July 1978
This document, which is intended primarily for reference use,

describes the structure and organization of the four major

COBOL divisions as well as the rules governing syntax and
semantics.

TRAX
COBOL Language
Reference Manual

Order No. AA-D338A-TC

OPERATING SYSTEM AND VERSION: TRAX Version 1.0

SOFTWARE VERSION: TRAX COBOL V03.5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, July 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS . FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS-11

ASSIST-11 RTS-8 ITPS~-10

6/78-15

CONTENTS

Page
PREFACE ix
ACKNOWLEDGMENT xi
CHAPTER 1 OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY 1-1
1.1 NOTATIONS USED IN FORMATS AND RULES 1-1
1.1.1 General Format 1-2
1.1.2 Syntax Rules 1-3
1.1.3 General Rules 1-3
1.2 LANGUAGE ELEMENTS 1-3
1.2.1 COBOL Character Set 1-3
1.2.2 Character-Strings 1-3
1.2.3 COBOL Words 1-4
1.2.3.1 User-Defined Words 1-4
1.2.3.2 Reserved Words 1-4
1.2.4 Literals 1-7
1.2.4.1 Numeric Literal 1-7
1.2.4.2 Alphanumeric Literals: 1-8
1.2.5 Separators 1-8
1.2.6 Format Punctuation 1-9
1.2.7 Use of Certain Special Characters in Formats 1-1
1.3 META LANGUAGE ELEMENTS 1-10
1.3.1 Underline 1-10
1.3.2 Brackets and Braces 1-10
1.3.3 The Ellipsis 1-11
1.4 COBOL SOURCE REFERENCE FORMAT) 1-11
1.4.1 Conventional Reference Format 1-12
1.4.1.1 Sequence Numbers 1-14
1.4.1.2 Continuation/Comment Indicator Area 1-14
1.4.1.3 Area A 1-14
1.4.1.4 Area B 1-14
1.4.1.5 Identification Field 1-14
1.4.1.6 Continuation of Lines 1-15
1.4.1.7 Blank Lines 1-15
1.4.1.8 Comment Lines 1-15
1.4.1.9 Short Lines and Tab Characters 1-16
1.4.2 Terminal Reference Format 1-17
1.5 LANGUAGE ORGANIZATION 1-17
1.5.1 Division Header 1-18
1.5.2 Section Header 1-18
1.5.3 Paragraph, Paragraph Header, Paragraph-name 1-19
1.5.4 Data Division Entries 1-20
1.5.5 Declaratives 1-20

CHAPTER 2 IDENTIFICATION DIVISION 2-1
2.1 GENERAL DESCRIPTION 2-1
2.2 ORGANIZATION 2-1
2.3 THE PROGRAM-ID PARAGRAPH 2-3
2.4 THE DATE-COMPILED PARAGRAPH 2-4

iii

CHAPTER

CHAPTER

3

e e ¢ & o & s @
« e e
W N

. -
N -

WWwWWwwwwwwwwwww
.
[

e & ¢ e e

Noonviuit e bbb W

-

e & & 9 4 8 & 3 T & 8 ¥ " " s 2 " s % s s
FHRHEFERFRRFRFRFFBERRERRFEFRFOONIOAUUERWWW WNRN N
WWLWWWWwWWWwwwwhoRo [o . o .

« s e & 0 w N N N =

HWOoOoNAAWUEeWN

o

" e e
¢ e o

Lo I N I L

4.13.11

4.14
4.15
4.16
4.17
4.18
4.19
4.20

CONTENTS (CONT.)

ENVIRONMENT DIVISION

GENERAL DESCRIPTION
ORGANIZATION
STRUCTURE
CONFIGURATION SECTION
The SOURCE-COMPUTER Paragraph
The OBJECT-COMPUTER Paragraph
The SPECIAL-NAMES Paragraph
INPUT-OUTPUT SECTION
File Organizations
Access Modes
THE FILE~-CONTROL EARAGRAPH
The File-Control Entry
THE I-O-CONTROL PARAGRAPH

DATA DIVISION

OVERALL APPROACH
Data Division Organization
Data Division Structure

FILE SECTION
File-Description-Entry
Record-Description-Entry

WORKING-STORAGE SECTION
Noncontiguous Working-Storage
Working-Storage Records
Initial Values

LINKAGE SECTION

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

THE BLOCK CONTAINS CLAUSE
THE CODE-SET CLAUSE

THE DATA RECORDS CLAUSE
THE LABEL RECORDS CLAUSE
THE LINAGE CLAUSE

THE RECORD CONTAINS CLAUSE
THE VALUE OF CLAUSE

DATA DESCRIPTION CONCEPT

Logical Record and File Concept

Physical Aspects of a File

Conceptual Characteristics of a File

Record Concepts

Concept of Levels
Level-Numbers

Concept of Classes of Data

Selection of Numeric Character Representation

Algebraic Signs
Standard Alignment Rules

Item Alignment for Increased Object-Code

Efficiency

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

THE BLANK WHEN ZERO CLAUSE

THE DATA-NAME OR FILLER CLAUSE
THE JUSTIFIED CLAUSE
LEVEL-NUMBER

THE OCCURS CLAUSE

THE PICTURE CLAUSE

iv

Page

w
i
ot

wuuuwwcf»wuwwuw

[N eNe]

-
I |

Lt 1
HEEOOAANWWWWWNNNMNHE H HFHEHEROOOUID WWN -

B W B B B D D DD D B D DD
!

CONTENTS (CONT.)

Page
4.21 THE REDEFINES CLAUSE 4-42
4.22 THE RENAMES CLAUSE 4-44
4.23 THE SIGN CLAUSE 4~46
4.24 THE SYNCHRONIZED CLAUSE 4-48
4,25 THE USAGE CLAUSE 4-50
4.26 THE VALUE CLAUSE 4-52
CHAPTER 5 PROCEDURE DIVISION 5-1
5.1 GENERAL DESCRIPTION 5-1
5.1.1 Declaratives 5-1
5.1.2 Procedures 5-1
5.1.3 Execution 5-2
5.2 THE PROCEDURE DIVISION HEADER 5-2
5.3 PROCEDURE DIVISION BODY 5-3
5.4 STATEMENTS AND SENTENCES 5-4
5.4.1 Conditional Statement 5-4
5.4.2 Conditional Sentence 5-4
5.4.3 Compiler Directing Statement 5-5
5.4.4 Compiler Directing Sentence 5-5
5.4.5 Imperative Statement 5-5
5.4.6 Imperative Sentence 5-6
5.4.7 Specific Statement Formats 5-7
5.4.8 Uniqueness of Reference 5-8
5.4.8.1 Qualification 5-8
5.4.8.2 Subscripting 5-9
5.4.8.3 Indexing 5-10
5.4.8.4 Internal Formats of Subscrlpts, Index-names
and Index-data-items 5-11
5.4.8.5 Identifier 5-11
5.4.8.6 Condition~-Name 5-12
5.4.9 Explicit and Implicit Specifications 5-12
5.4.9.1 Explicit and Implicit Procedure Division
References 5-13
5.4.9.2 Explicit and Implicit Transfers of Control 5-13
5.4.9.3 Explicit and Implicit Attributes 5-14
5.5 ARITHMETIC EXPRESSIONS 5-14
5.5.1 Arithmetic Operators 5-14
5.5.2 Formation and Evaluation Rules 5-15
5.6 CONDITIONAL EXPRESSIONS 5-16
5.6.1 Simple Conditions ' 5-16
5.6.2. Relation Condition 5-17
5.6.3 Comparison of Numeric Operands 5-18
5.6.4 Comparison of Alphanumeric Operands 5-18
" 5.6.5 Comparisons Involving Index-Names and/or
Index Data Items 5-19
5.6.6 Class Condition 5-20
5.6.7 Condition-Name Condition (Conditional
Variable) : 5-20
5.6.8 Switch-=Status Condition 5=21
5.6.9 Sign Condition 5-21
5.6.10 Complex Conditions 5-21
5.6.11 Negated Simple Conditions 5-22
5.6.12 Combined and Negated Combined Conditions 5-22
5.6.13 Abbreviated Combined Relation Conditions 5-24
5.6.14 Condition Evaluation Rules 5-25
5.7 COMMON PHRASES AND GENERAL RULES FOR STATEMENT
FORMATS 5-26

CHAPTER

CHAPTER

.
« .
N bW

. o

& & 4 e o o
. e

FHWONNNNNNN

=

« s 0
o

(SIS, RO, RC, RN E, O, R, O S, NS, RO N, N, NS

[, 6,]

. L I]
e
AL dWN

5.17
5.18
5.19
5.20

"5.21

5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45

[+))

AN OY
. . L]
NN
. .
N

~J

~N
.

CONTENTS (CONT.)

The ROUNDED Phrase

The SIZE ERROR Phrase

The CORRESPONDING Phrase

The Arithmetic Statements

Multiple Results in Arithmetic Statements
Overlapping Operands

Incompatible Data

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

ACCEPT STATEMENT
ADD STATEMENT

ALTER STATEMENT

CALL STATEMENT

CLOSE STATEMENT (SEQUENTIAL)

CLOSE STATEMENT (INDEXED & RELATIVE)
COMPUTE STATEMENT

DELETE STATEMENT (INDEXED & RELATIVE)
DISPLAY STATEMENT

DIVIDE STATEMENT

EXIT STATEMENT

GO TO STATEMENT

IF STATEMENT

INSPECT STATEMENT

MOVE STATEMENT

MULTIPLY STATEMENT

OPEN STATEMENT (SEQUENTIAL)

OPEN STATEMENT (INDEXED & RELATIVE)
PERFORM STATEMENT

READ STATEMENT (SEQUENTIAL)

READ STATEMENT (RELATIVE)

READ STATEMENT (INDEXED)

REWRITE STATEMENT (SEQUENTIAL)
REWRITE STATEMENT (RELATIVE)
REWRITE STATEMENT (INDEXED)

SEARCH STATEMENT

SET STATEMENT

START STATEMENT (RELATIVE)

START STATEMENT (INDEXED)

STOP STATEMENT '

STRING STATEMENT

SUBTRACT STATEMENT

UNLOCK STATEMENT

UNSTRING STATEMENT

USE STATEMENT

WRITE STATEMENT (SEQUENTIAL)

'THE WRITE STATEMENT (RELATIVE)
THE WRITE STATEMENT (INDEXED)
SEGMENTATION
ORGANIZATION

Non-Overlayable vs. Overlayable Segments
USING THE SEGMENTATION FACILITY

The SEGMENT-LIMIT Clause

Segment Numbers

THE

LIBRARY MODULE

FUNCTION

THE

COPY STATEMENT

vi

CONTENTS (CONT.)

