
Monitor Calls Manual

MONITOR CALLS
DEC-10-0MCMA-A-D

This manual reflects the software of the 5.07 and

6.01 releases of the monitor.

digital equipment corporation · maynard, massachusetts

First Printing, June 1971
Revision: January 1972
Revision: June 1972
Revision: March 1973
Revision: May 1974

The infonnation in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsi­
bility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a single
computer system and can be copied (with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on
equipment that is not supplied by DIGITAL.

Copyright © 1971, 1972, 1973, 1974 by Digital Equipment Corporation

Printed in U.S.A.

The postage prepaid READER'S COMMENTS fonn on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP
COMPUTER LAB
COMSYST
COMTEX
DDT
DEC
DECCOMM
DECTAPE
DIBOL

DIGITAL
DNC
EDGRlN
EDUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS

INDAC
KAIO
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA

PS/8
QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-ll
SABR
TYPESET-IO
UNIBUS

CONTENTS

CHAPTER 1 MEMORY FORMAT

1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.4

USER PROGRAMS

MEMORY PROTECTION AND RELOCATION

The KA 1 0 Processor

The KI 10 Processor

KI 10 Processor Utilizing Virtual Memory

JOB DATA AREA (JOBDAT)

VESTIGIAL JOB DATA AREA

CHAPTER 2 INTRODUCTION TO USER PROGRAMMING

2.1

2.1.1

2.1.2

2.1.3

2.2

2.2.1

2.2.2

2.2.2.1

2.2.2.2

2.2.2.3

2.2.3

2.2.4

2.2.5

PROCESSOR MODES

User Mode

User I/O Mode

Executive Mode

PROGRAMMED OPERATORS (UUOs)

Operation Codes 001-037 (User UUOs)

Operation Codes 040-077 and 000 (Monitor UUOs)

CALL and CALLI

Suppression of Logical Device Names

Restriction on Monitor UUOs in Reentrant User Program

Operation Codes 100-127 (Unimpremented Op Codes)

Illegal Operation Codes

Naming Conventions for Monitor Symbols

CHAPTER 3 NON I/O UUOS

3.1

3.1.1

3.1.1.1

3.1.2

3.1.2.1

3.1.2.2

3.1.2.3

3.1.3

3.1.3.1

3.1.3.2

3.1.3.3

3.1.3.4

3.1.3.5

3.1.3.6

3.1.3.7

3.1.3.8

EXECUTION CONTROL

Starting

SETDDT AC, or CALLI AC, 2

Stopping

Illegal Instructions (700-777, JRST 10, JRST 14) and

Unimplemented Op Codes (101-127)

HALT or JRST 4

EXIT AC, or CALLI AC, 12

Program Trapping, Interception, and Interruption

APRENB AC, or CALLI AC, 16

Error Intercepting

Software Interrupt System

Interrupt Conditions

Interrupt Control Block

PIINI. AC, or CALLI. AC, 135

PISYS. AC, or CALLI AC, 136

DEBRK. or CALLI AC, 137

iii

Page

1-1

1-2

1-2

1-3

1-4

1-6

1-9

2-1

2-1

2-2

2-2

2-2

2-2

2-3

2-5

2-18

2.18

2-18

2-18

2-19

3-1

3-1

3-1

3-1

3-1

3-1

3-2

3-2

3-3

3-4

3-8

3-8

3-9

3-11

3-11

3-14

CONTENTS (Cont)

Page

3.1.3.9 PISAV. AC, or CALLI AC, 140 3-14
3.1.3.10 PIRST. AC, or CALLI AC, 141 3-16
3.1.3.11 Software Interrupt Example 3-16
3.1.4 Suspending 3-18
3.1.4.1 SLEEP AC, or CALLI AC, 31 3-18
3.1.4.2 HIBER AC, or CALLI AC, 72 3-18
3.1.4.3 WAKE AC, or CALLI AC, 73 3-19
3.2 CORE CONTROL 3-20
3.2.1 Definition 3-20
3.2.2 LOCK AC, or CALLI AC, 60 3-20
3.2.2.1 KA 1 0 Systems 3-23
3.2.2.2 LOCK UUO Extension 3-23
3.2.2.3 Core Allocation Resource 3-24
3.2.2.4 UNLOK. AC, or CALLI AC, 120 3-25

3.2.3 CORE AC, or CALLI AC, 11 3-29

3.2.4 SETUWP AC, or CALLI AC, 36 3-30

3.2.5 Page Fault Handling 3-31

3.2.5.1 Default Page Fault Handler 3-31

3.2.5.2 Page Fault Handler Structure 3-31

3.2.6 PAGE. UUO, or CALLI AC, 145 3-32

3.3 SEGMENT CONTROL 3-36

3.3.1 RUN AC, or CALLI AC, 35 3-36

3.3.2 GETSEG AC, or CALLI AC, 40 3-39

3.3.3 REMAP AC, or CALLI AC, 37 3-40

3.3.4 Testing for Sharable High Segments 3-41

3.3.5 Determining the High Segment Origin 3-41

3.3.6 Modifying Shared Segments and Meddling 3-42

3.4 PROGRAM AND PROFILE IDENTIFICATION 3-43

3.4.1 SETNAM AC, or CALLI AC; 43 3-43

3.4.2 SETUUO AC, or CALLI AC, 75 3-43

3.4.3 LOCATE AC, or CALLI AC, 62 3-45

3.5 INTER-PROGRAM COMMUNICATION 3-46

3.5.1 TMPCOR AC, or CALLI AC, 44, 3-46

3.5.1.1 CODE = 0 (.TCRES) - Obtain Free Space 3-46

3.5.1.2 CODE = 1 (.TCRRF) - Read File 3-46

3.5.1.3 CODE = 2 (.TCRDF) - Read and Delete File 3-46

3.5.1.4 CODE = 3 (.TCRWF) - Write File 3-47

3.5.1.5 CODE = 4 (.TCRRD) - Read Directory 3-47

3.5.1.6 CODE = 5 (.TCRDD) - Read and Clear Directory 3-47

3.6 ENVIRONMENTAL INFORMATION 3-47

3.6.1 Timing Information 3-47

3.6.1.1 DATE AC, or CALLI AC, 14 3-48

3.6.1.2 TIMER AC, or CALLI AC, 22 3-48

iv

CONTENTS (Cont)

Page

3.6.1.3 MSTIME AC, or CALLI AC, 23 3-48
3.6.2 Job Status Infonnation 3-48
3.6.2.1 RUN TIME AC, or CALLI AC, 27 3-48

3.6.2.2 PJOB AC, or CALLI AC, 30 3-48

3.6.2.3 GETPPN AC, or CALLI AC, 24 3-48

3.6.2.4 OTHUSR AC, or CALLI AC, 77 3-48

3.6.3 Monitor Examination 3-49

3.6.3.1 PEEK AC, or CALLI AC, 33 3-49

3.6.3.2 SPY AC, or CALLI AC, 42 3-49

3.6.3.3 POKE. AC, or CALLI AC, 114 3-49

3.6.3.4 GETTAB AC, or CALLI AC, 41 3-50

3.6.3.4.1 Entries in.Table 6 - .GTPRV (Privilege Table) 3.;.55

3.6.3.4.2 Entries in Table 11 - .GTCNF (Configuration Table) 3-55

3.6.3.4.3 Entries in Table 12 - .GTNSW (Nonswapping Data) 3-60

3.6.3.4.4 Entries in Table 13 - .GTSDT (Swapping Data) 3-61

3.6.3.4.5 Entries in Table 15 - .GTODP (Once-Only Disk Parameters) 3-62

3.6.3.4.6 Entries in Table 16 - .GTLVD (LEVEL-D Monitor Disk

Parameters 3-62

3.6.3.4.7 Entries in Table 23 - .GTSLF (GETTAB Immediate) 3-64

3.6.3.4.8 Entries in Table 25 - .GTWSN (Two-character SIXBIT

names for job queues) 3-64

3.6.3.4.9 Entries in Table 35 - .GTWCH (WATCH Table) 3-65

3.6.3.4.10 Entries in Table 36 - .GTSPL (Spooling Table) 3-66

3.6.3.4.11 Entries in Table 51 - .GTSYS (System Wide Data) , 3-66

3.6.3.4.12 Entries in Table 55 - .GTCOC (CPUO CDB constant table) 3-66

3.6.3.4.13 Entries in Table 56 - .GTCOV (CPUO CDB Variable Table) 3-68

3.6.3.4.14 GETT AB Subtables 3-69

3.6.3.4.15 Entries in Table 71 - .GTFET (Feature Table) 3-72

3.6.3.4.16 Entries in Table 73 - .GTSCN (Scanner Table) 3-75

3.6.3.4.17 Entries in Table 74 - .GTSND (Send-all) 3-76

3.6.3.4.18 Entries in Table 77 - .GTIPC (IPCF Miscellaneous Data) 3-76

3.6.3.4.19 Entries in Table 113 - .GTVM (General Virtual Memory Data) 3-76

3.6.4 Configuration Infonnation 3-77

3.6.4.1 SWITCH AC, or CALLI AC, 20 3-77

3.6.4.2 LIGHTS AC, or CALLI AC,-1 3-77

3.7 DAEMON AC, OR CALLI AC, 102 3-77

3.7.1 .DCORE Function 3-78

3.7.2 .CLOCK Function 3-78

3.7.3 Returns 3-79

3.8 REAL-TIME PROGRAMMING 3-79

3.8.1 RTTRP AC, or CALLI AC, 57 3-79

3.8.1.1 Data Block Mnemonics 3-81

3.8.1.2 Interrupt Level Use of RTTRP 3-82

v

CONTENTS (Cont)

Page

3.8.1.3 RTTRP Returns 3-82

3.8.1.4 Restrictions 3-83

3.8.1.5 Removing Devices from a PI Channel 3-83

3.8.1.6 Dismissing the Interrupt 3-83

3.8.1.7 Examples 3-84

3.8.2 RTTRP Executive Mode Trapping 3-88

3.8.2.1 Example 3-88.

3.8.3 TRPSET AC, or CALLI AC, 25 3-90

3.8.4 UJEN (Op Code 100) 3-92

3.8.5 HPQ AC or CALLI AC, 71 3-92

3.9 METER. AC, OR CALLI AC, 111 3-93

CHAPTER 4 I/O PROGRAMMING

4.1 I/O ORGANIZATION 4-1

4.1.1 Files 4-1

4.1.2 Job I/O Initialization 4-1

4.2 DEVICE SELECTION 4-2

4.2.1 Nondirectory Devices 4-2

4.2.2 Directory Devices 4-3

4.2.3 Device Initialization 4-3

4.2.3.1 Data Channel 4-3

4.2.3.2 Device Name 4-4

4.2.3.3 Initial File Status 4-4

4.2.3.4 Data Modes 4-4

4.2.3.5 Buffer Header 4-5

4.3 RING BUFFERS 4-6

4.3.1 Buffer Structure 4-6

4.3.1.1 Buffer Ring Header Block 4-6

4.3.1.2 Buffer Ring 4-6

4.3.2 Buffer Initialization 4-8

4.3.2.1 Monitor Generated Buffers 4-8

4.3.2.2 User Generated Buffers 4-8

4.4 FILE SELECTION (LOOKUP AND ENTER) 4-9

4.4.1 The LOOKUP Operator 4-9

4.4.2 The ENTER Operator 4-10

4.4.3 RENAME Operator 4-11

4.5 DATA TRANSMISSION 4-13

4.5.1 Unbuffered Data Modes 4-14

4.5.2 Buffered Data Modes 4-15

4.5.2.1 Input 4-15

4.5.2.2 Output 4-17

4.5.3 Synchronization of Buffered I/O 4-17

4.6 STATUS CHECKING AND SETTING 4-18

vi

CONTENTS (Cont)

Page

4.6.1 File Status Checking 4-19

4.6.2 File Status Setting 4-19

4.7 FILE TERMINATION 4-20

4.8 DEVICE TERMINATION AND REASSIGNMENT 4-22

4.8.1 RELEASE 4-22

4.8.2 RESDV. AC, or CALLI AC, 117 4-23

4.8.3 REASSIGN AC, or CALLI AC, 21 4-23

4.8.4 DEVLNM AC, or CALLI AC, 107 4-24

4.9 EXAMPLES 4-24

4.9.1 File Reading 4-24

4.9.2 File Writing 4-25

4.9.3 File Reading/Writing 4-25

4.10 NON-BLOCKING I/O 4-26

4.11 THE MULTIPLEXED CHANNEL FEATURE 4-27

4.11.1 Buffer Ring Extensions 4-27

4.11.1.1 Device Chains 4-28

4.11.2 I/O Modes 4-28

4.11.3 Device Identification 4-28

4.11.4 UUO's 4-28

4.11.4.1 CNECT. UUO 4-28

4.11.4.2 ERLST.AC, or CALLI AC, 132 4-30

4.11.5 EXAMPLE 4-30

4.12 DEVICE INFORMATION 4-33

4.12.1 DEVSTS AC, or CALLI AC, 54 4-33

4.12.2 DEVCHR AC, or CALLI AC, 4 4-34

4.12.3 DEVTYP AC, or CALLI AC, 53 4-35

4.12.4 DEVSIZ AC, or CALLI AC, 101 4-36
4.12.5 . WHERE AC, or CALLI AC, 63 4-37

4.12.6 DEVNAM AC, or CALLI AC, 64 4-38

4.12.7 10NDX. AC, or CALLI AC, 127 4-38

4.12.8 CLRST. UUO 4-38

4.12.9 MVHDR. AC, or CALLI AC, 13] 4-39

4.12.10 SENSE AC, or CALLI AC, 133 4-39

CHAPTER 5 I/O PROGRAMMING FOR NONDlRECTORY DEVICES

5.1 CARD PUNCH 5-2

5.1.1 Concepts 5-2

5.1.2 Data Modes 5-3

5.1.2.1 ASCII, Octal Code 0 5-3

5.1.2.2 ASCII Line, Octal Code 1 5-3

5.1.2.3 Image, Octal Code 10 5-3

5.1.2.4 Image Binary, Octal Code 13 5-3

5.1.2.5 Binary, Octal Code 14 5-3

5.1.3 Special Programmed Operator Service 5-3

vii

CONTENTS (Cont)

Page

5.1.4 File Status (Refer to Appendix D) 5-3
5.2 CARD READER 5-4

5.2.1 Concepts 5-4

5.2.2 Data Modes 5-5

5.2.2.1 ASCII. Octal Code 0 5-5

5.2.2.2 ASCII Line, Octal Code I 5-5

5.2.2.3 Image, Octal Code 10 5-5

5.2.2.4 Image Binary, Octal Code 13 5-5

5.2.2.5 Binary, Octal Code 14 5-5

5.2.2.6 Super-Image, Octal Code 110 5-5

5.2.3 Special Programmed Operator Service 5-5

5.2.4 File Status (Refer to Appendix D) 5-6

5.3 DISPLAY WITH LIGHT PEN 5-6

5.3.1 Data Modes 5-7

5.3.2 Background 5-7

5.3.3 Display UUOs 5-7

5.3.3.1 INPUTD,ADR 5-7

5.3.3.2 OUTPUT D, ADR 5-7

5.3.4 File Status (See Appendix D) 5-9

5.4 LINE PRINTER 5-10

5.4.1 Data Modes 5-10

5.4.1.1 ASCII. Octal Code 0 5-10

5.4.1.2 ASCII Line, Octal Code I 5-10

5.4.1.3 Image, Octal Code 10 5-10

5.4.2 Special Programmed Operator Service 5-10

5.4.3 File Status (See Appendix D) 5-10

5.5 MAGNETIC TAPE 5-11

5.5.1 Data Modes 5-11

5.5.2 Magnetic Tape UUO's 5-12

5.5.3 Special Programmed Operator Service (UUO's) 5-12

5.5.3.1 MTAPEUUO 5-12

5.5.3.2 MT APE D, II Rewind and Unload (UNLOAD) 5-14

5.5.3.3 MTCHR. AC, or CALLI AC, 112 5-15

5.5.4 Nine-CHANNEL Tapes 5-17

5.5.4.1 Digital-Compatible Mode 5-17

5.5.5 File Status (Refer to Appendix D) 5-17

5.6 PAPER-TAPE PUNCH 5-18

5.6.1 Data Modes 5-19

5.6.1.1 ASCII, Octal Code 0 5-19

5.6.1.2 ASCII Line, Octal Code I 5-19

5.6.1.3 Image, Octal Code 10 5-19

5.6.1.4 Image Binary, Octal Code 13 5-19

5.6.1.5 Binary, Octal Code 14 5-19

viii

CONTENTS (Cant)

Page

5.6.2 Special Programmed Operator Service 5-19

5.6.3 File Status (Refer to Appendix D) 5-19

5.7 PAPER-TAPE READER 5-20

5.7.1 Data Modes (Input Only) 5-20

5.7.1.1 ASCII, Octal Code 0 5-20

5.7.1.2 ASCII Line, Octal Code 1 5-20

5.7.1.3 Image, Octal Code 10 5-20

5.7.1.4 Image Binary, Octal Code 13 5-20

5.7.1.5 Binary, Octal Code 14 5-20

5.7.2 Special Programmed Operator Service 5-20

5.7.3 File Status (Refer to Appendix D) 5-20

5.8 PLOTTER 5-21

5.8.1 Data Modes 5-21

5.8.1.1 ASCII, Octal Code 0 5-21

5.8.1.2 ASCII Line, Octal Code 1 5-21

5.8.1.3 Image, Octal Code 10 5-22

5.8.1.4 Image Binary, Octal Code 13 5-22

5.8.1.5 Binary, Octal Code 14 5-22

5.8.2 Special Programmed Operator Service 5-22

5.8.3 File Status (Refer to Appendix D) 5-22

5.9 PSEUDO-TTY 5-22

5.9.1 Concepts 5-23

5.9.2 The HIBER UUO 5-24

5.9.3 File Status (Refer to Appendix D) 5-24

5.9.4 Special Programmed Operator Service 5-25

5.9.4.1 OUT, OUTPUT UUOs 5-25

5.9.4.2 IN, INPUT UUOs 5-25

5.9.4.3 RELEASE UUO 5-25

5.9.4.4 JOBSTS UUO 5-25

5.9.4.5 CTLJOB UUO 5-26

5.10 TERMINALS 5-26

5.10.1 Data Modes 5-29

5.10.2 Model 2741 Terminals 5-31

5.10.2.1 User Interface 5-33

5.10.3 DDT Submode 5-34

5.10.4 TTCALL UUO 051 5-35

5.10.5 GETLIN AC, or CALLI AC, 34 5-38

5.10.6 TRMNO. AC, or CALLI AC, 115 5-38

5.10.7 TRMOP. AC, or CALLI AC, 116 5-39

5.10.8 File Status (Refer to Appendix D) 5-43

5.10.9 Paper-Tape Input from the Terminal (Full-Duplex Software) 5-44

5.10.10 Paper-Tape Output at the Terminal (Full-Duplex Software) 5-44

ix

CONTENTS (Cont)

Page

CHAPTER 6 I/O PROGRAMMING FOR DIRECTORY DEVICES

6.1 DECTAPE 6-2
6.1.1 Data Modes 6-2

6.1.1.1 Buffered Data Modes 6-2
6.1.1.2 Unbuffered Data Modes 6-2
6.1.2 DECtape Format 6-3

6.1.3 DECtape Directory Format 6-3

6.1.4 DECtape File Format 6-5

6.1.4.1 Block Allocation 6-6

6.1.5 I/O Programming 6-6

6.1.5.1 LOOKUPD,E 6-7

6.1.5.2 ENTERD,E 6-8

6.1.5.3 RENAMED,E 6-8

6.1.5.4 INPUT,OUTPUT,CLOSE, RELEASE 6-9

6.1.6 Special Programmed Operator Service 6-10

6.1.6.1 USETID,E 6-10

6.1.6.2 USETOD,E 6-10

6.1.6.3 UGETFD,E 6-10

6.1.6.4 UTPCLR AC, or CALLI AC, 13 6-10

6.1.6.5 MTAPE D, 1 and MTAPE D, 11 6-10

6.1.6.6 DEVSTS UUO 6-11

6.1.7 File Status (Refer to Appendix D) 6-11

6.1.8 Important Considerations 6-12

6.2 DISK 6-13

6.2.1 Data Modes 6-13

6.2.1.1 Buffered Data Modes 6-13

6.2.1.2 Unbuffered Data Modes 6-13

6.2.2 Structure of Disk Files 6-13

6.2.2.1 Addressing by Monitor 6-14

6.2.2.2 Storage Allocation Table (SAT) Blocks 6-14

6.2.2.3 File Directories 6-14

6.2.2.4 File Format 6-17

6.2.3 Access Protection 6-18

6.2.3.1 UFD and SFD Privileges 6-20

6.2.4 Disk Quotas(1) 6-20

6.2.5 Simultaneous Access 6-21

6.2.6 File Structure Names 6-21

6.2.6.1 Logical Unit Names 6-21

6.2.6.2 Physical Controller Class Names 6-21

6.2.6.3 Physical Controller Names 6-22

6.2.6.4 Physical Unit Names 6-22

6.2.6.5 Unit Selection on Output 6-22

6.2.6.6 Abbreviations 6-22

x

6.2.7

6.2.8

6.2.8.1

6.2.8.2

6.2.8.3

6.2.9

6.2.9.1

6.2.9.2

6.2.9.3

6.2.9.4

6.2.9.5

6.2.9.6

6.2.9.7

6.2.9.8

6.2.9.9

6.2.9.10

6.2.9.11

6.2.9.12

6.2.9.13

6.2.9.14

6.2.9.15

6.2.10

6.2.11

6.2.11.1

6.2.11.2

6.2.11.3

6.3

6.3.1

CHAPTER 7

7.1

7.1.1

7.1.2

7.1.3

7.1.4

7.1.5

7.1.6

7.1.7

7.1.8

7.1.9

7.1.10

CONTENTS (Cont)

Page

Job Search List 6-23

User Programming 6-24

Four-word Arguments for LOOKUP, ENTER, RENAME UUOs 6-25

Extended Argument for LOOKUP, ENTER, RENAME UUOs 6-29

Error Recovery for ENTER and RENAME UUOs 6-35

Special Programmed Operator Service 6-35

PATH. AC, or CALLI AC, 110 6-35

USETI and USETO UUOs 6-40

SEEK UUO 6-42

RESET UUO 6-43

DEVSTS UUO 6-43

CHKACC UUO 6-43

STRUUO AC, or CALLI AC, 50 6-45

JOBSTR AC, or CALLI AC, 47 6-47

GOBSTR AC, or CALLI AC, 66 6-48

SYSSTR AC, or CALLI AC, 46 6-49

SYSPHY AC, or CALLI AC, 51 6-50

DEVPPN AC, or CALLI AC, 55 6-50

DSKCHR AC, or CALLI AC, 45 6-52

DISK. AC, or CALLI AC, 121 6-55

Simultaneous Supersede and Update 6-56

File Status (Refer to Appendix D) 6-57

Disk Packs 6-58

Removable File Structures 6-59

Identification 6-59

IBM Disk Pack Compatibility 6-59

SPOOLING OF UNIT RECORD I/O ON DISK 6-59
Input Spooling 6-59

INTER-PROCESS COMMUNICATION FACILITY

INTER-PROCESS COMMUNICATION FACILITY (IPCF) 7-1

Packets 7-2

Process ID (PID) 7-2

Queue 7-3

[SYSTEM] INFO 7-3

IPCF Controller ([SYSTEM] IPCC) 7-4

IPCFS. UUO or CALLI AC, 143 7-5

IPCFR. UUO or CALLI AC, 142 7-6

IPCFQ. UUO or CALLI AC, 144 7-7

USING IPCF 7-8

IPCF Example 7-15

xi

CONTENTS (Cont)

Page

CHAPTER 8 MONITOR ALGORITHMS

8.1 JOB SCHEDULING 8-1

8.2 PROGRAM SWAPPING 8-2

8.3 DEVICE OPTIMIZATION 8-4

8.3.1 Concepts 8-4

8.3.2 Queueing Strategy 8-5

8.3.2.1 Position-Done Interrupt Optimization 8-5

8.3.2.2 Transfer-Done Interrupt Optimization 8-5

8.3.3 Fairness Consideration 8-6

8.3.4 Channel Command Chaining 8-6

8.3.4.1 Buffered Mode 8-6

8.3.4.2 Unbuffered Mode 8-6

8.4 MONITOR ERROR HANDLING 8-6

8.4.1 Hardware Detected Errors 8-6

8.4.2 Software Detected Errors 8-7

8.5 DIRECTORIES 8-7

8.5.1 Order of Filenames 8-7

8.5.2 Directory Searches 8-7

8.6 PRIORITY INTERRUPT ROUTINES 8-8

8.6.1 Channel Interrupt Routines 8-8

8.6.2 Interrupt Chains 8-8

8.7 MEMORY PARITY ERROR ANALYSIS, REPORTING AND

RECOVERY 8-12

8.7.1 Description of Analysis 8-12

APPENDIX A DECT APE COMPATIBILITY BETWEEN DEC COMPUTERS A-I

APPENDIXB WRITING REENTRANT USER PROGRAMS B-1

B.1 DEFINING VARIABLES AND ARRAYS B-1

B.2 EXAMPLE OF TWO-SEGMENT REENTRANT PROGRAM B-1

B.3 CONSTANT DATA B-2

B.4 SINGLE SOURCE FILE B-2

APPENDIX C CARD CODES C-1

APPENDIXD DEVICE STATUS BITS D-1

APPENDIXE ERROR CODES E-l

APPENDIXF COMPARISON OF DISK.;LIKE DEVICES F-l

APPENDIXG MAGNETIC TAPE CODES G-1

xii

CONTENTS (Cont)

Page

APPENDIX H FILE RETRIEVAL POINTERS

H.1 A GROUP POINTER H-1

H.1.1 Folded Checksum Algorithm H-1

H.2 END-OF-FILE POINTER H-2

H.3 CHANGE OF UNIT POINTER H-2

H.4 DEVICE DATA BLOCK H-2

H.5 ACCESS BLOCK H-2

ILLUSTRATIONS

Figure No. Title Page

1-1 KA 10 User Address Relocation 1-3

1-2 KI 10 Paging Configuration 1-4

1-3 Physical and Virtual Page Limits 1-5

3-1 Locking Jobs In Core on KA10 Systems 3-26

4-1 User's Ring of Buffers 4-7

4-2 Detailed Diagram of Individual Buffer 4-7

5-1 Pseudo-TTY 5-23

6-1 DECtape Directory Format 6-3

6-2 Format of a File on Tape 6-5

6-3 Format of a DECtape Block 6-6

6-4 Basic Disk File Organization for Each File Structure 6-15

6-5 Disk File Organization 6-16

6-6 Directory Paths on a Single File Structure 6-39

6-7 Directory Paths on Multiple File Structures 6-39

7-1 Sample Layout of a Packet 7-2

TABLES

Table No. Title Page

1-1 Job Data Area Locations 1-6

1-2 Vestigial Job Data Area Locations 1-10

2-1 Monitor Programmed Operators 2-3

2-2 CALL and CALLI Monitor Operations 2-5

3-1 GETTAB Tables 3-51

4-1 Data Modes 4-5

4-2 File Status Bits 4-18

4-3 CLOSE Options 4-20

5-1 N ondirectory Device 5-1

5-2 MT APE Functions 5-13

6-1 Directory Devices 6-1

xiii

TABLES (Cont)

Table No. Title Page

6-2 LOOKUP Parameters 6-7

6-3 ENTER Parameters 6-8

6-4 RENAME Parameters 6-9

6-5 File Structure Names 6-23

6-6 Extended LOOKUP, ENTER, and RENAME Arguments 6-29

6-7 .FSSRC Error Codes 6-47

7-1 [SYSTEM] INFO Request Fonnat 7-4

7-2 Packet Descriptor Block Flags 7-10

7-3 [SYSTEM] INFO Functions 7-11

7-4 IPCC Functions 7-12

7-5 Error Codes 7-13

8-1 Software States 8-5

C-I ASCII Card Codes C-I

C-2 DEC-029 Card Codes C-3

D-I Device Status Bits D-l

E-l Error Codes E-l

E-2 IPCF Error Returns E-2

F-I Disk Devices F-l

G-l ASCII Codes and BCD Equivalents G-l

xiv

PREFACE

DECsystem-l0 Monitor Calls is a complete reference document describing the monitor programmed operators

(UUOs) and is intended for the experienced assembly language programmer. The information presented in this

manual reflects the 6.01 and 5.07 releases of the monitor. The monitor calls are grouped in a manner that facil­

itates easy learning, and once they are mastered, the user can refer to the end of the Table of Contents and to

the Index for an alphabetical list of the UUOs.

DECsystem-l0 Monitor Calls does not include reference material on the operating system commands. This in­

formation can be found in DECsystem-l0 Operating System Commands (DEC-I0-MRDD-D). Included in

DECsystem-IO Operating System Commauds are discussions on commands processed by both the monitor com­

mand language interpreter and the programs in the Batch system. The two manuals, DECsystem-l 0 Monitor

Calls and DECsystem-IO Operating System Commands, supersede the Timesharing Munitors manual

(DEC-T9-MTZD-D) and all of its updates.

A third manual, Introduction to DECsystem-l0 Software (DEC-I0-MZDA-D), is a general overview of the

DECsystem-l0. It is written for the person, not necessarily a programmer, who knows computers and computing

concepts and who desires to know the relationship between the various components of the DECsystem-l0. This

manual is not intended to be a programmer's reference manual and, therefore, it is recommended that it be read

at least once before reading the above-mentioned reference documents.

SYNOPSIS OF DECsystem-l0 MONITOR CALLS

Chapter I discusses the format of memory and briefly describes the job data. Chapter 2 introduces all of the

monitor programmed operators available to a user program and the various processor modes in which a user pro­

gram operates. The UUOs available for non-I/O operations are presented in Chapter 3. These programmed

operators are used to obtain execution, core, and segment control; program identification; environmental infor­

mation; and real-time status. An introduction to I/O programming is presented in Chapter 4; the services the

monitor performs for the user and how the user program obtains these services are discussed. I/O programming

specific to the nondirectory devices and directory devices is explained in Chapters 5 and 6, respectively. Algo­

rithms of the monitor, described in Chapter 7, give the user an insight into system operation. The appendices

contain supplementary reference material and tables.

CONVENTIONS USED IN DECsystem-lO MONITOR CALLS

The following conventions have been used throughout this manual:

dev: Any logical or physical device name. The colon must be included when a device is

used as part of a file specification.

list

job n

fIle.ext

core

adr

C(adr)

[proj,prog]

fs

s

tx

*

)

n

[directory]

A single file specification or a string of file specifications. A fIle specification consists

of a filename (with or without a filename extension), a device name, a directory name,

and a protection.

A job number assigned by the system.

Any fIle legal filename and filename extension.

Decimal number of 1 K blocks of core (KA 1 0). Decimal number of pages of core

(KIlO).

An octal address.

The contents of an octal address.

Project-programmer numbers; the square brackets must be included in the command

string.

Any legal fIle structure name or abbreviation.

The symbol used to indicate the ESCAPE Key.

A control character obtained by depressing the CTRL key and then the character

key x.

A back arrow used in command string to separate the input and output file specifica­

tions.

An equal sign used in a command string to separate the input and output file

specifications.

The system program prompt for a command string.

The monitor's indication that it is awaiting a command.

The symbol used to indicate that the user should depress the RETURN key. This key

may be used to terminate every command to the monitor command language inter­

preter.

Underscoring used to indicate computer typeout.

A decimal number.

A designation identifying a particular disk area. This designation can be in the form

[proj,prog] which identifies a UFD or [proj,prog,sfd,sfd, ...] which identifies a sub­

file directory path branching from a UFD. The square brackets are required.

