
A Methodology for Implementing

Highly Concurrent Data Objects

Maurice Herlihy

Digital Equipment Corporation
Cambridge Research Lab

CRL ����� October �� ����

Abstract

A concurrent object is a data structure shared by concurrent processes�
Conventional techniques for implementing concurrent objects typically rely
on critical sections� ensuring that only one process at a time can operate on
the object� Nevertheless� critical sections are poorly suited for asynchronous
systems� if one process is halted or delayed in a critical section� other� non�
faulty processes will be unable to progress� By contrast� a concurrent object
implementation is non�blocking if it always guarantees that some process will
complete an operation in a 	nite number of steps� and it is wait�free if it
guarantees that each process will complete an operation in a 	nite number
of steps� This paper proposes a new methodology for constructing non�
blocking and wait�free implementations of concurrent objects� The object
s
representation and operations are written as stylized sequential programs�
with no explicit synchronization� Each sequential operation is automat�
ically transformed into a non�blocking or wait�free operation using novel
synchronization and memory management algorithms� These algorithms
are presented for a multiple instruction�multiple data �MIMD� architecture
in which n processes communicate by applying read� write� load linked � and
store conditional operations to a shared memory�

c�Digital Equipment Corporation ����� All rights reserved�



� INTRODUCTION �

� Introduction

A concurrent object is a data structure shared by concurrent processes� Con�
ventional techniques for implementing concurrent objects typically rely on
critical sections to ensure that only one process at a time is allowed access to
the object� Nevertheless� critical sections are poorly suited for asynchronous
systems
 if one process is halted or delayed in a critical section� other� faster
processes will be unable to progress� Possible sources of unexpected delay
include page faults� cache misses� scheduling preemption� and perhaps even
processor failure�

By contrast� a concurrent object implementation is non�blocking if some
process must complete an operation after the system as a whole takes a
	nite number of steps� and it is wait�free if each process must complete an
operation after taking a 	nite number of steps� The non�blocking condition
guarantees that some process will always make progress despite arbitrary
halting failures or delays by other processes� while the wait�free condition
guarantees that all non�halted processes make progress� Either condition
rules out the use of critical sections� since a process that halts in a critical
section can force other processes trying to enter that critical section to run
forever without making progress� The non�blocking condition is appropriate
for systems where starvation is unlikely� while the �strictly stronger� wait�
free condition may be appropriate when some processes are inherently slower
than others� as in certain heterogeneous architectures�

The theoretical issues surrounding non�blocking synchronization proto�
cols have received a fair amount of attention� but the practical issues have
not� In this paper� we make a 	rst step toward addressing these practical
aspects by proposing a new methodology for constructing non�blocking and
wait�free implementations of concurrent objects� Our approach focuses on
two distinct issues� ease of reasoning� and performance�

� It is no secret that reasoning about concurrent programs is di�cult�
A practical methodology should permit a programmer to design� say�
a correct non�blocking priority queue� without ending up with a pub�
lishable result�

� The non�blocking and wait�free properties� like most kinds of fault�
tolerance� incur a cost� especially in the absence of failures or delays�
A methodology can be considered practical only if ��� we understand
the inherent costs of the resulting programs� ��� this cost can be kept to



� INTRODUCTION �

acceptable levels� and ��� the programmer has some ability to in�uence
these costs�

We address the reasoning issue by having programmers implement data
objects as stylized sequential programs� with no explicit synchronization�
Each sequential implementation is automatically transformed into a non�
blocking or wait�free implementation via a collection of novel synchroniza�
tion and memory management techniques introduced in this paper� If the
sequential implementation is a correct sequential program� and if it follows
certain simple conventions described below� then the transformed program
will be a correct concurrent implementation� The advantage of starting with
sequential programs is clear� the formidable problem of reasoning about
concurrent programs and data structures is reduced to the more familiar
sequential domain� �Because programmers are required to follow certain
conventions� this methodology is not intended to parallelize arbitrary se�
quential programs after the fact��

To address the performance issue� we built and tested prototype im�
plementations of several concurrent objects on a multiprocessor� We show
that a naive implementation of our methodology performs poorly because
of excessive memory contention� but simple techniques from the literature
�such as exponential backo�� have a dramatic e�ect on performance� We
also compare our implementations with more conventional implementations
based on spin locks� Even in the absence of timing anomalies� our example
implementations sometimes outperform conventional spin�lock techniques�
and lie within a factor of two of more sophisticated spin�lock techniques�

We focus on a multiple instruction�multiple data �MIMD� architecture
in which n asynchronous processes communicate by applying read� write�
load linked � and store conditional operations to a shared memory� The
load linked operation copies the value of a shared variable to a local variable�
A subsequent store conditional to the shared variable will change its value
only if no other process has modi	ed that variable in the interim� Either
way� the store conditional returns an indication of success or failure� �Note
that a store conditional is permitted to fail even if the variable has not
changed� We assume that such spurious failures are rare� though possible��

We chose to focus on the load linked and store conditional synchroniza�
tion primitives for three reasons� First� they can be implemented e�ciently
in a cache�coherent architectures ��� ���� since store conditional need only
check whether the cached copy of the shared variable has been invalidated�
Second� many other �classical� synchronization primitives are provably in�



� RELATED WORK �

adequate � we have shown elsewhere ���� that it is impossible � to con�
struct non�blocking or wait�free implementations of many simple and use�
ful data types using any combination of read� write� test�set� fetch�add
����� and memory�to�register swap� The load linked and store conditional

operations� however� are universal � at least in principle� they are power�
ful enough to transform any sequential object implementation into a non�
blocking or wait�free implementation� Finally� we have found load linked and
store conditional easy to use� Elsewhere ����� we present a collection of syn�
chronization and memory management algorithms based on compare�swap

����� Although these algorithms have the same functionality as those given
here� they are less e�cient� and conceptually more complex�

In our prototype implementations� we used the C language ���� on an
Encore Multimax ���� with eighteen NS����� processors� This architecture
does not provide load linked or store conditional primitives� so we simulated
them using short critical sections� Naturally� our simulation is less e�cient
than direct hardware support� For example� a successful store conditional

requires twelve machine instructions rather than one� Nevertheless� these
prototype implementations are instructive because they allow us to com�
pare the relative e�ciency of di�erent implementations using load linked

and store conditional � and because they still permit an approximate com�
parison of the relative e�ciency of waiting versus non�waiting techniques�
We assume readers have some knowledge of the syntax and semantics of C�

