Consistent Timestamping for
Transactions in Distributed Systems

David Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL 90/3 September 17, 1990

Abstract

Tagging data in a database with timestamps that indicate when data was
entered can be very useful. It permits a user to query the database as of some
historical time. Further, it permits a user to see a transaction consistent "re-
cent” version of the database without having this transaction interfere with
ongoing updates. This support requires that timestamp ordering represent
a valid serialization of the transactions. Achieving this in a distributed sys-
tem is potentially troublesome. This paper suggests that the two phase
commit protocol messages can be used to establish and distribute a correct
timestamp to all transaction cohorts. Refinements permit this concept to
deal with heterogenous systems where not all cohorts perform timestamping.
Early release of read locks can be supported via bounding the range in which
a transaction is permitted to commit.

Keywords: timestamps, multiversion, transactions, commit, distributed sys-
tems
(©Digital Equipment Corporation 1990. All rights reserved.

1 Introduction
1.1 Uses of Timestamps

Over the last five years, multiversion databases have attracted increasing attention. This
has led in a number of directions. Temporal databases have been studied with several
notions of time [SNO]. Data is "stamped" with the time of interest, and this timestamp can
be queried along with the ordinary data.

Our focus is on transaction time. All updates made by a transaction to a database are
stamped with the same time. This timestamp is stored as an attribute of the data. The
order of the timestamps must be a correct serialization of the transactions.

Data that is no longer current can be stored separately from current data. This "historical”
data is never updated, and hence could be stored on write-once, read many (WORM) optical
disks. Data that is current may continue to be updated. Hence this data can advantageously
be on a write-many, read-many magnetic disk. Both POSTGRES [STO] and the time-split B-
tree(TSB-tree) [LOM] make this point. A very inexpensive WORM medium, such as optical
disks, changes dramatically the functionality/cost trade-off and makes multiversion support
interesting for a large number of applications.

Having timestamps with data permits users to query a database AS OF some particular
time. With the appropriate support, such a query can provide a transaction consistent view
of the database as it existed at the requested time. This is precisely the capability that
TSB-trees are tailored for as they cluster data together by time. Such temporal queries can
be found in financial applications, medical records, engineering design, etc.

Limited versioning can be found in at least one commercial relational database, Rdb/VMS
[JOS]. Itis used to support a transaction consistent view of RECENT data (called "snapshot"
data). This recent version of data supports read-only requests without any interference with
on-going update activity. That is, such a read-only request does not need locking, and hence
will not produce lock conflicts that may block or impede updating.

1.2 Providing Transaction Timestamps

Timestamps have a long history as a way of performing concurrency control [BER]. Most of
the efforts at using timestamps in this way, however, have not turned up in system imple-
mentations, where two phase locking usually reigns supreme. Locking is well understood
and has acceptable performance.

A key advantage of locking is that the serialization order for a transaction is "chosen" at the
time a transaction commits. Essentially, it is serialized after all transactions whose data it
has seen. Timestamping methods impose the serialization at the point when the timestamp
is chosen. This is frequently when the transaction starts [BER,REE]. Competing requests for
the same data that are out of order result in one or the other of the competing transactions
being aborted. This is usually considered to be less robust and less effective than locking.
With the choice of timestamp at commit time, the timestamp can be chosen to correctly
reflect the serialization that the transaction actually requires.

Early choice of timestamps does have one decided advantage. The timestamp is known
to all transaction participants (cohorts) and can be propagated to each new cohort when a
request is made for service. Commit time timestamping requires that all cohorts be notified
at commit time as to what the transaction’s timestamp is. And, each cohort should have
a role in deciding what that timestamp will be, so that each cohort can guarantee local
agreement of serialization order and timestamp order.

The late choice of transaction time is not a large inconvenience in centralized systems. The
timestamp choice is made at a single system node and needn't be propagated anywhere.
There are two problems in distributed database systems. A transaction:

1. must choose a timestamp that is satisfactory to all its cohorts, where the requirements
of a cohort for transaction time may only be known to itself;

2. needs to propagate the chosen timestamp to all cohorts so that the same timestamp is
used everywhere.

