TOPS-10/TOPS-20
COBOL-74 Language Manual

AA-5059B-TK, AD-5059B-T1

October 1985

This manual reflects the software of Version 12C of the
COBOL-74 compiler (CBL74) and the object-time system
(C740T8S), and Version 4C of SORT.

This manual updates the TOPS-10/TOPS-20 COBOL-74
Language Manual, order number AA-5059B-TK.

OPERATING SYSTEM: TOPS-10 V7.01
TOPS-20 V4.1

SOFTWARE: COBOL-74 V12C
C740TS vi12C

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, lllinois 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734-4915

digital equipment cofporoﬂono marlboro. massachusetts

First Printing, January 1979
Updated, January 1980
Revised, August 1981
Updated, October 1985

© Digital Equipment Corporation 1979, 1981, 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

clilaliltal|

DEC MASSBUS RSX

DECmate PDP RT
DECsystem-10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX

DECUS Q-BUS VvMS

DECwriter Rainbow vT

DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION TO COBOL-74 LANGUAGE
lol SYMBOLS AND TERMS ® o o 4 e s e e e o o o o e s l-l
1.1.1 Symbols ® e 6 @ o e e o o o e & s e e o ¢ o o 1—1
l. l' 1. 1 Underline L] . L] L] * . L] . L] L . 1-2
1.1.1.2 Brackets and Braces B T 4
lolol.3 The ElllpslS e & o 6 e ° & e+ o o o e o+ s+ & o o 1-2
1.1.2 COBOL TermS e o o o e o e e o e e ¢ o & o o+ o 1-3
1-2 ELEMENTS OF COBOL LANGUAGE @ o & o e e & o o o o o 1_3
1.2.1 Program Structure e e o o o s 6 e & 6 o s s s o 1‘3
1.2,2 COBOL-74 Character Set « « « « o o o o o o o o » 1-4
10203 Words e o e o & 6 & e e & e o ° o+ e+ e o s+ & o o 1-5
1.2.3.1 Resetved Words ¢ & o & o6 e e o o+ s o s s o s o 1-5
1. 2.3.2 User_Defined words @« e o o o e o o o o s e o o 1-9
1.2.4 Literals o o e & 6 s e e e o & 0+ * e o o s o o l‘lﬂ
1.2.4.1 Numeric Litetal e o & o & & o e o & & s o o l—lﬂ
1.2.4.2 Alphanumeric Literals . « « o ¢ o o ¢ o ¢ o 1-11
1'2-5 ' Separators . e . ¢« o o .] . e o o . . 1-12
1.3 SOURCE PROGRAM FORMAT o 4 o o o s e s o e e s o 1-13
1.3-1 Card-Type Fotmat e o o o o 6 o e e 6 e o e o o 1-14
103'2 Terminal-Type Format . o o o o ¢ ¢ o o o o o o 1-15
1.3.201 With Line Numbefs e e e o o o o s o o e e o 1-16
1.3.2.2 Without Line Numbers ® o o e o s e o e e o o 1—17
1.4 THE COBOL LIBRARY FACILITY « « « & e o o ¢ e+ e o 1-19
1.4.1 The COPY Statement e o o 6 & o o 4 o e+ o o e+ o 1-19

CHAPTER 2 THE IDENTIFICATION DIVISION

CHAPTER 3 THE ENVIRONMENT DIVISION
3.1 ENVIRONMENT DIVISION CLAUSE FORMATS . ¢« « « o o o 3-2
3. 1.1 Configuration SeCtiO!‘l e @& o o o o o e o o e ¢ o 3—2
3o 10 2 SOURCE-COMPUTER ® @ & o o e o o & & & o o o e oo 3-3
3-1.3 OBJECT-COMPUTER 3 Y . 3 3 3-4
3'1.4 SPECIAL-NAMES ¢ e & e e & o e e o e o o s e o+ 3—6
3.1.5 Input-Output SeCtion e & @ e o 2 e e e o o e e o 3_9
3.1-6 FILE-CONTROL * & & e e s o e e 2 s o & ° & e 3'1@
3. 1. 7 SELECT - . . L] L] L] L] . L] * . . L] L] L] 3-14
3. 1.8 RESERVE . . L . L] L] . L) L] L) L] * . . 3-16
3. 1.9 ORGANIZATION * L] . . L L4 . . L] L] - L] L] L] L] L] . 3-17
3.1.1“ ACCESS MODE e & o6 e & & s s o s+ o o o s o+ o+ o 3-19
3ololl RECORD KEY e o o e o 9 e & e e o o e & e o e o 3-20
3. l- 12 ALTERNATE RECORD KEY ® e e o o e o e o o e+ e o 3_21
3.1-13 RELATIVE KEY e e o e @ 5 8+ e e o e o ° s o+ o o 3-22
3.1.14 RECORDING MODE/DENSITY/PARITY . . « « o « o » 3-23
3.1.15 FILE STATUS . . L] . . o o . . . +« o o . s e o 3_27
3.1.16 I—O—CONTROL ® o o e e e & ¢ s e & o s o+ e e o 3-37

CHAPTER 4 THE DATA DIVISION
401 FILE SECTION * o ° . o e ¢« o e e o e o o 4-2
4,1.1 Record Descriptions .« ¢« ¢ & o o o o o ¢ o o o o 4=2
4,1.2 Elementary Items and Group Items . « « « « « » . 4-3
4.1.3 LeVel Numbets ® 6 & 6 e 6 2 & & o e s o ¢ e e o 4—3
4.2 SCHEMA SECTION e o o . e o ¢ o . . e & o o o o ¢ o 4—4

iii October 1985

.
.
.
.
.
.
3
.
.
.
.
.
.
.
.
3
3
.

e & o @ 0 ® o 6 o & o o s & s o o ¢
s & o o 3 o @ & © o * o & o o o o
o O
. o Sed 2% o ® o o e & o v o o
z o - -~
O o ¢ X Q) ¢ o ¢ o o o & o
Z e 6] 0 By
OB o ¢ eQBI~ o o ¢ ¢ ¢ o ¢ o o
= O)
R ¢ ol oD o o 0 0 o 0 . o
O w M < O w
5] O *QQleH) o s o s e Z o o
nn=z Q, Z00=z2 -
Vo290 <« Q. o O oL ¢ O
Z2LHOXZ Z~d QEEX B £
OEH OUVOME ¢ 0O ¢ «a
HOOEBHWHZHOZ oz0 (o] Z
HEROOBHUMNOBOL IR «O « | Ky
g nnwmE L QQOMHME OX (o]
(S nLoL>Q A B0 A
HOm @ = o1 ot] (D) G]
ZZUBELEO VDR LCE OO0 KD
DHLXEWHD ~0AQF MZO0O0 4
EXNNMOOINLC 1O ACHREAQL
SEZMECAHEEONOOR IIXEND>
OO0OHEK DO
OO OunA
-
—~ HANMEOS 00~

. e o 8 & o o o o & o ¢
NIPUNOVOSROATAAAATNATNRTAAATITAAIOD
e ® o 8 & 6 ¢ o 0 0 s o 0 s s e 0 e »

PSSP

4-27
4-31
4-33
4-34
4-36
4-37
4-39
4-40
4-42
4-56
4-58
4-60
4-62
4-64
4-70
4-72
4-74
4-75
4-76
4-78
4-81
4-82
4-83
4-85
4-86
4-87
4-88

.4-88.1

.
.
3
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
.
.
.
.
.
.

.
.
3
.
.
3
.
.
L
.
.
.
.
.
.
.
.
.
.
3
.
.
.
.
.
.
.
.

. .
. .
.
. .
. .
. .
. .
. .
o o
. L]
. .
. .
3 .
. .
. .
o o
3 .
. .
.
.
.
.
.
.
.
.
.

.
.

Condition-Name (level-88)
Data-Name/FILLER .

JUSTIFIED

.
3
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
O

.

3
.
.

3
.
3
.
.
.
.

.
.
.
.
.
.
.
.
.
.
3
.
.
3
L]
.
.
.
.
.
.
.
.

O
)
.
.
.
3
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.

.
3
3
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.

.
L]
.
.
.
.
L]
.
.
.
.
.
.
.
.
.
.

.
.
.
.
O
)
.
.
.

.
.
.
.
.
.
.
.
.
3
.

IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

DATA DESCRIPTION ENTRY

BLANK WHEN ZERO
LINE NUMBER
NEXT GROUP .

USAGE
RESET

VALUE
GROUP INDICATE .

COLUMN NUMBER

Report Description (RD)
PAGE LIMIT .)
Report Group Description .

RENAMES (level-66)

SIGN .
SYNCHRONIZED .

Level-Number

OCCURS
PICTURE
REDEFINES
CODE .
CONTROL
SOURCE
SUM

TYPE

9.12
9.13
9.14
9,15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9,23
9.24
9.25
9.26
9,27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38

@ & o ® o o e 8 e % & s & 3 8 s 6 s 6 0 & 8 8 s s e o
Y S A I IS IS SIS IQASIY

THE PROCEDURE DIVISION

CHAPTER 5

NANNLLLHOOO0
L e
WO W WL NW
L] . Ll L)

® o o o & o s o o

e & o & o 2 e o ¢ & s s o

S

e o s o

3
.
.
.
.

*® e * e o o

.
.
)
.
.

. O . a .
. . L] . .
.
.
.
. . . .
. . . .
. . . .
L]
.] . o o
. .

.
.
.
.
.
.
.

Formation and Evaluation Rules

CONDITIONAL EXPRESSIONS

.
.
.
.
.
.
.
.
L]

.
.
.

Formation of a Relation-Condition

Statements
Paragraphs .
Sections

Sentences
Arithmetic Operators .

ARITHMETIC EXPRESSIONS
Relation Condition

SYNTACTIC FORMAT OF THE PROCEDURE DIVISION ,
SEQUENCE OF EXECUTION
SEGMENTATION AND SECTION-NAME PRIORITY NUMBER

L] L] . . L] L]
A AN SN DN
e 8 o & ¢ % & 8 ¢ s e s o

WO NWLWWONDWWINWD NN

October 1985

iv

Q
® ©® s * 9 & & * o * o s s ° o o
£
® & 8 & & o & * o s e e e e UM
c o
® ® o o o o o o 2L o e s e OO
) ot ot B4
@ & o o o & o o el o o o oLy
+ ol o=t (0
@ ° o s o o s ¢ et o e o soTT L
T [=i =
e sl o o o o 0 2T e e e e OO0OM
1= O ovom
. Q o e o o ¢ ¢ e o0 [3]
no o 0T C
s EH ¢ 0O ¢ ¢ o ¢ @ o OO
@ ot =1 o D Qe B
e P D e e e e s T et oMot P
S] ot = o Q6=
. St o3 o o e] et o L B
oo [=4 o c T cooonQn
Wt € o O o et O o e O M
M3 (&) & e [+} o 5]
OV & . oW e P 20 e WTT L
P EC [0} Q T ot SO0+
3O s ¢+ T o oSO
~ZZ] o oOo®n G g~ O
[— c OO0V O e DDA W
QHWCLU HEBE O NoORmOEN
©C o000 WK] e P Zo«
- o CHmOEMOMTOCT (84
- oo om- G “oT o »
CO O HALXUZWHILW OO CTZ
cununooLrml O~ O S O
O et O v = T O0OCc P
H MM OP-IID OV P RN B
PO OO CUNLZ T O TCrdod O Oy
© Q. Q4 g+ BEODECL >0
~EENNNO O M 20 @ O
PooOMOVLOLTOCOH ELQNMZ
rOUSKREKEREE Cl DR DS EQO
i O o 0C0O0QOE
© [w0 HERO<CE
(o]
O
NN — NN < 1 1
* o o * s o o

1112222233445678
® ¢ o o & 6 & ¢ o o o s e s & »
VLN O DLW
® 8 o & o o o o o ° o o & s s o o

OOV VLW WO LWL WLNNLWN

NS~ ooORANTN~ONMIN~OONERATOUNOBUROEOANMNMOOEBRANVUO-HNOES AN
HeE A AA A NNANNNNMOOOMNONPIIIIIONNDDOOOT00OOoTTOOREa®
NN I I N N N N N N N T L N e R K K
MOV DVLODLONY L]
0w
2]
..‘.N..'.'.............OO‘.....'.00".0....0...
O
® o o ol o 8 s 0 & 4 o 2 e s e T e B e & 5 % s P 8 % e S s s e % e S & P 2 % et s e e 0+ 2 o
>
@ ¢ o ok ¢ % o ¢ o + o 6 o 6 e ® 3 S S S o T 8 % " O o * s A T S s % 4 . s % e % e s s b e o
[
l‘..u..........‘..............“......‘0.0....‘
=¥
not'M0.0000.00¢.0..ooooouc.o;o.ooooc.ooooooo00.
o
‘...C."........l........‘....0..."......"...
e o ¢ of) o @ o o & © o 9+ o ® o & & @ o 6 o @ o ° 6 & & * o * s & o & a2 & 8 * o * s v s & s o
-
@ o o oF4 o o o @ & * o ¢ o O e ® o O o ° s 8 4 * s * & S o S 2 S o % o+ O & * o * o o s+ e
<a)
e o o o F ® o @ o ¢ o ¢ 4 % 4 & o ° o O 9 O 9 6 o ° e ° s * e ° o * & * & " & & o s s * o+
T W
@ ¢ o JEH1FEt © o ¢ o o & s e 4 e t 6 6 e & o S s 0 s o * s e s 6 s % s s 4 e o 02 s s o s o
H <
@ ¢ o S(YE * e & o & o e s e+ s s 0 e 0 a2 s s s s % e S s e s s s & s % s o s s s 0 s o s
<
¢ o o o QO ¢ o ® o o o o o ¢ o ® o * & & s e 9 * e * st s o s * e O+ e 2 s o s 2 s s o2 o o o
Z Iy
* o NI @ & ® @ & 6 & & ©® & O & * & O & S © % & * & & ° 6 o % e O e O @ * o 2 ¢ o+ & o o
cO m
o ¢ OMIfBIY, © o © o o o o o & ¢ & ¢ © o © o 6 o6 & 0 % o ° s 0 e e 2 s s e s % st s s s v s 0
~ 0 m
e C WA > ¢ ¢ ¢ o 0 o o o © 0 6 o * 2 S 0 6 o ° s 0 o % s s 0 6 8 o 4 % o 0 s e s e s s e o
o uowm
e O D Z * e & 4 s s ¢ 2 s o ® o s o * o s o s 8 & s s 0 e 9 % s % s e s " s s o s 0 & o
P O O
.pRNFIoooo.oooocooooooocooouoo.oooooooooooooo'o
OO0OHOW
e A I ® e ® o ¢ o s e & 2 & o X o o e o * e * o % s s e * s 0 s o 9 s s v s v s o s o
aEmzZz > <
e EIQO M © o o o o s ¢ s ¢ 0 o o oY, * o o o s 2 S & o * e s e s o s " s * 2 e s s 0 o o
A aHA © =
e Z KKk * o o s o . e o o 20O s[x] ¢ oM@ o et s e . o e s ¢ o s s HUNE oY
D N LR = > [« .] B a0 FE O Mm] ong =
cOHMZXE o e BEHELE e o e L O sl X s NZZET o e UL EHZ M
EEgHDL £ HEDES0MM KO HEE H O £HEXHOD B ZopHEREX
o=ZAM OMIVNAHNAMHBEXEHERRE 6L0EBZKRARC2XEYN BHXAHEBELEZEOR
NOOVENOUOABHIZOEINDHEHRNEZ HouEg>dndd BB O KN
oo H00AICCHNORHHZZXXANORZZHNODAMBEMOEHOERNROBNEHBODD HEHXZ
mm..T“MMAAACCCCDDDEEEEFGGIIIMMMOPRRRRRSSSSSSSSTTU
> Qo
SaNMeunou~oOOaAERANMNMINNO~OOOER~SNMINO~ONE -
12 123456789111llllll12222222222333333333344

@ @ & 6 9 & B & 6 5 5 & 2 ° 9 S & * 6 & 9+ 8 4 0 9 6 0 s b o s e o & s 6 s 0 o & 0 s s 0+ >

VOOV ODODODODOVODOOVODODODONDODGODNDODDNO DGO OGN NG D.ODnn

October 1985

5.9-42 USE ¢ e e e o e e s 0 e e & e o 2 s o 2 e o+ o 5-113
509.43 WRITE ® 6 e o 2 6 a2 e e 8 & e o s e s e+ o+ o+ o 5‘116

CHAPTER 6 COMPILING AND LOADING COBOL-74 PROGRAMS
6.1 COBOL-74 COMPILER COMMAND STRING ., . + » « &+ o o o 6-1
6.2 LOADING COBOL_74 PROGRAMS 3 * 6-4
6.3 RUNNING COBOL-74 PROGRAMS . . « & « o o« o o« o o« » 6-4

CHAPTER 7 COBOL UTILITY PROGRAMS
7.1 ISAM INDEXED-SEQUENTIAL FILE MAINTENANCE PROGRAM 7-2
7.1.1 Building an Indexed-Sequential File . . . « « o 7-4
7.1.2 Maintaining an Indexed-Sequential File 7-9
7.1.3 Packing an Indexed—Sequential File e e e s o s 1-12
7.1.4 Ignoring Errors . . . e ¢ o o 1-13
7.1.5 Reading and Writlng Magnetlc Tape Labels e o o 1-14
7.1.6 Renaming an Indexed-Sequential File 7-16
7.1.7 Checking an Indexed-Sequential File 7-17
7.1.8 Producing Blocking Data with IsAM ., 7-18
7-1'9 Indlrect Commands e« o o ® o o & e o o o 7-19
7.1.10 Using Indexed-Sequential Files e e s s o o o o 1-28
7.2 LIBARY SOURCE LIBRARY MAINTENANCE PROGRAM ., . 7-22
7.2.1 Library File Format 3) . 3 7—22
7.2.2 Invoking the Library Utility . . . ¢« « « ¢« « «» 7-22
7.2.3 Command String Defaults . ¢« ¢ « o o o o o o« o 1-23
7.2.4 LIBARY SWitches 0 3 . . . e o 7-24
7.2.5 Running LIBARY . .« ¢ & ¢ ¢ « o o o o o s o o o 1=25
7.2.6 LIBARY Commands 3 3 . . e o 7-25
7.2.6.1 Group Mode CommandsS . « ¢ « o o « o o o o o 1-25
7.2.6,2 LIBRARY-Directing Commands . . « « « o « « » 17-26
7.2.6.3 Example of Command Usage « « « o o o o o o o 1-27
7.3 COBDDT PROGRAM FOR DEBUGGING COBOL PROGRAMS . 7-29
7.4 LOADING AND STARTING COBDDT . o o o o o o o o o 1-29
7.5 COBDDT COMMANDS & &« & o « o o o o o o o o o o o 1-30
7.5.1 Obtaining Histograms of Program Behavior . . . 7-39
7.5.1.1 Initializing the Histogram Table 7-39
7.5.1.2 Starting the Histogram o o e o o o o e o o o 7-4ﬂ
7.5.1.3 Stopping the Histogram + &« &« &« o« o 7-40
7.5.1.4 Obtaining Histogram Listing « « . . 7-41
7.5.1.5 Using the Histogram Feature+ « o« o 7-43
7.6 RERUN PROGRAM TO RESTART COBOL PROGRAMS . . . 7-44
7.6'1 operating RERUN . 3 3 7‘44
7.6.2 Examples of Using RERUN e o o s o s 4 o e o o 1-45

CHAPTER 8 FILE FORMATS
8.1 RECORDING MODES . . 0 * . 3 . 8_1
8-101 ASCII Recording MOde * e e e o o . e o & o o o o 8“1
8.1.2 SIXBIT Recotding Mode e e e e e e e e 6 & ¢ o o 8—2
8-1.3 EBCDIC ReCOrding MOdev . . 3 - . 8-2
8.1.4 BINARY Recording Mode e @ o e o & e o e o o o o 8_3
8.2 FILE FORMATS e & e o 8 6 e e e o o o o6 & e o s e o 8-3
8.2.1 Fixed-Length ASCII . e o e 6 o & o e s o e o o o 8_4
8.2.2 Variable—Length ASCII . o o ¢ 6 o & & o o e s o 8—6
8.2.3 Fixed-Length SIxBIT . . . e o . 0 . e o o . N 8-801
8.2'4 Variable-Length SIXBIT . . . - e o o o o o e o S-Iﬂ
8.2.5 EBCDIC File FormatsS . ¢ « o 2 2 o o ¢ o « o o+ B8-12
8.2.6 BINARY File Formats) . . o o e o o o o o 8-19
8-2.6.1 COBOL ASCII Mixed-MOde Binary 8-20
8.2,6.2 COBOL SIXBIT Mixed-Mode Binary . « ¢« « « « o 8-21

vi October 1915

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

.
(=)
.

w

00 00 00 00 0 O X 0 o
e o o o o
. . o
N = wWN -

ANV BWN

e o o o
L]

*
ot s et bt et e et e e e
.
L] L] []
W N

*
UL E DB WN -

11

11.1 -
11.1.1
11.1.2
11.2
1l.2.1
11.2,1.1
11. 2' 1.2
110202
11.2.3
11.2'4
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

12

12.1
12.2

13

13.1

13. 1.1
13.1.2
13.1.3
13.1.4

COBOL EBCDIC Mixed-Mode Binary

FILE ORGANIZATION AND ACCESS .
SEQUENTIAL FILES . + « ¢ « o
RELATIVE FILES

Sequential Access of Relative Fil
Random Access of Relative Files

.

Dynamic Access of Relative Files

INDEXED-SEQUENTIAL FILES . . .
Data File . ¢« ¢« ¢ ¢ ¢ o & &
Index File . ¢« ¢ ¢ ¢ ¢ o o«

SIMULTANEOUS UPDATE

PROGRAMMING CONSIDERATIONS
The OPEN Statement . . .
The RETAIN Statement . .
The FREE Statement . . .
Accessing Sequential Files

Basic Reading . . .+ « &
Basic Writing
Basic Updating . . o

o & o ¢ o o o o

Access to Sequential File Strat gie

Accessing Relative Files . .

.

3

.

e o o o s o o

3

.

® o & o ¢ o o

ooooomoooo

.
.
.
.
.
.
.
.

e

°
.
.
.
.
.
.
.
1
.

Accessing Indexed-Sequential Files .

REPORT WRITER

e @€ o ® o o o ° o o

.
.
L)
L]
.
3
.
.

S
3
.

8-22
8-23
8-23
8-24
8-24
8-25
8-25
8-27
8-27
8-28

e & o & o @ o o o o
e e o & o o o o o o
® 6 o & o o o * & o
e e a2 o e o o o o o

L3 . * . . [] L2 . L] L[] L]
. . . L] L] * . L] L] L] L
* L] * L] L] . L] L] . . .
. L] - . L] . L] L] L] [] -

X}

|

[

N

PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS

PROGRAM SEGMENTS . « ¢« ¢« o « &

Section-Names and Segment Numbers

Examples « « o« o o o o o o &
SUBPROGRAMS , . . . o« o

Inter-Program Communication

The Calling Program . . .

The Called Subprogram . .

.

.

.

Loading a Subprogram Structure

Object Libraries and Searches

Examples ¢« « ¢« ¢ o o o o o o
OVERLAYS « ¢ o o ¢ o o o o o
When to Use Overlays . . .
Overlayable COBOL Programs
Defining Overlays . . .
The /SPACE Switch to LINK
The CANCEL Statement . . .
Examples + + + o ¢ ¢ o o

e o o © o o o

CALLING NON-COBOL SUBPROGRAMS

CALLING FORTRAN SUBPROGRAMS .,
CALLING MACRO SUBPROGRAMS . .

e © & o o ¢ o o

.

e ® o @ o e o © o o o o o o

® & o @ o @ o & o % o o o o o

@ & o 8 o 6 o ° o & o s o s o 0

@ 6 o 6 e ® o © o © o o o ¢ o & o

@ & o 0 o o o © & & o s o o ¢ o o
@ e o ¢ 9 & o ¢ o & ¢ o o o o o o
® & o 6 8 & 0 ® @ ® o o o 0 o o o

IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS

HOW TO PROCEED WITH PROGRAM OPTIMIZATION

Where to Begin . « « + « « &
What Tools Are Available . .

What Method or Procedure to Use

Evaluating Performance . . .

vii

.

3

.

.

.
.
.

13-3
13-3
13-3
13-4
13-5

October 1985

13.1.5
13.2

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

Mgy

el

R R e R lo R Ko |
® 6 e & s ° o

Db wWwwwwNn

NN =
[] L]

N

w N = W=

>

- N

N =

Documentation . . .
LISTING THE TOOLs . .
COBDDT . . * . .
The ENTRIES Column

The CPU Column . .
ELAPSED Column . .
OVERHEAD
USING THE CORRECT DATA
DISPLAY Data Types .
EBCDIC . « ¢ o o o &«
ASCII . &« « o« & .
SIXBIT o+ o o o« o .
COMPUTATIONAL . .
DATA EFFICIENCIES .
Counter, Indexes, Su

.
.
.
.

o

e (Do ¢ ¢ o o ¢ rlo o ¢ o ¢ o o
Q o]

e M e ¢ o o o & IPe ¢ o o o o o
[c]

i

cr

o S (T s e 5 e 3 ¢re s s o & & & 8 8 &+ 8 % & s e @

p
File Storage
Blocking Data . . o« o
DATA DIVISION Space Restric

EFFICIENT CODING CONVENTIONS
Alignment . « + & « o o &
Usage of Subscripts . . .
Incrementing Counters . .
The PERFORM Statement . .
Use of the INSPECT Statemen
Data Movement L) L] * . L] L]
Ordering Statements . . .
Asking the Correct Question

DIFFERENCES BETWEEN COBOL-68 AND

COBOL RESERVED WORDS

i

® o 6 o o o o o 8 O s o ¢ o & & ° o s 2 & o % o s o o

n

® o & ¢ ® o & o ° [N e o & o * o & o & o o s 0 o & o o

® 8 ® 8 ¢ 8 ¢ o ¢ e o & ¢ & & o o

& & & o % e & o & o 6 & ¥ & " 9 & 2 s o 0 0 ° o o a0
® 8 6 e O o 6 8 & o & ¢ S 2 o 0 S ¢ & o &6 o OV o v & o
. e © e o e & o * o o e & o o o o ¢ o o * @ o e« * o L]
® 6 ® & ® o & 6 ¢ e & & * @ & o O o ¢ o s o 6 o o o
® o o o © & & o © o 5 s 0 2 ° & % 2 & o o o 6 o ¢ o o
e 6 © o & o © e ¢ ¢ O & O 9 © & O o ° o s & 6 s s o o

COBOL-74

COLLATING SEQUENCES AND CONVERSION TABLES

ALTERNATE NUMERIC TEST

DEFINING LOGICAL NAMES UNDER TOPS-20

TAPE HANDLING

DIRECTIONS AND DEFINITIONS . .
Definitions . « ¢« ¢« ¢ ¢ ¢« &

Finding the Right Instructlons

Symbols Used in the Text . .

FACTORS TO CONSIDER WHEN USING TAPES
General Defaults and Restrictions

¢ o o o o
* o & o o
e ° o o o o

.
.
.
3
.
.

* e

Defaults and Restrictions Specific to TOPS-20

Systems

. o . . * o

Defaults and Restrictions Specific to TOPS-19¢

SystemS . + ¢ ¢ ¢ s e e o o

Converting Tapes Between Labeled

USING SYSTEM-UNLABELED TAPES .
Tape Has No Labels . . .

Tape Drive Is Available to the

Tape Drive Is Owned by the System

Tape Has Labels . . o
USING SYSTEM-LABELED TAPES . .
. Tape Has ANSI Labels

viii

and Unlabeled

. . .

User

. .

« o o » o o
e ® o & o o
e & o o o o
e o o © o o

e ¢ e ¢ o o

’-‘J"J"-ﬂ'?'ﬂ"‘l

i1

|
B DN

m
[
wn

"-‘J’*J"‘J“]'?"!"ﬂ"d"‘l
[e-Weo M+ IENIENIEN e We W e)l

October 1985

F.4,.1,1 Transportable Tapes - F, D, and S Formats . . F-9
F.4.1.2 Undefined-Format Tapes - U-Format F-10
F 402 Tape HaS EBCDIC Labels » 3 » 3 . . F_ll

APPENDIX G FIPS FLAGGER

APPENDIX H DEBUG MODULE
H.1 USING THE COBOL-74 DEBUG MODULE . . +. ¢« ¢+ ¢ o« « o H-1
H.2 SPECIAL REGISTER DEBUG-ITEM . . . « ¢« « ¢« « o« « o H-1
H.zol Format Of DEBUG ITEM e o o o . e o o & o o o H-l
H.2.2 Execution of Debugging Sections e s ¢ ¢ o o s o H-3
H,2.2,1 Debugging on Cd-name . « 4+ +« &+ &« o o o« o o « o H=3
Ho2¢292 Debugging on Identifier e e o * e o o o e e o H"4
H.2,2.3 Debugging on File-name . ¢« ¢« « « o ¢ ¢« « &« o » H=4
H.2.2.4 Debugging on Procedure Name ., . . « ¢« ¢« « « o H-4
Hc 2.3 Data in DEBUG ITEM e & o e o & o o e e e e o o H-s
H.3 LOADING PROGRAMS WITH THE DEBUG MODULE H-7

APPENDIX I USING RMS INDEXED FILES
I.1l DEFINING RMS INDEXED FILES + ¢« 4 o o ¢ o o o o o o I-1
I.2 PROCESSING RMS INDEXED FILES . ¢ ¢ ¢ o ¢ ¢ o o o« o I-3
I.2.1 Opening RMS Indexed Files . « ¢« ¢ ¢ o« ¢ ¢ o o« o« I-3
I.2.2 Reading RMS Indexed Files . . +« « ¢ ¢ o o o o o I-3
I.2.3 Writing RMS Indexed Files . . &+ &« o o « o o o o I-4
I.2.4 Deleting RMS Indexed Records e o o o o o I-4
I.3 HANDLING ERRORS FROM RMS INDEXED FILES . e e o o I-4
I.4 RUNNING A PROGRAM THAT USES RMS INDEXED FILES « o I-6
I.5 RESTRICTIONS ON THE USE OF RMS INDEXED FILES . . . I-7
I.6 COBOL~-74/RMS INDEXED FILE EXAMPLE . . . « « « « o« I-8
I.7 USING RMSUTL L] L] - * . * L] L] * L] * L] . L] * . . L] 1_29
I.8 RMS COMPATIBILITIES WITH BASIC+2 . . &+ & « o« » » I-22

GLOSSARY

INDEX

FIGURES
l"l (a) Card—Type Format e o ¢ o o o o e e o e o e o 1-14
1-2(a) Terminal-Type Format with Line Numbers e e o o s 1-16
1-3(a) Terminal-Type Format without Line Numbers . . . 1-17
4-1 Direct Subscripting/Indexing . . . « « « « « +» o 4-11
4-2 Relative Subscripting/Indexing . . . + « ¢« « + + 4-11
4-3 Qualified Direct Subscripting/Indexing 4-12
4-4 Picture String Character Chart . « « « + « « + « 4-55
5-1 Order of Evaluation of a Conditional Expression 5-13
5-2 Order of Evaluation of a Compound—conditional

Exp!‘eSSlon e & o e o . e o o ¢ o o 5-14

5-3 PERFORM Cycle Logic - Two Variables e o o o o o 5-67
5-4 PERFORM Cycle Logic - Three Variables 5-68
7-1 COBOL ISAM File Environment . ¢« ¢ ¢ « « o o o « o« 71-3
8~-1 ASCII Recording Mode . o « &« « o o o o o o« o o & o 8-1
8-2 SIXBIT Recording Mode . + ¢ & ¢ & o o o o o o o o+ 8=2
8-3 EBCDIC Recording Mode . « « o o o o o« o s o o o o 8=-2
8-4 EBCDIC Recording Mode - Industry-Compatible . . . 8-2
8-5 Binary Recording Mode . .+ & &« ¢ ¢« 4 « ¢ ¢ o « o « 8-3
8-6 Fixed-Length ASCII . . 4 v & 4 ¢ o o« o « o o« + o+ o+ 8-4

ix October 1985

8-27

COBOL Fixed-Length ASCII with BEFORE ADVANCING . .
COBOL Fixed-Length ASCII with AFTER ADVANCING . .