In Section �� we give a brief survey of related work� Section � describes
our model� In Section �� we present protocols for transforming sequential
implementations of small objects into non�blocking and wait�free implemen�
tations� together with experimental results showing that our techniques can
be made to perform well even when each process has a dedicated proces�
sor� In Section �� we extend this methodology to encompass large objects�
Section � summarizes our results� and concludes with a discussion�

� Related Work

Early work on non�blocking protocols focused on impossibility results ���
��� ��� ��� ��� ���� showing that certain problems cannot be solved in asyn�
chronous systems using certain primitives� By contrast� a synchronization
primitive is universal if it can be used to transform any sequential object im�

�Although our impossibility results were presented in terms of wait�free implementa�
tions� they hold for non�blocking implementations as well�



� RELATED WORK �

plementation into a wait�free concurrent implementation� The author ����
gives a necessary and su�cient condition for universality� a synchroniza�
tion primitive is universal in an n�process system if and only if it solves the
well�known consensus problem ���� for n processes� Although this result es�
tablished that wait�free �and non�blocking� implementations are possible in
principle� the construction given was too ine�cient to be practical� Plotkin
���� gives a detailed universal construction for a sticky�bit primitive� This
construction is also of theoretical rather than practical interest� Elsewhere
����� the author gives a simple and relatively e�cient technique for trans�
forming stylized sequential object implementations into non�blocking and
wait�free implementations using the compare�swap synchronization primi�
tive� Although the overall approach is similar to the one presented here� the
details are quite di�erent� In particular� the constructions presented in this
paper are simpler and more e�cient� for reasons discussed below�

Many researchers have studied the problem of constructing wait�free
atomic registers from simpler primitives ��� �� ��� ��� ��� ��� ��� ���� Atomic
registers� however� have few if any interesting applications for concurrent
data structures� since they cannot be combined to construct non�blocking
or wait�free implementations of most common data types ����� There exists
an extensive literature on concurrent data structures constructed from more
powerful primitives� Gottlieb et al� ���� give a highly concurrent queue imple�
mentation based on the replace�add operation� a variant of fetch�add� This
implementation permits concurrent enqueuing and dequeuing processes� but
it is blocking� since it uses critical sections to synchronize access to individual
queue elements� Lamport ���� gives a wait�free queue implementation that
permits one enqueuing process to execute concurrently with one dequeuing
process� Herlihy and Wing ���� give a non�blocking queue implementation�
employing fetch�add and swap� that permits an arbitrary number of en�
queuing and dequeuing processes� Lanin and Shasha ���� give a non�blocking
set implementation that uses operations similar to compare�swap� There
exists an extensive literature on locking algorithms for concurrent B�trees
��� ��� ��� and for related search structures ��� ��� ��� ��� ���� Anderson
and Woll ��� give e�cient wait�free solutions to the union�	nd problem in a
shared�memory architecture�

The load linked and store conditional synchronization primitives were
	rst proposed as part of the S�� project ���� at Lawrence Livermore Labo�
ratories� and they are currently supported in the MIPS�II architecture ����
They are closely related to the compare�swap operation 	rst introduced by
the IBM ��� architecture �����



� OVERVIEW �

� Overview

A concurrent system consists of a collection of n sequential processes that
communicate through shared typed objects� Processes are sequential � each
process applies a sequence of operations to objects� alternately issuing an
invocation and then receiving the associated response� We make no fairness
assumptions about processes� A process can halt� or display arbitrary vari�
ations in speed� In particular� one process cannot tell whether another has
halted or is just running very slowly�

Objects are data structures in memory� Each object has a type� which
de	nes a set of possible values and a set of primitive operations that provide
the only means to manipulate that object� Each object has a sequential

speci�cation that de	nes how the object behaves when its operations are
invoked one at a time by a single process� For example� the behavior of a
queue object can be speci	ed by requiring that enqueue insert an item in
the queue� and that dequeue remove the oldest item present in the queue�
In a concurrent system� however� an object
s operations can be invoked by
concurrent processes� and it is necessary to give a meaning to interleaved
operation executions�

An object is linearizable ���� if each operation appears to take e�ect
instantaneously at some point between the operation
s invocation and re�
sponse� Linearizability implies that processes appear to be interleaved at the
granularity of complete operations� and that the order of non�overlapping
operations is preserved� As discussed in more detail elsewhere ����� the no�
tion of linearizability generalizes and uni	es a number of ad�hoc correctness
conditions in the literature� and it is related to �but not identical with�
correctness criteria such as sequential consistency ���� and strict serializ�
ability ����� We use linearizability as the basic correctness condition for the
concurrent objects constructed in this paper�

Our methodology is the following�

�� The programmer provides a sequential implementation of the object�
choosing a representation and implementing the operations� This pro�
gram is written in a conventional sequential language� subject to cer�
tain restrictions given below� This implementation performs no ex�
plicit synchronization�

�� Using the synchronization and memory management algorithms de�
scribed in this paper� this sequential implementation is transformed



� SMALL OBJECTS �

into a non�blocking �or wait�free� concurrent implementation� Al�
though we do not address the issue here� this transformation is simple
enough to be performed by a compiler or preprocessor�

We refer to data structures and operations implemented by the program�
mer as sequential objects and sequential operations� and we refer to trans�
formed data structures and operations as concurrent objects and concurrent

operations� By convention� names of sequential data types and operations
are in lower�case� while names of concurrent types and operations are capi�
talized� �Compile�time constants typically appear in upper�case��

� Small Objects

A small object is one that is small enough to be copied e�ciently� In this
section we discuss how to construct non�blocking and wait�free implemen�
tations of small objects� In a later section� we present a slightly di�erent
methodology for large objects� which are too large to be copied all at once�

A sequential object is a data structure that occupies a 	xed�size contigu�
ous region of memory called a block� Each sequential operation is a stylized
sequential program subject to the following simple constraints�

� An sequential operation may not have any side�e�ects other than mod�
ifying the block occupied by the object�

� A sequential operation must be total� meaning that it is well�de	ned
for every legal state of the object� �For example� the dequeue operation
may return an error code or signal an exception when applied to an
empty queue� but it may not provoke a core dump��

The motivation for these restrictions will become clear when we discuss how
sequential operations are transformed into concurrent operations�

Throughout this paper� we use the following extended example� A pri�

ority queue �pqueue type� is a set of items taken from a totally�ordered
domain �our examples use integers�� It provides two operations� enqueue