September 1974

APRENB, 3.1.3.1

ATTACH,UUOPRV

CALl1.,UUOPRV

CHGPPN, UUOPRV

CHKACC, 6.2.9.6

CLOSE, 4.7

CLRST., 4.12.8

CNECT., 4.11.4.1

CORE, 3.2.3

CTLJOB, 5.9.45

DAEFIN, UUOPRV

DAEMON, 3.7

DATE, 3.6.1.1

DDTIN, 5.10.2

DDTOUT, 5.10.2

DEBRK,3.1.3.8

DEVCHR, 4.12.2

DEVLNM, 4.8.4

DEVNAM, 4.12.6

DEVPPN, 6.2.9.12

DEVSIZ, 4.12.4

DEVSTS, 4.12.1

DEVTYP, 4.12.3

DISK., 6.2.9.14

DSKCHR, 6.2.9.13

DVRST., UUOPRV

DVURS., UUOPRV

ENTER, 4.4.2

ERLST., 4.11.4.2

EXIT, 3.1.2.3

FRCUUO,UUOPRV

GETCHR, 4.10.2

GETLIN, 5.9.5

GETPPN, 3.6.2.3

GETSEG, 3.3.2

GETSTS, 4.6.1

GETTAB, 3.6.3.4

GOBSTR, 6.2.9.9

HIBER, 3.1.4.2,5.9.2

ALPHABETICAL LIST OF MONITOR CALLS

HPQ,3.8.5

IN, 4.4

INBUF, 4.3.2

INIT,4.2.3

INPUT, 4.5

IONDX., 4.12.7

IPCFQ., 7.1.8

IPCFR., 7.17

IPCFS., 7.16

JBSET., UUOPRV

JOBPEK, UUOPRV

JOBSTR,6.2.9.8

JOBSTS: 5.9.4.4

LIGHTS, 3.6.4.2

LOCATE, 3.4.3

LOCK, 3.2.2, 3.2.2.2

LOGIN, UUOPRV

LOGOUT, UUOPRV

LOOKUP, 4.4.1

METER., 3.9

MSTIME, 3.6.1.3

MTAID., UUOPRV

MTAPE, 5.5.3.1,6.1.6.5

MTCHR., 5.5.3.3

MVHDR., 4.12.9

OPEN, 4.2.3

OTHUSR, 3.6.2.4

OUT,4.4

OUTBUF, 4.3.2

OUTPUT, 4.5

PAGE., 3.2.6

PATH., 6.2.9.1

PEEK,3.6.3.1

PUN!.,3.1.3.6

PISAV., 3.1.3.9

PISYS., 3.1.3.7

PIRST., 3.1.3.10

PJOB,3.6.2.2

POKE, 3.6.3.3

REASSIGN, 4.8.3

RELEASE, 4.8.1

REMAP, 3.3.3

RENAME, 4.4.3

RESDV., 4.8.2

RESET,6.2.9.4

RTTRP,3.8.1

RUN, 3.3.1

RUNTIM, 3.6.2.1

SEEK,6.2.9.3

SENSE., 4.12.10

SETDDT, 3.1.1.1

SETNAM, 3.4.1

SETSTS, 4.6.2

SETUUO, 3.4.2

SETUWP, 3.2.4

SLEEP, 3.1.4.1

SPY, 3.6.3.2

STATO, 4.6.1

STATZ, 4.6.1

STRUUO, 6.2.9.7

SUSET., UUOPRV

SWITCH, 3.6.4.1

SYSPHY, 6.2.9.11

SYSSTR, 6.2.9.10

TIMER, 3.6.1.2

TMPCOR, 3.5.1

TRMNO, 5.10.6

TRMOP, 5.10.7

TRPSET, 3.8.3

TTCALL, 5.10.4

UGETF, 6.1.6.3

UJEN,3.8.4

UNLOK., 3.2.2.4

USETI, 6.1.6.1, 6.2.9.2

USETO, 6.1.6.2, 6.2.9.2

UTPCLR, 6.1.6.4

WAIT,4.5.3

WAKE,3.1.4.3

WHERE, 4.12.5

XTTSK., 2.2.2.1

September 1974

1.1 USER PROGRAMS

CHAPTER 1

MEMORY FORMAT

User programs must first be loaded into core memory before they can be executed. Two methods are available

to load a user program in to core. The simplest method is to load a core image stored on a retrievable device

(refer to the Commands Manual, RUN and GET commands). The other method is to use the linking loader to

load a collection of relocatable binary (.REL) files (refer to the LINK-I 0 manual).

The address space of a user's program can be divided into two parts, known as segments. Such programs contain

a high segment and a low segment while others contain just a low segment. All user programs must have a low

segment.

When single segment programs are saved, they are given the .SAV extension. The .SAV extension indicates that

the file contains a program with no high segment. When a user program consists of a low segment and a high

segment, the files will be so designated with the extensions .LOW and .HGH. If the high segment of a user job

is sharable, meaning that more than one user job can reference the same copy of the high segment when in core,

the file containing the high segment will be so designated with a .SHR extension.

The high segment (if present) can be used by one user job (.HGH extension), or the same copy of the higll seg­

ment can be shared by many user jobs (.SHR extension). The low segment is always used by one individual user

job; and each user job has its own low segment.

The monitor will, by default, write-protect the high segment so that a user job cannot alter the segment's con­

tents, i.e., write anything into it. Any user job that has the appropriate privileges can request that the monitor

clear the write-protect status of its high segment. A user might desire this, for instance, when making a modifi­

cation to the high segment during the debugging process.

The same high segment can be shared by any number of jobs that each have their own unique low segment~ For

instance, there may be five users each with a low segment containing his own BASIC user program. Each of the

five users may then share a high segment containing the BASIC interpreter. The monitor performs this function

automatically; each user believes he has his own high segment containing the BASIC interpreter and is therefore

completely unaware of the existence of other users~

Any user job that attempts to write in a write-protected high segment is aborted and receives an error message.

If the user job consists of two segments and the user has requested that the monitor clear the write-protect status

of the high segment, the user has a two-segment writable user job (refer to Paragraph 3.2.4).

All user programs are assembled and loaded as if they were to execute in an address space starting at zero. In

fact, user programs are never placed in core memory starting at location zero. The monitor places a program at

the most convenient available location. Then, all address references during execution are relocated to actual

1-1

physical core memory addresses. The process of relocation is accomplished in different manners depending on

the type of processor included in the system.

1.2 MEMORY PROTECTION AND RELOCATION

When a user program is executing, the processor operates in user mode. In this mode certain operations are ille­

gal (such as I/O instructions) and all address references are relocated. The relocation hardware also prevents a

user from accessing any locations in memory which have not been assigned to him by the monitor for his job;

and conversely, prevents any other user from accessing locations within his assigned area.

The user specifies the size of his program; from that information the DECsystem-1 0 monitor determines the

position within core memory where the program can reside. There are two types of processors available with the

DECsystem-lO - the KAlO and the KIlO. Monitors for the KIlO are supplied either with the virtual memory

option or without the virtual memory option. There are three methods of relocating, they are:

I. the KA I 0 method

2. the KIlO method

3. the KIlO with virtual memory method.

The monitor will determine the core resident size and position of each user's area somewhat differently in each

of these three cases; but to the user program each executes in the same manner. A program that runs on the KIlO

with the virtual memory is upwards compatible from those run on the KIlO without virtual memory and those

run on the KAIO.

1.2.1 The KAI0 Processor

On a KAIO (DECsystem-I040, 1050, lOSS), the monitor relocates each user program on a per segment basis.

Each segment composing the user program Gust a low segment, or both a high and a low segment) is relocated

into core memory occupying contiguous blocks of 1024 words each. This relocation is accomplished through

the use of protection and relocation registers. In addition, segment protection is performed by these relocation

(and protection) registers. Protection ensures against one user job accessing the memory assigned to the monitor

or to another user job.

Each segment of a user program has a protection address and a relocation address. The relocation address is the

absolute core address of the first location in the segment, as seen by the hardware. The protection address of

each segment is the maximum relative address the user can reference. The hardware defines these addresses in

units of 1024-word blocks. Relocation is accomplished dynamically by adding the contents of the appropriate

relocation register to every user address reference.

All physical address locations are actually invisible to the user, as is the process of relocation. The relative user

and relocated address configurations on the KA I 0 are shown in Figure 1-1, where PL j RL, PH, and RH are the

protection and relocation addresses for the low and high segments, respectively. If the low segment is more

than half the maximum memory capacity (PL greater than or equal to octal 400000), the high segment starts at

the first location after the low segment (at PL+2000). The high segment is limited to 128K.

In summary, the KAIO relocates each segment of a user program in contiguous blocks of core memory. Reloca­

tion and protection are accomplished via the relocation and protection hardware registers. An entire program

will be core resident when executing.

1-2

o

17

LOW SEGMENT

PL+1777

ILLEGAL

400000

HIGH SEGMENT

PL+1777

ILLEGAL

777777

USER ADDRESS

SPACE BEFORE

RELOCATION

'.
"\

...

o
REGISTERS

17

ILLEGAL

RH+400000

HIGH SEGMENT

RH+PH+1777

ILLEGAL

\
RL

LOW SEGMENT ,
RL+PL+I777

ILLEGAL

TYPICAL ADDRESS

CONFIGURATION AFTER

RELOCATION

Figure 1-1 KAlO User Address Relocation

1.2.2 The KI 1 0 Processor

KIlO based programs are relocated and protected as KAIO based programs are; this is accomplished using paging

hardware. When operating with a KIlO processor, user programs are relocat~d into core memory in the form of

pages. A page consists of 512 words, and the maximum possible user address space is 512 pages or 256K. A user

program that is greater than 512 words in length will, when relocated, be comprised of several pages.

The pages composing a user program are relocated individually. The physical placement of one page in core mem­

ory need have no connection with the placement of any other page. The monitor maintains a map for trans­

lating user addresses into actual physical addresses. The map is kept in a page (invisible to the user) known as

the user process table or the user page map page. The paging hardware in the KIlO employs the user process

table to relocate all user address references. Since all address references must be mapped through the process

table, a user program can access only those physical pages contained in his process table. Therefore, the paging

hardware provides protection and relocation capabilities that are compatible with the KA 1 O's protection and

relocation registers.

The most important difference between the KAlO and the KIlO (without virtual memory) is that the pages of a

segment do not have to be contiguous on the KilO as they do on the KAlO. However, all of the pages forming a

program must be in core whenever that program executes.

1-3

0
0

LDW
SEGMENT

2

:3

ILLEGAL

400000
256

257
HIGH

SEGMENT
258

259

ILLEGAL

USER ADDRESS SPACE

BEFORE RELOCATION

I
I
I

L...-____ --'I 17777777

TYPICAL PHYSICAL

ADDRESS CONFIGURATION

AFTER RELOCATION

Figure 1-2 KII a Paging Configuration

1.2.3 KIlO Processor Utilizing Virtual Memory

The virtual memory option of the 6.0 I and later releases of the monitor makes further use of the KI la's paging
hardware. Pages are relocated individually. However, there no longer is a requirement that all of the pages of a

program need be resident in core memory during execution. Some of the pages may be in core while the remain­

der are kept in secondary storage (disk or drum). Therefore, the virtual memory option makes it possible to run

programs that are significantly larger than the physical core memory available for their execution.

Assume that user A has a program consisting of 50 pages, but core memory is filled with information except for

20 blank pages. With the virtual memory option, the monitor can swap into core several of user A's pages, while

keeping the remainder of the user's pages on a secondary storage device (disk or drum). When one of the pages

kept in secondary storage is referenced, the page can be brought into core while another page is swapped out to

make room for it.

The decision as to what pages will be stored in core, and what pages will be stored in secondary storage is a func­

tion of the page fault handler. The page fault handler also d"ecides which page will be swapped to secondary

storage when a new page has to be brought into core. Users may create their own page fault handler. If a user­

supplied page fault handler is not present, a default DEC-supplied page fault handler will be used.

Using virtual memory is a privilege which is granted (or denied) by the system administrator. Therefore, not all

users at an installation may utilize the virtual memory features.

1.2.3.1 Virtual Memory Organization - Virtual memory permits a program to reference an address space that

is larger than the actool physical core occupied during execution. No modifications to user programs are needed

when operating under a VM system. It is possible, with the VM option, to execute very large programs (such as

BLISS-I 0) on small systems.

1-4

In order to maintain efficiency and rapid response, the monitor itself is core resident under VM monitors. High

segments can be paged or shared, but not both. A sharable high segment must be completely in core during ex­

ecution.

Every program will not necessarily utilize the virtual memory capability. If a user is authorized to employ the

VM feature, his program will "go virtual" only when one of the following is true:

1. The program exceeds the user's physical core limit at the time of the GET or RUN which brings

it into memory.

2. The program uses the CORE UUO (or command) to expand memory beyond the user's physical

core limit and then references one of the newly created pages.

3. The program assumes direct control of its memory management with the PAGE. UUO.

256K

GPPL

MPPL

CPPL

CPPC

o

PHYSICAL
LIMITS

VIRTUAL
___ ,=-I~I!S __ _

GVPL

~------I 256K

SET BY
NISTRATION ~ADMI

~------I MVPL

S ETB
NISTRATION A MI

--t------i CVPL

SET BY USER

S
~r--------i CVPC

ET BY
PROGRAM

~: ET BY
PAG E fAULT

HANDLER
L-____;....JO

Figure 1-3 Physical and Virtual Page Limits

Figure 1-3 uses the following abbreviations:

GPPL

GVPL

MPPL

MVPL

CPPL

CPPC

CVPL

CVPC

Global physical page limit (established by a privileged SETUUO).

Global virtual page limit (established by a privileged SETUUO).

Maximum physical page limit (established by a privileged SETUUO executed by LOGIN).

Maximum virtual page limit (established by a privileged SETUUO executed by LOGIN).

Current physical page limit (set by user with SET PHYSICAL LIMIT command or

SETUUO).

Current physical page count (established by user program or page fault handler).

Current virtual page limit (set by user with SET VIRTUAL LIMIT and SETUUO).

Current virtual page count (established by user program).

At the moment a job's current physical page count is greater than that of the user's physical page limit, that job

will go virtual. If a user has been granted the privilege of using virtual memory, he can control how much of his

job will be core resident at anyone time. By the user lowering his physical page limit to fewer pages than his

job consists of, the user forces his job to use virtual memory. A user can control his physical page limit with the

.SET PHYSICAL LIMIT command and his virtual page limit with the .SET VIRTUAL LIMIT command.

1-5

The system administrator can establish a maximum virtual page limit (MVPL) for each user. They are set by

LOGIN using privileged functions of SETUUO. In addition, the administrator can establish a maximum physical

limit that applies to all users (GPPL) and a combined virtual limit that applies to the total amount of virtual

memory (i.e., secondary storage) in use by all virtual memory users (GVPL).

1.3 JOB DATA AREA (JOBDAT)

The first 140 octal locations of the user's core area are always allocated to the job data area (refer to Table 1-1).

Locations in this area are given mnemonic assignments where the beginning characters are .JB. The job data area

provides storage for specific information of interest to both the monitor and the user. Some locations, such as

.JBSA and .JBDDT, are set by the user's program for use by the monitor. Other locations, such as .JBREL, are

set by the monitor and are used by the user's program. In particular, the right half of .JBREL contains the

highest legal address set by the monitor when the user's core allocation changes.

Name

.JBUUO

.JB41

.JBERR

.JBREL

.JBBLT

. JBDDT

.JBPFI

Octal

Location

40

41

42

44

45

74

114

(value)

Table 1-1

Job Data Area Locations·

(for user-program reference)

Description

User's location 40 (octal). Used by the hardware when processing user

UUOs (001 through 037) for storing op code and effective address.

User's location 41 (octal). Contains the beginning address of the user's

programmed operator service routine (usually a JSR or PUSHJ).

Left half: Unused

Right half: Accumulated error count from one system program to the

next. System programs should be written to look at the right half only.

Left half: Zero.

Right half: The highest relative core location available to the user (i.e.,

the contents of the memory protection register when this user is running).

Three consecutive locations where the LOADER puts a BLT instruction

and a CALLI UUO to move the program down on top of itself. These

locations are destroyed on every executive UUO by the executive push­

down list.

Left half: The last address of DDT .

Right half: The starting address of DDT. If contents are 0, DDT has

not been loaded. If the monitor contains the virtual memory option,

this location contains zero; and the user types the DDT command (refer

to the DECsystem-lO Commands Manual). The monitor will attempt to

read SYS:DDT.VMX into the program's virtual address space, starting

at the user virtual address 700000 (octal). If successful, the left and

right halves of .JBDDT are set up.

All user I/O must be to locations greater than .JBPFI.

1-6

Name

.JBHRL

. JBSYM

.JBUSY

. JBSA

. JBFF

. JBPFH

. JBREN

.JBAPR

Octal

Location

115

116

117

120

121

123

124

125

Table 1-1 (Cont)

Job Data Area Locations

(for user-program reference)

Description

Left half: First relative free location in the high segment (relative to the

high segment origin so it is the same as the high segment length). Set by

the LOADER and subsequent GETs, even if there is no file to initialize

the low segment. The left half is a relative quantity because the high seg­

ment can appear at different user origins at the same time. The SAVE

command uses this quantity to know how much to write from the high

segment.

Right half: Highest legal user address in the high segment. Set by the

monitor every time the user starts to run or does a CORE or REMAP

UUO. The word is> 401777 unless there is no high segment, in which

case it will be zero. The proper way to test if a high segment exists is

to test this word for a non-zero value .

Contains a pointer to the symbol table created by the linking loader.

Left half: Negative of the length of the symbol table.

Right half: Lowest address used by the symbol table .

Contains a pointer to the undefined symbol table created by the linking

loader or defined by DDT. This location has the same format as .JBSYM.

There are no undefined symbols if the contents are greater than or equal

to O.

Left half: First free location in low segment (set by the LOADER) .

Right half: Starting address of the user's program .

Left half: Zero.

Right half: Address of the first free location following the low segment.

Set to C (.JBSA) (LH) by RESET UUO .

Left half: The last address of the page fault handler (PFH).

Right half: The starting address of PFH. If the contents are zero, the

program does not currently have a page fault handler. If a page fault

occurs, and .JBPFH contains zero, the monitor will read SYS:PFH.VMX

into the top of the program's virtual address space and setup the left

and right halves of .JBPFH.

Left half: Unused .

Right half: REENTER starting address. Set by user or by loader and

used by REENTER command as an alternate entry point.

Left half: Zero.

Right half: Set by user program to trap address when user is enabled to

handle APR traps such as illegal memory, pushdown overflow, arithmetic

overflow, and clock. See APRENB UUO.

1-7

Name

.JBCNI

. JBTPC

. JBOPC

.JBOVL

. JBCOR

.JBINT

. JBOPS

. JBCST

.JBVER

Octal

Location

126

127

130

131

133

134

135

136

137

Table 1-1 (Cont)

Job Data Area Locations

(for user-program reference)

Description

Contains state of APR as stored by CONI APR when a user-enabled

APR trap occurs .

Monitor stores PC of next instruction to be executed when a user­

enabled APR trap occurs .

The previous contents of the job's last user mode program counter are

stored here by monitor on execution of a DDT, REENTER, START,

or CSTART command. After a user program HALT instruction fol­

lowed by a START, DDT, CSTART, or REENTER command, .JBOPC

contains the address of the HALT. To proceed at the address specified

by the effective address, it is necessary for the user or his program to

recompute the effective address of the HALT instruction and to use

this address to start. Similarly, after an error during execution of a

UUO followed by a START, DDT, CSTART, or REENTER command,

.JBOPC points to the address of the UUO. For example, if DDT is to

continue after a HALT, type

.JBOPC/ 10000,,3010 JRST @ .$X

Left half: Zero.

Right half: Pointer to header block for root link .

Left half: Highest location in low segment loaded with non-zero data.

No low file written on SAVE or SSA VE if less than 140. Set by LINK-I0.

Right half: User argument on last SAVE or GET command. Set by the

monitor.

Left half: Reserved for the future.

Right half: Zero or the address of the error-intercepting block (refer to

Paragraph 3.1.3.2).

Reserved for all object time systems .

Reserved for customers .

Program version number. The bits are defined as follows:

Bits 0-2

Bits 3-11

The group who last modified the program

o Digital development group.

1 Other Digital employees.

2-4 Reserved for customers.

5-7 Reserved for customer's users.

Digital's major version number. Usually incremented

by 1 after a release.

1-8

Octal

Table 1-1 (Cont)

Job Data Area Locations

(for user-program reference)

Name Location Description

.JBVER (cont) Bits 12-17 Digital's minor version number. Usually 0, but may

.JBDA 140

be used if an update is needed after work has begun

on a new major version.

Bits 18-35 Edit number which is increased by one after each edit.

Usually not reset.

The VERSION and the SET WATCH VERSION commands output the

version number in standard format. Refer to DECsystem-1 0 Operating

System Commands.

The value of this symbol is the first location available to the user.

NOTE
Only those JOBDAT locations of significant importance
to the user are given in this table. JOBDAT locations not
listed include those that are used by the monitor and
those that are unused at present. User programs should
not refer to any locations not listed above because such
locations are subject to change.

JOBDAT is loaded automatically, if needed, during the linking loader's library search for undefined global refer­

ences, and the values are assigned to the mnemonics. JOBDAT exists as a .REL file on device SYS: for loading

with user programs that symbolically refer to the locations. User programs should reference locations by the

assigned mnemonics, which must be declared as EXTERN references to the assembler. All mnemonics in this

manual with a .JB prefix refer to locations in the job data area.

1.4 VESTIGIAL JOB DATA AREA

A few constant data in the job area may be loaded by a two-segment, one-file program without using instructions

on a GET command (.JB41, .JBREN, .JBVER), and some locations are loaded by the monitor on a GET (.JBSA,

.JBCOR, .JBHRL). The vestigial job area (the first 10 locations of the high segment) is reserved for these low­

segment constants; therefore, a high-segment program is loaded at the high segment origin + 1 0 (see .JBHGA in

Table 1-2) instead of at the high segment origin (refer to Table 1-2). With the vestigial job data area in the high

segment, the loader automatically loads the constant data into the job data area without requiring a low file on

a GET, R, or RUN command, or a RUN UUO. SAVE will write a .LOW file for a two-segment program only if

the LH of .JBCOR is 140 (octal) or greater.

1-9

Symbol

. JBHSA

.JBH41

. JBHCR

.JBHRN

. JBHVR

.JBHNM

. JBHSM

.JBHGA

. JBHDA

Octal

Location*

o

2

3

4

5

6

7

10

Table 1-2

Vestigial Job Data Area Locations

A copy of .JBSA .

A copy of .JB41.

A copy of .JBCOR .

LH: restores the LH of .JBHRL.

RH: restores the RH of .JBREN.

A copy of .JBVER .

High segment name set on a SAVE.

Description

A pointer to the high-segment symbols, if any .

BYTE (9) 0 (9) high segment origin (18) 0 unused fields are reserved for

further expansion and must contain zero, the monitor places the high

segment at 400000 or at the first available page boundary OK boundary

on KAIO based systems) above the low segment, if the segment is larger

than 128K. This 9 bit byte should always be zero on KA I 0 based systems.

However, if the field is non-zero on KIlO based systems, it is taken as the

page where the high segment is to start. This field is setup by the linking

loader and the Monitor SAVE Command.

First location not used by vestigial job data area .

* Relative to origin of high segment, usually .JBHGH = 400000 (octal).

1-10

CHAPTER 2

INTRODUCTION TO

USER PROGRAMMING

2.1 PROCESSOR MODES

In a single-user, non-timesharing system, the user's program is subject only to those conditions inherent in the

hardware. The program must

1. Stay within the memory capacity.

2. Observe the hardware restrictions placed on the use of certain memory locations.

3. Observe the restriction on interrupt instructions.

With timesharing, the hardware limits the central processor operations to one of three modes: user mode, user

I/O mode, and executive mode.

2.1.1 User Mode

Normally, user programs run with the processor in user mode and must operate within an assigned area of core.

In user mode, certain instructions are illegal. User mode is used to guarantee the integrity of the monitor and

each user program. The user mode of the processor is characterized by the following:

1. Automatic memory protection and mapping (refer to Chapter 1).

2. Trap to absolute location 40 in the monitor on a KAIO; or store the UUO at location 424, the UUO

at location 425, and load a new PC from location 436 of the user's process table on the KIlO on any

of the following:

a. Operation codes 040 through 077 and operation code 00,

b. Input/output instructions (DATAl, DATAO, BLKI, BLKO, CONI, CONO, CONSZ, and CONSO),

NOTE
The KIlO processor divides executive mode into kernal
and supervisor modes. It divides user mode into con­
cealed and public modes.

c. HALT (Le., JRST 4,),

d. Any JRST instruction that attempts to enter executive mode or user I/O mode.

3. Trap to relative location 40 in the user area on execution of operation codes 001 through 037.

2-1

2.1.2 User I/O Mode

The user I/O mode (bits 5 and 6 of PC word = 11) of the central processor allows privileged user programs to be

run with automatic protection and mapping in effect, as well as the normal execution of all defined operation

codes (except the HALT instruction on the KI I 0 processor). The user I/O mode provides some protection

against partially debugged monitor routines and permits infrequently used device service routines to be run as a

user job. Direct control of special devices by the user program is particularly important in real-time applications.

To utilize this mode, the user must have bit 15 (JB.TRP) set in the privilege word. RESET AC, or CALLI 0

terminates user I/O mode. User I/O mode is not used by the monitor and is normally not available to the time­

sharing user (refer to Paragraph 3.8.3).

2.1.3 Executive Mode

The monitor operates with the processor in executive mode, which is characterized by special memory protec­

tion and mapping (refer to Chapter 1) and by the normal execution of all defined operation codes.

User programs run in user mode; therefore, the monitor must schedule user programs, service interrupts, perform

all input and output operations, take action when control returns from a user program, and perform any other

legal user-requested operations that are not available in user mode. The services the monitor makes available to

user-mode programs, and how a user program obtains these services, are described in Chapters 3 and 4.

2.2 PROGRAMMED OPERATORS (UUOs)

Operation codes 000 through 077 in the PDP-lO are programmed operators, sometimes referred to as UUOs.

They are software-implemented instructions because from a hardware point of view, their function is not pre­

specified. Some of these op-codes trap to the monitor, and the rest trap to the user program.

After the effective address calculation is complete, the contents of the instruction register, along with the effec­

tive address, are stored, and an instruction is executed out of the normal sequence. Refer to the Systems

Reference Manual for additional information on UUO handling by the central processor.

Although there is one operating system for all configurations of the DECsystem-1 0, some UUOs may not be

included in each DECsystem-l O. This is especially true of the DECsystem-1 040, the basic system intended for

small installations that do not want all of the system's features because of a constraint on core. UUOs are de­

leted from the DECsystem-1 040 by feature test switches defined at MONGEN time. In the standard DECsystem-

1040, many of these switches are off, and therefore, the corresponding UUOs are not available. This saves core

but limits various features of the operating system. In the UUO descriptions that follow, footnotes indicate if

the switch is normally absent in the DECsystem-l040. If not stated, the UUO is available on all configurations

of the DECsystem-l O.

2.2.1 Operation Codes 001-037 (User UUOs)

Operation codes 001 through 037 do not affect the mode of the central processor; thus, when executed in user

mode, they trap to user location 40, which allows the user program complete freedom in the use of these pro­

grammed operators.

If a user's undebugged program accidentally executes one of these op-codes when the user did not intend to use

it, the following error message is normally issued:

HALT AT USER PC addr

2-2

This message is given because the user's relative location 41 contains HALT (unless his program has overtly

changed it) which is provided by the loader; addr is the location of the user UUO.

2.2.2 Operation Codes 040-077 and 000 (Monitor UUOs)

Operation codes 040 through 077 and 000 trap to absolute location 40 on a KAIO; or store the UUO at location

424, the UUO at location 425, and load a new PC from location 436 of the user's process table on the KI 10,

with the central processor in executive mode. These programmed operators are interpreted by the monitor to

perform I/O operations and other control functions for the user's program.

Operation code 000 always returns the user to monitor mode with the error message:

?ILLEGAL UUO AT USER PC addr

Table 2-1 lists the operation codes 040 through 077 and their mnemonics.

Op Code

040

041

042

043

044

045

046

047

050

051

052

Table 2-1

Monitor Programmed Operators

Call

CALL AC, [SIXBIT/NAMEj], or

NAMEAC,

IN IT D,MODE

SIXBIT /DEV /

XWD OBUF, IBUF

error return

normal return

CALLI AC,N

OPEN,D,E

error return

normal return

E: EXP STATUS

SIXBIT /DEV /

XWD OBUF, IBUF

TTCALL AC, ADR

2-3

Function

Programmed operator extension (refer to Para­

graph 2.2.2.1).

Select I/O device (refer to Paragraph 4.2.3).

No operation

No operation Reserved for

No operation } installation-

No operation dependent

No operation ~ definition.

Programmed operator extension (refer to

Paragraph 2.2.2.1).

Select I/O device (refer to Paragraph 4.2.3).

Extended operations on job-controlling terminal

(refer to Paragraph 5.10.4).

Reserved for future expansion by DEC.

September 1974

Op Code

053

054

055

056

057

060

061

062

063

064

065

066

067

070

071

072

Table 2-1 (Cont)

Monitor Programmed Operators

Call

RENAME D,E

error return

normal return

E: SIXBIT /FILE/

SIXBIT /EXT /

EXP <PROT> B8+DATE

XWD PROJ, PROG

IND,

normal return

error of EOF return

OUTD,

normal return

error return

SETSTS D, STATUS

STATO D, BITS
RO: NO SELECTED BITS = I
R I: SOME SELECTED BITS = 1

GETSTS D, E

STATZ D, BITS

RO: SOME SELECTED BITS = I
R 1: ALL SELECTED BITS = 0

INBUF D,N

OUTBUF D,N

INPUTD,

OUTPUTD,

CLOSE D,

RELEAS D,

MTAPED,N

2-4

Function

Reserved for future expansion by DEC.

Reserved for future expansion by DEC.

Rename or delete a file (see Section 4.4.3).

INPUT and skip on error or EOF (see Section 4.5).

OUTPUT and skip on error or EOT (see

Section 4.5).

Set file status (see Section 4.6.2).

Skip if file status bits = 1 (see Section 4.6.1).

Copy file status to E (see Section 4.6.1).

Skip if file status bits = 0 (see Section 4.6.1).

Set up input buffer ring with N buffers (refer

to Paragraph 4.3.2).

Set up output buffer ring with N buffers (refer

to Paragraph 4.3.2).

Request input or request next buffer (refer to

Paragraph 4.5).

Request output or request next buffer (refer to

Paragraph 4.5).

Terminate file operation (refer to Paragraph 4.7).

Release device (refer to Paragraph 4.8.1).

Perform tape positioning operation (refer to

Paragraphs 5.5.3 and 6.1.6.5).

Op Code

073

074

075

076

077

100

UGETF D,

USETID,E

USETOD,E

LOOKUPD,E

error return

normal return

Call

E: SIXBIT /FILE/

SIXBIT /EXT/

o

Table 2-1 (Cont)

Monitor Programmed Operators

Function

Get next free block number on DECtape (refer

to Paragraph 6.1.6.3).

Set next input block number (refer to Paragraph

6.1.6.1 and 6.2.9.2).

Set next output block number (refer to Paragraphs

6.1.6.2 and 6.2.9.2).

Select a file for input (refer to Paragraph 4.4.1).

XWD PROJ, PROG

ENTERD, E

error return

normal return

E: SIXBIT /FILE/

SIXBIT /EXT/

o
XWD PROJ, PROG

UJEN

Select a file for output (refer to Paragraph 4.4.2).

Dismiss real-time interrupt (refer to Paragraph

3.8.4).

2.2.2.1 CALL and CALLI - Operation codes 040 through 077 limit the monitor to 40 (octal) operations. The

CALL operation extends this set by specifying the name of the operation by the contents of the location speci­

fied by the effective address (e.g., CALL [SIXBIT/EXIT/]). This capability provides for indefinite extend ability

of the monitor operations, at the overhead cost to the monitor of a table lookup.

The CALLI operation eliminates the table lookup of the CALL operation by having the programmer or the as­

sembler perform the lookup and specify the index to the operation in the effective address of the CALLI.

Table 2-2 lists the monitor operations specified by the CALL and CALLI operations.

Table 2-2

CALL and CALLI Monitor Operations

CALLI *
CALLI Mnemonic CALL Function

CALLI AC,-2 Customer defined Reserved for definition by each

. .. -n customer inst(lllation .

2-5

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI *
CALLI Mnemonic CALL Function

CALLI AC,-1 LIGHTS CALL AC, [SIXBIT/LIGHTS/] ,Display AC in console lights (refer

to Paragraph 3.6.4.2).

CALLI AC, 0 RESET CALL [SIXBIT/RESET/] Reset I/O device (refer to

return Paragraph 4.1.2).

CALLI AC, 1 DDTIN MOVEI AC, BUFFER DDT mode console input (refer to

CALL AC, [SIXBIT/DDTIN/] Paragraph 5.10.3).

only return

CALLI AC, 2 SETDDT MOVEI AC, DDT-start-adr Set protected DDT starting address

CALL AC, [SIXBIT/SETDDT/] (refer to Paragraph 3.1.1.1).

only return

CALLI AC, 3 DDTOUT MOVEI AC, BUFFER DDT mode console output (refer

CALL AC, [SIXBIT/DDTOUT/] to Paragraph 5.10.3).

only return

CALLI AC, 4 DEVCHR MOVE AC, [SIXBIT/DEV/] Get device characteristics (refer to

or MOVEI AC, channel no. Paragraph 4.12.2).

CALL AC, [SIXBIT/DEVCHR/]

only return

CALLI AC, 5 DDTGT CALL AC, [SIXBIT/DDTGT/] No operation, historical UUO.

only return

CALLI AC, 6 GETCHR AC: = SIXBIT/DEV/ Same as CALLI AC, 4.

CALL AC, [SIXBIT/GETCHR/]

only return

CALLI AC, 7 DDTRL CALL AC, [SIXBIT/DDTRL/] No operation, historical UUO.

only return

CALLI AC, 10 WAIT CALL AC, [SIXBIT/WAIT/] Wait until device is inactive

only return (refer to Paragraph 4.5.3).

CALLI AC, 11 CORE MOVE AC, [XWD HIGH ADR or Allocate core (refer to Paragraph

0, LOW ADR or 0] 3.2.3).

CALL AC, [SIXBIT/CORE/]

error return

normal return

CALLI AC, 12 EXIT CALL AC, [SIXBIT/EXIT/] Stop job, may release devices and

return stop the job depending on contents

of AC (refer to Paragraph 3.1.2.3).

CALLI AC, 13 UTPCLR CALL AC, [SIXBIT/UTPCLR/] Clear DEC tape directory (refer to

only return Paragraph 6.1.6.4).

2-6 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*

CALLI Mnemonic CALL Function

CALLI AC, 14 DATE CALL AC, [SIXBIT/DATE/] Return date (refer to Paragraph

only return 3.6.1.1).

AC: = date in compressed format

CALLI AC, 15 LOGIN** MOVE AC, [XWD -N, LOC] Privileged UUO in that the calling

CALL AC, [SIXBIT/LOGIN/] job must not be logged in. Is a

RO: return no-op if executed by a job already

Does not return if C(RO) is logged-in.

a HALT instruction.

CALLI AC, 16 APRENB MOVEI AC, BITS Enable central processor traps

CALL AC, [SIXBIT/APRENB/1 (refer to Paragraph 3.1.3.1).

return

CALLI AC, 17 LOGOUT** CALL AC, [SIXBIT/LOGOUT/] Privileged UUO available only to

no return system-privileged programs. Is

treated like an EXIT UUO if

executed by a non system-privilege d

program.

