DEC-11-ODEVA-A-D

DOS/BATCH

DEVICE DRIVER INFORMATION

FOR THE DOS/BATCH OPERATING SYSTEM

Monitor Version V@9

August 1973

For additional copies, order No. DEC-11-~ODEVA-A-D from Digital Equipment
Corporation, Software Distribution Center, Maynard, Massachusetts @1754.

SOFTWARE
DISTRIBUTION
CENTER

Your attention is invited to the last two pages of this docu-
ment. The "How to Obtain Software Information" page tells
you how to keep up-to-date with DEC's software. The "Reader's
Comments" page, when filled in and mailed, is beneficial to
both you and DEC; all comments received are acknowledged and
considered when documenting subsequent manuals.

COPYRIGHT (:) 1973, DIGITAL EQUIPMENT CORP., MAYNARD, MASS.

Associated documents:

DOS/BATCH Monitor
Programmer's Manual, DEC-11~OMPMA-A-D

DOS/BATCH User's Guide, DEC-11-OBUGA-A-D

DOS/BATCH Assembler (MACRO-11)
Programmer's Manual, DEC-11-LASMA-A-D

DOS/BATCH FORTRAN Compiler and Object Time System
Programmer's Manual, DEC-1l1-LFRTA-~A-D

DOS/BATCH System Manager's Guide, DEC-11-0OSMGA-A-D

DOS/BATCH File Utility Package (PIP)
Programmer's Manual, DEC-11-UDEBA-A-D

DOS/BATCH Debugging Program (ODT-11R)
Programmer's Manual, DEC-11-UDEBA-A-D

DOS/BATCH Linker (LINK)
Programmer's Manual, DEC=-11-ULKAA-A-D

DOS/BATCH Librarian (LIBR)
Programmer's Manual, DEC-11~ULBAA-A-D

DOS/BATCH Text Editor (EDIT=11)
Programmer's Manual, DEC-11-UEDAA-A-D

DOS/BATCH File Compare Program (FILCOM)
Programmer's Manual, DEC-11-UFCAA-A-D

DOS/BATCH File Dump Program (FILDMP)
Programmer's Manual, DEC=-11-UFLDA-A-D

DOS/BATCH Verification Program (VERIFY)
Programmer's Manual, DEC=11-UVERA-A-D

DOS/BATCH Disk Initializer (DSKINT)
Programmer's Manual, DEC-11-UDKIA-A-D

Trademarks of Digital Equipment Corporation include:

DEC PDP-11
DIGITAL (Logo) COMTEX-11
DECtape RSTS=-11
UNIBUS RSX-11

ii

PREFACE

This document provides general information about the DOS/BATCH
device drivers which handle I/0 transfers between the PDP-11 and its
peripheral devices. A sample listing of the Line Printer Driver is

provided in Appendix B.

NOTE

The software described in this manual

is furnished to purchaser under a li-
cense for use on a single computer
system and can be copied (with inclu-
sion of DEC's copyright notice) only
for use in such system, except as may
otherwise be provided in writing by DEC.

This document is for information pur-
poses and is subject to change without
notice.

DEC assumes no responsibility for the
use or reliability of its software on
equipment which is not supplied by DEC.

iii

CHAPTER 1

CHAPTER 2

2.1

2.1.1
2.1.2
2.1.3
2.1.4
2.2

2.2.1
2.2,2

CHAPTER 3

3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.2

3.3

APPENDIX A
A.l
A.2
A.3
A.3.
A.3.
A.3.
A.3.
A.3.
A.4

APPENDIX B

CONTENTS

INTRODUCTION

DRIVER FORMAT

STRUCTURE
Driver Interface Table
Setup Routines
Interrupt Servicing
Error Handling

INTERFACE TO THE DRIVER
Control Interface
Interrupt Interface

STAND-ALONE USE

DRIVER ASSEMBLED WITH PROGRAM
Setting Interrupt Vector
Parameter Table for Driver Call
Calling the Driver
User Registers
Returns From Driver
Irrecoverable Errors
General Comment

DRIVERS ASSEMBLED SEPARATELY

DEVICE-~INDEPENDENT USAGE

I/0 DRIVERS WITHIN THE DOS/BATCH OPERATING SYSTEM
DRIVER STRUCTURE
MONITOR CALLING
DRIVER ROUTINES

1 TRANSFER

2 Interrupt Servicing
3 OPEN

4 CLOSE

5 SPECIAL

DRIVERS FOR TERMINALS

SAMPLE LINE PRINTER DRIVER LISTING

A-1
A-1
A-2
A-4
A-4
A-5
A-6
A-7
A-7
A-8

CHAPTER 1

USING DEVICE DRIVERS OUTSIDE DOS/BATCH

Subroutines to handle I/0 transfers between a PDP-1l and each of
its peripheral devices are developed as required for use within the
Disk Operating System DOS/BATCH. These subroutines are made available
within an I/0 Utilities Package for the benefit of PDP-11 users who
have configurations unable to support DOS/BATCH or who wish to run
programs outside DOS/BATCH control.

All the subroutines associated with one peripheral device form
an entity known as a driver. This manual provides a general descrip-
tion of a driver and shows how it can be used in a stand-alone environ-
ment. The unigue properties of each driver are discussed in separate
documents, which are supplements to this manual. The I/O Utilities
Package for any system is determined by the peripherals of that system.
Thus, the full documentation for a particular Package consists of this

document and applicable supplements.

CHAPTER 2

DRIVER FORMAT

2.1 STRUCTURE

The basic principle of all drivers under the DOS/BATCH Monitor
is that they must present a common interface to the routines using
them in order to provide device-independent operation., The subroutines
are structured to meet this end. Moreover, a driver can be loaded
anywhere in memory under Monitor Control. Its code is always position-
independent (PIC).*

A detailed description of a driver is found in Appendix A. This

section describes driver interfaces.

2.1.1 Driver Interface Table

The first section of each driver is a table which contains, in
a standard format, information on the nature and capabilities of the
device it represents and entry points to each of its subroutines, The
calling program can use this table as required, regardless of the
device being called.

2,1.2 Setup Routines

Each driver is expected to handle its device under the PDP-11
interrupt system. When called by a program, therefore, a driver
subroutine merely initiates the action required by setting the device
hardware registers appropriately. It returns to the calling program
by a standard subroutine exit.

The main setup routine prepares for a data transfer to or from
the device, using parameters supplied by the calling program,., Normally,
blocks of data will be moved at each transfer, The driver will return
control to the program only when the whole block has been transferred
or when it is unable to continue because there is no more data avail-
able,

* See DOS/BATCH Assembler (MACRO) Programmer's Manual for information
on PIC.

The driver can also contain subroutines by which the calling
program can request (1) start-up or shut-down action, such as leader
or trailer functions for a paper tape punch, or (2) some special
function provided by the device hardware (or a software simulation of
that for some similar device), e.g., rewind of a magnetic tape or
DECtape.

2,1.3 Interrupt Servicing

The driver routine to service device interrupts is particularly
dependent upon the device hardware provisions for controlling transfers.
In general, the driver determines the cause of the interrupt and checks
whether the last action was performed correctly or was prevented by
some error condition. If more device action is needed to satisfy the
program request, the driver again initiates that action and takes a
normal interrupt exit. If the program request has been fully met,
control is returned to the program at an address supplied at the time
of the request.

2.1.4 Error Handling

Device errors can be handled in two ways. There are some errors
for which recovery can be programmed; the driver will, if appropriate,
attempt this itself (as in the case of parity or timing failure on a
bulk~storage device) or will recall the program with the errcr condi=~
tion flagged (as at the end of a physical paper tape). Other errors
normally require external action, perhaps by an operator. The driver
calls a common error handler based on location 34 (IOT call) with
supporting information on the processor stack to handle such errors.

2.2 INTERFACE TO THE DRIVER

2.2.1 Control Interface

The principle link between a calling program and any driver sub-
routine is the first word of the driver table (link word). In order
to provide the control parameters for a device operation, the calling
program prepares a list in a standardized form and places a pointer
to the list in the link word. The called driver uses the pointer to
access the parameters. If the driver need return status information,
it can place it in the list area via the link word. The first word
of the driver table can also act as a busy indicator; if it is @, the

2=-2

driver is not currently performing a task, but if it contains a list-
pointer, the driver can be assumed to be busy. Since most drivers sup-
port only one job at a time, the link word state is significant.

