
DEC-ll-ODEVA-A-D

DOS/BATCH

DEVICE DRIVER INFORMATION

FOR THE DOS/BATCH OPERATING SYSTEM

Monitor Version V~9

August 1973

For additional copies, order No. DEC-ll-ODEVA-A-D from Digital Equipment
Corporation, Software Distribution Center, Maynard, Massachusetts ¢1754.

~~
SOFTWARE

DISTRIBUTION
CENTER

Your attention is invited to the last two pages of this docu­
ment. The "How to Obtain Software Information" page tells
you how to keep up-to-date with DEC's software. The "Reader's
Comments" page, when filled in and mailed, is beneficial to
both you and DEC; all comments received are acknowledged and
considered when documenting subsequent manuals.

COPYRIGHT ® 1973,. DIGITAL EQUIPMENT CORP., MAYNARD, MASS.

Associated documents:

DOS/BATCH Monitor
Programmer's Manual, DEC-ll-OMPMA-A-D

DOS/BATCH User's Guide, DEC-ll-OBUGA-A-D

DOS/BATCH Assembler (MACRO-II)
Programmer's Manual, DEC-Il-LASMA-A-D

DOS/BATCH FORTRAN Compiler and Object Time System
Programmer's Manual, DEC-ll-LFRTA-A-D

DOS/BATCH System Manager's Guide, DEC-ll-OSMGA-A-D

DOS/BATCH File Utility Package (PIP)
Progra.mmer's Manual, DEC-ll-UDEBA-A-D

DOS/BATCH Debugging Program (ODT-llR)
Programmer's Manual, DEC-II-UDEBA-A-D

DOS/BATCH Linker (LINK)
Programmer's Manual, DEC-ll-ULKAA-A-D

DOS/BATCH Librarian (LIBR)
Programmer's Manual, DEC-ll-ULBAA-A-D

DOS/BATCH Text Editor (EDIT-II)
Programmer's Manual, DEC-ll-UEDAA-A-D

DOS/BATCH File Compare Program (FILCOM)
Programmer's Manual, DEC-ll-UFCAA-A-D

DOS/BATCH File Dump Program (FILDMP)
Programmer's Manual, DEC-ll-UFLDA-A-D

DOS/BATCH Verification Program (VERIFY)
Programmer's Manual, DEC-Il-UVERA-A-D

DOS/BATCH Disk Initializer (DSKINT)
Programmer's Manual, DEC-ll-UDKIA-A-D

Trademarks of Digital Equipment Corporation include:

DEC
DIGITAL (Logo)
DEC tape
UNIBUS

ii

PDP-II
COMTEX-Il
RSTS-Il
RSX-ll

PREFACE

This document provides general information about the DOS/BATCH

device drivers which handle I/O transfers between the PDP-II and its

peripheral devices. A sample listing of the Line Printer Driver is

provided in Appendix B.

NOTE

The software described in this manual
is furnished to purchaser under a li­
cense for use on a single computer
system and can be copied (with inclu­
sion of DEC's copyright notice) only
for use in such system, except as may
otherwise be provided in writing by DEC.

This document is for information pur­
poses and is subject to change vlithout
no·tice.

DEC assumes no responsibility for the
use or reliability of its software on
equipment which is not supplied by DEC.

iii

CHAPTER

CHAPTER

CHAPTER

CONTENTS

1 INTRODUCTION

2 DRIVER FORMAT

2.1 STRUCTURE

2.1.1 Driver Interface Table

2.1.2 Setup Routines

2.1.3 Interrupt Servicing

2.1.4 Error Handling

2.2 INTERFACE TO THE DRIVER

2.2.1 Control Interface

2.2.2 Interrupt Interface

3 STAND-ALONE USE

3.1 DRIVER ASSEMBLED WITH PROGRAM

3.1.1 Setting Interrupt Vector

3.1.2 Parameter Table for Driver Call

3.1.3 Calling the Driver

3.1.4 User Registers

3.1.5 Returns From Driver

3.1.6 Irrecoverable Errors

3.1.7 General Comment

3.2 DRIVERS ASSEMBLED SEPARATELY

3.3 DEVICE-INDEPENDENT USAGE

1-1

2-1

2-1

2-1

2-1

2-2

2-2

2-2

2-2

2-3

3-1

3-1

3-1

3-2

3-3

3-3

3-4

3-5

3-6

3-6

3-8

APPENDIX A I/O DRIVERS WITHIN THE DOS/BATCH OPERATING SYSTEM A-I

A.l DRIVER STRUCTURE A-I

A.2 MONITOR CALLING A-2

A.3 DRIVER ROUTINES

A.3.1 TRANSFER

A.3.2 Interrupt Servicing

A.3.3 OPEN

A.3.4 CLOSE

A.3.5 SPECIAL

A.4 DRIVERS FOR TERMINALS

APPENDIX B SAMPLE LINE PRINTER DRIVER LISTING

v

A-4

A-4

A-5

A-6

A-7

A-7

A-8

B-1

CHAPTER 1

USING DEVICE DRIVERS OUTSIDE DOS/BATCH

Subroutines to handle I/O transfers between a PDP-ll and each of

its peripheral devices are developed as required for use within the

Disk Operating System DOS/BATCH. These subroutines are made available

within an I/O utilities Package for the benefit of PDP-ll users who

have configurations unable to support DOS/BATCH or who wish to run

programs outside DOS/BATCH control.

All the subroutines associated with one peripheral device form

an entity known as a driver. This manual provides a general descrip­

tion of a driver and shows how it can be used in a stand-alone environ­

ment. The unique properties of each driver are discussed in separate

documents, which are supplements to this manual. The I/O Utilities

Package for any system is determined by the peripherals of that system.

Thus, the full documentation for a particular Package consists of this

document and applicable supplements.

1-1

CHAPTER 2

DRIVER FORMAT

2.1 STRUCTURE

The basic principle of all drivers under the DOS/BATCH Monitor

is that they must present a common interface to the routines using

them in order to provide device-independent operation. The subroutines

are structured to meet this end. Moreover, a driver can be loaded

anywhere in memory under Monitor Control. Its code is always position­

independent (PIC).*

A detailed description of a driver is found in Appendix A. This

section describes driver interfaces.

2.1.1 Driver Interface Table

The first section of each driver is a table which contains, in

a standard format, information on the nature and capabilities of the

device it represents and entry points to each of its subroutines. The

calling program can use this table as required, regardless of the

device being called.

2.1.2 Setup Routines

Each driver is expected to handle its device under the PDP-II

interrupt system. When called by a program, therefore, a driver

subroutine merely initiates the action required by setting the device

hardware registers appropriately. It returns to the calling program

by a standard subroutine exit.

The main setup routine prepares for a data transfer to or from

the device, using parameters supplied by the calling program. Normally,

blocks of data will be moved at each transfer. The driver will return

control to the program only when the whole block has been transferred

or when it is unable to continue because there is no more data avail­

able.

* See DOS/BATCH Assembler (MACRO) Programmer's Hanua1 for information
on PIC.

2-1

The driver can also contain subroutines by which the calling

program can request (1) start-up or shut-down action, such as leader

or trailer functions for a paper tape punch, or (2) some special

function provided by the device hardware (or a software simulation of

tha1: for some similar device), e.g., rewind of a magnetic tape or

DECt.ape.

2.1.3 Interrupt Servi.cing

The driver routine to service device interrupts is particularly

depE~ndent upon the device hardware provisions for controlling transfers.

In general, the driver determines the cause of the interrupt and checks

whether the last action was performed correctly or was prevented by

some error condition. If more device action is needed to satisfy the

program request, the driver again initiates that action and takes a

nor.mal interrupt exit. If the program request has been fully met,

control is returned to the program at an address supplied at the time

of t~he request.

2.1.4 Error Handling

Device errors can be handled in two ways. There are some errors

for which recovery can be programmed; the driver will, if appropriate,

attempt this itself (as in the case of parity or timing failure on a

bulk-storage device) or will recall the program with the error condi­

tion. flagged (as at the end of a physical paper tape). Other errors

normally require external action, perhaps by an operator. The driver

calls a common error handler based on location 34 (lOT call) with

supporting information on the processor stack to handle such errors.

2.2 INTERFACE TO THE DRIVER

2.2.1 Control Interface

The principle link between a. calling program and any driver sub­

routine is the first word of the driver table (link word). In order

to provide the control parameters for a device operation, the calling

program prepares a list in a standardized form and places a pointer

to the list in the link word. The called driver uses the pointer to

access the parameters. If the driver need return status information,

it can place it in the list area via the link word. The first word

of the driver table can also act as a busy indicator; if it is ~, the

2-2

driver is not currently performing a task, but if it contains a list­

pointer, the driver can be assumed to be busy. Since most drivers sup­

port only one job at a time, the link word state is significant.

2.2.2 Interrupt Interface

Although the driver expects to use the interrupt system, it does

not itself ensure that its interrupt vector in the memory area below

4¢¢S has been set up correctly; the Monitor takes care of this.

However, the driver table contains the information required to initialize

the appropriate vector.

2-3

CHAPTER 3

STAND-ALONE USE

Because each driver is designed for operation within the device­

independent framework of the Monitor, it can be similarly used in

other applications. Since the easiest way to use the driver is to

assemble it with the program that requires it, this method will be

described first. Other possible methods will be discussed later.

3.1 DRIVER ~SSEMBLED WITH PROGRAM

3.1.1 Setting Interrupt Vector

As noted in paragraph 2.2.2, the calling program must initialize

the device transfer vector within memory locations ~-377. The address

of the driver's interrupt entry point can be identified on the source

listing by the symbolic name which appears as the content of the

Driver Table Byte, DRIVER+5. The priority level at which the driver

expects to process the interrupt is at byte DRIVER+6. For a program

which can use position-dependent code, the setup sequence might be:

MOV
MOVB
CLRB

#DVRINT, VECTOR
DRIVER+6, VECTOR+2
VECTOR+3

iSET INT. ADDRESS
iSET PRIORITY
iCLEAR UPPER STATUS BYTE

(where the Driver Table shows at DRIVER+5: .BYTE DVRINT-DRIVER).