1.3 The General Approach

Our approach is to defer the choice of transaction time until commit. To cope with distributed
cohorts, information exchanged to choose and distribute transaction time is piggybacked on
the two phase commit protocol messages [GRA,LAMS]. Thus, we extend the two phase
commit protocol to provide a more general agreement protocol. Not only is it used to agree
on and propagate the commit/abort state of the transaction. It is also used to agree on the
transaction timestamp. This is done without extra message overhead. (This same basic
approach was suggested previously in [HER], as part of an optimistic concurrency control
method. The context for our work is different and is outlined in the next paragraph. We
also extend the approach to provide increased capability. We were not aware of this prior
work during the time that our approach was developed.)

We place this approach in the traditional two phase locking context and show how times-
tamps can be propagated using the two phase commit protocol in section 2. Section 3 dis-
cusses how we can extend the timestamping commit protocol by supplying timestamp ranges.
This permits us to exploit common commit protocol optimizations. In section 4, releasing
read locks at prepare time is discussed. We show how even transactions with non-two phase
locking can be successfully serialized. Section 5 discusses how to handle timestamping in
a heterogenous system where not all database systems perform timestamping. Section 6
provides a discussion and assessment of the work.

2 Basic Timestamping Mechanism
2.1 The Two Phase Commit Protocol

We begin by giving an informal description of the two phase commit (2PC) protocol. It has
the following steps:

1. A transaction coordinator notifies all parties (cohorts) to a distributed transaction that
the transaction is now to be terminated, and hopefully committed. This is the PREPARE
message (message one) of the protocol.

2. Each cohort then attempts to become PREPAREd. Essentially, this means making cer-
tain that it can guarantee that both the before state of the transaction and the after
state are durably stored. Either one of these states can be guaranteed to be installed,
depending on whether the transaction COMMITs or ABORTSs.

3. Each cohort then votes on the disposition of the transaction. If the attempt to prepare
fails, or any preceeding step of the transaction fails, a cohort votes ABORT. If the
attempt to prepare succeeds, then the cohort votes COMMIT. The cohort notifies the
coordinator of its vote by sending a message to it. This is the VOTE message (message
two). A cohort that has voted COMMIT is now PREPAREGd.

4. When the coordinator has received votes from all the cohorts participating in the trans-
action, it knows the disposition of the transaction. The coordinator commits the trans-
action if all cohorts have voted COMMIT. If any cohort has voted ABORT, or the coordi-
nator times out waiting for a cohort’s vote, then the coordinator aborts the transaction.
The coordinator sends the transaction disposition message (i.e. COMMIT or ABORT)
(message three) to all cohorts.

5. When a cohort receives the transaction dispostion message, it terminates the trans-
action according to its direction, making the transaction state either COMMITTed or
ABORTed. If COMMITTed, the after state of the transaction is installed in the database.
If ABORTed, the before state is re-installed in the database. The cohort ACKs the dis-
position message upon stably storing the transaction disposition (message four).

There are a number of multi-phase commit protocols. And the 2PC protocol itself has a
number of optimizations to reduce messages. Any protocol in which each cohort sends
a message to a coordinator and where the coordinator informs all cohorts of transaction
disposition can be used to agree upon a transaction time. The methods below should work
with many distributed commit protocols, including, e.g., nested commit (linear) 2PC. We
discuss the impact of certain protocol optimizations in section 4 and describe extensions
that work with these.

2.2 Choosing a Transaction Timestamp

To select a transaction time, we extend the 2PC protocol by augmenting the information
conveyed on two of its messages. Basically, each cohort informs the transaction coordinator
of its requirements for transaction time. The coordinator then attempts to find a single time
that satisfies all cohort requirements.

When a cohort votes to COMMIT a transaction at message number two, it also conveys its
requirements with respect to the choice of a transaction time. The coordinator examines all
the requirements and tries to find a transaction time that satisfies all of them. If successful,
it propagates, on message number three, to all of the cohorts, both the disposition of the
transaction and, if the dispositon is COMMIT, the transaction time chosen. Below, we
describe the nature of a cohorts’ requirements on transaction time, and how the coordinator
reconciles these requirements in selecting a transaction time.

2.2.1 How a Cohort Selects Its Transaction Time Requirement

A cohort must determine, when it receives the notification to begin the commit process
(i.e. message number one from the coordinator), a time that is later than the time for any
preceding transaction with which it may conflict. A transaction conflicts with a preceding
transaction if, for example, it reads data written by the preceding transaction or writes data
read by the preceding transaction. In this case, the transaction serializes after the preceding
transaction [BER]. Our protocol is designed to ensure that timestamp order agrees with
transaction serialization order. Enforcing that transaction time be later than the time of
preceding conflicting transactions guarantees that timestamp order and serialization order
agree.