CALLI AC, 20 SWITCH CALL AC, [SIXBIT/SWITCH/] Read console data switches (refer

return to Paragraph 3.6.4.1).

AC: contents of console switches

CALLI AC, 21 REASSI MOVEI AC, job number Reassign device (refer to Paragraph

MOVE AC+l, [SIXBIT/DEV/l 4.8.3).

CALL AC, [SIXBI1:/REASSI/]

return

If C(AC)=O on return, the job

specified has not been initialized.

If C(AC+ 1) = 0 on return, the

device not assigned to calling

job, or device is TTY.

CALLI AC, 22 TIMER CALL AC, [SIXBIT/TIMER/] Read time of day in clock ticks

return (refer to Paragraph 3.6.1.2).

AC :=time in jiffies,

right justified.

CALLIAC,23 MSTIME CALL AC, [SIXBIT/MSTIME/] Read time of day in milliseconds

return (refer to Paragraph 3.6.1.3).

AC :=time in milliseconds,

right-justified.

2-7 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI *
CALLI Mnemonic CALL Function

CALLI AC, 24 GETPPN CALL AC, [SIXBIT/GETPPNf] Fteturn project/progrannnner

nornnal return nunnber of job (refer to Paragraph

alternate return 3.6.2.3).

AC:=XWD proj. no., prog. no. of

this job. Alternate return is

taken only if job is privileged

and the sanne proj-prog nunn-

ber occurs twice in the table

of jo bs logged in.

CALLI AC, 25 TItPSET MOVE AC, [XWD N, LOC] Set trap for user I/O mode (refer

CALL AC, [SIXBIT/TFtPSET/] to Paragraph 3.8.3).

error return

nornnal return

LOC: JSFt TFtAP

CALLI AC, 26 TItPJEN CALL [SIXBIT/TFtPJENf] Illegal UUO; replaced by UJEN

(op code 100).

CALLI AC, 27 FtUNTIM MOVE AC, job nunnber or 0 Fteturn the job's running tinne in

CALL AC, [SIXBIT/FtUNTIM/] nnilliseconds (refer to Paragraph

only return 3.6.2.1).

AC:=running tinne of job

AC:=O if nonexistent job

CALLI AC, 30 PJOB CALL AC, [SIXBIT /PJOBf] Fteturn job nunnber (refer to

return Paragraph 3.6.2.2).

AC:=job number, right justified.

CALLI AC, 31 SLEEP MOVE AC, tinne in seconds Stop job for specified tinne in

CALL AC, [SIXBIT/SLEEPf] seconds (refer to Paragraph 3. 1.4.1)

return

CALLI AC, 32 SETPOV CALL AC, [SIXBIT/SETPOVf] Superseded by APFtENB UUO.

return

CALLI AC, 33 PEEK MOVEI AC, exec adr Fteturn contents of executive

CALL AC, [SIXBIT /PEEK/] address (refer to Paragraph 3.6.3.1)

return

AC:=C (exec-adr)

CALLI AC, 34 GETLIN CALL AC, [SIXBIT/GETLINf] Fteturn SIXBIT nanne of attached

return ternninal (refer to Paragraph 5.10.5)

AC :=SIXBIT TTY nanne,

left-justified (e.g., CTY,

TTY27)

2-8 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*

CALLI Mnemonic CALL Function

CALLI AC, 35 RUN MOVSI AC, start adr increment Transfer control from one program

HRRI AC, E to another (refer to Paragraph 3.3. 1).
RUN AC,

error return

normal return

CALLI AC, 36 SETUWP MOVEI AC, BIT Set or clear user mode write pro-

SETUWP AC, tect for high segment (refer to

error return Paragraph 3.2.4).

normal return

CALLI AC, 37 REMAP MOVEI AC, highest adr, in low Remap top of low segment into
seg high segment (refer to Paragraph

or MOVE AC, [XWD high seg 3.3.3).
origin, low seg]

REMAP AC,

error return

normal return

CALLI AC, 40 GETSEG MOVEI AC, E Replace high segment in user's

GETSEGAC, addressing space (refer to

error return Paragraph 3.3.2).

normal return

CALLI AC, 41 GETTAB MOVSI AC, job. no. or index no. Return contents of monitor table
HRRI AC, table no. or location (refer to Paragraph

GETTAB AC, 3.6.3.4).

error return

normal return

CALLI AC, 42 SPY MOVEI AC, highest physical adr, Make physical core be high seg-

desired ment for examination of monitor
Spy AC, (refer to Paragraph 3.6.3.2).

error return

normal return

CALLIAC,43 SETNAM MOVE AC, [SIXBIT/NAME!1 Set program name in monitor job.

SETNAM AC. table (refer to Paragraph 3.4.1).

return

CALLI AC, 44 TMPCOR MOVE AC, [XWD code, block] Allow temporary in-core file

TMPCOR,AC storage for job (refer to Paragraph

error return 3.5.1).

normal return

2-9

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 45 DSKCHR MOVE AC, [XWD+N, LOC] Return disk characteristics (refer

DSKCHRAC, to Paragraph 6.2.9.13).

error return

normal return

AC :=XWD status configuration

LOC:=SIXBIT/NAME/

~} values returned

CALLI AC, 46 SYSSTR MOVEI AC, 0 or Return next file structure name,

MOVE AC, [SIXBIT/FSNAME/l (refer to Paragraph 6.2.9.10).

SYSSTRAC,

error return

normal return

CALLI AC, 47 JOBSTR MOVE AC, [XWD N, LOC] Return next file structure name in

JOBSTRAC, the job's search list (refer to

error return Paragraph 6.2.9.8).

normal return

AC:=argument

CALLI AC, 50 STRUUO MOVE AC, [XWD N, LOC] Manipulate file structures (refer

STRUUOAC, to Paragraph 6.2.9.7).

error return

normal return

AC :=status or error code

CALLI AC, 51 SYSPHY MOVEI AC, 0 or MOVE AC, Return all physical disk units (refer
[last unit name] to Paragraph 6.2.9.11).

SYSPHY AC,
error return
normal return

CALLI AC, 52 FRECHN Reserved for future use.

CALLI AC, 53 DEVTYP MOVE AC, [SIXBIT/dev/l or Return properties of device (refer
MOVEI AC, channel no. or to Paragraph 4.12.3).
MOVEI AC, UDX
DEVTYPAC,
error return
normal return

CALLI AC, 54 DEVSTS MOVEI AC, channel no. of device Return hardware device status

DEVSTS AC, word (refer to Paragraph 4.12.1).

error return

normal return

2-10 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*

CALLI Mnemonic CALL Function

CALLI AC, 55 DEVPPN MOVE AC, [SIXBIT/DEV/] Return the project programmer
or MOVEI AC, channel number associated with a device
DEVPPN AC, (refer to Paragraph 6.2.9.12).
error return
normal return
AC:=XWD proj-prog, number

on a normal return

CALLI AC, 56 SEEK*** AC is software channel number Perform a SEEK to current selected

SEEKAC, block for software channel AC

return (refer to Paragraph 6.2.9.3).

CALLI AC, 57 RTTRP MOVEI AC, RTBLK Connect real-time devices to PI

RTTRPAC, system (refer to Paragraph 3.8.1).

error return

normal return

CALLI AC, 60 LOCK MOVE AC, [XWD high seg code, Lock job in core (refer to

low seg code] Paragraphs 3.2.2 and 3.2.2.2).

or MOVE AC, [XWD -n, adr]

LOCKAC,

error return

normal return

CALLI AC, 61 JOBSTS MOVEI AC, channel no. or Return status information about

MOVNI AC, job device TTY and/or controlled job

JOBSTS AC, (refer to Paragraph 5.9.4.4).

error return

normal return

CALLI AC, 62 LOCATE MOVEI AC, station no. Change the job's logical station

LOCATEAC, (refer to Paragraph 3.4.3).

error return

normal return

CALLI AC, 63 WHERE MOVEI AC, channel no. or Return the physical station of the

MOVE AC, [SIXBIT/dev/] device (refer to Paragraph 4.12.5).

WHEREAC,

error return

normal return

CALLI AC, 64 DEVNAM MOVEI AC, channel no. or Return physical name of device
MOVEI AC, UDX or obtained through generic INIT
MOVE AC, [SIXBIT/dev/] OPEN or logical device assignment
DEVNAMAC,

(refer to Paragraph 4.12.6).
error return
normal return

2-11 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI *
CALLI Mnemonic CALL Function

CALLI AC, 65 CTLJOB MOVEI AC, job number Return job number of controlling

CTLJOB AC, job (refer to Paragraph 5.9.4.5).

error return

normal return

CALLI AC, 66 GOBSTR MOVE AC, [XWD N, LOC] Return·next file structure name in

GOBSTRAC, an arbitrary job's search list (refer

error return to Paragraph 6.2.9.9).

normal return

CALLI AC, 67 ACTIVATE
Reserved for the future.

CALLI AC, 70 DEACTIVATE

CALLI AC, 71 HPQ MOVEI AC, high-priority queue no. Place job in high priority scheduler' s

HPQAC, run queue (refer to Paragraph

error return 3.8.5).

normal return

CALLI AC,.72 HIBER MOVSI AC, enable bits Allow job to become dormant

HRRI AC, sleep time until the specified event occurs

HIBERAC, (refer to Paragraph 3.1.4.2).

error return

normal return

CALLI AC, 73 WAKE MOVE AC, job no. Allow job to activate the specified

WAKEAC, dormant job (refer to Paragraph

error return 3.1.4.3).

normal return

CALLI AC, 74 CHGPPN** MOVE AC, new proj. prog. no. Change project-programmer num-

CHGPPN AC, ber. Gives an error return if ex-

error return ecuted by a job already logged-in.

normal return

CALLI AC, 75 SETUUO MOVE AC, [XWD function, Set system and job parameters (re-

argument] fer to Paragraph 3.4.2).

SETUUOAC,

error return

normal return

CALLI AC, 76 DEVGEN Reserved for the future.

CALLI AC, 77 OTHUSR OTHUSRAC, Determine if another job is logged

non-skip return in the same project/programmer

skip return number (refer to Paragraph

AC :=proj. prog. no. 3.6.2.4).

2-12 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*

CALLI Mnemonic CALL Function

CALLI AC, 100 CHKACC MOVEI AC, CHKLOC Check user's access to the file

CHKACCAC, specified (refer to Paragraph

error return 6.2.9.6).
normal return

CALLI AC, 101 DEVSIZ MOVE AC, [EXP LOC] Determine buffer size for the spec-

DEVSIZAC, ified device (refer to Paragraph

error return 4.12.4).

normal return

CALLI AC, 102 DAEMON MOVE AC, [XWD+length, adr Request DAEMON to perform a
of argo list] specified task (refer to Paragraph

DAEMON AC, 3.7).

error return

normal return

CALLI AC, 103 JOBPEK** MOVE AC, adr of arg block Read or write another job's core.

JOBPEKAC, Gives the error return if executed

error return by a non-system-privileged progra m.
normal return

CALLI AC, 104 ATTACH * * MOVE AC [XWD line no., job no.] Attach the job to the specified TT y

ATTACHAC, line number. Gives the error retur n

error return if executed by a non-system-

normal return privileged program.

CALLI AC, 105 DAEFIN** MOVE AC, [XWD+length, adr of Indicate that the request to the

argo list] DAEMON program has been com-

DAEFIN AC, pie ted. Gives the error return if

error return executed by a non-system-

normal return privileged program.

CALLI AC, 106 FRCUUO** MOVE AC, [XWD+length, adr Force a command for a job. Gives

of argo list] . the error return if executed by a

FRCUUOAC, non-system-privileged program.

error return

normal return

CALLI AC, 107 DEVLNM MOVE AC, [SIXBIT/dev/] or Set a logical name for this specified

MOVEI AC, channel no. device (refer to Paragraph 4.8.4).

MOVE AC+ 1, [SIXBIT/logical

name/]
or MOVEI AC, UDX
DEVLNMAC,
error return
normal return

2-13 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI *
CALLI Mnemonic CALL Function

CALLI AC, 110 PATH. MOVE AC, [XWD+1ength, adr. of Read or modify the default direc-

argument list] tory path or read the current path

PATH. AC, of a file OPEN on a channel. (Refe r

error return to Paragraph 6.2.9.1).

normal return

CALLI AC, 111 METER. MOVE AC, [XWD N, LOC] Provide performance analysis and

METER. AC, metering of dynamic system

error return variables. (Refer to Paragraph 3.9).

normal return

CALLI AC, 112 MTCHR. MOVE AC, [XWD +n, LOC] or Return characteristics of the mag-

MOVEr AC, channel no. or netic tape. (Refer to Paragraph

MOVE AC, [SIXBIT/dev/1 5.5.3.3).

MTCHR.AC,

error return

normal return

CALLI AC, 113 JBSET.** MOVE AC, [2, , BLOCK] Execute the specified function of

JBSET. AC, SETUUO for a particular job.

error return

normal return

BLOCK: 0" job number

BLOCK + 1: function" value

CALLI AC, 114 POKE. MOVE AC, [3, ,BLOCK] Alter the specified location in the

POKE. AC, Monitor. (Refer to Paragraph

error return 3.6.3.3).

normal return

CALLI AC, 115 TRMNO. MOVEI AC, job number Return number of the terminal

TRMNOAC, currently controlling the specified

error return job. (Refer to Paragraph 5.10.5).

normal return

CALLI AC, 116 TRMOP. MOVE AC, [XWD N, ADR] Perform miscellaneous terminal

TRMOP. AC, functions. (Refer to Paragraph

error return 5.10.7).

normal return

CALLI AC, 117 RESDV. MOVEI AC, channel no. Reset the specified channel.
RESDV.AC, (Refer to Paragraph 4.8.2).
or MOVEI AC, UDX
error return
normal return

2-14 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*

CALLI Mnemonic CALL Function

CALLI AC, 120 UNLOK. MOVSI AC, 1 or Allow a job to unlock itself.

MOVSIAC,O (Refer to Paragraph 3.2.2.4).

HRRI AC, 1 or

HRRI AC, 0

UNLOK.AC,

error return

normal return

CALLI AC, 121 DISK. MOVE AC, [XWD function, Set or read a disk or file system
ADR] parameter (e.g., set the disk prior-
DISK. AC, ity for a channel or the job). (Refe r
error return to Paragraph 6.2.9.14).
normal return

CALLI AC, 122 DVRST.** MOVE AC, [SIXBIT/dev/] or Restrict the specified device to a

MOVEI AC, channel no. privileged job.

DVRST AC,

error return

normal return

CALLI AC, 123 DVURS.** MOVE AC, [SIXBIT/dev/] or Remove the restricted status of

MOVEI AC, channel no. the specified device.

DVURS AC,

error return

normal return

CALLI AC, 124 XTTSK. Reserved for XTCSER.

CALLI AC, 125 CALlI. ** MOVE AC, [XWD N, ADR] Front-end debug UUO.

CALlI. AC,

error return

normal return

CALLI AC, 126 MTAID.** MOVE AC, [SIXBIT/DEV] or Privileged UUO that associates a

MOVEI AC, channel no. visual identification (REELID)

MOVE AC+l, [SIXBIT/REELID/] with a magtape drive during a

MTAID. AC, mount.

error return

normal return

CALLI AC, 127 IONDX. MOVE AC, channel no. or Returns universal I/O index for

MOVE AC, [SIXBIT/DEV/] a device. (Refer to 4.12.7).

10NDX.AC,

error return

normal return

2-15 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI *
CALLI Mnemonic CALL Function

CALLI AC, 130 CNECT. MOVEI AC, PLIST Connect (disconnect) individual

CNECT. AC, devices to (from) an MPX channel.

error return (Refer to Paragraph 4.11.4.1).

normal return

CALLI AC, 131 MVHDR. MOVE AC+l, [new output adr, Move a buffer ring header between

new input adr] core locations. (Refer to

MOVEI AC, channel number Paragraph 4.12.9).

MVHDR.AC,

error return

normal return

CALLI AC, 132 ERLST. MOVEI AC, block Provides user with a list of non-

ERLST. AC, operational devices connected to

error return an MPX channel. (Refer to

normal return Paragraph 4.11.4.2).

CALLI AC, 133 SENSE. MOVE AC, [XWD length, adr] Provide information necessary for

SENSE. AC, error diagnosis and recovery for a

error return specific device (refer to Paragraph

normal return 4.12.10).

CALLI AC, 134 CLRST. MOVE AC, [XWD length, block] Allow device to continue after a

CLRST. AC, device error condition (refer to

error return Paragraph 4.12.8).

normal return

CALLI AC, 135 PIIN!. MOVE AC, base-address Initializes the software interrupt

PIIN!. AC, system. (Refer to Paragraph

error return 3.1.3.6).

normal return

CALLI AC, 136 PISYS. MOVE AC, [flags, , e] Controls the software interrupt

PISYS. AC, system. (Refer to Paragraph

error return 3.1.3.7).

normal return

CALLI AC, 137 DEBRK. DEBRK. Dismisses an interrupt. (Refer to

error return Paragraph 3.1.3.8).

CALLI AC, 140 PISAV. MOVE AC, [size, , addr] Saves the state of the interrupt

PISAV. AC, system. (Refer to Paragraph

error return 3.1.3.9).

normal return

2-16 September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*

CALLI Mnemonic CALL Function

CALLI AC, 141 PIRST. MOVEI AC, addr Restores the state of the interrupt

PIRST. AC, system. (Refer to Paragraph

error return 3.1.3.10).

normal return

CALLI AC, 142 IPCFR. MOVE AC, [XWD n, LOC] Receives an IPCF packet.

IPCFR. AC, (Refer to Paragraph 7.1.7).

error return

normal return

CALLI AC, 143 IPCFS. MOVE AC, [XWD n, LOC] Sends an IPCF packet. (Refer

IPCFS. AC, to Paragraph 7.1.6).

error return

normal return

CALLI AC, 144 IPCFQ. MOVE AC, [XWD n, LOC] Obtains information about an IPCF

IPCFQ. AC, input queue. (Refer to Paragraph

error return 7.1.8).

normal return

CALLI AC, 145 PAGE. MOVE AC, [XWD function, LOC] Manipulate pages and the data

PAGE.AC, associated with these pages.

error return (Refer to Paragraph 3.2.6).

normal return

CALLI AC, 146 SUSET.** MOVE AC, [XWD n, LOC] Set next I/O block number.

SUSET. AC,

error return

normal return

CALLI AC, 147 COMPT. Reserved.

CALLI AC, 150 TYPST. TYPST. AC, Special functions for TYPESET

error return devices.

normal return

*The CALLI mnemonics are defined in a separate MACRO assembler table, which is scanned whenever an undefined OP CODE is found. If the
symbol is found in the CALLI table, it is defmed as though it had appeared in an appropriate OPDEF statement, that is

RETURN: EXIT
If EXIT is undefined, it will be assembled as though the program contained the statement

OPDEF EXIT [CALLI 12)
This facility is available in MACRO V.43 and later.

**This CALLI is a system-privileged UUO available only to users logged in under [1, 2) or to programs running with the JACCT bit set. Complete
documentation for system-privileged UUOs appears in UUOPRV, a part of the Specifications section of the DECsystem-l0 Software Notebooks.

***A1l CALLI's above CALLI 55 do not have a corresponding CALL with a SIXBIT argument. This is to save monitor table space.

The customeris allowed to add his own CALLand CALLI calls to the'monitor. A negative CALLI effective address (-2 or less) should be used to
specify such customer-added operations.

2-17 September 1974

2.2.2.2 Suppression of Logical Device Names - Some system programs, e.g., LOGOUT, require I/O to specific

physical devices regardless of the logical name assignments. Therefore, for any CALLI, if bit 19 (UU .PHS) in

the effective address of the CALLI is not equal to bit 18, only physical names will be used; logical device assign­

ments will be ignored. This suppression of logical device names is helpful, for example, when using the results

of the DEVNAM UUO where the physical name corresponding to a logical name is returned.

2.2.2.3 Restriction on Monitor UUOs in Reentrant User Programs - A number of restrictions on UUOs that

involve a high segment prevent naive or malicious users from interfering with other users while sharing segments

and minimize monitor overhead in handling two-segment programs. The basic rules are as follows:

1. All UUOs can be executed from the low or high segment although some of their arguments cannot be
in or refer to the high segment.

2. No buffers, buffer headers, or dump-mode command lists may exist in the high segment for reading

from or writing to any I/O device.

3. No I/O is processed into or out of the high segment except via the SAVE and SSA VE commands.

4. As a convenience in writing user programs, the monitor makes a special check so that the INIT UUO

can be executed from the high segment, although the calling sequence is in the high segment. The

monitor also allows the effective address of the CALL UUO, which contains the SIXBIT monitor

function name, and the effective address of the OPEN UUO, which contains the status bits, device

name, and buffer header addresses, in the high segment. The address of TTCALL 1, and TTCALL 3,

may be in the high segment for convenience in typing messages.

2.2.3 Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100 (UJEN)

Op codes 101-107

114-117

123

Op codes 110-113

120-122

124-127

2.2.4 Illegal Operation Codes

Dismiss real-time interrupt from user mode (refer to Paragraph 3.8.4).

Monitor prints ?ILL. INST. AT USER n and stops the job.

These op codes are valid on the KIlO. If used on the KA 1 0, the monitor

prints ?KIlO ONLY INST. AT USER n and stops the job.

The eight I/O instructions (e.g., DATAl) and JRST instructions with bit 9 or 10 = 1 (e.g., HALT, JEN) are

interpreted by the monitor as illegal instructions (refer to the System Reference Manual in the Software

Notebooks). The job is stopped and a question mark is printed immediately. A carriage-return/line-feed is then

output, followed by an error message. For example, a DATAl instruction would produce the following:

?

? ILL INST AT USER addr

2-18

2.2.5 Naming Conventions for Monitor Symbols

The names of the monitor's data base symbols contain dots or percent signs so that they can be made user-mode

symbols without conflicting with previously-coded user programs. Data symbols can be divided into five classes:

1. numbers

2. masks

3. UUO names

4. GETTAB arguments

5. error codes

Symbols defining numbers begin with a dot, followed by a two-letter prefix indicating the type of number, and

end with a three-character abbreviation representing the specific number. Numbers are 18-bit quantities and

include core addresses and function codes. The following are examples of names of various numbers:

.JBxxx

.GTxxx

.RBxxx

Job Data Area

GETT AB table numbers

Extended arguments for LOOKUP, ENTER, RENAME

Names for masks start with a two-letter prefix indicating the individual word, followed by a dot, and end with

three characters representing the specific mask. Masks are 36-bit quantities and include bits and fields. The

following are examples of names of masks:

JP.xxx

JW.xxx

PC.xxx

Privilege word bits

WATCH word bits

PC word bits

Names for UUOs implemented after the 5.03 release of the monitor are five or less characters followed by a dot.

For example,

PATH.

TRMOP.

UUO to modify directory path.

UUO to perform terminal functions.

Individual words within a GETTAB table start with a percent sign, followed by two characters representing the

generic name of the table, and end with three characters identifying the specific word~ For example,

%NSCMX

o/vCNSTS

CORMAX word in the nonswapping data table.

States word in the configuration table.

Names of bytes and bits within a GETT AB word begin with two characters representing the word, followed by a

percent sign, and end with three characters designating the specific byte.

ST%DSK

-ST%SWP-

Byte representing disk system; contained in the states word.

Byte indicating swapping system; contained in th~ states word,---

Error codes returned on a UUO error have names with the following pattern: two characters indicating the UUO,

three characters designating the failure type, and a terminating percent sign.

DMILF%

RTDIU%

LKNLPL%

DAEMON error; illegal function.

RTTRP error; device in use.

LOCK error; no locking privileges.

Many of the values useful in user programming are encoded in the parameter file C.MAC for the convenience

of writing and modifying programs.

2-19

3.1 EXECUTION CONTROL

3.1.1 Starting

CHAPTER 3

NON I/O UUOS

A user program may start another program only by using the RUN or GETSEG UUOs (refer to Paragraphs 3.3.1

and 3.3.2). A user at a terminal may start a program with the monitor commands R, RUN, START, CSTART,

CONT, CCONT, DDT, and REENTER (refer to DECsystem-10 Operating System Commands). The starting ad­

dress of the program either appears as an argument of the command or is stored in the user's job data area (refer
to Chapter 1).

3.1.1.1 SETDDT AC, or CALLI AC, 2 - This UUO causes the contents of the AC to replace the DDT starting

address, which is stored in the protected job data area location .JBDDT. The starting address is used by the

monitor command DDT.

3.1.2 Stopping

Any of the following procedures can stop a running program:

1. One Control-C from the user's terminal if the user-program is in a TTY input wait; otherwise, two

Control-C's (tctC) from the user's terminal (refer to DECsystem-l0 Operating System Commands);

2. A monitor detected error;

3. Program execution of HALT, EXIT AC, or LOGOUT AC, (CALLIs 12 and 17, respectively).

3.1.2.1 Illegal Instructions (700-777, JRST 10, JRST 14) and Unimplemented OP Codes (101-127) - Illegal

instructions trap to the monitor, stop the job, and print:

?ILL INST. AT USER adr or ?KI ONLY INST, AT USER adr

Refer to Paragraph 2.2.3 for an explanation of op codes 101-127. Note that the program cannot be continued

by typing the CONT or CCONT commands.

3.1.2.2 HALT or JRST 4 - The HALT instruction is an exception to the illegal instructions; it traps to the

monitor, stops the job, and prints:

?H~LT AT USER adr

3-1 September 1974

where adr is the location of the HALT instruction. If the HALT instruction is in location 41 and the program

executed a user UUO (operation codes 001-037), the address in the error message is that of the user UUO instead
of address 41.

However, the CONT and CCONT commands are still valid and, if typed, will continue the program at the effec­

tive address of the HALT instruction. After a user program HALT instruction followed by a START, DDT,

CSTART, or REENTER command, .JBOPC contains the address of the HALT. To proceed at the address speci­

fied by the effective address, it is necessary for the user or his program to recompute the effective address of the

HALT instruction and to use this address to start (refer to .JBOPC description, Table I-I in Paragraph 1.2.1).

HALT is not the instruction used to terminate a program (refer to Paragraph 3.1.2.3). HALT is useful for indi­

cating impossible error conditions.

3.1.2.3 EXIT AC, or CALLI AC, 12 - When the value of AC is zero, all I/O devices (including real-time devices)

are RELEASed (refer to Paragraph 4.8.1); the job is unlocked from core; the user mode write protect bit (UWP)

for the high segment is set; the APR traps are reset to 0; the PC flags are cleared; and the job is stopped. If

timesharing was stopped (refer to Paragraph 3.8.3), it is resumed. In other words, after releasing all I/O devices

that close out all files, a RESET is done (refer to Paragraph 4.1.2). The carriage-return/line-feed is performed,

and

EXIT

is printed on the user's terminal, which is left in monitor mode. The CONT and CCONT commands cannot con­

tinue the program.

When the value of AC is nonzero, the job is stopped, but devices are not RELEASed and a RESET is not done.

Instead of printing EXIT, only a carriage-return and line-feed is performed, and a. period is printed on the user's

terminal. The CONT and CCONT commands may be used to continue the program. In other words, this form

of EXIT does not affect the state of the job except to stop it and return the terminal to monitor mode. Pro­

grams using EXIT I, (MONRT.) as a substitute for EXIT (to eliminate the typing of EXIT) should RELEASE

all devices first.

3.1.3 Program Trapping, Interception, and Interruption

Execution of a program is normally performed in a sequential manner, whereby one instruction is executed

followed immediately by the next and so on. By using skip and branch instructions, it is possible to deviate

from the normal sequential method of execution. Deviation from normal program flow may also be accom­

plished by trapping to user trap-servicing routines (APRENB UUO), enabling for error interception (utilizing

.JBINT), or using the software interrupt system. User-trap servicing routines and error interception are simple

methods of controlling error conditions while the software interrupt system provides a much more general and

powerful facility.

Two important reasons for wanting a program to deviate from simple sequential operation are as follows:

I. Responding to special conditions without having to test for them wherever they might arise. For in­

stance, it is possible to test for an arithmetic overflow condition after every instruction which might

cause the condition. However, it is frequently easier to request that the system interrupt normal

sequential operation whenever an overflow takes place and transfer control to an error routine. With

this approach, there is no need to insert a special test after every arithmetic instruction. This reduces

program size and execution time as well as being a less error-prone way to write a program.

3-2

2. Responding to asynchronous events without having to test i.J!' ~:lem repeatedly. For example, some

programs need to take special action when the user types a CONTROL-C, rather than permit control

to return immediately to monitor level. It would be an unreasonable constraint on program design if

the program had to test with high frequency for the user typing a CONTROL-C. It is much more

efficient for the system to interrupt normal sequential operation when a CONTROL-C is typed and

to transfer control to a special processing routine than for the program to have to test for the event

repeatedly.

APR trapping allows a user to handle traps that occur while his job is running, including illegal memory refer­

ences, non-existent memory references, push-down list overflows, arithmetic overflows, floating-point overflows,

and line frequency clock pulses. Error interception may be used when certain conditions occur in the program.

The monitor will intercept, when the condition occurs, and examine location .JBINT in the job data area. It

does this to find out whether an error interception routine has been provided. In addition, the TOPS 10 Monitor

provides a generalized software interrupt mechanism for interrupting sequential operation under a wide variety

of special conditions.

3.1.3.1 APRENB AC, or CALLI AC, 16 - To enable for trapping, an APRENB AC, or CALLI AC, 16 is exe­

cuted, where the AC contains the central processor flags to be tested on interrupts, as defined below:

Name AC Bit Trap On

AP.REN 18 400000 Repetitive enable

AP.POV 19 200000 Pushdown overflow

AP.lLM 22 20000 Memory protection violation

AP.NXM 23 10000 Nonexistent memory flag

AP.PAR 24 4000 Parity error

AP.CLK 26 1000 Clock flag

AP.FOV 29 100 Floating-point overflow

AP.AOV 32 10 Arithmetic overflow

When one of the specified conditions occurs while the central processor is in user mode, the state of the central

processor is conditioned into (CONI) location .JBCNI, and the PC is stored in location .JBTPC in the job data

area (refer to Table 1-1 in Paragraph 1.2.1). Then control is transferred to the user trap-answering routine speci­

fied by the contents of the right half of .JBAPR, after the arithmetic and floating-point overflow flags are cleared.

(However, the job is stopped if the PC is equal to the first or second instruction in the user's trap routine.) The

user program must set up location .JBAPR before executing the APRENB UUO. To return control to his inter­

rupted program, the user's trap-answering routine must execute a JRSTF @ .JBTPC which clears the bits that

have been processed and restores the state of the processor.

The APRENB UUO normally enables traps for only one occurrence of any selected condition and must be re­

issued after each condition of a trap. To disable this feature, set bit 18 to a 1 when executing the UUO. How­

ever, even with bit 18 = 1, clock interrupts must be re-enabled after each trap.

If the user program does not enable traps, the monitor sets the PDP-I 0 processor to ignore arithmetic and

floating-point overflow, but enables interrupts for the other error conditions in the list above, If the user pro­

-gram produces such an error condition, the monitor stops the user job and prints one of the following appro­

priate messages:

3-3

?PC nUT OF BOUNDS AT USER PC addr
?ILL MEM REF AT USER PC ~ddr
?NON-EX MEM AT USEP PC addr
?POL OV AT USER PC addr
?ME~ PAP EPPOR AT USER PC addr

The CONT and CCONT commands will not succeed after such an error.

3.1.3.2 Error Intercepting - When certain conditions occur in the program, the monitor intercepts the condi­

tion and examines location .JBINT in the job data area. Depending on the contents of this location, control is

either retained by the user program or is given to the monitor for action. If this'location is zero, the job is

stopped and the user and possibly the operator are notified by appropriate messages, if any. If location .JBINT

is non-zero, the contents is interpreted as the address of a block with the following format:

LOC:

LOC+I:

LOC+2:

LOC+3:

XWD N, INTLOC

XWD BITS, CLASS

o
o

where N is the number of words in the block (N > 3).

INTLOC is the location at which the program is to be restarted.

BITS is a set of bits interpreted as follows:

If bit 0 = I, an error message, if any, is not to be typed on the user's terminal or, in some cases,

the operator's terminal.

If bit 0 = 0, an error message, if any, will be typed on the user's terminal and possibly the

operator's terminal.

CLASS is a set of bits interpreted as follows:

For each type of error, CLASS has a specific bit. For a given error, the job will be interrupted

if the appropriate bit is I and LOC+2 contains zero. The job will be stopped if either the ap­

propriate bit is 0 or the appropriate bit is I and the contents of LOC+2 is not zero. By requiring

LOC+2 to be zero, the possibility of a loop occurring is prevented.

The monitor examines the CLASS bits and the contents of LOC+2 to determine if the job is to be stopped or

interrupted on the particular error. If the job is interrupted, the following information is then stored in LOC+2

and LOC+3:

LOC+2

LOC+3

The last user PC word

RH = the channel number

LH = the error bit as defined in CLASS (see below)

The job is then restarted at location INTLOC.

The CLASS bits are defined as follows:

3-4

Device Errors

Bit 3S(I) (ER.IDV) represents device errors that can be corrected by human intervention. The appropriate

message returned to the user is

DEVICE xxx apR zz ACTION REQUESTED

where xxx is the device name, and zz is the number of the station at which the operator is located. The

operator receives the message

'PROBLEM ON DEVICE xxx FOR JOB n

where xxx is the device name, and n is the number of the job that is stopped. When the operator has cor­

rected the error, he starts the job with the JCONT command and the message

CONT BY OPER

appears on the user's terminal to signify that the error has been corrected.

tc Intercept

Bit 34(I) (ER.ICC) indicates a tc intercept. This intercept allows the user's program to process a tc itself

instead of allowing the job to automatically return to monitor level. If this bit is a I, the job does not re­

turn to monitor level on two tCs (or on one tc if the job is in TTY input wait), but instead traps to the

user's interrupt routine. There are no messages associated with this bit. When enabled for tc, the program

should normally exit immediately by releasing any special resources and issuing an EXIT UUO (MONRT. or

CALLI I, 12) .. If the user types .CONT, the job continues ..