Variable-Length ASCII . . .
COBOL Variable-Length ASCII with
COBOL Variable-Length ASCII with
Fixed-Length SIXBIT . « « « « &
COBOL Fixed-Length SIXBIT .
Variable-Length SIXBIT . . .
COBOL Variable-Length SIXBIT
Fixed-Length EBCDIC
COBOL Fixed-Length EBCDIC .
Variable-Length EBCDIC .
COBOL Variable-Length EBCDIC .
COBOL Blocked Fixed-Length EBCDIC
Blocked Variable-Length EBCDIC
COBOL Blocked Variable-Length EBC

e @ o o o o

I

COBOL Standard Binary and ASCII Mixed-Mode

AFTER

. .

® e & o o o o

)
.
.
.
.
.
.
.

* o © ¢ o o o o o

DIC .

8-5

8-5

e & & o s o e o 8—6
BEFORE ADVANCING 8-7
ADVANCING ., 8-8

e o o o = 8—8.1

e o o o o o 8-9

e o o o o 8"1“

e ¢ o o o 8—12

e o o o o 8-13

e o o o o 8-13

e o o o » 8-14

e o o o o 8"15

e & o o o 8-16

e o o o @ 8-17

e o o o o 8_19
Binary 8-2@

COBOL Standard Binary and SIXBIT Mixed-Mode

Binary « « « « o+ o . . .

e o o o o 8-21

COBOL Standard Binary and EBCDIC Mixed-Mode

Binary o« « o ¢ o o o o o o o o @

e o o o o 8"22

Statements Used to Sequentially Access a Relative

File] - . . . L] L] L] . L) L] o L] L]
ISAM Data Flle Structure

» o o o o 8-26
e o o e o 8-28

Locating a Record in an Indexed-Sequential File 8-29

ISAM Index File Structure . . .
The Problem of Buried Update . .
The Problem of Deadly Embrace .,

Projecting Resources for Simultaneous Update

The OPEN Statement . . « « « o &
Competing for Program Access to F
The RETAIN Statement
The FREE Statement « . .
Report A Format . . .+ « ¢ o o &
Report B Format . . « « « « &
Input Data File for Report Writer
Example of an Overlay Structure
Sample COBDDT Histogram
Sample of FIPS Flagging

iles.
Pro

e e o Q¢ o o o

@
w
=

.

. . .

o e e

o o o o o

U=
VAV WNDHFOOUMId WN

ssasl \O\?\OOKO\Ol

m

= D
[

*® o o Q) e o o o o

® o ¢ o o o o o o

® e 0 0 & o o o ¢ o e o o
® o ¢ 8 & 8 ¢ o & & o o o o
[}

Y

October 1985

TABLES

3"1 Recording MOdeS e o o o o o e o o o o o s o e » 3-26
3"2 Monitor File Status Bits . ° Y 0 . ° . . 3"33
3-3 Monitor Error Codes o« « o o o o o o o o o o o« «» 3-34
4-1 Standard Label for Magtapes . « o+ « o o o« « o o 4-21
5-1 Procedure Verb and Statement Categories 5-3
5—2 TypeS of Segments e o o 8 e o 6 & o e+ s o e+ o & o 5-5
5-3 Conditions, Logical Operators, and Parentheses

Combinatlons ° . . . 0 e o 5"15
5-4 CLOSE Options and File Types e o o o o o o o o & B5-31
6—1 COBOL SWitCh Summa!'y . . . Y 6"3
c-1 ASCII and SIXBIT- cOllating Sequence and Conversion

to EBCDIC e o o & o e 6 & ° & & o o & o o o ¢ o o C"l
c-2 ASCII to SIXBIT Conversion . « « « ¢ o ¢ o & . C=3
c-3 EBCDIC Collating Sequence and Conversion to ASCII Cc-5

xi October 1985

INTRODUCTION TO THE COBOL-74 SYSTEM
AND THE STRUCTURE OF THE MANUAL

The typical COBOL program follows a fairly simple series of steps from
the human-readable format in which it is written to the
machine~-readable format in which it is executed, The following flow
chart shows the basic steps which all programs take.

Introduction~1

Source Program
(.CBL)

Library File (.LIB)

COBOL-74 - = created by LIBARY
COMPILER
S
~
~
~
~ ~ Compilation
Listing
(.LST)
Relocatable (.REL)
Object Module
y ﬁ
— — — — ——— — Other (.REL) l
LINKER Object Modules
)
Executable (.EXE)
Program
/
USER PROGRAM - C740TS

Simultaneous Report

Update Writer
COBDDT RERUN

MR-5.017-79

The program first sees the light of day as a source file which |is
either created with a text editor or entered into the system by some
other means (for example, it could be punched into cards and loaded
through a card reader). This file is usually given a filename whose
extension is .CBL, and it is identified in the flow <chart by this
extension.

The COBOL-74 compiler then translates the source file into a
relocatable object module. In order to do this, the compiler may
sometimes copy text from user libraries which contain often-used
pieces of code. These libraries, identified in the chart by the
extension of .LIB, are created by the LIBARY utility. The output from
the compiler, the relocatable object module, is usually given an

Introduction-2

extension of .REL, and is identified by this extension in the flow
chart. The compiler can optionally produce a file which contains the
compilation listing of the source program. This file is identified by
its extension, .LST.

At this point the program is given to the system 1linker, which
produces the executable version with the extension .EXE. (This manual
does not contain any information on the system 1linker. Users of
TOPS-10 should refer to the LINK Reference Manual and the LOAD command
in the Operating System Commands Manual for more information about
LINK. Users of TOPS-20 should refer to the the LINK Reference Manual
and the LOAD command in the DECSYSTEM-20 user's Guide.)

The .EXE version of the program runs in conjunction with the
object-time system, C740TS. Among other things, the object-time
system handles I/0 and calls routines from the COBOL-74 library to be
used at runtime. The wuser program is now in a format which can be
executed, but there is no guarantee that it will produce the correct
results. Most programs must still be debugged after they compile
error-free. The COBOL-74 system provides an on-line debugging
facility called COBDDT to assist the programmmer in finding out what
the program is really doing. COBDDT runs along with the user program
and the object-time system, and allows the steps which the program
executes to be monitored by the programmer.

Many COBOL programs use indexed files during their execution. These
files are convenient for many applications. The COBOL~74 system
provides a program, called ISAM, to create and maintain indexed files.

There are times when the user program is running and the system
operator has to shut down the system unexpectedly. Some programs are
written to be restartable, but many are not. The RERUN utility is
provided with COBOL-74 to help in this situation. RERUN can save
enough information to allow the program to be restarted after the
system is brought back up, even though no provision was made in the
program for the restart. '

Thus, the COBOL-74 system, in conjunction with the operating systemn,
provides complete facilities for the creation and execution of a COBOL
program. The rules regarding the creation of a COBOL-74 program, and
the syntax to be wused in the program, are described in Part 2,
COBOL-74 Language Reference Material. The individual wunits of the
COBOL~-74 system are enumerated below.

1. The Compiler -

The compiler copies text from user libraries and translates
the COBOL-74 program 1into a relocatable object module.
Running the COBOL-74 compiler is described in Part 3, Chapter
6.

2. The 0TS -

The object-time system runs the COBOL-74 program and allows
the program to use such facilities as simultaneous update and
Report Writer. Information on the file formats which the OTS
accepts may be found in Part 3, Chapter 8. The simultaneous
update facility is described in Part 3, Chapter 9, and Report
Writer in Part 3, Chapter 10. Subprograms, segmentation and
overlaying are covered in Part 3, Chapter 11l. Chapter 12 of
Part 3 contains information on calling non-COBOL subprograms.

Introduction-3

3. The Utilities -

The COBOL-74 utilities - LIBARY, COBDDT, RERUN and ISAM - are
described in Part 3, Chapter 7. Information on the use of
COBDDT in improving the performance of COBOL-74 programs may
be found in Part 3, Chapter 13.

Part 4 of this manual contains appended material which may be of
interest to some users of COBOL-74. Appendix A presents a list of
differences between DIGITAL's COBOL-68 and DIGITAL's COBOL~-74.
Appendix B 1is the 1list of COBOL-74 reserved words. Appendix C
provides ASCII, SIXBIT, and EBCDIC <collating sequences, along with
conversion charts for these three codes. An alternate to the usual
numeric test, which may be elected at the time of installation of
COBOL-74, 1is described in Appendix D. Finally, Appendix E contains a
short description of the process of defining a 1logical name for
TOPS-20 users of the COBOL-74 utilities.

Introduction-4

CHAPTER 1

INTRODUCTION TO COBOL-74 LANGUAGE

This chapter describes the symbols, special terms, language elements,
and source program formats acceptable to COBOL-74. The source
language statements are discussed in subsequent chapters.

NOTE
In this manual the word COBOL
refers to COBOL-74. Any
documentation concerning

DECtapes can be ignored if your
system does not have them.

1.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual
are necessary to describe the language or are commonly used COBOL
terms. The single exception to this statement is the term
BIS-compiler. This term refers to compiler implementations that
compile COBOL-74 using the Business Instruction Set (BIS). All users
of TOPS-20 get BIS code. Users of TOPS-10 who have a KS or KL central
processing unit get BIS code as the default, but the compiler may be
installed without the BIS option. TOPS-10 users who have a KI central
processor will usually not get the BIS option on their compilers. The
KI processor will not execute the BIS instructions; however, the KI
will run the compiler which produces BIS code should there be a need

for it (for more information, see the COBOL-74 Installation
Procedures.) You can tell if your compiler is producing BIS code by
checking a 1listing of a compiled program. If your compiler is

producing the BIS instructions, the 1letters BIS will follow the
version and edit numbers on top of the page.

1.1.1 Symbols

The symbology used in this manual to 1illustrate the wvarious COBOL
statement formats is essentially the same as that used in other COBOL
language manuals. 1Its basis is the system of symbols used in the
American National Standard and developed by CODASYL.

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.1.1 Underline - The underline is used to denote reserved Kkey
words. Key words (uppercase underlined words) are reguired when you
use a function of which they are a part. The absence of an underline
in an uppercase word denotes that the word is optional; you may use
or omit the word at your discretion.

NOTE

Uppercase words, whether underlined or
not, must be spelled correctly.

1.1.1.2 Brackets and Braces - When brackets, [], enclose a portion of
a general format, they denote an optional portion that may be included
or omitted as needed. When braces, {}, enclose a portion of a general
format, you must select one of the options within the braces.
Consider the following figure.

WORDS)
MEMORY SIZE integer | CHARACTERS
MODULES $

The brackets indicate that the entire clause is optional. The braces
indicate that a choice of one of the words vertically stacked within
the braces must be specified.

Wherever a choice 1is required, the possibilities are vertically
stacked either within brackets or braces. Consider the following
example.

{SYNCHRONIZED} LEFT
SYNC RIGHT

The outside brackets indicate that the entire clause is optional. The
braces indicate that if the clause 1is wused, a choice of a word
vertically stacked within the braces must be made. . The inside
brackets indicate that you may optionally select a vertically stacked
word within.

NOTE
When possibilities are vertically
stacked between brackets, you have the
option of overriding a default

condition. The default condition is
described in the general rules for the
clause.

1.1.1.3 fThe Ellipsis - The ellipsis (...) indicates that you may
repeat the item preceding it. The preceding item is usually enclosed
either by brackets or braces to remove any ambiguity as to which item
may be repeated. Consider the following example.

[SAME [RECORD] AREA FOR file-name-1 [file-name-2] ...] ...
The final ellipsis indicates that the entire clause, if used, may be

repeated. The 1initial ellipsis indicates that the item file-name-2
may also be repeated within the clause.

1.1.2

INTRODUCTION TO COBOL-74 LANGUAGE

COBOL Terms

The terms block, record, and item have special meanings when used in
relation to a COBOL program.

l1.2.1

Term

Block

Record

Item

Meaning

Signifies a logical grouping of records. This term
commonly refers to a logical block of records on some

storage medium.

NOTE

The term "block" as defined here does not refer
to a "disk block", which is 128 words of
storage space on a disk.

Signifies a logical unit of information. In relation
to a data file, a record is the largest unit of logical
information that can be accessed and processed at a
time. Records can be subdivided into fields or items.

Signifies a logical field or group of fields within a
record. A group item is one that is further broken
down into subitems (for example, a group item called
TAX might be broken down into subitems called FED-TAX
and STATE~TAX). Subitems can be further broken down
into other subitems. An item that has no subitems is
called an elementary item.

ELEMENTS OF COBOL LANGUAGE

Program Structure

A COBOL program consists of four divisions. Each division is made up
of source language statements. Some statements are required in every

program; most of them are optional.
Division Meaning

IDENTIFICATION DIVISION Identifies the source program.

ENVIRONMENT DIVISION Describes the computer on which the
source program 1is to be compiled,
the computer on which the object
program is to run, and certain
relationships between program
elements and hardware devices.

DATA DIVISION Describes the data to be processed
by the object program.

PROCEDURE DIVISION Describes = the actions to be

performed on the data.

1-3

INTRODUCTION TO COBOL-74 LANGUAGE

NOTE

The COBOL-74 compiler will recognize
source 1line numbers up to and including
8184. If your program (including
library routines) exceeds this maximum,
the compiler will start numbering again
at 000l1. Since this causes two or more
lines to have a single line number, you
should exercise caution when debugging
your program, The cross-reference
listing may be confusing. However, the
compiler will generate correct code
regardless of how many lines are in the
program or how they are numbered in the
cross~reference listing.

1.2.2 COBOL-74 Character Set

Within a source program statement, all ASCII characters are valid
except:

1. null, delete, and carriage return (which are ignored)

2. line feed, vertical tab, form feed, and the printer control
characters (20(8) through 24(8)), which mark the end of a
source line

3. CTRL/Z (32(8)), which marks the end-of-file

The compiler translates the lowercase ASCII characters to uppercase
characters except when they appear in nonnumeric literals.

Of this character set, 37 characters (the digits 0 through 9, the 26
letters of the alphabet, and the hyphen) can be used by the programmer
to form COBOL user~defined words, such as data-names, procedure-names,
and identifiers.

The remaining ASCII characters which are acceptable to the COBOL-74
compiler are listed below.

Punctuation characters include:

A (space) " or ' (quotation mark)
, (comma) ((left parenthesis)
; (semicolon)) (right parenthesis)

(period) *l (horizontal tab)

INTRODUCTION TO COBOL-74 LANGUAGE

Special editing characters include:

+ (plus sign) * (check protection symbol)
- (minus sign) | Z (zero suppression)

$ (dollar sign) B (blank insertion)

, (comma) 0 (zero insertion)

. (decimal point) CR (credit)

/ (slash) DB (debit)

Special characters used in arithmetic expressions include:

+ (addition) / (division)
- (subtraction) ** (exponentiation)
* (multiplication) + (exponentiation)

Special characters used in conditional (IF) statements include:

= (equal) > (greater than) < (less than)

NOTE

These special characters will not
necessarily be underlined when they
appear in formats. For example, an
underlined minus sign might easily be
confused with an equal sign. However,
they are wusually required items. You
may not omit them, wunless you are
specifically told otherwise.

1.2.3 Words

A COBOL word is a character string which has not more than 30
characters and is either a user-defined word or a reserved word. For
COBOL-74, as for most COBOL compilers, a word may be either
user-defined or reserved, but not both.

1.2.3.1 Reserved Words - A reserved word is a COBOL word that is one
of a specific 1list that may be wused in COBOL source programs as
specified in the general formats. You cannot use a reserved word as a
user-defined word; the two types are mutually exclusive. (See
Appendix B for a complete list of COBOL reserved words).

INTRODUCTION TO COBOL-74 LANGUAGE

There are six types of reserved words:

1.

Key words

A key word is required when the format in which the word
appears is used in a source program. Within each format, key
words are uppercase and underlined. Consider the following
example.

COMPUTE identifier-1 [ROUNDED] [identifier-2 [ROUNDED]] ...
=arithmetic-expression [ON SIZE ERROR imperative-statement]

In this case, the words COMPUTE, ROUNDED, SIZE, and ERROR are
key words.

Optional Words

Within each format, uppercase words that are not underlined
are optional words included for readability. You may use or
omit these words indiscriminately. The presence or absence
of an optional word does not alter the semantics of the COBOL
program in which it appears. Consider the following example.

LINAGE IS integer-1 LINES [WITH FOOTING AT integer-2]
[LINES AT TOP integer-3}

In this case, the words IS, LINES, WITH, and AT are optional
words.

Connectives
There are three types of connectives:

a. Qualifier connectives that associate a data-name, a
condition-name, or a text-name with its qualifiers: OF,
IN (See Section 4.7, Qualification.) An example of this
type is

COPY ACTREC OF COBLIB.

b. Series connectives that 1link ¢two or more consecutive
operands: separator comma, sSeparator semicolon. An
example is

GO TO PART1, PART2, PART3 DEPENDING ON COUNTER1.

c. Logical connectives that are used in the formation of the
following conditions: AND, OR, AND NOT, OR NOT. An
example is

IF HOURS-WORKED IS GREATER THAN ZERO AND NOT
DEDUCTION-TIME PERFORM PRINT-CHECK.

Figurative Constants

A few specific constant values are used frequently and in
enough different ways to make it useful to have names for
them. The names given to them are called Figurative
Constants. These names are reserved words and are listed
below.

INTRODUCTION TO COBOL-74 LANGUAGE

The values represented by figurative constants are generated
by the compiler and referenced through the use of the
reserved words given below. These words must not be bounded
by quotation marks when used as figurative constants. The
singular and plural forms of figurative constants are
equivalent and can be used interchangeably to increase
readability.

The values which the compiler generates for you, and the
reserved words that name them, are as follows:

ZERO Represent the value 8, or one or more of the
ZEROS character #, depending on context.

ZEROES

SPACE Represent one or more of the character

SPACES "space".

HIGH-VALUE Represent one or more cof the character that

HIGH-VALUES has the highest ordinal position in the
’ character set's collating sequence (in ASCII
code, this is octal 177).

LOW-VALUE Represent one or more of the character that

LOW-VALUES has the 1lowest ordinal position in the
character set's collating sequence (in ASCII
this is octal 009).

QUOTE Represent one or more occurrences of the
QUOTES quote character, usually '"' (double quote).

ALL literal Represents one or more repetitions of the
string of characters that compose the literal.
The literal must be either an alphanumeric
literal or a figurative constant other than
ALL. The ALL literal cannot be associated with
a numeric or numeric edited item. When a
figurative constant is used, the word ALL is
redundant and is optional. You can use it for
readability if you wish.

Frequently a figurative constant represents a string of
characters whose length is not explicitly stated. When this
happens, the compiler determines the 1length of the string
from context. The figurative constant can be associated with
another data 1item by the context, as in the following
statements:

MOVE SPACES TO WORK-RECORD
IF AMOUNT-OWED EQUALS ZERO PERFORM CLOSE-ACCOUNT

Alternatively, the figurative constant can stand by itself
with no relation to any data item, as in:

DISPLAY "BALANCE IS"™ ZERO

STRING DAY-CODE, SPACE, "-", SPACE, MONTH-CODE
DELIMITED BY SIZE INTO DSPLY-DATE

1-7 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

In cases where the figurative constant is associated with a
data item, the compiler assumes that the string of characters
represented by the figurative constant has the same number of
characters as the associated data-item. 1In the case of (the
figurative constant) ALL literal, the 1literal 1is repeated
from 1left to right and truncated on the right, if necessary.
Thus, if WORK-RECORD in the above example contains 128
characters, the figurative constant SPACES represents a
string of 128 spaces. If AMOUNT-OWED is an eight-character
numeric field with two decimal places, ZERO represents the
value 000000.060. In the following example:

MOVE ALL "ABC" TO HOLD-AREA

If HOLD-AREA is a ten-character alphanumeric field, its
contents after the MOVE is:

A B C A B C A B C A

If you assoclate a JUSTIFIED clause with the data item, the
character repetition and truncation takes place before any
justification.

When the figurative constant is not associated with a data
item, as 1in the second set of examples above, the length of
the character string is the length of the 1literal, or one
occurrence of the literal in the case of ALL literal. This
is true even if you use the plural form instead of the
singular. That is, all of the following statements cause the
same display:

DISPLAY ZERO.
DISPLAY ZEROS.
DISPLAY ALL ZEROS.

In each case, one zero is displayed.

A figurative constant can be used whenever a literal appears
in a format. However, 1if the 1literal 1is restricted to
numeric characters, the only figurative constants permitted
are ZERO (ZEROS, ZEROES), LOW-VALUE (LOW-VALUES), and
HIGH-VALUE (HIGH-VALUES).

Each reserved word that is used to reference a figurative
constant value 1is a distinct character string with the
exception of the construction ALL literal, which is composed
of two distinct character strings.

Special Registers

COBOL-74 recognizes four reserved words as special registers:
DAY, DATE, TIME, and LINAGE-COUNTER. All special registers
have 1implied data descriptions of unsigned elementary
integers. The lengths of DAY, DATE, and TIME are fixed; the
length of LINAGE-COUNTER depends upon the file description
statement that generates the register.

DAY is five digits long. 1Its value represents the number of
the current day of the year. 1Its format is:

YYDDD
where YY is the year of the century, and
DDD is the number of the day of the year.

1-8 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

DATE is six digits long. 1Its value represents the current
date. 1Its format is:

YYMMDD
where YY is the year of the century,
MM is the number of the month, and
DD is the number of the day.

TIME is eight digits long. 1Its value represents the current
elapsed time since midnight on a twenty-four-hour basis. 1Its
format is:

HHMMSShh
where HH is the hours,
MM is the minutes,
SS is the seconds, and
hh is the 1/100ths of a second.

DAY, DATE, and TIME may be accessed by ACCEPT statements in
the Procedure Division. See Section 5.9.1 for the correct
format to use with the ACCEPT verb.

The LINAGE-COUNTER special register is generated whenever the
file description of a sequential file includes the LINAGE
clause. The contents of a LINAGE-COUNTER represent the
current line number within the current page of output. The
contents of a LINAGE-COUNTER are updated automatically by
WRITE statements referring to the associated sequential file.
The LINAGE clause and LINAGE-COUNTER are fully explained 1in
Section 4.9.31.

6. Special-Character Words

-

The arithmetic operators +, -, *, /, **, 7, and the relation
characters <,>, and = are special-character reserved words.

1.2.3.2 User-Defined Words - A user-defined word is a COBOL word
which is supplied by the user to satisfy the format of a clause or
statement. The characters which may be wused to form user-defined
words are the letters of the alphabet, the digits 0 through 9, and the
hyphen. The hyphen may not be used as the first or last character in
the user-defined word.
There are 17 types of user-defined words:

1. alphabet-name

2. cd-name

3. condition-name

4. data-name

INTRODUCTION TO COBOL-74 LANGUAGE

5. file-name

6. index-name

7. level-number
8. library-name
9. mnemonic-name
10. paragraph-name
11. program-name
12. record-name
13. report-name
14. routine-name
15. section-name
16. segment-number
17. text-name

Each of these user-defined word types is described in the Glossary
which appears at the end of this manual.

1.2.4 Literals

A literal is a character string whose value is determined by the
ordered set of characters of which it is composed. You can also use a
figurative constant as a literal. There are two types of literals:
numeric and alphanumeric.

1.2.4.1 Numeric Literal - A numeric literal is a character string of
from 1 to 20 characters selected from the digits 0 through 9, the plus
sign, the minus sign, and the decimal point. The rules for the
formation of numeric literals are as follows:

1. A literal must contain at least 1 digit and no more than 18
digits.

2. A literal must not contain more than one sign character. If
a sign is used, it must appear as the leftmost character of
the literal. If the literal is unsigned, it 1is considered
positive.

3. A literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
character. If the 1literal contains no decimal point, the
literal is considered an integer.

NOTE

The word integer, appearing .in a general format,
represents a nonnegative numeric literal with no
decimal point.

1-10

INTRODUCTION TO COBOL-74 LANGUAGE

If a literal conforms to the rules for the formation of
numeric literals but 1is enclosed in quotation marks, it is
considered an alphanumeric literal and is treated as such by
the compiler. ‘

4, The value of a numeric 1literal 1is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric. (See Section 4.10.16,
The PICTURE Clause.) The size of a numeric literal is equal
to the number of digits specified by the wuser, including
leading zeros, if any.

1.2.4.2 Alphanumeric Literals -~ An alphanumeric literal is a
character string representing from 1 to 120 characters, delimited on
both ends by quotation marks and consisting of any allowable character
in the computer's character set. An opening quotation mark must be
immediately preceded by a space or left parenthesis. A closing
quotation mark must be immediately followed by one of the separators
(space, comma, semicolon, or right parenthesis) or by the terminator,
period.

NOTE

You may use either the single quote
character (') or the double quote (").
Whichever one you use, you must be sure
to pair them correctly -~ do not try to
pair a single quote with a double quote
or vice versa.

To represent one quotation-mark character within an alphanumeric
literal, two contiguous quotation marks must be used. The value of an
alphanumeric literal in the object program is the string of characters
itself, except that:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other ©punctuation characters are part of the value of the

alphanumeric 1literal, not separators. All alphanumeric literals are
category alphanumeric. (See Section 4.9.18, The PICTURE Clause.)

1.2.5 Separators

A separator is a string of one or more punctuation characters. The
rules for forming separators are:

1. Space

a. Anywhere a space is used as a separator, more than one
space may be used.

b. A space may immediately precede all separators except the

closing guotation mark. Here the space is considered
part of an alphanumeric literal, not a separator.

1-11

INTRODUCTION TO COBOL-74 LANGUAGE

c. A space may immediately follow any separator except the
open quotation mark. In this case, a following space is
considered part of an alphanumeric literal, not a
separator.

Comma and Semicolon

The punctuation characters, the comma and semicolon, are
separators. You may insert these separators only where
explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence definitions, or
by source program format rules.

Right Parenthesis and Left Parenthesis

Right parenthesis and left parenthesis are separators only
when used in balanced pairs to delimit subscripts or indexes.

Quotation Marks

Quotation marks may be used only in balanced pairs to delimit
alphanumeric 1literals or in adjacent pairs to pass one
quotation mark in an alphanumeric 1literal. (See note
concerning dquotation marks in Section 1.2.4.2, Alphanumeric
Literals.)

Horizontal Tab

The horizontal tab character is governed by the same rules
that govern the space character. It is normally used to
vertically align statements or clauses on successive lines of
the source program listing. The compiler, upon encountering
a tab character, generates one or more space characters
consistent with the tab character position in the source
line.

Pseudo-text Delimiter

Pseudo-text delimiters set off textual matter in the COPY
statement from the rest of the sentence. Each delimiter
consists of two contiguous equal signs ==). The opening
pseudo-text delimiter must be immediately preceded by a
space; the closing delimiter must be immediately followed by
one of the separators space, comma, semicolon, or period.
These delimiters may appear only in balanced pairs delimiting
pseudo-text.

NOTE

There are certain rules for writing
source programs which supersede these
general rules. For a discussion of
source program formats see Section 1.3.

INTRODUCTION TO COBOL-74 LANGUAGE

1.3 SOURCE PROGRAM FORMAT

There are two basic types of source program formats in which you may
write your COBOL-74 programs. These two types arise from the methods
of entering the source program into the system. The first |is
conventional card-type format. You should use this type if you wish
your COBOL-74 program to be compatible with other compilers. The
second 1is the standard DEC format which is designed for easy use on
terminals. This format is the one to use for those programs which are
to be entered into the system through a terminal using a text editor.
The compiler will assume that the source program is written 1in
terminal-type format unless the /S switch is included in the command
string to the compiler (refer to Appendix C).

Certain margins which begin the areas used for writing COBOL-74
statements are standard for source programs. The standard names for
these margins are Margins L, A, B, and R. As you might expect,
Margins L and R are the 1left and right margins of the line,
respectively. Margins A and B mark the beginning of two areas, Areas
A and B. Area A 1is where all division-names, section-names,
paragraph-names, and FD (File Description) entries must begin. All
other entries must begin in Area B. Although the actual character
position which marks each of these margins changes from format to
format, the function of each area is the same; in other words, you
must begin your division-names at Margin A no matter what format you
use, no matter where Margin A happens to be placed in that format.

NOTE

These rules agree with the 1974 ANSI
standard for source program formats.
Programs written according to the rules
will be more readable and transportable.
The COBOL-74 compiler, however, does not
do complete syntax checking to determine
if you have followed all rules, and will
not always issue an error message if you
violate them. Thus, you are encouraged
to conform to the rules to avoid
unpredictable results.

Some of the rules for using source program formats remain constant
regardless of which format you use. These rules are given below.
Refer to them for all types of formats.

1. Continuation Area - If you wish to split a word or literal
across two lines, you must use this area to indicate your
wish to the compiler. To do this, write the first line up to
the point at which you wish to split it, then place a hyphen
(=) in the continuation area of the next 1line and continue
the second 1line beginning at or after Margin A. If you are
splitting a word or numeric literal you may leave spaces
between the last character in the first line and the end of
the source statement area. (This area ends at the
identification area, when it exists; otherwise it ends at
Margin R.) However, if you wish to split an alphanumeric
literal you must not leave spaces after the last character of
the first line, since the compiler will assume that those
spaces are part of the literal. 1If you wish only to continue
a sentence on the next line without splitting any words, you
may simply write the first line, then continue on the next
line; do not use the continuation column for this purpose.

1-13

INTRODUCTION TO COBOL-74 LANGUAGE

2. Comment Lines - You may insert comment 1lines into your
COBOL-74 program by using the continuation area. If the
compiler finds an asterisk (*) in that area it will list the
remainder of the 1line as a comment on the next line. If
there is a slash (/) instead of an asterisk a new page will
be started and the comment will be listed at the top of the
new page.

NOTE

All formats may be used with any input
medium. The names of the types of
formats refer to their origins, not
their uses.

1.3.1 Card-type Format

You should use card-type format if you wish to compile your program
under an operating system other than TOPS-10 or TOPS-20. Your program
may be punched on an off-line card punch or created with an on-line
text editor. This format uses card sequence numbers which must be
created by the user. The layout of a line in this format is shown in
Figure 1-1. The numbers refer to card columns or character positions.

CARD-TYPE FORMAT

1 ‘ 6 7 8 12 ﬁ/ Y 73 80
| | l L |
~~ g " ——A(,, P~ ~ .
L C A B | MR.5.018.79

Figure 1-1(a) Card-type Format

In this format, Margin L is to the left of position 1 and Margin R 1is
to the right of position 80. Margin A is between positions 7 and 8
and begins the area labeled A in the figure. Margin B is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by the user who creates the file on a terminal or
a card punch.

2. Debug Lines - You may insert debug lines into your program by
putting a "D" 1in the continuation area (column 7). The
compiler will recognize it and print it on the source listing
with the spacing similar to a comment line.

INTRODUCTION TO COBOL-74 LANGUAGE

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 8¢. Margin A is between positions 7 and 8
and begins the area labeled A in the figqure. Margin B is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

l. Line Numbers - These are placed in area L (positions 1
through 6) by you when you create the file on a terminal or a
card punch.

2. Continuation Area - If you wish to use the continuation area,
type one of the following characters as the first character
of the continued line:

e Hyphen (-) - Specifies that this is a continuation of the
previous line.

e Asterisk (*) ~ Specifies that the line is a comment. The
compiler ignores the line.

e Slash (/) - Specifies a page change in the listing file.
The page change 1is numbered as a sub-page and |is
incremented by 1.

3. Debug Lines - You can insert debug lines into your program by
putting a "D" in the continuation area (column 7). The
compiler recognizes it and prints it on the source 1listing
with the spacing similar to a comment line., However, with
the terminal-type format (Section 1.3.2), it is not possible
to determine 1if the "D" is in the continuation area or in
column 7. Therefore, the "\D" can be used instead.