We assume in the following that each site has a local clock that is loosely synchronized with
a global time source that reflects real world time, e.g. Greenwich Mean Time. Our intent
is to assign times to transactions that reflect users’ perceptions of when the transactions
actually occurred. We combine these local clocks with an adaptation of Lamport clocks
[LAMO] to ensure that transaction times are monotonically increasing.

The following, conservative procedure yields the timestamp value. That is, a site (database
system at the site) that executes the procedure will generate a time for a transaction at the
site that is later than the transaction times of all previously committed transactions upon
which the committing transaction conflicts. (Note: All symbols used in equations here and
subsequently are defined in Table 1.)

1. A database system maintains a monotonically increasing LAST transaction time. It
does this by comparing LAST with the timestamps that it receives for each committed
transaction in message three of the commit protocol. Whenever one of these timestamps
is later than LAST, LAST is set to the value of this new timestamp. This is the Lamport
clock component.

2. A database system that acts as a transaction cohort expresses its transaction time re-
quirement as the EARLIEST time at which the transaction can be permitted to com-
mit. This must be later than the time of any preceding conflicting transaction in that
database. When the database receives the PREPARE message from the coordinator and
it wants to vote to COMMIT, it votes (at message two) an EARLIEST transaction time
that is later than LAST and not earlier than the current clock time. Thus, cohort: votes
a time for transaction X of

EARLIEST;(X) = max { LAST;(X) + ¢, CLOCK;(X)}
A more agressive alternative is to compute EARLIEST every time that the cohort ac-
quires a lock for the transaction, and to remember this EARLIEST value for the last
acquired lock. When the PREPARE message is received, the cohort votes the remem-
bered EARLIEST time. This remembered time must be later than all conflicting earlier
transactions when locks are held until commit time.

3. The coordinator can pick a transaction time that is not earlier than the latest EARLI-
EST time chosen for any cohort. In fact, it is desirable to choose exactly the lastest
EARLIEST time voted. This transaction time has the advantage of being the time that
satisfies the constraints and that also is the closest such time to the times required
by the cohorts. The chosen transaction time is distributed to the transaction cohorts
on the transaction disposition message (message three) of the 2PC protocol. Thus, the
coordinator chooses a time for transaction X of

TIME(X) = max {EARLIEST,(X)|COHORT;(X)}

We call the time between a cohort's EARLIEST vote and the commit time of the transaction
the PREPAREd-INTERVAL. The result of 2 above is that conflicting transactions at a site
will have disjoint PREPAREd-INTERVALs when strict two phase locking is used by the
cohort database system. Strict two phase locking requires that all locks be held until com-
mit. Hence, a following transaction is prevented from preparing until the earlier conflicting
transactions are committed and release their locks. Disjoint PREPAREd-INTERVALS thus
guarantee that a following transaction will have a timestamp that is later than all conflicting
transactions that precede it in the serialization order at a site.

LAST must be at least as late as the timestamps of any previously committed transaction
at the database. A following transaction at a site will thus vote an EARLIEST time that is
later than the commit time of all preceding conflicting transactions at the site. The chosen
transaction time will then be later than the times of all transactions with which it may
conflict at all sites. This assures that serialization order and timestamp order agree at each
cohort. Since serialization order and timestamp order agree locally at each cohort, using a
common timestamp ensures that these orders will agree globally for all transactions, local
and distributed. This makes it unnecessary to record when each data item was last read,
which is frequently necessary in timestamping schemes that choose transaction times at
transaction start [BER].

The choice of transaction time in item 3 is the smallest (earliest) time that satisfies the
constraints of all cohorts. It minimizes the value of transaction time and hence the values
at each database of the variable LAST. Its effect is to keep transaction time closer to the
clock time seen at each site. This will improve the correlation between "real” (i.e. clock)
time and the time that is used to stamp the data in the database system.

3 A Closed Range of Commit Times
3.1 Divergent Clock Time and Transaction Time

The above timestamping extension to the 2PC protocol has a troublesome limitation. One
system node with a substantially faster clock can seriously disrupt the entire distributed
system and the transaction times that are chosen. It's late EARLIEST vote will always
become the transaction time. This forces transaction time away from clock time at chohorts
whose clocks are running correctly. But, if a cohort can commit work at 4:00PM, a user at
that location does not expect the transaction to have a timestamp of 10:00PM that evening.
The user expects a time which is within no worse than a few minutes, and perhaps only a
few seconds of the EARLIEST time supplied by the cohort.