(1) This bit depends on FTOPRERR which is normally off in the DECsystem·1040.

(1) This bit depends on FTCCIN which is normally off in the DECsystem·l040.

3·5

TITLF. CONCIN -. SAMPLE FOR CONTROL-C INTERCEPT

,THIS ROUTI~~ SHOWS HO~ TO ENABLE FOR A CONTROL-C INTERCEPT
, AND H~ NOLE IT CORRECT!lY. THE IDEA I S TO GET THE USER TO
,MONITOR LEVEL AS QUICKLY AS POSSIBLE,

Loe
EXP
RELoe

I NT B rJ 1<: X W 0
XWD
Z
Z

134
tNTBI.K

4,INTLOe
0,2

,SET POINTER IN .JBINT
,ro THE INTERRUPT BLOCK

,4 WORDS LONG"PLACE TO START
,NO MESSAGE CONTROL"T!PE 2 C-C)
:GETS LAST USER PC
,LH GETS INTERRUPT TYPE

,THE INTERRUPT ROUTINE STARTS HERE

INTLOC: MOVEM
HLRZ
CAIE
HAlJ!

1,TEMP1 ,SAVE AC 1
1,INTBLK+3 ,GET FEASON FOR INTERRUPT
1,2 ,SEE IF CONTROL-C

,ERROR If NOT
,RELEASE ANY SPECIAL RESOURCES HERE
,BUT BE CAREFUL THAT THIS DOES NOT
.TAKE VERY LONG OR CAUSE A LOOP,

1, ,RETURN TO MONITOR
1,INTBLK+2 ,GET RETURN PC
1,TEMP1 rRESTORE AC
P,INTBLK+2 :SAVE RETURN ADDRESS
INTBLK+2 ,CLEAR INTERRUPT TO ALLOW ANOTHER ONE

EXIT
MOVE
EXCH
PUSH
SETZl-A
POPJ p, ,RETURN TO WHERE PROGRAM STOPPED

TEMP 1: Z 'TE~PORAPY

The following example illustrates user tc processing by a program which will not let users reach monitor level

by means of a tC.

LaC 134 ,SET UP ,JBINT TO POINT TO
EXP INT8LK ,THE INTERRUPT BLOCK
RELOC

INTBLK: XWD
XWD
Z
Z

3,IN'l'LOe
0,2

,THE INTERRUPT ROUTINE

I ~ITLOC: SK I PL
JRST

SETZM
JRST

SETOM

PUSH
SETZM
POPJ

INTBLK+2
PEENR'T

RENSWH

P,INTBLK+2
INTBLK+2
p,

,3 WORDS LONG"PLACE TO START
,NO MESSAGE CONTROL"TYPE 2 C~C)
,GETS LAST USER PC
rLH GETS INTERRUPT TYPF.

,OK TO FAKE A REENTER?
,NO, CURRENT ROUTINE CANNOT BE
,INTERRUPTED,

,YES, RE-ENABLE INTERRUPT AND GO
,TO INTERRUPT ROUTINE

,SET FLAG TO SAY "REENTER AS SOON AS
,YOU CAN"
,GET LAST PC, PUSH/POP
,RE-ENABLE INTERRUPT
,GO BACK TO INTERRUPTED ROUTINE
,NOTE THAT IF A CONTPOL-C IS
,TYPED ArTER THE SETZM, THE
,INTEPRUPTS NEST.

3-6

Off-line Disk Unit

Bit 33 (ER. OFL) indicates a disk unit has dropped off-line. The operator is given the message

UNI" xxx WENT OFF-LINE (FILE UNSAFE)
PLFASE pnWER DOWN AND THEN TURN IT ON AGAIN

immediately and then once every minute. The user receives the message

DS~ IS OFF-LINE. WAITING FOR OPERATOR
ACTION, TYPE -C TO GET A HUNG MESSAGE
eIN 15 SECONDS), DONT TYPE ANYTHING TO WAIT
FOR THE OPE~ATOP TO FIX THE DEVICE.

If the user has a system resource, he receives the additional message:

TH~ SYSTEM WILL DO NO USEFUL WORK UNTIL
THE DRIVE IS FIXED OR YOU TYPE -C

Full File Structure

Bit 32 (ER. FUL) indicates that a file structure has filled up with data (i.e., there are no free blocks). There

are no messages associated with this bit.

Exhausted Disk Quota

Bit 31 (ER. QEX) indicates that the user's disk quota has been exhausted. The user receives the message

[EXCEEDING QUOTA file structure name]

Exceeded Time Limit

Bit 30 (ER. TLX) indicates that the user's run time limit (as set by a previous SET TIME command) has

been exceeded. This bit is used only by non-batch jobs. The user receives the message

?TIME LI~IT EXCEEDED

Error in Job

Bit 29 (ER. EIJ) indicates that the user has had a fatal error, such as:

?ILJJEGAL UUO
?ADDRESS CHECK
?PC OqT OF BOUNDS

3-7

3.1.3.3 Software Interrupt System - The software interrupt system is a generalized mechanism for interrupting

sequential execution under a wide variety of special conditions. In order to use the sofware interrupt system,

it must first be initialized by the PUN!. UUO. PUN!. will specify the base address of an interrupt vector. Within

this vector are one or more four-word interrupt control blocks, which control the operation of the software in­

terrupt system. After initializing the software interrupt system, the system must be turned on. The PISYS. UUO

is used to turn the interrupt system.on. This UUO is also used to specify:

• on what conditions the user wishes control to be passed to an interrupt servicing routine.

• the location of the appropriate interrupt control block (this is specified as an offset from the base of

the interrupt vector).

When a interrupt condition occurs, the monitor first determines whether this type of condition is to cause a

transfer to an interrupt servicing routine. If it is not to cause a transfer of control, the default action for the

condition will take place. If a transfer of control is to take place, control is transferred to the location specified

in the appropriate interrupt control block. This process can be represented by the following illustration:

PROGRAM (USER)
LEVEL

I ,
I
I
I

USER PROGRAM ,
I
I
I

NO

!
TAKE DEFAULT ACTION

(e.\I. DO NOTHING,
STOP JOB, PRINT

ERROR MESSAGE, etc.)

USER PROGRAM

YES

INTERRUPT
LEVEL

INTERRUPT
SERVICING ROUTINE

POI NTED TO BY
THE APPROPRIATE

INTERRUPT
CONTROL BLOCK

DEBRK.UUO

3.1.3.4 Interrupt Conditions - The conditions for which interrupts can be requested are divided into two

categories:

1. I/O interrupts

2. Non-I/O interrupts.

3-8

For any device, the user can specify interrupt processing for one or more of the following I/O conditions that

may occur during the execution of a program:

input done

output done

end of file

input error

output error

device off-line

device full

quota exceeded

input/output wait

Examples of non-I/O conditions resulting in a possible interrupt are:

time limitation exceeded

execution of a UUO

address check

overflow of push-down list

APR clock

arithmetic overflow

Control-C

occurrence of an undefined UUO

reference to illegal memory location

non-existent memory reference

floating point overflow

3.1.3.5 Interrupt Control Block - The interrupt control block is the controller of the software interrupt system;

it keeps track of such things as:

o where the program was when an interrupt occurred

o where to find the interrupt servicing routine for processing the current interrupt

o the reason for the interrupt

There may be more than one interrupt condition associated with the same interrupt control block; but the pre­

ferred usage is to associate one interrupt condition with one interrupt control block. An interrupt control block

can be represented as:

BIT 0 17 18 35
~~~-------- ----

NEW PC 

OLD PC 

CONTROL FLAGS I REASONS 

STATUS WORD 

3-9 



The monitor stores the PC (program counter) at the time of the interrupt in the second word of the interrupt 

block. If a UUO was executed, the word will contain the address of the UUO + 1 or +2 (i.e., the return point 

of the UUO). If an attempted UUO was aborted, the address of the UUO will be contained in PC. The location 

of the routine that is to be used in servicing the interrupt is stored in the first word of the interrupt control 

block. The control flags, in the left half of the third word, are used to indicate under what circumstances an in­

terrupt is to take place. 

The reason for a particular interrupt is indicated by the bits stored in the right half of the same word as the con­

trol flags. The status word contains status information pertinent to the type of interrupt detected. 

The bit settings that may be set within the flags half-word are: 

Bit Mnemonic 

o 

PS.VPO 

2 PS.VTO 

3 PS.VAI 

4 PS.VDS 

5 PS.VPM 

6 PS.VIP 

Meaning 

Reserved to DEC. 

Disable all interrupts until re-enabled by a PISYS. UUO. 

Disable all interrupts until a DEBRK. UUO is executed. 

Allow additional interrupts to be received by this interrupt block. Normally, 

no other interrupts for the current block are permitted until a DEBRK. UUO 

is executed. The use of this bit is not recommended since an interrupt ser­

vicing routine could be interrupted resulting in lost information. 

Dismiss any additional interrupt requests for this control block that are re­

ceived while an interrupt is in progress. This is useful if the interrupt service 

routine wants to perform functions that would cause another interrupt. For 

example, a service routine for all UUO's may want to do UUO's. 

Print the standard message (if any) relevant to this interrupt condition. 

This bit indicates that an interrupt is in progress for this block. The user 

should clear this bit at the start of the program. It is set and cleared by the 

monitor as interrupts are processed and should not be altered by the user. 

The fourth word in the four-word interrupt block contains status information relating to the type of interrupt 

condition detected. For instance, a device-related interrupt will cause this word to contain the UDX in its left 

half, and a GETSTS value in its right half. For an interrupt on KSYS warning, the word contains the number 

of minutes until KSYS (i.e., number of minutes until time-sharing ends). 

The new PC word and flags half-word are preset by the user. The old PC word, reasons half-word, and status 

word are set by the monitor. 

After an interrupt request is granted, the program operates at interrupt level until the user issues a DEBRK. UUO. 

DEBRK. will dismiss the interrupt, reenable the interrupt control block (if it was disabled) and cause any pend­

ing interrupt requests to be granted. If there are no pending interrupts, the user job is restarted as if no interrupt 

had occurred. 

The act of granting an interrupt request does not change any of the conditions which caused the interrupt. If 

the user issues a DEBRK. UUO without doing anything else, the result will be the same as if the interrupt con­

dition was not enabled. The monitor does not clear any reason bits on DEBRK. UUO's; the user must clear these 

himself. 

3-10 



EXCEPTION: If the interrupt occurs while the machine was executing a UUO for the user, that UUO is aborted. 

The only conditions which can cause interrupts during the processing of UUO's are error conditions in the UUO. 

All other conditions are deferred until the UUO exit. 

3.1.3.6 PIINI. AC, or CALLI. AC, 135 - The PIINI. UUO initializes the software interrupt system, specifying 

the base address of the interrupt vector block. This interrupt vector block will contain one or more four-word 

interrupt control blocks. The format of the UUO is: 

MOVE AC, base-address 
PIINI. AC, ,or CALLI AC, 135 
error retur!'l 
normal return 

PIIN!. will perform the following functions: 

• turn off the software priority interrupt system. 

• unlink any devices that have enabled interrupt conditions associated with them. 

• store the base address of the interrupt vector block. 

3.1.3.7 PISYS. AC, or CALLI AC, 136 - PISYS. is the primary means by which the user can control the inter­

rupt system. It accepts a three word interrupt argument block specifying the type of event the user wishes to 

service with an interrupt servicing routine and the offset from the interrupt vector base address that points to 

the appropriate interrupt control block. The format of PISYS. is: 

MOVE .l\C, [flaas"el 
PISYS •. ~.C, 
error return 
normal return 

tor CALLI AC, 136 

where: the flags which may be set with this call are: 

Bit 

2 

3 

4 

5 

6 

Mnemonic 

PS.FOF 

PS.FON 

PS.FCP 

PS.FCS 

PS.FRC 

PS.FAC 

Meaning 

Turn the interrupt system off. 

Turn the interrupt system on. 

Clear all pending interrupts. 

Clear all pending interrupts for a specified device. 

Remove the specified device or condition. 

Add the specified device or condition. 

e points to a block that contains information pertaining"to the interrupt condition the user wishes to service. 



This block can be represented as: 

o 17 18 35 

DEVICE/CONDITION TO USE 

VECTOR OFFSET ENABLED REASONS 

PRIORITY LEVEL RESERVED 

This first word of the interrupt argument block specifies the device or the condition to be associated with the 

interrupt, and is one of the following: 

• SIXBIT / device-name/ 

• channel-number 

• UDX 

• negative integer 

The negative integer is used when desiring to specify a non-I/O condition as the enabled interrupt condition. 

Certain non-I/O interrupts will cause information to be stored in the status word of the interrupt control block; 

the possible non-I/O conditions, their codes, and the information (if any) that will be stored in the status word 

are: 

Code Mnemonic 

-1 .PCTLE 

-2 .PCABT 

-3 .PCSTP 

-4 . PCUUO 

-5 . PCIUU 

-6 .PCIMR 

-7 .PCACK 

-10 . PCARI 

-11 . PCPDL 

-12 . PCTT3 

-13 .PCNXM 

-14 .PCAPC 

-IS . PCUEJ 

-16 .PCXEJ 

Meaning 

Time limit exceeded. This interrupt 

cannot be specified for BATCH jobs. 

Not yet implemented. 

Control-C 

Any UUO was executed . 

Illegal UUO was executed. 

Illegal memory referenced. 

Address Check . 

Arithmetic exception . 

Push down list overflow. 

Not yet implemented . 

Non-existent memory referenced. 

Line frequency clock tick . 

User-induced fatal error. 

External condition results in fatal 

error. 

3-12 

Status Word 

Run time in milliseconds for this 

job. 

IBO = I if terminal in input-wait 

status; otherwise word = O . 

UUO 

o 

o 

device name 

o 

o 

o 

universal date/time word 

o 

o 



Code Mnemonic Meaning Status Word 

-17 .PCKSY KSYS warning. minutes to KSYS 

-20 . PCDSC Dataset status has been changed . new status 

-21 .PCDAT ATTACH/DETACH was executed. -1 (if detach) or TTY 

UDX (if attach) 

-22 .PCWAK WAKE UUO was executed . job number of waker 

-23 . PCABK Address break. 0 

-24 .PCIPC IPCF has received a packet. length (RH) and flags (LH) as-

sociated with first message in the 

queue. 

The vector offset is the address of the four-word interrupt control block to be associated with this interrupt 

condition. The address is given as an offset from the base address specified in the PIINI. UUO. Since the inter­

rupt control blocks are each four words in length, the offset is always given in multiples of four words. The 

same four-word interrupt block may be associated with several interrupt conditions, but a one-to-one corre­

spondence is preferred. 

If within PISYS., e specifies a device within its first word, the enabled reasons half-word specifies the type of 

interrupt the user is interested in. The bit assignments, which may be set, are: 

Mnemonic Bit Meaning 

PS.RID 19 Input done. 

PS.ROD 20 Output done. 

PS.REF 21 End-of-file. 

PS.RIE 22 Input error. 

PS.ROE 23 Output error. 

PS.RDO 24 Device off-line. 

PS.RDF 25 Device full. 

PS.RQE 26 Quota exceeded. 

PS.RWT 27 Input/Output wait. 

The bit corresponding to the reason for the interrupts will be ORed in the reason field of the four word interrupt 

control block also. 

The possible error codes which might result from this call are: 

Error Code Mnemonic 

o PSTMA% 

PSNFS% 

2 PSUKF% 

Meaning 

The right half of the AC is non-zero; no bits in the left half require 

an argument block. 

The left half of the AC does not have any function bits set. 

The left half of the AC contains function bits which have been 

set that have no defined meaning. 

3-13 



Error Code 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

Mnemonic 

PSOOF% 

PSUKC% 

PSDNO% 

PSPRV% 

PSIVO% 

PSUKR% 

PSPTL% 

PSNRW% 

PSPND% 

PSARF% 

Meaning 

In the left half of the AC the bits to turn the system on and to 

turn the system off have both been set. 

The contents of e do not specify a valid device or condition. 

The device specified by the contents of e has not been INITed 

for this job. 

A restricted condition (illegal) has been specified. 

The vector table offset is too large or, not a multiple of four 

words. A GETTAB table (table number 11, Item 76) provides 

the maximum value that the vector offset may assume. 

An invalid bit was set in E+2. 

The priority level specified is too large. The maximum priority 

level which may be assumed is specified within GETTAB table 

number 11, Item 77. (It is 0 for the 6.01 release.) 

The reserved half-word (the right half of word three) is non-zero. 

A PIINI. UUO has not been executed. 

Both of the "add the device" and "remove the device" bits have 

been set. 

3.1.3.8 DEBRK. or CALLI AC, 137 - The DEBRK. UUO is used to dismiss a software interrupt, reenabling 

anything which may have been disabled by the occurrence of the interrupt. The DEBRK. UUO will scan the 

pending interrupt queue, looking for any conditions which may require servicing by an interrupt servicing 

routine. If such a condition does exist, the newly found interrupt request will be granted and a transfer will be 

made to the interrupt servicing routine. If there are no pending interrupts, DEBRK. will restart the interrupt 

process beginning at the point within the user program where the program was originally interrupted (e.g., the 

instruction after the last instruction executed). 

The format of the DEBRK. UUO is: 

OERRK. ,or CALLI AC,137 
error return 

The normal return taken by DEBRK., if no interrupts are pending, is old PC in the interrupt control block. The 

skip return is used if the software interrupt system has not been initialized. The error return is only taken when 

DEBRK. has not been implemented. 

3.1.3.9 PISAV. AC, or CALLI AC, 140 - The PISAV. UUO returns the entire monitor data base related to the 

software interrupt facility. This UUO can be used by modules such as QMANGR to save and reload (via PIRST:) 

the complete interrupt system. It can also be used to provide detailed error messages. 

3-14 



The format of the PISAV. UUO is: 

MOVE AC, [s!ze"addr] 
PISAV. AC, ,or CALLI AC, 140 
error return 
normal return 

The state of the interrupt system is not altered by the execution of this UUO. 

Size is the length (in words) of the block pointed to by addr. The size of this block can be determined by: 

(3 * argblocks) + 2 = size in words 

addr points to a block which can be represented as: 

o 17 18 

xl ZERO COUNT 

BASE ADDRESS 

DEVICE/CONDITION 

VECTOR OFFSET ENABLE REASONS 

PRIORITY LEVEL RESERVED 

35 

] 

INTERRUPT 
ARGUMENT 
BLOCK 1 

VECTOR OFFSET ENABLED REASONS 

] 

INTERRUPT 
ARGUMENT 

f---------~--------_l BLOCK n 
PRIORITY LEVEL 

~-------~--------~ 

DEVICE/CONDITION 

RESERVED 

where: x can be 1 or 0; 1 indicates that the software interrupt system is turned on, 0 indicates that it 

is turned off. 

count is the number of words the monitor actually returned with the saved status block. 

base address is the base address of the interrupt vector block which contains one or more 4-word 

interrupt control blocks. 

Words 2 through n contain one or more interrupt argument blocks. These interrupt argument blocks are those 

the user has set up through use of the PISYS. UUO. 

The possible error return resulting from the PISA V. UUO is: 

Code Mnemonic 

o PSBTS% 

Meaning 

The block is too small to hold the data. The right half of the first 

word contains the count of the number of words which would 

have been returned, if the block had been large enough. 

3-15 



3.1.3.10 PIRST. AC, or CALLI AC, 141 - The PIRST. UUO reloads the saved state of the interrupt system. It 

does not, however, remember pending instructions. If a condition is still existent within the interrupt block 

(Le., has not been cleared), the interrupt will be granted. ThePIRST. UUO should not be used to load the inter­

rupt system at program initialization time, this function is performed by the PIIN!. UUO. 

The format of the PIRST. UUO is: 

MOVEI AC,addr 
PIRST. AC, 
error return 
normal return 

,or CALLI AC, 141 

where: addr is the address of the saved status block which was specified in the PISAV. UUO. 

There is one possible error code which may be returned: 

Error Code Mnemonic 

o PSNRS% 

Meaning 

The user has modified his program prohibiting the PIRST. UUO 

from performing its specified task. 

3.1.3.11 Software Interrupt Example -

TITLE PISAMP .- 5A~PLE PROGRAM TO SHOW PSlSER USE WITH NON-BLOCKING 1/0 

,THIS PROGRAM WRITES A FILE CONTAINING THE NUMBERS FROM 1 TO 100,000 
, WHILE DOING A COMPUT~ BOUNO BACKGROUND COMPUTATION. SINCE THE PROGRAM 
, NEVER BLOCKS FbR 110 IT CAN USE 100% OF THE AVAILA8LE CPU TIME. BY USING 
, THE PI SYSTEM IT CAN DRIVE THE DISK AT FULL SPEED. 

rAC USEA.GE 
Tl=l 
N=2 

,IIO CHANS. 
DSK=! 

SEARCH 

,INITIA1JIZATION 
START: RESET 

MOVEI 
prINI, 

HALT 
OPEN 

,TEMPORARY 
:NUM8ER TO WRITE ON THE DISK 

,THE DISK FILE 

C ,SYM80L DEFS. 

:RESET THE WORLD 
Tl,VECTOR ,BASE OF INTERRUPT VFCTOR 
T1, ,INlT PI SYSTEM 
• ,NOT INPLEMENTED 
DSK,rUU.AIO+.I08IN,OPEN bISK FOR ASYNCHRONOUS BINAPY OUTPUT 

SIXPIT IOSKI 
013 , ,0] 

HALT • ,DISK NOT AVAILABLE 
ENTER DSK,[SIXBIT "SAMPLE" ,ENTEP THE OUTPUT FILE 

SIXBIT "SINn , ON THE DISK 
EXP 0,0] , •• 

HALT ,CAN-! WRITE 

3-16 



~OVF.: 

PISYS. 

HALT 
MOVEI 

T1, [PS.FAC+[ EXP DSK 

• 
N,O 

4"PS.ROD ,OFFSET"OUTPUT DnNE 
OJ] ,PRIORTTY"PE5ERVED 

,CALL MONITOR TO TURN ON 
r ~NABLE FOR OUTPUT DONE 
,PISY5. UUO FAILED 
,PRESET N 

SYSTE~1 ANO 
ON CHAN DSK 

,HERE ON AN OUTPUT DONE INTERRUPT O~ AT THE START OF THE PROGRAM 

DUTDON: SDSGE 
JRS! 
IDPB 
C P. ~~E 
AOJr.. 
CLOSE 
EXIT 

8YTECT 
DUMPBF 
N,BYTEPT 
N,C-Dl0QOOO] 
N,OUTnON 
1 , 

DUMPBFI OUT 1, 
JRST OUrDON 

STATZ 1,IO.ERR 
HALT • 

,ROOM IN THIS BUFFER? 
,NO··GO OUTPUT BUFFER 
,STORE IN BUFFER 
tOONE? 
,MO·.WRITE NEXT NUMBEP 

,ALL DONE 

,WRITE OUT THE BUFFER 
,NO ERRORS AND MORF. BUFFERS 
, ANY ER.RQPS? 
,FATAL I/OERROR. 

,AT THI& POINT WF. FILLEn 
, BACKGROUND TASK, 

ALL AVAILABLE BUFFERS AN WANT TO GO 8ACK TO THE 

DEBRK. ,DISMISS THE INTERRUPT 
HALT , ,CAN NEVER GET HERE 

,IF WE GET HERE THERE WAS NO INTERRUPT IN PROGRESS. THAT MEANS WE WERE 
J CALLED BY INITIALIZATION AND NOW MUST START THE BACKGROUND TASK, 

MOVSI T1,(PS.FON) ,TURN ON THE PI SYSTEM SO WE CAN GET TRAPS 
PISYS. Tl, , OUT OF THE BACKGP.OUND TASK, 

HALT • ,CAN'T TURN ON SYSTEM 
~iOVEI T1, 0 
AOJA Tl,. 

,BUFFER RING HEADER 
OB. BLOCK 1 
BYTEPTI BLOCK 1 
BYTECTt BLOCK 1 

,INTERRUPT VECTOR 
VECTORt BLOCK 4 

EXP OUTDON 
EXP 0 
EXP 0 
F.XP 0 

END START 

,SUPER SIMPLE BACKGROUND TASK 

,BYTE POINTER 
,BYTE COUNT 

tFIPST SLOT IS UNUSED 
,NEW PC 
,OLO PC STORED HERE 
,FLAGS 
,STATUS 

3-17 



3.1.4 Suspending 

3.1.4.1 SLEEP AC, or CALLI AC, 31 - This UUO temporarily stops the job and continues it automatically 

after the elapsed real-time (in seconds) indicated by the contents of the AC. There is an explicit maximum of 

approximately 68 sec (82 sec in SO-Hz countries). A program that requires a longer SLEEP or HIBER time 

should call DAEMON, via the clock function, then use HIBER with no clock request. 

3.1.4.2 BIBER AC, or CALLI AC, 72(2) - The HIBERNATE UUO allows a job to become dormant until a 

specified event occurs. The possible events that can wake a hibernating job are: 

1. input activity from the user's TTY or any TTY INITed by this job (both line mode and character mode), 

2. PTY activity for any PTY currently INITed by this job, 

3. the time-out of a specified amount of sleep time, or 

4. the issuance of a WAKE UUO directed at this job either by some other job with wake-up rights or by 

this job at interrupt level. 

The HIBERNATE UUO must contain in the left half of AC the wake-condition enable bits and in the right half 

the number of ms for which the job is to sleep before it is awakened. 

The call is as follows: 

MOVS! AC, enable bits 
~RRI AC, sleep time 
HISER AC, 

'Qet HI8ERNATE conditions 
,number of ~s to sleep 
,or CALLI AC, 72 

error fp.turn 
norJT!al return 

The HIBERNATE UUO enable condition codes are as follows: 

Bits Meaning 

18-35 Number of ms sleep time. It is rounded up to an even multiple of jiffies (maximum 

being 68 seconds). Zero means no clock request (Le., infinite sleep). 

15-17 

13-J4 

12 

10 

WAKE UUO protection code: 

Bit 17 (HB.RWT) = 1, project codes must match. 

Bit 16 (HB.RWP) = 1, programmer codes must match. 

Bit 15 (HB.RWJ) = 1, only this job can wake itself. 

Wake on TTY input activity: 

Bit 14 (HB.RTC) = 1, wake on character ready. 

Bit 13 (HB.RTL) = 1, wake on line of input ready. 

(HB.RPT) Wake on PTY activity since last HIBERNATE. 

(HB.IPC) IPCF 

o (HB.SWP) Causes job to be swapped out immediately. 
(2) This UUO depends on FTHIBWAK which is nonnally off in the DECsystem-l040. 

3-18 September 1974 



An error return is given if the UUO is not implemented. The SLEEP UUO should be used in this case. A normal 

return is given after an enabled condition occurs. 

In order to insure that a job does not sleep for too long, missing an event, the wakeup bit is set by the monitor 

even if the event occurs while the job is not sleeping. When the job issues another HIBER UUO, the bit will be 

cleared and the HIBER will return immediately to the user. Specifically, a job issuing a HIBER UUO must test 

all events that may have caused it to wake up, however, the job cannot be assured that anyone of the events 

actually took place. 

Jobs either logged-in as [1,2] or running with the JACCT bit on can wake any hibernating job regardless of the 

protection code. This allows privileged programs, which are the only jobs that can wake certain system jobs, to 

be written. 

A RESET UUO always clears the protection code and wake-enable bits for the job. Therefore, until the first 

HIBERNATE UUO is called, there is no protection against wake-up commands from other jobs. To guarantee 

that no other job wakes the job, a WAKE UUO followed by a HIBERNATE UUO with the desired protection 

code should be executed. The WAKE UUO ensures that the first HIBERNATE UUO always returns immediately, 

leaving the job with the correct protection code. 

3.1.4.3 WAKE AC, or CALLI AC, 73(1) - The WAKE UUO allows one job to activate a dormant job when 

some event occurs. This feature can be used with Batch so that when a job wants a core dump taken, it can 

wake up a dump program. Also, real-time process control jobs can cause other process control jobs to run in 

response to a specific alarm condition. The WAKE UUO can be called for a RTTRP job running at interrupt level, 

thereby allowing a real-time job to wake its background portion quickly in order to respond to some real-time 

condition. (Refer to Paragraph 3.8.1.2 for the restrictions on accumulators when using the RTTRP UUO at 

interrupt level.) 

The call is as follows: 

MOVE AC, joh.~umber 
~.JA.!(E AC, 
error return 
normal return 

Job number is -1 if referring to the current job. 

,number of 10b to be awakened 
,or CALLI AC, 73 

An error return is given if the proper wake privileges are not specified. There is a wake bit associated with each 

job. If any of the enabled conditions specified in the last HIBERNATE UUO occurs, then the wake bit is set. 

The next time a HIBERNATE UUO is executed, the wake bit is cleared and the HIBERNATE UUO returns im­

mediately. The wake bit eliminates the problem of ajob going to sleep and missing any wake conditions. 

On a normal return, the job has been awakened and has started at the location of the normal return of the HIBER 

UUO that caused it to become dormant. 

(1) This UUO depends on FTHIBWAK which is nonnally off in the DECsystem·l040. 

3-19 



3.2 CORE CONTROL 

For various reasons, privileged jobs may desire to be locked in core so that they are never to be considered for 
swapping or shuffling. Some examples of these jobs are as follows: 

Real-time jobs 

Display jobs 

Batch 

Performance analysis 

3.2.1 Definitions 

These jobs require immediate access to the processor in response to an in­

terrupt from an I/O device. 

The display must be refreshed from a display buffer in the user's core area 

in order to keep the display picture flicker-free. 

Batch throughput may be enhanced by locking the Batch job controller 

in core. 

Jobs monitoring the activities of the system need to be locked in core so 

that they can be invoked quickly with low overhead in order to record 

activities of the monitor. 

In swapping and non-swapping systems, unlocked jobs can occupy only the physical core not occupied by locked 

jobs. Therefore, the locked jobs and timesharing jobs contend with one another for physical core memory. In 

order to control this contention, the system manager is provided with a number of system parameters as de­

scribed below. 

Total User Core is the physical core that can be used for locked and unlocked jobs. This value is equal to total 

physical core minus the monitor size. 

CORMIN is the guaranteed amount of contiguous core that a single unlocked job can have. This value is a con­

stant system parameter and is defined by the system manager at monitor generation time using MONGEN. It 

can be changed at monitor startup time using the ONCE ONLY dialogue. This value can range from 0 to Total 

User Core. 

CORMAX is the largest contiguous size that an unlocked job can be. It is a time-varying system parameter that 

is reduced from its initial setting as jobs are locked in core. In order to satisfy the guaranteed size of CORMIN, 

the monitor never allows a job to be locked in core if this action would result in CORMAX becoming less than 

CORMIN. The initial setting of CORMAX is defined at monitor generation time using MONGEN and can be 

changed at monitor startup time using the ONCE ONLY dialogue. CORMAX can range from CORMIN to Total 

User Core. A guaranteed amount of core available for locked jobs can be made by setting the initial value of 

CORMAX to less than Total User Core. 

3.2.2 LOCK AC, or CALLI AC, 60( 1) 

This UUO provides a mechanism for locking jobs in user memory. The user may specify if the high segment, low 

segment, or both segments are to be locked, and whether the core is to be physically contiguous. Note that on 

KAIO-based systems, core is always allocated contiguously, and that the job may be moved to an extremity of 

user core before it is locked. 

A job may be locked in core if all of the following are true: 

1. The job has the LOCK privilege (set from the accounting file ACCT.SYS by LOGIN). 

(1) This UUO depends on FTLOCK which is normally off in the DECsystem-l040. 

3-20 



2. The job, when locked, would not prevent another job from expanding to the guaranteed limit, 

CORMIN. 

3. The job, when locked, would not prevent an existing job from running. Note that unlocked jobs 

can exceed CORMIN. 

4. The job, when mapped, if specifying exec mapping, would not exceed the maximum amount of exec 

virtual address space available for locking (KIlO only). 

The call is: 

MOVE AC, (xwd high seq. code, low seq. code' 
LOCK AC. ,or CALLI AC, 60 

,AC contains an 
,error eoce 

error return 
normal return 

The segment codes are a series of bits which specify the way in which the high segment (LH code) and the low 

segment (RH code) are to be locked. The order and position of the bits in the left half correspond to the order 

and position of the bits in the right half; that is, to obtain the bit number for the high segment, subtract 18 from 

the corresponding bit for the low segment. The bits are shown below. 

Bit 17 (high segment) LK.HLS 

Bit 35 (low segment) LK.LLS 

Bit 16 (high segment) LK.HNE 

Bit 34 (low segment) LK.LNE 

Bit 15 (high segment) LK.HNP 

Bit 33 (low segment) LK.LNP 

If 1, lock the segment in the manner indicated by the following 

bits. 

If 0, do not lock the segment; the following bits are ignored. 

If 0, map contiguously in the exec virtual memory (always implied 

on the KAIO). This causes the segment to be added to the exec 

virtual address space so that it can be executed in exec mode. For 

example, this is required when exec mode real-time trapping 

(RTTRP) is used. On the KI I 0, the amount of exec virtual ad­

dress space used by locked jobs is a limited resource with a de­

fined maximum per processor. If mapping the segment would 

cause the maximum to be exceeded, the LKNEM% error return is 

given. The maximum amount available can be obtained from the 

CPU variable GET TAB table for each processor (GETTAB word 

o/oCVEVM). The current amount used can also be obtained from 

the table (o/oCVEVU). 

If 1, do not map in exec virtual memory. If 0, lock in contiguous 

physical memory locations (always implied on the KA10). This 

causes the segment to be moved and remapped, if necessary, so 

that its physical core is contiguous. On the KA10 system, the 

segment is also moved to one end of user core in order to minimize 

fragmentation of memory. If I, do not attempt physical 

contiguity. 

If the user requests a segment to be locked in contiguous physical memory, the monitor attempts to lock the 

segment as low in physical memory as possible. When the segment is locked below 112K, physical and virtual 

contiguity are equivalent, and thus in this case, virtual contiguity does not require the exec virtual memory re­

source to achieve contiguity. 

3-21 



On a KAIO-based system, physical memory is always allocated contiguously and user segments are directly 

addressable in exec mode and, therefore, bit codes 1,3, 5 and 7 are synonymous. 

The setting of bits 33 and 34 (bits 15 and 16) is compatible with the implementation of the LOCK UUO on a 

KAIO-based system. That is, code 1 is the most restrictive, so that a program coded for the KAIO system that 

implicitly uses these properties will also run on the KIlO system. Applications that do not require all properties 

can add the appropriate bits to the LOCK UUO.s calling sequence. 

On a normal return, the job is locked in core. If there is a high-segment, the LH of AC contains its physical core 

address in units of pages (one page is 512 words). The value can be converted to a word address by shifting it 

left nine bits. If there is no high segment, the LH of AC contains zero. The RH of AC contains the physical core 

address of the low segment, shifted right nine bits. 

On an error return, the job is not locked in core and AC either is unchanged or contains an error code. The AC 

is unchanged when the LOCK UUO is executed in monitors previous to the implementation of the UUO. An 

error code indicates the condition that prevented the job from being locked. The error codes are as follows: 

Error Code 

o 

2 

3 

4 

5 

6 

Name 

LKNIS% 

LKNLP% 

LKNCA% 

LKNCM% 

LKNEM% 

LKNIA% 

LKNPU% 

Explanation 

The UUO is not included in this system or the requested function 

is not implemented because it has not been defined with 

MONGEN or because the appropriate feature test switch is off. 

The job does not have locking privileges, or RTTRP privileges, 

if required. 

If the job were locked in core, it would not be possible to run the 

largest existing non-locked job. (Applies only to swapping 

systems.) 

If the job were locked in core, it would not be possible to meet 

the guaranteed largest size for an unlocked job, that is, CORMAX 

would be less than CORMIN. 

The mode of locking requested exec virtual memory mapping but 

the allowable amount of exec mapping has been exhausted. 

An illegal subfunction argument has been supplied. 

The specified page is unavailable. 

NOTE 
The CORE UUO may be given for the high segment of 
a locked job only if it is removing the high segment from 
the addressing space. When the segment is locked in 
core, the CORE UUO and the CORE command with a 
non-zero argument cannot be satisfied and, therefore, 
always give an error return. The program should deter­
mine the amount of core needed for the execution and 
request this amount before executing the LOCK UUO. 

3-22 



Although memory fragmentation is minimized by both the LOCK UUO and the shuffler, the locking algorithm 

always allows job locking, even though severe fragmentation may take place, as long as 

1. all existing jobs can continue to run, and 

2. at least CORMIN is available as a contiguous space (see Figure 3-IE). 

Since memory fragmentation can degrade system throughput, it is important that system managers use caution 

when granting locking privileges. The following are guidelines for minimizing fragmentation when using the 

LOCK UUO. 

3.2.2.1 KAI0 Systems - The guidelines for KAIO systems are: 

1. There is no memory fragmentation if two jobs or less are locked in core. 

2. There is no fragmentation if the locked jobs do not relinquish their locked status (i.e., no job terminates 

that has issued a LOCK UUO). In general, jobs with locking privileges should be production jobs. 

3. If a job issuing a LOCK UUO is to be debugged and production jobs with locking privileges are to be 

run, the job to be debugged should be initiated and locked in core first, since it will be locked at the 

top of core. Then, the production jobs should be initiated since they will all be locked at the bottom 

of core. This procedure reserves the space at the top of core for the job being debugged and guarantees 

that there is no fragmentation as it locks and unlocks. 

4. With a suitable setting of CORMIN and the initial setting of CORMAX in relation to Total User Core, 

the system manager can establish a policy which guarantees 

a. a maximum size for any unlocked job (CORMIN), 

b. a minimum amount of total lockable core for all jobs (Total User Core - CORMAX), and 

c. the amount of core which locked and unlocked jobs can contend for on a first-come-first-served 

basis (Total User Core - initial CORMAX + CORMIN). 

3.2.2.2 LOCK UUO Extension - The extension to LOCK is distinguished from the description of LOCK in 

Paragraph 3.2.2 by the sign bit in the AC. If the sign bit is off, the LOCK UUO is interpreted as in 3.2.2; but 

if the sign bit is on, LOCK will be interpreted as described in the paragraphs that follow. The extended LOCK 

UUO is used to lock at a specified page location in physical memory. This is useful when writing diagnostics to 

test memory online. The format of the extended LOCK is: 

ADR: 

MOVE AC, (XwO -n, AD~] 
LOCK AC, ,or CALLI AC, 60 
error return 
normal -return 

function 
ARG1 
ARG2 

• 
AR(;n-1 

where: function 0 is the only function currently implemented. 

3-23 



Function 

o 

Meaning 

Lock the high and/or low seg­

mentes) into physical contig­

uous pages starting at the phys­

ical page number specified in 

ARGI. 

n= 

-2 

ARGl= 

Left Half = 0 - do not lock the high 

segment. 

Left Half 1= 0 -lock the high segment 

starting with page specified 

in LH of ARGI. 

Right Half = 0 - do not lock the low 

segment. 

Right Half:f 0 - lock the low segment 

starting with page speci­

fied in RH of ARG 1. 

Note that if the UUO indicates that the low segment is to be locked, the physical page number specified in the 

right half of ARG I is where the user's page map page is placed. The first page of the low segment is locked in 

the next higher physical page location. 

There is one possible error return, it is: 

SPECTFIED PAGECS' NOT AVAILABLE FOR LOCKING 

This return would occur when locking the segment at the page(s) specified by ARG 1, would either cause the two 

segments to overlap, cause one or both segments to overlap another locked job, cause one or both segments to 

overlap the monitor, or would cause one or both segments to be outside the range of on-line memory. 

An example of the extended LOCK UUO is: 

A1)R. 

MOVE AC. [XiAJO .2, ADP 1 
LOCK AC, 

J~ST ERPOR 
••• 
'" 230,,224 

,function = lock at specified 
,physical page. 

On a successful return, the user's page map page would be locked into physical page location 224; the first page 

of'the low segment would be locked into page loca'cion 225; the second page in 226, and so on. The first page 

of the high segment would be locked in page 230, the second page in 231, and so on. 

3.2.2.3 Core Allocation Resource - Because routines that lock jobs in core use the swapping and core allocation 

routines, they are considered a sharable resource. This resource is the semi-permanent core allocation resource 

(mnemonic=CA). When a job issues a LOCK UUO and the system is currently engaged in executing a LOCK UUO 

for another job, the job enters the queue associated with the core allocation resource. Because a job may share a 

queue with other jobs and because swapping and shuffling may be required to position the job to where it is to be 

locked, the actual execution time needed to complete the process of locking a job might be on the order of 

seconds. 

3-24 



When it has been established that a job can be locked, the low segment number and the high segment number 

(if any) are stored as flags to activate the locking routines when a swapper and shuffler are idle. The ideal posi­

tion for the locked job is also stored as a goal for the locking routines. In KAIO swapping systems, the ideal 

position is always achieved to guarantee minimum fragmentation. In nonswapping systems, minimum fragmenta­

tion is achieved only if the ideal position does not contain an active segment (see Figure 3-1). 

In swapping systems, after the job is locked in core, the locking routine determines the size of the new largest 

region available to unlocked jobs. This value will be greater than or equal to CORMIN. If this region is less than 

the old value of CORMAX, then CORMAX is set equal to the size of the new reduced region. Otherwise, 

CORMAX remains set to its old value. 

3.2.2.4 UNLOK. AC, or CALLI AC, 120( 1) - This UUO provides a mechanism for a job to unlock itself with­

out doing a RESET UUO. The user can specify if one or both segments are to be unlocked. The call is: 

~~ovs I AC, n 
HRfH AC, m 
LINLOI<.. AC, 
error returl" 
normal return 

,1f hiQh segment is to be unlOCked 
'if low seqment 1s to be unlocked 
,or CALLI AC, 120 

An error return is given if the UUO is not implemented. If this is the case, a job can relinquish its locked status 

when either the user program executes on EXIT or RESET UUO, or the monitor performs an implicit RESET 

for the user. Implicit RESETS occur when 

1. The user program issues a RUN UUO, or 

2. The user types any of the following monitor commands: R, RUN, GET , SAVE, SSA VE, CORE 0, and 

any other system program-invoking command. 

NOTE 
If several jobs are sharing a locked high segment, the 
high segment is unlocked only when the SN%LOK 
bit is turned off for all jobs sharing the segment (Le., 
when all jobs which executed the LOCK UUO have 
performed the unlock function) (refer to GETTAB 
Table 14). 

On a normal return, the segment (or job) is unlocked and becomes a candidate for swapping and shuffling. Any 

meter points (METER.UUO) are deactivated and, if the low segment is unlocked, any real-time devices are RESET. 

CORMAX is increased to reflect the new size of the largest contiguous region available to unlocked jobs. How-

--- -ever, C::ORMAX is never set to a greater value than its initial setting. 

(1) This UUO depends on FTLOCK which is normally off in the DECsystem-l040. 

3-25 



A) BEFORE 

1-.·.··.·.·.·----·······1 
MONITOR 

1···········-···-··-·~·.1 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
1······----······--·····1 

TIME·SHARI~G JOB 
ISSUING LOCK tJUO 

1-----········----······1 
11/1111111111111111111111 
lllllllllllljlllllllllll! 
11/1111111111111111111111 
llllillllllllllllllllllll 
1111!llllllljlll!llllllll 
11/1111111111111111111111 
11/1111111111111111111111 
llljllllllllllllllllllll! 
lllljlllllllllllllllllll! 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
1--······-_·············1 

B) BEFOP,E 

1·-•• -·-·--.--·.··-~--·., 

MONIrop 

1·····-_··· __ ···········1 
11/1111111111111111111111 
lllllllllllllllljllllllll 
llljlllllllllllllllllllll 
1········-----······--··1 

TIME.SHARING JOB 
ISSUING LOCK UUO 

1···.~···--·-··--·-··~··, 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
111111111111111111111111l 
11/1111111111111111111111 
1··········_-_··········1 

LOCKED JOB 1 
1 

1·····-_·······-········1 

~FrER 

1·················---·--1 
MONITOR 

1············_--·······-1 - 11/1111111111111111111111 .. 11/1111111111111111111111 
11/1111111111111111111111 
1---···················-1 
11/1111111111111111111111 ... 11/1111111111111111111111 
1······················-1 
11/1111111111111111111111 ... 111111111111111111111111! ... 11/1111111111111111111111 

CORMAX 11/1111111111111111111111 .. 11/1111111111111111111111 .- 11/1111111111111111111111 .. 11/1111111111111111111111 ... 11/1111111111111111111111 ... 11/1111111111111111111111 ... 11/1111111111111111111111 ... 11/1111111111111111111111 ... 111111111111111111111111! ... 1·_······_·······-······! .- LOCKED JOE ... 

,···········_-··········1 

AFTEF 

1···~··-.······-······-·1 

MONITOP 

1·······················, - LOCKED JOB .. 
... ,······················-1 

11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 - 11/1111111111111111111111 .. 11/1111111111111111111111 ... 11/1111111111111111111111 

CORi-1AX 11/1111111111111111111111 ... lllllllllllllllllllllllll .. 11/1111111111111111111111 
11/1111111111111111111111 ... 11/1111111111111111111111 

lilt 11/1111111111111111111111 .. 11/1111111111111111111111 ... 11/1111111111111111111111 .- 11/1111111111111111111111 
• 11/1/11111111111111111111 

1·······················1 
LOCKED JOB 

, ..............•........ , 
Figure 3-1 Locking Jobs In Core on KA10 Systems (Sheet 1 of 3) 

3-26 

-.. .. 
.,. 
... 

.. 
• 
... 

CO?~AAX 
... 
... 
... 
... 

... 

... 

-til 
... 
• 
• 
.-
... 

COFM~X 
• 
.-.. 
lilt 

... 

... 
• ... 
... 



C) BEFORE 

1-.------···.-.··--··-··1 
MONITOR 

1········-_··.··.····--.£ 
LOCKED ~'I')B 

1·····-_·-_······_-····.1 
11/1111111111111111111111 
11/1111111111111111111111 
1--------------·······-.1 

TIME.SHARIN~ JOB 
ISSUING LOCK UUO 

1-·-··---~···~····-··-··1 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
111111111111111111111111! 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
1·····--············--··1 

LOCKED JOR 

,·····--·-------·--··--.1 

1··········_-_··_-······1 
MONITOR 

1···.---.······· .• ·····.! 
LOCKED JOB 

1·--···-·---···-·····-·~1 
11/1111111111111111111111 
11/1111111111111111111111 
1-············-_········1 
1 TIME-SHARING JOB 
1 ISS TJ I N G IJ 0 C K U II 0 
1. 
1--···--·---··----······1 
11/1111111111111111111111 
11/1111111111111111111111 
1//1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