If the program must be position-independent, it can take advantage

of the fact that the Interrupt Entry address is stored as an offset

from the start of the driver, as illustrated above. In this case, a

sample sequence might be:

MOV
ADD
MOV
CLR
MOVB
ADD
CLR
MOVB

PC,Rl
#DRIVER-.,Rl
#VECTOR,R2
@R2
5(Rl), @R2
Rl, (R2)+
@R2
6(Rl),@R2

3-1

iGET DRIVER START

i ••• & VECTOR ADDRESSED
iSET INT. ADDRESS
i ••• AS START ADDRESS+OFFSET

iSET PRIORITY

3.1.2 Parameter Table for Driver Call

For any call to the driver, the program must provide a list of

control arguments mentioned in paragraph 2.2.1. This list must adhere

to the following format l
:

[SPECIAL FUNCTION POINTER] 2

[BLOCK NO.] 3

STARTING MEMORY ADDRESS FOR TRANSFER
NO. OF WORDS to be transferred (2's complement)
STATUS CONTROL showing in Bits:

~-2 Function (octally 2=WRITE, 4=READ)~
8-1~ Unit (if Device can consist of several,

e.g., DECtape)
11 Direction for DECtape travel (~ = Forward)

ADDRESS for RETURN ON COMPLETION
[RESERVED FOR DRIVER USE] 5

The list can be assembled in the required format if its content will

not vary. The driver can return information in this area as described

in a later paragraph; however, this will not corrupt the program data

and it is cleared by the driver before it begins its next operation.

On the other hand, most programs will probably use the same list

area for several tasks or even for different drivers. In this case,

the program must contain the necessary routine to set up the list for

each task before making the driver call, perhaps as illustrated in the

next paragraph. It must be noted, however, that the driver may refer

to the list again when it it recalled by an interrupt or to return

information to the calling program. Therefore, the list must not be

changed until any driver has completed a function requested; for con­

current operations, different list areas must be provided.

lIn some cases, it can be further extended as discussed in later para­
graphs.

2 Required only if Driver is being called for Special Function; addresses
a Special Function Block.

3 Required only if the Device is bulk storage (e.g., Disk or DECtape).

4Mos t devices transfer words regardless of -heir content, i.e., ASCII
or Binary. Some devices (e.g., Card Reader) may be handled differently
depending on the mode for these, Bit ~ must also be set to indicate
ASCII=~, Binary=l. In these cases, the driver always produces or
accepts ASCII even though the device itself uses some other code.

5 This word may be omitted if the device is bulk storage (see below).

3-2

3.1.3 Calling the Driver

To enable the driver to access the parameter list, the program

must set the first word of the driver to an address six bytes less

than that of the word containing MEMORY START ADDRESS. It can then

directly call the driver subroutine required by a normal JSR PC,xxxx

call.

As an example, the following position-independent code might

appear in a program which wishes to read Blocks #1~~-1~3 backward from

DECtape unit 3 into a buffer starting at address BUFFER.

WAIT:

TABLE:

MOV
ADD
MOV
ADD
MOV
MOV
MOV
ADD
MOV
CMP
MOV
JSR

.WORD ~

.WORD ~

.WORD ~

.WORD ¢

.WORD ~

PC,R~
#TABLE+12-.,R~
PC, @R~
#RETURN-. , @R~
#54~4,-(R~)
#-1~24.,-(R~)
PC,- (R~)
#BUFFER-. ,@R~
#1~3,-(R.0)
- (R~) ,- (R~)
R~,DT
PC,DT.TFR

3.1.4 User Registers

iGET TABLE ADDRESS

iGET AND STORE •••
i ••• RETURN ADDRESS
iSET READ REV. UNIT 3
i4 BLOCKS REQUIRED
iGET AND STORE
i ••• BUFFER ADDRESS
;START BLOCK
iSUBTRACT 4 FROM POINTER
;SET DRIVER LINK
;GOTO TRANSFER ROUTINE
; RETURNS HERE WHEN
i ••• TPANSFER UNDER WAY
; RETURNS HERE WHEN
i ••• TRANSFER COMPLETE
;LIST AREA SET
i ••• BY ABOVE SEQUENCE

During its setup operations for the function requested, the

driver assumes that Processor Registers ~-5 are available for its use.

If their contents are of value, the program must save them before the

driver is called.

While servicing intermediate interrupts, the driver may need to

save or restore its registers. It expects to have two subroutines

available for the purpose (provided by the Monitor). It accesses them

via addresses in memory locations 448 (S.RRES for restores) using the

sequence:

MOV
JSR

@#44,-(SP)
R5,@(SP)+

3-3

;OR 'MOV @#46,-(SP)

It must also ensure that their start addresses are set into the

correct locations (44 8 and 46
8
).

At its final intE~rrupt, the driver saves the contents of Registers

S-s before returning control to the calling program completion return.

3.1.5 Returns From Driver

As shown in the example in paragraph 3.1.3, the driver returns

con"trol to the calling program immediately after the JSR as soon as

it has set the device in motion. The program can wait or carry out

alternative operations until the driver signals completion by return­

ing at the address specified (i.e., RETURN above). Prior to this, the

program must not attempt to access the data being read in, nor refill

a buffer being written out.

The program routine beginning at address RETURN varies according

to the device being used. In general, the driver has given control

to lthe routine for one of two reasons; namely, the function has been

satisfactorily performed, or it cannot be carried out due to some

hardware failure with which the driver is unable to cope, though the

proqram may be able to do so. In the latter case, the driver uses

the STATUS word in the program list to show the cause:

Bit 15 1

Bit 14 = 1

indicates that a device or
timing failure occurred and the
driver has not been able to
overcome this, perhaps after several
attempts.

shows that the end of the available
data has been reached.

The driver places in R~ the content of its first word as a pointer

to the list concerned.

In addition, the driver can have transferred only some of the

data requested. In this case, it will show in the RESERVED word of

the program list a negative count of the words not transferred in

addition to setting Bit 14 of the STATUS word. As mentioned in the

note in paragraph 3.1.2, this applies only to non-bulk storage devices.

The drivers for DECtape or disks l always endeavor to complete the full

transfer, even beyond a parity failure, or they take more drastic

action (see paragraph 2.1.6) •
IThis includesRFll 5lsk; although this is basically word-oriented, it
is assumed to be subdivided into 64-word blocks.

3-4

It is thus the responsibility of the program RETURN routine to

check the information supplied by the driver in order to verify that

the transfer was satisfactory and to handle the error situations

appropriately.

In addition, the routine must contain a sequence to take care of

the Processor Stack, Registers, etc. As noted earlier, the driver

takes the completion return address after an interrupt and has saved

Registers ~-5 on the stack above the Interrupt Return Address and

Status. The program routine should, therefore, contain some sequence

to restore the processor to its state prior to such interrupt, e.g.,

using the same Restore subroutine illustrated earlier:

MOV
JSR

RTI

@#46,-(SP)
R5,@(SP)+

3.1.6 Irrecoverable Errors

iCALL REGISTER RESTORE

iRETURN TO INTERRUPTED PROG.

All hardware errors other than those noted in the previous para­

graph are more serious in that they cannot normally be overcome by the

program or by the driver on its behalf. Some of these could be due to

an operator fault, such as neglecting to turn a paper tape reader to on

or to set the correct unit number on a DECtape transport. Once the

operator has rectified the problem, the program could continue. Other

errors, however, will require hardware repair or even software repair,

e.g., if the program asks for Block 2~~~ on a device having a maximum

of l~~~. In general, all these errors will result in the driver

placing identifying information on the processor stack and calling lOT

to produce a trap through location 34
8

-

Under DOS/BATCH, the Monitor provides a routine to print a tele­

printer message when this occurs. In a stand-alone environment, the

program using the driver must itself contain the routine to handle the

trap (unless the user wishes to modify the driver error exits before

assembly). The handler format will depend upon the program. Should

it wish to take advantage of the information supplied by the driver,

the format is as follows:

3-5

(SP) : Return Address Stored by lOT Call 2 (SP) : Return Status
4 (SP) : Error No. Code generally unique to driver
5 (SP) : Error Type Code: 1 Recoverable after Opera-

·tor Action
3 No recovery

6 (SP) : Additional Such as content of Driver,
Information Control Register, Driver

Identity, etc.

As a rule, the driver will expect a return following the lOT call in

the case of errors in Type 1 but will contain no provision following

a return from Type 3.

3.1 .. 7 General comment

The source language of each driver has been written for use with

DOS/BATCH and contains some code which will not be accepted by the

Paper Tape Software PAL-llR, in particular, .TITLE, .GLOBL, and

Conditional Assembly directives. Such statements should be deleted

before the source is used. Similarly, an entry in the driver table

givE~s the device name as .RAD5~ IDTI to obtain a specifically packed

format used internally by DOS/BATCH. If the user wishes to keep the

name, for instance, for identification purposes as discussed in

sec1:ion 3.3, .RAD5~ might easily be changed to .ASCII without detri­

men·tal effect, or it might be replaced with .WORD ~.

3.2 DRIVERS ASSEMBLED SEPARATELY

Rather than assemble the driver with every program requiring its

availability, the user may wish to hold it in binary form and attach

it t:o the program only when loaded. This is readily possible; the

only requirement is that the start address of the driver should be

known or be determinable by the program.

The example in paragraph 3.1.2 showed that the Interrupt Servicing

routine can be accessed through an offset stored in the Driver Table.

The same technique can be used to call the setup subroutines, as

these also have corresponding offsets in the Table, as follows:

DRIVER+7
+l~
+11
+12

TI1:the routine is not

open l

Transfer
Close!
Special Functions

provided, these are ~

3-6

The problem is the start address. There is the obvious solution of

assembling the driver at a fixed location so that each program using

it can immediately reference the location chosen. This ceases to be

convenient when the program has to avoid the area occupied by the

driver. A more general method is to relocate the driver as dictated

by the program using it, thus taking advantage of the position­

independent nature of the driver. The Absolute Loader, described in

the Paper Tape Software Handbook DEC-ll-XPTSA-A-D, Chapter 6, provides

the capability to continue a load from the point at which it ended.

using this facility to enter the driver immediately following the

program, the program might contain the following code to call the sub­

routine to perform the transfer illustrated in paragraph 3.1.3.