Since it is required that transaction timestamp order agree with transaction serialization
order, how does one limit the divergence between clock time and transaction time? The
answer is that transactions for which the EARLIEST votes of the cohorts are too far apart
can be aborted. The tricky part here is what constitutes "too far apart”. This is similar to
what constitutes reasonable "timeouts" for messages or locks. Below we suggest a way of
dealing with this.

3.2 Voting With a Closed Timestamp Range

One way to establish bounds for how divergent transaction times can be is to ask the cohorts,
when they vote their EARLIEST time for the transaction, to also vote a LATEST acceptable
time for the transaction. The LATEST time is not required for serializability, but is designed
to limit clock and transaction time divergence. The transaction coordinator is required to
find a transaction time that is within all the [EARLIEST,LATEST] time ranges voted by each
cohort. If the intersection of these ranges is null, the coordinator ABORTSs the transaction.
A coordinator thus chooses transaction time to be

TIME(X) = min {N {{EARLIEST,(X), LATEST;(X)] |COHORT,(X)}}

Notice that this agrees with our prior time choice when one interprets the absence of a
LATEST choice as a vote for a LATEST of infinity.

A heavily used database may well place more stringent requirements, i.e. vote a smaller
range, than a lightly used database. It may need the tight bounds to increase concurrency
by reducing the amount of time that the transaction is in doubt. Thus, it is important to
provide the option for a database to vote both bounds.

A database on a workstation might be willing to accept almost any timestamp that a host
database might agree to during a distributed transaction, so long as transaction time order
and transaction serialization order agree. Such a database might not vote a LATEST bound.

It is desirable, of course, to correct a divergent clock because it may be the cause of frequent
transaction aborts. It is possible to use the ABORT message itself to inform cohorts of the
reason for the abort. In particular, an ABORT message informing cohorts that divergent
times caused the abort could prompt cohorts to re-synchronize their local clocks with the
global time standard.

3.3 The Read-Only Commit Optimization

A read-only cohort, i.e., one that has no updates, usually does not need to receive the COM-
MIT message in the 2PC protocol, as it has no activity that it needs to perform as a result.
It merely releases its locks when it receives the PREPARE message. This violates strict
two phase locking locally. We cannot permit read locks to simply be released at PREPARE
time. A subsequent conflicting transaction may access this data and commit with an earlier
timestamp, hence making timestamp order different from any valid transaction serialization
order.

We must be sure that subsequent transactions that write "unlocked" data are given times-
tamps later than the transaction that released the locks. Hence, we would perhaps prefer to
release these locks only after the time of transaction commit. The problem is how to preserve
the read-only optimization when the cohort will never be told, via a COMMIT message, the
timestamp of the transaction.

It should be immediate that a read-only cohort, sending its COMMIT vote with a closed
timestamp range of [EARLIEST,LATEST], solves this problem. This read-only cohort now
knows that the transaction will terminate no later than the time it provided in LATEST.
Hence, it can free its locks at LATEST time, without ever knowing, via the COMMIT mes-
sage, the precise time that the transaction terminated. The LATEST vote ensures that the
PREPAREd-INTERVALSs of conflicting transactions are disjoint, even without knowing the

actual commit time of the transactions. And this assures that timestamp order agrees with
serialization order.

3.4 In-Doubt Transaction Read Data

The classic problem with the 2PC protocol is that it is subject to being "blocked" in the case
of system failures. In fact, there is no commit protocol that resists blocking in all failure
cases. A blocked transaction can make the data used in the transaction unavailable for
potentially extended periods of time.

Data unavailability is ameliorated by the fact that data that is only read by a transaction can
be unlocked at PREPARE time, when timestamping is not involved. Again, the constraint
that timestamping requires, i.e. that two conflicting transactions not be simultaneously
prepared, limits our response to blocked transactions.

By voting its cohorts with a closed timestamp range, i.e. [EARLIEST, LATEST], a database
can restore its ability to release read locks for a blocked transaction. That is, as with a
read-only cohort, it knows that the transaction must terminate no later than the time voted
as LATEST. Hence, even in-doubt transactions can release their read locks then. This does
not save us from the necessity of retaining the write locks of the transaction, as we still do
not know whether to install the after state of the transaction, or re-install its before state.
It is the write locks that keep this part of the state inaccessible.

