
.. 

.. 

APL-11 
Programmer's Reference 

Manual 

Order No. AA-50768-TC 



January 1980 

This document describes Version 2 of APL·11. 

APL-11 
Programmer's Reference 

Manual 

Order No. AA·5076B·TC 

SUPE RSESSION/UPDA TE I N FORMA TlON: 

SOFTWARE VERSION TO 
OPERATING SYSTEMS AND VERSION: 

This is a revision. 

APL·11 V2 
• RT11 V4 
• RSX·l1M V3.2 
• RSX·l1M·PLUS Vl.0 
APL·ll Vl 

• RSTS/E V7 

To order additional copies ofthis document, contact the Software Distribution Center, 
Digital Equipment Corporation, Maynard, Massachusetts 01754 

digital equipment corporation · maynard. massachusetts 



Second Printing: January 1980 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may be used or copied only in accordance with the terms of such 
license. 

Digital Equipment Corporation assumes no responsibility for the use 
or reliability of its software on equipment that is not supplied by 
DIGITAL. 

Copyright ~ 1978,1980 by Digital Equipment Corporation 

The postage prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre­
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DEeUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 

DECsystem-lO 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 
DECsystem-20 

MASSBUS 
OMNIBUS 
05/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-IO 
TYPESET-ll 



PREFACE 

ACKNOWLEDGMENT 

CHAPTER 1 

1.1 
1.2 
1. 2.1 
1. 2. 2 
1.3 
1. 3.1 
1. 3. 2 
1.4 
1.5 
1. 5.1 
1. 5. 2 
1. 5. 3 
1. 5.4 
1.6 
1. 6.1 
1. 6.2 

CHAPTER 2 

2.1 
2.1.1 
2.1. 2 
2.1.2.1 
2.1.2.2 
2.1.2.3 
2.1. 3 
2.1. 4 
2.1. 5 
2.2 
2.3 
2.4 
2.4.1 
2.4.2 
2.4.3 
2.5 
2.5.1 
2.5.2 
2.5.3 
2.5.4 
2.5.5 
2.5.6 
2.5.7 
2.5.8 
2.6 
2.6.1 

CONTENTS 

THE APL OPERATING ENVIRONMENT 

APL ON THE PDP-II 
FILES IN THE APL SYSTEM 

APL Workspaces 
APL Data Files 

APL HARDWARE 
APL Terminals 
ASCII Terminals 

THE APL CHARACTER SET 
INTERACTING WITH APL 

RT-l1 Operating Procedures 
RSTS/E Operating Procedures 
RSX-11M Operating Procedures 
lAS Operating Procedures 

KEYBOARD EDITING PROCEDURES 
lnunediate-Mode Editing Procedures 
Processing Character Errors 

THE APL LANGUAGE 

OVERVIEW OF APL STATEMENTS 
Statement Execution Modes 
Statement Components 
Identifiers 
Numeric Constants 
Data Structures 
Significance of Spaces and Conunents 
APL Statement Types 
Evaluation of APL Statements and Expressions 

FORMATTING APL NUMERIC OUTPUT 
ERROR HANDLING 
ARRAY INDEXING AND COMPARISONS 

Indexing Arrays in APL 
The Index Origin 
Comparison Tolerance or Fuzz 

INPUT/OUTPUT OPERATIONS 
Quad Input Mode 
Quote-Quad Input Mode 
Quad-Del Input Mode 
Escaping from an Input Loop 
Normal and Quad Output Modes 
Heterogeneous Output Mode 
Bare Output Mode 
Terminating Output 

PRIMITIVE SCALAR FUNCTIONS 
Monadic and Dyadic Functions 

iii 

Page 

ix 

xi 

1-1 

1-1 
1-2 
1-2 
1-3 
1-3 
1-4 
1-4 
1-5 
1-7 
1-7 
1-10 
1-12 
1-12 
1-13 
1-13 
1-15 

2-1 

2-1 
2-1 
2-2 
2-2 
2-2 
2-3 
2-5 
2-6 
2-7 
2-7 
2-9 
2-10 
2-10 
2-12 
2-13 
2-14 
2-15 
2-16 
2-17 
2-17 
2-18 
2-18 
2-19 
2-19 
2-20 
2-20 



2.6.2 
2.6.3 
2.6.4 
2.6.5 
2.7 
2.7.1 
2.7.2 
2.7.3 
2.7.4 
2.7.5 
2.7.6 
2.7.7 
2.7.8 
2.7.9 
2.7.10 
2.7.11 
2.7.12 
2.7.13 
2.7.14 
2.7.15 
2.7.16 
2.7.17 
2.7.18 
2.7.19 
2.7.20 
2.7.21 
2.7.22 
2.7.23 
2.7.24 
2.7.25 
2.7.26 
2.7.27 
2.7.28 
2.7.29 
2.7.30 
2.7.31 
2.7.32 
2.7.33 

2.7.34 
2.7.35 
2.8 
2.8.1 
2.8.2 
2.8.3 

2.8.4 

CHAPTER 3 

3.1 
3.2 
3.2.1 
3.2.2 
3.2.2.1 

CONTENTS (CONT.) 

Extending Scalar Functions to Arrays 
using Operators with Scalar Functions 
Relational Functions 
I: Determining the Residue 

PRIMITIVE MIXED FUNCTIONS 
Summary of Primitive Mixed Functions 
Specifying Array Coordinates 
p : Returning the Shape of an Array 
p: Reshaping an Array 
1: Generating Consecutive Numbers 
1: Finding the Index of a Value 
,. Converting a Value to a Vector 
,. Catenating and Laminating Variables 
/ : Compressing an Array 
\ : Expanding an Array 
t : Taking Array Elements 
~: Dropping Array Elements 
~ : Transposing the Dimensions of an Array 
~: Transposing an Array 
¢: Reversing an Array 
¢: Rotating an Array 
~: Sorting an Array in Ascending Order 
t: Sorting an Array in Descending Order 
?: Rolling Random Integers 
?: Dealing Random Integers 
T: Constructing a Character String 
T: Representing a Number in Another Base 
~: Decoding a Number Representation 
E : Executing a Character String 
E : Determining the Members of an Array 
u: Eliminating Duplicate Elements in a Set 
u : Determining t h e Union of Two Sets 
n: Determining the Intersection of Two Sets 
~. Excluding Set Elements 
c: Determining a Proper Subset 
~: Determining a Strict Superset 
W: Formatting an Array 
W: Formatting a Character Array with 
Width and Precision 
ffi : Performing Matrix Inversion 
ffi : Performing Matrix Division 

OPERATORS 
ff : Reducing an Array 
f\ : Scanning an Array 
f.g: Computing the Inner Product of an 
Array 
0.[: Computing the Outer Product of Two 
Arrays 

DEFINING AND EXECUTING APL PROGRAMS 

MODES OF OPERATION 
DEPINING THE FUNCTION 

The Function Header 
Variable Classifications 
Dummy Variables 

iv 

Page 

2-22 
2-23 
2-24 
2-24 
2-25 
2-25 
2-27 
2-29 
2-31 
2-33 
2-35 
2-37 
2-38 
2-43 
2-45 
2-47 
2-49 
2-51 
2-52 
2-56 
2-57 
2-59 
2-61 
2-62 
2-63 
2-64 
2-66 
2-68 
2-70 
2-73 
2-74 
2-75 
2-76 
2-77 
2-78 
2-79 
2-80 

2-81 
2-84 
2-86 
2-88 
2-89 
2-91 

2-93 

2-95 

3-1 

3-1 
3-1 
3-2 
3-3 
3-3 



3.2.2.2 
3.2.2.3 
3.2.2.4 
3.2.3 
3.2.4 
3.2.5 
3.2.5.1 
3.2.5.2 
3.2.5.3 
3.3 
3.3.1 
3.3.2 
3.3.3 
3.3.4 
3.3.5 
3.3.6 
3.3.7 
3.3.8 
3.4 
3.4.1 
3.4.2 
3.4.3 
3.4.4 
3.4.5 
3.4.6 
3.4.7 

CHAPTER 4 

4.1 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 

4.2.5 
4.2.6 
4.2.7 
4.2.8 
4.3 
4.3.1 

4.3.2 

4.3.3 

4.3.4 
4.3.5 
4.3.6 
4.3.7 
4.3.8 
4.3.9 
4.3.10 
4.3.11 
4.3.12 

CONTENTS (CONT . ) 

Local Variables 
Global Variables 
Dynamic Localization 
Function Input and Output 
Comment Lines 
Examples of Defined Functions 
Niladic Function 
Monadic Function 
Dyadic Function 

EDITING THE FUNCTION 
Adding Function Lines 
Replacing Function Lines 
Inserting Function Lines 
Deleting Function Lines 
Displaying Function Lines 
Editing the Function Header 
Renumbering Function Lines 
Line-Editing Procedures 

EXECUTING THE FUNCTION 
Branching Within a Function 
The Use of Statement Labels 
Suspending Function Execution 
Examining the State Indicator 
The Trace Vector 
The Stop Vector 
Locking a Function 

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

INTRODUCTION 
SYSTEM VARIABLES 

OCT: Establishing the Comparison Tolerance 
DID: Setting the Index Origin 
OPP: Determining the Output Precision 
DPW: Determining the Width of the Output 
Line 
DRL: 
OAV: 
OLC: 
OWA: 

I-BEAMS 

Setting a 
Storing a 
Reporting 
Reporting 

Random Link 
Vector of Characters 
on Executing Functions 
the Available Working Area 

115: Reinitiating Error Displays for the 
Execute Function 
116: Suppressing Error Displays for the 
Execute Function 
118: Returning the Condition of the 
Workspace 
120: Returning the Time of Day 
121: Returning the CPU Time 
122: Returning Workspace Availability 
123: Returning the System Job Number 
125: Returning Today's Date 
I26: Returning a Line Number 
I27: Returning a Vector of Line Numbers 
128: Returning the Terminal Character Set 
I29: Returning the User's Project­
Programmer Number 

v 

Page 

3-3 
3-3 
3-3 
3-4 
3-4 
3-4 
3-4 
3-5 
3-5 
3-5 
3-6 
3-6 
3-7 
3-7 
3-8 
3-9 
3-9 
3-9 
3-11 
3-12 
3-13 
3-14 
3-14 
3-15 
3-17 
3-18 

4-1 

4-1 
4-1 
4-2 
4-2 
4-2 

4-3 
4-3 
4-3 
4-4 
4-4 
4-4 

4-5 

4-6 

4-6 
4-6 
4-7 
4-7 
4-7 
4-8 
4-8 
4-9 
4-9 

4-9 



4.3.13 
4.3.14 
4.4 
4.4.1 
4.4.2 
4.4.3 
4.4.4 

4.4.5 

CHAPTER 5 

5.1 
5.1.1 
5.1. 2 
5.1. 3 
5.2 
5.2.1 
5.2.2 
5.2.3 

5.2.4 
5.2.5 
5.2.6 
5.3 
5.3.1 

5.3.2 
5.3.3 
5.3.4 
5.3.5 
5.3.6 
5.3.7 

5.3.8 
5.3.9 
5.3.10 

5.4 
5.4.1 
5.4.2 
5.4.3 

5.4.4 
5.5 
5.5.1 
5.5.2 

5.6 

CHAPTER 6 

6.1 
6.1.1 
6.1. 2 
6.2 
6.2.1 

CONTENTS (CONT.) 

I30: Clearing the State Indicator 
I36: Terminating the APL Session 

SYSTEM FUNCTIONS 
OCR: Obtaining a Canonical Representation 
DFX: Establishing a Function 
OEX: Erasing a Named Object 
ONL: Constructing a List of Labels, 
Variables, or Functions 
ONC: Returning a Name Classification 

SYSTEM COMMANDS 

OVERVIEW OF SYSTEM COMMANDS 
System Command Format 
Action and Inquiry Commands 
APL Workspaces 

BASIC WORKSPACE-CONTROL COMMANDS 
)CLEAR: Clearing the Active Workspace 
)WSID: Identifying the Active Workspace 
)SAVE: Saving a Copy of the Active 
Workspace 
)LOAD: Retrieving a Workspace 
)LIB: Listing Workspace Names 
)DROP: Deleting Stored Workspaces or Files 

WORKSPACE-CONTENT COMMANDS 
)VARS: Displaying a List of Global 
Variables 
)FNS: Displaying a List of Functions 
)GROUP: Defining or Dispersing a Group 
)GRP: Displaying the Members of a Group 
)GRPS: Displaying a List of Groups 
)COPY: Copying Objects from a Workspace 
)PCOPY: Copying from a Workspace with 
Protection 
)ERASE: Erasing Global Names 
)SI: Displaying the State Indicator 
)SIV: Displaying the State Indicator and 
Local Variables 

WORKSPACE-ENVIRONMENT COMMANDS 
)ORIGIN: Determining the Index Origin 
JDIGITS: Determining the Output Precision 
)WIDTH: Determining the Width of the 
Output Line 
)FUZZ: Determining the Comparison Tolerance 

APL TERMINATION COMMANDS 
)OFF: Terminating the APL Session 
)RUN: Terminating the Session and Running 
a Program 

SYSTEM COMMANDS AND THE EXECUTE OPERATOR 

THE FILE SYSTEM 

OVERVIEW OF THE APL-11 FILE SYSTEM 
ASCII Sequential Files 
Random-Access Files 

FILE SYSTEM OPERATORS 
~: Setting the File Pointer 

vi 

Page 

4-10 
4-10 
4-10 
4-11 
4-11 
4-12 

4-13 
4-14 

5-1 

5-1 
5-2 
5-2 
5-2 
5-5 
5-6 
5-6 

5-7 
5-8 
5-8 
5-9 
5-9 

5-10 
5-10 
5-10 
5-11 
5-11 
5-11 

5-12 
5-13 
5-13 

5-14 
5-14 
5-15 
5-15 

5-16 
5-17 
5-17 
5-17 

5-18 
5-18 

6-1 

6-1 
6-1 
6-2 
6-4 
6-4 



6.2.2 
6.2.3 
6.2.4 
6.3 
6.3.1 
6.3.2 
6.3.3 
6.3.4 

APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIX D 

APPENDIX E 

INDEX 

FIGURE 

TABLE 

E.l 
E.2 

1-1 

1-1 
1-2 
2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
5-1 
6-1 
A-I 
A-2 
A-3 
A-4 
}1-5 
A-6 

A-7 
A-8 
A-9 

CONTENTS (CONT.) 

8: Reading Data from a File 
B: Writing Data into a File 
File Operator Examples 

FILE SYSTEM COMMANDS 
)ASSIGN: Assigning a File 
) CREATE: Creating a File 
)CLOSE: Closing a File 
)RENAME: Renaming a File 

SUMMARY OF APL FUNCTIONS AND OPERATORS 

APL SYSTEM COMMANDS 

SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

ERROR MESSAGES 

APL INSTALLATION PROCEDURES 

INSTALLING APL IN AN RT-IIV3 SYSTEM 
INSTALLING APL IN A RSTS/E V6C SYSTEM 

FIGURES 

The APL Keyboard (LA37 Terminal) 

TABLES 

APL Terminals 
APL Character Set 
Input/Output Operators 
Primitive Scalar Functions 
Dyadic Circle Functions 
primitive Mixed Functions and Operators 
Transpose Definitions 
Identity Elements of Scalar Dyadic Functions 
Inner Product Definitions 
Outer Product Definitions 
Filename Components 
APL-ll Data Types 
Primitive Scalar Monadic Functions 
Primitive Scalar Dyadic Functions 
Primitive Dyadic Circle Functions 
Logical Functions 
primitive Mixed functions 
Composite Operators; Generalized Reduction 
and Scan, Inner and Outer Products 
Keyboard I/O Operators 
File I/O Operators 
Primitive Mixed Functions and Operators 
(Summary Information) 

vii 

Page 

6-6 
6-7 
6-7 
6-9 
6-10 
6-10 
6-11 
6-12 

A-I 

B-1 

C-l 

D-l 

E-l 

E-2 
E-2 

Index-l 

1-4 

1-3 
1-5 
2-15 
2-21 
2-22 
2-26 
2-55 
2-90 
2-95 
2-96 
5-4 
6-3 
A-I 
A-2 
A-2 
A-3 
A-4 

A-7 
A-7 
A-8 

A-9 





PREFACE 

APL was first defined by K. E. Iverson in A Programmin g Language 
(Wiley, 1962) and has since been developed in collaboration with 

A. D. Falkoff and L. M. Breed. APL has been adapted into a conver­
sational programming system and has been implemented on a variety of 
computers. 

APL is a very concise programming language especially suitable for 
handling numeric and character array-structured data. Despite its 
mathematically concise and consistent format, APL is intended to be 
used as a general data-processing language as well as a mathematician's 
tool. The language is flexible enough to solve problems in text­
handling and commercial data processing as concisely and as easily as 
it can be used to solve problems in numerical mathematics and 
statistics. 

APL allows user-defined functions to be expressed with the same syntax 
as that used to express primitive language functions. This provides 
the user with an efficient and simple means of expanding the capabili­
ties of the language to handle the requirements of any application 
area. 

Areas of current application include scientific data reduction and 
analysis, simulation and forecasting, financial modeling, design 
engineering, electric circuit analysis, engineering analysis, inven­
tory and payroll management, data base manipulation, reservation sys­
tems, automatic theorem proving, computer-assisted instruction (CAl), 
and student education (high school and college level) in programming 
and the structure of algorithmic processes. The applicability of 
APL as a complete conversational programming system is unlimited. 

This manual presents an implementation of APL-ll, a version of the 
APL language on the PDP-ll computer system. It should serve as a 
reference manual for all users of APL-II. This is not intended to be 
used as a language primer. The new APL user may want to refer to 
any of several good primers available for basic instruction in the 
language. 

This manual is divided into six chapters and five appendixes. Infor­
mation is structured as shown on the following page: 

ix 



Chapter 

1 

2 

3 

4 

5 

6 

Contents 

APL-ll operating environment 
APL terminals and character set 
Starting, ending, and interrupting the APL session 
Keyboard editing procedures 

APL language introduction and background information 
Primitive scalar and mixed functions 

Defining, editing, and executing user-defined 
functions 

APL system variables and I-beam functions 

APL system commands 

APL-ll file system 

Appendixes A through D provide summary information on APL functions, 
system commands, I-beams and system variables, and error messages 
respectively. Appendix E describes procedures for installing APL 
in the RT-ll, RSTS/E, RSX-IlM, and lAS operating environments. 

x 



ACKNOWLEDGMENT 

The APL-ll System, which runs under RSTS/E, RT-ll, RSX-llM, or lAS, 
was originally developed by the Oregon Museum of Science and 
Industry. 

xi 





THE APL-ll OPERATING ENVIRONMENT 

CHAPTER 1 

THE APL-ll OPERATING ENVIRONMENT 

1.1 APL ON THE PDP-II 

The APL-ll system has been implemented as a language interpreter on 
the PDP-ll. It operates on a wide range of hardware processors and 
has been designed to run under any of four operating systems: RT-ll, 
RSTS/E, RSX-IIM, or lAS. This chapter introduces APL-ll and illus­
trates differences in initiating, terminating, and interrupting an 
APL session under these operating systems. 

The APL-ll interpreter has been designed to be as flexible as possible 
to meet the needs of a variety of different users. Users can select 
from a range of system options. A customized version of the APL-ll 
system is distributed, reflecting the following installation-dependent 
characteristics: 

• type of PDP-II processor being used 

• availability of floating-point hardware (FPP or FIS) on 
the PDP-II processor 

• operating system (RT-ll, RSTS/E, RSX-IlM, or IAS) under 
which APL-ll will run 

• arithmetic precision desired (single-precision or double­
precision) 

If an installation's PDP-II processor is not a PDP-ll/70 or another 
processor that offers extended instructions (for example, the 
PDP-ll/45 or a processor supporting EIS), the APL software simulates 
these extended instructions by generating a set of macros. Similarly, 
if the processor does not support the FPP hardware, the APL software 
simulates the capabilities of this hardware by assembling a software 
floating-point package with the APL interpreter. 

The RT-ll, RSTS/E, RSX-IIM, and lAS operating systems provide APL 
users with most of the standard features of the PDP-II single-user 
and time-sharing environments. APL-ll is configured for single-user 
access under RT-ll and RSTS/E, or as a task under RSX-IIM and IAS; 
thus, the interpreter is heavily overlaid to increase the size of the 
user workspace. 

A single-precision APL-ll system provides an accuracy of approximately 
seven digits, and a double-precision system offers an accuracy of about 
16 digits. If a single-precision system is selected, floating-point 
numbers are four bytes long. If a double-precision system is selected, 
floating-point numbers are eight bytes long. 

1-1 



1.2 FILES IN THE APL SYSTEM 

This section describes the special characteristics of workspaces and 
data files in the APL-ll environment. 

1.2.1 APL Workspaces 
An APL workspace is a part of the user's memory area that is ~sed tOd 
store functions and variables defined by the APL user, and va ues an, 
temporary results obtained while executing APL statements. Th: u~er s 
symbol table is stored in the workspace, along with the state ~nd~cator , 
an internal stack that may be accessed to determine the executkon status 
of any defined function in the workspace. Workspaces can be cl~ared, 
named, erased, or saved on a secondary-storage device, and retrkeved 
from that device at a later time. 

When the user begins an APL session, a special workspace called the 
clear wo r k s pace is made available for his use. This workspace contains 
no defined functions or variables, has a clear symbol table and state 
indicator, and has no open files. The clear workspace has a varie~y 
of standard system values associated with it, including the follow1ng: 

• index origin of 1 

• output line length of 72 (the default terminal width is 
used for RSTS/E) 

• six (single-precision) or ten (double-precision) significant 
digits 

• comparison tolerance (fuzz) of 5E 7 (single-precision) or 
5E-1 5 (double-precision) 

These values may be changed by the user during the current APL 
session. If a workspace is saved, the user-specified values are 
stored along with the workspace and will be in effect when the saved 
workspace is retrieved at a later time. 

The workspace currently available to the user is known as the active 
work s pace . All functions and variables defined during the current 
APL session are stored in this workspace. The active workspace may 
be stored as a file on a PDP-II secondary-storage device, such as 
disk, floppy disk, DEctape, and magnetic tape. It may be saved in 
core-image format by the )SAVE system command (Section 5.2.3). The 
user may assign the active workspace a name by the )WSID system 
command (Section 5.2.2) and may override this name, if desired, when 
the workspace is saved. 

Once an APL workspace has been saved on secondary storage, it may be 
deleted by the )DROP system command (Section 5.2.6) or retrieved to 
function as the active workspace once again. If the file has been 
saved, it must be retrieved by the )LOAD system command (Section 5.2.4). 
Data from the workspace may be copied into the current workspace by 
the )COPY and PCOPY system commands (Sections 5.3.6 and 5.3.7). The 
maximum size of an APL workspace depends upon the operating system and 
the amount of memory in the system. 

1-2 



1.2.2 APL Data Files 

In the APL-ll s y stem, data files may be stored on a variety of devices, 
including disk, floppy disk, DECtape, and magnetic tape. Two types of 
data files are supported by APL-ll: 

• ASCII sequential 

• random access 

ASCII sequenti al files are line-oriented sequential files that may 
be read and written by APL , by the MACRO Assembler, and by a variety 
of other lang uage processors. ASCII sequential files may also be 
created and modified by RT-II, RSTS/E, RS X-IIM, and lAS text 
edi tors. 

Random-access files may be read and written in a non-sequential fashion. 
When accessing the file, the user identifies the particular byte or data 
value to be read or written and specifies the format of that v alue. 
Data may be specified as ASCII, byte, integer, APL character, single­
precision floating-point, or double-precision floating-point quantities. 
Random-access mode allows the user to construct records containing 
values of several different data types. It also facilitates the use of 
random-access data files created by other language processors or systems. 

The file operators and system commands implemented as part of the APL-II 
file system are described in detail in Chapter 6. 

1.3 APL HARDWARE 

The user interacts with APL by means of a typewr iter-like terminal. 
The APL language supports the use of a special character set, in which 
Greek letters and a variety of other special characters represent APL 
language operators. Examples of such special characters include p, 
1, 0, v, and E. Several terminals available to APL-ll users provide 
keyboards on which the full APL character set may be utilized. Stan­
dard ASCII terminals may also be used with APL . On ASCII terminals, 
the special APL symbols are represented by means of keyword mnemonics, 
described in Section 1.4. The user selects the APL or ASCII character 
set at the time that he begins the current APL session (see Section 1.5). 

Table 1-1 lists the terminals supported by the PDP-II computer system 
f or use with APL-ll. The second column of this table indicates whether 
or not the special APL character set is represented on the terminal 
keyboard. The third column lists the terminal designator that must be 
entered at the time that the APL session begins (see Section 1.5). 

Table 1-1 
APL Terminals 

Terminal Character Set 

Any standard ASCII terminal ASCII 
without the APL character set 

DECwriter II model LA37 with APL/ASCII 
APL option 

Tektronix ® 4013 or 4015 APL/ASCII 
terminal 

Designator 

TT 

LA37 

4013 

® Tektronix is a registered trademark of Tektronix, Inc. 

1-3 



THE APL-ll OPERATING ENVIRONMENT 

1.3.1 APL Terminals 

The terminal keyboard illustrated below may be used in either ASCII or 
APL mode. It supports the full APL character set: all characters on 
this keyboard are received and interpreted by APL. Note that letters, 
numbers, and some of the special characters appear in the conventional 
keyboard positions. The letters print only in upper-case and are pro­
duced only when the keyboard is not shifted. The full APL character 
set is described in Table 1-2, included in Section 1.4. 

( TAB 1 [QJ[W] lEJ [ft] [iJ CYJ ill] CD [QJ [eJ 

EJ § [AJ (SJ [QJ [EJ [GJ lliJ CJJ [i] CEJ 

EJ [ZJ lXJ [CJ rID [BJ lNJ (MJ 
,-~.-, <~ 

l~li5 

Figure 1-1 The APL Keyboard (LA37 Terminal) 

1.3.2 ASCII Terminals 

ASCII terminals do not support the use of the special APL character 

C:J 
[J 

a 

set illustrated in the APL keyboard shown in Section 1.3.1. If the user 
has an ASCII terminal or is operating in ASCII mode on an APL terminal, 
he must use keyboard mnemonics in place of the special APL symbols 
not available in ASCII. To represent the APL rho symbol (p), for ex­
ample, the user enters the mnemonic .RO. The .GO mnemonic is equiva­
lent to the APL right-arrow (~), and the .EP mnemonic is equivalent to 
the APL epsilon (E). A summary of the mnemonic equivalents for all 
APL characters is provided in Table 1-2. 

If the user has an ASCII terminal, but erroneously selects the APL 
character set by specifying an incorrect terminal designator, he can 
terminate the APL session by typing the )OFF system command, replacing 
the left parenthesis with a double quote character, as in the 
following: 

"off 

Note that lower-case characters must be used. 

NOTE 

Because the keyword mnemonics are charac­
terized by the presence of a period (.) 
as the first character, the period should 
not be used to separate the workspace 
filename and extension name in ASCII mode. 
The comma (,) should be used instead. 

1-4 



THE APL-ll OPERATING ENVIRONMENT 

1.4 THE APL CHARACTER SET 

Table 1-2 summarizes all characters used in the APL system. The first 
column lists the characters found on APL terminal keyboards. The sec­
ond column provides a list of the corresponding characters available 
on ASCII terminals. The third column lists keyword mnemonics used to 
represent APL symbols not available on the ASCII keyboard. The fourth 
column supplies the names commonly associated with the APL characters, 
with upper-case letters indicating the origin of the mnemonic 
representation. 

The second section of the table lists APL overstruck characters. These 
are characters constructed by overstriking two distinct characters on 
the terminal keyboard. For example, the logarithm symbol ($) is formed 
by overstriking the circle (0) with the exponentiation symbol (*). The 
grade up symbol (!) is formed by overstriking the delta symbol (~) with 
the straight line (I) used to represent residue or absolute value. To 
express an overstruck character on an APL terminal, the user types one 
character of the overstrike combination, -then presses the backspace key, 
then types the other character of the combination. The order is not 
significant. On ASCII terminals, all overstruck characters are repre­
sented by alternate single-strike characters or by keyword mnemonics. 

APL Set ASCII 

+ + 
A- Z A-Z 

" & 
+- -
• , 
: : . . .. % 
= = 
\ \ 
* * 
> > 
[ [ 
( ( 
< < 
x # 

0 - 9 0-9 , , 
? ? 
/ / 
] ] 
) ) 
; ; 
- -
t " 

-
I 

ex 
D 
r 

Table 1-2 
APL Character Set 

Single-Strike Characters 

Set Mnemonic 

.AN 

.DV 

.GT 

.LT 

.TK 

.US 

.AB 

.AL 

.BX 

.CE 

1-5 

Name 

add 
alphabetics 
ANd 
assignment 
concatenate, comma 
colon 
decimal point 
DiVide 
equal to 
expand 
exponentiate 
Greater Than 
left bracket 
left parenthesis 
Less Than 
mUltiply 
numerics 
quote string 
question (roll and deal) 
reduce 
right bracket 
right parenthesis 
semicolon 
subtract 
TaKe 
UnderScore 
residue (ABsolute value) 
ALpha 
quad (BoX) 
CEiling (maximum) 



APL Set 

n 
T 

E 

L 
~ 

+ 

I-
o 

w 
v 
} 

-l 
p 
c 
o 

u 

APL Set 

THE APL-ll OPERATING ENVIRONMENT 

Table 1-2 (Cont.) 
APL Character Set 

Single-Strike Characters 

ASCII Set 

ASCII Set 

" 

$ 

Mnemonic 

.DA 

.DD 

.DE 

.DL 

.DM 

.DU 

.EN 

.EP 

.FL 

.GE 

.GO 
• IO 
.LB 
.LD 
.LE 
.LK 
.LO 
.LU 
.NE 
.NG 
.NT 
.OM 
.OR 
.RB 
.RK 
.RO 
.RU 
.SO 
.UU 

Name 

drop (Down Arrow) 
Dieresis 
DEcode 
DeL 
DiaMond 
Down Union 
ENcode 
EPsilon 
FLoor 
Greater than or Equal 
GO to (branch) 
IOta 
Left Brace 
delta (Lower Del) 
Less than or Equal 
Left tacK 
circle (Large 0) 
Left Union 
Not Equal to 
NeGation 
NoT 
OMega 
OR 
Right Brace 
Right tacK 
RhO 
Right Union 
jot (Small 0) 
Up Union 

Overstruck Characters 

Mnemonic 

.GD 

.GU 

.IB 

.LG 

.NN 

.NR 

.CB 

.CR 

.CS 

.DQ 

.IQ 

.OQ 

.OU 

.PD 

.PT 

.QD 

.QQ 
.SS 
.CO 

1-6 

Name 

lamp 
factorial 
Dollar Sign 
Grade Down 
Grade Up 
I-Beam 
LoGarithm 
NaNd 
NoR 
Column expansion 
Column Rotate 
Column reduction 
Divide Quad 
Input Quad 
Output Quad 
out 
Protected Del 
set file PoinTer 
Quad Del 
Quote Quad 
Subset 
Contains 



THE APL-ll OPERATING ENVIRONMENT 

Table 1-2 (Cont.) 
APL Character Set 

Overstruck Characters 

APL Set ASCII Set Mnemonics Name 

¢ .RV ReVersal 
~ .TR TRanspose 
.£ .XQ eXecute 

"" .FM ForMat 
A-Z .ZA-.ZZ underscored alphabetics 

t:. .Z@ underscored del 

1.5 INTERACTING WITH APL 

This section describes how the APL-ll user establishes communication 
with APL and concludes or interrupts an APL session. It provides 
separate descriptions of operating procedures in the RT-ll, RSTS/E, 
RSX-IIM, and lAS operating systems. 

1.5.1 RT-ll Operating Procedures 

APL-ll runs as a single-user program in the RT-ll operating system. 
An example of invoking APL, performing a function, and ending an APL 
session is included at the end of this section. 

To initiate interaction with APL, the user first establishes communica­
tion with RT-ll. The system displays the period prompt character, and 
the user enters the following command: 

.R APL 

and presses the RETURN key. The RETURN key must be pressed at the con­
clusion of any monitor or APL statement to cause that statement to be 
transmitted. APL begins the session by asking about the user's 
terminal type: 

TERMINAL .• 

and waiting for a response. If the user types H (for HELP), APL dis­
plays a description of the terminals currently supported by the system, 
and repeats the "TERMINAL .. " prompt - for example: 

)oWN $APL 
TEF(MINAL. •• H 
GIVE THE APPROPRIATE RESPONSE FOR YOUR TERMINAL 
RESPONSE YOUR TERMINAL. 
L.A36 LA36 WITH APL CHARACTER SET OPTION 
4013 TEKTRONIX 4013 
TT ANY TERMINAL. NOT HAVING APL. FONT 
TERMINAL. •• 

The user selects the designator that is appropriate to his terminal 
type, and enters it as shown below: 

TERMINAL. • TT 

1-7 



THE APL-ll OPERATING ENVIRONMENT 

After receiving a valid terminal designator, APL responds with a sign-
on greeting for example: 

WELCOME TO APL/ll 

It then supplies a clear workspace for use during the current APL 
session and displays the message: 

CLEAR WS 

The system indents six spaces to indicate that it is ready to accept 
user input. APL output results at the left margin, but automatically 
indents six spaces before unlocking the keyboard and allowing any user 
text to be entered. The system thus clearly differentiates between 
system and user entries. 

Under RT-ll, an APL session may be concluded by means of either of the 
system commands shown below. 

Command 

)OFF 

)RUN filename 

Effect 

Ends the session, exits from APL, and 
returns to RT-ll command level. 

Ends the session, exits from APL, and 
runs the program specified as an argu­
ment in the )RUN command. 

These system commands are described in greater detail in sections 5.5.1 
and 5.5.2. I-beam 36 (Section 4.3.15) may also be used to terminate 
the APL session and return to RT-ll command level. With all of these 
comnlands and functions, APL automatically closes all open files before 
exiting from APL. 

The currently active workspace will not be preserved if ) OFF, )RUN, or 
I-beam 36 is issued. If the user wants to save this workspace before 
terminating the APL session, he should store it on disk or on another 
secondary-storage device by issuing a }SAVE (Section 5.2.3) system 
command. 

