
Computer Science Department

114 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

A Primer on the SMILE Microprogram

Load and Test System

by

H. K. Berg and N. Samari Kermani

Technical Report 78-11

July 1978

Cover design courtesy of Ruth and Jay Leavitt

A Primer on the SMILE* Microprogram Load and Test System

by

Helmut K. Berg and Nemattolah Samari Kermani

Department of Computer Science

University of Minnesota

Abstract

This report is a practical introduction to the use of SMILE, a system

for microprogram load and examination. It is meant to familiarize new users

with SMILE as one of the microprogram development aids in the microprogramming

laboratory, and as a reference for advanced users. The organization of the

SMILE system, input to be prepared by the user, and the interface with other

microprogram development aids and the UNIX operating system are presented in

the form of a tutorial. The report covers the basics needed for the use of

SMILE, such as typing commands, operating the system from the processor console,

and interpreting system responses. The concept and use of the SMILE system is

demonstrated by an example.

*SMILE, a ~ystem for MIcroprogram Load and ~amination, was developed at the

Technical University Berlin, Institut fUr Softwaretechnik und Theoretische

Informatik, Fachgebiet Betriebssysteme.

1

1. Introduction

SMILE is a system for loading and examining PDP-ll/40E user microprograms.

It was developed at the Technical University Berlin [1]. SMILE runs on the

bare PDP-ll/40E hardware and is bootstrapped from a magnetic tape. The orig­

inal SMILE version is bootstrapped from a DECTAPE, TCll [2], which is not

available in our PDP-ll/40E system configuration. The SMILE version we refer

to in this report is a modification of the original version which is boot­

strapped from the available magnetic tape, TMll[2]. The SMILE tape is gener­

ated in a post-processing step following the assembly of a user microprogram

with the MICRO/40 assembler [3].

The PDP-ll/40E was developed at Carnegie-Mellon University [3,4]. It

is a standard PDP-ll/40 computer that has been extended by the following

hardware features:

lK 80-bit words of random access (RAM) control store for storing user

microprograms.

32 80-bit words of read-only (PROM) control store for bootstrapping

microprograms.

a l6-wordstack for temporary data storage.

a shift and mask unit and a carry control unit which extend the data

manipulation capabilities of the basic PDP-ll/40 processor.

The 3-Rivers Computer Corporation offers these hardware accessories as a

writable control store option (WCS 11/40) for the PDP-ll/40. All normal

PDP-ll/40 features are unaffected by the WCS 11/40. The design of this extension

allows user microprograms access to all functional hardware units and data paths

in the basic PDP-ll/40 processor and in the WCS 11/40. Introductions to the

microprogramming of the PDP-ll/40E are given in [3,5].

The SMILE system is the control store loading facility in our PDP-ll/40E

microprogramming support system. Additionally, a microassembler [3,6] and a

microsimulator [3,7] are available. These facilities constitute a typical

microprogramming support system. More sophisticated support systems may also

include test set generators, external hardware accessories for microporgram

instrumentation, microprogram verification system, etc. As microinstructions

affect all hardware resources in a computer and hence, faulty microprograms

result in an erroneously operating machine, it is important that a micro­

programming support system provides sufficient tools for microcode validation.

2

The basic approaches to program validation are formal correctness proofs and

testing. Proofs of formal correctness, which attempt to show the absence of

errors, are not supported by our PDP-II!40E microprogramming system. Micro~

code validation by testing is constrained by the fact that testing, in gene­

ral, can only show the presence of errors, but not their absence. Micro~

programming errors may occur at the microoperation level, the microinstruction

level, and the microprogram level. The SMILE system provides testing facilities

at the microprogram level.

In general, we can distinguish between static program tests, via pro­

gram analysis, and dynamic program test, via program execution. Syntax checks

as performed by the MICRO/40 assembler may be considered as a type of

static testing. Dynamic microcode test methods can be classified into soft

(off-line) testing and hard (on-line) testing. The PDP-II/40E microcode

simulator [7] is an off-line testing system that allows the examination of

simulated microinstruction executions. The ability to detect dynamic, hard­

ware-dependent timing errors with an off-line tester depends on the homoge-

neity of the mapping of the machine hardware into the tester software. Therefore,

on-line testing techniques are generally better suited for discovering dynamic

errors in microprograms. The SMILE system allows on-line testing at the micro­

program level. The microprogrammer can specify a PDP~11 machine language test

program whose execution calls upon the execution of microprograms from the

writable control store. The effect of microprogram execution in the physical

machine can then be observed by investigating the appropriate processor reg­

isters and main memory locations. In this respect, the SMILE on-line test

facilities at the microprogram level complement off-line simulator tests at

the microinstruction level. However, these testing tools do not lend them­

selves to the location of dynamic errors at the microoperation level. Al­

though the PDP-II/40E microinstruction format facilitates the detection of

microoperation timing conflicts in the MICRO/40 assembly process [6], the

provision of an on-line test system at the microoperationlevel is considered

necessary. Therefore, the use of a logic state analyzer for this purpose has

been investigated [8].

This report is a practical introduction to the use of the SMILE system.

We first describe (section 2) the organization of the system. This description

deviates from the original SMILE documentation [1] with respect to the modifi­

cations which became necessary to install the system in our microprogramming

laboratory. It includes guidelines for the operation of the S~1ILE system.

3

The discussion in sections 2 and 3 is based on a simple example. With this

example, the use of SMILE in microprogram development is demonstrated by 3

complete terminal session presented in section 3.

