RSX={i{M Workimg Design Document

Doecument Nymbert 130«951{«QQ09=03
Project Numbert P2QQ27580
Datet {7=Jume74

Authorsy M, Pellegrinmi, D, Cutler

PAGE @

COPYRIGHT 1973, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,

This seftware {s furmished to purchaser umder a licemse for
use on & simgle computer system and can be copifed (with
inclusion of DEC’s copyright motice) only for use {m such
system, except as may otherwise he provided im writinmng by
DEC,

The information {m this document (s sublect to change
without motice and should mot be comstrued as & commitment
by Digital Eauipment Corporation,

DEC assumes no responsibility for the use or relfabilicty of
its software on eauipment which (s mot supplied by DEC,

PAGE 3

{e@ INTRODUCTION AND OVERVIEW
*

PAGE 4
3,2 INTERNAL STRUCTURE, PHILOSOPHY, AND FLOW OF CONTROL,

3.1 Imtroduction

In this Sectiomn we will present the {mternal operatioms of the RSX={{M
Executive anmd the routimes associated with {t (drivera, and common
service subroutinmes), OQur exposition wil)' have a tutorial slant,
Section S,0 comtaims a detailed description of the RSX={iM data
structures, Inm this sectiom we will introduce data structures on an
as=needed basis, amd discuss the detailea contents of these structures
only where needed to render our expositiom meaningful,

3,2 Inmnterrupt Mechanmisms

RSX=1iM {s a priority drivem, multiprogramming, real=time operating
system, and, as with any such system, {ts principal function (s the
multiplexing of sharable resocurces amomg competing tasks, The
multiplexing i{tself {s made possible by the imterrupt system of the
hardware which causes comntrol te be takem away from user tasks and
given to the Executive, It {s durimg this period of interrupt control
that the Executive makes {ts decisions om granting use of shared
resoyrces, Undeprstanding the {nterrupt mechanism {s fumdamental to
understanding the Executive, anmd onece understood, serves as [
framework for describing the operation of Exeecutive aubsystems
(drivers, loader, MCR, etc) amd the system as a whole,

3,2,1 Hardware Interrupt Mechanmisms = Review & Overview

~

The PDPwil family of computers has two ClassSes of interruptst
1, Pprocessor Traps, and
2, Extermal Interrupts,

Processor traps are mnot maskabler, that {3, when they occur the
processor enters the trap seagquence of pushing PS and PC onto the
ceurrent stack, retrieving PS and PC from the oprooer hardware trap
vector, and, {f mno otherp i{nterrypts are pendinrg, {initiati{ing the
processor at the locatiom specifi{ed by the trap vector, A -table of
trap vectors start at location U4 and extend to locatiom 774(8),
Processor traps imclyudenwy

. '# Maskable meansg that the comdition can be disabled by altering the
priority of the processor,)

*% See the PDPwi}l Processor Hanmndbook for a complete list,

PAGE 5

BPT Imstructiony

EMT Imstructiony

I0T Imstructiony

TRAP Instructiony

11742 Floating Point Exception Faulty

Odd address

Power Fatil, and

I11egal Inmstruetions,
External {imterrupts are hardwired to one of the four bus reauest
levels of the precessor, These inmterrupts are gererally associated
with 1/0 devices amd are magkable, They can only cause an inteprrupt
when the prior{ty (m the Processor Status Word (PS) {s less than the
priority of the {mterrupting source, Thus, by gsettimg the processor
priority {mn a trap vector PS word to am appropriate leve! {nterrupts

equal to, or below that priority are locked out,

Every device (imterrupt source) has an associ{ated trap vector {m the
vector table located in lower memory,

With this sketeh of ¢the hardware mechamism, we can examine the
{nterrupt processing i{m the Executive {tself,

3.2.,2 Executive Imnterrupt Processing

Let us assume that al) the vectors in the trap vector table Rave been
properly {mftialized so that whem & processor trap or interrupt
occurs, an Executive routime will obtain control of the processcorx,

On 2 real memory PDP=i{ixx, only onme stack exists, anmd this stack must
be myltiplexed ¢to service the uyser tasks, the Executive, anmd the
Execut{ve Sub=systems,

The RSXeiiM System supports n levels of yser multiwmprogramming and 250
levels of wuser priority, The user establishes the priority of his
task amd the Executive dispatches user tasks based on the highest

% Sectiom xxx,xxx deseribes this imitialization,

% See Sectionm x,xxx for the detai{is of mapped memory systems,

PAGE 6

priority user task which {s ready to rum, The System Task Directory
(8TD), whieh is composed of one {B=word STD Emtry (Task Control Block
(TCB)) for each user task in the system, and which {8 ordered by
priority, (s scammed to dispatch user tasks,

Havimg only a simgle stack also implies a simgle processor state, The
Executive must simylate a two state system, A single word, the stack
depth indicator ($STKDP) is used to control this simulation,

Whem the stack depth imdicator {8 eaual to | the system {8 rynnimg {n
the user statey when (t’s zero or less, {t (8 im the system state,
A1l stack myltipleximg {s accomplished by testing the contemts of this
word, Im passing, we should mote that the priority set {(m the PS word
for user tasks (both privileged and umprivileged) 1{s @, and for
Executive routines, whem rumning interruptable, is either @, 7 or the
level at which the imterrupt was taken, It (s a design goal to
operate the Exeeutive amd its associated routimes nomeinterruptable
for as short & cdupatiom as possible, We currently estimate the system
never remains nomei{nterruptable for more tham twemty {imstructions with
the typica) span of nroreinterruntable codes beimg Jless thamn ten
{nstructions, Furthermore, the total mon=interruptable time wil) be
fess than 1/10 of (X of the total processor time,

Extermal {nterprupts can occcur withim the system from efther of the
simulated states, that {8 when the stack depth {ndicator {8 | (user
state) or <30 (system state), Processor traps, which {mclude the EMT
{nstructiomn UuUsed for Executive Directi{ves, only occur {(m the uUSer
state, with the following exceptionss

TRAP Inmstruetion

Powerfall
Describing the RSXw{iM interrupt mechamism {nvolves severa!
{nteprelated proutines, and it may be mecessary for the reader to make
two passes over this section before the process becomes completely
clear, Te ease your passage, we {mtroduce now a brief descriptior of
the basie routines involved,

The RSX=11M interrupt machinery {nvolves the followimg routines or
routime typest

Interrupt processor (both external inteprupts and traps)!
The Interrupt Save Routime (SINTSV);
The Directive Save Routime (SDIRSV))
The Interrupt Exit Routine (SINTXT)

Thc\Diroctivo Exit Routime (3DIRXT), and

PAGE 7

The Fork Processors (SFORK,S$FORKA,$FORKL),

Interrupt processors are entered directly amd usually call SINTSV or
$SDIRSY for common save and state switchimg services) at the completion
of these services, the {nterrupt routirmres are agaim givem conmtprol to
compiete the {mterrupt service, The exit routimes SINTXT and $DIRXT
restore the state prior to switchimg to the system state, control the
un=nesting of i{mterprupts, and make checks on the gstate of the system
(for example, {8 {t mecessary to redispateh the processor), The Fork
Processors)i{mearize access to shared system data bases, The details
of al) these routimes will emerge {m the upcoming marrative,

3,2,3 Externsl Interrupt From The Task State (Stack Depth
{ndicator=zl)

The vectors {m lower memory conrtain a PC umique to each I{nmterrupting
source, and a PS set with a priority of PR7, Hemce, when an external
interrupt occurs, the hardware pyushes the curremnt PS and PC onto the
current stack (in thi{s case the users stack) anmd loads the mew PC and
PS (set at PR7) from the appropriate interrupt vector, The interrupt
routime, then starts executimg with interrupts locked out, Interrupt
roytimes may, {n faect, be executing {n omne of three states?

i, At PR7 with imterrupts locked ocuty

2, At the priority of the interrupting sourcey thus, {nterrupt
levels greater thanm the source are permi{tted, or

3. At Fork level which {s at PRQ,

State 2 19 discussed shortly, state 3 will be deferred ¢to Section
3,2.7.2 (Fork Processes); for mrow, lets Yook at the PR7 state,

By {mtermal ceonrvention, processimg {n the PR7 state (Imterrupt
processing state 1) {s limited to 1@7us, 14 orocessi{mg can be
completed {m this time, them the interrupt routime simply RTI’s; the
fnterrupt has beem processed and dismissed with minimal overhead,

It the interrupt routinme reauires additiomal processing time (but does
not i{intemd to alter a shared svstep data base) {t calls the routinme
S$INTSYV (Interrupt Save), The priority at whiech the caller {8 to run
{fmmediately follows the call to SINTSV,

Interrupt save uses the specified priority to set up the f{nterrupt
routine such that {t {a {nterruptable by priori{ties higher tham that
of the {mterrupting source (interrupt processimg state 2) and
conditionally switches to system state {f the processor (s mot already
in system state, The SINTSV algorithm {8}

PAGE 8

$INTSVE Push RS amd R4 onto the current (user’s) stack,
Decrement stack depth imdicator
Is the stack depth imdicator 2087 Nojy go te 1 ,
Save the current (a task’s im this case) stack noimter
Set up the system stack noimter (switch stacks)
1. Load the mew processor priority as specified by the caller
Return to caller,
Notest
The Stack Depth Imdicator {s zero omly when the tramsition from the
user state to the system gtate has occurred, The yser state value of
{ was selected to simplify the decrement, test, and bramch which
establishes whether a stack switch is mecessary,
Pushimg of R4 and R5 is dome to free these registers for routinmes
processing external {nmterrupts, It s am {mtermal programming
convenmti{on that assumes these routimes will mot reayire more tham two

registers to accomplish their fumctioms, If they do, they must save
and restore any additional registers they use,

1

PAGE 9

Example use of SINTSVw»

*
RK11 DISK CONTROLLER INTERRUPT SERVICE ROUTINE

THIS ROUTINE I8 ENTERED VIA THE VECTOR AT LOCATION 220 WHEN AN
INTERRUPTING CONDITION IS DETECTED IN THE RK1i{ CONTROLLER, THE
ROUTINE IS ENTERED AT PRIORITY PR7 WITH ALL INTERRUPTS LOCKED OUT,

- e e e we e -

SDKINTsIMOV PS8, TEMP $33SAVE VECTOR PS WORD
CALL $INTSV,PRS $33SWITCH STATES AND PRIORITY TO PRS

CONTROL 1S REGAINED AT THIS POINT IN SYSTEM STATE WITH A PRIORITY OF
PRS, REGISTERS R4 AND RS HAVE BEEN SAVED AND MAY BE FREELY USED,

- we we we

MOV TEMP,RU 113RETRIEVE SAVED PS WORD

BIC ¥177760,R4 199CLEAR ALL BUY CONTROLLER NUMBER
.
.

etec,

Implementation notet

The CALL maero in the above example (s a special form which {8 defined
{n the executive macro f{le RSXMC,MAC, This file must be concatenated
with all assemblies using this form of CALL, The code generated from
the maero expansionm {8}

JSR RS, SINTSV
« WORD “C<Priority>»&PR7

3.2,4 Extermal Interrupts From The System State (Stack Depth
{ndicator <=20)

The code on this {nterrupt path (s Jidentical to that discussed (n
Section 3,2,3, However, {t {8 not mecessary to switch states when
SINTSYV {8 called, The current stack {s the system stack, amd the test
on the value of the stack depth indicator wi)l cause the savimg of SP

* We {ntend to make extemsive use of examples throughout this manual
and will prepeat codimg sequences where necessary to relieve the
reader from comtinually paging to find another related example,

PAGE 10

and the switching of stacks to be bypassed, After savimg RU4 and RS on
the system stack, & returmn to the {nterrupt routime is executed,

PAGE 11

3,2,5 Processor Traps From The Task State (Stack Depth Indicatorsal)

Whem a processor trap occurs from the task state, the hardware pushes
P8, PC, and inftiates the routime specified {m the associated hardware
trap vector, 1f the trap was am Executive di{rective (EMT 377), the
DPB (Directive Parameter Block) or {ts address was pushed onto the
usep’s stack prior to the issuamce of the EMT, The trap routine,
running at PR7 {mmediately calls the routime SDIRSV (Dipective Save)
whieh has the following algopithm:

$OIRSVY Push R5 amd R4 onmto current (user’s) atack
Decrement Stack depth {ndicator
Is the stack depth indicator =22? No, go to 1,
Save current (user’s) stack poinmter
Set up system stack poinmter (switch stacks)
e Push R3,R2,R{,R? onto current (system) stack
Load mew processor priority as specified by the caller

Returmn to caller,

Notest

The depth {ndicator check {s made to {mprove crash analvsi{s) no other
decisions are made {mn SDIRSV .simce al) processor traps, with two
exceptions, occur from the task state, The exceotions are handled on
exit, A1l registers are saved) the meed for only two reqgisters, RS
and R4 {s assumed only for routinmes processima extermal {mterrupts,
As with SINTS8YV the opriority at which the caller expects to runm
{immediately follows the call, A)) processor trap routirmes, however,
run at level @,

Only orme processor trap can be aueued for processing in the system at
any point {mn time (igrmore, for the moment, the two exceptions we have
noted), Sinece the processor trap occurred In the 1{in task state,
entrance to the Executive occurs only when the Executive is {dle,
While {m the System State, only external {nterrupts camr occur, I¢
processor traps Occur, them e{ther they are valid exceptions, or the
system {tself has faulted and will shyt dgownm,

Once a valid processor trap (8 pending, 1{t will be procesaed to
completion before any other system routime {s givem access to any
shared system data base, We wil) see how this strict seauentiality {s
effected when we discuss the two exit reutimes and the fork
processoers,

PAGE 12

Example use of SDIRSYV

+
EMT TRAP PROCESSING ROUTINE

THIS ROUTINE IS ENTERED VIA THE VECTOR AT LOCATION 32 WHEN AN EMT
INSTRUCTION IS EXECUTED, THE ROUTINE IS ENTERED AT PRIORITY PRY
WITH ALL INTERRUPTS LOCKED QUT,

- WS S s W WS -

SEMTRPIICALL $DIRSV,PRQ 193SWITCH STATES AND PRIORITY TO PR@
TST $STKDP)EMT EXECUTED FROM SYSTEM STATE?
BEQ 108) IF EQ NO
CRASH JCRASH SYSTEM
108 .
.
etec,

Impiementation mrotes

The CALL macro in the above example {s a speci{al form whieh {s defined
in the executive macro f{le RSXMC,MAC, This f{le must be comcatenated
with all assemblies using this form of CALL, The code germerated from
the macro expansien {83

JSR RS,$DIRSY
+WORD “C<Priority»s8PRY

3.2.6 Processor Traps From The System State (Stack Leve) «<=2Q)

Only two processor traps are valid fpom the system statet The trap
inseruction and powerfail, If any other processor trap occurs while
fn the system state, the gystem’s gperation {s abprted,

30246.1 Proéelsﬁng For Trap Instructionms Which Deccur Im The System
State)

The trap {instruction is used within the Executive as a core saving
technique in returning status following the processimrg of an Executive
Directive, The EMT 377, which {s the processor trap used to iInftiate
directives, causes entry {(mto the Directive Dispateher (SEMTRP) which
fn tuerm calls SDIRSV, Onm peturn from $DIRSV, but before <callimg the
directive processing routine (and emtry to the proper routine {s via a
CALL), the Directive Dispatcher pushes a value of +1 onto the system
stack, and clears the C bit {n the PS word stored on the users stacky

PAGE 13

then (¢t calls the proper directive orocessinmg routime to effect the
directive, Figure 3,1 shows the state of the user and system stacks
for both the umrmapped and mapped systems at the time emtry {8 made to
the directive processimg routine,

UNMAPPED SYSTEM

USER*S STACK

} DPB |

| PS l

| PC !

| RS |

SYSTEM STACK

| R3 !

| R2 |

l R1 l

l RO |

| R4 l | +1!

| RETURN ADDR |

--..-'--.----..-‘.-Tos

MAPPED SYSTEM

USER’S STACK SYSTEM 8STACK

| OPB ! l PS !

TOSwadusnmmarwnssnnawnns AT LYY L)

} PC !

) RS !

l R4 |

! R3 |

l R2 |

l R |

l RO !

