
OS/8
Language Reference Manual

Order No. AA-H609A-TA

OS/8
Language Reference Manual

Order No. AA-H609A-TA

ABSTRACT

This dccument describes the following languages
supported by as/s: BASIC, FORTRAN IV,
PALS, FORTRAN II, FLAP/RALF, SABR.

SUPERSESSION/UPDATE INFORMATION: This manual supersedes sections of the
OS/S Handbook (DEC-S8-0SHBA-A-D).

OPERATING SYSTEM AND VERSION: aSia V3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, March 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II
VAX
DECnet

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-IO
SBI

10/82-15

CONTENTS

BASIC

FORTRAN IV

PAL8

FORTRAN II

FLAP/RALF

SABR

DOCUMENTATION SET FOR OS/8

OS/8 SYSTEM GENERATION NOTES (AA-H606A-TA)

The System Generation Notes provide the information you need
to get a new OS/8 system running.

OS/8 SYSTEM REFERENCE MANUAL (AA-H607A-TA)

The System Reference Manual describes OS/8 system
conventions, keyboard commands, and utility programs.

OS/8 TECO REFERENCE MANUAL (AA-H608A-TA)

The TECO Reference Manual describes the OS/8 version of this
character-oriented text editing and correcting program.

OS/8 LANGUAGE REFERENCE MANUAL (AA-H609A-TA)

The Language Reference Manual describes all languages
supported by OS/8, including BASIC, FORTRAN IV, and the PAL8
assembly language.

OS/8 ERROR MESSAGES (AA-H610A-TA)

This manual lists in alphabetical order all error messages
generated by OS/8 system programs and languages.

v

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3
1.2.3.1
1.2.3.2
1.2.3.3
1.3
1.4
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.4.1

1.6.4.2
1.6.4.3
1.7
1.7.1
1.7.2

1.7.3
1.7.3.1
1.7.4
1.7.5

1.8
1.8.1
1.8.1.1
1.8.1.2
1.8.1.3
1.8.1.4
1.8.1.5
1.8.1.6
1.8.1.7
1.8.1.8

CONTENTS

OS/8 BASIC

OVERVIEW
Writing a BASIC Program
The BASIC Character Set
Entering and Running a BASIC Program

ELEMENTS OF BASIC
Constants
Numeric Constants
String Constants
Variables
Numeric Variables
String Variables
Subscripted Variables
Expressions
Arithmetic Expressions
Relational Expressions
String Concatenation

FORMATTING BASIC STATEMENTS
THE ASSIGNMENT STATEMENT -- LET
THE COMMENT STATEMENT -- REMARK
INPUT AND OUTPUT STATEMENTS

INPUT
READ, DATA, and RESTORE
DIMENSION
PRINT
Printing Zones -- Format Control
Characters
printing Numbers and Strings
Printing with the TAB and PNT Functions

CONTROL STATEMENTS
Unconditional Transfer -- GOTO
Conditional Transfer -- IF GOTO and
IF THEN
Looping -- FOR, STEP, and NEXT
Nested Loops
Stopping -- END and STOP
Jumping to Subroutines -- GOSUB and
RETURN

FUNCTIONS
Numeric Functions
Calculating Sine -- SIN
Calculating Cosine -- COS
Calculating the Arctangent -- ATN
Calculating the Tangent
Finding the Square Root -- SQR
The Exponential Function -- EXP
Calculating the Natural Logarithm -- LOG
The Integer Function -- INT

iii

Page

1-1

1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-5
1-5
1-5
1-6
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-11
1-11
1-12
1-14
1-16

1-17
1-17
1-18
1-19
1-19

1-20
1-20
1-22
1-23

1-23
1-24
1-25
1-25
1-26
1-26
1-27
1-27
1-27
1-28
1-28

1.8.1.9
1.8.1.10
1.8.1.11
1.8.2
1.8.2.1
1.8.2.2
1.8.2.3
1.8.2.4

1.8.2.5

1.8.2.6

1.8.2.7
1.8.3
1.8.3.1
1.8.3.2

1.8.4
1.8.5
1.9
1.9.1
1.9.1.1
1.9.1.2
1.9.2
1.9.2.1
1.9.2.2
1.9.2.3
1.9.2.4

1.10
1.11
1.11.1
1.11.2

1.11.3
1.11.4
1.11.5
1.11.6
1.11.7

1.11.8
1.11.9
1.11.10
1.11.10.1

1.11.10.2
1.11.10.3
1.11.10.4

CHAPTER 2

2.1
2.2
2.2.1

CONTENTS (Cont.)

The Absolute Value Function -- ABS
The Sign Function -- SGN
Random Numbers -- RND
String Functions
Finding the Length of a String -- LEN
Finding a Substring -- POS
Displaying a Substring SEG$
Converting a Character to ASCII Code
ASC
Converting ASCII Code to a Character
CHR$
Converting Numbers from String to Numeric
Format -- VAL
Converting a Number to a String -- STR$
User-Defined Functions
The FNa Function and the DEF Statement
The UDEF Function Call and the USE
Statement
The Debugging Function -- TRC
Calling for the Date -- the DAT$ Function

FILE STATEMENTS
File Control
Opening a File
Closing a File
File I/O

FILE#
CLOSE#

Reading Data from a File -- INPUT#
Writing Data on a File -- PRINT#
Resetting a File -- RESTORE#
Checking for End-of-File -- the IF END#
Statement

SEGMENTING PROGRAMS -- THE CHAIN STATEMENT
BASIC COMMANDS

Entering a New Program -- the NEW Command
Calling for an Old Program -- the OLD
Command
Running a Program -- the RUN Command
Displaying a Program -- the LIST Command
Storing a Program -- the SAVE Command
Renaming a Program -- the NAME Command
Erasing the Workspace -- the SCRATCH
Command
Leaving BASIC -- the BYE Command
Resequencing a Program -- Calling RESEQ
Key Commands
Correcting Typing and Format Errors
DELETE, CTRL/U
Eliminating Program Lines -- RETURN
Interrupting Program Execution -- CTRL/C
Controlling Program Listings on the
Terminal -- CTRL/S, CTRL/Q, and CTRL/O

CREATING ASSEMBLY LANGUAGE FUNCTIONS

INTRODUCTION
THE BASIC RUN-TIME SYSTEM - BRTS

BRTS Symbol Tables

iv

Page

1-29
1-29
1-29
1-30
1-31
1-32
1-32

1-33

1-34

1-35
1-36
1-36
1-36

1-37
1-38
1-39
1-40
1-40
1-40
1-41
1-42
1-42
1-43
1-44

1-45
1-46
1-47
1-48

1-48
1-49
1-49
1-50
1-51

1-51
1-51
1-52
1-52

1-53
1-53
1-53

1-53

2-1

2-1
2-2
2-3

2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.11.1
2.2.11.2
2.2.12
2.3
2.4

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.5
2.5.1
2.6
2.7

2.8
2.8.1

2.8.2
2.8.3
2.8.4
2.8.5

CHAPTER 3

3.1
3.2
3.3
3.4

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.3

CONTENTS (Cont.)

The Scalar Table
The Array Symbol Table
The String Symbol Table
The String Array Table
String Storage
The String Accumulator
String Array Storage
The DATA List
Array Space
Compiler Pseudo-Code
File Buffer Space
Device Handler Space
The BRTS I/O Table
The BRTS Floating-Point Package
The Floating-Point Accumulator
Floating-Point Routines
BRTS Overlay Buffer

CALLING FLOATING-POINT ROUTINES
USING BRTS SUBROUTINES IN ASSEMBLY-LANGUAGE
FUNCTIONS

ARGPRE
XPUTCH
XPRINT
PSWAP
UNSFIX
STFIND
IvlPY
DLREAD
ABSVAL

PASSING ARGUMENTS TO THE USER FUNCTION
Using the USE Statement

BRTS INPUT/OUTPUT
INTERFACING AN ASSEMBLY LANGUAGE FUNCTION
TO BRTS
SOME GENERAL CONSIDERATIONS

Routines Unusable by Assembly Language
Functions
Using OS/8
Using Device Driver and File Buffer Space
Using the Interrupt Facility
Using Page 0

OPTIMIZING SYSTEM PERFORMANCE

BYPASSING THE BASIC EDITOR
PLACING BASIC OVERLAYS ON THE SYSTEM DEVICE
GROUPING FUNCTION CALLS IN BASIC PROGRAMS
MAKING SAVE IMAGES OF BASIC SOURCE PROGRAMS

OS/8 BASIC SYSTEM BUILD INSTRUCTIONS

THE BASIC SYSTEM
MAKING SAVE IMAGES FROM BINARY FILES

Non-EAE BASIC
EAE BASIC

ASSEMBLING THE BASIC SOURCES

v

Page

2-3
2-3
2-4
2-5
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-10
2-10
2-11
2-11
2-12
2-12

2-15
2-15
2-15
2-16
2-16
2-17
2-17
2-18
2-18
2-18
2-18
2-19
2-21

2-21
2-24

2-24
2-24
2-24
2-24
2-25

3-1

3-1
3-2
3-2
3-3

4-1

4-1
4-1
4-1
4-2
4-3

CHAPTER 5

5.1
5.2
5.3
5.4
5.5
5.6

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

FIGURE 2-1

TABLE 1-1

5-1

CONTENTS (Con t .)

LAB8/E FUNCTIONS FOR OS/8 BASIC

GENERAL DESCRIPTION
PREPARING BASIC FOR LAB8/E FUNCTIONS
DEFINITION OF LAB8/E SUPPORT FUNCTIONS
LAB8/E EXAMPLES
GETTING ON THE AIR WITH BASIC
LAB8/E FUNCTION SUMMARY

SUMMARY OF BASIC EDITOR COMMANDS

SUMMARY OF BASIC STATEMENTS

SUMMARY OF BASIC FUNCTIONS

BASIC ERROR MESSAGES

FIGURES

BRTS Configuration

TABLES

Alphanumeric Characters and Corresponding
ASCII Code Numbers
LAB8/E Function Summary

vi

Page

5-1

5-1
5-2
5-2
5-10
5-19
5-19

A-I

B-1

C-1

D-1

Index-1

2-2

1-34
5-19

CHAPTER 1

OS/8 BASIC

1.1 OVERVIEW

BASIC (Beginner's All-Purpose
high-level computer language
educational applications.

Symbolic Instruction Code) is
for scientific, commercial,

a
and

• BASIC is all-purpose. You can use it to process large amounts
of data as well as to solve complex mathematical problems.

• BASIC is conversational. You write programs with simple
English keywords and common mathematical expressions. You
run, store, and retrieve programs with a set of simple
commands resembling English verbs.

• BASIC is interactive. You can input data while a program is
running and make changes and corrections in statements under
the direction of the BASIC editor. BASIC locates any
formatting errors you make in entering your program and prints
appropriate messages to help you correct them.

1.1.1 writing. a BASIC Program

You write a BASIC program as a series of numbered lines, each
containing one or more instructions called statements.

The format of a typical one-line statement line is

(line number) Statement Line Terminator

Keyword I Argument

For example:

10 PRINT RETURN

The line number which may range from 1 to 99999 -- identifies the
line and indicates its position in the sequence of operations set out
in the program. You do not have to enter the lines in numerical
order. BASIC automatically sorts them before it executes the program.
You may remove or insert lines at any time to modify a program. For
this reason, it is good programming practice to leave room for later
additions by numbering lines in increments of five or ten.

The first element in the statement -- the keyword -- tells BASIC what
to do. For example, the keyword in the example -- PRINT -- instructs
BASIC to display output, such as a message or the result of a
computation, on the terminal.

1-1

OS/8 BASIC

The second element in the statement -- the argument -- may be a
formula, a word or phrase, a variable, a line number -- anything BASIC
can take action upon. In the example above, the argument is the
message "HOORAY!", which BASIC will display on the terminal.

The line terminator -- RETURN -- enters the program line into the
system. Even though you type the line on the keyboard and see it
echoed on vour terminal screen, the BASIC editor does not receive it
until you ~trike the RETURN key.

The last line in every BASIC program must be an END statement. The
format is

(line number) END

BASIC statements are described in Sections 1.3 through 1.7.5.

1.1.2 The BASIC Character Set

The alphabet of the BASIC language is the full set of ASCII
Standard Code for Information Interchange) characters.
includes

• Upper-case letters A through Z

• Numbers 0 through 9

• Special characters (* and $, for example)

• Nonprinting characters (space and tab, for example)

(American
This set

You may include all ASCII characters in a program. BASIC converts
lower-case letters to upper case, ignores nonprinting characters, and
leaves all other characters unchanged.

1.1.3 Entering and Running a BASIC Program

To run a BASIC program you must first enter it into a special area in
the memory of your computer -- called the workspace -- that BASIC
reserves for user-written programs. To do this, summon the BASIC
editor by typing

in response to the Monitor dot. BASIC will then display the message

NEW mi OLD

to determine if you want to enter a program from the terminal or run
one that you have previously stored as a file.

Assume, for example, that you have a new program called CHEERS that
you want to enter and run. Type

NEW OR OLD -- NEW CHEERS

1-2

OS/8 BASIC

As soon as BASIC displays a message to indicate that it is READY,
begin typing your program line by line.

10 FOR K::::1 TO 3
20 PRINT "HOORAY'"
30 NEXT K
99 END

This complete four-line program now resides in the workspace. To run
it, type the command

BASIC displays a header line, followed by the program output.

HOOF.:AY ,
HClClF~AY !
HOClI;:AY!

In addition to the RUN command j BASIC provides commands that let you
display on the terminal the program that is in the workspace, store it
as a file on a peripheral device and retrieve it later for re-use,
change its name, renumber it, or erase it from the workspace. For a
complete description of BASIC commands, see Section 1.11.

1.2 ELEMENTS OF BASIC

The following sections define the elements of BASIC programming.

1.2.1 Constants

A constant is a quantity with a fixed value. In BASIC, you may enter
constants from the terminal or instruct BASIC to read them from a data
list or from a file during program execution.

1.2.1.1 Numeric Constants - BASIC accepts numbers within the range

and treats all numbers as decimal numbers. That is, it accepts any
number containing a decimal and assumes a decimal point after any
integer.

BASIC uses a second format -- called
notation -- to express numbers outside
The format for an E-type number is

xxxx.xxxx E(+ or -)nnn

exponential or E-type
the range +.00001<N<999999.

where E represents "times 10 to the power of." Thus, for the number
23.4E2, read "23.4 times 10 to the power of 2." Expressed another way,

23.4E2=23.4*10**2=2340

You may input data in either format. Results of computations with an
absolute value outside the range +.00001<N<999999 are always output in
E-type format.

1-3

OS/8 BASIC

BASIC prints six significant digits in normal operation as shown in
the following examples.

You enter:
.01
.0099
999999
1000000
.0000009

BASIC outputs:
.01
.0099
999999
1.00000E+006
9.00000-007

BASIC automatically suppresses leading zeros in
trailing zeros in decimal fractions. BASIC
numbers in the form

(blank or -) x.xxxxxE(+ or -)nnn

For example:

-3.37021E+008 equals -337,021,000
7.26000E-004 equals 0.000726

integer
outputs

numbers and
exponential

BASIC stores numbers internally with a precision of 23 bits.
Arithmetic operations are accurate to 22 bits. No rounding is done.

BASIC does conversions from ASCII to internal format and vice-versa in
extended precIsIon. Conversion to internal format is rounded to 23
bits. On output, BASIC rounds the result to 6 decimal digits.

1.2.1.2 String Constants - A string constant is any keyboard
character or group of characters -- letters, numbers, spaces,
symbols -- that you want to use as data. In BASIC programs, string
constants must be enclosed by quotation marks. The quotation marks
instruct BASIC to treat characters within them exactly as you type
them in at the terminal.

For example, this program of PRINT statements

:LO PFnNT HI AM A STRING-
20 PFnNT .@/.$ *& $/.:&-
30 PFnNT H$346.<j>B 1

40 PRINT • • • HI THERE'···
!7jO priINT • :30 + 20·
60 PF<INT 30 + 20
99 END

will cause BASIC to display

I Ai-, A ST~~ I NG
@/'$'.'*& $%&
$:346.9B
• ~H THEF~E'·
:30 of- 20
!~jO

Note that BASIC does not consider the enclosing quotation marks to be
part of the string. As line 40 demonstrates, to display quotation
marks, you must place them within a double pair.

Lines 50 and 60 show the difference between string and numeric data.
The quotation marks cause BASIC to display the string "30 + 20"
exactly as you enter it. In line 60 BASIC performs a computation on
the expression 30 + 20 and prints the sum of 50.

1-4

OS/8 BASIC

1.2.2 Variables

In BASIC programming, a variable is a symbolic name representing a
number or a character string. When you assign a numeric or string
value to a variable (with a LET statement, for example), the val~e is
said to be "stored" in the variable. This means that BASIC has placed
the value in a memory location ~- or locations -- associated with the
variable name.

For example j the following statement stores the value 37 in the
variable N.

LET N=37

If N already contains a value, the new value replaces it.

Once you have assigned a value to a variable, BASIC will use the value
in any expression in which the variable appears. For example:

This statement evaluates the expression N*2 and stores the result in
the variable B.

You may instruct BASIC to change the value of a variable any number of
times during one execution of a program. BASIC always uses the most
recently assigned value when performing calculations.

The following sections describe numeric variables, string variables,
and subscripted variables.

1.2.2.1 Numeric Variables - A numeric variable name consists of a
letter or a letter followed by a digit. For example,

Acceptable Variables Unacceptable Variables

M 2C (A variable cannot begin with a digit.)

R2 AB (A variable may contain only one letter.)

Unless you specify otherwise, BASIC automatically sets all variables
to zero before executing a program. However, if you wish to assign
zero, it is good programming practice to do the initializing yourself
at the beginning of the program. You can do this with a series of LET
statements or by using READ and DATA statements. For example, this
statement

10 LET A=0\B=O\C=5

tells BASIC to assign 0 to A and Band 5 to C.
READ and DATA.)

(See Section 1.6.2 for

1.2.2.2 String Variables - A string variable name consists of a
letter -- or a letter and a digit -- followed by a dollar sign. A$
and A2$ are both legitimate string variable names; 2A$ and AA$ are
not.

You may assign no more than eight characters to a string variable
unless you have first specified the dimensions with a DIM statement.
(See Section 1.6.3.)

1-5

oSia BASIC

1.2.2.3 Subscripted Variables - A subscripted variable consists of a
string or numeric variable name followed by a subscript in
parenth~ses. A subscript may be a number, a numeric variable, an
expressIon, or any two such elements separated by a comma. The
following are all legal subscripted variables:

A (2)

A{K)

M(3,4)

M(I,J)

G(K-l)

F$ (3.4)

If the subscript is not a whole number, BASIC uses only the whole
number part. Thus, in the example above F$(3.4) is the same as F$(3).
BASIC permits a subscript value of zero.

The subscript in a numeric variable serves as a pointer to a location
in a list or table. For example, this subscripted numeric variable

x (3)

indicates the fourth position in the list

X(O), X(l), X(2), X(3), X(4), X(5)

Note that all subscripted variables in a list or table share the same
variable name.

Two subscripts appended to a numeric variable (and separated by
commas) indicate a row and column number in a table. This variable

A(3,5)

points to row three column five.

One subscript appended to a string variable name indicates the length
of the string. Two subscripts indicate its position in a list and its
length. For example, this variable

R$(35)

will accept a string constant 35 characters long. This variable

R$(5,35)

indicates that the sixth position in a list (beginning with O) holds a
string 35 characters long.

You cannot create a table of string variables in a BASIC program.

A program may contain the same variable in both a subscripted and an
unsubscripted form. For example, BASIC will recognize A(l} and A in
the same program. However, once subscripted, a variable must contain
the same number of subscripts throughout the program. If A(l) occurs,
for example, BASIC will not accept A(3,4).

For further discussion of lists and tables, see the DIM statement in
Section 1.6.3.

1-6

OS/8 BASIC

1.2.3 Expressions

An expression is a group of numerics or alphanumerics which, when
evaluated, equals a number or a string. Expressions contain special
symbols -- called operators -- which direct BASIC in its evaluation.
BASIC recognizes three types of operators:

• Arithmetic operators

• Relational operators

• String operators

1.2.3.1 Arithmetic Expressions - BASIC uses the following operators
to perform addition, subtraction, multiplication, division, and
exponentiation.

Symbol Meaning Example

+ Addition A+B

Subtraction A-B

I Division A/B

or ** Exponentiation AlB or A**B

In any mathematical formula, BASIC first treats expressions enclosed
by parentheses. After parentheses, BASIC maintains the following
order of priority.

1. Exponentiation

2. Multiplication and Division (equal priority)

3. Addition and Subtraction (equal priority)

When all of the operators in an expression have equal claim to
priority, BASIC simply evaluates the expression from left to right.
For example, in this expression,

A+B-C

BASIC adds A to B and then subtracts C from the sum.

Parentheses let you control the order in which BASIC performs the
operations called for in an expression. You may nest parentheses
within parentheses. Where nesting occurs, BASIC will give first
attention to the elements contained in the innermost "nest."

In this example,

A=7* ((B**2+4) IX)

the order of priority

1. B**2

2. B**2+4

3. (B**2+4)/X

4. 7 ((B** 2+4) IX)

is

BASIC raises B to the power of 2.

BASIC adds 4 to B**2.

BASIC divides the result so far by X.

BASIC multiplies by 7 and then assigns the
result to A.

1-7

OS/8 BASIC

Since BASIC ignores spaces,
expressions easier to read.
appearance of the example above.

you may use them to make complex
Spacing will considerably improve the

A = 7 * ((B * * 2 + 4) IX

1.2.3.2 Relational Expressions - Relational operators instruct BASIC
to determine the relationship between two values in an expression.
BASIC recognizes six relational operators.

equal

< less than

=< or <= less than or equal to

> greater than

=> or >= greater than or equal to

<> or >< not equal

Relational operators set the conditions in IF-THEN statements.
statement

10 IF A>B THEN 50

This

directs BASIC to determine the relationship between A and B and jump
to line 50 if A is greater.

You can use strings and string variables in relational expressions.
BASIC compares strings one alphanumeric character at a time, using
ASCII code numbers to determine if one character is "greater" or
"less" than another. BASIC proceeds from left to right until it
reaches the end of the strings or until it discovers an inequality.
If one string is shorter, BASIC adds spaces to it until both are the
same length. For example, in comparing AB to ABCD, BASIC will treat
AB as AB (space) (space).

1.2.3.3 String Concatenation - BASIC recognizes the ampersand (&) as
an operator in string expressions. The ampersand allows you to
concatenate strings -- that is, to join them together. For example:

to LET A$:=:8BEAN·
20 LET BS= uTOWN 8

30 PRINT AS & B$
99 END

This program will cause BASIC to display:

BF(~NTOWN

You may use the ampersand to concatenate strings wherever a string is
legal -- with one exception. A concatenated string variable may not
appear to the left of the equal sign in a LET statement. Thus, this
statement is legal:

10 LET AS=B$ & C$

this statement is not:

10 LET AS & B$ = C$

1-8

OS/8 BASIC

1.3 FORMATTING BASIC STATEMENTS

Every BASIC program consists of a sequence of numbered lines, each
containing one or more instructions called statements.

The format of a typical single-statement line is

(line number) keyword argument

where the keyword is an instruction to BASIC and the argument is some
element that BASIC can act upon.

Here are some examples of single-statement lines.

10 PRINT -HOORAY·

20 LET A = 8

45 GO TO 90

80 INPUT R$

A multistatement line is one that contains
keyword/argument combination. The format is

(line number) STATEMENTl\STATEMENT2\STATEMENT3

For example:

30 LET X=X + 1 \ PRINT X \ IF X=25 GO TO 80

more than one

BASIC executes the statements in a multistatement line from left to
right. The backslash -- like RETURN -- terminates a statement.

The line number -- which may range from 1 to 99999 -- identifies the
line and any statement or statements it contains; it also indicates a
line's position in the seguence of operations set out in the program.
Keep in mind the following features and rules when entering and
numbering BASIC lines.

• You may enter lines in any order. The RUN command causes
BASIC to sort all lines into numerical order before executing
the program.

• You may add, delete, or shift lines at any time to modify your
program.

• You should number lines in increments of five or ten, in order
to leave room for additional statements you may want to insert
later.

• If your modified program contains consecutively numbered
lines, making it difficult to insert further statements, you
may renumber your program with the BASIC RESEQ program. The
RESEQ program lets you specify a suitable increment between
lines.

The keyword -- the first element in the statement -- tells BASIC what
it must do in order to successfully execute the instruction. The
argument of the statement is the entity that BASIC acts upon. It may
be a number, a string, an expression, a variable, or a line number.
For example, in the single-statement lines above, the keyword PRINT
tells BASIC to display the string HOORAY! on the screen, the keyword
LET to assign the value 8 to the variable A, the keyword GOTO to jump
to line 90, and the keyword INPUT to receive a value from the terminal
and assign it to the variable R$.

1-9

OS/8 BASIC

1.4 THE ASSIGNMENT STATEMENT -- LET

The LET statement uses the equal sign (=)
variable.

to assign a value to a

The format is

(line number) [LET] v expression

where

v

expression

is a variable

is a number, a string, a variable,
arithmetic expression

or an

The LET statement is the only BASIC statement in which the keyword is
optional. For example, these two lines

1 () I ... ET (:) I::·
,.J

:1.0 {i ~5

will both cause BASIC to assign the value 5 to the variable A.

The equal sign in a LET statement indicates replacement rather than
equality. That is, the LET statement causes BASIC to evaluate the
expression on the right of the equal sign and assign the value to the
variable on the left, replacing its previous value. For example, the
statement

1 5 /\ ::= 1< t 1

causes BASIC to add one to the value of K and store the result in the
variable K.

BASIC performs any mathematical operations and functions that you call
for in a LET statement. In this statement

20 LET A :=: C t SQF~ (B)

BASIC sets the variable A equal to the value of C plus the square root
of the variable B.

This statement

~:5 (:) $:::: "Y fYZ H

assigns a string to a string variable.

The following statement causes BASIC to set element 3,2 in array A
equal to element 1,4 in array B.

20 LET A(3,2) = B(1,4)

1.5 THE COMMENT STATEMENT -- REMARK

The REM statement lets you document your source program with notes and
comments, for example:

5 REM SUBROUTINE SWAPS VALUES A AND B

1-10

OS/8 BASIC

1.6 INPUT AND OUTPUT STATEMENTS

BASIC provides you with three ways to supply a program with data:

• The INPUT statement lets you type in data while the program is
"-"'nT"'lii nn
.L '"".A.A.L j..&":' •

• The READ, DATA, and RESTORE statements let you insert data
into the program before you run it.

BASIC file statements make it possible for
outside the main program and retrieve
control.

This section describes only the first two methods.
for information on file input and output.

to store data
under program

See Section 1.9

The BASIC PRINT statement causes BASIC to display strings and the
results of computations on the terminal.

1.6.1 INPUT

The INPUT statement allows you to enter data while the program is
running.

The format of the INPUT statement is

(line number) INPUT xl, x2, ... ,xn

where xl through xn represent numeric variables or string variables.
If the INPUT statement contains both numeric and string variables, you
must enter the appropriate type of data in the proper sequence,
assigning numbers to numeric variables and data strings to string
variables.

For example, the following line

10 INPUT A, B$, C

requires a number, a string, and another number entered in that order.

The INPUT statement causes BASIC to pause during the execution of the
program, print a question mark (?), and wait for you to type in one
value for each variable in the statement. Enter the values,
separating them with commas, and press the RETURN key. If you press
RETURN without typing in all the data requested, BASIC will display
another question mark and await the rest of the data. If you provide
more data than the statement requests, BASIC saves the remaining or
unused data for use by the next INPUT statement.

BASIC recognizes only the following characters as numeric data.

digits 0 through 9

+ or -

the letter E (for use in floating-point numbers)

(first decimal point)

1-11

OS/8 BASIC

BASIC ignores leading spaces and treats all other characters as
delimiters for separating numeric data. When BASIC encounters a
character other than those specified above, it will assume that it has
corne to the end of the entry relating to the variable it is currently
reading and will apply any character typed in after that to the next
variable. Two delimiters in succession signify that the data between
delimiters is o.

For example, the following program requires five numbers:

99 END

BASIC prints a question mark to request data.

?

If, in response to the INPUT prompt, you type

-2, 3.7A4E3 9>+1

BASIC will assign values to variables in the following manner:

A:-2, B:3.7, C:4000 (4E3=4xlO~3=4000), D:9, E:I

BASIC recognizes all characters -- including quotation marks -- as
string data and assumes a string length of 8 characters unless you
have defined the string variable with a DIM statement. (See Section
1.6.3.) Since it accepts all characters as string data, BASIC treats
only the carriage return as the delimiter of a string. To terminate a
data string, type the RETURN key.

1.6.2 READ, DATA, and RESTORE

The READ and DATA statements make it possible
to a program before you run it. During
values listed in the DATA statement to the
statement. READ and DATA statements occur
each other. RESTORE causes BASIC to reuse
statement.

The format of the READ statement is

(line number) READ xl, x2, ... , xn

for you to include data
execution, BASIC assigns
variables in the READ
only in combination with
the values in a DATA

where xl through xn represent variable names separated by commas.

The format of the DATA statement is

(line number) DATA xl, x2, ... ,xn

where xl through xn represent values separated by commas.

1-12

OS/8 BASIC

Like the INPUT statement, the READ statement must occur in the program
before the point where the data is required. DATA statements normally
appear at the bottom of the program before the END statement, where
you can find them easily when you wish to change input data.

BASIC handles the items in READ and DATA statements sequentially.
That is, it assigns the first value in the DATA statement to the first
variable in the READ statement, the second variable to the second
value, and so on.

A READ statement may contain more or fewer variables than there are
values in one DATA statement. READ causes BASIC to search all
available DATA statements in the order of their line numbers until it
has found values for all variables. When it has assigned values to
all of the variables in one READ statement, BASIC will hold the
remaining values in the DATA statement until it comes to the next READ

All three of these routines will instruct BASIC to set variable A
equal to 1, variable B equal to 2, and variable C equal to 3.

75 DATA 1,2,3
99 END

10 HEAD A?B,C

-... - DATA 1 ,.) '/;:J , A.o

BO Ih'=lTA :3
99 END

10 REf~D A

30 F.:EAD B,C

.?~) DAT{~ 1,2,3
99 END

A DATA statement may contain both string and numeric data. String
data in a DATA list must always be enclosed by quotation marks.

This program will cause BASIC to assign 5 to variable C, "AAA" to
variable D$, 12 to variable E, and "BEER" to variable F$.

10 READ C, D$~ E, F$

75 DATA :5, uAAA H
, 12., -BEER R

The RESTORE statement makes it possible for you to use the same data
more than once in a program. RESTORE instructs BASIC to reset the
data pointer to the first value in the first DATA statement in the
program. Since BASIC then proceeds to read through the values as
though for the first time, you may use the same variable names on the
second pass through the data.

1-13

OS/8 BASIC

The following program reads a DATA list twice.

10 F;:Et~D tl!,B,C,D
20 PRINT A;B;C;D
30 F<ESTOr~[
40 F;:E(~D E;F,G;H
50 PRINT [,F,G,H
)'~) D(lT,:") :!. ~:?!,:3 ~-4
99 END

BASIC displays

:I. ::? ,::. -4
1 2 ::5 -4

1.6.3 DIMENSION

The DIM statement lets you create a list or table of subscripted
variables for storing data. (You can organize numeric data in both
lists and tables, but BASIC stores strings in lists only.) DIM also
defines the length of a string assigned to a string variable.

To create a list -- a one-dimensional array -- of subscripted numeric
variables, use the following format:

where

(line number) DIM x(n)

x

n

is a numeric variable name. All subscripted variables
in the list share the same variable name.

specifies the number of numeric elements in the list.
(Since BASIC assigns a as the subscript of the first
variable, the number of elements in the list is n + 1.)

For a table -- a two-dimensional array -- of subscripted numeric
variables, use the form

where

(line number) DIM x(n,m)

x

n

m

is a numeric variable name

specifies the number of rows in the table. (The actual
number of rows in the table is n + 1.)

specifies the number of columns.
number of columns.)

(m + 1 equals the

For example, this DIM statement introduces a list of six subscripted
numeric variables:

to D1I1 ACS)

10 DIM A (5)

IA(O) lAO) I A (2) jA(3) jA(4) jA(5) I

1-14

OS/8 BASIC

The following statement describes a table of 24 numeric elements.

10 DIM A(3~5)

FOUR
ROWS

A (0,0)

A (1,0)

A (2,0)

A (3,0)

A (0, 1)

A(?,?)

A (2, 1)

A (3, 1)

SIX COLUMNS
i i

A (0,4) I A (0,5) I A (0,2) A (0,3)

A (1,2) A(1,3) A(1,4) A(1,5)

A (2,2) A (2,3) A (2,4) A (2,5)

A (3,2) A (3,3) A (3,4) A (3,5)

The number of elements in a table is (n + l)*(m + 1).

To specify the length of a string, use the DIM statement in the
following manner.

where

(line number) DIM X$(n)

X$

n

is a string variable

is the length of the string.
more than 72 characters.
characters in length must be
statement.

A string may contain no
All strings that exceed 8
dimensioned with a DIM

To introduce a list of subscripted string variables, use the format

where

(line number) DIM X$(n,m)

X$

n

m

is a string variable name

specifies the number of strings in the list.
number of strings is n + 1.)

is the length of each string up to 72 characters

(The

For example, this DIM statement describes one string 12 characters
long:

:LO DIM C$(l2)

This statement describes 4 strings, each 20 characters long:

This program will fill variables from a DATA list:

:LO DIM D$(3,20)
20 FOr, Y::=O TO 3
30 READ D$(Y)
40 NEXT Y
50 FOR Z==O TO 3
60 PF::INT [I$(Z)
70 NEXT Z
80 DATA ·ZERO·,BONE",BTWO·,BTHREE B

1-15

OS/8 BASIC

Keep in mind the following features and rules concerning the DIM
statement:

• Arrays are limited in size only by the amount
memory -- that is, space not used by the
program statements.

of available
monitor or the

• Subscripts nand m must be integer numbers. They may not be
variables.

•

•

A variable may not appear in a program with subscripts
than the ones you have described in the DIM statement.

BASIC assumes a string length of 8 characters or less
you define the string variable with a DIM statement.
wish to assign a string that is more than 8 characters
you must DIMension the string variable.

• BASIC will not accept two-dimensional string variables.

higher

unless
If you

long,

• BASIC assigns a subscript of 0 to the first element in every
array. Therefore, the number of elements in a one-dimensional
array is n + 1, and the number of elements in a
two-dimensional array is {n + l)*{m + I}.

• You may define more than one array with a single DIM
statement. For example, this statement dimensions both the
one-dimensional array A and the two-dimensional array B.

1.6.4 PRINT

The PRINT statement lets you instruct BASIC to display the results of
computations, comments, and the values of variables, or to plot the
points of a graph on a terminal.

The format of the PRINT statement is

(line number) PRINT expression{s)

where expressions are numbers, variables, strings, or arithmetic
expressions separated by format control characters. Using the PRINT
statement without expressions will output a blank line on the
terminal.

To output the result of a computation or the value of a variable at
any point in the program, type the line number, PRINT, and the
variable name or names separated by a format control character. BASIC
will use the current value of the variables to evaluate any algebraic
expression in a PRINT statement. Thus, the program

10 A=16 \B=5 \C=4
20 PRINT A; (C+B)/3; SQR (A)
99 END

will output the following values on the terminal:

16 3 4

1-16

OS/8 BASIC

To print a message or comment on the screen, type the text, enclosed
by quotation marks, as the expression of a PRINT statemente Use PRINT
message statements in combination with INPUT statements to specify the
data to be entered.

:!. () PI:;: I NT B NU~-iB[I:;: OF ~:)HEEP 8

20 INPLJT S

These lines in a program will produce the following output on the
screen.

NlJr1BER OF ~:;HEEP

1

PRINT statements may contain a combination of messages and numeric
variables. This line

50 PRINT "TOTAL NUMBER OF SHEEP =H; T

will (assuming that T=354) cause the following to be output during
execution of the program:

TOTAL NUMBER OF SHEEP 354

1.6.4.1 Printing Zones -- Format Control Characters - OS/8 BASIC
divides a terminal line into five fixed zones (called print zones) of
fourteen columns each. To output data in a five-zone format, separate
the variables in the PRINT statement with commas. To output data in a
single-space row, separate the variables with semicolons.

The following program illustrates the use of control characters in
PRINT statements:

10 READ A,B,C
15 PRINT A,B,C,A**2,B**2,C**2
20 PRINT
30 PRINT A;B;C;A**2;B**2;C**2
75 DATA 4;5;6
99 END
t\UNNH
.i
36

4 5 6 16 25 36

READY

As this example illustrates, when you list more than five variables in
a PRINT statement, BASIC automatically moves the sixth number to the
beginning of the next line.

1.6.4.2 Printing Numbers and Strings - BASIC prints all numbers
(integer, decimal, and E-type) in the following format:

sign number space

where the sign is either minus (-) or blank and the number is always
followed by a blank space.

1-17

OS/8 BASIC

BASICBASIC prints strings exactly as you type them with no leading or
trailing spaces. (To print quotation marks, you must delimit them
with a double pair.)

For example:

10 PRINT .a·PRINTING QUOTATION MARKs aaa

20 END
RUNNH

"PRINTING QUOTATION MARKS·

1.6.4.3 Printing with the TAB and PNT Functions - The TAB function
allows you to position characters anywhere on the terminal line. You
may use the TAB function only in combination with a PRINT statement.

The format of the TAB function is

TAB (X)

where X is the position (from 1 to 72 columns available on the
terminal) in which the next character will be displayed.

Each time the TAB function appears in a PRINT statement, BASIC counts
the positions from the beginning of the line, not from the current
position of the printing head. For example, the TAB function in the
following program causes BASIC to print the character "I" at 24
equally spaced positions across the line.

10 FOR K=3 TO 72 STEP 3
20 PRINT TAB(K);H/a;
30 NEXT K
99 END

If the argument X in the TAB function is less than the current
position of the printing head, BASIC starts printing at the current
position. If the argument is greater than 72 (the number of columns
available in an output line), BASIC executes a carriage return and a
line feed and then resumes printing at position 1.

The PNT function allows you to perform special nonprinting actions on
the terminal, such as ringing the buzzer, erasing the screen, moving
the cursor, etc.

The format of the PNT function is

PNT(X}

where the argument X represents the decimal value of the 7-bit ASCII
character to be output.

For example, to ring the buzzer on the terminal, type

10 PRINT PNT(07)

1-18

OS/8 BASIC

1.7 CONTROL STATEMENTS

During the execution of a program, BASIC ordinarily passes from one
line to the next in ascending numerical order. BASIC control
statements make it possible for you to alter the normal
sequence -- either unconditionally or only when certain conditions are
met. Thus, you can:

• repeat a set of statements

• skip statements

• stop and check values

• terminate a program

This section describes the statements that allow you to change the
normal sequence of statement execution.

1.7.1 Unconditional Transfer -- GOTO

The GOTO (or GO TO) statement causes BASIC to jump to any line in the
program that you specify. The GOTO statement sets no conditions.

The format of the GOTO statement is

(line number) GOTO n

where n is the number of the line to which BASIC will jump.

When BASIC encounters a GOTO statement, it jumps immediately to the
line beginning with the number indicated. For example, this program

:t() GOTD 40
20 PRINT "SECONDs
30 STOP
·40 F'PINT BFIF~STII

~::;() GOTD 20
<;.'9 END

will display

F I F~ST
SECOND

If you specify a nonexecutable statement (such as REM) in a GOTO line,
BASIC will proceed to the next executable statement.

NOTE

If you inadvertently create an infinite
loop with a GOTO statement, halt BASIC
with the CTRL/C command.

1-19

OS/8 BASIC

1.7.2 Conditional Transfer -- IF GOTO and IF THEN

IF GOTO and IF THEN statements use relational operators to test for a
specified relationship between two variables, numbers, strings, or
expreSSIons. When the relational expression is true, BASIC executes
the GOTO instruction. When the IF statement is false, BASIC proceeds
to the next line in the program.

The format of the IF GOTO (or IF THEN) statement is

(line number) IF vI relation v2 GOTO x

where

vI and v2 represent variable names,
expressions

relation is any relational operator

x is the number of the line
if

This example

1 () LET A::::5
20 IF A=2 GOIO 99
30 PRINT -NO·
99 END

the

will cause BASIC to display

relation is true

numbers, strings,

to which BASIC will

or

jump

BASIC compares strings one alphanumeric character at a time, using
ASCII code numbers to determine if one character is ~greater" or
"less" than another. BASIC proceeds from left to right until it
reaches the ends of the strings or until it finds an inequality. If
one string is longer than the other, BASIC adds spaces to the shorter
string until both are the same length. For example, in comparing AB
to a four-letter string, BASIC will treat AB as "AB (space) (space)".

1.7.3 Looping -- FOR, STEP, and NEXT

Programs frequently require the repetition of some instruction or
sequence of instructions. One way to achieve this is to write out the
steps as many times as you wish BASIC to execute them. For example,
this program

:to PRINT -HOORAY! •
20 PRINT • HOOR(.iY ! •
30 PRINT -HOORAY!-
99 END

will instruct BASIC to display HOORAY!
terminal.

in three lines on the

A better way to achieve the same end is to write the PRINT statement
once and instruct BASIC to run through it three times. This type of
repetition, which requires BASIC to jump backward in the program and
retrace its steps, is called looping.

1-20

OS/8 BASIC

To execute a loop in a program, BASIC must
statements to repeat, and how many times to
statements let you supply this information.

know two things: which
repeat them. FOR and STEP

The format is

where

(line number) FOR v=x TO y[STEP z]

v

x

y

STEP z

is a variable name. It is the index of the loop,
increased or decreased each time the loop is
executed.

is an expression (numerical value, variable name,
or mathematical expression) indicating the initial
value of the index -- that is, the value of v
before the loop is executed the first time.

is an expression indicating the terminal value of
the index -- the value of v after the last
execution of the loop.

is an optional
increment. If
value of 1.

statement used to specify the
you omit it, BASIC assumes a STEP

For example, this statement

15 FOR K=2 TO 20 STEP 2

tells BASIC to repeat the loop as long as K is less than or equal to
20. Since K is incremented by 2 after each execution, BASIC will run
through the loop 10 times.

The NEXT statement marks the end of a program loop. It occurs only in
combination with a FOR statement.

The format of the NEXT statement is

(line number) NEXT v

where v is the index variable in the FOR statement.

The NEXT statement causes BASIC to add the STEP value to the index (or
to add 1 if the FOR statement contains no STEP value) and to check to
see if the value of the index exceeds the terminal value. If it does,
BASIC falls through the loop and executes the line following the NEXT
statement.

To cause BASIC to exit from a loop before the index has reached the
terminal value, use an IF-THEN statement. BASIC can reenter only
those loops that it has left before completion.

NOTE

Do not attempt to transfer control from
a loop to a subroutine located above it
in the program. Doing so may cause
BASIC to execute the loop a wrong number
of times.

1-21

OS/8 BASIC

The following example shows one way to use a FOR-NEXT loop to produce
the same results of the HOORAY! program above.

:I. 0 FIJI:;: I<::::? TO 6 ~:)TFP 2
:1.5 PRINT "HOORAY' H

20 NEXT 1<
(,:.;<.) END

The FOR statement tells BASIC to repeat the loop as long as K is less
than or equal to 6. Since K is incremented by 2 after each execution,
BASIC will run through the loop three times.

1.7.3.1 Nested Loops - You may place one or more loops within a loop
provided that the inner loops are completely contained by the outer
and that no overlapping of loops occurs. Placing one loop within
another is called nesting. Each nested loop must have its own FOR and
NEXT statements and must terminate before the loop that contains it.

The following examples show legal and illegal

Legal Legal

10 FOR A=l TO 10 10 FOR A=l TO 10
20 FOR B=2 TO 20 20 FOR B=2 TO 20
30 NEXT B 30 NEXT B
40 NEXT A 40 FOR C=3 TO 30

50 FOR D=4 TO 40
60 FOR E=5 TO 50
70 NEXT E
80 NEXT D
90 NEXT C
95 NEXT A

The following program contains a nested loop:

:I. 0 P PIN T "I N hi E F;: " ~! ~ "(J 1../ T [F: H

1 ~,:,:j P r;: I NT
:::,:0 FOr< J:::: 1. TO 2
3(:' FOH D:::: J TO :3
40 PI:~INT If~O
~:.=j (; i'J E: X "r (J
c;O NEXT J
r.,'(,;':' eND

BASIC will execute the loops and display:

INNEr;:

:I.

L
:I.

OUTEJ=<

:J.

:J.

types of nested loops:

Illegal

10 FOR M=l TO 10
20 FOR N=2 TO 20
30 NEXT M
40 NEXT M

Note that each execution of the outer loop causes BASIC to run through
the inner loop three times.

1-22

OS/8 BASIC

1.7.4 Stopping -- END and STOP

Two statements -- END and STOP -- will cause BASIC to terminate the
execution of a program and return control to the editor.

The END statement informs the BASIC compiler that it has come ~o the
last line in the program. Every BASIC program must end with an END
statement. No program may contain more than one END statement. A
STOP statement cannot take the place of the END statement.

The format of the END statement is

(line number) END

which causes BASIC to return to the edit mode, display

and await your next command.

The STOP statement also terminates a running program, but unlike END,
it may occur more than once in the same program.

The format of the STOP statement is

(line number) STOP

The following program demonstrates the use of the STOP statement:

:LO INPUT A
20 READ B
30 IF A=B GOlD 50
40 STOP
50 PI=i:INT RECHJAL H

..sO DATA :~

99 END

The STOP statement here prevents BASIC _from displaying EQUAL when A
does not equal B.

1.7.5 Jumping to Subroutines -- GOSUB and RETURN

A subroutine is a sequence of statements that performs some operation
required at more than one point in the program. Subroutines are
generally placed at the end of the program, usually before any DATA
lines and always before the END statement.

Two statements -- GOSUB and RETURN -- cause BASIC to jump to a
subroutine, execute it, and jump back to the point in the main program
where it left off. GOSUB and RETURN occur only in combination with
each other.

The format of the GOSUB statement is

(line number) GOSUB n

where n is the number of the first line in the subroutine.

When BASIC encounters a GOSUB, it
immediately following it and
subroutine.

records
jumps to

1-23

the
the

number
first

of the
line of

line
the

OSi8 BASIC

The format of the RETURN statement is

(line number) RETURN

The RETURN statement always occupies the last line in the subroutine.
RETURN causes BASIC to jump to the line following the last GOSUB
statement it has executed.

You may use the control statements described in this chapter to direct
BASIC from one line to another within a subroutine or even to a line
in another subroutine.

You may
another
prints

also
up

"nest"
to ten

subroutines -- use one subroutine to call
levels. If you exceed the tenth level, BASIC

GS AT LINE ~:J

where y represents the line number where the error occurred.

The following sample program contains two simple subroutines:

10 GOSUB 60
20 PF~INT H 1.1 M BACK FROM 1. •
30 GOSUB 80
40 PRINT ·I/M BACK FROM ...,.

... :.

:::;0 STOP
60 PFnNT ·SUBROUTINE 1 •
·70 j;~ETURN

BO PF~ I NT • SUBF.:OUT I NE 2-
90 I:;~ETURN

9<;> END

The STOP statement prevents BASIC from "falling into" the subroutines
and executing them after it has executed the PRINT statement in line
40. The program will produce:

SUBF;:OUT I NE 1
I'M BACK FROM 1
SUB/~:()UT;[NE 2
I! 11 HAC I·;; FROM 2

1.8 FUNCTIONS

Functions are special subroutines that perform frequently used
operations on numbers and strings.

The format of most functions is

NNN(X)

where

NNN

(X)

is a three-letter name

is an argument enclosed in parentheses. The
argument may be a number, a variable, an
expression, or another function.

Some functions require multiple arguments and take the form

NNN(X,Y,Z)

1-24

OS/8 BASIC

Most functions compute a value based on the value of the argument or
arguments involved. They are said to "return" this value. For
example, SQR(Z) returns the square root of Z.

Functions may return either strings or numbers. Functions that return
character strings are distinguished from functions that return numbers
by the dollar sign ($) appended to their name. For example, the CHR$
function converts an ASCII code number to its equivalent character and
returns the character. The ASC function converts a character to its
code number.

Unlike conventional subroutines, functions do not require GOSUB and
RETURN statements. They produce their results "in place." For
example, the following line will assign the variable A a value of 2:

10 LET A=SQR(4)

1.8.1 Numeric Functions

BASIC provides numeric functions to perform standard mathematical
operations. For example, you may find it necessary to find the sine
of an angle. You can do this by looking it up in a table of sine
values or by using the BASIC SIN function.

BASIC provides the following trigonometric functions:

• Sine function (SIN)

• Cosine function (COS)

• Arctangent function (ATN)

BASIC provides algebraic functions to find:

• the square root of a number (SQR)

• the value of e -- 2.71828 -- raised to any power (EXP)

• the natural logarithm of a number (LOG)

• the integral part of a number (INT)

• the absolute value of a number (ABS)

• a value based on the sign of a number (SGN).

BASIC also includes a function RND -- that returns a random number.
You can use this function when you are trying to simulate an
unpredictable situation with a BASIC program.

1.8.1.1 Calculating Sine -- SIN - The BASIC SIN function lets you
calculate the sine of an angle specified in radians. The format is

SIN(X)

where

x is a number, numeric variable,
another function, representing
angle in radians

1-25

expression, or
the size of an

For example, this program

10 LET P = 3.14159
20 PRINT 8IN(30*P/180)
:.30 END

will display:

OS/8 BASIC

1.8.1.2 Calculating Cosine -- COS - The BASIC COS function lets you
calculate the cosine of an angle specified in radians. The format is

COS (X)

where

x

Thus, these lines

is a number, numeric variable,
another function, representing
angle in radians

10 PRINT [08(45*3.14159/180)
20 END

will display

express ion, or
the size of an

1.B.l.3 Calculating the Arctangent -- ATN - The BASIC ATN function
lets you calculate the angle (in radians) whose tangent is given as
the argument of the function.

The format is

ATN(X)

where

x is a number, variable, expression, or another
function representing the tangent of an angle

Thus, this two-line program

10 PRINT ATN(+57735)
20 END

will display

o + ~52~5~:.:;98

1-26

OS/8 BASIC

1.8.1.4 Calculating the Tangent - Although BASIC does not provide a
tangent function, you can find the tangent of an angle with the
following trigonometric equation:

sine (angle)

cos (angle)

Translated into BASIC, this equation will read

10 T=SINCR)/COS(R)

where T is the tangent and R is an angle expressed in radians.

1.8.1.5 Finding the Square Root -- SQR - The BASIC SQR function
computes the positive square root of an expression. The format is

SQR(X)

where

x is a number, variable, expression, or another
function

If the argument is negative, the absolute value of the number is used.
For example, this program

10 PRINT SQf:~(16)

20 PRINT SQR(-4)
30 END

will display

4
2

1.8.1.6 The Exponential Function -- EXP - The BASIC EXP function
calculates the value of e raised to the X power, where e is equal to
2.71828. That is, EXP(X) is equivalent to 2.71828**X.

The format is

EXP(X)

where

X

Thus, this program

is a number, numeric variable, expression, or
another function

10 PRINT EXP(1.5)
20 END

will display

1-27

OS/8 BASIC

1.8.1.7 Calculating the Natural Logarithm -- LOG - The BASIC LOG
function calculates the natural logarithm of X (to the base e).

The format is

LOG (X)

where

X is a number, numeric variable, expression, or
another function

EXP and LOG perform opposite functions. That is the exponent x (the
input in the EXP function) in the formula eAx=y is the logarithm of y
to the base e (the output of the LOG function) in the formula x=log{e)
y.

This BASIC formula demonstrates their relationship:

LOG(EXP(X)) = X

1.8.1.8 The Integer Function -- INT - The BASIC INT function returns
the value of the largest integer not greater than the argument. The
format is

INT(X)

where

X is a number, numeric variable, expression, or
another function

To round off a number to the nearest integer, specify INT(X+.5).

For example, this function

J () I NT (34 • (.))')

returns the value 34;

these functions

10 INT (34.67 t .5)
15 INT (34+36 + +5)

return the values 35 and 34;

this function

10 INT (-14+:37)

returns the value -15.

1-28

OS/8 BASIC

1.8.1.9 The Absolute Value Function -- ASS - The BASIC ABS function
returns the absolute value of an expression. The format is

ABS(X)

__ 1- __ _

Wllt=Lt=

x is a number, numeric
expression

variable, or numeric

By mathematical definition, the absolute value of a number which
represents its magnitude is always positive. The absolute value of a
positive number is equal to the numberi the absolute value of a
negative number is equal to the number times -1. For example, this
program:

10 PRINT f-iBS(-·~5)

20 END

will display

1.8.1.10 The
determine if
The format is

SGN(X)

where

x

Sign Function SGN - The SGN function lets you
an expression is positive, negative, or equal to zero.

is a number, numeric variable, expression, or
another function

If the argument is any positive number, the SGN function will return a
value of 1. If the argument is negative, SGN returns -1. If it is 0,
SGN returns O. For example, these lines

10 LET A=5\LET B=O\LET C=-2
20 PRINT SGN(A); SGN(B); SGN(C)

will display

because

5>0,
0=0, and
-2<0.

1.8.1.11 Random Numbers -- RND - A random-number series is a series
of numbers that are not related to each other in any way. You can use
random numbers in a BASIC program to simulate a situation in which the
outcome is not predictable the flip of a coin, for example, or the
rolling of dice.

1-29

OS/8 BASIC

It is not possible to produce a series of truly random numbers on a
computer since, given the same starting conditions, a computer always
comes up with the same results. Instead, BASIC uses complex
calculations to generate a series of numbers that seem unrelated.
This is called a pseudo-random series.

The BASIC RND function produces pseudo-random numbers between -- but
not including -- 0 and 1. The format is

RND(X)

where

x is a dummy variable. Type the function just as it
appears above.

Each time BASIC encounters the RND function in a program, it produces
a different decimal number. However, if you run the program again,
BASIC will output the same set of numbers. To generate a different
set of numbers with each execution, use the RANDOMIZE statement in
your program.

The format of the RANDOMIZE statement is

(line number) RANDOMIZE

The following routine will print a different series of random numbers
each time you run it. (RANDOMIZE uses the value you enter to vary the
output.)

10 INPUT X
20 FOR L=l TO 20
30 PRINT TNT (10*RND(X»;
40 NEXT L
50 IF X (0 Goro 20
99 END

1.8.2 String Functions

BASIC string functions let you examine and modify strings and perform
certain conversions between numbers and strings. Functions that
return strings are distinguished from functions that return numbers by
the dollar sign ($) after their name.

BASIC provides three functions that allow you to analyze and
manipulate strings:

• LEN function -- determines the length of a string

• POS function -- searches for the position of a set of
characters within a string

• SEG$ function -- copies a segment from a string

1-30

OS/8 BASIC

Other functions enable you to convert strings to numbers and numbers
to strings:

• ASC function -- converts a character to its ASCII
equivalent

• CHR$ converts an ASCII code number to a character

• STR$ converts a number to its string representation

code

• VAL -- converts a string representation of a number to a
number

1.8.2.1 Finding the Length of a String -- LEN - The LEN function
returns the number of characters in a string.

The format is

LEN (X$)

where

X$ is a string, a string variable, or several
concatenated strings and/or string variables

For example,

(1) This line:

will display

(2) This program:

1.0 A$::~HUP, H

20 B$=uDOWN, AND •
30 PRINT LEN(A$&BS&BAROUND8)
40 END

will display

because

"UP, "
"DOWN, AND"
"AROUND"

Total

4 characters
10 characters

6 characters

20 characters

If a string has never been defined, it will have a length of O.

This program:

20 PF([NT LEN n .. $)

<?9 END

will display

()

1-31

OS/8 BASIC

1.8.2.2 Finding a Substring -- POS - The BASIC POS function returns
the location of a specified group of characters in a string.

The format is

where

POS(X$,Y$,Z)

X$

Y$

Z

is the string you want to search

is the substring you are searching for

is the position in the string at which you want to
begin the search

This function searches X$ for the first occurrence of Y$. It begins
the search with the zth character in X$. Depending on what it finds,
POS returns the following results.

1. If it finds substring Y$, POS returns the position of the
first character in the series.

2. If it fails to find Y$, POS returns a O.

3. If Y$ is a null string (containing no characters), POS
returns a 1.

4. If X$ is a null string, POS returns a o.

NOTE

If Z is less than 0 or greater than the
string, BASIC prints an error message
and stops the program.

These lines cause the POS function to start at the seventh character
in the string "ABCDEFGHIDEF" and search for the substring "DEF":

10 DIM B2$(12)
20 B2$ = ~ABCDEFGHIDEF·
30 PRINT POS (B2$, HDEF", 7)

POS returns 10. (Change the 7 to a 1 in line 30 and POS will return a
4.)

1.8.2.3 Displaying a Substring
for a segment -- a substring
display.

SEG$ - The SEG$ function searches
of a string and returns it for

1-32

OS/8 BASIC

The format is

SEG$ (X$, Y , Z)

X$ is the string containing the substring you want to
display. X$ may be a variable or the string
itself.

y is the position of the first character In the
substring

Z is the position of the last character in the
substring

SEG$ returns a null string (no characters) ~ &: -
l..L;

• Y is greater than the length of X

• Z is less than 1

• Z is less than Y

If Y is less than 1, SEG$ sets it to 1. If Z is greater than the
length of X$, SEG$ sets it equal to the length of X$.

These lines

:I. 0 II I 1"'1 n:2~1; (:L 2)
20 B2$ "ABCDEFGHIDEF"
~v PRINl SEGS(B2$,3,5)

will display:

c:nE

1.8.2.4 Converting a Character to ASCII Code -- ASC - The ASC
function converts a one-character string to its ASCII code equivalent.
The format is

ASC(X)

where

X is a one-character string

ASC returns the equivalent decimal number for the argument. Table 1-1
lists all the alphanumeric characters available on the terminal and
their ASCII code numbers.

1-33

OS/8 BASIC

Table 1-1
Alphanumeric Characters and Corresponding ASCII Code Numbers

Character Decimal

@ a
A 1
B 2
C 3
D 4
E 5
F 6
G 7
H 8
I 9
J 10
K 11
L 12
M 13
N 14
0 15
p 16
Q 17
R 18
S 19
T 20
U 21
V 22
W 23
X 24
y 25
Z 26
[27
\ 28
] 29

30
31

Thus, this program

:I. 0 I..~ET i:)$::::· * B

20 PRINT ASCCRPR),ASC(AS),ASC(R)
30 END

will display

:1.6

Character Decimal

(space) 32
! 33
" 34
35
$ 36
% 37
& 38 ,

39
(4-0
) 41
* 42
+ 43 ,

44
- 45
. 46
/ 47
0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57
: 58
; 59
< 60
= 61
> 62
? 63

I

I

1.8.2.5 Converting ASCII Code to a Character -- CHR$ - The CHR$
function converts a code number to its equivalent character.

The format is

CHR$(X)

where

X is a number, a numeric expression, or a numeric
variable

1-34

OS/8 BASIC

CHR$ returns the equivalent character for the argument. (See the ASC
function for the table of decimal/character conversIons.)

If the argument is greater than 63, divide it by 64 and use the
remainder to search the table.

Thus, this line:

10 PRINT CHR$(1)~CHR$(40)

will display

A

This line:

10 PRINT CHRS(207),CHR$(77)

will display

.Q

207/64
77/64

M

3, with a remainder of 15
1, with a remainder of 13

Using 15 and 13 to search the table yields the letters "0" and "M".

1.8.2.6 Converting Numbers from String to Numeric Format == VAL - The
VAL function converts numbers in string form to numeric data. The
format is

VAL (X$)

where

X$ is a string made up of those values that BASIC
accepts as numeric data. These are:

digits 0 through 9
+ or - sign
the letter E
leading spaces
the first decimal

BASIC ignores them
po in t (.)

Keep in mind that BASIC does not consider numbers and numeric
expressions in string form as numeric data. It will not use them in
calculations or as arguments in mathematical functions until you
convert them into numeric format with the VAL function.

This program instructs BASIC to read a string, convert it into numeric
form, and multiply it by two:

:to INPUT (IS;
20 PRINT VALCAS)*2
30 END

BASIC displays:

?::? ,. 4611 :1.
-4 + (?222::.~

1-35

OS/8 BASIC

1.8.2.7 Converting a Number to a String -- STR$ - The STR$ function
converts numerics to strings. The format is

STR$(X)

where

x is a numeric expression

The STR$ function returns the string value of the
as BASIC would print it but without a leading or
the STR$ function when you want to print a number
trailing space and when you want to perform
functions on a number.

1.8.3 User-Defined Functions

expression exactly
trailing space. Use
without a leading or
string operations or

1.8.3.1 The FNa Function and the DEF Statement - In some programs,
you may want to perform the same sequence of string or numeric
operations more than once. As an aid in such cases, BASIC lets you
define your sequence as a special function -- called a user-defined
function -- that you can call for in the same way you would call for
any string or numeric function that BASIC provides.

The BASIC DEF statement lets you create user-defined functions. The
format of the DEF statement is

where

(line number) DEF FNa (list) = expression

(list)

expression

contains the dummy variable or variables that
appear in your operation. The same variables must
appear in the expression.

is the operation you want BASIC to perform each
time you call for the function. The operation may
contain numbers, several variables, other
functions, or mathematical expressions.

For example, if you write a program in which you repeatedly use the
operation e

A

-x2+5, you can introduce it as a user-defined function
with this DEF statement:

30 DEF FNEeX)=EXP(-X**2)+5

and then call for various values of
FNE(3.45), FNE(A+2), etc.

This statement:

10 DEF FNACS)=S**2

the

will cause the user-defined function in this line

20 LET F\::::FN(~ (4)

to return a 16.

1-36

function -- FNE(.l),

OS/8 BASIC

If the function involves more than one variable, BASIC will identify
them by their position. For example, this program

10 DEF FNH(N~P)=2*P+N
20 LET X=4\LET Y=5
30 PRINT FNH(X~Y)
40 END

will display

14

BASIC takes the first value in the function (4) as "N", because "N"
appears first in the DEF statement. It takes the second value (5) as
"Ph, because "ph is in the second position.

DEF FNH (N,P) = 2*P+N

first position second position

PRINT FNH(X,Y)

You must introduce .each user-defined function with a separate DEF
statement, taking care to place each DEF statement before the first
occurrence of the function it defines. For example, if you want to
use a special function called FNB(X) in your program, you must first
write a DEF statement with FNB as the parameter. You may define up to
26 FN functions in the same program (FNA, FNB •.. ,FNZ).

1.8.3.2 The UDEF Function
lets you add one or more
BASIC program and use them
function. For complete
functions, see Chapter 2.

Call and the USE Statement - OS/8 BASIC
user-coded assembly-language functions to a
in the same way you would use any other
instructions to write and interface such

To specify a user-coded function in an OS/8 BASIC program, type

where

line number UDEF function name(a,b,c)

function name consists of alphabetic characters only and has at
least one argument (a dummy, if necessary)

(a,b,c) are arguments. User-written assembly-language
functions may contain up to four numeric and two
string arguments.

For example:

:I. 0 LET F~::::4

l~.'5 LET B::::b
:? () I... Ern ::~ 1 ()
~:.? ~:.:.; l.1 1:1 E~ FO FI L. or (X ,.. '{ ~ :z)
30 LET D=PLT(R,B,O)
3!.~j PF~INT 4*D
40 END

1-37

OS/8 BASIC

Line 25 introduces the function PLT to OS/8 BASIC and indicates the
number and type of arguments associated with it. In line 30 the
function appears as any standard function might appear in a BASIC
program. If the function requires an array, a USE statement
identifying the array must precede the statement that calls the
function. Thus:

10 DIM S(15,5)

20 LET Q=10
22 USE S
25 UDEF PLT(X,y,Z)

1.8.4 The Debugging Function TRC

The TRC function causes BASIC to print the line numbers of statements
in a program in the order that it executes them. This lets you follow
the course of loops and subroutines and provides a useful tool for
debugging a program.

The format of the TRC function is

v = TRC(X)

where

v

x

is any letter. It has no purpose except to occupy
the position in the line.

is 1 or O. 1 turns the function on; 0 turns it
off.

When it comes upon a TRC(l) in a program, BASIC begins displaying the
line number (enclosed by percent signs) of each statement it
executes -- with the exception of the following types: DATA, DEF,
DIM, END, GOTO, NEXT, RANDOMIZE, REM, and STOP. Encountering a TRC(O)
will cause it to stop outputting line numbers and resume normal
operation.

1-38

For example, this program:

60 T=TRC(l)
70 GOSUB 90
80 GOTO 140
90 PRINT lIN OUTER SUB 1

100 GOSUB 120
110 RETURN
120 PRINT BIN INNER SUBs
130 RETURN
140 T::::TRC (0)
150 END

will display

% 70 %
% 90 i~

IN OUTER SUB
% 100 %
% 120 %
IN INNER SUB
% 130 %
% 1:1.0 %
% 140 %

OS/8 BASIC

1.8.5 Calling for the Date -- the DAT$ Function

The DAT$ function returns the current system date.

The format is

DAT$(X)

where

x is a dummy variable

Enter this function exactly as it appears above.
eight-character string in the form

mm/dd/yy

For example, these lines:

:1.0 LET D$ = DAT$(X)
20 PRINT It$

will display

07 /~~O/'77

DAT$ returns an

if that date was entered with the monitor DATE command.

If you have not specified the date with the MONITOR date command, the
function will return no characters.

1-39

OS/8 BASIC

1.9 FILE STATEMENTS

BASIC file statements -- which are distinguished from other BASIC
statements by the number sign (i) -- let you store data on peripheral
devices for later use in any BASIC program. They include:

• FILE# Describes the file, assigns it a channel number from
1 to 4 (the number of files that BASIC can handle at
one time), and opens it.

• INPUT# Reads data from the file.

• PRINT# writes data on the file.

• RESTORE# Resets the pointer to the beginning of the file.

• CLOSE# Closes the file and removes the channel number.

• IF END# Tests for end-of-file.

In most operations, you open a file (FILE#) for input or output, read
from it (INPUT#) or write on it (PRINT#), and close it (CLOSE#). You
may open only four files at a time -- excluding the terminal, which is
always open and available for use. However, the ability to open and
close files under program control gives you access to an unlimited
number of files. That is, when you close a file, you may reassign its
channel number to a newly opened file.

BASIC treats files in the same way it treats terminal input and
output. The INPUT statement causes BASIC to read a value that you
enter on the terminal and assign it to a variable; the INPUT#
statement causes it to read a value from a file. The PRINT statement
instructs BASIC to display data on the terminal; the PRINT# statement
tells it to write data in a file.

BASIC uses two types of file: string files and numeric files. You
may write numbers into a string file in both string and numeric
format. Numeric files, however, may contain numeric data only.

1.9.1 File Control

You must open a file with a FILE# statement before you can read or
write any data. You should close any files that you open during the
course of a program with a CLOSE# statement. The CLOSE# statement
cancels the channel number that you have assigned with the FILE#
statement, making the channel available to any other newly opened
file.

1.9.1.1 Opening a File -- FILEt - The BASIC FILE# statement opens a
file for input or output, defines it, and assigns a channel number.
An input file is one you are reading from. An output file is one you
are writing to.

1-40

OS/8 BASIC

The format of the FILE# statement is

where

(line number) FILE t#n:"filespec"

t

n

"filespec"

is one of the following:

(blank)
V
N
VN

for
for
for
for

an input
an output
an input
an output

string file
string file

numeric file
numeric file

is the channel number (I through 4) that you are
assigning to the file. It can be a numeric
variable.

is an OS/8 device, file name, and extension. It
must either be a string enclosed by quotation
marks or a string variable.

You must include a channel number (n) in all FILE# statements. (The
channel number of the terminal is always FILE#O.)

For example, this statement describes the string file RXAl:DATA2.AS as
file number 1 and opens it for output:

10 FILEVt1: ·RXA1:DATA2.AS·

This statement describes the numeric file MONEY.NU on RXAI as file
number 2 and opens it for output:

10 FILEVN 2: 8RXA1:MONEY.NU·

These statements describe the string file RXAl:TEST.AB as file number
3 and open it for input:

10 LET AS=BRXA1:TEST.AB·
15 FIL.Et3: AS

This statement describes the numeric file RXAl:FIL3.CD as file number
4 and opens it for input:

10 FILENt4: IRXA1:FIL3.CD B

1.9.1.2 Closing a File -- CLOSEt - The CLOSE# statement closes
file you specify and disassociates it from its channel number.
allows BASIC to reassign the number to another file. After you
a file, you cannot use it again until you reopen it.

The format of the CLOSE# statement is

(line number) CLOSE# n

where

any
This

close

n is the channel number of the file to be closed (or
a variable)

You must close all output files in a program before instructing BASIC
to execute an END, STOP, or CHAIN statement. If you do not close
them, they will be lost.

1-41

OS/8 BASIC

In the following program, the CLOSE# statement allows BASIC to
reassign the channel number of file SYS:TEST.XX to the newly opened
file RXAl:FILD:DA:

50 FILEV il:·SYS:TEST+XX·
60 PRINT il:·AB~·B","CI,"D·
70 CLOSE i1
80 FILE il: I RXA1:FILD+DA I

90 INPUT il:J$

1.9.2 File I/O

You use BASIC files in the same way you use the terminal for
sequential input and output. The difference is that files allow you
to manipulate much more data in much less time than the terminal.

You can open a file to supply input or to receive output, but you
cannot open it to do both at the same time. To update an existing
file, y~u must open it for input, open a new file for output, read the
data from the input file and write the data including any changes you
wish to make on the output file.

1.9.2.1 Reading Data from a File -- INPUT' - The INPUT# statement
instructs BASIC to read data from a file and assign values to
specified variables. BASIC reads file data serially. This means that
it must read through an entire list to get at the last item of data.

The format of the INPUT# statement is

where

(line number) INPUT#n:variables

n

variables

is the channel number of the file you are reading
(or a variable)

is the list of variables -- separated
commas -- into which BASIC will read data

by

The INPUT# statement automatically steps through the file item by item
to find values to satisfy its variables.

In most operations, you write numbers into numeric files and strings
into string files and then read them back into the corresponding
variables. If you wish, however, you may write numbers into string
files and read them back into either numeric or string variables,
depending on how you want to use them. If you assign numbers from a
string file to string variables, they will appear in string form and
be subject to the same rules as other strings. If you assign numbers
from a string file to numeric variables, BASIC will convert them into
numeric form. Keep in mind that string files contain carriage returns
and line feeds. These will appear as zeros if read into numeric
variables.

1-42

OS/8 BASIC

For example, the following program instructs BASIC to write numbers
into a string file and read them back as numeric data. The "e" and
!lL" variables in the INPUT# statement in line 80 receive the zeros
generated by the carriage return and the line feed.

10 FILEVI1: B SYS:FILA.ZZ·
20 FORli1 TO 5
30 PPINT :1=1.! I
40 NEXT I
~:iO CLOSEi 1
60 FILEtl:-SYS:FILA.ZZ·
70 F()F~ I:::: 1 TO 5
80 INPUTI1:J,C,L
90 PRINT J
lOO NEXT I
1:1.0 END

It will display

1

1.9.2.2 Writing Data on a File -- PRINT# - The PRINT# statement lets
you write data on an output file. Its format is

where

(line number) PRINT# n: expression

n

expressions

is the channel number or a variable representing
the channel number

may be numerics or strings, depending on the type
of output file you have opened in the FILE#
statement

• If you open a string output file (FILEV#),
the expressions may be string or numeric,
separated by commas or semicolons. You
may use the TAB and PNT functions when
writing on string files. (See Section
1.6.4.3.)

• If you open a numeric output file
(FILEVN#), the expressions must be numbers
or numeric variables, separated by commas
or semicolons.

When you use the PRINT# statement to write data into an output string
file, BASIC interprets commas, semicolons, and RETURNs the same way it
interprets them in PRINT statements. For example,

10 PRINT R A. , -B R

20 PRINT ·C R
; RD· ;

30 PRINT REB

will display

A B
CDE

1-43

OS/8 BASIC

The following lines will cause the same display:

5 DIM ,.]$(30)
10 FILEVt2: H RXA1:PROG.XX R

20 PRINT =8=2: RA R
, ·H R

30 PRINT 12: ·C n
; RDR;

40 PRINT 12:-E"
~)O CLOSEf.2
60 FILEt2: 8 RXA1:PROG.XX·
"70 INPUTt2!..J$
80 PRINT ,..1$

<?O I NPUTi2! ...J$
100 PRINT ,.1$

When you use the PRINT# statement to write data into an output numeric
file, BASIC converts commas and semicolons to spaces. The file will
simply contain a "list" of numbers separated by spaces. For example,
this program

10 FILEVNtl: R SYS:TST.XX·
20 PRINTi1:1,2
:30 PRINT:ft:l!3,4,
40 PRINTtl!5,6
~:;O CLOSE:fI:1
60 FILENtl!-SYS:TST.XX·
?O FOR X:::: 1 TO 6
80 INPUTil:Z
90 Pr:;~INT Z
100 NEXT X
99("; END

will display

1
'"l
..... :

1.9.2.3 Resetting a File -- RESTOREi - The RESTORE# statement resets
the file back to the beginning so that the next INPUT# statement will
cause BASIC to read the first item in the series. The format is

where

(line number) RESTORE# n

n is the channel number of the file to be reset or a
variable representing the channel number

If n is 0, BASIC resets the DATA list to the beginning.

1-44

OS/8 BASIC

In the following program, RXA1:FILB.LM is a numeric input file
containing the numbers 1 through 9. These instructions:

100 FILENt3: I RXA1:FILB+LM I

110 FOR 1=1 TO 3
120 INPUT t:~:Z

130 PRINT Z
140 NEXT I
:I. 50 F.:ESTOREt3
160 INPUTt3:Z
170 PRINT Z
999 END

will display

1.9.2.4 Checking for End-of-File -- the IF ENDI Statement - The IF
ENO# statement lets you detect the end of a string file. The format
is

where

(line number) IF ENO# n THEN m

n

m

is the channel number of the file in question or a
variable representing the number

is the number of the line in the program to which
BASIC will jump if it has reached the end of the
file

The IF ENO# statement works only on string files and must immediately
follow the PRINT# or INPUT# statement for that file.

When you use the IF END# statement, you are
its last attempt to execute a PRINT#
successful. If it was unsuccessful -- if
read -- BASIC jumps to line m.

For example, in this program

10 FILEVt1: RSYS:PROGA+BB 1

20 PFUNTtl: BAR
30 PFUNTt1! 8B·
40 CLOSEt 1
50 FILEt:!.! "SYS!F'H()(3A+BBH
60 I NPUT:I: 1 : ~~$
70 IF ENDil THEN 100
80 PHINT A$
90 GOlD 60
lOO PRINT BEND OF FILE-
1 :!.o CL..O!3E=I= 1

1-45

asking BASIC to check if
or INPUT# statement was

nothing was written or

OS/8 BASIC

the lines will be executed in this sequence

10
20
30
40
50
60
70
80
90
60
70
80
90
60
70
100
110

so that the display will be

A
B
END OF FILE

1.10 SEGMENTING PROGRAMS -- THE CHAIN STATEMENT

FILE# statements let you manipulate data files under program control.
The CHAIN statement (used in connection with the SAVE command) lets
you do the same thing with files that contain programs.

With the SAVE command, you can divide a long program
segments and then store the pieces in separate files.
execution, CHAIN statements cause BASIC to retrieve the
after another and run them together in a chain.

The format of the CHAIN statement is

CHAIN "filespec"

where

into shorter
During program

segments one

"filespec" is the device and file name -- enclosed by
quotation marks -- of the program you want to run

When BASIC encounters a CHAIN statement in a program, it stops
execution to retrieve, compile (if necessary), and run the program you
have called for. After BASIC has run all the programs in the chain,
the workspace and the BASIC.WS file will both contain the program it
started with.

Since BASIC removes each program from core memory before retrieving
the next one in the chain, you must be sure to CLOSE# all data files
in any program containing a CHAIN statement. If you do not, data will
be lost.

Programs for chaining must all be the same type. A BASIC source
program will chain only to another BASIC source program, and a memory
image file (identified by the .SV extension in the file name) to
another memory image file.

1-46

OS/8 BASIC

NOTE

When chaining BASIC memory image files,
you must place the program being chained
to on SYS. This is a restriction of the
USR CHAIN function.

In the following example, during a run of program PROGl.BA, the CHAIN
statement causes BASIC to halt execution to retrieve and execute the
program called CHAIN1.BA. The CHAIN statement in this program i in
turn, causes CHAIN2.BA to run, completing the series.

NEW CHAIN1.BA
READY

10 PRINT IFIRST LINK=
20 CHAIN ·SYS:CHAIN2.BA·
99 END

SAVE SYS: CHAIN1.BA

F~EADY

NEW CHAIN2.BA

10 PRINT ·SECOND LINK·
99 END

SAVE SYS: CHAIN2.BA

READY

NEW PROG1.BA

10 PRINT ·CHAIN STARTS HERE a

20 CHAIN ·SYS:CHAIN1.BA a

99 END

RUNNH

CHAIN STARTS HERE
FIRST LINK
SECOND LINK

In general, any departure from these procedures will produce a CX
error.

1.11 BASIC COMMANDS

BASIC commands let you create, modify, store, and run programs under
the direction of the BASIC editor. To summon the editor, type BASIC
in response to the OS/80 monitor dot. The editor will respond with
the message

NEW OR OLD

indicating that it has assumed control of the system and reserved a
special area in memory -- called the workspace -- for your program.
You may now tell BASIC whether you wish to enter a new program or call
for one that you have previously written and stored on a peripheral
device.

1-47

OS/8 BASIC

1.11.1 Entering a New Program -- the NEW Command

The NEW command clears the workspace and tells the editor the name of
the program you are about to enter.

The format is

where

NEW filename[.ex]

filename.ex is the name and extension of the new program you
are about to enter. If the extension is omitted,
BASIC calls it ".BA".

If you strike the RETURN key immediately after typing NEW, BASIC
clears the workspace and prompts with the message

FILE NAME --

You must now type the file name and extension and press the RETURN
key.

Thus, the following commands both instruct BASIC to clear the
workspace and name a new program "TEST.BA":

NEW TEST
NEW TEST.BA

You enter a BASIC program line by line, keeping in mind that you must:

• begin each line with a number. Line numbers may range from 1
to 99999 and must contain no internal spaces or nonnumeric
characters.

• terminate each line with the RETURN key.

If you make a typing error, you may correct it by striking the DELETE
key once for each error you wish to erase. If you wish to delete the
entire line, press the CTRL/U key command.

1.11.2 Calling for an Old Program -- the OLD Command

The OLD command instructs BASIC to clear the workspace, find a file on
a peripheral device, and place it in the workspace. The format is

where

OLD dev:filename[.ex]

dev:filename.ex is the device, file name, and extension of
the program you are calling for. If you omit
the extension, BASIC assumes ".BA".

If you strike the RETURN key immediately after typing OLD, BASIC
clears the workspace and prompts with the message

FILE NAME --

You must now type the file name and extension and press the RETURN
key.

1-48

OS/8 BASIC

These two commands both Cause BASIC to clear the workspace and bring
TEST.BA into the workspace from RXAl:

OLD RXA1:
OL RXA1:

TEST.BA
TEST

1.11.3 Running a Program -- the RUN Command

The RUN command instructs BASIC to display a header line (containing
the file name and extension, BASIC version number, and the date) and
execute the program in the workspace. The RUNNH command causes it to
run the program without the header.

The format is

RUN

or

RUNNH

To run a program, BASIC first reserves space in memory for all arrays
dimensioned in DIM statements, defines user functions in DEF
statements, and initializes all numeric variables at zero and all
string variables at null string. Then it begins execution at the
lowest line number.

If BASIC encounters no errors, it will complete execution and display
any data you asked for in PRINT statements. When it has finished, it
will signal

READY

NOTE

The RUN and RUNNH commands also cause
BASIC to store a copy of the program it
is running in a file called BASIC.WS.

If you neglect to save the program with a SAVE command or if for some
reason you cannot retrieve it, call for OLD file BASIC.WS. Keep in
mind that the program in BASIC.WS is always the last one you have run.

1.11.4 Displaying a Program -- the LIST Command

The LIST command causes BASIC to print a header line (containing the
file name and extension, BASIC version number, and date) and display
the program currently in the workspace. The LISTNH command instructs
BASIC to suppress the header.

1-49

OS/8 BASIC

The format is

LIST [n]

or

LISTNH [n]

where

n is a line number in the program

If n is present, the LIST command will cause BASIC to display the line
number n and all the lines following it in the program. If n is
omitted, BASIC will display the entire program.

To terminate a listing, type the CTRL/O key command.

Use the LIST command when correcting or modifying the program in the
workspace. For example, if BASIC informs you that an error exists in
line 30, type LIST 30 to see the line.

30 IF A=X GOlD

When you have detected the error -- in this case the omission of a
line number after GOTO -- rewrite the entire line correctly and press
the RETURN key.

1.11.5 Storing a Program -- the SAVE Command

The SAVE command causes BASIC to take the file currently in the
workspace and store it on any device you specify.

The format is

SAVE [dev:filename.ex]

where

dev:filename.ex is the device, file name, and extension of
the program you want to store. If you omit
the device, BASIC stores the file on DSK:.
If you omit the file name, BASIC uses the
name you gave it in a NEW or OLD command.

The SAVE command provides you with a way to list large programs on the
line printer rather than the terminal. Type

SAVE LPl:

to list the contents of the workspace on the line printer.

1-50

OS/8 BASIC

1.11.6 Renaming a Program -- the NAME Command

The NAME command lets you rename the file currently in the workspace.

The format is

NAME filename.ex

where

filename~ex is the new name of the program

Since this command changes only the name of the file in the
workspace -- not the file itself -- you can use it to create and save
two similar versions of the same program. To do this:

1. Read the program into the workspace with the OLD command.

2. Rename the contents of the workspace.

3. Make the changes.

4. Save the new version under the new name.

1.11.7 Erasing the Workspace -- the SCRATCH Command

The SCRATCH command tells BASIC to erase everything from the
workspace, leaving you a clean area in which to write.

The format is

SCRatch

The OLD and NEW commands also clean the workspace. Nevertheless, it
is good programming practice to use the SCRATCH command before
entering a new program or calling for an old one.

1.11.8 Leaving Basic -- the BYE Command

The BYE command dismisses the BASIC editor and returns control of the
system to the OS/8 monitor.

The format is

BYE

Never give the BYE command without first saving the program in the
workspace. When you call BASIC again and respond to the NEW or OLD
message, BASIC will erase the workspace, destroying the program.

1-51

OS/8 BASIC

1.11.9 Resequencing a Program -- Calling RESEQ

After you have made extensive modifications in a program, you may find
that some parts now contain consecutively numbered lines, making it
difficult to insert additional statements where you may need them.
The BASIC RESEQ program renumbers your program and lets you specify a
suitable increment between lines. RESEQ automatically changes the
line numbers in GOSUB and IF THEN statements to agree with the
renumbered program.

Programs for RESEQuencing must not exceed 350 lines. The lines must
not exceed 80 characters.

Here is an example of a typical resequencing operation:

Command

SAVE DSK:SAMPLE.BA

OLD DSKtRESEQ

HUNNH

FILE? DSK:SAMPLE.BA

READY

OLD DSK:SAMPLE.BA

HEf~DY

I ... ISTNH

Meaning

You save SAMPLE (which is the program
you want to resequence).

BASIC indicates it is ready to receive
your next command.

You call for program RESEQ.

BASIC is ready for your next command.

You tell BASIC to run RESEQ.

RESEQ program asks for file name. You
respond with device, name, and extension
of program you want to renumber.

RESEQ asks for a starting line number
(START) and an increment between line
numbers (STEP). You specify a starting
number of 100 and an increment of 10.

When RESEQ has finished renumbering your
program, BASIC indicates that it is
ready for your next command.

You call back your program.

BASIC is ready for your next command.

You tell BASIC to display program SAMPLE
on terminal.

Don't worry if renumbering seems slow. This is a characteristic of
the RESEQ program.

1.11.10 Key Commands

BASIC key commands let you delete characters and lines that you have
typed, interrupt execution of BASIC programs, and control listings on
the terminal. To type a CTRL command, hold down the CTRL key and
press the appropriate letter.

1-52

OS/8 BASIC

1.11.10.1 Correcting Typing and Format Errors -- DELETE, CTRL/U - To
correct typing errors, press the DELETE key. Each time you strike the
key, another character is deleted.

Sometimes you may find it easier to delete an entire line rather than
makinq corrections with a series of DELETEs. To erase an entire line,
type CTRL/U. This key command ~- which is equivalent to typing DELETE
back to the beginning of the line -- erases the line, echoes
"DELETED", and performs a line feed.

1.11.10.2 Eliminating Program Lines -- RETURN - To delete a line from
a BASIC program, type the line number and press the RETURN key. This
removes both the statement and the line number from the program.

1.11.10.3 Interrupting Program Execution -- CTRL/C - To stop a
program during execution, type CTRL/C. BASIC responds with READY,
allowing you to correct or modify the program.

NOTE

If you type CTRL/C after the READY
message appears, BASIC will return
control to the OS/8 monitor.

1.11.10.4 Controlling Program Listings on the Terminal -- CTRL/S,
CTRL/Q, and CTRL/O - If your program exceeds a single display
frame -- 24 lines -- you may wish to stop the scrolling caused by the
LIST/LISTNH commands.

The following key commands let you control listings.

CTRL/S

CTRL/Q

CTRL/O

Suspends scrolling in the display frame.

Resumes scrolling.

Causes BASIC to abort listing and signal with READY
message.

1-53

CHAPTER 2

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.1 INTRODUCTION

Experienced programmers may write original routines and functions in
assembly language and run them with BASIC programs. Such operations
require knowledge of the BASIC run-time system (BRTS), since BRTS is
the part of BASIC that executes all user-written programs, functions,
and routines. ·The following chapter, which includes a detailed
description of BRTS, assumes that the reader is familiar with the
OS/80 assembly language PAL8.

BASIC consists of five discrete parts:

1. The BASIC editor, which enables you to create and edit source
programs. When you type a RUN command, the editor opens a
temporary file called BASIC.WS, stores the source program in
the file, and chains to the compiler.

2. The BASIC compiler, which translates the source program into
a pseudo-code.

3. The loader, which places the pseudo-code into memory along
with the run-time system.

4. The BASIC run-time system, which interprets pseudo-code and
calls overlays into core memory as it needs them.

5. The BRTS overlays, which consist mainly of BASIC functions.
BRTS reserves one of these for user-written assembly-language
functions and subroutines.

The following chart lists the names of the files in the BASIC system
and the file names of the programs each produces or uses during run
time.

BASIC Component File Name Associated File Use

Editor BASIC.SV BASIC.WS source program storage

Compiler BCOMP.SV BASIC.WS source program storage
BASIC.TM compiled code storage

Loader BLOAD.SV BASIC.TM compiled code storage

BRTS BRTS .SV BASIC.AF overlays of functions,
BASIC.SF if needed
BASIC.FF
BASIC.UF

Note that these file names identify programs in the BASIC system. You
must not use them to identify your own programs.

2-1

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2 THE BASIC RUN-TIME SYSTEM - BRTS

The BASIC run-time system executes all user-written programs,
including original assembly-language functions. The description in
this chapter of the configuration of BRTS during execution uses the
following conventions:

• Memory locations have symbolic names (always capitalized).
You may obtain the actual value of these symbols from the
symbol table for the version of BASIC you are using.

• The symbol table is for a non-EAE system. If the EAE overlay
is used, some minor symbols will change. The major routine
entry points, however, are the same in both systems.

• Variable names used in this chapter -- A, A(O,O), A$, and
A$(O) -- represent the general case.

• All references to "page 0" indicate BRTS page a (page 0, field
0) •

• All diagrams in this chapter locate the lowest memory address
at the top.

During execution, BRTS has the following configuration in memory.

F ield 0

F ield 1

B

ield N F
(WHER

HIG
MEM

EN=
HEST
ORY

INTERPRETER

03400
OVERLAY AREA

04600
FLOATING POINT

PACKAGE
BRTS

06677
FILE TABLE

07000
OS/8 HANDLERS

07600
OS/8 RESI DENT

10000

FILE BUFFERS

12000
PSEUDO CGDE

A

ARRAY SPACE

DATA LIST

SYMBOL TABLES

N THE N7400 FI ELD I OR N7600
MAC HINE) OS/8 RESIDENT

Figure 2-1 BRTS Configuration

2-2

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.1 BRTS Symbol Tables

BRTS reserves space in the highest field in memory for its four symbol
tables, which it uses to locate variables during run time. These
tables include the scalar table (for numeric variables such as A or
B3), the scalar array table (for numeric arrays -- A(l), B(3,4)), the
string symbol table (A$, B2$), and the string array table (B$(2)).
Location CDPro of field 0 contains a CDP to the symbol table field.

2.2.1.1 The Scalar Table - The scalar table, the highest table in
memory, contains an entry for each numeric variable used in the
program. Each entry consists of a three-word floating-point number.
The table reserves a few extra entries for temporary results.
Location SCSTRT in field 0 contains a pointer to the start of the
scalar table.

SCSTRT

CDFIO

SCALAR
TABLE

The Scalar Table

Field 0

POINTER TO ~ SCALAR TABLE

I CDF X I

Field X

....-

3 WORD F.P. NO.

~ ± EXP

± HI MANT

LOW MANT

2.2.1.2 The Array Symbol Table - The array symbol table consists of
successive four-word entries. Each entry specifies the location and
size of a numeric array used in the program and has the following
format:

Word 1 POINTER TO A(O,O)

Word 2 CDF TO FI ELD OF A(O,O)

Word 3 DIMENSION 1

Word 4 DIMENSION 2

2-3

CREATING ASSEMBLY LANGUAGE FUNCTIONS

• Word 1 of each entry is a 12-bit pointer to the location of
the exponent word of the first element in the array.

• Word 2 is a CDF n where n is the field for the pointer in the
first word.

• Word 3 is the first dimension of the array -- obtained by
adding 1 to the M in a DIM A(M,N) statement, since the first
subscript is always 0.

• Word 4 is the second dimension of the array. If the array is
one-dimensional, the second dimension is 0.

To locate the nth element in an array, BRTS performs the following
calculation:

Addr of A(M,N)=3*[M+(DIMl + l)*N] + Addr of A(O,O}

A pointer to the start of the array symbol table less one (for use in
an index register) resides in field ° at location ARSTRT.

The Array Symbol Table

ARSTRT POINTER TO ARRAY TABLE-1

Field a
CDFIO I CDF X

START OF ARRAY r---------,
SYMBOL TABLE. i ~-----'

rl A(O,O)
------I

:J
A(O,l)

ENTRY 1

J
POINTER TO A(O,O) r-1

A(2,O)

AR RAY SYMBOL
TABLE (Field X)

CDF Y

M+1

N+l J
ENTRY 2

A(M,N)

BRTS stores numeric arrays in memory as successive three-word entries
with the first subscript varying the fastest and A(O,O} occupying the
lowest address in memory.

2.2.1.3 The String Symbol Table - The string symbol table contains
successive three-word entries in the following format:

Word 1 POINTER TO STRING

Word 2 CDF FOR STRING

Word 3 -MAX ;::;-OF CHARS IN STRING

2-4

CREATING ASSEMBLY LANGUAGE FUNCTIONS

• Word 1 is a 12-bit pointer to the count word of the string.

• Word 2 in the entry is a CDP for the count word.

• Word 3 is the maximum length of the string (in characters)
stored as a two's complement negative number. (Each string is
allocated INT((n + 1)2)+1 words, where n is the maximum leng~n
specified in a DIM statement, whether that many words are
actually used or not.)

Note that the maximum number of characters in the string represents
the amount of space allocated for the string. The amount of space
actually used is represented by the count word, which BRTS stores with
the string.

Location SRSTRT in field 0 contains a pointer to the start of the
string symbol table (less one) .

STSTRT

CDFIO

ENTRY 1

STRING
SYMBOL TABLE

(Field X)

The String Symbol Table

I POINTER TO STRING SYMBOL h
F;eld 0 I I

~---~:~~---~
,..... COUNT FOR AS

POINTER TO AS

CDF Y

-MAX LENGTH

I

INT (MAX LE
2
NGTH+1) +1

WORDS LONG

STRING AS
(Field Y)

2.2.1.4 The String Array Table - The string array table consists of
consecutive four-word entries in the following format.

Word 1

Word 2

Word 3

Word 4

POINTER TO AS(O)

CDF FOR AS(O)

-MAX = OF CHARS IN AS(O)

DIMENSION OF AS(O)

2-5

CREATING ASSEMBLY LANGUAGE FUNCTIONS

• Word 1 contains a pointer to the count word of string A$(O).

• Word 2 contains a CDF for the count word pointer.

• Word 3 is a two's complement negative
the maximum length (in characters)
array.

number that specifies
of each element in the

• Word 4 indicates the size of the string array, obtained by
adding 1 to M in the statement DIM A$(M,N) since the first
element is always A$(O). A pointer to the start of the string
array table less one resides in field 0 at location SASTRT.

To locate the nth element of a string array, BRTS performs the
following calculation:

addr of A$ (N)=addr of A$ (O)+(INT(ABS(Z)+l)/N+l)*N

where

Z individual character length.

The String Array Table

SASTRT POINTER TO START OF STRING ARRAY TABLE-1

CDFIO

a
STRING ARRAY

TABLE (Field X)

Field 0

CDF X

r---------,
I

1

POINTER TO AS(O)

CDF Y

-N

M+1

2.2.2 String Storage

rl COUNT

COUNT

II
~

J

AS(O)

STRING ARRAY
AS(CM,N)
(Field Y)

AS(1)

BRTS stores strings as 6-bit ASCII characters. The first word in each
string is a character count -- a signed, two's complement number
representing the actual number of characters in the string, not the
number of words devoted to the string. BRTS fills the left half of
each word first, padding out the unused characters with spaces. The
minimum string is one character long.

2-6

CREATING ASSEMBLY LANGUAGE FUNCTIONS

"BAS!C" "BRTS"

COUNT ~ ~ COUNT

"BA" I I I I I "BR"

"SI" I I "TS"

"C" I COUNT FOR

I
NEXT STRiNG

COUNT

COUNT FOR ~ I NEXT STRING

I

operations. BRTS maintains a string accumulator (SAC) for all string
String operations leave their results in the SAC and use
their operands. The SAC starts at location SAC in BRTSi
words long and contains one 6-bit character per word. BRTS
length as a negative number in SACLEN and maintains a page
(less one) to the start of the SAC at SACPTR.

it as one of
it is 80
stores the
o pointer

2.2.4 String Array Storage

BRTS stores string arrays in memory as successive strings, with A${O)
occupying the lowest core address. BRTS allocates space for the
maximum length possible, even though not all of the space may be used.
The space is for the maximum length.

ASIDI {~-+-------t COUNT

ASll{ffi COUNT

COUNT

2-7

WORDS WHERE N IS THE
MAXIMUM LENGTH OF
STRING SPECIFIED IN
DIM STATEMENT

CREATING ASSEMBLY LANGUAGE FUNCTIONS

NOTE

For any of the above data types, a field
boundary may fall anywhere within any
individual item. If your routines use
successive words in any data item they
must check for a field boundary within
that item.

2.2.5 The DATA List

BRTS stores the DATA list (created by the BASIC DATA statement) as
sequential items in the highest field in memory. BRTS allocates
strings an even number of words and assigns a count word as a prefix.

The DATA list always resides in the highest memory field. BRTS
maintains a page 0, field a pointer to the starting address of the
DATA list less one at DLSTRT. Location DLSTP contains the address of
the last word in the list.

IN BASIC:
DATA 1 ,2,"TH REE",4

IN CORE:

STARTING r---------, DLSTRT
ADDRESS OF I L~

~TA LIST _I 1 I'
~ooo 1 (1
00

2
00 J

~----2-0-0-0----~ 2

0000

COUNT STRING

t--__ 24 __ 7_7+7_3 __ 1_0 __ -t} "TH R E E"

22 05

Field N 05 40

3

2000 4

0000

2.2.6 Array Space

POINTER TO DATA LlST-1

POINTER TO LAST WORD
IN DATA LIST

Field 0

BRTS reserves space for arrays in the highest memory field. The
bottom of the array space (line A in Figure 2-1) can exceed the field
boundary and proceed into lower fields, but this happens only in large
programs.

2-8

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.7 Compiler Pseudo-Code

BRTS sends the pseudo-code generated by the BASIC compiler to the
highest field in memory. Note that if the bottom of the pseudo-code
extends below line B (12000) in Figure 2-1, the file space diminishes,
causing a loss in run-time file capabilities. As the bottom of the
pseudo-code approaches 10000, the number of files that you may
simultaneously open at run time approaches zero. (Each file opened at
run time requires at least 400 words of buffer space.)

2.2.8 File Buffer Space

BRTS reserves locations 10000-12000 for file buffer space. It
allocates buffers as it needs them, starting with the lowest free
buffer. BRTS maintains a map of currently allocated buffers called
BMAP on page O. Bits in the map are set if the buffer is in use, and
cleared if the buffer is free. Bit 11 represents the buffer from
10000 to 10377, bit 10 for 10400 to 10777, bit 9 for 11000 to 11377,
and bit 8 for 11400 to 11777. If any of the buffers are not available
because the pseudo-code or variable space extends below 12000, BRTS
sets the corresponding BMAP bits at run time.

BASIC files have the following format:

• Numeric files -- store data as consecutive 3-word
floating-point numbers, 85 to each 256-word block. The last
word in each block is unused. There is no end-of-file marker.

• ASCII files -- store data in OS/8 ASCII format. Three 8-bit
characters are packed to every two words in the following
manner:

o 3 4 11

HI ORDER CHAR 3 CHAR 1

LO ORDER CHAR 3 CHAR 2

The end-of-file is marked with a CTRL/Z character.

2.2.9 Device Handler Space

BRTS reserves locations 7000-7577 for I-page and 2-page device
handlers and maintains a map of the 3 pages at DMAP. Bit 11
represents page 7000-7177, bit 10 represents page 7200-7377, and bit 9
page 7400-7577.

Assembly-language functions in programs that do not require more than
one or two files open at a time may use some of this handler and file
buffer space for their own purposes. You can allocate this space by
setting appropriate bits in BMAP and DMAP. After you set the bits,
BRTS will not use the space indicated in subsequent FILE operations.

2-9

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.10 The BRTS I/O Table

BRTS maintains an I/O file table to keep track of the status of each
of the four files that may be open simultaneously in a BASIC program.
The table contains four l3-word entries, labeled FILEl, FILE2, FILE3,
and FILE4, in that order. Each name corresponds to the number you
specify in the file statement that opened the file, and each entry has
the following format:

HEADER WORD
STARTING ADDRESS OF BUFFER (IN FIELD 1)
CURRENT BLOCK IN BUFFER
READ/WRITE POINTER INTO BUFFER
HANDLER ENTRY POINT
STARTING BLOCK NUMBER FOR FILE
ACTUAL FILE LENGTH
MAXIMUM FILE LENGTH
POSITION OF PRINT HEAD (FOR COLUMN FORMAT­
TING)
FILE NAME
FILE NAME
FILE NAME
FILE NAME

The header word bits have significance as follows:

Bit Positions Meaning

0-3 OS/8 number for device

4-5 Current character number for unpacking ASCII
files

6 0 if the current buffer load has not been
changed
1 if current buffer load has been altered

7 0 if device is file structured
1 if device is read/write only

8 0 if the handler is 1 page long
1 if it is a 2 page handler

9 0 if file is fixed length
1 if variable length

10 0 if more data in file
1 if EOF has been seen

11 0 if file numeric
1 if file ASCII

2.2.11 The BRTS Floating-Point Package

The floating-point package is permanently resident in memory and
available for use by assembly language routines for floating-point
calculations.

2-10

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.11.1 The Floating-Point Accumulator - The floating-point
accumulator: ~ft~: resides at locations EXP i HORD, and LORD
and has the standard PDP-8 23-bit floating-point format.

EXP

SIGN OF
EXPONENT

EXPONENT

H! MANT!SSA

~~:: I LOW MANTISSA

I SIGN OF
~-~-

MANTISSA

Floating-point operations use the FAC in the same way that PDP-8
machine-language instructions use the hardware accumulator. The FAC
is one of the operands in every floating-point calculation and holds
the result of all floating-point operations (with the exception of
FPUT -- see below).

2.2.11.2 Floating-Point Routines - BRTS provides the following
floating-point routines which you may use as subroutines in a program
(For information on calling these routines; see Section 2.3.):

Function

ADD
SUBTRACT
MULTIPLY
DIVIDE
INVERSE SUBTRACT
INVERSE DIVIDE
LOAD FAC
STORE FAC

Starting Address

FFADD
FFSUB
FFMPY
FFDIV
FFSUBI
FFDIVI
FFGET
FFPUT

Operation

FAC<-FAC+OPERAND
FAC<-FAC-OPERAND
FAC<-FAC*OPERAND
FAC<-FAC/OPERAND
FAC<-OPERAND-FAC
FAC<-OPERAND/FAC
FAC<-OPERAND
OPERAND<-FAC

There are also four simple floating-point operations that operate on
the FAC and are available to user subroutines.

Function

NEGATE
NORMALIZE
SQUARE
CLEAR

Starting Address

FFNEG
FFNOR
FFSQ
FACCLR

Operation

FAC<-FAC
NORMALIZE<-FAC
FAC<-FAC*FAC
FAC<-O

The functions are called with a JMS and return with the hardware AC=O.

