Mdiloliltiall

disk operating system monitor
systems programmer’s manual




DEC-11-0SPMA-A-~D

PODP-11

DISK OPERATING SYSTEM MONITOR
(Version No. V@@4ls):

System Programmer's Manual

Software Support Category

The software described in this manual
N is supported by DEC under Category I,
as defined on page iv of this manual.

This manual supersedes the Preliminary Edition,
issued under order no. DEC-11-MNDA-D.

.. | For additional copies, order no. DEC-11-0SPMA-A-D from Digital Equipment
N~ Corporation, Software Distribution Center, Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION e MAYNARD, MASSACHUSETTS



Preliminary, November 1971
First Edition, May 1972

‘:-_/
NOTE
Your attention is invited to the last two pages
of this document. The "How To Obtain Software
Information" page tells you how to kee? up~-to-
date with DEC's software. The "Reader's Comments"
page is beneficial to both you and DEC; all com-
ments received are considered when documenting
subsequent manuals.
Copyright © 1971, 1972 by Digital Equipment Corporation
Associated PDP-11 documents:
Disk Operating System Monltor, Programmer's Handbook
DEC-11-MWDC~D
Getting DOS on the Alr
DEC-11=-SYDD-D
PAL-11R Assembler, Programmer's Manual :
DEC~-11-ASDC-D >
Edit-11 Text Editor, Programmer's Manual
DBEC-11-EEDA-D
ODT-11R Debugging Program, Programmer's Manual
DEC-11-00DA~-D
PIP File Utility Package, Programmer's Manual
DEC-11-PIDB-D
Link-11 Linker & Libr-i11 Librarian, Programmer's Manual
DEC=11-2LDC=-D
NOTICE
This document 1s for informatlion purposes,
and 1s subject to change wlithout notice.
Trademarks of Digital Equlpment Corporation include:
DEC PDP-11
DEC tape RSTS-11
digital (logo) RSX-11 TN
COMTEX-11 UNIBUS

i1



PREFACE

This document explains the philosophy and structure of the PDP-11
Disk Operating System (DOS) Monitor. It is written for the
PDP-11 programmer who needs to know the internal operation of
the Monitor in more detail than is given in the PDP-11 Disk
Operating System Monitor Programmer®s Handbook (order no. DEC=-
11-MWDC-D), which is intended for the general user. Thus, this
document should be of assistance to:

e VUsers who wish to adapt or extend the Monitor for their
own special applications.,

® Software Support Specialists.

) Programmers responsible for DOS Monitor maintenance or
modification,

The document assumes familiarity with the contents of the
Programmer®s Handbook, and also with the DOS system programs as
described in the documents listed on the back of the front page.

The source listings of the Monitor (available from DEC*s Software
Distribution Center) would be useful since this document is de-
signed merely to supplement the detailed comments included in
the source listings.

The document is divided into nine chapters:

Chapter 1 provides an overview of the concepts and organi-
zation of the DOS Monitor and gives general information on
the form of the rest of the document,

Chapter 2 is devoted to the central executive section of
the Monitor which is always resident in core memory.

Chapter 3 discusses the overall philosophy for the handling
of I/0 from any peripheral device, followed by a detailed
examination of the routines providing program I/0 services.
This chapter also contains an introduction to device drivers.

Chapter 4 is particularly concerned with I/0 upon bulk-
storage devices for which a file-structure is defined. A
general description of this structure is given, followed by
an explanation of each of the special routines for file
management,

Chapter 5 describes the modules which provide I/0 services
to load and unload the Monitor and certain general utilities.

Chapter 6 describes the methods adopted for the handling of

operator commands at the console keyboard and the processing
of each command. Also included is a discussion of a transient

iii



Monitor section which occupies memory in the absence of a
user program,

Chapter 7 covers the question of error diagnosis and out-
lines the routine providing a central printing service for
messages from both the Monitor itself and the DOS system
programs,

Chapter 8 shows how the Monitor is initially built and
stored ready for use and can be later extended or modified.

Chapter 9 explains the format and contents of various
system object and load modules.

Each chapter is concluded with its referenced illustrations.

NOTE

Appendix A, frequently referenced herein, was not
available for this printing, thus it does not
appear. In June 1972, the appendix will be avail-
able on request (free) from DEC®s Software Distri-
bution Center, Maynard, Mass, 01754,

iv

e



SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product ot any time.

The four categories are as follows:

CATEGORY |
Software Products Supported ot no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category | to
Category Il for a particular customer if the software product has been modified by the customer
or a third party .

CATEGORY I
Software Products that Receive Support for a Fee

This category includes prior versions of Category | programs and all other programs avaii-
able from DEC for which support is given. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con-
junction with these DEC programs and equipment supplied by DEC .

CATEGORY 11l
Pre-Release Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category Il software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY |V
Non-Supported Software

This category includes all programs for which no support is given,



~



CHAPTER

CHAPTER

CHAPTER

.1
o2
]

e o & o o
2O =

(\);\)f\)r\)m--..._......
e o o @
HEOIN =

DD MDD MMM ~ b od s b b b d b ek b b
.

CONTENTS

INTRODUCTION
The Functlion of the DOS Monitor
Monitor Organization
Monitor Conventilons

Calling Monlitor Modules
Return State

Naming Conventlons
Definitlons

RESIDENT MONITOR
Monitor Tables

System Vector Table
Monitor Residency Table
Device Driver List
Table Initlialization

EMT Handler

Description of the Handler
General Comments

Swap Area Management

Swap Buffers

Calling SAM
Description of SAM
System Exit

The Swappable Routines

General Purpose Subroutlines

Register Save/Restore & Stack Control
Free Core Management

Buffer Allocation

Buffer Release

Comments

Time Control

GENERAL I/0 PROCESSING
I/0 Concepts and Control
General Strategy

Common Processing
Buffer Data
Dynamic Core Usage
1/0 Levels
Device Assignment

I/0 Controls
User Link Block
Device Asslignment Table
Dataset Data Block
Driver Management

/0 Processing

Basic I/0 Processing
Dataset Initialization
Basic Transfers
Dataset Release

vii

- e mh ot ad omb wd ad
| L L R
OO AN -



Chapter 3, continued.

CHAPTER

PPy -J-‘-&'####k##&####b###?###### ol B R R RV AU LAV (VIR AV LIC AV AERAN AV AN

2 DNormal I/0 Processing

2.1 Dataset Open (OPN)

2.2 READ/WRITR Transfers (RWN)
2.3 Dataset Close (CLS)

.2 Random Access I/0 (BLO)
4
4

e & @
® o o

Special Operations
.1 Special Punctions (SPC)
.2 Device Status (STT)
Device Drivers
Driver Interface Table
Driver Service Routines
Interrupt Servicing
System-Device Drivers

FILE STRUCT URES
General Concepts
Plles
o1 Linked Flles
2 Contiguous Piles
Directories
1 Master Plle Directory (MPD)
2 User PMle Directory (UPD)
Blt Maps
File Protection
Application By Device
Fixed-Head Disks
Moving-Head Disks
DECtape :
Pile Management
User File Block
Flle Information Block
General Purpose Routines
Directory Search (LUK)
Check Access, Set-Up and Release FIB (CKX)
o1 Check Access Privilege
o2 Set-Up Plle Information Block
3 Release Pile Information Block
Transfer Bit Map to and from Core (GMA)
.1 Get Map (GEBTMAP)
Allocation of Blocks to Linked Files (LBA)
Normal Plle Processing
Opening Flles
o1 Open an Bxisting File (FOP)
.2 Create a New File (FCR)
Processing a Flle
1 Next Block Deterwination (RWN)
2 Changing the Core Map Segment (GNM)
Closing PFiles (FCL)
Housekeeping Operations
Allocating Contiguous Flles
1  Allocate Set-Up (ALO)
.1.2 Contliguous Block Allocator (CBA)

L[]
(CACAVAC AU R VR VRV VIV VRV R

e ©®© @ o © ¢ o * o » o o
® & ¢ o ¢ o o ® & o
BN N = s - 2O -
* @

o o o
WD) -

e o & o ¢ © o o
* e 0 . o
N e

OOV S S SPEFELEL0IMUWMND NN = b ot ot b ot bt
.
FOILIDDNONON -

viil



Chapter 4, continued

CHAPTER

CHAPTER

ix

Page
4,6.2 Deleting Flles 4-52
4,6.2.1 Deletion Set-Up (DEL) 4-52
4,6,2.2 Deletion of Contiguous Files (DCN) 454
4,6,2.3 Deletion of Linked Files (DLN) 4-55
4,6.3 Appending Flles 4-56
4,6.3.1 Append General Routine (APP) 4-56
4,6.3.2 Special Append Operations on DECtape (AP2)4-58
4,6,4 Repaming Files (REN) 4-59
4,6.5 Protecting Files (PRO§ 4-60
4,6.6 Directory Status (DIR 4-61
4,7 Magnetic Tape Structure 4-64
4.7.1 Opening FPlles on Magnetic Tape (MTO) 4-65
4.7.2 Speclal Operations 4-68
5 OTHER PROGRAM SERVICES 5=-1
5.1 Program Loading 5=2
511 Program Loader (LDR) =4
5.1.2 Monitor Module Loader (LD2) 5=7
5.2 General Utilities Package (GUT) 5-10
5.3 Conversion Utilities Package (CVT) 5=12
5.3.1 Conversion to Blnary 5-12
5e3.1.1 Radix-50 Pack (code @) 5-14
5.3.1.2 Decimal ASCII to Binary (code 2) 5=15
5.3.1.3 Octal ASCII to Binary (code 4) 5-16
5.3.2 Conversions from Binary 5-16
5.3.2.1 Radix-50 Unpack (code 1) 5=17
5.3.2.2 Binary to Decimal ASCII (code 3) 5-19
5¢3.2.3 Binary to Octal ASCII (code 5) 5-19
5.4 Command String Interpreter 5=20
S5ed,1 Syntax Analyser (CSX) 5=-21
5.4.2 Specification Decoder (CSM) 5-24
5.5 Program Exit (XIT) 5-28
6 KEYBOARD SERVICES 6-1
6.1 General Philosophy 6-2
6.2 Organizatlion 6-4
6.2.1 Command Acceptance 6=4
6.2.2 Command Decoding 6-6
6.2.3 Command Processing 6-7
6.2.4 Command Clean-Up 6-8
6.2.5 Command Conventlons 6-9
6.2.5.1 Calling Parameters 6-9
6.2.5.2 Processor Stack 6-9
6.2.5.3 Call Techniques 6-10
6.2.5.4 Reentrancy 6-11
6.2.5.5 Residency 6-12
6.3 Common Command Processing 6-13
6.3.1 Console Keyboard Listener (RMONS) 6-13
6.3.2 The Special Console Driver (KBL) 6-18
6.3.3 Keyboard Commant Interpreter (KBI) 6=-24
6.3.3.1 The WAIT Command 6-27
6.3.3.2 The CONTINUE Command 6-27
6.3.3.3 The STOP Command 6-28



Chapter 6, continued

CHAPTER

CHAPTER

CHAPTER

Run-Time Commands
The DATE Command (KBI.DL;
The SAVE Command (KBI.SA
The ECHO, END & PRINT Commands (KBI,KB)
The ODT Command (KBI.OD)
The BEGIN and RESTART Commands (KBI.BE)
The KILL Command (KBI.KI
The TIME Command (KBI.TI
The MODIFY Command (KBI.MO
The ASSIGN Command (KBI.AS
0 The DUMP Command (KBI.DU)
Between~-Program Services
The Transient Monitor (TMON)
The TMON Commands
The LOGIN Command
The FINISH Command
The RUN and GET Commands

ERROR HANDLING
Types of Error
Calling Diagnostic Print
Diagnostic Print Routlne

o & o o o o
® o o o o »
QN SOV =

.
N e

L ]
\n\.n\..nmm\n ##—f&#k#&###
VIO = =0 O~
L

VI =

MONITOR GENERATION and MODIFICATION
Monitor Module Preparation
Module Assembly
Module Linking
Resident Monitor

)
* o o
OV SRV S
o 0

1

2 The Translient Monitor

3 Keyboard Language
.4 Other Modules

System Bullding

Setting Up a System DECtape
Loading the System Device (SYSLOD)
1 Preparation of SYSLOD
2 SYSIOD Usage
.Z SYSL.OD Processing

M

[ ]
NN =

Monitor Booting
onitor Modification
Resident Monitor Modules
Program Services
Device Drivers
Keyboard Commands
1 New TMON Commands
e Other Commands
S

e ® o o .
uuuyuuumwmwmmm-ﬁ-‘-‘d-ﬁ-ﬂ—b
. .

TEPUI -

SYSTEM FILE FORMATS
Object Module Format
Object Module's Contents
Global Symbol Directory (GSD)

1
2 Text Block

3 Relocation Directory (RLD)
4 Internal Symbol Directory

WOOVOOVOOY 0O@®OOOOOmOOmEOOOETOOMOEOOOMEE ~NI~N~N1 AN

.

- ouh amb b mb ad

[ ] e @ o o

b b ab b b
L

6-65
6-T71
6-T1
6-79
6-79
6-81
6-83

T-1

8=-1

4\‘-._5/



Chapter 9, continued

|m
1L -
(€I NN N

!(D

L]
OO N NDWN = s OO OV D WN

1
Pt
[ S

[ 2 T T T T O Y I | !
o N -=O

WWWwWwWwwWwWwwwwww NNI'\)NNN NNNNNN

3-13

2y
bt
0

3-16
3-17a
3-17b

.
N

Object Language
Load Module Format
Load Module Contents
o1 COMD Contents
Object Module Library Format
1 Directory Contents
2 Object Module Conteants
Load Module Library Format
Directory Contents
Load Module Contents

L]
-—b emb

WVWOWOWOOVOVOOOO
£ EFUVOVIWND DN -

.
N) =

ILLUSTRATIONS
Title

The Basic Resident Monitor in Memory
Monitor Library on the System Device
Memory After Program Load

Memory During Program Run

DOS~-11 Monitor Module Structure

Usage of the Fixed Vector Locations

System Vector Table Content

Monitor Residency Table Format

Device Driver List Format

EMT Handler Operations

Stack Shuffle to Remove Call Arguments for
Immediate Program Exit From the EMT Handler

Swap Buffer Format

SAM Operations

Memory Usage During 1/0 Set-Up

Buffer Allocation Management

Buffer Allocation Operations

Buffer Release Operations

User Link Block

Possible Device Assignment Table
Device Assignment Table Entry Format
Dataset Data Block (DDB)

Monitor DDB Chain

DDB Status Word

Driver Queue Management

A Driver Queue

Stack State In S.CDQ After Driver Completion Return

Flowchart For Initialization Module (INR)
Memory After Dataset Initialization

TRAN Block Format

Flowchart For Dataset Release Routine (RLS)
Flowchart For Dataset Open Routine (OPN)
Memory State After Dataset Open

User Line Format

Flowchart For READ/WRITE Processing (mainstream)

Subroutines to Handle Device Transfers During
READ/WRITE

xi

]
N =Yoo

D0 bt bt bt et
]

2-27
2-28
2-29
2-30

2-31
2-32
2-33
2-34
2-35
2-36
2-37

3-48
3-49
3-50
3-51
3-52
3-52
3-53
3-54
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62

3-63



Illustrations (continued)

Fiqure

3-18
3-19
3-20
3-21
3-22
3-23

11
—

!
HOONOUNDLWN

?bbbb.‘hbbbb
o

D
!

11

6-4
6-5
6-6
6-7

Title

Unique Read Processing Sequences

Unique Write Processing Sequences
Flowchart For Dataset Close Routine (CLS)
The BLOCK Block

The Special Functions Block

Driver Interface Table

Linked File Format

Contiguous File Format

Master File Directory Block #1

Master File Directory Block #2

User File Directory Block

Bit Map Segment Format

Protection Code Format

Non-System Disk Format

System Disk Format

Possible Linked File on DECtape

DECtape Format

Monitor File Management Modules

Potential Stack State -~ Internal File Management
Subroutine Call

Use of Swap Buffer in File-Handling Operations
(First-Level Routine)

User File Block

File Information Block (FIB)

"FIB Linkage to Bit Maps

Program Load Image as Produced by Linker (Link-11)

Program Load Operations (Phase I, Program Load)

Program Load Operations (Phase II, Monitor
Module Load)

Operations of the General Utilities Routine

Conversion Routine Operations

Command String Input

Command String Syntax Rules

Command String Input Buffer

Command Buffer For CSI

Command String Syntax Analysis (Mainstream)

Page

3-64
3-65
3-66
3-67
3-68
3-69

4-70
4-70
4-71
4-71
4-72
4-73
4-73
4-74
4-74
4-75
4-76
4-77

4-78

4-79
4-80
4-80
4-81

5-30
5-31

5=-32
5-33
5-34
5-35
5-35
5-36
5-36
5-37

Command String Syntax Analysis (Subsidiary Routines)5-38

CSI Command Block v

Switch Data In the User Link Block
Command String Decoding

Exit Operations

Use of the Keyboard Swap Buffer in Command
Processing

Stack States During Command Processing

Keyboard Command Buffers

Keyboard Listener Operations (RMONS)

Special Keyboard Driver Operations

Keyboard Interpreter Operations

Date Command Processing

xii

5-39
5-39
5~-40
5-41

6-90
6-91
6-92
6-93
6-94
6-95
6~-96



Illustrations (continued)

Fiqure

6-8
6-9
6-10
6-11
6-12a

6-12b

6~13
6-14
6-~15
6-16
6-17
6-18a
6-18b

7-1

8-1

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9

Title Page

Save Command Processing 6-97
Begin/Restart Commands Processing 6-98
Time Command Processing 6-99
Modify Command Processing 6-100
Assign Command Processing (Overlay #1 & Mainstream, 6-101

Overlay #2) 6-101
Assign Command Processing (Overlay #3 & Subroutines,

Overlay #2) 6-102
Stack State During °Assign® Processing 6-103
Example of Line-Printer Dump 6-104
Dump Command Processing 6-105
EOM Adjustment by TMON 6-106
Transient Monitor, General Processing 6-107
Run/Get Command Processing (Load File Check) 6-~108
Run/Get Command Processing (Preload) 6-~109
Stack State On Entry to the Error Diagnostic

Print Routine 7-7
Modules Present in DOS-11 Monitor (V4A) 8-23
Object Module Format 9-20
Blocking of the GSD 9-21
Contents of GSD 9-22
Format of a Text Block 9-23
Format of a Relocating Directory 9-24
Object Module Library Format 9-25
Blocking of Object Module Library 9-26
Load Module Library Format 9-27
Blocking of Load Module Library 9-28

xiii



DOSY ,ANP PAGE /=y

{h ) CHAPTER 1

INTRODUCTION

Like other bulk media, cemerally, a disk is comvemnient for
the storage and retrieval of system softweare such as Ed{=
tors, Apsemblers, Comeilers, etc.? which gssist the comouter
user tewards a more rapid development of his epplilcation's
proarams amnd thereafter of those oroqrars themselves and
their date. More significantly, because of its relatively
fpst ramdom access carabilities, a disk camn be treated as »
virtug) extension of available core memorv, thereby enablinrg
the provisiom of a wide range of runet{me searvices which canr
ease the burder of all proarams, even {n the smaller confile
gurationms.

The POP=11 Disk Operatimg System (DOS) {s desigmred to take
edvantgae of these Dbenefits in the ginale=yser d#.k-based
environment. Thus {t consists basically of & Monitor which
supolies the services mentioned snd {nm particulasr supcorts a
comprehensive set of program develooment softuare, In the
Proaremmer's Hamdbook (DECe]ieMWDCeB) the “omitor {s des=
eribed for the user who wishes merely to obtain {ts services
for his owmn purposes and to control the oneration of his
system, The ysage of {ts asseciated orograms, listed below,

’ } {o exclained {n the relevent Programminag Manual shown!
EDIT=41 Text Ed{tor DECe11=EEDACD
PAL=i{iR Agsembler , ) NECe{1=A3DCeD
LINKm{{ Linker & LIBRe1] Librar{an NEC=11=2LDC=D
ODT=1{R Debuggin Atd NEf=]1il=aO0DA=D
PlPmiy File Ut{l{ties Package NEC=11=«PIDR=D
FORTRAN FORTRAN 1V Compi{ler DEC=ii=«KFDB=D

Thia monuo1 supplements the {mformation in the “omn{tor Prow
grammer's Hendbook by presemting a more detailed diseussion
of the fae#l{tieo provided by the Momnitor anmnd the methods
used _te ueh10ve these, In general, the hackaround comcents
of eneh of its aspects are corsidered tollowed by an indivi=
due) .x.min.!1on of the routines aat!ofvinq those concepts,
The procedures by which the Mon{ter {s precared for usaqe
are alse 11lustrated to agsist those who mreed to develon {ts
amen{ties ¢tuprther, by modificetion, addition, or extemsion,
As far as possible the marua! {s errapced to emable {mmedi=
ate reference to a aart1cu1ar topicy this them comtaims oo=
inters te “supportima {nformation, This alsc should allew
roviljohl to be readily imcluded by replecement 0f the ape
prooriate section,

The purpose of this Chaoter especially is to orovide a gen=

- eral overview of the Momitor, Sectiom 1,1 Adiscusses its

) principal aims amnd {ts oraenization to meet these aims s

deseribed {nm Section 1.2. Sectiomn 1.3 then introduces some
establi{shed eonventionrs.




D081 ,RNO PAGE )-%

{.1 The Fumction of the DOS Mom{tor

The DNS Momiteor exists for twe maim regsorst

a, To make available to a running proqram a whole ser=
ifes of general utility routinmes to aimo!ifv {ts use
age of the PDP=i1 as a systenm, in particular for
the handlimg 0f its 1/0 reauipements,

be To,emable the user at the eon.ole kevboard to maine
talm comtre]l of the eperations of his system,

AS rmoted, the prineipal area of service to a orogram cone
cerns 1/0 manmaaement. Chaoter 3 will show that the user is
given the opPportunity to reauest as much or as little assise
tance as he needs. In many cases he need not consider the
dcvdcon he will actuallv use when the proaram {s under exe=
cution, It he wishes to utiltize the facilities offered by
bulk media for the storege of many {ndependent sets of data
oF to share these facilities with other users, he (s able to
effect this within the framework of a Men{torecontrolled
¢ile structure to be discussed in Chapter 4,

1/0 aside, a runnine prearam may often need {nformation
about the particular system {(n which 1t {8 ecurrently working
or mav reaui{re aqermeral helep {n mapipulatina {ts data,
Moreover the pprocesses by whiech {t is Yoaded amd umtoaded
are essentig)l services, Chapter 5 covers the orovision of
these and other services,

In the mormal way, the comsole operator needs to be able to
dictate the gsequence {n which proarams are executed and to
pccess them accordingly, On eccasion, he may be obl!i{ged to
suppiv {ntermediate seteun information, Moresver (t (s pese
sibles ever_ {n the best reguleted svystem, that he must (n=
tervere_to {nterrunt the morma) secuence when adverse condie
tioms arise. The method by which he ¢em exercise these con=
trols from the kevboard at e)) times {g described {m Chaoter
6, and Chapter 7 shows how he may be keot {nfarmed of these
adverse comditions,

BE RREM RIAE B .
v T T S




DOS1,RND PAGE /-3

1.2 Mon{tor Organization

The major feature of the Momnitor's stretecy to meet {ts com=
m!tmontn es outlined {m the previous section 1: the fact
that it has been setur as & series of normally. independent
modules, esch of which seti{sfies one specific function,
This medularity has the following sdvantsaes:

1, Fase of develocment

2, Flexibility in usaae

3, Extersibility
The first of these implies that the Monitor has been brought
to {ts eurrent state bv oreparina egeh module senarately,
{neluding any necessary modlfication (and {n some cases comw
plete replecement) and check=out, before finmally incorporat=
ing it {nte the svstem, The third advgntage effectively sa=
ys the gsame thing for future development, either as a gener~

a) orevisipn or te meet a_soecific usep's reaquirements (pro=
vidod of course he himself does this).,

The matter of f1ox!b111tv is narticu\Oply relevant because
it (s this gspect which_really cermits the Monmitor to gafn
most bermefit from the ovollob(litv of the disk within the
svstem, as noted (mn the {nmtpeduction to th!s chanter,
Basically certain modules, which are d{scussed in Chaoter 2,
must remain within the comouter memory at all times because
they econtro! the system gemrerslly, Figure 1e1 {llustrates
their norms) location, The romoin!nq modules which perform
ePhemerg) tasks need enly reside upon the disk whieh supe
ports the svstem (called elsewhere the "svstem device") {f
the available computer memory s too limited, They canm then
be leaded when reauired and cenr later be reameved whem their
puUrpose has been served, To this end, a Librarv area s
reserved uoon the systemdevice as shown in Figure je2, Tts
formet is desigred to allow simple seteup (see Section 8,2)
end ready asccess (see Sectioms 2,1,2 apd 2,1,4),

However, despite the fact that such loading cen be accome
plished falrly aquickly from the disks, ft sti)) takes finite
time and the usep who has memorv to soare may prefer to avo~
id the wastage. Modularity aqain helps, as follows (see
Fioure 13)s ‘

a, If a particular modyle (s reauired so frequent=
ly by al) users of a svstem, it can be sdded to
those alresdv (ncluded {n the nermanentlv resie
dent oart of the Momitor at system generation
(ecurrently bv lirkina = see Section R,1,2)



D081 RNO PAGE /-

b. A module whieh {s particularly sporepriate to
ene aoplication can be loaded with the oroaram
concerned Just fer the duration of a run, The
user {n this case {ndicates his requirement as
@ alobal reference (n the program (see Pro-
aremmer's Handbook for deteils) and, as shown
in Section 5.1, the Program Loadar obliges {f
the module s not slreeady permanently resident,
(No Yimkimna occurs, hence the same proaram ecan
be run off,ctivolv {n any system {¢ the overall
core capacitv ocermits),

Thus modular flcx(b!lty gives the user the choice between
residency or swapping from the disk, In the Yatter case, (¢t
should be moteds, the tomporar!lv leaded reutino oceuycies o
reserved ares within the Monitor (see Sectionm 2,3,1) o (¢t
does not recufre that part of o erogram be lHlprd oyt
tirst. This avoids two accesses and means _that no restrie=
tions need be placed upon the sctivities of a sorogram as
might phe the case {f part of its areq were sotentially re=-
movable.

A second feature of the Moniter i{s dyvnamic buffer alloca=
tiom) whieh {s most closely related to the 1/0 eperstions as
diseussed {n Chaoter 3, It wi{l) be shown that unti) a rum=
nine oproaram actuelly reauires 1/0 gervices, no memory {s
allocated for the purpose but thereafter sporopriate buffers
are dynamicelly seteup or releessed from the then free soace
(see Section 2,4,2), Hences, the run=time core image +{s as
{1lustrated {In fiaure 1=d4, (A similear layout i{s alsoc in=
cluded {n the Proqrammer's Handbook.,) In this resoect, scme
of theme buffers may be used to 1o0ad the dr!vorn for the
devjcea providing 1/0. These are stored within the syateme
device Library with other modules, lInlike ¢the latter,
however, the drivers cannot be loaded for the duration of
proaram_ for _reasons given {n Section 2,1,3, Nevertheless,
thev mav be 1inked into the permarently resident Monm{tor, as
above.

1.3 Momitor Comventiens

The Monitor's modularity {mposes s meed for certain conven=
tions {mn order to permit the necessary interface hetween {ts
various components and the user proaram, This Section des~
eribes the more common oOnes,



D08t RNO PAGFE /-&

1.3;1 Ca11ina Monftor Modules

Both at the user level and 1ntorna1|y within the Menitor,
the standard method by whieh @ Monmitor module (s acecessed s
throuah the EMT 1n|truction (1), This has beenr chesen be=
cause 1ts lower bvte is not connidered in the hardware de=
coding eporatlon: {t can therefore be used for software
code to f{dentify the module reauired and avoids the use of a
second words, e,9,,» (a8 shown {n the Prearemmer's Handbook) a
call for am 1/0 READ {is EMT 4 (or 1049M4), It also ensures
that the mecessarv handler for this {(ngtruction has the op=
portumity to gontrol all commurfecation paths throuchout the
system, a particylar adventage in the swaopina situation,
Henece . riguro 1s5 {1lustrates the Monitor structure with this
in mind.

In many cases, the call to a module reauires a _subsidisry
trensmission of date, At the user level, this {s effected
(as cdeseribed {n the Proqummer'. Hondbook) bv means of the
processor stack {n order te allow the proaram complete free~
dom {n {ts uge of recisters. However, to kees the mumber of
essential Dpushes to & minimyum one of the arguments may be a
pointer to a 1ist of edditional {tems, (This oraet!ee may
mean that the user need olorc!.e some caution (¥ orogramminq
"rementrantly® since anv such 11st must be (moure umless ¢
slsc {s developed on the steck), 1Inmgide the Mon{tor, data
may be cassed either on the stack or in registers, The mo=
dule descriptions in the follewing chapters show the exoecte
ed callina process,

1.3.2 Return State

The genera) principle srplied is thet unless data 1{s being
returmed the opocessor stack (s cleared of the mecessary
{tems pushed by the call, 1If data i{s returned, {t {s then
the resporsibility of the callina routine, be it the user
proaram or anpother Monjtor module, to remove sueh data as
scon as {t has served its ourpose, The reaister state must
rempin as on entry, (Internally, this may not gpply {¢ the
Registers are acain used to return data & this is alse {ndie

’.----.-‘-.’..-. , , .
1. The two principal exceptions to th{s eceneral rule are!

s, Reayests for device driver Servicos tsee Section
3.3).

b, Calls for Error Diagrostic Print (see Chapter 7)



DOS1, AND _ PAGE /-8

cated {n the module deseriptions {¢ adbpropriate,)

1.3.3 Neming Conventions

For looéch access to the {nterma)l modules, the followina
conventions for names have been adooted!

1, Potemtiallv swapoable processinre reutines = for
these, three alphanrumeric characters which can be
radix 52 packed into ome word, (see Secticen 35,3)
They are used be!h o8 As.emblor o TITLF dcsionatien
for L!brnry ooareh!na (sae Section 8®,2,1) and as
alobal reference for 1inking (see Seetiom 8,1,2),
As noted {n the Programmer's Handbook, users should
avo{d these names {n their own globals,

2, Devices are normally {dentified bv a twoe letter
ceder as listed {rm the Pprogremrmer's Handbook, A
third Toetter mey be added to distinguish between
different controllers for the sarme device e,a, NTA
end DTB might {dentify two TCii's, The eede may be
'el1eued by an octsl bvte value to scecify a pare
t{euler unit,

13,4 Definitions

The Proarammer's Handbook contains & 1ist of the commonly
used terms oend a comprehengsive qglossary, This maruasl com=
plies with that termimoloay,

In the tiaures which comelude this document, entire core s
{1lustpated with word @ at the bottem and uoper words at the
tops whereas, words in tables are {llustreted with the smale
lest word at the too,



ﬁ,c /-2

N
b Qrea occoP;ul
Misniree In:\"-u\ zalen
Uppal Raurwe [rmont] en
mﬂ‘@ L.“I’al
Eom: Bubler Alleesr o Tabia
Erree Diaanoshe. Pmar
FIQCS:P Qeuh}\:ainhtlu.cc.
= ‘°7¢¢9
R 335
=7 lugh WREAD [ waT e
(+ BRT PRocESDOR
el
Do A
535@“3)
——— Cleck InVarrupY Servian
SYBWN) DPEVILE DRALVER
KEY8oARD
SWRP GLRFER
A LI b g ARMonNS
KEYROARD
WISTENER
GENERAL PLRPOSE :%
SUB-ROUTINES  Renow3
MAIN
SWAP QAUFcER
RMoN D
SWAP AREA MANASER
. EMT wadDLER
NoNLTOR
TRALLED
SvT: KON
RADWARE, VRCTOR SPACE
&>
N

‘:\3ul"°: I=1: THES 8ABIC RESBIDENT
) MONITDR in MEMOERY



[ " ceeg IMAGES> |
[~ OF McPREDS
[ Te IeDEX i
[ TERARY IOCX #4 1
" comE smages -
-~ OF MoDurES T
L INTNDEX B3

L

[ LieARRAY Ik ¥35 ]

- -

- CoRE INAGES —
T OF M>LLES
-~ INTNDEXR #Q —

DRVICE

[ ERARY ivpex #Ee . ]
" CoRE Inagts -
-OFf STWER
MmOuEs |
It TADEx 1 —

—

- —
—
——

p— —

CORE IMAGE
ofF
TRANSIENT
MONITOR

-

CoRE Tmact

o
RESITYENT

MONTTOR -

Beock #u

CotY oF PEAMANENT
MONITOR AREATDPENCY
TMGE

OEvIcE _ o}

Buoce fyy

mwnz._+h—

T LIdEARY TNSS R )
DENICE MRECTORTED
(sece F.a._u-Q)
MONITOR RACOTSRAPL

oo ¢

Y

|
'
L T T AP eSS &

A REQUIRED
0P 7O THE

TREPEATED

L _ L HARDWRRS.

v PROTECT

Fope /-&

' LINE (see va3¢~. RS

[

NEXT INDER BLOCK #

f— e ey

moduLE #i
NAME. (m.--u)

#of vemds -ruuu.ow w =3

€emT c.nu. coE.

STAAT ADDaCSS
modunk $ o
T wame (&um.sﬂ

START Siock v

STZ& (wed) -

| ¥ oF womds Yo Fouow £ Q
& carn wi S

START ATDRESD

.. MHUE §3
/.\\_/\—/\J
F—\/'\_/q\ﬂ

 swar ADMRESS

__ oDULE #n.

7 E_z_; (wds)

#9' wWoadS To Forsew -a

€EnT chall. CHE
SAAT a»eEeo

* (oo ®Fu focy , = G

On &xu

- (‘ '*:Mrg),

,0 = 36 (JMSWQ

av Bleck-end

r-'.al.e.. 1~D: MONITOR WIBSRAAY on The
SYSEM PEVICE..

-‘\vl



/8,(./'?

CSR CSA
A
l
PROGRAN PROGRANY)
oNTE
AREA e 2 AREA
LA
’:;i SR — 2 T L e - - - m - = = K;p
RrEec
CoRE
— P - . L -
,,—/7,77“ - — - e /
FREE —TOB
CoRE. suFgrs
AOCATED TO: -
o) DATR BUFFERD
»)DEVICE PRIVERS
To8 O ljo RNRAGE
& -
2om WERBETRIIWMBISAZETRE880' o e mwse e’.‘.“eﬁ‘ﬁm’?---_‘_am
OTHER MONITOR ‘ ‘ OTHER MoNIToR —
MEPULES | — Mmoputs  —-
————— REBIDENT €oR — 1 AESIDENT FOR —
—— PROGRAM RuN ——— fRoGmaM Rual —— ]
PERMANENTLY PERMANENTLY
RESIPENT RESIDENT
MONTTOR MmonNIToR
(see Fig. =D (ses ‘5.1—9
@ @
Figuce \-3: M!.Mora akrer ='5°"' 4. “09.«!093 dufing

prbgﬂ:m kood P“S“” Run.



DO

=1

DEVICE DRIVERD: . -

MONITOR @QELJWL,E STRUCTURE

KEYBOARD COMMAND PROCESDORS:-

/a,¢ /-70

DC1 o Ksjpr: PR PP, e PV R nT; al-Dey: 3of kal-9a: 3¢ kal.eC: 3¢ kB81.0D: 3¢ Kxal8e? ®BITL: 3¢ wal.mMo: 3P KALAS 3¢
Rt RK- ABR 33 Pacea 2aveR LiNE DPECTICE coRD mAg. PATE SAve ey opr e e moDwy | JAassien
TACE TRAPE READER TAPE ' - v GND T [Lagl= = =1
Dok PIBK TeeTvee | aearer PuNCIH PRINTER ) RINT {- ‘F Reme
1 1 [}
T~ T T T 1 A AN ot N A S| Tl 7T
| ) ~ ) ~ ~
' ] 1 1 WAL.DU: 3
| } [ i
. 1 ! 1
| i Puome
| PROG .
[ CRl |
CROCK INTERRUPT L/,/" IC‘ LE INTERRUPT
RESIPDENT MONITOR:- i !
cwocK: — P . . |.Rmod3: — RMONE: | I - MP_!‘S@L___ _amonb: . !
coc] [ s sy | [ T oo | asma Tores | oo
Ise_Rvice DEVICE % ]ee;.en S| 3Ave - - aRER cmnl, | MONITTOR CLEAN-
ROUTINE PRIVER Pamugse PUETER 'RE3T0RE mmml""“"‘s“ msTEneR Mu&zl 'war, [ cLEAN
i SulRTN.| SUBRTN. SUBRT, t ROUTING | g
= i endien el CHESEESE N e —-j(.--— o-—---.—._.-.-.L-.-r : PECODE.
-~ - ) | — — -
L ; amonis I | Epe: v 32 TRANSIENT | o0&
N : ! 1 i L oMy
INTERRUPT BT . | Mo 1ToR INTERARY P EXIT J xl ERQ°R_ | MONITOR: PROCESS
| ﬂ&l.%(" i - aeeR Pa -gs———m----- IDAGNOST) o
1 | | fRmY ] AisH
! L E cmp
INPUT/OUT‘PUT' DERVICES: - ' - - ——l) ¢t === = - e PROCESS
————————————— 'r-~'———-'-—‘——-——:l-'—O‘-"":"“"‘—““"—"“—"": l ’R‘:J"T(m‘“
' I i ) s
> d < d et ancass
as: i :om: b Rvm:l alu : e l 7 : u.o:,L 1l see: \[ 12 ?srr 13 'l‘
DeFRSET | | |DATASET lae‘w/  |Damser| | |SSATVE | (sPecinu, | | [DAMSET |
ceLevEl ] ore |wQI‘P€. ': cose [ T““‘;’ﬂ"ﬁ;‘;k Funcrion : 1 sretus l
t - l y ' 1 | i
§ I
At _T____l_ ...)' [ }: G — —  —— me— m—. —) :Q — — —J )
o/ W ] { l
7 J & “ GENERAL SERVICES:-
Fo L us 3R L1y Tawo [ Teen: 2w Toec f 21 meeiy 22 Temos |2 T
=S ‘[’ = = ‘[’ - l 2 L"J' “L i ‘l' | Gl-ul':‘l, K1 cvr:luz woa: L bl %I b
ofex | | lereare cose | ! |3seacriyl | [PuocAre| | | Revamg| ! | 0siae AveenD | | |PReTECT
ey..g-rm@,%_ r;e‘gb e ..%.. STETUS ConNIG, —: = _,:, ene FLES -fﬂ Fug | GENERAL ConveRT PROGRAN) PROGRMY),
e | “'(‘_."_‘,_ X cue | X X I UTIATY UTIATY LOADER, €x\ T f—
1 ] ] 1 ]
[« 1 - 0 o 14 [ L 1
- - ~ ~ N Ln e e v mw e e o4 e e e mn e e e e e —_ - —
1 i ] l. S
\l’ I ] /l\ e
= : ' | e D ULE NAME
! ch:LSZ GeORA l,5¢ ' 'Dun. | 53  ped: [ Sy ' aPR: | 55 | INR, o € E&MT cA-. COPE . . w8 6D
: GEYT : : : v > : —— 3 ERBechve Tronsmiseion o Confrol o
. T VEEE [ol-2VW<3 e Y y
L - C:ﬁcs\g BT830 L i 4 nwED mNT\;—Q -k~ decmee f . - > Raberence 1. ‘?.\.‘/Keb ?:d Beer MSDLLE.
access| [SEEMENT e, Fua Fues ] - ¥ Iatecaal EMT Call hn LoATER

F.S‘_;re. -5




CHAPTER 2
RESIDENT MONITOR

It was shown in Chaoter | that, {n qgepersl, the user can
himselft determine the way {mn which he will use the modules
4ermiﬂq the DOS Monitor o!thor to save time bv having them
pesident {m memory oF to save core by leaving them to be
brought from the svstem-dov1ce only when reaulirad, However
for certaim of the modules there is no choicel they must be
resi{dant at al] times for ome of the followina reasonst

a, They. centrol the systenm qeneraliv 1nc1ud1nq the
‘oading of other Monitor routines from the svse
temndevice,

b, They are called with sufficient freauency that
teo bring them from the system device every time
they are nmeeded would be unrealistic,

The purpose of this echaoter {8 to diseuss the principal moe
dules {(m this cateaory, Seetion 2,1 eontains descriptions
of the tables used by the Momnitor to mgintasin adecuate econs
trol (of the system and shows how they are set up inft{ally,
gectiam 2.2 is concerred with the res! heart of the Monitor,
the EMT handler, and Seetion 2,3 looks at the techniaues for
pringine medules from the lvstem-devlce by ¢the Swep Area
Marager. Seme aonera1-ouroo.e subroutines are eovered {n
section 2.4 and fimally Sectiom 2.5 outlinmes the clock con=
trol routine,

Two other resident modules are intentionallv oemitted here {n
order that they may be discussed {n contextt

1, The system-device driver = gee Sectian 3.3,

2. The mimimal eonsele typewriter driver needed to
service keyboard command inputs = see Section 6,1,

Presently the READ/,WRITE processor myust alse be resident,
by _rea;on of its size, {t camnot be brouaht 1nto the Swap
Buffer im the usual manrer, Nevertheless (¢t is deseribed
Wwith the ather 1/0 orocessors {m Section 3,2,

The layout of the modules withim the mermamently resident
Momiter ares is {1lustrated in fiqure 2=1,



D082,RNO PAGF -2

21 Monm{tor Tables

The object of this Section {8 to {(mtroduce the various
tebles which are set uo within the residant Monitor aree,
for {mtercommunication betweern all Momiter routimes. The
tables themselves are first discussed, This {s followed by
a deseription of the initialfization process whiech {s mainmly
provided to ensure that the tables arfe correctly setsun for
Uuse whem the Momitor is loaded,

It shou'd be moted at this oo(nt that the Moniter has been
designed te be {ndependent of the cosition {t occupies {n
MEMOPYV, . Thio means that only those routines which form the
bpsie resident Mom{tor cam  reference each other directly

simee the apprenriate connections can be eatab11|hod durima
l!nkaao bv LINK=11, A1) other routines which can potential=
v be swanpedei{m only when reauired must use indireect meths=
ods.

To previde the most strafahtforward access to freauentlv re=
auired areas in the resident Mom{tor, DOS therefore utilizes
the vector space in lecations 40=57, aenerally reserved {n
el PDPeli systems for svstem software Use, These are {n
fact the only locatiors addressed absojutely withim the Mone
iter(l) (device drivers ecomtrolling the extermsl pace of
course excerted), Fiaure 2«1 shows the1r present Usage, In
general, a reference throuah them reauires s lavel of {ndi=
rection bnvond that provided within the format of a single
PDP=11 {mstruction, Hemce the commom techniaue for enmtry,
say, into a general purpose subroutine with fts stertecoint
in ome of the vectors {s via the tep of the oracessor stack

e8!
MOV e#44,=(SP) 1GET START ADDRESS OF
$SUBR, 'S, RSAV!
JSR PC,0(SP)+ JENTER ROUTINE & CLEAR STACK
2.1.1 System Vector Table (RMONY)

The Svatem Vector Table (SVT) provides a common earea for the
storase of {mformation on the state of the system at any
time, Im particular, {t contains poinmters to other parts of

1. The file structure routines currently assume the System
Vector Table (SVT) starts at asbsolute location 403, This {s
e restriction that will be fixed i{n Yater releases of DNS,




_\\g—/

s

D08S2,RNN PAGE 2-3

the ro.idpnt Mon{ter whieh are not referenced freauently
enough to warrant the more {mmediate access discussed above
or to areas within a runnina user pregram, It does noet {(ne=
elude detell for ether routires which rormally exist only
within the Monitor Library stored om the system=device,
These are eevored bv secarate tables which will be discussed
in the follewina sections.

The table occupies the first part of the resident Monmitor
area (the enly real reason for this beina the fact that {ts
source also contains the contents of the fixed veetors {n
48<57), Normally {t starts {mmediately abeve the reserved
{nterrunt vector space at locotion 400, Nevertheless, since
it s _always preferenced through 1oe.tion 4%, this address
con be chanaed by reassemblyv, norticul.rlv it an installa=~
5on needs extra vectors for specia) devices (beceuse of the
file structures' rottr!et!on ind{coeted abeve, the SVT aed=
dress of VB24A version of DOS must mot be chamged) (1),

The 1!.@. cuprently {n the SVT are Y{sted in fiaure 22, In
the main, these are sal feexplarnatopy) howaver additiona!
notes have been {necluded where necesssry., The table can be
expanded as reaufred bv the current state of Moniter devel=
opment but only by addition at the end, The presently de=
fined intermal structure cannot be chonced s'neo a1l Mon{ter
reutinou dePend yboon fived relative positions withim the SVT
in order te reference its content,

The SVT {s besically ostabl!.hod when the resident Mon{iter
is fir-t 1{nked throuchout LINKe{l ag deseribed in Section
8,1. 2. The table source has been set uo to {mclude, in pap=
ticular- the necessarvy global references to other Yonitor
addresges to accomplish this, Other table ontrics which ree
flect _the eonotnnt state of the confiauration in use are set
up durimg the fnitialization precess whichk follows Menftor
loadinag (see. Section 2,1.4), The verisble entries, ther=
eafter, are fi11ed in or romovod acpreopriately by severa)
Momitor, reutinos and these will be noted at the relevant ooe
{m¢ thrauaheut the remainder of this Manual, 1In order that
the user pprogram mey also Peference partieular entries
deenmed des!ruble. the Gemeral Uti{lities requeat based on EMT
41 i{s provided as the recommerded meang (see Section %5,2)

1« This facility may als0 allow a usep who wishes to rese
erve an gares of memorv outside Monjtor control to do so,
However this usege {s not considered a normal DNS provision,
Thus correct Mon{tor operation 1- not quaranteed {t {ts bote~
tom s forced above 16K, the coint et which oesitive ade
dresses become negative,



D0S2,RND PAGE 2- 4

2¢1.2 Mon{tor Resjidengcy Table _(RMON1)

The Mbniter Residency Teble (MRT) suppiies two types of {ne
formation, meinly for the EMT handler (see Sectiemn 2,2)1

1, It shows which Moniter routimes are rasident {n
memery, e{ther parmagnently or for the durati{on of a
orogram run, and where they are loaded currently,

2, Tt acts as a directory to the reraining routines as
stored within the Monitor Library on the
system=device, to ensble {mmediate access when one
of _ these routines must be brought 1{nte a Swap
Buffer,

The table {s a set of one=word entries, each corresoonding
te aen EMT code, and (s ordered {n the secuence of those
codes startina at @, Thus, for example, since the code for
s INIT call (s 6, the table entry for the INIT routine (s at
MRT+14, The length of the table within any Momi{tor svystem
notura\iv depends upon the range of the curpently assigned
codes, perhaps with spares, uo to s maximum of 256 words,

The lonath of the MRT can be determined by subtracting the
starting aeddress of the MRT (8VT¢d6) from the starting ade
dress of the DDL (SVT+5P) whieh {mmedigtely follows (¢,

The format of each word {n the table shows the current leoca-
tion _of the Mon{itor routine {t represents, using the fact
that for a velid PDP~11 address for execution access, bit 0
must _be 9, {.e;, a word houndary, The possible formats are
{1lustrated ot fiaure _2-3. It should be mroted that two bits
ean auffieient1v defime the maxfmum number of 64eword sege
ments (or fixedehead disk blocks) for anv Maniter rPoutine
ljneo the largest swap ares available {s 256 words (see Sece
tfom 2,3). Moreover since the Mon{tor Librarv alwavs conmes
firlt on the system device, it 1. not expected that any Mone
iter routine wil) be stored beyond bloek #17777,

The tableeatate needed for a user proaram run {s reached {n
three stacess '

1, The MRT source {s set up to contain the alobal name
of each existing Momiter reutine {n the aporopriate
voes{tion. Durima limkage of the permanently resie
demt Moniter Section with LINKeit (see Section
8.1,2) the core address for each routire {ncluded
fs automaticallv set correctly {(nto the table,
LINK=11 also zeroes the remainina entrv words since
thei{r alobal references remain urdefined,

N
.

Whenever a comnlete Monitor hoot occurs, either
frem ecold stert via the ROM loader or following a

-

\_/



D0S2,RNO PAGE 2-5

console FINISH command, the initialization routine
(see Section 2.1.4) searches the Mon{tor Library
(MONLIB) on the system device and resets all @ ene
tries {n the MRT to the relevart disk information
(format b, F!guro 2<3) {# the corresscondina routine
is found or with 1| otherwige, At thig time, the
MRY g {n 1ta aormonent state, A cooy (s stered,
withim the Monitor Library on the svstem device for
leter use (see belew),(1)

3. 1¢ the user, by & alebal reference in a proaram,
indicates that a_ routime normally stored only on
the system=device {s to hecome res{dent while thet
orogram {s running, the program loader (see Section
S.,1) (s so informed by LINKeitg, The 1loacder uses
the disk {nformation stored in the MRT te hrina the
routine {nto core and resets its MRT entry to the
appropriate core address,

The MRT remains {m the loadestaste throuahout the opogram
rung _it cannot be changed_fer routines brousht inte a Sweo
Buffer, because the disk {nformation relevant teo them must
remain available for several {nterleaved calls, e,a, .INIT
followed by ,OPEN, then back to ,INIT esacain, The Swar Areas
Manager therefore uses other methods to contrel the 'resi-
deney" of _these routires (see Section 2.3), When the pro=
gram s f{n.llv removed from core by JEXIT fpom the oroqram
or on a console KILL command, the MRT copy on the svatem
device (s read baek {nto _memory to restore the table to {ts
permanent state. (see Seetion 6,3)

2.1.3 DNevice Driver List (RMON1)

Basieally, the Device Driver List (PDL) aroviden the sanme
information as the MRY concerning the eurrent mamary op svse
tem=device locations of device drivers, Hewever, un)jike the
other Menjtor routines, the drivers may be loaded into or
removed from memory {m accordance with the dvnamie reauire
ments of a rumning oprogram and thev do not use the Swap
Buffer, Sinmce they must be readily gevaflable ¢to service
proaram {mterrunts whenever their deviee {s {mn use, thevy oce

(2 2 32 X 2 2 L K 2 F L X 3 X ) .

i« As stasted, this writewout occurs ynder normal running
condit!ons, Hence at oresent the Mon{tor Library omn the
system=device must nmot be write=protected,

i



D082,RNO PAGE 2- 6

cuov extra buffers from_free core., Hepce each entry must be
lonaer to contain additional (mformation,

The resulting format of the DDL {s {11lustrated ot figure
2=4, The significance of each {tem (8 as follows!