4. Identification Area - This area is marked I 1in the figure
(positions 73 through 88). These eight character positions
can hold identifying information that can be composed of any
eight characters, This information is printed on the source
listing, and can be used to identify the card deck (if the
source code is in fact on cards).

NOTE

The card sequence numbers are not the same as the line
numbers created by a 1line editor. The numbers
supplied by an editor are not acceptable to COBOL-74
when you specify card-type format.

The examples in Figure 1-1(b) illustrate these rules. The first two
lines are simple statements, with a line number in area L, COBOL-74
statements in areas A and B, and the identification area containing
the name of the program. The third line shows how the continuation
column is used to split a word across two lines. Note that the word
can be written right up to the end of area B.

1.3.2 Terminal-Type Format

If you are writing your program using a text editor and a terminal to
input the source code, terminal-type format 1is your best choice.
There are two types of terminal-oriented formats, one with 1line

numbers and one without. Layouts and examples of each type are shown
in the figures which follow.

1-15 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

1.3.2.1 With Line Numbers - This format is suitable 1if you wuse a
line-oriented editor such as EDIT or S0S. The format is shown in
Figure 1-2(a). format is shown in Figure 1-2(a).

TERMINAL-TYPE FORMAT - WITH LINE NUMBERS

1 12 122

6 7 8

L L]
\ e e .
L Zz C A B

MR-5-966-81

Figure 1-2(a): Terminal-Type Format with Line Numbers

In this format, margin L is to the left of position 1 and margin R is
to the right of position 122. Margin A is between positions 7 and 8
and begins the area labeled A, Margin B is between positions 11 and
12 and begins the area 1labeled B. Therefore, areas A and B can
contain a maximum of 114 characters.

The following rules pertain to the use of this source format:

l. Line Numbers - These are placed in area L (positions 1
through 5) either by the line editor or by you. If you are
using an editor which supplies line numbers you must not add
numbers yourself - one set is enough.

2, Position 6 - This position (marked Z in the figure) remains
blank. The editor can insert a tab here for purposes of
making your text more readable; if so, the compiler reads the
tab as a space.

3. Continuation Area - If you wish to use the continuation area,
type one of the following characters as the first character
of the continued line:

e Hyphen (-) - Specifies that this a continuation of the
previous line.

e Asterisk (*) - Specifies that the line is a comment. The
compiler ignores the line.

e Slash (/) - Specifies a page change in the listing file.
The page change 1s numbered as a sub-page and is
incremented by 1.

However, if you do not wish to use the continuation area, you
can ignore it altogether - you do not need to type a space at
the beginning of the line. If you do type a space as the
first character of a 1line, the compiler assumes that you
meant the space to be part of the line.

4. Debug Lines - Debug lines can be inserted 1in your program
with this format if you type "\D" (backslash D) as the first
two characters on the line. 1If you use "D" as 1in card—-type
format, the compiler reads the "D" as the first character of
a word beginning in area A.

The examples in figure 1-2(b) illustrate the use of this format. The
first two lines are simple COBOL-74 statements with the five-character
line number in area L and areas Z and C blank. The third 1line shows
how a word is split across two lines. WNote that you can leave spaces
between the last letter of the word and margin R without confusing the
compiler.

1-16 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

1.3.2.2 Without Line Numbers - If you decide to use a terminal to
enter your program but your editor (such as TECO or TV) does not
supply line numbers (or you requested that the editor remove them when
you finished editing), this is the simplest format to use. The format
is shown in Fiqure 1-3(a).

TERMINAL-TYPE FORMAT - NO LINE NUMBERS

0o 1 5 122

-
c A R MR-5-967-81

Figure 1-3(a): Terminal-Type Format without Line Numbers

In this format, margin L is to the left of position @, if it exists,
or position 1, if position @ does not exist., Margin R is to the right
of position 122, Margin A is to the left of position 1 and begins the
area labeled A, Margin B is between positions 4 and 5 and begins the
area labeled B. Therefore, areas A and B can contain a maximum of 114
characters.

The following rules pertains to the use of this source format:

1. Continuation Area - If you wish to use the continuation area,
type one of the following characters as the first character
of the continued line:

e Hyphen (~) - Specifies that this is a continuation of the
previous line.

e Asterisk (*) - Specifies that the line is a comment. The
compiler ignores the line.

e Slash (/) - Specifies a page change in the listing file.
The page change 1is numbered as a sub-page and is
incremented by 1.

If the compiler finds one of these characters at the
beginning of a line it assumes that the line has a position #
- in other words, a continuation area. Otherwise, each 1line
starts in position 1 and there is no position #.

2. Debug Lines - Debug lines can be inserted into the program.
To do this type a "\D" (backslash D) as the first two
characters on the line.

The examples in Figure 1-3(b) show this Fformat's simplicity. The
first two lines are the same simple COBOL-74 sentences as above. Note
that the paragraph-name starts in the very first character position.
The third line shows how to tell the compiler that the line you enter
is a continuation (or a comment) line. The first half of the line |is
entered beginning in the first position of Area B, while the second
half begins with a hyphen and continues from the second position.

1-17 October 1985

1]ololo] JelrlolclE[s[s]-[r]al Tlalxlalcklr
1o MOVE[[TIHITS|-PIERITo[oiS|-{T/AX] [Tiol [TAIX[-[PAT|D TIAXAlClcTlG
20 SITIRITING| MOIS|TI-RIE[CIENTI-IMOINTH!, ISIPIAICE, ["[- "1, [SIPIA CIE], OIS [T~ [REE[CEN[T[- D[RV, TIRXIACCTE
1ol3lo SIpIAlCE], "L, IsIPA], Mols|TI-IRIE|dEINT]-IY[EIAR] DM z[wiElD BlY| [s|t|zle] [1inilo] [oltls|plciTlalx]alcldTl
1jojajo AY|-|DAITE |
MR-S-1494-81
Figure 1-1 (b)
7
PRICIEKISE[T]AlX].
0 MolvE] [TH[z|s|-PER[zlolois|-[TIAlX] o triAlxFPAl[D.
z 1l SITIRIINIG] MOIS [T~ [REE|CEENTI-MONTTHI, SIPIACE [" ["[-[SIPIA CIE] - OIS [T[- [RIE CENTT F DAY [, SIPIAICEL, |- [, [SIP
= 113b] |-] Mols|1-|RE[clENTI-[VIElAIR] [pEE k| M1|TiE]n] Bl¥] Ts|t/z]e] IN[vlo] [oji[s|PLLIAlY|-IDRITE
|
]
MR-S-1495-81
Figure 1-2 (b)
Elslsl-[TlAlX. |

.,
[
O
=
O

E[,MA

del,]"[- ,MdsiT-|RE
S|T[7E] [TNT{o] [olT[sP/AY-[DATIE].

]
=
m
O
[ual
=
-—'

[)
<
m
=
=
o
i
—
-
=
—
—~
m
)
vs]
.

MR-S-1496-81

Figure 1-3 (b)

|

JOVNONYT VL-%OHOD OL NOILONQOYLINI

INTRODUCTION TO COBOL-74 LANGUAGE

1.4.1 The COPY Statement
Function

The COPY statement incorporates text from a COBOL library into a COBOL
source program. (For a complete description of COBOL libraries, see
the COBOL-74 Usage Material, Part 3 of this manual.) The COPY
statement may also be used to replace specified text in the source
text being copied.

General Format

o
-

l

—

N; library-name

COPY text-name {

==pseudo-text-1== ==pseudo-text-2==
REP N identifier-1 BY identifier-2
literal-1 - literal-2
word-1 word-2
Technical Notes
NOTE

In the technical notes which follow, the
term string-1 1is wused to denote the
character string which is used in place
of the following: pseudo-text-1,
identifier-1, literal-l, or word-1l. The
term string-2 is similarly used.

1. If more than one COBOL library is available during
compilation, text-name must be gualified by the library-name
identifying the COBOL library in which the text associated
with text-name resides.

Within one COBOL library, each text-name must be unique.

INTRODUCTION TO COB0L-74 LANGUAGE

The COPY statement must be preceded by a space and terminated
by the separator period. The entire statement, including the
period, will be removed when the text 1is copied from the
library. 1

String-1 must not be null, nbr may it consist solely of the
character space(s), nor may it consist solely of comment
lines. !

String-2 may be null.

Character-strings within string-l and string-2 may be
continued. However, both characters of a pseudo-text
delimiter must be on the same line.

A COPY statement may occur in the source program anywhere a
character-string or a separator may occur except that a COPY
statement must not occur within another COPY statement.

The effect of processing a COPY statement is that the library
text associated with text~name 1is copied into the source
program, logically replacing the entire COPY statement,
beginning with the reserved word COPY and ending with the
punctuation character period, inclusive. The compilation of
a source program containing COPY statements is logically
equivalent to processing all COPY statements prior to the
processing of the resulting gsource program. For clarity, use
the double equal sign (==) around string-l1 and string-2 to
designate clearly the string that is being replaced and the
string that is replacing that text. See Note 10 for an
example of the use of the double equal sign.

If the REPLACING phrase is npbt specified, the library text is
copied unchanged. 1If the REPLACING phrase is specified, the
library text is copied and elach properly matched occurrence
of string-1 in the 1library text 1is replaced by the
corresponding string-2. |

The comparison operation to determine text replacement occurs
as follows: :

a. Any separator comma, semicolon, and/or space(s) preceding
the leftmost library tekt-word is copied into the source
program. Starting with the 1leftmost 1library text-word
and the first string~1] that was specified in the
REPLACING phrase, the entire REPLACING phrase operand
that precedes the reserved word BY is compared to an
equivalent number of conltiquous library text-words.

b. String-1 matches the libjrary text if, and only 1if, the
ordered sequence of text-words that forms string-1 is
equal, character for character, to the ordered sequence
of 1library text-words.! For purposes of matching, each
occurrence of a separator comma or semicolon in string-1
or in the library text is considered to be a single space
except when string-l consists solely of either a
separator comma or semicolon, in which <case it
participates in the match as a text-word. Each segquence
of one or more spacel separators is considered to be a
single space. !

c. If no match occurs, the comparison is repeated with each
next successive string-1, if any, in the REPLACING phrase
until either a match i found or there 1is no next
successive REPLACING opefand.

1-20: January 1980

1l9.

11.

INTRODUCTION TO COBOL-74 LANGUAGE

b. String-1 matches the library text if, and only 1if, the
ordered sequence of text-words that forms string-1 is
equal, character for character, to the ordered sequence
of 1library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in string-1
or in the library text is considered to be a single space
except when string-1 consists solely of either a
separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence
of one or more space separators is considered to be a
single space.

¢. If no match occurs, the comparison is repeated with each
next successive string-1, if any, in the REPLACING phrase
until either a match is found or there 1is no next
successive REPLACING operand.

d. When all the REPLACING phrase operands have been compared
and no match has occurred, the leftmost library text-word
is copied into the source program. The next successive
library text-word 1is then considered as the leftmost
library text-word, and the comparison cycle starts again
with the first string-l specified in the REPLACING
phrase.

e. Whenever a match occurs between string-1l and the library
text, the corresponding string-2 1is placed into the
source program. The 1library text-word immediately
following the rightmost text-word that participated in
the match is then considered as the leftmost 1library
text-word. The comparison cycle starts again with the
first string-1 specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost
text-word in the library text has either participated in
a match or been considered as a leftmost library
text-word and participated in a complete comparison
cycle.

When you use the REPLACING phrase, you must replace entire
data names. You cannot replace parts of data-names. For
example, to replace REPORT-ACCT-NO with OUTPUT-ACC-NO, vyou
must specify:

REPLACING ==REPORT-ACCT-NO== BY ==0QUTPUT-ACCT-NO==,.

Thus, replacing REPORT- by OUTPUT- produces an error message.
For purposes of matching, a comment line that occurs 1in the
library text and string-l is interpreted as a single space.

Comment lines that appear in string-2 and 1library text are
copied into the source program unchanged.

1-21 : October 1985

12.

13.

14.

15.

l6.

INTRODUCTION TO COBOL-74 LANGUAGE

Debugging 1lines are permitted within 1library text and
string-2. Debugging lines are not permitted within string-1;
text-words within a debugging 1line participate in the
matching rules as if the 'D' did not appear in the indicator
area. If a COPY statement is specified on a debugging 1line,
then the text that is the result of the processing of the
COPY statement also appears as though it were specified on
debugging lines with the following exception: comment lines
in library text appear as comment lines in the resultant
source program.

The text produced as a result of the complete processing of a
COPY statement must not contain a COPY statement.

The syntactic correctness of the 1library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source program cannot be determined until all
COPY statements have been completely processed.

Library text must conform to the rules for COBOL source
program format. (See Section 1.3.) You can copy text from a
library without worrying about what format your program is
in, however.

For purposes of compilation, text-words after replacement are
placed in the source program according to the rules for
source program format.

CHAPTER 2

THE IDENTIFICATION DIVISION

The Identification Division is required in every source program. It
identifies the source program and the output from compilation. 1In
addition, it may contain other documentary information such as the
name of the program's author, the name of the installation, the dates
on which the program was written and compiled, any special security
restrictions, and any miscellaneous remarks.

General Structure

ID

[PROGRAM—ID. program-name.:l
[Mg&. comment-entry :l

[INSTALLATION. comment-entry]
[:DATE-WRITTEN. comment-entry ..Z]
[:DATE-COMPILED. comment-entry :]
[SECWRITY. comment-entry ...]

Technical Notes

1. The Identification Division must begin with the reserved
words IDENTIFICATION DIVISION followed by a period and a
space. Note that in COBOL-74 the reserved word ID may be
substituted for IDENTIFICATION in the division header.

2. The PROGRAM-ID paragraph contains the name identifying the
program. The program-name may have up to six characters, and
must contain only letters, digits, and the hyphen. It can be
enclosed 1in quotation marks. The program-name cannot be a
reserved word and must be unique. It cannot be the same as a
section, paragraph, file, data, or subprogram name. This
paragraph is optional. If it is not present, the name MAIN
is assigned to the program.

THE IDENTIFICATION DIVISION

The remaining paragraphs are optional and, if used, may
appear in any combination and in any order. A comment
paragraph consists of any combination of characters from the
COBOL character set organized to conform to COBOL sentence
and paragraph format. All text appears as written on the
output listing, except the DATE-~-COMPILED paragraph which will
be replaced by the current date. Reserved words can be used
in any comment paragraph.

THE IDENTIFICATION DIVISION

GENERAL FORMAT FOR IDENTIFICATION DIVISION

I |
IDENTIFICATION’ DIVISION.

[PROGRAM-ID. pr‘ogram-name.]
[MO_R. comment-entry ..]
[INSTALLATION. comment-entry]
[DATE-NRITTEN. comment-entry :]
[[DATE-COMPILED. comment-entry]
I:SECURITY. comment-entry .]

2-3

CHAPTER 3

THE ENVIRONMENT DIVISION

The Environment Division allows you to describe the particular
computer configurations you wish to use for program compilation and
execution. In this division you also specify the files and devices
you will wuse for 1input and output. The clauses used to do these
things are presented on the following pages.

THE ENVIRONMENT DIVISION

CONFIGURATION SECTION

3.1 ENVIRONMENT DIVISION CLAUSE FORMATS
3.1.1 CONFIGURATION SECTION
The Configuration Section allows you to describe the computers used
for program compilation and execution, and to assign mnemonic-names
for input/output devices. The Configuration Section consists of the
section name (CONFIGURATION SECTION.) followed by one or more of the
following paragraphs:

SOURCE~-COMPUTER. (See Section 3.1.2)

OBJECT-COMPUTER. (See Section 3.1.3)

SPECIAL-NAMES. (See Section 3.1.4)

Technical Notes
l. This section is optional.

2. All commas and semicolons are optional. A period must
terminate the entire entry.

THE ENVIRONMENT DIVISION

SOURCE-COMPUTER

3.1.2 SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the
program is to be compiled.

General Format
SOURCE-COMPUTER. computer-name [:WITH DEBUGGING MODE:] .

Technical Notes

Examples

This paragraph is optional.

Computer-name must be one of the list DECsystem-10,
DECSYSTEM-20, PDP-10, or PDP-integer-l. 1Integer-l must be in
the range 1000 to 1099.

If the WITH DEBUGGING MODE clause is specified, all debugging
lines are compiled. If it is not specified all debugging
lines are treated as if they were comment lines. In either
case all USE FOR DEBUGGING statements are compiled as if they
were comments. This is because COBDDT accomplishes what 1is
otherwise done with debugging statements.

SOURCE-COMPUTER. DECSYSTEM-1055.

SOURCE-COMPUTER. DECSYSTEM-20 WITH DEBUGGING MODE.

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER

3.1.3 OBJECT~-COMPUTER
Function

The OBJECT-COMPUTER paragraph describes the
program is to be executed.

General Format

OBJECT-COMPUTER. computer-name

WORDS
MEMORY SIZE integer CHARACTERS
MODULES

computer

[PROGRAM COLLATING SEQUENCE IS alphabet-name]

[SEGMENT-LIMIT IS segment-number]

6
DISPLAY IS DISPLAY -{7
9

Technical Notes

1. This paragraph is optional.

2., Computer-name must be one of the

on

which the

following: PDP-10,

PDP-integer-1, DECsystem-~10, or DECSYSTEM-20.

be a number in the range 1000 through

1099.

Integer~1 must

The number

specified 1is for documentary purposes only and has no direct
bearing on the object code generated by the compiler. If the
compiler was installed to take advantage of the KL central

processing unit's Business Instruction
BIS-code will be generated automatically.

Installation Procedures.)

Set
(See the COBOL-74

(BIS), the

3. The optional MEMORY SIZE clause specifies the maximum memory
size of SORT's work area during a SORT operation. If the
MEMORY SIZE clause is omitted, 262,144 WORDS are assumed. If
it appears, the following ranges are applicable:

CHARACTERS Up to 1,572,864 (262,144 words x 6
characters/word)

WORDS Up to 262,144

MODULES Up to 256 (1 module equals 1024
words)

COBOL-74 presently ignores the MEMORY SIZE clause. SORT will
use 1its default algorithms to determine the amount of memory

needed to execute a sort. (Refer to the

for more information.)

Version 12A 3-4

SORT User's Guide

January 1980

Example

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER (Cont.)

The PROGRAM COLLATING SEQUENCE clause specifies a collating
sequence for a program. When you use the PROGRAM COLLATING
SEQUENCE clause the collating sequence is the one associated
with alphabet-name. When you do not wuse the PROGRAM
COLLATING SEQUENCE clause the collating sequence is ASCII,
The program collating sequence determines:

1. The results of explicit comparisons in
relation-conditions and in condition-name conditions

2. The results of implicit comparisons in CONTROL clauses of
report description entries

3. The order of records processed by SORT and MERGE
statements which do not specify another <collating
sequence with the COLLATING SEQUENCE phrase

4. The values of the figurative constants HIGH-VALUE and
LOW-VALUE

(See the alphabet-name IS clause in the SPECIAL-NAMES
paragraph for information on how to associate a collating
sequence with alphabet-name.)

If you use the SEGMENT-LIMIT clause, only those segments
having segment numbers from O up to but not including the
value of integer-3 are treated as resident segments of the
program. Integer-3 must be a positive integer in the range 1
to 49.

If you omit the SEGMENT-LIMIT clause, segments having segment
numbers from 0 through 49 are considered as resident segments
of the program (that is, SEGMENT-LIMIT IS 50 is assumed).
More on segmentation can be found in Sections 5.3 and 11.1.

The DISPLAY clause is optional. If you include it in your
program, the compiler uses the DISPLAY type you specify as
the default in determining the recording mode for external
files and for items described in the Data Division as
DISPLAY. This allows you to change the default usage inside
the program without using compiler switches. The effect of
specifying DISPLAY IS DISPLAY-9 is the same as that of
including a /X switch in the command string to the compiler.
However, the /X switch always overrides the DISPLAY clause.
For example, 1if you include in your program the following
statement

DISPLAY IS DISPLAY-7

all items described in the Data Division as USAGE IS DISPLAY
are considered DISPLAY-7 items.

OBJECT-COMPUTER. DECSYSTEM-1077

MEMORY 50000 WORDS

PROGRAM COLLATING SEQUENCE IS NATIVE
SEGMENT-LIMIT IS 35

DISPLAY IS DISPLAY-7.

THE ENVIRONMENT DIVISION
SPECIAL-NAMES

3.1.4 SPECIAL-NAMES
Function

The SPECIAL-NAMES paragraph provides a means of assigning mnemonic
names to input/output devices, code sets, and collating sequences.
This paragraph can also define the character used as a currency sign,
and can specify the interchange of decimal point and comma functions
in the program.

General Format
[SPECIAL NAMES. [CONSOLE IS mnemonic-name-1]
[CHANNEL (m) IS mnemonic-name-2]

(CHANNEL (n) IS mnemonic-name-3 ...]

F (IS mnemonic-name-4 [gﬂ STATUS IS condition-named]
[oFF sTATUS 1S condition-name-2 |
ON STATUS IS condition-name-1

SWITCH(m) - >
[(ﬁ STATUS IS condit1on-name-2] :

OFF STATUS IS condition-name-2 ®
[on staTUs 15 condition-name-1]
/

i STANDARD-1

NATIVE

ASC

EBCDIC

THROUGH | . _

literal-1 {mm f literal-2

alphabet-name IS ALSQ Titeral-3 [ALSQ literal-4] ...

THROUGH)
literal-5 {THR!! } literal-6
ALSO Titeral-7 [ALSO literal-8] ...

.

[Htera]-9 IS mnemonic-name—li]

[CURRENCY SIGN IS Titeral-10]

[DECIMAL POINT IS COMMA] ;]

Technical Notes
l. This paragraph is optional.
2. The reserved word CONSOLE refers to your terminal. The
assigned mnemonic-name can be wused with the ACCEPT and

DISPLAY verbs in the Procedure Division to input data from
and output data to the terminal.

3-6 . October 1985

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

The name CHANNEL refers to a channel on the 1line-printer
control tape. m and n represent any integer from 1 to 8 and
refer to any one of the eight channels on the tape. Control
tape channels can be referred to in the ADVANCING clause of
the WRITE verb in the Procedure Division to advance the paper
form to the desired channel position. (Refer to the Hardware
Reference Manual for a description of printer control
tapes.) For example, if the entry

CHANNEL (1) IS TOP-OF-PAGE

is included in this paragraph, the following procedure
statement prints the 1line and then skips to the top of the
next page.

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD
BEFORE ADVANCING TOP-OF-PAGE.

The alphabet-name IS clause associates a user-specified name
with a sequence of characters that can be used as a character
code set, a collating sequence, or both. This character
sequence can be either one of the two sequences provided by
the compiler or a sequence specified by you.

A character code set is specified by referencing
alphabet-name in the CODE-SET clause of a file description.
When defining a character code set, the alphabet-name IS
clause is restricted to STANDARD-1, NATIVE, ASCII, or EBCDIC.
A collating sequence is specified by referencing
alphabet-name either in the PROGRAM COLLATING SEQUENCE clause
of the OBJECT-COMPUTER paragraph or in the COLLATING SEQUENCE
phrase of a SORT or MERGE statement.

When STANDARD-1 or ASCII appears in an alphabet-name IS
clause, the character code set and collating sequence
specified is ASCII. When EBCDIC appears in an alphabet-name
IS clause, the character code set and collating sequence
specified is EBCDIC.

When NATIVE appears, the character code set is ASCII.
However, if the DISPLAY mode specified is DISPLAY-9, the
character code set is EBCDIC.

When a literal phrase appears in an alphabet-name IS clause,
the 1literals define an ascending collating sequence in the
order of their appearance in the phrase. Numeric 1literals
represent the ordinal number of the character within the
ASCII character set and must be in the range from 1 through
128. Nonnumeric literals in an alphabet-name IS clause
represent themselves. The ordinal number of an ASCII
character 1is 1 greater than its ASCII value. If the literal
contains multiple characters, they are assigned successive
ascending positions within the collating sequence, starting
with the leftmost character. Characters whose positions are
not explicitly defined by the literal phrase are assigned
positions higher than the specified characters and in their
normal ASCII sequence.

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

Example

When you specify the THROUGH phrase, the set of contiguous
ASCII characters beginning with the character specified by
literal-l and ending with the character specified by
literal-2 are assigned successive ascending positions in the
collating sequence. The characters specified by a THROUGH
phrase can be in either ascending or descending order.

When you specify the ALSO phrase, the characters specified by
literal-1, literal-3, literal-4, ..., are all assigned to the
same position in the collating sequence.

The character that has the highest ordinal position in the
program collating sequence 1is associated with the figurative
constant HIGH-VALUE for the character code set that you
specify. For example, in SIXBIT, the underscore (_) is
equivalent to HIGH-VALUES. If more than one character has
the highest position in the program collating sequence, the
last character specified is associated with the figurative
constant HIGH-VALUE.

The character that has the lowest ordinal position 1in the
program collating sequence specified is associated with the
figurative constant LOW-VALUE for the character code set that
you specify. For example, in SIXBIT, the space is equivalent
to LOW-VALUES. If more than one character has the lowest
position in the program collating sequence, the first
character specified 1is associated with the figurative
constant LOW-VALUE,

The clause literal-9 IS mnemonic-name-4 specifies the CODE
value for a particular report (refer to the CODE clause in
Section 4.9.26). Literal-l must be an alphanumeric 1literal
enclosed in quotation marks, and can be from 1 through 120
characters in length.

If you use the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph, you must use the literal you specify (instead of
the $ character) in PICTURE clauses in the Data Division.
For instance, 1f you wish to insert a currency sign at the
front of a field which is to be printed on your report, you
must use the literal you specified - not the $ character - as
the editing symbol.

This literal is limited to a single printable character and
must not be one of the following characters:

digits @ through 9

alphabetic characters A, B, ¢, D, L, P, R, §, V, X, Z

special characters * + - , . ; () " / =

If you use the DECIMAL-POINT IS COMMA clause, then the

functions of the c¢omma and period are interchanged for all
PICTURE clauses and numeric literals.

SPECIAL-NAMES. CONSOLE IS MYTERM

CHANNEL (1) IS TOP-OF-PAGE,

3-8 October 1985

THE ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

3.1.5 INPUT-OUTPUT SECTION

The Input-Output Section names the files and external media required
by the object program and provides information required for
transmitting and handling data during execution of the object program.
This section <consists of the section header (INPUT-OUTPUT SECTION.)
followed by one or more of the following paragraphs:

FILE-CONTROL. (See Section 3.1.6)

I-0~CONTROL. (See Section 3.1.15)

Technical Notes
1. This section is optional.

2. All semicolons and commas are optional. Each SELECT
statement 1in the FILE-CONTROL paragraph must end with a
period. The entire entry in the I-O-CONTROL paragraph must

end with a period.

THE ENVIRONMENT DIVISION

FILE-CONTROL

3.1.6 FILE-CONTROL
Function

The FILE-CONTROL paragraph names each file, 1identifies the file
medium, and allows logical hardware assignments.

General Format

FORMAT 1:
SELECT [OPTIONAL] file-name

ASSIGN TO device-name-1 [device-name-2]

. AREA
[RESERVE integer-1 [AREAS]]

[ORGANIZATION IS SEQUENTIAL [CHECKPOINT QUTPUT]
[ACCESS MODE IS SEQUENTIAL]

ASCII
SIXBIT
BINARY
RECORDING | MODE IS [BYTE MODE] E

v

STANDARD-ASCII
STANDARD ASCII

a8
S
(]

DENSITY IS

[ee]
(=]
[e]

eane s (8]

(=]
(ae]
53
je]

[’%%%%;%%%%%g} IS data-name-1 [data-name-Z[data-name-3[data-name-4

[data-name-S [data-name—ﬁ [data-name—?[data-name-8]]]]]]}}

Version 12A 3-10 January 1980

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

FORMAT 2:
SELECT file-name
ASSIGN TO device-name-1 [device-name-2]

. AREA
[RESERVE integer-1 [AREAé]]

ORGANIZATION IS RELATIVE [NITH CHECKPOINT OUTPUT'[EVERY integer-1 RECORDS]]

SEQUENTIAL RELATIVE KEY IS data-name-1
{-M } RELATIVE KEY IS data-name-1

ACCESS MODE IS

DYNAMIC
ASCI
SIXBIT
RECORDING | MODE IS< BINARY
E
L y

FILE-STATUS
L FILE STATUS

IS data-name-1 [data-name-z [data-name-3 [data-name-4

[data-name-s [data-name-ﬁ [data-name-7 [data-name-B]]]]]]]:l

MR-§-12564-81

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

FORMAT 3:
SELECT file-name

ASSIGN TO device-name-1 [device-name-2]

. AREA
[RESERVE integer-1 [AREAS]}

DEFERRED OUTPUT

SEQUENTIAL
ACCESS MODE IS < RANDOM
DYNAMIC

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY 1S data-name-1 [WITH DUPLICATES]]

—

(AscI
SIXBIT

RECORDING | MODE 1S{ BINARY
F

_||

<l

—

[%%%%:%%%%%%} IS data-name-1 [data-name-z [data-name-3 [data-name-4

[data-name-s [data-name-s [data-name-7 [data-name-B]]]]]]]]

3-12 October 1985

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

Technical Notes

1.

This section is optional.

All semicolons and commas are optional. Each SELECT clause
must end with a period.

The SELECT and ASSIGN statements must appear before any other
clause shown, and the SELECT statement must precede the
ASSIGN statement. Every file described in the Data Division
must be named in a SELECT clause in the Environment Division.
Thus, the following clause must be specified for every such
file: SELECT file-name ASSIGN TO device=-name.

The individual clauses are described on the following pages
in the order shown above.

THE ENVIRONMENT DIVISION

SELECT

3.1.7 SELECT

Function

The SELECT statement names each file that is to be described in the
Data Division, and assigns each file to a particular device.

General Format

SELECT file-name

literal-1 ,1literal-2
ASSIGN TO device—name-l} [,device-name-Z] v

Technical Notes

1. Each file described in the Data Division must be named once
and only once as a file-name 1in a SELECT statement.
Conversely, each file named in a SELECT statement must have a
File Description entry in the Data Division. Each file-name
must be unique within a program.

2. The key word OPTIONAL is required for input files that are
not necessarily present each time the object program is run.
When your program tries to open a file which you have
declared to be OPTIONAL, the question IS file-name PRESENT?
is typed on the operator's console and the operator responds
with YES or NO. If the response 1is YES, the file is
processed normally; if the response is NO, the first READ
statement executed for that file will immediately take the AT
END or INVALID KEY path.

NOTE

ISAM files may not be optional. They must be present
at program start-up, even 1if only as dummy files.
(Refer to the COBOL-74 Usage Material, Part 3 of this
manual, for more information on ISAM.)

3. The ASSIGN clause specifies the device for a file.
Device-names can be either physical device-names or logical
device-names.

Physical device-names are fixed mnemonic-names that refer to
specific peripheral devices. When specified in an ASSIGN
clause, a physical device-name assigns the associated file to
that device. Physical device-names are described in the
TOPS-10 Operating System Commands Manual and the TOPS-20
User's Guide.

Version 12A 3-14 January 1980

THE ENVIRONMENT DIVISION

SELECT (Cont.)

Logical device-names are names created by the programmer.
They can contain up to six characters, and can consist of any
combination of letters and digits. At object execution time,
each 1logical device-name must be assigned to a physical
device by means of a monitor command (refer to the COBOL-74
Usage Material, Part 3 of this manual, for an explanation of
the commands).

4, Using a literal with the ASSIGN clause enables you to use
COBOL reserved words as legal device names. The literal name
must follow the same conventions as the device-name. The
literal name <can contain up to six characters, and can
consist of any combination of letters and digits. At object
execution time, each name must be assigned to a physical
device by means of a monitor command (refer to the COBOL-74
Usage Material, Part 3 of this manual, for an explanation of
the commands).

5. You may assign more than one device to a file to avoid delay
when switching from one reel or unit to the next. When you
specify more than one device the object program automatically
uses the next device, in a cyclic manner, when an end-of-reel
condition is detected. This applies only to tape devices and
SORT and ISAM files, and it is unconditional for tapes. For
SORT/MERGE, any number of devices may be assigned. If the
disks are specified generically, SORT/MERGE will use its
internal algorithm to determine which physical devices to
use. Otherwise, all devices specified will be used in a
round-robin fashion. For ISAM files you may assign not more
than two devices.