2-11

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.2.12 BRTS Overlay Buffer

BRTS allots locations 3400-4577 of field 0 as an overlay area, reading
in overlays as it needs them. The overlays, which consist mainly of
functions infrequently used, are organized in the following manner:

BASIC.AF Arithmetic Functions

SIN, COS, ATN, EXP, FIX,
EXPONENTIATION, SGN, SQR, LOG

BASIC.SF String Functions

FLOAT, INT, RND,

ASC, CHR$, DAT$, LEN, POS, SEG$, STR$, VAL, Error
processing, TRC

BASIC.FF File Functions

CHAIN, CLOSE, FILE, STOP

BASIC.UF User Function

BRTS reserves the last overlay, BASIC.UF, for user-written assembly
language routines. Each time you call for one of these routines, BRTS
reads BASIC.UF into the overlay buffer.

2.3 CALLING FLOATING-POINT ROUTINES

There are two separate calling sequences for floating-point routines:

• Mode 1, which you use when the operand of the routine is in
field 0 (the same field as the FPP) .

• Mode 2, which you use when the operand is in some other field.

The contents of the hardware accumulator at the time of entry also
determine the mode of the calling sequence. You may use Mode 1 only
if the accumulator is O. If the AC is non-zero, you must use Mode 2.

You set a switch in the calling sequence -- location FF -- to tell the
floating-point package which mode to follow. For Mode 1, let FF equal
zero; for Mode 2, non-zero.

In a Mode 1 call, the address of the operand immediately follows the
JMS instruction. Thus:

CLA
DCA FF
JMS I POINTR
(OPERAND ADDR)

POINTR~ (STARTING ADDR)

ISWITCH FF=O FOR MODE 1
IJUMP TO FLOATING-POINT ROUTINE
112-81T ADDRESS OF OPERAND
IRE TURNS HERE

IFLOATING-POINT ROUTINE
ISTARTING ADDRESS.

2-12

CREATING ASSEMBLY LANGUAGE FUNCTIONS

In a Mode 2 call, the address of the operand is in the accumulator.
The CDF n instruction indicates the field of the operand. For
example,

CLA lAC
DCA FF
CDF N
TAD OPADDR
,.JMS I POINTR

IFF SWITCH NOT EQUAL TO 0 FOR MODE 2
/DF TO FIELD OF OPERAND
lAD DRESS OF OPERAND
IJUMP TO FLOATING-POINT ROUTINE
ITHIS LOCATION UNUSED
-.fRETURNS HERE.

POINTI:;:y (STARTING ~~DDFn

OPADDRv (OPERAND)
IADDRESS OF FLOATING-POINT ROUTINE
IADDRESS OF OPERAND

Both modes return with a clear AC and the data field set to O. Note
that the routine does not alter switch FF. Therefore, it is necessary
to change it only when you want to change modes, not before every
call.

Both modes return to the second instruction following the JMS call,
skipping the word immediately after the JMS. Since a Mode 2 call
never uses this location, you may use it as a location for storing
constants in Mode 2 operations.

The FF switch -- which might seem unnecessary in most calling
sequences -- makes it possible for the floating-point package to
obtain an operand for location 0 in a field other than zero. If you
did not include the FF switch, the FFP would examine the accumulator,
find it empty, and use the address in the word following the call,
since it has no way to tell an empty AC from an AC containing an
operand address of O. The FF switch, then, simply tells the
floating-point package whether the zero means "Mode-l call" or
"operand at 0."

BRTS contains Page 0 literals used by the FGET and FPUT routines.
These Page 0 literals can be found in the BRTS source listing. Page 0
literals reference the following routines (For more information on
Page 0 literals, refer to the section on BRTS subroutines.):

Page Zero Link

FNEGL
FNORL
FCLR

Routine

FFNEG
FFNOR
FACCLR

2-13

CREATING ASSEMBLY LANGUAGE FUNCTIONS

The following sample programs demonstrate uses of floating-point
routines.

1. This routine calculates X~2+2X+l.

CLf.l
DCA F'--r"

JMS I
X
JMS I
X
JMS I
Y
JMS I
X
JMS I
TWO
JMS I
DNE
JMS I
Y

FADDU\ , FFADD
FMPYLt, , FFMPY
TWD~ 0002

2000
OO()()

ONEy O()Ol
:20()O
0000

x~

Y, 0
()

0

FGETL

FMPYLK

FPUTL

FGETL

FMPYLK

FADDLK

FADDLK

IOPERAND ADDRESS WILL
IFOLLOW CALLS (MODE 1)
ILINK IS ON PAGE 0

IX * X

ISAVE X"")

ILOAD X AGAIN

12X

12X+l

IX'"'2+2X+l

IRESULT NOW IN FAC

ILINK TO ADD ROUTINE
ILINK TO FLOATING MULTIPLY
IFLOATING-POINT CONSTANT
/2.0

IFLOATING-POINT CONSTANT
11.0

/VARIABLE

/FLOATING-POINT TEMPORARY

2. This routine adds five successive floating-point numbers
starting at location a field 2.

ST tll:~T , CL{-l
DCA OPADDR
JM~) I FC:I...F~

lAC
DCA FF

(.)LOClP ~ CDr 20
T()D ()PI~DDF<

JMf-; I F(.-lDDL~<

11 I N U .:;) ~.:.=.; " ~5
TAD OPfiDDF<

T(~D K::5
Detl OP(lDDF~

ISZ i1 I NUS~)
JiiP i:~,I ... ODP
HI ... T

F(~DDLI< ~ FF,-.':,DD
CIF'(l:ODF< ? 0
1<3 ~ J

IFIRST OPERAND AT LOCATION ()
/ZEFW Ff~C

ICALLS ARE MODE 2

/OPERAND ADDR IN AC
ICALL ADD ROUTINE
ILOCATION UNUSED, SO WE USE
lIT AS fi C()UNTEF<

fUPDATE OPERAND ADDRESS

/DONE'!:'
/NO
/YES-ANSWER IN FAC.
fPOINTER TO ADD ROUTINE
IPOINTLR TO OPERAND
lEACH OPERAND IS ::5 WORDS LONG.

2-14

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.4 USING BRTS SUBROUTINES IN ASSEMBLY-LANGUAGE FUNCTIONS

BRTS includes several subroutines that you may use in assembly
language functions. In the following discussion, each subroutine has
a symbolic tag for its starting address. These tags can be found in
the symbol table. Many routines are now addressed with Page a
literals that can be found in the BRTS source listing. Note that
references to Page 0 pointers by name no longer apply. The purpose is
to shorten the size of the BRTS symbol table.

2.4.1 ARGPRE

ARGPRE locates scalar variables in the scalar table. You can use it
to pass arguments to and from a user subroutine. When you call it,
ARGPRE reads the rightmost eight bits (0-255 decimal) of location
INSAV as the position of the item you wish to locate in the array.
For example, if you place a 2 in INSAV, ARGPRE will locate the third
variable in the scalar table. (The first entry is zero.) On return,
ARGPRE sets the data field to the field of the variable and leaves the
location of the exponent word of the variable in the accumulator. To
call ARGPRE, use a JMS instruction.

For example, the following assembly-language sequence -- which
includes a call to the ARGPRE subroutine -- loads the third variable
in the scalar table into the floating-point accumulator.

CLA
TAD C2

DCA INSAVE
lAC
DCA FF
JMS I ARGPRL
JMS I FGETL
(UNUSED)
HLT

C2, 2
ARGPRL, ARGPRE

2.4.2 XPUTCH

IWE WANT ENTRY t3, BUT
ISINCE THE FIRST ONE IS 0,
ILOAD INSAVE WITH 2

ISET FF SWITCH
ICALL ARGPRE
ITHE AC AND DATA FIELD
IARE SET, SO THIS IS A
IMODE 2 CALL+

XPUTCH reads an ASCII character from the accumulator and loads it into
the terminal ring buffer. To use XPUTCH, place an ASCII character in
the rightmost eight bits of the accumulator and call for the
subroutine with a JMS instruction.

On return, XPUTCH clears the accumulator. Note that XPUTCH does not
print the character; it simply puts the character in the ring buffer.

For example, this sequence uses XPUTCH to place a carriage return/line
feed combination into the terminal buffer:

K215,
K212,

CLA
TAD K215
JMS I XPUT
TAD K212
JMS I XPUT
HLT
215
212

ILOAD CR INTO AC
ICALL XPUTCH VIA PAGE ° LINK
ILOAD LINE FEED INTO AC
IPUT IN BUFFER

IASCII CODE FOR CR
IASCII CODE FOR LF

2-15

CREATING ASSEMBLY LANGOAGE FONCTIONS

2.4.3 XPRINT

Subroutine XPRINT prints the next character in the ring buffer. If
the ring buffer contains characters waiting to be printed, XPRINT
returns to the instruction following the JMS that called it. If the
buffer is empty, XPRINT skips the instruction immediately following
the JMS. XPRINT will print a character only if the terminal is not
busy, so that a call to XPRINT means "print a character if possible"
rather than "print a terminal character."

The call to XPRINT in the following example keeps the terminal busy
during a compute-bound loop. At the end of the loop, XPRINT empties
the ring buffer.

1 ... DOr" ,

JMS I F'HlNT
NeW

lSZ LOOF'CN
Jr···iP I ... DOP
JiiS I PF~ I NT
...JMF' !. ····1

2.4.4 PSWAP

ICOMPUTING INSTRUCTIONS

ICAlL XF'RINT VIA PAGE 0 lINK
ITHIS INSTRUCTION WILL BE
ISKIPPED IF RING BUFFER IS EMPTY

ILOOP CONTROLLING INSTRUCTION
...• l

ILOOP IS DONE - EMPTY RING
IBUFFER BEFORE CONTINUING

Under normal conditions, BRTS runs with the OS/8 page 17600 portion of
the resident monitor moved to the highest page of memory (the
second-highest page in a TD8/E system). PSWAP lets you restore this
page to 17600 prior to doing any operations with OS/8 and then swap it
back up to high memory when you are through. Note that this means you
must always use PSWAP an even number of times.

The following sequence of code -- which directs the USR in OS/8 to
perform a lookup on file BASIC.DA -- requires two JMS calls to PSWAP.

CLA
JMS I P13WAP
CI ... A lAC
CIF :1.0
..JMS I 1"<7700

FNAME
o
HI ... T
-.lMf-> I P:I.!:>WAP

lAC SHOULD BE 0 ON CALL
IRESTORE OS/8 PAGE 17600 RESIDENT
IDEVICE t FOR SYS: IS 1

ICAlL USR
ILOOI\UP
IPOINTER TO FILE NAME
ICONTAINS LENGTH ON RETURN
lERROR I:;:ETLJRN
/SWAP OS/8 RESIDENT BACK
ITO HIGH CORE

2-16

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.4.5 UNSFIX

UNSFIX fixes a positive, 12-bit, magnitude-only integer from the
floating-point accumulator and returns with the result in the hardware
accumulator. UNSFIX destroys the contents of the FAC.

The range of the fixed integer is 0-4095. Any attempt to fix a number
larger than 4095 or a negative number will produce an "FO" or "FM"
error message, respectively. To call UNSFIX, use a JMS instruction.

The following code -- which includes a call to INFIX via INTL -- uses
the FAC as a counter for the number of times to ring a bell on the
terminal.

CLA
JMS I INTL
CIA
DCA COUNTR

BELLOP, TAD K207
JMS I XPUT
I8Z COUNTR
JMP BELLOP

K207v 207

2.4.6 STFIND

IFIX THE FAe TO 12-BIT INTEGER
INEGATE THE INTEGER
lAND STORE AS COUNT
IASCII FOR BELL
IPUT IN RING BUFFER
fRIGHT NUMBER YET?
INO-RING ANOTHER BELL

Depending on the contents of the link bit, STFIND locates a string
variable or the first element in a string array.

• If you set the link to 0, STFIND accepts the rightmost eight
bits of location INSAV as the position of the variable you
wish to locate in the string symbol table.

• If you set the link at non-zero, STFIND accepts the rightmost
five bits in INSAV as a position in the string array table.

After STFIND returns, the AC contains a CDF to the field of the string
specified; location STRPTR points to the first word -- the count
word -- of the string; location STRMAX holds the maximum length of
the string as a negative number; and STRCNT contains the actual
number of characters in the string as a negative number. STFIND is
used most frequently to pass arguments to and from user functions.

The following sequence uses STFIND to locate string number seven:

TAD K6
DCA INSAV
ell
JMS I STFINL

K6, 6
STFINL, STFIND

ITHE NUMBERING STARTS WITH 0
18ET UP STFIND POINTER
IWE WANT SIMPLE STRING
ICAll STFIND

2-17

CREATING ASSEMBLY LANGUAGE FUNCTIONS

This example locates the first element of string array number two:

TAD Kl /THE SECONDENTRY
DCA IN~)AV

CLL C~1L /WE WANT STRING ARRAY
JMS I STFINL /CALL STFIND

Kl, :L
STFINL, ~3TFIND

2.4.7 MPY

MPY performs a 12-by-12-bit multiplication. It multiplies the
contents of the hardware accumulator by the contents of location TEMP3
(both numbers are treated as 12-bit unsigned integers). On return,
MPY stores the high-order bits of the result in TEMP6 and the
low-order bits in the AC.

2.4.8 DLREAD

DLREAD places the next word in the data list into the accumulator. If
the list contains no more data, a DA error message results.

The following sequence of instructions reads a number from a DATA list
into the hardware accumulator:

CL.A
...ItrlS I DL.REAL.
nCi4 FXP
..Jr1~:; I DLREAL.
DC(~ WORD
.JM~:; I DL..HEAL
:OC(~ LOI:~[I

2.4.9 ABSVAL

IREAD EXPONENT WORD INTO AC
/STOF\~E IN FAC
IREAD HIGH MANTISSA FROM LIST
/STORE HIGH MANTISSA WORD
IHEAD LOW MANTISSA FROM LIST
ISTORE LOW MANTISSA WORD

ABSVAL determines the absolute value of the floating-point
accumulator. If the FAC is negative, ABSVAL negates it before return.
If the FAC is positive, ABSVAL is the equivalent of a Nap.

2.5 PASSING ARGUMENTS TO THE USER FUNCTION

You call for a user assembly-language function with a JMS. Before
BRTS executes the instruction, it places the first numeric argument of
the function in the floating-point accumulator, the second in entry a
of the scalar table, the third in entry 1, and so on through the list
of arguments. If the function uses string arguments, BRTS places the
first in the string accumulator, the second in entry zero of the
string table, the third in entry 1, and so on. The function obtains
these arguments as it needs them by calling ARGPRE and STFIND.

2-18

CREATING ASSEMBLY LANGUAGE FUNCTIONS

For example, the following function takes the first two numeric
arguments and performs on them the operation specified in the string
argument, A$:

UDEF EXM (X~A$¥ y)
LET Z~EXM (2~~PLUS~~1)

Legal values for A$ are strings beginning with npL n for npLUS n and
"MI" for "MINUS". Thus:

EX,'1 y 0

TAD I SACP
TAD PL
<:~7A (-'1 A
,..J A •• M '-'L_"

--IMP EMINUS
Y"lr" A INSt-IV ,L'L-H

...JMS I AF,GPRL
JMS I FADDL

ARGPHLv ARGPHE
--IMP I EXi-l

E1"iINUS" TAD I S(:~CP

Tt}D MI
SZA CLA
JMP I :U-lL
DCA INS(:~V

JdS I AHGPI~L

..JM~:) I FSUBL

/ENTRY POINT
/INDEX HEGISTER 5 POINTS TO SAC
/GET FIRST 2 CHARS OF AS FROM SAC
/COMPAR THEM TO ·PL"

/OPERATION IS PLUS-INIT ARGRE TO GET
ISCAL?H~ 0
IFIND Y. X IS ALREADY IN FAC
IX+Y
ITHIS LDC SKIPPED BY FADD
IDONE-RETURN WITH RESULT IN FAC
IFIRST TWO CHAHS OF SAC AGAIN
ICOMPAR TO MI
lIS IT BMINUsu-r
INO-EHFWR
IYES-SET UP AHGPRE FOH ENTRY 0
IFIND Y. X IS ALREADY IN FAC
/X··-y

SACP, ITHIS LOC SKIPPED BY FSUB SAC
...JMF' I EXM IRE TURN WITH VALUE IN FAC

PL., ,·-:?014
MI ~ :I.~~j:l.:l.
F (.:l DD I... y FFI~DD

F~:)UBL y FFSUB
I('~LY Jr.}

If the function returns a value, it should leave it in the
floating-point accumulator. The function returns with a JMP I through
the entry point. (If you enter a JMP to location IA in BRTS, this
will generate a fatal IA -- an illegal argument.)

2.5.1 Using the USE Statement

If the assembly-language function needs to know the location of an
array (for buffer space, multiple argument passing, array argument),
you must use the USE statement. The USE statement places the octal
number for the array specified into location USECON. By using this
value as an index into the array symbol table, the function can locate
the data it requires.

2-19

CREATING ASSEMBLY LANGUAGE FUNCTIONS

For example, the hypothetical assembly-language function PLT requires
a 100-word buffer. To assure allocation of this buffer when you use
the PLT function in a BASIC program, you must create a 34-element
array and identify it with a USE statement before calling the PLT
function. Thus:

10 REM DEFINE THE USER FUNCTION
20 UDEF PLT (X,Y)
30 REM ALLOCATE A 34 ELEMENT (102 WORDS) ARRAY FOR A BUFFER
40 DIf1 B(34)

The function PLT finds B as follows:

100 USE B
1 lOY:::: P I... T (:°5 , 2 • B ;.

PLT, 0
TAD USECDNrl IG[T ENTRY NUMBER OF B
CLl TRl IMULTIPLY BY 4 (EACH ARRAY TABL.E ENTF~Y

/IS 4 WORDS LONG)
TAD ARSTRT /MAKE POINTER INTO ARF~AY TABLE
OCA XR:=5 /AND SAVE IT
TAD CnFIO /GET CDF TO SYMBOL. TABLE FIELD
DCA /+:1. /PUT INTO LINE

/CHANGE DF TO SYMBOL TABL.E FIELD
TAD I XR!:; /GET POINTER TO B(O)
DCA BF'TR /SAVE FOR LATER
TAD I XR!:j /GET ARRAY DIMENSION 1
DCA DIM1
TAD I XR!:=j /GET ARRAY DIMENSION '0)

.:..

Note that the USE statement simply passes an array entry number to the
assembly-language function. The function must obtain all actual
parameters from the array symbol table, using that entry number as an
index. Note also that the arrays passed in such a fashion may reside
almost anywhere in memory and that a field boundary may fall within
the array.

2-20

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.6 BRTS INPUT/OUTPUT

BRTS drives the terminal asynchronously by maintaining a 40-character
terminal output ring buffer and regularly calling subroutine XPRINT.
It operates in the following manner:

• BRTS calls subroutine XPUTCH, which inserts characters into
the terminal ring buffer. If the ring buffer is full, XPUTCH
waits until BRTS calls XPRINT to print a character, opening up
a place.

• BRTS regularly calls XPRINT (at least once every
pseudo-instruction). XPRINT works in the following manner:

• If the terminal flag is not set, XPRINT returns.

• If the flag is set, XPRINT checks the buffer for more
characters. If it finds a character, it prints it
(with a TLS) and returns.

If the ring buffer contains characters waiting to be printed, XPRINT
returns to the instruction immediately following the JMS that called
it. If the ring buffer is empty, XPRINT skips the instruction after
the JMS upon returning. This technique allows BRTS to do other things
for most of the one hundred milliseconds without turning on the
interrupt facility. Although this method requires periodic calls to
XPRINT, it still consumes considerably less time than waiting for the
terminal flag.

Assembly language functions may use the ring buffer (BRTS empties it
before it calls the function), or they may perform simple terminal I/O
with TLS, TSF, and JMP.-l instructions. If a function does not use
the ring buffer, it must make sure that the terminal flag is set
before it returns to BRTS.

Note that an assembly language function does not have to call XPRINT.
It may place a character in the ring buffer and let XPRINT take care
of it on its next regular call from BRTS.

2.7 INTERFACING AN ASSEMBLY LANGUAGE FUNCTION TO BRTS

You call an assembly language function the same way you call any other
subroutine -- with a JMS instruction. The JMS causes BRTS to use the
symbolic address of the function to look up its actual location in the
user function table. This table, which begins at 1560 in BRTS,
contains absolute pointers to the starting address of each user
assembly language function. You must place all user functions between
3400 and 4577, the space which BRTS reserves for the user function
overlay, BASIC.UF. User functions must return to BRTS via a JMP I
through their starting address.

To run a set of user assembly language functions under BRTS, you must
perform the following operations:

1. Assemble all the user assembly language functions together.
You may include up to sixteen functions. They must fit
between 3400 and 4577 but may reside anywhere within that
space •

• R PAL8
iUSER.BN<USER.PA

2-21

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2. Load the user functions into memory with the absolute loader
(ABSLDR) and SAVE locations 3400-4577 as the file BASIC.UF,
which is the user overlay .

.!.R (.-lBSL.DI:;:
*USER.BN$
.SAVE SYS:BASIC.UF 3400-4577

3. Modify the user function table in BRTS with ODT, entering
absolute pointers for the starting addresses of the
functions. All unmodified locations in the table contain a
value of 240 octal. Replace this value with the starting
address pointer. Start at location 1560 and enter the
pointers in the same order in which the functions appear in
the UDEF statement that defines them .

• GET BY'S: BI=<TS
.DDT
:I. ~.:;j6()/240 3·40()
:1.:561/240 34:/.0
... ··C

"S{l~}E SYS: BHTS

This procedure interfaces two functions that start at
locations 3400 and 3410 respectively.

For example, the following package contains three assembly language
functions: HI, PLT, and La. You may define these in any order in the
DEF statement as long as you remember to enter them in the same order
in the user function table.

HI

PI...T!!

1...0!,

*3400
()

... JMP I HI
o

"'MF' J PLT
o

"'MP I l..D

IENTRY POINT FOR HI
IORDER OF ENTRY POINTS IS
/NOT CRITICAL..

IENTRY POINT FOR PL.T

IENTRY POINT FOR 1...0

To enter these three functions into the user function table, follow
this procedure:

.GET SYS:BRTS
-:OV''j'
:I. ~~.;60./:?40 F'ppp
:1. ::;.;/):1. /:240 HHHH
i. ~5 /:' ::.~ .. "'? "* () L 1...1...1...
''''C

where PPPP, HHHH, and LLLL represent octal starting addresses for PLT,
HI, and La respectively.

2-22

CREATING ASSEMBLY LANGUAGE FUNCTIONS

BRTS sets up a one-to-one correspondence between the pointers at 1560
and 'Cne function ndmeb in L..ll~ UUIH' statement for the package.
Therefore, the order of the pointers must correspond exactly to the
order of the function definitions in UDEF. If you wish to use only
the nth function in a given user package, you must still define n
functions in the UDEF statement, although the first n-l may be
dummies.

For example, consider a package of eight assembly language functions
listed in the user function table in the following order:

ONE (X)
TWO (X,Y)
THR (X,Y,Z)
FOU (X,Y,Z,A)
FIV (X,Y,Z,A,A$)
SIX (X,y,Z,A,A$,B$)
SEV (X)
EIG (Y)

If you want to use only function ONE in a BASIC program, your UDEF
statement will look like this:

1 () 1 . ..IfiEF ONE (X)

If you want to use only functions ONE and EIG, the UDEF might look
like this:

:I.() LlftEF C):\I[(X) ~/DUtl(D) ~DUB(D)~·
DUC(D),DUD(D),DUE(D),nUF(D),
[IG(···()

In this statement, DUA through DUF are dummy user function names that
have no effect on the program at run time. They simply set up the
right correspondence between names and pointers.

The easiest and surest way to match up all function names and pointers
correctly is to write a UDEF statement for every function in the
package.

2-23

CREATING ASSEMBLY LANGUAGE FUNCTIONS

2.8 SOME GENERAL CONSIDERATIONS

2.8.1 Routines Unusable by Assembly Language Functions

Because the assembly language functions reside in the overlay buffer
during execution, they cannot use any routines that reside in any of
the other three overlays. These routines include:

Routine Name

FFATN
FFCOS
FFEXP
EXPON
INT
FFLOG
SGN
FFSIN
RND
FROOT
ASC
CHR
DATE
LEN
POS
SEG
STR
VAL
TRC
CHAIN \
CLOSE
OPENAF
OPENAV J
OPENNF
OPENNV

2.8.2 Using OS/8

Function

Arctangent Function
Cosine Function
Exponential Function (eAx)
Power Function (AA B)
Signed integer Function
Naperian log Function
Sign Function
Trigonometric Sine Function
Random Number generator
Square root Function
String Function ASC
CHR$ Function
DAT$ Function
String length Function
String search Function
String segmenting Function
STR$ Function
VAL Function
Trace Function

File manipulation Routines

A carefully designed assembly language function -- one that protects
all memory areas required by BRTS -- may use OS/8 without restriction.
Once PSWAP has swapped the 17600 portion of the resident monitor out
of high memory, the assembly-language function may call the User
Service Routine and then locate, use, and close files at will.

2.8.3 Using Device Driver and File Buffer Space

If your BASIC program does not need full file capabilities, any
assembly-language function in the program may use the driver space
from 7000 to 7577 and the buffer space from 10000 to 17777. However,
the function must check the bit maps and status words on page 0 before
it uses any part of the space to make sure it is available.

2.8.4 Using the Interrupt Facility

OS/8 BASIC runs with the interrupt facility turned off. However, BRTS
reserves locations 0-2 on page 0 for any assembly language function

2-24

CREATING ASSEMBLY LANGUAGE FUNCTIONS

that wishes to use the interrupt. Before turning on the interrupt
system, an assembly language function must clear all the flags set by
the OS/8 handlers. Before returning, the function must turn off the
interrupt and set the TTY flag.

2.8.5 Using Page 0

The following map shows BRTS page a usage. An assembly language
function may use the locations marked with an asterisk (*) without
saving the contents.

Locations

0-2 *
3-7
10-15 *
16-17
20-30
30-36
37-62
63-67
73-107
110-161
162-177

Interrupt vector
Svstem oarameters and temps
I~dex r~gisters
System pointers
Compiler-BRTS communication
System registers
Floating-point package area
System registers
Constants
Links to BRTS subroutines
I/O Table pointers

Assembly language functions may use any of the pointers or constants
on page 0, but they must be intact when control returns to BRTS.

2-25

CHAPTER 3

OPTIMIZING SYSTEM PERFORMANCE

You may take advantage of several ways to speed up the time it takes
to compile and run an OS/8 BASIC program.

3.1 BYPASSING THE BASIC EDITOR

Running a source program according to standard BASIC procedure is a
three-step process. You must:

1. Call the BASIC EDITOR

2. Request the program with an OLD command

3. Run the program with RUN command

For a simpler and speedier method, bypass the BASIC editor and run the
program directly with a COMPILE or EXECUTE monitor command. The
format is

where

COMPILE indev:file.BA

.BA is an extension indicating that the input file contains a
BASIC source program.

Summoned in this manner, OS/8 BASIC returns control to the Monitor
rather than the BASIC editor when it has finished running the program.

As a general rule, use the BASIC editor to:

• create new programs or modify old ones

• debug old programs

and use COMPILE and EXECUTE to:

• run existing programs

• run BASIC programs in BATCH stream

To run with a COMPILE or EXECUTE command, a BASIC source program must
conform to the following rules:

• It may contain no blank lines.

• All statements must appear in the order that BASIC will
execute them.

3-1

OPTIMIZING SYSTEM PERFORMANCE

If you intend to run your program from the Monitor only, you do not
have to begin every line with a line number. Only the lines that you
specify as destinations in IF, GOTO, and GOSUB commands require
numbering. The following example contains no unnecessary line
numbers:

FOR 1=1 TO 10
IF 1=2 THEN 400
PRINT I
GO TO 410

400 PRINT -TWO·
410 NEXT I

END

Note that the BASIC editor will not accept unnumbered lines. To write
and enter a program without numbering every line, you must use the
OS/8 Editor or TECO. Experienced users will discover that these
editors provide many features not available from the BASIC editor.

3.2 PLACING BASIC OVERLAYS ON THE SYSTEM DEVICE

DECtape users can improve the performance of their system by following
these two procedures:

• Use a DECtape drive other than DTAO for DSK.
command.)

(See the ASSIGN

• Place the OS/8 BASIC system files as close together on the SYS
tape as possible. The best way is to make a "BASIC tape"
containing only the OS/8 system, PIP, and the BASIC system
image files.

Both procedures speed up OS/8 BASIC by reducing the tape motion
required for overlaying and compiling.

3.3 GROUPING FUNCTION CALLS IN BASIC PROGRAMS

Most of the BASIC functions and file operations reside in three system
overlays. Since the system overlay driver reads in an overlay only if
the function you call for does not reside on the currently resident
overlay, you can reduce program execution time simply by grouping
calls to functions that reside on the same overlay. For example:

10 INPUT AS
20 ZS= SEG$(AS,1,6)
30 FILEN 11: ZS
40 INPUT AS
50 ZS= SEG$(AS,1,6)
60 FILEN 12: Z$

This program accepts two strings that you enter at the terminal and
reads the first six characters of each as a file name to open a BASIC
file. To accomplish this, the program uses the SEG$ function, a file
statement, the SEG$ function, and the file statement again. Since
SEG$ and the file statement reside on different overlays, the driver
must perform four separate operations. The following program produces

3-2

OPTIMIZING SYSTEM PERFORMANCE

the same result more efficiently by grouping function calls and
statements together in such a way that the driver has to operate
twice:

10 INPUT A$,B~t>

20 Z$=SEGS(A$,1,6)
30 XS=SEG$(BS,1,6)
40 FILEN i1: Z$
:~;O FIL.EN =1=2: X$

file

The system overlays distribute the BASIC functions and file operations
in the following manner:

Overlay 1 (BASIC.AF) : SIN,COS,ATN,LOG,EXP,RND,
SQR,SGN,POWER(AA B)

Overlay 2 (BASIC. SF) : ASC,CHR$,DAT$,LEN,POS,
SEG$,STR$,VAL

Overlay 3 (BASIC. FF) : CLOSE,FILE,FILEN,FILEV,
FILEVN

3.4 MAKING SAVE IMAGES OF BASIC SOURCE PROGRAMS

Normal BASIC program execution requires a minimum of six file access
operations. By contrast, the execution of memory-image files requires
no more than two file accesses -- one to read the memory-image file
and one to read BRTS if the BCOMP /B option (see below) was not
specified. Memory-image file execution also eliminates
compiler/loader overhead, thus greatly reducing execution time,
especially on DECtape systems.

To create a memory-image file from a BASIC language source program,
type

<. F< BCOMF'
)i{DEt...J ; PF~DG • B{~/~<

where PROG.BA is the source. The K switch indicates that a
memory-image file is to be created.

The following BCOMP options apply to SAVE operations.

Option

/K

/N

/B

Meaning

Indicates that a memory-image file will be created.

Indicates that the memory-image program will never be
executed on a 12K TD8E system. This saves 400 words of
memory but reduces configuration independence.

Loads a copy of the run-time system into the memory
image. This increases the size of the memory-image
file by 10 to 50 percent (exactly 15 blocks) but
eliminates the need for a file access to read in BRTS
at run time. BRTS and its overlays must still exist on
the system device when the program runs.

3-3

=n

/C

/V

OPTIMIZING SYSTEM PERFORMANCE

Indicates the highest field that the program will use
(up to 7 octal). Field n must fall in the range l<n<m,
where m is the highest memory field (up to 7) available
on the host machine -- that is, the machine on which
the program is written. The highest memory field on
the target machine -- the machine on which the program
will run -- is n. This may reduce configuration
independence, since the resulting memory image will not
load correctly on a machine with fewer than n+l memory
fields. If n is omitted, n=l. If you specify n larger
than m, n=m is assumed.

In BCOMP, the /C option is used in conjunction with the
/K option to create a file that can be chained to from
a non-BASIC file. For example:

.R BCOMP
iEXAM+BA/C/K

In BCOMP, the /V option is used to obtain
version number of CaMP, BLOAD, and BRTS.

.R BCOMP
*EXAM.BA/V

the current
For example:

This causes the system to print at the console the
current version numbers for BCOMP, BLOAD, and BRTS as
part of the output of the file being compiled.

In the absence of error
(BLOAD) will exit to OS/8.

conditions, the compiler
At this time, type:

post-processor

+SA DEV:PROG

to create an executable memory image.
SAVE command must not be specified.
typing:

.R PROG

or

.RUN DEV:PROG

Additional arguments to the
The memory image is executed by

The following error messages may occur during execution of a BASIC
memory-image file:

USER ERROR I AT nnnn

One of the files:

BRTS.SV
BASIC.AF
BASIC.SF
BASIC.FF

was missing from the system device.

3-4

OPTIMIZING SYSTEM PERFORMANCE

USER ERROR 2 AT nnnn

An attempt was made to load a memory-image file produced under the IN
option on a 12K TD8E system (without ROM) .

USER ERROR 3 AT nnnn

Insufficient memory to load this core image file.

When executing BASIC memory-image files on a DECtape system, the
following techniques will ensure minimum execution time:

• Follow the recommended procedure for grouping calls to
functions according to the overlay in which the function
resides, to minimize overlaying at run time.

• Prepare a system DECtape that contains all of the BASIC
memory-image files, followed by:

BRTS.SV
BASIC.AF
BASIC.FF
BASIC.SF
BASIC.UF (optional)

The BASIC memory-image files should reside near the beginning of the
DECtape. If chaining is employed, the least frequently run programs
should appear first on the DECtape.

3-5

CHAPTER 4

OS/8 BASIC SYSTEM BUILD INSTRUCTIONS

4.1 THE BASIC SYSTEM

OS/8 BASIC is distributed on DECtape and paper tape. The DECtape
version contains SAVE images for each of the OS/8 BASIC system
components as well as binaries. The paper tape distribution includes
binaries for each of the system components. OS/8 BASIC comprises the
following files.

File

BASIC.SV

BCOMP.SV

BLOAD.SV

EABRTS.SV

EAEOVR.BN

BRTS.SV

BASIC.AF

BASIC.SF

BASIC.FF

Component

Editor save image

Compiler save image

Loader save image

KE8/EAE version of Run-time System save image

Overlay for KE8/E EAE
(8/E with KE-8E-EAE)

Run-time System save image

Arithmetic function overlay

String function overlay

File manipulation overlay

4.2 MAKING SAVE IMAGES FROM BINARY FILES

4.2.1 Non-EAE BASIC

To create SAVE images for each of the OS/8 BASIC binary files, use the
following build procedure for OS/8 BASIC (non-EAE). All system
programs must reside on the system device -- SYS:.

1. For the Editor:

.:.PAL BASIC
-=-L()('~D BAS I C
:SAVE SYS:BASIC;3211

4-1

OS/8 BASIC SYSTEM BUILD INSTRUCTIONS

2. For the Compiler:

.PAL BCOMP
'::;:I ... OAD BCOMP
~SAVE SYS:BCOMP;7000

3. For the Loader:

*PAI... BLDAD
+ LOtlI) BI ... OAD
~SAVE SYS:BLOAD;7605

4. For the Run-time System:

• P(.-ll... BF~TS/W

:-I...OAD EmTS
.SAVE SYS:BRTS 0-6777;7605
~SAVE SYS:BASIC.AF 3400-4577 7605
.SAVE SYS:BASIC.SF 12000-131 7;7605
~SAVE SYS:BASIC.FF 13400-145 7;7605

5. At this point, BASIC is ready to run.

4.2.2 EAE BASIC

Use the following procedure to create SAVE image files for OS/8 BASIC
EAE. Note that all system programs must reside on the system
device -- SYS:.

1. For the Editor:

.,H Pr:)I ... B

..!...r~ (~B~:;I ... DF~

.iDFt.): B(~S I C.:. BNl
.SAVE SYS:BASIC;3211

2. For the Compiler:

.R PALE!
!DEV:BCOMP.BN<DEV:BCOMP.PA
..:..-;: ABSL..DR
*DEV:BCOMP.BN$
.SAVE SYS:BCOMP;7000

3. For the Loader:

* R PAI ... f.!
!DEV:BlOAD.BN<DEV:BlOAD.PA
• I:;: AB~:)L.DR

*DEV:BlOAD.BN$
~SAVE SYS:BlOAD;7605

4-2

OS/8 BASIC SYSTEM BUILD INSTRUCTIONS

4. For the Run-time system:

.!oR PAL8
*DEV:EARBRTS.BN<TTY:,SYS:BRTS.PA/W

(F,ause)

EAE::~l.

'"'z
(paUSE')

·-'Z
.R ABSL.DR
»:DEIJ! Et-lBRTS + BN$
.SAVE SYS:BRTS 0-6777;7605
:SAVE SYS:BASIC.AF 3400-4577;7605
.SAVE SYS:BASIC.SF 12000-13177;7605
.SAVE SYS:BASIC.FF 13400-14577;7605

NOTE

All BASIC system files must reside on
the system device (SYS).

5. At this point, BASIC is ready to run.

4.3 ASSEMBLING THE BASIC SOURCES

The following instructions show how to assemble each of the BASIC
sources with the PALS assembler. The descriptions represent OS/S
keyboard commands. To assemble BASIC, you need a 12K machine.

The BASIC source files include

Name

BASIC.PA
BCOMP.PA
BLOAD.PA
BRTS.PA

Component

Editor Source
Compiler Source
Loader Source
Run-time System Source

1. To assemble the editor:

,.1:(Pf~Ln

iDEV:BASIC.BN<DEV:BASIC.PA

2. To assemble the compiler:

• F~ PtlL.t:l
*DEV:BL.OAD.BN<DEV:BLOAD.PA

3. To assemble the loader:

• F;~ PtlLB
!DEV:BCOMP.BN<DEV:BCOMP.PA

4. The run-time system source is conditionalized for PDP-S/E
with EAE. Assembly instructions for each of the supported
configurations follow.

To assemble for PDP-12, PDP-S, PDP-S/I or PDP-S/L, or PDP-SE without
EAE, type the following command:

+ I=(PAL8
*DEV:BRTS+BN DEV:BRTS.PA/W

4-3

CHAPTER 5

LAB8/E FUNCTIONS FOR OS/8 BASIC

The addition of LAB8/E functions to OS/8 BASIC enables the user to
solve a range of real~time and pseudo~real-time problems using a
higher-level language. The benefits of approaching real-time problems
using BASIC are numerous: a novice programmer can solve problems with
little or no assembly language expertise; and in general, the
programming effort required for specific problems is dramatically
reduced.

The approach taken for specifying each function was to maximize
functional flexibility rather than to stress simplicity. Slaving the
computer to external events is accomplished by recognizing Schmitt
trigger firings. One of the design goals for the LAB8/E functions was
to utilize memory efficiently for single precision and displayable
data arrays. Another design goal was to incorporate a masking ability
for the recognition of bit patterns when reading digital data. This
feature allows easy conversion of decimal data into floating-point
format when data is received from decimal devices interfaced to the
LAB8/E's digital input registers (DR8-E's).

5.1 GENERAL DESCRIPTION

This program contains a set of 12 functions which enable a user of
OS/8 BASIC to utilize the following peripherals on a LAB8/E: A/D
converter, VC8-E display control, DK8-ES real-time clock, and DR8-EA
l2-channel buffered digital I/O. All functions, contained in an
overlay called BASIC.UF, reside in the overlay area of BASIC
(3400-4577), with the understanding that the entire set of functions
is in core whenever a given function is in use. Each function is
called by a suitable three-character name, followed by any necessary
arguments.

General regulations on arguments passed by the user functions in this
package:

• All arguments must be within the following range:

0<ARGUMENT<4095

Hence, negative arguments «0) will cause a fatal error, FM;
and positive arguments greater than 4095 (>4095) will cause
the fatal error, Fa. Fatal errors terminate program execution
and return the user to command mode.

• Additional restrictions to arguments will be stated, along
with the discussion of each function, later on. Argument
errors due to these added restrictions will cause the fatal
error, IA (illegal argument).

5-1

LAB8/E FUNCTIONS FOR OS/8 BASIC

5.2 PREPARING BASIC FOR LAB8/E FUNCTIONS

The Basic Run-Time System (BRTS) provides for one overlay area and
divides a set of infrequently used functions into three separate
overlays; namely, BASIC.AF, BASIC.SF and BASIC.FF. Since a logical
need for user-written assembly language subroutines exists, a last
overlay, BASIC.UF was reserved. It is this last overlay that contains
the 12 functions for LABS/E support. Since the subroutines of this
last overlay are determined apart from BRTS, it is necessary that BRTS
be given a list of core addresses for each of the user subroutines.
It is critical that these links or addresses be specified in the same
order that the UDEF statements will appear in the program that calls
the functions.

Before writing any program using these functions, it is absolutely
necessary to modify BRTS. The following example illustrates how to do
this. Notice that in the test programs at the end, the order in the
UDEF statements is the same as the ordering of the addresses here. A
list of the names of the functions associated with each address is
specified to the right for the sake of clarity only .

.!.GET SYS BRTS.SV
.OD
1/**** ~j402
00002 /**** 4456
1 !560/**** 3400
01561/**** 3454
01562/**** 3473
01563 /**** 3600
01564 /**** 4000
01565 /**** 4100
01:j66 /**** 3541
01567 /**** 3521
01570 /**** 4400
01571 /**** 4432
01572 ;**** 4271
01573 /**** 4313
"'C
.SAVE SYS BRTS.SV

used for interrupts

INI
PLY
DLY
DIS
SAM
CLK
CLW
ADC
GET
PUT
DRI
DRO

Since many of BASIC's functions also reside in overlays, you should
take care in using a function that may cause the current set of
functions to be overlayed and useful information to be destroyed. For
example, the user cannot calculate a set of cosine values and pass
them to the PLY function to be stored, because COS resides in BASIC.AF
overlay and PLY resides in BASIC.UF.

5.3 DEFINITION OF LAB/8E SUPPORT FUNCTIONS

Once you have modified BRTS to recognize the user function from the
BASIC.UF overlay, you may write BASIC programs making use of these
functions. If a program requires the use of the Nth function in the
ordered list of links, the first (N-l) functions of the list must be
defined by UDEF statements or a set of (N-l) dummy-named functions
must precede the defining of the Nth function. For example, in

5-2

LAB8/E FUNCTIONS FOR OS/8 BASIC

reference to the ordered list of functions in the previous section, if
the ADL function l~ the only one to be used in a particular BASIC
program, the UDEF statements must be:

or

10 UDEF INI(N),PLY(Y)~DLY(N)YDIS(S~E,N~X)

11 UDEF SAM(C,N~P~T)~CLK(R~O,S),CLW(N)~ADCCN)

10 UDEr DUA(N),DUB(N),DUCCN),DUD(N)
11 UDEr DUE(N),DUF(N),DUG(N),ADH(N)

However, in order to keep careless omissions to a minimum, you should
always use the complete set of UDEF's each time you require one or
more functions in a program.

INI(N)

The initialize function has a twofold purpose. Its main purpose is to
locate the address of the array specified by BASIC's USE statement and
retain that address until BASIC.UF is overlayed by one of the other
three overlays.

A secondary purpose is to set a pointer to the first location of the
array. Consequently, you may use an array to store one set of data
followed immediately by a second set of data, provided you call the
INI function once only. This means that displayable data (10 bits),
and fixed-point data (12 bits) may share the user array at the user's
discretion. If, however, you again specify the INI function at the
end of the first data run, you cause the first set of data to be
overwritten by the second set of data. Hence, INI effectively zeros
the array in this case. Whenever you want to use an array in
conjunction with one or more of the functions in the BASIC.UF overlay,
first dimension the array and then eventually employ the USE statement
before the INI function can have meaning. For example:

DIM A(3)

USE A

X=INI(O)

5-3

LASSIE FUNCTIONS FOR OS/8 BASIC

The argument N, for INI, is a dummy argument and may be any integer;
0, 1, 2,

Whenever the functions PLY, DIS, SAM, GET, and PUT are used, make sure
that you have called the INI function at least once. When an array is
given the dimension N, BASIC allocates (N+l) floating-point words of
memory which is actually 3(N+l) single-memory locations. Thus, in the
example above, BASIC allocates 4 floating-point words or 12
single-memory locations for the array. Each data value deposited into
the user's array by the user functions is a single-precision value
(uses one memory word) .

PLY(Y)

The purpose of the plot function is to enable a BASIC program to
create y-data values and enter them into the user array sequentially,
beginning with the first unused location of the array. Each
floating-point value is fixed to a la-bit single-precision value
before it is put into the array. The range of the y-data values must
be:

O<y<l.O

This is easily accomplished by inserting a scaling factor. (Refer to
line numbers 26 and 64 of the example program TESTOA.PG at the end of
this chapter.)

The data in the user array can be displayed as it is being passed to
the array (see DLY function) and/or be refreshed continuously once all
values have been entered into the array (see DIS function).

DLY(N)

The delay function is used only in conjunction with the PLY function.
It causes the scope to be refreshed with the contents of the user
array after each point is processed, so that the graphical progress of
data can be observed.

N is an integer such that 1<N<1024. It specifies the maximum number
of points to be eventually displayed. Implied here is the fact that
the display will contain only the first N points even if the arrays
contain more than N points.

DIS(S,E,N,X)

You use the display function to set up parameters for the displaying
of y-data stored in the user array. The display will begin with the
desired starting point, S, of the array and display every Nth point
while not exceeding the desired endpoint, E (where N = 1, 2, 3, ...).

Depending on the value of X, the DIS function has two separate
operations:

Operation when X equals zero (X=O): Indication is given to the user
overlay functions that a SAM function will be the next BASIC
instruction. Consequently the parameters mentioned above are set up
so that exactly one of the sampled channels can be displayed "on the

5-4

LABS/E FUNCTIONS FOR OS/8 BASIC

fly". To understand the use of the arguments S,E,N,X, it is necessary
to know how the AID data is stored in the user array. For example,
assume 100 samples/channel in each case:

Array Case 1 Case 2
SAM CH#O SAM CH#3,4,5

WDI CH#O C8#3
WD2 CH#O CH#4
WD3 CH#O CH#5
WD4 CH#O C8#3
WD5 CH#O CH#4
WD6 CH#O CH#5

WDlOO CH#O CH#3

To display CASEl, once sampling begins:

To display CH#4 of CASE2, once sampling begins:

Operation when X is greater than zero (X>O): A user array of y-data
1S to be displayed immediately. The display is continually refreshed
(no return to BASIC) until the operator types CTRL/N on the keyboard.

Displayable y-data values are assumed to be 10~bit single-precision
data words.

The x-coordinate for each y-data value is determined by a DELTAX value
found as follows:

DELTAX = 1023/ [E-S)/N]

Due to the outcome of DELTAX, the display may not always use the full
width of the scope. However, the display is always centered.

S>l; E>S; (E-S)/N<1023. At least one point must be displayed, and
no more than 1024 points may be displayed.

SAM(C,N,P,T)

The sample function is used solely to set up parameters for subsequent
sampling of the ADC's or for subsequent sampling of digital input
registers (0,1,2), depending on the value of T.

TASK 1 (T=O): Sample the ADC's.

C First channel # to be sampled; 0<C<17(8).

N Number of consecutive channels to sample; 1<N«20(8)-C).

P Number of sample points/channel; P=O.

TASK 2 (T=O): Sample digital input registers.

C First register # to be sampled; 0<C<2.

N Number of consecutive input registers to sample; 1<N«3-C).

P Number of samples/register; P=O.

5-5

LAB8/E FUNCTIONS FOR OS/8 BASIC

Anytime a SAM instruction is used to sample the ADC's, exactly one
channel must be displayed on the fly. However, the sampling rate is
not slowed down by this requirement. Hence a DIS function call must
precede a SAM function call whenever TASK 1 is chosen.

It is possible to display digital input data so long as only the least
significant 10 bits will be displayed. However, this data cannot be
displayed on the fly and can only be displayed via the DIS function
once all data is in the array.

CLK(R,O,S)

The clock function sets up the clock to be used for A/D sampling, for
digital input sampling, or as a simple timing device.

R (rate) = desired frequency at which to run the clock

Value of R

1
2
3
4
5
6

Frequency

External input
100 HZ
lK HZ
10K HZ
lOOK HZ
1M HZ

a (overflow CNT) = number of clock ticks per interrupt with the clock
running at the desired frequency, R. 0<0<4095.

S (Schmitt trigger) (S=O) = Activate all Schmitt triggers and start
the clock when anyone of the three Schmitt triggers fires. (S=O) Do
not activate any Schmitt triggers and start up the clock immediately.

As mentioned above, this single clock function is used to set the
clock for one of three separate tasks.

TASKl: Sample the ADC's.

The interrupts are turned on and the program waits in the display loop
for a clock overflow, at which time the A/D channel(s) is (are)
sampled. The display loop will display the data for the channel
specified by the user in the DIS function. When all channels have
been sampled the requested number of times, the CLK function returns
to BASIC.

When interrupts are turned on, the only possible valid interrupts can
be caused by the keyboard or the clock. Hence, any other interrupt is
an uncontrollable, spurious interrupt (faulty hardware) that will
cause a HLT at location 4466. If this happens, do the following:

1. Set SWITCH REGISTER to 4476 and press ADDR LOAD.

2. Press the CLEAR and CaNT switches to return to BASIC.

3. Type CTRL/C to return to the OS/8 Monitor.

TASK2: Sample digital input registers.

At each clock overflow, the digital input register(s) is (are)
sampled. When all registers have been sampled the requested number of
times, the CLK function returns to BASIC.

5-6

LABS/E FUNCTIONS FOR 05/8 BASIC

NOTE

The sampled data from the ADC's or the
digital input registers is stored
sequentially in the user's array.

TASK3: A simple timing device.

The clock is set up and started (unless it is to be started when a
Schmitt trigger fires) and then returns to BASIC.

The following illustrates what sequence of instructions are needed for
each task.

TASKI

DIH A(n)
USE A

W=INI(O)
X=DIS(C,N,P,T)
Y=SAM(C,N,P,O)
Z=CLK(R,Of S)

CLW(N)

TASK2

DIM A(n)
USE A

W=INI(O)
Y=SAM(C,N,P,l)
Z=CLK(R,O,S)

TASK3

Z=CLK(R,O,S)

After the clock has been set up by CLK as a simple timer, this clock
wait function, when called, simply returns to BASIC whenever a clock
overflow occurs, and/or whenever a Schmitt trigger fires, provided S
was a non-zero argument in CLK.

Upon return to BASIC, a number is returned to the caller indicating
whether the return was due to a clock overflow, a Schmitt trigger, or
a clock overflow and the firing of a Schmitt trigger simultaneously.
The number also indicates whether one of the above conditions occurred
before or after the CLW function was called. N is a dummy argument
(N=O ,I, 2, ...) .

The following table illustrates the various numbers returned.

Case 1: Clock overflowed or a Schmitt trigger fired after CLW is
called.

Overflow Only Schmitt Trigger Only Simultaneously

0 1 (Trigger 1 fired) -1
2 (Trigger 2 fired) -2
3 (Trigger 1 & 2 fired) -3
4 (Trigger 4 fired) -4
5 (Trigger 1 & 4 fired) -5
6 (Trigger 2 & 4 fired) -6
7 (Trigger 1,2 & 4 fired) -7

5-7

Case 2:

LAB8/E FUNCTIONS FOR OS/8 BASIC

Clock overflowed or a Schmitt trigger fired before CLW is
called.

Overflow Only Schmitt Trigger Only Simultaneously

-8 9
10
11
12
13
14
15

-9
-10
-11
-12
-13
-14
-15

The TEST4A.PG and TEST5A.PG examples make use of the CLW function.

The CLW function has many useful applications. For example, you may
time subroutines by starting the clock with a specific rate and
overflow count. After you call the subroutine and the subroutine is
completed, call the CLW function to see if an immediate return is
obtained. This timing is empirical in that you would keep changing
the rate and/or overflow count until Case 2 occurred. As a second
example, you may use Schmitt trigger firing to branch to a particular
subroutine or to notify the program to proceed with specific tasks
such as reading digital data or sampling an analog input. Thirdly,
time-interval histograms and post-stimulus histograms are also
possible (see TST20A.PG) .

ADC(N)

This function is issued any time you wish to sample AID channel N.
The 10-bit data value is floated and returned to the caller for
immediate examination. 0<N<17(8).

The BASIC statement W=ADC(3) asks that AID channel #3 be sampled and
the floating-point value be assigned to W.

The TEST5A.PG example illustrates one use of the ADC function.

GET(M,L)

You use this function to get one 12-bit word from the user array, mask
out certain bits, and return the result as a floating-point number to
the caller.

L is Lth location of the user
single-precision words, L
1,2,3, ... ,N.

array. Hence, if an array has N
can take on meaningful values of

NOTE

Although BASIC allows 0 to be a
meaningful value in a dimension
statement such as DIM A(O), you must
remember that L always begins with 1,
where 1 stands for the first single-word
location of the array. Thus DIM A(O)
specifies an array of one floating-point
word (three one-word locations).

5-8

LAB8/E FUNCTIONS FOR OS/8 BASIC

M is a masking number such that 0<M<4095. This floating-point number
is converted to a 12-bit binary number between 0 and 7777. Those bits
that are zero will mask out or eliminate those bits in the array
value. If M=O, then no masking is done and the 12 bit array value is
returned intact. M=O and M=4095 have the same meaning.

The BASIC statement Y=GET(15,2) gets the second word of the user
array, masks out all bits except bits 8,9,10,11, and assigns the
floating-point result to Y. Consequently, if an array is as follows:

single prec WDI
single prec WD2
single prec WD3

5678
1234
4455

Fl. pt. word 0

WD2 = 1234(8) = 001010011100(2)
MASK = 15(10) = 17(8) - 000000001111(2)
The 12 bit value after masking is:

PUT(M,L)

000000001100(2)
Hence, Y=12

12(10)

This function enables a floating-point number to be fixed to a single
12-bit word and put into the user's array.

L is Lth location of the
single-precision words, L
1,2,3, ... ,N.

user's array. For an array of N
can take on meaningful values of

M is the floating-point number to be fixed and stored in the array.
0<M<4095.

NOTE

Both GET and PUT functions imply that a
user's array must not exceed 4096 memory
locations, because of the general
restriction on any argument for these
user functions.

The BASIC statement Y=PUT(128,4) means fix 128 to 12 bits
(000 010 000 000(2)) and put the value into the fourth word of the
user array. TST15A.PG, TST16A.PG, TST17A.PG and TST18A.PG illustrate
the use of functions GET and PUT.

DRI(N)

This function is issued any time you wish to sample a digital input
register, N (0<N<2). The 12-bit digital value is returned to the user
as a floating-point number. Basic statement: X=DRI(O) means that
input register #0 is sampled and the floating-point result is assigned
to X.

DRO(M,N)

This function is issued any time you wish to set the bits of a digital
output register, N(0<N<2). The output register bits are set via the
value of M (1<M<4095). If M=O, the output register is cleared;
otherwise the bits of the register remain set. Hence, additional bits
of the register can be set while maintaining those set earlier.

5-9

LAB8/E FUNCTIONS FOR OS/8 BASIC

Basic statement: Z=DRO(9,1} means set bits 8 and 11 of output
register #1 if not already set.

9 (10) - 000000001001(2}

TST13A.PG and TST15A.PG illustrate the use of the DRI and DRO
functions.

5.4 LAB8/E EXAMPLES

The following set of BASIC programs illustrates a number of ways the
user functions may be implemented. Each program has been kept as
simple as possible.

Note that for TST12A.PG, TST13A.PG and TST15A.PG a battery-powered
black box was used to interact with the digital I/O registers. The
box contained a set of 12 switches which could set any combination of
bits for the digital input register; it also contains a row of 12
lights lighted by the contents of the 12-bit digital output register.
When running TST18A.PG, use the data from TST17A.PG.

1 REM - PROGRAM NAME: TESTOA.PG
2 REM -
3 UDEF INI(N),PLY(Y),DLY(N),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLK(R,O,S),CLW(N),ADC(N)
5 UDEF GET(M,L),PUTCM,L),DRI(N),DROCM,N)
6 DIM A(342)
9 REM '-'
10 REM - CALC 1024 PTS & DISPLAY ON FLY.
11 REM - WHEN DONE DISPLAY EVERY 10TH PT.
12 REM
20 USE A
22 Z.::~INl(O)

24 FOR N=1 TO 1024
26 Y=(3*N-2)/3071
:?U X::::PL Y (Y)
30 W::::DL Y (1024)
32 NEXT N
34 V=DIS(1,1024,10,1)
..:1 <",' F~EM .. -
50 REM - CALC 30 PTS & DISPLAY ONLY
51 REM - WHEN DONE.
,SO Z:::INI «»
62 FOR N=l TO 30
64 Y=(2+Nf1)/61.1
66 Z:::PL.Y (Y)
68 NEXT N
7() V:::DIS(:I. ,:'50, 1,1)
8() END

:I. RE~1 .. -
2 REM

PROGRAM NAME: TEST1A.PG

3 UDEr INI(N),PLY(Y)vDLY(N),DISCS,E,N,X)
4 UDEr SAMCC,N,P,T),CLK(R,O,S),CLW(N),ADC(N)
5 UEF GET(M,L),PUTCM,L.),DRI(N),DRO(M,N)
6 DIM r-H342)
10 F:EM
:I. 1. r;:EM ~:)i~MPLE CH(~N 0 (:L 024 TIMES); [I I SPLAY
12 REM - ALL PTS ON THE FLY.
13 REM 10 INTERRUPTS/SEC

5-10

LAB8/E FUNCTIONS FOR OS/8 BASIC

14 HEM .-
2C) tJSE:: I~

2i W=INI(O)
22 W=DISC1,1024,1,0)
24 X=SAM(O~1,1024,O)
26 Y=CLK(3,100,O)
28 Z=DIS(1,1024,1,1)
40 REM .. -
41 REM - SAMPLE CHANNELS 0,1 (100 TIMES EACH).
42 REM - 10 INTERRUPTS/SEC;DISPLAY CHAN 0 WHILE
43 HEM - SAMPLING,WHEN DONE SHOW THREE DIFF
44 REM - DISPLAYS: DISPLAY CHAN O--HIT ~N DISPLAY
45 REM - CHAN I--HIT ~N DISPLAY CHAN 0&1.
~jO USE f:~l

~jj. W=:: I N I (0)
52 W=DIS(1,200,2?O)
54 X=SAM(0,2,100,O)
56 Y=CLK(3,100,0)
58 Z=DIS(1,200,2,1)
60 U=DIS(2,200~2,1)
62 V=DIS(1,200,1,1)
}0 [ND

1 1~:EI"i ._.
2 REM _.

PROGRAM NAME: TEST2A.PG

3 UDEF INI(N),PLY(Y),DLY(N),DIS(S~E,N,X)

4 UDEr SAM(C,N,P,T),CLK(R,O~S),CLW(N),ADC(N)
5 UDEF GET(M,L),PUT(M,L),DRI(N)~DRO(M,N)
6 DIM f:~(3A2)
1. 0 F;:EM

11 REM - CALC A PARABOLA OF 601 PTS AND DISPLAY
12 REM ON THE FLY+ WHEN DONE DISPLAY EVERY 10TH
13 HEM PT OF PAI:~ABOLA.

14 F.:Ef1
20 U~3E l~
::.:.'2 l::: J N J (0)
24 FOR N=-300 TO 300
26 Y=(N*N)/100000
::?8 X;:::PL.Y (.y.)

:.~)O W:::DLY(.:SOl)
32 NEXT N
34 V=DIS(1,601,10,1)
5·J F:Er1 ._.
51 REM - CALC A CUBIC OF 601 PTS & DISPLAY ON FL.Y
52 REM - WHEN DONE DISPLAY EVERY 10TH PT.
~:53 PEM
6 () Z :::: I N J .: ())
62 FOR N=-300 TO 300
64 Y=(N*N*N+27000000)/54000010
66 X:::F'LY (Y)
bH W::::DL. Y (60 l)
70 NEXT N
72 V=DlS(1,601,10yl)
:::~ () r~ ;\! If

5-11

LAB8/E FUNCTIONS FOR OS/8 BASIC

1 r-i:EM _ ..
:~ REM .-

PROGRAM NAME: TEST3A.PG

3 UDEF INI(N),PLY(Y),DLY(N),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLK(R,O,S),CLW(N),ADC(N)
5 UDEF GET(M,L),PUT(M,L),DRI(N),DRO(M,N)
6 DIM AC542)
10 REM .-
11 REM - ILLUSTRATE ABILITY TO ACCESS USER BUFFER.
12 REM - PUT NUMBERS 1-10 INTO BUF IN THAT ORDER.
13 REM - & READ THEM OUT IN THE REVERSE ORDER.
14 REM _.
20 Z::=INI(O)
22 FOR N=l TO 10
24 PRINT N
2c) T::::N
28 R::::PUT (T, N)
30 NEXT N
32 FOR N=l TO 10
:34 N=:: 11"-N
36 P::::GET (0, M)
38 PFnNT P
40 NEXT N
50 END

1 REM - PROGRAM NAME: TEST4A.PG
2 REM
3 UDEF INI(N),PLY(Y),DLY(N),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLK(R,O,S),CLW(N),ADC(N)
5 UDEF GET(M,L),PUT(M,L),DRI(N),DRO(M,N)
6 REM SAMPLE CHAN 0 IF CLOCK O.F.
7 REM - SAMPLE CHAN 1 IF SCHMITT ONLY
8 REM - SAMPLE CHAN IF BOTH FIRE
9 REM IF EARLY, TELL USER
10 REM - ROUTINE ALSO OUTPUTS Z
11 X~CLK(3v4000v1)
1'~) FOH N:::::J. TO 10
1. -4 Z::::Cl...l~ (0)
l~:; PI:;:INT ·Z::::H;Z
16 IF Z=O GOTO 30
18 IF 1<0 GOTO 24
19 IF 1<8 GO TO 34
20 IF 1=8 GOTO 40
2J. GOTO 40
24 IF Z<-8 GOTO 40
26 W::::{)DC (2)
:?B GOTO 36
30 W::::{)[fC (())
3:1. GOrD 36
34 I!J::::(~IDC (1)
3.:~) Pf~ I NT W
:Y.? (-IUTO 42
40 PH I NT "[{)F;:I... y n

42 NEXT N
~:50 END

5-12

LAS8/E FUNCTIONS FOR 05/8 BASIC

1 REM .-. PROGRAM NAME: TEST5A+PG
2 UDEF INI(N)~PlY(Y),DlY(N),DIS(S,EfN,X)

3 UDEF SAM(C,N,P,T),ClK(R,O,S),ClW(N),ADCCN)
4 UDEF GET(Myl),PUT(M,l),DRI(N),DRO(M,N)
~5 DIM f~(342)

10 ~:EM ._.
11 REM - USE ClK AS A SIMPLE TIMER.
12 REM - SAMPLE CHAN 0 EVERY 4TH SEC AND PUT VAL TO TTY
13 REM - DO THIS 10 TIMES
:1.4 REl'"1 .. -
20 X=ClK(3,4000,O)
22 FOR 1=1 TO 10
24 Y::::CLlo.J «)
26 Z::::ADC (0)
28 PF;:INT Z
:}O NEXT I
40 PErl .. -
41 REM - USE ClK AS A SIMPLE TIMER
42 REM - SAMPLE CHAN 1 TEN TIMES & SYNC OFF ANY
43 REM - SCHMITT TRIGGER
44 REM
50 X=ClK(4,4000,1)
52 FOR 1=1 TO 10
:::j4 Y::=CL.W'; (»

~)6 Z:=:ADC «»
~:j8 PRINT :z.
bO NEXT I
7() END

1 REM - PROGRAM NAME: TEST7A.PG
~.:~ REM .-.
3 UDEF INI(N),PLY(Y),DLY(N),DIS(S,[,N,X)
4 UDEF SAM(C,N,P,T),CLK(R,Q,S),CLW(N),ADCCN)
~.:5 UDEF GEr(M~JI...) ,PUT(M,L) ,DRI (N) ,DFW(M,N)
6 DIM {~(342)

7 U~:;E (1

8 REM - DISPLAY A TRIANGLE
:1.0 Z::::INI(O)
l:? FUr:.: N:::::!. TO 30
14 ,-(::::N/:::)O.,:I.
1 ,'.;. ~J::::PI ... y (y)
lU Z::::1/30~:I.

20 U::::PI.. Y (:Z)
:2 2 P :::: It L Y· (:I. 1 n)
;.~ ·4 r~ E~ ~;< "r 1'~

: .. ~ 6 F D I:;: j\! :::: :1. T [) 29
:~.~ ".? jvj :::: :.3 () ;·· .. 1
2F: '(::::j\I./30 1
30 I..J::::PLY': Y)
3:::.:: Z:::::I. /30 <.1
34 U :::: F' I... Y (7..)
:3 6 F' :::: D I ... Y 0: 1 :I. n :>

~'.) E~ tJ [~ X or (-..1
40 V~DIS(1,11nvl,1)
42 END

5-13

LAB8/E FUNCTIONS FOR OS/8 BASIC

1 F~EM
2 REM .-.

PROGRAM NAME: TEST8A.PG

3 UDEF INICN),PLYCY),DLYCN),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLK(R,O,S),CLWCN),ADC(N)
6 DIM AC:~42)

10 F.:EM .. -
11 REM - SAMPLE CHAN 0 100 TIMES;DISPLAY;
12 REM - HOWEVER SYNC OFr SCHMITT TRIGS.
14 REM ._.
32 USE t,
34 ~,1:::: I N J (0)
~b W=DIS(1,100,1,0)
38 X=SAM(0,1,100,0)
40 Y=CLK(3,100,1)
42 Z=DIS(1,100,1,1)
~;() END

1 F<EN PROGRAM NAME: TEST9A.PG
2 REM .. -
3 UDEF INI(N),PLY(Y),DLY(N),DISCS,E,N,X)
4 UDEF SAM(C,N,P~T),CLK(R,O,S),CLWCN),ADCCN)
5 UDEF GET(M,L),PUT(M,L),DRI(N),DROCM,N)
6 DH1 (':,(342)
10 I~[M
11 REM - CALC A PARABOLA OF 401 PTS AND DISPLAY ON FLY
13 PEM
20 U::;E f.l
22 Z::::INI (0)

24 FOP N=-2 TO 200
26 yo::: (N*N) /4000 !
28 X::::PL.. Y (Y)
30 W::::DLY 0: 401)
32 NEXT N
~.:; 0 F' F ,'·1 ._.
51 PEM - CALC A CUBIC OF 401 PTS & DISPLAY ON FLY
52 F'EM - SHOW PAPABOLA. WHEN DONE DISPLAY EVERY PT
53 REM - & THEN EVERY 10TH PT
~:.:i4 HEM
62 FOR N=-200 TO 200
64 Y=(N*N*N+8000000)/16000010
66 :<::::PL Y (Y:'
6B W::Dl.. Y (BO::?)
'/ () t~ E: ;:('r i····l
72 V=DIS(1,802,l,1)
74 V=DIS(l,80),lO,1)
BO END

1 r~EM PROGPAM NAME: TST10A.PG
2 F<EM .. -
3 UDEF INI(N),PLY(Y),DLY(N),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLK(R,O,S),CLW(N),ADC(N)
5 UDEF GET(MvL),PUT(M,L),DRI(N),DRO(M,N)
6 DIM AC542)
7 REM - THIS ROUTN RETURNS 4 DIGITS-3BITS/DIGIT
10 USE A
:1.:1. Z::=INI(O)
:I. 2 PI:~ I NT H l)(.lLUE"
14 INPUT Y
1.6 Z::::PUT C 'y',:I.)

lB F'=::GET (7 ~ :1.)

5-14

LAB8/E FUNCTIONS FOR OS/8 BASIC

:I. 9 PF<INT P

21 PF,INT P
22 P=::GET (448!' 1)
23 PF:INT P

25 F'FUNT P
26 GOlD 12
30 END

1 I:;:U1 .. -
2 HEM .-

PHOGHAM NAME: TST12A.PG

3 REM - THIS ROUTN SAMPLES DIGITAL BOARD
4 HEM - t1 TEN TIMES, ONCE EVEHY 4 SEes & PUTS

6 REM OUT THE 10 VALUES
10 UDEF INI(N)~PLYCY),DLY(N),DISCS,E,N,X)

11 UDEF SAMCC,N,P,T),CLKCR,O,S),CLWCN),ADCCN)
12 UDEF GET(M,L)~PUT(M,L)YDRI(N),DRO(M,N)
20 DIM A(342)
2::::~ USE A
2:3 W:::: I N I (())
24 X=SAMC1,1,10,1)
26 Y=CLK(3,4000,O)
2B FOH N:::·1 TO 1. 0
~:)O W::::GET (0, N)
:32 F'P I '·'-IT W
34 f··!F:XT N

:1. HEt1 PROGRAM NAME: TST13A.PG
2 REM -.
3 F\EM
4 HEM

.-

.. -
TEST THE OUTPUT REG-SEE THE LIGHTS LITE
UP + OCTAL INPUT LIGHTS THE LIGHTS AND

I:~
d

10
11

HEM -
UDEF
UDEF

THE LAMP? AN INPUT OF 0 CLEAHS THE OUTPUT REG
INICN),PLY(Y),DLY(N),DIS(S,E,N,X)
SAM(C,N~P,T),CLK(R,07S)~CLW(N)9ADC(N)

12 UDEF GET(M,L),PUTCM,L),DRICN),DRO(M,N)
:1.4 ~J::::DF<O (0,1)
16 PRINT "NUMBER H

1.8 INF'I..JT Y
19 IF Y=O GO TO 14
20 1 1::::Df<O (Y , :I.)
22 Do·ro 1 f.)
:.50 END

I REM - PROGRAM NAME: TST:l.5A+PG
:? F,EM
3 UDEF INI(N),PLY(Y),DLY(N),DISCS,E,N,X)
4 UDEF SAM (C,N,P,T),CLK(RvO,S),CLW(N),ADC(N)
::.=; UDEF GET(t1,·I...) ,PUTCi'1,L) ,[lHI(N) ,DHO(M,N)
6 DIN (.~(342)

7 REM - THIS ROUTN RETUHNS 3 DIGITS-4 BITS/DIGIT
8 REM - (MASKING) IT FIRST OUTPUTS THE DECIMAL
9 REM - EQUIV OF THE NUMBER
:LO USE (.-1

11 Z::=INl(O)
1. 2 (.\1 :::: II r,~ I (1)

5-15

LAB8/E FUNCTIONS FOR OS/8 BASIC

13 PPINT W
1. t~):>:r U T (W ~ 1.)
1. B P::::GET (1. ~:;, 1.)
1? PFnNT F'
20 P::::GET (240, :L)
21 PF~INT P
22 P:::(3ET (3B40, 1)
:::~3 F'F~ I NT P
24 PRINT ·WASTE TIMER
:2~5 J ("!F'UT F~

26 C:iOTO 12
3C' END

1 REM - PROGRAM NAME: TST16A.
2 REM -
3 UDEF INICN),PLYCY),DLYCN),DIS(S,E,N,X)
4 UDEF SAMCC,N,P,T),CLKCR,O,S),CLWCN),ADC(N)
5 UDEF GET(M,L),PUTCM,L),DRI(N),DROCM,N)
6 DIM f'lC":)
7 REM - THIS ROUTN SHOWS THAT ANY N;0(=N(=4095
8 REM - PUT INTO A USER BUF IS RETURNED AS THE
9 REM - SAME VALUE.
10 USE A
11. Z::::INI(O)
1? PRINT RNUMBERR
:1.4 INPUT Y
1 6)(:::: P l.J T (Y , :I.)
1. HZ:::: GET (0 , 1)
20 PI=<INT Z
::.~ f.) (3 C) 'TO C) 1 :?
30 END

1. REM - PROGRAM NAME: TST17A.PG
2 REM - FILL AN ARRAY OF 30 WORDS WITH THE
3 REM FIRST 30 INTEGERS. WRITE THE ARRAY
-4 I:t:EM OUT TO DECT{)PE.
5 UDEF INI(N),PLY(Y),DLYCN),DIS(SvE,N,X)
6 UDEF SAM(C,N,P,T),CLK(R,O,S),CLW(N),ADC(N)
/ UDEF GETCM,L),PUT(M,L),DRICN),DROCM,N)
n DIM f~«(»

(? USE I~~

1 () ::x:: :::: J N I <: 0)
:1.:1. F [I P N ::: :I. T D :3 0
1. ::.' pr;: I NT N
1 : .. \ X:::: F' U T (N y N)
1.4 NEXT i\1

16 FILEVNI1:"DTA:I.:DATA.PG"
2~.:' FDF: I :;;:() ·ro '/
2/} F' H I NT on: 1 t (, (:I.)
: .. ~ lJ t\~ E~ >::: or I
::.:: S C L (J ~::, F :11: 1
30 ;:::ND

5-16

LAB8/E FUNCTIONS FOR OS/8 BASIC

1 HEM .. - PROGRAM NAME: TST18A.PG
2 REM - READ INTO AN ARRAY 10 FL PT WDS
3 REM - (30 INTEGERS FROM MS) WRITE OUT THE
4 REM - 30 INTEGERS ON TTY
5 UDEF INI(N),PLY(Y),DLY(N)~DIS(S~E,N,X)
6 UDEF SAM(C,N~P,T),CLK(R,O,S),CLW(N),ADC(N)
7 UDEF GET(M,L),PUTCM,L),DRICN),DRO(M,N)
B DIM A(9)
9 USE A

22 FOR I::~() TO 9
24 INPUT :t:J.:A(J)
26 NEX'r I
2B CLOf>[11
~) c; v···· T ~.I T (,\ '.
.\" .. l ."\ 1. l"t .1. \ v' i

30 FOI:~ N==l TO 30
3~2 X::::GET «), N)
34 PHINT X
31.;. NEXT N
40 END

1 REM
2 I:~EM

PROGF<AM NAME: TST19A.PG

3 UnEF INI(N),PLY(Y),DLY(N),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLKCF<,O,S),CLW(N),ADC(N)
5 UDEF GET(M?L)~PUT(M,L),DRI(N),DHO(M,N)

10 HEM - SAMPLE CHAN () 50 TIMES;SYNC OFF SCHMITT;
11 REM - 10 INTERRUPTS/SEC;WHEN DONE DISPLAY TILL ~N;

12 HEM - THEN WHITE OUT DATA TO DTAl;
:::.~ () U ~:; [(\
2 :1. l.<.1 :::: I N J (0)
22 W=DIS(l,50,l,O)
24 X=SAMCO,1,50,0)

28 7=DIS(1,50,1,1)
29 FILEVN tl:·DTA1:SAM~DA"
3() FOF< 1:::0 TO :I. f)

:::;2 PF;: I N·r :n::i. ~ (1 (I)
~:;4 j\!E/T T
36 ;::~LUHE: t 1
38 REM - DISPLAY A PARABOLA
40 P::::1N1 (0;'
42 FOH N=-25 TO 25
44 Y:::: (N * N) ,/ () :::.~ ~:.:.; > :I.
·4/; \::::PL.Y·O:: .'y'::'

·4 [: ~.J :::: 111 ... \((~:.:.i 1)
~:jO N[)::T i\l
~j) to' :::: n J :::; (:I. ~ ~.:.:i:I. !' :I. ~ :I.)
~5l:. F~[i····1 HE(.~D D(.Yr{) r:j:)cr-:.: TN & DIf.)F'I...(.~Y IT j~S BEFClf<E

56 FILCN tl:"DTA1:SAM.DA"
58 FOR 1=0 TO 16
6 0 T hi F' 1...1 T :0::1. t (i (I)
() .::.~ t~! F~ >< "r
(;.A 1.,../:.: J j') I (»)

66 Z=DIS ly50,1,1)
,<:oH F:ND

5-17

LAB8/E FUNCTIONS FOR OS/8 BASIC

REM P~<OGF~AM NAME: TST20A.PG
2 REM
3 UDEF INI(N),PLY(Y),DLYCN),DIS(S,E,N,X)
4 UDEF SAM(C,N,P,T),CLKCR,D,S),CLW(N),ADC(N)
5 UDEF GET(M,L),PUT(M~L),DRI(N),DRO(M,N)
10 DIM X(100),Y(100),A(67)
11 REM - J1=BINS IN LATENCY(tEPOCHS TILL DONE)
12 REM - Tl=BIN WIDTH(TIH) IN MS(tMS/CLK O.F.)
13 REM - T2=BIN WIDTH OF LATENCY(tCLK DfF./EPOCHS)
16 PRINT "J1,Tl,T2?8
18 INPUT Jl,Tl,T2
:::.~O 1:"-:0
:?:J. ...1::::0
:2 :~.:~ t,::: (,
23 Y::=CLI-((:3 , II , 1)
2~j Z::::CLlA.I;; 0)
30 IF Z=O GOlD 100
32 IF 1<0 GOlO 36
34 IF Z<8 GOlO 200
:.3 ~::j ['} C) 'r [) :.~ t:J
36 IF Z>-8 GOlO 200
37 REM - INCR UNDERFLO BIN 0
38 1::::0
39 GOTO :300
99 REM - CLK O.F. ONLY;BMP HIST BIN
:1.00 1=1+1
102 IF 1<>100 GOTO 110
103 REM - END OF TIME,BMP HISl BIN
104 X(100)=X(100)+1
10::.:j I ::::0
109 REM - BMP LATENCY CTR
:1.10 K::::K+1
112 Ir K<>T2 GO TO 25
113 REM - AN EPOCH IS DONE
:1.14 K::::O
116 J::::J+l
1 :I. 8 I F J ::::l :L G [) T 0 ~:5 () ()
:1.19 REM - MORE EPOCHS TO GO?
:1.20 GOTO :?::,)
199 r;:EM C::1..1< D.F. ('}ND t;CHMITT TRIG
2 00 X (I :> ::: X (I) + 1
:.~ () :::.~ \((~..1) :::: y' (".1) ·f· 1
204 GOTO 100
299 REM ... SCHMITT TRIG ONLY
300 X(1)::::X(I)+l
302 Y(J):::Y(,J)+:t.
304 GOlD ::.l~:.i

498 REM - GET LARGEST BIN VALUE TO BE USED AS A
499 REM - SCALE FACTOR FOR DISPLAY
~.:.:j()O USE A
~.:i 0 :':) n :::: 0
504 FOR 1=0 TO 100
~.:.:.i 0 (::0 1 ::::)((:I:)

'.:.:i:1 () n::::z
::.:i1.6 NEXT 1
!:.:.i4<? f\~[M :::;;C:()LE (\1...1... IlIN v(-~I...l.J[n FOF: MAX DISPLAY
~:5 ~5 0 W :::: I N I (0)
~)~:.i:l. FOF~ I ::::() "1"0 :1.00
'5::.:i2 :Z::::':< (J)
::.:.i ~:.:i <l Y :::: 7. /' (I] +:1.)
~.:.:i ~.::! ~.:.:.i 1...) :;;: PLY -: Y)
~)~.:5,S j·'./EXT I
~59U F;~EI"i f3ET I...(.\HGE:::;T I...(.~TENCY· l')(.:}L TO HE

5-18

LAB8/E FUNCTIONS FOR OS/8 BASIC

599 REM - USED AS A SCALE FACTOR FOR DISPLAY
600 Q::=O
602 FOR I~O TO 100
604 Z==Y (1)
606 IF Q)=Z GOTO 610
.. <;08 P:::Z
6JO NEXT I
699 REM - SCALE ALL LATENCY VALS FOR MAX DISPLAY
700 FOR 1=0 TO 100
'702 :1.>Y (I)
704 Y::::Z.l (n+ 1)
706 W:::PI ... Y'; "y')

?08 NEXT I
710 REM - DISPLAY 'TIH'
711 V=DIS(1,101y1yl)
712 REM - DISPLAY LATENCY
720 V=DIS(102,202,1,1)
725 REM - DISPLAY BOTH 'TIH! & LATENCY SIDE BY SIDE
726 V=DIS(1,202,1,1)
BOO END

5.5 GETTING ON THE AIR WITH BASIC

DECtape users:

Transfer the user overlays, BASIC.UF, from the DECtape provided with
the software kit to the OS/8 system device .

. , I=< PIP
*~:;Y:::): B('~S Ie. UF<DTI~n! BAS Ie. UF/ I
*"'C

Papertape users:

(where n=O,1,2, ... ,7)

Use the ABSLDR to read into core the user overlays that are in binary
format on the paper tape, provided with the software kit. Then create
a save file on the system device.

(where $ symbolizes striking the ALTMODE key)
.SAVE SYS BASIC.UF 3400-4577

5.6 LAB8/E FUNCTION SUMMARY

Table 5-1
LAB8/E Function Summary

Function Explanation

INI (N) Locate the address of the user array and
I initialize a pointer to start of the array.

N is a dummy argument.

PLY(Y) Y-data created via the BASIC program is
deposited into the user array sequentially.
O<Y<.O

(continued on next page)

5-19

Function

DLY(N)

DIS(S,E,N,X)

SAM(C,N,P,T)

CLK(R,O,S)

CLW(N)

ADC(N)

GET(M,L)

PUT(M,L)

DRN(N)

DRO(M,N)

LAS8/E FUNCTIONS FOR OS/8 BASIC

Table 5-1 (Cont.)
LAB8/E Function Summary

Explanation

Used in conjunction with PLY, the scope is
refreshed with the contents of the user
array after each point is processed.
1<N<1024 and N specifies the maximum number
of points to be eventually displayed.

Meaning #1 (X=O). Set up parameters to
display ADC data once sampling begins.

Meaning #2 (X=O). An array of y-data is to
be displayed immediately. In both cases,
the display begins with point S of the
array, and every Nth point is displayed
while not exceeding the desired point E.

Used to set up parameters for subsequent
sampling of the ADC's (T=O) or sampling of
digital input registers (T=O). C is the
first channel # or digital input register
#. N is the number of consecutive channels
or registers to sample. P is the number of
samples per channel or register.

Set up the clock for AID sampling, digital
input sampling or for use as a simple
timer. R is the desired rate, ° is the
overflow count, and S activates the Schmitt
triggers.

This function returns to the caller a
number, indicating whether the clock
overflowed or a Schmitt trigger fired and
whether these occurred before or after CLW
was called.

This function is issued any time the user
wishes to sample AID channel N.

A l2-bit number from the user array at
location L is masked with the number M and
returned to the caller.

A floating-point number, M, is fixed to 12
bits and stored in the user array at
location L.

This function is used any time the user
wishes to sample a digital input register
N.

The bits of digital output register N are
set via the value of M.

5-20

Command

BYE

LIst

LISTNH

NAme

NEw

OLd

RUn

RUNNH

SAve

SCratch

APPENDIX A

SUMMARY OF BASIC EDITOR COMMANDS

Function

Exits from the editor and returns control to the
monitor

Displays the program statements in the workspace
with a header

Displays the program statements in the workspace,
without a header

Renames the program in the workspace

Clears the workspace and tells the editor the name
of the program the user is about to type

Clears the workspace, finds a program on the disk,
and puts in into the workspace

Executes the program in the workspace, after
displaying a header

Executes the program in the workspace, without
displaying a header

Puts the program in the workspace on a disk

Erases all statements from the workspace

A-I

Statement

CHAIN

CLOSE#

DATA

DEF

DIM

END

FILE#

FOR-TO-STEP

GOSUB

GOTO

APPENDIX B

SUMMARY OF BASIC STATEMENTS

Function

Executes another program

Example: 40 CHAIN "SYS:PROG.BA"

Closes a file

Example: 100 CLOSE#l

Sets up a list of values to be used by the READ
statement

Example: 240 DATA "FIRST",2,3

Defines functions

Example: 10 DEF FND(S)=S+5

Describes a
variables

string and/or

Example: 50 DIM B(3,5) ,D$(3,72)

any subscripted

Terminates program compilation and execution

Example: 100 END

Defines and opens a file

Example: 20 FILEVN#2:IRXAl:DATA.NV"

Describes program loops (used with NEXT)

Example: 60 FOR X=l TO 10 STEP 2

Transfers control to a subroutine (used with
RETURN)

Example: 50 GOSUB 100

Transfers control to another statement

Example: 100 GOTO 50

B-1

IF

IF END#

INPUT

INPUT#

LET

NEXT

PRINT

PRINT#

RANDOMIZE

READ

REM

RESTORE

RESTORE#

SUMMARY OF BASIC STATEMENTS

Tests the relationship between two variables,
numbers, or expressions

Example: 20 IF A=O THEN 50

Tests for the end of a string file

Example: 60 IF END#3 THEN 100

Accepts data from the terminal

Example: 80 INPUT A,B,C

Reads data from a file

Example: 50 INPUT#l:A$

Assigns a value to a variable

Example: 90 LET A$="XYZ"

Indicates the end of a program loop (used with
FOR)

Example: 140 NEXT I

Displays data on the screen

Example: 200 PRINT A,"X";6

Writes data to a file

Example: 180 PRINT#l:J

Causes the RND function to produce a different set
of numbers each time the program is run

Example: 10 RANDOMIZE

Sets variables equal to the values in
statements

Example: 50 READ A$,B

Inserts comments into the program

Example: 30 REM COMPUTE EARNINGS

DATA

Sets program READ statements back to the beginning
of the DATA list

Example: 85 RESTORE

Resets a file pointer back to the beginning of
that file

Example: 130 RESTORE#3

B-2

RETURN

STOP

UDEF

USE

SUMMARY OF BASIC STATEMENTS

Returns control from a subroutine (used with
GOSUB)

Example: 115 RETURN

Terminates program execution

Example: 40 STOP

Defines the syntax of a call to a user-coded
function

Identifies lists and arrays referenced by a
user-coded function

B-3

Comrnand

ASC(X$)

ATN(X)

CHR$ (X)

COS (X)

DAT$(X)

EXP(X)

INT(X)

APPENDIX C

SUMMARY OF BASIC FUNCTIONS

Function

Returns the absolute value of an expression

Example: 10 LET X=ABS(-66)

will assign X a value of 66

Converts a one-character string to its code number

Example: 20 PRINT ASC("B") will display 2

Calculates the angle (in radians) whose tangent is
given as the argument

Example: 30 LET X=ATN(.57735)

will assign X a value of 0.523598

Converts a code number to its equivalent character

Example: 40 PRINT CHR$(l) will display A

Returns the cosine of an angle specified in
radians

Example: 50 LET Y=COS(45*3.l4l59)/180

will assign Y a value of 0.707108

Returns the current system date

Example: 60 PRINT DAT$(X)

will display the system date, such as 07/20/77

Calculates the value of e raised to a power, where
e is equal to 2.71828

Example: 30 IF Y)EXP(1.5) GOTO 70

will go to line 70 if Y is greater than 4.48169

Returns the value of the nearest integer not
greater than the argument

Example: 60 LET X=INT(34.67)

will assign X the value 34

C-l

LEN(X$)

LOG (X)

PNT(X)

POS(X$,Y$,Z)

RND(X)

SEG$(X$,Y,Z)

SGN(X)

SIN (X)

SQR(X)

STR$(X)

SUMMARY OF BASIC FUNCTIONS

Returns the number of characters in a string

Example: 10 PRINT LEN ("DOG")

will display 3

Calculates the natural logarithm of the argument

Example: 10 PRINT LOG(959)

will display 6.86589

Outputs nonprinting
control

characters

Example: 50 PRINT PNT(13)

for terminal

will move the cursor to the left margin of the
current line

Returns the location of a specified group of
characters (Y$) in a string (X$) starting at a
character position (Z)

Example: 60 LET V=POS("ABCDBC","BC",4)

will assign V a value of 5

Returns a random
including) 0 and 1

number

Example: 70 PRINT RND(X)

between (but

will display a decimal number, such as 0.361572

not

Returns the sequence of characters in a string
(X$) between two positions in the string (X,Y)

Example: 30 LET R$=SEG$("ABCDEF",2,4)

will assign R$ a value of BCD

Returns 1 if the argument is positive, 0 if it is
zero, and -1 if it is negative

Example: 200 PRINT 5*SGN(-6)

will display -5

Returns the sine of an angle specified in radians

Example: 30 LET B=SIN(30*3.14159/180)

will assign B a value of 0.5

Returns the positive square root of an expression

Example: 40 PRINT SQR(16)

will display 4

Converts a number into a string

Example: 120 PRINT STR$(1.76111124)

will display the string 1.76111

C-2

TAB (X)

TRC(l)

VAL (X$)

SUMMARY OF BASIC FUNCTIONS

positions characters on a line

Example: 70 PRINT "A";TAB(5) ;"B"

will display A B

Causes BASIC to display the line number of each
statement in the program as it is executed

Example: 10 V=TRC(l)

will display the line number of each statement
executed until a TRC(O) is encountered

Converts a string to- a number

Example: 90 PRINT VAL("2.46lll")*2

will display 4.92222

C-3

APPENDIX D

BASIC ERROR MESSAGES

D.l COMPILER ERROR MESSAGES

The following error messages are generated by the BASIC compiler:

CH ERROR IN CHAIN STATEMENT
DE ERROR IN DEF STATEMENT
DI ERROR IN DIM STATEMENT
FN ERROR IN FILE NUMBER OR NAME
FP INCORRECT FOR STATEMENT
FR ERROR IN FUNCTION ARGS
IF ERROR IN IF STATEMENT
IC IIC ERROR
LS MISSING EQUALS SIGN IN LET
LT STATEMENT TOO LONG
MD MULTIPLY DEFINED LINE NUMBER
ME MISSING END STATEMENT
MO OPERAND EXPECTED, NOT FOUND
MP PARENTHESIS ERROR
MT OPERAND OF MIXED TYPE
NF NEXT STATEMENT WITHOUT FOR
NM MISSING LINE NUMBER
OF OUTPUT FILE ERROR
PD PUSHDOWN STACK OVERFLOW
QS STRING LITERAL TOO LONG
SS BAD SUBS:RIPT OR FUNCTION ARG
ST SYMBOL TABLE OVERFLOW
SY SYSTEM INCOMPLETE
TB PROGRAM TOO BIG
TD TOO MUCH DATA IN PROGRAM
TS TOO MANY CHARS IN STRING
DD ERROR IN UDEF STATEMENT
UF FOR STATEMENT WITHOUT NEXT
US UNDEFINED STATEMENT NUMBER
UU USE STATEMENT ERROR
XC CHARS AFTER END OF LINE

D-l

BASIC ERROR MESSAGES

D.2 RUN-TIME SYSTEM ERROR MESSAGES

The following error messages are generated by the BASIC run-time
system:

BO NO MORE BUFFERS AVAILABLE
CI IN CHAIN, DEVICE NOT FOUND
CL IN CHAIN, FILE NOT FOUND
CX CHAIN ERROR
DA READING PAST END OF DATA
DE DEVICE DRIVER ERROR
DC NO MORE ROOM FOR DRIVERS
DV ATTEMPT TO DIVIDE BY ZERO
EF LOGICAL END OF FILE
EM NEGATIVE NUMBER TO REAL POWER
EN ENTER ERROR
FB USING FILE ALREADY IN USE
FC CLOSE ERROR
FE FETCH ERROR
FI CLOSING OR USING UNOPENED FILE
FM FIXING NEGATIVE NUMBER
FN ILLEGAL FILE NUMBER
FO FIXING NUMBER>4095
GR RETURN WITHOUT GOSUB
GS TOO MANY NESTED GOSUBS
IA ILLEGAL ARG IN UDEF
IF ILLEGAL DEV:FILENAME
IN INQUIRE FAILURE
10 TTY INPUT BUFFER OVERFLOW
LM TAKING LOG OF NEGATIVE NUMBER
OE DRIVER ERROR WHILE OVERLAYING
OV NUMERIC OR INPUT OVERFLOW
PA ILLEGAL ARG IN POS
RE READING PAST END OF FILE
SC CONCATENATED STRING TOO LONG
SL STRING TOO LONG OR UNDEFINED
SR READING STRING FROM NUMERIC FILE
ST STRING TRUNCATION ON INPUT
SU SUBSCRIPT OUT OF RANGE
SW WRITING STRING INTO NUMERIC FILE
VR READING VARIABLE LENGTH FILE
WE WRITING PAST END OF FILE

D-2

Absolute value function, 1-29
Addition, 1-7
Arctangent function, 1-26
Arithmetic operations, 1-7
Arrays,

numeric, 1-14
string, 1-15

Array symbol table, 2-3
ASCII!

character set, 1-2, 1-34
conversion, 1-33
file format, 1-42, 1-43

Assembly language function, 2-1
Assignment statements, 1-10

BASIC Run-Time System (BRTS),
2-2 to 2-12

buffer storage, 2-9
floating point operations,

2-11, 2-12 to 2-18
input/output, 2-21
overlays, 2-12
passing arguments to user

functions, 2-18
symbol table structure, 2-3

to 2-5
system components, 2-2

Building a system, 4-1 to 4-3
BYE command, 1-51

Calling BASIC, 1-48
CHR$ function, 1-34
CLOSE# statement, 1-41
Command,

BYE, 1-51
LIST, 1-49
NAME, 1-51
NEW, 1-48
OLD, 1-48
RUN, 1-49
SAVE, 1-50
SCRATCH, 1:-51

Commands, key, 1-52 to 1-53
Compiler options, 3-3, 3-4
Constants,

numeric, 1-3
string, 1-4

Control (CTRL) key commands,
1-52 to 1-53

Control statements, 1-19 to
1-23

Conversion, string, 1-33, 1-34
Cosine function, 1-26

INDEX

Data formats, 1-17
DATA statement, 1-12
Debugging function, 1-38
Decimal format, 1-3, 1-4
DEF statement, 1-36
Device driver storage, 2-9
DIM statement, 1-14 to 1-16
Dimensioning strings, 1-15
Distribution media, 4-1
Division, 1-7

Editor, 1-1 to 1-3, 1-47 to
1-53

END statement, 1-23
Exponential format, 1-3
Exponential function, 1-27

Files,
formats, 1-33 to 1-44
statements, 1-40 to 1-45

Floating-point operations, 2-12
to 2-18

FOR statement, 1-20
Format control characters, 1-17
Function,

ABS, 1-29
ASC, 1-33
ATN, 1-26
CHK$, 1-34
COS, 1-26
DAT$, 1-39
EXP, 1-27
INT, 1-28
LEN, 1-31
LOG, 1-28
PNT, 1-18
POS, 1-32
RND, 1-29
SEG$, 1-32
SGN, 1-29
SIN, 1-25
SQR, 1-27
STR$, 1-36
TAB, 1-18
TRC, 1-38
VAL, 1-35

Functions,

Index-1

arithmetic, 1-27 to 1-29
string, 1-30 to 1-36
trigonometric, 1-25 to 1-27

INDEX (Cont.)

GET function, LAB8/E, 5-2
Getting on the air, 5-5
GOSUB statement, 1-23
GOTO statement, 1-19

IF END# statement, 1-45
IF GOTO statement, 1-20
IF THEN statement, 1-20
In core DATA list, 2-8
Initialize function, LAB8/E,

5-2
Inpu t/output,

BASIC Run-Time System, 2-21
statements, 1-11 to 1-18

INPUT statement, 1-11
INPUT# statement, 1-42
INT function, 1-28
Integer format, 1-3

LAB8/E functions,
examples, 5-10 to 5-19
function summary, 5-19
preparation, 5-2
support functions, 5-2

LEN function, 1-31
LET statement, 1-10
LIST command, 1-49
Lists, 1-14
Logarithm function, 1-28

Memory image files, 3-3
Memory layout, BRTS, 2-2

NAME command, 1-51
Nested loops, 1-22
Nested subroutines, 1-23
NEW command, 1-48
NEXT statement, 1-20
Numbers, 1-3, 1-4
Numeric file format, 1-43

OLD command, 1-48
Operators,

arithmetic, 1-7
relational, 1-8
string, 1-8

Options, compiler, 3-3, 3-4
Overlays, BRTS, 2-12

Plot function, LAB8/E, 5-2
PNT function, 1-18
POS function, 1-32
PRINT statement, 1-16 to 1-18
PRINT# statement, 1-43
Priority of operators, 1-7,

1-8
PUT function, LAB8/E, 5-2

Random number function, 1-30
RANDOMIZE statement, 1-30
READ statement, 1-12
Relational operators, 1-8
REMARK statement, 1-10
RESEQ program, 1-52
RESTORE statement, 1-12
RESTORE# statement, 1-44
RETURN statement, 1-23
RUN co~~and, 1-49
Run-time system, 2-2 to 2-12

SAVE command, 1-50
Scalar table, 2-3
Scratch command, 1-53
SEG$ function, 1-32
Semicolon, use of, 1-17
Sign function, 1-29
Sine function, 1-25
Square root function, 1-27
Statement,

Index-2

CHAIN, 1-46
CLOSE#, 1-41
DATA, 1-12
DEF, 1-36
DIM, 1-14
END, 1-23
FILE#, 1-40
FOR-TO-STEP, 1-20
GOSUB, 1-23
GOTO, 1-19
IF END#, 1-45
INPUT, 1-11
INPUT#, 1-42
LET, 1-10
NEXT, 1-20
PRINT, 1-16
PRINT#, 1-43
RANDOMIZE, 1-29
READ, 1-12
REM, 1-10
RESTORE, 1-12
RESTORE#, 1-44
RETURN, 1-23
STOP, 1-23
UDEF, 1-37
USE, 1-37

INDEX (Cont.)

STOP statement, 1-23
STR$ function, 1-36
String,

array table, 2-5
concatenation, 1-8
conventions, 1-4
handling functions, 1-30 to

1-36
storage, 2-6
symbol table, 2-4

Subroutines, 1-23
Subscripted variables, 1-6
Subtraction, 1-7
System-build instructions, 4-1

to 4-3

Tables,
see Arrays

TAB function, 1-18
TRC function, 1-38

USE statement, 1-37
User-defined functions, 1-36,

1-37

VAL function, 1-35
Variables,

numeric, 1-5
string, 1-5
subscripted, 1-6

Index-3

FORTRAN IV·

CHAPTER 1

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2
1.4
1.4.1

CHAPTER 2

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4
3.5

CHAPTER 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.2.1
4.4.2.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.7.1

CONTENTS

SYSTE!v1 OVERVIE~'V

THE FORTRAN COMPILER
Compiler Examples
Compiler Error Messages

THE RALF ASSEMBLER
RALF Examples
RALF Assembler Error Messages

THE LOADER
Loader Examples
Loader Error Messages

FORTRAN IV RUN-TIME SYSTEM (FRTS)
Run-Time System Error Messages

FORTRAN IV SOURCE LANGUAGE

CHARACTERS AND LINES

THE FORTRAN CHARACTER SET
ELEMENTS OF A FORTRAN PROGRAM

Statements
Comments

FORTRAN LINES
Using a Text Editor
Statement Label Field
Comment Indicator and Comments
Continuation Indicator Field
Statement Field
Identification Field

BLANK LINES
LINE FORMAT SUMMARY

FORTRAN STATEMENT COMPONENTS

INTRODUCTION
SYMBOLIC NAMES
DATA TYPES
CONSTANTS

Integer Constants
Real Constants
Decimal Real Constants
Exponential Real Constants
Double-Precision Constants
Complex Constants
Logical Constants
Octal Constants
Hollerith Constants
Alphanumeric Literals

iii

Page

1-1

, t:
.L-J

1-7
1-8
1-9
1-12
1-12
1-13
1-17
1-20
1-21
1-27

2-1

3-1

3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-5
3-5

4-1

4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-7
4-7
4-8
4-8
4-9

CONTENTS (Cont.)