2. SMILE Organization

In this section, we describe the SMILE tape, as generated after micro­

program assembly, and its constituent files. The discussion is based on the

example microprogram 1), called fastc.mic, shown in Fig.l. This microprogram

implements two machine language subroutines that handle the environment switch

for subroutines calls in the "elf programming language of UNIX. It saves and

restores registers that are used for parameter passing in subroutines calls.

Further details of fastc.m.ic will be introduced as needed.

reQuire de~s •• ic

be!tin.naap.
.=2001; d_210; b_d
d_rir-b !compare instruction
sldpzero
d_21U b_o

set

!check.for other. ins~~

sk.ipzero
noop

set

!toto 150

start !211 inst.~
d_r5 !r1(-r.5
rLd
d,ba_r1-2' r1_d !poP 1'4
datU clkoff
r4_urdbl.Js
ba,d_rl-2; rl_d !poP 1'3
datU clkoff
r3_unibus
ba,d_rl-2; rLd !pop 1'2
dati; clkcff.
r2_unibl.Js
ba,d_r5 !sp-(-r5
r6_d; dati~ clkoff
r5_unibus !r5<-(sp)~

d_r6+2; r6_d
ba_r6; dati !rts PC
d_r6+2; r6_d' clkoft
r7_unibus; bIJt .. 16
goto 1.6

end

Figure 1: fastc.mic

start.

end

te.s.

~inis

. ! 21.0 inst r
d.ba_r6-2; r6_d !push 1'5
d_r5; dato; clkoff
d_r7; p3 !r5<-r7
r5_d
rO_d.
d_r6
r5_d

!rO<-r5
11'5<:-1'6

d,ba_r6-2; r6_d !push'r4
d_r4; data; clkoff
d,ba_r6-2; r6_d !push 1'3
d_r3; dato; clkoff
d,ba_r6-2. r.6_d !push 1'2
d_r2; data; clkofr
d_r6-2; r6_d !r~<-r6-2
d_rO ~r7<-rO
r7_d; blJt 1.6
goto 16

1) This microprogram was developed by K. Bullis, J. Bjoin, and T. Lunzer as

a course project for (H.K. Berg) eSci 5299, Microprogramming, Winter

Quarter 1978.

4

2.1 Interface with MICRO/40

User microcode for the PDP-II/40E is written in the MICRO/40 assembly

language. For a detailed description of MICRO/40, the reader is referred to

[6]. Microcode source files are generated using the UNIX text editor [9].

MICRO/40 microprogram source files must have names of the form

<name>.mic,

where <name> is any legal name, e.g., fastc. To assemble a microprogram

source file, the UNIX command [10]

mic [opt] <name>.mic

is given. For use with the SMILE system, the options for assembler calls,

opt, are not significant. The default assembler call,

mic <name> • mic

which is used with SMILE, generates three files, namely <name>.lst, <name>.bin,

and <name>.tab«name>.tab is only used by the microsimulator [7]).

<name>. 1st

This file is a listing of the microprogram object code in the 80-bit

PDP-Il/40E microinstruction format, followed by a list of mnemonic labels

and their associated control store addresses.

<name>. bin

This file contains the binary version of the assembled microcode. It is

generated from an internal file, <name>.s, in which a pseudo-:readable form

of the object microcode is stored in UNIX assembler format. The binary version

of the assembled microcode, <name>.bin, is generated using the UNIX assembler

as a post-processor of MICRO/40.

When the assembly process is completed, the SMILE system can be invoked

to load the object microcode into the writable control store, and to test the

microcode at the microprogram level. As there is no protection mechanism

built into the micro-architecture of the PDP-ll/40E, theon-line execution of

partially validated user microprograms has the potential to harm the system

software. Therefore, the SMILE system is designed to run on the bare machine

hardware. To this end, SMILE is bootstrapped from a magnetic tape. This

tape is generated under the UNIX operpting system. After the generation of

the SMILE tape, the operating system is shut off (demount the system disk)

to run SHILE. Following the execution of the SMILE tape, the user microcode

is stored in the writable control store and the machine is available for

normal operation. For instance, machine instructions may be executed which

5

call upon the execution of user microprograms, or an operating system (e.g.,

UNIX) may be bootstrapped.

Following microcode assembly under UNIX, the SMILE tape is generated by

the UNIX command

smile <name>.bin [<test program name>].

<test program name> is a file which contains the binary representation of a

machine language program to be used for testing the user microcode at the

microprogram level. The specification of a test program is optional. If

the SMILE system is only to be used for loading microcode into the writable

control, the SMILE tape can be generated by the UNIX command

smile <name>. bin

which does not refer to a test program. The SMILE tape consists of the following

four files:

the system loader,

the RAM loader,

the object code of the user microprogram «name>.bin),

the object code of the machine language test program «test program

name».

2.2 Organization of the SMILE Tape

The UNIX command 'smile' is a program that generates the SMILE tape.

This program is written in the "e" programming language of UNIX [11]. It

checks the status of the magnetic tape drive, TM1l. If the tape drive is

not ready for writing, the error message,

cannot open /DEV/TMll/

is printed and the program halts. Otherwise, the subroutines TWRITE is

called to write each of the constituent SMILE files on the magnetic tape.

As the user microprogram and the test program are variable in size, TWRITE

attaches the file headers (specifying the size) to these two files. Addi­

tionally, the program symbol table is included in the test program file.