2.2.2 Interrupt Interface

Although the driver expects to use the interrupt system, it does
not itself ensure that its interrupt vector in the memory area below
4ﬂ¢8 has been set up correctly; the Monitor takes care of this.
However, the driver table contains the information required to initialize
the appropriate vector.

CHAPTER 3

STAND-ALONE USE

Because each driver is designed for operation within the device-
independent framework of the Monitor, it can be similarly used in
other applications. Since the easiest way to use the driver is to
assemble it with the program that requires it, this method will be
described first. Other possible methods will be discussed later.

3.1 DRIVER ASSEMBLED WITH PROGRAM

3.1,1 Setting Interrupt Vector

As noted in paragraph 2.2.2, the calling program must initialize
the device transfer vector within memory locations @-377. The address
of the driver's interrupt entry point can be identified on the source
listing by the symbolic name which appears as the content of the
Driver Table Byte, DRIVER+5, The priority level at which the driver
expects to process the interrupt is at byte DRIVER+6., For a program
which can use position-dependent code, the setup sequence might be:

MOV #DVRINT, VECTOR ;SET INT. ADDRESS
MOVB DRIVER+6, VECTOR+2 ;SET PRIORITY
CLRB VECTOR+3 ;CLEAR UPPER STATUS BYTE

(where the Driver Table shows at DRIVER+5: ,BYTE DVRINT-~DRIVER).

If the program must be position-independent, it can take advantage
of the fact that the Interrupt Entry address is stored as an offset
from the start of the driver, as illustrated above. In this case, a

sample sequence might be:

MOV PC,R1 ;GET DRIVER START

ADD #DRIVER-. ,R1l

MOV #VECTOR, R2 i ees& VECTOR ADDRESSED

CLR @R2 ;SET INT. ADDRESS

MOVB 5(R1), @R2 i +++AS START ADDRESS+OFFSET
ADD R1l, (R2)+

CLR @R2 ; SET PRIORITY

MOVB 6 (R1) ,@R2

3.1l.2 Parameter Table for Driver Call

For any call to the driver, the program must provide a list of
control arguments mentioned in paragraph 2.2.1. This list must adhere

to the following format!l:

[SPECIAL FUNCTION POINTER] 2

[BLOCK NO.]?

STARTING MEMORY ADDRESS FOR TRANSFER

NO. OF WORDS to be transferred (2's complement)
STATUS CONTROL showing in Bits:

g-2 Function (octally 2=WRITE, 4=READ)"“

8~18 Unit (if Device can consist of several,
e.g., DECtape)

11 Direction for DECtape travel (§ = Forward)

ADDRESS for RETURN ON COMPLETION
[RESERVED FOR DRIVER USE]’

The list can be assembled in the required format if its content will
not vary. The driver can return information in this area as described
in a later paragraph; however, this will not corrupt the program data
and it is cleared by the driver before it begins its next operation.

On the other hand, most programs will probably use the same list
area for several tasks or even for different drivers. 1In this case,
the program must contain the necessary routine to set up the list for
each task before making the driver call, perhaps as illustrated in the
next paragraph. It must be noted, however, that the driver may refer
to the list again when it it recalled by an interrupt or to return
information to the calling program. Therefore, the list must not be
changed until any driver has completed a function requested; for con-

current operations, different list areas must be provided.

1Tn some cases, it can be further extended as discussed in later para-
graphs.

2Required only if Driver is being called for Special Function; addresses
a Special Function Block.

*Required only if the Device is bulk storage (e.g., Disk or DECtape).

“*Most devices transfer words regardless of =heir content, i.e., ASCII
or Binary. Some devices (e.g., Card Reader) may be handled differently
depending on the mode for these, Bit @ must also be set to indicate
ASCII=@g, Binary=1l, In these cases, the driver always prcduces or
accepts ASCII even though the device itself uses some other code.

®This word may be omitted if the device is bulk storage (see below).

3.1.3 Calling the Driver

To enable the driver to access the parameter list, the program
must set the first word of the driver to an address six bytes less
than that of the word containing MEMORY START ADDRESS. It can then
directly call the driver subroutine required by a normal JSR PC,XXXX
call.

As an example, the following position-independent code might
appear in a program which wishes to read Blocks #1@@-1¢3 backward from
DECtape unit 3 into a buffer starting at address BUFFER.

MOV PC, Rf ;GET TABLE ADDRESS
ADD #TABLE+12-,,R@
MOV PC,@Rf ;GET AND STORE...
ADD #RETURN-. , @R 7 «+ . RETURN ADDRESS
MOV #5404 ,- (RP) ;SET READ REV. UNIT 3
MOV #~1@24.,~(RP) ;4 BLOCKS REQUIRED
MOV PC,- (Rf) ;GET AND STORE
ADD #BUFFER~., @R@ 7« « «BUFFER ADDRESS
MoV #1083 ,- (RE) ; START BLOCK
CMP -(Rfg) ,- (R@) ;SUBTRACT 4 FROM POINTER
MOV R@,DT ;SET DRIVER LINK
JSR PC,DT.TFR ;GOTO TRANSFER ROUTINE
WAIT: . ; RETURNS HERE WHEN
. i e+ TRANSFER UNDER WAY
. ; RETURNS HERE WHEN
. i o« . TRANSFER COMPLETE
TABLE : .WORD @ ;LIST AREA SET
.WORD §# ;++.BY ABOVE SEQUENCE
.WORD #
.WORD @
.WORD @

3.1.4 User Registers

During its setup oOperations for the function requested, the
driver assumes that Processor Registers @-5 are available for its use,
If their contents are of value, the program must save them before the
driver is called.

While servicing intermediate interrupts, the driver may need to
save or restore its registers. It expects to have two subroutines
available for the purpose (provided by the Monitor). It accesses them

via addresses in memory locations 44_ (S.RRES for restores) using the

8
sequence:

MOV @444 ,-(SP) ;OR 'MOV @#46,-(SP)
JSR R5,@(SP)+

It must also ensure that their start addresses are set into the
correct locations (448 and 468).

At its final interrupt, the driver saves the contents of Registers
#=-5 before returning control to the calling program completion return.

3.1.5 Returns From Driver

As shown in the example in paragraph 3.l1.3, the driver returns
control to the calling program immediately after the JSR as soon as
it has set the device in motion. The program can wait or carry out
alternative operations until the driver signals completion by return-
ing at the address specified (i.e., RETURN above). Prior to this, the
program must not attempt to access the data being read in, nor refill
a buffer being written out.

The program routine beginning at address RETURN varies according
to the device being used. In general, the driver has given control
to the routine for one of two reasons; namely, the function has been
satisfactorily performed, or it cannot be carried out due to some
hardware failure with which the driver is unable to cope, though the
program may be able to do so. In the latter case, the driver uses
the STATUS word in the program list to show the cause:

Bit 15 = 1 indicates that a device or
timing failure occurred and the
driver has not been able to
overcome this, perhaps after several
attempts.

Bit 14 = 1 shows that the end of the available
data has been reached.

The driver places in R@ the content of its first word as a pointer
to the list concerned.

In addition, the driver can have transferred only some of the
data requested. In this case, it will show in the RESERVED word of
the program list a negative count of the words not transferred in
addition to setting Bit 14 of the STATUS word. As mentioned in the
note in paragraph 3.1.2, this applies only to non=bulk storage devices.
The drivers for DECtape or disks'! always endeavor to complete the full
transfer, even beyond a parity failure, or they take more drastic

action (see paragraph 3.1.6).
'This includes RF1ll Disk; although this is basically word-oriented, it
is assumed to be subdivided into 64-word blocks.

3-4

It is thus the responsibility of the program RETURN routine to
check the information supplied by the driver in order to verify that
the transfer was satisfactory and to handle the error situations
appropriately.

In addition, the routine must contain a sequence to take care of
the Processor Stack, Registers, etc. As noted earlier, the driver
takes the completion return address after an interrupt and has saved
Registers @#-5 on the stack above the Interrupt Return Address and
Status. The program routine should, therefore, contain some sequence
to restore the processor to its state prior to such interrupt, e.g.,
using the same Restore subroutine illustrated earlier:

MOV @#46,-(SP) ;CALL REGISTER RESTORE
JSR R5,@(sP)+
RTI ; RETURN TO INTERRUPTED PROG.