1, Device name = {s the radix=5A form fer the alphanu=
mer{ec code assigned to each device, The onmly way
an_entry {n the 1{st can be feund {s by a seareh,
This {tem therefore enables its {dentification,

2, Cere 1oad eddress = cortains the start of the deve
fce driver when (n core, Otherwi{se 2 indicates the
driver's current non=resi{dency.

3. Interrupt vector address = i{s the start address of
the twoswerd vector esssiared te the device within
memory locetions B«377 (or as otherwise bprevided)
and (s needed to permit the linkage of the driver's
Cntorruot aervico routine to the vector when loade
ed. (See Section 3.2,1) it (s held withim the DDL
rather than the driver {tself, because the user can
physically reessian devices to different vectors,
Th!u obviates reassembly of the driver and also al=
lows {n=core mod{ficetion, even theuah the driver
at the time is available only in the exterral Moni=
tor Library,

4, Systemedevice start bleck = gives the actuasl device
addpess for the driver within the Mon{tor Library,
Ag for the MRT, no driver is expected to start bey-
ond block #1777(8).

S, # of {6=word blogks = enables determination of the
size of ¢the driver for claiming and releasing the
buffer {t oceuries while {n core and for smeci{fying
of # of words to be read, in order to perform the
necessary load (see Section 3,2,1), The six=bit
cepacity_ of the field allows a maximum dri{ver
length of {1k, which {8 more than amele {(n most
cases,

6, DDL end = replaces the external address deta {n the
sygstemedevice entry {m the table, since the latter
information s {rrelevant when, by {ts purpose, the
driver for such device camn never leave memory, - The
provision of this ftem {mnstead a)lows the DDL to be
of veriable size and hence contein onlv the drivers
needed to support the particular confiauration be=
imna used, However ft {s essent{al thet the svstem
device entry is alway the firgt {n the DDL as shown
in the diaaram,

N

~



D082,RNO PAGE 2-7

The DDL s estoblishcd in the seme way as was deseribed for
t?o MRT {n the previous Secti{on, with the fallowing excep=
tionss

s. A driver automatically becomes resident for as
Tong as {ts current usage {s requireds the user
can aain nething by oxtond'ng its opresence (n
memory for the durstion of his orogram, (other
than am occasional system=deyice access),
Hemce he {s aiver mo way of specifving this re=
auirement,

b, Because each item {n an entry serves a single
ourpoge, there {8 mo need for a re=inftializing
back=up copy of the DDL on the svstem=device,

As indicated above, whemrever the nroaram initializes or res=
leasses 8 dataset, the DDL is searched for the device assceci=-
ated with that dateset, Provided that such device exists
within ¢the system, the entry for the core address and the
vector, throuah {ts stored address, are both set to reflect
the oresence or absence of the drivepr {n memory Should the
proaram _be restarted at any timo, perhaos following a faie
1yres . the DDL is restored to {ts (mitial state, thus effec=
tivelv removing normally mnoneresident drivers from core (see
Section 6.4)

2.1.4 Teble Initialization (RMONS)

The permanmently resident Section of the Monitor s loaded
{nte {ts memorv ares either by a cold start through the ROM
pbootstrap as deseribed in the Proasmmep's Handbook or fele
lowina o console FINISH command (in order to prevent possi=
ble trarsmission of Monitor corruption betweem wusers), It
is accomoaried by a routine which pepforms the fumction of
establishimna the correct Monitor state for normal usaqge,
esnec!.!lv with regard to the tables described in the previe
ous sections, This routine, oceunyina core ahove the mormal
erd of the resident Monmftor, (s entered {mmediately after
loedimng, After servina {ts opyrpose {t {s subsesuently
over=written, leavire only a smal] Section which interfaces
to the system error diaanostic print module (see Chapter 7)
and 8 _Buffer Allocation Table used to contro) orerations
within free_core (see Section 2.3) (hence the ohject module
containina it must come last in the resident Momitor limkinma
process = gee Section 8,1.2)

The tagks carried out by this special routine are as
follows!



D0S2,RNOD

2,

PAGE 2-8

Determination of core s{ze = this s accomolished
by addressina core startina at 8K and then {n steprs
of 4K unt{! an error trap through tocation 4 ({ndie
cates the address used i{s no longer 1egal for that
partfeular PDP=11, The end address of the last
velid 4K segment (s stored as the top of core (n
the SVT,

Provision of Buffer Allocation Table = as will be
shown ({n Section 2,3 free core {s controlled by a
b{t map representation, Currently the size of this
meP® provides fer the potential use of half of the
avai{lable memory as buffer space, The routine
therefore prepares the approporiete meo by clearing
the reauisite mumber of words at tha end of the
Mom{tor area, These are followed by two extra
words reserved for Device Ass{anment Table 1{nkage
(see Sectior 3,}.,2,2) The map then becomes oart of
the resi{dent Monitor. so data concernina the map
and the conrseguent mew Monitor end are entered into
the SVT,

Initiatization of processor trap veectors < since
the Moenitor f{tse]f uses EMT & I0T, the routine
stores the acproorigte addresses and status values
{n_their vectors {(n locations 38 and 2%, The rema=
{ining vectors are set to cause error messaces (¢
trapping occurs, the status value {n esch case oro-
viding an {denti{fication code (within the Condition
Code bits)

Initial{zation of device {nterrupt vectors = by
sooreh!na the DNDDL, the routire determines which
dr!verl were 1ooded with the resident system, It
extracts {nformation stored in the {nterface tables
of these drivers (see Section 3,)) im order to set
up the correspondina device {nterrunt vectors., As
in step 3 all other vectors are 1nitia1ized to
cause error message outout to protect against spue
rieys 1nterruptl before a nom=resident driver, (¢
such ex{sts, is available,

MRT & DDL oreparation = as {ndiceted im the oprevis
ous sections, the routine establishes the cermanent
state of these tables and stopres & restorat{on copy
of the MRT {n the external Hon{tor Library, It al=
sos from {ts own interral reference sheet, enters
the EMT code used to call each Mon{tor module {nto
the Librapry index on the -votem-device (see Chanter
1). This enables LINK=il later to jdentify to the
pregrem loader those modules for which a user has
specifiad proaram rumetime pesidence (see Section
S5.1). 1t should be roted that the whole Library is



A S

D0S2,RNO PAGE 2- 9

searchedt should there he mope tham ome version of
e Monitor module or driver, the last one seen wil
he cateloqued in the apprepriste table, Thus it (s
possible to make temporary changes to the Library
merely by adding a new version at the end during

system loading. (see Section 8,2,2)

6, Clockeinitialization = {f a eclock=service routine
ts contained within the resident Monfter enmd o
1ire=cloeck {3 determined to be {ncluded {n the cone
f{auration (because no error Ocecurs {f {t {8 ade
dregssed), the clock's {nterrupt {s enahled to set
it {n motion,

On eompletion of these taaks, the {nitjalizina routine Yinks
the resident Keyboard Listener described In Section 6,3,1 to
the censole interrupt vectors, prints out a Monitor 1dcntif-
{cation mesgsage and exits to awalt operater {mstpucti{ons
(usina .X1T = gee Section 5,.5)

2.2 EMT Hendler _(RMON2)

it was shown in chaoter 1 that al)l calls for Men{itor assis-
tanece are by way of an EMT {mstruction with {ts Jumior bvte
coded to indicete the perticular service reauired, It s
the orimary function of the EMT Handler to decode the call
and make the mecessary connection to the routime oproviding
the service, The Handler alsoc ensureg that 1/0 reauests {n
partiecular do not proceed until {t (s currently seafe for
them ¢te do gso and conteains {ts own routina to effect any
conseauently necessary wait,

2.2.1 Descrintion of the Handler

An outline of the Hamdler'is processes is aifven {n figure
2=5, This shows that the first step is & move of reaisters
B=5 ontp the processor stack to preserve them for ¢the wuser
proaram. Thi{s serves two purposest

1, A1l the service routimes carm thereafter use the re=
ajsters freely. However {t {s then their responsi=-
bility to rerlace the oriains) contents before any
exit to the user proaram,

2. It will be shown §n Section 2,4,1 that the subproye
tirne entered to effect the save also checks the
state of the processopr stack to brotect the Monitor
itselt, ~ Thus this check s {mposed as frecuent)y
as the Monitor {is called.



D0OS2,RNO PAGE z-1n

The Hamndlep then verifies that the FMT code used l{eg within
the egstabligshed ranae (0«77), An {invalid code should mever
occur {f the callina program s working correctly, 11 ¢
does, !t is therefore troated as o fatal errort the orogranm
{s stepped and an acprocriaste error megsace (s output at the

console (FBR2),

The Hénd\or‘s next action depends ypon the mature 0f the ree
auest {n each case, Under D08, in fact, the EMT ecodes are
essigned on the following basist

1, Codeg from @ throuah 27 sfanifv reauests for 1/0
services '

2., A)) other reauests have codes {n the ranae 3%e77

NO further checking s neaded for requests in the second ca=
tegorv, The Handler therefore extracts the entry, ecorpese
ponding teo the code within the MRT described {mn Section
2.2.2. . 1t was shown there that it bit @ of the entry (s B,
the entry {tgself {s the core stert address of an alreadv re=
sident routime, In this case, the Handler uses the entry to
dispateh lmmodiato1v to the routinme, On the other hand, a i
{n bit @ of the entry means that the routine must be brought
{nto memory before it can be used, The Hamdler therefore
callis the Swap Aprea Msnager to effect this (see section 2,3)
and passes on the MRT entry on the top of the processor
stack to ident{fy the routine reaquired,

As noéod eorlior. 1/0 requestsy sre not allowed to econtinue
while {1t (s unsafte. In thelr case, the Handlar checks for
two possible s{tystiorns as followss

1., The Ppogrammer's Handbook shows that in al) 1/0 op-
erations, the user proaram must suoply @ Linkeblock
for each dataset to be ysed amd must pass {ts ade
dress as one of the perameters at each call, Once
a dataset has been correctly {mitialjzed bv a ,INIY
reauest (see Section 3.2.1.1), @ link=word {n the
block, {.e. the one actually addressed, is set to
a non=Q value, Usimg the given parameter as means
of access, the EMT Hamdler exgminrnes thf: word and
relects all calls other tham INIT ifF it contains\
2, This oaain {mplies proaram foeilure and resuylts
in a fata) error messaace (F272),

set into the linkeword byv .!NIT {s the sddress of a
contro) block for the dataset withim the Mon{itor
area known as the DDB, The addressed word {m the

2. It will be shown {n Seetion 3,1.2.3 that the value;
S



D082 ,RNO PAGE.2-11!

PDB {s a flae which {s gset to 7 enly when there {9
np. other 1/0 ooeration currertly umderway, 1If by
Tookima at this word, the EMT Handler sees that the
deteset is already busy, {t sets uo a 1oop sequence
within {tself until a later check shews otherwise,
This loopimng does mot haopen, thouah, {f the actual
cal) is .WAITR. In this case, the processor stack
is edjusted such that after restoration of the user
program Reaisters and removal! of the call oaremes
ters, an exit (s takem at the bPusy return address
ajven as one of these parsmeters (see {llustration
at figure 2=6)

If meither sjityation is encounterad (op after the second has
disapoeared), the EMT Handler claims the dataset for the new
reauest (unless {t {s WAIT or ,WAITR) by storing the ad=
dress of the ceoll in the DDB busvy flag, It then uses the
ssme orocess to d!soatch to the relevant service routime as
that deserived for none1/0 reauests, At this point, of
course,. the purpose of .WAIT or, WAITR has already heen sa-
tisf{ed. Hemce mo further proeosa!na {s needed and the EMT
Hamdler uses a similar seauence to that indicated for WATITR
in the busv state to take an immediate comnletion return to
the user bProgram,

2.2.2 Gereral Comments

From the descrintion afven in the previous Sectjon, it ecan
be seen that the EMT Handler does mot attempt to ver{fv the
validitv of the parameters nassed by the orogream™ et each
cell, In particular, it assumes that the 1ink=block aiven
with 1/0 reauests does in fact contain a true DNDDR address,
Thus {t depends areatly upom the usePr respecting the integ=
rity of dete set {into his proaram area by the Monitor. A
check {m this case could be simply accomplished from data {n
the DPDB!s held by the Monitor. Howevep this would inveolve o
linear seasrch which could become lengthv, Since {n the sine
gle=user system currently offered by D0S, the user can only
corrunt himself, the check has therefore been omitted by in=
tertion. _In the aeneral case, of course, the EMT Handler
has t{nsufficient ({nformation to carry out the reayisite
checks, Tt is thus the resoonsibility of the called service
module to take relevanrt action,

To nrbvide each routine'with as immediate amn access an -nos-
sible to the dats |t meeds, the EMT Hamndler always passes
the follewi{mg approor{ate Register contentst



D082,RNO PAGE 2-12

R1 = gtack address of the last call operameter
pushed by the orogram

R2 = address of the relevant FMT call {n the yser
proqQram™ _

RS = address of processor Stetus Reaiater (or »2)

In additien, for 1/0 calls other than ,INIT, R@ remains ot
the address of the DDRs for o111 other calls, it (s cleared,

The pripritv level at which the Handlepr onerates merits ex=
planation, Imn aqeneral, 1{t wuses the level of the calling
proaram. However {f thin should be 4 or above, hardware ine
terruots needed perhaps to terminate an enforced ,WAIT as
described earlier could be locked eut, On the other hand,
at level 4, conflicts miaht arise if the user {ntervened at
the console. _Thus the aenersl leve! is kept at 4 {f ¢the
prearam {s higher, 0On entry nevertheless, poriority level 7
{s set_. in order to _ensure that the checking of the
stack=gtate can be offoetod without interruotion, but {s
drecped as scon as possible thereafter (takina aporoximately
79 usecs). Level 7 {s again used while the Handler ehecks
the busv state of a dastaset., The check could be corruated.
it an {nterrupt were able to claim a dataset for another op=
eration after conditions were already gset to inmdicate {ts
being available for the interrunted peauest, (i{n the pre=
sent DOS of course, this cunnet happent howgv.r it was pro-
vided against a possible future expemnsion for realetime
use.)

2.3 Swep Area Management (RMON2)

Two buffer areas are reserved within the resi{dent Menitor te
sccommodate Monftor modules which are brought inte core only
uoor oreogram demand., It {s the regoongibility of a neces-
serfly resident Swap Area Marnaaer (SAM), to comtrol the use
aae of these buffers, When asked by the EMT Handler to load
a noneresident module, SAM checks the occupancy of the ap=-
proariate buffers {f the called routine i{s already 1lcaded
from _a previous request and provided that it {s {dle or, {¢
net, that {t is reentrant, SAM passes econtrol to f{t immedj=
ately. Otherwise, 8AM loads the called routine from the
svstem=device {f and when the current occupant has completed
fts fumction. Until the routime (s ther able to teke over,
SAM keers control withim the Momitor by returnimg to the EMT
Hendlepr to loop and wait,



D0S2,RNO PAGEZ2- 1)

2.3.1 Swap Buffers

The foert of a Swap Ruffer has been desicned te enable reae
sonably efticlient machime utilization within the constraints
of a single=user system, The main considerations are re=
tlected 1n the {tems {ncluded 1n a preamble ¢t0 the Swap
Buffer ss {1lustrated in fiaure 2=71

1, ONceuocant = this bas{cally allows SAM to re=use a
ecoy of a called Moniter routine alresdy leaded ine
to the Swep Buffer to setisfy & previgus reqguest,
rather than force an urnecessary wait for a new co=
oy to be brought from the systemedevice, In order
that the current occupant may always be {dentified
SAM seves the unfeue svstem=device {nformation
oessed on by the EMT Hendler from the MRT (see Sec~
tions 2,1,2 and 2,2,1),

2, !sage Count = thi{s protects the current _occupant
from oprematyre “removal®™ before {t has fully met
its eutstandina commitments, Many of the Mon{tor
modules, esocecially those nrov!dine 1/0 services,
are likely to be unable to complete a recuest (mmee
diately because they must walit ueon the performance
of seme 1/0 operatiorn, Amy proutine may {n this
cese_returm to the user orogrem to allow other pro-
cessinac to proceed instead of keeeing the systenm
fdle. HOwever the proagram may then make 8 _new ser-
vice reauest requiring use of the Swap Buffer for
seme other routire, It may ever be a recuest upon
the same routine which {n many cases can be accent=
ed before the first has been comoleted. Thus SAM
expects to use the first bvte of each routine {t
loads as a counter for the mnumber of times contro)
is passed into the routine and the routine {tse)?
eounts back the mumber of times it completes a task
(see Section 2,2.3), The buffer s then deemed
free only {f the counter has returmred to {ta entpy
settima of 0,

3, Re=entrancy switch = this allows each routine to
inform SAM of {ts re=entrancy cacahility, Some
Mom{tor rout(nes cannrot accept o gecond reauest
while another ifs {m erocess, »a principal reason be-
ima that the service they nrovide {s teo complex to
be completed within the capacity of the Swep Buffer
and they must therefore overlay themselves to cooe,
SAM  therefore onlv recalls @& busy reut!ne if it 1is
safe to do so as {ndiceted bv a @ im the second
hyte of the routine,



D0S2,RND PAGF 2-14

4, Stert address = because the first word of each rou=
tine f{s ¢thus »allocated as a control! area, SAM
enters the routine at this point(1),

Two Swar Ruffers are in fact {ncluded in the resident Menmi=
tor areag

1, Momitor Swao Buffer (MSB) s 256 5words =~ this {s
aererally used bv 8! proarameservica modules,

2, Keyboard Swap Buffer (KSB) = {28 words = this (s
mainly reserved for congsole=gervieing, in order teo
allow overlapped procesaino hetween a runnima oreo=
aram and externgl operator action (see chanter 6),
It (s also used for emerqgency operatioms:, such oas
error diganostiec primtina (see chapter 7), esce-
cia!ly when the reauest for these miaht easily ori=
airate within the MSR amd obvieus comflicts would
them OCcur.

2.3.2 Callimg SAM

As noted in Section 2,2.1, SAM {s mormally entered from the
EMT Hardler, At this point, certain Registers are set to
values ind{cated in Section 2,2,21 these myust be passed une
changead te the called routine as this may decend upom their
content (lust as {f the routine were called directlv from
the EMT Handler, {n other words), The user proarsm Regis=
ters are on the stack with systemsdevice 1nformation on the
routinme te be fetched bv SAM, as showm {m the MRT, abeve
them,

There is a secornd way {m which SAM can be entered! {t cam be
called by 1to own reserved EMT eodes (37 and 42), This sce~
cial entrv {s provided mainly for internal Monitor usage as
a. means _whereby a seamented routire car ov-r1uv itself {m
efther buffer » hence the two codes, for reasans to be shown
shortly, In ¢this case however, the MRT cannot supely the
datp on the location and size of the overlay an the svstem
device,, Hence the <callimng rout{re must do so {mn the same
format {n RO, When SAM (g them called, the data is on topo

1. Wher, as {ndicated §n Section 2.1.2, the Program Loader
sets the MRT for routines made Fel!dent for & proaram run,
{t also uses this address rather than the actual! start loca~
tiorn (see Sectiom 5.1.)



DOS2,RNO PAGE2-15

of the stack as saved bv the standard Registeresave process

of the FMT Handler (see Section 2,2.1), 1t is Auplicated on
the stack at the special entrv and thys cendi{tions become

set exactlv as for the norma) entry described (m the previ=
ouUs paragrach,

2.3.3 Description of SAM

Figure 2«8 aives a genera) outline of SAM's processing apere
ati{ons,

The first main steo taken {s to cheek whether the routine
requested does {nm_fact exist, As showr {n Section 2,1,2,
the MRT entry contains a 1 {m such cases, 1If this is seen,
SAM uses the EMT Hamdler error seauence to sraduce an F202
dieanastie as shown in Seectior 2,2,1,

SAM mugt then detepmine whieh Swap Ruffer s ¢to be used,
Routimes which are loaded into the subsidiarv KSB have in
fact heen assigred EMT codes in the reanae 30=379 al] other
codes {mpiv MSB ugse, 3SAM sets a pointer to the aporooriate
buffer and also one to en {ntermal DDB by whiech the system
device will be controlled (see Section 3,1.2,4), The flag
in th!s_DDB is checked {n_case the driver {s . currently enm»
gaged in loadima a routine, SAM continues only {f this {s
not the case,

As described in the previous Rection, SAM thereafter uses
the ({denti{ficeation for the occuoant stored {n front of the
buffer to check whether the routine now reauired is alreadyv
loaded _and {if So whether it is idle or re=entrant, on the
basis_of the settina of the first two bvtes of the routine
{tself, 1t the correct conditions are seen, SAM transfers
contral {nto the routine, havina incremented {tea Usace Count
byte to imndicate a fresh entry,

If the beeuaant of the buffer {s some other routine, SAM ex=
emines its Useage Count, If {t is @ signifvinae that the rou=
tine is no longer nmeeded, SAM sgteres the svstem=device ine
formation for the called roytine as occupent-identifier and
then decodes it to set uo the {nternal DDB aporopristely
(see Section 3,1,2,3). The svstemmcevice driver is called
te perform the necessary transfer throuah the Dpriver GQueye
Manager, S,CDR (see Section 3.1,2,4), .

While the transfer {s in progress or {f the previous checks
show that the systemedevice driver is already engaced in lo=
ading s Swap Buffer or that the reauired Byuffer is not vyet
free for alternative use, SAM returns to the EMT Hendler teo
Yoop and waite. This in fact repeats the whole precess of
decodina the call with the excention 0f user Reaister savinag



D082 ,RND PAGE 2-16

(see Section 2,2.1). This serves three purooses!

o, Reaisters are reset to the reauired comtent for
entry {nto the celled routinme, Thus SAM does
not need to save their content {n order to use
them whi{! oreparina the tpransfer,

b, SAM {s reentered as originally even (n the spes
cial case noted {m the previeus Section, By
the subsequently norme) pprocedura, tremsfer of
control to the routine occurs neaturallyv ass soen
as {t has been loaded,

€. ]f may sometimes hspoer that as a result of an
{nterrupt SAM {s asked to loed a difforent rOUe
tine into the same buffer, even hefore the ori=
ainal reauest is satisfied, e,a, The DECtace
driver mlght wish to print amn error message be=
cause of hardware fai{lure just whem the orers~
tor has struck s console key and the Keyboerd
Listener 1. be!nc 1eaded. The generel proce~-
dure deseribed w111 in this case honor the sece
ond reauest fir.t. However conditiens remain
such that the servieina of the {ntarrunted eal!
can be resumed esfterwards,

Nevertheless, th{s method creates a problem for I1/0 calls,
By the timg that SAM {s first entered, the EMT Handler has
already made the dataset busy upon the new call, I¢ SAM
merelv returns, _the EMT Handler wil! see conditions ascoro=
priate to an implied +WAIT as described in Section 2,2,1 and
8AM  will pot regain thp necessarvy control, Hence, together
with the slight matter of clesring the dates passed by the
Handler from the steack, SAM removes the bysyestate from the
dataset (usirmra the content of R? to recogrize 1/0 calls =
see Sactionm 2.2,2)

2.3.4 System Exi¢

It can te seen from the previous Section that SAM does not
ask to_be recalled by the systemedevice driver when the lo=
ading of the reaufred routine has been accomplished, SAM
merelv requests the load and then decidas when it can
transfer contrel to the routime on the basis that the driver
is no lonaer workine on the system's bebhelf and the avoro-
priste Swap Buffer s now oceupied by the routime imn an {die
state.



D0S2,RNP PAGEZ-17

Instead of the recall, SAY {n fect, thpouch a Comnletion Re=
turn Acddress set into the {mtermal NDR direects the driver to
e scecie] sequence, This firstly frees the driver for al=
terrative use throuah the Driver Peaueue Routine, S,CDQ to
be described in Section 3.1.2.4, It then checiks that the
transfer has been aat1of0ctor11v cerried out and 1f pot sets
up the ultimate fatal error » a Syster Halt = because (¢t
must mow be assumed that the device cem mo lermaer suoport
the svatem, I¢ all s in order, the DNDB husy=flaa s
cleared to inform SAM that the transfer is ns lomrger undere
way. Fimally, since the seauence s executed as part of an
{nterrupt from the system=device (see Section 3,3), Regise
ters saved by the driver are restored and anm exi{t to the {ne
terrunted routime {s taken (bv RTI),

The last pert of this seauence, Repister=restare L exit, ob=
viously complements the trap & Repgister=save seauence which
begins the FMT service as doscrlbed in Section 2,2, Thus (¢
is the n.th whieh &'l Moniter routi{nes must take to return
to the co]l!nq program, Furthermore, {t was shown {n Sec=
tion 2.3.1 that 1{f one of these routines is {n a Swap
Buffer, {t myst also decrement the Usage Count {n {ts first
bvte whenever it complaetes o task, {r order to free the
buffer for other use, It canmrot do this while it {s stil}
in the buffer, in case this {8 re-allocated before {t exits,
The decrement {s therefore included {m the secquenmece dis=
eussed sbove (byeoassed in SAM's case) and this is
{dentitied as the System Exfit with an approoriete address
set 1into fixed vector location 42 ag the means of aenmera)
access, (1) For the gemeral case, this {s?

S.XIT: DECB MSB. pENTRY FOR U/¢ NECREMENT
JSR R5,83,RRFS 3GENERAL ENTRY
RTI

2.3.5 The Swapoable Poutine,

The previous sectiors have shews that any routime which s a
potent{al user of a Swap Byffer must be set un within some

1. The whele sequerce {neludina the device transfer validi=
ty cheeck must not be ehanged e ditfeprent reutinos entepr (¢t
at var{ous points om the basis of o fixed relative to oosi=
tiom to the address stored in the vecter loecation,



DOS2,RND PAGF 2-18

eonutrainto because of this, Since 811 the Mon{tor roue
tines. other than those whiech normally reside permanently {in
memorv and the device=drivers, come under thiq headina, they
8l)! haye commen {nherent features as a result, This section
summari{ses these features. 1Its purpose {ts twofold:

a, It provides an {ntreduction to the modules pre=
sently included within the Menitar,

b, It lays bug the arbund-ruqu whieh must be fole-
lowed durina the develooment of mew modules
(see also Sectior A,.3) (1)

Because SAM expects the fipst word of the Swan quffer to be
Usace Count & Re=entrancv Switches, ag discussed {n Section
2.3.1, a1l routimes begin with & word {n a format 2,2 or
»1,2, The Jumier @ bvte thenm correctly in{tisl{zes the
Counts the hiah=bvte settina {ndicates the routire's abiiity
to service several reauests together,

It should be noted of course that the protection afforded by
the =1 getting of the Re=~entrancy Switch does not mean that
the routine can then break the ruyles which the term
"re=entrant” nmormally impljes. The switch only prevents SAM
from allowing e second reauest to pass before a first has
been completely satisfied. Moreover the fact that s routine
{s potentially sweppable also signifies potential residency
in which case there {8 no SAM to {ntervene, Hernce as far as
pOI!1b1e mest _routi{nes tev to observe {n eartieular the need
to avei{d env form of selfemodification, either ir executable
code or temporany data storage, Thet they are also
postion={ndependent reallv aoes without sayina,

Beceuse the fipst word of each routine {s thus reserved, all
executable seguences beain at the second word., _As a result,
the globa) reference !dentifyinc esch routine for possible
l1inkaee 1nto the resident Monitor (see Sect‘on 2.1.2) s
made at _this ceint in the Assemhler Source for the routine
rather than at the start,

in acﬁoéo!,.al! routires end with 8 cel)l to the System Exit
via lecetion 42, (There are excertionst see (n particuler
Sectiom 4,.3), Thus they meet the prequirerments for restora=

--..-.--.'-.--- -

1. Console service modules, for other reasons, must be con=
siderad special cases {n thet some of the comments do not
aeply. Therefore the reader {s referred to chapter 6 for
furthep detail,



D0OS2,RND PAGE2-19

tion af user Reaister contents anrd release of the Swap
Buffer as discussed {n the previous Seetion, Potential! re=
sidency, however, again raises a oroblems a routine must obe
vioysly, not decrement the Usage Count {n the Swap Ruffer {f
it {s met sctually occupyinag the buffer, Henee each routine
must determine whether {n fact this steo must be taken, The
fact that the count i{s only {mcremented in the ¢first place
when SAM gives control to the routime offers the soluticn,
1¢f the routime (s resident and {s accessed directly from the
EMT handler s shown in Section 2,2,1, the increment does
not occur, Thus & common form of exit as {(t apvears within
each poutime {s {1lustrated below, assumimng that locatinn 42
contains the address S, XIT {1lustreted {n the previous sece
tions

MOV 0#42,RS tCOLLECT SYSTEM FXIT ADDRESS
TSTB START 1CHECK IF USAGE COUNT SEY
BNE ,+4 yIF SO ROUTINE IS IN M8B
CMP (R5)+,(R5)+ $OTHERWISE OMIT NDECREMENT

$ (SECTION 2,3,4)
JMP @RS $GN TO SYSTEM EXIT

The 1imited size of the Swap Ryffer naturally {mposes rese
trietions_ on each routine, In most ceses, this does not
matter, since the service reauired caon be simoly accome
plished, withinm the available cepecity, but nrot {n all
however., Thus some routines must overlay themselves to aqet
the lob dore. 1If such overlayima can be done seauentially,
f.0. bV each segment Comoletina a specific partion of the
sequence and them passing to the nmext u!thout s reed for re=
call, the special SAM entry described in Seetion 2,3.,2 may
be used (see Chapter 6). However this raises other problems
of storsge wiehin the systemedevice library = see ospee1n11v
the ¢eacribtion of corsole service mpdules, which use this
technique, in chaoter 6. An altermative method, which also
covers the nonsseauential case, (but nevertheless uses up
EMT codes) {s discussed under Fileestructures in chapter 4,



D0S2,RNO PAGE2- 20

2.4 Germersl Pyurpose Subwroutines (RMON3)

This !ection introduces & set of sub-reutinos providing ser=
yico.,_qf s generel nsture for many other Menitor modules,
ineludimng those {n the permanently resident cortion, They
also _are residentt thev are moderately short and the fre=
auency at which they are needed makes {t !moractieol to Yoad
them from the systemmdevice every gimo. As noted {m Section
2.1+ they are accessible by means of the system vectors {n
l1ecations 44+37,

There are altogether six suberoutines i{n the set, However,

thev ¢fall nmaturally {nto three pairs sirce, in each of the

three cases: what one_sub=routine does, the other undces,

Thus any cal)_to the first muyst be complemented by a call to

the second before any ori{ains! state is regaimed, The three
pairs ares

1, S,RSAV/S.RRES Reaister save &t restore
2, S8,GTB/S.RLB Allocate t relesse buffers
3, 8.CDB/S,.CDR Queue & deaueue driver requests
0f these, only the first two will be described in the feole

lowina sections, The ¢third palir, being dedicated to 1/0,
will me discussed {n more soproeriste context {(n chapter 3,

2.4.1 Recistep Save/Restore & Stack Contro)

In the maim, the D08 Monmitor has been doniqneg to supply f{ts
services to the user while sti{l) allowimg him to take full
advantace of the hardware capebilities of PDPeit, Hemce,
rather than impose urnecessary . rcatr!ctions upem his use.of
Registerlo the Moniter auarantees thei{p contemts by gsavima
them on the processor stack whenever and ‘or whatever reason
control passes from a user's sroaram and resterec them be=
fore such contro! {s returned, 1Im the interim, the Mon{ter
can then freely use the Regigters for {ts own purposes,

For the germera) case, 8]l the registers are likelv to be
needed, Thus the common subroutimes S.RSAV and S,RRES with
entry throuah loecations A4 L 46 are provided, The first
simply "pushes” RS through R@1 the seecond "oeps" them {m res
verse. Both are coalled {n the same manner ast

MOV O¥44,=(8SP) $FOR 8,RSAV=0R 4K} FOR S,RRES
JSR R5,0(SPY+ $AUTO=SAVE R5 IN CALL

C



D0S2,RNO PAGE 2-21

(Direct calling is of course pessible from within the nor=

mally permanently resident Mon{tor modules, e,q. JSR
RS,8,R8AV or JSR R5,8,RRES).

The procotsor stack itself {s another considenot!on. Again
the user {8 nmot asked to refrain from sdjustinma the stack
pointer (3P or R6) to suit his needs, The Moniteor merely
proyides {ts inftia) setting. soproori{ately, However, the
Mom{itopr {tself and anv buffers {t has ootob11shed on the
user's behalf are in a vulnersble positior for corruption by
the stack. Hence the Monitor must try to provide some pro=
tection. simi{lar to that afforded by the PDPeiil hardware for
the vector space below locatien 470,

There are {n fact three situations to be considered:

1, As @ result of normal push cperations or of adlust=
mert to SP, the stack drops below a danger 1{ne and
is stil] there when a check {g mede,

2. The stack {s pushed below the 1ine but {s oopred
back agafin so that at any echeck, SP {s seeringly {n
& harmless position,

3., By adjustment, SP is moved below the 1{ne, where {¢
is used to store dats, and {8 again returned out ot
harm's way before it {s eheecked,

The Men!tor cen readily cepe with the first two situations,
At al) times {t maintains a pointer tp {ts own dvramic end,
namelv that for {ts own permarently asgigred memory area eoxe
tended bv medules locaded for a prearam run and by currently
essigred buffer space with a small safety marain, This oo
inter is stored in the SVT as Top of Buffers (TOB) = see
Sectiom 2.1.1. A simple comparison of this asainst SP i{s a
sufficient check for the first case, At the same time the
Momitep sets a bit anttern into {ts end word as shown by
YO0B. It is highly prebable that thig pattern wil! be cor=
rupted in the second s{tuation and a simple check resclves
this,

The checkina operationo must of course he carried out as ofe
ten as aossib1e to be effect!ve. 8imnce Reaister=saving
throuah subroutine S,RSAV normally occurs as the first asten
whenever the Monmnitor aains conmtrol for anv Jength of time,
(see the EMT Handler in Section 2.2.1 and device drivers {n
SQction 3.3), the check is {neluded at this tlme. I1¢ a vio=
latiom s seen, S.RSAV moves SP back to allow collection of
the Error Dfiagnestic Print routine from the systeme=device
and pequests the output of a fata! F2%1 messaase (see Chapter
7)e A proplem can haopen though, it the v1olation is by the
system=devicer, especially wher working on the Mon{tor's bee
hal¥, As 8 resuylt, for this case, the svatemrdevice {s al=

ar’
reka/



D0S2,.RNO PAGF.2-22

lowed to oroceed to cempletion » the violstion is picked up
later.

It {s obviously pessihle that the Monitor {tself (s the ofe
fender and not the user, It might therefore seem nacessary
that the eheck be made not only on entpy but also en exit,
fe@sy) {n S,RRES as well, However {n mcot casas, the
Mon{ter's wholoaulc usege _of the stack is confimed e{ther to
savina Rog!otoro ors ¥ nmot, {s followed by such action,
Thus anv vi{olation {s seenm gimost {(mmediately, The eaddie
tional! overhead of checkina asgein every time, merely to
cateh the outsi{de chanrce of this not alwavs being the case,
{s too execessive and 80 the cheek is omitted frem S,RRES,

Unfertynately, the Monitor has mo way of providina for the
third situati{on = even the hardware pretection Hoes mot ade-
cuately ecover this, It {s enly the user who cam thereafore
prevent {t. Thus {n the Proarammer's Handbook, he {s asked
to exepgise care {f he adlusts SP for any puroose, To as=
sist him in knowina where the dangep 11ne is, the Moniter
provides a means by which he can asks, within the Generas!
Utilities call (see Section 5,23, He is also advised to wae
it until he has completed 1/0 set ur oaerations ({ee, o<INIT
¢ .OPEN) pbefore makimp the sdjustment as there {8 then less
charmce of runming inte treuble. Fiaure 2=9 {s aiven to {1=
lustrate the advantasge of doing this,

_2.4.2 Free Core Manacement

AS Qndicneod in chaoter 1, the Mon{tor uses free ecore 8space
sbove {(ts end as an area in whieh 1t sets uo huffers in supe
port of a_user program's reauests for 1/0 services, The apre
es _in cuite dyramie in that as demand {necreases sc does the
buffer space provided ard l{kewise when the demend goes
avay, Thus at anv time the tota) ares currently ellocated
is defined from the start of the first aveilable buffer as
stored _as end .of Monitor (EOM) {m the SVT to the end of the
Tast buffer st{l) {n use (with a {6=word safety marqin) as
shown by TOB (n the SVT (see previous section),

In order to control the alloeatlon ot buffers anmd their
later release, the Monitor meintains o bitemap for the free
core area. This {s merelv a number of words in whieh each
bit reoresents a 168*word buffer scace, As noted sbove, the
map is plwavs oriqined at EQMs thys the first 15 words above
this correspoend to bit @ of the f{rst map word, Bits ther=
eafter are numberad from riaht to left, The length of the
table and hence the ares it potentially controls s esta-
blished at Momitor {nftiali{zation (see Section 2,1.,4),
Preasently halt the evailable memory (s set as the abso1ute
1imit. Bits are cleared to @ while the buffers they repre=

i

~—



N—’

D0S2,RND PAGE . X-23

sent are freej thev are reset to | when the buffers are age

sigred, The end of the whole current buffer area demoted by
TOB therefore (s also marked by the last mao bhit set to |,

(see Fijayure 2-102),

_334.2;1 Buffepr Allocation

The butter allocation {s effected by & call +o suk=routine
8.6TB with access through vector location 54, The tota!
space recuired must be sueolied: this {s donme by sushing the
pumber of 16eword units anto the processor stack as nart of
the call, e.g.

MOV #4,=(SP) 164=WORD BUFFER REND,
MOV e#54,=(SP) 1CALL 8,GTB VIA VECTNR
JSR RS,0(SP)+

Provided that the necessary sprace s available, the subrous
tine paturns {ts start adcdress on the stacketops @ (s used
to shew man=avai{lability, .

The |i13cation process functions as follows (see also Figure
2=11)1

1, Save the calling routine Registero L set pointers
te EOM L the bit map start (shown in SVT as RFS =
see Section 2.1.14)

2, Find the position in the map of the lowest 16=word
buffer aveileble on the basis of the first 7 bit,
At _game time maintair a pointer st the end of the
buffer ynit heina checked,

3. Check 1t sufficient contiguous 16eword units follow
to meet the specified number, 1If not, receat steo
2 and step 3 unrtil the map=end stored im SVY as RFE
{s reached, 11f thi{s occurs, exit with & on too of
the stack, Similarifly (f at any time the end of
area beina considered moves {nto the orocessor
stack areas do likewise,

4, 1¢ the tota) reaquired area is availahle, undate TOR
and reset the stack=stop pasttern word (see previcus
Section) as mecessarvy, ,

5, Set appropriate map=bits to 1 to show the alloca=
tion, store the start address of the area on the
stack, prestore the gaved Registers enrd exit,



D0S2,RNO PAGE 2-24

2.4.2.2 Buffer Release

Buffer release {s performed bv a call te subreutire S, RLB
whieh uses location 58 es {ts vecter, In this case, two are
guments must be passed = beth the start address of the
buffer area being relinauished and 1ts size {n 16=word un=
{ts. This aives a callina seauence as

MOV #ADDR,=(8P) 1GIVE BUFFER ANDDRESS...
MOV ‘N'-(SP) ,.-o& SIZE
MOV oM56,=(SP) SRELEASE 1T,

JSR R3,0(8P)¢

Provided that the arquments are aspparently valid, the scoro=
priste map bits are eleared to @ and TNB (s adjusted to the
end of the last buffer still allocated, The stack (s
cleared on exit,

The ralease is effected as follows (see also Fiaure 2=12)1

1, Save the celling routine's Registers, Set relative
cointers to the start and end of the area to be
freed, beased on the parameters supnlied, Fxit with
the stack clear {(f the area {s outside the ranae of
the mao or (f mo size {3 alven,

2, Compute the hi{t posf{tion for last 16=werd unit {n
the area saoe1fied and set e mask accerdingly.
Again exit {f the sucp?ied address does net ecoine
eide with a correct 18=word unit start point,

3, Clear aonrepriate bits {n the map) at the same time
track the stert of each unit being released,

4, 1¢ the end of this buffer is also the end of the
whole ares presently allocated, continue tracking
unt{) ejther o 1 bit or the start of the map s ree

ached, Reset TOB and its stackestop accordingly,

5, Restore saved Reaisters, cleanwup stack and exit,

2,4.2.3 Comments

It shou'ld.be noted that once a buffer is assigned ¢to some
purcose., it remains so essianed, even thouah units hefore {t
may be released first, Reshufflimg to orevent caps {s not
consi{idered worthwh11e when this miaht meen the recessity of
maintaining extensive data on the role of each butfer,
Instead S.GTB attemets te fi{11 up any geps hefere claiming
more free core (see ster 1) amnd S.RLB ensures that mnot only



-

D0S2,RNN PAGE 2-28

the specified buffer but alse any crecedina aas is returned

to free core (see sten 4). The user can also keep usage to
a mim{mum by takina care in his seaquerce of reauests for

routines caysina buffer allocation (, INIT's,.0PFN's), Thus
this (s adviged im the Prograrmer's Handbeolk,

2.5 Time Contro)

Provided that the confiauratien {neludes & 1inesmelock, DOS
maintaing the time of dav (TOD) {m two words withim the SVT
(see Section 2,1,1) as:

70D «WORD 2,0

where TOD represents the hiaﬁ-ordor 15 bits and TOD+2 the
low=order 15 hites of time In eloeck tiecks,

The sian in both cases s positive, {.e. B, The value (s
{nitialized by means of the censele YIME command (see Seew
tienm 6.‘0’

The clock itself is set {mn motion when the Monitor {nitiali=
sation routine enables ts {nterrupts, assuming that the re-
avisite driver has been included withim the permenently rpre=
sident Monm{tor (see Section 2.1,4), Thereafter, ot each {n=
terruot, the driver merelyv perfermo a double precision {ne
crement of the stored value. 1If does not however attemot to
make 249hour ad)ustment or anv form of calendar cheek, both
of whieh would {ncrease the driver's size, The operator
must therefore reset the stored value daily, agaim by a con=
scle TIME entry,



ContenNT

cATEoN ConrEnT SYMEo
ITRAT APDRESSD OF THE ISYSEM

he vETeRk TAALE. SVT.
8ASE. ADDREas Fom THE

H3 CENERAN SYSTEM EXTT S.xXTI
STAQT ADDRESS FOR THE T

o RE SIDTER-SAVE. SUAROUTINE S.RSAV
STRIT MIRESS FOAR THE

nb QEGISTER-RESTORE. SuaRTH. | S-RRES
STeT ADDRESS For THE.

5d PRIVER QuLELE SuBRooTxNE | S-Pb

_ START ADIRESD Fok THE

o DRIVER DEQUELE SuBRTW. S.cDQ
S ADDASSS Fok THE

Sk Gev-RurrER sverorTnE | 2 STO
STRALT ADDRESS FoRk ™We

5k RELEARSE-BIFFER sSuB N, S8

FD";‘ V-l:- USAGE OF THE FIXEP VECTOR

LOCATIONS .

N

R



o ST
z
o
&
Y0
Ve
)4
) 6
20
22
24
20
30
31
>
S~
346
o
733
4q
i
5o
LA
s4
4
e
b
Iy
o

P8ge 2-27
SYMBon PORPOBE. NoTED,
€om €rd> oF MoNITOR Dynamic ONgin Ror Free-corm &Wsp;e-..
To8 TOP aP BuFEEERD Dynamic. End ol AllocnYed BulMer Space
csSa CoRE SI2ZE AVATLAGLE | SeVen iralizalien 1o Pns'uar memary addass (aermal)
L) PROGAAM HOAD ADDRESS | Sur enly when o preg@mm i3 i core (leweal pount” loaded)
Scw SNSTEM ConFIsURATION | Reserved Poc Bir Sunithes K indicare awilable Raciliies
BAT BEGINNING of D.AT. Seronly 1 aDesice Assgrmen Table s esYablished.
o | P8 cHAIN ceTSTN. | Indiares Hhal prsgmam shil hos extantr DDBS.
mos MONITOR /USER SWTYCH | (i 3?;;—& ' ,,5,"’;“'3:‘;0"‘,;‘ 7. %:m 3’:?;‘
osw STHER SLITCH Reserved Rocas yar veaplemented Batth-Gype. command.
PSA PROGRAM STHAT ADIRESS | Ser if fregram neece o addoess in seurce * END [orl'{\;ar
PSR DeBLG PROGRAM SHRT | Ser'k ODT-IIR s knked 1o o leaded ¢ogram
’sh RESTART ATDARESS Ser by program hor RESTART a¥ consele. keyboand
WRA WATY RETURN ADDRESS | Savas PC Jer Suspended pigmm ors set o WTL (balew)
DaT paTE Saves valve eaferad by DATE command [6£0 (99719 +Day]!
TeD TRMME. OF DAY Dosble- pracinion valve [16 b+ @aign] o3 enversd by
TIMNE command and Thea incremenred by CLOCK
vIC USER ID.codE Set ar User ROGIN ; cleated af FINISH
Pen PROGRAM NAME G6-characrer mlse associated with seurce TITLE
' of a loaded program (Packed w Rasix-5¢ -3uglepe)
MART | MRT START ATDRESS | Used Poc access Mo the Menvor Resdanacy Table
> DDL STHAT ADIRESS Likewise. Ror rhe Devica Daver bust
ssf SAYE STACK POTAER | Used dumng excecuhan of DUMP cammand.
Bes B.AT START svact ok Babler Bllscaren \n\sh. u:' mtmsanmﬂa
BFE &.AT END Saren imhalaahen o make Bﬂ" W#WM
WTL SYSTEM WAIT LooP = BR . -efRechive while aloaded pragmm 13 Svspended
K8A | EvEcARD PRIVER ATDR. | Ser® DD edry Jor Drwer KB's com dddress (i)
mss | MSE SRT ADIRESS | Used Fecaccesa i Fhe Main Suap Butlec

F-goce 3 Q:- 333"3«1 Yector Table Ccnren\"



&mT

CoDE
@ S
v L
P Sy t
2 ol
3 I
wl —7
5 =
6 Lo q
7 -
— . [}
1 L ____;"‘:
g - — .
19 oo
13 [ ReE®UESTS b
15 I/o --1
1o [~ SERVICED -
17 -
20 =
!
Y -
23 - -
an| I
as| -
2 | Bl
2t Bl
f
3¢ R
3 « —I
a9 ‘TnereencyY -
a3 [ Seevzces |- -
—— USINGT™HE ——
3h |  kevpoard ___J
3s SvRe - -
36 [~ 8eFrFeR — |-
37 -
we |
het -
K2 OTHER -
w3 [ PRoaram -
ay | SERVICED B
45

fope 2-2F

FORMAT (0):-
CORRESPONDING ROUTING ID IN CorE:-

| CORE STRRT ADDRESS
Lol

EermAT (B)i- — =@

CORRRBPONDTINS ROUTINE I I THE
SYREM LIARARY EXTERNKALLY :—

|_ avmn-bev:c.sm#llj
L™ eirr i1t

Forener ():-
NO CORRESPONDING ROUTINE EXTTS:-

]
Pt r oyt

()= § OF 6n-YORD BrLOKS
(sd= )

Figira Q-3: MonITOR REBIIENCY
TABLE FoRMAT,

~—r

~



fege 2-29

Ty

D1 ' .
— vty — Fo- o= » DEVIcE Name (Radix-5¢)
| I Falk —— - oo - - 1

SYysvem
— DPeviee — MEMERY START ATDRESS
—— exmay — INTERRUPT VECTOR ADDRESS
FoR N S
— 1
. PSR — ! IPL EnD ADDRESS
:
—  enwy — 3
| . ForR —_—teee o .=
DEVIE
— 42—
!
— esay — :
— _ For —_t 2
DEvVIce '
— " :
'
Entvey !
— Fol —_—t -
DPEVICE X
— #s ] ] .
L-o—--> DEVICE NRAME (Rodn-S@)
‘ ]
. 3 MEMOLY STRAT ADDRESS
— .. _: o ¢
]
S —t . INTERRUPT VECTOR ADPDRESS
'
: a2 TN START B81L0CK on
— —  exTRY R | ' W'M v SYSEND - DEVICE
FoR r_____; T Y 'J-l’ [ W | [Lijin i
DENICE. '
" wa-l — '
" edtey - ]
S Fok ———ed
DEVICE
0
DD .ND:

Figure &-).: DPEVICE DRIVER LIST FORMAT,



‘::306‘3 QA-5;

EMT HANDLER OPSRATIONS .




