
TOPS-10/TOPS-20
RSX-20F System
Reference Manual

AA-BS94A-TK,AO-BS94A-T1

April 1986

This reference manual describes RSX-20F, the operating
system that runs on the PDP-11 /40 front-end processor
of KL-based computers. RSX-20F loads the KL microcode,
configures main and cache memory, loads the boot program,
and performs diagnostics. For systems that are running
TOPS-20, as well as for 1091 and 1095 systems, RSX-20F
also provides device handling for unit record equipment.

This manual updates the TOPS-10jTOPS-20 RSX-20F
System Reference Manual, order number AA-BS94A~ TK.

1090 1091/1095 2060/2065

OPERATING SYSTEM: TOPS-10 REL. 7.03 REL. 7.03
TOPS-20

SOFTWARE: RSX-20F (TOPS-10) VA15-50 VE15-50
RSX'-20F (TOPS-20)

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Dinital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Ac,\,;essories and Supplies Center
Nashua. New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive
Telephone:(603)884-6660 Schaumburg. Illinois 60195 Sunnyvale. California 94086

Telephone:(312)64Q-5612 Telephone:(408)734-4915

REL. 6.1

VB15-50

digital equipment corporation. marlboro massachusetts

First Printing, February 1984
Updated, April 1986

Copyright ©1984, 1986 by Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipm1ent that is
not supplied by Digital Equipment Corporation or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC
DECmate
DECsystem-lO
DECSYSTEM-20
DECUS
DECwriter
DIBOL

MASSBUS
PDP
P/OS
Professional
Q-BUS
Rainbow
RSTS

RSX
RT
UNIBUS
VAX
VMS
VT
Work Processor

The postpaid READER'S COMMENTS form on the last page of this document requests
the user's critical evaluation to assist us in preparing future documentation.

PREFACE

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.4
1.5

CHAPTER 2

2.1
2.2
2.2.1
2.3
2.4
2.5

CHAPTER 3

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.4
4.5

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1

CONTENTS

INTRODUCTION

THE PDP-II • • • • • • • 1-3
The UNIBUS • • • • • • • • • • • • 1-3
The I/O Page • • • 1-3
Vector Interrupts • 1-3
Priorities • • • • 1-3
Traps •• • • • • • •••• • • •• 1-3
Data Transfers • • • • • • • 1-4
General Registers • •• 1-4
Stacks • • • • • • • • • • • • • 1-4
Instruction Set • • • • • • 1-4

RSX-IIM OPERATING SYSTEM • •••• • • • 1-4
Directives • • • • • • • • • • • • • • • • 1-4
Device Drivers • • • • • • • • • • •• • •• 1-5
Significant Events • • • • • 1-5
Mapped and Unmapped Systems • • • • • 1-5

TASKS ••• • • • • • • • • • • • • • • • 1-5
RSX-20F REQUIREMENTS • • • • • • •• • • • • • 1-6
THE DERIVATION OF RSX-20F FROM RSX-llM • • • 1-6

FILES-II SYSTEM

GENERAL DEFINITIONS ••••
FILES-II FILE SPECIFICATION

• 2-1
• • 2-1

Files-II File Structure
FILES-II DIRECTORIES •
FIXED FILE IO'S

• • 2-2
• • • • • 2-3

2-4
FCS FILE STRUCTURE •• • • • • • 2-4

RSX-20F GLOSSARY OF TERMS

PARSER

ENTERING AND EXITING TH~ PARSER
PARSER COMMAND SYNTAX I.
PARSER CONSOLE MODES • ~

PARSER Help Facility ~
PARSER COMMANDS ~
PARSER ERROR MESSAGES ~ •

KLINIT

I
I

KLINIT LOAD AND START ~. ••••••
KLINIT OPERATOR DIALOG ~ • • • • • • • • •
KLINIT MESSAGES r • ••••

Informational Message~ • • • • • • • • •
Warning Messages • • ~
Dialog Error Messagesl •••••••••
System Error Messagesl· ••••

REPORTS RELATING TO THE KLINIT DIALOG
External Memory Maps 0 • • • • • • • •

iii

• 4-1
• • 4-2

4-4
• • 4-4

• 4-6
4-29

• 5-5
• • 5-7

5-17
5-17

5-18.1
5-20
5-21
5-32
5-32

April 1986

5.4.2
5.4.3
5.4.3.1
5.4.3.2
5.5

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.4.1
6.8.4.2
6.8.5
6.8.5.1
6.8.5.2
6.8.5.3
6.8.5.4
6.8.5.5
6.8.5.6
6.8.5.7
6.8.5.8

6.8.6
6.8.6.1

Internal Memory Maps •
Microcode Verification

CRAM Error Report
DRAM Error Report

KLINIT DIALOG EXAMPLES •

RSX-20F UTILITIES

COP UTILITY
Function •
Format •
Examples •
Error Messages •

INI UTILITY
Function •
Format •
Examples •
Error Messages •

MOU AND DMO
Function •
Format •
Examples •
Error Messages •

Error Reports •

PIP - PERIPHERAL INTERCHANGE PROGRAM
Function •
Initiating PIP •
PIP Command String Format
PIP Switches and Subswitche8 •
PIP Error Messages •

RED
Function •
Format •
Examples •
Error Messages •

SAV
Function •
Format •
Example
Error Messages •

UFD - USER FILE DIRECTORY
Function •
Format •
Examples •
Error Messages •

ZAP
Function •
Invoking and Terminating ZAP •
ZAP Switches •
Addressing Locations in a Task Image •

ZAP Addressing Modes: Absolute and Task Image
Addressing Locations in Task Image Mode

The ZAP Command Line •
Open/Close Location Commands •
General Purpose Commands •
Using the Carriage Return
ZAP Internal Registers •
ZAP Arithmetic Operators •
ZAP Command Line Element Separators
The Current Location Symbol
Formats for Specifying Locations in ZAP
Command Lines

Using ZAP Open/Close Commands
Opening Locations in a Task Image File •

5-33
5-35
5-35
5-36
5-36

• 6-1
• 6-1
• 6-2
• 6-2
• 6-3
• 6-4
• 6-4
• 6-5
• 6-6
• 6-6
• 6-9
• 6-9
6-11
6-11
6-11
6-12
6-12
6-13
6-13
6-13
6-20
6-23
6-24
6-24
6-24
6-24
6-25
6-25
6-26
6-26
6-27
6-29
6-29
6-30
6-30
6-30
6-31
6-31
6-32
6-32
6-33
6-33
6-34
6-35
6-36
6-37
6-37
6-37
6-38
6-38
6-39

6-39
6-40
6-40

iv
April 1986

6.8.6.2
6.8.6.3
6.8.7
6.8.7.1

6.8.7.2

6.8.7.3
6.8.8

CHAPTER 7

7.1
7.2
7.3
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.1.4
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7

CHAPTER 9

9.1
9.2
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.2

Changing the Contents of a Location
Closing Task Image Locations • •

Using Zap General Purpose Commands ••

6-40
6-41
6-43

K Command: Compute Offset, Store in Quantity
Register •••••••••••••••••• 6-43

6-44
6-44
6-44

o Command: Display Branch, Jump Displacement
from Current Location • • • • • • • • •

Command: Display Value of Expression
ZAP Error Messages • • • • • • • • • • •

RSX-20F MONITOR

RSX-20F EXECUTIVE • • • •
TASKS AND SCHEDULING •
SYSTEM TRAPS • •
TERMINAL SERVICE ROUTINES •••••

Modem Handling •••••
Modem Handling Concepts
Terminal Driver Routine
Modem Timeout Routine
The CTY and_ DL-I1E Timeout Routine

Terminal Handling •••••••••
Character Input Routine ••• • •
Terminal Timeout Routine •
Character Output Routine • •

DTE20 OPERATION

• • 7-1
• • • • 7-5

• 7-8
7-10
7-10

• • •• 7-10
7-11

• • • •• 7-12
7-13
7-13
7-14
7-15
7-17

DTE20 COMMUNICATIONS REGION • • • • • • • • • • • 8-1
DTE REGISTERS •••••••••••• 8-10

DTE20 Status Word •••••••• 8-10
Diagnostic Words • • • • • 8-15
DTE20 Data Transfer Registers 8-18

USING THE DTE20 REGISTERS • • •• 8-23
Deposit and Examine • • • • • 8-23
Transfer Operations • • • •• 8-24
Doorbell Function • • • • 8-30
Diagnostic Functions 8-30

PROTOCOLS ••• • • • • • • •• 8-30
Secondary Protocol • • • • • • • • • • • • •• 8-30
primary Protocol • • • • • • 8-31

QUEUED PROTOCOL • • •• 8-31
DTE20 DRIVER LOGIC • • 8-34

TO-10 Direct Packets • • • • • • • •• 8-34
TO-II Direct Packets • • • • • • 8-35
TO-10 Extended Direct Packets • • • •• 8-35
TO-10 Indirect Packets 8-36
TO-II Indirect Packets • • • • ••• • 8-37
Register Conventions • • • • • • • • •• 8-37
DTE20 Device Driver Functions 8-37

ERROR DETECTION AND LOGGING

THE KEEP-ALIVE COUNT •
KLERR • • • • • •
ERROR LOGGING

KL Error Logging •
FMPAR Example
DEX Example
HALT Example • •

PDP-II Error Logging ••

v

9-1
9-1

. . . • . . . 9-2
. . . • • • 9-2

• 9-3
• 9-5

• • • • • 9-9
• • •• 9-16

April 1986

9.3.3
9.4

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3

APPENDIX A

APPENDIX B

B.l
B.l.l
B.l.2
B.2
B.2.1
B.2.2
B.2.3
B.2.4

APPENDIX C

APPENDIX 0

0.1
0.2
0.2.1
0.2.2
0.2.3
0.2.4
0.3
0.3.1
0.3.2
0.3.3
0.4
0.4.1
0.4.2
0.5

APPENDIX E

APPENDIX F

INDEX

FIGURES

TKTN MESSAGES
LOGXFR • • • • • •

ERROR DEBUGGING

USING DDTll • • • • • •
INTERPRETING AN RSX-20F DUMP •

Useful Data in Dump Files
Sample Dump Analysis •
Front End Status Block • •

RSX-20F STOP CODES AND I/O ERROR CODES

9-16
9-17

10-1
10-4
10-5
10-6

• 10-10

FILE TRANSFERS BETWEEN TOPS-10/TOPS-20 AND RSX-20F

REFORMATTING FILES • • •
Restrictions ••••••••••
RSXT10/RSXFMT Commands •

TRANSFERRING FILES • • •
Running FE • • • • • • • • • • •
The FE: Device •••
RSX-20F Tasks
File Transfer Dialog

FRONT-END TASKS

KLINIK ACCESS DIALOG

• • • B-1
• • • B-2

• B-2
• 8-4

• • B-4
• B-5
• B-5

• • • 13-5

SIGNIFICANT KLINIK EVENTS • • • • • • D-l
KLINIK ACCESS PARAMETERS • • • • • 0-1

Usage of the Remote Terminal • • • 0-2
Access Password for Remote CTY's • • •• 0-2
KLINIK Access Window • • • • • • • • • • • • • • 0-2
Console Mode of the Remote Terminal •••••• 0-3

OPERATOR DIALOG WITH KLINIK • • • • • • 0-3
Setting Access Parameters ••••• • • 0-4
Examining the Current KLINIK Parameters • • 0-7
Terminating the KLINIK Link • • • • • • • 0-7

REMOTE USER DIALOG WITH KLINIK • • • • D-8
Logging In as a Remote Operator •••••• 0-8
Logging In as a Timesharing User 0-10

KLINIK INTEGRITY OVER A REBOOT • • • • • • • 0-10

GETTING HELP ON RSX-20F

EIA PIN DEFINITIONS

1-1 The Front End for a KL-based Computer System • • • 1-2
5-1 Load Switches and Switch Register for KL with

Floppy Disks • • • • • • • • • • • • • • • • • • • 5-3

vi Apr il 1986

TABLES

5-2 Load Switches and Switch Register for KL with

5-3
7-1
7-2
7-3
7-4
8-1
8-2
8-3
8-4
8-5

DEC tapes • • • • • • • • •
KLINIT Operator Dialog • • • • •
RSX-2~F Executive •••••
RSX-2~F Memory Layout ••••••
System Task Directory (STD) Node •
Active Task List (ATL) Node
KL Communications Region •••••
DTE2~ Registers •••••••••
DTE2~ Status Word in Read State
DTE20 Status Word in Write State
OTE Interrupt Handler (part 1 of 5)

• • • 5-4
5-13

• • • • • • • • 7-2
• • • • • • • • 7-5

• • 7-6
• • • • • • • 7-7

•• 8-2
8-1~
8-11
8-13
8-25

5-1 Switch Register Bit Definitions ••••••••• 5-6

vi i April 1986

PREFACE

The RSX-20F System Reference Manual contains information describing
the RSX-20F front-end operating system. RSX-20F runs on a PDP-II/40
front-end processor and communicates with either a TOPS-IO or TOPS-20
operating system running on a KL main processor.

The audience for this manual comprises Software Support Specialists,
Field Service personnel, systems programmers, and system operators.
It is assumed that the reader is familiar with PDP-II hardware, RSX-II
operating systems, and either TOPS-IO or TOPS-20.

This manual does not contain everything anyone would like to know
about RSX-20F. The information contained here was included because it
seemed to be especially important and useful to the largest part of
the audience. Hopefully, this information will prevent some users
from having to place calls to a central DIGITAL installation when they
need help. The information in the manual is organized as follows:

The first three chapters introduce the PDP-II hardware, the
RSX-Il-based operating system, and the Files-II file structure. A
short glossary of RSX-20F terms and acronyms is also included.

Chapters 4 through 6 contain a description of the PARSER (the
front-end command processor) and of KLINIT (the KL initialization
software), as well as operating instructions for the front-end utility
programs.

Chapters 7 and 8 contain information about the resident RSX-20F
monitor and the nonresident system tasks. Communications between the
KL and the PDP-II using the DTE20 are discussed in detail. The
handling of terminals, both direct lines and dial-up lines, is also
described.

Chapters 9 and 10 contain information on detecting and debugging
errors.

ix

The remainder of the manual, the appendixes, contain several topics.
Included is a list of system error messages. The procedure for
transferring files between the KL and the PDP-II is described, and the
front-end system tasks are listed. The dialog involved in setting up
a KLINIK window for remote diagnostics is discussed. There is also a
list of information to include with RSX-20F Software Performance
Reports and hot line calls, as well as a table of EIA pin definitions.
The following TOPS-IO and TOPS-20 manuals also contain information
about RSX-20F:

TOPS-IO Operat~~ Guide

TOPS-IO Monitor Installation Guide

TOPS-20 Operator's Guide

TOPS-20 Software Installation Guide

TOPS-IO/TOPS-20. DDTII Manual

DECsystem-IO/DECSYSTEM-20 Processor
Refer~nce Manual

hA-H283A-TB

1\A-5056B-TB

1~A-4l 76D-TM

1~A-4l9 5G-TM

AA-M494A-TK

l\A-H 3 9IA-TK

Readers who wish to become more familiar with PDP-II hardware and
software can find additional material in the following handbooks,
which contain both tutorial and reference information:

PDP-II Processor Handbook EB 05138 76

PDP-II Software Handbook 1m 09798 78

PDP-II Peripherals Handbook EB 05961 76

Terminals and Communications Handbook EB 15486 79

x

CHAPTER 1

INTRODUCTION

Two PDP-II operating systems, RSX-IIM and RSX-IID, provided the base
upon which RSX-20F was built. These operating systems were chosen
because they offered the best base for building the required front
end. The KL requires a front end that:

• Is small and efficient

• Can handle special cases such as booting the KL and
diagnosing and recovering KL errors

• Can handle the unit record devices of TOPS-20 and TOPS-IO

The purpose of the KL front end is to reduce the load on the KL.
Specifically, the front end handles booting, configuring and loading
the KL, and drives the unit-record and terminal hardware. Figure 1-1
shows a diagram of a KL-based computer system with a POP-II front end,
including the connections that are present between the front end and
the various peripherals that it drives.

This chapter contains important concepts of PDP-II software, explains
the needs of RSX-20F, and describes how RSX-IIM and RSX-IID were
modified to produce RSX-20F.

1-1

Figure 1-1:

INTRODUCTION

MFll
MEMORY

DL11W

LA36
CTY

DL11W
CTYINTERFACE

MMll
MEMORY
PARITY

LINE CLOCK
KY11-D
CONSOLE

------ ---_._--

SWITCH
PANEL

BM 873YF
ROM

KD11
CPU

~
L11-E

MODEM
INTERFACE

RKOl
DUAL DRIVE 3

RX11
FLOPPY CTL 2

TO REMOTE
DIAGNOSTIC
TERMINAL

(KLINIK)

1---- ----I

I I
I DC20 DC20 I
I MULTIPLEXER MULTIPLEXER CD20 I
I 8 MAX g~~~RR~tDER I
I I
I I
: I
I I
I 01 15 01 15 I
I LINE CARD 1\

I PRINTER READER

I I

I FOR TOPS-20 SYSTEMS ONL Y i L ___________________________________ I

1 BM873YH ROM ON 1080/90 MR-S-1B7-79

2TCll DECtape CTL ON 1080/90
3 TU56 DUAL DRIVE ON 1080/90

The Front End for a KL-based Computer System

1-2

INTRODUCTION

1.1 THE PDP-II

The PDP-II has several unique features that make it an easy machine to
program and use. This section describes some of the most important of
these features.

1.1.1 The UNIBUS

The UNIBUS is a 56-line bus used to send addresses, data, and control
information to the system components and peripherals. The method of
communication is the same for every device on the UNIBUS, including
memory and the central processor. Each device, including memory
locations, processor registers, and peripheral-device registers, is
assigned an address on the UNIBUS. Thus, peripheral-device registers
can be manipulated as easily as main memory by the central processor.
The UNIBUS is both bidirectional and asynchronous; this allows
devices of varying speeds to be connected to it.

1.1.2 The I/O Page

The I/O page is an area at the high end of memory in which all the
physical device registers are assigned an address. The UNIBUS concept
makes this I/O page easy to access and easy to keep current, thus
making it useful to those who wish to find out about the physical
state of the system.

1.1.3 vector Interrupts

Vector interrupts allow the user to control interrupt handling as
easily as depositing data into memory locations. Each device on the
UNIBUS has two words assigned to it in low memory to handle its
interrupts. The first word is the address of the routine to which
control is to be relinquished in the event of an interrupt. The
second word contains the processor status word to be installed when
control is transferred to the interrupt routine.

1.1.4 Priorities

Interrupt priorities can be set individually for devices on the
UNIBUS. Each device has a priority level on which it can interrupt.
In the processor status word, the priority level field (bits 5-7) can
be set to a value of 0 through 7. Only devices with a priority higher
than the priority in the status word can interrupt. The user,
therefore, can control interrupt priorities by depositing data into
memory.

1.1.5 Traps

Both synchronous and asynchronous traps can be handled by the PDP-II.
Synchronous traps occur immediately upon the issuance of an illegal
instruction or general trap. They are dealt with by means of the
vectors in low memory and provide user flexibility. Asynchronous
traps occur independently of user instructions, usually as the result
of I/O completion.

1-3

INTRODUCTION

1.1.6 Data Transfers

Data can be transferred in two ways via the UNIBUS: a BR (Bus
Request) or an NPR (Non-Processor Request). The mE~thod normally used
is the BR, in which the device wanting to use the UNIBUS must first
request the use of the bus from the bus master. An NPR parallels DMA
(Direct Memory Access) on the KL. An NPR steals UNIBUS cycles without
directly gaining control of the processor. Since it does not need to
access the processor, an NPR is much faster than a BR.

1.1.7 General Registers

The central processor has eight registers (0-7) for general use. The
registers can be used as accumulators, index registers, or stack
pointers. Register 6 is used as the system stack pointer (SP), and
Register 7 is used as the hardware program counter (PC). These last
two registers can be manipulated in exactly the same way as the other
registers, but depositing data in them destroys the state of the
PDP-II, because the PDP-ll is not able to find the next instruction or
the hardware stack.

1.1.8 Stacks

The PDP-II is a stack-oriented machine. It contains built-in
addressing modes designed to manipulate stacks of data. The PDP-II
also has its own system stack, and it uses R6 as the hardware stack
pointer.

1.1.9 Instruction Set

The PDP-II instruction set operates on single- or double-byte
operands. Addressing on the PDP-II is by eight-bit bytes. The word
size is sixteen bits. Addressing includes a variety of addressing
modes which, when combined with the instruction set, allow the
programmer great flexibility in programming.

1.2 RSX-IIM OPERATING SYSTEM

RSX-IIM is a PDP-II operating system. It controls I/O, schedules
tasks to be run, and provides common subroutines. The resident
operating system is referred to as the Executive.

1.2.1 Directives

A directive is a request to the Executive to perform a function.
Directives can perform I/O functions, obtain task and system
information, suspend and resume task execution, and cause a task to
exit. Directives are called EMTs (EMulator Traps), and are equivalent
to JSYSs in TOPS-20 and UUOs in TOPS-IO.

1-4

INTRODUCTION

1.2.2 Device Drivers

A device driver is a program that controls physical hardware
activities on a peripheral device. The device driver is generally the
device-dependent interface between a device and the common
device-independent I/O code in an operating system.

1.2.3 Significant Events

A significant event is an event or condition that indicates a change
in the system status of an event-driven system. A significant event
is declared, for example, when an I/O operation completes. A
declaration of a significant event indicates that the Executive should
review the eligibility of task execution, because the event might have
unblocked the execution of a higher priority task. The following are
considered to be significant events:

• Queueing of I/O requests

• Completing of I/O requests

• Requesting a task

• Scheduling a task

• Waking up a task

• Exiting a task

There are 64 significant event flags, most of them directly related to
servicing directives. These flags can also be used by tasks to
communicate with other tasks.

1.2.4 Mapped and Unmapped Systems

A mapped system uses hardware memory management to relocate virtual
memory addresses. An unmapped system has no hardware to relocate
virtual addresses into physical addresses. An unmapped system must
therefore be assembled with the correct physical addresses. RSX-20F
is an unmapped system. .

1.3 TASKS

A task is the fundamental executable unit in PDP-ll operating systems.
Some tasks are self-sufficient and can be thought of in much the same
way as programs in TOPS-10 or TOPS-20. Some tasks must call other
tasks to complete their function. Some tasks are considered
subroutines to be called by still other tasks.

Tasks can reside in one of three places: the resident Executive
(EXEC) partition, the general (GEN) partition, or the Files-ll
partition (FIITPD). A partition is an area of memory reserved for the
execution of tasks. In the simplest case, a task uses all of the
partition. If the task is smaller than the partition, the unused
space is unavailable to other tasks. If a task is larger than the
partition, it must be written to use overlays. Overlays are sections
of code that are brought into memory as needed and are written over
existing code that is no longer required.

1-5

INTRODUCTION

Most tasks that run in the EXEC partition handle specific devices and
system functions. These tasks are called resident tasks; that is,
they are always core resident and are not swapped out. This is
important because system functions and devices demand instantaneous
service and should not have to wait for code to be read in from a
peripheral device. Occasionally a task is larger than the partition
into which it must fit. This situation can be handled by overlaying
code. Overlaying consists of replacing unneeded sections of code in
core with sections that are needed but are not currently in main
memory.

There are two general classes of tasks: privileged and nonprivileged.
A privileged task can access its own partition, the Executive
partition, and the I/O page. A nonprivileged task can access only its
own partition and shared regions.

When a task has been compiled, it is still not ready to be loaded and
executed. It must be put through the Task Builder. A compiler
produces an output file called an object module. The Task Builder
accepts object modules as input, links them together, resolves
references to global symbols and library files, and produces an output
file called a task image. In the task image file, all relocatable
expressions and external references have been converted to absolute
addresses. The task image file can then be loaded into a partition
and executed. The Task Builder can also produce a memory map file. A
memory map describes the allocation of storage, itemizes the separate
modules that the task comprises, and lists all global-symbol values.

1.4 RSX-20F REQUIREMENTS

The PDP-II/40 fulfills the normal functions of a front-end computer.
It acts as a peripheral handler and data concentrator/router in its
relation with the KL. The devices that it handles are the slower,
unit record devices (TTY, CDR, and LPT). This allows the KL to
concentrate on computing rather than servicing interrupts from the
slower devices.

The front end can also be used for other special functions. For
example, it can perform all the following steps necessary to get the
KL up and running:

• Load the microcode

• Configure memory

• Configure cache

• Load a bootstrap program

The front end can also perform diagnostics on the KL when hardware
problems develop.

1.5 THE DERIVATION OF RSX-20F FROM RSX-11M

RSX-1IM is geared toward mUltiprogramming and quick response to
real-time events. The multiprogramming capability allows the
development and use of utility programs that can perform special
tasks. The real-time response allows any attached devices to be
serviced quickly. For these reasons, RSX-11M was chosen as the basis
for RSX-20F.

1-6

INTRODUCTION

RSX-20F utility programs can be run only in the GEN partition.
Nonresident Exec routines (for example, Files-II, KLRING, KLDISC,
SETSPD, TKTN, and MIDNIT) run in the FIITPD partition. Only one
utility task can run at anyone time in the GEN partition and that
task runs until completion. Some ~asks use overlays. These tasks
must control their own overlaying, however, since the Executive makes
no attempt to do so.

The significant event scheme of RSX-IIM was kept in RSX-20F to handle
changes in system states and to provide directives with information.
The directives that were kept provide I/O service, task information
and task control. The scheduling algorithm used to decide which task
runs next is round robin within priority value.

Specific programs are brought into core to do special tasks. Some of
the RSX-20F utility programs are MOUNT and DISMOUNT to control access
to Files-II devices, PIP to transfer files from one Files-II device to
another, UFD to create User File Directories on Files-II devices, and
PARSER to provide communication and diagnostic functions. All these
tasks run in the GEN partition.

The biggest change in the structure of RSX-IIM had to do with driving
the DTE20 interface. The DTE20 is the only link between the front end
and the KL, and provides the interface between the KL and the
terminals, printers, and so forth. In order to deal with all the
purposes to which the DTE20 would be put, the operating system needed
a device driver. A queue mechanism had to be set up to handle all the
requests for the devices that the KL receives and transmits to the
front end. Consequently, the queued protocol task was added to handle
the communication between TOPS-20 and the device drivers in the front
end.

Although no inter-CPU communication can take place over the disk, the
PDP-II and the KL can access the dual-ported RP04/06 drive independent
of each other. However, RSX-20F does not have access to the entire
dual-ported disk; RSX-20F is limited to 950 pages by default (the
value can be made larger by reinitializing the disk) . Logical block
number 400 is the home block for the Files-II system. TOPS-20 views
the front-end file system as one big file,
<ROOT-DIRECTORY>FRONT-END-FILE-SYSTEM.BIN. TOPS-IO also views the
front-end file system as one big file, SYS:FE.SYS.

System access to front-end files is usually done with file ID's.
Because the front-end file system contains relatively few files, this
access method can find the files quickly. The directory structure is
kept for those few situations when users must interact with a Files-II
area on floppy disk, DECtape, or dual-ported RP04/06. No protection
checking is enforced with the file systems.

Real PDP-II formatted disks have 16-bit words, and disk addressing and
accessing is consistent with this scheme. However, disks supported by
TOPS-IO and TOPS-20 must be formatted in IS-bit words to make them
compatible with the 36-bit word size expected by the KL processor.
Therefore, the RSX-20F disk driver is a modified RSX-I1M routine.
Each PDP-II word of data in the Files-II area is written
right-justified in the IS-bit space available. The two left-hand
(high-order) bits are ignored by RSX-20F's disk driver.

1-7

CHAPTER 2

FILES-II SYSTEM

All RSX-based operating systems have a standard file system called
Files-ll. Users who access files in an RSX-20F Files-II system use a
syntax that is similar to TOPS-20 and TOPS-lO. This chapter defines
some terms used by Files-ll, and describes the file structure and
directory structure used by the system.

2.1 GENERAL DEFINITIONS

The Files-II system imposes a structure on a medium. The medium
Files-II uses is any block-addressable storage device. This includes
such media as disks and DECtapes. Since the method of access to all
Files-II media is similar, all types of Files-II media are referred to
as disks.

A Files-II volume is a logical file structure that includes one or
more devices of the same type. A Files-II volume can be compared to a
file structure under TOPS-IO and TOPS-20.

When Files-II devices are used by a task, each device is assigned a
number called a Logical Unit Number (LUN). LUNs are associated with
physical devices during a task's I/O operations. The Executive can
also assign LUNs for its own use.

2.2 FILES-II FILE SPECIFICATION

The file specification for Files-II is:

dev: [g,m] filename.ext;version

where:

dev:

[g ,m]

filename

is the name of a physical or logical device on
which the desired file is located. The device
name consists of two ASCII characters followed by
an optional one-digit unit number and a colon.

is the group number and member number associated
with the User File Directory (UFO). These numbers
are octal and are in the range of 1 to 777. This
section of the file specification is also referred
to as the User Identification Code (UIC).

is the name of the file which can be from 1 to 9
alphanumeric characters.

2-1

FILES-11 SYSTEM

ext is the extension of the file which can be from 1
to 3 alphanumeric characters or null.

version is the version number of the file which can range
from 1 to 77777. If no version number is
specified, the number defaults to the most recent
version on a read operation and the next version
number on a write operation.

By comparison, the TOPS-20 file specification format is:

dev:<directory>filename.type.gen

The TOPS-IO file specification format is:

dev:filename.ext[p,pn]

The quantity [g,m] is the directory number and corresponds to
directory name in TOPS-20 and the project-programmer number
TOPS-IO.

Two examples of valid RSX-20F Files-ll file specifications are:

DBO: [5,5]KLINIK.TSK

DX1: [5,5]MIDNIT.TSKil

2.2.1 Files-11 File Structure

the
in

Any data of interest on a Files-ll volume is contained in a file. A
file is an ordered set of virtual blocks, a virtual block being an
array of 512 eight-bit bytes. A file's virtual blocks are numbered
from 1 to n, where n blocks have been allocated to the file. The
number assigned to a virtual block is called a Virtual Block Number,
or VBN. Each virtual block is mapped to a unique logical block on the
volume. Virtual blocks can be processed in the same manner as logical
blocks. Any array of bytes that is less than 65K in length ca be
read or written, provided that the transfer starts on a virtual block
boundary and that its length is a multiple of four.

Each file in a volume is uniquely identified by a file 10. A file 10
is a binary value consisting of three PDP-ll words (48 bits). It is
supplied by Files-ll when the file is created and used whenever the
file is referenced. The three words contain:

1. File number - This number uniquely identifies the file on the
volume.

2. File sequence number - This number identifies the current use
of an individual file number on a volume. The file numbers
are reused. Since the file number of a deleted file is
available to be used again, the file sequence number is
attached to distinguish the uses of the file number.

3. Relative Volume Number - This number must be zero. The
location is reserved for the implementation of volume sets.

2-2

FILES-II SYSTEM

Each file on a Files-ll volume is described by a file header. The
file header is a block that contains all the information necessary to
access the file. The file header is contained in the volume's index
file, not in the file itself. The file header is divided into four
distinct areas:

1. Header Area - This area contains the file number and the file
sequence number as well as the file's ownership and
protection codes. This area also contains offsets to the
other areas of the file header, thereby defining their size.
Finally, the header area contains a user attribute area, in
which the user can store a limited amount of data describing
the file.

2. Ident Area - This area contains identification and accounting
data about the file, including the primary name of the file,
its creation date and time, its expiration date, and its
revision count, date and time.

3. Map Area - This area describes the mapping of virtual blocks
of the file to logical blocks of the volume. The area
contains a list of retrieval pointers, each of which
describes one logically contiguous segment of the file. The
map area also contains the linkage to the next extension
header of the file, if one exists.

4. End Checksum - This area, the last two bytes of the file
header, contain a sixteen-bit additive checksum of the
preceding 255 words of the file header. The checksum is used
in the process of verifying that this block is a file header.

Since the file header has a fixed size while the file itself does not,
a large file could require more space for its mapping information than
is available. To provide for this contingency, Files-ll uses
extension headers. An extension header is used to chain together file
headers to provide enough space for the mapping information. The map
areas link the headers together in order of ascending virtual block
numbers.

2.3 FILES-II DIRECTORIES

Directories are Files-ll files whose sole function is to associate
file-name strings with file ID's. Since the file ID is unique to the
file, the file ID can be used to locate the file directly in the
Files-ll system. However, most users find it easier to deal with a
group of files if the files can be named. This ease of use is the
goal of the directory file. A directory file is an FCS (File Control
Services) file consisting of fixed sixteen-byte records (see Section
2.5 for a description of FCS files). Each record is a directory entry
describing a single file. Each entry contains the following data:

• File ID - The three-word binary ID of the file this entry
represents (The file number portion of the file ID is zero
when the entry is empty.)

• Name - The name of the file, stored as three words of three
Radix-50 characters

2-3

FILES-II SYSTEM

• Type - The file type (known also as the extension), stored as
one word of three Radix-50 characters

• Version - The file version number, stored in binary in one
word

2.4 FIXED FILE IO'S

As with any file system, Files-II maintains a data structure that it
uses to control the file organization. The information that Files-II
needs are kept in files called known files because the system always
knows about them. These files are created when a new volume is
initialized. The files have fixed file 10 numbers so that Files-II
can always find its own data. The files and their uses are described
below.

1. Index File - The index file is file 10 1,1,0. It is listed
in the Master File Directory (MFO) as INOEXF.SYS;I. The
index file provides the means for identification of and
initial access to a Files-II volume. It also contains the
access data for all files on the volume, including itself.

2. Storage Bitmap File - The storage bitmap file is file 10
2,2,0. It is listed in the MFO as BITMAP.SYSil. This file
is used to control the available space on a volume. It
contains a storage control block with summary information
about the volume, and the bitmap itself, which lists the
availability of individual blocks.

3. Bad Block File - The bad block file is .file 10 3,3,0. It is
listed in the MFO as BAOBLK.SYS;I. The bad block file is
simply a file containing a list of all the known bad blocks
on the volume.

4. Master File Directory - The maste~ file directory is file 10
4,4,0. It is listed in the MFO (itself) as OOOOOO.OIR;I. It
lists the five known files, and all the user file directories
for the volume.

5. Core Image File - The core image file is file 10 5,5,0. It
is listed in the MFO as CORIMG.SYSil. This file is the
boatable RSX-20F system image file.

2.5 FCS FILE STRUCTURE

FCS stands for File Control Services, which is a user-level interface
to Files-II. Its principal feature is a record control facility that
allows sequential processing of variable-length records as well as
sequential and random processing of fixed-length records. FCS uses
the virtual block system provided by the basic Files-II structure.

FCS treats every disk file as a sequentially numbered array of bytes.
Records are given ordinal numbers starting with I for the first record
in the file. A file consisting of fixed-length records can have
records crossing block boundaries or not, depending on the setting of
a flag in the file header area. If records do cross block boundaries,
the records are simply packed end to end. Records of an odd length
are padded with a byte of indeterminate contents. If records do not
cross block boundaries, their size is limited to 5L2 bytes.

2-4

FILES-ll SYSTEM

Variable-length records can be 32,767 bytes, unless records do not
cross block boundaries, in which case the limit is 510 bytes. Each
record is preceded by a two-byte binary count of the bytes in the
record (the count does not include these two bytes). This byte count
is always word-aligned, and padded with a null byte if necessary. A
byte count of -1 signals the end of live data in a particular block.
The next record in the file begins at the next block.

2-5

CHAPTER 3

RSX-20F GLOSSARY OF TERMS

This chapter includes definitions and expansions of several words,
phrases, and acronyms used in the manual.

ACL

ACP

ACK

APR

AST

ATL

Access Control List

Ancillary Control Processor

Affirmative ACKnowledgement - the reply that indicates that
the receiver accepted the previous data block and that the
receiver is ready to accept the next block of the
transmission.

Arithmetic PRocessor

Asynchronous System Trap

Active Task List

Auto-baud ing

Carrier

The process by which the terminal software determines the
line speed on a dial-up line.

The analog signal that carries data over telephone lines.

Carrier Transition

CC

CKL

A transition in the state of the carrier signal, either from
"On" to "Off", or vice versa.

Condition Code

ClocK List

Communications Region
An area in KL memory that is used for coordinating status,
preparing for byte transfer operations, and passing limited
amounts of data. Both the KL and the PDP-ll have an Owned
Communications Region in which they alone can write.

3-1

RSX-20F GLOSSARY OF TERMS

CUSP
Commonly Used System Program

DEQUE
Double Ended QUEue

DIC
Directive Identification Code (0-127)

Deposit Region

DHII

DMII

DPB

DSW

DTE20

DTL

DTR

EBOX

EMT

EPT

A region in KL memory that is accessed by the PDP-II using
Protected Deposits.

Communications interface between the PDP-II front end and up
to sixteen terminals and sixteen modems. Specifically a
DHIIAD.

Communications interface between the PDP-II front end and
the EIA modem control lines. The DMII is used in the DHIIAD
to handle modern control for asynchronous terminal lines
connected to common carrier facilities.

Directive Parameter Block

Directive Status Word

The hardware interface between the PDP-11 and the KL. DTE
stands for Data Ten to Eleven.

DTE20 List

The signal used by a computer system to answer the phone
ring from a remote user. DTR stands for Data Terminal
Ready.

Part of the KL hardware that performs arithmetic and logical
operations.

EMulator Trap Instruction

The area in KL memory that
transmission of data between
Executive Process Table.

is r eSE! rved
processors.

for use in
EPT stands for

Examine Reg ion
A region in KL memory that is accessed by the PDP-II using
Protected Examines.

External Page
An area (4K) of real memory space (760000-777777) containing
CPU and peripheral device control and status registers (also
known as the I/O page) •

3-2

FCP

IRQ

ISR

KTll

LBN

Login

Logon

LUN

MCR

MFD

MRL

RSX-29F GLOSSARY OF TERMS

File Control Primitives

I/O Request Queue

Interrupt Service Routine

Hardware Memory Management Option

Logical Block Number

The process of getting a KL to recognize a potential user
(see also Logon)

The process of getting a PDP-ll to recognize a potential
user

Logical Unit Number

Monitor Console Routines

Master File Directory

Memory Request List

Normal Termination

NXM

Owned Area

Packet

An error-free completion of a given task.
not used because, unlike a Done flag, a
flag is not set if an error occurs. An
Error Termination flag to be set.

Non-eXistent Memory

The term Done is
Normal Termination
error causes the

An area in the Communications Region that is for the use of
the related processor. The related processor can read and
write to and from this area.

A group of bytes including data and control elements that is
switched and transmitted as a composite whole.

Privileged Front End
A PDP-Il attached to a KL by means of a DTE20 that can use
the diagnostic bus and do unprotected deposits. A
privileged front end can crash the KL.

3-3 April 1986

RSX-20F GLOSSARY OF TERMS

Protected Examines/Deposits

PUD

An Examine or Deposit that is range-checked by the KL. The
relocation and protection for the Examine operation is
separate from that for the Deposit operation. A privileged
front end can override the protection checks; a restricted
front end cannot override the protection checks. (See also
Relative Address)

Physical Unit Device Table

Relative Address
An address specified by the PDP-II software on a Protected
Examine or Deposit. The address specified by the PDP-II is
relative to the Examine or Deposit Region, and runs from 0
to the maximum relative address (which is kept by the KL in
the EPT). (See also Examine Region, Deposit Region, EPT)

Restr icted Front End

RTS

Send-All

SPR

SST

STD

Thread

TPD

UIC

UFD

VCB

VBN

A PDP-II that is attached to a KL by means of a DTE20 and
cannot crash the KL if the KL hardware and software are
working correctly. A restricted front end cannot use the
diagnostic bus, and cannot read KL memory unless the KL has
first set up the interrupt system to allow it.

A signal sent from the Data Terminal Equipment (in this case
the DTE20) to the Data Communications Equipment (DCE) to
condition the DCE for transmission. Since all terminal
communication is full-duplex, the local modem should always
be ready to transmit when a user is dialed in. Thus, RTS
should always be asserted by the PDP-II for active dial-up
lines. RTS stands for Request to Send.

Data that is sent to every active line on the system that
has not refused it. An obvious example is a system message.

Software Performance Report

Synchronous System Traps

System Task Directory

The link word in a node.

Task Partition Directory

User Identification Code

User File Directory

Volume Control Block

Virtual Block Number

3-4

CHAPTER 4

PARSER

The command language processor for the front-end operating system is
called the PARSER. It is a nonresident system task and executes in
the GEN partition when it is invoked. The PARSER is the primary means
of communications between the system operator and the front-end
programs. It also provides access to the KL's memory and diagnostic
registers. The PARSER accepts input in the form of ASCII strings
entered at the console terminal (CTY).

4.1 ENTERING AND EXITING THE PARSER

If you are currently communicating
monitor, or a TOPS-IO or TOPS-20
(CTRL/\) to enter the PARSER.

with
job,

the TOPS-IO or TOPS-20
type a control backslash

If you are currently communicating with another RSX-20F task or
utility such as KLINIT or PIP, type a CTRL/Z to exit the current task
and then a CTRL/\ to enter the PARSER.

When you enter the PARSER, you receive one of the following prompts:

PAR>

PAR%

PAR#

This indicates that the PARSER is ready to accept
commands and the KL is running (that is, the KL clock
is running and the KL run flop is on) •

This indicates that the PARSER is ready to accept
commands but the KL microcode is in the HALT loop.
(The KL clock is running but the KL run flop is off.)

This indicates that the PARSER is ready to accept
commands but the KL clock is stopped and the KL is not
running.

NOTE

If you see the PAR#
during timesharing,
the system.

prompt displayed
you should reload

If the PARSER encounters an error during its initialization, an error
message precede the prompt.

In order to exit the PARSER, type QUIT or a CTRL/Z to return to the
TOPS-IO or TOPS-20 monitor or use the PARSER command, MCR, to load and
start another program.

4-1

PARSER

4.2 PARSER COMMAND SYNTAX

Commands to the PARSER are typed one or more to a line in response to
a PAR>, PAR%, or PAR# prompt. The rules that follow apply to all
commands you wish to type unless you are explicitly told otherwise in
the description of the command.

1. Multiple commands can be entered on a
this, separate each command from
semicolon. For example:

single line. To do
the following one by a

PAR>EXAMINE PCiEXAMINE 20iSHUTDOWN<RET>

2. Command lines can be continued on the following line. To
continue a command line on the next line, end the line to be
continued with a hyphen (-) and a carriage return. The
PARSER will prompt you for the continuation line with another
hyphen. For example:

PAR>EXAMINE PCiEXAMINE 20i-<RET>
-EXAMINE NEXT<RET>

The maximum number of characters in a command line is 280.

3. A comment can be added to the end of a command line or can he
an entry in itself. To insert a comment, begin the text with
an exclamation mark (and end it with a carriage return). For
example:

PAR>CLEAR CONSOLE!RESET TO OPERATOR MODE<RET>
PAR>!THIS IS A COMMENT LINE<RET>

4. Terminal output can be suppressed. To do this, type CTRL/O.

5. Keywords in a command can be truncated to their shortest
unique abbreviation. For example:

6.

PAR>H!HALT THE KL CPU<RET>

If the truncation is not unique, you receive an error
message. For example:

PAR>RE 5<RET>
PAR -- [PARSER] AMB - AMBIGUOUS KEYWORD "RE"

In this example, the PARSER found two commands that started
with RE: REPEAT and RESET.

The default radix of integers
36-bit value is expected;
decimal.

is octal if an address or
otherwise the default radix is

7. Numbers can be shifted a specified number of binary places in
either direction. To shift to the left, use an underscore
() between the number you wish to shift and the number of
bTnary places you wish it to be shifted. This causes the
left-hand number to be shifted to the left by the number of
binary bits indicated by the right-hand number, assuming that
the right-hand number is positive. If the right-hand number
is negative, the left-hand number is shifted to the right
that many binary places. Thus, in order to specify a number
in octal that ends in several zeros, you could write the

4-2

PARSER

nonzero part, then an underscore, then the number of trailing
(binary) zeros in the number. For example:

PAR>EXAMINE 2 3<RET>

results in

201 xxxxxx xxxxxx

Note that rule #6 applies to both the left- and right-hand
numbers.

8. Negative numbers can be specified through the use of a unary
minus (-) preceding the number. For example:

PAR>DEPOSIT TEN 30=-1<RET>

301 xxxxxx xxxxxx

PAR>EXAMINE TEN 30<RET>

301 777777 777777

(d e po sit -1 in
loco 30)

(previous
contents)

(examine
loco 30)

(new contents)

9. Numeric values can be entered as arithmetic expressions using
addition (+), subtraction (-), mUltiplication (*), and
division (I). For example:

PAR>EXAMINE 123654+32<RET>
1237061 xxxxxx xxxxxx

PAR>DEPOSIT TEN 408-6~100<RET>

PAR>SET INCREMENT 2*3<RET>
KL INCREMENT: 6

PAR>REPEAT 8/4; EXAMINE PC<RET>
PCI xxxxxx xxxxxx
PCI xxxxxx xxx xxx

Note that in the evaluation of arithmetic expressions,
multiplication, division, and binary shifts take precedence
over addition and subtraction.

10. Relocation factors can be added or subtracted from a number.
To do this, use a single quote (') following a number to add
the PDP-II relocation factor (offset) to the number. Use a
double quote (") to subtract the PDP-II relocation factor.
For example:

PAR>SET OFFSET 101204<RET>
PDP-II OFFSET: 101204
PAR>EXAMINE ELEVEN 32'<RET>
101236\ xxxxxx
PAR>EXAMINE ELEVEN 101236"<RET>
32\ xxxxxx

You can use the PDP-II relocation factor to modify KL memory
addresses as well as PDP-II memory addresses.

When you close a command line (carriage return without a preceding
hyphen), the PARSER first scans the command line buffer for illegal

4-3

PARSER

characters. If it finds any, the entire command line is discarded and
the following message is issued:

PAR -- [PARSER] ILC - ILLEGAL CHARACTER "c"

where "c" is the first illegal character found.

If the command line passes the character scan, the PARSER begins to
execute the individual commands. If the PARSER encounters an invalid
command, that command and any others remaining in the command line are
not executed. The invalid command also generates an error message
(refer to Section 4.5, PARSER Error Messages).

4.3 PARSER CONSOLE MODES

The PARSER command set differs according to the current console mode.
There are three basic console modes:

OPERATOR MODE

PROGRAMMER MODE

MAINTENANCE MODE

This mode allows only
will not crash the
monitor.

those commands that
TOPS-IO or TOPS-20

This mode allows all PARSER commands except
diagnostic functions.

This mode allows the full set of PARSER
commands.

In addition, there is a mode called USER MODE. Entering this mode has
the effect of exiting the PARSER and is equivalent to a QUIT command.

When RSX-20F is initially loaded, the console mode is the mode that
was in effect in the PARSER when the RSX-20F front-end module was
saved. (Refer to Chapter 6 for a description of the SAV utility.)
There is a SET CONSOLE command to change the console mode, a CLEAR
CONSOLE command to reset the mode to OPERATOR, and a WHAT CONSOLE
command to determine the current mode. These commands are explained
in detail in Section 4.4.

4.3.1 PARSER Help Facility

The PARSER has a built-in help facility that prints out the available
list of commands for the console mode you are in.

For an example, assume you are in OPERATOR mode and type:

PAR>?(RET>

The PARSER responds:

PARSER COMMANDS ARE:

ABORT
CLEAR
DISCONNECT
EXAMINE
JUMP
MCR
REPEAT
RUN

4-4

SET
SHOW
SHUTDOWN
TAKE
QUIT
WHAT

PARSER

If, on the other hand, you are in PROGRAMMER mode, the response is:

PARSER COMMANDS ARE:

ABORT
CLEAR
CONTINUE
DEPOSIT
DISCONNECT
EXAMINE
HALT
INITIALIZE
JUMP
MCR
REPEAT
RESET
RUN
SET
SHOW
SHUTDOWN
START
TAKE
QUIT
WHAT
XCT
ZERO

This help facility extends to the argument level. If you are not sure
of the arguments for a particular command, type the command followed
by a space and a question mark.

For instance, assume you are in OPERATOR mode and type:

PAR>CLEAR ?<RET>

The PARSER responds:

CLEAR COMMANDS ARE:

CONSOLE
INCREMENT
KLINIK
MEMORY
NOT
OUTPUT
REPEAT

If instead you are in PROGRAMMER mode, the response is:

CLEAR COMMANDS ARE:

CONSOLE
DATE
FAULT-CONTINUATION
INCREMENT

4-5

PARSER

KLINIK
MEMORY
NOT
OFFSET
OUTPUT
RELOAD
REPEAT
RETRY
TRACKS

Subarguments can also be determined in this manner. For example, if
you type:

PAR>SET CONSOLE ?<RET>

The PARSER responds:

SET COMMANDS ARE:

MAINTENANCE
OPERATOR
PROGRAMMER
USER

4.4 PARSER COMMANDS

This section lists all PARSER commands. The console mode associated
with each command specifies the minimal console mode at which the
command is available. The following notational conventions apply to
the command format:

• Any single argument not in brackets must be specified.

• Uppercase arguments are keywords and must be entered as shown
or truncated according to rule 5 in Section 4.2.

• A multiple choice list enclosed in square brackets [] means
that an entry is optional. If there is a default entry, it
is specified.

• A multiple choice list enclosed in braces { } means that one
of the entries must be specified.

In the following list of commands, those specified as requiring
MAINTENANCE console mode should be restricted to Field Service
personnel. Also, some commands require that the KL be stopped; this
can be done with a HALT or ABORT command.

ABORT OPERATOR

The ABORT command stops the KL by trying to force it into the
HALT loop. If this fails after a reasonable number of EBOX clock
ticks, the command tries to START MICROCODE, which implies a
MASTER RESET of the KL processor. This is one way to get the KL
into a known state when a previous state left it in a hung
condition.

4-6

PARSER

CLEAR CLOCK NORMAL
CRAM
DATA-PATH
CONTROL
EXTERNAL
INTERNAL
MARGIN
FULL
HALF
QUARTER
SLOW

MAINTENANCE

The CLEAR CLOCK command selectively resets the KL clock
parameters. The CLEAR CLOCK arguments function as follows:

CLEAR CLOCK NORMAL SET CLOCK NORMAL

CLEAR CLOCK CRAM Disables the control-RAM
clock

CLEAR CLOCK DATA-PATH Disables the data-path clock

CLEAR CLOCK CONTROL Disables the control logic
clock

CLEAR CLOCK EXTERNAL SET CLOCK NORMAL
INTERNAL
MARGIN
FULL
HALF
QUARTER
SLOW

CLEAR CONSOLE OPERATOR

The CLEAR CONSOLE command forces the PARSER into OPERATOR console
mode. It is the equivalent of SET CONSOLE OPERATOR.

CLEAR DATE . PROGRAMMER

The CLEAR DATE command clears the validity bit and prompts you
for a new date and time (see SET DATE command). This command is
not valid if RSX-20F is in primary protocol.

CLEAR FAULT-CONTINUATION PROGRAMMER

The CLEAR FAULT-CONTINUATION command disables the automatic KL
fault continuation reload. This command prevents the host from
recovering from errors detected by the front-end.

4-7

PARSER

CLEAR FS-STOP MAINTENANCE

The CLEAR FS-STOP command disables the Field Service stop
facility.

CLEAR INCREMENT OPERATOR

The CLEAR INCREMENT command resets the KL increment fa,9tor to
zero. (See EXAMINE INCREMENT command.)

CLEAR KLINIK

The CLEAR KLINIK command closes
terminates the KLINIK link.
discussion on KLINIK access.)

CLEAR MEMORY

the KLINIK
(refer to

OPERATOR

access window and
Appendix 0 for a

OPERATOR

The CLEAR MEMORY command forces all subsequent EXAMINEs and
DEPOSITs to reference KL memory. This command is the equivalent
of the SET MEMORY TEN command. Note that this command does not
set memory to zeros, or in fact to anything at all; it simply
specifies which memory, the KL or the PDP-II, is being
referenced.

CLEAR NOT OPERATOR

The CLEAR NOT command is the equivalent of the SET command.

CLEAR OFFSET PROGRAMMER

The CLEAR OFFSET command sets the relocation factor to zero.
(refer to rule ten in Section 4.2.)

CLEAR OUTPUT~OGu
LPT
TTY

OPERATOR

This command stops the CTY output from going to the specified
device. When the CLEAR OUTPUT [device] command is given, the
PARSER checks for ~n active recording device. If as a result of
the command, no recording device is active, then the console
terminal is made the active recording device.

4-8

PARSER

The default devices for the CLEAR OUTPUT command are LOG and LPT.
If the default command is used the active recording device
becomes TTY.

CLEAR PARITY STOP ALL
AR
CRAM
DRAM
ENABLE
FM
FS-STOP

MAINTENANCE

The CLEAR PARITY-STOP command selectively disables parity stops
for AR, CRAM, DRAM, Fast Memory, and Field Service.

CLEAR RELOAD PROGRAMMER

The CLEAR RELOAD command disables the automatic reload of the KL
following a fatal error.

CLEAR REPEAT OPERATOR

The CLEAR REPEAT command resets the command line repeat factor to
zero. A repeat factor of zero is the same as a repeat factor of
one; subsequent command lines are executed once.

CLEAR RETRY PROGRAMMER

The CLEAR RETRY command resets the RETRY flag in the PARSER.
When this flag is off, a Keep-Alive-Cease error causes the KLERR
routine to take a system snapshot and then call KLINIT to perform
a system reload of the KL. (See SET RETRY.)

CLEAR TRACKS PROGRAMMER

The CLEAR TRACKS command stops RSX-20F from typing all KL
operations and results on the controlling terminal.

CONTINUE PROGRAMMER

The CONTINUE command takes the KL out of the HALT loop and starts
execution at the instruction pointed to by the PC.

4-9

PARSER

DEPOSIT AR=newdata PROGRAMMER

NOTE

The DEPOSIT AR command is now separated
from the new data by an equal sign (=).

The DEPOSIT AR command sets the contents of the arithmetic
register to new data.

DEPOSIT fELEVENl
~EN J f

addr

}

DECREMENT
INCREMENT

{

NEXT
PREVIOUS
THIS

=newdata PROGRAMMER

The DEPOSIT memory address command displays the contents of the
specified or implied memory address and then replaces the
contents with newdata.

ELEVEN specifies that the command is referencing an
address in the PDP-II memory.

TEN specifies that the command is referencing an
address in the KL memory.

If neither ELEVEN or TEN is specified, the memory to be
referenced is determined by the most recent SET MEMORY command.

If no SET MEMORY command has been issued, KL memory is
referenced.

The following six arguments determine the specific memory address
into which you wish to deposit the data; one of them must be
entered.

addr

INCREMENT

DECREMENT

NEXT

is the actual memory address in octal
notation. When referencing PDP-II memory,
this must be an even number.

means add the KL increment factor to the
address last referenced to arrive at the
deposit address. If PDP-II memory is being
referenced, this command is the equivalent of
DEPOSIT NEXT.

means subtract the KL increment factor from
the address last referenced to arrive at the
deposit address. If PDP-II memory is being
referenced, this command is the equivalent of
DEPOSIT PREVIOUS.

means add one (for a KL) or two (for a
PDP-II) to the address last referenced to
arrive at the deposit address.

4-10

PREVIOUS

THIS

DISCONNECT

PARSER

means subtract one (for a KL) or two (for a
PDP-II) fr om the add ress 1 a st referenced to
arrive at the deposit address.

means use the address last referenced as the
deposit address.

OPERATOR

The DISCONNECT command disconnects the KLINIK link by running the
KLDISC task. This command does not clear any KLINIK parameters.
(refer to Appendix 0 for a discussion of KLINIK.)

EXAMINE
[

ELEVEN]
TEN

addr
addrl:addr2
DECREMENT
INCREMENT
NEXT
PREVIOUS
THIS

OPERATOR

The EXAMINE memory address command displays the contents of the
specified or implied physical memory address in octal, on the
CTY.

ELEVEN

TEN

specifies that the command is referencing an
address in the PDP-II memory.

specifies that the command is referencing a
physical address in the KL memory.

If neither
referenced
If no SET
referenced.

ELEVEN or TEN is specified, the memory to be
is determined by the most recent SET MEMORY command.

MEMORY command has been issued, KL memory is

The following six arguments determine the specific memory address
to be examined; one of them must be entered.

addr

addrl:addr2

INCREMENT

DECREMENT

is the actual memory address in
notation. If you are referencing
memory, this must be an even number.

octal
PDP-II

examines the memory addresses from addrl
through and including addr2.

means add the KL increment factor to the
address last referenced to arrive at the
examine address. If PDP-II memory is being
referenced, this command is the equivalent of
EXAMINE NEXT.

means subtract the KL increment factor from
the address last referenced to arrive at the
examine address. If PDP-II memory is being
referenced, this command is the equivalent of
EXAMINE PREVIOUS.

4-11

NEXT

PREVIOUS

THIS

EXAMINE KL

PARSER

means add one (for a KL) or two (for a
PDP-II) to the address last referenced to
arrive at the examine address.

means subtract one (for a KL) or two (for a
PDP-II) from the address last referenced to
arrive at the examine address.

means use the address last referenced as the
examine address.

OPERATOR

The EXAMINE KL command performs the EXAMINE PC, EXAMINE VMA,
EXAMINE PI, and the EXAMINE FLAGS commands, in that order.

EXAMINE PC OPERATOR

The EXAMINE PC command prints the contents of the KL program
counter (22-bit PC) in octal, on the CTY.

EXAMINE AB PROGRAMMER

The EXAMINE AB command displays the contents of the KL address
break register.

EXAMINE AD PROGRAMMER

The EXAMINE AD command displays the contents of the KL adder
register.

EXAMINE ADX PROGRAMMER

The EXAMINE ADX command displays the contents of the KL adder
extension.

EXAMINE AR PROGRAMMER

The EXAMINE AR command displays the contents of the KL arithmetic
register.

4-12

PARSER

EXAMINE ARX PROGRAMMER

The EXAMINE ARX command displays the contents of the KL
arithmetic register extension.

EXAMINE BR PROGRAMMER

The EXAMINE BR command displays the contents of the KL buffer
register.

EXAMINE BRX PROGRAMMER

The EXAMINE BRX command displays the contents of the KL buffer
register extension.

EXAMINE CRADDR PROGRAMMER

The EXAMINE CRADDR command displays the contents of the KL CRAM
address register.

EXAMINE CRLOC PROGRAMMER

The EXAMINE CRLOC command displays the contents of the KL CRAM
location register.

EXAMINE DRADDR PROGRAMMER

The EXAMINE DRADDR command displays the contents of the KL DRAM
address register.

4-13

PARSER

EXAMINE OTE-2~ PROGRAMMER

The EXAMINE OTE-2'" command displays the contents of the DTE2~
registers. These registers are displayed as in the following
example:

DLYCNT: "''''~'''~~
DEXW03: 00"'447
DEXWD2: 0000~'"
DEXWOI: 00"'~0'"

KLl0 DATA=0~00",,,,,,000447
TENADI: 0"'0"'0'" TENA02: ~~"'007

ADDRESS SPACE=EPT
OPERATION=EXAMINE
PROTECTION-RELOCATION IS ON
KLl0 ADDRESS=7

T010BC: 010~00 T011BC: 13~00'"
T010AD: 066652 T01IAD: ~66075
T01~OT: 0000~~ T011DT: ~0~~12
DIAGI : 0~2400

KL IN RUN MODE
MAJOR STATE IS DEPOSIT-EXAMINE

DIAG2 : 04~000
STATUS: 012104

RAM IS ZEROS
DEX WORD 1
E BUFFER SELECT
DEPOSIT-EXAMINE DONE

DIAG3 : 000"'00

EXAMINE :EBR nnn MAINTENANCE

The EXAMINE EBR command reads Executive Process Table (EPT) entry
nnn and examines the KL location given in that EPT entry.

EXAMINE EBUS PROGRAMMER

The EXAMINE EBUS command displays the contents of the KL EBUS
reglster.

EXAMINE FE PROGRAMMER

The EXAMINE FE command displays the contents of the KL Floating
Exponent register.

EXAMINE FLAGS PROGRAMMER

The EXAMINE FLAGS command displays the current state of the flag
bits (0-12) in the left half of the PC word. Those flags are
OVF, CY0, CYI, FOV, BIS, USR, UIO, LIP, AFI, ATl, AT0, FUF, and
NOV.

RSX-2SF VA15-SS, VB15-SS, VE1S-S0 4-14 April 1986

PARSER

EXAMINE FM PROGRAMMER

The EXAMINE FM command displays the contents of the KL Fast
.Memory register.

EXAMINE MQ PROGRAMMER

The EXAMINE MQ command displays the contents of the KL Multiplier
Quotient register.

EXAMINE PI PROGRAMMER

The EXAMINE PI command displays the current state of the KL
Priority Interrupt system. Each field displayed (PI HOLD, PI
GEN, and PI ACTIVE) indicates the current state of PI 1 (leftmost
of the 7-bits) to PI 7 (rightmost of the 7-bits) for that field.

EXAMINE REGISTERS PROGRAMMER

The EXAMINE REGISTERS command displays the contents of the
following registers (see also the EXAMINE command for the
individual registers):

AD, ADX, AR, ARX, BR, BRX, EBUS, FM, MQ, and PC.

EXAMINE SBR PROGRAMMER

The EXAMINE SBR command displays the contents of the KL
Subroutine Return register.

EXAMINE SC PROGRAMMER

The EXAMINE SC command displays the contents of the KL Shift
Count register.

EXAMINE UBR nnn MAINTENANCE

The EXAMINE UBR command reads User Process Table (UPT) entry nnn
and examines the KL location given in that UPT entry.

EXAMINE VMA PROGRAMMER

The EXAMINE VMA command displays the contents of the KL Virtual
Memory Address register.

RSX-2eF VA15-50, VB15-50, VE1S-S0 4-15 April 1986

PARSER

EXAMINE VMAH PROGRAMMER

The EXAMINE VMAH command displays the contents of the KL Virtual
Memory Address Held register.

FREAD nnn
nnn:nnn

MAINTENANCE

The FREAD command performs a diagnostic function read of the KL
cpu. The valid range of function codes (nnn) is 100 through 177
octal.

FWRITE nn=data MAINTENANCE

The FWRITE command performs a diagnostic function write to the KL
cpu. The valid range of function codes (nn) is 40 through 77
octal. The data must be a 36-bit integer.

FXCT nn MAINTENANCE

HALT

The FXCT command performs a diagnostic function execute on the KL
cpu. The valid range of function codes (nn) is 0 through 37
octal.

PROGRAMMER

The HALT command tries to put the KL into the HALT loop by
clearing the RUN flop (FXCT 10) and waiting_ If the KL refuses
to go into the HALT loop, the front end tries to force it in by
using BURST mode. If this does not work, the following error
message is issued:

PAR -- [HALT] CFH - CAN'T FIND KL HALT LOOP

INITIALIZE PROGRAMMER

The INITIALIZE command sets up the KL state flag word with
default values and restarts the KL based on those values.

JUMP addr OPERATOR

The JUMP command starts the KL at the specified address and exits
from the PARSER. At this point, the CTY is connected to the
TOPS-10 or TOPS-20 operating system. The argument addr must be
an octal, positive, nonzero address with a maximum value of
17777777.

4-16 April 1986

PARSER

MARK-MICROCODE n MAINTENANCE

The MARK-MICROCODE command sets the mark bit in the specified
CRAM location. The n is the CRAM address in the range of 0 to
3777. The bit can be cleared by using the UNMARK-MICROCODE
command.

MCR taskname OPERATOR

The MCR command loads and starts the specified task file.

QREST n=addr MAINTENANCE

The QREST command writes the contents of one of four reserved
PDP-11 locations (n can be 0,1,2 or 3) to the KL address given by
addr.

QSAVE n=addr MAINTENANCE

QUIT

The QSAVE command saves the contents of the KL address addr in
one of four reserved PDP-11 locations (n can be 0,1,2 or 3).

OPERATOR

The QUIT command causes the PARSER to be exited. At this point,
the CTY is connected to the TOPS-10 or TOPS-20 operating system.
This command is equivalent to SET CONSOLE USER or CTRL/Z.

RSX-2~F VA1S-59, VB1S-S~, VE15-5~ 4-16.1 April 1986

PARSER

THIS PAGE INTENTIONALLY LEFT BLANK

4-16.2 April 1986

PARSER

REPEAT nnn;[commandl;command2; •••] OPERATOR

The REPEAT command causes the subsequent commands in the current
command line to be repeated the number of times specified by nnn.
The argument nnn must be a positive, decimal, nonzero integer.

The command line can contain as many commands as will fit within
the 280 character buffer limitation. You can nest REPEATs within
the command line. Also, if a SET REPEAT command is in effect,
the two repeat factors are multiplied to arrive at the actual
number of times commands are repeated.

For example, the following command examines the PC ten times:

REPEAT 10;EXAMINE PC

A more complex example is shown below, along with the sequence of
single commands that would duplicate the action of the single
command line.

REPEAT 3;EXAMINE PCiREPEAT 2iEXAMINE NEXT

EXAMINE PC
EXAMINE NEXT
EXAMINE NEXT
EXAMINE PC
EXAMINE NEXT
EXAMINE NEXT
EXAMINE PC
EXAMINE NEXT
EXAMINE NEXT

If SET REPEAT 4 had been previously entered, the above sequence
would be repeated four times.

If no commands are specified, the effect is that of a null
command.

4-17 April 1986

RESET

PARSER

PROGRAMMER

The RESET command performs a MASTER RESET of the KL and retains
the clock ~nd parity-stop enables that existed before the reset.
This command is not allowed while the KL is running.

RESET ALL PROGRAMMER

The RESET ALL command executes the RESET APR, RESET DTE-20, RESET
PAG, and RESET PI commands. This command is not allowed while
the KL is running.

RESET APR PROGRAMMER

The RESET APR command executes a CONO APR,,267760 instruction to
clear the KL arithmetic processor. This command is not allowed
while the KL is running.

RESET DTE-20 PROGRAMMER

The RESET DTE-20 command resets the DTE20 by depositing a 1 in
bit 6 of the DTE20 diagnostic word 2. Bit 0 in diagnostic word 3
is set to 1 to indicate word-mode transfers.

RESET ERROR PROGRAMMER

The RESET ERROR command executes a CONO APR,,27760 instruction to
reset the KL error flags.

RESET INITIALIZE PROGRAMMER

The RESET INITIALIZE command performs a MASTER RESET of the KL
and sets up normal clock and parity-stop enables. This command
is not allowed while the KL is running.

RESET 10 PROGRAMMER

The RESET 10 command executes a CONO APR,,200000 instruction to
perform an I/O reset of the KL.

