONS

INPUT/OUTPUT STATEMENTS

INTRODUCTION
Input/Output Devices and Logical Unit
Numbers
FORMAT Specifiers
Input/Output Records
INPUT/OUTPUT LISTS
Simple Lists
Implied DO Lists
INPUT/OUTPUT FORMS
Unformatted Sequential Input/Output
Formatted Sequential Input/Output
Unformatted Direct Access Input/Cutput
READ STATEMENTS
Unformatted Sequential READ Statement
Formatted Segquential READ Statement
CHKEOF Subroutine
Unformatted Direct Access READ Statement
WRITE STATEMENTS
Unformatted Sequential WRITE Statement
Formatted Sequential WRITE Statement
Unformatted Direct Access WRITE Statement
AUXILIARY INPUT/OQOUTPUT STATEMENTS
BACKSPACE Statement
DEFINE FILE Statement
ENDFILE Statement
REWIND Statement

FORMAT STATEMENTS

I
ok
te]
o

! [}
= WO Joyutnn

o

=

W W W W LWLWLWWWWWWY
I

[}
=
NN N

[
(=]
i
=

10-1
10-1
10-2
10-3
10-4
10-6
10-7
10-7
10-8

11-1
11-1

11-1
11-2
11-2
11-2
11-2
11-3
11-4
11-4
11-5
11-5
11-5
11-5
11-6
11-7
11-7
11-8
11-8
11-9
11-10
11-11
11-11
11-11
11-12
11-13

12-1

CHAPTER

12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.3.
12.2.3.
12.2.4
12.2.4.
12.2.4.
12.2.5
12.2.6
12.2.6.
12.2.6.
12.2.7
12.2.7.
12.2.7.
12.2.8
12.2.8.
12.2.8.
12.2.9
12.2.9.
12.2.10
12.2.11

12.2.11.1
12.2.11.2

12.2.12
12.3
12.4
12.5
12.6
12.7
12.7.1
12.8
12.9
12.9.1
12.9.2
12.9.3

13

13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.1.8
13.1.9
13.1.10
13.1.11
13.1.12
13.1.13
13.1.14

1
2

1
2
1
2
1
2

1
2

1

CONTENTS (Cont.)

INTRODUCTION
FIELD DESCRIPTORS
I Field Descriptor
F Field Descriptor
E Field Descriptor
Input
Ooutput
D Field Descriptor
Input
Output
B Field Descriptor
G Field Descriptor
Input
OQutput
L Field Descriptor
Input
Output
A Field Descriptor
Input
Output
H Field Descriptor
Alphanumeric Literals
X Field Descriptor
T Field Descriptor
Input
Output
$ Descriptor
COMPLEX DATA EDITING
SCALE FACTOR
GROUPING AND GROUP REPEAT SPECIFICATIONS
CARRIAGE CONTROL
FORMAT SPECIFICATION SEPARATORS
External Field Separators
FORMAT CONTROL INTERACTION WITH I/0 LISTS
SUMMARY OF RULES FOR FORMAT STATEMENTS
General
Input
Output

FORTRAN IV LIBRARY

LIBRARY FUNCTIONS AND SUBROUTINES
ABS
ACOS
ABD
ADC
AIMAC
AINT
ALOG
ALOGI10
AMAXO
AMAX1
AMINO
AMIN1
AMOD
ASIN

vi

Page

12-1
12-2
12-2
12-3
12-4
12-4
12-4
12-5
12-5
12-6
12-6
12-6
12-6
12-6
12-7
12-8
12-8
12-8
12-8
12-9
12-9
12-10
12-10
12-11
12-11
12-11
12-11
12-12
1l2-12
12-14
12-14
12-15
12-16
12-16
12-17
12-17
12-18
12-19

13-1

13-5
13-5
13-6
13-6
13-6
13-7
13-7
13-7
13-7
13-7
13-7
13-7
13-7
13-8
13-8

13.1.15

13.1.16
13.1.17
13.1.18
13.1.19
13.1.20
13.1.21
13.1.22
13.1.23
13.1.24
13.1.25
13.1.26
13.1.27
13.1.28
13.1.29
13.1.30
13.1.31
13.1.32
13.1.33
13.1.34
13.1.35
13.1.36
13.1.37
13.1.38
13.1.39
13.1.40
13.1.41
13.1.42
13.1.43
13.1.44
13.1.45
13.1.46
13.1.47
13.1.48
13.1.49
13.1.50
13.1.51
13.1.52
13.1.53
13.1.54
13.1.55
13.1.56
13.1.57
13.1.58
13.1.59
13.1.60
13.1.61
13.1.62
13.1.63
13.1.64
13.1.65
13.1.66
13.1.67
13.1.68
13.1.69
13.1.70

ATAN
ATAN2
CABS
CCOS
CEXP
CGET
CHKEQCF
CLOCK
CLOG
CLRPT
CMPLX
CONJG
Cos
COSD
COSH
CPUT
CSIN
CSQRT
DABS
DATAN
DATAN2
DATE
DBLE
DCOS
DEXP
DIM
DLOG
DLOG10
DMAX1
DMIN1
DMOD
DSIGN
DSIN
DSQRT
EXP
EXTLVL
FLOAT
IABS
IDIM
IDINT
IFIX
INT
ISIGN
LSW
MAXO0
MAX1
MINO
MIN1
MOD
ONOB
ONQI
PLOT
PLOTR
RCLOSE
REAL
REALTM

vii

[

WWwwwwww
{

i

W W W WO

el el el el el e e
W W

-

13-11
13-11
13-11
13-11
13-11
13-12
13-12
13-13
13-13
13-13
13-13
13-13
13-13
13-14
13-14
13-14
13-14
13-14
13-14
13-14
13-14
13-15
13-15
13-15
13-15
13-15
13-15
13-15
13-16
13-16
13-16
13-16
13-16
13-16
13-16
13-17
13-17
13-17
13-17
13-17
13-17
13-17
13-18
13-18
13-18
13-18
13-19

I
[
[

CHAPTER

CHAPTER

INDEX

FIGURE

13.1.71
13.1.72
13.1.73
13.1.74
13.1.75
13.1.76
13.1.77
13.1.78
13.1.79
13.1.80
13.1.81
13.1.82
13.1.83
13.1.84
13.1.85

14
15

15.1
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.5.1
15.2.5.2
15.2.6
15.2.7
15.2.8
15.2.9
15.2.10
15.3
15.3.1
15.3.2
15.3.2.1

(S I |
1
[\o o

CONTENTS (Cont.)

ROPEN
RSW
SCALE
SIGN
SIN
SIND
SNGL
SINH
SQRT
SSw
SYNC
TAN
TAND
TANH
TIME

PAPERTAPE LOADING INSTRUCTIONS
FORTRAN IV PLOTTER ROUTINES

PLOTTER ROUTINES
PLOTTER COMMANDS
PLOTS
XYPLOT
FACTOR
WHERE
SYMBOL
Multiple Characters
Single Characters
NUMBER
PSCALE
AXIS
LINE
PLEXIT
IMPLEMENTING THE PLOTTER ROUTINES
Getting Started
Adding the Plotting Routines
Loading the Plotter Routines from Paper
Tape

FIGURES

Array Representations

Array Storage

Equivalence of Array Storage
Nesting of DO Loops

Control Transfers and Extended Range
Spiral Plotter Example

Histogram Plotter Example

viii

Page

13-19
13-19
13-20
13-20
13-20
13-20
13-20
13-20
13-21
13-21
13-21
13-21
13-21
13-21
13-22

14-1
15-1

15-2
15-2
15-3
15-3
15-4
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-12
15-12
15-13

15-13

Index-1

4-12
4-13
7-8
9-9
9-10
15-15
15-16

TABLE

HOOUUITUUTUTUL D S W WK
!
I FHFOAUEBWNHNDENHRFOSOU S WN

[

TABLES

Standard FORTRAN IV File Extensions
FORTRAN IV Compiler Run-Time Options
RALF Assembler Run-Time Options
Loader Run-Time Options

Loader Error Messages

Run-Time System Option Specifications
Run-Time System Error Messages
FORTRAN Statement Categories

FORTRAN Special Characters

Field Summary

Classes of Symbolic Names

FORTRAN Data Types

Arithmetic Operators

Base/Exponent Combinations

Binary Operator Hierarchy

Relational Operators

Logical Operators

Logical Operator Hierarchy

Conversion Rules for Assignment Statements

Arithmetic IF Transfers

Effect of Data Magnitude on G Format
Conversions

Character Storage

Carriage Control Characters

FORLIB Calling Relationships

FORLIB Multiple Entry Points by Section

CLOCK Subroutine FUNCTN Arguments
FORTRAN IV Plotter Routines
Special Symbols

Regular Characters

ix

Page

LI L N N Y O N I |
oo

CONUTUTUTUIU B WWN e
i
AN BEWNNWNARNNNNHF®©OO S

-

e
NN
1o
o0 O

12-15
13-4
13-5
13-10
15-1
15-5
15-5

CHAPTER 1

SYSTEM OVERVIEW

0S/8 FORTRAN IV provides full standard ANSI FORTRAN IV under the 0S/8
operating system. The FORTRAN IV package requires a minimum hardware
environment consisting of a PDP-8 family processor with at least 8K of
mainframe memory, a console terminal, and at 1least 96K of mass
storage. The system is automatically self-expanding to employ a KE8-E
Extended Arithmetic Element, FPP-12 Floating-Point Processor, up to
32K of mainframe memory, and any bulk storage or peripheral 1/0
devices that may be present in the system.

Although such factors as maximum program size and minimum execution
time depend heavily on the hardware configuration on which any program
is run, 0S/8 FORTRAN IV affords the full capability of the FORTRAN IV
language, even on a minimum configuration, subject only to the
restriction that double-precision and complex number operations
require an FPP-12 with extended precision option. The system is
highly optimized with respect to memory requirements, and an overlay
feature 1is 1included that permits programs requiring up to 300K of
virtual storage to run on a PDP-8 or PDP-12. The library functions
permit the wuser to access a number of laboratory peripherals, to
evaluate a number of transcendental functions, to manipulate
alphanumeric strings, and to output to a standard incremental plotter.

A FORTRAN IV program written by the user is called a source program,
to distinguish it from the various object programs generated by the
0S/8 FORTRAN IV system. Source programs may be prepared off 1line on
punched cards or low-speed paper tape; however, it is usually most
convenient to prepare source programs on line by means of an editing
program such as TECO or EDIT. The source file produced in this manner
is an image of the corresponding punched-card file, with carriage
return and line feed characters separating adjacent statements (that
would otherwise appear on adjacent punched cards) and ASCII spaces or
tabs entered in place of blank columns. Because of the close analogy
between punched-card source files and other types of source files, the
terms "character" and "column" are used interchangeably in this
manual.

Once a source program has been prepared, it is supplied as 1input to
the FORTRAN IV compiler, which translates each FORTRAN statement into
one or more RALF (Relocatable Assembly Language, Floating-point)
statements and produces an output file containing an assembly language
version of the source program, plus an optional annotated 1listing of
the source,

This is accomplished in three passes. System program F4.SV Dbegins
compilation by building a symbol table and generating intermediate
code. F4 chains to PASS2.SV automatically, and PASS2 calls PASS20.SV
to complete the translation into assembly language during compilation
pass 2. If a source listing was requested, PASS20 chains to PASS3.SV
automatically, and PASS3 generates the listing during pass 3. Like
PASS2, PASS20 and PASS3 are never accessed directly by the user.

1-1

SYSTEM OVERVIEW

The RALF assembly language output produced by the <compiler must be
assembled by system program RALF.SV, the RALF assembler. (See Section
1.2 for a description of the RALF assembler.) During assembly, each
RALF assembly language statement 1s translated into one or more
instructions for either the PDP-8 processor or the FPP; an output
file 1is then <created containing a relocatable binary version of the
assembly language input. This is accomplished in two passes; a third
pass 1is executed to generate an annotated listing of the assembly
language input file, if requested.

The relocatable binary file produced by the RALF assembler 1is a
machine language version of a single program or subroutine. This
file, called a RALF module, must be linked with its main program (if
it is a subroutine) and with any other subroutines, including
subroutines from the library (e.g., FORLIB.RL) that it requires in
order to execute., System program LOAD.SV, the 0S/8 FORTRAN IV loader,
accepts a list of RALF module specifications from the console terminal
and builds a loader image file containing a relocated main program
linked to relocated versions of all subroutines and library components
that the mainline requires in order to execute.

The loader image file is an executable core load, complete except for
run-time I/0 specifications. It may be stored on any mass storage
(directory) device and executed whenever desired. The loader also
produces an optional symbol map that indicates the core storage
requirements of the linked and relocated program. The overlay feature
of the 1loader permits certain segments of a program to be stored in
the loader image file during execution and read into core memory only
as needed, which effectively provides a tenfold increase in maximum
program size.

The loader image file produced by the loader is read and executed by
system program FRTS.SV, the 0S5/8 FORTRAN IV run-time system, which
also confiqures an I/0O supervisor to handle anv FORTRAN input or
output in accordance with run-time I[/0 specifications. This makes the
full I/0 device independence of the 0S/8 operating system available to
every FORTRAN IV program, and permits FORTRAN programs to be written
without concern for, or even knowledge of, the hardware configuration
on which they will be executed. The run-time system assigns I/0
device handlers to the I/0 unit numbers referenced by the FORTRAN
program, allocates I/0 buffer space, and also diagnoses certain types
of errors that occur when the loader image file is read into core. If
no errors of this sort are encountered, the run-time system starts the
FORTRAN program and monitors execution to check for run-time errors
involving data 1I/0, numeric overflow, hardware malfunctions, and the
like. Run-time errors are identified at the console terminal, and,
when a run-time error occurs, the system also provides complete error
traceback to identify the full sequence of FORTRAN statements that
terminated in the error condition.

The compiler, assembler, loader, and run-time system each accept
standard 0S/8 Command Decoder option specifications, as do most 0S/8
programs, The option specifications are alphanumeric characters which
may be thought of as switches that, by their presence or absence,
enable or disable certain program features and conventions. For
example, specifying the /N option to the compiler suppresses
compilation of internal sequence numbers, thereby reducing program
memory requirements (at the cost of preventing full error traceback
during execution). Thus, /N is one of the compiler run-time option
specifications that may be requested to modify the usual compilation
procedure. In this context, run time refers to the time at which the
compiler, or other system program, is executed, rather than the time
at which the FORTRAN program is executed.

SYSTEM OVERVIEW

A FORTRAN source program may be executed by first calling the compiler
to convert the source into RALF assembly language, next calling the
assembler to produce a relocatable binary file, then <calling the
loader to 1link and relocate the binary file, and finally calling the
run-time system to load the program and supervise execution. 0S/8
FORTRAN IV provides a program chaining feature that can simplify or
eliminate this sequence of program calls in most cases. When chaining
is requested, the first system program to be executed automatically
calls the next program in the compiler/assembler/loader/run-time
system sequence. When the compiler chains to the assembler, for
example,; the five programs (the compiler consists of four programs)
function as a single unit that accepts FORTRAN source language input
and generates relocatable binary output suitable for use as 1input to
the 1loader. 1In this manner, simple FORTRAN programs may be compiled,

assembled, relocated, loaded, and executed -- all as the result of a
single Keyboard Monitor or CCL command. More complicated programs
involving subroutines and, perhaps, overlays, do not admit toc a high

degree of <chaining because a great deal of user input in the form of
run-time option specifications may be required at some point 1in the
chain. In general, however, it is usually most convenient to chain
from the compiler to the assembler (combining compilation and assembly
into a single operation) and from the loader to the run-time system
(combining relocation, loading, and execution).

Errors encountered by the various system programs do not result in
termination of program chaining unless the error is such that it is
impossible for execution to continue. This permits the system to
locate and 1identify as many errors as possible before returning
control to the Keyboard Monitor. When chaining 1is requested,
intermediate output files produced by one system program are deleted
automatically after they have been read as input by the next program
in the <chain sequence. This serves to optimize storage requirements
and minimize access time, particularly on DECtape- and LINCtape-based
systems.

The 0S/8 FORTRAN IV system also includes FORLIB.RL, a library of
FORTRAN functions and subroutines, plus LIBRA, the system librarian
program. Almost every FORTRAN program executes calls to library
functions and subroutines which perform such tasks as mathematical
function evaluation, data I/0, and numeric conversion. When the
locader recognizes that a preogram or subroutine has called a library
component, it copies a relocated version of the referenced library
routine into the 1loader image file and 1links it to the calling
routine. LIBRA is used to maintain the 1library by inserting or
deleting 1library functions or subroutines, which are simply assembled
FORTRAN files or specially coded RALF modules. LIBRA may also be used
to create alternate libraries for use in place of the standard system
library.

Because it affords full 1I/0 device independence, highly optimized
memory and bulk storage, program chaining, and a variety of run-time
options, 0S/8 FORTRAN IV is necessarily somewhat complicated. In
order to use the system most efficiently, it is important to identify
the four processes that must be performed, and their proper sequence,
to execute a FORTRAN source program:

Process Performed by
COMPILATION FORTRAN IV compiler (F4, PASS2, PASS20 and PASS3).
ASSEMBLY RALF assembler (RALF).
RELOCATION FORTRAN loader (LOAD) using system library.
EXECUTION FORTRAN run-time system (FRTS).

1-3

SYSTEM OVERVIEW

It is also important to identify the types of input that must be
supplied to each process listed above and the types of output that
will be produced. The 0S/8 FORTRAN IV system accepts user-generated
FORTRAN source programs (supplied as 1input to the compiler) and
user-written RALF assembly language files (supplied to the assembler)
as input. It generates four types of output files:

e RALF assembly language files generated by the compiler and
read as input by the assembler. Compiler output Iis
functionally equivalent to user-written RALF language input.

e Relocatable binary files generated by the assembler and read
as input by the loader.

e Loader image files generated by the loader and read as input
by the run-time system. Once a program has been written and
debugged, it may be stored as a loader image file and executed
whenever required without the necessity for further
compilation, assembly, or relocation.

e Optional listing files including the FORTRAN source listing
produced by the compiler, the RALF language listing produced
by the assembler, and a symbol map produced by the loader.

In addition, the FORTRAN program itself usually reads and writes data
files under the supervision of the run-time system; FORTRAN I/0 files
are treated separately in the section on the FORTRAN IV Run-Time
System.

Every FORTRAN source program thus generates up to three object files,
aside from any I/0 files that may be read or written during execution,
and up to three 1listing files. System—-generated files are nmost
conveniently identified by assigning them the same file name as the
sonrce from which they were bprodnced and a file extension that
identifies them by type. Table 1-1 lists the standard file extensions
used to identify various types of source and system-generated files.
The standard extensions are called default extensions because, when
any output file name 1is specified with a null extension, the
appropriate standard extension 1s appended by default. Thus,
specifying file "PROG" or "PROG." to the RALF assembler, for example,
causes the relocatable binary output from the assembly to be written
on file "SYS:PROG.RL" where "SYS:" is the default device when a file
name 1s explicitly defined and ".RL" is the default extension for
relocatable binary files. Specifying a null file causes this output
to be routed to file "DSK: FORTRN.RL" where "DSK:" is the 0S/8
default device and "FORTRN" is the default output file name. For
clarity, all examples in this chapter will use either null or default
extensions, although the user may explicitly specify any extension
desired.

Table 1-1
Standard FORTRAN IV File Extensions
Extension File Type
.FT FORTRAN language source file.
.RA RALF assembly language file.
.RL Relocatable binary (assembler output).
.LD Loader image.
.LS Listing or symbol map.
.TM System temporary file. Created by certain mnultipass
programs and normally deleted automatically after
use.

SYSTEM OVERVIEW

This chapter assumes that the reader 1is familiar with the 0S/8
operating system; however, all material has been presented in a
manner that requires minimal experience with 0S/8. The reader should
understand the use of the 0S/8 Keyboard Monitor (although only the
monitor R command is referenced here) and the 05/8 Command Decoder.
In particular, notice that all Command Decoder file/option
specifications presented here are illustrated 1in a standard format
that may not be the most convenient format for an experienced user's
particular application. 1In addition, the Command Decoder provides
file storage optimization features, which may be invaluable in many
applications, but which are not covered in this chapter. DECtape and
LINCtape users will benefit from an understanding of the 0S/8 file
structure, so that they may assign 1/0 files in a manner that
minimizes access time on tape-based systems.