Page
APPENDIX A RESERVED WORDS A-1
GLOSSARY Glossary-1
INDEX Index-1
FIGURES
FIGURE 1-1 COBOL Programming Form 1-13
TABLES
TABLE 3-1 Access Modes and File Organizations 3-9
3-2 Possible Combinations of Status Keys 1 and 2 3-15
5-1 Combination of Symbols in Arithmetic
Expression 5-16
5-2 Combinations of Conditions, Logical Operators,.
and Parentheses 5-23
5-3 Relationship of Categories of Files and the
Formats of the CLOSE Statement 5-38-
5-4 Permissible Statements 5-70
5-5 Permissible Statements 5-74

vii

PREFACE

This manual describes the COBOL language as it has been implemented in
the Digital Equipment Corporation Transaction Processing System (TRAX).
The goal of TRAX COBOL'S implementors was a strict adherence to the
1974 ANSI standard. Furthermore, the organization and textual material
in this manual is based on the American National Standard COBOL,
X3.23-1974 document.

Chapter 1 contains the overall language considerations; the reader
should be familiar with 1its contents before using the remaining
chapters. Chapters 2 through 5 detail the four major divisions of a
COBOL program. Chapter 6 covers the Segmentation module, and Chapter
7 discusses the Library module, which provides a capability for
specifying source text that is to be copied from a library file.
Appendixes A and B contain the COBOL reserved word 1list and charts of
the ASCII character set.

This manual is a reference manual intended primarily as an accurate
presentation of the rules governing the syntax and semantics of all
language elements implemented in TRAX COBOL. It assumes that the
reader has a knowledge of the COBOL language;- it is not a tutorial
guide for beginning COBOL programmers. Those wishing to 1learn the
COBOL language are referred to the following books:

Farina, Mario V., COBOL Simplified, New Jersey, Prentice
Hall, Inc., 1968.

- McCameron, Fritz A., COBOL Logic and Programming, Third
Edition, Homewood, Illinois, Richard D. Irwin, Inc., 1974.

McCracken, Daniel D. and Garbassi, Umberto, A Guide to
COBOL Programming, Second Edition, New York, John Wiley and
Sons, Inc., 1970.

McCracken, Daniel D., A Simplified Guide to Structured COBOL
Programming, New York, John Wiley & Sons, Inc., 1976.

The COBOL programmer is referred to the TRAX COBOL User's Guide and
the TRAX SORT User's Guide, the companion manuals to this language
reference manual. They contain additional information on the
compiler, the runtime system, a complete list of the TRAX COBOL
compiler error messages and the utility programs.

ix

ACKNOWLEDGMENT

COBOL is an industry language. It is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and 1language. Moreover, no
responsibility is assumed by any contributor or by the committee in
connection therewith.

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
programming for the Univac (R) I and 1II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis—-Honeywell.

They have specifically authorized the use of this material, in whole
or 1in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

xi

CHAPTER 1

OVERALL ﬁANGUAGE.ELEMENTS AND TERMINOLOGY

1.1 NOTATIONS USED IN FORMATS AND RULES
This chapter contains general information about ‘the special terms,
language elements, and general formats required for an ANSI standard
COBOL source program. It describes the documentation strategy used to
present the 1language elements .to you and also provides you with a.
description of the meta language elements which describe the COBOL
language. Actual source language statements are discussed 1in
subsequent chapters.
The COBOL language consists of the following elements:

e Divisions

e Sections

® Paragraphs

® Sentences

e Clauses

e Statements

e Entries

® Words

® Characters

These elements combine to form the framework for a COBOL source

program. TRAX COBOL provides four divisions; the Identification
Division, the Environment Division, the Data Division, and the
Procedure Division. Each division can consist of =zero or more

sections containing zero or more paragraphs. Each paragraph can
contain one or more sentences, clauses, statements, or entries. Each
of these are composed of words made up from characters or
character-strings.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

The meta language elements, those elements which ‘appear in text but
are not actually coded into COBOL source statements, serve only to
describe the language in terms of allowable use. These elements,
completely described in Section 1.3, are as follows:

e Underlined Words

° Brackets and Braces

® Ellipsis
The COBOL language elements (divisions, sections, paragraphs, etc.)
are presented according to the following outline:

1. Each COBOL division begins a separate chapter.

2. Each section, clause or statement constituting a division
begins on a new page and constitutes a new section.

3. Each section, clause, or statement is described in
subsections as follows:

A. Name (section, clause, or statement)
B. Description or function

C. General Format

D. Syntax Rules

E. General Rules

F. Example (if required)

1.1.1 General Format

A general format depicts the specific arrangement of the elements of a
clause, statement, paragraph, etc. These elements are described in
Section 1.5, Language Organization. Throughout this document, a
format 1is shown adjacent to information defining a language element.
When more than one specific arrangement is permitted, the general
format 1is separated into numbered formats. You must write clauses in
the sequence given in the general formats. Optional clauses, if you
use them, must also appear in the sequence shown. In certain cases
(stated explicitly in the rules associated with a given format) the
clauses may appear in sequences other than that shown. Application
requirements or restrictions are shown as rules.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.1.2 Syntax Rules

Syntax rules define the order in which words or elements are arranged
to form 1larger elements such as sentences, clauses, or statements.
Syntax rules also impose restrictions on individual words or elements.
These rules define how you must write the statements; that is, the
order in which each element may appear, and what each represents.

1.1.3 General Rules

General rules define the meaning of an element or the relationship of
meanings of a set of elements. They define the semantics of the
statement and its effect on execution or compilation.

1.2 LANGUAGE ELEMENTS

The elements which make up a statement, clause, sentence, etc.
consist of the COBOL character set, character-strings, COBOL words,
reserved words, user-defined words, separators/punctuation, and
literals.

1.2.1 COBOL Character Set

The basic and indivisible unit of the COBOL language is the character.
The individual characters of the language are concatenated to form
separators and character-strings. The set of characters used to form
COBOL character-strings and separators includes the letters A through
Z, the digits 0 through 9, and the special characters +, -, *, /, **,
>, <, and =. (Separators are discussed in Section 1.2.5, Separators.)

NOTE

Special characters are always required
when they appear in formats.

1.2.2 Character-Strings

A character-string 1is a <character or a seqdence of contiguous
characters that form a COBOL word, a literal, a PICTURE
character-string, a comment-entry, etc.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.2.3 COBOL Words

A COBOL word 1is a character-string of not more than 30 ASCII
characters. There are two classes of words: user-defined words and
reserved-words. Within a given source program, these classes are

mutually exclusive; moreover a COBOL word may belong to one and only
one of these classes.

1.2.3.1 . User-Defined Words - A user-defined word is a COBOL word that
you must supply to satisfy the format of a clause or statement. You
must select each character of a user-defined word from the letters A
through Z, the digits 0 through 9, and the hyphen (-).
NOTE
Do not use the hyphen as thé first or
last character of a user-defined word.
There are 12 types of user-defined words:
1. condition-name
2. data-name
3. file-name
4. index-name
5. 1level-number
6. mnemonic-name
7. paragraph-name
8. program-name
9. record-name
10. section-name
11. segment-number
12. text-name

Each of these user-defined word types is described in the glossary
which appears at the end of this manual.

1.2.3.2 Reserved Words - A reserved word is a COBOL word that is one
of a specific list that may be used in COBOL source programs but only

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

as specified in the general formats. You can not use a reserved
as a user-defined word; the two are mutually exclusive.
Appendix A for a complete list of COBOL reserved words).
There are six types of reserved words:

1. Key words

A key word is required when the format in which the

appears is used in a source program. Within each format,

word
(See

word
key

words are upper case and underlined. Consider the following

example.

COMPUTE identifier-1 [ROUNDED] [, identifier—-2 [ROUNDED]] ...

=arithmetic-expression [;ON SIZE ERROR imperative-statement]

In this case, the words COMPUTE, ROUNDED, SIZE, and ERROR are

key words.

2. Optional Words

Within each format, upper case words that are not underlined
are called optional words. You may use or omit these words
indiscriminately. The presence or absence of an optional
word does not alter the semantics of the COBOL program in

which it appears. Consider the previous example; the
ON in this case, is an optional word.

3. Connectives

There are three types of connectives:

word

a. Qualifier connectives that associate a data-name, a

condition-name, or a text-name with its qualifiers:
IN. (See Section 5.4.8.1, Qualification.)

OF,

b. Series connectives that 1link two or more consecutive

operands, (separator comma) or (separator semicolon).

c. Logical connectives that are used in the formation of the

following conditions:
AND, OR, AND NOT, OR NOT.

4. Special Registers

The TRAX COBOL compiler provides a reserved word that names
and refers to a special register. This word, LINAGE-COUNTER,

refers to a compiler generated storage area. It is used

to

store information produced .in conjunction with the use of a

- specific COBOL feature. LINAGE-COUNTER is described

Section 4.9, The LINAGE Clause.

in

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

Figurative Constants

Certain reserved words, Figurative Constants, are used to
name and refer to specific constant values.