The user may interrupt APL without actually terminating the session 
and losing the active workspace. The following control characters are 
used in the RT-ll system to interrupt APL. 

Character(s) 

CTRL/C 

CTRL/C, 
CTRL/C 

Circumstances 

APL is awaiting input 

APL is executing a 
function, evaluating 
an expression. or 
performing output. 

1-8 

Effect 

Echoes a tC character 
and stops execution, 
displaying "EXECUTION 
STOP". Indents six 
spaces and awaits new 
APL input. 

Echoes two tC characters, 
aborts output, and stops 
execution, displaying 
"EXECUTION STOP" and 
the expression being 
evaluated. Indents six 
spaces and awaits new 
APL input. 



THE APL-ll OPERATING ENVIRONMENT 

Character(s) 

CTRL/O 

Circumstances 

APL is performing 
output on the terminal. 

NOTE 

Effect 

Inhibits output until 
completion of current 
output or until another 
CTRL/O is typed. The 
first CTRL/O echoes a 
+0 character, the sec­
ond CTRL/O reenables 
output. 

On an APL terminal, CTRL/C echoes as ~n 
and CTRL/O echoes as ~o. 

In the following example, user responses are underlined. 

FWN AE'L. 
TERMINAL. •• 1 

WEL.COME TO AE'L./l1 V1.0 
CLEAR WS 

.I1L LOOPER 
[1J L.OOE': A At1 
[2J .GO LODE' 
[3] • [lL 

A._ 1 
[ffiJPEr.;: 

"'C 

RE!"HI~RTING APL. 
L.DOPEI~U.J A._.A+1 

A 
973 

If three or more CTRL/C characters cause control to be returned to 
RT-ll command level, the user may reenter APL without beginning a new 
session by issuing the REENTER monitor command. The current active 
workspace is preserved, so the symbol table and all defined functions 
and variables remain intact. In general, the user should close all 
files before interrupting the APL session in this way. 

When APL is reentered, a restart message is displayed, and APL identi­
fies the command or function line that was being evaluated when execu­
tion was suspended. An up-arrow (+) or caret (A) identifies the 
particular position in the line at which evaluation was interrupted, 
exactly as shown for the "EXECUTION STOP" case illustrated above. 

CAUTION 

If the user issues any command that runs 
another program (e.g., PIP) while at RT-ll 
command level, the current workspace will 
be lost. 

1-9 



1.5.2 RSTS/E Operating Procedures 

To initiate interaction with APL, the user first establishes communica­
tion with RSTS/E, entering his project-programmer number and password 
in the normal way. The system displays a sign-on greeting and enters 
the standard BASIC language environment. BASIC displays a "Ready" 
message to indicate that it is ready to accept input. The user enters 
the following command: 

run $apl 

and presses the RETURN key. The RETURN key must be pressed at the 
conclusion of any monitor or APL statement to cause that statement to 
be transmitted. If the RSTS/E installation has established the CCL 
command, APL, the user simply types: 

apl 

and presses the RETURN key. In either case, APL begins the session by 
asking about the user's terminal type: 

TERMINAL .. 

and waiting for a response. The user specifies the terminal being 
used during the current APL session, as illustrated in Section 1.5.1. 

After receiving a valid terminal designator, APL responds with a 
sign-on greeting. As in the RT-ll environment, it supplies a clear 
workspace for use during the current APL session and displays the 
message: 

CLEAR WS 

The system indents six spaces to indicate that it is ready to accept 
user input. 

Under RSTS/E, an APL session may be concluded by means of one of the 
system commands shown below. 

Command 

)OFF 

)RUN filename 

Effect 

Ends the session, exits from APL, 
and returns to BASIC; BASIC displays 
the "Ready" message. 

Ends the session, exits from APL, 
and runs the program specified as an 
argument in the )RUN command. 

I-beam 36 may also be used to terminate the APL session and return to 
BASIC. With all of these commands and functions, APL automatically 
closes all open files before exiting from APL. 

As in the RT-li environment, APL does not automatically preserve the 
currently active workspace when )OFF, )RUN, or I-beam 36 is issued. 

1-10 



THE APL-ll OPERATING ENVIRONMENT 

If the user wants to save this workspace before terminating the APL 
session, he should store it on disk or on another secondary storage 
device by issuing a )SAVE system command. 

In the RSTS/E operating system, the user may interrupt APL execution 
without actually exiting from APL . The following control characters 
are used to interrupt the APL session in the RSTS/E system. 

Character(s) 

CTRL/C 

CTRL/ O 

Circumstances 

APL is executing a 
function, evaluating 
an expression, await­
ing input, or perform­
ing output. 

APL is performing 
output. 

NOTE 

Effect 

Echoes a tC character, 
displays an EXEC UTION 
STO P message and the 
expression being evalu­
ated, indents six spaces, 
and awaits new APL input. 

Inhibits output until 
completion of c urrent 
output or until another 
CTRL/ O is typed. The 
first CTRL/ O echoes a 
to character; the sec­
ond CTRL/O reenables 
output. 

On an APL terminal, CTRL/ C echoes as ~n 
and CTRL/O echoes as ~o. 

When APL is interrupted, it identifies the command or function line 
that was being evaluated when e x ecution was suspended. An up-arrow 
(t) or caret (A) identifies the particular position in the line at 
which execution was interrupted, as illustrated in the following 
example. In this example, user responses are underlined. Note also 
that, because the terminal used in this example was an APL terminal, 
CTRL/ C echoed as ~n , the equivalent of t C in the APL type face. 

1-11 



THE APL-ll OPERATING ENVIRONMENT 

1 . 5.3 Rsx-llM Operating Procedures 

APL-ll runs as a task under the RSX-IIM operating syste~. ~o in~tiate 
interaction with APL, the user first establishes ~orornun~cat~on w~th 
the RSx-llM Monitor Console Routine (MCR). MCR d~splays the.angle 
bracket prompt character (» , and the user enters the fo11ow~ng 
command: 

>A PL 

and presses the RETURN key. The RETURN key must be pressed at the 
conclusion of any monitor or APE command to cause ~hat stateme~t to 
be transmitted. As with RT-ll and RSTS/E, APL beg~ns the sess~on by 
asking about the user's terminal type and awaiting a respon~e (see 
section 1.5.1 for examples of valid responses). APL then dlsplays a 
sign-on greeting and supplies a clear workspace for use during the 
current APL session. This is shown in the example below. 

>A PL 
TERMINAL .. TT 

WELCOME TO APL-ll V0 2-01 
CLEAR WS 

The system indents six spaces to indicate that it is ready to accept 
user input. 

Under RSX-IIM, an APL session may be concluded by means of the ) OFF 
system command described in Section 5.5.1 I-beam 36 may also be used 
to terminate the APL session and return control to the Monitor Console 
Routine. If the user wants to save the currently active workspace 
before issuing ) OFF or I-beam 36 , he should use the )SAVE system 
command. 

1.5.4 lAS Operating Procedures 

APL-ll runs as a task under the lAS operating system. To initiate 
interaction with APL, the user first establishes communication with 
the lAS Program Development System (POS). POS displays the POS> 
prompt, and the user enters the following command: 

PDS> APL 

and presses the RETURN key. The RETURN key must be pressed at the 
conclusion of any monitor or APL command to cause that statement to 
be t~ansmitted: As with the other operating systems, APL begins the 
sess~on by ask~ng ~bout the users' terminal type and awaiting a 
r~sponse (see Sectlon 1.5.1 for examples of valid responses). APL then 
d~s~lays a sign-on greeting and supplies a clear workspace for use 
durlng the current APL session. This is shown in the example below. 

PDS> APL 
TERMINAL .. TT 

WELCOME TO APL-l 1 V02 - 01 
~~R~ 

The system indents six spaces to indicate that it is ready to accept 
user input. 

l-12 



THE APL-ll OPERATING ENVIRONMENT 

Under lAS, an APL session may be concluded by means of the JOFF system 
command, described in Section 5.5.1 I-beam 36 may also be used to 
terminate the APL session and return control to the Program Development 
System. If the user wants to save the currently active workspace 
before issuing JOFF or I-beam 36, he should use the )SAVE system 
command. 

1.6 KEYBOARD EDITING PROCEDURES 

This section summarizes the procedures for entering and correcting APL 
text at an APL or ASCII terminal. 

1.6.1 Immediate-Mode Editing Procedures 

The characters in an APL input line may be typed in any order. The 
line may even be typed backwards by using the appropriate space and 
backspace characters. Regardless of how the line is entered, it is 
evaluated exactly as it appears on the terminal before the user presses 
the RETURN key; the order in which statement components are entered is 
not significant. If there are too many characters in the line, APL 
will display the following message: 

LINE TOO LONG 

The entire line will be ignored. 

If the user has left spaces in the APL line, he may backspace to insert 
characters before he presses the RETURN key. Note that backspacing is 
a method for positioning the carriage; it does not cause characters to 
be erased or deleted. 

The user may discover that he has mistyped one or more characters in 
an APL statement before he presses the RETURN key and causes that 
statement to be transmitted. Errors may be corrected by means of the 
special keyboard characters described below. If a new line is entered 
by the user immediately after a CTRL/C, CTRL/U, or RUBOUT character 
has been processed, the line will not be indented six spaces in the 
normal APL fashion, but will begin at the left margin. 

Character 

RETURN 

CTRL/C 

Meaning 

Terminates the input line and causes the 
APL statement to be transmitted. 

Interrupts APL function execution, ex­
pression evaluation, input, and output. 
Echoes +C on the terminal. 

In RT-ll, returns control to command 
level~ two CTRL/C characters must be 
entered if APL is performing input or 
output. 

In RSX-llM and lAS interrupts, 
APL execution but does not return 
control. On an APL terminal, echoes 
as ~n. 

1-13 



THE APL-ll OPERATING ENVIRONMENT 

Character 

CTRL/U 

RUBOUT 

u (overstruck au) 

Meaning 

Deletes the current input line and 
echoes tU on the terminal. Does not 
delete characters past the fir~t . 
carriage return/line feed comb1nat1on 
encountered to the left of the CTRL/U. 

CTRL/U cannot be used to delete a 
multiple-line literal (see the 
description of the overstruck OU below). 

on an APL terminal, echoes as ~+. 

Deletes the last character from the 
current line and echoes the character 
on most terminals. 

Each succeeding RUBOUT typed by the 
user deletes and echoes another 
character up to the first carriage 
return/line feed combination en­
countered to the left of the RUBOUT. 

The DELETE key is used in place of 
RUBOUT on some APL terminals. 

Causes an escape from an input loop or 
expression. Entered as mnemonic .OU 
on ASCII terminals. 

The au sequence may be used to escape 
from a loop containing a quad or quote­
quad input request. 

It may also be used to delete a 
multiple-line literal, which has 
been created by placing an odd number 
of quotes (usually one) on a line. 
When this occurs, subsequent lines 
are considered part of the literal 
until another line with an odd number 
of quotes is typed - for example: 

A~'THIS 

lS A MULTIPLE 
LINE LITERAL' 

A 
THIS 

lS A MULTIPLE 
LINE LITERAL 

I~ APL does not respond to an input 
l1ne, the problem may be that the user 
has accidentally entered a multiple­
line li~eral_ To escape, ~he user 

should type a single quote on a line 
to terminate the literal or should use 
the au sequence to cancel the literal. 

1-14 



THE APL-ll OPERATING ENVIRONMENT 

Character 

CTRL/R 

Meaning 

Retypes the current input line. This is 
often helpful in cases in which exten­
sive editing has been performed on a 
line. CTRL/R does not alter the input 
line and may be used any number of times. 

On an APL terminal, echoes as ~ 

The example included below illustrates the use of many of the special 
immediate-mode editing characters described above. 

20 

A~ 1 +4~4+~ ~ 4++/\5 

A 

1.6.2 Processing Character Errors 

If the user transmits a line containing an invalid character - for 
example, an illegal overstrike in APL mode or an illegal mnemonic 
in ASCII mode - APL generates the following error message: 

CHARA CTER ERROR 

The line in which the error occurred is ignored, and APL indents to 
allow the user to retype it. 

1-15 





CHAPTER 2 

THE APL LANGUAGE 

This chapter describes an implementation of the APL language and pro­
vides a detailed discussion of the features supported by APL-ll. 

2.1 OVERVIEW OF APL STATEMENTS 

This section introduces the syntax rules that govern the construction 
of statements in the APL language. It summarizes statement components 
and discusses the types of APL statements and the evaluation of APL ex­
pressions. 

2.1.1 Statement Execution Modes 

APL statements may be executed in either of two modes: 

• Immediate mode, in which statements and expressions 
are executed immediately, as entered by the user. 

• Function-definition mode, in which the user may con­
struct a program or function consisting of APL state­
ments, may name and save the function, and may exe­
cute the function at a future time. 

The syntax of the language itself is identical in both modes; however, 
a few special symbols have been defined for ease of editing in function­
definition mode, and these are not generally relevant to immediate-mode 
execution. Most of the examples in this chapter illustrate immediate­
mode execution of individual APL statements. Chapter 3 describes the 
preparation and editing of programs in function-definition mode and 
introduces the special APL symbols used in that mode. 

In immediate mode interactions, APL clearly differentiates between sys­
tem and user entries. When the user begins an APL session, the carriage 
automatically indents six spaces before allowing any text to be en­
tered. The user enters a statement and presses the carriage return to 
indicate that the entry is complete. APL processes the statement and 
displays the result at the lert margin or tne next line. Tne system 
then begins a new line and automatically indents the customary six 
spaces before unlocking the keyboard for the user's next statement. 
System and user entries can thus be distinguished, as shown in the fol­
lowing interaction. 

2-1 



THE APL LANGUAGE 

System User 

A~2+3 

A 

5 
2+1 

3 
3+5 

8 
A- 3 

2 
A~A+5 

A 

10 

2.1.2 Statement Components 

An APE statement may consist of the following components: 

• identifiers (variables, label names, user-defined func­
tion names) 

• constants 

• symbols for APL primitive functions 

The following subsections summarize the characteristics of APL identi­
fiers, constants, and data structures. APL primitive functions and 
operators are described in Sections 2.6 thr ough 2.8. Labels and user­
defined functions are discussed in Chapter 3. 

2.1.2.1 Identifiers - APE i denti f i e rs are used to name variables, user­
defined functions, and labels within functions. An identifier may con­
sist of any number of letters or digits; the first character of the 
sequence must be a letter, where a letter is defined as any character 
A- Z , A- Z , ~ or ~ . Only the first 31 characters of an identifier are 
significant, and embedded spaces are not allowed . 

A variable must be assigned a value before it can be referenced, or a 
VAL UE ERR OR results. A discussion of specific types of APE variables 
and detailed information about function and label name construction 
are included in Chapter 3. 

All APL i dentifie r s are stored in the symbol table. The symbol table 
consists of 508 bytes in the clear workspace, and it expands dynam­
ically , as needed, to the capacity of the workspace. Each identifier 
e ntry requires seven b y tes, plus one b y te for each character of the 
identifier, plus an optional fill b y te, to bring the total to an even 
number of by tes. 

2.1.2.2 Numeric Constants - Numeric constants are of two types: deci­
mal and exponential. The decimal form may be en~ered wi~h or without 
a decimal point. The exponential form consists of an integer or deci­
mal quantity, followed by E and the power of ten by which the quantity 

2-2 



THE APL LANGUAGE 

is to be multiplied. All of the following numeric constants are valid 
representations of the same value. 

556 556.0 5560E-l 5.56E 2 55600E -2 
556 556 556 556 556 

When APL outputs a sequence of numeric constants, the system attempts 
to display the entire list in decimal form, as shown in the example 
above. 

In APL, negative numbeps are represented by a numeric constant, immedi­
ately preceded by a negative sign (-). This sign is a distinct symbol 
(upper-case 2) and can be used only in negative numeric constants; it 
is not the same character as the minus sign (-) used to indicate a nega­
tive or minus function. On ASCII terminals, the negative sign is typed 
as .NG. Note that a space may not be included between the negative 
sign (- or .NG) and the number. It is displayed as the minus sign (-) 
on ASCII terminals, except in displays of user functions. Examples of 
using negative numbers and negative and minus functions are included 
below. 

2-3 

t 

2.1.2.3 Data Structures - Numeric and character data can be structured 
in a variety of ways. The following data structures are supported by 
APL: 

• scalars 

• vectors 

• matrices 

• arrays of three or more dimensions 

A scaLap is a single numeric or character value. A numeric scalar is 
entered as shown in the first example below. Note in the second example 
that a character scalar must be enclosed in single quotes. 

5 

c 

A~5 

A 

A vectop is a I-dimensional array or string consisting of any number 
of valuee. A numeric vector i~ entered a~ a li~t o! val~e~ ~ep~~~tea 
by at least one space - for example: 

A~l 2 3 4 
A 

1 234 

2-3 



THE APL LANGUAGE 

. 3 and 4 stored t hose elements are 1, 2 " , 
Here A is defined as a veC or w d Several other numeric vectors 
in the order in which they were entere • 
are created below. 

- 1 2 3 
- 1 2 3 

- 1 2 3 
- 1 - ~ , - 3 

Note that the first example generates a vector whose first element is 
-1; the second example applies the monadic negative operator ( - ) to the 
positive numeric vector 1 2 3 . 

A character or literal vector is entered as a string of character con­
stants enclosed in single quotes; no spaces are inserted ~et~een en­
tries in a character vector, because the space character ~s ~tself a 
legitimate literal value. An example of entering and examining a char­
acter vector is shown below. 

A ~ 'ABCDEFGHIJ K LMNOP GRST UVWXYZ ' 

A 
AB C DE F GHIJKLM NOP GRS TU VWXYZ 

A single quote character may be represented in a character vector by 
means of two consecutive single quotes - for example: 

HAME~'MARTHA' '5 ' 
NA ME 

MARTH A ' S 
I I I I I I 

, , , 

Several lines of character data may be entered as one literal string, 
as shown below. 

A ~ 'THI 5 1 5 A 

MULTIPL E L IN E 

L ITERAL ' 
A 

THI S I S A 
MULT IPLE L IN E 
L I T E RAL 

A matr i x is a 2-dimensional array consisting of rows and columns. The 
user must enter v alues corresponding to each element of an array, but 
must also specify the shape of the array. The shape of an array is 
the number of dimensions which it has and the length of each of these 
dimensions. For example, a matrix may have six elements arranged as 
two rows and three columns, or three rows and two columns, as illus­
trated by arrays A and B below. 

A 

1 ~ , 3 
4 ~ 

~ 6 

B 

1 2 
3 4 
5 6 

The primitive rho 
array, to reshape 

(p) function is used to specify the shape of a new 
an existing array, or to determine the shape of an 

2-4 



THE APL LANGUAGE 

existing array; it is described in detail in Sections 2.7.3 and 2.7.4. 
Following is an example of creating a simple matrix with the rho 
function. 

o 1 
2 3 
4 5 
6 7 

A~4 2,0 1 2 3 4 5 6 7 
A 

Arrays of three dimensions and more are also supported by APL. An 
APL array may have as many as 16 dimensions; the only restriction is 
that the size of the array must not exceed the size of the user's 
workspace. When an array of more than two dimensions is displayed, a 
blank line is inserted between each dimension, as in the following 
example. 

ABCD 
EFGH 

IJKL 
MNOP 

GRST 
UVWX 

YZAB 
CDEF 

2 2 2 4p'ABCDEFGHIJKLMNOPGRSTUVWXYZABCDEF' 

2.1.3 Significance of Spaces and Comments 

Spaces are usually not significant in APL. They need not be included 
to separate primitive functions from constants or variables but they 
may be used in such statements if desired. In particular, on ASCII 
terminals the mnemonics for APL primitive functions need not be either 
preceded or followed by a space. The following pairs of expressions 
are equivalent. 

A~B+l-C 

A ~ B + j - C 

.TRB 

.TR B 

Spaces are also not required between a succession of primitive func­
tions - for example: 

Spaces must be included to separate the names of adjacent user-de£ined 
functions, constants, and variables. For example, they are required 



THE APL LANGUAGE 

when entering a series of numeric constants as a vector. The spaces 
included in the following statements are necessary. 

;.,~ Tr.:IC; 3 
x~i-3 4 ~:i 
;·:i-.F 12 

Spaces may not be included between a negative sign - or . NG ) and a 
numeric constant (Section 2.1.2.2). 

Comments may be used freely in APL. Their use is particularly r~levant 
in function-definition mode. Comments must appear on separate lln~s 
and may not be included on lines containing APL statements. The flrst 
character in a comment line must be a lamp (A) character, formed by 
overstriking the down union ( n ) and jot (0) characters. If an ASCII 
terminal is being used, the first character in a comment line must be 
a double-quote ("). Chapter 3 describes comment lines in greater 
detail (see Section 3.2.4) and illustrates their use in a variety of 
user-defined functions. 

2.1.4 APL Statement Types 

There are two general types of APL statements. 

• branch statements 

• assignment statements 

Branch statements are used to restart a function and to transfer con­
trol from one part of a program to another. These statements are most 
relevant in the context of user-defined functions and are described in 
Chapter 3. 

Assignment statements are used to assign one or more values to a vari­
able or data structure. The general form of an assignment statement 
is illustrated in the following example: 

where the constant 3 is added to the constant 2 and the resulting 
value,S, assigned to variable A. There may be multiple assignments 
or specifications in a single APL statement - for example: 

Here the value 7 is assiqned to C, 11 to B, and 14 to A. The expres­
sion is evaluated according to the rule described in Section 2.1.5. 

Multiple specifications are particularly useful in initializing data 
values, as illustrated below: 

A i--E<i-- C i-- [0 i"() 

The expression: 

2 +3 
5 

may also be considered an assignment statement: in this case, no ex­
plicit variable is available to receive the result, so the value of 
the computation is simply assigned to the terminal. 

2-6 



THE APL LANGUAGE 

The result of an APL expression is displayed at the terminal unless 
the leftmost operation on the line is an assignment or branch opera­
tion or unless the user is in function-definition mode. 

2.1.5 Evaluation of APL Statements and Expressions 

Unlike some languages, which perform multiplication and division before 
addition and subtraction, APL has no explicit operator precedence. APL 
statements and expressions are evaluated in strict right-to-left order, 
regardless of the particular functions in the statement. For example, 
the expression: 

27 

evaluates to 27, using right-to-left evaluation, rather than 17, which 
would be the result if operator precedence were employed. All APL 
statements are executed as if they were parenthesized from right-to­
left. Thus, the expression: 

3 x 4+~.:; 
27 

is interpreted as: 

3x(4+::=;) 
27 

The user may control the order in which the individual operations in a 
statement are evaluated by explicitly parenthesizing the operations to 
be treated as a quantity. To cause the expression included above to 
evaluate to 17, not 27, the user enters the following: 

(3X4)+~3 

17 

This expression evaluates to 17, because 5 is added to the quantity 
3x4, not simply to 4. 

2.2 FORMATTING APL NUMERIC OUTPUT 

The APL-ll system may be configured as either a single-precision or a 
double-precision system for the internal representation of floating­
point numbers. The single-precision version of APL-l1 uses a precision 
of about seven decimal digits; the double-precision version uses a 
precision of about 16 digits. 

The internal precision of numeric representation in APL is not subject 
to the user's run-time control. However, the user may specify both the 
desired precision of numbers to be displayed as output and the maximum 
length of the output line. The )DIGITS system command (section 5.4.2) 
sets the output precision, and the )WIDTH system command (Section 5.4.3) 
sets the length of the line. The examples in this section illustrate the 
impact of both of these commands on the appearance of APL output. vector 
and scalars are printed in a compact formi arrays and higher dimensional 
structures, however, are formatted for tabular output. 

Before a numeric array is printed, it is scanned to determine the "best" 
output format. The columns of numeric arrays are aligned and packed to­
gether with at least one space of separation. Once the maximum field 
width has been determined for an array, the numbers are left-justified 

2-7 



THE APL LANGUAGE 

in that field. No attempt is made to align the decimal points. APL 
attempts to display all numbers without decimal points and exponents. 
When scalars, vectors, and arrays are being displayed, only those 
numbers that require exponentation are displayed in that form - for 
example: 

556 556.0 556 E O 5.56E -9 
556 556 556 5.56 E-9 

Fractional numbers are displayed with a leading zero before the decimal 
point. Note that the maximum number of displayed digits has been set 
to six in the examples below. 

)l:<IGITS 6 

1000000()OO 
:1.1:::+9 

11::: .•.• ;:.; 

....• O()OOO()OOO:l. 
····:l. E ···· l0 

:1. 23400 
2 !:).f' :1. 

]. 1 1. :1. 1. 
:I. :1. 1 1. 1. 

2 3,.123 -.:1.23 . 123 .:1.23 . :1.23 5.4321 E - l0 
1.2300E-l -1.2300E-l 1.2300E-l 
1.2300E -1 1.2300E-l 5.4321 E-10 

2 3'.123 3 .123 .123 123456 1E4 
0.1230 3 0.1230 
0.1230 123456 1.0000 

When the length of a vector or array exceeds the maximum line width 
specified in the )WIDTH command, the excess numbers are indented 
beneath the second element of the first line, as shown below. 

)WI"{,'TH 3e> 
l.\1 (:~ ~s 72 

\ ::~;O 
1 :~.:: 3 4 "'. .-, 6 7 8 9 10 1.1 12 

13 14 .1.5 16 17 18 19 
20 21 22 23 :;~4 

• .., C" 
,,:.. ~J 26 

27 28 29 30 

II) \ 1 () 
o 0.69315 1.09861 1.38629 

:1..609 44 1.79176 
1..94591 2.07944 
2.19722 2.30259 

)x:.J:G:rT~; 3 
WAS 6 

(111 \ 1 () 
o 0.69 1.1 1.39 1.61 1.79 

1.95 2.08 2.2 2.3 

(generate 30 consecutive numbers) 

(compute natural logarithms) 

2-8 



THE APL LANGUAGE 

In APL ~here ar7 actually two ways to control the number of digits dis­
play~d.ln n~merlc output. The )DIGITS system command sets the out ut 
preclslon dlrectly, and the floor (L) function, illustrated in thePlast 
example below, rounds the numbers included in the function. In this 
exa~ple, t~e numbers are rounded to three places to the right of the 
declmal pOlnt. 

)DIGITS 6 
WAS 3 

)WIDTH 72 
WAS 30 

e'5 
o 0.69315 1.09861 1.38629 1.60944 

1E -3xL.5+1 E 3x8,5 
o 0.693 1.099 1.386 1.609 

2.3 ERROR HANDLING 

When an error is encountered in an APL statement, an error message is 
normally output, followed by a display of the line in which the error 
occurred. An up-arrow (t) beneath this line identifies the particular 
point at which the error was discovered. Examples of several common 
error conditions are included below. 

VALUE ERROR 
AXB 

t 
1+18+2+3 

SYNTAX ERROR 

1+1B+2+3 
t 

1 2+1 2 3 4 5 6 7 

LENGTH ERROR 

1 2+1 2 3 4 5 6 7 
t 

Because APL is a highly interactive system, the user can almost always 
respond to an error condition simply by correcting the statement in 
which the error occurred. This characteristic of the language also 
facilitates a trial-and-error approach to program development. 

In immediate mode, the user generally responds to an error message by 
reentering a corrected statement or by changing the value of a variable 
used in a computation. In function-execution mode, APL outputs an 
error message, along with the name of the function and the line number 
of the statement at which the error occurred; it also suspends execu­
tion of the function. The user may then terminate the suspended pro­
gram, restart it at another statement, or perform debugging operations 
before resuming execution. These operations might include editing the 
suspended program, displaying the current values of variables used in 
the program, examining the status of functions called by the program, 
or developing a test program to analyze the output of the suspended 
program. Chapter 3 describes techniques for developing ~nd executing 
functions. 

If certain types of errors occur in function-execution mode, the user 
may not want execution of the function to halt to await correction of 
the error conditions. The implementation of APL described in this 

2-9 



THE APL LANGUAGE 

conditions under the user to handle error ( ) 
manual thereforlebal~~~:am 1 6 (Section 4.3.2) and the execute E 
program contro Y 
operator (Section 2.7.21). 

2.4 ARRAY INDEXING AND COMPARISONS 

This section introduces the use of array indexing in A~L,and pr~vide~ 
background information on the function of the index or~9~n and fUZ~ 
in erforming comparisons. These concepts a~e helpful,1n understan -
ingPthe examples included in subsequent sect~ons of th~s chapter. 

2.4.1 Indexing Arrays in APL 

The concept of using and entering 
been introduced in this chapter. 
by specifying a bracketed element 
as follows: 

V[l] 

values for arrays in APL has already 
An element of an array may be indexed 
number to the right of the array name 

This expression represents the simplest form of indexing, and can be 
used to access the first element of vector V. If V cons1sts of the 
vector shown below, then V (3) is 7. 

V,-3 4 7 ('1 
v1:3::1 

In the examples shown above, the array being indexed is a vector, and 
the index is a scalar value representing the position of the desired 
element in the vector. A more complex form of indexing occurs when 
the array is of higher dimension or when the index is itself an array. 
The latter case is illustrated below. 

:C t·2 4 5 
v~10 22 31 49 56 68 72 
vl:::r. ::I 

22 49 56 

Here V and I are both vectors. The expression V(I] is used to access 
the elements of V referenced by I - the second, fourth, and fifth mem­
bers of vector V. The result of V[I] is itself a vector consisting of 
the same number of elements as vector I. I may be a matrix or a higher­
dimensional array; the result always has the same shape as I. 

The array being indexed need not be a variable. It may be a constant 
set of values or even an expression to be evaluated, as shown below: 

7 6 5 4 3 2 11::2 4::1 
6 4 

(2 4 8 16 * 2)[1 21 
4 16 

In general, there must be as many indices as there are dimensions in 
the array. In APL , the number of dimensions is known as the pank o 
For a vector, a single index is sufficient to identify the desired 
element. A matrix or 2-dimensional array requires two indices, sep­
arated by semicolons; a 3-dimensiona1 array requires three. Thus, if 

2-10 



THE APL LANGUAGE 

M is of 
colons. 
section 
element 
column. 

rank N, then M must have N subscripts, separated by semi­
If M is a matrix, then M[2;4] is the element at the inter­

of the second row and the fourth column of M; the first 
in brackets identifies the row and the second specifies the 

The shape of the result of M[IiJ] is (pI) ,pJ - for example: 

M 

1 2 3 4 
~5 b "7 8 

Mr:?~ :J. ::I 
I::" 
"J 

.. II:: :I. '" Y ~\:.~ 3::1 ....... 
"') 
...: .. 3 
t., ? 

A subscript may be omitted from an index specification, but the semi­
colon must be included if only one matrix dimension specification is 
being omitted. If the right subscript is omitted, then all columns 
are selected from the matrix; if the left subscript is omitted, then 
all rows are selected - for example: 

(.~ 

) 3 4 
t, '7 8 
:LO :L1 P 

(.~ 1:::1. ~ ::I 
:J. 234 

,:,[ Y 2 :3::1 

t., ? 
:1.0 :I.:L 

Note that the semicolon is required to indicate which subscript has 
been omitted. If the index specifications are completely omitted, as 
in the first example below, the entire array is displayed. In the 
second example, the entire array is displayed because one semicolon -
one fewer than the number of dimensions in the array - is included. 

:I. 
::5 

1 
3 

,~ .. , 
4 

,-, ... 
4 

Some additional examples are included below: 

V~" I {'~BCr:'EF I 

V[3 ~::j ::I 
(~'E 

V[t., I::' 
"J 4 :3 

,., 
<., :I. ::I 

FE[OCE<'~' 

M'<,~ 3F2 1::-
d 4 6 ~:; 4 

2-11 



THE APL LANGUAGE 

v r M ] 
BED 
FED 

M~2 2, 1 ~ 
~ 2 1 

A~M[ M ~ M] 
A 

1 2 
~ 
~ 1 

~ 
~ 1 
1 ~ , 

2 1 
~ , 

1 ~ , 
0 , 1 , A 

0 ~ 2 ~ , ~ ~ 

A r 1 • y ~ ~ ] , 
~ 
~ 1 
1 ~ 

~ 

Indexing may also be used to change specified elements of an array by 
replacing their values with new values. An example of this is shown 
below. 

A 
1 ~ 

~ 3 
4 5 6 

A[1j2 3]~7 8 
A[2,1 2J.9 
A 

1 7 8 
9 9 6 

A[1;lJ~12 
A 

12 7 8 
9 9 6 

2.4.2 The Index Origin 

The index origin specifies the index of the first element in an array. 
If the index origin is I, then members of vector V are numbered V[l], 
V[2], and so on. If the index origin is 0, elements begin at V[O], not 
V[l]. The default index origin setting in the clear workspace is I, 
but the user may change this setting to a or reset it to 1 by means of 
the OIO system variable (Section 4.2.2) or the )ORIGIN system command 
(Section 5.4.1). The index origin setting is saved with the rest of 
the workspace. 

The value of the index origin is also used by APL in many of the func­
tions described in Chapter 2. These include: 

• catenation (,) 

• lamination (,) 

2-12 



THE APL LANGUAGE 

• compression (j) 

• expansion ( \ ) 

• dyadic transpose (~) 

• reverse (4) ) 

• rotation (4) ) 

• grade up (4) 

• grade down ('t ) 

• roll ( ? ) 

• deal ( ? ) 

• reduction ( f / ) 

• scan (f \ ) 

• index generator (1) 

• index of (t) 

[] J: Oi" :I. 
(.\t- \ 4 
(.':, 

:I. 2 3 4 
p' \ :3 

:3 
'~[:3 ::t 

:3 
'f'(.' 

4 3 ' ") 
.:- :1 . 

'1':1. 
:I. 

!~j?5 

:I. 'i .:.. :3 4 0::-
J 

) D I":J:C;J:N () 
W •• S :I. 

(.\,,·· \4 
A 

() 1 '") 3 .:.. 