�pqueue enq� inserts an item into the queue� and dequeue �pqueue deq� re�
moves and returns the least item in the queue� A well�known technique for
implementing a priority queue is to use a heap� a binary tree in which each
node has a higher priority than its children� Figure � shows a sequential
implementation of a priority queue that satis	es our conditions� ��

�This code is adapted from �����



� SMALL OBJECTS �

�define PARENT�i� ��i � �� �� ��

�define LEFT�i� ��i �� �� � ��

�define RIGHT�i� ��i � �� �� ��

void pqueue�heapify�pqueue�type 	p
 int i��

int l
 r
 best
 swap�

l 
 LEFT�i��

r 
 RIGHT�i��

best 
 �l �
 p��size �� p��elements�l� � p��elements�i�� � l � i�

best 
 �r �
 p��size �� p��elements�r� � p��elements�best�� � r � best�

if �best �
 i� �

swap 
 p��elements�i��

p��elements�i� 
 p��elements�best��

p��elements�best� 
 swap�

pqueue�heapify�p
 best��

�

�

int pqueue�enq�pqueue�type 	p
 int x��

int i�

if �p��size 

 PQUEUE�SIZE� return PQUEUE�FULL�

i 
 p��size���

while �i � � �� p��elements�PARENT�i�� � x� �

p��elements�i� 
 p��elements�PARENT�i���

i 
 PARENT�i��

�

p��elements�i� 
 x�

return PQUEUE�OK�

�

int pqueue�deq�pqueue�type 	p��

int best�

if ��p��size� return PQUEUE�EMPTY�

best 
 p��elements����

p��elements��� 
 p��elements���p��size��

pqueue�heapify�p
 ���

return best�

�

Figure �� A Sequential Priority Queue Implementation



� SMALL OBJECTS �

��� The Non�Blocking Transformation

We 	rst discuss how to transform a sequential object into a non�blocking
concurrent object� In this section we present a protocol that guarantees
correctness� and in the next section we extend the protocol to enhance per�
formance�

Omitting certain important details� the basic technique is the following�
The objects share a variable that holds a pointer to the object
s current
version� Each process ��� reads the pointer using load linked � ��� copies the
indicated version into another block� ��� applies the sequential operation
to the copy� and ��� calls store conditional to swing the pointer from the
old version to the new� If the last step fails� the process restarts at Step
�� Each execution of these four steps is called an attempt� Linearizability
is straightforward� since the order in which operations appear to happen is
the order of their 	nal calls to store conditional � Barring spurious failures
of the store conditional primitive� this protocol is non�blocking because at
least one out of every n attempts must succeed�

Memory management for small objects is almost trivial� Each process
owns single block of unused memory� In Step �� the process copies the
object
s current version into its own block� When it succeeds in swinging
the pointer from the old version to the new� it gives up ownership of the
new version
s block� and acquires ownership of the old version
s block� Since
the process that replaces a particular version is uniquely determined� each
block has a unique and well�de	ned owner at all times� If all blocks are the
same size� then support for m small objects requires m� n � � blocks�

A slow process may observe the object in an inconsistent state� For ex�
ample� processes P and Q may read a pointer to a block b� Q may swing
the pointer to block b� and then start a new operation� If P copies b while
Q is copying b� to b� then P 
s copy may not be a valid state of the sequen�
tial object� This race condition raises an important software engineering
issue� Although P 
s subsequent store conditional is certain to fail� it may
be di�cult to ensure that the sequential operation does not store into an
out�of�range location� divide by zero� or perform some other illegal action�
It would be imprudent to require programmers to write sequential oper�
ations that avoid such actions when presented with arbitrary bit strings�
Instead� we insert a consistency check after copying the old version� but
before applying the sequential operation� Consistency can be checked ei�
ther by hardware or by software� A simple hardware solution is to include
a validate instruction that checks whether a variable read by a load linked



� SMALL OBJECTS �

instruction has been modi	ed� Implementing such a primitive in an archi�
tecture that already supports store conditional should be straightforward�
since they have similar functionalities� In our examples� however� we use a
software solution� Each version has two associated counters� check��� and
check���� If the counters are equal� the version is consistent� To modify a
version� a process increments check���� makes the modi	cations� and then
increments check���� When copying� a process reads check���� copies the
version� and then reads check���� Incrementing the counters in one order
and reading them in the other ensures that if the counters match� then the
copy is consistent� �

This protocol does not work if compare�swap replaces store conditional �
Consider the following execution� P and Q each reads a pointer to a block
b� Q completes its operation� replacing b with b� and acquiring ownership of
b� Q then completes a second operation� replacing b� with b� If P now does
a compare�swap� then it will erroneously install an out�of�sequence version�
Elsewhere ����� we describe a more complex protocol in which P �freezes� a
block before reading it� ensuring that the block will not be recycled while the
attempt is in progress� As mentioned above� the resulting protocols are more
complex and less e�cient than the ones described here for store conditional �

Several optimizations are possible� If the hardware provides a validate

operation� then read�only operations can complete with a successful validate
instead of a store conditional � An object may be signi	cantly smaller than a
full block� If programmers follow a convention where the object
s true size is
kept in a 	xed location within the block� then the concurrent operation can
avoid unnecessary copying� �Our prototypes make use of this optimization��

We are now ready to review the protocol in more detail �Figure ��� A
concurrent object is a shared variable that holds a pointer to a structure
with two 	elds� ��� version is a sequential object� and ��� check is a two�
element array of unsigned �large� integers� Each process keeps a pointer
�new� that points to the block it owns� The process enters a loop� It reads
the pointer using load linked � and marks the new version as inconsistent by
setting check��� to check��� � �� It then reads the old version
s check���
	eld� copies the version 	eld� and then reads the check��� 	eld� If the two
counters fail to match� then the copy is inconsistent� and the process restarts
the loop� Otherwise� the process applies the sequential operation to the