Pa’g 2-31

et STRGE I 363 POINTERS AD SHOWN BELOW ; STACK AS SET ATTER
REGTISTER-SAVE ; RQ % @S €T AS INDICATED. [R¢ s RI+RS]
. *WATITR (BusY) NALT (N BUBY ‘WALITR (o susy,
RZ = AUBY RETLRN A = cm.S acTuan D e« cAl. REVAN )
LELE - , TN A —®Ss &
sp se — SO —»
p———— — e} —— e — pre— - w —
v AVED SAVED
— 2206&{)0 7 L—"Q‘ia&s:ﬂfa —1 [ passanm
—— QEGISWERS —— —— s | REGIS™MERS
| —_ I —_ I
CAn. RETLRN cAL eEeN CAM. RENRN |
N Swus |t STAns | " __SWns
Rl =  wNK-8L0cK ADIR. | R#/l:l_—_—%_ﬂ;&:gg ADDR. | _ _RI —> junk-gLoCK ADDR.
BusY eEvurnt i —> Busy eETuan
R“--- Y e e e = o = GEXISTING — e e =
EXTSTING T | L_ _exrsvrne
STACK S™HCK |

STRGE R: Common CODE SERUENCE ADIUBTS STCK AS S Hown BELOW:

~_ -WAIIR (BUSY) *WALT (nov susy) warR (NoTBUSY)

se—f ] se—f ] s ]

[T save» ~ ] T save» | T s> —

= PROGRAN) — . faoceAn — "~ PROSRAM —

| REGISERD 1 L RECISSS — | REsIYNERS -

P~ g p— 3. ——— Lz-a—- — g

A8 Genas | W G | & 8 Gumad
= | Re - cen esTweN(cD) —

RE —> Busy REwRd (=) CARL STATLS @'¢ —»  CcALk Remaﬂzll“)j

e e - r—-=- - - -- i O .

CAL.. STATUS ! ' CAlL. STATLS
-t — &XISTING — e e p

STACK, ‘ Swhcex

STAGE. 3: REGTISTERD ARE 8551‘52@, T™HE STOREYD RS IDEX VALLES
ARE. ATRED TO 'SP -AFMER INCREMENT-R '/TT I3 cAaLLED.

r-‘.alma 9do: STRCK SHUFFLE To REMOVE CAM. ARGUMENTS
For TNMEDIATE PROGRAM EXIT FRom THe EmMT HAaNDLER.



OCLUPANT «TDENTIFIER
RE-ENTRANCY avf.ﬂl vsaae counT
aMATTAG
APDRESS ’
| I
PROCESSTNG
AREA
LMSB s A5k werds
K88 » 188 words ] R
| _]
| SR
- L ———— T T
e e e
_—

]’3’ ] 2-32

z MRT BNTRY
FoR eccuPANT

je—— RIRST wWORD
LOADED

() Usage Counr = @
when leaded

(2) Qeenrmacy Switth
‘¢ » pouhl.n I.
fe-sarmaat

u-] ® Qouhine & not
fe-entrant

Flau& QA-T7: SWAP QUEFER RORMAT.

%/



GENERAL.  3AM PROCESSING

[2ge 2-37

I8
ADDRESS
(w R ¢?.J

(:.3;.\& Q-2: SAM OPERATIONS




BK

faye 2-3¢

ASBUMPTION 1 PROGRAM REQLIRES TWO CILES :- OUTPUT Tb DECTHAG
FRoM PDISK wNeUT.

RES PENT
MONITDA.

b—
DAVER PT & snkAGE |

e e

L-_ --------------

memomy STATE

AFTER BOTH InAuT

AND ouT'PUT ARE
e pAYY. W

BK

e e e i -y

-1 4
VSER

PROGRAM

Fusl feoceasor

IR BUSPERS, Fue,
LINCASE o &Cr-mAad

[32vER DT & mNKAGE

RESIPENT

vssEa




ToO —>

DN

NI

NllInn

MIMIMY

nni

ARLOCATION

RESIOENT
MNONTTOR

fa’g 2-35

lllllll S B . ] 1

lllllllllllll

Fu'aore a-/: Bubkec Allccaron N)aaasemnr

ers



N

>.678

[Sarer with #
ot uniTe requred
en Svpck]

F'.Dune. 8-/ Borrer AROCATION OPSRATIONS



S.c.e

Rau& &~ /2:

BUFEER RE-EASE OFPERATIONS




CHAPTER 3
GENERAL I/0 PROCESSING

By far the malor fumetiom of the NOS Mamitor is to rel{eve a
runming orogram of the problems involved i{n moving {ts datae
between the PDPeiil and 1ts aoriohera1 1/0 devices, Mereover
while a.rferm1ng this fumnction, the Moniter aims at meetine
the fo11ow1nq criter{as

1, Cbéq economy = usage should be restricted te the
min{mym meeded merely to service the 1/0 operations
eurrently umderway,

2, Maeh!no efficiency = as !ar as possihle the orogram
sheu1d be allowed to continue alternative processs
{ra while waitima for mormally relatively slow 1/0
teo complete,

3, Device {ndependence = {f he so wishes, the user
should be able to delay specificetion of the actus!
devices to be used bv the program rliaht up to the
point of execution,

« Shared usase of bulk media = the storoao arnd retrie
eval of differont sets of deta uPen bulk media
should be comparatively linp1e for ome user Or save
eral, with some measure of mutua) oratection,

The purpose of this chapter is to show how the first three
of these qoals have beer apolied for all devices, recardless
of their nature, Section 3.1 further discusses the orineci=
ples and explains the general contro) techniques emnloyed,
S8ection 3.2 describes {n dota11 the routimes whieh orovide
common ereecssinq services for al! devices, !ection 3.3 Y-
justrates the genera’ format spec!fied for the dr!vers whieh
contrel the devices on behalf of those routimes,

The fourth ebjective is the principal subleect of chapter 4,
This _will also show how provisions covered im this chapter
are extended whem they are apolied to bulkestorsce devices
in particular,

T — ]|




DOS3,RNO PAGE 5- 2

3.1 1/0 Comcepts amnd Control

The purpose of this section {8 to show how {n genmeral the
Mom{toer attempts to satisfv the three maim object{ves for
1)l 1/0 detimed {n the {ntroduction, The overall! stretegy
is deseribed firstly {mn section 3,1.1, Section 3,1,2 then
fllustrates the mothods uUsed to {mplement ¢the strategy (n
order to mainmtain adeaquate Mon{tor econtrol of 1/0 oceras
tioms.

3J.1.1 Genmeral! Strateay

Five éonceptn are considered (m the following paragrachs,

3.1.1.1 Commen Processinag

The besjec eomcert {8 that, us far as is reasonable, all 1/0
processima (s performed bv commen potentially reentrant roue
tines whieh only ¢all _a device dr{ver whem some sctual ophye
sical device action {s nmeeded, This cont has the following
sdvantaces when cons{dered imn the 1ight of the stated acals!

1. The routines themselves, 1l{ke other Moni{tor moe=
dules, can be brought (nto memory emly when ree
ayired, _Because thev use the already allocated
Swap Buffer when they are, no extra core (s needed
for them, Moreover the drivers, being devoted
solely to oprocasses needed to contral the device
harcdware they resresent, ere corsi{iderably shorter
than they might be otherwise, Thei{r core usage (s
therefore kent to a mim{mum,

2, The potentia! re=entrarmcy of the routimes allows
their yse for several reauests at a time, Thus nmo
restrietion meed be placed uoon the altermative
orecessing a orogram may wish to serfoarm while 1/0
{s umderway,

3, The use of commonm orocessors forces the definmition
of a_standard interfasce for all drivers, This sime
plifies the implementation of devicesimdependence,



DOS3,.RNO PAGE -3

3.1.1.2 Ruffered Data

Because of the slow access rates of 1/0 devices, mest proe
arams make provision for the buffor!ng of date being passed
between the computer asnd its peripherals, opartiecularly it
any form of overlapcped orecessing {s to be effected, 1In
general, these orograms are developed with the devices to be
used _{m mind, Thelr buffers are, es a result, set up to
altis!v not only the reauirements of the proaram byt alge
device capabilities fcr handling data = singly or {n bloeks
of varyina size, _In one sense, however, device=independance
means that the program need considepr solely {(ts own processs
ing needs for {ts buffers, The Monitor {nstead must take
care of the varving device data=handlina attributes,

For simolicity in the standard driver {nterface mantiomed
earlier, the Monitor therefore trgats all devices as
block=structured and establishes {tg own {ntermed{ate
buffers accordingly, In each case _the size o! the block,
and hence of the buffer provided, is fixed as conveni{ent for
each devicer but can vary between devices, The drivers then
transfer to or from these buf#erc es d{rected bv the Mon{tor
and as far as possible this {s done 1n sdvance of the pro=
gram's reauirements, in the {nterest of machine efficiency,
Thus when s proaram needs {nput, say, {t can ask for a fixed
amount of data and the Mon{tor may, depending uUoom the deve
{ce, be able to satisfy _the reauest from data already {n
core and pefPhaps have more for mext time,

If should be nmoted, _nevertheless, that the Monitor provides
only a single buffer for each 1/0 task and the orogram may
be forced to walt {f more date must be tremsferred to meeat
any reauest, Greater machirme efficienecv miaht follew from
deuble bufferina, However this obviously uses more core.
Furthermore 1t already exits to some extent (as Moniter
buffer and usepr buffer) and so mo further provsion is made,
This dees not of course prevent the user douhle-huffor1na
with{mn his orogram {f ha wishes to speed=up his 1/0 asetivie
tYe

3.1.1.3 Dymamie Core Usaae

Although the drivers may be relatively small as roted ¢{n
section 3,1,1,1, they must stil) take uo some core while
thev are {n use = likewise the internal buffers diseussed {n
the nprevious section, Moreover the need for their presence
i{s not transient to the same extent as that far the normal
Momiter routimest simee {t would be whelly umpreatistice to
force every device transfer to he associated with a second
one from the system=device, once (a driver) {s called to he-
ain a series of 1/0 operations {t must remain ava{lable {n



DOS3,RNN PAGE -4

memgré unti) the series (s complete = and {ts {nterna)
buffer with {t, On the other hand, {t {s eaually asdvisable
that neither the driver nor buffer should occusy core until

they are actyelly needed or aaain after they have served
thelir purncsel that core might hbe put to some other use.

It {8 thus for cases like these that the dynamie alilocation
end prelease of buffer space within free core »s described {n
section 2.4.2, {s meinly orovided. 1In addition certain of
the Meniter's 1/0 orocessina modules to be d{scussed {n sec=
tion 3,2, primar{ly exist in order to sllow the user to con=
tro) the usage of core in this wav,

The fact that a driver {s loeded only whemn reauired and not
with the proaram also furthers the cause of deyice indeoen~
dence_4in that the user can, under certain ci{reumstances,
rectify eprrors {n device specificet{on even after » orogran
has been started, (see section 3.2,1,1)

3.1.1.4 1/0 Levels

In soet?en 3,1,1,2 {t was shown that the Mon{tor canr allow a
yser orogram ta roauost its data transfers in quentities su=
{ted to its own needs rather tham to meet device charace
teristica. The Monm{tor also enmables the program to i{ndicate
how the move i{s to be made and whather anv checking (s to be
carried. out ({n the process, It {s at this, the READ=WRITF
level (see section 3.2,2), thet most ugers will im faet wish
to perform their I/0 operation in the normal wav,

For some appliceations howaver, the time takem bath to move
the datea eacross two buffers end to accomolish the various
procegsina forms mev be prohibitive, Two other levels are
therefore provided. At the very basic, or ,TRAN leve)l (see
section 3,2.1.), the user sacrifices devicesindependence but
then virtunlvv has direct sccess to a driver to transfer da-
ta between his orogrem area and the deyice without the Mon{e
tor's intermediate bufferina, At the second, or BLOCK leve!
(see section 3.2.3), the user {s gqgiven access to the
Monitor's buffer, instead of supolyimg his own, in order to
carry out random=access [/0. At both 1levels, though, the
user breogram must perform its owun dataenrocessinmg,

v



DOS3I . RNO PAGE 5- 8

3.1.1.5 Device Assignment

As will be shown in gection 3.1.2.1, the user ean desfanate
the device to seryice each dataset withim a Link=block in
the proaram. Similarly, {f the device {s f{lesstructured,
a8 described {n chapter 4, he may also name the fi{le he
wishes to access In & procram Filgeblock (see section
4.3.1). 0On the other hand, he may not know this information
when the orogram {s written as aerhaos in the case of a aene
ersl! _eopv program, Even {n the former o'tuation. there mgv
be cccasfons when the orfainal progrem seecificltiena must
be chanaed (a 11ne-nrintor {s temoorar{ly out e! actionm, for
example), se a listina is to be outout to & disk ¢{le or
again, becasuse a particular date=acquisition rate wes too
high for on=)ine brocessing, the data was dumned on the disk
and now the processinc program must access tha latter rather
than the data=sauisition device, The Monitor therefore pro=
vides, twe methods by which the user may socecify the device
(or fi1e) at orogram™ run=time!t

1, He canm enter the run=time saecificatien via ¢the
congsole ASSIGN commaend described in section 6,4,
This wil) then overeride the corresponding orogran
detaill,

2, He can structure the program to 8ccept a command

string and use the Command String Interpreter to

perform the mecessary decoding amd set-uo (see sec-

tion 95,4). This method {s especiallv aporooriate

if,.oparoto rung of the "same loaded program use

different devices and files, e,0, ASs {n an Asseme
bler,

3,1.2 1/0 Contrcls

In order teo maintain the concept of device={ndenmendence, the
user s encouraged to orogram I1/0 (n terms of the loqical
purcose served within the proaram by the date transferred
rather thaem of the physical deviece involved, Thus, {n the
Proarammer'!s Hgndbook, all 1/0 fumctions are showr to be
performed not wuoon 8 device but uron & "dataset" < defined
a8 "a loglecal collection of data which is treated as an ene
titv bv the orogram” ({m other words, all the data which {s
processed {r the sSame manmner Withim the program), In prace
tice, dataset and device_may in fact mean the same thing,
In a DECtape copy prooram, for instance, the tane being eco=
pied and the one beina oroduced each comstitute a dataset,
On ‘the ather hand, & dataget may be 1ess than_all the date s
device can suoply, e,4,, {t may be Just ore of several files
stored on the same DECtape (see chanter 4), At times, it
may evenm stretch across several devices! as a typical exam=



DOS3I.RNO PAGE 5- 6

ple, al) the obJect modules being 1inked into ome 1lead moe-

duler whatever their source, form a single datasset to the
1inking proaram, LINK=11, Twoe points must however he noted!

1, A dataset car only supoort one source or destina~
tion at & time. Thus although two disk files heina
merged by s sort proaram both form {t9 {mput, easch
must be associated with a different Hataset,

2, It {s conceivable that when @ dataset s gactually
associated with a bied{rections! device = the conm
sole tyoewriter serheps, = the user miaht wigh to
use the dataset also h(-direction011v. By detini=
tion this cannot best legieally imput amd cutout are
orocessed d!ffcrontly. Nevertheless, usaace of the
same dataset )inkeae within the progran (see sec-
tiom 3.1.2.1) §s not ecompletely eut of the question
it this sreduces economies, provided that sueh us=
age is secuential, (.o, the dataset ean be
re={ni{t{alized for outout as leno as (¢ is reteased
from any eomm(tmone to {mout.

aectiqnn 3.1,2,1 to 3.1.2.3 fellowing deseribe tho ehannels
set yo by the user and the Mon{tor to eomtrol the coerstions
uPon each dataset. Seection 3.1.4 discusses the mechanism by
whieh the drivers serviecing the datasets are managed,

3.1.2.1 Ugep Link Bleck

For each dataset to be usgd concurrentiy, the uyser orogranm
provides a data=block of potenti{ally variable lenath known
a8 a Link=pblock, as {1lustrated (n fiqure 3Jei, This {3 des~
eribed in detai{) {n the Proarammer!'s Hnndboek Briefly, its
PUPpose is to emable the user to identify the dataset both
{nternaliv = by passing its address ag a call carameter for
esch reauest for an 1/0 service = and externally by a logi=
cal name which can_be used to associate the date=set with o
physical devigce assigned to {t at run=time (see next gsece
tiom). The Linkeblock also allows him to sceelfy the device
withi{n the program or may provide srace for ,dditicnal {ne
fornation {f he intends to obtoln such saoeifiention through
a command strima (see section 5.,4), Finmnally he ecan imdicate
what actigm the Monitor shoyld toko,!f an 1/0 reauest canncot
be satis{fed through Yack of free core for ¢the driver or
buffers needed,

N’

g



D083, RNO PAGE .3-7

3.1.2.2 Device Asuignment Table

In order to give the user as mueh flexibility as possible,
Device/Fi{le specification by censole assignment as moted in
section 3.1.1.5 can occur at various times, even before the
program is loadeds The Monitor must therefore store the da=
tas from each ASSIGN entry, For this purpose, @ Device Ag=
signment Table (DAT) {s set up as reayired uithin the Monie
tor area (see the ASSIGN ecommand processsr {n section
6.4.10) and ({ts entries are then checked whenever the oroe
gram under execution calls for dateset {nmitialization (see
section 3,1,2,1). When in exi{stence, the table's start ade
dress_{s stored {n the Beainnine ot Asgigmrment Table (BAT)
word {n the SVYT (see section 2,1,1),

As {1lustrated {n figure 3«2, the table itself may consist
of separste segments as follews, due to the varying memory
loadings at the times when ags{anments are entered!

i, Prior to proaram loading = the permanently resident
Monitor {8 virtuslly alone in core, The table mav
therefore beain {mmediately apove its end, Entries
made at this time meed not as a result dissocpear
whem the proaram {s removed from core on comoletion
of {ts _execution. Thus the yser is aiven the fa=
cility of sssianments which _affect net Just one
orogram but merhaps several Operating toqgether {n o
sufte, The fact that for this case the table
starts where the Monm{ter Buffer Allocation Table
ends is used to nrotect these entries, If this s
the only DAT seament, the EOM stored {In the SVT s
set at {ts end (see section 2,1,1),

2, After program loadina byt hefore prearsm execution
= it {s possible that the normally rp:(dent Mom{tor
mav be extended by routi{mes loaded #or the opogranm
duration. DAT entries here must come after thege
routines and, since the routimes must later be ree
moved with the prooram, the entries also go, ({¢
in fact no routines are 1loaded, a word {s left
between the Buffer Table and DAT start as am {ndie
cator), EOM is adlusted also to the end of this
seament Py

3, After the start of proaram oxecution = ¢the aresa
from EOM {s under the contro! of the Monitor buffer
manacement routines described in section 2,4,2 and
some buffers may already be s)loeated to ether puUPr=
poses, Thus fupther DAT entries must also use
buffers similarly obtajned, For simolicity in the
ASSIGN command processor, each entrv UuUses a new
buffer evem thouah this wastes soace, Assignment
at this time {s therefore not recommended exceot as



D083, AND PAGE >- 8

a4 means of Poctifvina en error detected durina da=

teset inftializetion (sea sectiom 3,2,1.1), There
sare Other ressens tool

e, The buffer used by the entry cannot be released
unti{l! the _proarem terminates = thio could loek
out the buffor areas from free core even though
they are no longer {n use,

b, As part of the normal clean=up carried out dure
imna the orocessing of the console REGIN command
(see section 6.4), al]l free ecore buffers are
released for a fresh start, '

e Unless the assignment is made pefore dataset
inttializeation §t will have mo effect,

The segments sre connected by a two word entrv at the end of
esach, The first word {s set to =] to indiceate that another
segment follows, the second then shows the start address of
that gegment (1), (This 1imkage s alse used to delete an
entry amended by a later assianment), The end of the com=
plete table {8 denoted by @ {n the firgt word,

The !ornnt of each entrv {8 agiven in fiaure 3«3, The signie
ticance of the prineica) items is as followst

{1, Loafcal name * corresponds to the same item in the
user Link=block discussed in the previous sestion
and thus provides the connmecting 1ink between the
entry and the dataset it affects,

2, Dgvice name = shows the device to be ssseciated
with the datasat,

3, Deviece unit = stores relevant {dentification {f the
device controls severasl units,

4, Number of words to follow = allows restriction of
the entry si{ze to the min{imum needed for any
file=specificati{on entered, e,a,) {f Filawname one
lys this will be 2,

-.--.;-;-......
1. The second link word may bte O, Thls 1nd1cotos the table
end 1f e console BERIN removes ass{anments {n buffers (see
Section 6.4.5),



DOS3,RNO PAGE 3-9

The remaining {tems suppiv data otherwise givaen in the user
Filesbloeck (see section 4.3.1), The loaical nare, of course
must be suppiied, The rest may be validly omitted as shown
in section 6,4,18., (If their snece must be imcluded), the
acpronriate table=slots are then set to @ e,q., 1f only UIC
{3 entered, {tem 4 myst be set to 49 F{le=name and Fxtension
will be left blenk,

3.1.2.3 Dateset Date Bloek

The Monitor has no knowlogge of the proaram’s T1/0 require=
ments_  unt{] the orogram {tself fdentifies these by requests=
{ng 1n1tiol!z|tion of the datasets to be used, Hemece, os
stated in the Programmer's Handbook, INIT must be the f{rst
funetion called in each case, In respense to such call, the
Moniter sets up {ts own contro)l block for the dataset within
e 16eword butfer unit claimed from free core and stores {ts
eddress in the VYinkeword of the user Link=bloek (see section
3.1.2.1)¢ This block known as the Dataset Data Bloek (NDB),
{8 ysed thereafter ag the meams by which different Mon{tor
routimes cass {nformation to each othepr and alsoc eommunicate
with the dpriver servicinag the dataset, It {s retained in
memorv ynt{l the orogram™ releases the dataset from further
1/0 section (see section 3,.2.1.3)) its buffer space {s then
returmed to free core, :

The format of the DDB_{s illustrated {n figure 3=4, The
purpose of the ftems {s as followst

1, Moni{ter link = enables the Moniter to maimtain @
control chaln of the DDB's currently established,
as {llustreted in f!aure J=5, The chain or{iainates
at . & DDB Chain Origin (NCO) word in the SVT (see
section 2,1.1).

2, 0 Yink « {3 used to chain the DDB's for datasets
weiting uoom the services of the same device as
described imn the mext section,

3, Priority level = stores the level at whieh a queued
call to the driver is made,

4, Drjver poutine {ndex = {s normally @ uynless a
deivepr call is_queued: a pointer to the driver rou=
time required is then saved here imstead,

S, Dpriver address = contains the address from which
the driver associated with the dataset s loaded,
This also serves to identi{fy the driver whemn com=
pared with entries {n the DDL (see section 2,1,3),

i

'
RY {4

L ke ()“ *



DOS3,RNO

wpe Gued

Y
eXxy

u,
l,"’

1 L\;t"

12,

11,

12,

14,

15,

16,

Busy flag = s set by the EMT Hund1on (see

2,2,1) to the sddress of the orogram I/0 call w
scceoted. This forces any subseayent cell to w
ynti{) the ecurrent reauest has been satisfied o w
ft is reset to 2. The sddress of this word {s

one _stored {n the user Linkeblock as the DOB ¢

meetiom to {ts dataset,

PAGE 712

sect

Usepr 1ime address = in genera) {s used to save

the address of a data~block

ate,

in the ereogram, e,
Line Byuffer in +READ/ WRITE, TRANehlock in TR

Device block = points to the device addre

block on a bulk stoprage med

Bu?fer address = gshows the stgrt of a

fum,

ss of

memorv @

fonm
hen
aft
hen
the
one

the
Qe
AN,

rea

for transfer = normally this (s sn {nterna! "on{ter

buffers thus this word (s a
tiomn of the current ass
(cleared to @ {f none),

180 used as an

{nd{

ca=

{anment of sueh buffer

Word eount = gives the number of words to be transgs
ferred by the device as a two'ls complement value,

Status = s used to direct the driver on
of. transfer reauired, allowg the driver to return

error ind{cators and stores

other control

the ¢

infer

t{ion on a bit=hasi{s as shewn (n f{qure 3«6,

Completion returm = -hews t

he addreos at

whieh

voe

celling routime requires the dr!vor to return when
a reayested service has been .at!o'ind

Driver word count = allows the driver to
Cacein as two's compiement) how manv words are not
transferred hecause sn end of data point
ached, This word is also used to store a varjable

ooimter to the next byte to
internal Monftor buffer,
underway at this time),

be oroeesoed

tndic
is

in

ate
re=

the

(No deviee sction can be

Ryte count = is used durina +READ/.WRITE processing
to control bytes pvassed betweer the proaram line
and the internasl Monitor buffer,

Checksum = is mainly provided 4or the oroCessing of
formatted bimnary data (see section 3,2.2.2).

DAT pointer = is set durina

the Deviece Asgsignment Table

dataset f{nmitialization
(see section 3.2.1.1) to the address of an emtry {n

eorresponding

to

the

A\

second parameter passed hy mogt 1/0 calls (mormally



DOS3, AN PAGES-11

dataset, {f suech exists (gee previous section),

17, FIB link = connects the DDB to a 18=word butfer exe
tersion whenmever file=structured operations are
underway on the datasset pss deseribed {(n section
4,3,2, It {s set to @ otherwise,

3.1.2.4 Driver Management (RMON3 Cont{inyed)

It was noted im section 3,.1.1,1_ that ¢the device driver
should present a standard {nterface to the ecommen 1/0 oroe
cessing routimes of the Monitor, Thig interface will be
discussed m sectiomn 3.3, The routimes 1im their tyrn,
howevers must also use standard calling seaquences when they
reaui{re the driver's services, This section will describe
these.

Moniter Calls to the Privert

Inftially it is the calling routine's resoensibility to ene
sure that the relevant data to control! the deviee overations
{s set into the DOB described in ¢the 1last sectiomn, {,e,)
Device Bloek, Buffer Address, Werd Count, Status, Comoletion
Return and @ {in the Driver Word Count, The routine also
sets reaisters as follows!

RA = Address of the DDB (Pusy Flae)

Ri = Index into the Driver Interface
Tablae, (see Section 3,3.1),
This {ndex poimts to a bvte
containing an offget fron the driver
start to the beginning of the routine
providina the service reauired, e,q.»
Open {8 shown by 7, Transgfer by 10, ete,

The contents of the other Registers are immaterial; however
drivers do not save them, It {s thus up to the routine teo
do this {f sych contemts are recuipred after raturnm,

The routines themselves do not actualiv call the driver,
Normallv a si{ngle device controller can onlv suoport one op=
eration at a time, even_though {t may heve gseveral units,
Thus the dpriver {tself need contein only serially reusable
code, However it must them be oprotected against recall
while sti)) performine anv service., The Monitor therefore
provides two subeproutines to comtrel the yuse of drivers and
since they must be called for every device action thev are
part of the resident section, BRasically these subpoutines
provide for aueued reauests for a driver'!s services {n order

cldresy



D083, RNO PAGE 712

that a ealling program mav oroceed with alternative orocess-
{ng as far as possible,

The subreutines are S,CPB which checks the need for a aueue
snd sets it up when necessary and S, o] ] whleh ensyures that
the driver is given Jobs from the aueue 8s |t completes each
one. Like the other rosident sub=poutines, they are ac=~
cessed through vector locations (5@ and 52) respectively,
$ince, as shown above, arguments ere passed in Registers or
the DNB, their callina seauences are si{mplet

MOV e#57,«(SP) sCALL S,CDB(S2 FNR 8,CDQ)
JSR PC,0(SP)+ ‘

priver Nueueing:

Thus 8 routine needina @ driver oceration first calls $,CPB,
The processina of such calls {s illustrated dioerommatieol\V
at fiaure 3=7, 1t involves the following steos:

1, Extpract the rc?ovont driver start address frem the
DDB {dentjfied bv RO and check its first word = a
busy flag {m the standard interface tahle,

2, 1¢ this is @, showina the driver to bhe currenmtly
{dle, store RO in the busy flag to claim the driver
Ogr the reauested service and to provide the driver
with a 1ink to the DDB comecerned,

Clear the driver routime {ndex save location {n the
DDB to {ndicate direct entpy and use R1 to huild
the address of the driver service routine reautired,
Jump to thls eddress, thus leavinmg the saved reaturn
address from the S. CDB call on tep of the stack as
the driver's means of immediate exit to the calling
routime(l),

7 |
[]

4, It the driver is already busy as shown by a non=0
flag at step 1, check the N=link in the DDB ad=
dressed by the content of the flaa, j.a.c the one
eurrently being serviced by the driver (from step
2). 1f this s 3, mo ayeue vet existsy start one

...-.!----...'. R . ; .
1« As will be shown {n Section 3.3, 81) drivaers use the in=
terruot system, _ In genaral, a col) to e driver merely rew
sults {n the 1n1tiation of the hardware action and an exi{t
to nwait the first 1nterrupe. Hence the return from 3,CDR
{8 mot the same as Completiom Return stored {m the NDR,

Nt



DO83,RNO PAGF¥~-13

by storing the address of the DDR for the new ree
quest from RO _(n this Q=link and save Ri and the
or{iority level of this reauest imn {ts own DD8,
(see figure 3=8),

5., 1f s aueue already exists, trace it via the N=1{inks
{n esch DNDB and {nsert the mew reaquest {mn {ts spe
sropriate olace either a9 the last at its priority
level or et the end (shown by 8 @ 1{nk), whichever
comes f{irst, Exit bv mormal suberoutime return,

On return, the callina routine {s of course unaware of the
fact that the driver may st{1] not be called, since the ex=
{ta_at stepy 3 or S5 are the same, However at this time, the
difference {s immaterial, the routine can _do methina but wa=w
{t in efther case until the driver satisfies {ts reaquest,
In aenerasl, the user orogram {8 recalled to continue its oo=
erstions, untilo as the result of an interruot' the driver
recalls the Monitor routine via the Comoletion Returm {n the
DOB. It does th{s with Registers at the {nterrupt saved on
the stack ond RZ eagein set to the DDB address, 1Its buay
¢1aa however, {s not cleared = and nothine has vet heen done
about further requests possibly sti{l) waiting in & eueue,

Driver Deaueueinat

It i{s therefore the Monitor routine's responsibility te en=~
sure thet the driver is started uponm {ts next task {f any,
For thig o call to 8,C00 is used, nermally oreceded by a
save . of the contents of RC since the routine mneeds the DDB
eddress for {(ts later procono!nc and this can be lost in the
poessihle dr'ver recall, The cperation of S.CNQ {s also oute
1imed in fiaure 3=7 and conmsistas of the following steost

1, Extresct the driver address from the DDA aiven by R
and clear (ts flaa = this will he reset {f another
task s in 1ine at ster 4,

2, Cheek the A=1{mk in the DNR anmd 14 this is 0, exit,

3, Otherwise reset R3 to the O=1ink content amd elear
the Qelink,

4, Us1nq the mew RO value (mointing te the DDR te be
serviced within the alpeady established oriority
seauence), reset Rl to show the mew driver service
reaufred from the previously saved value and return
to S.CPB at step 2 to restart the dri{var,

Again the saved return address, this time from the
3.CDQ call, enables the drivepr to exit to tha Monie
tor routine at the soprooriate point from which (¢



DOS3I, RNN PAGF 3-14

can restore R3 and eontinue (ts service te the
user, «#hem it completes, the Register contents
seved by the driver, as noted sbove, are restored
as oart of thé normel! oroqram recall process, (see
fiaure 3-=9),

Commentss

It shou'ld be mentioned that both 3,CDB and 8,000 adjust prie
ority levels, Normally both operate at the cal) levell
hence S.CDG particulariv beainms by dropping down frem the
device leve] since the Moniter routing (s recealled from (ne
terrust. Howevepr both perform flag checks and fer safety,
thev raise the 1level ¢to 7 temoorarily while they do so =
possiblv an unnecessary feature {n the current state of DOS
develcpment . as a singlesuser single=task systems {t {s ine
cluded nevertheless sasinst possible future modifications,



DOS3.RNNO PAGE 7-48

3.2 1/0 Processing

The nurnose of th!o section is to examine each of the common
1/0 oreeesoing routimes in dotail within the context of the
overal] philosephy discussed im sectiomn 3,1, Te {1lustrate
the general effect upon the svatem, the routines called by a

“yser ppegrammina basicallv at the ,TRAN teve! will be hane

dled as an {ntroduction in seetion 3,2,1, Section 3,2,2
will them expanmd uponm the basic pattern by describing the
routines ecalled for normal processina at the ,READ/,WRITE
level. The remaining genera) 1/0 modules for random access
and special oderations are covered in gections 3,3 ¢ 3,4,

It sheu1d be noted that 811 the moduleg, being notentiollv
nom=ragident (the «READ/ ,WRITF brocessor currently exceste
ed)s use techmiaues d!lcusood in seetion 2,3 and as 1/0 mow
dules {mcoroorate concepts shownm in seetion 3.1 (oarticulare
'y driver calling illustrated in section 3, 1.2.4), Hemee
eross~preferencing to these sections by the reader will be
assumed where mot given.

A11 the routimes may take adventage of raegister contents
passed by the EMT handler as followsi

RA = Addrass of the DDB for the dateset
to be serviced )

R1 = Stack address of the first call
parameter, {.e.,r the address of the
user Linkeblogl,

R2 = Program call address.

RS = Ppocessor Status Register address
(or =2)

3.2.1 PRasie 1/0 Ppocessing

At the hasie level of 170, the user meprely reauires the Mon=
{tor to control the orerations of a device-dPOVQr to cerform
direct transfers of dates betweenr h(s pProgram area and the
device, The program {tself carr{es out all the precessing
of the data required, This {s sccompli{shed bv a call to the
.TRAN poutine, However, before any 1/0 operation can be efe
fected, the proaram must noti{fy the Monitor of its require=
ments bv calling JINIT to {nitialize the caaronr1ate dataset
and make the mecessary device driver available {mn memory,
Between transfer reauests, the program may call WAIT teo ene
sure the transfer has been comoleted before proceeding,
When all transfers have been done, the driver and Hataset
1inkace are removed bv & .RLSE eall, The resultina orogram
outiime §s aiven under .TRAN {n the Progqrammenr's Handbook,

.



D083, RNO PAGE 3-16

The JWATT processor is {neluded {n the EMT hamdler and was

discussed . In sectior . 2.2.1. The other thrae routi{nes are
deseribed {mn the followina naraaraphs,

3.2.1.1 Detaset Inftielization CINR)

AS notcd above, the principal funceionc of the JINIT oroces=
sor are ta ensure that the driver for the device reayirad by
s uUser cdataset {s loaded inte memorv {f nracessary and to
conneet. it to a program Link=block detinting the detaset via
a DDB w!thin the Monitor, It also setg the devicesinterrupt
vectors accordingly,

Calling Seauencet
The precram eslling sequence is as followst

MOV #LNKBLK,=(SP) 3PASS LINKeBLOACK ADDRESS
EMT 6 : pCALL JINIT

PPOC.SS‘HQI

The sequence of ooer.t!ens earried out by the +INIT oroces=
aor 1: eutl!ned below and {s funther 111ustrated in figure
3=10, The state of memorv on completion is given in figure

3=11,

i, Collect the Link=bloek address ard eclear ({t from
the stack by moving the saved user Registers down,
Set & pointer to the start of the Mem{tor DDB chain
as stored in the SVT (see sectior 2,1,1)

2, 1If the 1{nkeword in the Link=bloek {s non=0, echeck
it its contenmt pofmnts to a valid DDB by searehing
the DDQ ehaim and {grore {f not,

3., Otherwise this could be a re=init, Release any
valid intermnallv establighed buffers 11nked to the
DDB, e.9., data buffer, File Information Block,
Ri{temap (see chaoter 4), etc., Set up to use the
same DPB asgain.

4, 1% mo DOB is currently establisheds elaim a buffer
un!t from free core, {f avaflable vie S,6T8, and
1{nk it to the Moniter eheain.

5., Clear the DDR ecompletely and gstore {ts address {n
user Jinmk,



DOS3,RNN PAGE-17

8., Usina the dataset Leafcal Name from the user
Linkebloeck, search the Nevice Assignment Table for
a valid entry (see section 3,1.4,2), T1f found, exe
trgct the name of ary driver specified and store o
pointer to the entry {(m the DDB,

7, Otherwise qet the driver name from the Lirk=block,
When nronme s aiven, call ooerator action (error
message AQB3 = see chanter 7), If a retupn then
occurs, a nrew console assignment may have been
made, so return to step 8 and check again,

8, Seesrch the DOL (see section 2,1,3) for the driver
specified (1). Cal) ocerator sction as {n stes 7
for a driver neme which does not exist, Otherwise
ao to step 19 unless the DDL shows the driver to be
alreedy in memerv,

9. From a sWwiteh set 1n its Interface _Table (see sec~
tiem 3,1.1), verify the abiljty of s loaded driver
to supoort more than ome dataset at a time and omit
the load process {f setisfectory. Otherwise search
the Mon{tor chain to ensure that no other DNDDB (s
assocfated with the same driver, callina for a nmew
assianment as im ster 7 {¢f necessary,

14, U.!ne the DDL informetion om the driver's 1ocation
on. the svetem devige, claim o buffer of driver size
from free core, If nmome {s availaeble for this, or
for the DDR {mn steo 6, take anv usSer erropr exit
supplied {n the Link=block or, feilinmg this, call a
fatel error (FORQ7),

11, Prepere the NDR for 8 readetrgnsfer {ntec the cla=
{med. buffer from the systemsdevice based uoon the
DOL informatiorn and usina the same routine as SAM
(see section 2.3.4) for handiirg tremsfer comple=
tion. Also set the DDR busy ¢laa,

12, Save significant Registor contents and vis 3,CDB,
call the Systemedevice driver, _Call  WAIT unt{l
dore (as {ndicated bv ciearance of ¢the DDB busy
flag in the SAM seauence),

1. .The driver for a console ASR«33 Teletype considers two
devices KB end PT with different entry points, The NDL
however only sShows KBs hence the search for PY looks for
this simgle entry.

The rejevant entry no!nt for device PT is comauted from the
entry point of device KB sinmce the same driver contains
both,



DOS3, AND | PAGE 2 18

13, On comnletion' set the DOL to shew the core loce=

tion of the driver and using information from the
driver {nterface table set uo the device interrunt

veetors (exeent fer comsole typeawriter « already
comnected to the resident Keyhoard Listerer (see

section 6,3))

14, Clear the buffer address from the DDA to show that
no data buffer has vet been attached amd reset into
the DDR "Dr{ver Address", Collect and store the
device unit from the DAT or yser Linkebloeck as asp=
propriate,

15, Take the System Exit to release the Swap Buffer (¢
necessary, restore program Registers saved by the
EMT Handler amd return,

Cowmoneil

The raeantrancy of the . INIT orocessor merits further disge
euss{on. . The Mon{tor S8,GTB routine {g celled to obtain the
buffers for the ODB and drlvor and thig does not protect {te
self aeainlt interrupt (see section 2,4,2), As 8 result,
«INIT {8 set to be not re~entrant when 1n the Swae Buffer
(see soction 2,3,1), However the protection does not ore=
vent re=entry {if .INIT is _made resident, This {s no oroblem
under NOS ecurrently, s!neo only single=tasking (s permitted
and the user program {s not recalled (implied by steo 12),
Nevertheless care {8 necessary following any Meniter modifie
cation for real=time usage,

3.2.1.2 BRasic Transfers 513{{

The ,TRAN Meniter call enables the user to ocerform direct
transfers between § device and a memopy araa without {mter=
med{ate Mon{tor bufferira. The size o¢ the transfer s lime
{ted only by the cavacity of o sinale wordseount (65K), The
Monitop however, exercises its normal control over the deye
fcer _{,0.0 8llowine the transfer only (¢ the driver {s cur=
rentlv idle and aqueueins the reauest otherwise, It must be
noted however that «TRAN allews absolute access ¢to
bulke=storage devices., Indiscrimi{mate yse 1in this resoect
can corrupt the file=structuring ©Of such deviees (see
chenter 4),

Callimng Secuencel

The ,TRAN processor recuires the oroqram to suoply econteol
parameters for the transfer bv means of a TRANebloek which



DOS3,RNO PAGE3-19

is {1lustrated for reference at figure 3JIe12, Brietly d{es
purpese (s to allow the user to detafi! the deyice and memory
sddress, si{ze and direction of the transfer and to allow the
Moniter to return status {nformation (for further detall,
see the Programmaer's Handbook), The address ef.thc bloek {s
passed as ar esraument {m the call sequence as follows!?

MOV #TRABLK,=(SP) yPASS TRAN=RLOCK ADDRESS
MOV #LNKBLK,»(SP) sTDENTIFY DATASET
EMT 10 sCALL ,TRAN

processinai

The sequence for .TRAN processing i{s relatively strajghtfor=
ward so no diearem {s needed, Basically the stecs are as
shown belowt ~

1, Extpact the driver address from the NDB emd store
the TRAN-bleck address {in the usar Line Address
word of the DDB, Clesr the call arguments from the
stack by movina saved osrogram Reagisters down,

2, Meve the transfer control parameters frem the
TRAN=block {into the DDB (with word=eount neaated),
At the same time cheek for inyalid call as follows!

s, Zero wordescount

b, I11eaal function fer device (e,a,, read from
limeeprinter)

e. Invalid fumetfon

For (a) and (e) {agmore call bv returning
error status {n TRANwblock and exit, For
(b) call fatal error (FOOJ)

3, Set the ODR Completior Return, R? and R] as res
ayjred for & driver transfer call and go to 3,CDB,
While waiting, restore saved proaram Registers and
recall the prooranm,

« When recalled by the driver' call S,cDn te desyeye
1!.

5. Return a8 flgo to the user {n the TRANsmbloek for
transfer of parity errors and similarly _any i{ncome
plete Word=Count (as & positive value) {f efther of
thegse apoears in the DDB,

s, Clear the DDR Rysy Flaa and Ruffer Address (not
Momiter buffer), Take the System Exit to retyrm teo



DOS3I, RNO PAGE 7-20

the calling erogram,

Commentat

« TRAN il Pccntront et al) times, reaardiess of the cermanene
ey of its eoreeresiderce, Howaver becguse of {ts intermedie
ate return to the user ot stec 3, a following ,WAIT {s ade
vised before either the Tran=block or the data ares is nroe
cessed further,

3.2.1.3 Dataset Release (RLS)

The ,RLSE nroeocser pasically performs the inverse functien
of LINIT: {t releases the driver provided that no ether dae
- taset {s sti))! usinag 1t and that it_{s mot permarentiy presie
dent, It then returns the DDB byffer te free core and une
1inks_the user Link=block. Hence from this pafmt, the Moni=
tor forgets the existence of the dataset yntil perhaos s
second INIT restores {t, LRLSE has no mechanism for han=
dling sti{li=open bulk=storage files: however it does perfornm
besfc .CLOSE eperations on simpler devices,

Callimg seauences
JRLSE is ealled bvi

MOV #LNKBLK,=(SP) 3PASS LNK=BLOCK ADDR
EMT 7 sCALL ,RLSE

Processinal

The sequence of ocerations for RLS is {llustrated i» figure
I=12, The hasic steps aret

i. Seve the Linkeblack address and remove {t from
stack, Extract the driver address from the NDR,

2, Check whether a “Yon{tor buffer {s sti{ll attached to
the DDB indicating ¢that no ,CLNSF has heen bper-
formed, _Go to sten 8 ¢ not, Cal) fatel error
(FPB83) {f & flag in the driver interface table (see
gection 3,3.1) shows its device te be
fi{leestructured) otherwise,

3, Set the DDR Complet{on Return {n case device action
{s meeded, (usina the saved returned address from a
JSR call to cause execution 0f an emhedded short
form of the SAM driver completion secauence = see



DOS3,RND

Comments

Sitmee R
8.GTB,»
alse ape

PAGE3-21

i.etiOH 203 4);

Determino whether the last oceration on the dataset
was outout and them whether amy valid deta stil!
Pom.!ns in the Mon{ter buffer (based unon the valye
of the variable pointer stered in the DDB Driver
Word Count), 1If so, save the DDR address and {ts
Bysy Flag content ard call the dr(ver to emsty the
buffer via S.CDB. C8lY WAIT until! finished,

Relesse the Momitor buffer, {¢ approcriate, to free
core via S,RLB, Using the size shown as the driver
standard {m its interface table,

Search the DNL for the entry conmtaining the same
driver address as that in the DDB,

When founmd, trace the Monitor DDB chain for mpossie
ble other ysers of the same driver (aaain allowing
for the dus) nmature of the console ASR«33 driver =
see footnotes In sectionm 3.2.11). If anmv, {anere
step 8,

When this dataset {s the sele user, anrd the NDL en=
try shows that its driver (8 not permanent)y resis
dent, reset the device interrupt vectors to trap on
error, clear the _driver's core address in the NDL
and retyrn the buffer it occupies te free core,

Unlink the DOB_from the Mon{tor ehain and relesse

{ts byffer to free core, Take a normal System Exit
to return to the callimg proaram,

LSE uses S,RLR with similar vulnerability to that of
the remarks in the last paraarapoh of sectiom 3,2.1.1
v h.r.g



DOS3,.RNO PAGF 7. 22

3.2.2 Nermal 1/0 Processina

As diseyssed {n section 3.1.1, the user who does mot wish to
econgider ohvsical devices and reauires more service from the
Menitap performs seayential 1/0 ocerat{ons at the READ/WRITE
\ova1= ~ In response to READ or ,WRITE calls, the Mon{tor
transfers date, formatted to anm extent soecified by the
user, between a uyser line of device=indapendent size and its
own {ntarnal buffer which {8 f{lled or emptied by the
device=driver as necessery. Prior to the transfers, s call
to .OPEN establishes the necesssry conditions for operations
with amy device. Similarly ,CLOSE ensures nraper elesn=yo
after the transfers have been comoleted in all cases, The
following paragraphs exemine these funetions {n more detail,

3.2.2.1 Dataset Open (0PN)

In section 3,2,1.1 it was_shown that the ,INIT call merely
enables the user to essociate the dataget with the driver to
service {t, The ,OPEN call s orovided, {n ganersl, as the
means whereby he cean prime the dr!vor and 0100 reauest the
establishment of the internal Mon!tor buffer in rcodino.s%
for the transfers to ecome,  In particular, .OPEN makes f{lcs
on bulk=steraqge devices oyoilab!o fopr these transfers, as
described later in section 4.5,1, Although the call (s nmot
strictlv necessarv execent for the latter ourpose, {ts use {n
all, cases {s _precommended {n the {nterest of
devi{ce=independent programminea,

Calli{mg Seauencel

The ¢alling sequence for .OPEN reauires the user te orovide
e, Filesbloek within the proaram, whiech 1. {1lustrated ot
tigure 4«15 (simee its orincipe) purpose is more apcropriate
to file=seructured operations), For the _general case, {t
enables the user to show the {ntended trensfer direction and
to supely an error exit {f he wishes, The agemeral! form of
the cel! s as follows:

MOV #CODE,FILBLKe2 3SET HOW OPEN CODE

MOV #FILBLK,«(SP) PASS FILE-BLOCK & ,,,
MOV #LNKBLK,=(SP) ,,,LINK BLOCK ADDRESSES
EMT 16 sCALL .OPEN



PAGE 3-23

"CODE" in this seayence {n fact 1dent1f10: d!f!orent forms
of JOPEN provided maimly agaim for flexibility {n handling
bulkestorage f{les(1), For the genersl case, their effect
{s as fo1lewsz

1, Open an existing file for updgte (OPENU) = imolies
both {mpout and outeut, Simce most simple dev!col
(imeluding magmetic tace becayse of {nherent orobse
lems) cannmot sustain both directions, this form of
JOPEN {s valid on f{le=structyured devices only,

2, Create o new seauential ¢file (OPENA) <« normally
orecedes all WRITE operations, It casuses the set=
ting up of an emoty intermal buffer, 1t aenmerally
resylits in a_call to & mon=f{leworiented device for
the outout of some inft{alizing data such as ounech
leader or orinter formefeed,

3, Extend an existing leauont!a1 file (OPENE) « opere
ates as OPEND on monsfilesorignted devices,

4, Open an existing file for imnoyt (OPENIY @ (s wused
aenerally before all (READ reguests, It usually
resylts in 2 cal) to the driver for 3 nonefi{le deve
fce to check its readimess, The (ntarmal buffer (s
¢astablighed end by another driver call this buffer
is filled im anmticipation of the first ,READ,

13, Noen an existing contiouous file for output (OPENC)
= ig_mainly provided to allow seayentiasl ,WRITE ope
erations within o random=gccess  gres on (]
fi{leeoriented device. On other devices, it acts as
OPENO, '

Processinagl

The general ,0PEN processor outlime {s shown at figure 3,13
end {ts .ffect on memorv usaae {s {)lusterated et figuro
3=-14, Fosical!v it follows the seauence aiven helowt

1, Fxtraet the driver address from tha ND3, Save the
call oparameters temporarily (n the DPB (Usepr Line

1. .The codes are allotted on the basis that bie 1 indicates
a8 file=tyne dedicated to output and bit 2 similarly to {inout
(see also Footnote to Section 3,3,2),



PAGE 3-24

Address & Device Block slots) and eclesneup the
stack by moving saved program Recisters down,

Check the validity of the code {in the user
File=block, also whether {ts implied direction {s
su!toblo for the attached driver (usina an indi{ca=
tor {n {ts standard interface tahle = see Sectien
3,3,1). FPor fatllure in eithepr case, €al! a fatal
error (FO11),

Chock the Open indiecator i{n the DDB Status word,
1f elresdy set to show & ,0PEN has been called
without a subsequent ,CLOSE, exit to the User oroe
aram with fi{le error ? as gtetus or call a fate!
error (F212) {f no address for the returm (s suee
plied,

Determine the size of the {nternal data=buffer
needed by reference to a standard for the device
contained in the driver {nterface tahle and claim
the necessary space from ¢free core, If nonme {9
svei{lable, take the Linkeblock exit {f ajven or
otherwise call fatal error (FP07),

Store the start address of the buffer {m the DDB
and clear the buffer (mainly for outout),

Frem aporooriate indicators {n the deriver interface
table, check whether the device {s f{leestryctured
or {s seauentiasl magnetic teve, (Further action {n
e{ither coase is described (m the rmext paragraoh)

For monsbylk storage devices, verify the existence
of an OPEN routine {n the driver snd cal! it 4t in=
cluded via 8.,CDB. Unt{) completion, returm to the
callina oproaramy them use S,CDQ tan decueue the
driver, )

Set the Open indicater {n the DDB and cheek for {nw
out LOPEN. _ If so, recal) the driver to {11 the
internal buffer, asqain returning to the brogram un=
t{! dome (1), Save o variable pointer to the data

This {nit!.l fi11 s om!ttod. however, for 'term%na!'

type devices auch as the console tynewpiter in order te make
any imput echo correspchd to the apnropriate _READ,



PAGE > 28

in the DDB Driver Word Count,

9. C],.r the DDB Busy Flao and take the normal System
Exit,

Prom the oreceding parecraph it can be seen that the {nitial
checkine and settingsur of the {nterng! buffer scoly to all
deviees. However the ,0PEN processor must themn hand over
control to. the relevant f{le-management modules to comolete
their operations,_ It therefore precares an scpronriate ine
terface. Thus for the norma) fi{lemoriented devices (Disk
ond DECtase), stec 8 above {s followed byt

7. Claim a 16=word DDB extension buffer kmown as a FIB
tsee sectiomn 4.3.2), Clear (t and 1ink it to the
np8,

8, Move the ori{ainal call arquments to temporary stee

: race {mn the Yast two words of the FIR and store the
Open type eode also {n the FIB, Save a DECtace {n=
dicator in the DDB using driver (nterface table (ne
formation,

9, Set Registers sporopriately as fellowst

RO = Address of the DDB

Ri = Address of the cal! parameters
8s stored in the FIB

R2 = Address of the Open tyoe code
in the user File=block

R4 s Address of the FIB,

10, Prepere the aporepriate EMT  eall te the
f{le=management OPEN routineg reaui{red and call |t
(see section 4.5.1), (1)

gimilarly for sequential maanetictape, the following steps

oeeurs

--...-.--.-.--.