Page

4.5 VARIABLES 4-9
4.5.1 Data Type Specification 4-10
4.5.2 Default Data Types 4-10
4.6 ARRAYS 4-11
4.6.1 Array Declarations 4-11
4.6.1.1 Array Storage 4-13
4.6.2 Subscripts 4-13
4.6.3 Data Type of an Array 4-14
4.6.4 Array Reference without Subscripts 4-14
4.6.5 Adjustable Arrays 4-15

CHAPTER 5 EXPRESSIONS 5-1

5.1 INTRODUCTION 5-1
5.2 ARITHMETIC EXPRESSIONS 5-1
5.2.1 Rules for Writing Arithmetic Expressions 5-2
5.2.2 Evaluation Hierarchy 5-3
5.2.3 Data Type of an Arithmetic Expression 5-3
5.3 RELATIONAL EXPRESSIONS 5-4
5.4 LOGICAL EXPRESSIONS 5-5
5.4.1 Logical Expression Hierarchy 5-6
5.5 USE OF PARENTHESES 5-7

CHAPTER 6 ASSIGNMENT STATEMENTS 6-1

6.1 INTRODUCTION 6-1
6:2 ARITHMETIC ASSIGNMENT STATE~~NT 6=1
6.3 LOGICAL ASSIGNMENT STATEMENT 6-3

CHAPTER 7 SPECIFICATION STATEMENTS 7-1

7.1 INTRODUCTION 7-1
7.2 TYPE DECLARATION STATEMENTS 7-1
7.3 DIMENSION STATEMENT 7-2
7.4 EXTERNAL STATEMENT 7-3
7.5 COMMON STATEMENT 7-4
7.5.1 COMMON Statements with Array Declarators 7-6
7.6 EQUIVALENCE STATEMENT 7-7
7.6.1 Making Arrays Equivalent 7-8
7.6.2 EQUIVALENCE and COMMON Interaction 7-9

CHAPTER 8 DATA STATEMENT AND BLOCK DATA SUBPROGRAMS 8-1

8.1 DATA STATE!-lENT 8-1
8.2 BLOCK DATA SUBPROGRAMS 8-2

CHAPTER 9 CONTROL STATEMENTS 9-1

9.1 INTRODUCTION 9-1
9.2 GOTO STATEMENTS 9-1
9.2.1 Unconditional GOTO Statement 9-1
9.2.2 Computed GOTO 9-2
9.2.3 ASSIGN and ASSIGNed GOTO Statements 9-3
9.2.3.1 ASSIGN Statement 9-3
9.2.3.2 ASSIGNed GOTO Statement 9-4

iv

9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.5
9.6
9.7
9.8

CHAPTER 10

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.5
10.6

CHAPTER 11

11.1
11.1.1

11.1.2
11.1.3
11.2
11.2.1
11.2.2
11.3
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
11.4.2.1
11.4.3
11.5
11.5.1
11.5.2
11.5.3
11.6
11.6.1
11.6.2
11.6.3
11.6.4

CHAPTER 12

,..,,....,....,.I'T1~~'TI'T1,.., /,, __ .J.. ,

I...Vl'll J. .J:.l'll .L i:) \ I...Ull L- • J

IF STATEMENTS
Arithmetic IF Statement
Logical IF Statement

DO STATEMENT
DO Iteration Control
Nested DO Loops
Control Transfers in DO Loops
Extended Range

CONTINUE STATEMENT
PAUSE STATEMENT
STOP STATEMENT
END STATEMENT

SUBPROGRAMS

INTRODUCTION
SUBPROGRAM ARGUMENTS
USER-WRITTEN SUBPROGRAMS

Arithmetic Statement Functions (ASF)
FUNCTION Subprograms
SUBROUTINE Subprograms

CALL STATEMENT
RETURN STATEMENT
FORTRAN LIBRARY FUNCTIONS

INPUT/OUTPUT STATEMENTS

INTRODUCTION
Input/Output Devices and Logical Unit
Numbers
FORMAT Specifiers
Input/Output Records

INPUT/OUTPUT LISTS
Simple Lists
Implied DO Lists

INPUT/OUTPUT FORMS
Unformatted Sequential Input/Output
Formatted Sequential Input/Output
Unformatted Direct Access Input/Output

READ STATEr,1ENTS
Unformatted Sequential READ Statement
Formatted Sequential READ Statement
CHKEOF Subroutine
Unformatted Direct Access READ Statement

WRITE STATEMENTS
Unformatted Sequential WRITE Statement
Formatted Sequential WRITE Statement
Unformatted Direct Access WRITE Statement

AUXILIARY INPUT/OUTPUT STATEMENTS
BACKSPACE Statement
DEFINE FILE Statement
ENDFILE Statement
REWIND Statement

FORMAT STATEMENTS

v

Page

9-5
9-5
9-6
9-7
9-8
9-9
9-9
9-10
9-11
9-12
9-12
9-12

10-1

10-1
10-1
10-2
10-3
10-4
10-6
10-7
10-7
10-8

11-1

11-1

11-1
11-2
11-2
11-2
11-2
11-3
11-4
11-4
11-5
11-5
11-5
11-5
11-6
11-7
11-7
11-8
11-8
11-9
11-10
11-11
11-11
11-11
11-12
11-13

12-1

CONTENTS (Cont.)

Page

12.1 INTRODUCTION 12-1
12.2 FIELD DESCRIPTORS 12-2
12.2.1 I Field Descriptor 12-2
12.2.2 F Field Descriptor 12-3
12.2.3 E Field Descriptor 12-4
12.2.3.1 Input 12-4
12.2.3.2 Output 12-4
12.2.4 D Field Descriptor 12-5
12.2.4.1 Input 12-5
12.2.4.2 Output 12-6
12.2.5 B Field Descriptor 12-6
12.2.6 G Field Descriptor 12-6
12.2.6.1 Input 12-6
12.2.6.2 Output 12-6
12.2.7 L Field Descriptor 12-7
12.2.7.1 Input 12-S
12.2.7.2 Output 12-S
12.2.S A Field Descriptor 12-S
12.2.S.1 Input 12-S
12.2.S.2 Output 12-9
12.2.9 H Field Descriptor 12-9
12.2.9.1 Alphanumeric Literals 12-10
12.2.10 X Field Descriptor 12-10
12.2.11 T Field Descriptor 12-11
12.2.11.1 Input 12-11
12.2.11.2 Output 12-11
12.2.12 $ Descriptor 12-11
12.3 COMPLEX DATA EDITING 12-12
12.4 SCALE FACTOR 12-12
12.5 GROUPING AND GROUP REPEAT SPECIFICATIONS 12-14
12.6 CARRIAGE CONTROL 12-14
12.7 FORMAT SPECIFICATION SEPARATORS 12-15
12.7.1 External Field Separators 12-16
12.S FORMAT CONTROL INTERACTION WITH I/O LISTS 12-16
12.9 SUMMARY OF RULES FOR FORMAT STATEMENTS 12-17
12.9.1 General 12-17
12.9.2 Input 12-lS
12.9.3 Output 12-19

CHAPTER 13 FORTRAN IV LIBRARY 13-1

13.1 LIBRARY FUNCTIONS AND SUBROUTINES 13-5
13.1.1 ABS 13-5
13.1.2 ACOS 13-6
13.1.3 ABD 13-6
13.1.4 ADC 13-6
13.1.5 AlMAC 13-7
13.1.6 AINT 13-7
13.1.7 ALOG 13-7
13.1.S ALOGI0 13-7
13.1.9 AMAXO 13-7
13.1.10 AMAXI 13-7
13.1.11 AMINO 13-7
13.1.12 AMINI 13-7
13.1.13 AMOD 13-S
13.1.14 ASIN 13-S

vi

CONTENTS (Cont ..)

Page

13.1.15 ATAN 13-8
13.1.16 ATAN2 13-8
13.1.17 CPJ3S 13-8
13.1.18 CCOS 13-9
13.1.19 CEXP 13-9
13.1.20 CGET 13-9
13.1.21 CHKEOF 13=9
13.1.22 CLOCK 13-9
13.1.23 CLOG 13-11
13.1.24 CLRPT 13-11
13.1.25 CHPLX 13-11
13.1.26 CONJG 13-11
13.1.27 COS 13-11
13.1.28 COSD 13-11
13.1.29 COSH 13-12
13.1.30 CPUT 13-12
13.1.31 CSIN 13-13
13.1.32 CSQRT 13-13
13.1.33 DABS 13-13
13.1.34 DATAN 13-13
13.1.35 DATAN2 13-13
13.1.36 DATE 13-13
13.1.37 DBLE 13-14
13.1.38 DCOS 13-14
13.1.39 DEXP 13-14
13.1.40 DIH 13-14
13.1.41 DLOG 13-14
13.1.42 DLOGI0 13-14
13.1.43 DMAXl 13-14
13.1.44 DMINl 13-14
13.1.45 D~10D 13-15
13.1.46 DSIGN 13-15
13.1.47 DSIN 13-15
13.1.48 DSQRT 13-15
13.1.49 EXP 13-15
13.1.50 EXTLVL 13-15
13.1.51 FLOAT 13-15
13.1.52 IABS 13-16
13.1.53 IDIM 13-16
13.1.54 IDINT 13-16
13.1.55 IF IX 13-16
13.1.56 INT 13-16
13.1.57 ISIGN 13-16
13.1.58 LSW 13-16
13.1.59 MAX 0 13-17
13.1.60 MAX 1 13-17
13.1.61 MINO 13-17
13.1.62 MINl 13-17
13.1.63 MOD 13-17
13.1.64 ONOB 13-17
13.1.65 ONQI 13-17
13.1.66 PLOT 13-18
13.1.67 PLOTR 13-18
13.1.68 RCLOSE 13-18
13.1.69 REAL 13-18
13.1.70 REALTM 13-19

vii

13.1.71
13.1.72
13.1.73
13.1.74
13.1.75
13.1.76
13.1.77
13.1.78
13.1.79
13.1.80
13.1.81
13.1.82
13.1.83
13.1.84
13.1.85

CHAPTER 14

CHAPTER 15

INDEX

15.1
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.5.1
15.2.5.2
15.2.6
15.2.7
15.2.8
15.2.9
15.2.10
15.3
15.3.1
15.3.2
15.3.2.1

FIGURE 4-1
4-2
7-1
9-1
9-2
15-1
15-2

CONTENTS (Con t .)

ROPEN
RSW
SCALE
SIGN
SIN
SIND
SNGL
SINH
SQRT
SSW
SYNC
TAN
TAND
TANH
TIME

PAPERTAPE LOADING INSTRUCTIONS

FORTRAN IV PLOTTER ROUTINES

PLOTTER ROUTINES
PLOTTER COMMANDS

PLOTS
XYPLOT
FACTOR
WHERE
SYMBOL
Multiple Characters
Single Characters
NUMBER
PSCALE
AXIS
LINE
PLEXIT

IMPLEMENTING THE PLOTTER ROUTINES
Getting Started
Adding the Plotting Routines
Loading the Plotter Routines from Paper
Tape

FIGURES

Array Representations
Array Storage
Equivalence of Array Storage
Nesting of DO Loops
Control Transfers and Extended Range
Spiral Plotter Example
Histogram plotter Example

viii

Page

13-19
13-19
13-20
13-20
13-20
13-20
13-20
13-20
13-21
13-21
13-21
13-21
13-21
13-21
13-22

14-1

15-1

15-2
15-2
15-3
15-3
15-4
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-12
15-12
15-13

15-13

Index-l

4-12
4-13
7-8
9-9
9-10
15-15
15-16

TABLE 1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-1
3-1
3-2
4-1
4-2
5-1
5-2
5-3
5-4
5-5
5-6
6-1
9-1
12-1

12-2
12-3
13-1
13-2
13-3
15-1
15-2
15-3

CONTENTS (Cont.)

TABLES

Standard FORTRAN IV File Extensions
FORTRAN IV Compiler Run-Time Options
FORTRAN IV Compiler Error Messages
RALF Assembler Run-Time Options
Loader Run-Time Options
Loader Error Messages
Run-Time System Option Specifications
Run-Time System Error Messages
FORTRAN Statement Categories
FORTRAN Special Characters
Field Summary
Classes of Symbolic Names
FORTP~~ Data Types
Arithmetic Operators
Base/Exponent Combinations
Binary Operator Hierarchy
Relational Operators
Logical Operators
Logical Operator Hierarchy
Conversion Rules for Assignment Statements
Arithmetic IF Transfers
Effect of Data Magnitude on G Format
Conversions
Character Storage
Carriage Control Characters
FORLIB Calling Relationships
FORLIB Multiple Entry Points by Section
CLOCK Subroutine FUNCTN Arguments
FORTRAN IV Plotter Routines
Special Symbols
Regular Characters

ix

Page

1-4
1-6
1-8
1-11
1-16
1-20
1-25
1-27
2-2
3-1
3-6
4-2
4-3
5-2
5-2
5-3
5-4
5-5
5-6
6-2
9-6

12-6
12-8
12-15
13-4
13-5
13-10
15-1
15-5
15-5

CHAPTER 1

SYSTEM OVERVIEW

OS/8 FORTRAN IV provlaes full standard ANSI FORTRAN IV under the OS/8
operating system. The FORTRAN IV package requires a minimum hardware
environment consisting of a PDP-8 family processor with at least 8K of
mainframe memory, a console terminal, and at least 96K of mass
storage. The system is automatically self-expanding to employ a KE8-E
Extended Arithmetic Element, FPP-12 Floating-Point Processor, up to
32K of mainframe memory, and any bulk storage or peripheral I/O
devices that may be present in the system.

Although such factors as maximum program size and minimum execution
time depend heavily on the hardware configuration on which any program
is run, OS/8 FORTRAN IV affords the full capability of the FORTRAN IV
language, even on a minimum configuration, subject only to the
restriction that double-precision and complex number operations
require an FPP-12 with extended precision opelon. The system is
highly optimized with respect to memory requirements, and an overlay
feature is included that permits programs requiring up to 300K of
virtual storage to run on a PDP-8 or PDP-12. The library functions
permit the user to access a number of laboratory peripherals, to
evaluate a number of transcendental functions, to manipulate
alphanumeric strings, and to output to a standard incremental plotter.

A FORTRAN IV program written by the user is called a source program,
to distinguish it from the various object programs generated by the
OS/8 FORTRAN IV system. Source programs may be prepared off line on
punched cards or low-speed paper tape; however, it is usually most
convenient to prepare source programs on line by means of an editing
program such as TECO or EDIT. The source file produced in this manner
is an image of the corresponding punched-card file, with carriage
return and line feed characters separating adjacent statements (that
would otherwise appear on adjacent punched cards) and ASCII spaces or
tabs entered in place of blank columns. Because of the close analogy
between punched-card source files and other types of source files, the
terms "character" and "column" are used interchangeably in this
manual.

Once a source program has been prepared, it is supplied as input to
the FORTRAN IV compiler, which translates each FORTRAN statement into
one or more RALF (Relocatable Assembly Language, Floating-point)
statements and produces an output file containing an assembly language
version of the source program, plus an optional annotated listing of
the source.

This is accomplished in three passes. System program F4.SV begins
compilation by building a symbol table and generating intermediate
code. F4 chains to PASS2.SV automatically, and PASS2 calls PASS20.SV
to complete the translation into assembly language during compilation
pass 2. If a source listing was requested, PASS20 chains to PASS3.SV
automatically, and PASS3 generates the listing during pass 3. Like
PASS2, PASS20 and PASS3 are never accessed directly by the user.

1-1

SYSTEM OVERVIEW

The RALF assembly language output produced by the compiler must be
assembled by system program RALF.SV, the RALF assembler. (See Section
1.2 for a description of the RALF assembler.) During assembly, each
RALF assembly language statement is translated into one or more
instructions for either the PDP-8 processor or the FPP; an output
file is then created containing a relocatable binary version of the
assembly language input. This is accomplished in two passes; a third
pass is executed to generate an annotated listing of the assembly
language input file, if requested.

The relocatable binary file produced by the RALF assembler is a
machine language version of a single program or subroutine. This
file, called a RALF module, must be linked with its main program (if
it is a subroutine) and with any other subroutines, including
subroutines from the library (e.g., FORLIB.RL) that it requires in
order to execute. System program LOAD.SV, the OS/8 FORTRAN IV loader,
accepts a list of RALF module specifications from the console terminal
and builds a loader image file containing a relocated main program
linked to relocated versions of all subroutines and library components
that the mainline requires in order to execute.

The loader image file is an executable core load, complete except for
run-time I/O specifications. It may be stored on any mass storage
(directory) device and executed whenever desired. The loader also
produces an optional symbol map that indicates the core storage
requirements of the linked and relocated program. The overlay feature
of the loader permits certain segments of a program to be stored in
the loader image file during execution and read into core memory only
as needed, which effectively provides a tenfold increase in maximum
program size.

The loader image file produced by the loader is read and executed by
system program FRTS.SV, the OS/8 FORTRAN IV run-time system, which
also confiqures an I/O supervisor to handle anv FORTRAN input or
output in accordance with run-time I/O specifications. This makes the
full I/O device independence of the OS/8 operating system available to
every FORTRAN IV program, and permits FORTRAN programs to be written
without concern for, or even knowledge of, the hardware configuration
on which they will be executed. The run-time system assigns I/O
device handlers to the I/O unit numbers referenced by the FORTRAN
program, allocates I/O buffer space, and also diagnoses certain types
of errors that occur when the loader image file is read into core. If
no errors of this sort are encountered, the run-time system starts the
FORTRAN program and monitors execution to check for run-time errors
involving data I/O, numeric overflow, hardware malfunctions, and the
like. Run-time errors are identified at the console terminal, and,
when a run-time error occurs, the system also provides complete error
traceback to identify the full sequence of FORTRAN statements that
terminated in the error condition.

The compiler, assembler, loader, and run-time system each accept
standard OS/8 Command Decoder option specifications, as do most OS/8
programs. The option specifications are alphanumeric characters which
may be thought of as switches that, by their presence or absence,
enable or disable certain program features and conventions. For
example, specifying the /N option to the compiler suppresses
compilation of internal sequence numbers, thereby reducing program
memory requirements (at the cost of preventing full error traceback
during execution). Thus, /N is one of the compiler run-time option
specifications that may be requested to modify the usual compilation
procedure. In this context, run time refers to the time at which the
compiler, or other system prograM, is executed, rather than the time
at which the FORTRAN program is executed.

1-2

SYSTEM OVERVIEW

A FORTRAN source program may be executed by first calling the compiler
to convert the source into RALF assembly language~ next calling the
assembler to produce a relocatable binary file, then calling the
loader to link and relocate the binary file, and finally calling the
run-time system to load the program and supervise execution. OS/8
FORTRAN IV provides a program chaining feature that can simplify or
eliminate this sequence of program calls in most cases. When chaining
is requested, the first system program to be executed automatically
calls the next program in the compiler/assembler/loader/run-time
system sequence. When the compiler chains to the assembler, for
example; the five programs (the compiler consists of four programs)
function as a single unit that accepts FORTRAN source language input
and generates relocatable binary output suitable for use as input to
the loader. In this manner, simple FORTRAN programs may be compiled,
assembled, relocated, loaded, and executed -- all as the result of a
single Keyboard Monitor or CCL command. More complicated programs
involving subroutines and, perhaps, overlays, do not admit to a high
degree of chaining because a great deal of user input in the form of
run-time option specifications may be required at some point in the
chain. In general, however, it is usually most convenient to chain
from the compiler to the assembler (combining compilation and assembly
into a single operation) and from the loader to the run-time system
(combining relocation, loading, and execution).

Errors encountered by the various system programs do not result in
termination of program chaining unless the error is such that it is
impossible for execution to continue. This permits the system to
locate and identify as many errors as possible before returning
control to the Keyboard Monitor. When chaining is requested,
intermediate output files produced by one system program are deleted
automatically after they have been read as input by the next program
in the chain sequence. This serves to optimize storage requirements
and minimize access time, particularly on DECtape- and LINCtape-based
systems.

The OS/8 FORTRAN IV system also includes FORLIB.RL, a library of
FORTRAN functions and subroutines, plus LIBRA, the system librarian
program. Almost every FORTRAN program executes calls to library
functions and subroutines which perform such tasks as mathematical
function evaluation, data I/O, and numeric conversion. When the
loader recognizes that a program or subroutine has called a library
component, it copies a relocated version of the referenced library
routine into the loader image file and links it to the calling
routine. LIBRA is used to maintain the library by inserting or
deleting library functions or subroutines, which are simply assembled
FORTRAN files or specially coded RALF modules. LIBRA may also be used
to create alternate libraries for use in place of the standard system
library.

Because it affords full I/O device independence, highly optimized
memory and bulk storage, program chaining, and a variety of run-time
options, OS/8 FORTRAN IV is necessarily somewhat complicated. In
order to use the system most efficiently, it is important to identify
the four processes that must be performed, and their proper sequence,
to execute a FORTRAN source program:

Process Performed by

COMPILATION FORTRAN IV compiler (F4, PASS2, PASS20 and PASS3).

ASSEMBLY RALF assembler (RALF).

RELOCATION FORTRAN loader (LOAD) using system library.

EXECUTION FORTRAN run-time system (FRTS).

1-3

SYSTEM OVERVIEW

It is also important to identify the types of input that must be
supplied to each process listed above and the types of output that
will be produced. The OS/8 FORTRAN IV system accepts user-generated
FORTRAN source programs (supplied as input to the compiler) and
user-written RALF assembly language files (supplied to the assembler)
as input. It generates four types of output files:

• RALF assembly language files generated by the compiler and
read as input by the assembler. Compiler output is
functionally equivalent to user-written RALF language input.

• Relocatable binary files generated by the assembler and read
as input by the loader.

• Loader image files generated by the loader and read as input
by the run-time system. Once a program has been written and
debugged, it may be stored as a loader image file and executed
whenever required without the necessity for further
compilation, assembly, or relocation.

• Optional listing files including the FORTRAN source listing
produced by the compiler, the RALF language listing produced
by the assembler, and a symbol map produced by the loader.

In addition, the FORTRAN program itself usually reads and writes data
files under the supervision of the run-time system; FORTRAN I/O files
are treated separately in the section on the FORTRAN IV Run-Time
System.

Every FORTRAN source program thus generates up to three object files,
aside from any I/O files that may be read or written during execution,
and up to three listing files. System-generated files are most
conveniently identified by assigning them the same file name as the
SOtlr~p from whi~h thpy wprp flronllrpn rlnn rl filp pxtpns;on thrlt

identifies them by type. Table 1-1 lists the standard file extensions
used to identify various types of source and system-generated files.
The standard extensions are called default extensions because, when
any output file name is specified with a null extension, the
appropriate standard extension 1S appended by default. Thus,
specifying file "PROG" or "PROG." to the RALF assembler, for example,
causes the relocatable binary output from the assembly to be written
on file "SYS:PROG.RL" where "SYS:" is the default device when a file
name is explicitly defined and ".RL" is the default extension for
relocatable binary files. Specifying a null file causes this output
to be routed to file "DSK: FORTRN.RL" where "DSK:" is the OS/8
default device and "FORTRN" is the default output file name. For
clarity, all examples in this chapter will use either null or default
extensions, although the user may explicitly specify any extension
desired.

Table 1-1
Standard FORTRAN IV File Extensions

Extension File Type

.FT FORTRAN language source file.

.RA RALF assembly language file.

.RL Relocatable binary (assembler output) •

.LD Loader image.

.LS Listing or symbol map.

.TM System temporary file. Created by certain mUltipass
programs and normally deleted automatically after
use.

1-4

SYSTEM OVERVIEW

This chapter assumes that the reader is familiar with the OS/8
operating system; however, all material has been presented in a
manner that requires minimal experience with OS/8. The reader shou~a
understand the use of the OS/8 Keyboard Monitor (although only the
monitor R command is referenced here) and the OS/8 Command Decoder.
In particular, notice tnat all Command Decoder file/option
specifications presented here are illustrated in a standard format
that may not be the most convenient format for an experienced user's
particular application. In addition, the Command Decoder provides
file storage optImizatIOn features, which may be invaluable in many
applications, but which are not covered in this chapter. DEC tape and
LINCtape users will benefit from an understanding of the OS/8 file
structure, so that they may assign I/O files in a manner that
minimizes access time on tape-based systems.

The FORTRAN IV system of programs may be entered through the CCL
commands COMPILE! EXECUTE, and LOAD. These commands are described in
Sections 1.1 and 1.1.1 in this chapter.

1.1 THE FORTRAN IV COMPILER

The OS/8 FORTRAN IV compiler accepts one FORTRAN source language
program or subroutine as input, examines each FORTRAN statement for
validity, and produces as output a list of error diagnostics, a RALF
assembly language version of the source program, and an optional
annotated source listing. A job containing one or more subroutines is
run by compiling and assembling the main program and each subroutine
separately, then combining them with the loader. F4 terminates a
compilation by chaining to the RALF assembler automatically, unless it
was requested to return to the Keyboard Monitor. The compiler is
called by typing

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. F4 may also be called via the CCL command
COMPILE. The compiler replies by loading the OS/8 Command Decoder,
which accepts and decodes a standard command line that designates a to
3 output files, 1 to 9 input files, and any run-time option
specifications. The file/option specification command line is entered
by typing

DEV:RALF.RA,DEV:LIST.LS,DEV:MAP.LS<DEV:IFl.FT, ••• ,DEV:IF9.FT(options)

(terminated by a carriage return or altmode) in response to the
asterisk generated by the Command Decoder, where
DEV:RALF.RA,DEV:LIST.LS, and DEV:MAP.LS are output files, RALF
assembly source file, listing file, and loader symbol map file,
respectively. The files DEV:IFl.FT, ••• ,DEV:IF9.FT are input files 1
to 9. Options is a string of alphabetic characters, enclosed in
parentheses, that designates any run-time options desired. The ""
character may be used in place of the "<" character to separate output
file specifications from input file specifications. The parentheses
may be omitted if each run-time option specification character is
preceded by a "I" character.

When any input file name is entered with a null extension, the
compiler will search for the indicated file name with an assumed
extension of ".FT". If this is unsuccessful, it will then search for
the indicated file with a null extension. If the first output file
RALF.RA is entered with a null extension, the compiler appends the
default extension ".RA". If the second output file is a directory

1-5

SYSTEM OVERVIEW

device file with a null extension, the compiler appends the default
extension ".LS". Note that unless chaining to RALF, the first output
file is always written onto the OS/8 system device; any user device
specification entered for this file will be ignored when the /A option
is specified. When there is more than one input file, all of the
input files are assumed to contain a single FORTRAN program or
subroutine.

After accepting and decoding the file/option specification command,
the compiler reads the input files in the order they were entered and
then compiles each FORTRAN source statement until an END statement is
encountered. Any text following the first END statement is ignored.
The compiler then writes a RALF assembly language version of the
source program onto the first output file, or onto file SYS:FORTRN.RA
if no first output file was specified. It also copies an annotated
source program listing onto the second output file; however, this
listing is not produced unless a second output file was specifically
defined. The third output file is not used by the compiler; it
receives a loader symbol map only when chaining to the loader.

An internal statement number (ISN) is assigned to each FORTRAN IV
statement sequentially, in octal, beginning with ISN 2 at the first
FORTRAN statement. When an error is encountered during compilation,
the compiler prints a 2-character error code, followed by the ISN of
the offending statement, on the console terminal during pass 2. An
extended error message is printed below every erroneous statement in
the listing, provided that a listing is produced. Certain errors
cause an immediate return to the Keyboard Monitor, however, in which
case the listing file is never produced. Table 1-3 lists the FORTRAN
compiler error messages and describes the error condition indicated by
each message.

The compiler accepts five run-time option specifications, listed in
Table 1-2, any combination of which may be requested by entering the
appropriate alphabetic character(s) in the Command Decoder file/option
specification line. Any run-time options recognized by the RALF
assembler, the loader, or the run-time system may be entered along
with the compiler options; they will be passed to the assembler
automatically unless chaining is suppressed (by an error condition or
the A option), in which case they will be ignored.

Table 1-2
FORTRAN IV Compiler Run-Time Options

Option Operation

A Return to the Keyboard Monitor when compilation is
complete. If the A option is not requested, the compiler
will automatically chain to the RALF assembler.

F Produce an annotated listing of the RALF assembly language
output file. The listing is actually produced by the
assembler; thus, the F option is only valid when chaining
to RALF. The listing is routed to the same output file as
the FORTRAN source listing. It will overwrite the FORTRAN
listing if the second output file resides on a directory
device. It will not be produced if a second output file
was not specifically defined.

(continued on next page)

1-6

I

SYSTEM OVERVIEW

Table 1-2 (Cont.)
FORTRAN IV Compiler Run-Time Options

Option Operation

N Suppress compilation of ISNs.
requirements by two words
however it also prevents full

This reduces program memory
per executable statement;

error traceback at run time.

Q Optimize cross-statement subscripting during compilation.
This option should not be requested when any variable that
appears in a subscript is modified either by referencing a
variable equivalent to it or via a SUBROUTINE or FUNCTION
call (whether as an argument or through COMMON).

1.1.1 Compiler Examples

Compile, assemble, load, and execute a FORTRAN IV source program:

!R F4
~PROG/G

Compiles DSK:PROG.FT or DSK:PROG into
DSK:FORTRN.RA, assembles it into
DSK:FORTRN.RL, links it into
DSK:FORTRN.LD, then loads it into
core and executes it. No listing
files are produced.

Compile any source program by calling F4 and specifying the file (or
files) containing the source as input:

!R F4
iPROG/A

!R F4
iSYS:PROG.FT(NA)

Compiles DSK:PROG.FT or else
DSK:PROG. into SYS:FORTRN.RA. The
back-arrow is optional when there are
no output file specifications.

Compiles SYS:PROG.FT into
SYS:FORTRN.RA under the N option.

Obtain a source listing with error messages by specifying a listing
output file as the second output file. In these examples, the first
output file is a null file.

~R F4
i,LPT:<PROG/A

~R F4
*,DTA1:PROG<DTA2:PROG.FT/A/N

Identical
preceding
listing
printer.

to the first of the two
examples, except that a

is produced on the line

Compiles DTA2:PROG.FT into
SYS:FORTRN.RA and writes a source
listing onto file DTAl:PROG.LS under
the N option.

Designate a specific output file to receive the compiler output by
specifying it as the first output file:

!R F4
iPROG<PROG/A

+R F4
1WHEN.RA,WHERE.lS<RXAO:WHAT(AQ)

Compiles
DSK:PROG.

DSK:PROG.FT or
into SYS:PROG.RA.

else

Compiles RXAO:WHAT.FT or else
RXAO:WHAT. into SYS:WHEN.RA with a
listing routed to DSK:WHERE.LS under
the Q option.

1-7

SYSTEM OVERVIEW

1.1.2 Compiler Error Messages

During compilation pass 2, error messages are printed at the console
terminal as a 2-character error message followed by the ISN of the
erroneous statement. Typing CTRL/O at the terminal suppresses the
printing of error messages. During optional pass 3, which requests a
listing, an extended error message follows each erroneous statement on
the listing. Except where indicated in Table 1-3, errors located by
the compiler do not halt processing.

Error
Code

AA
AS
BD

BS
CL
CO
DA
DE

DF
DH
DL
DN

DO
DP
EX
GT
GV
HO
IE

IF
LI
LT
MK
ML
MM
"10
MT
OF

OP
OT

PD

PH
QL
QS
RD

Table 1-3
FORTRAN IV Compiler Error Messages

Meaning

More than six subroutine arguments are arrays.
Bad ASSIGN statement.
Bad dimensions (too big, or syntax) in DIMENSION, COMMON,
or type declaration.
Illegal in BLOCK DATA program.
Bad COMPLEX literal.
Syntax error in COMMON statement.
Bad syntax in DATA statement.
Illegal statement as end of DO loop (i.e., GO TO, another
DO) •
Bad DEFINE FILE statement.
Hollerith field error in DATA statement.
Data list and variable list are not same length.
DO-end missing or incorrectly nested. This message is not
printed during pass 3. It is followed by the statement
number of the erroneous statement, rather than the ISN.
Syntax error in DO or implied DO.
DO loop parameter not integer or real.
Syntax error in EXTERNAL statement.
Syntax error in GO TO statement.
Assigned or computed GO TO variable not integer or real.
Hollerith field error.
Error reading input file. (Control returns to the
Keyboard Monitor.)
Logical IF statement used with DO, DATA, INTEGER, etc.
Argument of logical IF not type Logical.
Input line too long, too many continuations.
Misspelled keyword.
Multiply defined line number.
Mismatched parenthesis.
Expected operand is missing.
Mixed variable types (other than integer and real).
Error writing output file. (Control returns to the
Keyboard Monitor.)
Illegal operator.
Type / operator use illegal (e.g., A.AND.B where A and /
or B not typed Logical).
Compiler stack overflow; statement too big and/or too
many nested loops.
Bad program header line.
Nesting error in EQUIVALENCE statement.
Syntax error in EQUIVALENCE statement.
Attempt to redefine the dimensions of a variable.

(continued on next page)

1-8

Error
Code

RT
RW
SF
SN
SS
ST

SY

TD
US

VE

SYSTEM OVERVIEW

Table 1-3 (Cont.)
FORTRAN IV Compiler Error Messages

Meaning

Attempt to redefine the type of variable.
Syntax error in READ/WRITE statement.
Bad arithmetic statement function.
Illegal subroutine name in CALL.
Error in subscript expression, i.e., wrong number, syntax.
Compiler symbol table full, program too big. (Causes an
immediate return to the Keyboard Monitor.)
System error, i.e., PASS20.SV or PASS2.SV missing, or no
room on system for output files (Causes an immediate
return to the Keyboard Monitor.)
Bad syntax in type declaration statement.
Undefined statement number. This message is not printed
during pass 3. It is followed by the statement number of
the erroneous statement, rather than the ISN.
Version error. One of the compiler programs is absent
from SYS: or is present in the wrong version.

1.2 THE RALF ASSEMBLER

The RALF assembler accepts one RALF assembly language program or
subroutine as input and produces a relocatable binary file, called a
RALF module, as output. An optional annotated listing of the input
file may also be produced. RALF terminates an assembly by returning
to the Keyboard Monitor unless it was requested to chain to the
loader.

A RALF module is composed of an external symbol dictionary (ESD table)
and associated text. The ESD table lists all symbols defined in the
RALF input file, which may be sections, entry points, or externs.
Each of these symbols is assigned a relative address to be used by the
loader when it relocates the relative code by assigning absolute core
addresses. The text produced by RALF is a relocatable binary version
of the assembly language input file. All text addresses are relative
to the ESD table symbols.

A section can be thought of as a contiguous block of relocatable code
having a definite beginning and end, which is temporarily assigned a
relative starting address of 00000. A RALF file can have more than
one section defined in its ESD table. For example, consider a
subroutine containing a COMMON section assembled by RALF. Both COMMON
and the subroutine itself are sections. An entry point is a location
within a given section that is referenced by code in other sections.
An extern is a section or entry point in some other module that is
referenced within the module currently being assembled.

Unless the A option is specified to the FORTRAN IV compiler, the RALF
assembler is called automatically to assemble the output of a
successful compilation. In this case, RALF reads the assembly
language file just produced by the compiler as input and routes its
output, consisting of the assembled RALF module, to the first output
file that was specified to the compiler. If this file had a null
extension, the default extension ".RL" is supplied. If no first
output file was specified, the module is written onto default file
SYS:FORTRN.RL.

1-9

SYSTEM OVERVIEW

The RALF language output produced by the compiler is then deleted, and
an annotated listing of the RALF assembly language input is written on
the second output file specified to the compiler, provided that a
second output file and the F option were both specified. This listing
will overwrite the compiler source listing if the second output file
is a directory device file. Note, however, that the RALF language
listing is rarely required for most applications and should not be
routinely requested.

The RALF assembler might also be called separately to assemble the
output of the compilation produced under the A option or to assemble a
user-generated file written in RALF assembly language. This is
accomplished by typing

.R RALF

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. RALF replies by loading the OS/8 Command
Decoder, which accepts and decodes a standard command line that
designates a to 3 output files, I to 9 input files, and any run-time
option specifications. The format for a file/option specification
command line is

DEV:RALPH.RA,DEV:LIST.LS,DEV:MAP.LS<DEV:IFI.RA, ... ,DEV:IF9.RA(options)

where

DEV:RALF.RA is the relocatable binary RALF module

DEV:LIST.LS is the annotated listing of RALF source

DEV:MAP.LS is the loader symbol map

DEV:IFI.RA, .•. ,DEV:IF9.RA

options

are input files I to 9

is a string of alphabetic characters
designates any run-time options desired

that

If any input file name is entered with a null extension, the assembler
will search for the indicated file name with an assumed extension of
".RA". If this is unsuccessful, it will then search for the indicated
file with a null extension. If the first output file is entered with
a null extension, the assembler appends the default extension ".RL".
If the second output file is a directory device file with a null
extension, the assembler appends the default extension ".LS".

When there is more than one input file, all of the input files are
assumed to contain the assembly language source for a single RALF
module. After accepting and decoding the file/option specification
command, RALF reads the input files in the order they were entered and
assembles every RALF language statement. RALF terminates the assembly
by writing a relocatable binary version of the input program or
subroutine onto the first output file, or onto file SYS:FORTRN.RL if
no output files were specified. It also copies an annotated source
listing and symbol table onto the second output file; however, this
listing is not produced unless a second output file was specifically
defined. The third output file is not used by the assembler; it
receives a loader symbol map only when chaining to the loader.

When an error is encountered during assembly, the assembler prints a
2-character error code, followed by the label associated with the
erroneous statement, on the console terminal during pass 2. Error
codes are also appended to the listing, on a line by themselves

1-10

SYSTEM OVERVIEW

immediately preceding the statement to which they apply (except EG,
which follows the line in error). Certain errors cause an immediate
return to the Keyboard Monitor, however, in which case the listing is
never produced. RALF assembler error messages and the error condition
indicated by each message are described in the RALF chapter of this
manual.

The assembler accepts the three run-time option specifications listed
in Table 1-4, any combination of which may be requested by entering
the appropriate alphabetic character(s) in the Conmand Decoder
file/option specification line. Any options recognized by the loader
or the run-time system may be entered along with the assembler
options; they will be passed to the loader automatically unless
chaining is suppressed (by an error condition or omission of the L
option specification), in which case they will be ignored.

Table 1-4
RALF Assembler Run-Time Options

Option Operation

G

L

T

1

I I

Chain to the loader when assembly is complete, and
chain to the run-time system following creation of a
loader image file.

Chain to the loader when assembly is complete. If
the L option is not specified, RALF will return to
the Keyboard Monitor upon completion.

Suppress the RALF assembly language listing and
produce only a symbol table. The T option is ignored
by the assembler when a second input file was not
sPecifically defined. When chaining from the
compiler, it is ignored unless the F option and a
listing output file were both specified.

The symbol table produced by RALF and appended to the RALF language
listing includes:

• assembler version number

• system date

• listing page number

• number of errors encountered during assembly

• number of symbols defined in the program

• number of absolute references encountered in FPP instructions

All symbols referenced during the assembly are then listed in
alphabetical order, from left to right across the page. An alphabetic
code follows certain classes of symbols and identifies them by type.
The alphabetic codes are:

C symbol names a COMMON section
F symbol names a FIELDI section
S symbol is the name of a section
U symbol is undefined
X symbol is external to this assembly
Z symbol names a COMMZ section
8 symbol names an 8-mode section

1-11

SYSTEM OVERVIEW

If no alphabetic code is shown, the symbol is an ordinary address
symbol. A numeric code is also printed after each symbol in the list.
The numeric code indicates the relative octal value of the symbol
except for the case of:

C, F, S,
Z, or 8 codes

where the numeric code indicates the length of the
section or common block.

U or X codes where 00000 indicates undefined
symbols.

or external

1.2.1 RALF Examples

When chaining from the compiler to the assembler, RALF deletes the
compiler output after reading it as input. Thus:

~R F4
~PROG

!R F4
~PROG.V3,LPT:<PROG/F

Produces RALF module SYS:FORTRN.RL
and deletes compiler output file
SYS:FORTRAN.RA.

Produces RALF module SYS:PROG.V3
and lists both the FORTRAN source
and the RALF language compiler
output on the line printer.

!R F4 Produces RALF module DTA2:0BJ.RL
~DATA2:0BJ,DTA1:LIST<DTA2:PROG(TF) and writes a symbol map onto file

DTAl:LIST.LS. The FORTRAN source
listing is overwritten and
destroyed.

When calling the assembler to assemble and relocate the output of a
successful compilation produced under the A option or a user-written
RALF language source, the procedure is closely analogous to that for
running the compiler:

.R RALF
*PROG

!R RALF
!,SYS:LIST<DTA1:FILE.RA

~R RALF
lDTA1!TMP.TM,LPT!<RALF.RA

Assembles
DSK:PROG.

DSK:PROG.RA or else
into SYS:FORTRN.RL.

Assembles DTAl:FILE.RA
SYS:FORTRN.RL and writes a
on SYS:LIST.LS.

Assembles DSK:RALF.RA
DTA1:TEMP.TM and writes a
on the line printer.

into
listing

into
listing

1.2.2 RALF Assembler Error Messages

During assembly pass 2, error messages are printed at the console
terminal as a 2-character error code followed by the label associated
with the erroneous statement. If a listing was requested, error codes
are printed during pass 3 on a line by themselves immediately
preceding the statement to which they apply (except for EQ, which
follows the line in error). RALF error messages are listed in the
RALF chapter of this manual.

1-12

SYSTEM OVERVIEW

1.3 THE LOADER

The OS/8 FORTRAN IV loader accepts up to 128 RALF modules as input and
links the modules, along with any necessary library components, to
form ~ loader image fi~e t~at may be loaded and executed by the
run-tIme system. ThIS IS accomplished by replacing the relative
starting location (00000) of each section with an absolute core
address. Absolute addresses are also assigned to all entry points
defined in the input modules. Once all RALF modules and library
components have been assigned to some portion of memory and linked;
absolute addresses are assigned to the relocatable binary text and the
externs.

The overlay feature of the loader facilitates runnIng programs too
large to be contained in available memory. This makes it possible to
run programs that require up to 300K words of storage in less than 32K
of actual core memory. This is accomplished by dividing very large
FORTRAN programs into a set of subroutines linked by one mainline.
Unlike the subroutines, each of which has a section name by which it
is called, the mainline does not have a name and is therefore assigned
section name #MAIN by the system. An overlay scheme is then designed
in such a way that the memory requirement of those subroutines that
are core-resident at any given time does not exceed the available core
memory.

An overlay is a set of subroutine stored on a bulk storage device.
When any subroutine in an overlay is called by the mainline or another
subroutine, the entire overlay is read into core, where it generally
replaces another overlay of equivalent size.

Levels are variable-size portions of memory reserved for specific sets
of overlays. OS/8 FORTRAN IV permits up to 8 levels, designated level
0, levell, and so on up to level 7. Level a is always present and
always contains only one overlaYf called overlay MAIN, which always
includes section #MAIN (the FORTRAN or RALF mainline) as well as all
COMMON sections, 8-mode sections and library components. Additional
subroutines may also reside in overlay MAIN; in fact, the entire
program should be loaded into level a if there is sufficient core
available.

Levels 1 to 7 may each contain up to 16 overlays, only one of which is
core-resident at any given time during program execution. If no
subroutines are loaded into a given level, that level does not exist
for the current execution and no memory is allocated to it. As
execution begins, overlay MAIN is loaded into level a (where it
remains throughout execution) and started at the entry point of
section #MAIN. Other overlays are read into the block of memory
reserved for their particular level whenever one of their constituent
subroutines is called. As an overlay is read into a given level, it
overwrites any other overlay that may have been resident in that
level. Thus, no two overlays from the same level are ever
core-resident simultaneously.

1-13

SYSTEM OVERVIEW

When section #MAIN or any subroutine calls another subroutine, the
flow of execution from calling routine to called routine is referred
to as part of a calling sequence. Every calling sequence begins with
a call from section #MAIN and ends with a call to some subroutine that
does not contain any further CALL statements. Calling sequences
generally contain branches, and they may be very intricate. For
example, assume that:

Routine/Subroutine

mainline (#MAIN)
SUBI
SUB2
SUB3
ALPHA
BETA

Contains Calls To

SUBI, SUB2, SUB3
ALPHA, BETA
SUB3

SUB2

Then the calling sequences could be mapped as:

ALPHA

SUBI/BETA~
.;¢MAIN/ SUB2

- ~SUB3

When any subroutine CALL is executed, the system determines whether
the overlay containing the called routine is core-resident and, if
not, reads this overlay into its proper level in core, overwriting any
overlay which was previously resident in that level. No such
determination is possible for RETURN statements, however. For this
reason, it is extremely important to ensure that, at the end of a
calling sequence, all subroutines in the calling sequence are still
core-resident. In other words, no subroutine may execute a CALL that
will cause it, or any subroutine which called it, to be overlaid. In
the previous example, if SUBl, SUB2 and SUB3 occupy separate overlays
in level 1 while ALPHA and BETA reside in level 2, the calling
sequence from #MAIN to SUBI to BETA to SUB2 will cause a fatal error
because SUB2 will overwrite SUBI and prevent control from returning to
level o. The FORTRAN system guards against some errors of this type
by enforcing the following rules:

• Subroutines in a given level cannot call other subroutines in
the same level if the called subroutine is in a different
overlay.

• Subroutines in high-numbered levels cannot call subroutines in
lower-numbered levels unless the call is to level O. (This
convention is not enforced when the U option is specified to
the run-time system.)

These restrictions will not prevent fatal errors in all cases. In the
preceding example, if subroutine BETA is placed in level 0 instead of
levell, the calling sequence from #MAIN to SUBI to BETA to SUB2 still
causes a fatal error, even though neither of the enforced conventions
is violated. Thus, any overlay scheme must be designed with careful
attention to calling sequences.

1-14

SYSTEM OVERVIEW

If the L or G option is specified to F4 or RALF, the loader is called
automatically to relocate the output of a successful assembly. When
chaining to the loader is via F4, the loader reacts in one of two
ways. If the last Command Decoder file/option line terminated with a
carriage return, it immediately fetches the Command Decoder and
proceeds as though it had been called from the monitor, as described
below. The only difference, in this case, is that certain loader or
run-time system options may have been passed to the loader from RALF
and cannot be suppressed at this point. Also, unless two different
files are specified as output files, the loader automatically routes
its loader image to the first output file specified to F4 or RALF at
the start of the chain. Default extension ".LD" is assigned if this
file had a null extension. If no output files were specified the
loader routes l~S loader image to file SYS:FORTRAN.LD. The
relocatable binary output produced by the assembler is deleted after
it has been read as input. A loader symbol map is routed to the third
output file specified at the start of the chain sequence, if any, or
to the second output file, if any, specified to the loader as
described below. When this is a directory device file with a null
extension, the default extension ".LS" is supplied.

If the last file/option specification supplied to the Command Decoder
was terminated with an ALTMODE character instead of a carriage return,
the loader reacts differently when chained to from RALF. In this
case, the loader assumes that the RALF module just produced is a
stand-alone mainline that requires no subroutines (other than library
components) in order to execute. The loader does not call the Command
Decoder under these circumstances, since level a is the only level
that will be defined. Output is produced exactly as described above,
and the loader either returns to ~ne Keyboard Monitor upon completion
or, if a G option specification was previously entered, chains to the
run-time system.

The loader may be called separately, to link and relocate a set of
previously assembled RALF modules. This is accomplished by typing

~R LOAD

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. The loader replies by calling the OS/8 .Command
Decoder, which accepts and decodes one or more standard command lines,
each of which designates a to 9 input files, a to 2 output files, and
any run-time option specifications desired. The file/option
specification line format is:

where

DEV:IMAGE.LD,DEV:MAP.LS<DEV:PROGA.RL, ••• ,DEV:PROGX.RL(options)

IMAGE.LD is the loader image output file

MAP.LS is the loader symbol map output file

DEV:PROGA.RL, •.• ,DEV:PROGX.RL

options

may be either relocatable binary RALF modules or a
library file

is a string of alphabetic characters that designates
any run-time options desired

The loader accepts up to 128 input file specifications, one of which
may designate a library file to be used in place of the standard
system library. The OS/8 Command Decoder, however, accepts a maximum
of only 9 input file specifications per command line. Thus, after

1-15

SYSTEM OVERVIEW

each file/option command line is entered, the loader recalls the
Command Decoder to accept another command line. This process
continues until the /G option is received or a line is terminated with
an ALTMODE. Input file specifications should be entered in sequence,
beginning with all RALF files to be loaded into level 0, followed by
files for level 1 overlay 1, level 1 overlay 2, and so on until all
level 1 overlays are filled. Level 2 overlays are then built in the
same manner, using as many file/option specification lines as
necessary. The process continues until all levels are filled. Each
line may contain from 0 to 9 input file specifications; null lines
will be ignored by the loader.

At some point during this process, two output files and one library
(input) file may also be specified. The loader image file built by
the loader is routed to the first output file, which must reside on a
directory device, or to file SYS:FORTRN.LD if no output files are
specified. When the first output file has a null extension, the
default extension ".LD" is supplied. The loader symbol map is routed
to the second output file, provided that a second file is specifically
defined. If this is a directory device file with a null extension,
the default extension ".LS" is supplied. One library file may be
specified as an input file, to be used in place of the standard system
library. This must be a specially formatted file, prepared with LIBRA
as described in Chapter 13 of this manual. In addition, it must be
specified on a command line that contains no other input file names.
This command line may appear anywhere in the file/option specification
sequence and is identified by the presence of an L option
specification.

If more than one first output file, second output file, or library
file is specified to the loader, only the last specification in each
category is used. Previous specifications, including those supplied
to F4 or RALF when chaining to the loader, are ignored.

Run-time option specifications are used to group the sequence of input
files into discrete overlays, allocate overlays to certain levels, and
identify the user-generated library file, if any. Table 1-5 lists the
run-time options recognized by the loader and describes their use.
The E and H options, recognized by the run-time system, may be entered
on the same line as the G option when chaining to the run-time system.

Option

C

Table 1-5
Loader Run-Time Options

Operation

Continue the current line of input on the next line
of input. When specifying RALF files to the loader,
there may be more than nine files that belong in a
given overlay. Since the Command Decoder will not
allow more than nine input files in one file/option
specification line, the C option permits the
additional files to be put on the following line. If
the C option is not specified at the end of a line,
the current overlay is closed when the terminating
carriage return is received and subsequent input
files are placed in a new overlay in the current
level. An exception to this is level 0, which only I
contains one overlay. The presence of a C option

I
specification is assumed on every line until level 0 I
has been closed by an 0 specification. i

i

(continued on next page)

1-16

Option

G

L

o

S

u

SYSTEM OVERVIEW

Table 1-5 (Cont.)
Loader Run-Time Options

Operation

Treat the current line as the last line of input, and
chain to the FORTRAN IV run-time system when finished.

Accept the single input file specified on this line as
an alternate library to be used in place of the system
library, FORLIB.RL.

Close the level that is currently open, and open the
next sequential level for input. RALF files specified
on subsequent lines are assigned to overlays in the new
level untll the new level is closed by the next 0
specification (or the end of input).

Include system symbols in the loader symbol map.
System symbols are identified by an initial "I"
character. This option is only valid when a symbol map
output file was specifically defined.

Ignore the rules governing subroutine calls between
overlays. This option should only be used when
subroutines making illegal calls will not be accessed
during execution since, in general, any illegal
subroutine call will cause unpredictable behavior at
run time.

Input may be terminated by entering a G option specification on the
last line and/or by terminating the last line with an ALTMODE
character rather than a carriage return. If the G specification and
the ALTMODE both appear, this indicates that the user has no
file/option specification input for the run-time system and prevents
the run-time system from calling the Command Decoder.

1.3.1 Loader Examples

The following sequence of Command Decoder specification lines
illustrates the use of option specifications to allocate RALF files to
particular overlays •

• R LOAD Loader is called from Keyboard Monitor.

Loader image file will be routed to
SYS:PROG.LD while the symbol map is
printed on the line printer. PROG.RL is
placed in level a overlay MAIN. Since
the presence of a C option specification
is assumed on every line preceding the
first 0 option specification, level a
overlay MAIN remains open.

Place subroutines ALPHA and BETA in
level a overlay MAIN. The presence of a
C option specification is assumed.

1-17

!<SUB4+RL,SUB5+RL~SUB6+RL/C

*<DTA1:SUB7.RL/O

!<DT til! f;UBB • RI ...

!<~:)UE;(;·~ • F~I ...

.!<I ... In .. F~~L (L~:;)

!<SUB 1 0 + I:~L../O

SYSTEM OVERVIEW

Close level a and open level 1 overlay
1.

Place SUBl, SUB2 and
overlay 1. Close

SUB3 in level 1
overlay 1 and open

overlay 2.

place SUB4, SUBS and SUB6 in
overlay 2. Accept further
this overlay on the next line.

level 1
input for

Place SUB7 in level 1 overlay 2. Close
levelland open level 2 overlay 1.

place SUB8 in level 2 overlay 1.
overlay 1 and open overlay 2.

Place SUB9 in level 2 overlay 2.
overlay 2 and open overlay 3.

Close

Close

Use file DSK:LIB.RL in place of
SYS:FORLIB.RL as the library file. In
spite of its position in the
specification list, any library
components will be placed in level o.
The S option specification requests an
augmented loader symbol map.

place SUBIa in level 2 overlay 3. Close
level 2 and open level 3 overlay 1.

Place SUBll and SUB12 in level 3 overlay
1. Close level 3, terminate input, and
chain to the run-time system when
finished.

This sequence of commands will provide the following overlay scheme:

Level Overlay Contents

a rvtAIN PROG, ALPHA, BETA library subroutines
1 1 SUBl, SUB2, SUB3
1 2 SUB4, SUBS, SUB6, SUB7
2 1 SUB8
2 2 SUB9
2 3 SUBIa
3 1 SUBll, SUB12

Note that all of the input files except those containing SUB7, SUB8,
and SUB12 are taken from device DSK:, the OS/8 default device. The
left-angle bracket character is optional when a file/option
specification line contains only input file specifications; it has
been included here for clarity. Obviously, there are many other ways
in which the sequence of file/option specifications shown above could
have been entered to produce an identical result.

Considerable foresight is required when designing an overlay scheme.
Since an overlay may have to be read into core whenever one of its
constituent subroutines is called, a great deal of useless I/O results
from inefficient overlay design. The system does verify that an
overlay is not already resident before reading it into core.

Levels must be an integral number of system blocks (400 octal words in
size) and big enough to accommodate the largest overlay they contain.

1-18

SYSTEM OVERVIEW

Ideally, then, the largest overlay in a level should occupy slightly
less than some multiple of 400 (octal) words of storage, and all
overlays in a level should be nearly equal in size. For example, if
level 1 contains three overlays requiring 300, 100, and 150 octal
words of storage, respectively, then the two smaller overlays should
be combined because level 1 will be 400 octal words long in any case.
If the three overlays require 500, 100, and 150 octal words of
storage, all three should be combined because level 1 will be 1000
octal words long in any case.

Frequently called subroutines should be kept core-resident whenever
possible, perhaps by placing them in level a or in a level that
contains rarely accessed overlays. Within the loader image file,
subroutines are stored in the order in which they were specified to
the loader. Thus, grouping frequently called subroutines into
adjacent levels also speeds execution by reducing the access time
required to read an overlay into core, particularly from DECtape and
LINCtape. When running very large programs with nany overlay levels,
it may be desirable to make level a as small as possible, in spite of
the resulting excess I/O. This is accomplished by minimizing COMMON
(which always occupies level 0), dividing the mainline into a series
of subroutines, and creating a new mainline that contains
predominately CALL statements. Note, however, that all library
subroutines will reside in level 0, regardless of the location of
subroutines that call them.

Any error recognized by the loader during generation of a loader image
file results in an error message, printed on the console terminal,
immediately following the input specification line that caused the
error condition. Table 1-6 lists the loader error messages and
describes the error condition indicated by each message.

The optional loader symbol map lists all symbols defined in the loader
image file and identifies each symbol by overlay, level, and memory
address, as follows:

LOADER V21 04 /30 /73

SYMBOL VALUE LVL OVLY

A 10400 1 00
ARGERR 00204 0 00
B 10400 1 01
C 11214 1 01
EXIT 00223 0 00
iMAIN 10000 0 00

12000 - 1ST FREE LOCATION

LVL DVLY LENGTH

0 00 10143
1 00 01270
1 01 01240

Following the alphabetical list of symbols, the loader prints the
address of the first free memory location and the length, in octal
words, of each overlay defined. This information is useful in
optimizing memory requirements.

1-19

SYSTEM OVERVIEW

1.3.2 Loader Error Messages

The loader prints error messages on the console terminal during
generation of a loader image file. Except where indicated in Table
1-6, loader errors are fatal. The loader returns control to the
Keyboard Monitor when a fatal error condition is encountered.

Error Message

BAD INPUT FILE

BAD OUTPUT DEVICE

ILLEGAL ORIGIN

MIXED INPUT

JI1ULT SECT

NO MAIN

OVER CORE

OVER IMAG

OVER SYMB

TOO MANY LEVELS

Table 1-6
Loader Error Messages

Meaning

An input file was not a RALF module.

The loader image file device was not a
directory device, or the symbol map file
device was a read-only device. The entire
1 ine is ign?red.

A RALF routine tried to store data outside
the bounds of its overlay.

The L option was specified on a line that
contained some file other than a library
file. The library file (if any) is
accepted. Any other input file
specification is ignored.

Any combination of entry point, COMMON
section (with the exception of multiple
COMMONs) , or program section of the same
name causes this error, except the
following:

COMMON COMMZ FIELDl

SECT OK OK OK
SECTS OK OK OK
COMMON OK eMS) OK
COMMZ (MS) OK (MS)
FIELDl OK (MS) OK

No RALF module contained section #MAIN.

The loader image requires more than 32K of
core memory.

output file overflow in the loader image
file.

Symbol table overflow. More than
(decimal) symbols in one FORTRAN job.

253

The 0 option was specified more than seven
times.

(continued on next page)

1-20

I

SYSTEM OVERVIEW

Table 1-6 (Cont.)
Loader Error Messages

Error Message Meaning

TOO MANY OVERLAYS I
I

More than 16 overlays were defined in the
current level.

TOO MANY RALF FILES I More than 128 input files were specified=

EX

ME

MS

*

I
I .

I

I

i

The symbol is referenced but not defined.

Multiple Entry. The symbol has more than
one definition.

Multiple Section. A section has more than
one definition.

The symbol is referenced illegally.
Generally this symbol is an overlay and is
either referenced as data from another
overlay (only CALL references are allowed)
or called from the same or a higher-number
overlay level, violating the overlay rules.

The following FATAL error messages occur when the Loader is linking
and relocating:

SYSTEM ERROR

LOADER I/O ERROR

OS/8 ENTER ERROR

and indicate an error detected by OS/8 while trying to perform a USR
function.

All errors identified during the loading procedure are followed by a
line of the form:

where

1 00 nnn

1 is the level in which the error occurred

00 is the overlay in which the error occurred

nnn is the module number, within the referenced overlay, that
caused the error.

Some errors (e.g., NO MAIN) are attributable to a single module, and
the module numbers for this type of error are meaningless.

1.4 FORTRAN IV RUN-TIME SYSTEM (FRTS)

The OS/8 FORTRAN IV run-time system reads, loads, and executes a
loader image file produced by the loader. It also configures a
software I/O interface between the FORTRAN IV program and the OS/8

1-21

SYSTEM OVERVIEW

operating system, then monitors program execution to direct I/O
processes and identify certain types of run-time errors. The run-time
system is called automatically to load and execute the loader image
file produced by the loader whenever the G option is specified to the
loader.

When chained to from F4, RALF, or LOAD, the run-time system reacts in
one of two ways. If the last Command Decoder file/option line was
terminated with a carriage return, it immediately fetches the Command
Decoder and proceeds as though it had been called from the Keyboard
Monitor, as described below. The only difference, in this case, is
that certain run-time system options may have been passed to the
run-time system from the loader and cannot be suppressed at this
point. If the last file/option specification line supplied to the
Command Decoder was terminated with an ALTMODE character instead of a
carriage return, however, the loader assumes that no user input is
required. The Command Decoder is not called. The loader image file
just produced is read as input, and, unless the H option was
previously specified, it is loaded and executed.

The FORTRAN IV Run-Time System is able to accept file I/O
specifications. This allows the user to write a source program that
refers to I/O devices as integer constants or variables. This program
may be compiled, assembled, and loaded into an image file. The image
file may be run any number of times, each time specifying different
physical I/O devices. Thus logical unit 8 may refer in one run to the
console terminal, in another run to a disk file, and in another run to
a paper tape punch.

These run-time specifications allow the FORTRAN program to use the
05/8 file-handling capabilities, to use any OS/8-supported I/O device,
and potentially to use any I/O device for which an 05/8 device handler
can be written.

The following pages explain how the user gives the run-time system the
connections between 05/8 device and file names and the FORTRAN logical
unit numbers.

FORTRAN IV programs are usually saved as loader image files and
executed by calling the run-time system from the Keyboard Monitor to
load and execute the saved loader image. This is accomplished by
typing

+R FRTS

(terminated by a carriage return) in response to the dot generated by
the Keyboard Monitor. The run-time system replies by calling the 05/8
Command Decoder to accept one or more standard file/option
specification lines. It recalls the Command Decoder after processing
each line, until a line terminated by an ALTMODE character is
received.

The run-time system accepts two classes of Command Decoder file/option
specifications. The first class specifies the load module to be
executed; the second class specifies the run-time file assignment.
l~hen it is called from the Keyboard Monitor, the run-time system loads
the Command Decoder to accept one input file name, perhaps followed by
the E or H option specifications, described in Table 1-7. This
information is not required when the loader chains to the run-time
system because the loader image file just produced is automatically
read as input, while the E and/or H options could have been specified
to the loader along with the G specification that requested chaining.

1-22

SYSTEM OVERVIEW

Thus, the loader image input file to be executed must be identified on
the first file/option specification line when FRTS is called from the
Monitor, and must not be specified at all when the loader chains to
FRTS. This Command Decoder line has the form:

*DEV:IMAGE.LD(options)

where IMAGE.LD is the loader image input file and "options" is E or H
or both. If this line is terminated by an ALTMODE, the program is
executed; lr l~ is terminated with a carriage return, the Command
Decoder is recalled to accept run-time file specifications.

Once the loader image file to be executed has been identified, the
run-time system recalls the Command Decoder to accept any FORTRAN I/O
device specifications. Of the nine I/O unit numbers available under
FORTRAN IV, four are initially assigned to FORTRAN internal device
handlers by the system as follows:

I/O Unit Internal Handler

1 paper tape reader

2 paper tape punch

3 line printer

4 console terminal

Comments

Single-character buffer

Single-character buffer

LP8 and
buffered

LS8E only; ring

Double-buffered output; single­
character input

The FORTRAN internal handlers listed above are not the same as the
OS/8 device handlers. The FORTRAN internal handlers are designed for
ASCII text only and will not execute binary or core-image I/O. Also,
FORTRAN internal handlers are interrupt-driven to execute foreground
I/O concurrently with background computation.

FORTRAN internal device handlers may be assigned different unit
numbers, in addition to those listed above, by typing

where

/n=m

m is the I/O unit number (1 to 4) of one of the internal
handlers listed above

n is a different unit number (1 to 9)
assigned to that internal handler

that is also to be

This specification causes all program references to logical unit n to
perform I/O to device Q in the preceding table. For example:

/6=2 Assigns the FORTRAN internal paper tape punch handler as
I/O unit number 6, in addition to unit number 2.

/1=2 Assigns I/O unit number 1 to
tape punch handler instead
reader handler.

1-23

the
of

FORTRAN internal paper
the internal paper tape

SYSTEM OVERVIEW

OS/8 device handlers for nondirectory devices may be assigned I/O unit
numbers by typing

where

DEV:/n

n is an I/O unit number (1 to 9)

DEV: is the standard or assigned designation for any supported
nondirectory device

For example:

LPT:/3 Specifies the OS/8 line printer handler to be used
instead of the FORTRAN internal line printer handler,
possibly because the line printer is not an LP08 or
LS8E.

Existing directory device files may be assigned I/O unit numbers by
typing

DEV:FILE.EX/n

where

n

DEV:FILE.EX

For example:

is an I/O unit number (1 to 9)

is the standard OS/8 designation for an existing
directory device file

!DTA1:FORIO.TM/2 Assigns unit number 2 to DECtape file
FORIO.TM rather than to the FORTRAN internal
paper tape punch handler, where FORIO.TM is
an existing file on DECtape unit 1.

A directory device file that does not presently exist may be assigned
a FORTRAN I/O unit number in the same manner by entering it as an
output file on the specification line; however, only one such file
may be created on any particular device. For example:

*FORIO.TM{/9 Assigns unit number 9 to file DSK:FORIO.TM, which
has not been created at load time.

In any case, only one device or file specification is permitted on
each line, and no more than 6 directory device files may be created by
the FORTRAN program. Excess files after the sixth are accepted and
written, but they will not be closed. If a file created by the
program has the same file name and extension as a pre-existing file,
the old file is automatically deleted when the new file is closed.

The Command Decoder "[nJ" specification may be used to optimize
storage allocation when assigning files that do not yet exist, where n
is a decimal number that indicates the maximum expected length of the
file, in blocks.

Each time a run-time I/O specification is terminated with a
return, the Command Decoder is recalled to accept
specification. When a specification is terminated with an
the program is run.

1-24

carriage
another

ALTMODE,

SYSTEM OVERVIEW

Although existing files are specified as though they were input files
and nonexistent files are specified as though they were output files,
any file that has been assigned a unit number may be used for either
input or output. The content of a nonexistent file is undefined until
it has been written by the program.

Option

H

E

C

Table 1-7
Run-Time System Option Specifications

Operation

Halt after loading but before starting
Press the CONTinue switch on the
commence execution.

the program~

processor to

Ignore the following run-time system errors, anyone
or which indicates that an error was detected earlier
in the compilation/assembly/loading process:

a. Illegal subroutine call
b. Reference to an extern in an overlay other

than in the form "JSR EXTERN" (i.e., CALL
statement)

c. Reference to an undefined symbol

Any of the above may lead to unpredictable program
behavior as, in general, some portion of the program
will not be loaded or executed.

Carriage control switch. The first character on
every output line is processed as a carriage control
character by all FORTRAN internal handlers and also
by the OS/8 hard copy handlers TTY and LPT. The
first character on every output line is processed as
data, in the same manner as any other character, by
all OS/8 handlers except TTY and LPT. Entering a C
option specification on the command line that assigns
an I/O unit number to a particular handler reverses
the processing of carriage control characters for
that device. Thus:

TEMP(2C)
assigns file DSK:TEMP. as I/O unit 2. The C option
causes the first character of every output line to be
processed as a carriage control character. If C were
not specified, these characters would be processed as
data=

/C/6=3
assigns the FORTRAN internal line printer handler as
I/O unit 6, as well as unit 3. The first character
of every line will be processed as a carriage control
character on unit 3, and as a character of data on
unit 6.

The OS/8 FORTRAN IV run-time system executes with the PDP-8/E
interrupt system enabled. OS/8 device handlers are not
interrupt-driven; however, certain handlers may execute with the
interrupt system enabled because the devices they control have
interrupt-enable switches that the handlers do not set. FRTS allows

1-25

SYSTEM OVERVIEW

for this by running with the interrupt system enabled when driving
handlers of this type, and disabling the interrupt system when a
handler that does not run under interrupts is loaded. Handlers that
can run with the interrupt system enabled include:

TC08 DECtape system handler and nonsystem handlers DTAO to DTA7

RF08 system handler

RK8 system handler and nonsystem handlers RKAO to RKA3

RK8E system handler and nonsystem handlers RKAO to RKA3 and RKBO
to RKB3

Any FORTRAN internal handlers

These OS/8 handlers do not permit interrupts from these devices, but
they do permit other devices, e.g., CLOCK, to interrupt the data
transfer. Note that TD8E is absent from this list because the TD8E
data transfer cannot be interrupted.

The run-time system recognizes two classes of error conditions.
Certain errors are diagnosed while the core-image file is being read
from a storage device and loaded into core memory. Other errors may
occur during execution of the FORTRAN program. Both classes of
run-time errors are identified on the console terminal. Table 1-8
lists the FRTS error messages and describes the error condition
indicated by each message. The run-time system error traceback
feature provides automatic printout of statement numbers corresponding
to the sequence of executable statements that terminated in an error
condition. At least one statement number is always printed. This
number identifies the erroneous statement or, in certain cases, the
last correct statement executed prior to the error. When a statement
was compiled under the N option, however, the system cannot generate
meaningful statement numbers during traceback. When a statement is
reached through any form of GOTO, the line number for traceback is not
reset. Thus an error in such a line will give the number of the last
executed line in the error traceback.

The console terminal serves as FORTRAN I/O unit 4 for both input and
output. Terminal input is automatically echoed on the console
printer. In addition, the run-time system monitors the keyboard
continually during execution of a FORTRAN program. Typing CTRL/C at
any time causes an immediate return to the OS/8 Monitor. Typing
CTRL/B branches to the system traceback routine and then exits to the
monitor. This traceback routine causes a printout, which is similar
to the error traceback and includes the current subroutine, the line
number in the next higher level subroutine from which it was called,
etc. This facilitates locating infinite loops when debugging a
program. The following additional special characters are recognized
by the console terminal handler and processed as shown:

RUBOUT Deletes last character accepted.

CTRL/U Deletes current line of input.

CTRL/I (Tabulation) Converted to appropriate number of spaces.

CTRL/Z Signals end-of-file on input.

1-2~

SYSTEM OVERVIEW

Tentative output files (that is, files created by the FORTRAN program)
are closed automaticallY upon successful completion of program
execution provided that either~

1. An END FILE statement referencing the file was executed. (In
this case FRTS assigns a file length equal to the actual
length of the file.)

2. The last operation performed on the file was a write
opera~lon. (In this case FRTS proceeds as though an END FILE
statement had been executed.)

3. A DEFINE FILE statement referencing the file was executed but
an END FILE statement was not executed. (In this case, upon
completion of program execution, FRTS assigns a file length
equal to the length specified in the DEFINE FILE statement.)

Execution of a REWIND statement does not close a tentative file, nor
does it modify the tentative file length.

1.4.1 Run-Time System Error Messages

The run-time system generates two classes of error messages. Messages
listed in Table 1-8 identify errors that may occur during execution of
a FORTRAN program and errors that may be encountered when the run-time
system is reading a loader image file into memory in preparation for
execution, or accepting I/O unit specifications. Except where
indicated, all run-time system errors cause full traceback and an
immediate return to the monitor. Nonfatal errors cause partial
traceback, sufficient to locate the error, and execution continues.

Error Message

BAD ARG

CAN'T READ IT!

CAUTION - NO DP

D.F. TOO BIG

Table 1-8
Run-Time System Error Messages

Meaning

Illegal argument to library function.

I/O error on reading loader image file.

The present hardware configuration does not
include an FPP-12 Floating-Point Processor
with double-precision option. Execution
continues; however, all double-precision
operations default to real arithmetic (with
unpredictable results), and all complex
operations also produce unpredictable
results.

Product of number of records times number
of blocks per record exceeds number of
blocks in ~ile. Note that for a random
access file the length in OS/8 blocks must
be no less than the number of records times
the integer but must be greater than the
quotient of floating-point variables per
record divided by 85.

(continued on next page)

1-27

I
I

SYSTEM OVERVIEW

Table 1-8 (Cont.)
Run-Time System Error Messages

Error Message

DIVIDE BY 0

EOF ERROR

FILE ERROR

FILE OVERFLOW

FORMAT ERROR

FPP ERROR

INPUT ERROR

I/O ERROR

MORE CORE REQUIRED

NO DEFINE FILE

NO NUMERIC SWITCH

NOT A LOADER IMAGE

OVERFLOW

OVERLAY ERROR

Meaning

Attempt to divide by zero.
quotient is set to zero
continues.

The
and

resulting
execution

End of file encountered on input.

Any of:

a. A file specified as an existing
file was not found.

b. A file specified as a nonexistent
file would not fit on the
designated device.

c. More than one nonexistent file was
specified on a single device.

d. File specification contained "*"
as name or extension.

Attempt to write outside file boundaries.

Illegal syntax in FORMAT statement.

Hardware error on FPP start-up.

Illegal character received as input.

Error in reading or writing a file; tried
to read from an output device; or tried to
write on an input device.

The space required for the program, the I/O
device handlers, I/O buffers, and the
resident Monitor exceeds the available
core.

Direct access I/O attempted without
DEFINE FILE statement.

a

The referenced FORTRAN I/O unit was not
specified to the run-time system.

The first
run-time
file.

input
system

file
was

specified to the
not a loader image

Result of a computation exceeds upper bound
for that class of variable. The result is
set equal to zero and execution continues.
This error is detected only if an FPP is
present.

Error while reading overlay.

(continued on next page)

1-28

SYSTEM OVERVIEW

Table 1-8 (Cont.)
Run-Time System Error Messages

Error Message Meaning

PARENS TOO DEEP

SYSTEM DEVICE ERROR

TOO MANY HANDLERS

USER ERROR

UNIT ERROR

Parentheses nested too deeply in FORMAT
statement.

I/O failure on the system device.

Too many I/O device handlers are resident
1n memory, or files have been defined on
too many devices.

Illegal subroutine call, or call to
undefined subroutine. Execution continues
only if the E option was requested.

I/O unit not assigned, or incapable of
executing the requested operation.

1-29

CHAPTER 2

FORTRAN IV SOURCE LANGUAGE

A FORTRAN source program consists of statements
elements and the syntax described in this
performs one of the following functions:

using
manual.

the language
A statement

• Causes operations such as multiplication, division, and
branching to be carried out

• Specifies the type and format of data being processed

• Specifies the characteristics of the source program

FORTRAN statements are composed of keywords (that is, words that the
FORTRAN compiler recognizes) that you use with elements of the
language set. These elements are constants, variables and
expressions. There are two basic types of FORTRAN statements:
executable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and subprograms
that you may include in the program. The compilation of executable
statements results in the creation of executable code. Nonexecutable
statements provide information only to the compiler; they do not
create executable code.

The OS/8 FORTRAN IV language generally conforms to the
for American National Standard FORTRAN X3.9-1966.
enhancements are included in OS/8 FORTRAN:

specifications
The following

• You may use any arithmetic expression as an array subscript.
If the expression is not of integer type, FORTRAN converts it
to integer form.

• You may use alphanumeric literals (character strings delimited
by apostrophes or quotation marks) in place of Hollerith
constants.

• The statement label list in an ASSIGNed GO TO statement is
optional.

• The following Input/Output (I/O) statements have been added:

DEFINE FILE

READ (u'r)
WRITE (u' r)

Device-oriented I/O

Unformatted Direct Access I/O

2-1

FORTRAN IV SOURCE LANGUAGE

• You may use any arithmetic expression as the initial value,
increment, or limit-parameter in the DO statement, or as the
control parameter in the COMPUTED GO TO statement.

• OS/8 FORTRAN permits constants and expressions in the I/O
lists of WRITE statements.

All FORTRAN statements are listed in Appendix B.

All FORTRAN language elements, (constants, variables, and
expressions), the character set from which you may form the language
elements, and the rules governing their construction and use are
described in Chapters 1 through 3.

I

In this manual, the FORTRAN language statements are grouped into eight
categories, each of which is described in a separate chapter. The
name, definition, and chapter references for each statement category
are given in Table 2-1. .

Table 2-1
FORTRAN Statement Categories

Chapter Category Function

6 Assignment Assign values to named variables
Statement and array elements.

7 Specification Declare the properties of
Statement variables, arrays, and functions.

8 DATA Statements Assign initial values to variables
"",~rl array" elements. allu

9 Control Statements Determine order of execution of
the object program and terminate
its execution.

10 Subprogram Define functions and subroutines.
Statements

11 Input/Output Transfer data between internal
Statements storage and specified input/output

devices.

12 FORMAT Statements Specify formats for data on
input/output.

DOCUMENTATION CONVENTIONS

The following symbols represent special nonprinting characters:

Tab character (TAB key or <CTRL/I) key combination)

Space character (SPACE bar)

2-2

FORTRAN IV SOURCE LANGUAGE

SYNTAX CONVENTIONS

rt'1k; ,... ..- __ ,
.LUJ.;:) HIQUUQ..L USeS following conventions to describe FORTRAN
statement syntax:

• Upper-case words and letters, as well as punctuation marks
other than TAB or SPACE, are typed as they are printed in this
manual.

e Lower-case words indicate value substitution. The
accompanying text describes the nature of the item you will
substitute, e.g., integer variable, statement label, etc.

• Double square brackets ([[]]) enclose optional items.

• Ellipses (•••) indicate that you may repeat the preceding item
or bracketed group any number of times.

For example, if the description is

CALL sub [[(a[[,a]] •••)]]

then all of the following are correct:

CAL.L TIMER
CAL.L INSPCT (I,J,3+0)
CALL REGI:<ES «(~)

If a syntax definition is italicized or in a different type face, it
is only for visual emphasis.

2-3

CHAPTER 3

CHARACTERS AND LINES

3.1 THE FORTRAN CHARACTER SET

The FORTRAN character set consists of:

• The upper-case letters A through Z

• The numerals 0 through 9

• The special characters in Table 3-1

Table 3-1
FORTRAN Special Characters

Character Name Character Name

Space Parentheses

Tab Comma

Equals Decimal Point

+ Plus Apostrophe

Minus II Quote

* Asterisk $ Dollar Sign

/ Slash

You may type other printable characters such as %, , and @ only as
part of Hollerith constants, alphanumeric literals,-or comments.

3.2 ELEMENTS OF A FORTRAN PROGRAM

A FORTRAN program consists of FORTRAN statements and optional
comments. You group the statements into logical units called program
units (a program unit being a sequence of statements which you
terminate with an optional END statement).

A program unit can be either a main program or a subprogram. One main
program and possibly one or more subprograms form the executable
program.

3-1

CHARACTERS AND LINES

3.2.1 Statements

Statements are grouped into two general classes: executable and
nonexecutable. Executable statements are the action statements of the
program; nonexecutable statements describe data arrangement and data
characteristics. Nonexecutable statements may also contain editing
and data conversion information.

A program consists of a series of statements, written one statement to
a line. (A line is a string of up to 72 characters.) If a statement
is too long to fit on one line, you may continue it on up to five
additional lines (called continuation lines). (For further
information, see Section 3.3.4, Continuation Indicator Field.)

A statement can refer to another statement. FORTRAN refers to such a
statement by an integer number (called a label) ranging from 1 to
99999. Such a statement is most often referenced for the information
it may contain or so that program execution can continue at that
statement.

3.2.2 Comments

Comments are lines of text that document program action, indicate
program sections and processes, and provide greater ease in reading
the source program listing by identifying variables.

The FORTRAN compiler ignores comments; the comments exist only so
that you can document what the program is doing.

3.3 FORTRAN LINES

A FORTRAN line consists of four fields:

1. Statement Label Field

2. Continuation Indicator Field

3. Statement Field

4. Identification Field

You may skip any of these fields when entering statements, but, except
for the identification field, the spaces allotted to each field must
remain present. In the case of the identification field, you may type
a carriage return before reaching it.

Each printing space represents a single character. The following
sections describe how to enter the source program and what information
is contained in each field.

3.3.1 Using a Text Editor

When creating a source program with a text editor, you type the lines
on a "character-per-column" basis. You may also use the <TAB>
character to format lines.

3-2

CHARACTERS AND LINES

Many text editors and terminals advance the terminal print carriage to
a predefined ~r~IlL position when yvu type a <TAB>. This action,
however, is not related to FORTRAN:s interpretation of the <TAB>
character.

NOTE

The FORTRAN system interprets a <TAB> as
one character, not the number of
characters (up to eight) that it will
print.

For example, you may format the following lines in either of the ways
shown:

where

c- INITIALIZE ARRAYS or

10- W=3 or

- SEL(l)=111200022DO or

represents a <TAB>
represents a space character

c INITIALIZE ARRAYS

10 W=3

SEL(1)=111200022DO

Use space characters in a FORTRAN statement to improve the legibility
of a line. The compller ignores all spaces in a statement field
except those within a Hollerith constant or alphanumeric literal.
Thus, GO TO and GOTO are equivalent.

The compiler also ignores a <TAB> in a statement field; it considers
a <TAB> to be the same as a space. However, in the compiler-generated
source listing, FORTRAN prints the character following the <TAB> at
the next tab stop (located at columns 9,17,25,33, etc.).

3.3.2 Statement Label Field

A statement label is a number that FORTRAN uses to reference one
statement from another statement.

A statement label (sometimes also called a statement number) consists
of from one to five decimal digits ranging from I through 99999.
Place this label in the first five positions of a statement's first
line. Any source program statement that is referenced by another
statement must have a statement number.

FORTRAN ignores spaces
label, e.g., FORTRAN
statement label 105:

and leading zeros
interprets each of

preceding the
the following

statement
lines as

105
00105

105

An all-zero statement label is illegal.

You may
statement

assign
number

contrast, a main

statement
must be

program

numbers in any order; however, each
unique in the program or subprogram. In

and a subprogram may contain identical

3-3

CHARACTERS AND LINES

statement numbers. In this case, FORTRAN understands that reference
to these numbers means the numbers in the program unit in which the
reference is made.

You cannot label nonexecutable
statements.

statements other than FORMAT

When you type a source program with a terminal, an initial (TAB) skips
over the label and continuation field.

3.3.3 Comment Indicator and Comments

A comment indicator tells FORTRAN that the text on a line is a comment
when you type the letter C in column one. The compiler will print the
contents of that line in the source program listing; however, it
ignores the line when it compiles the program.

The following are restrictions on comments:

• All comment lines must begin with the letter C in column one.

• You cannot continue comment lines; consequently each comment
line must begin with a C.

• Unlike other statements, the text of a comment can begin in
the second space of a line.

• Comment lines must not intervene between a statement's initial
line and its continuation line (or lines), or between
successive continuation lines.

3.3.4 Continuation Indicator Field

A continuation indicator tells FORTRAN that the text on that line is
part of the same statement as the preceding line.

You must reserve column six of a FORTRAN line for the continuation
indicator even if you do not type a continuation indicator.

FORTRAN defines any character except a space in column 6 to be a
continuation indicator.

The following are rules for using continuation indicators:

• You may divide a statement into distinct lines at any point.

• You may precede the continuation indicator with space
characters only; you may not precede it with a (TAB) as an
initial (TAB) skips over the continuation field.

• The characters beginning in column seven of a continuation
line are considered to follow the last character of the
previous line as if there were no break at that point.

3-4

CHARACTERS AND LINES

• You may enter no more than 5 continuation lines for one
statement.

• You cannot continue comment lines.

• A comment line must not intervene between a statement!s
initial line and its continuation line (or lines), or between
successive continuation lines.

• You cannot assign statement numbers to continuation lines.

3.3.5 Statement Field

Type the text of a FORTRAN statement in columns 7 through 72. A <TAB)
may precede the statement field rather than spaces. Note that because
the compiler ignores <TAB)s and spaces (except in Hollerith constants
and alphanumeric literals), you can space the text of the statement
for maximum legibility.

3.3.~ Identification Field

Type a sequence number or other such identifying information in
columns 73-80 of any line in a FORTRAN program. FORTRAN ignores the
characters in this field.

NOTE

The FORTRAN compiler ignores text in
these positions. Moreover, FORTRAN does
not print a warning message if you
accidently type text in this field.
This is sometimes the source of
inexplicable errors.

You might use this feature when typing
punched card input. It is seldom used
with terminals.

3.4 BLANK LINES

You may insert lines consisting only of blanks, <TAB)s, or no
characters anywhere in your source program except immediately
preceding a continuation line. You would use a blank line to improve
the readability of a source listing; the FORTRAN compiler ignores
them.

3.5 LINE FORMAT SUMMARY

The fields and the columns in which they may appear are listed in
Table 3-2.

3-5

CHARACTERS AND LINES

Field

Statement Label

Table 3-2
Field Summary

Continuation Indicator

Statement

Identification

Column(s)

1 through 5

6

7 through 72

73 through 80

The following example shows the placement of fields (The numbers
represent column numbers.):

1 67

121,~5)

10 READ (1,10005) (A,B,C,D)
C THE DATA IS STORED ON DECTAPE; USE THE
C TIME SYSTEM TO ASSIGN LUN 1 TO DTAx:

CALL UPDATE(A,D)
IF C+NOT+ END) GO TO 10

3-f5

7
3

00000002
FORTRAN RUN 03

00000004
00000005
00000006

CHAPTER 4

FORTRAN STATEMENT COMPONENTS

4.1 INTRODUCTION

The elements of FORTRAN statements are:

• Constants

A constant is a fixed, self-describing value.

• Variables

A variable is a symbolic name that represents a stored value.

• Arrays

An array is a group of variables that you may refer to
individually or collectively. The individual values are
called array elements. Use a symbolic name to refer to the
array.

• Expressions

An expression can be a
function reference.
components and certain
by those components.
single value.

• Function References

constant, variable, array element, or
It may also be a combination of those
other elements (called operators). a

The result of the computation is a

A function reference is the name of a function (often followed
by a list of arguments). After FORTRAN performs the
computation indicated by the function definition, it
substitutes the computed value in place of the function
reference.

4.2 SYMBOLIC NAMES

You use symbolic names to identify certain entities within a FORTRAN
program unit. Symbolic names consist of a combination of from one to
six alphanumeric characters. If you use more than six characters in a
symbolic name, FORTRAN reads only the first six.

The first letter of a symbolic name must be a letter. The special
characters listed in Table 3-1 may not appear in symbolic names.

4-1

FORTRAN STATEMENT COMPONENTS

Examples of valid and invalid symbolic names are:

Valid

NUMBER
Kg

Invalid

SQ
B.4

(Begins with a numeral)
(Contains a special character)

Table 4-1 indicates the types of variables that FORTRAN identifies by
symbolic names.

Except as specifically mentioned in this manual, you may not use the
same symbolic name to identify more than one FORTRAN entity.

Each variable indicated as "Typed" in Table 4-1 has a data type. The
means of specifying the data type of a name are presented in Sections
4.3 and 7.2.

Within a subprogram, you may use symbolic names as dummy arguments. A
dummy argument may represent a variable, array, array element,
constant, expression, or subprogram. However, all subprograms must be
uniquely named.

Table 4-1
Classes of Symbolic Names

Entity Typed

Variables yes

I Arrays yes
Arithmetic statement functions yes

I Processor-defined functions yes
FUNCTION subprograms yes
SUBROUTINE subprograms no
Common blocks no
Block data subprograms no

4.3 DATA TYPES

The data type of a FORTRAN element may be inherent in its construction
or implied by convention; you may also declare it explicitly. The
data types available in FORTRAN, and their definitions, are listed in
Table 4-2.

4-2

FORTRAN STATEMENT COMPONENTS

Data Type

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

OCTAL

Table 4-2
FORTRAN Data Types

Meaning

A whole number.

A decimal number; it can be a whole number,
a decimal fraction, or a combination of the
two.

Similar
twice

to
the

real, but with approximately
degree of accuracy in its

representation.

A pair of real values that represents a
complex number; the first represents the
real part of that number, the second
represents the imaginary part.

The logical value "true" or "false".

An integer number in radix 8.

An important attribute of each data type is the amount of memory
FORTRAN requires to represent a value of that type. Variations on the
basic types affect either the accuracy of the represented value or the
allowed range of values.

A "storage unit" is the amount of storage OS/8 FORTRAN requires to
store a REAL, INTEGER, or LOGICAL value. DOUBLE PRECISION and COMPLEX
values occupy two storage units. In OS/8 FORTRAN, a storage unit
corresponds to 3 words of memory (i.e., 36 bits).

Section
FORTRAN

NOTE

4.5.2 discusses the standard
defaults for REAL and INTEGER

variables.

Hollerith constants and alphanumeric literals have no data type.
assume the data type of the context in which they appear.
Section 4.4.7 for details.)

4.4 CONSTANTS

They
(See

A constant represents a fixed value; that is, a constant can
represent numeric values, logical values, or character strings.

4.4.1 Integer Constants

An integer constant is a whole number with no decimal point.
have a leading sign.

4-3

It may

FORTRAN STATEMENT COMPONENTS

The format is:

snn

where

nn is a string of from 1 to 7 decimal digits
s is an optional algebraic sign

In OS/8 FORTRAN, an integer constant is a whole signed or unsigned
number that contains no more than seven decimal digits. Integer
constants must fall within the range -2**23 to 2**23-1 (-8,388,608 to
8,338,607). When you use integer constants as subscripts, FORTRAN
uses them at modulo 2**12 (4,096 decimal).

FORTRAN ignores leading zeros in integer constants.

Precede a negative integer constant by a minus symbol. A plus symbol
is optional before a positive number because FORTRAN assumes an
unsigned constant to be positive; thus, +27 and 27 are identical.

With the exception of a plus or minus sign, an integer constant cannot
contain any character other than the numerals 0 through 9.
Specifically, embedded commas and decimal points are not allowed.

Examples:

Valid
Integer Constants

Invalid
Integer Constants

o
-127

+32123

4.4.2 Real Constants

99999999999
3.14

32,767

(Too large)
(Embedded decimal point)
(Embedded comma)

There are two kinds of real constants: decimal and exponential.

4.4.2.1 Decimal Real Constants - A decimal real constant is a string
of decimal digits with a decimal point. It may have a leading sign.

The format is:

where

s.nn
snn.nn
snn.

nn is a string of numeric characters
is a decimal point

s is an optional algebraic sign

Note that you do not always have to type a number following the
decimal point, but you must always type the decimal point. The
decimal point can appear anywhere in the digit string.

4-4

FORTRAN STATEMENT COMPONENTS

FORTRAN does not limit the number of digits in a decimal real
constant, but only the leftmost six digits are significant. For
example, in the constant 0.000012345678, all of the non-zero digits
are significant (note that FORTRAN only stores 0.000012). However, in
the constant 000507, the first three zeros are not significant.

You must precede a negative constant with a minus sign. The plus sign
is optional preceding a positive real constant.

Except for algebraic signs and a decimal point, a
constant cannot contain any character -other than
through 9.

real decimal
the numerals 0

Examples:

Valid
Real Constants

3.14159
71712.

-~00127

0.0

Invalid
Real Constants

1,234,567 (Embedded commas)
879877399. (Too large)
100 (Decimal point missing)

4.4.2.2 Exponential Real Constants An exponential real constant is
a decimal real constant followed by a decimal exponent.

The format is:

mmEsnn

where

mm is an integer or real constant
nn is a 1- to 3-digit integer constant
E indicates that the constant is an exponential real constant
s is an algebraic sign

An exponential real constant is a decimal number that you type in
scientific notation, that is, in powers of 10. The number, nn,
represents a power of 10 by which the preceding real or integer
constant is to be multiplied (e.g., lEn represents the value
1.0 x 10**6). The magnitude of a real constant cannot be smaller than
10**-n15 nor greater than 10**n15.

A real constant occupies three words (i.e., six
FORTRAN interprets this number as having a
slightly greater than seven decimal digits.

bytes)
degree

of storage.
of precision

In 08/8 FORTRAN, an exponential real constant need not contain a
decimal point.

A minus symbol must appear between the letter E and a negative
exponent; a plus symbol is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the letter E, a real
exponential constant cannot contain any character other than the
numerals 0 through 9. However, you may omit the decimal point if the
number does not have a fractional part.

4-5

FORTRAN STATEMENT COMPONENTS

Examples:

Valid
Real Constants

2E-3
+5.0E3

Invalid
Real Constants

-47.E645
325E-801
5E3.2

(Too large)
(Too small)
(Decimal point misplaced)

4.4.3 Double-Precision Constants

A double-precision constant is a real or integer constant which
FORTRAN stores in twice as many locations as a real constant; it thus
has extra significant digits.

The format is:

mmDsnn

where

nn is a 1- or 2-digit integer constant
D designates a double-precision constant
s is an optional algebraic sign
mm is the doubl~-precision number

A double-precision number is a number that has twice the amount of
storage allocated for it in memory as a real number. A
double-precision constant occupies six words (72 bits) of PDP-8
storage, and FORTRAN interprets it as a real number having a degree of
precision approximately equal to 17 significant digits. FORTRAN does
not limit the number of digits that precede the exponent, but only the
leftmost 17 digits are significant.

Precede a negative double-precision constant by a minus symbol; a
plus symbol is optional before a positive constant. Similarly, if the
number is negative, a minus symbol must appear between the letter D
and a negative exponent. You may omit the decimal point from a
double-precision constant that does not have a fractional part.

NOTE

Double-precision arithmetic requires the
presence of an FPP (Floating-Point
Processor) with an extended precision
option.

The magnitude of a double-precision constant cannot be smaller than
10**-615, nor greater than 10**615.

Examples:

1234567890D+5
+2.71828182846182DOO
-72.50-15
100

4-6

FORTRAN STATEMENT COMPONENTS

4.4.4 Complex Constants

A complex number is a number that has a real and an imaginary part.

The for;mat is:

(rc,rc)

where

rc is a real constant

A complex constant is a pair of single-precision real constants that
you separate with a comma and enclose in parentheses. The first real
constant represents the real part of that number and the second
represents the imaginary part. You must type the parentheses and
comma as they are part of the constant. The real and imaginary parts
may each be signed.

NOTE

You can only do complex arithmetic on
the FPP by using the extended precision
logic.

A complex constant occupies six consecutive words of storage, three
for each real constant.

Examples:

(1.70391,-1.70391)
(+12739E3,O.)

4.4.5 Logical Constants

A logical constant specifies a logical value, that is, "true" or
"false". Therefore, the only two logical constants possible are:

.TRUE.

and

.FALSE.

NOTE

You may abbreviate .TRUE.
as .T. and .F.

and • FALSE.

You must type the delimiting periods as they are part of each
constant.

Only logical operators can operate on logical constants.

4-7

FORTRAN STATEMENT COMPONENTS

4.4.6 Octal Constants

An octal constant is a string of octal digits (0-7 only) preceded by
the letter o.

The format is:

DATA/Onum/

where

num is an octal number
a identifies the number as an Octal constant

You may use an octal constant only in DATA statements to enter numbers
in radix eight. An octal constant may be of any length, but the
FORTRAN compiler uses only the 12 low-order digits.

You generally use octal constants to set bits for masking purposes.

Examples:

DATA JOB/OI032/
DATA BASE /07777/

NOTE

The character following the first / in
each of these examples is the letter 0,
not a zero.

4.4.7 Hollerith Constants

A Hollerith constant is a string of alphanumeric and/or special
characters preceded by: (1) a number that states how many characters
are in the constant, and (2) the letter H. You may use any ASCII
character (including those that are not part of the FORTRAN character
set) •

The format is:

where

nHccc •.• c

n is an unsigned, non-zero integer constant indicating the
number of characters in the string (including spaces and
tabs)

c is any ASCII character
H identifies this as a Hollerith constant

Hollerith constants have no data type. They assume the data type of
the context in which they appear.

Examples:

Valid
Hollerith Constants

ISHTODAY'S DATE IS:
IE

Invalid
Hollerith Constants

3HABCD (Wrong number of characters;
this will be stored as ABC.)

4-8

FORTRAN STATEMENT COMPONENTS

4.4.7.1 Alphanumeric Literals - An alphanumeric literal is a string
of ASCII characters delimited by apostrophes or quotation marks.

The format is:

where

; ccc ••• c ;
"ccc •.. c"

c is a printable ASCII character;
delimiting apostrophes or quotes.

you must type both

An Alphanumeric literal is an alternate form of Hollerith constant.
As for Hollerith constants, you may use any ASCII character (including
those that are not part of the FORTRAN character set).

Alphanumeric literals have no data type. They assume the data type of
the context in which they appear.

If you need to type an apostrophe within an alphanumeric literal, type
it as two consecutive apostrophes.

Examples:

'CHANGE PRINTER PAPER TO PREPRINTED FORM NO. 721'

'TODAY' 's DATE IS: '

You may use a quotation mark ('i) instead of an apostrophe. However,
you may not mix quotation marks and apostrophes. Thus, the following
literal is not allowed:

"THIS IS A MIXED LITERAL'

but you may type

"THIS ISN'T A MIXED LITERAL"

4.5 VARIABLES

A variable is a symbolic name that FORTRAN associates with a storage
location. (The FORTRAN compiler assigns the storage locations.) The
value of the variable is the value currently stored in that location;
you can only change that value by assigning a new value to the
variable with an assignment statement.

FORTRAN classifies variables by data type, in the same manner as
constants. The data type of a variable indicates:

• The type of data it represents

• Its precision

• Its storage requirements

You may specify the data type of a variable either by type declaration
statements (see Section 7.2), or by FORTRAN default typing rules
(Section 4.5.2).

4-9

FORTRAN STATEMENT COMPONENTS

FORTRAN associates two or more variables with each other when each
variable uses the same storage location; or, partially associates
variables when part (but not all) of the storage which one variable
uses is the same as part or all of the storage which another variable
uses. You create associations and partial associations with:

• COMMON statements,

• EQUIVALENCE statements, and

• Actual and dummy arguments in subprogram references.

A variable is defined if the storage with which it is associated
contains a datum of the same type. You can define a variable prior to
program execution by typing a DATA statement or during execution by
means of assignment or input statements.

Before you assign a value to a variable, it is an undefined variable,
and you should not reference it except to assign a value to it. If
you reference an undefined variable, an unknown value (garbage) will
be obtained.

If you associate variables of differing types with the same storage
location, then defining the value of one variable (for example, by
assignment) causes the value of the other variable to become not
defined.

4.5.1 Data Type Specification

Declaration statements (Section 7.2) associate given variables with
specified data types. For example:

INTEGER VARI
DOUBLE PRECISION VAR2

These statements indicate that FORTRAN will associate the integer
variable VARI with a 3-word storage location and VAR2 with a 6-word
double-precision storage location.

You can explicitly declare the data type of a variable only once in a
program unit.

4.5.2 Default Data Types

FORTRAN assumes all variables having names beginning with I, J, K, L,
~, or N represent integer data; variables having names beginning with
any other letter are real variables. For example:

Real Variables Integer Variables

ALPHA KOUNT

BETA ITEM

TOTAL NTOTAL

4-10

FORTRAN STATEMENT COMPONENTS

4.6 ARRAYS

An array is a group of contiguous storage locations that you reference
with a single symbolic name, the array name. You reference the
individual storage locations, called array elements, by a subscript
appended to the array name.

An array can have from one to seven dimensions.

The following FORTRAN statements establish arrays:

• Type declaration statements (Section 7.2)

• DIMENSION statements (Section 7.3)

• COMMON statements (Section 7.5)

Each of these statements defines:

~ The name of the array

• The number of dimensions in the array

• The number of elements in each dimension

4.6.1 Array Declarations

Use an array declaration to instruct FORTRAN to reserve storage for an
array.

The format is:

[[t yp]] a (d [[, d]] •••)

where

[[typ]]
a
d

is a data type declaration
is the array name
is a number specifying the number of elements in that
part of the array

An array is a group of variables that have the same symbolic name;
you address the elements of the array by means of a subscript.

Declare a variable to be an array by specifying the symbolic name that
identifies the array within a program unit and indicates the
properties of that array. The number of dimension declarators d
indicates the number of dimensions in the array. The minimum number
of dimensions is one and the maximum number is seven.

You must declare the size (i.e., the number or elements) of an array
in order to reserve the needed amount of locations in which to store
the array. The value of a dimension declarator specifies the number
of elements in that dimension. For example, a dimension declarator
value of 50, as in TABLE(50), indicates that the dimension contains 50
elements. The dimension declarators can be constant or variable.

4-11

FORTRAN STATEMENT COMPONENTS

The rules governing the dimensioning of arrays are
(characters enclosed within parentheses represent
characters that must be either an integer variable or
constant) :

In the equation

L(n)=M(l) [1+M(2)+M(2)M(3)+M(2)M(3)M(4) ••• M{n-l}m{n)]

let

L length of the entire array
n total number of dimensions in the array

as follows
subscripted
an integer

M(i) maximum subscript for each dimension in the array, where i
specifies which dimension in the array is being referenced

In the above equation, L must not exceed 4095 in any case.

For example

L(l) M(1)<4096
L(2) M(l} [1+M(2)]<4096
L(3) M(l) [1+M(2)+M(2)M(3)] <4096

In the above equation, L must not exceed 2047 when transmitting
arrays, individual arrays, elements, or subportions of an array to
subprograms.

For example

L(l) M(1)<2047
L(2) M(l) [1+M(2)]<2047
L(3) M(l) [1+M(2}M(3}]<2047

The number of elements in an array is always equal to the product of
the number of elements in each dimension. More specifically, the
array IAB dimensioned as (3,4) has 24 elements (2 x 3 x 4 = 24) and
takes 72 words of storage. Although FORTRAN stores arrays as a series
of sequential storage locations, you may best visualize and reference
arrays as if they were single- or multi-dimensional rectilinear
matrices, dimensioned on a row, column, and plane basis. Thus, Figure
4-1 represents a 3-row, 3-column, 2-plane array.

3 ROWS <

, ~«-s
'v~

3 COLUMNS

Figure 4-1 Array Representation

An array name can appear in only one declaration statement within a
program unit.

Use v3riable dimension declarations to define adjustable arrays (see
Section 4.1).5).

4-12

FORTRAN STATEMENT COMPONENTS

4.6.1.1 Array Storage (Order of Subscript Progression) - OS/8 FORTRAN
always stores arrays in memory as a linear sequence of values. Thus,
FORTRAN stores a one-dimensional array with its first element in the
first storage location of the sequence and its last element in the
last storage location. FORTRAN stores a multidimensional array such
that the leftmost subscripts vary most rapidly. For example, in the
array ARRAY(3,2,2) the progression is:

ARRAY(l,I,I)
ARRAY(2,1,1)
ARRAY(3,1,1)
ARRAY(1,2,1)
ARRAY(2,2,1)
ARRAY(3,2,1)
ARRAY(1,1,2)
ARRAY(2,1,2)
ARRAY(3,1,2)
ARRAY(1,2,2)
ARRAY(2,2,2)
ARRAY(3,2,2)

This is called the "order of subscript progression". For example,
consider the following array declarators and the arrays that they
create:

19 I COS (1,1,3) 22 I COS (1,2,3) 25 COS (1,3,3)

20 I COS (2,1,3) 23 I COS (2,2,3) 26 COS (2,3,3)

110 I COS (1,1,2) 13 i COS (1,2,2) 16 : COS (1,3,2) 27 COS (3,3,3)

i 111 COS (2,i,2) i4 i COS i2,2,2) i .~ I ,,"',... , '"
If l.,V;:' IL,.),LI

11 cos (1,1,1) 4ICOS(1,2,1) 7 COS (1,3,1) 18 I COS (3,3,2)

21 COS (2,1,1) 51 COS (2,2,1) 8 COS (2,3,1)

31 cos (3,1,1) 6! COS (3,2,1) 9 COS (3,3,1)

t t Memory Positions

Figure 4-2 Array Storage

The arrows labeled "memory position" show the order in which FORTRAN
stores information in memory. This order is critically important when
you use an unsubscripted array name in a READ or WRITE statement
because this is the order in which FORTRAN fills memory or prints
data.

4.6.2 Subscripts

A subscript is the means by which you address individual elements in
an array.

The format is:

(s[[,s]] •••)

where

s is an integer subscript expression

Use a subscript following the array to specify which element in the
array FORTRAN will reference.

In any subscripted array reference, you must type one subscript
expression for each dimension you define for that array (i.e., one for
each dimension declaration). For example, you could use the following

4-13

FORTRAN STATEMENT COMPONENTS

entry to refer to the element located in the first row, third column,
second level of the array TEMP in Figure 4-2 (which is the element
occupying memory position 16).