For each file that is written on the tape, the subroutine TWRITE prints the

following message,

<file name>: </I bytes>/<maxll bytes>bytes <If blocks>/<maxlf blocks>blocks

where <If bytes> and <I! blocks> are the numbers of bytes and blocks, respectively,

in th~ file to be written, and <maxI! bytes> and <maxI! blocks> specify the allowed

maximum size of the file <file name>. The block size on the TMll 7-track tapes

used in our microprogramming laboratory is 512 bytes, which corresponds to 256

6

words. If the subroutine TWRITE is for some reason unable to properly write

on the magnetic tape, the program halts after printing one of the error messages

listed in Table 1.

cannot open /DEV/TMII/

cannot open <file name>

too many bytes

too many blocks

read error on <file name>

write error·on tape

more blks written than read

If the device is not ready for writing.

If one of the SMILE files cannot be

read from the UNIX file system.

If <II bytes> exceeds <maxi' bytes>.

If <I' blocks> exceeds <maxi' blocks>.

If a read error occurs when reading from

the UNIX file system.

If a write error occurs when writing onto

the tape.

If the number of blocks written on the

tape is greater than the number of blocks

read from the UNIX file system.

Table 1: Smile Command Error Messages.

After the program 'smile' has been executed, the generated magnetic tape
has the format shown in Fig. 2.

Block 0: As the bootstrap program in our system skips block O,the first block

on the tape contains no information.

Block 1: This block contains the SMILE system loader. The system loader's

size is 146 bytes and hence, bytes 2228 to 7778 of this bl~ck are not used.

Block 2: This block contains the RAM loader. Its size is 226 bytes, leaving

bytes 3428 to 7778 of this block empty.

Blocks 3 to i: The object code of the user microprogram, <name>.bin, to be

loaded into the writable control store is stored in these blocks. As the size

of this file is variable, a file header is attached to it. This file header

has the format of the UNIX object file header [9]. The following two of the

eight header words are of interest. Word 2 specifies the size of the file in

number of bytes. The microassembler stores the size of the microcode file

in blocks into word 7 which is unused in UNIX. For the microcode file,

<maxll blocks> = 21 and hence, <max# bytes> = 10752. The file header is stored

in a separate block. The remaining 20 blocks correspond to 5K of l6-bit words

Skipped by the
bootstrap program

System Loader

RAM Loader

User Micro­
program (RAM

contents)

Test Program

Unused

Block Number

a

1

2

HEADER
------------------------------ 3

4

i

HEADER
------------~----------------- i+1

i+2

i+j

Figure 2: SMILE Tape layout (the shaded areas do not contain information)

7

8

for the user microcode (cf. Fig.4 in the following subsection).

Blocks i + 1 to i + j : These blocks contain the obj ect code of the machine

language test program, <test program name>, and' the associated program symbol

table. As this file is of variable size, a file header is attached. Its size­

is specified in the same way as for the microcode file; Additionally, the

size of the program symbol table in bytes is stored in word 5 of the file header.

For the test program, we have <maxI! blocks> = 89 and <maxll bytes> = 19952. In

this file, the file header is not stored in a separate block and hence, the

test program can be up to 22.SK l6-bit words long (cf. Fig. 4 in the following

subsection).

The SMILE tape for our example microprogram as generated by the command

smile fastc.bin a.out

is shown in Fig. 3. The UNIX file a.out contains the binary object code of

the test program. This file exists as long as no other program is assembled

or compiled, since object programs generated under UNIX are always stored in

this file. If it is desirable to preserve the object code of a test program,

the file a.out can be saved into a user file, <name of test program>, by the

UNIX command

Block 1

System

Loader

Block 2

RAM

Loader

mv a.out <name of test program>.
..---_._-- -,.,,~-...

ayte
~:u:nber

(Octal)

t
0001000 000000 012706 133000 012705 172522 012700 000001 012701
0001020 000400 004767 000126 000000 005200 012701 133000 005061 ;
0001040 000020 004767 000106 016102 000014 060002 005200 016101
0001060 000020 004767 000044 000000 012701 000760 005061 000014

. 0001100 004767 000050 016102 000014 060002 005200 062701 001000
0001120 004767 000006 000000 000+37 000400 020002 002401 000207
0001140 004767 000010 00:::i200 062701 001000 000767 01<>165 000004
0001160 012765 177000 000002 012715 060003 004767 000002 000207
0001200 032715 100200 001775 100401 000207 013700 172520 000000
0001220 000207 000000 000000 OCOOOO 000000 000000 000000 000000
0001240 000000

As the system loader is of fixed size (146 bytes), no file header 'is attached

Byte
NU:llber
(Octal)

~
000:::000 013/46 133772 004767 0,00060 010002 010003 013716 1.33774

0002C:.!0 062"716 000010 004767 0000-10 005726 005005 062205 005505

0002040 020200 103774 020537 133776 001422 012700 000001 004767

0002060 000246 0105:37 133776 000744 016600 0<'>0002 162700 020000
OOOZlOO 010001 006201 006201 060100 062700 1:54000 000207 032737
0002120 000001 177570 001005 012700 170000 004767 000172 000767
0002140 013746 177776 052731 000200 177776:005005 013701 133772
OOCJ2160 012704 000652 011300 005002 000007 010702 000007 020023
0002200 001031 060005 005505 062401 020427 000662 101763 020137
0002220 133774 003756 012637 177776 020537 133776 001421 OJ 2700
0002240 000002 012746 000400 000167 000056 000002 000002 000002
0002260 037772 140010 012700 OOOOtO 004767 000034 005743 000732
0002300 012746 000700 005000 012746 001000 000167 000012 000000
0002320 00000,:) 000000 000000 oooeoo 012737 000007 177566 000000
0002340 OOO~07 000000 000000 000000 000000 000000 000000 000000
0002360 000000

(continued)
- ••• ' __ .J __ ~_ A$ HI .. -I (226 bvte!!'). no file header is at:ached

Block 3

Header

faste.bin

Bloek 4

faste.bin

Bloek 5

a.out

Byte
Number

(cctal)