1. Since this mav reauire Swap Buffer re!easa the cal) cane
pot be made from within the Swao Buffer. Hence desending
uPon the current lecation of the ,0PEN precessor as shown by
{ts LlUsage Count (see section 2,3.4), the following sequence
is stored in the DDB (Bvte Count & Cheecksum) = and {s .exe=
cuted from theret

DECBR M88, JRLSE SWAP BUFFER IF NEC.
EMT 43 sCALL FOP (44 FOR FCR)



PAGE 3-28

7. Set Reaisters as follows!?

R? = Address ef the DDB )

R1 s Address of the cal) parameters (in DDB)
R2 ® Address of the user Filesblock

R4 = Address of the dri{ver

A, Prepare an EMT cgl) to the magnetic tence OPEN roue
tine (see section 4,7) {n simi{lar fashion to that
shown {n step 10 and make (¢,

Comments}

The file=manaaement module called by the seauences described
{n _the, oreceding parsgraohs may be loaded into the Swap
Buffer in the normael wav, Moreover anv L(OPEN reauest is
jikelv to_resylt {n the further call, Thgrefore it the gen=
eral roytine {s {tself usina the Swap Buffer {t cannot be
classified 98 re~entrant, This problem dees mot exist ¢ (¢t
{s made resident, of ecoursel nevertheless the other one note
ed under LINIT sti)} rom.1n0 _= that of calls to the unmpro=
tected S.GTB subroutine for buffer allocation, The remarks
made {n the last paragraoh of section 3,2,1,¢{ therefore ap=»
ply alse to ,OPEN, escecially since in its case {ntermediate
proaram recalls can be made,

3.2.2.2 PREAD/WRITE Transfers CRWN)

By means of a ,READ call, the user reayests a line of data
@8 ASCII eharacters or binary words, wW{th or without formate
tina,_As noted earlfer, the lime=gize may be set uyn to
satisfy the requirerments of the_proarem only, The ,READ
processer maintains an {nternal buffer whieh takes care of
varving_ device orovisions. At esch ,READ reayest, theres=
fore, date frem this byffer {s processed and transferred teo
the user 11no as specified by the program (a bvte st a time
for simoliecity in ol modas). 1f the {mtermal buffer s
emptieds the griver for the device is called te perform the
necessary rgfi\l and in general, this eccurs 1mmediatolv in
readiness for the next request, even though the program's
needs are currently satisfied. Similarly o ,WRITE reauest
enebles the user to suprlv limnes of data uhieh are orocessed
in Yike_manner and stored (mtermally until a ful) butfer can
be transmitted to the device,

Callimg Seauencet

The proaram must suoply {nformat{en on the linme te be transe
ferreds 1t therefore offeetivelv sets up @ Lime=hleck for

~



PAGE 3-27

this surpose, In _normel! usage, the bleek 1mmediate1v pro=
cedes the lime it controls as o header) this is not essen=
tiel as @ sdecial format (Dump) permitg fts being detached,
The formet of the block s fully described {n the
Proarammer's Handbook, toqether with detsils ef the di{ffere
ent tvoes of processing ovo!loblo. For reference, it {s {1e
lustrated at figure 3=15, Briefly, {t allows the user to
pass meximum and actuel line=sizes and specify the tyoe of
proeoss!nc reauired and emables the +«READ/,WRITE oprocesser
to preturn status date when the trangfer i{s complete, The
address of the block {s given as a pargmeter {n the callipng
sequence as followst

MOV #LINE,=(SP) 1PASS LINE 8,..
MOV #LNKBLK,=(SP) 5,.,LINKeBLOCK ADDRESSES
EMT 2 JCALL .WRITE (4 FOR ,READ)

Processinay

Many of the operations meeded to service either ,READ or
+WRITE are commoen to both. Furthermore concurrent {nout and
eutout sre hiahly likely, A single processor therefore hane
dies both reauests with {ts one entpy point stored in the
twe eorrosponding slots {n the MRT, The maingtream of this
processeor performs the common ooornt!Onl it calls subsidiary
routines to provide the funct1ona unfaye to READ or ,WRITE,
To do this end avoid the need for checking whiech routine {s
to be cplled every time, a co=routining technique is used as
follows!?

1, The fumetion as shoun by the EMT code (2 = +WRITE,
4 = LREAD) upon {nitiel entrPy (or the function ade
lusted by 4 on recall from _drq{ver action to allow
for voriations at this timo) is the basis for the
computetion 9f en sporopr{ate address in a branch
teble which {s then called by a mormal JSR PC,XXXX,
(This provides the cheek for the uniaue routine ree
auired),

2., When the umiaue routine meeds to retuPm to the ma-=
{nstream, {t does so bv JSR PC,0(SP)¢, This per=-
forms as RTS PC in that orocegsing continues from
the address seved omn the stack by the orioirmal JSR
call and removes the address from the stack,
However {t is reolaced by the address at which unie
aye operations are to be pesumed,

3, Si{m{larlv the mainstream effects the resumption by
JSR PC,0(SP)+ and approoriate branches {n both the
meinstream and unique routineg comolete any looping
necessary, Thus after the fipst cheek, the correct
seauence is maintained maturally thouoh the adiress



PAGE>-28

saved on the stack and ne further checking {s ne=

cooourv. ‘Decartures frem thig seauence are accome
pliahed, {n aeneral, by adjustmert of the saved ade

dress

The molnutrc.m process is {1lustpated 1n figure 3=16, I¢c
pbasically fellows the outline qgiven belowt

1.

2,

Save the user Line and Linkeblock addresses in the
ODB and remove from the stack

Perform the follou!ne checks on the reavest validi=
tye. For fn!luro in elither cgse call a fatal arror
(FO10) « gsee chaoter 7

a, Funetion and mode acceptable for the device as~
sociated with the dataget, usina data iIn the
deriver 1{(nterface table (see gection 3,3,1)
TIn A punch cannot read, nor can a line
printer handle binarv daty)

b. A valid .OPEN call previouslv made for al)
filevstructured devices,

Prepare the DDB for the transfer!?
a, Clear Byte Count & Checksunm,

b, Verify thet an {nternal buffer {s ottached to
the DDB, If mome, because of no ,NPEN on a
nonefile device, claim one now and 11nk it to
the O0ODB (start address & size), (it mone s
aveilable, recall the program via_ the user
Linkebloek error address or call a foatal erpror
(F2Q7) (¢ this {s 9),

e, Collect the variable pointer to the buffer
seaved {m the DDB Driver Word Count and reolace
ft by the buffer endeaddress computed from
stert & size.

Set Reajsters (besed on data passed by the oroaranm
where necessary) to showt

RO = Address of the Byte Count in the DDB

Ri = Address of the next Momitor buffer.
byte (3 {f buffer emotv)

R2 = A?dross of the Byte Count {n the user
Lire

R3 = Mode & current status (may be
sccunulative durina the transfer)

R4 = t?dress of the mext byte {m the user

ne



ia,

PAGE 3-29

RS = (Temnorary workespace)

;.11 the unfaue .READ/,WRITE routines as {ndicated
in the orov!euo osrearaph {n order te eomplete {mie=
tialization and collect the first data bvte,

For al) data modes., count the byte and accumulate a
checksum {m the DDB (the latter for simplieity,
when (¢t is onlv really necessary for formatted bie
nary), For ASCI1 modes {in perticuler, strip er
aenerate bit 7 (the parity bit) within the bvte as
reauireds for formatted versions, set an
Ende=ofel {ne (EOL) switeh (by elearino the user Line
Byte Count) _if the bvte (s a lime=delimiter,
Recall the umiaue routine to complete the processe
{ima & stoprage of the bvte,

T¢ now at the end of the Monitor buffer, cheek {f
sn Endeof=Data (EQD) occcurred at the arev!eua dev=
{ce transfer, In this case, set acprooriate status
flags in the user Line-block and recal! the orogram
as {n step 11, Also clear the veriable cointer to
forece subseauent attemnts to fi{11 or emety the
buffer to make this cheek again,

Otherwise save the current pointer values {n the
008 or wuser Line~block and_ prepare to call the
driver, In particular, for a file=structured deve
fce a3 defimed {n chapter 4, detervine the next
deviee block (the routine to deo thil is embedded:s
{ts descrintion however has been included in cone
text {n section 4,5,2), Call the driver via S8,CDB
and return te the oregrem unt{! done.

On recall, dequeue the driver vie S,CDH, Check for
device parity fallure or FOD (as shgun by an unex=
oqred word count returmed by the driver) and set
DDB flags sceordinalv, (Asain ¢ a fileestructured
device is being used, some clean=us and cheeking is
recessary; this (s also coveped {n section 4,%,2),
Restore saved pointers by returnins to steo 4,
Force return after init{al{sation tn the mext stes
te omit further byte transfer st this stage

1¢ device action is mot vet reau1red. or has Dbeen
completed, check for the end of the user Line based
uppn elither the EOL switeh mentiomed (n step % or
upen the Byte Count in the DDB beina equal to that
supplied by the orogran (unfopmatted modes onlv),
If not seen, recal) the urique routines fer further
checking and collection of the next byte as neces=
Sary, With 8 return at steo 68,



it

PAGE3- 39

When the prcvious step shows the transfer {s econme
a1ete. set status {mformgtion and _byte coynts {nto
the user Linesblock, Save the buffer pointer {n
the DDB and elear {ts Bysy Flaa, Restore the saved
program Reaisters from an otherwise cleared stack

and recall the proaranm,

From the above seaquence_{t cean be seen that the uniaue roue

tines

are called for four purposes and by definition these

differ for .READ end ,WRITE 3

a, Init{alisation en fi{rst entry and collection of
the first byte

b, Completien of imdividual bvte nracessing
e. Reinitialisation sfter device action

d. Further EOL eheckimg and collection of subses
ayent bytes

For .READ, these _oogrations are outlined below and are
further detailed In figure 3=17:

{

For first initialisation, the followine tasks are
earried out:

8. Set the uyser Line Byte Count to the maximym
sizet {f none (s given, return te the progranm
with an {nvalid Yime error,

be If the {ntermal buffer is empty (as ghown by R
= @3), return to step 8 in the mainstream to
cause a f{11 bv the dpiver (or ts see an EOD
set in 8 previous ,READ)

e, For formottod birary mode.- look for the first
non=® word (with jmtermediate byffer refill {¢
necessary), If this (s net I as reauired by
the format, recall the program with formgt er=
ror {ndication, Otherwise store the Bvte Count
from the date in the user Lime~block,

d, Colleet the first date bvte for orocessing.

No further bvte=orecessing is reauired for binary
deta:s 80 store the bvte and recall the mainstresn,

/



&4

PAGE 3-31

For ASCII data, however the followine edditienal
steps must be takem hefore this ececurs(i)s

a, Inm all modes. igrore nullg,

b. Igmore RUBOUTS {m formatted modes and eheck
carity, {f necessarv returning the aporooriate
error indication to the oprogram,

3, Om return from driver acti{on, the maimstream cam be
recalled {mmediatelvy _for EQOL echeckimg uUnless the
1ime has already beemn f{lled In normal formatted
modes and excess data {s beina discarded, In this
case, 2 line pointer reset on the basis of "line
start ¢+ number of bytes read" would corrupt the ar=
ea outside the line proper, hence reset the pointer
to the last actual bvte of the 1ine bafore recsal!

4, 1¢ the Bvte Count in the DDB and in the user Line
are eayel on return for additiomal EOL cheeks, the
FOL switeh {s set for formatted binary operations,
In this case, verify the Chgcksum and transmit an
sppropr{ate error to the proqQram as necessaryt ree
turn to the mainstream to recheck for buffer end,
In al) other cases of recall from the mainstreanm,
it. {s oossible in formatted modes that no further
room exists in the user Line as shown by the maxie
mum Bvyte Coumt, (becaeuse 6f no ASCIT lime delime
fter or too long a binmery 1ing). Hence cheek for
this and (¢ there is mo problem, returm to steo |
teo collect the next hyte, Otherwi{se returm an {ne
val{d Y{me error to the user gndl

a, In Normal formatted modes, set up to overlay
the last 1ine byte and contimrue from steo 1,

b. In Soecial modes, recall the proaram (For for=
matted binary, the Ryte Coumt {s set to show
the fyull 1{me size to {ndicate how many more
bytes must st{l] be read)

For WRITE, the uniaye operations are as follows (see alse
ficure 3=18)g

(2 A X X B 2 2 KR X N X 3

1. If am EOL {s seem {im formatted ASCII _modes, .the maine
stream check on the end 0f the Non{tor buffer {s in fact ome
itted. If the device is a terminal the operator may not be
ready to {msut more data as needed to refill the Monitor
buffer, Hemce in order to pass the alpreacy comolete data to
the progrem as auicklv as possible, the normal Bractice of
maintaining dete in the buffer at all times may be over=
looked im this case.



PAGE 3-32

Initialization on first antrv reauires the tollow=
ina sctions:

e, 1t no Byte Count is provided by %he proaram,
return with an {mvalid 1ine error {ndfcated,

b, If the buffer has Just been claimed, zero |t
completely

€. I¢ an FOD was seen on a orevious ,WRITE, pecall
the orogram to show this,

d, I1f a formatted b!nnrv transfer {8 rPreauested,
store an interline qao (8 nulls) followed by 1
(for binsry mode) and the user BRyte Coumt {n
the {nterral buffer, provided sufticient room
stil) remains, 1I1f not, recall ¢he mpimngtreanm
ot step 7 to _empty {t first, Algo initialize »
chegksum to {nclude the data Just stored,

e, Collect the byte and for formatted ASCII modes,
remove anmy parity bit, Save the user Limne Byte
Count (see 2 below),

For all modes bhut formatted ASCIT, no further
byte=processina {s neededy merely store the bvte
and return to mainstream, Otherwise the followina
checks must be carried out before thiss

a, ¢ an EOL terminetor was seen, check {f ¢the
user line {8 empty, If not and the mode is
Normal, restore the saved user Line Byte Count
and continue.

b, Also {¢ at lime=end, force outout to & termina)l
device,

e, Provided there {8 reom {n the {nternal buffer,
fo1low horizontal TAB with RUBOUT and verticeal
TAB or !orm-feed with nulls, Otherwise force
outout first,

To reinitialize after a device trlnafera clear the
buffer unless an EOD was seen, {n which cese recall
the orogram as in 1, Fer the formatted ASCII
modes, oerform the actions moted {n 2(e),
Otherwise rgturm to the mainstreanm,

If a formatted hinary line has been comnleted,
store the Checksum {n the buffer and return to
eheek {f ¢the buffer i{s new full for output,
Otherwise collect the next bvte and recest from
step 1(e),



.PAGE 3-33

Commentss

The_ ,READ/,WRITE precessor returns to the proafam when held
up for a device transfer as shown at step 8 of the mainstre=
em seayence. The normal reauirement that the orogram oper=
form _a JWAIT before oecooline the 1{me therefore acolies,
In this case it also is {mperative that the user Limeeblock
i{s not ghanged before the transfer ig kmown to be comolete
because of the {ntermediate data stored imn it, On comple=-
tiom,_{t is the proaram's responsibility to verifv the accu-
racy of the transfer by examination of the status returned
by the Monm{ter,

Boeau.o of its size, RWN cannot be brought {nte the Swap
Buffer, Although this could be effected as for other rou=
times by an overlav oprocess, this would mesn that
recentpraney would be saerificed making it {mpossible to pro=
cess more than one reauest ot o time, In the case of
«READ/ ,WRITE this (s somewhat unreslistic, The mature of
the progessina involved too does not lend {tself to simole
ovyerlayina as {t {s not sgauential, An asltermetive methed
might be to use the Swar Buffer for, say, the mainstream and
claim o separate bu'!er for use by the unique Poutines = a
feasible solution since_the co=routine teechniaue cen be sim=
ply adanted to provide {t. However acain size, perticularly
with the addition needed to control the extra oceration,
prevents the adopt{ion of this method. Therefore for the
present, the READ/,WRITE processor must form ovart of the
permangntly resident Mopitor = a mot entirely unsatigfactory
constraint when most orograms will orobably reauire {ts ser=
vices too freauently for swapoing, With reqard to RWN
reventraney, {t must be noted that {t may also eall the une
protegted S,GTB routime as discussed under .TNIT (sectiom
J.2.1.1) 14 the proaram does not call ,OPEN 1rst. Again
this (s no problem in a singleeuser svstem; for real=time
orerations, the standard use of ,NPEN canm obviate {t,

3,2.2.3 Dataset Close (cLs)

The ,CLOSE call emables the user to inform the Monitor that
cyrrent, trarsfer operat!ons within a data=set are to ba tere
minated. 1Its processina {mcludes the output of sanv data
st{ll in the internal buffer, amy mnecessary shutedowm action
on a monefile device (e.g. Punch trafier) or directery clee=
an=up on & fi{le=orjented device and finrslly the release of
the {nternsl buffer., The davice drivep and the DDB however
remain {n memorv, linked to the user orearem, Thus oneras
tions can be resumed by a mew call to ,0PFN, Aacein, for the
sake of devieevindependence, use of this cal) {s recommend=
ed;, evern thouah {t {s omlv essent{al for ¢fi{le orcerations



PAGE 3-34

(sfnce a .RLSE ecall performs ,LCLOSE operations i{n other
cases « see section 3,2.1.3)(1),

Calling Seauence:

The calling sequenmece for .CLOSE {s simply}

MOV #LNKBLK,=(SP) 3PASS LINK«BLOCK ADDRESS
EMT 17 sCALL .CLOSE

Processinat

The ,CLOSE orocessor {9 outlined at figure 3Jei9, As  with
+OPEN (see section 3,2,2.,1), .CLOSE calls are handled infe
tiallv by & general routine for _al) devices, This may then
be followed by a call to the f{le-management module FCL {f
the device {s fileeoriented. The general routine uses the
sequence afven below!

1, Clear the cal) parameter from stack and gqget the
deiver address from the DDR,

2. Vcrify the oxistoneo of any valid data reraining in
the internal buffor it the last operatjon performed
was output (usina the last value of the varisble
buffer pointer stored {n the DDB Driver Hord Count
by the (READ/,WRITE processor (see last section)),

3, I¢ such s the case and the device 10
filevoriented, echeck that no EOD has been seen =~
the last bloek has slreadv beem outout {n this
case. For _1inked ¢iles (see section 4,1,1), set
the lest 2 Yink & the DECtape transfer direction,

4, Ce') the driver, via S,COB to sction this last out=
syt (1) and returmn to the colling orogram unti!
done. Dequeue the driver by S,CDQ on recall,

5, Clear the Open_{ndicator in the DNB Status and
eheck for & fileestructured device (see rext oaras

1. The 1ast outeut in fact {s @ full buffer « the last vale
id data fo]iowod by nulls. Om fi{lesoriented devices, this
may mean in the worst case that the last black of o Vlinked
file {s all mull, Although this {s wasteful, it aveids the
necessity of re=accessing the previous bleeck to change ({ts
last Vink to 0O,

¢



- PAGE 3-38

araph {{ se)

A. For monef{le devices, eall the driver vie 8,CDR {¢
{e, eontainsg & CLOSE routine es (mdicated by o
switeh {n its standard interface table (see section
3,.3,.1). Again returm to the callina orogram unti!
eomaloto.

7. Usima the stendard buffer size stored in  the
driver's {nterface toble, pelease ¢the {nternal
buffer to free core, via S,RLB,

8, Clear the DDB Rusy Fleag amd take the wusual! system
Exite

As moted 1n the tast maraaraph, s ,CLOSE call on a dataset
using a file=oriented device reauires o uubs!diarv call to o
t{le=mgnaaement module, By @ similar method to that dese
eribed _for LOPEN {n sectign 3,2.2.1, this (s effected with
appromri{ate data Passed es followss

RO = Address of the DDB

R2 = Address of the FIB

R3 s Address of the dfivor

R4 = Opriginal Open tyPe code =2

In additions bit 15 of the User Line Address in the DDR {s
set as & NECtape marker,

Commentat

Because Sweo Buffer overlayinme (s scaim & npossibility, the
remarks im the 1ast parsgrach of sectien 3,2,2,1, #1s0 apply
to the .CLOSE routinme,

3.2.3 Random Acgess 1/0 (BLO)

—— e o,

It will be shown {n chaoter 4, that a user can reserve an
area of physfecally adlacent bloecks upeon o bu\k-storage madi=
um by reauesting the allocation of o econtiguous file, The
.BLOCK ¢all {s opprovided as a means whereby he can then ace
cess the area randonmiv, The user f{dentifies & physica!
bloek by {ts ralative position within the ares, The ,3L0OCK
processpr transfers the required block {n a seecified direcs
tion te or from the normal Monftor buffer amd them allows
the user to process his data directly {n the buffer. rather
than cause a furthepr unnecessary move to or from the user's
own area, Refore .BLOCK is used, the user ~ust correctly
OPEN ¢the file 1{n order that the Monitor cam establish {ts
buffer:s .OPENU allows both read and writes .OPENI allows {ne



PAGE 3-38

put onlv, On completion .CLOSE must also be ealled,

Although (¢t was seen in sectiomn 3,2,2, that the norma!)
READ/WRITE Jevel cen be used for seeuential processing of
any tvpe of file, the same does not apnly te the use of
+BLOCK for random gccess, The nmatuyre ef seauential files on
bulk storage devices, desaribed {n section 4,1.1, would make
the use of .BLOCK too lenathy a process that for the oresent
it hes not been {mplemented. Random access, of ecourse, on
other devices {8 mearingless: while the ahility to use
«BLOCK cerhaps as a means of seaquentially processinag date
within the Mon{tor buffer might be ugseful, the same effect
can be obtained bv ,TRAN with very 1{ttle extra effort by
the user, Hence the .BLOCK processor onlv asccents calls
upon contiguous files and rejects o'l others as invelid,

Calling Seauencet

«BLOCK actyally provides three funmctioms, For {mout, {t {s
suffieient that the user reauests the block and the {nformge=
tion on, the bleck {s returned so that he can process fts
content, For outout, howaver, the user must suoply the data
before it can be transferrod end to do this he must know the
buffer location and size in advance. Hence 1n addition to
READ and WRITE a block, & GET oceration s orovided for the
purpose, _ To !nd!eate the fumct{om and allow the Moniter to
return {nformation, the user sucnlies a_ BLOCK=block as {1=
justrated {n figure 3=27 and deseribed in more detail {n the
Proarammer's Handbook.

This them means a calling sequerce as followst

MOV #BLKBLK,=(8P) jPASS BLOCK<BLOCK 8.4,
MOV  #LNKALK,=(SP) j.,sLINK=RLOCK ADDRESSES
EMT 11} sCALL ,8LNCx

Processinal

The seaquemece of ocerations in the ,BLOCK processor is auite
straiahtforward) thus no $1lustration is necessary,
Basically the following steos are takent

1, Collect the address of the user BLOCKeblock and
clear both arguments frem the stack by movima the
saved program Reafsters down.

2, Move the address of the _Monf{tor buffer into the
BLOCKeblock, If no buffer (s set un, no ,OPEN has
beem done, Return the aonronr!otc errer flaa ¢n
the BLOCKeblock status and exit as {n step 7,



k/

PAGE 3-37

3, Extract the buffer size from the standard driver
interfece table (see section 3.3.1) end gtore {t in
the BLOCKeblock, 1If the reau.stgd funetiorn is GET,
orocessing {8 now complete, 8o exit as in steo 7,

4, Re)ect the BLOCKX recuest by returning the aopro=
orfate error flaa in the BLOCK=block status for any
o! the following reasons, aagain taking en exit as
in step 73

a, The deviee i{s nmot filewstpuctured, as shewn by
an {ndicetor in the dpivep interface table,

b, The fumetionm is mot READ or WRITE,

e, The file has been {ncorpectly oocenmed, based
upen the Osen type code saved in the FIB (see
section 4,3,2), {,e, «OPENU has not preceeded
READ or WRITE. or ,OPENI for READ only,

d, The bloek reauvested is outside the rance of the
filo ag stored {n the FIB, (where block 0 of the
file (s the ¢irst and the 1last is thus
Lemgth=1)

85, Compute the absolute block from the start stored in
the FIB and set uo the DDB for the transfer speci=
fied.

6, Call the driver to effect the trensfer via S,CDB
and peturn to the user unt{l dorme, On returnm, de-
ayeue the driver via S,CDQ and return any oparity
error {m the BLOCK=block status,

7. Clear the DDB Bysy Flaqg and take the norma! Svstem
Exie,

Comments?

Because of the intermed!ato return, the user again myst cal)

JWAILIT bqforo sttempoting to orocess the buffer and {t is also
hil resoonsibflity to check the returned error status to en=
sure the tpansfer required has been satisfactarily executed,
The .BLOCK processor s always reentrant, whatever {ts loceaw
tionm,

3.2.4 Specia) Operations

Twe furiher 170 functions are provided bv the Momftor to
cater for the fact that while device={ndependence {s geners=



PAGE >-38

allv feaa!b‘o for normal data=transfers, certain devices res
aulire nneel.! controls which the proaram (taelf must be ale
lowed to menage {f the user wishes, Thus the ,SPEC call s
a general means by which the user can exercise suech controls
end this is deseribed in section 3,2,4,1, It con stil) be
used in the dov!eo-!ndcaondont env'ronment boenu:e it {s efe
tectively & NOP {f the device {m use does not recognize the
control specified. However, in order that the user can avoe
fd unnecessary Mon{tor calle and for other situations where
the orogram™ might need !urthor informntﬂen en the .ls!gnod
deviee, the ,STAT cell, outlimed in section 3.2,4,2, {s ava-
{lable,

3,2,4.1 Special Functibns (SPC)

As noted above, the ,SPEC call is o megns whereby the user
can reauest o device~driver to perform a sgecia! function
which does not genmerally reauire o detg=transfer {n the nor-
mal sense covered by the orocesses 1n the previous sections,
Magretic taPe Rewind is a typical .!.Mb1.. Potentially any
driver may contain s Special Funetion routine, but this is
only setyally imeluded when meaningful, either because the
device  itself can expect the fumction or (t cam be simulate
ed, e.q. ,although it is not currently {mplemented, & Rewind
on DECtame is not out of the question, Thus the SPEC pre=
cessor only cells the driver {f the roytine (s seen to be
present, as {ndicated {n the stenderd 1nterfaee teable in the
driver (see section 3.3.1,1), However the routime's nres=
ence _does not neeesaar!lv mean that the driver can always
satisfy the functions while the magneti{c taspe driver, for
instance, can accept a Rewind ecall, (¢t will mot understand
some specia) operation to control s digpley, The SPEC pre=
cessor in {ts general way _cannot discriminate, It is there~
fore the responsibility of the driver to fgnore fumetions {t
does not recoanize (see section 3.3),

ca111ég Sequence!

The special functjon iteelf (s defined by a ¢ode, assigned
o8 the need arises from the renqge 0=2355, This code is
passed as_o call paramenter, In some cases, the fymection
plone dofines the user's requirementst {n others, additional
{nformation is needed to support the fymction or oerhaos the
Mon{ter must have the ooportunitv te return status data,
There are therefore two possible calling seaquences, the re-
1:vont one {n each case beina defined by the scecifie fune=
tiong

1. 1¢ only the furction needs to be passed, this forms
the arquments



PAGE 3-39

MOV #CODE,=(3P) tSTATE THE FUNCTION
MOV #LNKBLK,=(SP) sPASS LINKeBLOCK APDRESS
EMT 12 PCALL .SPEC

2. If support 1nfermat(on must also be luaaiicd. the
orogram sets uo a Specia) Funetions Rleck, {llys=
trated at fioure 321, This econtains the ecode for
the fumction basically and allews a vari{able length
workegspace as necessary, In this case, the adiress
of this block {s the argqument}

MOV #SPFBLK,=(SP) PASS SPF=RLACK &,.,
MOV  MLNKBLK,=(SP) 1,,.,LINK=BLOCK ADDRESSES
EMT 12 JCALL .SPEC

Before the call {s made, the dataset myst of eourse be f{nie
tialized by ,INIT to load the driver {nto memorv, In gemere
8, howevers it should not folloew a .OPEN unless this has
been meaated by ,CLOSE,

Precessinag

The ,3PEC process needs no {1lustrationy {t merely follows
the simple steps 1isted below!?

1, Ssve the function araument {n the _DDB (User Line
Address) and clear both apauments from the stack,

2. 1¢ the higheorder byte of the fumction argument s
A, the user has passed only the codel this follews
from the allotted code ranae and the fact that an
address must be areater than 400, Hence check this
bvte. Move a codes=onrly araument to Ryte Count {n
DDR amd replece it {n the lUsep Line Address word by
the address of {ts new location,

3. Extract the drivor address from the NDR and verify
"the presence of o Specia) Functiens routine {n the
driver from the fleg {m its (mterfeece takle, 1¢
more, exit as in step 8.

4, Otherwise call the driver vie S,CDB and return to
the proaram untf{l! done, Omn return, deauesue the
deiver vis $,C0Q.

5. C]gnr the DDB Busy Flaa and tgke the normal Svstem
Exit,



PAGE 3-40

Commentss

1f the driver is celled, the cperation at steo 2 above means
that the User Line Address in the DDB always contains an ad=
dress pe!ntinq to a Speci{al Funetions Bloek as far as the
drivor 1: concernad = even {f this merely consists of a sine
gle werd elsewhere in the DDB. The drjver canm thus assume a
stendarg orocedure for extracting the ecode and ehecking both
that this (s appropriate to 1toelf and that the required
number of words follow (the highehyte @ noted in step 2 sage
{n afves to correct result),

+ SPEC 19 fully reentrant regardiess of {ts leeation ¢ usage,

However devyice action_ may be needed; hence for safety the
proarsm should .WAIT before proceedina in manv cases,

3.2.4.2 Device 3Status (STT)

As stated earlier, the ,STAT cal) allows the user n?earam_tb
obtain {nformation on the device a dataset {s agtually using
for e particular run, after {t has been initiglized {in the

usual way bv JINIT,

Calling Seauences
The call is made byi

MOV #LNKBLK,=(SP) 3sPASS LINK<BLOCK ANDR
EMT 13 JCALL ,STAT

pProcessinai

The +3TAT processor merely extracts the relevant data from
the_ driver associ{ated with the DDR by reference to its {nm=-
terface toble (see Section 3,3,1). The data {s returmed on
top of the stack, However, three {tems are supolieds

1, Driver Facllities Indicator (gee Section 3.3,1 for
detail)

2, The name of the deviee in packed radix=50 format
3, The size of the buffer deemed the dov(ce-ltandbrd
Since onlv ome arqument {s cassed, the ,STAT reutine con=

teins an_ aporooriate stackeshyffle operation, The Norma)
System Fxit {s taken to recall! the program,




PAGE. 3-41

Cbnmoﬁf‘l

The STAT routine {s also fully re=entrant, Moreover be=
cause no asgtusl driver esction is necesgary, the reauired {n-
formation is immediatelv available to the proarem when ree
celled, As in other cases where dgta {s returned on the

stack, e is the orogram's respons!bilitv to clean=yp after
the data has served {its purpose,

3.3 DNevice Drivers

Mueh has been seid in the previous sections econcerning the
fact that in order te orovide a device=independent environ=
ment, the drivers for all devices present a standard {ntere
face to the Manitor routine servieing a proaram 1/0 request,
The purpose of this section {s to summarize the festures of
the 1ng.rface mainly fgr reference, Aapondix € of the Pro=
grammer's Handbook provides a fuller descriotion,

Sections 3,3,1 through 3.3,3 discuss the two main parts {nto
whieh everv driver ecam be divideds a stendard {nterface
teble, which must _come first, and & packace of routines to
servige ¢the different tvpes of Momiter reayest and the ine
terrunts eceon!on&d by these, Section 3,3,4 then notes a
problem peculfer to the driver for the svstemedeviece,
Descriptions of the currently {mplemented drivers are availse
able within the Device Driver Package document, The driver
for the ASR=33 Teletyre {s described in Appendix A,

3.3.1 Dpiver Intenface Table

The firat part of every driver is a standerd tahle which can
be referenced by every Hon!tor routine, firstly in order te
determine the capabilities of that driver and secondlv to
acecess the approoriate service routing vie the Driver fueue
Monngement sybproytires, 8.C0B or S,CDQ3 (see Section 3,1.2,4)

The format of the table {s {1lustreted at figure 3I=22, in
effect (t {2 {mn two parts, the first of which must apoear {n
8]l drivers, the second {s necessary only {n drivers for
f{le=structured devices as described {m chaoter 4, The sige
nificance of the entries is as followss _

1, Musy Flag = s 8 @ when the dpriver {s available for
use and f{s reset by S,CDB to the NDR address for
the detaset beina serviced while the driver is busy
(see section 3,1.2.4), It enablea the driver to
access the tranofor contro! parameters passed by
the calling routime, In gemeral, the driver does



PAGE 3-42

mot clear this flac =« ¢thig is done by 8,CD0
(however see section 3,3.4)

2, General Facilitias = (s g serjes of bit-quitehou to
ensyre that the driver {s onlv called uson to pro-
vide services of whiech {t {s cepable, (bit set to |
{n each case)!

bit @ = mult{=detagset gupport

this bit {s checked by the (INIT
routime to orevent the assianment
of o single=purnose device 1{ke

e paperetape reader to more than
one dataset at o time,

bit { s Outsut
bit 2 = Input

These_two bits pre uded widelv to verify
transfer direction validity (1)

bft 3 » bingev
bit 4 » ascii

These two bits emable rejection of date
modes which are unscceptable, ¢,0., binary
on & kevbeard,

bit 5 s Soeciel Funetion routine mresent
bit 6 = Close routine present
bit 7 = Ooen routine Present

these bits are used by the relevant poutine
CaOPEN, LCLOSE, SPEC) to ensure that the
driver (s not called (¢ (t (s

unable to supply the service

(see also next section)

3, Specjal Facilities = acain uses bits to {dentify
particulapr facets of the drivers

(T X X R XX KX R E 2 3 X}

1. The corresponding bits are used {n all Monftor transfer
functions for e8se of checking, e.0. JWrites2, ,READm4y
file type codes {nclyde them, ete. 1IN mamny cases they also
are simitlarly used for device hardware control,



PAGE 3-43

bit @ = terming! device

This bit shows that the driver eontrols o
device 1{ke the console typewriter which al=
lows manual data=entry and therefore raises
scecisl oroblenms moted {m Apaendix G of the
Proqgrammer's Handbook, in serticular,
+WRITE forces outout at FOL even though the
Monitor buffer is mot yet fi{lled,

bit 2 3 multieunit systemedevice

As shown under 10 below, further table eon=
tries contain bit mep pointers for each unit
under 1 controller, I¢ the driver is resi=
dent, as (n the case 0f & svstem=device such
a8 RKi1, all these entries mugt be cleared
for o fresh start after & proaram faflure,
this bit shows that there (s more than one
entry requirimg suech treatment,

bit 5 = seauentia) maanetic tepe

This bit shows that the device, ¢thouah not
tully file=structured as defined in Chapter
4, has mevertheless a besic file format as
deseribed {in section 4,7,

bit 6 » reversible medium

This bit classifies 8 deyice 1ike DECtape
which allows tramnstfers {n oithnr direction
of tace motien and thug needs specis) treate
ment (see section 4,2.3)

bit 7 = f{leestructured device

This shows the device has full file cepabile
{ti{es a8 {n Chaoter 4

Stondard Buffer Size = shows the number of 16»word
buffer units to be cleimed vies S.GTB (see Section
2,4,2) for the interral buffepr used in ,READ/ WRITE
and BLOCK leve! /0,



10,

PAGE 3-44

0ffset to Interrupt Service Routine = erables the
inftialization royutines to set the apsropri{ate ade
dress into _the device {nterryot vector when the
driver s in core(l),

Interrunt Priorty Level = like 5, is used to set
the status into the {mterrupt vector, Normally {¢
is the same 88 the level at which the hardware {ne
terpPrupt OccCyrs,

Offeets to Royutines = are referermced bv their rela=
tive position {mn the table wheanever » Monitor rou=

times wishes to coll the relevent service via 3, CDR
(.oo section _3.,1.2.,4), These bytes are set to 0 i¢
the routine is not provided = elso indicated by the
eerrooaondinc general Faeil{ties indiceator (see 2
sbove),

Device Name = is the packed radix=5@ value for the
code allotted to each device.

MFD Start Bleck # = {s the hasis far the file
structure on & bulkestorage deviece and {s discussed
in gsection 4,1.2.1

Bitemap Pointers = erable the chaining of severs!
datasets sharina the same unit of a bulkestorage
device for outout and hence the same {m=core hleck
sllecation bit map as described in 3eetion 4,.1,3,
There mav be either | or 8 entries.  decending umon
whether the device has & single unit or several,

1. As shown in the Proarammer's Handbook, the effset cam be -

a positive, incrament of _up  to 256 words, Inm the larager

drivers,

ghiu may be insufficients in that case it may noint

to a JMP opr BR to the real start of the Poutine,

~—



a

PAGE 3-48

3 3. 2 Dr(vor 80rv1eo Routinoo

In_ aeneral any driver mey _be called to orovide one of four
services ond may therefore contalin the mecessary roytines
for the purooset

a, Transfer

b, Open

e. Close

d. Special fumetion

The first obv!ou.!v is o roaulromont in o) drivera; the
other. three are oresent only {f some actua) ahvn!ea\ device
action can be effected, For instance, o consele tvpewriter
output can be opened or closed with CR/LF outout, whereas on
o fileegtructured device as shown_ 1{n Chapter 4, both of
these funetions _are in fact performed by normal transfers,
Henece the aoproeriste Memitor reutines first check the Gene
ore) Fecilities switeh, deseribed in the orevious seetion,
before calling the driver to perform one of these three
funetions (see Sectioms 3.2.2 and 3,.2,4)

A1l deivers under DOS are handled on the interruot systenm,
The, seevige routines therefore merely i{nitiate the relevant
devicq setion, using the address stored in their first word
(see orevious section)

The routimes extract control date supdPljegd by the Monm{tor
routine in the DDB for the dataset reauiring the service and
tronomit it as necessary to the device control hardware, As
noted !n Section 3.1.2.4, they may use Registers freely for
this orocess, They then enable the device interrupt facilie
tv and retyurn to the Mom{ter routine, to ewait the first ine
terruot using the address saved on the steck by the JSR call
to 8,CDR,

The 1ndividu01 nature of each of the four routines s dis=
cussed in the Progremmer's Handbook, Apocerdix G,

3.3.3 Interrupt Servicinag

It follows ?rem the previous seetion, that everv drivepr must
contain @ routine to service the emabled {nterrunts, The
primary purcose of th1s routine {s to ensure that the data
{s tranaterred to or from the deviece in the form expected by
the colling Moniter reutine as satisfactor{ly as possible
end to allew for the handlino of any erroPr canditions which
may prevent this, The provisions of the device hardware of



PAGE -46

course determine the amount of supolementary work each
driver has to do {n order to meet thi{s putpose, Acain Ap=
pendiyx G_of the Proarammer’s Handbook discusses the possie
bilities in more detall.

Generally, thouah, at each fnterrupt the driver transfers
daty _between memory and the device allowing for the fact
that the Mon{tor can only recoarize ASCII or bimary, 1If the
driver needs Reaisters, {t {s respongible for sefeguarding
their content on the {nterrupt entry, 1f further {nterrunts
are needed to comolete the transfer, the driver tekes normal
RTI exits to await them, Whem the whole transfer {s done,
the driver recalls the Moni{tor routine through the Comple=
tion Returnm set into the NDB, with any necessgry status {n=
formation pleced in the DDB (parity failure flag {n Stetuss
{ncomplete transfer in Driver Word Count), As gshown §n Sece
tion 3.1.2.4, the Menitor routine expects RE to conteain the
address of the DD8 Jyst serviced and the contents of all Re-
gisters ot the ¢inal {nterrunt to be seved on the stack =
the driver con uUse the Monitor's S, RSAV subereutine to efe
foeet _this (see Section 2,4,1). The driver may disable {ts
interrunt facility before the recall) (t does not however
adjust _the orecessor priority level or clear the Busy Flag
{fn {ts interface table, The Monitor routine calls 8,CD7 to
perform these operations,

3.3.4  Systemedevice Drivers

As noted in the introduction to Chepter 2, the driver for
the svstem=device is part of the permgnently resident Men{e
tor. Basiecally this driver (s no different in function from
that servieina the same device when this (s used as s aubsie
disry peripheral {n & system based on agnother similar deve
{ee. It {8 called in the same way with {ts (nformetion set
into s DDB addressed by the content of {ts own Busy Flag,
even thouah that DDB belanas to the System as roted {n Secw
tion 2, Mereovepr svstem reauests take their place {n any
drfver ayeue like all the rest,

Nevertheless in {ts privileaed usage (t does have sn extra
respomsibility, If a_ trensfer connot ke accomolished be-
cause of some _hardware fatlure, the ordinery driver in most
cases calls for some dieanostic message, As Chaoter 7 will
show, this reauires the losding of & Monitor routine to cone
trol the orinting, In the interim the driver's Busy Flag
remains set, as {t {3 ssti{l) effectively serviging the
transfer reauest, For the driver of the systemedevice, this
cannot bet (¢ this {s stil] geen to be busy, the recuest to
load the NDjagnostiec Print reutine will be aueued to wait {ts
turn, To ecfrecumvent this, the driver must itself clear f{ts
Busv Flaa before requesting the error message, If necessa~»



PAGE3-47

PV, where the error can also be rectified by eperator action
and resumpti{on may then be requested, {t must also_save end
restore the flea content as escoroorfate, (In practfice, this
special  addition f{s {mecluded {nm the standard driver as a
conditional assembly eption o gsee secti{on 8.1)



LNK8LK

Fa,c B-Y¥

CRRoR RETURN APDPRESS (no buﬁng

PAMSET 1LOGICAL NRamE ™

@ or Serlo PIB APIRESS by ‘INIT

PEFRYCT # oF pends
PEy/c& L¥17T » Te Fogldow

Detault DEVICE NAME *

ExTEdsIeLE To
PROYIDE SWITCH
SPACE. IF THE
CommANY STRING-
INTERPRETER

Is AREING USE)D
(3\7..'. ;Od;co"td ‘\ﬂu#
ot Words o Follsw™)

F\al\bf‘ 3-1: UseER NNK-8LO0CK

T e an s A e G e w W S SRS e S W A OB A e

¥ = Packed |'ﬂ
Roduy - 5¢ Rocmal”



FPa 26 Z-YY
N
" SeaE asasowant| U
; ] Mamaty
POTENTIAL SEGOEATHS] , .
FREE CcoRE :
— o - 1
- o —— Il
BOFFERS N 0SE \
]
€oM e - - -4 NEXT SEGMENT SMAT ADDA |
T ' - < LAST
A - | orR @ w0 senmm_!;
TaBLE
°°"“““:‘_ ASSTENMENT
L &1 Extry #3
SN 2P
I
" _—
TEMPORARTLY !
1
~_ ’:_‘i"ij’jt__//—;\\\._: E y ASBIGHNENT
. weﬂ ] / E m'
MNoNITOR ! 72
RovTINES | .
- .
PP ol
\ PEVICE ABSISNMENT | ASSIGNMENT
TABLE ,
POTENTIAN p exmy $#
SEEMENT Y .
(.!OQ Fig. 3-3
e (= Fp 3
N R
I
RESIDENT :
MONITOR ; :
' 1~ .'50('& 2-2: Posmble DEVICE
o ! ASSIGNMENT TAGLE
gaT(ovi) [ reere smar ame. |-



-

Fa,g ;'50

LOGICAL. NAME of )A‘rﬂss'\':oncemd
PEVICE - NamE *
¥ of WaRDS » = PACKED w
'DEM UNIF # FoOLROWING M|I'5¢ &f"n'
=IL€ -
~
~NAame

FLE ExTensIon”

USER IDENTIFICATION CodE

:.aJn. 2-2: DEVICE ASSIGHMENT
TARLE. ENTRY FoRrMAT



MONETOR  LINK

DRIVER QUELE LINK

PAIVER AKROCLTINE
INDEX PRIORITY LEVEL W Q

Gssccaled DRIVER ADDRESD

Busy FLAae  (@:Idie)

USER LINE ADDRESS

PEVICE &ocK #

MEMORY BLFFER ADDRESS

BUEFER WORD COUNT

STATUS

comPLETION RETLRN

PRIVER WORKD CounT

BYTE CounNT

CHECKSLUM SToRE

WDDRESS of ASSTENMENT ENTRY

€L.&. LINK

Fa,c 3'5/

- Ses F'-‘3- 2-5

- see F'.é.a-s

- Ea. 3~
see '9 3-3

- See F'.S' k‘l‘o

F-'o'Bore 3~ DATRASET PATR- BLOCK

(»>2)



\—‘/'
T
L —
5 - e $ L Fa >»e #3
i ﬂ YR O e TTTTS R (TS B T T Py Y T @
- - - - i - - ! | ]
Jco 6434 =1 1 v | : u N
. | Lo o> | WS
s i = - - B
| = - - B | _
- - - - - -
i . R n | B i
— -— ad - o -—_
‘.'3;"“ 3-5: MonNITOR DIDS CHAIN
~—

1
; i v — ¢=ascIt
Harduace farfy fail PEVCE O ey
oD seen pechipe UNIT e Tms'ﬂ' out
Reverse Swireh Teanater IN

We Echo Contre)

F»‘Soc’e 3-6: DPB STATUS wWORD



F8’¢ 353
IUVER QUEVE ROUTINE :-

N PRIVEAR DEQVENE ROuUTINE
S OR Gev
A yaveR
PRDRESS
Frem
D8
[Eorer with v o -DvFR T Eafet with . 3L
R = I8 Qddress | RATSE To Rp *DIB Gddcess | RAIsE ©
Ri= Prwt Rootin c..egepgk‘,'a ¥or Datvser jusl | FR- 7.
J.ndey._'] Pagpretiafh ”Pvnced] Cs_ES:gQ
TN DD
.85y
3-ER6o  fsave »vR
?:oc-.metz(
NDE X -
CANL PRI S
\

9 :.5 3-7: DPRIVER OQuLEVE MANASEMENT



Lo -'son

:

I8 2

RN

Ta34 F

@] 3

dznd

i
--------—-4--—-.----4

]
[ ]
[}
‘
f 8
'
[}
L

P---g--=--

3-8:

£

F

T

x

A JIRIVER AQUVELE

SP: e

RETLURN PC - S.CHA CAL

SAVED I8 APDRESS [ex RF]

b

U

RECISTERD
sSAveED
8Y DRIVER

on
Come ETToN

J «TERRLPT

—_—

IWERRLPTED PROGRAN PC

sTMS

F.'auce

. 3-9:

EXISTING

STAacx

FINAL DRIVER
TATERRPT

stack STATE IN S.CDQ ARFTER
PRIVER ComMmPLETION RENRN

~—



. Paje 3-55~
eNTRY F@om FLOW-CHART FoR INMIALIZATION
moduLE  (INe)

Canl.
sYSITERN




csq ——p-—

LA

ToB

PROGRAM)
ARERNR

SaFETY MARSIN

DeIvER FoR
PATASET
INITIALIZED

(2= vov BYSEM -

DEVICE. oc €CITPENT)

DB Ror DAFMSET

RE=TOENT
MonITOR

F.su(’.— 3-“ : m¢
Taralizahiea

f_’a’c

abrec Daroser

-5

~~
4
Top
o>
7
"



Psye 3-57

TRABLK : DPEVICE avnocK #

MEMORY START ADIRESS

wWorD CouNT ( pasihve)

FUNCTION /3TATUS fToTT
[}
#H oF WORDD NOT TRANSFERRED !
i
t
]
]
[}
]
[]
L
]
]
]
s @ ;
----J
Evvor / J
//a»C-rofc»'f,jllll+lll_lllllll!
g,"dcovJ ‘Cﬁ,f‘ DECK: .D-‘ 'en:- T-_ ?:m
End of Doru @ = Forward TRANSFER QUT
) = Reverse TRANSFER TN

F'.Sc.re. 3-19: TRAN-block . Formar.



Fage 3-5F

tarine o8t
STRe R
L XY,

wAT

FonCHARYT R DATMSET RELENSE

RoutInE (RS

Fnsm S-\3.