! +11l

| RETURN ADR !

pn----.--------.(-.Tos

PAGE 14

FIGURE 3w\

The Directive processimg routime mow carries out {ts functiom, and {nm
s¢ doing is free to alter amy shared system cdata base, simnce no Other
routime will gaim access to a shared data base unti{) the directi{ve
processing routime {8 completed, This arrangement of the stack and
interface betweemn the Directive Discatcher and the Directive
Processors has two acdvanmtages|

{e« The mormal return for al)l but a few directives is a +1 status
and carry clear, This meamns the directive routines can
return to the dispatcher with am RTS) thus the retuyrnm path (s
ome word rather tham two {f a JMP were employed) this scheme
probably saves 127 words {m the RSXeiiM Executive,

2 Internel Executive routines canm cal) the directive processing
routimes without usimg am EMT,

It a directive processing routine meeds to returm a status other than
+1{, and have carry clear, the roytime simply replaces the +i om the
stack with the value {t intends to returm and them executes an RTS,

Now we come to the use of the trap inmstructionm within the Executive,
1f a directive processimg routime meeds to returm a status other than
+| amnd, {n addit{on have carry set, or cleared, based on the status
value returmed, them {t uses the trap {nstruction With the value of
status to be returred {n the Yow order byte of the {mstruction, When
the ¢trap orocessing routine 1{s entered, it immediately checks for
stack depths@, and {f 0, proceeds to reset the stack fop correct
exitimg from a directive processing routime, The 1ow order byte of
the trap instructiom {tself overlays the +1 status currently on the
stacky this vealue {s tested and, {f minmnus, carry {3 set {m the user PS
word, {f plus, carry {s left cleared, Them the exiting code of the
Directive Dispatcher {8 entered Just as (¢ the directive processing
routime had executed an RTS,

It the inftial test for a stack depth imdicator of @ fafils, them the
trap process{ing rout{me calls $DIRSV, This call {s logically
incorpect {f the stack depth {ndicator was Jess than zero, This
programming error (s recognized om exit, Om peturn from SDIRSV, the
trap processirg routine checks the stack depth imdicator, and {f it s
not zero, the system {s shyt downm,

Note that directives are legitimate omly from the task state (stack
.depth {ndicatormi) so that during directive processing, the stack
depth indicatopr (s always A, Interrupts that occur {mn gsystem gstate
disappear from the gtack before the directive processing seauence
resymes following am interrupt, Hence, evem though the stack cam grow
while a directive processopr {s in control, this growth {s transparent
T0 the directive processor. Statinmng it fpom a different perspective,
interrupts arfe permitted but the directive processor im control is
unaware of them,

PAGE 15

Directéive processing routimes thys have three methods of returning
status!

i1, For the mormal returm.carry clear amd status eaqual to +1, use
an RTS,

2, For carry clear and status other than +1, overlay the |
status om the gstack with the desired status value (status
value {s at 2(SP)), and RTS,

3, For carry clear or set, amd status of ome byte, use the trap
instpruction, This requires more overhead thar | amd 2 above
but saves core, anmd, of course {s the reauired return
mechanism (¥ carry {8 te be set,

Together, these return mechanmnisms from directive processing routines
save between 200 anmd 322 words {m the RSXei{M Executive as compared to
returnimg via Jump {mstructions,

J.2eb,2 Powerfal) Processing

ﬂhon a power failyre cccurs, the power failure trap processing routinme
is entered, This routine saves the state of the system, sets up a new
power faj{lyre trap=vector PC for use whemn power {8 restored, then
HALT'I

PAGE 16

Om restoration of power, the state of the system at the time the
failure ocecurred {8 restored, a flag (s set by software indicating
that a power failure has occurred, the reschedule pointer+r {5 set ¢to
the nmull task, amd the clock {s re=emabled, Then, the restoration
code {ssues am RTI, which results {m the resumption of the processing
that was {r progress whenm the npower fal{lure cccurred, The specific
processing to reflect the occurrence of a power failure will nmnot occur
uynti{l! efther Directive Exit (s emtered or the clock interrupts, In
any event, thi{s processimg {18 part of Directive Exit amd will be
discussed under Directive Exit,

Note that power failure processing {s mnot asymnchromous, As much as
1768 of a second could elapse folloewing restoration before the power
failure {3 acted upon,

The records and logic needed to provide asymchromous processimg are
simply too large for a system with RSXeiiM’g core objectives, Our
assumption {8 that asynchromous poweresfallure processimg {8 nmot
consistemt with RSXeliM’s objectives or markets,

3,2.603 Abortimg The System

Wherm a condition {s detected that {mdicates the svastem should be shuyt
down (crashed {n am orderly mannmer), the detecting routine {ssues an
I0T, The I0T processing routine, as usua)l, calls Directive Save, and
on retuyrn checks for a stack depth equal to zero, It eaual, mnormal
SST orocessing {s entered, If mot eaua) te zero, the routime SCRASH
{s entered, Crash displays, om the device whose CSR address {s
C8SRSH, anm appropriate orimtout which {8 detailed {mn Appendix I,
After completing the printout, it Jumps to a routime called SPANIC,
which optiorally prints out an edit of selected memory locations, Iin
the minimym system both SCRASH amd SPANIC are conditiomalized out, and
a system crash s{mply resuits {n & processpr halt at locatiom S560(8),

3,2.7 Pprocessing Withinm Interrupt Roytines

In Section 3,2,2 we examined inmnterrupt entry 1{nto the RSX=miiM
Executive, In this sectiomn we detail! the events which take place
following interrupt entry up to the point whepe the Executive is ready
to return contprol to the task state,

Once the Executive {s entered via an {mterprupt (regardless of the
state {ta {m whenm the interrupt occurs) {t will mot agai{m returm teo

The reschedule poimter will <;e ;Zvared whem we discuss task
switehing, T

PAGE 17

the task state uyntil all system related precessing for that I{mterrupt
has been completed, From anmother point of view, the task state (s
never {mn comtrol unless the ExecuUtive has mothimg=to=do (is {dle),

White {m the task state a single interrupt causes tranafer i{nte the
system state whkere the system remains unrt{l the {nterrupt (s
processed, But while {m the system state, repeated {nmterrupts can
occur, This {mplies a fixed {nterrupt decth of ome for the task stack
(requiring a task to provide a stack of at least four words {m an
unmapped system), and {mplies a variable f{nterrupt depth for the
system stack,

If interrupts can occur in the system gstate, them a mechanism (s
requi{red te prevemnt unwanted recursion and {mproper data base
mod{fication, Im RSXeiiM both of these logical difficulties are
resolved by strictly limeari{zing imterrunt processing and access to
{nternal data bases, The mechanisms employed to accomplish this
l{mearizat{om are the system stack, fork processes, and the associated
fork 1ist,

3.2:7.1! Queuimg Interrupts On The System Stack

In the system state the goal (s to operate i{nterruptible as much of
ithe time as possible, Three conditiomns ex{gt when the system {tself
rPUNS monmminterruptablet

i, The most recent {nterrupt i3 heimg processed at leve! PR7 and
the {nterrupt routime has not yet returmed to an
{nterruptible state,

2, The imterrupt routime has dropred from level PR7 to the leve!
at whieh the {inteprupt occurred, Priority levels, eaual to
or less than the priority of the Imterruptimg source are
locked out,

3, The system {8 updatimg a critical Yist whose consistency can
only be maimntained by a mom=imterruptable {nstruction
seaquence, There are two such l1i{sts, ahd we will discuss them
shortly,

In Sectiorns 3,2,3 and 3,2,4 we examimed the code 3seauence for
processing extermal {mterrupts amrd oprocessor traos, as well as the
stack additiomns that occurred durimg their processing, Interrupt
stackimg {m the system state wil)l occcur based primcically om hardware
{mterrupt levels, Thus {f a level PR4 {mterrupt {8 beimg processed,
them a level PRS, PR6, or PRY? (mterrupt canr potentially {nterrupt this
procesaing amd cause context to be stacked and cormtrol gqivemn to the
higher level interrupt routine,

PAGE 18

3:2¢7.2 Fork Processing And The Fork List

Omce an {nterrupt routime passes from a norm=interruptible to an
interruptible state via a call to SINTSV, processinmng {s at the same
level as the priority of the {nterrupting source, Alomg any givenm
interrupt path however, more processing {s oftem reaquired tham the
qoal of mimimun nmome={nteruptible code sequences i{m the Executive
permitsy; alomg this path the allowable maximum nomeinterruptible
processing time {s S0Qus, Thus, a scheme {s reaufred to split
interrupt processimng routimes further, such that part of thetir
execution rums {interruptible to any {mterruptinmg source, The
mechanism for achieving this split {s called fork processing, Fork {s
an internal subroutine with three entry pointsy fork li{mearizes
accesses to system data bases, thus elimimating unwanted recursionr ‘and
mul{tplesypdates of these datas bases, Am associated)i{st, the Fork
List, whieh {8 processed FIFD, {8 used as the l{nearizimg structure,

Interrupt routimes are reaquired to adhere to the following {(mternmal
conventionst

1, Use of any registers except R4 amd RS reauires that these
registers be saved and restored,

2. Nonmi{mterruptible processing must net exceed twenty
instructions,

3, A)) medificatioms to system data bases must be domre via a
fork process, The firat two reauirements are
straightfoprward, so lets turm our discussior to Fork,

Along amn {mnterrupt path, control cam be takem from a routime only due
to a higher priority imterrupt pending {n the hardwere, As discussed
previcusly, these interrupts are kent track of on the system stack,
When anm {mteprupt routime meeds to transfer from a monminterruptible
(imcludimg partial nomne=imterruptibitity) to am {mterruptible state, or
modify a system date base, {t must call Fork, Fork, however, cannmot
be called directly from am {mnterrupt routimey {¢ must first switch to
system state by calling Interrupt Save amd thenr call fork,

Fork has three entry points depending on the size of the fork block
being provided by the caller for comtext storage,

SFORK requires a 4=word fork block which comtains:
A forward 1ink {mn the fork 1ist
PC of the caller
Saved R4

Saved RS

PAGE 19

$FORK {s for I/0 adrivers amd the fork processor assumes RS {s loaded
with the um{t control bleck (UCB) address,

$FORK] reauires a 3=word fork block containing!

A forward 1ink {n the fork list

PC of the caller

Saved RS
SFORK? recuires a 2eword fork block comntaining?

A forward 1imk im the fork list

PC of the caller
SFORK when calledt

Stores the return PC, RS anmd RUx {nto the fork block, Appends

the supplied fork bloeck te the fork 1{st, amd Jumps to Inteerrupt

Exit,
By virture of calling fork, the routine {8 now {nterruptible and f{ts
access to system data bases {s gstrictly li{mear, The {nterrupnt
processing reutine {3 now {n state 3, (Refer to Sectiom 3,2,3 for o
discussion of states 1 and 2), The Fork List {s a Yist of system
routines waiting to complete the{r processing, im particular, waiting
to access a shared system data base,
Whemn the Fork routine, after placing the fork block im the fork 1ist,
Jumps to SINTXT the stack {tems for the imterrupt routime are removed
frem the stack, In effect the fork list i{s a seconrdary {nterrupt
queue (stack) whose members are processed FIFO, and obtaim processing
time only {f the system stack is empty,
Note that the context saved for a caller of SFORK depemds onr which

entry point {8 called, and the comrtext saved (s al)l that is meeded to
restart routimes on the fork list,

(M) = RS amd R4 wil) or will not be stored depending on which variamnt of
Fork {8 called,

PAGE 2@

Example call to $FORK

+
RK{1 DISK CONTROLLER INTERUPT SERVICE ROUTINE

THIS ROUTINE IS ENTERED VIA THE VECTOR AT LOCATION 222 WHEN AN
INTERRUPTING CONDITION IS DETECTED IN THE RK{] CONTROLLER, THE

3 ROUTINE IS ENTERED AT PRIORITY PR7 WITH ALL INTERRUPTS LOCKED OUT,
,-

SOKINT MOV PS, TEMP 133SAVE VECTOR PS WORD
CALL $INTSV,PRS $39SWITCH STATES AND PRIORITY TO PRS
MOV TEMP,RU $93RETRIEVE SAVED PS WORD
BIC #177760,Rd 191CLEAR ALL BUT CONTROLLER NUMBER
ASL R4 193CONVERT TO WORD INDEX
MOV CNTBL(R4),RS $9IRETRIEVE ADDRESS OF UCB
TS8T8B RTTBL+L(RW) 191ORIVE RESET IN PROGRESS?
BEQ 508% 119 IF EQ NO

[}
drive reset processing code

. .
5081 CALL $FORK $39)CREATE A FORK PROCESS

'
5 CONTROL IS REGAINED AT THIS POINT WITH ALL INTERRUPTS ALLOWED,

}

3.2¢8 Exi{ting The System State

In Section 3,2,2 » 3,2,7,2 we covered the Executive’s processimg of
{nterpupts, and the methods employed to 1inearize their orocessing 8o
as to min{m{ze the nom=intepruptible time spent (m the system state,
In several places we referenced two routimes SINTXT (Imterrupt Exit)
and $DIRXT (Directive Exit), These proutimes result im the sequential
removal of all {temg om the system stack, themn al) {tems on the fork
1{st, It {s these two routimes to which we now turn,

The Execut{ve’s strategic object{ve {s to return to eauiltibrium (the
{dle state) as fast and as efficiently as possibler {ta tactics to
ach{eve eaquilibrium {s to is to service al) routines om the system
stack fi{pst, These routimes are usyally rurnimg at some level of
noreinterruptibility, when the system stack 1{s cleared of opendirg
requests, the Executive them services the pemding requests onr the fork
1{st, When both the fork 1{i{st amd system stack are empty, the
Executive wil) either returm to the task state or {4 mo task {s
active, drop imto the Nyl Task,

FINTXT (s tramsferred to by extermal i{nmterrupt processing routimes
that are pynmnrimg on the system gstack at ¢the priopity of the
interrupting source (state 2 for those interrupt processimg routines),

PAGE 21

$DIRXT has the task of servicing the fork 1i{st amd, whenm the Executive
has no more WOPk to do, restor{mg the task state, $DIRXT i{s entered
by trap routimes, fork routimes, amd by SINTXT,

3,2:8,1 Interrupt Exit (SINTXT)
The $INTXT algorithm 13 as follows!
SINTXTY Lock out imterrupts

Is stack depth indicatorz®? No, go to 1,

is fork list empty, VYes, qo to |,

Allow interrupnts,

Store R3,R2,R1,R2@ on the current (system in this case) stack

Jump to $DIRXT (Directive Exit),
i, Increment stack depth indicator,

Restore R4 and RS fprom current stack amd RTI,
Notes!
Interrunts must be locked out to imsure a consistent check of the
stack depth {ndicator anmd the cortents of the fork 1{st, The same
type of Jlockout occurs {n Directive Exit, There are two
nor={nterryptible code spans uysed to check and update the fork l14st
menti{oned {m Section 3,2,7,1., Ome im SFORK, and one {m S$DIRXT, The
saving of R thry RO {s prepatory to the Jump to $SDIRXT which expects
these registers om the stack, Note that ¢the path thprough the
Executive which find both the fork list empty armrd the stack depth

indicator equal to @ is fairly common, As can be seen, thig (s the
mim{mum overhead path,

3,2.8,2 D{rective Ex{t

The SDIRXT algorithm {s as follows?

$DIRXT: Lock out ifmterrupts,
Is the fork 1ist empty? Yes, o to |,
Update Fork 1ist pointers,

Allow {nterrupts,

PAGE 22

Restore Fork context,

Call routine whose fork context was restored,

Go to SDIRXT,
1, 1s rescheduling reaquired (SRQASCK nmot=@)? No, go to 2,

Allow {nterrupts,

Clear $RQSCH,

Save context of current task,

Locate a readym=tomprun task,

Restore context of mew task,

Go to SDIRXT,
2o Is the power failure flag set? No, go to 3,

Allow interrupts

Cal! power failure processinrg,

Go to SDIRXT
3 Restore task stack pointer,

Imcrement stack depth {mdicator,

Restore R4 and RS from user stack and RTI,
Notes!
SDIRXT calls both waiting fork processes and the powerfalil routine,
These routines termirate via a RTS {nstruction, On returm SDIRXT
again cycles lookinmng for work,
The task peschedule pointep SRASCH controls the redispatching of the
processor,. It points to the locatiom in the STD 1i{st where $DIRXT
should begim its scar for & task ready to use the processor,
$RGSCH {s set whem a chamge of state has occuyred in the gystem that
might cause a taak othepr than the ome currently in control to obtain
processor time, Examples are I/0 dome, clock aueue rumout;, or a task

doing am EXIT, The word (s reset by SDIRXT Just prior to fts
dispatching a new task,

PAGE 23

3.2,9 Imterrupt Processing Summary
Seven routines or groups of routines not only comor{se the {nterrunt
system but cam be said to oractically comprise the entire Executive
itself,

External Interrupt Routines

Trap Routines

Interrupt Save

Directive Save

Fork and Fork Processes

Interrupt Exit

Direective Exit

External {nterrupts cause traps to externmal {mterrupt orocessing
routimes which run im one of three states?

i, Nonmeinterruptiple at PR7,
They rum here when {nitially entered,

2, Imterruptible by priorities higher tham the I{nterrupting
source,

Both states | and 2 are l{mearized Peing aueued and dequeued
from the sygstem stack,

3 Fully inmterruptible as fork processes,
Trap routimes ,0f which omly one may occucy the system gstack durinmg
any gqiven passage throuoh the Executive, operate at priority level
zero, need nrever call Fork, and operate entirely from the system
stack,

Interrupt save {8 called by extermnal interrupt routimes when they make
a tramsitiomn from state | to state 2,

Directive save {s called by trap routires,
Fork creates a fork process for external interruct routines,

Interrupt Exit uUnstacks waitimg routimes executimg from the system
stack, and when the system stack {s empty drops {into Directive Exit,

Directive Exit has the Job of givimg control to walitimg fork
processes, processing power fajlure, and redi{spatching the processor,

PAGE 24

The Executive structure has anm {mplied seauentiality which obviates
the meed for amy explicit symchromizimg mechamni{sms, System routines
which follow the {ntermal conventions of the Executive nmever need
comcern themselves with multiplemyodate of shared system data bases,
In tending toward the f{dle atate the Executive gives prioerity to
routimes on the system stack, them to fork processes,

PAGE 25

3.3 I1/0 Processing

3.3.1 Goals

The I/0 interface {38 100X compatible with RSX«{1iD, Withim the
requirement of compatibi{lity, three qgocals quided the designt

1., The tota)l memory for I/0 processimg (data structures plus
drivers) must be reduced by 5Q% vs RSX=14D,

2, The 1/0 data structures should have substantial flexibil{ty
for addimg future devices, or for alterima the service
disciplime of existing devices,