�Counters are bounded� so there is a remote chance that a consistency check will
succeed incorrectly if a counter cycles all the way around during a single attempt� As
a practical matter� this problem is avoided simply by using a large enough �e�g�� �	 bit

counter�



� SMALL OBJECTS ��

typedef struct �

pqueue�type version�

unsigned check����

� Pqueue�type�

static Pqueue�type 	new�pqueue�

int Pqueue�deq�Pqueue�type 		Q��

Pqueue�type 	old�pqueue� �	 concurrent object 	�

pqueue�type 	old�version
 	new�version� �	 seq object 	�

int result�

unsigned first
 last�

while ��� �

old�pqueue 
 load�linked�Q��

old�version 
 �old�pqueue��version�

new�version 
 �new�pqueue��version�

first 
 old�pqueue��check����

copy�old�version
 new�version��

last 
 old�pqueue��check����

if �first 

 last� �

result 
 pqueue�deq�new�version��

if �store�conditional�Q
 new�version�� break�

� �	 if 	�

� �	 while 	�

new�pqueue 
 old�pqueue�

return result�

� �	 Pqueue�deq 	�

Figure �� Simple Non�Blocking Protocol



� SMALL OBJECTS ��

version 	eld� and then increments check���� indicating that the version is
consistent� It then attempts to reset the pointer using store conditional � If
it succeeds� the operation returns
 otherwise the loop is resumed�

��� Experimental Results

The non�blocking property is best thought of as a kind of fault�tolerance�
In return for extra work �updating a copy instead of updating in place��
the program acquires the ability to withstand certain failures �unexpected
process failure or delay�� In this section� we present experimental results
that provide a rough measure of this additional overhead� and that allow
us to identify and evaluate certain additional techniques that substantially
enhance performance� We will show that a naive implementation of the
non�blocking transformation performs poorly� even allowing for the cost of
simulated load linked and store conditional � but that adding a simple expo�
nential backo� dramatically increases throughput�

As described above� we constructed a prototype implementation of a
small priority queue on an Encore Multimax� in C� using simulated load linked

and store conditional primitives� As a benchmark� we measure the elapsed
time needed for n processes to enqueue and then dequeue ����n items from
a shared ���element priority queue �Figure ��� where n ranges from � to ���
As a control� we also ran the same benchmark using the same heap imple�
mentation of the priority queue� except that updates were done in place�
using an in�line compiled test�and�test�and�set � spin lock to achieve mutual
exclusion� This test�and�test�and�set spin lock is a built�in feature of En�
core
s C compiler� and it represents how most current systems synchronize
access to shared data structures�

When evaluating the performance of these benchmarks� it is important
to understand that they were run under circumstances where timing anoma�
lies and delays almost never occur� Each process ran on its own dedicated
processor� and the machine was otherwise idle� ensuring that processes were
likely to run uninterruptedly� The processes repeatedly accessed a small re�
gion of memory� making page faults unlikely� Under these circumstances� the
costs of avoiding waiting are visible� although the bene	ts are not� Neverthe�
less� we chose these circumstances because they best highlight the inherent
costs of our proposal�

�A test�and�test�and�set ���� loop repeatedly reads the lock until it observes the lock
is free� and then tries the test�set operation�



� SMALL OBJECTS ��

�define million ���� 	 ����

shared Pqueue�type 	object�

int N� �	 number of processes 	�

process���

int work 
 million � N�

int i�

for �i 
 �� i � work� i���

�

Pqueue�enq�object
 random����

Pqueue�deq�object��

�

�

Figure �� Concurrent Heap Benchmark

In Figure �� the horizontal axis represents the number of concurrent
processes executing the benchmark� and the vertical axis represents the time
taken �in seconds�� The top curve is the time taken using the non�blocking
protocol� and the lower curve is the time taken by the spin lock� When
reading this graph� it is important to bear in mind that each point represents
approximately the same amount of work � enqueuing and dequeuing ���

�about a million� randomly�generated numbers� In the absence of memory
contention� both curves would be nearly �at ��

The simple non�blocking protocol performs much worse than the spin�
lock protocol� even allowing for the inherent ine�ciency of the simulated
load linked and store conditional primitives� The poor performance of the
non�blocking protocol is primarily a result of memory contention� In each
protocol� only one of the n processes is making progress at any given time�
In the spin lock protocol� it is the process in the critical section� while in the
non�blocking protocol� it is the process whose store conditional will eventu�
ally succeed� In the spin�lock protocol� however� the processes outside the
critical section are spinning on cached copies of the lock� and are therefore
not generating any bus tra�c� In the non�blocking protocol� by contrast� all

�Concurrent executions are slightly less e�cient because the heap
s maximum possible
size is a function of the level of concurrency�



� SMALL OBJECTS ��

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|40

|80

|120

|160

|200

|240

|280

|320

|360

|400

 Number of Processes

 T
im

e 
(s

ec
on

ds
)

Simple

Spin-Lock

Non-Blocking

Figure �� Simple Non�Blocking vs� Spin�Lock



� SMALL OBJECTS ��

� � � � �� �� �� ��

Dequeue Average ���� ���� ���� ���� ���� ���� ���� ����

Enq Average ���� ���� ���� ���� ���� ���� ���� ����

Deq Maximum � ��� �� �� �� ��� �� ��

Enq Maximum ���� ���� ���� ���� ���� ���� ���� ���

Figure �� Simple Non�Blocking Protocol� Number of Attempts

� � � � �� �� �� ��

Dequeue Average ���� ���� ���� ���� ���� ���� ���� ����

Enq Average ���� ���� ���� ���� ���� ���� ���� ����

Deq Maximum � �� �� �� �� �� �� ��

Enq Maximum � ��� ��� ��� ��� ��� ��� ���

Figure �� Non�Blocking with Backo�� Number of Attempts

processes are generating bus tra�c� so only a fraction of the bus bandwidth
is dedicated to useful work�

The simple non�blocking protocol has a second weakness� starvation�
The enqueue operation is about ��� slower than the dequeue operation�
If we look at the average number of attempts associated with each process
�Figure ����� we can see that enqueues make slightly more unsuccessful at�
tempts than dequeues� but that each makes an average of fewer than six
attempts� If we look at the maximum number of attempts� however� a dra�
matically di�erent story emerges� The maximum number of unsuccessful
dequeue attempts is in the high thousands� while the maximum number of
enqueue hovers around one hundred� This table shows that starvation is
indeed a problem� since a longer operation may have di�culty completing if
it competes with shorter operations�

These performance problems have a simple solution� We introduce an
exponential backo� ��� ��� ��� between successive attempts �Figure ��� Each
process keeps a dynamically�adjusted maximum delay� When an operation
starts� it halves its current maximum delay� Each time an attempt fails� the
process waits for a random duration less than the maximum delay� and then



� SMALL OBJECTS ��

doubles the maximum delay� up to a 	xed limit ��
Exponential backo� has a striking e�ect on performance� As illustrated

in Figure �� the throughput of the non�blocking protocol soon overtakes that
of the standard spin lock implementation� Moreover� starvation is no longer
a threat� In the typical execution shown in Figure ���� the average number
of attempts is ���� �out of ��� operations�� and the maximum for enqueues
is reduced by an order of magnitude�

As an aside� we point out that it is well�known that spin�locks also bene	t
from exponential backo� ��� ���� We replaced the in�line compiled test�

and�test�and�set spin lock with a hand�coded spin lock that itself employs
exponential backo�� Not surprisingly� this protocol has the best throughput
of all when run with dedicated processors� almost twice that of the non�
blocking protocol�

In summary� using exponential backo�� the non�blocking protocol signif�
icantly outperforms a straightforward spin�lock protocol �the default pro�
vided by the Encore C compiler�� and lies within a factor of two of a sophis�
ticated spin�lock implementation�

��� A Wait�Free Protocol

This protocol can be made wait�free by a technique we call operation combin�

ing� When a process starts an operation� it records the call in an invocation

structure �inv type� whose 	elds include the operation name �op name��
argument value �arg�� and a toggle bit �toggle� used to distinguish old and
new invocations� When it completes an operation� it records the result in a
response �res type� structure� whose 	elds include the result �value� and
toggle bit� Each concurrent object has an additional 	eld� responses is
an n�element array of responses� whose P th element is the result of P 
s last
completed operation� The processes share an n�element array announce of
invocations� When P starts an operation� it records the operation name and
argument in announce�P�� Each time a process records a new invocation� it
complements the invocation
s toggle bit�

A wait�free enqueue operation appears in Figure ��� After performing
the consistency check� the apply procedure �Figure �� scans the responses
and announce arrays� comparing the toggle 	elds of corresponding invoca�
tions and responses� If the bits disagree� then it applies that invocation to

�For speed� each process in our prototype uses a precomputed table of random numbers�
and certain arithmetic operations are performed by equivalent bit�wise logical operations�



� SMALL OBJECTS ��

static int max�delay�

int Pqueue�deq�Pqueue�type 		Q�

�

Pqueue�type 	old�pqueue�

pqueue�type 	old�version
 	new�version�

int i
 delay
 result�

unsigned first
 last�

if �max�delay � �� max�delay 
 max�delay � ��

while ��� �

old�pqueue 
 load�linked�Q��

old�version 
 �old�pqueue��version�

new�version 
 �new�pqueue��version�

first 
 old�pqueue��check����

copy�old�version
 new�version��

last 
 old�pqueue��check����

if �first 

 last� �

result 
 pqueue�deq�new�version��

if �store�conditional�Q
 new�version�� break�

� �	 if 	�

�	 backoff 	�

if �max�delay � DELAY�LIMIT� max�delay 
 � 	 max�delay�

delay 
 random�� � max�delay�

for �i 
 �� i � delay� i����

� �	 while 	�

new�pqueue 
 old�pqueue�

return result�

�

Figure �� Non�Blocking Protocol with Exponential Backo�



� SMALL OBJECTS ��

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|9

|18

|27

|36

|45

|54

|63

|72

|81

 Number of Processes

 T
im

e 
(s

ec
on

ds
)

Spin-Lock

Non-Blocking

Spin-Lock

with 

with

Backoff

Backoff

Figure �� The E�ect of Exponential Backo�



� SMALL OBJECTS ��

the new version� records the result in the matching position in the responses
array� and complements the response
s toggle bit� After calling the apply

procedure to apply the pending operations to the new version� the process
calls store conditional to replace the old version� just as before� To deter�
mine when its own operation is complete� P compares the toggle bits of
its invocation with the object
s matching response� It performs this com�
parison twice
 if both comparisons match� the operation is complete� This
comparison must be done twice to avoid the following race condition� ��� P
reads a pointer to version v� ��� Q replaces v with v�� ��� Q starts another
operation� scans announce� applies P 
s operation to the new value of v� and
stores the tentative result in v
s responses array� ��� P observes that the
toggle bits match and returns� ��� Q fails to install v as the next version�
ensuring that P has returned the wrong result�

This protocol guarantees that as long as store conditional has no spuri�
ous failures� each operation will complete after at most two loop iterations
�� If P 
s 	rst or second store conditional succeeds� the operation is com�
plete� Suppose the 	rst store conditional fails because process Q executed
an earlier store conditional � and the second store conditional fails because
process Q� executed an earlier store conditional � Q� must have scanned the
announce array after Q performed its store conditional � but Q performed
its store conditional after P updated its invocation structure� and therefore
Q� must have carried out P 
s operation and set the toggle bits to agree� The
process applies the termination test repeatedly during any backo��

We are now ready to explain why sequential operations must be total�
Notice that in the benchmark program �Figure ��� each process enqueues an
item before dequeuing� One might assume� therefore� that no dequeue op�
eration will ever observe an empty queue� This assumption is wrong� Each
process reads the object version and the announce array as two distinct
steps� and the two data structures may be mutually inconsistent� A slow
process executing an enqueue might observe an empty queue� and then ob�
serve an announce array in which dequeue operations outnumber enqueue
operations� This process
s subsequent store conditional will fail� but not
until the sequential dequeue operation has been applied to an empty queue�
This issue does not arise in the non�blocking protocol�

Figure �� shows the time needed to complete the benchmark program
for the wait�free protocol� The throughput increases along with concurrency

�Because spurious failures are possible� this loop requires an explicit termination test�
it cannot simply count to two�



� LARGE OBJECTS ��

void apply�inv�type announce�MAX�PROCS�
 Pqueue�type 	object��

int i�

for �i 
 �� i � MAX�PROCS� i��� �

if �announce�i��toggle �
 object��res�types�i��toggle� �

switch �announce�i��op�name� �

case ENQ�CODE�

object��res�types�i��value 


pqueue�enq��object��version
 announce�i��arg��

break�

case DEQ�CODE�

object��res�types�i��value 
 pqueue�deq��object��version��

break�

default�

fprintf�stderr
 �Unknown operation code�n���

exit����

�� �	 switch 	�

object��res�types�i��toggle 
 announce�i��toggle�

� �	 if 	�

� �	 for i 	�

�

Figure �� The Apply Operation

because the amount of copying per operation is reduced� Nevertheless� there
is a substantial overhead imposed by scanning the announce array� and� more
importantly� copying the version
s responses array with each operation� As
a practical matter� the probabilistic guarantee against starvation provided
by exponential backo� may be preferable to the deterministic guarantee
provided by operation combining�

� Large Objects

In this section� we show how to extend the previous section
s protocols to
objects that are too large to be copied all at once� For large objects� copy�
ing is likely to be the major performance bottleneck� Our basic premise is
that copying should therefore be under the explicit control of the program�
mer� since the programmer is in a position to exploit the semantics of the
application�



� LARGE OBJECTS ��

static Pqueue�type 	new�pqueue�

static int max�delay�

static invocation announce�MAX�PROCS��

static int P� �	 current process id 	�

int Pqueue�deq�Pqueue�type 		Q��

Pqueue�type 	old�pqueue�

pqueue�type 	old�version
 	new�version�

int i
 delay
 result
 new�toggle�

unsigned first
 last�

announce�P��op�name 
 DEQ�CODE�

new�toggle 
 announce�P��toggle 
 �announce�P��toggle�

if �max�delay � �� max�delay 
 max�delay �� ��

while ��	Q���responses�P��toggle �
 new�toggle

�� �	Q���responses�P��toggle �
 new�toggle� �

old�pqueue 
 load�linked�Q��

old�version 
 �old�pqueue��version�

new�version 
 �new�pqueue��version�

first 
 old�pqueue��check����

memcpy�old�version
 new�version
 sizeof�pqueue�type���

last 
 old�pqueue��check����

if �first 

 last� �

result 
 pqueue�deq�new�version��

if �store�conditional�Q
 new�version�� break�

� �	 if 	�

�	 backoff 	�

if �max�delay � DELAY�LIMIT� max�delay 
 max�delay �� ��

delay 
 random�� � max�delay�

for �i 
 �� i � delay� i����

� �	 while 	�

new�pqueue 
 old�pqueue�

return result�

�

Figure ��� A Wait�Free Operation



� LARGE OBJECTS ��

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|20

|40

|60

|80

|100

|120

|140

|160

 Number of Processes

 T
im

e 
(s

ec
on

ds
)

Non-Blocking

Wait-Free

with 

with 

Backoff

Backoff

Figure ��� Non�Blocking vs� Wait�Free



� LARGE OBJECTS ��

A large object is represented by a set of blocks linked by pointers� Se�
quential operations of large objects are written in a functional style� an
operation that changes the object
s state does not modify the object in
place� Instead� it constructs and returns a logically distinct version of the
object� By logically distinct� we mean that the old and new versions may in
fact share a substantial amount of memory� It is the programmer
s responsi�
bility to choose a sequential implementation that performs as little copying
as possible�

The basic technique is the following� Each process ��� reads the pointer
using load linked � ��� applies the sequential operation� which returns a pointer
to a new version� and ��� calls store conditional to swing the pointer from
the old version to the new�

Memory management is slightly more complex� Since an operation may
require allocating multiple blocks of memory� each process owns its own pool
of blocks� When a process creates a new version of the object� it explicitly
allocates new blocks by calling alloc� and it explicitly frees old blocks by
calling free� The copy primitive copies the contents of one block to another�
If the attempt succeeds� the process acquires ownership of the blocks it freed
and relinquishes ownership of the blocks it allocated�

A process keeps track of its blocks with a data structure called a recov�

erable set �set type�� The abstract state of a recoverable set is given by
three sets of blocks� committed� allocated� and freed� The set free oper�
ation inserts a block in freed� and set alloc moves a block from commit�

ted to allocated and returns its address� As shown in 	gure ��� alloc calls
set alloc and marks the resulting block as inconsistent� while free simply
calls set free�

The recoverable set type provides three additional operations� not ex�
plicitly called by the programmer� Before executing the store conditional �
the process calls set prepare to mark the blocks in allocated as consistent�
If the store conditional succeeds� it calls set commit to set committed to the
union of freed and committed� and if it fails� it calls set abort to set both
freed and allocated to the empty set�

It might also be necessary for processes to share a pool of blocks� If
process exhausts its local pool� it can allocate multiple blocks from the
shared pool� and if it acquires too many blocks� it can return the surplus
to the shared pool� The shared pool should be accessed as infrequently as
possible� since otherwise it risks becoming a contention �hot�spot�� Some
techniques for implementing shared pools appear elsewhere ����
 we did not
use a shared pool in the prototypes shown here�



� LARGE OBJECTS ��

As in the small object protocol� a process checks for consistency whenever
it copies a block� If the copy is inconsistent� the process transfers control
back to the main loop �e�g�� using the Unix longjmp��

��� Experimental Results

For the examples presented in this section� it is convenient to follow some
syntactic conventions� Because C procedures can return only one result
value� we follow the convention that all sequential operations return a pointer
to a result type structure containing a �value 	eld �e�g�� the result of a
dequeue� and a version 	eld �the new state of the object�� Instead of
treating the sequential and concurrent objects as distinct data structures� it
is convenient to treat the check array as an additional 	eld of the sequential
object� one that is invisible to the sequential operation�

A skew heap ���� is an approximately�balanced binary tree in which each
node stores an item� and each node
s item is less than or equal to any item in
the subtree rooted at that node� A skew heap implements a priority queue�
and the amortized cost of enqueuing and dequeuing items in a skew heap
is logarithmic in the size of the tree� For our purposes� the advantage of a
skew heap over the conventional heap is that update operations leave most
of the tree nodes untouched�

The skew meld operation �Figure ��� merges two heaps� It chooses the
heap with the lesser root� swaps its right and left children �for balance��
and then melds the right child with the other heap� To insert item x in h�
skew enq melds h with the heap containing x alone� To remove an item
from h� skew deq �Figure ��� removes the item at the root and melds the
root
s left and right subtrees�

We modi	ed the priority queue benchmark of Figure � to initialize the
priority queue to hold ��� randomly generated integers�

Figure �� shows the relative throughput of a non�blocking skew heap� a
spin�lock heap with updates in place� and a spin�lock skew heap with updates
in place� The non�blocking skew heap and the spin�lock heap are about the
same� and the spin�lock skew heap has almost twice the throughput of the
non�blocking skew heap� in agreement with our experimental results for the
small object protocol�



� LARGE OBJECTS ��

typedef struct

�

int free�ptr
 alloc�ptr� �	 next full � empty slots 	�

int free�count
 alloc�count� �	 number of allocs � frees 	�

int size� �	 number of committed entries 	�

int old�free�ptr
 old�alloc�ptr� �	 reset on abort 	�

Skew�type 	blocks�SET�SIZE�� �	 pointers to blocks 	�

� set�type�

Object�type 	set�alloc�set�type 	q��

Object�type 	x�

if �q��alloc�count 

 q��size� �

fprintf�stderr
 �alloc� wraparound��n���

exit����

�

x 
 q��blocks�q��alloc�ptr��

q��alloc�ptr 
 �q��alloc�ptr � �� � SET�SIZE�

q��alloc�count���

return x�

�

void set�commit�set�type 	q��

q��old�alloc�ptr 
 q��alloc�ptr�

q��old�free�ptr 
 q��free�ptr�

q��size 
 q��size � q��free�count � q��alloc�count�

q��free�count 
 q��alloc�count 
 ��

�

void set�prepare�set�type 	q��

int i�

for �i 
 �� i � q��alloc�count� i���

q��blocks�q��old�alloc�ptr � i���check������

�

Object�type 	alloc���

Object�type 	s�

s 
 set�alloc�pool��

s��check��� 
 s��check��� � ��

return s�

�

Figure ��� Part of a Recoverable Set Implementation



� LARGE OBJECTS ��

typedef struct skew�rep �

int value�

int toggle� �	 left or right next� 	�

struct skew�rep 	child���� �	 left and right children 	�

int check���� �	 inserted by system 	�

� Skew�type�

�	

Skew�meld assumes its first argument is already copied�

	�

Skew�type 	skew�meld�Skew�type 	q
 	qq��

int toggle�

skew�type 	p�

if ��q� return �qq�� �	 if one is empty
 return the other 	�

if ��qq� return �q��

p 
 queue�alloc�pool�� �	 make a copy of q 	�

copy�qq
 p��

queue�free�pool
 qq��

if �q��value � p��value� �

toggle 
 q��toggle�

q��child�toggle� 
 skew�meld�p
 q��child�toggle���

q��toggle 
 �toggle�

return q�

� else �

toggle 
 p��toggle�

p��child�toggle� 
 skew�meld�q
 p��child�toggle���

p��toggle 
 �toggle�

return p�

�

�

Figure ��� Skew Heap� The Meld Operation



� LARGE OBJECTS ��

result�type 	skew�deq�Skew�type 	q� �

Skew�type 	left
 	new�left
 	right
 buffer�

static result�type r�

r�value 
 SKEW�EMPTY�

r�version 
 ��

if �q� �

copy�q
 �buffer��

queue�free�pool
 q��

r�value 
 buffer�value�

left 
 buffer�child����

right 
 buffer�child����

if �� left� �

r�version 
 right�

� else �

new�left 
 alloc�pool��

copy�left
 new�left��

queue�free�pool
 left��

r�version 
 skew�meld�new�left
 right��

�

�

return �r�

�

Figure ��� Skew Heap� The Dequeue Operation



� LARGE OBJECTS ��

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

 Number of Processes

 T
im

e 
(s

ec
on

ds
)

Heap

Non-Blocking

Skew Heap

with

Skew Heap

with

Spin-Lock

Spin-Lock

Figure ��� Large Heap Throughput



� CONCLUSIONS ��

� Conclusions

Conventional concurrency control techniques based on mutual exclusion
were originally developed for single�processor machines in which the proces�
sor was multiplexed among a number of processes� To maximize throughput
in a uniprocessor architecture� it su�ces to keep the processor busy� In a
multiprocessor architecture� however� maximizing throughput is more com�
plex� Individual processors are often subject to unpredictable delays� and
throughput will su�er if a process capable of making progress is unnecessar�
ily forced to wait for one that is not�

To address this problem� a number of researchers have investigated wait�

free and non�blocking algorithms and data structures that do not rely on
waiting for synchronization� Much of this work has been theoretical� There
are two obstacles to making such an approach practical� conceptual com�
plexity� and performance� Conceptual complexity refers to the well�known
di�culty of reasoning about the behavior of concurrent programs� Any prac�
tical methodology for constructing highly�concurrent data structures must
include some mechanism for ensuring their correctness� Performance refers
to the observation that avoiding waiting� like most other kinds of fault�
tolerance� incurs a cost when it is not needed� For a methodology to be
practical� this overhead must be kept to a minimum�

In the methodology proposed here� we address the issue of conceptual
complexity by proposing that programmers design their data structures in
a stylized sequential manner� Because these programs are sequential� both
formal and informal reasoning are greatly simpli	ed�

We address the issue of performance in several ways�

� We observe that the load linked and store conditional synchronization
primitives permit signi	cantly simpler and more e�cient algorithms
than compare�swap�

� We propose extremely simple and e�cient memory management tech�
niques�

� We provide experimental evidence that a naive implementation of a
non�blocking protocol incurs unacceptable memory contention� but
that this contention can be eliminated by applying known techniques
such as exponential backo�� Our prototype implementations �using
ine�cient simulated synchronization primitives� outperform conven�
tional ��test�and�test�and�set�� spin�lock implementations� and lie within



REFERENCES ��

a factor of two of more sophisticated �exponential backo�� spin�lock
implementations�

� For large objects� programmers are free to exercise their ingenuity to
keep the cost of copying under control� Whenever possible� correct�
ness should be the responsibility of the system� and performance the
responsibility of the programmer�

A promising area for future research concerns how one might exploit
type�speci	c properties to increase concurrency� Any such approach would
have to sacri	ce some of the simplicity of our methodology� since the pro�
grammer would have to reason explicitly about concurrency� Nevertheless�
perhaps one could use our methodology to construct simple concurrent ob�
jects that could be combined to implement more complex concurrent objects�
in the same way that B�link ���� trees combine a sequence of low�level atomic
operations to implement a single atomic operation at the abstract level�

As illustrated by Andrews and Schneider
s comprehensive survey ����
most language constructs for shared memory architectures focus on tech�
niques for managing mutual exclusion� Because the transformations de�
scribed here are simple enough to be performed by a compiler or prepro�
cessor� it is intriguing to speculate about a programming language might
support the methodology proposed here� For example� inheritance might be
a convenient way to combine the object 	elds �e�g�� check variables� used by
the run�time system with those introduced by the programmer� Program�
ming language design raises many complex issues that lie well beyond the
scope of this paper� but the issue merits further attention�

References

��� R�J� Anderson and H� Woll� Wait�free parallel algorithms for the union�
	nd problem� In Proceedings of the ��rd Annual ACM Symposium on

Theory of Computing� pages �������� May �����

��� T�E� Anderson� The performance of spin lock alternatives for shared�
memory multiprocessors� IEEE Transactions on Parallel and Dis�

tributed Systems� ���������� January �����

��� G�R� Andrews and F�B� Schneider� Concepts and notations for concur�
rent programming� ACM Computing Surveys� ����������� �����



REFERENCES ��

��� R� Bayer and M� Schkolnick� Concurrency of operations on b�trees�
Acta Informatica� ���������� �����

��� J� Biswas and J�C� Browne� Simultaneous update of priority struc�
tures� In Proceedings of the ���� International Conference on Parallel

Processing� pages �������� �����

��� B� Bloom� Constructing two�writer atomic registers� In Proceedings

of the Sixth ACM Symposium on Principles of Distributed Computing�
pages �������� �����

��� J�E� Burns and G�L� Peterson� Constructing multi�reader atomic values
from non�atomic values� In Proceedings of the Sixth ACM Symposium

on Principles of Distributed Computing� pages �������� �����

��� B� Chor� A� Israeli� and M� Li� On processor coordination using asyn�
chronous hardware� In Proceedings of the Sixth ACM Symposium on

Principles of Distributed Computing� pages ������ �����

��� MIPS Computer Company� The mips risc architecture�

���� T�H� Cormen� C�E� Leiserson� and R� L� Rivest� Introduction to Algo�

rithms� MIT Press� Cambridge MA� �����

���� Encore Computer Corporation� Multimax technical summary� Order
Number ���������� Rev E�

���� D� Dolev� C� Dwork� and L Stockmeyer� On the minimal synchronism
needed for distributed consensus� Journal of the ACM� ������������
January �����

���� C� Dwork� N� Lynch� and L Stockmeyer� Consensus in the presence of
partial synchrony� Journal of the ACM� �������������� April �����

���� C� Dwork� D� Shmoys� and L� Stockmeyer� Flipping persuasively in con�
stant expected time� In Twenty�Seventh Annual Symposium on Foun�

dations of Computer Science� pages �������� October �����

���� C�S� Ellis� Concurrent search and insertion in ��� trees� Acta Informat�

ica� ��������� �����

���� M� Fischer� N�A� Lynch� and M�S� Paterson� Impossibility of distributed
commit with one faulty process� Journal of the ACM� ������ April �����



REFERENCES ��

���� R� Ford and J� Calhoun� Concurrency control mechanisms and the
serializability of concurrent tree algorithms� In �rd ACM Symposium

on Princples of Database Systems� pages ������ �����

���� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph�
and M� Snir� The nyu ultracomputer � designing an mimd parallel com�
puter� IEEE Transactions on Computers� C��������������� February
�����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for
the e�cient coordination of very large numbers of cooperating sequen�
tial processors� ACM Transactions on Programming Languages and

Systems� ������������� April �����

���� L� Guibas and R� Sedgewick� A dichromatic framework for balanced
trees� In ��th ACM Symposium on Foundations of Computer Science�
pages ����� �����

���� M� Herlihy and J� Wing� Axioms for concurrent objects� In �	th ACM

Symposium on Principles of Programming Languages� pages ������ Jan�
uary �����

���� M�P� Herlihy� Impossibility and universality results for wait�free syn�
chronization� In Seventh ACM SIGACT�SIGOPS Symposium on Prin�

ciples of Distributed Computing� August �����

���� M�P� Herlihy� A methodology for implementing highly concurrent data
structures� In Proceedings of the Second ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming� pages ��������
March �����

���� IBM� System���� principles of operation� Order Number GA��������

���� E�H� Jensen� G�W� Hagensen� and J�M� Broughton� A new approach to
exclusive data access in shared memory multiprocessors� Technical Re�
port UCRL������� Lawrence Livermore National Laboratory� Novem�
ber �����

���� D�W� Jones� Concurrent operations on priority queues� Communica�

tions of the ACM� �������������� January �����

���� B�W� Kernighan and D�M� Ritchie� The C programming language� Pren�
tice Hall� Englewood Cli�s� New Jersey� �����



REFERENCES ��

���� L� Lamport� Concurrent reading and writing� Communications of the

ACM� ��������������� November �����

���� L� Lamport� How to make a multiprocessor computer that correctly
executes multiprocess programs� IEEE Transactions on Computers�
C����������� September �����

���� L� Lamport� Specifying concurrent program modules� ACM Trans�

actions on Programming Languages and Systems� ������������� April
�����

���� L� Lamport� On interprocess communication� parts i and ii� Distributed
Computing� ��������� �����

���� V� Lanin and D� Shasha� Concurrent set manipulation without lock�
ing� In Proceedings of the Seventh ACM Symposium on Principles of

Database Systems� pages �������� March �����

���� P�L� Lehman and S�B� Yao� E�cient locking for concurrent operations
on b�trees� ACM Transactions on Database Systems� ������������� De�
cember �����

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for scalable syn�
chronization on shared�memory multiprocessors� Technical Report ����
University of Rochester�� Rochester� NY ������ April �����

���� R� Metcalfe and D� Boggs� Ethernet� distributed packet switching for
local computer networks� Communications of the ACM� ��������������
July �����

���� R� Newman�Wolfe� A protocol for wait�free� atomic� multi�reader shared
variables� In Proceedings of the Sixth ACM Symposium on Principles

of Distributed Computing� pages �������� �����

���� C�H� Papadimitriou� The serializability of concurrent database updates�
Journal of the ACM� �������������� October �����

���� G�L� Peterson� Concurrent reading while writing� ACM Transactions

on Programming Languages and Systems� ����������� January �����

���� G�L� Peterson and J�E� Burns� Concurrent reading while writing ii� the
multi�writer case� Technical Report GIT�ICS������� Georgia Institute
of Technology� December �����



REFERENCES ��

���� S�A� Plotkin� Sticky bits and universality of consensus� In Proceedings

of the Eighth ACM Symposium on Principles of Distributed Computing�
pages �������� �����

���� L� Rudolph� Decentralized cache scheme for an mimd parallel proces�
sor� In ��th Annual Computing Architecture Conference� pages ��������
�����

���� Y� Sagiv� Concurrent operations on b�trees with overtaking� In ACM

Princples of Database Systems� pages ������ January �����

���� A�K� Singh� J�H� Anderson� and M�G� Gouda� The elusive atomic regis�
ter revisited� In Proceedings of the Sixth ACM Symposium on Principles

of Distributed Computing� pages �������� �����

���� D�D� Sleator and R�E� Tarjan� Self adjusting binary trees� In Pro�

ceedings of the �
th ACM Symposium on Theory of Computing� pages
������ �����


