

PRO/VENIXTM
for the Professional

Programmer Reference Manual

Developed by:

VenturCom, Inc.
215 First Street

Cambridge, MA 02142

Digital Equipment Corporation
Maynard, MA 01754

First Printing

The software described in this manual is distributed as part of Digital
Equipment Corporation's Digital Classified Software (DCS) Program.
This program enables software developers to submit their software prod­
ucts to Digital for testing according to Digital quality standards for third
party software. This software product has met the DCS standard speci­
fied in the software product description (SPD) for this product. You
should refer to the SPD for information about these standards, the hard­
ware and software required to run this product, and warranties (if any
warranty is available).
The software described in this manual is furnished under a license and
may only be used or copied in accordance with the terms of that license.
This manual is reproduced with the permission ofVenturCom, Inc.

Copyright © 1983, by Western Electric. All Rights Reserved.

Portions Copyright © 1984 VenturCom, Inc. All Rights Reserved.

Except as may be stated in the SPD for this product, no responsibility is
assumed by Digital or its affiliated companies for use or reliability of this
software, or for errors in this manual or in the software. Additional sup­
port and/or warranty services may be available from the developer of
this software product. Digital has no connection with, and assumes no
responsibility or liabilities in connection with these services.
This manual is subject to change without notice and does not constitute a
commitment by Digital.

VENIX is a trademark ofVenturCom, Inc.
UNIX is a trademark of AT&T Technology, Inc.

The following are trademarks of Digital Equipment Corporation:
DEC DECwriter Professional V AX
DECmate DIBOL Rainbow VMS
DECnet MASSBUS RSTS VT
DECsystem-lO PDP RSX Work Processor
DECSYSTEM-20 P lOS UNIBUS ~allama
DECUS

The PRO/VENIXt Documentation Set

The PRO/VENIX documentation set consists of the following manuals:

PRO/VENIX Installation and System Manager's Guide

The set up and maintenance of PRO/VENIX are described in the
installation sections. Other articles explain the UNIX-to-UNIXt
communications systems. The "System Maintenance Reference
Manual" contains reference pages for devices and system maintenance
procedures (sections (7) and (8».

PRO/VENIX User Guide

The User Guide contains tutorials for newcomers to PRO/VENIX,
covering basic use of the system, the editor vi and use of the
command language interpreters.

PRO/VENIX Document Processing Guide

The line and screen editors and nroff-related text formatting utilities
are described in the Document Processing Guide. Topics include: line
editor ed, and stream editor sed; the text formatter nroff; the nroff­
preprocessors tbl and neqn.

PRO/VENIX Programming Guide

The chapters in the Programming Guide explicate the different
programming languages for VENIX.

t VENIX is a trademark of VenturCom. Inc.
:I: UNIX is a trademark of Bell Laboratories.

PRO/VENIX Support Tools Guide

This guide includes tools for programming, such as the compiler­
writing languages Yacc and Lex, the M4 Macro processor, the
program development utility Make, and the desk calculator programs
DC and BC.

PRO/VENIX User Reference Manual

This is a complete and concise reference for the PRO/VENIX system.
This volume contains write-ups on all PRO/VENIX commands.

PRO/VENIX Progammer Reference Manual

The reference p~ges in this volume include system calls, library
functions, file formats, miscellaneous functions and games.

Table of Contents

2. SYSTEM CALLS

intro
access
aiowait
alarm
brk
chdir
chmod
chown
close
cmap

introduction to system calls and error numbers
determine accessibility of file
wait on asynchronous i/o
schedule signal after specified time
change core allocation
change default directory
change mode of file
change owner and group of a file
close a file
pdp-ll

creat create a new file
dup duplicate an open file descriptor
exec execute a file
exit terminate process
fork spawn new process
getpid get process identification
getuid get user and group identity
indir pdp-II
ioctl control device
kill send signal to a process
libmon pdp-II
link . link to a file
lock lock a process in primary memory
lseek move read/write pointer
mknod make a directory or a special file
mount mount or remove file system
nice set program priority
open open for reading or writing
pause stop until signal
phys allow a process to access physical addresses
pipe create an interprocess channel
profil . execution time profile

Table of Contents

(SYSTEM CALLS continued)

ptrace process trace
read read from file
sdata . manipulate a shared data segment
semset manipulate local/global binary semaphores
setuid set user and group ID
signal catch or ignore signals
stat . get file status
stime . set time
suspend suspend/resume a process
sync update super-block
time get date and time
times . get process times
umask set file creation mode mask
unlink remove directory entry
utime set file times
wait wait for process to terminate
write . write on a file

3. SUBROUTINES

intro introduction to library functions
abort generate lOT fault
abs integer absolute value
assert program verification
atof convert ASCII to numbers
crypt . DES encryption
ctime convert date and time to ASCII
ctype . character classification
curses screen functions with
ecvt output conversion
end . last locations in program
exp .. exponential, logarithm, power, square root
fclose close or flush a stream
ferror stream status inquiries
floor absolute value, floor, ceiling functions

Table of Contents

(SUBROUTINES continued)

fopen
fread
frexp
fseek
getc
getenv
getes
getgrent
getlogin
getpass
getpw
getpwent
gets
hypot
jO
13tol
lib pc
malloc
mktemp
monitor
mp
nlist
pc_prlib
perror
plot
popen
printf
putc
puts
qsort
rand
scanf
setbuf
setjmp
sin
sinh
sleep
stdio

open a stream
buffered binary input! output
split into mantissa and exponent
reposition a stream
get character or word from stream
value for environment name
read/write to ES memory
get group file entry
get login name
read a password
get name from UID
get password file entry
get a string from a stream
euclidean distance
bessel functions
convert between 3-byte integers and long integers
library of external routines for Pascal programs
main memory allocator
make a unique file name
prepare execution profile
multiple precision integer arithmetic
get entries from name list
library of Pascal runtime routines
system error messages
graphics interface
initiate 110 to/from a process
formatted output conversion
put character or word on a stream
put a string on a stream
quicker sort
random number generator
formatted input conversion
assign buffering to a stream
non-local goto
trigonometric functions
hyperbolic functions
suspend execution for interval
standard buffered input/output package

Table of Contents

(SUBROUTINES continued)

string string operations
swab swap bytes
system issue a shell command
termcap terminal independent operation routines
ttyname find name of a terminal
ungetc push character back into input stream

4. FILE FORMATS AND CONVENTIONS

a.out .. .
ar
checklist
core
dir
filsys
group
mtab
passwd
ttys
utmp .. .

5. MISCELLANEOUS FACILITIES

assembler and link editor output
archive (library) file format
default file system checklist file
format of core image file
format of directories
format of file system volume
group file
mounted file system table
password file
terminal initialization data
login records

environ user environment
plot graphics interface
term cap terminal capability data base
types . system type declarations

Table of Contents

6. GAMES

backgammon the game
banner make long posters
bj the game of black jack
checkers game
chess . the game of chess
fortune fortune cookie
maze generate a maze problem
moo guessing game
quiz test your knowledge
ttt . tic-tac-toe
wump the game of hunt-the-wumpus

Contents

INTRODUCTION

Section 2. SYSTEM CALLS

Section 3. SUBROUTINES

Section 4. FILE FORMATS AND CONVENTIONS

Section 5. MISCELLANEOUS FACILITIES

Section 6. GAMES

INTRO(2) INTRO(2)

NAME
intro, errno - introduction to system calls and error numbers

SYNOPSIS
#include < ermo.b >

DESCRIPTION
Section 2 of this manual lists all the entries into the system. Use of
many of these calls is discussed in the chapter "VENIX Programming"
in the Programming Guide. You might also consider use of the standard
1/0 library, described in section 3 of this manual as well as in "VENIX
Programming," for easier use of many of the 1/0 functions. Be careful
not to mix system-level 1/0 calls (such as openO and closeO) with stan­
dard 1/0 calls (such as fopen(land fclose(».
Most of these calls have an error return. An error condition is indicated
by an otherwise impossible returned value. Almost always this is -1; the
individual sections specify the details. An error number is also made
available in the external variable errno. errno is not cleared on success­
ful calls, so it should be tested only after an error has occurred.

There is a table of messages associated with each error, and a routine for
printing the message; see perror(3). The possible error numbers are not
recited with each writeup in section 2, since many errors are possible for
most of the calls. Here is a list of the error numbers, their names as
defined in < errno.b >, and the messages available using perror.

Errors which have an '*' preceding the number may have an accompany­
ing system error message on the main console device, since they represent
conditions which the system administrator should be aware of. See
"VENIX Maintenance" in the Installation and System Manager's Guide
for a listing of system error messages.

o - Error 0 Unused

EPERM - Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

VENIX System Calls

INTRO (2) INTRO(2)

2

2 ENOENT - No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn't, or when one of the directories in a pathname
does not exist.

3 ESRCH - No such process
The process whose number was given to signal, suspend, or
ptrace does not exist, or is already dead.

4 EINTR - Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If exe­
cution is resumed after processing the signal, it will appear as if
the interrupted system call returned this error condition.

*5 EIO - I/O error
Some physical I/O error occurred during a read or write. This
error may in some cases occur on a call following the one to
which it actually applies.

6 ENXIO - No such device or address
I/O on a special file refers to a sub device that does not exist, or
beyond the limits of the device. It may also occur when, for
example, a tape drive is not dialed in or no disk pack is loaded
on a drive.

7 E2BIG - Arg list too long
An argument list longer than 2048 bytes is presented to exec.

8 ENOEXEC - Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number, see a.out(4).

9 EBADF - Bad file number
Either a file descriptor refers to no open file, or a read (resp.
write) request is made to a file that is open only for writing (resp.
reading).

10 ECHILD - No children
wait and the process has no living or unwaited-for children.

VENIX System Calls

INTRO(2} INTRO(2}

11 EAGAIN - No more processes
In a fork, the system's process table is full or the user is not
allowed to create any more processes.

*12 ENOMEM - Not enough core
During an exec or break, a program asks for more core than the
system is able to supply. This is not a temporary condition; the
maximum core size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not
enough swap space available.

13 EACCES - Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT - Bad address
The system encountered a hardware fault in attempting to access
the arguments of a system call.

15 ENOTBLK - Block device required
A plain file was mentioned where a block device was required,
e.g. in mount.

16 EBUSY - Mount device busy
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active
text segment).

17 EEXIST - File exists
An existing file was mentioned in an inappropriate context, e.g.
link.

18 EXDEV - Cross-device link
A link to a file on another device was attempted.

19 ENODEV - No such device
An attempt was made to apply an inappropriate system call to a
device, e.g. read a write-only device.

VENIX System Calls 3

INTRO(2) INTRO(2)

4

20 ENOTDIR - Not a directory
A non-directory was specified where a directory is required, for
example in a pathname or as an argument to ehdir.

21 EISDIR - Is a directory
An attempt to write on a directory.

22 EINV AL - Invalid argument
Some invalid argument: dismounting a non-mounted device,
mentioning an unknown signal in signal, reading or writing a file
for which seek has generated a negative pointer. Also set by
math functions, see intro(3).

*23 ENFILE - File table overflow
The system's table of open files is full, and temporarily no more
opens can be accepted.

24 EMFILE - Too many open files
Customary configuration limit is 15 per process.

25 ENOTTY - Not a typewriter
The file mentioned in ioetl is not a terminal or one of the other
devices to which these calls apply.

26 ETXTBSY - Text file busy
An attempt to execute a pure-procedure program that is currently
open for writing (or reading!). Also an attempt to open for writ­
ing a pure-procedure program that is being executed.

27 EFBIG - File too large
The size of a file exceeded the maximum (about 16 mbytes).

*28 ENOSPC - No space left on device
During a write to an ordinary file, there is no free space left on
the device.

29 ESPIPE - Illegal seek
An Iseek was issued to a pipe. This error should also be issued
for other non-seekable devices.

30 EROFS - Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

VENIX System Calls

INTRO(2) INTRO(2)

31 EMLINK - Too many links
An attempt to make more than 127 links to a file.

32 EPIPE - Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
if the signal is ignored.

33 EDOM - Math argument
The argument of a function in the math package (3M) is out of
the domain of the function.

34 ERANGE - Result too large

SEE ALSO
intro(3)

ASSEMBLER

The value of a function in the math package (3M) is unrepresent­
able within machine precision.

Assembler interface is given for both PDP-ll and 8086 processors.

PDP~ll:

The assembler symbols are defined in /usr/inciude/sys.s. Return
values appear in registers RO and R1; it is unwise to count on
these registers being preserved when no value is expected. An
erroneous call is always indicated by turning on the C-bit of the
condition codes. The error number is returned in RO. The pres­
ence of an error is most easily tested by the instructions bes and
bee ('branch on error set (or clear)'). These are synonyms for
the bes and bee instructions.

8086: Return values appear in registers AX, DX and CX; it is unwise
to count on these registers being preserved when no value is
expected. An erroneous call is always indicated by an error
number in CX. The presence of an error is most easily tested by
the instruction JCXZ ("jmp CX zero").

VENIX System Calls 5

INTRO(2)

Cross-Reference to VENIX System Calls

access
~owaH
alarm
break
brk
chdir
chmod
chown
chroot
close
cmap
creat
dup
dup2
environ
errno
exec
exece
exeel
exeele
exeelp
execv
execve
execvp
exH
fork
fstat
ftime
getegid
geteuid
getgid
getpid
getuid
gtty
indir
intro
ioctl
kill
Iibmon

ACCESS link ·
AIOWAIT lock ·
ALARM Iseek ·
BRK mknod ·
BRK mount ·
CHDIR nice ·
CHMOD open ·
CHOWN pause ·
CHDIR phys ·
CLOSE pipe ·
CMAP profit ·
CREAT ptrace ·
DUP read ·
DUP sbrk ·
EXEC sdata ·
INTRO semelear
EXEC semset ·
EXEC semtest ·
EXEC semtset ·
EXEC setgid ·
EXEC setuid ·
EXEC signal ·
EXEC stat ·
EXEC stime ·
EXIT stty ·
FORK suspend ·
STAT sync ·
TIME tell
GETUID time ·
GETUID times ·
GETUID umask ·
GETPID umount ·
GETUID unlink ·
IOCTL utime ·
INDIR wait ·
INTRO write ·
IOCTL
KILL
LIBMON

VENIX System Calls

INTRO(2)

LINK
LOCK
LSEEK
MKNOD
MOUNT
NICE
OPEN
PAUSE
PHYS
PIPE
PROFIL
PTRACE
READ
BRK
SDATA
SEMSET
SEMSET
SEMSET
SEMSET
SETUID
SETUID
SIGNAL
STAT
STIME
IOCTL
SUSPEND
SYNC
LSEEK
TIME
TIMES
UMASK
MOUNT
UNLINK
UTIME
WAIT
WRITE

ACCESS (2) ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
access(name, mode)
char *name;

DESCRIPTION
access checks the given file name for accessibility according to mode,
which is 4 (read), 2 (write) or 1 (execute) or a combination thereof.
Specifying mode 0 tests whether the directories leading to the file can be
searched and the file exists.

An appropriate error indication is returned if name cannot be found or if
any of the desired access modes would not be granted. On disallowed
accesses - 1 is returned and the error code is in errno. 0 is returned
from successful tests.

The user and group IDs with respect to which permission is checked are
the real UID and OlD of the process, so this call is useful to set-UID
programs.

Notice that it is only access bits that are checked. A directory may be
announced as writable by access, but an attempt to open it for writing
will fail (although files may be created there); a file may look executable,
but exec will fail unless it is in proper format.

SEE ALSO
access(1), stat(2)

ASSEMBLER
(access = 33.)

PDP-l1:
sys acess; name; mode

8086: BX = 33
AX = name
DX = mode
int OXfl

VENIX System Calls

AIOWAIT(2) AIOWAIT(2)

NAME
aiowait - wait on asynchronous 110

SYNOPSIS
aiowait(fd, level)

DESCRIPTION
aiowait causes the calling process to go to sleep until the outstanding 110
requests by the process to the device referred to by the file descriptor jd
are less then or equal to level. The number of outstanding requests is
returned. If level is negative, then only the number of outstanding
requests is returned.

jd is the file descriptor returned by a previous open of the asynchronous
version of a DMA device, such as a disk or AID device.

Since asynchronous 110 is serviced in the order requested, the user can
know when a given request has been completed.

aiowait is implemented by a call to ioctl(2) with the aiocwait command.

SEE ALSO
ioct1(2), async(7)

DIAGNOSTICS

NOTES

A-I is returned if the file descriptor is unknown or not a special char­
acter file opened for asynchronous 110.

Asynchronous 110 is non-portable to standard UNIX.

VENIX System Calls

ALARM (2) ALARM (2)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm(time)

DESCRIPTION
alarm causes signal SIGALRM (see signal(2» to be sent to the invoking
process in a specified time given by the argument. Unless caught or
ignored, the signal terminates the process.

If time is greater than zero, the alarm will be measured in seconds. Suc­
cessive calls of positive alarm values will not be stacked; an alarm will be
sent only at the time indicated by the most recent call. The return value
will be the amount of time previously remaining on the clock. A call
with value zero will cancel the last positive-valued alarm. The longest
specifiable positive time value is 32767.

If time is a negative value the alarm will be measured in clock-ticks, i.e.
1I6Oth of a second, and equal to the absolute value of time. (Note: not
all machines have a clock running precisely 60Hz, thus the alarm
scheduling granularity may be larger than 1I60th of a second.) Successive
calls of negative alarm values will not be stacked; the alarm will be sent
at the time indicated by the most recent call. Unlike positive alarms, this
type of alarm can not be cancelled, and the return value for this type of
call is always zero. The longest specifiable alarm in clock-ticks is 32768.

Note that alarm calls given in seconds (positive or zero time) and those
given in clock-ticks (negative time) are handled totally apart, and can
almost be considered separate system calls.

Because of the resolution of the respective clocks, alarms given in
seconds may be up to one second early, and alarms given in clock-ticks
may be up to one clock-tick early. Because of scheduling delays,
resumption of execution when the signal is caught may be delayed an
arbitrary amount.

SEE ALSO

NOTES

1

pause(2), signal(2), sleep(3)

Clock-tick alarms are not portable to standard UNIX, and VENIX does
not support regular alarms for longer than 32767 seconds.

VENIX System Calls

ALARM (2)

ASSEMBLER
(alarm = 27.)

PDP-II:
RO = time
sys alarm
RO = previous amount or zero

8086: BX = 27
AX = time
int OXfl
AX = previous amount or zero

VENIX System Calls

ALARM (2)

2

BRK(2) BRK(2)

NAME
brk, sbrk, break - change core allocation

SYNOPSIS
char *brk(addr)

char *sbrk(incr)

DESCRIPTION
brk sets the system's idea of the lowest location not used by the program
(called the break) to addr. Locations not less than addr and below the
stack pointer are not in the address space and will thus cause a memory
violation if accessed.

In the alternate function sbrk, incr more bytes are added to the
program's data space and a pointer to the start of the new area is
returned.

When a program begins execution via exec(2) the break is set at the
highest location defined by the program and data storage areas. Ordi­
narily, therefore, only programs with growing data areas need to use
these calls.

SEE ALSO
exec(2), malloc(3), end(3)

DIAGNOSTICS
Zero is returned if the break could be set; - 1 if the program requests
more memory than the system limit.

ASSEMBLER

1

(break = 17.)

PDP-ll:
sys break; addr

8086: BX = 17
AX = addr
int OXfl

break performs the function of brk. The name of the routine differs
from that in C for historical reasons.

VENIX System Calls

CHDIR(2) CHDIR(2)

NAME
chdir, chroot - change default directory

SYNOPSIS
chdir(dirname)
char *dirname;

chroot(dirname)
char *dirname;

DESCRIPTION
dirname is the address of the pathname of a directory, terminated by a
null byte. chdir causes this directory to become the current working
directory, the starting point for pathnames not beginning with '/'.

chroot sets the root directory, the starting point for pathnames beginning
with '/'. (Note that this applies to the calling process alone, not to the
complete system.)

SEE ALSO
cd(1)

DIAGNOSTICS
Zero is returned if the directory is changed; - 1 is returned if the given
name is not that of a directory or is not searchable.

ASSEMBLER
(chdir = 12.)

PDP-II:
sys chdir; dirname

8086: BX = 12
AX = dirname
int OXfl

(chroot = 61.)

PDP-II:
sys chroot; dirname

8086: BX = 61
AX = dirname
int OXfl

VENIX System Calls

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to by
name has its mode changed to mode. Modes are constructed by OR'ing
together some combination of the following:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (- n or - i option of Jd(l» then
mode 1 000 prevents the system from abandoning the swap-space image
of the program-text portion of the file when its last user terminates.
Thus when the next user of the file executes it, the text need not be read
from the file system but can simply be swapped in, saving time. Ability
to set this bit is restricted to the super-user since swap space is consumed
by the images; it is only worthwhile for heavily used commands. This is
only in effect for files residing on the root file system. A program with
this bit set should not be removed or replaced if it has been executed at
all since the last system boot-up (as an unreferenced i-node results). The
correct procedure is to remove/replace the file before it has been exe­
cuted following a boot-up.

Only the owner of a file (or the super-user) may change the mode. Only
the super-user can set the 1000 mode.

SEE ALSO
chmod(l)

DIAGNOSTIC

1

Zero is returned if the mode is changed; - 1 is returned if name cannot
be found or if current user is neither the owner of the file nor the super­
user.

VENIX System Calls

CHMOD(2)

ASSEMBLER
(chmod = 15.)

PDP-ll:
sys chmod; name; mode

8086: BX = 15
AX = name
OX = mode
int OXfl

VENIX System Calls

CHMOD(2)

2

CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
chown(name, owner, group)
char *name;

DESCRIPTION

CHOWN(2)

The file whose name is given by the null-terminated string pointed to by
name has its owner and group changed as specified. Only the super-user
may execute this call, because if users were able to give files away, they
could defeat the (non-existent) file-space accounting procedures.

SEE ALSO
chown(1), passwd(4)

DIAGNOSTICS
Zero is returned if the owner is changed; - 1 is returned on illegal owner
changes.

ASSEMBLER
(chown = 16.)

PDP-II:
sys chown; name; owner; group

8086: BX = 16
AX = name
DX = owner
CX = group
int OXfl

VENIX System Calls

CLOSE(2) CLOSE(2)

NAME
close -- close a file

SYNOPSIS
c1ose(fiIdes)

DESCRIPTION
Given a file descriptor such as returned from an open, creat, dup, or
pipe(2) call, close closes the associated file. A close of all files is
automatic on exit, but since there is a limit on the number of open files
per process, close is necessary for programs which deal with many files.

Files are closed upon termination of a process, and certain file descriptors
may be closed by exec(2) (see ioctl(2».

SEE ALSO
creat(2), dup(2), open(2), pipe(2), exec(2), ioctl(2)

DIAGNOSTICS
Zero is returned if a file is closed; - I is returned for an unknown file
descriptor.

ASSEMBLER
(close = 6.)

PDP-II:
RO = fildes
sys close

8086: BX = 6
AX = fildes
int OXfl

VENIX System Calls

CMAP(2) PDP-II Only CMAP(2)

NAME
cmap - remap the code segment of a program

DESCRIPTION
cmap is used to remap a different portion of code into a process' address
space. This call is used by a process which is too big to fit into 64kb of
address space.

SEE ALSO

NOTES

"Code-Mapping Under VENIX" in the Programming Guide
Id(1), sdata(2)

Code-mapping is not portable to standard UNIX. This call should not
be used directly by the user; the loader is set up to deal with code­
mapping when given the - m flag.

ASSEMBLER

1

(cmap = 62.)

PDP-II:
RO = offset
sys cmap
RO = -1 if error, 0 if okay

VENIX System Calls

CREAT(2) CREAT(2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char *name;

DESCRIPTION
creat creates a new file or prepares to rewrite an existing file called name,
given as the address of a null-terminated string. If the file did not exist,
it is given mode mode, as modified by the process' mode mask (see
umask(2». Also see chmod(2) for the construction of the mode argu­
ment. The owner ID of the file is set to the process' effective user and
group ID.

The file is opened for writing only, and its file descriptor is returned.

If the file did exist, its mode and owner remain unchanged but it is trun­
cated to 0 length.

The mode given is arbitrary; it need not allow writing. This feature is
used by programs which deal with temporary files of fixed names. The
creation is done with a mode that forbids writing. Then if a second
instance of the program attempts a creat, an error is returned and the
program knows that the name is unusable for the moment. The set-ID
and sticky text bits can not be set by this mode; use chmod(2) to accom­
plish this.

SEE ALSO
write(2), close(2), chmod(2), umask(2)

DIAGNOSTICS
The value - 1 is returned and the file not created if: a needed directory is
not searchable; the file does not exist and the directory in which it is to
be created is not writable; the file does exist and is unwritable; the file is
a directory. If there are already too many files opened, the file is created
but - 1 is returned.

ASSEMBLER
(creat = 8.)