I, Througkput should eaual or exceed RSX=1iD’s,

3.3.2 1/0 Philosoprhy and Fumctiomnal Overview Of Its Impiementation

To meet {ts stated qoels, the RSX={iM I/0 system attempts to
centralize common functions, thus eliminating the repetitive
oppearance of code, which is almost idemtical {m form amd fumctionm,
f7om appearimg {n each and evepry driver {n the system, To achieve
this, a substantial effort has been expended i{n the design of
RSX=mi{i{M’s 1/0 data structures which are used to drive the centralized
routines, The effeect (s to substantially reduce the size of
fndividual 1/0 dpiversy am RSXwiiM driver {8 typically one=fourth as
Yarge as its RSX={1D counterpart, Of course, the centralized code,
and an {nmncrease {n the size of RSX={1M’s data structures compared to
RSX=1i{D’s reduces our effective size reduction, But, on the balance,
we have substantially reduced the size of our total I/0 processing
core reauirements while at the same time = prodyced a more
understandable, maintainable, and enhanmceable 1/0 system (obviously,
our subjective judgemént),

The user interface to the RSXw{iM I/0 system consists of logical unit
numbers (LUNs) and a simgle active I1/0 directive QUEUE 1/0, (The
directives ASSIGN LUN, GET LUN INFO, etec, do mot imit{ate 1I/0
transfers),

In RSX=11M a1l the prelimimary processimg antecedent to actually
aueuing anm I/0 request {s performed by the GBI0 directive processing
code which (s driven from the I/0 data structuresy this code <calls
ancillary routires for centralized services, When a driver firmally
rece{ves an /0 order, {t has very li{ttle to do other thanm set up the
status registers and {ssue the order,

Termimation processing (s equally modular and centralized, The driver
fs entered, performs gome cleanmup operations, and calls centralized
routines for obtaining oendinag 1/0 orders, pertorming AST processing,

PAGE 26

etc, The driver {s only concermed with the most imtimate and specific
details of the actua) hardware interface {in respect to the execution
and completion of 1/0 transfers, Usimg this cemtralizationm
philosophy, RSX={iM keeps both driver size and nomw=i{nterruptible
processina time small,

3.3,3 RSX={iM I/0 Data Structures
The statiecx I/0 date structures consists of three distimnct emtities!
{1, A Device Control Block (DCR)y
2e A Unmit Comtro)l Bloeck (UCB), and
3, A Status Comtro) Block (SCB),
Althoygh each serves a soecific functiom, and the compoments of each,
in general, reflect these functions, the coherence achieved by a
strict set of rules for determinimg i{nto which data structure a
apecifie unit of {mformation would be placed was ultimately sacrificed
to core savimgs and code efficiency, The exceptioms, however, are

few, and the fynctioma) purpose of each data structure is reflected by
the uynits of information which compose them,

3.3.3,1 The Device Comtrol Bloeck (DCB)
One device control block exists for each device type attached to the
system, Its fumctiom s ¢to describe the static characteri{istics of
both the controller and the units attached te the controller, All the
DCB’s {in the system are singly Iiinked, The DCB contains such
{nformationm asi

The device mmnemonic (Two ASCII eharacters)

The Yowest and highest Unit Numbeprs on the respective Controller

The address of the fiprst UCB

The Length of Eaech UCB

The next DCB Pointer

The LLegal Funmnctiom Mask

AL A L X 8 LKA 4 B X 2 2]

% Statie {n the sense that they are established at SYSGEN and only
anothepr SYSGEN can expand or contract the mnymber of I1/0 units served
by the atructures, i

PAGE 27

The Control Fumetiom Mask

The No=0p’d Function Mask

The File Fumction Mask

The Pointer to the Driver Dispatch Table
Al these information units are static and are used principally by the
QUEUE 1/0 directive processing code to nrevare & Gueye I/0 reauest for

a device driver, The details of QUEUE I1/0 Processing are {n Sectionm
3.3050

3.3,3,.2 The Unit Conmtro) Bleck (ULCB),

Ome umit comtre)! block exists for each physical device unit attached
to the system, Many of {t8 {mformation Units are static, though {t
does contain a few dymamic parameters, For example the redirect
pointer which reflects the result of a Red{reet MCR command,

The UCB conrtains device umit specifi{c data, suech as unrft status,
physi{ical unmit mnumber, amd unit characteristics,

3,3,3.3 The Status Contro) Block (SCB),

Omne status contro! block exists for each device controller {(m the
system, This {s ¢true evemn {(f the comtroller handles more thanm one
device unit (Y{ke the RK Controller), Lime multiplexers such as the
DH1l and DJi! are comnsidered to have a controller per lime simce all
1ines may tramsfer {n parallel,

Most {mformation {n the SCB {s dymamic, It comtaims the following
{nformation about the currently active units

The Interrupt Vector Address

The Controller Bus Reauest Priority
T{meout Counmts (Imni{tial and Current)

The Address of the Control Status Register
The Address of the Current 1/0 Packet
Storage For A Fork Block

The 1/0 Queve Listhead

PAGE 28

The Cortroller Status (Busy/Idle)
The Controller Inmdex

As can be seen, the SCB {8 auite dymamic, makimng {t rossible to
maintain comntrol of the current I1/0 {(n orogress on the controlder,
The presence of the fork block storage {n the SCB {mplies 1/0
linearity for the processing at fork level on a given controller, We
have here a specific example of how multiple updates amd recursion are
controlled, The driver for a specific device tyoe mever concerns
{tse)lf with umwanted recursiom or multiple updates, Omce a driver {s
{fm & fork Jevel! process, further I/0 processimg, which may {nvolve
updating a shared cdata base, {s automatically locked out by the
structure of the system {tself,

3,3,4 Some Sample /0 Structures

Figure 3=2 shows the data structure that would result for three
terminals each imterfaced via a DL1! asynchronous l1ine interface, The
structure requires three UCBs and three SCBs simce the activity om all
three units cam proceed {m parallel, Im Figure 3=3 the {nternal data
stpructure for am RK disk comtroller with thpee units s depicted,
note that only onme SCB exi{sts because only ome of the three units may
be active at anmy time,

| DCB |
I |
!
l
l

! ! !

v v v
| uce | !l uce | 1 ucs |
| | l l | l
| l l
v Vv v

! SCB |
|)

{ 8CB |
l I

FIGURE 3=2

| sSCB |
| l

PAGE 29

! 0CB |
| |
|
|
! l !
! l l

| ucB | ! ucs | ! UCB |
l | | l | |
! l !
| v)
! LA LE T Y 1

noswncsensesned] SCEB |<nvwwnwosawensw

| |

Figure 3w3

343,55 Queue 1/0 Directive Flow

The Queue I/0 directive reauires the {ssuer to construct a twelve word
directive parameter block as shown {in Figure 3I=u,

l LENGTH ! nIc |

| FUNCT CODE { MODIFIER }

| RESERVED | LUN !
L RRIORITY 1 EFN 1
| 170 STATUS ALOCK ADDRESS &
v asT kobomess 1
v Teeviee
I--.-. DEPENDENT .---.I
:---.. PARAMETERS ----.I
L B
o T

} ‘ !

Figure 1wy

The parameters have the following interpretation,

Lemgth (reauired)t

The

PAGE

femgth of DPB, For OI0 always eaqual to twelve words,

DIC (reauired)

Directive ldentificatiom Code,

Fumction Code (reauired)!

Fer Q10,

the vajue

is a {,

The code of the reaquested I/0 fumetionm (2 thru 31,).

Modifier:

Deviee deperdent modifier bits,

Reserved!

Reserved bvyte amnd myust mrot be used,

LUN (reauirea)s

3e

PAGE 31

Logical Unit Number,

Priorftyt

Reguest priority, Igmored by RSXe{iM, but space must he
allocated for RSX=11D compatibility,

EFN (optiomal)s
Event flag number,
1/0 Status Block Address (optiomal)

This word comtaings a pointer to the I/0 status block which {8 a
debyte device dependent 1/0 completiom data packet formatted as

Byte 2
170 status byte
Ryte 1
Augmented data supplied by the driver
Bytes 2 and 3
The contents of these bvte§ depend on the value of byte 2,

1¥f byte 2=f then these bytes contaimn the processed byte
count, If motz=1, therm the contents are device dependent,

AST Address (cptiomrmal)s
Address of am AST Service Routime,
Device Dependemnt Parameterst

Up to six parameters speci{ific to the device, Typically these
arel

Buffer address

Byte count

Carriage control tyoe
Logical block number

Any opticna) parameters that are not speci{fied must be filled with
zZeros, ’

wWhen the QIO directive {8 {ssued, QIC directive processing code
receives control amd processes the recuest as follows!

1,

la,

2,

PAGE 32

[Pertorm first level validity checks)

RI0 examimes the LUT (Logical Umit Table) im the task header
for &8 LUN match,

It checks {f the LUN i3 lega)l for the reauestirg task, I¢
the LUN s greater tham the avai{lable LUT slots established
for the task the directive {s rejected, Givem a valid LUN, a
check (s made to determime {¢f a valid UCB pointer exists {n
the LUT for the specified LUN, If mome exists the directive
{s rejected, If the LUN amd UCB poinmter are valid, the
redirect algorithm (s entered,

[Redirect algorithm)

The UCB {s located and the re=di{rect pointer checked, If the
re=d{rect pointer poinmts to the UCB which contains {t, then
the fimal Yimk {n the redirect chain has beemn found, Else
the redirect UCB address {8 obtaimed and the test {3
repeated, This search contimues umti) the lagst res=directed
Uucte s foumd, Them, the backpointer to the DCPR {s used to
locate the DCB and a check on the device mame {s made, 1¢
the name {s TI, them the address of the UCB which is to be
used to control I/0 transfers {s {n the TCB of the reauesting
task, This poinmter was implanted by MCR whenm {t reauested
the task and the chaining process described links the
requestimg task to the terminal which pequested {t, If the
name {8 mot TI, the fimal UCB {mn the redirect chain 1{s wused
tfor the I/0 Transfer, The EFN and I/0 status block (10SB)
address are validated and the priority {s ignored, 1f any of
these checks fai), the directive {s rejected, 1I1f the checks
pass, the directive status {s set to +1 amd the 0SB, ¢
specified, {s cleared,

[Obtain storage for, and create am 1/0 driver queue entry]

After the first level! cheecks prove positive, QI0 obtains an
{8wword storage block from dymamic storage, 1Into this block,
which we will refepr to as an 1/0 packet, QI0 i{nserts the
following (the source of the data is specified with each data
{tem)

Fumction Code
Copied from the DPB

Contents of the first LUN word
Established by the redirect algorithm

Address of the second LUN word
Calculated from the requesting task’s header address

EFN '
Copied from the DPB

3,

4,

S

6

PAGE 33

Priorfty
Copied from TCB of the recuestimg task

Address of the Task Comtro) Block
The TCB address of the recuestinmg task

Virtyual address of the I/0 status block
Coepied from the DPR

Relecation Biag of the I/0 status hlockx
Calculated

Address of the I/0 status blocks*
Caleulated

AST address
Copied from the DPR

Device Dependent Parameters
Cepied from the DPR

[(Validate the fumction reauest]

Using the legal=fumctior mask in the DCB, QIO determines {¢
the reauested functior i3 legal, 1If §t {s not legal, go to
9,

{Check for mowop’ed function)

UsSimg the mowop’ed function mask {m the DCB, cheek 1{f the
reauested fymctiom is8 to be mo=cp‘’ed, I1f yes, co to 9,

[Cheek for a Control Funmction)

Using the control functionm mask {n the DCB, determine {f the
reauested funetiom 18 a comtroel fumetiomn, If ves, go to 8,

(Cheek for a file system fumection]

The mext tier of fumction checks determirme {f the fumetiom (s
a file system function, If {t {8, a check i{s made to see
whethep the device to which the requeat is directed 1{s file
structured, It it {s we go to 8, 1t the device {s not file
structured, then the fumction reauested must be efther a read
virtual or write virtyal, The prequest 1s mapped to its
logical coumternart (read or write logical) and processinmg
proceeds at step 7, '

* These exist to satisfy reauirements of the mapped Ssystem, A
separate section wi{l)l detail the differemnces between a mapped and
unmapped system, .

PAGE 34

7. (Tramsfer fumctiom processing)

If the functiom {s legal, but nrot a nowop oFr control
fumnetion, themn 1{t®s a tramsfer funmnctiom, and address checks
are made onrn the buffer, count, and modulus reauiremenmts+, If¢
any of these fail, qo to 9,

8, [Packet Queuing)

QI0 checks the contrel bits {1m the UCB which determines {f {¢t
will aqueue the packet and then call the driver, or call the
driver and let the driver aueue the packet, The call to tne
dgriver {8 via the pointer {in the DCB to the driver dispatch
table entry addresses, namely}

INITIATOR
CANCEL I/0
POWER FAILURE
DEVICE TIMEOUT,

In this case the initiator entry point is called, amnd nmormsl
path QI0 directive processimg is complete,

9, [Fumetion {s {llegal, no=op’ed, or {mvalid paremeters)

1f any of these cases pertain, GIO calls I/0 Done and passes
8 status code, A special enmtry point {s used which causes
I/0 Done to bypass clearing of the unit and comtroller busy
tf1ags, clearing of which occurs along 170 Dome’s mormal path,

Notest

By reviewing the algor{thm ¢or the QIC0 directive processing, the
reader should note the care taken to reljeve the driver of validation
processing, It’s through the centralization of validation processing
that deiver code {s substantially shoptened and structurally
simplified, A bemeficial fallout of this strategy {s that dri{vers are
not called with requests that are going to either fail on & pre=issue
validation check, or mot result {n the issuance of amn actual I/0 (Yike
no=op and control functions), This substantially reduces internal
overhead,

3,3.6 lasuing I/0

FL L L X K X X 2 X X X 4

* Medulus checks exist fop devices which have bourdary alignment
requirements,

PAGE 35

QIO calls the driver at the inftiation emtry point, We will avoid the
subtlety of whem packet queuing does mot occur and assume {t’s aueued,
The driver alqorithm is as follows!

t. [Get am 1/0 reauest)

Whem the driver is called, 1t {immediately calls the internal
routime Get Packet (SGTPKT), Get Packet {s discussed in
Section 3,3,6,1, S$GTPKT efther delivers a packet, or returns
busy, It busy, ge to 3,

2. (170 Issue)

The driver builds the actual I1/0 order and i{ssues {t, It
then returns, {n this case to QI0, QIO returms the directive
status to the user issuing the origimal QIO directive and
clears the directive from the stack by returnimrg to the
directive dispatcher,

3. [GTPKT returns busy)

It SGTPKT finds the controller busy, thus makimg {t unable to
retyrn an I/0 packet to the driver, it simply returmns a bysy
{ndicatiom, The bysy {indicatiomn simply {({nfopms the driver
that {t canmot at thi{s time {ssue an 1/0 order, The driver
returns to QI0, which returns the directive status to the
user i{ssuing the original QI0 directive and <clears the
directive from the stack by returning to the directive
dispatcher, The original I/0 is im the driver queue, and the
fssuer can take appropriate actiom (wWaitfor or econtinue),

3.3.6,1 Get Packet Rout{ne

Get Packet (SGTPKT) {s called when an I/0 driver meeds work, This
occurs following & QIO call onr the driver, and after a driver has
processed an I/0 termination, SGTPKT does not kmow about the
fn{tiation cause of a call upom {t, it simply attempts to find work
for the driver and proceeds as followst

1. (Scanm the driver @)

SGTPKY {s passed a UCB address, which it uses to locate the
SCB amnd the I1/0 aueue, If the controller {s busy, $GTPKT
returns busy to the caller, If the controller i{s free, o
aueue scan s begun for the highest priority reauest that the
driver can fnftiate, Note that the aueue {s already |in
priority order and the aquestion to be resolved {8 whether an
entry represents work the driver cam do, Also rmote, that ({f
a controller (s free, all units om the controller are free,
Eeach aqueuye entry myst be checked to determine {f the unit to
whieh {t (s directed (s attached, I¢f {(t {s attached, 3GTPKT

PAGE 36

must check {f the attached task is the same as requesting
task, I¢ it (s, it returns the packet to the driver, If {t
is not, it contimues the aueue scan, It will either ¢{nd
work, or returm busy,

3,3,7 Termimation Processing

On am I/0 interrupt (specifically a terminmation {{m our present
discussion) the driver (s entered directly, The driver first calls
SINTSV and them $FORK, Or return from 3IFORK access to sashared data
bases has been l{mear{zed and the driver may finish processing of the
1/0 recuest, The proutine that performs this processina is called 1/0
done,

I/0 Dome proceecs as follows:

The controller and unit are ynbusied, (Both the controller and unit
reauire busy {mdicators to emable the Executive to identify the
controlleraunit busy relationship {If a power fatluyre occurs),

The relocation bias and I0SB address {mn the 1/0 packet are uysed to
locate the 1088, If an 108SB was specified then the final status f{s
atored, 1/0 Done then decrements the outstanding I/0 count (the 1/0
Count s used to prevent task checkpoimtimg {f outstanding 1/0’s are
pending for the task), l¢ the count goes to 2ero, and the task was
blocked for I/0 rumdown, the task is unblocked,

It a checkpoint reauest was pending for the task, an intermal routinre
{s called that wil)l im{t{fate the checkpoimting process,

A check {s then made to determine {f am AST address was specified, {ft
not, the 1I/0 paeket {s released to dymamic storage, a significant
event {8 declared) and I/0 Dome returns to the driver.