Figurative constant values are generated by the compiler and
referenced through the use of the reserved words given below.
These words must not be bounded by quotation marks when used
as figurative constants. The singular and plural forms of
figurative constants are equivalent and may be used
interchangeably.

The figqurative constant values and the reserved words used to
reference them are as follows:

ZERO Represents the value '0', or one or more of the
ZEROS character '0', depending on context.

ZEROES)

SPACE Represents one or more of the character space
SPACES from the computer's character set.

HIGH-VALUE Represents one or more of the character that

HIGH-VALUES has the highest ordinal position in the
computer's collating seguence (octal 177) .

LOW-VALUE Represents one or more of the <character that
LOW-VALUES has the lowest ordinal position in the

computer's collating sequence (octal 000).
QUOTE Represents one or more of the character '"'.
QUOTES

ALL literal Represents one or more repetitions of the
string of characters comprising the literal.
The literal must be either an alphanumeric
literal or a figurative constant other than ALL
literal. When a figurative constant is used,
the word ALL 1is redundant and 1is used for
readability only.

When a figurative constant represents a string of one or more
characters, the ‘length of the string is determined by the
compiler from context according to the following rules:

1. When a figurative constant is associated with another
data item, for example, when the figurative constant
is moved to or compared with another data item, the
string of characters specified by the figurative
constant 1is repeated character by character (or
truncated 1in the «case of ALL literal) on the right
until the size of the resultant string is equal to the
size 1in characters of the associated data item. This
is done prior to and independent of the application of
any JUSTIFIED clause that may be associated with the
data item.

1-6

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

2. When a figurative constant is not associated with
another data item, for example, when the figurative
constant appears in a DISPLAY, STRING, UNSTRING or
STOP statement, the 1length of the string is one
character.

A figurative constant may be used wherever a literal appears
in a format, except that whenever the literal is restricted
to numeric characters, the only figurative constant permitted
is ZERO (ZEROS, ZEROES).

Each reserved word that is used to reference a figurative
constant value is a distinct character-string with the
exception of the construction ALL literal, which is composed
of two distinct character-strings.

' 6. Special-Character Words

The arithmetic operators +, -, *, /, ** 3nd relation
characters <,>, and = are reserved words.

1.2.4 Literals

A literal is a character-string whose value 1is determined by the
ordered set of characters of which it is composed. You can also use a
figurative constant as a literal. There are two types of 1literals,
numeric, and alphanumeric.

1.2.4.1 Numeric Literal - A numeric literal is a character~-string of
from 1 to 20 characters selected from the digits 0 through 9, the plus
sign, the minus sign, and/or the decimal point. The rules for the
formation of numeric literals are as follows:

l. A literal must contain at least 1 digit and no more than 18
digits.

2. A literal must not contain more than one sign character. If
a sign 1is used, it must appear as the leftmost character of
the literal. 1If the literal is unsigned, it is positive.

3. A literal must not contain more than one decimal point. The -
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
character. If the 1literal contains no decimal point, the
literal is an integer.

The word, integer, appearing in a general format, represents
a non-zero, positive, numeric literal with no decimal point.

If a literal conforms to the rules for the formation of
numeric 1literals, but is enclosed in quotation marks, it is
an alphanumeric 1literal and 1is treated as such by the
compiler.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

4. The value of a numeric 1literal 1is the algebraic gquantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric. (See Section 4.20, The
PICTURE Clause.) The size of a numeric literal is equal to
the number of digits specified by the user, including leading
zeros, if any.

1.2.4.2 Alphanumeric Literals - An alphanumeric literal is a
character-string representing from 1 to 132 characters, delimited on
both ends by quotation marks and consisting of any allowable character
in the computer's character set. An opening quotation mark must be
immediately preceded by a space or left parenthesis. A closing
quotation mark must be immediately followed by one of the separators
(space, comma, semicolon, or right parenthesis) or by the terminator,

period.

To represent a single quotation mark character within an alphanumeric
literal, two contiguous quotation marks must be used. The value of an
alphanumeric literal in the object program is the string of characters
itself, except that:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous guotation marks represents a
single guotation mark character.

All other punctuation characters are part of the value of the
alphanumeric literal rather than separators; all alphanumeric
literals are category alphanumeric. (See Section 4.20, The PICTURE

Clause.)

1.2.5 Separators

A separator is a string of one or more punctuation characters. The
rules for forming separators are:

1. Space

a. Anywhere a space is used as a separator, more than one
space may be used.

b. A space may immediately precede all separators except the
closing guotation mark. Here the space is considered
part of an alphanumeric literal, not a separator.

NOTE
The only exception to the above rules is

described in Section 1.4, COBOL Source
Reference Formats.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

c. A space may immediately follow any separator except the
open gquotation mark. In this case, a following space is
considered part of an alphanumeric 1literal, not a
separator. :

2. Comma and Semicolon

The punctuation characters, the comma and semicolon, are
separators only when immediately followed by a space. You
may insert these separators only where explicitly permitted
by the general formats, by format punctuation rules, by
statement and sentence structure definitions, or by reference
format rules.

3. Right Parenthesis and Left Parenthesis

Left parenthesis and right parenthesis are separators only
when used in balanced pairs to delimit subscripts or indices.

4. Quotation Marks

Quotation marks may only be used in balanced pairs to delimit
alphanumeric 1literals. (The rules which govern the format
and use of alphanumeric 1literals are detailed in Section
1.2.4.2, Alphanumeric Literals.)

5. Horizontal Tab

The horizontal tab character is governed by the same rules
that govern the space character. It is normally used to
vertically align statements or clauses on successive lines of
the source program listing. The compiler, upon encountering
a tab character, generates one or more space characters
consistent with the tab character position in the source
line. (See Sections 1.4.1, Conventional Reference Format;
and 1.4.2, Terminal Reference Format.)

1.2.6 Format Punctuation

The punctuation characters, the comma, semicolon, and period, appear
in some . formats. Where shown, the comma and semicolon are optional
and interchangeable. You can specify a comma where a semicolon is
specified or vice versa. The period, however, is mandatory. You must
supply a period wherever one is shown. You also must specify a period
to terminate a paragraph. (See Section 1.5.3, Paragraph, Paragraph
" Header, and Paragraph-name.)

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.2.7 Use of Certain Special Characters in Formats

The characters +, -, *, /, **, >, <, and =, when appearing in formats,
although not underlined, are required.

1.3 META LANGUAGE ELEMENTS

Meta language elements appear in formats but are not coded into source
language statements. They serve only to describe the allowable use of
the language elements being described.

1.3.1 Underline

The underline is used to denote reserved key words (upper case words).
Key words (upper case underlined words) are required when you use a
function of which they are a part. The absence of an underline in an
upper case word denotes that the word is optional. You may use or
omit the word at your discretion.

NOTE

Upper case words, whether underlined or
not, must be spelled correctly.

1.3.2 Brackets and Braces

When brackets, [], enclose a portion of a general format, it denotes
that an optional portion that may be included or omitted as needed.
Braces, {}, enclosing a portion of a general format denote that you
must select one of the options within the braces. Consider the
following example:

WORDS
MEMORY SIZE integer CHARACTERS
MODULES

The brackets indicate that the entire clause is optional. The braces
indicate that if the <clause 1is used, a choice of one of the words
vertically stacked within the braces must be specified.

Wherever a choice 1is required, the possibilities are vertically
stacked either within brackets or braces. Consider the following
example.

{SYNCHRONIZED LEFT
SYNC RIGHT

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

The outside brackets indicate that the entire clause is optional. The
braces indicate that if the <clause 1is used, a choice of a word
vertically stacked within the braces must be made. The inside
brackets indicate that you may optionally select a vertically stacked
word within.

NOTE

Possibilities vertically stacked between
brackets indicate that you have the

option of overriding a default
condition. The default condition is
described in the general rules for the
clause.

1.3.3 The Ellipsis

The ellipsis (...) indicates that you may repeat the item preceding
it. The preceding item 1is wusually enclosed either by brackets or
braces to remove any ambiguity as to which item may be repeated.
Consider the following example. '

[SAME [RECORD] AREA FOR file-name-1{file-name-2}...]...

The ellipsis following the outside brackets indicates that the entire
clause, 1if wused, may be repeated. The ellipsis within the outside
brackets and following the item which is enclosed in braces indicates
that the item may also be repeated within the clause.

1.4 COBOL SOURCE REFERENCE FORMAT

PDP-11 COBOL provides you with two formats for «coding your source
programs, conventional and terminal. Both formats are described in
terms of character positions in a line on an input medium.

NOTE

The rules for spacing given in this
discussion of reference formats take
precedence over all other rules for
spacing.

The conventional format is based on the traditional COBOL format as
applied to an 80-column punched card. The terminal format is a
DEC-specified format and allows a source line to be shortened by using
horizontal tabs and carriage returns. The terminal format is very
convenient for use with a context editor and an on-line computer
terminal.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

NOTE

The TRAX COBOL compiler assumes the
terminal format as a default when
compiling, but is capable of compiling
either format. (See the TRAX COBOL
User's Guide for operational details.)

A reformatting program (REFORMAT) is provided to reformat terminal
format programs into conventional format for ease in transporting
source programs to other COBOL compilers. (The REFORMAT program is
described in the TRAX COBOL User's Guide.)

1.4.1 Conventional Reference Format

The conventional reference format is based on the traditional COBOL
format as it applies to an 80-column punched card. If you choose this
format, it is more than likely that you will code your source program
on a standard COBOL coding form. For this reason, Figure 1-1 (COBOL
Programming Form) is provided as a basis for this discussion.

€1-1

PROGRAMMER

PROGRAM NAME

COBOL PROGRAMMING FORM

PAGE OF.