1//11111/1111111111111111 
1~····--·--·············1 

LOCKEP JOB 

1·-··---·--···-··-·····~1 

-... 
.. 

CORMAX .. 

... 

III 

-... .. 
"" ... 
... 

CORMAX 
III 

"" 

... 

AFTER 

1~~···-······-··········1 

MONITOR 

1·······················1 
LOCKED JOB 

1·~·····················1 
LOCKED JOB 

1···············-_······£ 
1//111/1/1/11111111111111 
11/1111111111111111111111 
1//1111111111111111111111 
11/1111111111/11111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/111/1/1/1111/111111111 
11/1111/11111111111111111 
11/1111111111111111111111 
11/11111111111111111111/1 
11/1111111111111111111111 
11/11111111/1111111111111 
1················~······1 

LOCKED JOB 

1····-···-·~-·······-··-1 

AFTER 

1-······················1 
MONITOR 

I·······················, 
LaCKED JOB 

1·······----·······--··-1 
LOCKED JOB 

,·······················1 
11/1111111111111111111111 
11/11111111/1111111111111 
11/1111/111111111111/1/11 
11/1111111//111/111111111 
11/1111111111111111111111 
111111111111111~/111/llll 
11/11111111111111111/1111 
11/1111111111/11111111111 
11/11111111111111111111/1 
11/1111/11111111111111111 
11//11/111111111111111111 
1·······················1 

LOCKED JOB 

I·······················, 
Figure 3-1 Locking Jobs In Core on KA10 Systems (Sheet 2 of 3) 

3-27 

-.. .. 

CORMAX 
• ,. .. .. 
--
--

-"" 
CORMAX 

"" 
"" 
--

- "" 

--
--.. .. 
• -



E) Unlikely Fragmentation Case 

REFORE 
1--·-·--·--···--·~--·-··1 

MONITOR 

£·· __ ····_-············-1 
TT.~g·SHARING J08 
ISSUING LOCK llUO 

1-.··.----.-.···-------·1 
-'" 

ArTER 
1-······················1. 

MONITOR 

1-·--·····_--·····_-····! 

11/111111111111/1111111/1 
11/111111111111/111111111 
11/1111111111/11111111111 
11/1111111111/11111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 

CQRMAX 

llllllllllllllllllllllll! 
11/1111111111111111111111 
11/111/1/111111/111111111 
11/11111/111111/111111111 
11/11111/1111111111111111 
11/1/11111/11111111111111 
11/11111/1111111111111111 
11/1111111111/11111111111 
11/111111111/111111111111 
11/1111111111111111111111 
11/1111111111111111111111 

1········----····---···-1 
LOCKED JOB 

1·····--_·········--····1 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1111111111111111111111 
11/1/11111111111111111111 
11/1111111111111111111111 
1··---·----·············1 

T.JOCKED JO'A 

1----···_-------·······-1 

... 

.. .. 

.. 
, •••••••••••••••••• _- ••• £ 

LOCKED JOB 
1··-·-----····-··--·~-·-1 

LOCKED JOB 

! 
1···········~···--······1 
11/1111111111111111111111 
11/1111111111111111111111 
1-----··················1 

1-·····················-1 

Figure 3-1 Locking Jobs In Core on KAIO Systems (Sheet 3 of 3) 

3-28 

-... 
"" ... 

CORMAX ... 
... 



3.2.3 CORE AC, or CALLI AC, 11 

This UUO provides a user program with the ability to expand and contract its core size as its memory require­

ments change. To allocate core in either or both segments, the left half of AC is used to specify the highest user 

address to be assigned to the high segment and the right half is used to specify the highest user address in the low 

segment. The monitor will assign the smallest amount of core which will satisfy the request. If the left half of 

AC contains 0, the high segment core assignment is not changed. If the left half of AC is non-zero and is either 

less than 400000 or the length of the low segment, whichever is greater, the high segment is eliminated. If this 

is executed from the high segment, an illegal memory error message is printed when the monitor attempts to 

return control to the illegal address. 

A RH of 0 leaves the low segment core assignment unaffected. The monitor clears new core before assigning it 

to the user; therefore, privacy of information is ensured. 

The error return is given if: 

1. The LH is greater than or equal to 400000 and the system does not have a two-segment capability. 

2. The LH is greater than or equal to 400000 and the user has been meddling without write access 

privileges (refer to Paragraph 6.2.3). 

3. The LH and the RH are both zero. 

In swapping systems, this programmed operator returns the maximum number of lK core blocks (all of core 

minus the monitor, unless an installation chooses to restrict the amount of core) available to the user. By re­

stricting the amount of core available to users, the number of jobs in core simultaneously is increased. In non­

swapping systems, the number of free and dormant lK blocks is returned; therefore, the CORE UUO and the 

CORE command return the same information. 

For compatibility, the KIlO also returns the number of lK blocks available even though core is allocated in 512-

word pages. The value returned is truncated to the nearest multiple of lK (e.g., if 21 pages are available, the 

value returned in 10K). 

The call is: 

~OVE AC,[XWO hiqh adr or 0, low addr or 0] 
CORE !..C, 
error retur.n 
nor\"l'lal return 

, 0 rCA L T.l I AC, 11 

The CORE UUO reassigns the low segment (if RH is non-zeto) and then reassigns the high segment (if LH is 

non-zero). If the sum of the new low segment and the old high segment exceeds the maximum amount of core 

~----allowed to a user, the error return is given, the core assignment is unchanged, and the maximum core available to 

the user for high and low segments (in lK blocks) is returned in the AC. In a nbnswapping system, the number 

of free and dormant 1 K blocks is returned. 

If the sum of the new low segment and the new high segment exceeds the maximum amount of core allowed ~o 

a user, the error return is given, the new low segment is assigned, the old high segment remains, and the maximum 

core available to the user in lK blocks is returned in the AC. Therefore, to increase the low segment and decrease 

the high segment at the same time, two separate CORE UUOs should be used to reduce the chances of exceeding 

the maximum size allowed to a user job. An error return is also given if a program attempts to increase the size 

of the low segment such that the low and high segments would overlap. 

3-29 



If the high segment is eliminated by a CORE UUO, a subsequent CORE UUO, in which the LH is greater than 

400000, will create a new, nonsharable segment rather than re-establishing the old high segment. This segment 

becomes sharable after it has been: 

1. Given an extension .SHR. 

2. Written onto the storage device. 

3. Closed so that a directory entry is made. 

4. Initialized from the storage device by GET, R, or RUN commands or RUN or GETSEG UUOs. 

The loader and the SAVE and GET commands use the above sequence to create and initialize new sharable 

segments. 

A user program which expands core should compare its highest desired address with its highest legal address ob­

tained from the Job Data Area location .JBREL (refer to Chapter 1). If the desired address is greater than the 

highest legal address, the program should execute a CORE UUO for the new desired address (not for the highest 

old legal address plus 512 or 1024). The monitor then updates .JBREL by the number of words in its basic core 

allocation unit (i.e., 1024 words on the KA 1 0 processor or 512 words on the KIlO processor). Subsequent com­

pares of the desired address and the highest legal address do not cause a CORE UUO until the next increase of 

core is required. If used this way, a CORE UUO will execute on both the KA 1 0 and KIlO processors and will 

require less monitor CPU time because the number of CORE UUOs needed will be minimized. 

The following example illustrates the method for obtaining core only when needed. 

,SU8POUTINE TO GET COPE ONLY WHE~ NEEDED 
,CALL: MOVE Tl, HIGHEST DESIRED ADDRESS 

PUSHJ P,CHKCOR 
RETURN HERE UNLESS NO MORE CORE 

CHKCOPS CAMG 
l'OPJ 
CORE 

JRST 
POPJ 

Tl,.J8REL## 
p, 
T1, 

rRPOR 
P, 

,GREATER THAN HIGHEST LEGAL ADDRESS? 
,NO, PRESENT CORE BIG ENOUGH. 
,YES, GET NEXT INCREMENT OF CORE. 
,NOT AVAILABLE 
,NEXT INCREMENT ASSIGNED. 

3.2.4 SETUWP AC, or CALLI AC, 36 

This UUO allows a user program to set or clear the hardware user-mode write protect bit and to obtain the pre­

vious setting. It must be used if a user program is to modify the high segment. The call is: 

MOVEI ~C,b1t 
SETUWP AC, 
error return 
normal return 

, or CALLI AC, 36 

3-30 



If the system has a two-register capability, the normal return will be given unless the user has been meddling 

without write privileges, in which case an error return will be given. A normal return is given whether or not the 

program has a high segment, because the reentrant software is designed to allow users to write programs for two­

register machines, which will run under one-register machines. Compatibility of source and relocatable binary 

files is, therefore, maintained between one-register and two-register machines. 

If the system has a one-register capability, the error return (bit 35 of AC=O) is given. This error return allows the 

user program to find out whether or not the system has a two-segment capability. The user program specifies the 

setting.of the user-mode write protect bit in bit 35 of AC (write protect = I, write privileges = 0). The previous 

setting of the user-mode write protect bit is returned in bit 35 of AC, so that any user subroutine can preserve 

the previous setting before changing it. Therefore, nested user subroutines, which either set or clear the bit, can 

be written, provided the subroutines save the previous value of the bit and restore it on returning to its caller. 

3.2.5 Page Fault Handling 

Whenever an executing program (on KIlO systems with the virtual memory option) references a location in a 

page that is not in core, the system transfers control to a page fault handler. A page fault handler determines 

which pages to place in core while the program is executing. A user can include his own page fault handler; or 

if he does not supply one, the system default page fault handler will be used. 

3.2.5.1 Default Page Fault Handler - The default page fault handler utilizes a modified first-in/first-out (FIFO) 

technique. An ordered list of core resident pages is kept by age of page in physical core. Each page has an ac­

cess-allowed bit, which can be set to YES or NO. Periodically, the handler will set every physical page's access­

allowed bit to the NO position. A page fault will occur the next time one of these pages is referenced, that page's 

access-allowed bit will be changed to the YES position, and execution will continue. 

By use of the age-ordered list along with a periodic check on the access-allowed bit, pages will be swapped on a 

modified "first-in/first-out least recently used" basis. 

3.2.5.2 Page Fault Handler Structure - A page fault handler controls the working set, and is a part of the user's 

core image. If the user does not supply a page fault handler, a default handler will be read into the top of the 

user's address space from SYS:PFH.VMX. If a user-supplied handler is to be used, .JBPFH must point to it . 

. JBPFH is written in the format: 

.JBPFH/ pfh-end . , pfh-start 

To provide his own page fault handler, the program must ensure that .JBPFH contains the address of its handler 

before the first page fault occurs. Alternatively, the user may cause the page fault handler to be obtained from 

his directory by ASSIGNing DSK to SYS. If the user's page fault handler is deleted through a CORE UUO, 

-- SYS:PFH.VMX will be brought into core on the next page fault. 

3-31 



PFH start must be of the form: 

PFH start: JRST START 

START: 

PC for fault 

page fault word 

virtual time since page handler was first brought in 

c~rrent page rate 

o ; reserved 

o ; reserved 

o ; reserved 

The four words following PFH - start are filled in on a page fault. The page fault handler will be given control at 

PFH-start, the monitor will store the fault PC into PFH-start + I, the page fault word in PFH-start + 2, virtual 

time since the page fault was first brought in will be stored in PFH-start + 3, and the current page rate will be 

stored in PFH-start + 4. 

The page fault word has the following format: 

Bit 0 = 1 indicates the working set has changed by the monitor or the user program without the 

page fault handler being given control. (PF.HCB) 

Bits 1-17 page number causing the fault. (PF .HPN) 

Bits 18-35 Code indicating the type of page fault (PF.HFC), either: 

1 - access not allowed (the access-allowed bit has been turned off for the referenced 

page). (.PFHNA) 

2 - page not in core (the referenced page is swapped out). (.PFHNI) 

3 - monitor detected (UUO) (a page containing UUO argument is swapped out). 

(.PFHUU) 

4 - trap after n units in virtual time (as a result of requesting virtual time traps, refer 

to the description of the .STTVM option of the SETUUO UUO). (.PFHTI) 

5 - allocated but zero page (.PFHZI). 

6 - allocated but zero after UUO. (.PFHZU) 

3.2.6 PAGE. UUO, or CALLI AC, 145 

The PAGE. UUO is used (on KI 10 systems with the virtual memory option) to manipulate pages and the data 

associated with these pages. The general format for the call is: 

MOVE AC, [XWD function, LOC] 
PAGE, AC, ,or CALLI AC, 145 
error return 
norrTIal return 

3-32 



LaC points to an argument BLOCK. The format of the argument block varies according to the specific function 

involved. The following functions are available with the PAGE. UUO: 

Function Code Mnemonic Meaning 

0 .PAGIO Swap a page in/out. 
. PAGeD Create/destroy a page . 

2 .PAGEM Move/exchange a page. 
3 .PAGAA Clear/set access allowed. 
4 .PAGWS Get the working set. 
5 . PAGGA Get access allowed . 
6 .PAGCA Get page accessibility. 

The first four functions are used to specify one of two functions (e.g., in/out). To specify which of the two 

functions is desired, the user utilizes the sign bit of each word in BLOCK. A detailed description of each func­

tion follows: 

Function 0 (swap a page in/out) -

causes pages, which have already been allocated, to be swapped in and added to the working set, or to be 

deleted from the working set in core and moved to secondary storage. The argument BLOCK is a set of 

entries each in the following form: 

o 2-26 27-35 

S P N 

where: S specified whether the page is to be swapped in' (0) or out (1). 

P specifies whether the page is to be transferred to fast secondary storage (0) (e.g., fixed head 

disk) or to slow secondary storage (1) (e.g., moving head disk). 

N specifies the page number to be swapped in or out. 

The entries in the argument block must be passed in increasing order by page number. 

Function I (create/destroy a page) -

causes pages to be created or destroyed. The words in argument BLOCK are of the form: 

o 2-26 27-35 

N 

where: S specifies whether a page is to be created (0) or destroyed (1). 

P specifies whether the page is to be created on disk (1) or added directly to the working set (0). 

(This applies to create only.) 

N specifies the page number to be created or destroyed. 

Note that if bit 1 is set for any entry, it is then assumed to be set for all entries. Arguments must be 

passed in increasing order by page number. 

3-33 September 1974 



Function 2 (move/exchange a page) -

causes a page to be moved from one location in user virtual address space to another location, or causes 

two pages to exchange locations. The words in the argument BLOCK are of the form: 

o 1-8 9-17 18-26 27-35 

SP DP 

where: S specifies whether the specified page is to be moved (0) or exchanged with another page (1). 

SP specifies the source page location. 

DP specifies the destination page location. 

A page cannot be moved to an already allocated page. 

Function 3 (set/clear access allowed) -

causes access permission to be either set (1) or cleared (0). If a page is a part of the working set, its access 

bit can be turned off. When the access bit is in the off state, a page fault will occur the next time that 

page is accessed. The page will remain in core, so the access bit may be restored to the on state at any time. 

The words in the argument BLOCK are of the form: 

o 1-26 27-35 

N 

where: S specifies whether the access permission is to be set (1) or cleared (0). 

N specifies the page number for which access permission is to be set or cleared. 

Arguments must be passed in increasing order by page number. 

Function 4 (get the working set) -

determines which pages are currently a part of the working set (i.e., in core). A bit map is returned in 

BLOCK. N in the right half of word LOC specifies the number of words in the bit map that are to be 

returned. N would normally be 17 (octal) to obtain the entire bit map. Within BLOCK, the bit map is 

set up in the following form: 

o 35 

word 0 page 0-35 

word 14 pages 504-511 

If a bit within this bit map is set, the page associated with that bit is a part of the working set. 

Function 5 (get access allowed) -

determines which pages have their access-allowed bits set. A bit map is returned in BLOCK having the 

same format as that returned for Function 4. If a bit is set within the bit map, the page associated with 

that bit is accessible. 

3-34 



Function 6 (get page accessability) -

determines the type of access allowed for a given page. The format of this function differs from the 

preceding ones. There is no argument block. Instead the contents of AC contain the necessary data in 

the following format: 

0-17 18-35 

C N 

where: C specifies the function code (Le., 6 or .PAGCA). 

N specifies the page number associated with this function. 

One or more of the following bits will be returned in AC upon completion of the instruction: 

Bit Mnemonic Meaning 

0 PA.GNE Page does not exist. 

1 PA.GWR Write access allowed. 

2 PA.GAA Access allowed (controlled by function 3). 

4 PA.GAZ Zero page (allocated by a CORE, UUO but 

not yet referenced). 

5 PA.GCP Can be paged out. 

6 PA.GPO Is paged out. 

There are limitations on what pages may be paged out. Page zero may never be paged out, and if the high seg­

ment is sharable, none of the high segment may be paged out. 

The possible error codes which may be returned in AC as a result of the PAGE. UUO are: 

Code 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

Mnemonic 

PAGIA% 

PAGIP% 

PAGCE% 

PAGME% 

PAGMI% 

PAGCI% 

PAGSH% 

PAGIO% 

PAGNS% 

PAGLE% 

PAGIL% 

Meaning 

Illegal argument. 

Illegal page number. 

Page can't exist, but does. 

Page must exist, but doesn't. 

Page must be in core, but isn't. 

Page can't be in core, but it is. 

Page is in sharable high segment. 

PagiIl:g I/O error. 

No swapping space available. 

Core limit exceeded. 

Not allowed if locked. 

3-35 



3.3 SEGMENT CONTROL 

3.3.1 RUN AC, or CALLI AC, 3S 

This UUO has been implemented so that programs can transfer control to one another. Both the low and high 

segments of the user's addressing space are replaced with the program being called. 

The call is: 

MOVSI AC, start-adr-increment 

HRRI AC, adr-of-block 

RUN AC, 

error return 

[normal return is not here but to start 

address plus increment of new program] 

The arguments contained in the six-word block are: 

EI SIX5IT/lo<;rlcal d~vlce 'na!"'!el 
SIXBIT/fl1enamel 

SIXBIT/ext. for low filel 

o 
XWD ~roj. nO.I ~rog. no, 

XWO 0, optional core 
ass1o~ment 

;or CALLI AC, 35 

,for either or both hlqh and 
flow files 
,if LH = 0, .LOW 1s assumed if 
,high segment exists, .SAV is 
,assumed If hlqh segment does 
,not exist. 

,If = 0, use current user's 
,proj, proQ 
,RH = new hlQhest user address 
,to be ass19ned to low 
,segment. 
,LH is lqnored rather than 
,setting high seg~ent. 

A user program usually will specify only the first two words and set the others to O. The RUN UUO destroys 

the contents of all the user's AC's and releases all the user's I/O channels; therefore, arguments or devices cannot 

be passed to the next program. 

The RUN UUO to certain system programs (e.g., LOGIN, LOGOUT) automatically sets the appropriate privileged 

bits (JACCT and JLOG). These bits are not set (or are turned off if they were set) for programs that are not 

privileged programs from device SYS or for programs whose starting address offset is greater than 1 .. Assigning 

a device as SYS does not cause these bits to be set. 

The RUN UUO clears all of core. However, programs should not count on this action, and must still initialize 

core to the desired value to allow programs to be restarted by a tc, START sequence without having to do I/O. 

Programs on the system library should be called by using device SYS with a null project-programmer number in­

stead of device DSK with the project-programmer number [ 1,4]. The extension should also be null so that the 

calling user program does not need to know if the call system program is reentrant or not. 

3-36 September 1974 



The LH of AC is added to and stored in the starting address (.JBSA) of the new program before control is 

transferred to it. The command tc followed by the START command restarts the program at the location 

specified by the RUN UUO, so that the user can start the current system program over again. 

The user is considered to be meddling with the program (refer to Paragraph 3.3.5) if the LH of AC is not 0 or I 

unless the program being run is execute-only for this job. In this case, the offset is treated as O. 

Programs accept commands from a terminal or a file, depending on how they were started, due to control by the 

program calling the RUN UUO. The following convention is used with all of DEC's standard system programs: 

o in LH of AC means type an asterisk and accept commands from the terminal. A I means accept commands 

from a command file, if it exists; if not, type an asterisk and accept commands from the terminal. The conven­

tion for naming system program command files is that the filename be of the form 

###III.TMP 

where III are the first three (or fewer if three do not exist) characters of the name of the program doing the 

LOOKUP, and # # # is the decimal character expansion (with leading zeroes) of the binary job number. The job 

number is included to allow a user to run two or more jobs under the same project-programmer number. For 

example, 

009PIP.TMP 

039MAC.TMP 

Decimal numbers are used so that a user listing his directory can see the same number as the PlOB command 

types. These command files are temporary and may, therefore, be deleted by the KJOB program (refer to KJOB 

command and Appendix C in DECsystem-1 0 Operating System Commands). 

At times it is necessary to remember the arguments that a user typed in to invoke a program (i.e., the arguments 

on a GET or RUN command). For example, the COBOL program needs these arguments in order to GETSEG 

the next overlay from the same place. In all monitors, when the program is first started, this information can be 

obtained from the following accumulators: 

ACO 

AC7 

ACll 

ACl7 

(.SGNAM) 

(.SGPPN) 

(.SGDEV) 

(.SGLOW) 

can tains the filename. 

con tains the directory name. 

contains the device name. 

contains the extension of the low segment. 

Note that the starting address should be changed by the program so that a tc, START sequence will not destroy 

the remembered arguments in the ACs. This information should not be used when desiring to save the current 

- -~--segment name (GETTAB should be used in this case), but rather when obtaining the call arguments before calling 

the next segment. 

The RUN UUO can give an error return with an error code in AC if any errors are detected; thus, the user pro­

gram may attempt to recover from the error and/or give the user a more informative message on how to proceed. 

Some user programs do not go to the bother of including error recovery code. 

The monitor detects this and does not give an error return if the LH of the error return location is a HALT in­

struction. If this is the case, the monitor simply prints its standard error message for that type of error and 

3-37 



returns the user's terminal to monitor mode. This optional error recovery procedure also allows a user program 

to analyze the error code received and then execute a second RUN UUO with a HALT if the error code indicates 

an error for which the monitor message is sufficiently informative or one from which the user program cannot 

recover. 

The error codes are an extension of the LOOKUP, ENTER, and RENAME UUO error codes and are defined in 

the S.MAC monitor file. Refer to Appendix E for an explanation of the error codes. 

The monitor does not attempt an error return to a user program after the high or low segment containing the 

RUN UUO has been overlaid. The UUO should be placed in the low. segment in case the error is discovered after 

the high segment has been released. 

To successfully program the RUN UUO for all size systems and for all system programs with a size that is not 

known at the time the RUN UUO is coded, it is necessary to understand the sequence of operations the RUN 

UUO initiates. Assume that the job executing the RUN UUO has both a low and a high segment. (It can be 

executed from either segment; however, fewer errors can be returned to the user if it is executed from the high 

segment.) 

The sequence of operations for the RUN UUO is as follows: 

I. Does a high segment already exist with desired name? 

If yes, go to 30. 

INIT and LOOKUP filename .SHR. If not found, go to 10. 

Read high file into top of low segment by extending it. (Here the old segment and new high segment 

and old high segment together may not exceed the maximum user core legally available to this job at 

the time of the UUO nor may it cause the total amount of virtual core assigned to all users to exceed 

the size of the swapping space.) 

REMAP the top of low segment replacing old high segment in logical addressing space. 

If high segment is sharable (.SHR) store its name so others can share it. 

Always go to 40 or return to user if GETSEG UUO. 

10. LOOKUP filename .HGH. If not found, go to 35 or error return to user if GETSEG UUO. 

Read high file into top of low segment by extending it. (The old low segment and new high segment 

and old high segment together may not exceed the maximum user core legally available to this job at 

the time of the UUO nor may it cause the total amount of virtual core assigned to all users to exceed 

the size of the swapping space.) 

Check for I/O errors. If any, error return to user unless HALT in LH of return. Go to 41. 

30. Remove old high segment, if any from logical addressing space. If a KIlO based system, check that 

the new high segment willoverlap the existing low segment, if high is placed at indicated origin (if one 

is indicated). If it will, give an error return .. break Go to 40 or return to user if GETSEG UUO. 

35. Remove old high segment, if any, from logical addressing space. 

(Go to 41.) 

40. Copy vestigial job data area into job data area. 

Does the new high segment have a low file 

(LH of .JBCOR > 137) ? 

If not, go to 45. 

3-38 



41. LOOKUP filename .SA V or .LOW or user specified extension. Error if not found. Return to user 

if there is no HALT in LH of error return, provided that if the CALL is from the high segment, it is 

still the original high segment and has not been removed from the user's addressing space. Otherwise, 

the monitor prints one of the following error messages: 

?NOT A SAVE FILE 
?fl1ename,SAV NOT FOUND 
?TBANSMISSION ERROR 
?LOOKUP FAILURE n 
?nK OF CORE NEEDED 
?~JO START ADR 

and stops the job. 

Reassign low segment core according to size of file or user specified core argument, whichever is 

larger. Previous low segment is overlaid. Read low file into beginning of low segment. Check for 

I/O errors. If there is an error print error message and do not return to user. If there are no errors, 

perform START. 

45. Reassign low segment core according to larger of user's core argument or argument when file saved 

(RH of .JBCOR). 

NOTE 
To be guaranteed of handling the largest number of 
errors, the cautious user should remove his high seg­
ment from high logical addressing space (use CORE 
UUO with a one in LH of AC). The error handling 
code should be put in the low segment along with the 
RUN UUO and the size of the low segment reduced 
to lK. A better idea would be to have the error 
handling code written once and put in a seldom used 
(pro bably nonsharable) high segment, which could 
be gotten in high segment using GETSEG UUO (see 
below) when an error return occurs to low segment 
onaRUNUUO. 

3.3.2 GETSEG AC, or CALLI AC, 40 

This UUO has been implemented so that a high segment can be initialized from a file or shared segment without 

affecting the low segment. It is used for shared data segments, shared program overlays, and run-time routines 

such as FORTRAN or COBOL object time systems. This programmed operator works exactly like the RUN 

----- UUOwith the following exceptions: 

1. No attempt is made to read a low file. 

2. The accumulators are not preserved. The only change made to JOBDAT is to set the left half of 

.JBHRL to 0 (a SAVE command then saves all of the high segment) and the right half to the highest 

legal user address. 

3. If an error occurs, control is returned to the location of the error return, unless the left half of the 

location contains a HALT instruction. 

3-39 



4. On a normal return, the control is returned to two locations following the UUO, whether it is called 

from the low or high segment. It should be called from the low segment unless the normal return 

coincides with the starting address of the new high segment. 

5. User channels 1 through 17 are not released so the GETSEG UUO can be used for program overlays, 

such as the COBOL compiler. Channel 0 is released because it is used by the UUO. 

6. .JBSA and .JBREN are zeroed if they point to a high segment that is being removed. This produces 

the message: 

?NO ST~RT ADDRESS 

if a START or REENTER command is given. 

Refer to steps 1 through 30 of the RUN UUO description (Paragraph 3.3.1) for details of GETSEG UUO 

operation. 

3.3.3 REMAP AC, or CALLI AC, 37 

This UUO takes the top part of a low segment and remaps it into the high segment. The previous high segment 

(if any) will be removed from the user's addressing space. The new low segment will be the previous low segment 

minus the amount remapped. 

The call is: 

MOVE I AC, highest addr in low seg 
or 
M 0 V E A C, [ X \110 hi t;J h s ego r 1 g 1 n , low s e 9 l 

PEMAP AC, 
error returl" 
norTl'al return 

"<110 systems in 
,low seq] 
,or CA.LLI AC, 37 

The monitor rounds up the address to the nearest core allocation unit of either 1 024( 1 0) (2000(8)) words on 

KA 1 O-based systems or 512( 1 0) (1000(8)) words on KI 10-based systems. If the argument exceeds the length 

of the low segment, remapping will not take place, the high segment will remain unchanged in the user's ad­

dressing space, and the error return will be taken. The error return will also be taken if the system does not have 

a two-register capability. 

Also, the error return will be given 

• if an origin for the high segment is specified on KA 1 0 based systems. 

• if the specified remapping (on KIlO based systems) would cause the new high and low segments 

to overlap. 

• if the new high segment origin plus its length would result in the high segment starting (or ending) at 

an address outside the program's virtual address space (>256K). 

3-40 



The content of AC is unchanged. The content of .JBREL (refer to Paragraph 1.2.1) is set to the new highest legal 

user address in the low segment. The LH of .JBHRL is set to 0 (a SAVE command then saves all of the high 

segment) and the RH is set to the highest legal user address in the high segment (401777 or greater or 0). The 

hardware relocation will be changed, and the user-mode write protect bit will be set. 

This UUO is used by the LOADER to load reentrant programs, which make use of all physical core. Otherwise, 

the LOADER might exceed core in assigning additional core and moving the data from the low to the high seg­

ment with a BLT instruction. The GET command also uses this UUO to perform I/O into the low segment in­

stead of the high segment. 

3.3.4 Testing for Sharable High Segments 

Occasionally, it is desirable for a program to determine whether its high segment is sharable. If the high segment 

is sharable, the program may decide not to modify itself. The following code tests the high segment whether or 

not 

1. the system has a high segmen t capability, or 

2. the job has a high segment. 

HRFOI 'T, .GTSGN 
GETT~B T, 

rsee 1f h1qh segme~t 1s sharable 
:look at monitor .GTSGN table 
,table or UUO not ~resent JRST .+' 

'rLNN T,(SN~Sl4P) ,1s sharable bit on? 
JRST jliOTSHF ,no, gO ahead and modify here 

,1f high segment is sharable, 

3.3.5 Determining the High Segment Origin 

It is occasionally desirable for a program to determine the or~gin of its high segment (i.e., the starting virtual ad­

dress of the high segment within the program's address space). This information would be useful, for example, 

to a program that wanted to access information in the vestigial job data area or wanted to transfer control to an 

entry point in a high segment which had been GETSEGed. Prior to the 5.07 monitor release, the high segment 

origin was normally 400000 (octal) or the first available core allocation boundary above the low segment, if the 

low segment was larger than 128K. This assumption about the location of the high segment should no longer be 

made by programs. Rather, programs should determine the location of their high segment using the following 

procedure: 

HFRZ 
JUMPE 
HRPZ 

------ -- ----TR~N -
t-10VE! 
MOVE 
GET"~r. 

HRIJI 
LSH 
ANDJ 
MOVBM 

T1,.JBHRL ,HIGHEST RELATIVE ADF IN HI SEG 
Tl,NOHIGH ,JUMP IF NO HI SEG 
Tl,.JBPEL :HIGHEST ADR IN LOW SEG 
-T-1-,400000-------- ~-:-LON SEG BIGGER _THAt~ 128'1<1 
Tl,377777 ,NO, ASSUME HI SEG STARTS AT 400000 
T2, [XWD -2"GTUPM] ,GET HI ORIGIN FFOM MONITOR TABLE 
T2, :,GTUPM INDEXED 8Y CURRENT HI SEG NUH. 
T2,I(Tl) ,TABLE OR UUO NOT PRESENT, USE ASSUMED 
T2, .-018 ,VALUE, CONVERT TO ADR OF HI SEG. 
T2,777 ,CLEAR ANY LOW BITS 
T2,HJORGN ,STORE AS THE ORIGIN OF THE HI SEG 

3-41 



3.3.6 Modifying Shared Segments and Meddling 

A high segment is usually write-protected, but it is possible for a user program to turn off the user write-protect 

bit or to increase or decrease a shared segment's core assignment by using the SETUWP or CORE UUO. These 

UUOs are legal from the high or low segment if the sharable segment has not been "meddled" with, unless the 

user has write privileges for the file that initialized the high segment. Even the malicious user can have the priv­

ilege of running such a program, although he does not have the access rights to modify the file used to initialize 

the sharable segment. 

Meddling is defined as any of the following, even if the user has privileges to write the file which initialized the 

sharable segment. 

1. START or CSTART commands with an argument. 

2. DEPOSIT command in the low or high segment. 

3. RUN UUO with anything other than a 0 or I in LH of AC as a starting address increment. 

4. GETSEG UUO. 

I t is not 'considered meddling to perform any of the above commands or UUOs with a nonsharable program. It 

is never considered meddling to type tc followed by START (without an argument), CONT, CCONT, CSTART 

(without an argument), REENTER, DDT, SAVE, or E command. 

When a sharable program is meddled with, the monitor sets the meddle bit for the user. An error return is given 

when the clearing of the user write-protect bit is attempted with the SETUWP UUO or when the reassignment 

of core for the high segment (except to remove it completely) is attempted with the CORE UUO. An attempt 

to modify the high segment with the DEPOSIT command causes the message 

?OUT OF BOUNDS 

to be printed. If the user write-protect bit was not set when the user meddled, it will be set to protect the high 

segment in case it is being shared. The command and the two UUOs are allowed in spite of meddling, if the user 

has the access privileges to write the file which initialized the high segment. 

A privileged programmer is able to supersede a sharable program, which is in the process of being shared by a 

number of users. When a successful CLOSE, OUTPUT, or RENAME UUO is executed for a file with the same 

directory name and filename (previous name if the RENAME UUO is used) as the segment being shared, the 

name of the segment is set to O. New users do not share the older version, but they do share the newer version. 

This requires the monitor to read the newly created file only once to initialize it. The monitor deletes the older 

version when all users are finished sharing it. 

Users with access privileges are able to write programs that access sharable data segments via the GETSEG UUO 

(which is meddling) and then turn off the user write-protect bit using SETUWP UUO. With DECtape, write 

privileges exist if it is assigned to the job (cannot be a system tape) or is not assigned to any job and is not a 

system tape. 

When control can be transferred only to a small number of entry points (two), which the shared program is pre­

pared to handle, then the shared program can do anything it has the privileges to do, although the person running 

the program does not have these privileges. 

3-42 



The ASSIGN (and the DEASSIGN, DISMOUNT/REMOV, FINISH, KJOB commands if the device was 

previously assigned by console) command clears all shared segment names currently in use, which were initialized 

for the device, if the device is removable (DT A, MTA). Otherwise, new users could continue to share the old seg­

ment indefinitely, even if a new version were mounted on the device. Therefore, it is possible to update the 

library during regular timesharing, if the programmer has access privileges. 

3.4 PROGRAM AND PROFILE IDENTIFICATION 

3.4.1 SETNAM AC, or CALLI AC, 43 

This UUO is used by LINK-lO. The content of AC contains a left-justified SIXBIT program name, which is 

stored in a monitor job table. The information in the table is used by the SYSTAT program (refer to Table 3-1 

in Paragraph 3.6.3.3). This UUO clears the "SYS:" program bit .JB.LSY (used by Batch), clears the execute-only 

bit, and outputs a SET WATCH VERSION number (refer to DECsystem-10 Operating System Commands). 

3.4.2 SETUUO AC, or CALLI AC, 75(1) 

This UUO is used to set various system or job parameters. To set system parameters, the user must be logged in 

under [1,2] or the job must be running with the JACCT bit set. Refer to the Specifications section of the 

DECsystem-10 Software Notebooks for a complete description of the privileged functions. 

The contents of AC contain a function code in the left half and an argument in the right half. The call is: 

MOVE AC, rXWD function, argument] 
SETUUO AC, ,or CALLI AC, 75 
error return 
normal return 

The functions and arguments are as follows: 

Function Name 

o . STCMX 

. STCMN 

2 . STDAY 

3 . STSCH 

4 .STCDR 

5 .STSPL 

Argument 

CORMAX. Privileged function . 

CORMIN. Privileged function . 

DAYTIME. Privileged function (FTSEDAT) . 

SCHED. Privileged function . 

CDR (input name for this job). Not a privileged function. Right half 

of AC, 3 SIXBIT characters, is stored in left half of .GTSPL (FTSPL). 

SPOOL for this job. Not a privileged function unless the user is un­

spooling devices. Bits are 31-35 of .GTSPL (FTSPL). 

Bit 35 JS.PLP line printer spooling 

Bit 34 JS.PPL plotter spooling 

Bit 33 JS. PPT paper tape punch spooling 

Bit 32 JS.PCP card punch spooling 

Bit 31 JS.PCR card reader spooling 