If an AST address was specified, the 1I/0 packet {s wused for the
required AST dymamic storage and ft s Vimked imnto the AST l{sthead
for the task, A sign{ficant event 1{s declared and 1I/0 Dore then
returns to the driver, on return, the driver will Jump to {ts
initiator entry point with the address of the Just upbusied device UCB
fn RS, The {mitiator calls SGTPKT and the process of lookimg for work
begins again, It should be noted that once underway, efther by a cal)
from QI10, or entpy from an interrupt terminatiorm, a driver propagates
{ts own execution by cyclimg back to {ts imit{ator entry point looking
for more worik,

3,3.,8 1/0 Processing Summary

RSXei{M 1/0 drives {tself from four data structuress

PAGE 37

The Device Conmtrol Bloecks

The Umnit Control Blocks

The Status Comtrol Block, and

The {8eword driver aueue 1/0 packet,
Centralized routi{imes facilitate both f{mnftisatiom and termimation
processing, And, fimally, the fork structures used by the drivers
along paths reauiring more tham 538us of procesgssing both Jimearize

access to the I/0 data bases, and decrease the momeinterruptible time
within the system {tself,

PAGE 38

3.4 MCR = Monitor Censcle Reoeutine
MCR (s the collectiomn of fumctions that make it possible to operate
and contro)l the RSXmii{M gystem from a terminal device, As the)inmk
between the collection of services provided by RSX«1{1M and wusers who
want to make Use of these services, MCR provides a mumber of services,
specificallyy
Services 1=16 ryn as MCR overlavs,
1, ABOrt
The task mame submitted with the command will be aborted,
2. ALTQP
The priority of the mamed task {s altered,

3, CANee)

Periocdic rescheduling {s terminated for task mame submitted,
The task 1{tself remains {n the STD, anmnd may be active or
{nactive,

4e DEVices
Symbolic rames of all devices knmown to the system are

displayed om the requesting termimal, The display imcludes
any device redirections,

S FIX

.The mamed task is fixed {imn memory, This task cammot bhe
checkpointed, and will remaim {m memory at task exit,

6, LUN
A list of Legical Unit Numbers and their associated device

symbolieas (s displayed for the task name submitted with the
command,

7. OPen

Open {s ysed for examimation and/or modificatiomn of main
memory,

8, PARtitions
This command outputs a description of each partition and

subepartition {n the system, The liast also specifies {f the
partition {a & task or common partition,

9,

10,

11,

12,

13,

14,

15,

16,

Services

17,

PAGE 39

REAsign

Reassign demassians a Logical Unit Number from ome physical
device amd assignimg {t to amother fop the mamed task,

RED{rect

Redirect makes posible the redirectimg of all I/0 recuests
from one physica)l device to another havirg comoatible
characteristics,

REMove

The task named 18 deleted from the STD, The task so removed
{s unknowm to the Executive and exists omly as a disk {mage,

RUN

This command enables a task to be scheduled in terms oft

a, A delta time from now,or

be A delta time from clock umit symnchronizatior, or

Ce Absolute time of day, or

de Immediate execution,

with options a, b, and ¢ perfodic rescheduling {s provided,
SAVe

This command preserves an image of the RSX=1iM Executive on
disk sueh that a hardware bootstrap or the 800t MCR fumction
can reload and start up the system,

SET

Set termimal and device parameters,

TASks

This command outputs a description of every task which exists
in the STD, :

UNF { x
Unfix reverses the effect of FIX,
{7=22 run as tasks,

BOOt

PAGE 40

The Boot Command wil) bootstrap am RSX={iM system fpcm a f{le
that was el{ther created by the SYSGEN process or the SAY MCR
fumction,

18, DMOunmt
Declares a volume logically off=line,

19, INItialize
Creates an RSX=1{{iM stpructured volume,

20, INStal)

The task contaimned im the file specified im the command s
entered {nto the STD, amd the task header {8 {nitialized,

21, MOUnme
Declares a volume logically on=)ine,
22, UFD

This command creates a User File Directory (UFD) anmd enters
{ts name imto the Master File Directory (MFD),

3,4,1 Structure Amd Operatiomal Environment 0f MCR

MCR {s am RSXel1iM task which operates out of a subpartition which {8
part of a main partition occcupried by the F{le System», TKTN, the task
termination notification task, also operates out of a subpartition of
the F{le System partition, The partition is set up so that the file
system {s checkpoi{mntable and either TKTN oar MCR can checkpoint the
File System, Thus, the f{le system w{)! be swapped out amd MCR
swapped {n when am operator request occurs,

MCR {s a tree structured task, and {ts structure {s depicted
schematically in Fiqure 3=5,

* We mean that part of the file system preferred to as File Control
Primitives,

PAGE 41

|

|
ROOT

l

|
l | l | l l | | |
l | | | | l |) l
DISPATCHER PARSERS(1=3) COMMAND FUNCTION PROCESSORS
! ! | | | } l ! |
l | |) ! | | | l

g o= o= o= o o=

Figure 3=5 MCR Tree Structure

The command functiom processcrs are those that process the first 16
congsole services listed {n Section 3,4, The remaining console
services run as tasks and mot as integral parts of MCR, MCR, im fact,
does not distinguish between thege task fumctions, amd tasks that it
fmitiates as a reault of recognizing an MCR reauest for functicons
17=22 l{sted {n Section 3,4, The console lanquege symtax (s defined
such that {f the first three characters of an input line are mot part
of the defimed command language, thenm MCR wi{ll attempt to {mitiate the
task mamed

2o e XXX
Thus, the task naméd eseJIM can be {nitiated by entering
JIM
to MCR, or by entering
RUN ...JIM

to MCR,

3.4,2 The Termimal Driver and MCR Initiation

The terminal driver {s {ntimately {ntegrated imto the operation of
MCR, Since RSXw{iM accepts and acts upon unsolicited {imput from any
operator terminal, it {s the functiom of the terminal driver to know
when {t {3 receivimg {mput destined for MCR,

when a character on ar operator terminal {s struck, the resultinmg
{nterrupt {nitiates the termi{nal driver, (Remember the device is full
duplex and the keyboard camnmot be locked to prevenrt {nmput when the

device

PAGE 42

{8, imn fact, involved {im an 1/0 operation), The driver then

acts on the {mput as follows,

1.

2.

3,

4y

[Check the device state)
Is the device busy, No, go to 3,
[The device {8 busy]

If the driver was sendinmg output (im am outPut state) when
the character was entered, an {mput reauest flag {s set {n
the appreopriate UCB and the driver comtimues semdinmg the
outpout stream, When the output reauest s fimished,
processimg continues at S,

If ¢the termimal was {m amn {nput state the character (s
accepted, Go to 6,

[Device {s mot busy)

Note, {f the device was mot busy, the {mcomimng character s
the first character of an input linme,

Was the {mput <character a ControleC? (ControleC (s an
explicit reauest to communicate with MCR), 1If the character
was a Control=C, the terminal driver executes a fork and
executior continmues at 4,

If the first character is mot a Control=C, themn a check {9
made to see {f the device {s attached, !f yes, them {gnore
the character (unsolifcited {mput to MCR on anm attached device
{s mot permitted),

1t the device {s umattached then {t will be comsidered the
beginning of unseli{cited {mput to MCR, Go to 4,

[Fork leve)l processing)

The driver has transferred to fork level because it neecds a
buffer, and 1t can only get a buffer at fork level (shared
system tables must be altepred to obtein a buffer), In
addition to getting a buffer, the fork level terminal
processing code myst check for a rare race condition,

After the arrival of the ControleC (or a nmnomn Controls(
character {f the termimal {s not attached) and between the
time the fork {8 executed amnd contro)l {8 regaired {nm the
ar{ivery 1{t {s possible that the device may have peturrmed to
the busy state, This is because we may have Juyst unbusied
the device for a previous reauest when the input interrupt
occcurred, The {mnterrupt code finds the device free and
executes a fork, But before control {s regained at fork
level, execution {s continued in the driver for the previous

Se

6

PAGE 43

request, The dpriver Jumps to the {m{tiator enmtry to
propagate {ts execution and thus may f{nd amother waitimg I/0
reauest which {t wi{)) begir processing since the device {s
free, Thus the fork routime must recheck the state of the
device, I it (s busy the ingut {8 fgnored and the driver
retyrns (exits) from fork level, Elgse an attempt (s made to
obtaim a buffer for the umsolicited {mput,

[Buffer Acquisition])

1t the buffer acquisition attempt is umsuccessful, the driver
{grores the {nput and exits,

If o buffer is obtained, the driver gets up to start an
unsolicited i{mput request by inftializimg various pointers
and settimg the gstatus of the comtroller and unit te busy,

I¢ the ini{ti{a) {mput character was Control=C, then

MCR>

{s echoed to signify an explieit request to {mput to MCR,

Else the {mput character {8 stored {n the buffer and
echoed on the {mftiatimg terminal,

The driver returns (exits) from fork level,
{Character processingl
Once the terminal driver has determined that {rput coming
from an operator terminal (s destired for MCR, {t wil)
transfer subseauent characters into the buffer acauired {n
Step 5, It also echoes the inmcomimg characters, The
acceptance of imput will cease {f1t
a, The buffer s filled (the buf!eé has room for 80
characters) but the maximum accepted depencs on the
deviecey
72 for KSR
72 FOR VTQ2SB
80 for LAZOS
8@ for LA3QS

by, An end of lime character is entered, The valid end of
1ine characters aret

Controlm?

PAGE du

Carriage Return
ALTeMode (codes 33, 175, and 176)
7. (Interrupt from a character echol

Is the device {mn {mput mode? If mo go get amother character
from the user cutput buffer and echo {t, If the device {8 in
{nout mode, is endwof=line set? If mo re=-emable the keyboard
{nterrupt amd exit from the interrupt, If emndewofmline {s
detected, then fork,

8, [End=of=lire processing = fork level)

Was the {mput solicited or umsolicited? For umsolicited
{nput, deposit the UCB address and the termimating character
{nto the input butter amd 1ink the buffer {mto MCR’s {nmput
avueuye, them request MCR to rum, The driver itself clears
control anmd unit busy amd returms to {ts {mitiator entry
poinmt,

For solicited {mput 1/0 Dome wi{l! be called, First, the
number of characters entered {8 determimed and the buffered
{rput is moved to the soliciting task’s {mput buffer, The
driver {mput buffer is released amd 1/0 Donrme {s called with
the second 1/0 status word equal ¢to the number of bytes
entered, The VYeft byte of the first I/0 status word {s set
eaual to the term{mating charactepr and the right byte to +1,
The driver them Jumps to the {mitiator enmtry point to
propagate {ts execution,

3,4,3 MCR Operation

After the reauest of MCR by the drivepr, the file system {s swapped out
and MCR {s swapped 1{n, Comtrol (s passed te the MCR root segment
which calls the Dispatcher (DSPTCH) overlay, ODSPTCH, via a privileged
subroutine (SSWSTK), switches ¢to system state, The call to this
routine {melydes a parameter which (s the asddress where ¢the callerp
wants to - retyrn when f{t switches back to task state, The astate
switching poutine performs the switch and pesumes processing {m the
caller {immediately following the call, Whemn S$SWSTK {s called, it sets
up an {nteprrupt entry to the system, Interrupts are locked out while
{t pushes the passed retuprn address and the PS on the stack, S$SSWSTK
then calls {nterrupt save (SINTSV), Om returm from {nterrupt save R3,
R2, R1, RO are pushed onto the stack and mow the stack state simulates
that of amn EMT, SSWSTK mow calls the caller who resumes execution one
imstruction past the call, When the callimg routime fimishes, it
returns, which takes {t back to $SWSTK, $SWSTK Jumps te Directive
Exit which predispatches the processor, The effect of this (s to
resume the caller {n task state at the passed returm address,

PAGE dS

MCR mow proceeds as followst

i,

2.

[Reauest an unsolicited {mout Queue entry)

The Dispatchepr calls the Queue Removal routinme (SQRMVF),
$ARMVF will attempt to remove a buffer and deliver {t to the
Dispatcher, If no buffer is available (carry set return from
$QRMVF) the Dispatcher exits, The buffer {s formatted as
shown {im Figure 3wp,

(..--WORan.)(n---NORD-n.><.--UP TO Bﬂ BYTES""
OO ENRE NN RIS PERER TR TPR RPN TREERE R
! LINK TO | uce OF } COMMAND INPUT l
!} NEXT BUFFER| INPUT DEV | |

Figure 3«6 Inmput Buffer

The aqueue empty condition wil) mever occur on an initial call
to MCR, since MCR {s not reaquested unless something {s in the
aueue, MCR wi{l) remain resi{dent umt{) {t mas processed all
the entries in the unsolicited {mput aueue, ’

Note that the Dispatcher, durimng butfer reauisition, (s
operating at system)evel, and all aueue entries are done at
fork level, Thus.the buffer removal process s linearized
with buffer {tem entry,

If DSPTCH gets a byffer, {t saves the buffer address {n 8
memory location and does a return, This return takes DSPTCH
back to task state where the processing of the buffer hegins,

[Process a [Buffer)

On return to task state, the dispateher scans through the
buffer and

compresses out recundant spaces and/or tabs
converts an Escape character to a Carriage returnm
truncates trafiling spaces amd/or tabs

It mo Y{me termimator {8 found {m the buffer, a CR {»
{mserted as the 8Qth character, Finally the actual line
terminator (e{ther CR or ESC) {s saved so it cam be restored
im the message {(f the message must be routed to a task other
than MCR {tself,

The dispatchepr then converts the fipat ¢three characters to
RADS? amd begims to search two imtermal tables for an MCR
function with a matching mame,

3

PAGE 46

[Searching the fumction tables « Table descriptionms)

MCR has two fumctionm tablesy ome for privileged commands, and
one for non=privileged commands,

Privileged commands are those whose unrestricted use could
cause oprivacy violatiom or system failures and they canr only
be executed from a privileged terminal, Privileged terminals
are i{dentified by a bit in the UCB, These termimnals are
established at SYSGEN or by the SET command,

Both tables contaim & S=wword packet for each commamnd inm the
class (privileged or monmprivileged), The packet appears n
Figure 3=7,

} RADSA CMD NAME (3 CHARS) |

! INDEX INTO COMMAND OVERLAY !

| ADDRESS QOF PARSER TABLE |

| RADS@ COMMON OVERLAY NAME |

| INDEX INTO COMMON OVERLAY !

Figure 3=7 = Functior Table Entry

The table {is designed with the assumption that & giver MCR
function would mot reauire more than three overlays to carry
out its intent, Thus, the table entries correspond to three
overlay types!

Command overlay,
Parser overlay, and

Common over)ay,

The use of these overlay types {s {mn qeneral observed, but
exceptions occur and they wil) be nmoted,

Typically, any command that can be processed {(m a single
overlay, and whose size (s such that {t reauipres all or
nearly all of the max overlay s{ze (602 was) will be classed
as a command overlay,

Parsers fOor the commands are distimct enrtities and are
grouyped {mto overlays, Generally, a givern parsepr seprvices
more tham one command but three parsers currently service al)

la,

PAGE 47

the commands, The parser entry {8 a poimter to a parser
table emntry shown in Figure 3=8,

| RADSQY PARSER NAME (3=CHARS) |
| INDEX INTO PARSER OVERLAY |

Figure 3«8 « Parser Table Entry

Since three parsers service s8l) the cemmands {t {s more
ecomomical {m storage space to point to the parser table
rather tham imnclude the name and the f{mdex {m the main
functiomn table,

The {ndex {8 used as the emtry poimt into the parser where
the parsimg for a given command begims, This {s reauired
since a parser can, and generally does, contaim parsers for
more than one command,

The common overlay {3 used when the processing for a command
is smal) enough to make it practical to group more than one
command {mto a single overlay, This groupimg saves space
since tem words are required by the Overlay Runtime System
for each overlay im a tree structure, The Index serves the
same puyrpose as the imdex {m a parser overlay,

Note that a command overlay also contains an i{ndex, The
value of the command overlay {ndex {s gemerally zero, But to
maintain the coheremce 0f the table processing commonality,
and to allow for flexibility, the imdex {s {ncluded,

{Look up and start a fumction othepr tham am MCR f{ntermal
funetion)

The dispatcher then looks {n the privileged command table for
a mame which matches the f{rst three characters {m the input
buffer, This table contains all! the privileged MCR commands,
These are noted in the commanmds Yi{gted in Sectiom 3,4,1,

Internally, privileged terminals are {dentified by a bit in
the UCB, The bit {s set at SYSGEN or from a privileged
terminal using the SET MCR command,

It the command {s not found {n the privileged command table,
the monmpprivileged command table {8 searched,

If the name is not {n efther table, them the dispatcher wi))
prefix three periods to the three buffer characters and usinmg
these six characters wil) search the STD lookima for a mateh

3b,

3¢,

PAGE 48

omn the name, If {t does mot find the rame it will display anm
error message on the initiatimg termipal, If {t fimds the
name, {t w{]) request the functiom to rum, supplying as an
argument to the requested task the UCB address that was in
the 1{imput buffer, The UCB address (s imnserted into the TCB
of the reauested task as {ts TI (termimal {nput) ©oseudo
device, It the attempt to reauest the task fafls anm error
message {s displayed, the buffer {8 released and MCR exits,
Havimg discovered a nonsinmntermal MCR functiom, MCR must
prepare to pass the bhuffer, since the inftiated task ie going
to i{ssue a GET MCR COMMAND LINE directive, To pass the
buffer MCR uses three words imn System Common, These words
arel

1, The TCB address of the requested tasks
2. The address of the command buffer, and

1., The byte count of the mnyumber of {imput characters {n
the buffer,

MCR fills these words, makimg symchronizing checks that they
are free, since only one triplet exists for vassing buffers
to a reauested task, Thus, unt{! the buffer (s emptied,
other completed byffers im the ayeue will be waiting,

Eventually (and this should be soonm) the reauested task wil)
start runnimng, anmd {ssue a GET MCR COMMAND LINE directive,
The directive processing then tests for a match on the TCB
address {n SYSCM and the TCB address of the reauesting tasik,
If they match the buffer |{s passed to the task by cepyimg {¢t
into the DPB of the directive, The directive status (s set
to the byte count, the buffer is released and the TCB address
{fn the SYSCM tri{plet {8 cleared, The TCB address being 2ero
{s an indiceatiom to MCR that the triplet {s free,

[Start am {ntermal MCR fumction)
Once a name match has been foumd im the command table, the
Dispatcher copifes words 1, 2, 4 and 5 of the function table
entry and both words of the parser table entry for this
command {nmto the MCR root segment, Now the Dispatcher scans
the function table entry as follows!