4 Releasing Read Locks at Time of PREPARE
4.1 Another Optimization Denied (Perhaps)

In systems without timestamping requirements, any cohort can release READ locks at PRE-
PARE time, so long as there is no further locking activity in the transaction. This reduces
lock holding time, thus increasing concurrency. As before, with timestamping, this cannot
be done in this direct way. The problem is not solved solely by providing a LATEST time at
which the transaction must terminate. The whole point of releasing read locks at PREPARE
time is to make the data so locked available to other transactions before the transaction
commits. We do not want to hold locks until clock time exceeds LATEST.

The important constraint is not one of preventing other transactions from using the read-
locked data after its transaction has PREPAREd. This is harmless, as attested by the
fact that, in the absence of timestamping considerations, one could freely access this data.
Rather, what is required is that a transaction that modifies this data be required to commit
with a transaction time that is later than the commit time of the prior prepared transac-
tion. The general problem here is to keep PREPAREd-INTERVALS disjoint for conflicting
transactions so that PREPAREd order becomes COMMITTed order and timestamp order
as well. Hence, this problem is one of insuring that a subsequent conflicting transaction
votes an EARLIEST time that is later than the LATEST time that is voted by the current
transaction.

One possible approach is to FORCE the LAST variable to immediately be set to the LATEST
time voted. This is unlikely to be satisfactory, however, because it increases the divergence
between clock time and transaction time. Such divergence will lead to unnecessary trans-
action abort or to user surprise concerning transaction time.

4.2 DELAY Locks

What we would like to provide is a way of making read-only data available to subsequent
transactions at PREPAREAd time but delay any transaction that uses the data so that it will
have a transaction time that is later than the PREPAREd transaction that "released” the
data. This can be be done with a new lock called a DELAY lock. The idea of a DELAY
lock is as follows. At PREPARE time, a transaction transforms all its read locks to DELAY
locks. At commit time, the DELAY locks are also dropped. A DELAY lock does not conflict
with any other lock mode. However, if a transaction write-locks data that is DELAY locked,
it is not permitted to commit until after the DELAY lock is dropped. This ensures that the
timestamp order of transactions agrees with their serialization order.

Another way to make use of DELAY locks is to again remember that their purpose is to force
transaction time ordering to agree with serialization order, and it is these timestamps that
we are trying to control. This suggests that rather than delaying commit processing, i.e.
the 2PC protocol, we instead use the DELAY locks encountered by a transaction to control
what a transaction votes as its EARLIEST bound for transaction time.

The idea is to examine DELAY locks still held on data that has been modified by a subsequent
transaction at the time that the subsequent transaction initiates its commit processing. The
latest time on any of the DELAY locks that it saw (not the delay locks that it may set) helps
in establishing the lower bound on its permitted transaction time. Thus, a transaction will
vote an EARLIEST time that is later than LAST (the time of the last transaction to commit)
and the latest time of all DELAY locks seen by the transaction, and not earlier than clock
time. That is,

EARLIEST,(X) = max {LAST;(X) + ¢, CLOCK;(X), max { LATEST,(Y)|CONFLICTS;(Y, X)}}

This ensures that conflicting transactions continue to have disjoint PREPAREd-INTERVALS,
and hence that timestamp order and serialization order agree.

4.3 Implementing DELAY Locks

A low cost way to implement DELAY locks does not involve any explicit downgrading of locks
in the lock manager and hence no extra call to the lock manager. Rather, a transaction’s
read locks needn’'t be changed and can be explicitly released only at transaction commit. A
subsequent transaction that encounters a read lock (and that wishes to write the data so
locked) consults the transaction table to determine the disposition of the transaction.

If a transaction holding a READ lock is PREPAREd, the READ lock is treated as a DELAY
lock, and a requested WRITE lock is granted. The transaction holding the DELAY lock is
entered on the DELAYing transaction list for the requesting transaction. The requesting
transaction does not block, and hence a process switch is avoided.

If the transaction holding the READ lock is ACTIVE (not PREPAREd), then a write request
is treated as a read-write conflict in which the requesting transaction must block. The
transaction holding the READ lock is entered on the DELAYing transaction list for the
requesting transaction in anticipation of the downgrading of these locks.