—> sk

WOERFACE]

mTO
<AL SYSYMN

oP.rt l T

SCYv VP CAVA

APAROE. NEXT
CcAw. N

SCARE I >JTHG€.
| e QREB'
orP.G |
SET P
AN TERFRGE
FoR CALL

SR =)
i |
—iINK €18
To
>>8 ¢
C-EAK

FLowcHarT FoR
>PAASET ofEN
ROUTING. (cPN)



PROGRAMN)
AREA

PATA BUEFER

PRLVER
FoR

PARBET

Q) NoN-FILE DEvVIcE

Uppar
Memery

FREE CorE

SAfETY MARGIN

BIT-MmAL
SEGMENT
(ovTPuT oY)

Fr8

AT

Py

@

b) FILE -CATENTED DEVICE

Figoce 3-5: MEmMoRY BFATE olrer
PATASET afmn



N

Q) GENERAL FoRM -

Fayc F-6/

» PumbP MeDED enly:-

MAXTMUM KINE SIZE (byred)] (@) mAXIMuM KINE SI2e (byhsd)
STATUS NP F=-cr---1 sTATUS ModE
]
Acrual. evTE count () | ACNAL. BYTE CouNT
! LINE ADRESS -1
— - . L
— " RINE - : v_
I o :
L o S hINE ]
; —— —  DAM —
- - : B o
]
" —_— : — T T T
:
r .......................... J

-
--1 & CRETURNED BY MONITOR) J (PAe3ED &Y PROGRAM) ®
A . | | . S 1 | N N . | - 11 1
Ere of ¢ ASCTL
[ ] 6‘"“3
Pavd ¢ Formalted
Failute “""H ved ' Untermatied
Onaracter honivy/ | asx % Genarol Face
Tniespl &nng\t"nsu ;ch. t Pume
upplese © No facik
cnachkoom . — (teeminal E "‘:"‘B "
Tovotid ke _] Doviee) | & Nermal
V Special
Hates;: -

a) Muer be ram . ou"l\.d ber
o be oo

b)mvhm-wpﬂuk

Valid Modes ¢ -
Ferwalted ASCIT Paciy (Norwal & Spacial)
Fermatted ASCII Noo- m" (Normal & Special)
Unbornoed ASCIT Parity /"M'M" (Nermal)
Facrnatted &mg Nea:parily (Normol &Spce.o))
Unformatted Binesy -po.n!' (Normal)
(Durnp valid 1 all abeve cnuhs)

F'.s.;n 3-io: Usaer LINE, Formal.



EER VIR

BT HANDER

. ) e F-62
FrowWCHART ok REQAD - NG PROCESSING
(M@INSTREANM)

ADIVST sCr
RETVRN 7O =N of
UN\&UG e et

RD [ wWLT

LINE

RouniNE , SriieH

SET MRS
O USER

F\a\:wC 3-V7 (ﬁ)

pe el N E HDR
& NExT
DATR B¢
< 1 v Mcc
gLEBQ sves SET oP TRYE
RGOSy OHNYER swarT g
® Be mamis.z_e MDRESS Re e
Couny
N DB PRVER N DDS ADDLESS bl
- & ExX)7 0
‘ 1 USER
[~ Sev b?)e
o o R
Po .= b ’ CcCou~.
FROM LM
78 BomeER.

@:ssss: Fiques

aaeva a-G
A « ReEeN Pouy FeR
UNRLE RouTINE BXAN

—

~



ENTRY F€oMn
MR ISR EAT)

Rw X

CAm.
PRver
.
s.cpg

A

SAVE
" N Roi Yy
__’.ﬂ & RAISE
To fR\.7

*.INW

fape 3-67

SUB-ROUTINES TO HANDLE
DPEVICE TRANSFERS DuRING eea:o/wmve

Rw.R%

(R¢ -aT)

CLEARR

BT Jo

RESTLAL
e VSER | ) =
ReERS. To
N T

RW TOL

NoeMmiA .,
PRI\
JNEGATE

o \E
gev. 2iT)

SWORE
BlLocw #

wINK.
INCR. F-ﬂ
LENGTH

-y

FORCE

S,
RE - 1NT

ALl N,
PRof o

Fnb;f't. X-17 (b)

REURN
onN
Done
INTERROPT

» Dophcarad Poc Cocward
& 2Ecrupe Redt Seathes



Pegpe 3-6¥

SoRE
evie N

UBER

CAS

SET
CouNT
TO Swonw
[ A LT I
LnNg S.Z€]

UNIQUE. READ PROCEDIING SEQUENCES

Fca;'i- 3-18



1 R€uen TO

MNAINSYRERM
(via be‘\j

MRINSIEST UNIQUE WRITE PROCESIING

(ria ROIND SEQUENCTES

ﬁ'.aam_ 3-|q



Page 3-¢¢

Re -cErieY
(o]} ] INYERRUFCT
ENTRY Vi c;fr BEmuEoE]
-8 OENER
% cLenR %A SR FLow-CHART Fok
QoM RESES
EMT HAADLER b ERS DATASET CLOSe

Rourne (LD

CALl.

cw..C
CG.€aR

- e
—a susy

ARG

N TRKE SYSEM)
ST

GET B cLEnk

NoMmesER ~
=YY AST
: R°“’Em_ [RISF T |
LENGIH Broox,




FPage 3-¢7

SLxBLK: - STATUS FuncTIonN
] .
: Brock NUMBER (ruarive) ~ FiarBlock = @
]
3 WMEMORY BUFFER APDIRESS
1
: LENGTH  (werds)
]
]
L
]
]
]
| ]
]
]
t
]
]
'
]
[}
]
[} 13 2
L--] (RENANED by morToR) g
Donta Panty Emec ~ Inegal Funcrien e (Buhted
.'.h'..' ;'cvien. q;l: F::_-.n'ufld ouTHhuT
Preracyion Vidlah Sleck bayend Fie renge N

F'.a.,}.. 3-21: The BLOCK -black



sPFeLs:

,’C’c 3- 6

¥k oFf wolkDS FoLLOWING | FuNcTIonN coPe

ATPITIONAL SuPPoRT

>ATA FAom PROGRAM

OR STATLS DATR FaocY)

T monITeR A te«:‘m —
1}

Yy u"‘° Eo/____- e

e

/———\ - T

Figue 3-20: The Spacial
Funchiens Dledk

g



i’a,c 3-6%

N
R @ er
IIVER START : PRIVER BusY FLAE [ 3% 3Guresel)
SPECcT AL GENGRM..
FACTLITIGS FACILWLITIES
GEFESET Yo STANDARD GUTFER .
IATERRLPT SERVICE 1228 (b-word uvaify) Qgﬁu\aed
ofFSET To PRIORITY LEVEL Pec Ror
OPEN RouTINE. INTERRLAT SERAVICE AN Deurces
ofESET TO ORFRET TO '
C-OBE ROUTIANE TRANSFER RoUTINE.
ofFsEr o
(seaes) SPECI\AL. FUNCTIONS R.
Device name ((feew-S¢)
START B8LockK OF M.FD
-
————_mmeret Y PN |
AIT.MAP PaINERS ___ ] o r‘d
FOoR INDILVIDuUAL. e:::';
e DEVICE UNITS — ot
() or 8) | Fie-onented
thnﬂa
e e
- e e —

IQIVER SETLP %
INTERRULPT ROUTINED

:.a.:ee. 3-33: PRIVER INTERFACE TRBLE



CHAPTER 4
FILE STRUCTURES

Bulk media such as disks or maqretic tgoes are by their nae
ture capable of holdima mamy different sets of deta, The
sets mav be wholly unrelated to omne another ard may, {n
fact, belona to different users sharing the same medium, In
the normal way, mone of these users (s particulariy con=
cermed with how and where his data {8 held on the med{um as
lomg as {ts {nft{fal storsae and later {ts retrieval and per=
haps {ts modificat{en or extension ecan be accomplished as
simolv as possible, Moreover each usepr expects some measure
of protection againmst the corruotion of his _date either by
himself or other users, Nn such medis, therefore, the DOY
Momitar supports a file structure which aives users these
tacilities and this is described in detail (n this chaoter,

In this comtext, a "Fille" (s defimed ag amy loafcally com=
plete set of data stored om a bulk medium which can be ace
cessed through this file=structure, In adAdition to the
files:, the medium {s also used to store contro! thermat(an
by which the Monitor cam access the files on the user's be-
hal$ ("Directories"™) amd cam orovide their storagesspace
("Bit maps"), These ceneral concects are discussed in gec=
tiom 4,1,

As far as possible, the fi\e-structuro has been designed to
be device={ndependent, {n accordance w1th overall Mon{tor
philosonhy, at least in its wusage on Disks anrd _DECtane,
Howevepr obyvious differences (m those devices, especially the
faster disk sccess rate, have necessitated vari{ations {(n de=
tafled anplication, Sectior 4,2 (g concernead with these
variationrs,

Section 4.3 then descrihes the general manner {mn which the
Momitor Drocesses files and section 4,4 deals with some su=
broutines which are called by the f11e-manaaoment processes
to perform special functiomns such as directory searching,
Section 4.5 covers those processes which extend the standard
procedures described {n sactiomn 3,2.2 for ooenimg, transfer=
rima amd closima data=sets where these are scecifically
files. Fimally section 4,6 examinres routines especially
provided to service user reauests for heusekeepina oopera=
tioms umon directories or the files {n them,

It wil) be seen that the tyoe of file=structure adooted (s
basically dependent upon the fact that the given medium re=
adily allows updatimg {m olace, particulariv af control {(ne
formation, There are {nharently major difficulties {n Adeoine
Just this or {mdustryecomoatible maanetic tames, a mediuym
rnet nmrevicusly mentioned, Because of these 4ifficulties, a
simpler structure has been imolemanted for such tapes and
this {s the sublect of sectior 4,7



DOS4,RNN PAGE %2

4,3 Germera! Conmcepts

d,1.1 Files

As stated earifer, a file is any logically complete set of
data stored on a bulk-medium withim the framework of the
specie) fileestructure, It (s {dentifjed both Wy the user
end i{ngide the svstem by a name which must start with o
letter followed by any combimation 0f Jetters and digits up
to en overall maximum of 6 cheracters, The name may be
furthepr exterded by up to 3 letters or diaits to distinauish
between 1ndiv1dunl members of the gsame file family, For ex=
ample, extensioms PAL, 0BJ, and LDA to the mname PROGRM miaght
signify the assembler source, oblect and 1oad files for the
same program,

The way {m which the file {s stored upon the medium deoends
uypon the way {n which the user mnormglly excects to create
and leter process it, Two methods are defined for the DOS
Momitor amd hemce two differemt tvpes of file are allowed!
1, Linked files for sequential access
2, Comtiguous files for ramdom access

4.1.1.1 Linked Files

WNhem @ usep wishes to create a rmow file for data which he
will build up and usually access seaquentially by means of
the WRITE amnd ,READ reayests described in section 3,2,2, he
{s probebly unable te predict with any accurasey how much
storsce space the file will use unon the medium, Morenver,
becsuse of the time taken to process each individuo1 block,
{t is aimost certain that the medium wil) have passed beyond
the mext adlacent block before amother transfer {s reauired,
Ropo:itioning the medium to use ¢this bloek {s obviously
timevwastina,

Linked f{les are therefore self-expanding series of blocks
whieh are not ohvsicelly contiquous upen the medium, The
first bloek for the file i{s allocated from free socace on the
medium {mn responrse to a user reayest for its creation by ,0-
PENO, Further blocks sre added one at a time automastically
by the Mom{tor as the storsqge of the data requires this, At
the same time, to provide for future access, the blocks are
chaimed by a 1inkmword embedded withim each bloek, The
firsteword of the block is reserved for this purpese and
withim ¢the f{le s set to the device address for the next
Bleek in the ehain, When the file s finally clesed the
1inkeword of the last block used {s set to 7 as a terminator
and ary unused portiom of that bloek is ecleared, (On al



N

s

D084, RNO PAGE #-3

devices, hlock @ is reserved for system user there can never
therefore be any confusion conrcerning the terminal 2 1ink),
The format described above {s further {1lustrated {n fiaure
"1.

As previocously noted, the blocks of a Y{nked file are mot, {n
general, adjacent to each other, Optimally they are separe
ated by a qap which {s deeamed suffiecient to allaw the Monie
tor ample time to process one bloek before the mext required
reaches the regdewrite head of the device, The number of
blocks forming this aep is dependent on device characterise
tics and {s pre=determined for each deyice, This nmumher s
known a8s the "Interleave Factor" (IF), The gap may of
eceourse {mcrease between 1{ndividual blocks 4eocending unon
eurrent avatlabflity,

The limked file format readilv allows later extension of a
file since more blocks can he added end linked in the same
fashion as during {ts creation, Joinimg 1linked files to=
gether s also a relatively simple process when this con=
sists merelv of the replacement of the termingl @ Yink {n
the last block of the first file by the device address for
the firat block of the second file. (1) The aporooriate
Memitor reguests are therafore avai{lable to the user and are
discussed under sectfons 4,5,1 and 4,6,3,

On the other hand, Yimked files are not desigmned for ramdom
sccess since the only means by which this can be effected is
by perhaps a lemgthy search slong the 1inks of the file for
the reauired block, Currently the randomeaccess reauest
+BLOCK {s {llegal for Yinked files as noted {n section
J.2.3.

4.,1.1.2 Contiguous Files

Contiaueus files are specifically (ntended for random access
throuah .BLOCK, For this type of usage, the user is likelv
to kmow the sizes of his files, By definition, tos, the
current ohvsical position of 8 medium is far less relevent
to the oarder in which {ts dats {s processed, It is more ime
portant that the actual device block cem be readily deter=
mined from a relative value supplied by the user and can be
reached in minimal time, PRoth of these criteria are most
simplv satisfied by the use of an ares of nu~wericallv con=
tiguous blocks on the medium, The resolytion of actua!l

1. No attempt is made to fill ynmused bytes {n the last
bloek of a file extended or the first file anpended, “hile
these bvtes (al) nu'l) are no prohlem §n ASCIT files or For=
matted Bimary, thev can ba read as date {mr ‘Informatted Ring~-
rys Thus, extension or aopendace of fi{les in this mode s
currently not recommended.



DO0S4,RNO PAGE #-4

bloek {s obviouslv a simple calculation provided ¢that the
start bleock of the ares {s known, It alse follows that reswe
trictina operations or the file to a compact ares sn the
medium affords ootimal access, narticularly on movimg=head
disks because of the matter of head=positioning and on DECe
tace hecause of its single Yinear track mrature, A contiauye=
ous f!le format {s showm at figure 4=2, 1t should be noted
that nme limkewords are orovided l1nce they serve no usefu!
purcoses all words {ncluding the first one are thus used for
date storage,

Before a contiguous file can ke ysed, {ts storsae space must
be preallocated throuah the ,ALLOC reauest described in sec~
tion 4,6,3, Because the same medium may he shared by both
1inked and contiquous fites, some confliet {n hlock avallae
bility must eventually eccur, even thouah the medium mav not
actually be filled, To delay this as long as possible,
1inked files are set up on 8ll media et the fromt, or
low=address, end, and contiguous files are qiven space
startina 4rom the high=address end, 1I¢ the confliet ddes
occur, _as evidenced by a failure of the ,ALLNC proccessor to
tind sufflcient scace for a new contiguous filoo the user
must efther delete some of his ether files or transeribe
them in order to utilize more fully smeller dis;onneeted
gaps between used blocks, possibly created by earlier delee
tioms.

This simple scproach to random access has {ts disadvantages
in that, once the contiauous file area has been established,
{t cannot be extended since there can be no quarantee that
the reauisite adjacent Dblocks are availables nor canm such
tiles be loined together unless they are juxtaposed, an une
likelv situation in most imgtances, A user reauest for efe
ther of these orerations will therefore be relected by the
Monritor., Against this, however, the user {s not 1{mited to
random access on contiguous files, Provided that he onen
the file hy the approoriate ,OPENI or ,OPENC command, he can
process hig catsa seauentially by READ or ,WRITE, The Moni=
tor also enrsyres that such ooerations are effected only
withim the ppreset file=bounds.

4.1.2 Dijrectories

The Momitor emplovs & two=tfier index structure which s
stored on the medium with the fileg irn order to maintain
contro]l information yoonr those files and onm the users to
whom thev helong. At the first leve!, a Master File Direce
torv (MFD) primarily identifies the authorized users of o
medium and indicates the start point for the second=leve!
User File Directory (UFD) associated with each of these
users. The UFD catalogues that user's files,

~



DOS4,RNO PAGE 4-S

Before a medium can be used for filo-atorooo. 8 basic direc~
torv structure consisting of the first twe bHlocks of the MFD
must be established uoon ift. This may be effected in omne of
the following wayss

1. On the svsterm device, or on unit @ »f the svstem
device, {f this has severa! units, the besic direc=
tory {s automaticellv set up as part of the loading
of the svstem bv the SYSLOD proqram™ (see section
8.2,2).

2. Nther deyices or other uni{ts of the system device
must be initialized by means of the /ZF switeh pro-
vided by PIP=i{]1 as described {n the relevamt manual
(DEC=11«PINDA=D)

In essence, the directorifes at both levels are themselves
1inked f{les {n that the individus! device blocks sllocated
to them ere chained throuah the first word of each block and
further blocks may be edded as and whemn thelpr date=space (s
ti{lled (except on DECtape for reasoms given {n section
4.2.2),

4.1.2.1 MFD

The MFD always storts at a bleck (MFD1) which is oreset for
each device, The device address for this hlsck {g stored
within the relevant device driver interface table +Aiscussed
in loegion 3,3,1, It {s the only data mot gtored uoen the
medium {tself and (s the startepoint frem which al) file ope
erations are beaun, However by design MFD1 falls within the
area reserved for Monfitor usasce on 8 medium used as systenm
devicey 1t could therefore be write=protected in future Mone
{tor revisions, As @& result, the date {t conmtains {g set up
duyrina medifum=initialization and thereafter is onlv read,
Figure 4«3 shows thet this currently includes aeneral! cone
trol data such ss the fixed Interleave Factor for the device
and pointors to blocks reserved for bit meps (Adescribed {n
the nmext section), It also of ecsurse aives the 1ink to the
second MFD block (MFD2) which starts the direectary nroper,

MFD2, {n aeneral, is allocated space at the high=address end
of the medium (DECtaeve excluded), also during the inftialje
gation mentioned oreviously., Its format and that of subse~=
quent blocks which may he added l1ater (a feature however not
currently {mplemented) provides for a series of foureword
entries as shown in figure 4«4, The sian{ficance of each of
these words (s as follows!

1. User Idcntification Code (UIC) » {s a two=byte vae
fue f{dentifving the individual user and the aroup
with whom he may be workina, as daeseribed {n the



D084 ,RNN PAGE %-68

Programmers Handbook

2, UFD start bleck = soints to the start af the bpars
tieuler user's UFD chain (inftisllv set to @)

3. Number of words oer UFD entrv « (s provided against
cossible future chanaes {n the f{le=gstructure which
micht lead to exoansion of egch entry (currently
set ot 9)

4, (Reserved for future expansion,)

After imitialization, the only entries in the MFD on the
systemedevice are the Svstem {tself (Uger 1,1) and o "gener~
al usep" (220,202)) on & mnonegystem=device or unit there (s
Just one = that for the user who reayested the {nftializa=
tion, A1l other entries are zeroed., Before anvy other user
can store _files on the same medium, he must request the sete
tina=up of his entry by means of the /EN owitch in PIPeiy,
Until ¢the user asctually creates his first file. however, mo
UFD i{s established and hi{s MFD Y{nk wopd remaing at @,

4,1.2.2 UFD

The format of each UFD block is depicted at figure deS, The
sfignificance of the items set up within esch 9=word File Ene
try is as followss

1, Filename = {8 the Becharacter name for the file as
described in section 4,1,1, stored across two words
in left=justified Radix=53 format (see section
5.3).

2, Extengion = {s the 3e=character suffix to the
file=name also described in section 4,1,! end sim{e
Tarly stored {n Redix=53 {n one word,

3, DNoete = {s extracted from the loweordear 12 bits of
the value currently stored {n the Monitor SVT by o
kevboard DATF command (see section A,4,1) at the
time when the file was created,

4, Type = (s oresently used to discriminate between
Yinked and econtiguous files (A 8 | regspectively) =
the remainina three hits of the same word are res-
erved acainst the ocossible future {ntroduction of
ather file types.

5. 'Isage count = coverina 6 bits, s set to 77 when
the file (s ooened for cregtion and prevents the
openina of the same file for anvy other oursose un=
t{l it has been completed, The count {s then reset
to s The remainine capacitv of the six bits



D084, INO PAGE 47

(1=76) {s provided to _enahble the usage of the same
file=gstpucture i{n anv fyture enerating system ale
lowing more than s sinmale user, It would then be
necessary that the Mon{tor for the svstem ghould
know how manv users were currently uork!nq uoon a
fqle {n order to prevent {ts delet{on or mod{fica=
tion while still {n use. (This feature is mot ime
olemented under DOS because {t implies that every
+CLOSE upon & file (even though this was ocpened ore
foimally for ({nput only) reauires directory
cleaneup action, This obviously takes time ocartice
ularly on DECtare, It {s mot therefore deemed wore
thwhile since_ {t merely protects the single user
against himgelf),

8, Lock =» ysing 2 bits, {s set to | whenever the file
is eopen for extens{on or update to orevent fyurther
onenina for the same purpose unti{) the first opera=
tion has beern completed, The file may st{l) be
opened for {mnput only during this oceriod, however,

7. The remainine bits in this word of the entry were
origimally reseryed for the storage of the
data=mode of the file content (as described under

«READ/,WRITE {n section 3,2,2). This was not {m=
plemented im order to allow files of mixed mode da=
ta. These bits asre row spare,

8, Start = shows the device address for the first
block allocated ¢to the file and for a 1inked file
thus forms the start of the f{le bloeckechain,

9, Lenrgth = {s the number of phygicel blecks ecovered
by the f!le and basicallv enables control of rondom
access of econtiguous files.

19, End = shows device address of the last file=block,
s mecessary reauirement for Joining Yinked files,

11, Protection code =~ is the eight bit value by which
file access can be den{ed to uynauthorized users and
which is described more fully ¢{n gection 4,1,.4,
(The remainina bvte of the same word is currently
spare,)

As moted earlier, the first UFD bloek {s allocated to a user
and {s linked to the _avoprooriste word of his MFD entry when
he creates his first f{le, The block {tself is cleared ond
its first _entry slot (s then resepved for the new file,
Subseayant files are associated with the ¢first oaveileble
empty slot within the UFD until no more remain, At this po-
int a further block is adied and linked to the IIFD "file"



D084 ,RNO PAGFE ¢ 8

and {g cleared for sim{lar action, It should he noted that
wher a rew V{nked_ file (s to be created, on {nftia) entry of
Filensme, Extension, Date and File start block {s made when
the file is ooened, This both reserves the Airectory slot
end orevents the openinn of another file by the same name,
The ragt of the entry {s completed when the file {s_ closed,
If o file (s celeted, only the first three words of {ts di=
rectory slot, {.e. 1ts name and exteansien, are removed as
this s sufficient to free the slot fop further use, No ate
tempt (s made, however, to returmn completely empty !IFD
bloeks to the free spece omn the medium,

4.1.3 - Bit Maps

The mechanism by which the Moritor controls the allocation
of the i{ndividual bloeks on a medium is a bit map {(n which
each bit recresents one block. The bit is set to @ wunti!
the corresponding block has been assigred to some file when
it is reset to 1, As with directories, a master cooy of the
bit map representina the whole svallable medium {s stored
upon the medium itself,

The size of the complete mao for any particular medium is of
course _a function of the overal! size of the medium ftself
and varies between devices, It follows, however, _that on
all but the smallecgracity medis more than one deviece block
is needed to store the full map, Moreover it would obviouse
vy be unreslfgtic for the Monitor to have all of {t in core
for file=processing st one time, The map (s therefore die-
vided {nto seaments, easch of which occuoies one deviece hlock
and onlv one seagment need be availahle in core at any {ne
stance, This mulitiesegment structure was selected, rather
thamn another scheme {n which the overall mao size {s cone
stent for a'l devices and individual bits cover & group of
blocks, mot Just one, because {t offers the fallowing advan=
teges!?

1, Wastage of the madium {s keot to a minimum (hal? @
bleck on averace per file)

2, By restricting file operations to a compact area on
a medium covered by the single segnent allowed in
cores greater efficiency s obtained, esoecially on
moving=head disks )

3, Control of allocation and of bloeck interlesving s
relatively simple,

For the sake of devico-indenondence. the size oi a map seqge
ment {s constant for al) devices and is based ucom the eaca-
city of the smallest block=si{ze, mamely 64 words, Figure



DO0S4,RNO PAGF #-9

46 shows that the format of the resultimg segment {ncludes
8 foureword preamble, the purpose of which {s indicated bee
lowt

{, Link to mext block « {mpl{es that a covplete medium
hitemgp 1s acain a form of linked file and might as
8 resylt be stored anvwhere on the mediunm, In
oractice, however, the {ndiyidual blacks are cone-
tiquous and are aenerally set up durina {mitializae
tion at the hioheaddress end for reasoms te be give
en in section 4,2, Currently also the map=file
cannot be extended to cover an increase im the ca-
pacity of the medium as it has been assumed ‘that
anv such {mcrease wil) mormally be followed by a
complete refinfitializetion which will rebuild the
whole bitemap afresh, 1t should be noted, too,
that because randomeaccess cacabi{lity {s needed,
carticularly for file deletion, an index of blecks
used for the bit map {s stored in the first MFD
block as fndicated in the oravious section, This
index, rather than the 1inks, may he used {mn some
imstances for sequential access as well,

2, Map number = {3 needed to allow computatiom of the
range of the blocks represented by the map gegment,
using algorithms like the one followina (based on
aymbering frem 1)

HIGHEST BLOCK = (MAP SIZE X 14 Y MAP #) < |

3, Map size = gives number of words actudlly uysed by
the mgo since some devices (particularly DFCtace at
oresent) may not need the whole of the seament of
constant size for their complete mao, This {nfore
matfon {s therefore reauired for the above comoutae
tion. It s conatent for & afven Adevice = {f al)
words {n the last man segment are not reauired,
they are all set to 177777,

4, Lirk to first block = {s provided to ensble the
Monftor to apply the ohilogsophy mentioned {n the
orevious section = that of keeping Iinked files as
far as possible at the front end of the medium,
This imolies that Wwhemever the map sagment currente
1y {n core shows that no more blocks are availabhle
within {ts area, the search for another free block
for a linked file must always revert to the start
of the map {n case some earlier blocks have been
released by some recent file=deletion., This 1ink
facil{tates the orocess,

The remaining 6@ words of the segment form the map {tself,
ecoverina 960 Blocks on the medium, The numhering of the



D084 ,RNN PAGE 5410

bits within each word is from right to left, Thus the fole
Yowina simple alqorithm suffices for the conversion of a re=
lative hlock nyumber {nto the man posfti{on of its representa~
tive hits (agsuming Bloek @ s Word A, Bi{t B)

{, MYap word = Block/i6
2, At position imn the word = remafnder

As mentioned above, the hitemap sgtructure s established
durina medifum={nitialization, At this time the whole map {s
cleared to @ with the exceaption of the bits whiech reoresent
bloeks already allocated for the MFD, the mep {tse)f and
perhansg the System and {ts UFD, 1Imn the last meo seament any
bits for which there are no correspondinag blocks are also
set to 1, In general, thereafter, ss o new file {8 created,
the Mon{tor reads an sporopriaste seament {nto core, unless
one {s alreadvy there for some other purnose, The relevant
bits for blocks essianed to the file sre set to 1 {(n the
core seament while the f{le {s being buiflty when {t (s
closed, the core seament is pewritten into the master copy
on the medium, 1If the file {s Teter deleted, 1{ts assigned
bits are reset to 9,

4,1.4 File Protection

Durima the introduction to this chasptepr, {t was stated that
eany file=owner expects to be protected against the corruyp=
tion of his ¢t{les either by himself or other users sharing
the same medium, In fact he probably alse wants to contreol
the form af access those other users have to his files,
Moreover he may naturally wish to gfve areater nrivileges to
those with whom he {s closely associated in his useae of the
svstem thanm all others,

Figure 4=7 {1lystrates an eightebit code by which the user
con indicate his reaquirements for each of his files, The
purpose of each of the three fields shown is as follows:?

te Nwrert the user himgelf can, (n qenersl, elways ace
cess his files {n anv mamnner he chooses (e,q,
Read, Write, Delete, etc.). However he s afforded
two safeguards represented by the bits {n this
field, B8y setting bit 6 to 1, the uyser can denv
himgelf Write and Delete capabilities iIn order to
nrevent aceci{dental corruntion of his data, With
hit 7 at 1, he can protect the fila against aute~
matic deletion bv the system when he logs off the
computer ( 8 feature not yet {mplemented {imn NOS),

2, Grouot this field can be set to & threesbit ecode by
which the user indicates the leve)l of access he (s
nrepared to allow his "friendg", {,e. those who



D084 ,.8/NN PAGE #-11

have the game UIC aqroup number a8s himself, The
codes oresently assioned arel

no access at all
rFUN access

read access
write access
delete access

D AN
" uans

At any level, of course, the 1{incliusion o0f higher
levels 1{s imolied, For example, with protection
set at code 1, the Monitor will sllow a "friend® to
write, read and run the fi{le, but not Helete {t,

3, Others! this field cen be sim{larlv ecoded to show
the 1level of access allowed to usars outside the
owner's arouo,

As indicated {n section 4.,1.,2, the resultant byte {s storesd
in the fi{le entry in thae UFD whanm the file {8 establ!{shed,
The Monitor slways checks every reguest for access against
the stored code (see section 4,4,2), The yser can change
the code at any time either directly from a proaram using o
+RENAM or KEEP recuest described {n Section 4,8,4 or
throuah the /RE or /PR switches avallable in oIP=i},

It shoylo acaim be noted that the protection offered by this
code car be valid onlv when every user sharing the medium s
performina all his 1/0 operations within the f{i{le=strycture
framework, f{.e, by oREAD, (WRITE op ,BLNCK, The Monitor
cannot and will nmot denv access of anv sort ta 8 user re=
questima . TRAN (even to its own filag),



D084 ,RND PAGE #-12

4.2 Apdlication By Devico

The overall philosonhy for the POS f{le~structure, described
{n the orevious section, orovides for ooeratinans which can
be device~i{ndependent to some considerahle dearee ond this
concent has been homoured as far as possihle in {ts implee
mentation on all disks an+4 DECtape, Nevertheless, thare are
obvious problems in rigid adherence to it at everv point bee
cause _of the nature of the devices themselves, This section
therefore f1lustrates the detailed apcliication of the
f{le=structure and {n particular indicates variations from
the nopm,

4,2,1 Fixedehead Disgks

Although the RF1l disk {s basfcally woprdeor{ented, DNS ime
peses a bloek structure based on A4 words tn a block, with
the driver orovidinag the necessarv address~comvarsion, The
RCi1 disk driver always assures a similar hlock size and in
response to esch system request for a block, transfers the
sperooriate double 32eword gector sccordinalv, Furthermore
the additior of extra platters to either controller merely
extends _the continuous surface avajilable toc the system (preoe=
vided of course that the user has physicelly assigned al!
his platters in & strict sscendina seauence from 2), To al)
{ntents and ourposes, therefore, RFi1 end RCi! systenms
differ onlvy {n their overall canecity and hance the number
of bitemao blocks needed to conmtro)! this, The followinma
table shows the correspondence?

PLATTERS RLNCKS BTT MAPS
1 X RC11 1724 2

2 X RCi1 2m4A 3

3 X RC11 n72 4

4 X RC1! or

1 X RF11 4098 5

2 X RFit 8192 9

3 X RF1t 1288 13

4 X RF11 16384 18

The basic format for efthar disk, wher not {n use as the
system dayice, is §l1lustrated at fiaure d4=9, This shows {n
particular that the requisite bit=map bloeks are in a con~
tiguous area at the hioh end as was noted in section 4,1,3,
They are stored here for two reasonsi

1. By their nature, they must be updated and should
not be 1in anvy potentially write~locked area = the
too of the disk {s the least 1{kely nart to be pro=
tected,



DOS4,RND PAGE 413

2, The top of the diok on the other hand {s the norme!
place for the storage of econtiaueus files = the bit
man blocks are thus compacted to keeo them oyt of
the way,

The question of write=protection introduces anmother digsimi=
larity between the two tvmes of disk when used as
system=device. The hardware faci{lity on both provides a set
of switches with each switeh covering a particular area of
the disk syrface, The area however (s not the same, For
reasons stated in section 2,1,2, DOS does not currently Ale
low the user to apply any of theco sWitches, Nevertheless
to meet the future nmossibility that the Menitor {tself miaht
be write=protected, the top of the areq reserved for {ts use
hes been set to coimcide with am aporopriate switeh, 0On
tigure 429, which gives the lavout ot & svstem disk, a
Hardware Protection Line has been shown correspanding tot

1, Emd of bloek #777 on RF11 (eauivalent to word
#777277)

2, FEnd of block #437 on RC11 (eauivalent to actual
block #1077)

F{le=orocessing ooerations on both RF11 amd RC11 follow the
genrers! outline given in the previous section, Limnked file
deletion meri{ts further commont here si{nce this (s one opere=
ation handled differently on DFCtape and dink. A part of
the process (s the adlustment of the master bit-mae to re=
flect the blocks released by the deleted file, This can one
v be sccomplished by a search of the file i{tself to detere
mine the relevant blocks, since the general structure pro=-
vides for no other record of this, Sueh search alse imnlies
that the Vink=words on the blocks themgelves must be removed
to a.f.cunrd sgainst ootentia)l disk=corruotion latery for,
should a orogram or svstem failure occur, filas might remain
incomplete on the disk and the results of deleting them {n
this wav could he unpredictable, This search and linkeclear
obviously takes some time but it {s not deemed unreasonable,
because of the relativelv fast disk access rate and {t avo-
{ds other comnlicatiors to be discussed in section 4,2,3,

The interleave factor for Iinked files on both ?F11 and RCH1
is 5. . This has been based upon the optimal time taken by
the Monitor to complete the processing {nvolved {n loading @
proaram from these disks, .

4,2,2 Movima=head Disks

The onlv meving=head disk presenrtly suooorted bv DOS is the
RKitl, thouahkh this occurs in two vepsions = one hiah density,



DO0S4,ANA PAGE #-14

structured into 48027 sectors of 256-words each, the other
1ow depsitv with gsectors reduced to 128 wordg, For simplie
citv, boeth versions are handled by the Monitor {n 2368«word
blocks, the RKil driver again providing address=conversion
where reauired,

Unlike the fixed=head disks, the addition of extra RKeit
cartridoes _cennot be treated as simple extensions of a conw
timucus surface, since the user cannot be expected to ratain
the same set of individyally changeable cartridges tegather
a9 an cnt!tv. Instead each must romain an inqoeondant unie
with its own structure = and, in fact, 18 o different medium
in the semge of the definition of & file aiven in the introe
duetion to this chapter, As 8 resu't, the number of bit
maps to control the capacity of am RKij disk {s alweys cone
stant, _though of course there is a difference between the
two versiencl

HIGH DENSITY (4880 RLOCKS) = S MAPS
LOW DENSITY (2400 BLOCKS) s 3 MAPS

The Yayout of am RK11 disk, whether uSed as the svstem deve
{ce or nmot, (s otharwige the same ag that {(1lustrated for
the fixed=head disks at figures 4=8 and 4«9, In particular,
this meeng that the bit map blocks remain together at the
top of the disk, hecause this acein allows the user the mogt
contiauous space for 1srqe random=gccess files, This (s
consi{idered to be more 1mooreont than the roduc!ion of
headmmovement, whiech might fo1\ow it the mao segments were
discersed across the disk surface 80 that each reside more
closely to 1{ts aree of control, (This was orfginally
plarned = hence the linkedef{le structure of the mao,) It
should also be noted that "hardware oreotection 1ine” as such
i{s meaninaless for RKIl, since this offers no selective
write=lock feature = {t §s all or mothina, Nevertheless,
the boundarv it represents is the end of bloeck #277 whieh
gives the Monitor ouff(ciont reserved areas for its oresent
needs and some room for expansion,

Filo-aroceoaing for RK11 again follows the outl!nol given {n
section 4.1 as aualified at the end of the crevious section,
The Interleave factor is also 5 on the seme Hhasis as that
used for RF11 anrd RC11,

4,2.3 DECtepe

Although, {n many ways, DECtape can be equated to disks {n
mode of usaae to the extent that most f{le=orscessing onera=
tions can be truly device=independent, {t has one serf{ous
drawehaekt it §s single=tracked and {t is Vinear, It {s obe
viously slower therefore and tape=positioning assumes a much

Nt



N~

D084, RND PAGE #-15

greater sianfificance, One mimor effect of this (s that Di=
rectory end bit map blocks, which sare generally accessed ({n
the same sequences should be kept resgonsbly close together
rather than at oprosite ends ss on disk, This {s resdily
feasihle when the overall structure allows allecation of
these blocks {n any oos{tion and opotential wr!te-loekinc
does mot reauire comsideration, simce this is not selective,

A second conseaquence is a modification in the formet of @
linked ftile, I1f & search for the next fres hlock!reaches
the end of the mao seament currentlv in use, {t is ressons
able that this search be resumed from the start of the seg-
ment on disk = but not so on DECtane, BRecause of the ohysi-=
cal tane_ Dposition, it makes more sense to use the hardware
tacility for transferring {n reverse, However, this facilie
ty onlv affects the access of the tape) at the core end,
transfer {a always forwards, Thi{s means that blocks written
backwards must also be read backwards, Hence {t becomes ne=
cessary to remember the tape transfer direction when the
f{le is crested. Since one DECtane contains enly 576 blocks
of 256«words eachs, it is convenient to use the 1ink for this
purooset

Positive 1ink = presd nmext bloek forwards
Neqative 1ink s read nmext bloek backwards

The search algorithm actually applied to DECtene uses the
fact _that when the tane (s stopoped by the driver after
tron.!.rn!na a block forward. it s aonroariotoly positioned
for {mmediate access to the orecading bleck tvice verss for
a backward transfer), Thus this {s the point from wh'ch the
search {s resumed., Hence the formgt of a DECtace linked
file m{oht apoear as {1lustrated {n figure 4«12,

Since the driver alwavs stoos the tace between transfers,
tape nosition {s also the basis for the {nterteave factor on
DECtene, presentlv set at 4, Owing to the time actually
taken to brima the tace to a standst{ll and later to brina
it back ue to normal speed for s transfer in the same direce
tion, three blocks ususlly pass across the read=write head,
Occasiomally o fourth mav also, especially i f the
hrakimg=mechanism of the transport {s incorrectly adjusted,
and tape repositi{ionina {s then necessary, However, the free
auency of such occurrence s mot sufficiently high that it
currently warrants an increase in the IF when this m{ght unme
necessarily {mpose some 54 mi{lliseconds of extra access time
tor each hloek in almost all! DEftape linked=f{le orerations,

Linkedef{le deletion was specifically mentiomed {mn gsection
4,2,1 because this {s one maJor area in which DECtane {s
differert., The disk method was shown to be s matter of
searching the file for its associated blocks and at the same



DOS4,RNO PAGE #-16

time elecriﬂc the Yinkewords, Nn DECtepe thia (s out of the
auestiony the seasrch alone might be & lengthy ocerations to
scceass each bloeck & second time to clegr (ts 11nk-uord. with
tepe revositioning each time makes {t 1maoqsib10. The only
elterngtive (s the orov!s!on of a separate record to show
the bleeko in each file and the shortest form of this (s
snother bit map, However, this then ra!oeo the prohlems of
havina severg)l maps in core at one time (the mastep for de-
termination of block availability eand one for each file cure
rentlv under ereation) and of their storaqe upon the DECe
tape, Both questions have been solved by {mposing the fole
lowina restrictions on DECtape usage, which are reasonable
{n {ts case but could not be comsidered for diskst

1, By allowina only ome file under creation at & time
(not without sense for practice)l oserating econsi=
derations) the need for anv but the master bit map
in ecore disacpesrs, The ¢{le copv can be cone
structed from thae before end after states of the
master, Apart from saving core, this alse recuires
less departure from the method of qemeral process~
ima = merelv one extres operation while the file {9
eclosed.

2, Ay {mposing o maximuym of 56 f{les on a sinale taoce,
the i{ndividual f{le maps can be packed into a con=
tiauous erea of 8 blocks (gince eaeh bleck of
256ewords cen accommodate 7 rmans each using 36
words), Moreover, this fiaure of 56 is also the
capacity of 2 UFD blocks on the basis of 28 9=werd
entries oer block, The mao for anv #110 is easily
accessed by equatinrg {ts re!otivo sosition in the
contiguous area to the relat{ve oosition of the
same fi{le's entry {n the UFD, For example, the
30th file in the diroctory hag its mao ostored s
the sgecond entrv in the fifth bloeck of the map ar=
ea. (It should be noted of course that the foregow
tna need not epolv to contiguous files, If any of
these are established on the tace, thelir corres-
oonding file meos are left blank,)

The layout of a DECtavce, allowing for the Ilimjtations des~
eribed, s {1lustrated at figure 4«1f{, It wil)l be seen that
the full MFND/UFD struecture is provided, Basically, this ma~
intaing compatibility with disk operations, TIt also enables
the perhacs dubious facilityv of several users sharing the
seme tape, The UFD, of course, cannot be extended, in view
of the restriction on the number of files, (Simee DNECtape
{s mot currently & cotentia) system device, there {s mno cor~
responding {1lustration,)



D084, RNN PAGF +#-17

4,3 File Management

DOS file manacement {s performed by s get of Yomnitor modules
whiech are a1l called by EMT, each having {ts own uni{aue
code, However all of them have characteristies which make
them d{ffarent from the general I1/0 modules discussed durina
chaoter 3, The puroose of this section {s to examine these
characteristics and then to diseuss their common interface
channels, The {ndividuasl! modules will! he described (n fole
lowina Sections.,

A1l the modules concerned are listed with their EMT codes n
figure d4d=12, They are shown to fall {nto ome of four cate=
gori{esy

1, Modules called directlv from s user orogram to pers
form f{le=housekeepina functions, e,0. «ALLOC,
.DLETE' th.

2, Modules called bv other Monitor routines, performe
{ma general 1/0 operations suych as .CPEN, {mn order
to previde file=handling,

3. Modules called generally by other file=manaqemant
modules to carrv out eommon onerations such as d{e
rectory searchina,

4, Modules speclallv associated with other modules {n
the file=management set,

This arouoing {1lustrates one obvious difference from the
general 1/0 modulest only those {n the first category are
{mmediately accessible by a user, These of course, being
1/0 modules themselves have EMT codes imn the range A«27 as
the 1{st shows, They have nprescribed callino sequences,
described Jn_ the Proapammer's Handbook, which {melude the
passing of information on the processor stack and this myst
be removed before the user proaram (s recealled, On entry
from the EMY handler, the stack too contains the contents of
the onprogre™ Reqisters as described in section 2,2t these
must be restored on exit, Actual Register contemts opassed
by the EMT hagndler are esoecially preleyant to these modules,
{in carticulars

R? = address of the DNB for the
dataset heing serviced

Rl = address, on the stack, of the eal)
parameters passed by the proqram

The modules {n cateqories 2 throuah 4 on the ather hand are
{nvisible to the user as indicated hy their EYT codes., In
the Proarammertis Handhook these are shown as reserved for
system use, They are not {mn the I/0 range since the mo=



D084 ,RNO PAGE #-18

dules, thouah st{ll performina 1/0, are called at a second
or even third level within the Mon{tor and the reaquisite ine
tormation has already been supplied at the first Jevel,
This fact also causes othar chamqes in the cal) and exit {ne
terface as follows!

1, Calling seauences need follew no Aefinite format,
Trans{ent {nformation mav thus be transmitted ef=
ther throuah the stack or the Reaisters, whichever
{s more convenient to the modules heina called,

2, !¢ the Registers are used, the called routine stil!
receives the data on the stack, as saved by the EMT
Handler, (A typical stack following a call {s (Ve
fustrated at figure 4«13,)

3, Unless the {nterface requires {t, the saved Regige
ter contents must be restored intact te the calling
routines, This applies in partfeular to cetegories
3 ¢ 4, Medules {m cateaory 2, {n fact, exit die
rectly to the usert they therefore actually remove
the Reqgister contents end the saved call PC and
status in order to produce the stack state for suych
exit,

4, Contemts of Reaisters on entry from the FMT hgndler
in general have no significance,

A less apnarent difference between the f{lewmanasgement mow
dules and the others arises from the fact that thev sti{l)
provide proaram services, The yser can therefore select
between making them resi{dent, either permanentliy or just fer
a proaram run, or leaving them to be gwaeped {n when re=
auired, For this purcose, he {s informed of the existence
of all of them = even {f they are shown only as subsi{diasry
routimes {n Appendix C of the Programmer's Handbook, If he
chooses resfdency, there is no probler, The swapping situa-
tiomn _however (s another matter, 1In reality, modules {n ca-
tegories 3 & 4 serve as subroutines providing snecial funce
tions for the others but they cannot he brought {nte the
Swao Buffer for this is still occuried by the calling mow
dules i{m cateaories 1 and 2, The solution is that the
latter ebtein arothepr 256-word buffer from free core, via
the Momiter 8S.GTB routine described {m section 2,4,2, and
move themselves {nto {t., This then leaves the Swao Buffer
free for the called routines to use {n the mormal way when
reauired, as described {n Section 2,3,

The actual mechanics hy whieh this operation is mamaged des=
erve further exnlanation, Imr the ¢irgt place, the movesoyt
must only occur {f the cateaory | or 2 module {s actually in
the Swar Ayffer and mot already resident outside {t, for obe
vious reasons., The module must {tself resolve this and {¢

R

~—r



DOS4,.RNN PAGE# {9

uses the fact that the llsage=Cfount in {ts firet bvte can one
v he @ {f {t has not received control throygh Swap Area
Manager ({mn much the same wav that the other modules desw=
cribed in chaoter 3 determine their ex{t seauance), If ¢the
count {s non=@, the extra buffer (s obtaimred and the move {s
accomplighed, as {llustrated in fiqure 4=-14, During the
move, due regard {s taken of the posit{on=independent nature
of both buffers, Imn addition, the firgt word 0f the routine
when gtored {mn the new buffer s Uged as a counters this
must start at 177401 (or =1,1) since, as an overlav, the
routine camrnot be re-entrant and hence s only once calledy
it ends ot | after the move and thus still {(ndicates
non=ragidency. The routime then clears the first word of
the Swaer Buffer to free it for furthepr yuse and econtinues
from {ts new Jlocation, On exit, the extra buffer myst be
returned to free coret however, the routine cannot do this
while ft is {tself still {n the huffep, Therefore when the
Usage Count (as noted sbove), shows such sction to be necesge
sary, the routine simulates a call to the “onmnitor S,RLB
sub=routine by placinc the system ex{t address (without Us=
age=Coynrt decrement) on top of the stack and hy then using
JMP rather than JSR,

The followirg paragrachs descrihe the dats areas especfally
established for the transmissiomn of fi{le manasement data,

4,3.1 VUser File Block

Al user orograms calling for f{le=manggement onerations, or
for aeneral I/0 whieh might lead to gsuch operations {(f the
device is right, are reauired to suoply file 1{Information
throuah & User File Block (IIFB), Thi{s {s desecribed in deta=
il in chaoter 2 of the Programmer's Handbook, Briefly, as
shown {in fi{aure 4=1%5, this allows the user to {ndicate his
purpose ang identify the file required, including its owner,
(if not himself), and to establish {tg protection, It also
provirdes room for the Mon{tor to returm error {mformation
ard an exit should sueh error occur,

The address of this Fileeblock is passed as one of the proe
gram csl) narameters and the Mon{tor routine uses {t to ac~
cess ita comtents as reaufred, However, as i{indicated {n
section 3.1.2.2, the user can supoly d{fferent file imfopma~
tiomn via a kevboard ASSIGN commanmnd, 1¢ he has dome this,
the ,INIT proutime saves the address of the reteveant entry {n
the DAT pointer in the dataset NDR as noted {n section
3.2.1.1. The f{le=managament routine therefore checks such
entry and uses {ts contents (¢ valid (see L'/K {n section
4.4.1)



DOS4,RND PAGE .20

4,3.2 F{le Information Bloeck

It has alreadv been ment{oned that the f{le=nanaqgerent mo=
dules caen use the stack or Registers for tranms~ittina trane
sfent data between one another, More permanent date which
must be held across several requests reauires different stor
rage, Such data, being aaolicahlc only to the dataset being
serviced, 1. imoure and {s thereforo similar to that stored
in the NDB for aenreral 1/1 orocessing., As shown in Section
3.1.2, the s{ze of the NDR itsel't {s set to cater onmly for
the general need; fi{lesmanagerent reauires ad4itional space
and this s provided in a File=Informatiomn Rincik (FTR),

Ffgure 4=16 _shows the FIB formet, Bagically ¢this (s de=
signed to follow a seauence correspondine to the file entry
in the UFD, It wil) be noted, however, that the file name
ftsel? (s nmot {ineluded, This 1{s umnecessary for a file
which already existss for a new file, as noted {n Section
4,1, the need is removed because the entry {s stored omn the
medium gs soon as the file {s ooened, Other {tems do avpear
to evoid unnecessary access to the medium, The puroose of
each {tem {s described below!

1, Next Block = {s orovided mainiv for the creation or
extension of a linked file, since the allocation of
the next block must occur before the current one
Cor the UFD {n the cese of ,0PENN) can be written,

2, How Open Code = {s used to transmit the sporopriate
content of the !JFB hetween oroaram reauests, since
the latter is only accessihle durina ,OPEN, (see
Section 3.2,2.1).