PGREND:

MOV
ADD
MOV
ADD

CMP
MOV
CLR
MOVB
ADD
JSR

.END

PC,Rl
#PRGEND-. , Rl
PC,R~
#TABLE+12-.,R~

- (R~) , - (R~)
R~, @Rl
-(SP)
l~(Rl),@SP
(SP)+,Rl
PC,@Rl

;GET DRIVER START ADDRESS

;GET TABLE ADDRESS
iAND SET UP AS SHOWN
; ••• IN SECTION 3.1.3

iFINAL POINTER ADJUSTMENT
iSTORE IN DRIVER LINK
iGET BYTE SHOWING •••
i ••• TRANSFER OFFSET
iCOMPUTE ADDRESS
;GO TO DRIVER

This technique can be extended to cover situations in which several

drivers are used by the same program, provided that it takes account

of the size of each driver (known because of prior assembly) and the

drivers themselves are always loaded in the same order.

For example, to access the second driver, the above sequence

would be modified to:

DVRlSZ=n
PRGEND:

MOV
ADD
ADD

.END

PC,Rl
#PRGEND-., Rl
#DVRlSZ,Rl

3-7

iGET DRIVER 1 ADDRESS

;STEP TO DRIVER 2

An alternative method may be to use the Relocatable Assembler

PAL-llS in association with the Linker program LINK-llS, both of which

are available through the DECUS Library. The start address of each

driver is identified as a global. Any calling programs need merely

include a corresponding .GLOBL statement, e.g., .GLOBL DT.

3.3 DEVICE-INDEPENDENT USAGE

As mentioned earlier, the drivers are assigned for use in a

device-independent environment, i.e., one in which a calling program

need not know in advance which driver has been associated with a table

for a particular execution run. One application of this type might be

to allow line printer output to be diverted to some other output

medium because the line printer is not currently available. Another

might be to provide a general program to analyze data samples although

these on one occasion might come directly from an Analog-to-Digital

converter and on another be stored on a DECtape because the sampling

rate was too high to allow immediate evaluation.

Programs of this type should be written to use all the facilities

that anyone device might offer, but not necessarily all of them.

For instance, the program should ask for start-up procedures because it

may sometime use a paper tape punch which provides them, even though it

may normally use DEC tape which does not. As noted in paragraph 2.2.1,

the driver table contains an indication of its capabilities to handle

this situation. The program can thus examine the appropriate i,tem

before calling the driver to perform some action. As an example,

the code to request start-up procedures might be (assuming R~ already

set to List Address) :

NOOPEN:

MOV
TSTB
BPL
MOV
CLRB
MOVB
ADD
JSR

#DVRADD,Rl
2 (Rl)
NOOPEN
R~, @Rl
-(SP)
7 (Rl) ,@SP
(SP) +, Rl
PC,CRl

3-8

iGET DRIVER ADDRESS
iBIT 7 SHOWS •••
i ••• OPEN ROUTINE PRESENT
iSTORE TABLE ADDRESS
iBUILD ADDRESS
i ••• OF THIS ROUTINE

i ••• AND GO TO IT
iFOLLOWED POSSIBLY BY
iWAIT AND COMPLETION
iPROCESSING
iRETURN TO COMMON OPERATION

Similarly, the indicators show whether the device is capable of

performing input or output, or bothi whether it can handle ASCII or

binary data; whether it is a bulk storage device capable of supporting

a directory structure or is a terminal-type device requiring special

treatment, and the like. Other table entries show the device name as

identification and how many words it might normally expect to transfer

at a time (in 16-word units). All of the information can be readily

be examined by the calling program, thus enabling the use of a common

call sequence for any I/O operation, as for example:

WAIT:

IOSUB:

MOV
JSR
BR
.WORD
• WORD
.WORD
.WORD
• WORD
• WORD
• WORD

MOV
MOV
TST

MOV
ADD
CLR
MOVB
ADD
JSR
RTS

#DVRADR,R5
R5,IOSUB
WAIT
l~
1~3
BUFFER
-256.
4~4
RETURN
~

@SP,R~
R5,RI
(RI)+

@RI,RI
R~,RI
-(SP)
@RI,@SP
R~,@SP
PC,@(SP)+
R5

;SET DRIVER START
iCALL SET UP SUB
;SKIP TABLE FOLLOWING ON RETURN
iTRANSFER REQUIRED
iBLOCK NO •
iBUFFER ADDRESS
iWORD COUNT
;READ FROM UNIT I
iEXIT ON COMPLETION
iRESERVED
iCONTINUE HERE •••

iPICK UP DRIVER ADDR
iSET UP POINTER TO LIST
iBUMP TO COLLECT CONTENT
iROUTINE CHECKS ON DEVICE
i ••• CAPABILITY USING RI
i ••• TO ACCESS LIST AND
; ••• R~ THE DRIVER TABLE
iIF O.K ••••
iGET ROUTINE OFFSET

iUSE IT TO BUILD
; ••• ENTRY POINT

iCALL DRIVER
iEXIT TO CALLER

The calling program, or a subroutine of the type just illustrated, may

also wish to take advantage of a feature mentioned earlier: the fact

that when a driver is in use its first word will be non-zero. The

driver itself does not clear this word except in special cases shown

in the description for the driver concerned. If the program itself

always ensures that it is set to zero between driver tasks, this word

forms a suitable driver-busy flag. Under DOS, the program parameter

list ~s extended to allow additional words to provide linkage between

lists as a queue of which the list indicated in the driver first word

is the first link.

3-9

The preceding paragraphs are intended to indicate possible ways

of incorporating the drivers available into the type of environment

for which they were designed. The user will probably find others.

However, he should carefully read the more detailed description of

the driver structure in Appendix A, and the individual driver specifi­

cat.ions before determining the final form of his program.

A word of warning is appropriate here. Although most drivers set

up an operation and then wait for an interrupt to produce a cOTIlpletion

state, there are some cases in which the driver can finish its required

task without an interrupt, e.g., "opening" a paper tape reader involves

only a check on its status. Moreover, where "Special Functions" are

concerned, the driver routine may determine from the code specified

that the function is not applicable to its device, and therefore,

will have nothing to do. In such cases, the driver clears the inter­

mediate return address from the processor stack and immediately takes

th€~ completion return. Special problems can arise, however, if the

driver concerned is servicing several tasks, any of which can cause a

queue for the driver's services under DOS/BATCH. To overcome these

problems, the driver expects to be able to refer to flags outside the

scope of the list so far described. This can mean that a program

using such a driver may also need to extend the list range to cover

such possibilities. Particular care should be exercised in such cases.

3-10

APPENDIX A

I/O DRIVERS WITHIN THE DOS/BATCH OPERATING SYSTEM

The principal function of an I/O driver is to satisfy a Monitor

processing routine's requirement for the transfer of a block of data in

a standard format to or from the device it services. This will involve

both setting up the device hardware registers to cause the transfer

and its control under the interrupt scheme of PDP-II, making allowance

for peculiar device characteristics (e.g., conversion to or from ASCII

if some special code is used).

It may also include routines for handling device start-up or shut­

down such as punching leader or trailer, and for making available to

the user certain special features of the device, such as rewind of mag­

tape.

A.I DRIVER STRUCTURE

In order to provide a common interface to the monitor, all

drivers must begin with a table of identifying information as follows:

DVR: BUSY FLAG (initially ~)

FACILITY INDICATOR (expanded below)

Offset to Standard Buffer Size
Interrupt Routine* in 16-word Units.

Offset to Priority for
OPEN Routine* Interrupt Service*

Offset to Offset to
CLOSE Routine* Transfer Routine*

Space offset to
Special Functions*

DEVICE N~E (Packed Radix-5~)

Offsets marked * will enable calling routine
to indicate routine required. They will be
considered to be an unsigned value to be
added to the start address of the driver.
This may mean that with a 256-word maximum, the
instruction referenced by the offset will be
JMP or BR (routine).

A-I

Bits in the Facility Indicator Word define the device for monitor

reference:

SPECIAL STRUCTURES GENERAL STRUCTURE

~12111 Il~hlililJili1312111 ~ I
File- i r -== ~u:ei A r i
Structured Multi

Device DEC- "Terminal"
tape (or Device

User

similarly
reversible)

magtape

*=Multi-unit System

Contains OPEN

Contains CLOSE

Contains SPECIAL

t.ype devices (i.e., RK disk).

Output Device

Input Device

Binary Device

ASCII Device

The table should be extended as follows if the device is file­

stl~uctured :

-----------.--------------t

BLOCK USED AS MASTER FILE DIRECTORY

POINTER TO BIT-MAP IN MEMORY Unit f6

}

Similar Bit­
Map Pointers
for Multi­
Unit Devices

The driver routines to set up the transfer and control it under

interrupt, and possibly for OPEN, CLOSE, and SPECIAL, follow the table~

Their detailed operation will be described later.

A.2 MONITOR CALLING

When a Monitor I/O processing routine needs to call the driver,

it first sets up the parameters for the driver operation in relevant

words of the appropriate DDBl, as follows:

~---------------
Dataset Data Block - in full, a l6-word table which provides the main

source of communication between the Monitor drivers and a particular
set of data being processed on behalf of a using program.

A-2

XYZ: - User Call Address)

SPECIAL FUNCTION CODE User Line Address)

DEVICE BLOCK NUMBER

MEMORY BLOCK ADDRESS

WORD COUNT (2's Complement)

TRANSFER FUNCTIONS (expanded below)

COMPLETION RETURN ADDRESS

(DRIVER WORD-COUNT RETURN) Set to Zerc
-

The relevant content of the Transfer Function word is as follows:

EOF
or

EOD

y

15 14 13

t.
Used by Dr~ver
to indicate
Hardware Parity
Fail

TT Echo Control

t ~t t r i t}~=ASCII DECtape Open vs. Pl=Binary
reverse DEVICE Closed

UNIT Transfer OUT

Transfer IN

Provided that the Facility Indicator in the Driver Table

described above shows that the driver is able to satisfy the request,

both from the point of view of direction and mode and of the service

required, the Monitor routine places in Register 1 the relative byte

address of the entry in the Driver Table containing the offset to the

routine to be used, (e.g., for the Transfer routine, this would be l~).