TEMP{1,3,2)

Note, however, that an array reference such as TEMP{I,3) would be
illegal because the third subscript is not indicated.

Each subscript expression can be any valid integer expression. If the
value of a subscript expression is not an integer, FORTRAN converts it
to an integer before using it.

A subscript can be a compound expression, that is,

• Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (I+J,K*5,L/2) and
(I**3,{J/4+K)*L,3) are valid subscripts.

• A subscript may contain
TABLE{IABS{N)*KOUNT,2,3)

function references. For example,
is a valid array element identifier.

• Subscripts may contain nested array element identifiers as
subscripts. For example, in the subscript
(I(J(K(L)),M+N,ICOUNT), the first subscript quantity given is
a nested, three-level subscript.

4.6.3 Data Type of an Array

Specify the data type of an array in the same way as the data type of
a variable; that is, implicitly by the i~itial letter of the name, or
explicitly by a type declaration statement (see Section 7.2).

All the values in an array are of the same data type. FORTRAN
converts any value you assign to an array element to the data type of
the array. For example, if you name an array in a DOUBLE PRECISION
statement, the compiler allocates a 6-word storage location for each
element of the array. When you assign a value to an element of that
array, FORTRAN converts it to double precision.

4.6.4 Array References Without Subscripts

In the following type declaration statements, you may type an array
name without a subscript when you wish to use the entire array.

COMMON statement

DATA statement

EQUIVALENCE statement

FUNCTION statement

SUBROUTINE statement

CALL statement

Input/Output statements

Using unsubscripted array names in any other statement is illegal.

4-14

FORTRAN STATEMENT COMPONENTS

4.6.5 Adjustable Arrays

Use an adjustable array in a subprogram so that tne subprogram can
process arrays of different sizes. Do this by passing the bounds as
well as the array name as subprogram arguments or dummy arguments.

An adjustable array declarator, in contrast to a standard array
declarator, has variable dimension declarators (which are simply
integer variables). Each dimension declarator must be either an
integer constant or an integer dummy argument. The array name must
also appear as a dummy argument. (Consequently, you may not use
adjustable array declarators in main program units.)

Upon entry to a subprogram containing adjustable array declarators,
FORTRAN associates each dummy argument in a dimension declarator with
an integer actual argument. FORTRAN uses these values to form the
actual array declaration~ These integer variables determine the size
of the adjustable array for that single execution of the subprogram.

You must not change the values of the dummy adjustable array
declarator arguments within the subprogram.

The effective size of the dummy array must be equal to or less than
the actual size of the associated array.

The function in the following example computes the sum of the elements
of a two-dimensional array. Note the use of the integer variables M
and N to control the iteration.

FUNCTION SUM(AvM,N)
DIMENSION A(M,N)
SUM = 0.
DO 10, I = I,M
DO 10, j = 1,N

10 SUM = SUM + ACI,J)
RETURN
END

Following are sample calls on SUM:

DIMENSION Al(10,35), A2(3,56)
SUM1 SUM(Al,10,35)
SUM2
SUM3

SUM(A2,3,56)
SUMCA1,10,10)

If there are more dimensions in the adjustable array than in the array
being passed to the subroutine, you must indicate a value of 1 for
that dimension declaration.

4-15

CHAPTER 5

EXPRESSIONS

5.1 INTRODUCTION

An expression is a combination of elements that represents a single
value. FORTRAN relates an element in an expression to another element
in the same expression by operators and parentheses. The expression
can be a single basic component, such as a constant or variable, or a
combination of basic components with one or more operators. Operators
specify computations to be performed (using the values of the basic
components) to obtain a single value.

Expressions can be classified as arithmetic, relational, or logical.
Arithmetic expressions yield numeric values; relational and logical
expressions produce logical values.

5.2 ARITHMETIC EXPRESSIONS

Form arithmetic expressions with arithmetic
operators. The evaluation of such an
numeric value.

An arithmetic expression element may be any

• A numeric constant

• A numeric variable

• A numeric array element

elements and arithmetic
expression yields a single

of the following:

• An arithmetic expression within parentheses

• An arithmetic function reference (functions and function
references are discussed in Chapter 10)

Arithmetic operators specify a computation that FORTRAN will perform
using the values of arithmetic elements; they produce a numeric value
as a result. The operators and their functions are listed in Table
5-1.

5-1

Operator

**

*

/

+

-

EXPRESSIONS

Table 5-1
Arithmetic Operators

Function

Exponentiation

Multiplication

Division

Addition and unary plus

Subtraction and unary minus

The operators listed in Table 5-1 are called binary operators, because
you would use each in conjunction with two elements. You can use the
+ and - symbols as unary operators because, when you write them
immediately preceding an arithmetic element, they indicate a positive
or negative value.

5.2.1 Rules for Writing Arithmetic Expressions

Observe the following rules in structuring compound
expressions:

arithmetic

• An expression cannot contain two adjacent and unseparated
operators. For example, the expression A*/B is not permitted.

• You must include all operators; no operation is implied. For
example, the expression A(B) does not specify multiplication,
although this is implied by standard algebraic notation. You
must type A*(B) to obtain a multiplication of the elements.

• When you
exponent
expression
exponent.
the type of
5-2.

use exponentiation, the base quantity and its
may be of different types. For example, the

ABC**13 involves a real base and an integer
The permitted base/exponent type combinations and
the result of each combination are given in Table

• You must assign a value to a variable or array element before
you use it in an arithmetic expression. If you do not, the
elements are undefined.

BASE

Integer

Real

Double

Complex

Table 5-2
Base/Exponent Combinations

EXPONENT

Integer Real Double

Yes No No

Yes Yes Yes

Yes Yes Yes

Yes No No

5-2

Complex

No

No
I

I

I

No

No j

EXPRESSIONS

In addition, you can only exponentiate
integer element; you cannot exponentiate
zero by another zero-value element.

a
an

negative element by
element having a value

an
of

In any valid exponentiation, the result is of the same data type as
the base element. The exception is a real base and a double-precision
exponent; the result in this case is double precision.

5.2.2 Evaluation Hierarchy

FORTRAN evaluates arith~etic expressions in an order determined by a
precedence it associates with each operator. The precedence of the
operators is listed in Table 5-3.

Table 5-3
Binary Operator Evaluation Hierarchy

Operator Precedence

** First

* and / Second

+ and - Third

Fourth

Whenever two or more operators of equal precedence (such as + or -)
appear, FORTRAN evaluates them fron left to right. However, FORTRAN
evaluates exponentiation from right to left. For example, A**B**C is
evaluated as A**(B**C) where FORTRAN computes the parenthetical
sUbexpression (B**C) first.

5.2.3 Data Type of an Arithmetic Expression

OS/8 FORTRAN determines the data type of an expression in the
following ways:

• Integer operations - FORTRAN performs integer operations on
integer elements only. (When you use octal constants and
logical entities in an arithmetic context, FORTRAN treats them
as integers.) In integer arithmetic, any fraction that results
from a division is truncated, not rounded. For example, in
integer arithmetic the value of the expression

1/3 + 1/3 + 1/3

is zero, not one.

• Real operations - FORTRAN performs real operations on real
elements or a combination of real and integer elements.
FORTRAN converts integer elements to real by giving each a
fractional part equal to zero. It then evaluates the
expression using real arithmetic. Note, however, that in the
statement Y = (I/J)*X, FORTRAN performs an integer division
operation on I and J and then performs a real multiplication
on the result and X.

5-3

EXPRESSIONS

You can relate complex expressions only with
operators. Complex entities are equal only if
corresponding real and imaginary parts are equal.

5.3 RELATIONAL EXPRESSIONS

.EQ.
both

and
of

.NE.
their

A relational expression consists of two arithmetic expressions
that you separate by a relational operator. The value of the
expression is either true or false, depending on whether or
not the stated relationship exists.

A relational
arithmetic
5-4.

operator
expressions.

operator

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

tests
These

for a relationship between two
operators are listed in Table

Table 5-4
Relational Operators

Relationship

Less than

Less than or equal

Equal to

Not equal to

Greater than

to

Greater than or equal

1

i
I

I
i

to

The delimiting periods preceding and following a relational operator
are part of the operator and must be present.

In a relational expression, FORTRAN evaluates the arithmetic
expressions first to obtain their values. It then compares those
values to determine if the relationship stated by the operator exists.
For example, the expression:

APPLE+PEACH .GT. PEAR+ORANGE

tests the relationship, "The sum of the real variables APPLE and PEACH
is greater than the sum of the real variables PEAR and ORANGE." If
this relationship does exist, the value of the expression is true; if
not, the expression is false.

All relational operators have the same precedence. Thus, if two or
more relational expressions appear within an expression, FORTRAN
evaluates the relational operators from left to right. Note that
arithmetic operators have a higher precedence than relational
operators.

Use parentheses to alter the evaluation of arithmetic expressions in a
relational expression exactly as in any other arithmetic expression.
However, as FORTRAN evaluates arithmetic operators before relational
operators, it is unnecessary to enclose in parentheses an arithmetic
expression preceding or following a relational operator.

5-4

EXPRESSIONS

5.4 LOGICAL EXPRESSIONS

A logical expression may be a single logical element, or it may be a
combination of logical elements and logical operators. A logical
expression yields a single logical value, either true or false.

A logical element can be any of the following:

• A logical constant

• A logical variable

• A logical array element

• A relational expression

• A 1""'-';1""'::>1 ..L.v"':j..l. \.A..&.. expression enclosed in parentheses

• A logical function reference (functions and function
references are described in Chapter 10)

The logical operators are listed in Table 5-5.

Operator

.AND.

• OR.

.XOR.

.EQV.

. No'r.

Example

A • AND. B

.ll,. • OR. B

A .XOR. B

A .EQV. B

.NOT. A

Table 5-5
Logical Operators

Meaning

Logical conjunction. The expression is
true if, and only if, both A and Bare
true.

Logical disjunction (inclusive OR) •
The expression is true if, and only if,
either A or B, or both, is true.

Logical exclusive OR. The expression
is true if A is true and B is false, or
vice versa. It is false if both
elements have the same value.

Logical equivalence. The expression is
true if, and only if, both A and B have
the same logical value, whether true or
false.

Logical negation. The expression is
true if, and only if, A is false.

NOTE

A and B can be expressions or constants.

You must type the delimiting periods of logical operators.

5-5

EXPRESSIONS

A logical expression, like an arithmetic expression, may consist of
basic elements as in

.TRUE.
X .GE. 3.14159

or

TVAL .AND. INDEX
BOOL(M) .OR. K .EQ. LIMIT

(where BOOL is either a logical function with one argument or a
one-dimensional logical array).

You may enclose logical expressions within parentheses, for example,

A • AND. (B • OR. C)

or

(A .AND. B) .OR. C

Note that these expressions evaluate differently; thus, if A is false
and C is true, then the first yields a false value while the second
yields a true one.

5.4.1 Logical Operator Hierarchy

A sUDmary of all operators that may appear in a logical expression,
and the order in which FORTRAN evaluates them is listed in Table 5-6.

Table 5-5
Logical Operator Hierarchy

Operator precedence

** First

*,/ Second

+,- Third

Relational
Operators Fourth

.NOT. Fifth

.lI.ND. Sixth

.OR. Seventh

.XOR.,.EQV. Eighth

5-6

EXPRESSIONS

5.5 USE OF PARENTHESES

In an expression, FORTRAN evaluates first all sUbexpressions you place
within parentheses. When you nest parenthetic sUbexpressions (that
is, one sUbexpression is contained within another) the most deeply
nested subexpression is evaluated first, the next most deeply nested
sUbexpression is evaluated second, and so on, until FORTRAN computes
the entire parenthetical expression.

When you type more than one operation within a parenthetical
subexpression, FORTRAN performs the required computations according to
a hierarchy of operators (see Tables 5-4 and 5-6).

Parentheses do not imply multiplication. For example,
illegal.

(A+B) (C+D) is

The following example illustrates a typical numeric expression using
numeric operators and a function reference. This is the familiar
formula for obtaining one of the roots of a quadratic equation.

-b + Vb** 2 - 4ac

2a

which might be coded

Note how the parentheses affect the order or evaluation. AlSO note
that one parentheses pair is required by the SQRT function. An
example of the effect of parentheses is shown below (the numbers below
the operators indicate the order in which FORTRAN performs the
operations) •

4 + 3 * 2 6 / 2 7

2 1 4 3

(4 + 3) * 2 6 / 2 11

1 2 4 3

(4 + 3 * 2 - 6) / 2 2

2 1 3 4

((4 + 3) * 2 - 6) / 2 4

1 2 3 4

Evaluation of expressions within parentheses takes place according to
the normal order of precedence.

Nonessential parentheses, such as those in the expression

4 + (3*2) - (6/2)

have no effect on the evaluation of the expression.

The use of parentheses to specify the evaluation order is often
important where evaluation orders that are algebraically equivalent
might not be computationally equivalent when carried out on a
computer.

FORTRAN evaluates operators of equal rank from left to right.

5-7

CHAPTER 6

ASSIGNMENT STATEMENTS

6.1 INTRODUCTION

Assignment statements evaluate expressions and assign their values to
variables or elements in an array.

There are three types of assignment statements:

• An arithmetic assignment statement

• A logical assignment statement

• An ASSIGN statement (see Section 9.2.3.1)

6.2 ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement assigns a numerical value to a
variable or array element.

The format is:

v = e

where

v is a variable or array element name
e is an expression

The arithmetic assignment statement assigns the value
expression on the right of an equal sign to the variable
element on the left of the equal sign. If you had previously
a value to the variable, an assignment statement replaces it
value on the right side of the equal sign.

Note that the
mathematics.

equal sign does not mean "is equal to",
It means "is replaced by". Thus, the statement

KOUNT = KOUNT + 1

of the
or array
assigned
with the

as in

means, "Replace the current value of the integer variable KOUNT with
the sum of that current value and the integer constant 1".

Although the symbolic. name to the left of the equal sign can be
undefined, you must previously have assigned values to all symbolic
references in an expression (i.e., the right side of the equal sign).

6-1

ASSIGNMENT STATEMENTS

An expression must yield a value that conforms to the requirements of
the variable or array element to which you assign it. Thus, a real
expression that produces a value greater than 8,338,608 is illegal if
the entity on the left of the equal sign is an INTEGER variable.

If the data type of the variable or array element on the left of the
equal sign is the same as that of the expression on the right, FORTRAN
assigns the value directly. If the data types are different, FORTRAN
converts the value of the expression to the data type of the entity on
the left of the equal sign before it is assigned. A summary of data
conversions on assignment is shown in Table 6-1.

Table 6-1
Conversion Rules for Assignment Statements

~ I 0: DOUBLE LOGICAL

i FROM:
REAL INTEGER COMPLEX PRECISION CONSTANT

Real D D R,D H,D D

Integer C D R,C H,C D

Complex D,R,I D,R,I D H,D,R,I D,R,I

Double
Precision D,H,L D,H,L R,D,H,L D D,H,L

Log i ~a 1 I ~ N R,N H,N D

C--Conversion between integer and floating point
D--Direct replacement
H--IIit]h-order portion of expression
I--Set imaginary part to 0
L--Set low-order part to a
N--Convert non-zero to 1.0 (logical
R--Real only (imaginary part set to
6--Use the first character in the

following

Exanples:

used

truth)
0)
literal

Valid Statements

BETA -1./(2.*X)+A*A/(4.*(X*X))

PI = 3.14159

SUIVl = SUM+l.

Invalid Statements

and five

LITERAL
CONSTANT

D,6

D,6

D,6

D,6

N,6

characters

3.14 A-B (Entity on the left must be a variable
or array element.)

-J = I**4 (Entity on the left must not be signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Left and right parentheses do not
balance.)

6-2

ASSIGNMENT STATEMENTS

6.3 LOGICAL ASSIGNMENT STATEMENTS

Use a logical assignment statement to assign a true or false value to
a logical variable.

The format IS:

v = e

where

v is a variable or array element of type logical
e is a logical expression

The logical assignment statement is similar to the arithmetic
assignment statement, but it operates on logical data. The logical
assignment statement evaluates the expression on the right side of an
equal sign and assigns the resulting logical value, either true or
false, to the variable or array element on the left.

The variable or array element on the left of the equal sign must be of
type LOGICAL; its value can be undefined before the assignment.

You must have assigned values previously, either
to all symbolic references that appear in
expression must yield a logical value.

Examples:

PAGEND .FALSE.

PRNTOK LINE .LE. 132 .AND •• NOT. PAGEND

numeric or logical,
an expression. The

ABIG = A .G1. B .AND. A +GT. C +AND+ A .GT. D

0-3

CHAPTER 7

SPECIFICATION STATEMENTS

7.1 INTRODUCTION

Specification statements in FORTRAN IV are nonexecutable statements
that provide information necessary for the proper allocation and
initialization of variables and names that you use in a programo

7.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of
symbolic names.

The format is:

typ v[[,v]] •••

where

typ is one of the following data type specifiers:

LOGICAL
INTEGER
REAL
DOUBLE PRECISION
COMPLEX

v is a typed variable or array

A type declaration statement causes the specified symbolic names to
have the specified data type; it overrides the data type implied by
the initial letter of a symbolic name.

A type declaration statement can define arrays by including array
declarators (see Section 5.~.1) in the list. In each program unit, an
array name can appear only once in an array declarator. Note,
however, that

DIMENSION ISUM(?)
INTEGER ISUM

is legal.

Type declaration statements should precede all executable statements
and all specification statements. You must precede the first use of
any symbolic name with its declaration statement if you do not use the
default type declaration.

You can explicitly declare the data type of a symbolic name only once.

7-1

SPECIFICATION STATEMENTS

You must not label type declaration statements. The FORTRAN entities
that you may type are:

Arithmetic statement functions
Arrays
Functions
Variables

Examples:

INTEGE~ COUNT MATRIX(4,4), SUM
Fi:EfiL MfiN 11 I ABS
LOGICAL SWITCH

7.3 DIMENSION STATEMENT

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension.

The format is:

DIMENSION a (d) [[,a (d) •••]] •••

where

a is the symbolic name of an array
d is the dimension declarator

Example:

DIMENSION ARRAY(6~7,4)

The DIMENSION statement allocates storage locations, one for each
element in each dimension, for each array in the DIMENSION statement.
You may declare any number of arrays in one dimension statement. Each
storage location is 6 or 12 bytes in length as determined by the data
type of the array. The amount of storage FORTRAN assigns to an array
is equal to 6 or 12 times the product of all dimension declarators in
the array declarator for that array. For example,

DIMENSION ARRAY(4,4), MATRIX(5,5,5)

defines ARRAY as having 16 real elements of 6 words each, and MATRIX
as having 125 integer elements, also of 6 words each.

You cannot declare more than 7 dimensions to an array. There is also
a limit of 4095 elements to any array. Each size specification must
be a non-zero positive integer constant.

For further information concerning arrays and the storage of array
elements, see Section 4.6.

Array declarators can also appear in type declaration and COMMON
statements; however, in each program unit, an array name can appear
in only one array declarator.

7-2

SPECIFICATION STATEMENTS

You must not label DIMENSION statements.

Examples:

7.4 EXTERNAL STATEMENT

The EXTERNAL statement permits the use of external procedure names
(functions, subroutines, and FORTRAN library functions) as arguments
to other subprograms.

The format is:

where

EXTERNAL v [[,v]] •.•

v is the symbolic name of a subprogram or the name of a dummy
argument associated with a subprogram

Example:

EXTERNAL SIN, COS, ASS

Any subprogram you use as an argument to another subprogram must
appear in an EXTERNAL statement in the calling subprogram. Thus, the
purpose of the EXTERNAL statement is to declare names to be subprogram
names. This distinguishes the external name v from other variable or
array names.

The subprograms may be ones that you write or those that are part of
the FORTRAN library. The EXTERNAL statement declares each name v to
be the name of a procedure external to the program unit. Such a name
can then appear as an actual argument to a subprogram.

NOTE

If you use a complete function reference
(for example, a call to the SQRT
external function) in a reference such
as CALL SORT(A,SQRT(B) ,C), the function
reference is a value (the square root of
B) and you do not need to define it as
an external statement. You would only
have to define it if you were passing
the function name, i.e., CALL
SORT(A,SQRT,C) •

FORTRAN reserves the names you declare in an external statement
throughout the compilation of the program; you cannot use them in any
other declaration statement, with the exception of a type statement.

7-3

SPECIFICATION STATEMENTS

Example:

Main Program

EXTERNAL SIN,COS,TAN

CALL TRIG (ANGLE,SIN,SINE)

CALL TRIG (ANGLE,COS,COSINE)

CALL TRIG (ANGLE,TAN,TANGNT)

Subprograms

SUBROUTINE TRIG (X,F,Y)
Y = F (X)
RETURN
END

FUNCTION TAN (X)
TAN = SIN(X) I COS (X)
RETURN
END

The CALL statements pass the name of a function to the subroutine
TRIG. The function is subsequently invoked by the function reference
F(X) in the second statement of TRIG. Thus, the second statement
becomes in effect:

Y SIN(X)
Y COS(X)
Y TAN (X)

depending upon which CALL statement invoked TRIG. The
and COS are examples of trigonometric functions
FORTRAN Lih~,ry.

7.5 COMMON STATEMENT

functions SIN
supplied in the

You use a COMMON statement so that a program and/or subprograms can
share information.

The format is:

COMMON [[I[[cb]] I]] nlist 1[[cb]]1 nlist]] •••

where

cb

nlist

Example:

is a symbolic name or is blank. If the first cb is
blank, you can omit the first pair of slashes

is a list of variable names, array names, and array
declarators separated by commas

COMMON IAREA1/A,B IIC,D

The COMMON statement enables you to establish storage that two or more
programs and/or subprograms may share and to name the variables and
arrays that will occupy the common storage. The use of common storage
conserves storage and provides a means to implicitly transfer
arguments between a calling program and a subprogram. The transfer is
implicit because no actual tranferral takes place; instead, the
program unit references the common storage area.

FORTRAN determines the length of a COMMON block by the number of
components and the amount of storage each component requires. COMMON
blocks may be of any length, subject to the limitations of available
memory.

7-4

SPECIFICATION STATEMENTS

After each common name cb, nlist lists the names of the variables and
arrays that will occupy the common area cb. FORTRAN places the items
for a common within common storage area in the order in which you list
them in the COMMON statement or statements.

Elements vou place into common storage in one program unit should
agree in data type with elements referenced in a second. This is
because assignment of storage is on a storage unit-for-storage unit
basis, not variable-for-variable.

You may label COMMON storage areas or leave them blank (unlabeled).
If you choose to label, type a symbolic name within slashes
immediately before the list of items that will occupy the cb area.

For example, the statement

COMMON/AREA1/A,B?C/AREA2/TAB(13~3r3)

establishes two labeled common areas (AREAl and AREA2).

If you are declaring a common storage area to be blank common, then
you may omit the double slashes (II if and only if it is the first
declaration of any common statement. Unlabeled common area is called
"blank common". If the blank common declaration is not the first
declaration in a COMMON statement, then the double slashes are
mandatory.

For example, the statement

establishes one labeled area (AREAl) and one unlabeled common area.

A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

During compilation of a source program, FORTRAN will bring together
all items you list for each labeled and blank common area in the order
in which the items appear in the source program statements.

For example, the series of source program statements

COMMON/ST1/TST(3,4)IIM,N

has the same effect as the single statement

FORTRAN treats each labeled common area as a separate, specific
storage area. You assign initial values to the contents of a common
area -- that is, variables and arrays -- by DATA statements in a BLOCK
DATA subprogram. Declarations of a given common area in different
subprograms must contain the same number, size, and order of variables
and arrays as the reference array.

7-5

SPECIFICATION STATEMENTS

Common block names must be unique with respect to all subroutine and
function names.

The largest definition of a given common area must be loaded first.

Storage allocation for blocks of the same name begins at the
location for all program units FORTRAN executes together.
example, if a program contains

COMMON A,B,C/R/X,Y,Z

as its first COMMON statement, and a subprogram has

same
For

as its first COMMON statement, the values represented by X and U are
stored in the same location. A similar correspondence holds for A and
D in blank common.

If one program unit references a part of a common block, then you must
use dummy variables to establish the proper correspondence. For
example, if you declare a common block to contain

A,B,C,D,E,F,G,H,I,J,K

and a subprogram wishes to reference the storage location indicated by
K, then you must declare a common block as in the following subprogram

The declaration COMMON K in the subprogram would cause a
correspondence between variable A in the main program and variable K
in the subprogram. (Note that any other sequence of variable names
would also be correct.)

Instead of declaring each variable contained in the COMMON block, you
may substitute a dummy array (provided that you are careful to match
up proper storage lengths). For example, the following declaration

DOUBLE PF:ECISION DUMMY (5)
COMNON :OUMMY l' K

(where DUMMY is an arbitrary variable name) is equivalent to the
statement in the preceding example.

7.5.1 COMMON Statements with Array Declarators

You may also define an array in a
otherwise subscript array names.
array elements to COMMON.

COMMON statement. You may not
Also, you cannot assign individual

7-6

SPECIFICATION STATEMENTS

7:6 EQUIVALENCE STATEMENT

You use an EQUIVALENCE statement to associate different variables with
the same storage •

The
.t= ____ .L. : __

LV L lLIet l.. J.;:';

EQUIVALENCE (nlist) [[, (nlist)]] •••

where

nlist is a list of variables and array elements, separated by
commas. At least two components must be present in
each list.

Example:

The EQUIVALENCE statement
associated (either totally
location.

declares two or
or partially)

more entities
with the same

NOTE

EQUIVALENCE associates different
variable names with the same storage
area in a program unit. COMMON may also
associate different variable names with
the same storage area, but it always
makes the association between program
units.

to be
storage

The EQUIVALENCE statement causes FORTRAN to allocate the same storage
locations for all the variables or array elements contained in one
parenthesized list. Note that any REAL variable made equivalent to a
DOUBLE PRECISION variable shares storage with the high-order word of
that variable. Mixing of data types in this way is permissible.
Also, multiple components of one data type can share the storage of a
single component of a higher-ranked data type. For example, in the
statement

COr-iPLEX CDMPLX
DIMENSION ARRAY(2)
EQUIVALENCE (COMPLX,ARRAY(l»

the EQUIVALENCE statement causes the two elements of the array ARRAY
to occupy the same storage as the complex variable COMPLX. In this
example, ARRAY(l) shares storage with the real component of COMPLX
while ARRAY(2) shares storage with the imaginary part.

You can also use the EQUIVALENCE statement to equate variable names.
For example, the statement

EQUIVALENCE (FLTLEN, FLENTH, FLIGHT)

causes FLTLEN, FLENTH, and FLIGHT to have the same value, provided
they are also of the same data type.

7-7

SPECIFICATION STATEMENTS

An EQUIVALENCE statement in a subprogram must not contain dummy
arguments.

Examples:

(has the same effect as EQUIVALENCE
(A,B,C))

EQUIVALENCE (A(l),X), (A(2),Y), (A(3),Z)

7.6.1 Making Arrays Equivalent

When you make an element of an array equivalent to an element of
another array, the EQUIVALENCE statement also sets equivalences
between other elements of the two arrays. Thus, if you make the first
elements of two equal-sized arrays equivalent, both arrays share the
same storage space. Moreover, if you make the third element of a
five-element array equivalent to the first element of another array,
the last three elements of the first array overlap the first three
elements of the second array.

The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that is inconsistent with the normal
linear storage of array elements (e.g., making the first element of an
array equivalent with the first element of another array, then
attempting to set an equivalence between the second element of the
first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript (i.e., the linear element number),
even though you have defined one as being multidimensional.

For example, the statements:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE(4), TRIPLE(7»

result in the entire array TABLE sharing a portion of the storage
space FORTRAN allocates to array TRIPLE as illustrated in Figure 7-1.
In Figure 7-1, the elements with asterisks are those explicitly
mentioned in the above EQUIVALENCE statement.

Array TRIPLE Array TABLE

Array Element Array Element
Element Number Element Number

TRIPLE(l,l,l) 1
TRIPLE(2,1,1) 2
TRIPLE(1,2,1) 3
TRIPLE(2,2,l) 4 TABLE(l,l) 1
TRIPLE(1,1,2) 5 TABLE(2,1) 2
TRIPLE(2,1,2) 6 TABLE(1,2) 3
TRIPLE(1,2,2) 7* TABLE(2,2) 4*
TRIPLE(2,2,2) 8

Figure 7-1 Equivalence of Array Storage

7-8

SPECIFICATION STATEMENTS

Figure 7-1 also illustrates that the two statements

EQUIVALENCE (TABLE(1),TRIPLE(4»
EQUIVALENCE (TRIPLE(1~2,2), TABLE(4»

result in the same alignment of the two arrays.

7.6.2 EQUIVALENCE and COMMON Interaction

When you make components equivalent to
cause FORTRAN to extend the common
boundaries.

entities
block

in common,
beyond its

it can
original

An EQUIVALENCE statement can only extend common beyond the last
element of the previously established common block. It must not
attempt to increase the size of common in such a way as to place the
extended portion before the first element of existing common. For
example:

DIMENSION A(4) ,B(5)
COMMON A
EQUIVALENCE (A(2) ,B(l)

Legal Extension of Common

A(l) A(2) A(3) A(4)

B(l) B(2) B(3)

Existing Cornmon

Illegal Extension of Common

DIMENSION A(4) ,B(6) A (1) A (2) A (3)
COMMON A
EQUIVALENCE(A(2) ,B(3)) B (1) B (2) B (3) B (4)

B(4) B(5) B(6)

Extended Portion

A (4)

B (5) B (6)

Extended Existing Cornmon Extended
Portion Portion

Figure 7-2 Legal and Illegal Common Extensions

If you assign two components to the same or different common blocks,
you must not make them equivalent to each other.

7-9

CHAPTER 8

DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

8.1 DATA STATEMENTS

The DATA initialization statement permIts tne assignment UL initial
values to variables and array elements prior to program execution.

The format is:

DATA nlist/clist/[[[[,]]nlist/clist/]] •••

where

nlist

clist

Example:

is a list of one or more variable names, array names,
or array element names separated by commas

is an optional separator

is a list of constants

DATA A,B,C(3) ,C(7)/4.0,8.1,16.0,28.0/

The DATA statement causes FORTRAN to assign the constant values in
each clist to the entities in the preceding nlist. FORTRAN assigns
values in a one-to-one manner in the order in which they appear, from
left to right.

When an unsubscripted array name appears in a DATA statement, FORTRAN
assigns values to every element of that array. The associated
constant list must therefore contain enough values to fill the array.
FORTRAN fills array elements in the order of subscript progression
(see Section 4.6.1).

When you assign Hollerith data to a variable or array element, the
number of characters that you can assign depends on the data type of
the component. If the number of characters in a Hollerith constant or
alphanumeric literal is less than the capacity of the variable or
array element, the constant is padded on the right with spaces. If
the number of characters in the constant is greater than the maximum
number that the variable can hold, it ignores the rightmost excess
characters.

8-1

DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

When you assign the same value to more than one item in nlist, you may
use a repeat specification. Write the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be used. For example, a DATA specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. Also, the statement

assigns the value 20 to the variables M, N, and L. The number of
constants in a constant list must correspond exactly to the number of
entities specified in the preceding name list. The data types of the
data elements and their corresponding symbolic names must agree.

FORTRAN IV converts the constant to the type of the variable being
initialized.

Example:

INTEGER A(10),BELL,K(S,S,S)
DATA A,BELL,STARS/10*O,7, '****'/K/2S*O,25*1,25*2,25*3,25*4,2S*51

The DATA statement assigns zero to all ten elements of array A, the
value 7 to the variable BELL, and four asterisks to the real variable
STARS. The 125-element array, K, is initialized so that each of the
five planes (i.e., the third dimension declarator) has a different
value.

When you initialize an array, you must initialize the entire array.
Thus, the DATA statement in the example

DIMENSION K
DATA K 110*1/

is illegal.

You could make the DATA statement of the example legal as follows:

DIMENSION I(30),K(10)
EQUIVALENCE (I,K)
DATA K/I0*11

The values you assign with a DATA statement may also be assigned with
a BLOCK DATA subprogram. However, note that initial values for
variables in COMMON storage may not be specified in subprograms that
may be overlaid at execution time. If a subprogram will be overlaid,
then you should only initialize these variables in a BLOCK DATA
subprogram. (It is good programming practice to use BLOCK DATA
subprograms to initialize only variables in COMMON storage.)

8.2 BLOCK DATA SUBPROGRAM

You use a BLOCK DATA to initialize variables you place into COMMON
storage.

The format is:

BLOCK DATA

Use the BLOCK DATA subprogram to assign initial values to entities in
common blocks, at the same time establishing and defining those
blocks. The subprogram consists of a BLOCK DATA statement followed by
a series of specification statements.

8-2

DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

The statements FORTRAN allows in a BLOCK DATA subprogram are:

Type declaration
DIMENSION
COMMON
EQUIVALENCE
DATA

The specification statements in the BLOCK DATA subprogram establish
and define common blocks, assign variables and arrays to those blocks,
and assign initial values to those components.

A BLOCK DATA statement must be the first statement of a BLOCK DATA
subprogram. You must not label the BLOCK DATA statement.

A BLOCK DATA subprogram must not contain any executable statements.

If you initialize any entity in a common block in a BLOCK DATA
subprogram, you must enter a complete set of specification statements
to establish the entire block, even though some of the components in
the block do not appear in a DATA statement. You can define initial
values for more than one common area with the BLOCK DATA subprogram.

Example:

BLOCK DATA
INTEGER S, X
LOGICAL T, W
DOUBLE PRECISION U
DIMENSION R(3)
COMMON IAREA1/R,S,T?U/AREA2/W,X
DATA R 11.0,2*2.01 T I.FALSE.I U 10.214537D-71 W I.TRUE.I
END

8-3

CHAPTER 9

CONTROL STATEMENTS

9.1 INTRODUCTION

FORTRAN normally executes statements ,n the order in which you write
them. However, it is frequently desirable to change the normal
program flow by transferring control to another section of the program
or to a subprogram. Transfer of control from a given point in the
program may occur every time that point is reached in the program
flow, or may be based on a decision made at that point.

Transfer of control, whether within a program unit or to another
program unit, is effected by control statements. These statements
also govern iterative processing, suspension of program execution, and
program termination. The types of control statements discussed in
this chapter are:

ASSIGN
CONTINUE
DO
END

IF
GO TO
PAUSE
STOP

A second kind of statement for transferring control, subprograms, is
discussed in Chapter 10.

9.2 GOTO STATEMENTS

GOTO statements transfer control within a program unit, either to the
same statement every time or to one of a set of statements, based on
the value of an expression.

The three types of GOTO statements are:

• Unconditional

• Computed

• Assigned

9.2.1 Unconditional GOTO Statement

This type of GOTO statement transfers control to the same statement
every time it is executed.

9-1

CONTROL STATEMENTS

The format is:

GOTO st

where

st is the label of an executable statement in the same program
unit as the GOTO statement

Example:

GOTO 50

The unconditional GOTO statement transfers control to the statement
identified by the specified label. The statement label must identify
an executable statement in the same program unit as the GOTO
statement.

Examples:

GOTO 7734

GO TO 27 t ~3 (Invalid;
formed.)

the statement label is improperly

9.2.2 Computed GOTO Statement

This type of GOTO statement transfers control to a statement based on
the value of an expression within the statement.

The format is:

G OTO (s lis t) [[,]] e

where

slist

e

Example:

is a list of one or more
separated by commas
is an optional separator
is an integer expression
within the range I to
statement labels in slist)

executable statement labels

the value of which falls
n (where n is the number of

Use the computed GOTO to transfer control to one statement out of a
list of statements. The computed GOTO thus acts as a multidirectional
switch.

The computed GOTO statement evaluates the integer expression e and
then transfers control to the e'th statement label in slist. That is,
if the list contains (30,20,30,40), and the value of e is 2, the GOTO
statement transfers control to statement 20, and so on.

9-2

CONTROL STATEMENTS

You may include any number of statements in slist, but you must use
each number as a label within the program.

Examples:

If the value of the expression is less than 1, or greater than the
number of labels in the slist; unpredictable results occur.

9.2.3 ASSIGN and ASSIGNed GOTO Statement

9.2.3.1 ASSIGN Statement - You use the ASSIGN statement to assign a
statement label to a variable name.

The format is:

ASSIGN st to v

where

st is the label of an executable statement in the same program
unit as the ASSIGN statement

v is an integer variable

Example:

ASSIGN 50 TO NUMBER

Use the ASSIGN statement to
integer variable. You can
destination in a subsequent
9.2.3.2) •

associate
then use

ASSIGNed

a statement label with an
the variable as a transfer

GOTO statement (see Section

NOTE

The statement number must be in the same
program unit.

The statement label st must not be the label of a FORMAT statement.

The ASSIGN statement assigns the statement number to the variable in a
manner similar to that of an arithmetic assignment statement, with one
exception: the variable becomes defined for use as a statement label
reference and becomes undefined as an integer variable.

FORTRAN must execute an ASSIGN
statement in which it will
statement and the ASSIGNed GOTO
program unit.

For example, the statement

ASSIGN 100 TO NUMBER

statement before the ASSIGNed GOTO
use the assigned variable. The ASSIGN
statement must occur in the same

associates the variable NUMBER with the statement label 100.

9-3

CONTROL STATEMENTS

Arithmetic operations on the variable, as in the statement

NU,"1BFH ~= NUMBEH + 1

then become invalid, because FORTRAN cannot alter a statement label.
(This is because a statement refers to a location in memory and is not
a number.) The statement

NUMBER :::: :I. ()

disassociates NUMBER from statement 100, assigns it an integer value
la, and returns it to its status as an integer variable. After you
make such an assignment, you can no longer use it in an ASSIGNed GOTO
statement.

Examples:

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR (You must first define ERROR as an
integer variable.)

9.2.3.2 ASSIGNed GOTO Statement - The ASSIGNed GOTO transfers control
to a statement that is represented by a variable.

The format is:

G OTO v [[[[,]] (s 1 i s t)]]

where

v
,
slist

Example:

is an integer variable
is an optional separator
(when present) is a list of one or more executable
statement labels separated by commas

The ASSIGNed GOTO statement transfers control to the statement whose
label was most recently assigned to the variable v by an ASSIGN
statement.

The variable v must be of integer type. In addition, you must have
previously assigned to it a statement label number with an ASSIGN
statement (not an arithmetic assignment statement).

The ASSIGNed GOTO statement and its associated ASSIGN statement must
reside in the same program unit. Also, statements to which FORTRAN
transfers control must be executable statements in the same program
unit.

Examples:

ASSIGN 50 TO IGO
GOrD IGD

9-4

CONTROL STATEMENTS

If the statement label value of v is not present in the list slist
(and a list is specified); control transfers to the next executable
statement following the ASSIGNed GOTO statement.

NOTE

You must label the statement following
an ASSIGNed GOTO; otherwise, FORTRAN
can never execute that statement.

9.3 IF STATEMENTS

An IF statement causes a conditional control transfer or the
conditional execution of a statement.
statements:

There are two types of IF

• Arithmetic IF statements

• Logical IF statements

9.3.1 Arithmetic IF Statement

You use the arithmetic IF as a three-way branching statement. The
branching depends on whether the value of an expression is less than,
equal to, or greater than zero.

The format is:

IF (e) stl, st2, st3

where

e
stl, st2, st3

Example:

is an arithmetic expression
are the labels of executable
same program unit

IF (I-K) 10? 20y 30

statements in the

Use the arithmetic IF statement for conditional control transfers.
This statement can transfer control to one of three statements, based
on the value of an arithmetic expression.

You may use logical expressions in arithmetic IF statements. In such
a case, FORTRAN first converts the logical expression value to an
integer. If you use a complex expression, FORTRAN only uses the real
portion.

Normal use of the arithmetic IF requires that all three labels, stl,
st2, and st3, must be present. However, they need not refer to three
different statements. If desired, one or two labels can refer to the
same statement.

9-5

CONTROL STATEMENTS

OS/8 FORTRAN allows you to type less than three numbers. If you type
either one or two numbers, control passes to the next statement when a
condition is not met (e.g., e is greater than zero).

Example:

IF (ALPHA) 10
STOP

In this statement, control transfers to statement number 10 if ALPHA
is negative. If ALPHA is positive or equal to zero, execution stops.

The arithmetic IF statement first evaluates the expression in
parentheses and then transfers control to one of the three statement
labels that follow expression e. The values according to which
FORTRAN makes the selection are listed in Table 9-1.

Table 9-1
Arithmetic IF Transfers

If the Value Is: Control Passes

Less than a Label stl

Equal to a Label st2

Greater than a Label st3

Examples:

IF (THETA-CHI) 50,50,100

To:

This statement transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI. Control passes
to statement 100 only if THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40

This statement transfers control to statement 40 if the value of the
integer variable NUMBER is even, and to statement 20 if it is odd.

9.3.2 Logical IF Statement

You use a logical IF statement for conditional
statements.

execution of

The format is:

where

IF (e) st

e
st

is a logical expression
is a complete FORTRAN statement.
executable statement except a
logical IF statement.

Example:

IF(X .EQ. Y) Z=4

9-6

The statement can
DO statement or

be any
another

CONTROL STATEMENTS

FORTRAN bases the decision to execute the conditional statement on the
value of a logical expression within the statement.

The logical IF statement first evaluates the logical expression. If
the value of the expression is true, FORTRAN transfers control to the
executable statement within the IF statement. If the value of the
expression is false, control transfers to the next executable
statement following the logical IF; in this case, FORTRAN does not
execute statement st.

Examples:

IF (J .GT. 4 .OR. J .LT. 1) GOTO 250

IF (.HOT. X) CALL SWITCH(S~Y)

9.4 DO STATEMENT

You use the DO statement to execute a block of statements repeatedly.

The format is:

where

DO st i=el,e2[[,e3]]

st is the label of an executable statement that physically
follows in the same program unit

i is an unsubscripted real or integer variable
el (the initial value of i) is an integer, real constant, or

expression
e2 (the terminal value of i) is an integer, real constant, or

expression and must be greater than el
e3 (the value by which i will be incremented each time it

executes the statements in the range of the DO loops) is an
integer, real constant, or expression

Example:

The DO statement causes FORTRAN to execute the statements in its range
a specified number of times.

The range of a DO statement is defined as the series of statements
that follow the DO statement up to and including its specified
terminal statement st; that is, the statements that follow the DO
statement, up to and including the terminal statement, are in the
range of the DO loop.

The variable i is called the control (or index) variable of the DO and
el, e2, e3 are the initial, terminal, and increment parameters
respectively.

9-7

CONTROL STATEMENTS

The terminal statement of a DO loop is identified by the label st that
appears in the DO statement. This terminal statement must not be a
GOTO statement, an arithmetic IF statement, a RETURN statement, a
PAUSE statement, a STOP statement, or another DO statement. A logical
IF statement is acceptable, provided it does not contain any of the
above statements.

The DO statement first evaluates the expressions el, e2, e3 to
determine values for the initial, terminal, and increment parameters.
FORTRAN then assigns the value of the initial parameter to the control
variable. FORTRAN then repeatedly executes the statements in the
range of the DO loop.

The increment parameter must be positive and not zero; the value of
the terminal parameter must not be less than that of the initial
parameter.

After each execution of the range of the DO loop, FORTRAN adds the
increment value to the value of the index. It then compares the
result to the terminal value. If the index value is not greater than
the terminal value, FORTRAN reexecutes the range using the new value
of the index i.

The number of executions of the DO range, called the iteration count,
is given by

MAX (1 , ((e 2-e 1) / e 3) + 1

FORTRAN always executes the range of a DO statement at least once.

9.4.1 DO Iteration Control

You can terminate the execution of a DO by a statement within the
range that transfers control outside the loop. When you transfer out
of the DO loop's range, the control variable of the DO remains defined
with its current value.

When execution of a DO loop terminates, if other DO loops share the
same terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (Section 9.4.2). If no
other DO loops share this terminal statement, or if this DO is the
outermost DO, control transfers to the first executable statement
following the terminal statement.

You may alter the values of i, el, e2, and e3. If you alter the value
of i, the loop will not be executed the number of times that you
originally specified. If you alter the values of the expressions, you
do not affect the looping because FORTRAN "remembers" these values.
The control variable i is available for reference as a variable within
the range.

The range of a DO loop can contain other DO statements, so long as
those "nested" DO loops conform to certain requirements (see Section
9.4.2).

CONTROL STATEMENTS

Although you can transfer control out of a DO loop. you cannot
transfer into a loop from elsewhere in the program. Exceptions to
this rule are described in the following sections.

Examples:

DO :1. 00 K:::: 1 , ~:j(), 2 (25 iterations, K=49 during final iteration)

(5 iterations, IVAR=5 during final iteration)

DO NUMBER=5,40,4 (Invalid; statement label missing)

Ii!) ·4() M::::2 + 10 (Invalid; decimal point instead of comma)

The last example illustrates a common clerical error. It
arithmetic assignment statement in the FORTRAN language;

D040M ~~ 2+1.0

9.4.2 Nested DO Loops

is a
i . e. ,

valid

A DO loop may contain one or more complete DO loops. The range of an
inner-nested DO must lie completely within the range of the next outer
loop. Nested loops may share the same terminal statement.

Correctly Nested
DO Loops

DO 45 K=l,lO

DO 35 L=2,50,2

35 CONTINUE

DO 45 M=1,20

45 CONTINUE

Incorrectly Nested
DO Loops

DO 15 K=l,IO

DO 25 L=1,20

15 CONTINUE

DO 30 M=I,15

25 CONTINUE

30 CONTINUE

Figure 9-1 Nesting of DO Loops

In the correctly nested DO loops, note that the diagrammed lines do
not cross. They do, however, share the same statement (45). In the
incorrectly nested DO loops, the loop defined by DO 25 crosses the
ranges of the other two DO loops.

Note that you may nest loops to a depth of (at least) 10 levels.

9.4.3 Control Transfers in DO Loops

within a nested DO loop structure, you can transfer control from an
inner loop to an outer loop. A transfer from an outer loop to an
inner loop is illegal.

9-9

CONTROL STATEMENTS

If two or more nested DO loops share the same terminal statement, you
can transfer control to that statement only from within the range of
the innermost loop, that is, the terminal statement belongs solely to
the innermost DO statement. Any other transfer to that statement
constitutes a transfer from an outer loop to an inner loop because the
shared statement is part of the range of tbe innermost loop.

The following rules govern the transfer of program control from within
the DO statements range or the ranges of nested DO statements.

• FORTRAN permits a transfer out of the range of any DO
statement at any time. When such a transfer executes, the
controlling DO statement's index variable retains its current
value.

• FORTRAN permits a transfer into the range of a DO statement
from within the range of any: DO loop; nested DO loop; or
extended range loop (in which you leave the loop via a GOTO,
execute statements elsewhere, and return to the original
loop).

9.4.4 Extended Range

A DO loop is said to have an extended range if it contains a control
statement that transfers control out of the loop and if, after the
execution of one or more statements, another control statement returns
control back into the loop. In this way, FORTRAN extends the range of
the loop to include all of the executable statements between the
destination statement of the first transfer and the statement that
returns control to the loop.

Figure 9-2 illustrates valid and invalid control transfers~

Valid Invalid
Control Transfers Control Transfers

DO 35 K=I,10 GOTO 20

DO 15 L=2,20 DO 50 K=1,10

GOTO 20 20 A=B+C

15 CONTINUE DO 35 L=2,20

20 A=B+C 30 D=E/F

DO 35 M=1,15 35 CONTINUE

GO TO 50 GO TO 40

30 X=A*D DO 45 M=1,15

35 CONTINUE 40 X=A*D

45 CONTINUE
50 D=E/F

Extended 50 CONTINUE
Range

GOTO 30 GOTO 30

Figure 9-2 Control Transfers and Extended Range

9-10

CONTROL STATEMENTS

The following rules govern the use of a DO statement extended range.

• The statement you want to transfer out of an extended range
operation must be within the most deeply nested DO statement
that contains the location to which the return transfer is to
be made.

• You may transfer into the range of a DO statement only from
the extended range of that DO statement.

• You may not use another DO statement in the extended range of
a DO statement.

• The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

• You may execute subprograms within an extended range.

9.5 CONTINUE STATEMENT

Insert a CONTINUE statement where you do not wish a statement to be
executed.

The format is:

st CONTINUE

where

st is a statement label

A CONTINUE statement is a statement that holds a place in the program
without performing any operations.

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GOTO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical IF statement
containing one of the previous statements.

Note that you also use a CONTINUE as a
statement within the DO loop that
repetition of the loop.

Example:

transfer point for a GOTO
is intended to begin another

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DO 45 ITEM=1,1000
STOCK=NVNTRYCITEM)
IF (STOCK +EQ+ TALLY) GO TO 45
CALL UPDATE(STOCK,TALLY)
IF (ITEM .EQ+ LAST) GO TO 77

45 CONTINUE

77 WRITE (4~20) HEADING, PAGENO

9-11

CONTROL STATEMENTS

9.6 PAUSE STATEMENT

You use the PAUSE statement to suspend program execution temporarily
to give yourself time to perform some action.

The format is:

PAUSE [[num]]

where

num is an optional integer variable or expression containing one
to five digits

The PAUSE statement prints the display (if you have specified one) at
your terminal, suspends program execution, and waits for you to type
the RETURN key. This causes program execution to resume with the
first executable statement following the PAUSE.

Examples:

PAUSE -13731

PAUSE 'MOUNT TAPE REEL 13'

9.7 STOP STATEMENT

You use the STOP statement to terminate program execution.

The format is:

STOP

When the STOP statement terminates program execution, it returns
control to the operating system. If you do not type a STOP statement,
a "stop" occurs when FORTRAN transfers control to an END statement in
the main program unit.

A CALL EXIT statement is equivalent to STOP and closes any temporary
files at the last block written on the file. Control returns to the
OS/8 monitor.

Examples:

STOP

99999 STOP

9.8 END STATEMENT

You mark the end of every program unit with an END statement, which
must be the last source line of every program unit.

The format is:

END

In a main program, if control reaches the END statement, execution of
the program terminates; in a subprogram, a RETURN statement is
implicitly executed.

9-12

CONTROL STATEMENTS

In the main program, END is equivalent to STOP; in a subprogram, it
is equivalent to RETURN.

A program cannot reference an END statement.

Control returns to the OS/8 monitor after FORTRAN executes an END
statement.

If you do not type an END statement as the last statement in your
program; FORTRAN appends one.

9-13

CHAPTER 10

SUBPROGRAMS

10.1 INTRODUCTIONS

Procedures you use repeatedly in a program may be written once and
then referenced each time you need the procedure. Procedures that you
may reference are either internal (written and contained within the
program in which they are referenced) or external (self-contained
executable procedures that you may compile separately). The kinds of
procedures that you may reference are:

• Arithmetic statement functions

• External functions

• Subroutines

• Intrinsic functions (FORTRAN-defined functions)

10.2 SUBPROGRAM ARGUMENTS

Since you may reference subprograms at more than one point throughout
a program, many of the values that the subprogram uses may change each
time you call the subprogram. Dummy arguments in subprograms
represent the actual values that the subprogram will use. The
arguments are passed to the subprogram when FORTRAN transfers control
to it.

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, array elements, arrays, subroutine names, or the names
of external functions. You must use each dummy argument within a
subprogram as if it were a variable, array, array element, subroutine,
or external function identifier. You enter dummy arguments in an
"argument list" that you associate with the identifier assigned to the
subprogram; actual arguments are normally given in an argument list
that you associate with a call made to the subprogram.

The position, number, and type of each dummy argument in a subprogram
must agree with the position, number, and type of each argument in the
argument list of the subprogram reference.

Dummy arguments may be:

• Variables

• Array names

• Subroutine identifiers

• Function identifiers

10-1

SUBPROGRAMS

When you reference a subprogram, FORTRAN replaces its dummy arguments
with the corresponding actual arguments that you supply in the
reference. All appearances of a dummy argument within a function or
subroutine are related to the given actual arguments. Except for
subroutine identifiers and literal constants, a valid association
between dummy and actual arguments occurs only if both are of the same
type; otherwise, the result of the subprogram will be unpredictable.
Argument associations may be carried through more than one level of
subprogram reference if a valid association is maintained through each
level. The dummy/actual argument associations established when you
reference a subprogram terminate when FORTRAN completes the operations
defined in the subprogram.

The following rules govern the use and form of dummy arguments.

• The number and type of the dummy arguments of a procedure must
be the same as the number and type of the actual arguments
given each time you reference the procedure.

• You may not use dummy argument names in EQUIVALENCE, DATA, or
COMMON statements.

• You should provide a variable dummy argument with a variable,
an array element identifier, an expression, or a constant as
its corresponding argument.

• You should provide an array dummy argument with either an
array name or an array element identifier as its corresponding
actual argument. If the actual argument is an array, the
length of the dummy array should be less than or equal to that
of the actual array. FORTRAN associates each element of a
dummy array directly with the corresponding elements of the
actual array.

• You must provide a dummy argument representing an external
function with an external function as its actual argument.

• You should give a dummy argument representing a subroutine
identifier a subroutine name as its actual argument.

• You may define (or redefine) a dummy argument in a referenced
subprogram only if its corresponding actual argument is a
variable. If dummy arguments are array names, then you may
redefine the elements of the array.

10.3 USER-WRITTEN SUBPROGRAMS

FORTRAN transfers control to a function by means of a function
reference. It transfers control to a subroutine by a CALL statement.
A function reference is the name of the function, together with its
arguments, appearing in an expression. A function always returns a
value to the calling program. Both functions and subroutines may
return additional values via assignment to their arguments. A
subprogram can reference other subprograms, but it cannot, either
directly or indirectly, reference itself (that is, FORTRAN is not
recursive).

10-2

SUBPROGRAMS

10.3.1 Arithmetic Statement Functions (ASF)

You use an Arithmetic statement function to define a one-statement,
self-contained computational procedure.

The format is:

nam ([[a [[, a]] •••]]) =e

where

nam is the name you assign to the ASF
a is a dummy argument
e is an expression

Examples:

PliOOT (A, B , C)
NROOT(A,B,C)

(-BtSQRT(B**2 - 4*A*C»/(2*A)
(-B-SQRT(B**2 - 4*A*X»/(2*A)

An arithmetic statement
assignment statement.
within the same program
and make the resulting
ASF reference appears.

function is similar in form to an arithmetic
The appearance of a reference to the function

unit causes FORTRAN to perform the computation
value available to the expression in which the

The expression e is an arithmetic expression that defines the
computation to be performed by the ASF.

You reference an ASF in the same manner as an external function.

The format is:

where

nam ([[a[,a]] •••]])

nam is the name of the ASF
a is an actual argument

NOTE

You must define all ASFs before you type
any executable statements.

When a reference to an arithmetic statement function appears in an
expression, FORTRAN associates the values of the actual arguments with
the dummy arguments in the ASF definition. FORTRAN then evaluates the
expression in the defining statement and uses the resulting value to
complete the evaluation of the expression containing the function
reference.

You specify the data type of an ASF either implicitly by the initial
letter of the name or explicitly in a type declaration statement.

Dummy arguments in an ASF definition only indicate the number, order,
and data type of the actual arguments. You may use the same names to
represent other entities elsewhere in the program unit. Note that
with the exception of data type, FORTRAN does not associate
declarative information (such as placement in COMMON or declaration as
an array) with the ASF dummy arguments. Also, you cannot use the name
of the ASF to represent any other entity within the same program unit.

10-3

SUBPROGRAMS

The expression in an ASF definition may contain function references.

Any reference to an ASF must appear in the same program
definition of that function. You cannot use an

unit as the
ASF name in an

EXTERNAL statement.

An ASF reference must appear as, or be part of, an expression; you
must not use it as the left side of an assignment statement.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. You must assign values to actual
arguments before the reference to the arithmetic statement function.

Examples:

Definitions

VOLUME(RADIUS) = 4+189*RADIUS**3

SINH(X) = (EXP(X)-EXP(-X»*O.S

(Invalid; constant as dummy
argument not permitted)

ASF References

AVG(A,B~C) (A+B+C) /~3. (Definition)

GRADE = AVGCTEST1,TEST2,XlAB)

FINAL :::: AVG (TE5T3, TEST 4, LAB2) (Invalid;
argument
argument)

data type of third
does not agree with dummy

10.3.2 FUNCTION Subprogram

A FUNCTION is an external computing procedure that returns a value.
You use this value as an expression or as part of an expression.

The format is:

where

[[typJ] FUNCTION nam(a[[,a •••]])

typ is an optional data type specifier
nam is a name of the function
a is one of a maximum of six dummy arguments

A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing
procedure. FORTRAN transfers control to a FUNCTION subprogram by a
function reference and returns to the calling program unit when it
encounters a RETURN statement.

10-4

SUBPROGRAMS

You must always specify at least one argument to a FUNCTION. You may
specify other arguments explicitly or place them in COMMON.

A FUNCTION subprogram returns a single value to the calling program
unit by assigning that value to the function's name. FORTRAN
determines the data type of the returned value by the function's name
unless you have specified the data type.

A function reference that transfers control to a FUNCTION subprogram
has the form:

nam ([[a [[, a]] •••]])

where

nam is the symbolic name of the function
a is an actual argument

When FORTRAN transfers control to a function subprogram, FORTRAN
associates the values you supply through the actual arguments (if any)
with the dummy arguments (if any) in the FUNCTION statement. FORTRAN
then executes the statements in the subprogram.

NOTE

You may not pass an array to a
subprogram if it contains more than 2047
elements. You must implicitly pass
larger arrays in COMMON.

You must assign a value to the name of the function before FORTRAN
executes a RETURN statement in that function. When FORTRAN returns
control to the calling program unit, it makes the value you have
assigned to the function's name available to the expression that
contains the function reference; it then uses this value to complete
the evaluation of the expression.

NOTE

You can store variables that a FUNCTION
requires in COMMON rather than passing
them explicitly.

You may specify the type of a function name implicitly or explicitly
in the FUNCTION or type declaration statement.

The FUNCTION statement must be the first statement of a function
subprogram. You may not label a FUNCTION statement.

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK
DATA statement, or a FUNCTION statement (other than the initial
statement of the subprogram). A function may, however, call another
function or subroutine so long as the call is not directly or
indirectly recursive.

10-5

SUBPROGRAMS

10.3.3 SUBROUTINE Subprograms

A SUBROUTINE is an external computing procedure that you may
repeatedly call from a program or subprogram.

The format is:

SUBROUTINE nam [[([[a [[, a]] " " ,,]])]]

where

nam is the name of the subroutine
a is a dummy argument

A SUBROUTINE subprogram is a program unit that consists of a
SUBROUTINE statement followed by a series of statements that define a
computing procedure. FORTRAN transfers control to a SUBROUTINE
subprogram by a CALL statement and returns to the calling program unit
by a RETURN statement.

When FORTRAN transfers control to a subroutine, it associates the
values you supply with the actual arguments (if any) in the CALL
statement with the corresponding dummy arguments (if any) In the
SUBROUTINE statement. You may not specify more than six arguments in
a subroutine call. FORTRAN then executes the statements in the
subprogram.

The SUBROUTINE statement must be the first statement of a subroutine;
it must not have a statement label.

A SUBROUTINE subprogram cannot contain a FUNCTION statement, a BLOCK
DATA statement, or a SUBROUTINE statement (other than the initial
statement of the subprogram).

Example:

C MAIN PROGRAM
COMMON NFACES, EDGE, VOLUME
READ (4,65) NFACES, EDGE

65 FORMAT(I2,F8.5)
CALI... PI...YVOL.
WRITE (4~66) VOLUME

66 FORMAT (' VOI...UME=',F)
STOP
END

SUBROUTINE PI...YVOL
COMMON NFACES, EDGE, VOLUME
CUBED :::: EDGE**3
GOTO (6,6,6,1,6,2,6,3,6,6,6,4,6,6,6,6,6,6,6,5,6),NFACES

1 VOLUME CUBED * 0.11785
RETURN

2 VOLUME CUBED
F~ETUF~N

VOLUME CUBED * 0.4"1140
HETUF~N

4 VOLUME CUBED * "7.66:-512
RETURN
VOLUME CUBED * 2.:L8:L"70 r.:--__ J

F~ETlJRN
6 WRITE (4,100) NFACES
100 FORMAT(' NO REGULAR POLYHEDRON HAS ',I3,'FACES.')

H[TUF~i\1

END

10-6

SUBPROGRAMS

The subroutine in this example computes the volume of a regular
polyhedron, given the number of faces and the length of one edge. It
uses a computed GOTO statement to determine whether the polyhedron is
a tetrahedron, cube, octahedron, dodecahedron, or icosahedron, and
also to transfer control to the proper procedure for calculating the
.... _, ~ _ T.r: .&-t.... _ _ ~._h __ _ .t: ~ ____ _ .r: -1-""_ h_~..:,. ; __ -1-"",-_"",, .J-')...,,~ A t::. 0 , ')
VU.l.UHIC. J...l.. loUC UUlllUCL U.l.. .l..a\...c~ V.l.. loUt;; uvuy ... ~ V ut;;L uall '7.1 v, v, .J..£.,

or 20, the subroutine transmits an error message to logical unit 4 as
indicated in the WRITE statement.

10.4 CALL STATEMENT

The CALL statement causes the execution of a SUBROUTINE subprogram;
it can also specify an argument list for use by the subroutine.

The format is:

where

CALL s[[([[a]] [[,a]] •••)]]

s is the name of a SUBROUTINE subprogram, a user-written
assembly language routine, or a DEC-supplied system
subroutine, or a dummy argument associated with one of the
above

a is an actual argument

After the CALL statement has associated the values in the argument
list (if the list is present) with the dummy arguments in the
subroutine, it then transfers control to the first executable
statement of the subroutine.

The arguments in the CALL statement must agree in number, order, and
data type with the dummy arguments in the subroutine definition. They
can be variables, arrays, array elements, constants, expressions,
alphanumeric literals, or subprogram names (if those names have been
specified in an EXTERNAL statement, as described in Section 7.4).
Note that an unsubscripted array name in the argument list refers to
the entire array.

Examples:

CALL CURVE (BASE,3.14159tX,Y,LIMIT,R(LTt2»
CALL PNTOUT (A,NY~ABCD~)

10.5 RETURN STATEMENT

You use the RETURN statement to return control from a subprogram unit
to the calling program unit.

The format is:

RETURN

When FORTRAN executes a RETURN statement in a FUNCTION subprogram, it
returns control to the statement that contains the function reference.
When FORTRAN executes a RETURN statement in a SUBROUTINE subprogram,
it returns control to the first executable statement following the
CALL statement that initiated execution of the subprogram.

10-7

SUBPROGRAMS

A RETURN statement must not appear in a main program unit.

Example:

SUBROUTINE CONVRT (N,ALPH,DATA,PRNT,K)
DIMENSION DATA(N), PRNT(N)
IF (N .LT. 10) GOTO 100
DATA(Kt2) N-(N/l0)*N
N = N/10
DATA(Kt1) N
PRNT(Kt2) ALPH(DATA(Kt2)tl)
PRNT(Ktl) ALPH(DATA(Ktl)t1)
RETURN

100 PRNTCKt2) - ALPH(Ntl)
RETURN
END

10.6 FORTRAN LIBRARY FUNCTIONS

The FORTRAN library functions are listed and described in Chapter 13.
You write function references to FORTRAN library functions in the same
form as function references to user-defined functions. For example,

R = 3.14159 * ABS(X-l)

causes the absolute value of X-I to be calculated, multiplied by the
constant 3.14159, and assigned to the variable R.

The data types of each library function and of the actual arguments
are specified in Chapter 13. Arguments you pass to these functions
may not be array names or subprogram names.

Processor-defined function references are local to the program unit in
which they occur and do not affect or preclude the use of the name for
any other purpose in other program units.

10-8

CHAPTER 11

INPUT/OUTPUT STATEMENTS

11.1 INTRODUCTION

You specify input of data to a program by READ statements and output
by WRITE statements. You use some form of these statements in
conjunction with format specifications to control translation and
editing of the data between internal representation and character
(readable) form.

Each READ or WRITE statement contains a reference to the logical unit
to or from which data transfer is to take place. You may associate a
logical unit to a device or file.

READ and WRITE statements fall into the following three categories:

• Unformatted sequential I/O transmit binary data
translation.

without

• Formatted sequential I/O transmit character data using format
specifications to control the translation of data to
characters on output, and to internal form on input.

• Unformatted direct access I/O transmit binary data without
translation to and from direct access files.

To perform file management functions, you use auxiliary I/O
statementse REWIND and BACKSPACE perform file positioning. The
ENDFILE statement writes a special record that will cause an
end-of-file condition when read by a READ statement. The BACKSPACE
statement repositions a file to the previous record. The DEFINE FILE
statement declares a logical unit to be connected to a direct access
file and specifies the characteristics of the file.

11.1.1 Input/Output Devices and Logical Unit Numbers

OS/8 FORTRAN uses the I/O services of the operating system and thus
supports all peripheral devices that are supported by the operating
system. I/O statements refer to I/O devices by means of logical unit
numbers, which are integer constants or variables with a positive
value.

The default logical unit numbers are:

1 Paper Tape Reader
2 Paper Tape Punch
3 Line Printer
4 Terminal

The logical unit number must be in the range 1 through 9.

11-1

INPUT/OUTPUT STATEMENTS

11.1.2 Format Specifiers

You use format specifiers in formatted I/O statements.
specifier is the statement label of a FORMAT statement.
discusses FORMAT statements.

11.1.3 Input/Output Record Transmission

A format
Chapter 12

I/O statements transmit data in terms of records. The amount of
information that one record can contain, and the way in which records
are separated, depend on the medium involved.

For unformatted I/O, specify the amount of data that FORTRAN will
transmit by an I/O statement. FORTRAN determines the amount of
information it will transmit by the I/O statement and by
specifications in the associated format specification.

If an input statement requires only part of a record, you lose the
excess portion of the record in transmission. In the case of
formatted sequential input or output, you may transmit one or more
additional records by a single I/O statement.

11.2 INPUT/OUTPUT LISTS

An I/O list specifies the data items to be manipulated by the
statement containing the list. The I/O list of an input or output
statement contains the names of variables, arrays, and array elements
whose values FORTRAN will transmit. In addition, the I/O list of an
output statement can contain constants and expressions.

The format is:

s[[,s]] •••

where

s is a simple list or an implied DO list

The I/O statement assigns input values to, or outputs values from, the
list elements in the order in which they appear, from left to right.

11.2.1 Simple Lists

A simple I/O list consists of a single variable, array, array element,
constant, or expression.

When an unsubscripted array name appears in an I/O list, a READ
statement inputs enough data to fill every element of the array; a
WRITE statement outputs all of the values contained in the array.
Data transmission starts with the initial element of the array and
proceeds in the order of subscript progression, with the leftmost
subscript varying most rapidly. For example, if the unsubscripted
name of a two-dimensional array defined as

DIMENSION ARRAY(3,3)

appears in a READ statement, that statement assigns values from the
input record (s) to ARRAY(l,l), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and
so on, through ARRAY(3,3).

11-2

INPUT/OUTPUT STATEMENTS

If, in a READ statement, you input the individual subscripts for an
array, you must input the subscripts before their use in the arraYe
If, for example, FORTRAN executes the statement

and the input record contains the values

1,3,721.73

FORTRAN assigns the value 721.73 to ARRAY(1,3). FORTRAN assigns the
first input value to J and the second to Kf thereby establishing the
actual subscript values for ARRAY(J,K). Variables that you use as
subscripts In this way must appear to the left of their use in the
array subscript.

You may use any valid expression in an output statement I/O list.
However, the expression must not cause FORTRAN to attempt further I/O
operations. A reference in an output statement I/O list expression to
a FUNCTION subprogram that itself performs input/output is illegal.

You must not include an expression in an input statement I/O list
except as a subscript expression in an array reference.

11.2.2 Implied DO Lists

You use an implied DO list to specify iteration within an I/O list.

The format is:

where

(list,i=el,e2)

list
i
el
e2

is an I/O list
is a control variable definition
is the initial value of i
IS the terminal value

When you use an implied DO list, you may transmit only part of an
array, or transmit array elements in a sequence other than the order
of subscript progression. The implied DO list functions as though it
were a part of an I/O statement that resides in a DO loop.

When you use nested implied DO lists, the first control variable
definition is equivalent to the innermost DO of a set of nested loops,
and therefore varies most rapidly. For example, the statement

WRITE (5,150) «FORM(K,L), L=1,10), K=1,10)
150 FORMAT (Fl0+2)

is similar to

DO 50 K=1,10
DO 50 L=1,10
WRITE (5,150) FORMCK,L)

150 FORMAT (Fl0+2)
50 CONTINUE

Since the inner DO loop is executed ten times for each iteration of
the outer loop, the second subscript, L, advances from one through ten
for each increment of the first subscript. This is the reverse of the
order of subscript progression.

11-3

INPUT/OUTPUT STATEMENTS

The implied DO uses the control variable of the imaginary DO statement
to specify which value or values are to be transmitted during each
iteration of the loop.

i, el, and e2 have the same form as that used in the DO statement.
The rules for the control, initial, and terminal variables of an
implied DO list are the same as those for the DO statement. Note,
however, that an implied DO loop cannot use an increment parameter.
The list may contain references to the control variable as long as the
value of the control variable is not altered. There is no extended
range for an implied DO list.

Examples:

FORTRAN transmits the entire list of
incrementation of the control variable.

the implied
For example

DO before the

assigns input values to the elements of arrays P and Q in the order:

P(l), Q(l,l), Q(1,2),
P(2), Q(2,l), Q(2,2),

P(5), Q(5,1), Q(5,2),

, Q(1,10),
, Q(2,10),

• •• I Q(5,10)

When processing multidimensional arrays, you may use a combination of
a fixed subscript and subscript or subscripts that varies according to
an implied DO. For example

assigns input values to BOX(l,l) through BOX(1,10) and then terminates
without affecting any other element of the array.

It is also possible to output the value of the control variable
directly, as in the statement

which simply prints the integers one through twenty.

11.3 INPUT/OUTPUT FORMS

11.3.1 Unformatted Sequential Input/Output

Unformatted input and output is data in internal (binary) format
without conversion or editing. Use unformatted I/O statements when
data output by a program is to be subsequently input by the same
program (or a similar program). Unformatted I/O statements save
execution time because they eliminate the data conversion process,
preserve greater precision in the external data, and usually conserve
file storage space.

11-4

INPUT/OUTPUT STATEMENTS

11.3.2 Formatted Sequential Input/Output

You use formatted input and output statements in conjunction with
FORMAT statements to translate and edit data on output for ease of
interpretation, and, on input, to convert data from external format to
internal format.

11.3.3 Unformatted Direct Access Input/Output

You use unformatted direct access READ and WRITE statements to perform
direct access I/O with a file on a direct access device. Use the
DEFINE FILE statement to establish the number of records, and the size
of each record, in a file to which FORTRAN will perform direct access
I/O. Each direct access READ or WRITE statement contains an integer
expression that specifies the number of the record to be accessed.
The record number must not be less than one nor greater than the
number of records you define for the file.

In OS/8 FORTRAN, the expression that specifies the record number can
be of any type. FORTRAN converts it to integer type if necessary.

11.4 READ STATEMENTS

11.4.1 Unformatted Sequential READ Statement

You use unformatted sequential READ statements to assign fields to a
record without translating stored information into external form.

The format is:

READ (u) [[1 i s t]]

where

u is a logical unit number from 1 to 9
list is an I/O list

The unformatted sequential READ statement inputs one unformatted
record from a logical unit and assigns the fields of the record
without translation to the I/O list elements in the order in which
they appear, from left to right.

An unformatted sequential READ statement transmits exactly one record.
If the I/O list does not use all of the values in the record, FORTRAN
discards the remainder of the record. If FORTRAN exhausts the
contents of the record before the I/O list is satisfied, an error
condition results.

You Qust only use the unformatted sequential READ statement to read
records that were created by unformatted sequential WRITE statements.

11-5

INPUT/OUTPUT STATEMENTS

If you use an unformatted WRITE statement that does not contain an I/O
list, FORTRAN skips the next record.

Examples:

READ (1) FIELD1, FIELD2 Read one record
assign values
FIELD2.

from logical unit 1;
to variables FIELDI and

READ UP Advance logical unit 8 one record.

11.4.2 Formatted Sequential READ Statement

You use formatted sequential READ statements to transmit information
in external format.

The format is:

READ (u, f) [[1 i s t]]

where

u is a logical unit number from 1 to 9
f is a format statement number
list isan I/O list

When the formatted sequential READ statement transfers data from the
indicated logical unit, FORTRAN converts transmitted characters to
internal format as specified by the format specification. FORTRAN
assigns the resulting values to the elements of the I/O list.

If the FORMAT statement associated with a formatted input statement
contains a Hollerith constant or alphanumeric literal, input data will
be read and stored directly into the format specification. For
example, the statements

I:;:[(:)D (::,:; ~ 100)

100 FORMAT (SH DATA)

cause five characters to be read and stored in the Hollerith format
descriptor. If the character string were HELLO, statement 100 would
become

100 FORMAT (SHHELLO)

If there is no H field, the record is skipped.

If the number of elements in the I/O list is less than the number of
fields in the input record, the excess portion of the record is
discarded. If the number of elements in the list exceeds the number
of input fields, an error condition results unless the format
specifications state that one or more additional records are to be
read (see Section 12.8).

11-6

INPUT/OUTPUT STATEMENTS

If no I/O list is present, data transfer takes place between the
record and the format specification.

Examples:

READ (1,300) ARRAY
300 FORMAT (20F8~2)

READ (5,50)
50 FORMAT (25H PAGE HEADING GOES HERE!

Read a record from
lnni~~l unit 1 •
~~J-~~~ ~,

assign fields to
ARRAY.

Read 25 characters
from logical unit 5;
place them in the
FORMAT statement.

9.4.2.1 CHKEOF Subroutine - CHKEOF accepts one real, integer, or
logical argument. After the next formatted READ operation, this
argument will be set to a non-zero value if the logical end-of-file
was encountered. Otherwise, it will be set to zero.

Only use CHKEOF when reading one record from the logical unit.

The following is an example of the use of CHKEOF:

CALL CHKEOFCEOF)
READ (N~101)DATA

IF (EOF +NE+ 0) GO TO 9999

11.4.3 Unformatted Direct Access READ Statement

You use an unformatted direct access READ statement to transmit a
value or values to a direct access device in internal format.

The format is:

where

READ (u'r) [[list]]

u
r
list

is a logical unit number from 1 to 9
is the record number
is an I/O list

The unformatted direct access READ statement positions the input file
to a specified record and transfers the fields in that record to the
elements in the I/O list without translation.

The logical unit number u may be an unsigned integer constant or a
positive integer variable. The record number r may also be a
variable. If there are more fields in the input record than elements
in the I/O list, FORTRAN discards the excess portion of the record.
If there is insufficient data in the record to satisfy the
requirements of the I/O list, an error condition results.

11-7

INPUT/OUTPUT STATEMENTS

The unit number in the unformatted direct access READ statement must
refer to a unit that you have previously defined for direct access
processing in a DEFINE FILE statement.

Examples:

READ (1'10) LIST(1),LIST(8)

READ (4'58) (RHO(N)vN=1,5)

11.5 WRITE STATEMENTS

Read record 10 of a file on logical
unit 1; assign two INTEGER values
to specified elements of array
LIST.

Read record 58 of a file on logical
unit 4; assign five real values to
array RHO.

11.5.1 Unformatted Sequential WRITE Statement

You use an unformatted sequential WRITE statement to transmit values
in their internal representation to a logical unit.

The tormat is:

WR IT E (u) [[1 i s t]]

where

u is a logical unit number from 1 to 9
list is an I/O list

When the unformatted sequential WRITE statement transmits the values
of the elements in the I/O list to the specified logical unit, it does
so without translation, as one unformatted record.

The logical unit specifier is an integer variable or an integer
constant from 1 to 9.

If an unformatted WRITE statement contains no I/O list, one null
record is output to the specified unit.

A record may hold 85 single-precision variables. If the list elements
fill more than one record, FORTRAN writes successive records until the
list is completed. Thus, if there are 100 variables on the list,
FORTRAN uses two records; one record contains 85 variables and the
second contains 15 variables. For example:

D I 11EN:3 J ON X (20(»
/"~HJTE «(» X

will produce three records on logical unit 6, the first containing
X(l) to X(85), the second X(86) to X(170), and the third X(171) to
X(200). If the amount of data FORTRAN will transmit exceeds the
record size, an error condition results. If the WRITE statement does
not completely fill the record with data, FORTRAN zero fills the
unused portion of the record.

11-8

INPUT/OUTPUT STATEMENTS

Examples:

WRITE (1) (LISTOO ,K=l ,5) output
through
unit 1.

the
5

contents
of array

of elements 1
LIST to logical

WRITE (4) Write a null record on logical unit 4.

11.5.2 Formatted Sequential WRITE Statements

You use a formatted sequential WRITE statement to translate a value
from its internal representation to character format and then transmit
it to a logical unit.

The format is:

WR I T E (u , f) [[1 i s t]]

where

u is a logical unit number from 1 to 9
f is a format statement number
list is an I/O list

When the formatted sequential WRITE statement transfers data to the
specified logical unit, the I/O list specifies a sequence of values
that FORTRAN converts to characters and positions as specified by a
format specification.

The logical unit specifier may be an integer variable.

If no I/O list is present, data transfer takes place entirely between
the record and the format specification.

The data FORTRAN transmits by a formatted sequential WRITE statement
normally constitutes one formatted record. The format specification
can, however, specify that additional records are to be written during
the execution of that same WRITE statement.

FORTRAN rounds numeric data output under format control during the
conversion to external format. (If such data is subsequently input
for additional calculations, loss of precision may result. In this
case, unformatted output is preferable to formatted output.)

The records FORTRAN transmits by a formatted WRITE statement must not
exceed the length that the specified device can accept. For example,
a line printer typically cannot print a record that is longer than 132
characters.

Examples:

WFnTE (6, 6S0)
650 FORMAT (I HELLO, THERE')

WRITE (1,95) AYE, BEE, CEE
95 FORMAT (F8.5, F8.5, F8+S)

WRITE (1,9S0) AYE, BEE, CEE
950 FORMAT (f8+5)

11-9

(Output the contents
FORMAT statement to
uni t 6.)

of the
logical

(Write one record of three
fields to logical unit 1.)

(Write three separate records
of one field each to logical
unit 1.)

INPUT/OUTPUT STATEMENTS

In the last example, format control arrives at the rightmost
parenthesis of the FORMAT statement before all elements of the I/O
list have been output. Each time this occurs, FORTRAN terminates the
current record and initiates a new record. Thus, FORTRAN writes three
separate records (see Section 12.5).

11.5.3 Unformatted Direct Access WRITE Statement

You use an unformatted direct access WRITE statement to transmit a
value in its internal representation to a specific record on a direct
access device.

The format is:

WR I T E (u ' r) [[1 i s t]]

where

u is a logical unit number from 1 to 9
r is the record number
list is an I/O list

When the unformatted direct access WRITE statement transmits the
values of the elements in the I/O list to a particular record position
on a direct access file, the data is written in internal format
without translation.

The logical unit specifier may be an integer variable. The record
number r may be an unsigned integer constant or integer variable. A
record may hold 85 single-precision variables. If the list elements
fill more than one record, FORTRAN writes successive records until the
list is completed. Thus, if there are 100 variables on the list,
FORTRAN uses two records; one record contains 85 variables and the
second contains 15 variables. For example

DIMENSION X(200)
WHITE (6) X

will produce three records on unit 6, the first containing X(l) to
X(85), the second X(86) to X(170), and the third X(171) to X(200). If
the amount of data FORTRAN will transmit exceeds the record size, an
error condition results. If the WRITE statement does not completely
fill the record with data, FORTRAN zero fills the unused portion of
the record.

Examples:

WRITE (2'35) (NUMCK),K=1,10) (Output ten integer values to
record 35 of the file connected to
logical unit 2.)

WRITE (3'J) ARRAY (Output the entire contents of
ARRAY to the file connected to
logical unit 3 into the record
indicated by the value of J.)

11-10

INPUT/OUTPUT STATEMENTS

11.6 AUXILIARY INPUT/OUTPUT STATEMENTS

You use statements in this category to perform file management
functions.

11.6.1 BACKSPACE Statement

Use the BACKSPACE statement to reposition a file to the previous
record accessed.

The format is:

BACKSPACE u

where

u is a logical unit number from 1 to 9

When the BACKSPACE statement repositions a currently open sequential
file back one record, it repositions it to the beginning of that
record. On the execution of the next I/O statement for that unit,
that record is available for processing.

The unit number must refer to a directory structured
disk), and a file must be open on that device.
positioned at the first record, FORTRAN ignores
statement.

device (e.g.,
If the file is

the BACKSPACE

Example:

BACKSPACE 4 (Reposition open file on logical unit 4
beginning of the previous record.)

to

11.6.2 DEFINE FILE Statement

The DEFINE FILE statement establishes the size and structure of a file
upon which FORTRAN will perform direct access I/O.

The format is:

where

DEFINE FILE u (m,n,U,v) [[,u(m,n,U,v)]] •••

u is an integer constant or variable that specifies the
logical unit number

m is an integer constant or variable that specifies the number
of records in the file

n is an integer constant or variable that specifies the
length, in words, of each record

U specifies that the file is unformatted (binary) and the
letter U is the only acceptable entry in this position

v is an integer variable, called the associated variable of
the file

Once you have specified the attributes of a direct access device by
means of the DEFINE FILE, you should always specify them in the same
manner.

11-11

INPUTiOUTPUT STATEMENTS

At the conclusion of each direct access I/O operation, FORTRAN assigns
the record number of the next higher numbered record in the file to v.

The DEFINE FILE statement specifies that a file containing m
fixed-length records of n words each exists, or is to exist, on
logical unit u. The records in the file are sequentially numbered
from 1 through m.

You must type the DEFINE FILE statement before the first direct access
I/O statement that refers to the specified file.

The DEFINE FILE statement also establishes the integer variable v as
the associated variable of the file. At the end of each direct access
I/O operation, the FORTRAN I/O system places in v the record number of
the record immediately following the one just read or written.
Because the associated variable always points to the next sequential
record in the file (unless you redefine it by an assignment or input
statement), you can use direct access I/O statements to perform
sequential processing of the file. The logical unit number u cannot
be passed as a dummy argument to a DEFINE FILE statement in a
subroutine.

In an overlay environment, or when more than one program unit
processes the file, place the associated variable in a resident common
block.

Example:

DEFINE FILE 3 (1000,48,U,NREC)

This statement specifies that logical unit 3 is to be connected to a
file of 1000 fixed-length records, each record of which is 48 words
long. The records are numbered sequentially from 1 through 1000 and
are unformatted. After each direct access I/O operation on this file,
the integer variable NREC will contain the record number of the record
immediately following the one just processed.

11.6.3 ENDFILE Statement

The ENDFILE statement writes an end-file record to the specified
sequential unit.

The format is:

ENDFILE u

where

u is a logical unit number from 1 to 9

When you use the ENDFILE statement to write an end-of-file mark on a
directory structured device, note that you cannot write additional
information to that device after the ENDFILE statement.

You must write the ENDFILE statement to a formatted output file.

No rewind occurs after this statement.

Example:

ENDFILE 2 (Output an end-file record to logical unit 2.)

11-12

INPUT/OUTPUT STATEMENTS

11.6.4 REWIND Statement

The REWIND statement repositions a currently open sequential file to
be repositioned to the beginning of the file.

The format is:

REWIND u

where

u is a logical unit number from 1 to 9

Use the REWIND statement to position a directory structured device to
its first record.

If the file is at its first record; FORTRAN ignores the REWIND
statement.

The unit number in the REWIND statement
structured device (e.g., disk), and
device.

Example:

must refer to a directory
a file must be open on that

REWIND 3 (Reposition logical unit 3 to beginning of currently
open file.)

11-13

CHAPTER 12

FORMAT STATEMENTS

12.1 INTRODUCTION

FORMAT statements are nonexecutable statements used in conjunction
with formatted I/O statements. The FORMAT statement describes the
format in which FORTRAN transmits data fields, and the data conversion
and editing needed to achieve that format.

The FORMAT statement has the form:

st FORMAT (glflsl[[f2s2]] ••• [[fnqn]])

where

f is a field descriptor, or a group of field descriptors
enclosed in parentheses

s is a field separator (either a comma or slash)
q is zero or more slash (/) record terminators
st is a mandatory statement number

Including the parentheses is called the format specification. You
must enclose the list in parentheses. A field descriptor in a format
specification has the form:

where

[[r]] cw [[• d]]

r represents a repeat count that specifies that FORTRAN is to
apply the field descriptor to r successive fields (If you
omit the repeat count, FORTRAN assumes it to be 1.)

c is a format code
w is the field width
d is the number of characters to the right of the decimal

point, and should be less than w

The terms r, w, and d must all be unsigned integer constants less than
or equal to 255.

The field separators are comma and slash. A slash has the additional
function of being a record terminator. The field descriptors used in
format specifications are as follows:

• Integer:

• Logical:

• Real, Double­
Precision, Complex:

• Literal, Editing:

Iw

Lw

Fw.d, Ew.d, Dw.d, Gw.d, Bw.d

Aw, nH, nP, nX, Tn, $, ' ••• ', /

12-1

FORMAT STATEMENTS

(In the alphanumeric and editing field descriptors, n specifies the
number of characters or character positions.)

You can precede the P, E, D, or G field descriptors by a scale factor
of the form:

nP

where n is an optionally signed integer constant in the range -127 to
+127. The scale factor specifies the number of positions the decimal
point is to be scaled to the left or right. During data transmission,
FORTRAN scans the format specification from left to right. FORTRAN
then performs data conversion by correlating the values in the I/O
list with the corresponding field descriptors. In the case of H field
descriptors and alphanumeric literals, data transmission takes place
entirely between the field descriptor and the external record.

12.2 FIELD DESCRIPTORS

The individual field descriptors that can appear in a format
specification are described in detail in the following sections. The
field descriptors ignore leading spaces in the external field but
treat embedded and trailing spaces as zeros.

12.2.1 I Field Descriptor

The I field descriptor governs the translation of integer data.

The format is:

Iw

12.2.1.1 Input - The I field descriptor causes an input statement to
read w characters from an external record. FORTRAN then assigns the
character as an integer value to the corresponding integer element of
the I/O list. The external data must be an integer; it must not
contain a decimal point or exponent field.

The I field descriptor interprets an all-blank field as a zero value.

If the value of the external field exceeds the range of the
corresponding integer list element, an error occurs. If the first
non-blank character of the external field is a minus symbol, the I
field descriptor causes the field to be stored as a negative value;
FORTRAN treats a field preceded by a plus symbol, or an unsigned
field, as a positive value.

Examples:

Format

14
13
19
19
13

External Field

2788
-26

3.12
-871

312

12-2

Internal Representation

2788
-26
312

not permitted; error
-87 (one is lost)

FORMAT STATEMENTS

12.2.1.2 Output - On output, the I field descriptor transmits the
value of the corresponding integer I/O list element, right justified,
to an external field w characters in length. It also replaces any
leading zeros with spaces. If the value does not fill the field,
FORTRAN inserts leading spaces. If the value of the list element is
neqative, the field will have a minus svmbol as its leftmost non-blank
character. Space must therefore be inciuded in w for a minus symbol
if you expect one to be outpute FORTRAN suppresses plus symbols and
you need not account for them in w. If w is too small to contain the
output value, FORTRAN fills the entire external field with asterisks.

Examples:

Format

13
14
IS
12
13
17

Internal Value

284
-284

174
3244
-473

29.812

12.2.2 F Field Descriptor

External Representation

284
-284

174
**

not permitted; error

The F field descriptor specifies the data conversion and editing of
real or double-precision values, or the real or imaginary parts of
complex values.

The format is:

Fw.d

12.2.2.1 Input - On input, the F field descriptor causes FORTRAN to
read w characters from the external record and to assign the
characters as a real value to the corresponding I/O list element. If
the first non-blank character of the external field is a minus sign,
FORTRAN treats the field as a negative value; FORTRAN assumes a field
preceded by a plus sign (or an unsigned field) to be positive.
FORTRAN considers an all-blank field to have a value of zero. In all
appearances of the F field descriptor, w must be greater than or equal
to d+, where the extra character is the decimal point.

If the field contains neither a decimal point nor an exponent, FORTRAN
treats it as a real number of w digits, in which the rightmost d
digits are to the right of the decimal point. If the field contains
an explicit decimal point, the location of that decimal point
overrides the location you specify in the field descriptor. If the
field contains an exponent, FORTRAN uses the exponent to establish the
magnitude of the value before it assigns the value to the list
element.

Examples:

Format

F8.5
F8.S
F8.S
FS.2

External Field

123456789
-1234.S67
24.77E+2
1234S67.89

12-3

Internal Representation

123.45678
-1234.S6

2477.0
123.45

FORMAT STATEMENTS

12.2.2.2 Output - On output, the F field descriptor causes FORTRAN to
round the value of the corresponding I/O list element to d decimal
positions and to transmit an external field w characters in length,
right justified. If the converted data consists of fewer than w
characters, FORTRAN inserts leading spaces; if the data exceeds w
characters, FORTRAN fills the entire field with asterisks.

The field width must be large enough to accommodate: (1) a minus
sign, if you expect one to be output (FORTRAN suppresses plus signs);
(2) at least one digit to the left of the decimal poi~t; (3) the
decimal point itself; and (4) d digits to the right of the decimal.
For this reason, w should always be greater than or equal to (d+3).

Examples:

Format

F8.5
F9.3
F2.3
FIO.4
F5.2
F5.2

Internal Value

2.3547188
8789.7361

51.44
-23.24352
325.013

-.2

12.2.3 E Field Descriptor

External Representation

2.35472
8789.736

**
-23.2435

-0.20

The E field descriptor specifies the transmission of real or
double-precision values in exponential format.

The format is:

Ew.d

12.2.3.1 Input - The E field descriptor causes an input statement to
input w characters from an external record. It interprets and assigns
that data in exactly the same way as the F field descriptor.

Examples:

Format

E9.3
E12.4
E15.3
E12.5

External Field

734.432E3
1022.43E-6

52.37596
210.527ID+I0

Note that in the last example
double-precision indicator D
indicator.

the
and

Internal Representation

E field
treats

734432.0
1022.43E-6

52.37596
210.5271EIO

descriptor ignores the
it as though it were an E

12.2.3.2 Output - The E field descriptor causes an output statement
to transmit the value of the corresponding list element to an external
field w characters in width, right justified. If the number of
characters in the converted data is less than w, FORTRAN inserts
leading spaces; if the number of characters exceeds w, FORTRAN fills
the entire field with asterisks. The corresponding I/O list element
must be of real, double-precision, or complex type.

12-4

FORMAT STATEMENTS

FORTRAN transmits data output under control of the E field descriptor
in a standard form, consisting of

• a minus sign if the value is negative (plus signs are
suppressed)

• a zero

• a decimal point

• d digits to the right of the decimal

• a 3-character exponent of the form:

E+nnn

or

E-nnn

where nn is a 2-digit integer constant

The d digits to the right of the decimal point represent the entire
value, scaled to a decimal fraction.

Because w must be large enough to include a minus sign (if any are
expected), a zero, a decimal point, and an exponent, in addition to d
digits, w should always be equal to or greater than (d+7).

Examples:

Format

E9.2
E12.5
E12.3
EI0.3
E5.3

Internal Value

475867.222
475867.222

0.00069
-0.5555
56.12

12.2.4 D Field Descriptor

External Representation

O.48E+06
0.47587E+06

0.690E-03
-0.556E+00

The D field descriptor specifies the transmission of real or
double-precision values.

The format is:

Dw.d

12.2.4.1 Input - On input, the D field descriptor functions exactly
like an E field descriptor, except that FORTRAN converts the input
data and assigns it as a double-precision entity.

Examples:

Format

DI0.2
DIO.2
D15.3

External Field

12345
123.45

367.4981763D+04

12-5

Internal Representation

12345000.0DO
123.45DO

3.674981763D+06

FORMAT STATEMENTS

12.2.4.2 Output - On output, the effect of the D field descriptor is
identical to that of the E field descriptor, except that FORTRAN uses
the D exponent field indicator in place of the E indicator.

Examples:

Format Internal Value External Representation

D14.3
D23.12
D9.6

0.0363
5413.87625793

1.2

0.363D-Ol
0.541387625793D+04

12.2.5 B Field Descriptor

The B field descriptor is a convenient method for transmitting
double-precision information.

Internally, such a value is identical to a double-precision number.
Upon output, the B acts like an F. On input, however, it acts like a
D.

12.2.~ G Field Descriptor

The G field descriptor transmits real, double-precision, or complex
data in a form that is in effect a combination of the F and E field
descriptors.

The format is:

Gw.d

12.2.~.1 Input - On input, the G field descriptor functions
identically like the F field descriptor.

12.2.6.2 Output - On output, the G field descriptor causes FORTRAN to
transmit the value of the corresponding I/O list element to an
external field w characters in length, right justified. The form in
which the value is output is a function of the magnitude of the value,
as described in Table 12-1.

Table 12-1
Effect of Data Magnitude on G Format Conversions

Data Magnitude Effective Conversion

m < 0.1 Ew.d

0.1 < m < 1.0 F(w-4) .d, 4X

1.0 < m < 10.0 F(w-4).(d-l),4X

10d-2 < m < 10d-l F(w-4) .1, 4X

10d-l < m < 10d F(w-4) .0, 4X

m > 10d Ew.d

12-6

FORMAT STATEMENTS

The 4X field descriptor is inserted by the G field descriptor
values within its range; it means that four spaces are to follow
numeric data representation.

The field width, w, must include:

for

1. space for a minus sign, if any are expected (plus signs are
suppressed)

2. at least one digit to the left of the decimal-.:-
J:-IV.Llll...

3. the decimal point itself

4. d digits to the right of the decimal

5. (for values tnat are outslce the effective range of the G
field descriptor) a 4-character exponent

Therefore, w should always be equal to or greater than (d+7).

Examples:

Format

G13.6
G13.6
G13.6
G13.6
G13.6
G13.6
G13.6
G13.6
G13.6

Internal Value

0.01234567
-0.12345678

1.23456789
12.34567890

123.45678901
-1234.56789012
12345.67890123

123456.78901234
-1234567.89012345

External Representation

0.123457E-Ol
-0.123457

1.23457
12.3457
123.457

-1234.57
12345.7
123457.

-0.123457E+07

For comparison, consider the following example of the same values
output under the control of an equivalent F field descriptor.

Format

F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6

Internal Value

0.01234567
-0.12345678

1.23456789
12.34567890

123.45678901
-1234.56789012
12345.67890123

123456.78901234
-1234567.89012345

12.2.7 L Field Descriptor

External Representation

0.012346
-0.123457

1.234568
12.345679

123.456789
-1234.567890
12345.678901

123456.789012

The L field descriptor specifies the transmission of logical data.

The format is:

Lw

12-7

FORMAT STATEMENTS

12.2.7.1 Input - The L field descriptor causes an input statement to
read w characters from external record. If the first non-blank
character of that field is the letter T or the string .T, FORTRAN
assigns the value .TRUE. to the corresponding I/O list element. (The
corresponding I/O list element must be of logical type.) If the first
non-blank character of the field is the letter F or the string .F, or
if the entire field is blank, FORTRAN assigns the value .FALSE.
Any other value in the external field causes an error condition.

12.2.7.2 Output - The L field descriptor causes an output statement
to transmit either the letter T, if the value of the corresponding
list element is .TRUE. or the letter F, if the value is .FALSE., to
an external field w characters wide. The letter T or F is in the
rightmost position of the field, preceded by (w-l) spaces.

Examples:

Format

L5
Ll

Internal Value

.TRUE.

.FALSE.

External Representation

T
F

12.2.8 A Field Descriptor

The A field descriptor specifies the transmission of alphanumeric
data.

The format is:

Aw

12.2.8.1 Input - On input, the A field descriptor causes w characters
to be read from the external record and stored in ASCII format in the
corresponding I/O list element. (The corresponding I/O list element
may be of any data type.) The maximum number of characters that
FORTRAN can store in a variable or array element depends on the data
type of that element, as listed in Table 12-2.

Table 12-2
Character Storage

I/O List
Element

Logical
Integer
Real
Double-Precision
Complex

12-8

Maximum Number
of Characters

6
6
6
12
12

FORMAT STATEMENTS

If w is greater than the maximum number of characters that FORTRAN can
store in the corresponding I/O list element; only the rightmost six or
twelve characters (depending on the data type of the variable or array
element) are assigned to that entity; the leftmost excess characters
are lost. Ifw is less than the number of characters that FORTRAN can
store, it assigns w characters to the list element, left justified,
and adds trailing spaces to fill the variable or array element.

Examples:

Format External Field Internal Representation

A6 PAGE # PAGE # (Integer)
A6 PAGE # GE -II- (Real) 'IT

A12 PAGE # PAGE # (Double Precision)

12.2.8.2 Output - On output, the A field descriptor causes FORTRAN to
transmit the contents of the corresponding I/O list element to an
external field w characters wide. If the list element contains fewer
than w characters, the data appears in the field right justified with
leading spaces. If the list element contains more than w characters,
FORTRAN transmits only the leftmost w characters.

Examples:

Format

AS
AS
AS

Internal Value

OHfl.1S
VOLTS
AMPERES

12.2.9 H Field Descriptor

The format is:

nHccc ••• c

where

External Representation

OHMS
VOLTS
AMPER

n specifies the number of characters to be transmitted
c is an ASCII character

When the H field descriptor appears in a format specification, data
transmission takes place between the external record and the field
descriptor itself.

The H field descriptor causes an input statement to read n characters
from the external record and to place them in the field descriptor,
with the first character appearing immediately after the letter H.
FORTRAN replaces any characters that had been in the field descriptor
prior to input by the input characters.

The H field descriptor causes an output statement to transmit the n
characters in the field descriptor following the letter H to the
external record. An example of the use of H field descriptors for
input and output follows:

WRITE (4,100)
100 FORMAT (41H ENTER PROGRAM TITLE, UP TO 20 CHARACTERS)

READ (4v2()0)
200 FORMAT (20H TITLE GOES HERE

12-9

FORMAT STATEMENTS

The WRITE statement transmits the characters from the H field
descriptor in statement 100 to the user's terminal. The READ
statement accepts the response from the keyboard, placing the input
data in the H field descriptor in statement 200. The new characters
replace the string TITLE GOES HERE; if you enter fewer than 20
characters, FORTRAN fills the remainder of the H field descriptor with
spaces to the right.

12.2.9.1 Alphanumeric Literals - In an output statement, you may use
an alphanumeric literal in place of an H field descriptor; both types
of format specifiers function identically. However, you cannot use an
alphanumeric literal on input.

You write an apostrophe character within an alphanumeric literal as
two apostrophes. For example:

50 FORMAT (' TODAY"S DATE IS: ',12,'/',12,'/',12)

FORTRAN treats a pair of apostrophes used in this manner as a single
character.

12.2.10 X Field Descriptor

The X field descriptor causes spaces to be skipped in a record.

The format is:

nX

When used in an input statement, the spaces skipped as a result of the
x field descriptor are represented by the next n characters 1n the
input record.

In an output statement, the X field descriptor causes n spaces to be
transmitted to the external record. For example:

WRITE (5,90) NPAGE
90 FORMAT (13H1PAGE NUMBER ,12,16X?23HGRAPHIC ANALYSIS, CONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.

where "nn" is the current value of the variable NPAGE. FORTRAN does
not print the numeral 1 in the first H field descriptor, but instead
uses it to advance the printer paper to the top of a new page.
printer carriage control is explained in Section 12.6.

12-10

FORMAT STATEMENTS

12.2.11 T Field Descriptor

The T field descriptor is a tabulation specifier.

The format is:

where

Tn

n indicates the character position of the external record.
The value of n must be greater than or equal to one, but not
greater than the number of characters allowed in the
external record.

12.2.11.1 Input - On input, the T field descriptor causes FORTRAN to
position the external record to its nth character position. For
example, if a READ statement inputs a record containing

ABC XYZ

under control of the FORMAT statement

the READ statement would input the characters XYZ first, then the
characters ABC.

12.2.11.2 Output - On output to devices other than the line printer
or terminal, the T field descriptor states that subsequent data
transfer is to begin at the nth character position of the external
record. (For output to a printing device, data transfer begins at
position n-l). This is because FORTRAN reserves the first position of
a printed record for a carriage control character (see Section 12.6),
which is never printed.

Thus, the statements

WRITE(4y25)
25 FORMAT CT51,'COLUMN 2',T21,'COLUMN 1')

would cause the following line to be printed:

Position 20 position 50

COLUMN 1 COLUMN 2

12.2.12 $ Descriptor

The dollar sign character ($) appearing in a format specification
modifies the carriage control specified by the first character of the
record. The $ descriptor is intended primarily for interactive I/O
and causes the terminal print position to be left at the end of the
written text (rather than returned to the left margin) so that a typed
response will appear on the same line following the output.

12-11

Example:

A::: 5
WRITE (4,100) A
READ (4,200) B

FORMAT STATEMENTS

100 FORMAT (' SAMPLE NO.', I2 , , IS: " $)
200 FORMAT (A6)

WRITE (4,200) B
END

This program outputs

SAMPLE NO. 5 IS: RED
RED

12.3 COMPLEX DATA EDITING

Since a complex value is an ordered pair of real values, input or
output of a complex entity is governed by two real field descriptors,
using any combination of the forms Fw.d, Ew.d, Dw.d, or Gw.d.

12.3.1 Input

On input, FORTRAN reads two successive fields and assigns them
complex I/O list element as its real and imaginary
respectively.