3, Extension start block # = saves the heainning block
following ,OPENE. To protect the user acainst faile
lure end also allow alternative use for {(mout at
the same time, & file beina extended is left {n {ts
original state until the extension {s complieted by
.CLOSE., This {tem therefore is needed to ensble
the "APPEND" oreration which eccurs at that time,

4, Tyoe = corresponds to the similar entPrv in the UFD
file entry and is discussed {n Section 4,1,2,

S. Spare,

6, Start block # = alwavs contains actual file start
block even durina extension (henece 3 ahove)

7, # of blocks = {s used as 8 counter dyrina f{le cre=
atfon or extenstion (startima from the orfaine!
length §in the latter case) and eventually {s stored
{n the UFD as "Lenath",



N~

DOS4,RNO

12,

i1,

12,

13,

14,

15,

16,

The FlB
Momitoer
called,
eral .OP

PAGF #-21

Fnd block # = stores the bpregent end of a file
under extension = otherwise (s rormally unysed un-
til a new file is closed,

Indox into Diroctorv Block = shows the relative
position of tha file entry {n the acoropriate UFD
Bloeck (see next).

Directery block & = enables Immediate access to the
actua) deviee block on which the !IFN entry for &
file under creation or extens{on sopears and thus
removes the nmreed for a fregh directory search on
«CLOSE, :

Protection Code = shows the f{le's protection leve
el,.

Interleave factor = saves the content of the core
responding entrv {m MFD block #1 as deseribed {n
Section 4,1,

Rit map oointer = contains the address of the
byffer {n core.  in which the soprooriate medium
bi{temap segment i{s loaded (or is currently held =
see next),

Bit mep Q V1ink = enables the ocoening of several new
files (on different datasetsl) on the same med{um
at the same time, For reasons stated {n Section
4,1, only one bit mep segment from a medium cen be
{m core at any one {nstance, Thus several files
must share the sare segment, To allow this, the
sppropriate FIBRs are chafned (as shown 1{n figure
4=17) starting from an allotted word {n the device
4river stendard i{nterface table (see Section
3,3,1). When the first fi{le reaquiring a map {s
opened, the maop seaqment {s loaded {nto a buffer
claimed from free core and the driver pointer to
the concerned FIR {g set, Subsequently FIBs are
'inked and unlinked ss their associated files are
epened and closed, When the 1ast fi{le {s fin{shed,
the driver word becomes @ again and this {s used ¢to
sianal the release of the mapebuffer,

Temporarv workspace = is used mainlv durina file
ereption or extension by WRITE (see Sectiom 4,5,2)

Temporarvy workspace = same as #15,

{s set up in a buffer claimed from free core via the
S.GTB routine onlv {f file=amanggement ooerations are
For morma) file-orocensina this is doere by the gen=
EN routine (see Section 3.2.2.1), Housekeeoing rou=



D084 ,AND PAGE #-22

tines elaim thetir own, (In fact, since the latter, {n gen-
eral, comolete all their reauired functions im orne user bro=
aram reauest, the FIB is not reslly necessary, However for
compatibiliv of processing especially by the commoen sybroue
tines ard to provide edditionsl workscsce it s still set
UPe) While the FIB s established, {t {s accessed through a
pointer in the Yast word of the DNB (gee fiaure 416 and
section 3,1,2,3). Tt (s released as soon as {t has served
its purposer» e,a, on LCLOSE. Its DDB oointer them (s
cleared and its buffer (s returred to free core vias $,RLB,

S~



D084, RNO PAGR #-23

4.4 Gemera! Purpose Routines

The oyrpose of this section is to deseribe those
t{le=maranerment mordyles which act as gubsroutimes providina
services aenerallyv reauired bv the other moadules, suech as
directory=searching, collection of a biteman segmert or ale
location of a new bloek, (Cateaory 3 in Section 4,3,) When
non=pragsident, they operate from the aeneral Swan Buffer,

4,4,1 Directory Search CLUK)

The function of this routine {s to operform a directery
search for a8 f{lename to determine the presance or absence
of a particutlar file on disk or DECtarve,

Calling Sequenrce!

MOy SFILBLK,=(8P)
Moy #LNKBLK,=(8P)
MOV SP,R1

SUB #14,8P

EMTY 48

R? = Address of _the DNB
R1 s (ADDR=?2) of Pointer to UFB

The caller must subtrasct 14 from the stack ceinter
for the routinme's return arguments, Note, that
this routine does mot remove the argumwents pushed
onto the stack in the above calling sequence,

Returm Apquments?

(R6)aX $X DECODED BRELOW
2(R6)sFILE
A(RE)mNAME
6(R6)SEXT
1A(R6)aUIC
1{2(R6)sPCODF PROTFCTINN CODE

Xse{ 1f the UTC was not entered ints the MFD NDR+d
will contaimn a zero yoon retyrn,

Xs=2 1f the file did not exigt {n twe UFD, NDB+4
Wil1l contafin & @3 DDR+2 will be ? if mo empty
slots in the UFD opr wil) be the UFD bloek mnumber
whicn has an empty slots DNB+22 will be the in=
dex to the emoty slot, If the named file was
2,2, A =2 will! he returned also, {n which case
OD0B+4 will he unchanged,



D084 ,8NN PAGE #-24

Xse3 Tf there was no UFD attached to the MFD en=
try. Uoen retyrn DNB+d wil) containm the hleck
numher containing the MFD entry, DNB+2 will be
set to the address of the UPD poinmter within the
MFD.

Xmpother than sbove = then {t {s the ecore address
of the UFD entry, DONB+4 wil) containm the hlock
number of the UFD entrys the hlack containinma
the UFD entry {s in core,

Descriptiont

This routine executes entirely {n the Swao Buffar (MSB), unse
less it s mede core resident, When this routine (s ene
tered, the state of the stack {s es ¢followss Registers @
throuah 5 ere saved on the too of the gstack, then the PC and
PS8, and then a Seword work area for the retuyrm arguments,
R2 end R] ere restored from thei{r saved values nan the stack,
R1 {s then set to point to the lser File Block, and R2 (s
set to coint to the 6=word work ares On the stack, The user
tile block {s then moved onto the stack ast file nrame, exe
tensiom, UIC, end orotection code, 14 there was on assign=-
ment made, the assiaoned name is moved (n, 1If there was no
UIC in the f{le name block, the UIC {s taken from sbsolute
location 440, which (s the loaged {n UIC, TIf st this noint
the fi{le name (s 07,0, a «2 {3 put on the orevious too of
the stack and the routine raturng to the caller throuah the
common exit routine, S,EXIT, at absolute locatinn 42,

Now_the Poutine gets the bleck number of the MFD fpom the
device driver, The firgt MFD hlock ig them read inte core,
1f the device {s DECtape the first MFD bloek s skipned
since thi{s does not contain UTC's anmd would require an unne~
cessary time expense, The routine them scans the MFD Dbleck
looking  for the desired !JIC, PReadina in MFD blocks contin=
ues until none are left or the UIC s fourd, If the UIC s
not found, a =t {s put on the pravious too of the stack and
the common exit {s taken back to the caller, When the de-
sired UIC is found in the MFD a test {g made to see {f a 'IFD
exists for the UIC, If no UFD & =3 {s out on the oprevious
tep of the stack and the commom exit is takem back to the
caller,

If a IIFN does exist for this UIC the startimng block number
of the UFD s put into the DNB and the first UFD block {s
read into core, Now the routine heaing scanning the UFN for
the desireg file name and extension, UFD blocks continue to
be read in and scanned until! the end of the UFD chain is re-~
sched or unti) the file and extension are found, If the end
of the UFD {s reached without a match, a =2 {s out on orevie~
ous too of the stack and the routine exits as previously
described. 1lf the scan {s syccessful and a mateh (s made,



DOS4,RNO PAGE #- 2%

the core addregs of the UFD entry {s out on the previous teo
of the stack and the common exft is taken,

Notet ¢the directory LOOKUP routine hes an {mbedded
READ/WRITE proutine and also uyses a common exit routine
throuah absolute locastion 42 which restores the stack to its
stete hefore the EMT request, This does not modifv the ree-
turm arauments on the stack,

4,4,.2 Check Access, Set=up and Release FIB (cxx)

This routine is & three part utility orogram which performs
the following functionrs?

{ = CHECK ACCESS PRIVILEGE
2 = SFT UP FILE INFORMATION BLOCK
3 « RELFASE FILE INFORMATION ALNACK

The EMT codes for the three functions ere the sama, EMT 52,
but to, call the individual fumetion a @, +1, or =1 respec~
tivelv is pushed onto the stack, The routine will then dise
pateh to the proper segment, within the file structure mo=
dule, The three seaments are individually described in the
following aiscussion,

4,4,2.1 Check Access Privileae

The functionm of this routine is to determine the permitted
READ/WRITE access orivilege of the caller, The callepr must
reauest the level of access he desires, Then this reauested
sccess s compared with the file protection Yevel, The re-
quested access (s then efthar granted or denfed,

Cellimag Sequence!

MOV  UIC,=(R6)

MOV  PCODE,=(R6)

MOV #ACCESS,=(RS6)

CLR =(R6) 9 ZERN INDICATES CHECK ACCESS CALL
EMT 52 :

ACCESS LEVELS!

¢ « Delete
1 = Write
3 « Read

5 = Run



D084 ,RNO PAGE #-26

R® s Address of DDB
Return Apaymentst

(R6)s0 | desired sccess permjtted
(R6)mmon @ desired access denied

Descriptiont

When the section of the routine (s entered, the stack state
{s as follows! Saved Registers RO threugh RS, PC end PS8,
Funet!en indicator and callina arquments, R3I {s set to the
desired access, and R5 s set to the oproteceion code, from
the values passed on the stack,

The Tevel of access to anv file {s determined bv the owner
when he gsets {ts orotection as described {inm Section 4,1,4,
The check access routine determines whether the desired ace
cess bv anv user shall be permitted or not in the following
manrer, The routine first checks to see {f the caller s
the file's ownmer, bv comparina the logged={n 'JIC against the
UIC calling argument on the stack., If he is the owner then
bit 6 of the protection code is testeds {f it {s set he canw
not write om or delete the file, he protected his file aga=
inst himselt, 8i{t 6 being not set gives the owner comnlete
sccess,

When the caller {s not the owrer a second test {s made to
determing (¢ the caller {s in the owner's group. Thev are
in the same greup {f theip project number (s the samey this
{s the hiah order bvyte of UIC. If they are {n the same groe
up the geccess desired s compared ggainmst bits 3, 4, and 8
of the fi{le's protection code. 1If not in the same aroup the
access desired i{s compared with the 10w order three bits of
the nretoction code., 1f the protection code is hiaher than
the desired access reauested them access is denied, and a =1
will be preturred on top of the stack, 1If the protection
code {s eaual to or lower than the reauested access then ace
cess {s qranted, and a @ wil) he returned on top of the
steck. Then the routine returns to the celler throyah the
common exit routine, emnd the top of the stack holds the pre~
turmed valye, @ or =i,

Access Levels
Rit 6 Set = Nwner can't write
Prbtect Code qreater thanm 1, others can't write

Protect Code greater thamn 3, others can't read
Proteet Code greater tham 5, otheps can'e run



D084, AN PAGF #-27

4,64,2.2 Set=up File Information Rleock

when this routine {s called a FIB may or mav mnot be esttached
to the DNB. Therefore the routinme hag a two fold funetion,
One fumetion {s to aet a DATA BUFFER AND A FIAR BUFFER from
free core, when necessary, This function (s desired when
called by routines other than FOP (FILE OPEN) amd FCR (FILE
CREATF). The second funetfiom this routine performs {s to
set un the FIBR and 1ink {t to the DDB, This routine also
sets the address of the data buffer, in the ND3, It (s nee
cessary to set up the FIB wher called bv anv f{le structures
routine 1{1nmciuding FOP and FCR, The FIB {s set uo orimarily
by transferrinmg data to it from the files UFD entry,

Callinmg SQQuoﬁco:

MOV ¥1{,=(R6)
EMT 52

R? s Poimter to DDB

R2 = Pointer to the File's UFD entry {n
core, This {s necessary, when the
routine is called, to set uo the FIB
and 1ink {t to the DDA,

Returm Apqumentss

D0B+28 contains a non=zero value {f the FIB was successfully
setup. . The valuye is the core address of the FIB associated
with this DNPB, DDB+26 contains & zero when the FIB was not
successfullyvy set up,

Deseriptiont

when this section of the routine is initially entered, the
state of the stack {s the same as described under the "Check
Accass” section, with the exception of the c¢al! arguments,
This sectior sets uo RS with the FIR Link Word from the DNB,
Then, if there is a FIB already, Q2 {3 restored as the opo-
{nter to the File's UFD entry.

whem SETUPFIB i{s entered the FIB 1{nk word of the NDR (s
tested to determine {f there is o FIB attached to thi{s DDBR
or {f {t wil) be necessarv to get a buffer for s FIB and
1ink 4§t to the DDB., A zZero FIB 1{nk {ndicatas noe FIR; when
this ocecurs the following procedure s followed, The driver
address {s determined from DDR «2; the Standard, Driver
Buffer Si{ze {3 gotten from the driver, as the number of 18
word units necessarvy, This value s saved and then this vae
Jue {s used to calculste a word count, which s put {n the
DDB. The number of 16 word uni{ts {8 {meremented by one to



DOS4.RNC PAGE +-28

{nelude a buffer for the FIB, A cal) (s then made to the
monitapr, buffer allocete routime (GETBIF), requestina the
number of 16 word units desired, The GETBUF routine (s
called throuah absolute Jocation 54, The first 16 words of
the roturned buffer are linked to the DNB as the FIB Buffer,
snd the 16 words are clesred, The Data Buffer {s then
1inked to the DDB at DDR+6, transfer buffer address word,
New the rcut!no looos back to the inft{al test upen _entry to
thia routine and will now find a FIR attached te this DNB,

Wher a FIB (s sttached to the DNDB the following occurs,
Information concerning the file is transferred from the UFD
entry te the FIB, The transferred information includes the
Next Bleek Nuymber which is alse the First Bleck, the File
Tvpe, the File's Stert Rlock Number, the File Lenmath {n
bloeks, and the File's Last Block Number, Then three more
{tems are set up in the FIB: the fndex {nto the directory
bloeek, .the directory block number and the protection code,
This routine then exits back to the caller through the come
mon exit routinme, S,EXIT, The infopmation used to set up
the FIB (s {mn core when this module {8 called,

4.4.2.3 Release File Information Bleck

The function of this routine is to unlink the FIB from the
FIB ehain aond release the FIB Byuffer, the Nate Buffer and
alse the Rit Map Buffer {f no more FIB's are gttached to the
pos, The FIB chain must remein continuous after the FIB is
unlinked, So therefore a FIB pointer must be reset,

Calling Seaquence!

MOV ePC,=(R6)
EMT 52

The instruction MNV ePC,=(R6) pushes a mega~«
tive number onte the stack, A Negative
number indicates a call for release Fl3,

Returm Apaumentst

Nene

Although the FIB LINK {n the DDB is ecleared, and the associ=

ated bit map 4{s released, {f this {s the only FIR {m the
ehain,



N

D0S4,RNO PAGFE#-29

Descriptiont

Upon antrv, the state of the stack is the sare as for a
"Setuo FIR" call,

When the Release FIB routine is inftially entered the status
byte of the DDB is tested to see {f the Dataset is currently
busv, bit 7 set, If the NDataset is busy the routine returns
{mmediately to the caller throuah the common exit routine,
S.EXIT, with mo nct(on teken, Jf the Dataset was nmnot curw
rently busy an {ndex into the device driver is calculated to
point at the first FIB link, of the FIB chain for this deve
fee unit, I¢ the first FIB Y{nk {s zero, there i{s no FIB
chain for this unit. In this case it {s enly nmecessary to
release the Data Buffer and the FIB, which {s done through a
call to the morfitor, buffar release routine, Then elear
their pofinters from the DDB, The routine thenm returns teo
the cal)er through S.,EXIT. 1If the firgt FIB 1ink {n ¢the
driver is nonezero the FIB 1ink {mn the DDB is them tested te
see {f there is a FIB attached to the DNB, If mo FIB {s ate
tached to the DDB release the NData Buffer, unlink it from
the DDB end exit back to the caller thpouah S, JEXITe TIf ¢the
DOB has a FIB attached, it {s tested to see !f it has a bit
mep asttached, 1I¢ the FIB has a bit map sttached to {t and
tt {a _the 1.:! FIB in the chain, the bit mas buffer s re=
leased through a cal) te the romi{tor buffer relesse routine,
If the FIR has 8 bit map but (s not the last FIBR {n the cha~
iny) the FIB (s merely unlinked from the chain and the chatn
1{nkagse reset, The Date Buffer and the FIR Buffer sre then
both released throuagh the monitor and their 1inkages are ree
moved from the DDA, The common exit is them takem back to
the caller,

4.4.3 Transfer Bitemap to and from Core (GMA)

4,4,3.1 GET MAP

This routine performg two functions: {t can be called to
get a buffor for a bit map, read the bit man {nto core and
Yink this FIB to the end of the FIB chain, The second fume=
tion of the routine is to write the bit map from core to the
device, The first function {s ecalled GETMAP, the second
WRITMAP, Both are called with the seme EMT, with the valye
of RI determining the svecific fumction.

Celling Sequence:

8. To read in a bit mep



D084 ,RND PAGE #-32

RAspointer to DDB
R3spointer to DDB
EMT 52

be To write out a bit mao

Rﬂ-nointor to DDB
R3sd .
EMT 50

Returm Apquments?

F1B+0 contains X

X=g if map setup sucessfully
Xsed if no buffer availaeble.
Xsei it ¢i1e alresdy open on DECtepe,

Desecriptiont

This routine executes cnt{rolv within the Swas Buffer (MSB)
unless it {s made core resident, On entery registers RO
throuah RS, the PC end PS are rescectively saved on the too
of the staeck, Upon entry, RO {s restored from its saved va-
lue om the stack, to point to the DDB, R2 is set to ceint
to the FIB linked to this DDBy then R1 (s set te the value
of the eore bit map pointer {n the FIB, The word count {n
the DDA {s saved, and s =64 decimal, the bit map word eount
{s out 5nto the DDB, Then the saved value aof R3 en the
stack s tested to determine whether this {s & GETMAP or
WRITMAP call,

It WRITMAP {s celled for, the DNB transfer bleck number and
buffer address are seved. Then the buffer address (s set
eaual to the core bit mep address, the transfer block number
fs _set up and the bit map is written out, The origina!l
buffer acddress, the block number and the original word count
are then restoreds and an exit {s taken throuah the ecommen
routine, S3,EXIT,

If GETMAP {s called, a test {s f{rst made to see {f there (s
already a b{t map attached to this FIB, If the FIR bit mer
pointer {s nonezero there {s & map ettached, s© the routine
restores the original word count and returns to the caller
throuah the common exit routime with a zero in FIB42 to ine
dicate successful completion, _If me bit map attached the
routime clears the FIR 1ink of this FIB te fndicate and of
chain end then gets the oointer to the beginning of the FIB
chain for this unit from the driver, 1If the sointer to the
beginning of the FIB chein (s non=Zero there (s already a
bit map in core for this uni!. A test {3 then made to de-
termime {f this is DECtace, If {t {s DECtape them you can=



D084, AND PAGE #-31

not ooenr a secord outaut file on the same unit, 1f not DECe
tepe amd_ a file {s open on this un{t then 1ink this FIB at
the end of the FIB ehair and insert core bit mao pointer and
{nterleave factor into this FIB, and then exit basek to the
calling module, after restoring the orjcimal word count {n
the DNB.

Whern the bit map {s not already {(m core it {s nmecessary to
get a 64 word buffer for the meao, Thip is done by a call to
the monitor GET3UF routine throuah absolute_ loeation 54,
The GETBUF routine lllocgtel buftfers from free core, The
buffer address {s then set in the FIB os the core bit map
pointer, The MFD ao1ntcr in the driver s moved into the
DDB and_ MFD #1 {s read in. Then the routime extrects from
it the interleave factor and the bit mgo block number, Then
the bit map {s read in and {t s linked to the device
driver, kestore the original DDB and clear FIB+D to (ndie
cate a successful call, Then leave thpough common exit Prou=
time, _The bit mep transfer routing also has an {mbedded
read/write routine {n {t,

4,4,4 Allocation of Rlocks to Linked Fi'es (LoA)

The fumctionm of this routine is to allocate one blogk of a
device, Thi{s routine 1{s cealled under the following three
conditionss

1, .ALLOC (Create a Conticuous File) to allocate a
bloeck for the UFD or te add a bleck to the UFD,

2, .OPENO (Ooenina A File For Outout) to allocate @
block for the reasoms under ,ALLOC and also to ale
Tocate the first bloeck of the file,

3. .OPENE (Openina A File For Extension) to allocate
the first bloeck of the extens{on,

The READ/WRITE processor uses s different routine te de
block allocations while 8 READ/WRITE (s {n progress (see
Section 4.5.2),

Calling Seauence!

MOV PC,R3
EMTY 52 IGETMAP
EMT 47 SLINK ALACK ALLOCATE

RAmpointer to DDR

Set R3 equal to non=zero value, then
make sure there {s a bit map {n core, by an



DOS4,RNO PAGE#-32

EMT coll! to ,GETMAP,
Returm Apquments!

Sets FIB+? to the bloeck number of the allocated Bbleck, 1¢
FIB+@ was set to @ then the device (s full,

Deserintiont

This routine (s re~entrent and executes entirely withinm the
Swep Byftfer (MSB) unless (t {s made core resident, Uoon en=
trys, the Reafsters RZ throuah RS, the PC and the Ppecesseor
Status are saved respectively on the top of the steck, R?
{s restored from its saved vealue on the steck, to point te
the DDB. The Block Number, Buffer Address and Word Count {n
the DDB are then saved on the stack, The DDB werd ecount (s
then set to =64 decimal, for trensferring of b(t maps, The
core bit map pointer is taken from the FIR and sut {mto the
DDB as the Buffer Address for transfers, and the Block
Number of this bit mao (s calculeted and also Put {nto the
DDB. The routine them computes the 10west bleck number dese
eribed by the current core bit map, The bit map s then
scanned onr e word by word basis 1ook1nq for a word that has
a free bit, 1If no free blocks are found in the cyrrent map,
it {s _written out and the block number of the first mep in
the chain is aotten, The fiprst map (s read in and o search
is begum of the entire bit map chain for o word containing
an unset bit, If none sre found the device is full, For a
full device the fo!louinq occurst The Data Ruffer is re=
Jeaseg by the Monitor, Buffer Release Routine, S.RBUF, and
its Yink is cleared from the DDB, The Open Indicator in the
DDB is cleared, The FIB chain {s searched tor the oprecer
FIB and when found it {s relessed bv & call to S,RBUF end it
is e1so_un)inked from the FIB chain, The Monitor Diagnostic
Print routine then prints an error ecode fndiceting a full
device,

When 8 worg {8 found with a free bit a mask {g set up to dew
terming which bit of the word indicateg the first free block
ava!!oble. The first free bit of the word {s set when
fourmd, and the block number of the allocated block is set {n
DDB+26. This bleek number was beimna keot and undeted during
both the word and bit searches, The word count buffer ade
dress and block number initially saved are now restored in
the DOB, and the common exi{t routine S,EXIT {s taken back to
the caller, )



N

D084 ,RNO PAGE#-33

5 Norma) File Processing

e

4,5.1 Npenina F{les

8ection 3.2.2.1 showed that al) ,OPFEN ecalls sare processed
inftially by & genera) routine reaardless of the device in
use. Hoewever, having executed some common coerations suech
as checkina the vnliditv of the call and obtaining the nee
cesgary data buffer, this routine then cheecks the
devices ¢ 1t (s seer to be file=sstpuctured, a FIB (s ate
tached to the DDB, Reaisters are set to provide relevant da=
te and ene of two filee=manmagement routines is called to come
plete_the processing, The ourpose of this gsection {8 te
descripe thege routiness

1, FOP = Cpen am existing file, called therefore for
«OPENU ,OPENE, OPENY and ,O0PENC = Section 4,5.1.1

2., FCR = Create & new file (s, ,0PENO) = Section 4,%,1,2

Both routines use the technique described {n tection 4,3 for
movina themgelves out of the Swap Buffer ¢ thov ere
nonepesident, Nn completion, thev returm directly te the
user proaram and at this ¢time, they are responsible for
Yeaving & machine=state exactly as that estab)ished by the
gerera) processor for nonefile devices, {,e.t

1, OPEN switch set in the DNB Status (bit 7, byte 12)

2, Data=Buffer cleared for expected ,4RITE following,
or

3, Data=Buffer filled for expected .READN fellowing

4, PRyffer Pointer set in DDA Dpiyer Werd Count, ¢ 2
or J effected:

a, Linked filest START+2
b, Contiguous filest START

In agddition, the first file Block must be correctly
set {f ,READ or WRITE may follow, {,e,!

a, Linkea filesy in "Next Bloek"” in the FIB
b, Conmtiguous filest §fn "Device Bloek” {in the DOB



DOS4, RND PAGE # 34

4,5,1.1 _Open an Existing File ' (Fop)

————

The function of the File Open Module (FOP) is to orem o file
structured device for llnkod file extonsien (OPENE), econtig=
uous file frput (OPENI), or cont!auouo file outout (OPENC),
The routine berformo the following oterations to secomnl{gh
its fynetion, It first makes o directory _search to deters
mime {¢ the file exists, since a call to file Opem (FOP) po=
auires the f{le to alresdv exist, The routine themn checks
{1 the caller has the _access privilege he desires, For an
OPENE {t allocates the first block of the extengion, Feor an
OPENI the first block of the file is read inte core,

Calling Seguence!

Registers are expected to be set as follows whem this pous
time {s called,

RO = Pointer to Dataset Data Bleek (DDB)
Rl = Pointer to {nsert coll argurments

The File Open Module {s called by the Common Npen Precessor
(OPN) throuah execution of code in the DDR, Set up asnd call
sequence (s as followsal

MOV #104243,-(SP) 1EMT 43 PUT ON STACK

CMP (R2),#%2 1SEE IF AN OPEND
BNE EX2 $BRANCH IF OPENE, Yy C» OR I
INC (8P)
EX2s MOV (SP)+,=(R3) 'EMT PUT INYO DD8B
TST® (R5) ITEST IF ROUTINE RESIDENT
8EQ EX3 $BRANCH IF RESIDENT
MOV (PCI+,=(RI) tMUST FREE SWAP RUFFER
DECB (RS5) $THIS INSTRUCTION PUT IN DDB
EX3s MOV R3,PC $BEGIN EXECUTING CNDE IN DOB

EMT 43 Calls File Open
EMT 44 Calls F{le Create

Returm Apauments!?
Nonre
Desecriptiont

When the File Opcen (FOP) Module s {(nitially entered (¢t
tests to_ see if it is {n the Swap Buffer or is cermanently
core resident, 1¢ in the Swap Ruffer it calls the
Moniter's, Get Buffer routime (GETBUF), teo allocate a buffer
in free core, It then moves 1{tself {into the allocated
buffer, The registers RA and R1 are thern restored from the
stack. This leaves six wards R2«R5, PC amd PS on the stack



D084 ,RNN PAGE#-35

which will be used for EMT ,LOOKUP (Directory Search) return
argument,

The File Open Module then {ssues the EMT ,LOOKUP, to see (Y
the f{le exists, It the file does rot exi{st, the Ocen
Switeh im the DNB status word is cleared and an EMT RLSFIB
(Releagse FIB) {s J{ssued to release the FIB Buffer and the
Dats Buffer., The routine frees the Dataset bv celearing
DDB+2 ard then it must release the free core buffer {t occuw
pies, The manner {n uhich this is done s described {n the
Yast oparsgraph of this section: but the commen exit routine
goes to the user error return, 14 no error raturn was set,
the Momitor Diagnostic Print routine s called to print an
spprooriate error code,

When the file exists, the next check ig of the Usase Count
in the fi{le's UFD entrys {f Usene Count is 76 or 77 then the
previous error nrocedure is followed, the file {s obden,
Severa)_ more tests _are now made, I¢ an IPENC, {s 1t to o
jinked file, this s (11eqal (f (¢t {s, Then for OPENC, OPE=
NU end OPENE reauests the UFD entry {s looked at to see (¢
the file Is Yocked, 1If locked the file can not be opened,
error handled as before, 1If not locked, the file |s locked
then, Then for an NPENF a check (s made to see tf {e (s to
s econtiouous file, error {1 it {s,

A11 ooen reauests that use the File Open Module (FOP), exe=
cute this mext sequence, An EMT ,SETUPFIB (s {ssued to get
o FIB and o Data Byffer. The UIC, the orotection code, and
the access level necessarvy for the open request ere set up
and an EMT ,CKACSP {s {ssued to determine {f the caller s
permitted the access to the file that he Jesires, (Read or
Weite), 1If access {s denied the error brocedure previously
deseribed {s performed,

It an OPENC or OPENU the directorv entry (s writtem out, 1¢
en OPENE en EMT GETMAP {s {ssued to make sure 8 bit map s
in ecore, them an EMT ,BALLOC is {ssued to allecate the first
block of the f{le extens{on, The block number {s saved {n
FIB+44., Then the directory block {s written out, Now for an
OPENI it {s necessary to read the first block of the file
{nto the Nats Buffer, The (EOF) end of file switeh i{s set,
{f this is alse the Jast bloek of the file,

A1) the OPEN reauests now leave {n the sare manner, The Da~
ta Buffer pointer {s set {mn the NDR) the oocen switeh {s set
imn the status word of the DDB anmd the Dateset {s set to the
free gstate by clearing DDB+@, The routime thenm tests (¢ (¢t
i{s oermanently core resident; {f {t is {t leaves directly
throuah the common exit routime, S,EXIT, If in a free core
buffer the routine must release the buffer it occunies be-
fore returning to the user, This {g done by simulating a
JSR to the Monftor's Buffer Release routine bv the {nstrue~



DOS4,RNO PAGE 4- 38

tfom, MOV 0#8,RBUB,PC., This forces a Jump to the Buffer Ree
leoase rput!ne does noet out a return address on the stack, so
prior to executing the command the address of the ecommon aexw
it routine {8 put on the stack, The Buffer Release routine
will, when done, take that return and go directly to the
common ex{t routine, to return to the user,

4.5.1.3 Create a New Fi (FCR)

The funct!en of the F11e Create Module (FCR) is to create a
1inked file anmd open it for outouts this routine is ealled
¢rom the Common OBQH Processor as the resuylt of an OPEND (0e
pen Linked File for Cutout) reauest, This routine performs
the fo!!ow!ng operations to accomplish {ts function, It
tests {f the f{le exists, since for an OPENN recuest ¢t (s
111ega) for the file to slready exist, If not, the routine
¢createos a UFD entry for this file., The first block of the
file is allocated and the available file 1nformatien {s out
into fts UFD entry, This routine alse merforms some setup
of the F18,

Cealling Seauences

Rgﬂilgoés sre exnected to be set as follows when this roue
tine is called,

RO = Pointor to Dataset Data Block (DDB)
R{ = Pointer to User Call Arguments

The File Create Module is _celled by the Common Ocen Procese
ser throygh execution of code imn the DDR, Set up and col!
sequence s as follows?

MOV #1042343,=-(SP) EMT 43 PUT ON STACK

CMP (R2),#%2 1SEE IF AN OPENO
BNE EX2
. INC (3P) ?IF OPENDO, EMT 43 RECOMES EMT 44
EXQt MOV (SP)+,=(R3) $EMT PUT INTO DDB
T8TR (R5) STEST IF ROUYINE RESIDENT
BFQ EX3 1BRANCH IF RESIDENT
MOV (PC)+,=(RY) tMUST FREE SWAP BUFFER
~ DECB (R5) PTHIS INSTRUCTION PUT INTO DDB
EX3t MmNy R3,PC $BEGIN EXECUTING CHCF IN DDB.

Emt 43 « Calls File Open
EMT 44 = Calls File Create

Returmn araymentsi

N



N~

D084, ,/NO PAGE+-37

Nonme
Deseriptiont

When the File Creste routine is entered the stack is adluste
od to create a six word work area for trensferring informa=
tion between modules, ({.e, Directory Search te File Cree=
ste), Then the routime tests {f it is in the Swan Buffer or
{s permanently core resident, If {n the Swap Buffer {t must
move {tself out, This 1is done by first calling the
Mon{ter's Get Buffer routine, (GETBUF) to allecaste o tempoe
rerv buffer {in free core, The File Create routine then
moves {tself to the temporary buffer Just allocated, and
conti{mues execution,

Now the Fi{le Create Routine {ssues an EMT ,LONKUP (Directory
Search) to determine {f the f{le to be ooened alpready ex=
{sts, The Directory Search routine (LUK) returns arquments
in the stack work area, If this was an {11egs! tile mame,
{f there was no UIC or {f the file exigted an error has oce
curred and file creation can not continue, Tf an error oc»
curred the open switch {n the DPB gtatus word is ecleared and
en EMT_ .RLSFIB {is {ssued to release the FIB Byffer and the
Date Buffer, and them thei{r Yinks are cleered from the DRDB,
The Opemn Switeh {n the status byte of the DDB {s alse
cleared. I1f an error returm was set Up {t {3 takemn after
releasing to free core the temporary byffer occypied by File
Create, The manner {m which the free core buyffer occupled
by the module {3 released {s described in the last paraagreoh
of this section, But sinee this is an error axit the return
{s to the users error return address., When there is no ere
rPOFr return set the Monm{tor's Di.anostie Print routime s
cealled to print the approoriate error code,

If none of the above condi{tions occurred File Create contine
ues bv setting up a UFD {f there was nome when the Directory
Search wes asttemoted, This {s done by {ssuima an EMT ,GETe
MAP to 4aet a bit map buffer {f necegsary? the bit mago may
already be in core, An EMT BALLNC (Link Bloek Allecate) is
then 1{ssued to allocate a block for the 'JFN, The bit ma»
buffer is then written out by fssuing an EMT _WRITEMAP, The
allocated UFD bplock s l{mked to the MFD and the MFD {s
writtan out. The UFD block (s cleared and then written out,
The reoutine then comtinuas as {f the file was not found and
there was & UFD block which contained an emoty directorv en=
try slgt. The routine now has the UFD hloek and a oocinter
to the free slot,

If the fi{le did mot exist im the 'JFD the routime looks at
DDB+2 to see {f the Directory Search returned @ UFD bloeck
number, conteainima an empty directory slot, T1f there wasn't
an empty slot im the UFD then ft s necessary to allocate &
bleck armd 1imk {t to the UFD, The same procedure is used teo



DO84,RNN PAGE #-38

do thio os when allocetina the fir.t UFD block, If an emoty
slot existed or when a UUFD block {s allocated ond Vinked,
the following seaquence occurs. The directory block contaline
ing the empty slot is read into core, The {ndex to the free
slot was byt {n DDB422, by the Direeteorv Seareh routine,
previouslv, Am EMT ,GETMAP (Get a Bit Map) 1{s {ssued ¢to
make sure there {s a bit mar in core, A test is them made
to see if this is a second open on DECtape, whiech {s neat
permitted, An  EMT ,BALLOC (Linkod Block Allecator) (s is-
sued to get the first block of the file, The directery en=
tey s nmow set up with Filo Name, Extenoiono Date, Fi{le
Tvee, Usaae Count of 77 indicating epen for Outsut, and file
protection, File length and Last Block Number are cleared,
An EMT .SETUPFIB {s then isgued to set up file {nformatien
{n the FIB, The UFD block {s then written out, and the oben
switch is set {n the DDB Status Byte, It sermanently core
resident the routine returmns to the user d!roe!lv through
the common ex{t routime, Whem this routine js executing
from g temporary byuffer in freo core, which will generelly
be the ceser the return s slightly more complex, because
the buffar {(t {s executing ir myst be released, The retuyrn
to the user (s performed as followss the addrons of the eome
mon ex{t routine {s but on the stack, them the address of
the Monitor's Buffer Releasse routine (g moved {nte the PC,
This simuleates a JSR to the Buffer Release routine but when
it aoes to the stack for {ts return address it will find the
address of the common exfit, and wi{ll peturn directly to the
common exit routime which them returns to the user,

4,5.,2 Procegsing a File

Once a» file has been opened for normal input or outout as
described {n section 4.5.1, the user i{s able to orocess {ts
deta in Just the same way as for any Other non=fi{le devices,
by mears of JREAD or WRITE, While the Monitor can operate
upor the data within {ts own buffer, it alse _need take no
special asction, However, wher a device truncfep is mecessa~
ry to #i1) op empty the buffer, the Monitor must now deterw
mine whieh actyal deviee bloeck §s to _be used occording to
the tvpe of file opened, The purpose of this section is to
examime the procedure by whieh this {s dome.

AS roted in section 3,2,2.2, the orincinal roytine coneerned
{8 embedded within the ,READ/,WRITE orocessor and this {s
discussed first in section 4,%,2,1,

It {s shown that during the Creation and Extension of a
1inked fi{le, ¢this reutino cen make uge of the biteman seqw
ment brouaht into memorv dyring the ,NPEN srecess, unti)
this indicates that no further bloeks remain unassiarmed, In



N

D084 ,RNO PAGE #-39

this case, the core segment must be changed and section
4,5.2.2 describes the subsfdiary routine coalled, usuelly
from the syatem~device, to effect the switch,

4.5.2.1 Next Block Determination (RWN cont)

This sectifon in fact covers two seguences im the
+READ/ WRITE processor which are axecuted when exgmination
of the Facilities Indicator {n the driver Interface Table
shows that the device servicing a dataset {s fileewstructured
(see Seetion 3,3,1), The first seauence (s reneono!b!o for
ensuring that the DDB Device Rlock is set us ecorrectly for
en ensuina transfer, It myst also find out in advence the
next block to be used in the ocutput of a 1inked file in orde
er to chalin {t to the ore now being written, The second se=
querce formg part of the reinftializetion followina the
transfer, In particular checkina for the end of & fi{le and
at the same time beaimrnina the seteup for the next tpansfer,

Calling amd Ex{t Seaquencest

As an integra) part at the READ/.WRITE processor, there (s
no spmecifie call or exit and the Reaister state follows on
naturally within the general operstion, However the
pre=transfer sequence asgumes that for a 1{nked file the
device block # needed is held in "Next Block #" in the FIB
whereas it s expected to be already correctly stored im the
DDB when the file s eontigueus, The aspprepriate
fileemanacement routine for LOPEN gets us the necessary
state {n readiness for ¢the first transfer (see section
4.5.1)1 the clean=up seauence maintains it (see below), A
procerly establighed FIB {s also essential, though sutomatie
sfmece LJREAD or WRITE must be preceded by ,NPEN or the pee
quest {s relected (see sectior 3,2,2,2)

PPOCQS!‘HG‘

It ¢oliows from the previous paraaraph thet no further ac=
tion {s regquired before a transfer {f "Tvee"” (n the FIB
shows the file to be eontiguous, Otherwise, the eontent of
"Next Rleck #" {s moved {nte the DNB, Howaver for DECtane,
this could be negative, signifying that the bloek is to be
transferred with the tape movina backwar4s (see section
4,.3.2), Hence the necessary check (s made and the Block #
and Tape Direction switeh {n the DDR Status are sdjusted ace
cordingly. Onece domes, preparation for input {s algso come
plete.

For outsut, on the nther hand, & search of the core bit mao
segment attached to the FIB by ,OPEN must be made {n order



DOS4,RNO PAGE #-40

to escertain the mext block to be written and 1ink it to the
current hipck, Thus the map sagment orfain and ranqge are
computed from dats {n the secment presamble (see section
4.1,3),_ The start block for the search is Jetermined on the
basis of the current hlock number ({ncremented by the IF
field in the FIR (decrermented if the current Hlneck {g o DFCe
tepe reverse WRITE), The result {s converted to a valuye re-
fative to the seament origin and {f {t (s seer to ke elither
sbove or below the seament range, {t g reset to @ to cor~
respond to the origin, At the same time, & switeh {s get to
restrict the search, since only two pagses over the seamant
are needed, one from the optimal bleek to the end and the
other frem the opoosi{te end up to the entimal block,

The value of the optimal block {s used to formulate the adw
dress of {ts reoresentative bit in the mep as shown in secs
tion 4,1,3, 1I¢ this bit is B, it (s reset to 1 to claim the
bleck. (1), The block nyumber, absolyutely reconstituted bv
addition of the orfain, (s stored as the file=1ink {n the
tirst word of the data buffer (necated for a reversed cure
rent bleck on DNDECtape) and outout preparation (s done,
Otherwise the map {s examimed for the first avaflable block
from the optimum, with the eurrent DECtape bloek direction
determ{ning that for the search, orn the following basis!

1, The adlscent bits in ascending (or descending) ord=
er withi{n the same bvte are checked while the bleck
value {3 {meremented or decremented,

2., Sucecessive bvtes imn the aporopriate direction are
tested, with the block numbepr adjusted by 8, unt{)
one not containing 377 {s found,

3, The individual bits of this byte are acain checked
as {n step | with corresponding modification of the
bloek nyumber,

The search is terminated as soon as a @ bit s seen and the
result {s passed or as shown {n the last paragrach, 1If
however, tha relevant end of the seament {s resched w{thout
success, the pass switch (s reversed and the secend nass of
the search is set uo as follows?

1, 9On disks, the search block value s raset to the
seament orfqginm,

(S 2 X2 I X P Y X L Xy 23 ]

i. Because of the potent{a) re~entranecy of the ,READ/, WRITE
processor, the actusl bitechecking seocuence (acorox 30
msecs) s carried out at level 7 oriority to nrevert corryp=
tiomn throuah interrupt,



N~

N

DO84,RNO PAGE+ 41

2, For DECtape, the directi{on control {s switched to
reverse all the search operations and the current
block becomes the search block (for reasoms given
tn section 4,2,3.)

The search is comoletelv restarted with the ¢translation of
the new sotential bleck inte bit=pesition, Should the sece
ord pess also fail to produce a vacant block, the ecyrrent
map seament must be rerlaced {n memory by another, This {s
effected by a call to the soecial routime described im the
next oeetiqn. On return, the search is completely reinis=
t#a!izcd e {n this case always heing resumed at the ori{ain
and the process is repeated unti eithor 8 bleck §s found or
the dovicp is seen to be full. (This case is handled by the
special routine,)

Once the appropriate sction has been gsatisfactoriiv accome
plished; the set-up seauence rejoins the main routine for
al) devices, to carry out the transfer, On raturm, the clee
an*up_ seauence {is entered after the ngcessary nointers have
been reset, This simply {ncrements "Device Bloek #" {n the
DDB ¢ the fti{le {g contiquouo. However, the nmew value {38
checked aqaingt "End Block" {mn the FIB and {f areater, the
EOD marker {s set {m the DDB, For l{nked files, the first
word af the datesbuffer, {,e, the 1ink=word lust read in or
the one written out after the search, is maved into "Next
Bloek" in the FI1B8, as required for the subsequent transfer,
The EOD marker {s againm set {f such 11nk-word is @ o!gnlfy-
{ing the end of sn input file or one forced usom 8m output
¢i1e when no more blocks are availeble, MNormal ,READ/,WRITE
processina then follows as described im section 3,2,2.2,

Comment !

The process for allocatina the mext outout bloek deseri{bed
above  of course norferms fn much the same way as the module
LBA discussed {n soctjon 4,4,4, The two routines diftfer one
lvs in fact, over their hand!ina o¢ DECtaper LBA {s mot con=
cerned with the problem of blocks written in raverse since
directory extemsions or the first file=blocks are always
forwards, The aporoprfate code could be added and the em=
bedded seauence would then be unnecesgary, However this {s
not done oresently for two reasons!

a, Althouah the ,READ/ WRITE orocessor must be re=
sident for the time being, this need net always
be the case, The Swap Buffer miaht mnot then be
availahle for LBA's use,

b, Even {f the Swap Buffer (s free, the eperation
to fetch LRA must potentislly occur for each
fi{le=bloek written, {,e, two device ¢transfers



DOS4,RNO PAGE #-42

for one (although the chances are that once lo=
aded, LBA in menvy {nstances could ke used sevw

- eral times over), Moreover there is elways the
possibility that LRA might be needed at an {ne
terrupt level while the orogram (s be{ng sere
viced perhaps by a Utilities routine, This
would be umnable to complete and release the v3B
and LBA could not be brought tn uynrttl {t did,
thus hanaing the svstem,

4,5,2.2 Changing The Core Map Seament (GNM)

The module called by the block allocation rautine of the
«READ/ ,WRITE processor described in the lest gection is rese
penaible for saving the latest state of the inmcore seament
in the mastepr bit mep stored en the device amd for renlacing
it by another segment i{n accordance with the ovewed moni{tor
policv for_ keepina linked f{les as far as nossi{ble at the
tromt end_of the medium, _(See section 4,1,3,) It must also
provide for the arebabil!tv that no furthcr hlocks remain
free for ags{gnment, However, the modyle does not {tael
attemot to examine the segmenrt {t may loeds this {s teft to
the callimg routine,

Calling Seauence!

The module depends uron the Reqister state of the
«READ/ ,WRITE processor at the call, as saved on the gtack by
the EMT handler!

RO = Address of the DDB at "Ryffer Address" (DDB+S)

R{ = 12 (set ready for esccess to the dpriver transfer
routine = see Section 3,1,2,4) elso used as block
value {ncrement during mac=search) '

R2 = Address of the FIB at the f{rst temoorary worke
soace (FIB+32) )

R4 = Device switeh (none@ for NDECtape)

In addition, {t expects "Next Block #" ir the FIB to be
non=@ when first called (1) and 2 {f recalled durina the
same search operation (i,e, because the mew seagrent {s also
full). Algso two unwanted {tems are on toe of the stack,

1« Th{s follows from the fact that {ts nermaj econtent can=
not be 3, since this as a block is never available for oroe
aram access (see fiqures 4=8 R 4de1}),



D084, ,RNO PAGE#-43

The problem of confliet over MSB usage discussed under "Come
ments" {mn the last section also applies te this proutine =
hemee module GMA (see sectionm 4,4,3) ig met used, However
this prohlem cannot be solved 1n the same way, when the op=
eration of charaing maps {s reauired mych too seldemivi the
inelusion of the poutine Im RWN s thus unmrealistie,
Nevertheless this infreauency makes it feasible to risk the
same canflict for the subsidiary KSB, sinmce thin can only
oceur {f the operator hapoens to use the keyboard at the
same time or some paralle! device transfer produces »
hardware fallure, Hemce GNM is called by EMT 34, {.,0¢¢ use
ing a code forcimg SAM ¢to load (It i{nto KSB (see section
2.3.3),

As noted in the {ntroduection, this routine must handle "Deve
fce Full™ and {t will be shown helew that it merely gets the
EOD marker in the DNB and exits directiv to execute the deve
fce transfer, To erable {t _thys to omit a further search,
{t expects the instruction before the call to be a branch to
the acprooriate point, Hence the full call seauence (g1

BR RW,TFX sCALL TFR IF DEVICE FULL
EMT 34 sCALL GNM
SRETURN IF NEW SEGMENT LOADED

Whem enmtered, GNM uyses the actus! Rggiotor state set by the
EMT hamdler (see section 2,2,1) es followss

R{ s Steck address of the first word after the cal) rew
turn parameters
RS s Address of the orocessor Status Register

Ex{t Stateg

On completion, GNM recalls the ,READ/,WRITE_ nrocessor with
the original entry state restored, except for the following
adjustments to enable re=initial{zetion of the search as
noted {m the last sectiont

a, RO = Address of the DDB at "Woprd Counmt" (DDB#+17)
R2 » Address of the FIR at "Next Bleek®™ (FIB+@)

b, "Next Block" {tself is cleared to renember the en=
try (see previous paraqraph)

e, The unwanted {tems or the stack are removed and are
rep)laced by a single entry of 10020 (used as a ro=
tation counter in the computatior of the segment
srigind,



D084 ,RNO ' PAGF #-44

PFOGGl.ihdl

To reduce the probability of keyhoard interruotion, GNM
first refgses the prioritv level! to 4 (cleared hy RTI on ex=~
1t) end then extracts and adjusts the saved Reo':ter data as
notod sbove, At the seme time the 1{mkewoPrd {n the data
buffer (s cleared so that it "Device Full” {s seen, the last
outout transfepr correctly terminates the f{le=chelin,

If GNM {s ecalled and the device is DECtave, the loading of a
new seament (s {moossible when there (s onlv one (see sece
tion 4,3,2), However the call! i{s made, because the two=pass
search described {n section 4,5.,2.1 could, in fect, miss
checkina the blocks skioped by the applicatien of ¢the IF
(unnecessarily perhaps = byt it obviates special handling in
RWN for & "once in & blue moon" exercisel), Hence for a
first entry, GNM Just exits immediately with "Next Bleck” {n
the FIB cleared, thus forcing @ second comolete search of
the man gegment alreedv in core and ceausina a reegntry to
result as "Device Full" (see below),

For disk operations, rather than ssve the existing content
of the oregram's DDB, GNM yses {ts own {nternal version, al=
ready _set to transfer always 84 words (see section 4,1,3),
This s prepared to show the same Driver Address, Device Une
it gnd Busy Flag content ( {in case of error as under),
"Buffer Address" {s entered from "B{t Map Stgret” in the FIB
and "Deyice Bloek" is comouted from the deta {n the map seg-
ment _preamble, "Completion Return" s set to cause the
driver to cal) a similar seauence to that _useqd by SAM ¢for
dequeuing the driver, checking for trgnsfer fallure, clear=
fng the busy flag and teking the System Exit (see seetion
2.3.4),

If this s the first call to GNM for this particular seareh,
the current mep segment must be writtenm out before 8 new one
is Yoaded. HMHence {f "Next Block" {n the FIB is none®, the
driver {s called for outout via $,CDB, with Registers and
Busy Flag contents saved (see section 2,4,2), ,WAIT follows
= with 8 1{nk=bloeck simulated on the stack, On setisfactory
completionm, the DDB Busy Flag s reset and the block number
for magn gegment %1, as stored in the mep preamble, {s en=
tered = thus alwavs resuming the search from the front of
the complete map as reauired, Whenrn this has beem hrought
{ny) "Next Bloeck" {n the FIB {s cleared to show the GNM entry
and RWN s recalled, For subseauent calls to GYM within the
seme search operation, the writesout {g unnecessary as {t
can be assumed that the segment 10aded wes alreadv full,
Therefore it is omitted and readinag of successive mae sege=
ments onmlv occurs.