(1) This UUO depends on FTSET which is nonnally off in the DECsystem-1040. If FTSET is on, individual functions depend on the other feature 
test switches as noted in the text. 

3-43 



Function 

6 

7 

10 

II 

12 

13 

14 

IS 

16 

17 

20 

21 

22 

23 

24 

25 

Name 

.STWTC 

. STDAT 

. STOPR 

. STKSY 

. STCLM 

. STTLM 

.STCPU 

. STCRN 

. STLMX 

. STBMX 

. STBMN 

.STDFL 

.STMVM 

. STMVR 

. STUVM 

.STCVM 

Argument 

WATCH for this job. Not a privileged function. Bits are bits 1-6 
of .GTWCH (FTWATCH). 

Bit I JW.WDY watch time of day 

Bit 2 JW.WRN watch run time 

Bit 3 JW.WWT watch wait time 

Bit 4 JW.WDR watch disk reads 

Bit 5 JW.WDW watch disk writes 

Bit 6 JW.WVR watch version numbers. 

DATE. Privileged function (FTSEDAT) . 

OPR. Privileged function . 

KSYS. Privileged function (FT5UUO) . 

CORE limit. Privileged function (FTTLIM) . 

TIME limit for this job. Privileged function (FTTLIM) . 

CPU specification for this job. The following bits select the CPU on 

which the job is allowed to run. 

Bit 35 SP.CRO CPUO 

Bit 34 SP.CRI CPUI 

Bit 33 

Bit 32 

Bit 31 

Bit 30 

SP.CR2 

SP.CR3 

SP.CR4 

SP.CR5 

CPU2 

CPU3 

CPU4 

CPU5 

CPU runnability. Privileged function . 

LOGMAX. Privileged function . 

BATMAX. Privileged function . 

BATMIN. Privileged function . 

DSKFUL for this job. Not a privileged function. An argument of 0 

(.DFPSE) causes a pause and an argument of (.DFERR) causes an error 

when the disk is full or the user's quota is exceeded. The current set­

ting can be determined by issuing an argument other than 0 and 1. The 

value returned is either 0 or 1 depending on whether PAUSE or ERROR 

is set. The initial setting is ERROR. 

Maximum virtual memory (GVPL). Privileged function. 

Maximum virtual memory rate. Privileged function . 

User virtual memory maximum (MVPL). Privileged function . 

User current virtual memory maximum. ADR (address of the word that 

contains CVPL and CPPL). The left half of the word contains the current 

virtual page limit, the right half contains the current physical page limit. 

If either CVPL or CPPL is zero, the current value is unchanged. 

3-44 



Function Name 

26 .STTVM 

27 .STABK 

The error return is given if 

1. the UUO is not implemented 

Argument 

User virtual time interrupts. Time interval equals the time interval 

between virtual time traps in milliseconds. This causes a code 5 page 

fault to the page fault handler each time "time interval" has elapsed in 

virtual time. 

Address break. On a normal return, the new address break conditions 

and the break address will have been set. Address conditions are: 

Bit 0 break on execute 

Bit 1 break on read 

Bit 2 break on write 

Bit 3 break on MUUO 

Note that IBO+IBI+IB2+1B3 = 0 will clear the address break. If the 

user is enabled for address break interrupts, the software interrupt sys­

tem will interrupt when an address break occurs. 

2. the user does not have the correct privileges for the function specified, or 

3. the argument specified is invalid. 

On a normal return, AC remains unchanged. 

3.4.3 LOCATE AC, or CALLI AC, 62(1) 

This UUO is used to change the logical station associated with the user's job. The call is: 

MOVEI AC, station number 

LOCATEAC, 

error return 

normal return 

; or CALLI AC, 62 

The station number requested is contained in AC as follows: 

-1 changes the job's location to the physical station of the job's controlling terminal. 

o changes the job's location to the central station. 

n changes the;job's location to remote station n~ 

The normal return is taken if the UUO is implemented, the station is defined, and the station is in contact. Sub­

sequent generic device specifications are at the new station. The error return is taken if the UUO is not imple­

mented or the specified station is illegal or not in contact. 

(1) This UUO depends on FTREM which is normally off in the DECsystem-1040. 

3-45 



3.5 INTER-PROGRAM COMMUNICATION 

3.5.1 TMPCOR AC, or CALLI AC, 44(2) 

This UUO allows a job to leave several short files in core from the running of one user program or system 

program to the next. These files are referenced by a three-character filename and are unique to each job. All 

files are deleted when the job is killed. This system of temporary storage improves response time and reduces 

the number of disk operations. If this UUO fails, the file specification DSK:nnnNAM.TMP, where nnn is the 

job number and NAM is the three-character filename, should be used for temporary disk storage. 

Each temporary file appears to the user as one dump mode buffer. The actual size of the file, the number of 

temporary files a user can have, and the total core a user can use for temporary storage are parameters determined 

at MaNGEN time. All temporary files reside in a fixed area, but the space is dynamically allocated among differ­

entjobs and several different files for any given job. 

The call is: 

MOVE AC, [XWD code, block] 

TMPCORAC, 

error return 

normal return 

BLOCK: XWD NAME, 0 

IOWD BUFLEN, BUFFER 

; or CALLI AC, 44 

; NAME is filename 

; user buffer area 

; (zero for no buffer) 

The AC must be set by the user program prior to execution of the UUO and is changed by the UUO on return 

to a value that depends on the particular function performed. Functions of the TMPCOR UUO are presented 

in the following paragraphs. 

3.5.1.1 CODE = 0 (.TCRFS) - Obtain Free Space - This is the only form of the UUO that does not use a two­

word parameter block and, therefore, the contents of AC are ordinarily set to O. A normal return is given (unless 

the UUO is not implemented), and the number of the free words available to the user is returned in AC. 

3.5.1.2 CODE = 1 (.TCRRF) - Read File - If the specified file is not found, the number of free words avail­

able for temporary files is returned in AC and the error return is taken. If the specified file is found, the length 

of the file in words (that is, the length in BUFLEN when writing the file rounded up to the next highest multiple 

of four) is returned in AC, and as much of the file as possible is copied into the user's buffer. The user may check 

for truncation of the file by comparing the contents of AC with BUFLEN. 

3.5.1.3 CODE = 2 (.TCRDF) - Read and Delete File - This function is similar to CODE = I, except that if the 

specified file is found, it is deleted and its space is reclaimed. 

(2) This UUO depends on FTIMP which is normally off in the DECsystem-l040. 

3-46 



3.5.1.4 CODE = 3 (.TCRWF) - Write File - If a file exists with the specified name, it is deleted and its space 

reclaimed. The requested size of the file is the value in BUFLEN rounded up to the 'next highest multiple of 

four. If there is enough space 

1. The file is written. 

2. The number of remaining blocks is returned in AC. 

3. The normal return is taken. 

If there is not enough space to completely write the file 

1. The file is not written. 

2. The number of free words available to the user is returned in AC. 

3. The error return is taken. 

3.5.1.5 CODE = 4 (.TCRRD) - Read Directory - The number of different files in the temporary file area of 

the job is returned in AC. An entry is made for each file in the user's buffer area until either there~is no more 

space or all files have been listed. The error return is never taken. The user may check for truncation of the en­

tries by comparing the contents of AC with BUFLEN. The format of a directory entry is as follows: 

XWD NAME, SIZE 

where NAME is the filename and SIZE is the file length in words. 

3.5.1.6 CODE = 5 (.TCRDD) - Read and Clear Directory - This function is similar to CODE = 4, except that 

any files in the temporary storage area of the job are deleted and their space is reclaimed. 

This UUO is used by the LOGOUT program. 

3.6 ENVIRONMENTAL INFORMATION 

3.6.1 Timing Information 

The 5.05 and later monitors use two time and two date standards. The time accounting is performed by two 

clocks. The APR clock, driven by the power source frequency (60 Hz in North America~ 50 Hz in most other 

countries), is accurate over long periods of time. For this reason, it is used to keep the time of day, e.g., for the 

TIMER UUO. It can also be used for runtime accounting measurement (i.e., keeping track of the processor time 

each job uses). However, there will be some loss of accuracy since the time intervals ~n which a job runs are 

often less than the period of the APR clock. 

The DKI0 clock, a 100000 Hz clock, is accurate over short periods of time. It is used to perform runtime ac­

counting, and thereby achieves greater accuracy than the APR clock. 

The traditional DECsystem-l0 date (returned with the DATE UUO) is a IS-bit integer. This integer is incre­

mented by 1 each day, by 31 each month (regardless of the actual number of days_jn the month), and by 12*31 

each year (also regardless of the actual number of days in the year). This date format is easy to resolve into 

year-month-day; however, the difference between two dates in this format is not necessarily the actual number 

of days between them. 

3-47 



The monitor maintains a set of GET TAB values which gives the local date and time in terms of year, month, 

day, hours, minutes, and seconds (GETTAB Table 11, Items 56 through 63). 

For convenience, the local time (host computer time) can be converted toa universal date-time standard where 

the left half of the word is the day and the right half of the word is the time. This day is uniformly incremented 

each day (at midnight, Greenwich Mean Time) with 1 being November 18, 1858. The November date is used to 

be consistent with the Smithsonian Astronomical Date Standard and other computer installations and systems. 

(GETTAB Table 11, Item 64). 

The time of day is specified as a fraction of a day allowing the 36-bit value to be in units of days with a binary 

point between the right and left halves. The resolution is approximately 1/3 of a second; that is, the least sig­

nificant bit (bit 35) represents approximately 1/3 of a second. 

3.6.1.1 DATE AC, or CALLI AC, 14 - A IS-bit binary integer computed by the formula 

date=( (year-l 964 )x 12+(month-l) )x31 +day= 1 

represents the date. 

This integer representation is returned right-justified in AC. 

3.6.1.2 TIMER AC, or CALLI AC, 22 - This UUO returns the time of day, in clock ticks Uiffies) right justified 

in AC. A jiffy is 1/60 of a second (16.6 milliseconds) for 60-cycle power and 1/50 of a second (20 milliseconds) 

for 50-cycle power. The MSTIME UUO should normally be used so that the time is not a function of the cycle. 

3.6.1.3 MSTIME AC, or CALLI AC, 23 - This UUO returns the time of day, in milliseconds, right justified 

inAC. 

3.6.2 Job Status Information 

3.6.2.1 RUNTIME AC, or CALLI AC, 27 - The accumulated running time (in milliseconds) of the job number 

specified in AC is returned right justified in AC. If the job number in AC is zero, the running time of the cur­

rently running job is returned. If the job number in AC does not exist, zero is returned. 

3.6.2.2 PJOB AC, or CALLI AC, 30 - This UUO returns the job number right justified in AC. 

3.6.2.3 GETPPN AC, or CALLI AC, 24 - This UUO returns in AC the project-programmer pair of the job. The 

project number is a binary number in the left half of AC, and the programmer number is a binary number in the 

right half of AC. If the program has the JACCT bit set, a skip return is given if the old project-programmer num­

ber is also logged in on another job. 

3.6.2.4 OTHUSR AC, or CALLI AC, 77 - This UUO is used to determine if another job is logged in with the 

same project-programmer number as the job executing the UUO. The non-SKIP return is given if 

1. the UUO is not implemented, in which case the AC remains unchanged, or 

2. the UUO is implemented and no other jobs are logged in with the same project-programmer number, 

in which case the AC contains the project-programmer number of the job executing the UUO. 

3-48 September 1974 



The SKIP retum is given if the UUO is implemented and other jobs are logged in with the same project­

programmer number. The AC contains the project-programmer number of the job executing the UUO. This 

UUO is used by KJOB. 

3.6.3 Monitor Examination 

3.6.3.1 PEEK AC, or CALLI AC, 33 - This UUO allows a user program to examine any location in the moni­

tor. It is used by SYSTAT, FILDDT, and DATDMP and could be used for on-line monitor debugging. The 

PEEK UUO requires bit 16 (JP;SPA - examine all of core) and/or bit -17 (JP.SPM - examine the monitor) to 

be set in the privilege word .GTPRV. 

The call is: 

MOVEI AC, exec address 

PEEKAC, 

; TAKEN MODULO SIZE OF MONITOR 

; OR CALLI AC, 33 

This call ,returns with the contents of the monitor location in AC. 

NOTE 
On a KI 1 0, if the address given is equal to or larger than 
340000, this UUO uses the hardware memory map to 
fetch the word and not the physical address. 

3.6.3.2 SPY AC, or CALLI AC, 42 - This UUO is used for efficient examination of the monitor during time­

sharing, Any number of K of physical core (not limited to the size of the monitor) is placed into the user's 

logical high segment. This amount cannot be saved with the monitor SAVE command (only the low segment 

is saved), cannot be increased.or decreased by the CORE UUO (error return taken), or cannot have the user­

mode write-protect bit cleared (error return taken). The·call is: 

MOVEI AC, highest physical core location desired 

SPY AC, 

error return 

normal return 

; or CALLI AC, 42 

Any program that is written to use the SPY UUO should try the PEEK UUO if the Spy UUO receives an error 

return. The SPY UUO requires bit 16 (JP.SPA = examine all of core) and/or bit 17 (JP.SPM = examine the 

monitor) to be set in the privilege word .GTPRV. 

3.6.3.3 POKE. AC, or CALLI AC, 114(1) -This UUO is used by a privileged user to alter one location in the 

monitor at a time. The POKE. UUO requires bit 4 (JP.POK) to be set in the privilege word .GTPRV. 

The call is: 

MOVE AC, [3, ,ADR] 

POKE.AC, 

error retum 

normal return 

; or CALLI AC, 114 

(1) This UUO depends on FTPOKE which is normally off in the DECsystem-l040. 

3-49 



ADR: monitor location 

old value 

new value 

The error return is given if: 

The user is not privileged; AC contains O. 

The value specified in ADR+ 1 as the old value is not the same as the actual value contained in the monitor 
location; AC contains 1. 

The address specified is not a valid monitor address; AC contains 2. 

3.6.3.4 GETTAB AC, or CALLI AC, 41 - This UUO provides a mechanism which will not vary from monitor to 

monitor for user programs to examine the contents of certain monitor locations. The call is: 

MOVE AC, [XWD index, table number] 

GETTAB AC, ; or CALLI AC, 41 
'error return 

normal return 

The left half of AC contains a job number of some other index to a table. Some job numbers may refer to high 

segments of programs by using arguments greater than the highest job number for the current monitor. A LH of 

-1 indicates the current job number. A LH of -2 references the job's high segment. An error return is given if 

there is no high segment or if the hardware and software are non-reentrant. The right half of AC contains a table 

number from the list of monitor data tables and parameters in Table 3-1. The entries in these tables are globals 

in the monitor subroutine COMMON. The actual values of the core addresses of these locations are subject to 

change and can be found in the LOADER storage map for the monitor. The complete description of these 

globals is found in the listing of COMMON. 

The customer is allowed to add his own GETTAB tables to the monitor. A negative right half should be used to 

specify such customer-added tables. 

An error return leaves the AC unchanged and is given if the job number or index number in the left half of AC 

is too high, the table number in the right half of AC is too high, or the user does not have the privilege of access­

ing the specified table. 

A normal return supplies the contents of the requested table in AC, or a zero if the table is not defined in the 

current monitor. 

The SYSTAT program makes frequent use of this UUO. 

NOTE 
Many GETT AB tables have information in the unde­
scribed bits. This information is likely to change and 
should be ignored. Although the field may currently 
be zero, there is no reason to believe that it will always 
be zero. 

3-50 



Table Numbers 

(RH of AC) Table Names 

00 .GTSTS 

01 .GTADR 

02 .GTPPN 

03 .GTPRG 

04 . GTTIM 

05 . GTKCT 

06 . GTPRV 

07 . GTSWP 

10 .GTTTY 

11 .GTCNF 

12 .GTNSW 

13 .GTSDT 

14 . GTSGN 

15 .GTODP 

16 .GTLDV 

17 .GTRCT 

Table 3-1 

GETTAB Tables 

Explanation 

Job status word; index by job or segment n1lmber. 

Job relocation and protection; index by job or segment number. 

Project and programmer numbers; index by job or segment 

number. 

User program name; index by job or segment number. 

Total run time used in units of jiffies; index by job number . 

The value of a jiffy can be obtained from bit 6 of the STATES 

word (item 17 in the .GTCNF table) . 

Kilo-Core ticks of job; index by job number . 

Privilege bits of job; index by job number, refer to Paragraph 

3.6.3.4.1. 

Swapping parameters of job; index by job ur segment number . 

Terminal-to-job translation; index by job number. 

Configuration table; index by item number, refer to Paragraph 

3.6.3.4.2. 

Nonswapping data; index by item number, refer to Paragraph 

3.6.3.4.3. 

Swapping data; index by item number, refer to Paragraph 

3.6.3.4.4. 

High segment table; index by job number . 

Bit 0 = 0, then bits 18-35 are index of high segment (if bits 

18-35 = 0, then there is no high segment). 

Bit 0 = 1, then bits 18-35 are number of K to spy on. 

Bit 1 (SN%SHR) = 1 if job has a high segment that is sharable. 

Bit 5 (SN%LOK) = 1 if job has a high segment that is locked. 

Once-only disk parameters; index by item number, refer to 
Paragraph 3.6.3.4.5. - --- ---- --------

5-series monitor disk parameters; index by item number, refer 

to Paragraph 3.6.3.4.6. 

Disk Blocks read by job; used by DSK commands: 

1. Bits 0-11 incremental blocks 

2. Bits 12-35 = total blocks since start of job. 

Index by job number. Job 0 indicates the number of blocks 

swapped in. 

3-51 



Table Numbers 

(RH of AC) 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

40 

Table Names 

.GTWCT 

.GTDBS 

. GTTDB 

.GTSLF 

.GTDEV 

. GTWSN 

.GTLOC 

.GTCOR 

. GTCOM 

.GTNMI 

.GTNM2 

.GTCNO 

.GTTMP 

.GTWCH 

.GTSPL 

.GTRTD 

. GTLIM 

Table 3-1 (Cont) 

GETT AB Tables 

Explanation 

Disk blocks written by job: 

1. Bits 0-11 = incremental blocks. 

2. Bits 12-35 = total blocks since start of job. 

Index by job number. Job 0 indicates the number of blocks 

swapped out. 

Reserved for future. 

Reserved for future . 

Table of GETTAB addresses (GETTAB immediate); index by 

GETTAB table number, refer to Paragraph 3.6.3.4.7. 

Device or file structure name of sharable high segment. Index 

by high segment number . 

Two-character SIXBIT names for job queues; index by item 

numbers, refer to Paragraph 3.6.3.4.8. 

Job's logical station; index by job number. 

Physical core allocation. One bit per one K of core if system 

does not include LOCK UUO. Two bits per entry if system in­

cludes LOCK UUO. A non-zero entry indicates core in use . 

Table of SIXBIT names of monitor commands. 

First half of name of user in SIXBIT; index by job number. 

Last half of name of user in SIXBIT; index by job number. 

Job's charge number; index by job number. 

Job's TMPCOR pointers; index by job number. 

Job's WATCH bits; index by job number, refer to Paragraph 

3.6.3.4.9. 

Job's spooling control bits; index by job number, refer to 

Paragraph 3.6.3.4.10. 

Job's real-time status word; index by job number. 

Job's time limit in jiffies and Batch status; index by job number . 

1. Bits 1-9 (JB.LCR) = job's core limit. 

2. Bit 10 = 1 (JB.LBT) if a Batch job. 

3. Bit 11 = 1 (JB.LSY) if program comes from SYS. Set on R 

command or equivalent. Cleared on R command (or equiv­

alent) or SETNAM UUO. 

4. Bits 12-35 (JB.LTM) = job's time limit. 

3-52 September 1974 



Table Numbers 

(RH of AC) 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

Table Names 

.GTQQQ 

.GTQJB 

.GTCM2 

. GTCRS 

. GTISC 

. GTOSC 

. GTSSC 

.GTRSP 

.GTSYS 

. GTWHY 

. GTTRQ 

.GTSPS 

.GTCOC 

. GTCOV 

. GTCIC 

. GTCIV 

.GTC2C 

. GTC2V 

Table 3-1 (Cont) 

GETT AB Tables 

Explanation 

Timesharing scheduler's qu~ue headers. 

Timesharing scheduler's queue that job is in; index by job 

number. 

Table of SET command names. 

Status of hardware taken on a crash . 

0: CR.SAP = CONI APR, 

1: CR.SPI = CONI PI, 

2: CR.SSW= DATAl APR 

The remainder of the table contains the status of the various 

devices. 

Swapper's input scan list of queues . 

Swapper's output scan list of queues . 

Scheduler's scan list of queues . 

Response counter table. Time in jiffies when user started to 

wait for his job to run. This time is cleared when the job is 

first given to the processor by the scheduler. 

System variables which are independent of CPU. Refer to 

Paragraph 3.6.3.4.11. 

Operator why comments in ASCIZ . 

Total time job was in run queues whether or not it was running . 

Job status word of second processor. 

Bit 29 (SP.SCO) - SET CPU command can be used. 

Bit 35 (SP.CRO) = SET CPU UUO can be used. 

Bits for other processors can be obtained by shifting left 1 bit 

per processor. 

CPUO CDB constants; index by item number, refer to 

Paragraph 3.6.3.4.12 . 

CPUO CDB variables; index by item number, to Paragraph 

3.6.3.4.13. 

CPUI CDB constants; index by item number; see .GTCOC . 

CPUI CDB variables; index by item number; see .GTCOV . 

CPU2 CDB constants; index by item number; see .GTCOC. 

CPU2 CDB variables; index by item number; see .GTCOV . 

3-53 



Table Numbers 

(RH of AC) Table Names 

63 .GTC3C 

64 .GTC3V 

65 .GTC4C 

66 .GTC4V 

67 .GTC5C 

70 .GTC5V 

71 .GTFET 

72 .GTEDN 

73 . GTSCN 

74 .GTSND 

75 . GTCMT 

76 . GTPID 

77 . GTIPC 

100 .GTUPM 

101 . GTCMW 

102 .GTCVL 

103 .GTMVL 

104 . GTIPA 

lOS .GTIPP 

106 . GTIPI 

107 . GTIPQ 

110 . GTDVL 

III . GTABS 

112 .GTCMP 

Table 3-1 (Cont) 

GETT AB Tables 

Explanation 

CPU3 CDB constants; index by item number; see .GTCOC. 

CPU3 CDB variables; index by item number; see .GTCOV. 

CPU4 CDB constants; index by item number; see .GTCOC. 

CPU4 CDB variables; index by item number; see .GTCOV. 

CPU5 CDB constants; index by item number; see .GTCOC. 

CPU5 CDB variables; index by item number; see .GTCOV. 

Current setting of all features defined in F.MAC, index by 

item number, refer to Paragraph 3.6.3.4.15. 

Table of ersatz device names (e.g., NEW, LIB). The search lists 

of these devices and their corresponding project-programmer 

numbers can be obtained from the PATH UUO . 

Contains scanner response data. Refer to Paragraph 3.6.3.4.16. 

Contains last send-all message . Refer to Paragraph 3.6.3.4.17. 

SET TTY command names . 

Process communication ID (lPCF) . 

IPCF miscellaneous data. Refer to Paragraph 3.6.3.4.18. 

Physical page number of the user page map if indexed by JOB 

number. High order nine bits is the virtual page number where 

the high segment starts in the program's address space when 

indexed by the high segment number. 

SET WATCH command names . 

Current virtual limit, current physical limit. 

Maximum virtual limit, maximum physical limit. 

IPCF statistics per job . 

IPCF pointers and counts. 

PID for job's [system] INFO . 

IPCF flags and quotas per job . 

Pointer to this job's logical name table . 

Address break word . 

Reserved. 

3-54 September 1974 



Table Numbers 

(RH of AC) 

113 

114 

Table Names 

. GTVM 

.GTVRT 

Table 3-1 (Cont) 

GETT AB Tables 

Explanation 

General virtual memory data, refer to Paragraph 3.6.3.4.19 . 

i'aging rate for job. 

3.6.3.4.1 Entries in Table 6 - .GTPRV (Privilege Table)-Eachjob has a one-word entry to indicate job privi­

leges. The privilege bits are as follows: 

Bit Mnemonic Meaning 

IBO JB.IPC Job is allowed to perform IPCF privileged functions. 

3B2 JP.DPR Highest disk priority for this job. 

IB3 JP.MET Job is allowed to execute the METER.UUO. 

IB4 JP. POK Job is allowed to execute the POKE. UUO. 

IB5 JP.CCC Job is allowed to change its CPU specification via a command 

orUUO. 

17B9 JP.HPQ Highest high-priority queue available to this job. 

IBIO JP.NSP Job is allowed to unspool devices. 

IBI3 JP.RTT Job is allowed to execute the RTTRP UUO. 

IBI4 JP.LCK Job is allowed to execute the LOCK UUO. 

IBIS JP.TRP Job is allowed to execute the TRPSET UUO. 

IBI6 JP.SPA Job is allowed to PEEK and SPY on all of core. 

IBI7 JP.SPM Job is allowed to PEEK and Spy on the monitor. 

3.6.3.4.2 Entries in Table 11 - .GTCNF (Configuration Table) 

Item 

o 

4 

5 

6 

7 

Location 

o/cCNFGO 

o/cCNFG4 

O/rCNDTO 

o/cCNDTI 

o/cCNTAP 

Use 

Name of system is ASCIZ. 

Date of system in ASCIZ. 

Name of system device (SIXBIT). 

3-55 



Item 

10 

11 

12 

13 

14 

15 

16 

17 

Location 

o/cCNTIM 

o/cCNDAT 

o/cCNSIZ 

o/cCNOPR 

o/cCNDEV 

o/cCNSJN 

o/cCNTWR 

o/cCNSTS 

Use 

Time of day in jiffies. 

Today's date (IS-bit format). 

Highest location in monitor + I. 

N arne of OPR TTY (SIXBIT) 

LH is start of DDB (device-data-block) chain. 

LH=,-# of high segments, RH=+# of jobs (counting NULL 

job). 

Non-zero if system has two-register hardware and software. 

Location describing feature switches of this system in LH, 

and current state in RH. 

Assembled according to MONGEN pialog and S.MAC: 

Bit 0= 1 if disk system (ST%DSK) 

Bit 1=1 if swap system (ST%SWP) 

Bit 2= 1 if LOGIN system (ST%LOG) 

Bit 3= 1 if full duplex software (ST%FTI) 

Bit 4=1 if privilege feature (ST%PRV) 

Bit 5= 1 if assembled for choice of reentrant or non-reentrant 

software at monitor load time (ST%TWR) 

Bit 6=1 if clock is 50 cycle instead of 60 cycle (STo/cCYC) 

Bits 7-9 type of disk system (ST%TDS): 

if 0, 4-series disk system. 

if I, 5-series disk system. 

if 2, spooled disk. 

Bit 10=1 if independent programmer numbers between project 

(lNDPPN is non-zero) (ST%IND) 

Bit 11=1 if image mode on terminal (8-bit SCNSER) (ST%IMG) 

Bit 12=1 if dual processor system (ST%DUL) 

Bit 13=1 if multiple RIBs supported (ST%MRB) 

Bit 14= 1 if high precision time accounting (ST%HPT) 

Bit 15=1 if overhead excluded from time accounting (ST%EMO) 

Bit 16=1 if real-time clock (ST%RTC) 

Bit 17= 1 if built to handle FOROTS (ST%MBF) 

Set by the privileged operator command, SET SCHED: 

Bit 27= 1 means no operator is present at central site (ST%NOP) 

Bit 28= 1 means unspooling devices (ST%MSP) 

Bit 29=1 means assigning devices (ST%ASS) 

Bit 30=1 means there are no remote lTY's (ST%NRT) 

Bit 33=1 means only Batch jobs may LOGIN (except from CTY 

or OPR) (ST%BON) 

Bit 34=1 means no remote LOGINs (ST%NRL) 

Bit 35= 1 means no more LOGINs except from CTY or OPR 

(ST%NLG) 

3-56 



Item Location Use 

20 o/£NSER Serial number of PDP-l 0 processor. Set by MONGEN dialog. 

21 o/£NNSM Number of nanoseconds per memory cycle for memory system. 

If the GETTAB fails, the number of nanoseconds per memory 

cycle is tDlOOO. Used by SYSTAT to compute shuffling time. 

22 %CNPTY PTY parameters for Batch. 

LH = the number of the first invisible terminal (which is one 

greater than the number of the CTY) 

RH = the number ofPTY's in the system configuration. 

23 o/£NFRE AOBJN word to use bit map in monitor for allocating 4-word 

core blocks. 

24 o/£NLOC LH=O. RH=address in monitor for free 4-word core block areas. 

(This is never changed while monitor runs.) 

25 o/£NSTB Link to STB chain for remote Batch. 

26 o/£NOPL Address of the line data block (LDB) of the operator's terminal. 

27 o/£NTTF Pointer to TTY free chunks. 

30 o/£NTTC LH=number of TTY chunks. 

RH=address of first TTY chunk. 

31 o/£NTTN Number of free TTY chunks. 

32 o/£NLNS Pointer to current TTY as seen by the command decoder. 

33 o/£NLNP Pointer to examine TTY line table, including remote terminals. 

LH=-totalnumber of TTY lines. 

RH=beginning of line table. 

34 o/£NVER Version of monitor. (Stored in location 137 of monitor as a 

save file when monitor is not running.) 

Bits 0-17 reserved for customer. 

Bits 18-23 monitor level (e.g., 5) 

Bits 24-29 monitor release (e.g., 7) 

Bits 30-35 used for internal development. 

If the GETTAB fails, the monitor is a version previous to 5.03. 

35 o/£NDSC Pointer to data set control table. 

LH = -length of table. 

RH= beginning of control table. 

36 o/£NDLS Obsolete. 

37 o/£NCCI Obsolete. 

40 o/£NSGT Last dormant segment which was deleted to free a segment 

number. 

3-57 



Item 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

Location 

o/cCNPOK 

o/cCNPUC 

o/cCNWHY 

o/cCNTIC 

o/cCNPDB 

o/cCNRTC 

o/cCNCHN 

o/cCNLMX 

o/cCNBMX 

o/cCNBMN 

o/cCNDTM 

o/cCNLNM 

o/cCNBNM 

o/cCNYER 

o/cCNMON 

o/cCNDAY 

o/cCNHOR 

o/cCNMIN 

o/cCNSEC 

o/cCNGMT 

Use 

Address of last location changed in monitor by the POKE.UUO. 

LH=the number of the job which last successfully executed the 

POKE.UUO. 

RH=the number of successful POKE.UUOs executed. 

The reason for the last reload (SIXBIT unabbreviated operator 

answer). Refer to ONCE in the DECsystem-l ° Software 

Notebooks. 

The number of clock ticks per second. This is the time-of-day 

clock. The number is obtained by conducting a simple experi­

ment of monitor load time. A different clock can be used for 

incremental run time accounting (refer to o/cCNRTC below). 

The pointer to the process data block (PDB) pointer tables. 

The run time clock rate Uiffies per second). That is, the rate of 

the clock used to measure the run time of the job and the sys­

tem statistics (null, lost, and overhead time). This is the preci­

sion of the measurement, not the units of measurement. 

The pointer to the list of channel (DF 1 0) data blocks. LH=the 

address of the 1 st channel data block. 

RH=unused. 

LOGMAX. The maximum number of jobs allowed to LOGIN. 

BATMAX. The maximum number of Batch jobs allowed to 

LOGIN. 

BATMIN. The guaranteed number of Batch jobs (i.e., the num­

ber of jobs reserved for Batch). 

The host computer time in universal date/time format (refer to 

Paragraph 3.6.1). 

LOGNUM. The number of jobs currently logged-in. 

BATNUM. The number of Batch jobs currently logged-in. 

LOCYER. The year. 

LOCMON. The month (Jan = 1, Feb = 2, etc.). 

LOCDAY. The local day of the month (1,2,3, ... ). 

LOCHOR. The local hour in 24-hour format. 

LOCMIN Minutes (0, 1, ... ,59). 

LOCSEC. Seconds (0, 1, ... ,59). 

Reserved. 

3-58 



Item Location Use 

6S o/cCNDBG Debugging status word. 

Bit 0= 1 System debugging (ST%DBG). 

Bit 1=1 Reload on debug stop code (ST%RDC). 

Bit 2= 1 Reload on job stop code (ST%RJE) 

Bit 3= 1 No auto reloads (SP%NAR). 

66 o/cCNFRU Amoullt of free core currently in use by the monitor. 

67 o/cCNTCM Number of 9-bit bytes in TTY chunks. 

70 o/cCNCVM Customer version number. 

71 o/cCNDVM DEC version number. 

72 o/cCND.FC Number of DFIO data channels. 

73 o/cCNRTD Number of real time devices. 

74 o/cCNHPQ Number of HPQ's. 

75 o/cCNLDB Offset from start of TTY DDB to LDB pointer. 

76 o/cCNMVO Maximum vector offset for PISYS. 

77 o/cCNMIP Maximum priority for P1SYS (currently 0). 

100 o/cCNMER LH: Address ofMTAO, RH: offset ofMTA error RPT word. 

101 o/cCNETI User address of EXEC's AC Tl (for DAEMON). 

102 o/cCNLSD Length of short DDB. 

103 o/cCNLLD Length of long DDB. 

104 o/cCNLDD Length of disk DDB. 

105 o/cCNEXM Address in JOBDAT of last E/D command. 

106 o/cCNST2 Software configuration feature indicators. 

IB29 ST%NSE Non-superseding ENTER exists. 

IB30 ST%MSG MSGSER (MPX channel capability) included. 

IB31 ST%PSI PSISER (generalized software interrupt facility) 

included. 

IB32 ST%IPC IPCF (interprocess communication facility) 

included. 

IB33 ST%VMS VMSER (virtual memory option) included. 

1B34 ST%MER MTA error reporting included. 

1B35 ST%SSP Swap space in pages. 

107 o/cCNPIM Minimum condition in PISYS. 

110 o/cCNPIL Length in internal PIT's. 

111 o/cCNPIA Address of JBTPIA. 

112 o/cCNMNT Monitor type. 

3-59 September 1974 



Item 

113 

114 

115 

Location 

o/oCNOCR 

o/oCNOCP 

o/oCNPGS 

Use 

LH: First CDR DDB, RH: offset to card count. 

CDP (same as o/oCNOCR above). 

Unit of core allocation. 

3.6.3.4.3 Entries in Table 12 - .GTNSW (Nonswapping Data) - With ·the 5.05 and later monitors, no new en­

tries will be added to the .GTNSW table because many of the parameters in this table are dependent upon the 

processor used and therefore are different for each processor in a multiprocessor system. GETT AB tables 

51-70 exist for new parameters as well as the .GTNSW parameters. 

Item Location 

o 

7 

10 %NSCMX 

11 %NSCLS 

12 %NSCTL 

13 %NSSHW 

14 %NSHLF 

15 %NSUPT 

16 %NSSHF 

17 %NSSTU 

20 %NSHJB 

21 %NSCLW 

22 %NSLST 

23 %NSMMS 

24 %NSTPE 

25 %NSSPE 

26 %NSMPC 

Use 

Obsolete. 

Unspecified data. 

CORMAX. Size in words of largest legal user job (Low 

seg+high seg). 

Byte pointer to last free block. 

Total free+dormant+idle K physical core left (virtual core). 

Job number shuffler has stopped. 

Absolute address of job above lowest hole, 0 if no job. 

Time system has been up in jiffies. 

Total number of words shuffled by system. 

Number of job using SYS if not a disk. 

Highest job number currently assigned. 

Total number of words cleared by system. 

Total number of clock ticks when null job ran and other jobs 

wanted to but could not because: 

1. Swapped out or on way in or out. 

2. Monitor waiting for I/O to stop so it can shuffle or swap. 

3. Job being swapped out because of expanding core. 

Size of physical memory in words. 

Total number of user parity errors (memory) since system was 

loaded. 

Total number of spurious (refer to Paragraph 7.7) parity errors 

(memory). 

Total number of multiple parity errors (memory). 

3-60 



Item Location 

27 %NSMPA 

30 %NSMPW 

31 %NSMPP 

32 %NSEPO 

33 %NSEPR 

34 %NSNXM 

35 %NSKTM 

36 %NSCMN 

37 %NSABC 

40 %NSABA 

41 %NSLJR 

42 %NSACR 

43 %NSNCR 

44 %NSSCR 

Use 

The absolute location of the last user mode memory parity 

error. 

The contents of the last user mode memory parity error. 

The user PC of the last user mode memory parity error. 

Total number of PDL OVR's at UUO level in exec mode which 

were not recovered. 

Number of PDL OVR's at UUO level which were recovered by 

assigning extended list. 

Highest legal value of CORMAX. 

Count-down time for SET KSYS UUO. 

Amount of core guaranteed to be available after locking jobs 

in core (CORMIN). 

Count of number of address breaks handled. 

Contents of data switches on last address break. 

Last job that ran if different from the current job. 

Accumulated CPU response. Total number of jiffies that all 

users waited for their jobs to initially run after either a com­

mand was issued which ran a job (program) or terminal input 

was given that removed the job from a TTY input wait state. 

Number of CPU responses for all users waiting for jobs to run 

(refer to %NSACR above). Dividing the value of %NSACR by 

the value of %NSNCR gives the average response time since 

system startup. 

Accumulated squares of the CPU response time obtained from 

%NSACR. 

3.6.3.4.4 Entries in Table 13 - .GTSDT (Swapping Data) 

Item 

o 

2 

3 

4 

Location 

%SWBGH 

%SWFIN 

%SWFRC 

%SWFIT 

%SWVRT 

Use 

Number of K in biggest hole in core. 

-Job number of job being swapped out, 

+Job number of job being swapped in. 

Job being forced to swap out. 

Job waiting to be fit into core. 

Amount of virtual core left in system in K (initially set to 

number of K of swapping space). 

3-61 



Hem Location 

5 %SWERC 

6 %SWPIN 

Use 

LH=number of swap read or write errors, 

RH=error bits (bits 18-21 same as status bits). 

+ number K discarded. 

-1 if job swapped in (monitors which swap process data blocks 

and FTPDBS = 1) (PDBs only). 

3.6.3.4.5 Entries in Table 15 - .GTODP (Once-Only Disk Parameters) 

Item 

o 

2 

3 

Location 

%ODSWP 

o/oODK4S 

%ODPRT 

O/oODPRA 

Use 

Unused, contains zero in 5-series monitors. 

K of disk words set aside for swapping on all units in active 

swapping list. 

In-core protect time multiples size of job in K-l. 

In-core protect time added to above result after multiply. 

3.6.3.4.6 Entries in Table 16 - . GTLVD (LEVEL-D Monitor Disk Parameters) 

Item 

o 

2 

3 

4 

6 

7 

10 

11 

12 

Location 

%LDMFD 

%LDSYS 

%LDFFA 

%LDHLP 

%LDQUE 

%LDSPB 

%LDSTR 

%LDUNI 

%LDSWP 

%LDCRN 

%LDSTP 

Use 

Project-programmer number UFDs only [1,1]. 

Project-programmer number for device SYS [1,4]. In 4-series 

monitors [1,1] . 

Project-programmer num ber for FAILSAFE [1,2] . 

Project-programmer number for SYSTAT and HELP [2,5]. 

Projecf·programmer number for spooling programs [3;3]. 

1. LH=address of first PPB block. 

2. RH=address of next PPB block to be scanned. 

1. LH=address of first file structure data block. 

2. RH=relative address of next file structure data block, i.e., 

the address within the data block which points to the ac­

tual address of the next data block. 

1. LH=address of data block of first unit in system. 

2. RH=relative address of data block of next unit in system. 

1. LH=address of first unit for swapping in system. 

2. RH=relative address of next unit for swapping in system. 

Number of 4-word access blocks for disk systems allocated at 

ONCE - only time. 

Standard file protection code (057), can be changed by installa­

tion. In 4-series monitors (055). 

3-62 



Item Location Use 

13 %LDUFP Standard UFD protection code (775), can be changed by in-

stallation. In 4-series monitors (055). 

14 %LDMBN Number of monitor buffers allocated at once-only time (2). 

In 4-series monitors, 1. 

15 %LDQUS SIXBIT name of file structure containing 3,3.UFD for spooling 

and OMOUNT queues. In 4-series monitors, DSK. 

16 %LDCRP UFD used for storing system crashes. In 4-series monitors, [ 10,1] . 

17 %LDSFD Maximum number of nested SFD's, which the monitor allows 

to be created. 

20 %LDSPP Protection of spooled output files (bits 0-7). 

21 %LDSYP Standard protection for files in SYS: (155) except for files 

with an extension of .SYS. 

22 %LDSSP Standard protection for files in SYS: with an extension of 

.SYS (157). 

23 %LDMNU Maximum negative argument to USETI which reads extended 

RIBS. 

24 %LDMXT Maximum number of blocks transferred with one I/O operation 

(one 10WD). Normally 100000 but can be defined at MONGEN 

to be smaller so chat a job doing high priority disk I/O will be 

locked out for a shorter period of time (since it can be locked 

out for as long as the channel is busy). 

25 %LDNEW Project-programmer number for experimental SYS [1,5]. 

26 %LDOLD Project-programmer number for library of superseded system 

programs [1,3] . 

27 %LDUMD Project-programmer number for user mode diagnostics [6,6] . 

30 %LDNDB Default number of disk buffers in a buffer ring. 

31 %LDMSL Maximum units in A.S.L. 

32 %LDALG ALGOL library ppn [5,4]. 

33 %LDBLI BLISS library ppn [5,5] . 

.. 34- %LDFOR FORTRAN library ppn [5,6] . 

35 %LDMAC MACRO source library ppn [5,7]." 

36 %LDUNV U niversallibrary ppn [5,17] . 

37 %LDPUB Public user software library ppn [1,6]. 

40 %LDTED Text Editor library ppn [5,10]". 

41 %LDREL REL file library ppn [5,11] . 

3-63 



Item 

42 

43 

44 

45 

46 

47 

Location 

%LDRNO 

%LDSNO 

%LDDOC 