Examples:

Format

F8.5,f8.5
E9.l,f9.3

12.3.2 Output

External Fields

1234567812345.67
734.432E8l23456789

Internal Representation

123.45678, 12345.67
734.432E8, 12345.678

to a
parts,

On output, FORTRAN transmits the constituent parts of a complex value
under the control of repeated or successive field descriptors.
Nothing intervenes between those parts unless explicitly stated by the
format specification.

Examples:

Format

2F8.5
E9.2,' , ',E5.3

12.4 SCALE FACTOR

Internal Values

2.3547188, 3.456732
47587.222, 56.123

External Representation

2.35472 3.45673
O.48E+06 , *****

Through the use of a scale factor, you can alter the location of the
decimal point in real, double-precision, and complex values during
input or output.

12-12

FORMAT STATEMENTS

The format is:

where

nP

n is a signed or unsigned integer constant in the range -127
to +127 specifying the number of positions the decimal point
is to be moved to the right or left.

You may place a scale factor anywhere in a format
it must precede the field descriptors with
associated. It has the forms:

specification. but
which it is to be

nPFw.d nPEw.d nPDw.d nPGw.d

Data input under control of one of the above field descriptors is
multiplied by 10**-n before FORTRAN assigns it to the corresponding
I/O list element. For example, a 2P scale factor multiplies an input
value by .01, moving the decimal point two places to the left; a -2P
scale factor multiplies an input value by 100, moving the decimal
point two places to the right. If the external field contains an
explicit exponent, however, the scale factor has no effect.

Examples:

Format

3PEIO.5
3PEIO.5

-3PEIO.5

External Field

37.614
37.614E2

37.614

Internal Representation

.037614
3761.4

37614.

The effect of the scale factor on output depends on the type of field
descriptor with which it is associated. For the F field descriptor,
FORTRAN multiplies the value of the I/O list element by 10**N before
it transmits it to the external record. Thus, a positive scale factor
moves the decimal point to the right; a negative scale factor moves
the decimal point to the left.

FORTRAN adjusts values output under control of an E or D field
descriptor with a scale factor by multiplying the basic real constant
portion of each value by 10**N and subtracting n from the exponent.
Thus a positive scale factor moves the decimal point to the right and
decreases the exponent; a negative scale factor moves the decimal
point to the left and increases the exponent.

FORTRAN suspends the effect of the scale factor while the magnitude of
the data to be output is within the effective range of the G field
descriptor, since G supplies its own scaling function. The G field
descriptor functions as an E field descriptor when the magnitude of
the data value is outside its range; the effect of the scale factor
is therefore the same as described for that field descriptor.

Note that on input, and on output under control of an F field
descriptor, a scale factor actually alters the magnitude of the data;
otherwise, a scale factor attached to an E, D, or G field descriptor
merely alters the form in which the data is transmitted. Note also
that on input a positive scale factor moves the decimal point to the
left and a negative scale factor moves the decimal point to the right,
while on output the effect is just the reverse.

If you do not attach a scale factor to a field descriptor, FORTRAN
assumes a scale factor of zero. Once you specify a scale factor,
however, it applies to all subsequent real and double-precision field

12-13

FORMAT STATEMENTS

descriptors in the same format specification, unless another scale
factor appears. You may only reinstate a scale factor of zero by an
explicit OP specification.

Some examples of scale factor effect on output are:

Format Internal Value External Representation

IPE12.3 -270.139 -2.701E+02
IPE12.2 -270.139 -2.70E+02

-lPE12.2 -270.139 -0.03E+04

12.5 GROUPING AND GROUP REPEAT SPECIFICATIONS

You can apply any field descriptor (except H, T, P, or X) to a number
of successive data fields by preceding that field descriptor with an
unsigned integer constant, called a repeat count, that specifies the
number of repetitions. For example, the statements

and

have the same effect.

Similarly, you may repeatedly apply a group of field descriptors to
data fields by enclosing those field descriptors in parentheses, with
an unsign~d integer constant, called a group repeat count, preceding
the left parenthesis. For example:

50 FORMAT (2I8,3(F8.3,E15.7»

is equivalent to:

You can enclose an H or X field descriptor, which could not otherwise
be repeated, in parentheses. FORTRAN then treats it as a group repeat
specification, thus allowing it to be repeated a desired number of
times.

If you omit a group repeat count, FORTRAN assumes it to be 1.

12.~ CARRIAGE CONTROL

FORTRAN never transmits the first character of a record to a printing
device; instead, FORTRAN interprets this first character as a
carriage control character. The FORTRAN I/O system recognizes certain
characters for this purpose; these characters and their effects are
shown in Table 12-3.

12-14

FORMAT STATEMENTS

Table 12-3
Carriage Control Characters

Character Effect

space Advance one line

o (zero) Advance two lines

1 (one) Advance to top of next page

+ (plus) Do not advance (allows overprinting)

FORTRAN treats any character other than those described in Table 12-3
as though it is a space, and deletes it from the print line.

12.7 FORMAT SPECIFICATION SEPARATORS

In a format specification you generally separate field descriptors
from one another by commas. You may also use the slash (I) record
terminator to separate field descriptors. A slash causes FORTRAN to
terminate the input or output of the current record and to initiate a
new record. You may omit the comma when using a slash. Also, you
need not type a comma after a Hollerith constant.

Example:

WRITE (5,40) KYL~M?N,09P
40 FORMAT (3A6!I6,2F8~4)

is equivalent to

WRITE (5,40) K,L,M
40 FORMAT (3A6)

WRITE (5,50) N,O,P
50 FORMAT (I6,2F8~4)

It is possible to bypass input records or to output blank records by
the use of multiple slashes. If n consecutive slashes appear between
two field descriptors, they cause FORTRAN to skip (n-l) records on
input or (n-l) blank records to be output. (The first slash
terminates the current record; the second slash terminates the first
skipped or blank record, and so on.) If n slashes appear at the
beginning or end of a format specification, however, they result in n
skipped or blank records, because the initial and terminal parentheses
of the format specification are themselves a record initiator and
record terminator, respectively. An example of the use of multiple
record terminators is:

~JF.: I TE (5, 9(.n
99 FORMAT ('1'TSi'HEADING LINE'!~TS1'SUBHEADING LINE'!!)

The above statements output the following:

Column 50, top of page

HEADING LINE
(blank line)

SUBHEADING LINE
(blank line)
(blank line)

12-15

FORMAT STATEMENTS

12.7.1 External Field Separators

A field descriptor such as fw.d specifies that an input statement is
to read w characters from the external record. If the data field in
question contains fewer than w characters, the input statement would
read some characters from the following field. To avoid this, you can
pad the short field with leading zeros or spaces. Padding is
unnecessary, however, if you terminate an input field containing fewer
than w characters by a comma. The comma overrides the field
descriptor's field width specification. This practice, called short
field termination, is particularly useful when entering data from a
terminal keyboard. You may also use it in conjunction with I, F, E,
D, G, and L field descriptors.

Examples:

READ (6,100) I,J,A,B
100 FORMAT (216~2FI0.2)

If the external record input by the above statements contains

1,-2,1.0,35

then the following assignments take place:

I 1

J -2

A 1.0

B 0.35

Note that the physical end of the record also serves as a field
terminator. Note also that the d part of a w.d specification is not
affected, as illustrated by the assignment to B.

You may only terminate fields of fewer than w characters by a comma.
If you use a comma after a field of w characters or greater, FORTRAN
will consider the comma to be part of the following field.

Two successive commas, or a comma following a field of exactly w
characters, constitutes a null (zero-length) field. Depending on the
field descriptor in question, the resulting value assigned is 0, 0.0,
ODD, or .FALSE ••

You cannot use a comma to terminate a field that is to be read under
control of an A, H, or alphanumeric literal field descriptor. If
FORTRAN encounters the physical end of the record before it has read w
characters, however, short field termination is accomplished and
FORTRAN can assign the characters that were input. It also appends
trailing spaces to fill the corresponding I/O list element or the
field descriptor.

12.8 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

FORTRAN initiates format control with the beginning of execution of a
formatted I/O statement. The action of format control depends on
information provided jointly by the next element of the I/O list (if
one exists) and the next field descriptor of the FORMAT statement.
FORTRAN interprets both the I/O list and the format specification from
left to right.

12-16

FORMAT STATEMENTS

If the I/O statement contains an I/O list, at least one field
descriptor of a type other than H, X, T, or P must exist In the format
specification. Otherwise, an execution error occurs.

When FORTRAN executes a formatted input statement, it reads one record
from the specified unit and initiates format control; thereafter,
additional records can be read as indicated by the format
specification. Format control demands that a new record be input
whenever a slash is encountered in the format specification, or when
the rightmost parenthesis of the format specification is reached and
additional I/O list elements remain.

Each field descriptor of types I, F, E, D, G, L, and A corresponds to
one element in the I/O list. No list element corresponds to an H, X,
P, T, or alphanumeric literal field descriptor. In the case of Hand
alphanumeric literal field descriptors, data transfer takes place
directly between the external record and the format specification.

When format control encounters an I, F, E, D, G, L, or A field
descriptor, it determines if a corresponding element exists in the I/O
list. If so, format control transmits data, appropriately converted
to or from external format, between the record and the list element,
then proceeds to the next field descriptor (unless the current one is
to be repeated). If there is no corresponding list element, format
control terminates.

When FORTRAN reaches the rightmost parenthesis of the format
specification, it determines whether or not there are more I/O list
elements to be processed. If not, format control terminates. If
additional list elements remain, however, FORTRAN terminates the
current record and initiates a new one. Format control then reverts
to the rightmost, top-level group repeat specification (the one whose
left parenthesis matches the next-to-last right parenthesis of the
format specification). If no group repeat specification exists in the
format specification, format control returns to the initial left
parenthesis of the format specification. Format control then
continues from that point.

12:9 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following is a summary of the rules pertaining to the construction
and use of the FORMAT statement and its components, and to the
construction of the external fields and records with which a format
specification communicates.

12.9.1 General

• You must always label a FORMAT statement.

• In a field descriptor such as rIw or nX, the terms r, w, and n
must be unsigned integer constants greater than zero. You may
omit the repeat count and field width specification.

• In a field descriptor such as Fw.d, the term d must be an
unsigned integer constant. It must be present in F, E, D, and
G field descriptors even if it is zero. The decimal point
must also be present. The field width specification w must be
greater than d. The specifications wand d must occur
together or not at all.

12-17

FORMAT STATEMENTS

• In a field descriptor such as nHcc ••• c, exactly n characters
must be present following the H format code. Any ASCII
character may appear in this field descriptor (an alphanumeric
literal field descriptor follows the same rule).

• In a scale factor of the form nP, n must be a signed or
unsigned integer constant in the range -127 to +127 inclusive.
Use of the scale factor applies to F, E, D, and G field
descriptors only. Once you specify a scale factor, it applies
to all subsequent real or double-precision field descriptors
in that format specification until another scale factor
appears; FORTRAN requires an explicit OP specification to
reinstate a scale factor of zero.

• FORTRAN does not permit a repeat count
alphanumeric literal descriptors unless
field descriptors in parentheses and treat
repeat specification.

in
you
them

H, X, T, or
enclose those

as a group

• If an I/O list is present in the associated I/O statement, the
format specification must contain at least one field
descriptor of a type other than H, X, P, T, or alphanumeric
literal.

12.9.2 Input

• You must precede an external input field with a negative value
by a minus symbol; you may optionally precede a positive
value by a plus sign.

• An external field whose input conversion is governed by an I
field descriptor must have the form of an integer constant;
it cannot contain a decimal point or an exponent.

• An external field whose input conversion is governed by an F,
E, or G field descriptor must have the form of an integer
constant or a real or double-precision constant; it can
contain a decimal point and/or an E or D exponent field.

• If an external field contains a decimal point, the actual size
of the fractional part of the field, as indicated by that
decimal point, overrides the d specification of the
corresponding real or double-precision field descriptor.

• If an external field contains an exponent, it causes the scale
factor (if any) of the corresponding field descriptor to be
inoperative for the conversion of that field.

• The field width specification must be large enough to
accommodate, in addition to the numeric character string of
the external field, any other characters that can be present
(algebraic sign, decimal point, and/or exponent).

• A comma is the only character that is acceptable for use as an
external field separator. You use it to terminate input of
fields that are shorter than the number of characters
expected, or to designate null (zero-length) fields.

12-18

FORMAT STATEMENTS

12.9.3 Output

• A format specification must not demand the output of
characters than c~n be contained in the external record.
example, a line printer record cannot contain more than
characters, including the carriage control character.)

more
(For
133

• The field width specification w must be large enough to
accommodate all the characters that FORTRAN may generate by
the output conversion, including an algebraic sign, decimal
point, and exponent. (The field width specification in an E
field descriptor, for example, should be large enough to
contain (d+7) characters.)

• FORTRAN uses the first character of a record output to a line
printer or terminal for carriage control; FORTRAN never
prints ite The first character of such a record should be a
space, 0,1,$, or +. FORTRAN treats any other character as a
space and deletes it from the record.

12-19

CHAPTER 13

FORTRAN IV LIBRARY

The OS/8 FORTRAN IV system contains a general purpose FORTRAN library
FORLIB~RL: which may be extended and modified by the librarian LIBRAe
The library allows you to compute arithmetic and transcendental
functions, use the complex and double-precision options of the FPP,
read console switches, and interface with standard laboratory
peripherals.

You use the OS/8 FORTRAN librarian, LIBRA, to create and maintain
libraries of RALF modules. The loader uses one such library,
specified by the user, to resolve undefined external symbols. Each
library contains a collection of RALF modules and a catalog, which
lists the program section names and entry points defined in the
modules, along with sufficient information for the loader to find
them.

LIBRA's tasks are: to create libraries (and their catalogs) from
user-specified sets of modules (RALF output files); to add new
modules to existing libraries; to copy the contents of a library to a
new library (with various options on selective deletion and
replacement during the copy); and to list the catalogs of libraries.

To call LIBRA, type

in response to the dot generated by the Keyboard Monitor, LIBRA loads
the OS/8 Command Decoder, which prints an asterisk at the left margin.
In response to the Command Decoder's asterisk, type in the following
order:

1. The output device and name of the library to be created
(LIBRA assigns the extension .RL unless one is specified).
If no output file is specified, the default name FORLIB.RL is
used and output is to the system device.

2. The desired number of index blocks (decimal, maximum 255)
enclosed in square brackets. LIBRA allocates two index
blocks if no specification is given.

3. The output device for the catalog listing when the library
build is complete (preceded by a comma). If no device is
specified, the listing is suppressed.

13-1

FORTRAN IV LIBRARY

4. The input files (RALF output modules)
included in the library (preceded
angle bracket).

or libraries to be
by a backarrow or left

5. Options:

Ie to continue input specification on next line
II to make a decision on insertion of each entry

or section name
12 to replace an existing file of the same name

new library
IR to replace a module of the same name already

library by a new input file
to allow extra blocks for library expansion

The following lines may now be on the terminal:

+F~ LIBRA
*LIB1.RL[S],TTY:<LIBO+RL,Rl,R2,R3,R4,R5,R6/Z=20

point

by the

in the

with the above command, you create a library named LIBI.RL on the
system device containing the existing library, LIBO.RL, and the files
RI, R2, ••• , R6. You allocate five blocks for the index; cause the
catalog to be printed on the console terminal and 20 (octal) extra
blocks reserved for future expansion. The 12 indicates that if a file
already exists with the name LIBI.RL, the newly created library will
replace it.

If you wish to include more than nine modules, type /e to continue
input specification on the next line. Note that you must specify the
"=" option and the output device for the catalog listing on the last
line (that is, the one without /e). The /2, if it is used, must
appear on the first line. Thus:

+F~ LIBRA
!LIB1+RL/Z[SJ<Rl,R2,R3,R4,RS,R6,R7,R8,R9,R10/C
!,TTY:<R10,Rll=20

The library now contains the additional files R7, RB, ••• , RII. You
can specify the /1 and IR options at any point in the command line;
both II and IR apply only to modules listed on the line in which they
appear.

To expand a previously created library, call LIBRA as usual. Specify
the name of the old library file as the first output file, the catalog
listing file, if desired, and then the modules or libraries to be
added as input. Do not specify /2. Thus:

.! I;: 1 ... IBI~:ri
~LIB1.RL?TTY:<ROUT?MOD

LIBRA adds the contents of ROUT and MOD to LIBI. If the old library
file name does not exist, a new library is created using default
options if necessary. Since LIBRA cannot change the size of the index
or the room left for expansion at this time, it is useless to specify
index blocks and expansion blocks.

13-2

FORTRAN IV LIBRARY

If by adding a module entry point or section name to a library you
duplicate a name in the library catalog, the duplicate name is
on the terminal. The name in the catalog continues to refer
original module, unless:

'I""\"..;,....,.f-~~ tJ ,. ... ""u
to the

1. You specify /R on a command line. The new module then
becomes a library file and the old module of the same name is
deleted (unless there are other names for the old module, in
which case only the duplicate name is deleted). For example:

causes any of the input modules Rl, R2, and R3 to replace
existing modules in LIBO.RL with the same entry point or
section name.

2. You specify /1 on the LIBRA command line. Input file entry
points and section names are then listed on the console
terminal. If the names duplicate names in the catalog, the
message printed is:

xxxx IS DUPLICATE NAME; KEEP OLD OR NEW?

where xxxx is an entry point or section name. You then type
OLD and a RETURN (or just a RETURN or 0 and a RETURN) to keep
the old name; NEW and a RETURN (or N and a RETURN) to delete
the old name and include the new. The question is repeated
if you type any other character.

If the new names do not appear in the catalog, the message
typed is:

xxxx: INCLUDE?

where xxxx is the new entry point or section name.

Type YES and a RETURN (or just a RETURN or Y and a RETURN) to
include the name; NO and a RETURN (or N and a RETURN) to
omit it. The question is repeated if you type any other
character.

You can obtain a catalog listing at any time by omitting the input
file specification in the call to LIBRA. For example:

!ol:;: LIBI=\:A
~FORLIB+RL,LPT:<

prints the catalog of FORLIB on the line printer. LIBRA's version
number (Vxx) is output as part of the catalog heading.

Entry points and section names may be deleted from the catalog by
combining the /1 and /2 options. Each catalog entry is listed on the
console terminal with the message:

name: INCLUDE?

Type Y and RETURN to include the section name or entry point; type N
and RETURN to delete it. If all catalog entries corresponding to a
particular module are deleted from the catalog in this manner, the
module is deleted from the library and the message:

MODULE IS DELETED

is printed on the console terminal.

13-3

FORTRAN IV LIBRARY

FORLIB.RL, the standard library supplied with the FORTRAN IV system,
contains functions and subroutines that perform mathematical
calculations and drive various peripheral devices. You may modify
this library with LIBRA to fit the needs of your installation.
Although at least one copy of the standard library should be
maintained as a backup, it may be desirable to delete unwanted
routines from FORLIB in order to reduce storage requirements. For
example, you may delete double-precision routines if your installation
does not include an FPP-12 with extended precision option. Take care
not to delete subroutines that may be called by the various system
programs or by other library routines that are not deleted. Table
13-1 lists the library routines that execute calls to entry points in
other routines; in general, when an entry in the right column of
Table 13-1 is deleted, the corresponding entry in the left column may
not be called.

Table 13-1
FORLIB Calling Relationships

Section Name Entry Point Called

SYNC DISP, ONQI
DISP ONQB
EXPIR EXP3
EXP3 ALOG, EXP
ALOGIO ALOG
COS SIN
TAN SIN, COS
SIND SIN
COSD SIN
TAND TAN
ASIN ATAN, SQRT

I

ACOS ATAN, SQRT
ATAN2 .l1.TAN
SINH EXP
COSH EXP
TANH SINH, COSH

For example, to delete the entry points ABS, lABS, and LSW from the
catalog, the proper command to LIBRA is:

.F< LIBRA
iLIB2+RL<LIB1+RL/I/Z

Respond with Y and a carriage return to all of the messages except:

lABS: INCLUDE? N
ABS: INCLUDE? N
MODULE IS DELETED

LSW: INCLUDE? N

13-4

FORTRAN IV LIBRARY

The module containing ABS and lABS is deleted from the library because
all of its section names and entry points have been deleted from the
catalog. Entry point LSW is deleted from the catalog, but the
corresponding module remains in the library because other entry points
are still present in the catalog. Table 13-2 lists the FORLIB entry
points that are contained in modules with different section names.

Table 13-2
FORLIB Multiple Entry Points by Section

Section Name

lABS
SIGN
AMINO
AMAXO
DIM
PLOT
REALTM
CHARS
IFIX
AMOD
RSW
ONQI
SYNC

ASS
ISIGN

Entry Points

AMINI, MINO, MINI
AMAXl, MAXO, MAXI
IDIM
SCALE, CLRPLT, iDISP
SAMPLE, ADB
CGET, CPUT, CHAR
AINT, INT
MOD
LSW, SSW, ROPEN, EXTLVL, RCLOSE
ONQB
CLOCK, TIME, iCLINT

The catalog entries iFIX, iRFDV, iLTR, iEQ, iNE, iGE, iLE, iGT, iLT,
iEXPIR, iCLINT, and iEXPII are used by the compiler and should not be
deleted.

13.1 LIBRARY FUNCTIONS AND SUBROUTINES

Library functions and subroutines are called in the same manner as
user-written functions and subroutines. The following section lists
the library components that are available to FORTRAN programs and
illustrates some calling sequences. Arguments mus~ De OL ~ne correct
number and type but need not have the same name as those shown in the
examples. Routines that require LAB8/E or PDP-12 hardware are marked
with an asterisk. Routines that will run on the FPP with
extended-precision option are marked with two asterisks. You must not
use either symbol in the actual FORTRAN program. Certain library
routines are used by the FORTRAN system programs and are not available
to a user's FORTRAN program. You can identify these routines by the
initial "i" character in the entry point or section name; they are
not listed in the following section.

13.1.1 ABS (Single-Precision Absolute Value)

ASS calculates the absolute value of a real variable by leaving the
variable unchanged if it is positive (or zero) and negating the
variable if it is negative.

13-5

FORTRAN IV LIBRARY

13.1.2 ACOS (Single-Precision Arc-Cosine Function)

ACOS calculates and returns the primary arc-cosine (in radians) of a
real argument less than or equal to 1.0 according to the relation:

If x > 0.0, ACOS(x)=ATAN [SQRT ~ I-X" 2)J

If x < 0.0, ACOS(x)= 71"+ATAN [SQRT (I-X" 2) 1
x J

If x 0.0, ACOS(x) = 71"/2.0

13.1.3 ADB* (Return Next Sample from Real-Time Sampling Buffer)

ADB finds and returns the next sample in the range [-512, 511] from
the real-time sampling buffer. The following program illustrates how
ADB may be used to sample 500 points from channel 3 and plot them on
the scope:

DIMENSION PLTBUF(400),DATBUF(50)
1 CALL CLRPLT(400,PLTBUF)

CALL REALTM (DATBUF,50,3,1,500)
CALL CLOCK (8,10)
DO 100 1::-.:1,500

100 CALL PLOT(1,I/384.,ADB(X)/l024.t.5)
READ(:L,,10)Q

10 FORMAT(I2)
GO TO 1
STOP
END

After finishing the plotting, the program waits for you to type the
RETURN key, and then repeats the sampling-display process. Note that
REALTM sets up the sampling procedure, while CLOCK actually initiates
the sampling.

13.1.4 ADC* (Asynchronous Sampling)

The ADC function accepts an integer argument in the range [0,15],
assumed to be a channel number. It returns the current value of the
referenced channel as a real number in the range [-1, 1]. Sampling
employs the fast SAM instruction for one or multiple channels. ADC
may not be used in a program that also uses REALTM. The following
program illustrates the use of the ADC function.

C EXAMPLE OF ADC FUNCTION
C REQUIRES PDP12 OR LAB8E HARDWARE
C SAMPLES AND TYPES ANALOG INPUT
c

10 CONTINUE
WFU TE (4, 100)

100 FORMAT(' TYPE IN CHANNEL NUMBER'
1 'AND NUMBER OF SAMPLES')

READ(4,lOl) NC"NS
10:L FORMf~T(2L3)

DO 20 1==1 d~S
X::::ADC <: NC)
WRITE(.4,102) X

102 FORMAT(F15.5)
::>0 CONT I NUE

[,OlD :to
Cr.lL!... EXI T
END

13-6

FORTRAN IV LIBRARY

13.1.5 AIMAG** (Complex-to-Imaginary Conversion)

AIMAG returns the imaginary part of its complex argument as a real
variable.

13.1.6 AINT (Single Precision-Floating Point to Integer

AINT is a floating-point truncation function. Given a real argument,
it truncates the fractional part of the argument and returns the
integral part as an integer. This is accomplished by taking the
absolute value of the argument, aligning and normalizing this result,
then restoring the original sign. AINT, IFIX, and INT perform
identical functions.

13.1.7 ALOG (Single-precision Natural Logarithm)

ALOG calculates and returns the natural (Naperian) logarithm of a real
argument greater than zero. Any negative or zero argument returns an
error message and a value of 0.0. The algorithm used is an eight-term
Taylor series approximatione

13.1.8 ALOGIa (Single-Precision Common Logarithm)

ALOGIa calculates and returns the common (base 10) logarithm of a real
argument greater than zero. Any negative or zero argument returns an
error message and a value of 0.0. The calculation is accomplished by
calling ALOG to compute the natural logarithm and executing a change
of base.

13.1.9 AMAXO (Single-precision Maximum Value)

AMAXO accepts an arbitrary number of integer arguments and returns a
real value equal to the largest of the arguments.

13.1.10 AMAXI (Single-precision Maximum Value)

AMAX1 accepts an arbitrary number of real arguments and returns a real
value equal to the largest of the arguments.

13.1.11 AMINO (Single-Precision Minimum Value)

AMINO accepts an arbitrary number of integer arguments and returns a
real value equal to the smallest of the arguments.

13.1.12 AMINI (Single-precision Minimum Value)

AMINI accepts an arbitrary number of real arguments and returns a real
value equal to the smallest of the arguments.

13-7

FORTRAN IV LIBRARY

13.1.13 AMOD (Single-Precision A Modulo B)

AMOD accepts two real arguments and returns a real value equal to the
remainder when the first argument is divided by the second argument.
If the second argument is not sufficiently large to prevent overflow,
an error message and a value of 0.0 are returned.

13.1.14 ASIN (Single-Precision Arc-Sine)

ASIN calculates and returns the arc-sine (in radians) of a real
argument in the range [-1, 1] according to the relation:

ASIN(X) = ATAN(X/SQRT(1-X**2))

If the argument falls outside the range [-1, 1], an error message
results.

13.1.15 ATAN (Single-Precision Arc-Tangent)

ATAN calculates and returns the primary arc-tangent (in radians) of a
real argument. The argument is first reduced according to the
relations:

(1) If x<2"'-14, atan(x) x
(2) If x>2"'-14, atan(x) l/x
(3) If x>l.O, atan(x) /2 - atan(l/x)
(4) If x<O, atan(x) -atan(-x)

The arc-tangent is then computed by a power series approximation.

13.1.16 ATAN2 (Single-Precision Arc-Tangent of Two Arguments)

ATAN2 accepts two real arguments, one of which is assumed to be an
abscissa and the other an ordinate. It calculates the arc-tangent of
the quotient of the first argument divided by the second argument.
This is accomplished by calling ATAN to find the principal arc-tangent
of the quotient and then adjusting the result, depending upon the
quadrant in which a point defined by the arguments falls, according to
the relations:

argument in first quadrant
argument in second quadrant
argument in third quadrant
argument in fourth quadrant

13.1.17 CABS** (Complex Absolute Value)

atan2(y,x)
atan2(y,x)
atan2(y,x)
atan2(y,x)

atan(y/x)
atan(y/x)­
atan(y/x)­
atan(y/x)+

CABS accepts a complex argument and returns the absolute value of the
argument as a real variable defined by:

CABS(X+iY) = SQRT(X**2+Y**2)

13-8

FORTRAN IV LIBRARY

l3.l.lS CCOS** (Complex Cosine)

CCOS accepts a complex argument and returns the cosine of the
argument, a complex number defined by:

CCOS(X+iY) = COS{X)*COSH(Y)-i*SIN(X}*SINH(Y}

13.1.19 CEXP** (Complex Exponential)

CEXP accepts a complex argument and returns the exponential function
of the argument, a complex variable defined by:

CEXP(X+iY) = EXP(X)*(COS(Y)+i*SIN(Y))

13.1.20 CGET (Character Get Subroutine)

The calling sequence:

CALL CGET (STRING,N,CHAR)

causes the Nth character to be unpacked from STRING and stored in CHAR
as a variable in the range 0, 63, where STRING is a character string
in A6 format.

13.1.21 CHKEOF (Check for End-of-File Subroutine)

CHKEOF accepts one real, integer, or logical argument. After the next
formatted read operation, this argument will be set to non-zero if the
logical end-of-file was encountered, or to a if the logical
end-of-file was not encountered. The following is an example of the
use of CHKEOF:

CALL CHKEOF(EOF)
READ CN,101)DATA
IF (EOF+NE+O) GO TO 999

13.1.22 CLOCK* (Initialize Clock Subroutine)

The purpose of the CLOCK subroutine is to initialize certain features
of the KW12A or DKSES real-time clock. The calling sequence is:

CALL CLOCK (FUNCTN,RATE)

Depending upon the arguments FUNCTN and RATE, CLOCK can enable Schmitt
triggers and clock-controlled AID conversions, or run the clock at a
variable rate. The clock is always run on interrupt. Both arguments
may be either integer, real, or logical in type. The first argument
inidicates a class of clock functions, and the second specifies a
clock rate in Hertz. A common use of the clock routine occurs in
conjunction with the REALTM subroutine. With one exception noted

13-9

FORTRAN IV LIBRARY

below, the clock routine is independent of hardware type. That is, a
program employing the KW12A clock on a PDP-12 does not require
modification to run on a PDP-8. The FUNCTN argument controls the
enabling of all Schmitt triggers, clock-controlled A/D conversions,
and clock rate or external input according to the scheme shown in
Table 13-3.

Table 13-3
CLOCK Subroutine FUNCTN Arguments

Value of
FUNCTN Effect

a none, or enable clocked A/D conversion, more than one
channel

1 enable Schmitt trigger 1

2 enable Schmitt trigger 2

4 enable Schmitt trigger 3

8 enable clocked A/D conversion, one channel

16 enable the clock to run under external input

Combinations of the conditions in Table 13-3 may be enabled by setting
FUNCTN to a value equal to the sum of the values of the desired
conditions. For example, to enable all Schmitt triggers, set FUNCTN=7
(the sum of 4, 2, and 1); to enable clocked A/D conversion at an
external rate, set FUNCTN=24 , etc. If you do not specify a clock
condition, the clock is disabled. Every call to CLOCK clears any
functions that you may have enabled by previous calls to CLOCK and
redefines clock conditions according to the new arguments. If the
FUNCTN argument is out of range

R(B) = base rate - maximum number in the set
1000, 100) that satisfies the condition.

{100000, 10000,
R(B)/R(R)<4096

If you specify an externally driven clock, RATE is interpreted as the
number of external ticks between clock interrupts; it must be in the
range [1, 4096]. If the argument is outside this range, the interrupt
rate will be arbitrary. The RATE argument is actually an overflow
count, and the actual rate of the clock can be determined from:

RA = RE/RATE

where RE is the rate of the external input and RA is the actual clock
rate. The advantage of an externally driven clock is that it may run
at an arbitrarily high rate; however, specifying too high a rate may
hang up the FORTRAN system. The calling sequence to define an
external clock for the KW12A differs from that of a call for the DW8ES
in that the KW12A calling program must enable Schmitt trigger 1. You
can obtain optional clock execution on a KWl2A external clock when
RATE=I. Note that the arguments for a KW12A external clock are
sufficient to enable a DK8ES external clock, but not vice versa.

13-10

FORTRAN IV LIBRARY

13.1.23 CLOG** (Complex Natural Logarithm Function)

CLOG calculates and returns the natural logarithm of its complex
argument, as defined by the relation:

LOG(X+iY) L9G (X**2+Y**2)+i*ATAN(Y/X)

13.1.24 CLRPT* (Clear Plot Subroutine)

The calling sequence:

CALL CLRPLT (N,BUFFER)

clears the current plot, if any,
(designated BUFFER) which will

and assigns an N element buffer
hold 3N/2 points for display_ The

display is actually created by the PLOT subroutine.
BUFFER must be an array with at least N elements.

13.1.25 CMPLX** (Real-to-Complex Conversion Function)

The variable

CMPLX accepts two real arguments and returns a complex value with real
part equal to the first argument and imaginary part equal to the
second argument.

13.1.26 CONJG** (Complex Conjugate Function)

CONJG calculates and returns the complex conjugate
argument. This is accomplished by leaving the
argument unchanged and negating the imaginary part.

13.1.27 COS (Single-Precision Cosine Function)

of its complex
real part of the

COS calculates and returns the cosine of a real argument (in radians)
by applying the identity:

COS (X) = SIN(X+n/2)

13.1.28 COSO (Single-Precision Cosine in Degrees)

COSD calculates and returns the cosine of a real argument (in
degrees). This is accomplished by adding 90 to the argument,
converting the result to radians, and extracting the sine.

13-11

FORTRAN IV LIBRARY

13.1.29 COSH (Single-Precision Hyperbolic Cosine Function)

COSH calculates and returns the hyperbolic cosine of a real argument
according to the relation:

If Ixl ~ 88.029
CO"Hiv) = 1/,., (r;vPiv).j. ~\

u V') '1<- \'-'J'U\A. . EXP(x))

If Ixl > 88.028 and Ixl - loge2 ~ 88.028
COSH(x) = EXP(Ixl - loge2)

If Ixl - loge2 > 88.028
COSH(x) = 377737777777 8

and an error message is returned.

13.1.30 CPUT (Character Put Subroutine)

The calling sequence:

CALL CPUT(STRING,N,CHAR)

causes CPUT to insert CHAR as the Nth character in STRING, where
STRING is a character string stored in A5 format, and CHAR is a number
in the range [0, f)3] interpreted as a character. The following
program illustrates the use of CGET and CPUT.

DATA STR/'HEY!'I
WRITE(4,100) STR

:LOO FnF~MAT(" HEY! IN i~SCII ,. ~(16)
Wr..~ITE (4!' l(1)

lOl FORMAT (, HEY! IN DECIMAl.. I)

no lO I :~: 1 ,4
CALL CGETCSTR,I,ICHAR)
WRITE(4,:L02) ICHAR

:1.0 CONT I NUE
l02 FOmTlfYf (16)

DO ::~o 1:::::1. !16

,..1:'""2* I
CALL CPUTCSTR,I,,J)

:20 CONTINUE
WRITE(4,103) STR

:LO:';:; FClF~I"1AT("

CALI ... E><1T
END

.P F4
*TCHHC/G':~

NEW STRING

HEY! IN A~;CI I HEY!
HEY I IN DECIMAl...

B

,"\1::­
:::.-,.1

:':~3

NFl,) ~:;Tf(I NG BDFHJI...

13-12

FORTRAN IV LIBRARY

13.1.31 CSIN** (Complex Sine Function)

CSIN calculates and returns the sine of a complex argument according
to the relation:

SIN(X+iY) = SIN(X)*COSH(Y)+i*COS(X)*SINH(Y)

13.1.32 CSQRT** (Complex Square Root Function)

CSQRT calculates and returns the square root of a complex argument.

13.1.33 DABS** (Double-Precision Absolute Value Function)

DABS returns the absolute value of its double-precision argument by
negating the argument if it is negative, or returning it intact if it
is positive.

13.1.34 DATAN** (Double-precision Arc-Tangent Function)

DATAN calculates and returns the primary
double-precision argument. The argument is
interval [0,] with the identities:

ATAN(-X) = -ATAN(X)

if X>l.O,ATAN(X) = n/2-ATAN(l/X)

arc-tangent of its
first reduced to the

if 0.5(X(1.0, ATAN(X) = ATAN(l/2)+ATAN(2~~1)

The arc-tangent is then calculated
approximation.

as a continued fraction

13.1.35 DATAN2** (Double-Precision Arc-Tangent of Two Arguments)

DATAN2 accepts two double-precision arguments, one of which is assumed
to be an abscissa and the other an ordinate. It calculates the
arc-tangent of the quotient of the first argument divided by the
second argument. The result is then adjusted, depending upon the
quadrant in which a point defined by the arguments falls, in the same
manner as for the ATAN2 function.

13.1.36 DATE (OS/8 Date Subroutine)

DATE accepts three integer arguments, accesses the current 05/8 system
date, and returns an integer from 1 to 12 corresponding to the current
month as the first argument, an integer from 1 to 31 corresponding to
the current day as the second argument, and an integer from 1970 to
1977 corresponding to the current year as the third argument.

13-13

FORTRAN IV LIBRARY

13.1.37 DBLE** (Single-to-Double Precision Conversion)

DBLE accepts a real argument and returns a double-precision value
equal to the argument, filled out with zeros in the low-order three
words.

13.1.38 DCOS** (Double-Precision Cosine Function)

DCOS calculates and returns the cosine of a double-precision argument
(in radians). This is accomplished by adding PI/2 to the argument and
passing this result to the DSIN function.

13.1.39 DEXP** (Double-Precision Exponential Function)

DEXP calculates and returns the exponential function of its
double-precision argument by applying the method of Kogbetliantz (IBM
Journal of Research and Development, April, 1957, pp 110-115).

13.1.40 DIM (Single-Precision positive Real Difference)

DIM calculates and returns the positive difference of two real
arguments. That is, if the first argument is larger than the second
argument, DIM returns the difference between the arguments; if the
first argument is less than or equal to the second argument, DIM
returns 0.0.

13.1.41 DLOG** (Double-Precision Natural Logarithm)

DLOG calculates and returns the natural (Naperian) logarithm of its
double-precision argument. This is accomplished by reducing the range
of the argument through application of a method described by Ralston
and Wilf in their text, Numerical ~ethods for Digital Computers, and
then performing a Taylor series expansion.

13.1.42 DLOGIO** (Double-Precision Common Logarithm)

DLOGlO calculates and returns the common (base 10) logarithm of its
double-precision argument by extracting the natural logarithm and
executing a change of base.

13.1.43 DMAXl** (Double-Precision Maximum Value)

DMAXI accepts an arbitrary number of double-precision arguments and
returns the largest of the arguments.

13.1.44 DMINl** (Double-Precision Minimum Value)

DMINI accepts an arbitrary number of double-precision arguments and
returns the smallest of the arguments.

13-14

FORTRAN IV LIBRARY

13.1.45 DMOD** (Double-Precision A Modulo B Function)

DMOD accepts two double-precision arguments and returns a
double-precision value equal to the remainder when the first argument
is divided by the second argument. If the second argument is not
sufficiently large to prevent overflow, an error message and a value
of 0.0 are returned.

13ele46 DSIGN** (Double-Precision Transfer-of-Sign)

DSIGN accepts two double-precision arguments, calculates the absolute
value of the first argument, and returns this value if the second
argument is positive (or zero), or the negative of this value if the
second argument is negative.

13.1.47 DSIN** (Double-Precision Sine Function)

DSIN calculates and returns the sine of a double-precision argument
(in radians). The argument is first reduced to the range [0, PI/2],
and the sine is then calculated from a Taylor series approximation.

13.1.48 DSQRT** (Double-Precision Square Root)

DSQRT calculates and returns the (positive) square root of a positive
double-precision argument. Any negative argument results in an error
message.

13.1.49 EXP (Single-Precision Exponential Function)

EXP calculates and returns the exponential function of a real
argument. The algorithm uses a numerical method after Kogbetliantz
(IBM Journal of Research and Development, April, 1957, pp 110-115).

13.1.50 EXTLVL* (Read PDP-12 External Level)

EXTLVL accepts two integer, real, or logical arguments. The first
argument is assumed to be a PDP-12 external-level number in the range
[0, 12]. If the referenced external level is at +3 volts (floating),
the second argument is set equal to O. If the referenced external
level is at 0 volts (ground), the second argument is set equal to 1.
If the first argument is outside the range [0, 12], the value returned
in the second argument is unpredictable. If EXTLVL is called on a
PDP-8, the second argument will always be set to zero.

13.1.51 FLOAT (Integer-to-Floating Point Conversion)

FLOAT accepts an integer argument and returns a real variable equal to
the argument.

13-15

FORTRAN IV LIBRARY

13.1.52 lABS (Integer Absolute Value Function)

lABS calculates and returns the absolute value of an integer variable
by leaving the variable unchanged if it is positive (or zero), and
negating the variable if it is negative.

13.1.53 IDIM (Integer positive Difference Function)

lDlM calculates and returns the positive difference of two integer
arguments. That is, if the first argument is larger than the second
argument, lDlM returns the difference between the arguments; if the
first argument is less than or equal to the second argument, lDlM
returns a value of o.

13.1.54 IDINT (Double-Precision Integer Truncation)

IDINT accepts a double-precision argument and returns the largest
integer that is less than or equal to the argument.

13.1.55 IFIX (Single-Precision Floating Point-to-Integer)

IFIX is a floating-point truncation function. Given a real argument,
it truncates the fractional part of the argument and returns the
integral part"as an integer. IFIX, AINT, and INT perform the same
function.

13.1.56 INT (Single-Precision Floating Point-to-Integer)

INT is a floating-point truncation function that performs the same
function as AI NT and IFIX.

13.1.57 ISIGN (Integer Transfer of Sign Function)

ISIGN accepts two integer arguments, calculates the absolute value of
the first argument, and returns this value if the second argument is
positive (or zero), or the negative of this value if the second
argument is negative.

13.1.58 LSW* (Read PDP-l2 Left Switch Register)

LSW accepts two real, integer or logical arguments. The first
argument is assumed to be a PDP-12 left switch register switch number
in the range [0, 11]. Upon return, the second argument is set to the
logical value of the referenced switch (either 0 or 1). If the first
argument is outside the range [0, 11], the result that will be
returned in the second argument is unpredictable. If LSW is called on
a PDP-8, a value of 0 is always returned.

13-16

FORTRAN IV LIBRARY

13.1.59 MAXO (Single-precision Maximum Value)

MAXO accepts an arbitrary number of integer arguments and returns an
integer result equal to the largest of the arguments.

1351060 MAXI (Single-Precision Maximum Value)

MAXI accepts an arbitrary number of real arguments and returns an
integer result equal to the largest of the arguments.

13.1.61 MIND (Single-Precision Minimum Value Function)

MIND accepts an arbitrary number of integer arguments and returns an
integer value equal to the smallest of the arguments.

13.1.62 MINI (Single-Precision Minimum Value Function)

MINI accepts an arbitrary number of real arguments and returns an
integer value equal to the smallest of the arguments.

13.1.63 MOD (Integer A Modulo B Function)

MOD accepts two integer arguments and returns an integer value equal
to the remainder when the first argument is divided by the second
argument. If the second argument is not sufficiently large to prevent
overflow, an error message and a value of 0 are returned.

13.1.64 ONQB (Place Task on Background Job Chain)

ONQB is a subroutine that you call from PDP-8 mode RALF code to place
a PDP-8 mode task on the list of background tasks. These background
tasks are executed in round-robin order whenever the PDP-8 processor
has nothing to do (e.g., while waiting for terminal input). If FPP-12
hardware is present, these background subroutines execute in parallel
with the execution of the FORTRAN program by the FPP-12. You call
ONQB by a sequence such as:

JMSX
ADDR

XONQB+l
BRJOB

EXTERN ONQB
XONQB, ADDR ONQB

where BRJOB is the address of the background job, a subroutine that
must obey all the conventions of ONQI. ONQB resides in field 1 and
should only be called from field 1.

13.1.65 ONQI (Place Interrupt Handler on Skip Chain)

ONQI is a subroutine that you call from PDP-8 mode RALF code to put
the interrupt handler of a device on the interrupt skip chain. When
an interrupt is received by the PDP-8 processor, the processor checks

13-17

FORTRAN IV LIBRARY

each device on the skip chain, then the FPP, then the standard FORTRAN
peripherals, e.g., the line printer. If a device with a handler on
the skip chain causes the interrupt, the PDP-8 processor branches to
the handler. You call ONQI by a sequence such as:

JMS% XONQ1+l
lOT
ADDR IHNDLR

XONQl, ADDR DNQl
EXTERN DNQl

where lOT is the actual lOT code for the device skip-on-flag
instruction and IHNDLR is the address of the interrupt handler for
this device. ONQI always resides in field 1 and must be called by
PDP-8 mode RALF code in field 1 only. You enter the interrupt handler
with the AC cleared and the data and instruction fields set to 1. It
should return with these registers in the same state. You should not
call ONQI more than once for any given lOT.

13.1.66 PLOT* (Display Data on PDP-12 or LAB-8/E Scope)

The calling sequence:

CALL PLOT (M,X,Y)

plots M points -- whose X coordinates are in the array X and whose Y
coordinates are in the array Y -- into the plot buffer specified by
the CLRPLT routine. A background task plots the contents of all
points entered into the plot buffer on the scope whenever the PDP-8
processor would otherwise be idle. When X is 1, X and Yare
interpreted as scalars. The scope is scaled with (0,0) in the lower
left corner and (1.3,1.0) in the upper right corner. You may alter
these values by a call to SCALE.

13.1.67 PLOTR* (Change Scope Buffer Values)

The calling sequence:

CALL PLOTR (M,X,Y,I)

alters the M entries in the plot buffer beginning at the Ith entry;
the new X coordinates are obtained from the array X and the new Y
coordinates from the array Y. Calling this subroutine does not alter
the number of points displayed by the background display task.

13.1.68 RCLOSE* (Close a PDP-12 Relay)

RCLOSE accepts an integer, real, or logical argument assumed to be a
PDP-12 relay number in the range [0, 5] and closes the referenced
relay. If the argument falls outside the specified range, the result
is unpredictable. RCLOSE has no effect when called on a PDP-8.

13.1.69 REAL** (Complex-to-Real Conversion Function)

REAL accepts a complex argument and returns a real value equal to the
real part of the argument.

13-18

FORTRAN IV LIBRARY

13.1.70 REALTM* (Buffered/Clocked Sampling)

REALTM performs buffered/clocked sampling on
The calling sequence is:

nT"\n_l,)
rLJr-.l.G or LAB=8/E.

where

CALL REALTM (BUFFER,LENGTH,CSTART,NCHANL,NPTS)

BUFFER

LENGTH

CSTART

NCHANL

NPTS

is an array to be used by REALTM as a ring buffer

is the size of BUFFER

1S the first channel to sample at each clock
(0-15)

is the number of channels to sample at each time step
(If NCHANL 1, then argument 1 of the call to CLUCK
may specify clock-initiated AID sampling (eight
images) • If NCHANL)l, then argument 1 of CLOCK CALL
should not specify clock-initiated sampling. Fetching
of the first sample will be initiated in the clock
interrupt routines, or 50-100 s after the clock tick.
The other samples are taken as soon as possible, about
100-200 s later for each sample.)

is the total number of samples to take

Algorithm and Comments

The following program samples 500 points from channel 3 at 10 Hz and
plots them on the scope:

:1.

DIMENSION PLTBUF(400),DATBUF(SO)
CAL.L CLJ~PL..T (400, PL TBUF)
CALL REAL.TM (DATBUF,SO,3,l,500)
CALL. CLOCK (8,10)
DO 100 1:=: 1 , ~.:;OO

100 CAL.L. PL.OT(1,I/384~,ADB(X)/1024.+~5)

C NOW PAUSE SO THAT POINTS WILL BE DISPLAYED
i=<EAD(:L,:LO)(1

10 FORMAT(I2)
GO TO :L
STOP
END

13.1.71 ROPEN* (Open a PDP-12 Relay)

ROPEN accepts one integer, real, or logical argument, assumed to be a
PDP-12 relay number in the range [0, 5], and opens the referenced
relay. If the argument falls outside the specified range, the result
is unpredictable. ROPEN has no effect when called on a PDP-8.

13.1.72 RSW (Read Switch Register)

RSW accepts two real, integer, or logical arguments. The first
argument is assumed to be a switch register switch number in the range
[0, 11]. The second argument is set to the logical value of the
referenced switch (right switch register on the PDP-12). If the first
argument falls outside the range [0, 11], the result that will be
returned in the second argument is unpredictable.

13-19

FORTRAN IV LIBRARY

13.1.73 SCALE* (Define Scale of Scope)

SCALE defines the scope screen scaling for calls to PLOT. The calling
sequence is:

where

CALL SCALE (XLO,YLO,XHI,YHI)

XLO is the value at the left edge of the screen
YLO is the value at the bottom of the screen
XHI is the value at the right edge of the screen
YHI is the value at the top of the screen

If you never call SCALE, the assumed values are equivalent to:

CALL SCALE (0,0,1.3,1.0)

13.1.74 SIGN (Single-Precision Transfer-of-Sign)

SIGN accepts two real arguments, calculates the absolute value of the
first argument, and returns this value if the second argument is
positive (or zero), or the negative of this value if the second
argument is negative.

13.1.75 SIN (Single-Precision Sine Function)

SIN calculates and returns the sine of a real argument (in radians).
The argument is reduced to the first quadrant, and the sine is then
computed from a Taylor series expansion.

13.1.76 SIND (Single-Precision Sine (Degrees) Function)

SIND calculates and returns the sine of a real argument (in degrees).
This is accomplished by converting the argument to radians and passing
this value to the SIN function.

13.1.77 SNGL** (Double-to-Single Precision Conversion)

SNGL accepts a double-precision argument, truncates the low-order
bits, and returns the resulting real value.

13.1.78 SINH (Single-Precision Hyperbolic Sign)

SINH calculates and returns the hyperbolic sine of a real argument
according to the relations:

If 0.10 < Ixl < 87.929,SINH(x) = 1/2 [EXP(X) - E~P(x)J
Iflxl ~ O.lO,SINH(x) = x + x3 16 + x5 II 20

Ifl xl > 88.028,SI~H(x) = [EXP(Ixj .. - loge2)] . [signum(x)]

13-20

FORTRAN IV LIBRARY

13.1.79 SQRT (Single-Precision Square Root Function)

SQRT calculates and returns the (positive) square root of a positive
real argument. Any negative argument results in an error message.

l3.l.BO SSW· (Read PDP-12 Sense Switch)

SSW accepts two real, integer, or logical arguments. The first
argument is assumed to be a PDP-12 sense switch number in the range
[0, 5]. The second argument is set to the logical value of the
referenced sense switch. If SSW is called on a PDP-B, a value of zero
is always returned. If the first argument falls outside the range
[0, 5], the result that will be returned in the second argument is
generally unpredictable. The exception is the calling sequence:

CALL SSW (14,RUA12)

which returns RUA12=0 on a PDP-B and RUA12=1 on a PDP-12.

13.1,Bl SYNC. (Read a Schmitt Trigger)

SYNC determines whether a Schmitt trigger has been fired; you must
not call SYNC unless you have called CLOCK at least once. SYNC
accepts two real, integer, or logical arguments. The first argument
is assumed to be a Schmitt trigger number in the range [1, 3]. The
second argument is set to one if the referenced Schmitt trigger has
fired since the last time it was read, or to zero otherwise. The
referenced Schmitt trigger is also reset to the not-fired, or zero,
state. A call to CLOCK sets all triggers to the zero state, and any
trigger that was not enabled by a call to CLOCK is always in the zero
state. If the first argument falls outside the range [1, 3], an
unpredictable result (either zero or one) is generally returned. If
the first argument is zero, however, a value of zero is always
returned.

13.1.B2 TAN (Single-Precision Tangent Function)

TAN calculates and returns the tangent of a real argument (in
radians) • This is accomplished by computing the quotient of the sine
of the argument divided by the cosine of the argument; thus, if the
cosine of the argument is zero, an error message is returned.

13.1.B3 TAND (Single-Precision Tangent, Degrees)

TAND calculates and returns the tangent of a real argument (in
degrees) • This is accomplished by converting the argument to radians
and passing the resulting value to the TAN routine.

13.1.B4 TANH (Single-Precision Hyperbolic Tangent)

TANH calculates and returns the hyperbolic tangent of a real argument
by computing the quotient of the hyperbolic sine of the argument
divided by the hyperbolic cosine of the argument.

13-21

FORTRAN IV LIBRARY

13.1.85 TIME* (Read Time of Day)

You may call TIME as a subroutine with one real or integer argument,
or as a function with a dummy argument. It returns the elapsed time
since the clock was started. This result will be in seconds unless
the clock is running under external input, in which case it will be in
external ticks, with the interval between ticks specified by the clock
rate (see CLOCK).

13-22

CHAPTER 14

PAPER TAPE LOADING INSTRUCTIONS

You may load the FORTRAN IV system from paper tape using OS/8 EPIC.
Of the nine files that make up the system, the following eight are on
separate paper tapes.

F4.SV
PASS2.SV
PASS20.SV
PASS3.SV

RALF.SV
LOAD.SV
FRTS.SV
LIBRA.SV

These files may be read in any order. After these tapes have been
read, the six tapes that comprise the library (FORLIB.RL) must be read
in ascending numerical order. A typical procedure might be:

• R EPIC

*SYS:<

*/Y

*/Y

*/Y

*/Y

*/Y

*/Y

*/Y

*/Y

END OF TAPE ENTER NEXT
END OF TAPE ENTER NEXT
END OF TAPE ENTER NEXT
END OF TAPE ENTER NEXT
END OF TAPE ENTER NEXT
*'"'C

Load OS/8 EPIC •

Designate the device on which the new
FORTRAN IV system will be built and
mount the F4.SV tape in the reader.

Mount the PASS2.SV tape in the reader.

Mount the PASS20.SV tape in the reader.

Mount the PASS3.SV tape in the reader.

Mount the RALF.SV tape in the reader.

Mount the LOAD.SV tape in the reader.

Mount the FRTS.SV tape in the reader.

Mount the LIBRA.SV tape in the reader.

Mount the first FORLIB.RL tape in the
reader.

Continue to
paper tapes
order.

read the six FORLIB.RL
in increasing numerical

14-1

PAPER TAPE LOADING INSTRUCTIONS

If you use a PDP-12 and create OS/8 FORTRAN IV systems from paper tape
that require the real-time capabilities of this system, you must
assemble the RALF modules containing REALTM, ADB, ADC, PLOT, CLRPLT,
and SCALE and then add these modules to the system library. The
routines you assemble and insert are contained on three paper tapes.
A typical procedure might be as follows •

• ASSIGN SYS DEV
.R PIP
*DEV:FILE1.RA<PTR:

*DEV:FILE2.RA<PTR:

*DEV:FILE3.RA<PTR:

*'"'C

.R RALF
*DEV:FILE3.RL<DEV:FILE3.R

.R RALF
*DEV:FILE2.RL<DEV:FILE2.RA

• F< I=\:ALF
*DEV:FILE1+RL<DEV:FILE1.RA

Use OS/8 PIP to read the RALF
modules, in ascending numerical
order, onto temp.orary files.

Assemble the temporary files under
RALF.

14-2

CHAPTER 15

FORTRAN IV PLOTTER ROUTINES

The X,Y plotter routines control an incremental plotter (Calcomp 563,
565, or similar) for use with OS/8 FORTRAN IV. The routines permit
the user to generate a wide variety of plotted information, including:

• Labeled axes

• Textual data

• Graphs from data arrays (X and Y), with optional scaling of
either array and centered symbols denoting the location of a
data point

• Variables from the FORTRAN IV program plotted in F format

• Individual point and vector plotting

You also control:

• Pen position (up or down)

• Origin of plotted information

• Scaling of any plot

• Rotation of text and axes

Table 15-1 summarizes plotter routines and their functions.

Table 15-1
FORTRAN IV Plotter Routines

Name Function

PLOTS Initializes all other plotter routines to your
hardware configuration.

XYPLOT Moves pen to specified X,Y location with pen in up or
I down position; permits origin control.
I

FACTOR Scales size of subsequent plotting data.

WHERE Passes current position and factor to your program.

(continued on next page)

15-1

Name

SYMBOL

NUMBER

PSCALE

AXIS

LINE

PLEXIT

FORTRAN IV PLOTTER ROUTINES

Table lS-l (Cont.)
FORTRAN IV Plotter Routines

Function

Prints textual information (such as titles) at any
angle and special symbols to indicate a data point.

Prints each digit in a variable, including optional
decimal point and truncation.

Defines parameters for axis annotation and size of
final plot for data array.

Plots an axis, at any angle, including segment
markings and title.

Generates the graph of data in two arrays (X and Y).

Terminates all plotting.

The system must support any OS/8 FORTRAN IV configuration plus:
interface for PDP-8/E; or XY interface for PDP-12, 8, or 8/1;
incremental plotter suitable for one of these interfaces.

XY/8e
and an

The system must have OS/8 (QFS8-A) and OS/8 FORTRAN IV (QF008-AB).

lS.l PLOTTER OPERATION

The plotter permits six basic functions: drum down (+X movement),
drum up (-X movement), pen left (+Y movement), pen right (-Y
movement), pen up, and pen down. Diagonal movement is accomplished by
a combination of pen and drum motion. The plotting increment is a
function of the plotter itself, generally .OOS or .01 inches. Each
line plotted is in this incremental unit. Hence upon very close
examination vectors plotted at angles other than multiples of 4S
degrees may appear sightly nonlinear. This effect is unnoticeable at
normal viewing distances from the plotter where all vectors appear
smooth. If you request a vector that exceeds the physical width of
the plotter, the pen will move to the physical limit and plot the
remaInIng section at the margin. This may distort subsequent
plotting, depending on your sequence of commands. Therefore, be sure
the pen is either physically located in a useful position at the start
of the plot, or use the plotting commands to monitor its position and
prevent such problems.

lS.2 PLOTTER COMMANDS

lS-2

FORTRAN IV PLOTTER ROUTINES

15.2.1 PLOTS

You must call the routine PLOTS once at the start of
program to initialize internal parameters to
configuration. The call is:

each
the

plotting
current

where

CALL PLOTS(X,Y)

x is the increment size of the plotter in inches;
.01 or .005 inches

generally

Y is a if running on a PDP-8/E, 1 if running on a PDP-8/I,
PDP-8, or PDP-12

PLOTS initializes the factor (for overall plot size) to I and clears
old pen location and origin status. Note that although the plotter
may actually move in inches, the code can cause it to behave as if it
were millimeters (or any other unit) by including the proper
conversion in the FORTRAN code.

15.2.2 XYPLOT

XYPLOT is the routine that actually causes pen and drum movements on
the plotter. Routines such as NUMBER and AXIS eventually use XYPLOT.
This routine is useful when a plot is to be generated one vector at a
time by the user program (rather than saving an array, for example).
It also controls the origin, defined as the logical point (O,O) for
future plotting.

The call is of the form:

where

CALL XYPLOT (X,Y,I)

X,Y is the X,Y coordinate in inches to which the pen is to move
relative to the most recently established origin point

I is an integer of the set (-3,-2,2,3) that controls pen
position and establishes the origin point, as follows:

If I=2, the pen is down during the move.
If I=3, the pen is up during the move.
If I is negative, the pen moves to point X,Y and this point
is then established as the current origin point (O,O). (If
a value outside this set is called, the pen defaults to
down.)

For example:

CALL XYPLOT(4,-2,-2}

moves from the current position to 4,-2 with the pen down and
establishes this location as the origin point (O,O).

CALL XYPLOT(-7,3,3)

moves the pen in the up position to -7,3. If these two commands are
sequential, then this move would be -7 inches of X and +3 of Y, from
0,0 to -7,3.

15-3

FORTRAN IV PLOTTER ROUTINES

No single vector can be plotted longer than 409S plotting increments,
or approximately 40.9 inches for a .01 increment plotter or 20.4 for a
.OOS increment plotter.

lS.2.3 FACTOR

You can increase or reduce overall plot size by using the FACTOR
routine. The call is:

CALL FACTOR(Z)

where

Z is the ratio of the desired plot size to the current size.
This value is initialized by PLOTS to 1. Calling FACTOR
with Z=l resets the plot to its initial size. Use the
absolute value of Z. For example, to double the size of the
plot, use CALL FACTOR (2) ; to halve it, use CALL FACTOR
(• S) •

lS.2.4 WHERE

The WHERE routine passes three values to the user program: current X
position, current Y position, and current factor. This routine is
most commonly used to determine the current location of the pen in a
long plotting sequence, or to calculate a delta X or Y value for the
next step in a graph.

The call is:

CALL WHERE (X,Y,Z)

where

X is set to the current X position

Y is set to the current Y position

Z is set to the current factor

Consider the following example:

CALL PLOTS(.Ol,l)
CALL XYPLOT(0,0,-3)
CALL XYPLOT (·-5,:3,2)
CALL WHERECA,B,C)
WRITE(4,lO)A,B

10 FORMAT(IX,'XVAL=',I3,'YVAL=',I3)
C?)L.L PI ... EX IT
END

When this program is run, the statement XVAL=-SYVAL=3 will be printed
on device 4.

lS-4

FORTRAN IV PLOTTER ROUTINES

15.2.5 SYMBOL

The SYMBOL routine has two forms:

• Print any number of letters and symbols

• Print a single character

The available character set for both forms is found in Tables 15-2 and
15-3.

Symbol

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T

I U

Table 15-2
Special Symbols

I SYMBOL CODE II SYMBOL CODE II SYMBOL CODE I

f1l
C)

~

+
X

Code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 I

16
17
18
19
20
21

l!

1~0 'T 106 Z 112

101 :><: 107
II

I 113 I

Z -102 108 114

Y
--

103 109 - 115 --

104 I! J21 110 ! 116

105 [[~ 117 III

Table 15-3
Regular Characters

Symbol Code

V 22
W 23
X 24
y 25
Z 26
[27
\ 28
] 29
.... 30
<- 31

32
! 33
II 34 !

* 35
$ 36
% 37
7T 38 , 39
(40
) 41
* 42 I

15-5

Symbol

+
,
-.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

Code

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

FORTRAN IV PLOTTER ROUTINES

15.2.5.1 Multiple Characters - You may combine any of the characters
in Table 15-3, except pi, in any order to print titles, legends,
labels or the like, using a multiple character call:

where

CALL SYMBOL (X,Y,H,T,A,N)

X,Y is the coordinate in inches of the lower left corner of the
first character to be printed

H is the height in inches of each character (Because
characters are considered to be on a 7x7 grid, a multiple of
7 times the increment size is recommended (i.e., a minimum
of .07 for .01 increment plotters and .035 for .005
increment plotters). The actual plotting grid occupied by
any character is 6x4i the remaining lx3 is used for spacing
between characters.)

T is the text in A or Hollerith format

A is the angle at which the text is to be printed and is
specified in degrees from the X axis

N is the number (positive integer) of characters to be plotted
and must be greater than 0 and equal to or less than the
number of characters in T

For example:

DIMENSION TEXT(2)
DATA TEXT/'TEXT EXAMPLE'/
CALL PLOTS(.Ol,l)
CALL XYPLOT(O,O,-3)
CALL SYMBOL(1,1,.21,TEXT,O,12)
CALL PLEXIT
END

will, on a non-PDP8/e machine with a .01 increment plotter, initialize
the origin point at the current pen location, move from there to 1,1,
and print the 12 characters in TEXT, namely TEXT EXAMPLE, in letters
.21 inches high at 0 degrees from the X axis, i.e., parallel to the
side of the plotter.

The program above is equivalent to:

CALL PLOTS(.Ol,l)
CALL XYPLOT(O,O,-3)
CALL SYMBOL(1,1,.21,12HTEXT EXAMPLE,O,12)
CALL PLEXIT
END

Note that the character pi can only be plotted by a single character
command because it has no Hollerith representation.

15-6

FORTRAN IV PLOTTER ROUTINES

15.2.5.2 Single Characters - You can plot two types of
characters:

single

• Characters from the available character set listed in Table
15-3

• Special symbols used to denote a data point (listed in Table
15-2)

The use of special symbols differs from that of other
characters in that their starting and terminating point is the
center of the character, not the lower left corner. These
symbols occupy a 4x4 grid.

The call is:

where

X,Y is the X,Y coordinate of the lower left corner of a regular
character, including pi, or the center for a special symbol

H is the height in inches of the symbol and should be 7 times
the increment size for a regular character and 4 times the
increment size for a special symbol (i.e., .02 or .04
minimum depending on the plotter)

I is in the range 1-63 for regular characters (Table 15-3) and
100-117 for special symbols (Table 15-2) (If a nonacceptable
value is used, SYMBOL prints a space in its place.)

A is the angle in degrees from the X axis at which the
character is printed

N is -1 if the pen is to be up during the move to X,Y or -2 if
the pen is to be down during the move to X,Y

For example:

CALL PLOTS(.Ol,l)
CALL XYPLOT(O,O,-3)
CALL SYMBOL(-6,2,.35,1,180,-1)
CALL PLEXIT
END

This will plot the letter A .35" tall at 180 degrees to the X axis on
a PDP-8/E. The pen will be up during the move from 0,0 to -6,2, the
lower left corner of the A.

CALL PLOTS(.Ol,l)
CALL SYMBOL(1,4,.20,100,270,-2)
CALL PLEXIT
END

This will plot the first special character .2 inches tall centered at
point 1,4 at an angle of 270 degrees to the X axis on a non-PDP-8/E.
You will be able to see the pen move from its current location to the
start of the character (1,4).

15-7

FORTRAN IV PLOTTER ROUTINES

15.2.6 NUMBER

The NUMBER routine facilitates handling internal format data (floating
point). It plots floating-point numbers in a format similar to
FORTRAN IV F format. One number at a time is plotted using the call:

where

CALL NUMBER (X,Y,H,Z,A,N)

X,Y is the coordinate of the lower left corner of the first
character of the number

H is the height
increment size
grid)

of each character, preferably 7 times
(each number is considered to occupy a 7x7

Z is the number to be plotted (It may be a real or integer
number.)

A is the angle to the X axis at which to plot the number

N is an integer that controls the format of the number Z as
follows:

Value of N

o

-1

=>1

<-1

Result

Z is truncated and plotted as an integer
followed by a decimal point

Z is truncated and plotted as an integer

N digits to the right of the decimal point
are plotted. The number is rounded based on
the value of the (N+l)th digit.

N-l digits are truncated from the integer
portion of the number.

Note that the accuracy of the number printed cannot exceed 6 digits.
However you may plot up to 19 digits with an expected loss of
accuracy. If a bad digit is found in Z, that digit defaults to O.
For Z less than one a leading zero is included. For example:

CALL PlOTS(.005,1)
C=O
A=198,678
CALL XYPLOT(O,O,-3)
CALL NUMBER(1,1,.07,A,C,O)
CALL NUMBER(1,2,.07,A,C,-1)
CALL NUMBER(1,3,.14,A,C,-2)
CALL NUMBER(1,4,.14,A,C,2)
CALL PLEXIT
END

Statistically the above program will be plotted as follows:

Starting Height Number
Location (Inches) Plotted Angle

1,1 .07*6/7 198. 0
1,2 .07*6/7 198 0
1,3 .14*6/7 19 0
1,4 .14*6/7 198.68 0

15-8

FORTRAN IV PLOTTER ROUTINES

If the number (Z) is out of range of the acceptable number of
characters; including minus sign and decimal point, the message:

NUMBER OF DIGITS NOT 1-19

is printed on the console device (unit 0).

15.2.7 PSCALE

For many applications, the data to be plotted is scattered irregularly
across the total range and in a manner not neatly related to unit
(inch) increments. To permit plotting data in a finite
(user-specified) length graph with labeled axis, invoke the PSCALE
routine to establish two critical plotting parameters -- starting
value and scaling incremente

The starting value can be positive or negative and a maximum or
mlnlffiUffi. L~ is the value printed at the starting axis annotation.
The scaling increment is the delta value between succeeding axis
annotations and is the number of data units per inch of plot, adjusted
to 1,2,4,5 or 8 * lOAN.

The starting value and the scaling increment are used by the AXIS and
LINE routines to produce a properly annotated axis and a graph whose
data includes all points in a user-specified length. PSCALE does no
plotting; its use occurs in conjunction with AXIS and/or LINE. It is
generally called twice -- once for X (abscissa) values and once for Y
(ordinate) values.

The call is:

where

CALL PSCALE(A,L,N,I)

A is the array containing the data to be plotted (This array
must have extra locations at the end in which PSCALE can
store the starting value and scaling increment, as explained
below:)

L is the length (integer) of the axis that the data is to
cover (L must be greater than or equal to 1.)

N is the number of data values in A to be considered (N must
be greater than or equal to 1.)

I is the increment between data values to be considered

The first value examined when considering I is always A(l),
the next is A{l+I). If I is positive, the calculated
starting value will be a minimum value. If I is negative,
the calculated starting value will be a maximum, and the
scaling increment will be negative.

15-9

FORTRAN IV PLOTTER ROUTINES

The calculated starting value is stored at A(N*J+l) i the scaling
increment is stored at A(N*J+J+l) where J is the absolute value of I.
Be sure to dimension A to a length sufficient to include these
locations. Consider the data array ARRAY:

Element Contents

1 .5
2 1
3 .9
4 .9
5 3.4
6 3.2
7 3.9
8 4.5
9 5.2
10 5.9

In the statement:

CALL PSCALE (ARRAY,5,5,2)

PSCALE will use ARRAY(l), ARRAY(3), ARRAY(5), ARRAY(7), and ARRAY(9)
in determining the starting value and scaling increment. For the
example above, the scaling increment is 2.0 and the starting value is
o.

If an axis length of less than 1 is supplied, the message:

AXIS LENGTH <1

is printed on device O. If all elements of the data array are the
same, the message:

MAX PT ~-= MIN PT

is printed.

15.2.8 AXIS

For most graphs, the presence of labeled axes adds significantly to
interpreting the data. The AXIS routine draws an axis with labeled
tic marks at one-inch intervals and a title or other annotation
parallel with and centered to the axis. AXIS must be called
separately for an X and a Y axis.

You should determine the starting value and scaling
discussed in PSCALE before calling AXIS.

increment

The call is:

where

CALL AXIS (X,Y,T,N,L,A,F,D)

X,Y are the coordinates of the start of the axis, in inches,
relative to the current origin. Often when two axes are
required, X and Yare 0 for both calls. It is suggested
that the physical orIgIn of the axis be at least 1/2" in
from any edge of the plotter, as annotation will require
that space. This position becomes the new origin for
subsequent plotting.

15-10

FORTRAN IV PLOTTER ROUTINES

T is the title in Hollerith format. It is printed .14 inches
high (dependent on existing user=specified plotting factors)
and centered along the axis. Lr ~ne scaling increment is
greater than 99 or less than .01, the notation *10 is added
at the end of the title.

N is the number of characters in the title (T) to be printed.
Use the sign to specify on which side of the axis the tic
marks and their labels are to be: positive means the
positive (counterclockwise) side of the axis, negative is
the negative or clockwise side. positive labeling is
generally used for Y axes and negative for X axes.

L is the length of the axis in inches. Note that you should
not allow this value to exceed the width of the plotter for
an axis in that direction. The absolute value pf L is used.

A is the angle in degrees at which the axis is to be drawn. X
axes are generally at 0 and Y axes at 90.

F is the starting value. You use it as the annotation for the
first tic mark. The annotations include two significant
places after the decimal point. This value may be
determined by PSCALE or supplied by the user. If calculated
by PSCALE, F must be the appropriate array element. If you
choose to calculate your own starting value and scaling
increment, be aware that a tiny F and large D or large F and
tiny D do not produce a meaningful graph.

D is ~ne scaling increment between tic mark annotations. It
may be determined by PSCALE or by the user. If calculated
by PSCALE, D must be the appropriate array element.

For best results axes should be drawn at multiples of 45 degrees
(including 0). AXIS uses the routine NUMBER.

15.2.9 LINE

You can combine pairs of data points in two arrays by LINE and plot
them according to user-specified parameters. You can indicate points
to be plotted by a special symbol, connecting them by a continuous
line. LINE requires a starting value and scaling increment for each
array such as those produced by PSCALE.

The call to LINE is:

where

CALL LINE (A,B,N,I,L,J)

A is the name of the array whose values are to be the abscissa
values

B is the name of the array whose values are to be the ordinate
values

(For A and B, the (N*I+l)th element must contain its
starting value and the (N*I+I+l)th element must contain its
scaling increment, as supplied by the user or PSCALE.)

15-11

FORTRAN IV PLOTTER ROUTINES

N is the number of points in each array to be plotted (The
same number of points is taken from each array.)

I is the increment at which the data in A and B is collected,
i.e., every Ith point is plotted (I must be greater than 0.)

L determines the manner in which the line is plotted, as
follows:

If L is positive, each point is connected by a line and a
special symbol is plotted at each point.

If L is 0, each point is connected by a line, and no symbols
are drawn.

If L is negative, no connecting lines are plotted;
point is indicated by a special symbol.

each

J is a value between 100 and 117 (see Table 15-2) indicating
the special symbol to be used in the plot

The pen should be located at the logical 0,0 position of the graph
when a call to LINE is issued. If the preceding plot operation was
drawing an axis in the usual manner, the pen should be properly
positioned. If I or N is less than or equal to 0, the LINE routine
returns without plotting.

15.2.10 PLEXIT

In order to permit the plotting routines to finish completely, call
the routine PLEXIT once when all plotting commands have been issued.
PLEXIT does a final pen up operation.

15.3 IMPLEMENTING THE PLOTTER ROUTINES

15.3.1 Getting Started

In order for the plotter to interface properly to OS/8 FORTRAN IV, you
must make the following patch to the file FRTS.SV. It adds a clear
plotter flag lOT to the run-time device initialization chain. The
sequence is:

.GET SYS:FRTS.SV

.ODT

4020/7000 6502

.SA SYS:FRTS.SV

/User types 4020 / Response
fat terminal is 7000.
/User types 5502

Type CTRL/C to exit ODT

Assumes FRTS.SV on SYS Device

15-12

FORTRAN IV PLOTTER ROUTINES

15.3.2 Adding the Plotting Routines

The FORTRAN plotting routines are supplied as relocatable RALF (.RL)
modules that you can either add to the FORTRAN library (FORLIB.RL) or
specify explicitly to the loader. To add the files to FORLIB.RL, the
procedure is:

.R LIBRA
*PLOTLB[3J(FORLIB.RL/Z=40
*PLOTLB(XYPLOT.RL,AXIS.RL,PSCALE.RL,LINE.RL,NUMBER.RL
*~C

You may then use PLOTLB by specifying it as a library to the loader or
copy it using PIP so that no additional loader specifications are
required. If you choose not to add the plotting modules to the
library and prefer to specify them to the loader, it is suggested that
only the modules required by the FORTRAN program be specified so as
not to waste space. In general, if you are employing elaborate
overlay schemes, you will not want plotting modules in your library,
while if you have shorter programs, you will.

The core requirements to the nearest hundredth location of the files
are:

XYPLOT

SYMBOL
symbol table

NUMBER
PSCALE
AXIS
LINE

1000 locations in field
1 and 700 elsewhere
(includes FACTOR,PLOTS,
WHERE, and PLEXIT)
500
700 (regular and special
characters)
1300
1000
1500 (requires NUMBER)
600

Note that the routines PLOTS, XYPLOT, FACTOR, WHERE, PLEXIT, SYMBOL,
and the symbol table, including the code in field one, are all loaded
if anyone of those routines is called.

15.3.2.1 Loading the Plotter Routines from Paper Tape - If the
relocatable plotter routines are supplied on paper tape, you must load
them into mass storage using the program EPIC. Place each tape in the
reader before typing the response to the asterisk. The sequence is:

.R EPIC
*/0$
*/Y
*/Y
*/Y
*/Y
*~C

/Mount XYPLOT.RL
/Mount NUMBER.RL
/Mount AXIS.RL
/Mount PSCALE.RL
/Mount LINE.RL

After you have entered this sequence, the files are on device SYS.

15-13

FORTRAN IV PLOTTER ROUTINES

An example combining several of the commands is shown below. This
program requests user input of text and then plots it as a spiral.

DIMENSION NAME(30)
ITTY=4
WRITE(ITTY,100)

100 FORMAT(lX,'TYPE IN TEXT(30 CHARACTER MAX)')
READ(ITTY,200)NAME

200 FORMAT(30Al)
WRITE(ITTY,150)

150 FORMAT(lX,'HOW MANY CHARACTERS DID YOU TYPE IN?')
READ (ITTY,250)NN

250 FORMAT(I2)
CALL PLOTS(+Ol,l)
CALL XYPLOT(0,-30,-3)
CALL XYPLOT(10,10,-3)
R('~D::::3

SIZE::::. 1225*RAD
~3P H~= + 9<;5
CONV=180./3.1415
ANG==O
BANG:::: 1 .5707
DO 300 J::-~ 1, NN

300 CALL SYMBOL«J-l-NN)*SIZE,RAD,SIZE,NAME(J),ANG,l)
380 DO 400 J=l,NN

T=2*ATAN(SIZE/(2.*RAD»
ANG::-~(~NG··- T*CONV
X::::F~(.-lD*COS (BANG)
Y=RAD*SIN(BANG)
BANG::::BANG-- T
F=:AD::::H('~D*SPIR

SIZE>::. 1.225*RAD
400 CALL SYMBOL(X,Y,SIZE,NAME(J),ANG,l)

IF(SIZE-~07)500,500,380
I::: 1\ 1\ ,'-' A f I 100, J I'·· '.J T or
,.JV \I '.J 1··11 ..• 1... r· I ••• c. /\ J. I

END

The plotter output is shown in Figure 15-1.

15-14

FORTRAN IV PLOTTER ROUTINES

Figure 15-1 Spiral Plotter Example

The next example plots a histogram.

DIMENSION X(50),Y(50),SALES(12),TXT(7)
DATA SALES/20,30,32,40,50,90,95,90,40,30,20,151
DATA TXT/'AIR CONDITIONER SALES EACH MONTH OF 1972 'I
CALL PLOTS(.01,O)
CALL XVPLOTCO,-30,-3)
CALL XYPLOT(I,1,-3)
DO ~3 >oJ:::::!." 12
I=L.I-1)*4+1
Y(I)::=O
Y(I+l)=SALI::S(J)
Y(1+2)::::SALES(J)

5 Y(I+3)=O.
Y(49)::::O.
Y (59) ::=10.
DO 10 1::::1,48,4
X (I):::: I 14+ • 7~5
X(I+l)::::X(I)
X(1+2)::::!/4+.25

10 X(I+3)=X(I+2)
X(49)::::0.
X(:':=j(»~-:::I. +

CALL AXIS(O,0,'MONTH/,-5,13,O,0,1)
CALL AXIS(O,O,'AIR CONDITIONERS (X100)',23,10,90,O,10)
CALL LINE(X,Y,48,1,O,0)
CALL SYMBOl(1,,10,5,.25,TXT,0,40)
CALL XYPlOT(:l.2,0,3)
CALL PI...EXIT
END

The plotter output is shown in Figure 15-2.

15-15

100.00,

00.001

80.001
g 70.00
~
CI)

c:: 60.00
w
2:
o
t= 50.00
Ci
2:

8 40.00
c::
<r

30.00

20.00

10.00

0.00

-

-

-

-

-

-

-

,--

roo-

I I

FORTRAN IV PLOTTER ROUTINES

AIR CONDITIONER SALES EACH MONTH OF 1972

nnn
roo-

r-- -

~

r-

-
~

I I I I I I I I I I I
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00

MONTH

Figure 15-2 Histogram Plotter Example

15-16

I
I
I

I

!

I

I

APPENDIX A

ASCII CHARACTER SET

ASCII ASCII ASCII
Decimal Char- Decimal Char-

I I Decimal Char- I
Value acter Usage Value acter Usage Value acter Usage

0 NUL FILL character 43 + I II 86 V I
1 SOH

I

44 ,

I

Comma

I
87 W

I

2 STX 45 - 88 X
3 ETX CTRL/C 46 89 Y
4 EOT 47 / 90 Z
5 ENQ 48 0 91 [
6 ACK 49 1 92 \ Backslash
7 BEL BELL 50 2 93 ! 8 BS 51 3 94 or

A

9 HT Horizontal Tab 52 4 95 - or <
10 LF Line Feed 53 5 96 / Grave accent
11 VT Vertical Tab 54 6 97 I a
12 FF Form Feed ! 55 ! 7 I II 98

I

b ! 13 CR Carriage Return 56 8 99 c
14 SO 57 9 100 d
15 SI CTRL/O 58 : 101 e
16 DLE 59 , 102 f
17 DCl 60 < 103 g
18 DC2 61 = 104 h
19 DC3

Ii
62 >

II
105 1

20 DC4 63 i ? 106 i j I I
21 NAK CTRL/U 64 @ 107 k
22 SYN 65 A 108 1
23 ETB 66 B 109 m
24 CAN 67 C 110 n
25 Em 68 D 111 0

26 SUB CTRL/Z 69 E 112 P
27 ESC Escape* 70 F 113 g
28

I
FS

I
71 G

II
114 r

29 GS 72 H 115 s
30

I
RS

I II
73

I

I

I II

116 t
31 US 74 J 117 u
32 SP Space 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 120 x
35 # 78 N 121 Y
36 $ 79 0 122 z
37 %

I

80 P
I

123
38 & 81 Q 124 I Vertical Line
39 I Apostrophe 82 R 125
40 (83 S 126 '-"" Tilde
41)

I

84 T 127 DEL Rubout
42 * 85 U

ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are translated
internally into ESCAPE.

A-I

I
I

I
I

I

Statement

Arithmetic

Arithmetic
Statement
Function
Definition

ASSIGN

BACKSPACE

BLOCK DATA

CALL

COMMON

CONTINUE

DATA

DEFINE FILE

DIMENSION

APPENDIX B

FORTRAN LANGUAGE SUMMARY

Form

a=b

t nam(al •••)=x

ASSIGN n TO v

BACKSPACE u

BLOCK DATA

CALL prog
CALL prog(al •••)

COMMON/blockl/a,b •• / ••

CONTINUE

DATA varlist/var/ •••

DEFINE FILE
a(b,c,U,v)

DIMENSION array
(vl •.• ,v7)

B-1

Effect

The value of expression b
is assigned to the
variable a.

The value of expression x
is assigned to f(al •••)
after parameter
substitution.

Statement number n is
assigned as the value of
integer variable v for
use in an assigned GOTO
statement.

Peripheral device u is
backspaced one record.

Identifies a block data
subprogram.

Invokes subroutine named
prog, supply arguments
when required.

Variables (a,b, •••) are
assigned to a common
block.

No processing, target for
transfers.

Assigns initial or
constant values to
variables.

Describes a mass storage
file for direct access
I/O.

Storage allocated
according to dimensions
specified for the array.

Statement

DO

END

END FILE

EQUIVALENCE

EXTERNAL

FORMAT

FUNCTION

GO TO

IF

IF

Logical
Assignment

PAUSE

FORTRAN LANGUAGE SUMMARY

Form

DO st l-el,e2,e3

END

END FILE u

EQUIVALENCE
(vl,v2, ••• ,)

EXTERNAL subprogram

FORMAT
(specl,spec2, ••• / •••)

FUNCTION name(al, ••• }

(1) GO TO n
(2) GO TO (nl, ••• nk),e

(3) GO TO v
GO TO v, (nl, ••• nk)

IF(arith expr)nl,n2,n3

IF(logical expr)st

v=e

PAUSE [numJ

B-2

Effect

Statements following the
DO up to statement st are
iterated for values of
integer variable i,
starting at i=el,
incrementing by e3, and
terminating when i>e2.

Cease program
compilation; equivalent
to STOP in main program
or RETURN in subprogram.

Writes end-of-file
character in file u.

Identifies same storage
location for variables
within parentheses.

Declares a subprogram for
use by other subprograms.

Specifies conversions
between internal and
external representations
of data.

Indicates an external
function definition.

Transfers control to:
(1) statement n
(2) to statement nl if

e=l, to statement nk
if e=k.

(3) transfers control to
state-number assigned
to v optionally
checking that v is
assigned one of the
labels nl, ••• nk.

Transfers control to nl
if expr<O, n2 if = 0, or
n3 if > 0.

Executes statement if
expression has a value
.TRUE., otherwise
executes the next
statement.

Value of expression E is
assigned to variable V.

Program execution
interrupted and number
printed, if given.

FORTRAN LANGUAGE SUMMARY

Statement

READ

RETURN

REWIND

STOP

Form

READ(u,f) list
READ(u,f)
READ(u) list
READ(a'r) list

RETURN

REWIND u

STOP

Effect

Reads a record from a
a peripheral device
according to
specifications given in

the argument of the
statement.

Returns control from a
subprogram to the
calling program.

Repositions designated
unit to the beginning of
the file.

Terminate program
execution.

SUBROUTINE SUBROUTINE nam[(al •••)] Declares name to be a
subroutine subprogram;

WRITE WRITE (u, f) list
WRITE(u,f)
WRITE(u) list
WR IT E (a I r) 1 i s t

a 1, ... ,
if supplied are dummy
arguments.

Writes a record to a
peripheral device
according to
specifications given in

the arguments of the
statement.

Operators within each type are shown in order
precedence.

of descending

Operator

Arithmetic Type

**
*
/
+

exponentiation
multiplication
division
addition
subtraction

Relational Type

.GT. greater than

.GE. greater than or
• LT. less than
.LE. less than or

equal to
.EQ. equal to
.NE. not equal to

Operand

arithmetic or logical constants,
variables, and expressions

arithmetic or logical constants,
variables, and expressions (all
relational operators have equal
priority)

B-3

FORTRAN LANGUAGE SUMMARY

Operator

Logical Type

.NOT •• NOT.A is true
if and only if
A is false

.AND. A.AND.B is true
if and only if
A and B are true

.OR. A.OR.B is true
if and only if
either A or B
is true •

• EQV. A.EQV.B is true
if and only if
A and B are both
true or A and B
are both false •

• XOR. A.XOR.B is true
if and only if
A is true and B
is false or B is
true and A is
false

Operand

logical constants, variables, and
expressions

(equal precedence with .XOR.)

(equal precedence with .EQV.)

3-4

A conversion, 12-8
ABS function, 13~5

.AND. logical operator, 5-5
Arctangent function, 13-8
Arithmetic expressions, 5-1

. Arithmetic statement functions,
10-3

Arrays, 4-11
Assembling RALF file, 1-9 to

1-12
ASSIGN statement, 9-3
Assignment statements; 6-1 to

6-3
ATAN function, 13-8

Background/Foreground I/O,
1-23

BACKSPACE statement, 11-11
BLOCK DATA statement, 8-2

CALL statement, 10-7
Carriage control, 12-14
CLOCK subroutine, 13-9
Comments, 3-2
COMMON statement, 7-4, 7-6
Compiler, 1-5 to 1-8

error messages, 1-8
options, 1-6

Complex constants, 4-7
Computed GOTO, 9-2
Constants, 4-3 to 4-9
Continuation lines, 3-4
CONTINUE statement, 9-11
COS function, 13-11

DATA statement, 8-1
Data type specification, 4-9,

4-10
DEFINE FILE statement, 11-11
Device handler assignment, 11-1
Device specifications, 11-1
DIMENSION statement, 7-2
DO statement, 9-7 to 9-10
Double precision constants,

4-6

END statement, 9-12
END FILE statement, 11-12

INDEX

.EQ. relational operator, 5-4
EQUIVALENCE statement, 7-7
.EQV. logical operator, 5-5
Error messages,

compiler, 1-8
loader, 1-20
run-time system, 1-27

EXTERNAL statement, 7-3

.FALSE. logical value, 4-7
Fields, 3-2 to 3-5
Foreground/background, 1-23
FORMAT statement, 12-1
FORTRAN IV Run-Time System

(FRTS), 1-21 to 1-27
Functions, 13-1
FUNCTION statements, 10-4

G format conversions, 12-6
.GE. relational operator, 5-4
GOTO statements, 9-1 to 9-4
.GT. relational operator, 5-4

H conversion, 12-9
Histogram plotter example, 15-6
Hollerith,

co:nstants, 4-8

IF statements, 9-5, 9-6
Integer,

constants, 4-3
variables, 4-10

Internal statement number (ISN) ,
1-6

.LE. relational operator, 5-4
Loader, 1-13 to 1-20

error messages, 1-20
image file, 1-15
options, 1-16
symbol map output, 1-16

Loading instructions for paper
tape plotter routines,
15-13

.LT. relational operator, 5-4

Index-l

INDEX (Cont.)

.NE. relational operator, 5-4
Nested DO loops, 9-9

Octal constant~~ l-8
Operators,

arithmetic, 5-1
logical, 5-5
relational, 5-4

Options,
compiler, 1-6
loader, 1-16
run-time, 1-25

.OR. logical operator, 5-5
Output files, 1-4

assembler, 1-10
compiler, 1-5
loader, 1-15

Overlays, 1-13

PAUSE statement, 9-12

RALF assembler, 1-9 to 1-12
READ statements, 11-5 to 11-7
Real constants, 4-4

Relational operators, 5-4
Relocatable binary files, 1-10
RETURN statement, 10-7
REWIND statement, 11-13

Scale factors, 12-12
SIN function, 13-20
SQRT function, 13-21
STOP statement, 9-12
SUBROUTINE statement, 10-6
Subscripts, 4-13
Symbol map, 1-2, 1-15, 1-19

TAN function, 13-21
.TRUE. logical value, 4-7

Variables, 4-9, 4-10

WRITE statements, 11-8, 11-10

.XOR. logical operator, 5-5

Index-2

PAL8

1.0
2.0
3.0
3.1
4.0
5.0
6.0
6.1
6.2
6.3
6.4
7.0
7.1
7.2
7.3
S.O
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.S
10.0
10.1
10.2
11. 0
11.1
11. 2
11. 3
11. 3.1
11.3.2
11. 4
12.0
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.S
12.9
12.10
12.11
12.12
12.13
12.14

CONTENTS

INTRODUCTION
CALLING AND USING PALS
PALS OPTIONS

Examples of Specification Strings
RESTARTING AND TERMINATING PALS
CHARACTER SET
STATEMENTS

Labels
Instructions
Operands
Comments

FORMAT EFFECTORS
Form Feed
Tabulations
Statement Terminators

NUMBERS
SYMBOLS

Permanent Symbols
User-Defined Symbols
Current Location Counter
Symbol Table
Direct Assignment Statements
Symbolic Instructions
Symbolic Operands
Internal Symbol Representation for PALS

EXPRESSIONS
Operators
Special Characters

INSTRUCTIONS
Memory Reference Instructions
Indirect Addressing
Microinstructions
Operate Microinstructions
Input/Output Transfer Microinstructions
Autoindexing

PSEUDO-OPERATORS
Indirect and Page Zero Addressing
Radix Control
Extended Memory
End-of-File
Resetting the Location Counter
Entering Text Strings
Suppressing the Listing
Reserving Memory
Conditional Assembly Pseudo-Operators
Use of Conditionals
Controlling Binary Output
Controlling Page Format
Typesetting Pseudo-Operator
Calling OS/S User Service Routine

iii

Page

1
1
2
3
4
4
4
5
5
5
5
5
5
6
6
7
7
7
7
S
9
9
11
11
11
11
11
14
17
17
lS
lS
19
20
21
21
21
21
22
23
23
23
24
24
24
25
26
26
26
26

12.15
12.16
13.0
14.0
15.0
16.0
16.1
16.1. 1
16.1. 2
16.2
16.3
17.0
18.0
19.0

INDEX

CONTENTS (Cont.)

Relocation Pseudo-Op
Altering the Permanent Symbol Table

LINK GENERATION AND STORAGE
CODING PRACTICES
PROGRAM PREPARATION AND ASSEMBLER OUTPUT
ABSOLUTE BINARY LOADER

Calling and Using ABSLDR
ABSLDR Options
Examples of Input Lines
Notes on Using ABSLDR Correctly
ABSLDR Error Messages

TERMINATING ASSEMBLY
PAL8 ERROR CONDITIONS
PAL8 PERMANENT SYMBOL TABLE

FIGURES

FIGURE 1 Memory Reference Bit Instructions
2 Group 1 Operate Microinstruction Bit Assignments
3 Group 2 Operate Microinstruction Bit Assignments
4 Group 3 Operate Microinstruction Bit Assignments

TABLE 1 PAL8 Run-Time Options
2 Use of Operators
3 ABSLDR Options
4 ABSLDR Error Messages
5 PAL8 Error Codes

TABLES

iv

Page

27
27
29
30
30
31
31
32
34
34
35
35
35
37

Index-l

17
19
19
20

2
12
32
35
36

PALS

1.0 INTRODUCTION

PALS is an 8K, two-pass assembler designed to run under the OS/8
Operating System. Pass 1 reads the input file and sets up the symbol
table. Pass 2 reads the input file and uses the symbol table created
in pass 1 to generate the binary (object) file. The binary file is an
absolute binary tape you may load into core with the Absolute Loader
or Binary Loader. As an optional third pass, a side-by-side octal and
symbolic listing and the symbol table are output. (Using the options
available, the three passes may be automatically executed. However,
if the source file is to be read from the paper tape reader, you must
reload the tape for each pass.) You can use the listing file as an
input to the Cross Reference Program (CREF), and you can request the
symbol table to be in a form suitable for input to DDT. If you
speci£y a listing file, but not a binary file or /L or /G option, PAL8
does not execute pass 2, but goes directly from pass 1 to
pass 3.

PAL8 has pseudo-ops and options not available in the other PDP-8
assemblers and can handle I/O from any OS/8 device that handles ASCII
text. It is loaded and saved by way of the OS/8 Monitor and Absolute
Loader. It will accept input generated by the Editor and will
generate output acceptable to the Absolute Loader and CREF.

2.0 CALLING AND USING PALS

Call PAL8 from the system device by typing:

.!.I::: PAUl

in response to the Keyboard Monitor dot. The system replies by
activating the Command Decoder, which in turn prints an asterisk (*)
in the left margin of the teleprinter paper. At this point enter a
command string that indicates the binary and listing output devices
and file names, the input devices and file names, and any options you
select. You may specify 1 to 9 input files. The format of the
command string is:

*DEV:BINARY,DEV:LISTING,DEV:CREFLS<DEV:INPUT/OPTIONS

If you omit the extension to the file name, PAL8 assumes the following
extensions:

.PA for input file

. BN' for binary output file

.LS for listing output file

.TM for intermediate CREF file (if you specified the /C option)

A null output file indicates that PAL8 is not to generate an output
file of that type. For example, to assemble, load, and run a PAL8
program named PROGRM that is stored on DEC tape unit 1, type:

.1::: PAL.!:!
*BIN<DTA1:PROGRM/G

After the assembly, PAL8 will load and run the program with the
starting address assumed to be location 0200 in field 0, and store the
binary on the system device as BIN.BN.

The assembler prints any error messages encountered in the program on
the teleprinter. Typing CTRL/O at the keyboard during an assembly
will suppress the printing of error messages on the teleprinter;
however, the assembler still prints messages in the output file, and
they appear immediately before the line that is in error.

1

PAL8

3.0 PAL8 OPTIONS

Table 1 lists the options available in PAL8 that can be indicated in
the command string typed to the Command Decoder.

When you specify the /L or /G option, you can also include any option
to the Absolute Loader in the I/O specification line for PAL8, such as
= starting address option. If you do not specify an address,
execution begins at 200. If no binary output file is specified with
/L or /G a temporary file, PAL8BN.TM, is created and loaded.

Option

/B

/C

/0

/E

/F

/G

/H

/J

/K

/L

/N

Table 1
PAL8 Run-Time Options

Meaning

Make the operator I a 6-bit left shift instead of an
inclusive OR. (AlB equals A~lOO+B)

Chain to SYS:CREF.SV after assembly. The second
output file specified is the output file passed to
CREF. The third output file is where PAL8 generates
its output. If you give no third output file,
SYS:CREFLS.TM is assumed. The /C option supersedes
the /G and /L options if specified in the same
command string.

Generate a DDT-compatible symbol table (applicable
only if a listing file is specified).

Enable error messages if PAL8 generates a link.
LG error message would also be generated.

The

Disable extra zero fill in TEXT pseudo-oPe If the
text in the TEXT pseudo-op contains an even number of
c~aracters; no word of zeroes will be added to the
end.

Call the Absolute Loader, load the binary file, and
begin execution at the indicated starting address.
If no starting address is indicated, start at 200.

Generate nonpaginated output. Header, page numbers,
and page format are suppressed (applicable only if a
listing file is specified).

Do not list lines containing code in conditional
brackets that is conditionalized out.

Causes systems containing 12K or more of core to use
field(s) 2 and up as symbol table storage.

Call the Absolute Loader at the end of the assembly
and load the binary file (applicable only if a binary
file was specified).

Generate the symbol table, but not the listing
(applicable only if a listing file is specified; the
/H option is assumed) .

(continued on next page)

2

Option

PAL8

Table 1 (Cont.)
PAL8 Run-Time Options

Meaning

/0 Disable origining to 200 after pseudo-op. The origin
retains the status it had before the FIELD pseudo-op.

/S Omit the symbol table
listing (appl icable
specified) .

normally
only if

generated
a listing

with
file

the
is

/T Output a carriage return/line feed in place of the
form feed character(s) in the program (applicable
only if a listing file is specified).

/w Do not remember the number of literals that were
previously stored on a page after origining off page
and then back on again.

3.1 Examples of Specification Strings

Example 1:

,H PAl ... !:!
~PTP:,LPT:<SOUHCE

The lines in example 1 command PALS to load the assembler from
system device and assemble the program SOURCE.PA (or SOURCE) .
puts the binary output of the assembly onto the paper tape punch
the listing and symbol table onto the line printer.

Example 2:

• F~ PALO
iii ~ I ... I!:)TIN<PF~CJG/S

the
PALS

and

The second line of example 2 commands PAL8 to assemble PROG.PA (or
PROG), putting the listing only into the file LISTIN.LS on the default
device DSK. PAL8 does not generate a binary output nor a symbol
table.

Example 3:

.1:;: PAl ... !:!
JBIN<INPUT.XY/G=600

The specification line of example 3 assembles INPUT.XY, putting the
binary output into a file named BIN.BN. It then calls the Absolute
Loader, which loads the file BIN.BN and starts it at 600. (The equal
sign preceding the 600 (=600) is an option to the Absolute Loader
specifying the starting address.)

Example 4:

,F~ P(~I ... n
.!DTI~:I. t F'F~OG

The lines of example 4 will assemble the file PROG from device DTAI to
check for errors, which are listed on the teleprinter. There are no
output files.

3

PALS

4.0 RESTARTING AND TERMINATING PALS

PALS may only be restarted if the Command Decoder has not been
dismissed. For example:

.R PALS
*-C
~ASSIGN DTA7 DSK
~T
~

If you attempt a restart after you have dismissed the Command Decoder,
PALS types NO!! and returns control to the Keyboard Monitor. You
must call PALS for each assembly.

5.0 CHARACTER SET

The following charact~rs are acceptable as input to PALS:

• Alphabetic characters: A through Z

• Numeric characters: 0 through 9

• Characters described in following
characters and operators

sections as special

• Characters that are ignored during assembly, such as LINE
FEED, FORM FEED, TAB, and RUBOUT

All other characters are illegal (except when used in a comment) and
cause PALS to print the error message:

IC nnnn

during pass 1; nnnn represents the location where the illegal
character occurred. (As assembly proceeds, each instruction is
assigned a location determined by the current location counter,
described in Section 9.3. When an illegal character or any other
error is encountered during assembly, the value of the current
location counter is returned in the error message.) Illegal characters
do not generally cause assembly to halt. If an illegal character
occurs in the middle of a symbol, the symbol is terminated at that
point.

6.0 STATEMENTS

PALS source programs are usually prepared on the console terminal
(using the OS/S EDITOR or TECO) as a sequence of statements. Each
statement is written on a single line and is terminated by typing the
RETURN key. There are four types of elements in a PALS statement you
can identify by the order of their appearance in the statement and by
the separating (or delimiting) character that follows or precedes the
element. These are:

• label

• instruction

• operand

• /comment

4

PAL8

A statement must contain at least one of these elements and may
contain all four types. The assembler interprets and processes the
statements, generating one or more binary instructions or data words,
or performing an assembly process.

6.1 Labels

A label is the symbolic name you create to identify the location of a
statement in the program. If you are using a label, it must appear
first in a statement. It must begin with an alphabetic character,
contain only alphanumeric characters, and be terminated by a comma.
There must be no intervening spaces between any of the characters and
the comma.

6.2 Instructions

An instruction may be one or more of the mnemonic machine instructions
or it may be a pseudo-operation that directs assembly processing (see
Section 12.0 for a description of assembly pseudo-ops). Terminate
instructions with one or more spaces (or tabs if an operand follows)
or with a semicolon, slash, or carriage return.

6.3 Operands

Operands are the octal or symbolic addresses of an assembly language
instruction or the argument of a pseudo-operator, and can be any
expression. In each case, interpretation of an operand depends upon
the instruction or the pseudo-op. Terminate operands with a
semicolon, slash, or carriage return.

6.4 Comments

You may add notes or comments to a statement by separating them from
the remainder of the line with a slash. Such comments do not affect
assembly processing or program execution but are useful in the program
listing for later analysis or debugging. The assembler ignores
everything from the slash to the next carriage return.

It is possible to have only a carriage return on a line, resulting in
a blank line in the final listing. PALS gives no error message.

7.0 FORMAT EFFECTORS

The following characters are useful in controlling the format of an
assembly listing. They allow you to produce a neat, readable listing
by providing a means of spacing through the program.

7.1 Form Feed

The form feed code causes the assembler to output blank lines
to skip to a new page in the output listing during pass 3.
useful in creating a page-by-page listing. Generate the form
typing a CTRL/L on the console terminal.