6. If the access mode is INDEXED and two devices are assigned,
the first device is assumed to contain the index portion of
the file and the second to contain the data portion of the
file. If one device is specified, it is assumed to contain
both the index portion and the data portion of the file.

7. For ISAM and random files, the devices must be random-access.

Examples
SELECT INFIL ASSIGN TO MTAIl.

SELECT SRTFIL ASSIGN TO DSK, DSK, DSK.

Version 12A 3-15 January 1980

RESERVE

THE ENVIRONMENT DIVISION

3.1.8 RESERVE

Function

The RESERVE clause allows you to specify the actual number of
input/output buffer areas for the compiler to allocate to this file.

General Format

RES

Technical

1.

Example

. AREA
ERVE integer-1 [:AREAé]

Notes

If you specified the organization for this file as RELATIVE
or INDEXED, this clause is ignored and only one buffer area
is assigned.

If you did not specify RELATIVE or INDEXED organization, the
integer specifies the number of buffer areas for the compiler
to assign.

If you omit this clause for a sequential file, two areas will
be assigned.

You can specify a maximum of 62 areas for integer-1.
However, the optimal number of areas vyou cah specify is
between 5 and 10. If you specify the number of areas to be
greater than 62, a warning message is generated. If you
specify a large (but legal) number of areas, you might run
out of available memory. Specifying a large number of areas
might also cause your program to run more slowly, since your
program will be that much bigger.

SELECT INFIL ASSIGN TO DSK

RESERVE 1 AREA.

3-16 January 1980

THE ENVIRONMENT DIVISION

ORGANIZATION

3.1.9 ORGANIZATION

Function

The ORGANIZATION clause specifies the way in which a file will be

accessed.

General Format

ORGANIZATION IS

[ggdﬁﬂé“ [CHECKPOINT]il

DEFERRED
INDEXED [lCHECKPOINT; OUTPUT]

Technical Notes

1.

The ORGANIZATION clause 1is required for relative and
indexed-sequential files. It is ignored for sequential
files.

If ORGANIZATION IS SEQUENTIAL and the file 1is on a
random-access device, records are obtained or placed
sequentially. That is, the next 1logical record 1is made
available from the file on a READ statement execution, and an
output record is placed into the next available area on a
WRITE statement execution. Thus sequential-access processing
on a random-access device 1is functionally similar to the
processing of a magnetic tape file.

If ORGANIZATION IS RELATIVE, the contents of the data item
associated with the RELATIVE KEY specifies which record,
relative to the beginning of the file, is made available by a
READ statement, or where the record is to be placed by a
WRITE statement, or which record is to be deleted by a DELETE
statement, or which record will be replaced by a REWRITE
statement.

If ORGANIZATION IS INDEXED, the contents of the data item
associated with the RECORD KEY specifies which record is made
available by a READ statement, or where the record is to be
placed by a WRITE statement, or which record is to be deleted
by a DELETE statement, or which record will be replaced by a
REWRITE statement.

The DEFERRED OUTPUT option of the ORGANIZATION IS INDEXED
clause causes the object-time system to output a block of an
indexed-sequential file only when another block must be
brought into memory. Normally, to ensure integrity for the
file, a block is output every time a record is written, even
if records are written successively in the same block. When
a file is opened for simultaneous update, the DEFERRED OUTPUT
clause 1is ignored. Refer to the OPEN statement, Section
5.9.25.

3-17 January 1980

THE ENVIRONMENT DIVISION

ORGANIZATION (Cont.)

Example

If you are using ISAM files sequentially, DEFERRED OUTPUT
provides the advantage of running faster. However, your file
is also more easily damaged if the system crashes. Thus, its
use is advantageous if file integrity is not important.

If you use the ORGANIZATION IS INDEXED clause, you may also
specify the CHECKPOINT OUTPUT option (instead of DEFERRED
OUTPUT). 1If you specify this option, the object-time system
will force the buffers to be written out, and all pointers
internal to the file to be updated, after every WRITE
statement. This will naturally make your program run much
more slowly. However, it will also safeguard vyour file
against system crashes, since the file will have been updated
after the last WRITE before the crash.

SELECT INFIL ASSIGN TO DSK, DSK

ORGANIZATION IS INDEXED DEFERRED OUTPUT.

THE ENVIRONMENT DIVISION

ACCESS MODE

3.1.10 ACCESS MODE

Function

The ACCESS MODE clause specifies the method used to access the file in

question.

General Format

[ACCE§§ MODE IS {R

DOM

gUENTIAL}]
RAN
YNAMIC

MR-S-1259-81

Technical Notes

1.

Example

If you do not specify the ACCESS MODE clause, ACCESS MODE IS
SEQUENTIAL is assumed regardless of the organization of the
file.

If you specify ACCESS MODE IS DYNAMIC you can access the file
either sequentially or randomly.

When you specify ACCESS MODE IS SEQUENTIAL, the records in
your ' file are accessed in the sequence dictated by the file
organization. Sequential files are accessed 1in the same
order they are added to the file. Relative files are
accessed in ascending relative record number order. Indexed
files are accessed in ascending record key order.

If you specify ACCESS MODE IS RANDOM, the RELATIVE KEY (for
relative files) or the RECORD KEY (for indexed files)
indicates the record to be accessed.

If integer-1 is zero, or if you do not specify the EVERY
integer-1 RECORDS clause, the checkpointing actions occurs
after every physical write.

SELECT INFILE ASSIGN TO DSK

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS RECKEY.

3-19

THE ENVIRONMENT DIVISION

RECORD KEY

3.1.11 RECORD KEY

Function

The RECORD KEY clause specifies the record in an indexed-sequential
file that is to be read, written, deleted, or rewritten.

General Format

RECORD KEY IS data-name-1

MR-5-1260-81

Technical Notes

1.

Example

The RECORD KEY clause 1is wvalid only for files whose
organization is INDEXED; it must be specified for those files
(refer to the READ statement, Section 5.9.27).

You must define the RECORD KEY data-name as an {item in the
record area of the file to which it pertains. Though the
RECORD KEY is described in only one of the records, it |is
assumed to occupy the same position in all records for that
file.

If the file for which you are specifying the RECORD KEY
clause is to be accessed through RMS (that is, if the file is
a multi-key ISAM file), the RECORD KEY data item cannot be
longer than 255 characters. The data item must also be in
some DISPLAY format; DISPLAY-6, DISPLAY-7, or DISPLAY-9 are
legal, but no COMPUTATIONAL formats are legal.

The RECORD KEY is required to describe the 1location 1in the
record area of the key for the file. The contents of the
RECORD KEY data-item must be unique for each record 1in the
file and cannot be equal to LOW-VALUES. However, when the
RECORD KEY is equal to LOW-VALUES, the results of a READ,
WRITE, REWRITE, and DELETE are unpredictable.

SELECT INFIL ASSIGN TO DSK, DSK

ORGANIZATION IS INDEXED
RECORD KEY IS RECKEY.

3-20 October 1985

THE ENVIRONMENT DIVISION

ALTERNATE RECORD KEY

3.1.12 ALTERNATE RECORD KEY
Function

The ALTERNATE RECORD KEY clause specifies secondary keys that can be
used with multi-key indexed files. These files are accessed through
RMS. See Appendix I, Using RMS Indexed Files, for more information on
RMS files.

General Format

[ALTERNATE RECORD KEY IS data-name-1 [WITH DUPLICATES]] ...

Technical Notes

1. The ALTERNATE RECORD KEY clause is valid only for
indexed-sequential files that are accessed through RMS,

2. You must define the ALTERNATE RECORD KEY data-name as an item
in the record area of the file to which it pertains. Though
the ALTERNATE RECORD KEY is described in only one of the
records, it is assumed to occupy the same position in all
records for that file.

3. No key specified with the ALTERNATE RECORD KEY clause can be
larger than 255 characters.

4, All alternate key data items must be in one of the DISPLAY
formats. DISPLAY-6, DISPLAY-7, and DISPLAY-9 are legal, but
no COMPUTATIONAL formats are legal.

5. You can specify up to 255 different ALTERNATE RECORD KEYs for
each file. If more than one alternate key is to be used, an
additional ALTERNATE RECORD KEY clause must be specified for
each alternate key.

6. Keys specified with the ALTERNATE RECORD KEY syntax must have
the same data format (as defined in the USAGE clause) as the
record of which they are a part. However, variable-length
keys are not allowed.

7. Files with ALTERNATE RECORD KEYs can not be opened for
simultaneous update.

8. A KL or KS CPU is required for the use of RMS files,

3-21 October 1985

THE ENVIRONMENT DIVISION

RELATIVE KEY

3.1.13 RELATIVE KEY

Function

The RELATIVE KEY clause specifies which record is read or written in a

relative

file.

General Format

RELATIVE KEY IS data-name-1

MR-5-1262-81

Technical Notes

1.

Example

The RELATIVE KEY clause is valid only for a file whose
organization is RELATIVE; it must be specified for this type
of file. This clause cannot be used for a file whose
organization is INDEXED or SEQUENTIAL.

The RELATIVE KEY data-name must be defined in the Data
Division as a COMPUTATIONAL item of ten or fewer digits. The
PICTURE can contain only the character 9 or 1its equivalent,
for example 9(10).

SELECT INFIL ASSIGN TO DSK

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY.

3-22

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY

3.1.14 RECORDING MODE/DENSITY/PARITY
Function
The RECORDING MODE clause specifies the recording mode, tape density,
and parity for a magnetic tape file.
General Format
[ASCI]I]
SIXBIT
BINAR
RECORDING [MODE IS [BYTE MODE] F
v
STANDARD-ASCI
STANDARD ASCI
200
556
DENSITY IS { 800 PARITY 1s | 20D
EVEN
1600
6250
Technical Notes T nsamsst
1. The RECORDING MODE clause allows you to record data on the
device in a format other than that used in memory. The
following recording modes are acceptable.

ASCII - The file is read/written as ASCII records, five
7-bit characters per 36-bit word. Bit 35 (the
rightmost bit) is ignored.

SIXBIT - The file is read/written as SIXBIT records, six
6-bit characters per 36-bit word with record
headers.

BINARY - The file is read/written as binary records, 36 bits
per word.

F - The file 1is read/written as fixed-length EBCDIC
records, four 9-bit characters per 36-bit word.
However, for industry-compatible magnetic tape
(9-track, with at least 800 bpi density), the file
is read/written with four 8-bit characters per

36-bit word. If more than one record description is
given in the FD entry, the record length must be the
same for all of them.

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

\'

- The file is read/written as variable-length EBCDIC
records, four 9-bit characters per 36-bit word with
record and block headers. However, for
industry-compatible magnetic tape (9-track, with at
least 800@ bpi density), the file 1is read/written
with four 8-bit characters per 36-bit word. If a
file whose recording mode is V |is open for
INPUT-OUTPUT and you overwrite a record, the record
being written must be the same size as the
overwritten record. A file whose recording mode is
V cannot be opened for simultaneous update.

STANDARD-ASCII (STANDARD ASCII)

The five 7-bit bytes in each word in memory are
transferred to five 8-bit bytes on the tape and bit
35 is stored in bit @ of the fifth byte on tape.
The character set and the character encodings are
the same as those of ASCII recording mode. This
enables interchanges with other manufacturers' ASCII
data files. This recording mode is wvalid for
magnetic tape only.

The format of records for each recording mode is given in
Sections 8.1 and 8.2 of this manual.

The recording mode of a file is determined by a number of
factors besides the recording mode specified in the RECORDING
MODE clause. These factors are:

Qs

If the device can only accept ASCII data (for example, a
line printer), the object-time system always uses ASCII
as the recording mode no matter what recording mode is
specified.

If the ADVANCING or POSITIONING clause is included in the
WRITE statement, the object-time system uses the
recording mode specified. If no recording mode is
specified, ASCII is the default.

If the file descriptor (FD) has a REPORT clause, the
object-time system always uses ASCII as the recording
mode no matter what recording mode is specified.

The recording mode specified in the RECORDING MODE clause
is compared to the USAGE clause for the record. The
recording mode is determined in the following sequence:

1. The recording mode that is specified is used.

2. If the recording mode is not specified, the default
recording mode depends on the usage mode that is
specified.

3. 1If neither the recording mode nor the usage mode is

specified, the default recording mode depends on the
display mode.

3-24 October 1985

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

Table 3-1
Recording Modes
RECORDING MODE USAGE RECORDING MODE
Clause Clause Actually Used
none DISPLAY—G SIXBIT
none DISPLAY-7 ASCII
none DISPLAY-9 EBCDIC
none none SIXBIT (no /X)
none none EBCDIC (/X)
SIXBIT DISPLAY-6 SIXBIT
SIXBIT DISPLAY-7 SIXBIT
SIXBIT DISPLAY-9 SIXBIT
ASCII DISPLAY-6 ASCII
ASCII DISPLAY-7 ASCII
ASCII DISPLAY-9 ASCII
F or vV DISPLAY-6 EBCDIC
F or Vv DISPLAY-7 EBCDIC
ForV DISPLAY-9 EBCDIC
BINARY DISPLAY~6 BINARY
BINARY DISPLAY-7 BINARY
BINARY DISPLAY-9 BINARY
NOTE
The object-time system automatically
makes the conversions necessary to have
the recording mode conform to the usage
mode of the records. (These conversions
may cause your program tOo run more
slowly.)

3-25

THE ENVIRONMENT DIVISION

FILE STATUS

3.1.14

Function

FILE STATUS

The FILE STATUS clause specifies data-~items into which the object-time
system places values when an I/0 error or warning message occurs on
the file specified by the SELECT clause. A user-written USE procedure
may then examine and alter these values as part of a recovery process.

General Format

—

FILE-STATUS
FILE STATUS

data-name-5 [}ata—name-6 [Eata—name—7 [?ata—name-s:i]:I}jj

} IS data-name-1 data-name-2 data-name-3 data-name-4

L

Technical Notes

1.

Data-name-1 is required if you specify this clause, but
data-name-2 through data-name-8 are optional. If you specify
fewer than eight data-names, the compiler assumes that the
data-names are specified starting with data-name-1 and
continuing in order. Therefore, if you wish to specify
data-name-8, you must also specify data-name-l through
data-name-7.

3-26

THE ENVIRONMENT DIVISION

FILE STATUS

3.1.15 FILE STATUS

Function

The FILE STATUS clause specifies data-items into which the object-time
system places values when an I/0 error or warning message occurs on
the file specified by the SELECT clause. A user-written USE procedure
can then examine and alter these values as part of a recovery process.

General Format

{g%%%ig%%%%g} IS data-name-1 data-name-2 data-name-3 data-name-4

-

data-name-5 |;iata-name—6 Elata-name-7 Biata-name-B]]:IAIJ

MR-5-1264-81

Technical Notes

1. Data-name-1l is required if vyou specify this clause, but
data-name-2 through data-name-8 are optional. If you specify
fewer than eight data-names, the compiler assumes that the
data-names are specified starting with data-name-1 and
continuing in order. Therefore, if you wish to specify
data-name-8, you must also specify data-name-1 through
data-name-7.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

2.

You must define the data-names in the Working Storage Section
of the Data Division in the following form.

data-name-1 PIC 9(2).
data-name-2 PIC 9(19).
data-name-3 USAGE INDEX,
data-name-4 PIC X(9).
data-name-5 USAGE INDEX.
data-name-6 USAGE INDEX.
data-name-7 PIC X (39).
data-name-8 USAGE INDEX.

After a fatal I/0 error, the FILE STATUS items contain the
following values.

data-name-1 contains the file status.

data-name-2 contains a 10-digit error number.

data-name-3 contains the action code, which is set to zero.
data-name-4 contains the VALUE OF ID.

data~-name-5 contains the current block number.

data-name-6 contains the current record number.

data-name-7 contains the file name.

data-name-8 contains the file-table pointer.

The file status, which is stored in data-name-1l, is set to one of the
following 2-character codes.

oo
10

21
22

23

24
30
34

The I/0 was successful.

No next logical record; that is, there is no next record Iin
the file. The AT END path is taken.

Sequence error, primary key has changed; the prime record key
value has been changed by the program.

Duplicate key; that is, an attempt was made to write a record
into a record position that is already occupied. The INVALID
KEY path is taken.

No record found on READ, REWRITE, DELETE; that 1is, when an
indexed-sequential file was accessed, an empty record
position was found. The INVALID KEY path is taken.

Boundary violation, that is, the random file's actual key
violated the file limits. The INVALID KEY path is taken.
Permanent error; that is, a successful hardware operation
cannot be done without a hardware error signal.

Permanent error; that is, more space on the media cannot be
obtained to extend the file for output operations.

The l@-character error number stored in data-name-2 has the form:

ABCDEFGHIJ

where the code has the meanings shown below.

AB contains a value indicating the COBOL verb that caused the error.

OO bdbwWwNHFHE

No COBOL verb error
OPEN

CLOSE

WRITE

REWRITE

DELETE

READ

RETAIN

OPEN EXTEND

3-28 October 1985

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

21 FILE CANNOT BE CLOSED
THE CLOSE "REEL" OPTION MAY NOT BE USED WITH A
MULTI-FILE-TAPE

22 FILE IS NOT OPEN FOR OUTPUT

23 ZERO LENGTH RECORDS ARE ILLEGAL
FILE CANNOT DO OUTPUT

24 "AT END" PATH HAS BEEN TAKEN
FILE CANNOT DO INPUT

25 ENCOUNTERED AN "EOF" IN THE MIDDLE OF A RECORD
FILE CANNOT DO INPUT

26 RECORD-SEQUENCE-NUMBER n SHOULD BE m
FILE CANNOT DO INPUT

27 file-name ON device-name SHOULD BE REORGANIZED, THE TOP INDEX
BLOCK WAS JUST SPLIT

28 NOT USED

29 EITHER THE ISAM FILE DOES NOT EXIST OR THE VALUE OF 1ID
CHANGED DURING THE PROGRAM

30 ATTEMPT TO DO I/0O FROM A SUBROUTINE CALLED BY A NON RESIDENT
SUBROUTINE. FILE CANNOT BE OPENED

31 I/0 CANNOT BE DONE FROM AN OVERLAY. FILE CANNOT BE OPENED

32 READ AN "EOF" INSTEAD OF A LABEL

33 CLOSE REEL IS LEGAL ONLY FOR MAGNETIC TAPE

34 FILE IS NOT OPEN FOR INPUT

35 NOT ENOUGH FREE MEMORY BETWEEN .JBFF AND OVERLAY AREA

36 INSUFFICIENT MEMORY WHILE ATTEMPTING TO SPLIT THE TOP INDEX
BLOCK

37 STANDARD ASCII RECORDING MODE AND DENSITY OF 1600 BPI REQUIRE
THE DEVICE TO BE A TU70

38 TAPOP. FAILED - UNABLE TO SET STANDARD-ASCII MODE

39 GOT AN EOF IN MIDDLE OF BLOCK/RECORD DESCRIPTOR WORD

40 BLOCK DESCRIPTOR WORD BYTE COUNT IS LESS THAN FIVE

41 ERROR - GOT ANOTHER BUFFER INSTEAD OF "EOF"

42 ERROR - RECORD EXTENDS BEYOND THE END OF THE LOGICAL BLOCK

43 1IT IS ILLEGAL TO CHANGE THE RECORD SIZE OF AN EBCDIC 'I/0
RECORD

44 THE TWO LOW-ORDER BYTES OF A BLOCK/RECORD DESCRIPTOR WORD
MUST BE ZERO

If CD is set to 1 or 2, HIJ contains the number of an I/O error status

bit. The I/0 error status bits, their mnemonics, and their meanings,
are shown in Table 3-2.

3-29

THE ENVIRONMENT DIVISION

Table 3-2

Monitor File Status Bits

Meaning

FILE STATUS (Cont.)
Bit Mnemonic
18 I0.IMP
19 IO0.DER
20 I0.DTE
21 I0.BKT
22 I0.EOF
23 IO.ACT
29 I0.WHD
30 IO.SYN
31 I0.UWC

32-35 I0.MOD

Improper Mode. Attempt to write on a
software write-locked file structure, or a
software redundancy failure occurred. This
bit 1is usually set by the monitor. The
user cannot set this bit.

Hardware device error. The disk unit is in
error, rather than the data on the disk.
However, data read into memory or written
on the disk is probably incorrect. The
user does not usually set this bit.

Hard data error. The data read or written
has incorrect parity as detected by the
hardware. The wuser's data 1is probably
unrecoverable even after the device has
been fixed. This bit is usually not set by
the user.

Block too large. A disk data block is too
large to fit into the buffer; or a block
number is too large for the disk unit; or
DSK has been filled; or the user's quota
on the file structure has been exceeded.
This bit 1is usually not set by the user.
This error is also returned when the user
tries to <close a file that has open locks
associated with it (via Engueue/Dequeue).

End-of-file. The user program has
requested data beyond the last block of the
file with an IN or INPUT call; or USETI
has specified a block beyond the last data
block of the file. When IO.EOF is set, no
data has been read into the buffer. This
bit is usually not set by the user.

I/0 Active. The disk is actively
transmitting or receiving data. This bit
is always set by the monitor for its own
use.

Write disk-pack headers. This is used in
conjunction with the SUSET. monitor call to
format a disk pack. (Not used in COBOL)

Synchronous mode 1I/0. Stop disk after
every buffer is read or written. (Not used
in COBOL)

User word count, supplied by the wuser in
each buffer.

Data mode of the device.

3-30

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

For the file status for each device, refer to the Monitor Calls
Manual.

If CD is set to 3, 4, 5, or 7, HIJ contains the error code for LOOKUP,
ENTER, RENAME, or FILOP errors. Table 3-3 gives these codes and their
meanings.

Table 3-3
Monitor Error Codes

Code Explanation

0 File not found, illegal filename (0,%*),
filenames do not match, or RENAME after a LOOKUP
failed.

1 UFD does not exist on specified file structures.
(Incorrect project-programmer number)

2 Protection failure or directory full on DTA.

3 File being modified.

4 Filename already exists (RENAME) or filename is

different. (ENTER after LOOKUP) or requested
supersede (on a non-superseding ENTER).

5 Illegal sequence of UUOs (RENAME with neither
LOOKUP nor ENTER, or LOOKUP after ENTER).

6 1. Transmission, device, or data error.

2. Hardware-detected device or data error
detected while reading the UFD RIB or UFD
data block.

3. Software-detected data inconsistency error
detected while reading the UFD RIB or file

RIB.

7 Not a saved file. (Not expected to occur)

10 Not enough memory.

11 Device not available.

12 No such device.

13 No 2-register relocation capability. (Not
expected to occur)

14 No room on this file structure or quota exceeded
(overdrawn quota not considered).

15 Write-lock error. Cannot write on file
structure.

16 Not enough table space in free memory of
monitor.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)
Table 3-3 (Cont.)
Monitor Error Codes
Code Explanation

17 Partial allocation only.

20 Block not free on allocated position.

21 Cannot supersede an existing directory.

22 Cannot delete a nonempty directory. (Not
expected to occur)

23 Subdirectory not found (some SFD in the
specified path was not found).

24 Search list empty (LOOKUP or ENTER was performed
on generic device DSK and the search list is
empty) .

25 Cannot create a SFD nested deeper than the
maximum allowed level of nesting. (Not expected
to occur)

26 No file structure in the job's search 1list has
both the no-create bit and the write-lock bit
equal to zero and has the UFD or SFD specified
by the default or explicit path (ENTER on
generic device DSK only).

27 GETSEG from a 1locked 1low segment to a high
segment which is not a dormant, active, or idle
segment. (Segment not on the swapping space)
(Not expected to occur)

30 Cannot update file.

31 Low segment overlaps high segment. (Not
expected to occur)

32 Not logged in. (Not expected to occur)

4. The FILE STATUS items are the paths of communications between
the object~time system and a USE procedure. A USE procedure
specifies a recovery process executed when an error or
warning occurs during an I/O operation. A USE procedure
determines the error or warning type from the error-number
placed into data-name-2 by the object-time system. Control
returns to the object-time system at the conclusion of the
USE procedure. The object-time system action is determined
by the error number and by the contents of the action-code
placed into data-name-3 by the USE procedure. If the
action-code is set to 1, the object-time system 1ignores the
error and continues the run. If the action-code is left set

3-32

Example

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

to 0, the object-time system 1issues an error message and
terminates the run. If the error-number 1is 17, the
object-time system continues the run independent of the
action-code setting. If the action-code is not 0 or 1, the
object-time system action is undefined.

When the program comes to a normal termination and . you have
requested (by loading a "1" into the action-code) that errors
be ignored, the object-time system issues the following
message:

$n ERRORS IGNORED

Refer to the USE statement in Section 5.9.42 for details of
writing USE procedures.

If you did not specify the FILE STATUS statement, I/O error
recovery processing cannot be performed. If you specify the
FILE STATUS statement with only data-name-l included, you can
examine the status of the file, but you cannot specify that
the object-time system ignore the error because you cannot
set the action code (data-name-3). You also cannot examine
the error number (data-name-2).

SELECT INFIL ASSIGN DSK, DSK

ORGANIZATION IS INDEXED

ACCESS MODE IS RANDOM

RECORD KEY IS RECKEY

RECORDING MODE IS ASCII

FILE STATUS IS FILSTAT, ERRNUM, ACTCODE, VID,
BLKNUM, RECNUM, FILNAM, FILPNTR.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 FILSTAT PIC 9(2).

77 ERRNUM PIC 9(10).
77 ACTCODE INDEX.

77 VID PIC X(9).

77 BLKNUM INDEX.

77 RECNUM INDEX.

77 FILNAM PIC X(30).
77 FILPNTR INDEX.

3-33

THE ENVIRONMENT DIVISION

I-O-CONTROL

3.1.15

Function

I-0-CONTROL

The I-O-CONTROL paragraph specifies the points at which a RERUN DUMP
is to be performed, the memory area that is to be shared by different
files, and the location of files on a multiple-file reel.

General Format

[:I-O-CONTROL.

R

—
SAME

—

L

RERUN EVERY

UNIT

REE
UNIT OF file-name-1
l integer-1 RECORDS

;mor { '-R}

SORT AREA FOR file-name-2 { file-name-3 }

MULTIPLE FILE TAPE CONTAINS file-name-4 POSITION integer-3i]

[:fﬂe—name-S I:POSITION integer-ﬂ] :l :l

Technica
1.

2.

1 Notes
This paragraph is optional.
The RERUN clause specifies when a rerun dump is to be

performed.

The dump is always written onto a disk file, wusing the
program's low segment name as the filename, and an extension
of CKP. 1If the program has no filename because it was never
saved, the program name (from the PROGRAM~-ID paragraph in the
Identification Division) is used as a filename, with the
extension CKP.

If you use the END OF UNIT option, a rerun dump is taken at
the end of each input or output reel of the specified REEL
file.

If you use the integer-1 RECORDS option, a rerun dump is
taken whenever a number of 1logical records equal to a
multiple of integer-1 is either read or written for the file.

3-34

Example

THE ENVIRONMENT DIVISION

IFO-CONTROL (Cont.)

A rerun dump 1is not taken if any files are open for
input/output (updating), or if any file is open on a device
other than magnetic tape, disk, line printer, or terminal, or
if an indexed-sequential (ISAM) file is open. Therefore, do
not attempt to have a rerun dump taken while a sort 1is in
progress. Also, RERUN cannot be used if overlays are used or
if files are open for simultaneous update.

The SAME AREA clause specifies that two or more files are to
use the same area during processing; this overlapping
applies to all buffer areas and the record area. However,
unless the RECORD option is used, only one of the named files
can be open at one time.

If you specify the RECORD option, the files share only the
record area (that is, the area in which the current logical
record is processed). All of the files mentioned in the SAME
RECORD AREA clause may be open at the same time. A logical
record in the SAME RECORD AREA is considered to be a logical
record of each opened output file whose name appears in the
SAME RECORD AREA clause, as well as the most recently read
input file whose name 1is specified. Since the various
DISPLAY usages are represented differently in memory, you
must keep track of the usage of the record in the SAME RECORD
AREA. You may use the record in any way you would otherwise
use it. However, you must be sure that you have a record of
the expected usage in the SAME RECORD AREA. If, for example,
you plan to wuse a DISPLAY-7 record in your processing, you
must have a DISPLAY-7 record in the SAME RECORD AREA, not a
DISPLAY-6 record. You will not get an error message if you
attempt to use a DISPLAY-6 record as if it were DISPLAY-7.

The SORT option is used for sort files. However, this option
need not be specified because all sort files always use the
same sort area.

The MULTIPLE FILE clause is required when several files share
the same physical reel of tape. This clause is invalid for
media other than magnetic tape.

Regardless of the number of files on a single reel, only
those files defined 1in the program may be listed. If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, integer-3, and so forth, specify the position of
the file relative to the beginning of the tape. All files on
the same reel of tape must be ASSIGNed to the same device in
the FILE-CONTROL paragraph.

No more than one file on the same reel of tape can be open at
one time.

I-0-CONTROL.

RERUN EVERY 300 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

THIS PAGE INTENTIONALLY LEFT BLANK.

3.1.16

Function

THE ENVIRONMENT DIVISION

I-O-CONTROL

I-O-CONTROL

The I-O-CONTROL paragraph specifies the points at which a RERUN DUMP

is to b
files, a

General

e performed, the memory area that is to be shared by different
nd the location of files on a multiple-file reel.

Format

[:I-O-CONTROL.

S

E

Technica
1.

2.

RERUN EVERY

| _LI

END OF { i } . OF file-name-1
integer-1 RECORDS ‘

RE CORD

SORT AREA FOR file-name-2 { file-name-3 }

SORT-MERGE

MULTIPLE FILE TAPE CONTAINS file-name-4 [jPOSITION integer-3i]

le-name-5 [:POSITION integer-{:I]:}

1 Notes

This paragraph is optional. MR-S-1265.81

The RERUN clause specifies when a rerun dump is to be
performed.

The dump is always written onto a disk file, wusing the
program's low segment name as the filename, and an extension
of CKP. If the program has no filename because it was never
saved, the program name (from the PROGRAM-ID paragraph in the
Identification Division) is used as a filename, with the
extension CKP.

If you use the END OF UNIT option, a rerun dump is taken at
the end of each input or output reel of the specified REEL
file.

If you use the integer-1 RECORDS option, a rerun dump is
taken whenever a number of logical records equal to a
multiple of integer-1 is either read or written for the file.

A rerun dump is not taken if any files are open for
input/output (updating), or if any file is open on a device
other than magnetic tape, disk, line printer, or terminal.
Therefore, do not attempt to have a rerun dump taken while a
sort is in progress. Also, RERUN cannot be used if overlays
are used or if files are open for simultaneous update.

3-37

THE ENVIRONMENT DIVISION

I-O-CONTROL (Cont.)

3.

Example

The SAME AREA clause specifies that two or more files are to
use the same area during processing; this overlapping applies
to all buffer areas and the record area. However, unless the
RECORD option 1is used, only one of the named files can be
open at one time.

If you specify the RECORD option, the files share only the
record area (that is, the area in which the current logical
record is processed). All of the files mentioned in the SAME
RECORD AREA clause can be open at the same time., A logical
record in the SAME RECORD AREA is considered to be a 1logical
record of each opened output file whose name appears in the
SAME RECORD AREA clause, as well as the most recently Tread
input file whose name is specified. Since the various
DISPLAY usages are represented differently in memory, you
must keep track of the usage of the record in the SAME RECORD
AREA, You can use the record in any way you would otherwise
use it. However, you must be sure that you have a record of
the expected usage in the SAME RECORD AREA. If, for example,
you plan to use a DISPLAY-7 record in your processing, you
must have a DISPLAY-7 record in the SAME RECORD AREA, not a
DISPLAY-6 record. You 'do not get an error messade if you
attempt to use a DISPLAY-6 record as if it were DISPLAY-7.

The SORT and SORT-MERGE options are used for sort and merge
files. However, these options need not be specified because
all sort and merge files always use the same area.