PDP-ll:
sys creat; name; mode
RO = file descriptor

VENIX System Calls

CREAT(2) CREAT(2)

2

8086: BX = 8
AX = name
DX = mode
int OXfl

VENIX System Calls

DUP(2) DUP(2)

NAME
dup, dup2 - duplicate an open file descriptor

SYNOPSIS
dup(fildes)
int fildes;

dup2(fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
Given a file descriptor returned from an open, pipe, or creat(2) call, dup
allocates another file descriptor synonymous with the original. The new
file descriptor is returned. dup always returns the lowest available file
descriptor.

In the second form of the call, fi/des is a file descriptor referring to an
open file, and fi/des2 is a non-negative integer less than the maximum
value allowed for file descriptors (approximately 14). dup2 causes fildes2
to refer to the same file as fi/des. If fildes2 already referred to an open
file, it is closed first.

SEE ALSO
creat(2), open(2), close(2), pipe(2)

DIAGNOSTICS
The value - 1 is returned if: the given file descriptor is invalid; there are
already too many open files.

ASSEMBLER
(dup = 41.)

PDP-II:
RO = file descriptor
Rl = new file descriptor
sys dup
RO = file descriptor

8086: BX = 41
AX = fildes
DX = new fildes
int OXfl

The dup2 entry is implemented by adding 0100 to fi/des.

VENIX System Calls

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp, exec, exece, environ - exe­
cute a file

SYNOPSIS
execl(name, argO, argl, ... , argn, 0)
char *name, *argO, *argl, .•. , *argn;

execv(name, argv)
char *name, *argv[];

execle(name, argO, argl, ... , argn, 0, envp)
char *name, *argO, *argl, ... , *argn, *envp[];

execve(name, argv, envp);
char *name, *argv[], *envp[];

extern char **environ;

DESCRIPTION
exec in all its forms overlays the calling process with the named file, then
transfers to the entry point of the core image of the file. There can be
no return from a successful exec; the calling core image is lost.

Files remain open across exec; see ioctl(2). Ignored signals remain
ignored across these calls, but signals that are caught (see signal(2» are
reset to their default values.

Each user has a real user ID and group ID and an effective user ID and
group ID. The real ID identifies the person using the system; the
effective ID determines his access privileges. exec changes the effective
user and group ID to the owner of the executed file if the file has the
'set-user-ID' or 'set-group-ID' modes. The real user ID is not affected.

The name argument is a pointer to the name of the file to be executed.
The pointers argO, argl, ... argn address null-terminated strings. Con­
ventionally argO is the name of the file.

From C, two interfaces are available. execl is useful when a known file
with known arguments is being called; the arguments to execl are the
character strings constituting the file and the arguments; the first argu­
ment is conventionally the same as the file name (or its last component).
A 0 argument must end the argument list.

VENIX System Calls

EXEC(2) EXEC(2)

FILES

The execv version is useful when the number of arguments is unknown in
advance; the arguments to execv are the name of the file to be executed
and a vector of strings containing the arguments. The last argument
string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, arge is convention­
ally at least one and the first member of the array points to a string con­
taining the name of the file.

argv is directly usable in another execv because argv [arge] is O.

envp is a pointer to an array of strings that constitute the environment of
the process. Each string conventionally consists of a name, an '=', and
a null-terminated value. The array of pointers is terminated by a null
pointer. The shells sh(l) and csh(l) pass an environment entry for each
global shell variable defined when the program is called. The C run-time
start-off routine places a copy of envp in the global cell environ, which is
used by execv and execl to pass the environment to any subprograms exe­
cuted by the current program. The exec routines use lower-level routines
as follows to pass an environment explicitly:

execle(file, argO, argl, ... , argn, 0, environ);
execve(file, argv, environ);

execlp and execvp are called with the same arguments as execl and execv,
but duplicate the shell's actions in searching for an executable file in a
list of directories. The directory list is obtained from the environment.

/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
fork(2), ioctl(2), signal(2), "VENIX Programming" in the Programming
Guide.

VENIX System Calls 2

EXEC(2) EXEC(2)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not start with
a valid magic number (see a.out(4», if maximum memory is exceeded, or
if the arguments require too much space, a return constitutes the diag­
nostic; the return value is -1. Even for the super-user, at least one of
the execute-permission bits must be set for a file to be executed.

If execvp is called to execute a file that turns out to be a shell command
file, and if it is impossible to execute the shell, the values of argv[O] and
argyl -1] will be modified before return.

ASSEMBLER

3

(exec = 11.)

PDP-ll:
sys exec; name; argv

8086: BX = 11
AX = name
DX = argv
int OXfl

(exece = 59.)

PDP-ll:
sys exece; name; argv; envp

8086: BX = 59
AX = name
DX = argv
CX = envp
int OXfl

Plain exec is obsoleted by exece, but remains for historical reasons.

When the called file starts execution, the stack pointer points to a word
containing the number of arguments. Just above this number is a list of
pointers to the argument strings, followed by a null pointer, followed by
the pointers to the environment strings and then another null pointer.
The strings themselves follow; a 0 word is left at the very top.

VE~IX System Calls

EXEC(2) EXEC(2)

sp- nargs
argO

argn
0
envO

envm
0

argO: <argO\O>

envO: <envO\O>
0

VENIX System Calls 4

EXIT(2)

NAME
exit - terminate process

SYNOPSIS
exit (status)
int status;

_exit(status)
int status;

DESCRIPTION

EXIT(2)

exit is the normal means of terminating a process. exit closes all the pro­
cess' files and notifies the parent process if it is executing a wait(2). The
low-order 8 bits of status are available to the parent process.

This call can never return.

The C function exit may cause cleanup actions before the final 'sys exit'.
The function _exit circumvents all cleanup.

SEE ALSO
wait(2)

ASSEMBLER
(exit = 1.)

1

PDP-l1:
RO = status
sys exit

8086: BX = 1
AX = status
int OXfl

VENIX System Calls

FORK(2) FORK(2)

NAME
fork - spawn new process

SYNOPSIS
fork()

DESCRIPTION
fork is the only way new processes are created. The new process' core
image is a copy of that of the caller of fork. The only distinction is the
fact that the value returned in the old (parent) process contains the pro­
cess ID of the new (child) process, while the value returned in the child is
O. Process ID's range from 1 to 30,000. This process ID is used by
wait(2) and kill(2).

Files open before the fork are shared, and have a common read-write
pointer. In particular, this is the way that standard input and output files
are passed and also how pipes are set up.

SEE ALSO
wait(2), exec(2), kill(2)

DIAGNOSTICS
Returns -1 and fails to create a process if: the user is not super-user, or
the system's process table is full. Only the super-user can take the last
process-table slot.

ASSEMBLER
(fork = 2.)

PDP-ll:
sys fork
(new process return)
(old process return, RO = new process ID)
The return locations in the old and new process differ by one
work. The C-bit is set in the old process if a new process could
not be created.

8086: BX = 2
int OXfl
AX = 0 for child, child process ID for parent

VENIX System Calls 1

GETPID(2)

NAME
getpid - get process identification

SYNOPSIS
getpid()

DESCRIPTION

GETPID(2)

getpid returns the process ID of the current process. Most often it is
used to generate uniquely-named temporary files.

SEE ALSO
mktemp(3)

ASSEMBLER
(getpid = 20.)

PDP-II:
sys getpid
RO = process ID

8086: BX = 20
int OXfl
AX = process ID

VENIX System Calls

GETUID(2) GETUID(2)

NAME
getuid, getgid, geteuid, getegid - get user and group identity

SYNOPSIS
getuid()

geteuid()

getgid()

getegid()

DESCRIPTION
getuid returns the real user ID of the current process, geteuid the
effective user ID. The real user ID identifies the person who is logged in,
in contradistinction to the effective user ID, which determines his access
permission at the moment. It is thus useful to programs which operate
using the 'set user ID' mode, to find out who invoked them.

getgid returns the real group ID, getegid the effective group ID.

SEE ALSO
setuid(2)

ASSEMBLER
(getuid = 24.)

PDP-ll:
sys getuid
RO = real UID
Rl = effective UID

8086: BX = 24
int OXfl
AX = real UID
DX = effective UID

(getgid = 47.)

PDP-ll:
RO = real GID
RI = effective GID

VENIX System Calls

GETUID (2) GETUID (2)

2

8086: BX = 47
int OXfl
AX = real GID
DX = effective GID

VENIX System Calls

INDIR(2) PDP-II Only INDIR(2)

NAME
indir - indirect system call

ASSEMBLER
(indir = 0.)

PDP-ll:
sys indir; call

The system call at the location call is executed. Execution resumes after
the indir call.

The main purpose of indir is to allow a program to store system calls and
their arguments in the data segment. Since system calls are executed with
a trap, their arguments must be placed directly after the sys instruction.
In order to keep system call arguments in the data segment (and thus
allow shared-text (pure) programs which must have totally separate text
and data portions), the indir call is used to indirectly execute the system
call in the data portion. The C interface for any system call with argu­
ments uses this method.

If indir itself is executed indirectly, it is a no-op. If the instruction at the
indirect location is not a system call, indir returns error code EINV AL;
see intro(2).

Because of indir's special nature, it is executed at the assembler level
only.

VENIX System Calls

IOCTL(2) IOCTL(2)

NAME
ioctl, stty, gtty - control device

SYNOPSIS
#include < sgtty.h >

ioetl(fiIdes, request, argp)
struet sgttyb *argp;

stty(fiIdes, argp)
struet sgttyb *argp;

gtty(fildes, argp)
struet sgttyb *argp;

DESCRIPTION
ioetI performs a variety of functions on character special files (devices).
The writeups on various devices in section 7, in the Installation and Sys­
tem Manager's Guide, discuss how ioet) applies to them.

For certain status setting and status inquiries about terminal devices, the
functions stty and gtty are equivalent to

ioet)(fiIdes, TIOCSETP, argp)
ioetI(fiIdes, TIOCGETP, argp)

respectively; see ttys(4).

SEE ALSO
stty(1), ttys(4), exec(2)

DIAGNOSTICS

BUGS

1

Zero is returned if the call was successful; - 1 if the file descriptor does
not refer to the kind of file for which it was intended.

Strictly speaking, since ioetI may be extended in different ways to devices
with different properties, argp should have an open-ended declaration like

union { struet sgttyb ... ; ... } *argp;

The important thing is that the size is fixed by 'struct sgttyb'.

VENIX System Calls

IOCTL(2)

ASSEMBLER
(ioctl = 54.)

PDP-II:
sys ioctl; tildes; request; argp

8086: BX = 54
AX = tildes
DX = request
CX = argp
int OXfl

(stty = 31.)

PDP-II:
RO = tildes
sys stty; argp

8086: BX = 31
AX = tildes
DX = argp
int OXfl

(gtty = 32.)

PDP-ll:
RO= tildes
sys gtty; argp

8086: BX = 32
AX = tildes
DX = argp
int OXfl

VENIX System Calls

IOCTL(2)

2

KILL(2) KILL(2)

NAME
kill - send signal to a process

SYNOPSIS
kill(pid, sig);

DESCRIPTION
kill sends the signal sig to the process specified by the process number
pid. See signal(2) for a list of signals.

The sending and receiving processes must have the same effective user
ID, otherwise this call is restricted to the super-user.

If the process number is 0, the signal is sent to all other processes in the
sender's process group; see ttys(4).

If the process number is - 1, and the user is the super-user, the signal is
broadcast universally except to processes 0 and 1, the scheduler and ini­
tialization processes. See init(8), section 8 in the Installation and System
Manager's Guide.

Processes may send signals to themselves.

SEE ALSO
signal(2), kill(1)

DIAGNOSTICS
Zero is returned if the process is killed; - 1 is returned if the process
does not have the same effective user ID and the user is not super-user,
or if the process does not exist.

ASSEMBLER
(kill = 37.)

PDP-ll:
RO = process ID
sys kill; signal

8086: BX = 37
AX = process ID
DX = signal
int OXfl

VENIX System Calls

LIBMON(2) PDP-ll Only LIBMON(2)

NAME
libmon - library of system call routines for Pascal programs

DESCRIPTION

FILES

The modules in this library comprise the VENIX system call interface for
Pascal programs. System calls with their C-Ianguage interface are
described in the other pages of this section of the manual. The Pascal
interface is quite similar.

All calls are available with the following exceptions:

The system call brk is not available, because the memory allocation for
Pascal programs is quite different.

The system call signal is replaced by sigtrp, with the following calling
sequence:

function sigtrp(signo, trapno :integer) :integer;

One of the reasons is that the action values of signal, odd for 'ignore'
and zero for 'get back to default', interfere with the Pascal procedure
identification. Procedures in Pascal are numbered consecutively from
zero up. The first argument of sigtrp is the signal number signo as for
signal. The second argument is an integer trap no , indicating the action
to be performed when the signal is issued:

- 2 Reset the action for signal signo to the default.

- 3 Ignore signal signo.

0-255 Perform an EM-l instruction TRP with error code trapno,
whenever the signal signo is issued. Note that the error codes
0-127 are reserved for EM-l machine errors and language run­
time system errors.

The routine sigtrp returns the previous trapno or - 1 if an erroneous sig­
nal number is specified. Only the signal numbers 1, 2, 3, l3, 14, 15 and
16 may be used as argument for sigtrp.

lusr/lib/libmon.a the version for compiled programs
lusr/lib/emLmon.a the version for interpreted programs

VENIX System Calls

LIBMON(2) PDP-II Only LIBMON(2)

SEE ALSO
eml(l), pc(I), libpc(3)

DIAGNOSTICS
All routines put the VENIX error code in the global variable errno.
errno is not cleared by successful system calls, so it always gives the error
of the last failed call. One exception: ptrace(2) clears errno when suc­
cessful.

AUTHOR

BUGS

2

10han Stevenson, Vrije Universiteit

There should be additional routines giving a fatal error when they fail.
In C you are allowed to call a function without testing its result. In Pas­
cal you have stronger type checking. In these circumstances it would be
pleasant to have routines which print a nice message and stop execution
for unexpected errors.

VENIX System Calls

LINK(2) LINK(2)

NAME
link - link to a file

SYNOPSIS
Iink(namel, name2)
char *namel, *name2;

DESCRIPTION
A link to name] is created; the link has the name name2. Either name
may be an arbitrary pathname.

SEE ALSO
In(1), unlink(2)

DIAGNOSTICS
Zero is returned when a link is made; -1 is returned when name] cannot
be found; when name2 already exists; when the directory of name2 can­
not be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on
another file system; when a file has too many links.

ASSEMBLER
(link = 9.)

PDP-ll:
sys link; name1; name2

8086: BX = 9
AX = namel
DX = name2
int OXfl

VENIX System Calls

LOCK(2) LOCK(2)

NAME
lock - lock a process in primary memory

SYNOPSIS
lock(f1ag)

DESCRIPTION

BUGS

If the flag argument is non-zero, the process executing this call will not
be swapped out of memory except if it is required to grow. If the argu­
ment is zero, the process is unlocked. This call may only be executed by
the super-user or if the caller's group ID is zero.

Processes are removed from memory when they exit.

locked processes interfere with the compaction of primary memory and
can cause deadlock.

DIAGNOSTICS
Zero is returned if the call is successful; - 1 if not.

ASSEMBLER

1

(lock = 53.)

PDP-ll:
sys lock; flag

8086: BX = 53
AX = flag
int OXfl

VENIX System Calls

LSEEK(2) LSEEK(2)

NAME
lseek, tell - move read/write pointer

SYNOPSIS
long Iseek(fiIdes, offset, whence)
long offset;

long tell(fiIdes)

DESCRIPTION
The file descriptor fi/des refers to a file open for reading or writing. The
read (resp. write) pointer for the file is set as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus
offset.

If whence is 2, the pointer is set to the end of the file plus offset.

The returned value is the resulting pointer location.

The obsolete function teU(fi/des) is identical to lseek(fi/des, OL, 1).

Seeking far beyond the end of a file, then writing, creates a gap or 'hole',
which occupies no physical space and reads as zeros.

SEE ALSO
open(2), creat(2), fseek(3)

DIAGNOSTICS
- 1 is returned for an undefined file descriptor, seek on a pipe, or seek to
a position before the beginning of file. .

BUGS
lseek is a no-op on character special files.

ASSEMBLER
(lseek = 19.)

PDP-ll:
RO = fildes
sys lseek; offset 1; offset2; whence

offsetl and offset2 are the high and low words of offset; RO and
R1 contain the pointer upon return.

VENIX System Calls 1

LSEEK(2)

8086:

2

BX = 19
AX = file descriptor
DX = offset 1
CX = offset 2
SI = whence
int OXfl

LSEEK(2)

offsell and offset2 are the high and low words of offset; AX
and DX contain the pointer upon return.

VENIX System Calls

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory or a special file

SYNOPSIS
mknod(name, mode, addr)
char *name;

DESCRIPTION
mknod creates a new file whose name is the null-terminated string
pointed to by name. The mode of the new file (including directory and
special file bits) is initialized from mode. (The protection part of the
mode is modified by the process' mode mask; see umask(2». The first
block pointer of the i-node is initialized from addr. For ordinary files
and directories addr is normally zero. In the case of a special file, addr
specifies which special file «majnum < < 8) I minnum).

mknod may be invoked only by the super-user.

SEE ALSO
mkdir(I), mknod(1), filsys(4)

DIAGNOSTICS
Zero is returned if the file has been made; - 1 if the file already exists or
if the user is not the super-user.

ASSEMBLER
(mknod = 14.)

PDP-l1:
sys mknod; name; mode; addr

8086: BX = 14
AX = name
DX = mode
CX = addr
int OXfl

VENIX System Calls

MOUNT(2) MOUNT(2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(special, name, rwflag)
char *special, *name;

umount(special)
char *special;

DESCRIPTION
mount announces to the system that a removable file system has been
mounted on the block-structured special file special; from now on, refer­
ences to file name will refer to the root file on the newly mounted file sys­
tem. special and name are pointers to null-terminated strings containing
the appropriate pathnames.

name must exist already. name must. be a directory (unless the root of
the mounted file system is not a directory). Its old contents are inaccessi­
ble while the file system is mounted.

The rWflag argument determines whether the file system can be written
on; if it is 0 writing is allowed, if non-zero no writing is done. Physically
write-protected and magnetic tape file systems must be mounted read­
only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

umount announces to the system that the special file is no longer to con­
tain a removable file system. The associated file reverts to its ordinary
interpretation.

SEE ALSO
mount(1)

DIAGNOSTICS
mount returns 0 if the action occurred; - 1 if special is inaccessible or
not an appropriate file; if name does not exist; if special is already
mounted; if name is in use; or if there are already too many file systems
mounted.

umount returns 0 if the action occurred; - 1 if the special file is inacces­
sible or does not have a mounted file system, or if there are active files in
the mounted file system.

VENIX System Calls

MOUNT(2)

ASSEMBLER
(mount = 21.)

PDP-ll:
sys mount; special; name; rwflag

8086: BX = 21
AX = special
DX = name
CX = rwflag
int OXfl

(umount = 22.)

PDP-ll:
sys umount; special

8086: BX = 22
AX = special
int OXfl

VENIX System Calls

MOUNT(2)

2

NICE (2) NICE(2)

NAME
nice - set program priority

SYNOPSIS
nice(incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive
priorities get less service than normal. Priority 10 is recommended to
users who wish to execute long-running programs without flak from the
administration.

Negative increments are ignored except on behalf of the super-user or
users with group ID's of zero. The priority is limited to the range - 20
(most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a
privileged process to return to normal priority from an unknown state,
nice should be called successively with arguments - 40 (goes to priority
- 20 because of truncation), 20 (to get to 0), then a (to maintain compa­
tibility with previous versions of this call).

If the increment is - 100 or less and the user is a super-user, then the
process gains "real-time" ("pre-emptive") priority. This means that all
CPU time and disk queuing resources are made exclusively available to
this process. 'Normal' processes will not run unless the 'real-time' pro­
cess sleeps(3) for some interval, does synchronous 110 (e.g. terminal
input or a lot of disk 110), exits, or turns off 'real-time' by re-calling
nice with a positive increment. 'Real-time' processes can be swapped,
thus the process probably should also lock(2) itself into memory. Simul­
taneous 'real-time' processes are scheduled round-robin on a one clock­
tick interval. 'Real-time' characteristics are not inherited by children.

SEE ALSO
nice(l)

NOTES
'Real-time' priorities are not portable to standard UNIX.

VENIX System Calls

NICE(2)

ASSEMBLER
(nice = 34.)

PDP-ll:
RO = priority
sys nice

8086: BX = 34
AX = priority
int OXfl

VENIX System Calls

NICE(2)

2

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
open(name, mode)
char *name;

DESCRIPTION
open opens the file name for reading (if mode is 0), writing (if mode is 1)
or for both reading and writing (if mode is 2). name is the address of a
string of ASCII characters representing a path name, terminated by a
null character.

open returns a file descriptor which must be used in subsequent calls for
other input-output functions on the file.

The file pointer is positioned at the beginning of the file (byte 0).

SEE ALSO
creat(2), read(2), write(2), dup(2), close(2)

DIAGNOSTICS
The value - 1 is returned if the file does not exist, if one of the necessary
directories does not exist or is unreadable, if the file is not readable (resp.
writable), or if too many files are open.

ASSEMBLER

1

(open = 5.)

PDP-II:
sys open; name; mode
RO = file descriptor

8086: BX = 5
AX = name
DX = mode
int OXfl
AX = file descriptor

VENIX System Calls

PAUSE (2)

NAME
pause - stop until signal

SYNOPSIS
pause()

DESCRIPTION

PAUSE(2)

pause never returns normally. It is used to give up control while waiting
for a signal from kill(2) or aJarm(2).

SEE ALSO
kill(1), kill(2), alarm(2), signal(2), setjmp(3)

ASSEMBLER
(pause = 29.)

PDP-ll:
sys pause

8086: BX = 29
int OXfl

VENIX System Calls

PHYS(2) PHYS(2)

NAME
phys - allow a process to access physical addresses

SYNOPSIS
PDP-II:

phys(segreg, size, physadr)

8086: phys(O, 0, physadr)

DESCRIPTION
phys allows a process to access physical memory, normally not in the
process' address space. This call is obviously machine dependent and
very dangerous. Its arguments and actions differ somewhat between
PDP-II and 8086 processors:

PDP-II:
The argument segreg specifies a process virtual (data-space)
address range of 8K bytes starting at virtual address segreg x 8K
bytes. This address range is mapped into physical address phy­
sadrx64 bytes. Only the first sizex64 bytes of this mapping is
addressable. If size is zero, any previous mapping of this virtual
address range is nullified. For example, the call

phys(6, 1, 0177775);

will map virtual addresses 0140000 - 0140077 into physical
addresses 017777500-017777577. In particular, virtual address
0140060 is the PDP-II console located at physical address
017777560.

8086: The user's extra segment is mapped into physical address phy­
sadrx512 bytes. If physadr is -1, any previous mapping of this
virtual address range is nullified. For example, the call

phys(O, 0, OXB800/(512/16));

will map extra segment addresses 0 to OXFFFF into physical
addresses B8000 - C7FFFF.

After mapping via phys, the extra segment may be read and writ­
ten with the calls described in getes(3).

This call may only be executed by the super-user or if the caller's group
ID is zero.

VENIX System Calls

PHYS(2) PHYS (2)

SEE ALSO
getes(3), sdata(2)

DIAGNOSTICS
The function value zero is returned if the physical mapping is in effect.
The value - 1 is returned if not super-user, or super group, or an sdata
call is in effect.

ASSEMBLER
(phys = 52.)

PDP-ll:
sys phys; segreg; size; physadr

8086: BX = 52
AX = ?
DX = ?
CX = physadr
int OXfl

VENIX System Calls 2

PIPE(2) PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file
descriptors returned can be used in read and write operations. When the
pipe is written using the descriptor Jildes[lJ up to 4096 bytes of data are
buffered before the writing process is suspended. A read using the
descriptor Jildes[O] will pick up the data. Writes with a count of 4096
bytes or less are atomic; no other process can intersperse data.

It is assumed that after the pipe has been set up, two (or more) cooperat­
ing processes (created by subsequent fork(2) calls) will pass data through
the pipe with read(2) and write(2) calls.

The Shell has a syntax to set up a linear array of processes connected by
pipes.

Read calls on an empty pipe (no buffered data) with only one end (all
write file descriptors closed) returns an end-of-file.

SEE ALSO
sh(l), read(2), write(2), fork(2), popen(3)

DIAGNOSTICS

BUGS

The function value zero is returned if the pipe was created; - 1 if too
many files are already open. A signal is generated if a write on a pipe
with only one end is attempted.

Should more than 4096 bytes be necessary in any pipe among a loop of
processes, deadlock will occur.

VENIX System Calls

PIPE (2)

ASSEMBLER
(pipe = 42.)

PDP-ll:
sys pipe
RO = read file descriptor
Rl = write file descriptor

8086: BX = 42
int OXfl
AX = read file descriptor
BX = write file descriptor

VENIX System Calls

PIPE (2)

2

PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char *buff;
iut bufsiz, offset, scale;

DESCRIPTION
buff points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user's program counter (pc) is examined each clock
tick (frequency HZ is machine dependent); offset is subtracted from it,
and the result multiplied by scale. If the resulting number corresponds
to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: 0177777(8) gives a 1 -1 mapping of pc values to words
in buff; 077777(8) maps each pair of instruction words together. 02(8)
maps all instructions onto the beginning of buff (producing a non­
interrupting core clock).