5

in order
This is

feed by

PALS

7.2 Tabulations

You use tabulations in the body of a source program to separate fields
into columns. For example, a line written:

GO, TAD TOTAL/MAIN LOOP

is more readable if you insert tabs to form:

GO, TAD TOTAL /MAIN LOOP

7.3 Statement Terminators

Use the RETURN key to terminate a statement and cause a carriage
return/line feed combination to occur in the listing. You may also
use the semicolon (i) as a statement terminator. It is considered
identical to a carriage return except that it will not terminate a
comment. For example:

TAD A /THIS IS A COMMENT; TAD B

The entire expression between the slash and the carriage return is
considered a comment. Thus in this case the assembler ignores the TAD
B. If, for example, you wish to write a sequence of instructions to
rotate the contents of the accumulator and link six places to the
right, it might look like the following:

RTR
RTR
RTR

However, you can alternatively place all three instructions on a
single line by separating them with the special character semicolon
and terminating the entire line with a carriage return. You can then
write the above sequence of instructions:

RTR;RTRiRTR

NOTE

If you desire an
there are certain
use of semicolons.

OS/8 CREF listing,
restrictions on the

Refer to TBS.

These multistatement lines are particularly useful when setting aside
a section of data storage for use during processing. For example, you
could reserve a four-word cleared block by specifying either of the
following:

LIST, Oi 0; 0; 0

or

LIST, 0
0
0
0

6

PALS

You may use either format to input data words (data words may be in
the form of numbers, symbols, or expressions, explained in the
following sections). Each of the following lines generates one
storage word in the object program:

DATA,

S.O NUMBERS

7777
A+C-B
S
123+B2

Any sequence of digits delimited by either a SPACE, TAB, semicolon, or
carriage return forms a number. PALS initially interprets numbers in
octal (base 8). You can change to decimal using a special
pseudo-operator (explained in Section 12.0). You use numbers in
conjunction with symbols to form expressions.

9.0 SYMBOLS

A symbol is a string of alphanumeric characters beginning with a
letter and delimited by a nonalphanumeric character. Although a
symbol may be any length, PAL8 recognizes only the first six
characters. Since PAL8 ignores additional characters, symbols that
are identical in their first six characters are considered identical.

9.1 Permanent Symbols

The assembler contains a table (called its permanent symbol table)
that lists the symbols for all PDP-8 pseudo-op codes, memory reference
instructions, operate and lOT (input/output transfer) instructions.
These instructions are symbols that PAL8 has defined permanently and
need no further definition by you; they are summarized in Section
19.0. For example:

HLT This is a symbolic instruction to which the assembler
has assigned the value 7402 and stored in its permanent
symbol table.

9.2 User-Defined Symbols

All symbols the assembler has not defined (and represented in its
permanent symbol table) you must define within the source program.

You may use a symbol as a statement label, in which case PAL8 assigns
it a value equal to the current location counter. It is called a
symbolic address and you can use it as an operand or as a reference to
an instruction. You may not use permanent symbols (instructions,
special characters, and pseudo-ops) as symbolic addresses. The
following are examples of legal symbolic addresses:

ADDR,
TOTAL,
SUM,
hl,

7

PALS

The following are illegal symbolic addresses:

AO)M,
7ABC,
LA BEL,
O+TAG,
LABEL

(contains an illegal character)
(first character must be alphabetic)
(must not contain imbedded spaces)
(contains a nonalphanumeric character)
(must be terminated by a comma with no intervening
spaces)

9.3 Current Location Counter

As PAL8 processes source statements, it assigns consecutive memory
addresses to the instructions and data words of the object program.

The current location counter contains the address where PAL8 will
assemble the next word of object code. It is automatically
incremented each time PAL8 assigns a memory location. A statement
that generates a single object program storage word increments the
location counter by one. Another statement might generate six storage
words, incrementing the location counter by six.

You set or reset the location counter by typing an
by the octal absolute address value where the next
be stored. If you do not set the origin, PAL8
addresses at location 200.

asterisk followed
program word is to

begins assigning

*300 ISET CURRENT LOCATION COUNTER TO 300

TAG, ClA
JMP A

B, 0
A, DCA B

PAL8 assigns the symbol TAG (in the preceding example) a value of
0300, the symbol B a value of 0302, and the symbol A a value of 0303.
If you define a symbol more than once in this manner, the assembler
will print the illegal definition diagnostic:

IO address

where address is the value of the location counter at the second
occurrence of the symbol definition. PAL8 does not redefine the
symbol.

(For an explanation of diagnostic messages refer to Section 18.0 on
PAL8 Error Conditions.) For example:

START,

CONTIN,

A,
COUNTER,
STARTv

*300
~DA
DCA COUNTER
JMS lEAVE
JMP START
-74
o
ClA ell

8

PALS

The symbol START would have a value of 0300, the symbol CONTIN would
have a value of 0302, the symbol A would have a value of 0304, the
symbol COUNTER (considered COUNTE by the assembler) would have a value
of 0305. When the assembler processed the next line it would print
(during pass 1):

III COUNTE+0001

Since PALS uses the first pass to define all symbols, the assembler
will print a diagnostic during pass 2 if you make reference to an
undefined symbol. For example:

.!7:1.70
A, TAIl C

CI ... A CMA
HL..T
,.JMP A:I.

C. 0

This would produce the undefined symbol diagnostic:

Uf:; A+O()()3

9.4 Symbol Table

Initially, the assembler's symbol table contains the mnemonic op-codes
of the machine instructions and the assembler pseudo-op codes; this
is its permanent symbol table. As the assembler processes the source
program, PAL8 adds to the symbol table user-defined symbols along with
their binary values. It lists the symbol table in alphabetical order
at the end of pass 3.

During pass 1, if the symbol table is full (in other words, there is
no more memory space in which to store symbols and their associated
values), PAL8 prints the diagnostic that indicates this condition:

SE address

and returns control to the OS/8 Monitor. If the system contains more
than 8K of memory, you may choose the /K option with the Run command,
or you may use more address arithmetic to reduce the number of
symbols. It is also possible to segment a program and assemble the
segments separately, taking care to generate proper links between the
segments (see Section 13.0 for link generation and storage). PAL8's
symbol capacity is 992 symbols. The permanent symbol table contains
24 pseudo-operations and 71 symbols, leaving space for 897 possible
user-defined symbols. Each additional 4K allows 992 new symbols.

Instructions concerning altering the permanent symbol table appear in
Section 12.16 if you wish to add instructions more suitable to your
programming needs.

9.5 Direct Assignment Statements

You may insert new symbols with their assigned values directly into
the symbol table by using a direct assignment statement in the form:

SYMBOL=VALUE

9

PALS

VALUE may be a number or an expression. No spaces or tabs may appear
between the symbol to the left of the equal sign and the equal sign
itself. The following are examples of direct assignment statements:

A=6
EXIT=JMP I 0
C=A+B

You should have already defined all symbols to the right of the equal
sign. The symbol to the left of the equal sign is subject to the same
restrictions as a symbolic address, and PALS stores its associated
value in your symbol table. The use of the equal sign does not
increment the location counter; it is, rather, an instruction to the
assembler.

A direct assignment statement may also equate
value assigned to a previously defined symbol.

BETA=17
GAMMA=BETA

a new symbol
For example:

to the

PALS enters the new symbol, GAMMA, into your symbol table with the
value 17. You may change the value assigned to a symbol as follows:

ALPHA=5
ALPHA=7

The second line of code shown changes the value assigned to ALPHA from
5 to 7.

You may use symbols defined by use of the equal sign in any valid
expression. For example:

(.~, 0
By 0
I~:::::I. 00
B::::400
f':)+D
TAD

*~.)()O

IDOES NOT UPDATE CLC
IDDES NOT UPDATE CLC
ITHE VALUE 500 IS ASSEMBLED AT LOC~ 200
ITHE VALUE :1.200 IS ASSEMBLED AT LOC. 201

If the symbol to the left of the equal sign is in the permanent symbol
table, PALS will print the redefinition diagnostic:

RD address

as a warning, where address is the value of the location counter at
the point of redefinition. PAL8 will store the new value in the
symbol table; for example:

CLA=7600

will cause the diagnostic:

RD+200

Whenever you use CLA after this point, it will have the value 7600.

10

PALS

9.6 Symbolic Instructions

Symbols you use as instructions must be predefined by the assembler or
defined in the assembly by the programmer. If a statement has no
label, the instructions may appear first in the statement and must be
terminated by a space, tab, semicolon, slash, or carriage return. The
following are examples of legal instructions:

TAD
PAGE
ZIP

(a mnemonic machine instruction)
(an assembler pseudo-op)
(an instruction defined by the user)

9.7 Symbolic Operands

Symbols used as operands normally have a value you have defined. The
assembler allows symbolic references to instructions or data defined
elsewhere in the program. Operands may be numbers or expressions.
For example:

TOTAL, TAD ACI + TAG

A two's complement add the values of the two symbols ACI and TAG (that
you have already defined; see Section 10.1). This value is then used
as the address of the operand.

9.S Internal Symbol Representation for PALS

Each permanent and user-defined symbol occupies four words in the
symbol table storage area. A PDP-S instruction has an operation code
of three bits as well as an indirect bit, a page bit, and seven
address bits. The PALS assembler distinguishes between pseudo-Dps,
memory reference instructions, other permanent symbols, and
user-defined symbols in the symbol table.

10.0 EXPRESSIONS

The combination of symbols, numbers, and certain characters called
operators, which cause a system to perform specific arithmetic
operations, form expressions. Either a comma, carriage return, or
semicolon terminates an expression.

10.1 Operators

There are seven characters in PALS that act as operators:

+

%

&
Space
(or TAB)

Two's complement addition
Two's complement subtraction
Multiplication (unsigned, 12-bit)
Division (unsigned, 12-bit)
Boolean inclusive OR
Boolean AND
Treated as a Boolean inclusive OR except in
a memory reference instruction

11

PALS

Two's complement addition and subtraction appear in detail in Chapter
1 of Introduction to Programming. Refer to that handbook if you want
more information. PALS makes no checks for overflow during assembly,
and any overflow bits are lost from the high-order end. For example:

7755+24 will give a result of 1

You may use the operators + and - freely as prefix operators. PALS
performs multiplication by repeated addition. It makes no checks for
sign or overflow. All 12 bits of each factor are considered as
magnitude. For example:

3000~2 will give a result of 6000

PALS performs division by repeated
subtractions PALS performs is the
saved and no checks are made for sign.
yield a result of O. For example:

7000%1000 will yield a result of 7

You could write this as:

-1000%1000

subtraction. The number of
quotient. The remainder is not
Division by 0 will arbitrarily

In this case you might expect the answer to be -1 (7777); but because
all 12 bits are considered as magnitude, the result is still 7.

Use of the multiplication and division operators requires an attention
to sign on your part beyond what is required for simple addition and
subtraction. Table 2 contains examples of operators.

The! operator causes PALS to perform a Boolean inclusive OR bit by
bit between the left-hand term and the right-hand term. (The
inclusive OR is explained in Chapter 1 of Introduction to
Programming.) There is an option you can give to the assembler to have
! interpreted as a 6-bit left shift of the left term prior to the
inclusive OR of the right. According to this interpretation:

if A=l and B=2
then A!B=0102

Expression

7777+2
7776-3
0~2

2~0

1000~7

0%12
12%0
7777%1
7000%1000
1%2

Table 2
Use of Operators

Optional Form

-1+2
-2-3

-1%1
-1000%1000

12

Result

+1
7773 or -5
0
0
7000 or -1000
0
0
7777 or -1
7
0

PALS

Under normal conditions AlB would be 0003. The & operator causes
PAL8 to perform a Boolean AND bit by bit between the left and right
values. The operation is the same as the memory reference
instruction AND indicates.

SPACE has special significance depending on the context in which you
use it. When the symbol preceding the space is not a memory
reference instruction as in the following example:

SMA CLA

it causes PAL8 to perform an inclusive OR between the terms of the
expression. In this case, SMA=7500 and CLA=7600. The expression
SMA CLA is assembled as 7700. When you use SPACE following
pseudo-operators it merely delimits the symbol. When you use it
after memory reference operators it also signals the assembler that
a memory reference instruction must be assembled.

User-defined symbols are treated as operate instructions. For
example:

A=333
*222

B, CLA

possible expressions and their values follow, using the symbols just
defined. Notice that the assembler reduces each expression to one
four-digit (octal) word:

A
B
A+B
A-B
-A
I-B
B-1
AlB
-71

0333
0222
0555
0111
7445
7557
0221
0333
7707

(an inclusive OR is performed)

If you are loading the information generated, the current location
counter is incremented. For example:

B-7;A+4;A-B

produces three words of information;
is incremented after each expression.

HLT=HLT CLA

the current location
The statement:

counter

produces no information to be loaded (it produces an association in
the symbol table) and hence does not increment the current location
counter.

*4721
TEMP,
TEM2, 0

The location counter is not incremented after the line TEMP,; the
two symbols TEMP and TEM2 are assigned the same value, in this case
4721.

Since a PDP-8 instruction has an operation code of three bits as
well as an indirect bit, a page bit, and seven address bits, the
assembler must combine memory reference instructions somewhat

13

PAL8

differently from the way in which it combines operate or lOT
instructions. The assembler differentiates between the symbols in
its permanent symbol table and user-defined symbols. PAL8 uses the
following symbols as memory reference instructions:

AND
TAD
ISZ
DCA
JMS
JMP

0000
1000
2000
3000
4000
5000

Logical AND
Two's complement addition
Increment and skip if zero
Deposit and clear accumulator
Jump to subroutine
Jump

When the assembler has processed one of these symbols, the space
following it acts as an address field delimiter.

*4l0()
j~1F' (.~

A has the value 4101, JMP has the value 5000, and the space acts as
a field delimiter. These symbols are represented as follows:

A
JMP

100 001 000 001
101 000 000 000

The seven address bits of A are taken, e.g.:

000 001 000 001

PAL8 tests the remaining bits of the address to see if they are
zeros (page zero reference) i if they are not, the current page bit
is set:

000 all 000 001

PAL8 then ORs the operation code into the JMP expression to form:

101 all 000 001

or, more concisely in octal:

5301

In addition to performing the above tests, PAL8 compares the page
bits of the address field with the page bits of the current location
counter. If the page bits of the address field are nonzero and do
not equal the page bits of the current location counter, an
out-of-page reference is being attempted and the assembler will take
action as described in the section on link generation and storage
(Section 13. 0) .

10.2 Special Characters

In addition to the operators described in the previous section, PAL8
recognizes several special characters that serve specific functions
in the assembly process. These characters are:

,
*

"

equal sign
comma
asterisk
dot
double quote

14

()
[1
/

<>
$

PAL8

parentheses
square brackets
slash
semicolon
angle brackets
dollar sign

The equal sign, comma, asterisk, slash, and semicolon have
previously described. The remainder will be described next.

been

The special character dot (.) always has a value equal to the value of
the current location counter. You may use it as any integer or symbol
(except to the left of an equal sign); you must precede it by a space
when you use it as an operand. For example:

*200
~MP .+2

is equivalent to JMP 0202. Also,

*300
.+2400

will produce in location 0300 the quantity 2700. Consider:

*2200
CALL=JMS I.
0027

The second line (CALL=JMS I.) does not increment the current location
counter; therefore, PAL8 places 0027 in location 2200 and places CALL
in your symbol table with an associated value of 4600 (the octal
equivalent of JMS I).

If you precede a single character by a double quote ("), PAL8 uses the
8-bit value of ASCII code for the character rather than interpreting
the character as a symbol (ASCII codes are listed in Appendix A). For
example:

CLA
TAD (itA

The constant 0301 is placed in the accumulator. The code:

II /DOUBLE QUOTE AND DOT

will be assembled as 0256. The character must not be a carriage
return or one of the characters that is ignored on input (discussed at
the end of this section).

Left and right parentheses () enclose a current page literal
member is optional).

*200

Cl_A
TAD INDEX
TAD (2)
DCA INDEX

15

(closing

PAL8

The left parenthesis is a signal to the assembler that the expression
following is to be evaluated and assigned a word in the constants
table of the current page. This is the same table in which PAL8
stores the indirect address linkages. In the above example, the
quantity 2 is stored in a word in the linkage and literals list
beginning at the top of the current memory page. The instruction in
which the literal appears is encoded with an address referring to the
address of the literal. PAL8 assigns a literal to storage the first
time it encounters it; subsequent reference to that literal from the
current page is made to the same register. The use of literals frees
symbol storage space for variables and makes programs more readable.

If you wish to assign literals to page zero rather than to the current
page, use square brackets, [1, in place of parentheses. This enables
you to reference a single literal from any page of memory. For
example:

*200
TAD [2J

~500
TAD [2J

The closing member is optional.
forms: constant term, variable
another literal.

Literals may take the following
term, instruction, expression, or

NOTE

You can nest literals; for example:

~200
TAD (TAD (30

You may continue this type of nesting in
some cases to as many as six levels,
depending on the number of other
literals on the page and the complexity
of the expressions within the nest. If
you reach the limits of the assembler,
the error messages BE (too many levels
of nesting) or PE (too many literals)
will result.

Use angle brackets as conditional delimiters. The code enclosed in
the angle brackets is to be assembled or ignored contingent upon the
definition of the symbol or value of the expression within the angle
brackets. (Use the IFDEF, IFNDEF, IFZERO, and IFNZRO pseudo-operators
with angle brackets. These are described in Section 12.0.)

NOTE

If your program has conditionals, avoid
using angle brackets. The brackets may
be interpreted as beginning or
terminating the conditional.

16

PALS

The dollar sign character ($) is optional at the end of a program and
is interpreted as an unconditional end-of-pass. It may however occur
in a text string, comment or " term, in which case it is interpreted
in the same manner as any other character.

The assembler handles the following characters for the pass 3 listing,
but they are otherwise ignored:

Used to skip to a new page FORM FEED
LINE FEED Used to create a line spacing without causing a

carriage return
RUBOUT Used by the EDITOR to allow corrections in the input

file

Nonprinting characters include:

SPACE
TAB
RETURN

11.0 INSTRUCTIONS

There are two basic groups of instructions: memory reference
instructions and microinstructions. Memory reference instructions
require an operand; microinstructions do not.

11.1 Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to memory.
These instructions are called memory reference instructions and take
the following format:

o 2 S 9 10

OPERATION

~------~------~
CONTAINS A1 TO ~
SPECIFY GROUP 3

KES-E EXTENDED ARITHMETIC ELEMENT
CONTAINS A1 TO SPECIFY GROUP 3 ___________________ ---4

Figure 1 Memory Reference Bit Instructions

Bits 0 through 2 contain the operation code of the instruction PAL8 is
to perform. Bit 3 tells the computer if the instruction is indirect.
Bit 4 tells the computer if the instruction is referencing the current
page or page zero. This leaves bits 5 through 11 (7 bits) to specify
an address. These 7 bits can specify 200 octal (128 decimal)
locations; the page bit increases accessible locations to 400 octal
or 256 decimal. A list of the memory reference instructions and their
codes is given in Section 19.0.

17

PAL8

In PAL8 a memory reference instruction must be followed by a space(s)
or tab(s), an optional I or Z designation, and any valid expression.
It may be defined with the FIXMRI instruction (see Section 12.16,
Altering the Permanent Symbol Table). You may define permanent
symbols using the FIXTAB instruction and use them in address fields as
follows:

A=1234
FIXTAB
TAD A

11.2 Indirect Addressing

When the character I appears in a statement between a memory reference
instruction and an operand, PAL8 interprets the operand as the address
(or location) containing the address of the operand you are using in
the current statement. Consider:

TAD 40

which is a direct address statement, where 40 is the location on page
zero containing the quantity to be added to the accumulator. You may
make direct reference to locations on the current page and page zero.
For compatibility with older paper tape assemblers the symbol Z is
also accepted as a way of indicating a page zero reference, as
follows:

TAD Z 40

This is an optional notation, not differing in effect from the
previous example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator. Now consider:

TAD I 40

This is an
location
Thus, if
then 456

indirect address statement, where 40 is the address of the
containing the quantity to be added to the accumulator.

location 40 contains 0432, and location 432 cont~ins 0456,
is added to the accumulator.

NOTE

Because the letter I indicates indirect
addressing, do not use it as a variable.
Likewise you should never use the letter
Z as a variable because it is sometimes
used to indicate a page zero reference.

11.3 Microinstructions

Microinstructions are
and Input/Output
microinstructions are
Group 3 designations.

divided into two groups: operate instructions
Transfer (lOT) microinstructions. Operate
further subdivided into Group 1, Group 2, and

18

PAL8

NOTE

If you mistakenly specify an illegal
combination of microinstructions, the
assembler will perform an inclusive OR
between them; for example:

eLL SKP is interpreted as SPA
(?lOO) (7410) (7510)

11.3.1 Operate Microinstructions - Within the operate group, there
are three groups of microinstructions that you cannot mix. Group 1
microinstructions perform clear, complement, rotate, and increment
operations; they are designated by a cleared bit 3 of the machine
instruction word.

o 2 3 4 5

ROTATE AC AND L RIGHT-----------'

ROTATE AC AND L LEFT ---------------'

ROTATE 1 POSITION IF A 0,2 POSITIONS IF A 1--------'
(BSW IF BITS 8, 9 ARE 0)

LOGICAL SEQUENCE: 1 - CLA, CLL
3-IAC

2 - CMA, CML
4-RAR,RAL,RTR,RTL,BSW

Figure 2 Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions first check the contents of the accumulator
and link; then, based on the check, they either continue to the next
instruction or skip it. You can identify Group 2 microinstructions by
a set bit 3 and a cleared bit 11 of the machine instruction word.

o 2 3 4 5 6 7 8 9 10 11

I CLA I SMA I SZA I SNL I

REVERSE SKIP SENSING OF BITS 5, 6, 7 IF SET----If

LOGICAL SE;QUENCE: 1 (BIT 81S 0) - SMA OR SZA OR SNL
(BIT 8 IS 1) - SPA AND SNA AND SZL

2 - CLA
3-0SR,HLT

Figure 3 Group 2 Operate Microinstruction Bit Assignments

Group 3 microinstructions reference the MQ register. You can
distinguish them from Group 2 instructions because bits 3 and 11 are
set. The other bits are part of a hardware arithmetic option.

19

o
OPERATION

CODE

INDIRECT

2

ADDRESSING

MEMORYPAGE--------~

PALS

5 6 7 8 9 10 11

ADDRESS

Figure 4 Group 3 Operate Microinstruction Bit Assignments

You cannot combine Group 1 and Group 2 microinstructions since bit 3
determines either one or the other. Within Group 2, there are two
groups of skip instruc~ions. You can refer to them as the OR group
and the AND group.

OR Group

SMA
SZA
SNL

AND Group

SPA
SNA
SZL

The OR group is designated by a cleared bit 8, and the AND group by a
set bit 8. You cannot combine OR and AND group instructions since bit
8 determines either one or the other.

If you do combine skip instructions, it is important to note the
conditions under which a skip may occur.

• OR Group--If you have combined these skips in a statement, the
inclusive OR of the conditions determines the skip. For
example:

SZA SNL

The next statement is skipped if the accumulator contains
0000, or the link is a 1, or both.

• AND Group--If you have combined the skips in a statement, the
logical AND of the conditions determines the skip. For
example:

SNA SZL

The next statement is skipped only if the accumulator differs
from 0000 and the link is O.

11.3.2 Input/Output Transfer Microinstructions - If you want to
initiate operation of peripheral equipment and effect an information
transfer between the central processor and the input/output device(s)

that is, between the console terminal and the line printer -- use
I/O transfer microinstructions.

20

PAL8

11.4 Autoindexing

If you are processing large amounts of data, you will find that
interpage references are often necessary for obtaining operands. The
PDP-8 computers have facilities to make it easy for you to address
this data. When one of the absolute locations from 10 to 17 (octal)
is indirectly addressed, the contents of the location is incremented
before it is used as an address and the incremented number is left in
the location. This allows you to address consecutive memory locations
using a minimum of statements. You must remember that initially you
must set these locations (10 to 17 on page 0) to one less than the
first desired address. Because of their characteristics, these
locations are called auto index registers. No incrementation takes
place when you address locations 10 to 17 directly. For example, if
the instruction to be executed next is in location 300 and the data to
be referenced is on the page starting at location 5000, use autoindex
register 10 to address the data as follows:

0276
0277
0300

0377

1377
3010
1410

4777

TADC4777
DCA10
TADll0

C4777,4777

1=5000-1
ISET UP AUTO INDEX
IINCREMENT TO 5000
IBEFORE USE AN AN

ADDRESS

When the instruction in location 300 is executed, the contents of
location 10 will be incremented to 5000 and the contents of location
5000 will be added to the contents of the accumulator. When the
instruction TAD I 10 is executed again, the contents of location 5001
will be added to the accumulator, and so on.

12.0 PSEUDO-OPERATORS

You may use pseudo-operators to direct the assembler to perform
certain tasks or to interpret subsequent coding in a certain manner.
Some pseudo-ops generate storage words in the object program, other
pseudo-ops tell the assembler how to proceed with the assembly.
Pseudo-ops are maintained in the permanent symbol table. The function
of each PALS pseudo-op follows.

12.1 Indirect and Page Zero Addressing

Use the pseudo-operators I and Z to specify the type of addressing to
be performed. These were discussed in Section 11.2.

12.2 Radix Control

Numbers used in a source program are initially considered to be octal.
However, you may change or alternate the radix interpretation by using
the pseudo-operators DECIMAL and OCTAL. The DECIMAL pseudo-op
interprets all following numbers as decimal until the occurrence of
the pseudo-op OCTAL. The OCTAL pseudo-op resets the radix to its
original octal base.

21

PAL8

12.3 Extended Memory

The pseudo-op FIELD instructs the assembler to output a field setting
so that it may recognize more than one memory field. This field
setting is output during pass 2 and is recognized by the Absolute
Loader, which loads all subsequent information into the field
specified by the expression. The form is:

FIELDn

where n is either an integer, a previously defined symbol, or an
expression within the range a to 7.

This field setting is output on the
followed by an origin setting of 200.
Loader reads this word and then begins
new field.

binary file during pass 2,
As it is executed, the Absolute
loading information into the

The assembler never remembers the field setting in binary, and no
initial field setting is output. However, it appears as the
high-order digit of the Location Counter on the listing. A binary
file produced without field settings will be loaded into field a when
using the ABSLDR.

You may use a symbol in one field to reference the same location in
any other field. Use of the CDF and CIF instructions determines the
field to which it refers. (If you are unfamiliar with the lOT's but
wish to use them, refer to the PDP/8E Small Computer Handbook and
experiment with several short test programs to learn their effect.)
You must use CDF and CIF instructions prior to any instruction
referencing a location outside the current field, as shown in the
following example:

P301,

P302,
PRINT,

PCDIF,

~200
TAD P301
DCF 00
CIF 10
JMS PRINT
CIF 10
JMP NEXT
301
FIELD 1
~200
TAD P302
CDF 10
JMS PRINT
HLT
302
o
TLS
TSF
JMP .-1
CLA
RDF
TAD PCDIF
DCA .+1
000
JMP I PRINT
CDF CIF 0

22

PAL8.

When you use FIELD, the assembler follows the new FIELp setting with
an origin at location 200. For this reason, if you want to assemble
code at location 400 in field 1 type:

FIELD 1.
*400

ICOI=<I=<ECT EXAMPLE

The following is incorrect and will not generate the desired code:

.!400
FIELD :I.

IINCDFmECT

Specifying the /0 option to PAL8 inhibits the origin to 200 after a
FIELD pseudo-op.

12.4 End-of-File

PAUSE signals the assembler to stop processing the file being read.
You should use a PAUSE only at the physical end of a file and with two
or more segments of one program. When the assembler reaches a PAUSE
statement, it ignores the remainder of the file and continues
processing the next input file. In such a case PAUSE must be pte sent
or a PH error will occur. The PAUSE pseudo-op is present mainly for
compatibility with paper tape assemblers, and its use is optional.

12.5 Resetting the Location Counter

The PAGE n pseudo-op resets the location counter to the first address
of page n, where n is either an integer, a previously defined symbol,
or a symbolic expression, whose terms have been defined previously and
whose value is from 0 to 37 inclusive. If you do not specify n, the
location counter is reset to the next logical page of memory. For
example:

PAGE 2 sets the location counter to 00400
PAGE 6 sets the location counter to 01400

If you use the pseudo-op without an argument, the current location
counter, if at the first location of a page, will not move. In the
following example, the code TAD B is assembled into location 00400:

PAGE
TAD B

If you give several consecutive PAGE pseudo-ops, the first will cause
the current location counter to be reset as specified. The rest of
the PAGE pseudo-ops will be ignored.

12.6 Entering Text Strings

The TEXT pseudo-op allows you to enter a string of text characters as
data and store in 6-bit ASCII. To do this, use the pseudo-op TEXT
followed by a space or spaces, a delimiting character (which must be a
printing character), the string of text, and the same delimiting
character. Following the last character, a 6-bit zero is inserted as
a stop code. For example:

TAG, TEXT/l23* /

23

The string would be stored as:

6162
6352
0000

PALS

The IF option inhibits the generation of the extra 6-bit zero
character.

12.7 Suppressing the Listing

Those portions of the source program enclosed by XLIST pseudo-ops will
not appear in the listing file; but the code will still be assembled.

You may use two XLIST pseudo-ops to enclose the code to be suppressed.
The first XLIST, with no argument, will suppress the listing, and the
second XLIST will resume it. XLIST may also be used with an
expression as an argument; a listing will be inhibited if the
expression is not equal to zero, or allowed if the expression is equal
to zero. XLIST pseudo-ops never appear in the assembly listing.

12.S Reserving Memory

ZBLOCK instructs the assembler to reserve n words of memory containing
zeroes, starting at the word indicated by the current location
counter. It is of the form:

ZBLOCK n

For example:

ZBLOCK 40

causes the assembler to reserve 40 (octal) words. The n may be an
expression. If n=O, no locations are reserved.

12.9 Conditional Assembly Pseudo-Operators

The IFDEF pseudo-op takes the form:

IFDEF symbol <source code>

If you have previously defined the symbol indicated, the code
contained in the angle brackets is assembled. If you have not defined
the symbol, this code is ignored. You may contain any number of
statements or lines of code in the angle brackets. The format of the
IFDEF statement requires a single space before and after the symbol.

The IFNDEF pseudo-op is similar in form to IFDEF and is expressed:

IFNDEF symbol <source code>

If the symbol indicated has not been previously defined, the source
code in angle brackets is assembled. If the symbol is defined, the
code in the angle brackets is ignored.

24

PAL8

The IFZERO pseudo-op is of the form:

IFZERO expression <source code>

If the evaluated (arithmetic or logical) expresssion is equal to zero,
the code within the angle brackets is assembled. If the expression is
non-zero, the code is ignored. You may contain any number of
statements or lines of code in the angle brackets. The expression may
not contain any imbedded spaces and must have a single space preceding
and following it. IFNZRO is similar in form to the IFZERO pseudo-op
and is expressed:

IFNZRO expression <source code>

If the evaluated (arithmetic or logical) expression is not equal to
zero, the source code within the angle brackets is assembled. If the
expression is equal to zero, this code is ignored. You can nest
pseudo-ops, for example:

IFDEF SYM <IFNZRO X2 < ..• > >

In order to include or delete statements, PAL8 evaluates the outermost
pseudo-op first.

IFZERO A<

(code)

> •••

12.10 Use of Conditionals

You can construct useful pseudo-ops such as IFNEG and IFPOS as in the
following example:

IFNEG expression <statements>

can be written as:

(assemble statements
if expression is
negative)

IFNZRO expressions &4000 <statements>

while its complement

IFPOS expression <statements>

can be implemented by writing:

IFZERO expression &4000 <statements>

To prevent PAL8 from printing
statements in the listing, use
complementary conditionals:

IFNDEF LTAPE <XLIST>
IFDEF LTAPE <

HERE
GOES
THE
CODE>

IFNDEF LTAPE <XLIST>

nonsatisfied condition assembly
the following solution, employing

25

PAL8

12.11 Controlling Binary Output

NOPUNCH causes the assembler to cease binary output but continue
assembling code. It is ignored except during pass 2.

ENPUNCH causes the assembler to resume binary output after NOPUNCH:
it is ignored except during pass 2. For example, you might use these
two pseudo-ops when several programs share the same data on page zero.
When these programs are to be loaded and executed together, only one
page zero need be output.

12.12 Controlling Page Format

The EJECT pseudo-op causes the listing to jump to the top of the next
page. A page eject is done automatically every 55 lines: EJECT is
useful if you want more frequent paging. If you follow this pseudo-op
with a string of characters, the first 50 (octal) characters of that
string will be used as a new header line.

12.13 Typesetting Pseudo-Operator

Use DTORG in typesetting to output a two-frame DEC tape block number
(four digits) in the binary tape. The form of this pseudo-op is as
follows:

DTORG expression

The first frame on the
(in the same manner
typesetting loader that
block n. The DTORG
FIELD setting, which is
the same program.

binary tape includes channels 7 and 8 punched
as a FIELD setting) as a signal to a special
it is to load the following data into DECtape
setting is added into the checksum, unlike the
not included. Do not use DTORG and FIELD in

12.14 Calling OS/8 User Service Routine

You may use the pseudo-operators DEVICE and FILENAME by issuing calls
to the OS/8 User Service Routine, but they have no other meaning to
the assembler. The form for these pseudo-ops is:

DEVICE name
FILENAME name.extension

When you use DEVICE, the name can be from 1 to 4 alphanumeric
characters. These are trimmed to 6-bit ASCII and packed into 2 words,
filled in with zeroes on the right if necessary. with FILENAME
(FILENA is also acceptable) the name (or name.extension) may be from 1
to 6 alphanumeric characters, and the optional extension may be 1 or 2
characters. The characters are trimmed to 6-bit ASCII and packed 2 to
a word. Three words are allocated for the filename, filled with

26

PAL8

zeroes on the right if fewer than 6 characters are specified, followed
by one word for the extension. For example:

L, FILENAME ABC.DA

is equivalent to the following coding:

L, 0102
0300
0000
0401

12.15 Relocation Pseudo-Op

At some point, you may want to assemble code at a given location and
then move it to another location for execution. This may result in
errors unless the relocated code is assembled in such a way that the
assembler assigns to symbols their execution-time addresses rather
than their load-time addresses. The RELOC pseudo-op establishes a
virtual location counter without altering the actual location counter.
The line:

RELOC expr

sets the virtual location counter to expr. The line:

RELOC

sets the virtual location counter equal to the actual location counter
and terminates the relocation section.

Example:

0400 *400
2000 RELOC2000

02000* 1377 CODE, TAD (CODE
02001* 3005 DCAS
02177* 2000 PAGE

0600 RELOC

The location marked CODE is loaded into location 400, but the
assembler treats it as if it were loading into location 2000. The
asterisks after the location values indicate that the virtual and the
actual location counters differ for that line of code. RELOC always
causes current page literals to be dumped.

12.16 Altering the Permanent Symbol Table

PAL8 contains a table of symbol definitions for the PDP-8 and OS/8
peripheral devices. These are symbols (such as TAD, DCA, and CLA)
that are used in most PDP-8 programs. This table is the permanent
symbol table for PAL8.

If you purchase one or more optional devices whose instruction set is
not defined among the permanent symbols (for example, EAE or an A/D
converter), you should add the necessary symbol definitions to the
permanent symbol table in every program you assemble.

27

PALS

Conversely, if you need more space for user-defined symbols, you would
probably want to delete all definitions except the ones used in your
program. For such purposes, PALS has three pseudo-ops you can use to
alter the permanent symbol table. The assembler recognizes these
pseudo-ops only during pass 1. During either pass 2 or pass 3 they
are ignored and have no effect.

EXPUNGE deletes the entire permanent symbol table, except pseudo-ops.

FIXTAB appends all presently defined symbols to the permanent symbol
table. All symbols defined before the occurrence of FIXTAB become
part of the permanent symbol table for the current assembly.

To append the following instructions to the symbol table, generate an
ASCII file called SYM.PA containing:

MUY=740S
DVI=7407
CLSK=6l3l
FIXTAB

/MULTIPLY
/DIVIDE
/SKIP ON CLOCK INTERRUPT
ISO THAT THESE WON'T BE
/PRINTED IN THE SYMBOL TABLE

You then enter the ASCII file in PALS's input designation. You
also place the definitions at the beginning of the source file.
eliminates the need to load an extra file. Each time you load
assembler, PALS restores its permanent symbol table.

may
This

the

The third pseudo-op used to alter the permanent symbol table in PALS
is FIXMRI. You use FIXMRI to define a memory reference instruction,
and it is of the form:

FIXMRI name=value

Follow the letters FIXMRI with one space, the symbol for the
instruction to be defined, an equal sign, and the value of the symbol.
The symbol will be defined and stored in the symbol table as a memory
reference instruction. You must repeat the pseudo-op for each memory
reference instruction you are defining. For example:

EXPUNGE
FIXMRI TAD=lOOO
FIXMRI DCA=3000
CLA=7200
FIXTAB

When the preceding program segment is read into the assembler during
pass 1, PAL8 deletes all symbol definitions and adds the three symbols
listed to the permanent symbol table. Notice that CLA is not a memory
reference instruction. You can perform this process to alter the
assembler's symbol table so that it contains only those symbols used
at a given installation or by a given program. This may increase the
assembler's capacity for user-defined symbols in the program.

28

PAL8

13.0 LINK GENERATION AND STORAGE

In addition to handling symbolic addressing on the current page of
memory, PAL8 automatically generates links for off-page references.
If your program makes reference to an address not on the page where an
instruction is located, the assembler sets the indirect bit (bit 3)
and an indirect address linkage will be generated on the current
memory page. If the off-page reference is already an indirect one,
the error diagnostic II (illegal indirect) will be generated. For
example:

*2117
A~

*2600

CLA

JMP A

In the example above, the assembler will recognize that the register
labeled A is not on the current page (in this case 2600 to 2777) and
will generate a link to it as follows:

1. In location 2600 the assembler will place the word 5777,
which is equivalent to JMP I 2777.

2. In address 2777 (the last available location on the current
page) the assembler will place the word 2117 (the actual
address of A) .

During pass 3, an apostrophe (') will follow the octal code for the
instruction to indicate that a link was generated.

Although the assembler will recognize and generate an indirect address
linkage when necessary, you may indicate an explicit indirect address
by the pseudo-op I. The assembler cannot generate a link for an
instruction that is already specified as being an indirect reference.
In this case, the assembler will print the error message II (illegal
indirect). For example:

*2117
A~

*2600

CLA

JMP I A

The above coding will not work because A is not defined on the page
where JMP I A is attempted, and the indirect bit is already set.

Literals and links are stored on each page starting at page address
177 (relative) and extending toward page address 0 (relative).
Whenever the origin is then set to another page, the literal buffer
for the current page is output. This does not affect later execution.
Except for page zero, where there is room for 160 (octal) literals and
links, each page of memory has room for 100 (octal) literals.
Literals and links are stored only as far down as the highest
instruction on the page. Further attempts to define literals will
result in a PE (page exceeded) or ZE (page zero exceeded) error
message.

29

PAL8

14.0 CODING PRACTICES

A neat printout (or program listing, as it is usually called) makes
subsequent editing, debugging, and interpretation much easier than
coding laid out in a haphazard fashion. The coding practices listed
below are in general use and will result in a readable, orderly
listing.

• A title comment begins with a slash at the left margin.

• Pseudo-ops may begin at the left margin. However, they are
often indented one tab stop to line up with the executable
instructions.

• Address labels begin at the left margin. They are separated
from succeeding fields by a tab stop.

• Instructions, whether or not they are preceded by a label
field, are indented one tab stop.

• A comment is separated from the preceding field by one or two
tabs (as required) and a slash; if the comment occupies the
whole line it usually begins with a slash at the left margin.

15.0 PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The following program was generated using the OS/8 EDITOR and was
assembled with PAL8.

/SAMPLE PAL8 PROGRAM
/GETS INPUT FROM KBD,HALTS WHEN "E" IS TYPED

.!.200
BEGIN, I\CC

KBF
JMP • ·-·1
KRB
TAD (.. _. E
BNA CL.A
HLT
..JMP BEGIN+:L

lEND OF EXAMPLE
~I;

IWAIT FOR FL.AG
IREAD IN CHARACTER

lIB IT E!'

The program consists of statements and pseudo-ops and is terminated by
the dollar sign ($). If the program is large, you can segment it by
placing it into several files; this often facilitates the editing of
the source program since each section will be smaller.

The assembler initially sets the current location counter to 0200.
This counter is reset whenever the asterisk (*) is processed.

The assembler reads the source file for pass 1 and defines all symbols
used. During pass 2, the assembler reads the source file and
generates the binary code using the symbol table equivalences defined
during pass 1. You may load the binary file that is output with the
Load command. This binary file consists of an origin setting and data
words.

30

PALS.

During pass 3, the assembler reads the source file and generates the
code from the source statements. The assembly listing is output in
ASCII code. It consists of the current location counter, the
generated code in octal, and the source statement. Unless you have
chosen options to suppress paging or to change the header, the first
50 (octal) characters of the first line of the source program will be
used as a heading for each page, followed by the assembler version
number, the date and the listing page number. The 5-digit first
column is the field number and 4-digit octal address (current location
counter) ; the 4-digit second column is the assembled object code.
PALS prints the symbol table at the end of the pass. The pass 3
output is:

ISAMPLE. PAL8 PROGRAM

ISAMPLE PAL8 PROGRAM

0200
6032
603:1.
~:)20 :1.

IGETS INPUT FROM KBD,HALTS WHEN "E" IS TYPED
*2()()

oo~!. 00
0020:1.
00202
00203
O()2()4
O()2()5
O()206
00207

0037?

6036
:L3"7"7
76:50
7402
52():I.

BEGIN, KeC
I\SF
-.IMP .-.:1.
I\F<B
TAD (-DE
::;NA CI ... A
HLT
-.IMP BEGIN+:I.

lEND OF EX('~MPLE

ISAMPLE PAL8 PROGRAM

BEGIN 020()

16.0 ABSOLUTE BINARY LOADER

liAlA I T FClI:~ FLAG
IREAD IN CHARACTER

lIS IT E?

The Absolute Binary Loader is used to load the binary output created
. by the PALS assembler. Input files are loaded according to the
options discussed in this section, and a core control block is
constructed (see the OS/8 System Reference Manual, Section 3.28,
concerning the GET command). The standard input devices are the paper
tape reader, DECtape, LINCtape, the default storage device (DSK:), and
SYS:, which represents the system device. You may use any other
device as an input device if it can contain absolute binary files and
if a device handler exists. The terminal (TTY:) should not be used,
as the binary code may seem like control characters to the TTY
handler.

16.1 Calling and Using ABSLDR

ABSLDR normally accepts absolute binary files (you must load
relocatable files with the Linking Loader); however, you can load
save (.SV) format files with ABSLDR providing you use the /1 option.
If you type no extension to the input file name, ABSLDR assumes the
.BN extension. Up to nine input files are allowed, but if more than
one program is present in a file, only the first program is loaded
unless you use the /S option. (This feature allows ABSLDR to ignore
any 'noise characters' that might be caused by reading over the end of
a paper tape.)

31

PAL8

You call the Absolute Binary Loader from the system device by typing:

R ABSLDR

in response to the dot printed by the Keyboard Monitor. The system
responds by printing an asterisk at the left margin. The user then
types an input line to ABSLDR, indicating input files and any options
desired. ABSLDR does not recognize any output files, since the
purpose of the loader is to load and optionally start binary output
files. The format of ' the output line is:

*DEV:INPUT.EX/(Options)

When you type the RETURN key at the end of an input specification
line, you signal the loader that more input is to be given on the next
line. If the ALT MODE key is used as a line terminator, no more input
is expected, the Command Decoder is not recalled, and control returns
to the Keyboard Monitor. For example:

• F~ AB!:;I...DF~

*DTA1:FII...ElvFII...E2,FILE3,FILE4
)j(F'TH: ~;

The preceding lines cause FILEl, FILE2, FILE3, and FILE4 to be loaded
at their absolute locations in core from DECtape 1. A file will then
be read from the paper tape reader. The $ character is printed by the
ALT MODE key, which indicates a return to the Keyboard Monitor.

If the /G
execution)
passes to
regardless
typed.

NOTE

option (load and begin
is specified, control always
the program just loaded,
of which line terminator was

When ABSLDR has completed loading and control has returned to the
Keyboard Monitor, the program loaded may not be physically in core at
that moment. ABSLDR utilizes system scratch blocks to store those
locations that would overlay various parts of the Monitor. To examine
core locations after using ABSLDR, use ODT (see OS/8 Reference Manual
for instructions detailing the use of ODT).

16.1.1 ABSLDR Options - The various options accepted by ABSLDR are
described in Table 3.

Option

/8

/9

Table 3
ABSLDR Options

Meaning

Used when locations 0-1777 of field 0 are not being
used by the program. Eliminates extra DEC tape
motions to save these locations, hence saves time.
See the OS/8 Software Support Manual for details of
Job Status Word.

Similar to the /8 option; used when locations 0-1777
of field 1 are not to be saved.

(continued on next page)

32

Option

II

IR

Is

IP

IG

In

=n

PAL8

Table 3 (Cont.)
ABSLDR Options

Meaning

Treats the input file(s) as a core image file to be
overlaid with the input of succeeding lines. (If you
do not use this option in the first command line, you
can only use it by recalling ABSLDR from the Keyboard
Monitor level.) You can use the II option to make
patches to a program you have already saved without
reassembling the entire program.

Resets internal core map of ABSLDR to appear as
though nothing has been loaded into core.

Loads all binary programs in the specified input
file (s) (instead of loading only the first program in
each file, which is normally done). The options Is
and II operate on a line-at-a-time basis. Each
successive command line must have the option
respecified if it is required. For example:

*PTR:,,/S
*DT.!:)l :A,B,C

These command strings instruct ABSLDR to take three
files from PTR (loading all binary programs in each
file) and three files from DTAI (loading only the
first binary program in each file). The IS option is
not implemented on the second line.

Sets bit 3 of the Job Status Word (location 07746)
and prevents the Keyboard Monitor from reading a
fresh version of the BATCH monitor into core every
time the monitor level is reentered from the program
level. You can use this option with system programs
that never use more than 8K of cor.e (PIP, FORTRAN II,
SABR). You should not use the IP option with any
program that occupies or modifies core above field I
(see the BATCH chapter in the OS/8 System Reference
Manual for further information).

Starts program execution once the loading procedure
is finished. Normally, control returns either to the
Monitor or Command Decoder (depending on the
terminator key). If IG is specified, control is
given to the program just loaded. The starting
address is assumed to be 200 unless specified in the
input string. Control stays with your program until
it is released to the Monitor from within the
program. No automatic return to Monitor or the
Command Decoder occurs.

Forces loading of all files specified on this input
line into field n (where n is an octal integer).

Sets the starting address of the program in core to
n, where n is a 5-digit octal integer. ABSLDR
inserts a starting address of 0200 in field 0 if you
do not indicate any other address. Specifying 0 as a
starting address is equivalent to not specifying a
starting address, thus ABSLDR would insert a starting
address of 0200.

33

16.1.2 Examples of Input Lines

Example 1:

,H ABBLDf~
*sy!:; t P I:;: C!G • BV I I
*DTA:I.: PATCH!I;

-:-SAVE !:;YB t F'I:;:DG

The preceding commands load the
overlay part of that program
Control then returns to Monitor,
program on the system device.

PALS

core image file PROG.SV and then
file with a binary patch from DTAI.

at which time you save the patched

When you use the /I option, the loader ignores the starting address
and Job Status Word of the core image being loaded. You must specify
the starting address and contents of the Job Status Word (unless the
starting address is 200 in field 0, in which case it need not be
specified) .

Example 2:

,. F((.IB!:;um
.!F'IP.Sl)/I
*PTF::::: 1. :?;OOO «(39) $
,f;tWE !3YS PIP

In example 2, you overlay PIP with a binary patch that will not change
its starting parameters. You could also accomplish this by using an
explicit SAVE:

+ F(ABBI ... DI:;:
*PIP.SV/I
*PTI:~: !~
~SAVE SYS F'IP;13000~6003

Example 3:

.1:(ABSLDH
*PTF~: (89G) !I;

One binary tape is loaded from the paper tape reader. The program
does not use areas 00000-01777 and 10000-11777 of core. The starting
address of the program is considered to be 00200; control transfers
to your program.

16.2 Notes on Using ABSLDR Correctly

ABSLDR is a complex program that, when used incorrectly, can give
unrecoverable errors. Points to remember when using ABSLDR are:

• If you specify an erroneous starting address, control will
pass to that address, however random it may be. Thus,
specifying a starting address in nonexistent memory, for
example, will very likely produce erroneous results and should
not be attempted.

• Do not try to load a program into nonexistent memory.

34

PALS

• ABSLDR ignores programs that load into 07600 or 17600. No
error is generated, but these locations are never loaded. (It
is a good idea not to use 7600 in any field.)

• Do not use old versions of ABSLDR with a new monitor.

• Do not use new versions of ABSLDR with old monitors.

16.3 ABSLDR Error Messages

Table 4 lists the error messages output by ABSLDR. In each case,
control returns to the Command Decoder; you may then repeat the
entire procedure, resetting the loader (with the /R option) and using
different inputs.

Message

BAD CHECKSUM,
FILE # n

BAD INPUT, FILE # n

IO ERROR FILE # n

NO INPUT

NO /I!

Table 4
ABSLDR Error Messages

Meaning

File number n of the input file list has
a checksum error.

Attempt was made to load a nonbinary file
as file number n of the input file list, or
a non-core image with /I option.

An I/O error has occurred in input file
number n.

No input file was found on the designated
device.

Use of /I is prohibited at this point.

17.0 TERMINATING ASSEMBLY

PALS will terminate assembly and return to the Monitor under any of
the following conditions:

• Normal e~it: The end of the source program was reached on
pass 2 (or pass 3 if a listing is being generated).

• Fatal error: One of the following error conditions was found
and flagged (see Table 5):

BE DE DF PH SE

• CTRL/C: If you typed it, control returns to the Monitor.

lS.O PAL8 ERROR CONDITIONS

PAL8 will detect and flag error conditions and generate error messages
on the console terminal. The format of the error message is:

CODE address

35

PAL8

where code is a two-letter code that specifies the type of error, and
address is either the absolute octal address where the error occurred
or the address of the error relative to the last symbolic label (if
there was one) on the current page. For example, because % is an
illegal character, the following code:

BEG, TAD LBL
%TAD LBL

would produce the error message:

IC BEG+OOOI

The pass 3 listing outputs error messages as two-character messages on
the line just prior to the line where the error occurred. The
following table lists the PAL8 error codes. Those labeled Fatal Error
are followed immediately by an effective CTRL/C.

Error Code

BE

CF

DE

DF

IC

ID

IE

II

IP

IZ

Table 5
PAL8 Error Codes

Meaning

Two PAL8 internal tables have overlapped. You can
usually correct this situation by decreasing the
level of literal nesting or the number of current
page literals used prior to this point on the page.
Fatal error: assembly cannot continue.

Chain-to-CREF error. CREF.SV was not found on SYS:.

Device error. An error was detected when trying to
read or write a device. Fatal error: assembly
cannot continue.

Device full. Fatal error: assembly cannot continue.

Illegal character. The character is ignored and the
assembly is continued.

Illegal redefinition of a symbol. An attempt was
made to give a previous symbol a new value by means
other than the equal sign. The symbol is not
redefined.

Illegal equals. An attempt was made to equate a
variable to an expression containing an undefined
term. The variable remains undefined.

Illegal indirect. An off-page reference was made; a
link could not be generated because the indirect bit
was already set.

Illegal pseudo-ope A pseudo-op was used in the wrong
context or with incorrect syntax.

Illegal page zero reference. The pseudo-op Z was
found in an instruction that did not refer to page
zero. The Z is ignored.

(continued on next page)

36

Error Code

LD

LG

PE

PH

RD

SE

UO

us

ZE

PAL 8

Table 5 (Cont.)
PAL8 Error Codes

Meaning

The /L or /G options have been specified and the
Absolute Loader is not present on the system.

Link generated. This code is printed only if the /E
option was specified to PAL8.

Current non-zero page exceeded. An attempt was made
to:

1. Override a literal with an instruction.

2. Override an instruction with a literal.

3. Use more literals than the assembler allows on
that page.

You can correct a PE situation by decreasing either
the number of literals on the page or the number of
instructions on the page.

Phase error. A conditional assembly bracket is still
in effect at the end of the input stream. This is
caused by nonmatching angle bracket « » characters
in the source file.

Redefinition. A permanent symbol has been defined
with =. The new and old definitions do not match.
The redefinition is allowed.

Symbol table exceeded. Too many symbols have been
defined for the amount of memory available. Fatal
error: assembly cannot continue.

Undefined origin. An undefined symbol has occurred
in an origin statement.

Undefined symbol. A symbol has been processed during
pass 2 that was not defined before the end of pass 1.

Page 0 exceeded. This is the same as PE except with
reference to page O.

19.0 PAL8 PERMANENT SYMBOL TABLE

The following are the most commonly used elements of the PDP-8
instruction set; they are found in the permanent symbol table within
the PAL8 Assembler. For additional information on these instructions,
and for a description of the symbols used when programming other
optional devices, see The Small Computer Handbook, available from the
DIGITAL Software Distribution Center. (All times are in microseconds
and representative of the PDP-8/E.)

37

PAL8

Mnemonic Code Operation

Memory Reference Instructions

AND
TAD
ISZ
DCA
JMS
JMP
lOT
OPR

0000
1000
2000
3000
4000
5000
6000
7000

Logical AND
Two's complement add
Increment and skip if zero
Deposit and clear AC
Jump to subroutine
Jump
In/Out transfer
Operate

Time

2.6
2.6
2.6
2.6
2.6
1.2

1.2

Group 1 Operate Microinstructions (1 cycle 1.2 microseconds)

NOP
lAC
BSW
RAL
RTL
RAR
RTR
CML
CMA
CLL
CLA

7000
7001
7002
7004
7006
7010
7012
7020
7040
7100
7200

No operation
Increment AC
Byte swap
Rotate AC and link left one
Rotate AC and link left two
Rotate AC and link right one
Rotate AC and link right two

. Complement the link
Complement the AC
Clear link
Clear AC

3
3
4
4
4
4
2
2
1
1

Group 2 Operate Microinstructions (1 cycle)

HLT
OSR
SKP
SNL
SZL
SZA
SNA
SMA
SPA

7402
7404
7410
7420
7430
7440
7450
7500
7510

Halts the computer
Inclusive OR SR with AC
Skip unconditionally
Skip on non-zero link
Skip on zero link
Skip on zero AC
Skip on non-zero AC
Skip on minus AC
Skip on positive AC (zero is
positive)

3
3
1
1
1
1
1
1

1

Group 3 Operate Microinstructions

MQA
MQL
SWP

7501
7421
7521

Multiplier Quotient OR into AC
Load Multiplier Quotient
Swap AC and Multiplier Quotient

Combined Operate Microinstructions

CIA
STL
GLK

STA
LAS

7041
7120
7204

7240
7604

Complement and increment AC
Set link to 1
Get link (put link in AC,
bit 11)
Set AC to -1
LoadAC with SR

2.3
1.2

1.4
2.0
2.3

Internal lOT Microinstructions

SKON

ION
IOF
GTF
RTF
SGT
CAF

6000

6001
6002
6004
6005
6006
6007

Skip with interrupts on and turn
them off
Turn interrupt processor on 1.2
TUrn interrupt processor off 1.2
Get flags
Restore flag, ION
Skip if "Greater Than" flag is set
Clear all flags

38

PALS

Mnemonic Code Operation Time

Keyboard/Reader (1 cycle)

KCF 6030 Clear keyboard flags
KSF 6031 Skip on keyboard/reader flag 1.2
KCC 6032 Clear keyboard/reader flag and

AC; set reader run 1.2
KRS 6034 Read keyboard/reader buffer

(static) 1.2
KIE 6035 Set/clear interrupt enable
KRB 6036 Clear AC, read keyboard buffer

(dynamic) , clear keyboard flags 1.2

Teleprinter/Punch (1 cycle)

TFL 6040 Set teleprinter flag
TSF 6041 Skip on teleprinter/punch flag 1.2
TCF 6042 Clear teleprinter/punch flag 1.2
TPC 6044 Load teleprinter/punch and

print 1.2
TSK 6045 Skip on keyboard or teleprinter

flag 1.2
TLS 6046 Load teleprinter/punch, print,

and clear teleprinter/punch flag 1.2

High-Speed Perforated Tape Reader

RPE 6010 Set Reader/Punch inter-
rupt enable 1.2

RSF 6011 Skip if reader flag=l 1.2
RRB 6012 Read reader buffer and clear

flag 1.2
RFC 6014 Clear flag and buffer and fetch

character 1.2

High-Speed Perforated Tape Punch

PCE

PSF
PCF
PPC
PLS

6020

6021
6022
6024
6026

Clear Reader/Punch interrupt
enable 1.2
Skip if punch flag=l 1.2
Clear flag and buffer 1.2
Load buffer and punch character 1.2
Clear flag and buffer, load buffer
and punch character 1.2

39

Absolute Binary Loader (ABSLDR),
31 to 35

correct use, 31
error messages, 35
options, 32

Addition, 11
Addresses, 7, 21
AND, Boolean, 11
AND group skip instructions,

20
Angle bracket «), usage, 16
Arithmetic operations, 11 to 12
Assembly termination, 35
Asterisk (*) usage,

ABSLDR response, 32
Autoindexing, 21

Binary output control, 26

Characters, 4
special, 14

Coding practices, 30
Conditional assembly pseudo­

operators, 24
Current location counter, 8

Division, 11 to 12
DOT (.) character, 15
Double quote (") character, 15
DTORG pseudo-op, 26

End of file, 23
Error conditions,

PAL8, 35 to 37
Error messages,

ABSLDR, 35
EXPUNGE pseudo-op, 27, 28
Extended memory, 22

FIXMRI pseudo-op, 28
FIXTAB pseudo-op, 28
Formats,

assembly listing, 5 to 7
Form feed, 5

INDEX

IFDEF pseudo-op, 24
IFNDEF pseudo-op, 24
IFNZRO pseudo-op, 25
IFZERO pseudo-op, 25
Indirect addressing, 21
Instructions, 17 to 21
Internal symbol representation,

11

Labels, 5
Link generation and storage,

29
Listing suppression, 24
Literals, 15, 16
Location counter, resetting,

23

Memory reference instructions,
17

Memory reservation, 24
Microinstructions, 18 to 20
Multiplication, 11, 12
Multistatement lines, 6

Nested literals, 16
Nested pseudo-ops, 25
NOPUNCH pseudo-op, 26
Numbers, 7

Off-page references, PAL8,
29

Operators, 11 to 13
Options,

ABSLDR, 32
PAL8, 2

OR, Boolean inclusive, 11, 12
OR group skip instructions,

20
Output control, 26

Page zero addressing, 21
Parentheses, 15
Permanent symbols, 7
Permanent symbol table, 37

Index-l

INDEX (Cont.)

Program assembly, 30
Pseudo-operators, 21 to 28

PAL8 conditional, 24
PAL8 nested, 25

Radix control, 21
RELOC pseudo-op (relocation),

27
Reserving memory, 24
Restarting, 4
RETURN key, 6

Semicolon use, 6
Skip instructions, 20
Slash U), 5
Space character, 13
Specification strings, 3
Square brackets ([1) characters,

16
Statement label, 5
Statements, 4, 5

Statement terminators, 6
Subtraction, 11
Suppression of listing, 24
Symbolic address, 7
Symbolic instructions, 11
Symbolic operands, 11
Symbols, 7 to 11
Symbol table, 9

Tabulations, 6
Terminating, 4
Termination of assembly, 35
Terminators, 6
Text strings, 23
Two's complement addition and

subtraction, 12
Typeset pseudo-operator, 26

User-defined symbols, 7
User service routine,

called by PAL8, 26

Index-2

FORTRAN II

1.0
1.1
1.1.1
1.1.2
1.1.3
1.2
1.3
1.4
2.0
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4
3.0
3.1
3.2
3.3
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.2.5
3.4.2.6
3.4.2.7
3.4.2.8
3.4.2.9
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.5.3
3.5.4
3.5.5
3.5.5.1
3.5.5.2
3.5.5.3

CONTENTS

INTRODUCTION
Calling and Using the OS/8 FORTRAN Compiler
FORTRAN Options
Example Program
Examples of FORTRAN I/O Specification Commands
Using FORTRAN or SABR with the Interrupt On
Using PAL8 with SABR or FORTRAN
FORTR&~ Data Files

FORTRAN II SOURCE LANGUAGE
Character Set
FORTRAN Constants
Integer Constants
Real Constants
Hollerith Constants
FORTRAN Variables
Integer Variables
Real Variables
Scalar Variables
Array Variables
Subscripting
Expressions

FORTRAN STATEMENTS
Line Continuation Designator
Comments
Arithmetic Statements
Input/Output Statements
Data Transmission Statements
READ Statement
WRITE Statement
FORMAT Statement
Numeric Fields
Numeric Input Conversion
Alphanumeric Fields
Hollerith Conversion
Blank or Skip Fields
Mixed Fields
Repetition of Fields
Repetition of Groups
Multiple Record Formats
Control Statements
GO TO Statement
Unconditional GO TO
Computed GO TO
IF Statement
DO Statement
CONTINUE Statement
PAUSE, STOP, and END Statements
Pause Statement
Stop Statement
End Statement

iii

Page

1
1
1
2
3
5
5
5
6
6
6
6
6
7
7
7
7
7
8
8
8
10
10
11
11
12
12
14
14
15
16
17
17
18
19
19
19
20
20
21
21
21
21
21
21
22
23
23
23
23

3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.7.2.1
3.7.2.2
4.0
5.0
6.0
6.1
6.2
6.3
6.4
6.5
7.0
8.0
9.0
10.0
11.0
12.0
12.1
12.2

INDEX

TABLE 1
2
3
4
5
6
7

CONTENTS (Cont.)

Specification Statements
COMMON Statement
DIMENSION Statement
EQUIVALENCE Statement
Subprogram Statements
Functions
Subroutines
CALL Statement
RETURN Statement

FUNCTION LIBRARY
FLOATING POINT ARITHMETIC
DEVICE INDEPENDENT I/O AND CHAINING

The IOPEN Subroutine
The OOPEN Subroutine
The OCLOSE Subroutine
The CHAIN Subroutine
The EXIT Subroutine

DECTAPE I/O ROUTINES
OS/8 FORTRAN LIBRARY SUBROUTINES
MIXING SABR AND FORTRAN STATEMENTS
SIZE OF A FORTRAN PROGRAM
FORTRAN STATEMENT SUMMARY
FORTRAN ERROR MESSAGES

Compiler Error Messages
Library Error Messages

TABLES

FORTRAN Options
Device Designations
Numeric Field Codes
FORTRAN Function Library
FORTRAN II Library Subroutines
FORTRAN Language Summary
FORTRAN Library Error Messages

iv

Page

24
24
24
24
25
25
27
27
28
28
29
30
30
31
31
31
31
31
33
35
36
36
39
39
40

Indp.x-l

2
15
16
29
34
36
40

FORTRAN II

1.0 INTRODUCTION

OS/8 FORTRAN is an improved version of the paper tape 8K FORTRAN.
OS/8 FORTRAN contains such added features as Hollerith constants,
implied DO loops, chaining, mixing of SABR and FORTRAN statements, and
device-independent I/O.

It is assumed that the reader is familiar with the basic concepts of
FORTRAN programming. If review is needed, two excellent elementary
texts are FORTRAN Programming, by Frederic Stuart, published by John
wiley and Sons, New York, 1969, and A Guide to FORTRAN Programming, by
Daniel D. McCracken, published by John Wiley and Sons, New York.

1.1 Calling and Using the OS/8 FORTRAN Compiler

The user calls the FORTRAN compiler by typing:

R FORT

in reply to the dot generated by the Keyboard Monitor. When the
Command Decoder prints an asterisk at the left margin, the user types
the appropriate device designations, I/O files, and any of the
specification options allowed for 8K FORTRAN. A carriage return is
used to terminate a command string and begin compilation.

The line to the Command Decoder consists of a to 3 output files, 1 to
9 input files, and any of the available options. The format of the
command line is:

*BINARY,LISTING,MAP<INPUT/OPTION(S)

The first output file holds the binary output in relocatable binary
format. If no extension is specified, the extension .RL is assumed.
If a binary output file is not indicated in the command line, then no
binary output will be generated. (An exception to this occurs when
either the /L or /G option is used; this is explained in Table 1.)
The second output file contains the listing; if no extension is
specified, the extension .LS is assumed. If no listing file is
specified, a listing will not be generated. The third output file is
the Linking Loader output, and, unless otherwise specified, this file
assumes the extension .MP. This output is produced by use of the /M,
/U and /P options. (For details on these options and the Linking
Loader, see Section 13 in the writeup on SABR in this manual.) 1 to 9
input files are available with OS/8 FORTRAN, although ordinarily only
1 is used. The default extension for input files is .FT.

1.1.1 FORTRAN Options - Table 1 provides a list of the options which
are available under OS/8 FORTRAN. In addition to these, the /N and /S
options to the SABR Assembler may be specified to the FORTRAN
compiler, and options to the Linking Loader other than /L may also be
used.

1

FORTRAN II

Table 1
FORTRAN Options

Option Meaning

/G

/K

/L

Loads and executes the file. The Linking Loader is
called, and the binary output file is loaded and
executed. (If a binary file is not specified, a
temporary file named FORTRL.TM is created and stored
on the file device. This file is loaded into core
and then deleted from the file device.) If a starting
address is not specified (using the options described
under the Linking Loader), control is sent to the
program entry point MAIN (the FORTRAN compiler gives
this name automatically to the main program) .

Keeps the file FORTRAN.TM as a permanent file. The
FORTRAN compiler produces an output file named
FORTRN.TM on the system device. This file, the
FORTRAN source program converted into SABR assembly
language, serves as input to the 8K SABR assembler,
which is automatically called by the compiler. The
file FORTRAN.TM is then deleted unless the /K option
has been specified. The /K option saves the file as
a permanent file, allowing future editing and
assembling.

Loads but does not start execution. Calls the
Linking Loader at the end of the assembly and loads
the specified binary file. (If a binary output file
is not specified, then the temporary file FORTRL.TM
is loaded into core and deleted from the file
device.) When using the /L option, you can terminate
the command string by typing either an ALT MODE or a
carriage return. If you type ALT MODE, the Loader
returns to the Keyboard Monitor with a core image in
core; typing the RETURN key instructs the Loader to
ask for more input.

1.1.2 Example Program - The following example illustrates the ease
with which a FORTRAN program can be executed under OS/8. The program
TEST has been created with the Symbolic Editor and saved on device
SYS:

C FORTRAN DEMO 'TEST'
C COMPUTE AND PRINT POWERS OF TWO

DIMENSION A(16)
WRITE (1¥15)

15 FORMAT (/'POWERS OF TWO •• EXAMPLE PROGRAM'/)
DO 20 N=lv16

20 A(N)=2.**N
WRITE (1,25) (N,A(N),N=1,16)
FORMAT ('2** 'I2'='Fl0.])
CALL EXIT
END

2

FORTRAN II

The following commands load and execute TEST; execution is automatic
with the /G option:

!.R FORT
~TEST/G

POWERS OF TWO~+EXAMPLE PROGRAM

2** 1.:= 2.00
2** ,-- 4.00 . ..::..-.'

2** 3=: 8.00
2** 4---- 1.6+00
2** 5=: 32.00
2** 6:= 64~00

2** 7:::: 1.2B~OO

2** 8= 2~:j6. 00
2** 9:::: 512vOO
2** 1. 0:::: 1.()24~00

2** :1.1.== ~204B " 00
2** 12=: 4096.00
2** :1.3:::: B:L <12,.00
2** :1.4=: :J.6384yOO
2** :L ~j:::: ~32768., 00
2** 16:::: 6~5536. 00

FORTRAN assembles one main program or subroutine per call. To run a
job with multiple subprograms, compile each routine separately and
combine them with the Linking Loader.

Typing a CTRL/C (~C) at run time during a non-compute bound job will
return control to the Keyboard Monitor. Typing .ST at this point will
restart the user's FORTRAN program. If you type ~C when compiling a
program, FORTRAN will have to be recalled.

1.1.3 Examples of FORTRAN I/O Specification Commands

Example 1:

!.F~ FORT
!DT?) 1. : TEST/G

The input file TEST.FT (or TEST) on DTAI is compiled, the output
stored in FORTRN.TM on the system device, and SABR is called. SABR
uses FORTRN.TM as input and outputs the assembled file into FORTRL.TM,
deleting the old FORTRN.TM. Because the /G option is specified, the
Linking Loader then loads FORTRL.TM and the Library Subroutines,
deletes FORTRL.TM upon loading, and sends control to the entry point
MAIN.

Example 2:

!.R FORT
!MATRIX<MATRIX.AB/G/U

The input file MATRIX.AB on DSK is compiled and the output stored in
SYS:FORTRN.TM. SABR is called and assembles SYS:FORTRN.TM, putting
the relocatable binary output into DSK:MATRIX.RL and deleting the file
FORTRN.MT. Because the /G option is specified, the Linking Loader
then loads MATRIX.RL and the Library Subroutines, and then prints on
the teleprinter (via /U) a list of undefined external symbols and a
count of the unused pages in each memory field.

3

Example 3:

!oR FOF(r
~"LPT:<INPUT/L/M

!

FORTRAN II

The FORTRAN Compiler compiles and SABR assembles the file DSK:INPUT.FT
(or INPUT), outputting the binary file as SYS:FORTRL.TM. The Linking
Loader is automatically called (/L) to load SYS:FORTRL.TM into core
and delete that file from SYS. The Linking Loader puts a full loading
map on the LPT device (/M). The Loader then asks for another command
string. If you terminate the line with the ALT MODE key instead of
the RETURN key, control is returned to the Keyboard Monitor after
loading.

Example 4:

!oR FOF(r
!SUB1.<SUB1.
!oR F()F~T

~SUB2<SUB2
,!R F()I:~T

~MAIN/I...

!SUBlySUB2/G

The subroutines and the MAIN program are each compiled separately, and
the MAIN program is loaded but not executed (as the /L option
indicates). The Linking Loader, called at the end of the assembly,
waits for more input. The /G option loads the FORTRAN Library
Subroutines and initiates execution of the MAIN program.

Example 5:

..!.F~ FDI:~T

*DTA~:j ~ SOUF~CE/I ...

The file SOURCE on DTA5 is compiled, assembled, and loaded but not
executed.

Example 6:

,!R FORT
!DTAl:PRUG,PTP:.PTP:<DTAl:PROG(NMG)

If you have a DECtape system, keeping the source program on a
non-system DEC tape and putting the binary on a non-system DEC tape
gives the best possible results in terms of minimizing tape motion.
The file PROG is loaded and executed. The binary is stored on DTAI
under the name PROG.RL, and the symbol table, the map of the loaded
program, and the count of the free pages in each field are punched
onto paper tape.

In DECtape systems, you can eliminate
storing LIBS.RL on a non-system tape.

!DTA2: I... I r:B + F;:I /I ...

4

excessive DECtape motion
Specify to the loader:

by

FORTRAN II

1.2 Using FORTRAN or SABR with the Interrupt On

SABR code can be run with the interrupt on, provided you have your own
interrupt-handling code. That code, which is executed when the
interrupt is off, must not call any of the SABR subroutines and must
be independent of all SABR or library subroutines and linkage
subroutines. with the interrupt on, do not call exit routines or do
any generalized (device-independent) I/O, unless those routines are
modified to make allowances for interrupts.

1.3 Using PALS with SABR or FORTRAN

PAL8 subroutines can be called from a SABR or FORTRAN program. You
should build a core image of the running FORTRAN or SABR program and
return to the Keyboard Monitor by typing $ (ALT MODE key) on the last
Linking Loader Command. Then save the core image. You can use the
core image file (.SV) as input to the Absolute Loader (ABSLDR) with
the /1 option, followed by the binary of the PAL8 routine, for
example:

~R ABSLDR
!DTA7:CHAIN2.SV/I
!PALSUB.BN/G$

The above calls the Absolute Loader, loads the core image CHAIN2.SV
and then merges the PALSUB.BN program with it. Execution starts at
location 200 and, when completed, the system returns to the Keyboard
Monitor for further instructions.

1.4 FORTRAN Data Files

When doing FORTRAN output onto DECtape or disk into a file which is to
be read only as a data file by another FORTRAN program, you can save
significant time by using the A6 format to output floating-point
variables and the A2 format to output integer values. The same format
specifications must be used when the data is read. The data file is
not an ASCII file and should not be edited with EDIT. The file should
only be moved by PIP in image mode (/1 option).

Observe the following caution concerning programs which may have been
written and compiled with a previous version of OS/8 FORTRAN.

CAUTION

A FORTRAN compiler and its corresponding
Library constitute an interlocking set
of programs. No user should attempt to
compile a program under OS/8 and load it
with the paper tape FORTRAN, or vice
versa. Similarly, programs developed
with the current FORTRAN compiler should
not be run under an old FORTRAN system.

5

FORTRAN II

2.0 FORTRAN II SOURCE LANGUAGE

2.1 Character Set

The following characters are used in the FORTRAN language.

(Appendix A lists the octal and decimal representations of the FORTRAN
character set.)

1. The alphabetic characters, A through z.

2. The numeric characters, 0 through 9.

3. The special characters. (Of these, the characters
" ! $ % & if : ? < > " [] \ must appear inside FORMAT
statement or Hollerith cons tan ts.)

" ([
$)]
% + \
&

* /

<
>

? (space)

2.2 FORTRAN Constants

Constants are self-defining numeric values appearing in source
statements and are of three types: integer, real, and Hollerith.

2.2.1 Integer Constants - An integer (fixed point) constant is
represented by a digit string of from one to four decimal digits,
written with an optional sign and without a decimal point. An integer
constant must fall within the range -2047 to +2047, for example:

47
+47
-2
0434
o

(+ sign is optional)

(leading zeros are ignored)
(zero)

2.2.2 Real Constants - A real constant is represented by a digit
string, an explicit decimal point, an optional sign, and possibly an
integer exponent to denote a power of ten (7.2 x 10"3 is written
7.2E+03). A real constant may consist of any number of digits but
only the leftmost eight digits appear in the compiled program. Real
constants must fall within the range of + 1.7xlO"38.

6

FORTRAN II

2.2.3 Hollerith Constants - A Hollerith constant is a string of up to
6 characters (including blanks) enclosed in single quotes. A
Hollerith constant is treated like a real constant, except that it
cannot be used in arithmetic expressions other than for simple
equivalence (A=B). Any character except the quote character itself
can be used in a Hollerith constant, for example:

'MOM'
'A+B=C'
'5 & 10'

2.3 FORTRAN Variables

A variable is a named quantity whose value may change during execution
of a program. Variables are specified by name and type. The name of
a variable' consists of one or more alphanumeric characters, the first
of which must be alphabetic. Although any number of characters may be
used to make up the variable name, only the first five characters are
interpreted as defining the name; the rest are ignored. For example,
DELTAX, DELTAY, and DELTA all represent the same variable name.

The type of variable (integer or real) is determined by the first
letter of the variable name. A first letter of I, J, K, L, M, or N
indicates an integer variable, and any other first letter indicates a
real variable. Variables of either type may be either scalar or array
variables. A variable is an array variable if it first appears in a
DIMENSION statement.

2.3.1 Integer Variables - The name of an integer variable must begin
with an I, J, K, L, M, or N. An integer variable undergoes arithmetic
calculations with automatic truncation of any' fractional part. For
example, if the current value of K is 5 and the current value of J is
9, J/K would yield 1 as a result.

Integer variables may be converted to real variables by the function
FLOAT (see Function Calls) or by an arithmetic statement (see
Arithmetic Statements). Integer variables must fall within the range
-2047 to +2047.

Integer arithmetic operations do not check for overflow. For example,
the sum 2047+2047 will yield a result of -2. For more information
refer to any text on binary arithmetic.

2.3.2 Real Variables - A real variable name begins with an alphabetic
character other than I, J, K, L, M, or N. Real variables may be
converted to integer variables by the function IFIX (see Section
3.7.2.3) or by an arithmetic statement. Real variables undergo no
truncation in arithmetic calculations.

2.3.3 Scalar Variables - A scalar variable may be either integer or
real and represents a single quantity. Examples are as follows:

LM
A
G2
TOTAL
J

7

FORTRAN II

2.3.4 Array Variables - An array (subscripted) variable represents a
single element of a one- or two-dimensional array of quantities. The
array element is denoted by the array name followed by a subscript
list enclosed in parentheses. The subscript list may be any integer
expression or two integer expressions separated by a comma. The
expressions may be arithmetic combinations of integer variables and
integer constants. Each expression represents a subscript, and the
values of the expressions determine the referenced array element. For
example, the row vector A{i) would be represented by the subscripted
variable A{I), and the element in the second column of the first row
of the matrix A would be represented by A (1,2).

Examples of one-dimensional arrays are:

Y (I)
PORT{K)

An example of a two-dimensional array is:

A(3*K+2,1)

Any array must appear in a DIMENSION statement
appearance In an executable statement. The
specifies the number of elements in the array.

prior to
DIMENSION

its first
statement

Arrays are stored in increasing storage locations with the
subscript varying most rapidly (see Storage Allocation).
two-dimensional array B (J,K) is stored in the following order:

first
The

B{l, 1), B(2, 1), ... , B(J, 1), B(l, 2), B(2, 2), ••• , B{J, 2), ••• , B{J, K)

2.3.5 Subscripting - Since excessive subscripting tends to use core
memory inefficiently, subscripted variables should be used
judiciously. For example, the statement:

if rewritten as follows would save considerable core memory:

T::::B(I)
A::::«TtC2)*TtCl)*T

2.4 Expressions

An expression is a sequence of constants, variables, and function
references separated by arithmetic operators and parentheses in
accordance with mathematical convention and the rules given below.

without parentheses, algebraic operations are performed in the
following descending order:

**

* and /
+ and -

exponentiation
unary negation
multiplication and division
addition and subtraction
equals or replacement sign

8

FORTRAN II

Parentheses are used to change the order of precedence. An operation
enclosed in parentheses is performed before its result is used in
other operations. In the case of operations of equal priority, the
calculations are performed from left to right.

Integers and real numbers may be raised to either integer or real
powers. An expression of the form:

A**B

means A~B and is real unless both A and B are integers. Exponential
(e~X) and natural logarithmic (log(e) (x)) functions are supplied as
subprograms and are explained later.

Excluding ** (exponentiation), no two arithmetic operators may appear
in sequence unless the second is a unary plus or minus.

The mode (or type) of an expression may be either integer or real and
is determined by its constituents. Variable modes may not be mixed in
an expression with the following exceptions:

1. A real variable may be raised to an integer power:

A**2

2. Mode may be altered by using the functions IFIX and FLOAT
(see Function Calls):

A*FLOAT(I)

The I in example 2 above, indicates an integer variable; it is
changed to real (in floating point format) by the FLOAT function.

Zero raised to a power of zero yields a result of 1. Zero raised to
any other power yields a zero result. Numbers are raised to integer
powers by repetitive multiplication. Numbers are raised to floating
point powers by calling the EXP and ALOG functions. A negative number
raised to a floating point power does not cause an error message but
uses the absolute value. Thus, the expression (-3.0)**3.0 yields a
result of +27.

An arithmetic expression may be enclosed in parentheses and be
considered a basic element.

IFIX(X+Y)/2
(ZETA)
(COS(SIN(PI*EM)+X))

An arithmetic expression may consist of a single element (constant,
variable, or function call), for example:

2.71828
Z(N)
TAN (THETA)

Compound arithmetic expressions may be formed using
operators to combine basic elements, for example:

X+3.
TOTAL/A
TAN(PI*EM)

9

arithmetic

FORTRAN II

Expressions preceded by a + or a
expressions, for example:

+x
-(ALPHA*BETA)
-SQRT(-GAMMA)

sign are also arithmetic

As an example of a typical arithmetic expression using arithmetic
operators and a function call, consider the expression for the largest
root of the general quadratic equation:

-b+Jb2 -4ac

This expression is coded as:

(-B+SQRT(B**2-4.*A*C))/2.*A)

3.0 FORTRAN STATEMENTS

A FORTRAN source program consists of a series of statements, each of
which must start on a separate line. Any FORTRAN statement may appear
in the statement field (columns 7 through 72) and may be preceded by a
positive number, called a statement number, of from 1 to 4 digits.
This statement number serves as an address label and is used when
referencing the statement. Statement numbers are coded in columns 1
through 5 of the 72-column line. Statement numbers need not appear in
sequential order, but no two statements should have the same number.
Statement numbers are limited to a value of 2047 or less.

When you are using the Symbolic Editor to create the source program,
typing a CTRL/TAB (generated by holding down the CTRL key and pressing
the TAB key) causes a jump over the statement number columns and into
the statement field. Except for data within a Hollerith field (see
Input/Output Statements, Section 3.4), spaces are ignored by the
compiler. You may use spaces freely, however, to make the program
listing more readable and to organize data into columns.

3.1 Line Continuation Designator

Statements too long for the statement field of a single terminal line
may be continued on the next line. The continued portion must not be
given a line number, but must have an alphanumeric character other
than 0 in column 6. If you use the Symbolic Editor, you may type a
CTRL/TAB followed by a digit from 1 to 9 before continuing the line.
The continuation character is not treated as part of the statement.

For example, using spaces, a continued statement would look as
follows:

WRITE (3F30)
30 FORMAT (lX,'THE FOLLOWING DATA IS GROUPED INTO THREE

1 PARTS UNDER THE HEADINGS Xy y, AND Z.')

10

FORTRAN II

Using tabs, the same statement would be typed:

WRITE (3,30)
30 FORMAT (lX,'THE FOLLOWING DATA IS GROUPED INTO THREE

1 PARTS UNDER THE HEADINGS X, y, ~ND Z.')

There is no limit to the number of continuation lines which may
appear. However, one restriction is that an implied DO loop must not
be broken but must be on one line. For ease in program correction, it
is recommended that continuation lines be minimized.

3.2 Comments

The letter C in column 1 of a line designates that line as a comment
line. A comment appears in a proqram listinq but has no effect on
program compilation. Any number of comment lines may appear in a
given program, and comments that are too long for one line may be
continued by placing a C in the first column of the next line~ A
comment line may not appear between another line and its continuation.

FORTRAN statements are of five types:

1. Arithmetic, defining calculations to be performed;

2. Input/Output, directing communication between the program and
input/output devices;

3. Control, governing the sequence of execution of statements
within a program;

4. Specification, describing the form and content of data within
the program;

5. Subprogram, defining the form and occurrence of subprograms
and subroutines.

Each of these five types is explained in the following paragraphs.

3.3 Arithmetic Statements

Constants and variables, identified as to type and connected by
logical and arithmetic operators, form expressions; one or more
expressions form an arithmetic statement. Arithmetic statements are
of the general form:

V=E

where V is a variable name (subscripted or nonsubscripted), E is an
expression, and = is a replacement operator. The arithmetic statement
causes the FORTRAN object program to evaluate the expression E and
assign the resultant value to the variable V. Note that = signifies
replacement, not equality. Thus, expressions of the form:

A=A+B

A=A*B

11

FORTRAN II

are quite meaningful and indicate that the value of the variable A is
to be changed, for example:

Y=1.1*Y
P=X**2f3.*Xf2.0
X(N)=EN*ZETA*(ALPHAfEM/PI)

The expression value is made to agree in type with the variable before
replacement occurs. In the statement:

META=W*<ABETAfE)

since META is an integer and the expression is real, the expression
value is truncated to an integer before assignment to META.

3.4 Input/Output Statements

Input/output (I/O) statements are used to control the transfer of data
between computer memory and peripheral devices and to specify the
format of the output data. I/O statements may be divided into two
categories:

1. Data transmission statements, READ and WRITE, specify
transmission of data between computer memory and I/O devices.

2. Nonexecutable FORMAT statements enable conversion between
internal data (within core memory) and external data.

3.4.1 Data Transmission Statements - The two data transmission
statements, READ and WRITE, accomplish input/output transfer of data
listed in a FORMAT statement. The two statements are of the form:

READ (unit, format) I/O list
WRITE (unit, format) I/O list

where unit is a device designation which can be an integer constant or
an integer variable, format is a FORMAT statement line number, and the
I/O list is a list specifying the order of transmission of the
variable values. During input, the new values of listed variables may
be used in subscript or control expressions for variables appearing
later in the list. For example:

reads a new value of L and uses this value in the subscripts of A and
Bi where 2 is the device designation code, and 1000 is a FORMAT
statement number.

An element in an I/O list can take one of the following forms:

1. Arithmetic expression: expressions more complicated than a
single variable (which can be subscripted) are meaningless in
an input operation.

12

FORTRAN II

2. The name of an array (lor 2 dimensional); this indicates
that every element of the array is to be transmitted.
Elements are transmitted in the order in which they are
stored in core.

DIMENSION l!'.j (2,2)
READ (1,100) A

reads:

A(l,l) ,A(2,l)A(l,2) ,A(2,2)

3. Implied DO Loops of the form:

(s (1) ,s (2) , ••• , s (n) ,i ==m (1) ,m (2) ,m (3))

repeat the list elements (s(n)} with the value of i being
equal to m(l) through m(2) having an optional step value of
m(3). The mls are integer constants or variables, i is an
integer variable, and s(l)-s(n) are the I/O list elements
(possibly including an implied DO loop). For example:

DIMENSION A (~5 ¥ 6)
WRITE (1,100) I,(A(J,I)J=1,3)

will output the values:

I,A(l,I) ,A(2,I) ,A(3,I)

When using implied DO loops, remember that the entire implied
DO loop must be on the same input line or card. An implied
DO loop cannot be continued onto the next line with a
continuation character.

If no I/O list is specified for a WRITE statement, then information is
read directly from the specified FORMAT statement and written on the
device designated.

Data appears on the external device in the form of records. (This
should not be confused with the OS/8 record, which is equal to 256(10)
words (2 DECtape blocks with the 129th word of each block ignored.)}
All.,information appearing on input is grouped into records. On output
to the printer a record is one line. The amount of information
contained in each ASCII record is specified by the FORMAT statement
and the I/O list.

Each execution of an I/O statement initiates the transmission of a new
data record. Thus, the statement:

READ(I¥100)FIRST,SECOND,THIRD

is not necessarily equivalent to the statements below, where 100 is
the FORMAT statement referenced:

READ(I,100)FIRST
READ(1,100)SECOND
READ(1,100)THIRD

13

FORTRAN II

In the second case, at least three separate records are required,
whereas the single statement

READ (d, f) FIRST, SECOND, THIRD

may require one, two, three, or more records, depending upon FORMAT
statement f.

If an I/O statement requests less than a full record of information,
the unrequested part of the record is lost and cannot be recovered by
another I/O statement without repositioning the record.

If an I/O list requires more than one ASCII record of information,
successive records are read.

3.4.1.1 READ Statement - The READ statement specifies transfer of
information from a selected input device to internal memory,
corresponding to a list of named variables, arrays or array elements.
The READ statement assumes the following form:

READ (d, f) list

where d is a device designation which may be an integer constant or an
integer variable, f is a FORMAT statement line number, and list is a
list of variables whose values are to be input.

The READ statement causes ASCII information to be read from the device
designated and stored in memory as values of the variables in the
list. The data is converted to internal form as specified by the
referenced FORMAT statement, for example:

RFAD (l ,1 ~:j) ETA" P

3.4.1.2 WRITE Statement - The WRITE statement specifies transfer of
information from the computer to a specified output device. The WRITE
statement assumes one of the following forms:

WRITE (d, f) 1 ist
WRITE (d, f)

where d is a device designation (integer constant or integer
variable), f is a FORMAT statement line number, and list is a list of
variables to be output.

The WRITE statement followed by a list causes the values of the
variables in the list to be read from memory and written on the
designated device in ASCII form. The data is converted to external
form as specified by the designated FORMAT statement.

The WRITE statement without a list causes information (generally
Hollerith type) to be read directly from the specified format and
written on the designated device in ASCII form.

The I/O device designations used in the READ and WRITE statements are
described in Table 2.

14

Device Code

1

2
3
4

FORTRAN II

Table 2
Device Designations

Input Designation

Teletype keyboard or
low-speed reader
High-speed reader
Card reader (CR8/I)
Assignable device*

Output Designation

Teleprinter

High-speed punch
Line printer (LP08)
Assignable device*

*(See Device Independent I/O and Chaining)

If using device code 4, the /1 or /0 option to the Linking Loader must
be glven. If the assignable device is a two-page handler, the /H
option must be given also.

Device code 3 is assigned to the card reader (for all
statements), and the line printer (for all WRITE statements).
card reader uses a two-page device handler, which is too large to
used with the device independent I/O feature (device code
Therefore, the card reader has its own device code.

READ
The

be
4) •

The line printer is a separate output device because it can require
special formatting, such as inserting a Form Feed to skip to the top
of a page. The contents of the first column of any line is a control
character. These control characters are never printed. They are as
follows:

Character in Column 1

space
o
1

all others

Resulting Spacing

single space
double space
skip to top of
next page (Form
Feed)
single space

3.4.2 FORMAT Statement - The nonexecutable FORMAT statement specifies
the form and arrangement of data on the selected external device.
FORMAT statements are of the form:

m FORMAT (S (1) S (2) , ... S (n))

where m is a statement number and each S is a data field
specification. Both numeric and alphanumeric field specifications may
appear in a FORMAT statement. The FORMAT statement also provides for
handling multiple record formats, skipping characters, space
insertion, and repetition.

FORMAT statements may be placed anywhere in the source program.
Unless the FORMAT statement contains only alphanumeric data for direct
I/O transmission, it will be used in conjunction with the list of a
data transmission statement.

15

FORTRAN II

During transmission of data, the object program scans the designated
FORMAT statement; if a specification for a numeric field is present,
and the data transmission statement contains items remaining to be
transmitted, transmission takes place according to the specification.
This process ceases and execution of the data transmission statement
is terminated as soon as all specified items have been transmitted.
The FORMAT statement may contain specifications for more items than
are indicated by the data transmission statement. The FORMAT
statement may also contain specifications for fewer items than are
indicated by the data transmission statement, in which case format
control reverts to the rightmost left parenthesis in the FORMAT
statement. If an input list requires more characters than the input
device supplies for a given record, blanks are inserted.

3.4.2.1 Numeric Fields - Numeric field specification codes and the
corresponding internal and external forms of the numbers are listed in
Table 3.

Conversion
Code

Table 3
Numeric Field Codes

Internal Form External Form

E Binary floating point Decimal floating point
with E exponents:
O.324E+IO

F ! Binary floating pointl Decimal floating point
I

with no exponent: 283.75

I Binary integer

Conversions are specified by the form:

rEw.d
rFw.d
rIw

Decimal integer: 79

where r is a repetition count, E, F, and I designate the conversion
code, w is an integer specifying the field width, and d is an integer
specifying the number of decimal places to the right of the decimal
point. For E and F input, the position of the decimal point in the
external field takes precedence over the value of d. For example:

could be used to output the line

32 -17.60 0.59624575E+03

on the output listing.

The field width should always be large enough to include
point, sign, and exponent (plus a leading zero in OS/8
all numeric field conversions, if the field width is not
to accommodate the converted number, asterisks will be
number is always right-justified in the field.

16

the decimal
FORTRAN). In
large enough
printed; the

FORTRAN II

3.4.2.2 Numeric Input Conversion - In general, numeric
conversion is compatible with most other FORTR~N processors.
exceptions are listed below:

input
A few

1. Blanks are ignored except to determine in which field digits
fall. Thus! numbers are treated as It they are
right-justified within a field. In an FS.2 format, the
following:

bbb12
12bbb
00012

are read as the number 0.12 (where ib i represents a blank
space) .

2. A null line delimited by two carriage return/line feed
(CR/LF) combinations is treated as a line of blanks, and
blanks are appended to the right of a line (if necessary) to
fill out a FORMAT statement. Thus:

12 (CR/LF)
12bbb
bbb12

are identical under an FS.2 format. If an entire line is
blank, numeric data from that line is read as zeros.

3. No distinction is made between E and F format on input.
Thus:

100.
100E2
1.E2
10000

are all read identically under either an FS.2 or ES.2 format.

3.4.2.3 Alphanumeric Fields - Alphanumeric data can be transmitted in
a manner similar to numeric data by use of the form

rAw

where r is a repetition count, A is the control character, and w is
the number of characters in the field. Alphanumeric characters are
transmitted as the value of a variable in an I/O list; the variable
may be either integer or real.

Although w may have any value, the number of characters transmitted is
limited by the maximum number of characters which can be stored in the
space allotted for the variable. This maximum depends upon the
variable type; for a real variable the maximum is six characters, for
an integer variable the maximum is two characters. The characters are
stored in stripped ASCII format. If not enough data is supplied as
input to the variables, the data is padded with blanks on the right,
for example:

READ (1,20) Ml,M2,M3,M4,M5,M6,M7,M8
20 FORMAT (SA1)

17

FORTRAN II

If you now type:

123ABC

followed by a carriage return, the variables will have the following
values:

Variable Decimal Octal ASCII

Ml -928 6140 1
M2 -864 6240 2
M3 -800 6340 3
M4 96 0140 A
M5 160 0240 B
M6 224 0340 C
M7 -2016 4040 blank
M8 -2016 4040 blank

If the above had been read in the 4A2 format, the values would be as
follows:

Variable Decimal Octal

Ml -910 6162
M2 -831 6301
M3 131 0203
M4 -2016 4040

....................
M8 -2016

Consider a second example:

20
READ (1,20) ALPHA
FORMAT (A6)

If you type:

:J.23AB

4040

and a carriage return, the octal value of ALPHA is:

6162 6301 0240

NOTE

ASCII

1 2
3 A
B C

blanks

blanks

The numeric value of alphanumeric
characters stored in floating point
variables is generally not meaningful.

3.4.2.4 Hollerith Conversion - Alphanumeric data may be transmitted
directly from the FORMAT statement by using Hollerith (H) conversion.
H-conversion format is normally referenced by WRITE statements only.

In H-conversion, the alphanumeric string is specified by the form

nH h (1), h (2) , ... , h (n)

where H is the control character and n is the number of characters in
the string, including blanks. For example, the following statement
can be used to print PROGRAM COMPLETE on the output listing.

FORMAT(17H PROGRAM COMPLETE)

18

FORTRAN II

A Hollerith string may consist of any characters capable of
representation in the processor. The space character is a valid and
significant character in a Hollerith string.

An attempt to use H format specifications with a READ statement will
cause characters from the format field to be either printed or
punched. This feature provides a simple way of identifying data that
is to be read from the Teletype keyboard. For example, the following
instructions:

READ (1,30)A~B

30 FORMAT (4HA = ~F7+2/4HB = ,F7.2)

cause A and B = to be printed out before the data is read.

By merely enclosing the alphanumeric data in single quotes, you can
achieve the same result as in H~conversion; on input, the characters
between the single quotes are typed as output characters, and on
output, the characters between the single quotes (including blanks)
are written as part of the output data. For example, when referred to
from a WRITE statement:

50 FORMAT (' PROGRAM COMPLETE')

causes PROGRAM COMPLETE to be printed.
need to count characters.

This method eliminates the

3.4.2.5 Blank or Skip Fields - Blanks can be introduced into an
output record or characters skipped on an input record by use of the
nX specification. The number n indicates the number of blanks or
characters skipped and must be greater than zero. For example:

FORMAT(5H STEPI5,10X2HY=F7.3)

can be used to output the line:

STEP 28

3.4.2.6 Mixed Fields - A Hollerith format field may be placed among
other fields of the format. The statement:

FORMAT(I5,7H FORCE=Fl0.S)

can be used to output the line:

22 FORCE= 17.68901

The separating comma may be omitted after a Hollerith format field, as
shown above.

3.4.2.7 Repetition of Fields - Repetition of a field specification
may be specified by preceding the control character E, F, or I by an
unsigned integer giving the number of repetitions desired. The
statement:

is equivalent to:

19

FORTRAN II

3.4.2.8 Repetition of Groups - A group of field specifications may be
repeated by enclosing the group in parentheses and preceding the whole
with the repetition number.

For example:

is equivalent to:

3.4.2.9 Multiple Record Formats - To handle a group of output records
where different records have different field specifications, a slash
is used to indicate a new record. For example, the statement:

FORMAT(3I8/I5,2F8~4)

is equivalent to:

FORMAT(3I8)

for the first record and

FORMAT(I5,2F8+4)

for the second record.

The separating comma may be omitted when a slash is used. When n
slashes appear at the end or beginning of a format, n blank records
may be written on output (producing a CR/LF for each record) or
ignored on input. When n slashes appear in the middle of a format,
n-l blank records are written or n-l records skipped. Both the slash
and the closing parenthesis at the end of the format indicate the
termination of a record. If the list of an I/O statement dictates
that transmission of data is to continue after the closing parenthesis
of the format is reached, the format is repeated from the last open
parenthesis of level one or zero. Thus, the statement:

causes the format:

to be used on the first record, and the format:

to be used on succeeding records.

As a further example, consider the statement:

The first record has the format:

F7.2

and successive records have the format:

2 (E15.5,E15.4) ,17

20

FORTRAN II

3.5 Control Statements

The control statements GO TO, IF, DO, PAUSE, STOP, and END ai~er the
sequence of statement execution, temporarily or permanently halt
program execution, and stop compilation.

3.5.1 GO TO Statement - The GO TO statement
unconditional and computed.

has two

3.5.1.1 Unconditional GO TO - Unconditional GO TO statements
the form:

GO TO n

forms:

are ,...~
VL

where n is the number of an executable statement.
transferred to the statement numbered n.

Control is

3.5.1.2 Computed GO TO - Computed GO TO statements have the form:

GO TO (n (1), n (2) , .•. , n (k)), J

where n(l), n(2) , ... , n(k) are statement numbers and J is a
nonsubscripted integer variable. This statement transfers control to
the statement numbered n(l}, n(2} •.. , n(k) if J has the value 1,
2, ... , k, respectively. The index (J in the above example) of a
computed GO TO statement must never be zero or greater than the number
of statement numbers in the list (in the example above, not greater
than k). For example, in the statement:

the variable K acts as a switch, causing a transfer to statement 20 if
K = 1, to statement 10 if K = 2, or to statement 5 if K = 3.

3~5.2 IF Statement - Numerical IF statements are of the form:

IF (expression) n(l), n(2), n(3)

where n(l), n(2), n(3) are statement numbers. This statement
transfers control to the statement numbered n(l), n(2), n(3) if the
value of the numeric expression is less than, equal to, or greater
than zero, respectively. The expression may be a simple variable or
an arithmetic expression.

IF (ETf·~"4,,7,.12

IFCKAPPA-L(10»20,,14,.14

3.5.3 DO Statement - The DO statement simplifies the coding of
iterative procedures. DO statements are of the form:

DO n i = m (1), m (2), m (3)

where n is a statement number, i is a scalar integer variable, and
m(l), m(2), m(3) are integer constants or nonsubscripted integer
variables. If m(3) is not specified, it is understood to be 1.

21

FORTRAN II

The DO statement causes the statements which follow, up to and
including the statement numbered n, to be executed repeatedly. This
group of statements is called the range of the DO statement. In the
example above, the integer variable i is called the index, the values
of m(l), m(2), m(3) are, respectively, the initial, terminal, and
increment values of the index, for example:

DO 10 J=l,N
DO 20 I=J?K~5
DO 30 L=I~J~K

The index is incremented and tested before the range of the DO is
executed. After the last execution of the range, control passes to
the statement immediately following the terminal statement in what is
called a normal exit. An exit may also occur by a transfer out of the
range taking place before the loop has been executed the total number
of times specified in the DO statement.

DO loops may be nested, or contained within one another, provided the
range of each contained loop is entirely within the range of the
containing DO statement. Nested DO loops may contain the same
terminal statement, however. A transfer into a DO loop from outside
the range is not allowed.

Within the range of a DO STATEMENT, the index is available for use as
an ordinary variable. After a transfer from within the range, the
index retains its current value and is available for use as a
variable.* The values of the initial, terminal, and increment
variables for the index and the index of the DO loop may not be
altered within the range of the DO statement.

The last statement of a DO loop must be executable, and must not be an
IF, GO TO or DO statement.

3.5.4 CONTINUE Statement - This is a dummy statement, used primarily
as a target for transfers, particularly as the last statement in the
range of a DO statement. For example, in the sequence:

DO 7 K=INIT,LIMIT

IF (X(K» 22,13,7

7 CONTINUE

a positive value of X(K) begins another execution of the range. The
CONTINUE provides a target address for the IF statement and ends the
range of the DO statement.

* After a normal exit from a DO loop, the index of the DO statement
has the value of the index for the final time through the loop plus
whatever increment was assigned. For example:

DO 10 I=I?5

after a normal exit the value of the index is 6. However, it is good
programming practice to avoid using the index as a variable follpwing
a normal exit until the index has been redefined, as according to ANSI
FORTRAN Standards the value is undefined.

22

FORTRAN II

3.5.5 PAUSE, STOP, and END Statements - The PAUSE and STOP statements
affect FORTPAN object program operation; the END statement affects
assembler operation only.

3.5.5.1 Pause Statement - The PAUSE statement enables the program to
incorporate operator activity into the sequence of automatic'events.
The PAUSE statement assumes one of two forms:

or
PAUSE
PAUSE n

where n is an unsigned decimal number.

Execution of the PAUSE statement causes the octal equivalent of the
decimal number n to be displayed in the accumulator on the user's
console. Program execution may-be-resumed (at the next executable
statement) by depressing the CONTinue key on the console.