(.\ \ 3 
~'5 

(.\ [3::1 

:3 
'f' A 

:~ 
~, 

.:.. 1 0 
'i' l 

0 
!:=j ? ~5 

4 0 :3 1 2 

2.4.3 Comparison Tolerance or Fuzz 

When two very large numbers, or two numbers that have non-zero frac­
tional components are compared in the APL-II System, they are con­
sidered to be equal if they are within a certain comparison tolerance 

2-13 



THE APL LANGUAGE 

of "fuzz" quantity of each other. Comparison tolerance is used in the 
following APL funct i ons: 

• rel a tiona l operators «. ~ .=. ~ . > .~) 

• inde x function (dyadic l) 

• membership function (dyadic E ) 

• floor (L) 

• ceiling ( r ) 

The amount of tolerance applied by APL-ll may be controlled by the 
user by means of the OCT system variable (Section 4.2.1) or the 
)FUZZ system command (Section 5.i.4). The default relative Fuzz in 
the clear workspace is set to SE 7 in single-precision systems and 
SE-l5 in double-precision systems. The Fuzz setup is saved with the 
workspace. 

The comparison tolerance is OCT times the larger of the two numbers 
that are being c ompared, in absolute value. The formal definition 
for tolerant equality is the following: 

R+- ( I A - B)~OCT x( IAH IB 

Examples of user control over comparison tolerance are included below. 

UCT . .. :t E ····9 

' 0 1' [1+1 =A ~1+10*-\ 2 5 J 

0000 0000 11 111111111111111 
IJ CT~ .. :I. E .... :I.:? 
, 0 :1.' [:I. + :1. ,,:: ;:~ J 

0000 00000000 1111111 1 11111 

2.5 INPUT/OUTPUT OPERATIONS 

The implementation of APL described in this manual facilitates input 
and output operations on a variety of system devices. Chapter 6 de­
scribes the file system used to handle file-oriented I/O in ASCII 
sequential and random-access format. This section is oriented to ter­
minal input and output, but most of the general information described 
here is applicable to all system I/O devices. 

In APL, input and output operations are generally expressed by means 
of the special quad operator, O. Input/ output statements are special 
kinds of assignment statements. If a quad symbol appears immediately 
to the left of a left-arrow, the value of the expression to the right 
of that specification arrow is output - for example: 

)q "15- []f- 3 +4 

Here the quantity 3+4 is assigned to the quad operator and displayed. 
The value or x is computed but not displayed. Terminal output can also 
be accomplished simply by entering the name of the variable whose value 
is to be displayed: 

8 

2-14 



THE APL LANGUAGE 

If a quad symbol appears anywhere in an APL statement except immediate­
ly to the left of a left-arrow, input is accepted from the terminal, as 
in the following: 

A+-3xO+5 
0: 

7 

Table 2-1 lists the formats of the input and output operations that 
can be performed in APL-11, along with section references. 

Expression 

A+D 

A+l'l 

A+r;;l 

A+cmtype ]N 

A 

A;B;C 

O+A 

C&![typeJA 

Table 2-1 
Input/Output Operators 

Meaning 

Quad (evaluated) input 

Quote-quad (character) input 

Quad-del (unedited) input 

File input 

Normal output 

Heterogeneous output 

Quad output 

Bare output 

File output 

Section 

2.5.1 

2.5.2 

2.5.3 

6.2.2 

2.5.5 

2.5.6 

2.5.5 

2.5.7 

6.2.3 

The file input and output functions are described in detail in Chap­
ter 6; the basic forms of the quad operator are discussed below. 

2.5.1 Quad Input Mode 

The most basic form of APL input is called evaZuated input. Evaluated 
input means that the expression entered by the user is evaluated for a 
value, which then replaces the 0 character. In the following example, 
the value entered by the user is assigned to the variable to the left 
of the specification arrow. 

I( f·[] 

n: 
:1.13 

The K variable takes on the value (18) entered by the user at the 
terminal. 

APL prompts the user to supply a value by displaying a quad character 
followed by a colon, as shown below. 

2-15 



THE APL LANGUAGE 

0: 

36 

0: 

0: 

6 

7 
A 

16xO-2 

3 

The user requests evaluated input. 

APL prompts and the user enters a 
string which again requests evaluated 
input. 
APL prompts again and the user enters 3. 

The second input string evaluates to 
16x3-2 or 16, and the first evaluates 
to 3 x 16+8=6; APL responds with 6. 

To enter a character string as a value in quad mode, the user must 
enclose the string in single quotes - for example: 

0: 
'NOT ENOUGH CORE' 

MSG 
NOT ENOUGH CORE 

If the user enters only a carriage return or spaces followed by a 
carriage return, APL again displays the prompt and waits for the input 
to be reentered. While the system is awaiting input, the user may 
enter and execute a system command or may define a function. The input 
request remains pending. After the desired operation has been per­
formed or the user has returned to immediate mode, APL prompts again 
and waits for input. If an error is encountered in the input, APL dis­
plays the appropriate message and allows the user to reenter the input 
but does not reprompt. To reenter the input, the user must first type 
+0, which will cause the prompt to appear; he may then reenter the input. 

2.5.2 Quote-Quad Input Mode 

A version of the quad operator called the quote-quad operator (~) is 
used especially for the input of character data. An example of quote­
quad mode is shown below. 

x~~ 

THAT'S AMAZING 
x 

THAT'S AMAZING 

Unlike evaluated input, quote-quad input allows character strings to 
be entered without explicit quote characters. When APL encounters a 
~ symbol, it positions the carriage at the left margin and accepts the 
data entered by the user up to the next carriage return as a character 
string. If a single character is entered, APL treats it as a literal 
scalar; a string is stored as a literal vector. If the user enters 
only a carriage return, APL treats this input as a vector of length 
0; tnls is slgnirlcantly Oirrerent [rOITI tne nancling or empty input 
in evaluated input mode, in which APL rejects the input and waits for 
the user to reenter it. 

2-16 



THE APL LANGUAGE 

Quote-quad input is also called unevaluated input. If the user enters 
an expression, APL does not evaluate it, but simply treats it as a 
character string. APL does edit the characters that are entered; for 
example, overstrikes which are made up of three separate characters 
are combined into a single character. 

2.5.3 Quad-Del Input Mode 

A special version of the quad operator, the quad-del operator (~) 
enters characters exactly as typed by the user. No special editing of 
APL characters is performed. The backspace, for example, is treated 
as a special character, and an overstrike symbol is not created. The 
following statements illustrate the difference between quad-del and 
quote-quad modes in entering overstruck APL characters. 

x~~ 

~A 

r X 

4 
x~~ 

~A 

pX 
~ 
~ , , ~A , 
~ , 

The example included below shows the particular use of quad-del mode 
in accepting input from ASCII-mode terminals. Mnemonics entered in 
ASCII mode are not decoded . 

• TRB 
.RO A 

4 

.TRA 
,RO A 

,RO ',TRA' 
2 

As in quote-quad input mode, if the user enters only a carriage return, 
APL treats this input as a null vector of length zero. 

2.5.4 Escaping from an Input Loop 

If an input request occurs within an infinite loop in an APL defined 
function, the user can interrupt function execution by typing OU, as 
follows: 

O<backspac e>U 

thus overstriking the two characters. Users of ASCII terminals 
escape by typing the .OU mnemonic. An escape of this kind causes 
function execution to be interrupted but does not cause an exit from 
the function. 

2-17 



THE APL LANGUAGE 

2.5.5 Normal and Quad Output Modes 

If a quad operator (0 ) appears immediately to the left of a left-arrow, 
the value of the expression to the right of the arrow is output. 
Because APL automatically displays the value of an expression or 
variable not e xplicitly assigned to another variable, it is often not 
necessary to express explicit terminal output requests. For example, 
the APL statement: 

D~E( 

is equivalent to the statement: 

3 

because both hav e the effect of displaying the value of B. 

Quad output mode is especially helpful when an APL statement con­
sists of multiple specifications - for example: 

A~ 3 'HJ ~5 x4 

20 

This statement performs the computation and displays the desired out­
put - the result of the computation 5x 4. It is more efficient than 
the following similar examples: 

20 

23 

5x 4 

A~5x4 

A 

At'3+ A 

A 

If the last operation (the leftmost operation) being performed in a 
line is an assignment (+) or branch (~) (see Section 3.4.1), then no 
final output is produced. The following APL statement will not cause 
output to be displayed: 

but the example shown below will display a value: 

9 

2.5.6 Heterogeneous Output Mode 

APL users often need to mix character and numeric data on the same 
output line. Mixed output lines of this kind are called h e t e r ogeneous 
ou tput. The APL user requests heterogeneous output simply by entering 
a series of values or expressions, separated by semicolons, in the 
order in which they are to appear. The values may be parenthesized. 
The following is an example of the use of heterogeneous output. 

2-18 



THE APL LANGUAGE 

As mentioned in Section 2.5.5, a value will not be displayed if the 
leftmost expression on a line is an assignment or branch operation. 

The heterogeneous output facility may be useful for entering function 
lines that consist of multiple APL statements. The user should 
remember, however, that APL evaluates expressions in right-to-left 
order by line, without regard to embedded separating semicolons. 

2.5.7 Bare Output Mode 

Bare output is a special kind of APL output that is normally accom­
plished by means of the quote-quad character - for example: 

~~'SPECIFY USER ID' 

The normal output described in Section 2.5.5 is terminated by a car­
riage return/line feed pair so that the next input or output begins 
at a standard position on the following line. Bare output, on the 
other hand, is not concluded by a carriage return/line feed if it is 
followed by another bare output request or by quote-quad input. The 
character input accepted after a bare output operation is handled as 
if the user had spaced over to the position immediately following the 
final character of the bare output value. This implies that the 
resulting value of the input string normally contains a number of 
blanks, as shown in the example below. The use of bare output allows 
a character response to appear on the same line as the output text. 

9INIT 
[lJ ~~'ARE YOU READY TO ENTER VALUES? ' 

[2] A~~ 

[3J ~ 

INIT 
ARE YOU READY TO ENTER VALUES? NO 

A 
NO 

Carriage returns that would normally be inserted because of a limita­
tion on page width are not included in bare output. 

If bare output is specified in immediate rather than function-execu­
tion mode, it is usually not distinguishable from normal output. A 
bare output statement such as ~~A must be followed by an input entry 
at the terminal, and thus the output will be concluded by the conven­
tional carriage return. Bare output is therefore more appropriately 
utilized in function-execution mode. 

2.5.8 Terminating Output 

The display of output on the terminal may be terminated before it has 
been completed by pressing the CTRL/O or CTRL/C key. See the dis­
cussion in Sections 1.5.1 and 1.5.2. 

2-19 



THE APL LANGUAGE 

2.6 PRIMITIVE SCALAR FUNCTIONS 

APL primitive functions are of two types! sealaF and mixed. Scalar 
functions have the following characteristics: 

• They take single-number (scalar) arguments 

• They yield scalar results 

• They are used primarily for basic arithmetic and logical 
operations, such as addition, exponentiation, maximum value, 
and logical OR 

With a few exceptions, the primitive scalar functions take numeric 
scalar arguments. Only the relational functions «,s,=,>,~,~) take 
either character or numeric arguments. 

The logical functions (V,A,¥,~,~) must have arguments that are equal 
to 0 or 1. 

Table 2-2 summarizes the primitive scalar functions available in this 
implementation of APL, and provides a definition or example of each. 
Most of the functions are straightforward and familiar arithmetic or 
logical functions and do not require detailed discussion. 

The following subsections describe the difference between monadic and 
dyadic primitives, discuss the extension of scalar functions to 
arrays, describe the use of APL operators with primitive functions, 
and summarize any information about the functions in Table 2-2 that 
is either not obvious or different from the ordinary mathematical 
interpretation of the functions. The monadic roll (?) primitive is 
a scalar function and is included in the table for completeness; how­
ever, it is the only primitive scalar function that is origin­
dependent (Section 2.4.2) and is more appropriately described in con­
junction with the dyadic deal function in Sections 2.7.21 and 2.7.22. 

2.6.1 Monadic and Dyadic Functions 

Most of the primitive scalar functions and some of the mixed functions 
described in Section 2.7 have been implemented in two forms: monadic 
and dyadic. Monadic functions take only a right argument - for 
example, 7A (reciprocal), !B (factorial) or ~1 (logical NOT) . 
Dyadic functions take both left and right arguments - for example, 
3+2 (addition), AlB (maximum), and X=Y (equal). The operator is 
always a single APL symbol, usually the same as the corresponding 
symbol used in ordinary mathematics. 

The syntax of a function (i.e., the presence of one or two arguments) 
determines whether the function is monadic or dyadic. For example, 
IA is a monadic function used to determine the magnitude or absolute 
value of the argument A. AlB is a dyadic function used to obtain the 
residue or remainder available after dividing B by A. The particular 
function specifed by the 1 symbol is dependent upon the context of 
the statement. 

2-20 



THE APL LANGUAGE 

Table 2-2 
Primitive Scalar Functions 

Monadic Form fY Symbol Dyadic Form XfY 

Definition 
or Example 

+Y+-+O+Y 

-Y+-+O-Y 

xY+-+(Y>O)-Y<O 

fY+-+1fY 

Function 

Plus 

Negative 

Signum 

Reciprocal 

*Y+-+ (e=2. 71828 ... ) *i Exponential 

-

-6.7+-+6.7 

Y 
5.47 
5.47 

r Y LY 
6 5 

- -5 6 

e*N++N++*eN 

!0++1 !Y++Yx!Y-1 
or !Y++Garnrna(Y+1) 

?Y++Random choice 
from \Y 

o Y++ ( 3 . 14159 ... ) x Y 

~1++0 ~0++1 

Magnitude 

Ceiling 

Floor 

Natural 
Logarithm 

Factorial 

Roll 

pi times 

Not 

+ 

x 

* 

f 

L 

? 

o 

II 

V 

1'< 

¥ 

2-21 

Function 

Plus 

Minus 

Times 

Divide 

Power 

Residue 

Maximum 

Minimum 

Logarithm 

Definition 
or Example 

5.3+4.2+-+9.5 

4x7.2++28.8 

5f2++2.5 

5f2+-+5 

3L7++3 

51-7++3 
710++0 

XeY++Log Y Base X 
xey++(eY)fex 

Binomial X!Y++(!Y)f(!X)x!Y-X 
Coefficient 3!5+-+10 2!6+-+15 

Circular 

And 
Or 
Nand 
Nor 

Less 
Not greater 
Equal 
Not less 
Greater 
Not equal 

See Table 2-3 

XY XIIY xvy X1'<Y~'''Y 
00001 1 
01011 0 
100 1 1 0 
111 1 0 0 

Relationals: 
Result is 1 if the 
relation holds and 
o if it does not. 

3>7+-+0 
'A ' $ , C '+-+1 



THE APL LANGUAGE 

Table 2-3 
Dyadic Circle Functions 

(-X)oY X xoY 

(1-Y*2)*.5 0 (1-Y*2)*.5 

Arcsin Y 1 Sine Y 

Arccos Y 2 Cosine Y 

Arctan Y 3 Tangent Y 

(-1+Y*2)*.5 4 (1+Y*2)*.5 

Arcsinh Y 5 Sinh Y 

Arccosh Y 6 Cosh Y 

Arctanh Y 7 Tanh Y 

2.6.2 Extending Scalar Functions to Arrays 

The primitive functions described in this section are considered 
scalar functions because they take scalar arguments and yield scalar 
results. The operations performed by these functions can, however, 
be extended to arrays. A primitive scalar function is applied to an 
array on an element-by-element basis. Thus, if the user specifies an 
addition function in which both arguments are vectors, the cor­
responding elements of the vectors are added - for example: 

5 8 9+6 7 2 
11 15 11 

The arrays on which the primitive scalar functions operate may be of 
any dimensions. If a dyadic function is being performed, the arrays 
specified as the arguments of the function must generally have the 
same number of elements and be the same shape (e.g., a 2-by-3 array 
is not equivalent to a 3-by-2 array). There is one exception to this 
rule. If one argument is an array and the other is a scalar or a 
single-element array, the single value is applied to every element of 
the array. The following two examples are therefore equivalent. 

5 ~ 
J 5+6 7 ~ 

1 1 1 ~ , 7 
/ 

5+6 7 2 
1 1 1 2 7 

The following examples illustrate the use of several other primitive 
scalar functions. 

2-22 



THE APL LANGUAGE 

5 
3 
6 

9 
36 

6 
2 
4 

A~3 

A 
8 
1 
2 

AxA 
36 
4 
16 

3,5 

64 
1 
4 

2XA 
10 12 16 
642 
12 8 4 

6 8 3 0 
~ 1 6 

2-0 1 2 3 4 5 6 7 8 
1 2 4 8 16 32 64 128 256 

4 9 16 25 36-0.5 
23456 

4 0 , 

2.6.3 Using Operators with Scalar Functions 

Operators are special APL functions that take dyadic primitive scalar 
functions as their arguments. For example, the reduction operator 
combines the elements of a vector or the elements along one dimension 
of an array. The elements are combined in accordance with the spec­
ified function (e.g., addition, multiplication, etc.). The following 
example illustrates the addition of the elements of a vector. 

+/1 2 3 
6 

The plus sign in this statement could be replaced by any of the dyadic 
primitive scalar functions in order to perform a different function. 

The formats of the four APL operators are listed below and are 
described in detail in Section 2.8. 

• reduction (fl) 

• scan (f\) 

• inner product (f·g) 

• outer product (o·f) 

2-23 



THE APL LANGUAGE 

2.6.4 Relational Functions 

In A PL the relational functions «, $ , =, '. . they are not slmply compar1son opera~ors. 
form A$B y ields a result value of 1 1f the 
example: 

:I. 
4> 6 

() 
J C J > I {.~ I 

> , ~ , ~) return results; 
An expression of the 
relation holds - for 

These functions may take either numeric or character arguments; how­
ever, they may not have one numeric and one character argument, or a 
DOMA I N ERROR results. Note that = and ~ will return a a result for 
arguments of different types. For characters, the DAV s y stem variable 
defines the collating sequence to be used in relational functions. A 
character appearing earlier in DAV is "less than" one appearing later 
(Section 4.2.6). 

When used with boolean arguments (0 and 1), the relational functions 
may be used to p e rform logical operations. For example, the not 
equal (~) function performs an exclusive OR operation if its arguments 
are a's and l's. 

() :1. 0 1 10 0 :I. :1. 
o 1 :I. 0 

2. 6 .5 I: Determining the Residue 

The dyadic residue (I) function is used to obtain the remainder or 
residue of a number. In the function: 

518 

where 5 and 8 are both positive, 3 is the remainder when 8 is divided 
by 5, and 3 is considered the 5 residue of 8. The residue is a unique 
number whose value is in the range between the value of the left 
argument and zero. 

The residue function, A l B , has the following characteristics: 

• If the left and right arguments are equal (A= B), the residue 
is o. 

• If the left argument is zero (A=O), the residue is the value 
of B (A I B = B ). 

• If A is not zero (A~ O ), the residue is in the range A through 
0; it may equal 0 but not A. For some integer, I , the residue 
can be e xpressed as B-IxA . 

2-24 



THE APL LANGUAGE 

Examples of these cases are included below. For a discussion of the 
outer product operator included below (Ao. IE), see Section 2.8.4. 

717 
0 

710 
0 

017 
7 

01-7 
7 

A+3 0 3 
E+-6 -5 -4 - 3 2 1 0 1 2 3 4 5 6 
A o. IE 

0 1 2 0 1 2 0 1 2 0 1 2 0 
6 5 4 3 2 1 0 1 2 3 4 5 6 
0 2 1 0 2 1 0 2 1 0 2 1 0 

X+21. 824 
.011X 

0.004 

The result of a residue function has the same sign as the left argu­
ment of the function. If the left argument is negative, then the sign 
of the result is negative, as shown below. 

2 

because -2 = 7 + -5 

The arguments of the residue function need not be integer numbers - for 
example: 

1.8 

.3 

215.8 

1.213.9 

The formal definition of the APL-ll residue function is the following: 

AIB++B-AxLE~A+A=O 

where ++ indicates that the two sides of the expression have the same 
value. 

2.7 PRIMITIVE MIXED FUNCTIONS 

The functions presented in this section are primitive mixed functions. 
Primitive scalar functions take scalar arguments, yield scalar results, 
and are extended to arrays on an element-by-element basis. Mixed 
functions, on the other hand, may take array arguments and yield scalar 
or array results, or may take scalar arguments and yield array results. 

2.7.1 Summary of Primitive Mixed Functions 

Table 2-4 summarizes the primitive mixed functions available in this 
implementation of APL, along with the operators introduced in Section 
2.6.3 and described in Section 2.8. 

2-25 



N 
I 

N 
0'1 

Table 2-4 
Primitive Mixed Functions and Operators 

Monadic Form f.Y 

Section Function Definition 

Mixed 
Functions: 
2.7.3 Returns array shape pY 
2.7. 5 Generates consecu- \Y 

tive integers 
2.7.7 Converts to a vector ,Y 

2.7,13 Transposes an array /siy 
2,7,15 Reverses an array q,r 
2.7.17 Sorts in ascending ~y 

order 
2.7.18 Sorts in descending '/Y 

order 
2.7.19 Rolls random integers ?y 
2,7.21 Constructs a charac- TY 

ter string 

2.7.24 Executes a character (Y 
string 

2.7.27 Eliminates duplicates u 
in a set 

2.7.32 Formats an array ~y 

2,7.34 Performs matrix I1IY 
inversion 

Operators 
2.8.1 Reduces an array j'/Y 
2.8.2 Scans an array 1\Y 

lAPply to both monadic and dyadic forms 

2Dyadic form only 

3Dyadic form, left argument only 

Takes 
1 

Coordinate Origin- 1 
Argument Symbol Dependent Definition 

no p no XpY 
no \ yes XLY 

2 yes no X,I 
yes / no X/Y 
yes \ no X\Y 
no t no XtY 
no " ~~s3 

X+y 
no /si XIllY 
yes q, no Xq,Y 
yes ¢ yes 

yes t yes 

no ? yes X?Y 
no T no XTY 

no 1 no X1Y 

no E no XEY 

no u no XuY 

no n no XuY 

no ~ no X~Y 

no c no Xcy 

no " no X::JY 

no :) no X~..Y 
no "- no X~Y 
no v no X.Y 

no 111 no XlBY 

yes j"/ no 
yes 1\ no 
no f·g no 
no o.g no 

Dyadic Form XfY 

Function section 

Reshapes an array 2.7.4 
Finds an index 2.7.6 

Catenates or laminates 2.7.8 
Compre.fbses an array 2.7,9 
Expands an array 2.7.10 
Takes array elements 2.7.11 
Drops array elements 2.7.12 
Transposes an array 2.7.14 
Rotates an array 2.7.16 

Deals random integers 2.7,20 
Encodes a number in 2.7.22 
another base 
Decodes a number 2.7.23 
representation 
Determines array 2.7.25 
membership 
Determines union of 2.7.26 
two sets 
Determines intersection 2.7.28 
of two sets 
Excludes elements in 2.7.29 
first set but not in 
second 
Determines a proper 2.7.30 
subset 
Determines a strict 2.7.3l 
superset 

2.7.31. Determines a superset 
Determines a subset 2.7.30. 
Formats a numeric array 2.7.33 
with width and precision 
Performs matrix division 

Computes inner product 2.8.3 
Computes outer product 2.8.4 



THE APL LANGUAGE 

The boxed information at the beginning of each section provides addi­
tional summary information, which is repeated for quick reference in 
Appendix A (Table A-g). In these descriptions, "any" means that any 
argument domain (character or numeric) or argument shape (scalar, 
vector, or array) may be specified. If the argument domain is "any*", 
this indicates that arguments may be either character or numeric, but 
both arguments must be the same type. 

2.7.2 Specifying Array Coordinates 

When expressing mixed functions for arrays of two dimensions or more, 
it may be necessary to specify the particular array coordinate to 
which the function applies. This is done by including in the function 
a bracketed expression representing the desired coordinate in the 
specified array. For example, the following function catenates array 
A to dimension 1 of B. 

A,[l] B 

An array coordinate can be specified for the following functions and 
operators: 

Function Symbol Section 

catenation 2.7.7 
lamination , 2.7.8 
compression I 2.7.9 
expansion \ 2.7.:10 
reverse <P 2.7.15 
rotation <P 2.7.16 
sort (ascending) ,!, 2.7.17 
sort (descending) 'V 2.7.18 
reduction f/ 2.8.1 
scan f\ 2.8.2 

The array coordinate is origin-dependent, that is, it depends upon the 
current value of the index origin. In the above example, A is 
catenated to the first dimension of B if the index origin is 1 and to 
the second dimension of B if the index origin is O. 

If the bracketed expression is omitted from a mixed function, the func­
tion is performed on the Zast coordinate of the array. If B is a 
4-dimensiona1 array, the following function compresses along coordi­
nate 4. 

AlB 

The user can specify that certain functions are to be performed on the 
first coordinate by using a special symbol, formed by overstriking the 
minus sign (-) with another symbol, usually the normal symbol of the 
function - for example: 

AtB 

2-27 



THE APL LANGUAGE 

All symbols are shown below. 

Function 

compression 
expansion 
reverse 
rotation 
reduction 
scan 

2-28 

Symbol 

I 
I,; 
e 
e 
f f 
f -\ 



THE APL LANGUAGE 

2.7.3 p: Returning the Shape of an Array 

Function: monadic rho (p); R+pY 
Argument Domain: 

left: 
right: any 

Argument Shape: 
left: 
right: any 

Result Rllnge: null or non-negative integers 
Result Shape: vector; pR++ppY 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic form of the rho (p) function returns the shape of an array. 
If B is a character vector consisting of 'ABCDEF', then the rho func­
tion included below returns the number of characters in the array. 

Because B is a l-dimensional array, pB returns only a single number. 
If A is a matrix with five rows and six columns, then the following 
result occurs . 

•• 
:1. ") 

It',. :3 4 ~.i 6 
? 8 9 10 11 1 ") 

"-

13 14 15 16 17 18 
19 20 21 '-,'-) ... .:., 23 24 
")I::' 
,,-J 26 27 2B 29 30 

r(.:' 
I::' 
,.J 6 

If the vector that is the argument of the function is a l-dimensional 
array with a length of 1, then the rho of the array will be 1. The 
following example illustrates the generation and examination of an 
array consisting of the single digit, 3. 

:I. 

K~··:l.f'3 
pI< 

See Section 2.7.4 for a discussion of the dyadic form of the rho 
function used in this example. 

If the value of K generated in the example above is a scalar, not an 
array, then the rho of K is the null vector, a vector of length 
zero - for example: 

I( ~"3 

f" I( 

2-29 



THE APL LANGUAGE 

APL simply displays a blank line in response to the pK statement. The 
shape of any single scalar, including zero, is the null vector. The 
shape of the null vector is zero. This is illustrated in the follow-

ing example. 

, 0 

,(,0) 
o 

The pX function always returns one element for each dimension of the 
array X . The following is an example of a rho function on a 2-
dimensional array. 

3 2 

9 
3 

A 

The e xpression pA returns the dimensions of A as number of rows, 
followed by number of columns. 

The function ppK can be used to return the rank of X as follows: 

Array 

Scalar 
I-dimensional 
2-dimensional 
3-dimensional 

ppK 

o 
1 
2 
3 

This effect is the result of the fact that pK is a vector containing 
one element for each dimension of X , so its rho, p ( pX ), is a I-element 
vector consisting of the number of dimensions of X. 

The function pppX returns 1 for all possible X's. 

2-30 



THE APL LANGUAGE 

2.7.4 p: Reshaping an Array 

Function: dyadic rho (p); R+XpY 
Argument Domain: 

left: non-negative integers 
right: any 

Argument Shape: 
left: scalar or vector; (ppX) ::; l 
right: any 

Result Range: same as right argument 
Result Shape: array; pR+-+X for a vector 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic form of the rho function specifies a new array or reshapes 
an existing one. It is issued as shown in the following example: 

where the left argument, 3, specifies the shape of the array to be 
constructed and the right argument,S, specifies the value to be 
assigned to each element of the array. The shape of the array 
describes both the number of dimensions of the array and the number of 
elements in each dimension. In the example above, a l-dimensional 
array is created, because only a single value is supplied to the left 
of the p; the number of elements is the actual value of the 
argument, 3. 

The right argument of the dyadic p function may be any shape. 
The example above illustrates the generation of a numeric constant 
array. An array consisting of literal characters can be constructed 
by including a character string as the right argument and enclosing 
it in quotes. A character vector reshaped in this way is displayed 
without spaces, as shown in the following example. 

('~BC 

[tEF 

The examples included below illustrate the generation of two arrays. 
The first example reshapes an existing array; the second specifies the 
elements of a new array in the rho function. 

4 3 
2 1 

;.:,·· 1 2 ::-> <\ 
.,. •.. ;:> ::'::1" >; 
;:.l 2f4 3 2 :I. 

The array that is being reshaped need not have the same number of 
values as the array from which values are taken. In the following 
expression: 

2-31 



THE APL LANGUAGE 

f B h more than fiv e elements, then only 
A reqUiresf~ive elementds. IIf B ha:sfewer than five elements, then the 
the first l.ve are use . . ' d 
elements in B are repeated as often as necessary, l.n r~w-maJo: or er. 
The following example illustrates both of the~e o~er~t1.ons, f1.~st 
shaping a 2-dimensional array and then reshap1.ng l.t l.nto a vec or. 

1 2 
:3 

:I. 2 3 

();--:I. 2 :3 Jj 

) ~.:Sf ,::, 

:3 4 1 
4 l rj 

... ~. 

3.1" (.. 

The next example reshapes a character vector into a 3-dimensional 
array. 

EFG H 
J , .I K 1. __ 

U VWi-( 

2 3 4f 'ABCDE FGHI JK L MN OPGR S T UV WX' 

A general rule for the dyadic rho function can be expressed as the 
following: if A+VpB , then pA+~ V and A contains only elements of B. 
A relationship between the rho and ravel (Section 2.7.7) functions can 
also be described as VpB ++ Vp , B . 

The rho function is often used in conjunction with iota (Section 2.7.5). 
The next e xample generates an array consisting of consecutive integers. 

1 2 
J 4 

Any number of array elements can be specified in a d yadic rho function, 
as long as the number is not negative or fractional and does not 
generate an array too large for the user's workspace. 

The rho function may be used to generate a null or empty vector. A 
vector of this kind is often useful in e xecuting APL func tions. As 
described in Section 3.4.1, if an empty vector is the argument of a 
b r anch, then function execution will not branch but will continue to 
the next sta tement in sequence. 

An empty vector is generated when the right argument of the rho is a 
scalar . Some e xamples of expressions that generate null vectors are 
included b e low. 

pA 
op ' , 
Op 0 

1 0 

(where A is a scalar) 

2-32 



THE APL LANGUAGE 

2.7.5 1: Generating Consecutive Numbers 

Function: monadic i o ta ( 1 ) ; R ..... 1Y 
Argument Domain: 

left: 
right: non-negative inte gers 

Argument Shape: 
left: 
right: scalar or l-eleme nt vector 

RewltRan~: non-negative integers 
Rewlt Shape: vec tor; pR-+->-, Y 
Origin·Dependent? yes, result 
Take Dimension Argument? no 

The monadic form of the iota (1) function is used as an index genera­
tor. It generates a number of consecutive integers, equal to the 
value specified as the argument of the iota, starting from the value 
of the index origin. The following is an example of this function. 

O~·· (.:l~- \ 4 
:I. 2 3 4 

f A 

4 

The argument of the function must be a non-negative integer scalar or 
a I - element array. 

The expression I N generates a vector containing N components. If the 
index origin is set to 1, these components have values 1 through N. 
If the origin is 0 , then the resulting vector has values 0 through N-l. 
The index origin default is I in the clear workspace, but this 
setting can be changed by the user by means of the DI D system variable 
(Section 4.2.2) or the )ORIGIN system command (Section 5.4.1), as 
shown below. 

13 
1 r) 

"- ~5 
)Of;: I GIN () 

WAS 1 
\ 3 

0 1 2 

The monadic iota function can be used in any expression to generate 
consecutive results. The following example illustrates the use of 
iota in generating powers of 2. 

2 *I:!. O 
1 2 4 8 16 32 64 128 256 51 2 

Iota is often used in conjunction with rho. 

To generate a vector with the same number of entries as array X, the 
user can specify the expression shown below; in this case, array X 
contains four elements. 

\ r :·( 

123 4 

2-33 



THE APL LANGUAGE 

As illustrated in the following example, the index generator function 
can be used to generate a null or empty vector; the shape of a null 
vector is always zero. 

\ () 

r \ O 
(APL outputs a blank line) 

() 

This function may also be used to determine the value of the current 
index origin: 

\l 
:I. (index origin is 1) 

\ 1 
() (index origin is 0) 

2-34 



THE APL LANGUAGE 

2.7.6 1: Finding the Index of a Value 

Function: dyadic iota (1); R+-X1Y 
Argument Domain: 

left: any* 
right: any* 

Argument Shape: 
left; vector i (ppX) $1 
right: any 

Result Range: non-negative integers 
Result Shape: scalar or array; pR++pY 
Origin· Dependent? yes, result 
Take Dimension Argument? no 

The dyadic form of the index (1) function locates the first occurrence 
of a particular value in a vector - for example: 

4 968 
y 

:-5 

The value of Y occurs as the third element of vector X. When using 
the dyadic form of iota, X can be scalar or a vector and Y can be 
any scalar or array. 

The index function can be used to locate a particular type of value in 
a vector. For example, to find the index of the largest value in X, 
the following is specified: 

[] •.. {-'l, .. }; 1. r' /}; 
."/ 
.,,: .. 

The right argument of the index function may be an array. If B is the 
vector: 

B~O 1 2 3 4 5 6 7 8 9 

and A is a 2-dimensional array: 

6 .1;:' 
cJ 

:3 ") ...... 

0 9 

then the following can be specified: 

7 6 
4 :3 
:I. 10 

The result of a dyadic iota function X+-B1A always has the same shape 
as the right argument of the function - formally pX+-~pA. If A is a 
matrix, then the correspondence between A and X can be expressed as 
follows: X[I;JJ is the smallest K such that A[I;J] is equal to B[X]. 

*Both arguments must be either character or nurneric~ argument 
types cannot be mixed in the same function. 

2-35 



THE APL LANGUAGE 

The right argument of the function can be an array of literal charac­
ters, as shown below. 

'AB C DEFGH' \ 'HEAD E D' 

8 5 1 454 

If the array identified by this argument contains a number or literal 
that cannot be found in the left vector, then APL responds with the 
next index number after the last element of the vector. In the follow­
ing example, APL tries to locate the numbers 1, 2 , 3 , and 4 in vector 
V. There is no occurrence of 1 in the 6-element vector, so the next 
available index, 7, is displayed as the index of 1. 