IF

A parser exists
THEN

Go to 4

3d.

PAGE 4S9

ELSE
IF
a command overlay exists
THEN
Go to 34
ELSE
IF
a common overlay ex{sts
THEN
Go to S
ELSE
Abort

Form overlay mame, construct reauired overlay i{nformation
packet, and enter the root at the poirmt where overlay loading

{s performed,

4,

S

6

{Parser functions)

The selected parser wil)l parse the buffer and, {f the parse
{s successful, 1t wi{l! Jump back to the root to load the
des{red fumnction, If the parse fails, the parser deposits an
error number in the root amd Jumps to the entry SERLD {n the
root which loads the error overlay,

Ultimately the root will in{tiate another routine, either the
error routime or the requested fumction,

(Fumetiom routinmes]

These routimes may further check the imput and fimd errors,
It errors are found, the function sets up the error routine
and Jumps to the root to load am error overlay, It ¢
succeeds, the fumctiom will release the buffer and enter the
root at the poimt where the root will reload the dispatcher,

(Error Overlay)

The error overlay contains all error messages and the code
needed to format the error message from the error mumber
deposited {m the root by the MCR component di{secoverimg the
erroOr,

PAGE S@

7 (Fimal Exit)

The dispatcher calls the aqueuye routime to obtaim another
buffer, {(f one {8 feund the cycle of mname table scanning
resumes (startimg at step 2), If no buffers are waiting, MCR
exi{ts,

3.5 Partitions

The user area of RSXmii{M {8 divided {nto partitionms, In unmmapped
systems tasks are boumd to a specific rartition and must execute from
that partition, In mapped systems tasks may be {nstalled and
subseguently executed in any partitiomn provided the partitiom {s larqge
enough and sufficient checkpoint space {s available {n the task {(mage,

A partition always consists of at least a main opartitiony the mainm
partition can be subdivided {imto as many as seven subpartitioms, The
execution of tasks within the main partitiomn amd {ts subpartitions s
mutually exclusive, This means that {f a task {s executing in the
main partition no tasks mey be executing {m any sybpartition of the
ma{n partition, Contrarywise, {f a task s executimng {n a
subpartition no task requiring the main partition may be executing,
The subpartitions, however, can all execute {n oparallel,

Subpartitions exist so as to make {t possible to reclaim amd subdivide
arge partitions that service nonrealtime tasks li{ke Yanguage
translators,

If a maim partition task {s fixed {n memory them no other main
partition or subpartition task may execute unti) the task {s unfixed,
A fixed subpartition task wi{ll exclude the execution of a main
partitiomn teask amd other tasks wanting to execute from the subject
subpartition, Other subpartitions eperate {ndependently,

An {dentical set of comditions apply to tasks that are nmot
checkpointable,

The manipulation of a partition and {ts subpartitions becomes more
intricate whem the tasks occupying them are not fixed in memory and
are checkpointable, Any nmymber 0f tasks can be waiting for use of the
partition or aubpertition, Given that no tasks runnimg out of a
partition are fixed {n memory, and that all are also checkpointable,
the 8ocle determiner of which queued tasks waiting for the partition
will rum {s priority,

When a task {s requested it is entered into the apprepriate partition
wait aqueue and a sequence s initiated to determine {f the existence
of this task im the partition wait queue will reauire checkpointing of
+he tvask cyrrently occupying the Partition, If the task entering the
walt queue (g of higher priority them that of the current task,
checkpointimg wil) proceed,

PAGE S

Wher & task that {s not fixed {m memory exits, the peartition. wait
queue for the partitiom being freed {8 examimed for the highest
priority task waitimg for the partition, and when located this task (s
1oaded and put into active competi{tion for orocesser resources,

Before proceeding’ to the detalled algorithms ysed to service a
partition the key concepts are l{sted below!

* A partitiom comsists of a maim opart{tiom anmd up to Seven
subpartitions,

* Execution betweem a main partition amd 1{ts subpartitions {8
mutually exclusive,

* Executiom amomng subpartitions may proceed im parallel,

* Tasks fixed {m memory or not checkpointable lock up the
partition or subpartitiom from which they are executirg,

* Any number 0f tasks mavy be waftimg for a partition,
* Task access to a partitiom {8 based on priority, Tasks nmot

fixed {im memory oOr nrot checkpoimtable will be rolled out to

make room for higher priority tasks waiting to occupy the
partition,

3.5.1 Parti{tion Comtre) Data Structures

The data structures which service the partition concepts outlimed
above are shown {n Figure 3«9,

PAGE S2

SPARMD | |ome-
onsnewn !
| eweses weesw YL Y
wa>|PCB |=wad|TCBl===>|TCB]
IMAIN| l ! ! |
'L LY | mnoamw LYY I
! seomew
|
i (TYT YY)
wa> | PCB |
{suB |
wowm| !
! wemesew
|
| eswwsow
==>»]|PCA |
{sus |
mwoe| i
l mmmmen
|
{ cevuse [TYY Y} (TI X

»e>|PCB |wewd>|TCBlw=a>|TCB]
IMAIN] | | l !

wwe | i mmaww T rIrr)
t cwwnnw
|
! eeannan
=w>|PCB |
ISUB |
wow]| }
1 Y LY Y
|
| mwsase
wa>|PCB |
lSUB |

l l

Figure 3=9 = Paptition Data Structure

The very compogition of the structure provides imsight intoe both the
extent of the gsepvice and how internmally the service is provagated to
the yser level,

A word {s maintaimed {n system common (SPARKD) that opoints to the

first main Partition Control Block (PCB) in the system, Fprom this PCB
are 'inked the PCB’s for any subpartitions defimned for ¢this main
partition, A1} PCB’s detining other partitions and subpartitions are
sim{larly 1inked, The last PCB is a subpartition PCB except 1{n the
case where there afe no subpartitions of the subject main partition,

PAGE S3

In this case the main partition PCB links to the next main opartition
PCB, The data strueture {s them repeated unti) we rum out of PCB’s te
1imk together, Notice that the TCB’s of tasks waiting to occupy
either the maimn partitiom or a subpartition are always linked frem the
mai{mn partition PCB, The TCB’s are ordered by priority and each
contain a poimter to the PCB of the partitiom for which they are
waitinma,

The scheduling of a partition {s dome by the mext task (SNXTSK)
routine, It (s the functionm of SNXTSK to select the rext task in the
1ist of TCB’s linked from the main partition wait aqueue that s to
occupy the maim partitiomn or a subpartition of the main partition,
Note that this process {s {ndependent of which task in the system wil)
gaim control of the CPU rext,

There are four specific events which can result i{n a charqe of control
in a partition,

1s Task exit of a mnonfi{xed task,

SNXTSK must mow Jook for another task waitimg for the
partition,

2s The loader has completed brimging a task into memory,
A new task {s now ready to compete for the processor,
3. An inft{ation type request occurs,
This can bey
a, A RUN command from a terminal ,
be A RUN or REQUEST Executive directive,

In this case éevera1 checks myst be made by SNXTSK, (we wil)
discuss these checks shortly)

4, The outstanding I/0 count for a checkpoirtable task waiting
for swap out has gone to zero,

The Yoader must checkpoint the task and thén call SNXTSK to
select the next task to occupy the parcition,

"Given these preliminaries we cam now exami{rme the algorithms used to
service partitions,

3.5,2 Partition Algorithms

ie [(servicing inftiation requests]

2,

PAGE 5S4

Is the reauested task active or currently beimg fixed (nm
memory? If ves, returm carry set, (The reauest {s redundant
simce the task {s either rumning or {mn process or beinrg
setwup tOo runm),

If the task {s {mn memory, {t {8 fi{xed {m memory and a
partition allocation pass {8 not reauired, The following
task set up {s performed,

An'initial stack is construeted that wil)l cause the task
to start executing at {ts tramsfepr address,

The task status word 1s set to active,

A cond{tional schedule reaquest s set that wi{l! force
redispatching of ¢the processor {f ¢the task Just made
act{omn {s of higher prior{ty than the currently runmning
task,

It the task {s not {n memory, them {t {s entered by priority
in the Partition Wait Queue amd SNXTSK {s executed,

It should be noted that a task fixedem{n=memory remains
physically {n control of memory evenm {f the task exits, A
task that {s not fixed=in=memory is removed from memory at
task exit thus freeing the memory {n which {t resices,

[SNXTSK = Select the next task to rum in a partition]

SNXTSK begins a scan of the main partitiormn wait queye seeking
to determine {f the partition, for which a task is waiting,
{s free, Note that a given task (s not necessarily the one
most recently f{nseprted i{nto the partition wait aueue,
Examination of the partition data structure wil)l reveal that
all 7TCB’s, both for main amd subpartitions, are 1inked from
the main partition wait queue,

SNSTSK checks {f the partition is ¢free, No, resume ~-‘scan,
Yes, {nsert the TCB address imto the PCB declaring ownership
of the PCB, Set the busy flag {m both the maimn anrd
subpartition, Remove the TCB from the partition wait aueue,
{nsert it {nto the Yoader queue,

A TCB {s always Yinked into the $7D, A given TCB may also be
l{inked {(nto efther the loader ayeue or the partition wait
aueue,

The loader {s then reauested amd SNXTSK tries to allocate
another task withim the partition, The allocation process
continyes until efeher all waiting teasks have beemn assigned
to partitioms or am allocation failyre occurs,

3.

la,

3b,

3¢,

3d,

4,

PAGE S5

[ENXTSK Checkpoinmting = Maim partitiom reauests)

whemever SNXTSK finds a task waitimg for a maim partition
that {s busy it myst make a checkpoint decisiom, For a main
partition reauest, it proceeds as followst

Is the task waiting fer the main partitiom of aufficient
priority to prewempt the task cyrrently occupying the main
partition or a subpartitiony no exit, the partition cammot be
allocated to the waftimg task,

Is the task occupying the partitiom {im any of the following
states?

Not checkpointable
Fixed in Memory
Beimng Fixed {n Memory

14 yes, exit the partition canmot be allocated to the waiting
task, Ne, @90 to 3a and check the next subpartition,
Eventyally, e{thepr every suybpartitiom (s found to be
checkpointable, or the maim partition cannot be freed and
ENXTSK ex{ts,

[Checkpointing subpartitions)

Omce SNXTSK determines the mainm partition cam be made
available by checkpointing the tasks {n the subpartitioms {t
starts the checkpointing process as followst

Is the I/0 count for the task occupyinmg subpartition =2, Ne,
go to 3d, VYes, execute the checkpoint {nitiation routine,

Move the TCB occupying this partitiom {nte the loader aueue,
set a bit establishing the task (s checkpoimted, amd reauest
the Yoader, No further action omn this subpartition {s taken
until the loader recalls SNXTSK after the checkpoinmting
process {s completed,

Set a bit whieh indifcates the task {s to be checkpointed when
its I/0 coumt reaches 0, (This bit (s tested by 1/0 Done,
and {f set, I1/0 Donme calls the checkpoimt inftiatiomn routime
{in 3¢ above),

[SNXTSK checkpointimng = Subpartitiom reauests)
If a subpartitiom s reauested the essentials of the

algor{thm {n 3 above {s followed, but only the reauested
subpartition mneed be checked,

PAGE Sé

Steps jed4 complete the description of partitiem mamagement, But since
the Yoader {8 {(ntimately {mvolved with the algorithms, it wi{l) be
described im this section,

3.5.3 The Loader

The loader, which {8 a resi{dent RSXe{{M gygstem task, has three
functions!

1, Loadimg new tasks ({mjtial readimg of disk {mage)y

2. Checkpoimting tasks (writimg taak checkpoint image to disk),
and .

3, Resumimng checkpointed task (reacimg task checkpoimnt {mage
back from disk),

The loader has a single obJectivey to empty the aueue of tasks waiting
for {ts attentiom, The aqueue s serviced FIFO amad 2 bits {in the task
status word, the checkpoint bit and the out of memory bit, determine
the loader action on an entry,

CKPT on
QUT OF MEM on
The task {8 read back into memory from {ts echeckpoint areas

CKPT on
OUT OF MEM of¢
The task is wrpitten from memory {mto {ts checkpoinmt area,

CKPT off
OUT OF MEM onm
The task {s read into memory frem {ts load image,

CKPT off
OUT OF MEM off
This combination (s {11egal,

Whem the loader premoves the next entpy from {ts queue, {t assumes
memory {s available {f the task is to be ready after the loader writes
a task {mto {ts checkpoint area Release Paptition i3 called whieh {n
turn calls, SNXTSK to select the next task that will occury the
partition,
On readimg a task {imto memory, the loader!

{« Marks {t {(n memory ({,e, clears OUT OF MEM), and

2. Builds a imitia) stack (on imitial reads only)

PAGE 5§57

The marking of the task in memory has the effect of unblocking the the
task so 1t cam compete for system resources, AS soon as a task {s
reauested it {s comsidered inftiated, It will mot compete for system
resources however, until the loader marks {1t {n memory, After
completing the service for a queue entry the loader looks for more
work, and when the aqueue {s empty, {t exi{ts,

Though the loader anmd SNXTSK call each other they are almost totally
igrorant of each others functiom, The call from the loader to SNXTSK
fs sueh that $NXTSK cam’t distirquish 1t from other events that
trigger SNXTSK, And, the loader makes very few decisioms as evidensed
by the faect that the degcriptiomn 0f {ts algoprithm {g best prresented in
narrat{ve form,

PAGE 58
4e@® FAULT ISOLATION = SOME GENERAL HINTS

4,1 Imtproduction

Though RSX={iiM {s a real time, multiprogramming system, {t has, {n the
real memory version, no "brickwall" protectiom, The basic machine
configuratiom which RSX=11M sypports, has only a single program state,
and mno memory protection, The lack of these features simply meam that
the user state tasks can fault such that the system {tself faults, In
these cireumstances, {t becomes extremely {mportant to develop the
skills amd disciplime needed to rapidly {solate the source of a system
failure, This section {8 a first attempt at recording the experience
gaimed thus far {m §solating software faults that occur {m RSX=w{iM,
Ultimately this sectiom should evolve {mto a handbook for field
software specialists, To reach this mueh nreeded state, {t will
require {mputs and suogestiomn from al) members, of the RSXm{{M team,

4,2 Fault Classificationrs
Three culprits cam be fdemtified whemn the system faultss

1o A uyser state task has faulted sych that it causes the system
to faulty .

2e The RSX={i{M sygstem software itself has faulted, or

3. The host harcdware has faulted,
The {mmediate actiom on the part of the programmer subject te one of
these errors {8 to determine which of these three cases {s the source
of the fault, OQur prime comcern will be the procedures which may help
the programmer uncover ¢the fault source, The repair of the fault
ftself {s assumed to be the programmers respomsibility,

Faults manifest themselves {n roughly three wavs (and they are listed
here in ordepr of increasing difficulty of {solation) : .