The MULTIPLE FILE clause is required when several files share
the same physical reel of tape with a uniform labeling
convention. This clause is 1invalid for media other than
magnetic tape, and cannot be specified for a sort or merge
file. 1In addition, this clause is invalid for monitor tape
labeling (with ANSI) and does not work for COBOL labels.

Regardless of the number of files on a single reel, only
those files defined 1in the program can be listed. 1If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, 1integer-3, and so forth, specify the position of
the file relative to the beginning of the tape. All files on
the same reel of tape must be ASSIGNed to the same device in
the FILE-CONTROL paragraph.

Each file in a series of files sharing the same physical reel
of tape, must be created with a uniform labeling convention,

Files used for SORT or MERGE cannot be specified in the
MULTIPLE FILE TAPE clause,

No more than one file on the same reel of tape can be open at
one time,

I-@-CONTROL.

RERUN EVERY 309 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

3-38 October 1985

THE ENVIRONMENT DIVISION

THE ENVIRONMENT DIVISION

3-39

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [NITH DEBUGGING MODE] .

OBJECT-COMPUTER. computer-name

WORDS
MEMORY SIZE integer %QHARAQTEBS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-nane]
[SEGMENT-LIMIT 1S segment-number]

SPECTAL-NAMES. [CONSOLE IS mnemonic-name-l]

[CHANNEL (m) IS mnemon ic-name-2 |
[CHANNEL (n) IS mnemonic-name-3 ...]
(IS mnemonic-name-4 [gﬁ’ STATUS IS condition-name-l]\

[ore staTus 1s condition-name;z]

ON STATUS IS condition-name-1

SWITCH(m) >
[oFF sTATUS 1S condition-name-2]
OFF STATUS IS condition-name-2
[gu STATUS IS condition-name—l])
- —
STANDARD-1
NATIVE
alphabet-name IS ASCIT
BCDIC
[JTHROUGHY .. 7
Fop——(literal-2
literal-1 {IHRQ }

ALSQ Titeral-3 [ALSO literal-4]

THROUGH .
{fﬁﬁﬁ-——} literal-6

literal-5
| ALSO 1iteral-7 [ALSO literal-8]

] -]

[1itera1-9 IS mnemonic-name-4]

[CURRENCY SIGN IS 1iteral-10]

[DECIMAL-POINT IS COMMA |]

3-49 October 1985

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR FILE CONTROL STATEMENT

FORMAT 2:
SELECT [OPTIONAL] file-name

ASSIGN TO device-name-1 [device-name-2]

. AREA
[RESERVE integer-1 [AREAS]]

ORGANIZATION IS RELATIVE [NITH CHECKPOINT OUTPUT [EVERY integer-1 RECORDSJ]

[SEQUENTIAL [RELATIVE KEY IS data-name-1]]
ACCESS MODE IS [RANDQM

J RELATIVE KEY IS data-name-1

DYNAMIC
ASCII
SIXBIT
RECORDING | MODE IS< BINARY
E
y

[{%%E%lg%%%%%} IS data-name-1 [data-name-? [data—name-3 [data-name-4

[data-name-S [data-name-6 [data-name—7 [data-name-SIn]]]]]

MR-S-1269-81

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR FILE CONTROL STATEMENT

FORMAT 3:
SELECT file-name
ASSIGN TO device-name-1 [device-name-2]
. AREA
[RESERVE integer-1 [AREAS]
ORGANIZATION IS [RMS] INDEXED [NITH {ggFgggg"gU?mUT [EVERY integer-1 RECORDS]}]

SEQUENTIAL
ACCESS MODE IS < RANDOM
DYNAMIC

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-1 [WITH DUPLICATES]]

ASCI
SIXBIT
RECORDING {MODE IS{ BINARY
v
L -

[{%%%%:%%%%%g} IS data-name-1 [data-name-z [data—name-B [data-name-4

[data-name-s [data-name-G [data-name-? [data-name-S]]]]]]]]

3-44 October 1985

CHAPTER 4

THE DATA DIVISION

The Data Division, which is required in every COBOL program, describes
the characteristics of the data to be processed by the object program.

This data can be divided into six major types:

1.

6.

Data contained in files, both input and output

Data contained in a database and accessed through the Data
Base Management System

Data to be sent to or received from the Message Control
System or the Transactional Processing System '

Data which is used by the program in the process of executing
(This data can be constant or variable, and may be stored as
part of the program or computed by the program during its
operation.)

Data in a subprogram that is passed from the program calling
it

Data to be printed in a report, and the format used to print
such data

To handle these types of data, the Data Division consists of the
following sections:

1.

2.

The File Section, which describes the characteristics and the
data formats for each file processed by the object program

The Schema Section, which names the sub-schema and schema
that link a program or subprogram to the Data Base Management
System

The Communication Section, which defines the special data
items that 1link a program or subprogram to the Message
Control System (MCS-10) or the Transactional Processing
System (TPS-20) '

The Working-Storage Section, which contains any fixed values
and the working areas in which intermediate data can be
stored

The Linkage Section, which describes the data in a subprogram
that is available from a calling program

The Report Section, which describes the data and format of a
report

4-1

THE DATA DIVISION

Unused sections of the Data Division may be omipted. However, the
sections which are included must be in the following order:

FILE SECTION.

SCHEMA SECTION.
COMMUNICATION SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

4.1 FILE SECTION

The File Section begins with the section-header FILE SECTION. If
present, it must be the first section in the Data Division. 1In the
File Section, the characteristics of each file to be processed are
described by two types of entries, the file description and the record
description.

The first type of entry, the file description, describes the physical
aspects of the file. These aspects include:

1. How the logical data records of the file are physically
grouped into blocks on the file medium

2. The maximum length of a logical record, which cannot exceed
4095 characters

3. Whether or not the file contains header and trailer labels
and, if so, whether the format of these labels is standard or
nonstandard

4. The names of the records contained in the file

5. The names of any reports in the file

The second type of entry, the record description, describes the data
formats of the logical records in the files.

4.1.1 Record Descriptions

Following the FD file-name entry for a file, or the SD file-name entry
for a sort file, a record description is given for each different
record format in the file. A record description consists of a set of
data description entries which describe a particular logical record.
Each data description entry consists of a level-number followed by a
data-name (or FILLER) which is followed, as required, by a series of
descriptive clauses. The general format of a data description entry
can be found in Section 4.9.11. -

A record description begins with a level-0l1 entry:
01 data-name
A complete record description may be as simple as
01 data-name PICTURE picture-string.
or it may be more complex, where the 0l-level is followed by a 1long

series of data description entries of varying hierarchies that
describe various portions and subportions of the record. A Ol-level

4-2

THE DATA DIVISION

data-name in the File Section cannot be explicitly redefined using the
REDEFINES clause. However, because a file has only one record area,

if more than one data-name is specified, they implicitly redefine the
first data-name.’

4.1.2 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an
elementary item; it may be referenced directly only as a unit. An
elementary item may combine with contiguous elementary items to form
sets of data items called group items. Group items may combine with
other group items and/or elementary items to form more inclusive group
items. Thus, an elementary item may be contained within one or more

group items, and a group item may contain more than one elementary
item.

4.1.3 Level Numbers

Level numbers indicate a hierarchy of data items. The highest level
is 01, which signifies that the data item is a record within a file
named in an FD clause (or is a contiguous area in the Working-Storage
Section). Level numbers of 02 through 49 indicate items that are
subordinate to a 0l-level data item. For example, an employee record
can be described in the following manner:

01 EMPLOYEE-RECORD.
02 NAME.
03 FIRST-NAME PICTURE IS A(6).
03 MIDDLE-INITIAL PICTURE IS A.
03 LAST-NAME PICTURE IS A(20).
02 BADGE-NUMBER PICTURE IS X(5).
02 SALARY-CLASS PICTURE IS X(2).

Within a record description, the level numbers indicate which items
are contained within higher-level items. 1In the above example, the
items that have a 03 level are subordinate to NAME, which has a 02
level, which is in turn subordinate to EMPLOYEE-RECORD, which has a 01
level. The example also shows elementary items (those that contain
PICTURE clauses) contained within group items. In this example,
EMPLOYEE-RECORD is a group item, NAME is a group item contained within
a group item, and FIRST-NAME is an elementary item contained within
the group item NAME. An item at 0l level is not required to be a
group item; it may be an elementary item as long as it is referenced
as a unit. For example:

01 EMPLOYEE-RECORD PICTURE IS X(34).

shows the same record as above, but in this case the record is always
operated on as a single entity.

Three other level numbers are available to the COBOL programmer: 77,
66, and 88.

Items with a level number of 77 are noncontiguous elementary data
items that are defined only in the Working-Storage Section to define
constant values or to store intermediate results. Defining a level-77
item is the equivalent of defining a level-0l1 elementary item.

Level-66 data items are those items that contain an explicitly
specified portion of a record already defined, or even the whole

4-3

THE DATA DIVISION

record. A data item with a level number of 66 is used in a RENAMES
clause to regroup items within a record. After a record is described,
a level-66 item RENAMES a portion of that record. The 1level-66 data
item can be a regrouping of the whole record, a group within the
record, or a combination of group and elementary items. For example:

01 EMPLOYEE-RECORD
02 NAME
03 FIRST-NAME...
03 MIDDLE-INITIAL...
03 LAST-NAME...
02 BADGE-NO...
02 SALARY-CLASS...
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO.
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS.

When the level-66 item PAY-REC is referenced, the items LAST-NAME,
BADGE-NO, and SALARY-CLASS are referenced as a unit. The programmer
can thus regroup portions of a record for differing purposes.

Level-88 items are condition-names that cause a value or a range of
values to be associated with a data item. The condition-name may then
be used in place of the relation condition in conditional expressions
in the Procedure Division. For example:

03 BADGE-NO...
88 FIRST-BADGE VALUE IS A0001l.
88 LAST-BADGE VALUE IS Z9999.

In a comparison, the following statements would then be equivalent:

Conditional Variable Condition~Name
IF BADGE-NO IS EQUAL TO A0Q0O01l... IF FIRST-BADGE...
IF BADGE-NO IS EQUAL TO Z729999... IF LAST-BADGE...

4.2 SCHEMA SECTION

In the Schema Section, either an INVOKE statement or ‘an ACCESS
statement specifies the names of the sub-schema and schema to be
processed.

The Schema Section begins with the section-header SCHEMA SECTION and
must follow the File Section, if present.

If the installation does not include DBMS, the Schema Section cannot
be used.

A description of the contents of the Schema Section will be found in
the Data Base System Programmer's Procedures Manual.

4.3 COMMUNICATION SECTION

The Communication Section contains the definitions of input and output
communication-description entries.

CD entries define records called CD records which contain special data
items used to link the program to the Message Control System for users
of TOPS-10 or the Transactional Processing System for users of
TOPS-20.

THE DATA DIVISION

4.3 COMMUNICATION SECTION

The Communication Section contains the definitions of input and output
communication-description entries,.

CD entries define records called CD records that contain special data
items used to link the program to the Message Control System (MCS) for
TOPS-10 users.

The Communication Section begins with the section-header COMMUNICATION
SECTION and must follow the File Section and Schema Section and
precede the Report Section.

If your TOPS-10 installation does not include MCS, the Communication
Section cannot be used.

Details of the Communication Section entries can be found 1in the
Message Control System Programmer's Procedures Manual for TOPS-10
users,

4.4 WORKING-STORAGE SECTION

The Working-Storage Section defines (1) data that is stored when the
object program is loaded, and (2) areas used for intermediate results,
The Working-Storage Section is similar to the File Section, except
that the Working-Storage Section can contain level-77 items and cannot
contain FD, SD, RD, CD, or SCHEMA entries.

The Working—-Storage Section begins with the section-header
WORKING-STORAGE SECTION,

The maximum size of a record in Working Storage is 262,143 characters,
However, the maximum size of a record to be read or written can only
be 4,095 characters.

4.5 LINKAGE SECTION
The Linkage Section describes data available from a <calling program
and can appear only in a subprogram. The structure is the same as
that of the Working-Storage Section with the following restrictions:
1. The VALUE clauses can only be used in condition-name entries,
2. The data-names used in the VALUE OF IDENTIFICATION (or 1ID),
the VALUE OF DATE-WRITTEN, and the VALUE OF USER NUMBER
cannot appear in this section.

3. The OCCURS clause with the DEPENDING phrase cannot be defined
in this section.

4, The RECORD KEY and RELATIVE KEY data items cannot be defined
in this section.

4-5 October 1985

THE DATA DIVISION

Data described in the Linkage Section of a subprogram is not allocated
storage space. Instead, at link-time, the LINK program sequentially
equates the Linkage Section identifiers (listed in the USING clause of
the ENTRY statement within the subprogram or in the USING clause of
the Procedure Division header within the subprogram) to the calling
program identifiers (listed in the USING clause of the CALL statement
within the calling program). Thus, when the Procedure Division of a
subprogram executes, references to the Linkage Section data refer
instead to the calling program data.

Thus:
CALLING PROGRAM CALLED PROGRAM
DATA DIQISION. DATA DIVISION.
FILE SECTION. FILE SECTION.
FD... LINKAGE SECTION.
01 MAIN... 01 SUB...
02 MAINl... 02 SUBl...
02 MAIN2... 02 SUB2...
PROCEDURE DIVISION. PROCEDURE DIVISION.
. ENTRY ENTRPT USING SUB,
. SUB1, SUB2.
CALL ENTRPT USING MAIN, .
MAIN1, MAIN2. .
. EXIT PROGRAM.

The identifier MAIN is defined in the File Section of the «calling
program; the identifier SUB is defined in the Linkage Section of the
called program. When the Procedure Division of the called program
executes, references to SUB refer instead to MAIN, references to SUBl
refer to MAIN1l, and so on through the list., See the COBOL-74 Usage

Material, Part 3 of this manual, for more information about
subprograms.

Each 01— or 77-level item in the Linkage Section must have a unique
name because it cannot be qualified. Also, each 0l- and 77-level item
must correspond to a word-aligned item of the same size or larger in
the calling program. Word-aligned items start at the beginning of a
computer word. All 01- and 77-level items fulfill this requirement;
any items that do not can be made to do so by means of the
SYNCHRONIZED LEFT statement.

4.6 REPORT SECTION

The Report Section defines reports by describing the physical
appearance of the particular format and data rather than by specifying
the procedure used to produce the report.

THE DATA DIVISION

4.6.1 Format Of Report Section

The Report Section contains the descriptions of one or more reports
and the report groups that make up each report.

Report groups are the basic elements of a report. Each report group
is divided into report lines, which are in turn divided into fields.
The report groups that can appear in a report are:

REPORT HEADING printed once at the beginning

REPORT FOOTING printed once at the end

PAGE HEADING printed at the beginning of each page

PAGE FOOTING printed at the end of each page

DETAIL printed for each set of report data

CONTROL HEADING printed at the beginning of each detail

report group when a control break occurs

CONTROL FOOTING printed at the end of each detail report
group when a control break occurs

The detail report groups contain the data items that constitute the
report. Data items within a detail group can be designated by the
programmer as controls. These control items are in descending order
of rank from final, through major, intermediate, to minor. Each time
a control item changes, a control break is said to occur; the control
footings for the detail group are printed, and control headings for
the next detail group are printed before the next detail group is
printed. A FINAL control break occurs twice during the generation of
a report, before the first detail line is printed and after the 1last
detail 1line 1is printed. The most major control break happens least
often and the most minor control break happens most often. If the
most minor control field breaks, the control footing for that control
field is generated, and the control heading for the next detail group
for that control is generated. If a more major control field breaks,
the control footings for all fields more minor than that which broke
are generated, starting with the most minor and continuing up to the
control footing for the control that broke. The control headings are
then printed starting with the control field that broke and continuing
through the most minor control field. An example of a skeleton report
follows.

THE DATA DIVISION

REPORT HEADING

PAGE HEADING

CONTROL HEADING (FINAL)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR) (control break occurred)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR) (control break occurred)
CONTROL HEADING (MAJOR)

CONTROL HEADING (MINOR)

DETAIL GROUP

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR)

CONTROL FOOTING (FINAL) ({(control break occurred)
PAGE FOOTING

REPORT FOOTING

Within a report file, more than one report can be written. If more
than one report 1is written in a file, the names of all the reports
must be specified in the REPORTS clause of the file description entry,
and a unique code must be specified for each report by means of the
CODE clause in the Report Description of each report. The code must
also be identified in the SPECIAL-NAMES section of the Environment
Division.

To print one of the reports within a report file, you enter the
filename and the code of the desired report into the print queue using
the PRINT command and specifying the code with the REPORT switch, as
follows:

PRINT file-specifier/REPORT:code

Only the first 12 characters of the code will be accepted in the PRINT
command string.

Included in the description of a report are the number of lines on a
report page, where headings should begin on the page, where footings
should end, the column on the page where each item in a report group
should be placed, and the number of lines which should be left between
report groups.

To cause a report to be printed, in addition to specifying its format
and data 1in the Data Division, you must include certain verbs in the
Procedure Division. These verbs are: INITIATE, which initializes the
report and sets sum counters to zero; GENERATE, which causes report
groups to be generated on specified control breaks; and TERMINATE,
which ends the report. An additional statement, USE BEFORE REPORTING,
causes programmer-specified procedure to be performed before a report
group is produced.)

THE DATA DIVISION

4.7 QUALIFICATION

Any data item that is to be referenced must be uniquely identified.
This unique identification c¢an be achieved by the assignment of a
unique name to each item. However, 1in many applications this is
tedious and inconvenient (1) because of the large number of names
required, and (2) because items containing the same type of
information in different records would have different names.
Therefore, qualification is introduced to allow similar items and
certain records to have identical names.

Qualification means giving enough information about the item to
specify it uniquely. In COBOL, this information is the name of the
group items containing it, in order of increasing inclusiveness. It
is not necessary to name each group containing it, but only enough
groups so that no other item with the same name as the original item
could be identically qualified. It is also unnecessary to name each
successively higher group <containing the item until a unique
qualification 1is made. Any set of names that uniquely describe the
item is sufficient.

Example:
01 RECORD-1. 01l RECORD-2.
02 ITEM-1. 02 ITEM-2.
03 SUB-ITEM. 03 SUB-ITEM.
04 FIELD PIC X. 04 FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of
the following ways:

FIELD OF SUB-ITEM OF ITEM-1 OF RECORD-1.
FIELD OF SUB-ITEM OF ITEM-1.

FIELD OF SUB-ITEM IN RECORD-1.

FIELD IN ITEM-1 OF RECORD-1.

FIELD IN RECORD-1.

FIELD IN ITEM-1.

The connectives OF and 1IN are equivalent and may be used
interchangeably.

The only data items which need to have unique names are level-77 items
and records not associated with files, since they are not contained in
any higher level data structure. Records associated with files may be
qualified by the file name, as may any item contained within the
record. File names must be unique.

Level-66 items may be qualified only (1) by the name of the record
with which they are associated and (2) by the name of any file with
which that record is associated.

4.8 SUBSCRIPTING AND INDEXING

It may sometimes be more convenient for you to specify a set of data
values as a table rather than assign a name to each element of the
set. A table (or array) is a set of homogeneous items stored together
in memory for use by the program. You define the table elements in
the program by specifying an OCCURS clause in the description of a
data item. The data item thus defined represents not one item but a
set of items having the identical format. Subscripting and indexing
are used to refer to one of the elements of the set. 1In DIGITAL
COBOL-74, subscripting and indexing are identical in use and can be

4-9

THE DATA DIVISION

used interchangeably. However, the manner in which they are defined
differs. Subscripting is defined simply by the fact that an item has
an OCCURS clause in its description. For example,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES.

describes VOLUME as 25 elements of RATE-TABLE. If you wish to refer
to one of the elements of this set you must qualify the data-name with
a subscript. Thus, VOLUME (10) is the tenth element (or occurrence) of
VOLUME . A subscript can be either an integer or a data-name to which
an integer value has been assigned. Thus, when DIST has been assigned
to value 10, VOLUME (DIST) is the same as VOLUME(10).

To specify indexing you must add the INDEXED BY option to the OCCURS
clause. Thus,

01 RATE-TABLE. .
02 VOLUME OCCURS 25 TIMES INDEXED BY IND.

defines VOLUME as 25 elements of the table and defines IND as the
index by which each element of the table can be indexed; that is,
VOLUME (IND) is an element in the table. The index-name IND is
treated exactly like the data-name DIST because the compiler
recognizes an index-name as being exactly the same as a data-name. An
item defined as an index in an OCCURS clause has an implicit usage of
INDEX, and is equivalent to a data item that is declared USAGE INDEX.
However, this usage 1is included in DIGITAL COBOL for compatibility
with other compilers because an item whose usage is INDEX (implicit or
explicit) 1is treated as if its usage were COMPUTATIONAL. In fact, a
data-name that is used as a subscript can be explicitly declared as
USAGE INDEX; it will be treated as a COMPUTATIONAL data item by the
compiler.

COBOL-74 tables can be one, two, or three dimensions. The number of
dimensions 1is defined by the number of subscripts or indexes required
to refer to an individual item. For example,

C(1,3)

represents the item located in the first row and third column of a
2-dimensional table which is defined by the Data Division entries

01 TABLEA.
02 ROW OCCURS 20 TIMES.
03 COLUMN OCCURS 5 TIMES.

The subscript/index must be enclosed in parentheses and must appear
after the data-name. A space between the data-name and the
parentheses is optional. Multiple subscripts/indexes are separated by
a comma or by a space. No spaces can appear immediately following the
left parenthesis or immediately preceding the right parenthesis. When
referring to elements in multi-dimensional tables, subscript/indexes
are written from left to right in the order of major (subscript/index
varying least rapidly), intermediate, and minor (subscript/index
varying most rapidly). The major index corresponds to the item
written with the smallest level-number, that is, the most inclusive
item. As an illustration, consider a table having a major element
occurring 10 times, an intermediate element occurring 5 times within
each occurrence of the major element, and a minor element occurring 3
times within each intermediate element. The last major element of the
table is referred to by the subscript form (10,1,1), while the final
element of the table is referred to by (10,5,3).

4-10 January 1980

THE DATA DIVISION

NOTE

DATA DIVISION entries are limited to 4688 data items
as you define them. Refer to Section 13.4.4, for a
description of this restriction.

The subscript/index must be enclosed in parentheses and must appear
after the data-name, A space between the data-name and the
parentheses is optional. Multiple subscripts/indexes are separated by
a comma or by a space. NoO spaces can appear immediately following the
left parenthesis or immediately preceding the right parenthesis. When
referring to elements in multi-dimensional tables, subscript/indexes
are written from left to right in the order of major (subscript/index
varying least rapidly), intermediate, and minor (subscript/index
varying most rapidly). The major 1index corresponds to the item
written with the smallest level-number, that is, the most inclusive
item. As an illustration, consider a table having a major element
occurring 1@ times, an intermediate element occurring 5 times within
each occurrence of the major element, and a minor element occurring 3
times within each intermediate element. The last major element of the
table is referred to by the subscript form (16,1,1), while the final
element of the table is referred to by (10,5,3).

There are two forms of subscripting/indexing: direct and relative,
Direct subscripting/indexing means that the subscript/index refers
directly to the desired element. Relative subscripting/indexing means
that the element of the table 1is referred to indirectly by a
subscript/index to which an integer is added or subtracted. The form
for direct subscript/indexing is shown in Figure 4-1.

: _ subscript {,subscript
data-name ({index } [,index } e
MR-S-581-80

Figure 4-1: Direct Subscripting/Indexing

In relative subscripting/indexing, the subscript/index is followed by
the operator plus (+) or minus (-) followed by an unsigned integer
numeric literal. The operator plus (+) or minus (~) must be delimited
by spaces., The subscript/index, the operator, and the numeric literal
must follow the data-name and must be enclosed in parentheses. The
form for relative subscripting/indexing is shown in Figure 4-2,

data-name ({?gg:iript} {f} integer [{:?#2:§ript} {f} 1nteger] ...)

MR-S-582-80

Figure 4-2: Relative Subscripting/Indexing

4-11 October 1985

THE DATA DIVISION

When you use relative subscripting/indexing, the element of the table
that you refer to is not the one to which the subscript/index refers,
but the element to which the subscript/index plus or minus the integer
refers. That is, if the item

VOLUME (IND + 2)
is specified, and IND is set at 3, the fifth occurrence of VOLUME is
referred to, not the third. However, the value of the subscript/index
is not changed by relative subscripting/indexing; the value of IND
remains 3.

You can also combine direct and relative subscripting/indexing in the
same statement. For example, if you specify the following data item:

TABLE (IND, VOL + 3)

the first subscript value is the value of IND and the second subscript
value is the value of VOL + 3.

When you need to qualify a table element for wuniqueness, you should
use the format for direct subscripting/indexing shown in Figure 4-3.

data-name [{

=19

_ _ subscript ,subscript |
} data-name 1] tet <<index }[{,index f] "‘)

MR-S-583-80

Figure 4-3 Qualified Direct Subscripting/Indexing
For example, to refer to ANAME in the following sample:

01 AREC1.
02 AGROUP1 OCCURS 5.
03 ASUBGROUP1 OCCURS 10.
04 ANAME PIC X(5) OCCURS 20.

you could specify the following:
ANAME OF ASUBGROUP1 OF AGROUP1l OF AREC1 (I,J,4)

NOTE

Subscripts can not be subscripted.

4.9 DATA DIVISION CLAUSES

The clauses that make up the Data Division are presented in the
following pages. The function, syntax, and details of each clause are
described, and the general format of the clause 1is included. The
clauses are presented in the order in which they appear in the general
formats at the end of this chapter, that is, in the order in which
they occur in the Data Division. The formats of some clauses contain
other clauses. When this is the case each clause that is subordinate
is described separately on succeeding pages.

4-12

THE DATA DIVISION

FILE DESCRIPTION (FD)

4.9.1 File Description (FD)

Function

The File Description (FD) furnishes information concerning the
physical structure, identification, and record names pertaining to a
given file.

General Format
DATA DIVISION.

[:FILE SECTION.
[:Eg file-name

[}LOCK CONTAINS [linteger-1T0] integer-2 % %ﬁ%%%%%%%s {]

[:BECORD CONTAINS [integer-3 T0'| integer-4 CHARACTER%] :

LABEL RECORD IS STANDARD
_— RECORDS ARE OMITTED

IDENTIFICATION data-name-1
VALUE OF [glﬂ } IS {1itera]_1 {}

[data-name-2 data-name-3
DATE-WRITTEN IS {1itera1-2 E} [§SER-NUMBER 1S { integer-5, integer-6 {J

—

RECORD IS
DATA {mg ARE} data-name-4 l:data-nawe—S:l .. :\

—

LINAGE IS {data'"ame's} LINES

data-name-7
WITH FOOTING AT {integer-B gJ

integer-7

data-name-8] - ydata-name-9
[EINES AT TOP {integer-Q } [}INES AT.BOTTOM {1nteger-10 E]

[FODE-SET IS alphabet-name:]

[: {ﬁ ;8§¥SIiRE} report-name-1 [}eport-name-g] ..;}

mym

4-13 October 1985

THE DATA DIVISION

FILE DESCRIPTION (FD) (Cont.)

ASCI] 7]
SIXBIT
BINARY
RECORDING | MODE IS [BYTE MoDE] ¢ F
v
STANDARD-ASCI
STANDARD ASCIT) |
B |
200
556
DENSITY IS { 800 PARITY IS {g%gﬁ}
1600 EVEN
6250

MR-8-1272-81

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1.

2.

An FD entry must be present for each file-name selected in
the FILE-CONTROL paragraph of the Environment Division.

All semicolons and commas are optional. The entire FD entry
must terminate with a period.

The clauses can appear in any order within the File
Description entry.

The ability to place the RECORDING MODE clause in the FD has
been provided for compatibility with other manufacturers. If
you specify the RECORDING MODE clause for a file in the FD,
you cannot also specify it in the File-Control paragraph for
that file in the Environment Division. Also, if you wish to
use the RECORDING DENSITY and RECORDING PARITY clauses, you
must put them in the File-Control paragraph in the
Environment Division, even if the RECORDING MODE clause is in
the FD. The description of the RECORDING MODE clause can be
found in Section 3.1.13.

The maximum number of files that can be open at one time is
16. ISAM files count as two files: one index (.IDX) file
and one data (.IDA) file. However, RMS files (multi-key ISAM

files that are accessed through RMS) do not count towards
this total of 16.

THE DATA. DIVISION

BLOCK CONTAINS

4.9.,2 BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a logical block.

General Format

ELOCK CONTAINS [(integer-1 0] integer-2 {%ﬁ%%&s }jl

MR-§-1273-81

Technical Notes

1'

2.

This clause is ignored for RMS files (multi-key indexed files
that are accessed through RMS).

If you do not include this clause, or if you specify that
integer-2 1is zero, the file is not organized into logical
blocks when it is written. Rather, all records are placed in
the file with no empty space. The file is then considered to
be "unblocked" or "blocked zero" and is the most efficient
form of a sequential file on disk.

If you use the RECORDS clause, the block size can be any
multiple of the RECORD CONTAINS clause, or zero (for variable
or fixed length records).

If you use the CHARACTERS option, you specify the 1logical
block size in terms of the number of character positions
required to contain the record. If the recording mode is
ASCII (that 1is, all records for the file are described,
explicitly or implicitly, as USAGE DISPLAY-7), the compiler
assumes that the size 1is specified in terms of ASCII
characters. If the recording mode is SIXBIT (that 1is, the
records for the file are all described, explicitly or
implicitly, as DISPLAY-6), the compiler assumes that the size
is specified in terms of SIXBIT characters., If the recording
mode is F or Vv (that is, the data is recorded on the medium
as EBCDIC characters), the compiler assumes that the size is
specified in terms of EBCDIC characters, either fixed- or
variable-length. When variable-length EBCDIC records are
used (that is, the recording mode 1is V), the number of
records 1in a block is also variable. If the blocking factor
is not zero, the number of records in a block 1is determined
by dividing the block size in characters by the number of
characters in the longest record as specified by the FD
statement. For example, if the FD statement specifies a
maximum record length of 248 characters and the BLOCK
CONTAINS 2400 CHARACTERS clause 1is wused, the number of
records in a block are 9.

4-15 October 1985

THE DATA DIVISION
BLOCK CONTAINS (Cont.)

5. Integer-1 and integer-2 must be positive integers., If you
specify only integer-2, it represents the exact size of the
logical block. If you specify both integer-l and integer-2,
integer-1 1is ignored and integer-2 is used as the blocking

factor.

6. Files whose organizations are RELATIVE or INDEXED must have a
nonzero blocking factor.

4-16 October 1985

THE DATA DIVISION

CODE-SET

4.9.3 CODE-SET

FUNCTION

The CODE-

SET clause specifies the character code set used to represent

data on the external media.

General Format

[coos-sn-:r

1S alphabet-name;]

Technical Notes

1.

When you specify the CODE-SET clause for a file, you must
describe all data in that file as USAGE IS DISPLAY. You must
also describe any signed numeric data with the SIGN IS
SEPARATE clause. .

The alphabet-name clause referenced by the CODE-SET clause
must not specify the literal phrase.

You may specify the CODE-SET clause only for files not
residing on mass storage media.

The CODE-SET clause is included only for compatability, since
ASCII is the only alphabet-name allowed, and ASCII is also
the default.

If you include the CODE-SET clause, alphabet-name specifies
the character code convention used to represent data on the
external media. It also specifies the algorithm for
converting the character codes on the external media from or
to the native character codes. This code conversion occurs
during the execution of an input or output operation.

If you omit the CODE-SET clause, the ASCII character set is
assumed for data on the external media.

4-17

THE DATA DIVISION

DATA RECORD

4.9.4 DATA RECORD

Function

The DATA

RECORD clause cross-references the record-name with its

associated file.

General Format

RECOR
[QAT—A { RECOR

lu|U

IS
ARE} data-name-4 [}ata-name-S:] ...:]

Technical Notes

1.

2.

3.

This clause is optional because all records in the FD entry
are assumed to be data records.

All records within a file share the same area.

All record-names must be specified in 0l-level data entries
subordinate to this FD entry. The presence of more than one
such record-name indicates that the file contains more than
one type of data record. These records may have different
descriptions. The order in which they are 1listed 1is not
significant.