Profiling is turned off by glVlng a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of O. Profiling is turned off when an exec(2)
is executed, but remains on in child and parent both after a fork(2).
Profiling may be turned off if an update in buff would cause a memory
fault.

SEE ALSO
monitor(3), prof(l), exec(2), fork(2)

ASSEMBLER
(profil = 44.)

PDP-II:
sys profil; buff; bufsiz; offset; scale

8086: BX = 44
AX = buff
DX = buffsiz
CX = offset
SI = scale
int OXfl

VENIX System Calls

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include < signal.h >

ptrace(request, pid, addr, data)
iot *addr;

DESCRIPTION
ptrace provides a means by which a parent process may control the exe­
cution of a child process, and examine and change its core image. Its
primary use is for the implementation of breakpoint debugging. There
are four arguments whose interpretation depends on a request argument.
Generally, pid is the process ID of the traced process, which must be a
child (no more distant descendant) of the tracing process. A process
being traced behaves normally until it encounters some signal whether
internally generated like 'illegal instruction' or externally generated like
'interrupt.' See sigoaJ(2) for the list. Then the traced process enters a
stopped state and its parent is notified via wait(2). When the child is in
the stopped state, its core image can be examined and modified using
ptrace. If desired, another ptrace request can then cause the child either
to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the
call:

o This request is the only one used by the child process; it declares
that the process is to be traced by its parent. All the other argu­
ments are ignored. Peculiar results will ensue if the parent does not
expect to trace the child.

1,2 The word in the child process' address space at addr is returned. If
I and D space are separated, request 1 indicates I space, 2 D space.
On the PDP-II, addr must be even. The child must be stopped.
The input data is ignored.

3 The word of the system's per-process data area corresponding to
addr is returned. addr must be even and less than 512 (PDP-II) or
1024 (8086). This space contains the registers and other information
about the process; its layout corresponds to the user structure in the
system.

4,5 The given data is written at the word in the process' address space
corresponding to addr, which must be even. No useful value is

VENIX System Calls

PTRACE(2) PTRACE(2)

returned. If I and D space are separated, request 4 indicates I space,
5 D space. On the PDP-ll only, attempts to write in a pure pro­
cedure fail if another proess is executing the same file.

6 The process' system data is written, as it is read with request 3.
Only a few locations can be written in this way: the general registers,
the floating point status and registers, and certain bits of the proces­
sor status word.

7 The data argument is taken as a signal number and the child's execu­
tion continues at location addr as if it had incurred that signal.
Normally the signal number will be either 0 to indicate that the sig­
nal that caused the stop should be ignored, or that value fetched out
of the process' image indicating which signal caused the stop. If
addr is (int *)1 then execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible
after execution of at least one instruction, execution stops again.
The signal number from the stop is SIGTRAP. On the PDP-II, the
T -bit is used and just one instruction is executed. This is part of the
mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the
subject process has stopped. The wait call is used to determine when a
process stops; in such a case the 'termination' status returned by wait has
the value 0177 to indicate stoppage rather than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id facility on sub­
sequent exec(2) calls. If a traced process calls exec, it will stop before
executing the first instruction of the new image showing signal
SIGTRAP.

SEE ALSO
wait(2), signal(2), adb(1)

DIAGNOSTICS

BUGS

2

The value - 1 is returned if request is invalid, pid is not a traceable pro­
cess, addr is out of bounds, or data specifies an illegal signal number.

The error indication, -1, is a legitimate function value; errno, see
intro(2), can be used to disambiguate.

VENIX System Calls

PTRACE(2) PTRACE(2)

It should be possible to stop a process on occurrence of a system call; in
this way a completely controlled environment could be provided.

ASSEMBLER
(ptrace = 26.)

PDP-ll:
RO = data
sys ptrace; pid; addr; request
RO = value

8086: BX = 26
AX = data
DX = pid
CX = addr
SI = request
int OXfl
AX = value

VENIX System Calls 3

REAO(2) REAO(2)

NAME
read - read from file

SYNOPSIS
read(fiIdes, buffer, nbytes)
char *buffer;

DESCRIPTION
fi/des, a file descriptor, is an integer returned by a successful open, creat,
dup, or pipe(2) call. buffer is the location of nbytes contiguous bytes
into which the input will be placed. It is not guaranteed that all nbytes
bytes will be read; for example if the file refers to a terminal at most one
line will be returned. In any event the number of characters read is
returned.

If the returned value is 0, then end-of-file has been reached immediately,
with no bytes read.

SEE ALSO
open(2), creat(2), dup(2), pipe(2)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached.
If the read was otherwise unsuccessful the return value is - 1. Many
conditions can generate an error: physical 110 errors, bad buffer address,
preposterous nbytes, file descriptor not that of an input file.

ASSEMBLER
(read = 3.)

POP-ll:
RO = fildes
sys read; buffer; nbytes
RO = byte count

8086: BX = 3
AX = fildes
OX = buffer
CX = nbytes
int OXfl
AX = byte count

VENIX System Calls

SDATA(2) SDATA(2)

NAME
sdata - manipulate a shared data segment

SYNOPSIS
PDP-II:

sdata(arg, reg, offset)
char *arg;

8086: sdata(arg, 0, offset)
char *arg;

DESCRIPTION
sdata manipulates a shared data segment. On the PDP-II, the segment
is placed in the 8kb user data segment indicated by argument reg. On
the 8086, the extra memory segment is used.

The operation is given by arg:

filename
If arg is a file name (null terminated string), then a "named"
segment is opened; that file is windowed into the shared segment.
If this is the first process to call up the file, then the file is first
read into memory; if the file has already been sdata'd by another
process, then it is hooked up without further 110. The window
will be placed into the file at an initial offset given by offsetx64
bytes (PDP-ll) or offsetx5I2 bytes (8086).

The size of the shared data segment is given by the length of the
file, rounded up to the next 64 (pDP-II) or 512 (8086) byte
boundary.

(char *) 0
The window offset into the previously hooked-to segment is
changed to offsetx64 (PDP-l1) or offsetx5I2 (8086) bytes. This
allows the user to move his window to any location in the seg­
ment.

(char *) 1
An "unnamed" segment is opened. This segment is not associ­
ated with any disk file, and can not be shared by multiple
processes; it merely allows an individual process to hook into an
extra memory area. offset is the length of the segment, in 64
(PDP-ll) or 512 (8086) byte units.

VENIX System Calls

SDATA(2) SDATA(2)

2

(char *) 2
(reserved for future use)

(char *) 3
The previously opened segment (named or unnamed) is closed,
and memory is unmapped for the calling process. Closing a
named segment does not affect any other processes hooked to the
same segment. When a named segment is no longer held open
by any processes, it is dropped from memory unless the associ­
ated file has the 'sticky bit' set (mode 01000 - see chmod(2».
In this case the segment remains intact forever.

The user is responsible for making sure that the memory mapped for the
shared data segment is not otherwise used by his program. The sdata
call returns an error if it is. See phys(2).

Only one shared data segment per process can be hooked to at a time. If
several processes may be simultaneously writing to the same area at once,
you will probably wish to use semaphores (see semset(2» to prevent
conflicts.

PDP-ll NOTES
After hooking to a shared data segment, PDP-ll programs may access it
as part of their normal user memory. On the PDP-ll, the top 8kb of
virtual memory (register 7) is always reserved for the program stack, and
should never be used; however, register 6 will be available unless the pro­
gram is very large, or unless it has been previously allocated by phys(2)
(see also note below concerning phys). The size(1) command can be used
to determine the amount of space used by your program.

All free memory pages can be mapped into the same shared file (presum­
ably with different offsets) by opening the shared file, and then setting arg
to zero and giving different values of reg on subsequent sdata calls.

The mapping of phyical memory (with phys(2» to another register may
be lost when a shared segment is opened; to be safe, if phys calls are
needed they should be done after opening the shared segment.

8086 NOTES
On the 8086, the getes and putes calls may be used to read and write to
the shared segment once it is hooked to. See getes(3).

VENIX System Calls

SDATA(2) SDATA(2)

SEE ALSO
phys(2), semset(2), getes(3)

DIAGNOSTICS
On error - 1 is returned.

Shared data segments is a feature of VENIX which is not portable to
standard UNIX.

ASSEMBLER
(sdata = 49.)

PDP-II:
sys sdata; file; reg; offset

8086: BX = 49
AX = file
DX = ?
CX = offset
int OXfl

VENIX System Calls 3

SEMSET(2) SEMSET(2)

NAME
semset, semclear, semtest, semtset - manipulate local/global binary
semaphores

SYNOPSIS
semset(sem, pri)
semclear(sem)
semtest(sem)
semtset(sem, prj)

DESCRIPTION
Semaphores allow cooperating processes to "lock out" each other during
the execution of "critical code" regions, such as during updates to
shared data segments or any common data base.

semset sets the semaphore sem if it was clear and returns to the caller;
otherwise it queues the calling process at priority pri with all other
processes waiting on sem and goes to sleep. The values of pri may range
between 0, the highest priority, and 15, the lowest priority.

semclear clears the semaphore previously set and wakes up the highest
priority process waiting on sem.

semtest tests the semaphore and returns a zero if clear, a one if set. If
clear, this does not guarantee that a subsequent semset will not have to
wait, since another process can do a semset in the intervening time.

semtset tests the semaphore and returns a 1 if set. If clear, then the sema­
phore is set and a 0 is returned.

Semaphores can range in value between - 16 and 15. The negative
values (- 16 to - 1) are global and the same for processes on the system,
while the positive values (0 to 15) are local and shared by all processes in
the same process group.

When a process forks, only the parent maintains the semaphore. Sema­
phores are maintained beyond the life of any program using them; they
are not cleared when a program exits.

DIAGNOSTICS

1

A semaphore out of range or attempted setting if already set by the caller
is considered an error and a-I is returned.

VENIX System Calls

SEMSET(2) SEMSET(2)

BUGS

NOTES

If a process is swapped out while waiting on a semaphore, its priority is
ineffective for waking up.

Semaphores are not portable to standard UNIX.

ASSEMBLER
(serna = 45.)

PDP-ll:
RO = 0 (set), 1 (clear), 2 (test), or 3 (test & set)
sys serna; semaphore; priority

8086: BX = 45
AX = 0 (set), 1 (clear), 2 (test), or 3 (test & set)
DX = semaphore
CX = priority
int OXfl

VENIX System Calls 2

SETUID(2)

NAME
setuid, setgid - set user and group ID

SYNOPSIS
setuid(uid)

setgid(gid)

DESCRIPTION

SETUID(2)

The user ID (group ID) of the current process is set to the argument.
Both the effective and the real ID are set. These calls are only permitted
to the super-user or if the argument is the real ID.

SEE ALSO
getuid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; - 1 is returned otherwise.

ASSEMBLER
(setuid = 23.)

PDP-II:
RO = uid
sys setuid

8086: BX = 23
AX = uid
int OXfl

(setgid = 46.)

PDP-ll:
RO = gid
sys setgid

8086: BX = 46
AX = gid
int OXfl

VENIX System Calls

SIGNAL(2) SIGNAL (2)

NAME
signal - catch or ignore signals

SYNOPSIS
#include < signal.h >

(*signal(sig, func»O
(*func)O;

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at
a terminal (quit, interrupt), by a program error (bus error, etc.), or by
request of another program (kill). Normally all signals cause termination
of the receiving process, but a signal call allows them either to be ignored
or to cause an interrupt to a specified location. Here is the list of signals
with names as in the include file.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (not reset when caught)
SIGTRAP 5* trace trap (not reset when caught)
SIGIOT 6* lOT instruction or asynchronous i/o error
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe or link with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGAIO 16 asynchronous i/o completed

The starred signals in the list above cause a core image if not caught or
ignored.

sig must be one of the signal numbers given above. June is either a
pointer to a function or one of the special values SIG_DFL or SIG_IGN.

If June is SIG_DFL, the default action for signal sig is reinstated; this
default is termination, sometimes with a core image. If June is SIG_IGN
the signal is ignored. Otherwise when the signal occurs June will be

VENIX System Calls

SIGNAL(2) SIGNAL(2)

called with the signal number as argument. A return from the function
will continue the process at the point it was interrupted. Except as indi­
cated, a signal is reset to SIG_DFL after being caught. Thus if it is
desired to catch every such signal, the catching routine must issue
another signal call.

When a caught signal occurs during certain system calls, the call ter­
minates prematurely. In particular this can occur during a read or
write(2) on a slow device (like a terminal; but not a file); and during
pause or wait(2). When such a signal occurs, the saved user status is
arranged in such a way that when return from the signal-catching takes
place, it will appear that the system call returned an error status. The
user's program may then, if it wishes, re-execute the call.

The value of signal is the previous (or initial) value of June for the par­
ticular signal.

After a fork(2) the child inherits all signals. exec(2) resets all caught sig­
nals to default action.

SEE ALSO
kill(l), kill(2), ptrace(2) , setjmp(3)

DIAGNOSTICS

BUGS

The value (int) - i is returned if the given signal is out of range.

If a repeated signal arrives before the last one can be reset, there is no
chance to catch it.

The type specification of the routine and its June argument are prob­
lematical.

ASSEMBLER
(signal"'" 48.)

2

PDP-Ii:
sys signal; sig; label
RO = old label

VENIX System Calls

SIGNAL (2) SIGNAL (2)

8086: BX = 48
AX = sig
DX = label
int OXfl
AX = old label

If label is 0, default action is reinstated. If label is 1, the signal is
ignored. Any other label specifies an address in the process where an
interrupt is simulated. An IRET instruction will return from the inter­
rupt.

VENIX System Calls 3

STAT(2) STAT (2)

NAME
stat, fstat - get file status

SYNOPSIS
#include < sys/types.h >
#include < sys/stat.h >

stat(name, buf)
char *name;
struct stat *buf;

fstat(fildes, buf)
struct stat *buf;

DESCRIPTION
stat obtains detailed information about a named file. fstat obtains the
same information about an open file known by the file descriptor from a
successful open, creat, dup, or pipe(2) call.

name points to a null-terminated string naming a file; buj is the address
of a buffer into which information is placed concerning the file. It is
unnecessary to have any permissions at all with respect to the file, but all
directories leading to the file must be searchable. The layout of the struc­
ture pointed to by buj as defined in < sys/ stat.h > is given below.
sLmode is encoded according to the "#define" statements.

struct stat
{

};

dev_t sLdev;
ino_t sLino;
unsigned short sLmode;
short sLnlink;
short sLuid;
short sLgid;
dev_t sLrdev;
off_t sLsize;
time_t sLatime;
time_t sLmtime;
time_t sLctime;

The meaning of each element is:

sLdev major/minor number of device this file is on

VENIX System Calls

STAT(2)

sUno

sLmode

sLuid

sLgid

sLrdev

sLsize

sLatime

sLmtime

sLctime

inode number of this file

file mode (see encoding below)

owner ID number

group ID number

STAT(2)

if this is a special file (device), major/minor number of
device it points to

length in bytes

last accessed time (for reasons of efficiency, this is not set
when a directory is searched, although this would be
more logical)

last modified time

currently the same as sLmtime

The bit encoding of sLmode is

#define S_IFMT 0160000 /* type of file */
#define S_IFDIR 0140000 / * directory * /
#define S_IFCHR 0120000 /* character special */
#define S_IFBLK 0160000 /* block special */
#define S_IFREG 0100000 / * regular * /
#define S_ILRG 0010000 / * large file * /
#define S_ISUID 0004000 /* set user id on execution */
#define S_ISGID 0002000 / * set group id on execution * /
#define S_ISVTX 0001000 / * save shared even after use * /
#define S_IREAD 0000400 /* read permission, owner */
#define S_IWRITE 0000200 /* write permission, owner */
#define S_IEXEC 0000100 /* execute/search permission */

The mode bits 0000070 and 0000007 encode group and others permissions
(see chmod(2».

The defined types, ino_t, ofLt, time_t, name various width integer
values; dev_t encodes major and minor device numbers; their exact
definitions are in the include file <sys/types.h> (see types(5».

When ii/des is associated with a pipe, fstat reports an ordinary file with
restricted permissions. The size is the number of bytes queued in the
pipe.

Note that the stat buffer format differs from the disk inode format.

VENIX System Calls 2

STAT(2) STAT(2)

SEE ALSO
Is(1), filsys(4)

DIAGNOSTICS
Zero is returned if a status is available; - 1 if the file cannot be found.

ASSEMBLER

3

(stat = 18.)

PDP-l1:
sys stat; name; buf

8086: BX = 18
AX = name
DX = buf
int OXfl

(fstat = 28.)

PDP-II:
RO = file riescriptor
sys fstat; buf

8086: BX = 28
AX = buf
int OXfl

VENIX System Calls

STIME(2)

NAME
stime - set time

SYNOPSIS
stime(tp)
long *tp;

DESCRIPTION

STIME(2)

stime sets the system's idea of the time and date. Time, pointed to by
tp, is measured in seconds from 00:00:00 GMT Jan 1, 1970. Only the
super-user may use this call.

SEE ALSO
date(1), time(2), ctime(3)

DIAGNOSTICS
Zero is returned if the time was set; - 1 if user is not the super-user.

ASSEMBLER
(stime = 25.)

POP-ll:
RO, Rl = time
sys stime

8086: BX = 25
AX = timel
OX = time2
int OXfl

VENIX System Calls

SUSPEND (2) SUSPEND (2)

NAME
suspend - suspend/resume a process

SYNOPSIS
suspend(pid, flag)

DESCRIPTION
suspend suspends a process specified by pid if flag is non-zero, or
resumes a process specified by pid if flag is zero. The sending and receiv­
ing process must have the same effective user ID; otherwise this call is
restricted to the super-user.

While a process is suspended, it can only be terminated by a kill signal.
One of any other signal sent the process will be caught and acted upon
when the process is resumed; more than one of a particular signal sent a
suspended process will be ignored.

SEE ALSO
suspend(1), kill(2)

DIAGNOSTICS

NOTES

A-I is returned if the process does not exist or if the process does not
have the same effective user ID and the user is not the super-user.

Process suspension is a feature of VENIX which is not portable to stan­
dard UNIX.

ASSEMBLER
(suspend = 50.)

PDP-ll:
RO = pid
sys suspend; flag

8086: BX = 50
AX = pid
DX = flag
int OXfl

VENIX System Calls

SYNC(2) SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync()

DESCRIPTION

BUGS

sync causes all information in core memory that should be on disk to be
written out. This includes modified super blocks, modified i-nodes, and
delayed block 110.

It should be used by programs which examine a file system, for example
fsck(1), df(1), etc. A sync is done automatically when a programs exits.

The writing, although scheduled, is not necessarily complete upon return
from sync.

ASSEMBLER
(sync = 36.)

PDP-II:
sys sync

8086: BX = 36
int OXfl

VENIX System Calls

TIME(2) TIME(2)

NAME
time, ftime - get date and time

SYNOPSIS
long time(O)

long time(tIoc)
long *tIoc;

#incIude < sys/types.h >
#incIude < sys/timeb.h >
ftime(tp)
struct timeb *tp;

DESCRIPTION
time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in
seconds.

If tlae is nonnull, the return value is also stored in the place to which
tlae points.

The ftime entry fills in a structure pointed to by its argument, as defined
by < sys/timeb.h > :

1*
* Structure returned by ftime system call
*1

struct timeb {
timcttime;

};

unsigned short millitm;
shorttimezone;
shortdstflag;

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more-precise interval, the local timezone (measured in
minutes of time westward from Greenwich), and a flag that, if nonzero,
indicates that daylight saving time applies locally during the appropriate
part of the year.

SEE ALSO
date(1), stime(2), ctime(3)

1 VENIX System Calls

TIME(2)

ASSEMBLER
(ftime = 35.)

PDP-l1:
sys ftime; bufptr

BX = 35
AX = bufptr
int OXfl

(time = 13.; obsolete call)

PDP-l1:
sys time
RO, Rl = time since 1970

8086: BX = 13
int OXfl
AX, DX = time since 1970

VENIX System Calls

TIME(2)

2

TIMES (2)

NAME
times - get process times

SYNOPSIS
times(buffer)
struct tbuffer *buffer;

DESCRIPTION

TIMES(2)

times returns time-accounting information for the current process and for
the terminated child processes of the current process. All times are in
11Hz seconds, where Hz = 60.

After the call, the buffer will appear as follows:

struct tbuffer {
long
long
long
long

};

procusectime;
procsysteIlLtime;
child_usectime;
child_systeIlLtime;

The children times are the sum of the children's process times and their
children's times.

SEE ALSO
time(1), time(2)

ASSEMBLER
(times = 43.)

PDP-ll:
sys times; buffer

1

8086: BX = 43
AX = buffer
int OXfl

VENIX System Calls

UMASK(2) UMASK(2)

NAME
umask - set file creation mode mask

SYNOPSIS
umask(complmode)

DESCRIPTION
umask sets a mask used whenever a file is created by creat(2) or
mknod(2): the actual mode (see chmod(2» of the newly-created file is the
logical and of the given mode and the complement of the argument.
Only the low-order 9 bits of the mask (the protection bits) participate.
In other words, the mask shows the bits to be turned off when files are
created.

The previous value of the mask is returned by the call. The value is ini­
tially 0 (no restrictions). The mask is inherited by child processes.

SEE ALSO
creat(2), mknod(2), chmod(2)

ASSEMBLER
(umask = 60.)

PDP-ll:
sys umask; complmode

8086: BX = 60
AX = complmode
int OXfl

VENIX System Calls

UNLINK (2) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION
name points to a null-terminated string. unlink removes the entry for the
file pointed to by name from its directory. If this entry was the last link
to the file, the contents of the file are freed and the file is destroyed. If,
however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disap­
peared.

SEE ALSO
rm(1), link(2)

DIAGNOSTICS
Zero is normally returned; - 1 indicates that the file does not exist, that
its directory cannot be written, or that the file contains pure procedure
text that is currently in use. Write permission is not required on the file
itself. It is also illegal to unlink a directory (except for the super-user).

ASSEMBLER
(unlink = 10.)

PDP-II:
sys unlink; name

8086: BX = 10
AX = name
int OXfl

VENIX System Calls

UTI ME (2)

NAME
utime - set file times

SYNOPSIS
#include < sys/types.h >
utime(fiIe, timep)
char *fiIe;
timLt timep[2];

DESCRIPTION

UTIME(2)

The utime call uses the 'accessed' and 'updated' times in that order from
the timep vector to set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user.

Actually, the 'accessed' time is always set to the current time.

SEE ALSO
stat(2)

ASSEMBLER
(utime = 30.)

PDP-ll:
sys utime; file; timep

8086: BX = 30
AX = file
DX = timep
int OXfl

VENIX System Calls 1

WAIT(2) WAIT(2)

NAME
wait - wait for process to terminate

SYNOPSIS
wait(status)
int *status;

wait(O)

DESCRIPTION
wait causes its caller to delay until a signal is received or one of its child
processes terminates. If any child has died since the last wait, return is
immediate; if there are no children, return is immediate with the error bit
set (resp. with a value of - 1 returned). The normal return yields the
process ID of the terminated child. In the case of several children,
several wait calls are needed to learn of all the deaths.

If (int)status is nonzero, the high byte of the word pointed to receives the
low byte of the argument of exit(2) when the child terminated. The low
byte receives the termination status of the process. See signal(2) for a list
of termination statuses (signals); 0 status indicates normal termination.
A special status (0177) is returned for a stopped process which has not
terminated and can be restarted. See ptrace(2). If the 0200 bit of the
termination status is set, a core image of the process was produced by the
system.

If the parent process terminates without waiting on its children, the ini­
tialization process (process ID = 1) inherits the children.

SEE ALSO
exit(2), fork(2), signal(2)

DIAGNOSTICS
Returns - 1 if there are no children not previously waited for.

ASSEMBLER
(wait = 7.)

PDP-ll:
sys wait
RO = process ID
Rl = status

VENIX System Calls

WAIT(2) WAIT(2)

8086: BX = 7
int OXfl
AX = process ID
DX = status

The high byte of the .status is the low byte of AX in the child at termina­
tion.

VENIX System Calls 2

WRITE (2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
write(fiIdes, buffer, nbytes)
char *buffer;

DESCRIPTION
The file descriptor fi/des is an integer returned from a successful open,
creat, dup, or pipe(2) call.

buffer is the address of nbytes contiguous bytes which are written on the
output file. The number of characters actually written is returned. It
should be regarded as an error if this is not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-
byte boundary in the file are more efficient than any others.

SEE ALSO
creat(2), dup(2), open(2), pipe(2)

DIAGNOSTICS
Returns - 1 on error: bad descriptor, buffer address, or count; physical
I/O errors.

ASSEMBLER
(write = 4.)

PDP-II:
RO = fildes
sys write; buffer; nbytes
RO = byte count

8086: BX = 4
AX = fildes
DX = buffer
CX = nbytes
int OXfl
AX = byte count

VENIX System Calls

INTRO(3) INTRO(3)

NAME
intro - introduction to library functions

SYNOPSIS
#include < stdio.h >

#include < math.h >

DESCRIPTION
This section describes functions that may be found in various libraries,
other than those functions that directly invoke VENIX system primitives
(i.e. system calls), which are described in section 2.