The FORTRAN IV system of programs may be entered through the CCL
commands COMPILE, EXECUTE, and LOAD. These commands are described in
Sections 1.1 and 1.1.1 in this chapter.

1.1 THE FORTRAN IV COMPILER

The 0S/8 FORTRAN IV compiler accepts one FORTRAN source language
program or subroutine as input, examines each FORTRAN statement for
validity, and produces as output a list of error diagnostics, a RALF
assembly language version of the source program, and an optional
annotated source listing. A Jjob containing one or more subroutines is
run by compiling and assembling the main program and each subroutine

separately, then combining them with the 1loader. F4 terminates a
compilation by chaining to the RALF assembler automatically, unless it
was requested to return to the Keyboard Monitor. The compiler Iis

called by typing
ROF4

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. F4 may also be called via the CCL command
COMPILE. The compiler replies by loading the 0S/8 Command Decoder,
which accepts and decodes a standard command line that designates 0 to
3 output files, 1 to 9 input files, and any run-time option
specifications. The file/option specification command line is entered
by typing

DEV:RALF.RA,DEV:LIST.LS,DEV:MAP,.LS<DEV:IF1.FT,...,DEV:IF9.FT(options)

(terminated by a carriage return or altmode) in response to the
asterisk generated by the Command Decoder, where
DEV:RALF.RA,DEV:LIST.LS, and DEV:MAP.LS are output files, RALF
assembly source file, 1listing £file, and 1loader symbol map file,
respectively. The files DEV:IF1.FT,...,DEV:IF9.FT are input files 1
to 9. Options 1is a string of alphabetic characters, enclosed in
parentheses, that designates any run-time options desired. The " "
character may be used in place of the "<" character to separate output
file specifications from input file specifications. The parentheses
may be omitted if each run-time option specification character is
preceded by a "/" character.

When any input file name 1is entered with a null extension, the
compiler will search for +the indicated file name with an assumed
extension of ".FT". If this is unsuccessful, it will then search for
the 1indicated file with a null extension. 1If the first output file
RALF.RA is entered with a null extension, the compiler appends the
default extension ".RA". If the second output file is a directory

SYSTEM OVERVIEW

device file with a null extension, the compiler appends the default
extension ".,LS". Note that unless chaining to RALF, the first output
file is always written onto the 0S/8 system device; any user device
specification entered for this file will be ignored when the /A option
is specified. When there is more than one input file, all of the
input files are assumed to contain a single FORTRAN program or
subroutine.

After accepting and decoding the file/option specification command,
the compiler reads the input files in the order they were entered and
then compiles each FORTRAN source statement until an END statement is
encountered. Any text following the first END statement is ignored.
The compiler then writes a RALF assembly language version of the
source program onto the first output file, or onto file SYS:FORTRN.RA
if no first output file was specified. It also copies an annotated
source program listing onto the second output file; however, this
listing is not produced unless a second output file was specifically
defined. The third output file is not used by the compiler; it
receives a loader symbol map only when chaining to the loader.

An internal statement number (ISN) is assigned to each FORTRAN IV
statement sequentially, in octal, beginning with ISN 2 at the first
FORTRAN statement. When an error is encountered during compilation,
the compiler prints a 2-character error code, followed by the ISN of
the offending statement, on the console terminal during pass 2. An
extended error message is printed below every erroneous statement in
the listing, provided that a 1listing 1is produced. Certain errors
cause an 1immediate return to the Keyboard Monitor, however, in which
case the listing file is never produced. Table 1-3 lists the FORTRAN
compller error messages and describes the error condition indicated by
each message.

The compiler accepts five run-time option specifications, 1listed in
Table 1-2, any combination of which may be requested by entering the
anpropriate alphabetic character{s) in the Command Decoder file/option
specification 1line. Any run-time options recognized by the RALF
assembler, the loader, or the run-time system may be entered along
with the compiler options; they will be passed to the assembler
automatically unless chaining is suppressed (by an error condition or
the A option), in which case they will be ignored.

Table 1-2
FORTRAN IV Compiler Run-Time Options

Option Operation
A Return to the Keyboard Monitor when compilation is
complete. If the A option is not requested, the compiler

will automatically chain to the RALF assembler.

F Produce an annotated listing of the RALF assembly language
output file. The 1listing 1s actually produced by the
assembler; thus, the F option is only valid when chaining
to RALF. The listing is routed to the same output file as
the FORTRAN source listing. It will overwrite the FORTRAN
listing 1f the second output file resides on a directory
device. It will not be produced if a second output file
was not specifically defined.

(continued on next page)

SYSTEM OVERVIEW

Option Operation

N Suppress compilation of ISNs. This reduces program memory
requirements by two words per executable statement;
however it also prevents full error traceback at run time.

0] Optimize cross-statement subscripting during compilation.
This option should not be requested when any variable that
appears in a subscript is modified either by referencing a
variable equivalent to it or via a SUBROUTINE or FUNCTION
call (whether as an argument or through COMMON).

1.1.1 Compiler Examples

Compile, assemble, load, and execute a FORTRAN IV source program:

ROF4 Compiles DSK:PROG.FT or DSK:PROG into
XFROGAG DSK:FORTRN.RA, assembles it into
DSK:FORTRN.RL, links it into
DSK:FORTRN.LD, then 1loads it 1into
core and executes it. No listing

files are produced.

Compile any source program by calling F4 and specifying the file (or
files) containing the source as input:

JROF4 Compiles DSK:PROG.FT or else

XFPROG/A DSK:PROG. into SYS:FORTRN.RA. The
back-arrow is optional when there are
no output file specifications.

+HOF4 Compiles SYS:PROG.FT into
X¥EYSIFROG.FTI{NAY SYS:FORTRN.RA under the N option.

Obtain a source listing with error messages by specifying a 1listing
output file as the second output file. 1In these examples, the first
output file is a null file.

R F4 Identical to the first of the two

X LPTIIPROGSA preceding examples, except that a
listing is produced on the 1line
printer.

ROF4 Compiles DTA2:PROG.FT into

e OTELIFROGEDTAZIPROG.FT/A/N SYS:FORTRN.RA and writes a source

listing onto file DTA1l:PROG.LS under
the N option.

Designate a specific output file to receive the compiler output by
specifying it as the first output file:

R Fa Compiles DSK:PROG.FT or else
¥FROGFROG & DSK:PROG. into SYS:PROG.RA.
R Fa Compiles RXAQ:WHAT.FT or else

AWHEM, RA s WHERE . LS<RXA0IWHAT (AR RXAO0:WHAT. into SYS:WHEN.RA with a
listing routed to DSK:WHERE.LS under
the Q optioen.

1-7

SYSTEM OVERVIEW

1.1.2 Compiler Error Messages

During compilation pass 2, error messages are printed at the console
terminal as a 2-character error message followed by the ISN of the
erroneous statement. Typing CTRL/0 at the terminal suppresses the
printing of error messages. During optional pass 3, which requests a
listing, an extended error message follows each erroneous statement on
the 1listing. Except where indicated in Table 1-3, errors located by
the compiler do not halt processing.

Table 1-3
FORTRAN IV Compiler Error Messages
Error
Code Meaning

AA More than six subroutine arguments are arrays.

AS Bad ASSIGN statement.

BD Bad dimensions (too big, or syntax) in DIMENSION, COMMON,
or type declaration.

BS Illegal in BLOCK DATA program.

CL Bad COMPLEX literal.

Cco Syntax error in COMMON statement.

DA Bad syntax in DATA statement.

DE Illegal statement as end of DO loop (i.e., GO TO, another
DO) .

DF Bad DEFINE FILE statement.

DH Hollerith field error in DATA statement.

DL Data list and variable list are not same length.

DN DO-end missing or incorrectly nested. This message is not
printed during pass 3. It is followed by the statement
number of the erroneous statement, rather than the ISN.

DO Syntax error in DO or implied DO.

DP DO loop parameter not integer or real.

EX Syntax error in EXTERNAL statement.

GT Syntax error in GO TO statement.

GV Assigned or computed GO TO variable not integer or real.

HO Hollerith field error.

IE Error reading input file. (Control returns to the
Keyboard Monitor.)

IF Logical IF statement used with DO, DATA, INTEGER, etc.

LI Argument of logical IF not type Logical.

LT Input line too long, too many continuations.

MK Misspelled keyword.

ML Multiply defined line number.

MM Mismatched parenthesis.

MO Expected operand is missing.

MT Mixed variable types (other than integer and real).

OF Error writing output file. (Control returns to the
Keyboard Monitor.)

op Illegal operator.

oT Type / operator use illegal (e.g., A.AND.B where A and /
or B not typed Logical).

PD Compiler stack overflow; statement too big and/or too
many nested loops.

PH Bad program header line.

QL Nesting error in EQUIVALENCE statement.

QS Syntax error in EQUIVALENCE statement.

RD Attempt to redefine the dimensions of a variable.

(continued on next page)

SYSTEM OVERVIEW

Table 1-3 (Cont.)
FORTRAN IV Compiler Error Messages

Error
Code Meaning

RT Attempt to redefine the type of variable.

RW Syntax error in READ/WRITE statement.

SF Bad arithmetic statement function.

SN Illegal subroutine name in CALL.

SS Error in subscript expression, i.e., wrong number, syntax.

ST Compiler symbol table full, program too big. (Causes an
immediate return to the Keyboard Monitor.)

Sy System error, i.e., PASS20.SV or PASS2.SV missing, or no
recom on system for output file. (Causes an immediate
return to the Keyboard Monitor.)

TD Bad syntax in type declaration statement.

Us Undefined statement number. This message is not printed
during pass 3. It is followed by the statement number of
the erroneous statement, rather than the ISN.,

VE Version error. One of the compiler programs 1is absent
from SYS: or is present in the wrong version,

1.2 THE RALF ASSEMBLER

The RALF assembler accepts one RALF assembly language program or
subroutine as input and produces a relocatable binary file, called a
RALF module, as output. An optional annotated listing of the input
file may also be produced. RALF terminates an assembly by returning
to the Keyboard Monitor unless it was requested to <chain to the
loader.

A RALF module is composed of an external symbol dictionary (ESD table)
and associated text. The ESD table lists all symbols defined in the
RALF input file, which may be sections, entry points, or externs.
Each of these symbols is assigned a relative address to be used by the
loader when it relocates the relative code by assigning absolute core
addresses. The text produced by RALF is a relocatable binary version
of the assembly language input file. All text addresses are relative
to the ESD table symbols.

A section can be thought of as a contiguous block of relocatable code
having a definite beginning and end, which is temporarily assigned a
relative starting address of 00000. A RALF file can have more than
one section defined in its ESD table. For example, consider a
subroutine containing a COMMON section assembled by RALF. Both COMMON
and the subroutine itself are sections. An entry point is a location
within a given section that is referenced by code in other sections.
An extern 1is a section or entry point in some other module that is
referenced within the module currently being assembled.

Unless the A option is specified to the FORTRAN IV compiler, the RALF
assembler is called automatically to assemble the output of a
successful compilation. In this case, RALF reads the assembly
language file Jjust produced by the compiler as input and routes its
output, consisting of the assembled RALF module, to the first output
file that was specified to the compiler. 1If this file had a null
extension, the default extension ".RL" is supplied. If no first
output file was specified, the module is written onto default file
SYS:FORTRN.RL.

1-9

SYSTEM OVERVIEW

The RALF language output produced by the compiler is then deleted, and
an annotated listing of the RALF assembly language input is written on
the second output file specified to the <compiler, provided that a
second output file and the F option were both specified. This listing
will overwrite the compiler source listing if the second output file
is a directory device file. Note, however, that the RALF language
listing is rarely required for most applications and should not be
routinely requested.

The RALF assembler might also be called separately to assemble the
output of the compilation produced under the A option or to assemble a
user—-generated file written in RALF assembly language. This 1is
accomplished by typing

K RALF

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. RALF replies by 1loading the 0S/8 Command
Decoder, which accepts and decodes a standard command 1line that
designates 0 to 3 output files, 1 to 9 input files, and any run-time
option specifications. The format for a file/option specification
command line is

DEV:RALPH.RA,DEV:LIST.LS,DEV:MAP.LS<DEV:IF1.RA,...,DEV:IF9.RA (options)

where
DEV:RALF.RA is the relocatable binary RALF module
DEV:LIST.LS is the annotated listing of RALF source
DEV:MAP.LS is the loader symbol map

DEV:IF1.RA,...,DEV:IF9.RA
are input files 1 to 9

options is a string of alphabetic characters that
designates any run-time options desired

If any input file name is entered with a null extension, the assembler
will search for the indicated file name with an assumed extension of
".RA", If this is unsuccessful, it will then search for the indicated
file with a null extension. 1If the first output file is entered with
a null extension, the assembler appends the default extension ".RL".
If the second output file 1is a directory device file with a null
extension, the assembler appends the default extension ".LS".

When there is more than one input file, all of the input files are
assumed to contain the assembly language source for a single RALF
module. After accepting and decoding the file/option specification
command, RALF reads the input files in the order they were entered and
assembles every RALF language statement. RALF terminates the assembly
by writing a relocatable binary version of the input program or
subroutine onto the first output file, or onto file SYS:FORTRN.RL if
no output files were specified. It also coples an annotated source
listing and symbol table onto the second output file; however, this
listing is not produced unless a second output file was specifically
defined. The third output file is not wused by the assembler; it
receives a loader symbol map only when chaining to the loader.

When an error is encountered during assembly, the assembler prints a
2-character error code, followed by the label associated with the
erroneous statement, on the console terminal during pass 2. Error
codes are also appended to the 1listing, on a line by themselves

SYSTEM OVERVIEW

immediately preceding the statement to which they apply (except EG,
which follows the line in error). Certain errors cause an immediate
return to the Keyboard Monitor, however, in which case the listing is
never produced. RALF assembler error messages and the error condition
indicated by each message are described in the RALF chapter of this
manual.

The assembler accepts the three run-time option specifications 1listed
in Table 1-4, any combination of which may be requested by entering
the appropriate alphabetic character{(s) in the Command Decoder
file/option specification line. Any options recognized by the loader
or the run-time system may be entered along with the assembler
options; they will be passed to the loader automatically unless
chaining is suppressed (by an error condition or omission of the L
option specification), in which case they will be ignored.

Table 1-4
RALF Assembler Run-Time Options
Option Operation
G Chain to the loader when assembly is complete, and

chain to the run-time system following creation of a
loader image file.

L Chain to the loader when assembly 1is complete. If
the L option 1is not specified, RALF will return to
the Xeyboard Monitor upon completion.

T Suppress the RALF assembly language 1listing and
produce only a symbol table. The T option is ignored
by the assembler when a second input file was not
specifically defined. When chaining from the
compiler, it is ignored unless the F option and a
listing output file were both specified.

The symbol table produced by RALF and appended to the RALF language
listing includes:

e assembler version number

e system date

e listing page number

e number of errors encountered during assembly

e number of symbols defined in the program

e number of absolute references encountered in FPP instructions

All symbols referenced during the assembly are then 1listed in
alphabetical order, from left to right across the page. An alphabetic
code follows certain classes of symbols and identifies them by type.
The alphabetic codes are:

symbol names a COMMON section
symbol names a FIELD1l section
symbol is the name of a section
symbol is undefined

symbol is external to this assembly
symbol names a COMMZ section

symbol names an 8-mode section

WON X CCWHEO

1-11

SYSTEM OVERVIEW

If no alphabetic code is shown, the symbol 1is an ordinary address
symbol. A numeric code is also printed after each symbol in the list.
The numeric code indicates the relative octal value of the symbol
except for the case of:

c, F, s, where the numeric code indicates the length of the
Z, or 8 codes section or common block.

U or X codes where 00000 indicates undefined or external
symbols.

1.2.1 RALF Examples

When chaining from the compiler to the assembler, RALF deletes the
compiler output after reading it as input. Thus:

R F4 Produces RALF module SYS:FORTRN.RL

XFROG and deletes compiler output file
SYS:FORTRAN.RA.

+R F4 Produces RALF module SYS:PROG.V3

¥FROG.V3sLPT!<FROG/F and lists both the FORTRAN source

and the RALF language compiler
output on the line printer.

+R F4 Produces RALF module DTA2:0BJ.RL

XDATA2:0BJyDTALILISTOTAZIFROG(TF) and writes a symbol map onto file
DTA1:LIST.LS. The FORTRAN source
listing is overwritten and
destroyed.

When calling the assembler to assemble and relocate the output of a
successful compilation produced under the A option or a user-written
RALF language source, the procedure is closely analogous to that for
running the compiler:

+R RALF Assembles DSK:PROG.RA or else

*XFROG DSK:PROG. 1into SYS:FORTRN.RL.

+R RALF Assembles DTA1l:FILE.RA into

XrSYSILISTDOTALIFILE.RA SYS:FORTRN.RL and writes a 1listing
on SYS:LIST.LS.

+R RALF Assembles DSK:RALF.RA into

XOTALETMF . TMs LFT 1 <RALF .RA DTALl:TEMP.TM and writes a listing

on the line printer.

1.2.2 RALF Assembler Error Messages

During assembly pass 2, error messages are printed at the console
terminal as a 2-character error code followed by the label associated
with the erroneous statement. If a listing was requested, error codes
are printed during pass 3 on a 1line by themselves immediately
preceding the statement to which they apply (except for EQ, which
follows the 1line 1in error). RALF error messages are listed in the
RALF chapter of this manual.

SYSTEM OVERVIEW

1.3 THE LOADER

The 0S/8 FORTRAN IV loader accepts up to 128 RALF modules as input and
links the modules, along with any necessary library components, to
form a loader image file that may be 1loaded and executed by the
run-time system. This 1is accomplished by replacing the relative
starting location (00000) of each section with an absoiute core
address. Absolute addresses are also assigned to all entry points
defined in the input modules. Once all RALF modules and library
components have been assigned tc scome portion of memory and linked,;
absolute addresses are assigned to the relocatable binary text and the
externs,

The overlay feature of the loader facilitates running programs too
large to be contained in available memory. This makes it possible to
run programs that require up to 300K words of storage in less than 32K
of actual core memory. This is accomplished by dividing very large
FORTRAN programs into a set of subroutines 1linked by one mainiine.
Unlike the subroutines, each of which has a section name by which it
is called, the mainline does not have a name and is therefore assigned
section name #MAIN by the system. An overlay scheme is then designed
in such a way that the memory requirement of those subroutines that
are core-resident at any given time does not exceed the available core
memory.

An overlay is a set of subroutine stored on a bulk storage device.
When any subroutine in an overlay is called by the mainline or another
subroutine, the entire overlay is read into core, where it generally
replaces another overlay of equivalent size.

Levels are variable-size portions of memory reserved for specific sets
of overlays. 0S/8 FORTRAN IV permits up to 8 levels, designated level
0, level 1, and so on up to level 7. Level 0 is always present and
always <contains only one overlay, called overlay MAIN, which always
includes section #MAIN (the FORTRAN or RALF mainline) as well as all
COMMON sections, 8-mode sections and library components. Additional
subroutines may also reside in overlay MAIN; in fact, the entire
program should be 1locaded into level 0 if there is sufficient core
available.

Levels 1 to 7 may each contain up to 16 overlays, only one of which is
core-resident at any given time during program execution. If no
subroutines are loaded into a given level, that level does not exist
for the current execution and no memory 1is allocated to it. As
execution begins, overlay MAIN 1is loaded into 1level 0 (where it
remains throughout execution) and started at the entry point of
section #MAIN. Other overlays are read into the block of memory
reserved for their particular level whenever one of their constituent
subroutines is called. As an overlay is read into a given level, it
overwrites any other overlay that may have been resident in that
level. Thus, no two overlays from the same level are ever
core-resident simultaneously.