It then calls the Driver Queue Manager, using HSR PC,S.CDB.

A-3

The Driver Queue Manager assures that the driver is free to

accept the request, by reference to the Busy Flag (Word ~ of the

driver table). If this contains ~, the Queue Manager inserts the

address of the DDB from Register ~ and jumps to the start of the

routine in the driver using Register 1 content to evaluate the address

required. If the driver is already occupied, the new request is placed

in a queue linking the appropriate DDB's for datasets waiting for the

driver's services. It is taken from the queue when the driver com­

pletes its current task. (This is done by a recall to the Queue

Manager from the routine just serviced, using JSR PC,S.CDQ.)

On entry to the Driver Routine, therefore, the address following

the .Monitor routine call remains as the "top" element of the processor

stack. It can be used by the driver in order to make an immediate

retu.rn to the Monitor (having initiated the function requested), using

RTS pc. It should also be noted that the Monitor routine will have

saved register contents if it needs them after the device action. The

driv,er may thus freely use the registers for its own operations.

When the driver has completely satisfied the Monitor request, it

should return control to the Monitor using the address set into the

DDB. On such return, Register ~ must be set to contain the address

of the DDB just serviced and since the return will normally follow

an interrupt, Registers ~-5 at the interrupt must be stored on top of

the :stack.

A.3 DRIVER ROUTINES

A.3.1 TRANSFER

The sole purpose of the TRANSFER routine is to set the device in

motion. As indicated above, the information needed to load the hard­

ware registers is available in the DDB, whose address is contained in

the :Eirst word of the driver. Conversion of the stored values is, of

course, the function of the routine. It must also enable the interrupt;

however, it need not take any action to set the interrupt vectors as

these will have been preset by the Monitor when the driver is brought

into core. Having then given the device GO, an immediate return to

the calling processor should be made by RTS PC.

A-4

A.3.2 Interrupt Servicing

The form of this routine depends upon the nature of the device.

In most drivers it will fall into two parts, one for handling the

termination of a normal transfer and the other to deal with reported

error conditions.

For devices which are word or byte-oriented, the routine must

provide for individual word or byte transfers, with appropriate treat­

ment of certain characters (e.g., TAB or Null) and for their conversion

between ASCII or binary and any special device coding scheme, until

either the word count in the DDB is satisfied or an error prevents this.

On these devices, the most likely cause for such error is the detection

of the end of the physical medium; its treatment will vary according

to whether the device is providing input or accepting output. The

calling program will usually need to take action in the former case

and the driver should merely indicate the error by returning the un­

expired portion of the word count in DDB Word 7 on exit to the Monitor.

Output End of Data, however, will, in general, require operator action.

To obtain this, the driver should call the Error Diagnostic Print

routine within the Monitor by:

MOV
MOV
lOT

DEVNAM,-(SP)
#4~2,~ (SP)

iSHOW DEVICE NAME
iSHOW DEVICE NOT READY
iCALL ERROR DIAGNOSTIC PRINT ROUTINE

On the assumption that the operator will reset the device for further

output and request continuation, the driver must follow the above

sequence with a Branch or Jump to produce the desired resumption of

the transfer.

Normal transfer handling on blocked devices (or those like RFII

Disk which are treated as such) is probably simpler since the hardware

takes care of individual words or bytes and the interrupt only occurs

on completion. Errors may arise from many more causes, and thier

handling is, as a result, much more complex and device dependent. In

general, those which indicate definite hardware malfunctions must lead

to the situation in which the operator must be informed by diagnostic

message and the only recourse after rectification will be to start the

program over.

A-5

At the other end of the scale there are errors which the driver

itself can attempt to overcome by restarting the transfer - device

parity failure on input is a common example. If a retrial, or several,

still does not enable a satisfactory conclusion, the driver should

norlnally allow programmed recovery and merely indicate the error by

Bit 15 of OOB word 5. Nevertheless, because the program may wish to

process the data despite the error, the driver should attempt to

transfer the whole block requested if this has not already been effected.

Between these two extremes, the remaining forms of error must be

processed according to the type of recovery deemed desirable.

Whether the routine uses processor registers for its operation or

not will naturally depend on considerations of the core space saved

against the time taken to save the user's content. However, on com­

ple1:ion (or error return to the Monitor), as indicated in an earlier

paragraph, the calling routine expects the top of the stack to contain

the contents of Registers ~-S and Register ~ to be set to the address

of the OOB just serviced. The driver must therefore, provide for

this.

A.3.3 OPEN

This routine need be provided only for those devices for which

some hardware initialization by the user is required. It should not

normally appear in drivers for devices used in a file-oriented manner.

Its presence must be indicated by the appropriate bit (Bit 7) in the

driver table Facility Indicator.

The routine itself may vary according to the transfer direction

of the device. For output devices, the probable action required is

the transmission of appropriate data, e.g., CR/LF at a keyboard terminal,

form-feed at a printer, or null characters as punched leader code,

and for this a return interrupt is expected. The OPEN routine should

then be somewhat similar to that for TRANSFER in that it merely sets

the device goind and makes an interim return via RTS PC, waiting until

completion of the whole transmission before taking the final return

address in the nOB.

On the other hand, an input OPEN will likely consist of just a

check on the readiness of the device to provide data when requested.

In this case, the desired function can be effected without any interrupt

A-6

wait. The routine should, therefore, take the completion return

immediately. Nevertheless, it must ensure that the saved PC value

on top of the stack from the call to S.CDB is appropriately removed

before exit. In the case of drivers which can only service one

dataset at a time (i.e., Bit ~ of their Facility Pattern word is set

to ~) and can never, therefore, be queued; it will be sufficient to

use TST (SP)+ to effect this. A multi-user driver, however, must allow

for the possibility that it may be recalled to performe some new task

waiting in a queue. This is shown by the byte at DDB-3 being non-zero.

In this case, the intermediate return to the routine originally

requesting the new task has already been made directly by S.CDQ to de­

queue the driver. This return must be taken when the first routine

has performed its Completion Return processing. Moreover, this first

routine expects to exit as from an interrupt. When a driver is recalled

from a queue, it must simulate this interrupt. A possible sequence

might be:

EXIT:

MOV
MOV
TSTB
BEQ
MOV
MOV
SUB
JMP

A.3.4 CLOSE

DRIVER,R~
(SP)+,R5
-3(R~)
EXIT
@#177776,-(SP)
R5,-(SP)
#14,SP
@l-(R~)

iPICK UP DDB ADDRESS
iSAVE INTERIM RETURN
iCOME FROM QUEUE?

iIF SO, STORE STATUS
i ••• & RETURN
iDUMMY SAVE REGS

As with OPEN, this routine should provide for the possibility of

some form of hardware shut down such as the punching of trailer code

and it is not necessary for file-structured devices. Moreover, it is

likely to be a requirement for output devices only. If it is provided,

Driver Table Facility Indicator (Bit 6) must be set.

Again, the probable form is initialization of the hardware action

required, with immediate return via RTS PC and eventual completion

return via the DDB-stored address.

A.3.5 SPECIAL

This routine may be included if either the device itself contains

the hardware to perform some special function or there is a need for

software simulation of each hardware on other devices, e.g., tape re­

wind. It should not be provided otherwise. Its presence must be indi­

cated by Bit 5 of the Facility Indicator.

A-7

The function itself is stored by the Monitor as a code in the DDB

as shown earlier. When called, the driver routine must determine

whe1:her such function is appropriate in its case. If not, the com­

ple1:ion return should be taken immediately with prior stack clearance,

as discussed under OPEN. For a recognized function, the necessary

routine must be provided. Again, its exit method will depend upon the

necessity for an interrupt wait or otherwise.

A.4 DRIVERS FOR TERMINALS

The rate of input from terminal devices is normally dictated

externally by the operator, rather than being program-driven; moreover,

for both input and output, the amount of data to be transferred on each

occasion may be a varying value, i.e., a line rather than a block of

standard size. Furthermore, there may be problems with the conflict

between echo of input during output. As a result, drivers for such

devices will demand special treatment.

Normal output operation, ie.e,.WRITE by the program, is handled

by the Monitor Processor. On recognizing that the device being used

is a terminal, as shown by Bit 8 of the facility indicator, this

rout~ine always causes a driver transfer at the end of the user line,

even though the internal buffer has not been filled. The driver,

however, is given the whole of a standard buffer, padded as necessary

with nulls. Provided the driver can ignore these, the effect is that

of just a line of output.

Input control on the other hand, must remain driver responsibility.

Overcoming the rate problem will, in most cases, require circular buffer­

ing within the driver until demanded by the Monitor. At this point,

transfer of data already in should occur. If this is sufficient to

fill the monitor buffer, the driver can await the next request before

further transfer onward. If insufficient, it should operate as any

other device and use subsequent interrupts to continue to satisfy

the Monitor request. It must, nevertheless, stop any transfer at the

end of a line in normal operation. In order to allow the Monitor to

continue, the driver must simulate the filling of the buffer by null

padding (of no consequence, since terminals are by nature character­

based). (Normal operation, of course, means response to user .READ's

and is indicated by the size of the buffer to be filled, namely the

driver standard. Should the user be requesting .TRAN's, the buffer

size will vary from the standard in all likelihood and the driver may

A-8

size will vary from the standard in all likelihood and the driver may

then assume he requires operation as a normal device--complete buffer

fill-up before return.)

Where input echo is a further complexity, there will doubtless

be other requirements. If the echo is made immediately after the input,

it may be desirable to have a second buffer to cater for the likely

situation that the echo, will not exactly match its origin. On the

other hand, if the echo is held for any length of time, perhaps to

provide correct relations between program-driven output and the echo,

the second buffer could be too expensive. A larger input buffer and

routines to allow for several outputs to one input character while

sitting on that character might be more convenient. The conflict

between such echo and program-driven output will require controlled

switching within the driver input and output handlers.