4-18

PARSER

RESET PAG PROGRAMMER

The RESET PAG command executes a CONO PAG"O instruction followed
by a DATAO PAG,,100 instruction to reset the KL PAGing bo~. This
command requires that the KL clock be running.

RESET PI PROGRAMMER

The RESET PI command executes a CONO PI,,10000 instruction to
reset the KL Priority Interrupt system.

RESTORE AC-BLOCK

The RESTORE AC-BLOCK command
number to the KL AC block
AC-BLOCK command.

resets the current KL AC block
number that was saved by the SAVE

RUN taskname OPERATOR

The RUN command loads and starts the specified task file.
command is an alias for the MCR command.

SAVE AC-BLOCK

This

The SAVE AC-BLOCK command saves the current KL AC block number so
that it can later be restored with the RESTORE AC-BLOCK command.
SAVE AC-BLOCK is used in KLERR command files that execute the SET
AC-BLOCK command. The AC BLOCK commands normally are executed in
the following order: SAVE AC-BLOCKi SET AC-BLOCK ni RESTORE
AC-BLOCK.

NOTE

SAVE AC-BLOCK only saves the AC block number, not the
contents of the AC block.

SAVE PC-FLAGS

The SAVE PC-FLAGS command saves the current KL PC and flags for
later use by fault continuation. This command is used by the
KLERR command files and is not intended for any other use.

4-19

PARSER

SET AC-B.LOCK n PROGRAMMER

The SET AC-BLOCK command changes the current KL AC block number
to the one specified by the argument n in the command. This
argument can have a value in the range 0 to 7.

SET CLOCK NORMAL MAINTENANCE

The SET CLOCK NORMAL command sets the KL's clock parameters to
internal source, full rate, and enables the CRAM, data path, and
control logic clocks.

SET CLOCK

{

CRAM j

DATA-PATH}
CONTROL ,

MAINTENANCE

This SET CLOCK command enables the specified clock as follows:

SET CLOCK

CRAM enables the control-RAM clock.

DATA-PATH enables the data-path clock.

CONTROL enables the control logic clock.

{
EXTERNAL}
INTERNAL
MARGIN

MAINTENANCE

This SET CLOCK command sets the source of the clock pulses:
external, internal, or margin. The margin clock is slightly
faster than the normal internal clock and is used for diagnosing
rate-sensitive problems. There may not be an external clock
attached to the KL. Therefore, after you type the SET CLOCK
EXTERNAL command, the PARSER will print:

CONFIRM EXTERNAL CLOCK SOURCE (YES OR NO)?

If you answer YES, the operation is performed. If you answer YES
and there is no external clock attached, the KL hangs and has to
be reset.

SET CLOCK !FULL t HALF
QUARTER
SLOW

MAINTENANCE

This SET CLOCK command determines the speed of the KL clock:
full speed, one haLf speed, one quarter speed, or slow speed
which is equivalent to one eighth speed.

4-20

SET CONSOLE

~
MAI NTENANCEJ
OPERATOR
PROGRAMMER
USER

PARSER

OPERATOR

The SET CONSOLE command sets the console mode of operation and,
therefore, the allowable subset of PARSER commands.

MAINTENANCE allows the full set of PARSER commands.

PROGRAMMER allows all PARSER
functions.

commands except diagnostic

OPERATOR allows only those PARSER commands that will not
crash the TOPS-IO or TOPS-20 monitor.

USER exits the PARSER.

If no subargument is entered, the console is set to PROGRAMMER
mode.

SET DATE

NOTE

If KLINIK is enabled and active, the PARSER does not let
you set the console mode any higher than that specified
when the KLINIK window was defined.

PROGRAMMER

The SET DATE command sets RSX-20F's internal date. This date is
used in setting up and accessing KLINIK. This command is not
available if RSX-20F thinks that it already has a valid date
(validity flag is ON). In response to the SET DATE command, the
PARSER prompts you as follows:

PAR)SET DATE<RET)
DATE: 19 AUG 83
TIME: 1211
CURRENT SYSTEM DATE:
FRIDAY, 19-AUGUST-83 12:11

VALIDITY FLAG IS:ON
PAR)

SET FAULT-CONTINUATION PROGRAMMER

The SET FAULT-CONTINUATION command enables the KL's automatic
fault continuation reload mechanism. This allows the host to
recover from errors detected by the front-end.

SET FS-STOP MAINTENANCE

The SET FS-STOP command enables the Field Service stop facility.

4-21

PARSER

SET INCREMENT n OPERATOR

The SET INCREMENT command sets the KL increment counter to the
value specified by the octal integer, n. The increment counter
is used by the INCREMENT and DECREMENT arguments of the EXAMINE
and DEPOSIT commands. Also, only KL memory addresses are
modified by the increment counter. PDP-ll addresses that are
incremented or decremented default to NEXT and PREVIOUS,
respectively.

SET KLINIK OPERATOR

The SET KLINIK command is used to enable access to the KLINIK
link. The command initiates a dialog in which a KLINIK access
window and security parameters are established. (refer to
Appendix D for the KLINIK dialog.)

SET MEMORY \ELEVENl
~EN J

OPERATOR

The SET MEMORY command establishes the default memory for
EXAMINEs and DEPOSITs.

ELEVEN means default to the PDP-II memory.

TEN means default to the KL memory.

The command itself has no default; an argument must be entered.
When RSX-20F is first loaded, the default memory is TEN.

SET NOT argument OPERATOR

The SET NOT command is the equivalent of the CLEAR command and
requires an argument. (See the CLEAR commands.)

SET NOT OUTPUT [device] OPERATOR

The SET NOT OUTPUT command is equivalent to the CLEAR OUTPUT
command. (See CLEAR OUTPUT command.)

The default devices for the SET NO OUTPUT command are LOG and
LPT.

4-22

PARSER

SET OFFSET nnnnnn PROGRAMMER

The SET OFFSET command sets the PDP-II relocation factor to the
value specified by nnnnnn, an octal number in the range 77777
(+32,767) through 100000 (-32,768). The relocation fact0r when
RSX-20F is first loaded is the address of the PARSER root
overlay.

SET OUTPUT

~OOJ LPT
TTY

OPERATOR

This command directs the CTY output to the specified device. The
available devices are the log file PARSER.LOG, the lineprinter,
and the console terminal. The output is directed to all
activated devices

If the output is directed to a log file and the file PARSER. LOG
does not exist, the file is created and the data written to the
new file. If the file already exists, the new data is appended
to the file. In either case a header line is output to all
active output devices when a logging file is opened or closed.

The default argument is TTY.

SET PARITY-STOP ALL
AR
CRAM
DRAM
ENABLE
FM
FS-STOP

MAINTENANCE

The SET PARITY-STOP command allows you to selectively enable
parity stops for the Arithmetic Register and extension, CRAM,
DRAM, Fast Memory, and Field Service. The parity stops when
RSX-20F is first loaded are AR, CRAM, DRAM, and FM with ENABLE
ON.

SET RELOAD PROGRAMMER

The SET RELOAD command enables the automatic reload of the KL by
the PDP-II front end in situations such as Keep-Alive-Cease or
CPU errors.

SET REPEAT n OPERATOR

The SET REPEAT command sets the command line repeat factor to n.
The value n must be specified as a positive decimal number. Each
subsequent command line is repeated n number of times.

4-23

PARSER

SET RETRY PROGRAMMER

The SET RETRY command sets the RETRY flag in RSX-20F. When this
flag is set, the first occurrence of a Keep-Alive-Cease error
results in the execution of the instruction in location 71. This
instruction usually branches to a routine that causes the KL
monitor to dump memory and request a reload (BUGHLT in TOPS-20,
STOPCD in TOPS-10). If the KL cannot accomplish this task before
the end of the Keep-Alive period (5 seconds), RSX-20F assumes
that the KL is incapacitated. In this case, KLERR is called to
take a KL hardware snapshot and then reload the KL.

If the RETRY flag is reset (see CLEAR RETRY), every occurrence of
a Keep-Alive-Cease error results in a KLERR snapshot/reload of
the KL.

SET TRACKS PROGRAMMER

The SET TRACKS command causes RSX-20F to type out, on the console
terminal, all KL operations and their results.

SHOW [parameter] OPERATOR, PROGRAMMER

The SHOW command is the same as the WHAT command, and accepts the
same values as parameters.

SHUTDOWN OPERATOR

The SHUTDOWN command DEPOSITs a minus one into the KL EXEC,
virtual location 30 (octal). This command is used to bring down
a running system gracefully.

Example:

PAR>SHUTDOWN
HALTED

%DECSYSTEM-20 not running

START TEN addr PROGRAMMER

The START TEN command starts the KL at the address specified.
Control then returns to the PARSER. The starting address, addr,
is a required argument and must not be zero.

4-24

PARSER

START MICROCODE [addr] PROGRAMMER

The START MICROCODE command performs a MASTER RESET of the KL and
then starts the microcode at the specified address. If addr is
omitted, the default address is zero. Starting the microcode at
an address other than zero is not recommended.

SWEEP [n] MAINTENANCE

The SWEEP command performs a sweep of the specified KL AC block
or, if no argument is given, all 8 AC blocks are swept. The
argument can be 0 to 7. The sweep consists of reading the
contents of all the registers in a block and checking for a
parity error after each read.

The SWEEP command first executes a SET AC-BLOCK for the specified
block, then examines each location. If an FM parity error is
detected, a message is output and the KL parity is reset. Then
the next location is examined. When no argument is specified and
a Clock Error Stop (CES) exists, then all eight blocks are swept.
When the sweep is complete, the block is reset to the original AC
block. If an error is detected, an attempt is made to write the
contents of the registers with good parity. If this fails, an
error is generated.

Each time an FM parity error is detected, a message is printed.
This message is of the form:

SWEEP PASS number> n:aa/dddddd dddddd

where n is the AC block number, aa is the AC address, and dddddd
dddddd is the AC contents.

If this command is issued during a KL clock error stop caused by
an FM error, then the current content of the FM output register
is output in the form:

FM PARITY ERROR-(BLOCK:ADDR/DAT) n:aa/dddddd dddddd

where n is the AC block number, aa is the AC address, and dddddd
dddddd is the AC contents.

TAKE [file] OPERATOR

The TAKE command executes the specified file as an indirect
command file. All legal PARSER commands, except another TAKE
command, are allowed in the command file. During execution of
the file, errors are handled exactly as if the commands were
input from the CTY.

The commands in the file are executed until an end-of-file
condition is reached. At that point the message <EOF> is printed
on the CTY and input is accepted from the CTY.

4-25

PARSER

The file specified can be any 6 character alphanumeric file name.
The system device should have a file of the form 'file' .CMD,
where 'file' is the filename that appeared in the command.

NOTE

Only the filename can be used with the TAKE command. The
file extention cannot be entered on the command line.
The file is assumed to have the extention .CMD.

Example:

Executing a command file named TEST.CMD.

PAR>TAKE TEST.CMD
PAR>!THIS IS AN INDIRECT COMMAND FILE
PAR>!ALL PARSER COMMANDS ARE COMING FROM IT
PAR>WH VER!FIRST COMMAND

PARSER VERSION: V07-03
RSX-20F VERSION: VB1506

PAR>WH DAT! SECOND COMMAND
CURRENT SYSTEM DATE:
WEDNESDAY, 10-AUGUST-83 14:10

VALIDITY FLAG IS: OFF
PAR>! THIS IS THE END OF THE FILE
PAR> <EOF>

Attempting to TAKE a nonexistent command file.

PAR>TAKE TEST2

PAR> -- [TAKE] NSF - NO SUCH FILE

UNMARK-MICROCODE n MAINTENANCE

The UNMARK-MICROCODE command clears the mark bit in the specified
CRAM location. The n is the CRAM address in the range 0 to 2377.
The bit is marked with the MARK-MICROCODE command.

WHAT CLOCK PROGRAMMER

The WHAT CLOCK command displays the current source, rate, and
control of the KL's clocks.

WHAT CONSOLE OPERATOR

The WHAT CONSOLE command displays the current console mode:
OPERATOR, PROGRAMMER, or MAINTENANCE.

4-26

PARSER

WHAT DATE OPERATOR

The WHAT DATE command displays the day, date, and time that are
currently stored in RSX-20F. The status of the date validity
flag is also displayed.

WHAT FAULT-CONTINUATION PROGRAMMER

The WHAT FAULT-CONTINUATION command reports the status of
FAULT-CONTINUATION. It displays either of the following:

FAULT-CONTINUATION: ON
or
FAULT-CONTINUATION: OFF

WHAT HARDWARE OPERATOR

The WHAT HARDWARE command displays the environmental report that
KLINIT generates. The report contains the KL serial number,
model type, line frequency, and hardware options. (refer to
section 5.3.1)

WHAT INCREMENT OPERATOR

The WHAT INCREMENT command displays the current value of the KL
increment counter used in EXAMINEs and DEPOSITs.

WHAT KLINIK OPERATOR

The WHAT KLINIK command displays the current access status of the
KLINIK link (refer to the SET KLINIK command in Appendix D). If
no access window has been set up the reply is:

KLINIK DISABLED

If an access window has been set up and the link is in use, the
reply is:

KLINIK ACTIVE
or

KLINIK ACTIVE AFTER REBOOT

If an access window has been set up and the link is not in use,
the reply is:

KLINIK INACTIVE

In either of the last two instances, the status is followed by a
display of the KLINIK window parameters.

4-27

PARSER

WHAT MEMORY OPERATOR

The WHAT MEMORY command displays the default memory for DEPOSITs
and EXAMINEs.

WHAT OFFSET PROGRAMMER

The WHAT OFFSET command displays the current PDP-ll relocation
factor.

WHAT OUTPUT OPERATOR

The WHAT OUTPUT command displays the current devices that are
logging output.

WHAT PARITY-STOP PROGRAMMER

The WHAT PARITY-STOP command displays the current status of the
parity stop enable bit, as well as the parity stops that are
currently enabled.

WHAT RELOAD PROGRAMMER

The WHAT RELOAD command displays the current status of the
automatic reload function.

WHAT REPEAT OPERATOR

The WHAT REPEAT command displays the current value of the PARSER
repeat factor.

WHAT RETRY PROGRAMMER

The WHAT RETRY command displays the current status of the RETRY
flag in the front end.

WHAT TRACKS PROGRAMMER

The WHAT TRACKS command displays the current KL tracking status.

4-28

PARSER

WHAT VERSION OPERATOR

The WHAT VERSION command displays the current versions of RSX-20F
and the PARSER.

XCT argument PROGRAMMER

The XCT command takes a 36-bit numerical expression as an
argument and executes this expression as a KL instruction. It
also accepts input in the form:

func dev, addr

where:

func is one of the following:

CONI
CONO
DATAl
DATAO
BLKI
BLKO
CONSO
CONSZO

dev is the octal device code.

addr is the I/O instruction right half.

This input is decoded to create a 36-bit KL I/O instruction that
is then executed. This form allows the user to execute I/O
instructions to obtain device status information without knowing
the opcodes. The user need only know the device code of a few
standard devices.

Note that executing an instruction with an opcode (bits 0 through
8) of zero is not allowed. If you attempt to do this, you will
receive an ILLEGAL KL OPCODE error message.

ZERO loaddr>hiaddr PROGRAMMER

The ZERO command zeroes a specified area of KL memory. ZERO
accepts as an argument the boundary addresses of the area to be
zeroed: loaddr and hiaddr.

4.5 PARSER ERROR MESSAGES

The following list contains all the error messages that can be issued
by the PARSER while in any of the three console modes. The format of
each message is:

PAR -- [command name] code - message

The command name is the name of the command that caused the error.

4-29

PARSER

However, this command name can be PARSER if you typed a string that
caused an error in the command parser rather than in a specific
command routine. For example, assume that you type- an invalid command
such as:

PAR)KLEAR CONSOLE

You will receive the error message:

PAR -- [PARSER] NSK - NO SUCH KEYWORD "KLEAR"

On the other hand, assume that you type in an invalid argument:

PAR)CLEAR KONSOLE

You will receive the error message:

P.l\R [CLEAR] NSK - NO SUCH KEYWORD "KONSOLE"

The various error codes, messages, and explanations are given below.

AMB AMBIGUOUS KEYWORD "xxx"

where "xxx" is the ambiguous keyword. ThE! PARSER found more
than one keyword that matched the abbreviation you typed.

NOTE

The PARSER matches your abbreviation against the
complete set of commands and arguments, regardless of
the subset allowed by the console mode.

APE KL APR ERROR

The PARSER encountered a CPU
parity error, or a similar
Service Representative.

error (nonexistent memory,
condition). Call your Field

BAE BURST ARGUMENT ERROR

This is an internal programming failure. Call your Software
Support Specialist.

CAE KL CRAM ADDRESS ERROR

This is an internal programming failure.
Field Service Representative or your
Specialist.

CAL CAN'T ASSIGN LUN

Call either your
Software Support

RSX-20F is unable to assign a Logical unit Number. The
problem is in the file structure. Retry the operation. If
the error continues, call your Field Service Representative.

4-30

PARSER

CAP CAN'T ATTACH LINEPRINTER

The PARSER is unable to attach the line printer. Check to
make sure that the line printer is available to the system
and that the command format is correct. If the. error
persists, call your Field Service Representative.

CBO COMMAND BUFFER OVERFLOW

You typed a command line that was more than 280 characters in
length. Reenter the command as two or more lines.

CDI CLEAR DATE ILLEGAL

You tried to clear the internal date while the KL was in
primary protocol.

CES CLOCK ERROR STOP - code ERROR STOP

The variable, code, is either CRAM, DRAM, FM, or FS-STOP.
This message is displayed when the CPU encounters a fatal
internal hardware error. Note the code received and call
your Field Service Representative. Also, try to reload the
system using DISK, DECtape, floppy or switch register. If
you use the switch register, make sure that you reload the
microcode.

CFH CAN'T FIND KL HALT LOOP

The PARSER tried to halt the KL but failed. Call your Field
Service Representative.

CLE CONSOLE LIMIT EXCEEDED

You tried to set a console mode that was higher 'than the
console mode specified in the SET KLINIK command dialog.
This is not allowed while the KLINIK link is active in remote
mode.

CNR COMMAND IS NOT REPEATABLE

You tried to repeat a command that cannot be repeated.
However, the command has been executed once.

CRH CAN'T READ HARDWARE OPTIONS

The PARSER is unable to read the system hardware options.
Call your Field Service Representative.

DAV DATE ALREADY VALID

You tried to set a new internal date and the date validity
flag was on.

4-31

PARSER

DBT DATE BEFORE TODAY

While in the SET KLINIK command dialog, you tried to specify
an open or close date that was prior to the current date.

DCK DIVIDE CHECK

This is an internal programming error.
Support Specialist.

Call your Software

DMF DEPOSIT KL MEMORY FAILED

This is an internal programming
accept a deposit directive.
Specialist.

DNF DIRECTORY FILE NOT FOUND

failure.
Call your

RSX-20F did not
Software Support

The directory file cannot be found. The problem
file structure. Retry the operation, and if
continues, call your Field Service Representative.

is in the
the error

DNP DTE-20 IS NOT PRIVILEGED

This is a fatal error. The DTE20 mode switch is in the wrong
position. Call either your Field Service Representative or
your Software Support Specialist.

DOR DAY OUT OF RANGE

You specified a day that does not exist in the month you
entered.

DSF DTE-20 STATUS FAILURE

A read or write to one of the DTE20 status registers failed.
Call your Software Support Specialist.

DTC DTE-20 CONFUSED - RUN AND HALT LOOP

This is a fatal error. The run and halt loop flags were set
simultaneously, an impossible situation. Call your Field
Service Representative.

ECT EBOX CLOCK TIMEOUT

While the PARSER was doing an execute function, the KL failed
to reenter the halt loop within the allotted time. Call your
Software Specialist.

EMF EXAMINE KL MEMORY FAILED

This is an internal programming
accept an examine directive.
Specialist.

4-32

failure. RSX-20F did not
Call your Software Support

PARSER

EOC END OF COMMAND REQUIRED

The command was ended with a? and no additional arguments
are required. Retype the command and press the RETURN key.

EPE EBUS PARITY ERROR

This is a fatal error. The PARSER encountered an EBUS parity
error. Call your Field Service Representative.

ESD EBOX STOPPED - DEPOSIT

The PARSER executed a deposit directive and found that the KL
clock was stopped.

ESE EBOX STOPPED - EXAMINE

The PARSER executed an examine directive and found that the
KL clock was stopped.

FCF FILE CLOSE FAILURE

The PARSER is unable to close the file.
If the error continues, call
Representative.

FEF FILE EXTEND FAILURE

Retry the operation.
your Field Service

The PARSER failed to extend the file. Retry the command. If
the error persists, call your Field Service Representative.

FEN FILE ENTER FAILURE

The PARSER is unable to enter the specified file. Retry the
command. If the error persists, call your Field Service
Representative.

FLF FILE LOOKUP FAILURE

The PARSER failed in its attempt to look up the specified
file. Retry the operation. If the error continues, call
your Field Service Representative.

FOF FILE OPEN FAILURE

The PARSER failed to open the specified file. Retry the
operation. If the error persists, call your Field Service
Representative.

FRD FILE READ FAILURE

The PARSER is unable to read the file. Retry the command.
If the error persists call your Software Support Specialist.

4-33

PARSER

FRF FUNCTION READ nnn FAILED

A diagnostic function read with function code nnn has failed.
This is a fatal error. Call your Field Service
Representative and your Software Support Specialist. If the
system crashes, try to reload it.

FSW FM SWEEP FAILED

The FM sweep failed. Retry the sweep. If the problem
persists, call your Field Service Representative.

FWF FUNCTION WRITE nn FAILED

A diagnostic function write with function code nn has failed.
This is a fatal error. Call your Field Service
Representative and your Software Support Specialist. If the
system crashes, try to reload it.

FWT FILE WRITE FAILURE

The PARSER is unable to write to the specified file. Retry
the command. If the error persists call your Field Service
Representative.

FXF FUNCTION XCT nn FAILED

A diagnostic function execute with function code nn has
failed. This is a fatal error. Call your Field Service
Representative and your Software Support Specialist. If the
system crashes, try to reload it.

IDF ILLEGAL DATE FORMAT

You entered a date in the wrong format. The correct format
is:

dd-mmm-yy

where the hyphens can be replaced by spaces and the year can
be entered as four digits. The day and year must be numeric
and the month must be alphabetic. The month can be
abbreviated as long as it remains unique.

IFC ILLEGAL FUNCTION CODE

This is either an internal programming error or the result of
entering a diagnostic command with an invalid function code.
The valid function codes are as follows:

FREAD command takes codes 100-177
FWRITE command takes codes 40-77
FXCT command takes codes 0-37

If the message is not a result of entering a diagnostic
command, call your Software Support Specialist.

4-34

PARSER

IFN ILLEGAL FILE NAME

The PARSER cannot accept the filename as specified.
the command, making sure the filename is correct.

ILC ILLEGAL CHARACTER "c"

Re issue

The PARSER found an illegal character in the command line and
"c" is the character'S printing equivalent. Nonprinting
characters are preceded by a circumflex (A) and converted to
their printing equivalent for output.

ILl ILLEGAL INSTRUCTION

CLEAR AC-BLOCK is not allowed.

ILS ILLEGAL SEPARATOR CHARACTER "s"

The PARSER found an illegal separator character in the
command line and "s" is the illegal character. Nonprinting
characters are preceded by a circumflex (A) and converted to
their printing equivalent for output. Note that a tab is
converted to one space.

IOC ILLEGAL KL OPCODE

Either you or the PARSER tried to execute a KL instruction
with an illegal op-code. If this is not the result of an XCT
command, call your Software Support Specialist.

IPC ILLEGAL PASSWORD CHARACTER "c"

During the SET KLINIK dialog, you typed a password containing
"c," an illegal character. You must use only numeric or
uppercase alphabetic characters in the password.

IRC ILLEGAL REPEAT COUNT

You typed a zero or negative argument to either the REPEAT or
SET REPEAT command.

IRE ILLEGAL RECURSION

A TAKE command cannot be used in an indirect command file.

ITF ILLEGAL TIME FORMAT

You entered a time of day that was not in the proper format.
The PARSER expects a numeric value of the form hh:mm or hhmm.

ITN ILLEGAL TASK NAME

The RUN or MCR command was entered with no task name.

4-35

PARSER

KCN KL CLOCK IS OFF

The KL clock is off and you tried to execute a command that
requires the clock to be on.

KLA KL ADDRESS ERROR

You specified a KL address that was out of range (over 22
bits), negative, or not in octal radix.

KLR ILLEGAL WHILE KL RUNNING

You tried to execute an illegal command while the KL was
running.

KNC KL IS NOT CONTINUABLE

You tried to resume processing with the CONTINUE command, but
the KL was not in a continuable state. For example, you
cannot CONTINUE after a RESET command.

KWE KLINIK WINDOW ERROR

During the SET KLINIK dialog, you specified a window close
date and time that is prior to the window open date and time.

MRA MISSING REQUIRED ARGUMENT

You did not specify all the necessary arguments for the
command.

MRH HARDWARE OPTIONS MUST YET BE READ

KLINIT has not yet read and
because the KL is not running.
is running.

stored the hardware options
Retry the command when the KL

NDI NULL DATE ILLEGAL

During the SET DATE dialog, you answered the DATE:
with a carriage return. You must supply a date.

NER NUMERIC EXPRESSION REQUIRED

prompt

You entered a command that expects a numeric expression as an
argument and something else was entered.

NOR INPUT NUMBER OUT OF RANGE

You specified a number that was out of range or in the wrong
radix.

4-36

PARSER

NPI NULL PASSWORD ILLEGAL

During the SET KLINIK dialog,
prompt with a carriage return.
one is requested.

you answered the PASSWORD:
You must supply a password if

NSF NO SUCH FILE

The file as specified does not exist. Check the filename and
reenter the command if necessary.

NSK NO SUCH KEYWORD "xxx"

You entered a command containing the invalid keyword "xxx".

NST NO SUCH TASK

You specified a nonexistent task in an MCR or RUN command.

NTI NULL TIME ILLEGAL

During the SET DATE dialog, you answered the TIME:
with a carriage return. You must specify a time.

OAI ODD ADDRESS ILLEGAL

You tried to examine an odd-numbered PDP-II address.

OFC ODD FUNCTION CODE

prompt

This is an internal programming error.
Support Specialist.

Call your Software

PTL PASSWORD TOO LONG

During the SET KLINIK dialog, you specified a password that
was more than six characters in length.

RPM RIGHT PARENTHESIS MISSING

You omitted a right parenthesis in a numeric expression.

SCF SET CLOCK FAILED

The PARSER cannot validate the clock enable parameters it has
just set. This is a hardware error. Call your Field Service
Representative.

SKI SET KLINIK ILLEGAL WHILE KLINIK ACTIVE

You tried to set new KLINIK parameters while the KLINIK link
was active. If you want to change the parameters, you must
first disconnect the KLINIK link by typing DISCONNECT or
CLEAR KLINIK.

4-37

PARSER

SPF SET PARITY FAILED

The PARSER cannot validate the parity stop parameters it has
just set. This is a hardware error. Call your Field Service
Representative.

SZI START AT ZERO ILLEGAL

You tried to start the KL at location zero; this is illegal.

TAA TASK ALREADY ACTIVE

You issued a RUN or MCR command for a task that was already
active.

TOR TIME OUT OF RANGE

You specified a time in which the hours were greater than 23
or the minutes were greater than 59.

UNL KL MICROCODE NOT LOADED

The system tried to start the KL microcode and found that it
was not loaded or was not functioning. Use DISK, DECtape,
FLOPPY, or the switch register to reload the microcode and
the system.

VFY VERIFY FAILED

The PARSER cannot verify the correct execution of a DEPOSIT
command. Call your Software Support Specialist.

WRM COMMAND NOT AVAILABLE IN THIS CONSOLE MODE

You entered a
console mode.

command that is not available in the current
Use the SET CONSOLE command to change mode.

XTO KL EXECUTE TIMED OUT

The KL failed to reenter the halt loop within the allotted
time while performing a fast internal execute function.

YOR YEAR OUT OF RANGE

You specified the year irrcorrectly.

4-38

•

CHAPTER 5

KLINIT

KLINIT is the KL initialization program. You can run KLINIT in
default mode where it performs a fixed series of operations or you can
run it in dialog mode and specify selected operations.

When you load the system using the DISK, DECTAPE, or FLOPPY load
switch, (Figures 5-1 and 5-2), KLINIT performs the following steps
automatically without operator intervention.

1. Loads the KL processor microcode from the
microcode file on the front-end load device •

appropriate

2. Configures and enables cache memory according to the KLINIT
configuration file, KL.CFG. If this file is not present on
the front-end load device, all cache is enabled.

3. Configures and interleaves KL memory according to the KLINIT
configuration file, KL.CFG. If this file is not present on
the front-end load device, all available memory is configured
with the highest possible interleaving.

4. If the KL.CFG file does not exist, KLINIT creates a file by
that name and stores it on the front-end load device. The
file contains the cache and memory configuration in effect at
the time.

5. Loads and starts the default KL bootstrap program from the
file BOOT.EXB located on the disk, DECtape, or floppy disk
device. The bootstrap program then loads and starts the
default monitor. The default monitor is found in:

SYS:SYSTEM.EXE for TOPS-10
PS:<SYSTEM)MONITR.EXE for TOPS-20

If you do not want KLINIT to perform the above series of operations,
you must enter the dialog mode of KLINIT. Then, you can do anyone or
more of the following:

• Load and/or verify the KL microcode.

• Configure cache memory as you want it.

• Configure KL memory as you want it.

• Load and start any bootstrap program.

RSX-2~F VA15-5~, VB15-5~, VE15-5~ 5-1 April 1986

KLINIT

• Specify switches to the bootstrap program.

• Load and start any monitor from disk or magnetic tape.

NOTE

The default bootstrap program BOOT.EXB
does not understand TOPS-20
subdirectories. Therefore, for example,
you can load <SYSTEM>MONITOR.EXE, but
you cannot load <SYSTEM.NEW>MONITOR.EXE.

5-2

LOAD SWITCHES

ENABLE I FAULT
LIGHT

KLINIT

POWER
LIGHT

EMERGENCY
POWER OFF

Figure 5-1: Load Switches and Switch Register for KL with Floppy
Disks

5-3

Figure 5-2:

LOAD SWITCHES

DISK ENABLE 1
SW REG DECT APE

17

KLINIT

POWER
LIGHT

FAULT
LIGHT

SWITCH REGISTER
ENABLE/HAL T

SWITCH

Load Switches and Switch Register for KL with DECtapes

5-4

KLINIT

5.1 KLINIT LOAD AND START

When you load and start the KL using the SW REG load switch, you
usually enter the KLINIT dialog. (See Figures 5-1 and 5-2.) Set the
switch register bits 0, 1, and 2 on (in the up position). Refer to
Table 5-1 to determine if bits 7 through 10 should be set. Press the
load switches SW REG and ENABLE simultaneously. RSX-20F loads and
starts and, in turn, loads and starts KLINIT. KLINIT then prompts you
with the first question:

KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?

You may also enter the KLINIT dialog from the PARSER.
RSX~20F is running, type the following:

CTRL/\ (does not echo) ito enter the PARSER
PAR)MCR KLINIT ito load KLINIT
KLI -- ENTER DIALOG [NO, YES, EXIT, BOOT]?

During the dialog, the following conventions hold:

Assuming that

• A carriage return terminates the answer to a question.

• A RUBOUT or DELETE deletes a character.

• A carriage return by itself in answer to a question selects
the default answer to the question. The default answer is
the first answer listed.

• CTRL/Z terminates the operator dialog and exits to the PARSER
without rewriting the KL.CFG file. If the KLINIT dialog is
terminated in this manner, the KL hardware may not be fully
or completely initialized.

• CTRL/U deletes the current input line.

• An answer of NO to the ENTER DIALOG question skips the rest
of the dialog and assumes all the default answers.

• An answer of BACK to any question returns you to the previous
question unless stated otherwise.

• An answer of RESTART to the EXIT question returns you to the
first question in the dialog.

• An ESCape typed at any point in a reply before the carriage
return restarts the dialog. Note that ESCape does not echo
on your terminal.

• An unacceptable answer results in an error message and causes
the question to be repeated.

• The minimum size of an abbreviation for any answer other than
filename is the first two characters.

5-5

KLINIT

Table 5-1: Switch Register Bit Definitions

+--+
1171161151141 I 111 110 1 I 81 71 6 1 I I 31 21 11 01
+_._--+

Bit

o

2,1

6-3

7

Meaning
-----""---------- ----

If this bit is set, the remaining bits are
interpreted. You must set this to load the system
using the switch register.

If both bits 1 and 2 are set, RSX-20F is loaded and
the KL initialization operator dialog (KLINIT) is
loaded and started. This is what should normally be
used when loading the system from the switch
register.

If bit 1 is set and bit 2 is not set, the RSX-20F
monitor is loaded and started; no communication is
initiated between the KL and PDP-11 processors at
this time.

If bit 1 is not set and bit 2 is set, RSX-20F is
loaded and started. However, the front end tries to
communicate with the KL using secondary and then
primary protocol. If the KL is not running, a TBT
1l-halt occurs.

If both 1 and 2 are not set, the system is loaded
much as it is using the DISK, DECtape, or FLOPPY
load swi tch. However, before KL INIT is run, a
diagnostic program (CHK11) that checks out the front
end CPU and front-end devices is executed.

Used to set the speed of the DHl1 being used as the
CTY (see bits 14-11), these bits correspond to the
speed selection in the DH11 line parameter register
(bits 6, 5 and 3 set indicate 9600 baud).

If these bits are not set, the console DL11 is
assumed to be the CTY and bits 10-8 are read as the
unit number of the RP04/RP06 disk to boot from.

If any of these bits are set, then bits 10-8 are
read as the DH11 unit number and bits 14-11 are read
as the number of the DH11 line that is to be the
CTY.

Note that you cannot boot the front-end from a disk
other than unit 0 if you want to redirect the CTY to
a DH11 line using the switch register.

If this bit is set, the bootstrap device is a disk
pack on a dual-ported drive.

If the
DECtape

bit is not set, the bootstrap device is a
drive or floppy disk on the front-end

processor.

5-6

KLINIT

Table 5-1: Switch Register Bit Definitions (Cont.)

Bit

10-8

14-11

15

17,16

Meaning

These bits allows you to specify the unit number of
the disk to boot from in binary. No bits set
indicate unit 0, bits 9 and 8 set indicate unit 3.
If any of bits 6-3 are set, then this field is
interpreted as a DHll unit number instead.

These four bits allow you to specify the DHll line
number within the selected DHll unit to which you
redirect the CTY. These bits are only valid if any
of bits 6-3 are set to indicate the speed of the
DHll line selected.

This bit indicates the action taken when an I/O
error occurs during the bootstrapping. If the bit is
set, the operation is retried indefinitely if an
error occurs. If it is not set (the normal case), a
halt occurs after ten unsuccessful retries.

Currently not used, and must not be set.

A bit is set when the corresponding switch is in the upward
position.

5.2 KLINIT OPERATOR DIALOG

The following KLINIT dialog includes all the possible questions and
all the acceptable answers. The questions are presented in the order
in which KLINIT asks them, unless it is specifically stated otherwise
in the description of the particular question. In practice, however,
only a subset of the dialog is encountered on anyone system. The
KLINIT program automatically bypasses any questions that are not
applicable to the system configuration. In addition, a particular
response to one question can result in the bypassing of subsequent
questions. This behavior is documented wherever it occurs.

There are two commands that are not used in response to any particular
question, but can be used at almost any time. One of these is BACK,
which causes the dialog to return to the previous question. This
command can be used at any time except on the first question of the
dialog, when of course there is no previous question. The other
command has four forms that are used to toggle on and off the tracking
capability. These forms are T+, T-, and L+, L-. If you wish to see a
report on each operation of the initialization procedure, you can give
the L+ command, and the complete listing is printed on the line
printer. The T+ command prints the listings on the CTY. You should
be aware that the T+ command causes a great deal of information to be
dumped to the CTY, and uses a lot of time and paper. The L- and T­
commands turn off this reporting.

Each of the following questions is followed by the KLINIT prompt,
KLI>.

KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?

An answer of YES or NO to the question above causes KLINIT to print a
hardware environment report containing the KL serial number, machine
type, power line frequency, and the system's hardware options. (Refer
to Section 5.3.1, Informational Messages.)

5-7

NO

KLINIT

displays the hardware environment and assumes the default
answers for all the remaining questions. This is the last
chance to bypass the dialog and take the default path.

YES displays the hardware environment, continues the dialog and
asks the next question.

EXIT discontinues the dialog and returns to the RSX-20F monitor.

BOOT skips the rest of the dialog, enables cache memory as
directed by KL.CFG, and immediately loads and starts the KL
bootstrap program whose name is found in the configuration
file. If none is found, the standard KL bootstrap program
found in BOOT.EXB is loaded. No defaults are taken when
this option is selacted.

KLI RELOAD MICROCODE [YES,VERIFY,FIX,NO]?

YES loads the KL microcode from the bootstrap device into the KL
processor. Should you wish to load the microcode from a
file that does not have the default file name, you can
respond with YES and, before typing the carriage return,
include the actual file name.

VERIFY verifies that the microcode in the KL processor matches the
microcode on the bootstrap device. An error report is
printed for each location found in error and an error count
is incremented. (Refer to Section 5.4.3 for the format and
contents of this error report.) Whenever the error count
exceeds five, verification is discontinued and the message
VERIFY FAILED is issued. If verification continues through
all the microcode and the final error count is greater than
zero, the VERIFY FAILED message is issued. In both cases,
KLINIT returns to the beginning of the dialog. You can then
reload the microcode and try again.

FIX verifies the microcode as in the VERIFY option. In
addition, whenever an error is detected, KLINIK attempts to
reload that location. If the reload operation is
successful, the error count is decremented. If the reload
fails, the MICROCODE FIX FAILED message is issued. In
either case verification continues with the next location.
Whenever the error count exceeds five, verification is
discontinued and the VERIFY FAILED message is issued. If
verification continues through all the microcode and the
final error count is greater than zero, the VERIFY FAILED
message is issued. In both cases, KLINIT returns to the
beginning of the dialog. You can then reload" the microcode
and try again.

NO neither loads nor verifies the microcode.

5-8 April 1986

KLINIT

KLI -- SELECT PAGE TABLE [FILE,~,l,BOTH]?

FILE

1

BOTH

selects the MCA25 cache page table as specified in the
configuration file KL.CFG. If KL.CFG does not exist, both
MCA25 cache pages are selected.

selects page tab1e~. Only half of the MCA25 is used.

selects page table 1. Only half of the MCA25 is used.

selects both halves of the MCA25.

KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?

FILE configures cache memory as specified in the configuration
file, KL.CFG. If this file does not exist, all cache memory
is enabled. The dialog continues with the CONFIGURE KL
MEMORY question.

ALL enables all cache memory. The dialog continues with the
CONFIGURE KL MEMORY question.

YES configures cache memory under dialog control.

RSX-2~F VA1S-59, VB1S-S~, VElS-S0 5-8.1 April 1986

KLINIT

THIS PAGE INTENTIONALLY LEFT BLANK

5-8.2 April 1986

NO

KLINIT

does not reconfigure cache
configuration is left unchanged.
the CONFIGURE KL MEMORY question.

memory; the existing
The dialog continues with

KLI ENABLE WHICH CACHES [ALL,NONE,0-3]

ALL

NONE

0-3

enables all cache memory.

disables all cache memory.

enables only the caches specified. For example, to enable
caches 0, 1, and 3 reply with:

KLI)0,1,3<cr)

KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE,FORCE,YES,NO]?

FILE

ALL

REVERSE

FORCE

YES

NOTE 1

A reply of BACK to this question returns
you to the RECONFIGURE CACHE question.

NOTE 2

The FORCE option appears only in systems
that have MOS memory. In systems that
do not have MOS memory the FORCE option
does not appear in the CONFIGURE KL
MEMORY question.

configures KL memory as specified in the configuration file,
KL.CFG. If this file does not exist, ALL is assumed.
KLINIT then prints the logical memory map and the dialog
continues with the LOAD KL BOOTSTRAP question.

If the configuration in the KL.CFG file is not consistent
with the actual configuration an error message is issued and
the dialog restarts from the beginning.

configures KL memory in the normal (forward) direction with
as much memory as possible. KLINIT then prints the logical
memory map and the dialog continues with the LOAD KL
BOOTSTRAP question.

configures memory under dialog control; however, the memory
configuration is reversed. Before the next question is
asked, KLINIT examines memory and prints a physical memory
map. This feature has been included for maintenance
purposes.

appears ONLY in systems in which KLINIT can detect the
presence of a KW-20 MOS Master Oscillator. The FORCE memory
configuration option allows the operator to force KLINIT
into a Double-Bit-Error (DBE) scan of the MF-20 MOS memory
controllers. This enables KLINIT to attempt to recover
"lost" MF-20 blocks. The scan requi res approx ima tely
twenty-five seconds for each 256K of memory to be scanned.

configures memory under dialog control, in the normal
(forward) direction. Before the next question is asked,
KLINIT examines memory and prints out a physical memory map.

5-9

NO

KLINIT

does not configure memory at all. The previous memory
configuration remains, and the dialog continues with the
LOAD KL BOOTSTRAP question.

NOTE

The forward/reverse configuration indicator is saved
in the KL.CFG file to allow restoration of the
reverse configuration over reloads. If the KL.CFG
file does not exist, the default is normal (forward)
configuration.

KLI CONFIGURE INTERNAL CORE MEMORY [ALL,YES,NO]?

ALL configures all internal core memory. The dialog continues
with the INTERNAL CORE MEMORY INTERLEAVE UPPER LIMIT
question.

YES configures internal core memory under dialog control.

NO deletes all internal core memory. The dialog continues with
questions on other types of memory, if any. See Figure 5-3.

KLI -- MODULES/BLOCKS WITHIN CONTROLLER n [ALL,NONE,SPECIFY]?

ALL

NONE

SPECIFY

This question
controller.
number n is
number.

is
In
the

NOTE

repeated for each
each iteration, the
current controller

configures all the memory modules for controller n.

deletes all the memory modules for controller n.

configures the modules specified. DO NOT TYPE SPECIFY!
Valid module numbers are 0 through 3 and the entries are
separated by commas. For example, to configure modules 0
and 1, type the following:

KLI>O,l<CR>

KLI INTERNAL CORE MEMORY INTERLEAVE UPPER LIMIT [4,2,1]?

4 allows up to 4-way interleaving.

2 allows up to 2-way interleaving.

1 allows no interleaving

The dialog continues with questions on other types of memory, if any.
(See Figure 5-3.) If none, KLINIT prints the logical memory map and
the dialog continues with the LOAD KL BOOTSTRAP question.

5-10

KLINIT

KLI CONFIGURE EXTERNAL CORE MEMORY [YES,NO]?

YES allows you to set the bus-mode for external memory.

NO deletes all external core memory. The dialog continues with
questions on other types of memory, if any. (See Figure
5-3.)

KLI -- EXTERNAL CORE MEMORY BUS-MODE [OPTIMAL,1,2,4]?

OPTIMAL sets the bus-mode for optimal performance.

1 sets the bus-mode to 1.

2 sets the bus-mode to 2.

4 sets the bus-mode to 4.

The dialog continues with questions on other types of memory, if any.
(See Figure 5-3.) If none, KLINIT prints the logical memory map and
the dialog continues with the LOAD KL BOOTSTRAP question.

KLI CONFIGURE MOS MEMORY [ALL,YES,NO]?

ALL configures all MOS memory. The dialog continues with the
printing of the logical memory map and the LOAD KL BOOTSTRAP
question.

YES configures MOS memory under dialog control.

NO deletes all MOS memory. The dialog continues with the
printing of the logical memory map and the LOAD KL BOOTSTRAP
question.

KLI -- MODULES/BLOCKS WITHIN CONTROLLER n [ALL,NONE,SPECIFY]?

ALL

NONE

SPECIFY

NOTE

This question is repeated as many times
as there are controllers. In each
iteration, the n is the current
controller number.

configures all memory blocks for controller n.

deletes all memory blocks for controller n.

configures the blocks specified. DO NOT TYPE SPECIFY! Type
a list of block numbers (0 through 13 octal) separateo by
commas. For example, to configure blocks 0, 1, 2, 7, 10 and
11 reply with:

KLI>0,1,2,7,10,11<CR>

5-11

KLINIT

KLI -- LOAD KL BOOTSTRAP [FILE,YES,NO,FILENAME]?

FILE notifies KLINIT to load the bootstrap specified
KL.CFG file. If no KL.CFG file exists, KLINIT will
default bootstrap.

YES notifies KLINIT to load the default bootstrap.

NO notifies KLINIT not to load a bootstrap.

in the
use the

FILENAME notifies KLINIT to load the specified file as the bootstrap.

KLI WRITE CONFIGURATION FILE [YES,NO]?

YES

NO

notifies KLINIT to write a new KL.CFG file containing the
current configuration and load parameters.

notifies KLINIT not to change the existing KL.CFG file.

At this point if a bootstrap was requested, the bootstrap program is
loaded into the KL and started. If the answer to the LOAD KL
BOOTSTRAP question was NO, the following question is asked:

KLI EXIT [YES,RESTART]?

YES exits KLINIT after optionally writing a new KL.CFG file (see
previous question) .

RESTART restarts the dialog with the ENTER DIALOG question.

5-12

KLINIT

LOAD SWITCHES

ENABLE
CACHE PER
KL.CFG
(NOTE 1)

A

ENABLE
ALL
CACHE

NOTE 1: If there is no KL.CFG file, enable all cache.

SW REG
(SW REG BIT
o MUST BE ON)

+
(TEST SW REG BITS 1 & 2)

I I II
00 11 01 10

I I
SEE TABLE 11-1

IS CACHE PRESENT?

DISABLE
ALL
CACHE

ENABLE THE
SPECIFIED
CACHE

Figure 5-3: KLINIT Operator Dialog

5-13

K

D E

MA·S·172-79

A

CONFIGURE
MEMORY
PER KL. CFG
(NOTE 2)

F

KLINIT

CONFIGURE KL MEMORY?

FILE ALL REVERSE *FORCE YES I NO

+ + • ~ . CONFIG. CONFIG. SET *DBE SCAN
SET ~ MEMORY ALL REVERSE ANY MOS FORWARD

PER KL.CFG MEMORY CONFIG. MEMORY CONFIG.
(NOTE 2)

I f ~

~ PRINT MAP OF I PHYSICAL MEMORY

+
IS INTERNAL CORE MEMORY PRESENT?)

$ e
CONFIGURE INTERNAL CORE MEMORY?

ALL YES NO

• •
CONFIGURE DELETE ALL
ALL INTERNAL INTERNAL CORE
CORE MEMORY MEMOF1Y

,--. __ J I
f----------------,

I

MODULES/BLOCKS WITHIN CONTROLLER n? I
I

ALL I NONE SPECIFY I
I

• •
I
I

CONFIGURE I
CONFIGURE DELETE ALL I
ALL MODULES MODULES THE MODULES I

SPECIFIED I
I

I I I
I

(N~~.!..... _______ .-l

INTERNAL CORE MEMORY INTERLEAVE UPPER LIMIT?

4 2 1

+ + t
ALLOW UP ALLOW UP

ALLOW NO
TO 4·WAY TO 2·WAY INTERLEAVING
INTERLEAVING INTERLEAVING

I I

G 6 H
"For MOS memory only.

MR-S·168-79

NOTE 2: If there is no KL.CFG file, configure all memory.
NOTE 3: This question is repeated as many times as there are controllers.

The controller currently being configured is denoted by n.

Figure 5-3: KLINIT Operator Dialog (Cant.)

5-14

KLINIT

9
(IS EXTERNAL CORE MEMORY PRESENT?)

$ e
CONFIGURE EXTERNAL CORE MEMORY?

YES NO

! I
EXTERNAL CORE MEMORY BUS-MODE?

OPTIMAL I 1 I 2 I 4

• + + +
SET BUS MODE I SET BUS MODE TO:

FOR OPTIMAL I 1 I 2 T 4
PERFORMANCE

I I I I

IS MOS MEMORY PRESENT?

~ e
CONFIGURE MOS MEMORY?

ALL YES NO

t t
CONFIGURE DELETE
ALL MOS ALL MOS
MEMORY MEMORY

I l
~-------------I

MODULES/BLOCKS WITHIN CONTROLLER n?

ALL NONE SPECIFY

+ +
CONFIGURE DELETE

CONFIGURE

ALL MODULES ALL MODULES
THE BLOCKS
SPECIFIED

I I
~ ___ ~~~~ ____ -.l

MR-S-169-79

G

NOTE 3: This question is repeated as many times as there are controllers.
The controller currently being configured is denoted by n.

Figure 5-3: KLINIT Operator Dialog (Cant.)

5-15

F

PRINT LOGICAL
MEMORY MAP

SET SWITCH
TO USE
Kl.CFG
BOOTSTRAP

(NOTE 4)

SET THE WRITE
FILE SWITCH

[

LOAD THE
APPROPRIATE
BOOTSTRAP

----r----'

[~

SET SWITCH
TO USE
Kl.CFG
BOOTSTRAP
(NOTE 4)

KLINIT

SET SWITCH
TO USE
DEFAULT
BOOTSTRAP

SET SWITCH
TO NOT
LOAD
BOOTSTRAP

SET SWITCH
TO USE
Filename
BOOTSTRAP

LOAD
DEFAULT
BOOTSTRAP

---G)
TEST THE WRITE FILE SWITCH ~

----....-------r------....I

L-_____________________________________ -+ __ -----------------------~ __ ----~
MR-S-170-79

NOTE 4: If there is no Kl.CFG file, set switch to use
the default bootstrap program in BOOT.EXB.

Figure 5-3: KLINIT Operator Dialog (Cant.)

5-16

KLINIT

5.3 KLINIT MESSAGES

KLINIT issues four classes of messages: informational, warning,
dialog error, and system error messages. These messages are listed in
sections 5.3.1 through 5.3.4 according to class.

5.3.1 Informational Messages

KLINIT prints a hardware environment message for each invocation of
the program. If KLINIT is activated using the ENABLE and DISK
switches, the environment report appears immediately after KLINIT
prints its heading and version number. If KLINIT is activated using
the ENABLE and SW/REGISTER switches and if the question KLI ENTER
DIALOG [NO,YES,EXIT,BOOT]? is answered with YES or NO, the hardware
environment report follows immediately. If this question is answered
with EXIT or BOOT, the hardware environment does not appear.

The hardware environment report contains the following information:

• The KL processor serial number

• The KL processor model type

• The power line frequency

• The hardware options available on the system

The serial number is that of the KL processor. The model type can be
either A or B. The power line frequency can be either 50 or 60 Hz.
The hardware options can include the following:

• MOS Master Oscillator

• Extended Addressing

• Internal Channels

• Cache

Example:

KLI VERSION VB13-06 RUNNING
KLI KL10 SIN: 2136., MODEL B, 60 HERTZ
KLI KL10 HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

NOTE

The hardware environment report is not
displayed during automatic reloads or
during Keep-A1ive-Cease processing.

KLINIT also prints
completion of a
"KLI --".

informational messages to indicate the normal
KLINIT function. The message text is preceded by

5-17

KLINIT

The informational messages include:

KLI ALL CACHES ENABLED

All four of the KL processor caches have been enabled.

KLI -- BOOTSTRAP LOADED AND STARTED

A KL bootstrap program has been loaded into KL memory and
started. Any messages that follow are a function of the
particular bootstrap program being used.

KLI -- CACHES DISABLED

All cache memory has been disabled.

KLI -- CACHES n,n ••• ENABLED

The specified caches have been enabled.

KLI -- CONFIGURATION FILE WRITTEN

The KL.CFG file has been updated with a new cache and/or memory
configuration. This message is issued whenever you set up a
nondefault configuration or if the KL.CFG file did not
previously exist.

KLI -- KL RESTARTED

The KL processor has been restarted following a power failure
or a hardware or software crash.

KLI -- MICROCODE VERSION x[yyy] LOADED

The KL microcode, version x, edit yyy, has been loaded into the
KL system from the appropriate microcode file on the front-end
bootstrap device.

KLI -- MICROCODE VERSION x[yyy] VERIFIED

The KL microcode, version x, edit yyy, currently residing in
the system has been compared correctly with the code in the
appropriate microcode file on the front-end bootstrap device.

KLI -- PAGE TABLE SELECTED: BOTH

The entire MCA25 has been initialized and will be used.

RSX-2gF VAIS-Sg, VBlS-Sg, VElS-S9 5-18 April 1986

KLINIT

5.3.2 Warning Messages

Warning messages inform the operator of some unusual condition. After
the message is printed, the KLINIT dialog continues. These messages
are preceded by "KLI -- % ".

The warning messages include:

KLI -- % EXTERNAL CORE MEMORY IS OFFLINE

KLINIT found that a DMA20 e~ternal memory controller was
offline.

SYSTEM ACTION:

KLINIT attempts to configure the system without the controller
in question.

5-18.1 April 1986

KLINIT

THIS PAGE INTENTIONALLY LEFT BLANK

5-18.2 April 1986

KLINIT

KLI -- % EXTERNAL CORE MEMORY RESOURCES DO NOT MATCH FILE

The external memory resources found by KLINIT do not match the
KL.CFG file. The KL.CFG file contains more resources than
KLINIT can find on the current system. This usually means a
controller has dropped off line.

SYSTEM ACTION:

KLINIT attempts to configure the memory it can find in the way
closest to that specified in the KL.CFG file.

KLI -- % INTERNAL CORE MEMORY RESOURCES DO NOT MATCH FILE

The internal memory resources found by KLINIT do not match the
KL.CFG file. The KL.CFG file contains more resources than
KLINIT can find on the current system. This usually means a
controller has dropped off line.

SYSTEM ACTION:

KLINIT attempts to configure the memory it can find in the way
closest to that specified in the KL.CFG file.

KLI -- % MOS MEMORY IS ALREADY CONFIGURED

KLINIT found that the MOS memory was already configured. It
does not attempt to reconfigure MOS memory unless specifically
told to do so.

SYSTEM ACTION:

KLINIT proceeds with the initialization.

KLI -- % MOS MEMORY RESOURCES DO NOT MATCH FILE

The MOS memory resources found by KLINIT do not match the
KL.CFG file. The KL.CFG file contains more resources than
KLINIT can find on the current system. This usually means a
controller has dropped off line or some MOS blocks have been
deallocated by TGHA.

SYSTEM ACTION:

KLINIT attempts to configure the memory it can find in the way
closest to that specified in the KL.CFG file.

KLI -- % NO FILE - ALL CACHE BEING CONFIGURED

The default to the RECONFIGURE CACHE question was taken, and
KLINIT could not find the KL.CFG file in the directory.

SYSTEM ACTION:

KLINIT enables all caches.

5-19

KLINIT

KLI -- % NO FILE - ALL MEMORY BEING CONFIGURED

The default to the CONFIGURE KL MEMORY question was taken, and
KLINIT could not find the KL.CFG file in the directory.

SYSTEM ACTION:

KLINIT configures all available memory and sets the
interleaving at the highest level consistent with the setting
of the interleave switches on the memory units.

KLI -- % NO FILE - LOADING BOOTSTRAP

KLINIT could not find the KL.CFG file or could not find the
bootstrap record in the KL.CFG file.

SYSTEM ACTION:

KLINIT loads the default bootstrap.

KLI -- % PHYSICAL MEMORY CONFIGURATION ALTERED
SUPPRESSED

DUMP OR RESTART

During an automatic reload, KLINIT found that the physical
configuration of the system does not match the configuration
described in the KL.CFG file.

SYSTEM ACTION:

KLINIT suppresses the dump or restart, and proceeds to reload
the KL monitor.

5.3.3 Dialog Error Messages

Dialog error messages indicate that your answer to the current
question is unacceptable. The message text is preceded by "KLI

KLINIT
"

The system action for dialog error messages is to repeat the question
and the prompt.

Currently, the only dialog error message is:

KLI -- COMMAND SYNTAX ERROR

Your reply is not one of the acceptable answers as specified in
the question.

OPERATOR ACTION:

Reply with one of the acceptable answers, correctly spelled, or
use carriage return to take the default answer.

5-20

KLINIT

5.3.4 System Error Messages

System error messages indicate conditions in which KLINIT cannot
continue. These conditions can be brought about by software,
hardware, or environmental failures. Sometimes are try is successful
other times you may require the assistance of your Field Service
Representative or Software Support Specialist. For any system error,
it is important to save all console log data and memory dump listings;
this material is of prime importance when attempting to determine the
cause of the error. System error messages are preceded by KLI -- ? .

Unless noted otherwise, the system action for all system error
messages is to restart the KLINIT dialog and repeat the prompt.
Whenever a file is specified in a message text, the file is identified
in the following format:

dev:filename.ext;ver

The system messages include:

KLI ? BOOTSTRAP LOAD FAILED

KLI
KLI
KLI
KLI

A software or hardware error occurred while the
program was being loaded. (See accompanying
additional information.)

OPERATOR ACTION:

Reload the bootstrap program by replying:

KLI>BOOT

KL bootstrap
messages for

If the trouble persists, call your Field Service
Representative.

? C-RAM DIFFERS AT xxxxxx
BAD xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xx
GOOD xxxxxx xxx xxx xxxxxx xxxxxx xxxxxx xx
XOR xxxxxx xxx xxx xxx xxx xxxxxx xxxxxx xx

During the microcode verify operation, the contents of octal
location xxxxxx in the KL Control RAM did not match the
corresponding code in the appropriate microcode file. The
actual contents of the location are printed, followed by the
expected contents, and the last line is the result of a
bit-by-bit exclusive or (XOR) of the actual and expected
values.

OPERATOR ACTION:

Reload the KL microcode and reverify it by means of the KLINIT
dialog. If the trouble persists, call your Field Service
Representative.

KLI -- ? CACHE ENABLE FAILED

A hardware error has probably occurred while KLINIT was trying
to configure the cache memory. (See accompanying messages for
additional information.)

OPERATOR ACTION:

Retry the operation; if the trouble persists, call your Field
Service Representative. You can also temporarily reconfigure
with no cache memory.

5-21

KLINIT

KLI -- ? CANNOT FIND [5,5] DIRECTORY

KLINIT cannot locate the PDP-II system file directory; a
software error may have overlaid it.

OPERATOR ACTION:

Reload the system; if the trouble persists, call your Software
Support Specialist.

KLI -- ? CANNOT FIND HALT LOOP

KLINIT tried to start the microcode, but it failed to run
properly.

OPERATOR ACTION:

Reload the microcode; if the trouble persists, call your Field
Service Representative.

KLI -- ? CANNOT GET DEVICES

KLINIT cannot open a system device for communications. This is
probably a software error in RSX-20F.

OPERATOR ACTION:

Reload the system; if the trouble persists, call your Software
Support Specialist.

KLI -- ? CANNOT RUN KLINIT WHILE KL IS IN PRIMARY PROTOCOL

An attempt was made to run the KLINIT program while the KL
processor was running. This condition can arise only if KLINIT
is loaded by means of the PARSER command language instruction:

PAR>RUN KLINIT

OPERATOR ACTION:

If the intent was to rerun KLINIT, follow the appropriate
procedures to shut down TOPS-IO or TOPS-20i then reload the
system and enter the KLINIT program. If TOPS-IO or TOPS-20
does not shut down properly, set the console mode to PROGRAMMER
and reload KLINIT.

KLI -- ? CANNOT START KL

A hardware or software failure occurred while trying to restart
from a power failure or system crash during memory
determination. (See accompanying messages for additional
information.)

OPERATOR ACTION:

Reload the microcode and retry the operation. If the trouble
persists, call your Field Service Representative.

5-22

KLINIT

KLI -- ? CAN'T DETERMINE KLIO HARDWARE ENVIRONMENT

This message is followed immediately by one of the following
messages. If the error occurred in the KLINIT dialog, you will
get

KLI -- % PROCEED AT YOUR OWN RISK

while if the error occurred during an automatic reload, you
will get

KLI -- % AUTOMATIC RELOAD ABORTED

OPERATOR ACTION:

Contact your Field Service Representative.

KLI -- ? CAN'T SUPPORT MOS MEMORY ON A MODEL "A" CPU

KLINIT has conflicting information on the hardware available to
it.

OPERATOR ACTION:

Contact your Field Service Representative.

KL ? CLOCK ERROR STOP DURING FAULT CONTINUATION
KLI ? CLOCK ERROR STOP DURING KL RESTART

The KL processor clock stopped while KLINIT was monitoring a
restart operation. (See accompanying messages for additional
in forma t ion.)

OPERATOR ACTION:

Retry loading the KL bootstrap and monitor. If the trouble
persists, call your Software Support Specialist.

KLI -- ? CONFIGURATION FILE NOT CHANGED

KLI
KLI
KLI
KLI

The KL.CFG configuration file cannot be updated because the old
file cannot be read, the new file cannot be written, or some
other error has occurred. (See accompanying messages for
additional information.)

OPERATOR ACTION:

Delete the old configuration file and retry the operation. If
the trouble persists, call your Software Support Specialist.

? D-RAM DIFFERS AT xxxxxx
BAD A:x B:x P:x J:xxxx A:x B:x P:x J:xxxx
GOOD A:x B:x P:x J:xxxx A:x B:x P:x J:xxxx
XOR A:x B:x P:x J:xxxx A:x B:x P:x J:xxxx

During the microcode verify operation, the contents of octal
location xxxxxx in the KL Dispatch RAM did not match the
corresponding code in the appropriate microcode file. The
actual contents of the locations are printed, the even location
first, and the odd location next. This line is followed by the
expected contents of the two locations. The last line is the
result of a bit-by-bit exclusive or (XOR) of the actual and
expected values.

5-23

KLINIT

OPERATOR ACTION:

Reload the KL microcode and reverify it by means of the KLINIT
dialog. If the trouble persists, call your Field Service
Representative.

KLI -- ? DEPOSIT FAILED

KLINIT could not store information into KL memory.

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

KLI -- ? DEVICE device FULL

KLINIT cannot find room on the specified front-end load device
for an updated copy of the configuration file KL.CFG.

OPERATOR ACTION:

Exit from KLINIT and use a front-end system program such as PIP
to delete some files and make room for the updated KL.CFG file.
(Make sure that you do not delete any files that contain
RSX-20F software. You may wish to consult a system programmer
or the system administrator to determine which files can be
deleted.) Then reenter KLINIT and retry the operation.

KLI -- ? DF EXECUTE FAILED

A diagnostic function execute failed
initializing the KL processor.

OPERATOR ACTION:

while KLINIT was

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

KLI -- ? DF READ FAILED

A diagnostic function read failed while KLINIT was initializing
the KL processor.

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

KLI -- ? DF WRITE FAILED

A diagnostic function write
initializing the KL processor.

OPERATOR ACTION:

failed while KLINIT was

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

5-24

KLINIT

KLI -- ? DIRECTIVE ERROR -n ON FILE filename

A system error occurred while KLINIT was trying to access the
file "filename." The "n" is an octal error code for use by
software support.

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Software Support Specialist.

KLI -- ? EXAMINE FAILED

KLINIT could not examine contents of KL memory.

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

KLI -- ? FATAL MEMORY CONFIGURATION ERROR - CODE xxx

KLINIT encountered an error in attempting to configure memory.
The type of error encountered is specified by the code xxx.
Most of these errors are hardware problems or software bugs.
The possible codes are listed below, along with the corrective
action that can be tried, if any exists.

Code Corrective Action

3BB No corrective action is possible. This error code was
inserted as a debugging aid, and is not expected to occur
in normal operation. A CPU fault could be responsible.
Run diagnostics on the CPU and call Field Service.

ABS No corrective action is possible. The CPU has made an
error. Run diagnostics on it and call Field Service.

APL Make sure the microcode is
problem recurs, the CPU
Field Service.

loaded and retry. If
has most likely failed.

the
Call

B4M No corrective action is possible. If the hardware
environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

BCM No corrective action is possible. If the hardware

BTL

CES

environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

No corrective action is
certainly a hardware fault.

5-25

possible. This is almost
Contact Field Service.

KLINIT

Code Corrective Action

CFT No corrective action is possible. If the hardware
environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

CTF set all MF20 controllers to software state 0 and retry.

DCB

EDE

FOE

If the problem persists, call Field Service. This
condition could not be created by MF20 software. It
could happen as a result of user setting of the function
I software state bits.

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

Make sure the microcode is loaded and retry.
failure recurs, call Field Service.

If the

No corrective action is possible.
Support Specialist.

Contact a Software

GOO No corrective action is possible. If the hardware

HOV

lEE

LDE

MAB

environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

Make sure the microcode is loaded and retry.
failure recurs, call Field Service.

If the

No corrective
software bug.

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

action is possible. This is a pure
Contact a Software Support Specialist.

MFE No corrective action is possible. This halt often

MMR

indicates a memory controller failure, especially if the
hardware environment has not changed and you have been
able to boot memory in the past. You may also have
uncovered a software bug. If Field Service cannot find
the problem, contact a Software Support Specialist.

No cor:t:ect i ve
software bug.

action is possible. This is a pure
contact a Software Support Specialist.

MNA No corrective action is possible. If the hardware
environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

5-26

KLINIT

Code Corrective Action

NBS No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

NHA No corrective action is possible. If the hardware

NMS

ODL

002

PDH

SB4

environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

No corrective
software bug.

No corrective
software bug.

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

action is possible. This is a pure
Contact a Software Support Specialist.

action is possible. This is a pure
Contact a Software Support Specialist.

Make sure the microcode is loaded and retry.
failure recurs, call Field Service.

If the

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

SIH No corrective action is possible. This is most likely to
be a hardware failure. Contact Field Service.

SNR

SSO

TMD

No corrective
software bug.

No corrective
software bug.

No corrective
software bug.

action is possible. This is a pure
Contact a Software Support Specialist.

action is possible. This is a pure
Contact a Software Support Specialist.

action is possible. This is a pure
Contact a Software Support Specialist.

UMB No corrective action is possible. If the hardware
environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

XOO No corrective action is possible. If the hardware
environment has not changed, and you have been able to
boot memory successfully in the past, the problem is
likely to be in the hardware. If, on the other hand, you
have an odd hardware configuration, you may have come
across a software bug. If Field Service is unable to
find the problem, contact a Software Support Specialist.

5-27

KLINIT

KL -- ? FAULT CONTINUATION FAILED

Either a DEPOSIT or XCT 72 failed when KLINIT attempted fault
continuation. KLINIT aborts fault continuation and reloads the
KL.

KLI -- ? FILE filename NOT FOUND

KLINIT cannot find BOOT.EXB, the appropriate microcode file, or
the alternate KL bootstrap file in the PDP-II file directory
[5,5] on SYO:.

OPERATOR ACTION:

Ensure that the file being requested resides on the front-end
load device and retry the operation.

KLI -- ? I/O ERROR -n ON FILE filename

An I/O error occurred while KLINIT was trying to access the
file "filename." The "n" is an RSX-ll octal error code for use
by software support. Refer to Appendix A for a list of these
error codes and their meanings.