3.1.6 Irrecoverable Errors

All hardware errors other than-those noted in the previous para-
graph are more serious in that they cannot normally be overcome by the
program or by the driver on its behalf. Some of these could be due to
an operator fault, such as neglecting to turn a paper tape reader to on
or to set the correct unit number on a DECtape transport. Once the
operator has rectified the problem, the program could continue. Other
errors, however, will require hardware repair or even software repair,
e.9., if the program asks for Block 28@F8 on a device having a maximum
of 1g@@#. 1In general, all these errors will result in the driver
placing identifying information on the processor stack and calling IOT
to produce a trap through location 348.

Under DOS/BATCH, the Monitor provides a routine to print a tele-
printer message when this occurs. In a stand-alone environment, the
program using the driver must itself contain the routine to handle the
trap (unless the user wishes to modify the driver error exits before
assembly). The handler format will depend upon the program. Should
it wish to take advantage of the information supplied by the driver,
the format is as follows:

(SP) : Return Address Stored by IOT Call

2 (SP): Return Status
4 (SP): Error No. Code generally unique to driver
5 (SP): Exrror Type Code: 1l = Recoverable after Opera-
tor Action
3 = No recovery
6 (SP): Additional Such as content of Driver,
Information Control Register, Driver

Identity, etc.

As a rule, the driver will expect a return following the IOT call in
the case of errors in Type 1 but will contain no provision following

a return from Type 3.

3.1.7 General Comment

The source language of each driver has been written for use with
DOS/BATCH and contains some code which will not be accepted by the
Paper Tape Software PAL-11R, in particular, .TITLE, .GLOBL, and
Conditional Assembly directives. Such statements should be deleted
before the source is used. Similarly, an entry in the driver table
gives the device name as .RADS@ 'DT' to obtain a specifically packed
format used internally by DOS/BATCH. If the user wishes to keep the
name, for instance, for identification purposes as discussed in
section 3.3, .RAD5@ might easily be changed to .ASCII without detri-
mental effect, or it might be replaced with .WORD 4.

3.2 DRIVERS ASSEMBLED SEPARATELY

Rather than assemble the driver with every program requiring its
availability, the user may wish to hold it in binary form and attach
it to the program only when loaded. This is readily possible; the
only requirement is that the start address of the driver should be

known or be determinable by the program.

The example in paragraph 3.l.2 showed that the Interrupt Servicing
routine can be accessed through an offset stored in the Driver Table.
The same technique can be used to call the setup subroutines, as
these also have corresponding offsets in the Table, as follows:

DRIVER+7 Open!t
+18 Transfer
+11 Close! .
+12 Special Functions

'If the routine is not provided, these are #

3-6

The problem is the start address. There is the obvious solution of
assembling the driver at a fixed location so that each program using
it can immediately reference the location chosen. This ceases to be
convenient when the program has to avoid the area occupied by the
driver., A more general method is to relocate the driver as dictated
by the program using it, thus taking advantage of the position-
independent nature of the driver. The Absolute Loader, described in
the Paper Tape Software Handbook DEC-11-XPTSA~A-D, Chapter 6, provides
the capability to continue a load from the point at which it ended.
Using this facility to enter the driver immediately following the
program, the program might contain the following code to call the sub-
routine to perform the transfer illustrated in paragraph 3.1.3.

MOV PC,R1 ;GET DRIVER START ADDRESS
ADD #PRGEND-.,R1
- MOV PC,RY ;GET TABLE ADDRESS
ADD $TABLE+12-,,Rf ;AND SET UP AS SHOWN
. ;eeeIN SECTION 3.1.3
CMP - (R@) , - (RP) ; FINAL POINTER ADJUSTMENT
MOV R@,@RL ;STORE IN DRIVER LINK
CLR - (SP) ;GET BYTE SHOWING...
MOVB 14 (R1) ,@SP 7 « « + TRANSFER OFFSET
ADD (sp)+,R1 ; COMPUTE ADDRESS
JSR PC,@R1 ;GO TO DRIVER
PGREND:
.END

This technique can be extended to cover situations in which several
drivers are used by the same program, provided that it takes account
of the size of each driver (known because of prior assembly) and the
drivers themselves are always loaded in the same order.

For example, to access the second driver, the above sequence

would be modified to:

MOV PC,R1 ;GET DRIVER 1 ADDRESS
ADD #PRGEND-, ,R1
ADD #DVR1SZ,R1 ; STEP TO DRIVER 2
DVR1SZ=n
PRGEND:
+«END

An alternative method may be to use the Relocatable Assembler
PAL~11S in association with the Linker program LINK-11lS, both of which
are available through the DECUS Library. The start address of each
driver is identified as a global. Any calling programs need merely
include a corresponding .GLOBL statement, e.g., .GLOBL DT.

3.3 DEVICE-INDEPENDENT USAGE

As mentioned earlier, the drivers are assigned for use in a
device-~independent environment, i.e., one in which a calling program
need not know in advance which driver has been associated with a table
for a particular execution run. One application of this type might be
to allow line printer output to be diverted to some other output
medium because the line printer is not currently available. Another
might be to provide a general program to analyze data samples although
these on one occasion might come directly from an Analog=-to=-Digital
converter and on another be stored on a DECtape because the sampling

rate was too high to allow immediate evaluation.

Frograms of this type should be written to use all the facilities
that any one device might offer, but not necessarily all of them.
For instance, the program should ask for start-up procedures because it
may sometime use a paper tape punch which provides them, even though it
may normally use DECtape which does not. As noted in paragraph 2.2.1,
the driver table contains an indication of its capabilities to handle
this situation. The program can thus examine the appropriate item
before calling the driver to perform some action. As an example,
the code to request start-up procedures might be (assuming Rf already
set to List Address):

MOV #DVRADD, R1 ;GET DRIVER ADDRESS

TSTB 2(R1) ;BIT 7 SHOWS...

BPL NOOPEN i «+.OPEN ROUTINE PRESENT
MOV R@,@RL ; STORE TABLE ADDRESS
CLRB - (SP) ;BUILD ADDRESS

MOVB 7 (R1) ,@SP i «esOF THIS ROUTINE

ADD (sP)+,R1

JSR PC,CR1 JeeeAND GO TO IT

;FOLLOWED POSSIBLY BY
;WAIT AND COMPLETION
;i PROCESSING
NOOPEN 2 ; RETURN TO COMMON OPERATION

Similarly, the indicators show whether the device is capable of
performing input or output, or both; whether it can handle ASCII or
binary data; whether it is a bulk storage device capable of supporting
a directory structure or is a terminal-type device requiring special
treatment, and the like. Other table entries show the device name as
identification and how many words it might normally expect to transfer
at a time (in l6-word units). All of the information can be readily
be examined by the calling program, thus enabling the use of a common
call sequence for any I/0 operation, as for example:

MOV #DVRADR, R5 ; SET DRIVER START

JSR R5,I0OSUB ;CALL SET UP SUB

BR WAIT ; SKIP TABLE FOLLOWING ON RETURN
+WORD 14 ; TRANSFER REQUIRED

+WORD 193 ;BLOCK NO,

«WORD BUFFER s BUFFER ADDRESS

+WORD -256. s WORD COUNT

«WORD 494 ; READ FROM UNIT 1

+WORD RETURN ;EXIT ON COMPLETION

+WORD) ; RESERVED

WAIT: ;CONTINUE HERE...

IOSUB: MOV @SP,R@ ;PICK UP DRIVER ADDR
MOV R5,R1 ;SET UP POINTER TO LIST
ST (R1) + ;BUMP TO COLLECT CONTENT
B ; ROUTINE CHECKS ON DEVICE
. 7 +¢s CAPABILITY USING R1
. 7+0TO ACCESS LIST AND
. {++..Rf THE DRIVER TABLE
. ;IF O.K- s e e
MOV @R1,R1 ;GET ROUTINE OFFSET
ADD R@,R1L
CLR - (sp) ;USE IT TO BUILD
MOVB @R1,@SP :...ENTRY POINT
ADD R@, @SP
JSR PC,@(SP)+ ;CALL DRIVER
RTS R5 ;EXIT TO CALLER

The calling program, or a subroutine of the type just illustrated, may
also wish to take advantage of a feature mentioned earlier: the fact
that when a driver is in use its first word will be non=-zero. The
driver itself does not clear this word except in special cases shown
in the description for the driver concerned. If the program itself
always ensures that it is set to zero between driver tasks, this word
forms a suitable driver-busy flag. Under DOS, the program parameter
list ‘is extended to allow additional words to provide linkage between
lists as a queue of which the list indicated in the driver first word
is the first link.

The preceding paragraphs are intended to indicate possible ways
of incorporating the drivers available into the type of environment
for which they were designed. The user will probably find others.
However, he should carefully read the more detailed description of
the driver structure in Appendix A, and the individual driver specifi-

cations before determining the final form of his program.