7 
4 

3 

V~5 4 ? 3 7 8 
A~2 2' 14 
VIA 

The next index number can be expressed as 1+p V . 

The examples included so far in this section have assumed that the 
index origin setting is 1. If the origin has been set to zero, index 
values are returned as shown in the example below. 

'ABCDEF 'I' CX ' 
3 7 

)O RIGI H 0 
WAS 1 

'ABCDEF'I 'cX' 

2 6 

2-36 



THE APL LANGUAGE 

2.7.7 , . Converting a Value to a Vector 

Function: monadic ravel (,); R+-,Y 
Argument Domain: 

laft: 
right: any 

Argument Shape: 
laft: -
right: any 

Rasult Range: same as argument 
Result Shape: vector; pR+-+xjpY 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic ravel (,) function constructs a vector from any scalar or 
array. The following example illustrates the use of the ravel func­
tion in transforming a 2-dimensional array into a vector. 

(., 

:1. 
r) 
.:.. 3 

4 5 6 
f(.:' 

") 
A:. 3 

[] •.. ~,. •.. , I~:-a 
:I. ''') :3 4 !5 6 JI.~. 

fKo' 

6 

The vector produced by ravel has the same number of elements as the 
original array. The elements of the array are preserved in the result­
ing vector in row major order. If the argument to the right of the , 
is already a vector, then B+-~,A. 

The ravel function may be used to transform a scalar value into a 
single-element vector. If A is a scalar, then ,A produces a vector 
containing one element: 

A+- ,A 

Note below the difference between the shape of a scalar (null vector) 
and the shape of a scalar to which the ravel function has been 
applied. 

1 

p4 
p,4 

(APL outputs a blank line) 

2-37 



2.7.8 

THE APL LANGUAGE 

Catenating and Laminating Variables 

Function: dyadic catenation (,); R+-X, Y 
Argument Domain: 

left: any* 
right: any* 

Argument Shape: 
left: array 
right: array 

Result Range: same as argument 
Result Shape: array 
Origin-Dependent? no 
Take Dimension Argument? yes 

The dyadic catenation and lamination (,) functions are used to chain 
scalars or arrays together to form a new array. Ca t ena t ion joins 
variables together along an existing dimension; lamination joins them 
together along a new dimension_ The following example illustrates the 
catenation of two vectors to each other and to several scalar values. 

,:\~ .. ~:'j n 'f 

F.;~-~~ "/ 

~"j89 6? 
L()~·(:'Yx·,y :1.2 

:I.() ~) n 9 6 7 12 

Any number of items can be catenated. The order in which values are 
catenated is the order in which they are specified in the APL state­
ment. The result of a catenation can be expressed as follows: 
if pA~+5 and pB~+3 , then pR+A , B is 8 , R[ t S ]+-+A and R [ S+t 3]++B . 

Catenation is useful in adding new subtotals to a grand total or for 
inserting new elements between existing elements of a vector. The 
following example illustrates the insertion of the scalar value 6 in 
vector A. 

A~:I. 2 3 4 5 7 8 9 10 11 12 
u~A ~A rI5J,6 ,A [5+1 " A) -5J 

:I. 2 3 4 5 6 7 8 9 10 11 12 

Literal values can also be catenated, as shown in the following example: 

APL does not allow the user to catenate numbers to literal characters 
and displays a DOMAIN ERROR if such an operation is attempted. 

The dyadic catenation function may also be used to joint multi­
dimensional arrays together along an existing coordinate. The user 
includes this integer coordinate number in brackets in the function 
specification. If the coordinate is omitted, APL assumes the last 
coordinate (lor the rank of the array, whichever is larger (lfppA». 

*Both arguments must be either character or numeric; argument 
types cannot be mixed in the same function. 

2-38 



THE APL LANGUAGE 

For a 2- d imensional array, APL e x tends along the second dimension, 
thus adding a column, as shown in the fi r st example below. In the 
second example, the scalar value 0 i s catenated with the a r ray A along 
the coordinate specified by the user~ this has the effect of adding a 
row. As discussed in 2.6.2, A PL ext ends the scalar argument, 0, to 
the array on an element-by-element basis. 

(.·~··2 ;"lip \ (,) 
,::, , () 

1 2 3 0 
4 5 6 0 

(~.I:::I.]() 

1 ·'1 ... 3 
4 5 6 
() () 0 

A scalar value can be included in the catenation function, as shown 
in the followi ng: 

1 
4 

2 
5 

r. •• "7 

3 
(, 

7 
"7 

Both arguments of the catenation function may be arrays. I n the fol­
lowing e x ample , the arrays are of equal size. 

N 

8 7 3 ,., 
",',. 9 4 

.,. 
0 1 "') 

.<. 

3 4 ~) 

).:, I:::I.]Y 

B 7 :3 
2 9 4 
0 1 r, 

...... 

:3 4 5 

;< 'I 'f 

f:l 7 :3 0 :l 2 
r) 
3/0',. 9 4 3 4 5 

The nex t e xample i l lustrates the catenation of two arr a y s of different 
sizes. 

At"2 31" \ 6 
r.. 

1 r) ... 3 
4 c · 

,.1 6 
f:<~":3 3ft"', \ <"1 
:Ii< 

7 8 9 
:1.0 11 1 2 
13 14 1 5 

r C foA,[1]E< 

2-39 

http://fCf.fi


THE APL LANGUAGE 

~ 
J 3 

C 

1 ~ 
~ 3 

4 5 6 
7 8 9 
10 11 1~ ~ 

13 14 15 

Three general rules can be established for catenating arrays according 
to the form A , [K]B. If a catenation expression does not conform to 
any of the rules presented below, it is not a legal APL expression. 

1. If the arrays have equal dimensions ((ppA) =ppB) , then 
K must be in I ppA and pA must equal pB e x cept in the 
Kth dimension. This is illustrated in the following 
e x ample: 

345 

36 5 

3 10 5 

R~A.[2 ] B 

fR 

Here A is equivalent to R[ ; t4;] and B to R[ ; 4+ 16 ; ] . 

2. If the arrays have different dimensions ((ppA) ~ ppB) , 
then B must have one fewer coordinates than A or vice­
versa (l =l (ppA) - ppB) and pB must equal pA without its 
Kth coordinate. This is shown below. 

A~3 4 5,0 
B ~4 5 r O 

LENGT H ERR OR 

R~A. B 

4 45 

t 

R~A,[lJB 

f R 

Here, A is equiv alent to R[13 ;; ] and B to R [ 4;;] . 

3. If one of the arguments is a scalar, then the scalar 
element is expanded and applied to the array on an 
element-by-element basis along the Kth dimension, as 
described in Section 2.6.2. 

Laminat i on differs from catenation in that it joins variables along 
a new coordinate. The APL syntax is the same for catenation and 
lamination. However, the coordinate specification ( [ K]) is fractional 
in a lamination expression, indicating a position between e x isting 
coordinates in which the new coordinate is to be placed. If the two 
argurnent~ in a lamina t ion functio n do n o t have the same dime ns i ons, 
then at least one of them must be a scalar value or APL will not accept 
the function. 

The following examples illustrate some applications of the lamination 
feature. 

2-40 



2 3 

('~I' 

li<E 

CF 

uv 
WV 

(.)"£< 

EF 

uv 
W'-' 

(.;, E< 

UV 

CIt 

WV 

EF 

cw 

ell 

f'::F 

AE< 

(.h·3 2r I ('U.CI:IE~F I 

{.,[.~!.::If.< 

THE APL LANGUAGE 

2-41 



YE 

YF 

THE APL LANGUAGE 

2-42 



THE APL LANGUAGE 

2.7.9 / : Compressing an Array 

Function: dy adic compression (/) ; R~X/[KJY 
Argument Domain: 

left: Boole ans (0,1) 
right: any 

Argument Shape: 
left: scalar or vec tor 
right: scalar or array 

Result Range: same as right argument 
Result Shape: array; ppR++p pY 
Origin-Dependent? no 
Take Dimension Argument? yes 

The dyadic compression ( I ) function builds a new vector or array from 
an old one by specifying the elements to be deleted and those to be 
.preserved. The right argument of the function may be any array. The 
left argument must be the scalar argument 0 or 1 or a boolean vector 
(a vector containing only D's and l's). The compression function 
operates as shown below. 

(.:"·· ~5 7 'j' :1.:1. :1.3 
x·;" .. :l. :l 0 :I. () 
D," I~:' , .. x·;, / " 

::.:i ? :l.1 

Elements in A whose positions correspond to the positions of l's in 
B are preserved; elements corresponding to D' s in B are dropped. 
Because only D's and l's are valid values for B , the number of elements 
in the resulting array can be e xpressed as +/B . If B contains only 
l's, all elements of A are preserved; if B contains only D's, the 
result is the empty vector. 

The lengths of A and B must generally be the same. However, if A is 
of length 1, it will automatically be extended to the length of B ; if 
B is of length 1, it will be extended to the length of A . Thus: 

f:~ , •. ~.:; )' 9 :I. :I. :I. ~3 
i'<, .. :/. :/. 0 :1. () 

k</~) 
I::" 
, .J 5 c· 

...J 

:I. / ~~ 
1:: . 
..) ? 9 l :I. 1 3 

()/ {.~ 
(APL outputs a blank line . ) 

The expression a/A produces the empty vector, because all elements of 
A are dropped. 

As discussed in Section 2.7.2, a compression function may also be 
specified for one particular coordinate of a multi-dimensional array 
by including the coordinate number in brackets. For a matrix, com­
pres-sion along the first coordinate may cause certain rows to be 
omitted; compression along the second coordinate may cause columns to 
be dropped . The result in all cases is a matrix. Several examples of 
array cornpress~on are included b e low. Theo e exampleo aloo illu~trate 
the defaults which APL supplies when the coordinate number is omitted 
from the function. 

2-43 



(..~··:·5 41-' \:1.2 
A 

1. ~: 3 4 
!:j 6 7 8 
9 :to 11 12 

:1.0:1./[:1.](:· 
:I. 2 3 4 
9 :lO :1.112 

:I. () :1. 0/[2](.. 
:I. :3 
~::; "7 
<;> 11 

f 0/(::' 
3 0 

:"~"2 3f \ 6 
o :1. :I. /;-( 

:I. O/h 
1. 2 3 

THE APL LANGUAGE 

(Compress along last dimension) 

(Compress along first dimension) 

The shape of the result of a compression function can be expressed as 
follows: if R+Bj[KJA, then ppR++ppA. 

2-44 



THE APL LANGUAGE 

2.7.10 \ : Expanding an Array 

Function: dyadic expansion (\ ); R+X\[K]Y 
Argument Domlin: 

left: Booleans (O,l) 
right: any 

Argument Shipe: 
left: scalar or vector 
right: s calar or array 

Result Range: same as right argument 
Result Shape: array ; ppR+-rppY 
Origin-Dependent? no 
Take Dimension Argument? yes 

The dyadic expansion ( \ ) function builds a new vector or array by 
expanding the elements of another array into a new format. Expansion 
is the converse of compression (see Section 2.7.9). The right argu­
ment of the function may be any array. The left argument must be the 
scalar value 0 or 1 or a boolean vector containing only O's and l's. 
The expansion function operates as shown below. 

(.~~- \:-3 
V ~ .. :I. () :I. () :I. 
V\('~ 

:I. () 2 . 0 ::5 
V\ I (::,PI... I 

The function expands the elements of A into the format specified by v. 
The values of A are inserted in positions corresponding to the occur­
rence of l's in v. For numeric values, zeroes are inserted in posi­
tions corresponding to O's in the boolean vector. If the right argu­
ment is a character string, as in the second example above, spaces are 
used rather than zeroes. 

The number of l's in the boolean vector must generally be the same as 
the number of values in the array included as the right argument. 
Thus, +/V must be equivalent to pA . However, a scalar boolean value 
as the left argument of the function is extended as shown below. 

1. 0 :I. \~:j 

As discussed in Section 2.7.2, an expansion function may also be 
specified for one particular coordinate of a multi-dimensional array 
by including the coordinate number in brackets. Several examples of 
array expansion are included below. These examples also illustrate 
the defaults which APL supplies when the coordinate number is omitted 
from the function. 

2-45 



O~A~2 3F\6 
1 ~ 

~ 

4 ~ 
~ 

1 
1 2 
0 0 
4 5 

1 
1 0 
4 0 

0 
0 0 0 

3 
6 

0 
3 
0 
6 

0 
2 
~ 
J 

0 

l\CIJA 

1 1\C2JA 
3 
6 
0\\0 

O~A~O 0 0\" 

3 

*THI515AN 
EXPANSION 
EXAMPLE** 

fX 
3 9 

THE APL LANGUAGE 

V~l 1 1 1 1 0 1 1 0 1 1 
V\X 

*THIS IS AN 
EX PAN sr ON 
EXA MP LE •• 

1 0 1 l\X 
*THI SISAN 

EXPANSION 
EXAMPLE •• 

2-46 



THE APL LANGUAGE 

2.7.11 t: Taking Array Elements 

Function: dyadic take (t); R+X t Y 
Argument Domain: 

left: integers 
right: any 

Argument Shape: 
left: scalar o r ve c tor; ( pX )~pY 
right: any 

Result Range: same a s right argument 
Result Shape: array ; pR+-+1 X 
Origin·Dependent? no 
Take Dimension Argument? no 

The dyadic take (tl function builds a new vector or array by taking 
a specified number of elements from an e x isting array. The right 
argument of the function may be any array. The left argument can be 
a one element array or scalar, or a vector. The number of elements 
in the left argument must be equal the number of dimensions in the 
right argument. A scalar is treated as a one element vector. 

The take function oper ates as shown below. 

:I. 2 

v, .. :I. ::' :3 -4 
[] ; .. ;.; ; •. ;:.> l' v 

This expression takes the first two elements of V and forms a new vec­
tor. If the value of the scalar is greater than the number of ele­
ments in V , then the resulting vector, X , is e x tended so that its 
length is the value of the scalar. As shown below, zeroes are used to 
extend a numeric vector and blanks are used to extend a character 
vector. 

21' \ 3 
:I. 2 

41' \ ::\ 
:I. 230 

('~FL:I. :I. 
:1. 0 

r[] ' ·· :1.01" (,F I..:I. :I. ' 

In the expression R+S tV , i f S is positive, then R consists of the first 
S elements of V. If S is negative, then R contains the last I s ele­
ments of V. If IS is greater than the number of elements in V 
« IS» pV ) , then zeroes or spaces are inserted in R before or after 
the values of V . Examples of the effects of negative scalars are 
included below. 

····61' :1.2 24 36 4 0 
o 0 12 2 4 36 4 8 

2 3 

··· :l.O'!,' FC) C)4~::;' 

FOC)4 ~:j 

·-·::~t \:3 

A taKe function may also be specified for a multi-dimensional array. 
In this case, the left argument of the function must be a vector 
containing one element for each dimension of the array. In the 
expression StY , the value of S [ l J indicates the number of elements to 
be taken along the first coordinate of v , and so on. Several examples 
of taking an array are included in the following. 

2-47 



:I. 
6 
.t1 

4 
<;> 

o 
J 
6 
1.1 

AH]f-3 

2 3 
7 8 
12 13 

2 ····2t(.~ 

1.0 
... 'l 2t(.~ 

() 

2 
7 

4 
9 
1.4 

5 
10 
15 

THE APL LANGUAGE 

2-48 

The shape of the result of the take 
function can be expressed as follows: 
if R~AtB, and ppR~+ppB , then pR~+IA . 



THE APL LANGUAGE 

2.7.12 +: Dropping Array Elements 

Function: dyadic drop (+); R+X +Y 
Argument Domain: 

left: integers 
right: any 

Argument Shape: 
left: scalar or vector; (pX)++pp Y 
right: any 

Result Range: same a s right argument 
Result Shape: array ; pR++(pY-I X) 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic drop (+) function builds a new vector or array by 
dropping a specified number of elements from an existing array. 
The right argument of the function may be any array. The shape 
requirements for the arguments are the same as for the take func­
tion (2.7 .11) . 

The drop function operates as shown below. 

[I"'v, .. \ ~:.:.; 

:1. 23 4 ::; 
IJ ; .. ::< ,; .. :,:.; ,j.. v 

This expression drops the first two elements of V and forms a new vec­
tor with the remaining elements. If the value of the scalar is 
greater than the number of elements in V, then the result is the null 
vector. 

The drop function handles negative scalar values in much the same way 
as take. The function R+ - StV causes the last Is elements of V to be 
omitted from v ector R . The following is an example of the effect of a 
negative scalar on a drop function. 

A drop function may also be specified for a multi-dimensional array. 
In this case, the left argument of the function must be a vector con­
taining one element for each dimension of the array. In the expres­
sion S +V, the value of S [lJ indicates the number of elements to be 
dropped along the first coordinate of V, and so on. The examples 
below illustrate the use of drop in multi-dimensional arrays and 
demonstrate the construction of identical arrays by means of alterna­
tive take and drop functions. 

[] ' ''''. , .. ::5 ~:if \ :I. !:.:j 

1 '1 3 4 5 ... 
6 'I 8 9 1.0 
:1.1. j"> . .:.. 1 3 14 1.5 

~') ... .... 21":' 
4 t:' 

,) 

n 
'1 10 

- :I. 3~ 1~ 

4 0::-. .) 

9 10 

2-49 



THE APL LANGUAGE 

The following example illustrates the use of drop in a character array. 

Ali<CI:< 

k,:FGH 

:[ ,) KL 

lviNOF' 

C~,":ST 

lJVW>( 

() 0 0 

O~A~2 3 4F'ABCDEFGHtJKLMHOP~R5TUVWX' 

2-50 



THE APL LANGUAGE 

2.7.13 Q: Transposing the Dimensions of an Array 

Function: monadic transpose (Q) ; R~Y 
Argument Domain: 

left: -
right: any 

Argument Shape: 
left : -
right: any 

Result Range : same as argument 
Result Shape: array ; pR-+-+4>pY 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic transpose (Q) function interchanges the dimensions of any 
array. For a matrix, this function has the effect of exchanging the 
rows and columns. The symbol Q is formed by overstriking the circle 
o with the backs lash ( \ ) character. The following is an e x ample of 
a simple matrix transposition. 

U<:·· '::\ t·· 2 31' 16 
1 23 
1+ :5 i.-

2 3 

:I. 4 
2 5 
::1 6 

f ,,~ 

Note that the Q function changes the shape of the array from 2-by -3 
to 3-by-2. For a matrix, the monadic transpose function often per­
forms the same operation as the dyadic transpose function described 
in Section 2.7.14. 

A transposition for a 3-dimensional array is shown below. 

1 '") 
.:.. 

:3 4 

L-:-

'"' 6 
? B 

1 ~5 

3 7 

2 6 
4 8 

::{~ .. :~~ :2 2r I B 

lI1 '.' " 

If the right argument of the monadic transpose function is a vector 
AT then QA++A . The shape of the result of the monadic transpose 
function can be expressed as follows: if R+~A, then o o R+~ ooA and 
pR+-+<t> pA . 

2-51 



THE APL LANGUAGE 

2.7.14 (~): Transposing an Array 

Function: dyadic transpose (~) ;R+X~[KJY 
Argument Domain: 

left: non-negative integers 
right:any 

Argument Shape: 
left: vector; (pX) +-+ppY 
right: any 

Result Range : same as right argument 
Result Shape: array 
Origin-Dependent? yes, left argument 
Take Dimension Argument? yes 

The dyadic transpose (~) function restructures an array of any shape. 
It can be considered an extended version of the monadic transpose and 
in some cases has the same effect on a matrix as the monadic function 
for example: 

U···''''.·· .:? :::),1-' \ () 

:l ' 1 
£ ",. :3 

4 "'. ,.J 6 
!lit·, 

:I. 4 
.~? I!:" 

J 

3 6 
''') 
",',. :I. !III~ 

1 4 
") 
~: .. L-:' 

~.' 

3 Ci 

The right argument of a dyadic or scalar ~ function may be any array. 
The left argument must be a vector containing one element for each of 
the dimensions of the array to be transposed. The shape of the vector 
expresses the rank of the right argument. For the function V~A, this 
can be expressed as the following: pV must equal ppA . Thus V must 
have two elements if A is a matrix, three if A is a 3-dimensional array, 
and so on. A scalar argument is treated as a one element vector. 

The dyadic transpose function rearranges the dimensions of an array 
by transposing them according to the vector provided as the left 
argument. The following illustrates an existing array and the way 
in which a new array is developed by transposing its dimensions. 

1"-) 

1 t') 3 4 .o!. 

I::' 
,.1 6 l E.l 
'? 10 1.1 1 ~) 

:J. :~ 14 1.5 16 
:1.7 Hi 1.9 20 
21 r),') 

40 ...... 23 24 
f (.~ 

" ) 
A',. 3 4 

If the following APL statement ~s specified: 

3 1 2~A 

2-52 



THE APL LANGUAGE 

then the vector supplied as the left 
the dimensions of A as shown below. 
determine the new positions to which 
moved. 

argument is used to rearrange 
The elements of the vector 
the elements of pR are to be 

(left argument) 312 

(Shape of A) 

(Shape of result) 

The new array has the structure shown below. 

Fi:~"3 :I. 2 til (::, 
I:;: 

1 13 
.") 
.~' .. :1.4 
::5 1~i 

4 16 

I;:' 
>oj :I. ? 
(, :1.::3 
? 19 
C) 
~.! 20 

C' .>" 21-
:1.0 ri'-) 

":HA: .. 

:I. J n 
:1.2 24 

The examples included above illustrate the case in which the 
coordinates of the original array are permuted. In a permutation, 
all of the coordinate numbers are the same, but they are arranged 
in a different order; for example, 3 1 2 is a permutation of 1 2 3. 
In the function VQA, if V is a permutation of 1ppA, then the follow­
ing is true. If K represents a coordinate of array A and the func­
tion R+VQA is specified, then R is an array similar to A except 
that the Kth coordinate of A is the V[KJth coordinate of Rand (pR) 
[V] is equal to pA. 

In a dyadic transpose function, it is also legal to specify as the 
left argument a vector which is not a permutation of the coordinates. 
Two or more of the elements may be identical. Legal values for the 
elements of the vector must follow these rules: 

• Each element of the vector must be a positive integer 
that is less than or equal to the rank of the right 
argument (VE1PpA). 

• All of the positive integers up to the largest in the 
vector must appear in the left argument «(1f/V)EV). 
In a 3-dimensional array with shape 2 3 4, valid vectors 
include 3 1 2, 1 1 1, 1 1 2, 2 2 1, 2 1 1, 1 2 2, 1 2 1, 
and 2 1 2. Invalid vectors are 3 1 1, (2 is missing) 
2 2 2, (1 is missing), and 2 3 2 (1 is missing). 

Incomplete vectors have special meaning in the dyadic transpose 

function. Only particular elements will be selected by the vector, 
as shown below. 

2-53 



THE APL LANGUAGE 

Vector Selects 

1 1 1 Elements whose first, second, and third indices 
are the same 

1 1 2 Elements whose first and second indices are the 
2 2 1 same 

2 1 1 Elements whose second and third indices are the 
1 2 2 same 

1 2 1 Elements whose first and third indices are the 
2 1 2 same 

The elements selected by this vector will be transposed as shown in 
the examples below. Such dyadic transpositions effectively take 
slices through the array along different diagonal directions. The 
first example below obtains the main diagonal of the matrix. 

(.~;-? 31' \ is 
(.~ 

:I. 2 3 
4 5 6 

:I. :LtI!(.:, 
:I. ::i 

(.)~··2 3 4f' \ 
(-) 

1 "l 3 4 .. ~. 
~::.; 6 7 8 
9 10 11. 12 

:1.3 14 15 16 
:1.1' :1.8 19 2() 
;:.' 1 22 23 24 

-) 
,.:. :I. llll(::' 

:I. :f. ~~ 
r.') 18 
11 23 

24 

The following examples illustrate dyadic transpositions of a 
character array. 

~.BCI) 

EF"GH 

I ,.I I< L 

Mt·/OF· 

Gf;:ST 

l.JVW>: 

AEI 
NJ:;:V 

~~l'<cr, 

GI":ST 

D~A~ 2 3 4rIABCDEFGHIJKLMNOP~R5TUVWX' 

2-54 



X'<F..J 

NFi:V 

CGK 

CJ5W 

1:"-11... 

I""T:-: 

THE APL LANGUAGE 

Table 2-5 may be helpful in determining transpositions for a variety 
of arrays. 

Case 

R+lll1V 
R+-l 21l1M 
R+-2 11l1M 
R+-l 11l1M 
R+-l 2 3 iliA 
R+-l 3 2 iliA 
R+2 3 1 iliA 
R+3 1 2ti/A 
Rt-i 1 21s/A 
R+l 2 lti/A 
R+-2 1 lis/A 
R+-l 1 lis/A 

Table 2-5 
Transpose Definitions 

pR 

pV 
pM 
(pM)[2 1] 

L!pM 
pA 
( pA )[ 1 3 2J 
(pA)[3 1 2J 
(pA) (2 3 1] 
(L/(pA)[l 2J),(pA)[3J 
(L/(pA)[l 3 ] ) , ( pA )[ 2 J 
(L/(pA)[2 3 J ) , ( pA )[ 1 ] 
L!pA 

2-55 

Definition 

R+-V 
R+-M 

R[I;JJ+-M[J;IJ 
R[IJ+-M[I;IJ 

R+-A 
R[I;J;KJ+-A[I;K;JJ 
R[I;J;KJ+-A[J;K;IJ 
R[I;J:KJ+-A[K;I:J] 

R[I ;JJ+-A [I;I ;JJ 
R[I ;JJ+-A [I;J;IJ 
R[I :J]+-A[J;I :IJ 

R[IJ+-A[I;I;IJ 



THE APL LANGUAGE 

2.7.15 ~: Reversing an Array 

Function: monadic reverse (<1»; R+<P[K]Y 
Argument Domain: 

left: -
right: any 

Argument Shape: 
left: -
right: scalar or array dimension 

Result Range: same as argument 
Result Shape: array; pR++pY 
Origin·Dependent? no 
Take Dimension Argument? yes 

The monadic reverse (~) function is used to reverse a vector or the 
elements of one coordinate of a multi-dimensional array. The symbol 
~ is formed by overstriking the circle 0 with the vertical line (I) 
used for absolute value. The reverse function differs from transpose 
in that it changes the order of an array, not its structure. The 
following is an example of reversing a vector. 

q) \ !':; 
!'.'j 4 :3 ::.> 1 

As discussed in Section 2.7.2, the reverse function may also be 
specified for one particular coordinate of a multi-dimensional array 
by including the coordinate number in brackets. Several examples 
of array reversal are included below. These examples also illustrate 
the defaults which APL supplies when the coordinate number is omitted 
from the function. 

[I, .. ;::' , .. ;.:.~ 4r· \ 0 
:I. ,.) ... 3 4 

J::' 
,.J ~1) 7 B 

(p L I J(.~ 
~:, I~\ 7 H 
:l 2 :3 4 

mL:2J(." 
4 ;3 .-) 

,,; .. :I. 
n :7 6 r.:-

d 

(1)(.:' 

4 3 ,.) 
:1. /I: .. 

D :7 6 1:: ' ,-, 
(Reverse last dimension) 

(~)(.:·I 

a::' t.., .? 8 ~ • .f (Reverse first dimension) 
:I. '1 3 4 .-

It is possible to reverse a matrix in both of its dimensions. This 
is not the same as transposing the matrix, as is indicated in the 
examples that follow. 

[] i·· ){ ~ .. ;.:.~ 31' \ ~~) 

1 2 :3 
4 0::-

d 6 
(IHI) I:: :1. ::I )< 

6 0:.-
J 4 

3" '") 1. "-

til )< 

:l 4 
,.) ... "'" d 

3 6 

2-56 



THE APL LANGUAGE 

2.7.16 ep: Rotating an Array 

Function: dyadic rotation (<p); R+X<jl[K]Y 
Argument Domain: 

left: integers 
right: any 

Argument Shape: 
left: scalar or vector 
right: scalar or array 

Result Range: same as right argument 
Result Shape: array; pR+-+pY 
Origin-Dependent? no 
Take Dimension Argument? yes 

The dyadic rotate (ep) function is us~d to rotate an array by a speci­
fied number of places. The right argument of the function may be any 
array. The left argument may be a scalar or a vector. The following 
example illustrates two rotations of a vector; note that a positive 
rotation causes a left shift and a negative rotation causes a right 
shift. 

3 ~) \ !:-.i 

-4 r::-
_J 1 2 3 

····3(1) \ I::' 
"J 

::5 4 L::' 
,J J. 2 

If a vector is being rotated, the left argument of the function must 
be a scalar or a l-element vector. 

A rotation function may also be specified for a multi-dimensional 
array by including the coordinate number in brackets. If a mUlti­
dimensional is rotated, the left argument of the function must be a 
scalar, a single-element vector, or an array whose elements correspond 
to the dimensions of the array to be rotated, with the dimension 
being rotated omitted from the array. For example, if a matrix 
containing three rows and four columns is rotated and a vector is 
included as the left argument of the function, that vector must 
contain three elements if the rows of the matrix are rotated and four 
elements if the columns are rotated. A scalar left argument will be 
extended to an array of proper shape. This is illustrated in the 
following examples. 

('U.<CD 

I:::FGH 

:LJJ<L.. 

Af.<CI' 

FGHE 

1< L. LJ 

~::F K I) 

l:,.JCH 

ABf;L 

X~3 4P'ABCDEFGHIJKL' 

Negative values in the left argument are handled as shown below. 
These examples also illustrate the defaults which APL supplies when 
the coordinate number is omitted from the function. 

2-57 



ABer'E 

FGHI.J 

I( 1._ M 1·/ 0 

FL.MI-IO 
1«(·C[Or;.: 

(:~GHJ;.J 

(.,};· CI:oE 

H 1,)FC; 

OKLMN 

THE APL LANGUAGE 

D~A~3 5p'ABCDEFGHIJKLMNO' 

I::' .") 
..J ••.. •... :1. (P(.\ 

The shape of the result of a rotation function can be expressed as 
follows: pR+-+pB if R+A</J [K] B, then pA+-+ (K ;t tppB)/pB. 

2-58 



THE APL LANGUAGE 

2.7.17 ~: Sorting an Array in Ascending Order 

Function: monadic grade-up (6); R+-,1>[K]Y 
Argument Domain: 

left: -
right: any 

Argument Shape: 
left: -
right: scalar or array; (ppY) ~2 

Result Range: non-negative integers 
Result Shape: vector; pR+-+(pY) [K] 
Origin·Dependent? yes 
Take Dimension Argument7 yes 

The monadic grade up (~) function aids in sorting an array in ascending 
order. The grade up function is extended to operate on matrices as 
well as vectors. The argument of the function represents the scalar, 
vector, or matrix whose elements are to be recorded. The array being 
sorted may contain either numeric or character elements. 

If two or more elements of the array being sorted have the same value, 
then the order of the elements is determined by their relative 
positions in the original array. 

The symbol ~ is formed by overstriking the delta (~) character with 
the vertical line (I) used for absolute value. 

The following example illustrates the use of the grade up function 
in sorting the elements of a vector. 

A'··2 9 7 4 ,~ 10 4 
[] ~ .. :B l-.t.'-. 

1 ~i 7 4 3 ') 
"'~. \~) 

(.Ot I:::B J 
2 3 4 4 7 9 :1.0 

Note that the grade up function does not actually sort the vector. 
It creates a permutation vector of the index numbers of the elements; 
this vector is then used to sort the original vector, as shown in the 
examples above. 

The current setting of the index origin determines the index values 
returned by the grade up function, An example of this is included 
below. 

~-: l- 3 7 0::-

'"' j 2 
¢.>~ 

4 I!!" 1 3 ') 
,.J ... 

) O~:IcnN 0 
WAS 1 

,t»: 
:3 4 0 2 :I. 

As discussed in Section 2.7.2, the grade up function may also be 
specified for one particular coordinate of a matrix by including the 
coordinate number in brackets. APL supplies defaults when the 
coordinate number is omitted from the function, as shown in the 
examples below. 

2-59 



THE APL LANGUAGE 

If the array to be sorted by the grade up function is a matrix, the 
simplest operation causes each row of the matrix to be treated as a 
string. The result of the grade up function is a vector whose length 
is equal to the number of rows in the matrix. The following examples 
illustrate the sorting of two matrices - one character and one 
numeric. 

A 
STEVE 
SAM 
STAN 

pA 
3 5 

,j, A 
2 3 1 

(Sort along last dimension) 

A [~ A ; ] 
SAM 
STAN 
STEVE 

B 
3 2 1 5 0 
3 1 9 7 0 
3 2 0 8 0 

pB 
3 5 

~B 
2 3 1 

(Sort along last dimensi on) 

B[ ~ B; ] 
3 1 9 7 0 
3 2 0 8 0 
3 2 1 7 0 

~he e x amples included above cause the matrix to be sorted 
owever, by subscrioting the function, as shown by rows; 

to sort on the basi; of columns. below, it is p ossible 

SSS 
TAT 
EMA 
V N 
E 

5 3 

A 

pA 

,j,[1 JA 
2 3 1 

SSS 
ATT 
MAE 

NV 
E 

A [; H 1]A ] 

(Sort along first dimension) 

2-60 



THE APL LANGUAGE 

2.7.18 V: Sorting an Array in Descending Order 

Function: monadic grade-down (V); R+ l' [ K] Y 
Argument Domain: 

left: -
right: any 

Argument Shape: 
left: -
right: scalar or array; (ppY)::;2 

Result Range: non-negative integers 
Result Shape: vector; pR+-+ (pY) [K] 
Origin-Dependent? yes 
Take Dimension Argument? yes 

The monadic grade down (1') function aids in sorting an array in 
descending order. The grade down function is extended to operate on 
matrices as well as vectors. The right argument of the function 
represents a scalar, vector, or matrix whose elements are to be 
reordered. The array being sorted may contain either numeric or 
character elements. 

Duplicate values are handled exactly as in the grade up function; the 
order of such elements is determined by their relative positions in 
the original vector. As in the case of grade up, the index origin 
setting determines the values returned. 

The symbol l' is formed by overstriking the del (v) character with the 
vertical line (I). Following are several examples of using the grade 
down function to sort the elements of a vector. 