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Software Support Specialist.

KLI -- ? ILLEGAL BUS-MODE

You specified a bus-mode under which the current
configuration cannot operate.

OPERATOR ACTION:

DMA20

Retry the operation without the illegal bus-mode setting. If
you still have problems, or if you believe that you did not
specify an illegal bus-mode, contact your Software Support
specialist.

KLI -- ? ILLEGAL MF20 TIMING FILE FORMAT

KLINIT found the MF20 timing file, but it was not in the
correct format.

OPERATOR ACTION:

Obtain a new copy of the timing file and retry the operation.
The current MF20 timing file name is BF16NI.AII.

KLI -- ? INPUT RECORD LENGTH ERROR

An error occurred while KLINIT was trying to read KL.CFG,
appropriate microcode file, or the KL bootstrap file.
error could be caused by software or hardware failure.

OPERATOR ACTION:

the
This

If possible, try other copies of the files. If the trouble
persists, call your Software Support Specialist. If the file
in question is KL.CFG, you can get around the error by renaming
or deleting the file. KLINIT will then write a new KL.CFG file
by default.

5-28

KLINIT

KLI --? INSUFFICIENT MEMORY FOR BOOTSTRAP

KLINIT was unable to find enough memory in the area where it
wished to load the bootstrap program. (See any accompanying
messages for additional information.) Memory selection switches
on the memory units may be set in error.

OPERATOR ACTION:

Check memory selection switches on the memory units and retry
the operation. If trouble persists, call your Field Service
Representative.

KLI ? KL HALT DURING FAULT CONTINUATION
KLI ? KL HALT DURING RESTART

The KL processor stopped on a HALT instruction while KLINIT was
monitoring a restart operation.

OPERATOR ACTION:

Reboot and load the KL monitor; if the trouble persists, call
your Software Support Specialist.

KLI -- ? MASTER RESET FAILED

A MASTER RESET function to the KL failed. This is a hardware
error.

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

KLI -- ? MEMORY CONFIGURATION FAILED

A hardware or software error occurred while KLINIT was
configuring memory. (See accompanying messages for additional
information.)

OPERATOR ACTION:

Reload the system and retry the operation. If the trouble
persists, call your Field Service Representative.

KLI -- ? MF20 TIMING FILE CHECKSUM ERROR

KLINIT got a checksum error while accessing the MF20 timing
file during memory configuration.

OPERATOR ACTION:

Retry the operation. If this still fails, obtain a new copy of
the timing file from the distribution media and retry again.
The current MF20 timing file name is BFl6Nl.All.

5-29

KLINIT

KLI -- ? MF20 TIMING FILE READ ERROR

KLINIT got a read error while accessing the MF20 timing file.

OPERATOR ACTION:

Retry the operation. If you still get the read error, obtain a
new copy of the timing file and retry. The current MF20 timing
file name is BFI6NI.AII. If this does not solve the problem,
contact your Software Support specialist.

KLI -- ? MICROCODE FIX FAILED

KLINIT found more than five hard (irreparable) errors while
trying to fix the microcode.

OPERATOR ACTION:

Retry loading the microcode; if the trouble persists, call
your Field Service Representative.

KLI -- ? MICROCODE LOAD FAILED

A hardware or software error occurred while KLINIT was loading
the KL microcode. (See accompanying messages for additional
information.)

OPERATOR ACTION:

Retry loading the microcode; if the trouble persists, call
your Field Service Representative.

KLI -- ? MICROCODE VERIFY FAILED

The verification of the KL microcode discovered errors that are
itemized in preceding error messages.

OPERATOR ACTION:

Reload the microcode and verify it. If the trouble persists,
call your Field Service Representative.

KLI -- ? NO MEMORY AT LOCATION ZERO

When KLINIT was configuring memory it could not locate any
memory unit with address switches set at zero.

OPERATOR ACTION:

Check the memory units and ensure that one of the units has its
address switches set at zero; then retry loading.

KLI -- ? NO MF20 TIMING FILE

KLINIT did not find an MF20 timing file.

OPERATOR ACTIO~:

Obtain a timing file from the release media and retry the
operation. The current MF20 timing file name is BFI6NI.AII.

5-30

KLINIT

KLI -- ? NONEXISTENT CONTROLLER

KLINIT attempted to configure a controller and found that it
was not there.

OPERATOR ACTION:

Retry the operation; if the problem persists, call your Field
Service Representative.

KLI -- ? NONEXISTENT MODULE/BLOCK

KLINIT attempted to configure a module or block that does not
exist in the controller.

OPERATOR ACTION:

Retry the operation; if the problem persists, call your Field
Service Representative.

KLI -- ? OUTPUT RECORD LENGTH ERROR

An error occurred while KLINIT was trying to write an updated
configuration file, KL.CFG.

OPERATOR ACTION:

Retry the operation and if the problem persists, call your
Software Support Specialist.

KLI -- ? POWER-FAIL RESTART FAILED

KLINIT could not restart the KL processor during a
recovery. (See accompanying message for
information.)

OPERATOR ACTION:

power-fail
additional

Reload the system using one of the load switch procedures. If
the system still does not come up, call your Field Service
Representative.

KLI -- ? READ ERROR

A hardware or software error occurred while KLINIT was
accessing KL.CFG, the appropriate microcode file, ur the KL
bootstrap file. (See any accompanying messages for additional
information.)

OPERATOR ACTION:

Retry the operation; if the trouble persists, call your
Software Support Specialist. If the file in question is
KL.CFG, you can get around the read operation by renamlng or
deleting the file. KLINIT writes a new KL.CFG file by default.

KLI -- ? READ PC FAILED

KLINIT could not read the KL's PC during memory configuration.

OPERATOR ACTION:

Try the operation again. If it still fails, contact your
Software Support specialist.

5-31

KLINIT

KLI -- ? SYSTEM ERROR DURING KL RESTART

A KLINIT software error occurred during a KL restart operation.

OPERATOR ACTION:

Reload the system using one of the load switch procedures. If
you still have problems bringing up the system, call your
Software Support Specialist.

KLI -- ? TIMEOUT DURING KL RESTART

While KLINIT was monitoring a KL restart, the 3~-second
allowable time limit was exceeded.

OPERATOR ACTION:

Try reloading the KL processor using the dialog default. If
you still cannot bring the system up, call your Software
Support Specialist.

KLI -- ? WRITE ERROR

A hardware or software error occurred while KLINIT was
an updated copy of the configuration file, KL.CFG.
accompanying messages for additional information.)

OPERATOR ACTION:

writing
(See any

Retry the write operation; if the trouble persists, call your
Software Support Specialist.

5.4 REPORTS RELATING TO THE KLINIT DIALOG

KLINIT prints logical memory configuration maps and physical memory
configuration maps for external memory (DMA2~) and internal memory
(MA2~, MB2~, MF20, and MG20). KLINIT also prints error reports
whenever failures occur during microcode verification. Sections 5.4.1
through 5.4.3.2 describes the information contained j.n these maps and
reports.

5.4.1 External Memory Maps

If you answer YES to the CONFIGURE KL MEMORY question in the KLINIT
dialog, KLINIT prints a physical memory configuration map, as shown
below:

MEMORY RESOURCES:
CONTROLLER ADDRESS TYPE MODULES/GROUPS

7 6 5 4 3 2 I 0

4 DMA2~ 1024K

EXTERNAL MEMORY RESPONSE
ADDRESS SIZE
0~000000 1024K

RSX-29F VAlS-S9, VBlS-S9, VEls-se

4 BUS MODE

5-32 April 1986

KLINIT

This map represents the physical memory allocation, where:

CONTROLLER ADDRESS

TYPE

MODULES/GROUPS

memory controller number; this is always
4 for a DMA20

memory controller type

memory storage module

Under EXTERNAL MEMORY RESPONSE, the total storage is broken down by
contiguous blocks and their beginning addresses, where:

ADDRESS beginning address of memory block

SIZE size of the memory block

Whenever KLINIT configures KL memory, either by default or through the
dialog, it prints a logical memory configuration map on your console
terminal. If you answer NO to the CONFIGURE KL MEMORY question, the
map is not printed. The format of the map is as follows:

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE

00000000 1024K 4 DMA20
CONTROLLER

4

This map tells you how KL memory has been configured, where:

ADDRESS KL memory address

SIZE KL memory size in K

INT KL memory interleave mode

TYPE memory controller type

CONTROLLER memory controller number

5.4.2 Internal Memory Maps

If you attempt to configure memory yourself using the dialog, KLINIT
prints a physical memory configuration map after you answer YES to
CONFIGURE KL MEMORY. The map looks like the following example:

MEMORY RESOURCES:
CONTROLLER ADDRESS TYPE MODULES/GROUPS

7 6 5 4 3 2 1 0

0 MA20 0 0 0 0 1 1 1 1
1 MA20 0 0 0 0 1 1 1 1
11 MF20 0 0 0 0 0 4 4 3

5-33

KLINIT

NOTE

For the MF20 map each group can contain
four possible modules. Group 0 can
contain modules 0,1,2,3 or any subset of
those modules. Group 1 can contain the
modules 4,5,6,7 or any subset of those
modules and so on for the remaining
groups. The number shown in the map
indicates the number of modules in that
group but does not indicate which
modules are present. The number 3 in
the example above shows that 3 modules
of the set containing modules 0,1,2,3
are present. It does not, however, show
which three modules are present.

This map represents the physical memory allocation, where:

CONTROLLER ADDRESS memory controller number

TYPE memory type

MODULES/GROUPS memory storage module

Some of the rules that the memory configuration algorithm follows are:

1. 2-way or 4-way interleaving can only be done
controllers 0 and 1 or between controllers 2 and 3.

between

2. To use any memory, module 0 of some controller must be
available.

Whenever KLINIT configures KL memory, either by default or through the
dialog, KLINIT prints a logical memory configuration map on your
console terminal. If you answer NO to the CONFIGURE KL MEMORY
question, the map is not printed. The format of the map is as
follows:

LOGICAL MEMORY CONFIGURATION.
ADDRESS

00000000
00400000

SIZE
128K
768K

INT
2
4

TYPE
MA20
MF20

CONTROLLER
0&1
11

This map tells you how KL memory has been configured, where:

ADDRESS KL memory address

SIZE KL memory size in K

INT KL memory interleave mode

TYPE memory controller type

CONTROLLER memory controller number

5-34

KLINIT

5.4.3 Microcode Verification Error Reports

Whenever you reply VERIFY or FIX to the RELOAD MICROCODE question in
the KLINIT dialog, the contents of the control and dispatch storage
(CRAM and DRAM, respectively) are compared to the corresponding files
on disk. Whenever a mismatch is detected, an error report is typed on
the CTY.

NOTE

The MARK bit is ignored.

The general format of the error report is:

KLI ? x-RAM DIFFERS AT location
KLI BAD (contents of n-RAM)
KLI GOOD (contents of disk file)
KLI XOR (bit positions that differ)

where:

x is C for control storage or D for dispatch storage

location is the RAM address of the error

The XOR line is the result of an exclusive OR of the BAD and GOOD
lines and represents the bit positions that differed.

5.4.3.1 CRAM Error Report - The CRAM error report displays the 86
bits of information from left to right for each CRAM location in
error. Each line consists of six groups of octal numbers. Each of
the first five groups represents a l6-bit quantity; the sixth group
represents a six-bit quantity. The bit correspondence is shown below.

Group Bit positions

0-15
16-31
32-47
48-63
64-79

1
2
3
4
5
6 80-85 (SPEC field)

The following is an example of a CRAM error report:

KLI ? C-RAM DIFFERS AT 43
KLI BAD 002556 012600 002000 002640 100002 10
KLI GOOD 002575 012700 002000 002640 100002 10
KLI XOR 000023 000100 000000 000000 000000 00

5-35

KLINIT

5.4.3.2 DRAM Error Report - The DRAM error report displays the
contents of a pair of DRAM locations as two sets of labeled fields.
The first set represents the even DRAM location and the second set
represents the following odd DRAM location. Each set consists of four
fields, as shown below.

Field Size

A
B
P
J

3 bits
3 bits
1 bit

10 bits (See Note)

NOTE

Although the J field
quantity, bits 5 and 6
and bits 1 through 4 are
even and odd locations.
10 vary by location.

is a 10 bit
are always zero
common to the
Bits 7 through

The following is an example of a DRAM error report:

vKLI -- ? D-RAM DIFFERS AT 106
KLI BAD A:2 B:O P:O J:1002 A:2 B:O P:O J:1002
KLI GOOD A:4 B:O P:O J:14l2 A:2 B:O P:l J:14l2
KLI XOR A:6 B:O P:O J:04l0 A:O B:O P:l J:0410

Contents of
location 106

5.5 KLINIT DIALOG EXAMPLES

Contents of
location 107

1. This example shows the output at your console terminal when you
load a TOPS-lO system using the DISK load switch. KLINIT
automatically takes the default values without asking you any
questions. However, KLINIT tells you that the RAMs (random
access memories) have been loaded with the microcode. KLINIT
prints the logical memory map and then loads and starts the KL
bootstrap program.

RSX-20F VE15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI VERSION VA13-06 RUNNING
KLI KLlO SIN: 2136., MODEL B, 60 HERTZ
KLI KLlO HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI MICROCODE VERSION 324 LOADED
KLI ALL CACHES ENABLED
KLI % MOS MEMORY IS ALREADY CONFIGURED

5-36

KLINIT

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE CONTROLLER

00000000 128K 4 MA20 0 & 1
00400000 768K 4 MF20 11

KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT V2(14)

BOOT>

2. This example shows the output at your console terminal when you
load a TOPS-20 system using the switch register with switches 0,
1 and 2 set. The KLINIT dialog is entered only to load and start
the KL bootstrap. This allows you to leave the microcode and
memory configuration as they were.

RSX-20F VB15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI -- VERSION VB13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>BOOT
KLI -- ALL CACHES ENABLED
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT V10(152)

BOOT>

3. This example shows the KLINIT dialog being used to reconfigure
TOPS-20 memory. KLINIT prints both the physical memory
configuration and the logical memory map. These maps indicate
that l28K of memory is 2-way interleaved, and 768K is 4-way
interleaved.

RSX-20F VB15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI -- VERSION VB13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>YES
KLI -- KL10 SIN: 2136., MODEL B, 60 HERTZ
KLI -- KL10 HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI>YES
KLI -- MICROCODE VERSION 275 LOADED
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI>ALL
KLI -- ALL CACHES ENABLED
KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE,FORCE,YES,NO]?
KLI>YES
MEMORY RESOURCES:
CONTROLLER ADDRESS TYPE MODULES/GROUPS

7 6 5 4 3 2 1 0

o MA20 0 0 0 0 1 1 1 1
1 MA20 0 0 0 0 1 1 1 1
11 MF20 0 0 0 0 0 4 4 4

5-37

KLINIT

KLI -- CONFIGURE INTERNAL CORE MEMORY [ALL,YES,NO]?
KLI)ALL
KLI -- INTERNAL CORE MEMORY INTERLEAVE UPPER LIMIT [4,2,1]?
KLI)2
KLI -- CONFIGURE MOS MEMORY [ALL,YES,NO]?
KLI)ALL

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE CONTROLLER

00000000 128K 2 MA20 0 & 1
00400000 768K 4 MF20 11

KLI -- LOAD KL BOOTSTRAP [FILE,YES,NO,FILENAME]?
KLI)YES
KLI -- WRITE CONFIGURATION FILE [YES,NO]?
KLI)YES
KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT VIO(152)

BOOT)

4. This example shows the dialog being used to enable all caches and
to reconfigure MB20 memory on a 1091 system. Controllers 0 and 1
are specified with modules 0, 1, and 2 on each controller.
KLINIT prints both physical and logical memory maps. The maps
indicate that there is 256K of memory, 2-way interleaved.

RSX-20F VE15-06 8:00 10-AUG-83

[SYO: REDIRECTED TO DBO:]
[DBO: MOUNTED]
KLI -- VERSION VA13-06
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI)YES
KLI KLlO SIN: 2136., MODEL B, 60 HERTZ
KLI -- KLlO HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI)NO
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI)ALL
KLI -- ALL CACHES ENABLED
KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE,FORCE,YES,NO]?
KLI)YES

MEMORY RESOURCES:
CONTROLLER ADDRESS

o
1

TYPE MODULES/GROUPS
7 654 3 2 1 0

MB20 0 0 0 0 1 1 1 1
MB20 0 0 0 0 1 1 1 1

KLI -- CONFIGURE INTERNAL CORE MEMORY [ALL,YES,NO]?
KLI)YES
KLI -- MODULES/BLOCKS WITHIN CONTROLLER 0 [ALL,NONE,SPECIFY]?
KLI)0,1,2
KLI -- MODULES/BLOCKS WITHIN CONTROLLER 1 [ALL,NONE,SPECIFY]?
KLI)0,1,2
KLI -- INTERNAL CORE MEMORY INTERLEAVE UPPER LIMIT [4,2,1]?
KLI)2

5-38

KLINIT

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE CONTROLLER

00000000 256K 2 MB20 0.& 1

KLI -- LOAD KL BOOTSTRAP [FILE,YES,NO,FILENAME]?
KLI>YES
KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT V2(14)

BOOT>

5. This example shows the console terminal output when the system is
loaded using the DECtape load switch. KLINIT did not find a
KL.CFG file on the DECtape (%NO FILE messages) therefore, it
configured all cache and all available memory. Note that KLINIT
informs you whenever it writes a new KL.CFG file; it does so
whenever you answer ALL or YES to the CONFIGURE KL MEMORY
question or if no previous KL.CFG file exists.

RSX-20F VA15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DTO:]
[DTO:MOUNTED]
KLI VERSION VA13-06 RUNNING
KLI -- KLIO SIN: 1026., MODEL B, 60 HERTZ
KLI -- KLIO HARDWARE ENVIRONMENT

EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI MICROCODE VERSION 231 LOADED
KLI % NO FILE - ALL CACHE BEING CONFIGURED
KLI ALL CACHES ENABLED
KLI % NO FILE - ALL MEMORY BEING CONFIGURED

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE CONTROLLER

00000000 1024K 4 DMA20 4

KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT V2(14)

BOOT>

6. This example shows that the specified bootstrap file XXBOOT.EXB
was not found. Therefore, after the fatal error messages, the
KLINIT dialog restarts.

RSX-20F VB15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI -- VERSION VB13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>YES
KLI -- KLIO SIN: 2136., MODEL B, 60 HERTZ
KLI -- KLIO HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

5-39

KLINIT

KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI>NO
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI>NO
KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE;FORCE,YES,NO]?
KLI>NO
KLI -- LOAD KL BOOTSTRAP [YES,NO,FILENAME]?
KLI>XXBOOT
KLI -- WRITE CONFIGURATION FILE [YES,NO]?
KLI>YES
KLI ALL CACHES ENABLED
KLI ? FILE "SYO:XXBOOT.EXB;O" NOT FOUND
KLI ? BOOTSTRAP LOAD FAILED
KLI ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>

7. This example shows that a <CR> defaults to the first reply
listed. (NO to ENTER DIALOG) In this case the default signals
KLINIT to bypass any further dialog and assume the default
answers to all the remaining questions.

RSX-20F VB15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO :MOUNTED]
KLI -- VERSION VB13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI> (carriage return was pressed here)
KLI -- KLIO SIN: 2136., MODEL B, 60 HERTZ
KLI -- KLIO HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI MICROCODE VERSION 275 LOADED
KLI ALL CACHES ENABLED
KLI % MOS MEMORY IS ALREADY CONFIGURED

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE CONTROLLER

00000000 128K 2 MA20 0 & I
00400000 768K 4 MF20 11

KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT VI0 (152)

BOOT>

5-40

KLINIT

8. This example shows the dialog first being used to load and verify
the microcode. Then it shows the cache memory being configured.
The TOPS-IO monitor is to be loaded from a magnetic tape so the
program BOOTM must be loaded in place of the default program,
BOOT. BOOTM is contained in the file MTBOOT.EXB. KLINIT accepts
the file name, appends the default file type of .EXB, and loads
and starts the magnetic tape bootstrap program.

RSX-20F VA15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI -- VERSION VA13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>YES
KLI -- KLIO SIN: 1026., MODEL B, 60 HERTZ
KLI -- KLIO HARDWARE ENVIRONMENT

EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI>YES
KLI -- MICROCODE VERSION 324 LOADED
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI>BACK
KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI>VERIFY
KLI -- MICROCODE VERSION 324 VERIFIED
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI>YES

KLI -- ENABLE WHICH CACHES [ALL,NONE,0-3]?
KLI>0,1,3
KLI -- CACHES 0,1,3 ENABLED
KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE,FORCE,YES,NO]?
KLI>YES

MEMORY RESOURCES:
CONTROLLER ADDRESS TYPE MODULES/GROUPS

7 6 5 4 3 210

4 DMA20 1024K 4 BUS MODE

KLI -- CONFIGURE EXTERNAL CORE MEMORY [YES,NO]?
KLI>YES
KLI -- EXTERNAL CORE MEMORY BUS-MODE [OPTIMAL,1,2,4]?
KLI>4
LOGICAL MEMORY CONFIGURATION.

ADDRESS SIZE INT TYPE CONTROLLER
00000000 256K 4 DMA20 4

KLI -- LOAD KL BOOTSTRAP [YES,NO,FILENAME]?
KLI>MTBOOT
KLI -- WRITE CONFIGURATION FILE [YES,NO]?
KLI>YES
KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOTM V6(32)

BTM>

5-41

KLINIT

9. This example shows that an error occurred in verifying the
existing microcode. Because the dialog is restarted after a
fatal error, the solution you should try is answering YES to the
RELOAD MICROCODE question the next time.

RSX-20F VB15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI -- VERSION VB13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>YES
KLI -- KL10 SIN: 2136., MODEL B, 60 HERTZ
KLI -- KL10 HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI>VERIFY
KLI ? C-RAM DIFFERS AT 1
KLI BAD 002556 012600 002000 002640 100002 10
KLI GOOD 002575 012700 002000 002640 100002 10
KLI XOR 000023 000100 000000 000000 000000 00
KLI ? MICROCODE VERIFY FAILED
KLI ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>

10. This example shows ESCape being used during the reply to the
RELOAD MICROCODE question in order to restart the dialog. It
also shows unacceptable answers causing questions to be repeated.
Finally, a CTRLIZ causes the dialog to exit to the console
processor command language (the PARSER).

RSX-20F VB15-06 8:00 10-AUG-83

[SYO:REDIRECTED TO DBO:]
[DBO:MOUNTED]
KLI -- VERSION VB13-06 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI>YES
KLI -- KL10 SIN: 2136., MODEL B, 60 HERTZ
KLI -- KL10 HARDWARE ENVIRONMENT

MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

5-42

KLINIT

KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI)VER<ESC)
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI)YNOT
KLI -- COMMAND SYNTAX ERROR
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI)YES
KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI)NO
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI)MAYBE
KLI -- COMMAND SYNTAX ERROR
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI)NO
KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE,FORCE,YES,NO]?
KLI)NO
KLI -- LOAD KL BOOTSTRAP [YES,NO,FILENAME]?
KLI)A Z

11. This example shows the KLINIT dialogue being used to load a
TOPS-10 system that includes MCA2S memory.

RSX-20F VElS-S0 00:01 l-Jan-86

[SY0: redirected to DB0:]
[DB0: mounted]
KLI -- VERSION VAlS-S0 RUNNING
KLI -- ENTER DIALOG [NO,YES,EXIT,BOOT]?
KLI)YES
KLI KL10 SIN: 3500., MODEL B, 60 HERTZ
KLI -- KL10 HARDWARE ENVIRONMENT:

MCA25 CACHE PAGER
MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLI -- SELECT PAGE TABLE [FILE,BOTH,0,1]?
KLI)BOTH
KLI -- PAGE TABLE SELECTED: BOTH
KLI -- RELOAD MICROCODE [YES,VERIFY,FIX,NO]?
KLI)YES
KLI -- MICROCODE VERSION 2.0[406] LOADED
KLI -- RECONFIGURE CACHE [FILE,ALL,YES,NO]?
KLI)ALL
KLI -- ALL CACHES ENABLED
KLI -- CONFIGURE KL MEMORY [FILE,ALL,REVERSE,FORCE,YES,NO]?
KLI)FORCE
STARTING MF20 DBE SCAN. WAIT 25 SEC/256K.

MEMORY RESOURCES:
CONTROLLER ADDRESS TYPE MODULES/GROUPS

7 6 5 4 3 2 1 °
10 MG20 ° 0 0 0 ° 0 4 4
11 MG20 0 0 0 0 0 0 4 4

KLI -- CONFIGURE MOS MEMORY [ALL,YES,NO]?
KLI)

RSX-20F VAlS-S0, VBlS-S0, VElS-50 5-43 April 1986

KLINIT

LOGICAL MEMORY CONFIGURATION.
ADDRESS SIZE INT TYPE CONTROLLER

00000000 2048K 4 MG20 10
10000000 2048K 4 MG20 11

KLI -- LOAD KL BOOTSTRAP [FILE,YES,NO,FILENAME]?
KLI>YES
KLI -- WRITE CONFIGURATION FILE [YES,NO]?
KLI>YES
KLI -- CONFIGURATION FILE WRITTEN
KLI -- BOOTSTRAP LOADED AND STARTED
BOOT V2(17)

BOOT>

RSX-2~F VA15-5~, VB15-5~, VE15-5~ 5-44 April 1986

CHAPTER 6

RSX-20F UTILITIES

RSX-20F is designed to run with a minimum amount of human interaction.
However, occasions arise when some flexibility is needed, for example
when the front-end file system must be used or a failing KL must be
diagnosed. RSX-20F provides a set of utility programs that gives the
operator, system programmer, or Field Service Representative this
needed flexibility.

Since RSX-20F was derived from the RSX-1IM operating system, many of
the RSX-llM utilities were adapted to run on RSX-20F. This chapter
describes the following RSX-20F utilities:

COP Copies the contents of one floppy disk on to another
floppy disk.

DMO Dismounts a device.

INI Initializes a volume.

MOU Mounts a device.

PIP Manipulates files. It is used to copy, rename,
append, and delete files.

RED Redirects I/O requests from one device to another.

SAV Saves the system task image.

UFO Builds a User File Directory (UFO).

ZAP Patches task images.

6.1 COP UTILITY

Sections 6.1.1 through 6.1.4 describe the function and format of the
COP utility, provide examples and show error messages.

6.1.1 Function

The COP utility copies and verifies the contents of one floppy disk to
another floppy disk, error-checks a single floppy disk, or zeroes a
floppy disk. The COP utility is frequently used to make backup copies

6-1

RSX-20F UTILITIES

of the installation floppies.
following:

To use the COP utility, type the

CTRL/\ (control backslash)

PAR) MCR COP

COP)

WARNING

COP is for use only with floppy disks or DECtapes. Do
NOT attempt to use COP with RP04 or RP06 disks. COP
destroys the file structures of those disks.

6.1.2 Format

The format of the COP command line is as follows:

COP)DXn:=DXm:/switch

The following switches can be used with COP:

/BL:n,m

/CP

/HE

/RD

/VF

/ZE

6.1.3 Examples

Copies starting at (extended) block n,m until the
last block on the device. If COP is interrupted
(by aCT R L/ C for e x am pIe), i t will p r i n t 0 u t the
last block copied.

Copies the contents of one floppy to another.

Prints a list of the available switches.

Reads the device and checks for errors.

Verifies that First Device = Second Device.

Writes zeros onto a device (deleting all files).

The following command copies and verifies the contents of the floppy
disk in DXl: to the floppy disk in DXO:.

COP)DXO: =DXl:

The following command zeroes the floppy in DXO:;
deleted.

COP)DXO :/ZE

all files are

The following command reads the floppy in DXO: and checks for errors.

COP)DXO:/RD

6-2

RSX-20F UTILITIES

The following command copies the contents of the floppy in DXO:
the floppy in DXl: and verifies the copy.

COP>DXl:=DXO:/VF

onto

The following command prints the format of the COP command line and
lists the available switches.

COP>/HE
COP>DEST-DEV:=SRC-DEV:/SW-- SWITCHES: /BL:N,M /CP /HE /RD /VF /ZE

6.1.4 Error Messages

COP -- *DIAG* -- ABORTED BY AC AT BLOCK xxx,xxxxxx

COP was interrupted by a CTRL/C at block number xxx,xxxxxx.

COP -- *DIAG* -- I/O ERROR ON Dxx AT BLOCK xxx,xxxxxx

An I/O error was detected on the specified device at block
number xxx,xxxxxx.

COP -- *DIAG* -- VERIFY ERROR AT BLOCK xxx,xxxxxx

An error was detected during verification at block number
xxx,xxxxxx.

COP -- *FATAL* -- CONFLICTING SWITCHES

A /CP or /VF was used with a /RE or /ZE.

COP -- *FATAL* -- DEVICE Dxx NOT IN SYSTEM

The device Dxx specified in the command string is not in the
system or is off-line.

COP -- *FATAL* -- DEVICE Dxx IS WRITE LOCKED

The user does not have access to device Dxx.

COP -- *FATAL* -- DESTINATION DEVICE SPECIFIED FOR /RD

You specified a destination device with the /RD switch.
is an illegal combination of commands.

COP -- *FATAL* -- FATAL I/O ERROR xxx ON Dxx AT BLOCK xxx,xxxxxx

This

An I/O error xxx (refer to Appendix A) has been detected on
device Dxx at block number xXX,xxxxxx.

6-3

RSX-28F UTILITIES

COP -- *FATAL* -- ILLEGAL SWITCH Ixx

The switch Ixx is not a legal COP switch.

COP -- *FATAL*
IZE

NO DESTINATION DEVICE SPECIFIED FOR ICP OR IVF OR

This message is self-explanatory.

COP -- *FATAL* -- NO SOURCE DEVICE SPECIFIED FOR ICP OR IVF OR IRD

This message is self-explanatory.

COP -- *FATAL* -- SOURCE DEVICE SPECIFIED FOR IZE

You specified a source device with the IZE switch. This is an
illegal combination of commands.

COP -- *FATAL* -- SYNTAX ERROR: xxxxx •••

A syntax error was detected in the command string xxxxxx •••
Perhaps the switch was not preceded by a slash (I) or the input
string was too long, or the block number was not separated from
the switch by a colon (:).

6.2 INI UTILITY

Sections 6.2.1 through 6.2.4 describe the function and format of the
INI utility, provide examples and show error messages.

6.2.1 Function

The INI utility produces a Files-l1 volume. The utility initializes
the volume (destroys all existing files), writes a dummy bootstrap and
a home block, and builds the directory structure. INI must first
perform the following steps:

1. Read the TOPS home block (if dual-ported RP04/RP06).

2. Process bad blocks.

3. Allocate space for system files.

4. Write out the storage bit map file.

5. Mark the bit map for TOPS file system (if dual-ported
RP04/RP06) •

6. Build the boot and home blocks.

7. Write the index and file headers.

8. Write the Master File Directory (MFD).

6-4 ~pril 1986

RSX-20F UTILITIES

To initiate the INI utility, type the following:

CTRL/\ (control backslash)

PAR)MCR INI

INI)

6.2.2 Format

INI)dev:/switch /switch •.••

where:

dev: is the device
initialized.

of the volume to be

The INI utility accepts a string of switches. A hyphen (-) can be
used as a line terminator to extend the INI command line when the
selected switches cause the command line to exceed the buffer size
that has been specified for the entering terminal. Any number of
continuous lines is permitted, but the total command line cannot
exceed 512 characters. Switches can be used with the INI utility to
modify the home parameters and the INI execution.

The following switch can be used to modify INI execution.

/FULL Declares that the volume being initialized is
to be used only as a Files-ll structure (no
TOPS-10/TOPS-20 files allowed).

The following switch can be used to modify the horne block parameters.

/INDX=index-file-position

The INDX switch specifies the index file
logical block number. This switch can be
used to force the Master File Directory
(MFD) , the index file, and the storage
allocation file to a specific volume
location, usually for minimizing access time.
Four possibilities are available.

BEG

MID

END

BLK:nnn

Places the index file
beginning of the volume.

at the

Places the index file at the middle
of the volume. This option must be
used for DECtape.

Places the index file at the end of
the volume.

Places the index file
specified block number.

at the

Default: /INDX=BEG

6-5

6.2.3 Examples

RSX-20F UTILITIES

NOTES

The INI utility does not indicate when
the initialization process is complete.
Wait 10 seconds after issuing the
command, then type control backslash to
return to the PARSER.

Any error that occurs while you are
uSlng the INI utility causes an exit
from the program. The INI utility must
then be reentered from the PARSER.

The following command sets the location of the index block in the
middle of the volume.

INI)DBO:/INDX:MID

The following command declares the structure to be entirely Files-II.

INI)DBO:/FULL

6.2.4 Error Messages

INI -- ALLOCATION FOR SYS FILE EXCEEDS VOLUME LIMIT

The system is unable to allocate a system file from the
specified block because of intermediate bad blocks or the end
of the volume.

INI -- BAD BLOCK FILE FULL

The disk has more than 102 bad regions on it.

INI -- BAD BLOCK HEADER I/O ERROR

INI detected an error while writing out the bad-block file
header.

INI -- BLOCKS EXCEED VOLUME LIMIT

The specified block or blocks exceeded the physical size of the
volume.

INI -- BOOT BLOCK WRITE ERROR

INI detected an error while writing out the volume boot block.

6-6

RSX-20F UTILITIES

INI -- CHECKING DDnn

This is not an error message. An automatic bad block
specification was proceeding, using the bad block file provided
by the Bad Block Locator utility program.

INI -- CHECKPOINT FILE HEADER I/O ERROR

An error was detected in writing out the checkpoint file
header.

INI -- COMMAND I/O ERROR

INI encountered an I/O error while attempting to execute the
command.

INI -- COMMAND TOO LONG

The command, including continuation lines, exceeded the maximum
length of 512 characters.

INI -- DATA ERROR

The command specified a bad block number or contiguous region
that is too large.

INI -- DEVICE NOT IN SYSTEM

INI was unable to find the device on which it was supposed to
act.

INI -- DEVICE NOT READY

The device on which INI expects to operate is not in the ready
state.

INI -- DEVICE WRITE-LOCKED

INI attempted to operate on
write-locked. INI could,
device.

INI -- DUPLICATE BLOCK(S) FOUND

a device
therefore,

and
do

found
nothing

the device
with the

A block that was defined as bad is being defined as bad a
second time.

INI -- FILE CORRUPT - DATA IGNORED

Although automatic bad block recognition was selected, the bad
block data on the disk was not in the correct format and was
ignored.

6-7

RSX-20F UTILITIES

INI -- HANDLER NOT RESIDENT

You should never get this message. If it appears, contact your
Software Support Specialist; you may have corrupted software.

INI -- HOME BLOCK ALLOCATE WRITE ERROR

INI detected an error while overwriting a bad home block area.

INI -- HOME BLOCK WRITE ERROR

INI detected an error while overwriting a bad home block area.

INI -- ILLEGAL KEYWORD

The command string contained an illegal keyword.

INI -- ILLEGAL UIC

You should never get this message. If it appears, contact your
Software Support Specialist; you may have corrupted software.

INI -- INDEX FILE BITMAP I/O ERROR

INI encountered an I/O error while attempting to read the index
file bitmap.

INI -- INDEX FILE HEADER I/O ERROR

INI encountered an I/O error while attempting to read the index
file header.

INI -- MFD FILE HEADER I/O ERROR

INI encountered an I/O error while attempting to read the MFD
file header.

INI -- MFD WRITE ERROR

INI encountered an I/O error while making an entry in the MFD.

INI -- NO BAD BLOCK DATA FOUND

INI is unable to read the bad block information from the last
track of the disk.

INI -- RSX-20F FILE SYSTEM ALLOCATED LESS THAN 256. BLOCKS

INI allocated less than 256 blocks of space to the front end
file system.

6-8

RSX-20F UTILITIES

INI -- RSX-20F FILE SYSTEM OUTSIDE OF VOLUME RANGE

When INI went to the horne block to find out where the front-end
file system is located, it was given an address that is not
within the bounds of the volume in question. In- other words,
INI could not find the front-end file system.

INI -- STORAGE BITMAP FILE HEADER I/O ERROR

INI got an I/O error while attempting to read the file header
for the storage bitmap.

INI -- STORAGE BITMAP I/O ERROR

INI got an I/O error while reading the storage bitmap.

INI -- SYNTAX ERROR

There was a syntax error in the command string to INI.

INI -- TOPS HOME BLOCK I/O ERROR

INI received an I/O error while trying to read the TOPS home
block.

INI -- TOPS HOME BLOCK NOT FOUND

INI was unable to find the TOPS copy of the home block.

INI -- WRONG PACK - NO RSX-20F FILE SYSTEM ALLOCATED

INI was not able to find any front-end file system on the
specified pack.

6.3 MOU AND DMO

Sections 6.3.1 through 6.3.4 describe the function and format of the
MOU and DMO utilities, provide examples and show error messages.

6.3.1 Function

The MOU and DMO utilities give information to RSX-20F that makes a
device available to another user utility or takes away a device.
RSX-20F then allocates or deal locates buffer space and Logical unit
Number (LUN) information as required.

The MOU utility creates the Volume Control Block (VCB) and declares
that the volume is logically on-line for access by the file system.
The VCB is allocated in the dynamic memory and controls access to the
volume.

6-9

RSX-20F UTILITIES

The DMO utility declares that the volume or communication channel
specified is logically off-line. After a DMO operation, the device
cannot be accessed by the associated Ancillary Control Processore A
request is placed in the file system queue to delete the Volume
Control Block, and the volume is marked for dismount so that no
additional files can be accessed on the volume. The command is
completed when the veB is deleted; the VCB deletion does not occur
until all accessed files on the volume have been deaccessed. The
system indicates that the process is completed by issuing the
following message:

dev: DISMOUNT COMPLETE

A delay can occur between the issuance of the command and the printing
of this message if a number of I/O requests are pending or a number of
files are accessed on the volume.

No switches are available to either the MOU or DMO utility. The only
devices available that can be mounted are as follows:

DBO: disk drive 0 (RP04/06)

DBn: disk drive n (RP04/06)

DXO: floppy drive 0
DXI: floppy drive I
DTO: DECtape drive 0
DTI: DECtape drive I

FEO: pseudodevice FEO: to talk to the KL

FEn: pseudodevice FEn: to talk to the KL

To initiate the MOU utility, type the following:

CTRL/\ (control backslash)

PAR>MOU

MOU>

To initiate the DMO utility, type:

CTRL/\ (control backslash)

PAR>DMO

DMO>

6-10

6.3.2 Format

MOU>dev:

where:

dev:

DMO>dev:

where:

dev:

6.3.3 Examples

RSX-20F UTILITIES

is the device on which the volume is to be mounted.
Only devices that have an Ancillary Control Processor
can be mounted. Devices that meet this criterion are
rigid disk, floppy disk, DECtape, and the FE: device.

is the device that holds the volume to be dismounted.

The following command mounts the volume on device DX1:.

MOU>DX1 :

The following command dismounts the volume on device DX1:.

DMO>DX1:

The following command deletes the volume control block (VCB) for DX1:.

DMO>DX1 :

6.3.4 Error Messages

This section lists the error messages that can arise during the
execution of MOU and DMO command strings. Since they are presented in
alphabetic order, the messages that come only from DMO are listed
first, followed by those that come only from MOU. Finally, there are
a few messages that can come from either utility. These are listed
with the string "xxx" substituted for one of the strings "DMO" or
"MOU".

DMO -- DEVICE CANNOT BE DISMOUNTED

The device dismount command could not be executed. DMO was
unable to determine the specific reason for the problem. You
should never get this message from DMOi if you do, contact
your Software Support Specialist.

DMO -- DEVICE NOT MOUNTED

The specified device is not mounted.

6-11

RSX-20F UTILITIES

DMO -- DISMOUNT ERROR xx

The attempt to dismount a device failed because an I/O error
was received. Refer to Appendix A for a list of the I/O error
codes.

MOU -- DEVICE ALREADY MOUNTED

The specified device is already mounted.

MOU -- MOUNT ERROR xx

The attempt to mount a device failed because an I/O error was
received. Refer to Appendix A for a list of the I/O error
codes.

MOU -- NO ACP FOR DEVICE

The task specified as ACP or the default ACP is not installed
in the system.

xxx -- ACP REQUEST ERROR

The ACP for the specified device could not be removed.

xxx -- DEVICE NOT IN SYSTEM

The device specified in the command to MOU or DMO was not found
to be in the system resources.

xxx -- SYNTAX ERROR

The command you typed contained an error in syntax.

6.4 PIP - PERIPHERAL INTERCHANGE PROGRAM

Sections 6.4.1 through 6.4.5 describe the function, format, switches
and subswitches of PIP, present examples, and show error messages.

6.4.1 Function

The Peripheral Interchange Program (PIP) is an RSX-20F utility for the
manipulation of files. PIP performs the following major functions:

• Copying files from one device or area to another

• Deleting files

• Renaming files

• Listing file directories

• Concatenating or appending files

6-12

RSX-2SF UTILITIES

6.4.2 Initiating PIP

PIP can be initiated by typing the following:

CTRL/\ (Control Backslash)

PAR)MCR PIP

PIP)

6.4.3 PIP Command String Format

The general PIP command string is:

PIP)outfile=infilel [, infile2, infile3, ••• infileN] [/switch] [/subswitch]

where:

outfile The output file specifier in the form
device: [UIC]filename.filetype;version. If the
output filename, file type, and version are the
null set or *.*,*, the input filename, file type,
and version are preserved. If any part of the
output f}le specifier (filename, file type, or
version) is entered, wildcards cannot be used for
the remaining file specifiers.

infile

switch

The input file specifier in the
device: [UIC]filename.file type;version. If
filename, file type, and version are null,
.;* is the default.

Anyone of the switches that can be entered.

form
the

then

subswitch Anyone of the subswitches that can be entered
immediately after a switch.

6.4.4 PIP Switches and Subswitches

A switch consists of a slash (/) followed by a two-character switch
name and optionally followed by a subswitch name separated from the
switch by a slash. The subswitch can have arguments, which are
separated from the subswitch by a colon (:).

Switches are global; that is, they can be specified once for an entire
list of file specifiers. Subswitches are local; that is, they apply
only to the file specifier that immediately precedes them.

NOTE

If a subswitch is applied to the first file specifier
in a collection of file specifiers, and no command
switch has been specified, PIP assumes that the
command associated with the subswitch is the one
requested. This switch is then applied to the entire
collection.

6-13 April 1986

RSX-20F UTILITIES

PIP switches and their functions are listed below.

Switch Name Function

r--"

lAP APPEND Adds files to the end of an
existing file.

No Switch COpy Copies a file.

IDE DELETE Deletes one or more files.

IFR FREE Prints out available space on
specified volume.

ILI LIST Lists a directory file.

IME MERGE Concatenates two or more files.

IPU PURGE Deletes obsolete version(s) of a
file.

IRE RENAME Changes the name of a file.

APPEND Switch (lAP)

Function

The lAP switch opens an existing file and appends the input
file(s) to the end of it.

Format

PIP)outfile=infile[[,infile2, ••• ,infileN]/AP

Examples

The following command opens FILE.DATil on DX1: and appends the
contents of files TEST.DATi2, FILE2.TXTi3, and PRACT.DATil to it.

PIP)DX1:FILEl.DAT;1=TEST.DATi2,FILE2.TXT;3,PRECT.DATillAP

COpy (no swi tch)

Function

The COpy switch is used to create a copy of a file on the same or
another device. COpy is the PIP default switch when only one
output file specifier and one input file specifier are contained
in a command line.

Format

PIP)outfile=infile

NOTE

If the output filename, file type, and version are either
null or *.*i*, the input filename, file type, and version
are preserved.

6-14

RSX-20F UTILITIES

The following subswitch can be used with the COpy switch:

/NV New Version - This switch allows the user to
force the output version number of the file
being copied to be one greater than the
greatest version of the file already in the
output directory.

Examples

The following command copies TEST.DAT;l on DX2: to DXl: as
SAMP.DATil.

PIP>DXl:SAMP.DAT;1=DX2:TEST.DAT;1

The following command copies all versions of all files of type
.DAT from DXO: to DXl:.

PIP>DXl:=DXO:*.DAT;*

DELETE Switch (/DE)

Function

The /DE switch allows the user to delete files from a directory.

Format

PIP>infilel[, infile2, ••• infileN]/DE

NOTES

1. A version number must always be specified with the
/DE switch.

2. A version number of -1 can be used to delete the
oldest version of a file. An explicit version of ;0
or; can be used to delete the most recent version
of a file.

Examples

The following command deletes version one of the file TEST.DAT in
the default directory on the default device.

PIP>TEST.DATil/DE

The following command deletes all files of type DAT or TMP from
the default directory on the default device.

PIP>*.DATi*,*.TMPi*/DE

FREE Switch (/FR)

The /FR switch allows the user to print the available space on a
specific device.

6-15

RSX-20F UTILITIES

Format

PIP)dev:/FR

The output from the /FR switch is shown below.

dev: HAS nnnn. BLOCKS FREE, nnnn BLOCKS USED OUT OF nnnn.

Example

PIP)DBO:/FR
DBO: HAS 2813. BLOCKS FREE, 1416. BLOCKS USED OUT OF 4229.

LIST Switch (/LI)

Function

The /LI switch allows the user to list one or more directories.
PIP also provides the following three alternate mode switches,
which allow the user to specify different directory formats.

/BR
/FU
/TB

/LI lists the following information:

Filename.file type;version

Number of blocks used (decimal)

File code:
null = noncontiguous
C = contiguous
L = locked

Creation date and time

Example

PIP)DT1:/LI

DIRECTORY DT1: [5,5]
9-AUG-83 13:27

T20ACP.TSKi1506
BOO.TSK;1506
COP.TSK;1506
DMO.TSKi1506
INI.TSKi1506
PIP.TSKi1506
RED.TSKi1506
SAV.TSK;1506
UFD.TSKi1506
ZAP.TSKi1506
RSX-20F.SYSi1506
RSX-20F.MAPi1

8.
19.
8.
5.
23.
56.
6.
23.
9.
38.
59.
153.

C 09-AUG-83 13:10
C 09-AUG-83 13:11
C 09-AUG-83 13:12
C 09-AUG-83 13:13
C 09-AUG-83 13:15
C 09-AUG-83 13:16
C 09-AUG-83 13:17
C 09-AUG-83 13:18
C 09-AUG-83 13:20
C 09-AUG-83 13:21
C 09-AUG-83 13:22

09-AUG-83 13:23

TOTAL OF 407./407. BLOCKS IN 12. FILES

6-16

RSX-20F UTILITIES

/BR displays the following brief form of the directory listing:

Filename. file type; version

Example

PIP)DTI:/BR

DIRECTORY DTI: [5,5]

T20ACP.TSKiI506
BOO.TSK;1506
COP.TSK;1506
DMO.TSK;1506
INI.TSK;1506
PIP.TSK;1506
RED.TSK;1506
SAV.TSK;1506
UFD.TSKiI506
ZAP.TSK;1506
RSX-20F.SYS;1506
RSX-20F.MAP;1

/FU displays the full directory listing containing the following
information:

Filename. file type; version

File identification number in the format (file number, file
sequence number)

Number of blocks used/allocated (decimal)

File code
null = noncontiguous
C contiguous
L = locked

Creation date and time

Owner UIC and file protection in the format:
[group, member]
[system, owner, group, world]

These protection fields can contain the values R,W,E,D,

where:

R read access permitted
W write access permitted
E extend privilege
D delete privilege permitted

Date and time of the last update plus the number of
revisions.

Summary line containing the following:

Number of blocks used

Number of blocks allocated

Number of files printed

6-17

RSX-20F UTILITIES

Example

PIP>DT1:/FU

DIRECTORY DT1: [5,5]
10-AUG-S3 10:51

T20ACP.TSKi1506 (7 , 1) S./S. C 09-AUG-S3 13:10
[5,5] [RWED,RWED,RWED,R]

BOO.TSKi1506 (10,1) 19./19. C 09-AUG-S3 13:11
[5,5] [RWED,RWED,RWED,R]

COP.TSKi1506 (11,1) S./S. C 09-AUG-S3 13:12
[5, 5] [RWED,RWED,RWED,R]

DMO.TSKi1506 (12,1) 5./5. C 09-AUG-S3 13:13
[5,5] [RWED,RWED,RWED,R]

INI.TSKi1506 (13,1) 23./23. C 09-AUG-S3 13:15
[5,5] [RWED,RWED,RWED,R]

PIP.TSKi1506 (14,1) 56./56. C 09-AUG-S3 13:16
[5,5] [RWED,RWED,RWED,R]

RED.TSKi1506 (15,1) 6./6. C 09-AUG-S3 13:17
[5,5] [RWED, RWED, RWED,R]

SAV.TSKi1506 (16,1) 23./23. C 09-AUG-S3 13:18
[5, 5] [RWED,RWED,RWED,R]

UFD.TSKi1506 (17,1) 9./9. C 09AUG-S3 13:20
[5,5] [RWED,RWED,RWED,R]

ZAP.TSKi1506 (20,1) 3S./3S. C 09-AUG-S3 13:21
[5,5] [RWED,RWED,RWED,R]

RSX-20F.SYSi1506 (21,1) 59./59. C 09-AUG-S3 13:22
[5,5] [RWED,RWED,RWED,R]

RSX-20F.MAPi1 (22,1) 153./153. 09-AUG-S3 13:23
[5,5] [RWED,RWED,RWED,R]

TOTAL OF 407./407. BLOCKS IN 12. FILES

/TB displays only the summary line in the following format:

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. FILES

where:

nnnn blocks used

mmmm blocks allocated

xxxx number of files

Example

PIP> D T 1: / TB

TOTAL OF 407./407. BLOCKS IN 12. FILES

MERGE Switch (/ME)

Function

The /ME switch is used to create a new file from two or more
existing files. If an explicit output file specifier is used and
more than one input file is named without an appended switch, the
/ME switch becomes the default switch.

Format

PIP>outfi1e infi1e1, infi1e2, ••• infi1eN[/ME]

6-1S

RSX-20F UTILITIES

Example

The following command concatenates version 1 of the file TEST.DAT
and version 2 of NEW.DAT from DK2: and generates the file
SAMP.DAT onDK1:.

PIP>DK1:SAMP.DAT=DK2:TEST.DATil,NEW.DATi2/ME

PURGE Switch (/PU)

The /PU switch allows you to delete obsolete versions of a file.

Format

PIP>infilel[,infile2, ••• ,infileN]/PU

The /PU switch provides you with a convenient way to delete old
versions of files. The /PU switch deletes all but the latest
version of a file.

Example

Before issuing the /PU switch the following files are in a
directory.

TEST.DATil,TEST.DATi2,TESToDAT i5

Then the following command and switch are issued:

PIP>TEST.DAT/PU

After PIP has completed the purging action, the directory
contains the following fileo

TEST.DATi5

RENAME Switch (/RE)

Function

The /RE switch allows you to change the name of a file. The
subswitch /NV allows you to force the version number of the
renamed file to be one greater than the latest version number of
the previously existing file.

Format

PIP>outfile infile/RE[/NV]

Example

PIP>TEST.DATil=TRIAL.DATi5/RE

File TRIAL.DATi5 is renamed TEST.DATil.

NOTE

Renaming files across devices is not allowed. However,
renaming across directories on the same device is
allowed.

6-19

RSX-20F UTILITIES

6.4.5 PIP Error Messages

PIP -- ALLOCATION FAILURE -- NO CONTIGUOUS SPACE

The contiguous space available on the output volume is
insufficient for the file being copied.

PIP -- ALLOCATION FAILURE ON OUTPUT FILE

Space available on the output volume is insufficient for the
file being copied.

PIP -- ALLOCATION FAILURE - NO SPACE AVAILABLE

Space available on the output volume is insufficient for the
file being copied.

PIP -- BAD USE OF WILD CARDS IN DESTINATION FILE NAME

The user specified a wildcard "*" for an output filename where
the use of a wildcard is explicitly disallowed.

PIP -- CANNOT FIND DIRECTORY FILE

You specified a UFD that does not exist on the specified
volume.

PIP -- CANNOT FIND FILE(S)

The file(s) specified in the command was not found in the
specified directory.

PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER

You attempted to rename a file across devices.

PIP -- CLOSE FAILURE ON INPUT FILE

The input file cannot be properly closed. The file is locked
to indicate possible corruption.

PIP -- CLOSE FAILURE ON OUTPUT FILE

The output file cannot be properly closed. The file is locked
to indicate possible corruption.

PIP -- COMMAND SYNTAX ERROR

You entered a command that does not confo:rm to the syntax
rules.

PIP -- DEVICE NOT MOUNTED

The specified device is not mounted.

6-20

RSX-20F UTILITIES

PIP -- DIRECTORY WRITE PROTECTED

PIP cannot
directory
violation.

remove an entry from
is write-protected or

PIP -- ERROR FROM PARSE

a directory
because of

The specified directory file does not exist.

PIP -- FAILED TO ATTACH OUTPUT DEVICE

because the
a pr iv ilege

An attempt to attach a record-oriented output device failed.
This is usually caused by the device being off line or not
being resident.

PIP -- FAILED TO DETACH OUTPUT DEVICE

An attempt to detach a record-oriented device failed.

PIP -- FAILED TO DELETE FILE

You attempted to delete a protected file.

PIP -- FAILED TO ENTER NEW FILE NAME

You specified a file that already exists in the directory file,
or you do not have the necessary privileges to make entries in
the specified directory file.

PIP -- FAILED TO FIND FILE(S)

The file(s) specified in the command line was not found in the
specified directory.

PIP -- FAILED TO GET TIME PARAMETERS

An internal system failure occurred while PIP was trying to
obtain the current date and time.

PIP -- FAILED TO OPEN STORAGE BITMAP FILE

PIP cannot read the specified volume's storage bit map, usually
because of a privilege violation.

PIP -- FAILED TO READ ATTRIBUTES

Your volume is corrupted or you do not have the necessary
privileges to access the file.

PIP -- FAILED TO REMOVE DIRECTORY ENTRY

PIP cannot remove an entry from a directory because the entry
is write-protected, or a privilege violation was detected.

6-21

RSX-20F UTILITIES

PIP -- FILE IS LOST

PIP removed a file from its directory, failed to delete it, and
failed to restore the directory entry.

PIP -- FAILED TO WRITE ATTRIBUTES

Your volume is corrupted or you do not have the necessary
privileges to write the file attributes.

PIP -- ILLEGAL COMMAND

You entered a command not recognized by PIP.

PIP -- ILLEGAL SWITCH

You specified an illegal PIP switch or used a legal switch in
an illegal manner.

PIP -- ILLEGAL "*" COpy TO SAME DEVICE AND DIRECTORY

You attempted to copy all versions of a file into the same
directory that is being scanned for input files. This results
in an infinite number of copies of the same file.

PIP -- ILLEGAL USE OF WILD CARD VERSION

The use of a wildcard version number in the attempted operation
results in inconsistent or unpredictable output.

PIP -- I/O ERROR ON INPUT FILE

or

PIP -- I/O ERROR ON OUTPUT FILE

One of the following conditions exist:

• The device is off-line.

• The device is not mounted.

• The hardware failed.

• The volume is full (output only) •

• The input file is corrupted.

PIP -- EXPLICIT OUTPUT FILENAME REQUIRED

You failed to specify the output filename.

PIP -- NO DIRECTORY DEVICE

You issued a directory-oriented command to a device that does
not have directories.

6-22

RSX-20F UTILITIES

PIP -- NOT ENOUGH BUFFER SPACE AVAILABLE

PIP has insufficient I/O buffer space to perform the requested
command.

PIP -- NO SUCH FILE(S)

The file(s) specified in the command are not in the designated
directory.

PIP -- ONLY [*,*] IS LEGAL AS DESTINATION UIC

You specified a UIC other than [*,*] as the output file UIC for
a copy.

PIP -- OPEN FAILURE ON INPUT FILE

or

PIP -- OPEN FAILURE ON OUTPUT FILE

The specified file cannot be opened. On EOF one or more of the
following conditions can exist:

• The file is protected against access.

• A problem exists on the physical device.

• The volume is not mounted.

• The specified file directory does not exist.

• The named file does not exist in the specified directory.

PIP -- OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED

An output file of the same name, type, and version as the
specified file already exists.

PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS

You specified too many switches or conflicting switches.

PIP VERSION MUST BE EXPLICIT OR n*n

The version number of the specified file must be expressed
explicitly or as a wildcard.

6.5 RED

Sections 6.5.1 through 6.5.4 describe the function and format of RED,
provide examples and show error messages.

6-23

RSX-20F UTILITIES

6.5.1 Function

The RED utility allows the operator to redirect all I/O requests
previously directed to one system device to another system device.
The utility does not affect any I/O requests already in the I/O queue.

To initiate the RED utility, type the following:

CTRL/\ (Control backslash)

PAR)MCR RED

RED)

6.5.2 Format

RED)nud:=SY:

where:

nud the new device to which subsequent requests are to be
redirected.

SY

6.5.3 Examples

the system device from which requests have
directed.

NOTE

The device nud must be mounted before
the RED command is given

The following command redirects all I/O requests for SY: to DBl:.

RED)DB1:=SY:

6.5.4 Error Messages

RED -- DEVICE NOT KNOWN TO SYSTEM

been

An attempt was made to redirect a device that does not exist in
the device tables.

RED -- FIIACP NOT FOUND ON SYSTEM
SYSTEM MUST BE RELOADED

RED could not find the Files-II ACP on the new system device.
This situation forces the front end to crash.

RED -- PRIMARY PROTOCOL RUNNING

You attempted to redirect the system device while primary
protocol was running. This is not allowed.

6-24

RSX-20F UTILITIES

RED -- NEW SYSTEM NOT MOUNTED
FllACP NOT FOUND ON SYSTEM
SYSTEM MUST BE RELOADED

RED -- SYNTAX ERROR

The command string contained a syntax error.

6.6 SAV

Sections 6.6.1 through 6.6.5 describe the function and format of the
SAV utility, provide examples, and show error messages.

6.6.1 Function

The SAV utility writes into a contiguous task image file the image of
an RSX-20F system that has been resident in main memory. The utility
saves the image so that you can later use a hardware bootstrap or the
BOOT command to reload and restart the system. The saved system is
written into the file from which it was originally booted. This
utility provides a way to save a patched system image.

The SAV utility removes any installed tasks that were not loaded from
LB: and verifies that the system is inactive by making the following
checks:

• No tasks have outstanding I/O.

• No devices are mounted.

• No checkpoint files are active.

• Error logging has been turned off.

An error is reported if any of these checks fail.

All RSX-20F system images reside on
special format of task image.
without a task header.

a file structure volume as a
This special image is a task image

A system can either be booted by using the hardware bootstrap, or by
using the BOOT command. A system saved on one controller cannot be
booted from another controller.

When a user installs a task, the system stores the task's file
identification in the task header. When a system is saved, it places
the file identification rather than the files's logical block number
in the task control block. When the system is rebooted, it reopens
the task file and stores the new logical block number of the task in
the task ,control block. If a task has been deleted, the system cannot
open the task file when the system is rebooted. In this case the
system automatically removes the task's control block from the system
task directory.

A saved system does not retain the physical disk addresses of
installed tasks. However, the task control block entries contain task
file identifications, rather than logical block numbers after a system
save. Thus, the system can function normally when it is rebooted.

6-25

RSX-20F UTILITIES

When the bootstrap block is written, the physical disk-block address
of the system-image file is stored with it. However, the file can be
deleted. If file system activity occurs, the blocks previously
allocated to the system image can be reallocated to another file. A
subsequent bootstrap that uses the boot block can cause random data to
be loaded.

Since SAV is active when the memory-resident system image is copied to
disk, SAV appears in this image. In fact, SAV is the program that
starts up the saved system after a disk boot.

To run SAVE, type:

CTRL/\ (control backslash)

PAR>MCR SAV

SAV>

6.6.2 Format

SAV> [/switchl/switch2 .•• /switchN]

where:

switch

/DM:dev

/EX

/MO:dev

/RH

/WB

/WS

6.6.3 Example

SAV>

is one of the following:

causes the specified device to be dismounted when the
save file has been written. This switch is not widely
used.

causes SAV to exit after writing the save file.
switch is the default condition.

This

tells SAV that the specified device
before the save file is written.
widely used.

must be mounted
This switch is not

indicates that SAV should read the home block to find
the front-end file system. This switch is the default
condition.

indicates that a boot block pointing to the system
image is to be written out to the system device. The
new boot block points to the file that is saved by the
execution of this command. Thus, on the next hardware
bootstrap, this saved file will be loaded. If the
command omits the /WB switch, the file previously
pointed to by the boot block remains in effect; that
is, the file is not overwritten.

causes SAV to write a save file. This switch is the
default condition.

The current status of the system is saved on the system disk (because
/WS is the default switch). System changes made by the RED utility or
another utility are also saved with the system image that is resident
in main memory.

6-26

RSX-20F UTILITIES

6.6.4 Error Messages

SAY -- *DIAG* -- CANNOT FIND SECOND DX:

In attempting to boot the system from floppy disks you must
have both floppies mounted. SAY was unable to find the second
floppy disk it expected.

SAY -- *DIAG* -- DBn: NOT IN PROGRAMMABLE (A/B) MODE

SAY attempted to access disk DBn: and found that it was not in
the correct mode.

SAY -- *DIAG* -- DEVICE ALREADY MOUNTED

You have used the /MO switch in the command string to SAY and
the device you requested is already mounted.

SAY -- *DIAG* -- dev NOT READY

SAY attempted to use the specified device and found that it was
not ready.

SAY -- *DIAG* -- KLINIK LINE ACTIVE IN REMOTE MODE

SAY discovered an active KLINIK line. You may receive this
message when the KLINIK line was actually in REMOTE mode
previous to the system load. You may also receive it when the
KLINIK parameters were not saved due to some condition at the
time of the crash. In this case, SAY resets the KLINIK line to
REMOTE mode by default, since it has no way to know what mode
the KLINIK line was in without the parameters.

SAY -- *DIAG* -- KLINIK LINE ACTIVE IN USER MODE

SAY discovered an active KLINIK line during the initialization
procedure. SAY checked for saved KLINIK parameters, and found
that the KLINIK line had been in USER mode before the crash.

SAY -- *DIAG* -- KLINIK LINE CONNECTED TO SYSTEM CONSOLE

SAY found an active KLINIK line while bringing up the system.
Either the KLINIK line was in REMOTE mode when the system went
down, or the KLINIK parameters were lost during the crash and
SAY has restored the KLINIK line to REMOTE mode by default.
REMOTE mode means that the KLINIK line user has the use of a
remote CTY (refer to Appendix D for more information on
KLINIK). This message will immediately follow the KLINIK LINE
ACTIVE IN REMOTE MODE message.

SAY -- *DIAG* -- MOUNT dev ERROR nn

SAY got an I/O error when attempting to mount the specified
device. Refer to Appendix A for a list of the I/O error codes.

6-27

RSX-20F UTILITIES

SAY -- *DIAG* -- NO TOPS FILE SYSTEM ON dev

SAY could not find the file system owned by the KL's operating
system on the specified boot device.

SAY -- *DIAG* -- TOPS HOM BLOCK CONSISTENCY ERROR OR DBn:

The two home blocks which are read and compared by SAY are not
consistent with each other.

SAY -- *DIAG* -- TOPS HOM BLOCK READ ERROR nn ON DBm:

SAY got a read error while attempting to read and compare the
home blocks. Refer to Appendix A for a list of the I/O error
codes.

SAY -- *FATAL* -- ACP FOR devl NOT ON dev2

You have used the /DM switch, and SAY was not able to find the
ACP it expected for device devl on device dev2.

SAY -- *FATAL* -- CREATE SAVE FILE (5,5) ERROR xx

SAY attempted to create a system image file and received an I/O
error. Refer to Appendix A for a list of I/O error codes.

SAY -- *FATAL* -- dev CANNOT BE DISMOUNTED

You gave SAY the /DM switch and SAY was unable to dismount the
specified device.

SAY -- *FATAL* dev DISMOUNT ERROR xx

SAVgot an I/O error while attempting to dismount the specified
device. Refer to Appendix A for a list of I/O error codes.

SAY -- *FATAL* -- DEVICE dev NOT IN SYSTEM

The specified device does not exist as part of the system
resources.

SAY -- *FATAL* -- DTE-20 #n NOT AT PRIORITY LEVEL 6

SAY accessed DTE20 #n and found that it was not at the correct
priority level. All DTE20s should be at level 6.

SAY -- *FATAL* -- DTE-20 PROTOCOL RUNNING

Some type of DTE20 protocol is running. SAY cannot run while
protocol of any type is in force.

SAY -- *FATAL* -- ILLEGAL DEVICE dev

SAY does not recognize the device identifier.

6-28

RSX-20F UTILITIES

SAV -- *FATAL* -- ILLEGAL MODIFIER /xx

SAV discovered an illegal switch value: /xx.

SAV -- *FATAL* -- KLI TASK REQUEST ERROR nn

There was an I/O error on the request for KLINIT to run. Refer
to Appendix A for a list of the I/O error codes.

SAV -- *FATAL* -- MOUNT ERROR

You specified the /MO switch in the SAV command string and SAV
was unable to mount the specified device.

SAV -- *FATAL* -- NO DTE-20

SAV could not find the DTE20 it expected.

SAV -- *FATAL* -- PROTOCOLS NOT RUNNING

SAV expected to find one of the protocols running, but none
were there. No KLINIK parameters can be passed to the KL if
there is no protocol running.

SAV -- *FATAL* -- SAVE FILE (5,5) NOT CONTIGUOUS

SAV was unable to find enough contiguous space to write the
requested save file.

SAV -- *FATAL* -- SYNTAX ERROR xx

SAV discovered a syntax error in your command string, namely
xx.

SAV -- *FATAL* -- WRITE ERROR

While you were trying to boot from the save file, SAV
discovered that the save file was not written correctly.

6.7 UFO - USER FILE DIRECTORY

Sections 6.7.1 through 6.7.4 describe the function and format of the
UFD utility, provide examples and show error messages.

6.7.1 Function

The UFD utility cn~ates a User File Directory on a Files-ll volume and
enters its name into the Master File Directory. Before the User File
Directory can be defined, the volume must be mounted with the MOU
utility and initialized with the INT utility. Once the volume has
been mounted and initialized, User File Directories can be added at
any time.

6-29

RSX-20F UTILITIES

To run UFO, type:

CTRL/\ (control backslash)

PAR>MCR UFO

UFO>

6.7.2 Format

UFD>dev: [group ,member] [/swi tch] [/swi tch]

where:

dev:

[group ,member]

switch

/ALL

6.7.3 Examples

PAR>MCR UFO

The device containing the volume on which the
UFO being created will reside.

Default: none; must be specified.