1« The system displays the CRASH primntout and halts, The CRASH
primtout is discussed im Sectiom x.x,

2, The system halts but displays mothing,

3. The aystem (8 im an Unintended loor,

4¢3 Immediate Servicing

PAGE 59

RSX={{M can be built to contain resident crash reporting and panic
dump rouytines, and our comments assume such a system, (It should be
noted that the minimal gystem wil] mot have space for these routines,)

The {mmediate aim, regardless of ¢the fault man{festatiom, s ¢to
initiate the crash reporting and panic dump routimes,

4431 Case | = The System Has Displayed the Crash Printout
In this case, all the basic information describing the state of the

system has been displayed, We wil) pick up the actual Crash printout
after we have described how to imvoke Pani{e Dump for cases 2 and 3,

493,2 Case 2 = The System Has Halted = No Imnformation Displaved
Before taking any action preserve the currenmt PS and PC ({,e, examine
and record), The procedure depends on the particular PDP=i{
processor, For all processors, the PC {s displayed {mn the address
register, The PC can alsoc be obtained as follows:
For an 11/45

{. Enter a 7 {(mn the console Switch Register

2. Depress Load Address

3, Depress Regi{ster Examine

4, The PC {s displayed i{mn the data 1ights, Record the PC,
For an {1/40 or 11/10

1« Enter 7777087 (n the console switch register

2, Depress Load Address

3, Depress Examire

U, The PC {s displayed {n the data 1ights, Record the PC,

Now obtaim the PS, the procedure for which, (s {demtical {in al)
syastems,

i« Enter 777776 1n the console switch register
2, DOepress Load Address

3, Depress Examinme

PAGE 60

4, The PS (s displayed imn the data lights, Record the PS,

Next {mvoke the Panic Dump routime by entering U4Q(R) {m the awitch
regi{ster, Depressimg Load Address, and them Start,

40(8) is the address of a JMP to the Pamic Dump Routime im amy RSXw{{M
system,

The Panic Dump saves RP@=R&6 and themn halts awaiting dump l1i{mits ¢to be
entered via the comsole switeh register, The PS {8 cleared when START
{s depressed, and the origimal PC {s destroyed, Thus the {mportance
of recording these vital pieces of debuggimg 1{nformatiom before
inftiating the Panic Dumo,

Dumps of selected blocks of memory may be obtaimed usimg the following
procedure}

{ « Enter the low dump 1imit im the console switch register and
depress continue, The processor wi)l! {mmediatelv halt again,

e = Enter the high dump Yimit {imn the console switch register and
decress continue, The dump wil)l begin on the device whose
CSR address {s DSBUG (usually 177514 which {8 the line
primter), At the end of the adump the processor will again
halt awal{ting the imput of amother set of dump limits,
To reach the same status arrivec at with crash reporting {nm
Case 1 above, enter the dump l{mitsg Q=520(8) wher the panic

dump first halts, This wil) dump the system stack and the
regiaters, :

4,3,3 Case 3 = Svitem Is In An Unintended Loop
Proceed as followst

Halt the processor

Record PC, and PS as inm 4,3,2 above,

After recording the PS and PC, the programmer may wamt teo steo through
a number of {nstructions {n an attempt to locate the loop,

After the attempt to locate the Joop transfer to the panic dump
routime as i{n Case 2,

This brings uUs to an equivalemt statyus for the three fault s{tuations,

44 Other Pertiment Fault Isolatiom Data

PAGE 61

Bafore proceeding with the task of locating the fault, the programmer
{s strongly advised to dump system commom (SYSCM), He cam accomplish
this by lookimg for the file SYSCM {m the Executive load map li{sting
and enterimg the approoriate l1imits to the FPamic Dump Routime, SYSCM
contaims a number of critical pointers amg listheads,
In addition the programmer should dump the dymamic storage pool and
the device tables, The dymamic storage regionr {8 the module INITL and
the device tables are {n SYSTB,
The programmer mow hasy

PS

PC

The Stack

R@=R6

The Dynamic Storage Region

The Device Tables, and

System Common

This date is a minimal requirement for effect{ve fault isolation, It
an {imdi{vidual programmer plans to consult with other group members on
the source of & fault, he should do so only after he has collected

this data, Evemtually, we wi{ll require that all SPR’s suypply this
imformation,

4,5 Fault Tracing
Three pointers {m SYSCM are critical im fault tracimg,
$STKDP « Stack Depth Imdicator
This data {tem will indicate which stack was being used at the
time of the crash, As will be seen, this plays an {mportant role
{n determining the origin of a fault, The following values
apoly, ’
+1 = User (task atate) stack
? or less = System stack

STKTCB = Pointer To the current Task TCB

This is the TCB of the user leve) task {mn control of the CPU,

PAGE 62

SHEADR = Poimter To The Currenmt Task Header,

Locatimg the header provides seome other useful data, The first
word {m the header is the users stack poimter the last time {t
was saved, If the Stack Depth {3 +1 them the user has managed to
crash the system, In a system with brickwal) protection (for
example, the mapped RSX=1{M system), the user shou'ld mot be able
to crash the system, Even {f the user stores in the Executive,
the crash will mot occur unti) the state is switched amd them the
system will crash, Such a fault may prove diff{cult to lecate,

If the user branches wi{ldly into the Exec it will terminate the
user task, but the svstem will contimue to functierm (possibly
erroneocusly), Krmowing the users stack poimter provides ore more
1ink {n the chain which may lead to the resolution of the fault,

4,5,1 Tracki{mg Faults Following Am Automatiec Display Qf The System
State (Case)

First examine the system stack pointer, Usually arm Executive fajlure
s the result of am SST type trap within the Executive (other tham the
specialized use of the trap fnstruction),

It an SST does occur within the Executive, then the or{gim to the cal!
on the <crash reporting routine will be in the SST service module,
(The crash cal) {s {nitiated by {ssuimo am 10T at a sStack depth of
zero or less,)

A call on crash also occurs in the Directive Dispatcher whem an EMT
was fssued at a stack depth of zero or less, or a trap instruction was
execuUted at a depth of less than zZero, The stack sStructure {n the
case of an {ntermal SST fault {s as follows:

PAGE 63

| PS |

l PC !

l RS l

! R4 !

l R3 |

| R2 l

| R1 |

| RY !

| ZERO OR MORE SST PARAMETERS |

| SST FAULT CODE |
l NUMBER OF BYTES | Cw=naSP

Filogure 4=}

The PC points to the {nstruction following the ome which caused the
SST faflure, The number of bytes {s the number of bytes that are
normally transfered to the user stack whem the particular type of SS8T
occurs, If the number {s 4, then Just the PS and PC are transfered
and there are no SST parameters, The defirmitiom of each fault code
can be found {n the file ABODF,

It the failure {s detected {n SDRDSP the stack is the same as Figure
4e={ except the number of bytes, SST fault code, amd SST parameters are
not present, The crash report message, however, will {ndicate the
failure occurred {n $DRDSP,

There is one SSTwtype failure that wil)l mot have the stack structure
of Figure 4=! and that {s stack underfliow, To distinguish the two
cases, determine where the crash actually occurred, If it occurred in
$DRDSP, or was a normal SST ecrash, thenm Figure 4=] {8 the stack
structure preserved, If {t was a nomnmnormal §ST, them Figure de=2 1S
the preserved structure,

PAGE 64

€w=3P
T are w2

Nonerorma) SST fa{lures occur when {t {8 nrot possible to push
informatiomn on the stack without forcing anmother SST fault, When this
occurs, a direct Jump to the crash reperting routime {8 made rather
tham am IOT crash, The PS8 and PC om the stack are those of the actual
crash, and the address printed out by the crash reporting routime s
the address of ¢the fault rather tham the address of the IOT that
crashes the system, Note that the crash reporting routinme removes the
PC anmd PS of the IOT inmstruction frem the stack which im this case i
imcorrect, Thus the stack poimnter wi)) appear to be 4 greater than it
really is ({,e, as {mn figure U=2),

The programmer noew has all the {mformation he nmneeds to {solate the
cause of the fajlure, From this poimt on he must rely om his oOwn
experience and kmowledge of the interaction between his oprogram and
the services provided by the Executive,

4,5.,2 Tpracking Faults When The Processor Halts Without Pproviding A
Fault Display

Tracking starts with an examimation of SSTKDP, S$TKTCB, and SHEADR,
The difficulty {n tracking faitlyures in this case {s that the system
stack {s mot directly asscciated with the cause of a fa{lyre,

By examin{ng $SSTKDP, one cam determinme the system state at the time of
fatlure, I+ {t was {n yser state, the next step {s to examine the
users stack, The examination process focuses on gcannimng the astack
for addpesses which may turmn out to be subroutine links which wil)
ultimately lead to a thread of events {solating the fault, This s
essentially the 8ame aim {n lookimg at the system stack {¢ SSTKDP {s
zero or less,

Freauently o fault will occur such that the SP poimts to Top of Stack
(T0S)+4, This results from {ssuimg am RTI when the top two ftems on
the stack are datay this wil) result {mn a wild branch, them, most
probably, a halt, Figure Ue3 shows a case, where two data {tems are
on the gtack whem the programmer executes am RTI. '

TOS points to a word containing 40120, Suppose that Jlocation 401@2
contains a halt, This indicates that the original SP was four bytes
below the fimal SP and fault tracing should begim from the orevious
8P,

PAGE 65

| |<=aSP

| 51

! UN1Q2Q | <maSP

Fiaure 4=}

4,5,3 Tpracking Faults Whem Am Un=imntended Loop Has QOccurred,

After halting the processor, we are roughly {n the same state as the
preceeding sectionrm, Some specifie suggestions are to check for a
stack overflow loop, Patterms of cdata successively duplicated on the
stack {ndicated a atack loopinmg failure,

The comscle 1ights may also {mdicate the origin of a problem, A
tight, glimmering pattern may inmdicate hardware, while a blinking,
more elongated, yvet repetitive pattern may {ndicate software,

5.8 DATA

S« Part

PoLNK

P NAM

P.SUB
P MAIN
P.REL
P,SIZE
P WAIT

P.BUSY
P,TCB
PeSTAT
P.PDR
Po.HDR

S5¢1s1 Pa
P.LNK

Deac

PAGE 66

STRUCTURES

ftion Comtrol Rloek (PCB)

{ PCB LINK WORD | @
{ PARTITION NAME | 2
| (RADIX S@) 1 4

| PNTR TO NXT SUB=PARTITION PCR | 6

| POINTER TO MAIN PARTITION PCB | 1@

| PHYSICAL ADDRESS | 12

! SIZE OF PARTITION IN BYTES | 14
I PARTITION WAIT QUEUE 1 16
:.-‘------- LISTHEAD ..-----.--I 20
I PARTITION BUSY FLAGS 1 22
I TCB ADDRESS OF OWNER | 24

| PAR 8TATUS I# APR’S TO LOAD! 26

LT LY L L P Y LI LYY LYY P Y YY) wew MAPPED
| CONTENTS OF LAST PDR | 32 | SYSTEM
T Y I I T I I Y Y Y Y Y LY T Ty 1 ONLY
! ADDR OF HDR IN MAPPED SYSTEM | 32 |

rtition Contrel Block Details

riptions

Poimter to next partition, The PCB’s are 'i{nked in ophysical
address order, highest to lowest, If a mai{m partition has
subpartitions these are l1{nked {m the PCBR chaim off the main
partition {mn highest to lowest address order, The last
subpartition of a maimn partition wil) ejther end the PCB
chain or 1ink to the next maim partition, A mainm partition
with no subpartitions either Yinks to the next maim partition
or ends the chain,

PAGE 67

Inftialization/Access!
P NAM
Descriotiont
Radix 5@ partition nmame,
Imftialization/Access?
P.SUB
Descriptiont

Poimts the next subportiom, Structured ard used anmalgously
to P,LNK when manipylatimg a chain of subpartition PCB’s,

Inftialization/Accesst
P,MAIN
Descriptiont
Backpointer from a subpartition to {ts carent main oaftition.
Inftialization/Access!
P,REL
Descriptiont
Partition base relocation bfas, In a mapped system P,REL s
the biasy {n am unmapped system, P,REL {s the actual
partition address,
Inftial{ization/Access:
P,HDR (ummapped system only)
Descriptiont
Task Header pointer,
P.SIZE
Descriptiont
Size of partition {n bytes,
Inftial{zation/Access:

PAGE 68

Descriptiont

A poimter to a Ji{st of ¢tasks awaftimng the use of the
partition, The 1{st i3 ordered by priority and {s searched
toe determime which task should be {m control of the
partition,

Inftialization/Accessy

P.BUSY

Descriptiont

A two byte field, The first byte, the busy status, {8 the
{meclusive or of the state for the mai{n partition amd all {ts
subpartitions, The second byte, the busy mask, contaims a
busy(i) not busy(@) settimg for the maim partition amd {ts
sevemn sybpartitionrs,

In{tialization/Accesst

P,TCB

Under complete comntrol of the set command processor,

Descriptiont

TCB address of partition’s owner

Im{tial{zation/Accesst

PeSTAT

Descriptiont

The status bits have the following meanings

Bit Symbolic Meamning

Pw2 PS,APR Starting APR number for mron=PIC Vibraries
3 Reserved)

4 Reserved

5 Reserved

6 PS.PIC Library is Position Imdependent lcYes

7 PS,COM Partition is a COMMON/LIBRARY partition

Inftializetion/Accesst

P.NAPR

Descriptiony

PAGE 69

Nymber of APR’s to load,
Initialization/Accesst
P.PDR (mapped systems only)
Descriptiont
Contents of the last PDR,
Inftialization/Accesst
P,HDR (mapped systems only)
Descriptiony

Address of the Task Header,

5.2

Task

T.LNK
T.PRI
T.10C
T.TCB

T NAM

T.RCVL

TJASTL

T.EFLG

T.uCB

T.TCBL

T.STAT

T.LBN

T.LDV
T.PCB

Comtro) Block

| UTILITY LINK WORD l

I 1/0 CNT | PRIORITY !
| ADDRESS OF THIS TCB |
! TASK NAME !
wesenenene IN sescsenseen
| RADIXS52 o
| |
weoewess RECEIVE LISTHEAD smaenens
| l
l |
vessvawenmAST |LISTHEAD=smanwwweenane
l !
! TASK LOCAL l
wnwnome EVENT FLAGS |=3lwwmuncncnun
| |
| UCB ADDR OR REQUEST TERMINAL |
| TASK LIST THREAD WORD !
l TASK STATUS WORD l
! LOGICAL BLOCK JTSK STATUS EXT |

| NUMBER OF TASK LOAD IMAGE -)

| UCB ADDRESS OF LOAD DEVICE |

| PCB ADDRESS OF LOAD PARTITION |

19
i2
14
16
2o
22
24
26
k17
32
34

36.

4

4e

PAGE

70

TASK STATUS WORD BIT DEFINITIONS

B
2
{
2
3
4
5
6
7
8
9

10
11
12
13
14
1S

TASK STATUS EXTENSION BYTE BIT DEFINITIONS

[» ¢}

IT

NI W~

17

SYMBOLIC

TS.CKD
T8,CKR
T8.,CKP
TS§,0UT
TS,FXD
TS,BFX
TS,CHK
TS.AST
TS,ACP
Res
Res
TS,REM
TS.MSG
TS,.,D87
TS,RDN
TSL.EXE

SYMROLIC

TS, WFR
TS,SPN
mone

mome

TS«MCR
7S,AB0
TS.PRY
TS, HLT

Checkpoint Disable
Cheekpoint Reauest
Checkpointed

Out of eore

Fixed {mn memory

Task Being Fixed

Task checkpointable

AST {m progQress

Anecillary control processor
erved

erved

Remove task at exit

Abort Message beimg ocutout
ASY recognmition disabled
I/0 rundown imn progress
Task {n execution

Task {n WAITFOR

Task suspended

Saved TS,WFR onm AST

Saved TS,SPN on AST

Task reauested as MCR fumetion
Task marked for abort

Task {8 privileged

Task befng halted

{ayes
{zyes
{syes
fz=ves
isyes
i=yes
Ozyes
{syes
{zyes

{ayes
isves
{zyes
izyes
d=yes

{zyes
{zyes

{ayes
{z=yes
isves
{zyes

PAGE

71

S.3

Task

H,CSP

H,HDLN

H,PCBT

H.PCBC

H,DSW
HFCS
H,FORT
H,OVLY

H,RSVD

Headenr

l CURRENT sSP l

} HEADER LENGTH IN BYTES l

) TASK PCB ADDRESS !

l LOW VIRTUAL ADDRESS)

! HIGH VIRTUAL ADDRESS l

! ACCESS | USER PDR)

| COMMON PCB ADDRESS 1 |

l LOW VIRTUAL ADDRESS !

l HIGH VIRTUAL ADDRESS |

) ACCESS | USER PDR |

| COMMON PCB ADDRESS 2 l

! LOW VIRTUAL ADDRESS |

LA A L L X LA K& A K & & A & K 2 0 X X K X L & % X N & % N & B J

} HIGH VIRTUAL ADDRESS !

| ACCESS | USER PDR l

| COMMON PCB ADDRESS 3 |

l LOW VIRTUAL ADDRESS !

) HIGH VIRTUAL ADDRESS !

| ACCESS | USER PDR)

l @ END OF PCB’S (SENTINEL) l

) SAVE AREA FOR TASK DSw |

l FCS IMPURE POINTER !

l FORTRAN IMPURE POINTER |

l OVERLAY IMPURE POINTER l

I RESERVED !

H EFLM | EVENT FLAG MASK WORDS !

10
12
14
16
20
ee
ed
26
L1
LY
34
36
4o
42
44
46
14
52
54
5é

69

PAGE

72

HeCUIC
H DUIC
H,1PS

HeIPC

H, ISP

H,0DVA
H,0DVL
He TKVA
He TKVL
MyPFVA
H FPVA

H FPSA

H,GARD
He NLUN

He LUN

l FOR EVENT FLAGS l
| =64 l

) l

l CURRENT TASK UIC !

| DEFAULT TASK UIC !

! INITIAL PS WORD |

l INITIAL PC WORD |

LA X 2 K2 B B L & B & & X X & K X B 2 B & N N & X B R B R & 2 3 J

l INITIAL SP l

l ODT SST VECTOR ADDRESS |

l 0DT SST VECTOR LENGTH l

! TASK SST VECTOR ADDRESS |

! TASK S8T VECTOR LENGTH !

| POWER FAIL AST |

| FLOATING PNT EXCPN AST !

| FP OR EAE REG SAVE AREA ADDR |

l REVERSED |

l RESERVED !

1 RESERVED -

| ADDRESS OF STACK GUARD WORD |
| COUNT OF LOGICAL UNITS |
| START OF LOGICAL UNITS |
wow EACH LUN CONSISTS OF wmm-
} TWO WORDS, UP TO 258 o
eee LUNS CAN BE ACCOMODATED o=
! |
/ ’ /
/ .

/ .

) l

! !

62
X
b6
70
72
74
76
100
102
104
106
110
112

t16
120
122
124
126
130
132

PAGE 73

‘ecversep | 7!

< -
(_’L used ResereD!
hore)

sevvevenen| AST LUN ENTRYesowsensa
| !
| !
wewasewF OATING POINT OR EAE =wewe
| SAVE AREA !
weswesnw (3 OR 25 WORDS) wwowawss
/ /
/ /
/ /
| |
| CURRENT PS§ !

| CURRENT PC l

l CURRENT RS !

| CURRENT Ry !

| CURRENT R3 l

| CURRENT R2 |

! CURRENT R} |

) CURRENT Rp@ l

| STACK GUARD WORD !