The fopm of the exit differs from that nrevious'ly described,
Because of the use of the KSB, GNM, l{ke the other proy=

A

~



DOS4,RND PAGE # 45

tines, checks {ts residency from the first byte (lUsage
Count)y however it canmot call the normal 3ystem Exit, when
this wil]l decrement the M3SB count as described {n_section
2,3,4, Instead therefore, when GNM {g im the XSR {t yses a
01M1lor form of exit speeifically provided for the _keyboard
lenauage modules, (see Section 6,2,5,3.), It reauires that
GNM store "RTI" {n the third word below the KSB and also
that {1t restore i{tself the saved Registers for the calling
proaram, The same situation arises, if & device transfer
failsy im this case, GNM frees the KSB while executing "I0T"
in Y{eu of "RTI" (fatel error F214) (see chapter 7),

Comments!

Beceuse of the {ntermal DDB, GNM ecurrently cennot be
reventrant, As shown for INIT {n sectiom 3,2,1,14s this {s
noe orablem as long as SAM can provide the protectiomn afforde
ed bv the reventrancy switeh in the second byte of GNM (see
.ection 2.3.1), In the unlikely event that a user regquires
{ts residency, there eou!d be oroblems (even though this {s
imp)ied bv the eheck mentiomed in the last cartaraph),

4.5.3 Closina Files (FCL)

A8 showr in Section 3.2.2.3, all ,CLOSE <coalls, 1like those
for L.OPEN, are 1{nftielly preocegssed by a general routine,
This ensures that the last block of any file apen for outouyt
{s dispatched to the device, It then calls a
f{le=maneaement routine to perform directory onerations {f
the device in use is seen to be fileswstructured, The pur=
pose of thi{s section (s to exemine the routime so ecalled,
Its prime functions arel

1, lUpdate the master bit map on the medium for a file
under creation or extension, using the latest state
of the segment {n core

2, 'Ipdate a file Rit Mgo for a new or extended file on
DECtape

3. Complete the UFD entry for the file to show fts law
teat state

4, Release the FIR and Data Buffers to free cores also
the Bit Map Buffer if no other filea are sti{ll us~
ina ft.



DOS4,.ANO PAGE #-46

Celling Sequencel

A call to FCL requires reaisters set as follows!

R?® = Pointer to DDB
R2 s Pointer to FIB
R} s Driver Address
R4 = Mgd{fied How Opern Code (Code =2)

The ealling secuence from the Commen Opan Porcessor (s as
follows!

MOV #124045,0R1

TSTB @RS

BEQ Y

Moy (PC)+,=(R1)
DECB @RS

MOV Ri,PC

An EMT 45 {s oyt fnto the DDB, A test (s made to_see (¥ the
Common Close Processor {s im the Swap Buffert {f {t (s the
Monitor Swao Buffer must be free orior to calling the File
Close reutine. This {s dome by putting s second 1notﬂuet!on
whieh freas the buffer into the DDB and then outttna {mto
the PC the DDB address where the next {mstruction to be exer
cuted (s stered.

Return Apqumentsl
None
Deseriptiont

When this routine {s entered it fipst calls the Mon{tor Re-
gister Restore routine which takes the saved contents of the
general reagisters from the stack end restores them, The
modified How Open Code for the File to he closed (s then de=
coded anrd acprooriate branches are taken,

A linked file opened for output (OPENN), oroceeds to close
a8 followst the block mumber of the last bloek written {s
put inte the FIR at FIB ¢+ 16, LAST RLOCK WORD, A pointer to
the driver location which contains the desired bit mgn ade
dress {s calculated and saved, Then 8 test {s made to de=
termine {f the device {s DECtaner ¢ {¢ is DECtaoc. it §s
necessary to update both the cermanent bit mao and ¢{le bit
map, For DECtane the permanrent bit map {s read {nte core,
The core bit map, which describes the old permanent bit meo
plus the block beino used by the mew file, is written out,
Then the core bit map (s bit cleared with the permanent bijt
map, so6 that the remaining set bits describe the file bit
map. The file bit meo is read inm, and hit set with the mods=
{fied ecore bit map and then it is writtern out, For Disk {t

~



N~

DOS4,RNN PAGE #-47

{s mnecessary to search the bit maop chain to get the correct
permanent bit map block, The core bit mao is them written
out. If there are no FIBs left on the FIB chain then the
Core Bit Mao RAyffer is relessed, by the Momitor Buffer Re=
jease Routine, Now the file's Nirectory Entry {s reasd in
and the File {nformation is uodated with & length and a last
bloek of file. The bloek containing the directory entry s
them writtem out, The FIB and Nata Buffers are then ree
leased and the common exit routine {s taken, for retyrning
to the userpr,

A contiouous file odened for update or output, C(OPENY eor
OPENC) oroceeds to close {n a common magnner as follows,

First the block containinag the f{les UFD entrv is read {nte
core, The file Lock bit is clesred and the usaae couynt (s
decremented. The mew file length and the file's last bleck
number are put {nto the directory entry, The block containe
{ng the file's directory entry {s then written out, the ne=
cessary buffers are released and the routine returms to the
user through the common exit routine,

A linked or cont{quous file opened for 1{nput (OPENI) (s
closed {n the following relatively simple manner, The FIR
is released by the Monitor buffer release routine, Then the
Data Buffer {s relesased by the same routime, Control (s
then returned to the user throuah a return via the commen
exit routine,

A linked F{le opened for extemnsion (OPENE) {s closed {n ¢the
following manmner, The last bloek mumber of the eriainal
file, which is stored im the FIB, {s tested to see {¢ It (s
negative, A negative bloeck number megns the last bleck was
written backwards, which can only hapoen on DFCtane, If |t
is negative the reverse bit {s set in the DDA and the block
number {s megated., Then the original last blaclk {s read {n,
end the bloek number of the beginning of the extension {s
put into the 1ink word of the bloeck, Then the bloek (s
written out, and the reverse bit in the DPB is cleared, The
clesing procedure now proceeds the same as clolinq an NPENO
ti{le, exceot when the directory entpry is undated the leek
bit must be cleared for an OPENE,



DOS4, AN ' PAGE #-48

4.6 Housekeeping Operations

A proaram neegds facilities other than the mere opening, pDro=
cessing, ond closing of files, NQuite commoniy, these files
may be only temporary = a8s a way of uytilizing the
bulke=storage medium as an extension of availahle ecore, At
later staces, these files must he deleted or he made perman=
ent under a new name or different opotectior, Cont{ausus
fi{les, also, can only be orocessed if they are already {n
existencer the means of creating them initialtlv must be acs
cessible, Futhermore, (t has been shown that oeening s file
is onlv permigsible {n snecified coses, e,a, OPENU {s lega)
only for contiguous files, as ,NPENO {mnlies that the file
does not exist already, The nrogram may therefore wish to
exanmine the device directory {n advance to orotect qjtself
against error, Hemnce the approoriate proaram requests are
provided for these operations and the object of this section
{s to describe the manner {rn which they are processed, In
general, these reauests are valid enly when a fi{le {s not
already_ opemed on the dateset concerned and although the
processina medule {s alwavs called, {t {gnores the coll ({f
the device is mot file=stryuctured,

4,6,1 Allocating Conticyous Files

6 A ateyo CALOD)

The fumection of the module is to create a contiauous file by
ssarching » device's permanent hit map frem the end, looking
for the acprocriate number of unoccuoied eontiguous Bblocks,
Whem found the correspondina hits are set in the cermanent
bit map, and an emtry {s made {mn the UFD for ¢the file,

Calling Sequences

MOV #NUM, = (R6)
MOy #FILBLK,=(RR)
MOy HLNKBLK,=(R6)
EMTY 15

NUM o Numbher of 64 word unitg des{red
Return Apaymentst

A value of =1 returmerd om top of the stack {Indie
categ a successful allocation,

~—



N~

DOS4,RNO - PAGE# 49

A value of X, not eausl to =i, s returned on the
top of the stack when alloecatior was unsueccessful,
The value returned, X, {ndicetes the size of the
larqgest allocatable seament availashle, in B4=word
units,

Desecriptiont

The medule f{rst checks to see {f (¢ ig inm the Swap Byffer,
I¢ 4t is {t requests a buffer from free core through the
Monjtor'l Get Buffer routine (GETRUF) and them moves {tself
{tnte {t, 1¢ a free core buffer is not aveilable and an opw
rOPr Praturn was not set Up, the Monitop's Oiagnoatie Print
routine s called to orint am scorooriate error code, 1If an
error preturn wes set up f{t is taken by the commoen exit rou=
time after relessing the necessary buffers,

The reutinre tests to see {f this {s & file structured dev=
{ce, and_ {f nots, the routine exits through the common exit
routine after freeing the Dateset and cleaning up_ the steek,
The routime also releases the free core buffer it occuries
throuah the Monitor's Buffer Release routine S,RBUF which
returns dipectly to the common exit routine S,EXIT, The
success indicator (=1) is returned on the stack,

The EMT SETUPFIB is {ssued at this point ts qet a Data
Buffer and a FIB, If no buffer {s available, Use the previ=
ous errer exit for no buffer, Now an EMT ,LOOKUP e {ssued,
Tests are made for an {1leaal file name, no YIC, 8nd ¢ the
file already exists. 1f anv of these errors are detected,
the error _return {n the file block {s taken, {(f there is
onetr otherwise, the Monitor reauests Error NDiagnostic Print,

If there 18 no UFD {t gets the first UFD block by getting o
bit map into corer allocating a linked hloeck and writing the
bit mep out. The UFD (s then linked to the MFD, Then the
MFD (s written out,

If thepre wos a UFD see {f the EMT ,LOOKUP found an emoty
slot for the file entry, If mno emptv slot add a block to
the UFD. A mew UFD bloek or the first UFD bleck f{s gotten
in the followina mamner, Am EMT _GETMAP s {ssued to make
sure & bit mep is in core. An EMT ,BALLOC {s {ssued to al-
locate a block for the IIFD and then gn EMT HWRITMAP {8 {g=
syed to write out the bit map. The block to which this one
will be Yinked is read im, ard the 1inking takes plece, If
the device was a DECtape and there were Nno empty slots an
error (s detected enrd handled in the orevioys marner, The
new bloek s Yinked to the last and the last is written out,

Now mave the file name and extension which were put on the
stack bv the EMT ,LNOKUP, into the UFD antry, Clear the use
age court, the file start, lemngth, and end, Also out oproe=



DOS4,RNO PAGE #-30

tection ecode from the stack inte the UFD entry, Them write
out the UFD bloeck.

The routine now sets up to cell the Conmtiaquous Rleck Alloca=
ter (CRA), The addresses of the Read routine and the Weite
routine im the ALO module are passed top the Contiauous Rleck
Alloecater through registers R4 and RS, The EMT ,GETCONTIG
CEMT 51), {s {ssued, This allocates the reauested mnumber of
contiayous blocks 1¢ availeble, 1f the reauested number of
blocks were allocated the success {ndiecator (=1) {s moved
{mto the return arqument position, If the raquested number
of blocks {s not available the largest number of avai{labile
cont{ayeus blocks {s moved {nto the returm aragument, An EMT
«RLSFIB {s {ssyed to release the FIB and the Byffer, Then
the routime returns to the caller through the common exit
routimre. Before returnina to the caller {t {s necessary to
release the ¢free core buffer occuried by the Allocate Roye
tine (ALO), This s done by simulating e JSR to the
Monitor'a. Buffer Release routine, S.RBUF but setting the
stack so S.RBUF peturns directly to the common ex{t routine
whieh frees the 3wap Buffer and returng te the user,

4.6.};2 Cortiguous Bloek Allocator (C8a)

This module is called onlv by Allocate (ALO) and {ts funme=
tion {3 to allocate the reauested Nymber of ecntiguous 64
word unjts, The funetion {s cerformed by searching the dev~
{ces bit maps from the highest number bit mep's last word
and working towards the beginning of the device's bit maps,

Callimg Sequence!
R2sADDRESS OF DOB
R4sADNPRESS OF WRITE ROUTINE IN aALO
R3=ADDRESS OF REAN ROUTINE IN ALO
FIB+@2sORIGINAL Ri, POINTER TO CALL ARGUMENTS
FIB+2sDIRECTORY BLOCK
FI8+44sDIRECTORY INDEX
EMT 51

Return Apaquments?

RisNymber requested
R2=_argest number avatllable



N

DOS4 ,RNO PAGE 451

Deseriptiont

When this routine is {nitislly entered the Momitor's Reglis~-
ter Restore routine {s called to reset the registers, Then
the addresses transferred throuah registers R4 asnd RS are
set up for use of the READ/WRITE rout!ne. belonaima to the
calling module (ALO), Pointers are set to the driver and to
the FIB; and the drivers standerd buffer size {s sicked us
for the mext comnutation. Then the number of 64 word units
desired i{s converted {nto blecks, R4 will be the mumber of
bloeks.

Read 1n the MFD block, Then determine {f there is o bi{t map
{n ceare for this device and ynit number, If there {s a mano
{n cores Yook down the 1ist of maps to find the current one,
save {ts core address and bloek number them write {t out,
This is done so {t can be restored before returning to Alle=
cate (ALO). We mow proceed as {f thepe was no msp {n core,
Read in the last, highest numbered map, Then set up 8 fol=
lows, for bit map search,

4(R6) ® Cleared, hiahegt count to dete
2(R6) = Number of blocks meeded
(R6) = (Address =2) of last man word,

R1 = Address of first word of mep
R2 s Address of last word of mao
R3 s Hiah block number in map

R4 = Cleared, for counter

RS s Mask

This seectiom of the contiauous bloek ajlocation module (CBA)
searches the bit maps to find the numper of contigyous free
bloeks requested, Shi{ft a mask throuah each word 0f the map
looking for the reauired number of guccessive "off" bits,
If an "on" bit {s reached before the reauired count (s sa-
tisfiad, ypdate 4(R6) with the highest count te date, Then
continye mask search, 1If the bottom of a map s reached
read {(mn the next map and contimue, If mro more maps to be
read, qget the directory entry block, clear this entry and
werite thaea directory entry block out, Restore oriainmal maeo
in core {f there was one and then exit baek to the Allecate
Routine, through the common exit routipe, S,EXIT, Upon exit
R? will be restored, R]l will contain the number of units
needed and R2 wil)l contain the highest number found,

If the reayired numher of bits have been found hegin setting
them successively in the bit map, If the end of the map {s
peached before settina 811 the mecessary bits, write this
map out and read in the next, Then continue settina the nee
cessary bits, upon completion write out ¢this block, ¢
there was orioinally a bit map {n core, then read 1t back



D034, RNO PAGF ¥-52

in, Read the directory entry, set last block, lensth, and
start. blocksy then write the directory entry agut and exit as
described above., If R13R2 allocation was successful,

4,6,2 Deleting Files

4,6,2.1 DNeletion Set=uo (DEL)

The functiom of the module is to delete a file on a file
structyred device, DNDelete determinegs {f the caller has the
necessary eccess orivilege to delete the fi{le, Delete {s
divided functionally {nto deletion of three types of file
deleteas.

i1, DECtape delete =
Rit elearing of the file bit map ucon the sermanent
it mao,

2., Disk linked file delete =
Colls the delete linked f{le module (DLN) te follow
the file's chain of 1inks to determine which bits
in the oermanent bit map to clear,

3. Disk contiquous file delete =
Calls the delete contiauous fi{le module (DCN) to
zero the 1ink words from start throuah the length
of the file, Then reads the bit mao, and clears
length consecutive bits beainninag at start,

START s FIRST RLOCK OF THE FILE
LENGTH = NUMBER OF RLOCK IN THWE FILE

Callimg Seauenrces

MOV #FILBLK,=(RE&)
MOV #LNKBLK,=(RS)
EMT 21

Return Araumentst

Nome

Deserintiont

The delete module first determimes if {t {s {mn the Swap
Buffer, 1+ {t s it gets a huffer from free core through

the Monitor's Get 3uffer routine (GETBUF) and moves {tself
inte ¢, If a byuffer is mot avajlable the medule releases



D084 ,RNP PAGE#-5)

the necessary buffers, frees the Nataset end leaves through
the common exit routire, S,EXIT which takes the error return
address. If there {s no error return address, s message s
printed by the Monftor Diaancstic Print routine {demtifyinag
the error.

The routine tests to see if the dataset {s hbusy, and {f f{¢t
is the same error procedyre as above fs used, Then the deys
{ce is cheacked for being file structured, I1f rmon file
structured anm {mmedfate exit {s takem Dback to the call
throuah the common exit routinre,

Delete mrow issues an EMY _SETUPFIR, to aet a Nata Buffer and
sot uo a FIB, Then _an EMT ,LOOKUP {s {ssued to determi{ne {*
the f{le exists., If the file does not exist {(t s an error
and (s handled in the erevious manner, The caller's access
privileae {8 then checked (vis FMT ,CKACSP) to determine {f
dolet1en of the file is permitted, 1If sccess privilege {s
denied the orevious error handlina procecdure is follnwed.
The routine then tests {f the file {s ooen and if so the
previoys error porocedure is followed,

1¢ mo orroro to this moint the routine calls the Mon{tor's
Get Buffer routine (GFTBUF) to allocate & 2356 word buffer,
Then {ts address is stored in R2, The R2 Byffer wil! be
used for readina i{n the device's MFD blocks and bit mapns,
The Delete routine then determines {f the device {s disk or
DECtane.

I1f DECtape, the routine determines the block number and {n=
dex of the directory entry, and then clears the directory
entry frem the UFD and writes the UFD bloek out, Note the
bloek econtaiming the directory entry is still {in core from
the EMT ,LOOKUP call, Now calculate the block mnumber of the
fi{le bit mano, Read the permanent bit meo {nte the R2
buffer, 1I¢ the file is contiauous an EMT ,DELCANTIG (delete
contfauous file) {3 {ssued which updates the oermanent bit
mapt ypon return the oermanent bit mao {s writtem oyt, 1!
the fi{le 1is linked, read in the FRM gnd bit clear the pere
manent bit map with the file bit mao, and also clear the
f{le bit mge, Then write the file hit map anmd the permanent
bit map out. For both linked and comtiquous DFCtace f{les
the same action {s now taken, The 256 word R2 huffer {s re=-
Jeased and the routine exits as described in the last oparae
grech of this Section,

If the device s disk an EMT .DFLCONTIG (delete contiauous
$i1e) or am EMT ,DELNK (delete limked file) {s {ssued,
Restore the user file directory huffer address and hloek
number, clear the file entrv and wpite the UFN sut,

Now fop bath disk and DFCtane files the followimra exit is
taken. Ap EMT ,RLSFIB §s issued to release the FIR and the



DOS4, RNA PAGF #-54

Data Byffer. If this module {s not pepmanmently core resie
dent {t {s necessary to relesse the fpee core huffer it oce
cuocies, Thisg (s rdome by setting the address af the common.
exit poyutine as the return sddress for the Monitor's Buffer
Release routines then simulatina a JSR to the Mon{tor's
Buffer Relesse routine, S.RBUF, The common exit routine re=
turns to the user,

4,6.2,2 Deletion of Contiguous Files (DEN)

The fumetion of this module (s to assigt In deletion of a
contiaueus file from disk or DECtave. This module perfornms
the File Manaqement ocerationms which ({neclude updating the
devicel!s permanent bit maos, and clegrima the File's hlock
1inks from stert through tength, This module s called onily
from the f{le structures module delete (DEL),

Calling Sequences

RA « Pointer to DDB ) 3
R2 = Pointer to 256 word aux{lfary bhuffer

STACK <Holds return {nformation from 4irectory
search (EMT .LOOKUP),
EMT 54

Retuprm Apaumentst
Nonme
Deseriptiont

When the Delete Contiayous Files Medule (DCN) is {nftially
enterad o test is made to deterrmine {f the device i{s disk or
DECtace. Disk File deletes and DECteape File deletes are
handled {n two secarate sections of this module, First Disk
deletes wil)! be discussed and then NECtape deletes,

For a contjauous file delete from digk the module first
clears the bit mao 1ink word and sets the bit map buffer ade
dress {m NDDB+6 (BUFADR,) saves the original werd coeumnt and
sets the DDB word count so that Oonly one word, the Yink
word, will be transferred. The Transfer Rlock Number {n the
DDB {s then set to the start bloek of the file, Then the
routine loops throuah the file clearina the V{nks by
transferrina out one word, the cleared 1imnk word unti)
lenath (file Yength) has beenm sati{sfied. Then, {t restores
the orfoinal word count,



——
i

N

D084,PNN PAGE#-585

Now the first MFD block {s read into core, If a bit man s
in core, {ts address and block number are saved and {t {s
written out, When this is ecomplete, Oor no bit meap was {n
core, the followina oceurs, The bit map numher corresnond=
{ng to the starting block of the file {s computed, The bit
map {s mow read in. The starting bloek mnumber {s converted
to a carticular bit position in the map, The hits ecorresw
ponding to this file are then cleared, 1If the end of the
bit map {s reached before completiorn, this map (s written
out and the next mao is read {n, and the bit clearing cone
tinues, Upon complation of the bit cleering, the current
map {s writtem out, The mnecessary buffers are released and
the routime exits throuah the common exfit routine, Contro!
{s returned to the Delete Modyle (DEL), from whieh Deleote
Ccont{auous F{les (DCN) was called,

For a contiauous file delete from DFCtape, a mueh simpler
procedure is reauiread, The file's startimg bloeck and length
are stored in two reqgisters., Then the starting block of the
file (s converted to the corresponding bit (n the NECtape
permanent bit map which is {n core when this routine s
celled, The bits in the permanent bit map correspoending te
the file blocks are cleared beginning at start anrd qgoing
throuah length bits, The common exi{t routine (S, EXIT) (s
then used to return to the Delete Module (DEL), from which
Delete Conticouous Files (PCN) was called,

4,6.2.3 Deletion of Linked Files (OLN)

————

The funetionr of this module (s to assist {n deletion of a
Jinked file from disk, This module accomol{shes {ts fynece
tion throuah performance of File Manecement operations)
whieh i{melyde updatina the devices permanent bit maps and
clear the 1ink word of the file's blocks, This module s
called enly from the file structures module delete (DEL),

Callimg Seauence!
EMT 53
Returm Apayments?
None
Descriptiont
For a linked file delate from disk the Delete Linked Files
(DLN) modyule first reads in MFD #{, The present ward count

{s saved and the word count {s set for 64 ward transfers,
I1f a bit mae s {mn core it {s written out and its byffer ad-



DOS4,RNO PAGE #-568

dress anrd block number are saved, Set uo for one word
transfers ond determine the block number of the first hit
map, and read ft in, The routime reads irn the 1ink word of
the tirst 6 hblocks of the file, then writes out o zero linmk
into the f{rst si{x blocks, unless the fila occupies less
then 6 blocks the last 1ink {s saved, See {f the bit map {n
core covers the modified file blocks, 1If not write 1t onut
and read {mn the oroper bit mage, Now clear the corresoandine
bits in the bit map., The routine continues {~ this 1loop
till _the file end, The saved '{nk {s mow the mext bleck of
the file to be resad in, The module continues throuah the
file {n the above manner saving Yinks, clearina 1{mk word
and clearina bits {n the appropriate b{t men, when a zero
1ink {3 detected, the end of the file has been reached,
Then werite oyt the current bit mgn, I¢ a bit map was ori{gie
rally {mn core read it back in, release the necessary buffers
end exit back to the cdelete (NEL) module, throuch the commen
exit routine,

4.6.3 Apoendina Files

4.6.3.1 Append General Routine CAPP)

The function of this module {s to epoend two Vinked files
together, Appendina involves linking FILEA ta FILER and ade
justing the file entry for FILER, 1If {(t hacoens that the
device {s DECtace module AP2 {s also called to modifv the
DECtece bit maps, FILEA ceases to exigt as a separate file
and s mow part of FILER,

Callimg Seaquencel

MOV #FILEA,=(R6)
MOV #FILER,=(RS)
MOV BLNKBLK,=(R5)
EMT 22

FILEA = Address of the UFB fop File A
FILER = Address of the UFR #opr File R

Returm Araquments?
Nome
Descriotinnm?

This module first checks to see {f it {s in the Swaon BRuffer
and {f {ft (s {t gets a buffer from free cora through the



N~

DOS4,RNO PAGE #-57

Moniter's Get Buffer routine and than moves {tself into {t,
It tham tests to see {f an essigmnment has been made or {¢
the dataset is busy, 1If either condition occurs ar error (s
detected and handied es follows, The stack {s edjusted for
an exity {f an error return was set uop the necessary byffers
ere released and the error return is taken through the com=
mon ex{t routine, If am error return was not set up sn ap=
prooriate error code s orinted by the Monitor Diaanostie
Print routine,

If the above errors were not detected an EUT _SETUPFIB (s
{ssued to get a Dats Suffer and a FIB, The routine also
makes a cal) to the Monltor's. et Ruffer routime (GETBUF)
to allecate {nm free core an auxilisry buffer of 256 words)y
i{ts address {s kept on the steck, A test {s made for a file
structyred device, and {f mot fi{le structured the mecessary
buffers are released and the common ex{t (s taken baeck to
the caller,

If #ile structured an EMT LOOKUP {s issued to see {¢ FILEP
exists, {f ¢the file doesn't exist or {f (t is open, the
previous error handling for a busv dataset (B file block) (s
performed. A test {s now made to see {t the file {s contige
uousy {f {t is this (s an error and the error orocedure {s
foliowed, If no errors detected an EMT ,CKACSP (s issued te
check for protection violation, {.e. does the caller have
write access, If a protectiom violation eccurs the previous
errer handlimq procedure {s ysed, The same orocedure as
above (s used for FILEA, It FILEA {3 the same as FILER pe=-
lease the necessary buffers and exit back to the coaller, 1If
not the same, the file name and extension are cleared from
the directory entry for FILEA, and this directory hloek (s
written cuts The routine saves {(n the FIB the followinmna {n=
formation for FILFA: block number, directory address, the
start, lepath end end of the file, The directory entry for
FILEB {s mow read in, The new file Yemnath {s computed and
set in the directory entrv alonra with the new file end, The
updated directory entry for FTLFB (s then written Out,

Now the device {s checked as to whether {t {8 disk or DEC=-
tape, 1f the device is DECtape amd the block mumber of the
start bloeck of FILEA 1s negative, make it positive and set
the DECtoae reverse bit im the status word of DNB, The rea=
somn for the ahove s that the first block of a NECtape file
{s always wpitten in the forward direction. 1¢ the Yink to
e bloek is megative thia indicates it was writtan {n the re=
verse direction, Thus the 1ink to & block written im the
forward direction must he positive,

Now f¢ap both disk and DECtape move the start hlnck of FILEA
into the FIB, Then read the end hleck of FILEB into core,
Move the limk to FILEA start bleek {nte FILFB end bloek,
Then write this block out. This 1inks FILEA to FILFB,



DOS4,RNO PAGE #-58

Now (¥ the device i{s DECtane an EMT ,APNDP2 (Apnond Part 2),
is {ssuec to set the bits in the FILEB bit man that were set
in the FILEA bit map, and clear the set bits {n the FILEA
bit mao, themn write out the FILEB bit maps, Upen raturn
from the Append Part 2 Module or {f the device was disk the
foltowing nrocedure s followed, DDOB+? {s cleared to free
the Dataset, an EMT .RLSFIB {s {ssued to release the FIR and
the Data Buffer, The 256 word auxiliary buffer is released
throuah a call to the Mon{tor's Buffer Relesse routine,
Fimally the address of the commenm exit routime, S EXIT {s
put om the stack, Then a JSR {s simulgted to the Momitor's
Buffer Releagse routine to release the free core bu'fcr oceys=
pled by the Aopend Medule. Uponm completion the Buf!or Re=
lease routime returns directly to the eommen exit routine
which returns to the user,

4,6.3.2 Special Apoend Ocerations on DECtane (AP2)

The functioh of this module {s to modify the filo bit maps
when FILEA is arpended to FILFB, This routine {s called on=
vy by the module Append (APP), and enly when the deviee (s
DECtave.

Calling Seauencet
EMT 55
Registers are set as follows when this roue
tine is calleds also FIR+P and FIBe2 eontain
the following pertinent information,

R2sFILE B Bleek Number
R3I=FILE B Directory Address

FIB+@aFILE A Rloek Nyumber
FIR+2aFILE A Directory Address

keturm Apayments?
None
Descriptiont

This routime first reads {m the file bit mao for FILEA and
then the file bit mao for FILER, The routine them gets the
correspending bits in FILEB bit map that are set in the Fle
LEA bit map and clears the set bit {n FILEA bit map, Now it
writes out FILEA and FILER f{le bit maps, Now exit bsek teo
the acpend (APP) module throuch the common exit routine,



D084, AND PAGF #-59

(Bofor. reading {n the f{le bit maps @ subroutine (s ecalled
to caleulate the block contaiming the desired file bit map
and the {ndex into the file bit map,)

Subroutine Inmoutst

2(R8)eDirectory Block
4(R6)sIndex Inte Directory

Subroutine Outputss

2C(R8)uF{le Biteman Bloek
4(R6)slndex {mte File Bitemap

4.6.4 Penaming Files (REN)

————

The fumetion of this module {s to change the name and proe
tection code of an existing file, This is dome by reading
ifn the NLDNAM UFD entry, checking the caller's access, then
movina the NEWNAM and protectionr intc the OLDNAM UFD entry
and writing out the UFD bloek. This routime is called di=
rectlv by the user,

Calling Seaquence!

MOV ENEWNAM,
MOV #OLNNAM,
MOV #LNKBLK,
EMTY 20

OLONAM={g the address of tha existing file's
filename block,

NEWNAMe{g the address of the ¢{lename block
contaiminag the new information,

Returm Apauments:
pNOMme
Deseriptiont

The module first checks {f it is {m the Swan Ryuffer and {f
it is {t aets a buffer from free core, through the Monitor's
Get Buffer routine (GFTRUF) and them moves ftself out of the
Swap Buffer {nto the free core buffer, The routine then
cheeks {f the dataset {s busy. I¥ it {s busy the Rename
call wes {llegal. If an error return address in the OLDNAM
tile hlocik was set up, this {s takem by the common exit roue~
tine gafter releasing the free core buffer that Remame occue



D034 ,RNO PAGF #-60

pico. 1f no error return, conrtrol qoesg to the Monmitor N{age
nostie Print routine which identi{fies the errar,

For the case of a nonebusy deta set arm EMT ,SFTPFIR {g {s=
sued to goet a Dats Ryffer and a FIB, A cheek is then made
to see if the device is f{le structured, If mot file struee
tured an (mmecdiate exit {s taken sfter releasing the necese
sarv buffers,

If the device is file structured am EMT ,LONK'IP {s {gsued to
determirme {f the o0ld remed file ex{sts, If the file doesn't
exist, if the caller is not the owmer of the files or {f the
file (s 1n use an error {s detected and handied as follows,
If an error return had been set un in the OLDNAM f{le bleck,
ft {s taken by the common exit routime after releasinn the
necessery buffers, through the Monmftoris RAuffer Release roue
tine which retyrns direectly to the common exit routine, For
the case of no error return sddress the Mom{tor Di{aanostic
Primt routime, prints ar {denti{ifyimg epror code,

If the file does exist end the caller (s the owner, a second
EMT ,LOOKUP {s {ssued to see {f the new file name is {n use,
If the f{le was {n use or 8 ,LOOKUP erpor occcurred the pre=
vious error handling orecedure {s used, 1If the file name {s
available and no errors were detected tho bleck containing
the directory entry of the old file {s read in, The mew
file name, oxtension, and protection code are moved into the
fi{le entry and the hlock {s written out, The FIB and Data
Buffers are released by {ssuing an EMT ,RLSFIB, It {s now
necessary to release the free core buffer that Rerame occu-
pies, This (s done by puttina the address of the common exe
{t routime on the stack; them @ JSR to the Monitor'sg Buffer
Release routine s s{mulated but no return {a put on the
stack, When the Buffer Release routine returns it goes die
rectlv to the common exit routime which returns to the ecalle
er,

4,6.5 Protecting Files (PRO)

The fumctiom of this module is to orotect o f(le from aytoe
matic deletiom upon logout (finish commahd), This routine
{s called directly by the user and orotects his nared file
by settima bit 7 of the protect bvte in the file UFD entry,

Callimg Seauence?
MOV #FILBLK,=s(RS)

MNDV MLNKBLK,=(R6)
EMT 24



DOS4 , RNO PAGF # 61

Returm Apayments?
None
Desecriptiont

The module first checks to see {f {t (g {r the 8Swao Buyffer
or (s permanently core resident, If (n the Swap Buffer the
module aets a buffer from free core, through s coll to the
Monitor's Get Buffer routine (GFTBUF), and then moves {tself
fnto {t. The routine now tests the status byte {n the DDB
to see {f the Dataset {s busy, 1If the Dataset {s busv the
module cleanrs up the stack, clears DDB4¢3 to free the DNataw
set, and sees f{f an error returm gddress was set bv the
user) thenm releases the free core buffer it occcupies throuah
the Moritor!s Byffer Release reutine which returns directly
to the common exi{t routine which qoes the user's error re-
turn,, If mo error return was set an error identify{mg mes~-
sage s printed, through the Mon{tor's Diagnostic Print rou=
tine,

If the Dataset was not busy the module issues an EMT ,SFTUPe
FIB to. aet a Data Buffer and File Information Block, The
deviece is them checked for being non=file structured, If
pon=file structyred an fmmed{ate exit is taken, after re-
leasing necessary buffers, simi{lar to error exit above ex=
cept common exit routinme goes to the user's call {nstead of
error return,

An EMT LNOKUP {s now issued to see {f the file exigts and
{s mot open. If the file does mot exist or is oben the pre=
vious error procedure is followed, Whem the file exists and
{s nrot_ open the oratect bit can mow be set, Bit 7 of the
pretoetﬁon byte of the file's UFD entry is then set, and the
UFD bleck {8 written out. The UFD bloek was in cere from
the EMT ,LOOKUP call, The FIR and Data Buffer sre relessed
bv {ssuimg an EMT ,RLSBUF, Then the routine refeases the
buffer it occupies by @ call to the Momitor's Buffer Release
routimne whieh petupmns directly to the commonm exit routine,
whieh returns toe the user,

4,6, 6 Directorv Status (DIR)

e — .

The fumectiom of this module is to determnine {f a particular
file exists within a particular UFD, The proutine also de=-
termines the permitted methods of access for a $i{le and ope
tiomallv determines the startina bloek of a file,



D084 ,RNC

Call espouments

i1, Opti{onma)

2, Optiona)

Returm Arauments!

1. Optional

PAGE 4-62

function not desired,

MOV SFILBLK,=(R6)
MOV #_NKBLK,=(R6)
EMT 14

funetion desired,

MOV MFILBLK,=(R6S)
CLR «(R6)

MOV $_LNKBLK,=(R6)
EMT 14

function not desired

(R6) = number of blocks in the file, im binary
2(R6)=f{le {ndicator word

2, Optional funetion desired

(RS)

= sterting block of the file o
2(R6) « number o0f blocks {n the file, (n binary ~
4(R6) « f{le indicator word

FILE INDICATOR WORD

BIT 0s} o OPENC allowed

BIT s} +OPFNY allowed

BIT 2si +OPENE allowed

BYT 3=t «OPENU allowed

BIT 42 File rot in use

BIT 4= File in use by snother dataset

BIT 5si Dateset alresdy has a file open
BIT 682 File §s Linked

BIYT 68 File {s Cont{quous

BIT 783 +OPENN allowed(file does mot aexist)
BIT 71y oNPENC not allowed (file exists)
BITS 8=-15 Protection Code

Notegs If & file is protected against READ access
{t will be signeled as nom=existent to g caller

other than the owner,

Descrintioni

The modyle firgt tests to see {f it s in the Swer RAyffer)
it it is it gets a buffer from free core through the Monftor
Get Buffer routine (GETBUF), and then moves {tself into {t, ~
A test (s then made to see {f the Dataset is husy, 1If the



DOS4,RNN PAGF#- 63

Detasset is busy the return information {s put om the stack,
(bit 5s=1) the byffer is relensed and the routime exi{ts back
to the user., If the dataset was not busy an EMT ,SETUPFIB
is 1ssued to get a Data Buffer snd a FIR, 1If mo buffers are
available an error {s indicated either by an error diaanoss
tic beimg printed or return throuah the error returmn address
in the 1{nk blocks, {f present,

It the device is not file structured, the file exists bit {s
set in the {ndicator word. Then {f the "outpyt allowed" bit
is set {n the driver the NPENC oermitted bit is set im the
{ndicator word and the file exists bt s clesred, 1f the
fnout bit is set {n the driver the OPENE bt is set {n the
inaicetor word and the file exists bt rerains set, The re-
turn arauments are now put on the stack, Zero s put on as
the file lemgth, and as the starting block i¢ this (s re-
quested. Then the file {ndicator {s put en, The nmecessary
buffers are released and the routine exits back to the call=
er,

I? the device is file structured amn EMT ,LOOKUP {s {ssued to
determime if the file ex{sts and {ts charactertiatics, Tf an
i11ega) file name {s detectad the routine takes the error
exit {m the file block, or calls Error Diaanastic Print, {f
there is nome, If the f{le {s not found by the ,LOOKUP, the
peturn {nformation {8 set on the stack, the mecessary
buffers are released and the routine returns to the caller,
It the 1113 exf{sts and mno errors have been detected an EMT
.CKACSP is issued to cheek {f read access is sermitted, 1¢
reacd access {s not permitted the seme return {s taken as {f
file mot found, The available {nformetior {3 mow wused ¢to
set the amprooriate bits in the f{le indicator word, A sece
ond EMT ,CKACSP {s {ssued to see if write access is cermit=
tea. .  Nn_  the peturr aporopiate conditienms bits are set {n
the f{le indicetor word, based on a seauerce o0f tesgts, {f
the ecaller has write access., If the file is locked {t can
not be written on, If the file {s linked OPENU and NPENC
sre allowed, It the file is contiqguous, OPFNE (s alloewed,
The startinma block of the file is put on the stack it {t was
requested, aend them the lenath and file indicater werd are
put on the stack, The Data Buffer and FIR are relessed by
{ssuimg an EMT ,RLSFIB. DDB+?@ {s cleared to free the Nata~
sety) ¢ not permanently core res{dent the free core buffer
that the Directory Status Routime ececcupies must be released,
This is done by simulatina a JSP to the Menitor's Buffer Re=
lease routime and then having it returm directly to the com=
mom exi{t routipe which returns to the user,



D084 ,RNO PAGE 4-64

4.7 M;anetic Tape Structure

Magret{¢c Tere s beinc treated individually because of {ts
specislized structure., Magnetic Tape Structure is File ori=
ented_but hes mo d{rectorv structure as previous'y defined,
Its f(!o, structure handles cent(auoug record Files in se=
auential erdering. The files are {dent{fied hy the use of
labels makimg uyer the first record of egch file,

A Magretic tepe file {s a collection of seauential records
boumnded by end of file records or by bottom of tepe marker
and an end of File record. For "TRAN" none<File structyred
processira the records of & Fi{le may be from 2 to 327687
words lomra, For File structured "OPEN/CLOSE" oprecessing,
each record of 8 File is 256 words leng excapt for the First
record, whieh {s the file label and whieh {s 7 words lemg,

In order to perform label! searching to sumpert multiole
tiles on maanetic tape it {s mecessary to know when the last
file on a Tape has been peassed, This 1{s accomplighed by
havine CLOSE, for an Outout File, write a locical end of
tape (LEOT), which is @ nulleF{le, A pnulleF{te i3 3 eand of
File records with no interverning dats records. New Files
which are added to the tace write over the old LEOT and
write & new one aftepr their last record.

Eech File created by OPEN Precessina has as {ts LABEL a sev~
en word first record of the following forms

LABEL+2 FILE

LABEL+2 NAME

LABEL+4 EXTENSION

LABEL+6 ulc

LABEL+12 PROTECT CODE (BYTE)
LABEL+11 UNUSED (BYTE)
LABEL+12 DATF CREATER
LABEL+14 UNUSED

Whem special Functions involvine the operation of magretic
tape are reauested of the mag tape driver a Smeeial Function
Block s used for information trengfer, A pointer to the
special funmctions block i{s passed to the deiver in DNDBe2,
The Special Functiom Rlock has the followina forme

SFRLK+O Special Function Code Bvte
1, Rewimnd Tape And Unleoad
2, Wpite End of File
3, Rewind Tape
4, Skip Records
5. BRackspace Records
6. Set Densitv An+ Parity
7. Tace Unit Status



D084 ,RND PAGF ¥~ 658
SFBRLKe! Words to Follew (3 or larger) Bvte
SFBLKe2 Tape Umft Status Werd
SFRLK+4 User Specified Count or Contro) Werd

Information
SFRLKe6 Residye Count Werd

The allewable functions invelving cperation of vegretic Tape
are listed below and are described {n detall {n the followe
{ing two sections,

Standard Mom{tor Funrctionst

+OPENT
. OPENE
<OPEND
. OPENC
.CLOSE
«READ

LWRITE
«TRAN

Soecial Funmetions

REWIND AND UNLOAD
WRITE END OF FILE
REWIND

SKIP RECORDS

BACKSPACE RECORNS

SET DENSITY AND PARITY
READ TAPE UNIT STATUS

4.7.1 Npepina Files on Magnetic Tepe (MT0)

This routime is called from the Common Open Precesser onlyy
when am OPENI, OPEND, OPENC or OPENE {s requested for mage
netic teape, OPENU to magnetic tepe is {l1leaa) hecause it {s
inconaistent with magtere structures (¢ this is attemoted {t
{s relected by the Common Ooer Processor, The maqnretic tape
Open module {s called ¢from code executed in the DDB, out
there bv the Common Open Pprocessor, This (s to aveid .exe=
eutime am EMT in the Swep Buffer,

The funetlon ot this module is to perform soeeigl OPEN fea-
tures for Magnetic Tape, The Ocen Fumctions {melude rewi{nde
{mng the tape, and checkinao {f the cevice (s already open,
If the OPEN s for output processing it checks the Write
Loek Bit, Tf the Write Lock Bit (g on wher ooening for oute



D084 ,RND PAGE #-86

put, an action mon!tor request wil) be issued to insert the
File mpreteet ring before eontinying. The routine then leoks
at the first record of each file, compering the file rame,
extensien amnd UIC of the Yebe! with the OPEN recuest {nfors
matiom, wunt{! a metch is made or the loegical end of tace (s
reached.

OPEN] = Th{s opem reauires that the File he found, 1If not
found, this (s _an error, Exit {s taken through the
address {n the f{le name block, i therey or through
the Error Diaanestic Print, otherwise,

OPENE « 1f the File s found the tace will skip to the end
of the File, 1t the File §s not found the File la=»
bel {s written over the logical end of tace (LEOT),

OPENO = If the File is found, an action diagnostie is {ssued
at this point, A mew tare m:v be mounted and the
search re=occcurs or a continue (s given without re=
placing the tape and the OPEN behaves as {f 1t just
wrote the File label, 1If the File is not feund the
file label {s written over the loaical end of tape
(LEOT),

OPENC « Same as OPENE except {f the file is found it does
not skip to the end of file, ;

OPENU = Illegal
Calling Seaquence!

Registers are set as follows when this routine (s
called,

RO =« DDB Address
R2 = F{le Name Block Address
R4 = Device Driver Address

The followinrg is the {nstruction seauence to ecal)
the MTO routine from the Commen Omen Processor, by
execution of code {n the DODB, R3I points to
DDB+32, RS points to the Swap Ruffer "{n use"

bvte,

MOV EMT¢63,=(R3)
TSTB ORS

BEQ ,+6

MOV  (PC)+,=(RY)
DECB @RS

MOV R3,PC

The shove seauence of code oroceeds as follows!
An EMT 63 {8 put into DPB+26, Themn & residency echeck s



DOS4 ,RNN PAGE#- 67

made to determine {f the Common Open Processor is {n the
Swap Ruffer. If 1t (s in the Swap Buffer & second {mstryce
tiom {8 put {n_the DDB et DDRe24, The second instruction
trees the Swep Buffer before the EMT {g {ssued, Now the DDR
sddress where the code (s to be executed s put into the PC,
Then the code in the DDB {s executed,

Returm Arayuments?
ane
Deseriptiont

Whem this poutime is first entered the Momitor Register Re=
store Routine is called to perform its function of restoring
the general registers, The word count for F{le Labels s
set {n the DDB. The Maaq Tace Open Routine them builds a
Specis} Funection Block and nuts {ts address in nNDBe2, This
is to enable the Open routine to reauest special functions
directiv from the magretic tave driver, A test {s then made
to see (¢ the device is OPEN, 1If the deviece is OPEN, the
error peturn addpress is taken 1f one was set upy otheru!ao ]
fata)! error diaonostic s orlntod by the moniter, 1If the
device was not open then a specia! 'unction cal! {3 {ssyed
directlv to the device handler, to rewind the tace to the
beginning of tace marker (BNT), A test (s made to see {f
the resuest was an OPEN for output, If OPEN for Outout @
test is made {f Write Lock is ony) {f met on, econtinuesr ({f
Wwrite Loek on then an sction diaagnostic s printed, When
the proaram continues after action mesgage the check is made
againm.

Now & Labe] Block is hu(lt from 1nformation {n the File Name
Bloeks this {meludes F!lename, extension, UIC and protect
code, The creation aste is then set {n the Label Bleek, A
check s made to see {f there was an assianment, end {f an
assignment was made this over=prides the tfile mame bloek {ne
formation., The overeriding {nformation (s then put {mte the
Label Bloek. A search is then made of the existing files on
the tane bv comparine the Open reauest file mame, extension
and UIC with the Label Records on the tepe,

If a match is nmot made on the First Lape) Record, the file
{s skipred by a special furmction call to the Ar{ver, and the
next lshel record {s resad and & match attemoted, It the
jogical end of Tape {s detected hefore a mateh (s made, the
search is termimated, A test {s made to see (f the leaical
end of tape occurred after the physical end of teve, and {f
it did an error occurred, The error return address {s taken
{f ome was set up, otherwise a Fatal error disgmostic is
prirted bv the Momitor, 1f LEOT ecccurred before physical
end of tape the tape is back spaced by & special fumetions
call aned a test {s made {f the NPEN request was an OPENI,



DOS4,RND PAGF 4-68

I¢f the reauest was an NPENI the file must he foumnd, so an
error (s detegcted {f mnot found, 1¢ an error the error re=
turpr address {s taken if set upy otherwise a fatal error die
sanostiec is printed. If the recauest was an OPENE, OPEND or
OPENC the Label Reeord built in core is written over the
logica) end of tape. The Oper Flaas are set {n the Driver
and the DDB, The steck is cleaned yo and the common exit
routine (s takem back to the user,

If o LAREL Record is found to mateh the Open request infore
matiom, then the tyoe of Open (s decoded, For an OPENQ {f @
mateh was rmade an action diagroestic {8 orinted to allow o
new tace to be put or end the seerch proecedure to re=occur,
If & new tane s nmot put on and contipuation s recuested
OPEN behaves as {f {t Just wrote the file label, the orpen
fleas are set and the routine returns to the uyser through
the ecommen eoxit routing, For an OPENI or OPFNC, the Ooen
Flaas are set, the steck {s cleaned up, and the routine ex-
{ts back to the user, PFor an OPENE, & specia) fumection {s
{ssued to skip records to_the erd of fite marker, and then
another soecial funetion is {ssued to backsmace ever the end
of file marker, The Open Flgas are set anrd the routine rew
turms to the user via the common exit routine,

4,7.2 Special Operations

The soecip) funetions epprooriste to Maanetic Tape described
in the 1{introduction to Section 4,7 are called by means e!
the general roytine SPC deseribed im Section 3,4,1, 1Inm this
case, the cal] sequence uses the address of » qooeia! Fumes
tions Block as {ts seeond argument, where the Rleck {tself
{s set up as noted, {,.e.

MOV #SPFBLK,~(SP) IPASS SPF BLOCK,,.
MOV #LNKBLK,=(SP) Jees LINK=BLOCK
EMT 12 pCALL SPC

The processinag carrifed out by the Magnetiec Tapce Driver s
examimesd in {ts description the TMI1/TUl@ Magtene Dr{ver doe
cument (DEC=11=RIMBeD), assum!ne thet a valid code is afven
in the Rlock, On comoletion. contrel peturns te the eca'lling
proaram, through the SDecinl Fumctions aqemera! routine, with
date set {nto the Bloek as followst .



D084 RND

i.