~
'bytes

t
ilblocks

~
FUe H~adar ~ 0003000 000407 001,)62 000000 000000 000000 000000 000002 000001

0003020 134000 134670 000000 000000 000000 000000 000000 000000
0003040 000000

Control ~ 0003760 000000 000000 000000 000000 000000 020000 020540 060615
Information t t t--

ramfrst ramlast chcksum

Byte
Number

(Octal)
~

0004000 000000 000000 040000 002376 000000 100000 000000 141400
0004020 006371 000210 000033 003000 100410 002366 000000 100026
0004040 003057 146610 002342 000000 000000 000000 040000 000227
0004060 000000 000025 000000 100400 002364 000000 000033 003000
000~100 100410 002370 000000 005000 000000 040000 002367. 000000
0004120 100000 000000 1.41400 006375 000211 005000 000000 040000
0004140 002365 000000 000000 000000 040000 002373 000000 100021
0004160 000000 046000 002363 000000 100021 .0030:57 146610 OO:?~~6:.l

0004200 000000 000000 000000 060020 002361 000000 040024 000000
0004220 046000 002360 000000 100021 003057 146610 002357 000000
0004240 000000 000000 060020 002356 000000 040023 000000 046000
0004260 002355 000000 100021 003057 146610 002354 000000 000000
0004300 000000 000020. 002353 000000 040022 000000 046000 002352
0004320 0000(;0 020025 000·)00 100600 002351 000000 100026 000000
0004340 066020 002350 000.000 040025 000000 046000 002347 000000
0004360 100026 004457 146400 002346 000000 020026 000000 040220
0004400 002345 000000 100026 0.04457 ' 166400 002344 000000 047027

. 000.4420 000000 0460CO 002343 000000 000000 000000 040000 000361
0004140 00000.0 000025 000\)00 120520 002341 000000 000027 000000
0004460 140400 002340 000000 100025 000000 046000 002337 000000
OOO·l~OO 100020 000000 046000 002336 000000 000026 000000 10040.0
00.0-1520 002335 000000 100025 000000 046000 00.2334 000000 100026
0004540 003057 146610 00.2333 000000 000024 00000.0 120520 002332
00.04560 00000.0 1000.26 003057 146610 002331 000000 000023 000000
00.04600 120S20 00233:) 000000 100026 003057 146610 002327 000000
0004620 000022 000000 120520 002326 000000 100026 003057 146410.
0004640 002325 000000 000020 000000 100400 002324 00.0000 107027
0004660 000000 046000 002323 000000 000000 000000 040000 000361
0004700 000000

Control ~ 0004760 000000 000000 000000 000000 000000 020000 020540 060615
Infor::lat1on t l' i

ramfrst ramlast chcksum

Byte length
~ut:lber symbol

(0.:ca1) #b:f,tes table lib locks
J J, .L-.

File Header-+ 0005000 000407 000054 000000 000000 000000 000000 000001 000000
OOO~O20 012700 000000 012701 000001 012702 000002 012703 OOOOOl
0005040 012704 000004 012705 0(}OO05 012706 133000 ,,00210 000000.
0005060 005000 00500l 005002 005004 000211 000000

This test program file does not not contain a symbol table

Figure 3: Smile Tape Example

9

10

2.3 System Loader

The system loader is the first file on the SMILE tape (block 1). It

is brought into main memory by bootstrapping the SMILE tape. The main memory

locations Os to 376S are reserved for the SMILE system loader. The bootstrap

program places it into locations Os to 110
8

and then transfers control to the

first instruction of the system loader and halts. The system loader is invoked

by pressing the CONTINUE switch at the processor console. It loads the RAM

loader, the microcode, and the test program into main memory, thus, creating

the main memory map as depicted in Fig. 4. To load these files requires that

the system loader is reinvoked for each file by pres~ing the CONTINUE switch.

The implementation of the system loader is based on the fixed SMILE tape

format as discussed in the preceeding subsection. It is written in PDP-ll/40

assembly language and makes no use of the memory management [12]. Hence, the

main memory map shown in Fig. 4. is a description of the lower 28K words of

physical memory.

The SMILE system loader first reads the RAM loader (block 2) from the

magnetic tape into main memory locations 400S to 74l
S

. In the main memroy

map, locations 400S to 756S are reserved for the RAM loader.

Next, the first block of the microcode file, which contains only the

file header.and some control information (cf. Fig. 3), is read from the magnetic

tape. From this block, the size of the object microcode is calculated. Then,

the rest of the microcode file is read into main memory. Location 134000
S

to

l57776S are reserved for this purpose. The maximum length of the object micro­

code corresponds to the maximum writable control store capacity of 1K SO-bit

words. The 10K bytes are mapped into the highest 5K of 16-bit main memory words

(23K to 28K) as follows. The increment of control store .addresses from one

SO-bit RAM-word to the next is 010S[5], whereas the increment of main memory

addresses from one SO-bit RAM-word to the next is 10 (decimal) bytes. Hence,

we have

memoffset = ramoffset·5/4·

with the control store address of the first SO-bit ramO =2000S' we have

ramoffset = ramadr - ramO.