THE DATA DIVISION

FD File-name
4.9.5 FD File-name

Function

The FD file-name clause identifies the file to which this file
description entry and the subsequent record descriptions relate.

General Format
[:ﬁg fi]e-name:]

Technical Notes
1. This entry must begin each file description.

2. The file~name must appear in a SELECT statement in the
File-Control paragraph of the Environment Division.

4-19

THE DATA DIVISION

LABEL RECORD

4.9.6

LABEL RECORD

Function

The LABEL RECORD clause specifies whether or not labels are present on
the file and, if they are, identifies the format of the labels.

General

LABEL {

Format

Recor 15 | %ﬁ%%%%%g

RECORDS ARE LIEREE
record-name-1

Technical Notes

1.

If you omit the <c¢lause, LABEL RECORDS ARE STANDARD is
assumed.

You should use the OMITTED option when the file has no header
or trailer labels.

You should use the STANDARD option when the file has header
and trailer labels that conform to the standard format. If
the file you are describing is on disk or DECtape, you must
either specify LABEL RECORDS ARE STANDARD, or omit the clause
altogether allowing the default to take over. See the VALUE
OF IDENTIFICATION <clause for the association between the
label and the filename on disk cor DECtape.

The standard label for DECtape and disk 1is the directory
block used by the monitor. For magnetic tape, if the file is
recorded in SIXBIT, the standard 1label is 78 SIXBIT
characters in 1length and is written in a separate physical
record from the data. 1If the recording mode 1is ASCII, the
label contains 78 ASCII characters, plus carriage return and
line feed, for a total of 80 characters. Table 4-1 shows the
contents of each character in a standard 1label for
nonrandom-access devices.

Magnetic tapes are the only devices with ending labels. Each
ending 1label 1is preceded by and followed by an end-of-file
mark.

Files whose recording mode is F or V (fixed- or variable-
length EBCDIC) must have LABELS RECORDS ARE OMITTED if they
are on magnetic tape. If they are on disk or DECtape, they
are assumed to have DECsystem-10 standard labels.

THE DATA DIVISION

LABEL RECORD (Cont.)

Table 4-1
Standard Label for Magtapes

Characters Contents
1-4 HDR1 = Beginning File
EOF1 = Ending file
EOV1 = Ending reel
5-13 Value of identification
14-21 Always spaces
22-27 Not used
28-31 Reel number; the first reel is always 0001
32-41 Not used
42-47 Creation date; two characters each for the
year, month, and day, respectively
48-78 Not used
79-80 Carriage-return/line-feed if file is ASCII (Note

that this is on the label only; it is not kept
internally.)

THE DATA DIVISION

LINAGE

4,9,7 LINAGE

Function

The LINAGE clause specifies the size of a logical page in terms of
number of 1lines. It can also specify the size of the top and bottom

margins on the logical page and the line number, within the page body,
at which the footing area begins.

General Format

data-name-1 data-name-2
LINAGE IS {integer-l] LINES [NITH FOOTING AT ‘integer-z]

—_— integer-3 integer-4

{LINES AT TOP {data-name-B]] LINES AT BOTTOM {data-name-4}

MR-S-1278-81

Technical Notes

1. LINAGE is valid only for sequential files. However, the
LINAGE clause cannot be specified for sequential files OPENed
in the EXTEND mode.

2, The logical page size is the sum of the values referenced by
each phrase except the FOOTING phrase. (There 1is no
necessary relationship between the size of the 1logical page
and the size of a physical page.) If the LINES AT TOP or
LINES AT BOTTOM phrases are not specified, the wvalues for
these functions are zero.

3. Data-name-1l, data-name-2, data-name-3 and data-name-4 must
reference elementary unsigned numeric integer data items.
The value of integer-1 must be greater than zero; the value
of integer-2 must not be greater than integer-1; the value of
integer-3 and integer—-4 can be zero.

4. The number of lines on the logical page is equal to the value
of integer-1 or the data item referenced by data-name-l. The
page body is that part of the logical page in which lines can
be written and/or spaced.

5. The line number within the page body at which the footing
area begins 1is equal to the value of integer-2 or the data
item referenced by data-name-2, The value must not be
greater than the value of 1integer-1, or the data item
referenced by data-name-1l, The footing area is the area of
the logical page between the line represented by the value of
integer-2 (or the data item referenced by data-name-2) and
the 1line represented by the value of integer-1 (or the data
item referenced by data-name-1) inclusive.

4-22 October 1985

THE DATA DIVISION

REPORT

4.9.8 REPORT
Function
The REPORT clause specifies the name of each report that is associated

with the file.

General Format

[: {EEEgg;SIZRE} report-name-1 [}eport-name-g] ..:}

Technical Notes

1. This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

2. Report-name-l and report-name-2 must be the names of Report
Descriptor items in the Report Section.

3. If you use this clause, you may omit the data record
description because the name of the data record is not
referred to directly in the Procedure Division. When the
data record description is omitted, the compiler
automatically assumes a l1l32-character record.

4-23

THE DATA DIVISION

SD File-name

4.9.9 8D File-name

Function
The SD file-name clause identifies the sort file to which this file
description entry and the subsequent record description relate.

General Format

SD file-name

[RECORD conTAINS [integer-1 T0 | integer-2 CHARACTERS]
RECORD IS _ _
[:bATA {EEEBEBS ARE} data-name-1 [Eata name i] ..;:
Erecord-descm’ption-entry b, j ..]

Technical Notes
1. The SD entry must begin each sort file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the Environment Division.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

THE DATA DIVISION

REPORT

4.9.9 REPORT

Function

The REPORT clause specifies the name of each report that is associated
with the file.

General Format

[{%E—E%%SIIS\RE} report-name-1 Deport-name-zj :l

MR-S-1280-81

Technical Notes

1.

2.

This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

A file described with a REPORT clause cannot be referenced by
any input-output statements except the OPEN and CLOSE
statements,

Report-name~1 and report-name-2 must be the names of Report
Descriptor items in the Report Section.

If you use this clause, you can omit the data record
description because the name of the data record is not
referred to directly in the Procedure Division. When the
data record description is omitted, the compiler
automatically assumes a l32-character record.

4-25 ‘ October 1985

THE DATA DIVISION

SD File-name

4.9.10 SD File-Name

Function
The SD file-name clause identifies the sort file to which this file
description entry and the subsequent record description relate.

General Format

[:gg file-name

[:RECORD CONTAINS [}nteger-l IQ] integer-2 CHARACTER{]
l:DATA {%SIE\RE} data-name-1 Eata-name-zj :| .
E}@cord-description-entry} ..:] ...:}

Technical Notes

MR-S-1281-81

1. The SD entry must begin each sort file description.

2, The file-name must appear in a SELECT statement 1in the
FILE-CONTROL paragraph of the Environment Division.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN
/USER-NUMBER

4.9,11 VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-~NUMBER

Function

The VALUE OF IDENTIFICATION clause provides specific data for an item
within the 1label records associated with a file, The VALUE OF
DATE-WRITTEN clause specifies a date which the file label must contain
to be processed by the program, The VALUE OF USER-NUMBER clause
provides a project-programmer number to be checked against the file
label before processing,

General Format

IDENTIFICATION data-name-1
VALUE OF [}lﬂ } IS {1itera1-l EJ

data-name-2 e data-name-3
[}ATE-NRITTEN IS {1itera1-2 E] [§SER NUMBER IS {integer-l, integer-2 {}

Technical Notes
l. 1ID can be substituted for IDENTIFICATION.

2. The VALUE OF IDENTIFICATION clause is required only if 1label
records are standard; it is ignored in all other cases. The
VALUE OF DATE-WRITTEN and the VALUE OF USER-NUMBER are always
optional.

3. The three clauses can be written in any order, but only one
of each can be specified for a file.

4, IDENTIFICATION represents the file-name and extension of a
file with standard labels. 1If a data-name is specified, it
must be associated with a DISPLAY, DISPLAY-6, DISPLAY-7, or
DISPLAY-9 data item nine characters in length., If a literal
is specified, it must be a nonnumeric literal nine characters
in length. The first six characters are taken as the
file-name, and 1last three characters are taken as the
extension. The programmer must provide spaces as required to
conform to this convention, The 1literal cannot consist
exclusively of spaces. The period which the system prints
between the file-name and the extension must not be included
in the VALUE OF IDENTIFICATION clause.

4-27 October 1985

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN
/USER-NUMBER (Cont.)

Examples:
a. VALUE OF IDENTIFICATION IS "COST TST"

b. VALUE OF IDENTIFICATION IS FILE-1-NAME

(WORKING-STORAGE SECTION.)

77-FILE~-1-NAME PICTURE IS X(9).

DATE-WRITTEN represents the date that a mag tape file (with
STANDARD labels) was written. If a data-name is specified,
it must be associated with a DISPLAY, DISPLAY-6, DISPLAY-7 or
DISPLAY~-9 data item six characters in length., If a literal
is specified, it must be a nonnumeric literal six characters
in 1length, The first two characters are taken as year, the
next two as month, and the last two as day. The DATE-WRITTEN
clause is ignored when the £file 1is OPENed for output;
instead, the current date is used.

Examples:

a. VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS
810112

b. VALUE OF IDENTIFICATION IS "DATA ", DATE-WRITTEN IS
FILE-1-DATE

.

(WORKING~STORAGE SECTION.)
77 FILE-1-DATE PICTURE IS 9(6).

USER~NUMBER represents the project-programmer number of the
owner of a disk file; it is ignored for all other devices.
Data-name-3 must be a COMPUTATIONAL item of 18 or fewer
digits in which the project-programmer number is stored.
Integer-1 and integer-2 are numeric literals of six or fewer
digits that are treated as octal, Integer-1 is the project
number and integer-2 is the programmer number,

For input files the VALUEs specified are checked against the
file when it 1is opened. 1ISAM files are checked as soon as
your program is run. For output files, the VALUE OF
IDENTIFICATION is written when the file is opened. 1If the
specified values do not match a file on the selected medium,
a run~-time error message is issued.

"If the access mode is INDEXED and data-name-1 is used in the

VALUE OF IDENTIFICATION clause, data-name-1 must contain the
filename and extension of the index-file for the
indexed-sequential file being referenced. The contents of
data-name-1 can not be altered during program execution. You
need not specify the identification for the data file of an
indexed-sequential file because this identification is stored
in the index file. ’

4-28 October 1985

THE DATA DIVISION

DATA DESCRIPTION ENTRY

4.9.11 DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of data.

General Format

FORMAT 1:

data-name-1
level-number { FILLER }

[:REDEFINES data-name-2 :]

{ %%EFQBE } I character—string:]

COMPUTATIONAL
coMp
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-3
COMP-3

USAGE IS DISPLAY
DISPLAY-6
DISPLAY-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY /

L — —

(‘ LEADING
[:§IGN 1{] {TRAILING} [}EPARATE CHARACTE{i}

—

|

OCCURS {‘nteger-l T0 integer-2 TIMES DEPENDING ON data-name-3}
——=>== linteger-2 TIMES

b

—
{“ﬁggggﬁ%}?ﬁe} KEY IS data-name-4 l:data -name- 5:] :|

[:INDEXED BY index-name-1 [:1ndex name- {] :1}

SYNCHRONIZED LEFT
SYNC RIGHT

JUSTIFIED RIGHT
JUST LEFT

THE DATA DIVISION

DATA DESCRIPTION ENTRY (Cont.)

FORMAT 2:

THRU

66 data-name-1 RENAMES data-name-2 { THROUGH } data-name-3:]

FORMAT 3:

VALUES ARE THRU

88 condition-name {-!ALQE IS } literal-1 { THROUGH } Titera1-2

. THROUGH . _
literal-3 [} THRU } literal 4:]

The clauses shown in the General Format appear in alphabetical order
along with the other Data Division clauses on the following pages.

Technical Notes

1.

2.

Each data description entry must be terminated by a period.
All semicolons and commas are optional.

The clauses may appear in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the
data-name being redefined.

The VALUE clause must not appear in a data description entry
which also contains an OCCURS clause, or in an entry which is
subordinate to an entry containing an OCCURS clause. The
latter part of this rule does not apply to condition-name
(level-88) entries.

The PICTURE clause must be specified for every elementary
item, except a USAGE INDEX, COMP-1 item, DATABASE-KEY, or
DBKEY .

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO can be specified only at the elementary level.

THE DATA DIVISION

BLANK WHEN ZERO

4.9.12 BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause causes the blanking of an item when its
value is zero.

General Format

@LANK WHEN ZERO]

Technical Notes

1. When the BLANK WHEN ZERO option is used and the item is zero,
the item is set to blanks.

2. BLANK WHEN ZERO can be specified only at the elementary level
and only for numeric or numeric-edited items whose usage is
DISPLAY-6, DISPLAY-7, or DISPLAY-9.

3. An asterisk used as a zero suppression symbol in a PICTURE
clause may not appear in the same entry with the BLANK WHEN
ZERO clause. More comprehensive editing features are
available in the PICTURE clause.

4. When the BLANK WHEN ZERO clause is used for an elementary
item whose PICTURE 1is numeric, the category of the item is
considered to be numeric-edited.

THE DATA DIVISION

Condition-name (level-88)

4.9.13
Function
The cond

of value

General

88 condition-name {

Condition-name (level-88)

ition-name (level-88) entry assigns a name to a value or range
s of the associated data item.

Format

VALUE IS .
VALUES ARE} literal-1

THROUGH
THRU

} literal-2

. THROUGH . _
literal-3 [} THRU } Titeral 4:]

Technica

1.

1 Notes
Each condition-name requires a separate level-88 entry. This
entry contains the name assigned to the condition, and the
value or values associated with that condition.
Condition-name entries must immediately follow the data
description entry with which the condition-name is to be
associated.
A condition-name entry can be associated with any elementary
or group item except
a. another condition-name entry, or
b. a level-66 item.
Some examples of possible level-88 entries are given below.
a. 05 B-FIELD PICTURE IS 99.

88 Bl VALUE IS 3.

88 B2 VALUES ARE 50 THRU 69.

88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.

88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.
b. 02 C-FIELD PICTURE IS XXX.

88 C-YES VALUE IS "YES".

88 C-NO VALUE IS "NO ".
The data item with which the condition-name is associated is

called a conditional variable. A conditional variable may be
used to qualify any of its condition-names. If references to
a conditional variable require indexing, subscripting, or
qualification, then reference to its associated
condition-names also require the same combination of
indexing, subcripting, or qualification.

5.

THE DATA DIViSION
Condition-name (level-88) (Cont.)

A condition-name is used in conditional expressions as an
abbreviation for the related condition. Thus, if the above
Data Division entries (Note c¢) are used, the statements 1in
each pair below are funcgtionally equivalent.

Relational Expression Condition-Name
a. IF B-FIELD IS EQUAL TO 3.... IF Bl....
b. IF B-FIELD IS GREATER THAN IF B2....

49 AND LESS THAN 70....

c¢. IF B-FIELD IS EQUAL TO 20 OR IF B3....
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND 1
LESS THAN 38....

d. IF B-FIELD IS GREATER THAN 69 IF B4....
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96....

e. IF C-FIELD IS EQUAL TO "YES".. IF C-YES

Literal-l must always be less than literal-2, and literal-3
less than literal-4. The values given must always be within
the range allowed by the format given for the conditional
variable. For example, any condition-name values given for a
conditional variable with a PICTURE of 999 must be in the
range of 000 to 999.

4.9.14
Function
A data-n

FILLER s

General

level-number {

Technica

1.

2.

THE DATA DIVISION

Data-name/HLLER

Data-name/FILLER

ame specifies the name of the data being described. The word
pecifies an unreferenced portion of the logical record.

Format

data-name-l}
FILLER

1 Notes

A data-name or the word FILLER must immediately follow the
level-number in.each data description entry.

A data-name must be composed of a combination of the
characters A through Z, 0 through 9, and the hyphen. It must
contain at least one alphabetic character and must not exceed
30 characters in 1length. It must not duplicate a COBOL
reserved word. Refer to Section 1.2.3.2, User-Defined Words,
for further information.

The key word FILLER is used to name an unreferenced item in a
record (that 1is, an item to which the programmer has no
reason for assigning a unique name). A FILLER item cannot,
under any circumstances, be referenced directly in a
Procedure Division statement. However, it may be indirectly
referenced by referring to a group-level item of which the
FILLER item is a part. FILLER can be used at any level,
including the 01 level.

THE DATA DIVISION

JUSTIFIED

4.9.15 JUSTIFIED
Function
The JUSTIFIED clause specifies nonstandard positioning of data within

a receiving data item.

General Format

JUSTIFIED RIGHT
JUST LEFT

Technical Notes

1. The JUSTIFIED clause cannot be specified at a group level, or
for numeric or edited items. 1If neither RIGHT nor LEFT is
specified, RIGHT is assumed.

2. An item subordinate to one containing a VALUE clause cannot
be JUSTIFIED.

3. DISPLAY, DISPLAY-6, DISPLAY-7 and DISPLAY-9 items can be
JUSTIFIED.

4, The standard rules for positioning data within an elementary
data item are as follows:

a. The receiving data item 1is described as numeric or
numeric-edited (see definition in Notes 7 and 10 under
the PICTURE clause, Section 4.9.18.)

A numeric or numeric-edited item is justified according
to the following rules, thus the JUSTIFIED clause cannot
be used.

The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or
truncation on either end as required.

If an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character, and
the sending data is aligned according to this decimal
point.

b. The receiving data item is described as alphanumeric or
alphabetic (see definition 1in Notes 6 and 8 under the
PICTURE clause, Section 4.9.18).

The data is moved to the receiving character positions
and aligned at the leftmost character position with space
fill or truncation at the right end as required.

THE DATA DIVISION

JUSTIFIED (Cont.)

When a receiving item 1is described as JUSTIFIED LEFT,
positioning occurs as in 4a above.

When a receiving data item is described with the JUSTIFIED
RIGHT clause and 1is larger than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with space fill at the left end.

When a receiving data item is described with the JUSTIFIED
RIGHT <clause and is smaller than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with truncation at the left end.

Examples are given below.

03 ITEM-A PICTURE IS
X(8) VALUE IS "ABCDEFGH".

03 ITEM-B PICTURE IS
X (4) VALUE IS "WXyz".

03 ITEM-C PICTURE IS X(6).
03 ITEM-D PICTURE IS X(6).
JUSTIFIED RIGHT.

Procedure Division statement Contents of Receiving Field

MOVE ITEM-A TO ITEM-C. [alB][c|p|E[F]
MOVE ITEM-A TO ITEM-D. [c[p[E[F[G]H]
MOVE ITEM-B TO ITEM-C. Lwix]y]z]a[a]
MOVE ITEM-B TO ITEM-D. [afafw[x]|y]z]

THE DATA DIVISION

Level-number

4.9.16 Level-number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, special level-numbers are used for condition-names
{level-88), noncontiguous Working-Storage items (level-77), and the
RENAMES clause (level-66).

General Format

data-name-l}

level-number {FILLER

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers may be placed anywhere on the source 1line, at
or after margin A.

3. Level-number 88 is described under "condition-name
(level-88)", Section 4.9.13, and level-number 66 is described
under "RENAMES (level-66)", Section 4.9.20.

4. A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

OCCURS

THE DATA DIVISION

4.9.17 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for

repeated

data, and supplies information required for the application

of subscripts and indexes.

General Format

integer-3 TIMES

[QCCHRS {integer-l JO0 integer-2 TIMES DEPENDING ON data-name-l}

[lgﬁgégﬁé¥ﬁﬁ} KEY IS data-name-2 [data-name-3] ...} ces
{INDEXED BY index-name-1 [index-name-2] ...]}

Technical Notes

1.

This clause cannot be specified in a data description entry
that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

The OCCURS clause 1is wused to define tables or other
homogeneous sets of repeated data. Whenever this clause is
used, the associated data-name and any subordinate data-names
must always be subscripted or indexed when used in all
Procedure Division statements.

All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

The integers must be positive. If integer-1 is specified, it
must have a value less than integer-2. No value of a
subscript can exceed integer-2 or integer-3; in addition, if
the DEPENDING option is specified, no subscript can exceed
the value of data-name-1 at the time of subscripting.

If the DEPENDING option is specified, the integer-1 TO phrase
must be included. The DEPENDING option must immediately
follow TIMES. Data-name-1 must be a positive integer, and
for efficiency should be either USAGE INDEX or USAGE COMP.
It cannot be subscripted, and if the clause appears in the
Linkage Section, data-name-1 must be either USAGE INDEX or
USAGE COMP.

The value of data-name-1 is the count of the number of

occurrences of the item described by the OCCURS clause; its
value must not exceed integer-2 or integer-3.

4-38 January 1980

THE DATA DIVISION

Level-Number

4.9.17 Level-Number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, special 1level-numbers are used for condition-names
(level-88), noncontiguous Working-Storage items (level-77), and the
RENAMES clause (level-66).

General Format

data-name-l}
level-number {FILLER

MR-5-1287-81

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers can be placed.anywhere on the source 1line, at
or after margin A.

3. Level=number 88 is described under "condition-name
(level-88)", Section 4.9.14, and level-number 66 is described
under "RENAMES (level-66)", Section 4.9.21.

4. A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

THE DATA DIVISION

OCCURS

4.9.18 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for

repeated

data, and supplies information required for the application

of subscripts and indexes.

General Format

integer-1 T0 integer-2 TIMES DEPENDING ON data—namefl’
[OCC”R [integer-3 TIMES
[:SE;EEBé?ﬁﬁ} KEY IS data-name-2 [data-name-3] ...] e
[INDEXED BY index-name-1 [index-name-2] ...]]

MR-S-1288-81

Technical Notes

l.

This clause cannot be specified in a data description entry

that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

The OCCURS <clause 1is used to define tables or other
homogeneous sets of repeated data. Whenever this clause is
used, the associated data-name and any subordinate data-names
must always be subscripted or indexed when wused in all
Procedure Division statements.

All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

The integers must be positive. If integer-1 is specified, it
must have a value less than integer-2. No value of a
subscript can exceed integer-2 or integer-3; in addition, 1iEf
the DEPENDING option 1is specified, no subscript can exceed
the value of data-name-1l at the time of subscripting.

When a receiving item is a wvariable 1length data item and
contains the object of the DEPENDING ON clause, the maximum
length of the item is used, not the actual 1length of the
item.

If the DEPENDING option is specified, the integer-1 TO phrase
must be included. The DEPENDING option must immediately
follow TIMES. Data-name-l must be a positive 1integer, and
for efficiency should be either USAGE INDEX or USAGE COMP.
It cannot be subscripted, and if the clause appears 1in the

Linkage Section, data-name-1 must be either USAGE INDEX or
USAGE COMP,

The value of data-name-1 is the count of the number of

occurrences of the item described by the OCCURS clause; its
value must not exceed integer-2 or integer-3.

4-49 October 1985

THE DATA DIVISION

PICTURE (Cont.)

represents an insertion comma?!
represents an actual decimal point!?
represents an insertion blank
represents an insertion zero
represents an insertion slash

NO W ~

e. Symbols representing editing sign-control symbols

+ represents an editing plus sign

- represents an editing minus sign

CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and ~) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture symbol can be
abbreviated to the symbhol followed by (n), where n
indicates the number of occurrences. However, some
editing symbols may not be used more than once in a data
item: llSll' |lvll, l'.'l, “CR", and "DB"o

4., A maximum number of 30 symbols can appear 1in a picture
string. Note that the number of symbols in a picture string
and the size of the item represented are not necessarily the
same. There are two reasons for this discrepancy. First,
the abbreviated form for indicating consecutive repetitions
of a symbol may result in fewer symbols in the picture string
than character positions in the item being described. For
example, a data item having 40 alphanumeric character
positions can be described by a picture string of only 5
symbols:

PICTURE IS X (40).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols, with one exception, do not represent actual physical
character positions within the data item. The exception
involves the use of the SIGN IS SEPARATE clause, which causes
the S (arithmetic sign) to take up a character position. If
the clause is omitted, the character-string

5999Vv99

represents a 5-position data item. However, if the SIGN IS
SEPARATE clause 1is included, the character-string would
represent a 6-position item.

Other size restrictions for numeric and numeric-edited items
are given under the appropriate headings below.

5. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,
alphanumeric-edited, and numeric-edited. A description of
each category is given in the notes below.

1 If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the function of the comma and decimal point is reversed.

4-41

THE DATA DIVISION

PICTURE (Cont.)

6.

10.

Definition of an Alphabetic Item

a.

b.

Its picture string may contain only the symbol A or B.

It may contain only the 26 letters of the alphabet and
the space.

Definition of a Numeric Item

a.

b.

Its picture string may contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture string must have from 1 to 18 digit
positions.

It may contain only the digits 0 through 9 and an
operational sign.)

Definition of an Alphanumeric Item

a.

Its picture string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all Xs.

Its contents can be any combination of characters from
the complete character set (see Section 1.2.2).

Definition of an Alphanumeric-Edited Item

a.

b.

Its picture string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B, 0 or /.

Its contents can be any combination of characters from
the complete character set.

Definition of a Numeric-Edited Item

a.

Its picture string must contain at 1least one of the
following editing symbols:

y, - *4+ - 0B CRDB §

It may also contain the symbols 9, V, or P. If you use
the CURRENCY SIGN IS clause, the new currency sign you
specify replaces the $ in the above list.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 11.

The picture string must have from 1 to 18 digit
positions.

The contents can be any combination of the digits 0
through 9 and the editing characters.

THE DATA DIVISION

PICTURE (Cont.)

represents an insertion comma'
represents an actual decimal point'
represents an insertion blank
represents an Iinsertion zero
represents an insertion slash

NQWe ~

e, Symbols representing editing sign-control symbols

+ represents an editing plus sign
- represents an editing minus sign
CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and -) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture symbol can be
abbreviated to the symbol followed by (n), where n
indicates the number of occurrences. However, the
following editing symbols can not be used more than once
in a data item: ®"s®", "vy", "_.¥, "CR", and "DB".

4, A maximum number of 38 symbols can appear in a picture
string. Note that the number of symbols in a picture string
and the size of the item represented are not necessarily the
same. There are two reasons for this discrepancy. First,
the abbreviated form for indicating consecutive repetitions
of a symbol can result in fewer symbols in the picture string
than character positions in the item being described. For
example, a data item having 40 alphanumeric character
positions can be described by a picture string of only 5
symbols:

PICTURE IS X (409).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols, with one exception, do not represent actual physical
character positions within the data item. The exception
involves the use of the SIGN IS SEPARATE clause, which causes
the S (arithmetic sign) to take up a character position. If
the clause is omitted, the character-string

5999Vv99
represents a 5-position data item. However, if the 'SIGN IS
SEPARATE clause 1is included, the character-string would
represent a 6-position item.

The total picture character-strings for an @1 data item
cannot exceed 262,143 characters.

Other size restrictions for numeric and numeric-edited items
are given under the appropriate headings below.

5. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,

! If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the function of the comma and decimal point is reversed.

4-43 October 1985

THE DATA DIVISION

PICTURE (Cont.)

alphanumeric-edited, and numeric-edited. A description of
each category is given in the notes below.

19.

Definition of an Alphabetic Item

Qe

b'

Its picture string can contain only the symbol A or B.

It can contain only the 26 letters of the alphabet and
the space.

However, no check is made at runtime to prevent a move
from an alphanumeric item storing a non-alphabetic
character.

Definition of a Numeric Item

Q.

b.

Its picture string can contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture string must have from 1 to 18 digit
positions.

It can contain only the digits # through 9 and an
operational sign.

Definition of an Alphanumeric Item

-1

b.

Its picture string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all Xs.

Its contents can be any combination of characters from
the complete character set (see Section 1.2.2).

Definition of an Alphanumeric-Edited Item

-1

b.

Its picture string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B, @ or /.

Its contents can be any combination of characters from
the complete character set.

Definition of a Numeric-Edited Item

a.

Its picture string must contain at 1least one of the
following editing symbols:

+r « *+ - @ BCRDB $§

It can also contain the symbols 9, V, and P. If you use
the CURRENCY SIGN IS clause, the new currency sign you
specify replaces the $ in the above list.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 11.

The picture string must have from 1 to 18 digit
positions.

The contents can be any combination of the digits @
through 9 and the editing characters.

4-44 _ October 1985

11.

THE DATA DIVISION

PICTURE (Cont.)

The symbols used to define the category of an elementary item
and their functions are as follows:

A

Each A in the picture string represents a character
position which can contain only a letter of the alphabet
or a space,

Each B in the picture string represents a character
position into which a space character is inserted during
editing.

Examples: (A~-FLD contains the value 092469)

B~FLD picture string Result
MOVE A-FLD TO B-FLD 99899899 [o]o]al2]4]al6]o]
MOVE A-FLD TO B-FLD 9999BBBB lo]o]2]4]alala]a]

Also see Note 15, Simple Insertion Editing,

Each P in the picture string indicates an assumed decimal
point scaling position and is wused to specify the
location of an assumed decimal point when the point Iis
outside the positions defined for the item. Ps are not
counted in the size of the data item. They are counted
in determining the maximum number of digit positions (18)
allowed in numeric-edited items or numeric items.

Digit positions specified by P will contain zeros when
referenced as a numeric item, as when the data-item is
moved to a numeric or numeric edited item, or as when
compared to a numeric item.

P's can appear only to the left or right of the picture
string and must appear together. The P character symbol
cannot appear in a data-item that defines a relative key.
The assumed decimal point is assumed to be to the left of
the string of Ps if the Ps are at the 1left end of the
picture string and to the right of the string of Ps if
the Ps are at the right end of the picture string. If
the V symbol 1is wused 1in this case, it must appear in
either of those positions; in either case, it is
redundant.,

Examples:

PPP9999 (or VPPP9999) defines a data item of four
character positions whose contents are treated as
.289nnnn during any decimal point alignment operation
(such as in a MOVE or ADD). 9PPP (or 9PPPV) defines a
data item of one character position whose contents are
treated as n@#@f during any decimal point alignment
operation.

The P character symbol cannot appear in a data-item that
defines a relative key.

An S in a picture string indicates that the item has an
operational sign and retains the sign of any data stored
in it. The S must be written as the leftmost character

4-45 . October 1985

THE DATA DIVISION

PICTURE (Cont.)

in the picture string. If S is not included, all data is
stored in the item as an absolute value and is treated as
positive in all operations. The S symbol is not counted
in the size of the data item unless the SIGN IS SEPARATE
clause 1is 1included, 1in which case it occupies one
character position.

V AV in a picture string indicates the 1location of the
assumed decimal point and can appear only once in a
picture string. The V does not represent a physical
character position and is not counted in the size of the
data item. If the assumed decimal point position 1is at
the right of the rightmost character position of the
item, the V is redundant (that is, 9999 1is functionally
equivalent to 9999V),

X Each X 1in a picture string represents a character
position which can contain any allowable character from
the complete character set.

Z Each Z in a picture string represents the 1leftmost
leading numeric character positions in which leading
zeros are to be replaced by spaces. Each Z is counted in
the size of the item.

* Each * in a picture string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by *. Each * is counted in the
size of the item.

Examples: (A-FLD contains the value 00385)

B-FLD picture string Result

MOVE A-FLD TO B-FLD 999999 [ofo]o]3]o]s]
MOVE A-FLD TO B-FLD 229999 [aalo]3]o]s]
MOVE A-FLD TO B-FLD 22Z22ZZ [afalal3]o]s]
MOVE A-FLD TO B-FLD 22%2Z.2% [a]3]of5].]o]o]

Also see Note 19, Zero Suppression Editing.

9 Each 9 1in a picture string represents a character
position which can contain a digit. Each 9 is counted in
the size of the item.

2 Each @ in a picture string represents a character
position into which a zero is inserted. It is counted in
the size of the item. The 0 symbol works in the same
manner as the B symbol.

. Each , in a picture string represents a character
position into which a comma is inserted. The comma is
counted in the size of the item.

/ Each / 1in a picture string represents a character

position into which the slash is inserted. The slash is
counted in the size of the item.