The owning UIC for the UFO. The brackets are
required syntax.

The UFO utility accepts the following switch.

The /ALL switch allocates space for the UFO
and takes as an argument the number 0 f blocks
to allocate.

Default: /ALL:32

UFD>DB2: [10,10]/ALL:900

6.7.4 Error Messages

UFO -- CAN'T READ MCR COMMAND BUFFER

This message indicates that UFO was unable to parse your
command string.

UFO -- DEVICE NOT IN SYSTEM

UFO was unable to find the specified device on the system.

UFO -- DIRECTORY ALREADY EXISTS

The requested UFO already exists on the volume.

UFO -- FAILED TO CREATE DIRECTORY

No space exists on the volume, or an I/O error occurred.

6-30

RSX-20F UTILITIES

UFD -- FAILED TO ENTER IN MFD

No space exists in the MFD or on the volume, or an I/O error
occurred on the volume.

UFD -- NOT FILES-ll DEVICE

The device specified for the UFD was not a Fi1es-11 device, and
therefore could not support a UFD.

UFD -- SYNTAX ERROR

UFD found a syntax error in your command string.

UFD -- VOLUME NOT MOUNTED

The volume was not mounted prior to the attempt to create the
UFD.

UFO -- WRITE ATTRIBUTES FAILURE

UFD encountered an error while writing the attributes of either
the MFO or the newly created UFO.

6.8 ZAP

Sections 6.8.1 through 6.8.8 describe the ZAP utility.

6.8.1 Function

The ZAP utility a~lows you to examine files on a Fi1es-11 volume and
to patch task lmages and data files in an interactive environment
without reassembling the files.

ZAP provides the following features:

• CQmmand line switches that allow access to specific words and
bytes in a file, modify locations in a task image, list the
disk block and address boundaries for each overlay segment in
a task image, and open a file in read-only mode.

• A set of internal registers that includes eight relocation
registers.

• Single character commands that, in combination with other
command line elements, display, open, close, and manipulate
the values in task images and data files.

6-31

RSX-20F UTILITIES

NOTES

The results of ZAP are permanent. The
most convenient way to use ZAP is with a
hard-copy terminal. Hard copy provides
a record of the changes made with ZAP
commands.

Although using the ZAP utility is
relatively uncomplicated, patching
locations into the task image requires
that you know how to use the map
generated by the task builder along with
the listings generated by MACRO-ll.
These maps and listings provide the
information needed to access the
locations to be changed.

6.8.2 Invoking and Terminating ZAP

The method for invoking ZAP is as follows:

CTRL/\ (control backslash)
PAR)MCR ZAP

ZAP)filespec [/sw .••] <cr)
command line

To exit from ZAP, type either of the fOllowing:

x

or

CTRL/Z

6.8.3 ZAP Switches

ZAP switches set the mode in which ZAP operates: task image mode,
absolute mode, or read-only mode. For example, you can select task
image mode by omitting the /AB switch. The three ZAP switches are
presented below.

/AB Processes the addresses entered in the ZAP command
lines as absolute byte addresses within the file
RSX-20F.SYS (not within the program). You must add
2000 (octal) to the absolute address inside the code to
compensate for the header information at the top of the
file.

If /AB is not specified, addresses in ZAP command lines
refer to addresses in a task image file, as shown in
the task-builder task image map for the file.

6-32

ILl

IRO

RSX-20F UTILITIES

Displays the starting disk block and address boundaries
for each overlay segment in the file in the following
form:

ssssss: aaaaaa-bbbbbb

where:

ssssss: specifies the starting block in octal

aaaaaa specifies the lower address boundary in
octal

bbbbbb specifies the upper address boundary in
octal

Opens a file in read-only mode. When IRO is specified,
ZAP functions that change the contents of locations can
be executed, but the changes are not permanent. When
ZAP exits, the original values in the task image file
are restored.

6.8.4 Addressing Locations in a Task Image

To make addressing a task image more convenient, ZAP provides two
modes of addressing a task image and a set of internal relocation
registers. The two modes of addressing are absolute mode and task
mode. These two modes aid in the figuring of relocation biases.

When MACRO-ll generates a relocatable object module, the base address
of each program section in the module is 000000. In the assembly
listing, all locations in the program section are shown relative to
this base address.

The task builder links program sections to other program sections by
mapping the relative addresses applied by the assembler to the
physical addresses in memory (for unmapped systems), or to virtual
memory locations (for mapped systems).

Many values within the resulting task image are biased by a constant
whose value is the absolute base address of the program section after
it has been relocated. This bias is called the relocation bias for
the program section.

ZApus eight relocation registers, OR through 7R, are generally set to
the relocation biases of the modules that will be examined. Thus, you
can reference a location in a module by the same relative address that
appears in the MACRO-ll listing. ZAP provides two addressing modes
that simplify the calculation of relocation biases.

6.8.,4.1 ZAP Addressing Modes: Absolute and Task Image - ZAP provides
two modes of addressing locations in a task image: absolute mode and
task image mode.

To use ZAP in absolute mode, enter the lAB switch with the file
specifier when ZAP is invoked.

6-33

RSX-20F UTILITIES

In absolute mode, ZAP interprets the first address in ~he file being
changed as segment 1, location 000000. All other addresses entered
are interpreted using this address as a base location. This mode
allows access to all the bytes in a file, as well 'as the label and
header blocks of the task image. However, to modify a task image in
absolute mode, the layout of the task image on disk must be known.
Generally, this is practical only for task image files that are not
overlaid. In absolute mode the task header is 2000 bytes. Therefore,
to access location 0 of a nonoverlaid task in absolute mode, open
address 2000.

In task image mode, ZAP uses the block number and relative offset
listed in the task builder's memory allocation IDap to address
locations. This mode is useful for changing locations in a file
constructed of overlay segments because the task builder and ZAP
perform the calculations necessary to relate the task's disk structure
to its run-time memory structure.

The task builder adds blocks that contain system information to the
beginning of the task image file. The memory allocation map generated
by the task builder gives the starting block and byte offset of the
file to be changed.

Task image mode is the default mode for ZAP. You may also put ZAP in
task image mode by entering the /LI switch to display block/segment
information. This puts ZAP in task image mode after 'the information
is displayed.

Locations in a file can be examined in either absolute mode or task
image mode by using the /RO switch. This switch allows locations to
be opened and the contents temporarily changed. When ZAP exits, the
original file remains intact.

6.8.4.2 Addressing Locations in Task Image Mode - In task image mode,
ZAP uses the block number and byte offset listed in the task builder
m~mory allocations map, and addresses that MACRO-11 prints in an
object module listing to access a location in a task image. The
following excerpts from a MACRO-II listing and a ta~k image memory
allocation map generated by the task builder show pow to use ZAP in
task image mode.

The following lines represent assembled instructions from a MACRO-II
source listing:

71 000574 032767 OOOOOOG OOOOOOG BIT #FE.MUP,$FMASK
72 000602 001002 BNE 2$
73 000604 000167 000406 JMP 30$
74 000610 061700 OOOOOOG 2$ MOV $TKTCB,RO
75 000614 016000 OOOOOOG MOV T.UCB(RO) ,RO
76 000620 010067 177534 MOV RO,UCB

6-34

RSX-20F UTILITIES

The following excerpt from the task builder memory allocation map
gives the information needed to address locations in the task image
file as they appear in the above MACRO-II listing:

R/W MEM
DISK BLK

LIMITS: 120000 123023 003024 01556.
LIMITS: 000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPSIS:

SECTION
• BLK.:(RW,I,LCL,REL,CONO 120232 002546 01382.

120232 002244 01188.

(TITLE: MYFILE, IDENT: 01, FILE: MCR.OLD;l)

122476 000064 00052.
$$RESL:(RE,I,LCL,REL,CON) 123000 000024 00020.

(TITLE: FMTDV, IDNET: 01, FILE: MCR.OLB;l)

With the information in the memory allocation map above, the user can
determine the block number and byte offset for the beginning of the
file to be changed. The disk-block-limits line lists block 2 as the
block where the file begins. The memory allocation synopsis lists
byte offset 120232 as the beginning of the file MYFILE. To address
location 574 in the MACRO-II listing in the task image mode, specify
the command:

002:120232+574/<cr)

ZAP responds by opening the location and displaying its contents:

002:121026/032767

6.8.5 The ZAP Command Line

ZAP commands allow you to examine and modify the contents of locations
in a task image file. Command lines comprise combinations of the
following elements:

• Commands

• Internal registers

• Arithmetic operators

• Command line element separators

• The current location symbol

• Addresses of location in storage

These command elements can be combined to perform multiple functions.
The functions of a given command line depend on the positional
relationship of one command line element to the rest. In other words,
the function specified on a ZAP command line depends on both the
elements specified and on the form in which those elements are
specified.

6-35

RSX-20F UTILITIES

ZAP commands take effect only after a carriage return is pressed.
Corrections to the command line can be made prior to a carriage return
by using the delete key. The line currently being typed can be
deleted using the CTRL/U.

ZAP commands are grouped into three categories, as follows:

• Open/close location commands

• General purpose commands

• Carriage return command

6.8.5.1 Open/Close Location Commands - Open/close location commands
are nonalphanumeric ASCII characters that direct ZAP to perform two
general types of operations, as follows:

• Open a location, display its contents, and store the contents
in the quantity register.

• Close the open location after optionally modifying the
contents and open another location as specified by a command.

/

II

%

\

@

ZAP Open/Close Commands

Open a location, display its contents in octal,
and store the contents of the location in the
quantity register (Q). If the location is odd, it
is opened as a byte.

Open a location, display the contents of the
location as two ASCII characters, and store the
contents of the location in the quantity register
(Q) •

Open a location, display the contents of the
location in RADIX-50 format, and store the
contents of the location in the quantity register
(Q) •

Open a location as a byte, display the contents of
the location in octal, and store the contents of
the location in the quantity register (Q).

Open a location, display the contents as one ASCII
character, and store the contents of the location
in the quantity register (Q).

Close the currently open location as modified, use
the contents of the location as an offset from the
current location value, and open that location.

Close the currently open location as modified, use
the contents of the location as an absolute
address, and open that location.

6-36

>

<

RSX-20F UTILITIES

ZAP Open/Close Commands

Close the currently open location as modified,
interpret the low-order byte of the location as
the relative branch offset, and open the target
location of the branch.

Close the currently open location as modified,
return to the location from which the last series
of , @, or > commands began, and open the next
sequential location.

6.8.5.2 General Purpose Commands - ZAP provides six single-character
general-purpose commands. Some can be entered on the command line
with no other parameters; others must be entered with parameters.
The following table summarizes the commands and their functions.

x

K

o

R

Exit from ZAP; return to MCR.

Compute the offset between the value of the
nearest (less than or equal to) relocation
register and the currently open location, display
the offset value, and store it in the quantity
register.

Display the jump and branch displacements from the
current locations to a target location.

Display in octal, the value of the expression to
the left of the equal sign.

Set the value of a relocation register.

6.8.5.3 Using the Carriage Return - The carriage return causes ZAP to
close the current location as modified. Two sequential carriage
returns open the next sequential location in the file.

6.8.5.4 ZAP Internal Registers - ZAP internal
storage locations that are used as registers.
contain values set by ZAP and the user to make
locations in a task image. ZAP provides
registers:

registers are fixed
The internal registers
it easier to modify
the following internal

OR - 7R

C

Relocation registers 0
can be loaded with
relocated by the task
convenient means for
change the contents of

through 7. These registers
the base address of modules
builder. They provide a

indexing into a module to
locations in the modules.

The constant register. Set this register to
contain a 16-bit value, which can be specified as
an expression.

6-37

F

Q

RSX-20F UTILITIES

The format register. This register controls the
format of the displayed address. If the value of
the F register is 0, ZAP displays the addresses
relative to the largest value of any relocation
register whose value is less than or equal to the
address to be displayed. If the value of the F
register is nonzero, ZAP displays addresses in
absolute format. Zero is the initial value of the
F register.

The quantity register. The value in the quantity
register is set by ZAP to contain the last value
displayed on the terminal.

To access the contents of a register, specify a dollar sign ($) before
the register when you enter a command, as shown below:

$C/

This example directs ZAP to display the contents of the constant
register.

6.8.5.5 ZAP Arithmetic Operators - The arithmetic operators are
single-character command-line elements that define an arithmetic
operation in the command-line expression. In general, ZAP evaluates
such expressions as addresses. ZAP provides the following arithmetic
operators:

+

*

Add a value to another value.

Subtract a value from another value.

Multiply a value by 50 (octal) and add it to another
value. Used to form a RADIX-50 string.

A*B means A x 50 (base 8) + B.

These operators are used in expressions on the command lines. For
example, rather than adding by hand all the displacements listed in
the task builder memory allocation map, the following notation could
be used.

002:120000+170/

This method for calculating such a displacement is faster and more
accurate than calculating it by hand.

6.8.5.6 ZAP Command Line Element Separators - ZAP provides separators
to delimit one command line element from another. Different
separators are required for the type of ZAP command being executed.
ZAP uses the following separators:

Separate a relocation register specification
another command line element.

from

Separate an address from an internal register
specification. (used in expressions that are values
for relocation registers)

Separate a block number base value from an offset into
the block. (used in most references to locations in a
file)

6-38

RSX-20F UTILITIES

6.8.5.7 The Current Location Symbol - In expressions that evaluate to
an address on a ZAP command line, a period (.) represents the last
open location.

6.8.5.8 Formats for Specifying Locations in ZAP Command Lines - There
are three formats for specifying locations in a ZAP command line.
Each provides a means of indexing into the task image file, but the
methods of indexing differ. The three formats are:

• Byte offset format

• Block number/byte offset format

• Relocation register, byte offset format

Byte Offset Format

The byte offset format specifies a location in the task image file as
follows:

location

If ZAP is being used in absolute mode, ZAP interprets this
specification as a byte offset from block 1, location 000000. If ZAP
is being used in task image mode, ZAP interprets this specification as
a byte offset from block 0, location 000000.

This format is useful only when ZAP is being used in absolute mode.
For example, the following ZAP command opens absolute location 664:

664/

Block Number/Byte Offset Format

Block number/byte offset format allows you to specify a byte offset
from a specific block. Enter this format as follows:

blocknum:byteoffset

This form for addressing locations can be used regardless of whether
/AB has been used with the ZAP file specification.

The task builder prints a map that gives information on the overlay
segments. For example:

R/W MEM LIMITS:
DISK BLK LIMITS:

120000 123023 033024 01556.
000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE INDENT FILE

.BLK. :(RW,I,LCL,REL,CON)

122476 000064 00052.
$$RESL: (RW,I,LCL,REL,CON)

120232 002546 01382.
120232 002244 01188. MYFILE

FMTDV
123000 000024 00020.

01
01

MCR.OLB;l
MCR.OLB;l

In task image mode, ZAP allows you to enter the block number and byte
offset displayed in the task builder memory allocation map. In this
case, the disk-block-limits line shows MYFILE beginning on block 2;
the memory allocation synopsis shows that MYFILE has an offset of
120232.

6-39

RSX-20F UTILITIES

Relocation Register, Byte Offset Format

This format allows you to load a relocation register with the value of
a location to be used as a relocation bias. This mode of addressing
locations in a task image is as follows:

relocreg,byteoffset

Specify relocreg in the form nR, where n is the number of the
relocation register. Byte offset can then be addressed from the value
loaded in the relocation register as follows:

2:12032i3R
3,574/

Set the value of relocation register 3.
Open the location 574 bytes offset from block
(segment) 3, location 12032.

6.8.6 using ZAP Open/Close Commands

This section explains how to use ZAP open/close commands. It contains
information on how to open locations in a task image file, modify
those locations, and close the locations.

6.8.6.1 Opening Locations in a Task Image File - Any of the five ZAP
commands (/, II, %, \, or ') can open a location in a task image file.
Once the location is open, its contents can be changed.

The value ZAP displays depends on the format in which the value was
stored. For example, the word value 001002 takes the following binary
form:

00000010000010

If the location is opened in byte format, the value contained in both
locations is 002.

Once a location is opened in a given format, ZAP continues to display
any subsequently opened locations in that format until the format is
changed by entering another special-character open command. For
example, if the percent (%) command is used, the contents are
displayed in RADIX-50 format. If consecutive carriage returns are
entered, consecutive locations will be in RADIX-50 format.

6.8.6.2 Changing the Contents of a Location - When a location is
opened using a special-character command, the contents can be changed
by entering the new value and a carriage return. The example below
shows how to open a location, change the location, and close the
location.

002:120000/ 000000

44444

/

002:120000/ 44444

Display the contents of a word location.

Change the contents of the location by
entering a value (44444) and close the
location by a carriage return.

Display the new contents of the location
by entering a slash (/) and a carriage
return.

6-40

RSX-20F UTILITIES

When ZAP displays the contents of the opened location, the format in
which the value is displayed is indicated by the special command
character immediately following the address portion of the location.
In this example the slash (/) indicates that word locations are being
opened and the contents displayed in octal.

6.8.6.3 Closing Task Image Locations - There are five ZAP
special-character commands for closing a location in a task image.
The carriage return also closes a location. All the ZAP close
commands perform the following three functions:

• Close the current location.

• Direct ZAP to another location (such as the preceding
location or a location referenced by the current location).

• Open the new location.

The examples below show how these commands work.

Close a Location -- Open the Preceding Location

The circumflex (A) command is used to close the current location, to
direct ZAP to the preceding location, and to open that location.

002:120100/
002:120100/ 000000

002:120102/ 000111

002:120104/ 000222

002:120106/ 000333

002:120104/ 000222

The carriage return is used to close the first three open locations
and open the next location. The circumflex (A) closes location 120106
and directs ZAP to open the preceding location, 120104.

Close a Location -- Open a Location at an Offset from the Location
Counter

The underscore () command is used as follows:

• Closes the current location

• Directs ZAP to use the contents of this just-closed location
as an offset

• Adds this offset to the next sequential location

• Opens that location

6-41

RSX-20F UTILITIES

The following example illustrates the use of the underscore command:

002:120100/
002:120100/ 000000

002:120102/ 000121

002:120104/ 000222

002:120106/ 000022
002:120132/ 234102

The first locations are closed by carriage returns. Location 120106
is closed using the underscore command, which directs ZAP to use the
contents of the just-closed location (22) as an offset to the next
sequential location (120110), and to open that location (120132).

Close a Location -- Open a Location Offset from the Value of the
Just-Closed Location

The @ command is used to close a location, to direct ZAP to use the
contents of the just-closed location as the absolute address of a
location, and to open that location. The following example
illustrates the use of the @ command:

002:120100/
002:120100/ 005000

002:120102/ 005301

002:120104/ 120114
@
002:120114/ 124104

The first locations are closed using the carriage return. Location
120104 is closed using the @ command, which directs ZAP to use the
value in that location (120114) as the absolute address of the next
location to open, and to open that location (8120114).

Close a Location -- Open the Target Location of a Branch

The greater-than (» command is used to close the current location, to
direct ZAP to use the low-order byte of the just-closed location as a
branch offset to the next sequential location, and to open that
location. The example below illustrates the use of the) command:

002:120100/
002:120100/ 005000

002:120100/ 005301

002:120104/ 001020
)

002:120146/ 052712

The first locations are closed using the carriage return. Location
120104 is closed using the) command. ZAP takes the low-order byte
(020) of this just-closed location, uses it as a branch offset to the
next sequential location, and opens that location. Since the
low-order byte refers to a word, and the machine is byte-addressable,
the offset value (020) is multiplied by 2 and added to the next
sequential address (120106). This yields the new address (120146)
that ZAP then opens.

6-42

RSX-20F UTILITIES

Close a Location
Commands Began

Open the Location Where the Current Series of

The less-than «) command is used to close the current location,
direct ZAP to the next sequential location from the location where the
series of , @, or > commands was first issued, and to open that
location. The example below illustrates the use of the < command.

002:l20002/LI
002:120002/000212

002:120004/000002
>
002:120012/004001
>
002:120016/120412
<
002:120006/140236

The < command closes location (120016), returns to the location where
the sequence of > commands began (120004), and opens the next
sequential location (120006).

6.B.7 using Zap General Purpose Commands

This section describes the functions of the three ZAP general purpose
commands K, 0, and =.

6.B.7.1 K Command: Compute Offset, Store in Quantity Register - The
K command is used to compute the offset between the value of the
nearest (less than or equal to) relocation register and the currently
open location, to display the offset value, and to store it in the
quantity register.

K can be entered in the following formats:

K Computes the displacement in bytes from the address of
the last open location and the value of the relocation
register whose contents are closest to but less than
the value of that address.

nK Calculates the displacement in bytes from the last open
location and relocation register n.

ainK Calculates the displacement between address a and
relocation register n.

The following example illustrates the use of the K command:

2:ll72,OR
2:l232ilR
2:1202/

002:000020/000111
K

=0,000010
0,100i1K

01,000040

6-43

RSX-20F UTILITIES

6.8.7.2 0 Command: Display Branch, Jump Displacement from Current
Location - The 0 command is used to display the branch and

jump displacements from the current location to a target location. A
branch displacement is the low-order eight bits of a branch
instruction which, when executed, would branch to the target location.
A jump displacement is the offset between the Opl?n location and the
target location. This displacement is used in the second word of a
jump instruction when such an instruction uses relative addressing.
The 0 command can be entered in the following formats:

aO Displays the jump and branch displacements from the
current location to the target of the branch.

a;KO Displays the jump and branch
location a to target location K.

displacements

The following example illustrates the use of the 0 command:

2:1172;OR
0,101

002:000010/000005
0,200
00006>000003
0,30;2:12020
177756>17777767

from

6.8.7.3 = Command: Display Value of Expression - The equal sign (=)
command is used to display (in octal) the value of an expression to
the left of the equal sign.

The format for specifying the equal sign command is as follows:

expression=

The following example illustrates the use of the equal sign command:

2:30/
002:000030/000000

.+177756=
000006

6.8.8 ZAP Error Messages

ZAP -- ADDRESS NOT WITHIN SEGMENT

The address specified was not within the overlay segment
specified.

ZAP -- CANNOT BE USED IN BYTE MODE

The commands @, #, and> cannot be used when a location is open
as a byte.

6-44

RSX-20F UTILITIES

ZAP -- ERROR IN FILE SPECIFICATION

The file specification was entered incorrectly.

ZAP -- ERROR ON COMMAND INPUT

An I/O error occurred while a command was being read;
could be a hardware error.

ZAP -- I/O ERROR ON TASK IMAGE FILE

this

An I/O error occurred while reading or writing to the file
being modified; this could be a hardware error.

ZAP -- NO OPEN LOCATION

An attempt was made to modify data in a closed location.

ZAP -- NO SUCH INTERNAL REGISTER

The character following the dollar sign was not a valid
specification for an internal register.

ZAP -- NO SUCH RELOCATION REGISTER

An invalid number for a relocation register was specified.

ZAP -- NO SUCH SEGMENT

The starting disk block was not the start of any segment in the
task image.

ZAP -- NOT A TASK IMAGE OR NO TASK HEADER

An error occurred during the construction of the segment
description tables. The problem could be that the file is not
a task image, /AB was not specified, or the task image is
defective.

ZAP -- NOT IMPLEMENTED

The command entered is recognized but not implemented by ZAP.

6-45

RSX-20F UTILITIES

ZAP -- OPEN IMAGE FAILURE FOR TASK IMAGE FILE

The file to be modified could not be opened. possibly the file
does not exist, the file is locked, the device is not mounted,
or the file is protected from write access.

ZAP -- SEGMENT TABLE OVERFLOW

ZAP does not have enough room in its partition to construct a
segment table.

ZAP -- TOO MANY ARGUMENTS

More arguments were entered on a command line than are allowed.

ZAP -- UNRECOGNIZED COMMAND

ZAP did not recognize the command as entered.

6-46

CHAPTER 7

RSX-20F MONITOR

Before examining the internals of the RSX-20F monitor, let us recall
the functions of an operating system. These functions are:

• To provide service to the I/O devices in the form of device
drivers

• To control the scheduling of the device drivers via some
monitor call and queue mechanism

• To control the scheduling of tasks

• To provide common routines that any program can use

with these functions in mind, we will proceed to discuss the structure
of the RSX-20F operating system. This chapter details the RSX-20F
Executive. It then describes RSX-20F tasks and the scheduling of
these tasks, along with the actions performed by system traps.
Finally, the terminal service routines are presented.

7.1 RSX-20F EXECUTIVE

RSX-20F differs from TOPS-IO and TOPS-20 in that it is not a paging or
swapping system. All of the RSX-20F Executive is in memory all the
time. RSX-20F also differs from TOPS-IO and TOPS-20 in that it uses
the same location in memory all the time, instead of bringing in only
part of the monitor and placing it wherever space can be found.
RSX-20F does use overlays, but overlays are handled by the individual
tasks, rather than by the Executive. The only tasks that use overlays
are tasks such as the PARSER or KLINIT, that are too large to fit into
the GEN partition.

The components of the RSX-20F Executive are shown in Figure 7-1. The
location .EXEND always points to the bottom of Lower Core, while the
location .EXEND+2 points to the bottom of the Free Pool. using this
information you can find the boundaries of the Executive. The file
RSX-20F.MAP contains a current map of the Executive, along with the
correct addresses at which to find selected portions of it.

7-1

RSX-20F MONITOR

+---+ 0000
LC - Lower Core !

Contains all vectors to handle interrupts and traps !
---!

SCH - The Scheduler
Handles trap instructions and scheduling of tasks 1

---1
BOOT _ The Boot Protocol Handler !

Handles communications with the KL when RSX-20F
is booting the KL

---1
PF _ Power Fail 1

Contains code to handle power-fail conditions
---1

DMDTE _ DTE Directive Service
Handles all directives concerned with the DTE

!---1
DMASS - Assign LUN Directive

Assigns system Logical Unit Numbers (LUNs)
to devices

1---
DMGLI _ LUN Information Directive

Gives information about the
Logical Unit Numbers that have been assigned

1---
! DMGTP _ Get Time Parameters

Gets information about time
1---_·_----1

DMSED - Significant Event Directive
Handles the setting and clearing of

significant event flags
!---1

DMMKT - Mark Time Directive 1
Contains code to mark time or to keep a program in 1

a wait condition until a significant event occurs 1
!---1

DMCMT - Cancel Mark Time Directive 1
Contains code to cancel a mark time condition

1---!
DMSUS - Suspend and Resume Directives

! Suspends or resumes execution of issuing task
!---!

DMEXT - Exit Directive
Terminates execution of issuing task

---_.-----!
DMQIO - QIO directive

Places an I/O request for a device into
the queue for that device

---1
DMSAR _ Send and Receive Directives

Sends data to and receives data from a task
---1

Figure 7-1: RSX-20F Executive

7-2

RSX-20F MONITOR

---1
DMSDV _ Specify SST Table Directive

Records synchronous system trap entry points
(for debugging purposes only)

---1
DMAST _ Specify AST Service Directive 1

Records the service routine to be executed on a 1
power fail for a device

---1
DMREQ _ Run a Task Directive

Makes a task active and runnab1e
---1

DMGPP _ Get Task Parameters Directive
Gets information about a task and puts it

into a 16-word block for a task to read
---,

DMGMP - Get Partition Parameters Directive
Gets information about a partition and puts it
into a 16-word block for a task to read

RUN - Clock Tick Recognition Service
Checks time dependent flags at each

clock interrupt
1---

QPRDRV
1 queued protocol
1---

DTEDRV
DTE20 device driver

TTYDRR
Terminal device driver

---1
SCOMM 1

RSX-20F Executive Data Base
---1

ARITH
Miscellaneous arithmetic functions

(multiply, divide, etc)

DBDRV
Dual-ported disk device driver

DTDRV DXDRV
DECtape device driver (or) Floppy disk device driver

(TOPS-10) (TOPS-20)

FEDRV
Pseudo FE: device driver

LPDRV
Line-printer device d~iver

CRDRV
Card-reader device driver

---1
INSTAL !

Task that installs a task into the
GEN partition

1---!
Figure 7-1: RSX-20F Executive (Cont.)

7-3

RSX-20F MONITOR

!---! 70000(apprx)
.FREPL

Free pool
!---!

.BGBUF !
Big buffer

1---!
GEN

75777
76000

77777
100000

! General partition ! 145377
!---! 145000

FIITPD
Files-ll area 157777

1---! 160000
I/O Page

I/O address area 177777
+---+

Figure 7-1: RSX-20F Executive (Cont.)

The bulk of the RSX-20F Executive is taken up by the directive service
routines and the device drivers. The scheduler is small and not as
involved as the scheduler in TOPS-20 or TOPS-IO, because there are
fewer tasks to schedule and they run quickly. (Scheduling is
discussed in Section 7.2.) A representation of the entire memory is
shown in Figure 7-2. The RSX-20F Executive takes up memory locations
000000 to 070000. The addresses below 070000 are not fixed; consult
the file RSX-20F.MAP to find the actual addresses for the version of
RSX-20F you have. Addresses above 070000 are fixed as pictured above.
The area labeled .FREPL is a Free Pool of space for general use by the
Executive. The TTY thread lists, task information, and LPT thread
lists are stored in the Free Pool. The area labeled .BGBUF is a big
buffer used to store LPT RAM data or task information when a task is
being installed. The GEN partition is where the RSX-20F utility
programs are executed. It is sometimes referred to as the user area.
The FIITPD partition is a system partition and usually hosts the
Files-ll Ancillary Control Processor (FIIACP). Other tasks that also
use this partition are SETSPD, KLRING, KLDISC, and MIDNIT. The I/O
page (also referred to as the external page) resides in upper memory
and contains the input and output device registers.

With the aid of the Task Builder map for RSX-20F and the PDP-Il
Peripherals Handbook it is possible to determine the contents of any
location in memory. This data can be useful when using the switch
registers to look at a crashed system. Not only a:re the locations of
the hardware registers known, but also, many key software locations
can be examined.

7-4

RSX-20F MONITOR

+-----------------------------+ 177776

I/O PAGE

1-----------------------------1 160000

F11TPD

1-----------------------------1 145400

GEN PARTITION

1-----------------------------1 100000
.BGBUF

,-----------------------------1 076000
.FREPL

-----------------------------1 070000 (approx)

RSX-20F EXEC

+-----------------------------+ 000000

Figure 7-2: RSX-20F Memory Layout

7.2 TASKS AND SCHEDULING

The tasks that run in the front end are either part of the RSX-20F
Executive or are utility programs. Executive tasks are resident in
memory while the utilities are brought in from auxiliaries storage as
needed. The following parts of the Executive are considered tasks and
must be scheduled:

DTEDRV
FEDRV
DBDRV
DXDRV
DTDRV
TTYDRV
LPTDRV

DTE device driver
FE device driver
RP04 device driver
Floppy disk device driver
DECtape driver
Terminal device driver
LPT device driver

7-5

CDRDRV
FIIACP
QPRDTE
INSTAL
<optional>
NULL

RSX-20F MONITOR

Card-reader device driver
Files-II Ancillary Control Processor
Queued Protocol
Installs task into GEN partition
Task chosen to run in GEN partition
Null task

Notice that it is a task (INSTAL) that installs the task in the GEN
partition. The Executive has a system partition for its own use.

FIIACP stands for Files-II Ancillary Control Processor. An Ancillary
Control Processor (ACP) is a privileged task that extends the function
of the Executive. FIIACP receives and processes file-related I/O
requests on behalf of the Executive.

RSX-20F keeps several lists about tasks so that it knows what the
tasks are doing. The System Task Directory (STD) is a list of all
tasks installed into the system. Each task on the list has a 15-word
block (referred to as an STD node) that contains the information shown
in Figure 7-3.

+---+
Task Name 0 S.TN

(6 char in RADIX-50)
!---!

Default Task Partition Address ! 4 S.TD
!---1

Flags Word 6 S.FW
1---1 1 System Disk Indicator! Default Priority 10 S.DI/S.DP
1---
1 1/64th of Base Address of Load Image 12 S.BA
!---
1 Size of Load Image 14 S.LZ
1---

Maximum Task Size 16 S.TZ
1---

Initial PC of Task 20 S.PC

Initial Stack Pointer of Task 22 S.SP

Send and Request Queue Forward Pointer 1 24 S.RF
---!

Send and Request Queue Backward Pointer ! 26 S.RB
- - - -~- .- - - - - !

SST vector Table Address ! 30 S.SS
--.-----I

Load Image First Block Number 32 S.DL
(32 bits)

+---+
Task Flags (Bytes 6 and 7)

SF.TA==OOOOOI Bit 0 - Set when task is active
SF.FX==000002 Bit 1 - Set when task is fixed in memory
SF.EX==000004 Bit 2 - Set when task to be removed on exit
SF.IR==040000 Bit 14 - Set when install is requested
SF.ST==lOOOOO Bit 15 - Set when task is system task

Figure 7-3: System Task Directory (STD) Node

7-6

RSX-20F MONITOR

The IS-word blocks in the STD are pointed to by entries in the table
at location .STDTB. This table has an entry for every installed task
in the system.

RSX-20F keeps another list of those tasks wanting to run. This list
is called the Active Task List (ATL). The ATL is a doubly linked list
of nodes (entries) for active tasks that have memory allocated for
their execution. The list is in priority order. Tasks with an entry
in the ATL are either in memory or are being loaded into memory. A
node in RSX-20F is a block of data that concerns a task. "Doubly
linked" means that each node is linked to both the previous node and
the following node. The ATL nodes have the format shown in Figure
7-4.
+---+

Forward Pointer 0
-_._--I

Backward pointer ! 2
---1

SP of running task when this task is not current task 1 4 A.SP
---1

The task's run partition (TPD address) ! 6 A.PD
1 ______ ---__ 1

(null) Task's Run priority 10 /A.RP
---1

1/64th of real address of load image 12 A.HA
--.---1

Task Flags byte 1 Task Status 1 14 A.FB/A.TS
--.---1

System Task Directory (STD) entry address 16 A.TD
---1

Task's Significant Event Flags 20 A.EF
(32 bits)

---1
Task's Event Flags Masks 24 A.FM

(64 bits)
--.---1

Power Fail AST Trap Address 34 A.PF
+---+
Status Bits (Byte 14)

TS.LRQ==02 Bit. 1 - Task load request queued
TS. 'rKN== 0 4 Bit. 2 - Task waiting for termination notice
TS.LRF==06 Task load request fa il ed
TS.lRUN==IO Task is running
TS.SUS==12 Task is suspended
T S • '~F 0 = = 1 4 Task is waiting for an event 1-14
TS.'~FI==16 Task is waiting for an event 17-32
TS.'~F2==20 Task is waiting for an event 33-48
TS. '~F3==2 2 Task is waiting for an event 49-64
TS .'~F4==24 Task is waiting for an event flag 1-64
TS.EXT==26 Task exited

Flag Bits (Byte 15)

AF.PP==200 Bit. 7 set when task is primary protocol task

Figure 7-4: Active Task List (ATL) Node

7-7

RSX-20F MONITOR

When you look at dumps of RSX-20F, you can find the location of the
ATL node of the current task by examining the location .CRTSK.

Installing a task into the GEN partition consists of reading it into
memory from the system file area, putting the task into the STD and
ATL, and setting the appropriate flags. The STD and ATL entries are
located in the Executive Data Base.

One of the tasks in the Active Task List is the Null Task. The Null
Task is the task that runs when no other task wants to run (a very
quiet system) or no other task can run (tasks are blocked waiting for
pending I/O).

Scheduling for all tasks is by a priority system. When a task is
installed it has a priority that is reflected in its position in the
ATL. The task with the highest priority goes first in the list, the
next highest goes second, and so on. Scheduling occurs when a task
has declared itself waiting for some significant event to occur, or
when a directive service routine exits. Two separate entry points to
the ATL scan routine provide for these two situations. Control is
passed to the first, ASXE1, when a significant event is declared. The
ATL is scanned from the beginning to the end to find the first
runnable job. Control is passed to the second entry point, ASXE2,
when a directive se~vice routine exits. In this case, one of three
things can happen:

• Control can be returned to the task that issued the
directive.

• The ATL can be scanned for the next runnable task beginning
with the task that issued the directive down the ATL through
the lower priority tasks.

• The ATL can be scanned from the beginning.

7.3 SYSTEM TRAPS

A trap is a CPU-initiated interrupt that is automatically generated
when a predetermined condition is detected. Two vector locations in
low memory are dedicated for each trap type. The vector locations
contain the PC and PS for the trap service routine. When the trap
occurs, the current PC and PS are put on the stack and the contents of
two vector locations are loaded as the new PC and PS. Traps can occur
as the result of the following conditions:

Location

004
010
014
020
024
030
034
114

Trap

CPU errors
Illegal and reserved instructions
BPT
lOT
Power Fail
EMT
TRAP
MPE

Traps can be either asynchronous or synchronous. An asynchronous trap
occurs as the result of an external event such as the completion of an
I/O request. In this case, the task is doing other work or waiting
for the I/O to be done. A synchronous trap occurs immediately upon
the issue of the instruction that causes the trap.

7-8

RSX-20F MONITOR

The PDP-ll instruction set contains several instructions that cause
traps. The EMT instruction, generally reserved for system software,
causes a trap to an emulator routine. This instruction is used by
RSX-20F to perform directives. Whenever a directive must be
performed, the necessary information is loaded into the registers and
an EMT is issued. The EMT instruction traps to a routine that decides
which directive is to be performed. A TRAP instruction is like the
EMT instruction, except that it is used by user tasks. The only
difference between TRAP and EMT is a different vector location. lOT
is used by RSX-201? for error reporting. When RSX-20F detects an error
that is considered serious enough to crash the system, an lOT
instruction is issued.

Power fail conditions cause an automatic trap independent of the
software operations mentioned above.

There are two places in RSX-20F where traps are handled. The
following events cause a trap to location COMTRP:

• lOT instruction

• TRAP instruction

• BPT (break point trap)

• Trap to 10 (illegal instruction)

• Trap to 4 (device or memory timeout)

• Illegal Interrupts

• parity Error

COMTRP has to sort out the type of error it gets. If possible, only
the offending task is terminated. If COMTRP concludes that this error
is serious enough to crash the system, the COMTRP routine issues a
.CRASH macro itself. This causes control to come right back to
COMTRP. COMTRP sees that it was an rOT instruction that occurred and
dispatches to IOTTRP. During this process, the COMTRP routine
performs the following functions:

1. Tries to restore the user task that had the problem

2. Issues an lOT error instruction

3. Dispatches to the lOT handling routine

When it is called, the IOTTRP routine performs the
functions:

1. Sets up the emergency stack pointer

2. Sets up the emergency message pointer

3. Saves the registers

4. Saves the crash code

5. Saves thE~ parity-error data

6. Prints the II-Halt message on the CTY (and KLINIK)

7-9

following

RSX-20F MONITOR

7. Requests the KL to reload the PDP-ll via the DTE20

8. Rings the KL doorbell

9. Loops through the previous step until the PDP-ll is reloaded

The routine to handle EMT instructions is comparable in a way to
JSYS's under TOPS-20. Since the PDP-ll is a smaller system, it cannot
have one instruction for every directive it wants to run. Therefore,
that which is handled by hardware on the KL is handled by a
combination of hardware and software on the PDP-ll. The KL handles
the instruction by dispatching to the right routine. The PDP-ll
issues the trap and then the software checks the stored argument to
decide which routine is to be called.

7.4 TERMINAL SERVICE ROUTINES

RSX-20F handles terminals that access the system over dial-up lines in
a different manner from those with local lines. The signals and
algorithms used in determining line speeds and maintaining a stable
link are described in Section 7.4.1.

When RSX-20F receives a character from a terminal, it must determine a
number of things about the character before deciding what to do with
the character. For example, the character would probably have a
special meaning if it came from the CTY. It could also be a special
character used in the buffering of data by both the terminal and the
computer system. The algorithm that RSX-20F uses to decide what to do
with an input character is described in Section 7.4.2.

7.4.1 Modem Handling

This section describes the RSX-20F algorithms for dealing with
terminals that are accessing the system by way of dial-up lines and
modems. Section 7.4.1.1 discusses modern-handling concepts. Section
7.4.1.2 describes the line service that is provided when an event on a
dial-up line requires some action by RSX-20F. The rest of the section
describes timeout routines.

7.4.1.1 Modem Handling Concepts - Each computer system has its own
method for handling modems. The modem's "strapping options" must be
set up to deal with the computer system's mOdem-handling techniques to
establish a clean link. Attempts to hook up a nonstandard modem
without taking into account the system's modem-handling techniques can
cause significant problems for the computer system.

7-10

RSX-29F MONITOR

The DTR (Data Terminal Ready) signal is used by the host computer
system to answer the phone ring. DTR allows the modem to answer the
phone. At this point, if all is going well, the remote modem returns
a carrier pulse. The local modem receives this pulse, and the modem
control asserts to the computer system that carrier is on. Finally,
the computer system raises RTS (Request to Send), which allows the
local modem to give data to the system.

A "carrier transition" is a change in the
This change in state may be in either
from off to on. The term "transition on"
carrier off to carrier on, and the term
change in the other direction.

state of the carrier signal.
direction, from on to off or

refers to a change from
"transition off" signifies a

7.4.1.2 Terminal Driver Routine - This section describes the sequence
of events when RSX-20F receives an interrupt requesting some type of
modem handling on a certain line. The code that provides this service
is the terminal driver routine, called $DMINT.

When a remote user dials up the local computer system, the modem
raises the Ring Indicate signal (RI) which causes the DMll to generate
an interrupt requesting line service. When $DMINT, the terminal
service routine, receives the interrupt, it must find out what type of
service is being requested, because the interrupt is not specific
about this. Therefore, when the interrupt is received, $DMINT checks
to see if the interrupt is a ring or a carrier transition.

If the interrupt is a ring, $DMINT tells the KL to detach any job
currently associated with this line. This prevents a user from
dialing into another user's job. $DMINT then ralses DTR (Data
Terminal Ready) and RTS (Request to Send), which causes the local
modem to answer the ring. $DMINT proceeds to check for carrier
transition.

If the interrupt is not a ring, $DMINT determines whether DTR is high
(meaning that a ring has been seen). If DTR is low, the interrupt is
dismissed without any further checks. If DTR is high, $DMINT checks
for carrier transition.

$DMINT now checks for carrier transition. If carrier is low, $DMINT
assumes that carrier has been lost and sets TT.CRW (Carrier Wait) and
TT.RIP (Remote In Progress). The loss of carrier may mean that the
user has hung up the phone, or it may mean that atmospheric or other
environmental conditions have caused a temporary signal loss. To
determine if the user has hung up, $DMINT sets the Carrier Wait flag,
which indicates that the line is waiting for a clean carrier signal to
be re-established. Then the routine dismisses the interrupt. The
modem timeout code, upon seeing the Carrier Wait flag, tests the state
of carrier, and if the signal has returned, the timeout code returns
the line to normal operation. (Refer to Section 7.4.1.3 for further
information on the modem timeout code.)

RSX-20F VA1S-S0, VB1S-S0, VE1S-S0 7-11 April 1986

RSX-28F MONITOR

If carrier is high, $OMINT assumes carrier has just come up and clears
TT.CRW and TT.RIP. Then the routine checks to see if the line in
question was previously connected to the computer system. If so, the
interrupt is dismissed. These actions prevent a noisy carrier signal
(one that comes and goes frequently) from detaching the user's job.

If $OMINT finds that the line for which it received an determines if
the line needs to be checked for the correct baud rate (a software
flag is set if the line is waiting to be checked). If the line needs
to be auto-bauded, $OMINT sets the Auto-baud Wait flag (which is
noticed by $OHINP, the character input routine refer to Section
7.4.2 for an explanation of $OHINP). The routine then dismisses the
interrupt.

If the line does not need to be auto-bauded, $OMINT assumes that the
carrier transition to the ON state is the result of the local modem
receiving the carrier signal for the first time. This assumption is
warranted because the line has already been checked to see if it is
connected to the system before this point in the algorithm is reached.
At this point, $OMINT notifies the KL that a new line has been
connected to the system. The KL sends the system banner to that line,
and the connection is complete. The modem control routine then
dismisses the interrupt.

7.4.1.3 Modem Timeout Routine - This section describes the modem
timeout routine, which is labeled .OMTMO. Every 22 seconds, the
terminal task routine calls .OMTMO. .DMTMO is also called at startup
time and after a power-fail.

At startup time .DMTMO alters the nonexistent-device trap to handle a
missing OM1l. Since for each OMl1 device on the system there should
be a corresponding OHll, .DMTMO first checks the DHl1 associated with
a given OMll to see if it exists. If the DHll does not exist, .OMTMO
marks the OMll as nonexistent and proceeds to the next DHll/DMll pair.
If the OHll does exist, .OMTMO tries to initialize the associated
OMll. If the OMll does not exist, it causes a nonexistent-device
trap, and .OMTMO marks the OMll as nonexistent and then proceeds to
the next pair. If both the OHll and the OMl1 exist, .DMTMO
initializes the device. This process is repeated until all 16
possible pairs have been checked and initialized or marked as
nonexistent.

When .OMTMO is called during normal operation, it already knows which
OH11s and OMlls exist. It checks the first OB1l and if it is
nonexistent it checks the next OHll. When the routine finds a OHll
that exists, it checks the associated OM1l. If the OHll does not
exist, the routine proceeds to the next pair. If both the DH1l and
the OMl1 exist, .OMTMO checks to see if any lines are in Carrier wait.
A line may be in the Carrier Wait state as the result of either a ring
or a carrier loss. There are two bits associated with Carrier Wait,
TT.CRW (Carrier Wait) and TT.RIP (Remote in Progress). Both these
bits are set when a line enters Carrier Wait. If these bits are set
as the result of a ring, they are both cleared when a carrier signal
is asserted by the calling modem. If they are the result of a lost
carrier signal, then .OMTMO determines if the carrier wait is the
result of a noisy carrier signal or if the line has been hung up. The
first time that .DMTMO finds a line in carrier wait, that is with both

7-12 April 1986

RSX-20F MONITOR

the TT.CRW and TT.RIP bits set, it clears the TT.RIP bit and continues
examining the other lines. The next time .DMTMO is called, it looks
at the bits. If the TT.CRW is set and the TT.RIP bit is cleared, then
the line has not reasserted carrier for at least twenty-two seconds.
The connection is assumed to be lost and .DMTMO hangs up the line and
clears the TT.CRW bit.

.DMTMO then examines the Interrupt Enable bit for each DMll. If

.DMTMO does not find Interrupt Enable bit set for a given DMlI, it
logs this as an error to SPEAR and sets the Enable Interrupt bit.
Then, on a line-by-line basis, it looks at the Line Enable Interrupt
bit. If this bit is not set for a remote (dial-up) line, an error
entry is sent to ERROR.SYS, the line is reset, and the Interrupt
Enable bit is set to maintain the existing connection.

.DMTMO examines the Request To Send bit for each line. If the bit is
set, .DMTMO sets the Set Data Terminal Ready bit.

7.4.1.4 The CTY and DL-11E Timeout Routine - The CTY
timeout routine, .DLTMO, is called every 22 seconds.
called at startup and after a power-fail.

and DL-lIE
It is also

If .DLTMO is called at startup, it always assumes that the CTY exists.
If the CTY does not exist the system crashes. Also, at startup .DLMTO
alters the nonexistent-device trap to handle missing DL-lIE's. .DLTMO
checks each possible DL-IIE to see if it exists. If it encounters a
nonexistent DL-IIE, it marks it as nonexistent and checks the next
DL-llE. If the DL-IIE exists, .DMTMO enables the line and initializes
the software state of the line. This is done for all four possible
DL-llE interfaces.

When .DLTMO is called during normal operation, it already knows which
lines exist. It checks existing DL-IIE's to see if the Hardware
Carrier and Data Terminal Ready bits are set, and if the Interrupt
Enable bits are set. If anyone of the Interrupt Enable bits is not
set, this condition is logged to ERROR.SYS and the bit is set. If
both the Hardware Carrier and Data Terminal Ready bits are set, the
line is actively connected. .DLTMO then asserts Data Terminal Ready
and proceeds to the next DL-llE interface. If neither of these bits
are set the line is disconnected •

• DLTMO checks the Carrier wait bit (TT.CRW) and the Remote In Progress
bit (TT.RIP). If the line has lost the carrier signal as a result of
either a noisy line or the line being hung up, then both these bits
are set. To determine which condition caused the loss of the carrier
signal .DLTMO first clears the TT.RIP bit and then proceeds to the
next line. The next time .DLTMO is called, if it still finds the
TT.CRW bit set, it hangs up the line.

7.4.2 Terminal Handling

This section describes the $DHINP routine and the $DHOUT routine,
which deal with input from and output to terminals, respectively
(whether the terminals are remote or local). $DHINP is comprised of
two routines: the character input routine and the terminal timeout
routine. These are presented separately, while $DHOUT is described as
a unit.

7-13

RSX-20F MONITOR

7.4.2.1 Character Input Routine - When a DHll communications
interface causes an interrupt, the first action the $DHINP routine
performs is to check the line in question to see if it is an auto-baud
line in auto-baud wait. If the auto-baud wait flag (TT.ABW) is on,
$DHINP attempts to set the line speed. The routine then checks the
low-speed auto-baud flag (TT.LSP) to d~termine whether it is
attempting to do low-speed (110, 150, or 300) or high-speed (1200,
1800, 2400, 4800, or 9600) auto-baud. If it is doing high-speed
auto-baud, the character received was detected at 2400 baud and is
checked to see if it is a NUL. If the character is a NUL, the
low-speed auto-baud and the ignore-next-character (TT.IGN) flags are
set, and the line speed is set to 300 baud. If the character is not a
NUL, the character is then pattern-matched against a table (HSPTAB) of
bit patterns for both CTRL/C and carriage return at all applicable
baud rates (1200, 1800, 2400, 4800, 9600). If a match is found, the
table index is used to index another table (HSPSPD) of speed indices.
If the sign bit (LSP.IG) is set, the ignore-next-character flag is
set. The low-speed auto-baud code uses different tables (LSPTAB,
LSPSPD) that check for 110, 150, and 300 baud, but it uses common code
for checking for pattern matching. If no match is found in low speed
auto-baud, the line is switched into high speed auto-baud detect (2400
baud), and the low speed auto-baud flag is cleared.

In either low or high speed auto-baud, if no match is found, the
character is flushed. If a match is found, the auto-baud wait flag is
cleared, the speed index is used to index a table of DHll hardware
speeds (SPDPAR) and the speed of the line is then set to the new
speed. $DHINP then sends a message to the KL informing it of the
connection and the new speed. $DHINP also places a <CR> in the line's
input buffer if the line was not previously connected; this causes the
system banner to be generated.

Note that the ignore-next-character flag (TT.IGN) serves two purposes:
it is used to discard the second NUL that is received when the switch
is made from high to low speed auto-baud, and it is used to discard
junk characters that are sometimes generated when detecting the lower
speeds in each table based on LSP.IG.

If the line in question is an auto-baud line not in auto-baud wait,
and the character received has a framing error, a check is made for a
BREAK (NUL accompanied by a framing error). The flag that indicates
the last character was a BREAK (TT.BRK) is checked to see if two
consecutive breaks have been seen. If two consecutive breaks have
been seen, the line is put into high speed auto-baud wait and the
TT.BRK is cleared. If this is the first BREAK, TT.BRK is set. If the
character is not a BREAK, TT.BRK is cleared, and the character is
passed to TTSTCH.

If the line is not an auto-baud line, $DHINP checks the character to
see if there is a framing error. If the character has a framing
error, there may be noise on the line or the line may be set to the
wrong speed. In either case, the front end cannot determine what
character -- if any -- was sent. $DHINP keeps track of how many
framing errors it has received, and upon getting four consecutive
framing errors, it sets the line's input speed to zero, which causes
the DHll to ignore input interrupts on that line. $DHINP creates a
SPEAR entry that names the DHll and the shut-down line within that
DHll. If $DHINP gets a character cleanly (without a framing error) on
a non auto-baud line, it first clears the count of framing errors,
then passes the character to TTSTCH.

TTSTCH determines whether the character came from the CTY and, if so,
whether it was a control backslash (CTRL/\). If the character was a
CTRL/\, PARSER is requested. If the character from the CTY is not

RSX-2~F VA15-50, VB15-5~, VE15-5~ 7-14 April 1986

RSX-2~F MONITOR

meant for the PDP-II, the KL must be the intended recipient. In this
case, TTSTCH checks the state of the protocol between the processors
to determine the next action to be taken. If secondary protocol is
running, the character is sent to the KL using secondary protocol.

For any line, if primary protocol is running, a check is then made for
protocol pause. If the protocol is in the "pause" state, an
additional check is made to see how much buffer space is left. If
there is not a reasonable margin of buffers available, the character
is discarded and a bell is sent to the user, otherwise a check is made
to see if the line is enabled for XOFF/XON processing. If XON/XOFF is
enabled and the character is an XOFF, the routine calls the XOFF
processing code that will stop the output to the line quickly enough
so that only a few more characters will get output to the line. If
the character is an XON, and the front-end is enabled to handle XONs,
and the line has been stopped previously by an XOFF, then output is
restarted on the line.

If primary protocol is currently in force, $DHINP checks the character
to see if it is an XOFF character. XOFF is the only input character
to which RSX-20F reacts. The XOFF character requests the front end to
stop sending data temporarily because the requesting device's buffer
is full. The timing of XOFF processing is therefore critical, because
any data sent by the front end after an XOFF will be lost. Thus,
$DHINP checks for an XOFF before dispatching the character to the KL.
If the character is indeed an XOFF, $DHINP calls the output XOFF
processing code, thereby ending $DHINP's responsibility for the
character. If the character is an XON, the front-end is enabled to
handle XONs, and the line has been stopped previously by an XOFF, then
output is restarted on the line. If the character is not an XOFF or
XON, $DHINP simply passes the character, whatever it is, to the KL.

Finally, $DHINP checks the number of bytes available in the free pool.
If the number of bytes left is less than the INPUT-THRESHOLD-LOW value
stored in .IBFLO and currently set at 1600 bytes, the line is sent an
XOFF. If the line sends another character or on the next clock tick
$DHINP sets the line speed to zero and echoes a bell to the line. A
table of lines that have been shut down is stored in STSW2. If the
line was shut down by RSX-20F bit 11 of this word is set.

On each clock tick, RSX-20F checks to see if the number of bytes in
the free pool is greater than or equal to the value of .IBFOK,
currently set at 2000. If the number of bytes in the free pool is
greater than or equal to this threshold, RSX-20F scans the table to
see if there are any lines that it has shut down. If it finds any
such lines it resets the line speeds of these lines, one line per
clock tick.

7.4.2.2 Terminal Timeout Routine - This section
terminal timeout routine, which is labeled .DHTMO.

NOTE

describes

The .DHTMO routine deals only with user terminals.
Therefore, this section does not describe how the CTY
is handled.

the

Every 10 seconds, the terminal task routine calls the DHII timeout
routine, .DHTMO. .DHTMO is also called at startup, and on a
power-fail restart. When .DHTMO is called at startup, it does not
know how many communications interfaces exist on the system, therefore
.DHTMO assumes that all sixteen possible interfaces exist. At startup

RSX-20F VA15-50, VB15-50, VE15-50 7-15 April 1986

RSX-20F MONITOR

it also alters the nonexistent-device trap vector,for initialization
only. When .DHTMO finds an interface that does not exist, it marks
the device as nonexistent and sets the external page pointer for that
interface to O. It then proceeds to the next interface. This is
repeated for all sixteen possible interfaces. If, on the other hand,
.DHTMO is called at some time other than startup, its internal table
will have recorded the actual interfaces in use by the system. .DHTMO
therefore does not attempt to do anything with a nonexistent
interface.

Once .DHTMO knows whether it is startup, and has taken the appropriate
action, the routine clears the reset flag. This flag allows .DHTMO to
keep track of the hardware state of the communications interface •
• DHTMO then gets the UNIBUS address of the DHII communications
interface and checks all the possible lines from bottom to top (0-17).

At this point in the startup execution of .DHTMO, it may attempt to
reference a nonexistent DHII. If this happens it marks all sixteen
lines in that controller as nonexistent and proceeds to the next DHII.
If it is not startup, the number of DHlls connected to the system is
already known. When the routine has scanned all possible DHlls, it
proceeds to the exit code. Control is then returned to the calling
routine.

Assuming that .DHTMO has not finished processing all the system's
lines, it proceeds next to check for nonexistent memory locations and
lost interrupt enabled conditions. If either of these hardware errors
has occurred, .DHTMO logs the error in ERROR.SYS and performs a master
clear on the DHII. .DHTMO then sets the reset flag to show that this
DHII has been cleared. If the call to .DHTMO comes at startup, .DHTMO
next sets up the software state of the line. If it is not startup
time, the software state of the line has already been set and does not
require further attention.

If it is startup, or if the DHII has been reset, .DHTMO's next action
is to set the line speed for all sixteen lines. .DHTMO may also find
that it needs to restart a single line. This occurs when a
nonauto-baud line has had four consecutive framing errors (Refer to
section 7.4.2.1 for a description of framing error processing). After
four consecutive framing errors occur, the $DHINP routine sets the
line speed to zero. .DHTMO finds this line, sees that the line is
marked to be reenabled, and resets it to the correct speed. .DHTMO
also times out each auto-baud line that is in low-speed auto-baud
wait. Upon finding such a line, .DHTMO clears the low speed auto-baud
flag (TT.LSP) and puts the line in high-speed auto-baud detect. This
prevents the line from becoming wedged in low-speed auto-baud wait.

This series of checks is run on each line. When .DHTI'10 completes the
checks for one line, it checks to see if it is finished with the DHII
to which the line is connected. If not, .DHTMO increments its
line-number counter and proceeds to check the next line on the DHll.
If .DHTMO is finished with the DHll, it checks to see if the DHII was
reset (by checking the reset flag). If the DHII was reset, .DHTMO
hardware enables the DHll and increments the DHII counter. If it was
not reset, .DHTMO simply steps to the next controller. In either
case, .DHTMO returns to clear the reset flag, and proceeds to the next
controller until all possible DHlls have been checked.

7-16

RSX-20F MONITOR

7.4.2.3 Character Output Routine - RSX·-20F allows output to the
terminals to take place independent of any intervention by the front
end. The DHlls are capable of taking the address of the data to be
sent and a line number to which to send it, and putting the data out
to that line, without any prodding by RSX-20F. When output to a line
is finished, an interrupt is generated~ since the interrupt may be
generated by a variety of conditions other than a DHII finishing
output, RSX-20F must decide which type of interrupt occurred and
determine what to do about it.

To determine the condition that generated the interrupt, RSX-20F
examines each line connected to the DHll, starting with line o.
Having chosen the line to be examined, the $DHOUT routine checks to
see if an output interrupt was expected from this line. If no
interrupt was expected, the line was not considered to be active when
the interrupt was generated. Receiving an interrupt on an inactive
line is not necessarily an error condition, but $DHOUT does not
attempt to deal with the interrupt. If all lines on the DHII have
been checked, the interrupt is dismissed. If there are still lines to
be checked on this DHll, $DHOUT returns to check them.

If an output interrupt was expected from the line being examined,
$DHOUT checks to see if the current line generated the interrupt. If
it did, the line has just completed its output. If not, $DHOUT
returns to check for other lines in this DHll, with the same results
as in the preceding paragraph.

If the current line has completed output, $DHOUT first sees if the
terminal concerned is the CTY. If it is, $DHOUT must decide whether
the output was PDP-II I/O or KL I/O. PDP-II I/O is handled by
RSX-20F's I/O routines, which $DHOUT calls. KL I/O, on the other
hand, must be handled by $DHOUT.

Assuming that the output is from the KL, the STTYDN routine checks to
see if there is a Send-All in progress. (The term Send-All refers to
data that is sent to all active lines that have not refused it.) If a
Send-All is in progress, the interrupt was sent to notify $DHOUT that
this line finished the Send-All transmission. In this case, $DHOUT
counts the Send-All done for this line by decrementing the Send-All
line counter. The Send-All is done for the entire system, as far as
the software is concerned, when the count goes to zero. If this
counter ever goes negative, RSX-20F crashes, because it has received
an interrupt when it has no reason to expect one. This can be due to
either a hardware or a software error.

If no Send-All is in progress, the interrupt was sent to notify $DHOUT
that the line in question has completed the transmission of a normal
output packet. Therefore, $DHOUT checks to see if the output queue
for the line is empty. If so, all the data for the line has been
sent. If not, $DHOUT computes the remaining bytes in the current
packet. Should it find that the packet has been transmitted
completely, $DHOUT deallocates the packet's node (so as to keep as
much free space available as possible) •

$DHOUT next checks to see if there is a Send-All pending for this
line. The routine that does this check is called STNXT. (Note that
it is possible for a Send-All to have just finished and produced an
interrupt, and to have another Send-All waiting to be transmitted.) If
a Send-All is waiting, STNXT asks if the line is suppressing
Send-AIls. If not, STNXT starts the Send-All transmission, and calls
.DHSTO (for a description of .DHSTO see below) •

7-17

RSX-20F MONITOR

If the line is suppressing Send-Ails, the next check STNXT performs is
to see if the output queue for this line is empty. If the queue is
empty, STNXT calls the routine .TTACK to determine if an acknowledge
signal (ACK) can be sent (refer to section 7.4.2.4). $DHOUT then
dismisses the interrupt and returns to choose a new line to check. If
the queue is not empty, $DHOUT checks if the line is XOFF'd. The
terminal sends an XOFF signal if its input buffer is full and it has
no more space to store characters. If the line is XOFF'd, $DHOUT
proceeds to choose another line to check. If it is not XOFF'd,
control is passed to .DHSTO •

• DHSTO is a simple routine that starts the transmission of the next
packet of data, and flags the line as one that will be generating an
output interrupt sometime in the future. This is the flag that is
checked immediately after choosing a new line. Thus, when this packet
has finished transmitting, the interrupt generated can be recognized
because this line expects an interrupt. At this point, .DHSTO
relinquishes control to $DHOUT so that $DHOUT can choose another line
to be checked.

7-18

CHAPTER 8

DTE20 OPERATION

The DTE20 (DTE stands for Data Ten-to-Eleven) is the hardware
interface between the KL and the PDP-II processors. The DTE20 is used
for many different things in the operation of the computer system,
since it is the only (nondiagnostic) method of communication between
the KL and the front end. All the uses of the DTE20 are extensions of
its four basic hardware operations:

• Deposit/Examine

• TO-II Transfer/TO-IO Transfer

• Doorbell Function

• Diagnostic Operations

8.1 DTE20 COMMUNICATIONS REGION

The Communications Region is an area in KL memory that is readable by
all processors. It is composed of sequential areas, one for each
processor connected to the network. Both KL's and PDP-II's are
represented, and each processor owns one area. This owned area is the
only part of the Communications Region into which the processor can
write. There is an exception to this rule, however, to cover the
situation of Communications Region initialization. In this case, the
KL processor that initializes the Communications Region is allowed
access to the entire region. When the region has been initialized,
the rules for access to areas hold until the region is initialized
again.

There is a negative extension to the Communications Region called the
header. This header allows each PDP-II processor represented in the
Communications Region to determine its protocol processor number,
because each PDP-II has a space which it can examine in the header.
By examining the first word of its relocated examine space, the PDP-II
can determine its protocol processor number and thereby locate its
area in the Communications Region. The PDP-II also knows that the
first word of the Communications Region itself is at location N+I,
where N is the PDP-II's protocol processor number. Thus, when the
PDP-II wishes to communicate with another processor, the PDP-II can
scan the areas in the Communications Region and find the areas owned
by any other processors.

Each processor has its own area in the Communications Region that is
made up of a number of sections. A processor has one section in its
area for itself, and one for each processor with which it will
communicate. Thus, each pair of processors that communicate with each
other uses four sections of the Communications Region, two in each of
two different areas.

8-1

DTE20 OPERATION

Figure 8-1 illustrates the Communications Region.

+------------------------------+ I Headers for Other Processors I
Header Word for Processor 2 I

I Header Word for Processor 1 I

I Header Word for Processor 0 I

PIDENT o

CMLNK I 1

I 2

3

4

I CMKAC 5

I I 6

CMPIWD I 7

CMPGWD 10

CMPDWD 11

CMAPRW 12

CMDAPR 13

I 14

I I 15

I 16

I 17

I TOPID 20

CMPPT 21

STATUS 22

CMQCT I 23

I CMRLF I 24

I CMKAK

Other Sections for "To"
Processors

lather Communications Areas I
+------------------------------+

Figure 8-1: KL Communications Region

8-2

25

DTE20 OPERATION

The information contained in each word of the Communications Region is
described below.

Processor Header Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
\ I \ I I \ Must be Processor number

zero
blank

+---+
118119120121122123124125126127128129130131132133134135I
+---+ ___ I

Relative address of this processor's area

This word is part of the negative extension to the Communications
Region. It specifies the location of the PDP-11's owned area by means
of an offset from word 0 of the Communications Region.

PIDENT Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---------------------------------_._------------------+
I 'cMVER I ~lan(\ CPVER _I \--CMNPR--

1 \-

CMTEN

+---+
118119120121122123124125126127128129130131132133134135I
+---+

I \ I
CMSIZ CMNAM

The PIDENT word provides information about the owning processor and
its area. The separate fields in PIDENT are described below.

CMTEN

CMVER

CPVER

CMNPR

CMSIZ

CMNAM

This bit is one if this area belongs to a KL;
is zero.

otherwise, it

This area contains the communications area version number.

This area contains the protocol version number.

This area contains the number of processors represented in
this area, including the owning processor.

This area contains the size of the entire owning processor's
area in eight-word blocks.

This area contains the name (serial number) of the processor
that owns this area.

8-3

DTE20 OPERATION

CM[JNK Word:

+---+
\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\10\11\121131141151161171
+---+
\._----

Pointer to next

+---+
118119120121122123\241251261271281291301311321331341351
+--_._-------+
__ ~___ __I

Communicatfons area

The CMLNK word contains a pointer to the next communications area,
relative to word 0 of the entire Communications Region. All the CMLNK
words in the entire Communications Region form a circular list.

CMKAC Word:

+---+
1 0 1 1\ 21 3\ 41 51 61 71 81 91101111121131141151161171
+---+
_--

owning processor's

+--+
1181191201211221231241251261271281291301311321331341351
+---+

Keep':"a1ive count
______________ --______ 1

The CMKAC word contains the owning processor's Keep-Alive count. This
word is incremented periodically, and is also checked periodically to
make sure that it has changed. The Keep-Alive count should be
incremented at least once a second by the owning processor, and the
monitoring processor should allow the count to remain unchanged for at
least six seconds before declaring the owning processor to be dead.

CMPIWD Word:

+--+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
_--

CONI PI, - Word

+--+
118119\20121122123124125126127128\291301311321331341351
+._--+

I
CONI PI, Word (Cont~T-------.. --

8-4

DTE20 OPERATION

The CMPIWD word is the storage area provided for reading the Priority
Interrupt system conditions. The CONI PI, instruction will place the
PI status information here. (For more information on the Priority
Interrupt system refer to the DECsystem-10/DECSYSTEM-20 Processor
Reference Manual.)