SYSTEM OVERVIEW

When section #MAIN or any subroutine calls another subroutine, the
flow of -execution from calling routine to called routine is referred
to as part of a calling sequence. Every calling sequence begins with
a call from section #MAIN and ends with a call to some subroutine that
does not contain any further CALL statements. Calling sequences
generally contain branches, and they may be very intricate. For
example, assume that:

Routine/Subroutine Contains Calls To
mainline (#MAIN) SUBl1, SUB2, SUB3
SUB1 ALPHA, BETA

SUB2 SUB3

SUB3

ALPHA

BETA SUB2

Then the calling sequences could be mapped as:
ALPHA
SUB1 BETA

e ™~

ZMAIN SUB2

SUB3

When any subroutine CALL is executed, the system determines whether
the overlay containing the called routine is core-resident and, if
not, reads this overlay into its proper level in core, overwriting any
overlay which was previously resident 1in that level. No such
determination is possible for RETURN statements, however. For this
reason, it 1is extremely important to ensure that, at the end of a
calling sequence, all subroutines in the calling sequence are still
core-resident. In other words, no subroutine may execute a CALL that
will cause it, or any subroutine which called it, to be overlaid. In
the previous example, if SUBl, SUB2 and SUB3 occupy separate overlays
in level 1 while ALPHA and BETA reside in 1level 2, the <calling
sequence from #MAIN to SUBl to BETA to SUB2 will cause a fatal error
because SUB2 will overwrite SUBl and prevent control from returning to
level 0. The FORTRAN system guards against some errors of this type
by enforcing the following rules:

e Subroutines in a given level cannot call other subroutines in
the same level 1if the called subroutine is in a different
overlay.

e Subroutines in high-numbered levels cannot call subroutines in
lower—-numbered 1levels unless the call is to level 0. (This
convention is not enforced when the U option is specified to
the run-time system.)

These restrictions will not prevent fatal errors in all cases. 1In the
preceding example, if subroutine BETA is placed in level 0 instead of
level 1, the calling sequence from #MAIN to SUBl to BETA to SUB2 still
causes a fatal error, even though neither of the enforced conventions
is violated. Thus, any overlay scheme nust be designed with careful
attention to calling sequences.

SYSTEM OVERVIEW

If the L or G option is specified to F4 or RALF, the loader is called
automatically to relocate the cutput cf a successful assembly. When
chaining to the loader is via F4, the loader reacts in one of two
ways. If the last Command Decoder file/option line terminated with a
carriage return, it immediately fetches the Command Decoder and
proceeds as though it had been called from the monitor, as described
below. The only difference, in this case, is that certain 1loader or
run-time system options may have been passed to the loader from RALF
and cannot be suppressed at this point. Also, unless two different
files are specified as output files, the loader automatically routes
its loader image to the first output file specified to F4 or RALF at
the start of the chain. Default extension ".LD" is assigned if this
file had a null extension. 1If no output files were specified the
loader routes its loader 1image to file SYS:FORTRAN.LD. The
relocatable binary output produced by the assembler is deleted after
it has been read as input. A loader symbol map is routed to the third
output file specified at the start of the chain sequence, if any, or
to the second output file, if any, specified to the loader as
described below. When this is a directory device file with a null
extension, the default extension ".LS" is supplied.

If the last file/option specification supplied to the Command Decoder
was terminated with an ALTMODE character instead of a carriage return,
the loader reacts differently when chained to from RALF, In this
case, the 1loader assumes that the RALF module just produced is a
stand-alone mainline that requires no subroutines (other than library
components) in order to execute. The loader does not call the Command
Decoder under these circumstances, since level 0 is the only level
that will be defined. Output is produced exactly as described above,
and the loader either returns to the Keyboard Monitor upon completion
or, 1f a G option specification was previously entered, chains to the
run-time system.

The loader may be called separately, to link and relocate a set of
previously assembled RALF modules. This is accomplished by typing

JRLOAD

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. The loader replies by calling the 0S/8 Command
Decoder, which accepts and decodes one or more standard command lines,
each of which designates 0 to 9 input files, 0 to 2 output files, and
any run-time option specifications desired. The file/option
specification line format is:

DEV:IMAGE.LD,DEV:MAP.LS<DEV:PROGA.RL,...,DEV:PROGX.RL(options)
where
IMAGE.LD 1is the loader image output file
MAP.LS is the loader symbol map output file
DEV:PROGA.RL,...,DEV:PROGX.RL
may be either relocatable binary RALF modules or a

library file

options is a string of alphabetic characters that designates
any run-time options desired

The loader accepts up to 128 input file specifications, one of which
may designate a library file to be used in place of the standard
system library. The 0S/8 Command Decoder, however, accepts a maximum
of only 9 input file specifications per command line. Thus, after

SYSTEM OVERVIEW

each file/option command line 1is entered, the 1loader recalls the
Command Decoder to accept another command 1line. This process
continues until the /G option is received or a line is terminated with
an ALTMODE. 1Input file specifications should be entered in sequence,
beginning with all RALF files to be loaded into level 0, followed by
files for 1level 1 overlay 1, level 1 overlay 2, and so on until all
level 1 overlays are filled. Level 2 overlays are then built in the
same manner, using as many file/option specification 1lines as
necessary. The process continues until all levels are filled. Each
line may contain from 0 to 9 input file specifications; null lines
will be ignored by the loader.

At some point during this process, two output files and one library
(input) file may also be specified. The loader image file built by
the loader is routed to the first output file, which must reside on a
directory device, or to file SYS:FORTRN.LD if no output files are
specified. When the first output file has a null extension, the
default extension ".LD" is supplied. The loader symbol map is routed
to the second output file, provided that a second file is specifically
defined. If this 1is a directory device file with a null extension,
the default extension ".LS" is supplied. One library file may be
specified as an input file, to be used in place of the standard system
library. This must be a specially formatted file, prepared with LIBRA
as described in Chapter 13 of this manual. In addition, it must be
specified on a command line that contains no other input file names.
This command line may appear anywhere in the file/option specification
sequence and 1s 1identified by the presence of an L option
specification.

If more than one first output file, second output file, or library
file 1is specified to the loader, only the last specification in each
category is used. Previous specifications, including those supplied
to F4 or RALF when chaining to the loader, are ignored.

Run-time option specifications are used to group the sequence of input
files into discrete overlays, allocate overlays to certain levels, and
identify the user-generated library file, if any. Table 1-5 lists the
run-time options recognized by the loader and describes their use.
The E and H options, recognized by the run-time system, may be entered
on the same line as the G option when chaining to the run-time system.

Table 1-5
Loader Run-Time Options

Option Operation

C Continue the current line of input on the next line
of input. When specifying RALF files to the loader,
there may be more than nine files that belong 1in a
given overlay. Since the Command Decoder will not
allow more than nine input files in one file/option
specification line, the C option permits the
additional files to be put on the following line. 1If
the C option is not specified at the end of a line,
the current overlay is closed when the terminating
carriage return 1is received and subsequent input
files are placed in a new overlay 1in the current
level. An exception to this is level 0, which only
contains one overlay. The presence of a C option
specification 1is assumed on every line until level 0
has been closed by an 0 specification.

(continued on next page)

1-156

SYSTEM OVERVIEW

Table 1-5 (Cont.)
Loader Run-Time Options

Option Operation

G Treat the current line as the last line of input, and
chain to the FORTRAN IV run-time system when finished.

L Accept the single input file specified on this line as
an ailternate library to be used in place of the system
library, FORLIB.RL.

0 Close the level that is currently open, and open the
next sequential level for input. RALF files specified
on subsequent lines are assigned to overlays in the new
level until the new 1level 1is closed by the next O
specification (or the end of input).

S Include system symbols in the loader symbol map.
System symbols are identified by an initial "#"
character. This option is only valid when a symbol map
output file was specifically defined.

U Ignore the rules governing subroutine calls between
overlays. This option should only be wused when
subroutines making illegal calls will not be accessed
during execution since, 1in general, any illegal
subroutine call will cause unpredictable behavior at
run time.

Input may be terminated by entering a G option specification on the
last 1line and/or by terminating the 1last 1line with an ALTMODE
character rather than a carriage return. If the G specification and
the ALTMODE both appear, this 1indicates that the user has no
file/option specification input for the run-time system and prevents
the run-time system from calling the Command Decoder.

1.3.1 Loader Examples

The following sequence of Command Decoder specification lines
illustrates the use of option specifications to allocate RALF files to
particular overlays.

+R LOAD Loader is called from Keyboard Monitor.

XSYSIFROG. LTI« LFT I FROG,RL Loader image file will be routed to
SYS:PROG.LD while the symbol map 1is
printed on the line printer. PROG.RL is
placed in 1level 0 overlay MAIN. Since
the presence of a C option specification
is assumed on every line preceding the
first O option specification, level ©0
overlay MAIN remains open.

¥<ALFHA.RL s RETARL Place subroutines ALPHA and BETA in
level 0 overlay MAIN. The presence of a
C option specification is assumed.

SYSTEM OVERVIEW

*/0 Close level 0 and open level 1 overlay
1.
¥<SURL RL»SUB2 Ry SUR3Z RL Place SUBl, SUB2 and SUB3 in level 1

overlay 1. Close overlay 1 and open
overlay 2.

XCSUR4A L RL s SURT R« SURS.RLAT Place SUB4, SUB5 and SUB6 in 1level 1
overlay 2. Accept further 1input for
this overlay on the next line.

HCDTALISURTLRLA0 Place SUB7 in level 1 overlay 2. Close
level 1 and open level 2 overlay 1.

*COTALISURE RL Place SUB8 in level 2 overlay 1. Close
overlay 1 and open overlay 2.

XIGUER RL Place SUB9 in level 2 overlay 2. Close
overlay 2 and open overlay 3.

ELTRCRLOLED Use file DSK:LIB.RL in place of
SYS:FORLIB.RL as the library file. 1In
spite of its position in the
specification list, any library
components will be placed in level 0.
The S option specification requests an
augmented loader symbol map.

¥BURLOLRLAD Place SUB10 in level 2 overlay 3. Close
level 2 and open level 3 overlay 1.

¥CGURLLLRL-OTALISURL2.RL/G Place SUBll and SUBl2 in level 3 overlay
1. Close level 3, terminate input, and

chain to the run-time system when
finished.

This sequence of commands will provide the following overlay scheme:

Level Overlay Contents

MAIN PROG, ALPHA, BETA library subroutines
SUB1, SUB2, SUB3

SsuB4, SUB5, SUB6, SUB7

SUB8

SUB9

SUB10

SUB11, SUB12

WNoNNE O
W N

Note that all of the input files except those containing SUB7, SUBS8,
and SUBl2 are taken from device DSK:, the 0S/8 default device. The
left-angle bracket character |is optional when a file/option
specification 1line «contains only input file specifications; it has
been included here for clarity. Obviously, there are many other ways
in which the sequence of file/option specifications shown above could
have been entered to produce an identical result.

Considerable foresight is required when designing an overlay scheme,
Since an overlay may have to be read into core whenever one of its
constituent subroutines is called, a great deal of useless I/0 results
from 1inefficient overlay design. The system does verify that an
overlay is not already resident before reading it into core.

Levels must be an integral number of system blocks (400 octal words in
size) and big enough to accommodate the largest overlay they contain.

SYSTEM OVERVIEW

Ideally, then, the largest overlay in a level should occupy slightly
less than some multiple of 400 (octal) words of storage, and all
overlays in a level should be nearly equal in size. For example, Iif
level 1 contains three overlays requiring 300, 100, and 150 octal
words of storage, respectively, then the two smaller overlays should
be combined because level 1 will be 400 octal words long in any case.
If the three overlays require 500, 100, and 150 octal words of
storage, all three should be combined because level 1 will be 1000
octal words long in any case.

Frequently called subroutines should be kept core-resident whenever
possible, perhaps by placing them in level 0 or in a level that

contains rarely accessed overlays. Within the loader image file,
subroutines are stored in the order in which they were specified to
the loader. Thus, grouping frequently called subroutines into

adjacent levels also speeds execution by reducing the access time
required to read an overlay into core, particularly from DECtape and
LINCtape. When running very large programs with many overlay levels,
it may be desirable to make level 0 as small as possible, in spite of
the resulting excess I/0. This is accomplished by minimizing COMMON
{which always occupies level 0), dividing the mainline into a series
of subroutines, and creating a new mainline that contains
predominately CALL statements. Note, however, that all library
subroutines will reside in 1level 0, regardless of the location of
subroutines that call them.

Any error recognized by the loader during generation of a loader image
file results in an error message, printed on the console terminal,
immediately following the input specification 1line that caused the
error condition. Table 1-6 1lists the 1loader error messages and
describes the error condition indicated by each message.

The optional loader symbol map lists all symbols defined in the loader
image file and identifies each symbol by overlay, level, and memory
address, as follows:

LOADER VY21 04 /30 /73

SYMBOL VALUE LVL OVLY

A 10400 1 Q0O
ARGERR 00204 ¢ 00
E 10400 1 01
[11214 1 01
EXIT 00223 O 00
#MAIN 10000 0O 00
12000 = 16T FREE LLOCATION

LVL OVLY LENGTH

Q00 10143
1 00 012790
AN 01240

Following the alphabetical list of symbols, the 1loader prints the
address of the first free memory location and the length, in octal
words, of each overlay defined. This information is wuseful in
optimizing memory requirements.

SYSTEM OVERVIEW

1.3.2 Loader Error Messages

The loader prints error messages on the console terminal during
generation of a loader image file. Except where indicated in Table
1-6, loader errors are fatal. The loader returns control to the
Keyboard Monitor when a fatal error condition is encountered.

Table 1-6
Loader Error Messages

Error Message Meaning
BAD INPUT FILE An input file was not a RALF module.
BAD OUTPUT DEVICE The loader image file device was not a

directory device, or the symbol map file
device was a read-only device. The entire
line is ignored.

ILLEGAL ORIGIN A RALF routine tried to store data outside
the bounds of its overlay.

MIXED INPUT The L option was specified on a 1line that
contained some file other than a library
file. The library file (if any) is
accepted. Any other input file
specification is ignored.

MULT SECT Any combination of entry point, COMMON
section (with the exception of multiple
COMMONs) , or program section of the same
name causes this error, except the
following:

COMMON COMMZ FIELD1

SECT OK OK OK
SECTS8 OK OK OK
COMMON OK (MS) OK
COMMZ (MS) OK (MS)
FIELD1 OK (MS) OK
NO MAIN No RALF module contained section #MAIN.
OVER CORE The loader image requires more than 32K of
core memory.
OVER IMAG Output file overflow in the 1loader image
file.
OVER SYMB Symbol table overflow. More than 253
(decimal) symbols in one FORTRAN job.
TOO MANY LEVELS The 0 option was specified more than seven
times.

(continued on next page)

Table 1-6 (Cont.)
Loader Error Messages

Error Message Meaning
TOO MANY OVERLAYS More than 16 overlays were defined in the
current level.
TOO MANY RALF FILES More than 128 input files were specified.
EX The symbol is referenced but not defined.
ME * Multiple Entry. The symbol has more than

one definition.

MS Multiple Section. A section has more than
one definition.

* The symbol is referenced iliegally.
Generally this symbol is an overlay and is
either referenced as data from another
overlay (only CALL references are allowed)
or called from the same or a higher-number
overlay level, violating the overlay rules.

The following FATAL error messages occur when the Loader 1is 1linking
and relocating:

SYSTEM ERROR

LOaADER 1/0 ERROR

0578 ENTER ERROR

and indicate an error detected by 0S/8 while trying to perform a USR
function.

All errors identified during the loading procedure are followed by a
line of the form:

1 oo nnn

where
1 is the level in which the error occurred
00 is the overlay in which the error occurred

nnn is the module number, within the referenced overlay, that
caused the error.

Some errors (e.d., NO MAIN) are attributable to a single module, and
the module numbers for this type of error are meaningless.

1.4 FORTRAN IV RUN-TIME SYSTEM (FRTS)

The 0S/8 FORTRAN IV run-time system reads, loads, and executes a
loader 1image file produced by the Iloader. It also configures a
software I/0 interface between the FORTRAN IV program and the 0S/8

SYSTEM OVERVIEW

operating system, then monitors program execution to direct I/0
processes and identify certain types of run-time errors. The run-time
system 1is called automatically to load and execute the loader image
file produced by the loader whenever the G option is specified to the
loader.

When chained to from F4, RALF, or LOAD, the run-time system reacts 1in
one of two ways. If the last Command Decoder file/option line was
terminated with a carriage return, it immediately fetches the Command
Decoder and proceeds as though it had been called from the Keyboard
Monitor, as described below. The only difference, in this case, is
that certain run-time system options may have been passed to the
run-time system from the loader and cannot be suppressed at this
point. If the 1last file/option specification line supplied to the
Command Decoder was terminated with an ALTMODE character instead of a
carriage return, however, the 1loader assumes that no user input is
required. The Command Decoder is not called. The loader image file
just produced is read as input, and, unless the H option was
previously specified, it is loaded and executed.

The FORTRAN IV Run-Time System 1is able to accept file I/0
specifications. This allows the user to write a source program that
refers to I/0 devices as integer constants or variables. This program
may be compiled, assembled, and loaded into an image file. The image
file may be run any number of times, each time specifying different
physical I/0 devices. Thus logical unit 8 may refer in one run to the
console terminal, in another run to a disk file, and in another run to
a paper tape punch.

These run-time specifications allow the FORTRAN program to use the
0S/8 file-handling capabilities, to use any 0S/8-supported I/0 device,
and potentially to use any I/0 device for which an 0S/8 device handler
can be written.

The following pages explain how the user gives the run-time system the
connections between 0S/8 device and file names and the FORTRAN logical
unit numbers.

FORTRAN IV programs are usually saved as loader image files and
executed by calling the run-time system from the Keyboard Monitor to

load and execute the saved loader image. This 1is accomplished by
typing
R FRTS

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. The run-time system replies by calling the 0S/8
Command Decoder to accept one or more standard file/option
specification 1lines. It recalls the Command Decoder after processing
each line, wuntil a 1line terminated by an ALTMODE character is
received.

The run-time system accepts two classes of Command Decoder file/option
specifications.,. The first class specifies the 1load module to be
executed; the second class specifies the run-time file assignment.
When it is called from the Keyboard Monitor, the run-time system loads
the Command Decoder to accept one input file name, perhaps followed by
the E or H option specifications, described in Table 1-7. This
information is not required when the loader <chains to the run-time
system because the loader image file just produced is automatically
read as input, while the E and/or H options could have been specified
to the loader along with the G specification that requested chaining.

SYSTEM OVERVIEW

Thus, the loader image input file to be executed must be identified on
the £first file/option specification line when FRTS is called from the
Monitor, and must not be specified at all when the 1loader <chains to
FRTS. This Command Decoder line has the form:

~
<

*DEV:IMAGE.LD(options)

where IMAGE.LD is the loader image input file and "options" is E or H
or both. If this 1line is terminated by an ALTMODE, the program is
executed; if it is terminated with a carriage return, the Command
Decoder is recalled to accept run-time file specifications.

Once the loader image file to be executed has been 1identified, the
run-time system recalls the Command Decoder to accept any FORTRAN I/0
device specifications. Of the nine I/0 unit numbers available under
FORTRAN 1V, four are initially assigned to FORTRAN internal device

handlers by the system as follows:

I/0 Unit Internal Handler Comments
1 paper tape reader Single-character buffer
2 paper tape punch Single-character buffer
3 line printer LP8 and LS8E only; ring
buffered
4 console terminal Double-buffered output; single-

character input

The FORTRAN internal handlers listed above are not the same as the
0S/8 device handlers. The FORTRAN internal handlers are designed for
ASCII text only and will not execute binary or core-image I/0. Also,
FORTRAN internal handlers are interrupt-driven to execute foreground
I/0 concurrently with background computation.

FORTRAN internal device handlers may be assigned different unit
numbers, in addition to those listed above, by typing

m is the I/0 unit number (1 to 4) of one of the internal
handlers listed above

n is a different unit number (1 to 9) that 1is also to be
assigned to that internal handler

This specification causes all program references to logical unit n to
perform I/0 to device wm in the preceding table. For example:

/6=2 Assigns the FORTRAN internal paper tape punch handler as
I/0 unit number 6, in addition to unit number 2.

/1=2 Assigns I/0 unit number 1 to the FORTRAN internal paper
tape punch handler instead of the internal paper tape
reader handler.

SYSTEM OVERVIEW
0S/8 device handlers for nondirectory devices may be assigned I/0O unit
numbers by typing
DEV:/n
where
n is an I/0 unit number (1 to 9)

DEV: is the standard or assigned designation for any supported
nondirectory device

For example:

LPT:/3 Specifies the 0S/8 line printer handler to be used
instead of the FORTRAN internal line printer handler,
possibly because the line printer is not an LP08 or
LS8E.

Existing directory device files may be assigned I/0 unit numbers by
typing

DEV:FILE.EX/n
where
n is an I/0 unit number (1 to 9)
DEV:FILE.EX is the standard 0S/8 designation for an existing

directory device file
For example:

¥NDTALIFORIO.TM/2 Assigns unit number 2 to DECtape file
FORIO.TM rather than to the FORTRAN internal
paper tape punch handler, where FORIO.TM Iis
an existing file on DECtape unit 1.

A directory device file that does not presently exist may be assigned
a FORTRAN I/0 wunit number 1in the same manner by entering it as an
output file on the specification line; however, only one such file
may be created on any particular device. For example:

XFORIO.TM</9 Assigns unit number 9 to file DSK:FORIO.TM, which
has not been created at load time.

In any case, only one device or file specification 1is permitted on
each line, and no more than 6 directory device files may be created by
the FORTRAN program. Excess files after the sixth are accepted and
written, but they will not be closed. If a file created by the
program has the same file name and extension as a pre-existing file,
the old file is automatically deleted when the new file is closed.

The Command Decoder "[n]" specification may be wused to optimize
storage allocation when assigning files that do not yet exist, where n
is a decimal number that indicates the maximum expected length of the
file, in blocks.

Each time a run-time I/0 specification is terminated with a carriage
return, the Command Decoder is recalled to accept another
specification. When a specification is terminated with an ALTMODE,
the program is run.

SYSTEM OVERVIEW

Although existing files are specified as though they were input files
and nonexistent files are specified as though they were ocutput files,
any file that has been assigned a unit number may be used for either
input or output. The content of a nonexistent file is undefined until
it has been written by the program.

Table 1-7
Run-Time System Option Specifications

Option Operation

pae]

Halt after loading but before starting the program.
Press the CONTinue switch on the processor to

commence eyxecution
commer I

L8 Catlul i ie

E Ignore the following run-time system errors, any one
of which indicates that an error was detected earlier
in the compilation/assembly/locading process:

a. Illegal subroutine call

b. Reference to an extern in an overlay other
than in the form "JSR EXTERN" (i.e., CALL
statement)

c. Reference to an undefined symbol

Any of the above may lead to unpredictable program
behavior as, in general, some portion of the program
will not be loaded or executed.

C Carriage control switch. The first character on
every output line is processed as a carriage control
character by all FORTRAN internal handlers and also
by the 0S/8 hard copy handlers TTY and LPT. The
first character on every output line is processed as
data, in the same manner as any other character, by
all 0S/8 handlers except TTY and LPT. Entering a C
option specification on the command line that assigns
an I/0 unit number to a particular handler reverses
the processing of carriage control characters for
that device. Thus:

TEMP (2C)

assigns file DSK:TEMP. as I/O unit 2. The C option
causes the first character of every output line to be
processed as a carriage control character. If C were
not specified, these characters would be processed as
data.

/C/6=3
assigns the FORTRAN internal line printer handler as
I/0 unit 6, as well as unit 3. The first character
of every line will be processed as a carriage control
character on wunit 3, and as a character of data on
| | unit 6.

The 0S5/8 FORTRAN IV run-time system executes with the PDP-8/E
interrupt system enabled. 0S/8 device handlers are not
interrupt-driven; however, certain handlers may execute with the
interrupt system enabled because the devices they control have
interrupt-enable switches that the handlers do not set. FRTS allows

SYSTEM OVERVIEW

for this by running with the interrupt system enabled when driving
handlers of this type, and disabling the interrupt system when a
handler that does not run under interrupts is loaded. Handlers that
can run with the interrupt system enabled include:

TC08 DECtape system handler and nonsystem handlers DTA0 to DTA7
RF08 system handler
RK8 system handler and nonsystem handlers RKAO to RKA3

RK8E system handler and nonsystem handlers RKAO to RKA3 and RKBO
to RKB3

Any FORTRAN internal handlers

These 0S/8 handlers do not permit interrupts from these devices, but
they do permit other devices, e.g., CLOCK, to interrupt the data
transfer. Note that TD8E is absent from this list because the TD8E
data transfer cannot be interrupted.

The run-time system recognizes two classes of error conditions.
Certain errors are diagnosed while the core-image file is being read
from a storage device and loaded into core memory. Other errors may

occur during execution of the FORTRAN program, Both classes of
run-time errors are identified on the console terminal. Table 1-8
lists the FRTS error messages and describes the error condition
indicated by each message. The run-time system error traceback

feature provides automatic printout of statement numbers corresponding
to the sequence of executable statements that terminated in an error
condition. At least one statement number is always printed. This
number identifies the erroneous statement or, in <certain cases, the
last correct statement executed prior to the error. When a statement
was compiled under the N option, however, the system cannot generate
meaningful statement numbers during traceback. When a statement is
reached through any form of GOTO, the line number for traceback is not
reset. Thus an error in such a line will give the number of the last
executed line in the error traceback.

The console terminal serves as FORTRAN I/0 unit 4 for both 1input and
output. Terminal 1input 1is automatically echoed on the console
printer. 1In addition, the run-time system monitors the keyboard
continually during execution of a FORTRAN program. Typing CTRL/C at
any time causes an immediate return to the 0S/8 Monitor. Typing
CTRL/B branches to the system traceback routine and then exits to the
monitor. This traceback routine causes a printout, which 1s similar
to the error traceback and includes the current subroutine, the line
number in the next higher level subroutine from which it was called,
etc. This facilitates locating infinite 1loops when debugging a
program. The following additional special characters are recognized
by the console terminal handler and processed as shown:

RUBOUT Deletes last character accepted.

CTRL/U Deletes current line of input.

CTRL/I (Tabulation) Converted to appropriate number of spaces.
CTRL/Z Signals end-of-file on input.

SYSTEM OVERVIEW

Tentative output files (that is, files created by the FORTRAN program)

are closed automatically wupon successful completion of program
execution provided that either:

1. An END FILE statement referencing the file was executed. (In
this case FRTS assigns a file length equal to the actual
length of the file.)

2. The 1last operation performed on the file was a write

operation. (In this case FRTS proceeds as though an END FILE
statement had been executed.)

3. A DEFINE FILE statement referencing the file was executed but
an END FILE statement was not executed. (In this case, upon
completion of program execution, FRTS assigns a file 1length
equal to the length specified in the DEFINE FILE statement.)

Execution of a REWIND statement does not close a tentative file, nor
does it modify the tentative file length.

1.4.1 Run-Time System Error Messages

The run-time system generates two classes of error messages. Messages
listed in Table 1-8 identify errors that may occur during execution of
a FORTRAN program and errors that may be encountered when the run-time
system 1is reading a loader image file into memory in preparation for

execution, or accepting 1I/0 unit specifications. Except where
indicated, all run-time system errors cause full traceback and an
immediate return to the monitor. Nonfatal errors cause partial

traceback, sufficient to locate the error, and execution continues.

Table 1-8
Run-Time System Error Messages

Error Message Meaning
BAD ARG Illegal argument to library function.
CAN'T READ IT! I/0 error on reading loader image file.
CAUTION - NO DP The present hardware configuration does not
include an FPP-12 Floating-Point Processor
with double-precision option. Execution
continues; however, all double-precision

operations default to real arithmetic (with
unpredictable results), and all complex
operations also produce unpredictable
results.

D.F. TOO BIG Product of number of records times number
of blocks per record exceeds number of
blocks in file. Note that for a random
access file the length in 0S/8 blocks must
be no less than the number of records times
the 1integer but must be greater than the
quotient of floating-point variables per
record divided by 85.

(continued on next page)

SYSTEM OVERVIEW

Table 1-8 (Cont.)

Run~Time System Error Messages

Error Message

Meaning

DIVIDE BY 0

EOF ERROR

FILE ERROR

FILE OVERFLOW
FORMAT ERROR
FPP ERROR
INPUT ERROR

I/0 ERROR

MORE CORE REQUIRED

NO DEFINE FILE

NO NUMERIC SWITCH

NOT A LOADER IMAGE

OVERFLOW

OVERLAY ERROR

Attempt to divide by zero. The resulting
quotient is set to =zero and execution
continues.

End of file encountered on input.
Any of:

a. A file specified as an existing
file was not found.

b. A file specified as a nonexistent
file would not fit on the
designated device.

C. More than one nonexistent file was
specified on a single device.

d. File specification contained "*"
as name or extension.

Attempt to write outside file boundaries.
Illegal syntax in FORMAT statement.
Hardware error on FPP start-up.

Illegal character received as input.

Error in reading or writing a file; tried
to read from an output device; or tried to
write on an input device.

The space required for the program, the I/0
device handlers, 1I/0 buffers, and the
resident Monitor exceeds the available
core.

Direct access 1I/0 attempted without a
DEFINE FILE statement.

The referenced FORTRAN I/0 unit was not
specified to the run-time system.

The first 1input file specified ¢to the
run-time system was not a loader image
file.

Result of a computation exceeds upper bound
for that class of variable. The result is
set equal to zero and execution continues.
This error 1is detected only if an FPP is
present.

Error while reading overlay.

(continued on next page)

RN
nu

SYSTEM OVERVIEW

Table 1-8 (Cont.)

ime System Error Messages

Error Message

Meaning

PARENS TOO DEEP

SYSTEM DEVICE ERROR

TOO MANY HANDLERS
USER ERROR

UNIT ERROR

Parentheses nested too deeply in FORMAT
statement.

I/0 failure on the system device.

Too many I/O device handlers are resident
in memory, or files have been defined on
too many devices.

Illegal subroutine call, or call to
undefined subroutine. Execution continues
only if the E option was requested.

I/0 unit not assigned, or incapable of
executing the requested operation.

CHAPTER 2

FORTRAN IV SOURCE LANGUAGE

A FORTRAN source program consists of statements wusing the language
elements and the syntax described in this manual. A statement
performs one of the following functions:

e Causes operations such as multiplication, division, and
branching to be carried out

e Specifies the type and format of data being processed
e Specifies the characteristics of the source program

FORTRAN statements are composed of keywords (that is, words that the
FORTRAN compiler recognizes) that vyou use with elements of the
language set. These elements are constants, variables and
expressions. There are two basic types of FORTRAN statements:
executable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and subprograms
that you may include in the program. The compilation of executable
statements results in the creation of executable code. Nonexecutable
statements ©provide information only to the compiler; they do not
create executable code.

The 0S/8 FORTRAN IV language generally conforms to the specifications
for American National Standard FORTRAN X3.9-1966. The following
enhancements are included in 0S/8 FORTRAN:

e You may use any arithmetic expression as an array subscript.
If the expression is not of integer type, FORTRAN converts it
to integer form.

e You may use alphanumeric literals (character strings delimited
by apostrophes or quotation marks) in place of Hollerith
constants., ‘

e The statement label list in an ASSIGNed GO TO statement is
optional.

e The following Input/Output (I/0) statements have been added:
DEFINE FILE Device-oriented I/0

READ (u'r)
WRITE (u'r) Unformatted Direct Access I/0

FORTRAN IV SOURCE LANGUAGE

® You may use any arithmetic expression as the 1initial wvalue,
increment, or limit-parameter in the DO statement, or as the
control parameter in the COMPUTED GO TO statement.

e 0S/8 FORTRAN permits constants and expressions in the 1I/0
lists of WRITE statements.,

211 FORTRAN statements are listed in Appendix B.

All FORTRAN language elements, (constants, variables, and
expressions), the character set from which you may form the language
elements, and the rules governing their construction and wuse are
described in Chapters 1 through 3.

In this manual, the FORTRAN language statements are grouped into eight
categories, each of which 1is described in a separate chapter. The
name, definition, and chapter references for each statement category
are given in Table 2-1.

Table 2-1
FORTRAN Statement Categories

Chapter Category Function
6 Assignment Assign wvalues to named variables
Statement and array elements.
7 Specification Declare the properties of
Statement variables, arrays, and functions,
8 DATA Statements Assign initial values to variables
and array elements.
9 Control Statements Determine order of execution of

the object program and terminate
its execution.

10 Subprogram Define functions and subroutines.
Statements
11 Input/Output Transfer data between internal
Statements storage and specified input/output
devices.
12 FORMAT Statements Specify formats for data on
input/output.

DOCUMENTATION CONVENTIONS
The following symbols represent special nonprinting characters:
Tab character (TAB key or <CTRL/I> key combination)

Space character (SPACE bar)

FORTRAN IV SOURCE LANGUAGE

SYNTAX CONVENTIONS

...........

3

3
i1s

5
Statement syntax:

The

e Upper-case words and letters, as well as punctuation m
other than TAB or SPACE, are typed as they are printed in
manual.

e Lower-case words indicate value substitution.
accompanying text describes the nature of the item you will
substitute, e.g., integer variable, statement label, etc.

Double sqguare brackets { [[1]) enclose optional items.

e Ellipses (...) 1lndicate that you may repeat the preceding item

or bracketed group any number of times.
For example, if the description is
CALL sub [[(all,all...) 1]
then all of the following are correct:

CALL TIMER
CALL INSPCT (IsJ0s3.0)
CALL REGRES (&)

If a syntax definition is italicized or in a different type
is only for visual emphasis.

face,

it

CHAPTER 3

CHARACTERS AND LINES

3.1 THE FORTRAN CHARACTER SET

The FORTRAN character set consists of:
e The upper-case letters A through 2
e The numerals 0 through 9

® The special characters in Table 3-1

Table 3-1
FORTRAN Special Characters
Character Name Character Name
Space () Parentheses
- Tab ’ Comma
= Equals . Decimal Point
+ Plus ' Apostrophe
- Minus " Quote
* Asterisk $ Dollar Sign
/ Slash

You may type other printable characters such as %, _, and @ only as
part of Hollerith constants, alphanumeric literals, or comments.

3.2 ELEMENTS OF A FORTRAN PROGRAM

A FORTRAN program consists of FORTRAN statements and optional
comments. You group the statements into logical units called program
units (a program unit being a sequence of statements which you
terminate with an optional END statement).

A program unit can be either a main program or a subprogram. One main
program and possibly one or more subprograms form the executable
program.

CHARACTERS AND LINES

3.2.1 Statements

Statements are grouped 1into two general «classes: executable and
nonexecutable. Executable statements are the action statements of the
program; nonexecutable statements describe data arrangement and data
characteristics. Nonexecutable statements may also contain editing
and data conversion information.

A program consists of a series of statements, written one statement to

a line. (A line is a string of up to 72 characters.) If a statement
is too long to fit on one line, you may continue it on up to five
additional lines (called continuation lines). (For further

information, see Section 3.3.4, Continuation Indicator Field.)

A statement can refer to another statement. FORTRAN refers to such a
statement by an integer number (called a label) ranging from 1 to
99999, Such a statement is most often referenced for the information

it may contain or so that program execution can continue at that
statement.

3.2.2 Comments

Comments are lines of text that document program action, indicate
program sections and processes, and provide greater ease in reading
the source program listing by identifying variables.

The FORTRAN compiler ignores comments; the comments exist only so
that you can document what the program is doing.

3.3 FORTRAN LINES
A FORTRAN line consists of four fields:

1. Statement Label Field

2. Continuation Indicator Field

3. Statement Field

4. Identification Field
You may skip any of these fields when entering statements, but, except
for the identification field, the spaces allotted to each field must
remain present. In the case of the identification field, you may type
a carriage return before reaching it.
Each printing space represents a single character. The following

sections describe how to enter the source program and what information
is contained in each field.

3.3.1 Using a Text Editor

When creating a source program with a text editor, you type the 1lines
on a "character-per-column" Dbasis. You may also wuse the <TAB>
character to format lines.

CHARACTERS AND LINES

1s advance the terminal print carriage to
n when you type a <TAB>. This acti
FORTRAN®s interpretation of the <

Many text editors and termina
a predefined print positio
however, is not related to
character.

NOTE
The FORTRAN system interprets a <TAB> as
one character, not the number of
characters (up to eight) that it will
print.

For example, you may format the following lines in either of the ways
shown:

C- INITIALIZE ARRAYS or C INITIALIZE ARRAYS

10- W=3 or 10 W=3

- SEL(1)=111200022DO0 or SEL(1)=111200022D0
where

- represents a <TAB>
represents a space character

Use space characters in a FORTRAN statement to improve the 1legibility
of a line. The compiler ignores all spaces in a statement field
except those within a Hollerith constant or alphanumeric literal.
Thus, GO TO and GOTO are equivalent.

The compiler also ignores a <TAB> in a statement field; it considers
a <TAB> to be the same as a space. However, in the compiler-generated
source listing, FORTRAN prints the character following the <TAB> at
the next tab stop (located at columns 9,17,25,33, etc.).

3.3.2 Statement Label Field

A statement label is a number that FORTRAN uses to reference one
statement from another statement.

A statement label (sometimes also called a statement number) consists
of from one to five decimal digits ranging from 1 through 99999.
Place this label in the first five positions of a statement's first
line. Any source program statement that is referenced by another
statement must have a statement number.

FORTRAN ignores spaces and 1leading =zeros preceding the statement
label, e.g., FORTRAN interprets each of the following 1lines as
statement label 105:

105
00105
105

An all-zero statement label is illegal.
You may assign statement numbers in any order; however, each

statement number must be unique in the program or subprogram. In
contrast, a main program and a subprogram may contain identical

CHARACTERS AND LINES

statement numbers. In this case, FORTRAN understands that reference
to these numbers means the numbers in the program unit in which the
reference is made.

You <cannot label nonexecutable statements other than FORMAT
statements.

When you type a source program with a terminal, an initial <TAB> skips
over the label and continuation field.

3.3.3 Comment Indicator and Comments

A comment indicator tells FORTRAN that the text on a line is a comment
when you type the letter C in column one. The compiler will print the
contents of that line in the source program 1listing; however, it
ignores the line when it compiles the program.

The following are restrictions on comments:

e All comment lines must begin with the letter C in column one.

e You cannot continue comment lines; consequently each comment
line must begin with a C.

e Unlike other statements, the text of a comment <can begin in
the second space of a line.

e Comment lines must not intervene between a statement's initial

line and 1its continuation 1line (or lines), or between
successive continuation lines.

3.3.4 Continuation Indicator Field

A continuation indicator tells FORTRAN that the text on that 1line 1is
part of the same statement as the preceding line,

You must reserve column six of a FORTRAN 1line for the continuation
indicator even if you do not type a continuation indicator.

FORTRAN defines any character except a space in column 6 to be a
continuation indicator.

The following are rules for using continuation indicators:

® You may divide a statement into distinct lines at any point.

e You may precede the continuation indicator with space
characters only; you may not precede it with a <TAB> as an
initial <TAB> skips over the continuation field.

e The characters beginning in column seven of a continuation

line are considered to follow the 1last character of the
previous line as if there were no break at that point.

CHARACTERS AND LINES

e You may enter no more than 5 continuation 1lines for one
statement.

® You cannot continue comment lines.

e A comment 1line must not intervene between a statement's
initial 1line and its continuation line (or lines), or between
successive continuation lines.

® You cannot assign statement numbers to continuation lines.

3.3.5 Statement Field

Type the text of a FORTRAN statement in columns 7 through 72. A <TAB>
may precede the statement field rather than spaces. Note that because
the compiler ignores <TAB>s and spaces (except in Hollerith constants
and alphanumeric 1literals), vyou can space the text of the statement
for maximum legibility.