In some cases the PAUSE statement may be used to give the operator a
chance to change data tapes or to remove a tape from the punch. When
this is done, follow the PAUSE statement with a call to the OPEN
subroutine. The subroutine initializes the I/O devices and sets
hardware flags that may have been cleared by pressing the tape feed
button, for example:

PAUSE
CALL OPEN

NOTE

The CALL OPEN statement in OS/8 FORTRAN
also resets all I/O on unit 4, the
assignable channel. Any further READs
or WRITEs on unit 4 without an
intervening IOPEN or OOPEN will print an
error message and abort.

3.5.5.2 Stop Statement - The STOP statement has the form:

STOP

It terminates program execution. STOP may occur several times within
a single program to indicate alternate points at which execution may
cease. Program control is either directed to a STOP statement or
transferred around it.

3.5.5.3 End Statement - The END statement is of the form:

END

It signals the compiler to terminate compilation. The END statement
must be the last statement of every program. (In OS/8 FORTRAN, the
END statement generates a STOP statement as well.)

23

FORTRAN II

3.6 Specification Statements

Specification statements allocate storage and furnish information
about variables and constants to the compiler. The specification
statements are COMMON, DIMENSION, and EQUIVALENCE. When used, they
must appear in the program prior to any executable statement.

3.6.1 COMMON Statement - The COMMON statement causes specified
variables or arrays to be stored in an area available to other
programs. By means of COMMON statements, the data of a main program
and/or the data of its subprograms may share a common storage area.
Varibles in COMMON statements are assigned to locations in ascending
order in field 1 beginning at location 200 storage allocation. The
COMMON statement has the general form:

COMMON v (1), v (2) , ... , v (n)

where v is a variable name.

3.6.2 DIMENSION Statement - The DIMENSION statement is used to
declare array identifiers and to specify the number and bounds of the
array subscripts. The information supplied in a DIMENSION statement
is required for the allocation of memory for arrays. Any number of
arrays may be declared in a single DIMENSION statement. The DIMENSION
statement has the form:

DIMENSION s (1), s (2) , ... , s (n)

where s is an array specification. For example:

DIMENSION A(100)
DIMENSION Y(10),PORT(25),B(10,10),J(32)

Dimension statements are used for the purpose of reserving sufficient
storage space for anticipated data; it is the user's responsibility
to see that his subscripting does not conflict with the DIMENSION
statement declarations. For example:

DIMENSION I(10),J(10)yK(10)
I (2,4) ~::2
J(12)::-.:3

The above statements would assemble without error; at run time 1(8)
would be set equal to 2 and K(2) would be set equal to 3.

NOTE

When variables in common storage are
dimensioned, the COMMON statement must
appear before the DIMENSION statement.

3.6.3 EQUIVALENCE Statement - The EQUIVALENCE statement causes more
than one variable within a given program to share the same storage
location. This is useful when the programmer desires to conserve
storage space. The form of the statement is:

EQUIVALENCE (v (1), v (2) ...) , ...

24

FORTRAN II

where v represents a variable name. The inclusion of two or more
variables within the parenthetical list indicates that these variables
are to share the same memory location and thus have the same value,
for example:

EQUIVALENCECRED,BLUE)

The variables RED and BLUE are now of equal value. The subscripts of
array variables must be integer constants, for example:

Because of core memory restrictions within the compiler, variables
cannot appear in EQUIVALENCE statements more than once. The following
statement is valid:

EQUIVALENCE(A,B,C)

The following statement would not compile correctly:

Variables may not appear in both EQUIVALENCE and COMMON statements.

3.7 Subprogram Statements

External subprograms, defined separately from the programs that call
tnem, are complete programs which conform to all the rules of FORTRAN
programs. They are compiled as closed subroutines; that is, they
appear only once in core memory regardless of the number of times they
are used. External subprograms are defined by means of the statements
FUNCTION and SUBROUTINE. Functions and subroutines must be compiled
independently of the main program and then loaded together with the
main program by the Linking Loader.

NOTE

Care should be exercised when naming a
subprogram or subroutine. It must not
have the same name as any of the FORTRAN
library functions or subroutines, or
assembler mnemonics or pseudo-ops, as
errors are likely to result. The
Library Functions are listed in this
chapter, and the symbol table for the
SABR Assembler is listed in Appendix C.

Subprogram definition statements may optionally contain dummy
arguments representing the arguments of the subprogram. They are used
as ordinary identifiers within the subprogram and are replaced by the
actual arguments when the subprogram is executed.

3.7.1 Functions - A function is called from an arithmetic expression
within the main program and returns a single numeric value. A
function begins with a FUNCTION statement and ends with an END
statement. It returns control to the calling program by means of one
or more RETURN statements. The FUNCTION statement has the form:

FUNCTION identifier (a (1), a (2) ... I a (n))

25

FORTRAN II

where FUNCTION (or FUNC) declares that the program which follows is a
function subprogram, and identifier is the name of the function being
defined. The identifier must appear as a scalar variable and be
assigned a value during execution of the subprogram. This value is
the function's value.

Arguments appearing in the list enclosed in parentheses are dummy
arguments representing the function arguments. A function must have
at least one dummy argument. The arguments must agree in number,
order and type with the actual arguments used in the calling program.
Function subprograms may be called with expressions and array names as
arguments. The corresponding dummy arguments in the FUNCTION
statement would then be scalar and array identifiers, respectively.
Those representing array names must appear within the subprogram in a
DIMENSION statement. Dimensions must be indicated as constants and
should be smaller than or equal to the dimensions of the corresponding
arrays in the calling program. Dummy arguments to FUNCTION cannot
appear in COMMON or EQUIVALENCE statements within the function
subprogram.

A function should not modify any arguments which appear in the FORTRAN
arithmetic expression calling the function. The only FORTRAN
statements not allowed in a function are SUBROUTINE and other FUNCTION
statements.

The type of
identifier
names.

function
used to

is determined by the first letter of the
name the function, in the same way as variable

The following short example calculates the gross salary of an
individual on the basis of the number of hours he has worked (TIME)
and his hourly wage (RATE). The function calculates time and a half
for overtime beyond 40 hours. The function name is SUM.

FUNCTION SUM(TIME,RATE)
IF (TIME-40.) 10,10,20

10 SUM = TIME * RATE
RETURN·

20 SUM = C40.*RATE) + (TIME-40.)*1.5*RATE
RETURN
END

Depending upon which path the program takes, control will return to
the main program at one of the two RETURN statements with the answer.
Assume that the main program is set up with a statement to read the
employee's weekly record from a list of information prepared on the
high-speed reader:

This statement reads the person's name, number, department numer, time
worked, and hourly wage. The main program then calculates the
person's gross pay with a statement such as the following:

GROSS = SUMCTIME,RATE)

and goes on to calculate withholdings and other payments.

26

FORTRAN II

3.7.2 Subroutines - A subroutine is called by the main program via a
CALL statement. A subroutine may return several or no values. It
begins with a SUBROUTINE statement and returns control to the calling
program by means of one or more RETURN statements. The SUBROUTINE
statement has the form:

SUBROUTINE identifier (a(l), a(2) ... a(n))

where SUBROUTINE declares the program which follows to be a subroutine
and tne identifier is the subroutine name. The arguments in the list
enclosed in parentheses are dummy arguments representing the arguments
of the subroutine. The dummy arguments must agree in number, order,
and type with the actual arguments, if any, used by the calling
program.

Subroutines may have expressions and array names as arguments. The
dummy arguments may appear as scalar or array identifiers. Dummy
identifiers which represent array names must be dimensioned within the
subprogram by a DIMENSION statement. The dummy arguments must not
appear in an EQUIVALENCE or COMMON statement in the subroutine.

A subroutine may use one or more of its dummy identifiers to represent
results. The subprogram name is not used for the return of results.
A subroutine subprogram need not have any arguments, or it may use
arguments to return numbers to the calling program. Subroutines are
generally used when the result of a subprogram is not a single value.

Examples of SUBROUTINE statements are as follows:

SUBROUTINE FACTO (CDEFF~N,RODTS)
SUBROUTINE RESID (NUM,N,DEN,M,RES)
SUBROUTINE SERlE

The only FORTRAN statements not allowed in a subroutine are FUNCTION
and other SUBROUTINE statements.

The following short subroutine takes two integer numbers from the main
program and exchanges their values. If this exchange of values is to
be done at several points in the main program, it is a procedure best
performed by a subroutine.

SUBROUTINE ICHGE (I¥J)
ITEM:::I
I::=J
..1:::: I TEr1
RETUF~N

END

The calling statement for this subroutine might look as follows:

C?il ... 1... I CHGE (M!, N)

where the values for the variables M and N are to be exchanged.

3.7.2.1 CALL Statement - The CALL statement assumes one of two forms:

CALL identifier
or CALL identifier (a (1), a (2) ... , a (n))

The CALL statement is used to transfer control to a subroutine. The
identifier is the subroutine name.

27

FORTRAN II

The arguments (indicated by a{l), through a{n)) may be expressions or
array identifiers. Arguments may be of any type, but must agree in
number, order, type, and array size with the corresponding arguments
in the SUBROUTINE statement of the called subroutine. Unlike a
function, a subroutine may produce more than one value and cannot be
referred to as a basic element in an expression.

A subroutine may use one or more of its arguments to return results to
the calling program. If no arguments at all are required, the first
form is used, for example:

CALL EXIT
CALL TEST (VALUE,123,275)

The identifier used to name the subroutine is not assigned a type and
has no relation to the types of the arguments. Arguments which are
constants or formed as expressions must not be modified by the
subroutine.

3.7.2.2 RETURN Statement - The RETURN statement has the form:

RETURN

This statement returns control from a subroutine to the calling
program. Each subroutine must contain at least one RETURN statement.
Normally, the last statement executed in a subprogram is a RETURN
statement; however, any number of RETURN statements may appear in a
subroutine. The RETURN statement may not be used in a main program.

4.0 FUNCTION LIBRARY

The standard FORTRAN library contains built-in functions, including
user-defined functions and subroutines.

Table 4 lists the built-in functions. These are open subroutines:
they are incorporated into the compiled program each time the source
program names them.

Functions and subroutines are closed routines; their coding appears
only once in the compiled program. These routines are entered from
various points in a program through jump-type linkages.

Function calls are provided to facilitate the evaluation of functions
such as sine, cosine, and square root. A function acts upon one or
more.quantities (arguments) to produce a single quantity called the
function value. A function call may be used in place of a variable
name in any arithmetic expression.

Function calls are denoted by the identifier which names the function
(that is, SIN, COS, etc.) followed by an argument enclosed in
parentheses as shown below:

IDENT (ARG,ARG, ... ,ARG)

where IDENT is the identifying function name and ARG is an argument
which may be any expression. A function call is evaluated before the
expression in which it is contained.

28

Function

ABS(x)
IABS(x)

FLOAT (x)

IFIX(x)

IREM(O)

IREM (x/y)

EXP(x)
ALOG{x)

SIN(x)

COS (x)

TAN (x)

ATAN(x)

SQRT(x)

IRDSW(O)

FORTRAN II

NOTE

A FORTRAN compiler and its corresponding
Library constitute an interlocking set
of programs. No user should attempt to
compile a program under OS/8 and load it
with the paper tape FORTRAN, or vice
versa. Similarly, programs developed
with the current FORTRAN compiler should
not be run under an old FORTRAN system.

Table 4
FORTRAN Function Library

Definition

the absolute value of x
the absolute value of x

convert x from integer to real
format
convert x from real to integer
format

remainder of last integer divide
is returned
remainder of x/y is returned

exponential of x, e~x
natural logarithm of x, log(e)~x

sine of x, where x is given in
radians
cosine of x, where x is given in
radians
tangent of x, where x is given in
radians
arc tangent of x, where x is given
in radians

sguare root of x is returned

read the console switch register,
returning a decimal eguivalent
of the octal integer in the
switch register. The switch
register can be set before
executing the FORTRAN program
or, using the PAUSE statement,
during execution.

'T'",n':::>
~J. r-

of Argument

real
integer

integer

real

integer

integer

real
real

real

real

real

real

real

integer

5.0 FLOATING POINT ARITHMETIC

In general, floating point arithmetic calculations are accurate to
seven digits with the eighth digit being guestionable. Subsequent
digits are not significant even though several may be typed to satisfy
a field width reguirement. with the exception of the arctangent
function, which is accurate to seven places over the entire range, the
results of function operations are accurate to six decimal places.

29

FORTRAN II

The floating point arithmetic routines check for both overflow and
underflow. Overflow will cause the OVFL error message to be printed,
and program execution will be terminated. Underflow is detected but
will not cause an error message. The arithmetic operation involved
will yield a zero result.

6.0 DEVICE INDEPENDENT I/O AND CHAINING

OS/8 FORTRAN provides for device-independent, file-oriented, formatted
I/O through use of the device number 4 in the READ and WRITE
statements and several utility subroutines. These are described
below.

6.1 The IOPEN Subroutine

The subroutine IOPEN prepares the system to accept input from a
specified device when device code 4 is used in a READ statement.
IOPEN takes two arguments which are interpreted as Hollerith strings.
After a

CALL IOPEN(A,B)

any READ statement reading from device 4 will read from the file
specified by B (which must have the extension .DA) on the device
specified by A. For example, the following statement will prepare for
input from the file DTAS:INPUT.DA.

CALL IOPEN('DTA5','INPUT')

The following statement will prepare for input from the device Fl,
which, in this case, is a non-file-structured device.

CALL IOPEN('F1',O)

If the file and device names are input via READ statements which use A
format in their FORMAT statements, then A6 format must be used. The
sign @, rather than spaces, should be used to fill in empty
characters. For example, the following statements are contained in a
program:

WRITE (1,20)
20 FORMAT ('ENTER FILE NAME')

READ (1,22)FNAME
FORMAT (A6)
CALL IOPEN('DSK',FNAME)

The Teletype prints:

ENTER FILE NAME

The user responds:

ABC@@@

30

FORTRAN II

6.2 The OOPEN Subroutine

The subroutine OOPEN prepares the system to send output to a specified
-device when device code 4 is used in a WRITE statement. The arguments
of OOPEN are treated like those of IOPEN. Future WRITE statements
using device 4 write on the device and file specified in the call to
OOPEN. An error message is printed if the program has previously
issued a CALL OOPEN without issuing a subsequent CALL OCLOSE. For
example, the following statement prepares device 4 to output on device
PTP.

The following statement prepares device 4 to output to the file
SYS:LADE.DA.

6.3 The OCLOSE Subroutine

The subroutine OCLOSE is called with no arguments. Its function is to
terminate output on the output file opened by OOPEN. If OCLOSE is not
called after a file has been written, that output file will never
exist on the specified device.

6.4 The CHAIN Subroutine

A call to the subroutine CHAIN terminates execution of the calling
program and starts execution of the core image on the system device as
specified by the argument to CHAIN. Variables in common storage are
not disturbed. For example, the following statement:

causes the file SYS:PROG2.SV to be loaded and started. Notice that
PROG2 must be compiled and stored on the system device as a core image
(.SV) file in order to be successfully accessed.

6.S The EXIT Subroutine

To return to the Keyboard Monitor from a FORTRAN program, use the EXIT
subroutine as follows:

CALL EXIT

7.0 DECTAPE I/O ROUTINES

RTAPE (read tape) and WTAPE (write tape) are the DECtape read and
write subprograms for the 8K FORTRAN and 8K SABR systems. For the
paper tape FORTRAN system, these subprograms are furnished on one
relocatable binary-coded paper tape which must be loaded by the 8K
Linking Loader into field 0, where the subprograms occupy one page of
core.

31

FORTRAN II

RTAPE and WTAPE allow the user to read and write any amount of
core-image data onto DEC tape in absolute, non-file-structured data
blocks. Many such data blocks may be stored on a single tape, and a
block may be from 1 to 4096 words in length.

RTAPE and WTAPE may be called with standard, explicit CALL statements
in any 8K FORTRAN or SABR program. Each subprogram requires four
arguments separated by commas. The arguments are the same for both
subprograms and are formatted in the same manner. They specify the
following:

1. DEC tape unit number (from 0 to 7)

2. Number of the DECtape block at which transfer is to start.
The user may direct the DECtape service routine to begin
searching for the specified block in the forward direction
rather than the usual backward direction by making this
argument the two's complement of the block number. For
additional information on this and other features, refer to
the DEC tape Programmer's Reference Manual (DEC-08-SUCO-D).

3. Number of words to be transferred (1<N<4096).

4. Core address at which the transfer is to start.

The general form is:

CALL RTAPE (n (I), n (2), n (3), n (4))

where n(l} is the DECtape unit number, n(2} is the block number, n(3}
is the number of words to be transferred, and n(4} is the starting
address.

In 8K FORTRAN, a CALL statement to RTAPE could be written in the
following format (arguments are taken as decimal numbers):

In this example, LOCA mayor may not be in common.

As a typical example of the use of RTAPE and WTAPE, assume that you
want to store the four arrays A, B, C, and D on a tape with word
lengths of 2000, 400, 400, and 20 respectively.

Since PDP-8 DECtape is formatted with 1474 blocks (numbered 0-2701
octal) of 129 words each (for a total of 190,146 words), A, B, C, and
D will require 16, 4, 4, and 1 blocks respectively.

The block numbers used by RTAPE and WTAPE should not be confused with
the record numbers used by OS/8. An OS/8 record is 256 words--roughly
twice the size of a DECtape block. An RTAPE or WTAPE record number is
exactly twice the corresponding OS/8 record number. Fo~ example, to
read the first segment of the OS/8 directory on DECtape #5, the
statements:

DIMENSION IDIR(258)
CALL RTAPE(5,2,258,IDIR)

would read Block 2 (OS/8 Block I) of DECtape 5.

32

FORTRAN II

Each array must be stored beqinninq at the start of some DECtape
block. The user may write these arrays on tape as follows:

CALL WTAPE(0,1,2000,A)
CALL WTAPE(0,17,400,B)

You may also read or write a large array in
only one DECtape block (129 words) at a time.
read back into core as follows:

CALL RTAPE(0,17,258,B(1»
CALL RTAPE(O,19,129,B(259»
CALL RTAPE(O,20,13,P(388»

sections by specifying
For example, B could be

As shown above, it is possible to read or write less than 129 words
starting at the beginning of a DECtape block. It is impossible,
however, to read or write starting in the middle of a block. For
example, the last 10 words of a DECtape block may not be read without
reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward search
for the desired block number. To save searching time, you may request
RTAPE or WTAPE to start the block number search in the forward
direction. This is done by specifying the negative of the block
number. Use this method only if the number of the next block to be
referenced is at least ten block numbers greater than the last block
number used. For example, if you have just read array A and now want
array D, you may write:

CALL RTAPE(O,1,2000,A)
CALL RTAPE(O,-27,20,D)

The following section of a program demonstrates the use of DEC tape
I/O. Assume that values are already present on the DECtape.

DIMENSION DATA(500)

NB=O
SUM=:O +

DO 100 N=1,10
CALL RTAPE(1,-NB,1500,DATA)
TEM=O.
[10 50 K=1,500

50 TEM=TEMtDATA(K)
SUM=SUMtTEM

100 NB=NBt24
AMEAN=Sl.JM/~5()O() ~

WRITE (1,110) SUM, AMEAN
CALL EXIT

110 FORMAT ('SUM=',E15.7' MEAN=',E15.7111)
END

8.0 OS/8 FORTRAN LIBRARY SUBROUTINES

Table 5 contains a summary of the OS/8 FORTRAN library subroutines.
This list describes the routines, their functions, and other routines
which must be present if the library routines are to be used. The
subroutine names listed are the files which comprise OS/8 Source
DECtape 3 (available from the Software Distribution Center upon
request) .

33

FORTRAN II

Table 5
FORTRAN II Library Subroutines

Entry
Points, Routines Core

or Defined That are Require- Function the
Subroutine External Pre- ments Routine

Name Symbols requisites (Pages) Performs

I IOH 'READ' FLOAT 11 Handles Input
'WRITE' UTILTY and Output
, IOH' INTEGR Conversion

FLOAT 'FAD' UTILTY 5 Floating
'FSB' Point Arith-
'FMP' metic Package
'FDV'

I 'STO'
'FLOT'
'FLOAT'
'FIX'
'IFIX'
'IFAD'
'ISTO'
'ABS'
'CHS'

UTILTY 'OPEN' I INTEGR 3 FORTRAN De-
'GENIO'

I
vice Routines,

I 'EXIT' Error Exit,
'ERROR' I Normal Exit

I I 'CKIO' I

POWERS ' IFPOW' FLOAT 3 Handles Num-
'FFPOW' UTILTY bers to
'EXP' IPOWRS Floating
'ALOG' INTEGR Powers

INTEGR 'IREM' UTILTY 2 Integer Math
'lABS' Package
'DIV'
'MPY'
'IRDSW'
'CLEAR'
'SUBset

TRIG 'SIN' FLOAT 2 Handles Sine,
'COS' Cosine, and
'TAN' Tangent

ATAN 'ATAN' FLOAT 2 Handles Arc-
tangents

SQRT 'SQRT' FLOAT 1 Handles Square
UTILTY Roots

(continued on next page)

34

FORTRAN II

Table 5 (Cont.)
FORT!U\N II T.inrrir'1.7 Subroutines ---- --~

Entry r
Dn;nf-CI I Routines Core

orL~;fi~~dl That are Require- Function the
Subroutine External I Pre- ments Routine

Name Symbols requisites (Pages) Performs

I
IPOWRS 'IIPOW'

I
FLOAT I Handles Num-

'FIPOW' INTEGR bers to Integer

I
Powers

IOPEN 'IOPEN' I UTILTY 1 OS/8 Device-
'OOPEN' I Independent I 'OCLOS'

I
I/O, and

'CHAIN' Chaining
I Routines
I

RWTAPE 'RTAPE' I UTILTY I OS/8 Indepen-
'WTAPE' I dent DEC tape

I I/O Routines

9.0 MIXING SABR AND FORTRAN STATEMENTS

An S in column 1 of an input line means that the line has SABR code.
This feature is very useful for performing instructions which are
undefined in the FORTRAN language. For example:

s

DIMENSION M(10)

j==M(:L)
DO 5::=; K::::2,:LO
L==M (1-0
TAD \/...
AND \1

DCA \,J
CONTINUE

This section of code will form the logical AND of M(l) through M(IO)
in the variable J.

Notice that whenever a FORTRAN variable is used in a SABR statement,
the variable name is preceded by a backslash (\). FORTRAN line
numbers referenced in SABR statements are also preceded by a backslash
for identification purposes. (A backslash is produced by typing a
SHIFT/L.)

Information on calling subroutines which are written in SABR assembly
language from a FORTRAN program may be found in the description of
SABR in this manual.

35

FORTRAN II

10.0 SIZE OF A FORTRAN PROGRAM

The maximum size of any FORTRAN program is 36 octal or 30 decimal
pages of code.

OS/8 can run FORTRAN programs in 8 to 32K of core.
program or subprogram can be longer than 4K.

However, no one

You can estimate the size of your program as follows. Take the amount
of core available on the system (at least 8K) and from it subtract 4K
for the linkage subroutines, external symbol table, and I/O, math,
error, and utility subroutines. From the remainder subtract the
amount of storage required for data. The remaining space can be used
to hold FORTRAN coding, at the rate of 50-70 FORTRAN statements per lK
of core.

One way to have a longer FORTRAN program in core than is usually
possible is to divide a FORTRAN program into three chained segments:

Segment l--inputs data into common storage
Segment 2--FORTRAN program for data processing
Segment 3--does output to desired device(s)

Chaining segments gives two space advantages:

1. The entire program does not have to fit into available core,
only the largest segment.

2. If no I/O statements are used in the middle (computational)
segment, the I/O conversion routines will not be loaded with
that segment. Since these routines occupy over 1100 decimal
words, this chaining technique allows the computational
segment to be from 50 to 80 statements longer than a similar
program containing I/O statements.

When chaining to a subroutine, make certain you have compiled, loaded,
and saved a complete runnable main program on the system device. This
program is brought into core by the FORTRAN CHAIN subroutine.

11.0 FORTRAN STATEMENT SUMMARY

A summary of the statements available under OS/8 FORTRAN follows.

Table 6
FORTRAN Language Summary

Statement

Arithmetic Statements

v=e

Control Statements

GOTO n

Definition

v is a variable (scalar or array);
e is an expression.

Transfer control to the statement
numbered n.

(continued on next page)

36

FORTRAN II

Table 6 (Cont.)
FORTR~N Language Summary

Statement Definition

Control Statements (Cont.) I
GOTO (n{l),n{2}, ••• ,n(i»j II Where n(l)-n(i) are statement

numbers and j is a scalar integer

I
variable. This statement transfers
control to the jAth member of the I ser ies of n (i) •

IF(expression}n(l) ,n(2) ,n(3)1 This statement transfers control to
the statement numbered nell ,n(2),
or n(3) if the value of the numeric
expression is less than, equal to,
or greater than zero, respectively.
The expression can be simple or
complex.

DO n i=m (1) , m (2) , m (3)

I CONTINUE

PAUSE
PAUSE n

STOP

END

Input/Output Statements

Repeat execution through statement
n, beginning with i=m(l) ,
incrementing by m(3), while i is
less than or equal to m(2). If
m(3) is omitted, it is assumed to
be 1. mls and ils cannot be

! subscripted. mls can be either
integer numbers or integer
variables; i is an integer
variable.

Dummy statement, used primarily as
a target for transfers,
particularly the last statement in
the range of a DO loop. A DO loop
need not end with a CONTINUE
statement.

Temporarily suspend execution.
The octal equivalent of the decimal
number n is displayed in the
accumulator. Program execution can
be resumed by following the
statement with a call to the OPEN
subroutine.

Terminate execution.

Terminate compilation; must be the
last statement in a program.

FORMAT (s (1) , s (2) , ... , s (n)) Wh ere S (1) - S (n) are d a t a fie 1 d
specifications, this statement is
used with either a READ or WRITE
statement.

(continued on next page)

37

FORTRAN II

Table 6 (Cont.)
FORTRAN Language Summary

Statement

Input/Output Statements
(Cont.)

READ (u,f) list

WRITE (u,f) list

Specification Statements

COMMON v (I) , v (2) , ... , v (n)

Definition

Where u is a device designation
(integer constant or integer
variable), f is a FORMAT statement
number, and list is a list of
variables.

Where u is a device designation
(integer constant or integer
variable), f is a format statement
number, and list is a list of
variables.

Specified variables or arrays are
stored in an area available to
other programs.

DIMENSION a(l) ,a(2) , ... ,a(n) Used to declare variable names to
be array names and specify the
number and bounds of each one and
two dimensional array.

EQUIVALENCE (v(l) ,v(2) ,
••• ,), (v(i) ,v{i+l), •..)

Subprogram Statements

FUNCTION v(a(l) ,a(2), ... ,
a (n))

SUBROUTINE v(a(l) ,a(2) , ... ,
a (n))

The inclusion of two or more
variable or array names in a
parenthetical list indicates that
the quantities in the list are to
share the same memory location and
hence have the same value.
Subscripts of array variables must
be integer constants. Names must
not appear in both EQUIVALENCE and
COMMON statements.

Declares the program which follows
to be a function subprogram. v is
the name of the function being
defined. v must appear as a scalar
variable and be assigned a value
during execution of the subprogram.

Declares the program which follows
to be a subroutine subprogram. The
arguments in the list(s) are dummy
arguments representing the
arguments of the subprogram. Dummy
arguments must agree in number,
order, and type with the arguments
used by the calling program.

(continued on next page)

38

FORTRAN II

Table 6 (Cont.)
FORTRAN Language Summary

Statement

Subprogram Statements
(Cont.)

CALL v
CALL v (a(l),a(2), ... ,a(n))

RETURN

12.0 FORTRAN ERROR MESSAGES

12.1 Compiler Error Messages

The following OS/8
self-explanatory.

FORTRAN

I Definition

I
I
I Statement used to transfer control

I
to a subroutine subprogram. v is
the subroutine name in the

I
SUBROUTINE statement. The
arguments can be of any type, but

I
must agree in number, order, type
and array size with the arguments

I
in the SUBROUTINE statement. One
or more of the arguments can be
used to return results to the
calling program. For example:

CALL EXIT

CALL TEXT (VALUE,123,275)

CALL TECK ('MAS' ,3)

I Returns control from a subprogram

I
'to the calling program. Each

subprogram must contain at least

l
one RETURN statement. RETURN
cannot be used in the main program.

!

Compiler error messages are

ARITHMETIC EXPRESSION TOO COMPLEX
EXCESSIVE SUBSCRIPTS
ILLEGAL ARITHMETIC EXPRESSION
ILLEGAL CONSTANT
ILLEGAL CONTINUATION
ILLEGAL EQUIVALENCING
ILLEGAL OR EXCESSIVE DO NESTING
ILLEGAL STATEMENT
ILLEGAL STATEMENT NUMBER
ILLEGAL VARIABLE
MIXED MODE EXPRESSION
SYMBOL TABLE EXCEEDED
SYNTAX ERROR (usually indicates illegal punctuation)
SUBR. OR FUNCT. STMT. NOT FIRST

39

FORTRAN II

In addition, OS/8 FORTRAN ~ontains the following error messages:

Message Explanation

COMPILER MALFUNCTION The meaning of this message has been extended
to cover various unlikely Monitor errors.

10 A device handler has signalled an I/O error.

NO END STATEMENT The input to the Compiler has been exhausted.

NO ROOM FOR OUTPUT The file FORTRN.TM cannot fit on the system
device.

SABR.SV NOT FOUND The SABR assembler is not present on the
system device.

12.2 Library Error Messages

During execution, the various library programs check for certain
errors and print error messages in the form:

XXXX ERROR AT LOC NNNNN

where XXX X is the error code and NNNNN is the location of the error.

Table 7
FORTRAN Library Error Messages

Error Code Meaning

The following errors are fatal and cause a return to the Keyboard
Monitor:

ALOG

IOER

CHER

FMTI

Attempt to compute log of negative number.

One of the following has occurred:

1. Device-independent input or output attempted
without /1 or /0 options, or user attempted
to specify a device requiring a two-page
handler for device-independent I/O without
using the /H option

2. Bad arguments to IOPEN or OOPEN

3. Transmission error while doing I/O

File specified as argument to CHAIN not found on
system device.

Invalid Format statement.

(continued on next page)

40

Error Code

FORTRAN II

Table 7 (Cont.)
FORTRAN Library Error Messages

Meaning

The following input errors are fatal unless input is coming from
the Teletype, in which case the entire READ statement is tried
again:

FMT2 Illegal character in I format.

FMT3 Illegal character in F or E format.

The following errors do not terminate execution of the user's
program.

DIVZ Division by zero--very large number is returned.

EXP Argument to EXP too large--very large number is
returned.

OVFL

FLPW

SQRT

Floating point overflow--very
returned.

large number is

Negative number raised to floating point
power--absolute value taken.

Attempt to take square root of negative
number--absolute value used.

FIX Attempt to fix a number >2047; 2047 is returned.

In addition, the error message:

USER ERROR 1 AT XXXX

means that you have tried to reference an entry point of a program
which was not loaded, or possibly that you failed to define a
subscripted variable in a DIMENSION statement. XXX X has no meaning.

To pinpoint the location of a library program execution error, proceed
as follows.

1. Determine, from the storage map, the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.

2. Subtract, in octal, the entry point location of the program
or subprogram containing the error from the location of the
error indicated in the error message.

3. From the assembly symbol table, determine the relative
address of the external symbol found in step 1 and add that
relative address to the result of step 2.

4. The sum of step 3 is the relative address of the error, which
can then be compared with the relative addresses of the
numbered statements in the program.

Undefined statement numbers are not detected until the assembly phase,
at which time a U error message is given. (Refer to the list of SABR
error messages.)

41

ABS function, 29
ALOG function, 29
Alphanumeric field

specifications, 17
Arguments,

dummy, 25
Arithmetic expressions, 8 to 10
Arithmetic operations, floating

point, 29
Arithmetic statements, 11
Arrays, 8, 24
ASCII,

stripped format, 17
ATAN function, 29
ATAN, library subroutine, 34

Block number, 32

CALL statement, 27
CALL OPEN statement, 23
Chaining, 30
Characters, 6
Closed subroutines, 25
Codes, numeric field, 16
Comments, 11
COMMON statement, 24
Compiler,

error messages, 39
loading and operating; 1

Computed GOTO, 21
Conserving storage space, 24
Constants, 6, 7
CONTINUE statement, 22
Control statements, 15, 18
Conversion,

FORTRAN H Hollerith, 18
COS function, 29

Data,
blocks, 32
files, 5
statement, 12

DECtape I/O routines, 31
Device designations, 15
Device independent I/O and

chaining, 30 to 33
DIMENSION statement, 24
DO loops, implied, 13
DO statement, 21
Dummy arguments, 25
Dummy statement, 22

INDEX

END statement, 23
EQUIVALENCE statement, 24
Error messages, 39, 40
EXIT subroutine, 31
EXP function, 29
Expressions, 8, 9
External subprograms, 25

Fields,
alphanumeric, 17
mixed, 19
numeric, 16
repetition of, 19
skip, 19

Floating point arithmetic, 29
FLOAT,

function, 29
library subroutine, 34

FORMAT statement, 15
Functions, 29
FUNCTION statements, 25

GOTO statement, 21

Hollerith,
constants, 7
conversion, 18
strings, 30

lABS,
function, 29

IF statement, 21
IFIX subroutine, 29
Implied DO loops, 13
Increment values, 22
Index, 21, 22
Initial value, 22
Input/output list, 13
Input/output statements, 12
Integer constants, 7
Integer variables, 7
INTEGR Library subroutine, 34
IOH Library subroutine, 34
IOPEN Library subroutine, 35
IPOWRS Library subroutine, 35
IRDSW function, 29
lREM function, 29
IRFM function, 29

Index-l

INDEX (Cont.)

Library,
error messages, 40
functions, 29
subroutines, 34, 35

Line continuation designator
10 '

Maximum size of a FORTRAN
program, 36

Mixed fields, 19
Mixing SABR and FORTRAN

statements, 36
Multiple record formats, 20

Numeric fields, 16
input conversion, 17

OCLOSE subroutine, 31
OOPEN subroutine, 31
Overflow, 29

Parentheses; 8; 9
PAUSE, 23
POWERS Library subroutine, 34

Range,
integer constants, 6
integer variables, 6
real constants, 6

READ statement, 14
Record formats, 13
Repetition,

of fields, 19
of groups, 20

Replacement operator, 8
RETURN statement, 28
RWTAPE Library subroutine, 35

SABR assembler,
mixing SABR and FORTRAN II

statement, 35
Scalar variables, 7
SIN function, 29
Size of a FORTRAN II program,

36
Skip fields, 19

Slash (/), 20
Source program, 2
Specification statements, 24
SQRT function, 29
SQRT library function, 34
Statement numbers, 10
Statement,

arithmetic, 11
control, 21, 23
data transmission, 12
input/output, 12 to 20
mixing SABR and FORTRAN II,

35
Statements,

CALL, 22
CALL OPE~, 23
COMMON, 24
CONTINUE, 22
DIMENSION, 24
DO, 21
END, 23
EQUIVALENCE, 24
FORMAT, 15
FUNCTION, 25
GO TO, 21
IF, 21
PAUSE, 23
READ, 14
RETURN, 28
STOP, 23
SUBROUTINE, 27
WRITE, 14

Statement types, 11
STOP statement, 23
Storage,

conserving space, 24
Strings, Hollerith, 30
Stripped ASCII format 17
Subprogram statements: 25
Subroutine,

chaining, 30
closed, 25
library, 33
subprograms, 27

Subroutines,
CHAIN, 37
EXIT, 31
IOPEN, 30
OCLOSE, 31
OOPEN, 31

SUBROUTINE statement, 27
Subscripted variables, 8
Subscript list, 8

Tabs, 10
TAN function, 29
Truncation, 7

Index-2

INDEX (Cont=)

Underflow: 29
UTILITY library subroutine, 34

Variables,
array, 8
integer, 7
real, 7

Variables (Cont.),
scalar, 7
subscripted, 8

WRITE statement, 14
WTAPE routine, 32

Index-3

FLAP/RALF

1.0
2.0
3.0
3.1
3.2
3.3
3.4
4.0
5.0
6.0
7.0
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7 .2. 2.'3
7.2.3
7.2~3.1
7.2.3.2
B.O
9.0
10.0
11.0
12.0
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.B
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.1B
12.19
12.20
12.21

INTRODUCTION
HARDWARE REQUIREMENTS
STATEMENT SYNTAX

Labels
Instructions
Expressions
Comments

CONTENTS

ARITHMETIC AND LOGICAL OPERATIONS
PDP-B OPERATION CODES
PDP-B MODE ADDRESSING
FPP OPERATION CODES

Data Reference Instructions
Double-Word Reference Instruction Format
Single-Word Direct Reference Instruction Format
Single-Word Indirect Reference Instruction Format
Special Format Instructions
Special Format 1 Instructions: Jump on Count + Trap
Special Format 2 Instructions
Load Index and Add Index
Conditional Jumps
Pointer Moves
Special Format 3 Instructions
Normalize
Operate

FPP MODE ADDRESSING
LITERALS
LINKS
DATA SPECIFICATION
PSEUDO-OPERATORS

ADDR
BASE n
COMMON
COMMZ
DECIMAL
DPCHK
E n
END
ENTRY
EQUATE (=)
EXTERN
F n
FIELD1
IFnnn (Conditional Assembly)
INDEX n
LISTOF
LISTON
OCTAL
ORG expr
PAGE
REPEAT n

iii

Page

1
1
1
2
2
2
3
3
3
5
6
6
7
7
7
8
B
B
B
9
9
10
10
11
11
12
13
14
14
14
14
15
15
15
15
15
15
15
15
15
16
16
16
17
17
17
IB
1B
1B
1B

12.22
12.23
12.24
12.25
12.26
13.0
14.0
14.1
14.2
14.3
14.4
14.5

INDEX

TABLE 1
2
3

FIGURE 1

CONTENTS (Cont.)

S n
SECT
SECT8
TEXT
ZBLOCK n

REFERENCING MEMORY
RALF FEATURES

Core Allocation
RALF Programming Notes
Using the Assembler
Error Messages
FLAP/RALF Pseudo-operators

TABLES

PDP-8 Operation Codes
FLAP/RALF Error Codes
FLAP/RALF Pseudo-Operators

FIGURES

Al'10D Routine

iv

Page

18
18
18
19
19
19
21
21
24
30
31
33

Index-1

3
31
33

28

FLAP/RALF

1.0 INTRODUCTION

FLAP and RALF are assemblers that translate PDP-8 or PDP-12 processor
and floating point processor (FPP) operation codes in a source program
into binary codes in two or three passes.

The first pass assigns numeric values to the symbols and places them
in the symbol table, the second pass generates the binary coding, and
the third pass generates the program listing.

FLAP/RALF is used to assemble programs using the FPP instructions and
capabilities. These programs can calculate numeric values as 12-bit
integers, IS-bit integers, 24-bit double precision fractions, 3-word
floating point values, or 6-word extended-precision floating-point
values. Refer to the FPP Userls Guide, DEC-12-GQZA-D, for detailed
information on the floating point processor and its instruction set.

FLAP can run on an OS/8 System with a floating point processor (FPP)
without any other supporting programs. It generates absolute binary
output which is legal input to the OS/8 Absolute Loader (ABSLDR).
RALF, an extension of FLAP, is part of the OS/8 FORTRAN IV System. It
accepts assembly language files and FORTRAN compiler output, and it
generates relocatable binary modules that can be loaded by the
relocatable loader LOAD (also part of the OS/8 FORTRAN IV System) .

The following sections describe the syntax, instruction formats,
addressing modes, and pseudo-operators in the assemblers. The special
features of RALF involving relocatable assembly are described in
Section 14.

2.0 HARDWARE REQUIREMENTS

The minimum hardware configuration for FLAP is a PDP-8 or PDP-12 with
a floating point processor (FPP). The minimum hardware configuration
for RALF is a PDP-8 or PDP-12 OS/8 System.

3.0 STATEMENT SYNTAX

A source program is a sequence of coding statements in the general
format:

Label,instruction (space)expression (space)/ comment

A physical line of coding may be up to 127-characters long and is
terminated by a carriage return. You may use a semicolon in a line of
code (except in the comment field) to terminate a logical statement,
permitting you to type several statements on a single line. However,
a set of logical statements separated by semicolons must not exceed
the 127-character limit.

A space is required in a statement:

• after an instruction mnemonic

• before a slash (I) used to indicate a comment

• as an OR operator

Multiple spaces or tabs are equivalent to a single space. These
characters are optional after the comma defining a label, after the =
sign that sets a value, and before a statement.

1

FLAP/RALF

3.1 Labels

You can indicate a statement label by preceding that statement with a
user-defined symbol followed by a comma. This format assigns the
current value of the location counter to the label.

3.2 Instructions

An instruction may be a PDP-8 operation code, an FPP12 operation code,
a FLAP pseudo-operator, or a RALF pseudo-operator.

3.3 Expressions

An expression can contain:

• A user-defined symbol (equated symbol or label).

• The symbol 11.", which has a value equal to the current
location counter.

• A numeric constant.

• Two or more of the above, combined by operators.

FPP and PDP-8 instructions are illegal symbols in expressions. User
symbols can be 1 to 6 alphanumeric characters in length and must start
with a # or an alphabetic character. Any additional characters are
ignored. Thus, the symbols:

#100
A
A1234

are acceptable, but in the symbol:

ASYMBOLMAYBEMORETHAN6CHARACTERS

only the first six characters are stored as the symbol name. In this
case, all characters after ASYMBO are ignored. You may define up to
500 symbols in an assembly.

All integer expressions are computed in l5-bit 2's complement
arithmetic and then truncated if necessary (15 bits for 2-word FPP
memory reference instructions and 12 bits for expressions). The
following are examples of legal integer (address) expressions:

START+l
123
BUFSIZ*2+7600+300
(ADDRES+2

The radix pseudo-ops OCTAL and DECIMAL control the interpretation of
numbers used in expressions. Decimal numbers larger than 32,767 and
octal numbers larger than 77777 will be incorrectly converted and will
cause the NE error. (Error messages are listed in Section 14.4.)

2

FLAP/RALF

3.4 Comments

A comment is a note you add at the end of a line of code, usually to
indicate the logical sequence of the program. Type a slash (I),
preceded by one or more spaces or tabs, to specify the start of a
comment. Comments must not contain angle brackets.

4.0 ARITHMETIC AND LOGICAL OPERATIONS

The FLAP/RALF operators and their functions in combining numbers or
symbols to form expressions are as follows.

Operator

+

*
/

space or tab

"

Function

2's complement addition
2's complement subtraction
multiplication
division
inclusive OR used to separate

two instructions
inclusive OR
precedes an ASCII constant; for example,

"A has the octal value 301

Expressions are evaluated from left to right. They may not contain
floating point constants.

5.0 PDP-8 OPERATION CODES

PDP-8 operation codes are legal defined mnemonics for use with
FLAP/RALF. Table 1 lists the mnemonic, octal value, and operation of
each PDP-8 operation code. PDP-8 code must be executed by the PDP-8
or PDP-12 processor. Assembler statements using these codes are coded
(or executed) in PDP-8 mode.

Table 1
PDP-8 Operation Codes

Mnemonic Octal

Memory Reference Instructions

AND
TAD
ISZ
DCA
JMS
JMP

0000
1000
2000
3000
4000
5000

3

Operation

Logical AND
2's complement add
Increment and skip if zero
Deposit and clear AC
Jump to subroutine
Jump

(continued on next page)

FLAP/RALF

Table 1 (Cont.)
PDP-8 Operation Codes

Mnemonic Octal

Group 1 Operate Microinstructions

NOP 7000
CLA 7200
CLL 7100
CMA 7040
CML 7020
RAR 7010

RAL 7004
RTR 7012

RTL 7006
lAC 7001

Group 2 Operate Microinstructions

SMA 7500
SZA 7440
SPA 7510
SNA 7450
SNL 7420
SZL 7430
SKP 7410
OSR 7404

HLT 7402

Combined Microinstructions

CIA
LAS

7401
7604

lOT Microinstructions
Keyboard/Reader

KSF

KCC

KRS
KRB

6031

6032

6034
6036

Teleprinter/Punch

TSF 6041

TCF 6042

TPC 6044

TLS 6046

4

Operation

No operation
Clear AC
Clear link
Complement AC
Complement link
Rotate AC and link right
one
Rotate AC and link left one
Rotate AC and link right
two
Rotate AC and link left two
Increment AC

Skip on minus AC
Skip on zero AC
Skip on positive AC
Skip on non-zero AC
Skip on non-zero link
Skip on zero link
Skip
Inclusive OR switch
register with AC
Halt

CMA lAC
CLA OSR

Skip if keyboard/reader
flag=l
Clear AC and
keyboard/reader flag
Read keyboard/reader buffer
Clear AC and read keyboard
buffer and clear
keyboard flag

Skip if teleprinter/punch
flag=l
Clear teleprinter/punch
flag
Load teleprinter/punch
buffer, select and
print
Load teleprinter/punch
buffer, select and
print, and clear
teleprinter/punch flag

(continued on next page)

Mnemonic Octal

Program Interrupt

ION 6001
rOF 6002

Extended Memory (Type

CDF 62nl
CIF 62n2
RDF 6214
RIF 6224

RMF 6244
RIB 6234

FLAP/RALF

Table 1 (Cont.)
PDP-8 Operation Codes

MC8/I)

Operation

Turn interrupt on
Turn interrupt

Change to data field n
Change to instruction n
Read data field into AC
Read instruction field into
AC
Restore memory field
Read interrupt

6.0 PDP-8 MODE ADDRESSING

In PDP-8 Mode, addressing is specified by the contents of the Memory
Reference Instruction modified by the Data Field and Instruction Field
Registers. Direct addressing, specified by bit 3=0, causes reference
to the address given in bits 5-11 in page 0 of the current field if
bit 4=0, or to the current page if bit 4=1. Indirect addressing,
specified by bit 3=1, causes reference to the indirect address
contained in the location specified by bits 4-11, used as above. The
indirect address for AND,TAD,ISZ, and DCA refers not to the current
field but to the field specified in the Data Field Register. The JMP
and JMS instructions refer to locations in the field specified in the
Instruction Field Register.

The Data Field Register and the Instruction Field Register are
originally set through the console switches; however, the registers
can be set under program control by means of the CIF and CDF
instructions. The CIF instruction sets the Instruction Field Buffer
to the specified field. The CDF instruction changes the Data Field
Register immediately. Other instructions allow the program to read,
save, and restore the Data Field and Instruction Field Registers.
Completion of execution of a JMP or JMS instruction sets the
Instruction Field Register to the contents of the Instruction Field
Buffer. This procedure permits a program to choose a new field, then
execute a jump from the current field to an address in the new field.

The character % appended to the end of a memory reference instruction
indicates indirect addressing, and the character Z indicates a page 0
reference:

CURRENT PAGE PAGE ZERO

DIRECT INDIRECT DIRECT INDIRECT

TAD A TAD% A TADZ A TADZ% A

DCA B DCA% B DCAZ B DCAZ% B

Do not insert spaces between Memory Reference Instructions and either
the Z or % character. Also the Z must always precede the % when both
are used.

5

FLAP/RALF

7.0 FPP OPERATION CODES

The Floating Point Processor recognizes three forms of Data
Instructions, which are analogous to the Memory
Instructions, and three Special Format instruction forms,
analogous to the Operate Micro-Instructions.

7.1 Data Reference Instructions

Reference
Reference

which are

Data Reference Instructions cause transfer between memory and the
floating point accumulator, a 36-bit register in the FPP. The
transfer may be 36 bits of floating point data or 24 bits of
double-precision fixed-point fraction data, depending upon where
STARTF or STARTD was most recently executed. In the fixed point mode,
the last 24 bits of the FAC or memory are used, and the exponent is
unchanged.

The descriptions of
conventional symbols:

CO
FAC
M

x

XO
Y
+

the instructions contain

contents of enclosed quantity
floating accumulator
a variable multiplier
=2 in Double Precision Mode
=3 in Floating Point Mode
an indexing variable
X=O, do not index

the

1~X~7, use specified index register
origin of index registers
address computed
an increment bit
=0, no incrementing
=1, increment before using index
symbol to avoid indexing
x=o o(X)=O
x=o O(X)=l

The op codes, mnemonics, and data functions are:

Op Code

o
1
2
3
4
5
6
7

Mnemonic

FLDA
FADD
FSUB
FDIV
FMUL
FADDM
FSTA
FMULM

Data Function

C(Y)+FAC
C(Y) + C(FAC)+FAC
C(FAC) - C(Y)+C FAC
C(FAC)/C(Y)+FAC
C(FAC * C(Y)+FAC
C(Y) + C(FAC)+Y
C(FAC)+Y
C(FAC) * C(Y)+Y

following

You can use all eight of the Data Reference Instructions in any of the
three forms. The three forms for Data Reference Instructions follow.

6

FLAP/RALF

7.1.1 Double-Word Reference Instruction Format

0 2 3 4 5 6 8 9 11
I

OP CODE 0 + I X ADDRESS

I
12 23

ADDRESS

DOUBLE-WORD DATA REFERENCE INSTRUCTIONS

Y C(bits 9-23) + M * (C(X + XO) + C(bit 5)) * O(X)

7.1.2 Single-Word Direct Reference Instruction Format

o 2 3 4 5 11

OP CODE OFFSET

SINGLE-WORD DIRECT REFERENCE

Y C(base register) + 3 * (offset)

7.1.3 Single-word Indirect Reference Instruction Format

o 2 3 4 5 6 8 9 11

OP CODE + x OFFSET

SINGLE-WORD INDIRECT REFERENCE

Y = C(bits 21-36 of C «base register) + 3 * offset))
+ (M) * (C(X + XO) + C(bit 5)) * Sex)

6(x) = 1 if X * 0 and 0 if X = 0
M 2 if fixed-point mode
M = 3 if floating-point mode

7

FLAP/RALF

7.2 Special Format Instructions

7.2.1 Special Format 1 Instructions: Jump on Count + Trap

Op Code

2

3
4
5
6
7

Mnemonic

JXN

Function

If index register X is nonzero, the index
register X is incremented if bit 5=1 and
a jump is executed to the address
contained in bits 9-23.

The instruction-trap status bit is set
and the FPP12 exits, causing a PDP
interrupt. The unindexed operand address
is dumped into the APT.

The trap instructions with op codes 3 and 4 are assigned a special
meaning by RALF. Their mnemonics are TRAP3 and TRAP4 respectively.
TRAP3 acts as a JMP to PDP-8 Mode; TRAP4 acts as a JMS to PDP-8 Mode.
See the FORTRAN IV Software Support Manual for details.

a 2 3 4 5 6 8 9 11

OP CODE a a +
I

X ADDRESS

12 23

ADDRESS

SPECIAL FORMAT 1

7.2.2 Special Format 2 Instructions

7.2.2.1 Load Index and Add Index

Op Code Extension Mnemonic Function

0 10 LDX The contents of the index register
specified by the bits 9-11 are
replaced by the contents of bits
12-23.

0 11 ADDX The contents of bits 12-23 are
added to the index register
specified by bits 9-11.

8

FLAP/RALF

7.2.2.2 Conditional Jumps - Jumps are to the location specified by
bits 9-23 of the instruction.

Op Code Extension

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

7.2.2.3 Pointer Moves

Op Code Extension

1 10

1 11

1 13

1 12

0 2 3

OP CODE 0 I
12

Mnemonic

.'J;1("'\

........ '>o!

JGE
JLE
JA
JNE
JLT
JGT
JAL

Mnemonic

SETX

SETB

JSR

JSA

4 5

Function

.'"m,...., v IIt.ooL.l.LL.t;' if FAC=Q
Jump if FAC~O
Jump if FAC~O
Jump always
Jump if FAC ¢ 0
Jump if FAC<O
Jump if FAC)O
Jump if impossible to fix the
floating point number contained
in the FAC; that is, if the
exponent is greater than
23 10 •

Function

Set XO to the address contained
in bit& 9-23 of the
instructions.

Set the base register to the
address contained in bits 9-23.

Jump and save return. Jump to
the location specified in bits
9-23, and save the return in
bits 21-35 of the first entry of
the base page.

An unconditional jump to the
current address +2 is deposited
in the address and address+l,
where address is specified by
bits 9-23. The FPC is set to
address+2.

8 9 11

0 I EXTENSION F

23

Y

SPECIAL FORMAT 2

9

FLAP/RALF

7.2.3 Special Format 3 Instructions

7.2.3.1 Normalize

Op Code

o

o

o

o

o
o
1

Extension

1

2

3

4

5-7
12-17
14-17

Mnemonic

ALN

ATX

XTA

NOP

reserved

10

Function

The mantissa of the FAC is
shifted until the FAC exponent
equals the contents of the- index
register specified by bits 9-11.
If bits 9-11 are zero, the FAC
is aligned so that the exponent

23 10 0 Setting the
exponent 23 10 fixes the
floating-point number. The JAL
instruction tests to see if
fixing is possible. In
double-precision mode, an
arithmetic shift is performed on
the FAC fraction. The number of
shifts is equal to the absolute
value of the contents of the
specified index register. The
direction of shift depends on
the sign of the index register
contents. A positive sign
indicates a shift toward the
least significant bit, while a
negative sign indicates a shift
toward the most significant bit.
The FAC exponent is not altered
by the ALN instruction in
double-precision mode.

The contents of the FAC are
fixed and the least significant
12 bits of the mantissa are
loaded into the index register
specified by bits 9-11. In
double-precision mode the least
significant 12 bits of the FAC
are loaded into the specified
index register. The FAC itself
is not altered by the FATX
instruction.

The contents of the index
register specified by bits 9-11
are loaded right-justified into
the FAC mantissa. The FAC
exponent is loaded with 23 10
and then FAC is normalized.
This operation is typically
termed floating a l2-bit number.
In double-precision mode, the
FAC is not normalized.

The single-word instruction
performs no operation.

These codes are reserved for
instruction set expansion and
should not be used.

FLAP/RALF

7.2.3.2 Operate

Op Code Extension Bits 9-11 Mnemonic Function

0 0 0 FEXIT Dump active registers
into the APT, reset
the FPP RUN flip-flop
to the 0 state, and
interrupt the PDP-S
processor.

0 0 1 FPAUSE Wait for synchronizing
signal. lOT FFST
(6555) will restart
the instruction
following FPAUSE.

0 0 2 FCLA Zero the FAC mantissa
and exponent.

0 0 3 FNEG Complement FAC
mantissa. This
instruction produces
the true negative, not
the bit-by-bit
complement.

0 0 4 FNORM Normalize the FAC. In
double-precision mode
FNORrvi is a NOP.

0 0 5 STARTF Start floating-point
mode.

0 0 6 STARTD Start double-precision
mode.

0 0 7 JAC Jump to the location
specified by the least
significant 15 bits of
the FAC mantissa.

a 2 3 4 5 8 9 11

OP CODE a I a I EXTENSION F

SPECIAL FORMAT 3

S.o FPP MODE ADDRESSING

The FLAP/RALF assembler can interact with and effectively use the
rather complex addressing scheme of the FPP. This addressing scheme
allows the FPP to access a full 32k words of core through IS-bit
addresses. It also allows the FPP to access a movable base page
through 7-bit addresses. The FPP can also use 2 or 3 bits to specify
an index register from a movable set that can modify the address. The
FORTRAN compiler makes extensive use of this addressing freedom,
particularly in the subroutine calls.

11

FLAP/RALF

The base page is a block of 128 floating point variables, or 384
12-bit words. The Special Format 2 instruction SETB (see Section 7)
gives the FPP the origin of the base page. You can use the pseudo-op
BASE to pass the base page origin to the FLAP/RALF assembler. The
origin of the base page may be changed as often. as necessary. The
first 8 locations of the base page serve as a pointer to memory.

The index registers are a block of seven 12-bit words in memory. The
Special Format 2 instruction SETX gives the FPP the origin of the
index registers. You may change the locations used for the index
registers as often as necessary.

The three forms of Data Reference Instructions (see Section 7) compute
the address of the data referenced in three different ways. The line
of print below the diagram of each instruction shows symbolically how
each address is computed. The address computation for the first form
(double-word data) begins with the IS-bit address in bits 9-23 of the
instruction. If X (bits 6-8) is zero, this is the address used. If X
is nonzero, the contents of the specified memory location, X+XO (where
XO is the beginning of the index registers, set by SETX), is used as
an index. If bit 5 of the instruction is equal to one, the index
value is incremented by one. The index value remains incremented
after the instruction is completed. The resulting index value is
multiplied by either two or three, depending upon whether the FPP is
in Double Precision Fixed Point Mode (STARTD) or Floating Point Mode
(STARTF) . This index is then added to the original address (bits
9-23) to form the address used.

The second data reference form (single-word direct) is used to address
the locations on the base page. The contents of bits 5-11 of the
instruction are multiplied by three and added to the origin of the
base page, set by the SETB instruction.

Note tnat the offset on the base page always assumes Floating Point
(3-word) variables. It is WIse to prevent use of the base page for
storage of double-precision fixed-point variables or instructions.

The third form of data reference instruction (single-word indirect)
provides an indirect or indexed indirect mode of address. The offset,
bits 9-11 of the instruction, are multiplied by three and added to the
origin of the base page, to give the address of a 3-word variable.
The last 15 bits of this word are used for the address of the data.
This address may be modified by the index register exactly the same as
in the first form.

The FLAP/RALF Assembler will choose the form of the data reference
instruction that is generated. The second form (single-word direct)
is used instead of the first form (double-word direct) whenever the
data lies on the base page; no indexing is involved. The indirect
form is used whenever indirect addressing is called for by a % symbol
in the assembler source statement.

9.0 LITERALS

Only FLAP allows literals in PDP-8 code. If you start an expression
in a PDP-8 memory reference instruction with a left parenthesis or a
square bracket (as explained below), the value after it is taken
"literally" by FLAP. Therefore, you do not need to specify an address
or label that contains the value. Internally the value of the literal
expression is the address of the word generated by FLAP that contains
the evaluated expression.

12

FLAP/RALF

If the expression starts with a left parenthesis, (, then the literal
is placed at the end of the current page. If it starts with a left
bracket, [, the literal is placed at the end of page O. Literal
tables are built backwards from the end of the page so that the most
recently defined literal has the lowest core address.

If the origin is changed to a new page, the previous page's literals
are output and the literal table is reset. If the origin is reset to
a previous page that contained literals, those literals may be
overlaid by any new literals. The previously defined literals will
not be available for reference. For this reason, it is best to
complete all coding on any non-zero page before moving to another.

If the field is changed, the literals on page 0 of the previous field
are output, and the page 0 literal table is reset. For this reason,
it is best to complete all coding in anyone field before moving to
another.

Because locations 0-17 are generally used for interrupts and autoindex
registers, only 112(10) (160(8)) literal may be on page O.

The following examples illustrate the use of literal expressions with
memory reference instructions.

TAD (POINTER

TAD [10

generates a literal with the lower 12 bits of the
address of POINTER at the end of the current page.

generates a literal containing 0010 at the end of
page O.

The left bracket, [, is typed as a SHIFT/K on an ASR-33.

Literals may not be nested, for example, as in the expression:

TAD (TAD [10

10.0 LINKS

Links are generated only by the FLAP assembler. If a PDP-8 memory
reference is made to an address that is not on the same page as the
instruction, FLAP creates an indirect address linkage on the current
page. The address can, therefore, be accessed during the second pass
of the Assembler. For example, the coding:

ORG 200
00200 1777' TAD A

00377 0400
PAGE

00400 1025 A? 1025

13

is equivalent to

00200 1777

00377 0400

0400 1025

ORG 200

ORG 377
X,

PAGE
A,

FLAP/RALF

TAD I X

A

1025

All instructions generating links are flagged in the listing with an
apostrophe (') following the generated code. The total number of
links is printed at the completion of assembly.

11.0 DATA SPECIFICATION

A logical line of code may consist of only an expression. Such
expressions can function as flags, pointers, constants, or symbols.
If the expression is larger than 12 bits, it will be truncated to 12
bits.

12.0 PSEUDO-OPERATORS

A pseudo-operator is a defined mnemonic code you include in the source
program as a logical line to control some functions of the assembler.
Binary code mayor may not be generated by a pseudo-op, depending on
its function. The FLAP/RALF pseudo-ops and their functions follow.

12.1 ADDR

Generates a two-word address corresponding to the value of the
argument.

12.2 BASE n

Places the location of the base page, n, in FLAP/RALF base register
for use in calculating single-word addresses. The argument, n, is an
expression denoting a IS-bit address. The expression may not contain
any symbols that are defined after the BASE pseudo-op occurs. An
example of correct sequence follows.

ORG 400

F 2.0

F 3+0

BASE A
SETB A

FLDA A

/8ET A8SEMBLER BASE REGISTER
/8ET FPP BASE REGISTER

If no BASE pseudo-op is included, all FPP memory reference
instructions will be 2 words. Refer to descriptions on FPP addressing
(Section 8) and on referencing memory (Section 13).

14

FLAP/RALF

12.3 COMMON

Causes the assembler to enter the COMMON section whose name follows
the pseudo-op. Subsequent output is placed in the named COMMON
section until another section defining pseudo-op is encountered.

12.4 COMMZ

Defines Field 1 8-mode page 0 section. Used to give PDP-8 page 0
section for th~ Loader.

12.5 DECIMAL

All integers which follow are assumed to be in decimal radix.

12.6 DPCHK

Indicates that the current module requires double precision hardware
in order to execute.

Generates a 6-word extended precision floating point constant with
value n. You may write the argument n either as a decimal floating
point number or in standard exponential format.

12.8 END

Terminates input. (This pseudo~op is optional; it is never printed
on the listing.)

12.9 ENTRY

Defines program entry point. You can use the symbol whose name
follows the ENTRY pseudo-op as an external symbol by other programs.
Multiple entry points with the same name are accepted by the assembler
but cause an error from the loader.

12.10 EQUATE {=}

The symbol to the left of the
expression to the right of it.

12.11 EXTERN

is assigned the value of the

Defines the symbol following this pseudo-op to be external to this
assembly.

15

FLAP/RALF

12.12 F n

Generates a 3-word floating point constant with value
write the argument n as a decimal floating point number;
2.0; or in standard exponential format, 2E10.
exponential format, 2E10 is equal to 2 x 10A10 .

n. You may
for example,

In standard

12.13 FIELDl

Defines FIELDl 8-mode section. Used to give field 1 name of section
for the Loader.

12.14 IFnnn (Conditional Assembly)

FLAP/RALF have ten conditional pseudo-ops. Four of them require an
argument expression:

Pseudo-op Function

IFZERO n < assemble if n is zero
IFNZRO n < assemble if n is not zero
IFPOS n < assemble if n is positive
IFNEG n < assemble if n is negative

where n is an integer expression. For each of the above conditional
pseudo-ops, the expression n is evaluated and, if it fulfills the
conditions of the pseudo-op (for example, n equals zero for IFZERO),
the subsequent coding is assembled. If the condition is not met, the
subsequent coding is ignored until a matching > is encountered.
Assembly is continued after the >.

The fifth and sixth pseudo-ops are used as follows:

IFREF symbol <

IFNDEF symbol <

assemble if symbol was previously defined or
referenced.

where symbol may be defined or undefined.
When an IFREF statement is encountered,
subsequent coding is assembled if the symbol
after the pseudo-op has been defined or
referenced in a previous statement. The use
of a symbol with an IFREF pseudo-op or in a
statement that was skipped during assembly
because the condition required by a preceding
conditional pseudo-op was not met does not
constitute a reference to the symbol. If the
symbol has not been previously defined or
referenced, assembly is continued after the
matching> is found.

The seventh through tenth pseudo-ops are:

IFSW n <

IFNSW n <

assemble the enclosed code if the switch n was
set in the input/output file specification to
the command decoder, that is, /n or (n).

assemble the enclosed code if the switch n was
not set.

16

IFFLAP <

IFRALF <

FLAP/RALF

assemble the enclosed code if the assembler is
FLAP. This pseudo-op is intenaea tor use in
programs which may be assembled either by RALF
or by FLAP.

do not assemble the enclosed code if the
assembler is FLAP.

Conditionals may be nested. A possible nested conditional is

IFFLAP < IFREF A < A=263»

Use of some of the conditional assembly pseudo-ops is illustrated in
the next example.

00200 0000
0020:1. 0000
00202 0000

()0203 :I. 200

NO EF~HOr:;~S

2 SYMBOLS, NO LINKS

00200 n

12.15 INDEX n

Ar

B~

IFPOS
F 0 +0
.:.

IFNEG
F 0+0

--:-

IFREF
TAD A

:---

TAD B
--:-

IFREF
TAD C
:::.
IFNDEF
D::::~)

0::-

---1 -:.

--1 .<

A <.

C <:

D .<

Sets the location of the first FPP index register to n.

12.16 LISTOF

Continues assembly but inhibits further listing. There is no effect
on the first two passes or if the listing is currently inhibited.
This pseudo-op never appears in the listing.

12.17 LISTON

Ceases to inhibit the listing. There is no effect on the first two
passes if the listing is not currently inhibited.

17

FLAP/RALF

12.18 OCTAL

All integers which follow are assumed to be in octal
digits 8 and 9 are flagged if they occur in octal radix.
initially set to octal by FLAP.

12.19 ORG expr

radix. The
The radix is

Assigns the current location counter the value of the lower 15 bits of
the address expression expr. The expression should contain only
symbols which have previously been defined. For example, to set the
origin at location 400 of field 1, the pseudo-op used is ORG 10400.

If the ORG pseudo-op is omitted, an origin of 200 in field 0 is
assumed, but the origin setting is not included in the binary output
file. For useful results, your program must begin with an ORG
pseudo-oPe

12.20 PAGE

Sets the current location counter to the beginning of the next core
page. This pseudo-op is not in the RALF assembler.

12.21 REPEAT n

Assemble the following line n times.

12.22 S n

Generates a I-word constant with value n. RALF does not support this
pseudo-oPe

12.23 SECT

Defines program section, used at the beginning of subprograms to give
the name of section for the Loader. For example:

BO,

SECT
JA
BASE
F
etc.

12.24 SECT8

SUBROU
START

O.

Defines 8-mode program section.
subprograms.

Used at the beginning of 8-mode

18

FLAP/RALF

l2.2S TEXT

Enters a string of text. The pseudo-op TEXT is followed by a space or
tab r a delimiting character, a string of text, and the same delimiting
character, issued in that order. The first printing character after
TEXT is the delimiter, and the text string is all the characters that
follow it until the next occurrence of the delimiter or a carriage
return. The characters space, tab", and / cannot be delimiters. For
example:

TEXT % DATA %

causes the word DATA to be printed with the code at assembly time as:

00200 0401
00201 2401

TEXT XDATA%

12.26 ZBLOCK n

Assembles a block of n words containing o.

13.0 REFERENCING MEMORY

A PDP-8 computer with an FPP is basically a 32K machine~ All of this
memory may be referenced through the IS-bit address field provided by
the 2-word memory reference instructions. When it is necessary to
conserve memory, the base page and the short form (1 word) of the
memory reference instructions can be used. Those instructions that
have a floating point operand can use this short form:

FADD FDIV
FADDM FLDA

FMUL FSTA
FMULM FSUB

The base page is a movable page 0 that you assign. To determine the
location referred to by the operand of the single word instruction,
multiply the displacement field (address expression) by 3 and add it
to the contents of the base register. Thus, when you use the single
word form of the instruction, you can reference any location within
128*3 locations of the base register. (Only 128*3 locations can be
accessed because the displacement field has only 7 bits.) The location
of the base page (via BASE) and the operands (via ORG = etc.) must be
defined in the coding before the FPP instruction. Then the short form
of the instruction will be executed unless the suffix # is added,
forcing the long (2 word) form.

RALF code that includes forward reference to the base page should
employ pseudo-ops # and I as the first character of the symbol; this
permits RALF to generate symbols that do not conflict with
programmer-generated symbols that are also on the base page. The #
pseudo-op can be used following FPP memory reference instructions to
indicate use of the 2-word form of the instruction. Likewise, the I

pseudo-op indicates use of the single-word direct form of the
instruction.

19

FLAP/RALF

Consider the following example of the BASE pseudo-op:

ORG 200
00200 0002 A, F 2.0
00201 2000
00202 0000
00203 0002 If, F 3.0
00204 3000
00205 0000
00206 0003 C, F 5.0
00207 2400
00210 0000
00211 0000 D, F 0.0
00212 0000
00213 0000

BASE 200
SETB 200

00214 1110
002:1.5 0200
00216 0200 FLDA A
00217 1201 FADD B
00220 4202 FMUl. C
00221 6203 FSTA D 1{I=(AfB)*C

This same program can be written with a subroutine:

00200 0002
00201 2000
00202 0000
0()20~5 0002
00204 :.3000
0020~5 0000
00206 OOO~3

0020? 2400
002:1.0 0000
00211 0000
00212 0000
()021:~ 0000

00214 lltO
00215 02()0
00216 1120
00217 0400
00220 ?402

0040() 0000
0040:1. 0000
00402 0200
0040;-5 1201
00404 4202
004 () ~:j 6203
00406 1030
00407 0400

ORG 200
A,

B,

C,

D,

ORG 400

SUBH,

F 2.0

F 3.0

F 5.0

F 0+0

SETB 200

-.JSA SUBR

HLT
BASE 0

010

FUM ()
FAlID ;-5
FMUL 6
FSTA 11
..JA SUBR

11.EAVE 2 WORDS FOH JSA

IA
IB
Ie
III
I ·~·-·HET l.JRN~~~~

This routine performs the same operation as the first one. The values
0, 3, 6, and 11 are used with BASE 0 so that the assembler generates
the correct I-word instructions.

20

FLAP/RALF

14.0 RALF FEATURES

RALF symbols may be absolute, relocatable, or external. When a
relocatable symbol appears in an assembled value, an indicator is
placed in the binary output file so that the relocating loader (LOAD)
will add the base loading address of the assembled value to arrive at
the value to be loaded. If an external symbol appears, the loader
will look up the name of the symbol in its symbol table and substitute
the value found there for the symbol. The loader symbol table
contains all symbols defined by the SECT, SECT8, FIELDl, COMMON, COMMZ
and ENTRY pseudo-ops of RALF. Expressions using both absolute and
relocatable terms are evaluated as follows (where nopn is one of the
set [+-*/&!] and "opl" is one of the set [*/&!]):

Expression

numeric constant
label

absolute op absolute
relocatable + absolute

relocatable - relocatable

absolute - relocatable
expression opl relocatable
relocatable opl expression

Evaluated

absolute
relocatable
absolute

relocatable
absolute

relocatable
ERROR
ERROR
ERROR

RALF code is divided into sections; each section is a separately
load able entry within the assembly. These sections are defined via
one of the five pseudo-ops: SECT, SECT8, FIELDl, COMMON and COMMZ.
Section names are placed in the External Symbol Dictionary (ESD),
which is used by the relocating loader to build its symbol table. The
pseudo-ops ENTRY and EXTERN allow RALF programs to insert other
symbols into the ESD and to refer to these symbols in other RALF
programs at load time. Table 3 (Section 14.5) lists the RALF
pseudo-ops and their meanings.

14.1 Core Allocation

If you plan to link RALF modules containing PDP-8 mode code, you must
be aware of the core allocation algorithm of the loader. r'lve RALF
pseudo-ops may be used to specify a section: SECT, COMMON, SECT8,
FIELDl, and COMMZ. These sections are loaded independently by the
loader, including those in the same RALF module. SECT is used to
begin a section of RALF code that can be loaded into any level and
overlay and anywhere in field 1 and above. COMMON is used to begin a
section with a given name available to COMMON statements in FORTRAN or
other RALF modules. SECT8 is used to begin a section of RALF code
that is loaded into level MAIN and is required to begin and end on a
page boundary. FIELDI is used to begin a section subject to all the
restrictions of SECT8 and in addition must be loaded into field 1.
COMMZ is used to begin a section subject to all the restrictions of
FIELDI and must be loaded into page O.

The first COMMZ section encountered is forced to begin at location
10000, thus enabling a page 0 in field 1. COMMZ sections of the same
name are handled like COMMON sections of the same name (that is, they
are combined into one common section). This feature allows 8-mode

21

FLAP/RALF

code in different modules to share page 0, provided that the modules
do not destroy each other's page a allocations. In the following
example, two modules share page 0, with the first using locations 0-17
and the second using locations 20-37:

PI,
P2,
KSUBAl,
KSUBA2,

LASTA,

FIELDI

P3,
P4,
KSUBB,

LASTB
FIELDI

COMMZ SHARE
1
2
SUBAI
SUBA2

-1

A

TADZ PI
JMSZ% KSUBAI

COMMZ SHARE
ORG

3
4
SUBB

-2
B

.+20

TADZ P3

/Module A

/Should not go over
/20 locations

/MODULE B

/ORG past module A's
/Page a

The two COMMZ sections will be put on top of one another; however,
because of the ORG .+20 in module B, they will effectively reside back
to back. When the image is loaded, the COMMZ sections will look as
follows:

LOC

1 0000
0001

2
3

1 0017
1 0020

21
22

37

CONTENTS

1
2

SUBAI
SUBA2

-1
3
4

SUBB

-2

/LASTA

/LASTB

22

FLAP/RALF

If module A is to reference module B's page 0, the procedure is:

P3=20
TADZ P3

Alternately, a duplicate of the source code for COMMZ SHARE may be
included In module B. Modules that are using the same COMMZ section
must be aware of how it is divided up. Although COMMZ SHARE takes
only 40 locations, the loader allocates a full 200 locations to it.
All 8-mode section core allocations are always rounded up so that they
terminate on a page boundary. If COMMZ sections of different names
exist, they are accepted by the loader and inserted into field 1, but
only one COMMZ is the real page O. In general, it is unwise to have
more than I COMMZ section name.

If there is more than one COMMZ pseudo-op in a module, they are
stacked one behind the other, but there is no way of specifying which
one starts at absolute location 0 of field 1. COMMZ sections are
allocated by the loader before FIELDI sections.

If you intend to write 8-mode code that will execute in conjunction
with certain 8-mode library routines, note that the layout of PDP-8
FIELDI #PAGE 0 is:

LOCATION

0-1
2-13

14-157
160-177

1.

USE

Temps for any non-interrupt time routine.
User locations.
System locations.
User locations.

Do not define any COMMZ sections other than the system COMMZ
which is #PAGEO.

2. If the system page 0 is desired, it will be pulled in from
the library if EXTERN #DISP appears in the code.

3. Do not use any part of page 0 reserved for the system.

FIELDI sections are identical to COMMZ sections in most respects.
Memory for FIELDI sections is allocated after COMMZ sections,
however, and FIELDI sections are combined with FORTRAN COMMON
sections of the same name as well as other FIELDI sections of the
same name. The first difference ensures that COMMZ will be allocated
page 0 storage even in the presence of FIELDI sections. The second
allows PDP-8 code to be loaded into COMMON, making it possible to
load initialization code into data buffers. Two FIELDI sections with
the same name may be combined in the same manner as two COMMZ
sections.

The primary purpose of COMMZ is to provide a PDP-8 page 0; the
primary purpose of FIELDI is to ensure that 8-mode code will be
loaded into field 1 and that generating CIF CDF instructions in-line
is not necessary. SECT8 sections may not be combined in the manner
of a COMMON and are not ensured of being placed into field 1.

23

FLAP/RALF

A section begins when a pseudo-op with its name first appears. A
SECT8 section is not combined with another of the same name in
another RALF module. However, the second use of the same name in the
same module continues a section. For example:

SECT8 PARTA

SECT8 PARTB

SECT8 PARTA

The second mention of PARTA in the same module continues the source
where the first mention of PARTA ended. (Each section has a location
counter.)

An 8-mode section does not have to be less than a page in length;
however, you should be aware that a SECT8 section that exceeds one
page may be loaded across a field boundary and could thereby produce
disastrous results at execution time. For this reason, it is
generally unwise to cross pages in SECT8 code. This situation will
never occur on an 8K configuration. If the total amount of COMMZ and
FIELDI code exceeds 4K, the loader generates an OVER CORE message.
The loader generates an MS error for any of the following:

1. A COMMZ section name is identical to some entry point or some
non-COMMZ section name.

2. A FIELDI section name is identical to some entry point or a
SECT, SECT8 or COMMZ section name.

3. A SECTS section name is identical to an entry point or some
other section name.

COMMZ sections, like FORTRAN COMMONS, are never entered in the library
catalog.

14.2 RALF Programming Notes

The best means of creating RALF modules that can be called from
FORTRAN programs is to write a skeleton FORTRAN subroutine. You
should write the subroutine so that it can be called with the same
"call" statement to be used for the RALF subroutine. This FORTRAN
subroutine is then compiled with the RALF output sent to a mass
storage file. This file may be modified using EDIT or TECO to create
the desired module.

24

FLAP/RALF

The address pseudo-op (ADDR) which generates a two-word relocatable
lS-bit address (that is, JA TAG without use of JA) might prove useful
in 8-mode routines. The following example demonstrates a way in which
an 8-mode routine in one RALF module calls an 8-mode routine in
another module.

KSUB,

ADCF,
ACIF,

EXTERN

RIF
TAD
DCA
a
TAD
RTL
RAL
TAD
DCA
a

JMS%

ADDR

CDF
CIF

SUB

ACDF
.+1

KSUB
CLL

ACIF
.+1

KSUB+l

SUB

/Set DF to current
IIF for return

/CDF X
/Make a CIF from
/Field bits

/CIF to field
/Containing SUB

/Pseudo-op to
/Generate 15 bit
/ADDR of subroutine
/SUB

In general the address pseudo-op can be used to supply an 8-mode
section with an argument or pointer external to the section.

FPP and 8-mode code may be combined in any RALF section.
routines must be called in FPP mode by either:

or
TRAP3 SUB
TRAP 4 SUB

PDP-8 mode

A TRAP3 SUB causes FRTS to generate a JMP SUB with interrupts on and
the FPP hardware (if any) halted. TRAP4 generates a JMS SUB under the
same conditions. The return from TRAP4 is:

CDF CIF a
JMP% SUB

The return from TRAP3 is:

CDF CIF a
JMP% RETURN+l

EXTERN #RETRN
RETURN, ADDR #RETRN

It is not possible to call PDP-8 mode subroutines from FORTRAN. A
RALF subroutine called from FORTRAN will be entered in FPP-mode; it
may branch into PDP-8 mode code using a TRAP3 or TRAP4.

25

FLAP/RALF

Communication between FPP and 8-mode routines is best done at the FPP
level because the FPP mode gives you greater flexibility in both
addressing and relocation. The following routine demonstrates how to
pass an argument to, and retrieve an argument from, an 8-mode routine:

EXTERN SUB
EXTERN SUBIN
EXTERN SUBOUT

FLDA
FSTA
TRAP4
FLDA
FSTA

X
SUBIN
SUB
SUBOUT
Y

/Arg for SUB

/Call SUB
/Get result

If the 8-mode routine SUB were in the same module as the FPP routine,
the EXTERNs would not be necessary. In practice it is common to put
in the same section FPP and 8-mode routines that communicate with one
another. A number of techniques can be used to pass arguments. For
example, an FPP routine could move the index registers to an 8-mode
section and pass single precision arguments via ATX.

Because 8-mode routines are commonly used in conjunction with FPP code
(generated by the compiler), the 8-mode programmer should be familiar
with OS/8 FORTRAN IV subroutine calling conventions. The general code
for a subroutine call is a JSR, followed by a JA around a list of
arguments, followed by a list of pointers to the arguments. The FPP
code for the statement:

would be

BYARG,

CALL SUB (X,Y,Z)

EXTERN
JSR
JA
JA
JA
JA

SUB
SUB
BYARG
X
Y
Z

The general format of every subroutine obeys the following scheme:

RTN,

BSUB,

GOBAK,

SECT SUB
JA #ST

TEXT +SUB+

SETX XSUB
SETB BSUB
FNOP
JA

ORG BSUB+30
FNOP:JA RTN
FNOP:JA.

/Jump to start of
/Routine
/Needed for
/Trace back
/Reset SUB's index
/And base page
/Start of base page

/Restart for SUB

/Return to
/Calling program

26

FLAP/RALF

Location 0000 of the calling routine's base page points to the list of
arguments, if any; and may be used by the called subroutine provided
that it is not modified. Location 0003 of the calling routine's base
page is free for use by the called subroutine. Location 0030 of the
calling routine's base page contains the address where execution is to
continue upon exit from the subroutine so that a subroutine should not
return from a JSR call via location 0 of the calling routine:

CORRECT
FLDA 30
JAC

INCORRECT
FLDA 0
JAC

This return allows the calling routine to reset its own index
registers and base page before continuing in-line execution. General
initialization code for a subroutine would be:

#ST,

SECT SUB
JA #ST

BASE 0
STARTD ISo only 2 words

/Will be picked up
FLDA 30 /Get return JA
FSTA GOBAK /Save it
FLDA 0 /Get pointer to list
SETX XSUB /Set SUB's XR
SETB BSUB /Set SUB's' Base
BASE BSUB
INDEX XSUB
FSTA BSUBX /Store pointer

/Somewhere on Base

STARTF
JA

/Set F mode before
GOBAK /Return

The preceding code can be optimized for routines that do not require
full generality. The JA #ST around the base page code is a
convenience which may be omitted. The three words of text are
necessary only for error traceback and may also be omitted. If the
subroutine is not going to call any general subroutines, the SETX and
SETB instructions at location RTN and the JA RTN at location 0030 are
not necessary. If the subroutine does not require a base page, the
SETB instruction is not necessary in subroutine initialization;
similar remarks apply to index registers. If neither base page nor
index registers are modified by the subroutine, the return sequence:

FLDA 0
JAC

is also legal. In a subroutine call, the JA around the list of ,
arguments is unnecessary when there are no arguments. A RALF listing
of a FORTRAN source will provide a good reference of general FPP
coding conventions.

The AMOD routine is listed in Figure I to illustrate an application of
the formal calling sequence. It also includes an error condition
check and picks up two arguments. When called from FORTRAN, the code
is AMOD (X,Y).

If a PDP-8 mode subroutine is longer than one page and values are to
be passed across page boundaries, the address pseudo-op, ADDR, is

27

required. The format is:

AVARl, ADDR VARI

/
I A MOD
I
I
ISUBROUTINE

SECT
ENTRY
JA
TEXT

AMODXR, SETX
SETB

BPAMOn, F 0.0
XRAMOn, F 0.0
AMODX, F 0.0

ORG
FNOP
.. JA
o

AMDRTN, JA

AMOD(X,Y)
AMOD
MOD
tAMOn
+AMon +
XRAMOD
BPAMOD

10*3+BPAMOD

AMODXR

EXTERN tARGER
AMODER, TRAP4 tARGER

FCl.A
JA AMDRTN
BASE 0

ILONG ENOUGH TO GET RETURN
MOD,
:IJ:AMOD, STARTD

Fl.DA
FSTA
FLDA
SETX
SETB
BASE
LDX
FBTA
FLDA;(.
FSTA
FI...DAX
FSTA
ST(~RTF

Fl..DA%
JE(l
,.JGT
FNEG
FSTA
FI...DAi.:
JGT
FNEG
LDX
FSTA
FDIV
JAI ...
f:"1I...N
FNORM
FI1UL..
FNEG
FADD
JXN
FNEG
,..I A

10*~~
AMDRTN
o
XRAMOD
BPAMOD
BPAMOD
1,1
BPAMOD
BPAMO[l,l
AMODX
BPAMOD,:l.t
BPAMO[l

BPAMOD
AMODEI:~

.+3

BPAMO[l
AMODX
.+5

0,1
AMODX
BPAMOD
AMOVEI:;;
()

BPAMOD

f~MODX
AM,l

AMDFnN

FLAP/RALF

/SECTION NAME· (REAL NUMBERS)
/ENTRY POINT NAME (INTEGERS)
/JUMP TO START OF ROUTINE
/FOR ERROR TRACE BACK
/SET INDEX REGISTERS
IASSIGN BASE PAGE
/BASE PAGE
/INDEX REGS.
ITEMP STORAGE
/RETURN SEQUENCE

/EXIT

IPRINT AN ERROR MESSAGE
IEXIT WITH FAC=O

/STAY ON CALLER'S BASE PG
ADDRESS

/START OF INTEGER ROUTINE SAME AS
/START OF REAl. NUM. ROUTINE
IGET RETURN JUMP
ISAVE IN THIS PROGRAM
IGET POINTER TO PASSED ARG
IASSIGN MOD'S INDEX REGS
lAND ITS BASE PAGE

IADDR OF X

IADDR OF Y

IGET Y
IY=O I S ERROF~

lABS VALUE

IGET X

lABS VAL.UE
INOTE SIGN
ISAV IN A TEMPORARY
IDIVIDE BY Y
Iroo BIG.
.iFIX IT UP NOW.

/MUL..TIPLY IT.
INEGATE IT.
lAND ADD IN X+
/CHECK SIGN

/DONE

Figure 1 AMOD Routine

28

FLAP/RALF

This generates a two-word (15 bit) reference to the proper location on
another page! here VARI. For example! to pass a value to VARl!
possible code is:

00124 1244 TAD VAR2 /Value on this page
00125 3757 DCA% AVAR1+1 /P::l~~ f-hrnllt"Th 12-bit 1---- ------:;1--

/location
00156 0000 AVARl,ADDR VARI /Pield and
00157 0322 /location of VARI

Any reference to an absolute address can be effected by the ADDR
pseudo-oPe

If it is doubtful that the effective address is in the current data
field, it is necessary to create a CDP instruction to the proper
field. In the above example, suitable code to add to specify the data
field is:

TAD
RTL
RAL
TAD
DCA
o

AVARI

(6201
.+1

/Get field bits
/Rotate to bits 6-8

/Add a CDF
/Deposit in line
/Execute CDFn

If the subroutine includes an off-page reference to another RALF
module (for example, in FORLIB), you can address it by using an EXTERN
with an ADDR pseudo-oPe For example, in the display program, a
reference to the non-interrupt task subroutine ONQB is coded as

ONQBX
EXTERN
ADDR

and is called by

JMS%

ONQB
ONQB

ONQBX+l

No field change instruction is necessary here, because both library
modules are defined by field 1 pseudo-op's, and so are both in the
same field.

RALF does not recognize LINC instruction or PDP-8 laboratory device
instructions. You can include such instructions in the subroutine by
defining them with equate statements in the program.

For example, adding the statements:

PDP = 2
LINC = 6141
DIS = 140

takes care of all instructions for coding the PDP-12
subroutine.

display

When you are writing a routine that i~ going to be longer than a page,
it can be useful to have a non-fixed origin in order not to waste core
and to facilitate modification of the code. A statement such as

IFPOS .-SECNAM&177-K<ORG
.-SECNAM&7600+200+SECNAM>

will start a new page only if the value [current location less section
name] is greater than some K (start of section has a relative value of
0) where K symbol <177 and is the relative location on the current

29

FLAP/RALF

page before which a new page should be started. The ORG statement
includes an AND mask of 7600 to perserve the current page. When it is
added to 200 for the next page and the section name, the new origin is
set.

When you are calculating directly in a module, the following rules
apply to relative and absolute values.

relative - relative = absolute
absolute + relative = relative
OR (!), AND (&) and ADD (+) of relative symbols

generate the RALF error message RE.

When you are passing arguments (single precision) from FPP code to PDP
code, using the index registers is very efficient. For example,

SUB8,

FLDA% ARGl /Get argument in FPP mode
SETX MODE8 /Change index registers so XRO is

/At MODE8
ATX MODE8 /Save argument

TRAP4 SUB8 /Go to PDP-8 routine

o /PDP-8 routine

TAD MODE8 /Get argument

MODES8, o /Index registers set here

The source of FORTRAN Library is the best collection available of
useful coding techniques in RALF. Working examples include subroutine
linkage, 8-mode trap sequences, background task inclusion, interrupt
handling, laboratory peripheral interfacing, and mathematical
calculation.

14.3 Using the Assembler

To run FLAP/RALF as a standard OS/8 program, type:

.R FLAP (or RALF)
*binary,listing< inputl,input2, •..

Binary is the binary output file (default extension .RI). Listing is
the listing output file (default extension .LS). Inputl, input2, etc.
are up to 9 source input files, (default extensions .RA). The source
files must contain only one FLAP/RALF source module (that is, one END
statement) .

30

FLAP/RALF

All error messages and the line that caused the error are printed on
the terminal during pass 2, without affecting the binary output file.
You may inhibit this output by typing CTRL/O. The error messages are
also printed above the error line on the listing. FLAP/RALF error
codes are listed in the next section.

You may abort assembly by typing CTRL/C. Each page of a FLAP/RALF
listing has a one line header in the form:

FLAP (or RALF) V nn mo da, yrPAGEr

where nn is the assembler version number, mo da, yr is the date, and r
is the page number.

You may use the /S option, in FLAP, to suppress the listing file and
generate only the symbol map on pass 3. If no listing file is
specified, the option is ignored. The IT option performs the same
function in RALF.

14.4 Error Messages

During pass 2, error messsages are printed at the terminal
occur. They are followed by the statement in which
occurred.

as they
the error

During,pass 3, ~rro: cod~s are printed in the listing immediately
precedlng the Ilne ln WhlCh the error occurred, except the EG message;
which is printed after the line. If the line of code includes
statements terminated by a semicolon, then the error message for a
statement precedes the printing of its octal value on the next line.

A fatal error caused an immediate return to the OS/8 monitor after the
message is printed. Table 2 lists the error codes and their meanings.

Error Code

BE

BI

BX

DV

EG

ES

Table 2
FLAP/RALF Error Codes

Illegal equate.
previously.

Meaning

The symbol had

Illegal index register specification.

been defined

Bad expression. Something in
incorrect or the expression
context.

the expression is
is not valid in this

An attempt was made in an expression evaluation to
divide by zero.

The preceding line contains extra code which could
not be used by the assembler.

External symbol error. (RALF only)

(continued on next page)

31

Error Code

FL

FP

IC

IE

IL

10

IR

IX

LT

MD

NE

PO

RE

ST

us

XS

FLAP/RALF

Table 2 (Cont.)
FLAP/RALF Error Codes

Meaning

An error has occurred in the FPP or software
floating conversion routines. This could be due to
an attempt to convert an excessively large or small
number, or an internal error in the assembler
occurred.

A syntax error was encountered in a floating point
or extended precision constant.

The symbol or expression in a conditional is
improperly used, or left angle bracket is missing.
The conditional pseudo-op is ignored.

An entry point has not been defined, or is absolute,
or is also defined as a common, section, or
external. (RALF only)

A literal was used in an instruction which cannot
accept one. (FLAP only)

Input/output error (fatal error).

Invalid reference in a PDP-8 instruction.

An index register was specified for an instruction
which cannot accept one.

The line is longer than 127 characters. The first
127 characters are assembled and listed.

The tag on the line has been previously encountered
at another location or has been used in a context
requiring an absolute expression.

Number error. A number out of range was specified
or an 8 or 9 occurred in octal radix.

Page ov~rflow. Literals and instructions have been
overlapped. (FLAP only)

Relocatability error. A relocatable expression has
been used in context requiring an absolute
express ion. (RALF only)

User symbol table overflow (fatal error).

Undefined symbol in an expression.

External symbol table overflow. Control returns to
the OS/8 Keyboard Moni tor. (RALF only)

32

FLAP/RALF

14.5 FLAP/RALF Pseudo-operators

Table 3 lists and describes the FLAP/RALF pseudo-ops.

Pseudo-op

ADDR

I
I BASE expr

I COMMON name

COMMZ name

DECIMAL

E xxx

END

ENPUNC

ENTRY name

EXTERN name

F xxx

FIELDI name

IFFLAP

IFNDEF n

IFNEG n

IFNSW n

Table 3
FLAP/RALF Pseudo-Operators

Meaning

Place the IS-bit address of the symbol into
two words of core at the current position
of the location counter.

Assign base register for I-word
instructions.

Causes the assembler to enter the common
section whose name follows the pseudo-oPe

Define name as a special common section
restricted to load into page 0 of field 1.

Set radix for
decimal.

integer conversion to

Generate 6-word extended precision floating
point constant.

End of input.

Re-enable binary output (FLAP only).

Insert name into the ESD as an entry point.
The symbol name must be defined as a
relocatable symbol in the current assembly.

Insert name into the ESD as an external
reference. The symbol name must not be
defined in the current assembly.

Generate 3-word floating point constant.

Similar to SECTS, but this section is
restricted to load into field 1 only.

Assemble is the assembler if FLAP.

Assemble is n is not defined.

Assemble if n is negative.

Assemble if switch n was not set in Command
Decoder input.

(continued on next page)

33

Pseudo-op

IFNZRO n

IFPOS n

IFRALF

IFREF symbol

IFSW n

IFZERO n

INDEX n

LISTOF

OCTAL

ORG expr

PAGE

REPEAT n

S xxx

SECT name

SECT8

TEXT

ZBLOCK n

FLAP/RALF

Table 3 (Cont.)
FLAP/RALF Pseudo-Operators

Meaning

Assemble if n is not zero.

Assemble if n is positive.

Assemble if the assembler if RALF.

Assemble if symbol has already been defined
or referenced.

Assemble if symbol was set in Command
Decoder input.

Assemble if n is zero.

Assign index register location.

Inhibit program listing.

Set radix for integer conversion to octal.

Set current location counter to lower 15
bits of expr.

Set current location counter to the
beginning of next core page (FLAP only).

Repeat next line n times.

Generate I-word constant (FLAP only) .

Define name as a section and begin that
section. Subsequent SECT name commands
will resume the section wherever it left
off.

Similar to SECT, but this section is
restricted to load in level MAIN, on a
200(8) word boundary. SECT8 is used to
define sections that contain PDP-8 mode
code.

Assemble the text between delimiters as
packed 6-bit ASCII characters.

Assemble n words containing O.

Equate symbol on left of
expression on right.

34

to value of

Addressing,
in FPP mode, .1.1

in PDP-8 mode, 5
Arithmetic operations, 3

Base page,
FPP, 12, 19

Bracket ([) used in PDP-8
expression (FLAP), 13

Comments, 3

Data,
specification, FLAP, 14

Error messages, 31
Expressions, 2

FPP mode addressing, 11
FPP operation codes, 6 to 11

Hardware configuration, 1

Indirect addressing, 5
Instructions, 2

INDEX

Labels, 2
Links, FLAP, 13
Logical operations, 3

Memory, FPP, 11

Operations,
arithmetic and logical r 3

Page 0 reference, 5
PDP-8 mode addressing, 5
PDP-8 operation codes, 3
Pseudo-operators,

FLAP, 14 to 19
FLAP/RALF, 33

RALF assembler,
subroutines, 24

Semicolon use, 1
Slash (/), 1
Space character, 1
Statement syntax, 1
Subroutines, 24

Tabs, 1

Z character, 5

Index-l

SABR

1.0
1.1
1.1.1
1.1.2
2.0
2.1
2.2
2.3
3.0
3.1
3.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.2
3.3.3
3.3.4
3.4
4.0
5.0
5.1
5.2
5.3
6.0
6.1
6.2
6.3
6.4
7.0
7.1
7.1.1
7.1.2
7.2
7.3
7.4
7.5
7.6
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
9.0
9.1
10.0

CONTENTS

INTRODUCTION
Calling and Using OS/8 SABR
OS/8 SABR Options
Examples of OS/8 SABR I/O Specification Co~~ands

THE CHARACTER SET
Alphabetic
Numeric
Special Characters

STATEMENTS
Labels
Operators
Operands
Constants
Numeric Constants
ASCII Constants
Literals
Parameters
Symbols
Comments

INCREMENTING OPERANDS
PSEUDO-OPERATORS

Assembly Control
Symbol Definition
Data Generating

SUBROUTINES
CALL and ARG
ENTRY and RETRN
Example
Passing Subroutine Arguments

SABR OPERATING CHARACTERISTICS
Page-by-Page Assembly
Page Format
Page Escapes
Multiple Word Instructions
Run-Time Linkage Routines
Skip Instructions
Program Addresses
The Symbol Table

THE SUBPROGRAM LIBRARY
Input/Output
Floating Point Arithmetic
Integer Arithmetic
Subscripting
Functions
utility Routines
DEC tape I/O Routines

THE BINARY OUTPUT TAPE
Loader Relocation Codes

SAMPLE ASSEMBLY LISTINGS

iii

Page

1
1
1
3
3
3
3
3
4
5
5
5
5
6
6
6
7
7
8
8
9
12
15
17
18
19
20
21
22
25
25
25
25
26
26
28
29
29
30
30
31
33
33
34
35
36
38
38
41

11.0
11.1
11.2
12.0
13.0
13.1
13.1.1
13.1.2
13.2
14.0
14.1
14.1.1
14.1.2
14.2
14.3
14.4
15.0
16.0

CONTENTS (Cont.)

SABR PROGRAMMING NOTES
Optimizing SABR Code
Calling the OS/8 USR and Device Handlers

SABR ERRORS
LINKING LOADER

Calling and Using the Linking Loader
Linking Loader Options
Examples of I/O Command Strings
Linking Loader Error Messages

LIBRARY SETUP (LIBSET)
Calling and Using LIBSET
LIBSET Options
Examples of LIBSET Usage
Subroutine Names
Sequence for Loading Subroutines
LIBSET Error Messages

LIBRARY PROGRAMS
DEMONSTRATION PROGRAM USING LIBRARY ROUTINES

APPENDIX SABR INSTRUCTION CODES AND PSEUDO-OPERATORS

INDEX

TABLES

TABLE 1 SABR Options
2 SABR Pseudo-Operators
3 SABR Error Codes
4 Linking Loader Options
5 Linking Loader Error Messages
6 LIBSET Error Messages
7 Library Error Messages

iv

Page

44

46
46
47
48
48
51
52
53
53
53
54
54
54
54
55
56

A-I

Index-l

2
9
46
49
52
55
55

SABR

1.0 INTRODUCTION

The OS/8 SABR assembler, a modified version of the 8K SABR assembler,
is designed to run under the OS/8 Operating System.

You can use the OS/8 SABR assembler as the automatic second pass of
the FORTRAN compiler, call it separately to do assemblies of FORTRAN
compiled files, or use it as an independent assembler with its own
assembly language. In addition, you may use SABR statements in an
OS/8 FORTRAN program, expanding the capabilities of the FORTRAN
language.

1.1 Calling and Using OS/8 SABR

Unless otherwise specified, OS/8 calls the SABR assembler
automatically to assemble the output of a FORTRAN compilation. At
other times you can call SABR by typing:

R SABR

in response to the Keyboard Monitor dot. When the Command Decoder
prints an asterisk in the left margin, type the appropriate device
assignations, I/O files, and any of the acceptable options.

The line to the Command Decoder consists of a to 3 output device and
file designations, 1 to 9 input device and file designations, and the
desired option(s). The form is:

*BINARY,LISTING,MAP(INPUT FILE(S)/OPTION(S)

where BINARY represents the binary output, LISTING the listing output,
and MAP the Linking Loader loading map input. Unless you indicate
alternate extensions, SABR assumes the following extensions:

File Type

input file
binary output
listing output

Extension

.SB

.RL

.LS

If you do not indicate a binary output file, SABR will not generate a
binary output. However, if you specify the /L or /G option, SABR will
generate a binary file under the assigned name SYS:FORTRL.TM.

1.1.1 OS/8 SABR Options - The options you can include in a command
string to OS/8 SABR are listed in Table 1.

1

Option

/F

/G

/L

/N

/S

SABR

Table 1
SABR Options

Meaning

Indicates that the input file is an 8K FORTRAN output
file.

Calls the Linking Loader, loads the program into core
and begins execution. If a binary output file is not
specified, then FORTRL.TM is loaded into core and
deleted from the file device. If a starting address
is not specified (using the options to the Linking
Loader), control is sent to the program entry point
MAIN (the FORTRAN compiler gives this name
automatically to the main program).

Calls the Linking Loader at the end of the assembly
and loads the specified binary file. If a binary
output file is not specified, then the temporary file
FORTRL.TM is loaded into core and deleted from the
file device. The Loader then either returns to the
Keyboard Monitor with a core image or asks for more
input, depending on whether an ALT MODE or RETURN key
has terminated the input line.

Outputs the symbol table but
listing (applicable only
specified) .

not the rest
if a listing

of
file

the
is

Omits the symbol table from the listing (applicable
only if a listing file is specified).

When you specify the /L or /G option, you can include any options to
the Linking Loader (described in Section 13, Linking Loader) in the
command string for SABR. You cannot include the /L (Library) option
of the Linking Loader, since it would conflict with the SABR /L
option.

NOTE

The FORTRAN compiler automatically
generates an entry point named MAIN
whose address is the beginning of the
program. When writing a main program in
SABR, specify the entry point MAIN with
the entry pseudo-op in order to
symbolically specify the starting
address to the Linking Loader.
(Otherwise you must specify the starting
address to the Loader as a five digit
address.)

2

SABR

1.1.2 Examples of OS/8 SABR I/O Specification Commands

Example 1:

+R SABR
iFOHTF-:N T TM/F/G

DSK:PORTRN.TM is assembled as a FORTRAN output file and the
relocatable binary is loaded and started at the entry point MAIN.

Example 2:

+R SABR
iSYS TEERL,TTY:<TEE/S

The input file TEE.SB (or TEE) on DSK: is assembled. The relocatable
binary goes to the output file TEERL.RL on SYS:; the listing without a
symbol table goes to the terminal.

2.0 THE CHARACTER SET

2.1 Alphabetic

In addition to the letters A through Z, SABR considers the following
to be alphabetic:

[left bracket
] right bracket
\ back slash

up arrow

2.2 Numeric

SABR recognizes the numbers 0 to 9.