73 80

IDENT . I l

PAGE

SERIAL

+—————————————— START DIVISION, SECTION, PARAGRAPH OR FILE DESCRIPTION HERE
START OPERAND OR CONTINUATION LINE HERE

112

4]15|6

62 /63 |64 [65)|66(6768|69({70|71}72

81 9[10[111213)14]15/16|17|18(19{20121[22(23]24|25(26{27|28(29 130 |31)|32|33)|34 |35(36 (373839 |40(41]42(43|44{45[46/47]|48

Figure 1-1 COBOL Programming Form

ADOTONIWIIL ANV SLNIWIATI IOVNONVT TIVIIAO

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.4.1.1 Sequence Numbers - Character positions 1 through 6 of the
standard format are reserved for source line seqguence numbers. This
sequence number field serves only to assist you 1in 1locating and
editing source lines within a source file or listing. Sequence
numbers are ignored by the compiler.

1.4.1.2 Continuation/Comment Indicator Area - Character position 7
gives you the ability to direct the compiler to process the source
line consistent with the character content of this column. The
options available to you are listed below:

Option Results
blank () Default - The source line is treated normally.
hyphen (-) Continuation line - The compiler will process this

line as a continuation of the previous source
line. (See Section 1.4.1.6.)

asterisk (%*) Comment 1line - The compiler will transfer the
contents of this 1line, as 1is, to the source
listing. No syntax checking is performed on this
line. (See Section 1.4.1.8.)

slash (/) Comment line - The compiler treats the line as if
it were a comment line except that it advances the
source listing to the top of the next page before
printing the contents of the line.

1.4.1.3 Area A - Character positions 8 through 11 constitute Area A
of the conventional format. This area is reserved for the beginning
of division headings (Section 1.5.1), section-names (Section 1.5.2),
paragraph-names (Section 1.5.3), level-indicators (Section 1.5.4), and
certain level numbers (Section 1.5.4).

1.4.1.4 Area B - Character positions 12 through 72 constitute Area B
of the conventional format. This area is reserved for all other COBOL

text.

1.4.1.5 1Identification Field - Character position 73 through 80
constitute the identification field, which 1is for documentation
purposes only and has no effect on compilation.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.4.1.6 Continuation of Lines - Any sentence or entry that requires
more than one line must be continued in Area B of the next Iline.

When you break a word or numeric literal from one line to the next,
you must place a hyphen (-) in character position 7 of the
continuation line. The first non-blank character that you enter in
Area B will become the next character of the word or numeric literal
being continued.

When you break an alphanumeric literal from one line to the next, you
must place a hyphen in character position 7 of the continuation line.
You must also precede the first character of the continuation 1literal
with a guotation mark. The literal may begin anywhere within area B
of the continuation line. Consider the following example.

001010 01 CONTINUATION-NUMERIC.

001020 02 NUMERIC-LITERAL PIC 9(18) VALUE IS 12345678912345
001030- 6789.

001040 01 CONTINUATION-ALPHANUMERIC.

001050 02 ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCDEFGHIJKLM
001060- "NOPQRSTUVWXYZ".

001070 PROCEDURE DIVISION.
001080 CONTINUATION-SENTENCE.

001090 IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL
001100 GO TO END-PROGRAM

001110 ELSE GO TO CONTINUATION-SENTENCE.

001120 END-PROGRAM.

001130 STOP RUN.

Source lines 001010 through 001030 show how a numeric literal <can be
continued to another line, and source lines 001040 through 001060 show
how an alphanumeric 1literal can be continued to another 1line.
Finally, source lines 001090 through 001110 show how a sentence can be
continued to successive lines.

1.4.1.7 Blank Lines - A blank line is blank from character position 7
through 72 and cannot immediately precede a continuation 1line.
Otherwise, a blank line can appear anywhere in the source program.

1.4.1.8 Comment Lines - A comment line is any line with an asterisk
(*) in character position 7. A comment line can not precede the
Identification Division. Otherwise, a Comment line may appear
anywhere in a source program.

A comment line may be composed of any of the characters from the full
COBOL character set. Comments can begin in Area A or B of the source
line. Each comment line will be reproduced on the source listing, but
they serve as documentation only. Successive comment lines are
allowed, but each must contain an asterisk in character position 7.

1

15

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

NOTE

If a slash character (/) 1is used instead
of an asterisk (*), the results are the
same except that the source 1listing is
advanced to the top- of the next page
before the comment entry is printed.

1.4.1.9 Short Lines and Tab Characters - Conventional format source
lines may be shortened if a medium other than punched cards is used.
This is accomplished by terminating the line by a carriage return,
inserting tab characters within the line to replace space characters,
or a combination of both.

When the compiler recognizes a carriage return character, it treats it
as a redefinition of character position 72. When a tab character is
encountered, the compiler generates the required number of space
characters consistent with the tab character position on the line.
Tab stops are set within the compiler at character positions 7, 8, 12,
20, 28, 36, 44, 52, 60, 68, and 73. Consider the following example.

NOTE

RET

carriage return character

TAB tab character

Shortened conventional source line
000130 01 FILE-A. (=
000140 02 DATA-FIELD-A.
000150 03 DESCRIPTION-A PIC X(20). (Cmr
000160 03 DESCRIPTION-B PIC X(20). RET
000170 03 DESCRIPTION-C PIC X(20). RET

Source line as interpreted by the compiler

000130 01 FILE-A.

000140 02 DATA-FIELD-A.

000150 03 DESCRIPTION-A PIC X(20).
000160 03 DESCRIPTION-B PIC X(20).
000170 03 DESCRIPTION-C PIC X(20).

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.4.2 Terminal Reference Format

Terminal reference format is the TRAX COBOL default format. It
makes vyour life easier by providing a format that is easy to use with
a computer terminal. Terminal format 1is shorter and 1less space
consuming than its conventional counterpart. The sequence number and
identification fields are eliminated, and the indicator field is
combined within Area A.

Tab characters can be used to position source entries within a 1line,
and a 1line ends at the first occurrence of a carriage return
character.

The terminal reference format for a source 1line 1is represented as
follows:

Character Position Contents
1 through 4 Area A
5 through 65 Area B
NOTE
Continuation line (-), comment line (*),

and skip to top of page (/) indicator
characters, when used, must be placed in
character position 1.

For the terminal format, Area A and Area B contain the same Kkinds of
source entries as their conventional format counterparts. (See
Sections 1.4.1.3 and 1.4.1.4.)

Like the conventional format, tab characters, when encountered by the
compiler, will generate a commensurate number of spaces consistent
with the tab character position on the line. Tab stops are set to
character positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

1.5 LANGUAGE ORGANIZATION

A COBOL program is organized by division, divisions are organized by
sections, sections are organized by paragraphs, and paragraphs by
sentences, statements, clauses, entries, etc. Each of these
divisions, sections, and paragraphs are composed of headers followed
by source text. The following sections describe these headers and
what source text comprises each.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.5.1 Division Header

A division header is a combination of words followed by a period that
indicates the beginning of a division. The division headers for a
TRAX COBOL program in their order of appearance are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.
A division header must start in Area A. After the division header, no
text may appear before the following section header, paragraph header,
or paragraph-name. The only exception is that the key word

DECLARATIVES followed by a period may appear after the Procedure
Division header.

1.5.2 Section Header
A section header is a combination of words followed by a period that
indicates the beginning of a section in the Environment, Data, and
Procedure Divisions. 1In the Environment and Data Divisions, a section
header 1is composed of reserved words followed by the word SECTION
followed by a period. 1In the Procedure Division, a section header is
composed " of a user-defined word followed by the word SECTION followed
by a period. The permissible section headers are:
In the Environment Division

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.
In the Data Division

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.
In the Procedure Division

user-name SECTION

The section header must start in Area A. After the section header, no
text may appear before the following paragraph header or
paragraph-name. The only exception 1is the USE sentence in the
Procedure Division.

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

A section consists of paragraphs in the Environment and Procedure
Divisions, and data entries in the Data Division.

1.5.3 Paragraph, Paragraph Header, Paragraph-name
A paragraph in the Procedure Division consists 6f a paragraph-name
followed by a period and zero, one, oOr more entries. In the
Identification and Environment Divisions, a paragraph consists of a
paragraph header followed by zero, one, or more entries.
A paragraph header consists of a reserved word followed by a period.
A paragraph header indicates the beginning of a paragraph. The
permissible paragraph headers are:
In the Identification Division

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.
In the Environment Division

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-0O-CONTROL.

A paragraph-name is a user-defined word followed by a period. It
identifies and begins a paragraph in the Procedure Division.

A paragraph header or paragraph name starts in Area A of the first
source line following a division or section. The first sentence of a
paragraph begins either on the same line as the paragraph header or
paragraph-name or in Area B of the next non-blank line that is not a
comment line. Successive sentences or entries begin either on the
same line as the previous sentence or entry or in Area B of the next
non-blank line that is not a comment line. Sentences that are too
long to fit on one line may be continued on successive lines. (See
Section 1.4.1.6.)

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.5.4 Data Division Entries

Each Data Division entry begins with a 1level indicator or a
level-number, followed by a space, followed by the name of a data
item, followed by a sequence of independent descriptive clauses. Each
clause, except the last clause of an entry, may be terminated by the
separator semicolon or the separator space. The last clause is always
terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with
a level indicator and those which begin with a level-number.

The only level indicator is FD.

In those Data Division entries that begin with a level indicator, the
level 1indicator begins in Area A followed by a space and followed in
area B with its associated data-name and appropriate descriptive
information. .

Those Data Division entries that begin with level-numbers are called
data description entries.

A level-number has a value taken from the set of values 1 through 49,
66, 77, and 88. Level-numbers in the range 1 through 9 may be written
either as a single digit or as a zero followed by a significant digit.
At least one space must separate a level-number from the word
following the level-number.

In those data description entries that begin with a level-number 01,
66, or 77, the level-number begins in Area A followed by a space and
followed in area B by its associated record-name and appropriate
descriptive information.