When a transaction holding READ locks PREPAREsS, it downgrades its READ locks to DE-
LAY locks. This is accomplished by unblocking all transactions that had requested WRITE
locks on its READ locked data while it was ACTIVE. These blocked WRITE-requesting
transactions need to be identified so that they can be permitted to proceed. This is the only
burden placed on the holders of DELAY locks. Transactions without blocked writers do not
pay this cost.

When the WRITE-requesting transaction PREPARES, its time range vote must be cast. The
DELAYing list is scanned. Terminated transactions on the DELAYing list are ignored. If all
transactions are terminated (either COMMITted or ABORTed), then the time range vote is
unaffected by DELAY locks. Otherwise, the latest LATEST vote of all the still PREPAREd
transactions on the DELAYing list becomes the lower bound on the EARLIEST vote for this
transaction.

4.4 Two Phase Locking and Two Phase Commit

It is easy to overlook a fundamental assumption in much of the discussion of two phase
commit and its optimizations. This assumption is that all non-commit related processing
in all cohorts of a transaction has terminated prior to the commit protocol beginning. In
particular, no activity requiring the locking of additional data is continuing. This assumption
is straightforward to guarantee when all processing follows the request/response paradigm.
The coordinator only initiates the 2PC protocol when all responses have been received.

Not all systems require the request/response paradigm. And for these, assuring that locking
of data has terminated will typically require extra messages. In the absence of this condition,
any cohort’s release of READ locks at PREPARE time may violate two phase locking.

4.4.1 Example:

Cohort Cl of a transaction releases read locks when the PREPARE message arrives.
Cohort C2 receives the PREPARE message somewhat later, and continues to acquire
locks during this period. Hence the locking for the entire distributed
transaction is not two phased, even though it is two phased at each cohort.

A second transaction may then be able to change Cl’s released data, hence
serializing after Cl, and also change data prior to C2 examining it, hence
serializing before C2. Thus, the global transactions are not serializable.

In this case then, no optimization that releases read locks at prepare time can be permitted,
because serialization cannot be guaranteed. This precludes the read-only optimization.

Now, however, consider the timestamping 2PC protocol. Each database system is locally
two phased with respect to lock acquisition. This local two phased property, together
with DELAY locks, ensures that locally conflicting transactions have disjoint PREPAREd-
INTERVALSs. Hence, local transactions will have transaction timestamps ordered correctly
locally. And globally, the commit protocol ensures that the timestamp order of the transac-
tions correctly orders transactions. Thus, even in the absence of global two phase locking,
the timestamp order chosen agrees with ALL local serializations.

Essentially, two phase locking is being used locally, up to PREPARE time, to order transac-
tions. Then timestamp order concurrency control is used. This offers high concurrency with
the efficiency of using the commit protocol itself to "quiesce" the transaction cohorts’ nor-
mal activities, without a separate termination protocol. In particular, it makes it possible
to exploit the 2PC protocol messages to trigger "delayed" constraint evaluation, while still
assuring serializability of transactions.

Some care must be taken here. As more activity is permitted to follow the initiation of the
commit protocol, more time must be allowed for cohorts to complete their diverse activities.
If timestamp ranges are not sufficiently large, the probability that their intersection is
empty, forcing transaction abort, increases.

5 Dealing with Non-Timestamping Cohorts
5.1 A Problem with Heterogenous Systems

In a heterogenous system, not all cohorts of a transaction necessarily timestamp their data.
We would like our commit protocol to work correctly when transactions involve both times-
tamping and non-timestamping database cohorts. If the non-timestamping cohort does not
include a timestamp on its voting message, then a problem arises. Even though transactions
are serialized correctly at each database, and a valid global serialization for all databases is
assured, the timestamp order cannot be guaranteed to agree with a valid global serialization.

5.1.1 Example:

Transaction Tl executes at timestamping database A and non-timestamping
database B. Transaction T2 executes at non-timestamping database B and

at timestamping database C. Transaction Tl commits at B prior to T2.
However, the EARLIEST time voted for Tl at A is later than the EARLIEST
time for T2 at C. Since there are no constraints established at B, these
times can become the transaction times. They satisfy the local constraints
at A and C, but they do not agree with a valid serialization of Tl and T2,
which must have TI ordered before T2.