A word of warning is appropriate here. Although most drivers set
up an operation and then wait for an interrupt to produce a completion
state, there are some cases in which the driver can finish its required
task without an interrupt, e.g., "opening" a paper tape reader involves
only a check on its status. Moreover, where "Special Functions" are
concerned, the driver routine may determine from the code specified
that the function is not applicable to its device, and therefore,
will have nothing to do. 1In such cases, the driver clears the inter-
mediate return address from the processor stack and immediately takes
the completion return. Special problems can arise, however, if the
driver concerned is servicing several tasks, any of which can cause a
queue for the driver's services under DOS/BATCH. To overcome these
problems, the driver expects to be able to refer to flags outside the
scope of the list so far described. This can mean that a program
using such a driver may also need to extend the list range to cover
such possibilities. Particular care should be exercised in such cases.

APPENDIX A

I/0 DRIVERS WITHIN THE DOS/BATCH OPERATING SYSTEM

The principal function of an I/O driver is to satisfy a Monitor
processing routine's requirement for the transfer of a block of data in
a standard format to or from the device it services. This will involve
both setting up the device hardware registers to cause the transfer
and its control under the interrupt scheme of PDP-11, making allowance
for peculiar device characteristics (e.g., conversion to or from ASCII
if some special code is used).

It may also include routines for handling device start-up or shut-
down such as punching leader or trailer, and for making available to
the user certain special features of the device, such as rewind of mag-

tape.

A.l DRIVER STRUCTURE

In order to provide a common interface to the monitor, all
drivers must begin with a table of identifying information as follows:

DVR: - BUSY FLAG (initially #)
FACILITY INDICATOR (expanded below)
Offset to Standard Buffer Size
Interrupt Routine¥* in 16~word Units.
Offset to Priority for
OPEN Routine* Interrupt Service*
Offset to Offset to
CLOSE Routine* Transfer Routine*
Space Offset to
Special Functions¥*
DEVICE NAME (Packed Radix-5¢)

Offsets marked * will enable calling routine

to indicate routine required. They will be
considered to be an unsigned value to be

added to the start address of the driver.

This may mean that with a 256-word maximum, the
instruction referenced by the offset will be
JMP or BR (routine).

A~1

Bits in the Facility Indicator Word define the device for monitor

reference:

SPECIAL STRUCTURES GENERAL STRUCTURE

15|14I13!12|11|1ﬂ|9|s 7|6|5l4|3|2ll|ﬂ ’

PR N R SN o o O o o o A

Unused * Unuse

Structured Multi User

Device DEC- "Terminal"
tape (or Device
similarly Contains OPEN Output Device
magtape Contains CLOSE Input Device
Contains SPECIAL Binary Device

*=Multi-unit System ASCII Device

type devices (i.e., RK disk).

The table should be extended as follows if the device is file-

structured:

BLOCK USED AS MASTER FILE DIRECTORY

POINTER TO BIT-MAP IN MEMORY Unit #
} Similar Bit-

Map Pointers
for Multi-

~—»nv/‘wﬂgf—\»qV/\,~\,ﬁ\,q,—;fb/vav,\)\J Unit Devices

The driver routines to set up the transfer and control it under
interrupt, and possibly for OPEN, CLOSE, and SPECIAL, follow the table,
Their detailed operation will be described later.

A.2 MONITOR CALLING

When a Monitor I/0 processing routine needs to call the driver,
it first sets up the parameters for the driver operation in relevant
woxrds of the appropriate DDB!, as follows:

I
Dataset Data Block - in full, a lé6-word table which provides the main

source of communication between the Monitor drivers and a particular
set of data being processed on behalf of a using program.

XY7Z: - User Call Address)

SPECIAL FUNCTION CODE User Line Address)

DEVICE BLOCK NUMBER

MEMORY BLOCK ADDRESS

WORD COUNT (2's Complement)

TRANSFER FUNCTIONS (expanded below)

COMPLETION RETURN ADDRESS

(DRIVER WORD-COUNT RETURN) Set to Zer

The relevant content of the Transfer Function word is as follows:

EOF
or
EOD TT Echo Control

v
7|6 5|4 3|2|1|¢

v
15! 14! 13 112 Illl lO| 9 ‘8

N———— o’
Used by Driver DECtape T Open vs. }?:g?_ggi
to indicate reverse DEVICE Closed ¥
Hardware Parity UNIT Transfer OUT

Fail
Transfer IN

Provided that the Facility Indicator in the Driver Table
described above shows that the driver is able to satisfy the request,
both from the point of view of direction and mode and of the service
required, the Monitor routine places in Register 1 the relative byte
address of the entry in the Driver Table containing the offset to the
routine to be used. (e.g., for the Transfer routine, this would be 1f).
It then calls the Driver Queue Manager, using HSR PC,S.CDB.

The Driver Queue Manager assures that the driver is free to
accept the request, by reference to the Busy Flag (Word g of the
driver table). If this contains @, the Queue Manager inserts the
address of the DDB from Register @# and jumps to the start of the
routine in the driver using Register 1 content to evaluate the address
required. If the driver is already occupied, the new request is placed
in a queue linking the appropriate DDB's for datasets waiting for the
driver's services. It is taken from the gqueue when the driver com-
pletes its current task. (This is done by a recall to the Queue
Manager from the routine just serviced, using JSR PC,S.CDQ.)

On entry to the Driver Routine, therefore, the address following
the Monitor routine call remains as the "top" element of the processor
stack. It can be used by the driver in order to make an immediate
return to the Monitor (having initiated the function requested), using
RTS PC. It should also be noted that the Monitor routine will have
saved register contents if it needs them after the device action. The
driver may thus freely use the registers for its own operations.

When the driver has completely satisfied the Monitor request, it
should return control to the Monitor using the address set into the
DDB. On such return, Register @ must be set to contain the address
of the DDB just serviced and since the return will normally follow
an interrupt, Registers g-5 at the interrupt must be stored on top of
the stack.

A,3 DRIVER ROUTINES

A.3.1 TRANSFER

The sole purpose of the TRANSFER routine is to set the device in
motion. As indicated above, the information needed to load the hard-
ware registers is available in the DDB, whose address is contained in
the first word of the driver. Conversion of the stored values is, of
course, the function of the routine. It must also enable the interrupt;
however, it need not take any action to set the interrupt vectors as
these will have been preset by the Monitor when the driver is brought
into core. Having then given the device GO, an immediate return to
the calling processor should be made by RTS PC.

A.3.2 Interrupt Servicing

The form of this routine depends upon the nature of the device.
In most drivers it will fall into two parts, one for handling the
termination of a normal transfer and the other to deal with reported
error conditions.

For devices which are word cr byte-oriented, the routine must
provide for individual word or byte transfers, with appropriate treat-
ment of certain characters (e.g., TAB or Null) and for their conversion
between ASCII or binary and any special device coding scheme, until
either the word count in the DDB is satisfied or an error prevents this.
On these devices, the most likely cause for such error is the detection
of the end of the physical medium; its treatment will vary according
to whether the device is providing input or accepting output. The
calling program will usually need to take action in the former case
and the driver should merely indicate the error by returning the un-
expired portion of the word count in DDB Word 7 on exit to the Monitor.
Output End of Data, however, will, in general, require operator action.
To obtain this, the driver should call the Error Diagnostic Print
routine within the Monitor by:

MOV DEVNAM, - (SP) ; SHOW DEVICE NAME
MOV #4902, (SP) ;s SHOW DEVICE NOT READY
I0T ;CALL ERROR DIAGNOSTIC PRINT ROUTINE

On the assumption that the operator will reset the device for further
output and redquest continuation, the driver must follow the above
sequence with a Branch or Jump to produce the desired resumption of
the transfer.

Normal transfer handling on blocked devices (or those like RF1ll
Disk which are treated as such) is probably simpler since the hardware
takes care of individual words or bytes and the interrupt only occurs
on completion. Errors may arise from many more causes, and thier
handling is, as a result, much more complex and device dependent. In
general, those which indicate definite hardware malfunctions must lead
to the situation in which the operator must be informed by diagnostic
message and the only recourse after rectification will be to start the
program over,

At the other end of the scale there are errors which the driver
itself can attempt to overcome by restarting the transfer - device
parity failure on input is a common example. If a retrial, or several,
still does not enable a satisfactory conclusion, the driver should
normally allow programmed recovery and merely indicate the error by
Bit 15 of DDB word 5. Nevertheless, because the program may wish to
process the data despite the error, the driver should attempt to
transfer the whole block requested if this has not already been effected.
Between these two extremes, the remaining forms of error must be

processed according to the type of recovery deemed desirable.