* 4-46 October 1985

THE DATA DIVISION

PICTURE (Cont.)

Examples: (A=FLD contains 005625; B-FLD contains
-005625)
C-FLD picture string Result

MOVE A-FLD TO C-FLD ++999.99 [al+]o]s]e].{2]5]
MOVE B-FLD TO C-FLD ++++9.99 [a]a]-]5]6]-]2]5]
MOVE ZERO TO C-FLD ++999.99 |a+]o]o]o].]0]0]
MOVE ZERO TO C-FLD +++++.++ [a]a]a]s]a]a]a]s]
MOVE A-FLD TO C-FLD ~-999.99 [a]alo]s]6].]2]5]
MOVE B-FLD TO C-FLD ==999.99 [a[-[o[s]6[.[2]5]
MOVE ZERO TO C-FLD =--99.99 la]a]a]o]o] .]o]o0]
MOVE ZERO TO C-FLD -—-=m==== [a]a]afa]a]a]a] |

Also see Note 18, Floating Insertion Editing.

Note that the + and - symbols are distinct from the S
(operational sign) symbol. Normally, the + and - symbols
are used to describe display items that are to appear on
some printed report; they provide visual sign indication
and cannot be used with items appearing as operands 1in
arithmetic statements.

A $§ (or the symbol specified by the CURRENCY SIGN clause
in the SPECIAL-NAMES paragraph) represents the character
position into which a $ (or the currency symbol) is to be
placed. This symbol is counted in the size of the item.

Example: (A-FLD contains 345675)

B-FLD character-string Result
MOVE A-FLD TO B-FLD $9,999.99 Is|3].[4]5]6].]17]5]
MOVE A-FLD TO B-FLD $999,999.99 |[s|o]o|3],[4|5]6].[7]5]

Also see Note 17, Fixed Insertion Editing.

The $§ symbol can also be used to perform floating
insertion editing, Floating insertion editing is
indicated by the occurrence of two or more consecutive §
symbols at the beginning of the character string. The
total number of significant positions in the -editing
field must be at least one greater than the number of
significant digits 1in the data to be edited. The
floating § symbol floats from left to right through any
high-order zeros until a decimal point or the picture
character 9 is encountered.

THE DATA DIVISION

PICTURE (Cont.)

12,

13.

Examples: (A-FLD contains 005625)

B-FLD picture string Result
MOVE A-FLD TO B-FLD -$$9,999.99 [alsToT.Jols5]6]-]2]5]
MOVE A-FLD TO B-FLD $55,$$$.99 [a[a[a[a[s]5]6].[2]5]
MOVE ZERO TO B-FLD $$$,999.99 [a]a]als]o]o]o].[o]0]
MOVE ZERO TO B-FLD $§$,$$$.$$ [s[afajafala|afsja]a]

Also see Note 18, Floating Insertion Editing.

There are two general methods of performing editing in the
PICTURE clause:

a. 1insertion, or

b. suppression and replacement.

There are four types of insertion editing available:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:
a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

The type of editing that may be performed upon an item
depends on the category to which the item belongs.

Category Type of Editing Allowed
Alphabetic Simple 1nsertion: B only
Numeric None

Alphanumeric None

Alphanumeric-edited| Simpse insertion: 0, B and /

&
Numeric-edited All (except for the restriction given in
Note 14)

14.

15.

l6.

17.

THE DATA DIVISION
PICTURE (Cont.)

Floating insertion editing and zero suppression/replacement
editing are mutually exclusive in a PICTURE clause. Only one
type of replacement can be used with zero suppression in a
PICTURE clause.

Simple Insertion Editing (, B 0 /)

The , (comma), B (space), 0 (zero), and / (slash or- stroke)
constitute those editing symbols used in simple insertion
editing. These insertion characters represent the character
position in the item into which the character will be
inserted. These symbols are counted in the size of the item.

Special Insertion Editing (.)

The . (decimal point) symbol is used in special insertion
editing. In addition to its use as an insertion character,
it also represents the position of the decimal point for
decimal point alignment. This symbol is counted in the size
of the item. The symbols . and V (assumed decimal point) are
mutually exclusive in a PICTURE clause. Since the . cannot
be the last symbol in the character-string, it must be
immediately followed by one of the line-ending characters,
either space or carriage return.

Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control
characters (+ - CR DB) constitute the characters used in
fixed insertion editing. Only one $ and one of the editing
sign control characters can be used in a PICTURE
character-string. When the symbols CR or DB are used, they
represent two character positions in determining the size of
the item. The symbols + or - when used must be the leftmost
or rightmost character positions to be counted in the size of
the item. The $ when used must be the leftmost character
position to be counted in the size of the item, except that
it can be preceded by a + or - symbol. A fixed insertion
editing character appears in the same character position in
the edited item as it occupied in the PICTURE
character-string.

When the $ is used as a floating insertion editing character,
the picture string must contain at least one $ more than the
maximum number of significant digits in the item to be
edited. If you use a comma and the $ simultaneously for
editing, there must always be at least two $ to the 1left of
the comma because one $ will always be printed; there is no
place for a significant digit to the left of the comma if you
have used only one $. (If the item has a picture of $,$$$
then no digit will ever appear to the left of the comma; a $
will always be there.) A comma is omitted only when what
appears to its left consists only of zeroes. (With the
picture string $,$$8$ the comma is never omitted.)

THE DATA DIVISION

PICTURE (Cont.)

18.

Editing sign control symbols produce the following results
depending on the value of the data being edited.

Editing Symbol in Result
PICTURE Data Positive Data Negative
character-string

+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing ($$ ++ =--)

The $ and the editing sign control symbols + and - are the
floating insertion editing characters and are mutually
exclusive in a given PICTURE string.

Floating insertion editing is indicated in a PICTURE
character-string by wusing a string of at least two of the
allowable insertion characters to represent the leftmost
numeric character positions into which the insertion
characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion
characters or to the immediate right of this string are part
of the floating string.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing:

a.

Representing any two or more of the 1leading numeric
character positions on the left of the decimal point by
the insertion character. The result 1is that a single
insertion character will be placed in the character
position immediately preceding the leftmost nonzero digit
of the data being edited or in the character position
immediately preceding the decimal point, or in the
character position represented by the rightmost insertion
character, whichever is encountered first.

Representing all numeric character positions in the
character-string by the insertion character. If the
value is not zero, the result is the same as when the
insertion character appears only to the 1left of the
decimal point. If the value is zero, the entire item is
set to spaces.

A picture string containing floating insertion characters
must contain at least one more floating insertion
character than the maximum number of significant digits
in the item to be edited. For example, a data field
containing five significant digit positions requires an
editing field of at least six significant positions.

All floating insertion characters are counted in the size
of the item.

19.

THE DATA DIVISION.
PICTURE (Cont.)

Zero suppression Editing (Z *)

The suppression of leading zeros and commas in a data field
is indicated by the use of the Z or the * symbol in a picture
string. These symbols are mutually exclusive in a given
picture string. Each suppression symbol is counted in the
size of the item. If a Z is used, the replacement character
is a space. 1If an * is used, the replacement character is an
*, Zero suppression and replacement is indicated by a string
of one or more Zs or *s to represent the leading numeric
character positions which are to be replaced when the
associated character position in the data contains a leading
zero. Any of the simple insertion characters embedded 1in
this string of zero suppression symbols or to the immediate
right of this string are part of the string.

If the zero suppression symbols appear only to the 1left of
the decimal point, any 1leading zero 1in the data that
corresponds to a zero suppression symbol in the string is
replaced by the replacement character.

Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol in the string or at the
decimal point, whichever is encountered first.

If all numeric character positions in the picture string are
represented by the suppression symbol and the value of the
data is not =zero, the result is the same as if the
suppression characters were only to the left of the decimal
point. If the value is zero, the entire item (including any
sign) will be set to the replacement character (with the
exception of the decimal point if the suppresson symbol is an
'k)_

The * and the clause BLANK WHEN ZERO may not appear in the
same entry.

4-51

THE DATA DIVISION

PICTURE (Cont.)

20.

21.

Example:

(A-FLD contains 023456, B--FLD contains 001200)

R-FLD Result

PICTURE of. MOVE

String
MOVE A-FLD TO R-FLD khkk Kk *234.56
MOVE B-FLD TO R-FLD XXXX. XX **¥12.00 (1)
MOVE A-FLD TO R-FLD 227272.2% 234.56 (1)
MOVE B-FLD TO R-FLD 2227 .27 12.00
MOVE ZERO TO R-FLD *hkk kK kK kk ()
MOVE ZERO TO R-FLD 222%2.22 AAAAAAA (3)
MOVE ZERO TO R-FLD FEERE KK kkkkk KK (4)
MOVE ZERO TO R-FLD +2%222.272 AAAAAAAA (5)

(1) Zero supression does not take place to the right of
the decimal point.

(2) Decimal point is not suppressed.

(3) Decimal point is replaced by a space.

(4) Plus sign (+) is replaced by a space.

(5) Both sign and decimal point are replaced by space.

The symbols + - * Z and $ when used as floating replacement
characters are mutually exclusive within a given picture
string.

Figure 4-4 shows the order of precedence of the various
picture string symbols. Each "Y" on the chart indicates that
the symbol in the top row directly above can precede the
symbol at the left of the row in which the "Y" appears.

{ }indicate that the symbols are mutually exclusive.

The P and the fixed insertion + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear
to the left of any numeric positions in the string.

9P, 9+, and 9- represent the case where these symbols appear
to the right of any numeric positions in the string.

The Z, *, and the floating ++, --, and $$ also appear twice.

Z., *., $$., and --. represent the case where these symbols
appear before the decimal point position.

.2, .*, .8$, .++, and .-- represent the case where these
symbols appear following the decimal point position.

THE DATA DIVISION

FIXED INSERTION

OTHER

PICTURE (Cont.)
FIXED INSERTION OTHER
- {ié {;}{gg} s|elpo|oels |v {f}{f} 9 ff}(fi}ss 3
Y Yy |v|y v|vly vy vy vl y|v|v]|y
vy vivy|vy|y ylv|vy ylvi v |vlylvy|v]y
Y vy|vy|vy|y Y Y vy iy (vl yl|v|v|y
vy vly Y Y Y Y vy Y
Y Y
ylvly v Y v |y v|v |y |y vy
v |y Y vy vivy v |y vy
y Y Y
Y Y
v v Y v v
Y viv|vy |y v |y v Y|y Y
vivly viv|y]|y v |y y vy Y
vlv]|y Y ¥ Y
yiv|y|y|y Y Y v|v |y
vilvivylyly v]vly vy vy vy Y
vy |y y Y
Y Y |y Y Y Y v ly
v Y Y Y
Y vy |vl|y Y Y v |v

MR-5-024-79

Figure 4-4 Picture String Character Chart

THE DATA DIVISION

REDEFINES

4.9.19
Function
The REDE

two or m

General

REDEFINES

FINES clause allows the same memory area to be allocated to
ore data items.

Format

[REDEFINES data-name-2 |

Technica

1.

2‘

1 Notes

The REDEFINES clause, when used, must immediately follow
data-name-1.

The level-numbers of the data-name~1 and data-name-2 must be
identical.

This clause must not be used for level-number 66 or 88 items.
Also, " it must not be used for level-01 entries in the File
Section; implicit redefinition is provided by specifying
more than one data-name in the DATA RECORDS ARE clause in the
FD. However, the REDEFINES clause may be used to redefine an
item whose picture contains the OCCURS clause.

When the 1level-number of the data-names 1is other than
level—-01, the storage area for data-name-2 should be of the
same size as data-name-1l. FILLER items may be used to comply
with this rule.

The REDEFINES entry must immediately follow the entries
describing data-name-2.

The redefinition entries cannot contain VALUE clauses.
Data-name-2 must not be qualified.

The following example illustrates the use of the REDEFINES

entry. The entries shown cause AREA-A and AREA-B to occupy
the same area in memory.

03 AREA-A USAGE DISPLAY-6.
04 FIELD-1 PICTURE IS X(7).
04 FIELD-2 PICTURE IS A(13).
04 FIELD-3.
05 SUBFIELD-1 PICTURE IS
5999V99 USAGE IS COMP.
05 SUBFIELD-2 PICTURE IS
S999v99 USAGE IS COMP.
03 AREA-B REDEFINES AREA-A USAGE DISPLAY-6.
04 FIELD-A PICTURE IS X(22).
04 FIELD-B PICTURE IS X(5).
04 FILLER PICTURE IS X(9).

THE DATA DIVISION

REDEFINES (Cont.)

Note how the length of each area is calculated so that AREA-B
can be defined so that its size is equal to that of AREA-A.

AREA-A: FIELD-1 7 6-bit characters (DISPLAY-6
assumed)

FIELD-2 13 6-bit characters (DISPLAY-6
assumed)

FIELD-3 4 6-bit characters (not used

because COMP items must start
at a new word boundary)

SUBFIELD-1 6 6-bit characters (COMP items
occupy one word, or six 6-bit
character positions)

SUBFIELD-1 6 6-bit characters (COMP items
occupy one word, or six 6-bit
character positions)

Total 6-bit characters 36

AREA-B: FIELD-A 22 6-bit characters (DISPLAY~-6

assumed)

FIELD-B 5 _ 6-bit characters (DISPLAY-6
assumed)

FILLER 9 6-bit characters (needed to
make AREA-B size -equal to
AREA-A)

Total 6-bit characters 36

THE DATA DIVISION

RENAMES (level-66)

4.9.20
Function
The RENA

of eleme

General

66 data-name-1 RENAMES data-name-2

Technica

1.

RENAMES (level-66)
MES clause permits alternate, possibly overlapping, groupings
ntary items.

Format

{ THROUGH

THRU } data-name-3

1 Notes
All RENAMES entries associated with items in a given record
must immediately follow the last data description entry for
that record.
01 data-name-a
(data description entries)
(level-66 entries associated with this logical record)
01 data-name-b.
Data-name-1 cannot be used as a qualifier, and can be
qualified only by the names of the level-01 or FD entries
associated with it.
The words THRU and THROUGH are equivalent.
Data-name-2 and data-name-3 must be the names of items in the

associated logical record and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number
of 01, 66, 77, or 88. Neither of these data-names can have
an OCCURS clause 1in its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data
description entry.

Data-name-2 must precede data-name-3 in the record
description, and data-name-3 cannot be subordinate to
data-name-2. If there 1is any associated redefinition
(REDEFINES), the ending point of data-name-3 must logically
follow the beginning point of data-name-2. When data-name-3
is specified, data-name-1 is a group item that includes all
elementary items starting with data-name-2 (if data-name-2 is
an elementary item) or the first elementary item in
data~-name-2 (if data-name-2 is a group item) and concluding
with data-name-3 (or the last elementary item 1in
data-name-3).

THE DATA DIVISION

RENAMES (level-66) (Cont.)

If data-name-3 is not specified, data-name-2 can be either a
group item or an elementary item. If it is a group item,
data-name-1 is treated as a group item and includes all
elementary items in data-name-2; if data-name-2 1s an
elementary item, data-name~l is treated as an elementary item
with the same descriptive clauses.

The following examples illustrate the use of the RENAMES
entry.

01 RECORD-NAME.
02 FIRST-PART.
03 PART-A.
04 FIELD-1 PICTURE IS ...
04 FIELD-2 PICTURE IS ...
04 FIELD-3 PICTURE IS ...
03 PART-B.
04 FIELD-4 PICTURE IS ...
04 FIELD-S. ,
05 FIELD-5A PICTURE IS ...
05 FIELD-5B PICTURE IS ...
03 SECOND-PART.
03 PART-C.
04 FIELD-6 PICTURE IS ...
04 FIELD-7 PICTURE IS ...
66 SUBPART RENAMES PART-B THRU PART-C.
66 SUBPART1 RENAMES FIELD-3 THRU SECOND-PART.
66 SUBPART2 RENAMES FIELD-5B THRU FIELD-7.
66 AMOUNT RENAMES FIELD-7.

SIGN

THE DATA DIVISION

4.9.21 SIGN

Function

The SIGN clause specifies the position and the mode of representation
of the operational sign.

General Format

LEADING
I:ESIGN Is:] TRAILING } [SEPARATE CHARACTER]:|

Technical Notes

1.

The optional SIGN clause, if present, specifies the position
and the mode of representation of the operational sign for
the numeric data description entry to which it applies, or
for each numeric data description entry subordinate to the
group to which it applies. The SIGN clause applies only to
numeric data description entries whose PICTURE contains the
character S; the S indicates the presence of an: operational
sign. However, it does not indicate the representation or
the position of the sign.

The numeric data description entries to which the SIGN clause
applies must be described as USAGE IS DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

If the CODE-SET clause is specified, any signed numeric data
description entries associated with that file description
entry must be described with the SIGN IS SEPARATE clause.

A numeric data description entry whose PICTURE contains the
character S, but to which no optional SIGN clause applies,
has an operational sign which is associated with the trailing
digit position of the elementary item.

If the optional SEPARATE CHARACTER phrase is not present, the
following rules apply:

a. The operational sign will be presumed to be associated
with the trailing digit position of the elementary
numeric data item.

b. The letter S in a PICTURE character-string is not counted
in determining the size of the item (in terms of standard
data format characters).

THE DATA DIVISION

SIGN (Cont.)

If the optional SEPARATE CHARACTER phrase is present, the
following rules apply: ’

a. There is no default condition for the operational sign in
this case. You may specify the SEPARATE CHARACTER phrase
only when either LEADING or TRAILING is also specified.

b. The letter S in a PICTURE character-string is counted in
determining the size of the item (in terms of standard
data format characters).

c. The operational signs for positive and negative are the
standard data format characters + and -, respectively.

d. The wvarious possiblities for the SIGN and SEPARATE
CHARACTER clauses are illustrated below: (value is -111)

Options SIXBIT
Representation

none 000000113

SIGN LEADING 100000111

SIGN TRAILING 00000011J

SIGN LEADING SEPARATE -000000111

SIGN TRAILING SEPARATE 000000111~

Every numeric data description entry whose PICTURE contains
the character S is a signed numeric data description entry.
If a SIGN clause applies to such an entry and conversion 1is
necessary for purposes of computation or comparisons,
conversion takes place automatically.

THE DATA DIVISION

SYNCHRONIZED

4.9.22
Function
The SYNC

item wit

General

{SYNC

Technica

1.

SYNCHRONIZED

HRONIZED clause specifies the positioning of an elementary
hin a computer word (or words).

Format

SYNCHRONIZED } LEFT :]

RIGHT

1 Notes

This clause can appear only in the data description of an

elementary item.

This clause is optional. If you omit it the default is

SYNCHRONIZED LEFT.

This clause specifies that the item being defined 1is to be

placed in an integral number of computer words and that it is

to begin or end at a computer word boundary. No other

adjacent fields are to occupy these words. 'The unused

positions, however, must be counted when calculating:

a. the size of any group to which this elementary item
belongs, and

b. the computer memory allocation when the item appears as
the object of a REDEFINES clause. However, when a
SYNCHRONIZED item is referenced, the original size of the
item (as 1indicated by the PICTURE clause) is used in
determining such things as truncation, justification, and
overflow.

SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to

be positioned in such a way that it will begin at the left
boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the 1item 1is
to be positioned in such a way that it will terminate at the
right boundary of a computer word.

When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item is
SYNCHRONIZED.

Any FILLER required to position the item as specified will be
automatically generated by the compiler. The content of this
FILLER is indeterminate.

THE DATA DIVISION

SIGN (Cont.)

If the optional SEPARATE CHARACTER phrase 1is ©present, the
following rules apply:

a. There is no default condition for the operational sign in
this case. You can specify the SEPARATE CHARACTER phrase
only when either LEADING or TRAILING is also specified.

b. The letter S in. a PICTURE character-string is counted in
determining the size of the item (in terms of standard
data format characters).

c. The operational signs for positive and negative are the
standard data format characters + and -, respectively.

d. The various possiblities for the SIGN and SEPARATE
CHARACTER clauses are illustrated below: (value is -111)

Options SIXBIT
Representation

none 000000110

SIGN LEADING 100000111

SIGN TRAILING 0000001137

SIGN LEADING SEPARATE -000000111

SIGN TRAILING SEPARATE 000000111~

Every numeric data description entry whose PICTURE contains
the character S is a signed numeric data description entry.
If a SIGN clause applies to such an entry and conversion is
necessary for purposes of computation or comparisons,
conversion takes place automatically.

THE DATA DIVISION
SYNCHRONIZED

4.9.23 SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an
item within a computer word (or words).

General Format

SYNCHRONIZED LEFT
SYNC RIGHT

MR-S-1293-81

Technical Notes

elementary

1. This clause can appear only in the data description of an

elementary item.

2, This clause is optional. If you omit it the
SYNCHRONIZED LEFT.

3. This clause specifies that the item being defined
placed in an integral number of computer words an
to begin or end at a computer word boundary.
adjacent fields are to occupy these words.
positions, however, must be counted when calculat

a. the size of any group to which this elem
belongs, and

b. the computer memory allocation when the item
the object of a REDEFINES clause. Howe
SYNCHRONIZED item is referenced, the original
item (as indicated by the PICTURE clause
determining such things as truncation, justif
overflow.

4, SYNCHRONIZED LEFT or SYNC LEFT specifies that the
be positioned In such a way that it begins
boundary of a computer word. For example,

81 RECORD-A,
@2 FIELD-A PIC XX SYNC LEFT.
2 FIELD-B PIC X.

MOVE "AB" TO FIELD-A,
MOVE "C" TO FIELD-B,

default |is

is to be
d that it is
No other

The unused
ing:

entary item

appears as
ver, when a
size of the
) is used in
ication, and

item is to
at the left

October 1985

THE DATA DIVISION

SYNCHRONIZED (Cont.)

is stored as (in SIXBIT):

A B l (FIELD-A)

C l ' . (FIELD-B)

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item Iis
to be positioned in such a way that it terminates at the
right boundary of a computer word. For example,

@1 RECORD-A. _
@2 FIELD-A PIC X.
@2 FIELD-B PIC XX SYNC RIGHT.

3

MOVE "A" TO FIELD-A.
MOVE "BC" TO FIELD-B.

is stored as (in SIXBIT):

A (FIELD-A)

B c (FIELD-B)

Any FILLER required to position the item as specified 1is
automatically generated by the compiler. The content of this
FILLER is indeterminate.

4-62.1 October 1985

THE DATA DIVISION

(THIS PAGE INTENTIONALLY LEFT BLANK.)

4-62,2

THE DATA DIVISION

USAGE (Cont.)

COMPUTATIONAL (COMP)

a.

b.

COMP is equivalent to COMPUTATIONAL.

A COMPUTATIONAL item represents a value to be used 1in
computations and must be numeric. 1Its picture string can
contain only the symbols: 9 s Vv P. Its value is
represented as a binary number with an assumed decimal
point.

If a group item 1is described as COMPUTATIONAL, the
elementary items in the group are COMPUTATIONAL.
However, the group itself is not COMPUTATIONAL and cannot
be wused as an operand in arithmetic computations. See
Note 3 above.

COMPUTATIONAL items of 10 or fewer decimal positions will
be SYNCHRONIZED RIGHT in one computer word.
Computational items of more than 10 decimal positions
will be SYNCHRONIZED RIGHT in two full computer words.
The maximum size of a COMP item is 18 digits.

The following 1illustrations give the format of a
COMPUTATIONAL item.

i_— sign

1-WORD COMPUTATIONAL ITEM 35

sign

0

1 35

not used
I)

0

! 2-WORD COMPUTATIONAL ITEM 35

COMPUTATIONAL-1 (COMP-1)

a.

b.

COMP-1 is equivalent to COMPUTATIONAL-1.

A COMPUTATIONAL-1 item can contain a value, in floating
point format, to be used in computations. It must be
numeric. A COMP-1 item must not have a PICTURE.

If a group item 1is described as COMPUTATIONAL-1, the
elementary items within -the group are COMPUTATIONAL-1.
However, the group item itself is not COMPUTATIONAL-1 and
cannot be used as an operand in arithmetic computations.
See Note 3 above.

COMPUTATIONAL-1 items will be SYNCHRONIZED in one full
computer word.

USAGE (Cont.)

THE DATA DIVISION

e. The following 1illustration gives the format of a
COMPUTATIONAL-1 item.
r— sign
hinary)
mantissa
chponent
0 9 35

COMPUTATIONAL-3 (COMP-3)

COMP-3 is equivalent to COMPUTATIONAL-3.

A COMP-3 item's picture string can contain only the
symbols 9, 8, V, P. 1Its value is represented as a packed
decimal number with an assumed decimal point.

If a group item is declared as COMP-3 the elementary
items in the group are COMP-3. However, the group item
itself is not COMP-3 and cannot be used as an operand in
arithmetic computations. See Note 3 above.

The maximum size of a COMP-3 item is 18 decimal digits.
The following illustration gives the format of a COMP-3

item. Note that bits 0, 9, 18 and 27 of the word are not
used.

7 7

A 7

89 13 17 18 22 26 27 31 35

COMP-3 items may be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT.

COMP-3 items may share a computer word with other COMP-3
items or with DISPLAY-9 items. However, COMP-3 items
will always begin at one of the following bit positions
in a word: 1, 10, 19, 28.

The actual size of a COMP-3 item in memory 1is at least
four bits larger and may be nine bits larger than the
number of character positions because the sign is stored
in the last four bits of the item and the item is stored
right justified on a nine-bit byte boundary.

The octal values 12, 14, and 16 represent plus signs and
the octal wvalues 13 and 15 represent minus signs. The
octal value 17 represents the nonprinting plus sign.
Although octal 12, 14 and 16 represent plus signs, the
sign given to the positive result of any arithmetic
operation will be 14. Similarly, the minus sign given to
the negative result of any arithmetic operation will be
15.

THE DATA DIVISION
USAGE (Cont.)

The nonprinting plus sign is actually an absolute value

indicator. Any positive or negative number which is
moved into an item with this sign will receive this sign.
In arithmetic computations and numeric editing

operations, items containing the nonprinting plus sign
are treated as positive.

DISPLAY

a. DISPLAY is equivalent to DISPLAY-6. However, you may
change DISPLAY to be DISPLAY-7 or 9 with the DISPLAY IS
clause. You may also cause the compiler to consider all
DISPLAY items to be DISPLAY-9 by using the /X switch when
compiling your program.

DISPLAY-6

a. DISPLAY is equivalent to DISPLAY-6 when the /X switch is
not given in the compiler command string.

b. A DISPLAY-6 item represents a string of 6~bit characters.
Its picture string may contain any picture symbols.
Refer to Appendix C for the SIXBIT collating sequence.

c. DISPLAY-6 items may be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired. Otherwise, they may share a computer
word with other DISPLAY-6 items.

d. The illustration below given the format of a DISPLAY-6
word.

0 6 12 18 24 30 35

e. If the /X switch has not been included 1in the compiler
command string, and the USAGE clause is omitted for an
elementary item, its USAGE is assumed to be DISPLAY-6.

DISPLAY-7

a. A DISPLAY-7 item represents a string of 7-bit ASCII
characters. Its picture string may contain any picture
symbols.

b. DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired; otherwise, they may share a computer
word with other items. If the item 1is SYNCHRONIZED
RIGHT, the last character of the item will end in bit 34
of a computer word. :

c. Bit 35 of a word represented in this format is never
used.

d. The maximum length of a DISPLAY-7 item is 4,096

characters.

THE DATA DIVISION

USAGE (Cont.)

l0.

e.

The illustration below gives the format of a DISPLAY-7
word.

« S

DISPLAY-9

a.

b.

DISPLAY is equivalent to DISPLAY-9 when the /X switch is
included in the command string to the compiler.

A DISPLAY-9 1item represents a string of EBCDIC
characters. Its picture string may contain any picture
symbol.

DISPLAY-9 items may be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT as desired; otherwise, they may share a computer
word with other DISPLAY-9 or COMP-3 items. If the item
is SYNCHRONIZED RIGHT, the last character of the item
will end in bit 35 of a computer word.

The maximum length of a DISPLAY-9 item is 4,096
characters.

The illustration below gives the format of a DISPLAY-9
item. Note that bits 0, 9, 18, and 27 are not used.

11.

89 1718 2627 35

If the USAGE clause is omitted for an elementary item and
the /X switch has been included in the compiler command
string, its USAGE is assumed to be DISPLAY-9 .

INDEX

a.

An elementary item described as USAGE INDEX is called an
index data-item. It is treated as a COMP item with
PICTURE S9(5) and can be used as a COMP item.

An index data-item must not have a PICTURE.

If a group item is described as INDEX, the elementary
items within the group are treated as INDEX. However,
the group item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

Index data items and index-names (defined in the OCCURS
clause by the INDEXED BY option) are equivalent.

If an index-name is defined in an OCCURS <clause, it
cannot be defined elsewhere.

4-66

7.

THE DATA DIVISION

USAGE (Cont.)

The octal values 12, 14, and 16 represent plus signs and
the octal values 13 and 15 represent minus signs. The
octal value 17 represents the nonprinting plus sign.
Although octal 12, 14 and 16 represent plus signs, the
sign given to the positive result of any arithmetic
operation 1is 14. Similarly, the minus sign given to the
negative result of any arithmetic operation is 15,

The nonprinting plus sign is actually an absolute value
indicator. Any positive or negative number that is moved
into an item with this sign receives this sign. In
arithmetic computations and numeric editing operations,
items containing the nonprinting plus sign are treated as
positive.

DISPLAY

A

DISPLAY is equivalent to DISPLAY-6, However, you can
change DISPLAY to be DISPLAY-7 or 9 with the DISPLAY IS
clause. You can also cause the compiler to consider all
DISPLAY items to be DISPLAY-9 by using the /X switch when
compiling your program.

The maximum size of any group item in the FILE SECTION is
4095 characters (7777). The maximum size of any group
item in the WORKING-STORAGE SECTION is 262,143 characters
(777777) . These maximum sizes apply to DISPLAY-6,
DISPLAY-~7, and DISPLAY-9 usage.

DISPLAY-6

Ae

DISPLAY is equivalent to DISPLAY-6 when the /X switch |is
not given in the compiler command string, or the DISPLAY
IS clause is not present.

A DISPLAY-6 item represents a string of 6-bit characters.
Its picture string can contain any picture symbols.
Refer to Appendix C for the SIXBIT collating sequence.

DISPLAY-6 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired. Otherwise, they can share a computer
word with other DISPLAY-6 items.

The illustration below given the format of a DISPLAY-6
word.

0 6 12 18 24 30 35
MR-S-1022-81

If the /X switch has not been included 1in the compiler
command string, and the USAGE clause is omitted for an
elementary item, its USAGE is assumed to be DISPLAY-6,

DISPLAY-7

ae

A DISPLAY-7 item represents a string of 7-bit ASCII
characters, Its picture string can contain any picture
symbols.

4-67 October 1985

THE DATA DIVISION

USAGE (Cont.)

19.

11.

b. DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired; otherwise, they can share a computer
word with other items. If the item 1is SYNCHRONIZED
RIGHT, the last character of the item ends in bit 34 of a
computer word.

c. Bit 35 of a word represented in this format is never
used. :

d. The maximum 1length of a DISPLAY-7 item is 4,095
characters.

e. DISPLAY is equivalent to DISPLAY-7 when the DISPLAY IS
DISPLAY-7 clause is present.

f. The illustration below gives the format of a DISPLAY-7
word.

0 7 14 21 28 35
MR-S-1023-81

DISPLAY-9

a. DISPLAY is equivalent to DISPLAY-9 when the /X switch |is
included in the command string to the compiler, or
DISPLAY IS DISPLAY-9 clause is present.

b. A DISPLAY-9 item represents a string of EBCDIC
characters. Its picture string can contain any picture
symbol. .

c. DISPLAY-9 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT as desired; otherwise, they can share a computer
word with other DISPLAY-9 or COMP-3 items. If the item
is SYNCHRONIZED RIGHT, the 1last character of the item
ends in bit 35 of a computer word.

d. The maximum length of a DISPLAY-9 item is 4,095
characters.

e. The illustration below gives the format of a DISPLAY-9

item. Note that bits @, 9, 18, and 27 are not used.