A-9

APPENDIX B

SAMPLE LINE PRINTER DRIVER LISTING

The following is a sample listing of a DOS/BATCH Device Driver.

The actual driver is the LPll Line Printer Driver (for device name LP:).

B-1

1 Jl~lTAL l~ul~ME~r CO~P0RATI0~, MAyNARD, MASSACHUSETTS 01
2. c..;pnO('Hl, 1~73

·3
.4 pHd r AL E'~uII"MEI\ r CO~PORAT LON ASSUMES NO RESPONSIBILITY
i ~G~ THE JS~ ~~ htLIABILrTV Of ITS SOFf~ARE ON EQUIPMENT
6 ~~lCH IS ~UT SUPPLIED By U1GITAL E~UIPMENT CO~PORATIQN.
'7
~ VEkS!UN NUMb~h: V1J.01
-~

1:1
11
l~

13
14
15
10
11
10
1~

2lo
21
22
23
24
2!)

26
21
28
2~
30
31
j2
3J
34
3~
36
31
38
39
4",
41
42
43
44
4:;
40
47
4d
4~

:50
:;1

LPTvP

.(j ~ V iI) -Ii 1 L.. n 1 1
iH10i:l12 Sf(lp~

1..511
SpRt:.Au
SKLf~

k'. ill e, Y:J Ili 'li po(~.

10~v.lv.'1 ~1

\'1\6 t II) IJ 2 !'i 2
'l~ ;{I ~1 \,1 ;" J R 3
;if 16 !rHO f;;" I-< 4
iQ {I~; V'. ~1:) '" b
11.' t' ~l ~I iii ~ S P
kl¥1 L:~ 1/1 v~ J P C

LJAlE-O: MA~CH ~, 1 g73

U~VICE D~lV~H FO~ THE LP11/LS11 LIN~ PHINTER(S)

u~lv~~ PA~AM~TE~lZATION SYM80~S
Lt-Jll, Lbl1, WIDTH, SPACES, SPRtAO

.. I I-

.t:.~[)C

.1 f
I,ll r I.. t:.
II

==
.. !Ff

NUF,I..PT,(P
v.;

E l~ , L ~ T '(f­
o v .1. ~kl
1
12

.If t~,<~PTY~-l>
,11TLE. j)V.l.""1
I: 1
II 1
:I 1.3

• U' F
.'1i:."tkQk JL~rl~UPp(I\o(TE[' L.INt PRINTE~

.t.NI)C

• '!:i\lLH;

• I r ,,~ U r· w 1 i..1 T H

•
=

=
1:

II

II

II

B-2

, 8~. CO~UMN P~INTER DEFAULT

UIAGNOSTLC MESS4GE CODE

wEG1STE~ SAY~ CMONITO~ SUPPORT

1
2
3
4

.i3i..OBL L.P
• IlHiNT 113,1111

5
o

UUti-ll utVIC~ DkLVE~'S STANDARDIZED INTERFACE

7 i) ,H1 \!'l ~ (1

i:l
9
10
11
12 'lhh102

13
14
15
1" 0 Il II! iI) :,
17 ~11() 0 to I,')

18 ~H') \!I;J 7
19 jJt~V'll:

Ci) v)~011

21
22 ;111012
2 .~
24
2b

11 il
'~(j ,·l
v.i .3 ..,

• ... (j~l)

• H'-I .. W
.BYTe:
• E: t" i) C
,1f·~Df'
.f.3YTf:.
.t/iDe
,r; Y rt:.
.fjVTE
,BYTe
• aVH:'
.~\,Te::

.r1YfE
,i;YTE-.
.IF
• ~'(rt::.
• 11" F
.t'lYTt:
.ENOt;

2 6 v.l v) v· 1 3 v; i!< ~ • ~ Y r t;.
.~~~0t)0 27 0~014 ~4hb0~ LP.NAM:

28
29
30
31
32

~)<.?1I.'~0J.l L.P, T;.(P
117014 I..P.(.;SR
177;)10 L.f'.Ut:H·

=

JJ A~01ti ~0~1~~ LP.SIZI .~0~U

34 ~00~0 ~~~l~J UP~CA~I .~U~D
30 v: (1 v' C! 2 {i vh: ~i " .11 U V foII\J'I T: • "" () R U
J C ~', It;"J C 4 Vi \tH~ {> i..~ ,,) L. P • L J. N: ,w \J ~ I)
37 0~~~~ ~~V~00 ~P.~Kh: ,~u~o
JS 0J0~0 ~~000~ ~p.Tcr: .~URU
J~ ~~~~2 ~a0~~J LP.~AU: ,~O~D

41.:1

41 v'tVlv..,)4

42
43
44
4b l1~;\(J 4

40
47
4~

49
~I"
5l

.1hJF
,d'ffE
• E"~ I) C

'lilj .tlY Tf.

.;:Vt,fll
, L F I)f

I .. Fo' • r L. (.,: .'~ lJ ,;.(U
, e r-J,) C

'" L511 6i SPFd:.Ai)
362

L::i116tSPkt.AO
322

~)

«.oJ IUTH+37>/40>
l,P .P4T-Uol

c0\iJ

LP. u~~·J"L.P
LP,·rr<N-L..P
I..P.CL.5-LP
t:.·J,L.~TYP
~

(Ij

ILPI

21/1 vJ
177014
1/7516

~lIJTH

1.j,3
t
II)

o
yJ
1(;

L.~ll
21

L.Sl165PRt.Af)
10

B-3

USER'S POb POINTER

FACILI1I~S l~OICATOR

FACILITIES INDICATOR

~PECIAL STRUCTURES, NONE
~TANDARD BUFfER SIZE
INTERRUPT ENTRY OFFSET
INTER~UPT PRIORITY 4
vPEN ~NTRY OFFSET
fRAN ENTRy OFFSET
CLOSE ENTRY OFFSET

SPECIAL ENTRY OFFSET

SPAkE
OEVICE O~IVE~'S NAME

lNTERRUPT VECTOR'S ADDRESS
COMMANO/STATUS REGISTER
UATA BUFFER REGISTER

THIS ~ORU IS SET BY THE INITIA
SET TO THE HIGHER PRINT LIMIT
SET TO TRUE WHEN OVER PRINTING
ALR~AOY SeNT (CHARACTERS)
bLANK POSITIONS COUNTER
TRANSF~R CHARACTER COUNT
8UFfER AODRESS POINTER

COMMANO OEVICE TO TOP-OF-FORM

COMMAND OEVICE TO ON-~INE

t.:R, FF

CHARACTE~ E~ONGATION FLAG

PRINTA61~ITY, LO~ER LIMIT

1
2
.s
4
5
6

I

l:.i

9
11{;

11
12
lJ

14
1:5
16
17

(I.r'lft,'v.·..)(1

",lIk):i t k)"'o
.1Jllvi jfj '1},Jt./1)1

/1 ~1r.' 4 ~ d
1{)~i(:\,i42 t: 021 v 1

1/7172-
0v~;,!,4t" \')1'/167

1171f;::v)

1(J~H.'102 11'1 r: 2. ~ 7
177/'62

1 Ij ~J VI ;c. :> ~ ~! ;th·' 4 1 4

19
2~

21
cl
23
24
2!:>
2ti
27
2;
29
.soli

I..P.UPI":
;
I..P.CL.~:

LP.SPc.;:

l.F.~0t1;

l.J P t. ~~ PRtJCt:.~SU~

L. L. U ::H:. P fo(U L: E 5 ;) rHo(

J 5", PC,LP"ST:)

/l. iJ iJ hLr'.I(H"'·.,Rt

i'IU V !,(l,L.r'.tjAI.J

"IF!)F L.~11
!'·I.j v u-.3,l.p.1L:r
" t i'II) t:
" I'"", Cl F L.~d 1
I'tJV 1oot2,L~.Ttr

• t:. t'J I) C
.lfof L:i 116SPRt:.AO
Ci.,1'(LP.~LG

• t. r~'j C
t.1 f.(LP.INT

.IFuF LSll~sP~tAI)

SPeCIAL. ~R(lCt;S5Cr<

M.J'v 2l"<,,,I),Rl
C . ."t-' t1 ltl,(!'<1J
b:\I t. L.p. SiO~:
iiG" 2l~1) ,L.F"f-L.('
,I 'IP ~ 1 4 (r(~~)

" t:r"tJC

.31 ;,,<j.L~ Pf<UCt:.~~u~

32 0~00~ LP.T~N:

Jj A~~b~ 0047~7 J~~ PC,L~.ST~
I) II I,dj ~,u

3 4 ~~.11/' 0 4 ~:' 1 {) I Kl ..J

177/1/)
3 0 I/: >".l ~11l' (l f. 0 0 1

vof~·.ilv.O

171/34
.j Q .1 ~J t'l I!) v1 1 t' VI F-J 1

V'Ith {ll ill
177724

.s 7 ") IJ 1 (J 4 ~~ \d f) .,) ~ 7
1 7712 {1

F.UV

MfjV

,'" tJ v

ASL

L.P,k!!J

lJ (RvJ) ,Li'J, rer

B-4

~IMUL.Art INTERRUPT

1 "1 = PC (BY LP.STS)

INT~HNAL eUFF~R'S ADDRESS

'NlTIA~ItE TRANSFER COUNT

INITIA~ll~ EL.ONGATION FLAG

OISPATCH INTt~NAL BUFFER

kl = FUNCTION BLOCK'S AOORESS
L.INe E~ONGA1ION FUNCTION?
NO, IG"I01'(E
tNAa~E/ulSA8Le ELONGATION
tXIT VIA CO~PLETION RETuRN