Whether the routine uses processor registers for its operation or
not will naturally depend on considerations of the core space saved
against the time taken to save the user's content. However, on com-
pletion (or error return to the Monitor), as indicated in an earlier
paragraph, the calling routine expects the top of the stack to contain
the contents of Registers @-5 and Register @ to be set to the address
of the DDB just serviced. The driver must therefore, provide for
this.

A.3.3 OPEN

This routine need be provided only for those devices for which
some hardware initialization by the user is required. It should not
normally appear in drivers for devices used in a file-oriented manner.
Its presence must be indicated by the appropriate bit (Bit 7) in the

driver table Facility Indicator.

The routine itself may vary according to the transfer direction
of the device. For output devices, the probable action required is
the transmission of appropriate data, e.g., CR/LF at a keyboard terminal,
form-feed at a printer, or null characters as punched leader code,
and for this a return interrupt is expected. The OPEN routine should
then be somewhat similar to that for TRANSFER in that it merely sets
the device goind and makes an interim return via RTS PC, waiting until
completion of the whole transmission before taking the final return
address in the DDB.

On the other hand, an input OPEN will likely consist of just a
check on the readiness of the device to provide data when requested.
In this case, the desired function can be effected without any interrupt

wait, The routine should, therefore, take the completion return
immediately. Nevertheless, it must ensure that the saved PC value

on top of the stack from the call to S.CDB. is appropriately removed
before exit. In the case of drivers which can only service one

dataset at a time (i.e., Bit @ of their Facility Pattern word is set

to @) and can never, therefore, be queued; it will be sufficient to

use TST (SP)+ to effect this. A multi-user driver, however, must allow
for the possibility that it may be recalled to performe some new task
waiting in a queue. This is shown by the byte at DDB~3 being non-zero.
In this case, the intermediate return to the routine originally
requesting the new task has already been made directly by S.CDQ to de-
queue the driver. This return must be taken when the first routine

has performed its Completion Return processing. Moreover, this first
routine expects to exit as from an interrupt. When a driver is recalled

from a queue, it must simulate this interrupt. A possible sequence

might be:
MOV DRIVER, R@ ;PICK UP DDB ADDRESS
MOV (Ssp)+,R5 7 SAVE INTERIM RETURN
TSTB =3 (R@) ;COME FROM QUEUE?
BEQ EXIT
MOV Q#177776,-(SP) ;IF SO, STORE STATUS
MOV RS, - (SP) i ++e& RETURN
SUB #14,SP ; DUMMY SAVE REGS
EXIT: JMP @l-(RM)

A.3.4 CLOSE

As with OPEN, this routine should provide for the possibility of
some form of hardware shut down such as the punching of trailer code
and it is not necessary for file-structured devices. Moreover, it is
likely to be a requirement for output devices only. If it is provided,
Driver Table Facility Indicator (Bit 6) must be set.

Again, the probable form is initialization of the hardware action
required, with immediate return via RTS PC and eventual completion
return via the DDB-stored address.

A.3.5 SPECIAL

This routine may be included if either the device itself contains
the hardware to perform some special function or there is a need for
software simulation of each hardware on other devices, e.g., tape re-
wind. It should not be provided otherwise. Its presence must be indi-
cated by Bit 5 of the Facility Indicator.

A=-17

The function itself is stored by the Monitor as a code in the DDB
as shown earlier. When called, the driver routine must determine
whether such function is appropriate in its case., If not, the com~
pletion return should be taken immediately with prior stack clearance,
as discussed under OPEN. For a recognized function, the necessary
routine must be provided. Again, its exit method will depend upon the
necessity for an interrupt wait or otherwise.

A.4 DRIVERS FOR TERMINALS

The rate of input from terminal devices is normally dictated
externally by the operator, rather than being program-driven; moreover,
for both input and output, the amount of data to be transferred on each
occasion may be a varying value, i.e., a line rather than a block of
standard size. Furthermore, there may be problems with the conflict
between echo of input during output. As a result, drivers for such
devices will demand special treatment.

Normal output operation, ie.e,.WRITE by the program, is handled
by the Monitor Processor. On recognizing that the device being used
is & terminal, as shown by Bit 8 of the facility indicator, this
routine always causes a driver transfer at the end of the user line,
evenn though the internal buffer has not been filled. The driver,
however, is given the whole of a standard buffer, padded as necessary
with nulls. Provided the driver can ignore these, the effect is that
of just a line of output.

Input control on the other hand, must remain driver responsibility.
Overcoming the rate problem will, in most cases, require circular buffer-
ing within the driver until demanded by the Monitor. At this point,
transfer of data already in should occur. If this is sufficient to
£fill the monitor buffer, the driver can await the next request before
further transfer onward. If insufficient, it should operate as any
other device and use subsequent interrupts to continue to satisfy
the Monitor request. It must, nevertheless, stop any transfer at the
end of a line in normal operation. In order to allow the Monitor to
continue, the driver must simulate the filling of the buffer by null
padding (of no consequence, since terminals are by nature character-
based). (Normal operation, of course, means response to user .READ's
and is indicated by the size of the buffer to be filled, namely the
driver standard. Should the user be requesting .TRAN's, the buffer
size will vary from the standard in all likelihood and the driver may

A-8

size will vary from the standard in all likelihood and the driver may
then assume he requires operation as a normal device--complete buffer
fill=up before return.)

Where input echo is a further complexity, there will doubtless
be other requirements. If the echo is made immediately after the input,
it may be desirable to have a second buffer to cater for the likely
situation that the echo will not exactly match its origin. On the
other hand, if the echo is held for any length of time, perhaps to
provide correct relations between program-driven output and the echo,
the second buffer could be too expensive. A larger input buffer and
routines to allow for several outputs to one input character while
sitting on that character might be more convenient. The conflict
between such echo and program-driven output will require controlled
switching within the driver input and output handle:s.

APPENDIX B

SAMPLE LINE PRINTER DRIVER LISTING

The following is a sample listing of a DOS/BATCH Device Driver.
The actual driver is the LPll Line Printer Driver (for device name LP:).

IVaLPY MACKRU VbmdZ 17=JuUle738 02330 FAGE 1

1 H 161 TAL EVuiPMErT CORPURATION, MAYNARD, MASSACHUSETTS 91
2 H CUPYRLGHT, 1¥73

3 H

4 i OIG1TAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY
3 H FGR THE JSE Jr KRELIABILITY OF ITS SOFTWARE ON EQUIPMENT
) H wALCH IS nUT SUPPLIED By DIGITAL EWUIPMENT CORPORATION,
7 H

3 7 VERSLUN NUMpERS V13,21

9 i

14 H UATED? MARCH H, 1973

11 H

12 ; UEVICE GRLIVER FOR THE LP11/0LS11 LINE PRINTER(S)

13 H

14 H UkRIVER PARAMETERLIZATION SYMHBOLS

15 H LP11r LS11, WIDTH, SPACES, SPREAD

16 i

17

18 o IF NCF,LPTYP

19 LPTYP n @

24 «ENDC

1 e1F EW,LPTYP

22 wTLITLE DveLP@d

23 avidanl 711 u 1

24 nded1d SK1pe B 12

29 «lFF

26 «IF U, clPTYP=i>

e/ fVITLE 0v.LF1

28 LSl = 1

a2y SFREALD B 1

kY SKiIFe = 13

J1 o [FF

32 s MERKGK JUNSUPHORTEL LLIME PRINTER

33 LENDC

34 «ENDC

35

36 JIFNDF wlDTh

a7 wIUInN s 82, ;] B84, COLLIMN PRINTER DEFAULT
38 s ENDOC

39

44 P Ges Ry z %9

41 Lpael Ry s %1

a2 phdvned K2 z 4e

a3 Dopviad K3 = 43

a4 COHU24 Ha z %4

a5 Galiend Rb a A5

46 wdipwidn 8P s %6

47 BwaAnnl PC 47

438

43 vepdad Avieg s 4ui2 ; DIAGNOSTIC MESSAGE CODE

54

51 napl4a 5 KSAv = 44 7 REGISTER SAVE (MONITOR SUPPORT

DVeLPy NACKU Vidbwmid2 17=JULm73 02138 PAGE 2

1

2 sk OBL LP

3 SIDENT /18,417

4

5 H UNS=11 UEVICE DRIVER'S STANDARDIZED INTERFACE

o]