2.3 Special Characters

The following printing and non-printing characters are legal:

,
/
(
II

Comma
Slash
Left parenthesis
Quote
Minus sign
Number sign

RETURN
(carriage return)
Semicolon
LINE FEED
FORM FEED
SPACE

TAB
RUBOUT

delimits a symbolic address label
indicates start of a comment
indicates a literal
precedes an ASCII constant
negates a constant
increases value of preceding symbol
by one
terminates a statement

terminates an instruction
ignored
ignored
separates and delimits items on the
statement line
same as space
ignored

3

SABR

All other characters are illegal except when used as ASCII constants
following a quote ("), or used in comments or text strings. All legal
and illegal characters, used in ways different from the above, cause
SABR to print the error message C (Illegal Character).

3.0 STATEMENTS

SABR symbolic programs are a sequence of statements usually prepared
on the terminal, on-line, with the aid of the Symbolic Editor program.
SABR statements are virtually format free. You terminate each
statement by typing the RETURN key. (The Editor automatically
provides a line feed.) You can type two or more statements on the same
line, using the semicolon as a separator.

You compose a statement line using one or all of the following
elements: label, operator, operand and comment -- all separated by
spaces or tabs (labels require a following comma). You can identify
the types of elements in a statement by the order of appearance in the
line and by the separating or delimiting character that follows or
precedes the element.

write statements in the general form:

label, operator operand /comment (preceded by slash)

SABR generates one or more machine instructions or data words for each
source statement.

An input line may be up to 72(10) characters long, including spaces
and tabs. Any characters beyond this limit are ignored.

The RETURN key (CR/LF) is both an instruction and a line terminator.
You may use the semicolon to terminate an instruction without
terminating a line. If, for example, you want to write a sequence of
instructions to rotate the contents of the accumulator (AC) and link
(L) six places to the right, your instructions might look like this:

RTR
RTR
RTR

You may place all three RTR's on a single line, separating each RTR
with a semicolon and terminating the line with the RETURN key. You
could then write the preceding sequence of instructions:

This format is particularly useful when creating a list of data:

0200 0020
0201 0050
0202 7750
0203 0062

LIST,

You may use null lines to format program listings. A null line is a
line containing only a carriage return and possibly spaces or tabs.
Such lines appear as blank lines in the program listing.

4

SABR

3.1 Labels

A label is a symbolic name or location tag you created to identify the
address of a statement in the program. You can make subsequent
referenceS to the statement by referencing the label. If present, the
label is written first in a statement and terminated with a comma.

0200 0000
0201 1200-

S.AVEl'
ABC,

o
TAD SAVE

SAVE and ABC are labels referencing the statements in location 0200
and 0201, respectively.

3.2 Operators

An operator is a symbol or code that indicates an action or operation
to be performed, and may be one of the following:

1. A direct or indirect memory reference instruction

2. An operate or lOT microinstruction

3. A pseudo-operator

All SABR operators, microinstructions and
instructions are summarized in the Appendix.

memory reference

3.3 Operands

An operand represents that part of the statement that is manipulated
or operated upon, and may be a numeric constant, a literal or a
user-defined address symbol.

In the example last given, SAVE represents an operand.

3.3.1 Constants - Constants are data used but not
program. They are of two types: numeric and ASCII.
are used only as parameters. You may use numeric
parameters or as operand addresses, for example:

0200 1.41.2 T(~D I 12

changed by a
ASCII constants

constants as

SABR treats constant operand addresses as absolute addresses, just as
a symbol defined by an ABSYM statement (see Section 5.2, Symbol
Definition) . References to them are not generally relocatable~
therefore, use them only with great care. The primary use of constant
operand addresses is to reference locations on page O. All constant
operand addresses are assumed to be in the field into which the
Linking Loader loads the program.

Constants may not be added to or subtracted from each other or from
symbols.

5

SABR

3.3.1.1 Numeric Constants - A numeric constant consists of a single
string of from one to four digits. You may precede it with a minus
sign (-) to negate the constant. The digit string will be interpreted
as either octal or decimal according to the latest permanent mode
setting by an OCTAL or DECIM pseudo-operator (explained under Assembly
Control) • Octal mode is assumed at the beginning of assembly. The
digits 8 and 9 must not appear in an octal string.

0200 5020 A, 5020
0201 7575 -203

DECIM
0202 0120 80

3.3.1.2 ASCII Constants - You may create eight-bit ASCII values as
constants by typing the ASCII character immediately following a double
quotation mark ("). You may use a minus sign to negate an alphabetic
constant. The minus sign must precede the quotation mark.

0200 0273
0201 7477
0202 0207

1-301
IBELL FOLLOWS •

The following are illegal as alphabetic constants:
line feed, form feed and rubout.

carriage return,

3.3.2 Literals - A literal is a numeric or ASCII constant preceded by
a left parenthesis. The use of literals provides a special and
convenient way of generating constant data in a program. The value of
the literal will be assembled in a table near the end of the core page
on which the instruction referencing it is assembled. The instruction
itself will be assembled as an appropriate reference to the location
where the numeric value of the literal is assembled. Literals are
normally used by TAD and AND instructions, as in the following
examples:

0200 0376
0201 1375
0202 1374

0374 0303
0375 7730
0376 0777

AND (777
TAD (-50
TAD (·C

The numeric conversion mode is initially set to octal, but is
controllable with the DECIM and OCTAL pseudo-operators. You can
change this mode on a local basis by inserting a D (decimal) or a K
(octal) between the left parenthesis and the constant, for example:

(D32 becomes 0040 (octal)
(K-32 becomes 7746 (octal)

This usage is confined only to the statement in which it is found and
does not alter the prevailing conversion mode.

6

SABR

You may also use a literal as a parameter (that is, with no operator).
In this case the numeric value of the literal is assembled as usual in
the literal table near the end of the core page currently being
assembled, and a relocatable pointer to the address of the literal is
assembled in the location where the literal parameter appeared.

0200 0376 01 (20

0376 0020

This feature is intended primarily for use in passing external
subroutine arguments Wlcn the ARG pseudo-operator, which is explained
in greater detail in Section 5.

3.3.3 Parameters - A parameter is generally either a numeric
constant, a literal or a user-defined address symbol, which is
intended to represent data rather than serve as an instruction. It
appears as an operand in a statement line containing no operator. (An
exception to this is a parameter used in conjunction with the ARG
pseudo-operator, explained in Section 6, Subroutines.) In the
following example, 200 and -320, M, and PGOADR all represent
parameters.

0200 0200 ABCy
0201 7460
0202 0315
0203 0176 POINTR, PGOADR

3.3.4 Symbols - Symbols are composed of legal alphanumeric characters
and are delimited by a non-alphanumeric character. There are two
major types of symbols: permanent, and user-defined.

Permanent Symbols
Permanent symbols are predefined and maintained in
symbol table. They include all of the basic
pseudo-operators in Appendix C. You may use these
prior definition by you.

User-Defined Symbols

SABR's permanent
instructions and
symbols without

A user-defined symbol is a string of from one to six legal
alphanumeric characters delimited by a non-alphanumeric character.
User-defined symbols must conform to the following rules:

1. The characters must be legal alphanumerics

ABCD •.. XYZ,[]\~ and 0123456789.

2. The first character must be alphabetic.

3. Only the first six characters are meaningful. A symbol such
as INTEGER would be interpreted as INTEGE. Since the symbols
GEORGEl and GEORGE2 differ only in the seventh character,
they would be treated as the same symbol: GEORGE.

4. A user-defined symbol cannot be the same as any of the
pre-defined permanent symbols.

5. A user-defined symbol need be defined only once. Subsequent
definitions will be ineffective and will cause SABR to type
the error message M (Multiple Definition).

7

SABR

A symbol is defined when it appears as a symbolic address label or
when it appears in an ABSYM, COMMN, OPDEF or SKPDF statement (see
Section 5, Pseudo-Operators). No more than 64 different user-defined
symbols may occur on anyone core page.

Equivalent Symbols
When an address label appears alone on a line -- with no instruction
or parameter the label is assigned the value of the next address
assembled.

TAGl,
TAG2, 30
TAG3,

TAGI and TAG2 are equivalent symbols in that they are assigned the
same value. Therefore, a TAD TAGI will reference the data at TAG2.
TAG3, however, is not equivalent to TAG2. TAG3 would be defined as 1
greater than TAG2.

3.4 Comments

You may add notes to a statement by preceding them with a slash mark.
Such comments do not affect assembly or program execution but are
useful in interpreting the program listing for later analysis and
debugging. Entire lines of comments may be present in the program.

None of the special characters or symbols have significance when they
appear in a comment.

/THIS IS A COMMENT LINE.
/THIS ALSO. TAD~CALL~i"-2C+=!
A, TAD SAVE /SLASH STARTS COMMENT

4.0 INCREMENTING OPERANDS

Because SABR is a one-pass assembler and also because it sometimes
generates more than one machine instruction for a single user
instruction, operand arithmetic is impossible. Statements of the
following form are illegal:

TAD TAG+3
TAD LIST-LIST2
JMP .+6

However, by appending a number sign to an operand you can reference a
location exactly one greater than the location of the operand (the
next sequential location): TAD LOCi is equivalent to the PAL language
statement TAD LOC+l.

0200 0020 LOC, 20
0201 0030 30
0202 1200 START, TAD LOC /GET 20
0203 1201 TAD LOCI /GET 30

PAGE
0400 0200 A, LOC
0401 0201 B, LOCt

In assembling i-type references, SABR does not attempt to determine if
multiple machine code words are generated at the symbolic address
referenced.

8

START, TAD I
Nap

TAD
DCA

laC

(7500
STARTt

SABR

flOC IS .OFF-PAGE
IUSER HOPES TO MODIFY

fSMA

In the preceding example, an attempt was made to change the NOP
instruction to an SMA. However, this is not possible because TAD I
LOC will be assembled as three machine code words; if START is at
0200, the NOP will be at 0203. The SMA will be inserted at 0201, thus
destroying the second word of the TAD I LOC execution.

To avoid this error, you should carefully examine the assembly listing
before attempting to modify a program with #-type references. In the
previous example the proper sequence is:

0202 4067 START, TAD I laC
0203 0200 01
0204 1407
0205 7000 VAR, Nap
0206 1377 TAD (7500
0207 3205 DCA VAR
0377 7500

The #-sign feature is
variables when picking
returning from external
Subroutine Arguments) .

intended primarily for manipulating DUMMY
up arguments from external subroutines and
subroutines (see Section 6.4, Passing

5.0 PSEUDO-OPERATORS

Table 2 lists the pseudo-operators available in SABR, whether used as
a free-standing assembler or in conjunction with the FORTRAN compiler.
The pseudo-operators are categorized and explained in the paragraphs
following the table.

Mnemonic Code

ABSYM

ARG

I

Table 2
SABR Pseudo-Operators

Operation

Direct absolute symbol definition, used to
indicate an absolute core address. For example:

ABSYM TEM 177 /PAGE ZERO ADDRESS

Argument for subroutine call, indicating a value
to be transmitted, one value per ARG statement.
Used only with CALL. For example:

Nl,
N2,

ARG (50
ARG LOCATN

9

(continued on next page)

Mnemonic Code

BLOCK

CALL

COMMN

CPAGE

DECIM

DUMMY

EAP

END

ENTRY

FORTR

SABR

Table 2 (Cont.)
SABR Pseudo-Operators

Operation

Reserve storage block; reserves n words of core
by placing zeros in them. For example:

BLOCK 200
BLOCK 100

/RESERVE 300
/(OCTAL) LOCATIONS

Call external subroutine. For example:

CALL 2,SUBR

where 2 is the number of arguments to be passed
and SUBR is the subroutine name.

Common storage definition, used to name
locations ln field 1 as externals to be
referenced by any program. For example:

A, COMMN 20 /20 WORDS IN COMMON

Check if page will hold data, followed by the
number of words of code which must be kept
together in a unit on a page. That number of
words following the CPAGE will be assembled as a
unit on the next available core page.

Decimal
interprets
numbers.

conversion,
all numbers

numeric conversion
input as being decimal

Dummy argument definition, used in
arguments to and from subroutines.
variables are defined in the subprograms
reference them. For example:

ENTRY Al
DUMMY X
DUMMY Y

passing
DUMMY
which

Enter automatic paging mode, restore automatic
paging (see LAP) .

End of program or subprogram.

Define program entry point, used at beginning of
subprograms to give name of entry point for the
Linking Loader. For example:

ENTRY SUBROU
SUBROU, BLOCK 2

Assemble FORTRAN tape.

10

(continued on next page)

Mnemonic Code

I

IF

LAP

OCTAL

OPDEF

PAGE

PAUSE

REORG

RETRN

SKPDF

SABR

Table 2 (Cont.)
SABR Pseudo-Operators

Operation

Symbolic representation for indirect addressing.
For example:

DCA I ADD

Conditional assembly, of form:

IF NAME, 7

If the symbol NAME has been previouslv defined.
the statement has no effect. If NAME is not
defined, the next 7 symbolic instructions are
not assembled.

Leave automatic paging. Assembler is initially
set for automatic jumps to the next core page
when the current page is full (or upon REORG or
PAGE statements) . This feature can be
suppressed with LAP.

Octal conversion, numeric conversion is
originally set to octal and can be changed back
to octal after a DECIM pseudo-op has been used.

Define non-skip operator. For example:

OPDEF DTRA 6761

Terminate current page, begin assembly
succeeding instructions on next core page.

of

Pause for next tape, designed to allow large
source tapes to be broken into several smaller
segments. Assembly is continued by pressing the
CONT switch.

Terminate page and
settings are always
page. For example:

REORG 1000

reset origin; origin
to the first address of a

Return from external subroutine, the name of the
subroutine being left must be specified. Before
the RETRN statement is used, the pointer in the
second word of the subprogram entry must be
incremented to the point following all arguments
in the calling program (after the CALL
statement) .

Define skip-type operator. For example:

SKPDF DTSF 6771

(continued on next page)

11

Mnemonic Code

TEXT

ACH

ACM

ACL

SABR

Table 2 (Cont.)
SABR Pseudo-Operators

Operation

Text string similar to BLOCK, except that the
argument is a text string. Characters are
stored in six-bit stripped ASCII with a printing
character used to delimit the string. For
example:

TAG, TEXT /123*/

the string would be stored as:

6162
6352

Odd characters are filled with zeros on the
r igh t.

The floating-point accumulator (in field
l) .

High-order word.

Middle word.

Low-order word.

5.1 Assembly Control

END Every program or subprogram to be assembled must
contain the END pseudo-op as its last line. If you do
not meet this requirement, an error message (E) is
given.

PAUSE The PAUSE pseudo-op causes assembly to halt and is
designed to allow you to break up a large source tape
into several smaller segments. To do this, you need
only place a PAUSE statement at the end of each section
of your source program except the last. Each of these
sections of the program is then output as an individual
tape. When assembly halts at a PAUSE, remove the
source tape just read from the reader and insert the
next one. You may then continue assembly by pressing
the CONTinue switch.

WARNING

The PAUSE pseudo-op is
specifically for use at the
partial tapes and should not
otherwise.

12

designed
end of

be used

DECIM

OCTAL

LAP

EAP

PAGE

SABR

The reason for this is that the reader routine may have
read data from the paper tape into its buffer that is
actually beyond the PAUSE statement. Consequently,
-when you press CONTinue after the PAUSE is found by the
line interpreting routine, the entire content of the
reader buffer following the PAUSE is destroyed, and the
next tape begins reading into a fresh buffer. Thus, if
there is any meaningful data on the tape beyond the
PAUSE statement, it will be lost.

Initially the numeric conversion mode is set for octal
conversion. However, if you wish, you may change it to
decimal by use of the DECIM pseudo-op~

If the numeric conversion mode has been set to decimal,
you may change it back to octal by using the OCTAL
pseudo-oPe

No matter which conversion mode has been permanently
set, it may always be changed locally for literals by
use of the (D or (K syntax described earlier, for
example:

0200 0320 START" 320
DECIM

0201 0500 320
0202 0377 01 (K320
()203 l()OO 512

OCTAL
0204 0512 512
0205 O~376 01 ([1512
0206 0320 ~520

END

0376 :1.000
0377 0:320

The assembler is initially set for automatic generation
of jumps to the next core page when the page being
assembled fills up (Page Escapes), or when PAGE or
REORG pseudo-ops are encountered. This feature may be
suppressed by use of the LAP (Leave Automatic Paging)
pseudo-ope

If you have previously suppressed the automatic paging
feature, you may restore it to operation by using the
EAP (Enter Automatic Paging) pseudo-oPe

The PAGE pseudo-op causes the current core page to be
assembled as is. Assembly of succeeding instructions
will begin on the next core page. No argument is
required.

13

REORG

CPAGE

IF

SABR

The REORG pseudo-op is similar to the PAGE pseudo-op,
except that you must give a numerical argument
specifying the relative location within the subprogram
where assembly of succeeding instructions is to begin.
You may not give a REORG below 200. A REORG should
always be to the first address of a page, it will be
converted to the first address of the page it is on.

0200 7200

0400 7040

1000 7041

START, CLA
PAGE
CMA
REORG 1000
CIA

The CPAGE pseudo-op followed by a numerical argument N
specifies that the following N words of code must be
kept together in a single unit and not be split up by
page escapes and literal tables. If the N words of
code will not fit on the current page of code, the
current page is assembled as if a PAGE pseudo-op had
been encountered. The N words of code will then be
assembled as a unit on the next core page. An example
follows.

CPAGE normally specifies a data area. However, if
these N words are instructions, for example, a CALL
with arguments, you must count the extra machine
instructions that SABR must insert.

0200

0400
0401

NOTE

N must be less than or equal to 200
(octal) in nonautomatic paging mode or
less than or equal to 176 octal in
automatic paging mode.

7200 START, CLA
LAP IINHIBIT PAGE
CPAGE 200 ICLOSES THE

0000 NAMEl ICLJRRENT PAGE
OO()() NAME2 lAND ASSEMBLES

ITHE NEXT PAGE

ESCAPE

Use the conditional pseudo-op, IF, with the following
syntax:

IF NAME, "7

The action of the pseudo-op in this case is to first
determine whether the symbol NAME has been previously
defined. If NAME is defined, the pseudo-op has no
effect. If NAME is not defined, the next seven
symbolic instructions (not counting null lines and
comment lines) will be treated as comments and not
assembled.

14

,0200 ;·5201
0201 O()OO

SABR

IABSYM NAME 176
IF NAME, 2 /THE NEXT LINE

ell RTl ITO BE ASSEMBLED
RAL IWILl BE -DCA LOC·

IIF THE SLASH BEFORE ·ABSYM NAME 176-
lIS REMOVED, THE Nell RTl 8 AND BRAlH
IWIll BE ASSEMBLED.

DCA LOC
o

Normally the symbol referenced by an IF statement
should -be either an undefined symbol or a symbol
defined by an ABSYM statement. If this is done f the
situation mentioned below cannot occur.

WARNING

In a situation such as the following, a
special restriction applies.

"IF Nt ... NEv ::5

The restriction is that if the line NAME, 0 happens to
occur on the same core page of instructions as the IF
statement, then NAME will not have been previously
defined when the IF statement is encountered, even
though it is before the IF statement. On the first
pass (though not in the listing pass) the three lines
after the IF statement will not be assembled. The
reason for this is that location labels cannot be
defined until the page on which they occur is assembled
as a unit.

5.2 Symbol Definition

ABSYM

OPDEF
SKPDF

You may name an absolute core address using the ABSYM
pseudo-oPe This address must be in the same core field
as the subprogram in which it is defined. The most
common use of this pseudo-op is for naming page zero
addresses not used by the operating system. These
addresses are listed under Linkage Routine Locations.

Operation codes not already included in the symbol
table may be defined by use of the OPDEF or SKPDF
pseudo-ops. You must define non-skip instructions with
the OPDEF pseudo-op and define skip-type instructions
with the SKPDF pseudo-oPe

15

COMMN

SABR

Examples of ABSYM, OPDEF and SKPDF syntax:

01"7"7
0010
6"761
6771
7540

ABSYM TEM 1"77 IPAGE o ADDRESSES
ABSYM AX 10
OPDEF DTRA 6761 INON-SKIP INSTR+
SKPDF DTSF 6771 ISKIP-TYPE INSTF~.
SKPDF SMZ 7540

NOTE

You must make ABSYM, OPDEF and SKPDF
definitions before you use them in the
program.

You use the COMMN pseudo-op to name locations in field
1 as externals so that they may be referenced by any
program. If you use any COMMN statements, they must
occur at the beginning of the source, before everything
else, including the ENTRY statement. Common storage is
always in field 1 and is allocated from location 0200
upwards. Since the top page of field 1 is reserved,
you may define no more than 3840(10) words of common
storage.

A COMMN statement normally takes a symbolic address
label, since storage is being allocated. However, you
may allocate common storage without an address label.

A COMMN statement always takes a numerical argument
that specifies how many words of common storage are to
be allocated; however, a 0 argument is allowed. A
COMMON statement with 0 argument allocates no common
storage; it merely defines the given location symbol
at the next free common location.

The syntax of the COMMN statement is as follows:

0200 A, COMMN 20
0220 B, COMMN 10
0230 COMMN 300
O~530 C, COMMN 0
0530 [I, DOMMN 10

ENTRY SUBRUT

In this example 20 words of common storage are
allocated from 0200 to 0217, and A is defined at
location 0200. Then, 10 words are allocated from 0220
to 0227, and B is defined at 0220. Notice that if A is
actually a 30 word array, this example equates B(l)
with A(2l).

The example continues by allocating common storage from
0230 to 0527 with no name being assigned to this block.
Then 10 words are allocated from 0530 to 0537 with both
C and D being defined at 0530.

16

SABR

5.3 Data Generating

BLOCK

TEXT

The BLOCK pseudo-op given with a numerical argument N
will reserve N words of core by placing zeros in them.
This pseudo-op creates binary output, and thus may have
a symbolic address label.

Before the N locations are reserved, a check is made to
see if enough space is available for them on the
current core page. If not, this page is assembled and
the N locations are reserved on the next core page.
The action here is similar to that of the CPAGE
pseudo-oPe Similar restrictions on the argument apply.

IEXAMPLE OF HOW LARGE BLOCK STORAGE
IMAY BE ACHIEVED WITHIN A SUBPROGRAM AREA

LAP
BLOCK 200
BLOCK 200
BLOCK 100
EAP

IINHIBIT PAGE ESCAPES
IRESERVE 500
I(OCTAL) LOCATIONS

IRESUME NORMAL CODING

As a special use, if you use the BLOCK pseudo-op with a
location label but with no argument or a zero argument,
no code zeros are assembled; instead, the symbolic
address label is made equivalent to the next relative
core location assembled. (This usage is equivalent to
using a symbolic address label with no instruction on
the same 1 ine.)

0200 0000
0201 0000
0202 0000

0203 0000
0204 0000

LIST,

NAME1,
N(.)ME2,
NAME:3,
NAME4,

BL.OCK ~5

BLOCK
BLOCK 0

BL.OCK 'i .:..

IASSEMBLES AS

ITHREE ZEF~OS

IWITH -LIST­
IDEFINED AT THE
IFIRST L.OCATION
IDEFINES NAME1::::
INAME2=NAME3=
INAME4

You use the TEXT pseudo-op to obtain packed six-bit
ASCII text strings. Its function and use are almost
exactly the same as for the BLOCK pseudo-op except that
instead of a numerical argument, the argument is a text
string. In particular, this pseudo-op makes a check to
be sure that the text string will fit on the current
page without being interrupted by literals, etc.

You must put the text string argument on the same line
as the TEXT pseudo-oPe Any printing character may be
used to delineate the text string. This character must
appear at both the beginning and the end of the string.
Carriage return, line feed and form feed are illegal
characters within a text string (or as delineators) .
All characters in the string are stored in simple
stripped six-bit form. Thus, a tab character (ASCII

17

SABR

211) will be stored as an 11, which is equivalent to
the coding for the letter I. In general, you should
not use characters outside the ASCII range of 240-337.

0200 2405 TEXT ITEXT EXAMPLE 123*;11
0201 3024
0202 4005
0203 3001
0204 1520
0205 1405
0206 4061
02()} 6263
021.0 5273
()211 }}OO

6.0 SUBROUTINES

A subroutine is a subprogram that performs a specific operation and is
generally designed so that it can be used more than once or by more
than one program. Direction of flow goes from the main, or calling,
program to the subroutine, where the action is performed. This is
followed by a return back to the address that follows the subroutine
call in the main program.

Internal subroutines are those subroutines that can only be called
from within a program. You use this type of subroutine extensively in
nearly all PDP-8 programs, and you handle it through the use of the
JMS, JMS I, and JMP I instructions. An example of an internal
subroutine call follows:

0200 }:30()
0201 1204
0202 4206

0203 32()~:;

0204 OOOl
020~5 0000

0206 0000
020} /104

02:LO /430
02:1.l /402
O:?12 620:1. O~.'.'j

02:1.3 ~'.;6()6

ClA
TAD
JMS

DCA

N!' 1
RESLT, ()

/SUBF~OUT I NE
T~JCl ~ 0

elL.
N
TWO

F~ESl T

IGET NUMBER IN AC
ITRANSFER TO SUB­
IROUTINE
ISTORE NUMBER
I(CONTROl RETURNS
IHERE)

Cll RAL IROTATE LEFT AND
IMUL.TIPL.Y BY 2

SZl ICHECK FOR OVERFLOW
HLT ISTOP IF OVERFLOW

JMP I TWO IRE TURN TO MAIN

/PHOGRAM
END

The main program picks up a number (N) and jumps to the subroutine
(TWO) where N is multiplied by two. A check is made, and if there is
no overflow, control returns to the main program through the address
stored at the location TWO.

18

SABR

External subroutines are distinguished from internal subroutines in
that they may be called by a program that has been compiled, or
assembled, without any knowledge of where the subroutine will be
located in core memory. Thus, you must load external subroutines with
a relocatable linking loader. This makes it possible for you to build
a librarv of freauentlv used proqrams and subroutines that vou can
combine in various configurations: This also eliminates the need to
reassemble, or recompile, each individual program when you make a
minor change in the system.

A call to an external subroutine can be illustrated using the
following FORTRAN programs:

IPARM=5
CALL TWOCIPARM)
WRITE (1,100) IPARM

100 FORMAT (IS)
END

SUBROUTINE TWO(IARG)
IARG=IARG+IARG
RETURN
END

(Calling Program)

(Subroutine)

NOTE

Exercise care when naming a function or
subroutine. It must not have the same
name as any of the assembler mnemonics
or pseudo-ops or FORTRAN/SABR library
functions or subroutines, as errors are
likely to result. The symbol table for
SABR Assembler is listed in Appendix C,
and the library functions are described
in the section The Subprogram Library.

Any time a subroutine is called, it must have data to process. This
data is contained in parameters in the calling program! which are then
passed to the subroutine. The data is picked up by the subroutine
where it is referred to as arguments. (The subroutine actually picks
up the arguments by a series of TAD lis, and one final TAD I for an
integer argument, or by a call to the IFAD subroutine if a floating
point argument. This is illustrated in the section entitled SABR
Programming Notes.) SABR has special pseudo-operators that facilitate
the passing/handling of arguments. Each will be explained in turn.

6.1 CALL and ARG

The CALL pseudo-op is used by the main program to transfer control to
the subroutine and is of the form:

CALL n,NAME

where n represents a one or two-digit number (62(10) maximum)
indicating the number of parameters to be passed to the subroutine.
NAME (separated from n by a comma) represents the symbolic name of the
subroutine entry point.

19

SABR

The Assembler must know the number of parameters that follow the call
so that enough room on the current page can be allowed. The CALL
pseudo-op and its corresponding parameters must always be coded on the
same memory page; that is, there must be no intervening page escapes.
(Page format and page escapes are discussed later in the chapter.)

You use the ARG pseudo-op only in conjunction with CALL, and it
consists of the symbol ARG, followed by one of the parameters
(referred to as arguments in the subroutine) to be passed. You must
code one ARG statement for each parameter.

In the previous FORTRAN example, the main program (or it may have been
a subroutine) called a subroutine named TWO, and supplied one
argument:

CALL 1,TWO
ARG IPARM

SABR actually assembles the above instructions as follows (you may
wish to consult the section concerning the Loader Relocation Codes):

0200 0000 IPARM, BLOCK 1

0206 4033 CALL 1,TWO
0207 0103 06
0210 6201 O~ J ARG IPARM
0211 0200 01

END

6.2 ENTRY and RETRN

In the subroutine, the ENTRY statement must occur before the name of
the entry point appears as a symbolic address label. The actual entry
location must be a two-word reserved space so that both the return
address and field can be saved when the routine is called. Execution
of the subroutine begins at the first location following the two-word
ENTRY block. For example, the TWO subroutine mentioned in the
previous example would begin as follows:

0200 0000
0201 0000

0227
0230

4040
0001 06

TWO~

ENTRY TWO
BLOCK 2

RETRN TWO

END

20

5ABR

When a subroutine is referenced in a CALL statement, the Run-Time
Linkage Routine LINK executes the transfer to the subroutine. It
assumes that the entry point to the routine is a two-word block. Tnro
the first word of this block it places a CDF instruction which
specifies the field of the calling program. In the second word it
places the address from which the CALL occurred. (This is analogous
to the operation of the JMS instruction.) In the previous example, if
the MAIN program had been in field 0, a 6201 would have been deposited
in the location at TWO, and a 0210 at TWO #.

The RETRN statement allows you to return to the calling program from
~ne subroutine. You must specify the name of the subroutine being
returned from the RETRN statement so that the Return Linkage Routine
can determine the action required i and also so that a subroutine may
have differently named ENTRY points. (This is analogous to the
operation of a JMP I instruction.)

When a subroutine is entered, the second word of the entry name
contains the address of the argument or next instruction
immediately follows the subroutine call in the calling program.
to this address that control returns.

6.3 Example

block
that

It is

Suppose you want to write a long main program, MAIN, which uses two
major subroutines, Sl and S2. Sl requires two arguments and S2 one
argument. Write MAIN, 51, and S2 as three separate programs in the
following manner:

MAIN,
ENTRY MAIN
CLA

CALL 2,81
ARG X
ARG Y
CALL 1,82
ARG Z

END

ENTRY 81
BLOCK 2

RETRN 81
END

ENTRY 82
BLOCK 2

RETRN S?
END

/8TART OF MAIN

21

SABR

Sl could also contain calls to S2, or S2 calls to Sl. Each of these
programs is independently assembled with SABR and loaded with the
Linking Loader. During the loading process, all of the proper
addresses will be saved in tables so that when you begin execution of
MAIN, the Run-Time Linkage Routines (see Section 7.3), which were
automatically loaded, will be able to execute the proper reference.
Thus, MAIN will be able to pass data to and receive it from Sl and S2.

A useful procedure in SABR programming is to provide an ENTRY point
named MAIN in the main program at the address where execution is to
begin. This assures you that the starting address of the program will
appear in the Linking Loader's symbol print-out where it may be easily
referenced. If using OS/8, execution will begin at this address
automatically, eliminating the need to specify a 5-digit starting
address.

6.4 Passing Subroutine Arguments

Use a DUMMY pseudo-op in SABR to define a two word block that contains
an argument address.

The format is

DUMMY

You use indirect instructions to pass arguments to and from
subroutines through these DUMMY variables. If a DUMMY variable is
referenced indirectly, it causes a CALL to the DUMMY Variable Run-Time
Linkage Routine (see Section 7.3, Run-Time Linkage Routines), which
assumes that the DUMMY variable is a two-word reserved space where the
first word is a 62Nl (CDF N) (N representing the field of the address
to be referenced) and that the second word contains a 12-bit address.

As an example, consider the FORTRAN subroutine TWO, shown earlier.
You could write this in SABR as follows (you may wish to refer to the
section concerning the Subprogram Library) :

ICALLED BY: CALL TWO (IARG)

ENTRY TWO IDEFINE THE
IENTt\Y PT. USED

DUMMY IARG ITO PICK UP ARG.
0200 0000 IARG, BLOCK 2
0201 0000
0202 0000 TWO, BLOCK 2 IENTRY POINT
020:~ 0000
0204 40f.)7 TAD I TWO
0205 0202 Ol
0206 1407
0207 2203 INC TWOi IGET ARG ADDRESS
0210 :3200 DCA IARG
0211 4067 TAD I TWO
0212 0202 Ol
021.3 1407
O;'~:l.4 220:"5 INC TWOi
021!:i 3201. DCA IARGi
0216 4067 TAD I IARG IGET ARGUMENT
0217 0200 OJ
0220 :1.407

IINTD AC
0221. 4067 TAD I IARG IADD IT AGAIN
0222 0200 0:1.

22

SABR

,'\'"),")7 1407 V.A-A_.."J

0224 4067 DCA I IAF:G /RETLiRN ARG~ TO
0225 0200 01
0226 340"7

ICALlING PF~OGRAM

0227 4040 r".I"-"rr:.~1 Tun
r\1:~ I f'd't IWU

0230 0001 06
END

A second example may be one in which you have written a FORTRAN
program that contains a call to a SABR subroutine ADD:

A:=:2
N~::3

WF:: 1 TE (1,20) C
20 FORMAT (' THE SUM IS',F6.1)

f.)TOP
END

The FORTRAN program is compiled and the resulting SABR code translates
the subroutine call as follows:

() ::~;2 ::5 4033 CI~l..L.. 3 , ADD
()2:24 O:"5()~:.'j 06
() ::.:: ::.~ 5 6201 0~.'5 I~F~G I~

()2:~6 0200 01
022".l ,~) ::? ():I. O~.'j {-~I~G N
() ::.~ :.~; () 0203 01
0231 (~)20 :I. O~":j ()HG ("'

023::~ 0204 01

The CALL statement defines 3 parameters -- A, N, and C -- and the
subroutine name ADD. The subroutine itself would appear as follows
(the DUMMY variables X, K, and Z facilitate the passing of the
arguments to and from the subroutine):

0200 0000
0201 0000
0202 0000
0203 0000
0204 0000
0205 0000
0206 0200
0207 0000
0210 0000
0211 0000
0212 0000
0213 1206
0214 320"7
0215 1377
0216 321.0
0217 406"7
0220 02:1.1
0221 1407
0222 2212
0223 620:1.
0224 360"7
0:::"~2:j 220"7

ICAllED BY: CAll ADD (X,K,Z)
ENTRY ADD
DUMMY X
DUMMY K
DUMMY Z
BLOCK 2

BLOCK 2

z, BLOCK 2

01 XPNT, X

0:1.

PNTR,
CNTR,
ADD.,

Ai,

0
0
BLOCK 2

TAD XPNT
DCA PNTR
TAD (--6
DCA CNTF,
TAD I ADD

INC ADDt
DCA I PNTR

INC PNTH

23

IENTRY POINT

0226 2210
0227 5217
0230 4067
0231 0202 01
0232 1407
02:33 403:3
0234 0002 06

0235 40;3~5

0236 0103 06
0237 620l 0~5

0240 0200 Ol
0241 40;33
0242 OlO4 06
0243 6201 0~5

0244 0204 01
0245 4040
0246 0001 06
0377 7:/'"72

You may use the
that they may
explained under
included here.

0200

0200 0000
0201 0000
0202 403~5

0203 0102 06
0204 6211
0205 0200
0206 403;3
0207 0103 06
0210 621.l
0211 0200
0212 403~5

0213 0104 06
0214 6211
0215 0200
0216 4040
0217 OOOl 06

ISZ CNTR
JMP A1
TAD I K

SABR

CALL O,FLOT

C(~LL 1, IFAD

t-ll:;:G X

CAL.L 1,ISTO

ARG Z

RETRN ADD

END

IGET 2ND AFW

ICON VERT TO

IFLOATING PT.
hiDD 1ST ARG

IRE TURN RESULT

COMMN pseudo-op to specify variables as externals so
be referenced by any program. This pseudo-op has been

Symbol Definition; an example of its usage is

C,

CSl~R ,

COMMN 3

ENTRY CS(~R

BLOCK 2

CALL 1,FAD

ARG C

CALL 1,FMP

ARG C

CALL 1,8TO

ARG C

F~ETRN CSC~R

END

IRESERVES COM.MON
ISTORAGE
IDEFINES ENTRY PT.
IACTUAL ENTRY POINT

IGET THE ARGUMENT

IMUL.TIPL.Y IT

IREPL.ACE WITH RESULT

IRETURN TO CALL.ING

IPROGRAM

This subroutine computes the square of a variable C. C resides in
field 1 in common storage where it can be referenced by any calling
program through argument passing. The above is equivalent to the
FORTRAN subroutine:

SUBROUTINE CSQR
COMMON C
C=C*C
RETURN
END

SABR

7.0 SABR OPER~TING CHARACTERISTICS

7.1 Page-by-Page Assembly

SABR assembles page-by-page rather than one instruction at a time. To
accomplish this it builds various tables as it reads instructions.
When a full page of instructions has been collected (counting
literals, off-page pointers and multiple word instructions) the page
is assembled and punched. Several pseudo-operators are available to
control page assemblye

7.1.1 Page Format

A normal assembled page of code is formatted as follows:

XOOO

ASSEMBLED
INSTRUCTIONS

JUMP TO
PAGE ESCAPE

LITERALS
AND

OFF-PAGE
POINTERS

X377

PAGE ESCAPE

Literals and off-page pointers are intermingled in the table at the
end of the page.

7.1.2 Page Escapes

SABR is normally in automatic paging mode; in this mode, SABR
connects each assembled core page to the next by an appropriate jump.
This is called a page escape. For the last page of code, SABR leaves
the Automatic Paging Mode and issues no page escape. The Leave
Automatic Paging (LAP) pseudo-operator turns off the automatic paging
mode. EAP (Enter Automatic Paging) turns it back on.

Two types of page escape may be generated. The type generated depends
on whether or not the last instruction is a skip. If the last
instruction on the page is not a skip, the page escape is as follows:

last instruction (non-skip)
5377 (JMP to x177)
literals
and
off-page
pointers

x177/NOP

25

SABR

If the last instruction on the page is a skip, the page escape takes
four words, as follows:

last instruction (a skip)
5376 (JMP to x176)
5377 (JMP to x177)
literals
etc.

x176/SKP
x177/SKP

7.2 Multiple Word Instructions

Certain instructions in the source program require SABR to assemble
more than one machine language instruction (for example, off-page
indirect references and indirect references where a data field
resetting may be required). In the listing, the source instruction
will appear beside the first of the assembled binary words.

A difficulty arises when a multiple word instruction follows a skip
instruction. You should be aware that extra instructions are
automatically assembled to effect the skip correctly.

7.3 Run-Time Linkage Routines

These routines, which are loaded by the Linking Loader, perform their
tasks automatically when certain pseudo-ops or coding sequences are
encountered in your program. You need knowledge of them only to
better understand the program listing. (Refer to Section 9.1, Loader
Relocation Codes.)

There are seven linkage routines:

1. Change data field to current and skip CDFSKP

2. Change data field to 1 (common) and skip CDZSKP

3. Off-page indirect reference linkage OPISUB

4. Off-bank (common) indirect reference linkage OBISUB

5. Dummy variable indirect reference linkage DUMSUB

6. Subroutine call linkage LINK

7. Subroutine return linkage RTN

The individual linkage routines function as follows:

1. CDFSKP is called when a direct off-page memory reference
follows a skip-type instruction requiring the data field to
be reset to the current field.

Program

SZA
DCA LaC

Assembled
Code

7440
4045
7410
3776

26

Meaning

call CDFSKP
SKP in case AC = 0 at .-2 execute
the DCA via a pointer near the end
of the page.

2.

SABR

CDZSKP is aIled when a direct memory reference is made to a
location n common (which is always in Field 1) _ The action
of CDZSKP s the same as that of CDFSKP except that it always
executes a CDF 10 instead of a CDF cur~ent (see Loader
Relocation Codes) •

Program

SZA
DCA CLOC

Assembled
Code

7440
4051
7410
3776

Meaning

call CDZSKP
SKP in case AC = 0 at .-2 execute
the DCA via a pointer near the end
of the page.

3. OPISUB is called when there is an indirect reference to an
off-page location.

Program

DCA I PTR

Assembled
Code

4062
0300 01
3407

Meaning

call OPISUB
relative address of PTR
execute the DCA I via 0007

4. OBISUB is called when there is an indirect reference to a
location in common storage. In such a case it is assumed
that the location in common which is being indirectly
referenced points to some location that is also in common.

Program

DCA I CPTR

Assembled
Code

4055
1000
3407

Meaning

call OBI SUB
address of CPTR in Field 1
execute the DCA I via 0007

5. DUMSUB is called when there is an indirect reference to a
DUMMY variable. In such a case, DUMSUB assumes that the
DUMMY variable is a two-word vector in which the first word
is a 62Nl, where N the field of the address to be
referenced, and the second word is the actual address to be
referenced.

Program

DCA I DMVR

Assembled
Code

4067
0300 01
3407

27

Meaning

call DUMSUB
relative address of DMVR
execute DCA I via pointer
location 0007

in

SABR

6. LINK is called to exeucute the linkage required by a CALL
statement in your program. When a CALL statement is used, it
is assumed that the entry point of the subprogram is named in
the CALL and that this entry point is a two-bit word, free
block followed by the executable code of the subprogram.
LINK leaves the return address for the CALL in these two
words in the same format as a DUMMY variable.

Program

CALL 2, SUBR

ARG X

Assembled
Code

4033
0205 06
62Ml
0300 01
ARG C
1007

call LINK
code word

Meaning

X resides in field M
relative address of X
6211 C is in common
absolute address of C

7. RTN is called to execute the linkage by a RETRN statement
in the user's program.

Program

RETRN SUBR

Assembled
Code

4040
0005 06

Meaning

call RTN
number of the subrprogram being

returned from (SUBR)

7.4 Skip Instructions

In page escapes and multiple word instructions, you must distinguish
skip-type instructions from non-skip instructions. For this reason
both ISZ and INC are included in the type permanent symbol table. ISZ
is considered to be a skip instruction and INC is not. INC should be
used to conserve space when you desire to increment a memory word
without the possibility of a skip.

The first example below shows the code that is assembled for an
indirect reference to an off-page location following an INC
instruction. The second example shows the same code following an ISZ
instruction.

Example 1 :

INC POINTR
TAD I LOC2

Example 2:

If:>Z COUN1R
TAD I I...OC2

0220
0221.
0':>':>')
0223

0220
022:1.
0':>':>':>

.11.- 4_

0223
0224
022:~j

2376
4062
0!:j20
1.407

2376
7410
5226
4062
O~:j20

1407

01

01

IOFF PAGE INDIRECT EXECUTION

ISKIP TO EXECUTION
IJUMP OVER EXECUTION

10FF PAGE INDIRECT EXECUTION

You must use a special pseudo-operator, SKPDF, to define skip
instructions used in source programs but not included in the permanent
symbol table, for example:

Si\PDF DTSF 6/':':--:1.

/8

SABR

7.5 Program Addresses

Since each assembly is relocatable, the addresses specified by SABR
always begin at 0200, and all other addr~sses are relative to this
address. At loading time, the Linking Loader will properly adjust all
addresses. For example, if 0200 and 1000 are the relative addresses
of A and B, respectively, and if A is loaded at 2000, then B will be
loaded at 2000 + (1000-0200) or 2600.

You must arrange all programs SABR will assemble to fit into one field
of memory, not counting page 0 of the field, or the top page (7600 -
7777). If a program is too large to fit into one field, split it into
several subprograms.

Explicit CDP or elF instructions are nOL needed by SABR programs
because of the availability of external subroutine calling and common
storage. Explicit CDF or elF instructions cannot be assembled
properly.

7.6 The Symbol Table

Entries in the symbol table are variable in length. A one- or
two-character symbol requires three symbol table words. A three- or
four-character symbol requires four words, and a five- or
six-character symbol, five words. Thus, for long programs it may be
to your advantage to use short symbols whenever possible.

The symbol table, not counting permanent symbols, contains 2644(10)
words of storage. However, this space must be shared when there are
unresolved forward and external references temporarily stored as
two-word entries.

If we may assume that a program being assembled never has more than
100(10) of these unresolved references at anyone time, this leaves
2464(10) words of storage for symbols. Using an average of four words
per symbol, this allows room for 616(10) symbols.

The OS/8 version of SABR has a smaller space
leaving l364(lO} words of storage, or 1620(lO}
pass of FORTRAN II.

for symbol tables,
if used as the second

Symbol table overflow is a fatal condition that generates the error
message S.

Symbols are listed in alphabetic order at the end of assembly pass 1
with their relative addresses beside them. The following flags are
added to denote special types of symbols:

ABS The address referenced by this symbol is absolute.

COM The address is in common.

OP The symbol is an operator.

29

EXT

UNDF

SABR

The symbol is an external one and mayor may not be
defined within this program. If not defined, there is
no difficulty: it is defined in another program.

The symbol is not an external symbol and has not been
defined in the program. This is a programmer error.
No earlier diagnostic can be given because it is not
known that the symbol is undefined until the end of
pass 1. A location is reserved for the undefined
symbol, but nothing is placed in it.

8.0 THE SUBPROGRAM LIBRARY

The Library is a set of subprograms that may be called by any
FORTRAN/SABR program. These subprograms are automatically loaded with
the OS/8 FORTRAN/SABR system: in the paper tape system they are
provided on two relocatable binary paper tapes with part 1 containing
those subprograms used by almost every FORTRAN/SABR program. This
allows you to load only those routines which your program makes use
of, thus conserving symbol space.

Many of the subprograms reference the Floating-Point Accumulator
located at ACH, ACM, ACL (20,2l,22 of field 1). The OS/8 Subprogram
Library is summarized in the description of FORTRAN II. The
organization of the library programs, as they are provided in the
paper tape system, is as follows. Descriptions of the programs follow
the listing.

Part 1. "IOH" contains IOH, READ, WRITE
"FLOAT" contains FAD, FSB, FMP, FDV, STO,

FLOT, FLOAT, FIX, IFIX,
IFAD, ISTO, CHS, CLEAR

"INTEGER" contains IREM, ABS, lABS, DIV,
MPY, IRDSW

"UTILITY" contains TTYIN, TTYOUT, HSIN,
HSOUT, OPEN, CKIO

"ERROR" contains SETERR, CLRERR, ERROR

Part 2. "SUBSC" contains SUBSC
"POWERS" contains IIPOW, IFPOW, FIPOW,

FFPOW, EXP, ALOG
"SQRT" contains SQRT
"TRIG" contains SIN, COS, TAN
"ATAN" contains ATAN

8.1 Input/Output

READ is called to initialize the I/O handler before reading data.
WRITE is called to initialize the I/O handler before writing data.
IOH is called for each item to be read or written. IOH must also be
called with a zero argument to terminate an input-output sequence.

30

SABR

Before any of the programs are called, the floating-point accumulator
must be set to zero.

CALL 2, READ

ARG (n

ARG fa

000

CALL 1, IOH

ARG data 1

CALL 1, IOH

ARG data 2

000

000

CALL 1, IOH

ARG 0

000

CALL 2, WRITE

ARG (n

ARG fa

/n=DEVICE NUMBER

/fa=ADDR OF FORMAT

/data l=ADDR OF HIGH
IORDER WORD OF
/FLOATING POINT
/NUMBER

/TERMINATES READ

/INITIALIZES WRITE

The following device numbers are currently implemented:

1 (Teletype keyboard/printer)
2 (High-speed reader/punch)
3 (Card reader/line printer)
4 (Assignable device)

8.2 Floating Point Arithmetic

FAD is called to add the argument to the floating-point accumulator.

CALL
ARG

1, FAD
addres

FSB is called to subtract the argument from the floating-point
accumulator.

CALL
ARG

1, FSB
addres

31

SABR

FMP is called to multiply the floating-point accumulator by the
argument.

CALL 1, FMP
ARG addres

FDV is called to divide the floating-point accumulator by the
argument.

CALL 1, FDV
ARG addres

CHS is called to change the sign of the floating-point accumulator.

CALL 0, CHS

All of the preceding programs leave the result in the floating-point
accumulator. The address of the high-order word of the floating-point
number is "addres".

STO is called to store the contents of the floating-point accumulator
in the argument address. The floating-point accumulator is cleared.

CALL
ARG

1, STO
storag /storag=ADDRESS WHERE

/RESULT IS TO BE PUT

IFAD is called to execute an indirect floating-point add to the
floating-point accumulator.

CALL
ARG

1, IFAD
ptr /ptr=2 WORD POINTER

/TO HIGH ORDER
/ADDRESS OF FLOATING
/POINT ARGUMENT

ISTO is called to execute an indirect floating-point store.

CALL
ARG

1, ISTO
ptr

CLEAR is called to clear the floating-point accumulator.
unchanged.

CALL 0, CLEAR

The AC is

FLOAT and FLaT are called to convert the integer contained in the AC
(processor accumulator) to a floating-point number and store it in the
floating-point accumulator.

CALL 1, FLOAT
CALL 0, FLOT or

ARG addr

IFIX and FIX are called to convert the number in the floating-point
accumulator to a l2-bit signed integer and leave the result in the AC.

CALL 1, IFIX
CALL 0, FIX or

ARG addr

ABS leaves the absolute value of the floating-point number at "addr"
in the floating-point accumulator.

CALL
ARG

1, ABS
addr

32

SABR

8.3 Integer Arithmetic

MPY is called to multiply the integer contained ln the AC
integer contained in "addr." The result is left in the AC.

CALL
ARG

1; MPY
addr

the

DIV is called to divide the integer contained in the AC by the integer
contained in "addr." The result is left in the AC.

CALL
ARG

1, DIV
addr

IREM leaves the remainder from the last executed integer divide in the
",.. fi\.,.

CALL
ARG

1, IRElwt
o

(The argument is ignored.)

lABS leaves the absolute value of the integer contained in "addr" in
the AC.

CALL
ARG

1, lABS
addr

IRDSW reads the value set in the console switch register into the AC.

CALL 0, IRDSW

8.4 Subscripting

SUBSC, is called to compute the address of a subscripted variable, can
be used for doubly or singly subscripted arrays. On entry, the AC
should be negative for floating-point variables -- any negative number
for singly subscripted variables, and lIs complement of the first
dimension for doubly subscripted variables. For doubly subscripted
integer variables, the Ae must be the first dimension.

The general calling sequence for SUBSC is as follows:

TAD (M I1ST DIMENSION (USED ONLY
IIF 2 DIMENSIONS)

CMA IUSED ONLY IF ARRAY IS
IFLOATING POINT

2,SUBSC ISINGLE SUBSCRIPT
CALL

3,SUBSC
ARG J
ARG I
ARG BASE
LOCA

IDOUBLE SUBSCRIPT
12ND DIMENSION
I1ST DIMENSION
IBASE ADDRESS OF ARRAY
IADDRESS OF TWO WORD DUMMY
IADDRESS LOCATION

33

SABR

For example, to load the I,Jth element of a floating-point array whose
dimensions are 5 by 7:

TAD (5
CMA
CALL.. 3,SUBSC
ARG ..J
ARG I
ARG ARRAY
LOC
CALL 1,IFAD
ARG LOC

8.5 Functions

IDIMENSIONS ARE 5 BY 7

IADDRESS OF 2ND SUBSCRIPT
IADDRESS OF 1ST SUBSCRIPT
IBASE ADDRESS OF ARRAY
IMUST BE A DUMMY VARIABLE

SQRT leaves the square root of the floating-point number at "addr" in
the floating-point accumulator.

CALL
ARG

1, SQRT
addr

SIN, COS, TAN leave the specified function of the floating-point
argument at "addr" in the floating-point accumulator.

CALL
ARG

1, SIN
addr

ATAN leaves the arctangent of the floating-point number at "addr" in
the floating-point accumulator.

CALL
ARG

1, ATAN
addr

ALOG leaves the natural logarithm of the floating-point number at
"addr" in the floating-point accumulator.

CALL
ARG

EXP raises
"addr" and

CALL
ARG

1, ALOG
addr

"e" to the
leaves the

1 , EXP
addr

power specified by the floating-point number at
result in the floating-point accumulator.

All of these subprograms require that the floating-point accumulator
be set to zero before they are called.

34

SABR

The POWER routines (IIPOW, IFPOW, FIPOW, FFPOW) are called by FORTRAN
to implement exponentiation. The first operand is in the AC
(floating-point or processor depending on mode), and the address of
the second is an argument. The address of the result is in the
appropriate AC upon return.

MODE OF MODE OF
FUNCTION OPERAND I OPERAND 2

NAME (BASE) (EXPONENT)

IIPOW INTEGER INTEGER
IFPOW INTEGER FLOATING POINT
FIPOW FLOATING POINT INTEGER
FFPOW FLOATING POINT FLOATING POINT

CALL
ARG

2, FFPOW
addr 2 /ADDRESS OF OPERAND 2

8.6 utility Routines

MODE OF
RESULT

INTEGER
FLOATING POINT
FLOATING POINT
FLOATING POINT

OPEN is called at the beginning of every FORTRAN program to start the
high-speed reader/punch and teleprinter, and to initialize the I/O
routines for device code 4 if using the OS/8 FORTRAN/SABR system. The
form is:

CALL O,OPEN

When an error is encountered in a program, the ERROR routine is
called. The program passes to the ERROR routine the address of the
error message to be printed. The format of the error message is 4
characters in stripped ASCII and packed into 2 words:

2343 0102
2344 0304
234!5 0000
2341.) 0000

XYZ,

('~BC ,

ENTRY I~BC

0102;0304

BLOCI" 2

Cf.~LL 1 v EHFWF<
AI:~G XYZ

When control passes to the ERROR routine, the parameters passed are
picked up. In the case above, the parameters are as follows:

62NI
2343

ARG XYZ

where N is the field that XYZ is in, and 2343 is the address of XYZ.
The ERROR routine then prints the message at location 2343 plus a
5-digit address which is 2 greater than 2343.

35

SABR

ABeD ERROR AT N2345

Since XYZ is 2 locations before ABC, the address printed will be the
address of ABC.

The error message is usually placed just before the entry point of the
routine in which the error was detected -- thus the address printed by
ERROR will be the address of the entry point. This provides a
convenience to you since the entry point will appear in the Loader
Map.

CKIO is a subroutine which waits for the TTY flag to be set. It is
called by the OS/8 EXIT subroutine to eliminate the possibility of a
garbled TTY output. You may use it in FORTRAN for possible expansion
with interrupts, and is of the form:

CALL O,CKIO

The following subroutines -- IOPEN, OOPEN, OCLOSE, CHAIN, EXIT, and
GENIO are used by the OS/8 FORTRAN/SABR Operating System for
device-independent I/O and chaining.

8.7 DECtape I/O Routines

RTAPE and WTAPE (read and write tape) are the DECtape read and write
subprograms for the 8K FORTRAN and 8K SABR systems. The subprograms
are furnished on one relocatable binary-coded paper tape that must be
loaded into field 0 by the 8K Linking Loader, where they occupy one
page of core.

RTAPE and WTAPE allow you to read and write any amount of core-image
data onto DECtape in absolute, non-file-structured data blocks. Many
such data blocks may be stored on a single tape, and a block may be
from 1 to 4096 words in length.

RTAPE and WTAPE are subprograms that may be called with standard,
explicit CALL statements In any 8K FORTRAN or SABR program. Each
subprogram requires four arguments separated by commas. The arguments
are the same for both subprograms and are formatted in the same
manner. They specify the following:

1. DECtape unit number (from 0 to 7).

2. Number of the DECtape block at which transfer is to start.
You may direct the DECtape service routine to begin searching
for the specified block in the forward direction, rather than
the usual backward direction, by making this argument the
two's complement of the block number.

3. Number of words to be transferred (1<N<4096).

4. Core address at which the transfer is to start.

36

SABR

DEC tape I/O Routines for the FORTRAN II system are explained in the
description of FORTRAN II. In 8K SABR, the CALL statements to RTAPE
and WTAPE are written in the following format (arguments may be either
octal or decimal numbers):

CALL 4,WTAPE
ARG (6
ARG (200

ARG (604

ARG LOCB

/WOULD BE SAME FOR RTAPE
IDATA UNIT NUMBER
/STARTING BLOCK NUMBER
lIN OCTAL
/WORDS TO BE TRANSFERRED
lIN OCTAL
ICORE ADDRESS, START OF
ITRANSFER

In these examples, LOCA and LOCB mayor may not be in common.

As a typical example of the use of RTAPE and WTAPE, assume that you
want to store the four arrays A, B, C, and D on a tape with word
lengths of 2000, 400, 400, and 20 respectively. Since PDP-8 DEC tape
is formatted with 1474 blocks (numbered 0-2701 octal) of 129 words
each (for a total of 190,146 words), A, B, C, and D will require 16,
4, 4, and 1 blocks respectively. (Do not confuse the block numbers
used by RTAPE and WTAPE with the record numbers used by OS/8. An OS/8
record is 256 words -- roughly twice the size of a DECtape block.)

Each array must start at the beginning of some DECtape block. You may
write these arrays on tape as follows:

CALL WTAPE (O,1,2000,A)
CALL WTAPE (0,17,400,8)
CAll WTAPE (0,21,400,C)
CALL WTAPE (O,25,20,D)

You may also read or write a large array in
only one DEC tape block (129 words) at a time.
read back into core as follows:

CALL RTAPE (0,17,258,B(1»
CALL RTAPE (0,19,129,B(259»
CALL RTAPE (0,20,13,B(388»

sections by specifying
For example, B could be

As shown above, it is possible to read or write less than 129 words by
starting at the beginning of a DECtape block. It is impossible,
however, to read or write starting in the middle of a block. For
example, the last 10 words of a DECtape block may not be read without
reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward search
for the desired block number. To save searching time, you may request
RTAPE or WTAPE to start the block number search in the forward
direction. This is done by specifying the negative of the block
number. This should be used only if the number of the next block to
be referenced is at least ten block numbers greater than the last
block number used. For example, if you have just read array A and now
want array D, you may write:

CALL RTAPE (O,1,2000,A)
CALL RTAPE (0,-27,20,D)

37

SABR

9.0 THE BINARY OUTPUT TAPE

SABR outputs each machine instruction on binary output tape as a
l6-bit word contained in two 8-bit frames of paper tape. The first
four bits contain the relocation code used by the Linking Loader to
determine how to load the data word. The last 12 bits contain the
data word itself.

• • I

RELOCATION CODE

· · . I
. .

HIGH ORDER OF
DATA WORD

LOW ORDER OF DATA WORD

FIRST FRAME

SECOND FRAME

The assembled binary tape is preceded and followed by leader/trailer
code (code 200). The checksum is contained in the last two frames of
tape before the trailer code. It appears as a normal l6-bit word, as
shown below.

000 • I I HIGH ORDER OF
CHECKSUM

LOW ORDER OF DATA WORD
I

FIRST FRAME

SECOND FRAME

All assembled programs have a relative origin of 0200.

9.1 Loader Relocation Codes

The four-bit relocation codes issued by SABR for use by the Linking
Loader are explained below. The codes are given in octal.

00

0205 5277

01

0376 0520 01

Absolute Load the data word at the current loading
address. No change is required.

JMP LOC /WHERE LOC IS
/AT 0077 (OF
/CURRENT PAGE)

Simple
Relocation

Add the relocation constant to the word
before loading it. (The relocation
constant is 200 less than the actual
address where the first word of the
program is loaded.) Items with this code
are always program addresses.

A, LOC2

In the above example, LOC2 is at relative
address 0520. If the first word of the
program (relative address 0200) is loaded
at 1000, then the actual address of A is
1176, and location 1176 will be loaded
with the value 1320, which will be the
actual address of LOC2 when loaded.

38

0300
0301

03

04

05

6201 05
1776

0376 0520 01

External
Symbol
Definition*

Re-origin*

CDF
Current

SABR

The data word is the relative address of
an entry point. Before entering this
definition in the Linkage Tables so that
the symbol may be referenced by other
proqrams at run-time, the Linkinq Loader
must add the relocation constant to it.
The six frames of paper tape following the
two-frame definition are the stripped
ASCII code for the symbol.

03 ADDRESS

ADDRESS LOW ORDER

L

0

C

2

SPACE

SPACE

Change the current loading address to the
value specified by the data word plus the
relocation constant.

The data word is always a 6201 (CDF)
instruction, which has been generated
automatically by SABR. The code 05
indicates to the Linking Loader that the
number of the field currently being loaded
into must be inserted in bits 6-8 before
loading.

A, TAD LOC2
/WHERE LOC2 IS
IOPP PAGE SO
/THAT THE TAD
/INSTR. MUST BE
/INDIRECT

If the program containing this code is
being loaded into field 4, relative
location 0300 will be loaded with 6241.

Such an instruction is referred to in this
document as CDF Current. It is generated
automatically by SABR when a direct
reference instruction must be assembled as
an indirect, and there is the possibility
that the current data field setting is
different from the field where the
indirect reference occurs.

* Does not appear in assembly listings

39

0200
0201

06

4033
0307 06

10

12

Subroutine
Linkage
Code

CALL 3,SUB

ARG X
ARG Y
ARG Z

SABR

The data word is a special constant
enabling the Linking Loader to perform the
necessary linking for an external
subroutine call (compare with CALL
Pseudo-op). The structure of the data
word is shown below.

BITS a - 5 BITS 6 - 11

NUMBER OF ARGUMENTS LOCAL PROGRAM
FOLLOWING THE CALL NUMBER ASSIGNED TO

THE EXTERNAL SUB­
ROUTINE BEING
CALLED

Before the l2-bit, two-part code word is
loaded into memory, a global external
number will be substituted for the local
external symbol number in the right half
of the data word.

Here, SUB has been assigned the local
number 06 during assembly. At loading
time this number will be changed to the
global number (for example, 23) that is
assigned to SUB. In this example, 0323
would actually be loaded at relative
address 0201.

Leader/Trailer*
and This code represents normal leader/
Checksum trailer. The checksum is contained in the

last two frames of paper tape preceding
the trailer code.

High Common* The data word is the highest location in
Field 1 assigned to common storage by the
program. This item will occur exactly
once in every binary tape and it must be
the first word after the leader. If no
common storage has been allocated in the
program, the data word will be 0177.

* Does not appear in assembly listings

40

17 Transfer*

SABR

Signifies that reference to an external
symbol occurs in the assembled program.
The 12-bit data word is meaningless. The
next six frames contain-the ASCII code for
the symbol.

The Linking Loader uses this definition to
create a transfer table, whereby local
external symbol numbers assigned during
assembly of this particular program can be
changed to the global external symbol
number when several programs are being
loaded.

10.0 SAMPLE ASSEMBLY LISTINGS

The following examples illustrate many of the features and formats of
the SABR Assembler.

When a multiple-word instruction occurs, the actual instruction line
is typed beside the first instruction.

0650 6201 0~5 LOC2, JMP NAME 10FF PAGE
0651 5774
o 6 !.::j 2 7106 Cll RTl.; F~TL; RTl
0653 7006
()654 7006

When an erroneous instruction occurs, the error flag appears in the
address field. The instruction is not assembled.

0700 7200 N2, CLA
J CLl SKF'

0701 7402 HLT

The page escape and literal and off-page pointer table are typed with
nothing except the correct address, value and loader code.

0770 7006
0771 7500
0772 5376
0773 5377
0774 0200
0775 0020
07"76 7410

0777 7410

N3, C·TI
I'\t

SMA

01

ISKP TO 1ST LOC.­
INEXT PAGE (AC IS
INOT MINUS)
ISKP TO 2ND lOC.­
INEXT PAGE (AC IS
IMINUS)

Locations 0772, 0773, 0776 and 0777 make up the page escape since the
last instruction is a skip instruction {SMA}. Refer to Section 7.1.2,
Page Escapes.

The following program has been assembled and listed. It cannot be run
without first debugging and editing it.

* Does not appear in assembly listings

41

SASR

During the first pass, SABR outputs the binary tape and prints error
messages as they occur. In this case, none of the errors are fatal,
and assembly continues. The symbol table is printed, and undefined
symbols, external symbols, or any other special types of symbols that
cannot be determined until the end of the pass are flagged in the
symbol table.

The optional second pass of the Assembler produces a listing. The
4-digit first column contains the octal address, while the second
column contains the octal code for each line of instructions. Errors
are also printed during the listing pass at the line in which they
occur. Error codes are described in Section 12.

The reader is also referred to Section 16, Demonstration Program Using
Library Routines.

C AT PUNCH +0003

COUNT
DECIMA
LT
MAIN
MESG
ClRG
F'T(~PE

PUNCH
REF
RPT
START
TYPE

0200

0201
0202

020:·5
0204

0205
0206
0207
()210
02:1.:L
0212
021.3
0214
02l~5

0216
0217
0220
022:1.
0222
0223
0224
022~:j

0:'502
OOOOUNDF
0264
()()OOEXT
024:3
0:303
0201EXT
0274
0177ABS
0267
() 2 () ~:,)
OOOOEXT

6026
6021
01.77

0000

0000
0000

1.T17
3302

L30:3
7132
70:1.2
70:1. ::~~
0:376
4274
1:303
0376
4274
1703
7112
70:1.2
70:1.2
O:·57~:';

42·74
1703
O~5'?!,::.;

IPROGRAM TO PUNCH RIM FORMAT PAPER TAPES

OPDEF PlS 6026 IDEFINE HI SPEED
SKPDF PSF 6021 IIOTS
ABSYM REF 177
ENTRY MAIN
DECIMAL
lAP

PTAP[, BLOCK 2 IPUNCH LEADER

ITAPE (200 CODE)
TAD (-32 132 LOCATIONS
DCI~ COUNT
OCTAL

STAHly TAD ORG
Cll CML RTR;RTR;RTH

AND (177
JMS PUNCH IPUNCH LEADING
TAD ORG IDIGITS OF ADDRESS
AND (1T7 IPUNCH SECOND
JMS PUNCH IDIGITS OF ADDF~ESB

TAD I ORG INOW PUNCH CONTENTS
eLI... RTF~; RTH; HTR IOF THAT L.OCATION

AND (7'7
JMS PUNCH
T~lf.l :r OF~G IGET SECOND DIGITS
AND (77 IOF THf'-lT LOCATION

42

0226 4274
0227 2303

0230 2302
0231 5205
0232 4033
0233 0102 06
0234 6201 0~ JJ

0235 0243 01
0236 4264
0237 7404
0240 3303

0241 7402
0242 5774

0243 2401
0244 2005
0245 4020
0246 2516
0247 0310
0250 0504
0251 5640
0252 0516
0253 2405
0254 2240
0255 1722
0256 1107
0257 1116
0260 4046
0261 4003
0262 1716
0263 2456

0264 0000

0265 1373
0266 3302
0267 1372
0270 4274
0271 2302
0272 5267
0273 5664
0274 0000
0275 6026
0276 6021

C
0277 4045
0300 7410
0301 5674

0302 0000
0303 7300
0304 4040
0305 0003 06
0372 0200
0373 7740
0375 0077
0376 0177
0377 7746

JMS PUNCH
INC ORG

SABR

ISZ COUNT
JMP START
CALL 1,TYPE

ARG MESG

JMS LT
OSR
DCA ORG

HLT
JMP MAIN

IPOINT TO NEXT
ICORE LOCATION
IDONE YET?
INa
IYES, TYPE MESSAGE

lENDING 200 CODE
IGET NEW ADDRESS
IFROM SWITCH REGISTER
IPUT IT IN ORG
IPAUSE
IPUNCH NEW TAPE

MESG, TEXT "TAPE PUNCHED. ENTER ORIGIN" & CONT.-

LT, 0
OCTAL
TAD (-40
DCA COUNT 132 FRAMES OF

RPT, TAD (200 ILEADER/TRAILER
JMS PUNCH IPUNCH IT
ISZ COUNT IDONE?
JMP RPT INO
JMP I LT IRE TURN

PUNCH~ 0
PLS IPUNCH
PSF IWAIT FOR FLAG
JMP .-1
JMP I PUNCH IEXIT

COUNT~ 0
ORG~ 7300

RETRN PTAPE

END

43

SABR

11.0 SABR PROGRAMMING NOTES

11.1 Optimizing SABR Code

Generally two types of programmers will use the SABR Assembler: those
who like the conveniehce of a page-boundary-independent code and need
not be concerned with program size, and those who need a relocatable
assembler but are still location conscious. These optimizing hints
are directed to the latter user.

One way to circumvent the cost of non-paged code is to make use of the
LAP (Leave Automatic Paging) pseudo-op and the PAGE pseudo-op to force
paging where needed. This saves 2 to 4 instructions per page by
elimination of the page escape. In addition, the fact that the
program must be properly segmented may save a considerable amount.

Extra core may be reduced by eliminating the CDF instructions which
SABR inserts into a program. This is done by using "fake indirects".
Define the following op codes:

OPDEF ANDI 0400
OPDEF TADI 1400
OPDEF ISZl 2400
OPDEr DCAI 3400

These codes correspond to the PDP-8 memory reference instructions but
they include an indirect bit. The difference can best be illustrated
by an example. If X is off-page, the sequence:

LABEL, SZA
DCA X

is assembled by SABR into:

LABEL, SZA
JMS 45
SKP
DCA I (X)

or four instructions and one literal.

The sequence:

PX, X

LABEL, SZA
DCA I PX

assembles into three instructions for a saving of 40 percent.
However, you must be sure that the data field will be correct when the
code at LABEL is encountered. Also note that SABR assumes that the
Data Field is equal to the Instruction Field after a JMS instruction,
so subroutine returns should not use the JMP I op code.

44

SABR

The standard method to fetch a scalar integer argument of a subroutine
in SABR is:

£tUM-MY X
0200 0000 IARG, 0
0201 0000 X, BLOCK .:!

0202 0000
0203 0000 SUBR, BLOCK 2
0204 0000
0205 4067 TAD I SUBR
0206 0203 01
0207 1407
0210 3201 DCA v

'" 0211 2204 INC SUBRI
0212 4067 TAD I SUER
0213 0203 01
0214 1407
0215 3202 DCA XI
0216 2204 INC SUBRI
0217 4067 TAD I X
0220 0201 01
0221 1407
0222 3200 DCA IARG

This is the method the FORTRAN compiler uses, and although it is
standard, it is also the slowest. This code requires 19 words of core
and takes several hundred microseconds to execute.

The fastest way to pick up arguments within a SABR-coded external
subroutine is as follows (this method takes approximately one fifth of
the time of the previous method and four locations fewer):

0200 0000
0201 0000
0202 0000
02()~3 1201
0204 320~5

0205 7402

0206 1602
0207 :~214

0210 2202
0211 :1.602
0212 3200
0213 2202
02:1.4 7402

0215 1600
0216 3200

IARG,
SUBR,

o
BLOCK 2

TAD SUBR
DCA Xl
HL.T

TADI SUBRt
DCA X2
INC SlJBRI
TADI SlJBRt
DCA IARG
INC SUBR:t
HI ... T

TADI IMW
DCI~ IARG

IREFLACED
IBY CDF

IRE PLACED
IBY CDF

To pick up multiple arguments, you can make the locations from Xl to
X2+1 inclusive into a subroutine.

45

SABR

11.2 Calling the OS/8 USR and Device Handlers

One important point to remember is that any code which calls the USR
must not reside in locations 10000 to 11777. Therefore, any SABR
routine which calls the USR must be loaded into a field other than
field 1 or above location 2000 in field 1. To call the USR from SABR
use the sequence:

CPAGE N IN:=7t (t OF ARGUMENTS)
6212 ICIF 10
-.JMS 7700 lOR 200 IF USH IN CORE
Fi:EQUEST
ARGUMENT~3 IOPTIONAL DEPENDING ON REQUEST
ERROR RETUF\N IOF'TIONAL DEPENDING ON REQUEST

To call a device handler from SABR, use the sequence:

CPAGE 12 110 IF 'HAND' IN PAGE 0
6202 ICIF 0
,.JMS I HAND IDO NOT USE JMSI
FUNCT
ADDR
BLOCK
EFi:~\OR RETURN
SI-(F'

HANDy () I"HAND- MUST BE ON SAME PAGE
I~~S CALL.., OR IN PAGE 0

12.0 SABR ERRORS

In case of error, SABR prints error codes in the address field of the
instruction line. Table 3 lists SABR error codes and their meanings.

Error Code

A

C

D

L

M

Table 3
SABR Error Codes

Meaning

Too many or too few ARG statements follow a call
statement.

An illegal character appears on the line.

A device handler has returned a fatal condition.

/L or /G option was indicated, but the LOADER.SV file
does not exist on the system device.

A symbol is multiply defined. Listing of programs
with multiple definitions have unmarked errors.

(continued on next page)

46

Error Code

I

E

s

U

UNDF

SABR

Table 3 (Cont.)
SABR Error Codes

Meaning

An illegal syntax has been used,
following) :

(as one of the

1. a pseudo-op with improper arguments,
2. a quote mark with no argument,
3. a non-terminated text string,
4. an improper address,
5. an illegal combination of

micro-instructions.

There is no END statement.

Either the symbol table has overflowed, common
storage has been exhausted, more than 64 different
user-defined symbols occurred in a core page, or more
than 64 external symbols have been declared. Could
also indicate a system error such as overflowed
output file.

No symbol table is being produced, but there is at
least one undefined symbol in the program.

Undefined symbol, printed in the
listing.

symbol table

13.0 LINKING LOADER

The Linking Loader is the system program used to load and link your
program and subprograms in memory. It can be called automatically to
load or load and start a FORTRAN or SABR program, or called
independently to load or load and start a relocatable binary file
stored on a device. Capable of loading programs over itself, SABR has
options which allow you to obtain storage map listings of core
availability.

The Linking Loader can search program libraries for subroutines which
are referenced by the program in core and load those subroutines
needed. (A library is a collection of relocatable subroutines
FORTRAN or SABR output with a directory at the beginning to
facilitate searching.) Any library can be searched by uSIng the /L
option to the Loader, but the system library, LIBS.RL, is searched
automatically just before the Loader completes the building of a core
image of your program. If LIBS.RL is not on the system device, there
is no automatic library search. (The system program LIBSET allows you
to build your own subroutine library.)

47

SABR

The Linking Loader can load any number of user and library programs
into any field of memory. Several programs are usually loaded into
each field. Because of the space reserved for the Linkage Routines,
the available space in field 0 is three pages smaller than in all
other fields.

Any common storage reserved by the programs being loaded is allocated
in field 1 from location 200 upwards. The space reserved for common
storage is subtracted from the available loading area in field 1. The
program reserving the largest amount of common storage must be loaded
first.

The Run-Time Linkage Routines necessary to execute SABR programs are
automatically loaded into the required areas of every field by the
Linking Loader as part of its initialization. You need to know which
areas of core these routines occupy.

13.1 Calling and Using the Linking Loader

You can automatically call the Linking Loader following assembly of
either a SABR program or a SABR-assembled FORTRAN program by use of
the IL or /G option. For details on automatic calling of the Linking
Loader, see the description of FORTRAN II.

When you want to call the Linking Loader to load or load and start a
relocatable binary file, issue the command:

R LOADER

in response to the Keyboard Monitor dot. The Command Decoder replies
by printing an asterisk in the left margin; you can then indicate
input and output files and options. Zero to 1 output files and 1 to 9
input files are possible. Only one binary program per file is
permitted. The assumed extension for input files is .RL. The output
file, if indicated, is used to hold a map of the loaded program.

You can either specify all options and operations to be performed on
one line or to have various operations performed individually. Where
all options are being specified at one time, the line to the Command
Decoder contains the complete instructions for the Linking Loader. If
operations are to be done individually, you can type a command, enter
it with the RETURN key, and that command will be executed, with
another command expected when the first is completed. To indicate the
last command, type an ALT MODE character, or end the last command with
a /G option to start the program.

13.1.1 Linking Loader Options - The options to the Linking Loader are
listed and explained in Table 4.

48

Option

/1

/0

/H

/G

=n

SABR

Table 4
Linking Loader nni-;nnQ "'1:'--_

Meaning

A program doing device-independent input
loaded. (This feature costs the user
core.)

A program doing device-independent output
loaded. (This feature costs the user
core.)

If both II and /0 are indicated, 6 pages
used to handle deviice-independent I/O.

is to be
3 pages of

is to be
3 pages of

core are

/1 and /0, if used, must be given before or on the
first input line specifying files to be loaded. For
example:

*INPUT,FILES/O$

is acceptable, but

*INPUT
*/0 FILES

is not legal and will generate an error message,

A program doing device-independent I/O requires
two-page device handlers at run-time. (This feature
costs you one additional page if you are doing just
input or output, and two additional pages if you are
doing input and output.

If /1, /0, and /H are indicated, 8 pages of core are
used to handle device-independent I/O. /H, IF used,
must be indicated on or before the first line
containing /1 or /0, and is meaningless without /1 or
/0 also being specified.

Start the program after processing the rest of the
command string. Execution starts at the symbol MAIN
unless otherwise indicated.

Specifies the starting address
other than the entry point
number up to 5 digits long.

of the program if
MAIN; n is an octal

(continued on next page)

49

Option

1M

IU

IP

In

IR

IL

SABR

Table 4 (Cont.)
Linking Loader Options

Meaning

Output a map of the loaded programs onto the output
file specified, followed by a count of the free pages
in each field. If no output is specified, the map is
put onto the teleprinter. The assumed extension for
map output file is .MP. The map is printed after the
rest of the command line is processed.

Similar to 1M, but only outputs undefined symbols.

Similar to 1M, but only outputs count of free pages
in each field.

Search through the available fields starting at field
n for space large enough to hold each input file; n
is an integer in the range 0 to 7, inclusive. Only
one binary program can be in each input file. If n
is not specified, the Loader starts looking at field
o.

Restart loading process (forget all previously loaded
programs) . This command is equivalent to restarting
the Linking Loader, but is much faster for DECtape
systems since no tape motion is involved.

Load the first input file as a library file (Loader
expects a Library Directory as the first block of the
file) . All other input files on the line are
ignored.

The Core Availability option (IP) causes the number of free pages of
memory in every field of memory to be printed in a list on the
teleprinter. For example, if you have a 16K configuration, a list
like the following might be printed:

0002 (number of free pages in field 0)
0010 (number of free pages in field I)
0030 (number of free pages in field 2)
0036 (number of free pages in field 3)

The number of pages initially available in field 0 is 0033 and in all
other fields is 0036.

50

SABR

The Storage Map option (/M), when selected, causes a list of all
program entry points to be printed along with the actual aaaress at
which they have been loaded. Entry points of programs that have been
called but that have not been loaded are also listed along with U flag
for "undefined". Such flagged programs must be loaded before
execution of your programs are possible. The core availability list
is automatically appended to the storage map. A sample is shown below
for an 8K machine:

i°'lfiIN .. "'.-,-""'-'" oLV.:..VV

READ o 1 O~:;()
WRITE 01066
IOH 03031
ERF~Cm 00000 U
GENIO O()OOO U
FDV 04722
CLE(~F;; O!5247
IF{HI 05131
FMP 04632
18TO 05074
STO 04447
FL..OT 05210
Ff~D 04010
DIV 00000 U
IREM O()()OO U
FSB 040()0
FLOf.1T O!:j()4<~

FIX 04!::;:L 3
IF IX 04~56:L

CHS O!:5231
0011
()03:o~

13.1.2 Examples of I/O Command Strings - Examples of possible input
command strings follow.

*PROG,DTA2:SUBl,SUB2/G

This string loads DSK:PROG.RL, DTA2:SUBl.RL, DTA2:SUB2. RL, loads any
necessary library routines requested, and starts the program at the
entry point MAIN. The same process could have been done as follows:

Load DSK:PROG.RL;

Get a list of undefined symbols on the teleprinter;

*PROG

*/U

(Symbols go here)

*DTA2:SUBRl,SUBR2

51

SABR

Load DTA2:SUBRl.RL,SUB2.RL:

*LPT:/M<$

Put loading map on the line printer, load the binary of any
library routines requested by the program, and exit ($ is printed
by the ALT MODE key);

.SAVE DTA2 FORTPG

Save the core image on DTA2 as FORTPG.SV:

Start the core image at its starting address (entry point MAIN in
this case) .

. START

13.2 Linking Loader Error Messages

The Linking Loader outputs error messages in the form

ERROR nnnn

where nnnn represents a 4-digit error code. Table 5 lists the error
codes and their meanings.

Error Code

0000

0001

Table 5
Linking Loader Error Messages

Meaning

/I or /0 specified too late.

Symbol table overflow;
names.

more than 64 subprogram

0002 Program will not fit into core.

0003 Program with largest common storage area was not
loaded first.

0004 Checksum error in input tape.

0005 Illegal relocation code.

0006 An output error has occurred.

0007 An input error has occurred (either a physical
device error, or an attempt was made to read from a
write-only device such as LPT:).

0010 No starting address has been specified and there is
no entry point named MAIN.

0011 An error occurred while the Loader attempted to load
a device handler.

0012 I/O error on system device.

52

SABR

14.0 LIBRARY SETUP (LIBSET)

LIBSET, the FORTRAN Library Setup program, creates a library of
subroutines from the relocatable binary output of SABR. These lib~ary
files can be quickly and effectively scanned by the Linking Loader,
thus saving a great deal of the time involved in loading frequently
used subroutines. (Refer to the section concerning the Linking Loader
for information pertaining to relocatable library files; automatic
loading of the LIBB.RL file, and the /L option.)

14.1 Calling and Using LIBSET

To call LIBSET from the system device, type

R LIBSET

in response to the Keyboard Monitor dot. The Command Decoder then
prints an asterisk in the left margin of the teleprinter paper and
waits to receive a line of input. The general form of input required
to build a library file is:

*DEV:OUTPUT FILE<DEV:INPUT FILE(S)
*(additional input files) $

No more than nine input files are allowed on anyone line, but several
input lines can be entered. The last input line must end with your
typing the ALT MODE key (which echoes as $). Only the first line can
contain an output file. If no output file is speci~ied, a file named
LIBB.RL is created on the system device. The assumed extension for
both input and output files is .RL.

NOTE

Files output from LIBSET are in a
special relocatable library format and
must not be copied with the /B option in
PIP. Instead, they should be copied by
PIP in image (/I) mode.

14.1.1 LIBSET Options - Only one option is allowed in the use of
LIBSET, and this is described below:

Option

/S

Meaning

The /S option means that all input files on a line are to
be regarded as containing more than one relocatable
binary file. (This is analogous to the /S option in
ABSLDR.)

NOTE

If /S is used on a line that contains no
input files, input from PTR: is
assumed.

53

SABR

14.1.2 Examples of LIBSET Usage

Example 1:

*DTA2:SUBS(DTAl:SUBl,SUB2,SUB3,PTR:
A*SYS:FUNCl,FUNC2.V5$

This example creates a relocatable library file on DTA2 named SUBS.RL.
This library will contain six FORTRAN (or SABR) subroutines built by
combining the relocatable binary file SUBl.RL, SUB2.RL, and SUB3.RL
from DTAI together with one relocatable binary paper tape (note the A
printed by OS/8 before loading from PTR:) and the files FUNCl.RL and
FUNC2.V5 from the system device.

Example 2:

*ASIN,ACOS
*/S$A

Since no output file was specified, this example creates a relocatable
library file LIB8.RL on the system device. This produces a new
FORTRAN library including the subroutines contained in the files ASIN
and ACOS on device DSK, and several subroutines combined on a single
paper tape loaded from the high-speed reader.

14.2 Subroutine Names

It is important to distinguish between the OS/8 file name of a
relocatable binary program and its assigned Entry Point name. The
file name has meaning only to the Command Decoder; the Entry Point
name (or names) are the true subroutine names that are meaningful to
the Loader.

Further details on the format of relocatable binary files and
relocatable library files can be found in the OS/8 Software Support
Manual (DEC-S8-0SSMA-A-D).

14.3 Sequence for Loading Subroutines

LIBSET can combine files in any sequence to form a relocatable library
file. However, the subroutines in any single library are loaded by
the Loader in the order in which they were originally specified to
LIBSET. Therefore, it is important to make sure that subroutines are
specified in order of size, with the largest subroutine being loaded
first. If this is not done, cases can occur in which insufficient
core is available in any single field to load a subroutine, whereas
space would have been available if the subroutine had been loaded
earlier.

14.4 LIBSET Error Messages

All errors are fatal. LIBSET recalls the Keyboard Monitor upon
encountering an error condition and must be recalled in order to enter
another command string. (See Table 6.)

54

SABR

Table 6
LIBSET Error Messages

I Error Message Meaning

I
I

I

I

BAD FORMAT OR
CHECKSUM-­
TRY AGAIN

ERROR WHILE WRITING
OUTPUT FILE

INPUT ERROR

LIBR~RY DIRECTORY
OVERFLOW

Error in reading relocatable binary file.

Fatal output error occurred.

Parity error on input.

Too many subroutines were specified. Every
subroutine name in the input file requires
four words, and eve~y relocatable binary
file read requires two words. If the total
number of words exceeds 250, the library
must be split into two separate files.

15.0 LIBRARY PROGRAMS

During execution, the Library programs check for errors and type out
error messages in the form:

XXXX ERROR AT LOC NNNN

where XXX X specifies the type of error, and NNNN is the location of
the error. When an error is encountered, execution stops, and the
error must be corrected.

When multiple error messages are typed, the location of the last error
message is relevant to the user program. The other error messages are
relevant to subprograms called by the statement at the relevant
location. (See Table 7.)

Error Message

ALOG
ATAN
DIVZ
EXP
FIPW
FMTl
FMT2
FMT3
FMT4
FMT5
FLPW
FPNT

SQRT

Table 7
Library Error Messages

Explanation

Attempt to compute log of negative number
Result exceeds capacity of computer
Attempt to divide by 0
Result exceeds capacity of computer
Error in raising a number to a power
Multiple decimal ~oints
E or. in integer
Illegal character in I, E, or F field
Multiple minus signs
Invalid FORMAT statement
Negative number raised to floating power
Floating-point error; may be caused by division
by zero; floating-point overflow; attempt to
fix too large a number.
Attempt to take root of a negative number

55

SABR

OS/8 includes, in addition, the error message:

USER ERROR 1 AT 00537

which means that you tried to reference an entry point of a program
that was not loaded.

To pinpoint the location of a Library execution error, proceed as
follows.

1. From the Storage Map, determine the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.

2. Subtract in octal the entry point location of the program or
subroutine containing the error from the LOC of the error in
the error message.

3. From the assembly symbol table, determine the relative
address of the external symbol found in step 1 and add that
relative address to the result of step 2.

4. The sum of step 3 is the relative address of the error, which
can then be compared with the relative addresses of the
numbered statements in the program.

16.0 DEMONSTRATION PROGRAM USING LIBRARY ROUTINES

The following demonstration program is a SABR program showing the use
of the library routines. The program was written to add two integer
numbers, convert the result into floating-point, and type the result
in both integer and floating-point format. The source program was
written using the Symbolic Editor, assembled with SABR, and loaded
with the Linking Loader, under the OS/8 Operating System.

A 0257
B 0260
C 0~61
It 0262
FLOAT OOOOEXT
FORMT 0240
IOH OOOOEXT
N 0256
OPEN OOOOEXT
START 0200EXT
STO OOOOEXT
WRITE OOOOEXT

ENTRY START

0200 4033 START, CALL O,OPEN IINITIALIZE
0201 0002 06

11/0 DEVICES
0202 1257 TAD A /COMPUTE C=A+B
0203 1260 TAD B
0204 3261 DCA C
0205 40.33 CALL 1,FLOAT ICONVERT TO
0206 0103 06

/FLOATING POINT
0207 6201 05 ARG C
0210 0261 01
0211 4033 CALL 1,8TO

56

SABR

0212 0104 06
0213 6201 05 ARG Ii
0214 0262 01
0215 4033 CALL 2,WRITE IINITIALIZE
0216 0205 06

1110 HANDLER
0217 6201 05 ARG N IDEVICE NUMBER
0220 0256 01

11=TELETYPE
0221 6201 05 ARG FORMT /FORMAT SPECI-
0222 0240 01

/FICATION
0223 4033 CALL 1,IOH /TYPE INTEGER
0224 010.6 06

INUMBER
0225 6201 05 ARG C
AI")l") L. AI") L i 01 v.:.:~o V":;;O.L

0227 4033 CALL 1,IOH /TYPE FLOATING
0230 0106 06

/POINT NUMBER
0231 6201 05 ARG II
0232 0262 01
0233 4033 CALL 1,IOH /COMPLETE THE I/O
0234 0106 06
0235 6211 ARG 0
0236 0000
0237 7402 HLT

0240 5047
0241 2410
0242 0540
0243 0116
0244 2327
0245 0522
0246 2:340
0247 0122
0250 0547
02~51 5411
0252 6554
0253 0667
."'""'1:" A C'.1 ,.,."
V~,J"t .Joo~

0255 5100
0256 0001 N, 1
0257 0002 A, 2
0260 0002 B, 2
0261 0000 C, 0
0262 0000 II, BLOCK 3
0263 0000
0264 0000

END

The binary tape produced by the assembly was then run using OS/8 with
the following results:

THE ANSWERS ARE 4 4.00

57

SABR

APPENDIX

SABR INSTRUCTION CODES AND PSEUDO-OPERATORS

The following are the elements of the PDP-8 instruction set found in
the SABR permanent symbol table. These instructions are already
defined within the computer. For additional information on these
instructions and for a description of the symbols used when
programming other, optional, I/O devices, see the Small Computer
Handbook, available from the DEC Software Distribution Center.

INSTRUCTION CODES

Mnemonic Code Operation Time (mn sec.)*

Memory Reference Instructions

AND 0000 Logical AND 2.6
TAD 1000 Two's complement add 2.6
ISZ 2000 Increment and skip if zero 2.6
INC 2000 Nonskip ISZ 2.6
DCA 3000 Deposit and clear AC 2.6
JMS 4000 Jump to subroutine 2.6
JMP 5000 Jump 1.2

Mnemonic Code Operation Sequence

Group 1 Operate Microinstructions (1 cycle**)

NOP 7000 No operation
lAC 7001 Increment AC 3
RAL 7004 Rotate AC and link left one 4
RTL 7006 Rotate AC and link left two 4
RAR 7010 Rotate AC and link right one 4
RTR 7012 Rotate AC and link right two 4
CML 7020 Complemented link 2
CMA 7040 Complement AC 2
CLL 7100 Clear link 1
CLA 7200 Clear AC 1

* Times are representative of the PDP-8/E.

** 1 cycle is equal to 1.2 microseconds.

A-I

SABR

Group 2 Operate Microinstructions (1 cycle)

HLT 7402 Halts the computer
OSR 7404 Inclusive OR SR with AC
SKP 7410 Skip unconditionally
SNL 7420 Skip on nonzero link
SZL 7430 Skip on zero link
SZA 7440 Skip on zero AC
SNA 7450 Skip on nonzero AC
SMA 7500 Skip on minus AC
SPA 7510 Skip on positive AC (zero is positive

Combined Operate Microinstructions

CIA
STL
STA

7041
7120
7240

Complement and increment AC
Sent link to 1
Set AC to -1

Internal lOT Microinstructions

ION
IOF

6001
6002

Turn interrupt processor on
Disable interrupt processor

Keyboard/Reader (1 cycle)

KSF
KRB

6031
6036

Skip on keyboard/reader flag
Clear AC, read keyboard buffer
(dynamic), clear keyboard flags

Teleprinter/Punch (1 cycle)

Skip on teleprinter/punch flag

3
3
1
1
1
1
1
1
1

2,3
1,2

2

TSF
TLS

6041
6046 Load teleprinter/punch, print, and clear

teleprinter/punch flag

High Speed Reader -- Type PR8/E (1 cycle)

RSF
RRB
RFC

6011
6012
6014

Skip on reader flag
Read reader buffer and clear reader flag
Clear flag and buffer and fetch
character

High Speed Punch -- Type PP8/E (1 cycle)

PSF
PLS

6021
6026

Skip on punch flag
Clear flag and buffer, load buffer and
punch character

A-2

SABR

PSEUDO-OPE!U\TORS

The following is a list of the SABR assembler pseudo-operators.

ABSYM
ACB
ACM
ACL
ARG
BLOCK
CALL
COMMN
CPAGE
DECIM
DUMMY
EAP
END
ENTRY
FORTR
I
IF
LAP
OCTAL
OPDEF
PAGE
PAUSE
REORG
RETRN
SKPDF
TEXT

A-3

ABS floating point routine, 32
Absolute relocation address, 38
ABSYM pseudo-op, 9, 15
Addresses of operands, 5
ALOG function, 34
Alphabetic characters! 3
ARG pseudo-op, 9, 19
Arithmetic operations, 31, 33
Arrays, 33
ASCII,

constants, 6
text strings, 6

Assembly, 25
Automatic paging mode, 25

Binary output tape, 38
BLOCK pseudo-op, 10, 17

CALL pseudo-op, 10, 19
CDF current, 39
CDFSKP linkage routine, 26
CDZSKP linkage routine, 27
CHAIN utility routine, 35
Characters, 3
Checksum, 40
CHS subprogram, 32
CKIO utility routine, 35
Codes,

leader/trailer; 40
loader relocation, 40

Constants, 5
Conversion 6, 13
CPAGE pseudo-op, 10, 14

Data,
generation, 17
word, 38

D (decimal) conversion, 6
DECIM pseudo-op, 13
DECtape I/O routines, 36
Definition of symbols, 7
Device handlers, 46
DIV, 33
Double quote character ("), 6
DUMMY pseudo-op, 22
Dummy variables, 22
DUMSUB linkage routine, 27

INDEX

EAP pseudo-op, 10, 13
END pseudo-op, 10, 12
ENTRY statement, 20
Error messages, 46

SABR library, 55
ERROR utility routine, 35
EXIT utility routine, 35
EXP function; 34
Exponentiation, 34
External subroutines, 18
Externals, 16

FDV (floating point division),
32

FIVSA pass assembly, 42
FLOAT, 32
Floating point arithmetic, 31
FMP, 32
FSB, 31
Functions, 34

High common, 40

lABS, 33
IF pseudo-op, 14
IFIX, 32
Incrementing operands, 8
I/O, 30

Labels, 5
LAP pseudo-op, 11, 13
Leader/trailer code, 40
Library, 53
Linkage routines, 26
Loader relocation code; 38
Logarithm, natural, 34

MPY, 33
Multiple word instructions, 26

Natural logarithm function, 34
Null lines, 5

Index-l

INDEX (Cont.)

Number sign (#), 9
Numeric,

characters, 3
constants, 6

OBISUB linkage routines, 27
OCLOSE utility routine, 36
OCTAL pseudo-op, 11, 13
OPDEF pseudo-op, 11, 15
Operands, 5
Operators, 5
Optimizing code, 44

page-by-page assembly, 25
Page format, 25
PAGE pseudo-op, 11, 13
Paging mode, automatic, 25
Parameters, 7
Passing subroutine arguments,

22
PAUSE pseudo-op, 11, 12
Permanent symbols, 7
Program addresses, 29
Pseudo-operators, 9 to 17

READ statement, 30
REOKG pseudo-op, 11, 14
Re-origin, 39
Reserving words of memory, 17
RETRN, 20
RETURN key, 4

Simple relocation, 38
Special characters, 3
SQRT function, 34
Statements, 4 to 8
STO, 32
Storage, common, 17
Subprogram library, 30 to 37
SUBSC, 33
Subscripted variables, 33
Symbol definition, 15
Symbol Table, 29
Symbols, 7

TEXT pseudo-op, 17
Text strings, packed in 6-bit

ASCII, 17
Transfer vector, 40
Two-word block, 20
Two-word vector, 27

User-defined symbols, 7
USR and device handler, 46
Utility routines, 35

Variables, 33

WRITE function, 30
WTAPE routine, 36

Index-2

READER'S COMMENTS

OS/8
Language Reference Manual
AA-H609A-TA

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[J Assembly language programmer

[J Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience

[J Student programmer
[J Other (please specify) ____________________________________ __

Name Date _______________ _

Organization __ ___

Street __ _

Ci ty ________________________ S ta te __________ Zip Code ______ _
or

Country

- - Do Not Tear - Fold Here and Tape

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45

DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary

if Mailed in the
United States

- - - Do Not Tear - Fold Here -

	000
	001
	002
	003
	004
	005
	1_001_BASIC
	1_003
	1_004
	1_005
	1_006
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_1-15
	1_1-16
	1_1-17
	1_1-18
	1_1-19
	1_1-20
	1_1-21
	1_1-22
	1_1-23
	1_1-24
	1_1-25
	1_1-26
	1_1-27
	1_1-28
	1_1-29
	1_1-30
	1_1-31
	1_1-32
	1_1-33
	1_1-34
	1_1-35
	1_1-36
	1_1-37
	1_1-38
	1_1-39
	1_1-40
	1_1-41
	1_1-42
	1_1-43
	1_1-44
	1_1-45
	1_1-46
	1_1-47
	1_1-48
	1_1-49
	1_1-50
	1_1-51
	1_1-52
	1_1-53
	1_1-54
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	1_2-15
	1_2-16
	1_2-17
	1_2-18
	1_2-19
	1_2-20
	1_2-21
	1_2-22
	1_2-23
	1_2-24
	1_2-25
	1_2-26
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_5-15
	1_5-16
	1_5-17
	1_5-18
	1_5-19
	1_5-20
	1_A-01
	1_A-02
	1_B-01
	1_B-02
	1_B-03
	1_B-04
	1_C-01
	1_C-02
	1_C-03
	1_C-04
	1_D-01
	1_D-02
	1_Index-1
	1_Index-2
	1_Index-4
	2_001_FORTRAN_IV
	2_003
	2_004
	2_005
	2_006
	2_007
	2_008
	2_009
	2_01-01
	2_01-02
	2_01-03
	2_01-04
	2_01-05
	2_01-06
	2_01-07
	2_01-08
	2_01-09
	2_01-10
	2_01-11
	2_01-12
	2_01-13
	2_01-14
	2_01-15
	2_01-16
	2_01-17
	2_01-18
	2_01-19
	2_01-20
	2_01-21
	2_01-22
	2_01-23
	2_01-24
	2_01-25
	2_01-26
	2_01-27
	2_01-28
	2_01-29
	2_01-30
	2_010
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-06
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_04-07
	2_04-08
	2_04-09
	2_04-10
	2_04-11
	2_04-12
	2_04-13
	2_04-14
	2_04-15
	2_04-16
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_07-01
	2_07-02
	2_07-03
	2_07-04
	2_07-05
	2_07-06
	2_07-07
	2_07-08
	2_07-09
	2_07-10
	2_08-01
	2_08-02
	2_08-03
	2_08-04
	2_09-01
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	2_09-07
	2_09-08
	2_09-09
	2_09-10
	2_09-11
	2_09-12
	2_09-13
	2_09-14
	2_10-01
	2_10-02
	2_10-03
	2_10-04
	2_10-05
	2_10-06
	2_10-07
	2_10-08
	2_11-01
	2_11-02
	2_11-03
	2_11-04
	2_11-05
	2_11-06
	2_11-07
	2_11-08
	2_11-09
	2_11-10
	2_11-11
	2_11-12
	2_11-13
	2_11-14
	2_12-01
	2_12-02
	2_12-03
	2_12-04
	2_12-05
	2_12-06
	2_12-07
	2_12-08
	2_12-09
	2_12-10
	2_12-11
	2_12-12
	2_12-13
	2_12-14
	2_12-15
	2_12-16
	2_12-17
	2_12-18
	2_12-19
	2_12-20
	2_13-01
	2_13-02
	2_13-03
	2_13-04
	2_13-05
	2_13-06
	2_13-07
	2_13-08
	2_13-09
	2_13-10
	2_13-11
	2_13-12
	2_13-13
	2_13-14
	2_13-15
	2_13-16
	2_13-17
	2_13-18
	2_13-19
	2_13-20
	2_13-21
	2_13-22
	2_14-01
	2_14-02
	2_15-01
	2_15-02
	2_15-03
	2_15-04
	2_15-05
	2_15-06
	2_15-07
	2_15-08
	2_15-09
	2_15-10
	2_15-11
	2_15-12
	2_15-13
	2_15-14
	2_15-15
	2_15-16
	2_A-01
	2_A-02
	2_B-1
	2_B-2
	2_B-3
	2_B-4
	2_Index-1
	2_Index-2
	3_001_PAL8
	3_003
	3_004
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	3_32
	3_33
	3_34
	3_35
	3_36
	3_37
	3_38
	3_39
	3_40
	3_I-01
	3_I-02
	4_001_FORTRANII
	4_003
	4_004
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	4_20
	4_21
	4_22
	4_23
	4_24
	4_25
	4_26
	4_27
	4_28
	4_29
	4_30
	4_31
	4_32
	4_33
	4_34
	4_35
	4_36
	4_37
	4_38
	4_39
	4_40
	4_41
	4_42
	4_Index-1
	4_Index-2
	4_Index-3
	4_Index-4
	5_001_FLAP:RALF
	5_003
	5_004
	5_01
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_13
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	5_25
	5_26
	5_27
	5_28
	5_29
	5_30
	5_31
	5_32
	5_33
	5_34
	5_Index-1
	6_001_SABR
	6_003
	6_004
	6_01
	6_02
	6_03
	6_04
	6_05
	6_06
	6_07
	6_08
	6_09
	6_10
	6_11
	6_12
	6_13
	6_14
	6_15
	6_16
	6_17
	6_18
	6_19
	6_20
	6_21
	6_22
	6_23
	6_24
	6_25
	6_26
	6_27
	6_28
	6_29
	6_30
	6_31
	6_32
	6_33
	6_34
	6_35
	6_36
	6_37
	6_38
	6_39
	6_40
	6_41
	6_42
	6_43
	6_44
	6_45
	6_46
	6_47
	6_48
	6_49
	6_50
	6_51
	6_52
	6_53
	6_54
	6_55
	6_56
	6_57
	6_58
	6_A-1
	6_A-2
	6_A-3
	6_A-4
	Index-1
	Index-2
	replyA
	replyB