SIMULATE AN INTERRUPT

k~ • U~E~'S 006 ADDRESS

~ETAIN BUFFE~'S ADO~ESS

, ~ETAI~ D~B'S BYTE COUNT

1
2 ; 1 ,'Ii 1 t: R r< U p l' PiilJCf:.5:)[JR (VIA INTE.RRUPT VECToR AT 200)
J iQ/i/·l1A I..P.li\il :
4 ~v.H·11 t,l v.'421,j7 ~lL #.1 t(" ~#L.p. CSR OISABt.f=. !NTERRUPT

II~V.l!'·j

1/7:>14
:; _0~'\v)116 kI('I2(4~'.;l h (;f_ l..P.l"-' SEGREGAT~ E~RORS

0 iI ~) 10 1 t! ~, "J 16 v' 167 J rAP t.,p.f:Rf\ l:.NTER ~RROR PROCESSOR
,lI.lV"52

7 ~~/,Vjl~4 00blf7 t., ~1 • 1'[j : T S 1 LP.T(.;T ANY CHARACTERS REMAINING ?
117 It:-'·IJ

d ItA iJj '.0 1 .j';J v) VJ 1 04 ,:l o t: t~ t.,p. (HHIE !'.jO, L.INE COMPL.ETED
9 00"'1~2 i(,lIr'4~ti i1JV R/l,-lSP) :)AVE REGISTERS
1~ t~ 01 J 4 v' 1 ~- ,,~!',) Il;i.)V foi~1,-l5P)

11 /]01.3'"' ;til(24::> h(j V R~,,,,U;PJ

12 '~~j 1 {~ (I i?1~<,14\) t-:J V foil, ... lSP)
L~ <!.i't1142 ~)ltil/~4 r·uv t.,P.t./,i\S,k4 1-(4 • BI..ANK CUtJNTER

1/7 0 I::J>~;

14 ~~ l" 1 <+ 0 vJlt/v~J !''I(lv L.Y.I .. IN,h.) 1-<3 = P~lf~T POSITION
1110~~

1::> ·!)v.)1:)C:! l'\ 1 tJ I ~, e. MllV L.P.F;AD,~2 112 • HUFfER POINTER (ADDRESS)
17/ IJj 4

16 li~l:Jo 112~tl I...P.l"'k~': h0Vo (~2)+,Rl. *** ACCfSS CHARACTE~ ***
1 , 1H"10.~ ~Ji)14~':') dt.1J loP.Oi\jP l'liUL L. (0) IGNORED
l~ /.':~102 1 C;';' l27 L.F.li!Jl: ~ i'l f.l t, ~l,nL.p.LlJw Pj;(INTAtjII..ITV CHECK

v' 0(1\ ~" 4 :/)

1~ VJiilOb ~;l'244~ bloT L.p.Il~) f:.XC~EOS L.OWER LIMIT
2~ .1fOF ::'PAC;t.S
21 Hl:il L,.p. P'i2 'VALID CHARACTER, SO FAR
2~ ~ ''ll: ~4 ~L.A~K (41d) ISOLATED, COUNT
26 L~ "" Lt-l. Ti'q ACCI:.SS Nf:.xT CrlA~ACTER

24 • E. r~ ,) C
2~ ." "'; 11 V'I 12 ~- 161 LP.li:2~ C.I~P~ 1'\ 1 , LJPPCt\~ PRINTAOIL..ITV CHECK

1/701::4
26 ~!£J1/4 itJ tJ 2 1 1 '.'1 b:; t.:. LP.I1H t:.XCt:.t:.DS UPPER L.IMIT
27 .6~il/6 v:,(lO~vlJ L.F.l~3& l,JC R .~ PRINTeR'!) wlUTH EXCEEDED ?
2~ ;t,./J ~ f9;~ ii)IO.,),,;Jlb r;\.ir L.r'.DNf.! ; YES, 00 NOT Pt<INT
2~ <~ L· 2 t ~ iii~'2Jj' i.. fo". I tJ 4 : bll ql~~~~0,~#L.P.C6R; ACCt:.SS E~ROR/REAOY STATUS

l i£I ~. ,,\~_\ -,1\

1/7:;)1,4
311 tjyj~lv~ 1;(1/ ;:;,5 ".1 d~l I..p.I(i!2 t:RR(.JR INUICATI0N
Jl ~j:t212 ~'101011 \:) t (~l LI-I.1&::Q1 I\or READY INOICATION
32 "J'iie 14 \,)~.1 ~ \) v 4 WEe.; kA UECREMt.NT IlL.ANK COUNTE~

jJ /'1f.)21~ 10v-, 4" 4 tP!I L"p.r~5 ~OT PfoiOCt::SSIN(J B~.ANKS
J4 ·-102~.l 1121;31 '10 V e H 4 0,tPl.ttl..P.UBIot SLANK/HTAB EXPANSION PERFORMED

lI.' \0 1,.11 ill 4~)

1/7Jh'",
~j '.-1 j.' 2 ~ Ci 'l'IJvl(',J 011 LP.licJ3 CONl I ~iUE PENDING COMPI-ErLON
~h !I'~t.<'! JIJ 11 {' 1 ;~ 1 L..F.I\{)b: 1', CI if ;;, Rl,~"'LP.IJ~~ *** PRINT CHARACTER ***

1//010
37 /iii. 2.)4 v- 'i.l !; ('~ I,~ 4 L. P • l v\ to : CL.~ "<4 INSuRE NO IlL.ANKS PENDING
~d ~'1 v; 2 ~ c i.. p ,I.; 1\1 J.I :

J9 :1~~;?"to It'," Ji.H .. / 1..~.Trq: ,~ !\)C LP.T~i INCr.lEMENT BUFFER'S CHARACTER
lll't~)

40 c.;OUi'lTEt< , ANY MORE ?
41 ~~ if' 2 4 ~ ~:n~~lJL' b.\jt;. L..tJ.li£l~:l 'tES

B-5

1
2
.)

4 I{JllvJt;'4l4

5 ~L.1u2:>l
6 l!j/l!~2~2

7 :(j11,l!(J c:!:I6

11 i(L1V'c"2
9 o,!jJ0204

10 il i/) (I i '/1

11
12 V) v'J 21 4

1 j ,t1 vh~ it? ~'l

14
15
10

1£1:'1,,1
17 i'::l1 4
1 'i.',j 1 ~',;2
v; i, ~ b c\ 7
It"j~J\I!"~'"

'i.l.V 4<)

~i{h'llr.j4'"

,~~~ ~ 030
~ll 07.,' 11

17701,)
\lj\Uvt17~~
L';~) (11 it! 1 4

12v127
:,tl~l;'(; 11
\I.' 1(.11 VJl tJ

17 0i1'~'i12 vtlt"~o
11701·)

ld
19
2~

21
22

LP.(.;f'IIt:

I.. P • \) u t. ;

I...F.lll-?l

2J A~J~6 ~b~Jla ~P.l11:
24
20
20
27
2/j
29 0~31~ tb/41ti L~.112:
30 tJltJJ12 v':>~/l"

177/74
J 1 I/a J 11"i 1!) ~ P if' 4
32
3.s ,Ij ~:, ~ ~ ." ~) '(' 'v' I 4 0

34

1ST.,

bPL
JSf.<

'"IOV

J~~

l1u V

J MP

t;;MP.,

t.P>it

"lUI;

• I r' OF
TsT
b E l~
A.::)K

• t: r., 1) C
~JI.i

• 1 F i) F
i~ G t.
Cl.~
tH
.. t:I\jOC
J4 LH)

iJ I ~

;jIJt;

d~

t..l"!r.. [;O~fJLETEo

_~I..P.CSh DEVICE ~USy ?

l~.r21 ; YES
W~,l~.StT kESTOR~ TEMPO~ARIES

k::>,ifi) l;,iJ) +
LP,h~ k0 • uSE~'5 UDa AOO~ESS

~14(~~) tXIT vIA COMPLETION RETuriN

~1,~11 HO~lZ0NTAL TAB (11) ?

NO

H0kIlON1AL TAR SlM~LATIUN VIA BLANKS

L.t-I.:'ilZ,·(~P)

L.Sll&SPht:.Af)
L. P • F L. (~
L.iJ.l!l
lSP)

~J, (;"'P)

LS t 1 ~SPI,d:.AO
L."".112
LjoI.lL;l
LIJ.I)I~t

1'<4,(~P)

it117170, (SP)

(~P)+,~4

L.P.TIoIT

B-6

PRINfER'S MAX WIOT~

t.LOt>.lGATIUN ?
!~O

(PRINTtR'S ~lOTH)/2

- PRINT POSITION

NOT ExCEEDED PRINTER'S wIDTH
t.L.UNGATION L.INE TERMINATION
EXIT

+ BL.AN~ COUI\lTI:R
(MOUUL.O 8) .. 8

... ~I..ANK COU~TER
= tH.AN" COUNTER
~CCtS5 NtXT CHARACT~R

'2 \!h~v:,~C::t v'II~'<!J 11
.3 i(h~ ('J ;) J {i 'l.:J 1 'iJ 1 4
4 \!Hj 1.'1 J J 2 ~: ___ 1 ., 7 r: I

1/7"':1'~
~ 10 'M' j J t, ~', <t 1 !{I C:' ;'J

o I{I V. 'f.l \,~ " ~ v' 1 to I f..~ .,s
1714;2

OGT
;;''>It
'1 :j 1

b-Jt:.

i~ U v

7 000344 ~0~~WJ ~~G

8 .1~0~
9 rsT
10 bE~

11 ASH
12 MOV
13 $ r:: I~ i) C
14 ~~J"~ ~P.lxX:
15 t~~46 ~~v7J2 b~

lti 003J0 ~f.114: .I~JF

1/ is T
1S bE~
1~ CMP~

20 ~C~

21 LP.lYv:
22 .~N0C
2J 00J~d 1~01il C~Pti

2 <4 0 \'j ~ :l 4 v~ J 1 Ii'; 1 :,
2 j \I' V.I ;) :.> ti v' 1 2 7 Ii; 1

~\ l/Ji(<[! 1 ~

tFli-:
I"OV

2~ 00~02 1~~127 LP.llb: L~~B

2 I (I II .3 ~ e >/: Il' 2 " 1. y1
C?S '[J\t)"l~i! 1[.".;tl.l~).3
29 '/)0312 12,,·121

~i i,li ~:, i() 1 J
3.1) v,'I'J316 ;('il1717
31
.3 2 LdHi ~] :>L I.. j:.' • I 1 b :
3 J V) [1]11 ~ i6 l(1 b I .~ J

177412
34 0V.;~hj4 ti'iJ04,,13

35
.30
037
J{i
~~

4v..l
<4 1 >/J V) 4 \1') ~ I() <I,) t' t;) 7 J

tll.T'
t'lt,i . ."

c.",Pi:3

!,I,) v

;~f. G
• {f,)1-

I ~'f
f~ t:.l~

ASK
f",JV

• tNIJC
lo\~

LP.I14
l.p.ll~
(lvjol,U'q

Li-I •. [l6
LiJ.S1Z,HJ

R"
L.S 11 &SPfod:.Af)
L P • F L r;
LP.IX.X
R3
~J,L~.FLG

LP. I~16
L.5116SPid:.Af)
LIJ.f-I..G
L~.IYY
1'<1,~Jlt>
LP.l~~4

l,.p.117
tt~I\IiJ2,fd

LP.117
LFJ.llf.
io<l,u13

I-< ~S

L511I\lSPRt:.AD
LP.FL.b
Lt-'.1.~4
~3

I'\'j,Ljol.Fl..G

B-7

N U, A t3 U V f:.
NO, 6EL.O~
PRINT THE CAHRIAGE.RETURN ?