7 Ax20dr QYA LPi s RV (] t USER'S DODB PUINTER

A o IFUF L5311 48PKREAD

9 LBYTE a6 } FACILITIES INDICATOR
19 W ENDC

11 W IFS0F L311aSPREAD

12 9vuu? 992 WRYTE 3ze ;7 FACILITIES INDICATOR
13 CERDC

14 4vved @t oHYTE] ;: SPECIAL STRUCTURES, NONE
19 Mupde Vi «BRYTE <<AJUTH+37>/40> 3 STANDARD BUFFER SIZE
10 ¢évud 11 «3YTE LPaINT=L P ; INTERRUPT ENTRY OFFSET
17 @wpdo eyl «3YTE 2y 7 INTERRUPT PRIOQORITY 4
18 wvwd7 Vg e 3YTE LP uPhm P i GPEN ENTRY OFFSET

19 2dvie G6ed WBYTE LPoTHN=P 7 TRAN ENTRY QFFSET

240 vdwnll HAID «HYTE LP ChS=LP 1 CLUSE ENTRY OFFSET

21 o IF EdsLPTYP

22 wunl2 @i HYTE &

23 o IFF

24 BYTE WPy SMCmLP 7 SPECIaL ENTRY OFFSET
25 e ENDC

26 puly] «BYTE i i SPARE

27 el (4602 LPJNAME JRAQ80 /LP/ 3 UEVICE DRIVER'S NAME
23

29 VAvkna LPJTRP = 20y 7 INTERRUPT VECTOR'S ADDRESS
K17 177014 LPe(SK = 177514 ; COMMANU/STATUS REGISTER
31 177918 LPUBKE = 177816 ; DATA BUFFER REGISTER
32

33 secild vavles LPaS1ZE L 8URL wloTh 3 THIS AORU IS SET BY THE INITIA
34 vevidd o133 UpPLASS LwlxD 193 3 SET T0 THE HIGHER PRINT LIMIT
35 vdvde vdEdeA GVFRNTS , AURD &] SET TO TRUE WHEN QVER PRINTING
§ peudd Vgrend LP.LLINS L wURD i ? ALREADY SENT (CHARACTERS)
A7 ALEB YREAEY LFPJHRST WURD] ;] BLANK POSITIONS COUNTER
38 sQuiayg wavoidd LP.TCTE ZAURD ¥ } TRANSFER CHARACTER COUNT
39 avE9e Lduwgri LPBALS JwDRD v i BUFFER AUDRESS POINTER
4
41 Aded4 LFeTUF? } COMMAND DEVICE TO TOP=OF=FQORM
42 «lFUF La11
43 «3YTE 21 7 CommaND DEVICE TO ON=LINE
44 SENDC
49 vegda 419 CHYTE 19,14 ! LRy FF
G s V14
45 S EVERN
a7 o [FOF LSi11a8PREAD
a8 LEaFlbd owliry U } CHARACTER ELONGATION FLAG
49 fENIC
aw
51 POEGaN LPel N B 4i 7 PRINTABILITY, LOWER LIMIT

Qv

1o I0R 4 SR NNV

~

8

9

16
11
12
19

14
15
1o
17
18
19
24
21
22
23
24
2%
286
27
24
29
32
31
32
33

34

3%
d0

37

P

aaleda

A Bb
DAbinIE

VACRAR2

driivde

ud'ﬁ‘dz

Yl 9k

Advoun
AQN0N

Wave 4

gawl ¢

Aval B

wuiled

MACKU

cdalnl
A ang
[2-VEAS
177772
¢lweiel
1777w

w1eesy
177752

wdrdld

Goda7 7
Nhnbay
clu/fpa
17771
vlednr
Gl de @
1777 34
vioue?
uvald
177724
cubde]
177724

H
LFeliPiNG
I
LPeCLBS

-

i
LFeSP(CE

lFeddds

»

LPoTRAE

(P0mdZ2 17=Jul=73 V23430

PAGE 3

LPEn PROUCESSUR

LLUSE PRQCESONR

J &R
A00
MOy

e [FDF
MgV
XTI
. Ik ‘J!JF
MgV

W« ENDC
« JFOF
CiLn

« ENIC
B=R

«lFUF
SPeClAL

MmOy
CurFg
BNk
PGV
J AR
eEiN0C

PC,LP,STS
HLP 1 OF=e,RY
R1,LF,BAY

Lol
"-GOLP."CT

L1
k2, P TCT
LO1188SPREAD
LP.FLG
LP.INT
LS11&8PREAD
PRUCLSSCK
2(xog),R1
#1,(%1)
LP.SYCG

2wrnl),LFaFLG
®14(%e)

imay PRUCESSUR

v

ASL

PC,LP,STS
LP s KY

(1), LP.BAD

14(Rd),LF,TCT

LPLTLY

~

. w2 we W wa - -e

-

SIMULATE INTERRUPT

k1 = pPC (BY LP,8TS)
INTERWAL BUFFER'S ADDRESS

INITIALIZLE TRANSFER COUNT

K2 = =2 (BY LP,STS)

INTTTALIZE ELONGATION FLAG

DISPATCH INTERNAL BUFFER

K1 3 FUNCTION BLOCK'S ADURESS
LINE ELONGATION FUNCTION ?
NO, IGNOQRE

ENABLE/ZDISABLE ELONGATION
EXIT via COMPLETION RETURN

SIMULATE AN INTERRUPT
k@ 3 YSER'S DDB ADDRESS

RETAIN BUFFER!S ADNRESS

RETATN DUB'S BYTE COUNT

DV

& LN~

o

34

32

34
34

32
36

37
a4
39

ay
4]

Lpy

wnilla
aevile

)bﬂl(}ll(“!

Vﬂk)\()ldv‘
diuvlda

Gapldy
Arnl a2
w134
wd1des
Al 4
val142

ST
LAY]

AG1Iv
Aerl10nm
2A102

Ud 108

w17

sa1’l 4
s417 8
b 24 A
fueed

Erev
s¢2l2
wéeeld

que2ls
ADE i

WA en
A I
feedd

AR RV)
AV Zeh

Segd

vagly7
A Lir
177014
Ga2uad
wpvler
GArasg
b6HTE7
177/v4
V1452
Gl hdnh
vivwan
s10249
“lelao
¢lB7 24
1/7Ubv"n
l«f’lt"v_’é
177082
Wln/ug
177454
11zev]
LH142n
12nl27
[T
C244ad

12716/
1/7%¢24
ddellw
vabherd
vjlfjddlb
udel 8’7
lurena
177214
1oy 334
na1oy7
NaHovd
lduhia
112737
GANG 4
177310
VAN
114137
177210
VUS4

vANdE]
1772¢n

w1 e

’
LPeINTS

[T

WFPeldEd

LbFel@ls

LFa1Wd3

LEelods

LFeIWDS

LPelvb}
LPetivkl
LFe TKRTS

MACRY Virbm2 17=uulL=23 (2tdy FALGE 4

TATERRUPT PROUCESSGR (vIA INTERRUPT VECTOR AT 2¢2)

il

a3l
J P

T87

vEi
My
A1)V
MGV
MOV
v

Ml
MY

MOV
Hely
LMk E

oL T
o LFOF
HBisl
NG
23
-l‘lfv')C
LMP

pak
AN
Bufl
BIT

BM]
BEG
LEC
oMl
“Ove

U
noVH

Clw

kigrs e8P ,CSR

LP.1v
LP L ERE

LPL.TLT

LPDUNE
Rd,m (SP)
RAS'*LSP)
RZ2,=L5P)
Hll'\ﬁp)
LP KOS, 4

LPLIN,RS
LPJRAL,R2

(Re)+,R1
LE VR
rilpulF LUK

LP.110
SPACES
LFaT¥2
Rd

LPLTRT

K1, UPPCAS

LPeIl8

Rks

LFP UMK

B1l e, PRLP.CSR

LP.I22
LP,1ew

k4

LP.TIES

KAy, PuLF,DBR

LP,1u3
Rie@R| P, UER
R4

LP,TLY

LPal¥o

i

w4 WS w3 WM ma we -

e

- - wa we -

-~ we wa

- wa ws we we

~e

-

-.

DISABLE INTERRUPT
SEGREGATE ERRORS

ENTER ERRODR PROCESSOR

ANY CHARACTERS REMAINING ?