If we denote the main memory address of ramO by.ram_c, and with ram_c = 1340008'

the main memory address corresponding to a given control store address is

calculated as follows

memadr = ram c +memoffset

ram_c + (ramadr-ramO) -5/4-

Using this relationship, the user may perform smaller modifications of the

5k

22.5k

Device Register
Addresses

Microcode

RAM Map

chksum

ramlast

ramfrst

Stack

Memory Locations'

777 776

760 000

157 ?76

134 000

133 776

133 774

133 772

133 770

133 000

132 776

------~--------------~---------- R

Test Program
001 000

Test Program Header
~----------------------------~ 000 776

000 760
~------------------------~·OOO 756

RAM Loader

000 400
~------------------------i 000 376

System Loader

(Interrupt Vectors) 000 000

Figure 4: Main Memory Layout

11

12

object microcode from the processor console, without reinvoking the micro­

assembler and generating a new SMILE tape. The bit assignment of the micro­

operation fields in the 80-bit RAM word are discussed in [3,5].

The last eight words of the first and last block in the microcode file

on the tape contain control information (cf. Fig. 3). The first five of

these control words are empty. Words 6 and 7 specify the first (ramfrst)

and last (ramlast) control store addresses to be loaded with the microcode

in the file. The addresses ramfrst and ramlast are stored in the main memory

locations l337728 and 1337748 respectively. , Word 8 of the control information

contains a check sum (chksum) which is stored in location l3377~for later

use by the RAM loader.

Finally, the system loader transfers the object code of the test program

from the magnetic tape into main memory. In this case, the file header and

the object code contained in the first block of the file (cf. Fig. 3) are

stored in main memo:r;y starting at location 000 760
8

• That is, the file header

is stored in locations 000 760
8

to 000 7768 and the object code of the test

program starts at location 001 000
8

. The size of the test program file is

calculated from the information in the file header, and then, the rest of this

file is read from the magnetic tape.

Locations 1000
8

to 132776
8

are reserved for the storage of the test program

and its program symbol table. Test program file is stored; starting at main memory
\

location 10008 . However, the test program file must not completely fill the reserved

22.5K main memory words as main memory location 132776
8

to R are used for the

stacks in the system loader and the RAM loader. This stack should also be

used by the test program (if this program contain~ stack instructions). It

is the user's responsibility to prevent overwritting of the test program by

the stack. As a general rule, the reservation of ten main memory words for

the stacks in the system loader and RAM loader is sufficient.

Main memory locations 760 ODDS to 777 776S as shown in Fig. 4 are reserved

for PDP-II device register addresses. These locations correspond to the l6-bit

addresses 160 0008 to 177 7768 which are automatically relocated by setting

the address bits 16 and 17 in the l8-bit UNIBUS address to 1, if the address

bits 13, 14, and 15 are 1. With the memory management option [12], the main

memory space may be extended from 2SK as shown in Fig. 4 up to l24K words

(locations 160 ODDS to 757 776S).

If an error occurs when the system loader reads the SMILE tape, an error

subroutine is called which stores the address of the currently written main

13

memory word into the processor register R[O]. Then, the program halts and

the content of R[O] is displayed on the data display at the processor console.

Thus, using the main memory map given in Fig. 4, it can be determined how

much of the SMILE tape had been read at the time the error occured. When

the system loader terminates after loading the entire SMILE tape, it is no

longer needed. Hence, the test program can use its memory space for the stor­

age of interrupt vectors [12](cf. subsection 2.5).

2.4 RAM Loader

After the entire SMILE tape has been transferred into main memory, the

system loader transfers control to the first instruction of the RAM loader at

location 4008 and halts. The RAM loader is invoked by pressing the CONTINUE

switch at the processor console. It loads the object code of the user micro­

program from main memory into the writable control store locations specified by

ramfrst (main memory location 133 772
8

) and ramlast (main memory location

133 7748). The implementation of the loader is based on the main memory map

of the 80-bit RAM-words as discussed in the preceeding subsection. It is

written in the PDP-ll/40 assembly language.

The control store loading process is controlled by check sum tests and

immediate rereads from the control store. These tests are preformed to

ensure that the microcode loaded into the control store is equivalent to the

microcode generated by the microassembler. To this end, the RAM loader first

calculates a check sum of the main memory words to be transferred into the

control store and compares it with the check sum that was produced by the micro­

assembler (chksum in main memory location 133 776
8
). If the two check sums

agree, the microcode can be loaded into the control store. Otherwise, the RAM

loader issues an error message and halts. The user may request continuation of

the loading process by pressing the CONTINUE switch at the processor console.

In this case, the checksum calculated by the RAM loader is written into location

133 7768 and the check sum test is repeated.

This option has been built. into the RAM loader to allow for immediate mod­

ifications of the user microprogram. The checksum of the original object micro-

code is automatically replaced by a checksum for the modified object microcode.

Hence, it is possible to make smaller modifications in the object code of the

user microprogram, without invoking MICRO/40 under UNIX for reassembling a mod-

ified source microprogram and generating a new SMILE tape. Such modification may

even be made after the microprogram has been tested. In this case, control must

manually (at the processor console) be transferred to the beginning of the Ram loader.

For this reason, the main memory locations of the RAM loader should not be

changed by the test program.

During the control store loading process, the RAM loader immediately

rereads each transferred l6-bit word from the control store and compares it

14

with the appropriate main memory word. If the two l6-bit patterns disagree,

the WRITE operation can be repeated by pressing the CONTINUE switch. Further­

more, after the entire RAM map has been written into the control store, the control

store content is' reread and a checksum is calculated. If this checksum dis-

agrees with the check sum stored in location 133 776
8

, the checksum in location

133 7768 is checked by recalculating a new checksum for the microcode in main

memory and a new control store loading process can be initiated by pressing

the CONTINUE switch.

The RAM loader informs the user of the status of the control

store loading process by generating the encoded error messages listed in Table

2. To alert the user, the console 'peeps' and the message code is displayed

on the data display. At this time, the program halts at location 000 740
8

which is displayed on the address display. When the CONTINUE switch is pressed,

the program continues execution according to the displayed message code. The

actions performed after the program is restarted are described in Table· 2.