YES
k3 II .(. PRINTEFPS wIDTH)

f:.LONGA1ION ENASLED ?
NO
HAL.VE PRINTER'S WIDTH
kE-INITrALIZE THE FLAG

SUPPRtSS CARRIAGE-RETuRN

NO
~U8STITUTE APPROPRIATE CHAR

L.INEFEtD (12) ?

NO, 8EL.O~

YES
VE~TIcAL TAB (13) ?

YES, IGNORE IT 1
NO, FORMFEEO (14) ISULATED

R3 a .e PRINTER'S WIDTH)

tLONGATIUN ENABLED?
NO, PRINT CHA~ACTER

; HALVE PRINTER'S WIDTH
HE-INITIALIZE THE FLAG

PRINT THt:. CrlA~ACTER

OV.LP~, /"ACh'1.J I/t;I;5-102 l/-JuL-7J ~2:J0 PAGe. 1

0J0"11,i\ V'i 12 7 ~'! 1 1.1-'.11/: i~; u v U4itl, rq UNPfo(INIAt;LE, BLANK SUfjSTITlJTIO
Z1~'II'!l.:itl

2 ~lH) 411l '11 it) ~'I t' 7 ~1 t'j..(I.y. I ~~'\ PRINT A ~L..ANt<;

J '" ~I v1 4 16 12 f,: 127 I...j;.o .11 tH C \1F'<:i r<1,td72 L.O\I.JfiR (';ASf. ALPHABET ?
~vH';17;'

4 ;1~Vj4t!2 v~ It) •• hi 0 j ti(.;il' LP. I Hl t.)(Cr.EUS
:)

6 LOI'-iEK CA~t. TO UPPEfo((;A,SE CUNVE~SIuN PERFORME:O
I

" ~la~ ai.:!4 ~1 ~ 27 v 1 dlG "4 ~J, tq CONVERSION PERFORMEO
It:' \!1 [~ ;0 4 J

9 vjvJ~4')t.l 1/" ia vi 0 b <: dl'i L.P.I~13 ~RINT CHARACTER
1,<) v1\(:4J2 12 Ill',:. 7 1.F'.lun t: ,"'P a .d,t1177 I'<UbOUT (177) ?

it) La Ii, 11/
11 0v"4')o lli{l 1071 b r:: i~ L P • t) I'~ P ; YES, lliNOREO
12 0k'J44'f1 1~f.727 Ci'<iP:-; JPPCA~,itL~7 UPPf.k (,;ASE PE~MITTEL) ?

177Jti4
100013/

1~ ,i1i1,44b hy 1 C! ~ ,S dHI L.,p.lIll3 YES, pRINT CtiARACTE~

14 4~401'l i{1'(N/b! ~0\1 L.1J.I17 UNPRINTA!;LE, HL.ANK SUBS'T .1'TlJTIO
1!:>
10 (1~4~2 i£.lij~~v;"; \"P.I~I/~': ute i-<,3 bACKUP Pt<lNf POSITION
17 v) ~'J 4 t> 4 "J~ b~v;:(i)EC k', bACI\UP 8uFFEI< POSITION
ld I{JI.~' 41 :. Ii v.'v i 4jb/ LP,I~l: .,.lSI"(~tl,LP.SE.r to<EsrORt: TEMPORARIES

1/ ~J v 'il b ~

1~ il~')4\)~ k'~-;/~l I:II~ ~10~~,~U\..p.C5h1 t:.NABLE. INTERRUPT
;,~ /J ~~ ! .~ ~.~

1/7':>1.4
20 V1V141 v' v.:l~~~0i,i2 kTl tXIT Ffo<U r,,\ INTERf.(UPT
21
:22 I1k)412 ~Jl~ ~.) l" J LP.12~:; ij t. t,; kj bACKUP PRINT PUSITION
2J .0"; ",7.(1 l.:tJbJ/~ Vl::C k2 bACKUP BufFEI< PUSITION
24 'i1i.J41b _j 1 b /.a t"I LP.t:.~l'd f10 V L. f-' • r·UH' , • l5 P) LJEVICE Ot<l"E!oPS MNEMONIC

177"1~
2::> It)::nJ2 'lH2/4:; f",i) V ,., A .t,J "-~ ~ , - (:j P) MESSAGt. CODE

l"iOv' I,j /!2

26 ~v.J5\!l6 {j;6 ~I 'M~ 4 1 u 1
21 .. 1'.'Jo1 LJ ('~!(lh7 J"lf- LP.INT , TRY AGAl~

177·;74

B-8

i) 1/ • l P v.; 1'1 A t: ;.;' IJ V i/ rj III (J 2 1 7 ... JUt.. ... 7 oj 0 2 : 3 VI f' A (.11:. 8

1
C
..;
4 ~hJ0514 /, 1 t:~ to ~" 1 , o/.J/lllJbl~ ,11 1 t'4 0

0 IA (., '/1 0 '!.,1 .;'\ 'tl:, '.:I 1/1 ~

7 'l)<hl~~2 '{} 14 ~ 60
{){'I,I,;'I{a

" i1,(l"j=>~6 In,~l 1~
;~ 0 ii' "1.1 ~

Y V'~~i{!:")J2 /.11 ;., 1 /! 1
1 t~
1 1 .(~ ;,.:: ;);) .a ,11 1 ~/, <Hd

1172e.,
12 ;", £; j 4.t! '-:'l.,·jf>l

17721') ·1

1.) 'i'0~44 IJ1/t:!til
1172ti~

14 II'H' !>o~ '{H6o\(,4

:/llJ1liJl{i

1·; 0Vlb;J4 ..A12cl)o
..;! /1/1~; ';-1 '0

15 1\:,:1::>0.(1 1.'112 bi,' 1
17 A\(lOO~ 't) 1 i::l ,!:,?~
U~ l'J,!'=>04 \,1 12 ~ I' oj

l:-J 0(;)01;)0 /1(11'\ '-Ij;;)

2\£1 .;'10~· '() ;,' 1

. ,
I".p,S r ::; :

I..P.5t:.l . •

,

"'It) v
i"!OV
Cl..~
:"10 V

!"I;') V

1<1:J V

("IQV

~,(J V

1";01/

''I).j V

i'1UV

I"! 0 1/
f"! 'J V
i"1 i.) V
k r~

.EI\iO

(6P)+,Rl
(SP),.(Si-')
R~

- (10(2),2 (SP)

Rl,PC

R4,LI-'.f:3I'i.S

to(j, l P • L l:~

(SP)+,I·q
(::;P)+,R2
(SiJ)+.R~

fo(h

JV,~P0 M'~~~ if~b.'2 17.J0~ ... 73 ~2:30 PAG~ 8-1
:lfl1l'3uL TAt:I..f.

A ..,,,,j ~ "i/J it) ILl 4 .. .1 2
I .. P • ~ A f) ~H 0 ~:; J 2 '"
I,.P"Ctii-(C: 17/51<.1
\.. p. ,j:-IP)(1 <HI 2 \~~, r(
t. ;.:I • 1 i\j r £) .') ~:I 1 1 Ii ;\

L P " I /) il! tJ ;·1 ;II 1 ~ f") I'(

1.,,";' •. 1 4 J i) .i if 1 I ~ -(
I..p.100 ~1{"/j2.)41-i

t.. ~ • 1 1 ~ (J >'.i v) .) ll~" -<
1..;;>.11:> ()~V.!~o2~

L ~ • 1: 1 3 ~ ~}/~ L1 1 ~) ~
I.. P • 1 ~ 1 i1 .. d· 4 ::> t' "
I..;'>.L;).-I:I {Jl't..1'.·14f,~

1..,;>,3:.T ~l'()!).,)4~

\.,"'. reT 0'11~j","')i'..\
I.. .., .T ~ p ;; IC .] .) tt .J i.:'

(J V ~ r(1'1/ 'r ~ \!.I V" I{' ~ 2 '0(

u~p~~s IO~.;H~\/·""