CMPGWD Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
\----------~----~-CONI PAG,' Word

+---+
1181191201211221231241251261271281291301311321331341351
+---+

/
CONI PAG, Word (Cont.)

The CMPGWD word is the storage area provided for reading the system
status of the Pager. The CONI PAG, instruction puts the status
information here. (For more information on the Pager refer to the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual.)

CMPDWD Word:

+---+
1 0 1 11 2 1 3 1 4 1 51 61 71 81 91101111121131141151161171
+----------------------------------_._-----------------+
\-----

DATAl PAG Word

+---+
1181191201211221231241251261271281291301311321331341351
+---+

/
DATAl PAG Word (Cont~)

The CMPDWD word is the storage area provided for reading the process
status of the Pager. The DATAl PAG, instruction puts the status
information here. (For more information on the Pager refer to the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual.)

CMAPRW Word:

+---+
1 0 1 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
\---------,. CONI APR, Wo rd

+---+
118119120121122123124125126127128129130131132133134135I
+---+

CONI- APR-, WO rd
, ___ I

8-5

DTE20 OPERATION

The CMAPRW word is the storage area provided for reading the
Arithmetic Processor flags. The CONI APR, instruction puts the status
of the error and sweep flags here. (For more information on the
Arithmetic Processor, refer to the DECsystem-l0/DECSYSTEM-20 Processor
Reference Manual.)

CMDAPR Word:

+--_._-------+
1 0 1 11 21 31 41 51 61 71 81 91101111121131141151161171
+---._-------+
\._---

DATA I APR', Wo rd

+--_._-------+
1181191201211221231241251261271281291301311321331341351
+---+

.. _._----/
DATAl APR, Word (Cont.)

The CMDAPR word is the storage area provided for reading the current
break conditions from the Arithmetic Processor. The DATAl APR,
instruction puts the information here. (For more information on break
conditions and the Arithmetic Processor, refer to the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual.)

TOPID Word:

+--+
1 0 1 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+ I _/ \ / \ ___ . ____ / _
CMPRO CMDTN blank CMVRR

CMDTE

+--+
118119120121122123124125126127128129130131132133134135I
+---+

/ \ /
CMSZ CMPNM --------------

The TOPID word is the first location in each "To" processor area.
This word contains information on the connections between the owning
processor and the "To" processor.

CMPRO

CMDTE

CMDTN

CMVRR

This bit is one if this block is used to communicate with a
KL.

This bit is one if a DTE20 connection exists between this "To"
processor and the owning processor.

If CMDTE is one, this area contains the number of the DTE20
that connects the two processors.

This area designates the version of protocol in use between
the two processors.

8-6

CMSZ

CMPNM

DTE20 OPERATION

This area contains the size of this block in eight-word
blocks.

This area contains the processor number of the "To" processor.

CMPPT Word:

+------------------------~---------.-------------------+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
\._-----

Pointer to "To"

+-------~---+
1181191201211221231241251261271281291301311321331341351
+---+

processoi's owned area
---_ /

The CMPPT word contains a pointer to the area in the Communications
Region that is owned by the "To" processor.

STATUS Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+

I l I \ / \----/ CMPWF CMINI blank blank

CML 1 CMTST CMQP CMFWD

+---+
118119120121122123124125126127128129130131132133134135I
+---+
CMIP . CMOIC CM1lC I I \ / \ /

CMTOT

The STATUS word is intended to be the only word a processor has to
examine when it receives a doorbell interrupt. The STATUS word
contains the following status bits and counters:

CMPWF

CMLll

CMINI

This bit is the power fail indicator. The PDP-II sets this
bit to one (in its own area) to notify the KL that the PDP-II
has lost power.

This bit is one when the owning processor knows that it has
crashed and wishes to be reloaded. The reload happens when
the owning processor sets CMLll (in the "To" processor's
section of the owned processor's area) and rings the "To"
processor's doorbell. The "To" processor then examines the
STATUS word, sees CMLll set, and performs a reload operation
for the owning processor.

This bit is the initialization bit for MCB protocol only. MCB
protocol applies to front ends other than the console front
end; it is therefore not discussed further in this manual.

8-7

CMTST

CMQP

CMFWD

CMIP

CMTOT

CMOIC

CMIlC

DTE20 OPERATION

This bit provides the PDP-II with the ability to determine if
the Deposit/Examine operation that just finished was a valid
operation. This ability is useful when the examine protection
word of the DTE20 is zero, and PI 0 has been enabled, since in
this situation any Examine done by the PDP-II appears to
succeed and returns a value of zero. The CMTST bit provides a
check on the operation because it is always guaranteed to be
one. If the PDP-II finds this bit to be zero after an Examine
or a Deposit, the PDP-II leaves primary protocol.

This bit is one if queued protocol is in use. This bit is
originally set in all areas by the KL that initializes the
Communications Region.

This bit is a flag, set by the sending processor to indicate
that the transfer is to be done in full word mode.

This bit is set if an indirect packet is being transferred.
The bit is set in the sending processor's section of the
receiving processor's area. If this bit is set by the sending
processor, it should not increment the queue coun t. If the
bit is set, the receiving processor reads it and realizes that
the doorbell interrupt it received signals the beginning of
the transfer of the indirect portion of an indirect message
transfer.

This bit is set to one by the receiving processor in the
sending processor's section of the receiving processor's area~
The bit is set when the sending processor sets the CMIP bit or
when the sender increments the queue count. The receiving
processor clears this bit when it gets a To-receiver Done
interrupt. The purpose of this procedure is to assure the
sending processor that the receiver has not lost a Done
interrupt.

This area contains a wrap-around counter that is incremented
in the PDP-II's area each time a direct transfer request is
initiated by the PDP-II. The KL keeps the last value of CMOIC
in the TO-II section of its own area. If the KL's saved value
differs from the current copy in the PDP-II's area, the KL
starts a TO-IO packet transfer. The difference between the
KL's copy and the copy the PDP-II increments should be either
zero or one. If the difference is greater than one 1 the
PDP-II has tried to send a packet before the previous packet
transfer was finished. This count is not incremented when the
PDP-II sends a TO-IO indirect packet; the CMIP bit is used to
indicate doorbells for indirect packets. This counter is also
useful in the situation where a doorbell has been missed by
the KL. The next doorbell causes the KL to check this
counter, during which operation it discovers the missed
doorbell because of the difference in the counter's value.

This counter has the same function far the PDP-II that the
CMOIC area performs for the KL.

8-8

DTE20 OPERATION

CMQCT Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
_----------------- blank

+---+
118119120121122123124125126127128129130131132133134135I
+---+

I \ . __ ._1
------- Queue size

This word contains the number of eight-bit bytes written into the
current packet by the transmitting processor. The packet can contain
more than one message; this word does not contain a count of the
number of messages, only of the number of bytes.

CMRLF Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
_-----

Reload parameter for

+---+
1181191201211221231241251261271281291301311321331341351
+---+
_. ____ . __ .__ _ .. ___ 1

"To" processor

This word contains a copy of the "To" processor's reload word. The
copy is saved by the owning processor in case the "TO" processor
crashes.

CMKAK Word:

+---+
I 01 11 21 31 41 51 61 71 81 91101111121131141151161171
+---+
\,---- Po 'i nte r-t~o---,',...., T--o-",=-, ---.-------------

+---+
118119120121122123124125126127128129130131132133134135I
+---------------------------~----~--------------------+

._------______ 1
processor's--5wned area

This word contains the owning processor's copy of the "To" processor's
Keep-Alive count for purposes of comparison with the continuously
updated copy kept by the "To" processor.

8-9

8.2 DTE REGISTERS

The DTE20 has sixteen
transfer operations.
addresses, and offers
The addresses shown
succeeding locations.
40*N to the location

DTE20 OPERATION

registers, which are used in various types of
Figure 8-2 shows the registers along with their

an explanation of the function of each register.
are for DTEO; DTEl, DTE2 and so on, use the
The precise location can be figured by adding

of the register that you wish to access, where N
stands for the DTE20 number.

+------------------------------+
1 DLYCNT 1774400

DEXWD3 1774402

1 DEXWD2 1774404

1 DEXWDI 1774406

\ TENADI 1774410

\ TENAD2 \774412

TOIOBC 1774414*

TOIIBC \774416

TOIOAD 1774420

TOIIAD 1774422

TOIODT \774424

TOIIDT 1774426

DIAGI 1774430

DIAG2 1774432

STATUS 1774434*

1 DIAG3 1774436
+------------------------------+

Figure 8-2: DTE20 Registers

The two registers that have asterisks beside their addresses, TOIOBC
and STATUS, are the only registers that are available to both
processors.

8.2.1 DTE20 status Word

The most important of these registers is STATUS, the Status Word.
This register is the only one read when the KL receives a doorbell
interrupt, so it mu~t store a good deal of information. The Status
Word has two different states: one interpretation is valid if the
PDP-II is writing into the Status Word, and another is valid if the
PDP-II is reading the register. If you are examining the Status Word

8-10

DTE20 OPERATION

after a crash in an attempt to tell why the crash occurred, you should
assume that the PDP-ll was reading the Status Word. This is logical
because the write state lasts only as long as the hardware takes to do
the physical write, which, of course, is a very short time. Thus the
chances are that the Status Word was in a read state.

Figure 8-3 illustrates the form of the Status Word in the read state.

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--+
I un~sedl RAkrsol DxkRDll ToioDBI EB~EL I BPARERI DEkDONI rN~sON

T010DN T010ER TOllDB MPEll TOllDN NULSTP RM TOllER

Figure 8-3: DTE20 Status Word in Read State

The bits in the read version of the Status Word have the following
names and functions:

Bit Symbol

15 T010DN

14

13 T010ER

12 RAMISO

11 TOIIDB

10 DXWRDl

Function

TO-IO NORMAL TERMINATION
If this bit is set, the TO-IO byte count went to
zero or the PDP-ll program set the DONIOS bit in the
write version of the status word. T010DN is not set
if an error termination occurred. See T010ER if you
believe an error has occurred.

UNUSED

TO-IO ERROR TERMINATION
If this bit is set, one of a number of errors has
occurred. To determine which one, you must check a
number of different bits in different words. If
there was an NPR UNIBUS parity error, the NUPE bit
of the DIAG3 word is set. A PDP-ll memory memory
parity error is indicated by the MPEll bit of the
Status Word being set. The PDP-ll program may have
set the error status bit in the write version of the
Status Word. Or there may have been a UNIBUS
timeout, in which case no bit is set. If this bit
(TOIOER) is set, TOIODN is not set.

RAM IS ZEROS
This bit is used in single-stepping the DTE20, and
has no meaning in other uses. It is set if the data
read from a RAM location is all zeros. This bit is
provided for diagnostic purposes only.

KL REQUESTED PDP-ll INTERRUPT
When this bit is set, the KL processor has requested
a PDP-ll doorbell interrupt by means of a CONO DTEn,
T01IDB instruction.

DEXWORD 1
This bit is provided on a read for diagnostic
purposes only, and has no meaning except when the
DTE20 is being single-stepped.

8-11

Bit Symbol

09 MPEll

08 T010DB

07 TOllDN

06 EBSEL

05 NULSTP

04 BPARER

03 RM

02 DEXDON

01 TOllER

DTE20 OPERATION

Function

PDP-ll MEMORY PARITY ERROR
If this bit is set, the PDP-ll memory had a parity
error during a data fetch for a TO-10 byte transfer.
Parity errors can be detected only if the PDP-li has
one of the MFIIUP or MFIILP memory parity options.

PDP-II REQUESTED KL INTERRUPT
When this bit is set, the PDP-II has requested a KL
doorbell interrupt by writing the INTIOS bit of the
write version of the Status Word, and the KL has not
yet cleared the bit.

TO-II TRANSFER DONE
This bit is set when the TO-II byte count equals
zero, when a transfer stops on a null character, or
when a PDP-II program has set the error status bit
in the write version of the Status Word (DONIIS).

BUFFER SELECT
This bit is provided on a read for diagnostic
purposes only, and has no meaning except when the
DTE20 is being single-stepped.

NULL STOP
If this bit is on, the TO-II transfer stopped
because the stop bit was set (the stop bit is the
ZSTOP bit of the TOIIBC register) •

EBUS PARITY ERROR
This bit is set if the DTE20 detects an EBUS parity
error during a TO-II DTE20 byte transfer or examine
transfer$

RESTRICTED MODE
If this bit is set, the attached PDP-II is in
restricted mode. Otherwise, the PDP-II is in
privileged mode. The value of this bit is
determined by the setting of the privileged switch
on the DTE20.

DEPOSIT/EXAMINE DONE
This bit is set when the last deposit or examine
operation is finished. No interrupt occurs when
this operation finishes; the PDP-II must watch for
this bit to be set after every deposit or examine
operation. The DTE20 clears this bit whenever a
deposit or examine is started by writing into the
TENAD2 register.

TO-II BYTE ERROR TERMINATION
If this bit is set, an error occurred during a TO-II
byte transfer, or the PDP-II program set the error
bit ERRllS in the write version of the Status Word.
The TOllDN bit in the read version is not set if
there is actually an error termination.

8-12

DTE20 OPERATION

Bit Symbol Function

00 INTSON INTERRUPTS ON
If this bit is set, the DTE20 is enabled to generate
PDP-11 BR requests. If the bit is off, the DTE20
does not have this capability. The bit can be set
by writing a one into bit 5 (INTRON) of the read
version of the Status Word, and cleared by writing a
one into bit 3 (INTROF).

Figure 8-4 illustrates the form of the Status Word in the write state.

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--+

DoblOC ERklOcl IN+IIC IN+IOsl DobllC EBbspc EBbsps ERkllC

DON10S ERR10S INT11S PERCLR DON11S INTRON INTROF ERR11S

Figure 8-4: DTE20 Status Word in Write State

The bits in the write version of the Status Word· have the following
names and functions:

Bit Symbol

15 DON10S

14 DON10C

13 ERR10S

12 ERR10C

11 INT11S

10 INT11C

09 PERCLR

Function

SET NORMAL TERMINATION STATUS
This bit on a write is provided for diagnostic
purposes only. Writing a one to this bit sets the
T010DN bit in the read version of the Status Word.
Writing a one does not terminate a transfer in
progress.

CLEAR NORMAL TERMINATION STATUS
Writing a one to this bit clears the T010DN bit in
the read version of the Status Word.

SET ERROR TERMINATION STATUS
writing a one to this bit sets the T010ER bit in the
read version of the Status Word.

CLEAR ERROR TERMINATION STATUS
Writing a one to this bit clears the T010ER bit in
the read version of the Status Word.

SET PDP-11 INTERRUPT STATUS
Writing a one to this bit sets the T011DB bit in the
read version of the Status Word, resulting in a
doorbell interrupt to the PDP-11.

CLEAR PDP-11 INTERRUPT STATUS
writing a one to this bit clears the T011DB bit in
the read version of the Status Word. This action
enables the next doorbell interrupt to be generated.

CLEAR PARITY ERROR
Writing a one to this bit clears the PDP-11 memory
parity error flag, the MPE11 bit in the read version
of the Status Word.

8-13

Bit

08

07

06

05

04

03

02

01

00

Symbol

INTIOS

OONIIS

OONIIC

INTRON

EBUSPC

INTROF

EBUSPS

ERRIIS

ERRIIC

DTE20 OPERATION

Function

SET KL INTERRUPT STATUS
Writing a one to this bit sets the TOIODB bit and
does a CONI [TOIOOB]. This results in a vectored
interrupt to location 104+B*N in the KL EPT.

SET TO-ll TERMINATION STATUS
Writing a one to this bit sets the TO-ll normal
termination flag, which is the TOIlON bit in the
read version of the Status Word. This bit on a
write operation is provided for diagnostic purposes
only, since writing a one here does not terminate a
transfer already in progress.

CLEAR TO-ll TERMINATION STATUS
Writing a one to this bit clears the TO-ll normal
termination status flag, TOIION.

INTERRUPTS ON
Writing a one to this bit enables the OTE20 to
generate POP-ll BR requests. Writing into this bit,
whether a zero or a one, does not clear any
interrupts that are waiting. The OTE20 interrupt
capability can be disabled by writing a one into bit
3, INTROF. The current setting of the interrupt
capability can be checked by reading bit 0, INTSON.

CLEAR EBUS PARITY ERROR
Writing a one to this bit clears
error flag, BPARER, which is
version of the Status Word.

INTERRUPTS OFF

the
bit

EBUS parity
4 in the read

Writing a one to this bit disables the OTE20
interrupt capability. Writing a one or a zero to
this bit does not clear any interrupts that are
waiting.

SET EBUS PARITY ERROR
Writing a one to this bit sets the EBUS parity error
flag, BPARER, bit 4 in the read version of the
Status Word.

SET TO-ll ERROR TERMINATION STATUS
Writing a one to this bit sets the TO-ll error
termination flag, which is bit 1, TOllER, in the
read version of the Status Word. This bit on a
write is provided for diagnostic purposes only.
Writing a one does not terminate a transfer in
progress.

CLEAR TO-li ERROR TERMINATION STATUS
Writing a one to this bit clears the TO-ll error
termination flag, TOllER.

8-14

DTE20 OPERATION

8.2.2 Diagnostic Words

The three diagnostic words are used to communicate by way of the
diagnostic bus, which is electronically isolated from the other EBUS
communications. This means of communication is not normally used
except for diagnostic checks, or when other means have broken down.
For example, the PARSER can on occasion use the diagnostic bus, and of
course the diagnostic programs use it when necessary.

Diagnostic Word 1 has the following form when being written:

Bit

15-09

08

07

06

05

04

03

02

01

00

Symbol Function

DSOO-DS06 These bits specify the diagnostic selection code.
(For the meanings of these bits see the read form of
Diagnostic Word 1.) If DSOO and DSOI are both zero,
write functions can be done while the system is
running without being in diagnostic mode. Thus the
PDP-II can sample KL status without danger of
corrupting data on the EBUS.

DEX

DFUNC

DlOll

PULSE

DIKLlO

DSEND

DCOMST

This bit must be zero.

Setting this bit to a one causes the KL processor to
stop sending basic status information on the DS
lines. This allows a loop-back test to be performed
on the DS lines. If any of the DS lines are set (by
the DTE20) the result is an "or" of the bits set in
the DTE20 and the KL status.

This bit must be zero.

Setting this bit to a one sets the DTE20 to 10/11
diagnostic mode. This mode is used to diagnose the
DTE20 itself.

Writing a one to this bit generates a single clock
cycle if 10/11 diagnostic mode is set (that is, the
DlOll bit is on).

writing a one to this bit puts the DTE20 into
diagnostic data transfer mode if the DTE20 is
privileged. Any subsequent examines and deposits
become diagnostic functions instead of accessing KL
memory. Writing a zero to this bit returns the
DTE20 to normal data transfer mode. All subsequent
examines and deposits refer to KL memory.

Setting this bit to a one causes the data in a
diagnostic bus transfer to be sent (TO-lO). Setting
the bit to a zero causes the data to be received
(TO-II) •

Unused

If this bit is set to a one while the DTE20 is
switched to privileged, the effect is to set
diagnostic command start. Setting the bit to a zero
clears diagnostic command start.

8-15

DTE20 OPERATION

Diagnostic Word 1 has the following form when being read:

Bit

15-12

11

10

09

08

07

06

05

04

03-01

00

Symbol Function

DSOO-DS03 Unused

DS04

DS05

DS06

DEX

TOIO

TOll

DIOll

VEC04

DCOMST

If this bit is a one, the KL internal clock has
frozen because of one of the following hardware
malfunctions: CRAM, DRAM, fast memory parity error,
or Field Service test condition.

If this bit is a one, the KL is running. The
microcode checks this flag between PDP-IO
instructions, and enters the halt loop if the flag
is off. This flag is under control of the PDP-ll
using two diagnostic functions. The KL cannot
affect it.

This bit is set to one when the microcode enters the
halt loop and is cleared when the microcode leaves
the halt loop.

If this bit is set, the interface major state is
deposit or examine.

If this bit is set, the interface major state is a
TO-IO transfer.

If this bit is set, the interface major state is a
TO-ll transfer.

If this bit is a one, the DTE20 is in 10/11
diagnostic mode, that is, it diagnoses itself.

This bit is set to vector interrupt address bit 4.

Unused or zero.

If this bit is set, a diagnostic command is in
progress.

Diagnostic Words 2 and 3 have very similar forms in the read and the
write state; thus, the two states are illustrated together, rather
than separately, as with Diagnostic Word 1.

Diagnostic Word 2 has the following form when being read or written:

Bit Symbol Function

15 RAM FILE MIXER (RFM) ADDRESS BIT 0
RFMADO Read: This bit is set to the contents of RFM

address bit o.
RFMADO Write: This bit must be zero.

14 RFM ADDRESS BIT 1
RFMAD1 Read: This bit is set to the contents of RFM

address bit 1.
EDONES Write: If a one is written to this bit, the EBUS

done status is set. If a zero is written here, the
EBUS done status is cleared.

8-16

Bit

13

12

11-07

06

05

04-01

00

Symbol

RFMAD2

RFMAD2

RFMAD3

RFMAD3

DRESET
DRESET

DTE20 OPERATION

Function

RFM ADDRESS BIT 2
Read: This bit is set to the
address bit 2.
write: Th is bit must be zero.

RFM ADDRESS BIT 3
Read: This bit is set to the
address bit 3.
write: Th i s bit must be zero.

Unused
Read:
write:

These bits are always zeros.
These bits must be zeros.

DTE20 RESET
Re ad : Th i s bit is ze ro •

contents of RFM

contents of RFM

write: If a one is written to this bit, the DTE20
is reset.

Unused
Read:
Write:

This bit is zero.
This bit must be zero.

Read: These bits are zero.
Write: Loads 04, 03, 02, 01 into minor
counter 8, 4, 12, 1 for diagnostic use only.
normal operation this bit must be zero.

Unused

state
Dur ing

Diagnostic Word 3 has the following form when being read or written:

Bit Symbol

15 SWSLLT

14 DPS4[N]

13-08

Function

SWAP SELECT LEFT
Read: CNT1[N] SWAP DEL LT
write: This bit must be zero.

PARITY (1) H
Read: If this bit is set, the DPS4 [N] parity flop
is on. This bit is for diagnostic use only.
Write: This bit must be zero.

CAPTURED UNIBUS PARITY ERROR INFORMATION
Read: When a UNIBUS parity error is detected, Ann
means UNIBUS register address bit, and Dnn means
UNIBUS data bit.

UNIBUS Data Bits

INITIAL D15 D14 013 D12 Dll AOO
1st Sh ift DI0 D09 008 D07 D06 AOO
2nd Shift 005 D04 D03 D02 001 AOO
3rd Sh ift DOO A04 A03 A02 AOl AOO
4th Shi ft D15 D14 D13 D12 Dll AOO

Write: This bit must be zero.

8-17

~t Symbol

07-06

05 SCD

04
DUPE

CDD

03 WEP

02 DURE

01
NUPE

CNUPE

00 TOIOBM

DTE20 OPERATION

Function

Unused
Read:
Write:

This bit is zero.
This bit must be

SHIFT CAPTURED DATA
Read: This bit is zero.

zero.

Write: Writing a one to this bit shifts captured
data so that the next read of DIAG3 changes bits
13-08.

DATO UNIBUS PARITY ERROR
Read: If this bit is a one, a DATO UNIBUS parity
error has been detected by the DTE20.
Write: Writing a one to this bit clears the DUPE
and DURE error flags.

WRITE EVEN (BAD) PARITY
Read: This bit specifies the read status of the
write even UNIBUS parity flip-flop.
Write: Writing a one to this bit causes the DTE20
to generate even (bad) parity on all UNIBUS
transfers that have parity. Writing a zero to this
bit makes the DTE20 generate odd (good) parity on
all subsequent transfers that have parity. This bit
is provided for diagnostic purposes to check the
parity network.

DATO UNIBUS RECEIVE ERROR
Read: If this bit is set, a UNIBUS receiver error
has occurred.
write: This bit must be zero.

NPR UNIBUS PARITY ERROR
Read: If this bit is a one, a UNIBUS parity error
has occurred on an NPR (byte) transfer.
Write: Writing a one to this bit clears the NUPE
flag.

TO-I0 BYTE TRANSFER MODE
Read: This bit is zero.
Write: Writing a one to this bit causes TO-I0 byte
transfers to be done in byte mode from PDP-l1
memory. Writing a zero to the bit causes the
transfers to be in word mode.

8.2.3 DTE20 Data Transfer Registers

The remaining twelve DTE20 registers are used in data transfer
operations. This section briefly describes the function of each of
these registers, and illustrates their format.

8-18

DTE20 OPERATION

TOIIDT

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--+

\ In Byte Mode: / \ In Byte Mode: /
\ Data from KL / \ Data from KL /

\ bits 28-35 or / \ bits 20-27 or /

TOllDT

20-27 28-35

In Word Mode:
Data from KL
bits 20-27

In Wo rd Mode:
Data from KL
bits 28-35

This register contains the last byte or word transferred
across the DTE20 to the PDP-ll. Since it is not clear from
the data in this register which bits of the KL word are
represented, the following method is used to resolve the
ambiguity. If the address in TOllAD is even, the left byte
of TOllDT will contain bits 28-35; if TOI1AD is odd, the
left byte of TOllDT will contain bits 20-27. The right byte
will contain the complementary set of bits. This regis'ter
makes it possible to identify the last data that
successfully transferred across the DTE20.

TOIODT

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--+

\ / \ /
\ / \ /

T010DT

In Byte Mode:
All O's

In Word Mode:
Data for KL
bits 20-27

Data for KL
bits 28-35

This register contains the remainder of the data sent to the
KL during a TOKLIO byte transfer. Its use is similar to
that of TOIIDT.

8-19

DTE20 OPERATION

TOIIAD

+---_._-----------+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+---_._-----------+

TOIIAD

Byte address in PDP-ll memory
where next byte received will
be stored

This register is used by the PDP-ll during byte transfers.
TOIIAD contains the address of the area in PDP-ll memory
where the data from the KL is to be written. The DTE20
keeps this register updated with the currently correct
address as the TO-ll byte transfer progresses.

TOIOAD

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+---_._-----------+

TOIOAD

Byte address in PDP-ll memory
from which next byte to be
transferred is to be taken

This register is also
transfer operations.
area in PDP-ll memory
resides.

used by the PDP-ll during byte
TOIOAD contains the address of the

where the data to be transferred

8-20

DTE20 OPERATION

TOI1BC

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--+

T011BC

I \ bits 11-00 Negative Byte Count /
6 \ /

1 Set byte mode in DTE20
o Set word mode in DTE20

1 Stop transfer on null character from
EBOX after storing in PDP-II memory;
do not increment T011AD

1 Interrupt both processors on normal
termination (ignored on error
termination)

o Interrupt PDP-II only on normal
termination (ignored on error
term ina t ion)

When the PDP-II loads this register (the TO-II byte count)
with the number of bytes to be transferred, the DTE20 begins
the TO-II transfer operation.

8-21

DTE20 OPERATION

T010BC

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--,------------+

T010BC

b b b \\ bits 11-00 Negative Byte Count II

1

o

Interrupt both processors at completion
of current TO-10 transfer
Interrupt KL only at completion of current
TO-10 transfer

When the KL loads this register the DTE20 initiates the
TO-IO transfer. The PDP-11 never writes to this register.
The KL sets the register by writing into its EPT. The count
may not include everything the PDP-11 wishes to send (in the
case of a "scatter write").

DLYCNT

+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100 1
+--+
\ I \ Negative Delay Count - number of 500 nanosecond I
\ I \ units of delay between each byte transferred I
\ I in either direction I

T __ - High order UNIBUS address bits (TO-11 and
TO-10 transfers must be in same 32K memory
bank)

DLYCNT Since the DTE20 is clocked from the EBUS clock module, which
runs at a different rate from the PDP-11 clock, a compromise
in timing must be effected in order to transfer data over
the DTE20. Therefore, the PDP-11 sets this register to
notify the DTE20 of the speed at which to carry out byte
transfer operations. The register contains the number of
500 nanosecond units of delay that should come between two
consecutive byte transfers.

DEXWDl-3

+--+
I KL Data bits 20-35 IDEXWD3
+---_._-----------+
I KL Data bits 4-19 IDEXWD2
+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100lDEXWDl
+--+
\ I \ KL Data I

\ Must be zero I \ bits 0-3 I
_----------------------______ 1 \ ____ 1

DEXWDl-3 During a deposit or examine operation, the data being
deposited or examined appear in these three registers.
However, DEXWDI must always contain zeros in the high-order
bits.

8-22

Address space

1 Deposit
o Examine

o
1
4

DTE20 OPERATION

TENADl-2

EPT
Executive virtual
Physical

1 Protection and relocation off
;---- 0 Protection and relocation on

/ \ /
/ \ / / All \ / High order KL \

/ \ I / zeros \ / address (13-19) \
+--+
115 114 113 112 III 110 109 108 107 106 105 104 103 102 101 100lTENADl
+--+ I Low order KL address (20-35) ITENAD2
+--+

TENADl-2 The PDP-ll uses these two registers in examine and deposit
operations to specify the KL address. When the PDP-ll
writes TENAD2 the deposit/examine operation is initiated;
thus, all necessary data must be written to DEXWDl-3 before
TENAD2 is written.

8.3 USING THE DTE20 REGISTERS

Each of the four DTE20 operations (Deposit/Examine, TO-IO/TO-ll
transfers, Doorbell functions, and Diagnostic operations) has a
preliminary phase where control information and/or data is loaded into
the DTE registers. This is always done before the interface begins
any operation. Sections 8.3.1 through 8.3.4 describe, operation by
operation, the information and data that must be loaded into the
registers.

8.3.1 Deposit and Examine

For the Deposit operation, the following information is always loaded
into the indicated registers in the RAM by the PDP-ll processor:

Register Data Loaded

DEXWD3 Data Word 3
DEXWD2 Data Word 2
DEXWDl Data Word 1
TENADl Address Word 1
TENAD2 Address Word 2

For an Examine operation, the KL address is loaded into TENADl and
TENAD2. The result of the Examine is put into DEXWDl and DEXWD2. A
Deposit operation loads the contents of the three data words into the
KL address specified by the address words. Bit 12 of Address Word 1
(TENAD1) specifies whether the operation is to be Examine or Deposit.
If bit 12 is set (=1), the operation is a Deposit; if bit 12 is clear
(=0), the operation is an Examine. For a privileged front end, the
protection bit (bit 11 of TENAD1) can be set to one by the software to

8-23

DTE20 OPERATION

perform an unprotected Deposit or Examine. For unprotected Deposits
and Examines, the address space field (bits 15-13) specifies the type
of address. Currently, three types of address space can be specified:

Bits 15-13

o
1
4

Space addressed

Executive Process Table
Executive Virtual Address Space
Physical Address Space

When Address Word 2 is loaded, the operation begins~

8.3.2 Transfer Operations

The TO-IO and TO-II transfer operations pass variable length data
between the two processors. The sender of the data must specify the
address of the source string. The KL controls the address either to
or from the KL by byte pointers in the Executive Process Table (EPT).
The PDP-II controls the address to or from the PDP-II by two locations
in the DTE (one word for each direction of transfer). It is the
responsibility of the receiver to control scatter writes. The PDP-II
specifies the transfer rate (with the delay count) and the type of
transfer. Bit 13 in the TO-II Byte Count word controls whether the
DTE is in byte mode or word mode (l=byte mode, O=word mode) Byte
mode transfers 8-bit bytes while word mode moves 16-bit bytes.

When transferring string data from the KL to the PDP-II, the following
DTE registers must be loaded by the PDP-II:

Register

TOIIBC
TOIIAD

Da ta Loaded

TO-II Byte Count
TO-II PDP-II Memory Address

The TO-II Byte Count register holds a negative number whose absolute
value is equal to the number of bytes to be transfered. As each byte
is transferred, this register is incremented by one .. When the byte
count reaches zero, the transfer is over. A special provision in the
byte count word allows for gather reads. This provision allows the
receiver of data (and only the receiver) the option of being
interrupted before the transfer is complete. At this point, another
transfer can be started (without reloading all of the parameters) just
by changing the address. The transfer in progress continues from the
new address. On termination of the transfer, the PDP-II is
interrupted. (See Figure 8-5.) The KL can be interrupted also if this
i s des Lr ed •

The TO-IO transfer process is very similar to the TO-II process. The
PDP-II loads the following registers:

Register Data loaded

TOIOAD TO-IO PDP-II Address

The KL loads the following register:

TOIOBC TO-IO Byte Count

The transfer starts when the TOIOBC register is loaded. The TOlODT
register is used in the same manner as TOIIDTi that is, TOIIDT is a
temporary buffer used in conjunction with the delay count. The KL is
interrupted when the transfer is finished. (See Figure 8-5.)

8-24

Figure 8-5:

INTLPS

.CRASH
(TET)

.CRASH
(ETE)

DTEXIT

PTE20 OPERATION

.DTINT

SAVE
REGISTERS

SET UP OFFSET
POINTERS

RESTORE
REGISTERS

JUMP TO
COMMON EXIT

••• INTX

DTE Interrupt Handler (part I of 5)

8-25

.TENDN
TO-lO DONE
INTERRUPT

.ELEDN
TO-11 DONE
INTERRUPT

.DRBEL
DOORBELL
INTERRUPT

MR-S-1670-81

Figure 8-5:

INDIRECT
PART 2

RESET INDIRECT­
PENDING FLAG

SET TRANSFER
SIZE IN

COMM. REGION

SEND STATUS
T010

SET EVENT
FLAGS

RING
DOORBELL

DTE20 OPERATION

.TENDN

CLEAR FLAG

REMOVE AND
DEALLOCATE
NODE FROM

T0100

RETURN TO
MAIN LOOP

.CRASH
(DTF)

INDIRECT SET EVENT
COMPLETE FLAGS DECLARE

EVENT CLEAR
INDIRECT-IN­

PROGRESS FLAG

INTLPS

START NEXT
NODE

.STTNO

MR·S·1669·81

DTE Interrupt Handler (part 2 of 5)

8-26

DTE20 OPERATION

.ELEDN

CLEAR TOLL
FLAG COMPUTE

BYTE COUNT

YES

NO

NO

ENTELO POINT TO NEW

TOITDN

NODE LINK NEW
NODE SET

EF.TED DECLARE
SIG. EVENT

RETURN
14------1 PRE-ALLOCATED .__---,.

SET AND
SEND STATUS

T010

INTLPS

BUFFER

.CRASH
(DTB)

ADJUST BYTE
COUNT SET

FLAGS START
TRANSFER

Figure 8-5: DTE Interrupt Handler (part 3 of 5)

8-27

.CRASH
(PT1)

.CRASH
(PT2)

ENTELQ

MR-S-167 4-81

Figure 8-5:

.DRBEL

CLEAR
DOORBELL BIT

READ STATUS IN
COMM REGION

TO FIND REASON
FOR DOORBELL

.CRASH
(UIE)

DTE20 OPERATION

ERROR

DBLEPP

START
PROTOCOL

PAUSE

DBLRLD

CLEAR
PROTOCOLS
SET FLAGS

SET EVENT
FLAG

DBLEPX

EXIT

B

DTE Interrupt Handler (part 4 of 5)

8-28

C
MR-S-1671-81

B

Figure 8-5:

.CRASH
(ILQ)

.CRASH
(PT4)

D,TE20 OPERATION

UPDATE
QUEUE COUNT

READ COMM
REGION GET
NODE SIZE

START
TRANSFER OF

DIRECT PACKET

DBLDON

SET QUEUE
STATUS SEND

IT T010

INTLPS

START
SECOND PART
OF INDIRECT
TRANSFER

DTE Interrupt Handler (part 5 of 5)

8-29

.CRASH
(PT3)

MR-S-1672-81

DTE20 OPERATION

8.3.3 Doorbell Function

The doorbell function allows the KL to interrupt each PDP-ll connected
to it by a DTE20, and vice versa. The doorbell consists of a
programmable interrupt and a status bit. In order for the PDP-ll to
interrupt the KL, the PDP-ll sets the Request-10 interrupt flip-flop
(bit 8 in the DTE Status Word). When this bit is set, the DTE20
generates an interrupt in the KL with a status bit set in the CONI
word (bit 26 in T010DB) to indicate that the PDP-ll CPU has requested
an interrupt of the KL. (See Figure 8-5.)

This procedure works in a reversed but identical manner for the KL
interrupting the PDP-ll. The KL sets the Request-ll interrupt by
doing a CONO to the DTE20. The PDP-ll discovers the cause for the
interrupt by looking at TOllDB (bit 11 in the DTE status word) •
Communication is then performed by loading one or more words in the
Communications Region of KL memory. The Deposit and Examine features
are used by the PDP-ll to gain access to these words.

8.3.4 Diagnostic Functions

The PDP-ll front end can diagnose problems in the KL using the
diagnostic functions of the DTE20. The diagnostic functions are
performed over an electronically isolated portion of the EBUS known as
the diagnostic bus. This bus contains Diagnostic Select lines to tell
the KL which diagnostic function the front end wishes to perform. The
bus also has lines to carry data that helps the KL hardware interpret
the Diagnostic Select lines.

To perform the diagnostic functions, set the bits in register DIAGl
that correspond to the code for the function you wish to perform.
When you set bit 0 (DCOMST) in DIAG1, the function code is sent to the
KL. When the DCOMST bit is zero, the DTE20 has sent the diagnostic
function to the KL. Bit 2 of DIAGl (DSEND) has no effect on the
transfer of the function code; DSEND deals with diagnostic data
transfer only. Diagnostic data transfer takes place only when bit 3
(DIKL10) is set to one.

8.4 PROTOCOLS

The protocol used between the KL and the PDP-ll front end is a tightly
coupled communications protocol designed for use in exactly this
environment. Two levels are included in this protocol: Secondary
Protocol and Primary Protocol.

8.4.1 Secondary Protocol

Secondary Protocol uses the Doorbell and Deposit/Examine features of
the DTE20. This protocol is only used in special situations such as
booting the KL, or in emergencies where normal communications with the
KL are not available. The code to support Secondary Protocol is in
module BOOT of RSX-20F.

Only the privileged PDP-ll can run Secondary Protocol because it
requires privileged Deposits and Examines.

8-30

DTE20 OPERATION

8.4.2 Primary Protocol

Primary Protocol is the main protocol used for communications and uses
the Deposit/Examine, Byte Transfer, and Doorbell features of the
DTE20. The switch to Primary Protocol is made just before the [PS
MOUNTED] message appears at the CTY.

primary Protocol is a queued protocol because the DTE20 is used by
several tasks. Multiple tasks cannot be allowed to use the DTE20
whenever they desire, or confusion would result. Therefore, tasks
that want to use the DTE must line up the data in a queue and wait
their turn.

8.5 QUEUED PROTOCOL

The queued protocol driver is responsible for many things:
controlling the exchange of data between the KL and the PDP-ll,
scheduling the transmission of information packets sent across the
DTE, and interfacing between the KL and the PDP-ll device drivers that
must communicate with it (terminals, line printers and card readers).
The queued protocol driver places output data in the thread packets
for terminals and line printers. The queued protocol driver also
takes data from card readers and terminals, bundles them into packets
and sends them off to the KL. When device status information is
needed, it is the queued protocol driver that gathers the information
for those devices that must report to the KL.

The following list includes all the functions of the queued protocol
driver. Each function is listed along with its associated function
code, which is used by both the KL and the front end to recognize the
type of request just received.

Code Function

1 Request for Initial Status

2 Here is CTY Alias

3 String Data
This function is the general data-transferring mechanism of
the protocol.

4 Line/Character Data
This function allows the protocol to handle data transfers
for several lines with a single function, which cuts down
on overhead by reducing the number of messages transferred.

5 Return Device Status
This function requests the status of the device from the
other processor.

6 Set Device Status
This function requests the device status to be set to the
specified values.

7 Here is Device Status
This function is the response to function 5 (Request Device
Status) •

10 Unused

8-31

DTE20 OPERATION

Code Function

11 Return Time of Day

12

This function is used to determine the other processor's
current system date and time.

Here is Time of Day
This function is the response to function 11
of Day) •

(Retu:rn Time

13 Flush Output Device Queue
This function provides the ability to deal with CTRL/O by
flushing all output waiting for output to the specified
device.

14 Send All
This function causes a specified string to be typed on all
TTy-type devices connected to the front end.

15 Device Dial-up
This function causes the PDP-II to raise DTR for the
specified dataset line.

16 Device Hang-up
This function causes the PDP-II to hang up (drop DTR for)
the specified dataset line.

17 Acknowledge Device Done

20

This function is used to notify the other processor that a
data transfer operation has been completed. The passing of
this signal allows the buffer space that was taken up with
the data just transferred to be freed.

X-OFF (TTY only)
This function is used to produce the effect of CTRL/S.
This causes the data transfer in progress to be suspended
until further notice (the notice will be in the form of a
CTRL/Q) .

21 X-ON (TTY only)
This function is used to produce the effect of CTRL/Q.
This causes the data transfer currently suspended (if there
is one) to be continued.

22 Set TTY Speed
This function is used to inform the other processor of the
speed of a given TTY line. The front end will use this
information to set the line speed. The KL will need the
information when the KL has been reloaded and is reentering
Primary Protocol.

23 Set Line Allocation
This function sets the maximum amount of data that a device
can accept between acks.

24 PDP-ll Reboot Word
This function provides the KL with the settings of the
PDP-II switch register.

25 Acknowledge All
This function is used to restart a data transfer operation.
The KL, for example, may use it when the KL has temporarily
left Primary Protocol.

8-32

DTE20 OPERATION

Code Function

26 Start/Stop Line
This function is used to enable and
processing for the line specified.

disable input

27 Enable/Disable Remotes
This function is used to enable and disable the modem
control; when the current state is enabled, the telephone
may be answered by the front end.

30 Load Line Printer RAM
This function is used by the KL to notify the front end
that the line printer RAM needs reloading. The front end
will, upon receipt of this message, proceed to load the
RAM.

31 Load Line Printer VFU
This function is used by the KL to notify the front end
that the line printer VFU needs to be reloaded. Upon
receipt of this message, the front end will load the RAM.

32 Suppress Send-All
This function is used to suppress the system messages for a
specified line. It is the equivalent of the TOPS-20
command REFUSE SYSTEM-MESSAGES.

33 Send KLINIK Parameters
This function is used to notify the other processor that
the KLINIK parameters are about to be sent.

34 Enable/Disable Local X-OFF
This function is used to allow (or disallow) the front end
to process the X-OFF character itself, rather than waiting
for the KL to process the character

35 Break Through write
This function sends the associated packet to the front of
the output queue.

36 Set Host Debug
This function set the KL to debug mode. No message is
printed during a KL halt and no reloads are performed.

37 Clear Host Debug
This function causes the KL to exit debug mode. If the KL
halts the system message is sent and the KL is reloaded.

When two processors communicate, they require an area that both can
access to exchange information. This area is in KL memory because the
KL can not access PDP-ll memory through the DTE. The area where this
common data is stored is the Communications Region.

Recall that the first part of the region is a header area. Following
this, each processor that is connected to the KL has its own
communications area. A minimal configuration has two communications
areas, one for the KL and one for the PDP-ll front end. If another
PDP-ll is attached for data communications, there will be three
communications areas. Each communications area has one section of
data about itself and one or more sections for the other processors to
which it is connected.

8-33

DTE20 OPERATION

The KL and the PDP-II also use the Executive Process Table (EPT) to
communicate. The EPT occupies a page in KL memory in which several
words are reserved for DTE communications. The location of the EPT is
always known because a hardware register points to it.

The EPT stores the KL addresses for byte-transfer operations and tells
the PDP-II where in KL memory it may Deposit and Examine. The
relocation and protection words are set once by the KL. The PDP-II
reads these words, and stores them so that it will not have to read
them again. All PDP-II Deposits and Examines of KL memory are checked
by the hardware using the relocation and protection words.

8.6 DTE20 DRIVER LOGIC

The DTE20 driver is responsible for the exchange of data between the
front end and the KL. It can transfer data in both directions
simultaneously. There are three types of data packets transferred
across the DTE20:

• Direct packets

• Extended direct packets

• Indirect packets.

8.6.1 TO-10 Direct Packets

A TO-IO direct packet always contains at least 12 (octal) contiguous
bytes and consists of a Header and one or more words of data. A
Header is always sent across the DTE20 as a single transfer.

+================================+
Forward Pointer

Backward Pointer
I

Over
Head

Node Size
I

Current Queue Size v

Packet Size

Function

Device

Spare

Data

Unused
+================================+

The first four words of the packet are not transfered to the KL. They
contain information necessary to manage the queue in PDP-II memory.
The packet that is actually transfered across the DTE20 during a
direct transfer is always at least 12 (octal) bytes and consists of
words beginning with Packet Size and ending with the Data word.

8-34

DTE20 OPERATION

8.6.2 TO-II Direct Packets

TO-ll direct packets are essentially the same as TO-10 direct packets.
However, during a TO-ll direct transfer the spare word is discarded by
the DTE20 device driver when a packet is received by the front end,
also the byte size and function code are compressed into one word.
Direct transfers are used to transfer a single data word. The sender
always considers the direct transfer to be a single transfer. The
receiver may fragment the transfer and hide the TO-ll Done interrupt
from the sender until the entire transfer has been completed.

+================================+
Forward Pointer I

Overhead
Node Size I

v
E.FN+I Bytes in Entry I Function E.FN+O

Device E.DV

First Function Word E.FW

Data
+================================+

8.6.3 TO-IO Extended Direct Packets

A TO-10 extended direct packet consists of a Header and more than one
data word. The Header portion contains a count of the number of bytes
in the extended portion of the packet. Direct packets can be sent
only from a contiguous buffer. The extended direct data packet has
the following format.

+================================+
Forward Pointer

Backward Pointer
I

Over
Head

Node Size
I

Current Queue Size v

Packet Size

Function

Device

Spare

/ Data /
/ /

I--------------~~~~--------------I
+================================+

8-35

DTE20 OPERATION

8.6.4 TO-IO Indirect Packets

A TO-IO indirect packet consists of a Header portion and a data
portion. The header and data portions do not necessarily occupy
contiguous locations in PDP-II memory. The header portion contains
the total size of the entire transfer and a pointer to the indirect or
data portion of the packet. The Header is always 12 octal bytes long.
TO-IO Indirect packets have the following format:

+================================+
Forward Pointer

Backward Pointer
I

Over
Head

Node Size

Current Queue Size (12)
I
v

Current Entry Size (12)

1 I Function

Device

Spare Word

Byte Count Line Number

Data Address (ADDR:) -----------+
Spare

Spare
+================================+

+--+

+--) ADDR: +================================+
Byte Count Line Number

Data

/ /

1

_-------------------------------
Data

================================

An indirect transfer takes place in two parts; first the header
portion and then the data. Not all of the header shown above is
transfered across the DTE20. The Header transfer always consists of
12 (octal) byte starting with the function word and ending with the
data address word.

The Indirect Flag set in the function word indicates that the transfer
is an indirect transfer.

8-36

DTE20 OPERATION

8.6.5 TO-ll Indirect Packets

The To-eleven Indirect packet is e~sentially the same as the TO-IO
indirect packet. However the TO-II indirect packet occupies
contiguous memory locations in PDP-II memory.

E.FN+l

+================================+
Forward Pointer

Node Size

Bytes in Entry I Function

Device

First Function Word

Data

I /

1--------------------------------1 Data
+================================+

I
Overhead

I
v

E.FN+O

E.DV

E.FW

8.6.6 Register Conventions

The DTE20 driver uses the following register conventions:

RO Points to the base address of the DTE20 in the I/O page.

RI Points to the DTE20 Status Register in the I/O page.

R3 Points to the Processor Table in the data base.

8.6.7 DTE20 Device Driver Functions

The DTE20 Device driver performs the following functions:

• .DTINT - Interrupt Head and service dispatch

• .TENDN - Services the IO-Done interrupt

• .ELEDN - Services the II-Done interrupt

• .DRBEL - Services the Doorbell interrupt

• .STELD - Starts a TO-II Direct Transfer

• .STELI - Starts a TO-II Indirect Transfer

• .KPALV - Does Keep-Alive processing

• .STTNQ - Starts a TO-IO Transfer

8-37

DTE20 OPERATION

Whenever a request for a transfer of data between the KL and the front
end processor is made .DTINT handles the request. .DTINT is
responsible for the following:

• Saving all registers on the stack

• Restoring all registers from the stack

• Setting up register RO with a pointer to the base of the
DTE20

• Setting up register RI with a pointer to the DTE20 Status
Register

• Setting up register R3 with a pointer to the Processor Table

• Checking for TO-10 or TO-II termination errors (TET)

• Checking for TO-II Memory Parity errors (ETE)

A TO-II transfer starts when the KL rings the doorbell indicating that
a transfer is ready. The KL has already set up pointers to the packet
to be transferred in the TO-II Communications Region. It has also set
up its pointer in the DTE20 hardware. RSX-20F reads the size of the
transfer in .QSIZE word in the Communications Region.

A .QSIZE word containing a count greater than 12 octal indicates that
the transfer is an extended direct. The RSX-20F DTE20 Driver then
attempts to allocate a buffer from the Free Pool to accept the
transfer. If the allocation fails RSX-20F blocks the DTE20,
inhibiting any further transfers until the buffer can be allocated.
Each time a buffer is returned to the Free Pool an attempt is made to
unblock the DTE20. Once the buffer has been allocated, RSX-20F
conditions the DTE20 not to show the next TO-ll Done interrupt to the
sending processor (the KL). RSX-20F then reads the Header portion
into its fixed buffer in low core. A TO-ll Done interrupt signals
that the Header transfer is complete. This interrupt is not seen by
the KL, but indicates that the DTE20 has completed its transfer of the
Header portion. The Header portion is then copied from the fixed
buffer to the allocated buffer and the DTE20 is set to point to the
allocated buffer. The DTE20 is then conditioned to show the next
TO-ll done interrupt to both processors. This decision is based on"
the the transfer size in the .QSIZE word. If the size of the transfer
is exactly 12 octal bytes, both processors are interrupted at the
completion of the transfer. Otherwise, only the the PDP-ll is
interrupted. The Function Word in the fixed buffer is cleared to
indicate that the packet may be entered into the TO-ll Queue on the
next TO-ll done interrupt. The remainder of the message is
transferred across the DTE20 to the allocated buffer. When the
extended portion has been transferred to the allocated buffer, a TO-ll
Done interrupt is seen by both processors.

In other words, the KL does not see a TO-ll Done interrupt until the
entire transfer is complete. RSX-20F, on the other hand, sees two
TO-Il Done interrupts. The first indicates that the Header portion of
the transfer has been completed; the second indicates that the entire
transfer has been completed. At this point, the packet is entered
into the TO-ll Queue.

8-38

DTE20 OPERATION

If RSX-20F receives a Doorbell interrupt and the .QSIZE word indicates
a transfer of exactly 12 octal bytes, it sets up for a direct
transfer. First it attempts to allocate a buffer from the Free Pool
to accept the transfer. If the allocation fails, RSX-20F blocks the
DTE20 until a buffer is available. Once a buffer becomes available,
RSX-20F transfers the Header into its fixed buffer in low core. Note
that since the transfer is exactly 12 octal bytes, both processors are
interrupted. The DTE20 driver then examines the Indirect semaphore in
the Function Word. If this semaphore is not set, the transfer is a
simple direct transfer, and RSX-20F copies the Header into the
allocated buffer and immediately enters that buffer into the TO-II
Queue.

If the Indirect semaphore is set in the Function Word the transfer is
an indirect transfer and only the Header has been read. The size of
the entire transfer is contained in this Header. Since the allocated
buffer contains only enough space for the header portion, RSX-20F
returns it to the Free Pool. The Header portion remains in the fixed
buffer in low core in anticipation of the second part of the indirect
transfer. The KL has seen the TO-II done interrupt indicating that
the Header has been successfully transfered.

The KL will later set the Indirect-in-progress semaphore and ring the
Doorbell to indicate that the indirect portion of the transfer is
ready. RSX-20F answers the Doorbell and sees that the
Indirect-in-Progress semaphore is set. It then checks to see if the
Header in the fixed buffer contains an indirect Header (the Indirect
semaphore in the function word is set). RSX-20F now attempts to
allocate a buffer to accept the entire transfer. That is, both the
Header and the data portion of the transfer will be stored in
contiguous locations in the PDP-II's memory. If the allocation fails,
RSX-20F blocks the DTE20 until the buffer becomes available. Once the
buffer is allocated, RSX-20F copies the Header from the fixed buffer
into the allocated buffer, then starts the transfer of the indirect
portion across the DTE20 into the allocated buffer. When the transfer
is complete, both processors see a TO-II Done interrupt signaling the
completion of the transfer.

An indirect transfer is essentially two separate transfers. First the
Header portion (12 octal bytes) is transferred. This is treated as a
direct transfer until RSX-20F reads the Indirect Flag in the Function
word. It then expects that the next transfer will be the indirect
portion of the message. The Header contains the byte count of the
entire transfer. When the KL signals that the indirect portion is
ready by ringing the Doorbell, RSX-20F reads the indirect portion and
stores the entire message in the contiguous buffer that has been
allocated.

8-39

CHAPTER 9

ERROR DETECTION AND LOGGING

9.1 THE KEEP-ALIVE COUNT

The KL and the PDP-II watch each other to make sure that the other
does not crash. The mechanism they use is called the "Keep-Alive
Count." The Keep-Alive Count for each processor is a word in the
Communications Region of KL memory. Both processors have clock
interrupts regularly. During the servicing of those clock interrupts,
the processors increment their own Keep-Alive Counts and check the
other processor's Keep-Alive Count. RSX-20F also transmits its
Keep-Alive count once every 256 DTE20 transfers. If the count has not
changed after a certain number of interrupts, then that processor is
assumed to be hung or crashed and must be reloaded. If the KL goes
down, RSX-20F schedules the TKTN task to run. TKTN shuts down the
protocol, prints a message, and schedules the KLERR. Refer to Section
9.3.3 for TKTN messages.

The front end must go through the DTE20 in order to update and examine
the Keep-Alive Counts, because both copies of the Keep-Alive Count are
located in the Communications Region of KL memory. The KL's
Keep-Alive Count is kept in CMKAC, the sixth word in the KL's area of
the Communications Region. The PDP-II's Keep Alive Count is stored in
the sixth word of the PDP-II's area of the Communications Region.

9.2 KLERR

When the front end notices that the KL has not responded by the
Keep-Alive Count mechanism, KLERR checks the status of the Retry flag
(refer to the SET RETRY command in Section 4.4 for more information).
If the Retry flag is not set, KLERR checks the setting of the Reload
flag. If the Reload flag is set, KLERR reloads the KL. If the Reload
flag is not set, the front end ignores the fact that the KL is not
running and continues its processing.

If, on the other hand, the Retry flag is set, the front end gives the
KL a chance to save its context (if possible) by executing the
instruction at location 71, which transfers control to a KL routine
that attempts to save the context information. When the context has
been saved, KLERR determines whether to reload the KL depending on the
state of the Reload flag. (It is usual for the KL to request a reload
during the execution of the context-saving subroutine.)

KLERR has several important functions. When it realizes that the KL
has not responded, KLERR tries to read as much information as it can
from registers in the KL by performing function reads over the
diagnostic portion of the EBUS. KLERR stores the information it
retrieves in the PARSER.LOG file in the front-end file system. When
KLERR has completed its function, TKTN schedules the KLINIT task to
restart the KL.

9-1

ERROR DETECTION AND LOGGING

9.3 ERROR LOGGING

There are two types of errors for which some information is logged on
the CTY. KLERR logs information for KL errors and describes the state
of the KL, as well as it could be determined by the front end.
RSX-20F logs information about PDP-ll errors. These error types are
described in Sections 9.3.1 through 9.3.3.

9.3.1 KL Error Logging

KLERR is alternate name for routine .KLE in PARSER. This routine
provides SPEAR with useful information about the state of the KL when
a hardware or software error occurs. Because KLERR "takes a picture"
of the KL state when an error occurs, KLERR is said to produc€ a
snapshot.

When KLERR runs, the RSX-20F executive determines what type of error
has occurred and invokes TKTN (Task Termination Task), which prints an
error message (for example, EBUS PARITY ERROR) on CTY and generates an
error code for KLERR. TKTN then schedules KLERR to run. If the error
is a CLOCK ERROR STOP, KLERR determines if it is a Fast Memory Parity
Error, a CRAM Parity Error, a DRAM Parity Error, or a Field Service
Probe and modifies the error code appropriately. KLERR then TAKEs a
command file based on the error code.

Following is a list of command files and the errors that cause them to
be invoked:

1. CLOCK.CMD - Clock Error Stop - Field Service induced for
debugging

2. EBUS.CMD - EBUS parity error

3. DEX.CMD - Deposit Examine Failure (PI level 0 interrupt
failure)

4. KPALV.CMD - Keep-Alive Ceased

5. TIMEO.CMD - Protocol Timeout

6. FMPAR.CMD - Clock Error Stop - Fast Memory Parity Error

7. CRAM.CMD - Clock Error Stop - CRAM Parity Error

8. DRAM.CMD - Clock Error Stop - DRAM Parity Error

9. HALT.CMD - KL Halted

The information gathered by these command files is logged to the
PARSER.LOG and, when the KL returns to a running state,
information is transferred to ERROR.SYS by the task LOGXFR.

file
the

The following examples show the format of a few samples of KLERR
output. See Sections 8.2 and 8.3 for descriptions of the functions
and bit assignments of the various DTE20 registers.,

9-2

ERROR DETECTION AND LOGGING

9.3.1.1 FMPAR Example - The following report was
FMPAR.CMD.

FRONT END DEVICE REPORT "KLERR" TYPE 205

generated by

LOGGED ON 29-JUN-83 21:17:17 MONITOR UPTIME WAS 0 DAY(S) 0:0:44
DETECTED ON SYSTEM # 1042
RECORD SEQUENCE NUMBER: 27398

Active error bits:
CLK1-M8526-CLK ERROR STOP H
CLK3-M8526-CLK ERROR L
CLK3-M8526-CLK FM PAR ERR H
CON5-M8525-CON MBOX WAIT L
MBZ1-M8537-MEM BUSY H

******* LOGGING STARTED 29-JUNE-83 20:58 ,RSX-20F YE15-04
OUTPUT DEVICES: TTY,LOG

KLE)! FAST MEMORY PARITY ERROR
KLE)CLEAR OUT TTY

OUTPUT DEVICES: LOG
KLE)WHAT HARDWARE

KLI0 SIN: 1042., MODEL B, 60. HERTZ
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLE)FREAD 100:177
FR 100/ 004377 012664
FR 101/ 000000 002600
FR 102/ 000013 410042
FR 103/ 000030 212020
FR 104/ 000000 022424
FR 105/ 000000 401461
FR 106/ 000000 200000
FR 107/ 000000 655602
FR 110/ 000003 021437
FR 111/ 002100 000000
FR 112/ 007760 050414
FR 113/ 000000 026607
FR 114/ 000426 001600
FR 115/ 001107 043202
FR 116/ 001400 032003
FR 117/ 001100 002000
FR 120/ 000000 066102
FR 121/ 000000 066061
FR 122/ 022200 000000
FR 123/ 000100 055132
FR 124/ 256004 000035
FR 125/ 256004 000035
FR 126/ 000000 000000
FR 127/ 000100 055132
FR 130/ 000072 000000
FR 131/ 010056 660000
FR 132/ 014060 360000
FR 133/ 000040 450000
FR 134/ 130064 444000
FR 135/ 120022 240000
FR 136/ 110050 604000
FR 137/ 002070 244000
FR 140/ 020405 010407
FR 141/ 010000 021006
FR 142/ 101210 000000

9-3

ERROR DETECTION AND LOGGING

FR 143/ 470000 000000
FR 144/ 020405 010407
FR 145/ 440000 021006
FR 146/ 041210 000000
FR 147/ 000000 000000
FR 150/ 000000 000000
FR 151/ 000001 000000
FR 152/ 000000 042104
FR 153/ 000024 042104
FR 154/ 000000 000000
FR 155/ 000001 010001
FR 156/ 000000 052524
FR 157/ 000024 042504
FR 160/ 211007 417402
FR 161/ 211005 276702
FR 162/ 211004 344036
FR 163/ 211000 000462
FR 164/ 211007 417276
FR 165/ 211004 276172
FR 166/ 211004 344766
FR 167/ 211000 000302
FR 170/ 360002 136372
FR 171/ 000040 625522
FR 172/ 105600 074634
FR 173/ 214502 275327
FR 174/ 103000 137164
FR 175/ 235600 167365
FR 176/ 000400 377347
FR 177/ 760200 523715
KLE)SAVE PC
KLE)E REGiE KL

PAR -- [EXAMINE] CFH - CAN'T FIND KL HALT LOOP
KLE)SWEEP

FM PARITY ERROR-(BLOCK:ADDR/DATA) 2:2/ 000100 055132

PAR -- [SWEEP] XTO - KL EXECUTE TIMED OUT
KLE)CLE OUT LOG

******* LOGGING FINISHED 29-JUNE-83 20:58

9-4

ERROR DETECTION AND LOGGING

9.3.1.2 DEX Example - The following report was generated by DEX.CMD.

FRONT END DEVICE REPORT "KLERR" TYPE 205

LOGGED ON 06-JUL-83 18:13:05 MONITOR UPTIME WAS 0 DAY(S) 0:0:57
DETECTED ON SYSTEM # 1042
RECORD SEQUENCE NUMBER: 35534

Active error bits:
APRI-M8539-APR MB PAR ERR IN H
APRI-M8539-APR SBUS ERR IN H
APR2-M8539-APR ANY EBOX ERR FLG H

******* LOGGING STARTED 6-JULY-83 18:06 ,RSX-20F YE15-04
OUTPUT DEVICES: TTY,LOG

KLE)! DEPOSIT/EXAMINE FAILURE
KLE)CLEAR OUT TTY

OUTPUT DEVICES: LOG
KLE)WHAT HARDWARE

KLI0 SIN: 1042., MODEL B, 60. HERTZ
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLE)E DTE
DLYCNT: 000000
DEXWD3: 177777
DEXWD2: 000000
DEXWD1: 000000

KLI0 DATA=OOOOOO 177777
TENAD1: 014000 TENAD2: 000455

ADDRESS SPACE=EPT
OPERATION=DEPOSIT
PROTECTION-RELOCATION IS OFF
KLI0 ADDRESS=455

TOI0BC: 010000 TOIIBC: 130000
TOI0AD: 070434 TOIIAD: 001314
TOI0DT: 000000 T011DT: 000400
DIAGl : 002600

KL IN RUN MODE
MAJOR STATE IS DEPOSIT-EXAMINE
MAJOR STATE IS TO-I0 TRANSFER

DIAG2 : 000000
STATUS: 012504

RAM IS ZEROS
DEX WORD 1
11 REQUESTED 10 INTERRUPT
E BUFFER SELECT
DEPOSIT-EXAMINE DONE

DIAG3 : 030000
KLE)DE ELE 174432=100
174432\ 040000
KLE)FX 0
KLE)FREAD 100:177
FR 100/ 010000 013044
FR 101/ 000000 003000
FR 102/ 000104 011226
FR 103/ 000020 213224
FR 104/ 000000 023020
FR 105/ 000000 000001
FR 106/ 000000 205420
FR 107/ 000000 654642
FR 110/ 004433 003476

9-5

ERROR DETECTION AND LOGGING

FR 111/ 000101 055263
FR 112/ 007760 014451
FR 113/ 000000 056411
FR 114/ 000017 001434
FR 115/ 001107 063202
FR 116/ 001500 072003
FR 117/ 001100 002000
FR 120/ 777776 300473
FR 121/ 777630 047316
FR 122/ 000000 000000
FR 123/ 777630 047316
FR 124/ 000000 000000
FR 125/ 160000 000000
FR 126/ 160000 000000
FR 127/ 777776 300473
FR 130/ 000012 000000
FR 131/ 000021 660000
FR 132/ 012261 360000
FR 133/ 023705 454000
FR 134/ 130061 444000
FR 135/ 122032 244000
FR 136/ 110253 604000
FR 137/ 003774 244000
FR 140/ 640513 160501
FR 141/ 300004 000000
FR 142/ 121710 101010
FR 143/ 010410 130010
FR 144/ 640513 160501
FR 145/ 020004 000000
FR 146/ 641710 101010
FR 147/ 020410 130010
FR 150/ 000000 000000
FR 151/ 000001 042000
FR 152/ 000000 040000
FR 153/ 000004 042100
FR 154/ 000000 000001
FR 155/ 000001 042000
FR 156/ 000000 040000
FR 157/ 000024 042100
FR 160/ 401002 016024
FR 161/ 401006 276700
FR 162/ 401006 206004
FR 163/ 401000 000520
FR 164/ 401002 016120
FR 165/ 401006 276564
FR 166/ 401006 206014
FR 167/ 401000 000540
FR 170/ 100102 126722
FR 171/ 000040 735722
FR 172/ 003600 035220
FR 173/ 340002 237322
FR 174/ 112400 177664
FR 175/ 327620 167375
FR 176/ 000000 337365
FR 177/ 760000 573305
KLE)SAVE PC
KLE)E REGiE KL
AD/ 000000 000001
ADX/ 000000 000001
AR/ 000000 000000
ARX/ 000000 000000
BR/ 000000 000000
BRX/ 000000 000000
EBUS/ 401000 000540

9-6

ERROR DETECTION AND LOGGING

FM/ 000000 000000
MQ/ 046200 000000
PC/ 565201
PC/ 565201
VMA/ 565201
PI ACTIVE: OFF, PION: 000, PI HOLD: 020, PI GEN: 000

OVF CYO CYl FOV BIS USR UIO LIP AFI ATl ATO FUF NDV
X

KLE)E VMAiE VMAH
VMA/ 565201
VMAH/ 565201
KLE)SAVE AC-BLOCK
KLE)ST MIC
KLE)SET AC-BLOCK 5

AC-BLOCK: 5
KLE)XCT 700400 OiE 0
0/ 000000 000100
KLE)XCT 701240 OiE 0
0/ 000000 000003
KLE)XCT 701040 OiE 0
0/ 705000 000005
KLE)!
KLE)!ALL THE POSSIBLE SBUS DIAGS (CAN BE MADE SITE SPECIFIC)
KLE)!
KLE)!FOR DMA-20
KLE)!
KLE)DE 0=100000 0
0/ 705000 000005
KLE)XCT 700500 OiE 1
1/ 046440 005505
KLE)!
KLE)!FOR INTERNAL CORE
KLE)!
KLE)DE 0=0 0
0/ 100000 000000
KLE)DE 2=020000 0
2/ 000000 000000
KLE)DE 4=040000 0
4/ 000000 000000
KLE)DE 6=060000 0
6/ 000000 000000
KLE)XCT 700500 0
KLE)XCT 700500 2
KLE)XCT 700500 4
KLE)XCT 700500 6
KLE)E liE 3iE 5iE 7
1/ 000000 000000
3/ 000000 000000
5/ 000000 000000
7/ 000000 000000
KLE)!
KLE)!FOR MOS
KLE)!
KLE)DE 02=200000 0
2/ 020000 000000
KLE)DE 04=200000 1
4/ 040000 000000
KLE)DE 06=200000 2
6/ 060000 000000
KLE)XCT 700500 2
KLE)XCT 700500 4
KLE)XCT 700500 6
KLE)E 3iE 5;E 7
3/ 000000 000000