3.3.56 Identification Field

Type a sequence number or other such 1identifying information in
columns 73-80 of any line in a FORTRAN program. FORTRAN ignores the
characters in this field.

NOTE

The FORTRAN compiler 1ignores text in
these positions. Moreover, FORTRAN does
not print a warning message if vyou
accidently type text 1in this field.
This 1is sometimes the source of
inexplicable errors.

You might use this feature when typing
punched card input. It is seldom used
with terminals.

3.4 BLANK LINES

You may insert 1lines consisting only of blanks, <TAB>s, or no
characters anywhere in your source program except immediately
preceding a continuation line. You would use a blank line to improve
the readability of a source listing; the FORTRAN compiler ignores
them.

3.5 LINE FORMAT SUMMARY

The fields and the columns in which they may appear are 1listed in
Table 3-2.

CHARACTERS AND LINES

Table 3-2
Field Summary

Field Column(s)
Statement Label 1 through 5
Continuation Indicator 6
Statement 7 through 72
Identification 73 through 80

The following example shows the placement of fields
represent column numbers.):

7

1 57 3
DIMENSION A(12)sB(10s10510),CC(13,13) (1700000001
121+%5)

10 READ (1,10003) (AsReCoIN 00000002

C THE DATA I8 STORED ON DECTAPE$: USE THE FORTRAN RUN 03

C TIME SYSTEM TO ASSIGN LUN 1 TO DTA:: 00000004
CaLL UPDATE (AT 00000005
IF C.NOT. ENIDD GO TO 10 00000004

(The

numbers

CHAPTER 4

FORTRAN STATEMENT COMPONENTS

4.1 INTRODUCTION
The elements of FORTRAN statements are:
Constants
A constant is a fixed, self-describing value.
e Variables
A variable is a symbolic name that represents a stored value.
e Arrays

An array is a group of wvariables that you may refer to

individually or <collectively. The 1individual values are
called array elements. Use a symbolic name to refer to the
array.

e Expressions

An expression can be a constant, variable, array element, or

function reference. It may also be a combination of those
components and certain other elements (called operators). a
by those components. The result of the computation is a

single value.
e Function References

A function reference 1s the name of a function (often followed
by a list of arguments). After FORTRAN performs the
computation indicated by the function definition, it
substitutes the computed value 1in place of the function
reference.

4.2 SYMBOLIC NAMES

You use symbolic names to identify certain entities within a FORTRAN
program unit. Symbolic names consist of a combination of from one to
six alphanumeric characters. 1If you use more than six characters in a
symbolic name, FORTRAN reads only the first six.

The first letter of a symbolic name must be a letter. The special
characters listed in Table 3-1 may not appear in symbolic names.

FORTRAN STATEMENT COMPONENTS

Examples of valid and invalid symbolic names are:

valid Invalid
NUMBER 50 (Begins with a numeral)
K9 B.4 (Contains a special character)

Table 4-1 indicates the types of variables that FORTRAN identifies by
symbolic names.

Except as specifically mentioned in this manual, you may not use the
same symbolic name to identify more than one FORTRAN entity.

Each variable indicated as "Typed" in Table 4-1 has a data type. The
means of specifying the data type of a name are presented in Sections
4.3 and 7.2.

Within a subprogram, you may use symbolic names as dummy arguments. A
dummy argument may represent a variable, array, array element,
constant, expression, or subprogram. However, all subprograms must be
uniquely named.

Table 4-1
Classes of Symbolic Names

Entity Typed
Variables yes
Arrays yes
Arithmetic statement functions yes
Processor-defined functions yes
FUNCTION subprograms yes
SUBROUTINE subprograms no
Common blocks no
Block data subprograms no

4.3 DATA TYPES

The data type of a FORTRAN element may be inherent in its construction
or implied by convention; vyou may also declare it explicitly. The
data types available in FORTRAN, and their definitions, are listed in
Table 4-2.

FORTRAN STATEMENT COMPONENTS

Table 4-2
FORTRAN Data Types
Data Type Meaning

INTEGER A whole number.

REAL A decimal number; it can be a wheole number,
a decimal fraction, or a combination of the
two.

DOUBLE PRECISION Similar to real, but with approximately
twice the degree of accuracy in its
representation.

COMPLEX A palir of real wvalues that represents a
complex number; the first represents the
real part of that number, the second
represents the imaginary part.

LOGICAL The logical value "true" or "false".

OCTAL An integer number in radix 8.

An important attribute of each data type 1is the amount of memory
FORTRAN requires to represent a value of that type. Variations on the
basic types affect either the accuracy of the represented value or the
allowed range of values,

A "storage unit" is the amount of storage 0S/8 FORTRAN requires to
store a REAL, INTEGER, or LOGICAL value. DOUBLE PRECISION and COMPLEX
values occupy two storage units., In 0S/8 FORTRAN, a storage unit
corresponds to 3 words of memory (i.e., 36 bits).

NOTE
Section 4.5.2 discusses the standard

FORTRAN defaults for REAL and INTEGER
variables.

Hollerith constants and alphanumeric literals have no data type. They
assume the data type of the context in which they appear. (See
Section 4.4.7 for details.)

4.4 CONSTANTS

A constant represents a fixed value; that 1is, a constant can
represent numeric values, logical values, or character strings.

4.4.1 1Integer Constants

An integer constant is a whole number with no decimal point. It may
have a leading sign.

FORTRAN STATEMENT COMPONENTS

The format is:

snn
where
nn is a string of from 1 to 7 decimal digits
S is an optional algebraic sign

In 0S/8 FORTRAN, an integer constant is a whole signed or unsigned
number that contains no more than seven decimal digits. 1Integer
constants must fall within the range -2**23 to 2**23-1 (-8,388,608 to
8,338,507). When vyou wuse integer constants as subscripts, FORTRAN
uses them at modulo 2**12 (4,096 decimal).

FORTRAN ignores leading zeros in integer constants.

Precede a negative integer constant by a minus symbol. A plus symbol
is optional before a positive number because FORTRAN assumes an
unsigned constant to be positive; thus, +27 and 27 are identical.

With the exception of a plus or minus sign, an integer constant cannot
contain any character other than the numerals 0 through 9.
Specifically, embedded commas and decimal points are not allowed.

Examples:
valid Invalid
Integer Constants Integer Constants
0 99999999999 (Too large)
-127 3.14 (Embedded decimal point)
+32123 32,767 (Embedded comma)

4,4.2 Real Constants

There are two kinds of real constants: decimal and exponential.

4.4.2.1 Decimal Real Constants - A decimal real constant is a string
of decimal digits with a decimal point. It may have a leading sign.

The format is:

s.nn
snn.nn
snn.

where
nn is a string of numeric characters
. is a decimal point
s is an optional algebraic sign

Note that you do not always have to type a number following the
decimal point, but you must always type the decimal point. The
decimal point can appear anywhere in the digit string.

FORTRAN STATEMENT COMPONENTS

FORTRAN does not 1limit the number of digits 1
constant, but only the leftmost six digits ar
example, in the constant 0.000012345678, all of th i
are significant (note that FORTRAN only stores 0.000012). However
the constant 000507, the first three zeros are not significant.

You must precede a negative constant with a minus sign. The plus sign
is optional preceding a positive real constant.

Except for algebraic signs and a decimal point, a real decimal
constant cannot contain any character .other than the numerals 0
through 9.
Examples:

valid Invalid

Real Constants Real Constants

3.14159 1,234,567 (Embedded commas)

71712. 879877399, (Too large)
-.00127 100 (Decimal point missing)
0.0

4.4,.2.2 Exponential Real Constants - An exponential real constant 1is
a decimal real constant followed by a decimal exponent.

The format is:

mmEsnn
where
mm is an integer or real constant
nn is a 1- to 3-digit integer constant
E indicates that the constant is an exponential real constant
S is an algebraic sign

An exponential real constant is a decimal number that you type in
scientific notation, that 1is, 1in powers of 10. The number, nn,
represents a power of 10 by which the preceding real or integer
constant is to be multiplied (e.g., 1E6 represents the value
1.0 x 10*%¥*6), The magnitude of a real constant cannot be smaller than
10**¥-615 nor greater than 10**615,

A real constant occupies three words (i.e., six bytes) of storage.
FORTRAN interprets this number as having a degree of precision
slightly greater than seven decimal digits.

In 0S/8 FORTRAN, an exponential real constant need not contain a
decimal peint.

A minus symbol must appear between the letter E and a negative
exponent; a plus symbol is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the letter E, a real
exponential constant cannot <contain any character other than the
numerals 0 through 9. However, you may omit the decimal point if the
number does not have a fractional part.

FORTRAN STATEMENT COMPONENTS

Examples:

valid Invalid
Real Constants Real Constants
2E-3 -47.E645 (Too large)
+5,0E3 325E-801 (Too small)
5E3.2 (Decimal point misplaced)

4.4.3 Double-Precision Constants
A double-precision constant 1is a real or 1integer <constant which
FORTRAN stores in twice as many locations as a real constant; it thus
has extra significant digits.
The format is:

mmDsnn

where

nn is a 1- or 2-digit integer constant

D designates a double-precision constant
] is an optional algebraic sign
mm is the double-precision number

A double-precision number is a number that has twice the amount of
storage allocated for it in memory as a real number, A
double~precision constant occupies six words (72 bits) of PDP-8
storage, and FORTRAN interprets it as a real number having a degree of
precision approximately equal to 17 significant digits. FORTRAN does
not limit the number of digits that precede the exponent, but only the
leftmost 17 digits are significant.

Precede a negative double-precision constant by a minus symbol; a
plus symbol is optional before a positive constant. Similarly, if the
number is negative, a minus symbol must appear between the letter D
and a negative exponent. You may omit the decimal point from a
double-precision constant that does not have a fractional part.

NOTE

Double-precision arithmetic requires the
presence of an FPP (Floating-Point
Processor) with an extended precision
option.

The magnitude of a double-precision constant cannot be smaller than
10**-615, nor greater than 10**515,

Examples:

1234567890D+5
+2.71828182846182D00
-72.5D-15

1D0

N
[
N

FORTRAN STATEMENT COMPONENTS

4.4.4 Complex Constants
A complex number is a number that has a real and an imaginary part.
The format is:

(rc,rc)
where

rc is a real constant
A complex constant is a pair of single-precision real <constants that
you separate with a comma and enclose in parentheses. The first real
constant represents the real part of that number and the second
represents the 1imaginary part. You mnmust type the parentheses and
comma as they are part of the constant. The real and imaginary parts
may each be signed.

NOTE
You can only do complex arithmetic on

the FPP by using the extended precision
logic.

A complex constant occupies six consecutive words of storage, three
for each real constant.
Examples:

(1.70391,-1.70391)
(+12739E3,0.)

4.4.5 Logical Constants

A logical constant specifies a 1logical wvalue, that 1is, "true" or
"false". Therefore, the only two logical constants possible are:

. TRUE.
and

.FALSE.

NOTE
You may abbreviate .TRUE. and .FALSE.
as .T. and .F.
You must type the delimiting periods as they are part of each

constant.

Only logical operators can operate on logical constants.

FORTRAN STATEMENT COMPONENTS

4.4.6 Octal Constants

An octal constant is a string of octal digits (0-7 only) preceded by
the letter O.

The format is:
DATA/Onum/
where

num is an octal number
0 identifies the number as an Octal constant

You may use an octal constant only in DATA statements to enter numbers
in radix eight. An octal constant may be of any length, but the
FORTRAN compiler uses only the 12 low-order digits.
You generally use octal constants to set bits for masking purposes.
Examples:

DATA JOB/01032/

DATA BASE /07777/

NOTE
The character following the first / in

each of these examples is the letter O,
not a zero.

4.4.7 Hollerith Constants

A Hollerith constant is a string of alphanumeric and/or special
characters preceded by: (1) a number that states how many characters
are in the constant, and (2) the letter H. You may use any ASCII
character (including those that are not part of the FORTRAN character
set).

The format is:

nHcce...C

where
n is an unsigned, non-zero integer constant indicating the
number of characters 1in the string (including spaces and
tabs)
c is any ASCII character
H identifies this as a Hollerith constant

Hollerith constants have no data type. They assume the data type of
the context in which they appear.

Examples:
valid Invalid
Hollerith Constants Hollerith Constants
15HTODAY'S DATE IS: 3HABCD (Wrong number of characters;
1H this will be stored as ABC.)

FORTRAN STATEMENT COMPONENTS

4

JUiS

4 1 Alphanumeric Literals - An alphanumeric literal is a string
o II characters delimited by apostrophes or ta ks

i
iotation mar

LA.7.
f ASC qu
The format is:

‘cce...C!
"ccc...C"

where

c is a printable ASCII <character; you must type both
delimiting apostrophes or quotes.

An Alphanumeric literal is an alternate form of Hollerith constant.
As for Hollerith constants, you may use any ASCII character (including
those that are not part of the FORTRAN character set).

Alphanumeric literals have no data type. They assume the data type of
the context in which they appear.

If you need to type an apostrophe within an alphanumeric literal, type
it as two consecutive apostrophes.

Examples:

'CHANGE PRINTER PAPER TO PREPRINTED FORM NO. 721!

'TODAY''S DATE IS: '
You may use a quotation mark (") instead of an apostrophe. However,
you may not mix quotation marks and apostrophes. Thus, the following
literal is not allowed:

"THIS IS A MIXED LITERAL'

but you may type

"THIS ISN'T A MIXED LITERAL"

4.5 VARIABLES

A variable is a symbolic name that FORTRAN associates with a storage
location. (The FORTRAN compiler assigns the storage locations.) The
value of the variable is the value currently stored in that location;
you can only change that wvalue by assigning a new value to the
variable with an assignment statement.

FORTRAN classifies variables by data type, 1in the same manner as
constants., The data type of a variable indicates:

e The type of data it represents
e Its precision
e Its storage requirements
You may specify the data type of a variable either by type declaration

statements (see Section 7.2), or by FORTRAN default typing rules
(Section 4.5.2).

FORTRAN STATEMENT COMPONENTS

FORTRAN associates two or more variables with each other when each
variable uses the same storage location; or, partially associates
variables when part (but not all) of the storage which one variable
uses 1s the same as part or all of the storage which another variable
uses. You create associations and partial associations with:

e COMMON statements,
e EQUIVALENCE statements, and
e Actual and dummy arguments in subprogram references.

A variable is defined if the storage with which it 1s associated
contains a datum of the same type. You can define a variable prior to
program execution by typing a DATA statement or during execution by
means of assignment or input statements.

Before you assign a value to a variable, it is an undefined wvariable,
and you should not reference it except to assign a value to it. If
you reference an undefined variable, an unknown value (garbage) will
be obtained.

If you associate variables of differing types with the same storage
location, then defining the wvalue of one variable (for example, by
assignment) causes the value of the other variable to become not
defined.

4.5.1 Data Type Specification

Declaration statements (Section 7.2) associate given wvariables with
specified data types. For example:

INTEGER VAR1
DOUBLE PRECISION VAR2

These statements indicate that FORTRAN will associate the integer
variable VARl with a 3-word storage location and VAR2 with a 6-word
double-precision storage location.

You can explicitly declare the data type of a variable only once in a
program unit.

4,5.2 Default Data Types

FORTRAN assumes all variables having names beginning with I, J, K, L,
M, or N represent integer data; variables having names beginning with
any other letter are real variables. For example:

Real Vvariables Integer Variables
ALPHA KOUNT
BETA ITEM
TOTAL NTOTAL

FORTRAN STATEMENT COMPONENTS

4.6 ARRAYS

An array is a group of contiguous storage locations that you reference
with a single symbolic name, the array name. You reference the
individual storage locations, called array elements, by a subscript

appended to the array name.
An array can have from one to seven dimensions.
The following FORTRAN statements establish arrays:
e Type declaration statements (Section 7.2)
e DIMENSION statements (Section 7.3)
e COMMON statements (Section 7.5)
Each of these statements defines:
¢ The name of the array
e The number of dimensions in the array

@ The number of elements in each dimension

4.6.1 Array Declarations

Use an array declaration to instruct FORTRAN to reserve storage for an

array.
The format is:
[ltyp]l] a(all,dll...)
where
[[typ]l] is a data type declaration
a is the array name
d is a number specifying the number of elements in

part of the array

An array is a group of variables that have the same symbolic
you address the elements of the array by means of a subscript.

that

name;

Declare a variable to be an array by specifying the symbolic name that

identifies the array within a program unit and indicates

the

properties of that array. The number of dimension declarators d
indicates the number of dimensions in the array. The minimum number

of dimensions is one and the maximum number is seven.

You must declare the size (i.e., the number or elements) of an
in order to reserve the needed amount of locations in which to

array
store

the array. The value of a dimension declarator specifies the number
of elements in that dimension. For example, a dimension declarator

value of 50, as in TABLE(50), indicates that the dimension contal
elements. The dimension declarators can be constant or variable.

ns 50

FORTRAN STATEMENT COMPONENTS

The rules governing the dimensioning of arrays are as follows
(characters enclosed within parentheses represent subscripted
characters that must be either an integer wvariable or an integer
constant):

In the equation

L(n)=M(1) [1+M(2)+M(2)M(3)+M(2)M(3)M(4)...M(n-1)m(n)]

let
L = length of the entire array
n = total number of dimensions in the array
M(i) = maximum subscript for each dimension in the array, where i

specifies which dimension in the array is being referenced
In the above equation, L must not exceed 4095 in any case.

For example

L(1) = M(1)<4096
L(2) = M(1)[1+M(2)]1<4096
L(3) = M(1)[1+M(2)+M(2)M(3)1<4096

In the above equation, L must not exceed 2047 when transmitting
arrays, individual arrays, elements, or subportions of an array to
subprograms.

For example

L(1) = M(1)<2047
L(2) = M(1)[1+M(2)]<2047
L(3) = M(1)[1+M(2)M(3)1<2047

The number of elements in an array is always equal to the product of
the number of elements 1in each dimension. More specifically, the
array IAB dimensioned as (3,4) has 24 elements (2 x 3 x 4 = 24) and
takes 72 words of storage. Although FORTRAN stores arrays as a serlies
of sequential storage locations, you may best visualize and reference
arrays as 1if they were single- or multi-dimensional rectilinear
matrices, dimensioned on a row, column, and plane basis. Thus, Figure
4-1 represents a 3-row, 3-column, 2-plane array.

3 ROWS

S

\

W "LQ
3 COLUMNS

Figure 4-1 Array Representation

An array name can appear in only one declaration statement within a
program unit.

Use variable dimension declarations to define adjustable arrays (see
Section 4.56.5).

FORTRAN STATEMENT COMPONENTS

4,6.1.1 Array Storage (Order of Subscript Progression) - 0S/8 FORTRAN
always stores arrays in memory as a linear sequence of values. Thus,
FORTRAN stores a one-dimensional array with its first element in the
first storage 1location of the sequence and its last element in the
last storage location. FORTRAN stores a multidimensional array such
that the leftmost subscripts vary most rapidly. For example, in the
array ARRAY(3,2,2) the progression is:

ARRAY(1,1,1)
ARRAY{2,1,1)
ARRAY (3,1,1)
ARRAY(1,2,1)
ARRAY (2,2,1)
ARRAY (3,2,1)
ARRAY(1,1,2)
ARRAY(2,1,2)
ARRAY(3,1,2)
ARRAY(1,2,2)
ARRAY (2,2, 2)
ARRAY (3,2,2)

This is called the "order of subscript progression". For example,
consider the following array declarators and the arrays that they
Create:

19 | COS(1,1,3) | 22 | COS(1,23) | 25 | COS(1,3,3)
20 | COS(2,1,3) | 23 | COS(2,2,3) | 26 | COS (2,3,3)
10, COS(1,1,2) | 13 | COS(1,2,2) | 16 } COS (1,3,2) } 27 | COS (3,3,3)
11{COS(2,1,2) | 14 | COS(2,22) | i7 | COS {232

11COS (1,1,1) | 4] COS (1,2.1) | 7] COS (1,3,1) 18 | COS (3,3,2)
21C0s(2,1,1) | 51cos(2,2,1) | 8] Cos (2,3,1)
3/COS (3,1,1) | 6/COS (3,2,1) | 9] COS (3,3,1)
* + Memory Positions

Figure 4-2 Array Storage
The arrows labeled "memory position" show the order in which FORTRAN
stores information in memory. This order is critically important when
you use an unsubscripted array name in a READ or WRITE statement

because this 1is the order 1in which FORTRAN fills memory or prints
data.