• ~ d S • ~ ;:,p) I' ~ \.~
'./.J/JiJ'Jl[\t.lll

~~~0~S DtfcCftJ: ~ 
F~E~ l~~~: ~~b'l. ~OHUS 
, I,. '" z Ie -( < [) r : L r ',; :\1 t>oI • v v; 1 

lY 
i..p.aK:) 
1..t'.:)dRII 
I..p.JUf\I 
I.. P ,lXX 
l.P,I'LJl 
t..?, ! ;(i4 
I..p.Il~ 

t.,.P,llJ 
1..?LI0 
1..~,!19 
1..;'>. 122 

0\<1~0\(jf/R(, 

0"j~v,26k 
117516 
~11{.)2!;)6R 
v~0034hR 

'lHhH02R 
i\:z1 02i()2R 
0l)42/4R 
00~.3~2j.( 
:(.10t)4~~:j.( 

thl lf!l4J2R 
,h1 iG14/2R 

I.. P • ''I A M 11:1 ') 0 Vi 14 R 
L,.p.SIL !();{H1016R 
I..~. fUF rn.1l10J4R 
~p. TR T ~1ij02JeR 
:;~1~2 II .oit:J:~"'12 
,Oi!wTrl I: lf1~H'.11~0 

B-9 

RETuRN PC 
UL.U PC 
ADORES:> Ps ("2) 
OL.D STATUS 

NEW STATUS 

RETiJRt\f 

~ESTORE TEMPORARIES 

~EsrORt ~EGISTER 4 

kETAIN RETURN AOORESS 

RESTO~~ RE~lSTERS 

EXIl SUBI'<OUTINE 

l.PTYP • 
LP.CL.S 
L.p.ONe; 
L.P.ER~ 
L.P.IQl 
L.P.IV?2 
L.P.lIc?5 
LP.ll1 
LP.114 
L.,p.ll1 
l.,P.I20 
LP.L.IN 
LP.OP~ 
l..P.STS 
LP.TRN 
LP11 • 
5.~SA"1I 

idil110001d 
0~0036t( 

00"'252R 
vJ(I10475R 
~0v:)124R 

'b~0170R 
iIHH} 2 3 0 R 
idiIJld306R 
1t100350R 
i6~H'J41~R 
~0\.1452R 
td~0024k 

I:H.1id~J6k 

i60~514R 
~0~eJ60~ 

"01cH101 
~0~044 



CR(JSS P(E.f't~f.:1\jC~ r A Ul,. t:. 5-1 

A\1~12 1-49'J 7-';'0 
I..~ ;c:- ~'i 2- 1~ 2-1e, 2-18 ~-19 2-2V) J",,34 5'" 9 

I.. P f'yP l-Id 1-21 2-i:!1 
L./J.tiAu ~ • .jg:. 3- OJ; J-J,,,,, 4-1:> C:S.l.j~ 

I..P.dl'f..:S ';.-J74 4-1..) 8-11fJ 
l..tJ.CI..~ ~-2!·j 3- Oil 

i..tJ,C';~ ~-J",4 4- 4f; 4-2; b- 4 1-19' 
I..p.uf;~ ~-"H4 4-.3 4 5" 4-Jj~ 

L.?"J''Ic. b- "If 
L.~ ,t)''IP 4-17 4-2t; 4-J~1't o ... .;~ 7-11 
t.,p.001" q- ,." ~- It: 
\"P.E""R 4. f· 7-2 4 ,", 
LP"..l. ".q 2 -1 (' ,3"10 4- HJ 7-27 
LP.IXX 0-1~q 

lP"lltJ 4- => 4- I;. 
L.~.li:'l~ 4-1~" 4-431 

1 • .P.IIl.11 4-1d!J 
1..~,l~C: 4_~~# 

1.t'.1,'3 4-2/'l 4-3!,) 7- 2 7- 9 I-IJ 
LP.!J4 4·29R 6-.cl 
1..~.Li£J!> 4-3J 4-30# 
l..~"L\!Je; 4-J7q 6-10 
Lrl.llllj 4-19 5-1~,!;f 

~ . .?,111 b.2~l;I 

l..tJ.I12 O-~9" 
LPllii .. ~ '0-1,3 b- 111 
I..p.114 0- ~ ~-lb# 
I,.P.115 b- ,; 5-:;>014 
1..,,).111"> 0- b f5-2d 6-j~1l 

I..P.tll O-iU. f.-,;7 7- ilt 7-14 
I..P.lIB o4_~'" 7- J~ 

L/J •. [19 1- 4 7-Hh 
i..p •. L2~ 4- .. H 7-1 0 R 
LiJ.Un ti- 5 7-1d~ 

LP •. L~~ 4-~:'.i 7-')e.p 
L.~,,~.!N ~_';!').tt 4-1 4 8-1~~ 

LP"l.u~ ~-Ol~ 4-ld 
I..,J" t-J A 1"1 2-27" 7-2 4 

LP.OiJN ~·llj j- ~I; 

' ... p" st T !)- b 7-1t; 8-1114 
l...p.SA..l 2··33" 5-1 7 h- 5 o-.3J 
LP".-iTS J- 6 .s-3,j ts- 4,:;; 

1.,P.rCT 2-J~~ .~·1 j, 3-J5~ J-37~ ~. 7 4-39. 
L.r'.T'UF 2-41:' 3- I 

L.tJ " Tr<1\I ~-19 3-3e::~ 

I.. P "fRtJ 1c!-~9tt H- ~ 

LP.f'RT 4 .. 3~~..; b-j,j 

i.Y 1 1 1 .. ~3" 
L.Sl1 e- i3 2-11 2-42 2-47 ,j. 9 J·l~ ~-15 3-20 5-18 

~-2(j 6- t) 6-15 o-Jt> 
OvP~""T 2-J:)~ 6- '" PC 1-47Q 3- iJf 3-3..3f\ o- S-' 
~., 1·4~1q 3-3 4 11 J-';" ,j-';fi ;J .. 94» o-IV} 
~1 l-'.q~ 3- /" 3- 11 4-12 4.16 41 4-1ts 4-20 4-36 5-12 

b- 1 6-:!") o-2"'~ 0-20 tI-29 7- 141l 7. j 7- ~, 7-10 
d- 4~ 8- Y 8-1'3~ 

~2 .1.-42'1 3-1J 4-11 4-10@ 4-1t 7-17f 7-2Jfi 8- S, 8 • 7 
Ij- (1~ H-l,j 8-1/1P1 

B-l~ 



C~JS.:) ~E.r·tf'(f.:.NCt. 

~3 l .. 4.~~4 
1-1 t,l.Q) 

14 1 .. 4d'·j 

~:, l-I.+j'l 

Si'\IP" 1-24~ 

dP 1- 41) if 

:) .. ~:J ,jil 

~-t:>(; 

3PAC!:.5 4-~\" 

';'Pr<t."U ;. ... Ii 

!:l-,jr> 
~.RS~\I 1-:>1 4 

VP~CA~ -::-.,)4<:1 
.,~ 1 i) r'1 I-Jh 

,j- I 

b';)t::"1r-, 
• A\jS. 50tl~ij 

lA,I:)I..t. ;:;.2 

4"", 1".' 4-14~ 

7-2~~ d-12 
4- ~ 4-1,~ ~ 

b- t)~ 0- ~~ 

6-t.?!J 
4- ~@ 4-1 'H~ 
5-J~~ 0-31 
8""10 d-17 

~-11 2-47 

!:) ... I 
4-:?~ 7-12 
2-1:) 2-3,~ 

4-27fii :J·2J ti- S, b- 7f1 6-33' 6 .. 34' 
8-18@ 
4·J2~ 4 .. 37(!i b-2Y !)-31fll 8"11 8-14' 
7-18~ () .. 19~ 

4-11(!il 4 ... U21fi 5- 7, ~- 8 ~·17' 5-23' 
7-241f1 1-20(61 8- 4 tI- ~,. 8· 7, 8 .. 14 
b-ld 

3-1:; .,).2(, ~·18 0 .. 24 6"" 8 5·15 

B-11 





HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming 
notes, software problems, and documentation corrections, are published 
by Software Information Service in the following newsletters. 

DIGITAL Software Ne\'ls for the PDP-8 and PDP-12 
DIGITAL Software News for the PDP-ll 
DIGITAL Software News for l8-bit Computers 

These newsletters contain information applicable to software available 
from DIGITAL'S Software Distribution Center. Articles in DIGITAL 
Software News update the cumulative Software Performance Summary which 
is included in each basic kit of system software for new computers. 
To assure that the monthly DIGITAL Software News is sent to the 
appropriate software contact at your installation, please check with 
the Software Specialist or Sales Engineer at your nearest DIGITAL 
office. 

Questions or problems concerning DIGITAL'S software should be reported 
to the Software Specialist. If no Software Specialist is available, 
please send a Software Performance Report form with details of the 
problems to: 

Digital Equipment Corporation 
Software Information Service 
Software Engineering and Services 
Maynard, Massachusetts 01754 

These forms, which are provided in the software kit, should be fully 
completed and accompanied by terminal output as well as listings or 
tapes of the user program to facilitate a complete investigation. An 
answer will be sent to the individual, and appropriate topics of 
general interest will be printed in the newsletter. 

Orders for new and revised software manuals, additional Software 
Performance Report forms, and software price lists should be directed 
to the nearest DIGITAL field office or representative. USA customers 
may order directly from the Software Distribution Center in Maynard. 
When ordering, include the code number and a brief description of the 
software requested. 

Digital Equipment Computer Users Society (DECUS) maintains a user 
library and publishes a catalog of programs as well as the DECUSCOPE 
magazine for its members and non-members who request it. For further 
information, please write to: 

Digital Equipment Corporation 
DECUS 
Software Engineering and Services 
Maynard, Massachusetts 01754 





READER'S COMMENTS 

DOS/BATCH 
Device Driver Information 
DEC-ll-ODEVA-A-D 

Digi tal Equipment Corporation maintains a continuous effort to improve 
the quality and usefulness of its pUblications. To do this effectively 
we need user feedback--your critical evaluation of this document. 

Did you find errors in this document? If so, please specify by page. 

How can this document be improved? 

How does this document compare with other technical documents you 
have read? 

Job Title _________________________________________ Date: __________________ _ 

Name: ___________________________________ Organization: ______________________ __ 

Street: ________________________________ Department: ________________________ __ 

City: ________________________ State: _____________ Zip or Country ____________ _ 



·--------------------.---------------------------.------------ Fold Here ---------------------------------------------.---------------

• 

,--------------------._------------------------- Do Not Tear - Fold Here and Staple ________________________________ M. _____________ _ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Digital E(IUipment Corporation 
Software Information Service 
Software Engineering and Services 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 