These functions are directly callable by C programs; use of many of them
is discussed in the chapter "VENIX Programming" in the Programming
Guide. These functions are also callable by Fortran programs (available
on PRO/VENIX and VENIX/ll only), so long as care is taken to match
the C argument sequence appropriately. This is described in the Fortran
77 document within the same guide. Routines in pages marked (3P) are
callable exclusively by Pascal programs (available on PRO/VENIX and
VENIX/ll only).

One page heading in this section may cover a number of related func­
tions. The cross-reference in the following pages can be used to locate
the page a particular function is on.

Functions are divided into various libraries distinguished by the section
number at the top of the page:

(3) These functions, together with those of section 2 and those
marked (3S), constitute library Jibe, which is automatically loaded
by the C compiler ee(1). Some are callable from Fortran as well.
The link editor Jd(l) searches this library under the' -Ie' option
(this is automatically done by the C compiler and Fortran com­
pilers.) Declarations for some of these functions may be obtained
from include files indicated on the appropriate pages.

(30) These functions are part of the graphics libraries, a set of plotting
routines callable by C. Several versions of the libraries exist; see
pJot(30).

(3M) These functions constitute the math library, Iibm. The link editor
searches this library under the '-1m' option (this should be given

VENIX Subroutines

INTRa (3) INTRa (3)

FILES

at the end of the cc command lines). Declarations for these func­
tions may be obtained from the include file < rnath.h > .

(3P) These functions are part of VU-Pascal (PRO/VENIX and
RAINBOW IVENIX only). They can be called exclusively by Pas­
cal programs.

(3S) These functions constitute the 'standard 110 package'; see
stdio(3). These functions are in the library libc already men­
tioned. Declarations for these functions may be obtained from
the include file < stdio.h > .

(3X) Various specialized libraries have not been given distinctive cap­
tions. The files in which these libraries are found are named on
the appropriate pages. The flag "-lxxx" should be used at the
end of the compiler command line when using library "xxx".

The "SYNOPSIS" sections indicate the types of arguments that the given
function expects, and the value it returns. For example, atof converts
character strings into double precision numbers. It is listed

double atof(nptr)
char *nptr;

This means that atof() returns a value of type double; the argument nptr
is a pointer to char, (i.e., a character string). Since atof returns a non­
integer value, the function itself should be declared prior to use as

double atof();

The notation

#include < header.h >

at the beginning of a synopsis indicates that such a statement should
appear at the beginning of any program calling the given function.
These headers contain definitions for constants and macro functions, and
type declarations for subroutines.

llib/libc.a
llib/libm.a

SEE ALSO
stdio(3), nm(1), ld(l), cc(l), f77(1), intro(2)

2 VENIX Subroutines

INTRO(3) INTRO(3)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when
the function is undefined for the given arguments or when the value is
not representable. In these cases the external variable errno (see intro(2))
is set to the value EDOM or ERANGE. The values of EDOM and
ERANGE are defined in the include file < errno.h > .

VENIX Subroutines 3

ABORT(3) ABORT(3)

NAME
abort - generate lOT fault

DESCRIPTION
abort executes the int OXf3 (8086) or lOT (PDP-II) instruction. This
causes a signal that normally terminates the process with a core dump,
which may be used for debugging.

SEE ALSO
adb(l), signal(2), exit(2)

DIAGNOSTICS
Usually 'lOT trap - core dumped' from the shell.

1 VENIX Subroutines

ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)

DESCRIPTION
abs returns the absolute value of its integer operand.

SEE ALSO
floor(3) for fabs

BUGS
You get what the hardware gives on the largest negative integer.

VENIX Subroutines

ABS(3)

ASSERT(3X) ASSERT (3X)

NAME
assert - program verification

SYNOPSIS
#include < assert.h >

assert (expression)

DESCRIPTION
assert is a macro that indicates expression is expected to be true at this
point in the program. It causes an exit(2) with a diagnostic comment on
the standard output when expression is false (= 0). Compiling with the
cc(l) option - DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
'Assertion failed: file f line n.' f is the source file and n the source line
number of the assert statement.

VENIX Subroutines

ATOF(3) ATOF(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer,
and long integer representation respectively. The first unrecognized char­
acter ends the string.

atof recognizes an optional string of tabs and spaces, then an optional
sign, then a string of digits optionally containing a decimal point, then
an optional 'e' or 'E' followed by an optionally signed integer.

Atoi and atol recognize an optional string of tabs and spaces, then an
optional sign, then a string of digits.

SEE ALSO
scanf(3)

BUGS
There are no provisions for overflow.

VENIX Subroutines 1

CRYPT(3) CRYPT(3)

NAME
crypt, encrypt - a one way hashing encryption algorithm

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

encrypt(block)
char *block;

DESCRIPTION
crypt is the password encryption routine. It is based on a one way hash­
ing encryption algorithm with variations intended (among other things) to
frustrate use of hardware implementations of a key search.

key is a user's typed password. salt is a two-character string chosen from
the set [a-zA-ZO-9./]. The salt string is used to perturb the hashing
algorithm in one of 4096 different ways, after which the password is used
as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt
itself.

There is a character array of length 64 contammg only the numerical
value 0 and 1. When this string is divided into groups of 8, the low­
order bit in each group is ignored; this gives a 56-bit key which is set into
the machine by crypt.

The encrypt entry provides (rather primitive) access to the actual hashing
algorithm. The argument to the encrypt entry is a character array of
length 64 containing only the characters with numerical value of 0 and 1.
The argument array is modified in place to a similar array representing
the bits of the argument after having been subjected to the hashing algo­
rithm using the key set by crypt.

SEE ALSO

BUGS

passwd(1), passwd(4), 10gin(1), getpass(3)

The return value points to static data whose content is overwritten by
each call.

VENIX Subroutines

CTIME(3) CTIME(3)

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to
ASCII

SYNOPSIS
char *ctime(clock)
long *clock;

#include < time.h >

struct tm *Iocaltime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

DESCRIPTION
ctime converts a time pointed to by clock such as returned by time(2)
into ASCII and returns a pointer to a 26-character string in the following
form. All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

localtime and gmtime return pointers to structures containing the
broken-down time. localtime corrects for the time zone and possible
daylight savings time; gmtime converts directly to GMT, which is the
time VENIX uses. asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string.

VENIX Subroutines

CTIME(3) CTIME(3)

The structure declaration from the include file < time.h > is:

struct tm {
int tIlLsec;
int tIlLmin;
int tIlLhour;
int tIlLmday;
int tIlLmon
int tIlLyear;
int tIlLwday;
int tIlLyday;
int tIlLisdst;

};

These quantities give the time on a 24-hour clock, day of month (1- 31),
month of year (0-11), day of week (Sunday = 0), year-1900, day of
year (0 - 365), and a flag that is nonzero if daylight saving time is in
effect.

When local time is called for, the program consults the system to deter­
mine the time zone and whether the standard U.S.A. daylight saving time
adjustment is appropriate. The program knows about the peculiarities of
this conversion in 1974 and 1975; if necessary, a table for these years can
be extended.

timezone returns the name of the time zone associated with its first argu­
ment, which is measured in minutes westward from Greenwich. If the
second argument is 0, the standard name is used, otherwise the daylight
saving version. If the required name does not appear in a table built into
the routine, the difference from GMT is produced; e.g. in Afghanistan
timezone(- (60*4 + 30), 0) is appropriate because it is 4:30 ahead of
GMT and the string GMT + 4:30 is produced.

SEE ALSO
time(2)

BUGS

2

The return values point to static data whose content is overwritten by
each call.

VENIX Subroutines

CTYPE(3) CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint,
iscntrl, isascii - character classification

SYNOPSIS
#include < ctype.h >

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each
is a predicate returning nonzero for true, zero for false. isascii is defined
on all integer values; the rest are defined only where isascii is true and on
the single non-ASCII value EOF (see stdio(3».

isalpha

isupper

islower

isdigit

isalnum

isspace

ispunct

isprint

iscntrl

isascii

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor
alphanumeric)

c is a printing character, code 040(8) (space) through
0176 (tilde)

c is a delete character (0177) or ordinary control charac­
ter (less than 040).

c is an ASCII character, code less than 0200

VENIX Subroutines 1

CURSES (3) cURSES(3)

NAME
curses - screen functions with 'optimal' cursor motion

SYNOPSIS
cc [flags] files -Icurses -Itermlib [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reason­
able optimization. They keep an image of the current screen, and the
user sets up an image of a new one. Then the refreshO tells the routines
to make the current screen look like the new one. In order to initialize
the routines, the routine initscr() must be called before any of the other
routines that deal with windows and screens are used.

SEE ALSO
termcap(5), stty(1)

FUNCTIONS
addch(ch)
addstr(str)
box(win,vert,hor)
clear()
clearok(scr, boolf)
clrtobotO
clrtoeol()
crmode()
deIch()
deleteln()
delwin(win)
echo()
endwinO
erase()
getch()
getstr(str)
gettmode()
getyx(win,y,x)
inch()
initscr()
insch()
insertln()
leaveok(win, boolf)
longname(termbuf ,name)

add a character to stdscr
add a string to stdscr
draw a box around a window
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
set terminal to cbreak mode
delete a character
delete a line
delete win
set echo mode
finish up screens
erase stdscr
get a char through stdscr
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a character
insert a line
set leave flag for win
get long name from termbuf

1 VENIX Subroutines

CURSES(3) CURSES(3)

move(y,x) move to (y,x) on stdscr
mvcur(lasty ,lastx,newy ,newx)

actually move cursor
mvscanw(y,x,win,fmt,argl,arg2 ...)

move, then do a scanf through the window
mvwin(win,y,x) move position of the window
newwin(lines,cols, begirLY, begilLX)

create a new window
nl() set newline mapping
nocrmodeO unset cbreak mode
noecho() unset echo mode
nonl() unset newline mapping
noraw() unser raw mode
overlay(winl, win2) overlay winI on win2
overwrite(winl,win2) overwrite wini on top of win2
printw(fmt,argl,arg2, ...) printf on stdscr
raw() set raw mode
refresh() make current screen look like stdscr
restty() reset tty flags to stored value
savetty() stored current tty flags
scanw(fmt,argl,arg2, ...) scanf from stdscr
scroll(win) scroll win one line
scrollok(win,boolf) set scroll flag
setterm(name) set term variables for name
subwin(lines,cols,begirLy,begilLX)

create a window within a window
touchwin(win) refresh tag for overlapping windows
unctrl(ch) printable version of ch
waddch(win,ch) add char to win
waddstr(win,str) add string to win
wclear(win) clear win
wclrtobot(win) clear to bottom of win
wclrtoeol(win) clear to end of line on win
werase(win) erase win
wgetch(win) get a char through win
wgetstr(win,str) get a string through win
winch(win) get char at current (y,x) from win
wmove(win,y,x) set current (y,x) co-ordinates on win
wprintw(win,fmt,argl ,arg2, ...)

printf on win
wrefresh(win) make screen look like win
wscanw(win,fmt,argl ,arg2, ...)

scanfthrough win

VENIX Subroutines 2

CURSES(3)

3

wstandend(win)
wstandout(win)

unset window in standout mode
put window in standout mode

VENIX Subroutines

CURSES(3)

ECVT(3) ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
ecvt converts the value to a null-terminated string of ndigit ASCII digits
and returns a pointer thereto. The position of the decimal point relative
to the beginning of the string is stored indirectly through decpt (negative
means to the left of the returned digits). If the sign of the result is nega­
tive, the word pointed to by sign is non-zero, otherwise it is zero. The
low-order digit is rounded.

fcvt is identical to ecvt, except that the correct digit has been rounded for
Fortran F-format output of the number of digits specified by ndigit.

gcvt converts the value to a null-terminated ASCII string in buf and
returns a pointer to bUf. It attempts to produce ndigit significant digits
in Fortran F-format if possible, otherwise E-format, ready for printing.
Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by
each call.

VENIX Subroutines

END(3) END(3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting
contents. The address of etext is the first address above the program
text, edata above the initialized data region, and end above the uninitial­
ized data region.

When execution begins, the program break coincides with end, but many
functions reset the program break, among them the routines of brk(2),
malloc(3), standard input/output (stdio(3», the profile (- p) option of
cc(l), etc. The current value of the program break is reliably returned by
'sbrk(O)', see brk(2).

SEE ALSO
brk(2), malloc(3)

EXP(3M) EXP(3M)

NAME
exp, log, 10glO, pow, sqrt - exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double loglO(x)
double x;

double pow(x, Y)
double x, y;

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x; loglO returns the base 10 loga­
rithm of x.

pow returns x.

sqrt returns the square root of x.

SEE ALSO
hypot(3), sinh(3), intro(2)

DIAGNOSTICS
exp and pow return a huge value when the correct value would overflow;
errno is set to ERANGE. pow returns 0 and sets errno to ED OM when
the second argument is negative and non-integral or when both argu­
ments are o.

log returns 0 when x is zero or negative; errno is set to EDOM.

sqrt returns 0 when x is negative; errno is set to EDOM.

VENIX Subroutines

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, ffiush - close or flush a stream

SYNOPSIS
#include < stdio.h >

fclose(stream)
FILE *stream;

ff1ush(stream)
FILE *stream;

DESCRIPTION
fclose causes any buffers for the named stream to be emptied, and the file
to be closed. Buffers allocated by the standard input/output system are
freed.

fclose is performed automatically upon calling exit(2).

fflush causes any buffered data for the named output stream to be writ­
ten to that file. The stream remains open.

SEE ALSO
close(2), fopen(3), setbuf(3)

DIAGNOSTICS

1

These routines return EOF if stream is not associated with an output file,
or if buffered data cannot be transferred to that file.

VENIX Subroutines

FERROR(3S) FERROR(3S)

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream;

c1earerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION
feof returns non-zero when end of file is read on the named input
stream, otherwise zero.

ferror returns non-zero when an error has occurred reading or writing the
named stream, otherwise zero. Unless cleared by c1earerr, the error indi­
cation lasts until the stream is closed.

c1earerr resets the error indication on the named stream.

fileno returns the integer file descriptor associated with the stream, see
open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3), open(2)

FLOOR(3M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#include < rnath.h >

double floor(x)
double x;

double ceil (x)
double x;

double fabs(x)
double(x);

DESCRIPTION
fabs returns the absolute value 1 x I.

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

SEE ALSO
abs(3)

VENIX Subroutines

FLOOR(3M)

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h >

FILE *fopen(fiIename, type)
char *fiIename, *type;

FILE *freopen(fiIename, type, stream)
char *fiIename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
fopen opens the file named by filename and associates a stream with it.
fopen returns a pointer to be used to identify the stream in subsequent
operations.

type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

freopen substitutes the named file in place of the open stream. It returns
the original value of stream. The original stream is closed.

freopen reattaches the file pointer stream with the file given by filename.
stream is a value returned by a previous fopen or fdopen call, or more
typically, is the preopened constant· name stdin, stdout, or stderr.

fdopen associates a stream with a file descriptor obtained from open,
dup, creat, or pipe(2). The type of the stream must agree with the mode
of the open file.

SEE ALSO
open(2), fclose(3)

VENIX Subroutines

FOPEN(3S) FOPEN(3S)

DIAGNOSTICS

BUGS

2

fopen and freopen return the pointer NULL if filename cannot be
accessed.

fdopen is not portable to systems other than UNIX and VENIX.

VENIX Subroutines

FREAD (3S) FREAD (3S)

NAME
fread, fwrite - buffered binary input! output

SYNOPSIS
#include < stdio.h >

fread(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

fwrite(ptr, sizeof(*ptr), nitems, stream)
FILE *Stream;

DESCRIPTION
fread reads, into a block beginning at ptr, nitems of data of the type of
*ptr from the named input stream. It returns the number of items actu­
ally read.

fwrite appends at most nitems of data of the type of *ptr beginning at
ptr to the named output stream. It returns the number of items actually
written.

SEE ALSO
read(2), write(2), fopen(3), getc(3), putc(3), gets(3), puts(3), printf(3),
scanf(3)

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error.

VENIX Subroutines 1

FREXP(3) FREXP(3)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double Idexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

1

frexp returns the mantissa of a double value as a double quantity, x, of
magnitude less than 1 and stores an integer n such that value = x*2**n
indirectly through eptr.

Idexp returns the quantity value*2**exp.

modf returns the positive fractional part of value and stores the integer
part indirectly through iptr.

VENIX Subroutines

FSEEK(3S) FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include < stdio.h >

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)

DESCRIPTION
fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from the
beginning, the current position, or the end of the file, according as
ptrname has the value 0, 1, or 2.

fseek undoes any effects of ungetc(3).

ftell returns the current value of the offset relative to the beginning of the
file associated with the named stream. It is measured in bytes on UNIX
and VENIX; on some other systems it is a magic cookie, and the only
foolproof way to obtain an offset for fseek.

rewind(stream) is equivalent to fseek(stream, OL, 0).

SEE ALSO
Iseek(2), fopen(3)

DIAGNOSTICS
fseek returns - 1 for improper seeks.

VENIX Subroutines

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include < stdio.h >

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
getc returns the next character from the named input stream.

getcharO is identical to getc(stdin).

fgetc behaves like getc, but is a genuine function, not a macro; it may be
used to save object text.

getw returns the next word from the named input stream. It returns the
constant EOF upon end of file or error, but since that is a good integer
value, feof and ferror(3) should be used to check the success of getw.
getw assumes no special alignment in the file.

SEE ALSO
fopen(3), putc(3), gets(3), scanf(3), fread(3), ungetc(3)

DIAGNOSTICS

1

These functions return the integer constant EOF at end of file or upon
read error.

A stop with message, 'Reading bad file', means an attempt has been
made to read from a stream that has not been opened for reading by
fopen.

VENIX Subroutines

GETC(3S) GETC(3S)

BUGS
The end-of-file return from getchar is incompatible with that in UNIX
editions 1 - 6.

Because it is implemented as a macro, getc treats a stream argument with
side effects incorrectly. In particular, getc(*f + +); doesn't work sensi­
bly.

VENIX Subroutines 2

GETENV(3)

NAME
getenv - value for environment name

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION

GETENV(3)

getenv searches the environment list (see environ(5» for a string of the
form name = value and returns value if such a string is present, otherwise
o (NULL).

SEE ALSO
environ(5), exec(2)

1 VENIX Subroutines

GETES(3) 8086 Only GETES(3)

NAME
getesb, getesw, putesb, putesw - read/write to ES memory

SYNOPSIS
cbar getesb(addr)
cbar *addr;

getesw(addr)
int *addr;

putesb(val, addr)
int *addr;
cbar val;

putesw(val, addr)
int *addr;
int val;

DESCRIPTION
These functions transfer bytes or words between the 8086 Data Segment
(DS) and the Extra Segment (ES). The DS is normal user program data
space, while the ES is special purpose data space. The pbys and sdata(2)
system calls manipulate the ES register, to map it, for example, to the
graphics display or to a data area common to several processes. The
getesbO, putesbO, etc. functions then allow a program to read and write
data from and to the extra segment.

getesbO takes as an argument a 16 bit address (type *cbar) in the ES and
returns the byte value (cbar) at that location. putesbO takes two argu­
ments: a 16 bit address (*cbar) and a single byte (cbar) value, and places
the value at that address in the ES. The functions geteswO and puteswO
provide identical capabilities for word (int) transfers. ..

If a pbys or sdata call has not been done, the ES is identical to the nor­
mal DS. In this case, the functions listed here are not likely to be useful,
since normal memory to memory transfers are most easily done using
standard pointer operations.

SEE ALSO
phys(2), sdata(2)

VENIX Subroutines

GETGRENT (3) GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include < grp.h >

struct group *getgrent();

struct group *getgrgid(gid) int gid;

struct group *getgrnam(name) char *name;

int setgrent();

int endgrent();

DESCRIPTION

1

getgrent, getgrgid, and getgrnam each return pointers to an object with
the following structure containing the broken-out fields of a line in the
group file.

struct group {
char
char
int
char

};

*gLname;
*gLpasswd;
gLgid;
**gLmem;

The members of this structure are:

grJlame
gLpasswd
gLgid
gLmem

The name of the group.
The encrypted password of the group.
The numerical group-ID.
Null-terminated vector of pointers to the individual member
names.

getgrent simply reads the next -line while getgrgid and getgrnam search
until a matching gid or name is found (or until EOF is encountered).
Each routine picks up where the others leave off so successive calls may
be used to search the entire file.

VENIX Subroutines

GETGRENT(3) GETGRENT (3)

FILES

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. endgrent may be called to close the group file when
processing is complete.

/etc/group

SEE ALSO
getlogin(3), getpwent(3), group(4)

DIAGNOSTICS

BUGS

A null pointer (0) is returned on EOF or error.

All information is contained in a static area so it must be copied if it is
to be saved.

VENIX Subroutines 2

GETLOGIN (3) GETLOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin();

DESCRIPTION

FILES

getlogin returns a pointer to the login name as found in /etc/utmp. It
may be used in conjunction with getpwnam to locate the correct pass­
word file entry when the same userid is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it
returns NULL. The correct procedure for determining the login name is
to first call getlogin and if it fails, to call getpwuid.

/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(4)

DIAGNOSTICS

BUGS

Returns NULL (0) if name not found.

The return values point to static data whose content is overwritten by
each call.

VENIX Subroutines

GETPASS(3) GETPASS(3)

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION

FILES

getpass reads a password from the file Idev/tty, or if that cannot be
opened, from the standard input, after prompting with the null­
terminated string prompt and disabling echoing. A pointer is returned to
a null-terminated string of at most 8 characters.

Idev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by
each call.

VENIX Subroutines

GETPW(3)

NAME
getpw - get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION

GETPW(3)

getpw searches the password file for the (numerical) uid, and fills in buj
with the corresponding line; it returns non-zero if uid could not be
found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
getpwent(3), passwd(4)

DIAGNOSTICS
Non-zero return on error.

1 VENIX Subroutines

GETPWENT (3) GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file
entry

SYNOPSIS
#include < pwd.h >

struct passwd *getpwentO;

struct passwd *getpwuid(uid) int uid;

struct passwd *getpwnam(name) char *name;

int setpwent();

int endpwent();

DESCRIPTION
getpwent, getpwuid, and getpwnam each return a pointer to an object
with the following structure containing the broken-out fields of a line in
the password file.

struct passwd {
char
char
int

};

int
int
char
char
char
char

*pw_name;
*pw_passwd;
pw_uid;
pw_gid;
pw_quota;
*pw_comment;
*pw_gecos;
*pw_dir;
*pw_shell;

The fields pw_quota and pw_comment are unused; the others have mean­
ings described in passwd(4).

getpwent reads the next line (opening the file if necessary); setpwent
rewinds the file; endpwent closes it.

getpwuid and getpwnam search from the beginning until a matching uid
or name is found (or until EOF is encountered).

VENIX Subroutines

GETPWENT (3) GETPWENT (3)

FILES
/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(4)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is
to be saved.

2 VENIX Subroutines

GETS(3S) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#iDclude < stdio.h >

char *gets(s)
char *s;

char *fgets(s, D, stream)
char *s;
FILE *stream;

DESCRIPTION
gets reads a string into s from the standard input stream stdiD. The
string is terminated by a newline character, which is replaced in s by a
null character. gets returns its argument.

fgets reads n - 1 characters, or up to a newline character, whichever
comes first, from the stream into the string s. The last character read
into s is followed by a null character. fgets returns its first argument.

SEE ALSO
puts(3), getc(3), scanf(3), fread(3), ferror(3)

DIAGNOSTICS

BUGS

gets and fgets return the constant pointer NULL upon end of file or
error.

gets deletes a newline, fgets keeps it, all in the name of backward compa­
tibility.

1

HYPOT(3M)

NAME
hypot, cabs - euclidean distance

SYNOPSIS
#include < math.h >

double hypot(x, y)
double x, y;

double cabs(z)
stmct { double x, y;} z;

DESCRIPTION
hypot and cabs return

sqrt(x*x + y*y) ,

taking precautions against unwarranted overflows.

SEE ALSO
exp(3) for sqrt

HYPOT(3M)

JO(3M) JO(3M)

NAME
jO, j 1, jn, yO, yl, yo - bessel functions

SYNOPSIS
#include < math.h >

double jO(x)
double X;

double jl(x)
double X;

double jn(n, x);
double X;

double yO(x)
double X;

double yl(x)
double X;

double yn(n, x)
double X;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds
for real arguments and integer orders.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return a huge negative value
and set errno to EDOM.

VENIX Subroutines

L3TOL(3) L3TOL(3)

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS
l3tol(Ip, cp, n)
long *lp;
char *cp;

ltoI3(cp, lp, n)
char *cp;
long *lp;

DESCRIPTION
l3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by /p.

ltol3 performs the reverse conversion from long integers (lp) to three-byte
integers (cp).