5.2 The Role of the Transaction Manager

It is useful to introduce the notion of a system component called the transaction manager
(TM). The TM exists at every node in the system and assists the database systems on
each node to coordinate distributed transactions. It does this by presenting a strictly local
interface to each database system through which the two phase commit protocol is exercised.
The TM performs the communication required in the commit protocol. That is, any commit
protocol message has a source that is a TM at one site, and a destination that is a TM at
another site.

A node’'s TM interfaces with all databases at the node, whether timestamping or non-
timestamping. The TM coordinates the transaction, at the direction of one of its local
databases. Since the TM exists at every node, any node can coordinate the transaction,
whether or not a timestamping database is present. Each database system notifies its lo-
cal TM about commit initiation and voting. The coordinator TM examines votes, decides

10

whether to commit or abort a transaction, and selects the transaction time. It then commu-
nicates to other remote participating TMs the transaction dispostion and time. These TMs
inform their local participating databases.

5.3 Transaction Manager Voting

The solution to the problem of mixed timestamping and non-timestamping databases in the
same transaction is for the TM to provide a timestamp should a database not inform the
TM of an EARLIEST time. The TM executes the procedure in 2.2.1 to choose an EARLIEST
timestamp. It keeps the LAST variable for each database system with which it deals on
the node.

Note here that a TM interacting with a database on its node can also supply the LATEST,
i.e. high bound, for the transaction time vote should the database itself not provide it. This
is similar to the TM role when dealing with a non-timestamping database. But now, the
TM can supply either EARLIEST, LATEST, or both bounds. All of these alternatives are
potentially useful.

With a TM, a database system need not know anything about timestamps. And the TM need
know very little about the database. The TM executes the timestamp selection protocol in
the absence of a transaction time vote. The TM can execute only the first alternative of
step 2 of procedure of 2.2.1 to choose an EARLIEST time. A timestamping database system
might be able to vote an earlier EARLIEST time. We assume that the TM does not have
access to the more detailed information needed for an earlier vote.

What enables timestamp ranges to ensure transaction serialization is the enforcement by
each database of disjoint PREPAREd-INTERVALSs for conflicting transactions. A database
usually does this via strict two phased locking. If a database communicating with a TM is
known to to guarantee this, then not only is serializability ensured, but all of the previous
optimizations of the timestamping databases are possible. A non-timestamping database
might even employ DELAY locks, holding them until a transaction has committed, in its
role of enforcing the guarantee.

5.4 Disjoint PREPAREd-INTERVALS for ALL Transactions

In a heterogenous system, the TM cannot depend on all databases ensuring disjoint
PREPAREd-INTERVALSs. For example, if a non-timestamping database releases read locks
at PREPARE time, and does not use DELAY locks, then conflicting transactions might be
simultaneously PREPAREd. This does not compromize serializability, assuming that all
locking is completed prior to the commit protocol initiation [see section 4.4]. However, it
can cause the timestamp order to differ from a valid serialization.

If the TM has no information about a local database’s behavior in this regard, then the
TM must ensure disjoint PREPAREd-INTERVALS for conflicting transactions by itself. One
idea is to prevent ANY transactions, not merely conflicting ones, from being simultaneously
PREPAREd. This clearly keeps conflicting transactions from being simultaneously prepared.
The TM can realize this very simply by requiring one transaction from the database to
commit before the next transaction is prepared.

11

A variation of this approach enforces this constraint by exploiting timestamp ranges. The
TM can ensure disjoint PREPARE-dINTERVALS by how it votes timestamp ranges. When
the TM votes an [EARLIEST, LATEST] timestamp range for a transaction, the EARLIEST
time must be later than not only the LAST commit time but also the latest LATEST upper
bound voted by all currently PREPAREd transactions. Thus,

EARLIEST;(X) = max {LAST,(X) + ¢, CLOCK;(X),max { LATEST,(Y)|PREPAREd,(Y, X)}}

5.5 Preventing Early Lock Release

The above demonstrates that an appropriately designed "timestamping” TM can cope with
database systems that expect to use ordinary 2PC and to release READ locks at prepare time.
However, the designs can seriously impact performance. The problem is that transactions
are essentially "single-threaded" through the PREPAREd state. A heavily used database
system will experience this as a bottleneck to high performance. For such database systems,
the best way of limiting the enforcement of disjoint PREPAREd-INTERVALSs to conflicting
transactions may well be to retain all locks until commit and to give up the early lock release
optimizations.