(L T R X A X R R X riI XXX A RRyIEYELEXN XX ¥ J

PAGE

74

PAGE 75
CHAPTER 3

Se4 I/0 DATA STRUCTURES

0f all the contro) blocks In the I/0 data structure, only four are of
direct concermn to a cdriverty

ie The I/0 Packet
2. The DCBy

3, The UCB, and

4, The SCB,

Although the data structures contaim an abundance of data pertainimg
to imput/output operations, drivers per se are {imvolved only with a
subset of this data, Moest of the data which {s used by a driver s
supplied {n the data atructure source, amnd is not referenced during
driver execution,

541 The 1/0 Packet
Figure 3;1 is a layout of the {8=word 1/0 Packet whiech {8 constructed
and placed {n the driver I/0 queue by Q10 directive processing and
subseauently del{vered te the drifver by a cal)l te SGTPKT, Figure 3I=2
is the DPB from which the 1/0 Packet is gemerated, E

I.LNK
I.EFN
1.PRI
[.7C8
T.LN2
I.ucse
I.FCN

1.1088

I1,AST
I.PRM

| LINK TO NEXT 1/0 PACKET |
l EFN l PRI |
(A X X X X X L LA B A N % K & K R & L L X & X LA N X & & N X N J

l TCB ADDRESS OF REQUESTER }

| ADDRESS QF SECOND LUT WORD |

| ADDRESS OF REDIRECT uCB l

| FUNCTION CODE ! MODIFIER }

IVIRTUAL ADDR OF I/0 STATUS BLK}

l RELOCATION BIAS OF I0SB l

| REAL ADDRESS OF 1088 !

IVIRTUAL ADDR OF AST SERVICE RTN!

| !
l !
amaewn DEVICE cecwa
| |
ssewe PARAMETERS meme-
| |

| !

! l

{ !

l |

Figure 3=1 1/0 Packet Format

|

10
12
14
16
e

ee

PAGE

76

PAGE 77

Selelel 1/0 Packet Details = The I/0 Packet is built dymamically by
Q10 directive processimg, Thus, no static fields exist with respect
to a dr{ver, 1I1/0 Packets are created dyramically and, therefore, the
first parameter does mnot apply, Fields are classi{ified ast

mot referenced,

read=only, or

read/write,

I.LNK
Descriptiont

Links 1/0 Packets aueued for a driver, A zero ends the
chaim, The l{sthead {s in the SCB (S,LHD),

Initial{zation/Accessy
not referenced,
I1,PRI
Descriptiont
Priority copied from the TCB of the recuesting task,
Inftialization/Accesst =
not referenced,
1.EFN

Descriptiont

Contains the event flag mumber as copied by QI0 directive
processing from the requester’s DPB,

Inftialization/Accessy
not referenced,
I,7CB
Descriptiont
TCB address of the requestimg task,
Inftialization/Accessy

not referenced,

I.LN2

PAGE 78

Pescription?

Contains the address of the second word of the LUT entry in
the ¢task hesder to which the I/0 reauest was directed, For
open files om fi{le structured devices, this word comntains the
address of the window block, otherwise it {s zero,

In{tialization/Access?

I.ucse

not referenced,

Descriptions

Contains the address of the Redirect UCB {f the startimg UCB
has been subject to a Redireect MCR command,

Inft{alization/Accesst

I.FCN

rot referenmced,

Descriptiont

Contains the fumction - code (see table 3ei) for the I/0
request,

In{itialization/Accesst

1.1088

readmonly,

Deseriptiont

1.1088 contains the virtual address of the 1/0 Status block
(10SB) (¢ one {s specified or zero {f not,

1.,108B+2 and I,108B+4 contain the address doubleword for the
1088 (see Appermdix A for a detailed description of the
address doubleword), On an ummapped system, the f{rst word
is zero, the second word {s the real address of the 10SB,

In a mapped system, the first word contains the relocation
bias of the I0SBy the hbias {s, in effect, the 32=word block
number in which the I0SB starts, This block mrumber s
derived by viewing available real memory as a collectionrn of
32=word blocks numbered consecutively, starting with @,
Thus, 1{f ¢the 108B starts at physical locatiom 3210(8), {its
block number {s 32(8),

I,.AST

I.,PRM

PAGE 79

The second word {s formatted as follows?

Bits D=5 Displacement Ir Block (DIB)
Bits 6=12 A1) zeros
Bits {3I=i5 6

The displacement {m block (s the offset from the block base,
In the above example where the 0SB started at 3212(8), the
DIB {8 equal to 10(8),

The value 6 in b(ts 13=15 {8 comstant, It {s used to cause
am address reference through Kermel Page Adcdress Register 6,

Againm, see Appendix A for details,

The deferra)l of a discussion of the address doubleword to an
appemd{x reflects the fact that a writer of a comnventional
driver has aimost no need to comcerm himself with the
contents’ or format of the address doublewora, Its
conatruction and subseacuent manipulation are mormally
external to the drivery subroutimes are provided as Executive
services for programmed I/0 to render the manipulations of
1/0 transfers transparent to the driver {tself,

Initialization/Access:

not referenced,

Descriptiont

Comtains the viptual address of thé AST service routine to be
executed at 1/0 completion, I¢Y mo address is speci{fied, the
field contains zero, '

Im{itializatiom/Accesst

not referenced,

Descriptiont

Device dependent parameters copied from the DOPB,

Inft{alization/Access

not imftialized, read=only,

PAGE AQ

The GI0 Directive Parameter Block (DPB) {s comstructed as followst

! LENGTH | DIC | @

| FUNCT CODE | MODIFIER -

l RESERVED | LUN | 4

l PRIORITY | EFN 1 6

| TI/70 STATUS BLOCK ADDRESS | 19

l AST ADDRESS | 12

! DEVICE I 14

v DEPENDENT TV 1e
I-'--- PARAMETERS '..-.I 20
v TV 22
v TV 2

| | 26

Figure }-2 QIO DPB

PAGE 81

The parameters have the following interpretation,
Length (recuired)s

The length of DPB, whiech for the RSX={iM QI0 directive, is always
fixed at twelve words,

DIC (reayfred)s

Dipective Identification Code, For the GI0 directive, the value
13010

Fumction Code (required)
The code of the requested 1/0 function (2 thru 31,),
Modifiers
Device depenmdent modifier bits,
Reserved!
Reserved byte and must mot be used,
LUN‘(r00u1red)3
Logical Unit Number,
Prioritys

Request ppriority, Igmored by RSX=1{M, but space must
be allocated for RSX={iD compatibility,

EFN (optionmal)t
Event flag nuymber,
170 Status Block Address (optiomal):

This word contains a pointer to the I/0 status block which 1{s a
2eword device depenrdent 1/0 completiom data packet formatted as!

Byte 0
I/0 status byte,
Byte |
Augmented data supplii{ed by the driver

Bytes 2 and 3

The contents of these byteas depend om the value

I¢

byte @ = {, themn these bytes usually

processed byte count, If byte @ does mot eaual
the contemts are device dependenrt,

AST Address (optional):

Address

of am AST Seryice Rout{me,

Device Depemcdent Parameters:

Up to six parameters speci{ific to the device and 1/0
be performed, Typically for data transfer functions

Buffer address

Byte count

Carriage control type

Legical block mumber

Any optiona)
zeros,

parameters that are not speci{fied should be

PAGE 82

of byte @,
comtain the
zero, then

functien to
these argl

f{11ed with

PAGE 83

Sede2 Device Comtrol Block

The device contrel bloeck (DCB) defimes gemeric 1{inmformation about a
device type and the lowest and highest umit myumbers, There {s at
least one DCB for each device type {n a system, For example, (f there
are teletypes {im a system, then there {s at least one DCB with the
device mame *TT?, I+ part of the teletypes were {nterfaced via
DLil=A’a and the remaindepr via a DH1l, them there would be two DCB’s,
Ore for all DLileA imteprfaced teletyces and one for all DHII
{imterfaced teletypes,

D, LNK } LINK TO NEXT DCB (@=LAST) 1 9
b,ucB ! LINK TO FIRST UCB I 2
DoNAM l GENERIC DEVICE NAME } 4

LA A X X 0 L LA BRI A R 2 X2 2 X LRXRE KX J J

D UNIT IHIGHEST UNIT #|LOWEST UNIT # 1 6

D,uUCBL | LENGTH OF UCB | 10
D.DSP | ADDR OF DRIVER DISPATCH TABLE | {2
JoMSK | LEGAL FCN MSK BITS @ets, |l 14

l CONTROL FCN M8K BITS =15, | 16

| NO=OP?ED FCN MSK BITS @=i1S, | 20

l ACP FCN MSK BITS @=iS, | 24

| LEGAL FCN MSK BITS {6,=32, | 26

| CONTROL FCN MSK BITS 16,32, | 30

| NO=OP?ED FCN MSK BITS 16,=32, | 32

| ACP FCN MSK BITS 16,32, | 34

Figure 33 Device Control Block
5.4,2,1 DCB Details
DeLNK (Link to mext DCB)w

* Parenthesized contents i{mdicate valye to be inftialized in the data
base source,

PAGE 84

Descrintiony

Address limk to the mext DCB, A zere {m this field {ndicates
the Yast DOCB im the chaim, The driver writer links his 0OCB
into the system DCB’s via the gqloba) label SUSRTB om his
first DCB,
Inftialization/Accesst
{nitial{zed, not referenced,
D.UCB (Poimter to First UCB)

Descriptiong

Address 1ink to the first and possibly the only UCB
assocfated with the DCB, A1) UCR’s, for a givem DCB, are {nm
contiguous memory IQcations and must al) be the same lergth,
Initialization/Accesst
{m{tialized, not referenced,
DyNAM (ASCIIl Device Name)

Descriptiong

Gereric device name {n ASCII by which device unmits are
mnemonically referenced,

Initialization/Accesst
inftial{zed, not referenced,
D,UNIT (Um{t Number Range)

Descriptionmt

Unit mumber range for the device, This range covers those
logical units avaflable to the user for device assignment,
Typically, the lowest nymber is 2ero and the highest is n=l,
whepe n {s the nuymbepr of devicesynits described by the DCB,

Inftialization/Access:
initial{zed, not referenced,
D,UCBL (UCB Length)

Descriptiont

The UCB may have any length to meet the needs of the I/Ap DOCB
must have the same length,

PAGE 85

Initial{zation/Access:t
initialized, mot referenced,
D,DSP (Dispatch Table Pointer)
Descriptiont
Address of the driver dispatch table,

Whem the Executive wishes to enter the driver at any of the
four entry points contaimed {n the driver dispatch table, (¢t
accesseg D,DSP, locates the appropriate address {(n the table,
and calls the driver at that address, Thys, nul) addresses
are rot permi{tted, If the drifver does mot process & given
function, then {t simply preturns, The driver writer must
provide a driver dispatch table im the driver source, The
label on this table {8 of the form $ANTRL amrd must be a
globa) label, The designatior nn {3 the 2=character generic
device name fopr the device, Thus, STTTBL s the global labe!
on the driver dispatch table for the generic device mame TT,
This table i{s am ordered d4dwword table containimg the
following entry pointst

1/0 Inf{tiatory
Cancel 1/09

Device Timeout, and
Power failyre,

Whem a8 driver is entered at ome eof these entry points, entpry
conditions are as followst

At Init{ators
It UC.QUE=]
RS = UCB address
R{ = Address of the 1/0 Packet

Itf UC,QUE=Q
RS = UCB address

Interrupts are allowed,

At Cancel l/01

RS =z UCB address

R4 = SCB address

R3 = Controller {ndex

R{ = Address of TCB of current task
RO =

Address of active 1/0 packet

PAGE 86

Device imterrupts are locked out,

At Device Timeout:

RS = UCB address

R4 = SCB acddress

R = Controller {ndex

RP =]/0 status code IE,DNR (Device Not Ready)

Deviece {nterrupts are locked out,

At Power Fa{lyret

RS = UCB address
R4 = SCB address
R3 = Conmtroller {mdex

Interrupts are allowed,
Inftialization/Access;
fnftialized, mot referenced,
DsMSK (Function Masks)
Descriptiont

There are eight words beginnimg at D,MSK which are of criti{e
cal {mportance to the proper fumctioning of a device driver,
The Executive uses these words te validate amnd dispatch the
1/0 reauest specified by a Q!0 directive, The description
which follows applies only to non=file structured devices, as
directions for writing drivers for file structured devices
(drivers which {nterface to FCP) are nrot included i{m this
manual, Four masks, 2=words per mask, are described by the
bi{t configurations established by the driver writer for these
words,

i+ Legal fynction mask)y
2« Contro) fumction masks .
3, No=op‘’ed function mask, and
4 ACP fumction mask,
The QIO directive a)lows for 32 possible 1/0 ¢umctions, The
masks, as stated, are f{lters to determime validity and 1/0
requirements for the subject ariver,
The function value {m the I/0 request 1{s filtered by the

Executive through the four mask words, I1/0 function codes
range from @31, If the function corresponrds to a true

PAGE 87

condi{tion {m a mask word, a bi{t {s set {m the mask inm the
positiom which numerically corresponds to the fumction code,
Thus, {f the fumction 5 {s legal, them bit 5 im the Leqa!
Functiom Maak {s set,

The masks are laid out im memory im two Ueword groups, Each
dsword group covers 16 fumetion codes, The first four words
cover the funmction codes P=15,, the second four words cover
codes 16=31, Below is the exact layout used for the driver
example {n Chanter 5,

+WORD {40033 tLEGAL FUNCTION MASK CODES Qeis,

+ WORD 3@ JCONTROL FUNCTION MASK CODES Rei5,
+WORD 140000 tNO=OP*ED FUNCTION MASK CODES 0wiS5,

« WORD 2 tACP FUNCTION MASK CODES 0=iS,

«WORD 5 sLEGAL FUNCTION MASK CODES 16,=31,
«WORD 2 tCONTROL FUNCTION MASK CODES 16,=31,
+WORD 1 yNO=OP?ED FUNCTION MASK CODES 16,=31,
+WORD 4 yACP FUNCTION MASK CODES 16,31,

The mask words fi{lter seauentially as follows!
Legal Fumectionm Mask}y

Legal fumction valyues have the corresponding bit posftion in
this word set to |, Functiom codes that are mot legal are
rejected by QIO directive processing by returmning IE,IFC {n
the I/0 status block, provided am 10SB was specified,

Comtrol! Fumctiom Masks

1t amny device dependent data ex{sts {mn the DPB, and this data
does nmot require further checking by the ARI0 directive
processor, the function {s considered im the class <contro!
function>, Such a function a)lows QI0 directive processing
to copy the DPB devicemdependent data directly into the 1/0
Packet,

Nemopfed Fumetiom Magk!

A nowop funetiom {8 anmy functiorn that is eons{dered
successfyl as soon as {t {s {ssued, If the fumction is a
no=op, G0 directive processing immediately marks the reauest
successfuly) no additional filtering occurs,

ACP Fymectiom Maski

It a function code is legal, but nei{ther control nor nomopo,
then {t {s either am ACP fumctiom or a tramsfer function, If
a function code may reauire {ntervention of am Ancillary
Control Processor (ACP), the corresvonding bit in the ACP
function mask must be set,

PAGE 88

In the specific case of read/write virtual fumctions, the
corresponding mask bits may be set at the driver writer’s
option, If the corresponding mask bits for a reag/write
virtual fumction are set, QIO di{rective orocessimg wil)
recognize that a filemoriented fumction {8 beimg reauested to
a non=file structured device and comnvert the reauest to a
read/write logical fumction,

This comversiom (s particularly useful, Comsider a
read/write virtual fumnction to a specific device:

is If the device is file structured and a file s open
on the speci{ified LUN, the block mumber specified is
converted from a virtual block mnumber in the file to
a Jogical block number om the medium and the reauest
{s gqueued to the driver as read/write logfcal,

2e It the deviece {s file structured and no file (s open
on the lun, then an error (s returmed and mo further
action {8 taken,

3. If the device {s not file structured then the reauest
is si{mply transformed to read/write logical and
queyed te the driver, (Specified block mumber s
unchanged),

Transfer Fumetion Processing

Finally, {¢ the fumetion {s mot am ACP function, then by
default, f{t i{s a transfepr functior, A1) transfer functions
cause the QI0 directive processor to check the specified
buffer for legality (i,e,) I8 {t within the address space of
the reauesting task), and prorer aligmnmemnt (i{,e,, word or
byte), Also, the number of bytes being transfered {s checked
for oroper modulius ({,e., nonzero and a proper mulitiple),

Initial{zation/Accesst

fnit{al{zed, not referenced,

Mask Word Creation

The creation of the fumction mask words {mvolves three steps!

Lo

2,

Establish the 1/0 functions available on the device for which
de{ver support {8 to be provided,

Check the standard RSXe1IM fymction code values ir table 3e|
for eauivalencies, Omly function code @ (s mandatory,
Function codes 3 and 4, (¢ used, must have the RSX={iM system
{nterpretation, It {s suggested that functiomrs having an

PAGE 89

RSXwiiM system coumterpart use the RSX={{M code, but this s
net reauired except in the case where the device {s to be
used {mn conjunctiom with am ACP, From the supported fumction
1ist, the two legal functiorn mask words cam be built,

3. Given the legal fumction mask,
Ja, The Control Function mask 43 built by askings

Does this fumction carry a standard buffer oaddress anrd
byte count §m the firgt two device depemdent parameter
words?