VENIX Subroutines

LIBPC(3P) PDP-ll Only

NAME
libpc - library of external routines for Pascal programs

SYNOPSIS

const
type

bufsize = ?;
brl = 1..bufsize;
br2 = 0 .. bufsize;
br3 = - 1..bufsize;
ok = -1..0;
buf = packed array[brl] of char;
alfa = packed array[1..8] of char;
string = packed array[l..?] of char;
filetype = file of ?;
long = record high,low:integer end;

{alI routines must be declared extern}

function argc:integer;
function argv(i:integer):string;
function environ(i:integer):string;
procedure argshift;

procedure
procedure
procedure
procedure
procedure
procedure
procedure

buff(var f:filetype);
nobuff(var f:filetype);
notext(var f:text);
diag(var f:text);
pcreat(var f:text; s:string);
popen(var f:text; s:string);
pclose(var f:filetype);

trap(err:integer);

LIBPC(3P)

procedure
procedure encaps(procedure p; procedure q(n:integer»;

function perrno:integer;
function uread(fd:integer; V?r b:buf; len:brl):br3;
function uwrite(fd:integer; var b:buf; len:brl):br3;

function strbuf(var b:buf):string;
function strtobuf(s:string; var b:buf; len:brl):br2;
function strIen(s:string):integer;
function strfetch(s:string; i:integer):char;
procedure strstore(s:string; i:integer; c:char);
function clock; integer;

VENIX Subroutines

LIBPC(3P) PDP-II Only LIBPC(3P)

DESCRIPTION

2

This library contains some often used external routines for Pascal pro­
grams. Two versions exist: one for the EM-l interpreter and another one
that is used when programs are translated into PDP-Ii code. The rou­
tines can be divided into several categories:

Argument control:

argc

argv

environ

argshift

Gives the number of arguments provided when the
program is called.

Selects the specified argument from the argument list
and returns a pointer to it. This pointer is nil if the
index is out of bounds (< 0 or > = argc).

Returns a pointer to the i-th environment string
(i> = 0). Returns null if i is beyond the end of the
environment list.

Effectively deletes the first argument from the argu­
ment list. Its function is equivalent to 'shift' in the
VENIX shell: argv[2] becomes argv[l], argv[3]
becomes argv[2], etc. It is a useful procedure to skip
optional flag arguments. Note that the matching of
arguments and files is done at the time a file is opened
by a call to reset or rewrite.

Additional file handling routines:

buff

nobuff

notext

diag

pcreat

Turn on buffering of a file. Not very useful, because
all files are buffered except standard output to a ter­
minal and diagnostic output. Input files are always
buffered.

Turn off buffering of an output file. It causes the
current contents of the buffer to be flushed.

Only useful for input files. End of line characters are
not replaced by a space and character codes out of
the ASCII range (0-127) do not cause an error mes­
sage.

Initialize a file for output on the diagnostic output
stream (fd = 2). Output is not buffered.

The same as rewrite(f), except that you must provide
the filename yourself. The name must be zero ter­
minated. Only text files are allowed.

VENIX Subroutines

LIBPC(3P)

popen

pclose

PDP-II Only LIBPC(3P)

The same as reset(f), except that you must provide
the filename yourself. The name must be zero ter­
minated. Only text files are allowed.

Gives you the opportunity to close files hidden in
records or arrays. All other files are closed automati­
cally.

String handling:

strbuf Type conversion from character array to string. It is
your own responsibility that the string is zero ter­
minated.

strtobuf Copy string into buffer until the string terminating
zero byte is found or until the buffer if full, whatever
comes first. The zero byte is also copied. The
number of copied characters, excluding the zero byte,
is returned. So if the result is equal to the buffer
length, then the end of buffer is reached before the
end of string.

stden Returns the string length excluding the terminating
zero byte.

strfetch Fetches the i-th character from a string. There is no
check against the string length.

strstore Stores a character in a string. There is no check
against string length, so this is a dangerous pro­
cedure.

Trap handling:
These routines allow you to handle all the possible error situa­
tions yourself. You may define your own trap handler, written
in Pascal, instead of the default handler that produces an error
message and quits. You may also generate traps yourself.

trap

encaps

Trap generates the trap passed as argument (0 - 255).
The trap numbers 128 - 255 may be used freely. The
others are reserved for standard run-time errors.

Encapsulate the execution of 'p' with the trap handler
'q'. Encaps replaces the previous trap handler by 'q',
calls 'p' and restores the previous handler when 'p'
returns. If, during the execution of 'p', a trap
occurs, then 'q' is called with the trap number as

VENIX Subroutines 3

LIBPC(3P) PDP-ll Only LIBPC(3P)

parameter. For the duration of 'q' the previous trap
handler is restored, so that you may handle only
some of the errors in 'q'. All the other errors must
then be raised again by a call to 'trap'.

Encapsulations may be nested: you may encapsulate a procedure
while executing an encapsulated routine.

Jumping out of an encapsulated procedure (non-local goto) is
dangerous, because the previous trap handler must be restored.
Therefore, you may only jump out of procedure 'p' from inside
'q' and you may only jump out of one level of encapsulation. If
you want to exit several levels of encapsulation, use traps. Note
that 'p' may not have parameters.

The following error codes are used by the Pascal runtime system:

64 more args expected
65 error in exp
66 error in In
67 error in sqrt
68 assertion failed
69 array bound error in pack
70 array bound error in unpack
71 only positive j in 'i mod j'
72 file not yet open
96 file xxx: not writable
97 file xxx: not readable
98 file xxx: end of file
99 file xxx: truncated
100 file xxx: reset error
101 file xxx: rewrite error
102 file xxx: close error
103 file xxx: read error
104 file xxx: write error
105 file xxx: digit expected
106 file xxx: non-ASCII char read

VENIX system calls:

4

The routines of this category require global variables or routines
of the monitor library lihmon(3).

VENIX Subroutines

LIB PC (3P) PDP-II Only LIBPC(3P)

FILES

uread

uwrite

permo

Miscellaneous:

Equal to the read system call. Its normal name is
blocked by the standard Pascal routine read.

As above but for write(2).

Because external data references are not possible in
Pascal, this routine returns the global variable errno,
indicating the result of the last system call.

clock Return the number of ticks of user and system time
consumed by the program.

lusr llib/libpc.a

lusr/lib/emLpc.a

the version for compiled programs

the version for interpreted programs

SEE ALSO
pc(1), pLemlib(3), pLprlib(3), libmon(3)

DIAGNOSTICS
Two routines may cause fatal error messages to be generated. These are:

pcreat

popen

AUTHOR

Rewrite error (trap 77) if the file cannot be created.

Reset error (trap 76) if the file cannot be opened for reading

lohan Stevenson, Vrije Universiteit.

VENIX Subroutines 5

MALLOC(3) MALLOC(3)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
ehar *malloe(size)
unsigned size;

free(ptr)
ehar *ptr;

ehar *realloe(ptr, size)
ehar *ptr;
unsigned size;

ehar *ealloe(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
malloe and free provide a simple general-purpose memory allocation
package. malloe returns a pointer to a block of at least size bytes begin­
ning on a word boundary.

The argument to free is a pointer to a block previously allocated by mal­
loe; this space is made available for further allocation, but its contents
are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloe
is overrun or if some random number is handed to free.

malloe allocates the first big enough contiguous reach of free space found
in a circular search from the last block allocated or freed, coalescing
adjacent free blocks as it searches. It calls sbrk (see break(2» to get
more memory from the system when there is no suitable space already
free.

realloe changes the size of the block pointed to by plr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

realloe also works if ptr points to a block freed since the last call of mal­
loe, realloe, or ealloe; thus sequences of free, malloe, and realloe can
exploit the search strategy of malloe to do storage compaction.

VENIX Subroutines

MALLOC(3) MALLOC(3)

ealloe allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

malloe, realloe, and ealloe return a null pointer (0) if there is no avail­
able memory or if the arena has been detect ably corrupted by storing
outside the bounds of a block.

When realloe returns 0, the block pointed to by ptr may be destroyed.

VENIX Subroutines 2

MKTEMP(3)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

DESCRIPTION

MKTEMP(3)

mktemp replaces template by a unique file name, and returns the address
of the template. The template should look like a file name with six trail­
ing X's, which will be replaced with the current process id and a unique
letter.

SEE ALSO
getpid(2)

VENIX Subroutines

MONITOR(3) MONITOR (3)

NAME
monitor - prepare execution profile

SYNOPSIS
monitor(Iowpe, highpe, buffer, bufsize, nfune)
int (*Iowpe)(), (*highpe)();
short buffer[];

DESCRIPTION

FILES

An executable program created by 'ee - p' automatically includes calls
for monitor with default parameters; monitor needn't be called explicitly
except to gain fine control over profiling.

monitor is an interface to profil(2). lowpc and highpc are the addresses
of two functions; buffer is the address of a (user supplied) array of buf­
size short integers. monitor arranges to record a histogram of periodi­
cally sampled values of the program counter, and of counts of calls of
certain functions, in the buffer. The lowest address sampled is that of
lowpc and the highest is just below highpc. At most nfunc call counts
can be kept; only calls of functions compiled with the profiling option
- p of ee(1) are recorded. For the results to be significant, especially
where there are small,heavily used routines, it is suggested that the
buffer be no more than a few times smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etext();

monitor«int)2, etext, buf, bufsize, nfunc);

etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out,
use

monitor(O);

then prof(1) can be used to examine the results.

mon.out

SEE ALSO
prof(l), profil(2), cc(l)

VENIX Subroutines

MP(3X) MP(3X)

NAME
itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow - multiple
precision integer arithmetic

SYNOPSIS
typedef struct { int len; short *val; } mint;

madd(a, b, c)
msub(a, b, c)
muIt(a, b, c)
mdiv(a, b, q, r)
min(a)
mout(a)
pow(a, b, m, c)
gcd(a, b, c)
rpow(a, b, c)
msqrt(a, b, r)
mint *a, *b, *c, *m, *q, *r;

sdiv(a, n, q, r)
mint *a, *q;
short *r;

mint *itom(n)

DESCRIPTION

1

These routines perform arithmetic on integers of arbitrary length. The
integers are stored using the defined type mint. Pointers to a mint should
be initialized using the function itom, which sets the initial value to n.
After that space is managed automatically by the routines.

madd, msub, mult, assign to their third arguments the sum, difference,
and product, respectively, of their first two arguments. mdiv assigns the
quotient and remainder, respectively, to its third and fourth arguments.
sdiv is like mdiv except that the divisor is an ordinary integer. msqrt
produces the square root and remainder of its first argument. rpow cal­
culates a raised to the power b, while pow calculates this reduced modulo
m. min and mout do decimal input and output.

The functions are obtained with the loader option -Imp.

VENIX Subroutines

MP(3X) MP(3X)

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core
images.

VENIX Subroutines 2

NLIST(3) NLIST (3)

NAME
nlist - get entries from name list

SYNOPSIS
#include < a.out.h >
nlist(fiIename, nl)
char *fiIename;
struct nlist nl[];

DESCRIPTION
nlist examines the name list in the given executable output file and selec­
tively extracts a list of values. The name list consists of an array of
structures containing names, types and values. The list is terminated
with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the
next two fields. If the name is not found, both entries are set to O. See
a.out(4) for the structure declaration.

This subroutine is useful for examining the system name list kept in the
file Ivenix. In this way programs can obtain system addresses that are up
to date.

SEE ALSO
a.out(4)

DIAGNOSTICS

1

All type entries are set to 0 if the file cannot be found or if it is not a
valid namelist.

VENIXSubroutines

PDP-II Only

NAME
pcprlib - library of Pascal runtime routines

SYNOPSIS
type

function
function
function
function
function
function
function
function
function
function
function
function

type

function
function
procedure

procedure
procedure
procedure
procedure

type

alpha = packed array[1..8] of char;
pstring = ~ packed array[] of char;

_abi(i:integer):integer;
_abl(i:long):long;
_mdi(i,j :integer):integer;
_mdl(i,j :long):long;
_abr(r:real):real;
_sin(r:real):real;
_cos(r:real):real;
_atn(r: real): real;
_exp(r:real):real;
_log(r:real):real;
_sqt(r:real):real;
_rnd(r:real):integer;

compared = -1 .. 1;
gotoinfo = record

procdesc: integer;
pcoffset:integer;
nlocals: integer;

end;

_bcp(s 1 ,s2: pstring; sz: integer): compared;
_bts(low,high,size:integer):set of O .• (8*size - 1);
_gto(p:~ gotoinfo);

_new(var p:~integer; size:integer);
_dis(var p:~ integer; size:integer);
_sav(var p:~integer);
_rst(var p:~integer);

arrdescr = record
lowbnd: integer;
diffbnds:integer;
elsize: integer;

end;
arrl =array[] of?;
arr2 = packed array[] of ?;

VENIX Subroutines

2

procedure

procedure

function

procedure
procedure
procedure

const

type

const

procedure
procedure

procedure
procedure
procedure

procedure
procedure
function
function

PDP-II Only

_pac(var ap:arrl; i:integer; var zp:arr2;
var zd,ad:arrdescr);

_unp(var zp:arr2; var ap:arrl; i:integer;
var zd,ad:arrdescr);

_asz(var dp:arrdescr):integer;

_ass(b:boolean; line:integer);
procentry(var name:a1pha);
procexit(var name:alpha);

lowbyte = [0 .. 7];
MAGIC = [1,3,5,7];
WINDOW = [11];
ELNBIT = [12];
EOFBIT = [13];
TXTBIT = [14];
WRBIT = [15];
file = record

ptr: A char;
flags: set of [0 .. 15];
fname: string;
ufd: 0 .. 15;
size: integer;
count: O .. buflen;
buflen: max(512,size) div size * size;
bufadr: packed array[1..max(512,size)]

end;
filep =Afile;
NFILES=15;

of char;

_extfl:A array [] of filep;

_ini(var p:array[] of filep);
_hlt(status:O .. 255);

_opn(f:filep; size:integer);
_cre(f:filep; size:integer);
_cls(f:filep);

_get(f:filep);
_put(f:filep);
_wdw(f:filep):Achar;
_efl(f :filep): boolean;

VENIX Subroutines

function
function
function
function
function
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

DESCRIPTION

PDP-ll Only

_eln(f:filep): boolean;
_rdc(f:filep):char;
_rdi(f:filep):integer;
_rdl(f:filep):long;
_rdr(f:filep):real;
_rln(f:filep);
_wrc(f:filep; c:char);
_wsc(f:filep; c:char; w:integer);
_ wri(f:filep; i:integer);
_wsi(f:filep; i:integer; w:integer);
_wrl(f:filep; l:long);
_ wsl(f:filep; l:long; w:integer);
_wrr(f:filep; r:real);
_wsr(f:filep; r:real; w:integer);
_wrf(f:filep; r:real; w:integer; ndigit:integer);
_wrs(f:filep; s:pstring; l:integer);
_wss(f:filep; s:pstring; l:integer; w:integer);
_wrb(f:filep; b:boolean);
_wsb(f:filep; b:boolean; w:integer);
_wrz(f:filep; s:string);
_wsz(f:filep; s:string; w:integer);
_wln(f:filep);
_pag(f:filep);

This library is used by the Pascal compiler. Two versions exist: one for
use with interpretive (EM-I) code, and the other for compiled PDP-ll
code. This library contains all the runtime routines for standard Pascal
programs. These routines can be divided into several categories. A
description of each category with its routines follows.

Arithmetic routines:

_abi Compute the absolute value of an integer.

_abl Compute the absolute value of a long.

_mdi Perform the Pascal modulo operation on integers.

_mdl Perform the Pascal modulo operation on longs.

_abr Compute the absolute value of a real.

_sin Compute the sine of a real.

_cos Compute the cosine of a real.

_atn Compute the arc tangent of a real.

VENIX Subroutines 3

4

PDP-ll Only

_exp Compute the e-power of a real.

_log Compute the natural logarithm of a real.

_sqt Compute the square root of a real.

Jnd Round a real to the nearest integer (- 3.5 - - 4).

Miscellaneous routines:

_bcp Compare two strings. Use dictionary ordering with the
ASCII character set.

_bts Include a range of elements from low to high in a set of
size bytes (size is even).

_gto Execute a non-local goto. When called, the static link
points to the local base of the target procedure. The
new EM-l stack pointer is calculated by adding the
number of locals to the new local base (jumping into
statements is not allowed; there are no local generators
in Pascal!). The new program counter can be computed
out of the procedure descriptor number and the program
counter offset.

Heap management:

There is one way to allocate new heap space (_new), but two
different incompatible ways to deallocate it.

The most general one is by using dispose (_dis). A circular list
of free blocks, ordered from low to high addresses, is main­
tained. Merging free blocks is done when a new block enters the
free list. When a new block is requested (_new), the free list is
searched using a first fit algorithm. Two global variables are
needed:

Points to the free block with the highest address.

Points to the most recently entered free block or to a
block in the neighborhood of the most recently allo-
cated block. The free list is empty, when one of
these pointers (but then at the same time both) is
zero.

The second way to deallocate heap space is by using mark (_sav)
and release (_rst). Mark saves the current value of the heap
pointer HP in the program variable passed as a parameter. By

VENIX Subroutines

PDP-II Only

calling release with this old HP value as its argument, the old
HP value is restored, effectively deallocating all blocks requested
between the calls to mark and release. The heap is used as
second stack in this case.

It will be clear that these two ways of deallocating heap space
can not be used together. To be able to maintain the free list,
all blocks must be a multiple of 4 bytes long, with a minimum of
4 bytes.

In summary:

_new Allocate heap space.

_ Jis Deallocate heap space.

_sav Save the current value of HP.

_rst Restore an old value of HP.

Array operations:

The only useful form of packing implemented, is packing words
into bytes. All other forms of packing and unpacking result in a
plain copy.

_pac Pack an unpacked array 'a' into a packed array 'z'. 'ap'
and 'zp' are pointers to 'a' and 'z'. 'ad' and 'zd' are
pointers to the descriptors of 'a' and 'z'. 'i' is the index
in 'a' of the first element to be packed. Pack until 'z' is
full.

_unp Unpack 'z' into 'a'. 'ap', 'zp', 'ad' and 'zd' are as for
_pac. 'i' is the index in 'a' where the first element of 'z'
is copied into. Unpack all elements of 'z'.

_asz Compute array size. Used for copying conformant
arrays.

Debugging facilities:
The compiler allows you to verify assertions. It generates a call
to the routine _ass to check the assertion at runtime. Another
feature of the compiler is that it enables you to trace the pro­
cedure calling sequence. If the correct option is turned on, then a
call to the procedure 'procentry' is generated at the start of each
compiled procedure or function. Likewise, the routine 'procexit'

VENIX Subroutines 5

Files:

6

PDP-II Only

is called just before a procedure or function exits. Default pro­
cedure 'procentry' and 'procexit' are available in this library.

_ass If 'b' is zero, then change eb[O] to 'line' (to give an
error message with source line number) and call the
error routine.

procentry Print the name of the called procedure with up to
seven argument words in decimal on standard output.
Output must be declared in the program heading.

procexit Print the name of the procedure that is about to exit.
Same remarks as for procentry.

Most of the runtime routines are needed for file handling. For
each file in your Pascal program a record of type file, as
described above, is allocated, static if your file is declared in the
outermost block, dynamic if it is declared in inner blocks. The
fields in the file record are used for:

bufadr

buflen

size

flags

ptr

count

ufd

fname

10 is buffered except for standard input and output if
terminals are involved. The size of the buffer is the
maximum of 512 and the file element size.

The effective buffer length is the maximum number of
file elements fitting in the buffer, multiplied by the
element size.

The file element size (1 or even).

Some flag bits are stored in the high byte and a magic
pattern in the low byte provides detection of des­
troyed file information.

Points to the file window inside the buffer.

The number of bytes (the window inclusive) left in
the buffer to be read or the number of free bytes (the
window inclusive) for output files.

The VENIX file descriptor for the file.

Points to the name of the file (INPUT for standard
input, OUTPUT for standard output and LOCAL for
local files). This field is used for generating error
messages.

VENIX Subroutines

PDP-ll Only

The constants used by the file handling routines are:

WINDOW
Bit in flags set if the window of an input file is initial­
ized. Used to resolve the famous interactive input
problem.

EOFBIT

ELNBIT

TXTBIT

WRBIT

MAGIC

NFILES

Bit in flags set if end of file seen

Bit in flags set if linefeed seen

Bit in flags set for text files. Process linefeeds.

Bit in flags set for output files

Pattern for the low byte of flags

The maximum number of open files in VENIX

Prelude and postlude:

These routines are called once for each Pascal program:

_ini When a file mentioned in the program heading is opened
by reset or rewrite, its file pointer must be mapped onto
one of the program arguments. The compiler knows
how to map and therefore builds a table with a pointer
to the file structure for each program argument. One of
the first actions of the Pascal program is to call this pro­
cedure with this table as an argument. The global vari­
able _extfl is used to save the address of this table.
Another task of _ini is to initialize the standard input
and output files. For standard output it must decide
whether to buffer or not. If standard output is a termi-·
nal, then buffering is off by setting buflen to 1. A last
task of _ini is to set the global variables _argc, _argv and
_environ for possible reference later on.

_hIt If the program is about to finish, the buffered files must
be flushed. That is done by this procedure.

Opening and closing:

Files in Pascal are opened for reading by reset and opened for
writing by rewrite. Files to be rewritten mayor may not exist
already. Files not mentioned in the program heading are con­
sidered local files. The next steps must be done for reset and
rewrite:

VENIX Subroutines 7

8

PDP-ll Only

1. If size is zero, then a text file must be opened with ele­
ments of size 1.

2. Find out if this file is mentioned in the program heading
(scan table pointed to by _extfl). If not, then it is a local
file and goto 7.

3. If the file is standard input or output then return.

4. If there are not enough arguments supplied, generate an
error.

5. If the file was already open, flush the buffer if necessary
and close it. Note that reset may be used to force the
buffer to be flushed. This is sometimes helpful against
program or system crashes.

6. If it is a reset, open the file, otherwise create it. In both
cases goto 9.

7. If the local file is to be written, then close it if it was
open and create a new nameless file. First try to create it
in lusrltmp, then in Itmp and if both fail then try the
current directory. See to it that the file is open for both
reading and writing.

8. If the local file is to be read and the file is opened
already, then flush the buffer and seek to the beginning.
Otherwise open a temporary file as described in 7.

9. Initialize all the file record fields.

The necessary procedures are:

_opn Reset a file

_cre Rewrite a file

_cls Close a file. Closing of files is done for local files when
the procedure in which they are declared exits. The
compiler only closes local files if they are not part of a
structured type. Files allocated in the heap are not
closed when they are deallocated. There is an external
routine 'pclose' in Jibpc(3), that may be called explicitly
to do the closing in these cases. Closing may be neces­
sary to flush buffers or to keep the number of simultane­
ously opened files below NFILES. Files declared in the
outermost block are automatically closed when the pro­
gram terminates.

VENIX Subroutines

PDP-II Only

General file 10:

These routines are provided for general file 10:

_put Append the file element in the window to the file and
advance the window.

_get Advance the file window so that it points to the next ele­
ment of the file. For text files (TXTBIT on) the ELN­
BIT in flags is set if the new character in the window is a
line feed (ASCII 10) and the character is then changed
into a space. Otherwise the ELNBIT is cleared.

_ wdw Return the current pointer to the file window.

_eof Test if you reached end of file. Is always true for output
files.

Textfile routines:

The rest of the routines all handle text files.

_eln Return true if the next character on an input file is an
end-of-line marker. An error occurs if eof(f) is true.

_rdc Return the character currently in the window and
advance the window.

_rdi Build an integer from the next couple of characters on
the file, starting with the character in the window. The
integer may be preceded by spaces (and line feeds), tabs
and a sign. There must be at least one digit. The first
non-digit signals the end of the integer.

_rdl Like _rdi, but for longs.
_rdr Like _rdi, but for reals. Syntax is as required for Pascal.
Jin Skips the current line and clears the WINDOW flag, so

that the next routine requiring an initialized window
knows that it has to fetch the next character first.

_wrc Write a character, not preceeded by spaces.
_wsc Write a character, left padded with spaces up to a field

width of 'w'.
_wri Write an integer, left padded with spaces up to a field

width of 6.
_wsi Write an integer, left padded with spaces up to a field

width of 'w'.
_wrl Write a long, left padded with spaces up to a field width

of 11.

VENIX Subroutines 9

10

PDP-II Only

_wsl Write a long, left padded with spaces up to a field width
of 'w'.

_wrr Write a real in scientific format, left padded with spaces
up to a field width of 13.

_wsr Write a real in scientific format, left padded with spaces
up to a field width of 'w'.

_wrf Write a real in fixed point format, with exactly 'ndigit'
digits behind the decimal point, the last one rounded; it
is left padded up to a field width of 'w'.

_wrs Write a string of length '1', without additional spaces.
_wss Write a string of length '1', left padded up to a field

width of 'w'. .
_wrb Write a boolean, represented by "true" or "false", left

padded up to a field width of 5.
_wsb Write a boolean, represented by "true" or "false", left

padded up to a field width of 'w' .
_wrz Write a C-type string up to the zero-byte.
_wsz Write a C-type string, left padded up to a field width of

w.
_wIn Write a line feed (ASCII 10).
_pag Write a form feed (ASCII 12).