PAGF ¥4-69

Tape Unit Status (SPFBLK+2)

RITS CONTENT
Pa2 Lest Command
2 = Offlime
{ s Read
2 ® Wepite
3 = Wpite EOF
4 » Rewind
5 = Sk{p Record
6 = Backsrace Recopd
3-6 unused , ]
14 1 = Tape after FOF (before FOF {¢
last command was BSP)
L] 1 = Tape at BOT mapker
"] 1 = Teape after EOT marker
10 1 s Wpite Lock on )
11 Parity @ = odd, | s even (default s odd)
12 @ = 9 tracky 1 8 7 track
13=14 Dems{ty 2 = 200 BpI

1 = 556 Bpl
2 = 80 BPY ‘
3 = 207 RAPI dump mode

Notet Tepe unit ststus is returmed im SFBLK+2
for al) special fumctions,

Res{dye Count

When special funetior reauests are issued to skip
records or beckspace records and the skip or back
space count (s not satisfied before termination,
the res{due {s returned to the "Residue Count" word
(SFBLK+6), Refer to desecriptiomn of <SKIP <RECORDS
smd BACKSPACE RECORDS,



" DIRECTORY ENTRYg ~- -
! (4 Blocks from | t
] [}
L_Mode) i ¥
Block #1046; 1052 - - 1
(START) :
|
|
DATA :
|
[
)
t
[}
|
[}
/\ ]
s-‘/\ |
c---}-d
'
\'4
Block #1052;: 1060 - -
:
[
DATA :
I
|
[}
]
0
|
1
m !
|
‘—”Tfj:t]_-J
]
Yy
Block #1060: 1064 -~
|
|
|
L]
DATA :
|
|
'
[
|
1
'
L//\ I
f\ |
r---F -d
[}
Y.
Block #1064: 0000
{PINISH)
DATA

Fig.4-1: Linked Pile Format.

r

- e —— -

Pase

{ DIRECTORY ENTRY 3 - -

(6 Blocks from :

#7352)

— > —-— = = - -

Block #7352

Block #7353s

Block #7354:

Block #7355:

Block #7356

Block #7357:

2

-0

._DATA

DATA

DATA

DATA

DATA

DATA

Pig.4-2; Contiguous PFile PFormat,



LINK TO NEXT MFD BLOCK

b —

INTERLEAVE FACTOR

BIT MAP START BLOCK

POINTER TO BIT MAP #2

| POINTER TO BIT MAP #n
g

(currently unused)

¥

Master File Directory Block #1

LINK TO NEXT MFD BLOCK (or #)

USER IDENTIFICATION CODE

POINTER TO UFD START BLOCK

—t _———

USER #l

(# OF WORDS IN UFD ENTRY

|)¢ B T

USER IDENTIFICATION CODE

S S ———

POINTER TO UFD START BLOCK

A IS

# OF WORDS IN UFD ENTRY

g

—- USER #2

USER IDENTIFICATION CODE

POINTER TO UFD START BLOCK

# OF WORDS IN UFD ENTRY

— USER #3

g

Fig.4-4:

-

Master File Directory Block #2



LINK TO NEXT UFD BLOCK (or #)

FILE —
NAME
EXTENSION
TYPE (resvd) CREATION DATE
1 1 1 i 1 1 1 1 1 4 1 FILE
(spare) LOCK USAGE COUNT r““EfTRY
] #
START BLOCK #
.LENGTH -~ flucKS
END BLOCK #
(spare) PROTECTION CODE
FILE H——
NAME
EXTENSION
TYPE-—3 (resvd) CREATION DATE
1 ] 1 - J B I N | 1 o] FILE
(spare) LOCK USAGE COUNT —— ENTRY
- - #2
START BLOCK #
LENGTH
END BLOCK #
(spare) PROTECTION CODE

FILE

NAME

————

EXTENSION, etc

.~

Fig.4-5: User File Directory Block



fb,z ¥-73

LINK TO NEXT MAP BLOCK
MAP #
# OF WORDS OF MAP
LINK TO FIRST MAP BLOCK
'MAP FOR BLOCKS 0 = 17 | ;o 520¢ K$
— e e . e .- - ‘>v'—~-——v1

-" . 20 - 37

-" . 40 - 57
-" - 60 = 77 f--ooo_.,
- . 100 - 117 :
- - 120 - 137 j
- o 140 - 157 f
}
- - 160 -~ 177 }
- 200 - 217 f
—— - — . !
-" - 210 - 237 |
A !
“,_,:/6/‘;-‘!;?5 fa ')?;I»’l’kf etc. /7‘;‘1‘\\ :
;1.441) SR e g )a / ﬁ\\_/“h ~—” :
|
R PR N Y R :
\
|
{

?77 76 75 74 73 72 71 70,67 66 65 64 63 62 61 60 r_-_l“fézﬁﬁg
N W RS IO O S B S N N (S N N -

Fig.4-61 Bit-map Segment Format

OWNER GROUP OTHERS
] i | L l 1 1

Fig.4-7: Protection Code Format



Pa,¢ y-7¥

BLQCK
(Reserved for Bootstrap) eee. F  .eee SYSTEM BOOTSTRAP
MFD BLOCK #1 see 1 eo s MFD BLOCK #1
USER #1 - UFD #1 oo 2 ees SYSTEM UFD BLOCK #1
cee 3 oo SYSTEM UFD BLOCK #2
4 es 0
MONITOR
LIBRARY
USER LINKED FILES
& Hardware
OTHER UFD BLOCKS Protect
Line
SYSTEM PROGRAMS
USER LINKED FILES
&
OTHER UFD BLOCKS
’— ————————————————————
T 4
/\\~_ .~ = —
USER
CONTIGUOUS
FILES
USER
CONTIGUOUS ]
FILES
SYSTEM
PROGRAM
OVERLAYS
MFD BLOCK #2 " eee X=N cee MFD BLOCK #2
BIT MAP BLOCK #1 see X=n=1l ,,. BIT MAP BLOCK #1
[EENEEENNEE NN NN N] [ E NN EE RN N SN NNNNN]
BIT MAP BLOCK #n see X (XX BIT MAP BLOCK #n

Fig.4-8: Non-system Disk Format Fig.4-9: System Disk Format



N Tttt !
e
e Fom— e -emememmeeaan { =752 !
DIRECTORY ENTRY:, | !
1 10 Blocks from +~ — - ! )
; | ! DATA
| T e i
| 1 |
4 i
Rest of ¥ | |
Ta in ;2&7. ! ////r !
se ! :
4 1
+754 _ }-4 Block #7571 JS"'E .
i
o, . _4 |
ATA I A !
Block #750:= | (a1 Co | ;
(START) L Ezun T
]
VI DATA | |
! i ) t
! H
(I l
1 t t H
Block #751:- (free) o ; : :
i 1
p
A S S o
| ] ! '
1 i
Fe1_ 755 ] Block #761:- | (free) ;o
| ] f
] | I i i
N ' DATA ! ' v |
Block #752.| (#7) : : .
| v ; Vo
v L L
i |
l /// ! . Block #762:- (free) )
) i
| ! ! - - Pt
i IN i i r -11 ; !
Block #753:r ' Usp ! | | ¥ ' J
| A =756  }>* 3
: b I it M)
{ i ¢
v ‘ ' DATA !
760 - -p-- -
: + Block #763 , (#5) :
1 ! U S|
. A re=--r-
DATA
T - {763
ﬁf;dd DATA
Block #755:- ?ﬁfg)
(FINISH) e ~| Rest of
P/” /7] Tape in
“Ialteyy se

N Fig.4-10: Possible Linked File on DECtape



BLOCK

19777

Pape ¥-76

(Reserved for Bootstrap) f---=-mmm-- ﬂ
]
USER : FILE #1 BIT-MAP L—y
1
LINKED !
FILES !
: i
L . — - : ;
o - T ' FILE #2 BIT-MAP
]
. Block #7fi- ‘j
USER ' (36—Ior¢): [
LINKED ! entries _ /\
FILES : S
? * |
! !
FILE MAPS: 1 - 7 —_— g
L_'—‘:"-“?"”"E’Z]T““ FILE #7 BIT-MAP '
}_.~,,‘ e e o e T3 3 e b e e e e
-® 15 - 21 ‘
-"- 22-28 — .- B

- o 29 - 35 |

- % . 3 - 42 |

-® - 43 - 49

A LRI R EE R LY ]

T W S s =56 £~(Link to #1#3)
____________ —
| MFD BLOCK #1 e | PILE #1 ENTRY [
MFD BLOCK #2 1 FILE #2. ENTRY
UFD BLOCK #1 F- - FILE #3 ENTRY |
UFD BLOCK #2 __
FILE #4 ENTRY -
MASTER BIT MAP - i b
FILE #5 ENTRY
USER u
LINKED- FILE #sr;zmy
FILES FILE #7 ENTRY
L Block #192:-
( 9-word FILE #8 ENTRY
; entries) P
N _//’ /'\_ /’/——E\
—_ . (.
I — FILE #25 ENTRY
USER B FILE #26 ENTRY
CONTIGUOUS FILE #27 ENTRY
PILES -
FILE #28 ENTRY
" (spare)

Fig.4-11: DECtape Format



CBA
CKRX
DLN
DCN

AP2

I%yt ¥-r7

MONITOR FILE-MANAGEMTNT MODULZS

PURPOSE
Check Directory Status
Allocate Contiguous File
Rename File
Delete File
Append File ®A° to File *'B*
Keep File on Log-out
Open File (I, =, U & C)
Create Linked File
Close File
Search Directory
Allocate Linked Block
Get Bit-map into Core
Get contigous blocks
Check Access Privileges

Complete Linked file delete

EMT CODE
14
15
2g
21
22
24
43
44
45
46
47
5¢
51
52
53

Complete Contigquous file delete 54

Complete DZCtape Append

55

CATEGORY

1

BW W W NN =

O Y - N ¥V



Stack Pointer ——>
(R6)

1k

REGISTERS
(9-5)
PASSED
BY
INTERNAL
CALL

Pase ¥-78

RN

INTERNAL CALL PC

INTERNAL CALL PS

WORK~-SPACE
RESERVED
FOR
CALLED
ROUTINE

—— Internal Call

T T

SAVED
USER
REGISTERS
(#-5)

]

]

I

User Call

USER PC

USER STATUS

USER CALL
PARAMETERS

|

T

USER
STACK
&
PROGRAM

SIREE

Fig.4-13: Potential Stack State - Internal
File-management Subroutine Call



)

Non-reentrant

Fa;e. -9

—-— Swap Buffer in use

-1 | 1 ———————>]  MOVE COUNTER
(Move routine)
...... qmmmme e ]
1
]
| EXTRA
MODULE 1IN ) BUFFER
SWAP CLAIMED
BUFFER FROM
! FREE CORE
I
|
\
|
]
i
|
I
: BEFORE MOVE
]
| S P - - - - 1
i
i
]
v
-1 [ ] ; ] ] 1
] ]
]
]
(IR S
SWAP MODULE
BUFFER PROCESSES
FREED FROM
FOR EXTRA
SUBROUTINE BUFFER
AFTER MOVE

Fig.4-14:

(First-level Routine)

Use of Swap Buffer in File-handling Operations



FILBLK3

DDB + 24
26

FIB + &

1g
12
14
16
29
22
24
26
39
32
34
36

F&,c f”ia

ERROR RE'I'URN ADDRESS

ERROR -STATUS I HOW OPEN CODE

FILE=NAME
(in Radix-5¢)

EXTENSION (in Radix-5¢)

USER IDENTIFICATION CODE

(spare) | proTECTION CODE

Fig.4=-15: User File Block

T N

DAT ENTRY ADDRESS

POIN’I‘ER TO FIB o

NEXT BLOCK #

"4 HOW OPEN CODE

. .- e e e e e e

EX’I‘ENSION START BLOCK #
TYPE | _(spare)

START BLOCK #

. e e o ——

# of BLOCKS

e s v e e—— s ree [ ——

LAST BLOCK #
INDEX INTO0 D1RECTORY BLOGK

DIRECTORY BLOCK # ”
_ (spare) T PROTECTION CODE |
" INTERLEAVE FACTOR

BIT-MAP POINTER
BIT-MAP Q LINK

'I‘EMPORARY
WORK-SPACE

Fig.4-16: File Information Block

~—



l’a,e y-£/

)
|
I
L_____--_--).__--__,..._-

e < I 17420
' | BIT-MAP |
{ | PREAMBLE |
|
]
(values shown are '
Addresses in Core) :
|
L]
' BIT-MAP
! . SEGMENT
\ CURRENTLY
A IN CORE
)
]
|
]
]
1
}
]
DEVICE DRIVER: A S
3249 [ ] |
[}
- — 1
| DRIVER _| !
| INTER=- _| \
[ PACE _ r-—————— —~€----- q--—--- ~<—-----4
| TABLE _| ' !
[} [}
73683 | _| 19968 | ' | 19368 | ]
7415 _"’"l - _ | 8 N 1 | ]
N 1 1 @ I 1 ¢ L -
[} t i
- OTHER i — - ' - - X - :
— UNIT . — : —FIB FOR ] A [ FIB FR-| A - FIB FOR-
— Q- ] - FILE . FILE - ' FILE
| LINKS - ¥ | epw ' ﬁ “B» X L wc®
B 4 | ! 4
' | L. -
. : !
! — - | B 7 | B '”
DRIVER \ - - ! '
L] [}
ROUTINES ! 7439 F-- - 742 -4 | 742¢
- 1g112 F----- » 19412 | ----- » 7
n - -
/\

Fig.4-17: FIB Linkage to Bit-maps



CHAPTER 5
OTHER PROGRAM SERVICES

As well as assistina the user {n handlimg 1/0_ as described
im the_last two chapters, the D03 Moniter offers a ranae of
other proaram services such as loading end unlocading the
proaram {tself and some general ut{lities, As with I/0 ser=
vices, gach operation is handled by s rearticular module,
whieh {s nmormelly brouaht from the system=device when re-
quired or can be resident {n memory, The ourpose of ¢this
chapoter (s to deseribe each of these modules,

gection 5,1 {llustrates the process by whiech o pregram s
prought {(mte ecore followinme & conmsole RUN or GET command,
Section 5.2 and 5.3 diseuss the utility packaaes allowina
the user te obtaim SVT {nformetion and for some commorm radix
cenversions. The Command Strine Interpreter which provides
a further means for device=assiamment while the program (s
actually under execution, is the subleet of section 5,4,
Fimelly the process of unicadina the opogram upen completion
{s covered {m segtion 5,5.

Since all the_modules im the category are potentisl users of
the Swap Byffer, thevy use the techniaues noted in section
2.3.5, Unless these techniaues are particularly relevant,
no furcher reference to them will be made,



DOS5,RANO PAGE 5-2

5.1 Pregram Loading

A1l proarams whieh rymn under D08, {mcludimg the Svstems Pro=
grars themoc1ves. are stored, reqardiess of the device, {n
the Yoad format {nto which they are comverted by LINKeit,
This (s dome for two main reasons!

a, It follows the comcent of device=independence
discussed {n chapter 3 {n that loading from any
source {8 possible, Whi{le in most ceses users
ere expected to hold ¢their prearams On some
form of bulkestorgae medium, for which a
ecore={maace, would produce & faster load, it {s
stil! possible that paver=tape or cords might
be used. Unlike the others, meither reader of
these latter medis provides anv form of auarane
tee on the accyuracy of the data, & particuylarly
{mportant reauirement when that detas i{s an exe=
cutable proaram, Instegd, ehecking must be
dene by software amrd the formatted binarvy mode
used for the lecad i{mage amply enables this,
For simplicity therefore a!! devices are han=
died similarly,

b, Evem om the bulkestorsae medie, there gare ade-
vantages in beimc able te maintajnm the proqrams
as linmked files rather than contiguous as (me
pl{ed by core-imoge fermot. They cam be stored
on any part of the medium rather thgn riafdly
at one end (escecially significant {f the medie
um {s DECteape)s they cam be extended without
the probability ef wastage of the medium bee
cause the old area is mo lormrger ‘large enough
amd a nmew one must be mrovided, leavimng the
other ocossibly loecked eut of further effective
use, Also of course, a further step in orogram
oreparation {s avoided, egmittedly at the ex=
pense of a slightly lormger loadetinme,

Befors the Loader itself {s discussed it 1{s worthwhile
therefore to examirme the loadeformat as {t {s currently dew=
fineds The {1lustratior at figure 8=l shows the structure
of a tyoica)l execytable proaram module, Basiecelly {t con=
sists of a series of formatted bimary bloecks, each starting
with the ¢two words of header {nformatior = mode amd size «

and erdima with the echecksum the format (mplies (see section
Je2.2.1), The first data word of each block is & Yoad ad=

dress for the words which follow, The first block of the
module {s & Communication Directory (COMD), This contains
genera) i{mformation {mrecluding the proaram name, {ts load and
start addresses and sizey this 1nformation may be followed
by a 1{st of EMT codes taken from the Momitor Library om the




DOSS,RNO PAGE S~ 3

svstemedevice by LINKI1 because they corresoond to Menm{tor
modulas for which the proaram hps specified core=residency
by glebal reference (see section 2,1,4), (T1f this 1{st (s
too lona for the 128ehyte maximum buffer size of LINK=1{ a
second bloek may be used). The proaram {tself uses the sube
sequent blocks and finallv a single=word Transfer Block proe=
vides a possible automatic start address ({f {mcluded i{n the
+END statement {m the proaram source » or | by default) (1)

Loadinq sctuallv beains in the tramsient Mon{tor section
which oe;ub!eo memory {n the absence of any user orogranm
(see soctiop 6,5). This routine orocesses the console RUN
and  GET _commands recuesting the load and cerforms the fol=
towina initial epcerationss

1, Verify the existence of the specifi{ed proaram mo=
dyle and {f opresent, resd its first part {nto o
buffer of standard size for the device, claimed
from free core,

2, Transtfer acprooriate deta from the CAMD general {ne
formetion section inte the SVT (see section 2.,1.1)

3. Move bntb the stacks

a, Progrem stert address or 0 to signify RUN or
GET

Be The 1{st of the Menitor modules te be loaded
(if any aiven in the COMD)

e, Count of the ftems {n the 1ist = or O
d, Program load address
4, Set registers as followst

RE s Address of a DDB established in free core
to nerv(ee the load modu!o dataset

Ry @ for linked files 1 for contifauous file
or a nonefileastructured devicey sion bit
meqgative {¢ device s DECtaece

R2 s Start address of the allocated buffer

[T I T T Y Y XYY R XY 4]

1. The formet deseribed in fact {s exsctly the same as that
prescribed for the Absolute Loader in the Paper-tare Systenm
on PDPmi] (see NECe1i{=GGPCesD). Hencer LINK=11 outout ceon
elso be used outside the DOS environment assuming of course
that mo Monitor modules are specified. In this case, the
COMD {8 alse {(rrelevants however, becguse th1s is aiven the
same load Dpoint as the the proaram {t is {immediately
everwri{tten and {n all but very few {nstances {s no problem,



DO8S,RNO PAGE 5-4

R3 s End address of the byffer ,

Rd s Address of nmext byte t0o he processed
(after COMD bloecks)

RS s (Currentlv {rrelevant = gee Section 6,.6)

The routing then calls the Lopder poroper to continue the
transfer of the proarem {(tself {nte memorv as shown below in
section B5.3.1. This in its turm calls o  further module
which takes _care of the loading of the specified Mom{tor mew
dules and of any aeneral clean=up {n readiness for orogram
exeeution. This {s deseribed In seetion 5,1,2,

5.1L1 Pragram Loader (LNR)

The Procrom Loader routine is reaoonoiblo for transferring
the progrem blocks from the Yoad module gnd gterinc their
data {n the correct memory locat{ons unti{l ¢the terminal
transfer block {s detected., To .void an extra byfferinag
stage and thereby save time, the transfers are corried out
by use of ,TRAN rather than READ, The Leader {tselt per=
forms i{ts own cheeks upon the formatted binary mode of the
data bofore it is stored, On comnletien, the Monitoremodule
Loader is called to complete the load eperastion,

in mo,t cases: the Losder {s exceected to be nmon=resident and
in this coase, Yike other Monjter modules, it is brought {nto
the Swap Buffer whern required, The seme alse apolies
howevep. te the LTRAN orocesser which the Loader calls as
noted.in the lest peragraoh, The Loader solves the possible
eonflict in a manner similar to that used by the
f'lo-mnﬂneomont modules in a l{ke sftuastion (see Section
4.3.2 If, before {t_beaims {ts proeoatine. {t detects
that ‘e {s {n the Swae Buffer (by exam{mation ef the l!sage
count in fts first byte), {t moves {tself into enother
buffer elaimed from free core and relegses the Swar BRBuffer
for the use of TRAN,

Calling Seauences

The Loader expects the Ragister and Steck-state detailed
above. OQOtheprwise its call is merelv?

EMT 61

Processinay

The processing seguence followed by the Program Loader s
{1lustrated et figure 5.2, Basically the followimg ocoera=
tions are performed:t



DOSS,RND

[Y PAGEJ'S

Reset Reaisters to the values pessed by the trons1-

ent Monmitor., Remove the return PC and Staetus from
the ataek,

Link the estebii{shed DDB, #s shown bv the address
in RB, to an {(ntermal Lirk=plock {mn order to pro=
cess the oroarem load medule as & dataset {n the
nerme) manner (the Linkeblock used by the transient
Mon{tor may of course diseppear underneath the proe
aram as {t {9 stored)

From the dete {m R2,R3 and R4 build an eporepriate
TRAN®bloek = alse {mnglude an EOD $lag 1f this {s
slready set in the DDB (see section 3,2,1,3)

The ecurrent stack msv also be over=written by the
leaded progrem, 80 move the data nassed by the
transient Mon{ter onto & new one gt ({fmediately
belew the Program Loesd Address, (This reauires twe
moves since there is always the aesoib!l!!v the old
L mew areas Might overlap ome anether),

Clear the whole af memory betweemn the Program Load
Address and the start of the area reserved for the
Paper=tane Svstem Loaders,

Process the data {n the buffer, a byte at a
time = since there (s no constraint thet bimnary
blecks must be complete words = as follows?

o, Look for the firot nen=0 bvyte, 1f this is not
1 end the nmext not 2 the format is {ncorrects
so reject the 'oad with a fata) Formet error
message (F222)

b, From the next two bytes, build the Byte Count
for the number of dete bvtes to he read and {ne
ftialize & checksum accurulator,

e, Form the Load Point for the data from the next
two bytes and set a memory pointer accordinmgly,
Adjust the Bvte Count for the six bytes Just
read. I+ this s mow B, the Block Just pree
cessed must he the terminal Transfer Blocks
hence releasse the dataset linkage end call the
Momn{toremodule Losder (see next section),

d, Otherwise store tytes {n memerv via the pointer
set in ster (c) unti{l the Byte Count Qgoes to 0,

e, DOurimg steos (c) and (d) add esch byte inte the
cheecksum accurmulator, Then add the data checke
sum byte, If the result (s O, return to steo



DOSS5 RN PAGE 5- 6

(a) te look for the next data bloek,
Otherwise, stoo the load with a fatal Cheeksym
error (F221)

7. If. after any byte has been Preocessed {mn the prnv!-

ous operation, the dety buffer s seen to be empty,
call the device to refi{ll it a8 follewst

a, Cheek for an EOD seen at the last device
transfer bv examination of the TRANebleck flag,
Since & terminal Transfer Bleek should ecome
first, this must be an_ crror. 80 reject the lo=
ad on the arounds of {mcerrect format as in
sten 6(a) above,

be Using the flag set into Ri when called, check
it the loed medule is o linked file, as des~
eribed (n section 4,1,1,1, It nmot, {necrement
the device bloek number in the TRANwblOCk,
Otherwise extract and stere the first word of
the datasbuffer as the device block, If this
{s megative and the device {s DECtace, (see
section 4.3.2), turn {t positive but set the
TRANebloek fleg to force reverse tare motion,

e. Call ,TRAN, followed by «WAIT, On completion,
stop the load as {(n step 6(e) above, {f any
device paritv fallure hes been detected as
shown by the TRAN=bloek flag, .Otherwise adjust
the buffer and pointer for an incomplete block
transfer i this K sfanalled in the
TRAN=block. Reset the bvee-.ntroetion pointer,
skioo!nc the first word {¢ saain the {nput {s o
inked file, and coentinue,

Exit Statet

When tho module porferminc the finnl 1oad phage {s ecalled,
the conrtents of Roe!otora are of mo consequences the stack
remains .as_on entry except for the Program Load Address en=
try which (s removed during the processinra,

CQmmoneil

It wil) be noted, perhaps, that the Loager module does not,
at step €6(c), attemot to relesse the buffer it may {tself be
occupving. At this time sny buffer allocetion cesses to be
meanimqful, As was shown {n_section 2,4,2, the memory arge
controlled by the Mon{tor Byffer Ajlocation Table (s orie=
gined alwave at the current end of the resident Monitor,
Durina the mext load ohase, this end s likely te meve up



DOS8S,RNO PAGE 5-7

mombré to {melyde further moduleo reauested by the oprogranm
and the.free core ares (s them d{fferent, Hence, the Buffer
Allecation Table s elc.rod by the next module and this aue

tomatically reclaims outstandine buffers, In fact, the cal!
to relesse the {nout detaset {s made purely as @ simple way
of cleaning the Menitor DDB ehain (see section 3,1, 2.,3) oend
the DOL enmtry fop the {mput device (see section 2 l 3).

This module cannot be reeentrant, beceuse of the Link- end
TRAN=blocks {t must set up intermally, However by {tg nae
tures such reauirement s _{rrelevant, |ikewise, there is ne
restriction. on {ts residemgy, for {ts current purpose,
(thouah {t (s perhaos inconceivable that there (s any peint
in {ts hefina {n core other than when reaui{red),

5.1.2 Mom{tor Madule Loader (LD2)

The 1ead brocess performs two main funetionst

a. It extends the resident Monitor to inelude the
addi{t{onal modules speci{fied bv the program and
ceurrently 1dentif1ed by their EMT codes in the
1{st on the stack passed by the transient Monis
tor,

b, It ensures that the Monitor is eorroetly on{med
for the oraogram execution rum and it reauired
sutomaticallv beaims the run,

In this. particular case, env trgnsfer from the systemedevice
{n order to l0ad s reauired Monitor roytime is controlled by
the Losder module, usine its own interna! nos, Simce the
loaded routine would everlav anv buffer allocated from the
then free core, the module cannot repeat the techniaue
adooted by {ts opredecessor to use ,TRAN, as shown {n the
1ast sectior,_ The whole operstion must be effected within
the Swap Buffer. This of course means that resentrancy s
acain oyt of the aue.t(on, The remarks on the last parse
grach of section 5,1.1 stil) apoly,

Ca11iéq Seauencey
As moted in the orevious sectiom, this medyle  expects a
stackegtate as aoaaed By the transient Monitor sectien,

otortjna with the count of Momiter modyles to be loaded, No
add{tiona) information is needed, Henee its eall s

EMT 62



DO3S,RNO

PAGF 5-R

Proeoslinel

The preeotnino seauence {n th!s cage g relatively simple,
No {1Yustretion {s therefore included. Basically the fol=
lowina steps sre taken!

L,

8
[]

Remove the dats oushed by the EMT call frem the
steck, (.0, saved register contents and return PC
and Stetus,

Clear the Moniter Buffer Alloecation Table complete=
ly (see section 2,4,2) and peset the TOB entry {n
the SVT end eorr.loondﬂnc steckestop (Lowest allowe
able address for stack exparsion) to Pemove any
buffers stil) n1located (see section 2,1,1 and
"Comments"” {m the previous section),

60110et from the staeck the eount of Monfiter rou-
tines to be londo¢ snd {# zepo, proceed to step 9,
Otherwise determine the address of the
system=device driver via the DDL start stored {n
the SVT and put it {nte an {nternal DDR (see Secw
tien 3,1.2,3). Alse set the DDB Completion Return
to_ use tho same seayence as 3AM for deaueuing the
driver vig 8.CDQ, checkina the tramnsfer velidity
ang clesring the DODB busy state (see Section
2 ‘).

U.!ng the EMT code passed on the stack, extragt the
correspondina MRT gntry for @& reauired routine (see
sectiomn 2,1.2). If the value ceollected {s even,
the routine {s alreedy resident, so ieanore the ree
auest and go for the next, '

Otherwise compute the size of the roytine from the
MRT date and adjust the SVT entries for EOM & TOR
(amd {ts stackesteon) accordingly,

Prepare the DDR for the transfer, settinmo {ts Busy
Flag and using the MRT dats to store Dovieo Bloek #
and Word Count and the old EOM for Buffer Address,
Also make the MRT entry show the routine's start
address now thet {t will be resicdent, (Beceuse of
the Usaeoe Count & Reentrancy Switchas in the first
word of the neut!no. this muse be old EOM+2, (see
section 2,3,2)) .

Sseve current Registers and call the system=device
deiver to effect the transfer, via 8,C08 (see sece
tion 3.1.2.4), Reauest .WAIT unti{l! dome (es {ndi=
cated by the DDB becoming {dle because of step 3),



\_/

D088 ,RNO PAGF S$-9

8, Restore the saved Reaigters and it the count shows
that more Momitor routinmes remain te be Yoaded, res=
turn to step 4,

9, Make a finel adjustment to EOM, TOB an+d stack=stop
to reserve two words for Device Assigmment Table
1{nkage (see sections 3,2,1,2 anmd 6,4,108), Alse
ensure that the SVT entry for WRA oo!nts to the
System weit Looe (see section 2,1,1),

10, Simylate & norma) System Exit for a routine usina
the Swao Buf!or (see sectlon 2.3,4) snd allowina
for the user's sooci#ie.t(on for RUN or GET as fole
lows?

a, Return Status = move the RUN/GET switeh passed
by the transient Monitor up the stack and ine
sert @ to force mo priority level,

be Return PC = {f the RUN=GET switech {8 non=8, the
valye {s the automatic stert address, hence the
ecorrect exit point (1), Otherwise replace the
:u'teh by the address of the Svetem Wait Loop
to forece the necessary GET state,

e. Saved Reaisters = clear the mext 6 words on the
stack to represent RO through as

11, Set the Monitor/User switch (MUS) {n the SVT to
show correct state (see Seetiom 2,1,1)%

a, Program {n and Running (1,1) fer RUN
b, Program {n but Waitimg (=1,1) for GET

12, Also for GET, force scceotance_ of kevboard command
ineut by setting the Llstenor inout ynderway switeh
(see section 6.3.1) and output 'S' te inform the
eperator that sueh {nput {s exmected,

13, Take_ the System Exit to release the Swap Buffer and
continue s set {n step 10 with Reaisters cleared
and the stack starting immedistely below the 10aded
program,

Q.---.-.--...--

1. 1¢ the END statement in the orogrem source did not, in
fece, susply @ start=point, this {s set to 1y hence the ay~
tometic start results in a fata! error (F342) hecause this
is oem {llegel! address, The user con recoua hy means of a
keyboard BEGIN with the correct address supolied,



DOSS,RNO PAGE 5-10

5.2 Gerers! Ut{lities Package (eut)

As nroted {n section 2,1.1, the Monitor retains system=state
infermation {n the 8VT, In addition, the TRAP 1nstruet1en
has been rgserved for the uysery) {ts vector is olse within
the resident Monitor, 1In order to allow the user to sccess
this aress o Genersl Utilities package {s orevided, While
this {s perhaps unnecessarvy under the orasent D0S because
the user connot be denied such access {(f he_ chooses to go
more directly, later systems develened for 8 PDPeif with
possihle hgrdware protection miaght prevenrt this, Morecver
{t cannot be _guarfanteeq that those svstems will necessarily
structure thelr 1nformation tebles 1n the same way, Thus {n
the nterest of upwerd compatibilitv, acecess through the
Ut{l{ties package {8 strongly recommended,

Cellimg Sequences

The packase {s called by a single EMT (41)y to {denti{fy a
particular function an {denti{fier code (s passed as a call
srgument, Basicallv the functions can be divided 1{into twe
main grouos and the codes reflect this, Eech group alse has
s different calling seauence:

a, PUT funections (1e77) o {n which the user {s susply=
{na {nformatior for eporopri{ate storage by the Mone
ftor. For these, the user pushes both the {nformae
tion end the code as cpll argumentsy the Monmitor
returns eontrol to the proaram on completion with
the steck clear, e.0.!¢

MOV  #DATA,=(8P) 1PASS INFO FOR STORAGE,,.
MOV  #CODE,~(8P) Sese & IDENTIFIER
EMT 4% 1CALL GUT

b, GET 1unetion. (100e177) = by whiech the user asks
for informatior alreedy stored, In their case, the
usepr provides only the {dentifier in the cally the
Monitor returms the reauired 4nformation on the
stack with the user then responsible for {ts remos

vall

MOV #CODE,«(SP) 3PASS IDENTIFIER
EMT 41 1CALL GUY

The currently assigned codes and thei{r callina seauences are
shown {n the Programmer's Handboolk,



~

DOSS,RND

PAGE s-11

Processinai

The processing seauence for GUT s {1'ustrated at ¢tlaure
5=3., The basic stecs are as followsl!

1,

Commeﬁti:

For code 1. (Set trap vecter) = move the supolied
PC and Status into the veetor in Yecations 34 ¢ 36,
clegr three arcuments from the stack and take o
nermal System Exit te free the Swan Ruffer {f ne=
cessary and restore user Registers.

For code 2. (8et RESTART address) =~ move the sup=
plied address {ntec the SVT for possible later use
hy the console RESTART command (see seetion 6,4,8),
elear two arguments from the stack and take a nore=
mal System Exit,

For al) GET codes = set a pointer to the SYT start
from the content of {ts vector in 1oeation 40 and
reduece the 1¢¢ntjficr code to an {ndex, Check {ts
renge and {f {t represents anr unassioned value,
call a fatal error (FR02),

Otherwise use the index to colleet from & table of
offsets the ore relevant to the SVT entry required
by the user, Reolace the call code on the gtack by
the {nformation to be returned and egain take a
morma) System Exit,

Presently two GET fumctions reauire special treat=
ment?s

a, Code 124 (T0OD recuest) = two words must be re=
turned, hence move the saved Reqisters and re-
tyrn parameters up the stack to provide necese
sary space,

b, Code 176 (Systemedevice name) = this (nformae
tien s {n the DDL, hence use the 8VT pointer
to colleet {t from the fipst DDL word (see secw
tion 2.1.3),

The General Utilities packaae {s completely reeentrant and
may be resident without resteriction,



DOSS ,RNO PAGF 5~ 12

5.3 ﬁgnvcrsibn Ut{lities Packoeae (evn)

Commeniveused sub=routines for convertima an aporeorfste
strina of ASCII cheracters or similer non=binarv values {nto
a bimapry auant{ty e or vice versa =~ are provided as s packe
aae within one Mon{tor module, Currently this nackage al=
jows for single=nrecision binerv conversions anrly, This aye
tomaticelly presdeterminas the lanath of each strinma, as
shown bv the followina Yist of the routines availablet

a, Radixe30 pack & umpack = 3 bytes
b, Decimal ASCIY diaits to/from bimary = 5 bytes
e, Oectal ASCII diaits te/from binary = 6 kytes

Heuovqr on imout this lemath {s omlv deemed a maximyms ¢the
format of the strina cam cause the conversian to stop with
the result at that point meaninaful te the user, Amn outout
ltrina nevertheless always produces the Oixod number of
bvtoa. ,In generel, error conditions detected during a
e9nvcraion afe reported to the user in the processor condi-
tion eodesy {t is the user's responsi{bility te eheck these
(usima BCS,BVC ete) when the proagram {s recalled, e.g.

C bitsinvelid byte entered as input, or oroduced as
output .
V bitsinout too large for singleeword storage

Ap with the_ Gereoral Utilitigs package discussed in the pre=
vious section, the conversion routines are called by a sin=
gle EMT code (42) with an {demti{fier passed as one of the
cel) arquments. Simi{larly there are two hasic aroups each
with its own caljlina sequence and ©oregram recall state,
These are desecribed im sections 5.3.1 and 5.3.2,

The whele packaae {8 reentrant under a)) conditions and may
be freely used residemce=wise.

5.3.1 Conversions Yo Binary

Call{mg Seauence!

The three routines which convert from ASCII strinma to bimary
word, are all assigred aven codes, They resuire enmly that
the user oupply the start address of the strina since the
lenath (s fixed for the_ conversion as moted in the introduc=
tion, Henece their callina seauence i3 as followst



DOSS,RNO PAGE 5-43

MOV #ADDR,=(SP) 1PASS STRING 8TART,,.
MOV #CODE,=(8P) feooek YDENTIFIER
EMT 42 sCALL CVT

Ex{t Statet

Whemn the program is recelled, the comversiom reolesces the
code on top of the stack and the address s uedated to peinmt
to the byte following the last one inctuded in the conver=
.1on. The returned value s based upon al) the bvtes seen
up to_an invelid one or unt i overflow, sublect to the maxie=
mum for the aagtlculqr conversion, It {s alwavs correct ue
to the point of stoepage, For examole, {f the string
161,69,60,18' ({,e,107<CR>) {8 converted from decimal ASCII,
the binary resylt (s 200144 with the address returned on the
stack beipa that for the <¢CR>» bvte, As mentioned earlier,
however, the C bit is aleso set {n thi{s case te indicate the
{avalid {nput,

Processinat

Certoin ocerations are common to all three conversionsy
therefore a co=routining techniaue is used, This (s similar
to that, deseribed for the ,READ/,WRITE procassor in section
3.2.2.2. The sequence followed by the mainmstream {s des=
cribed helowy the uniaue sections for eech conversion are
shown _{(n sections 5.3.1.1 throuah 5,3.1.3. The whole module
{s further {11lustrated at figure Se4,

1. U,o e dispatch sequence commom to all the convers
sien routines {n order tog

a, Clear the condition codes from the raturn
status {» enticipetiom of mo errara

b, Extragt two call arguments and lsave & pointer
to their stack position

e, Build the address of the first praturm soint to
the magimatream or ton of the staek,

d, Cheek the validity of the i{dentifier code = {f
not agssi{aned cal) fata)l error (F234)

e, Usina the code as an index into a JMPetgble, qo
to the uniaue routine to set & bvte counter for
the appropriate max{mum strimg=lenath,

2. On return, clear the code word on the stack ag the
store for the accumulated resyult,



DOSS,RNO PAGE 5-14

3. Coliect a byte from the string, remove parity (bit
7) and redyce to nrumeric digit renge, PRetyrm to
the unique routinme for furthep checki{mna and cerhans
adlustment,

4, Usima & commen sequence with variable return opo-
ints, multiely the present result by & fector ap=
sroepriate to esch conversion ({.e, 950 (octel) for
redix=packine, 12 for decimal and 4 for octal (1)),
Adgd {m the new bvte,

5. 19 a check or the count shows further bytes remain
te be ©orocessed, return to step 3, Ntherwise up=
dete the strina pointer on the stack to show the
next bvte to be pnrecessed, Remove the co=routine
1ink from the stack _end take o nermal Svstem Exit
to free the Swao Buffer {f necessary and recall the
opogram,

5.3.1.1 Radixe853 Pack (eode 0)
This form of conversion allows the restricted set of chare
acters normally used for svmbol{e names to be stored in one
word, three at & time, usina the algor{thmt

S0(5aA+B) +C

where .52 is octelly based and A, B & C are the three chare
acters coded in gccordance with the following tablet

P s SPACE
1=32 " Ae?

33 s 8

34 .,

35 (unused)

36e47 s (el

This ecomnversionm {s stepred therefore after three bytes or
upon recogrition of & character mot {mreluded im this set,
Irn the. Jetter case, however, the result ruse be
teftelystiftied, f.0. 'A' {3 equivalent to 'A ', Hence the

i1« The cctal conversion unjaue routine already has deubled
te oresent result (see sectiorn 5,3,1.3),



D085 ,RNN PAGF -8

uniaue routine called by the mainstrear 1istad above per=
forms the following operationsy

1. On entry set the count for thpee bytes amrd pecal!
the mainstream for the first bvte,

2, Convert a valid byte inm aecordance with the table
and return to the maimnstreanm for mu1tinlicatton of
the cyrrent result by eete) 50 and ldd1t1on of the
mew value, Repeat {f recalled with anether byte,

3, Hold the_strina oointer at an invelid byte and set
the C bit (m the progrem Status saved on the stack
to signal the error, Replace the byte with 2 and
continue frem step 2 to force the reauired left
lusteifiecation,

5.3.1.2 Decima) ASCIT To Binary (code 2)

The cgnvcr|4on of decimal dig!to uses the standard algorithm
{n which a previously comouted result is mult(plied bv decie
mal 17 ¢nd is then auomented by a rew digit, slwavs leavina
a correct value {f stepped at any time, e,0.1

Result #1 = A

Regult #2 s 10A+8
Result #3 s 1P (10AsB)+C
ete,

The miximum decimal value that can he stered in a sinagle
word is of course 65535, Hence the unique routime must en=
sure that this {s not exceeded as follows!

1, Set the counter for five bytes and recal) the maipe
stream for the first bvte,

2, Verify that the byte is a vali{d decimal diait, 1f
not, hold the strine pointer at the (ncorrect bvte
and s{qgnal the error by settina the € bit in the
orogram™ Status saved on the staek, Exi{t through
step 5 (m the mainstrean,

3, Check ¢ the currently accumulated value {s 6553,
If less:, or {f eausl with a mew dialit not areater
then 5, return to the mainstream for mylticlicetion
of the oresent result and addition of the new di=
a{t, Repeat from step 2 {f recalled with ganother
byte.

4, 1% the overflow condition is seer in stes 3, hold
the string pointer at the current hyte, set the V



00S5, RNO PAGF . -16

bit in the saved proaram Status and exit through
step 5 {n the mainstream,

5.3.1.3 Octa) ASCII To Bimary Cecode 4)

The conversion of ogtel values uses the seme algorithm as {n
the borevious section execept that the multipi{cation factor
{s octa) 12 rather than decirmal, 14 the computation (s
stocped at, amy time, the last result {s again valid, An
overfliow oroblem also existst the unfaue routinme {mn this
case therefore checks that the result dees mot become qgre=
ater than octel 177777 as followst

1, Set the counter for six 4iaits and racall the majne
stream for the first bvte,

2, v.rifv that the byte is a valid oetal diait, 1t
not, ex{t through step 2 of the dec1m~1 routine in
the previous section to sianal the error.

3, Cheek {f the current result is qgreater them octa)
17777, I se, exit through step 4 of the decima!
routine to flaa the overflow, Otherwise, double
the result amrd return to the mainstrear for {ts
further myltiplication by 4 and addition of the mew
diatt, 1f recalled with another byte, repeat from
step 2,

5,3,2 Conversions From Binary

Calling Seauencel

The corresponding routimes to convert from bimary te ASCII
.trina use odd {dentifier codes, In their case not only
mUst the user |Upa1v the start of o buffer for the storaqge
of the econverted bytes but slse the binary word to he cone
verted, The calling seauence therefore pesses three arque
ments as followsi

MOV  #WORD,=(SP) 1PASS DATA FOR CONVERSION,,.
MOV "DDRI-(SP’ ’po.BUFFER START.oo

MOV #CODE,=~(SP) f.00% IDENTIFIER

EMY 42 sCALL CVT

~



DOS85.RNO PAGEL-17

Exi{t States

on roturn te the proaram, the reau#rod string fa stored es
7ebit_  ASCII characters {n the huffer gupplied, Its size {s
the flxgd number of bvtcs’oesocfated wi{th each conversi{on as
noted {mn the {ntroduction, with aporopriate zere padding,
Hemce there (S mo need to update the buffer pointer returned
to the usep = he can compute {ts new nosition {f reauired,
Instead, the stagk {s comolietely cleared on recall,

Processinal

These conversions do mrot have the same, eompatibilitv as
their ecounterparts discussed {n oeetien 5.3.1, They asre
thorofeno effected In separate subroutines discussed {n sece
tions. 5.3,2,1 thprouoh 5,3,2,3, However they use the same
common dilpateh seauence as thot nreviously deocribed umder
step | {mn seetion 5,3, 1 and share a common exit to remove
the three call arguments from the stack and racall the pro=
gram throuagh the nermal Svster Exit,

§.3.2.1 Radix=53 Unpack (code 1)

Te reopoduee the original eharacters packed 1nto ene word {n
sccordanrce with the slaorithm ajven in seetiom 5.3.1.1, two
operations are neesded!

8. Successive division of the binarv velue by eoce
tel 50 {mn order to extract the three coded
bytes,

b, Conversion of the bytes into their corresoonde
ing ASCII equivalents,

The_elgorithm used to effect the first of these needs exola=
nation since it {s not a generally standard one, It (s
based ueen the fact that 3/16 of a aueantity is slmost eaual
to byt _is alwavs_less than 1/5 of that aquantity, This fole
lows froem the basic elgebraic temett

(xel)Cx+l)my,x

This froction therefore provides a reagonable first acoroxie
mation for dlvis!on by 53 re-iteration of the same process
with the remainder (1/16 of the orevious value) therm enables
e f.(rly raoi{d ~aceymulation of the correct result, The
rumber of 1terations is certainiy less then thase reauired
for the more nmrormal division technique ot diviser or divie
demed rotation with tria) subtraetion and, of course, this
number reduces with the oriairal auantity umlike {mn the othe

i



D085 ,ANO PAGE 5-18

er system. Moreover the core ussae 1n boeth metheds (s
rouahly_ the same, Such usece is obviously areater than {n
the very bas{ec successive subtraction technique but the time
taken for this method does not stand comparison, Hence the
redueeien algorithm outlined {s adooted because {t {g faster
and currently the overall size of the CVT module is mo mrob=
lem,

The algoarithm above can be spplied in  fact to any number
whiech {3 one greater then a binorv-bowera €.9.» 3,9,17, ete,
and naturelly becomes more aporopriate the larger the
number,

The uceond eporotion merely 1nvolves eomporlson of each byte
with .the corresponding ranaes of the table 01Von in section
5.3, 1.1, eo deteprmine the ASCII equivalent, Twe poinmts
hewever should be moted!

e, The max{mum accebtabie value ior a velid result
is that eorroonondinq to 999, (.o 174777 (oc=
tel)., If a aquantity areater than this (s
passed for conversion, the first byte with o
coded value of 52 becomes (1) by the translae~
tion method used,

b. Any of the bvtes can result in the unused code
35 which s translated into (/)

in eiﬁhpr case the {nvalid chsrscter io:rcturpcd to the cale
1imna oroaram in order to complete the conversion, The error
{s however flegged im the C bit,

The bvtes produced by the division are {n the reverse order
to that _required bv the fingl strima, Thus the stack {s
useg to effect the necessary switch as indicated in the fole-
lowina seauence for the conversiong

1, Set a stack marker gt {ts pregsent positiomn (nega=
tive value)

2, Store the value on the stack and compute 3I/16
C-(x-xll)/lJ. In the same Process, reduce the va=
lue on the stack to 1/18 (s(x=(xe=x/4)e((xwx/4)4),
Sum the auotients as this step {8 repeated until
the remainder on the stack falls to 47 or below,

3, Step 2 oroduces division by 5, _so divide the quoti=
ent obtained by octeal 10 and {f the segond bvte re=-
mains to be orocessed, repeat step 2 with the re=
sult, Otherwise cheek the posult = now the first
byte » and set the C_ bit {n the oregram Status
saved on the stack {f apeater then 47,



DOSS,RNO PAGE.S~19

4, Check {f the bvte is the unused coda 35, If so

sim{larlv gsigmral the error by the return € bit,
Convert the byte regsrdless of amy error into {ts

ASCIT eauivalent anrd store in the user=specified
buffer, Colleet the next byte from the stack and
repgat this step until the mgrker set {m step | {s
reached,

5, Take the common exit to eleansup the stack and ree
cal]l the proarem,

5.3.2.2 Rimary to Decimal ASCII Ccode 3)

The. convenc!on to decimal ASCII uses a stendard gsimple ale
gorithm whieh needs me exalonat!on. Mereover ne {mout value
can procduce erroneous results. Thus the seauence for the
conversion {s merely as followst

1, Set a pointer to a table of 17=power values
(12000=19)

2, Sterting from octs) 60 as the mecessary ASCII base,
count the nmumber of times egeh lz-aoucr value con
be successfully subtracted from the 1nnut avantity
and peass the _result to the user's buffer, Repeat
unti{! 10 {tself has been used,

3, The rerainder (s the digits byte = add 67 end pass

te the user, Take the common exit to elear the
stack and recall the program,

5,3.2.3 B{mary to Octel! ASCIY (ecade 5)

Conversion te octal ASCII {s effected by simple rotation of
the {mput value to extract reauisite number of bits (1 for
the tirst bvtey 3 for the rest)s to these octal 67 {s then
edded as the necessary ASCII base for each of the six die=
gits, Again no errors are possible. The partieu1or algore
{thm uses Cebit deteet!en of marker bits set inte the rotate
ed result=store in order to coumt the nmumber of bits for
each diait and also the number of digits as fallows:

1, Set a marker bit and ASClI=base eaui{valent for one
retation in the Junior byte of o resultestore, In
the highebvte set a markepr fopr 6 rotations,

2. Rotate & bit from the inout word {inte the Junior
byte of the result unt{) the marker bit moves te
the Ceb{t, Store the resultipa byte {n the yser's



DOSS ,RNN PAGE 7 -21

buffer.

3, Reset the Junior bvte as {n step { for four rotas
tionms, Rotate the whole pesult word amd repeat
frem step 2 until the hiahebyte marker reaches the
Cebit, Then take the ecommonm exit to clesn=uo the
steck and recall the proaram,

5.4 Command String Interoreter

In ehapt.n. 3L 4, {t was shown that the user has two norma)
methods of 1ndicat1no the devices anrd {f noeestarv the f!loo
he wishes to associate with the datasets providina 1/0 fer
his prearamss

a, He can pre-set the necessary {nformation {nto
Limrk=blocks and File=blocks within each orogram
source.

b, He can supplv this {nformation or can override
that ealready in the nrogram et leed time bv me=
ans of the console ASSIGN command,.

Both methods presume that once the program has bheaur execuw
tion, {t w{])! need the same devices and files for each run
while. it remains loaded in memory, Ne{ther mathod is really
syitable, however, {f the proaram meeds the abi{lity to use
different 1/0 med!o,for,dif!erent runs, perticularly (¢ the
new dataset specificetions are at the discretion 0f the obo=
erator at the conmsole keyhoard, For the simple cager, this
might be managed by the orogram settima an aoPrODriato RES=
TART address (see oe;!(on 5.2), printing some coerator sig=
nal and them waiting for the {nout of comsole ASSIGN and
RESTARTY commands to start & new rum, FoPr the Genersl case,
howavar, this {s clumsv amd wastefuls each sbeeification
needs a_separate ASSIGN and uses an {ndividual 18ewerd free
core buffer (see section 3,2,1,2)

The Mon{tor therefore contains s Command String Interpreter
(CSI) a3 a means wherebv dataset specificatioms, reauested
and entered o8 a string, can be translated and actually
stored with!n the oroarem Link=hlocks and Fitlemhlocks in re=
ed{ress for each run, _Furthermore, most System Proarams
tvpjeally nmeed this. feacili{ty to chanae devices snd files,
Their_yse of CSI orovides the added benefit c¢hat they all
now presenmt a st-ndard {interface to the operator at the key=
board.

This intogfueo and the method by which user proarams mav al=
so cell 