?~ 

5 7 3 1 ") 4 r) ... ... 
[Jt-x.;< ... 't~~ 

2 1 6 3 7 C" 4 '"' A[E<] 

7 5 4 3 ") . .., 1 ... ... 
~~ ['\7,C)(-5 7 3 1 ') 

<- 4 2J 
7 "'. ...J 4 3 ~, ... 'j ... 1 

Like the grade up function, l' creates a permutation vector that can 
be used to sort the original vector. The last two examples above 
illustrate the way in which grade down and indexing operations can 
be performed together. The grade down function operates on matrices 
in the same way as that described for grade up, except that it sorts 
the elements of the matrix in descending order. 

2-61 



THE APL LANGUAGE 

2.7.19 ? : Rolling Random Integers 

Function : monadic scalar roll (?); R+?Y 
Argument Domain: 

left: -
right: non-negative integers 

Argument Shape: 
left: -
right: any 

Result Range: non-ne gative inte g e rs (0 $; Y ) 
Result Shape: arra y ; pR..-pY 
Origin-Dependant? yes 
Take Dimension Argument? no 

The monadic roll (?) function is used to generate an array of independ­
ent random integers. Roll is actually a scalar rather than a mixed 
function, but it is presented here because it is closely related to 
the dyadic deal function (Section 2.7.22). 

The argument of the roll function is an array of positive integers. 
The shape of the array produced by the expression R+?A is the same as 
the shape of A . If the current index origin setting is 1, each ele­
ment in R is a random integer in range 1 through the value of the 
corresponding element in A . If the origin is 0, the range is 0 through 
the value of the corresponding element in A minus 1. An example of a 
roll function performed on a vector is included below. 

?!7; 1.0 1. ~; 20 25 
3 9 4 13 4 

Note that the number 4 was generated twice, once as a random integer in 
range I through 15 and once in range 1 through 25. This can happen be­
cause numbers selected by roll are independently random within each 
range. The term "roll" relates to the analogy between the operation 
performed by this function and the rolling of several dice. The deal 
function differs from roll in that it generates a set of random num­
bers in which no number is selected twice. 

2-62 



THE APL LANGUAGE 

2.7.20 ?: Dealing Random Integers 

Function: dyadic deal (?); R+X?Y 
Argument Domain: 

left: non-negative integer (X:S;Y) 
right: non-negative integer 

Argument Shape: 
left: scalar 
right: scalar 

Result Range: non-negative integers (O:S;Y) 
Result Shape: vec tor; pR+-+. X 
Origin-Dependent? yes 
Take Dimension Argument? no 

The dyadic deal (?) function generates a vector of integers randomly 
selected from another vector; no number may be selected more than once. 
Unlike the roll function, which can be compared to rolling several 
dice independently, "deal" refers to the analogy of dealing a number 
of cards from a deck containing no duplicates. 

Both arguments of this function must be positive scalars or single­
element arrays. The length of the vector produced by the expression 
R+A?B is the same as the value of A. A identifies the number of 
elements to be selected randomly from the values in range 1 through B 
if the index origin is 1, or 0 through B minus 1 if the index origin 
is O. The value of A must be less than or equal to the value of 
B (A:S;B). Several examples of the deal function are included below. 

~7.i ?~::.i 

1 2 4 3 :'i 
~::;'i':l.E3() 

6.190632307 E +29 7.963339536 E +29 2.944321859 E +29 7.939762066 E +29 
1. 5011 :t.2l6:=:;J::+::'~9 
) ClI":IGIH 0 

WAS 1 

3 :I. 4 0 2 

Note in the first and last examples that if the values of the two 
arguments are the same (A+~B), then the resulting vector is a permuta­
tion of lB. 

2-63 



THE APL LANGUAGE 

2.7.21 T: constructing a Character String 

Function: monadic quote ( T ) ; R+T Y 
Argument Domain: 

left: numbers 
right: numbers 

Argument Shape: 
left : -
right : any 

Result Range: null or characters 
Result Shape: vector 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic quote (T) function converts numeric values to character 
strings and may be helpful in preparing text to be processed by the 
execute function. The argument may be a scalar or an array and may 
have numeric or character values. If the argument is numeric, it will 
be converted to a character string as shown below. 

~{ •.. :J. :2 :3 -4 
IJ,·· "{.·· ·r· ).; 

1 2 3 4 
{' y 

7 
(.:'~··2 3 i" \ 1.1 

[J •.. J,' ~ .. .,. r.:> 

1 .. , .. :'. 3 
4 5 6 

rI< 
:1. 0 

, 
:J. :;:.~34:"j6 

, 
f' Y::( 

:1. 1 1- 1- 1. 1-
( t (~) ) foX" 

0 0 (> 0 0 0 

In the second example above, array A is converted to a 20-character 
vector (spaces output by APL are included in the size) in which the 
character representations of 1 through 6 are members but the corre­
sponding numeric values are not. 

If the argument is already a character string, then special processing 
is performed to determine whether or not the string represents APL 
identifier (i.e., a variable or function name). If the character 
string is not defined as an identifier, TA returns the null vector. 
If A is defined as a variable, TA returns the value of the variable, 
converted to a character string. If A is defined as a function, TA 
returns the lines of the function definition, separated by pairs of 
carriage return/line feed characters. Examples of these uses of the 
quote function are included below. 

(.,,4":1. 2 3 -4 
[J t·· X,< 4·· T I~) 

1 234 
r X'< 

2-64 



V'Z~-A G I~ 

[lJ Z~(3XA)+4xB 

[2] ~;:.-;;~*2 

[3] V' 

100 
[I •.. C~"T I C; I 

'V Zt-A C; Xi< 

~·~t-(3XA)+4xB 

:<!t-Z lit 2 

48 
Fe 

) EF;:~·\SE G 

2 G :I. 

SYNT~);< EFi:Fi:OFi: 

2 G 1 
t 

l, C 

2 Coj :I. 
100 

THE APL LANGUAGE 

Note that the definition of function G is effectively restored by the 
use of the character string that represented this function in an exe­
cute operation. 

2-65 



THE APL LANGUAGE 

2.7.22 T: Representing a Number in Another Base 

Function: dyadic encode (T); R+XTY 
Argument Domein: 

left: numbers 
right: numbers 

Argument Shipe: 
left: numbers 
right: numbers 

Result Range: numbers 
Result Shape: array; pR+-+(pX) ,pY 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic encode (T) function is used to represent a scalar or an , 
array in any number system. It is sometimes called the representatlon 
function. The right argument identifies the scalar or array to be 
translated. The left argument is a vector or scalar that represents 
the number base in which the value is to be expressed; the vector con­
tains one element for each column of the representation. For example, 
to encode the decimal value 7 in four columns of binary representation, 
the following function may be specified. 

2 2 2 2T 7 
o 1 1 1. 

It is often useful to specify mixed bases for the number to be repre­
sented. The encode function can be used to express some number of 
inches in miles, yards, feet, and inches, or some number of millisec­
onds in days, hours, minutes, seconds, and milliseconds. The following 
are examples of these and other similar situations. 

0 
4 546 2 

0 
8 7 1:"1::--,'" 

0 
1 0 0 1 

0 
0 1, 184 

() 

1'7 4 2 

1760 :3 
I:' 

'" 24 60 
32 448 

4 r, ' " <. <. 

5 2 41 
3 320 
c' 

'" 2 5 
1.2 8 3 

r) ... 1 

12T27:U25 

60 10()()Tn 9n;,):~j23 

16 :3 120Tl00001 

t:' 1::-
~.J • ") 3 12'd OO()() 1 

20T1.00001 

(miles, yards, feet, inches) 

(days, hours, minutes, seconds, 
milliseconds) 
(gallons, quarts, pints, cups, 
tablespoons, teaspoons, drops) 
(leagues, miles, rods, yards, 
feet, inches) 
(pounds, ounces, drams, scruples, grains) 

In the expression ATE, A is the representation rule to be applied to 
B. Each element of the vector A is defined in terms of the element 
immediately to its left. Thus, in encoding a number as miles, yards, 
feet, and inches, the following elements are specified from right to 
left. 

• 12 inches in 1 foot 

• 3 feet in 1 yard 

• 1760 yards in 1 mile 

A miles specification is desired, but is not being defined in terms 
of another quantity, so 0 is inserted in the miles column, as follows: 

o 1760 3 12T2'73125 
4 546 2 5 

2-66 



THE APL LANGUAGE 

The following examples of base 3 conversions demonstrate the specifi­
cation of different numbers of columns in the rule vector and illus­
trate the way in which negative numbers are encoded. 

3 :3 3'Y':l.? 
:I. 2 2 

:3 3T? 
2 :l. 

~3 3 3'Y"'-1 "7 
1 0 1 

Another useful application of the encode function is shown below. 
Here the integer and fractional portions of a number are returned. 

023 0.75 

An encode function may also be specified for vectors and multi­
dimensional arrays. The shape of the result of the function R+ATB is 
always (pA) ,pB or the same as the outer product. Examples of encoded 
arrays are included below. 

[]'··(.·~··~3 2r2 :-3 
'") ,,- 2 "j .. :. 
3 3 3 

[] , •. f.< ~- (:~ T ~:) 
,., 
II::. 

1 0 
1 0 
:I. 0 

") ., ... ") 
.:.. 

") r) 
",' .. ... 
.") .,',. ") 

.:.. 
f-'"ii.< 

r) 
A',. 3 2 

U~"C~"2 2f-'065 429 :1.03 692 
1:165 429 
:1.03 692 

10 :1.0 
B 4 
:I. 6 

6 2 
0 9 

I::' 
,.! 9 
3 ") 

.:.. 

2-67 



THE APL LANGUAGE 

2.7.23 .1: Decoding a Number Representation 

Function: dyadic decode til; R+XiY 
Argument Domain: 

left: numbers 
right: numbers 

Argument Shape: 
'eft: any 
right: any 

Result Range: numbers 
Relu't Shape: array 
Origin-Dependent? no 
Take Dimenllon Argument? no 

The dyadic decode (i) function reduces a representation in,a number , 
system to a value. It is the converse of the encode ,functl0n, (Sectl0n 
2.7.19) and is sometimes called the base value functl0n. Equlvalent 
examples of the two functions as they operate on a quantity expressed 
in yards, feet, and inches are shown below. 

1?60 3 J.2.,.63 
:I 2 :3 

:f. ?60 3 1 2,. 1 ;;.' 3 
63 

The functions ATB and A.1 B differ only in the values included as Bi A 
expresses the number base in both cases. 

The number of elements in A and B must generally be the same; element 
2 in A expresses the base in which element 2 in B is encoded, and so 
on. However, if A is a scalar or a single-element array, it is 
extended so that its length is the same as that of B . For example, 
the following function has the effect of producing the base 10 value 
of the base 8 number 3777. 

B .. t :3 :7 ? :7 
2047 

The decode function may be viewed as a form of inner product. The 
following illustrates two equivalent functions. 

63 

PI~··1.?60 :3 1 ') 
1'<~" :I. 2 :3 
(.~ . .l.x,:, 

36 1 2 :I. -+-. xI:< 

The following are several additional decode examples: 

2d.Ol0 
lO 

100 

···· 4 

J.0 9 

0.A.1 4 4 

····2.d l 0 () 

:I. 4 2 4 2~1 2 1 2 1 

(number of pints in bushel, 2 
pecks, 1 gallon, 2 quarts, 1 pint) 

2-68 



THE APL LANGUAGE 

A decode function may also be specified for multi-dimensional arrays. 
The function A~B is equal to W+.xB where W is the weighting vector 
given by W[pA]~+1 and W[(-N)+pA]~+A[(-N)+1+pA]xW[(-N)+1+pA]. The value 
of A[1] is thus irrelevant. 

The arrays specified as the arguments of the decode function must con­
form according to the rules specified for inner products in Section 
2.8.3. As with the inner product function, if neither decode argument 
is a scalar, then the number of elements in the last coordinate of the 
left argument must equal the number of elements in the first coordi­
nate of the right argument, or either of these coordinates must con­
tain exactly one element. In general, if the left argument (A) is a 
vector and B is the right argument, then the result is W+.xB where 
W[I]~x/I+A. If A is a scalar or a vector of equal elements, the 
result is the decimal value of the right argument in base A. 

Several examples of decode functions that use arrays are provided 
below. 

D~A~.3 2,2 3 
2 2 ~ , 
3 3 3 

D~B~3 2,1 0 0 1 1 0 
1 0 
0 1 
1 0 

ALB 

5 ~ 
~ 

10 3 
D~w~2 3,4 ~ , 1 9 3 1 

4 ~ 
~ 1 

9 3 1 
W+.x B 

~ 
0 2 
10 3 

2-69 



THE APL LANGUAGE 

2.7.24 E : Executing a Character string 

Function: monadic execute (E:); R<'EY 
Argument Domain: 

left: 
right: characters 

Argument Shape: 
left: 
right: vector 

Result Range: characters or numbers 
Result Shape: scalar or array 
Origin· Dependent? no 
Take Dimension Argum8flt? no 

The monadic execute or unquote (E) 
acter string as an APL statement. 
the right argument of the function 
to be executed by APL. An example 

[] ;··" '~ .. l' ' ) V('.I'; : ~'; , 

E< c: 

function is used to execute a char­
The scalar or vector included as 
is evaluated as a character string 
of this function is shown below. 

The effect of this example is to execute the )VARS system command 
(see Section 5.3.1) and thus obtain a display of the global variables 
available in the user's workspace. 

The right argument of the E function may be a scalar or a character 
vector. If the scalar value A is numeric, then the value of EA is 
equivalent to A . If A is a character scalar or vector, it is 
evaluated exactly as if it were quad input from the terminal. Carriage 
return/line feed characters in A are treated as APL statement separa­
tors, just as they would be in input from the terminal, so multiple 
line executes are allowed. The result of the expression R<' EA is the 
value of the last statement evaluated in A . If the last statement has 
no value (e.g., R<'E ' '), R is the null vector. 

Errors encountered in the character string processed by the execute 
function are handled exactly as if they occurred in statements entered 
from the terminal. If an error is encountered while evaluating the 
execute string, an error message is output and the segment of the 
execute string currently being evaluated is displayed. (Output may be 
suppressed by I-beam 16, described in Section 4.3.2.) If an error 
occurs, no further evaluation of the string is performed, and EA 
returns a null array whose shape is 0 E, where E is a number indicat­
ing the error that was encountered. Appendix D contains a complete 
description of all APL error conditions. 

The execute function is also known as the unquote function, because 
it strips quotes from the value entered as its argument. Other uses 
of this function besides the execution of system commands include the 
following: 

• Function definition (line editing commands are not 
permitted) 

• Conversion of v ectors of characters representing numeric 
constants into numeric values 

• Specification of an APL name as an argument to a function, 
rather than the value of that name 

2-70 



THE APL LANGUAGE 

The examples included below illustrate the use of E in function 
definition, the execution of system commands, and the evaluation of 
APL statements. 

4 
~: 12+21 

4 

0;1 1 

1<~-4 

F 
V'.LtJE EF;:f;:Of': 

o 

49 

3+2 
6' 
(~ 

F 

l' 
C'''l:(.\ 

.fC 

E 
VAl .. UE Ef;:F;:Of.: 

3-t·2, 
4' 
:1.0 

",: 
t 

~:; Y N T t:'t >~ E: F.: f:: 0 F:: 

3+2, 

o 7 

\/H 

[1] 'THIS - IS HARD TO BELIEVE' 

[2] Z~E' )SAVE THISWS' 
[3] 'WHEN LOADED RESUMES AFTER EXECUTE AUTOMATICALLY' 

[4] ,;~ 

H 

THIS IS HARD TO BELIEVE 
WHEN LOADED RESUMES AFTER EXECUTE AUTOMATICALLY 

) 1 ... 0(.\[1 TH I ~:;W~:; 

WHEN LOADED RESUMES AFTER EXECUTE AUTOMATICALLY 

() 

f.q .. r, I , 

fX-:' 

2-71 



THE APL LANGUAGE 

2.7.25 E : Determining the Members of an Array 

Function : d yad ic me mbe rship (E ); R+XEY 
Argument Dom.in: 

left: any 
right: any 

Argument Shape: 
left: any 
right: a ny 

Result Range : Boo1eans (0,1) 
Result Shape: a rray; pR+pY 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic membership ( E ) function is a set function that is used to 
determine whether or not particular elements o f one array occur as 
elements of another a rray . Both arguments of the function AEB may be 
arrays of any dimension; the left argument, A , contains the elements 
for which membership in array B is to be determined. The result of 
the membership function is a boolean array whose shape is the same as 
that of A . The result consists only of a's and l's; a 1 indicates 
that the corresponding element in A is a member of array B , a a that 
it is not. Following is an example of the use of the E function in 
analyzing the membership of a vector. 

D~ A ~ 'ABCDEFGH'~ ' H EAD E D ' 

1. 001 1 0 () :l 
i,/ ' (':, ;('<C DEFGH ' 

The compression function is helpful here in identifying the particu­
lar char acters that are members of the v ector. 

The two arguments of the membership function need not hav e the same 
rank, as is illustrate d in the first example below. 

A~ 2 3 , 7 8 2 4 6 6 
(~, l' \ <" 

0 0 1 
:I. :f. :r. 

:3 4 l:' 3 4' 
() 0 

() 0 

For all arrays B, the expression AEB is equivalent to AE , B . 

2-72 



THE APL LANGUAGE 

2.7.26 u: Eliminating Duplicate Elements in a set 

Function: monadic elimination (u); R-<-uY 
Argument Domain: 

left: -
right: any 

Argument Shape: 
left: -
right: any 

Result Range: characters or numbers 
Result Shape: vector 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic elimination (u) function is a set function that eliminates 
the duplicate elements in a single set. The argument of the function 
uA may be a numeric or character scalar or an array of any dimension. 
The result of the function is always a vector, regardless of the shape 
of the argument, A. The result vector contains only one occurrence of 
each argument element, even if it occurs multiple times in A. 

u:l () :I 0 :I 0 :I 0 
:I. () 

U I I r-t v J :;;. I X~~ I... E 1 

:I: NVS;BL. E 

u \ (; 
:1.234~56 

2-73 



THE APL LANGUAGE 

2.7.27 u : Determining the Union of Two Sets 

Function: dyadic union (u); R+XuY 
Argument Domain: 

left: any* 
right: any* 

Argument Shape: 
left: any 
right: any 

Result Range: characters or numbers 
Result Shape: vector 
Origin-Dependent7 no 
Take Dimension Argument? no 

The dyadic union (u) function is a set function that concatenates 
two arguments and creates a vector consisting of the elements 
of the arguments. The arguments of the function AuB may be 
scalars or arrays of any dimension. The result of the function is 
always a vector, regardless of the shape of the argument. The 
arguments may be either numeric or character, but both arguments 
must be the same type or a DOMAIN ERROR will result. 

In the union example below, note that duplicate elements from the 
concatenation of the two arguments are not discarded: 

'BARNYARD' u'YARDARM' 
BARNYARDYARDARM 

The following examples illustrate the use of the union function with 
a variety of arguments of different shapes. The final example illus­
trates that the shape of the result is always a vector, even if it 
consists of a single element. 

1 "') :-\ u i~ 
1 'W i 3 .. '" 4 

... "') 
.,' .. "X ,., U 0 J :I 

:I. :2 3 () :J :I. 
I~ :) 

t 2 ::\ 

1 ? 3u<:' 
123 :J 2 3 4 5 6 

I :r i'~ tv ]: ~;i I 1.:.( I.. E I l.t ~ \ 

I HV J: S; l: E<L .. E 

J:' I n I lJ I • 

*Both arguments must be either character or numeric' argument 
types cannot be mixed in the same function. I 

2-74 



THE APL LANGUAGE 

2.7.28 n: Determining the Intersection of Two Sets 

Function: dyadic inters ection (n ); R+ XnY 
Argument Domain: 

laft: any* 
right: any* 

Argument Shape: 
left: a ny 
right: any 

Result Range: characters or numbers 
Result Shape: vector 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic intersection ( n) function is a set functio n that determines 
the elements that the two arguments of the function have in common. 
Both arguments of the function AnB may be scalars or arrays of any 
dimension. The function returns the elements of the left argument, 
A, that are also in the right argument, B. The arguments may be 
either numeric or character, but must both be the same type. The 
result of the function is always a vector, regar dless of the shape 
of the argument. 

Note that multiple occurrences of an element in the left argument that 
also are present in the right argument will a ppea r an equal number of 
times in the results. This is illustra ted in the second example. 

10 20 30 n l 0 30 5 0 70 
:J.O 30 

' MI SSOU RI ' n' MIS SISSIPFI ' 
i .. n SS I 

( \ 6) fl \ 9 
:I. oMi :5 4 1::- t ) ,,' .. d 

f·:( 

:l 0 J. 0 
0 J. () :[ 

1 n :C< 

:I. 

*Both arguments must be either character or numeric; argument 
types cannot be mixed in the same function. 

2-75 



THE APL LANGUAGE 

2.7.29 ~: Excluding Set Elements 

Function: dyadic e xclusion (~); R+X-Y 
Argument Domain: 

left: any* 
right: any* 

Argument Shipe: 
left: any 
right: any 

Result Range: characters or numbers 
Result Shape: ve c tor 
Origin-Dependent? no 
Take Dimension Argument? no. 

The dyadic exclusion (-) function is a set function that returns 
the elements that are in the first argument of the function, but not 
in the second. Both arguments may be scalars or arrays of any dimen­
sion. In the function A-B, the result is a vector consisting of the 
elements in the left argument, A, that are not also in the right 
argument, B. The arguments may be either numeric or character, but 
must both be the same type. The function is always a vector regardless 
of the shape of the argument. 

() :I. )N) 3 -4 ~:.l 

o 1 

'MISSISS I PPI ' N' MISSO URI ' 

Note that the exclusion function returns the elements in 'MISSISSIPPI' 
that are no~ in 'MISSOURI', but it does not return the elements in 
'MISSOURI' that are not in 'MISSISSIPPI'. APL effectively crosses 
out the elements in the left argument that are also in the right 
argument. The set of elements that remain in the left argument is 
the result of the function. 

When the left argument is null, the function returns the null vector, 
as shown in the second example below. 

I IN \l I ~:; 1 :(~( L EI ...... I • 

:r(-l V ISI,£<I...E 

I I N I I{.~ VI~:t I I<I... J: :: I 

*Both arguments must be either character or numeric; argument 
types cannot be mixed in the same function. 

2-76 



THE APL LANGUAGE 

2.7.30 c: Determining a Proper Subset 

Function: dyadic subset (c); R+XcY 
Argument Domain: 

left: any* 
right: any* 

Argument Shape: 
left: any 
right: any 

Result Range: Booleans (0,1) 
Result Shape: i-element vector 
Origin-Dependent? no 
Take DimBnlion Argument? no 

The dyadic subset (c) function is a set function that determines 
whether or not the left argument is a subset of the right argument. 
Both arguments may be scalars or arrays of any dimension. The argu­
ments may be either numeric or character, but must both be the same 
type. 

In the function AcB, APL determines whether or not all of the elements 
of the left argument A, are contained in the right argument, B. The 
result of the subset function is always a single-digit boolean vector 
(0 or 1), regardless of the shape of the arguments. A value of 1 
indicates that A is a proper subset of B; a value of 0 indicates that 
A is not a subset of B. Several examples of the subset functions are 
included below. 

'MISS'c'MISSOURI' 

1 

o 1 2el 2 0 1 3 

1 

o lelO 2 0 
o 

'BLISS'c'INVISIBLE' 

1 

Every occurrence of a distinct element in the left argument must be 
matched by an occurrence in the right argument. In the last example 
above, 1 is returned even though the letter S occurs twice in 'BLISS' 
and only once in 'INVISIBLE'. A match need not be found for every 
occurrence of an element in the left argument; thus, "85" in "BLISS" 
will be matched by "s" in "INVISIBLE". 

The subset function can be expressed in terms of the and, compression, 
ravel, and membership functions as the following: AcB~+A/AEB. 

2.7.30.1 £: Determining a Subset - The description for a subset (£) 
is the same as for a proper subset (c), except that now a true 
result (1) is returned if the arguments contain the same elements. 

1 2 3 .::: 1 ... ,~ :3 
0 

:I. ~:~ ~'3 ~y. :J. ~~~ 3 

t 

*Both arguments must be either character or numeric; argument 
types cannot be mixed in the same function. 

2-77 



THE APL LANGUAGE 

2.7.31 ~ . Determining a Strict Superset 

Function: dyadic s uperset (::» ; R++X::>Y 
Argument Domain: 

left: any* 
right: any* 

Argument Shape: 
left: any 
right: any 

Result Range: Boo1eans (0,1) 
Result Shape: 1-elernent vector 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic superset (~) function is a set function that determines 
whether or not the left argument is a strict superset of the right 
argument. It is the converse of the subset function described in 
Section 2 .7. 30 . Both arguments in the superset function may be 
scalars or array s of any dimension. The arguments may be either 
numeric or character, but must both be the same type. 

In the function A~B, APL determines whether or not the left argument, 
A, contains all of the elements of the right arg ument, B. As with 
the subset function, the result of the superset function is alway s 
a single-digit boolean vector (0 or 1), regardless of the shape of 
the arguments A value of 1 indicates that A is a superset of'B; a 
value of 0 indicates that A is not a superset of B. 

In the superset function, every occurrence of a distinct element in 
the right argument must be matched by an occurrence in the left 
argument; this is illustrated in the examples below. 

( 1 9)~ 1 3 5 7911 
o 

:I. ::.> :I. ::.> :-5 4::) '\ ? 
:I. 

'M lS50URI ' ~'M I SS' 

o 

The superset function can be expressed in terms of the and, compres­
sion, ravel, and membership functions as the following: A/ ,BEA. 

2.7.31.1 ~ : Determing a Superset - The description for a superset 
( ~ ) is the same as for a strict superset ( ::» , except that now a true 
result (1) is returned if the arguments contain the same elements. 

I. ::.~ ""1 ::) 1 "" "j :-5 \, .. .. ... 
() 

:I. ' ") 
,': .. :.:.) ;;/ :I. ::> 3 

1. 

*Both arguments must be either character or numeric; argument 
types cannot be mixed in the same function_ 

2-78 



THE APL LANGUAGE 

2.7.32 ~: Formatting an Array 

Function: monadic format Cf); R+~Y 
Argument Domain: 

left: 
right: any 

Argument Shape: 
left: -
right: any 

Result Range: characters 
Result Shape: arr a y 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic format (~) function is used to convert numeric arrays to 
character arrays. Whereas the right argument of the dyadic form of 
this function (Section 2.7.33) may only be a numerical array, the 
right argument of the monadic version may be a scalar or an array of 
any shape, and the value of the argument may be numeric or character. 
The symbol ~ is formed by overstriking the job character (0) with the 
symbol T. 

When applied to a scalar or a character array, the result of the 
format function R+.A is an array identical to A - for example: 

~')VARS' 

) VARS 

If A is a numeric, then the character array represented by R will be 
identical to A as it appears when displayed by APL. However, the 
blank characters displayed along with the values of A will actually 
be a part of the new array R. The format of a scalar number is 
always a vector. The following example illustrates the difference 
between the shapes of a displayed numeric array and a formatted 
character array. 

:I. 
I::' 
" J 

") ... :. 4 

1 
I::' 
.,.J 

2 11 

:L 2 34 
!:,:j67i3 

,", 
.c 

6 

I.) 

,::",,2 4r \ D 
I:~ of··.,. t:) 
,:\ 

3 4 
? B 

r,::} 

3 4 
? D 

X'<[:; .... J+3x\4::J 

2-79 



THE APL LANGUAGE 

2.7.33 w: Formatting a Character Array with Width and Precision 

Function: dyadic format (w); R+-XwY 
Argument Domain: 

left: integers 
right: numbers 

Argument Shape: 
left: scalar or vector 
right: any 

Result Range: characters 
Result Shape: array 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic format (w) function is used when control of output exceed­
ing that available with the monadic format is required by the user. 
It offers a number of formatting options but does not provide the 
comprehensive formatting capabilities available with the format (w) 
function described in 2.7.32. The right argument of the dyadic format 
function may only be a numeric array. The left argument is used to 
control the format of the result. This argument may be a scalar, a 
pair of numbers, or a vector whose length is twice the number of 
columns in the numerical array. 

Two numbers are normally supplied as the left argument of the format 
function. The first specifies the width of a numeric field and the 
second sets the precision of that field. Precision is expressed 
differently for decimal and scaled or exponential forms of output. 
The form is determined by the sign of the precision argument. For 
decimal output, precision is a positive number, expressed as the 
number of digits to the right of the decimal point. For scaled out­
put, precision is negative and is considered the number of digits in 
the multiplier. Following are several examples of output using 
different width and precision specifications. 

3:1.,:1.6 0 
····15,~.:.i7D G 

.i'~ >~ 

····1.,O}OO 
-··23~5.6l 

IJ •... (. I. :::.~ :) -v- ~-: 

31.:J.60 
····.l~::;+~5"?8 

i"Y 

i::\~ .. (.:"~ 2 ... >; 
I~:-' 

0,000 
8.000 

3:1., :1.6 
····1:;,5El 

0.00 ·-·:I..O} 

2 27 
1'::.·.6 O.,.>c 
1':: 

B.OO -'23:5.61 

31 0 -'1 
"'16 B "'236 

FI':: 

1~~~ .. (,;> ····2~::< 

x·~ 

3.1 E Ol 
-1.6E Ol 

O.OEOO .... :I. • :L EO() 
g.OEOO -2,4 E02 

n'''c, .. / .... :I. .,.>: 

3 EOl OEOO -l E OO 
-2EOl 8 E OO -2E 02 

--1,070 
·-23!:i.c.dO 

2-80 



THE APL LANGUAGE 

If the width specification is zero or is omitted from the function, 
APL provides a default width such that at least one space is inserted 
between pairs of numbers. If only one number is provided as the left 
argument of the function, the number is assumed to represent the pre­
cision of the result, not its width. An example is shown below, 
using array X as presented above. 

f [lE-21'";.( 
31.16 0.00 -1.07 

-15.58 8.00 -235.61 
2 20 

The user may also specify width and precision arguments for each 
column of the array to be formatted. Following is an example of 
column formatting of array X. 

f[l~8 0 0 -2 8 01'";.( 
31 O.OEOO -1 

-16 8.0E OO -236 
2 24 

A format function may also be specified for a multi-dimensional array 
and applied to the last coordinate - for example: 

[] E·· {.'E·· 2 ") 
.:. 21-' \ B 

1 2 
3 4 

I::' 
-.J 6 
·7 8 

I::' 
,.J 21'" f., 

1.00 2.00 
3.00 4.00 

~.:j. 00 6.00 
7.00 8~00 

In general, the width specified by the user must be large enough to 
laccommodate the number field. However, APL does not require that 
space be inserted between columns, as is illustrated by the following 
logical array. 

1 0 0 
:I. 0 1-
:1. 1 1 

100 
1. 01. 
:1.11 

:I. 01'"B 

The dyadic format function provides a powerful facility for formatting 
tables and providing headings and labels. Following is an example 
of a table prepared using the format function. 

2-81 



THE APL LANGUAGE 

RDWS~5 7,'APL FORTRANCOBOL BASIC PLI 
COLS~' USERS PROGS SYSTS' 
FOI':M~5 3,A 
(' ',[l.JI':OWS),COLS,[1.J7 O.,.FOI':M 

USEI':S F"I':OGS S"fSTS 
AF"L 112 608 14 
FOl':TI':AN 306 588 26 
COEcOL 596 82l. 45 
I<ASIC 622 960 30 
F"LI 18 35 3 

Note that array A contains the data formatted for inclusion in the 
table. 

2-82 



THE APL LANGUAGE 

2.7.34 ~: Performing Matrix Inversion 

Function: monadic domino (ffi); R+G]Y 
Argument Domein: 

left: -
right: numbers 

Argument Shipe: 
left: -
right: scalar or array; (ppY) $ 2 

Result Ranga:numbers 
ResultShepe: array; pR++pY 
Origin-Dependent? no 
Take Dimension Argument? no 

The monadic domino (00) function inverts a matrix and thus facilitates 
matrix division and a variety of other matrix operations. The domino 
symbol, ~, is formed by overstriking the quad (0) character with the 
division (+) symbol. The right argument may be a scalar, a vector, or 
a matrix. The most useful applications of the domino function include 
the following: 

• finding the inverse of a matrix 

• solving sets of linear equations 

• determining a least squares solution to an overdetermined 
set of linear equations 

Only the first application is discussed in this section. The dyadic 
version of the function is described in Section 2.7.28 and is used in 
performing more sophisticated matrix operations. The monadic inver­
sion function operates as shown below. 

B 
.... ~) 2 
••.•. 1' 

'"' .1 
I~IX; 

1. ""2 
:3 -' '''--.J 

[] ~ .. ;.; ~"I:I (.~ 

9 -36 30 
·· .. 36 192 - 180 

30 -":lEW 180 

1.000000000 
3.330669074££--:[6 

-7.105427358 E -15 
.1.000000000 

2-83 

6.66 :l3::m :1. 4BE ~ :I.~:; 

2. 4424 90Cl54 E -.15 
1.000000000 



THE APL LANGUAGE 

The monadic expression oox is equivalent to the dyadic IOOX, where I is 
an identity matrix whose order can be described as 1tpX. If the argu­
ment of the monadic function is a scalar, the expression OOX is equiva­
lent to 7X. 

The argument of the matrix inversion function may be non-square, but 
the matrix must have at least as many rows as columns. In a non-square 
situation, the result is a left inverse of the argument. If the matrix 
has no inverse, a DOMAIN ERROR results. 

2-84 



THE APL LANGUAGE 

2.7.35 [;]. m. Performing Matrix Division 

Function: dyadic 
Argument Domlin: 

left: numbers 
right: numbers 

Argument Shipe: 

domino ([lJ), R+XIilY 

left: scalar or array, 
right: scalar or array, 

Result RlIlge: numbers 
Reault Shape: array 
Origin.Dependent? no 
Teke Dimension Argument? no 

( ppY ) ~ 2 

(ppY) ~2 

The dyadic domino ([jJ) function performs more complicated matrix opera­
tions than the inversions described in Section 2.7.34 - for example, 
solving linear equations and finding a least squares solution. Both 
arguments of the [lJ function may be scalars, vectors, or matrices. In 
the expression X[lJY , X and Y must conform, fulfilling all of the condi­
tions described below. 