The RAM loader has a built-in safeguard against unintentional modifications

of the writable control store. This protection mechanism is based on the fact

that all hardware bootstrap programs start at even (word) addresses. There-

fore, in contrast to the general rule, it is required that the bitO-switch (lowest

order bit) is set to 1 (odd address) when the control store loading process is

initiated. The position of the bitO-switch is tested after the first check

sum test has successfully been passed. When the bitO-switch is set to 0, the

program halts until the switch is set to 1 and it is reinitiated by pressing

the CONTINUE switch.

15

Code 000 000

The RAM has been loaded without error. When the CONTINUE switch is

pressed, the testprogram wilq be executed, starting from location 001000
8

Code 000 001

The checksum stored in location 133776
8

disagrees with the checksum cal­

culated by the RAM loader. When the CONTINUE switch is pressed, the

RAM loader checksum will be stored in location 133776
8

and the checksum

test is repeated.

Code 000 002

The checksum calculated upon immediate reread of the written object micro­

code from the RAM disagrees with the checksum stored in location 1337768 .

When the CONTINUE switch is pressed, a new RAM load is tried.

Code 000 010

The immediately reread l6-bit word disagrees with the l6-bit word written

into the RAM. When the CONTINUE switch is pressed, a new WRITE/READ for

the same l6-bit word is tried.

Code 017 000

A control store loading process has been initiated with the bitO-switch

set to O. When the CONTINUE switch is pressed, the test of the bitO­

switch is repeated.

Table 2: RAM Loader Message Codes

2.5 Test Program

The test program for testing user microcode at the microprogram level is

a PDP-ll/40 machine language object program. The source of the test program

is written in the UNIX assembly language. This is indicated by the suffix "s"

in test program names of the form <name>.s. The object code of the test

program is to be generated and stored in the file a.out by the UNIX command

as <name>.s

before the generation of the SMILE tape (with the microcode object file

<name>.bin) is invoked by the UNIX command

smile <name>.bin a.out

As the system loader loads the test program into consecutive main memory

locations, starting from location 001 000
8

(cf. Fig. 4), instead of 000000
8

,

the first instruction in the test program must set the assembler's relocation

counter (.•) to this address. The appropriate instruction is

•• = 1000

This initialization is necessary to have correct program-counter-relative

addresses produced by the UNIX assembler.

16

When the RAM loader terminates with a message code 000 000 (cf. Table 2),

pressing the CONTINUE switch invokes the execution of the test program. All

instructions in the test program which have an unu~ed PDP-ll/40 op-code

transfer control to one of two entry points into the control store [3,5].

Decoding of such an op-code by the user microcode in the writable control store

calls upon the execution of the microprogram which defines the unused op-code.

In the assembly language, unused op-codes may either be represented by an octal

number or may be assigned a mnemonic representation, <code>, as follows [11].

(a) No Operand Instructions

<code> = <octal number>

(b) Single Operand Instructions

<code> = <octal number> "tst

(c) Double Operand Instructions

<code> ::;: <octal number> "mov

Note that <octal number> must always represent an unused PDP-11/40 op-code [5,12].

The source code of a test program, called testn.s, for our example micro­

program (cf. Fig. 1) is shown in Fig. 5 •

• • =1000
mov $O,rO
mov $l,rl
mov $2.r2
mov $3,r3
mov $4,r4
mov $s,rs
mov $133000,sp
210

° / halt

/ test for 211
clr ro
clr rl
clr r2
clr r3
clr r4
211
0 / halt

Figure 5: testn.s

The first segment of testn.s tests the (unused) instruction 2108 which is

implemented by the microcode in the right column of Fig. 1. This instruction

17

saves registers R[2],R[3], and R[4] by pushing them onto a stack (for a

subroutine call). The second segment of testn.s is a test for the (unused)

instruction 2llS whose implementation is\given in the left column of Fig. 1.

Instruction 2llS restores registers R[2], R[3], and R[4] by popping them

off the stack (for a return from subroutine). Instructions 210S and 211S

are no operand instructions and are represented by octal numbers in testn.s.

The test for instruction 2l0S loads constants into registers R[O] to

R[5] and sets the stack pointer sp (R[6]). It then executes instruction 210S.

A halt instruction (op-code ODDS) follows. Hence, when the execution of

testn.s halts, the register contents can be examined by displaying them on the

data display at the processor console. Pressing the CONTINUE switch invokes

the execution of the test for instruction 2ll
S

. The appropriate section of

testn.s clears registers R[O] to R[4], executes instruction 2llS' and halts.

Again, the register contents can be examined. The microcoded implementation

of instructions 2l0S and 2l0
S

can then be checked at the microroutine level

by comparing the register contents obtained after the execution of instruction

2llS with the original content of the registers.

When the test program is first initiated, following the execution of the

RAM loader, the stack pointer sp is automatically set to the value 133 ODDS.

Before the first value is pushed onto the stack, sp is decremented by 2 and

hence, the last element in the stack is always stored at location 132 776 S
(cf. fig. 4). The SMILE system automatically initializes the stack for use

by the test program. However, if the test program is restarted from the

processor console, the stack pointer sp is not reset. In this case, care must

be taken that stack instructions in the test program are not affected by

"garbage" in the bottom of the stack. Therefore, it is advisable to always

reset the stack pointer sp in the test program, as done in testn.s (cf. Fig. 5).