Successive data description entries may have the same format as the
first or may be indented according to level-number. The entries in
the output listing are indented only if the input is indented.
Indentation does not affect the magnitude of a level-number.

Wwhen level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of margin A. The extent of
indentation to the right is determined only by the width of Area B.

1.5.5 Declaratives

The key words DECLARATIVES and END DECLARATIVES, that precede and
follow, respectively, the declaratives portion of the Procedure
Division must appear on a line by themselves. Each must begin in Area
A and be followed by a period and a space. '

IDENTIFICATION DIVISION

CHAPTER 2

IDENTIFICATION DIVISION

2.1 GENERAL DESCRIPTION

The Identification Division must be included in every COBOL source
program. It identifies the source program and the resultant output
listing. 1In addition, you may include the date the program was
written and such other information as desired under the paragraphs in
the general format shown below.

2.2 ORGANIZATION

Fixed paragraph names identify the type of information contained in
the paragraph. You must specify the name of the program in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs
are optional; if included, they must be presented in the order shown
by the general format below.

Structure

The following is the general format of the paragraphs in the
Identification Division, as well as a definition of the order of
presentation of the source program. Sections 2.3 and 2.4 define
the PROGRAM-ID paragraph and the DATE-COMPILED paragraph.
Although the other paragraphs are not defined, each general
format is formed in the same manner.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

IDENTIFICATION DIVISION

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

Syntax Rules

The Identification Division must begin with the reserved
IDENTIFICATION DIVISION followed by a period and.a space.

General Rules

The comment-entry may be any combination of the characters
the full character set. The continuation of the comment-ent
using the hyphen in the continuation indicator area |is
permitted; however, the comment-entry may be contained on o
more lines.

words

from
ry by

not
ne or

2.3 THE
Function
The

IDENTIFICATION DIVISION

PROGRAM-ID

PROGRAM-ID PARAGRAPH

PROGRAM-ID paragraph identifies the program.

General Format

PROGRAM-ID. program—name.

Syntax Rules

The
the

program—-name must contain from one to nine charactérs from
set A through Z and 0 through 9. The hyphen is not allowed.

Only the first six characters are meaningful.

General

1.

2.

Rules

The PROGRAM-ID paragraph must contain program name and must
be present in every program.

A program-name is a user-defined word that identifies a COBOL
program. Program-names may not exceed nine characters in
length and may not contain a hyphen. The program-name
identifies the object program entry point.

In the TRAX application environment, the program-name is
always TSTEP.

2-3

IDENTIFICATION DIVISION

DATE-COMPILED

2.4 THE DATE-COMPIﬂED PARAGRAPH
Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

DATE-COMPILED. [comment-entry] ...

Syntax Rules

The comment-entry may be any combination of characters from the
full character set. Continuation of the comment-entry by using
the hyphen in the continuation indicator area is not permitted;
however, the comment-entry may be contained on one or more lines.

General Rules

1. The paragraph-name, DATE-COMPILED, causes the current date to
be inserted during program compilation. If a DATE-COMPILED
paragraph is present, it is replaced during compilation with
a paragraph of the form: '

DATE-COMPILED. comment-entry.
current-date)

2. All listings produced during compilation contain the
compilation date in the header line of each page.

Example
DATE-COMPILED paragraph before compilation

IDENTIFICATION DIVISION.
PROGRAM-ID. BAGINS.
AUTHOR. BILBO BAGINS.
DATE-COMPILED. TODAY.
ENVIRONMENT DIVISION.
SOURCE-COMPUTER. PDP-11.

IDENTIFICATION DIVISION

DATE-COMPILED paragraph after compilation.

00001
00002
00003
00004
00005
00006
00007
00008

IDENTIFICATION DIVISION.
PROGRAM-ID. BAGINS.
AUTHOR. BILBO BAGINS.
DATE-COMPILED. TODAY.
27-0CT-76 .

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-11.

ENVIRONMENT DIVISION

CHAPTER 3

ENVIRONMENT DIVISION

3.1 GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing
those aspects of a COBOL program that are dependent upon the physical
characteristics of a specific computer. The division allows you to
specify the configuration of the compiling computer and object
computer. You can also specify information about input-output
control, special hardware characteristics, and control techniques.

NOTE

The Environment Division must be
included in every COBOL source program.

3.2 ORGANIZATION

Two sections make up the Environment Division: the Configuration
Section and the Input-Output Section.

The Configuration Section describes the source computer and object
computer characteristics. This section 1is divided into three
paragraphs: the SOURCE-COMPUTER paragraph, which describes the
computer configuration on which the source program is compiled; the
OBJECT-COMPUTER paragraph, which describes the computer configuration
on which the object program produced by the compiler is to be run;
and the SPECIAL-NAMES paragraph, which relates the specific compiler
features available to the mnemonic-names used in the source program.

The Input-Output Section describes the information needed to control
transmission and handling of data between external media and the
object program. This section is divided into two ©paragraphs: the
FILE-CONTROL paragraph, which names and associates the files with
external media; and the I-O-CONTROL paragraph, which defines special
control techniques to be used in the object program.

ENVIRONMENT DIVISION

3.3 STRUCTURE
The general format of the sections and paragraphs in the Environment
Division, in the in order of presentation in the source progranm,
follows:

ENVIRONMENT DIVISION.

(CONFIGURATION SECTION.

[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special—names—entryﬂ

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry}...

[I-O-CONTROL. input-output-control-entry] |

ENVIRONMENT DIVISION

CONFIGURATION-SECTION
SOURCE-COMPUTER

3.4 CONFIGURATION SECTION

3.4.1 The SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer
the program is to be compiled.

General Format

SOURCE—-COMPUTER. PDP-11.

General Rules

This paragraph is for documentation only.

in which

OBJECT-COMPUTER

3.4.2 The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph identifies the computer in which

the program is to be executed.

General Format

WORDS

OBJECT-COMPUTER. PDP-11 , MEMORY SIZE integer {CHARACTERS

MODULES
[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number].

Syntax Rule

|

Segment-number must be an integer ranging in value from 00
through 49.

General

1.

Rules
The MEMORY SIZE clause is for documentation purposes only.

The PROGRAM COLLATING SEQUENCE clause 1is for documentation
purposes only. The native collating sequence is ASCII.

Use the SEGMENT-LIMIT clause to specify a number from which
the compiler can determine which program segments are
overlayable or non-overlayable. (Program segmentation is
described in Chapter 6.)

a. Program segments which have a segment number equal to or
greater than the segment limit are overlayable segments.

b. Program segments which have a segment number less than
the segment 1limit are non-overlayable segments.

When the SEGMENT-LIMIT clause 1is omitted, all program
segments are non-overlayable.

ENVIRONMENT DIVISION
SPECIAL-NAMES

3.4.3 The SPECIAL-NAMES Paragraph

Function
The SPECIAL-NAMES paragraph relates TRAX COBOL features to
user-specified mnemonic-names and alphabet-names (specified in

the object-computer paragraph) to character sets and/or collating
sequences.

General Format

[SPECIAL-NAMES.

PAPER-TAPE-READER
iCONSOLE i IS mnemonic name)...

CARD-READER l

LINE-PRINTER
PAPER-TAPE-PUNCH

[SWITCH integer-1

ON STATUS IS condition-name-1 [,QFF STATUS IS condition-name-2]
OFF STATUS 1S condition-name-2 [,ON STATUS IS condition-name-1]

NATIVE
Alphabet-name IS

STANDARD-1
[CURRENCY SIGN IS literal-2]

[DECIMAL-POINT IS COMMA].]

Syntax Rules
1. The SPECIAL-NAMES paragraph is required only if
mnemonic-names, condition-names, alphabet-names, the
DECIMAL-POINT clause, or the CURRENCY SIGN clause are used.

2. Integer-1 represents any integer from 1 to 16.

General

1.

ENVIRONMENT DIVISION

Rules

The names CARD-READER, PAPER-TAPE-READER, and CONSOLE refer
to input devices. The assigned mnemonic-names may be used
with the ACCEPT verb in the Procedure Division to transfer
data from the device.

The names CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH refer
to output devices. The assigned mnemonic names may be used
with the DISPLAY verb in the Procedure Division to transfer
data to the device.

The name SWITCH refers to a logical switch to which a value
can be assigned by the operator at run-time. The
condition-name specified for the ON or OFF STATUS of a
switch, can be wused 1in a conditional expression. (See
Section 5.6.8, Switch Status Condition.)

A condition-name is assigned to a specific value, set of
values, or range of values within a complete set of values
that a data item may assume. The data item itself is called
a conditional variable.

Condition-names may be defined in the Data Division or in the
SPECIAL-NAMES paragraph in the Environment Division where a
condition-name must be assigned to the ON STATUS or OFF
STATUS of switches that may be set at program execution time.

A condition-name is wused only in conditions as an
abbreviation for the relation condition; such use causes the
associated conditional variable to be tested for equality
with any one of the set of values to which that
condition-name is assigned.

The alphabet-name clause provides a means for relating a name
to a specified character code set and/or collating sequence.
When alphabet-name is referenced in the PROGRAM COLLATING
SEQUENCE clause, the alphabet-name clause specifies a
collating sequence. When alphabet-name is referenced in a
CODE-SET <clause 1in a file description entry (see Section
4.12, The CODE-SET Clause), the alphabet-name clause
specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code
set or «collating sequence identified is that defined in
American National Standard Code for Information
Interchange, X3.4-1968.

b. Since the native character code set of the PDP-11 is
equivalent to the ASCII code, specification of the NATIVE
phrase is equivalent to specification of the STANDARD-1
phrase.

ENVIRONMENT DIVISION

The literal that appears in the CURRENCY SIGN IS 1literal
clause 1is wused 1in the PICTURE clause to represent the
currency symbol. The literal 1is 1limited to a single
character and must not be one of the following characters:

a. Digits 0 through 9
b. Alphabetic characters 2A,B,C,D,L,P,R,S,V,X,2 or the space
c. Special characters *, +, -, ,, «, 3, (,), ", / or =

If this clause is not present, only the currency sign ($) is
used in the PICTURE clause.