1. Y must have a rank of 2 or less. 

2. If the dimensions of Y are M by N, then M~N . 

3. X must have a rank of 2 or less and (lt pY ) = l tpX . 

This implies that for matrices, X and Y have the same number of rows 
and the columns of Y are linearl y independent. If Z+X[lJY , then 
ppZ++p pX and +/ (( Y+.xZ)-X)*2 is minimized. 

The following example illustrates the use of the matrix division 
function in solving a set of linear equations. The equations are: 

3 A+B - 9 
2 A - [ < -- 1 

In expression X[jJ Y , Y is a matrix whose values are the coefficients of 
the equations, and X is a vector containing the values 9 1. 

2 3 

'-: .··9 1. 
Y~·· 2 2r3 1 2 -' 1 
;·q:ay 

The result is a v ector in which the first element is the value of A 
in the linear equation, and the second is the value of B. 

The domino function treats scalar arguments as matrices containing 
one row and one column. The expression X[lJY is equivalent to scalar 
division X ~ Y , except that the operation O[lJO produces an error 
condition. If the arguments are vectors, they are treated as matrices 
with a single column. As mentioned in Section 2.7 . 35, if I is an 
identify matr ix of the same dimension as X, then [lJX is equivalent to 
I [lJ X. 

A more general statement of the relationship between the monadic and 
dyadic forms of the domino function is the following. The expression 
[jJX, where X is a matrix, is equivalent to ((1 Y ) o . =l Y )ffiX, where Y is 
the number of r ows in X. 

2-85 



THE APL LANGUAGE 

Following are several examples of the use of the dyadic domino func­
tion, including a least squares solution. 

D~·A~. (2 :Lr2 ~.:j ) , 1 
2 1 
5 1 

Bf-l0 19 
r'-:f-BEjA 

2 
A+.xN 

10 19 

:1. 1 
2 1 
;3 1 
4 1 
5 1 

[I f- (.j ~.. ( ~.) :1.f't~j),:I. 

Bf-2.001 2.998 4.002 4.997 6.01 
[I f- ,.;~. BEl A 

:i..0017 0.9965 
B •• ('~+. x>: 

2.800000029E -3 -1.899999947 E -3 4.00000077E -4 -6.299999899 E -3 
5.000000125E -3 
[] f- ;.; ~"I~ i~i 

··1 • 99999999:3 E -1 

0.799999994 

)·H·. XA 

-1. 000000023e;:···:L 
1.999999979E -1 
0.500000008 

-3.999999999 E-l 

1.000000000 6.938893904 E -18 
-4.163336342 E -17 1.000000000 

2-86 



THE APL LANGUAGE 

2.8 OPERATORS 

The operators described in this section are APL functions that take 
primitive scalar functions such as + or x as their arguments. 

2-87 



THE APL LANGUAGE 

2.8.1 fl: Reducing an Array 

Function: monadic reduction (f/); R+f/[K]Y 
Argument Domain: 

left: 
right: same as for function f 

Argument Shape: 
left: 
right: vector or array 

Result Range: same as for function f 
Result Shape: array (p pR) +-+ or -I +p p Y 
Origin·Dependent? no 
Take Dimension Argument? yes, 

The monadic reduction (fl) operator combines the elements of a vector 
or the elements along a specified dimension of an array. 

The following example illustrates the use of reduction in obtaining a 
sum, product, maximum, and minimum value for vector x. 

[J~-:.:~.' \ 6 
1 234 5 6 

21 

no 

6 

1 

The general requirement for reduction is that the function (f) to the 
left of the reduction symbol (I) be a scalar dyadic function (see 
Section 2.6). If flV represents a reduction, then an equivalent form 
is the following: 

V[1]fV[2]f ... fV[pV] 

where the expression is evaluated from right to left in the conven­
tional way. The result of reducing any vector is a scalar value. 
If V is a scalar or a vector with a single element, then f/V++V. If 
V is an empty vector, then the result of a reduction is the identity 
element of the function, if one exists - for example: 

+/~j ? B 
20 

'-/1 6 '., , ,., 
:. ... 

r'/7 
"7 

x/\() 

1. 

Table 2-6 summarizes the identity elements for the primitive scalar 
dyadic functions presented in Section 2.6 that may be returned by the 
reduction function. 

2-88 



THE APL LANGUAGE 

Table 2-6 
Identity Elements of Scalar Dyadic Functions 

Dyadic Identity 
Function Symbol Element 

Plus + 0 
Minus - 0 
Times x 1 
Divide '" 1 
Power * 1 
Residue I 0 
Maximum r -1.70141E+38 
Minimum L 1.70141E+38 
Logarithm (II None 
Out of ~ 1 
Circle 0 None 
And A 1 
Or v 0 
Nand '1'1 None 
Nor ¥ None 
Less < 0 
Not greater :s; 1 
Equal = 1 
Greater or equal ~ 1 
Greater > 0 
Not equal '# 0 

A reduction operation may also be specified for one particular 
coordinate of a multi-dimensional array by including the coordinate 
number in brackets. The result of reducing an array has a rank that 
is one less than the rank of the original array. Thus the reduction 
of a matrix yields a vector, as shown in the examples below. Note 
that +/[I]A operates on the first dimension of A and produces a column 
sum; +/[2]A operates on the second dimension and produces a row sum. 

The following examples also illustrate the defaults which APL supplies 
when the coordinate number is omitted from the function. 

[]~·(.·~-2 4r\6 
:I. 2 :~ 4 
I::' 
,J 6 :I. ?) ... 

+/[2](-\ 

:1.0 14 
+/l::I. ]"~ 

6 8 4 6 

2-89 



THE APL LANGUAGE 

2.8.2 f\: Scanning an Array 

Fu~~:monadic scan (f\), R+f\[K]Y 
Argument Domain: 

left: -
right: same as for function f 

Argument Shape: 
left: -
right: vector or array 

Result Renge: same as for function f 
Result Shape: array; pR+-+p Y 
Origin. Dependent? no 
Take Dimension Argument1 yes 

The monadic scan (f\) operator is used to derive partial results in 
calculating the reduction of an array. For example, if V is a vector, 
the expression +\V produces a vector of the partial sums of V. An 
example of this is shown below. 

+\3 4 5 
3 7 12 

Here each element of the resulting vector can be considered a reduc­
tion of the original vector up to that point. In the resulting 
vector, the first element is always identical to the first element of 
the original vector, and the last element is equivalant to a reduction 
of the entire original vector. 

The general requirement for the scan is that the function (f) to the 
left of the scan symbol (\) be a scalar dyadic function (see section 
2.6). Following are several other examples of the use of the scan 
function. 

x\2 ") .. , '1 .:.. 

""' ,. ... 4 8 
v\ () 1 () () 

0 1 1. 1 
x\\7 

1 2 6 24 120 720 5040 
-:- \8 

8 

If f\V represents a scan of a vector, then the scan of any given ele­
ment in terms of reduction is the following. 

R[K] = f/KtV 

The shape of the result of a scan is the same as the shape' of the 
original vector (pR=pV). If the right argument of the scan is a 
scalar or a vector with a single element, then f\V++V. If V is an 
empty vector, then the result of a scan is the empty vector. 

A scan operation may also be specified for one particular coordinate 
of a multi-dimensional array by including the coordinate number in 
brackets. Several examples of scan functions are included belOW. 
These examples also illustrate the defaults which APL supplies when 
the coordinate number is omitted from the function. 

2-90 



THE APL LANGUAGE 

D~-A4-2 3f\6 
1 2 3 
4 5 6 

'r\[l::l{~ 

1 2 3 
I::' 
"I 7 9 

+\[2JA 
1 3 6 
4 9 15 

+\?~ 

1 3 6 
4 9 15 

+\f.~ 

J. 2 3 
c:' 
" I 7 9 

If the dyadic function being performed by a scan is associative (e.g., 
+, x), APL performs the scan in a way that is different from the con­
ventional scan in order to increase efficiency by reducing the number 
of operations performed. The definition of R+f\A in this case is 
equivalent to R[IJ=fIItA as follows: 

R[l]=A[l] 
R[I]=R[I-l]fA[I] for IE1+lpA 

This definition requires fewer operations than the traditional scan. 
It is possible that the result of an associative function of this 
kind may differ slightly from the non-associative approach and should 
be used carefully if the results require a high degree of precision -
for example 

A~lE6 -l E6 lE-16 
+\(.~ 

1000000 0 0 
+/~~ 

() 

+/(/)A 

2-91 



THE APL LANGUAGE 

2.8.3 f.g: Computing the Inner Product of an Array 

Funetion: dyadic inner product (f. g) ; 
Argument Domain: R+Xf .gY 

left: same as for functd.ons f and g 
right: same as for functions f and g 

Argument Shape: 
left: any 
right: any 

Result Range: same as for functions f and g 
Result Shape: array pR++CI +PX), I 4-pY 
Origin-Dependent? no 
Take Dimension Argument? no 

The dyadic inner product (f. g) operator returns the common algebraic 
matrix product and also extends this capability to other arithmetic 
operations and other array dimensions. The following example illus­
trates the use of the inner product function in calculating a matrix 
product. 

[]H~'i"2 ::ir \ 6 
123 
456 

U, .. I1 t" I, 3 
:I. 2 3 

A+ + xI' 

:1,4 32 

Here the corresponding elements of B and each row of A are multiplied 
(g function) and then summed (f function). Thus (lxl) + (2x2) + 
(3 x3) = 14 and (lx4) + (2xS) + (3 x6) = 32. 

The inner product operation is expressed as R+Af.gB, and functions 
f and g may be any dyadic scalar functions (see Section 2.6). 

In APL , this matrix product capability is generalized and may be 
expressed in terms of reduction. If A and B are both vectors, then 
the result is a scalar as shown below. 

(\3H'+Xl3 

14 

The expression R+A+.xB in this case yields the scalar +/AxB. If A 
is a vector, B is a matrix, and I and J are element indices, then 
R is a vector in which R[J] is equivalent to +A /xB [iJ]. If A is a 
matrix and B is a vector, as illustrated in the first example in 
this section, then R is a veotor and R[I] equals +/A[I;]xB. If A 
and B are matrices, then R is a matrix and R[I;J]+~f/A[I;]gB[iJ]. 
Following are several examples of inner product functions with differ­
ent argument dimensions. Note that the last two examples illustrate 
alternative solutions to the same problem. 

A,,,[]t-2 :'5f' \ t; 
1, 2 3 
4 5 6 

~l .... x \ 3 
:1.4 3 2 

012 

2-92 



A+.X~A 

14 32 
32 77 

(\3)+.x\3 
14 

14 

THE APL LANGUAGE 

It is often very useful to specify an inner product operation in 
which an operation other than ordinary multiplication is performed. 
It is possible to locate values containing specific characters by 
this method or to search for a row of one array in which all the 
elements are equal to those in a column of another array. The follow­
ing example returns a logical vector in which 1 indicates that the text 
string SIX has been located in the corresponding row of array X. 

ONE 
TWD 
SIX 

TEN 

4 3 

3 

fX 

001 0 

In general, A and B may be scalars or any arrays. If either argument 
is a scalar or a I-element vector, it is extended so that its length 
matches the length along the first (last) dimension of the other 
argument. The result of an inner product function has dimensions 
such that pR is equal to (pA),pB, except for the last dimension of 
A and the first dimension of B(the two inner dimensions); these can 
be expressed as -ltpA and ltpB, and the shape of the result is 
pR+~(-l~pA),l~pB. (See the take and drop functions, Sections 2.7.11 
and 2.7.12) If pA+~M N and pB+~L, then L=N and pR=M. 

A and B must conform in order to be used in an inner product 
operation. A and B conform if any of the following characteristics 
is true: 

1. A or B is a scalar. 

2. The results of -ltpA and ltpB are equal. 

3. Either -ltpA or ltpB equals 1. 

If the third characteristic is true, then the corresponding argument 
is extended so that the arguments have equal lengths along the 
specified coordinate. The basic test for conformability is whether 
or not the last dimension of the left argument matches the length 
of the first dimension of the right argument. The dimensions of 
the result can then be considered all except the last dimension of 
A, catenated to all except the first dimension of B. Table 2-7 may 
be helpful in determining the conformability of two arrays. 

2-93 



THE APL LANGUAGE 

Table 2-7 
Inner Product Definitions 

Conformability Definition 
pA pB pAf. gB Requirements Z+Af. {)'B 

Z+-f/AgB 
E Z+F/AgB 

D Z+f/AgB 
D E D=E Z+f/AgB 

E F F Z[IJ+f/AgB[ ;IJ 
C D C Z[IJ+-f/A[I;JgB 

D E F F D=E Z[IJ+f/AgB[ ;IJ 
C D E C D=E ZUJ+-f/AU; JgB 
C D E F C F D=E Z[I;JJ+f/A[I;JgB[;JJ 

2.8.4 o.f: Computing the Outer Product of Two Arrays 

Function: dyadic outer product ( 0 • g); R+ X 0 • g Y 
Argument Domlin: 

laft: same as for function g 
right: same as for function g 

Argument Shipe: 
left: any 
right: any 

Result Ringe: same as for function g 
Result Shape: array; pR+-r (pY), pX 
Origin·Dependent? no 
Tlke Dimension Argument? no 

The dyadic outer product (o.g) operator specifies an operation to 
be performed between every element of one array and every element 
of another array. The form of the function can be expressed as 
R+Ao.gB, where A and B are any arrays and g is any dyadic scalar 
function (see Section 2.6). Note that the 0 symbol is the jot 
character (upper-case J on APL terminals). R is an array that 
results from applying g to every pair of elements of A and B. The 
shape of R is the dimensions of A catenated to the dimensions of 
B, or (pA),pB. The following example illustrates the use of this 
function when A and B are both vectors. 

:1. ") ,,: .. 3 u .x2 ~~ '+ C:" 
,J 

2 3 4 "'. ,J 

'+ 6 8 10 
6 9 12 15 

Unlike the inner product operator, the outer product performs only 
one operation - in this case, mUltiplication. The resulting array 
is a matrix with three rows (pA) and four columns (pB). It is 
formed by mUltiplying each element of A by each element of B in 
turn - for example, lx2=2, lx3=3, lx4=4, lx5=5 for the first row, 
2x2=4, 2x3=6, 2x4=8, 2 x 5=10 for the second row, and so on. The 
example included below illustrates the use of the outer product 
operator in searching for the occurrence of particular numbers. 

2-94 



THE APL LANGUAGE 

(l3)o."::(.~ 

:I. 0 0 0 0 0 
() 1 0 1 1 () 

0 0 1 0 0 1 
+/ ( l::~) " +::"(.~ 

:L 3 2 

If A is a vector and B is a matrix, then the result of R+Ao . fB 
contains RCl iJi K] ++ A[IJ f BCJ ;K]. 

Table 2-8 may be helpful in determining the definition of a variety 
of outer product results. 

Table 2-8 
Outer Product Definitions 

Definiti on 
pA pB pAo . gB Z+A 0 • gB 

Z+AgB 
E E Z [I]+AgBC I] 

D D Z[I J+A [I] gB 
D E D E Z[I ;J]+A [ I]gB [J ] 

E V E V Z[I ;J ]+A gB[I ;J] 
C C C D ZCI ;J]+ [I;J ]gB 

D E V D E V ZCI;J;K]+ CI ]gBCJ;K] 
C D E C D E Z[I ;J; K] +[ I;J JgB[ KJ 
C D E V C D E V Z[I;J;K;L ]+A CI;J]gB[K;LJ 

2-95 





CHAPTER 3 

DEFINING AND EXECUTING APL PROGRAMS 

3.1 MODES OF OPERATION 

APL language statements operate in either of two modes: 

• Immediate or execution mode: in this desk-calculator mode, APL 
statements and expressions entered by the user are executed 
immediately. 

• Function-definition mode: in this mode, APL programs and func­
tions are developed, edited, named, and saved for use at a 
future time. 

The APL user can shift conveniently from one mode to the other by 
typing a mode-transfer "del" (~) symbol. The mode in which APL state­
ments are to be executed does not affect the syntax of language state­
ments and expressions. However, there are a few special APL characters 
available for use in function-definition mode and a variety of practi­
cal considerations to be taken into account when constructing a func­
tion to be executed at some future time. This chapter discusses the 
use of function-definition mode in detail. It focuses on: 

• Function definitions, headers, and variables 

• Editing procedures for revision and line-editing modes 

• Branching and the use of labels, trace vectors, stop vectors, 
and the state indicator 

• Use of locked and suspended functions 

3.2 DEFINING THE FUNCTION 

APL provides a comprehensive facility for defining, changing, and in­
voking user functions that supplement the large set of primitive func­
tions that exist in the language. Once the user has developed or re­
written a program in APL function-definition mode, that program may be 
used with the convenience of a primitive function. 

A defined program or function is constructed in two parts: a function 
header and a function booy. Tne function header defines the name of 
the program or function and the syntax of the function call. The func­
tion body consists of a number of program statements that define the 
actions to be performed by the function when it is executed. The user 
enters function-definition mode by specifying a del character (V), fol-

3-1 



DEFINING AND EXECUTING APL PROGRAMS 

lowed by the function header and a carriage return. This signals the 
APL processor not to execute subsequent lines as they are entered, as 
it would in immediate mode. 

In function-definition mode, APL prompts the user for successive state­
ments of the function body by displaying successive bracketed line num­
bers for every line. Lines entered by the user are treated as function 
lines until APL encounters another V character, which signals a return 
to immediate mode. The format of a function definition is shown in the 
following: 

[1J 
[2J 
[3J 

v funotion headep 

[4J function body 
[5J 
[6J 
[7J 
[8J V 

There are no restrictions on the type of statements that can be in­
cluded in a function definition. System commands may be included in a 
definition, and function definition and execution are permitted in quad 
input mode (Section 2.5.1). In this case, the input request remains 
pending until the user returns from function-definition mode to im­
mediate mode. 

3.2.1 The Function Header 

The function header specifies the name of the function and the syntax 
of its call. There are six distinct types of functions; a function 
may have zero, one, or two arguments and the function mayor may not 
return a result value. If a defined function has an explicit result 
value associated with it, this value must be assigned during execution 
of the function. Defined functions that return results may occur in 
expressions; those that do not return explicit results must appear 
alone in statements or be the last function to be executed in an APL 
statement line. 

Defined functions may be classified as: 

• niladic (no arguments) 

• monadic (one argument) 

• dyadic (two arguments) 

Examples of function headers in these three categories are included 
below. Note that each type mayor may not return a result value (Z). 

Type Explicit Result No Explicit Result 

Niladic V Z+FNAME V FNAME 

Monadic V Z+FNAME ARC V FNAME ARC 

Dyadic V Z+LARG FNAME RARG V LARG PNAME RARe 

Sample niladic, monadic, and dyadic functions are included in Section 
3.2.5. 

3-2 



DEFINING AND EXECUTING APL PROGRAMS 

3.2.2 Variable Classifications 

There are three types of variables that may be used in function defini­
tions: 

• dummy variables 

• local variables 

• global variables 

Characteristics of these classes of variables are described in the sub­
sections that follow, along with an explanation of dynamic localization. 

3.2.2.1 Dummy Variables - Variables specified in the header component 
of a defined function (e.g., Z~ ARG~ LARG~ RARG in the examples above) 
are considered dummy variables. These dummy variables are included in 
the header to define the syntax of the function call. In the function 
body, they hold places for the actual arguments supplied at the time 
the function is called. 

The scope of dummy variables is local to the execution of the function, 
and the values of all dummy variables except the result (Z in the ex­
amples above) are provided on calling the function. 

3.2.2.2 Local Variables - Variables that have significance only during 
the execution of a particular function are called local variables. If 
variable A is used in functions F and G, execution of function F does 
not affect the value of A within function G. Variables may be designa­
ted as local by specifying each variable, preceded by a semicolon, in 
the function header. The following function header: 

establishes I and TEMP as local variables. 

During execution of a function, the local value of a variable is al­
ways dominant. Local variables are not automatically initialized when 
a function is called, and any local values are lost upon exit from the 
function. 

Function line labels (Section 3.4.2) are treated as local variables 
and are also initialized when the function is called; however, labels 
may not be assigned a value. 

3.2.2.3 Global variables - Variables that have essentially the same 
significance inside and outside a function definition are considered 
global variables. If a variable is not explicitly defined as a dummy 
or local variable, it is treated as a global variable. A global vari­
able has the same significance regardless of where it is used, except 
in certain cases of dynamic localization (Section 3.2.2.4) and sus­
pended execution (Section 3.4.3). 

3.2.2.4 Dynamic Localization - The following description provides an 
example of dynamic localization, which is actually a dynamic form of 
block structuring. If there exist global variables A and B, and a 
function F is called with local variables Band C, then the global 
value of B is not accessible during the execution of F. If function 
F calls another function named G, with local variable C, then within G 

3-3 



DEFINING AND EXECUTING APL PROGRAMS 

any value assigned to C within F is not accessible. Upon return to 
function F, local variable C resumes its former significance. Finally, 
upon exit from F, variables A and B resume their global significance 
and C becomes undefined. 

The name of a function used in function-definition mode refers to the 
most global value of the name. 

3.2.3 Function Input and Output 

The input and output of data values and results of function execution 
are handled by means of the standard APL input/output operators. All 
of the quad symbols implemented in APL can be used in both immediate 
and function-definition mode. File input and output are discussed in 
Chapter 6. The other varieties of input and output are described in 
detail in Section 2.5. 

One aspect of APL I/O is particularly relevant to a discussion of func­
tion execution. An input request may be included within an infinite 
loop in a function. In this case, the user may escape from input mode 
by typing the following: 

O<backspace>V 

in APL mode or the mnemonic .OU in ASCII mode. This has the same ef­
fect as function suspension (Section 3.4.3); it causes function execu­
tion to be interrupted but does not result in an exit from the function. 

3.2.4 Comment Lines 

Current lines may be included anywhere in an APL program; they are 
particularly appropriate when included in function definitions to 
annotate the statements included in the definition. Comments may 
appear on separate lines or be included on the right end of lines 
containing APL statements. 

The first character in a comment line must be a lamp (R) character, 
formed by overstriking the down union (n) and jot (0) characters. If 
an ASCII terminal is being used, the first character in a comment line 
must be a double quote ("). The text that follows the comment char­
acter is treated as a comment and may consist of any combination of 
valid APL characters. A comment ends at the end of the line and cannot 
extend across a line boundary. Examples of comment lines are shown in 
the function included in Section 3.3. 

3.2.5 Examples of Defined Functions 

This section contains examples of the three categories of defined 
functions. 

3.2.5.1 Niladic Function - The following niladic function returns no 
explicit result. 

'V AVG 

£: 1 ] 'EI-rrE:F;: THE VECTQ.f;: TO :f.<E AVEI':('H511!:X:O:' 

r. z ] "'"","'..,.01"; ~""D 

r.: 3 ] 'THr,;; 1':IF.SlJL"r l: 5 I. ( + /VECTOI':) "","J-' y VEe"T"OI": 

[4J 'V 
AVG 

3-4 



DEFINING AND EXECUTING APL PROGRAMS 

ENTER THE VECTOR TO BE AVERAGED! 

0: 

THE fi:ESUI_ T :t!; 5 

VECTDI';: 

:·55467 

3.2.5.2 Monadic Function - The following monadic function returns an 
explicit result in ANS. Note that the name of the function, AVERAGE, 
can be used in an arithmetic expression just as an APL primitive func­
tion could be. 

9 AN5~AVERAGE VEe 

[1J AN5~(+/VEC)+r,VEC 

C::')J 9 

I::· 
,.1 

500 

AVERAGE 3 5 4 6 7 

IOOXAVERAGE 3 5 4 0 7 

3.2.5.3 Dyadic Function - The dyadic function included below returns 
an explicit result. AVER is the function name, and NUM and VEe are 
global variables used as function arguments. 

9 ANS~NUM AVER VEC 
[1 J 'COMI""UT?TIOf·l,'.1... i·1U ... ",EI';: ',..,.i·1UM 

[2J ANS~(+/vEC)+r,VEC 

[3J 0;;' 

112 AVER 2 3 2 8 5 
COMPUTATIONAL NUMBER 112 
4 

113 AVER 5 8 9 9 4 
COMPUTATIONAL NUMBER 113 
7 

114 AVER 7 7 3 0 1 
COMPUTATIONAL NUMBER 114 
3.6 

3.3 EDITING THE FUNCTION 

A function definition may be altered by the user in a variety of ways. 
Definition lines can be added, deleted, and changed, and the function 
header can be altered. The user must be in function-definition mode 
in order to perform any of the editing functions described in this 
section. 

The function to be edited is "opened" by typing: 

vfunction name 

The user may not attempt to enter or change the entire function header 
at this time~ there is a special method for changing the header, de­
scribed in Section 3.3.6. After an addition, replacement, insQrtion, 
deletion, or display operation, APL displays a line number to allow the 
user to add or enter additional text. If the user does not wish to 
enter text, he can type a del character (v) to close the function and 
thus shift from function-definition to immediate mode. The user may 
also type the 'V character on an edit line - for example: 

3-5 



DEFINING AND EXECUTING APL PROGRAMS 

VSTAT 
[7] [S] MEANX.SUMX+NSU&~SQ 

APL replaces line [5J and then exits immediately from function-defini­
tion mode. 

If the user intends to edit only a single function line, it may be con­
venient to open the function, specify the line change, and close the 
function, all in a single statement. The replace operation illustrated 
above could be specified in the following way: 

VSTAT [5J MEANX~SUMX+NSU&~Sv 

The V character can be included on any line except a comment line. 

3.3.1 Adding Function Lines 

Lines can be added to the end of a function-definition in a very con­
venient manner. When an existing function is opened, and an editing 
command is not included on the same line as the del character, APL as­
sumes that new lines are to be added and displays the next available 
line number. For example, the function name STAT may exist in the fol­
lowing form before it is edited to remove errors. 

V STANPX.NSU&~ STAT X 
[lJ SUMX.X 

[2J SUMX2~+/(X*2) 

[3J ACOMPUTE MEAN~ VARIANCE, STANDARD DEVIATION 
[4J MEANX~SUMX+NSUB~S 

[5J MEANX.SUMX+NSUB~ 

v 

The user adds two lines in response to the bracketed line numbers dis­
played by APL. 

VSTAT 
[6J AFUNCTION RETURNS VALUE OF STANDARD DEVIATION OF X 
(7] STANDX.VARX*O.5 
[8] v 

The user terminates the specification of additional lines by entering a 
V character to transfer from function-definition to immediate mode. 

3.3.2 Replacing Function Lines 

Existing lines in a function-definition can be replaced by specifying 
the affected line number, followed by the new text of the line. Line 
number [8], displayed by APL below, is simply overridden by specifying 
line [1]. 

VSTAT 
[8] [lJ SUMX~+/X 

[2J v 

The new specification replaces the erroneous contents of line [1]. APL 
then displays the next line number after the replaced line - in this 
case, [2J. The user can enter new text for line [2], can specify 
another line number, or can escape from function-definition mode by 
typing V. This same action could have been performed in a single 
editing line, as shown below. 

QSTAT[l] SUMX •• /X Q 

3-6 



DEFINING AND EXECUTING APL PROGRAMS 

. . bod replacement operation must 
The line number included ~n a funct~on y'tive number less than 1000. 
refer to an existing line and must ~ a pos~ re than three decimal 
It may have a decimal point but may ave no mo 
places. 

3.3.3 Inserting Function Lines 

The user can insert new lines between existing lines of the function 
definition by specifying a new line number, followed by the text of 
the new line. To insert a line between [5J and [6J, .for example, the 
user might specify line number [5.5J. To insert a l~~e before the 
start of the existing function body, any line number ~n the range [oJ 
(function header line) to [1J is valid, as shown below. 

'i7STAT 
C8] (0.5] RSUM ELEMENTS OF ARRAY X 
[0.6] [5.5] VARX~(SUMX2+NSUBJ)-MEANX*2 
C5.6] 'i7 

The new specifications are inserted between existing lines [oJ and [1J 
and [5] and [6J respectively. In each case, APL displays the next 
line number after the inserted line. To derive the line that is "next" 
in an inserted sequence, APL adds 1 to the rightmost digit of the user­
specified line number. The next line after [o.sJ is thus [0.6J, the 
next line after [5.5] is [5.6J, and the next line after [8.29] is 
[8.3J. The user may enter new text for the line number displayed, may 
escape from function-definition mode by typing g, or may override the 
line number displayed by specifying another line. 

After the function definition is closed, the function lines are re­
numbered by APL. As in the case of replacement lines, the numbers of 
lines to be inserted must be positive numbers less than 1000, with or 
without a decimal point, and with no more than three decimal places. 
The renumbered function definition now exists in the form shown below. 

V STANDX~NSUBJ STAT X 
[lJ RSUM ELEMENTS OF ARRAY X 
(2] f.';UMl-:~-+/l-: 

(3] SUMx2~+ / (x*2) 

[4] nCOMPUTE MEAN, VARIANCE, STANDARD DEVIATION 
(S] MEANX~SUMX+NSUBJS 

[6] MEANX~SUMX+NSUBJ 

[7] VARX~(SUMX2+NSUBJ)_MEANX*2 

C8] nFUNCTION RETURNS VALUE OF STANDARD DEVIATION OF A 

C9J STANDX~VARX*0.5 

'i7 

3.3.4 Deleting Function Lines 

Existing lines in a function definition may be deleted by specifying an 
erase character (6), followed by the line number of the line to be de­
l7ted • In.the following example, line [5J, an incorrect duplicate of 
l1ne [6J, 1S deleted from the function definition. 

VlSTAT 

I:: 10] [6~)] 

[5J VI 

APL displays the number of the line just deleted to give the user an 
opportunity to specify a new version of the deleted line. The user can 
~nt~r new text, can specify another line number, or can escape from 
function-definition mode by typing V. After the function is closed, 
the function-definition lines are renumbered by APL. 

NOTE 

Do not use CONTROLlc to delete a function line. 

3-7 



DEFINING AND EXECUTING APL PROGRAMS 

3.3.5 Displaying Function Lines 

The user may display individual lines of the function definition, the 
function definition from a specified line to the end, or the entire 
function definition. To display an individual line, the user specifies 
in brackets the line number of the line to be displayed, followed by a 
quad character (0). In the example included below, line [3J is displayed. 

~STAT 

[9J [30J 
[3J SUMX2~+/(X*2) 

[3J v 

APL displays the number of the line just displayed to give the user an 
opportunity to specify a new version of the existing line or to over­
ride the line number with a new line specification. The user can enter 
new text, can specify another line number, or can escape from function­
definition mode by typing V. 

To display the function definition from a particular line to the end, 
the user reverses the sequence described above by specifying the brack­
ets the quad character, followed by the line number from which lines 
are to be displayed. The following is an example of such a technique. 

~STAT 

[9J [07J 
[7] AFUNCTION RETURNS VALUE OF STANDARD DEVIATION OF X 

[8J STANDX~VARX*O.5 

[9J v 

APL displays the number of the next line after the final line of the 
function definition - in this case [9J - to give the user the oppor­
tunity to add more text or to specify a different line number. 

To display the entire function definition, the user simply types a 
bracketed quad character with no line specification, as shown below. 

VSTAT 

[9J [OJ 
v STANDX~NSU~J STAT X 

[lJ ASUM ELEMENTS OF ARRAY X 
[2] SUMX~+/X 

[3J SUMx2~+/(x*2) 

[4J ACOMPUTE MEAN, VARIANCE, STANDARD DEVIATION 
[5J MEANX~SUMX+NSUBJ 

[6] VARX~(SUMX2+NSU8J)-MEANX*2 

[7J AFUNCTION RETURNS VALUE OF STANDARD DEVIATION OF X 
[8J STANDX~VARX~O.5 

v 
[9J v 

The V characters preceding line [IJ and following line [8J are displayed 
by APL. They indicate the delimiters of the function and identify its 
name. They are not true user-specified del characters and therefore 
do not change the mode. APL displays the number of the next line after 
the final line of the function definition to give the user the opportu­
nity to add new text or to specify a different line number. 

NOT~ 

Any display of a user-defined function 
can be terminated by entering a CTRL/O 
character. 

3-8 



DEFINING AND EXECUTING APL PROGRAMS 

3.3.6 Editing the Function Header 

The name or arguments stored in the function header can be edited by 
accessing line number [oJ of the function definition. The header line 
can be replaced, displayed, or even deleted temporarily. The following 
example illustrates the display of the function header. 

V5 TAT 

[9J [ODJ 
[OJSTANDX~NSUBJ STAT X 
[OJ v 

The user must include a valid specification for the header before 
leaving function-definition mode. 

3.3.7 Renumbering Function Lines 

In function-definition mode, the user is free to include fractional 
line numbers and line numbers that are not immediately consecutive 
(e.g., line [15J followed by line [ 60 J). He may also delete existing 
lines. When the user leaves function-definition mode by entering a 
del character, APL automatically renumbers the lines of the function 
as consecutive integers, starting at line number [lJ. The user should 
ordinarily display the current version of the function at this time, to 
avoid referencing the wrong line numbers the next time he edits the 
function. 

3.3.8 Line-Editing Procedures 

APL allows the user to edit a function definition in the revision mode 
described in Sections 3.3.1 through 3.3.7 or in the line-editing mode 
discussed below. In line-editing mode, the user can alter individual 
characters in an existing line. To modify an APL statement in this 
mode, the user specifies the line number, followed by a quad character, 
followed by the estimated character position at which editing is to 
begin: 

VDIE5EL 
[7] [1019] 
[lJ A~R * GA~~A - 1 + (IMAXx9) 

t 

APL displays the statement and then on the next line indents to the 
number position specified in the command. The position at which 
editing is to begin is represented by the up-arrow (t) character in 
the example above; it is the 19th position in the line, counting from 
the first character in the line (e.g., the [character). The user 
then begins entering edit control characters according to the following 
rules. 

1. Type a slash (I) beneath each character to be deleted. 

2. Type a digit or letter beneath each character before 
which blanks are to be inserted; the particular digit 
or letter represents the number of blanks to be inserted. 
For example, a '2' will insert two blanks to the left 
of the corresponding character in the function line. 
The alphabetic characters are used to insert multiples 
of five blanks. For example, 'A' will insert five 

3-9 



DEFINING AND EXECUTING APL PROGRAMS 

blanks, 'B' will insert 10 blanks, and so on. If the 
number of spaces specified plus the current length of 
the line exceeds the current length of the terminal 
line, a DEFN ERROR is displayed. 