All the routines to which calls are generated by the compiler are
described above. They use the following global defined routines to do
some of the work:

_wf
_incpt
_out cpt

_wstrin

_skipsp
_getsig
_fstdig
_nxtdig
_getint
_ecvt

Check input files for MAGIC and WRBIT. Initialize the win­
dow if WINDOW is cleared.
Check output files for MAGIC and WRBIT.
Advance the file window and read a new buffer if necessary.
Write out the current buffer if necessary and advance the win­
dow.
Flush the buffer if it is an output file. Append an extra line
marker if EOLBIT is off.
All output routines make up a string in a local buffer. They
call _wstrin to output this buffer and to do the left padding.
Skip spaces (and line feeds) on input files.
Read '+' or '-' if present.
See to it that the next character is a digit. Otherwise error.
Check if the next character is a digit.
Do the work for _rdi.
Convert real into string of digits for printout in scientific
notation.

VENIX Subroutines

FILES

PDP-11 Only

_fcvt Convert real into string of digits for fixed point printout
~f Split real into integer and fraction part
_fef Split real into exponent and fraction part

The following global variables are used:

_lastp
_highp
_extfl
_curfil

For heap management (see above).
For heap management (see above).
Used to save the argument of _ini for later reference.
Save the current file pointer, so that the error message can
access the file name.

Ilib/pcprlib.a
llib/emLpr.a
llib/pc/rterrors

The library used by compiled programs.
The library used by interpreted programs.
The error messages

SEE ALSO
[1] A.S. Tanenbaum, l.W. Stevenson & Hans van Staveren

"Description of an experimental machine architecture for use of
block structured languages" Informatica rapport IR - 54.
K.lensen & N.Wirth "PASCAL, User Manual and Report"
Springer-Verlag.

[2]

[3]

[4]
[5]

DIAGNOSTICS

An improved version of the ISO standard proposal for the
language Pascal ISO/TC97/SC5 - N462, received November
1979.
"VU-Pascal Reference Manual" in the Programming Guide.
pc(1)

All errors discovered by this runtime system cause an EM-1 TRP instruc­
tion to be executed. This TRP instruction expects the error number on
top of the stack. See [1] for a more extensive treatment of the subject.

EM-1 allows the user to specify a trap handling routine, called whenever
an EM-1 machine trap or a language or user defined trap occurs. One of
the first actions in _ini is to specify that the routine _fatal, available in
this library, will handle traps. This routine is called with an error code
(0 .. 255) as argument. The file" llib/pc/rterrors" is opened and searched
for a message corresponding with this number. If the file can not be
opened, or if the error number is not recorded in the file, then the same
trap is generated again, but without a user-defined trap handler,so that

VENIX Subroutines 11

PDP-ll Only

the low levels generate an error message. Otherwise the following infor­
mation is printed on file descriptor 2:

The name of the Pascal program
The name of the file pointed to by _curfil, if the error number is
between 96 and 127 inclusive.
The error message (or the error number if not found).
The source line number if not equal to O.

The routine _fatal stops the program as soon as the message is printed.

The following error codes are used by the Pascal runtime system:

64 more args expected
65 error in exp
66 error in In
67 error in sqrt
68 assertion failed
69 array bound error in pack
70 array bound error in unpack
71 only positive j in 'i mod j'
72 file not yet open

96 file xxx: not writable
97 file xxx: not readable
98 file xxx: end of file
99 file xxx: truncated
100 file xxx: reset error
101 file xxx: rewrite error
102 file xxx: close error
103 file xxx: read error
104 file xxx: write error
105 file xxx: digit expected
106 file xxx: non-ASCII char read

AUTHORS
Johan Stevenson and Ard Verhoog, Vrije Universiteit.

12 VENIX Subroutines

PERROR(3) PERROR(3)

NAME
perror, sYLerrlist, sysJlerr - system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

DESCRIPTION
perror produces a short error message on the standard error file describ­
ing the last error encountered during a caB to the system from a C pro­
gram. First the argument string s is printed, then a colon, then the mes­
sage and a new-line. Most usefuBy, the argument string is the name of
the program which incurred the error. The error number is taken from
the external variable errno (see intro(2», which is set when errors occur
but not cleared when non-erroneous caBs are made.

To simplify variant formatting of messages, the vector of message strings
sYLerrlist is provided; errno can be used as an index in this table to get
the message string without the newline. sys-"err is the number of mes­
sages provided for in the table; it should be checked because new error
codes may be added to the system before they are added to the table.

SEE ALSO
intro(2)

VENIX Subroutines

PLOT(3G) PLOT(3G)

NAME
openpl et af. - graphics interface

SYNOPSIS
Standard Unix subroutines

openpl()
erase()
space(xO, yO, xl, yl)
label(string)
line(xO, yO, xl, yl)
circle(x, y, rad)
arc(x, y, xO, yO, xl, yl)
move(x, y)
cont(x, y)
point(x, y)
linemod(style)
closepl()

int xO, yO, xl, yl;
char string[];
int xO, yO, xl, yl;
int x, y, rad;
int x, y, xO, yO, xl, yl;
int x, y;
int x, y;
int x, y;
char style[];

Special VENIX Enhancements

linepat(pat)
linewid(width)
window(xO, yO, xl, yl)
box(xO, yO, xl, yl)
rfill(xO, yO, xl, yl)
fill(x, y)
dot(x, y, rad)
color(col)
colndx(col, pat)
writemod(s)

int pat;
int width;
int xO, yO, xl, yl;
int xO, yO, xl, yl;
int xO, yO, xl, yl;
int x, y;
int x, y, rad;
int col;
int col, pat;
char s[];

DESCRIPTION

I

These subroutines generate graphic output in a relatively device­
independent manner. openplO must be used before any of the others to
open the device for graphics. closeplO flushes the output and closes the
device.

String arguments to label(), linemod(), and writemod() are null­
terminated, and do not contain newlines.

All coordinate points used in the routines are user-coordinates, defined
by the spaceO subroutine. spaceO must be called to set up this coordi­
nate system, or you may get strange results!

VENIX Subroutines

PLOT(3G) PLOT(3G)

The last designated point in a call to lineO, moveO, contO, or pointO,
becomes the 'current point' for the next plotting instruction.

Standard Unix subroutines

openpl()
Initialize graphics output device for writing. The routine
will .return a zero value upon a successful initialization.
If an error is encountered, the routine will return a value
of -l.

erase() Erase the graphics screen.

space(xO, yO, xl, yl)
Set up plotting area. The coordinate points (xO,yO) and
(xl,yl) specify respectively the lower-left and upper-right
corners of the user-coordinate system to be defined. The
user-coordinate system is scaled to fit the largest possible
square region allowable on the graphics device screen.
All plotting instructions are produced with respect to the
user-coordinate system.
The upper limits defined are just outside the plotting
area.
Video screens which are not square will display a blank
portion outside the plotting area. You may plot beyond
the space settings in order to take advantage of this area.

label(s) Write out the ASCII text string so that its first character
falls on the current point.

line(xO, yO, xl, yl)
Draw a line from (xO,yO) to (xl,yl). (xl,yl) becomes the
new current point.

circle(x, y, r)
Draw a circle with center at (x,y) having radius r.

arc (x, y, xO, yO, xl, yl)
Draw an arc with center at (x,y). The next two points
determine the starting and ending octants (inclusive and
exclusive) for a counter-clockwise arc. The point (xO,yO)
is referenced for arc radius.

move(x, y)
Move the current point to (x,y).

VENIX Subroutines 2

PLOT(3G) PLOT(3G)

cont(x, y)
Draw from current point to (x,y). (x,y) becomes the new
current point.

point(x, y)
Draw a point at (x,y). (x,y) becomes the new current
point.

Iinemod(s)
Change line-style attribute for subsequent lines. Styles
available are: 'solid', 'dotted', 'longdashed', 'short­
dashed', 'dotdashed'.

closepJ()
Close graphics output device for writing.

Special VENIX Enhancements

3

Jinepat(pattern)
Specify a 16-bit integer bit pattern, of user's choice, to
be used in place of one of the available line styles. Bits
set to '1' are visible; bits set to '0' are invisible.
EX: The integer 0146314 in octal represents
'1100110011001100' which is a dashed line.

Iinewid(width)
Specify line width in user coordinates.

window(xO, yO, xl, y 1)
The points (xO,yO) and (xl,yl) specify respectively the
lower-left and upper-right corners of a clipping window
in user coordinates. Only portions of lines inside the
window will be displayed, and all erasures will be
confined to the window area only.

box(xO, yO, xl, y1)
Draw a box frame bounded by the lower-left and upper­
right points (xO,yO) and (xl,yl).

rfill(xO, yO, xl, y 1)

fill (x, y)

Draw a filled rectangle bounded by the user coordinates
(xO,yO) and (xl,yl). The fill pattern is determined by the
current line-style pattern (see IinepatO).

Fill a convex closed boundary of arbitrary shape. The
point (x,y) is the seed point (starting point) and must be

VENIX Subroutines

PLOT(3G) PLOT(3G)

inside the boundary. The fill pattern is determined by the
current line-style pattern (see linepatO).

dot(x, y, r)

color(c)

Draw a filled circle with center at (x,y) , having a radius
r. The fill pattern is determined by the current line-style
pattern (see linepat(».

Choose a color from the present color palette. All graph­
ics following will be displayed in that color. The color
palette is preset as follows:

color shade

0 black (background)
blue

2 green
3 cyan
4 red
5 magenta
6 yellow
7 white

The colndx() routine below explains how to change the
color palette. On a monochrome monitor, the colors
will show up as gray scales. Be cautious, as this routine
should not be called unless an extended bit map board
(color board) is present in the machine.

colndx(c, pat)
Set a color from the palette to a desired shade. In the
DEC PRO color graphics, the colors available are num­
bered 0 thru 7, 0 being the background color. The pat­
tern argument is a 16-bit integer to be set by the user.

15- -8

0 ... 0

7- -0

rrrgggbb

The high 8 bits are ignored and should be set to zero.
The low 8 bits specify the individual intensity of the
three primary colors: red, green, and blue. Intensities for
red and green may range from 0 to 7, and blue from 0 to
3. For example, a pattern of '034' in octal represents
'00000000 000 111 00' in binary, which is a full-intensity
green.

VENIX Subroutines 4

PLOT(3G) PLOT(3G)

5

Be cautious, as a change in the color palette will instantly change
that color on the screen. It is advised that this routine be called
before any plotting to eliminate color flashing. This may be use­
ful, however, for creating special effects for demo purposes. Do
not use this routine unless an extended bit map board (color
board) is present in the machine.

writemod(s)
Choose from one of the five available writing modes:

xor Exclusive-or mode allows one to overlay
several images onto the same screen, and
remove them arbitrarily while retaining the
underlying image.
[exclusive 'OR' data to screen: memory ~ =
data]

mov Absolute-move mode overwrites anything on
the screen and is good for clearing off previ­
ous images.
[move data to screen: memory = data]

mve Move-complement mode overwrites the
screen with a reverse image, creating reverse­
video effects.
[move complement of data to screen:
memory = -data]

bis Bit-set mode writes only the set (turned-on)
bits onto the screen. The current image is
not destroyed, and thus this mode is useful
for creating composite images.
['OR' data to screen: memory I = data]

bie Bit-clear mode writes only the clear (turned­
off) bits onto the screen.
['AND' complement of data to screen:
memory & = -data]

All plotting instructions operate in the chosen writing mode.
Bit-set mode is the default.

Various flavors of these functions exist for different output devices. They
are obtained by the following Jd(1) options (normally placed at the end
of the line in the ee command):

VENIX Subroutines

PLOT(3G) PLOT(3G)

-Iplot device-independent graphics stream on standard output for
plot(1g) filters

The following options bypass the plot filters and write directly to the dev­
ice:

-Upro

-1t4014

DEC PRO monochrome and color graphics screens
Color is distinguished from monochrome by a first subrou­
tine call to color(). If you want monochrome output, do
not make any calls to either color() or colndx(). Color will
work only if an extended bit map board (color board) is
present in the machine. If your machine has a monchrome
monitor and a color board, use of the color subroutines will
produce gray scales.
Tektronix 4014 terminal

EXAMPLES
To make a program using the device independent plot library:

cc - 0 program program.c -lplot

To run the program on the DEC PRO graphics screen:

program < data I plot - Tpro

To run the program on a Tektronix terminal:

program < data I plot - T 4014 > I dev Itek

To bypass the plot filters and write directly to the DEC PRO:

cc - 0 program program.c -ltpro
program < data

SEE ALSO

NOTES

plot(lg), plot(5), setscreen(1g)

The fill() routine operates a boundary-fill operation and requires an
unbroken boundary in order to fill properly. Please be cautious when
using it.

VENIX Subroutines 6

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate 110 to/from a process

SYNOPSIS
#include < stdio.h >

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings contain­
ing respectively a shell command line and an 110 mode, either 'r' for
reading or 'w' for writing. It creates a pipe between the calling process
and the command to be executed. The value returned is a stream pointer
that can be used (as appropriate) to write to the standard input of the
command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for
the associated process to terminate and returns the exit status of the com­
mand.

Because open files are shared, a type 'r' command may be used as an
input filter, and a type 'w' as an output filter.

SEE ALSO
pipe(2), fopen(3), fclose(3), system(3), wait(2)

DIAGNOSTICS

BUGS

1

popen returns a null pointer if files or processes cannot be created, or the
Shell cannot be accessed.
pclose returns - 1 if stream is not associated with a 'popened' command.

Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing, e.g. with fflush, see
fclose(3).

VENIX Subroutines

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include < stdio.h >

printf(format [, arg] ...
char *format;

fprintf(stream, format [, arg] ...
FILE *stream;
char *format;

sprintf(s, format [, arg] ...)
char *s, format;

DESCRIPTION
printf places output on the standard output stream stdout. fprintf places
output on the named output stream. sprintf places" output" in the string
s, followed by the character' \ 0' .

Each of these functions converts, formats, and prints its arguments after
the first under control of the first argument. The first argument is a char­
acter string which contains two types of objects: plain characters, which
are simply copied to the output stream, and conversion specifications,
each of which causes conversion and printing of the next successive arg
printf.

Each conversion specification is introduced by the character 070. Follow­
ing the 0J0, there may be

an optional minus sign '-' which specifies left adjustment of the
converted value in the indicated field;

an optional digit string specifying a field width; if the converted
value has fewer characters than the field width it wiII be blank­
padded on the left (or right, if the left-adjustment indicator has
been given) to make up the field width; if the field width begins
with a zero, zero-padding will be done instead of blank-padding;

an optional period '.' which serves to separate the field width
from the next digit string;

an optional digit string specifying a precision which specifies the
number of digits to appear after the decimal point, for e- and f-

VENIX Subroutines

PRINTF(3S) PRINTF(3S)

2

conversion, or the maximum number of characters to be printed
from a string;

the character I specifying that a following d, 0, x, or u
corresponds to a long integer arg. (A capitalized conversion
code accomplishes the same thing).

a character which indicates the type of conversion to be applied.

A field width or precision may be '*' instead of a digit string. In this
case an integer arg supplies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal
notation respectively.

f The float or double arg is converted to decimal notation in the
style '[-]ddd.ddd' where the number of d's after the decimal
point is equal to the precision specification for the argument. If
the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style '[-]d.ddde±dd'
where there is one digit before the decimal point and the number
after is equal to the precision specification for the argument;
when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style
e, whichever gives full precision in minimum space.

c The character arg is printed. Null characters are ignored.

s arg is taken to be a string (character pointer) and characters
from the string are printed until a null character or until the
number of characters indicated by the precision specification is
reached; however if the precision is 0 or missing all characters up
to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the
result will be in the range 0 to 65535).

0J0 Print a '0/0'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a
field; padding takes place only if the specified field width exceeds the
actual width. Characters generated by printf are printed by putc(3).

VENIX Subroutines

PRINTF(3S) PRINTF(3S)

Examples
To print a date and time in the form 'Sunday, July 3, 10:02', where
weekday and month are pointers to null-terminated strings:

printf("OJos, %s %d, %02d:%02d", weekday, month, day, hour,
min);

To print 7r to 5 decimals:

printf("pi = %.5f", 4*atan(1.0»;

SEE ALSO
putc(3), scanf(3), ecvt(3)

BUGS
Very wide fields (> 128 characters) fail.

VENIX Subroutines 3

PUTC(3S) PUTC(3S)

NAME
putc, put char , fputc, putw - put character or word on a stream

SYNOPSIS
#include < stdio.h >

int pute(e, stream)
char e;
FILE *stream;

putehar(e)

fpute(e, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION
pute appends the character c to the named output stream. It returns the
character written.

putehar(c) is defined as pute(c, stdout).

fpute behaves like pute, but is a genuine function rather than a macro.
It may be used to save on object text.

putw appends word (Le. int) w to the output stream. It returns the
word written. putw neither assumes nor causes special alignment in the
file.

The standard stream stdout is normally buffered if and only if the output
does not refer to a terminal; this default may be changed by setbuf(3).
The standard stream stderr is by default unbuffered unconditionally, but
use of freopen (see fopen(3» will cause it to become buffered; setbuf,
again, will set the state to whatever is desired. When an output stream is
unbuffered information appears on the destination file or terminal as
soon as written; when it is buffered many characters are saved up and
written as a block. fflush (see fclose(3» may be used to force the block
out early.

VENIX Subroutines

PUTC(3S) PUTC(3S)

SEE ALSO
fopen(3), fclose(3), getc(3), puts(3), printf(3), fread(3)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good
integer, ferror(3) should be used to detect putw errors.

Because it is implemented as a macro, putc treats a stream argument with
side effects improperly. In particular 'putc(c, *f + +);' doesn't work sen­
sibly.

VENIX Subroutines 2

PUTS(3S) PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include < stdio.h >

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION
puts copies the null-terminated string s to the standard output stream
stdout and appends a newline character.

fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

1

fopen(3), gets(3), putc(3), printf(3), ferror(3)
fread(3) for fwrite

puts appends a newline, fputs does not, all in the name of backward
compatibility.

VENIX Subroutines

QSORT(3) QSORT(3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. The first argu­
ment is a pointer to the base of the data; the second is the number of ele­
ments; the third is the width of an element in bytes; the last is the name
of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an in­
teger less than, equal to, or greater than 0 according as the first argument
is to be considered less than, equal to, or greater than the second.

SEE ALSO
sort(1)

VENIX Subroutines 1

RAND (3) RAND(3)

NAME
rand, srand - random number generator

SYNOPSIS
srand(seed)
int seed;

rand()

DESCRIPTION
rand uses a multiplicative congruential random number generator with
period 232 to return successive pseudo-random numbers in the range from
o to 215 - 1.

The generator is reinitialized by calling srand with 1 as argument. It can
be set to a random starting point by calling srand with whatever you like
as argument. (The current time is not a bad choice).

VENIX Subroutines

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include < stdio.h >

scanf(format [, pointer] . . .)
char *format;

fscanf(stream, format [, pointer] . . .)
FILE *stream;
char *format;

sscanf(s, format [, pointer] . ..)
char *s, *format;

DESCRIPTION
scanf reads from the standard input stream stdin. fscanf reads from the
named input stream. sscanf reads from the character string s. Each
function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects as arguments a control
string format, described below, and a set of pointer arguments indicating
where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. Blanks, tabs or new lines , which match optional white space in the
input.

2. An ordinary character (not 070) which must match the next character
of the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character *, an optional numerical maximum
field width, and a conversion character.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding argu­
ment, unless assignment suppression was indicated by *. An input field
is defined as a string of non-space characters; it extends to the next inap­
propriate character or until the field width, if specified, is exhausted.

VENIX Subroutines

SCANF(3S) SCANF(3S)

2

The conversion character indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted type .

. The following conversion characters are legal:

070 a single '%' is expected in the input at this point; no assignment is
done.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

o an octal integer is expected; the corresponding argument should be a
integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s a character string is expected; the corresponding argument should be
a character pointer pointing to an array of characters large enough
to accept the string and a terminating '\ 0', which will be added.
The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over space characters is
suppressed in this case; to read the next non-space character, try
'% 1 s' . If a field width is given, the corresponding argument should
refer to a character array, and the indicated number of characters is
read.

e a floating point number is expected; the next field is converted ac­
f cordingly and stored through the corresponding argument, which

should be a pointer to a float. The input format for floating point
I numbers is an optionally signed string of digits possibly containing a
\ decimal point, followed by an optional exponent field consisting of

an 'E' or 'e' followed by an optionally signed integer.

indicates a string not to be delimited by space characters. The left
bracket is followed by a set of characters and a right bracket; the
characters between the brackets define a set of characters making up
the string. If the first character is not circumflex C), the input field
is all characters until the first character not in the set between the
brackets; if the first character after the left bracket is ~, the input
field is all characters until the first character which is in the remain­
ing set of characters between the brackets. The corresponding argu­
ment must point to a character array.

VENIX Subroutines

SCANF(3S) SCANF(3S)

The conversion characters d, 0, and x may be capitalized or preceded by
I to indicate that a pointer to long rather than to int is in the argument
list. Similarly, the conversion characters e or f may be capitalized or
preceded by I to indicate a pointer to double rather than to float. The
conversion characters d, 0, and x may be preceded by h to indicate a
pointer to short rather than to into

The scanf functions return the number of successfully matched and as­
signed input items. This can be used to decide how many input items
were found. The constant EOF is returned upon end of input; note that
this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character
in the input.

For example, the call

int i; float x; char name[50];
scanf(l/%d%fO/os", &i, &x, name);

with the input line

25 54.32E-l thompson

will assign to i the value 25, x the value 5.432, and name will contain
'thompson \ 0'. Or,

int i; float x; char name[50];
scanf(" %2d%f%*d% [1234567890]" , &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56\0' in
name. The next call to getchar will return 'a'.

Since the newline character (\ n) is used as a delimiter, it should not be
matched as part of a literal string; if you use it in your format string,
scanf will hang forever trying to match it from input. A getchar() can be
used to swallow up an extra newline.

Note also that scanf only swallows up input it can match. This action can
lead to unexpected behavior. For example, if scanf expects to read a
number but is given a string, the string will remain on the input queue;

VENIX Subroutines 3

SCANF(3S) SCANF(3S)

the next time scanf is called, it will immediately try to digest this string
again, without waiting for another line to be entered.

SEE ALSO
atof(3), getc(3), printf(3)

DIAGNOSTICS

BUGS

4

The scanf functions return EOF on end of input, and a short count for
missing or illegal data items.

The success of literal matches and suppressed assignments is not directly
determinable.

VENIX Subroutines

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an au­
tomatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3) upon the first getc or
putc(3) on the file, except that output streams directed to terminals, and
the standard error stream stderr are normally not buffered.

SEE ALSO
fopen(3), getc(3), putc(3), malloc(3)

VENIX Subroutines

SETJMP(3) SETJMP(3)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include < setjmp.h >

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program.

setjmp saves its stack environment in env for later use by longjmp. It re­
turns value o.

Longjmp restores the environment saved by the last call of setjmp. It
then returns in such a way that execution continues as if the call of
setjmp had just returned the value val to the function that invoked
setjmp, which must not itself have returned in the interim. All accessible
data have values as of the time longjmp was called.

SEE ALSO
signal(2)

SIN (3M) SIN (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include < math.h >

double sin (x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
sin, cos, and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to make
sure the result is meaningful.

asin returns the arc sin of x in the range - 7r12 to 7r12.

acos returns the arc cosine of x in the range 0 to 7r.

atan returns the arc tangent of x in the range - 7r12 to 7r12.

atan2 returns the arc tangent of x/y in the range - 7r to 7r.

DIAGNOSTICS

BUGS

Arguments of magnitude greater than 1 cause asin and acos to return
value 0; errno is set to EDOM. The value of tan at its singular points is
a huge number, and errno is set to ERANGE.

The value of tan for arguments greater than about 2**31 is garbage.

SINH(3M) SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real ar­
guments.

DIAGNOSTICS
sinh and cosh return a huge value of appropriate sign when the correct
value would overflow.

VENIX Subroutines

SLEEP(3) SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(time)

DESCRIPTION
If time is greater than or equal to zero, the current process is suspended
from execution for the number of seconds specified by the argument, up
to 32767 seconds.

If time is less than zero, the current process is suspended for the number
of clock-ticks (1I60ths of a second) equal in magnitude to time, up to
32768 ticks. The actual suspension time may be up to 1 clock-tick less
than that requested, because scheduled wakeups occur at fixed l-clock­
tick intervals.

Because of scheduling delays due to other system activity, resumption of
execution for sleep calls may be delayed an arbitrary amount.

The routine is implemented by setting an alarm clock signal (see
alarm(2» and pausing (pause(2» until it occurs.

The following things will happen if a previous alarm was set in seconds:

If the alarm was set to come due after the sleep would finish,
then it will occur as scheduled after the sleep.

If the previous alarm was set to come due during the sleep, then
the sleep will terminate (prematurely) when the alarm occurs,
and the alarm will be sent a second later.

Sleeps should not be mixed with clock-tick alarms.