NO» LINE COMPLETED
SAVE REGISTERS

K4 = BLANK CUUNTER
K3 = PRINT PUSITION
R2 ® BUFFER POINTER (ADDRESS)

waw ACUESS CHARACTER wiw
NULL (4) IGNURED
PRINTABILITY CHECK

EXCEEDS LOWER LIMIT

valLlD CHARACTER, SO FAR
BLANK (44) ISOLATED, COUNT
ACCESS NEXT CHARACTER

FRINTABILITY CHECK

EXCEEDS WPPER LIMIT
FRINTER'S WIUTH EXCEEDED ?
YES, DU NOT PRINT

ACCESS ERROR/READY STATUS

ERRUR INDICATION

NOT READY INUICATION

DECREMENT BLANK COUNTER

NOT PROUCESSING BLANKS
BLANK/HTAR EXPANSION PERFORMED

CONTINUE PENDING COMPLETIUN
wkw PRINT CHARACTER www
INSURE NU BLANKS PENDING
INCREMENT BUFFER'S CHARACTER

COUNTER, aNY MORE ?
YES

Gy

R M

14

11
12

13
14
15
1e
17

14
19
2
21
22
23
24
25
25
27
25
29
3w

a1
32
33
J4

Py

yrvighaa

QALEDS
Bam292

AnagDbd

daveng
BAezna

el h

waz2la

AVSan

rndde

Ao b g

Avdli
Audlz

vadln

Ao dedn

1o87a7/
177914
1dalvi
Looedel
iy dhh
¢l18/749
GAndad
204030
Vl‘lo?;f“-a
177914
wdipl74
tunwl d

12v127
Agudgll
valwid

V,<‘1°760
177519

vordio

vbz410
vH2/7148
177774
19z0v 4

Ve léo

- g ww

LPanEd

WP etilNg

LFallus

-~ we wa

WPa111:

LFell?sd

T5Tn

pPl
JSK

Mgy

JOR
ngv

MOV

» [FOF
757
bEU
hAdk
.lif"!)c
LYV}

. 1F")F
Bhtk
CLR
ty =
«ENDC
A
Bwld

ag

dr

MAGRU VRbevZ 17wdJl=7d 02334 PAGE 5

LINE CLOMPLETED

8L Pa Sk

LP0121
RblL‘Pnstr

OA3 , K5AV p= (5P)

KD, 68 (5P)+
LP kU

ela(ry)

Rl,nll

LFPGI13

UEVICE BUSY ?

YES
KESTORE TEMPORARIES

SAVE REGISTEKS
K3 & USER'S DDB ADDRESS

EXIT vIA COMPLETION RETURN

HORIZONTAL TAB (11) ?

NO

MURILONTAL TAR SIMULATIQON VIA BLANKS

LP.SlZ.-(SP]

L511&5PREAD
LPWFLG
LFPeIit

(51)

RS, (OP)
L51188PREAD
Lr.I12
LFLTLT
LR, ONE

"4, (SP)
®#177770,(5P)

(oP)*,R4

LPLTRT

.

’

ws v wa -a - we ma

-~ wn

-n ws wma

PRINTER'S MaX WIOTH

ELONGATIUN 7
NO
(PRINTER'S wIDTH)/2

= PRINT POSITION

NOT EXCEEDED PRINTER'S WIDTH
ELUNGATION LINE TERMINATION
EXIT

* BLANKR COUNTER
(MoDuLO 8) » 8

+ BLANK COUNTER
= BLANK COUNTER
ACCESS NEXT CHARACTER

ov

29
29
27
29

34
31
32
33

34
33
36
37
38
39
44
a1

'LPD

AR IR2
Aevaes
B dd
TR

dandde
B d e

Yeudda

i g 6
PRANE RS
A3

FERCP

QusRa
‘wkn&bb

Audog
40308
ORI
BOE7 2
"TRYA-

vy B it
wuadgYy

whddd

A avH

124127 LP.11383 Lk

welitetl 3
vhaduld
cd1uld
vl
177444
Geleew
bleZind
177452
wibDaLiy

wev?32

levlz/
G e &2
Ad1xild
w2
[A
12w 127
il d
Gk @]t
el A
12127
dutield
ro1717

cle/ad
177412
veHasd

a7

LPeLAXS

LFelldz

LPsIYVE

LPallDs

LRellts?

BeT
BNk
1357

BAE
v

NE
o LFOE
rsT
Beu
ASK
oy
RTINS

=104

e LFOF
73T
Bl
Cmpa
XA

«ENQC
LwPs

ohE
MOV

LAPE

HLT
bEew
f,AFA

BEG

iV

NEG
-1*\”"
187
B L
ASK
rigV
JENDC
B

MALRY ViDew?2 17=Jule73 22330 PAGE B

Ri,u15

LP,114
LPellb
OVPRNT

LP,[16
Lpos‘ZORd

RS
LS11&5PKEAD
LP L FLEG
LP.IXX

K3
ROsLF,FLG

LP.I¥8
LS11&5PREAD
LPoF (o
LR 1YY
Kl als
LP.1¥W4

LFe117
HEKIP2, k1

Rl,nl2

LP.I17
LEL,ILlR
Rl,uld

LP 1P

LP.SIZ}R&

K3
LSL1188PREAD
l&PIFL(J
LP,1¢4

R
KélLPaFLG

LP.1¥g

-

-~ we ws W -

-

-

-

- ws wa we

CARRKIAGE=RETUKRN (15) ?

NJy ABOUVE
NO, BELOW
PRINT THE CARRIAGE~RETURN 2

YES
K3 2 m(PRINTER'S WIDTH)

ELONGATIUN ENABLED 7
NO

HALVE PRINTER'S WIDTH
RE=INITIALIZE THE FLAG

SUPPRESS CARRIAGE=RETURN

NQ
SUBSTITUTE APPRUPRIATE CHAR

LINEFEED (12) 2

NO, BELOW
YES

VERTICAL TAB (13) ?

YES,
NQ,

IGNURE IT)
FORMFEED (14) ISULATED

K3 3 =(PRINTER'S WIDTH)

ELONGATIUN ENABLED 7
NO, PRINT CHARACTER
HALVE PRINTER'S WIDTH
KRE=INITIALIZE THE FLAG

PRINT THE CHARACTER

v

NGO [\

(']

19

11
12

13
14
1o
16
17
13

14

24
21
22
23
24

25

206
27

sLPL

Aamala

Minvdla
Aedind 16

Anvad?

Y 4dd

Bdeady
wvadz

N d3n
Adaéa
k446
G042
W42

alidh4g
wada

DHaAve

naaz a
Aualg
svid7 4
dudlb
Ldnde

ra506

ule7ul
b ady
Wda®7d
12w127
17
diuduird

wadglil
vd(1aaa
vanobe
12127
w177
ﬂﬁ1077
168727
177354
wienladl
1ﬁ1&56
el S7

P R P
GUHdn R
wVigdel
vaitabh 2
D2l s7
A b
177914
viAni 2

auhInd
Cahve e
nlﬁ’ﬁﬂ
177312
dlel4a
vide4n2
bdpdng
coi 167
1774874

LPeI17%

Lellbi

- ws e

LFell¥?

LFsI20t

Lreldls

LF,122:

LPebRKS

PACKU VESmy 17=JuL=73 22539

VR

=
CHFd

guT

g1l

oR
Coka
BE
Lxirs

gHl
Hae

vel
DEC
o 3R

=B

KT1

el
VEC
hIvRY

MOV

11
JYF

PAGE 7

QQﬂ'NI

LPe163
wl,ul7e

LP. Il

-

~e wn

UNPRINTABLE, BLANK SuBSTITUTIQ

PRINT A DL ANK
LOWER UASE ALPHABET ?

ExCEEDS

LUWER CASE TO UPPER CASE CUNVERSIUN PERFURMED

"4ﬂ'K1

LP,193
wl,&l177

LPlUNP
UPPCAS,1)37
LP,1¥3
LF.I17

"3

K2

ko, LP,SET

#lu2r&ulP,CoR

ke
k2
LP oA, = (5P)

Uhupd,m(9P)

LPJINT

-~ wa

- ws

-~

"YES,

CONVERSIUN PERFORMED

FRINT CHARKACTER
RUBOUT (177) 72

I6NURED
UPPEx CASE PERMITTED ?