4.6.2 Subscripts

A subscript is the means by which you address individual elements in
an array.

The format is:
(s{l,sll...)
where
s is an integer subscript expression

Use a subscript following the array to specify which element 1in the
array FORTRAN will reference.

In any subscripted array reference, vyou must type one subscript

expression for each dimension you define for that array (i.e., one for
each dimension declaration). For example, you could use the following

4-13

FORTRAN STATEMENT COMPONENTS

entry to refer to the element located in the first row, third column,
second level of the array TEMP in Figure 4-2 (which 1s the element
occupying memory position 16).

TEMP(1,3,2)

Note, however, that an array reference such as TEMP(l,3) would be
illegal because the third subscript is not indicated.

Each subscript expression can be any valid integer expression. If the
value of a subscript expression is not an integer, FORTRAN converts it
to an integer before using it.
A subscript can be a compound expression, that is,
® Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (I+J,K*5,L/2) and
(I**3,(J/4+K)*L,3) are valid subscripts.

e A subscript may contain function references. For example,
TABLE (IABS(N) *KOUNT,2,3) is a valid array element identifier.

e Subscripts may contain nested array element 1identifiers as
subscripts. For example, in the subscript

(I(J(K(L)),M+N,ICOUNT), the first subscript quantity given 1is
a nested, three-level subscript.

4.6.3 Data Type of an Array

Specify the data type of an array in the same way as the data type of
a variable; that is, implicitly by the initial letter of the name, or
explicitly by a type declaration statement (see Section 7.2).

All the values in an array are of the same data type. FORTRAN
converts any value you assign to an array element to the data type of
the array. For example, if you name an array in a DOUBLE PRECISION
statement, the compiler allocates a 6-word storage location for each

element of the array. When you assign a value to an element of that
array, FORTRAN converts it to double precision.

4.6.4 Array References Without Subscripts

In the following type declaration statements, you may type an array
name without a subscript when you wish to use the entire array.

COMMON statement

DATA statement
EQUIVALENCE statement
FUNCTION statement
SUBROUTINE statement
CALL statement
Input/Output statements

Using unsubscripted array names in any other statement is illegal.

4-14

FORTRAN STATEMENT COMPONENTS

4.6.5 Adjustable Arrays

Use an adjustable array in a subprogram so that the subprogram can
process arrays of different sizes. Do this by passing the bounds as
well as the array name as subprogram arguments or dummy arguments.

An adjustable array declarator, 1in <contrast to a standard array
declarator, has variable dimension declarators (which are simply
integer variables). Each dimension declarator must be either an
integer constant or an integer dummy argument. The array name must
also appear as a dummy argument. (Consequently, you may not use
adjustable array declarators in main program units.)

Upon entry to a subprogram containing adjustable array declarators,
FORTRAN associates each dummy argument in a dimension declarator with
an integer actual argument. FORTRAN uses these values to form the
actual array declaration. These integer variables determine the size
of the adjustable array for that single execution of the subprogram.

You must not change the values of the dummy adjustable array
declarator arguments within the subprogram.

The effective size of the dummy array must be equal to or 1less than
the actual size of the associated array.

The function in the following example computes the sum of the elements
of a two-dimensional array. Note the use of the integer variables M
and N to control the iteration.

FUNCTION SUMCAyMsND
DIMENSTON A(MeND

GlM = 0.
N0 10y T o= 1M
00 10 4 = LN

16 SUM =
RETURN
NI

UM 4+ ACT.D

Following are sample calls on SUM:

OIMENSION AL(10,35)y A2(3556)
SUM1 = SUM(A110535)
SUM2 = BUM(AZy3:58)
SUME = SUM(AL»10-10)

If there are more dimensions in the adjustable array than in the array
being passed to the subroutine, you must indicate a value of 1 for
that dimension declaration.

CHAPTER 5

EXPRESSIONS

5.1 INTRODUCTION

An expression is a combination of elements that represents a single
value. FORTRAN relates an element in an expression to another element
in the same expression by operators and parentheses. The expression
can be a single basic component, such as a constant or variable, or a
combination of basic components with one or more operators. Operators
specify computations to be performed (using the values of the basic
components) to obtain a single value.

Expressions can be classified as arithmetic, relational, or logical.

Arithmetic expressions yield numeric values; relational and logical
expressions produce logical values.

5.2 ARITHMETIC EXPRESSIONS
Form arithmetic expressions with arithmetic elements and arithmetic
operators. The evaluation of such an expression yields a single
numeric value.
An arithmetic expression element may be any of the following:

e A numeric constant

e A numeric variable

e A numeric array element

e An arithmetic expression within parentheses

e An arithmetic function reference (functions and function
references are discussed in Chapter 10)

Arithmetic operators specify a computation that FORTRAN will perform
using the values of arithmetic elements; they produce a numeric value
as a result. The operators and their functions are 1listed 1in Table
5-1.

EXPRESSIONS

Table 5-1
Arithmetic Operators

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition and unary plus

- Subtraction and unary minus

The operators listed in Table 5-1 are called binary operators, because
you would use each in conjunction with two elements. You can use the
+ and - symbols as unary operators because, when you write them
immediately preceding an arithmetic element, they indicate a positive
or negative value.

5.2.1 Rules for Writing Arithmetic Expressions

Observe the following rules in structuring compound arithmetic
expressions:

® An expression cannot contain two adjacent and unseparated
operators. For example, the expression A*/B is not permitted.

e You must include all operators; no operation is implied. For
example, the expression A(B) does not specify multiplication,
although this is implied by standard algebraic notation. You
must type A*(B) to obtain a multiplication of the elements.

e When vyou use exponentiation, the base quantity and its

exponent may be of different types. For example, the
expression ABC**13 1involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table
5-2.

® You must assign a value to a variable or array element before
you wuse it in an arithmetic expression. If you do not, the
elements are undefined.

Table 5-2
Base/Exponent Combinations
EXPONENT
BASE
Integer Real Double Complex
Integer Yes No No No
Real Yes Yes Yes No
Double Yes Yes Yes No
Complex Yes No No No

EXPRESSIONS

In addition, you can only exponentiate a negative element by an
integer element; vyou cannot exponentiate an element having a value of
Zzero by another zero-value element.

In any valid exponentiation, the result is of the same data type as
the base element. The exception is a real base and a double-precision
exponent; the result in this case is double precision.

5.2.2 Evaluation Hierarchy

FORTRAN evaluates arithmetic expressions in an order determined by a
precedence it associates with each operator. The precedence of the
operators is listed in Table 5-3.

taLQCL S

Table 5-3
Binary Operator Evaluation Hierarchy
Operator Precedence
* % First
* and / Second
+ and - Third
= Fourth
Whenever two or more operators of equal precedence (such as + or =)

appear, FORTRAN evaluates them from left to right. However, FORTRAN
evaluates exponentiation from right to left. For example, A**B**C ig
evaluated as A**(B**C) where FORTRAN computes the parenthetical
subexpression (B**C) first.

5.2.3 Data Type of an Arithmetic Expression

0S/8 FORTRAN determines the data type of an expression 1in the
following ways:

e Integer operations - FORTRAN performs integer operations on
integer elements only. (When vyou use octal constants and
logical entities in an arithmetic context, FORTRAN treats them
as integers.) In integer arithmetic, any fraction that results
from a division is truncated, not rounded. For example, in
integer arithmetic the value of the expression

1/3 + 1/3 + 1/3
is zero, not one.

e Real operations - FORTRAN performs real operations on real
elements or a combination of real and integer elements.
FORTRAN converts integer elements to real by giving each a
fractional part equal to zero. It then evaluates the

. expression using real arithmetic, Note, however, that in the
statement Y = (I/J)*X, FORTRAN performs an integer division
operation on I and J and then performs a real multiplication
on the result and X.

EXPRESSIONS

You can relate complex expressions only with .EQ. and .NE.
operators. Complex entities are equal only if both of their
corresponding real and imaginary parts are equal.

5.3 RELATIONAL EXPRESSIONS

A relational expression consists of two arithmetic expressions
that you separate by a relational operator. The value of the
expression 1is either true or false, depending on whether or
not the stated relationship exists.

A relational operator tests for a relationship between two

arithmetic expressions. These operators are listed in Table
5-4.
Table 5-4
Relational Operators
Operator Relationship
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

The delimiting periods preceding and following a relational operator
are part of the operator and must be present.

In a relational expression, FORTRAN evaluates the arithmetic
expressions first to obtain their wvalues. It then compares those
values to determine if the relationship stated by the operator exists.
For example, the expression:

APPLE+PEACH .GT. PEAR+CRANGE

tests the relationship, "The sum of the real variables APPLE and PEACH
is greater than the sum of the real variables PEAR and ORANGE." If
this relationship does exist, the value of the expression is true; Iif
not, the expression is false.

All relational operators have the same precedence. Thus, 1if two or
more relational expressions appear within an expression, FORTRAN
evaluates the relational operators from left to right. Note that
arithmetic operators have a higher precedence than relational
operators.

Use parentheses to alter the evaluation of arithmetic expressions in a
relational expression exactly as in any other arithmetic expression,
However, as FORTRAN evaluates arithmetic operators before relational
operators, it 1is unnecessary to enclose in parentheses an arithmetic
expression preceding or following a relational operator.

EXPRESSIONS

5.4 LOGICAL EXPRESSIONS
A logical expression may be a single logical element, or it may be a
combination of logical elements and 1logical operators. A logical
expression yields a single logical value, either true or false.
A logical element can be any of the following:

e A logical constant

¢ A logical variable

e A logical array element

e A relational expression
@ A lcgical expression encleosed in parentheses
e¢ A 1logical function reference (functions and function

references are described in Chapter 10)

The logical operators are listed in Table 5-5.

Table 5-5
Logical Operators

Operator Example Meaning
.AND. A .AND. B Logical conjunction. The expression is
true 1if, and only if, both A and B are
true.
.OR. A .OR. B Logical disjunction (inclusive OR) .

The expression is true if, and only if,
either A or B, or both, is true.

. XOR. A .XOR. B Logical exclusive OR. The expression
is true if A is true and B is false, or
vice versa. It 1is false if both

elements have the same value.

LEQV. A .EQV. B Logical equivalence. The expression is
true if, and only if, both A and B have
the same logical value, whether true or
false.

.NOT. .NOT. A Logical negation. The expression 1is
true if, and only if, A is false.

NOTE

A and B can be expressions or constants.

You must type the delimiting periods of logical operators.

EXPRESSIONS
A logical expression, like an arithmetic expression, may consist of
basic elements as in

. TRUE.
X .GE. 3.14159

or

TVAL .AND. INDEX
BOOL(M) .OR. K .EQ. LIMIT

(where BOOL is either a 1logical function with one argument or a
one-dimensional logical array).

You may enclose logical expressions within parentheses, for example,
A ,AND. (B .OR. C)
or
(A .AND. B) .OR. C
Note that these expressions evaluate differently; thus, if A is false

and C 1is true, then the first yields a false value while the second
yields a true one.

5.4.1 Logical Operator Hierarchy
A summary of all operators that may appear in a 1logical expression,

and the order in which FORTRAN evaluates them is listed in Table 5-5.

e _r7
Table 5-6

Logical Operator Hierarchy

Operator Precedence
* % First
*,/ Second
+,- Third

Relational

Operators Fourth
.NOT. Fifth
.AND. Sixth
.OR. Seventh

.XOR., .EQV. Eighth

EXPRESSIONS

5.5 USE OF PARENTHESES

In an expression, FORTRAN evaluates first all subexpressions you place
within parentheses. When you nest parenthetic subexpressions (that
is, one subexpression is contained within another) the most deeply
nested subexpression 1is evaluated first, the next most deeply nested
subexpression is evaluated second, and so on, until FORTRAN computes
the entire parenthetical expression.

When vyou type more than one operation within a pa
subexpression, FORTRAN performs the required computations a
a hierarchy of operators (see Tables 5-4 and 5-6).

renthe
ccor
Parentheses do not imply multiplication. For example, (A+B)(C+D) is
illegal.

The following example illustrates a typical numeric expression using

numeric operators and a function reference. This is the familiar
formula for obtaining one of the roots of a quadratic equation.

-b +Vb**2 - dac

2a

which might be coded
(=B + SURTOBACKZ-A%A%KC))/ 2XAD

Note how the parentheses affect the order or evaluation. Also note
that one parentheses pair 1is required by the SQRT function. An
example of the effect of parentheses is shown below (the numbers below
the operators indicate the order 1in which FORTRAN performs the
operations).

'
+
w
*
N
1
[e))
~
N
]
~

11

S
+
ot
*
N
|
[@)]
AN
N
I

(4 +4 3 *2-06)/2=2
2 1 3 4
((4+3) *2-6) /2=4

1 2 3 4

Evaluation of expressions within parentheses takes place according to
the normal order of precedence.

Nonessential parentheses, such as those in the expression

4 + (3*2) - (6/2)
have no effect on the evaluation of the expression.
The use of parentheses to specify the evaluation order 1is often
important where evaluation orders that are algebraically eguivalent
might not be computationally equivalent when carried out on a
computer.

FORTRAN evaluates operators of equal rank from left to right.

5-7

ASSIGNMENT STATEMENTS

6.1 INTRODUCTION

Assignment statements evaluate expressions and assign their values
variables or elements in an array.

There are three types of assignment statements:
e An arithmetic assignment statement
e A logical assignment statement

e An ASSIGN statement (see Section 9.2.3.1)

6.2 ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement assigns a numerical value to
variable or array element.

The format is:

v = e
where
v is a variable or array element name
e is an expression

The arithmetic assignment statement assigns the value of

to

the

expression on the right of an equal sign to the variable or array
element on the left of the equal sign. TIf you had previously assigned
a value to the variable, an assignment statement replaces it with the

value on the right side of the equal sign.

Note that the equal sign does not mean "is equal to", as
mathematics., It means "is replaced by". Thus, the statement

KOUNT = KOUNT + 1

in

means, "Replace the current value of the integer variable KOUNT with

the sum of that current value and the integer constant 1".

Although the symbolic. name to the left of the -equal sign can

be

undefined, you must previously have assigned values to all symbolic
references in an expression (i.e., the right side of the equal sign).

ASSIGNMENT STATEMENTS

An expression must yield a value that conforms to the requirements of
the wvariable or array element to which you assign it. Thus, a real
expression that produces a value greater than 8,338,608 is illegal if
the entity on the left of the equal sign is an INTEGER variable.

If the data type of the variable or array element on the left of the
equal sign is the same as that of the expression on the right, FORTRAN
assigns the value directly. If the data types are different, FORTRAN
converts the value of the expression to the data type of the entity on
the left of the equal sign before it is assigned. A summary of data
conversions on assignment is shown in Table 6-1,

Table 6-1
Conversion Rules for Assignment Statements

O: DOUBLE LOGICAL LITERAL
REAL INTEGER | COMPLEX | PRECISION; CONSTANT | CONSTANT

FROM:

Real D D R,D H,D D D,6
Integer C D R,C H,C D D,6
Complex D,R,I |D,R,I D H,D,R,I D,R,I D,b
Double

Precision| D,H,L | D,H,L R,D,H,L | D D,H,L D,6
Logical | N N R,N H,N D N,6

C--Conversion between integer and floating point
D--Direct replacement
H--High-order portion of expression used

I--Set imaginary part to 0

L--Set low-order part to 0

N--Convert non-zero to 1.0 (logical truth)

R--Real only (imaginary part set to 0)

6--Use the first character in the 1literal and five characters

following
Examples:
Valid Statements
BETA = =1./(2.*X)+A*A/(4.%(X*X))

PI = 3.14159
SUM = SUM+1.

Invalid Statements

3.14 = A-B (Entity on the left must be a wvariable
or array element,)

-J = I**4 (Entity on the left must not be signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Left and right parentheses do not
hbalance.)

ASSIGNMENT STATEMENTS

6.3 LOGICAL ASSIGNMENT STATEMENTS

Use a logical assignment statement to assign a true or false value to
a logical variable.

The format is:

v = e

where
Y is a variable or array element of type logical
e is a logical expression

The 1logical assignment statement 1is similar to the arithmetic
assignment statement, but it operates on lecgical data. The logical
assignment statement evaluates the expression on the right side of an
equal sign and assigns the resulting logical value, either true or
false, to the variable or array element on the left.

The variable or array element on the left of the equal sign must be of
type LOGICAL; 1its value can be undefined before the assignment.

You must have assigned values previously, either numeric or 1logical,
to all symbolic references that appear 1in an expression. The
expression must yield a logical value.
Examples:

FAGEND = JFal.SE.

FREHTOK = LINE +LE. 132 .AND. NOT. FAGEND

ARIG = & GT. B AND., A& .GT. C AND. A GT. @

CHAPTER 7

SPECIFICATION STATEMENTS

7.1 INTRODUCTION

Specification statements in FORTRAN IV are nonexecutable statements
that provide information necessary for the proper allocation and
initialization of variables and names that you use in a program.

7.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of
symbolic names,

The format is:

typ v[[,v]]l...

where
typ 1s one of the following data type specifiers:

LOGICAL

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

v is a typed variable or array

A type declaration statement causes the specified symbolic names to
have the specified data type; it overrides the data type implied by
the initial letter of a symbolic name.

A type declaration statement can define arrays by 1including array
declarators (see Section 5.56.1) in the list. 1In each program unit, an
array name can appear only once 1in an array declarator. Note,
however, that

DIMENSTON ISUMOT)

INTEGER ISUM
is legal.
Type declaration statements should precede all executable statements
and all specification statements. You must precede the first use of
any symbolic name with its declaration statement if you do not use the
default type declaration.

You can explicitly declare the data type of a symbolic name only once.

SPECIFICATION STATEMENTS

You must not label type declaration statements. The FORTRAN entities
that you may type are:

Arithmetic statement functions

Arrays

Functions

Variables
Examples:

INTEGER COUNT MATRIX(4:4)s SUM

REAL MANs IARS
LOGICAL SWITCH

7.3 DIMENSION STATEMENT

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension.

The format is:

DIMENSION a(d)[[,a(d)...]]...

where
a is the symbolic name of an array
d is the dimension declarator
Example:

DIMENSTON ARRAY (& 7v4)

The DIMENSION statement allocates storage locations, one for each
element in each dimension, for each array in the DIMENSION statement.
You may declare any number of arrays in one dimension statement. Each
storage location is 6 or 12 bytes in length as determined by the data
type of the array. The amount of storage FORTRAN assigns to an array
is equal to 6 or 12 times the product of all dimension declarators in
the array declarator for that array. For example,

DIMENSION ARRAY(4s4)y MATRIX(S,5,5)

defines ARRAY as having 16 real elements of 6 words each, and MATRIX
as having 125 integer elements, also of 6 words each.

You cannot declare more than 7 dimensions to an array. There is also
a 1limit of 4095 elements to any array. Each size specification must
be a non-zero positive integer constant. :

For further information concerning arrays and the storage of array
elements, see Section 4.6.

Array declarators can also appear in type declaration and COMMON
statements; however, 1in each program unit, an array name can appear
in only one array declarator.

SPECIFICATION STATEMENTS

You must not label DIMENSION statements.
Examples:

DIMENSTON BUD(1IZ,24510)

DIMENSION X(5y5:5)rY(4985):2(100)

DIMENSTON MARK(4s4y4y454)

7.4 EXTERNAL STATEMENT

The EXTERNAL statement permits the use of external procedure names
(functions, subroutines, and FORTRAN library functions) as arguments
to other subprograms.