3. All other characters typed on the edit control line 
are ignored by APL. 

4. The normal rules of correction-be fore-entry apply. 
Thus backspacing to insert characters is permitted, 
and creating illegal overstrikes to facilitate retyp­
ing of the line is allowed. 

When the carriage returns after the user has finished with the edit 
control line, the function line is displayed without the deleted char­
acters and with the inserted spaces. The carriage is positioned at 
the first inserted blank or, if no blanks were inserted, at the end 
of the line. The user can then enter new text in the blanked area or 
can make further modifications to the existing text. In this case as 
well, backspacing to insert new characters and creating illegal over­
strikes to facilitate retyping of the line are allowed. 

Line editing is a multiple-step process. The first step involves de­
leting characters no longer needed and inserting sufficient blanks in 
the line to allow additional desired text to be typed. The second step 
involves typing in the new text. Repetition of these steps is often 
necessary. The final appearance of the function line should be iden­
tical to a function line just entered from the keyboard. 

If the user alters the statement number while editing the line, the 
function line corresponding to the new number is altered and the origi­
nal line remains unchanged. This facilitates the movement to or repli­
cation of statements in other parts of the program. 

Special processing is also performed if the user specifies a character 
position of zero to the right of the quad character, as shown in the 
following example: 

[1 2 J 
[2J 

VSECANT 
[200J 
SECSPEC+ISEC-I t 

The function line requested by the user is displayed, and the carriage 
stops at the next available character position at the end of the line, 
as shown by the up-arrow (t) in the example above. The effect is as if 
the line had been entered by the user from the keyboard. The user can 
now add text to the line or can backspace to make corrections. The 
carriage also stops at the end of the line if the number to the right 
of the quad character is larger than the number of characters in the line. 

The following example illustrates the use of line-editing in correcting 
the line: 

[lJ T+(LETTR=STRING/,SP,STRING 

There are several errors in this line: 

1. LETTEft is misspellea LExxn. 

2. The right parenthesis has been omitted after STRING. 

3. "8" should not appear after the \ character. 

4. "PH should be a p character. 

3-10 



DEFINING AND EXECUTING APL PROGRAMS 

Because the first error occurs in LETTR, the following command can be 
supplied: 

VFUNC 
[5J [1014J 
[lJ T+(LETTR=STRING/\8P,STRING 

The user now enters the necessary control characters, and APL displays 
the corrected line. 

[1J T+(LETTR=STRING/18P~STRING 
1 1 //1 

[lJ T+LETT R=STRING /1 ~STRING 

The carriage is positioned at the space between T and R, and the user 
simply enters the new characters, spacing over the text to be preserved. 
He types: 

1. "E" in the space between LETT and R. 

2. ")" in the space between STRING and /. 

3. "p" in the space between 1 and ,. 

The new function line is therefore: 

[lJ T+(LETTER=STRING)/lp,STRING 

This line is entered as a replacement to the existing function line 
[lJ when the user presses the carriage return. 

If the user alters the statement number while editing the line, the 
function line corresponding to the new number is altered and the origi­
nal line remains unchanged. This facilitates the movement to or dupli­
cation of statements in other parts of the program. 

3.4 EXECUTING THE FUNCTION 

In function-definition mode, the APL statements that make up a function 
definition are neither executed nor checked for syntactic validity when 
entered. The user simply enters statements, edits them to correct ob­
vious mistypings and inconsistencies, and saves them for future use. 
The process of defining a function associates the function header pro­
vided by the user with the statements entered as the function body. 
When the user decides to execute the defined function, he uses the 
function name as he would a primitive APL function. The information 
provided in the function header specifies the number of arguments to 
be supplied in the function call and determines whether or not a value 
will be returned. Section 3.2.5 provides examples of defined functions 
and their corresponding function calls. It is, of course, also possible 
to issue function calls from within other functions. In the implemen­
tation of APL described in this manual, function calls may be nested 
to a depth of about 30 functions. 

This section provides information on function execution. It focuses 
on branching, suspending, tracing, and locking functions, and using 
the ~t~te indicato~. 

3-11 



DEFINING AND EXECUTING APL PROGRAMS 

3.4.1 Branching within a Function 

APL statements included in a function definition are normally executed 
in the order determined by their line numbers. Execution begins at the 
first statement following the function header, terminates after the 
last statement in the definition, and is performed only once. It is 
possible to modify this standard order of execution by including 
bpanching statements in the function definition. The use of branching 
also facilitates the specification of execution loops within the body 
of the function definition. 

The simplest form of an APL branch statement consists of a branch sym­
bol (~), followed by the number of the function line to which control 
is transferred. For example: 

Q FOO 

[5] ~1 

causes an unconditional branch from line [5J to line [lJ. Line [lJ 
is thus the next statement executed. 

The object of the branch symbol can be a constant, a variable, or an 
expression; it must evaluate to an integer line number within the cur­
rent function definition to allow execution to continue. If the in­
teger does not reference a line number in the current function, the 
branch statement causes a return from the function. Users often de­
liberately specify an out-of-range-number in order to stop execution. 
A common specification is: 

~o 

because 0 references the function header and cannot legitimately be ac­
cessed by a branch. If the object of the branch is a non-empty vector, 
control passes to the line referenced by the first element of the vec­
tor. If the vector is empty, the branch statement is not meaningful 
and the normal order of execution within the function definition con­
tinues. 

Several kinds of conditional branches can be specified in function 
definitions. In APL, a conditional branch is executed as the result of 
evaluating a logical expression, not in response to any specific IF 
logic. An example of one form of an APL conditional statement is 
shown below. The value of the expression evaluated in the branch 
statement determines either that control will pass to a specified line 
number or that the function will return. 

~9XI>IMAX 

The logical expression to the right of the ~9 specification is evalu­
ated. If I is greater than IMAX, the value of the expression will be 
9x1 and control will pass to line number [9J. If I is not greater than 
IMAX, then the value of the expression will be 9x O; because line [0] is 
not a legal specification, function execution will return. 

In the second version of the conditional branch, the value of an evalu­
ated expression determines whether execution will branch to a specified 
line number or continue at the next statement. For example, in: 

~(VALN!VALZ)/INIT 

3-12 



DEFINING AND EXECUTING APL PROGRAMS 

control will pass to the line labeled INIT if the value of the paren­
thesized expression is true. If it is false, execution will continue 
at the next line after the branch statement. 

3.4.2 The Use of Statement Labels 

Because APL automatically renumbers function lines as consecutive in­
tegers when the user exits from function-definition mode, branch state­
ments should generally not refer explicitly to function line numbers. 
Instead, the user can associate a label with a particular statement in 
a function definition and then branch to this statement using the label, 
not the explicit line number, as the object of the branch - for example: 

[15J INCR: I~I+1 

[27J ~INCRXIcIMAX 

As shown in this example, a statement label consists of an identifier, 
followed by a colon (:). The internal value of the label is the number 
of the function line with which it is associated - in this case, line 
number [1SJ. Here a branch to the line associated with the INCR label 
is performed, if I is less than IMAX. 

Labels defined within a function must be distinct identifiers. The 
scope of a label is local to the function in which it occurs, and 
label values are internally respecified upon each exit from function­
definition mode. The user cannot explicitly define a value for a 
statement label, and a label cannot appear in the function header. 

The following are two examples of defined functions that use branching 
and statement-labeling techniques. Note that function lines containing 
labels are automatically exdented (i.e., begun one character position 
to the left of the rest of the APL text) when the function-definition 
is displayed. 

VR~FACTORIAL N 

ClJ R~l 

C2J ~OX\O=N 

[3] R~RXN 

C4J N~N-1 

[SJ ~2 

[6] v 
VZ~FAC N 

(Branch to line [oJ (halt) if 0 is 
equal to N) 

(Unconditional branch to line [2J) 

[1] 

[2] 
[3] 

[4J 
[5J 
[6J 
[7J 

~NZEROx\N=O (Branch to the line labeled NZERO 

120 

Z~NXFAC N-l if N is equal to 0) 
nNOTICE THAT RECURSIVE DEFINITIONS 
nARE PERMITTED. 

~O 

NZERO: Z~l 

v 

FAC 5 

(Unconditional branch to line [OJ 
(halt» 

3-13 



DEFINING AND EXECUTING APL PROGRAMS 

3.4.3 Suspending Function Execution 

Function execution is suspended before normal completion if an error 
occurs, if the user types a CTRL/C character, or if a stop vector (see 
Section 3.4.6) is set. When execution is suspended, the name of the 
suspended function and the line number of the statement that would 
have been executed next are displayed. APL then begins a new line, 
indents six spaces, and awaits input in immediate mode. The user can 
perform virtually any APL operation at this time, except for editing 
or erasing the suspended function. 

The suspended function remains active until terminated or until the 
current state indicator or active workspace is cleared. The user can 
resume execution at any time by typing: 

~line 

where line identifies the statement number at which execution is to be 
continued. A suspended function can be terminated by typing: 

~o 

The local variables associated with the suspended function remain 
active. The user can examine these variables and can specify their 
values by means of an immediate-mode assignment. 

3.4.4 Examining the State Indicator 

The state indicator, a status vector that resides in the user's active 
workspace, can be examined to determine the status of all active func­
tions in the APL system. The user can specify an )SI system command 
(Section 5.3.9) to obtain a listing of the active functions, as in the 
following: 

)51 

T[lJ * 
S[7] 
R[6J 
F[3J * 

The listing displays functions in the order in which they were most re­
cently active. The example included above indicates that execution 
was suspended just before executing statement [lJ of function T, which 
was called during line [7J of function S, which was called during line 
[6] of function R. Before this sequence of calls, execution was sus­
pended just before executing line [3J of function F. 

In the )SI display, an asterisk (*) following the name and line number 
indicates a suspended function, and a blank indicates a pendent func­
tion. A pendent function is usually one which is awaiting return from 
another function - possibly a suspended one - which it called. 

The user can also determine from the )SI listing when quad input re­
quests are pending or an execute operation (E) has been invoked. Ex­
amples of both of these special conditions are shown below. 

}~~ 

T[1] * 
5[7J 
R[6J 
F[3J * 

3-14 



[] 

f-
TC 1] :/( 

~:;[ 7] 
1';:[6] 

1"'[;5] 1t. 

DEFINING AND EXECUTING APL PROGRAMS 

E '0' 

The user can clear the state indicator by terminating the execution of 
each suspended function in the list. There are several ways to accom­
plish this. The user may type one right arrow (+) for each function 
marked by an asterisk (each right arrow on a separate line); he may 
issue an I30 I-beam function to clear the state indicator completely 
(Section 4.3.14); or he may clear the state indicator by saving the 
active workspace, then clearing and loading it again (see the )SAVE 
and )LOAD system commands, Sections 5.2.3 and 5.2.4). A cleared state 
indicator is displayed in the form of a blank line. 

The )SIV system command (Section 5.3.10) can be used to obtain a more 
extensive display of the state indicator. In addition to the informa­
tion accessible to )SI, )SIV returns a list of local variables for 
each function displayed. The following is an example of an )SIV 
display. 

)SIV 

TF;:IG[ 1.::1 :11; ,C) C~ F;: 

T[lJ :11; N 
~;; [:?] N 

1:;:[6] 

1"'[3] Ie 

This indicates that the variable N local to function T is currently 
dominant, and that the variable N local to function S is currently in­
accessible. 

3.4.5 The Trace vector 

The user may find it helpful for debugging purposes to obtain an 
matic display of the intermediate results of function execution. 
program tracing aid, the values computed by one or more function 
ments can be output each time those statements are executed. To 
lish a trace for function F, the user specifies a vector in the 
following format: 

T6F~-4 6 ? 

auto­
As a 

state­
estab-

For each execution of the line numbers [4J, [6J, and [7J, this command 
causes the following information to be displayed, in the order shown: 

• function name 

• bracketed statement line number 

• final value returned by the statement 

If the statement being traced is a branch statement, then the value 
printed is the value to which control is passed by the branch. 

To trace all the statements of a function P, the following specification 
can be supplied if the index origin is currently set to 1: 

3-15 



DEFINING AND EXECUTING APL PROGRAMS 

where N is a number at least as large as the number of statements in 
F of the index origin is 0, the user issues the statements. 

because the function neader (line 0) cannot be traced. To disable the 
trace vector for function F, the user includes either of the following 
statements: 

A new trace vector does not override an existing specification. If 
lines [4J, [6J, and [7J are currently being traced, the user may add 
line [5J to this list simply by entering trace vector: 

However, to omit line [6J from an existing trace vector, the user must 
disable the trace vector for the function and then enter a new trace 
vector, as shown in the following: 

Tt.-,F~-IO 

Tt.-,Ft-4 5 7 

NOTE 

Editing a line for which a trace vector 
has been defined causes the trace to be 
disabled for that line. 

The following is an example of a function definition followed by two 
executions of that function, the first with the trace vector enabled. 

v ANSWRt-FACTORIAL N ;COUNT 

[1] nCALCLATES FACTORIAL OF N 

[2] ANswfi:~'l 

[3] -t(O,UI)/O 
[4] ANSWRt-NXFACTORIAL N-l 

v 

Tt.-,FACTORIALt-2 3 4 
FACTOfi: J: t:'L 4 

IC-ACTOFUAL[2J 1 
FACTOFUAL[3J 

FACTOfi: I AL. [2] 1 
FACTOfi: I At. [3J 

FACTO!"::I: ~~I.- [2:1 1 
F'~CTOfi: r AI_ [3] 

FACTOfi:IAL[2] 1 
F"ACTOfi:IAL[3J 

Fe~CTOFn AL I: 2 J 1 
FACTOfi: I AL [3 J 0 
FACTOfi:IAL[4J 1 
FACTOI':IAL[4] 2 
FACTOI':IAL[4J 6 
FACTOI': I AL [4] 24 

24 
T oF"ACTOI";:r (.H .. ~- \ 0 

FACTOfi::l:AL 4 

24 

3-16 



DEFINING AND EXECUTING APL PROGRAMS 

3.4.6 The Stop Vector 

APL allows the user to suspend execution of a function from within the 
function itself by specifying a stop control vector. The syntax of 
this vector is similar to that of the trace vector. The stop vector 
can be used to suspend function execution just before execution of one 
or more specified statements. To cause function F to be suspended 
before executing line [ 12 J and line [1 9 J, the user includes the 
following statement in the function definition: 

For each suspension, this command displays the function name and line 
number that was about to be executed. To disable the stop vector for 
function F , either of the following specifications may be supplied: 

S6 F't-O 
;;;' 6 F ~- \ O 

After function execution has been suspended by means of the stop con­
trol vector, the system is in the normal suspended state. An entry is 
included in the state indicator, identifying the suspended function 
and the line at which it was suspended. Execution can be resumed by 
specifying a branch to the desired line number. 

Execution of a function cannot be suspended before line 0 (the function 
header). The stop control vector can be set from within a function to 
cause suspension only under certain circumstances. 

NOTE 

Editing a line for which a stop vector 
has been defined causes the stop vector 
to be disabled for that line. 

An example of the use of the stop vector is included below. 

;;;6 F .. CT Of:: I ('~ J...~" 3 

F(':, CTD I::: I (.:,1... 4 

I"'''~C TO'': I A L [ ~5 ] 

);:;1 

F ACT O .. : UH_[ 3 J :': 
.. ~3 

F('~C TOF:: I AI... [3 J 
.. ~:'5 

F"~C TO": I ,.1... [ 3 ] 
.. ~ 3 

FACTO F:: IAL [3J 

.. ~3 

F A CTO .. : I A I... I: 3J 
.. l 3 

2 4 

3-17 



DEFINING AND EXECUTING APL PROGRAMS 

3.4.7 Locking a Function 

It may be desirable to prohibit users from changing and possibly damag­
ing existing function definitions. APL allows a user to lock a func­
tion definition in order to protect it from unauthorized use, to main­
tain security, or to treat a function as a proprietary program. To 
create a locked function or to lock an existing function, the user 
closes the function-definition with a del-tilde (¥) character rather 
than a simple del (v). The ¥ is created by over striking V and~. The 
following example illustrates the locking of a previously unlocked 
function-definition. 

V TRIG 
[19] ¥ 

A locked function cannot be edited in the manner described in Section 
3.2. Function lines cannot be added, changed, deleted, or displayed 
for locked functions. Trace and stop control vectors cannot be defined 
or changed for the function. Any trace or stop settings in effect at 
the time a function-definition is locked are automatically nullified. 

If an error occurs during execution of a locked function, the function 
name and the line number at which the erro~ occurred are displayed, 
but the contents of the statement are not included in this display. 
APL then causes an exit to immediate-mode. 

3-18 



CHAPTER 4 

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

4.1 INTRODUCTION 

There are a variety of ways in which the user may communicate with the 
APL system in order to change system parameters, determine hardware or 
operational characteristics, and modify processing methods. The system 
commands documented in Chapter 5 facilitate many of these system 
operations. The system elements described in this chapter allOW APL 
users to communicate with the system from within the APL language 
itself. These elements are subject to the APL language syntax and 
rules of function definition. They may be included in APL functions 
and defined in conjunction with other language operations. 

The system elements described in this chapter can be grouped in two 
categories: system variables and I-beams. In some cases, system 
variables and I-beams perform related functions. In other cases, these 
system features provide alternative ways of performing operations 
invoked by the APL system commands. 

4.2 SYSTEM VARIABLES 

System variables have been implemented in this version of APL to 
facilitate communication with the APL system. They are used to perform 
such operations as the following: 

• set the index origin and relative fuzz 

• change the output precision and line width 

• reference the characters in the collating sequence 

• report on executing functions and available workspace area 

System variables are syntactically similar to ordinary variables and 
may be used in any language expression or function. System variables 
differ from ordinary variables because of their special significance 
to the system. System variable names are distinguished names; they 
begin with a quad (0) character and cannot be used for user-defined 
purposes. They cannot be copied, erased, or collected in a group by 
means of the APL system commands (see Chapter 5). 

The system variables described in this section are considered shared 
variables because they are shared by the user's workspace and the APL 
processor and serve as an interface between the two. The sharing 
£Qcility i~ invoKed automatically wnen tne worKspace is activated. 
Sharing implies that the workspace and processor may each use values 
specified by the other, as appropriate to the particular operation 
being performed. It also implies that the value of a variable being 
used in a workspace may sometimes be different from the value last 
specified by the user of the workspace. The variables described in 
this section fall into two categories: 

4-1 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

• System variables that assume the value provided by the 
user and retain it until the user overrides the value or 
clears the workspace. These variables are described in 
Sections 4.2.1 through 4.2.5 and have default values in 
effect when the workspace is loaded. An example of such 
a variable is OPP, which is used to determine the precision 
of numeric output. If the value specified by the user is 
invalid for the operation, APL will return a DOMAIN ERROR 
when the assignment is attempted. 

• System variables that retain the values supplied by the 
APL system. Because of their syntactic similarity to 
ordinary variables, these system variables can be set by 
the user; however, they will continue to have the values 
supplied by the system. These variables are described in 
Sections 4.2.6 through 4.2.8. 

4.2.1 OCT: Establishing the Comparison Tolerance 

Default: 5E-15 (double-precision) 
5E-7 (single-precision) 

Example: OCT 
1E-13 

OCT+1E-15 

The OCT system variable is used to set the degree of tolerance or rela­
tive fuzz to be applied in performing comparisons. It is used in con­
junction with the relational operators: «, $, =, 2, >, ~) and with 
the dyadic-index (t) and membership (E) functions and floor (L) and 
ceiling (r). 

The OCT value specified by the user is saved when the active workspace 
is saved. See the description of fuzz in Section 2.4.3. The value 
for OCT must be in the range O$OCT$ approximately .38. 

4.2.2 OIO: Setting the Index Origin 

Default: 1 

Example: OIO 
1 

OIO+O 
23 

0 1 2 

The OIO system variable is used to change the setting of the index 
origin. This setting is important in array operations and in conjunc­
tion with roll and deal (Sections 2.7.19 and 2.7.20) and iota (Sections 
2.7.5 and 2.7.6). The value of OIO is saved when the active workspace 
is saved and is only meaningful if it is 0 or 1. This variable is 
equivalent to the )ORIGIN system command (Section 5.4.1). 

4.2.3 OPP: Determining the Output Precision 

Default; 

Example: 
10 

10 (double-precision) 
6 (single-precision) 

OPP 

OPP+15 

4-2 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

The Opp system variable is used to determine the precision of non­
integer output by setting the number of significant digits to be 
displayed. It is also relevant to the expression of characters by 
means of the monadic format (~) function (Section 2.7.32). Legal 
values for OPP are integers in the range 1 through 7 for single­
precision systems and 1 through 17 for double-precision systems. 
This system variable does not affect the precision of internal 
calculations or the display of numerical constants. The precision 
specified by the user is saved when the active workspace is saved. 
OPP is equivalent to the )DIGITS system command (Section 5.4.2) . 

4.2.4 OPW: Determining the Width of the Output Line 

Default: 120 

Example: OPW 
120 
OPW+130 

The OPW system variable is used to set the maximum number of characters 
that may appear in an output line. Legal values for OPW are integers 
in the range 30 through 384. It does not affect the display of messages 
on the terminal or the allowable length of input lines. The width 
specified by the user is saved when the active workspace is saved. 
OPW is equivalent to the )WIDTH system command (Section 5.4.3). 

4.2.5 ORL: Setting a Random Link 

Default: o 

Example: 

The ORL system variable is used to set the sequence used by the pseudo 
random number generator in APL. This random number generator is used 
in the APL roll and deal functions (Sections 2.7.19 and 2.7.20). The 
value of ORL is the starting point of the chain used to generate the 
numbers. This system variable has a meaningful range of 0 through 

1+2*15. The value of ORL specified by the user is saved when the 
active workspace is saved. 

4.2.6 OAV: Storing a Vector of Characters 

Example: LINEFD+OAV[99] 

The OAV (atomic vector) system variable is a vector containing all 
possible characters; OAV is 256 elements in length and is used to 
express the binary representation of any character in the APL system. 
For example, if the index origin setting is 0, the following expression 
refers to the carriage return, backspace, and line feed characters: 

OAV[10 8 13] 

4-3 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

The indices associated with any of the APL characters can be retrjeved; 
if the index origin is 0, the following expression returns the elements 
shown below. 

OAV, 'ABCABC' 
97 98 99 150 151 152 

Many of the elements of the atomic vector are non-printing characters, 
and some do not even exercise control. 

See the discussion of relational functions in Section 2.6.4. 

4.2.7 OLC: Reporting on Executing Functions 

Example: ~OLC 

The OLC (line counter) system variable is used to obtain a partial 
report on functions that are currently being executed. It is stored 
as a vector of the line numbers contained in the state indicator, 
arranged in order of most recently suspended function first. OLC is 
particularly useful in branch statements; the user can simply specify 
that execution is to resume immediately following the line number at 
which function execution was most recently suspended, as shown in the 
example above. OLe is related to the following I-beams: 

I-beam 

I27 

I26 

Meaning 

Vector of line numbers of functions in 
the state indicator 

Current value of the first line number 
in the state indicator 

4.2.8 OWA: Reporting the Available Working Area 

Example: OWA 

20000 

The OWA system variable is used to determine the maximum amount that 
the active workspace may increase. The size is given in bytes and is 
obtained by subtracting the current low-segment size from the maximum 
low-segment size. OWA is equivalent to I-beam 22, which also returns 
the available working area. 

4.3 I-Beams 

There are two types of I-beam f~nctions. The first type consists of 
functions used to return information about the user's workspace and 
the APL system. The following are examples of information returned by 
the I-beams in this category: 

4-4 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

• Symbol table size 

• Date and time of day 

• Terminal character set 

• Line numbers of functions in the state indicator 

• Precision of APL version 

Some of these I-beams report general system characteristics (e.g., 
date) and others return information relevant only to the particular 
user's workspace and session (e.g., line numbers of suspended func­
tions) • 

The second type of I-beams consists of functions used to perform 
system actions and to change workspace parameters. The following are 
examples of actions performed by the I-beams in this category: 

• Turning on and off error displays for the execute operator 

• Clearing the state indicator 

• Terminating the APL session 

• Changing the random number sequence 

I-beam functions are initiated by means of the following format: 

rA 

where the I character is formed by overstriking the T and ~ characters. 
The A argument is a number identifying the particular function to be 
invoked. A may be a constant or a variable. It must be a scalar or 
a one-element array. 

4.3.1 I15: Reinitiating Error Displays for the Execute Function 

Example: 

x16 

~15 

VALUE ERROR 

B~DX9 

~ 

I-beam 15 turns on the display of error messages for the execute (E) 
function after these messages have been suppressed by I-beam 16 
(Section 4.3.2). If an error is encountered while APL is processing 
an execute string, the system does not display an error message or 
echo the line in which the error occurred if I-beam 16 has been 
issued. To reinitiate error displays for the execute function, the 
user may specify an I15 function. The execute function is described 
in detail in sections 2.7.24 and 5.6. 

4-5 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

4.3.2 I16: Suppressing Error Displays for the Execute Function 

Example: 

E ')COpy FOO' 

?Can't find file or account 
x16 

o 55 

A~E ')COPY FOO' 
A 

fA 

I-beam 16 turns off the display of error messages for the execute (E) 
function. If I-beam 16 has been issued and an error is encountered 
while APL is processing the execute string, execution is interrupted 
but the system does not display an error message and echo the line in 
which the error occurred. This allows the user to retain control, to 
handle the error condition under program supervision, and to continue 
executing the function if desired. After an error has been detected, 
the value returned by the execute string is a null array whose shape 
iso E, where E is a number indicating the error that was encountered. 

In the example at the beginning of this section, error nUmber~ 
occurred, because the specified file could not be located. Appendix D 
contains a complete description of all APL error conditions. 

To turn on the display of execute error messages after they have been 
suppressed, the user may issue I-beam 15 (Section 4.3.1). 

4.3.3 118: Returning the Condition of the Workspace 

Example: 

~18 

o 

I-beam 18 returns the condition of the active workspace. A value of 0 
indicates that the workspace is intact, and a value of 1 indicates 
that the workspace has suffered some kind of damage. If I-beam 18 
returns a value of 1, the user should correct the damage by clearing 
the active workspace with a )CLEAR system command (Section 5.2.1) or 
replacing it with a )LOAD (Section 5.2.3) command. 

4.3.4 I20: Returning the Time of Day 

Example: 

r20 
2997053 

24 60 60 60T r 20 
13 22 11 40 

4-6 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

I-beam 20 returns the current time of day as time since midnight in 
60ths of a second (50ths of a second in Europe). The user may apply 
an APL encode (T) function to the returned value to format the time in 
hours, minutes, seconds, and 60ths of seconds. This is illustrated in 
the second example above. 

4.3.5 I21: Returning the CPU Time (RSTSjE Only) 

Example: 

~:=i844 

24 60 60 60n:21 
o 1. 37 24 

I-beam 21 returns the CPU time expended since the user signed on in 
the current APL session. Time is expressed in 60ths of a second 
(50ths of a second in Europe). As illustrated in the second example 
above, the user may apply an encode (T) function to the returned 
value to format the CPU time in hours, minutes, seconds, and 60ths of 
seconds. 

I-beam 21 is useful in comparing the execution times of different 
programs. It may also be included in a function, and the execution 
of that function made dependent on the compute time used so far in 
the session. 

I-beam 21 is a RSTSjE function; under RT-ll, RSX-llM and lAS, it 
returns a "NOT YET IMPLEMENTED" error. 

4.3.6 I22: Returning Workspace Availability 

Example: 

:1:22 
:1.6394 

I-beam 22 is used to measure the maximum amount that the active work­
space may increase. The size is given in bytes. I-beam 22 may be 
used in a function whose execution is dependent on the amount of free 
space available in the workspace. 

4.3.7 I23: Returning the System Job Number (RSTSjE Only) 

Example: 

:1:23 
:1.1. 

I-beam 23 returns the system job number associated with the user's 
current APL session in bas9 10 notation. This I-beam is a ~STSjE 
function; under RT-ll, RSX-IIM, and lAS, it returns a value of zero. 

4-7 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

4.3.8 I25: Returning Today's Date 

Example: 

30579 

3 5 79 

z25 

A~(3'100)Tz25 
A 

I-beam 25 returns today's date in base 10 notation in the form MMDDYY. 
As illustrated in the second example above, the user may apply encode 
(T) and rho (p) functions to this returned value to format the date 
as a three-element vector. 

4.3.9 I26: Returning a Line Number 

Example: 

FUNe1 

FUNC2[2J 
)SI 

FUNC2[2J ~ 

FUNC1[lJ 
z26 

2 

I-beam 26 returns the line number of the statement currently being 
executed or about to be executed. The scalar returned by I-beam 26 
is the first line number in the state indicator (Section 3.4.4) and 
the first element of the vector returned by I-beam 27 (Section 4.3.11). 
This number represents the line at which the innermost function was 
suspended. If APL displays a blank line, this indicates that the 
state indicator is empty and no functions are currently suspended. 

I-beam 26 is particularly useful in branch statements. The user can 
simply resume execution of the innermost function by specifying +I26, 
as shown in the example, rather than entering the line number displayed 
at the time the last function was suspended. To branch two lines from 
the current line in the suspended function, the user specifies +2+I26. 

4.3.10 I27: Returning a Vector of Line Numbers 

Example: 

)SI 

FU NC 2[2J ~ 

FUNC1[lJ 

2 1 

I-beam 27 returns a vector of function line numbers currently in the 
state indicator (Section 3.4.4). The first element of the array is 
the line number that would be returned by I-beam 26 and represents 
the line at which the innermost function was suspended. If APL 

4-8 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

displays a blank line, this indicates that the state indicator is 
empty and no functions are currently suspended. 

I-beam 27 is an aid in resuming function execution without including 
a specific line number at which the function was suspended. The user 
may define function RES, as shown in the example below, and then 
resume execution of the second function in the state indicator by 
entering +RES. 

V A~RES 

[lJ A~(~27)[2J 

[2J v 
~RES 

EXECUTION STOP 

FUNC2[lJ A~A 
t 

4.3.11 I28: Returning the Terminal Character Set 

Example: 

1 

I-beam 28 returns a value indicating the character set specified for 
the user's terminal. The value returned by this I-beam is one of the 
following: 

Value Meaning 

o APL character set 

1 ASCII character set 

The character set is selected at the time the user begins the APL 
session (Section 1.5). 

4.3.12 I29: Returning the User's Project-Programmer Number 
(RSTS/E Only) 

Example: 

~29 

129 149 

I-beam 29 returns the project-programmer number of the APL user as a 
two-element vector in base 10 notation. This I-beam is a RSTS/E 
function~ under RT-ll, RSX-IIM, and lAS, it returns two zeroes. 

4-9 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

4.3.13 I30: Clearing the State Indicator 

Example: 

x30 
)51 

I-beam 30 clears the state indicator. It is equivalent to typing a 
series of right arrows (~), one for each suspended function. I-beam 
30 removes all pendent and suspended function calls from the system. 
As shown in the example, an )SI system command (Section 5.3.9) issued 
after the I-beam results in the display of a blank line, or null 
vector. 

If several errors have occurred during function execution, I-beam 30 
should be specified before a )SAVE system command (Section 5.2.3) is 
issued for that function. See Section 3.4.4 for a discussion of 
alternative ways of clearing the state indicator. 

4.3.14 I36: Terminating the APL Session 

Example: 

Read~ 

I-beam 36 exits from the APL system and returns control to command 
level. This I-beam performs the same function as the )OFF system 
command (Section 5.5.l). Under RT-ll, the APL user returns automat­
ically to system command level after issuing I-beam 36. RSTS users 
return automatically to the BASIC environment, as illustrated in the 
example above. RSx-llM users return to the Monitor Console Routine 
(MCR). lAS users return to the Program Development System (PDS). 

4.4 SYSTEM FUNCTIONS 

The version of APL described in this manual supports a variety of sys­
tem functions, implemented as part of the APL shared variable facility. 
The six system functions described in this section allow the user to 
perform such operations as the following: 

• Express the canonical representation of a function 
and store function definitions as data 

• Erase a named object 

• Construct a name list of labels, variables, or func­
tions and return the classification of a named object 

System functions are an integral part of the APL language and may be 
used freely in all APL function definitions. They can be clearly dis­
tinguished from the primitive functions available in the APL language; 
like system variables, the names of the system functions described in 
this chapter begin with a quad (D) character and are reserved for the 
use described below. And like system variables, these functions can­
not be copied, erased, or collected in a group. 

4-10 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

4.4.1 OCR: Obtaining a Canonical Representation 

Format: OCR A 

Rank: l~ppA 

Example: OCR 'TRIG' 

The OCR system function is used to obtain a canonical representation 
of a defined function. OCR operates on a character array that identi­
fies the name of the function; this array is represented by A in the 
format above. A canonical representation of a defined function is a 
character matrix with rows consisting of the original lines of the 
function definition, reformatted to be of equal length. The V symbols, 
line numbers, and brackets are removed from the definition. Lines that 
contain labels are shifted to the right so all text begins at the same 
character position. Lines are then right-padded with blanks to make 
all lines equal in length to the longest line of the function. This 
reformatting allows the function definition to be treated as data. 
The example shown below illustrates the original function to be refer­
enced by OCR and the matrix or canonical representation that results 
from the operation of the system function. 

VMEAN[OJll 
V MEANX+NSUBJ MEAN 

[1] ASUM VECTOR X 
[ 2 J SUMX++/X 
[3J MEANX+SUMX+NSUMJ 

V 
A+OCR 'MEAN' 
A 

MEANX+NSUBJ MEAN X 
ASUM VECTOR X 
SUMX++/X 
MEANX+SUMX+NSUBJ 

pA 
4- 18 

X 

X+8 6 3 9 5 4- 2 1 7 4-
10 MEAN X 

4-.9 

If the A argument in the OCR function does not represent the name of 
a defined and unlocked function, the resulting matrix is of dimension 
o by o. APL returns a RANK ERROR if A is not a vector or scalar and 
a DOMAIN ERROR if the argument is not a character array. 

