| I | | | | | | interoffice

|d]iJag|i|t]all]

| | | | | | | | memorandum

i T +

To: Monitor Groups Date: 27 Apr 83
Layered Products Groups From: Mike Uhler

Dept: Jupiter Engineering
DTN: (8-) 231-6L48
Loc/Mail stop: MRO1-2/E85
Net mail: UHLER at 10

Subject: Programming for a Pipelined Machine

1.0 Introduction

The KC10 processor is the first implementation of the PDP-10
architecture to include significant amounts of pipelined logic.
Pipelining techniques have increased the performance of the
machine, but at the same time they have caused problems in
obtaining a smooth instruction flow through the EBOX.

Because pipelining implies that multiple instructions are being
prefetched or executed at one instant in time, probliems of
instruction interaction come up. For example, if the instruction
currently being executed in the EBOX stores into a location that
has been previously prefetched by the IBOX, a conflict exists
between the correct data stored by the EBOX and the prefetched
data contained in the 1BOX.

This memo points out ways that a programmer can minimize the
impact of instruction interactions by carefully aranging the
instruction sequence. These suggestions apply, not only to
assembly language programmers, but also to compiler code
generators. I have made an attempt to distinuish those
suggestions that apply to pipelined machines in general and those
that apply specifically to the KC10 processor.

The memo contains one section for each major type of interaction.
Each section contains a definition of the problem, examples that
demonstrate the problem, and suggestions for minimizing it. A
final section give a priority to each of the interactions as it
applies to the KC10 processor.

Page 2

2.0 Pipelining

As PDP-10 processors begin to use pipelining techniques, the
interactions between instructions in the instruction stream begin
to affect the performance of the machine. In the past there has
been little or no interaction between instructions; execution was
done as a strictly sequential fetch-and-execute scheme.

The KL10 was the first processor to take the step into pipelining,

“and that step was only through simple instruction prefetch. In a
very limited number of cases, the KL10 overlapped the instruction
fetch of the next instruction with the end of execution of the
current instruction. All other aspects of execution including
EA-calc and operand fetch were done strictly sequentially.
The KC10 processor extends the prefetch capability considerably
through the use of an independent IBOX to prefetch instructions
and operands for EBOX execution. With the current design, up to
three instructions can be in the process of being prefetched or
executed at one time. Future PDP-10 processor may add
considerably more pipelining to achieve high agregate instruction
performance.

The very thing that increases the performance of a pipelined
machine also causes problems.

3.0 AC conflicts

3.1 Conflicts on the AC of a jump instruction

3.2 Conflicts on the AC of a skip instruction

3.3 Conflicts on the AC of other instructions (AC forwarding)
4.0 Memory operand conflicts

L.1 Conflicts on the memory operand of skip instructions

L.2 Conflicts on the memory operand of other instructions
L.3 Conflicts on ACs used as memory operands

5.0 EA conflicts

5.1 XR conflicts

Page 3

5.2 Indirect word conflicts

5.3 Conflicts on EA of jump instructions
6.0 PC conflicts

7.0 Executing in the ACs

8.0 A priority order for conflicts on the KC10