9-7

5/ 000000 000000
7/ 000000 000000
KLE)DE 10=220000 a
10/ 000000 000000
KLE)DE 12=220000 1
12/ 000000 000000
KLE)DE 14=220000 2
14/ 000000 000000
KLE)XCT 700500 10
KLE)XCT 700500 12
KLE)XCT 700500 14
KLE)E lliE 13;E 15
11/ ooooao 000000
13/ 000000 000000
15/ 000000 000000
KLE)RESTORE AC-BLOCK
KLE)CLE OUT LOG

ERROR DETECTION AND LOGGING

******* LOGGING FINISHED 6-JULY-83 18:07

KLI ? C-RAM DIFFERS AT 2241
KLI BAD 052164 030002 100003 122400 000040 22
KLI GOOD 052164 030002 100003 122410 000040 22
KLI XOR 000000 000000 000000 000010 000000 00

9-8

ERROR DETECTION AND LOGGING

9.3.1.3 HALT Example - The following report
HALT.CMD.

FRONT END DEVICE REPORT "KLERR" TYPE 205

was generated by

LOGGED ON 5-Jul-83 15:08~21 MONITOR UPTIME WAS 0 DAY(S) 0:0:15
DETECTED ON SYSTEM # 2102
RECORD SEQUENCE NUMBER: 8

No error bits are active

******* LOGGING STARTED 5-JULY-83 15:05 ,RSX-20F YB15-04
OUTPUT DEVICES: TTY,LOG

KLE>! KL HALTED
KLE>CLEAR OUT TTY

OUTPUT DEVICES: LOG
KLE>WHAT HARDWARE

KLI0 SIN: 2102., MODEL B, 60. HERTZ
MOS MASTER OSCILLATOR
EXTENDED ADDRESSING
INTERNAL CHANNELS
CACHE

KLE>FX 0
KLE>FREAD 100:177
FR 100/ 000177 602644
FR 101/ 000000 002600
FR 102/ 000013 410222
FR 103/ 000020 212020
FR 104/ 000000 032434
FR 105/ 000000 001421
FR 106/ 000000 640000
FR 107/ 000000 715642
FR 110/ 000003 064607
FR 111/ 000104 000000
FR 112/ 007740 000000
FR 113/ 000000 000000
FR 114/ 000041 000051
FR 115/ 001107 060144
FR 116/ 001400 012003
FR 117/ 001100 002000
FR 120/ 000000 000000
FR 121/ 000000 000000
FR 122/ 001100 002000
FR 123/ 000000 271232
FR 124/ 002000 020000
FR 125/ 000000 000000
FR 126/ 000000 000000
FR 127/ 000000 000000
FR 130/ 000002 000000
FR 131/ 070054 060000
FR 132/ 014064 760000
FR 133/ 000020 414000
FR 134/ 130066 404003
FR 135/ 120024 224003
FR 136/ 104010 604003
FR 137/ 002000 264003
FR 140/ 760505 000103
FR 141/ 100201 000001
FR 142/ 310000 001010
FR 143/ 501212 030407
FR 144/ 650505 000103
FR 145/ 500201 000001

9-9

ERROR DETECTION AND LOGGING

FR 146/ 540000 001010
FR 147/ 101212 030407
FR 150/ 000000 002000
FR 151/ 000000 042000
FR 152/ 000100 000104
FR 153/ 000124 002004
FR 154/ 000000 002400
FR 155/ 000000 052400
FR 156/ 000000 000125
FR 157/ 000024 002405
FR 160/ 001003 016025
FR 161/ 001006 276701
FR 162/ 001006 204005
FR 163/ 001000 000521
FR 164/ 001003 016321
FR 165/ 001006 276761
FR 166/ 001006 204015
FR 167/ 001000 000241
FR 170/ 360100 126722
FR 171/ 000000 735722
FR 172/ 111600 137230
FR 173/ 200002 377322
FR 174/ 176000 177664
FR 175/ 273420 127365
FR 176/ 000400 337375
FR 177/ 760040 533305
KLE)SAVE PC
KLE)E REGiE KL
AD/ 000000 000000
ADX/ 000000 000000
AR/ 000000 000000
ARX/ 000000 000000
BR/ 000000 000000
BRX/ 002000 020000
EBUS/ 001000 000241
FM/ 000000 271232
MQ/ 001100 002000
PC/ 25514
PC/ 25514
VMA/ 25514
PI ACTIVE: OFF, PION: 177, PI HOLD: 000, PI GEN:

OVF .CYO CY1
x X

KLE)E VMAiE VMAH
VMA/ 25514
VMAH/ 25514
KLE)FX 1
KLE)E 0;17

FOV

0/ 000000 000000
1/ 000000 000000
2/ 720200 020000
3/ 000000 271152
4/ 000000 271232
5/ 000000 052636
6/ 000000 000000
7/ 000000 000216
10/ 000000 000003
11/ 000000 000140
12/ 000000 613316
13/ 000000 613316
14/ 000000 000000
15/ 777650 401226
16/ 200000 000000
17/ 777731 245527

BIS USR UIO LIP AFI AT1

9-10

000
ATO FUF NDV

ERROR DETECTION AND LOGGING

KLE)SAVE AC-BLOCK
KLE)SET AC-BLOCK 5

AC-BLOCK: 5
KLE)XCT 700400 O;E 0
0/ 002000 025514
KLE)XCT 701240 O;E 0
0/ 000000 060166
KLE)XCT 701040 O;E 0
0/ 705001 002666
KLE)!
KLE)!ALL POSSIBLE SBUS DIAGS(CAN BE MADE SITE SPECIFIC)
KLE)!
KLE)lFOR DMA
KLE)!
KLE)DE 0=100000 0
0/ 705001 002666
KLE)XCT 700500 O;E 1
1/ 000000 000000
KLE)!
KLE)!INTERNAL CORE
KLE)!
KLE)DE 0=0 0
0/ 100000 000000
KLE)DE 2=020000 0
2/ 000000 000000
KLE)DE 4=040000 0
4/ 000000 000000
KLE)DE 6=060000 0
6/ 000000 000000
KLE)XCT 700500 0
KLE)XCT 700500 2
KLE)XCT 700500 4
KLE)XCT 700500 6
KLE)E l;E 3;E 5;E 7
1/ 000000 000000
3/ 000000 000000
5/ 000000 000000
7/ 000000 000000
KLE)!
KLE)!MOS CONTROLLER 10
KLE)!
KLE)DE 2=200000 0
2/ 020000 000000
KLE)DE 4=200000 1
4/ 040000 000000
KLE)DE 6=200000 2
6/ 060000 000000
KLE)XCT 700500 2
KLE)XCT 700500 4
KLE)XCT 700500 6
KLE)E 3;E 5;E 7
3/ 007040 025514
5/ 000500 001000
7/ 002100 000400
KLE)!MOS CONTROLLER 11
KLE)DE 10=220000 0
10/ 000000 000000
KLE)DE 12=220000 1
12/ 000000 000000
KLE)DE 14=220000 2
14/ 000000 000000
KLE)XCT 700500 10
KLE)XCT 700500 12
KLE)XCT 700500 14

9-11

KLE)E lliE 13iE 15
11/ 006144 436367
13/ 000500 001000
15/ 016120 001400
KLE)SET AC-BLOCK a

AC-BLOCK: a
KLE)E Oi17
0/ 000000 000000
1/ 000000 000000
2/ 720200 020000
3/ 000000 271152
4/ 000000 271232
5/ 000000 052636
6/ 000000 000000
7/ 000000 000216
10/ 000000 000003
11/ 000000 000140
12/ 000000 613316
13/ 000000 613316
14/ 000000 000000
15/ 777650 401226
16/ 200000 000000
17/ 777731 245527
KLE)SET AC-BLOCK 1

AC-BLOCK: 1
KLE)E Oi17
0/ 000000 000000
1/ 000700 011414
2/ 540000 000006
3/ 000000 000000
4/ 000000 234622
5/ 000000 000140
6/ 000000 000000
7/ 000000 000025
10/ 331200 410000
11/ 000000 000140
12/ 000000 613316
13/ 000000 613316
14/ 000000 000000
15/ 777405 402404
16/ 000000 000000
17/ 777610 007532
KLE)SET AC-BLOCK 2

AC-BLOCK: 2
KLE)E Oi17
0/ 000000 000000
1/ 000000 000000
2/ 000000 000000
3/ 000000 000000
4/ 000000 000000
5/ 000000 000000
6/ 000000 000000
7/ 000000 000000
10/ 000000 000000
11/ 000000 000000
12/ 000000 000000
13/ 000000 000000
14/ 000000 000000
15/ 000000 000000
16/ 000000 000000
17/ 000000 000000
KLE)SET AC-BLOCK 3

AC-BLOCK: 3
KLE)E Oi17

ERROR DETECTION AND LOGGING

9-12

0/ 000000 000000
1/ 000000 000000
2/ 000000 000000
3/ 000000 000000
4/ 000000 000000
5/ 000000 000000
6/ 000000 000000
7/ 000000 000000
10/ 000000 000000
11/ 000000 000000
12/ 000000 000000
13/ 000000 000000
14/ 000000 000000
15/ 000000 000000
16/ 000000 000000
17/ 000000 000000
KLE)SET AC-BLOCK 4

AC-BLOCK: 4
KLE)E 0;17
0/ 000000 000000
1/ 000000 000000
2/ 000000 000000
3/ 000000 000000
4/ 000000 000000
5/ 000000 000000
6/ 000000 000000
7/ 000000 000000
10/ 000000 000000
11/ 000000 000000
12/ 000000 000000
13/ 000000 000000
14/ 000000 000000
15/ 000000 000000
16/ 000000 000000
17/ 000000 000000
KLE)SET AC-BLOCK 6

AC-BLOCK: 6
KLE)E 0;17
0/ 000770 400007
1/ 234000 002160
2/ 000000 531000
3/ 000000 205702
4/ 000000 000000
5/ 101500 126241
6/ 000000 000000
7/ 000000 000000
10/ 000000 126241
11/ 000000 000000
12/ 001000 000241
13/ 000000 000000
14/ 000000 000000
15/ 000000 000000
16/ 777733 245531
17/ 777733 245531
KLE)SET AC-BLOCK 7

AC-BLOCK: 7
KLE)E O;E l;E 2
0/ 000000 000000
1/ 000000 000000
2/ 000000 000000
KLE)SET AC-BLOCK 5

AC-BLOCK: 5
KLE)!

ERROR DETECTION AND LOGGING

KLE)!NOW TO GET THE PAGE FAIL AND UUO STUFF

9-13

ERROR DETECTION AND LOGGING

KLE>!
KLE>DE 10=0 370000
10/ 220000 000000
KLE>XCT 200610 500iE 14
14/ 220000 000002
KLE>XCT 200610 501iE 14
14/ 220000 000002
KLE>XCT 200610 502iE 14
14/ 220000 000002
KLE>XCT 200610 424iE 14
14/ 220000 000002
KLE>XCT 200610 425iE 14
14/ 220000 000002
KLE>XCT 200610 426;E 14
14/ 220000 000002
KLE>XCT 200610 427iE 14
14/ 220000 000002
KLE>!CHANNEL LOGOUT
KLE>XCT 701240 17iE 17
17/ 000000 060166
KLE>XCT 242740 000011!LSH 17,11
KLE>XCT 550040 17!HRRZ 1,17
KLE>XCT 200001 OOOOiE 0
0/ 000000 030366
KLE>XCT 200001 0001iE 0
0/ 000000 025375
KLE>XCT 200001 0002iE 0
0/ 000500 001000
KLE>XCT 200001 0003iE 0
0/ 200000 000002
KLE>XCT 200001 0004iE 0
0/ 002100 000400
KLE>XCT 200001 0005iE 0
0/ 000000 023362
KLE>XCT 200001 0006iE 0
0/ 000000 066041
KLE>XCT 200001 0007iE 0
0/ 200000 164375
KLE>XCT 200001 0010iE 0
0/ 500000 164376
KLE>XCT 200001 0011iE 0
0/ 6000D7 725000
KLE>XCT 200001 0012iE 0
0/ 254340 720312
KLE>XCT 200001 0013iE 0
0/ 200000 165375
KLE>XCT 200001 0014iE 0
0/ 500000 165376
KLE>XCT 200001 0015iE 0
0/ 600002 567000
KLE>XCT 200001 0016iE 0
0/ 254340 721312
KLE>XCT 200001 0017iE 0
0/ 200000 273322
KLE>XCT 200001 0020iE 0
0/ 500000 273323
KLE>XCT 2DOOOI 0021iE 0
0/ 600010 254000
KLE>XCT 200001 0022iE 0
0/ 254340 721746
KLE>XCT 200001 0023iE 0
0/ 200000 276573
KLE>XCT 200001 0024iE 0
0/ 500000 276574

9-14

ERROR DETECTION AND LOGGING

KLE>XCT 200001 0025;E 0
0/ 600004 446400
KLE>XCT 200001 0026iE 0
0/ 254340 722642
KLE>XCT 200001 0027iE 0
0/ 000000 000000
KLE>XCT 200001 0030iE 0
0/ 000000 000000
KLE>XCT 200001 0031iE 0
0/ 000000 000000
KLE>XCT 200001 0032iE 0
0/ 000000 000000
KLE>XCT 200001 0033iE 0
0/ 200000 303642
KLE>XCT 200001 0034iE 0
0/ 500000 303643
KLE>XCT 200001 0035iE 0
0/ 600000 303650
KLE>XCT 200001 0036iE 0
0/ 254340 723056
KLE>XCT 200001 0037iE 0
0/ 000000 000000
KLE>!
KLE>RESTORE AC-BLOCK
KLE>CLE OUT LOG

******* LOGGING FINISHED 5-JULY-83 15:06

9-15

ERROR DETECTION AND LOGGING

9.3.2 PDP-ll Error Logging

Upon encountering a serious PDP-II error, the front end stops and
waits for the KL to reload it. Before the front end dies, however, it
prints the following message on the CTY:

II-HALT
<code>

where <code> is a 3-character error code indicating why the front end
crashed. Refer to Appendix A for a list of RSX-20F stop codes.

Whenever RSX-20F discovers a condition that it
enough to cause a crash, it executes an lOT
3-character crash code following the lOT is picked
routine.

considers serious
instruction. The

up by the crash

For a disk-based PDP-II operating system, the lOT instruction is used
for error reporting. The instruction first executes a trap vector at
location 20. From there it dispatches to COMTRP, then to IOTTRP which
halts the PDP-II, trying to save as much information from the
registers as it can.

The lOT routine stores the crash code and parity-error registers in
locations 0 to 3 of PDP-II memory. This information is readily
available in a dump listing. For example, an lOT instruction followed
by ASCIZ IDTSI would result in the following:

+---------------------+
TOO

!---------------------!
! Par. Error! B 2
+---------------------+

When looking at the source listings of RSX-20F, notice that a macro is
used instead of the lOT instruction. The macro is .CRASH and expands
to the lOT plus ASCIZ crash code as stated above.

9.3.3 TKTN MESSAGES

TKTN prints a message before scheduling the KLERR task. A list of the
possible messages and their causes follows.

CLOCK ERROR STOP

This is a hardware error.
error. If the error
Representative.

E-BUS PARITY ERROR

This is a hardware error.
Service Representative.

FAULT CONTINUATION TIMEOUT

It could be caused by
persists, call your

an FM
Field

parity
Service

If it persists, call your Field

The KL failed to ring the II's doorbell within 5 seconds after
performing the XCT 72 for fault continuation.

9-16

ERROR DETECTION AND LOGGING

KEEP ALIVE CEASED

This can be either a hardware or software problem. Reload the
system. If the problem persists, call your Software Support
Specialist.

KL HALTED

The KL is in a halt loop. If the reload flag is set, the front
end reloads the KL.

PI LEVEL 0 INTERRUPT FAILURE (DEX)

This is a hardware problem. If it persists, call your Field
Service Representative.

POWER-FAlL-RESTART

TKTN prints this message on a reload following a power fail.

PROTOCOL TIME OUT

TKTN prints this message when the protocol being used switches
from primary protocol to protocol pause. If primary protocol
does not return within 30 seconds, the system crashes and is
reloaded.

RE-BOOT REQUESTED

The TOPS-IO or TOPS-20 monitor has requested a reload. The front
end reloads the system.

9.4 LOGXFR

LOGXFR is not run immediately after KLERR or KLINIT. The front end
must wait until TOPS-IO/TOPS-20 has been loaded and is running so that
it can transfer the PARSER. LOG file. LOGXFR runs after the SETSPD
task in the front end runs. SETSPD runs when the KL has just been
reloaded and wants information about line speeds from the front end.
(Note that this SETSPD is not the SETSPD that runs on TOPS-20.) The
last thing that SETSPD does is to make a request for LOGXFR to run.
LOGXFR transfers the log file, if it exists, to TOPS-IO/TOPS-20
through the DTE20. TOPS-IO or TOPS-20 then appends the information to
ERROR.SYS, the master error file. Finally, PARSER.LOG is deleted from
the front-end file area. Any errors detected by LOGXFR will be
preceded by

XFR --

and a one-line explanation of the error.

9-17

CHAPTER 10

ERROR DEBUGGING

When the front end crashes, the bootstrap ROM passes a dump file to
the KL (assuming the KL is running at the time). Much information can
be extracted from this file, given the right tools. This chapter
explains what data you can get from a dump file using DDTll.

Section 10.1 describes DDTll. Once you are familiar with DDTII, you
can proceed to examine locations in the dump file and attempt to
determine the cause of the crash. Although much of the data in a dump
file is rather obscure, several locations contain data that is almost
always useful. This chapter identifies these locations and explains
the meaning of the data they contain. The chapter also lists all
information in the Front End Status Blocke

10.1 USING DDT11

DDTll, which runs on both TOPS-IO and TOPS-20, is a tool for
symbolically debugging dumps taken of front-end crashes. The program
can also be used to deposit and examine data (with symbols) in the
physical front-end memory, using the DTE20 and the Primary Protocol
deposit and examine functions. DDTII can display PDP-II memory
locations as instructions, numbers in a given radix, or bytes of a
given size. DTTII can accept user-defined symbols that are either
defined at a terminal or read from a .MAP or .CRF listing. In
addition, DDTII has an initial symbol table of PDP-II instructions.

DDTll reads a binary dump file of PDP-II core. Normally, the PDP-II's
bootstrap ROM that sends this file across the DTE20.

TOPS-IO writes the dump file onto its own disk as XPN:DTEDcO.ext,
where "c" is the CPU number of the RSX-20F front end being dumped by
DTELDR (running with the /AUTO switch) and ext is either BIN or Bnn,
where nn is a sequentially assigned number in the range 00 to 99.
TOPS-20 writes the dump file onto its own disk as
PS:<SYSTEM>ODMPlI.BIN. The KL must be running for the front-end to be
dumped.

Once TOPS-lO or TOPS-20 has written the dump file, you need not
transfer the file to another directory to save it. This is because
TOPS-IO increments the file's extension from .BIN to .B99, and
TOPS-20's directory PS:<SYSTEM> has an infinite generation-retention
count: TOPS-20 never deletes old copies of files in PS:<SYSTEM>
without an explicit command to do so.

To use DDTII to read the dump file, enter the name of the file in
response to the DDTII Input: prompt and use the /DTELDR switch.

10-1

ERROR DEBUGGING

The following example demonstrates loading the RSX-20F symbol file and
saving a copy of DDTll that includes the symbols. By using this
technique you can later start DDT with the symbols already loaded.
Lower-case letters denote information typed by the user.

Example:

.r ddtll

DDTll 7E(114)

Input: RSX-20F.map/fesym
[56p core]
[57p core]
[58p core]
[59p core]
[60p core]
[6lp core]
[62p core]
[63p core]
[64p core]
[65p core]
[66p core]
%Loaded 1243 symbols.

Input: "z

EXIT

.save ve1506

.run ve1506

iname of symbol file
isymbols now get loaded

iback to the monitor

isave a copy of DDTll with
isymbols using the version
iof RSX-20F as the file name
inow run the RSX-20F version of
iDDTll

DDTll 7E(114) = VE1506 /SYMBOLS=DSK:RSX-20F.MAP 11:43 l3-July-83

Input: xpn:dtedOO.bin/dteldr
[59p core]
[60p core]
[96p core]
highest location is 157777

iload dump fil-=

iuser performs task

The following is a brief description of some of the commands available
in DDTll. See the TOPS-10/TOPS-20 DDTll Manual for a more detailed
description of the commands.

Command

TAB

LF

CR

CTRL-U

Effect

Causes the current location to be closed. The current
location is then set to the current value, and the new
location is opened, as with a slash command.

Examines the next location.

Closes the current location.

Aborts the current expression.

10-2

Command

SPACE

*

+

/

\

DELETE

ERROR DEBUGGING

Effect

Ends the current expression, and adds it to the current
value.

Ends the current expression, and sets the current value to
the logical OR of the current value and the current
expression.

Examines the previous location.

Ends the current expression, and mUltiplies it by the
current value.

Ends the current expression, and adds it to the current
value.

Ends the current expression, and subtracts it from the
current value.

Contains the value of the current location.

Makes the current location the current value, opens it, and
prints the contents.

Following an ASCII string of six or fewer characters,
defines the ASCII string as a symbol whose value is to be
made the current value.

Ends the current expression, and types its value as a
number in the current radix.

Ends the current expression, and examines its value as a
symbolic expression. The location counter is not changed.

Deletes the most recently typed character.

ALT-MODE Commands

Command

$A

$nB

$nC

$D

$K

$nR

$S

$nT

Effect

Temporarily sets address mode.

Temporarily sets byte mode.

Temporarily sets constant mode.

Dumps PDP-II memory to output device.
is [start-address]<[end address]>$D.
file specification.

The correct format
Asks for the output

Suppresses the previous typed symbol.

Temporarily sets radix (values can be 2 through 16).

Temporarily sets output mode to symbolic.

Temporarily sets output mode to bytes. The
specified by the number that precedes
Altmode) .

10-3

byte size is
the escape (or

ERROR DEBUGGING

Command Effect

$V

$Y

Monitors a location and redisplays it if it changes.

Asks for a log file and a command file, then executes the
command file.

$$A Permanently sets address mode.

$$nB Permanently sets byte mode.

$$nC Permanently sets constant mode.

$$K Removes the previous symbol from the symbol table.

$$nR Permanently sets the radix.

$$S Permanently sets symbolic mode.

$$nT Permanently sets ASCII mode.

10.2 INTERPRETING AN RSX-20F DUMP

The RSX-20F dump file, <SYSTEM>ODMPll.BIN or XPN:DTEDOO.BIN, contains
useful information for those investigating a front-end crash. You can
read either of these files with the symbolic debugger DDTll. By
examining various locations in the dump file and comparing them with
expected values and with other locations, you can often determine why
the front-end crash occurred.

However, crashes occur for innumerable reasons and in many different
environments. Thus, it is not possible to give a simple formula that
will take the dump file as input and give as output the answer to the
question "Why did the front end crash? ". You must exam i ne all aspects
of the situation, many of them not symbolized in the dump file. For
example, some installations have had problems that, when investigated,
were found to be caused by poor wiring schema - lines connecting vital
pieces of hardware were longer than they should have been, and the
noise on the line confused all concerned. This problem is just one of
many that could cause RSX-20F to crash without having anything to do
with the software itself. It emphasizes the fact that all aspects of
the environment must be considered in attempting to determine the root
of the problem.

The following points should be kept in mind while you examine crash
dumps from RSX-20F.

1. If the problem was severe, random locations in memory may
have been erased or overwritten.

2. Not all situations that are seen by humans as problems result
in RSX-20F crashing. Therefore, RSX-20F may not produce the
dump you need to determine the problem.

3. Because PDP-II stacks use autodecrement mode, the stack grows
toward lower core, not highe~.

10-4

ERROR DEBUGGING

4. The PDP-II low-order byte is the right-hand byte, not the
left-hand one.

5. Many times hardware problems masquerade as software problems.
Something that seems to have been caused by software is often
found to be a subtle manifestation of a hardware difficulty.

19.2.1 Useful Data in Dump Files

Although each crash is different from another, if only because the
environment is different, there are some data that you will always
wish to have before attempting to fix blame for the crash. This
includes such data as the crash code, the task that was running at the
time of the crash, and the last instruction to execute before the
crash. This section explains how to obtain this useful data.

When you examine a dump file, you should first find out what the crash
code was. The crash code is a three-letter code that identifies the
type of error RSX-20F detected when it crashed. The code is always at
locations 0 and 2 in the dump file. If no readable code is in these
locations, RSX-20F did not have control over the crash; the PDP-II may
have been halted with the HALT switch, or there may have been a
Keep-Alive-Cease error, for example.

At this point you may wish to make sure that the version of RSX-20F
you are using is consistent with the version of the symbol file you
loaded into DDTII. You can verify this by checking the locations
.VERNO, .VERNO+2, .VERNO+4, and .VERNO+6. These locations contain
data of the form Vxyy-zz, where x is either A for 1080/1090s, E for
1091/1095s, or B for TOPS-20, and yy and zz are the version and edit
numbers, respectively.

You can find out which task was runnirig at the time of the crash by
examining the location .CRTSK. This location points to the ATL node
of the current task. When you have opened .CRTSK, you can use the
<TAB) command in DDTII to open the location to which .CRTSK points.
The response from DDTll includes a symbolic address that is the symbol
used internally by RSX-20F to name a task.

You can determine the last instruction to execute before the crash by
examining the location SPSAV. This location contains a copy of the
stack pointer at the time of the crash. Since the PS (Processor
Status word) and PC (Program Counter) are stored on the stack at the
time of a crash r you can find out to which instruction the PC pointed.
(Of course, the last instruction to execute would be the one previous
to that pointed to by the stacked PC •.) Once you have opened SPSAV, you
can use the <TAB) command to open the address pointed to by SPSAV.
This address will be the top word in the stack. If SPSAV is zero, the
crash was caused by a Keep-Alive-Cease. If it is not zero, and the
crash code is not a T04, FTA, RES, BPT, or DTD, the top three words on
the stack will be R5, the PC, and the PS, in that order. If the crash
code is a T04, FTA, RES, BPT or DTD, and SPSAV is not zero, the
fourth, fifth, and sixth words will be R5, the PC, and the PS,
respectively. Subtracting two from the address contained in the PC
gives you the address of the last instruction to execute. You can
also find other PSiS and PCls further down the stack that were saved
earlier. This data can help you determine the environment prior to
the crash; you must be careful, however, in using the data, because
random data can sometimes appear similar to a saved copy of the PS and
PC.

10-5 April 1986

ERROR DEBUGGING

You may wish to examine the PDP-II registers and the DTE20 registers.
The PDP-II registers are stored in locations 40 through 56 (RO at 40,
R7 at 56). Since R6 (at location 54) is the hardware stack pointer,
it points to the top of the stack at all times. Note that R7 almost
always contains the same address, because it is pointing to ROM code.
The DTE20 registers are stored in locations 130 through 156.

One of the most frequent reasons for RSX-20F crashing is the lack of
sufficient buffer space. This causes crashes of the B03 type.
RSX-20F uses three areas for storage: the Free Pool, the Big Buffer,
and the Node Pool. The Free Pool runs out of space the fastest
because it is used the most frequently (it holds TTY thread lists and
LPT thread lists). When looking at any of these areas, the questions
you should try to answer are:

1. How much space is left in the buffer?

2. How fragmented is the space that is left?

3. Are all the pointers pointing to the correct places?

4. Is the count of free space an accurate reprE~sentation of the
state of the buffer?

The initial pointers to each of these areas follows.

Free Pool

Big Buffer

Node Pool

.FREPL is the pointer to the first free chunk of
storage space.
.FREPL+2 is the tally of the free space remaining in
this area.

.BGBUF is the pointer to the first free chunk of
storage space.
.BGBUF+2 is the tally of the free spclce remaining in
this area •

• POLLH is the pointer to the first free node in the
doubly-linked queue •
• POLLH+2 is the pointer to the last node in the queue.

The queues, both TO-IO and TO-II, can yield some hints on the cause of
the crash, especially in cases such as buffer overflows where the
queues may have used up all the buffer space. The TO-IO queue pointer
(TOIOQ) points to itself when the TO-IO queue is empty, whereas the
TO-II queue pointer (TOIIQ) contains zero if the queue is empty.
Thus, in order to examine the entire TO-IO queue, you open the
location TOIOQ and use the <TAB> command until the contents of the
location you open is TOIOQ. To examine the entire TO-II queue, you
open the location TOIIQ and use the <TAB> command until the contents
of the location you open is zero.

10.2.2 Sample Dump Analysis

In the following dump analysis, a sample RSX-20F dump is examined to
determine what caused the crash. The dump has been produced by
aggravating a known RSX-20F weakness, which is the lack of free space.
A privileged program doing repeated Send-aIls can easily fill up all
the available space and cause buffer overflows, because the Send-all
message must be put into the thread list of every active terminal.

10-6

ERROR DEBUGGING

The sample analysis below assumes that a copy of DDTll (called VAl341)
has been saved with the symbol file already loaded into it. The first
thing to do after starting the DDTll program is to determine the crash
code.

@run va134l

DDTII 7E(l14) = VA1341 /SYMBOLS=DSK:RSX-20F.MAP 11:43 13-July-83

Input: xpn:dtedOO.bin/dteldr
[59p core]
[60p core]
[96p core]
highest location is 157777

$$3T 0/ B02

The stopcode is B02, buffer overflow, which is produced by the DTE20
device driver when it cannot find Free Pool space for a TO-II indirect
transfer. Since we know this much about the cause of the crash, there
is no reason to find out the task that was running or the last
instruction executed. Therefore, the next step in the dump analysis
is to examine the Free Pool.

$$A
.FREPL/ 65664
.FREPL+2/ QI.VER =300
.FREPL/ 65664
65664/ 70674
70674/ 72234
72234/ 72474
72474/ 73034
73034/ 75074
75074/ 0
65664/ 70674
65666/ PATSIZ =40
70676/ PATSIZ =40
72236/ PATSIZ =40
72476/ PATSIZ =40
73036/ PATSIZ =40
75076/ PATSIZ =40

Thus we can see that the Free Pool has only 300 remaining bytes in six
sections, each section being forty bytes long (or 20 words). Indirect
transfers need more contiguous space than is available in the Free
Pool. Since we now know that the Free Pool has run out of space while
the system was attempting to do an indirect transfer, we can surmise
that the indirect transfer may well have been a Send-all (especially
since we know that Send-aIls can create problems for RSX-20F). Thus,
we proceed to examine the Send-all buffers. The location .SNDLP
points to the Send-all buffer in use, .SNDBF is the Send-all ring
buffer pointer, .SNDCN is the terminal count for a pending Send-all,
and .CRSND is the pointer to the current Send-all node •

• SNDLP/ DR.03
.SNDBF/ 66574
.SNDBF+4/
.SNDCN/ DR.03
.SNDCN+4/
.CRSND/ 0

=3
.SNDBF+2/ 66774
67074 .SNDBF+6/ 0
=3 .SNDCN+2/ DR.03
DR.03 =3 .SNDCN+6/

10-7

=3
o

ERROR DEBUGGING

As we can tell from the three words of nonzero data at location
.SNDBF, there are three ring buffers in use, which is the maximum •
• SNDCN (and the following locations) tell us that three terminals have
yet to empty the buffers. The queued protocol task is therefore
unable to accept further Send-all messages from the KL. Thus, a
logical next step would be to check the state of the TO-l1 queue.

T011Q/
67274/
67374/
67474/
67574/
67674/
67774/
70074/
70174/
70274/
70374/
70474/
70734/
66274/
70574/
71034/
71134/
71234/
71334/
66474/
71434/
71534/
71634/
71734/
72034/
66674/
72274/
72134/
72534/
72634/
65464/
73074/
72734/
73174/
73274/
72374/
73374/
73474/
73574/
73674/
73774/
74074/
74174/
74274/
74374/
74474/
74574/
65564/
74674/
66374/
75134/
75234/
75474/
75574/
74774/
75674/
TOI0Q/

67274
67374
67474
67574
67674
67774
70074
70174
70274
70374
70474
70734
66274
70574
71034
71134
71234
71334
66474
71434
71534
71634
71734
72034
66674
72274
72134
72534
72634
65464
73074
72734
73174
73274
72374
73374
73474
73574
73674
73774
74074
74174
74274
74374
74474
74574
65564
74674
66374
75134
75234
75474
75574
74774
75674
o
TOIOQ

10-8

ERROR DEBUGGING

The TO-II queue is quite full (since all the Free Pool space is being
used for this queue). The TO-IO queue is empty.

We know that the Send-all service waits for a significant event when
it has filled the ring buffer. While the Send-all service waited, the
Free Pool ran out of space. However, the line printer and terminal
thread lists may be contributing to the problem if they are also
taking space from the Free Pool. Therefore, it would probably be a
good idea to check the state of these thread lists.

LPTBL/ AF.PP
LPTBL+2/
LPTBL+4/
DHTBL/ 0
DHTBL+2/
DHTBL+4/
DHTBL+6/
DHTBL+lO/
DHTBL+12/
DHTBL+14/
DHTBL+16/
DHTBL+20/
DHTBL+22/
DHTBL+24/
DHTBL+26/
DHTBL+30/
DHTBL+32/
DHTBL+34/
DHTBL+36/
DHTBL+40/
DHTBL+42/
DHTBL+44/
DHTBL+46/
DHTBL+50/
DHTBL+52/
DHTBL+54/
DHTBL+56/
DHTBL+60/
DHTBL+62/
DHTBL+64/
DHTBL+66/
DHTBL+70/
DHTBL+72/
DHTBL+74/
DHTBL+76/

Etc.

=200
175400
o

160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND
o
160020
TTYSP+16l
TT.SND

All the terminals and line printers have empty thread lists. Thus,
the Send-all service alone must be the cause of the crash. The final
step is to read the actual Send-all messages •

• SNDBF/
66574/
66576/
66600/
66606/
66614/
66622/
66630/
66636/
66644/

66574
o
CH.FOR
66606
THIS I
S A DA
TA COL
LECTIO
N TEST

PLE

=100
$$6T ./ <206>M3<0><377>3

10-9

66652/
66660/
66666/
67002/
67010/
67016/
67024/
67032/
67040/
67046/
67054/
67062/
67070/
67076/
67102/
67110/
67116/
67124/
67132/
67140/
67146/
67154/
67162/

ASE BE
PATIE

NT.<0><17><0>
3<0><377>3TH
IS IS
A DATA

COLLE
CTION
TEST.

PLEAS
E BE P
ATIENT
.<0>D<15>\N
@<0>FN3<0>
3<0><377>3TH
IS IS
A DATA

COLLE
CTION
TEST.

PLEAS
E BE P
ATIENT

ERROR DEBUGGING

66774/ <0><0>@<0><6>N

67074/ \N@<O>FN

The message that caused the crash when sent to all users was "This is
a data collection test. Please be patient".

10.2.3 Front End Status Block

The Front End Status Block contains all the data and status
information used by the Executive while operating. Thus, the block
brings together most of the information you need to determine what the
data in a crash dump file means. The following lists all information
contained in the Front End Status Block.

10-10

ADDRESS SIZE

001000 2

001002 4

001006 2

001010 4

001014 2

001016 2

001020 2

001022 4

001026 2

001030 2

001032 2

001034 2

001036 12

001050· 2

001052 2

001054 40

001114 2

NAME

ERROR DEBUGGING

FE STATUS BLOCK
RSX-20F VERSION 15-06

COMMON GLOBAL DATA

USE

.FESTB length of FE status block in words

.EXEND limits of front-end
word 1- base address of executive
word 2- high address of executive

.CRTSK pointer to ATL node of current task

.COMEF global common event flags (FLAGS 33-64)
word 2- flags 49 to 64

bit 9- (EF.FCP)fault continuation in progress
bit 10- (EF.CRI)comm region is invalid
bit 11- (EF.PFR)powerfail restart in progress
bit 12- (EF.RKP)KLINIK parameters received
bit 13- (EF.PR2)secondary protocol running
bit 14- (EF.CTC)control C bit
bit 15- (EF.PRl)primary protocol running

.SERFG Significant event flag
bit 0- (EV.SE)sig event to be recognized
bit 1- (EV.AS)power fail is required
bit 7- (EV.PF)power down has occured

.SEWFL Significant event wait flag
bit 0- (EV.SE)sig event to be recognized
bit 1- (EV.AS)power fail is required
bit 7- (EV.PF)power down has occured

SPSAV Save area for stack pointer during crash

PARSAV Save area for parity registers when parity error

.PFAIL Indicates power fail in progress if non-zero

.PFIOW Power fail recovery flag, set during power up

PWRXSP Buffer for stack pointer during power up

CROBAR Power-up crobar timer, power up attempts=6

.VERNO RSX-20F ASCII version number

.CKASS Clock AST address for current task

.PFASS Power fail AST address for current task

.MSIZE Memory size in 64 byte blocks (1600)

10-11

ADDRESS SIZE

001116 2

001120 2

001122 1

001123 1

001124 2

001126 2

001130 2

001132 2

001134 2

001136 2

001140 2

001142 2

001144 1

001145 1

001146 1

001147 1

NAME

FE Status Block
COMMON GLOBAL DATA

USE

EMTSTK SP saved during EMT execution

TRPASV Saved PS during EMT/trap execution

.NOERR Don't recognize KL errors if non-zero

.NOHLT Don't recognize KL halts if non-zero

.TKTN TKTN required if non-zero, checked by null task

.KLITK KLI requested, read by TKTN
bit 0- (KS.TSP)ten halted
bit 1- (KS.CES)clock error stop
bit 2- (KS.EPE)E box parity error
bit 3- (KS.DEX)deposit/examine error
bit 4- (KS.CST)keep alive stopped
bit 5- (KS.TRR)ten request's re-boot
bit 6- (KS.PFT)power fail restart
bit 7- (KS.PTO)protocol timeout

.KLERQ KL crash snapshot flag for PARSER
l=take snapshot
O=no snapshot

.KLIWD KLI word to determine boot parameters
bit 0- (KL.LRM) load RAMS
bit 1- (KL.CFM)configure memory
bit 2- (KL.LVB) load VBOOT
bit 3- (KL.VBN)VBOOT start at START+l
bit 4- (KL.VBD)dump monitor
bit 5- (KL.SPF)start at loc 70 (power fail)
bit 6- (KL.LCA)load cache
bit 7- (KL.SSC)start at loc 407 (system crash)
bit 8- (KL.CFL)if 0, configure from file
bit 9- (KL.KAC)keep alive ceased error
bit 1 0 - (K L • DE F) 0 per a tor r E! boo t from s wit c h e s
bit 11- (KL.REQ)KLINIT requested
bit 12- (KL.ABO)KLINIT canceled

.TICKS Unrecognized clock tick counter

.CLKSW Clock overflow switch

.DATE Front-End date valid flag

.YEAR Decimal year (1979)

.DAY Day of month

.MON Month of year

.DST Daylight savings time flag

.DOW Day of week index

10-12

ADDRESS SIZE

001150 4

001154 2

001156 2

001160 2

001162 2

001164 2

001166 2

001170 2

001172 1

001173 1

001174 2

001176 1

001177 1

001200 4

NAME

FE status Block
COMMON GLOBAL DATA

USE

.SSM Elapsed time in seconds since midnight

.TKPS Clock rate in jiffies

.SYUIC System UIC ([5,5])

.BTPRM Boot parameter from switch register
bit 0- (BP.SWR)switch register button pushed
bit 1-2- (BP.LDO,BP.LD1)boot options

O=auto deadstart entire system
l=deadstart RSX-20F only
2=reboot RSX-20F only
3=operator controlled start

bit 3-6- (BP.CSP)CTY speed if DH,1=DL,0=defau1t
bit 7- (BP.RP4)load from RP04/rp06
bit 8-10- (BP.UNT)boot unit or DH unit
bit 11-14- (BP.CLN)CTY line no. (within DH/DL)
bit 15- (BP.ERR) indefinite error load retry

.BTSCH Character saved for secondary protocol

.ACKAL Send acknowledge-all protocol message

.KLERW KLI word for error reporting by SETSPD

.FEMOD Front-End console mode flag for PARSER
1= (LG.OPR)operator
3= (LG.PRM)programmer
7= (LG.ALL)maintenance

.KLRLD KL automatic reload flag

.KLFCF KL Fault Continuation Flag

.KLFLG Flag for PARSER to indicate state of KL
bit 6- (KF.CES)c1ock error stop
bit 7- (KF.CON)KL continuable
bit 8- (KF.KLO) instruction mode
bit 9- (KF.BRM)burst mode
bit 10- (KF.SPM) single pulse EBOX mode
bit 11- (KF.SMC) single pulse MBOX mode
bit 12- (KF.SIM)sing1e instruction mode
bit 13- (KF.MRS)master reset flop set
bit 14- (KF.RUN)run flop on
bit 15- (KF.CLK)c1ock running

.KLCPU CPU Number +1 for warm restart
0= KL cannot do warm restart

.KLMON Code for monitor that is running (not currently used)
1=TOPS-I0
2=ITS
3=TENEX
4=TOPS-20

.KLMF2 Retry count for MF20 controllers (default is 1)

10-13

ADDRESS SIZE

001204 2

001206 2

001210 2

001212 4

001216 2

001220 4

001224 2

001226 6

001234 2

FE Status Block

KLINIK DATA BASE

NAME USE

.KLNPB KLINIK parameter block length (26)

.KLNBC Byte count for transfer (24)

.KLNFT KLINIK enable start time

.KLNFD KLINIK enable start date

.KLNTT KLINIK enable end time

.KLNTD KLINIK enable end date

.KLNMD KLINIK console mode
byte 0- console mode

1= (LG.OPR)operator
3= (LG.PRM)programmer
7= (LG.ALL)maintenance

byte 1- status
O=disabled
l=remote

-l=user

.KLNPW ASCII password for KLINIK

.KLNSW KLINIK line status
byte 0- line use

O=disabled
l=remote

-l=user
byte 1- current status

l=clear KLINIK, recall PARSER
2=report carrier loss
3=disconnect, recall PARSER
4=disconnect and exit

10-14

ADDRESS SIZE

001236 2

001240 2

001242 2

001244 12

FE Status Block

COMMUNICATIONS REGION DATA BASE

NAME USE

COMBSE Base of communication area

PRMEMN My processor number

DEPOF Deposit offset from examine

PROTBL Processor identification table
word 1- (DTENM)DTE addr to access this proc
word 2- (EMYN)addr to read from proc 0
word 3- (DMYN)addr to write to proc 0
word 4- (EHSG)addr from general
word 5- (EHSM)addr from specific

10-15

ADDRESS SIZE

001256 2

001.260 2

001262 2

001264 2

001266 2

001270 2

001272 2

001274 2

001276 2

001300 2

001302 2

001304 2

001306 2

001310 2

001312 2

001314 2

001316 2

001320 2

001322 2

001324 2

001326 6

001334 4

NAME

.CRQZ

.CPFN

.CPDV

FE status Block

QUEUED PROTOCOL DATA BASE

USE

Size of current TO-IO buffer

Function in current TO-I0 buffer

Device in current TO-IO buffer

.CRSZ Size left in current TO-IO buffer

.CRPB Pointer to open word in current TO-IO buffer

.CRHD Head of current TO-IO queue

.CRSB Pointer to current function/size in TO-I0 buffer

DTEMSK DTE device event flag mask

DTEADR DTE device indirect flag address

TOIINP pointer to current received node

TOIIHD count of bytes in this queue

TOl1FN Current received TO-II function code

TOIIDV Current received TO-II device number

TOIISP Space

TOIIFW First word of function

TOIIGW Guard word for DTE20 (-1)

TOIIAS Address save

TOIIBS Byte count of TO-II transfer saved

TOI0SZ Byte count of transfer

TOI0AS TO-I0 transfer address saved

STSTT TO-I0 status

TOI0Q Listhead for TO-I0 queue

10-16

FE Status Block

QUEUED PROTOCOL DATA BASE

ADDRESS SIZE NAME USE

001340 2 EQSZ TO-11 queue size

001342 2 TOIIQ Head of TO-l1 queue

001344 6 ST.ATI Status/scratch word for examine/deposit

001352 2 DEXST DEX done timeout

001354 2 DEXTM3 Deposit/examine word 3 for retry

001356 2 DEXTM2 Deposit/examine word 2 for retry

001360 2 DEXTMI Deposit/examine word 1 for retry

001362 2 .PRADR Address of pr iv ileged offset table entry

001364 2 .PRSTA Address of privileged DTE20 status (174434)

001366 2 .PRDTE Address of privileged DTE20 (174400)

001370 2 .PRDCT Doorbell counter for KLINIT

001372 1 .DXRTY DEX error processing flag
l=no error
O=retry succeeded

-l=retry failed

001373 1 • EBRTY EBUS parity error processing flag
l=no error
O=retry succeeded

-l=retry failed

001374 2 .EBPEQ Pointer to EBUS/DEX error snapshot queue

001376 2 .EBPEC Count of nodes in EBUS/DEX error queue

001400 1 • PRPSE Protocol pause flag
-l=pause state

O=no pause

001401 1 TOXQIP TO-I0 queue in progress

001402 2 .DTBLK Holds re-entry point to start blocked DTE
transfer

10-17

FE Status Block

KEEP ALIVE DATA BASE

ADDRESS SIZE NAME USE

001404 6 KPALO Current KL10 keep alive value

001412 2 OKPALO KL10 saved keep alive value

001414 2 KPAL1 Current RSX-20F keep alive value

001416 2 .KPAC Counter of keep alive for XCT 71
byte 0- keep alive counter
byte 1- XCT 71 counter

001420 2 .KACFL XCT 71 retry flag

10-18

FE Status Block

CORE MANAGER DATA BASE

ADDRESS SIZE NAME USE

001422 4 .BGBUF Big buffer space
word 1- pointer to first node in free space
word 2- current total size of space

001426 4 .FREPL Free pool list
word 1- address of first node in free pool
word 2- current total size of free pool

001432 4 .POLLH Pool header for ATL and send nodes
word 1- pointer to start of list
word 2- pointer to end of list

001436 700 .POLST Pool list (14 entries)
16 word entries

word 1- pointer to next block
word 2- pointer to previous block

002336 40 .POLND Pool end
16 word entry

word 1- pointer to next block
word 2- pointer to previous block

10-19

FE Status Block

CLOCK REQUEST LIST

ADDRESS SIZE NAME USE

002376 204 .CLKBA Clock list
6 word entr il:!s

word 1- (C.AT)ATL node address of requestor
word 2- (C.AS)AST trap address of requestor
word 3- (C.SD)schedu1e delta in ticks
word 4- (C.RS)reschedu1e delta in ticks
word 5- (C .. FM) flag mask
word 6- (C.FA)f1ags word address

002602 2 .CLKEA End of clock list guard word

10-20

AD:ORESS SIZE

002604 2

002606 2

002610 2

002612 2

002614 10

002624 10

002634 2

002636 2

002640 2

002642 2

002644 2

002646 2

002650 2

002652 2

002654 2

002656 2

002660 2

002662 2

002664 2

002666 2

002670 2

FE Status Block

TERMINAL SERVICE DATA BASE

NAME USE

.INHDM Inhibit/enable remote lines (O=enable)

.ABCNT Count of auto-bauded lines

.ABFLG Interlock flag for SETS PO

.SNDLP Pointer to send-all buffer in use

.SNDBF Send-all ring buffer pointer

.SNDCN Send-all TTY count for send-all pending

.CRSND Current send-all node pointer

.BRKCH Break character (control \)

.TTPll TTY PDPll input in progress flag

.CTYPT CTY line pointer

.KLNPT KLINIK line pointer

$UNIT DH unit number if CTY

$BTMSK Mask to start CTY if DH

DMTMP Saved DMll/BB controller number

DHTMP Saved DHll controller number

DLTMP Saved DLll controller number

DHSTSV Saved DHll table pointer from PS

.TTELQ Terminal error logging queue ptr

.TTELC Count of nodes in error logging queue

.TTELB Temp buffer ptr for error logging

TMOCNT Timeout counter
byte 0- terminal(10)
byte 1- modem (22)

10-21

ADDRESS SIZE

002672 40

002732 2

002734 2

002736 2

002740 2

002742 40

003002 2

FE Status Block

PDP-ll CTY SERVICE DATA BASE

NAME USE

CTYSTS CTY status block

CNT

BYCNT

CRADR

TTPKT

DMTBL

DMTBE

word 1- (STATS)status word
bit 0- (FLBT)unprocessed fill count bit
bit 0-3- (FLCT)unprocessed fill count field
bit 4- (RUBP)rubout sequence in progress
bit 5- (CTLO)output disabled
bit 8- (EOLS)end of line seen
bit 9- (CRJT)CR typed just typed
bit 10- (CRTY)carriage control at EOL
bit 11- (LFBT)unprocessed LF add/sub bit
bit 11-14- (LFCT)unprocessed LF count field
'bit 15- (MODE)termina1 busy(l=output,O=input)

word 2- (STRBF)current input buffer address
word 3-

byte 0- (RMBYT)remaining bytes in buffer
byte 1- (FNBYT)termina1 byte

word 4- (CURBF) starting buffer address
word 5-

byte 0- (MECNT)mu1ti-echo byte count
byte 1- (FLBYT)fi11 byte

word 6- (MEBUF)mu1ti-echo buffer address
word 7- (MBUFR)dynamic multi-echo buffer
word 8- (HORPS)horizonta1 position of carriage
word 9- (DHBUF)DH character buffer if CTY a DH

I/O packet size

I/O packet size

Current I/O address

I/O packet address

DM11/BB table
2 word entries (8 entries)

word 1- DM11/BB base address
word 2- pointer to DH11 table entry

End of table marker(O)

10-22

ADDRESS SIZE

003004 10

003014 40

FE Status Block

DATA LINE SCANNER DATA BASE

NAME USE

DLTBL DLll/C table
4 word entry for each DLll/C line (1 entry)

word 1- (THRED)output thread word pointer
word 2- (TTYEXP)device base address
word 3- (STSWO)status word 0

DLll- input flag
DHll- line speed

bit 6-9- (SO.ISP)input speed
bit 10-13- (SO.OSP)output speed
bit 14- (SO.CON)remote line connected
bit 15- (SO.ABR)autobaud report pending

word 4- (STSW1)status word 1
bit 0- (TT.OUT)TTY output flag
bit 1- (TT.CTY)console CTY
bit 2- (TT.CRW)waiting for carrier
bit 3- (TT.ABW)auto-baud wait
bit 4- (TT.XEN)XON/XOFF enabled
bit 5- (TT.ABL)auto-baud line
bit 6- (TT.RMT)remote line
bit 7- (TT.XOF)line is XOFF'D
bit 8- (TT.NSA)suppress send~alls
bit 9- (TT.SIP)send-all in progress
bit 10- (TT.RIP)remote in progress
bit 11-12- (TT.FEC) framing error count
bit 13- (TT.RSI)restart tty on timeout
bit 14- (TT.SNI) increment send-all index
bit 14-15- (TT.SND) index of next send-all

DLETBL DLll/E table
4 word entry for each DLll/E line (4 entries)

see above

10-23

ADDRESS SIZE NAME

003054 2000 DHTBL

FE Status Block

DHll DATA BASE

USE

DHII table
4 word entry for each DH11 line (128

entries) see above

005054 2 .TTS2F Flag for clock service

005056 2 .S2IDC Current count of locally disabled lines

005060 2 .S2ITP Table position of last locally enabled line

005062 2 .IBFLO Input buffer low threshold

005064 2 .IBFOK Input buffer ok threshold

005066 412 STSW2 Texmina1 input control table (133 entries)
bit 0-7- (S2.CHR)deferred write char
bit 8-9- (S2.CNT)wait count field
bit 9- (S2.SSZ)set input speed to zero
bit 10- (S2.ACK)owe this line an ack
bit 11- (S2.LCL) input XOFF'd,local request
bit 12- (S2.ENB)deferred input XON request
bit 13- (S2.DIS)deferred input XOFF request
bit 14- (S2.DIP)input XOFF in progress
bit 15- (S2.DDN)input is XOFF'd

10-24

ADDRESS SIZE

005500 2

005502 2

005504 2

005506 14

005522 2

005524 2

FE Status Block

FLOPPY DRIVER DATA BASE

(2040S, 2060, 2065, 1091, 1095 ONLY)

NAME USE

DXRTC Error retry count (8)

DXCNT Byte count of transfer

DXBUF Address of buffer

DXVCB
word 1- logical or physical sector number
word 2- bytes to transfer on current sector
word 3- current function code
word 4- physical sector number(1-26.)
word 5- physical track number(0-77.}
word 6- status register after interrupt

DXUNIT Current unit number

DXPKT I/O packet address

10-25 April 1986

ADDRESS SIZE NAME

005500 2 DTRTC

005502 2 DTRNA

005504 4 DTBUF

005510 2 DTCNT

005512 2 DTCW2

005514 2 DTCW3

005516 10

FE Status Block

DECTAPE DRIVER DATA BASE

(1090 ONLY)

USE

Error retry count and reset flag

Request node address

DECtape buffer

Buffer size

Pad to floppy driver size

10-26

FE Status Block

DISK DRIVER DATA BASE

ADDRESS SIZE NAME USE

005526 2 RPRTC Error retry count (8)

005530 2 RPRNA Address of request node

005532 4 RPBUF Address of buffer
word 1- high order of address
word 2- low order of address

005536 2 RPCNT Transfer size

005540 2 RPUNIT Current unit number

005542 2 RPCW2

005544 2 .RPELQ RHll error logging queue

005546 2 .RPELC Count of nodes in RHll error queue

005550 2 .RHPB Serial numbers packet size

005552 20 .RHSN RP04/RP06 serial numbers

RSX-2~F VA15-50, V815-50, VE15-50 10-27 April 1986

FE Status Block

FE DRIVER DATA BASE

ADDRESS SIZE NAME USE

13135572 10 FETBL Table of FE device states
1 word per FE device (4)

bit 113- (FE.DET)more data 11 to 113 to be sent
bit 11- {FE.DTE)more data 113 to 11 expected
bit 13- {FE.SER)servicing 11 transfer request
bit 14- (FE.STR)servicing 113 transfer request

13135602 2 NODADR Current request node address

13135604 2 ADRSAV Address saved

131356136 2 BYTESA Byte count of transfer

13135610 4 STSWD I/O status words

13135614 22 T010PK 11 request to 10 packet address

0135636 2 DNBLK Response to 10 request

01356413 6 DNFCN Function

13135646 6 DNSTS Status

13135654 413 BLKTT Data buffer

13135714 2 .RPUNT RP unit number

13135716 2 .FEACT FE device available for DB access

13135720 4 • RPADR

13135724 4 .RPSIZ

RSX-29F VA1S-S9, VB1S-S9, VE1S-S0 113-28 April 1986

FE Status Block

CD-II DRIVER DATA BASE

ADDRESS SIZE NAME USE

005730 2 CREVFG Address of CR task's event flags

005732 2 CRCEVF Current event flags

005734 2 CRHUNG Count of times CR found hung

005736 2 .CRPFL Power fail flag for card reader

005740 2 CRSTBH Header word of status block

005742 16 CRSTBK Status return block to 10
word 1- 1st status word

bit 0- (DV.NXD)non-existent device
bit 1- (DV.OFL)device off-line
bit 2- (DV.OIR)hardware error, opr required
bit 3- (DV.SCN)software error, ACK required
bit 4- (DV.IOP)I/O in progress
bit 5- (DV.EOF)end of file encountered
bit 6- (DV.LOG)error logging required
bit 7- (DV.URE)un-recoverable error
bit 8- (DV.Fll)error on from 11 request
bit 9- (DV.HNG)device hung

word 2- 2nd status word, device dependent
bit 0- (DD.RCK) read check
bit 1- (DD.PCK)pick check
bit 2- (DD.SCK)stack check
bit 3- (DD.HEM)hopper empty
bit 4- (DD.SFL)stacker full

word 3- control and status register
word 4- column count register
word 5- bus address register
word 6- data buffer register

005760 2 CRBUFH Header word of data buffer

005762 240 CRBUFF Data buffer from COlI

006222 2

006224 2 CRTHD

006226 2 CREXP

006230 2 CRSTS

006232 2

Data buffer overrun area

Threaded list pointer

Device external page address

Status bits
bit 8- (CR.NSF)not stacker full
bit 9- (CR.NXD)non-existent CD-II
bit 10- (CR.RHN) reader hung during read
bit 11- (CR.ACK)acknowledge received
bit 12- (CR.IOD)I/O done
bit 13- (CR.IOP)I/O in progress
bit 14- (CR.SST)device status changed
bit 15- (CR.HNG)CR hung

Unused

RSX-2~F VA1S-S~, VB1S-S0, VE1S-S0 10-29 April 1986

ADDRESS SIZE NAME

006234 2 LPUNIT

006236 2 LPEVFG

006240 2 LPCEVF

006242 2 LPHUNG

006244 2 .LPPFL

006246 2 LPSTBH

006250 30 LPSTBK

FE Status Block

LP-20 DRIVER DATA BASE

USE

LP unit number from PS on interrupt

Address of where to set event flags for LP task

Current event flags

Count of times LP was hung

Power fail flag

Header word of status block

Status return block to 10
word 1- 1st status word

bit 0- (DV.NXD}non-existent device
bit 1- (DV.OFL)device off-line
bit 2- (DV.OIR)hardware error, opr required
bit 3- (DV.SCN)software error, ACK required
bit 4- (DV.IOP}I/O in progress
bit 5- (DV.EOF)end of file encountered
bit 6- (DV.LOG)error logging required
bit 7- (DV.URE)un-recoverable error
bit 8- (DV.Fll)error on from 11 request
bit 9- (DV.HNG)device hung

word 2- 2nd status word, device dependent
bit 0- {DD.PGZ)pag~ counter passed zero
bit 1- {DD.CHI}character interrupt from RAM
bit 2- {DD.VFE)VFU error
bit 3- {DD.LER)error with VF/RAM file
bit 4- (DD.OVF)printer has optical VFU
bit 5- (DD.RME)RAM parity error

word 3-
byte 0- no. bytes device dependent info (2.)
byte 1- no. bytes device registers (16.)

word 4-
byte 0- accumulated checksum
byte 1- retry ~ount

word 5- control and status register A
word 6- control and status register B
word 7- bus address register
word 8- byte count ~egister(2's complement)
word 9- page counter register
word 10- RAM data register
word 11-

byte 0- character buffer register
byte 1- column count register

word 12-
byte 0- print~r data register
byte 1- checksum register

RSX-2~F VAlS-S0, VBlS-5~, VElS-5~ April 1986

ADDRESS SIZE

006300 20

006320 20

006340 20

006360 4

NAME

FE Status Block
LP-20 Driver Data Base

USE

LPTBL LP first device table
4 word entry for unit 0

word 1- (LPSTS)status bits
bit 0-1- {LP.UNT)unit number
bit 7- (LP.EOF)end of file encountered
bit 8- (LP.F10)from 10 request queued
bit 9- (LP.LIP)load VFU in progress
bit 10- (LP.CLR)clear RAM required
bit 11- (LP.WAT)LP waiting for response
bit 12- (LP.MCH)multi-char printing
bit 13- {LP.PZI)page zero interrupt enabled
bit 14- (LP.SST)send status to 10
bit 15- (LP.HNG)device hung

word 2- {LPCSA)external page address
word 3- (LPTHD)thread list pointer
word 4- (LPITH)current buffer pointer

4 word entry for unit 1

LPTBL2 LP second device table
4 word entry for unit 0

word 1- (LPMCB)mu1ti-character buffer
word 2- (LPCSM)accumulated checksum
word 3- (LPRTY) retry counter
word 4-

4 word entry for unit 1

LPTBL3 LP third device table
4 word entry for unit 0

word 1- (LPRMA)VFU data address
word 2- (LPRMZ)VFU data buffer size
word 3- (LPRMC)current ptr into VFU data
word 4-

4 word entry for unit 1

LPUTBL Unit table pointer
word 1- unit 0 pointer in LPTBL
word 2- unit 1 pointer in LPTBL

R5X-2SF VA1S-SS, VB1S-SS, VE15-5~ 10-31 April 1986

ADDRESS SIZE

006364 2

006366 2

006370 2

006372 44

006436 40

FE Status Block

SYSTEM TASK DIRECTORY

NAME USE

.STDTA Pointer to STD list

.STDTC Maximum STD list size (18 entries)

.STDTZ Current size of STD list

.STDTB STD table
18 pointers to task's STD entries

word 1- card reader driver
word 2- DTE driver
word 3- FE driver
word 4- floppy (2040S,2060,2065,1091,1095)

DECtape (1090)
word 5- FllACP task
word 6- line printer driver
word 7- queued protocol task
word 8- disk driver
word 9- terminal driver
word 10- install task

STDDTE DTE driver STD entry
16 word task STD entry

word 1- (S.TN}task name (1st 3 chars)
word 2- task name (2nd 3 chars)
word 3- (S.TD)default task partition
word 4- (S.FW)flags word

bit 0- (SF.TA)task active
bit 1- (SF.FX)task fixed
bit 2- (SF.EX)task to be removed
bit 14- (SF.IR)install requested
bit 15- (SF.ST)system task

word 5-
byte 0- (S.DP)default priority
byte 1- (S.DI)system disk indicator

word 6- (S.BA)1/64th of base address
word 7- (S.LZ)size of load image
word 8- (S.TZ)max task size
word 9- (S.PC}initia1 PC
word 10- (S.SP)initial SP
word 11- (S.RF)send/req queue forward ptr
word 12- (S.RB)send/req queue backward ptr
word 13- (S.SS)SST vector table address
word 14- (S.DL)load image low disk address
word 15- load image high disk address
word 16- zero

see above

RSX-2SF VA1S-Sg, VB1S-SS, VE1S-SS 10-32 April 1986

FE Status Block
System Task Directory

ADDRESS SIZE NAME USE

006476 40 STDFED FE driver STD entry
see above

006536 40 STDDX Floppy driver STD entry (2~40S,2060,2065,1091,1095)
006536 40 STDDTP DECtape driver STD entry (1090)

see above

006576 40 STDFll FIIACP STD entry
see above

006636 40 STDRPT RP device STD entry
see above

006676 40 STDINS Install STD entry
see above

006736 40 STDLPT LP driver STD entry
see above

006776 40 STDCDR CR driver STD entry
see above

007036 40 STDTTY TTY driver STD entry
see above

007076 40 STDQPR Queued protocol STD entry

RSX-29F VA1S-S9, VB1S-S9, VE1S-S0 10-33 April 1986

ADDRESS SIZE

007136 4

007142 40

FE Status Block

ACTIVE TASK LIST

NME USE

.ATLLH ATL header
word 1- forward pointer (DTE)
word 2- backward pointer (null task)

DTETSK DTE task ATL entry
16 word ATL entry

word 1- forward linkage
word 2- backward linkage
word 3- (A.SP)SP of running task
word 4- (A.PD)run partition
word 5- (A.RP)run priority
word 6- (A.HA)1/64th of base address
word 7-

byte 0- (A.TS)task status
2= (TS.LRQ)load request queued
4= (TS.TKN)waiting for TKTN
6= (TS.LRF)load request failed
10= (TS.RUN)task running
12= (TS.SUS)task suspended
14= (TS.WF0)waiting for flag 1-16
16= (TS.WF1)waiting for flag 17-32
20= (TS.WF2)waiting for flag 33-48
22= (TS.WF3)waiting for flag 49-64
24= (TS.WF4)waiting for flag 1-64
26= (TS.EXT)task exited

byte 1- (A.FB)task flags byte
bit 7- (AF.PP)primary protocol task

word 8- (A.TD}STD entry address
word 9- (A.EF)task event flags 1-16
word 10- task event flags 17-32
word 11- (A.FM)task event flags mask 1-16
word 12- task event flags mask 17-32
word 13- task event flags mask 33-48
word 14- task event flags mask 49-64
word 15- (A.PF)power fail AST trap address
word 16- zero

RSX-2SP VA1S-SS, VB1S-SS, VE1S-50 10-34 April 1986

FE Status Block
Active Task List

ADDRESS SIZE NAME USE

007202 40 TTYTSK TTY task ATL entry
see above

007242 40 RPTSK RP task ATL entry
see above

007302 40 LPTSK LP task ATL entry
see above

007352 40 CDTSK CD task ATL entry
see above

007402 40 FETSK FE task ATL entry (2040S,2060,2065,1091,1095)
007402 40 DTTSK DECtape task ATL entry (1090)

see above

007442 40 DXTSK Floppy task ATL entry (2040S,2060,2065,1091,1095)

007440 40 FETSK FE task ATL entry (1090)
see above

007502 40 QPRTSK Queued protocol task ATL entry
see above

007542 40 NULTSK Null task ATL entry
see above

R5X-29F VA15-51, VB15-S9, VE1S-50 10-35 April 1986

ADDRESS SIZE

007602 20

007622 20

007642 20

007662 20

007702 20

007722 20

007742 20

007762 20
007762 20

007802 20

010022 20

010042 20

FE 8tatus Block

TASK PARTITION DIRECTORY

NAME USE

IN8TPD Install TPD entry
8 word TPD entry

word 1- (T.PN)partition name (1st 3 chars)
word 2- partition name (2nd 3 chars)
word 3- (T.BA)base address of partition
word 4- (T.PZ)size of partition
word 5- (T.FW)partition flags word

bit 1- (TF.OU)partition occupied
word 6- (T.HP)1/64th base addr of 1st hole
word 7- (T.RF)MRL forward linkage
word 8- (T.RB)MRL backward linkage

DTETPD DTE TPD entry
see above

FETPD FE TPD entry
see above

TTYTPD TTY TPD entry
see above

LPTPD LP TPD entry
see above

CDRTPD CR TPD entry
see above

QPRTPD Queued protocol TPD entry
see above

DXTPD Floppy TPD entry (20408,2060,2065,1091,1095)
DTTPD DECtape TPD entry (1090)

see above

RPTPD RP TPD entry
see above

F11TPD F11ACP TPD entry
see above

GENTPD GEN partition TPD entry
see above

R5X-20F VA15-50, VB1S-S0, VElS-50 10-36 April 1986

FE Status Block

DEVICE QUEUE POINTERS

ADDRESS SIZE NAME USE

010062 40 .DQPBA CTY and DLll queue
Entry for all terminals
Entry for DLll lines
8 words per entry

word 1- address of device table list
word 2- size of entry in device table
word 3- address of device start routine
word 4- address of device stop routine
word 5- spare
word 6- address of acknowledge routine
word 7- spare
word 8- device count

010122 20 .DQDH0 DHll queue
Entry for DHll lines

010142 120 .DQDLS Data line scanner queue
entry for all terminals
entry for line printer
entry for card reader
entry for clock
entry for FE device

RSX-2~F VA15-5~, VB15-50, VE15-5~ 10-37 April 1986

ADDRESS SIZE NAME

010262 50 TTPEN

FE Status Block

LOGICAL UNIT TABLES

USE

Terminal PUD entry
20 word entry

word 1- {U.DN)ASCll device name
word 2-

byte 0- {U.UN)unit number
byte 1- {U.FB)flags byte

bit 5- {UF.OFL)device offline
bit 6- {UF.TL)recognizes load/record
bit 7- (UF.RH)handler resident

word 3- {U.C1)characteristics word
bit 0- (UC.REC)record oriented device
bit 1- {UC.CCL)carriage control device
bit 2- {UC.TTY)TTY device
bit 3- {UC.DlR)directory device
bit 4- (UC.SDl)single directory device
bit 5- {UC.SQD)sequential device
bit 6- (UC.ETB)18 bit mode
bit 8- (UC.NB) intermediate buffered
bit 9- (UC.SWL)software write locked
bit 10- (UC.ISP) input spooled
bit 11- (UC.0SP)output spooled
bit 12- {UC.PSE)pseudo device
bit 13- (UC.COM)communications channel
bit 14- {UC.F11)files 11 device
bit 15- (UC.MNT)mountable device

word 4- (U.C2)characteristics word
bit 0-(CR.LAB)labe1ed tape
bit 3-(CH.NDC)no control functions
bit 4-(CH.NAT)no attaching
bit 5-(CH.UNL)dismount pending
bit 6-(CH.FOR)foreign volume
bit 7-(CH.OFF)volume offline

word 5- (U.C3)characteristics word
word 6- (U.C4)characteristics word
word 7- (U.AF)ATL node of task
word 8- (U.RP)redirect pointer
word 9- (U.HA)handler task ATL node
word 10- (U.RF)request forward linkage
word 11- (U.RB) request backward linkage
word 12- (U.VA)address of control block
word 13- (U.Ul)owner UlC

byte 0- (U.PC)programmer code
byte 1- (U.GC)group code

word 14- (U.VP)volume protection word
word 15- (U.AR)access rights
word 16- (U.DACP)defau1t ACP name
word 17- (U.ACP)STD address of ACP
word 18- (U.TF)termina1 privilege word

bit 0- (UT.PR)terminal privileged
bit 1- (UT.SL)TTY slaved
bit 2- (UT.LG)TTY logged on

word 19- (U.LBH)high order no. of blocks
word 20- (U.LBN)low order no. of blocks

RSX-2~F VAlS-S~, VBlS-S9, VE1S-S9 10-38 April 1986

FE Status Block
Logical Unit Tables

ADDRESS SIZE NAME USE

010332 50 RPPEN 1st disk PUD entry
see above

010402 50 .RPIPE 2nd disk PUD entry
see above

010452 50 .RP2PE 3rd disk PUD entry
see above

010522 50 .RP3PE 4th disk pun entry
see above

010572 50 .RP4PE 5th disk PUD entry
see above

010642 50 .RP5PE 6th disk PUD entry
see above

010712 50 .RP6PE 7th disk PUD entry
see above

010762 50 .RP7PE 8th disk PUD entry
see above

011032 50 DX0PEN 1st floppy PUD entry (20408,2060,2065,1091,1095)
011032 50 DT0PEN 1st DEC tape pun entry (1090)

see above

011102 50 DX1PEN 2nd floppy PUD entry (2040S,2060,2065,1091,1095)
011102 50 DT1PEN 2nd DEC tape PUD entry (1090)

see above

011152 50 LP0PUD Line printer PUD entry
see above

011222 50 FE0PUn FE PUD entry
see above

011272 50 SY0PUD System PUD entry
see above

RSX-20F VA1S-S0, VB1S-S0, VE1S-S0 10-39 April 1986

ADDRESS SIZE

011342 2

011344 2

011346 6

011354 6

0011362 2

011364 2

FE Status Block

HARDWARE OPTIONS

NAME USE

.CPUSN KL10 CPU serial number
0=not read

<l=can't be read
)1=va1id serial number

.HRDWR Hardware options
bit 0- MCA25 cache pager
bit 1- MOS master oscillator
bit 2- extended addressing
bit 3- internal channels
bit 4- cache
bit 5- line frequency

0=60 hertz
1=50 hertz

.ERRPC KL PC register

.ERRCD Flags and warm restart (fault

.MISC

continuation) error codes
l=clock error stop
2=EBUS parity error
3=deposit examine error
4=keep alive stopped
5=protocol timeout
6=fast memory parity error
7=CRAM parity error

l0=DRAM parity error
11=KL halted
12=KL requested reboot

Miscellaneous bit
bit 0- used by PARSER to see if

it is time to do the TAKE
command

bit 1- PARSER has been requested

ABCHAR Last Auto-baud character

R5X-20F VA1S-S0, VB1S-S0, VE1S-S0 10-40 April 1986

FE Status Block

EMERGENCY STACK

ADDRESS SIZE NAME USE

011446 106 INITLM Once only initialization code

011554 0 EMGSTK Emergency stack base address

RSX-2~F VA15-5~, VB15-5~, VE15-5~ 10-41 April 1986

FE Status Block

I/O PAGE DUMP

BLOCK UNIBUS DEVICE
ADDRESS ADDRESS SIZE NAME USE

100042 760020 2121 DH11 DH terminal controller #1

1012112162 760040 20 DH11 DH terminal controller #2

100102 760060 20 DHII DH terminal controller #3

100122 760100 2121 DHll DH terminal controller #4

100142 76012121 2121 DHll DH terminal controller #5

100162 760140 2121 DH11 DH terminal controller #6

100202 760160 20 DH11 DH terminal controller #7

11210222 760200 20 DH11 DH terminal controller #8

110522 770500 10 DMII-BB Modem controller #1

110532 770510 10 DMl1-BB Modem controller #2

110542 770520 10 DMll-BB Modem controller #3

110552 770530 10 DMl1-BB Modem controller #4

110562 770540 10 DMl1-BB Modem controller #5

110572 770550 10 DMI1-BB Modem controller #6

110602 770560 10 DMll-BB Modem controller #7

110612 770570 10 DMII-BB Modem controller #8

113022 773000 1000 BM873-YH Bootstrap ROM

114422 774400 40 DTE20 KL10 interface device

115422 775400 20 LP20 Line printer #1 :interface

115442 775420 20 LP20 Line printer #2 :interface

115632 775610 10 DLI1-E DL terminal interface #1

115652 775630 10 DLll-C DL terminal interface #2

115662 775640 10 DLll-C DL terminal interface #3

115672 775650 10 DL11-C DL terminal interface #4

116722 776700 50 RH11 RP04/06 disk interface

117202 777160 10 COlI Card reader interface

RSX-2~F VA15-5~, VB15-5~, VE15-5~ 10-42 April 1986

FE Status Block
I/O Page Dump

BLOCK UNIBUS DEVICE
ADDRESS ADDRESS SIZE NAME USE

117212 777170 10 RX11 Floppy disk interface
(2040S,2060,2065,1091,1095)

117362 777340 20 TC11 DECtape interface (1090)

117562 777540 2 DLI1-W Line clock status register

117602 777560 10 DL11 CTY interface

117612 777570 2 SW Switch register value

117802 777760 2 PSW Processor status word

RSX-2~F VA15-5~, VB15-5~, VE15-5~ 10-43 April 1986

APPENDIX A

RSX-20F STOP CODES AND I/O ERROR CODES

This appendix contains two lists of error codes. The first list
contains RSX-20F stop codes. Associated with each code is the name of
the module that issued the stop code, a short explanation of the
error, and a possible cause of the error o The second is a list of I/O
error codes that are produced by the device handlers and file control
primitives. These error codes have associated messages that are
listed along with them; however, due to the many different situations
in wh ich these errors can ar ise, no attempt is made to desc r ibe
recovery algorithms for these errors.