4.4.2 OFX: Establishing a Function 

Format: OFX M 

Rank: 2=ppM 

Example: OFX A 
TRIG 

The Dpx (fix) system function effectively reverses the operation per­

formed by OCR. This function operates on a character matrix that 
contains a canonical representation of a function; this array is 
represented by M in the format above. It establishes in the user's 
workspace a function that has the name of the function associated with 

4-ll 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

the canonical representation M. If a function with the same name 
already exists in the active workspace, OFX will replace it. The 
matrix identified by M is not affected by the OFX operation. The 
following example can be considered a continuation of the example 
begun in Section 4.4.1. 

A[3;6J+'x' 
OFX A 

MEAN 
VMEAN[OJV 

V MEANX+NSUBJ MEAN X 
[1] ASUM VECTOR X 
[2J SUMX+x!X 
[3J MEANX+SUMX~NSUBJ 

V 
X 

8 6 3 9 5 4 2 1 7 4 
10 MEAN X 

145152 

Another example of the use of OFX in conjunction with the execute 
operator is shown below. 

E: ( , 1 0 " OF X A),' X ' 
145152 

The normal rules about local names apply to the names of any functions 
established by the OFX function. If the BG function is fixed within 
function Z and the name BG is a local one, the BG definition is not 
preserved after execution of the Z function comes to an end. Standard 
function-definition mode applies only to global names. 

OFX will not establish a function if the name of the function to be 
established is the same as that of an existing label, variable, or 
group or an existing function that is currently pendent or suspended. 
A pendent function is usually one that is awaiting return from another 
function. DFX will execute properly if the matrix referenced by OFX 
is identical to a canonical representation except for the addition of 
blank characters in rows other than those consisting only of blanks. 
If OFX cannot establish a function, a scalar index representing the 
row in M where an error was found is returned. No change is made to 
any function or matrix in the user's workspace. APL returns a RANK 
ERROR if M is not a matrix and a DOMAIN ERROR if the argument is not 
a character array. 

4.4.3 OEX: Erasing a Named Object 

Format: OEX A 

Rank: 2;:::ppA 

Example: OEX 'ABMAX' 
1 

The OEX (expunge) system function is used to erase an existing use of 
a name. OEX operates dynamically on a character array that identifies 
the name to be erased; this array is represented by A in the format 
above. This function has capabilities similar to those of the )ERASE 
system command, except that it cannot erase a named object that refers 
to a label, a group, a suspended or pendent function, or a system 
variable. In addition, OEX operates only on global or dominant local 

4-12 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

variables. It is used particularly to avoid conflicts that may occur 
because of duplicate occurrences of the same name in the APL workspace. 
DEX applies to a matrix of names and produces as a result a logical 
vector. It returns a value of 1 if an existing version of a name is 
successfully erased and the name is now free to be used, as shown in 
the example above. If the name cannot be erased for any of the reasons 
described, a result of 0 is returned. A 0 result is also returned if 
the A argument does not represent a legal APL variable name. APL 
returns a RANK ERROR if A has a rank higher than that of a matrix and 
a DOMAIN ERROR if the A argument is not a character array. 

4.4.4 DNL: Constructing a List of Labels, Variables, or Functions 

Monadic Form: 

Format: ONL N 

Rank: 1~ppN 

Example: LIST+ONL 2 

Dyadic Form: 

Format: 

Rank: 

Example: 

A ONL N 

1~ppN 

1~ppA 

'GKM' DNL 1 3 

The ONL system function is implemented in both monadic and dyadic 
form. Both forms of the function are used to construct a list of 
named objects residing in the active workspace. The N parameter is 
included in both forms of the function to identify the type of named 
objects to be included in the name list. The parameter is an integer 
scalar or vector that can have one of the following values: 

Values Meaning 

1 Labels 

2 Variables 

3 Functions 

For example: 

X+ONL 1 2 

causes the names of all labels and variables in the workspace to be 
included in name list X in alphabetical order. Each row of the matrix 
will contain the name of one label or variable. 

The dyadic form of the ONL function allows the user to restrict the 
nQme list to names beginning with speCified characters by inClUding 
an A parameter in the command. For example: 

NLIST+'ABCDEF' ONL 3 

4-13 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

causes a name list to be constructed of function names whose initial 
letters are A through Fi the list is arranged in alphabetical order. 
The A parameter must be a scalar or vector of alphabetic characters. 
The letters supplied in the character string must be included in 
alphabetic order. 

The ONL system function can be used for a variety of purposes. Some 
of these are described below. 

• ONL can interact with OCR in creating functions that 
can automatically display the definitions of all or a 
subset of functions in the workspace. It can also be 
used to analyze interactions between variables and 
functions. 

• In its dyadic form, ONL can guide the user in choosing 
names while developing or interacting with a workspace. 

• In conjunction with OEX, the ONL function can cause 
all of the named objects in a certain category to be 
erased dynamically. It also facilitates the design 
of a function that can be used to clear a workspace 
of all but a preselected collection of named objects. 

The following example illustrates the construction of a matrix contain­
ing the names of variables in the active workspace that begin with the 
letter V. 

VARl 
VAR2 
VAR203 
VAR204 
VAR99 
VBMAX 

NLIST+'V' ONL 2 
NLIST 

4.4.5 ONC: Returning a Name Classification 

Format: ONC A 

Rank: 22ppA 

Example: ONe 'VAR99' 
2 

The ONC system function is used to return the classification of a 
name or series of names. ONC operates on the matrix, vector, or 
scalar represented by argument A. If A is a character matrix, ONC 
returns the class of the name represented by each row of A. If A 
is a vector or scalar, ONC returns the classification of a single 
name. The ONC function returns a numerical value representing each 
name classification as follows: 

4-14 



APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS 

Value Meaning 

o Name available for any use 

1 Label name 

2 Variable name 

3 Function name 

Not available for use as a name 

A value of 4 implies that argument A is not a valid name or that it 
is currently in use as a group name. 

4-15 





SYSTEM COMMANDS 

CHAPTER 5 

SYSTEM COMMANDS 

5.1 OVERVIEW OF SYSTEM COMMANDS 

A wide variety of system commands have been implemented to provide 
a means of communicating with the APL system and controlling the 
operational environment in which an APL session is conducted. 
System commands allow the user to examine or change the state of 
the system in such ways as the following: 

• Clear, name, and save the active workspace. 

• Load and delete a workspace from a secondary storage 
device. 

• List variable and function names. 

• Display the status of functions and local variables in 
the workspace. 

• Set and display the index origin, maximum number of 
significant digits, output line width, and comparison 
tolerance. 

System commands are not considered a part of the APL language itself, 
but can be viewed as an interface between the user and the language 
processor. System commands implemented for use with the APL file 
system are described in Chapter 6. Appendix B provides a summary 
of the format of all system commands, in alphabetical order. 

This chapter is structured in the following way. Section 5.1 
provides an overview of the format, function, and interaction of 
system commands. Sections 5.2 through 5.5 describe the system 
commands implemented for use with APL in the following categories: 

Section Commands 

5.2 Basic workspace-control commands 

5.3 Workspace-content commands 

5.4 Workspace-environment commands 

5.5 APL termination commands 

Section 5.6 discusses the special function of the execute operator ( ~ ) 
in relation to system commands. 

5-1 



SYSTEM COMMANDS 

5.1.1 System Command Format 

System commands begin with a right parenthesis, as shown in the 
following format: 

}command-name [parameter-list] 

Some system commands require the inclusion of one or more parameters 
or arguments in the command line. If required or optional parameters 
are included, at least one space must separate the individual elements 
of the system command. 

The examples included below illustrate the format of several system 
commands. 

)CLEAR (No parameters required) 

)DIGITS 6 (Parameter required) 

)VARS G (Parameter optional) 

)ERASE ABC D (One or more parameters required) 

5.1.2 Action and Inquiry Commands 

APL system commands may be used in two distinct modes: action and 
inquiry. Action commands invoke some change in the state of the 
APL system. Inquiry commands report on the state of the system but 
do not change this state in any way. The )ORIGIN command isan example 
of an action command. It indicates the index origin to be used 
during the current APL session and is specified in the following 
way: 

)QRIGIN 0 
WAS 1 

The )SI command, on the other hand, operates in inquiry mode and is 
used to report on the status of APL program execution. It is issued 
as shown below: 

lSI 

FU NC2[lJ * 
FU NC 1[lJ 

The }WSID command may be used in both action and inquiry mode. In ac­
tion mode, }WSID assigns the name included in the command line as the 
new name of the active workspace and returns the previous name of the 
workspace. In inquiry mode, }WSID is issued without an argument and 
returns the current name of the active workspace. The following ex­
amples illustrate the two forms of the }WSID command. 

)WSID 

BOZO 

5.1.3 APL Workspaces 

The APL system uses a buffer in the user's memory area to store func­
tions, variables, values, information on the status of functions, and 

5-2 



SYSTEM COMMANDS 

any temporary results obtained while executing APL statements. When 
available in memory, this buffer area is known as the active workspace. 

The user may issue system commands that cause this active workspace 
to be saved on a secondary storage device; the saved workspace can 
subsequently be loaded into the buffer area to function as the active 
workspace once again. The term "workspace" is used to refer either 
to the active workspace or to a version of an active workspace now 
saved on secondary storage. 

Many of the system commands described in this chapter have been 
implemented to facilitate workspace-manipulation operations. The 
APL user has extensive control over the activity and characteristics 
of the workspace in his system. The workspace can be cleared, named, 
saved, loaded, and deleted. The names of functions and variables in 
the active workspace can be displayed. The user can change such 
active workspace characteristics as index origin setting, number of 
significant digits in output, and comparison tolerance. 

Each APL workspace defined in a user's disk area has a unique name 
associated with it. This workspace name is represented by the 
filename parameter in many of the system command formats included 
in this chapter and in Chapter 6. 

In RT-ll systems, filename has the following format: 

device:name.ext[size] 

All of these fields are optional. The name component must usually 
be supplied, but can be omitted if an output device name is specified, 
as in the filename LP:. If a file size is specified, it must be 
enclosed in square brackets. 

In RSTS/E systems, several additional components may be included in 
the filename format, as shown in the following example: 

device:name.ext<prot>[prjJprgJ/SIZE:size/CLUSTER:clus/MODE:mode 

As in the RT-ll format, all fields are optional. 

In RSX-llM and lAS systems, filename has the following format: 

device:[uic]name.ext;version 

In all systems, a comma should be inserted instead of a period to 
separate the name and ext components when an ASCII terminal is being 
used (see Section 1.3.2). 

Table 5-1 summarizes the characteristics of each filename component. 
Alphanumeric characters included in device, name, and ext fields 
may be letters (A-Z) and numbers (0-9). 

Detailed information on these filename components is included in the 
BASIC-PLUS LANGUAGE MANUAL. 

Examples of legal filenames are included belm". 

FnFILE. TXTL3] 
RSTSFL.TXT/SIZE:3 
I1:SXFIL. TXT; 2 

5-3 

(RT-ll only) 
(RSTS/E only) 
(RSX-IIM and lAS only) 



Component 

All systems: 

device 

name 

ext 

RT-ll only 
size 

RSTS/E only: 

prot 

prj, prg 

SYSTEM COMMANDS 

Table 5-1 
Filename Components 

Meaning 

Valid device name with optional unit number, 
followed by a colon - for example: 

LP: 
DT5: 

The default device name is S1:. 

Filename consisting of a maximum of six alpha­
numeric characters (nine for RSX-IIM), begin­
ning with a leter - for example: 

TEMP 
FIL001 

There is no default. 

Period or comma, followed by a maximum of three 
alphanumeric characters - for example: 

.TMP 
,APL 

For most system commands, the default exten­
sion is .APL. For the )SAVE and )LOAD 
commands, the default is .APC. 

Size of the file in blocks of 512 bytes each. 
The size is used in reserving room for output 
files and by the )CREATE command (Section 
6.3.2) to allocate space for new files. It 
must be enclosed in square brackets - for 
example: 

[2048J 

Protection code used in creating a new file. 
A code of <40> allows other users to read but 
not to alter a file. It must be enclosed in 
angle brackets - example: 

<40> 

Default is the system default. 

Project-programmer number (in decimal) of the 
disk area in which the file is stored. It 
must be enclosed in square brackets - for 
example: 

[7,31J 

Default is the user's project-programmer 
number. 

5-4 



SYSTEM COMMANDS 

Table 5-1 (Cont.) 
Filename Components 

Component Meaning 

clus 

mode 

Slash, followed by the size of the file in 
blocks of 512 bytes each. It must be speci­
fied as a jSIZE switch - for example: 

jSIZE:16 

There is no default. 

Slash, followed by the cluster size associated 
with the file. It must be specified as a 
jCLUSTER switch - for example: 

jCLUSTER:64 

There is no default. 

Slash, followed by the mode associated with 
the file. It must be specified as a jMODE 
switch - for example: 

/MODE:l 

There is no default. 

RSX-IIM and lAS 
only: 

uic Project-programmer number (in octal) of the 
disk area in which the file is stored. It 
must be enclosed in square brackets - for 
example: 

[lOO,lJ 

Default is the current user default. 

version A single octal number in the range 1-77777 
representing the desired version of the file. 
(Note that RSX-IIM and lAS allow multiple 
versions of a single file to be stored.) 
Default is the highest available number. 

5.2 BASIC WORKSPACE-CONTROL COMMANDS 

This section describes the basic workspace-control commands, which 
allow the user to manipulate APL workspaces in a variety of ways: 

• Clear and name the active workspace 

• Save the active workspace on a secondary storage device 
and retrieve it when required 

• List workspace names 

• Delete workspaces or files when no longer needed 

5-5 



SYSTEM COMMANDS 

5.2.1 )CLEAR: Clearing the Active Workspace 

Format! ) CLEAR 

Example: ) CLEAJ:;: 

CLEAJ:;: WS 

The )CLEAR system command operates in action mode. 
files and clears the active workspace by replacing 
workspace known as the clear workspace. There are 
teristics associated with this special workspace. 

It closes all open 
it with a special 
a nurr~er of charac­
The clear workspace: 

1. contains no functions, variables, or open files 

2. has an index origin of 1 

3. has an output line length of 72 

4. displays numbers with six (single-precision) or ten (double­
precision) significant digits 

5. has a comparison tolerance (fuzz) of 5E-7 (single-precision) 
or 5E-15 (double-precision) 

6. has a clear symbol table and state indicator 

In RSTS/E systems, the file named $APLCLR.APC is used to clear the ac­
tive workspace. If this file cannot be found in the system, the APL 
session will immediately be terminated and control will return to BASIC, 
which will display the "Ready" message. 

5.2.2 )WSID: Identifying the Active Workspace 

Format: ) WSID [fi lename ] 

Examples: )wsrrl BOZO 

w~~s CI ... EAJ:;: WS 

)W!5IX) 

B()ZO 

(Names the active workspace) 

(Returns name of active work­
space) 

The )WSID system command may be used in both action and inquiry mode. 
As an action command, )WSID allows the user to change the name of the 
active workspace. As an inquiry command, the )WSID command returns 
the current name of the active workspace. The filename parameter is 
required in action mode, but the user need not specify all components 
of the workspace name (see Section 5.1.3). When parts of the name are 
omitted, the default values summarized in Table 5-1 are assumed. 

As illustrated in the examples above, the )WSID system command returns 
a workspace name in both action and inquiry mode. In inquiry mode, the 
name displayed is the current name of the workspace. In action mode, 
the name displayed is the workspace name before the user changed it by 
means of the )WSID command. When )WSID returns a workspace name, it 
displays only the name, not the other parts of the filename. 

5-6 



SYSTEM COMMANDS 

5.2.3 )SAVE: Saving a Copy of the Active Workspace 

Format: )SAVE [filename] 

Examples: 

)SAVE 

NOT SAVED, WS IS CLEAR WS 
)SAVE BOZO 

SAVED 14:05116 5-MAR-79 BOZO 
)5AVE 

SAVED 14:05:23 5-MAR-79 BOZO 
)WSID FOOBAR 

WAS BOZO 
)SAVE 

SAVED 14:05:37 
)WSID 000 

WAS FOOBAR 

5-MAR-79 FOOBAR 

)SAVE FOOBAR 
NOT SAVED, WS IS FOOBAR 

(Clear workspace cannot be 
saved) 
(Change name of active 

workspace) 
(Save active workspace under 
default name) 
(Change name of active 

workspace) 
(Save active workspace under 
default name) 
(Change name of active 
workspace) 
(Duplicate of existing file 
cannot be saved unless the 
specified name is also the 
name of the active workspace) 

The )SAVE system command is an action command that saves a copy of 
the active workspace on a secondary storage device. The saved 
workspace may be stored as a file in core-image format on disk, 
floppy disk, DECtape, or magnetic tape. If a filename parameter is 
included, )SAVE stores the active workspace under the specified name. 
If the filename parameter is omitted, )SAVE stores the workspace under 
the current name of the active workspace. In both cases, the default 
file extension is .APC. APL substitutes the default comporients 
described in Table 5-1 for any other missing filename components. 

APL does not allow the user to save the clear workspace (see the first 
)SAVE in the sequence of examples above). APL also attempts to pre­
vent users from accidentally destroying saved files. If the filename 
specified in the )SAVE command is identical to the name of an existing 
file but different from the workspace filename of the currently active 
workspace, then APL refuses to save the workspace (see the last 
example above). 

The )SAVE system command responds to the user's specification by 
displaying the time and date. 

When a workspace is )SAVEd, the following values are preserved: 

• symbol table 

• current contents of state indicator 

• value of index origin 

• output line width 

• number of significant digits 

• relative fuzz factor 

• current random number sequence 

All open files are closed automatically before the workspace is saved. 
Once a file has been saved in core-image format, it may only be re­
trieved from secondary storage by the )LOAD system command (Sec-
tion 5.2.4). 

5-7 



SYSTEM COMMANDS 

If the user saves the active workspace while a function is executing, 
the function will be interrupted before the )SAVE is performed. When 
the workspace is subsequently loaded, execution of the interrupted 
function will resume automatically. 

5.2.4 )LOAD: Retrieving a workspace 

Format: )LOAD filename 

Examples: (Save active workspace) 

l4!46:~:j9 
)CI...I:::('H;: 

CI...E:('H;: WS 

5-· MA':;:···· 79 

) L. U I~~ [I '::~ T I:;: r, F:· "\"" 

SAVED 14:46:59 5-MAR-79 

(Clear active workspace) 

(Reload file as active 
workspace) 

The )LOAD system command operates in action mode and retrieves a 
workspace from such secondary storage devices as disk, floppy disk, 
DECtape, and magnetic tape. The workspace that is loaded becomes 
the active workspace, replacing the currently active workspace. 
The workspace specified in the filename parameter must be a core­
image file that was saved by means of a )SAVE command (Section 5.2.3). 
The default extension for the file being loaded is .APC. APL sub­
stitutes the default components described in Table 5-1 for any other 
missing filename components. 

The )LOAD system command responds to the user's specification by 
displaying the word SAVED, followed by the time and date when the 
workspace was saved. 

5.2.5 )LIB: Listing Workspace Names (RSTS/E, RSX-llM, and IAS only) 

Format: )LIB [filename] 

Examples: 

) L I F.< 

) S(-'lVE WS4l 

~:;.:\YED 1:=:i: 21: 34 
)LIE< 

5--MAF;:-79 WS41 

)L.IE< WS~)O,,,, 

WS50. 

WS50,FIL 

~oJs50, YA":: 

)l..IB COS,MAC 

COS,MAC 

The )LIB system command operates in inquiry mode. It is used to 
display a list of workspaces in the user's disk area or selected 
files on any directory device. )LIB assumes that any file in the 
user's disk area with the extension .APe contains a workspace. 

S-B 



SYSTEM COMMANDS 

The files displayed by )LIB need not be APL workspaces. If the 
filename parameter is included in the command, the user can 
specify the filename or category to be displayed. The filename 
specification can identify a particular file or can serve as a 
"wild-card" reference when an asterisk is substituted for the file­
name and/or the file extension. The asterisk matches any name. For 
example: 

)LIB WS40.* 

will list the names of all files that have WS40 as their filename. 
Another example of this usage is shown in the third )LIB in the 
sequence of examples above. The command: 

)LIB DSKH:*.* 

will list the names of all files on device DSKH:. 

If the fiZename is omitted from the )LIB command, all workspaces 
in the user's disk area will be displayed. 

5.2.6 )DROP: Deleting Stored Workspaces or Files 

Format: )DROP fiZename 

Example: 
) :OFi:DP ,:;;TI:i:IIP"( 

14:51:04 5- MAR -79 

The )DROP system command operates in action mode and allows the user 
to delete from secondary storage the workspace or file identified in 
the filename parameter. )DROP can be used to delete any system file 
for which the user has the necessary protection privileges. A default 
extension is not supported for the )DROP command, so an explicit 
extension name must be supplied in the filename parameter. 

5.3 WORKSPACE-CONTENT COMMANDS 

This section describes the system commands that facilitate the 
examination of functions and variables in the user's workspace. The 
following operations can be performed: 

• Display a list of variables defined in the active workspace 

• Display a list of functions defined in the active workspace 

• Erase defined functions and variables 

• Display the APL state indicator to report on the execution 
of functions in the workspace. 

5-9 



SYSTEM COMMANDS 

5.3.1 )VARS: Displaying a List of Global Variables 

Format: ) VARS [letter] 

Examples: ) VAF::S 

A AAA ABC BCD ZZZ 

)V~.Fo:~'; A 

A AAA ABC BCD ZZZ 
) VAF;:S C 

C D :~:~z 

)VAFo:S :2: 
:z:zz 

The )VARS system command operates in inquiry mode and displays an 
alphabetical list of names defined as global variables in the 
active workspace. The optional parameter specification identifies 
the letter at which the alphabetical listing is to begin. If 
the parameter is omitted, the entire set of global variable names 
is displayed. 

5.3.2 )FNS: Displaying a List of Functions 

Format: )FNS [letter] 

Examples ) FI'l~; 
DMD IHSTR MMD HUM WUMPUS 

)F1-I5 1-1 

l'lUM WUMF'U"; 

The )FNS system command is an inquiry command. It displays an 
alphabetical list of global names used as defined function names 
in the active workspace. The optional parameter specification 
identifies the letter at which the alphabetical listing is to begin. 
If the parameter is omitted, the entire set of global function 
names is displayed. 

5.3.3 ) GROUP: Defining or Dispersing a Group 

Format: 

Examples: 

)GROUP group-name [group-member-listJ 

)GROUP FINANCIAL INTEREST FUTUREVAL PRESENTVAL 
) GROUP FINANCIAL 
)GROUP FINANCIAL TAX FINANCIAL 

The )GROUP system command operates in action mode. It is used to 
place a collection of named objects under one group name and to 
disperse an existing group. The objects may be variables, functions, 
and other group names. The )GROUP command is used primarily in 
conjunction with the )COPY and )PCOPY commands. After collecting a 
set of functions and variables under one group name, the user can 
specify this name in a )COPY or )PCOPY command in order to copy the 
entire collection at one time. In the first example above, the 
functions and variables named INTEREST, FUTUREVAL, and PRESENTVAL 
are collected under the group name FINANCIAL. 

In addition to its function in establishing a new group, the )GROUP 
system command can be used to disperse an existing group. If the 
group-member-ZiBt parameter is omitted and only the group-name is 
included in the command line, then the named group will be dispersed. 

5-10 



SYSTEM COMMANDS 

The group name will no longer be defined, but the individual members 
of the group will be preserved under their original names. In the 
second example above, the group named FINANCIAL is eliminated. The 
members of the group, INTEREST, FUTUREVAL and PRESENTVAL are 
unaffected. 

The )GROUP command can be used to add a new member to an existing 
group. To accomplish this task, the user specifies the group name 
itself as an element in the member list, as illustrated in the third 
example above. In this case, the function named TAX is added to the 
existing group named FINANCIAL. The following example illustrates 
another use of this feature. 

)GROUP GEOMETRY ANGLE ACUTE OBTUSE 
)GROUP GEOMETRY GEOMETRY PYTHAG ANGL1 ANGL3 

5.3.4 )GRP: Displaying the Members of a Group 

Format: 

Examples: 

)GRP group-name 

)GROUP ROOTS TRAPEZOID REGFALSI NEWTON SECANT 
)GRP ROOTS 

TRAPEZOID REGFALSI NEWTON SECANT 

The )GRP system command is an inquiry command used to display the 
members of the group named in the command line. The members are 
listed in the order in which they were entered into the group. 

5.3.5 )GRPS: Displaying a List of Groups 

Format: 

Examples: 

)GRPS [letter] 

)GRPS 
FINANCIAL 

)GRPS G 
ROOTS 

ROOTS 

The )GRPS system command operates in inquiry mode and is used to dis­
play an alphabetical list of global names used as group names in the 
active workspace. The optional parameter specification identifies 
the letter at which the alphabetical listing is to begin. If the 
parameter is omitted, the entire set of group names is displayed. 

5.3.6 )COPY: Copying Objects from a Workspace 

Format: 

Examples: 

)COPY filename [named-object-list] 

)COPY MYWORK 
SAVED 9:43:10 3-0CT-75 

)eOFY MYWORK EXAM A B REG 
SAVED 13:22:10 5-SEP-75 

)COPY MYWORK ~Y2 

NO SUCH FILE 

5-11 



SYSTEM CO~~NDS 

The ) COPY system command operates in action mode. It is used to 
retrieve functions, variables, and groups from a workspace called the 
copy workspace and to copy them into the active workspace. The user 
may copy all of the named objects in a workspace, or may copy only a 
subset. The named- ob ject-list parameter can be used to identify the 
specific objects to be copied. If this parameter is omitted, all 
functions, variables, and groups in the workspace will be copied. 

) COPY does not have the effect of copying the workspace itself. Local 
variables, the state indicator, and the width, origin, and significant 
digit settings are not transferred. 

If objects in the copy workspace are homographs of (i.e . , have the 
same name and characteristics of) objects in the active workspace, 
the objects in the active workspace will be replaced by their copy 
counterparts. However, homographs in the active workspace that are 
pendent functions or are functions in the process of being defined 
are not replaced. See the third sample command above for an example 
of a function of this kind. 

If a group name is included in the named- obje c t list , then all of the 
members of the group are copied along with the group name. 

Named objects that cannot be found in the copy workspace or c a nnot be 
copied to the activ e workspace are displayed, as shown in the third 
example above. The format of the ) COPY command response is identical 
to that of the )LOAD command described in Section 5.2.4. 

5.3.7 )PCOPY : Copying from a Workspace with Protection 

Format: 

Examples: 

)PCOPY filename [named- abje c t - list ] 

)PCO PY MYWORK F PLUSROW PRIMES A 
SAVED 1 1:0 2 : 21 21-A PR -7 5 
NOT COPI ED : A 

)PCOPY MY WORK G B F 
SA VED 11:02: 2 1 21-APR-75 
NOT FOUND: G 

The )PCOPY system command operates in action mode. Its format is 
identical to that of ) CO PY, but it is used to protect functions, vari­
ables, and groups in the active workspace from accidental destruction. 
Unlike )COPY , the ) PCOPY command does not replace objects in the active 
workspace that are homographs of objects in the copy workspace. 

When copy ing g roups, the ) PCOPY command does not copy any members of 
the group that have homographs in the active workspace . If the group 
name itself has a homograph in the active workspace, then ) PCO PY will 
not copy the group name but will copy all members of the group that 
do not have homographs in the active workspace. 

The format of the )PCO PY command response is identical to that of the 
) COP Y (Section 5. 3 .6) and )LOAD (Section 5.2.4) commands. Named 
objects that cannot be found in the copy workspace or cannot be copied 
to the active workspace are display ed, as shown in the examples above. 

5-12 



SYSTEM COMMANDS 

5.3.8 )ERASE: Erasing Global Names 

Format: 

Examples: 

At-2 3 
A 

2 3 4 
E<~C~O 

) r,~F;:AS'" 

A 

VALUE "''':'':0,.: 
A 

t 

) FN!:~ 
F1 F2 

)51 

F2[ 1] ~ 

1'"1[2J 

) E:';;:AS;t::: 
NOT Ef;:ASEI,: 

:r;30 

) ERASE name-list 

4 

~~ t" 

F:I, 

F1. 

)S]: 

) 121~:('~Si.I~: 
(Clear the state indicator) 

1"':1. F2 
) F'/-IS 

The )ERASE system command operates in action mode. 
from the active workspace by undefining the global 
abIes specified in the name-list parameter. There 
of names in the list. The names must be separated 
space. 

It erases names 
functions and vari­
may be any number 
by at least one 

)ERASE may not be used to erase a function whose name appears in the 
state indicator (see Section 5.3.9). Examples of such attempts to 
erase pendent and suspended functions are included in the sequence at 
the beginning of this section. 

5.3.9 )SI: Displaying the State Indicator 

Format: )SI 

Example: 

)SI 

J:N!5TF;:[2] * 
WUMPUS[]::I 'It. 

The )SI system command is an inquiry command that displays the state 
indicator associated with the active workspace. The state indicator 
serves as a report on the execution of functions in the workspace. 
By analyzing the )SI listing, the user can determine such function 
status conditions as the following: 

• pendent functions 

• suspended functions 

5-13 



SYSTEM COMMANDS 

• pending quad input requests 

• operations involving the execute operator 

The format of the )SI display line indicates the particular status 
of the function. A function name followed by a bracketed line number 
indicates that the function stopped at that line number. If an 
asterisk (*) follows the bracketed line number, the function is 
currently suspended. If the asterisk is omitted, the function is 
pendent, that is, awaiting a return from another function. 

The order in which function names are displayed in the )SI list is 
significant; the function that was most recently active is listed 
first. In the example included at the beginning of this section, 
WUMPUS called INSTR at line number [1J. Function INSTR was then 
suspended at line [3J. Execution of INSTR can be resumed by typing 
71. 

The state indicator also reports on pending quad input requests and 
pending execute operations (Sections 2.7.24 and 5.6). A quad input 
request is indicated by a quad character (0) in the )SI display 
line, and an execute request by an epsilon character (E). Both of 
these conditions are illustrated in the example included below. 

EO (Execute an evaluated input) 
0 · • 

) 51 (List the state indicator) 
0 
0 · · 1 
1 

The use of the state indicator is discussed in terms of function 
execution in Section 3.4.4. 

5.3.10 )SIV: Displaying the State Indicator and Local Variables 

Format: )SIV 

Examples: 

)5IV 

IMAX[4] * B I 

)SIV 

Z[2] * A B 

(Local variables B and I defined for 
function IMAX) 

(Local variables A and B defined for 
function Z) 

The )SIV system command operates in inquiry mode. Like the )SI 
command (Section 5.3.9), it displays the state indicator associated 
with the active workspace and reports on pendent and suspended 
functions, pending quad input requests, and execute operations. In 
addition to this information, however, )SIV also displays a list of 
local variable names defined for each pendent or suspended function. 
The names of global variables used in the function are not displayed. 

5.4 WORKSPACE-ENVIRONMENT COMMANDS 

This section describes a variety of system commands ~ha~ allow ~he 
user to display and control the characteristics of the workspace 
environment. These commands perform such tasks as the following: 

5-14 



SYSTEM COMMANDS 

• Specify the index origin setting 

• Specify the maximum number of significant digits to be 
displayed in APL output 

• Set the width of the output line 

• Set the fuzz or comparison tolerance 

5.4.1 )ORIGIN: Determining the Index Origin 

Format: )ORIGIN [~J 
Examples: 15 

1 2 3 4 5 
)ORIGIN 0 

WAS 1 
15 

0 1 2 3 4 

) ORIGIN 
0 

The )ORIGIN system command can be used in either action or inquiry 
mode. As an action command, )ORIGIN allows the user to change the 
setting of the index origin for array operations and returns the 
previous setting. In inquiry mode, the )ORIGIN command returns the 
current setting of the index origin. A parameter (0 or 1) is 
required in action mode. The default setting is 1. 

The effect of the )ORIGIN system command is to renumber the elements 
of arrays to begin at zero or one, depending on the index origin 
setting. This command is particularly relevant when used in conjunc­
tion with the APL iota operator (Sections 2.7.5 and 2.7.6)for a 
more detailed discussion of the index origin, see Section 2.4.2. 

)ORIGIN is equivalent to the OIO system variable (Section 4.2.2). 
The index origin setting is preserved when the active workspace is 
saved. 

5.4.2 )DIGITS: Determining the Output Precision 

Format: 

Examples: 

)DIGITS [n] 

)DIGITS 
7 

B 
1.234567 

)DIGITS 3 
WAS 7 

B 
1. 23 

5-15 



SYSTEM COMMANDS 

The )DIGITS system command operates in either action or inquiry mode. 
As an action command, )DIGITS can be used to specify the maximum 
number of significant digits to be displayed in APL output; 
it returns the previous maximum number. In inquiry mode, the 
)DIGITS command returns the number of significant digits currently 
being displayed. A parameter must be included in action mode to 
specify the number of significant digits to be displayed. The 
default number of digits is 10 for double-precision systems and 6 for 
single-precision. Legal values are integers in range 1 through 17 
for double-precision systems and 1 through 7 for single precision. 

The )DIGITS system command does not affect the precision of internal 
calculations or the display of numeric constants. See Section 2.2 
for an example of formatting numeric output. 

)DIGITS is equivalent to the OPP system variable (Section 4.2.3). 
The precision setting is preserved when the active workspace is 
saved. 

5.4.3 ) WIDTH: Determining the Width of the Output Line 

Format: ) WIDTH [n] 

Examples: ) WIDTH 50 
~S 120 

115 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

) WIDTH 30 
~S 50 

115 
1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 

) WIDTH 
30 

15 

The )WIDTH system command can be used in either action or inquiry 
mode. As an action command, )WIDTH allows the user to set the 
maximum number of characters that may appear in an output line and 
returns the width previously in effect. In inquiry mode, the 
)WIDTH command returns the current width of the output line. The 
n parameter must be included in action mode to specify the maximum 
number of characters in the output line; it must be an integer in 
range 30 through 133 inclusive. The default setting is 72, except 
in the RSTS/E environment, in which APL defaults to the current 
user width. 

The )WIDTH system command does not affect the display of messages 
on the terminal or the allowable length of input lines. )WIDTH is 
equivalent to the OPW system variable (Section 4.2.4). The width 
setting is preserved when the active workspace is saved. 

5-16 