Moreover, this measure may also help to prevent unintentional overwriting of

the test program by-the stack. Nevertheless, the user must always make sure

that the test program does never overlap with the test program stack. For

this purpose, the SMILE system retains the header of the test program file

in locations 000 760S to 000 776S' such that the memory locations occupied

by the test program can always be calculated from the byte count stored in

location 000 762S (second word in the file header).

As mentioned before, the test program may use locations Os to 376S _

(which are generally reserved for the system loader) for the storage of

interrupt or trap vectors. However, as the SMILE system runs on the bare

machine, interrupt or trap vectors to be used in the test program must be

18

initialized in the program. Furthermore, the test program must also handle

interrupts or traps. The general structure of an interrupt/trap vector is

depicted in Fig. 6. The address assignment for PDP-ll/40 interrupts vectors

can be found in [12].

15 o
Pointer to Service Routine

New Processor Status Word

Figure 6: Interrput/Trap Vector

An example for the use of a trap vector in a SMILE test program is

demonstrated by the test program, test.s,as shown in Fig. 7 •

• • =1000

a:

Figure 7: test.s

mov
mov
mov
212
o
o

$a,*$lO
$3;*$12
$133000,sp

This test program is used with the example microprogram, faste.mic, as de­

picted in Fig. 1. It tests if illegal instructions (unused op-codes other

than 210
8

or 211
8

) are recognized by the decoding in fastc.mic ~nd trapped

correctly. The first instruction of test.s stores the address of label

'a' into location 010
8

(location of, the interrupt vector for 'Reserved

Instruction' [12]). The second instruction assigns the (arbitrary) value, 3

to the associated processor status word entry at location 012
8

• If instruction

2128 is trapped properly, test.s halts at label 'a' with the value 3 stored

in the processor status register. If the microprogram fastc.mic does not

recognize instruction 2128 as an illegal instruction, test'.s halts at the

halt statement immediately following instruction 2128 .

An example for the implementation of an interrupt service routine is

shown in Fig. 8.

int:

mov

mov
o

rti

$int,*$lO
/set interrupt vector for reserved
instruction
(sp), rO

/display the address of the interrupt
vector that caused the halt on the
data display

Figure 8: Interrupt Handler for Reserved Instructions

19

The last instructions of an interrupt/trap service routine should be

halt and rti (return from interrupt). rti restores the program counter and

the processor status word from the processor stack. Thus·, after the cause

of an interrupt or trap has been investigated, the test program execution

may be continued by pressing the CONTINUE switch.

3. SMILE Operation

In this section, a terminal session is presented which demonstrates

assembling, loading, and testing of the example microporgram fastc.mic.

The microprogram and the test program testn.s are assumed to be stored

under the directory /uprog/. System commands and responses start at the

left margin of the page. System responses end with the prompt %.

3.1 Preparation of the SMILE Files

The microcode file and the test program file are prepared before the

SHILE tape is generated.

mie /uprog/fastc.mic

The microporgram fastc.mic is assembled.

/uprog/fastc.mic

91 lines read.

%

Now, the files fastc.lst, fastc.bin, and fastc.tab may be printed

strip fastc.bin

%

The symbol' table is stripped off the file fastc.bin, as it is

not needed by the SMILE system.

as /uprog/testn.s

%

The test program testn.s is assembled by the UNIX assembler, and the

object code is stored in the file a.out.

mv a.out testn

%

The object code of the test program is moved from a.out to the file

named testn.

3.2 Mounting the Tape

20

When the microcode object file, the test program object file, the system

loader, and the RAM loader are allocated under the user working directory, a

magnetic tape is mounted.

1. Mount the tape on the tape drive

2. Push the POWER switch into the on-position. The WRITE ENABLE light turns
on.

3. Push the LOAD switch.

4. Push the ON LINE switch. The READ and SELECT lights turn on.

5. The tape drive is ready.

3.3 Generation of the SMILE Tape

The UNIX command "smile" is assumed to be stored under the directory

/ uprog/bin/ .

/uprog/bin/smile fastc.bin testn

This command generates the SMILE tape which contains the system loader,

the RA}I loader, the object microcode fastc.bin, and the object code and

the symbol table of the test program testn.

fastc.bin: 962/10752 bytes 2/21 blocks

testn: 60/-19952 bytes 1/89 blocks

done

%

For the microcode and the test program, the system specifies the number

of bytes and blocks to be written on the tape and the allowed maximum

size of these two files. Then, the completion of the SMILE command

execution is indicated.

3.4 System Halt

When the SMILE tape is generated, the system is halted to load the

tape into the bare machine.

halt

Halt the system

halt the system? y

The system reassures the halt command. With the user response "y",

the system halts and prompts

UNIX halted.

@ unix

After the system halts,the load switch on both disks must be pushed to

the LOAD position such that the read/write heads are fully retracted and

the spindle stops rotating.

3.5 Bootstrapping the SMILE tape

The SMILE tape is bootstrapped from the processor console.

1. Set address 773 1308 at the switch register.

2. Push LOAD ADRS switch.

3. Push START switch to load the system loader into main memory.

4. CPU halts.

5. Push CONTINUE switch to start the system loader.

6. CPU halts.

7. Push CONTINUE switch to load the RAM loader.

8. CPU halts.

9. Push CONTINUE switch to load user microcode file

10. CPU halts.

11. Push CONTINUE switch to load the test program.

12. CPU halts.

13. Push CONTINUE switch to transfer control to the first instruction of

the RAM loader.

14. Console "peeps", the console address register displays 0007408' and

the console data register displays 1700008 (cf. Table 2).

21

22

3.6 Control Store Loading

The control store loading process is controlled according to the RAM

loader messages listed in Table 2.