The DECIMAL-POINT IS COMMA clause means that the function of
comma and period is exchanged in the PICTURE character-string
and in numeric literals.

ENVIRONMENT DIVISION

3.5 INPUT-OUTPUT SECTION

The Input-output section provides you with the ability to access
records of data stored on an external media in various file
organizations. The file organizations supported by TRAX COBOL and
the access methods available for processing them are introduced below.
You are advised to refer to the TRAX COBOL User's Guide for a
complete and in-depth discussion on file organizations and accessing
methods.

3.5.1 File Organizations

TRAX COBOL provides you with three file organizations:
e Sequential
® Relative
e Indexed

Sequential files are organized such that records are positioned one
behind the other. Each record (except the last) has another record
following it. The location of any particular record is fixed in
relationship to the records preceding and succeeding it. Sequential
files can be processed only in a serial fashion. That is, to access a
record in the middle of the file, all the records immediately
preceding it must be processed.

Relative files, which can only be created on disk storage devices,
consist of successively numbered records. Each record is assigned a
record number relative to its position in the file. Therefore, the
first record in a file occupies the first position and receives a
relative record number of 1, the second record occupies the second
position and receives a relative record number of 2, and so on. An
individual record within a relative file can be directly accessed by
specifying its relative record number. Also, like sequential files,
records can be addressed in a serial fashion.

Indexed files, like relative files, can be created only on disk
devices. Indexed files are organized such that records are arranged
according to a hierarchy of indexes according to a key(s) within each
record.

Indexed files have a more complex structure than sequential or
relative files. However, instead of being accessed by the
specification of a relative record number, indexed files are accessed
by the contents of a specified data field(s) (also called keys) within
each record. 1Indexed files can also be accessed in a serial fashion.

ENVIRONMENT DIVISION

3.5.2 Access Modes

File organization determines the access modes that can be used to
retrieve and store records within the file. 1Its organization is fixed
when the file is created and it cannot be altered. An access mode,
however, 1is fixed at the time a program opens a particular file.
Therefore, the access mode used to process records within a file can
differ for each program that opens the file.

TRAX COBOL supports three access modes:

® Sequential

e Random

e Dynamic
Sequential access is the process of accessing records from a file in a
serial fashion. The first record must be accessed before the second

can become available, the second before the third, and so on.

Random access is the process of accessing records individually by the
specification of a random record number or a data key.

Dynamic access allows you to choose between sequential or relative
access at will.

Only certain combinations of file organizations and access mode are
permitted. Table 3-1 lists these allowed combinations.

Table 3-1
Access Modes and File Organizations .
Access Mode
File Organization Sequential Random Dynamic
Sequential | Yes No No
Relative Yes Yes Yes
Indexed) Yes Yes Yes

The relationship between the access modes and the supported file
organizations is described in the TRAX COBOL User's Guide.

ENVIRONMENT DIVISION

FILE-CONTROL

3.6 THE FILE-CONTROL PARAGRAPH
Function

The FILE-CONTROL paragraph names each file and allows
specification of other file-related information.

General Format

FILE-CONTROL. {file-control-entry} ...

3.6.1 The File-Control Entry

Function

The file-control entry names a file and may specify other
file-related information.

General Formats
Format 1

SELECT [OPTIONAL] file-name

ASSIGN TO 1literal-l
AREA

, RESERVE integer-1
AREAS

[:_, ORGANIZATION IS SEQUENTIAL:]

(, AccEss MopE IS SEQUENTIAL]

[, FILE STATUS IS data-name-4]

ENVIRONMENT DIVISION

Format 2
SELECT file—-name

ASSIGN TO literal-l

-

AREA
RESERVE integer-1
' AREAS

ORGANIZATION IS RELATIVE

~

SEQUENTIAL [, RELATIVE KEY IS data-name—i]

~

ACCESS MODE IS {RANDOM

) , RELATIVE KEY IS data-name-1
DYNAMIC

FILE STATUS IS data—name—4] .

r

Format 3
SELECT file-name

ASSIGN TO literal-1
—

AREA
; RESERVE integer-1

AREAS

ORGANIZATION IS INDEXED

~

~e

SEQUENTIAL
ACCESS MODE IS RANDOM
DYNAMIC

RECORD KEY IS data-name-2

~

~e

ALTERNATE RECORD KEY IS data-name-3 E?ITH DUPLICATE#J] cee

FILE STATUS IS data-name-4] .

rar

Syntax Rules
All Formats

1. < The SELECT clause must be specified first in the file control
entry. The clauses that follow the SELECT clause may appear
in any order. ’

Format 1

7.

8.

Format 2

9.

10.

11.

Format 3

12.

13.

14.

ENVIRONMENT DIVISION

Each file described in the Data Division must be named once
and only once as file-name in the FILE~-CONTROL paragraph.
Each file specified in the file control entry must have a
file description entry in the Data Division.

Sequential access is assumed if the ACCESS MODE IS clause is
not specified.

Literal-1l must be an alphanumeric literal.

Data-name-4 must be defined in the Working-Storage Section of
the Data Division as a 2-character alphanumeric data item.

Data-name-1l; data-name-2, data-name-3, and data-name-4 may be
gualified.

Sequential organization is assumed if the ORGANIZATION IS
SEQUENTIAL clause is not specified.

The OPTIONAL phrase may be specified only for input files.
Its specification 1is required for input files that are not
always present each time the object program is executed.

If a relative file is to be referenced by a START statement,
the RELATIVE KEY phrase must be specified for that file.

Data-name-1 must not be defined in a record description entry
associated with file-name. '

The data item referenced by data-name-1 must be defined as an
unsigned integer. :

The data items referenced by data-name-2 and data-name-3 must
each be defined as alphanumeric data items within a record
description entry associated with that file-name.

Neither data-name-2 nor data-name-3 can describe a
variable-sized item.

Data-name-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an
item referenced by data-name-2 or by any other data-name-3
associated with this file.

ENVIRONMENT DIVISION

General Rules

All Formats

1.

The ASSIGN clause specifies the association of the file
referenced by file—-name to a storage medium. Literal-1 must
be a file specification in command-string format. (See
Section 4.11, The VALUE OF Clause).

The ORGANIZATION clause specifies the logical organization of
data on a file. The file organization is established at the
time a file 1is created. Once established, the file
organization cannot be changed. .

If the FILE STATUS clause is specified, a value 1is placed
into the specified 2-character data item (data-name-4) during
the execution of a CLOSE, DELETE, OPEN, READ, REWRITE, START,
or WRITE statement, before any applicable USE procedure is
executed. This value indicates to the COBOL program the
status of any input-output operation.

The leftmost character position of the FILE STATUS data item
is known as Status Key 1. It is set to one of the following
values upon completion of an input-output operation:

0 = Successful Completion
1 = At End

2 = Invalid Key

3 = Permanent Error

9 = DEC Defined

The rightmost character position of the FILE STATUS data item
is known as Status Key 2. It is used to further describe the
results of the input-output operation. This character will
contain one of the following values:

0 = No Further Information

1 = Sequence Error

2 = Duplicate Key

3 = No Record Found

4 = Boundary Violation

5 = Allocation Failure

6 = Buffer Failure

[}

ENVIRONMENT DIVISION

No File Found
Close Error

Close Reel Error

NOTES

The possible combinations of Status Keys 1 and
2 are shown in Table 3-2,

See Appendix C for a complete 1listing of the
possible File Status Keys and a description of
each.

See also the Chapters on COBOL-supported file
types in the TRAX COBOL User's Guide.

3-14

ST-¢

Table 3-2

Possible Combinations of Status Keys 1 and 2

Status Key 2

Status
Key 1 No Further |Sequence | Duplicate | No Record | Boundary |[Allocation | Buffer |No File | CLOSE | CLOSE
Information| Error Key Found Violation| Failure Failure| Found Error | REEL
Error
(0) (1) (2) (3) (4) (3) (6) (7) (8) (9)
Successful
Completion X X(***)
(0)
At
End X
(1)
Invalid
Key x(***) X(**) X(**) X(**)
(2)
Permanent
Error X X(*)
(3)
DEC
Defined X (1) X(1!) X(irn) X X X X X(*)
(9)

* vValid for sequentially organized files only.
** Valid for indexed and relatively organized files only.

*kk

vValid for indexed organized files only.
File locked by another task
! Record locked by another task
!! No sequential READ previous to a REWRITE

or DELETE operation

NOISIAIQ LNIWNOJYIANI .

Format 1

4.

Format 2

6.

10.

11.

Format 3

12.

ENVIRONMENT DIVISION

With this format the RESERVE clause allows you to specify the
number of input-output areas allocated for sequential files.
The number of input-output areas allocated is equal to the
value of integer-1. However, integer-1 cannot be less than 1
or greater than 2. If the RESERVE clause is not specified, a
value of 1 is assumed.

Sequential files are accessed by predecessor/successor record
relationships established by the execution of WRITE
statements when the file is created or extended.

With this format, the RESERVE clause allows you to specify
the number of input-output areas allocated for relative
files. The number of input-output areas allocated 1is equal
to the value of integer-l. However, integer-1 cannot be less
than 1 or greater than 2. If the RESERVE clause 1is not
specified, a value of 1 is assumed.

When the access mode is sequential, records in the file are
accessed in the sequence dictated by the file organization.
This sequence follows the order of ascending relative record
numbers of existing records in the file.

If the access mode is random, the value of the RELATIVE KEY
data item indicates the record to be accessed.

When the access mode is dynamic, records in the file may be
accessed sequentially and/or randomly.