If we know that a database system uses two phase locking, with no release of locks prior
to PREPARE, the TM may be able to prevent the database system from releasing locks
until commit time. If the database system waits for an ACK to its PREPARE vote before
releasing locks at PREPARE time, then the TM can delay the ACK for message two until
commit time. If the database uses two phase locking up to prepare time, then this two
phase locking becomes strict two phase locking when combined with the delayed ACK. This
guarantees that PREPAREd-INTERVALSs of conflicting transactions are disjoint. Hence,
timestamp order will agree with serialization order.

6 Discussion

Stamping data with the transaction time of the updating transaction permits database
systems to support multiple versions and to answer queries about the state of the database
AS OF some time in the past. It is desirable to choose the transaction time late in the
transaction so as to maximize concurrency. We exploit an enhanced 2PC protocol, using
the same number of messages as the normal 2PC protocol, as a mechanism for reaching
agreement among cohorts as to what the transaction time should be.

Our enhanced 2PC protocol permits us to exploit the common optimizations that normally
can be used with ordinary 2PC. In particular, we showed how a transaction’s read locks can
be released at PREPARE time. Importantly, our enhanced 2PC can exploit this even when
normal transaction activity cannot be guaranteed to be complete. This is not supported by
the ordinary 2PC protocol.

Finally, we showed how our protocol could work in a heterogenous system containing non-
timestamping databases. This permits the timestamping databases to interoperate with
non-timestamping ones while continuing to assure that the timestamp order of transactions
agrees with a valid serialization order for all global transactions.

12

7 Acknowledgements

Discussions with Phil Bernstein, Jim Johnson, and Ken Wilner aided in the development
of the timestamping 2PC protocol. Phil Bernstein and Betty Salzberg provided useful com-
ments on an earlier draft of this paper.

8 Bibliography

[BER] Bernstein, P., Hadzilacos, V. and Goodman, N. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Publishing Co., Reading MA (1987).

[GRA] Gray, J. Notes on Database Operating Systems. in "Operating Systems: an Advanced
Course"”, Lecture Notes in computer Science 60, Springer-Verlag, (1978) 393-481.(also IBM
Research Report RJ2188, Feb. 1978)

[HER] Herlihy, M. Optimistic Concurrency Control for Abstract Data Types. Proceedings of
Principles of Distributed Computing Conference (1986) 206-217.

[JOS] Joshi, A. and Rodwell, K. A Relational Database Management System for Production
Applications. Digital Technical Journal 8 (Feb. 1989) 99-109.

[LAMO] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.
Comm ACM 21,7 (July 1978) 558-565.

[LAMS] Lampson, B. and Sturgis, H. Crash Recovery in a Distributed System. Xerox PARC
Research Report, 1976.

[LOM] Lomet, D. and Salzberg, B. Access Methods for Multiversion Data. Proceedings of
the ACM SIGMOD Conference, Portland, OR. (May 1989), 315-324.

[REE] Reed, D. Implementing Atomic Actions. Proceedings of the 7th Symposium on Oper-
ating System Principles (1979) and in ACM Transactions on Computer Systems, 1,1 (Feb.
1983) 3-23.

[SNO] Snodgrass, R. and Ahn, I. A Taxonomy of Time in Databases. Proceedings of the
ACM SIGMOD Conference, Austin, TX (May 1985), 236-246.

[STO] Stonebraker, M., The Design of the POSTGRES Storage System. Proceedings of the
13th VLDB Conference, Brighton, UK (Sept. 1987), 289-300.

13

Table 1: Definitions of Terms

Terms Definitions

Time Terms

CLOCK;(X) clock time at site ¢ when transaction X prepares

EARLIEST;(X) lower bound for time that is acceptable to site ¢ for transaction X
LAST:(X) time of last committed transaction at site ¢ when transaction X prepares
LATEST(X) upper bound for time that is acceptable to site ¢ for transaction X
TIME(X) transaction time for transaction X

Predicates

COHORT;(X) does site 1 have a cohort of transaction X

CONFLICTS:(Y, X)

PREPARE,(Y, X)

does transaction Y in PREPAREd state at site ¢ conflict with transaction X at site ¢
when transaction X prepares

is transaction Y in PREPAREd state at site ¢ when transaction X prepares

14