The format is:
EXTERNAL v[[,v]]...
where

Y is the symbolic name of a subprogram or the name of a dummy
argument associated with a subprogram

Example:
EXTERNAL SINy COSy ARS

Any subprogram you use as an argument to another subprogram must
appear in an EXTERNAL statement in the calling subprogram. Thus, the
purpose of the EXTERNAL statement is to declare names to be subprogram
names. This distinguishes the external name v from other variable or
array names.

The subprograms may be ones that you write or those that are part of
the FORTRAN library. The EXTERNAL statement declares each name v to
be the name of a procedure external to the program unit. Such a name
can then appear as an actual argument to a subprogram.

NOTE

If you use a complete function reference
(for example, a call to the SQRT
external function) in a reference such
as CALL SORT(A,SQRT(B),C), the function
reference is a value (the square root of
B) and vyou do not need to define it as
an external statement. You would only
have to define it if you were passing
the function name, i.e., CALL
SORT (A,SQRT,C) .

FORTRAN reserves the names vyou declare 1in an external statement
throughout the compilation of the program; you cannot use them in any
other declaration statement, with the exception of a type statement.

SPECIFICATION STATEMENTS

Example:
Main Program Subprograms
EXTERNAL SIN,COS,TAN SUBROUTINE TRIG (X,F,Y)
. Y = F(X)
. RETURN
CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

FUNCTION TAN (X)

CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS(X)
. RETURN
. END

The CALL statements pass the name of a function to the subroutine
TRIG. The function is subsequently invoked by the function reference
F(X) in the second statement of TRIG. Thus, the second statement
becomes in effect:

Y = SIN(X)
Y = COS(X)
Y = TAN(X)

depending upon which CALL statement invoked TRIG. The functions SIN
and COS are examples of trigonometric functions supplied in the
FORTRAN Lihrary.

7.5 COMMON STATEMENT

You use a COMMON statement so that a program and/or subprograms can
share information.

The format is:

COMMON [[/[[cb]]l /11 nlist /[[cb]l]l/ nlist]]...

where
cb is a symbolic name or is blank. If the first <cb Iis
blank, you can omit the first pair of slashes
nlist is a list of variable names, array names, and array
declarators separated by commas
Example:

COMMON /AREAL/AyR //CHD

The COMMON statement enables you to establish storage that two or more
programs and/or subprograms may share and to name the variables and
arrays that will occupy the common storage. The use of common storage
conserves storage and provides a means to implicitly transfer
arguments between a calling program and a subprogram. The transfer is
implicit because no actual tranferral takes place; instead, the
program unit references the common storage area.

FORTRAN determines the length of a COMMON block by the number of
components and the amount of storage each component requires. COMMON
blocks may be of any length, subject to the limitations of available
memory.

SPECIFICATICON STATEMENTS

After each common name cb, nlist lists the names of the variables and

rrays that will occupy the common area cb. FORTRAN places the items
for a common within common storage area in the order in which you list
them in the COMMON statement or statements.

Elements you place into common storage in one program unit should
agree in data type with elements referenced in a second. This is
because assignment of storage is on a storage wunit-for-storage unit
basis, not variable-for-variable.

You may label COMMON storage areas or leave them Dblank (unlabeled).
If you choose to label, type a symbolic name within slashes
immediately before the list of items that will occupy the cb area.

For example, the statement

COMMONAAREAL /ARy C/AREAZ/TARBILI3 3 3)
establishes two labeled common areas (AREA1l and AREA2).
if you are declaring a common storage area to be blank common, then
you may omnit the double slashes (// 1if and only if it is the first
declaration of any common statement. Unlabeled common area is called
"plank common". If the Dblank common declaration is not the first

declaration in a COMMON statement, then the double slashes are
mandatory.

For example, the statement

COMMONAAREAL A Ay B CA7TARZ v 3630
establishes one labeled area (AREAl) and one unlabeled common area.
A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.
During compilation of a source program, FORTRAN will bring together
all items you list for each labeled and blank common area in the order
in which the items appear in the source program statements.

For example, the series of source program statements

COMMON/STL/A»BsC/STLI/TAR(Z2, 2/ /70y 115E

+

COMMON/STL/TST(324)//M»N

COMHMON/ST2/X» Y Z//70sF»Q
has the same effect as the single statement
COMMON/STL/AyReCrTST(3v4) /8T2/TAR(Z2s2) 9 Xs Y Z//CsDyEsMsNs 0Py Q

FORTRAN treats each 1labeled common area as a separate, specific

storage area. You assign initial values to the contents of a common
area -- that is, variables and arrays -- by DATA statements in a BLOCK
DATA subprogram. Declarations of a given common area in different

subprograms must contain the same number, size, and order of variables
and arrays as the reference array.

SPECIFICATION STATEMENTS

Common block names must be unique with respect to all subroutine and
function names.

The largest definition of a given common area must be loaded first.

Storage allocation for blocks of the same name begins at the same
location for all program units FORTRAN executes together. For
example, if a program contains

COMMON AsRByC/R/XsYrZ
as its first COMMON statement, and a subprogram has
COMMON /R/7UsVsW //I0ESF
as its first COMMON statement, the values represented by X and U are

stored in the same location. A similar correspondence holds for A and
D in blank common.

If one program unit references a part of a common block, then you must
use dummy variables to establish the proper correspondence, For
example, if you declare a common block to contain

A,B,C,D,E,F,G,H,I,J,K

and a subprogram wishes to reference the storage location indicated by
K, then you must declare a common block as in the following subprogram

COMMON AvBRyColsEeFrGeHeI»JrK

The declaration COMMON K in the subprogram would cause a
correspondence between variable A in the main program and variable K
in the subprogram. (Note that any other sequence of variable names
would also be correct.)

Instead of declaring each variable contained in the COMMON block, you
may substitute a dummy array (provided that you are careful to match
up proper storage lengths). For example, the following declaration

OUOURLE PRECTISION DUMMY(3)
COMMOMN DLIMMY ¢ K

(where DUMMY is an arbitrary variable name) 1is equivalent to the
statement in the preceding example.

7.5.1 COMMON Statements with Array Declarators

You may also define an array in a COMMON statement. You may not
otherwise subscript array names. Also, you cannot assign individual
array elements to COMMON.

SPECIFICATION STATEMENTS

.6 EQUIVALENCE STATEMENT

You use an EQUIVALENCE statement to associate different variables with
the same storage.

Mmoo e =k 2o
e Lormacv 1>

.0

EQUIVALENCE (nlist) [{,(nlist}]]...
where

nlist is a list of variables and array elements, separated by
commas, At least two components must be present in
each list,

Example:
EQUIVALENCE (AyB)Y»(CrD(16)rEsF)

The EQUIVALENCE statement declares two or more entities to be
associated (either totally or partially) with the same storage
location.

NOTE

EQUIVALENCE associates different
variable names with the same storage
area in a program unit, COMMON may also
associate different variable names with
the same storage area, but it always
makes the association between program
units.

The EQUIVALENCE statement causes FORTRAN to allocate the same storage
locations for all the wvariables or array elements contained in one
parenthesized list. Note that any REAL variable made equivalent to a
DOUBLE PRECISION variable shares storage with the high-order word of
that variable. Mixing of data types 1in this way 1is permissible.
Also, multiple components of one data type can share the storage of a
single component of a higher-ranked data type. For example, 1in the
statement

COMPLEX COMFLX
DIMENSION ARRAY (2)
EQUIVALENCE (COMPLXsARRAY (1))

the EQUIVALENCE statement causes the two elements of the array ARRAY
to occupy the same storage as the complex variable COMPLX. In this
example, ARRAY(1l) shares storage with the real component of COMPLX
while ARRAY(2) shares storage with the imaginary part.

You can also use the EQUIVALENCE statement to equate variable names.
For example, the statement

EQUIVALENCE (FLTLENs FLENTH, FLIGHT)

causes FLTLEN, FLENTH, and FLIGHT to have the same value, provided
they are also of the same data type.

SPECIFICATION STATEMENTS

An EQUIVALENCE statement in a subprogram must not contain dummy
arguments.

Examples:

EQUIVALENCE (AsR)s (RsC) (has the same effect as EQUIVALENCE
(aA,B,C))

EQUIVALENCE (AC1)»X)y (A(2)sY)y (A(3)Z)

7.6.1 Making Arrays Equivalent

When you make an element of an array equivalent to an element of
another array, the EQUIVALENCE statement also sets equivalences
between other elements of the two arrays. Thus, if you make the first
elements of two equal-sized arrays equivalent, both arrays share the
same storage space. Moreover, if you make the third element of a
five-element array equivalent to the first element of another array,
the last three elements of the first array overlap the first three
elements of the second array.

The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that 1is inconsistent with the normal
linear storage of array elements (e.g., making the first element of an
array equivalent with the first element of another array, then
attempting to set an equivalence between the second element of the
first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript (i.e., the linear element number),
even though you have defined one as being multidimensional.

For example, the statements:

OIMENSION TABLE (2:2)r TRIFLE (2+2:2)
EQUIVALENCE (TARLEC(4)» TRIFLE(Z))

result in the entire array TABLE sharing a portion of the storage
space FORTRAN allocates to array TRIPLE as illustrated in Figure 7-1.
In Figure 7-1, the -elements with asterisks are those explicitly
mentioned in the above EQUIVALENCE statement.

Array TRIPLE Array TABLE
Array Element Array Element
Element Number Element Number

TRIPLE(1,1,1) 1
TRIPLE(2,1,1) 2
TRIPLE(1,2,1) 3
TRIPLE(2,2,1) 4 TABLE(1,1) 1
TRIPLE(1,1,2) 5 TABLE(2,1) 2
TRIPLE(2,1,2) 6 TABLE(1,2) 3
TRIPLE(1,2,2) 7% TABLE (2,2) 4%
TRIPLE(2,2,2) 8

Figure 7-1 Equivalence of Array Storage

SPECIFICATICN STATEMENTS

Figure 7-1 also illustrates that the two statements

AUTUALERNCE (TABLEC(L) » TRIPLE(4))
EOUTVALENCE (TRIPLE(1:2:2)y TABLE(4))

result in the same alignment of the two arrays.

7.6.2 EQUIVALENCE and COMMON Interaction

When you make components equivalent to entities in common, it <can
cause FORTRAN to extend the common block beyond 1its original
boundaries.

An EQUIVALENCE statement can only extend common beyond the last
element of the ©previcusly established common block. It must not
attempt to increase the size of common in such a way as to place the
extended portion before the first element of existing common. For
example:

Legal Extension of Common

DIMENSION A(4),B(5) A(l) A(2) a(3) a4

COMMON A

EQUIVALENCE (A(2),B(1) B(1) B(2) B(3) B(4) B(5) B(6)
Existing Common Extended Portion

Illegal Extension of Common

DIMENSION A(4),B(6) A (1) A(2) A(3) A4

COMMON A

EQUIVALENCE(A(2),B(3)) B(1l) B(2) B(3) B(4) B(5) B(6)
Extended Existing Common Extended
Portion Portion

Figure 7-2 Legal and Illegal Common Extensions

If you assign two components to the same or different common blocks,
you must not make them equivalent to each other.

CHAPTER 8

DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

8.1 DATA STATEMENTS

The DATA initialization statement permits the assignment of initial
values to variables and array elements prior to program execution.

The format is:

DATA nlist/clist/[[[[,]]lnlist/clist/]]...

where
nlist is a list of one or more variable names, array names,
or array element names separated by commas
R is an optional separator
clist is a list of constants

Example:
DATA A,B,C(3),C(7)/4.0,8.1,16.0,28.0/

The DATA statement causes FORTRAN to assign the constant values 1in
each clist to the entities in the preceding nlist. FORTRAN assigns
values in a one-to-one manner in the order in which they appear, from
left to right,

When an unsubscripted array name appears in a DATA statement, FORTRAN
assigns values to every element of that array. The associated
constant list must therefore contain enough values to £fill the array.
FORTRAN fills array elements in the order of subscript progression
(see Section 4.6.1).

When you assign Hollerith data to a variable or array element, the
number of characters that you can assign depends on the data type of
the component. If the number of characters in a Hollerith constant or
alphanumeric 1literal 1is 1less than the capacity of the variable or
array element, the constant is padded on the right with spaces. If
the number of characters in the constant is greater than the maximum
number that the variable can hold, it ignores the rightmost excess
characters.

DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

When you assign the same value to more than one item in nlist, you may
use a repeat specification. Write the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be used. For example, a DATA specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. Also, the statement

DATA MeNyl /3%20/

assigns the value 20 to the variables M, N, and L. The number of
constants 1in a constant list must correspond exactly to the number of
entities specified in the preceding name list. The data types of the
data elements and their corresponding symbolic names must agree.

FORTRAN IV converts the constant to the type of the wvariable being
initialized.

Example:

INTEGER ACLO) yRELLYK(5:5,5)
DATA AsBELLsSTARS/10%0s7y “KKXKK/K/25K0525%1 s 25%225%K3,25%4, 25%5/

The DATA statement assigns zero to all ten elements of array A, the
value 7 to the variable BELL, and four asterisks to the real variable
STARS. The 125-element array, K, is initialized so that each of the
five planes (i.e., the third dimension declarator) has a different
value.

When you initialize an array, you must initialize the entire array.
Thus, the DATA statement in the example

DIMENSION K
DATA K /10%1/

is illegal.
You could make the DATA statement of the example legal as follows:

DIMENSION I(30)K(10)
EQUIVALENCE (I«K)
nDATA K/10%1/

The values you assign with a DATA statement may also be assigned with
a BLOCK DATA subprogram. However, note that initial values for
variables in COMMON storage may not be specified in subprograms that
may be overlaid at execution time. If a subprogram will be overlaid,
then you should only initialize these variables 1in a BLOCK DATA
subprogram. (It is good programming practice to use BLOCK DATA
subprograms to initialize only variables in COMMON storage.)

8.2 BLOCK DATA SUBPROGRAM

You use a BLOCK DATA to initialize variables you place 1into COMMON
storage.

The format is:

BLOCK DATA
Use the BLOCK DATA subprogram to assign initial values to entities 1in
common blocks, at the same time establishing and defining those

blocks. The subprogram consists of a BLOCK DATA statement followed by
a series of specification statements.

8-2

DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS
The statements FORTRAN allows in a BLOCK DATA subprogram are:

.
DIMENSION
COMMON
EQUIVALENCE
DATA

The specification statements in the BLOCK DATA subprogram establish

and define common blocks, assign variables and arrays to theose blocks,
and assign initial values to those components.

A BLOCK DATA statement must be the first statement of a BLOCK DATA
subprogram. You must not label the BLOCK DATA statement.

ATA subprogram must not contain any executable statements.

o

A BLOCK

If you initialize any entity 1in a common block in a BLOCK DATA
subprogram, you must enter a complete set of specification statements
to establish the entire block, even though some of the components in
the block do not appear in a DATA statement. You can define initial
values for more than one common area with the BLOCK DATA subprogram.

Example:

ELOCK DATA

INTEGER S» X

LOGICAL Te W

DOURLE PRECISION U

DIMENSION R{O3)

COMMOM SAREAL/R S ToU/AREAZ/ WX

naTa R Z1.0.2%2.07 T ZFALSE./ U /70.2145320-77 W /. TRUE./
END

CHAPTER 9

CONTROL STATEMENTS

9.1 INTRODUCTION

FORTRAN normally executes statements in the order in which you writ
them. However, it 1s frequently desirable to change the normal
program flow by transferring control to another section of the program
or to a subprogram. Transfer of control from a given point in the
program may occur every time that point 1is reached 1in the progranm
flow, or may be based on a decision made at that point.

Transfer of control, whether within a program unit or to another
program unit, 1is effected by control statements. These statements
also govern iterative processing, suspension of program execution, and
program termination. The types of control statements discussed in
this chapter are:

ASSIGN IF

CONTINUE GO TO
DO PAUSE
END STOP

A second kind of statement for transferring control, subprograms, is
discussed in Chapter 10.

9.2 GOTO STATEMENTS
GOTO statements transfer control within a program unit, either to the
same sStatement every time or to one of a set of statements, based on
the value of an expression.
The three types of GOTO statements are:

e Unconditional

e Computed

e Assigned

9.2.1 Unconditional GOTO Statement

This type of GOTO statement transfers control to the same statement
every time it is executed.

CONTROL STATEMENTS

The format is:
GOTO st
where

st is the label of an executable statement in the same program
unit as the GOTO statement

Example:

GOTO S0
The unconditional GOTO statement transfers control to the statement
identified by the specified label. The statement label must identify
an executable statement in the same program unit as the GOTO
statement.
Examples:

GOTO 7734

GOTO 29999

GOTO 27.5 (Invalid; the statement 1label is improperly
formed.)

9.2.2 Computed GOTO Statement

This type of GOTO statement transfers control to a statement based on
the value of an expression within the statement.

The format is:

GOTO (slist)[[,]] e

where
slist is a list of one or more executable statement labels
separated by commas
' is an optional separator
is an integer expression the wvalue of which falls
within the range 1 to n (where n is the number of
statement labels in slist)
Example:

GOTO €10,200225) NUMRER

Use the computed GOTO to transfer control to one statement out of a
list of statements. The computed GOTO thus acts as a multidirectional
switch.

The computed GOTO statement evaluates the integer expression e and
then transfers control to the e'th statement label in slist. That is,
if the list contains (30,20,30,40), and the value of e is 2, the GOTO
statement transfers control to statement 20, and so on.

CONTROL STATEMENTS

You may include any number of statements in slist, but you must use
each number as a label within the program.

Examples:
GOTO (12¢24+346)« INCHES
GOTO (320330340, 3503460)TISTITUCA«KI+1

If the value of the expression is less than 1, or greater than the
number of labels in the slist, unpredictable results occur.

9.2.3 ASSIGN and ASSIGNed GOTO Statement

9.2.3.1 ASSIGN Statement - You use the ASSIGN statement to assign a
statement label to a variable name.

The format is:

ASSIGN st to v

where
st is the label of an executable statement in the same program
unit as the ASSIGN statement
\Y is an integer variable
Example:

ASETGN 50 TD NUMEBER

Use the ASSIGN statement to associate a statement label with an
integer wvariable. You can then use the variable as a transfer
destination in a subsequent ASSIGNed GOTO statement (see Section
9.2.3.2).

NOTE

The statement number must be in the same
program unit.

The statement label st must not be the label of a FORMAT statement.

The ASSIGN statement assigns the statement number to the variable in a
manner similar to that of an arithmetic assignment statement, with one
exception: the variable becomes defined for use as a statement label
reference and becomes undefined as an integer variable.

FORTRAN must execute an ASSIGN statement before the ASSIGNed GOTO
statement in which it will wuse the assigned variable. The ASSIGN
statement and the ASSIGNed GOTO statement must occur in the same
program unit.

For example, the statement

AGETEN 100 TO NUMBER

associates the variable NUMBER with the statement label 100.

CONTROL STATEMENTS

Arithmetic operations on the variable, as in the statement

NUMBER = NUMBER + 1
then become invalid, because FORTRAN cannot alter a statement 1label.
(This is because a statement refers to a location in memory and is not
a number.) The statement

NUMBER = 10
disassociates NUMBER from statement 100, assigns it an integer wvalue
10, and returns it to its status as an integer variable. After you
make such an assignment, you can no longer use it in an ASSIGNed GOTO
statement.
Examples:

ASSIGN 10 TO NSTART

ABESTEN 929999 TO KSTOF

ABSTGN 250 TO ERROR (You must first define ERROR as an
integer variable.)

9.2.3.2 ASSIGNed GOTO Statement - The ASSIGNed GOTO transfers control
to a statement that is represented by a variable.

The format is:

GoTo v[[[[,]11(slist)]]

where
v is an integer variable
R is an optional separator
slist (when present) is a list of one or more executable
statement labels separated by commas
Example:

GOTO NUMRBER» (10535,135)

The ASSIGNed GOTO statement transfers control to the statement whose
label was most recently assigned to the variable v by an ASSIGN
statement.

The variable v must be of integer type. 1In addition, you must have
previously assigned to it a statement label number with an ASSIGN
statement (not an arithmetic assignment statement).

The ASSIGNed GOTO statement and its associated ASSIGN statement must
reside in the same program unit., Also, statements to which FORTRAN
transfers control must be executable statements in the same program
unit.

Examples:

AGSTEN 50 TO IGO0
GOTO 16O

GOTO INDEXy {(300450y1000,25)

CONTROL STATEMENTS

If the statement label value of v is not present 1in the 1list slist
{and a 1list 1is specified), control transfers to the next executable
statement following the ASSIGNed GOTO statement.

NNATR
NU LD

You must label the statement following
an ASSIGNed GOTO; otherwise, FORTRAN
can never execute that statement.

9.3 IF STATEMENTS

An IF statement causes a conditional <control transfer or the
conditional execution of a statement. There are two types of IF
statements:

e Arithmetic IF statements

e Logical IF statements
9.3.1 Arithmetic IF Statement
You use the arithmetic IF as a three-way branching statement. The

branching depends on whether the value of an expression is less than,
equal to, or greater than zero.

The format is:
IF (e) stl, st2, st3
where

e is an arithmetic expression
stl, st2, st3 are the labels of executable statements 1in the
same program unit

Example:
ITF (I-KY 10 20¢ 30

Use the arithmetic IF statement for conditional <control transfers.
This statement can transfer control to one of three statements, based
on the value of an arithmetic expression.

You may use logical expressions in arithmetic IF statements. 1In such
a case, FORTRAN first converts the logical expression value to an
integer. If you use a complex expression, FORTRAN only uses the real
portion.

Normal use of the arithmetic IF requires that all three 1labels, stl,
st2, and st3, must be present., However, they need not refer to three
different statements. If desired, one or two labels can refer to the
same statement,

CONTROL STATEMENTS

0S/8 FORTRAN allows you to type less than three numbers. If you type
either one or two numbers, control passes to the next statement when a
condition is not met (e.g., e is greater than zero).

Example:

IF (ALFHA) 10
8TOF

In this statement, control transfers to statement number 10 if ALPHA
is negative. 1If ALPHA is positive or equal to zero, execution stops.

The arithmetic IF statement first evaluates the expression in
parentheses and then transfers control to one of the three statement
labels that follow expression e. The values according to which
FORTRAN makes the selection are listed in Table 9-1.

Table 9-1
Arithmetic IF Transfers
If the Vvalue Is: Control Passes To:
Less than 0 Label stl
Equal to 0 Label st2
Greater than 0 Label st3

Examples:

IF (THETA-CHI) 50505100
This statement transfers control to statement 50 if the real wvariable
THETA 1is less than or equal to the real variable CHI. Control passes
to statement 100 only if THETA is greater than CHI.

IF (NUMBER/2X2~-NUMBER) 20s40

This statement transfers control to statement 40 if the value of the
integer variable NUMBER is even, and to statement 20 if it is odd.

9.3.2 Logical IF Statement

You wuse a logical IF statement for conditional execution of
statements.

The format is:
IF (e) st
where
e is a logical expression
st is a complete FORTRAN statement. The statement can be any
executable statement except a DO statement or another
logical IF statement.

Example:

IFCX JEQ. YY) I=4

CONTROL STATEMERNTS
FORTRAN bases the decision to execute the conditional statement on the
value of a logical expression within the statement.
The logical IF statement first evaluates the logical expression. If

the value of the expression 1is true, FORTRAN transfers control to the
execntabhle statement within the IF statement. If the wvalue of the

expression is false, control transfers to the next executable
statement following the logical IF; 1in this case, FORTRAN does not
execute statement st.
Examples:

IF (J GT. 4 JOR. J .LT. 1) GOTO 250

IF (REF(JeK) NE, HOLD) REF(JsK) = REF(JsKIXA(Ks D)

IF (.NOT. X} CaALL SBWITCH(SE:Y?

9.4 DO STATEMENT
You use the DO statement to execute a block of statements repeatedly.
The format is:

DO st i=el,e2[[,e3]1]

where
st is the label of an executable statement that physically
follows in the same program unit
i is an unsubscripted real or integer variable
el (the initial value of i) is an integer, real constant, or
expression
e2 (the terminal value of i) is an integer, real constant, or
expression and must be greater than el
el (the value by which i will be incremented each time it
executes the statements in the range of the DO loops) is an
integer, real constant, or expression
Example:

O 190 I=1s10.2
0o 20 Is=JeKyl

The DO statement causes FORTRAN to execute the statements in its range
a specified number of times.

The range of a DO statement is defined as the series of statements
that follow the DO statement up to and 1including its specified
terminal statement st; that is, the statements that follow the DO
statement, wup to and including the terminal statement, are in the
range of the DO loop.

The variable 1 is called the control (or index) variable of the DO and
el, e2, e3 are the 1initial, terminal, and increment parameters
respectively.

CONTROL STATEMENTS

The terminal statement of a DO loop is identified by the label st that
appears in the DO statement. This terminal statement must not be a
GOTO statement, an arithmetic IF statement, a RETURN statement, a
PAUSE statement, a STOP statement, or another DO statement. A logical
IF statement is acceptable, provided it does not contain any of the
above statements.

The DO statement first evaluates the expression el, e2, e3 to
determine values for the initial, terminal, and increment parameters.
FORTRAN then assigns the value of the initial parameter to the control
variable. FORTRAN then repeatedly executes the statements in the
range of the DO loop.

The increment parameter must be positive and not zero; the value of
the terminal parameter must not be 1less than that of the initial
parameter,

After each execution of the range of the DO 1loop, FORTRAN adds the
increment wvalue to the wvalue of the index. It then compares the
result to the terminal value. If the index value is not greater than
the terminal wvalue, FORTRAN reexecutes the range using the new value
of the index i.

The number of executions of the DO range, called the iteration count,
is given by

MAX(1l,((e2-el)/e3) + 1

FORTRAN always executes the range of a DO statement at least once.

9.4.1 DO Iteration Control

You can terminate the execution of a DO by a statement within the
range that transfers control outside the loop. When you transfer out
of the DO loop's range, the control variable of the DO remains defined
with its current value.

When execution of a DO loop terminates, if other DO 1loops share the
same terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (Section 9.4.2). If no
other DO 1loops share this terminal statement, or if this DO is the
outermost DO, control transfers to the first executable statement
following the terminal statement.

You may alter the values of i, el, e2, and e3. 1If you alter the value
of i, the 1loop will not be executed the number of times that you
originally specified. 1If you alter the values of the expressions, you
do not affect the looping because FORTRAN "remembers" these values.
The control variable i is available for reference as a variable within
the range.

The range of a DO loop can contain other DO statements, so 1long as
those "nested" DO loops conform to certain requirements (see Section
9.4.2).

Although you can transfe
transfer into a 1loop
this rule are described

Examples:

0o 100 K=1:50+2
no 2% IVAR=1.3
T NUMBER=5+40+4

e
AL

s
1

The last example illustr

arithmetic assignment statement in the FORTRAN language;

no4oM = 2,10

9.4.2 Nested DO Loops

A DO loop may contain one or more complete DO loops.

CONTROL STATEMENTS

r contrel out of a DO loop,
from elsewhere in the program. EX
in the following sections.

(25 iterations, K=49 during final
(5 iterations,
(Invalid; statement label missing)
(Invalid; dec

It i
i

ates a common clerical error.

The r

imal point instead of

iteration)

s a
€.,

ange of an

inner-nested DO must lie completely within the range of the next outer

loop. Nested loops may

Correctly Nested
DO Loops

DO 45 K=1,10

Do 35 L=2,50,2

35 CONTINUE

DO 45 M=1,20

45 CONTINUE

Figure 9-1

In the correctly nested
not cross.

ranges of the other two

Note that you may nest loops to a depth of (at least)

9.4.3

Within a nested DO loop
inner 1loop to an

inner loop is illegal.

They do, however,
incorrectly nested DO loops, the loop defined by DO

outer

share the same terminal statement.

Incorrectly Wested
DO Loops

DO 15 K=1,10

.

DO 25 L=1,20

15 CONTINUE

DO 30 M=1,15

.

25 CONTINUE

30 CONTINUE

Nesting of DO Loops

DO loops, note that the
share the same statement
25
DO loops.

Control Transfers in DO Loops

structure, you can transfer
loop.

9-9

diagrammed
(45) .
crosses

control
A transfer from an outer loop to an

lines do
In the
the

10 levels.

from an

CONTROL STATEMENTS

If two or more nested DO loops share the same terminal statement, you
can transfer control to that statement only from within the range of
the innermost loop, that is, the terminal statement belongs solely to
the innermost DO statement. Any other transfer to that statement
constitutes a transfer from an outer loop to an inner loop because the
shared statement is part of the range of the innermost loop.

The following rules govern the transfer of program control from within
the DO statements range or the ranges of nested DO statements.

e FORTRAN permits a
statement at

transfer out of the
any time.

range of any DO
When such a transfer executes, the

controlling DO statement's index variable retains its current
value.
e FORTRAN permits a transfer into the range of a DO statement

from within the range of any: DO loop; nested DO loop; or
extended range loop (in which you leave the loop via a GOTO,
execute statements elsewhere, and return to the original
loop).

9.4.4 Extended Range

A DO loop is said to have an extended range if it contains a control
statement that transfers control out of the loop and if, after the
execution of one or more statements, another control statement returns
control back into the loop. In this way, FORTRAN extends the range of
the loop to include all of the executable statements between the
destination statement of the first transfer and the statement that
returns control to the loop.

Figure 9-2 illustrates valid and invalid control transfers.

valid
Control Transfers

Invalid
Control Transfers

DO 35 K=1,10

DO 15 L=2,20

GOTO 20

DO 50 K=1,10

GOTO 20 20 A=B+C
15 CONTINUE DO 35 L=2,20
20 A=B+C 30 D=E/F
DO 35 M=1,15 35 CONTINUE
GO TO 50 GO TO 40
30 X=A*D DO 45 M=1,15
35 CONTINUE 40 X=A*D
. 45 CONTINUE
50 D=E/F .
Extended . 50 CONTINUE
Range . .
GOTO 30 GOTO 30
Figure 9-2 Control Transfers and Extended Range

9-10

CONTROL STATEMENTS

The following rules govern the use of a DO statement extended range.

e The statement you want to transfer out of an extended range
operation must be within the most deeply nested DO statement
that contains the location to which the return transfer is to
be made.

® You may transfer into the range of a DO statement only from
the extended range of that DO statement.

e You may not use another DO statement in the extended range of
a DO statement.

e The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

e You may execute subprograms within an extended range.

9.5 CONTINUE STATEMENT

Insert a CONTINUE statement where you do not wish a statement to be
executed.

The format is:
st CONTINUE
where
st is a statement label

A CONTINUE statement is a statement that holds a place in the program
without performing any operations.

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GOTO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a 1logical IF statement
containing one of the previous statements.

Note that you also use a CONTINUE as a transfer point for a GOTO
statement within the DO 1loop that 1is intended to begin another
repetition of the loop.

Example:

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

kY

D0 4% ITEM=1,1000

STOCR=NUNTRY (ITEM)

IF (8TOCK EQ. TALLY) GO TO 43

Call UPDATE(STOCK, TALLY)D

IF CITEM EQ. LASTY GO TO 77
4% CONTINUE

13

77 WRITE (4,20) HEADINGs FAGEND

+

CONTROL STATEMENTS

9.6 PAUSE STATEMENT

You use the PAUSE statement to suspend program execution temporarily
to give yourself time to perform some action.

The format is:
PAUSE [[num]]
where

num 1is an optional integer variable or expression containing one
to five digits

The PAUSE statement prints the display (if you have specified one) at
your terminal, suspends program execution, and waits for you to type
the RETURN key. This causes program execution to resume with the
first executable statement following the PAUSE.

Examples:

FAUSE "13731

FAUSE MOUNT TAFE REEL #3°

9.7 STOP STATEMENT
You use the STOP statement to terminate program execution.
The format is:

STOP
When the STOP statement terminates program execution, it returns
control to the operating system. If you do not type a STOP statement,
a "stop" occurs when FORTRAN transfers control to an END statement 1in
the main program unit.
A CALL EXIT statement is equivalent to STOP and closes any temporary
files at the last block written on the file. Control returns to the
0S/8 monitor.
Examples:

5TOF

YRYYY STOF

9.8 END STATEMENT

You mark the end of every program unit with an END statement, which
must be the last source line of every program unit.

The format is:
END
In a main program, if control reaches the END statement, execution of

the program terminates; in a subprogram, a RETURN statement is
implicitly executed.

CONTROL STATEMENTS

In the main program, END is equivalent to STOP; 1in a subprogram, it
is equivalent to RETURN.

A program cannot reference an END statement.

0

eturns to the 0S/8 monitor after FORTRAN executes an END

~
-
ot

nt
.
at

ol

o
. PR
[emen

]

or

If you do not type an END statement as the last statement 1in your
program,; FORTRAN appends one.

CHAPTER 10

SUBPROGRAMS

10.1 INTRODUCTIONS

Procedures you use repeatedly in a program may be written once and
then referenced each time you need the procedure. Procedures that you
may reference are either internal (written and contained within the
program in which they are referenced) or external (self-contained
executable procedures that you may compile separately). The kinds of
procedures that you may reference are:

® Arithmetic statement functions
e External functions
@ Subroutines

e Intrinsic functions (FORTRAN-defined functions)

10.2 SUBPROGRAM ARGUMENTS

Since you may reference subprograms at more than one point throughout
a program, many of the values that the subprogram uses may change each
time you call the subprogram. Dummy arguments in subprograms
represent the actual values that the subprogram will use. The
arguments are passed to the subprogram when FORTRAN transfers control
to it.

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, array elements, arrays, subroutine names, or the names

of external functions. You must use each dummy argument within a
subprogram as if it were a variable, array, array element, subroutine,
or external function 1identifier. You enter dummy arguments in an

"argument list" that you associate with the identifier assigned to the
subprogram; actual arguments are normally given in an argument list
that you associate with a call made to the subprogram.
The position, number, and type of each dummy argument in a subprogram
must agree with the position, number, and type of each argument in the
argument list of the subprogram reference.
Dummy arguments may be:

e Variables

® Array names

e Subroutine identifiers

e Function identifiers

10-1

SUBPROGRAMS

When you reference a subprogram, FORTRAN replaces its dummy arguments
with the corresponding actual arguments that you supply in the
reference. All appearances of a dummy argument within a function or
subroutine are related to the given actual arguments. Except for
subroutine identifiers and 1literal constants, a valid association
between dummy and actual arguments occurs only if both are of the same
type; otherwise, the result of the subprogram will be unpredictable.
Argument associations may be carried through more than one level of
subprogram reference if a valid association is maintained through each
level. The dummy/actual argument associations established when you
reference a subprogram terminate when FORTRAN completes the operations
defined in the subprogram.

The following rules govern the use and form of dummy arguments.

e The number and type of the dummy arguments of a procedure must
be the same as the number and type of the actual arguments
given each time you reference the procedure.

® You may not use dummy argument names in EQUIVALENCE, DATA, or
COMMON statements.

® You should provide a variable dummy argument with a wvariable,
an array element identifier, an expression, or a constant as
its corresponding argument.

® You should provide an array dummy argument with either an
array name or an array element identifier as its corresponding
actual argument. If the actual argument 1is an array, the
length of the dummy array should be less than or equal to that
of the actual array. FORTRAN associates each element of a
dummy array directly with the corresponding elements of the
actual array.

® You must provide a dummy argument representing an external
function with an external function as its actual argument.

e You should give a dummy argument representing a subroutine
identifier a subroutine name as its actual argument.

® You may define (or redefine) a dummy argument in a referenced
subprogram only if 1its corresponding actual argument is a
variable. If dummy arguments are array names, then you may
redefine the elements of the array.

10.3 USER-WRITTEN SUBPROGRAMS

FORTRAN transfers control to a function by means of a function
reference. It transfers control to a subroutine by a CALL statement.
A function reference is the name of the function, together with its
arguments, appearing in an expression. A function always returns a
value to the calling program. Both functions and subroutines may
return additional values via assignment to their arguments. A
subprogram can reference other subprograms, but it cannot, either
directly or indirectly, reference 1itself (that is, FORTRAN is not
recursive).

10-2

SUBPROGRAMS

10.3.1 Arithmetic Statement Functions (ASF)

You use an Arithmetic statement function to define a one-statement,
self-contained computational procedure.

The format is:

nam ([[la[[,al]l...]])=e
where

nam 1is the name you assign to the ASF
a is a dummy argument
e is an expression

Examples:

FROOTC(ASRC) = (-RB+SQRT(BXXZ - 4%XA%XC))/ (2%XA)
NROOT(AsBsC) = (-B-SQRT(BXX2 - 4%A%X))/ (2%A)

An arithmetic statement function is similar in form to an arithmetic
assignment statement. The appearance of a reference to the function
within the same program unit causes FORTRAN to perform the computation
and make the resulting value available to the expression in which the
ASF reference appears.

The expression e 1is an arithmetic expression that defines the
computation to be performed by the ASF,

You reference an ASF in the same manner as an external function.
The format is:

nam ([{f{al,all...1])
where

nam 1is the name of the ASF
a is an actual argument

NOTE

You must define all ASFs before you type
any executable statements.

When a reference to an arithmetic statement function appears in an
expression, FORTRAN associates the values of the actual arguments with
the dummy arguments in the ASF definition., FORTRAN then evaluates the
expression in the defining statement and uses the resulting value to
complete the evaluation of the expression containing the function
reference.

You specify the data type of an ASF either implicitly by the 1initial
letter of the name or explicitly in a type declaration statement.

Dummy arguments in an ASF definition only indicate the number, order,
and data type of the actual arguments. You may use the same names to
represent other entities elsewhere in the program unit. Note that
with the exception of data type, FORTRAN does not associate
declarative information (such as placement in COMMON or declaration as
an array) with the ASF dummy arguments. Also, you cannot use the name
of the ASF to represent any other entity within the same program unit.

10-3

SUBPROGRAMS

The expression in an ASF definition may contain function references.
Any reference to an ASF must appear in the same program unit as the
definition of that function. You cannot wuse an ASF name in an
EXTERNAL statement.

An ASF reference must appear as, or be part of, an expression; you
must not use it as the left side of an assignment statement.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. You must assign values to actual
arguments before the reference to the arithmetic statement function.
Examples:

Definitions
VOLUME (RADIIUS) = 4,189XRADIUSYX3
SINH(X) = (EXP(X)~EXF(-X))%0.5

AVG(AYB:Cr3,) = (A+RHCHI/3. (Invalid;v constant as dummy
argument not permitted)

ASF References

AVG(AP Ry C) = (AHRTCIZZ, (Definition)

GRADE = AVG(TEST1»TEST2XLAR)

IF (AVGIR D Q) W LT AVG(X Y Z))G0TO 300

FINAL = AVG(TEST3yTESTA«LARD) (Invalid; data type of third
argument does not agree with dummy
argument)

10.3.2 FUNCTION Subprogram

A FUNCTION is an external computing procedure that returns a value.
You use this value as an expression or as part of an expression.

The format is:

[{typ]] FUNCTION nam(al[[,a...]11)
where

typ 1is an optional data type specifier

nam 1is a name of the function

a is one of a maximum of six dummy arguments
A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing
procedure. FORTRAN transfers control to a FUNCTION subprogram by a

function reference and returns to the calling program unit when it
encounters a RETURN statement,

10-4

SUBPROGRAMS

Yo
sp

2

u must always specify at least one argument to a FUNCTION. You may
ecify other arguments explicitly or place them in COMMON.

A FUNCTION subprogram returns a single value to the calling program
unit by assigning that value to the function's name. FORTRAN
determines the data type of the returned value by the function's name
unless you have specified the data type.

A function reference that transfers control to a FUNCTION subprogram

has the form:
nam ([[a[[,all...]1])

where

nam is the symbolic name of the function
a is an actual argument

When FORTRAN transfers control to a function subprogram, FORTRAN
associates the values you supply through the actual arguments {(if any)
with the dummy arguments (if any) in the FUNCTION statement. FORTRAN
then executes the statements in the subprogram.

NOTE

You may not pass an arra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>