PRINT CHARACTER
BLANK SUBSTITUTIO

YES,
UNPRINTABLE,

BACKUP PRINT POSITION
BACKUP BUFFER POSITION
KESTORE TEMPURARIES

ENABLE INTERRUPT

EXIT FRUM INTERRUPT
BACKUP PRINT POSITION
BACKUP HUFFER PUSITION
VEVICE DRIVER'S MNEMONIC

MESSAGE CODE

TRY AGAIN

DV Py (ALFU Vipded2 17=JUL=73 #233v FAGE 8

1 i

2 i INTERRUPT SIMULATOR

3 ;

4 Woudla 212061 LP.STdE MOV (SP)+, R 1 RETURN PC

3 vaudlh alledo “av (SP)r=(SP)] OLD PC

o mumhdn ddhuaz Cux k2 7 ADDRESS PS (=2)

7 A9adE2 «lddbn My -(K2),2(5P) ! OLD STATUS
0(«'@&"5{-&

3 yaandn a13712 MOV SKLPeTRF*2, (R2) § NEW STATUS
Sy

Y PAunde Llnlnl nov R1,°C } RETURN

149

11 A<ada alwdel LP.SETE ™m0V R4,LP BKS } RESTORE TEMPURARIES
177265

12 4584y 210387 MOV RS pLFLLIN '
1772n 4

19 Avinda aslvén/ MOV R2,LF,BAU ;
177262

14 ahoar vléerd Mmav 14(8F),~4 } RESTORE REGISTER 4
ADyb L d

13 4uB94 slgboo My (5R)*,6(5F) } RETAIN RETURN ADDRESS
SGANEAD

L5 auans elznil fov (5P)+,R1 } RESTORE REGISTERS

17 2wdo2 wlzgord MY (5P)+,RE ;

183 9h98 12049 WOV (SP)+,R3 ;

19 yubln apudnd K3 RH } EXIT SUBROUTINE

2y pdlrea it LEND

IV, LFY MAlkd Vibee2 A7«)ul=73 {2330 FAGE 8wl
Srmsul, TAoLE

AAAZ2 B Yuwddp LP AAARGRAR LPTYP & Ype@dw
LP AL Quadudex LPL3KE WOALLEER LP«CLS Q0QR36K
LPeUSRE 177&14 LP.OBRE 177516 LP.ONE Qud252k
LPJnP i 2den LPLJUN 464296R LP+ERR WAd476R
LR G LNT B)ax WP IXX VAuv34aR LPI dRnd124R
LP,1vn Blal9nx LPelWl WuA102K LPalIW2 200170R
WPeldd dudllng LPe L4 PWpRUEK LPel63 ©Q0230R
WPe Lo dvy2ddn LP.I1d 224274R LPeI1l W2Y306R
LPLL1E danalin® LPeI1ld @B03C2K LPelld Dr0350R
LPeIlld wAYI0Z2X WP I16 vnsader LPel17 dnvaloRr
LPLL18 ¢yralns LP.119 20@4d2R LPe120 ¥WQR452R
LPa121 Vadeden WPel22 998487 2K LPoLIN d0@n24R
WP el il w® GUhbALE LR NAM papul AR LPUPN QUORNIGR
LPe32l duabodx LP.3IL wdunléR LP.STS d@ga514R
WPLTLT UvGgdan LP.TUF 224234R LP«TRN UWRUQ63R
LR.THP3 guades LPTRT @2g29€R LPl1 = dnuveal
QVPRNT dduindZN $ALRP2 ® gvnle S.KRSAVE 4ApaR44
UPPULAS wddgdex STUTH B Quulée
o Add, Vuypdn s

s oa? e vdl

EARIORS kiegleus v
FREE (WRES 4yn1i, wORDS
,l,Pg/L:'Q(DT:L_f‘u';:dﬁ‘ﬂ.’\/wl

CROSS REFERENCE TADLE Sel

Apd2 1=49% 7=2D

) Zm= 28 2w /8 2=16 2=18 d=16 2=z dmda 5= 9

LPTYP 1=14 1=21 e=21

LP,BAL Z=35% J= 06 J=3%0 4=1) Cmly®

LPJ3KS Zdwd7a G=19 Bell1®

LP.CLY 2=24 3= Ou

WP 3R Z2mduR d4e 4F 4e23y e & /=166

LPLUBR 2mwdld 4=34s 4=-13¢

LPaJNE D= n#

WP quUNP 4ml7 4=28 dedan bHwiy 7«11

WPl aw & he /&

LPJENKR b= £ J=24g

LPL YT 2=lo I=10 4= 38 7=27

LP.IXX b=las

LP.1¥ ~ 4= § 4o /¢

LPeldn 4dmibs 4mal

LPe1V¥1 4mldn

LPLlug 4ml5a

LP..["—!S 4mz/a A-JD 7= 2 7= 9 /-1d

P fud Aw2iR hAwil

LP.Lad 4=3y 4=304

LPL (U8 4=d78 HA=10

LPelly 4m19 feidd

LPel1l1 Dw238

LPIl2 Vw2 G4

qulid o=13 b= 1n

LPJll4d 6= 2 fmiby

LPLL13 bm 4 KEw2Dp

LP,l16 ©O= § Emgd B=32a

LPLI17 ©Om2a Cwp? 7= 14 7=l4

LP. L1838 4d=?Zh Jo 3%

LP 19 7« 4 7=108

LPL, 129 4e31 7=1064

LP,l21 BSe & 7m1d8

LP. 122 4=l 7T=22r

LPLIN 2widnae 4=i1d Bal28

LPLLUn 2eDj3 4=i0

LPeHAM dwdyd =24

LPaPN 2e14 3= 35

LPesHET = n 7=18 Bell¥

LPeSLZ 2wila Hei? Hhw 3§ w33

LPaTS d= 6 =39 Be 44

LPL.TCT 2=d4% Im1d® Jedis Jml/7€8 du 7 4=398

WP L TUF 2ed13 3m /

LPTRN Z2=]8 Jmidn

LPLIHP dw2o8 g= B

LPLTRT 4wdyd H=3d

LPll 1=234

Loil e 4 2=11 2=42 Z=47 Sm 9 Je12 Idmih I=20 5«18
I=24 fe B bwld o=35

QVPANT 2eiddy b= 4

PC l1=472 3w D& Je3i® o= 9d
R4 l=gug 3=m3ds Jeyh =36 De GO H=ip
U Ilm416 3= /& 3= & 4el? del® 4=yl 4aph 4=36 S5=12

be | b=%9 (=250 b=26 bte2y J= 18 7= 3 7= 88 71D
= a® Bw 9 Be]36

R2 L=d28 3eld 4mli 4=158 delt 7m=17€ 7=236 B= 668 Ba 7
Be 8% He=id B=il®

CRISY REFExENCE TARLE Sed

R3 i=d43n 4mie A=l 48 4m276 O=24 tw 68 CEwm 78
Jelts® 7m2%26 dei? BwlBe

4 l=4a% 2= b A=130 4m326 4w37¢ H=29 Sm=31¢

EE lwany He D@ Ym BE 7=188 dYelUl

SKRIP2 I=245% He2D

3 1w Am Y@ dm | 2@ 4=118 dmie® Em 78 S5« 8

Dmdyd Swid® DHwd) 7=248 /w258 Re 4 U= 56
Seln® Be10 d=17 Bel3

3PALES Gmdy

IPNE AL 2w # 2=l 2wd? =145 w2y Hmi8 Hm24
a=3n

S,R8AV led1s He /

JPPLAS Z=34% 4w2D 7=12

AIOTA 1=36 2wid 2=33

. *"1

CRUSS NEFewr «CE TabdLE C=1

adegdn
« ABS, BD2Yn

6=33¢

=11

5=17¢
8= 7¢

6= 8

f=340

Bewide

5=230
8=14

=16

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters.

DIGITAL Software News for the PDP-8 and PDP-12
DIGITAL Software News for the PDP-11l
DIGITAL Software News for 18-bit Computers

These newsletters contain information applicable to software available
from DIGITAL'S Software Distribution Center. Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers.
To assure that the monthly DIGITAL Software News 1is sent to the
appropriate software contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
office,

Questions or problems concerning DIGITAL'S software should be reported
to the Software Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully
completed and accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter,

Orders for new and revised software manuals, additional Software
Performance Report forms, and software price lists should be directed
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
When ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it. For further
information, please write to:

Digital Equipment Corporation
DECUS

Software Engineering and Services
Maynard, Massachusetts 01754

DOS/BATCH
Device Driver Information
DEC-11-ODEVA-A-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title Date:
Name: Organization:
Street: Department:

City: State: Zip or Ceountry

Fold Here

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