All records stored in a relative file are uniquely identified
by relative record numbers. The relative record number of a
given record specifies the logical ordinal position of the
record in the file. The first logical record has a relative
record number of one (1), and subsequent logical records have
relative record numbers of 2, 3, 4,

The data item specified by data-name-1 is used to communicate
a relative record number between the user and the Record
Management Services.

With this format, the RESERVE clause allows you to specify
the number of input-output areas allocated for indexed files.
The number of input-output areas allocated is egqual to the
value of integer-1l. However, integer-1 must be greater than
or equal to 2. If the RESERVE clause is omitted, a value of
2 is assumed.

13.

14.

15.

16.

17.

18.

19.

ENVIRONMENT DIVISION

When the access mode is sequential, records in the file are
accessed in the sequence dictated by the file organization.
For indexed files, this sequence follows the order of
ascending record key values within a given key of reference.

If the access mode is random, the value of the record Kkey
data item indicates the record to be accessed.

When the access mode is dynamic, records in the file may be
accessed sequentially and/or randomly.

The RECORD KEY clause specifies the prime record key for the
file. The values of the prime record key must be unique
among file records. It provides an access path to records in
an indexed file.

An ALTERNATE RECORD KEY clause specifies an alternate record
key for the file. It provides an alternate access path to
records in an indexed file. :

The data descriptions of data-name-2 and data-name-3 as well
as their relative locations within a record must be the same
as those used when the file was created. Alternate key
specification sequencing must be the same as those used when
the file was created.

The DUPLICATES phrase specifies that the wvalue of the
associated alternate record key may be duplicated within any
of the file records. If the DUPLICATES phrase is not
specified, the wvalue of the associated alternate record key
must not be duplicated in any of the records file.

3-17

ENVIRONMENT DIVISION

1-O-CONTROL

3.7 THE I-O-CONTROL PARAGRAPH

Function

The I-O-CONTROL paragraph specifies the memory area to be shared by
different files and the location of sequential files on a multiple
file reel.

General Format

O-CONTROL.

I-

(

:

SAME [RECORD] AREA FOR file-name-1 ,{file-name-2} ...] ...
MULTIPLE FILE TAPE CONTAINS file-name-3 [BOSITION integer-1]

I:, file-name-4 [(POSITION integer—Z:]]] cee .

[, APPLY PRINT-CONTROL ON file-name-5 [,file-name-ﬁ]..{]... .

Syntax Rules

1.

2.

The I-O-CONTROL paragraph is optional.

The two forms of the SAME clause (SAME AREA, SAME RECORD
AREA) are considered separately in the following:

More than one SAME clause may be included in a program,
however:

a. A file-name must not appear in more than one SAME AREA
clause.

b. A file-name must not appear in more than one SAME RECORD
AREA clause.

c. If one or more file-names of a SAME AREA clause appear in
a SAME RECORD AREA clause, all of the file-names in that
SAME AREA clause must appear 1in the SAME RECORD AREA
clause. However, additional file-names not appearing in
that SAME AREA clause may also appear in that SAME RECORD
AREA clause.

The files referenced in the SAME AREA or SAME RECORD AREA
clause need not have the same organization or access.

General

1.

ENVIRONMENT DIVISION

Rules

The SAME AREA clause specifies that two or more files are to
use the same memory area during processing. The area being
shared includes all buffer areas assigned to the files
specified; therefore, it is not valid to have more than one
of the files open at the same time. ‘

The SAME RECORD AREA clause specifies that two or more files
are to use the same memory area for processing the current
logical record. All the files may be open at the same time.
A logical record in the SAME RECORD AREA is considered as a
logical record of each opened output file whose file-name
appears in this SAME RECORD AREA <clause and of the most
recently read input file‘whose file-name appears in this SAME
RECORD AREA clause. This 1is equivalent to an implicit
redefinition of the area, i.e., records are aligned on the
leftmost character position.

The rule that only one of the files mentioned in a SAME AREA
clause can be open at any given time takes precedence over
the rule that all files mentioned in a SAME RECORD AREA
clause can be open at any given time.

The MULTIPLE FILE clause is for documentation purposes only.
It is used when more than one file shares the same physical
reel of tape. Regardless of the number of files on a single
reel, only those files that are used in the object program
need be specified. If all file-names have been 1listed in
consecutive order, the POSITION clause need not be given. If
any file in the sequence is not listed, the position relative
to the beginning of the tape must be given. Not more than
one file on the same tape reel may be open at one time.

Default techniques are used when the APPLY clause is not
present; hence, the clause is never required.

A sequential file may be written with WRITE statements that
use the ADVANCING clause to control line spacing. The APPLY
PRINT-CONTROL clause may be specified for a printable file
if the FD entry does not specify a LINAGE clause. The APPLY
PRINT-CONTROL clause supplies a default LINAGE clause. If
neither PRINT-CONTROL nor LINAGE is specified for the file, a
WRITE statement with the . ADVANCING option will cause
formatting information to be included in the user-record.

3-19

DATA DIVISION

CHAPTER 4

DATA DIVISION

4.1 OVERALL APPROACH

The Data Division describes the data that the object program 1is to
accept as input, to manipulate, to create, or to produce as output.
Data to be processed falls into three categories:

1. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or
areas.

2. That which 1is developed internally and placed into
intermediate or working storage, or placed into specific
format for output reporting purposes.

3. Constants which are defined by the user.

4.1.1 Data Division Organization

The Data Division, which is one of the required divisions in a
program, is subdivided into three sections; the File Section, the
Working-Storage Section, and the Linkage Section.

The File Section defines the structure of data files. Each file is
defined by a file description entry and one or more record
descriptions. Record descriptions are written immediately following
the file description entry.

The Working-Storage Section describes records and noncontiguous data
items that are not part of external data files but are developed and
processed internally. It also describes data items whose values are
assigned in the source program.

The Linkage Section appears only in the called program and describes
data items that are to be referred to by the calling program and the
called program. Its structure is the same as the Working-Storage
Section.

DATA DIVISION

4.1.2 Data Division Structure

The following information gives the general format of the sections in
the Data Division and defines the order of their presentation in the
source program.

DATA DIVISION.

[:FILE SECTION.

[file-description-entry [record-description-entryl...] ..J

[%ORKING—STORAGE SECTION.
77-1eve1~-description-entry_w]

;record—description—entry

-

[?INKAGE SECTION.

-

r-77—1eve1-descript:ion-ent:ry]

record-description-entry

—

4.2 FILE SECTION

The File Section contains descriptions of files required by the object
program. .

4.2.1 File-Description-Entry

In a COBOL program the file-description-entry (FD) represents the
highest 1level of organization in the File Section. The File Section
header is followed by a file-description-entry consisting of a level
indicator (FD), a file-name, and a series of independent clauses. The
FD clauses specify the size of the logical and physical records, the
presence or absence of label record, the value of DEC-defined label
items, and the names of the data records that make up the file. The
entry itself is terminated by a period.

4.2.2 Record-Description-Entry

A record description-entry is a set of data description entries that
describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data-name
if required, followed by a series of independent clauses as required.
A record description has a hierarchical structure; therefore, the
clauses used with an entry may vary considerably, depending upon
whether or not it is followed by subordinate entries.

DATA DIVISION

4.3 WORKING-STORAGE SECTION

The Working-Storage Section 1is composed of the section header,
followed by data description entries for noncontiguous data items
and/or record description entries. Each Working-Storage Section data
name must be unique.

4,.3.1 Noncontiguous Working-Storage

Items and constants in Working-Storage that bear no hierarchical
relationship to one another need not be grouped into records, provided
they do not need more subdividing. 1Instead, they are <classified and
defined as noncontiguous elementary items. Each of these items is
defined in a separate data description entry.

4.3.2 Working-Storage Records

Data elements and constants in Working-Storage that bear a definite
hierarchical relationship to one another must be grouped into records
according to the rules for formation of record descriptions. All
clauses used in record descriptions in the File Section can be used in
record descriptions in the Working-Storage Section.

4,3.3 1Initial Values

The initial value of any item in the Working-Storage Section, except
an index data item, is specified by using the VALUE clause (see
Section 4.11) with the data item. The initial value of any index data
item is unpredictable.

4.4 LINKAGE SECTION

The Linkage Section in a program is meaningful if and only if the
object program is to function under the control of a CALL statement
(see Section 5.11), and the USING phrase in the PROCEDURE DIVISION
header is not empty (see Section 5.2).

The Linkage Section is used for describing data that 1is available
through the calling program but 1is to be referred to in both the
calling and the called program. No space is allocated in the program
for data items defined in the Linkage Section of that program.
Procedure Division references to these data items are resolved at
object time by equating the reference in the called program to the
location used in the calling program. In the case of index-names, no
such correspondence 1is established. Index-names 1in the called and
calling program always refer to separate indices.

DATA DIVISION

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program if and
only if they are:

1. Operands of the USING phrase of the Procedure Division
header.

2. Subordinate to operands of the USING phrase of the Procedure
Division header.

3. Defined with a REDEFINES or RENAMES clause, the object of
which 1is an operand of the USING phrase of the Procedure
Division header.

4. Items subordinate to any of the items defined in paragraph 3
above.

5. Condition-names and index-names associated with data items
that meet any of the above conditions.

The structure of the Linkage Section is the same as that previously
described for the Working-Storage Section, beginning with a section
header, followed by Record Description entries.

DATA DIVISION

FD

4,5 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON
Function

The file description furnishes information about the physical
structure, identification, and record names pertaining to a given
file.

General Format
FD file-name

‘RECORDS
; BLOCK CONTAINS [integer-1 TOQ] integer-2
ICHARACTERS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

RECORD IS STANDARD
LABEL

~e

RECORDS ARE OMITTED

VALUE OF ID IS

~

literal-l1

data—name—l}

r

‘RECORD IS
DATA

~e

data-name-3 [, data—name—4] .o

lRECORDS ARE

)

data-name-5
LINAGE IS LINES , WITH FOOTING AT
integer-5 .

data-name—GI

integer-6 ‘

M ...

data—name—sl

. data-name-7
, LINES AT TOP

, | LINES AT BOTTOM g

integer-7 integer-8 ‘

(G cope-seT 18 alphabet-name] .