I1f {t does not, then 1t efther aqualifies as a control
fumetion, or the driver {tself must effect the checking and
conversion of any addresses to the format reauired by the
driver, (Buffer addresses in stamndard format are
automatically converted to Address Doubleword format,)

Comtrol! fumctioms are, essentially, those whose DPR’s do not
contain buffer addresses or counts,

Ib, The No=op Function Mask {s created by deciding which legal
functions are to be nmow=op’ed, Typically, for File Control
Services (FCS) compatibility on monefile structured devices,
the f{le access/deaccess functioms are selected as legal
functions even though no specific action 1is reauired to
access or deaccess & nonewf{le structured devicej thus, the
access/cdeaccess funetions are nowop’ed,

¢, Finally, the ACP fumctions WwWrite Virtual! Block and Read
Virtual Block may be included, Other ACP fumctionms that
might be i{mrcluded fall {nto the mron=conventional driver
classitication and are beyond the scope of this document,

1

3414242 1/0 Functiom Codes = The filtering precess which cascades
throuqh the function mask words im the DCR uses the function code byte
supplied {(mn the QIO directive DPB as the match value, Table 3ei
contains the function values used for DECesupplied drivers,

PAGE 90

e .

TABLE 3=t
STANDARD 1/0 FUNCTION CODES

FUNCTION EQUATED 1/0
VALUE(8) SYMBOLIC FUNCTION

7 I0,KIL CANCEL 1/0

{ I0,WLB WRITE LOGICAL BLOCK

2 10.RLB READ LOGICAL BLOCK

3 I0.,ATY ATTACH DEVICE

4 I10,DET DETACH DEVICE

5 UNUSED

6 UNUSED

7 UNUSED

10 UNUSED

i1 I0,FNA FIND FILE IN DIRECTORY
12 UNUSED

13 I0.RNA REMOVE FILE FROM DIRECTORY
14 I0,ENA ENTER FILE IN DIRECTORY
15 10,ACR ACCESS FILE FOR READ

16 10, ACW ACCESS FILE FOR READ/WRITE
17 10,ACE ACCESS FILE FOR READ/WRITE/EXTEND
2@ 10,DAC DEACCESS FILE
2l I0,RVB READ VIRTUAL BLOCK
ee 10,WvB WRITE VIRTUAL BLOCK
23 10,EXT EXTEND FILE
24 I0,CRE CREATE FILE
2s 10,DEL MARK FILE FOR DELETE
26 I0.RAT READ FILE ATTRIBUTES
27 IO, WAT WRITE FILE ATTRIBUTES
k1% UNUSED

31 UNUSED

32 UNUSED
33 UNUSED
34 UNUSED
35 UNUSED

36 ‘ UNUSED
37 UNUSED

0f the function code values listed {im Table 3=1, only I0,KIL s
mandatory and has a fixed i{nterppretation, However, {f I0,ATT and
I10,DET are uysed, they myst have ¢the gtancdard meaning, 14 Ql0
directive processing encounters a function code of 3 or 4 and the code
is not no=op®ed) it will assume they represent Attach device and
Detach device, respectively, The other codes are sungested but mot
mandatory, The driver writepr is free to establish all othep fumction
code values on none=fi{le structured devices, The mask words must
obviously reflect the proper filtering process,

PAGE 91

1f a driver {8 being written for a file structured device, the
standard function coces of Table 3«1 must be used,

o

S.4,7 Status Conmtrol Block

The status control block (SCB) defines the status of a

controller, There {8 ome SCB for each conmtroller {is a system,

SCB {s poimted to by umit control blocks, To expand on the

teletype

example above, each teletype interfaced via a DLii=A would have a SCB
since each DLii=A {s an {ndependent i{nterface unmit, The teletypes
{nterfaced via the DOH{l would also have am SCB since the DH{]

single controller but myltipiexes many umits im parallel,

S.LHD I8 DEVICE /0 QUEUE | @
I--.- LISTHEAD -.--I 2
S,.PRI T TP Y T
S.,VCT IVECTOR ADDR/4 |DEVICE PRIORITY | 4
S5t TINT TMEOUT CNTICURNT TROUT CRT 1 6
SieTy T CTALR STATUS ICONTROLLER me 1 10
S.CSR | ADDRESS OF CONTROL STATUS RED 1 12
S.PKT 1ADDRESS OF CURRERT 170 PACKET 1 14
SERK 1T RO LINK woRe T e
PRt S
AR+ttt
P+t S

Figure 3-& Status Comtro) BlocCk
£, - .

Se4,3.1 SCB Details
S,LHD (first word equals zeroj) second word points to first)

Descriptiont

Twoe words which form the I/0 queue V'{sthead, The first
points to the first I/0 Packet {n the aueue armd the second

word poimnts to the last I/0 Packet {(m the aqueye,

aqueue {3 empty, the fipst word {s zero and thke second word

peimts to the first word,

PAGE 93

Inftialization/Accesst
fmitialized, not referenced,
S.PRI (device priority)
Descriptiont
Contains the priority at which the device interrupts,
Initialization/accessy
inftialized, not referenced,
S.VCT (imterrupt vector divided by four)
Descriptiont
Interrupt vector address divided by four,
Inftialization/Accesst
inftialized, mot referenced,
8,CTM (inft{alize to zero)

Descriptions

RSX={{M supports device timeout, which emables a driver to
1imit the time that elapses between the issuimg of an I/0
operation and its termination, The curremt timeout count ({n
seconds) 18 imitialized by movima S,ITM ({n{tial timeout
count) imto S$,CTM, The Executive clock service will examinme
active times, decrement them and, {f they reach 0, call the
driver at {ts device timeout entry point,

The intermal cleck count {8 kept {n (e=second {mcrements,
Thus, & time count of { (s not precise, simce the internal
clocking mechanism {s operating asynchronously with driver
execution, The only meaningful minimum clock imterval is 2
if the programmer {ntends to treat timeout as a consistently
detectable error condition, Note, {f the count is @, that no
timeout will occury {t {s, {m fact, an {ndication that
timeocut {8 nmot operative, The maximum count {s 255, The
driver writer 1{s responsible for setting this field,
Resetting 18 at actual timeout or withim SFORK,

Initislization/Access
rot {imitialized, read/write,

S,ITM (set to inftial timeout count)

PAGE 94

Descriptiont
Contains the initial timeout value,
Init{ial{zation/Access:
{nitialized, readeonly,
S.CON (controller number times 2)
~Descriotiont

Comtroller number multiplied by 2, Used by drivers which are
written to support more tham one controller, S,CON may be
used by the driver to index {mte & comtroller table created
amd maimntaimed {mntermal to the driver {tself, Imdeximng the
controller table enables the dr{ver to service the correct
comntroller when a device {nterrupts,

Inftial{ization/Accesst
inftial{zed, readwonly,
§.5T8 (imn{tialize to zero)
Description: |

Establishes the controller as bysy/met busy, This byte (s
the {nterlock mechanism ftor marking a driver as busy for a
specific controller, Tested and set by SGTPKT and reset by
$I0DON,

Initial{ization/Accesst
{nit{alized) mot referenced,
3,CSR (Control Status Register acddress)
Descriptiont

Contaimns the address of the Contro) Status Register (CSR) for
the device controller, S,CSR {8 wused by the driver teo
{nitiate I/0 operations and to access, via f{ndeximg, other
registers related to the device that are located {m the 1/0
page, This address need mot be a CSRy {t nreed onmly be a
member of the device’s register set, It {s accessed at
system bootstrap time to determ{me {(f the {mterface ex{sts on
the system hogsting the Executive, The Executive uses this to
set the offeline bit at bootstrap so system software can be
interchanged between systems without an {ntervening system
generation, Otherwise, {t {s only accessed by the driverp
{tself,

PAGE 95

Inftialization/Accesss
inftialized, read/only,
S,PKT (Reserve one word of storage)
Desceriptiont
Address of the current 1I/0 Packet esgtablished by SGTPKT,
This field {8 ysed to retrieve the I1/0 Packet address upon
the completiomn of am I/0 request,
Initialization/Accesst
mnot in{tialized, read=only,
SeFRK (reserve four words of storage)
Descriptions
The four words starting at S,FRK are ysed for fork block
storage {f and whemn the driver deems 1{t nmecessary ¢to
establish {tse)f as a Fork process, Fork bloeck storage
preserves the state of the driver which {s restored when the
driver regains comtrol at fork level, This area is
automatically ysed {f the driver calls $FORK,
Initialization/Access!

not inftialized, not referenced,

PAGE 96

S5.4,4 Umit Comtrol Block

The unit comtro) block (UCB) defines the status of amn {ndividual
device unit and {s the contro) block that is pointed to by the first
word of am assigmed LUN, There {s one UCB for each device unit of
each DCHB, The UCB’s associated with a particular DCB are contingous
{n memory and are pointed to by the DCB, UCB’s are variable Jenmgth
between deb’s but are of the same length for a specific DCB, To
finish the teletype example above, each umit on both interfaces would
have a UCS,

u,DCB l BACK POINTER 7O DCB | @

U,RED ! REDIRECT POINTER TO UuCB -

U.CYL (A X 2 A X XL X2 X XXX X KEXJX LAY EXRE X X X2 2 & X 2 J
UsSTS ICONTROL FLAGS | UNIT STATUS | 4
U.sTa LA A A L L LB L 24 2 XA X 0 B 0 B X X LA RN LR X2 J

U UNIT | STATUS EXT IPHYSICAL UNIT # | 6

U.CWi ! CHARACTERISTICS WORD #i | 10
ULCW2 | CWARACTERISTICS WORD #2 | 12
U.CW3 | CHARACTERISTICS WORD #3 | 14
U,CHG | CHARACTERISTICS WORD #4 | 18
U.SCB | POINTER To s¢B 1 20
ULATT 1 TCB OF ATTACHED TASK | 22
UBUF | BUFFER RELOCATION BIAS | 2

| BUFFER ADDRESS } 26
U CNT ! BYTE COUNT ! 3@

) DEVICE !

l DEPENDENT !

l STORAGE |

PAGE 97

T MA i
5.U4s4s1 UCB Details
e '%echm wri
U.,DCB (poimter to associated DCB) uuﬁmczag?{o [£
Description!
dk%crbpﬁf

Backpointer to the corresponding DCR, Simce the UCB is a key control
bloek m ¢the I/0 data structure, access to other comtrol blocks
usually occurs via 1inks {mplanted in the UCB,

Initialization/Accesss

in{tialized, not referenced,

U,RED (imitialized to poimt to U,DCB of the UCR)

Descriptiont

Contaims a pointer to the UCB to which this device unit has been
redirected, thig field {s updated as the result of an MCR Red{rect
command, The predirect chaimn ends when this word points to the UCB
itaself,

Inftialization/Accesst

Inftialized, not referenced,

UsCTL (set by driver writer)

Deseriptiont

UyCTL anmd the function mask words {mn the DCB drive QIO directive
processing, The driver writer {8 totally responsible for setting up
this bit pattern, Any {maccuracy in the bit settinmg of U,CTL wil}
produce erroneous 1/0 processing, Bit symbols amnd thei{r meaning are
as followsi

UC.,ALG = Alignment bit,

If this bit = @, then byte alignment of data buffers s
allowed, If UCALG =1, then buffers must be word
aligned,

UC.ATT =« Attach/Detach notification,

If this bit is set, then the driver will be called when
an Attach/Detach I/0 function (s processed by $GTPKT,
Typically, the driver has no need to obtaimn conmntrol for
Attach/Detach reauests and the Executive performs the
entire function witheut any assi{stance from the driver,

UC.KIL = Unconditional Cancel 1/0 call bit,

If set, the driver {8 to be called on a
request even {f the umit speci{fied (s

PAGE o8

Cancel 1I/0
not bUSVQ

Typically, the driver i3 called on Cancel 1/0 onmly {f an

1/0 operation (s i{m progress,

UC.QUE = Queue bypass bit,

If set, the QIO directive processor {s to cal)

the drfver

prior to aueueing the /0 Packet, Omce gairing

tom=be=queued control, the disposition of the

I1/0 Packet

ifs the driver’s responsibility, Typically, am 1/0 Packet

{s aueued prior to a call to the driver,
retrieves {t by a call to SGTPKT,

UC.PWF = Uneonditiomal call on power failure bit,

If set, the driver {3 always to be called when

which later

power s

restored after a power failure occurs, Typically, the
driver i3 called om power restoratior omly whem am I/0

operation is {n progress,

UC.NPR = NPR deyice bit,

It set, the device {s an NPR device, This bit determinmes
the format of the two word address {n U,BUF (details

given under the discussiomn of U,BUF),
UCJsLGH = Buffer size mask bits (2=bits),

These two bits are yused to check {f the

byte count

specified in am 1/0 request is a legal buffer mpdulus,

00 = any buffer modulus valid

@4 = must have word al{gmment modulus

11 = myst have double word aligmment modulus
10 = combination {nvalid,

UC.ALG and UC,LGH are independent settings,

UC.ATT, UC.KIL, UC,QUE, amd UC,PWF wi{11 usually

especially for comnventional drivers,

Every driver must, however, be concermed with {ts
values for UC,ALG, UC,NPR, and UC,(GH,

The dpiver writer is totally regpomsible for the
these bits, and erromeocus values are likely
unpredictable results,

Inftial{zation/Accesst

fnitialized, mot referemced,

be 2ero,

particular

values {n
to oroduce

PAGE 99

Us8TS (imftialize to zero)
Description

This byte contains devicemi{imndependent status I{(nformation,
The bit meamings are as followst

US.BSY = If set, device=unit {s busy,
US,MNT = I¢ set, volume {s mot MOUnted,
US.FOR = If set, volume {s foreign
US,MDM « If set, device {s marked for dismount,
The unused bits imn U,STS are reserved for system use and
excansion, US,MDM, US.MNT, anmd US,FOR apply onmly to
MOUntable devices,
Initial{zation/Access!
Inftial{zed, mot referenced,
UyUNIT (unmit number)
Descriptiont
Thia‘ bvte contains the physical wunit number of the
devicemunit, It the controller for the device supports onmly
a single umit, the unit number {8 always zero,
Inftialization/Access:
initialized, read=only,
UeST2 (initialize to zero)

Descriptiont

This byte contains additiomral devicee={ndependent status
information, The bit meanings are as followst

US,OFL = I1f set, the device is offline (that (s, not {n
the configuration),:

The remaimning bits are reserved for system use amnd expansion,
Inftialization/Accesss

{nitialized, mot referenced,

U,CW1 (set by driver writer)
Descriptiont

The first of a deword conrtiguous cluster of

PAGE 100

device

characteristics i{nformation, UeCWL amd U,CW4 are device

independent, U,CW2 amd U,CW3 are device depenmndent,

The four

characteristiec words are retrieved from the UCB amnd placed in

the requester’s buffer onm d{ssyance of a GLUNS

Executive

directive (Get LUN Information), It i{s the respomsibi{lity of
the driver writer to supply the contents of these four words

{m the assembly source of the driver data structure,
Ue.CWL {8 defimed as followst

DV.REC Bi{t P==Record=Oriented Device(izvyes)
OV,CCL Bit imeCarriage Control Device(lzyes)
DV,TTY Bit 2==Terminal Device(izyes)
OV,OLIR B{t 3w=Directory Device(i=zyes) '
DV,SDI Bt 4e=S{mgle Directory Device(izyes)
DV,SQD Bit See~Sequential Device(izyes)
DV,PSE Bi{t i2=wewPseudo Device(izyes)
DV.COM Bit {3==Device Mountable as »a

' Communications Channel(izves)
DV,Fil Bit {dmmDevice mountable as a FILES={]

device(isYes)

DV.MNT Bit {Se=Deyvice mountable(iz=yes)

Inftial{zation/Accesst
inftialized, not referenced,
UsCW2 (ini{tialize to zero)
Descriptions

Specific to a given device driver (available for
storage or constants),

Inftialization/Accessy
!nitia!*zed. read/write,
UsCW3 (inmitifalize to zero)
Descriptiont

Speci{fic to a given device driver (available for
storage or constants), '
J

Initfalization/Accesst

working

workinmg

PAGE 1@}

initialized, read/write,
Lowd
4 (set by deriver writer)
Descriptiont
Default byffer size,
Initialization/Access:
inftialized, readmonly,
D.5ch
B (SCB poinmter)

Descriptiont

This field contains a pointer to the SCB for this UCH,

Inm

general, R4 onmn entry to the driver via the driver dispateh
table wi{l) cortaim the value imn this word, since the SCB s

frequently referenced by service routimes,
Inftialization/Accesst
{n{tialized, reade=only,
Rl
T (inftial{ze to zero)
Descriptiont

If a task has attached {tself to a devicewunit, ¢this
contains {ts TCB address,

Initiali{zation/Accesst
initial{zed, not referenced
V. pof
UF (reserve two words of storage)

Descriptiont

U,BUF labels ¢two conmsecutive words which serve as

fleld

communrication region between SGTPKT and the driver, If a ron

transfer function (8 {mdicated, them U,BUF, U,BUF+2,

and

U,CNT receive the first three parameter words from the 1/0

Packet,

For transfer operations, ¢the format of these two

words

‘depends on the setting of UC,NPR {n U,CTL, The driver does
not format the wordsy all formatting is completed prior to
the driver receiving contrel, For unmmapped systems, the
first word {s zero and the second word s the ophysical
address of the buffer, For mapped systems, the format (s
determined by the UC,NPR bit whieh {s set for an NPR device

prge loz

This Page seamsS O be mg’ggiﬂﬂ

PAGE 1@3

UeCNT (reserve one word of storage)

Descriptiont
Containé the byte count of the buffer described by U,BUF,
The dpepiver wil] use ¢this field in constructimg the actua)
device request,
U,BUF and U,CNT are used to keep track of the current data
item {n the buffer for the current transfer (excent for NPR
transfers), Simce this field is being altered dyramically,
the 1/0 pecket may be needed to reissue arn 1/0 operation,

Initialization/Accesst

rot inftiali{zed, read/write,
Device Dependent Woprdst

Descriptiont

The field {s variable in Yength and {s established by the
driver wpiter to suit driveresspecific recuirements,

In{tint{zation/Accessy

not inft{alized, read/write,