Code Module

B03 SCOMM

B05 TTYDRR

CBR PF

Meaning

BUFFER OVERFLOW 3

The PDP-II was not able to obtain the buffer space
necessary for data it wanted to send to the KL.

possible Cause:

Buffer pool space became exhausted or highly
fragmented. RI contains the node (buffer) size
requested. FREPL points to the list of free
nodes. .FREPL+2 contains the number of free bytes
in the pool. Nodes are linked together in the
forward direction through the first word of the
node. The second word of each node contains the
node size.

BUFFER OVERFLOW 5

The Front-End does not have the buffer space to to
send an XON or an XOFF to a line.

CROBAR ERROR

DTE20 power did not return after a power-fail
restart. RSX-20F allows DTE20 power 30 seconds to
reappear.

possible Cause:

Malfunctioning hardware in the KL.

A-I

Code Module

DTB QPRDTE

DTD COMTRP

DTF QPRDTE

E'l'E QPRDTE

RSX-20F STOP CODES AND I/O ERROR CODES

Meaning

TO-II DTE TRANSFER FAILURE

A TO-II-done interrupt has occurred, but the TO-ll
address in the DTE TOllAD register (register 22)
did not have the expected value. Since TOllAD is
incremented for each byte transferred, it should
point to the first word following the buffer into
which the TO-II data was written.

possible Cause:

The PDP-II received the wrong byte count or, more
likely, the DTE has a hardware malfunction.
TOIIBC contains the negative count of data that
was actually transferred. TOIIAS contains address
of dat,a node. RI contains expected termination
address, and CR$DTB-2 contains the actual
termination address for transfer.

UNIBUS TIMEOUT

Reference to the DTE20 caused a UNIBUS timeout.

possible Cause:

Malfunction of hardware in the KL.

TO-IO DTE TRANSFER FAILURE

but the TO-lO
(reg i s t e r 2 0)
Since TOlOAD

transferred, it

A TO-IO-done interrupt has occurred,
address in the DTE TOIOAD register
did not have the expected value.
gets incremented for each byt.e
should point to the first word
packet that was sent to the KL.

following the

possible Cause:

The PDP-li gave the KL the wrong byte count or,
more likely, the DTE has a hardware malfunction.
TOIOSZ contains the size of the transfer and
TOIOAS the start address. The expected
termination address is in R4.

TO-Il TRANSFER ERROR

A DTE interrupt occurred with the TOllER bit set
in the DTE status register (register 34).

possible Cause:

Hardware malfunction along the data
the KL and PDP-II (MBOX, EBOX,
through to PDP-II memory) •

A-2

path
EBUS,

between
DTE20,

Code Module

FTA LC

lAS SCH

ILF QPRDTE

ILQ QPRDTE

LRF SCH

RSX-20F STOP CODES AND I/O ERROR CODES

Meaning

FILES-II TASK ABORTED

A task occupying FIITPD partition has aborted and
the task termination notification task (TKTN)
cannot be started since it too runs in the FIITPD
partition.

possible Cause:

.TKTN may have aborted.
the Active Task List
task.

UNKNOWN SIGNIFICANT EVENT

R5 and .CRTSK point to
(ATL) node of the aborted

An unused bit in .SERFG has been set.

possible Cause:

PDP-II hardware malfunctioned or PDP-II software
is corrupt. .SERFG has the bit set.

ILLEGAL PROTOCOL FUNCTION

The function code in a TO-II protocol header
specified a function that is outside the legal
range or that is currently not implemented.

possible Cause:

KL software is corrupted or hardware malfunctioned
along the data path between the KL and the PDP-II.
RI contains the function code times two. R4
contains the address of the protocol header.

ILLEGAL QUEUE COUNT

The KL and the PDP-II disagree on the number of
direct transfers that have thus far taken place
from the KL to the PDP-II. You should take into
account that indirect headers are sent across the
DTE20 as direct packets.

possible Cause:

The PDP-II is missing TO-II doorbell interrupts,
or the software of either the KL or the PDP-II is
corrupted. STATI+O to STATI+2 contain the KL's
TO-II status word as read by RSX-20F at the last
examine. STATI+4 is the count the KL expects, and
TOIOQC is the count the PDP-II expects.

LOAD REQUEST FAILURE

An attempt to load a nonresident monitor routine
into the FIITPD partition failed.

possible Cause:

The Files-II system is incomplete or damaged.

A-3

Code

MPE

PTl

PT2

PT3

PT4

RSX-20F STOP CODES AND I/O ERROR CODES

Module

LC

QPRDTE

QPRDTE

QPRDTE

QPRDTE

Heaning

MEMORY PARITY ERROR

A memory parity error has occurred in the PDP-ll
(trap to location 114). The memory status
registers are stored starting at location PARSAVE.
(Refer to the PDP-ll Processor Handbook for
details.)

PROTOCOL BROKEN

An illegal protocol device number was specified in
a TO-ll request. The number was found to be
greater than the maximum allowed device number
.DQPSZ (currently 10).

possible Cause:

KL software is corrupted or hardware malfunctioned
along the data path between the KL and the PDP-ll.
The device number from the protocol header is in
TOllDV.

PROTOCOL ERROR 2

An illegal protocol function was specified in a
TO-li request. The function was found to be
greater than the allowed maximum BC.FNM (currently
34) •

possible Cause:

Same as PTl above. The function code from the
protocol header is in TOllFN.

PROTOCOL ERROR 3

The PDP-ll has received a doorbell interrupt from
the KL. The indirect bit in the KL's TO-ll status
word indicates that an indirect transfer is to be
initiated. The function code, however, sent in
the last protocol header, does not indicate that
an indirect request is in progress (the most
significant bit of the function code was not set).

possible Cause:

Same as PTl above. TOllFN contains the function
code and STATI contains the TO-ll protocol status
word.

PROTOCOL ERROR 4

The KL wants to send a packet to the PDP-ll, but
the packet size is greater than 100, the maximum
allowed.

possible Cause:

Same as PTl above. The size is in EQSZ.

A-4

Code Module

PxxP IOTTRP

RED RED

RES LC

TBT LC

TET QPRDTE

T04 LC

RSX-2SF STOP CODES AND I/O ERROR CODES

Meaning

POWER-FAlL-TRIGGERED CRASH

xxx is any crash code. The crash was probably
triggered by a problem related to a power failure.

REDIRECT ERROR

A fatal error has occurred during an MCR REDIRECT
command. The file control service is corrupted.
Call your Software Support Specialist.

RESERVED INSTRUCTION TRAP

This is the PDP-II trap to location 10. An
attempt was made to execute an illegal or reserved
instruction. Refer to the PDP-II Processor
Handbook for further details.

possible Cause:

PDP-II software is corrupted or a PDP-II hardware
malfunction occurred.

T-BIT TRAP

This PDP-II trap to location 14 occurs when the
BPT instruction (not used by RSX-20F) is executed
or when the T-bit is set. (See the PDP-II
Processor Handbook for further details.)

possible Cause:

Corrupted PDP-II software or PDP-II
malfunction.

TO-10-TRANSFER ERROR

hardware

A DTE20 interrupt has occurred with either T010ER
(TO-10 error) or MPEII (PDP-II parity error) bit
set in the DTE20 status register (register 34).

possible Cause:

DTE20 hardware error, PDP-II memory parity error,
or hardware malfunction along the data path
between the PDP-II and KL.

TRAP AT LOCATION 4

The PDP-II traps to location 4 when it makes a
word reference to an odd address or when a bus
timeout occurs. (See the PDP-II Processor
Handbook for further details.)

possible Cause:

PDP-II software is corrupted, or a PDP-II
peripheral device is malfunctioning or has gone
away.

RSX-29F VAlS-S9, VBlS-S~, VElS-S~ A-5 April 1986

Code Module

TTT IOTTRP

UIE QPRDTE

RSX-20F STOP CODES AND I/O ERROR CODES

Meaning

RECURSIVE TRAP ERROR

While RSX-20F attempted to bring down the system
after a trap, a second trap serious enough to
crash the system occurred.

Possible Cause:

PDP-II software is corrupted, or PDP-II hardware
is malfunctioning.

UNIMPLEMENTED PROTOCOL FUNCTION

The KL uses bits 0-2 of its TO-II status word in
the communications region to inform the front end
of any disaster occurring in the KL. These bits
are read by the front end on receipt of a TO-II
doorbell. The currently implemented functions are
KL-RELOAD REQUEST and KL POWER FAIL. Any other
bits that are set cause this halt.

Possible Cause:

Corrupted KL software, a KL hardware malfunction
or any hardware malfunction along the data path
between the KL and the PDP-II could be the cause
of this error.

The following is a list of possible I/O error codes that RSX-20F can
produce. Since these codes are returned by the device handlers and
file control primitives in RSX-20F, they are global in the sense that
they can come from any utility in the system. That is, a code of -33
means the same thing when it comes from PIP that it means when it
comes from SAVe Because of the global nature of the error codes, it
is not possible to describe the exact problem; the situation is
different with different utilities. Therefore, the following list
does not attempt to explain the error code other than to list the
message associated with it.

Note that there are two messages associated with the code -2.
legitimate; a message code of -2 is produced in two
situations.

Code

-1
-2
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14

Message

Bad parameters
Invalid function code
EBOX stopped
Device not ready
Parity error on device
Hardware option not present
Illegal user buffer
Device not attached
Device already attached
Device not attachable
End of file detected
End of volume detected
Write attempted to locked unit
Data overrun
Send/receive failure

RSX-20F VA1S-S0, VB1S-S0, VE1S-50 A-6

This is
types of

April 1986

Code

-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43
-44
-45
-46
-47
-48
-49
-5~
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68

RSX-2IF STOP CODES AND I/O ERROR CODES

Message

Request terminated
Privilege violation
Sharable resource in use
Illegal overlay request
Odd byte count or virtual address
Logical block number too large
Invalid UDC module
UDC connect error
Caller's nodes exhausted
Device full
Index file full
No such file
Locked from write access
File header full
Accessed for write
File header checksum failure
Attribute control list format error
File processor device read error
File processor device write error
File already accessed on LUN
File ID, file number check
File ID, sequence number check
No file accessed on LUN
File was not properly closed
Open - no buffer space available for file
Illegal record size
File exceeds space allocated, no blocks
Illegal operation on file descriptor block
Bad record type
Illegal record access bits set
Illegal record attributes bits set
Illegal record number - too large
Multiple block read/write - not implemented
Rename - two different devices
Rename - new file name already in use
Bad directory file
Cannot rename old file system
Bad directory syntax
File already open
Bad file name
Bad device name
Bad block on device
Enter duplicate entry in directory
Not enough stack space (FCS or FCP)
Fatal hardware error on device
File ID was not specified
Illegal sequential operation
End of tape detected
Bad version number
Bad file header
Device off-line
File expiration date not reached
Bad tape format
Not ANSI "D" format byte count

A-7 April 1986

APPENDIX B

FILE TRANSFERS BETWEEN TOPS-10/TOPS-20 AND RSX-20F

Normally the KL and the PDP-II transfer any data that needs to be
passed between them without any human intervention. However,
occasionally, you may want to move a file from the front-end area to
an area that is readable by the KL. This could happen if, for
example, you could not find a KL-readable copy of the front-end map
file and wanted to transfer a copy from the front-end release media.
However, since the file systems for the two processors do not use the
same format, the transfer must include a reformatting as well. The
software that allows you to reformat the file and transfer it from the
PDP-II's area to the KL's area (or vice versa) is described in this
appendix.

A TOPS-IO program called RSXTIO is used to make TOPS-IO files readable
to the front-end file system. A TOPS-20 program called RSXFMT has a
similar function. The programs that are used to transfer files
between TOPS-IO/TOPS-20 and RSX-20F are FE (under both TOPS-IO and
TOPS-20), and PIP (under RSX-20F). All of these programs execute in a
normal timesharing environment, but some may be restricted to
privileged users.

B.l REFORMATTING FILES

RSXTIO and RSXFMT, the reformatting programs, are available to all
users and do not require any special privileges to execute.

You can invoke RSXTIO by typing:

.R RSXTIO<CR>

RSXTIO responds with the prompt:

RSXFMT>

You can invoke RSXFMT by typing:

@RSXFMT<CR>

RSXFMT responds with the same prompt:

RSXFMT>

At this point, you can give commands to the reformatting program. A
description of the available commands is presented in Section B.l.2.

B-1

FILE TRANSFERS BETWEEN TOPS-IO/TOPS-20 AND RSX-20P
REFORMATTING FILES

B.1.1 Restrictions

Files that are to be transferred must be refonnatted on the KL
processor, regardless of the direction of the transfer. Thus, if you
wish to transfer files from the front end to the KL, you must do the
transfer before the reformatting. If, on the other hand, you wish to
transfer files from the KL to the front end, you must reformat the
files before the transfer.

Some features are not available in one of the versions
software. For example, temporary files are not supported by
Nor can RSXTIO write to a log file when taking commands from a
file. RSXFMT, on the other hand, does not support MICRO-CODE
modes. Thus, you should check that the feature you wish to
supported by the version of the program that you can access.

B.1.2 RSXTIO/RSXFMT Commands

of the
RSXTIO.
command
or SAVE
use is

The following list describes the commands available to users of RSXTIO
and RSXFMT. The parts of the commands enclosed in parentheses do not
appear in the dialog with RSXTIOi they are part of the TOPS-20
version only. The word NO in square brackets - [NO] - indicates that
the command can be negated by preceding the command with NO.

[NO] ADDRESS (WORDS EXIST IN IMAGE FILES)

When you are converting to IMAGE-BINARY files, the program
Ignores the first two bytes of each record. When you are
converting from IMAGE-BINARY, the program inserts two bytes of
address at the beginning of each record. The default is NO
ADDRESS (WORDS EXIST IN IMAGE FILES).

CONVERT (FILE) <input-file-spec> (OUTPUT AS) <output-file-spec>

This command converts the specified input file group to the
output file group, in the mode determined by the MODE command or
the input file. The default output file specification is the
same as the input file specification, with the next highest
generation number.

CRLF (IN ASCII FILES IS) [DEFAULT, IMBEDDED, IMPLIED,
CARRIAGE-RETURN-SINGLE-SPACE]

This command selects whether <CR><LF> should be inserted or
removed at the end of formatted ASCII records. RSXTIO also
converts <CR><LF> to <CR><DC3> if you specify the final option.
This option is available only to users of RSXTIO. If you are
using RSXTIO, the default for .MAP and .DIR file types is
IMBEDDED, whereas the default for .LST files is
CARRIAGE-RETURN-SINGLE-SPACE. Other file types default to
IMPLIED. If you are using RSXFMT, the default for all files is
DEFAULT.

EXIT (FROM RSXFMT)

This command returns control to the TOPS-IO Monitor or the
TOPS-20 Executive.

B-2

FILE TRANSFERS BETWEEN TOPS-IO/TOPS-20 AND RSX-20P
REFORMATTING FILES

[NO] IGNORE (FILE FORMAT ERRORS)

File format errors produce warning messages only if this command
has previously been issued.

HELP (WITH RSXFMT)

This command types this text.

INFORMATION (ABOUT) [ADDRESS, ALL, CRLF, IGNORE, MODE, RECORD-SIZE,
TEMPORARY]

This command displays the settings of the various status
commands. INFORMATION TEMPORARY does not work under RSXTIO,
since temporary files are not supported by the TOPS-IO version of
the reformatting program.

MODE (OF INPUT) <mode-type> (AND OUTPUT) <mode-type>

This command selects input and output modes, where <mode-type> is
one of the following:

• 7-BIT-ASCII

• DOS-BINARY

• DEFAULT

• IMAGE-BINARY

• MICRO-CODE

• RSX-ASCII

• RSX-BINARY

• SAVE

DEFAULT input mode is selected by the file type and
word of the current input file. DEFAULT output mode
by a mapping from the mode of the current input
MICRO-CODE and SAVE modes are available exclusively
RSXTIO.

RECORD-SIZE (FOR IMAGE FILES IS) <decimal number>

the first
is selected
file. The
to users of

This command selects the record size for files being converted
from IMAGE-BINARY format. Default is 256 bytes.

TAKE (COMMANDS FROM FILE) <command-file-spec> (LOGGING OUTPUT ON)
<log-file-spec>

This command takes RSXFMT commands from the specified file.
RSXTIO does not support the output to a log file.

[NO] TEMPORARY (OUTPUT FILES)

If you specify TEMPORARY, all output files (see CONVERT command)
are written as temporary files. You might wish to use this
command if you want to maintain a copy of the file in
TOPS-20-readable format after the file is transferred to the
front end. This feature is not supported in RSXTIO.

B-3

PILE TRANSFERS BETWEEN TOPS-IO/TOPS-20 AND RSX-20P
TRANSFERRING FILES

B.2 TRANSFERRING FILES

The act of transferring files is logically separate from the
reformatting process, Slnce the reformatting can occur at different
points depending on the direction of the transfer. To accomplish the
actual transfer, the FE program must be running, the FE: device must
be assigned, and the user must invoke several tasks with the PARSER.
These actions are discussed more fully in the following sections.

B.2.1 Running FE

The FE program must be executed by a privileged user. It can run
detached if this is desirable. FE does not have any commands. It
simply runs while the user transfers files.

For users of TOPS-IO, FE can be invoked and detached by either of the
following two command sequences:

or

• R FE(CR>
,..c

.CCONT

.GET SYS:FE(CR>
JOB SETUP
.CSTART(CR>
.DETACH(CR>

Users of TOPS-20 can invoke and detach FE by typing:

@ENABLE (CAPABILITIES)
$FE(CR>
,..c

@DETACH (AND) CONTINUE

When running under TOPS-IO, FE requires access to the UIC/[p,pn]
mapping file: SYS:FEUIC.TXT. Each invocation of FE causes this file
to be read. FEUIC.TXT is an ASCII file that is created and maintained
with standard TOPS-IO Text Editors (like TECO or SOS). The format of
the UIC-to-PPN mapping descriptor is:

[uic] =STR: [p,pn]

In this descriptor, [uic] must already
system~ STR: must be a valid TOPS-IO
be a valid TOPS-IO directory. The
FEUIC.TXT can contain as many UIC
Furthermore, these mappings can be
insertion of comments, which must
exclamation mark.

exist in the front-end file
structure name, and [p,pn] must
default for STR: is DSK:.

to [p,pn] mappings as required.
internally documented by the
begin with a semicolon or an

TOPS-20 uses a different approach to UIC/[p,pn] mapping. When running
under TOPS-20, FE does not look for any file containing the mapping
from directory to UIC. Instead, FE contains its own algorithm to find
the UIC. The algorithm it uses is the following:

UIC = [(340+ (D/400)) , (Dmod400)]

B-4

FILE TRANSFERS BETWEEN TOPS-10!TOPS-20 AND RSX-20F
TRANSFERRING FILES

where D is the TOPS-20 directory number. (The directory number can be
printed in response to an INFORMATION (ABOUT) DIRECTORY command.)
Thus, if your TOPS-20 directory number is 164, your UIC would be

[(340+(164/400» ,(164mod400)] [340,164}

Since 164/400 is less than 1, the quantity is dropped. The quantity
l64mod400 remains after 164 is divided by 400 as many times as will go
evenly; in this case, since 400 does not go into 164, the remainder
is 164.

B.2.2 The FE: Device

The FE: device exists under both TOPS-IO/TOPS-20 and RSX-20F. The
FE: device is often referred to as a pseudodevice because it is not a
physical device, but a logical one. You can think of the FE: device
as the other file system, regardless of which system - the KL or the
PDP-II - you are presently using. When you assign and use the FE:
device, you notify the two processors of the link between the file
systems.

B.2.3 RSX-20F Tasks

In order to transfer files between the file systems, three RSX-20F
tasks must be invoked and released. These tasks are MOU (MOUNT), PIP
(file transfer), and DMO (DMOUNT). To invoke these RSX-20F tasks,
type CTRL/\ on the CTY. The CTRL/\, which is not echoed on the
terminal, invokes the PARSER. Type:

CTRL/\

The system responds with the PARSER prompt:

PAR)

The tasks themselves are invoked by the MCR command. For example:

PAR)MCR MOU<CR)

This command invokes the MOU (MOUNT) task. All RSX-20F tasks prompt
by typing their three-character task name and a right bracket. All
RSX-20F tasks are released by typing a CTRL/Z.

B.2.4 File Transfer Dialog

The following sequence of steps is used to transfer files both to and
from the front-end file system:

1. Run (and detach) FE.

2. Use the MOUNT task to mount the RSX-20F FE: device.

3. Use PIP to transfer the file(s).

4. Dismount the RSX-20F FE: device using DMOUNT.

B-5

FILE TRANSFERS BETWEEN TOPS-IO/TOPS-20 AND RSX-20F
TRANSFERRING FILES

5. Go back to monitor level and stop FE.

6. Deassign the FE: device from your job.

This basic sequence is used for all file transfers. However,
reformatting always takes place on the KL, regardless of which
operating system is running there, and regardless of the direction of
the transfer.

To transfer files from TOPS-10/TOPS-20 to RSX-20F, invoke the RSX-20F
PIP task and type the following command string:

PIP>[uic]filename.ext=FE:[uic]filename.ext<CR>

To transfer files from RSX-20F to TOPS-10/TOPS-20, invoke the RSX-20F
PIP task and type the following command string:

PIP>FE: [uic]filename.ext=[uic]filename.ext<CR>

Refer to Section 6.4 for details on the RSX-20F utility, PIP.

The following example shows an operator copying the file TEST. TXT from
TOPS-20 to RSX-20F. The copy in the opposite direction can be
effected by switching the file specifications to the opposite sides of
the equal sign.

@LOG OPERATOR (PASSWORD)
Job 7 on TTY205 10-AUG-83 12:48:00

@RSXFMT
RSXFMT>CONVERT (FILE) TEST.RNO.2 (OUTPUT AS) TEST.TXT
TEST.RNO.2 [7-BIT-ASCII] ==> TEST.TXT.l [RSX-ASCII]
RSXFMT>EXIT (FROM RSXFMT)

@ENABLE (CAPABILITIES)
$ASSIGN FEO:
$FE
"c
$DETACH (AND) CONTINUE
Detaching job #7

PAR>MCR MOU
MOU>FE:
MOU -- MOUNT COMPLETE
MOU>"Z

PAR>MCR PIP

PIP>TEST.TXT/LI
PIP -- NO SUCH FILE(S)

PIP>SY:TEST.TXT=FE: [340,5]TEST.TXT
PIP>TEST.TXT/LI

DIRECTORY DBO: [5,5]
10-AUG-83 12:50

TEST.TXT;l 1. 10-AUG-83 12:49

TOTAL OF 1. BLOCKS IN 1. FILE

B-6

FILE TRANSFERS BETWEEN TOPS-10/TOPS-20 AND RSX-20F
TRANSFERRING FILES

PIP>"Z

PAR>MCR DMO
DMO>FE:
DMO -- DISMOUNT COMPLETE
DMO>"Z

TOPS-20 BIG SYSTEM, T2 Monitor 5.1(5101)
@ATT OPERATOR (JOB #) 7
Password:
"c
$INFORMATION (ABOUT) FILE-STATUS (OF JFN)
Connected to PS:<OPERATOR>. JFNS:
4 TEST.TXT.2 Not opened Read, EOF
3 FEO: Read, Append, 0.(16)
2 <SUBSYS>FE.EXE.2 Read, Execute
1 <SYSTEM>EXEC.EXE.51 Read, Execute

Devices assigned to/Opened by this job: FEO, TTY205

$CLOSE (JFN) 3,4
4 TEST.TXT.2 [OK]
3 FEO: [OK]

$DEASSIGN FEO:
$LOGOUT

B-7

APPENDIX C

FRONT-END TASKS

The tasks that are listed here are those tasks that exist separately
from the RSX-20F Executive. These tasks reside in the front-end file
area from which they can be loaded into core and executed in either
the GEN user partition or the FIITPD system partition.

FIIACP.TSK

PARSER.TSK

KLI.TSK

LOGXFR.TSK

MOU.TSK

PIP.TSK

TKTN.TSK

COP.TSK

Files-II Ancillary Control Processor
An Ancillary Control Processor (ACP) is an extension of
the monitor. FIIACP handles the front-end disk files,
and performs file access, management, and control
functions. FIIACP runs in the FIITPD partition.

The Command Parser
PARSER is the primary means of access to the
programs. It also controls the KLINIK
provides KL diagnostic tools. PARSER runs in
partition.

KLINIT

front-end
link and
the GEN

KLINIT initializes the KL processor by loading the
microcode, configuring memory, configuring cache, and
then loading and starting the KL bootstrap program.
KLINIT runs in the GEN partition.

LOGXFR
LOGXFR transfers PARSER. LOG (the snapshot taken by
KLERR) across the DTE to the KL, where it is placed In
the ERROR.SYS file. LOGXFR runs in the GEN partition.

Mount a Device
MOUNT makes a device known to FIIACP so that it can be
accessed by a given user. MOUNT runs in the GEN
partition.

Peripheral Interchange Program
PIP performs general file transfers and some
maintenance functions between Files-II devices and
other peripherals. PIP runs in the GEN partition.

Task
TKTN
for
also
TKTN

Termination Program
outputs task termination notification and provides
the orderly termination of front-end tasks. It
acts as an interface between KLINIT and KLERR.
runs in the GEN partition.

Copy from device to device
COpy is a device copy utility that allows verification
of the physical state of the device. COpy supports
both floppy disks and DECtapes. COpy runs in the GEN
partition.

C-l

REO.TSK

INI. TSK

UFO.TSK

T2 0AC P. TSK

SAV.TSK

DMO.TSK

SETSPD.TSK

KLRING.TSK

KLDISC.TSK

MIDNIT. 'rSK

FRONT-END TASKS

Redirect the system device
REDIRECT moves the front-end system device from one
Files-II device to another and informs the system of
its new location. REDIRECT runs in the GEN partition.

Initialize volumes
INI initializes Files-II devices to be recognizable
Files-II volumes and sets up Master Directory space,
index, home block, and so forth. INI runs in the GEN
partition.

User File Directory
UFO creates User File Directories on Files-II volumes.
User File Directories are used to store file
identifiers. UFD runs in the GEN partition.

TOPS-20 Ancillary Control Processor
T20ACP is the file handler for files to be transferred
to and from the KL's disk file area. It interacts with
the TOPS-10 and TOPS-20 device FE:. T20ACP provides
access to the TOPS-10 and TOPS-20 disk file areas in
terms compatible with Files-II operations. T20ACP runs
in the GEN partition.

Save system image
SAY creates a task-image file of the current RSX-20F
monitor and saves it in the Files-II area. SAY runs in
the GEN partition.

Dismount a Device
DMOUNT declares a device off-line to FIIACP and
therefore inaccessible to a user. DMOUNT runs in the
GEN partition.

Set Line Speeds
SETSPD sets the line-speed table in the KL after a
restart. It also sets the time in the KL processor.
SETSPD.TSK is a front-end task and is not to be
confused with the TOPS-20 program, SETSPD.EXE. SETSPD
runs in the FllTPD partition.

KLINIK Request
KLRING checks the KLINIK time window and
whenever the KLINIK line rings. If the
security checks are verified, KLINIK is
KLRING runs in the FIITPD partition.

KLINIK Disconnect

password
time and
enabled.

KLDISC performs system functions associated with
disconnecting the KLINIK line. KLDISC also logs
significant KLINIK events across the DTE into the KL
ERROR.SYS file. KLOISC runs in the FllTPD partition.

Update the clock
Each time the clock passes midnight, MIDNIT updates the
time and date on the PDP-II. Then, if the KL is
running, MIDNIT obtains the KL's time and date and
resets its own to match. MIDNIT runs in the FIlTPD
partition.

C-2 April 1986

APPENDIX D

KLINIK ACCESS DIALOG

The RSX-20F KLINIK link allows DIGITAL Field Service or Software
Support personnel at remote locations to access a KL-based computer as
a timesharing user or as a remote console terminal operator. The
computer mayor may not be up for timesharing, but the front end must
have RSX-20F running. The link is controlled by the operator of the
computer, who can allow or disallow access, and can also terminate the
KLINIK link. If the KL monitor supports error logging, the RSX-20F
Executive records significant events and errors for analysis with the
SPEAR mechanism.

This appendix lists the events that are logged by RSX-20F, and
describes the KLINIK access parameters. It also documents the
commands used in the access dialog from the point of view of both the
computer operator and the Field Service or Software Support person who
wishes to access a remote KL.

0.1 SIGNIFICANT KLINIK EVENTS

The KLINIK events that RSX-20F considers significant are logged in the
ERROR.SYS file, and can be read with SPEAR. The significant events
are:

• Each occurrence of a SET KLINIK command (the parameters given
in the command are also saved)

• Each occurrence of a CLEAR KLINIK command

• Each occurrence of a DISCONNECT command or a DLllE hang-up

• Each occurrence of a successful LOGON (the mode selected is
also saved)

• Each occurrence of an unsuccessful LOGON (the number of
attempts is also saved)

0.2 KLINIK ACCESS PARAMETERS

The computer operator and the person who wishes to access the computer
from a remote location must agree on certain parameters regarding the

D-l

KLINIK ACCESS DIALOG

time at which the link will take place and the type of access the
remote user will have. Specifically, they must agree on:

• Whether the remote user of the link wishes to have a remote
CTY or simply a timesharing terminal

• Which password will allow the remote user access to the
system, if the user has requested a remote CTY

• The date and time the remote user will dial up to request
access by way of the KLINIK link

• The highest console mode the remote user will be allowed

Once this information has been verified, the computer operator must
notify RSX-20F of the arrangements by using the SET KLINIK command,
described in Section 0.3.1.

0.2.1 Usage of the Remote Terminal

The remote user can access the system in two ways: as a normal
timesharing user, or as a remote operator. If the remote terminal is
set up for timesharing, the remote user can deal with the system just
as any other timesharing user; thus, the KLINIK link could be used as
a special dial-up line. Alternatively, the remote terminal can be
declared to be the system's CTY, thereby allowing the remote user to
access the system as if the user were present at the local CTY. In
this case, both the remote user and the system operator have the
ability to enter commands to RSX-20F and to see all output. In fact,
it is possible to execute PARSER commands that are entered by two
people typing alternate characters from the two consoles.

The system operator declares the usage of the remot'~ terminal when the
PARSER requests the usage mode in the dialog following the SET KLINIK
command. The legal replies are REMOTE and USER; no defaults exist.

0.2.2 Access Password for Remote CTY's

The system operator must declare to RSX-20F that the remote user
wishes to have a terminal of the agreed-upon type. If the remote user
is to have a CTY, the operator must also give RSX-20F a password that
the remote user must repeat to establish the KLINIK link.

The operator declares the password when the PARSER requests it in the
dialog following the SET KLINIK command. This password must be one to
six numeric or uppercase alphabetic characters with no embedded or
trailing blanks.

0.2.3 KLINIK Access Window

The date and time at which the remote user plans to establish the link
is specified by opening a window, that is, defining two times between
which the remote user can access the computer. This window has no
effect once the remote user has gained access to the system; the
KLINIK link is not terminated when the end of the window is reached.
However, access to the system is not allowed unless it is requested
between the specified times.

D-2

KLINIK ACCESS DIALOG

The operator specifies the access window dates and times in response
to the PARSER's prompt in the SET KLINIK dialog. The access window
dates are specified in the following format:

DD-MMM-YY
DD-MMM-YYYY
DD MMM YY
DD MMM YYYYY

where DD is the day, MMM is the alphabetic representation of the
month, and YY or YYYY is the year. The year can be specified either
by using the entire Gregorian year, or by using only the last two
digits of the year number. If only the last two digits are specified,
the PARSER assumes that the first two digits should be 19.

The access window times are specified in the following format:

HHMM
HH:MM

where HH is the hour in 24-hour format and MM is the minute. HH must
be in the range 00 to 24, and MM must be in the range 00 to 60.

The default condition for both dates and times can be accepted. by
replying to the relevant prompts with a carriage return. The default
date and time for the opening of the access window are the current
system date and time. The default date for the closing of the access
window is the current system date plus one day. The default time for
the closing of the access window is the current system time. It is
possible to specify the date on which the access window will open and
still allow the time at which the window will open to default to the
current time of day. It is also possible to allow the date to default
while specifying the time. A similar situation exists for the closing
of the access window.

0.2.4 Console Mode of the Remote Terminal

If the remote terminal is being used for simple timesharing, the
security systems of the operating system are assumed to be in control.
However, when the remote user requests the use of a remote CTY, the
computer operator must maintain the security of the system by
declaring which type of access the remote user is to have. (Refer to
Section 4.3, PARSER Console Modes, for a discussion of the
capabilities of the various modes.)

The operator specifies the console mode of the remote terminal in the
dialog following the SET KLINIK command. The legal replies to the
PARSER's request for the console mode are MAINTENANCE, PROGRAMMER, and
OPERATOR. There are no default replies to this question. The local
operator should make sure that sufficient capabilities are supplied to
the remote user initially, since it is not possible for either the
operator or the remote user to raise the console mode while the KLINIK
link is active.

0.3 OPERATOR DIALOG WITH KLINIK

The system operator, through dialog with the PARSER, sets parameters
for establishing the KLINIK link, checks those parameters, terminates
the KLINIK link, and disconnects the remote modem. The dialog that
the operator uses to accomplish these tasks is presented below.

D-3

KLINIK ACCESS DIALOG

0.3.1 Setting Access Parameters

The system operator must declare to RSX-20F that a remote user will be
accessing the system before the remote user can actually attempt to
establish the link. When the parameters discussed in Section 0.1 have
been set using the SET KLINIK command, the remote user can dial up and
attempt to establish the KLINIK link, assuming that the user does so
during the agreed-upon time window.

You should use the following dialog to set the access parameters.

1. Type CTRL/\ (Control-Backslash) to enter the PARSER.

2. When you receive the PARSER's prompt, enter the SET KLINIK
command to tell the PARSER you wish to set KLINIK parameters.

3. Answer the PARSER's prompt (KLINIK MODE:) with the console
mode you wish to allow the remote user: REMOTE to give the
user a remote CTY, or USER to make the remote terminal into a
normal timesharing terminal. If you respond with something
other than REMOTE or USER, one of the following error
messages appears:

PAR [SET] NSK - NO SUCH KEYWORD "xxx"
PAR [SET] ILC - ILLEGAL CHARACTER "c"

where "xxx" and "c" are the offending keyword and character,
respectively.

After printing the relevant error message, the PARSER aborts
the SET KLINIK command.

4. If you answered the previous prompt with REMOTE to allow a
remote CTY, you must answer the PARSER's prompt (PASSWORD:)
with the password that the remote user must give to be
allowed access to the computer. If you do not provide a
legal password, you receive one of the following error
messages.

If you specified no password, you get:

PAR -- [SET] NPI - NULL PASSWORD ILLEGAL

If you typed more than six characters, you get:

PAR -- [SET] PTL - PASSWORD TOO LONG

If you included a character that was not an alphanumeric, you
get:

PAR -- [SET] IPC - ILLEGAL PASSWORD CHARACTER "c"

where "c" is the offending character.

After printing the relevant error message, the PARSER aborts
the SET KLINIK command.

D-4

KLINIK ACCESS DIALOG

5. Answer the PARSER's access window prompts (ACCESS WINDOW OPEN
DATE:, ACCESS WINDOW OPEN TIME:, ACCESS WINDOW CLOSE DATE:,
ACCESS WINDOW CLOSE TIME:) with dates and times in the format
explained above (in Section D.I~3).

If the PARSER cannot recognize the date in the format you
have used, you receive one of the following error messages.

If the day specified does not exist in the month specified,
you get:

PAR -- [SET] DOR - DATE OUT OF RANGE

If the month you specified cannot be matched, you get:

PAR -- [SET] NSK - NO SUCH KEYWORD "xxx"

If the keyword you specified for the month is ambiguous, you
get:

PAR [SET] AMB - AMBIGUOUS KEYWORD "xxx"

In both of the previous cases, "xxx" is the offending
keyword.

If the year is not recognizable, you get:

PAR -- [SET] YOR - YEAR OUT OF RANGE

If the access window open or close date is prior to the
current system date, you get:

PAR -- [SET] DBT - DATE BEFORE TODAY

If the access window open or close time does not conform to
the required format, you get:

PAR -- [SET] TOR - TIME OUT OF RANGE

If the open or close time is not numeric, you get:

PAR [SET] ITF - ILLEGAL TIME FORMAT

Finally, when you have answered all four prompts (or allowed
the default condition to hold), the PARSER checks that the
opening date and time you specified are before the closing
date and time. If this is not the case, you get:

PAR [SET] KWE - KLINIK WINDOW ERROR

If you made an error in typing a command, the PARSER aborts
the SET KLINIK command when it finishes printing the relevant
error message.

6. If you specified REMOTE in response to the KLINIK MODE:
prompt, you must now reply to the PARSER's prompt (HIGHEST
CONSOLE MODE:) with the highest PARSER console mode you wish
to allow the remote user. The legal replies are MAINTENANCE,
PROGRAMMER, and OPERATOR. There is no default reply to this
question. (Refer to Section 4.3, PARSER Console Modes, for a
discussion of the capabilities of the various modes.) If the

D-5

KLINIK ACCESS DIALOG

PARSER does not recognize the console mode you specify, you
get the following error message:

PAR -- [SET] NSK - NO SUCH KEYWORD "xxx"

where "xxx" is the offending keyword.

If you enter only a carriage return in response to the
prompt, you get:

PAR -- [SET] MRA - MISSING REQUIRED ARGUMENT

After printing the relevant error message, the PARSER aborts
the SET KLINIK command.

7. If you have specified all of the parameters correctly, the
PARSER returns to command level after displaying the KLINIK
parameters in the following format:

KLINIK [<state>]
ACCESS WINDOW OPEN: DD-MMM-YY HH:MM
ACCESS WINDOW CLOSED: DD-MMM-YY HH:MM
KLINIK MODE: [<mode>]

where <state> can be ACTIVE,
<mode> may be REMOTE or USER.
one more line is displayed:

INACTIVE, or DISABLED, and
If the KLINIK MODE is REMOTE,

HIGHEST CONSOLE MODE: [<mode>]

where <mode> can be MAINTENANCE, PROGRAMMER, or OPERATOR.

The state of the KLINIK link is described by the first line,
which tells whether the link 1S ACTIVE, INACTIVE, or
DISABLED. ACTIVE means the KLINIK parameters have been set
and the remote user is currently accessing the system.
INACTIVE means that the parameters have been set, but the
remote user is not currently accessing the computer.
DISABLED means that the parameters have not been set.

The use of the SET KLINIK command is illustrated by the following
example:

PAR>SET KLINIK
KLINIK MODE: REMOTE
PASSWORD: ASDF
ACCESS WINDOW OPEN DATE:
ACCESS WINDOW OPEN TIME:
ACCESS WINDOW CLOSE DATE:
ACCESS WINDOW CLOSE TIME:
HIGHEST CONSOLE MODE: OPERATOR

KLINIK INACTIVE
ACCESS WINDOW OPEN: 10-AUGUST-1983 13:04
ACCESS WINDOW CLOSE: 10-AUGUST-1983 13:04
KLINIK MODE: REMOTE
HIGHEST CONSOLE MODE: OPERATOR

PAR>

D-6

KLINIK ACCESS DIALOG

0.3.2 Examining the Current KLINIK Parameters

The KLINIK parameters that are displayed at the end of the SET KLINIK
dialog can be displayed at will by the use of the WHAT KLINIK command.
The format of the information is exactly the same as the display
following the SET KLINIK dialog when the KLINIK parameters have been
set. In two cases, however, the format is different. One is the time
when no KLINIK parameters have been set. In this case, the following
line (only) will be displayed in response to the WHAT KLINIK command:

KLINIK DISABLED

The other exceptional case is when the KLINIK link is active after a
reboot of the system software. (This situation is described more
fully in Section D.4.) In this case the response to the WHAT KLINIK
command is in the form shown below:

KLINIK ACTIVE FROM REBOOT
KLINIK MODE: REMOTE
HIGHEST CONSOLE MODE: MAINTENANCE

Normal use of the WHAT KLINIK command is illustrated by the following
example:

PAR>WHAT KLINIK
KLINIK INACTIVE
ACCESS WINDOW OPEN: 10-AUGUST-1983 13:04
ACCESS WINDOW CLOSED: 10-AUGUST-1983 13:04
KLINIK MODE: REMOTE
HIGHEST CONSOLE MODE: MAINTENANCE

PAR>

0.3.3 Terminating the KLINIK Link

The system operator can terminate the KLINIK link at any time by the
CLEAR KLINIK command. The CLEAR KLINIK command clears the KLINIK
parameters, but does not hang up the modem. If the remote user has a
remote CTY, the user can also terminate the link by the same method.
In either case, the link is not completely cleared until the operator
issues the DISCONNECT command. This command hangs up the modem, thus
ending the link. Breaking up the termination into two commands has
the advantage of allowing the link to be terminated (by use of the
DISCONNECT command) without clearing the parameters. Thus, the remote
user can try again to establish the link, but the operator does not
need to reenter the parameters.

When the operator issues the CLEAR KLINIK command during the time the
link is in use, the following messages are printed on both terminals:

KLINIK DISABLED

KLD -- KLINIK ACCESS TERMINATED BY OPERATOR

When the operator issues the DISCONNECT command, the following message
is printed on both terminals:

KLD -- KLINIK LINE DISCONNECTED

This message signals the end of the link, since the modem is hung up
by the DISCONNECT command.

D-7

KLINIK ACCESS DIALOG

If the remote user tries again to gain access to the system before the
parameters are reset, access is denied, and the following messages
appear on both the remote and local terminals:

KLR KLINIK RING - WINDOW CLOSED

KLD KLINIK LINE DISCONNECTED

The termination dialog is illustrated by the follo~dng example:

PAR>CLEAR KLINIK
KLINIK DISABLED

KLD -- KLINIK ACCESS TERMINATED BY OPERATOR

PAR>DISCONNECT

KLD -- KLINIK LINE DISCONNECTED

PAR>

D.4 REMOTE USER DIALOG WITH KLINIK

The remote user of the KLINIK link can be accessing the computer
system for a variety of reasons. For example, Software Support and
Field Service personnel may wish to run software and hardware
diagnostics. It can also be useful to watch some problem-causing
event as it occurs. Other DIGITAL personnel may use the link to
gather statistics on local system usage.

The link can be set up in two different ways to accommodate this
variety. As discussed in Section D.l.l, the remote terminal can be
either a normal timesharing user or a remote CTY.

0.4.1 Logging In as a Remote Operator

RSX-20F answers the OLlIE when it rings and decides what to do based
on the current setting of the KLINIK MODE parameter. If the KLINIK
MODE is REMOTE, RSX-20F prints the following message on both the
remote and local terminals:

KLR -- KLINIK RING - VALIDATING ACCESS

This message is followed on the remote terminal by:

PASSWORD:

At this time you should type in the password that was previously
agreed upon. You have five tries to give the correct password.
During the time the KLINIK link is being validated, the PARSER is
unavailable to either the local or the remote terminals. If either
the local operator or the remote user attempts to invoke the PARSER,
the request is queued and the validation process is continued.

If you give an incorrect password, RSX-20F prints the following
message:

KLR -- INCORRECT PASSWORD

D-8

KLINIK ACCESS DIALOG

RSX-20F then waits ten seconds before allowing any further attempt to
enter the password. During this ten-second wait, anything you type is
ignored. After ten seconds, the following prompt is printed again:

PASSWORD:

If after five tries you are unable to give the correct password, the
following messages are printed on both terminals:

KLR KLINIK LOGON TIMEOUT -
KLR LOGON ABORTED

KLD KLINIK LINE DISCONNECTED

At this time, RSX-20F hangs up the modem. The remote user can dial up
and try again to gain access to the system if the. local operator does
not issue the CLEAR KLINIK command.

When you type the correct password, RSX-20F prints the following
message on the remote terminal:

KLINIK MODE:

In response, you must type either REMOTE or USER.
connected to RSX-20F, you must type REMOTE.
following notification from RSX-20F:

KLR KLINIK LINE CONNECTED TO RSX-20F
KLR CONSOLE MODE LIMIT: [<mode>]

If you wish to be
You then receive the

where <mode> can be MAINTENANCE, PROGRAMMER, or OPERATOR.

You can login to the local system as a timesharing user even though
the KLINIK MODE was declared by the operator to be REMOTE. If you
wish to do this, simply reply to the KLINIK MODE: prompt with USER.
If you do this, you receive the following message before RSX-20F
routes the line to the KL monitor:

KLR -- KLINIK LINE CONNECTED TO TOPS-xx

where "xx" is either 10 or 20. The next line printed is the system
herald, just as a normal timesharing user would receive.

The following examples illustrate the dialog between RSX-20F and the
remote user. The first example shows a remote user answering the
KLINIK MODE: prompt with REMOTE to get a remote CTY. The second
example shows how the same user could decide to login to the system as
a timesharing user.

1. KLR -- KLINIK RING - VALIDATING ACCESS

PASSWORD: [the password will not echo on the terminal]

KLR -- INCORRECT PASSWORD
PASSWORD: [this time it is correct]

KLINIK MODE: REMOTE

KLR KLINIK LINE CONNECTED TO RSX-20F
KLR CONSOLE MODE LIMIT: [MAINTENANCE]

0-9

KLINIK ACCESS DIALOG

2. KLR -- KLINIK RING - VALIDATING ACCESS

PASSWORD: [the password will not echo on the terminal]

KLINIK MODE: USER

KLR -- KLINIK LINE CONNECTED TO TOPS-20

SYSTEM 2116 THE BIG ORANGE, TOPS-20 MONITOR 5.1(5101)
@

D.4.2 Logging In as a Timesharing User

If the local system operator has declared the usage of the remote
terminal to be USER, the link is routed to the KL monitor after
RSX-20F prints

KLR -- KLINIK LINE CONNECTED TO TOPS-xx

w her e II x x II i s e i the r 1 0 0 r 2 0 . Th e n ext lin e p r i n t ed i s the s y stem
message from the particular system, just as a normal timesharing user
would receive.

The following example shows the messages printed when a remote user
logs in to the system as a timesharing user.

Example D-6

KLR -- KLINIK LINE CONNECTED TO TOPS-20

SYSTEM 2116 THE BIG ORANGE, TOPS-20 MONITOR 5.1(5101)
@

D.5 KLINIK INTEGRITY OVER A REBOOT

The computer system attempts to maintain the integrity of a KLINIK
link over a reload of system software. Both the KL processor and the
front-end processor are aware of the KLINIK link, and both store the
current KLINIK parameters. This allows one processor to remind the
other of the current state of the KLINIK link should one of the two
processors be reloaded. If the link was set up to be REMOTE MODE, the
following messages are printed on both terminals:

SAV
SAV

DIAG
DIAG

KLINIK LINE ACTIVE IN REMOTE MODE
KLINIK LINE CONNECTED TO SYSTEM CONSOLE

If the link was set up to be USER MODE, the following message is
printed on both terminals:

SAV -- *DIAG* -- KLINIK LINE ACTIVE IN USER MODE

The KLINIK link is also maintained over a reload of the entire system.
That is, if both the KL and the front end are reloaded, RSX-20F
detects the carrier signal when it comes up and realizes that a KLINIK
link is in progress. At this point, RSX-20F waits 45 seconds for the

D-10

KLINIK ACCESS DIALOG

KL to provide the correct KLINIK parameters. Since in this situation
there is no way for the KL to know the original KLINIK parameters, it
is unable to supply the parameters. Thus, when the 45-second wait is
over, RSX-20F sets up default parameters ,and continues the link. The
parameters are set up for REMOTE MODE with the highest console mode
being MAINTENANCE. The messages printed are the same as those printed
on reloading only one of the processors.

In the event that the KL monitor has difficulty starting or restarting
the Primary or Secondary Protocols, the following message is printed
on the local console:

SAV -- *FATAL* -- PROTOCOLS NOT RUNNING

This problem usually requires a reload of the TOPS-IO or TOPS-20
system.

0-11

APPENDIX E

GETTING HELP ON RSX-20F

At times it becomes necessary for users of KL-based computers to get
help on some aspect of RSX-20F. There may be some problem with the
RSX-20F software, or the user may have some hardware problem that
RSX-20F detects but cannot deal with. If you find that your
installation is having a problem of this sort and you wish to submit a
Software Performance Report or place a hot line call to Software
Services, consult this appendix before calling for help. This
appendix provides assistance in making sure you supply all the needed
information to allow DIGITAL personnel to determine what the problem
is.

The items you should include with an SPR, or have ready when you make
a hot line call, are listed below. Providing this information to the
Software Support personnel speeds up the answering of your question
and helps insure that you receive a complete and useful answer.

1. Dump File(s) - Include the dump file(s) that were taken at
the time of the problem. The filename for every dump file is
ODMPll.BIN. One of these files is generated for every crash
of RSX-20F, as long as the KL is running when RSX-20F dies.
You can also produce a dump manually, if the situation calls
for it. You should be aware, however, that the manual
production of a dump file defeats any attempt by RSX-20F to
save the state of the processor as RSX-20F sees it.
Specifically, the stack pointer (SPSAV) will not contain the
address of the next instruction to be executed. If you feel
that it would be helpful to produce a dump, press the HALT
switch on the front end, then raise it again immediately.
Make sure that you record the circumstances of the crash and
correlate the particular circumstances with the particular
dump, especially if you are submitting more than one dump
file. Also, if you have produced the dump file by hand, be
sure to make that fact known, because it will definitely
influence the method of extracting information from the dump.

2. Console Log - Include the console log (or a copy of it) from
the time of the crash (or other problem). The copy you
include should cover any recent odd occurrences, as well as a
running commentary. This commentary is useful for
determining, not only the sequence of events, but the timing
of the events as well. Thus, if you try one method of
recovering from the problem, then think about the problem for
half an hour, then try another approach, make sure that your
commentary notes the half-hour delay, since the delay cannot
be inferred from reading the console log itself.

E-l

GETTING HELP ON RSX-20F

3. ERROR.SYS Entries - Include any ERROR.SYS entries generated
by the problem. You can also include any entries generated
around the time the problem occurred, since they may have a
bearing on the problem that you do not realize at the time.

4. Description of Problem Include a description of the

5.

problem. writing down exactly what seem~ to be happening on
the system, what signals told you a problem existed, and what
attempts you made to recover from the problem, can save a
good deal of time in getting your answer. If the Software
Support personnel do not have this information, they may have
to try to get in touch with you to get it, thereby delaying
your receiving an answer.

Device Descriptions - Include a description
involved in the problem. It would be wise,
a description of any nonstandard device that
to your system, since these are often the
problems.

E-2

of any device
also, to include
you have hooked
cause of unusual

APPENDIX F

EIA PIN DEFINITIONS

The following table lists the pin definitions that are part of the EIA
standards. DTE here refers not to the DTE20 device, but to the Data
Terminal Equipment - in other words, the terminal. DCE refers to Data
Communications Equipment - in other words, whatever hardware interface
you are using between the terminal and the host computer.