1. Set bitO-switch to 1.

2. Push CONTINUE switch

3. When the console "peeps' follow Table 2 until the RAM loader holds at

location 0007408 and the code 000000
8

is displayed on the console data

display.

3.7 Test

When the control store has successfully been loaded, pushing the CO~ITlNUE

switch invokes the execution of the test program. When the test program

executes a 'halt' ~nstruction, register contents and main memory locations
I

can manually be examined at the processor console, (the test program might

also include an output routine that prints the desired register contents on

the DEC-writer).

1. CPU halts.

2. Set register or main memory address at the switch register.

3. Push LOAD ADRS switch.

4. Address in switch register is displayed on the address display_

S. Push EXAM switch.

6. Content of specified location is displayed on the data display_

7. Push CONTINUE switch (if more test program instr. are to be executed).

For the test program, testn.s, (cf. Fig. 5) the following register

contents are obtained after the execution of instruction 210
8

•

Address Register Content Comment

777 700 R[O] 001036 Address of halt instruction
777 702 R[l] 1
777 704 R[2] 2
777 706 R[3] 3
777 710 R[4] 4
777 712 R[6] 132776 Stack start address
777 714 R[6] 132766 Stack pointer
777 716 R[7] 001040 Current program counter

The stack content observed after the execution of instruction 2l0
B

is given

below.

Address

132 776
132 774
132 772
132 770
132 766

After the

following

Address

777 702
777 704
777 706
777 710

Content

5
4
3
2
0

execution of

values.

Register

R[l]
R[2]
R[3]
R[4]

3.B Bootstrapping UNIX

Comment

Content of R[5]
Content of R[4]
Content of R[3]
Content of R[2]
Scratch value

instruction 2llg registers R[l] to R[4] contain the

Content Comment

132770 Stack address of R[2]
2 Restored from location 132 770
3 Restored from location 132 772
4 Restored from location 132 774

23

When the user microcode has been loaded into the control store and has

been examined by the test program, it may be desirable to bootstrap the

operating system. The UNIX bootstrap requires the EIS (extended instruction

set) microcode in the writable control store. If the user microcode contains

the EIS microcode, bo.otstrapping UNIX starts from step 4 of the bootstrap

sequence given below. Otherwise, the user microcode in the control store

is overwritten by the EIS microcode, when the following bootstrap sequence

is carried out.

1. Mount the EIS SMILE tape (labelled EIS).

2. Bootstrap the EIS SMILE tape (cf. subsection 3.5).

3. Load the EIS microcode into the control store (cf. subsection 3.6).

4. Load ·the UNIX disk on disk drive O.

5. Push LOAD switch at disk drive 0 to RUN position.

6. Wait for the RDY or the ON CYL light to come on.

7. Set address 773 100g at the switch register.

B. Push LOAD ADRS switch.

9. Set ENABLE/HALT switch to ENABLE

10. Push START switch.

11. The system responds with @ on the DEC-writer.

12. Type 'unix' and push return key.

13. The system types an identification and asks for the date to be typed.

14. Set the date.

15. UNIX is up and prompts with 'login:'.

24

Acknowledgement

The SMILE system was originally implemented and documented by J. Mueller

of the Technical University Berlin. The authors wish to express their thanks

to H. Mauersberg, also with the Technical University Berlin, for providing us with

the SMILE system and for many helpful suggestions concerning the development

of a microprogramming laboratory around a PDP-ll/40E. They are also greatfully

indepted to Profs. W. K. Giloi and W. R. Franta for initiating the micro­

programming laboratory project at the University of Minnesota. The micro­

programming laboratory is funded by University Computer Services, University

of Minnesota.

25

References

[1] Mueller, J., "SMILE - Manual," Institut filr Softwaretechnik und

Theoretische Informatik, Fachgebiet Betriebssysteme, Technical University

Berlin, December 1976.

[2] Digital, "PDP-II Peripheral Handbook," Digital Equipment Corporation, 1975.

[3] Fuller, S. H.; Almes, G. T.; Broadley, W. H.; Forgy, C. L.; Karlton, Po Lo;

Lesser, V. R.; Teter, J. R.; "PBP-ll/40E Microprogrannning Reference

Manual," Department of Computer Science, Carnegie-Mellon University, Tech.

Report l6-January-1976.

[4] Teter, J.R., "PDP-ll/40E Hardware Maintenance Manual," Department of

Computer Science, Carnegie-Mellon University, September 1976, revised

June 1977.

[5] Berg, H. K., "A PDP-ll/40E Microprogramming Primer," Department of Computer

Science, University of Minnesota, Tech. Report 78-8.

[6] Berg, H. K., Dekel, E., "MICRO/40 Assembler Primer, il Department of Computer

Science, University of Minnesota, Tech. Report 78-9.

[7] Berg, H. K., Blasing, B. E., "PDP-ll/40E Hicrocode Simulator Primer,"

Department of Computer Science, University of Minnesota, Tech. Report 78-10.

[8] Berg, H. K., Covey, C. R., "A Primer on the Use of a Logic State Analyzer

as a Microprogram Debugging Aid," Department of Computer Science, University

of Minnesota, Tech. Report 78-12.

[9] UNIX Documentation Book I, "Introduction to UNIX," Computer Systems Lab­

oratory, Department of Computer Science, University of Minnesota.

[10] UNIX Documentation Book II, "UNIX Programmer's Manual Section I - Commands,"

Computer Systems Laboratory, Department of Computer Science, University

of Minnesota.

[11] UNIX Documentation Book III, "The "C" Programming Language," Computer

Systems Laboratory, Department of Computer Science,_ University of Minnesota.

[12] Digital, "PDP-II Processor Handbook," Digital Equipment Corporation 1973.