89 1718 262

~

MR-S5-1024-81

f. If the USAGE clause is omitted for an elementary item and
the /X switch has been included in the compiler command
string, its USAGE is assumed to be DISPLAY-9 .

INDEX

a. An elementary item described as USAGE INDEX is called an
index data-item. It is treated as a COMP item with PICT
URE S9(5) and can be used as a COMP item.

b. An index data-item must not have a PICTURE.

4-68 October 1985

THE DATA DIVISION
VALUE (Cont.)

The VALUE clause must not conflict with other clauses in the
data description entry or in the data description entries
within the hierarchy of the item. The following rules apply:

a. If the category of an item is numeric, all 1literals in
the VALUE clause must be numeric. All literals in a
VALUE clause must have a value within the range of values
indicated by the PICTURE clause; for example, an item
with PICTURE PPP9 may have only the values in the range
.0000 through ,00009.

b. If the category of the item is alphabetic or
alphanumeric, all literals in the VALUE clause must be
nonnumeric literals. The literal will be aligned
according to the normal alignment rules (see the
JUSTIFIED clause, Section 4.9.15) except that the number
of characters in the literal must not exceed the size of
the item.

c. If the category of an item 1is numeric-edited or
alphanumeric-edited, no editing of the value is performed
in the VALUE clause.

d. The USAGE of the literal agrees with the USAGE of the
item. Thus, if the item has USAGE DISPLAY-6, the literal
also has USAGE DISPLAY-6 and its value must contain legal
SIXBIT characters.

The figurative constants SPACE(S), ZERO(E)(S), QUOTE(S),
LOW~-VALUE(S), and HIGH-VALUE(S) may be substituted for a
literal. If the item is numeric, only ZERO(E) (S),
LOW-VALUE (S) , and HIGH~VALUE(S) are allowed.

THE DATA DIVISION

Report Description (RD)

4.9.25 Report Description (RD)

Function

The Report Description furnishes information concerning

structure for a report.

General Format

RD report-name

[CODE mnemonic-name]

CONTROL IS FINAL
CONTROLS ARE

LIMIT 1S

[HEADING integer-2] [FIRST DETAIL integer-3]

[LAST DETAIL integer-4 | [FOOTING integer-5 | }

Technical Notes

identifier-1
FINAL identifier-1

PAGE ‘ LIMITS ARE } integer-1 [

[identifier-2] ...
[identifier-2]

1. The order of appearance

immaterial.

LINE
LINES

optional

the

physical

clauses is

2. A fixed data-name PAGE-COUNTER is automatically generated for

each RD entry.

Its function is to contain

report. It is a COMPUTATIONAL item;

page

the size of the largest field that refers to it in
clause. The contents of the PAGE-COUNTER are set to 1 by the

INITIATE statement.

3. The fixed data~-name LINE-COUNTER is

for each RD entry.

line number within a report page.
item; its size is based on the number of

the PAGE-LIMIT clause.

a

number of a
its size is equal to

SOURCE

automatically generated
Its function is to contain the current
COMPUTATIONAL

lines specified in

THE DATA DIVISION

VALUE (Cont.)

The VALUE clause must not conflict with other clauses in the
data description entry or in the data description entries
within the hierarchy of the item. The following rules apply:

a. If the category of an item is numeric, all 1literals in
the VALUE clause must be numeric. All literals in a
VALUE clause must have a value within the range of values
indicated by the PICTURE clause; for example, an item
with PICTURE PPP9 can have only the values in the range
.0000 through .0009.

b. If the category of the item is alphabetic or
alphanumeric, all 1literals in the VALUE clause must be
nonnumeric literals. The literal is aligned according to
the normal alignment rules (see the JUSTIFIED clause,
Section 4.9.16) except that the number of characters in
the literal must not exceed the size of the item.

c. Initialization takes place independent of any BLANK WHEN
ZERO or JUSTIFIED clause that may be specified.

d. If the category of an item is numeric-edited or
alphanumeric-edited, no editing of the value is performed
in the VALUE clause.

e. The USAGE of the literal agrees with the USAGE of the
item. Thus, if the item has USAGE DISPLAY-6, the literal
also has USAGE DISPLAY-6 and its value must contain legal
SIXBIT characters.

The figurative constants SPACE(S), ZERO(E)(S), QUOTE(S),
LOW-VALUE(S), and HIGH-VALUE(S) can be substituted for a
literal. If the item is numeric, only ZERO (E) (S),
LOW~VALUE (S), and HIGH-VALUE (S) are allowed.

Report

THE DATA DIVISION

Description (RD)

4.9.26 Report Description (RD)

Function

The Report Description furnishes information concerning the physical
structure for a report.

General Format

RD report-

[c DE

name

mnemoni c-name]

FINAL
[%%%%%%g%SIiRE}{1dent1f1er-1 [identifier-2] . {]

=

Technical

1.

2.

FINAL identifier-1 [identifier-2] .

LIMIT IS LINES
LIMITS ARE} integer-1 3 INES

[HEADING integer-] [FIRST DETAIL integer—3]

[LasT oeTALL integer-4] [Foorine integer-5]] N

MR-S-1206-81

Notes

The order of appearance of the optional clauses is
immaterial.

A fixed data-name PAGE-COUNTER is automatically generated for
each RD entry.

Its function is to contain the current page number of a
report. It is a COMPUTATIONAL item; its size is equal to the
size of the largest field that refers to it 1in a SOURCE
clause. The contents of the PAGE-COUNTER are set to 1 by the
INITIATE statement.

The fixed data-name LINE-COUNTER is automatically generated
for each RD entry. Its function is to contain the current
line number within a report page. It is a COMPUTATIONAL
item; 1its size is basgd on the number of lines specified in
the PAGE-LIMIT clause. You cannot change the value of the
LINE-COUNTER.

4-72 October 1985

THE DATA DIVISION

Report Description (RD) (Cont.)

PAGE-COUNTER or LINE-COUNTER can be referenced as if either
were any data-name. Either must be qualified by the
report-name if more than one RD entry 1is present 1in the
program.

Each of the above clauses appears in this chapter separately,
in alphabetical order.

4-73 October 19385

THE DATA DIVISION

CODE

4.9.27 CODE

Function
The CODE clause defines a unique string of one or more characters that
is affixed to each line of the report.

General Format

[:QQQE mnemonic-nam{]

MR-8-1297-81

Technical Notes

1. This clause is necessary only if more than one report 1is to
be written in a single file.

2. Mnemonic-name is defined in the SPECIAL-NAMES paragraph of
the Environment Division, described in Section 3.1.4.

3. The character string represented by mnemonic-name is affixed
to the beginning of each report line, and is used to uniquely
define the lines of separate reports written in one file.

4., The number of characters represented by mnemonic-name must be
the same for the codes of all reports in the same file.

THE DATA DIVISION

CONTROL

4.9.28 CONTROL

Function

The CONTROL clause indicates the identifiers that control the printing
of totals in the report.

General Format

CONTROL 1S FINAL
CONTROLS ARE

fdentifier-1 [identifier-2] ...
FINAL identifier-1 [identifier-2]

MR-S-1298-81

Technical Notes

l.

2.

The CONTROL clause 1is required when CONTROL HEADING or
CONTROL FOOTING report groups are specified.

The identifiers specify the control hierarchy £for this
report. They are listed in order from major to minor; FINAL
is the highest level of control, identifier-1 1is the major
control, 1identifier-2 is the intermediate control, etc. The
last identifier specified is the minor control.

Identifiers must not be defined in the Report Section. Each
identifier in the CONTROL clause must identify a different
data item., TIdentifiers can be qualified, but they cannot be
subscripted or indexed.

4-75 _ October 1985

THE DATA DIVISION
PAGE LIMIT

4.9.29 PAGE LIMIT

Function
The PAGE LIMIT clause indicates the specific 1line control to
maintained within the presentation of a report page.

General Format

LIMIT IS LINE

pace { Tutrs ane | inteser-1 {{ TN

[HEADINQ 1nteger-2] [FIRST DETAIL integer-3]
[LAST DETAIL integer-4] [FOOTING 1nteger-5]
MR-S8-1028-81

Technical Notes

1. The PAGE LIMIT clause is required when page format must
controlled by the Report Writer,

2. All integers must have a positive value 1less than
Integer-2 through integer-5 must not be greater
integer-1.

be

be

512.
than

3. 1If absolute line spacing is indicated for all report groups
(see the LINE NUMBER and NEXT GROUP clauses, Sections 4.9.32

and 4.9.33 respectively), integer-2 through integer-5
not be specified.

need

4. The integers specify line numbers relative to the beginning

of a page.

5. The HEADING clause specifies the first line of a page to
used; no line precedes integer-2.

be

6. The FIRST DETAIL clause speciflies the first line of the first
DETAIL or CONTROL print group; no DETAIL or CONTROL group

precedes integer-3.

7. The LAST DETAIL clause specifies the last line of a DETAIL or
CONTROL HEADING report group; no such group extends beyond

integer-4.

8. The FOOTING clause specifies the last line number of the last
CONTROL FOOTING report group; no CONTROL FOOTING group

extends beyond integer-S.

9. If any optional clause is omitted, a value is assumed for its

integer. The default values are:
integer-2: Default 15 1

integer-3: Default is the value of integer-2

4-76 October 1985

THE DATA DIVISION

PAGE LIMIT (Cont.)

integer-4: Default 1is the value of integer-5 if
specified; 1if integer-5 is also omitted, the
default is the value of integer-1

integer-5: Default 1is the value of integer-4 if

specified; ' if 1integer-4 1is omitted, the
default is the value of integer-l.

4-77 October 1985

THE DATA DIVISION

REPORT GROUP DESCRIPTIONS

4.9.39 Report Group Description

Function

The Report Group Description entry specifies the

format of a particular report group.

General Format

Format 1:

01 rdata—name-l]

[integer-1
LINE NUMBER IS { PLUS integer-2
NEXT PAGE

-

integer-3
NEXT GROUP IS {PLUS integer-4
NEXT PAGE

REPORT HEADING
RH
PAGE_HEADING

O

%ESNTROL HEADING}

ju=}

ETAIL

{

PAGE FOQTING

=
o0

I[I8

PE

REPORT_FOOTING

RE

\
DISPLAY
DISPLAY-6

[usace 15] { pRELAY=E) |

DISPLAY-9

NTROL FOOTING} ‘

identifier-l}
FINAL

identifier-Z}
FINAL

MR-S-1029-81

characteristics and

October 1985

THE DATA DIVISION

REPORT GROUP DESCRIPTIONS (Cont.)

Format 2
level-number [data-name-l]
[BLANK WHEN ZERO]

[COLUMN NUMBER IS integer-l]

[GROUP INDICATE]

JUSTIFIED
[{JUST | RIGHT]

integer-2
INE NUMBER IS 4PLUS integer-3
NEXT PAGE

[t%ié;ﬂﬂﬁz IS character-string]

[RESET ON {;?ﬁgfifie"'l]

SOURCE IS identifier-2
SUM identifier-3 [,identifier-4] ... [UPON data-name-Z]
VALUE IS literal-1

SPLAY
SPLAY-6

[usht 1] DISPLAY=7 (| -
DISPLAY-

MR-S-1030-81

O

October 1985

THE DATA DIVISION

REPORT GROUP DESCRIPTIONS (Cont.)

Technical Notes

1.

Except for the data-name, which when present must immediately
follow the 1level-number, the clauses can be written in any
order.

A report group must have a data-name if it is referred to by
a Procedure Division statement.

Up to three hierarchical levels are permitted in a report
group description.

All elementary items must have both a PICTURE clause and one
of the clauses SOURCE, SUM, or VALUE.

For a detailed description of the BLANK WHEN ZERO, JUSTIFIED,
PICTURE, VALUE, and USAGE clauses, see the pages following
the Data Description Entry, which is Section 4.9.12.

The data-name need not appear in an entry unless it |is
referred to by a GENERATE or USE statement, or reference is
made to the SUM counter.

If the level-@1 item is elementary, the clauses in Format 2
can be used in addition to the clauses in Format 1.

The remaining clauses are described in detail on the
following pages.

4-80 October 1985

THE DATA DIVISION

COLUMN NUMBER

4.9.31 COLUMN NUMBER

Function

The COLUMN NUMBER clause indicates the column on the printed page 1in
which the high-order (leftmost) character of an item is printed.

General Format

D:OLUMN NUMBER 1S integer-l:l

MR-S-1299-81

Technical Notes

1.
2,

3.

5.

Integer must have a positive value less than 512.
This clause is valid only for an elementary item.

Within a report group and a particular LINE NUMBER
specification, COLUMN NUMBER entries must be indicated from
left to right.

If the COLUMN NUMBER clause is omitted, the elementary iten,
though 1included in the description, is suppressed when the
report group is produced at object time.

An entry that contains a COLUMN NUMBER clause but no LINE
NUMBER clause must be subordinate to an entry that contains a
LINE NUMBER clause.

4-81 October 1985

THE DATA DIVISION

GROUP INDICATE

4.9.32 GROUP INDICATE

Function

The GROUP INDICATE clause indicates that this elementary item is to be

produced

only on the first occurrence of the item after any CONTROL or

PAGE breaks.

General Format

[GRouP INDICATE |

MR-S-1300-81

Technical Notes

1.

2'

This clause can only be used at the elementary level within a
TYPE DETAIL report group.

A GROUP INDICATEd item is presented in the first detail 1line
of a report after any control breaks and after any page
breaks; it is suppressed at all other times.

The GROUP INDICATE clause can only appear in a DETAIL report

entry defining a printable item. (A printable item is a data
item that contains a COLUMN and PICTURE clause.)

4-82 October 1985

THE DATA DIVISION

LINE NUMBER

4.9.33 LINE NUMBER

Function

The LINE
entry in

NUMBER clause indicates the absolute or relative line number
reference to the page or the previous entry.

General Format

integer-1
INE NUMBER IS PLUS integer-2

NEXT PAGE

MR-5-1301-81

Technical Notes

1.

Integer—~1 and integer—-2 must be. positive integers with values
less than 512, 1Integer-l must be within the range specified
by the PAGE LIMITS clause in the RD entry.

The LINE NUMBER clause must be given for each report line of
a report group, and must be specified at or before the first
elementary item that contains a COLUMN clause of each report
line. If an 1item does not contain a COLUMN clause and the
LINE NUMBER clause is specified for it, no printing is done,
but the LINE NUMBER clause does cause vertical spacing to be
done.

If a LINE NUMBER clause is specified for an item, all entries
following that item, up to but not including the next item
with a LINE NUMBER clause, are presented on the same line.

A LINE NUMBER at a subordinate level can not contradict a
LINE NUMBER at a group level.

Integer—1 indicates that the current line is to be presented
at that line number.

PLUS integer-2 indicates that the LINE-COUNTER is to be
incremented by the value of integer-2, and that the current
line is to be presented on the 1line specified by the new
value of the LINE-COUNTER. The LINE NUMBER clause is the
only way for you to change the current value of LINE-COUNTER.

A relative LINE NUMBER clause cannot be the first LINE NUMBER
clause in a PAGE FOOTING group.

4-83 October 1985

THE DATA DIVISION

LINE NUMBER (Cont.)

8.

NEXT PAGE is used to indicate an automatic skip to the next
page before the current line is presented. 1If there is no
PAGE-LIMIT clause, there is only a skip to the top of the
next page. However, if there is a PAGE-LIMIT clause, after
skipping to the next page, the Report Writer then spaces as
follows.

Type of Line Space To

Detail, control heading, First detail line
control footing

Report heading, report Heading line
footing, page heading

Page footing Footing line

4-84 October 1985

THE DATA DIVISION

NEXT GROUP

4.9.34 NEXT GROUP

Function

The NEXT

GROUP clause specifies the spacing condition following the

last line of the report group.

General Format

integer-1

NEXT GROUP IS PLUS integer-2

NEXT PAGE

MR-8-1302-81

Technical Notes

1.

The NEXT GROUP clause can appear only at the #l-level of a
report group. However, the NEXT GROUP clause cannot be
specified in a REPORT FOOTING report group.

Integer-1 and integer-2 must be positive integers with values
less than 512, Integer-1l cannot exceed the number of lines
specified by the PAGE LIMIT clause.

Integer—-1 indicates a line number to which the LINE-COUNTER
is set after the group is presented.

PLUS integer—-2 indicates a relative 1line number that
increments the LINE-COUNTER by the value of integer-2 after
the group is presented. Integer—-2 is the number of 1lines
skipped following the last line of the report group.

NEXT PAGE indicates an automatic skip to the next page after
the group is presented.

The NEXT PAGE clause cannot be specified in a PAGE FOOTING
report group.

4-85 October 1985

RESET

THE DATA DIVISION

4.9.35 RESET

Function

The RESET clause indicates the CONTROL data-item that causes the SUM
counter to be reset to zero on a control break.

General Format

RESET N {

identifier-l}
FINAL

MR-§-1033-81

Technical Notes

1.

2.

Identifier must be one of the identifiers associated with the
CONTROL clause in the RD entry.

The RESET clause can be used only in conjunction with a SUM
clause at a CONTROL FOOTING elementary level.

Identifier must be a higher 1level (more major) control
identifier than the control identifier associated with this
report group.

After a TYPE CONTROL FOOTING report group is presented, the
sum counters associated with that group are automatically set
to zero, unless an explicit RESET clause directs that the
counter be cleared at a higher level.

4-86 October 1985

THE DATA DIVISION

SOURCE

4.9.,36 SOURCE

Function

The SOURCE clause indicates the source of the data for a report item.

General Format

SOURCE

identifier

MR-S-1303-81

Technical Notes

The SOURCE clause can only be given at the elementary level.

Identifier must reference an item that appears in the File or
Working-Storage Section,

The identifier can be subscripted or indexed (see the OCCURS
clause, Section 4.9.18).

When the report group is presented, the contents of this
report item are replaced by the contents of identifier.

4-87 October 1985

SUM

THE DATA DIVISION

4.9.37 8SUM

Function

The SUM clause indicates the items to be summed to produce the source
of data for a report item.

General Format

SUM identifier-1 [identifier-Z] [UPO data-name-l]

MR-8-1304-81

Technical Notes

1.

2.

A SUM clause can appear only in a TYPE CONTROL FOOTING report
group.

Each identifier must indicate a SOURCE item in a TYPE DETAIL
report group, or a SUM counter in a TYPE CONTROL FOOTING
report group.

If the SUM counter is referred to by a Procedure Division or
Report Section statement, a data—-name must be specified for
the item. The data-name then represents the summation
counter automatically generated by the Report Writer; that
data-name does not represent the report group item itself.

A summation counter is incremented just before the
presentation of the identifiers. Any editing of the SUM
counters is done only when the sum item is presented; at all
other times it is treated as a numeric item.

If higher-level report groups are indicated in the control
hierarchy, each lower level that is figured into the sum is
summed into the higher 1level before each lower 1level |is
reset: that 1is, counters are rolled forward prior to the
reset operation.

The UPON option is required to obtain selective summation for
a particular data item that is named as a SOURCE item in two
or more TYPE DETAIL report groups. Identifier-1 and
identifier-2 must be SOURCE data items in data-name-l;
data-name-1 must be the name of a TYPE DETAIL report group.

When the UPON option is used, summation occurs only when a
GENERATE statement references data-name-l. It does not occur
during summary reporting (refer to the GENERATE statement,
Section 5.9.16.)

The identifiers cannot be subscripted or indexed.

4-88 October 1985

THE DATA DIVISION

TYPE

4,9.38 TYPE

Function
The TYPE clause specifies the particular type of report group that |is

described by this entry and indicates the time when the report group
is generated.

General Format

(REPORT HEADING
RH
PAGE HEADING

PH {EﬁﬂIBQL-HEAQlME; {Ezﬁgﬁifier-n}

Type 1sd DETALL

DE {EENTBQL FOOTINQ} {Egﬁzzifier-ni

PAGE _FOQOTING

PE
REPORT FOOTING
RE

\ MR-8-1035-81

Technical Notes

1. RH is an abbreviation for REPORT HEADING.
PH is an abbreviation for PAGE HEADING.
CH is an abbreviation for CONTROL HEADING.,
DE is an abbreviation for DETAIL.
CF is an abbreviation for CONTROL FOOTING.
PF is an abbreviation for PAGE FOOTING.
RF is an abbreviation for REPORT FOOTING.

2, If the report group is described as TYPE DETAIL, the GENERATE
statement in the Procedure Division directs the Report Writer
to produce the named report group.

3. The REPORT HEADING entry indicates a report group that is
produced only once at the beginning of a report, during the
execution of the first GENERATE statement. There can be only
one report group of this type in a report.

4, The PAGE HEADING entry indicates a report group that |is
automatically produced at the beginning of each page of the
report. There can be only one report group of this type in a
report.

5. The CONTROL HEADING entry indicates a report group that 1is
produced at the beginning of a control group for a designated
identifier. 1In the case of FINAL, it is produced once bhefore
the first control group during the execution of the first
GENERATE statement. There can be only one report group of
this type for each identifier and for FINAL.

4-88.1 October 1985

THE DATA DIVISION

TYPE (Cont.)

6.

The CONTROL FOOTING entry indicates a report group that Iis
produced at the end of a control group for a designated
identifier, or that is produced only once at the termination
of a report in the case of FINAL. There can be only one
report group of this type for each identifier and for FINAL.
In order to produce _any CONTROL FOOTING report groups, a
control break must occur, In the event that a CONTROL
FOOTING occurs after a control break and is the first line
printed on the next page, change one or more values
(integer-1, integer-4, and integer-5) of the PAGE LIMIT
clause.

The PAGE FOOTING entry indicates a report group that is
automatically produced at the bottom of each page of the
report. There can be only one report group of this type in a
report.

The REPORT FOOTING entry indicates a report group that |is
produced only once, at the termination of a report. There
can be only one report group of this type in a report.

Each identifier, as well as FINAL, must be one of the

identifiers associated with the CONTROL clause in the RD
entry.

4-88,2 October 1985

THE DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION
DATA DIVISION.
[[FiLe secTion.
[:Eg file-name

oo oo Coveser1 1] w2 {2008 1]

[:?ECORD CONTAINS [jnteger-z IQ] integer-4 CHARACTER%]

RECORD 1S STANDARD
LABEL { RECORDS ARE} :OMITTED }

IDENTIFICATION data-name-1
VALUE OF[giﬁ————————————} IS {literal—l {}
[data name- 2 data-name-3
DATE-WRITTEN IS l]1tera1 o j} [§SER NUMBER IS { integer-5, integer-6 {}

RECORD IS
DATA { RECORDS ARE} data-name-4 [}ata-name-s:] ...:}

integer-7

data-name-6 B data-name-7
LINAGE IS {. } LINES WITH FOOTING AT {integer-B E]

data-name-8] data-name-9
[}INES AT TOP %integer-Q ; [:%INES AT BOTTOM {integer-lo E}

[FODE-SET Is a]phabet-name:]

{%%%%%%SIZRE} report-name-1 [}eport-name-%] ..;]
| -

RECORDING | MODE IS [:EYTE MOD%]

STANDARD-ASCII
L_ STANDARD ASCII

4-89 October 1985

THE DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION

I~
(=
(=]

{$)]
o
(o))

DENSITY IS

g

PARITY IS {

et

o

(=}

(e}
rnlo
<o
mio
=
-

(o)
~NY
(S
(e

[:gg file-name

[:RECORD CONTAINS [integer-1 T0 | integer-2 CHARACTER{]
RECORD IS i
[:BATA {EEEEﬁBS ARE} data-name-1 [Eata-name i] ..CT
[Erecord-description-entry} ...:] ...i}

[ﬁORKING-STORAGE SECTION.
77-1evel-description-entry
record-description-entry

[Linkace sECTION.
77-1evel-description-entry
record-description-entry .

[§0MMUNICATION SECTION.

[communication-description-entry
[record-description-entry | ...:] ...:}

MR-S-1306-81

THE DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION

REPORT SECTION.

RD report-name

[CODE mnemonic-name]

—

: FINAL
| %%%%%%%S IzRE } jdentifier-1 [identifier-21 ...
=2 FINAL identifier-1 [identifier-2)

LIMITS ARE LINES

PAGE { LIMIT IS } integer-1 { LINE l

[HEADING integer-2 | [FIRST DETAIL integer-3 |

[LAST DETAIL integer-4] [FOOTING integer-5]]

{record-descriptian-entry}

4-91

FORMAT 1:

THE DATA DIVISION

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

data-name-1
level-number { FILLER }

[:REDEFINES data-name-2 :]

USAGE IS

:[w] { e,

ASCENDING
DESCENDING

COMPUTATIONAL
coMp
COMPUTATIONAL-1

comMP-1
COMPUTATIONAL-3

COMP-3
DISPLAY
DISPLAY-6
DISPLAY-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY

LEADING
TEATLING } [}EPARATE CHARACTE@i;

} KEY IS data-name-4 [}ata—name-é] ..;]
[:FNDEXED BY index-name-1 [:1ndex name- i] :i}

SYNCHRONIZED
SYNC

LEFT
RIGHT

JUSTIFIED
JUST
[: ANK WHEN ZERo:]
[EALUE IS 11terai]

RIGHT
LEFT

{ %%%IQBE } IS character—strin§:}

0CCURS {1nteger-1 T0 integer-2 TIMES DEPENDING ON data-name-3
integer-2 TIMES

4-92

}

THE DATA DIVISION
GENERALTFORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 2:

66 data-name-1 RENAMES data-name-2 {} %%%%uﬁﬂ } data—name—B:]

FORMAT 3:

S VALUE IS . THROUGH .
88 condition-name {<VKEUES ARE} literal-1 { THRU } literal-2

literal-3 B m—E%U—G—H} 11'tera1-4]

THE DATA DIVISION

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

Format 1

01 [data-name-1]

[integer-1
LINE NUMBER IS PLUS integer-2
NEXT PAGE
L E—
integer-3
NEXT GROUP 1S PLUS integer-4
NEXT PAGE
REPORT HEADING)
RH
PAGE HEADING
PH CONTROL HEADING identifier-1
— CH FINAL
Type 15 q DETALL >

9

FINAL

E { CONTROL FOOTING } { identifier-2 }
CF

PAGE FOOTING

PF
REPORT FOOTING
 RF
DISPLAY
[usacE 1s] { orrAv7 -
DISPLAY-D

4-94

THE DATA bIVISION

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

Format 2

level-number [data-name-1]
[BLANK WHEN ZERO]
[COLUMN NUMBER 1S integer-1]

[GROUP INDICATE]

[{ JUSTIFIED : R LGHT]

integer-2
LINE NUMBER IS PLUS integer-3
L NEXT PAGE

{ %%%IEEE } IS character-string]

-

[identifier-1
RESET ON {_FINAL }]

L

SOURCE IS identifier-2
SUM identifier-3 [identifier-4] ... [UPON data-name-2]

VALUE IS Tliteral-1

DISPLAY

[usaee 15] { BREEAYS ¢ | -

DISPLAY-9

4-95

CHAPTER 5

THE PROCEDURE DIVISION

The Procedure Division specifies the processing to be performed on the
files and file data described in the Environment and Data Divisions.
The Procedure Division contains a series of COBOL procedure statements
which describe the processing to be done. Statements, sentences,
paragraphs, and sections are described in Section 5.1. Sections are
optional and permit a group of consecutive paragraphs to be referenced
by a single procedure~name; sections can also be used for
segmentation purposes (see Section 5.3, Segmentation). If any section
appears in the Procedure Division, then all paragraphs must appear
within a section.

The first entry in the Procedure Division of a source program must be
the division-header. The next entry must be either the DECLARATIVES
header (see the USE statement, Section 5.9.42), or a paragraph-name or
section=-name.

PROCEDURE DIVISION [ESING data-name-1 [éata-name-Z:] ...i}
[:PECLARATIVES.

{ section-name SECTION [}egment—numbe{] . declarative-sentence

[}aragraph-name. [}entenc{] ...:} . }

END DECLARATIVES.

{ section-name SECTION segment-number:]

[}aragraph-name. [[sentence”) ...:] e }

Only in a subprogram can USING clauses appear in the PROCEDURE
DIVISION header.

When a program-name is specified in a CALL statement 1in a calling
program, control 1is transferred to the beginning of the executable
code in the subprogram (that is, the Procedure Division).

The identifiers in the USING clause indicate those data items in the
called program that may reference data items in the calling program.
The order of identifiers in the CALL statement of the calling program
and in the PROCEDURE DIVISION header of the called program is
critical. The items 1in the USING clauses are related by their
corresponding positions, not by name. Corresponding identifiers refer
to a single set of data that is available to both the calling and the
called programs.

5-1

THE PROCEDURE DIVISION

The number of identifiers in the USING c¢lause in the PROCEDURE
DIVISION header must be less than or equal to the number of
identifiers in the USING clause in the CALL statement in the <calling
program.

5.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The Procedure Division consists of a series of procedure statements
grouped into sentences, paragraphs, and sections. By grouping the
statements in this manner, reference can be made to them via a
procedure-name (that 1is, a paragraph-name or a section-name). The
order in which procedure statements are executed can be controlled by
using the sequence=-control verbs ALTER, GO TO, and PERFORM.

5.1.1 Statements

Statements fall into three categories: imperative, conditional, and
compiler-directing, depending upon the verb used. Verbs, in turn, are
also classified into certain categories. These categories and their
relationship to the three statement categories are given in Table 5-1.

THE PROCEDURE DIVISION

Table 5-1

Procedure Verb and Statement Categories

Verb

Verb Category

Statement Category

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT
INSPECT

ARITHMETIC

IMPERATIVE

ALTER

CALL

ENTER

ENTRY

EXIT PROGRAM
GOBACK

GO TO
PERFORM

STOP

SEQUENCE~CONTROL

IMPERATIVE

ACCEPT
INSPECT
MOVE

SET
STRING
UNSTRING

DATA MOVEMENT

IMPERATIVE

CANCEL
FREE
INSPECT
MERGE
RELEASE
RETAIN
RETURN
SEARCH
SORT
TRACE

MISCELLANEOUS

IMPERATIVE

GENERATE
INITIATE
TERMINATE

REPORT

IMPERATIVE

ACCEPT
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
WRITE

IMPERATIVE

IF

CONDITIONAL

CONDITIONAL

corY
ENTER
USE

COMPILER-DIRECTING

COMPILER-DIRECTING

5-3

THE PROCEDURE DIVISION

5.1.2 Sentences

A statement or sequence of statements terminated by a period fogms a
sentence. Sentences are classified into the same three categories as

statements.

An imperative sentence consists solely of one or more imperative
statements. Except for imperative sentences containing one of the
sequence-control verbs, control passes to the next procedural sentence
following execution of the imperative sentence. If a GO TO or STOP
RUN statement is present in an imperative sentence, it must be the
last statement in the sentence.

A conditional sentence performs some test and, on the basis of the
results of that test, determines whether a "true" or a "false" path
should be taken. A conditional sentence is one that contains the
conditional verb (IF) or one of the option clauses ON SIZE ERROR (used
with arithmetic verbs), AT END (used with the READ verb), or INVALID
KEY (used with the READ verb for mass storage devices).

A compiler-directing sentence consists of a single compiler-directing
statement. Compiler-directing sentences are used to indicate the end
point of a PERFORM loop (EXIT), to copy library entries (COPY), and to
specify procedures for input-output errors (USE). Generally,
compiler-directing sentences generate no object-program coding.

5.1.3 Paragraphs

A single sentence or a group of sequential sentences can be assigned a
paragraph-name for reference. The paragraph-name must begin in Area A
(see Section 1.3, Source Program Format) and terminate with a period.
The first sentence of the paragraph can begin after the space
following this period or it can begin on the next line, beginning in
Area B.

A paragraph-name must be unique within its section, but need not be
unique within the program. A non-unique paragraph-name must be
qualified by its section-name except when it is referenced from within
its own section.

5.1.4 Sections

A single paragraph or a group of sequential paragraphs can be assigned
a section-name for reference. The section-name must begin in Area A
and be followed by the word SECTION followed by a priority number, if
desired, followed by a terminating period.

section~name SECTION nn.

If the section-name is in the Declaratives portion, it may not have a
priority number. A USE statement may