Syntax Rules

1. The level indicator FD identifies the beginning of a file
description and must precede the file-name. '

2. The clauses that follow the name of the file are optional in
many cases, and their order of appearance is immaterial.

3. One or more record description entries must follow the file
description entry.

DATA DIVISION

BLOCK CONTAINS

4.6 THE BLOCK CONTAINS CLAUSE
Function

The BLOCK CONTAINS clause specifies the mapping of a 1logical
record into physical blocks recorded on the storage media.

General Format

RECORDS
BLOCK CONTAINS [}nteger—l IQ] integer-2
CHARACTERS

Syntax Rules

1. The reserved word RECORD does not appear in this clause;
therefore, if integer-2 has the value 1, the clause must be
written as BLOCK CONTAINS 1 RECORDS.

General Rules
1. Integer-1, if present, is ignored.
2. The size of the block may be stated in terms of RECORDS,

a. If the file is assigned to magnetic tape and the records
are fixed 1in size (see the RECORD CONTAINS clause,
Section 4.10), each block except the 1last block will
contain integer-2 records. Integer-1l, if present, is
ignored.

b. If the file is assigned to magnetic tape and the records
are variable in size (see The RECORD CONTAINS clause,
Section 4.10), the wvalue of integer-2 1is used to
calculate a buffer size by multiplying the largest record
size, plus four bytes, by integer-2. The input-output
system then blocks or unblocks as many variable sized
records from this buffer as will fit.

c. For a sequential file assigned to a disk device, the
values of integer-1, if present, and integer-2 are
ignored. There are no unused bytes on any block and the
records may span block boundaries.

The

DATA DIVISION

If the file has relative or indexed organization and it
is assigned to a directory device, the value of integer-2
is used to calculate the size of the block. This size
may or may not be egqgual to the record size times
integer-2 because of overhead bytes. (See the TRAX
COBOL User's Guide.)

size of the block may be stated in terms of characters,

If the file is assigned to a magnetic tape, the size of
the block is the maximum of either,

(1). Integer-2 bytes

(2). The size of the largest record (add four overhead
bytes for variable length records)

If the file has sequential organization and 1is assigned
to a disk device, the clause is ignored and the records
are packed together on each physical block. There are no
unused bytes on any block and the records may span block
boundaries.

If the file has relative or indexed organization, the
size of the block is integer-2 bytes. Integer-2 must be
at least as 1large as the 1largest record, plus any
overhead bytes, and should be a multiple of 512 bytes.
(See the TRAX COBOL User's Guide.)

When the clause is not present, the size of the block is
calculated in the following manner:

a.

If the file is assigned to magnetic tape, the size of the
block is the size of the largest record plus any overhead
bytes.

If the file has sequential organization and 1is assigned
to a disk device, the records are packed together on each
physical block. There are no unused bytes on any block,
and the records may span block boundaries.

If the file has relative or indexed organization, the
least number of physical blocks that can contain one
record, plus any overhead bytes is the block size.

DATA DIVISION

CODE-SET

4.7 THE CODE-SET CLAUSE

Function

The CODE-SET clause specifies the character code set wused to
represent data on the external media. »

General Format

CODE-SET IS alphabet-name

Syntax Rules

1.

General

1.

When the CODE-SET clause is specified for a file, all data in
that file must be described as USAGE IS DISPLAY and any
signed numeric data must be described with the SIGN IS
SEPARATE clause.

The CODE-SET clause may only be specified for files whose
organization is sequential.

Rules

If the CODE-SET clause is specified, alphabet-name specifies
the character code convention used to represent data on the
external media. It also specifies the algorithm for
converting the character codes on the external media from/to
the native character codes. This code conversion occurs
during the execution of. an input or output operation. (See
Section 3.4.3, The SPECIAL-NAMES Paragraph.)

If the CODE-SET clause is not specified, the native character
code set is assumed for data on the external media.

DATA DIVISION

DATA RECORDS

4.8 THE DATA RECORDS CLAUSE
Function

The DATA RECORDS clause serves only as documentation for the
names of data records with their associated file.

General Format

RECORD IS
DATA data-name-1 [, data-name—Zj e

RECORDS ARE

Syntax Rules

1. Data-name-1 and data-name-2 are the names of daté records and
must have 01 level-number record descriptions, with the same
names, associated with them.

General Rules

1. This clause is documentary only and is never reqhired. The
names of the records are not checked against the names
appearing in the following 01 record descriptions.

2. Conceptually, all data records within a file share the same
area. This is in no way altered by the presence of more than
one type of data record within the file.

DATA DIVISION

'LABEL RECORDS

4.9 THE LABEL RECORDS CLAUSE
Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

{RECORD IS } {STANDARD}

RECORDS ARE

LABEL

OMITTED

Syntax Rules

This clause is required in every file description entry.

General Rules

1. OMITTED specifies that no explicit labels exist for the file
or the device to which the file is assigned. OMITTED may be
specified only for files that are assigned to non-directory
devices.

2. STANDARD specifies that labels exist for the file or the
device to which the file is assigned and that the labels
conform to the file system label specifications.

3. STANDARD is required for all files assigned to directory
devices.

DATA DIVISION
LINAGE

4.10 THE LINAGE CLAUSE

Function

The LINAGE clause may only be used for sequential output files.
It is provided as a means for specifying the depth of a logical
page in terms of number of 1lines. It also provides for
specifying the size of the top and bottom margins on the 1logical
page, and the 1line number, within the page body, at which the
footing area begins.

General Format

data-name-1

MIS{

data-name-2
LINES , WITH FOOTING AT

integer-1 integer-2
data-name-3

, LINES AT TOP {

data-name-4
, LINES AT BOTTOM

integer-3 integer-4

Syntax Rules

1. Data-name-1, data-name-2, data-name-3, data-name-4 ‘must
reference elementary unsigned numeric integer data items.

2, The value of integer-1 must be greater than zero.
3. The value of integer-2 must not be greater than integer-l.

4. The value of integer-3, integer-4 may be zero.

General Rules

1. The LINAGE clause provides a means for specifying the size of
a logical page in terms of number of lines. The logical page
size is the sum of the values referenced by each phrase
except the FOOTING phrase. If the LINES AT TOP or LINES AT
BOTTOM phrases are not specified, the values for these
functions are zero. If the FOOTING phrase is not specified,
the assumed value is equal to integer-1 or the contents of
the data item referenced by data-name-1, whichever is
specified.

There is not necessarily any relationship between the size of
the logical page and the size of a physical page.

DATA DIVISION

The value of integer-1 or the data 1item referenced by
data-name-1 specifies the number of lines that can be written
and/or spaced on the logical page. The value must be greater
than zero. That part of the logical page. in which these
lines can be written and/or spaced is called the page body.

The value of integer-3 or the data item referenced by
data-name-3 specifies the number of lines constituting the
top margin on the logical page. The value may be zero.

The value of integer-4 or the data item referenced by
data-name-4 specifies the number of lines that make up the
bottom margin on the logical page. The value may be zero.

The value of integer-2 or the data item referenced by
data-name-2 specifies the line number within the page body at
which the footing area begins. The value must be greater
than zero and not greater than the value of integer-1 or the
data item referenced by data-name-1l.

The footing area comprises the area of the 1logical page
between the 1line represented by the value integer-2 or the
data item referenced by data-name-2 and the line represented
by the wvalue integer-l1 or the data item referenced by
data-name-1, inclusive.

During the execution of an OPEN statement with the OUTPUT
phrase specified, the value of integer-1, integer-3, and
integer-4, if specified, will be used at the time the file is
opened to specify the number of lines that make up each of
the indicated sections of a 1logical page. The value of
integer-2, 1if specified, will be used at that time to define
the footing area. These values are used for all 1logical
pages written during a given execution of the program.

The values of the data items referenced by data-name-1,
data-name-3, and data-name-4, if specified, will be used as
follows:

a. The values of the data items, at the time an OPEN
statement with the OUTPUT phrase 1is executed for the
file, will be used to specify the number of 1lines that
are to constitute each of the indicated sections for the
first logical page.

b. The values of the data items, at the time a WRITE
statement with the ADVANCING PAGE phrase is executed or
page overflow condition occurs (see Section '5.42, The
WRITE Statement), will be used to specify the number of
lines that are to constitute each of the indicated
sections for the next logical page.

DATA DIVISION

8. The value of the data item referenced by data-name-2, if
specified, at the time an OPEN statement with the OUTPUT
phrase is executed for the file, will be used to define the
footing area for the first logical page. At the time a WRITE
statement with the ADVANCING PAGE phrase 1is executed or a
page overflow condition occurs, it will be used to define the
footing area for the next logical page.

9. A LINAGE-COUNTER is generated by the presence of a LINAGE
clause. The wvalue in the LINAGE-COUNTER at any given time
represents the line number at which the device is positioned
within the current page body. The rules governing the
LINAGE-COUNTER are as follows: :

a. A separate LINAGE-COUNTER 1is supplied for each file
described in the File Section whose file description
entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced but not modified by
Procedure Division statements. Because more than one
LINAGE-COUNTER may exist in a program, the user must
qualify LINAGE-COUNTER by file—-name when necessary.
LINAGE-COUNTER is implicitly described as PIC 59999 COMP.

c. LINAGE-COUNTER is automatically modified, according to
the following rules, during the execution of a WRITE
statement to an associated file:

(1) When the ADVANCING PAGE phrase of the WRITE
statement is specified, the LINAGE-COUNTER is
automatically reset to one.

(2) When the ADVANCING identifier-2 or integer phrase of

" the WRITE statement is specified, the L