If other signals are being caught, and one occurs during a sleep, then the
signal-catching routine may itself be interrupted by the alarm ending the
sleep; if this happens, then execution resumes normally at the point after
the sleep call. In these circumstances the signal-catching routine will nev­
er get a chance to finish. To prevent this from happening, signal­
catching routines can immediately call signal to ignore alarms.

SEE ALSO
alarm(2), pause(2)

VENIX Subroutines

SLEEP (3) SLEEP(3)

NOTES

2

Clock-tick sleeps are not portable to standard UNIX, and VENIX limits
regular sleeps to 32767 seconds.

VENIX Subroutines

STDIO(3S) STDIO(3S)

NAME
stdio - standard buffered input! output package

SYNOPSIS
#include < stdio.h >

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in Sections 3S constitute an efficient user-level
buffering scheme. The in-line macros getc and putc(3) handle characters
quickly. The higher level routines gets, fgets, scanf, fscanf, fread, puts,
fputs, printf, fprintf, and fwrite all use getc and putc; they can be freely
intermixed.

A file with associated buffering is called a stream, and is declared to be a
pointer to a defined type FILE. fopen(3) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. There are three normally open streams with constant
pointers declared in the include file and associated with the standard open
files:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by
integer functions that deal with streams.

Any routine that uses the standard input! output package must include
the header file < stdio.h > of pertinent macro definitions. The functions
and constants mentioned in sections labeled 3S are declared in the in­
clude file and need no further declaration. The constants, and the fol­
lowing 'functions' are implemented as macros; redeclaration of these
names is perilous: getc, getchar, putc, putchar, feof, ferror, fileno.

SEE ALSO
open(2), close(2), read(2), write(2)

VENIX Subroutines

STDIO(3S) STDlO(3S)

DIAGNOSTICS

BUGS

2

The value EOF is returned uniformly to indicate that a FILE pointer has
not been initialized with fopen, input (output) has been attempted on an
output (input) stream, or a FILE pointer designates corrupt or otherwise
unintelligible FILE data.

Standard 110 is not usable in raw mode.

VENIX Subroutines

STRING(3) STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex -
string operations

SYNOPSIS
char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, *s2;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;

DESCRIPTION
These functions operate on null-terminated strings. They do not check
for overflow of any receiving string.

strcat appends a copy of string s2 to the end of string sl. strncat copies
at most n characters. Both return a pointer to the null-terminated result.

strcmp compares its arguments and returns an integer greater than, equal
to, or less than 0, according as sl is lexicographically greater than, equal
to, or less than s2. strncmp makes the same comparison but looks at n
characters at most.

VENIX Subroutines

STRING(3) STRING(3)

BUGS

2

strcpy copies string s2 to sl, stopping after the null character has been
moved. strncpy copies exactly n characters, truncating or null-padding
s2; the target may not be null-terminated if the length of s2 is n or more.
Both return s 1 .

strlen returns the number of non-null characters in s.

index (rindex) returns a pointer to the first (last) occurrence of character
c in string s, or zero if c does not occur in the string.

strcmp uses native character comparison, which is signed on PDP-ll's,
unsigned on other machines.

VENIX Subroutines

SWAB(3) SWAB(3)

NAME
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION
swab copies nbytes bytes pointed to by from to the position pointed to by
to, exchanging adjacent even and odd bytes. It is useful for carrying
binary data between PDP-II's and other machines. nbytes should be
even.

VENIX Subroutines

SYSTEM(3)

NAME
system - issue a shell command

SYNOPSIS
system(string)
char *string;

DESCRIPTION

SYSTEM(3)

system causes the string to be given to sh(1) as input as if the string had
been typed as a command at a terminal. The current process waits until
the shell has completed, then returns the exit status of the shell.

SEE ALSO
popen(3), exec(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

1 VENIX Subroutines

TERMCAP(3) TERMCAP(3)

NAME
tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - terminal independent
operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *tgetstr(id, area)
char *id, **area;

char *tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)O;

DESCRIPTION
These functions extract and use capabilities from the terminal capability
data base termcap(5). These are low level routines; see curses(3) for a
higher level package.

tgetent extracts the entry for terminal name into the buffer at bp. bp
should be a character buffer of size 1024 and must be retained through
all subsequent calls to tgetnum, tgetflag, and tgetstr. tgetent returns - 1
if it cannot open the termcap file, 0 if the terminal name given does not
have an entry, and 1 if all goes well. It will look in the environment for
a TERM CAP variable. If found, and the value does not begin with a
slash, and the terminal type name is the same as the environment string
TERM, the TERM CAP string is used instead of reading the termcap file.

VENIX Subroutines

TERM CAP (3) TERM CAP (3)

FILES

If it does begin with a slash, the string is used as a path name rather than
lete/termeap. This can speed up entry into programs that call tgetent, as
well as to help debug new terminal descriptions or to make one for your
terminal if you can't write the file lete/termeap.

tgetnum gets the numeric value of capability id, returning - 1 if is not
given for the terminal. tgetflag returns 1 if the specified capability is
present in the terminal's entry, 0 if it is not. tgetstr gets the string value
of capability id, placing it in the buffer at area, advancing the area
pointer. It decodes the abbreviations for this field described in
termeap(5), except for cursor addressing and padding information.

tgoto returns a cursor addressing string decoded from em to go to
column desteol in line destline. It uses the external variables UP (from
the up capability) and BC (if be is given rather than bs) if necessary to
avoid placing \ n, ~ D or ~ @ in the returned string. (Programs which call
tgoto should be sure to turn off the XTABS bites), since tgoto may now
output a tab. Note that programs using termeap should in general turn
off XT ABS anyway since some terminals use control- I for other func­
tions, such as nondestructive space). If a 070 sequence is given which is
not understood, then tgoto returns "OOPS".

tputs decodes the leading padding information of the string ep; affent
gives the number of lines affected by the operation, or 1 if this is not ap­
plicable, oute is a routine which is called with each character in turn.
The external variable ospeed should contain the output speed of the ter­
minal as encoded by stty(l). The external variable PC should contain a
pad character to be used (from the pc capability) if a null C@) is inap­
propriate.

The library switch for compilation is - Itermlib, and should be specified
at the end of the cc command line.

lusr/lib/libtermlib.a -ltermlib library
letc/termcap data base

SEE ALSO
ex(l), curses(3), termcap(5)

2 VENIX Subroutines

TTYNAME(3) TTYNAME(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char *ttyname(fildes)

isatty(fildes)

ttysiot()

DESCRIPTION

FILES

ttyname returns a pointer to the null-terminated path name of the termi­
nal device associated with file descriptor lildes.

isatty returns 1 if Ii/des is associated with a terminal device, 0 otherwise.

ttysiot returns the number of the entry in the ttys(4) file for the control
terminal of the current process.

Note that for every process Idev/tty is synonymous with the process'
control terminal.

Idev/*
letc/ttys

SEE ALSO
ioctl(2), ttys(4)

DIAGNOSTICS

BUGS

ttyname returns a null pointer (0) if Ii/des does not describe a terminal
device in directory' I dev' .

ttyslot returns 0 if 'I etc/ttys' is inaccessible or if it cannot determine the
control terminal.

The return value points to static data whose content is overwritten by
each call.

VENIX Subroutines

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h >

ungetc(c, stream)
FILE *stream;

DESCRIPTION
ungetc pushes the character c back on an input stream. That character
will be returned by the next getc call on that stream. ungetc returns c.

One character of pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered. Attempts to
push EOF are rejected.

fseek(3) erases all memory of pushed back characters.

SEE ALSO
getc(3), setbuf(3), fseek(3)

DIAGNOSTICS
ungetc returns EOF if it can't push a character back.

VENIX Subroutines

A.OUT(4) A.OUT(4)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
a.out is the output file of the assembler as(1) and the link editor Jd(1).
Both programs make a.out executable if there were no errors and no
unresolved external references. Layout information as given in the
include file is:

typedef long AOUT_T;

/*

* Header prepended to each a.out file.
*/

struct exec {
short
unsigned short
long
long
long
long
long
long
long
};

#define OMAGIC
#define NMAGIC

~magic;

a_stack;
a_text;
~data;

~bss;

~syms;

a_entry;
a_trsize;
a_drsize;

0407
0411

#define SYMNMLEN 8

/*

/* magic number */
/* size of stack if Z type, 0 otherwise */
/ * size of text segment * /
/* size of initialized data */
/* size of uninitialized data */
/ * size of symbol table * /
/* entry point */
/ * size of text relocation * /
/* size of data relocation */

/* old impure format */
/* read-only text (separate I&D) */

/* size of symbol name*/

* Macros which take exec structures as arguments and tell whether the
* file has a reasonable magic number or offsets to textlsymbolslstrings.
*/

#define N_BADMAG(x) \
(long)«(x).~magic)! = OMAGIC && «x).~magic)! = NMAGIC)

#define N_TXTOFF(x) \
(long)sizeof(struct exec)

VENIX File Formats

A.OUT(4)

#define N_SYMOFF(x) \
(long)(N_ TXTOFF(x) + (x).~Uext + (x).~data + \
(x).~trsize + (x).~drsize)

#define N_STROFF(x) \
(long)(N_SYMOFF(x) + (x).~syms)

/*
* Format of a relocation datum.
*/

struct relocatioILinfo {
long Laddress;
short Lsymbolnum;

/* address which is relocated */
/* local symbol ordinal */

A.OUT(4)

short Lpcrel: 1,
Llength:2,

/* was relocated pc relative already */
/* O=byte, 1 = word, 2=long */

};

Lextern:l,
:12;

/* doesn't include value of sym referenced */

/* Format of the old symbol table entry. This is here for compatibility.
* The nlist subroutine takes an old symbol table format as its argument
* and it knows how to read the format actually stored in the file.
*/

struct

};

/*

nlist {
char
short
long

ILname[SYMNMLEN];/* symbol name */
ILtype; /* type */
ILvalue; /* value */

* Format of a symbol table entry as it really is in the a.out file.
*/

struct symtb {
union {

};

char *nLname;/* for use when in-core */
unsigned short nLstrx;/* index into file string table */

} nLun;
char nLtype; /* type flag, i.e. N_TEXT etc; see below */
char nLother;/* unused */
short nLdesc; /* see <stab.h> */
long nLvalue;/* value of this symbol */

#define nsj}ash nLdesc /* used internally by ld */

VENIX File Formats

A.OUT(4)

/*
* Simple values for ILtype or nLtype.
*/

#define N_UNDF OxO /* undefined */
#define N~BS Ox2 / * absolute * /
#define N_TEXT Ox4 /* text */
#define N_DATA Ox6 /* data */
#define N_BSS Ox8 / * bss * /
#define N_COMM Ox12 /* common (internal to ld) */
#define N_FN Oxlf /* file name symbol */

#define N_EXT 01 /* external bit, OR'ed in */
#define N_TYPE Oxle /* mask for all the type bits */

#define N_ST AB OxeO

/*
* Format for namelist values.
*/

#define N_FORMAT "OJo08Ix"

A.OUT(4)

The file has four sections: a header, the program and data text, reloca­
tion information, a symbol table, and a string table (in that order). The
last three may be empty if the program was loaded with the' - s' option
of Id or if the symbols and relocation have been removed by strip(1).

In the header the sizes of each section are given in bytes, but are even.
The size of the header is not included in any of the other sizes.

VENIX File Formats 3

AR(4) AR(4)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link-editor
Jd(l).

A file produced by ar has a magic number at the start, followed by the
constituent files, each preceded by a file header. The magic number and
header layout as described in the include file are:

#define ARMAG
#define SARMAG

"! <arch> \n"
8

#define ARFMAG '" \n"

struct ar.-hdr {
char
char
char
char
char
char
char

};

arJlame[16];
aLdate[12];
aLuid[6];
ar~id[6];

aLmode[8];
ar_size[IO];
aLfmag[2];

SEE ALSO
ar(l), ld(l), nm(l)

1 VENIX File Formats

CHECKLIST (4) CHECKLIST (4)

NAME
checklist - default file system checklist file

DESCRIPTION
/etc/checklist is used as a default checklist by a number of disk checking
and reporting programs. The file is in the format:

filsysO:commentO:
filsysl :commentl:
filsys2:comment2:

where filsysO, filsysl ... are the names of the default devices, and com­
mentO, commentl ... are comment fields briefly summarizing their use.
The two fields are separated by a colon, and a colon/newline occurs at
the end of each entry.

SEE ALSO
fsck(1), ncheck(l), df(l), quot(1)

VENIX Miscellaneous Facilities

CORE(4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
VENIX writes out a core image of a terminated process when any of
various errors occur. See signal(2) for the list of reasons; the most com­
mon are memory violations, illegal instructions, bus errors, and user­
generated quit signals. The core image is called 'core' and is written in
the process' working directory (provided it can be; normal access controls
apply).

The first 1024 bytes of the core image are a copy of the system's per-user
data for the process, induding the registers as they were at the time of
the fault; see the system listings for the format of this area. The
remainder represents the actual contents of the user's core area when the
core image was written. If the text segment is write-protected and
shared, it is not dumped; otherwise the entire address space is dumped.

In general the debugger adb(l) is sufficient to deal with core images.

SEE ALSO
adb(1), signal(2)

VENIX File Formats

DIR(4) DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include < sys/types.h >
#include < sys/dir.h >

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a
bit in the flag word of its i-node entry (see filsys(4». The structure of a
directory entry as given in the include file is:

#define DIRSIZ 14

struct direct {
ino_t d_ino; /* inode number */
char d_name[DIRSIZ]; /* file name */

};

By convention, the first two entries in each directory are for '.' and ' . .'.
The first is an entry for the directory itself. The second is for the parent
directory. The meaning of ' • .' is modified for the root directory file sys­
tem. Since there is no parent, ' . .' has the same meaning as '.'.

SEE ALSO
filsys(4)

VENIX File Formats

FILSYS(4) FILSYS(4)

NAME
filsys, flblk, ino - format of file system volume

SYNOPSIS
#include < sys/types.h >
#include < sys/f1hk.h >
#include < sys/filsys.h >
#include < sys/ino.h >

DESCRIPTION

1

Every file system storage volume (e.g. RM disk, RK disk, RL disk, RX
diskette), has a common format for certain vital information. Every
such volume is divided into a certain number of 512-byte blocks. Block
o is unused and is available to contain a bootstrap program, pack label,
or other information.

Block 1 is the 'super block'. The layout of the super block as defined by
the include file < sys/filsys.h > is:

struct filsys {
unsigned int Lisize; /* size in blocks of I list */
unsigned int s3size; /* size of entire volume */
int Lnfree; /* number of in-core free */
unsigned int Lfree[lOO]; /* in-core free blocks */
int Lninode; /* number in-core I nodes */
unsigned int Linode[lOO]; /* in core free I nodes */
char Lflock; /* lock free list */
char Lilock; /* lock I list */
char Lfmod; /* super block modified */
char sJonly; /* mounted read-only flag */
long Ltime; /* date of last update */
int pad[48];

};

Lisize is the number of blocks in the i-list, which starts just after the
super-block, in block 2. s-fsize is the address of the first block not
potentially available for allocation to a file. These numbers are used by
the system to check for bad block addresses; if an 'impossible' block
address is allocated from the free list or is freed, a diagnostic is written
on the on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

VENIX File Formats

FILSYS (4) FILSYS(4)

The free list for each volume is maintained as follows. The Lfree array
contains, in s-free{l}, ... , s-free{s_nfree-l}, up to 99 free block
numbers. s-free{O} is the block number of the head of a chain of blocks
constituting the free list. The first word in each free-chain is the number
(up to 100) of free-block numbers listed in the next 100 words of this
chain member. The first of these 100 blocks is the link to the next
member of the chain. To allocate a block: decrement Lnfree, and the
new block number is Lfree{Lnfree}. If the new block number is 0, there
are no blocks left, so give an error. If s-'1free became 0, read in the
block numbers in the next 100 words into the Lfree array. To free a
block, check if Lnfree is 100; if so, copy Lnfree and the s_free array
into it, write it out, and set Lnfree to O. In any event set Lfree{Lnfree}
to the freed block's number and increment Lnfree.

Lninode is the number of free i-numbers in the Linode array. To allo­
cate an i-node: if Lninode is greater than 0, decrement it and return
Linode{Lninode}. If it was 0, read the i-list and place the numbers of
all free inodes (up to 100) into the Linode array, then try again. To free
an i-node, provided Lninode is less than 100, place its number into
Linode{Lninode} and increment Lninode. If Lninode is already 100,
don't bother to enter the freed i-node into any table. This list of i-nodes
is only to speed up the allocation process; the information as to whether
the inode is really free or not is maintained in the inode itself.

Lflock, Lilock, and Lronly are flags maintained in the core copy of the
file system while it is mounted and their values on disk are immaterial.
The value of Lfmod on disk is likewise immaterial; it is used as a flag to
indicate that the super-block has changed and should be copied to the
disk during the next periodic update of file system information. Ltime is
the last time the super-block of the file systems was changed, and is a
double-precision representation of the number of seconds that have
elapsed since 00:00:00 Jan. 1, 1970 (GMT). During a reboot, the Ltime
of the super-block for the root file system is used to set the system's idea
of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes are 32 bytes long, so 16 of them fit into a block. Therefore, i­
node i is located in block (i + 31) / 16, and begins 32 * « i + 31) (mod
16)) from its start. I-node 1 is reserved for the root directory of the file
system, but no other i-number has a built-in meaning. Each i-node
represents one file. The format of an inode is as follows:

VENIX File Formats 2

FILSYS(4) FILSYS(4)

3

struct inode {
int
char

Lmode;
Lnlinks;
Luid;
Lgid;
LsizeO;
Lsizel;
Laddr[8];
Latime;
Lmtime;

};

unsigned char
unsigned char
unsigned char
unsigned int
unsigned int
long
long

The mode bits are as follows:

IALLOC 0100000
IFMT 060000
IFDIR 040000
IFCHR 020000
IFREG 000000
IFBLK 060000
ILARG 010000
ISUID 04000
ISGm 02000
ISVTX 01000
IREAD 0400
IWRITE 0200
IEXEC 0100

0070
0007

i-node is allocated
2-bit file type mask:
directory
character type special file
regular file
block-type special file
large file
set user-ID on execution
set group-ID on execution
save shared segment after use
read (owner)
write (owner)
execute (owner)
read, write, execute (group)
read, write, execute (other)

Lmode tells the kind of file; it is encoded identically to the sLmode field
of stat(2). Lnlink is the number of directory entries (links) that refer to
this i-node. Luid and Lgid are the owner's user and group IDs. iJizeO
and iJizei are the 24-bit number of bytes in the file. Latime and
Lmtime are the times of last access and modification of the file contents
(read, write or create). See times(2).

Special files are recognized by their modes and not by i-number. A
block-type special file is one which can potentially be mounted as a file
system; a character-type special file cannot, though it is not necessarily
character-oriented. For special files, the Laddr field is occupied by the
device code (see types(5». The device codes of block and character spe­
cial files overlap.

VENIX File Formats

FILSYS(4) FILSYS(4)

The address words of ordinary files and directories contain the numbers
of the blocks in the file (if it is small) or the numbers of indirect blocks
(if the file is large). Byte number n of a file is accessed as follows. N is
divided by 512 to find its logical block number (say b) in the file. If the
file is small (flag 010000 is 0), then b must be less than 8, and the physi-

. cal block number is addr[b].

If the file is large, b is divided by 256 to yield i. If i is less than 7, then
addr[i] is the address of a first indirect block which contains the number
of the block for the sought-for byte.

If i is equal to 7, then the file has become extra-large (huge), and addr[7]
is the address of a first indirect block. Each word in this block is the
number of a second-level indirect block; each word in the second-level
indirect block points to a data block. Notice that extra-large files are not
marked by any mode bit, but only by having addr[7] non-zero; and that
although this scheme allows for more than 256x256x512 = 33,554,432
bytes per file, the length of files is stored in 24 bits so in practice a file
can be at most 16,777,216 bytes long.

For block b in a file to exist, it is not necessary that all blocks less than b
exist. A zero block number either in the address words of the i-node or
in an indirect block indicates that the corresponding block has never been
allocated. Such a missing block reads as if it contained all zero words.

SEE ALSO
fsck(I), dir(4), mount(1), stat(2)

VENIX File Formats 4

GROUP (4) GROUP (4)

NAME
group - group file

DESCRIPTION

FILES

. group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separatedIist of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory jete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical group ID's to names.

/etc/group

SEE ALSO
newgrp(1), crypt(3), passwd(1), passwd(4)

VENIX Miscellaneous Facilities

MTAB(4) MTAB(4)

NAME
mtab - mounted file system table

DESCRIPTION

FILES

mtab resides in directory jete and contains a table of devices mounted by
the mount command. umount removes entries.

Each entry is 64 bytes long; the first 32 are the null-padded name of the
place where the special file is mounted; the second 32 are the null-padded
name of the special file. The special file has all its directories stripped
away; that is, everything through the last' /' is thrown away.

This table is present only so people can look at it. It does not matter to
mount if there are duplicated entries nor to umount if a name cannot be
found.

/etc/mtab

SEE ALSO
mount(1)

VENIX File Formats

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION

FILES

passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID (0 - 255)
numerical group ID (0 - 255)
GeOS job number, box number, optional GeOS user-id
initial working directory
program to use as Shell

This is an ASeII file. Each field within each user's entry is separated
from the next by a colon. The GeOS field is used only when communi­
cating with that system, and in other installations can contain any desired
information: Each user is separated from the next by a new-line. If the
password field is null, no password is demanded; if the Shell field is null,
the Shell itself is used.

This file resides in directory jete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical user ID's to names.

jetcjpasswd

SEE ALSO
getpwent(3), login(l), crypt(3), passwd(l), group(4)

VENIX File Formats

TTYS(4} TTYS(4}

NAME
ttys - terminal initialization data

DESCRIPTION
The ttys file is read by the init program and specifies which terminal spe­
cial files are to have a process created for them which will allow people
to log in. It contains one line per special file.

The first character of a line is either '0' or '1'; the former causes the line
to be ignored, the latter causes it to be effective. The second character is
used as an argument to getty, (see section 8, Installation and System
Manager's Guide) which performs such tasks as baud-rate recognition,
reading the login name, and calling login. The remainder of the line is
the terminal's entry in the device directory, /dev.

For normal lines, the second character on the line (passed to getty) is '0';
other characters can be used, for example, with hard-wired terminals
where speed recognition is unnecessary. The following is a complete list:

o Cycles through 300 - 1200 - 150 - 110 baud. Useful as a default
for dialup lines accessed by a variety of terminals. (An interface
with software-controllable baud rates is required for this to be
effective).

Intended for the console terminal.

1 Intended for on-line CRT terminals (9600 baud).

2 Intended for on-line VT52 and VT100 terminals (9600 baud).
Like 1 (above), but screen is cleared with ESC - H ESC - J
sequence when login prompt is issued.

3 Starts at 1200 baud, cycles to 300 baud and back. Useful with
212 datasets where most terminals run at 1200 baud.

4 Useful for on-line DECwriter(LA36}.

5 Same as '3' but starts at 300.

6 Cycles through 300 - 1200 - 9600 baud, starting at 300 baud.

7 Same as '6', but starts at 1200.

8 Same as '6', but starts at 9600.

A 2400 baud line.

B 4800 baud line.

VENIX File Formats

TTYS(4) TTYS(4)

FILES

Only as many user ports as licensed will become active; attempts to set
additional ports active will be ignored. It is entirely permissible to specify
less than the licensed number of active ports.

/etc/ttys

SEE ALSO
10gin(1), getty (8)

2 VENIX File Formats

UTMP(4) UTMP(4)

NAME
utmp, wtmp - login records

SYNOPSIS
#include < utmp.h >

DESCRIPTION

FILES

The utmp file allows one to discover information about who is currently
using VENIX. The file is a sequence of entries with the following struc­
ture declared in the include file:

struct utmp {

};

char uLline[8];
char uLname[8];
long uLtime;

/* tty name */
/* user id */
/* time on */

This structure gives the name of the special file associated with the user's
terminal, the user's login name, and the time of the login in the form of
time(2).

The wtmp file records all logins and logouts. Its format is exactly like
utmp except that a null user name indicates a logout on the associated
terminal. Furthermore, the terminal name ,-, indicates that the system
was rebooted at the indicated time; the adjacent pair of entries with ter­
minal names' I' and '}' indicate the system-maintained time just before
and just after a date command has changed the system's idea of the time.

wtmp is maintained by login(1) and init (section 8, Installation and Sys­
tem Manager's Guide). Neither of these programs creates the file, so if it
is removed record-keeping is turned off. It is summarized by ac(1).

/etc/utmp
/usr/adm/wtmp

SEE ALSO
10gin(1), init(8), who(l), ac(l)

VENIX File Formats

ENVIRON(5) ENVIRON (5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by
exec(2) when a process begins. By convention, these strings have the form
"name = value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh(l), time(1), nice(l),
nohup(1), etc., apply in searching for a file are known by an
incomplete path name. The prefixes are separated by colons (:).
login(l) sets PATH = Ibin/usr Ibin.