Pin Name To To Function Circuit
DTE DCE (CCITT) (EIA)

1 FD Frame Ground 101 (AA)
2 TD) Tr ansm i t ted Data 103 (BA)
3 RD < Rece i ved Da ta 104 (BB)
4 RTS) Request To Send 105 (CA)
5 CTS < Clear To Send 106 (CB)
6 DSR < Da ta Set Ready 107 (CC)
7 SG Signal Ground 102 (AB)
8 DCD < Data Carrier Detect 109 (CF)
9 < positive Dc Test Volt
10 < Negative Dc Test Voltage
11 Unassigned
12 SDCD < Sec. Data Carrier Detect 122 (SCF)
13 SCTS < Sec. Clear To Send 121 (SCB)
14 STD) Sec. Transmitted Data 118 (SBA)
15 TC < Transmitter Clock 114 (DB)
16 SRD < Sec. Rece i ved Da ta 119 (SBB)
17 RC < Receiver Clock 115 (DD)
18) Receiver Dibit Clock
19 SRTS) Sec. Request To Send 120 (SCA)
20 DTR) Data Terminal Ready 108.2 (CD)
21 SQ < Signal Quality Detect 110 (CG)
22 RI < Ring Indicator 125 (CE)
23) Data Rate Select 111/112 (CHIC!)
24 (TC)) External Tr ansm i tter Clock 113 (DA)
25) Busy

F-l

INDEX

ABORT
PARSER command, 4-6

Absolute mode, 6-32
ZAP, 6-34

AC block
error check, 4-25
parity check, 4-25

Access dialog
KLINIK, 0-1

Access parameters
KLINIK, 0-1
setting

KLINIK, 0-4, 0-5, 0-6
Access password

KLINIK, 0-2, D-8
Access window

KLINIK, D-2, D-3
password

KLINIK, 10-14
start date

KLINIK, 10-14
start time

KLINIK, 10-14
Ack line, 7-18
Acknowledge signal, 7-18
Active Task List, 7-7, 7-8, 10-34
Address

relative, 6-33
Address of Executive

base, 10-11
high, 10-11

Addressing modes
ZAP, 6-33

Allocation map
memory, 6-35

Ancillary Control Processor, 6-11,
7-6

Appending files, 6-14
APR, 8-6

break conditions, 8-6
flags in Comm Region, 8-6

Area
pointer to next Comm Region,

8-4
Area in Communication~ Region,

8-1
Arithmetic

expressions
evaluation of, 4-3

operators
precedence of, 4-3

Processor, 8-6
Arithmetic operators

ZAP, 6-35, 6-38
Asynchronous traps, 1-3, 7-8
ATL, 7-7

scan routine, 7-8
ATL entry for

CD task, 10-35

ATL entry for (Cont.)
DTE20 task, 10-34
FE task, 10-35
floppy disk task, 10-35
LP task, 10-35
null task, 10-35
queued protocol task, 10-35
RP task, 10-35
terminal task, 10-35

ATL node, 7-7
ATL node of current task, 7-8,

10-5
Auto-baud

reset, 7-13
Auto-baud Wait flag, 7-12, 7-16
Auto-bauded lines

count of, 10-21
Auto-bauding, 3-1, 7-12
Automatic reload flag, 10-13
Available space

listing, 6-14, 6~15

BACK
KLINIT command, 5-7

Bad block file, 2-4
BADBLK.SYS;l file, 2-4
Base address of Executive, 10-11
Basic DTE20 operations, 8-1
.BGBUF location, 10-6
Big Buffer, 7-4, 10-6

free space in, 10-6
Bit definitions

switch register, 5-5
Bitmap file

storage, 2-4
BITMAP.SYS;l file, 2-4
Block

starting disk, 6-33
virtual, 2-2
Volume Control, 6-9

Block file
bad, 2-4

Block Number
Virtual, 2-2

Block number/byte offset format,
6-39

Blocking the DTE20, 8-38
Blocks

memory size in, 10-11
Boot parameter

switch register, 10-13
Boo'r. EXB, 5-2

default bootstrap program, 5-2
BOOT.EXB file, 5-1, 5-8
Booting the KL, 8-30
BOOTM program, 5-41
Bootstrap device, 5-8

number, 5-5

Index-1 April 1986

Bootstrap program
BOOT.EXB default, 5-2
KL, 5-1
loading, 5-1, 5-8
starting, 5-1, 5-8

Bootstrapping errors, 5-5
BPARER

DTE20 bit, 8-12
BR requests, 1-4

PDP-II, 8-13
Branch displacement, 6-37, 6-44
Break conditions

APR, 8-6
Buffer

Big, 7-4, 10-6
CD-II

data, 10-29
free space in Big, 10-6
space, 10-6

Buffer pointer
Send-All, 10-21

Buffer's current device
TO-10, 10-16

Buffer-overflow crashes, 10-6
Bus

diagnostic, 8-15
Bus-mode

setting external core memory,
5-11

Byte offset format, 6-39, 6-40
Byte transfer error

termination of, 8-12
Byte transfer mode, 8-24

setting, 8-18

Cache memory
configuring, 5-1, 5-8.1, 5-41
enabling, 5-1, 5-8.1, 5-9, 5-38

Calls
hot line, E-l

Card reader data base, 10-29
Carrier

lost, 7-12
transition, 7-11
Wait, 7-12
wait

DHIIE, 7-13
Carrier Wait flag, 7-11
Causing a doorbell interrupt,

8-13
CD task

ATL entry for, 10-35
CD-II

current event flags, 10-29
data buffer, 10-29
driver

STD entry for, 10-33
status bits, 10-29

CDD
DTE20 bit, 8-18

Character
input routine, 7-12, 7-13, 7-14,

7-15

Character (Cont.)
output routine, 7-13, 7-17

Checking queues after a crash,
10-6

Checksum
file header, 2-3

CLEAR CLOCK
PARSER command, 4-7

CLEAR CONSOLE
PARSER command, 4-4, 4-7

CLEAR DATE
PARSER command, 4-7

CLEAR FAULT-CONTINUATION
PARSER command, 4-7

CLEAR FS-STOP
PARSER command, 4-8

CLEAR INCREMENT
PARSER command, 4-8

CLEAR KLINIK
PARSER command, 4-8

CLEAR KLINIK command, D-7
CLEAR MEMORY

PARSER command, 4-8
CLEAR NOT

PARSER command, 4-8
CLEAR OFFSET

PARSER command, 4-8
CLEAR OUTPUT

PARSER command, 4-8
CLEAR PARITY STOP

PARSER command, 4-9
CLEAR RELOAD

PARSER command, 4-9
CLEAR REPEAT

PARSER command, 4-9
CLEAR RETRY

PARSER command, 4-9
CLEAR TRACKS

PARSER command, 4-9
Clearing diagnostic command start,

8-15
Clock cycle

generating a, 8-15
Clock Error Stop, 9-2
Clock request list, 10-20
CLOCK.CMD File, 9-2
CM0IC bit

Comm Region, 8-8
CMlIC bit

Comm Region, 8-8
CMAPRW word

Comm Region, 8-5,
CMDAPR word

Comm Region, 8-6
CMDTE bit

Comm Region, 8-6
CMDTN bit

Comm Region, 8-6
CMFWD bit

Comm Region, 8-8
CMINI bit

Comm Region, 8-7

8-6

Index-2 April 1986

CMIP bit
Comm Region, 8-8

CMKAC
DTE20 word, 9-1

CMKAC word
Comm Region, 8-4

CMKAK word
Comm Region, 8-9

CML11 bit
Comm Region, 8-7

CMLNK word
Comm Region, 8-4

CMLRF word
Comm Region, 8-9

CMNAM bit
Comm Region, 8-3

CMNPR bit
Comm Region, 8-3

CMPDWD word
Comm Region, 8-5

CMPGWD word
Comm Region, 8-5

CMPIWD word
Comm Region, 8-4,

CMPNM bit
Comm Region, 8-7

CMPPT word
Comm Region, 8-7

CMPRO bit
Comm Region, 8-6

CMPWF bit
Comm Region, 8-7

CMQCT word
Comm Region, 8-9

CMQP bit
Comm Region, 8-8

CMSIZ bit
Comm Region, 8-3

CMSZ bit
Comm Region, 8-7

CMTEN bit
Comm Region, 8-3

CMTOT bit
Comm Region, 8-8

CMTST bit
Comm Region, 8-8

CMVER bit
Comm Region, 8-3

CMVRR bit
Comm Region, 8-6

CNUPE
DTE20 bit, 8-18

Comm area

8-5

owning processor's, 8-3
Comm Region

APR flags in, 8-6
area

pointer to next, 8-4
CM0lC bit, 8-8
CM1lC bit, 8-8
CMAPRW word, 8-5, 8-6
CMDAPR word, 8-6
CMDTE bit, 8-6

Comm Region (Cont.)
CMDTN bit, 8-6
CMFWD bit, 8-8
CMlNl bit, 8-7
CMIP bit, 8-8
CMKAC word, 8-4
CMKAK word, 8-9
CML11 bit, 8-7
CMLNK word, 8-4
CMLRF word, 8-9
CMNAM bit, 8-3
CMNPR bit, 8-3
CMPDWD word, 8-5
CMPGWD word, 8-5
CMPlWD word, 8-4, 8-5
CMPNM bi t, 8-7
CMPPT word, 8-7
CMPRO bit, 8-6
CMPWF bit, 8-7
CMQCT word, 8-9
CMQP bit, 8-8
CMSlZ bit, 8-3
CMSZ bit, 8-7
CMTEN bit, 8-3
CMTOT bit, 8-8
CMTST bit, 8-8
CMVER bit, 8-3
CMVRR bit, 8-6
CPVER bit, 8-3
PIDENT word, 8-3
Processor Header word, 8-3
protocol version number, 8-3
STATUS word, 8-7
TOPlD word, 8-6
version number, 8-3

Command
diagnostic, 8-16

Command file
indirect, 4-25

Command lines
continuing

PARSER, 4-2
Command start

clearing diagnostic, 8-15
setting diagnostic, 8-15

Commands
DDT11, 10-2
RSXFMT, B-2
RSXT10, B-2

Comments
PARSER, 4-2

Common event flags
global, 10-11

Communication device, 1-3
Communications area

PDP-II
owned, 8-3

Communications interface
DH11, 7-15, 7-16

Communications Region, 8-1, 8-2,
8-3, 8-4, 8-5, 8-6, 8-7, 8-8,
8-9, 8-33, 9-1

area in, 8-1

lndex-3 April 1986

Communications Region (Cont.)
header, 8-1
initializing, 8-1
KL, 9-1
section, 8-1

COMTRP location, 9-16
COMTRP routine, 7-9
Configuration

file, 5-1, 5-5, 5-9
maps

external memory, 5-32
internal memory, 5-32, 5-33
logical memory, 5-32, 5-33,

5-34
physical memory, 5-32

reversing memory, 5-9
Configuration file

writing, 5-12
Configuring

cache memory, 5-1, 5-8.1, 5-41
external core memory, 5-11
internal core memory, 5-1~
KL memory, 5-1, 5-9
MOS memory, 5-11
specified memory blocks, 5-11
specified memory modules, 5-10

Console mode
KLINIK, 1~-14
PARSER, 4-4
remote terminal, 0-3

Console mode flag, 10-13
Constant register

ZAP, 6-37
Contents of memory locations

finding, 7-4
CONTINUE

PARSER command, 4-9
Continuing PARSER command lines,

4-2
Controlling

TO-l~ data transfers, 8-22
TO-II data transfers, 8-21

Conventions
OTE2~ register, 8-37

COP task, C-l
COP utility, 6-1

JBL, 6-2
jCP, 6-2
jHE, 6-2
JRO, 6-2
jVF, 6-2
jZE, 6-2

Copying a floppy disk, 6-1
Copying files, 6-12, 6-14
Core

memory
configuring

internal, 5-10
Core image file, 2-4
Core manager data base, 10-19
Core memory

bus-mode
setting external, 5-11

Core memory (Cont.)
configuring

external, 5-11
CORIMG.SYSil file, 2-4
Count

Keep-Alive, 8-4, 8-9, 9-1,
10-18

Send-All
terminal, 1~-21

TO-l~ delay, 8-24
TO-II queue entry, 10-16

Count of auto-bauded lines, 1~-21
Counter

hardware program, 1-4
timeout, 1~-21

CPU serial number
KL, 1~-4~

CPVER bit
Comm Region, 8-3

CR task
TPO entry for, 1~-36

CRAM
error report, 5-35
malfunction, 8-16
Parity Error, 9-2

CRAM.CMO File, 9-2
Crash

checking queues after a, 1~-6
Crash codes

RSX-20F, 9-16, 10-5, A-I
.CRASH macro, 7-9, 9-16
Crashed system

examining a, 7-4
Crashes

buffer-overflow, 1~-6
recovering from front-end, l~-l

Creation
date

file, 2-3
time

file, 2-3
.CRTSK location, 7-8, 1~-5, l~-ll
CTY

line speed, 1~-13
queue, 1~-37
redirecting the, 5-5
remote, 0-2, 0-8, 0-9
startup routine, 7-13
status block, 1~-22
timeout routine, 7-13

Current event flags
CO-II, 1~-29
LP-20, 1~-30

Current interrupt status, 8-14
Current task

ATL node of, 7-8, 1~-5
pointer, 10-11

Cycle
generating a clock, 8-15

01011
OTE2~ bit, 8-15, 8-16

Index-4 April 1986

Data
buffer

CD-II, 10-29
packets, 8-34

transferring indirect, 8-8
transfer, 8-34

rate, 8-22
TO-10, 8-16, 8-24
TO-II, 8-16, 8-24

transfer across DTE2QJ
TO-10, 8-1
TO-II, 8-1

transfer mode
diagnostic, 8-15, 8-16
normal, 8-15

transferring string, 8-24
transfers, 1-4

controlling
TO-10, 8-22
TO-ll, 8-21

Data base
card reader, 10-29
core manager, 10-19
DECtape driver, 10-26
disk driver, 10-27
FE device driver, 10-28
floppy disk driver, 10-25
Keep-Alive, 10-18
KLINIK, 10-14
LP-20 driver, 10-30
queued protocol, 10-15

Data between processors
transferring, 8-8, 8-19, 8-20,

8-21, 8-22, 8-23, 8-31
Data line scanner queue, 10-37
Data Terminal Ready signal, 7-11
Date

file
creation, 2-3
expiration, 2-3
revision, 2-3

PDP-II, C-2
Date flag

valid, 10-12
Date storage area, 10-12
DCOMST

DTE20 bit, 8-15, 8-16
DDTll commands, 10-2
DDTll symbolic debugging program,

10-1
Debugging program

DDTll symbolic, 10-1
DECtape

driver
data base, 10-26
STD entry for, 10-33

load switches, 5-5
PUD entry, 10-39
switch register, 5-5

DECtape task
TPD entry for, 10-36

Default radix, 4-2

Delay count
TO-10, 8-24

Deleting files, 6-12, 6-14, 6-15
DEPOSIT

PARSER command, 4-10
DEPOSIT AR

PARSER command, 4-10
Deposit Examine Failure, 9-2
Deposit operation, 8-34

DTE20, 8-12, 8-22, 8-23
Deposits across DTE20 memory, 8-1,

8-8
Determining the task that crashed,

10-5
Device

communication, 1-3
dismounting a, 6-9
driver

data base
FE, 10-28

drivers, 1-5, 7-4
interfacing, 8-31

Files-II, 6-11
mounting a, 6-9
priority levels, 1-3
Queue Pointers, 10-37
TO-10

buffer's current, 10-16
Device number

bootstrap, 5-5
Device tables

physical unit, 10-38
DEX

DTE20 bit, 8-15, 8-16
DEX.CMD File, 9-2, 9-5
DEXDON

DTE20 bit, 8-12
DEXWDl-2

DTE20 register, 8-23
DEXWDl-3

DTE20 register, 8-22
DFUNC

DTE20 bit, 8-15
DH11

communications interface, 7-15,
7-16

queue, 10-37
DH11 table, 10-24
DH11E carrier wait, 7-13
$DHINP routine, 7-12, 7-13, 7-14,

7-15
$DHOUT routine, 7-13, 7-17
.DHSTO routine, 7-18
.DHTMO routine, 7-15, 7-16
Diagnostic

bus, 8-15
command start

clearing, 8-15
setting, 8-15

data transfer mode, 8-15, 8-16
selection code, 8-15

Diagnostic command, 8-16

Index-5 April 1986

Diagnostic mode
DTE2~, 8-15

Diagnostic operations
DTE2~, 8-1

Diagnostic Word 1
DTE2~, 8-15, 8-16, 8-17

Diagnostic Word 2
DTE2~, 8-16

Diagnostic Word 3
DTE2~, 8-16

Diagnostic words
DrrE2~, 8-15

Diagnostics
KL hardware, 1-6

Dialog
entering KLINIT, 5-5
error messages

KLINIT, 5-17, 5-2~
exiting KLINIT, 5-42
file transfer, B-5
KLINIK

access, D-l
operator, D-3

KLINIT
operator, 5-16

KLINIT operator, 5-7, 5-8, 5-9,
5-1~, 5-11, 5-12, 5-14,
5-15

remote user
KLINIK, D-8

restarting KLINIT, 5-5, 5-42
terminating KLINIT, 5-5

Dialog examples
KLINIT, 5-36, 5-37, 5-38, 5-39,

5-4~, 5-41, 5-42
Dialog mode

KLINIT, 5-1
Dialog reports

KLINIT, 5-32
Differences

RSX-2~F/RSX-IIM, 1-7
DIKLl~

DTE20 bit, 8-15
Direct packets

TO-1~, 8-34
extended, 8-35

TO-II, 8-35
Direct transfer, 8-34

extended, 8-38
TO-II, 8-39

Directive service routine, 7-4,
7-8

Directives, 1-4, 1-7
performing, 7-9

Directories
listing file, 6-12

Directory
Master File, 2-4
System Task, 7-6, 10-32
Task Partition, 1~-36
User File, 1-7, 2-1, 6-29

Directory file
Files-II, 2-3

Directory file (Cont.)
listing a, 6-14, 6-16

Directory file entry
Files-II, 2-3

Disabling PDP-II interrupts, 8-14
DISCONNECT

PARSER command, 4-11, D-7
Disk

block
starting, 6-33

copying a floppy, 6-1
driver, 1-7

data base, 10-27
floppy, 1~-25

STD entry for floppy, 10-33
load switches

floppy, 5-3
PUD entry

floppy, 10-39
switch register

floppy, 5-3
Disk task

ATL entry for floppy, 10-35
TPD entry for floppy, 1~-36

Dismounting a device, 6-9
Displacement

branch, 6-37, 6-44
jump, 6-37, 6-44

DL-llE
startup routine, 7-13
timeout routine, 7-13

DLll queue, 1~-37
DLII/C table, 1~-23
DLII/E table, 1~-23
.DLMTO

routine, 7-13
startup routine, 7-13

DLYCNT
DTE2~ register, 8-22, 8-24

DMII/BB table, 10-22
DMllBB, 7-12
$DMINT routine, 7-11, 7-12
DMO error messages, 6-11, 6-12
DMO task, C-2
DMO utility, 6-9, 6-l~, 6-11
~DMPll.BIN file, l~-l, 1~-4, E-l
.DMTMO routine, 7-12
.DMTMO system startup routine,

7-12
DON10C

DTE2~ bit, 8-13
DONl~S

DTE20 bit, 8-13
DONllC

DTE20 bit, 8-14
DONllS

DTE2~ bit, 8-14
Done interrupt, 8-8

TO-II, 8-38
Doorbell function, 8-3~

DTE20, 8-1

Index-6 April 1986

Doorbell interrupt, 8-7, 8-8,
8-10, 8-12

causing a, 8-13
DPS4[N]

DTE20 bit, 8-17
DRAM

error report, 5-36
malfunction, 8-16
Parity Error, 9-2

DRAM.CMD File, 9-2
ORESET

DTE20 bit, 8-17
Driver

data base
DECtape, 10-26
disk, 10-27
FE device, 10-28
floppy

disk, 10-25
LP-20, 10-30

disk, 1-7
DTE20, 1-7
STD entry for

CD-II, 10-33
DECtape, 10-33
OTE20, 10-32
FE, 10-33
floppy disk, 10-33
LP, 10-33
terminal, 10-33

Driver logic
DTE20, 8-34

Driver routine
terminal, 7-11

Drivers
dev ice, 1-5, 7-4
interfacing device, 8-31

Driving the DTE20, 1-7
DS00-DS03

DTE20 bit, 8-16
OS00-D806

DTE20 bit, 8-15
DS04

DTE20 bit, 8-16
D805

DTE20 bit, 8-16
D806

DTE20 bit, 8-16
DSEND

DTE20 bit, 8-15
DTE20

blocking the, 8-38
deposit operation, 8-22, 8-23
diagnostic mode, 8-15
diagnostic operations, 8-1
Diagnostic Word 1, 8-15, 8-16,

8-17
Diagnostic Word 2, 8-16
Diagnostic Word 3, 8-16
diagnostic words, 8-15
doorbell function, 8-1
driver, 1-7

8TD entry for, 10-32

DTE20 (Cont.)
driver logic, 8-34
driving the, 1-7
examine operation, 8-12, 8-22,

8-23
hardware operations, 8-1
loop-back test, 8-15
memory

deposits across, 8-1, 8-8
examines across, 8-1, 8-8

mode
privileged, 8-12
restricted, 8-12

operation
deposit, 8-12

privileged, 10-17
protocol, 8-30
register conventions, 8-37
registers

examining, 10-6
using, 8-23

routines, 8-37
single-stepping the, 8-11, 8-12
8tatus Register, 8-37
status word, 8-10

read state of, 8-11, 8-12
write state of, 8-13, 8-14

TO-10
data transfer across, 8-1

TO-II
data transfer across, 8-1

DTE20 bit
SPARER, 8-12
CDD, 8-18
CNUPE, 8-18
D1011, 8-15, 8-16
DCOM8T, 8-15, 8-16
DEX, 8-15, 8-16
DEXDON, 8-12
DFUNC, 8-15
DIKL10, 8-15
DON10C, 8-13
DON108, 8-13
DONIIC, 8-14
DON 118 , 8 -14
DPS4[N], 8-17
DRESET, 8-17
DS00-DS03, 8-16
D800-DS06, 8-15
D804, 8-16
D805, 8-16
D806, 8-16
DSEND, 8-15
DUPE, 8-18
DURE, 8-18
DXWRD1, 8-11
ES8EL, 8-12
ESUSPC, 8-14
ESU8PS, 8-14
EDONE8, 8-16
ERR10C, 8-13
ERR108, 8-13
ERRI1C, 8-14

Index-7 April 1986

DTE2~ bit (Cont.)
ERRllS, 8-14
INTl~S, 8-14
INTIIC, 8-13
INTllS, 8-13
INTROF, 8-14
INTRON, 8-14
INTSON, 8-13
MPEll, 8-12
NULSTP, 8-12
NUPE, 8-18
PERCLR, 8-13
PULSE, 8-15
RAMIS~, 8-11
RFAMD~, 8-16
RFMADl, 8-16
RFMAD2, 8-17
RFMAD3, 8-17
RM, 8-12
SCD, 8-18
SWSLLT, 8-17
TOl~, 8-16
TOl~BM, 8-18
TOl~DB, 8-12
TOl~DN, 8-11
TOl~ER, 8-11
TOll, 8-16
T011DB, 8-11
TOIIDN, 8-12
TOllER, 8-12
VEC~4, 8-16
WEP, 8-18

DTE2~ operations
basic, 8-1

DTE2~ register, 8-1~
DEXWDl-2, 8-23
DEXWDl-3, 8-22
DLYCNT, 8-22, 8-24
STATUS, 8-1~
TENADl-2, 8-22, 8-23
TOl~AD, 8-2~, 8-24
TOl~BC, 8-1~, 8-21, 8-24
TOl~DT, 8-19
T011AD, 8-19, 8-24
TOIIBC, 8-21, 8-24
TOIIDT, 8-19

DTE2~ registers
locations of, 8-1~

DTE2~ task
ATL entry for, 1~-34
TPD entry for, 1~-36

DTE2~ word
CMKAC, 9-1

.DTINT routine, 8-38
DTR signal, 7-11
Dump analysis

sample
RSX-2~F, 1~-6, 1~-7, 1~-8,

1~-9
Dump file

examining locations in a, 1~-1
producing, E-1
reading a front-end, 1~-1

Dumps
interpreting RSX-2~F, 1~-4,

1~-5, 1~-6, 1~-7, 1~-8,
1~-9, 1~-1~

DUPE
DTE2~ bit, 8-18

DURE
DTE2~ bit, 8-18

DXWRD1
DTE2~ bit, 8-11

EBSEL
DTE2~ bit, 8-12

EBUS parity error, 8-12, 9-2,
1~-17

EBUS.CMD File, 9-2
EBUSPC
DTE2~ bit, 8-14

EBUSPS
DTE2~ bit, 8-14

EDONES
DTE2~ bit, 8-16

EIA pin definitions, F-1
Emergency Stack, 1~-41
EMT instruction, 7-9
Enabling

cache memory, 5-1, 5-8.1, 5-9,
5-38

PDP-II interrupts, 8-13, 8-14
remote lines, 1~-21

Entering KLINIT dialog, 5-5
Entering KLINIT from PARSER, 5-5
Entry count

TO-II queue, 1~-16
EPT, 8-34
ERR10C

DTE2~ bit, 8-13
ERR10S

DTE2~ bit, 8-13
ERRllC

DTE2~ bit, 8-14
ERRl1S

DTE2~ bit, 8-14
Error codes

fault continuation, 1~-4~
RSX-20F

I/O, A-I, A-6
warm restart, 1~-4~

Error logging
PDP-II, 9-16
RSX-2~F, 9-2

Error messages
OM 0, 6 -11, 6 -1 2
KLINIT

dialog, 5-17, 5-20
system, 5-17, 5-21, 5-22,

5-23, 5-24, 5-25, 5-26,
5-27, 5-28, 5-29, 5-3~,
5-31, 5-32

MOU, 6-11, 6-12
PARSER, 4-4, 4-29
PIP, 6-2~, 6-21, 6-22, 6-23
RED, 6-24

Index-8 Apr 11 1986

Error messages (Cont.)
SAV, 6-27
UFD, 6-30
ZAP, 6-44, 6-45, 6-46

Error report
CRAM, 5-35
DRAM, 5-36

Error reports
microcode verification, 5~35

Error termination of byte
transfer, 8-12

ERROR.SYS file, 7-13, 7-16, 9-2,
9-17, C-l, C-2, D-l, E-2

Errors
bootstrapping, 5-5
KL, 9-2

Evaluation of arithmetic
expressions,' 4-3

Event
significant, 1-5, 1-7

Event flags
CD-II

current, 10-29
global

common, 10-11
LP-20

current, 10-30
significant, 10-11

EXAMINE
PARSER command, 4-11

Examine
operation, 8-34

DTE20, 8-12, 8-22, 8-23
EXAMINE AB

PARSER command, 4-12
EXAMINE AD

PARSER command, 4-12
EXAMINE ADX

PARSER command, 4-12
EXAMINE AR

PARSER command, 4-12
EXAMINE ARX

PARSER command, 4-13
EXAMINE BR

PARSER command, 4-13
EXAMINE BRX

PARSER command, 4-13
EXAMINE CRADDR

PARSER command, 4-13
EXAMINE CRLOC

PARSER command, 4-13
EXAMINE DRADDR

PARSER command, 4-13
EXAMINE DTE20

PARSER command, 4-14
EXAMINE EBR

PARSER command, 4-14
EXAMINE EBUS

PARSER command, 4-14
EXAMINE FE

PARSER command, 4-14
EXAMINE FLAGS

PARSER command, 4-14

EXAMINE FM
PARSER command, 4-15

EXAMINE KL
PARSER command, 4-12

EXAMINE MQ
PARSER command, 4-15

EXAMINE PC
PARSER command, 4-12

EXAMINE PI
PARSER command, 4-15

EXAMINE REGISTERS
PARSER command, 4-15

EXAMINE SBR
PARSER command, 4-15

EXAMINE SECTION
PARSER command, 4-15

EXAMINE UBR
PARSER command, 4-15

EXAMINE VMA
PARSER command, 4-15

EXAMINE VMAH
PARSER command, 4-16

Examines
verifying memory, 8-8

Examines across DTE20 memory, 8-1,
8-8

Examining
crashed system, 7-4
current KLINIK parameters, D-6,

D-7
DTE20 registers, 10-6
locations in a dump file, 10-1
PDP-II registers, 10-6

Executive
base address of, 10-11
high address of, 10-11
partition, 1-5
RSX-20F, 7-1, 7-2, 7-3, 7-4
tasks, 7-5

Executive Process Table, 8-34
Exiting KLINIT dialog, 5-42
Exiting PARSER, 4-1
Expiration date

file, 2-3
Expressions

evaluation of arithmetic, 4-3
Extended direct packets

TO-10, 8-35
Extended direct transfer, 8-38
Extension

file, 2-4
header

file, 2-3
linkage to, 2-3

External core memory
bus-mode

setting, 5-11
configuring, 5-11

External memory configuration
maps, 5-32

External page, 1-3, 7-4

Index-9 Apr 11 1986

FIIACP, 7-4
STD entry for, 10-33
task, C-l

FIIACP task
TPD entry for, 10-36

FIITPD partition, 1-5, 7-4
Fast Memory parity arror, 8-16,

9-2
Fault continuation error codes,

10-40
FCS file structure, 2-4
FE device driver

data base, 10-28
FE driver

STD entry for, 10-33
FE program, B-1, B-4

running, B-4
FE PUD entry, 10-39
FE task

ATL entry for, 10-35
TPD entry for, 10-36

FE: device, B-4, B-5, C-2
FEUIC.TXT file, B-4
Field Service test condition,

8-16
File

configuration, 5-5, 5-9
creation

date, 2-3
time, 2-3

Directory
Master, 2-4
User, 1-7, 2-1, 6-29

expiration
date, 2-3

extension, 2-4
header, 2-3

Files-II, 2-2
index, 2-4

header, 2-3
checksum, 2-3

ID, 1-7, 2-2, 2-3
name, 2-3

primary, 2-3
ownership code, 2-3
protection cods, 2-3
revision

count, 2-3
date, 2-3
time, 2-3

sequence number, 2-2
system

front-end, 1-7
transfer

dialog, B-5
type, 2-4
version number, 2-2, 2-4

File Control Services, 2-4
File number, 2-2
File structure

FCS, 2-4
Files

reformatting, B-1, B-2, B-3

Files (Cont.)
transferring, B-4, B-5, B-6,

B-7, C-2
transferring between processors,

B-1
Files-II, 1-7, 2-1

device, 6-11, C-2
directory file, 2-3
directory file entry, 2-3
file, 2-2
index file, 2-4
med ium, 2-1
partition, 1-5
tasks, 1-7
volume, 2-1, C-2

Finding
contents of memory locations,

7-4
last instruction executed, 10-5

Fixed-length records, 2-4
Floppy disk

copying a, 6-1
driver

data base, 10-25
STD entry for, 10-33

load switches, 5-3
PUD entry, 10-39
switch register, 5-3
zeroing a, 6-2

Floppy disk task
ATL entry for, 10-35
TPD entry for, 10-36

FM parity error check, 4-25
FMPAR.CMD File, 9-2, 9-3
Format register

ZAP, 6-38
Framing error, 7-14, 7-16
FREAD

PARSER command, 4-16
Free Pool, 7-4, 10-6, 10-19

free space in, 10-6
Free space in Big Buffer, 10-6
Free space in Free Pool, 10-6
.FREPL location, 10-6
Front end

privileged, 8-30
Front End Status Block, 10-10
Front-end

crashes
recovering from, 10-1

dump file
read ing a, 10-1

file system, 1-7
function, 1-6

Front-end tasks, C-l
Function

front-end, 1-6
Functions of queued protocol

driver, 8-31
FWRITE

PARSER command, 4-16
FXCT

PARSER command, 4-16

Index-10 April 1986

GEN partition, 1-5, 1-7, 4-1, 7-4
installing tasks in, 7-8
TPD entry for, 10-36

General
PDP-II

registers, 1-4
General partition, 1-5
Generating a clock cycle, 8-15
Generating parity, 8-18
Getting help on RSX-20F, E-l
Global common event flags, 10-11

HALT
PARSER command, 4-16

HALT.CMD File, 9-2, 9-9
Halting the KL, 8-16
Handling

trap, 7-9
Hardware

diagnostics
KL, 1-6

interface, 8-1
modem handling, 7-10
operations

DTE20, 8-1
options available, 10-40
program counter, 1-4
stack pointer, 1-4

Head
current TO-10 queue, 10-16

Header
checksum

file, 2-3
Communications Region, 8-1
file, 2-3

extension, 2-3
linkage to

extension, 2-3
Header area, 2-3
Header word

Comm Region
Processor, 8-3

Comm Region Processor, 8-3
Help facility

PARSER, 4-4
Help on RSX-20F

getting, E-l
High address of Executive, 10-11
Hot line calls, E-l

I/O

ID

error codes
RSX-20F, A-I, A-6

page, 1-3, 7-4
redirecting, 6-24
requests, 1-5

file, 1-7, 2-2, 2-3
Ident area, 2-3
Identification table

processor, 10-15
Ignoring KL halts, 10-12

Image file
core, 2-4

Index file
Files-II, 2-4

Indexed file
positioning in an, 6-5

INDEXF.SYSil file, 2-4
Indirect command file, 4-25
Indirect data packets

transferring, 8-8
Indirect packets

TO-10, 8-36
TO-II, 8-37

Indirect transfer
TO-II, 8-39

Indirect-in-Progress
semaphore, 8-39

Informational messages
KLINIT, 5-17, 5-18

INI
task, C-2
utility, 6-4

/FULL, 6-5
/INDX, 6-5
/INF, 6-5

Initialization
KL, 1-6

INITIALIZE
PARSER command, 4-16

Initializing a volume, 6-4
Initializing Communications

Region, 8-1
Input routine

character, 7-12, 7-13, 7-14,
7-15

Install task
TPD entry for, 10-36

Installation
task, 6-25

Installing tasks in GEN partition,
7-8

Instruction set
PDP-II, 1-4

INT10S
DTE20 bit, 8-14

INT1IC
DTE20 bit, 8-13

INT11S
DTE20 bit, 8-13

Interface
DHll communications, 7-15, 7-16

Interfacing device drivers, 8-31
Interleaving KL memory, 5-1, 5-10
Internal core memory

configuring, 5-10
Internal memory configuration

maps, 5-32, 5-33
Internal registers

ZAP, 6-35
Interpreting RSX-20F dumps, 10-4,

10-5, 10-6, 10-7, 10-8, 10-9,
10-10

Index-II April 1986

Interrupt
doorbell, 8-7
priorities, 1-3
TO-II

done, 8-38
Interrupt enable bit, 7-13
Interrupt status

current, 8-14
Interrupt system

priority, 8-5
Interrupts

disabling PDP-II, 8-14
enabling PDP-II, 8-13, 8-14
vector, 1-3

INTROF
OTE2~ bit, 8-14

INTRON
OTE2~ bit, 8-14

INTSON
OTE2~ bit, 8-13

lOT instruction, 9-16
IOTTRP location, 9-16
IOTTRP routine, 7-9

JSYS's
TOPS-2~, 1-4

JUMP
PARSER command, 4-16

Jump displacement, 6-37, 6-44

Keep-Alive
count, 8-4, 8-9, 9-1, 10-18
data base, 1~-18

Keep-Alive Ceased, 9-2
Keep-Alive-Cease error, 9-1, 1~-5
KL

booting the, 8-3~
bootstrap program, 5-1
Communications Region, 9-1
CPU

serial number, 10-4~
errors, 9-2
halting the, 8-16
hardware diagnostics, 1-6
initialization, 1-6
loading, 5-1
memory

configuring, 5-1, 5-9
interleaving, 5-1, 5-10

microcode
loading, 5-1, 5-8
verifying, 5-1, 5-8, 5-42

state flag, 1~-13
status

sampling, 8-15
KL Halted, 9-2
KL halts

ignor ing, 10-12
KL.CFG file, 5-1, 5-8.1, 5-9, 5-12,

5-28, 5-32
KL/POP-1l interface, 8-1
KLA.MCB file, 5-1
KLOISC task, C-2

KLERR, 9-1
running, 9-1

KLERR functions, 9-1
KLERRO.SNP file, 9-1
KLI task, C-l
KLINIK, C-2

access dialog, 0-1
access parameters, 0-1

setting, 0-4, 0-5, 0-6
access password, 0-2, 0-8
access window, 0-2, 0-3

password, 1~-14
start date, 10-14
start time, 10-14

console mode, 1~-14
data base, 1~-14
dialog

remote user, 0-8
integrity over reboot, O-l~,

0-11
line status flag, 1~-14
link

terminating, 0-7
operator dialog, 0-3
parameters

examining current, 0-6, 0-7
terminal

remote, 0-2
KLINIK events, 0-1
KLINIK link, 4-8
KLINIT, 5-1

dialog
entering, 5-5
error messages, 5-17, 5-2~
exiting, 5-42
restarting, 5-5, 5-42
terminating, 5-5

dialog examples, 5-36, 5-37,
5-38, 5-39, 5-40, 5-41,
5-42

dialog mode, 5-1
dialog reports, 5-32
entering from PARSER, 5-5
informational messages, 5-17,

5-18
loading, 5-5
operator dialog, 5-7, 5-8, 5-9,

5-10, 5-11, 5-12, 5-14,
5-15, 5-16

starting, 5-5
system

error messages, 5-17, 5-21,
5-22, 5-23, 5-24, 5-25,
5-26, 5-27, 5-28, 5-29,
5-3~, 5-31, 5-32

tracking capability, 5-7
warning messages, 5-17, 5-18.1,

5-19, 5-2~
KLINIT command

BACK, 5-7
KLINIT messages, 5-17
KLRING task, C-2
KLX.MCB file, 5-1

Index-12 April 1986

Known files, 2-4
KPALV.CMD File, 9-2

Last instruction executed
find ing, 10-5

Line speed
CTY, 10-13

Line speed table, C-2
Line status flag

KLINIK, 10-14
Linkage to extension header, 2-3
Listing a directory file, 6-14,

6-16
Listing available space, 6-14,

6-15
Listing file directories, 6-12
Load switches

DECtape, 5-5
floppy

disk, 5-3
Loading

bootstrap program, 5-1, 5-8
KL, 5-1

microcode, 5-1
KL microcode, 5-1, 5-8
KLINIT, 5-5
monitor from subdirectories,

5-2
RSX-20F, 5-5
system, 5-5

Loading a specified file, 5-12
Locations in a dump file

examining, 10-1
Locations of DTE20 registers,

8-10
Log file, C-l
Logging

PDP-11 error, 9-16
RSX-20F error, 9-2

Logical memory configuration maps,
5-32, 5-33, 5-34

Logical Unit Number, 2-1, 6-9
Logical Unit Tables, 10-38
LOGXFR, 9-17

running, 9-17
task, 9-17, C-1

Loop-back test
DTE 20, 8-15

Lost carrier, 7-12
LP

driver
STD entry for, 10-33

PUD entry, 10-39
LP task

ATL entry for, 10-35
TPD entry for, 10-36

LP-20
current event flags, 10-30
driver data base, 10-30
status block, 10-30

LPT thread lists, 7-4
LPTBL location, 10-31
LUN, 2-1

Maintenance mode, 4-4
Manager

data base
core, 10-19

Map area, 2-3
Map file

memory, 1-6
Mapped system, 1-5
Maps

external memory configuration,
5-32

internal memory configuration,
5-32, 5-33

logical memory configuration,
5-32, 5-33, 5-34

physical memory configuration,
5-32

MARK-MICROCODE
PARSER command, 4-16.1

Master File Directory, 2-4
MB20 memory

reconfiguring, 5-38
MCR

PARSER command, 4-16.1
Medium

Fi1es-11, 2-1
Memory

allocation map, 6-35
bus-mode

setting external core, 5-11
configuration

reversing, 5-9
configuration maps

external, 5-32
internal, 5-32, 5-33
logical, 5-32, 5-33, 5-34
physical, 5-32

configuring
cache, 5-1, 5-8.1, 5-41
external core, 5-11
internal core, 5-10
KL, 5-1, 5-9
MOS, 5-11

deposits across DTE20, 8-1, 8-8
enabling

cache, 5-1, 5-8.1, 5-9, 5-38
examines

verifying, 8-8
examines across DTE20, 8-1, 8-8
interleaving KL, 5-1, 5-10
map file, 1-6
parity error

Fast, 8-16
PDP-II, 8-11, 8-12, 8-13

parity option
MF11LP, 8-12
MF11UP, 8-12

reconfiguring MB20, 5-38
Memory addresses

virtual, 1-5
Memory blocks

configuring specified, 5-11

Index-13 April 1986

Memory layout
RSX-20F, 7-5

Memory locations
finding contents of, 7-4

Memory modules
configuring specified, 5-10

Memory size in blocks, 10-11
Merging files, 6-14, 6-18
MF11LP memory parity option, 8-12
MF11UP memory parity option, 8-12
MFD, 2-4
Microcode

loading KL, 5-1, 5-8
verification

error reports, 5-35
verifying KL, 5-1, 5-8, 5-42

Microcode file, 5-1
MIDNIT task, C-2
Mode

maintenance, 4-4
operator, 4-4
PARSER console, 4-4
privileged

DTE20, 8-12
programmer, 4-4
restricted

DTE20, 8-12
user, 4-4

Modem
strapping options, 7-10
timeout routine, 7-11, 7-12

Modem handling, 7-10
concepts, 7-10
hardware, 7-10
routine, 7-11

Modem handling routine, 7-11
Moni tor

loading from subdirectories,
5-2

TOPS-10 default, 5-1
TOPS-20 default, 5-1

MOS memory
configuring, 5-11

MOU
error messages, 6-11, 6-12
task, C-l

MOU utility, 6-9, 6-11
Mounting a device, 6-9
MPE11

DTE20 bit, 8-12
MTBOOT.EXB file, 5-41

Name
file, 2-3
owning processor's, 8-3
primary

file, 2-3
Node Pool, 10-6
Nonprivileged tasks, 1-6
Nonresident tasks, 1-6
Nonstandard devices, E-2
Normal data transfer mode, 8-15

NPR
UNIBUS

parity error, 8-11
NPR requests, 1-4
Null task, 7-8

ATL entry for, 10-35
NULSTP

DTE20 bit, 8-12
Number

processor, 10-15
NUPE

DTE20 bit, 8-18

Obsolete files
purging, 6-14, 6-19

Offset, 4-3
relative, 6-34

Operation
deposit, 8-34

DTE20, 8-12
DTE20

deposit, 8-22, 8-23
examine, 8-12, 8-22, 8-23

examine, 8-34
Operator

dialog
KLINIK, 0-3
KLINIT, 5-7, 5-8, 5-9, 5-10,

5-11, 5-12, 5-14, 5-15,
5-16

Operator mode, 4-4
Operators

precedence of arithmetic, 4-3
OUTPUT command

SET NO, 4-22
Output routine

character, 7-13, 7-17
Overlays, 1-5

RSX-20F, 7-1
Owned area, 8-1
Owned communications area

PDP-II, 8-3
Ownership code

file, 2-3
Owning

processor, 8-3
processo r' s

comm area, 8-3
name, 8-3
serial number, 8-3

Packet address, 10-22, 10-25
Packet size, 10-22
Packets

data, 8-34
TO-10

Direct, 8-34
extended direct, 8-35
indirect, 8-36

TO-II
direct, 8-35
indirect, 8-37

transferring indirect data, 8-8

Index-14 April 1986

Page
external, 1-3, 7-4
I/O, 1-3

Pager
process status, 8-5

Pager system
status, 8-5

Parity
generating, 8-18

Parity check
AC block, 4-25

Parity error
EBUS, 8-12, 10-17
Fast Memory, 8-16
NPR

UNIBUS, 8-11
PDP-II memory, 8-11, 8-12, 8-13
UNIBUS, 8-17, 8-18

Parity error check
FM, 4-25

Parity flip-flop
UNIBUS, 8-18

Parity network testing, 8-18
Parity option

MFI1LP memory, 8-12
MFI1UP memory, 8-12

Parity registers save area, 10-11
PARSER, 4-1

command lines
continuing, 4-2

comments, 4-2
console mode, 4-4
entering KLINIT from, 5-5
error messages, 4-4, 4-29
ex i t i ng, 4-1
help facility, 4-4
prompts, 4-1
starting, 4-1
TAKE command, 4-25
task, C-l

PARSER command
ABORT, 4-6
CLEAR CLOCK, 4-7
CLEAR CONSOLE, 4-4, 4-7
CLEAR DATE, 4-7
CLEAR FAULT-CONTINUATION, 4-7
CLEAR FS-STOP, 4-8
CLEAR INCREMENT, 4-8
CLEAR KLINIK, 4-8
CLEAR MEMORY, 4-8
CLEAR NOT, 4-8
CLEAR OFFSET, 4-8
CLEAR OUTPUT, 4-8
CLEAR PARITY STOP, 4-9
CLEAR RELOAD, 4-9
CLEAR REPEAT, 4-9
CLEAR RETRY, 4-9
CLEAR TRACKS, 4-9
CONTINUE, 4-9
DEPOSIT, 4-10
DEPOSIT AR, 4-10
DISCONNECT, 4-11, 0-7
EXAMINE, 4-11

PARSER command (Cont.)
EXAMINE AB, 4-12
EXAMINE AD, 4-12
EXAMINE ADX, 4-12
EXAMINE AR, 4-12
EXAMINE ARX, 4-13
EXAMINE BR, 4-13
EXAMINE BRX, 4-13
EXAMINE CRADDR, 4-13
EXAMINE CRLOC, 4-13
EXAMINE DRADDR, 4-13
EXAMINE DTE20, 4-14
EXAMINE EBR, 4-14
EXAMINE EBUS, 4-14
EXAMINE FE, 4-14
EXAMINE FLAGS, 4-14
EXAMINE FM, 4-15
EXAMINE KL, 4-12
EXAMINE MQ, 4-15
EXAMINE PC, 4-12
EXAMINE PI, 4-15
EXAMINE REGISTERS, 4-15
EXAMINE SBR, 4-15
EXAMINE SECTION, 4-15
EXAMINE UBR, 4-15
EXAMINE VMA, 4-15
EXAMINE VMAH, 4-16
FREAD, 4-16
FWRITE, 4-16
FXCT, 4-16
HALT, 4-16
INITIALIZE, 4-16
JUMP, 4-16
MARK-MICROCODE, 4-16.1
MCR, 4-16.1
QREST, 4-16.1
QSAVE, 4-16.1
QUIT, 4-16.1
REPEAT, 4-17
RESET, 4-18
RESET ALL, 4-18
RESET APR, 4-18
RESET DTE20, 4-18
RESET ERROR, 4-18
RESET I/O, 4-18
RESET INITIALIZE, 4-18
RESET PAG, 4-19
RESET PI, 4-19
RESTORE AC-BLOCK, 4-19
RUN, 4-19
SAVE AC-BLOCK, 4-19
SAVE PC-FLAGS, 4-19
SET AC-BLOCK, 4-20
SET CLOCK, 4-20
SET CLOCK NORMAL, 4-20
SET CONSOLE, 4-4, 4-21
SET DATE, 4-21
SET FAULT-CONTINUATION, 4-21
SET FS-STOP, 4-21
SET INCREMENT, 4-22
SET KLINIK, 4-22
SET MEMORY, 4-22
SET NOT, 4-22

Index-IS April 1986

PARSER command (Cont.)
SET OFFSET, 4-23
SET OUTPUT, 4-23
SET PARITY-STOP, 4-23
SET RELOAD, 4-23
SET REPEAT, 4-23
SET RETRY, 4-24
SET TRACKS, 4-24
SHOW, 4-24
SHUTDOWN, 4-24
START MICROCODE, 4-25
START TEN, 4-24
SWEEP, 4-25
UNMARK-MICROCODE, 4-26
WHAT CLOCK, 4-26
WHAT CONSOLE, 4-4, 4-26
WHAT DATE, 4-27
WHAT FAULT-CONTINUATION, 4-27
WHAT HARDWARE, 4-27
WHAT INCREMENT, 4-27
WHAT KLINIK, 4-27
WHAT MEMORY, 4-28
WHAT OFFSET, 4-28
WHAT OUTPUT, 4-28
WHAT PARITY-STOP, 4-28
WHAT RELOAD, 4-28
WHAT REPEAT, 4-28
WHAT RETRY, 4-28
WHAT TRACKS, 4-28
WHAT VERSION, 4-29
XCT, 4-29
ZERO, 4-29

PARSER commands, 4-2, 4-6
PARSER. LOG file, 4-23, 9-1, 9-2,

9-17, C-l
Partition

Directory
Task, 10-36

Executive, 1-5
FllTPD, 7-4
GEN, 1-5, 7-4
installing tasks in GEN, 7-8

Password
KLINIK access window, 10-14

Patching a task image, 6-31
PDP-II

BR requests, 8-13
date, C-2
error logging, 9-16
features, 1-3
instruction set, 1-4
interrupts

disabling, 8-14
enabling, 8-13, 8-14

memory parity error, 8-11, 8-12,
8-13

owned communications area, 8-3
registers

examining, 10-6
general, 1-4

stacks, 1-4
time, C-2

PERCLR
DT E 20 bit, 8 -1 3

Performing directives, 7-9
Peripheral Interchange Program,

6-12
Phone ring interrupt, 7-11
Physical memory configuration

maps, 5-32
Physical unit device tables,

10-38
PIDENT word

Comm Region, 8-3
Pin definitions

EIA, F-1
PIP, B-1

error messages, 6-20, 6-21,
6-22, 6-23

subswitches, 6-13
switches, 6-13, 6-14
task, C-l
utility, 6-12

lAP, 6-14
IDE, 6-15
IFR, 6-15
ILl, 6-16
IME, 6-18
IPU, 6-19
IRE, 6-19

Pointer to next Comm Region area,
8-4

.POLLH location, 10-6
Pool

Free, 7-4, 10-6, 10-19
free space in Free, 10-6
Node, 10-6

Positioning in an indexed file,
6-5

Power-fail
restart, 7-15
startup, 7-12
trap, 7-9

Power-fail bit, 8-7
Precedence of arithmetic

operators, 4-3
primary

protocol, 7-15, 8-31
switching to, 8-31

primary file name, 2-3
Priorities

interrupt, 1-3
priority Interrupt system, 8-5
Priority levels

device, 1-3
Privileged

DTE20, 10-17
mode, 8-12

front end, 8-30
Privileged tasks, 1-6
Process status

Pager, 8-5
Processor

Arithmetic, 8-6
Header word

Index-16 April 1986

Processor
Header word (Cont.)

Comm Region, 8-3
identification table, 10-15
owning, 8-3
reload word, 8-9
table, 8-37

Processor number, 8-7, 10-15
protocol, 8-1

Processor Status save area, 10-12
Processor's

comm area
owning, 8-3

name
owning, 8-3

serial number
owning, 8-3

Processors
transferring

data between, 8-8, 8-19, 8-20,
8-21, 8-22, 8-23, 8-31

files between, B-1
producing dump file, E-1
Program

counter
hardware, 1-4

Programmer mode, 4-4
Prompts

PARSER, 4-1
Protection code

file, 2-3
Protocol

data base
queued, 10-15

DTE20, 8-30
primary, 7-15, 8-31
processor number, 8-1
queued, 8-8, 8-31
secondary, 8-30
STD entry for

queued, 10-33
switching to

primary, 8-31
task

queued, 1-7
version number, 8-6

Comm Region, 8-3
Protocol driver

functions of queued, 8-31
queued, 8-31

Protocol pause flag, 10-17
Protocol task

ATL entry for queued, 10-35
TPD entry for queued, 10-36

Protocol Timeout, 9-2
PUD entry

DECtape, 10-39
FE, 10-39
floppy disk, 10-39
LP, 10-39
RP, 10-39
system, 10-39
terminal, 10-38

PUD tables, 10-38
PULSE

DTE20 bit, 8-15
Purging obsolete files, 6-14,

6-19

QREST
PARSER command, 4-16.1

QSAVE
PARSER command, 4-16.1

Quantity register
ZAP, 6-38

Queue
CTY, 10-37
data line scanner, 10-37
D811, 10-37
DL11, 10-37
entry count

TO-1l, 10-16
head of current TO-10, 10-16
TO-10, 10-16

Queue pointer
TO-10, 10-6
TO-11, 10-6

Queue Pointers
Device, 10-37

Queued
protocol, 8-8, 8-31

data base, 10-15
STD entry for, 10-33
task, 1-7

protocol driver, 8-31
functions of, 8-31

protocol task
ATL entry for, 10-35
TPD entry for, 10-36

Queues
checking after a crash, 10-6

QUIT
PARSER command, 4-16.1

Radix
default, 4-2

RAMIS0
DTE20 bit, 8-11

Rate
data transfer, 8-22

Read state of DTE20 status word,
8-11, 8-12

Read-only mode, 6-32
ZAP, 6-33

Reading a front-end dump file,
10-1

Reboot
KLINIK integrity over, 0-10,

D-l1
Receiver error

UNIBUS, 8-18
Reconfiguring MB20 memory, 5-38
Records

fixed-length, 2-4
variable-length, 2-4

Index-17 April 1986

Recovering from front-end crashes,
10-1

RED
error messages, 6-24
task, C-2
utility, 6-24

Redirecting I/O, 6-24
Redirecting the CTY, 5-5
Reformatting files, B-1, B-2, B-3
Register

conventions
DTE20, 8-37

DTE20
Status, 8-37

Registers
examining

DTE20, 10-6
PDP-II, 10-6

general
PDP-II, 1-4

using the
DTE20, 8-23

Relative
address, 6-33
offset, 6-34
volume number, 2-2

Reload bit, 8-7
Reload flag

automatic, 10-13
Reload word

processor, 8-9
Relocation bias, 6-33, 6-40
Relocation factor, 4-3
Relocation register, 6-40

ZAP, 6-33, 6-37
Remote

CTY, D-2, D-8, D-9
KLINIK terminal, D-2
user

KLINIK dialog, D-8
user terminal, D-10

Remote in Progress, 7-12
Remote lines

enabling, 10-21
Remote terminal

console mode of, D-3
Renaming files, 6-12, 6-14, 6-19
REPEAT

PARSER command, 4-17
Request list

clock, 10-20
Request to Send signal, 7-11
RESET

PARSER command, 4-18
Reset

auto-baud, 7-13
RESET ALL

PARSER command, 4-18
RESET APR

PARSER command, 4-18
RESET DTE20

PARSER command, 4-18

RESET ERROR
PARSER command, 4-18

RESET I/O
PARSER command, 4-18

RESET INITIALIZE
PARSER command, 4-18

RESET PAG
PARSER command, 4-19

RESET PI
PARSER command, 4-19

Resident tasks, 1-6
Restart

power-fail, 7-15
Restarting KLINIT dialog, 5-5,

5-42
RESTORE AC-Block

PARSER command, 4-19
Restricted DTE20 mode, 8-12
Retry flag, 9-1, 10-18
Reversing memory configuration,

5-9
Revision

count
file, 2-3

date
file, 2-3

time
file, 2-3

RFAMD0
DTE20 bit, 8-16

RFMADI
DTE20 bit, 8-16

RFMAD2
DTE20 bit, 8-17

RFMAD3
DTE20 bit, 8-17

Ring interrupt
phone, 7-11

RM
DTE20 bit, 8-12

Routine
• DTINT, 8-38

Routines
DTE20, 8-37

RP
PUD entry, 10-39

RP task
ATL entry for, 10-35
TPD entry for, 10-36

RSX-11D, 1-1
RSX-I1M, 1-1, 1-4, 1-6

utility programs, 1-7
RSX-20F

crash codes, 9-16, 10-5, A-I
dump analysis

sample, 10-6, 10-7, 10-8,
10-9

dumps
interpreting, 10-4, 10-5,

10-6, 10-7, 10-8, 10-9,
10-10

error logging, 9-2
Executive, 7-1, 7-2, 7-3, 7-4

Index-18 April 1986

RSX-213F (Cont.)
getting help on, E-l
I/O error codes, A-I, A-6
load ing, 5-5
memory layout, 7-5
overlays, 7-1
scheduler, 7-4
scheduling, 7-5
SPR's, E-l
starting, 5-5
stop codes, 9-16, 113-5, A-I
tasks, 7-5, C-l
version number, 113-11

RSX-2f3F/RSX-llM
differences, 1-7

RSXFMT, B-1
commands, B-2

RSXTl13, B-1
commands, B-2

RTS signal, 7-11
RUN

PARSER command, 4-19
Running

FE program, B-4
KLERR, 9-1
LOGXFR, 9-17

Sample
RSX-213F

dump analysis, 10-6, 10-7,
113-8, 113-9

Sampling KL status, 8-15
SAV

error messages, 6-27
task, C-2
utility, 6-25

/DM, 6-26
/EX, 6-26
/MO, 6-26
/RH, 6-26
/WB, 6-26
/WS, 6-26

SAVE AC-BLOCK
PARSER command, 4-19

SAVE PC-FLAGS
PARSER command, 4-19

Saving a task image, 6-25
Scan routine

ATL, 7-8
Scanner queue

data line, 10-37
Scatter writes, 8-24
SCD

DTE20 bit, 8-18
Scheduler

RSX-2f3F, 7-4
Scheduling

RSX-20F, 7-5
task, 1-5, 7-8

Secondary protocol, 8-30
Section

Communications Region, 8-1

Selection code
diagnostic, 8-15

Semaphore
Indirect-in-Progress, 8-39

Send-All
buffer pointer, 113-21
terminal count, 113-21

Send-AIls, 7-17
Sequence number

file, 2-2
Serial number

KL CPU, 113-413
owning processor's, 8-3

Service routine
terminal, 7-11, 7-12

SET AC-BLOCK
PARSER command, 4-213

SET CLOCK
PARSER command, 4-213

SET CLOCK NORMAL
PARSER command, 4-213

SET CONSOLE
PARSER command, 4-4, 4-21

SET DATE
PARSER command, 4-21

SET FAULT-CONTINUATION
PARSER command, 4-21

SET FS-STOP
PARSER command, 4-21

SET INCREMENT
PARSER command, 4-22

SET KLINIK
PARSER command, 4-22

SET KLINIK command, D-4
SET MEMORY

PARSER command, 4-22
SET NO

OUTPUT command, 4-22
SET NOT

PARSER command, 4-22
SET OFFSET

PARSER command, 4-23
SET OUTPUT

PARSER command, 4-23
SET PARITY-STOP

PARSER command, 4-23
SET RELOAD

PARSER command, 4-23
SET REPEAT

PARSER command, 4-23
SET RETRY

PARSER command, 4-24
SET TRACKS

PARSER command, 4-24
SETSPD, 9-17
SETSPD task, C-2
Setting

byte transfer mode, 8-18
diagnostic command start, 8-15
external core memory bus-mode,

5-11
KLINIK access parameters, D-4,

D-5, D-6

Index-19 April 1986

Setting (Cont.)
word transfer mode, 8-18

SHOW
PARSER command, 4-24

SHUTDOWN
PARSER command, 4-24

Signal
acknowledge, 7-18
Data Terminal Ready, 7-11
DTR, 7-11
Request to Send, 7-11
RTS, 7-11

Significant
event, 1-5, 1-7
event flags, l~-ll

Single-stepping the DTE2~, 8-11,
8-12

Space
buffer, 1~-6
in Big Buffer

free, 1~-6
in Free Pool

free, 1~-6
SPEAR program, 7-13, 7-14, 9-2,

D-l
SPRIs

RSX-2~F, E-l
SPSAV location, 1~-5, l~-ll
Stack pointer

hardware, 1-4
Stacks

PDP-II, 1-4
Start date

KLINIK access window, 1~-14
START MICROCODE

PARSER command, 4-25
START TEN

PARSER command, 4-24
Start time

KLINIK access window, 1~-14
Starting

bootstrap program, 5-1, 5-8
disk block, 6-33
KLINIT, 5-5
PARSER, 4-1
RSX-2~F, 5-5

Startup
power-fail, 7-12

Startup routine
CTY, 7-13
DL-llE, 7-13
• DLMTO, 7-13
.DMTMO

system, 7-12
Startup time

system, 7-15
State flag

KL, 1~-13
STATUS

DTE20 register, 8-l~
Status

Pager
process, 8-5

Status (Cont.)
Pager system, 8-5
register

DTE2~, 8-37
sampling KL, 8-15

Status bits
CD-II, 10-29

Status Block
Front End, 1~-10

Status block
CTY, 10-22
LP-20, 10-3~

STATUS word
Comm Region, 8-7

Status word
DTE20, 8-10
read state of

DTE20, 8-11, 8-12
write state of

DTE2~, 8-13, 8-14
STD, 7-6
STD entry for

CD-II driver, 1~-33
DECtape driver, 10-33
DTE20 driver, 10-32
FllACP, 10-33
FE driver, 10-33
floppy disk driver, 10-33
LP driver, 1~-33
queued protocol, 10-33
terminal driver, 10-33

STD node, 7-6, 7-7
STD table, 10-32
.STDTB table, 7-7
STNXT routine, 7-17
Stop codes

RSX-20F, 9-16, 10-5, A-I
Storage

bitmap file, 2-4
Strapping options

modem, 7-10
String data

transferring, 8-24
STTYDN routine, 7-17
Subdirectories

loading monitor from, 5-2
SWEEP

PARSER command, 4-25
Switch register

bit definitions, 5-5
boot parameter, 1~-13
DECtape, 5-5
floppy disk, 5-3

Switching to primary protocol,
8-31

SWSLLT
DTE20 bit, 8-17

Symbolic debugging program
DDTll, l~-l

Synchronous traps, 1-3, 7-8
System

error messages

Index-20 April 1986

System
error messages (Cont.)

KLINIT, 5-17, 5-21, 5-22,
5-23, 5-24, 5-25, 5-26,
5-27, 5-28, 5-29, 5-30,
5-31, 5-32

front-end
file, 1-7

loading the, 5-1, 5-5
mapped, 1-5
PUD entry, 10-39
startup routine

.DMTMO, 7-12
startup time, 7-15
Task Directory, 7-6, 10-32
traps, 7-8
unmapped, 1-5

T20ACP task, C-2
Table

Processor, 8-37
TAKE command

PARSER, 4-25
Task

ATL node of current, 7-8, 10-5
COP, C-1
Directory

System, 7-6, 10-32
FIIACP, C-l
INI, C-2
KLI, C-l
LOGXFR, 9-17, C-l
MOU, C-l
null, 7-8
PARSER, C-l
Partition Directory, 1~-36
PIP, C-1
queued protocol, 1-7
RED, C-2
scheduling, 1-5, 7-8
T2~ACP, C-2
TKTN, 9-1, C-l
UFD, C-2

Task Builder, 1-6
Task image

patching a, 6-31
saving a, 6-25

Task image file, 1-6
Task image mode, 6-32

ZAP, 6-34
Task information, 7-4
Task installation, 6-25
Task List

Active, 7-7, 7-8, 1~-34
Task pointer

current, 1~-11
Task that crashed

determining the, 1~-5
Tasks, 1-5

Executive, 7-5
Files-II, 1-7
in GEN partition

installing, 7-8

Tasks {Cont.}
nonprivileged, 1-6
nonresident, 1-6
pr ivi1eged, 1-6
resident, 1-6
RSX-2~F, 7-5, C~l

TENADl-2
DTE2~ register, 8-22, 8-23

Terminal
count

Send-All, 1~-2l
driver

STD entry for, 1~-33
driver routine, 7-11
PUD entry, 1~-38
remote KLINIK, D-2
service routine, 7-11, 7-12
timeout routine, 7-15, 7-16

Terminal service routine, 7-10
Terminal task

ATL entry for, 1~-35
TPD entry for, 1~-36

Terminating
KLINIK link, D-7
KLINIT dialog, 5-5

Termination of byte transfer
error, 8-12

Test condition
Field Service, 8-16

Testing parity network, 8-18
Thread lists

LPT, 7-4
TTY, 7-4

Time
file

creation, 2-3
revision, 2-3

PDP-II, C-2
TIMEO.CMD File, 9-2
Timeout counter, 10-21
Timeout routine

CTY, 7-13
DL-llE, 7-13
modem, 7-11, 7-12
terminal, 7-15, 7-16

TKTN messages, 9-16
TKTN task, 9-1, 10-12, C-1
TO-1~

buffer's current
device, 1~-16

data
transfer, 8-16, 8-24
transfer across

DTE2~, 8-1
transfers

controlling, 8-22
delay count, 8-24
direct packets, 8-34
extended direct packets, 8-35
indirect packets, 8-36
queue, 1~-16
queue current

head, 1~-16

Index-21 April 1986

TO-10 (Cont.)
queue pointer, 10-6

TO-II
data

transfer, 8-16, 8-24
transfer across

DTE20, 8-1
transfers

controlling, 8-21
direct packets, 8-35
direct transfer, 8-39
done interrupt, 8-38
indirect packets, 8-37
indirect transfer, 8-39
queue entry count, 10-16
queue pointer, 10-6
transfer, 8-38

T010
DTE20 bit, 8-16

T010AD
DTE20 register, 8-20, 8-24

T010BC
DTE20 register, 8-10, 8-21,

8-24
T010BM

DTE20 bit, 8-18
T010DB

DTE20 bit, 8-12
T010DN

DTE20 bit, 8-11
T010DT

DTE20 register, 8-19
T010ER

DTE20 bit, 8-11
TOll

DTE20 bit, 8-16
T011AD

DTE20 register, 8-19, 8-24
T011BC

DTE20 register, 8-21, 8-24
T011DB

DTE20 bit, 8-11
T011DN

DTE20 bit, 8-12
T011DT

DTE20 register, 8-19
TOllER

DTE20 bit, 8-12
TOPID word

Comm Region, 8-6
TOPS-10 default monitor, 5-1
TOPS-10 UUO's, 1-4
TOPS-20 default monitor, 5-1
TOPS-20 JSYS's, 1-4
TOPS-20 subdirectories with

BOOT.EXB, 5-2
TPD entry for

CR task, 10-36
DECtape task, 10-36
DTE20 task, 10-36
F11ACP task, 10-36
FE task, 10-36
floppy disk task, 10-36

TPD entry for (Cont.)
GEN partition, 10-36
install task, 10-36
LP task, 10-36
queued protocol task, 10-36
RP task, 10-36
terminal task, 10-36

Tracking capability
KLINIT, 5-7

Transfer
data, 8-34
dialog

file, B-5
direct, 8-34
error termination of byte, 8-12
extended direct, 8-38
rate

data, 8-22
TO-10

data, 8-16, 8-24
TO-II, 8-38

data, 8-16, 8-24
direct, 8-39
indirect, 8-39

Transfer mode
byte, 8-24
diagnostic data, 8-15, 8-16
normal data, 8-15
setting

byte, 8-18
word, 8-18

word, 8-24
Transferring

data between processors, 8-8,
8-19, 8-20, 8-21, 8-22,
8-23, 8-31

files, B-4, B-5, B-6, B-7, C-2
files between processors, B-1
indirect data packets, 8-8
string data, 8-24

Transfers
controlling

TO-10
data, 8-22

TO-II
data, 8-21

data, 1-4
Transition

carrier, 7-11
Trap

handling, 7-9
power-fail, 7-9
vectors, 1-3, 7-8

Trap conditions, 7-8
Traps, 1-3

asynchronous, 1-3, 7-8
synchronous, 1-3, 7-8
system, 7-8

TT.BRK Flag, 7-14
TT.CRW bit, 7-12, 7-13
TT.IGN Flag, 7-14
TT.RIP bit, 7-12, 7-13
TTSTCH, 7-14

Index-22 April 1986

TTY thread lists, 7-4
Type

file, 2-4

UA.MCB file, 5-1
UB.MCB file, 5-1
UFD, 2-1

error messages, 6-30
task, C-2

UFD utility, 6-29
/ALL, 6-30

UIC, 2-1
UNIBUS, 1-3

parity error, 8-17, 8-18
NPR, 8-11

parity flip-flop, 8-18
receiver error, 8-18

Unit device tables
physical, 10-38

Unit Tables
Logical, 10-38

Unmapped system, 1-5
UNMARK-MICROCODE

PARSER command, 4-26
User

mode, 4-4
remote

KLINIK dialog, D-8
User File Directory, 1-7, 2-1,

6-29
User Identification Code, 2-1
User terminal

remote, D-10
Using the DTE20 registers, 8-23
Utility programs, 7-5

RSX-11M, 1-7
UUO's

TOPS-10, 1-4

Valid date flag, 10-12
Variable-length

records, 2-4
VBN, 2-2
VEC04

DTE20 bit, 8-16
Vector

interrupts, 1-3
Vectors

trap, 1-3, 7-8
Verification

error reports
microcode, 5-35

Verifying
KL microcode, 5-1, 5-8, 5-42
memory examines, 8-8

Version number
Comm Region, 8-3

protocol, 8-3
file, 2-2, 2-4
protocol, 8-6
RSX-20F, 10-11

Version numbers, 10-5

Virtual
block, 2-2
Block Number, 2-2
memory addresses, 1-5

Volume
Files-l1, 2-1
initializing a, 6-4

Volume Control Block, 6-9
Volume number

relative, 2-2

Wait
Carrier, 7-12

Warm restart error codes, 10-40
Warning messages

KLINIT, 5-17, 5-18.1, 5-19, 5-20
WEP

DTE20 bit, 8-18
WHAT CLOCK

PARSER command, 4-26
WHAT CONSOLE

PARSER command, 4-4, 4-26
WHAT DATE

PARSER command, 4-27
WHAT FAULT-CONTINUATION

PARSER command, 4-27
WHAT HARDWARE

PARSER command, 4-27
WHAT INCREMENT

PARSER command, 4-27
WHAT KLINIK

PARSER command, 4-27
WHAT KLINIK command, D-7
WHAT MEMORY

PARSER command, 4-28
WHAT OFFSET

PARSER command, 4-28
WHAT OUTPUT

PARSER command, 4-28
WHAT PARITY-STOP

PARSER command, 4-28
WHAT RELOAD

PARSER command, 4-28
WHAT REPEAT

PARSER command, 4-28
WHAT RETRY

PARSER command, 4-28
WHAT TRACKS

PARSER command, 4-28
WHAT VERSION

PARSER command, 4-29
Word transfer mode, 8-24

setting, 8-18
Write state of DTE20 status word,

8-13, 8-14
Writing configuration file, 5-12

XCT
PARSER command, 4-29

XCT 71, 9-1
XOFF character, 7-15, 7-18

Index-23 April 1986

ZAP
absolute mode, 6-34
addressing modes, 6-33
arithmetic operators, 6-35,

6-38
commands, 6-35
constant register, 6-37
error messages, 6-44, 6-45,

6-46
format register, 6-38
internal registers, 6-35
modes, 6-32

ZAP (Cont.)
quantity register, 6-38
read-only mode, 6-33
registers, 6-37
relocation register, 6-33, 6-37
task image mode, 6-34
utility, 6-31

ZERO

lAB, 6-32
ILl, 6-33
IRO, 6-33

PARSER command, 4-29
Zeroing a floppy disk, 6-2

Index-24 April 1986

TOPS-10/TOPS-20
RSX-20F System
Reference Manual

AA-8S94A-TK

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com­
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)~~~~~~~~_~~~~~~~~~~~~~_

Name~~~ __ ~ __ ~ ____ ~ __ ~ ________ ~ Date ____________________ __

Organization __ ~~~~~~~~~~~~~_ Telephone _~ ____________ _

Street __ ~~ __ ~ __ ~ __ ~~ __ ~~~~~ ___ ~~ __ ~~~ __ ~~ __ ~~_

City ~~ ____ ~~ __ ~~~~ ____________ _ State _______ Zip Code __ __

or Country

I
I

I
I
I

- - - - - - ~.--DD~.NotDTea;~.ld He ,re and Tape -- - - - - - - - -- - - -- -- - - - - -ffl-Ill--------~~e;'~;:;~~ ---'I'

~ ~ II~ if Mailed in the
United States I

I
I
I
I
I
I
I

~~LIA~~~~T ~~;~!N~~~~S. i
I

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

-- - - - - - Do Not Tear - Fold Here and Tape
__ 1

I

I

UPDATE NOTICE

TOPS-10jTOPS-20
RSX-20F System
Reference Manual
AO-BS94A-T1

April 1986

Insert this Update Notice in the TOPS-10/TOPS-20
RSX-20F System Reference Manual to maintain an
up-to-date record of changes to the manual.

Changed Information

The changed pages contained in this update package reflect
the changes to the new version of RSX-20F.

The instructions for inserting this update start on the next page.

© Digital Equipment Corporation 1986. All Rights Reserved.

~D~DDmD

wore

INSTRUCTIONS
AD-BS94A-T1

The following list of page numbers specifies which pages are to be placed in the
TOPS-10jTOPS-20 RSX-20F System Reference Manual as replacements for,
or additions to, current pages.

Title Page 5-17 10-5
Copyright Page 5-18.2 10-6

Entire 5-31 10-25
Contents 5-32 10-43

3-3 5-43 A-5
3-4 5-44 A-7

4-13 6-3 Entire
4-18 6-4 Appendix C

5-1 6-13 Entire
5-2 6-14 Index

5-7 7-11
5-8.2 7-16

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN
UP-TO-DATE RECORD OF CHANGES.

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES.
Five types of changes are used to update documents contained in the TOPS-1 0/TOPS-20
software manuals. Change symbols and notations are used to specify where, when, and
why alterations were made to each update page. The five types of update changes and the
manner in which each is identified are described in the following table.

The Following Symbols and/or Notations

1. Change bar in outside margin; version
number and change date printed
at bottom of page.

2. Change bar in outside margin; change date
printed at bottom of page.

3. Change date printed at bottom of page.

4. Bullet (.) in outside margin; version number
and change date printed at bottom of page.

5. Bullet (e) in outside margin; change date
printed at bottom of page.

Identify the Following Types of Update Changes

1 . Changes were required by a new version
of the software being described.

2. Changes were required to either clarify or
correct the existing material.

3. Changes were made for editorial purposes
but use of the software is not affected.

4. Data was deleted to comply with a new ver­
sion of the software being described.

5. Data was deleted to either clarify or correct
the existing material.

April 1986

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16.0
	04-16.1
	04-16.2
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08.0
	05-08.1
	05-08.2
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18.0
	05-18.1
	05-18.2
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-01
	E-02
	F-01
	F-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	replyA
	replyB
	update1
	update2