HOME Name of the user's login directory, set by login(l) from the pass­
word file passwd(4).

TERM The kind of terminal for which output is to be prepared. Some
terminals supported are:

vi200
vi50
vt52
vt100
h19

Visual Technologies

DEC

Zenith

See a complete listing of terminals in letc/termcap.

MAIL If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file.

Further names may be placed in the environment by the export command
and "name = value" arguments in sh(1).

It is unwise to conflict with certain shell variables that are frequently
exported by .profile files: MAIL, PSt, PS2, IFS.

SEE ALSO
10gin(1), sh(1), getenv(3C)

VENIX Miscellaneous Facilities

PLOT(5) PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3g), and
are interpreted for various devices by plot(1g). A graphics file is a stream
of plotting instructions. Each instruction consists of an ASCII letter usu­
ally followed by bytes of binary information. The instructions are exe­
cuted in order. A point is designated by four bytes representing the x
and y values; each value is a signed integer.

There are no instructions for openpl() or c1osepl(), as they are automati­
cally invoked by the filter driver when the plot(1g) command is given.

Each of the following descriptions begins with the name of the
corresponding routine in plot(3g). See plot(3g) for a more detailed
description of these routines.

Standard Unix routines

e erase: Erase the graphics screen. No bytes follow.

s space: The next two coordinate pairs (four bytes each) give
the lower-left and upper-right corners of the user-coordinate
system to be defined.

t label: Place the following ASCII string, ending with a new­
line, so that its first character falls on the current point.

line: The next two coordinate pairs (four bytes each) specify
the start and end points of the line to be drawn.

c circle: The next coordinate pair (four bytes) specify the center
and the following two bytes specify the radius of a complete
circle.

a arc: The next three coordinate pairs (four bytes each) give the
center. point, and starting and ending octants of a counter­
clockwise circular arc.

m move: The next four bytes give a new current point.

n cont: Draw a line from the old current point to the new
current point given by the next four bytes.

p point: Plot a point at the new current point, given by the next
four bytes.

VENIX Miscellaneous Facilities

PLOT(5) PLOT(5)

f linemod: The following ASCII string, ending with a newline,
chooses one of the line-styles available in the graphics filter.

Special VENIX enhancements

SEE ALSO

g linepat: The next two bytes specify a 16-bit integer pattern, of
the user's choice, to be used as a special line pattern.

h linewid: The next two bytes set desired width, in user coordi­
nates, of all lines following.

w window: The next two coordinate pairs (four bytes each)
specify bottom-left and upper-right corners of a clipping win­
dow in user coordinates.

b box: The next two coordinate pairs (four bytes each) specify
the bottom-left and upper-right corners of a rectangular box.

r rfill: The next two coordinate pairs (four bytes each) specify
the lower-left and upper-right corners of a filled rectangular
box.

u fill: The next four bytes specify the coordinates of a seed
point for a general convex boundary fill.

d dot: The next coordinate pair (four bytes) specify the center
location and the following two bytes specify the radius of a
filled circle.

o color: The next two bytes specify a choice from the color
palette. All graphics following will be drawn in the specified
color.

colndx: The first two bytes specify the palette color to be
modified, and the next two bytes specify the new color.

j writemod: The following ASCII string, ending with a new­
line, chooses one of the writing modes available in the graph­
ics filter.

plot(lg), plot(3g)

VENIX Miscellaneous Facilities 2

TERM CAP (5) TERM CAP (5)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
termcap is a data base describing terminals. It is used by vi(l) and
curses(3) and is accessible by user programs. Terminals are described in
/etc/termcap which gives a set of terminal capabilities, and how opera­
tions are performed. Padding requirements and initialization sequences
are included in termcap. We have provided definitions of a dozen popu­
lar terminals; you may want to add your own.

Entries in termcap consist of a number of ':' separated fields. The first
entry for each terminal gives the names which are known for the termi­
nal, separated by 'I' characters. The first name is always 2 characters
long and is only used by older version 6 UNIX systems (not applicable to
the Professional 350). The second name given is the most common
abbreviation for the terminal, and the last name given should be a long
name fully identifying the terminal. The second name should contain no
blanks; the last name may well contain blanks for readability.

CAPABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on the number of lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not ~ H
bs bool Terminal can backspace with ~H
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line

VENIX Miscellaneous Facilities

TERMCAP(5) TERMCAP(5)

cr str (P*) Carriage return, (default ~M)
cs str (P) Change scrolling region (vt100), like em
cv str (P) Like eh but vertical only
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
de num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ": ei = :" if ie
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default ~L)
hc bool Hardcopy terminal
hd str Half-line down (forward 112 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 112 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give ":im =:" if ie
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
li num Number of lines on screen or page
II str Last line, first column (if no em)

VENIX Miscellaneous Facilities 2

TERMCAP(5) TERMCAP(5)

3

rna str Arrow key map, used by vi(1) version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
mu str Memory unlock (turn off memory lock)
nc bool No working carriage return (DM2500, H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \D)
ns bool Terminal is a CRT but doesn't scroll
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than ~I or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines, though it doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
xb bool Beehive (fl = escape, f2 = ctrl C)
xn bool A newline is ignored after a wrap (Concept)
xr bool Return acts like ee \ r \ n (Delta Data)
xs bool Standout not erased by writing over it (HP 264?)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample EDtry

The following entry, which describes the Concept-IOO, is among the more
complex entries in the termeap file as of this writing. (This particular
concept entry is outdated, and is used as an example only).

VENIX Miscellaneous Facilities

TERMCAP(5) TERM CAP (5)

cl I c100 I conceptlOO:al == 3* \EAR:am:bs:cd == 16* \EAC: \
:ce==16\E AS:cl==2*AL:cm==\EaOJo+ 070+ :co#80:\
:is == \EU \Ef\E7 \E5 \E8 \El \ENH\EK \E \200\Eo&\200: \
:al == 3* \EAR:am:bs:cd == 16* \EAC:ce == 16 \E AS:cl == 2 *AL: \
:cm== \ EaOJo + 070+ :co#80:dc==16\E AA:dl==3*\E AB:\
:ei == \E \200:eo:im == \E AP:in:ip == 16*:li#24:mi:nd == \E ==: \
:se== \Ed\Ee:so== \ED\EE:ta==8\t:ul:\
:up== \E;:vb== \Ek\EK:xn:

Entries may continue onto multiple lines if '\' is given as the last charac­
ter of a line, and empty fields (i.e. extra colons) may be included for rea­
dability (here between the last field on a line and the first field on the
next). Capabilities in termcap are of three types: Boolean capabilities
which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular delays,
and string capabilities, which give a sequence which can be used to per­
form particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Con­
cept has "automatic margins" (i.e. an automatic return and linefeed
when the end of a line is reached) is indicated by the capability am.
Hence the description of the Concept includes am. Numeric capabilities
are followed by the character '#' and then the value. Thus co which
indicates the number of columns the terminal has gives the value '80' for
the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an '==', and then a string
ending at the next following ':'. A delay in milliseconds may appear after
the '==' in such a capability, and padding characters are supplied by the
editor after the remainder of the string is sent to provide this delay. The
delay can be either an integer, e.g. '20', or an integer followed by a '*',
i.e. '3*'. A '*' indicates that the padding required is proportional to the
number of lines affected by the operation, and the amount given is the
per-affected-unit padding required. When a '*' is specified, it is some­
times useful to give a delay of the form '3.5' to specify a delay per unit
in tenths of milliseconds.

A number of escape sequences are provided in the string valued capabili­
ties for easy encoding of characters there. A \E maps to an ESCAPE

character, A X maps to a control- x for any appropriate x, and the

VENIX Miscellaneous Facilities 4

TERMCAP(5) TERMCAP(5)

5

sequences \ n \ r \ t \ b \ f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a
\, and the characters A and \ may be given as \ A and \ \. If it is neces­
sary to place a : in a capability it must be escaped in octal as \072. If it
is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termcap use C strings,
and strip the high bits of the output very late so that a \200 comes out
as a \ 000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the descrip­
tion of a similar terminal in termcap and to build up a description gradu­
ally, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability
of the termcap file to describe it or bugs in ex. To easily test a new ter­
minal description you can set the environment variable TERMCAP to a
pathname of a file containing the description you are working on and the
editor will look there rather than in /etc/termcap. TERMCAP can also
be set to the termcap entry itself to avoid reading the file when starting
up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the co
numeric capability. If the terminal is a CRT, then the number of lines on
the screen is given by the Ii capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, then
this is given by the cI string capability. If the terminal can backspace,
then it should have the bs capability, unless a backspace is accomplished
by a character other than AH (ugh) in which case you should give this
character as the bc string capability. If it overstrikes (rather than clearing
a position when a character is struck over) then it should have the os
capability.

A very. important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that linefeeding
from the bottom of the screen will cause the screen to scroll up, and the
am capability tells whether the cursor sticks at the right edge of the

VENIX Miscellaneous Facilities

TERM CAP (5) TERMCAP(5)

screen. If the terminal has switch selectable automatic margins, the
termeap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals.
Thus the model 33 teletype is described as

t3 I 33 I tty33:co#72:os

while the Lear Siegler ADM-3 is described as

cll adm3131lsi adm3:am:bs:cl= ~Z:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a ern string capability,
with printf(3s) like escapes COJox') in it. These substitute to encodings of
the current line or column position, while other characters are passed
through unchanged. If the em string is thought of as being a function,
then its arguments are the line and then the column to which motion is
desired, and the % encodings have the following meanings:

%d
%2
%3
%.
%+x
%>xy
%r
%i
%%
%n
%B
%D

as in printf, 0 origin
like %2d
like %3d
like %c
adds x to value, then %.
if value> x adds y, no output.
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (16*(x/1O)) + (x%lO), no output.
Reverse coding (x - 2*(x% 16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be
sent \E&aI2c03Y padded for 6 milliseconds. Note that the order of the
rows and columns is inverted here, and that the row and column are
printed as two digits. Thus its ern capability is
"cm = 6 \E&%r%2c%2Y". The Microterm ACT-IV needs the current row
and colmpn sent preceded by a ~T, with the row and column simply
encoded in binary, "cm= ~T%.%.". Terminals which use "%." need to
be able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary because it

VENIX Miscellaneous Facilities 6

TERMCAP(5) TERM CAP (5)

7

is not always safe to transmit \t, \n, AD, and \r, as the system may
change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus "cm = \ E = 0,10 + % + "

Cursor motions

If the terminal can move the cursor one position to the right, leaving the
character at the current position unchanged, then this sequence should be
given as nd (non-destructive space). If it can move the cursor up a line
on the screen in the same column, this should be given as up. If the ter­
minal has no cursor addressing capability, but can home the cursor (to
the very upper left corner of screen) then this can be given as bo. Simi­
larly a fast way of getting to the lower left hand corner can be given as
II. This may involve going up with up from the home position, but the
editor will never do this itself (unless II does) because it makes no
assumption about the effect of moving· up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as ceo If the terminal
can clear from the current position to the end of the display, then this
should be given as cd. The editor only uses cd from the first column of a
line.

Insert/delete line

If the terminal can open a new blank line before the line where the cur­
sor is, this should be given as al; this is done only from the first position
of a line. The cursor must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then this should be
given as dl; this is done only from the first position on the line to be
deleted. If the terminal can scroll the screen backwards, then this can be
given as sb, but just al suffices. If the terminal can retain display
memory above then the da capability should be given; if display memory
can be retained below then db should be given. These let the editor
understand that deleting a line on the screen may bring non-blank lines
up from below or that scrolling back with sb may bring down non-blank
lines.

VENIX Miscellaneous Facilities

TERMCAP(5) TERMCAP(5)

Insert! delete character

termcap entries can describe two basic different mechanisms used by
intelligent terminals to insert!delete characters. The most common
insert! delete character operations affect only the characters on the
current line and shift characters off the end of the line rigidly. Other ter­
minals, such as the Concept-IOO and the Perkin Elmer Owl, make a dis­
tinction between typed and untyped blanks on the screen, shifting upon
an insert or delete only to an untyped blank on the screen which is either
eliminated, or expanded to two untyped blanks. You can find out which
kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abc def" using local cursor
motions (not spaces) between the "abc" and the "def". Then position
the cursor before the "abc" and put the terminal in insert mode. If typ­
ing characters causes the rest of the line to shift rigidly and characters to
fall off the end, then your terminal does not distinguish between blanks
and untyped positions. If the "abc" shifts over to the "def" which then
move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the
capability in, which stands for "insert null". If your terminal does some­
thing different and unusual then you may have to modify the editor to
get it to use the insert mode your terminal defines. We have seen no ter­
minals which have an insert mode not falling into one of these two
classes.

The editor can handle both terminals which have an insert mode, and ter­
minals which send a simple sequence to open a blank position on the
current line. Give as im the sequence to get into insert mode, or give it
an empty value if your terminal uses a sequence to insert a blank posi­
tion. Give as ei the sequence to leave insert mode (or an empty value if
im is empty). Now give as ic any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true insert
mode will not give ic, terminals which send a sequence to open a screen
position should give it here. (Insert mode is preferable to the sequence to
open a position on the screen if your terminal has both). If post insert
padding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence which may need to be sent after an insert of
a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g. if there is a tab after the insertion posi­
tion). If your terminal allows motion while in insert mode you can give
the capability mi to speed up inserting in this case. Omitting mi will

VENIX Miscellaneous Facilities 8

TERMCAP(5) TERMCAP(5)

9

affect only speed. Some terminals (notably Datamedia's) must not have
mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and dc to delete a single character while in delete
mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can
be given as so and se respectively. If there are several flavors of standout
mode (such as inverse video, blinking, or underlining - half bright is not
usually an acceptable "standout" mode unless the terminal is in inverse
video mode constantly) the preferred mode is inverse video by itself. If
the code to change into or out of standout mode leaves one or even two
blank spaces on the screen, as the TVI 912 and Teleray 1061 do, this is
acceptable, and although it may confuse some programs slightly, it can't
be helped.

Codes to begin underlining and end underlining can be given as us and
ue respectively. If the terminal has a code to underline the current char­
acter and move the cursor one space to the right, such as the Microterm
Mime, this can be given as uc. (If the underline code does not move the
cursor to the right, give the code followed by a nondestructive space).

If the terminal has a way of flashing· the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different mode
during open and visual modes of ex, this can be given as vs and ve, sent
at the start and end of these modes respectively. These can be used to
change, e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and teo This arises, for example, from terminals like the Con­
cept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor address­
ing, a one screen-sized window must be fixed into the terminal for cursor
addressing to work properly.

If your terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstrike, then you should give

VENIX Miscellaneous Facilities

TERM CAP (5) TERM CAP (5)

the capability ul. If overstrikes are erasable with a blank, then this
should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the
keypad is assumed to always transmit. The codes sent by the left arrow,
right arrow, up arrow, down arrow, and home keys can be given as kl,
kr. ku. kd. and kh respectively. If there are function keys such as fO. f1,
...• f9. the codes they send can be given as kO. kl •...• k9. If these keys
have labels other than the default fO through f9, the labels can be given
as 10. 11 •...• 19. If there are other keys that transmit the same code as
the terminal expects for the corresponding function. such as clear screen,
the terrncap 2 letter codes can be given in the ko capability. for example,
":ko=cl,ll,sf.sb:", which says that the terminal has clear. home down,
scroll down, and scroll up keys that transmit the same thing as the cI. II.
sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals which have
single character arrow keys. It is obsolete but still in use in version 2 of
vi(l), which must be run on some minicomputers due to memory limita­
tions. This field is redundant with kl, kr, ku. kd. and kh. It consists of
groups of two characters. In each grouP. the first character is what an
arrow key sends. the second character is the corresponding vi command.
These commands are h for kl. j for kd, k for ku. I for kr. and H for kh.
For example, the mime would be ":ma= ~Kj~Zk~XI:" indicating arrow
keys left CH), down CK), up CZ), and right eX). (There is no home
key on the mime).

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then
this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a charac­
ter other than ~I to tab, then this can be given as tao

VENIX Miscellaneous Facilities 10

TERMCAP(5) TERMCAP(5)

FILES

Hazeltine terminals, which don't allow ,-, characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following linefeed should
indicate nco Early Concept terminals, which ignore a linefeed immedi­
ately after an am wrap, should indicate xn. If an erase-eol is required to
get rid of standout (instead of merely writing on top of it), xs should be
given. Teleray terminals, where tabs turn all characters moved over to
blanks, should indicate xt. Other specific terminal problems may be
corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and
if, the name of a file containing long initialization strings. These strings
are expected to properly clear and then set the tabs on the terminal, if
the terminal has settable tabs. If both are given, is will be printed before
if. This is useful where if is lusr/lib/tabset/std but is clears the tabs
first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just
like the other with certain exceptions. The string capability tc can be
given with the name of the similar terminal. This capability must be last
and the combined length of the two entries must not exceed 1024. Since
termlib routines search the entry from left to right, and since the tc capa­
bility is replaced by the corresponding entry, the capabilities given at the
left override the ones in the similar terminal. A capability can be can­
celed with xx@ where xx is the capability. For example, the entry

hn !2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence
does not turn on the function key labels when in visual mode. This is
useful for different modes for a terminal, or for different user prefer­
ences.

letc/termcap file containing terminal descriptions

SEE ALSO
ex(1), curses(3), termcap(3), vi(1)

11 VENIX Miscellaneous Facilities

TERMCAP(5) TERM CAP (5)

BUGS
ex allows only 256 characters for string capabilities, and the routines in
termcap(3) do not check for overflow of this buffer. The total length of
a single entry (excluding only escaped newlines) may not exceed 1024.

The rna, VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not sup­
ported by any program.

VENIX Miscellaneous Facilities 12

TYPES(5) TYPES (5)

NAME
types - system type declarations

SYNOPSIS
#include < sys/types.h >

DESCRIPTION
Various system calls (e.g. stat(2» return system information in variables
of specific types. For portability purposes, these types are all declared in
the include file < sys/types.h > and are given below:

typedef
typedef
typedef
typedef
typedef

SEE ALSO
stat(2)

unsigned int daddLt; /* disk address */
char * caddLt; /* core address */
int ino_t; /* i-node number */
long time_t; /* a time */
int dev_t; /* device code */

VENIX Miscellaneous Facilities

BACKGAMMON (6) BACKGAMMON (6)

NAME
backgammon - the game

SYNOPSIS
/usr / games/backgammon

DESCRIPTION
This program does what you expect. It will ask whether you need
instructions.

VENIX Games

BANNER (6) BANNER (6)

NAME
banner - make long posters

SYNOPSIS
/usr / games/banner

DESCRIPTION
banner reads the standard input and prints it sideways in huge built-up
letters on the standard output.

VENIX Games

BJ(6) BJ(6)

NAME
bj - the game of black jack

SYNOPSIS
/usr / games/bj

DESCRIPTION
bj is a serious attempt at simulating the dealer in the game of black jack
(or twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player 'natural' (black jack) pays $3. A dealer natural loses $2.
Both dealer and player naturals is a 'push' (no money exchange).

If the dealer has an ace up, the player is allowed to make an
'insurance' bet against the chance of a dealer natural. If this bet is
not taken, play resumes as normal. If the bet is taken, it is a side
bet where the player wins $2 if the dealer has a natural and loses $1
if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to
'double'. He is allowed to play two hands, each with one of these
cards. (The bet is doubled also; $2 on each hand).

If a dealt hand has a total of ten or eleven, the player may 'double
down'. He may double the bet ($2 to $4) and receive exactly one
more card on that hand.

Under normal play, the player may 'hit' (draw a card) as long as
his total is not over twenty-one. If the player 'busts' (goes over
twenty-one), the dealer wins the bet.

When the player 'stands' (decides not to hit), the dealer hits until
he attains a total of seventeen or more. If the dealer busts, the
player wins the bet.

If both player and dealer stand, the one with the largest total wins.
A tie is a push.

The machine deals and keeps score. The following questions will be
asked at appropriate times. Each question is answered by y followed by
a new line for 'yes', or just new line for 'no'.

VENIX Games

BJ(6)

2

?
Insurance?
Double down?

BJ(6)

(means, 'do you want a hit?')

Every time the deck is shuffled, the dealer so states and the 'action' (total
bet) and 'standing' (total won or lost) is printed. To exit, hit the inter­
rupt key CC) and the action and standing will be printed.

VENIX Games

CHECKERS (6) CHECKERS (6)

NAME
checkers - game

SYNOPSIS
I nsr I games I checkers

DESCRIPTION
checkers uses standard notation for the board:

BLACK
IIII 1 IIII 2 IIII 3 IIII 4
IIII IIII IIII IIII

5 IIII 6 IIII 7 IIII 8 IIII
IIII IIII IIII IIII

IIII 9 IIII 10 IIII 11 IIII 12
IIII IIII IIII IIII

13 IIII 14 IIII 15 IIII 16 IIII
IIII IIII IIII IIII

IIII 17 IIII 18 IIII 19 IIII 20
IIII IIII IIII IIII

21 IIII 22 IIII 23 IIII 24 IIII
IIII IIII IIII IIII

IIII 25 IIII 26 IIII 27 IIII 28
IIII IIII IIII IIII

29 IIII 30 IIII 31 IIII 32 IIII
IIII IIII IIII IIII

WHITE

Black plays first. The program normally plays white. To specify a
move, name the square moved from and the square moved to. For mul­
tiple jumps name all the squares touched.

Certain commands may be given instead of moves:

reverse Reverse roles; the program takes over your pieces.

backup Undo the last move for each player.

list Print the record of the game.

move Let the program select a move for you.

print Print a map of the present position.

VENIX Games

CHESS (6) CHESS (6)

NAME
chess - the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION

FILES

chess is a computer program that plays class D chess. Moves may be
given either in standard (descriptive) notation or in algebraic notation.
The symbol '+' is used to specify check; '0 - 0' and '0 - 0 - 0' specify
castling. To play black, type 'first'; to print the board, type an empty
line.

Each move is echoed in the appropriate notation followed by the
program's reply.

Type 'exit' to stop the game.

/usr/lib/book opening 'book'

DIAGNOSTICS
The most cryptic diagnostic is 'eh?' which means that the input was syn­
tactically incorrect.

WARNING
Over-use of this program will cause it to go away.

BUGS
Pawns may be promoted only to queens.

VENIX Games

FORTUNE (6)

NAME
fortune - fortune cookie

SYNOPSIS
/usr/games/fortune

DESCRIPTION

FORTUNE (6)

fortune prints a one-line fortune of inestimable value. It is commonly
executed on login from a user's .profile.

FILES
/usr / games/lib/ fortunes fortune library

VENIX Games

MAZE(6)

NAME
maze - generate a maze problem

SYNOPSIS
/usr/gamnes/mnaze/

DESCRIPTION
mnaze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

Floating point hardware is required.

VENIX Games

MAZE(6)

MOO(6) MOO(6)

NAME
moo - guessing game

SYNOPSIS
/usr / games/moo

DESCRIPTION
moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses
four distinct digits being scored on each guess. A 'cow' is a correct digit
in an incorrect position. A 'bull' is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four
bulls).

VENIX Games

QUIZ(6) QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [categoryl category2]

DESCRIPTION

FILES

BUGS

1

quiz gives associative knowledge tests on various subjects. It asks items
chosen from category] and expects answers from category2. If no
categories are specified, quiz gives instructions and lists the available
categories.

quiz tells a correct answer whenever you type a bare newline. At the end
of input, upon interrupt, or when questions run out, quiz reports a score
and terminates.

The - t flag specifies 'tutorial' mode, where missed questions are
repeated later, and material is gradually introduced as you learn.

The - i flag causes the named file to be substituted for the default index
file. The lines of these files have the syntax:

line
category
alternate
primary
option

category newline I category':' line
alternate I category' I' alternate

= empty I alternate primary
character I '[' category ']' I option

= '{' category'}'

The first category on each line of an index file names an information file.
The remaining categories specify the order and contents of the data in
each line of the information file. Information files have the same syntax.
Backslash '\' is used as with sh(l) to quote syntactically significant char­
acters or to insert transparent newlines into a line. When either a ques­
tion or its answer is empty, quiz will refrain from asking it.

/usr/games/quiz.k/*

The construct 'alab' doesn't work in an information file. Use 'a{b}'.

VENIX Games

TTT(6) TTT(6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/usr/games/ttt

/usr / games/cubic

DESCRIPTION

FILES

ttt is the X and 0 game popular in the first grade. This is a learning pro­
gram that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to com­
pletely know the game.

cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are
specified as a sequence of three coordinate numbers in the range 1 - 4.

/usr / games/ttt. k learning file

VENIX Games 1

WUMP(6) WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/gaEnes/~Enp

DESCRIPTION

BUGS

1

WUEnP plays the game of 'Hunt the Wumpus.' A Wumpus is a creature
that lives in a cave with several rooms connected by tunnels. You
wander among the rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and falling into Bottom­
less Pits. There are also Super Bats which are likely to pick you up and
drop you in some random room.

The program asks various questions which you answer one per line; it
will give a more detailed description if you want.

This program is based on one described in People's Computer Company,
2, 2 (November 1973).

It will never replace Space War.

VENIX Games