%LDFAI 

%LDMUS 

%LDDEC 

Use 

RUNOFF library ppn [5,12]. 

SNOBOL library ppn [5,13]. 

DOC file library ppn [5,14] . 

FAIL library ppn [5,15]. 

Music library ppn [5,16]. 

Standard DEC software ppn [10,7]. 

3.6.3.4.7 Entries in Table 23 - .GTSLF (GETTAB Immediate) - This table is useful for a program that uses 

the Spy UUO for efficiency and needs the core address of the monitor tables. Absolute location 410 in the mon­

itor contains the address of the beginning of this table. 

The format of each entry is as follows: 

Examples: 

LH=Bits 0-8 = maximum item number in table. 

Bit 9 = data may be process data. 

Bit 10 = data may be segment data. 

Bits 14-17 = a monitor AC. 

RH=executive-mode address of table (item 0). 

XWD ITEM + JBTMXL, JOBSTS 

XWD ITEM + TTPMXL, TTYTAB 

3.6.3.4.8 Entries in Table 25 - .GTWSN (Two-character SIXBIT names for job queues) 

Word 0 

Bits 0-11 = contain the two SIXBIT character mnemonic of job state code O. 

Bits 12-23 = contain the two SIXBIT character mnemonic of job state code 1. 

Bits 24-35 = contain the two SIXBIT character mnemonic of job state code 2. 

Word I 

Bits 0-11 = contain the mnemonics of job state code 3. 

Bits 12-23 = contain the mnemonics of job state code 4. 

Bits 24-35 = contain the mnemonics of job state code 5. etc. 

The job state codes for a disk system are as follows: 

RN - one of the run queues. 

WS - I/O wait satisfied. 

TS - TTY I/O wait satisfied. 

DS - disk I/O wait satisfied. 

AU - disk alter UFD wait. 

MQ - disk monitor buffer wait. 

DA - disk storage allocation wait. 

CB - disk core block scan wait. 

D 1 - DECtape control wait. 

3-64 



D2 - second DECtapc control wait. 

DC - data control wait. 

M I - magnetic tape control wait. 

M2 - second magnetic tape control unit 

CA - core allocation wait (to be locked). 

10 - I/O wait. 

TI - TTY I/O wait. 

DI - disk I/O wait. 

PI - paging I/O wait. 

SL - sleep wait. 

NU - null state. 

ST - stop (tC) state. 

JD - DAEMON wait. 

These state codes are printed by SYSTAT. Note that SYSTAT displays other codes based on analysis, such as 

the following: 

TO - TTY output. 

tc - job stopped. 

tw - command wait. 

OW - operator wait. 

HB - hibernate. 

3.6.3.4.9 Entries in Table 35 - .GTWCH (WATCH Table) - Each job has a one-word entry to indicate the 

WATCH bits. The bits for each word are as follows: 

Bit 

IBI 

IB2 

IB3 

IB4 

IB5 

IB6 

IB7 

7BII 

IB9 

IBIO 

IB II 

Mnemonic 

JW.WDY 

JW.WRN 

JW.WWT 

JW.WDR 

JW.WDW 

JW.WVR 

JW.WMT 

JW.WMS 

JW.CCN 

JW.WFL 

JW.WPR 

Meaning 

Watch time of day. 

Watch run time. 

Watch wait time. 

Watch disk reads. 

Watch disk writes. 

Watch versions. 

Watch MTA statistics. 

Verbosity level, which is one of the following: 

.JWWPR=I prefix 

.JWWOL=2 one line 

.JWWPO=3 prefix, first 

.JWWLG=6 long, no prefix 

.JWWPL=7 prefix and long 

Verbosity: continuation 

Verbosity: first 

Verbosity: prefix 

3-65 



3.6.3.4.10 Entries in Table 36 - .GTSPL (Spooling Table) - Each job has a one-word entry to indicate the 

spooling control bits. These bits are as follows: 

Bit 

35 

34 

33 

32 

31 

24-26 

0--'17 

Mnemonic 

JS.PLP 

JS.PPL 

JS.PPT 

JS.PCP 

JS.PCR 

JS.PRI 

Line printer spooling. 

Plotter spooling. 

Meaning 

Paper tape punch spooling. 

Card punch spooling. 

Card reader spooling. 

Disk priority. 

Input spooling filename (3 characters). Refer to 

Paragraph 6.3. 

3.6.3.4.11 Entries in Table 51 - .GTSYS (System Wide Data) -

Bit 

o 

2 

3 

4 

5 

6 

7 

10 

II 

12 

13 

Mnemonic 

%SYERR 

%SYCCO 

%SYDEL 

%SYSPC 

%SYNDS 

%SYNJS 

%SYNCP 

%SYSJN 

%SYSTN 

%SYSPN 

%SYSUU 

%SYSUP 

Use 

System wide hardware error count. 

Number of times COMCNT was off. 

Disabled hardware error count. 

LH=3 letter name of last STOPCD, RH = adr+1 of 

last STOPCD. 

Number of DEBUG STOPCD's. 

Number of job STOPCDs. 

Number of commands processed. 

Last STOPCD - job number. 

Last STOPCD - TTY name. 

Last STOPCD - program name. 

Last STOPCD - UUO 

Last STOPCD user PC. 

3.6.3.4.12 Entries in Table 55 - .GTCOC (CPUO CDB constants table) -The items in this table correspond to 

the items in the constants table for each processor. 

CPU I 

CPU2 

CPU3 

CPU4 

CPU5 

Table 57 - .GTCIC 

Table 61 - .GTC2C 

Table 63 - .GTC3C 

Table 65 - .GTC4C 

Table 67 - .GTC5C 

3-66 



Item 

o 

2 

3 

4 

5 

6 

7 

10 

II 

12 

13 

14 

Location 

%CCPTR 

o/£CSER 

o/£COKP 

o/£CTOS 

o/£CLOG 

o/£CPHY 

o/£CTYP 

o/£CMPT 

o/£CRTC 

o/£CRTD 

o/£CPAR 

o/£CRSP 

o/£CDKK 

Usc 

LH=pointer to next COB, or 0 if this is the last CDB. 

RH=unused. 

APR serial number. 

If less than or equal to zero, CPU is running ok. If greater than 

zero, CPU has stopped running correctly. 

Contents of word is the number of jiffies CPU has been stopped. 

Trap offset for KA I 0 interrupt locations (0 or 100). 

Logical CPU name in SIXBIT (CPUn). 

Physical CPU name in SIXBIT (CP An, CPIn, or CP6n). 

Type of processor (LH for customers, RH for DEC) 

I (.CC 166) = PDP-6 

2 (.CCKAX) = KA I 0 

3 (.CCKIX) = KI 10 

Relative GETT AB pointer to memory parity bad address sub table. 

Refer to Paragraph 3.6.3.4.14. 

Bits 0-8 maximum relative entry in sub table 

Bits 18-35 relative address of first word in sub table in CPU 

variable GETTAB (GTOV). 

If word is 0, the subtable has been conditionally assembled out 

of the monitor. 

Real time clock (DKIO) DDB. If word is 0, there is no real 

time clock on this CPU. 

Real time clock DDB if high precision time accounting. If 0, 

there is no high precision time accounting on this CPU. 

Relative GETTAB pointer to memory parity subtable. Refer 

to Paragraph 3.6.3.4.14. 

Bits 0-8 maximum relative entry in subtable. 

Bits 18-35 relative address of first word in sub table in CPU 

variable GETTAB (.GTCOV). 

If word is 0, the subtable has been conditionally assembled out 

of the monitor. 

Relative GETT AB pointer to response subtable. Refer to 

Paragraph 3.6.3.4.14. 

Bits 0-8 maximum relative entry in sub table. 

Bits 18-35 relative address of first word in sub table in CPU 

variable GETT AB (.GTCOV). 

Number ofDKIO's on this CPU. 

3-67 



3.6.3.4.13 Entries in Table S6 - .GTCOV (CPUO CDB Variable Table) - The items in this table correspond 

to the items in the variables table for each processor. 

Item 

5 

12 

14 

15 

16 

17 

20 

21 

27 

30 

31 

32-34 

35 

CPUI 

CPU2 

CPU3 

CPU4 

CPU5 

Location 

o/cCVUPT 

o/cCVLST 

o/cCVTPE 

o/cCVSPE 

o/cCVMPC 

o/cCVMPA 

o/cCVMPW 

o/cCVMPP 

o/cCVABC 

o/cCVABA 

o/cCVLJR 

o/cCVSTS 

Table 60 - .GTC I V 

Table 62 - .GTC2V 

Table 64 - .GTC3V 

Table 66 - .GTC4V 

Table 70 - .GTC5V 

Use 

Uptime in jiffies for this CPU. 

Last time in jiffies for this CPU. 

Total memory parity error words detected during all CPU 

sweeps on this CPU while processor was in exec or user mode. 

If the system halts, this location has already been updated. 

Total spurious memory parity errors detected on this CPU (i.e., 

errors which did not reoccur when the CPU swept through core). 

Can occur on a read-pause-write which rewrites memory or on 

a channel-detected parity not found on the sweep (refer to 

O/cCVPCS in parity subtable). 

Multiple memory parity errors for this CPU. That is, the num­

ber of times the operator pushed CONTINUE after a serious 

memory parity halt. LH = 1 if serious error on this bad parity 

(must halt). LH is cleared on CONTINUE or STARTUP. 

Memory parity address for this CPU. That is, first bad physical 

memory address found when the monitor swept through core 

after processor or channel detected first parity error. 

Memory parity word for this CPU. That is, contents of first 

bad word found by monitor when it swept through core after the 

processor channel detected first bad parity. 

Memory parity PC for this CPU. That is, PC of last memory 

parity (not counting sweep through core). 

Address break count on this CPU: 

Address break address on this CPU. 

Last job run on this CPU including the null job. 

Obsolete. Refer to items 20-23 in the Response Subtable. 

Stop timesharing on this CPU. Contains job number which 

performed the TRPSET UUO. 

3-68 



Item Location Use 

36 o/cCVRUN Operator-controlled scheduling for this CPU (OPSER: SET 
RUN command). 

Bit 0 (CV%RUN)=l do not run jobs on this CPU. 

37 o/cCVNUL Null time in jiffies for this CPU. 

40 o/cCVEDI LH=exec PC so that offending instruction can be corrected. 

RH=number of exec "don't care" interrupts (i.e., user enabled 

APR interrupts which.monitor causes (AOV, FOV). 

41 o/cCVJOB Current job running on this CPU (0 is null job). 

42 o/cCVOHT Overhead time in jiffies for this CPU. Includes clock queue pro-

cessing, short command processing, swapping and scheduling 

decisions, and software context switching. Does not include 

UUO execution or I/O interrupt time, since these times are not 

overhead. 

43 o/cCVEVM (KI 10 only) Maximum amount of exec virtual address space to 

be used for mapping user segments on a LOCK UUO. 

44 o/cCVEVU (KIl 0 only) Current amount of exec virtual address space being 

used for mapping user segments on a LOCK UUO. 

45 o/cCVLLC On a dual processor system, the count of the number of times 

a CPU has looped in the CPU interlock while waiting for it to 

be relinquished by the second CPU. 

46 o/cCVTUC Total number of UUOs executed on this CPU from exec and 

user mode. 

47 o/cCVTJC Total number of job context switches from one job to a differ-

ent job, including the null job, on this CPU. 

3.6.3.4.14 GETTAB Subtables - Via the GETTAB mechanism, GETTAB sub tables make monitor-collected 

data available to user programs and, at the same time, allow the installation to decide if it wants to use more 

monitor table space without invalidating any user programs. These subtables are included in all systems except 

the DECsystem-l 040. However, they may be excluded by changing the appropriate conditional assembly 

switches with MONGEN. It is anticipated that only installations that need the core space for other uses will 

decide to exclude the subtables. 

To reference a subtable, the user program first does a GETTAB UUO to obtain the pointer to the sub table (refer 

to Paragraph 3.6.3.4.12). Then the program does a second GETTAB to get the desired item in the subtable. If 

the pointer is zero, the desired subtable is not included in this system. 

The following example illustrates the method for obtaining the accumulated response times for CPU N for all 

users that waited for their jobs to initially run after TTY input was given. 

3-69 



'CCRSP==XWD 13,55 

'CVRAI==3 

.GTCOV==56 
MOVEI T1, N 
LSH Tl,N 

ADO T2,T1 
GETTAB T2, 

JRST NONE 
JUMPE T2,NONE 

ADDI T2"CVRAI 

HRL T2,T2 

HRRI T2,.GTCOVCT1) 
GETTAB T2, 

JRST NONE 

HERE WITH RESPONSE IN 

Response Subtable 

,WORD AND T~BLE NUMBER FOR RESPONSE 
,BUaTABLE 
,SUATABLE INDEX FOR ACCUMULATED TTY 
,INPUT UUO 
,RESPONSE. 
,GETTAB TABLE FOR CPUO VARIABLES 
,CPU NUMBER (0,1,.,.,5) 
,CONSTANTS TABLE GETTAB INDEX MOVES UP 
,BY TWOS. 
,RELATIVE GETTAB POINTER WORO FOR 
,RESPONSE 
,SUBTABLE FOR CPUO • 
• FORM GETTAB ARGUMENT FOR CPU N. 
,GET RELATIVE POINTER TO RESPONSE 
,SUBTABLE. 
,NOT THERE (MONITOR IS ONE BEFORE 5.05) 
,Ir 0, sua TABLE NOT INCLUDED IN THIS 
,LOAD OF THE MONITOR. 
,FORM DESIRED INDEX IN BUBTABLE WITH 
,RESPECT TO VARIASLEGETTAB. 
,RELATIVE ADDRESS OF SUBTABLE WITH 
,RESPECT TO VARIABLE TABLE. 
,FORM PROPER GETTAB FOR CPU VARIABLES. 
,GET RESPONSE TIME 
,NOT THERE. TH!S SHOULD NOT HAPPEN 
,SINCE 
,ZERO TEST ON RELATIVE POINTER 
,FAILED, 
T2 

The response sub table is pointed to by %CCRSP in the constants table for each processor. This sub table is under 

the conditional assembly ~witch FTRSP. Refer to Paragraph 3.6.3.4.3 fof additional response information. 

Item 

o 

1 

2 

3 

4 

Location 

o/cCVRSO 

o/cCVRNO 

o/cCVRHO 

o/cCVRLO 

o/cCVRSI 

Use 

Accumulated TTY output UUO responses. That is, the total 

number of jiffies users have spent waiting for their jobs to do 

a TTY output UUO (on CPUO) after either a command was 

issued which ran a job or terminal input was given that removed 

th'~ job from a TTY input wait state. 

Number of TTY output UUO responses for this CPU. 

The high-order sum of the squares of TTY output UUO responses. 

Used for computing standard deviation. 

The low-order part of the sum of the squares of TTY output 

UUO responses. 

Accumulated TTY input UUO responses for this CPU. That is, 

the total number of jiffies users have spent waiting for thier jobs 

to do a TTY input UUO (on CPUO) after either a command was 

issued which ran a job or terminal input was given that removed 

the job from a TTY input wait state. 

3-70 



Item Location Use 

5 o/£VRNI Number of TrY input UUO responses for this CPU. 

6 o/£VRHI The high-order sum of the squares of TTY input UUO responses. 

Used for computing standard deviation. 

7 o/£VRLI The low-order part of the sum of the squares of TTY input 

UUO responses. 

10 o/£VRSR Accumulated CPU quantum requeue responses. That is, total 

number of jiffies users spent waiting for their jobs to exceed 

the CPU quantum on this CPU after either a command was is-

sued which ran a job or terminal input was given that removed 

the job from a TTY input wait state. 

11 o/£VRNR Number of CPU quantum requeue responses for this CPU. 

12 o/£VRHR The high-order sum of the squares of CPU quantum requeue 
response. Used for computing standard deviation. 

13 o/£VRLR The low-order part of the sum of the squares of CPU quantum 

requeue response. 

14 o/£VRSX Accumulated response terminated by the first occurrence of one 

of the above 3 events (TTY output, TTY input, or CPU quantum 

requeue). 

15 o/£VRNX Number of such responses in o/£VRSX. 

16 o/£VRHX The high-order sum of the squares of responses in o/£VRSX. 

Used for computing standard deviation. 

17 o/£VRLX The low-order part of the sum of the squares of responses in 

o/£VRSX. 

20 o/£VRSC Accumulated CPU responses on this CPU. Total number of 

jiffies that users waited for their jobs to run after either a com-

mand was issued which ran a job or terminal input was given 

that removed .the job from a TTY input state. 

21 o/£VRNC Number of CPU responses for all users waiting for their jobs 

to run. Dividing this value into the value of %CVRSC gives the 
average response time since the system was started. 

22 o/£VRHC The high-order part of the sum of the squares-of CPU responses - -"-- ---- ---~ 

on this CPU. 

23 o/£VRLC The low-order part of the sum of the squares of CPU responses 

of this CPU. 

3-71 



Parity Subtable 

The parity table is pointed to by o/oCCPAR in the constants table for each processor. This sub table is under the 

conditional assembly switch FTMEMPAR. Refer to Paragraphs 3.6.3.4.3 and 7.7 for additional parity informa­
tion. 

Item 

o 

2 

3 

4 

S 

6 

7 

10 

11 

Bad Address Subtable 

Location 

o/oCVPLA 

o/oCVPMR 

o/oCVPTS 

o/oCVPSC 

o/oCVPUE 

o/oCVPAA 

o/oCVPAC 

o/oCVPOA 

O/OCVPOC 

o/oCVPCS 

Use 

Highest bad memory parity address on last sweep of memory. 

Used to tell operator the range of bad addresses. 

Relative address (not virtual address) in the high or low segment 

of the last memory parity error. 

Number of parity errors on the last sweep of core. Set to 0 at 

beginning of the sweep. 

Number of parity sweeps by the monitor. 

Number of user-enabled parity errors. Refer to Paragraph 

3.1.3.1. 

The AND of bad addresses on the last memory parity sweep. 

The AND of bad contents on the last memory parity sweep. 

The OR of bad addresses on the last memory parity sweep. 

The OR of bad contents on the last memory parity sweep. 

Number of spurious parity errors. (The APR sweep found no 

bad parity but the channel had requested the sweep rather than 

the processor). This indicates a channel memory port problem. 

The bad address table is pointed to by o/oCCMPT in the constants table for each processor. This sub table is under 

the conditional assembly switch FTMEMPAR and contains the bad addresses on the last memory parity sweep. 

It is not cleared and the number of valid entries is kept in o/oCVPTS in the parity subtable. 

3.6.3.4.15 Entries in Table 71 - .GTFET (Featurl~ Table) - This table provides the user with a mechanism for 

determining the current settings of all features defined in F.MAC. 

Item Location 

o %FTUUO 

Use 

Bit 24 = 1 if PSISER implemented (F%PI). 

Bit 2S = 1 if IPCF implemented (F%IPCF). 

Bit 26 = 1 if control C intercept (Fo/oCCIN). 

Bit 27 = 1 if JOBSTS and CTLJOB UUOs are implemented 

(F%PTYU). 

Bit 28 = 1 if PEEK UUO implemented (F%PEEK). 

Bit 29 = 1 if POKE. UUO implemented (F%POKE). 

Bit 30 = 1 if JOB continue (F%JCON). 

3-72 



Item Location 

o (cont) 

%FTRTS 

2 %FTCOM 

3 %FTACC 

4 %FTERR 

Use 

Bit 31 = I if spooling supported (F%SPL). 

Bit 32 = I if job privileges supported (F%PRV). 

Bit 33 = I if DAEMON supported (F%DAEM). 

Bit 34 = I if GETTAB exists (F%GETT). 

Bit 35 = I if 2-register relocation (F%2REL). 

Real time and scheduling features 

Bit 26 = I if virtual memory (F%VM). 

Bit 27 = I if swapper (F%SWAP). 

Bit 28 = I if shuffler (F%SHFL). 

Bit 29 = 1 if DKI0 service (F%RTC). 

Bit 30 = 1 if LOCK UUO implemented (F%LOCK). 

Bit 31 = 1 if TRPSET UUO implemented (F%TRPS). 

Bit 32 = 1 if real-time traps implemented (F%RTTR). 

Bit 33 = 1 if SLEEP UUO implemented (F%SLEE). 

Bit 34 = I if HIBER and WAKE UUOs supported (F%HIBW). 

Bit 35 = I if high priority queues supported (F%HPQ). 

Commands 

Bit 23 = 1 if COMPIL commands (Fo/cCCL). 

Bit 24 = I if COMPIL-ciass (Fo/cCCLX). 

Bit 25 = 1 if QUEUE (F%QCOM). 

Bit 26 = I if SET UUO and command (F%SET). 

Bit 27 = 1 if VERSION (F%VERS). 

Bit 28 = 1 if Batch control file commands (F%BCOM). 

Bit 29 = 1 if SET DAYTIME and SET DATE (F%SEDA). 

Bit 30 = 1 if WATCH (F%WATC). 

Bit 31 = I if FINISH and CLOSE (F%FINI). 

Bit 32 = 1 if REASSIGN (F%REAS). 

Bit 33 = 1 if E and D (F%EXAM). 

Bit 34 = 1 if SEND (F%TALK). 

Bit 35 = 1 if ATTACH (F%ATTA). 

Accounting information 

Bit 31 = I if time and core limits (F%TLIM). 

Bit 32 = 1 if charge number (Fo/cCNO). 

Bit 33 = 1 "if user name (F%UNAM). 

Bit 34 = 1 if kilo-core-ticks accumulation (F%KCT). 

Bit 35 = 1 if run-time computation (F%TIME). 

Error control and internal options 

Bit 25 = 1 if 22 bit channel (DF 1 OC). 

Bit 26 = 1 if swapping process data block (F%PDBS). 

Bit 27 = 1 if KIlO features at startup time (F%KI 1 0) (always 

1 since 5.06). 

Bit 28 = I if METER. UUO supported (F%METR). 

Bit 29 = 1 if execute-only files (F%EXON). 

3-73 



Item Location 

4 (cont) 

5 %FTDEB 

6 %FTSTR 

7 %FTDSK 

Use 

Bit 30 = I if illegal instruction message checks for KI 10 instruc-

tions (F%KII). 

Bit 31 = I if code to load BOOTS from disk (F%BOOT). 

Bit 32 = I if more than one swapping device (F%2SWP). 

Bit 33 = I if DAEMON error logging (F%EL). 

Bit 34 = I if multi-processor code loaded (F%MS). 

Bit 35 = I if memory parity error recovery (F%MEMP). 

Debugging features 

Bit 28 = I if response time measurement (F%RSP). 

Bit 29 = 1 if why reload code (F%WHY). 

Bit 30 = I if patch· space left in table (F%P ATT). 

Bit 31 = 1 if back-tracking information left in COMMON 

(F%TRAC). 

Bit 32 = I if monitor halts on error (F%HALT). 

Bit 33 = I if redundancy checking for internal errors (F%RCHK). 

Bit 34 = I if monitor write-protected (F%MONP). 

Bit 35 = I if monitor check summing (F%CHEC). 

File structure parameters 

Bit 21 = I if NUL device (F%NUL). 

Bit 22 = I if LIB/SYS/NEW (F%LIB). 

Bit 23 = I if disk priority transfers (F%DPRI). 

Bit 24 = I if append to last block (F%APLB). 

Bit 25 = I if append implies read (F%AIR). 

Bit 26 = I if generic device search (F%GRSC). 

Bit 27 = I if rename cross directories (F%DRDR). 

Bit 28 = I if SEEK UUO (F%DSEK). 

Bit 29 = I if super USETI/USETO (F%DSUP). 

Bit 30 = I if disk quotas (F%DQTA). 

Bit 31 = I if multiple file structures (F%STR). 

Bit 32 = I if 5-series UUOs (F%5UUO). 

Bit 33 = I if physical-only I/O (F%PHYO). 

Bit 34 = I if sub-file directories (F%SFD). 

Bit 35 = I if STRUUO functions (F%MOUN.). 

Internal disk parameters 

Bit 21 = I if DEBUG CB interlock (F%CBDB). 

Bit 22 = I if LOGIN system (F%LOGI). 

Bit 23 = I if disk system (F%DISK). 

Bit 24 = I if race-condition prevention in FILFND (F%FREE). 

Bit 25 = I if swap read error recovery (F%SWPE). 

Bit 26 = 1 if bad block marking (F%DBBK). 

Bit 27 = I ifUFD compressor (F%DUFC). 

Bit 28 = I if disk error simulation (F%DETS). 

Bit 29 = 1 if extended RIBs supported (F%DMRB). 

Bit 30 = I if smaller allocation for disk core blocks (F%DSMC). 

3-74 



Item Location 

7 (cont) 

10 %FTSCN 

II %FTPER 

Use 

Bit 31 = 1 if allocation optimization (F%DALC). 

Bit 32 = 1 if disk usage statistics (F%DSTT). 

Bit 33 = 1 if hung disk recovery (F%DHNG). 

Bit 34 = 1 if disk off-line recovery (F%DBAD). 

Bit 35 = 1 if latency optimization (F%DOPT). 

Scanner options 

Bit 24 = 1 if TYPESET-l 0 features in DC76 (F%TYPE). 

Bit 25 = I if 2741-like terminals supported (F%2741). 

Bit 26 = I if DC76 (Fo/oCAFE). 

Bit 27 = I if TTY BLANK command (F%TBLK). 

Bit 28 = I if page and display knowledge (F%TP AG). 

Bit 29 = I if automatic dialer supported (F%DT AL). 

Bit 30 = 1 if special line control (F%SCLC). 

Bit 31 = I if hardware (DC I 0 or DC68) scanner (F%SCNR). 

Bit 32 = I if modem control (F%MODM). 

Bit 33 = I if single scanner 630 (F%630H). 

Bit 34 = I if U.K. modem supported (F%GP02). 

Bit 35 = I if real half-duplex terminals (F%HDPX). 

I/O Parameters 

Bit 25 = I if MSGSER implemented MPX device (F%MSGS). 

Bit 26 = I if high-speed logical device search (F%HSLN). 

Bit 27 = I if CDP trouble intercept (Fo/oCPTR). 

Bit 28 = I if CDR trouble intercept (Fo/oCRTR). 

Bit 29 = 1 if CTY I supported (Fo/oCTY I). 

Bit 30 = I if remote station supported (F%REM). 

Bit 31 = I if LPT error recovery (F%LPTR). 

Bit 32 = I if device errors to operator (F%OPRE). 

Bit 33 = I if CDR super-image mode (Fo/oCDRS). 

Bit 34 = I if MTA density and buffer size (F%MTSE). 

Bit 35 = I ifTMPCOR area (F%TMP). 

3.6.3.4.16 Entries in Table 73 - .GTSCN (Scanner Table) - This table allows the user a mechanism whereby he 

can access the scanner response data. The items and their meanings are as follows: 

Item Location Use 

0 %SCNRI Number of RCV Interrupts 

%SCNXI Number of XMT Interrupts 

2 %SCNEI Number of Echo Interrupts (subset of %SCNXI) 

3 %SCNMB Maximum buffer size. 

4 %SCNAL Number of active lines. 

3-75 



3.6.3.4.17 Entries in Table 74 - .GTSND (Send-all) - The .GTSND table contains the last send-all message 

with the first item in this table pointing to the beginning of the message and the second item pointing to the end 

of the message. Items 3 through the last items contain 9-bit bytes (4 per entry) making up the text of the send­

all message. Each send-all message ends with two bytes containing 001 and 000 in that order. The table entries 

are as follows: 

Item Use 

o Byte pointer to first byte of message. 

Byte pointer to last byte in message. 

Message text. 

3.6.3.4.18 Entries in Table 77 - .GTIPC (IPCF Miscellaneous Data) -

Item Mnemonic Use 

0 %IPCML Maximum packet length. 

%IPCSI PID of system-wide [SYSTEM] INFO. 

2 %IPCDQ Default quota. 

3 %IPCTS Total packets sent. 

4 %IPCTO Total packets outstanding. 

S %IPCCP PID of [SYSTEM] IPCC. 

6 %IPCPM PID mask. 

7 %IPCMP Length of PID table. 

10 %IPCNP Number of PID's now defined. 

11 %IPCTP Total PID's defined since reload. 

3.6.3.4.19 Entries in Table 113 - .GTVM (General Virtual Memory Data) 

Item Mnemonic Use 

0 %VMSWP Swap count. 

%VMSCN Scan Count. 

2 %VMSIP Count of swaps in progress. 

3 %VMSLE Count of swap list entries. 

4 %VMTTL Total virtual memory in use. 

S %VMCMX Maximum value of %VMTTL allowed. 

6 %VMRMX Paging rate max for system. 

7 %VMCON Constant used in swap rate computation. 

3-76 September 1974 



Item Mnemonic Use 

10 %VMQJB Job to requeue to PQV (-1 if all) 

11 %VMRMJ Paging rate maximum per job. 

12 %VMTLF Time of last fault. 

13 %VMSPF System page fault counts: LH = not in working set. 

RH = in working set. 

14 %VMSWI Address of SWPLST 

15 %VMSW2 Address of SW2LST 

16 %VMSW3 Address of SW3LST 

J.6.4 Configuration Information 

J.6.4.1 SWITCH AC, or CALLI AC, 20 - This UUO returns the contents of the central processor data switches 

n AC. Caution must be exercised in using the data switches because they are not an allocated resource and are 

tlways available to all users. 

J.6.4.2 LIGHTS AC, or CALLI AC, -1 - This UUO displays the contents of AC in the console lights. 

L7 DAEMON AC, OR CALLI AC, 102(1) 

rhis UUO requests the DAEMON program to perform a specified function for the user program. The call is: 

MOVE AC, [XWD length(n+ 1), ADR] 

DAEMON AC, 

error return 

normal return 

ADR: function 

argl 

arg2 

arg (n) 

; or CALLI AC, 102 

-------TheJengtlLof the-argument list can_be zero iLthe_num~r9f <rrgumeI1.tsjs !1~e_<!._ 'fpe fi~st wor()i the ~rgument 

list is the code for the requested function. Non-privileged functions of the DAEMON UUO are presented in the 

following paragraphs. Refer to the Specifications section of the DECsystem-lO Software Notebooks for a de­

scription of the privileged functions. 

(1) This UUO depends on FTDAEM which is nonnally off in the DECsystem-1040. 

3-77 September 1974 



3.7.1 .DCORE Function 

This function causes DAEMON to write a dump file of the job's core area. The call is: 

ADR: 

SIXBIT/dev/ 

SIXBIT / file/ 

SIXBIT / ext/ 
o 
XWDppn 

SIXBIT/SFDI/ 

SIXBIT/SFDN/ 

; .DCORE function 

If an argument is omitted, the default is the same as in the DCORE command (refer to DECsystem-1 0 Operating 

System Commands). 

3.7.2 .CLOCK Function 

This function causes DAEMON to enter a request in the clock queue in order to awake the job after the specified 

number of seconds has elapsed. The UUO returns as soon as the request is entered. The HIBER UUO with no 

clock request (refer to Paragraph 3.1.4.2) should then be used to place the job in the sleep queue. 

The call is: 

MOVEI AC, BLOCK 

DAEMON AC, 

JRSTERROR 

SETZ AC, 

HIBERAC, 

JRSTERROR 

ERROR: ... 

BLOCK: 2 

+seconds 

; simulate the DAEMON UUO 

; with the SLEEP UUO. 

; .CLOCK function 

; number of seconds to 

; sleep. 

If the job already has a request in the clock queue, the new request supersedes the current request. Thus, jobs 

desiring to be awakened several times should issue one request for the soonest wake time. 

There is no maximum on the amount of time a job can sleep and therefore, this UUO is useful when a sleep time 

of more than 63 seconds is desired (the SLEEP and HIBER UUOs have an implied maximum of 63 seconds). A 

request specifying 0 seconds clears the job's entry in the clock queue and immediately wakes the job. Note that 

the resolution of the timer may be several seconds slow if the system is heavily loaded. 

3-78 



3.7.3 Returns 

The error return is given if the UUO is not implemented, DAEMON is not running, or DAEMON cannot complete 

the requested function. If the UUO is not implemented or DAEMON is not running, AC remains unchanged. If 

DAEMON cannot complete the request, AC contains one of the following error codes: 

Item 

2 

3 

4 

5 

6 

7 

10 

Location 

DMILF% 

DMACK% 

DMWNA% 

DMSNH% 

DMCWF% 

DMNPV% 

DMFFB% 

DMPTH% 

Use 

Illegal function. 

Address check. The argument block is outside of user core or 

in the job data area. 

Wrong number of arguments. 

Impossible UUO failure (should never happen). 

Cannot write file. An OPEN or INIT failed. 

No privileges. An attempt was made to write in the accounting 

files without having the proper privileges. 

FACT format is bad. 

Invalid path specification. 

The normal return is taken if the requested function is successfully completed. 

3.8 REAL-TIME PROGRAMMING 

3.8.1 RTTRP AC, or CALLI AC, 57(1) 

The real-time trapping UUO is set by timesharing users to dynamically connect real-time devices to the priority 

interrupt system, to respond to these devices at interrupt level, to remove the devices from the interrupt system, 

and to change the PI level on which the devices are associated. The RTTRP UUO can be called from UUO level 

or from interrupt level. This is a privileged UUO that requires the job to have real-time privileges (granted by 

LOGIN) and to be locked in core (accomplished by LOCK UUO). These real-time privileges are assigned by the 

system manager and obt~ined by the monitor from ACCT.SYS. The privilege bits required are: 

1. JP.LCK (Bit 14) - allows the job to be locked in core. 

2. JP.RTT (Bit 13) - allows the RTTRP UUO to be executed. 

WARNING 
Improper use of features of the RTTRP UUO can cause 
the system to fail in a number of ways. Since design goals 
of this UUO were to give the user as much flexibility as 
possible, some system integrity had to be sacrificed. The 
most common errors are protected against since user pro­
grams run in user mode with all ACs saved. It is recom­
mended that debugging of real-time programs not be done 
when system integrity is important. However, once these 
programs are debugged, they can run simultaneously with 
batch and timesharing programs. 

(l~~) Th::::-:'is-:U:":':U:-:-:O~de-p-en-:d:-s-on-F=-T==R~T==T:::RP-=-w~h":""ic:--:h is normally off in the DECsystem-l040. 

3-79 



Real-time jobs control devices one of two ways: block mode or single mode. In block mode, an entire block of 

data is read before the user's interrupt program is run. In single mode, the user's interrupt program is run every 

time the device interrupts. Furthermore, there are two types of block mode: fast block mode and normal block 

mode. These differ in response time. The response time to read a block of data in fast block mode is 6.5 sec per 

word and in normal block mode, 14.6 sec per word. (This is the CPU time to complete each data transfer.) In 

all modes, the response time measured from the receipt of the real-time device interrupt to the start of the user 

control program is 100 sec. 

The RTTRP UUO allows a real-time job to either put a BLKI or BLKO instruction directly on a PI level (block 

mode) or add a device to the front of the monitor PI channel CONSO skip chain (single mode). Since the BLKI 

and BLKO are executed in exec mode, a KI 10-based system requires that the job be mapped in exec virtual mem­

ory, in addition to being locked (refer to the LOCK UUO). When an interrupt occurs from the real-time device 

in single mode or at the end of a block of data in block mode, the monitor saves the current state of the machine, 

sets the new user virtual memory and APR flags, and traps to the user's interrupt routine. The user services his 

device and then returns control to the monitor to restore the previous state of the machine and to dismiss the 

interrupt. 

In fast block mode the monitor places the BLKI/BLKO instruction directly in the PI trap location followed by a 

JSR to the context switcher. This action requires that the PI channel be dedicated to the real-time job during 

any transfers. In normal block mode the monitor places the BLKI/BLKO instruction directly after the real-time 

device's CONSO instruction in the CONSO skip chain (refer to Chapter 7). 

Any number of real-time devices using either single mode or normal block mode can be placed on any available 

PI channel. The average extra overhead for each real-time device on the same channel is 5.5 sec per interrupt. 

The call is: 

MOVEI AC, RTBLK 

RTTRP AC, 

error return 

normal return 

; AC contains address of data block. 

; or CALLI AC, 57, put device on PI level. 

; AC contains an error code. 

; PI is set up properly. 

The data block depends on the mode used. In single mode the data block is: 

RTBLK. xwn PICHL, TRPAOR 

EXP APRTRP 
CONSO DEV, BITS 
o 

The data block in fast block mode is: 

RTBLKt XWD PICHL, TRPADR 

EXP APRTRP 
BLKO DEV, BLKADR 
o 

,PI ehannel (1-6) and trap 
,address, 
,APR trap address, 
,CONSO Chain instruction, 
,no BLKI/BLKO instruction. 

,PI and trap address when BLKO 
,done, 
,APR trap address, 
,BLKI or BtKO instruetion. 
,BLKADR pOints to the IOWD of 
,bloek to be sent. 

3-80 



The data block in normal block mode is: 

PTBLK. XWD PICHL, TRPADR 
EXP APRTRp 
CONSO DEV, @BITMSK 

BLKI DEV, BLKADR 

,Channel and tra~ addreSI. 
,APR trap addr.,s. 
,control bit mask from user 
,area. 
,BLKI instruction. 

On multiprocessor systems, the real-time trap UUO applies only to the processor specified by the job's CPU spec­

ification (refer to the SET CPU command or the SET UUO). If the specification indicates more than one pro­

cessor, the specification is changed to indicate CPUO. Note that the PI channel (PICHL) and processor traps 

(APRTRP) are only for the indicated CPU. 

3.8.1.1 Data Block Mnemonics - The following mnemonics are used in describing the data block associated 

with the RTTRP UUO. 

PICHL - PICHL is the PI level on which the device is to be placed. Levels 1-6 are legal depending on the system 

configuration. If PICHL = 0, all occurrences of the device whose device code is specified in the CONSO instruc­

tion are removed from all levels. When a device is placed on a PI level, normally all other occurrences of the 

device on any PI level are removed. If the user desires the same device on more than one PI level simultaneously 

(i.e., a data level and an error level), he can issue the RTTRP UUO with PICHL negative. This indicates to the 

system that any other occurrence of this device (on any PI level) is not to be removed. Note that this addition 

to a PI level counts as a real-time device, occupying one of the possible real-time device slots. 

TRPADR - TRPADR is the location trapped to by the real-time interrupt (JRST TRPADR). Before the trap 

occurs, all ACs are saved by the monitor and can be overwritten without concern for their contents. 

APRTRP - APRTRP is the trap location for all APR traps. When an APR trap occurs, the monitor simulates a 

JSR APRTRP. The user gains control from an APR trap on the same PI level that his real-time device is on. The 

monitor always traps to the user program on illegal memory references; nonexistent memory references, and 

push-down overflows. This allows the user to properly turn off his real-time device if needed. The monitor also 

traps on the conditions specified by the APRENB UUO (see Paragraph 3.1.3.1). No APR errors are detected if 

the interrupt routine is on a PI level higher than or equal to the APR interrupt level. 

DEV - DEV is a real-time device code. 

BITS - BITS is the bit mask of all interrupt bits of the real-time device and must not contain any other bits. If 

the user desires control of this bit mask from his user area, he may specify one level of indirection in the CONSO 

instruction (no indexing), i.e., CONSO DEV, @ MASK where MASK is the location in the user area of the bit 

mask. MASK must not have any bits set in the indirect or index fields. 

BLKADR - BLKADR is the addie-ssin-tne user's area of the BLKI/BLKO pointeiword~ Before returning- to-- ~ - -- - - -­

the user, the monitor adds the proper relocation factor to the right half of the pointer word. Data can only be 

read into the low segment above the protected job area, i.e., above location 114. 

Since the pointer word is in the user's area, the user can set up a new pointer word when the word count goes 

to 0 at interrupt level. This allows fast switching between buffers. When the user desires to set up his own 

pointer word, the right half of the word must be set as an exec virtual instead of a user virtual address. The job's 

relocation value is returned from both the LOCK UUO and the first RTTRP UUO executed for setting the BLKI/ 

BLKO instruction. If this pointer word does not contain a legal address, a portion of the system might be over­

written. A check should be made to determine if the negative word count in the left half of the pointer word 

3-81 



is too large. If the word count extends beyond the user's own area, the device may cause a nonexistent memory 

interrupt, or may overwrite a timesharing job. If all of the above precautions are taken, this method of setting 

up the pointer word is much faster and more flexible than issuing the RTTRP UUO at interrupt level. 

3.8.1.2 Interrupt Level Use of RTIRP - The format of the RTTRP UUO at interrupt level is similar to the 

format at user level except for two restrictions: 

1. AC 16 and AC 17 cannot be used in the UUO call (i.e., CALLI 16, 57 is illegal at interrupt level). 

2. All ACs are overwritten when the UUO is executed at interrupt level. Therefore, the user must save any 

desired ACs before issuing the RTTRP UUO. This restriction is used to save time at interrupt level. 

CAUTION 
If an interrupt level routine executes a RTTRP UUO that 
affects the device currently being serviced, no additional 
UUOs of any kind (including RTTRP and WAKE) can be 
executed during the remainder of the interrupt. At this 
point, any subsequent UUO dismisses the interrupt. 

3.8.1.3 RTIRP Returns - On a normal return, the job is given user lOT privileges. These privileges allow the 

user to execute all restricted instructions induding the necessary I/O instructions to control his device. 

The lOT privilege must be used with caution because improper use of the I/O instructions could halt the system 

(i.e., HALT on the KAIO";CONOAPR, 0; DATAO APR, O;CONO PI, 0 on the KAIO and KIlO; and CONO PAG, 

o or DATAO PAG, 0 on the KIlO). Note that a user can obtain just the user lOT privilege by issuing the RTTRP 

UUO with PICHL = O. 

An error return is not given to the user until RTTRP scans the entire data block to find as many errors as possible. 

On return, AC may contain the following error codes. 

Name Code Value Meaning 

RTJNP% Bit 24 = 1 4000 Job not privileged. 

RTNCO% Bit 25 = 1 2000 Not runnable on CPUO. 

RTDIU% Bit 26 = 1 1000 Device already in use by another job. 

RTIAU% Bit 27 = 1 400 Illegal AC used during RTTRP UUO at interrupt level. 

RTJNL% Bit 28 = I 200 Job not locked in core. 

RTSLE% Bit 29 = I 100 System limit for real-time devices exceeded. 

RTILF% Bit 30 = I 40 Illegal format of CONSO, BLKO, or BLKI instruction. 

RTPWI% Bit 31 = 1 20 BLKADR or pointer word illegal. 

RTEAB% Bit 32 = 1 10 Error address out of bounds. 

RTTAB% Bit 33 = 1 4 Trap address out of bounds. 

RTPNB% Bit 34 = I 2 PI channel not currently available for BLKI/BLKO's. 

RTPNA% Bit 35 = 1 PI channel not available (restricted use by system). 

3-82 



3.8.1.4 Restrictions-

1. Devices may be chained onto any PI channel that is not used for BLKI/BLKO instructions by. the 

system or by other real-time users using fast block mode. This includes the APR channel. Normally 

PI levels 1 and 2 are reserved by the system for magnetic tapes and DECtapes. PI level 7 is always 

reserved for the system. 

2. Each device must be chained onto a PI level before the user program issues the CONO DEV, PIA to 

set the device onto the interrupt level. Failure to observe this rule or failure to set the device on the 

same PI level that was specified in the RTTRP UUO could hang the system. 

3. If the CONSO bit mask is set up and one of the corresponding flags in a device is on, but the device 

has not been physically put on its proper PI level, a trap may occur to the user's interrupt service 

routine. This occurs because there is °a CONSO skip chain for each PI level, and if another device in­

terrupts whose CONSO instruction is further down the chain than that of the real-time device, the 

CONSO associated with the real-time device is executed. If one of the hardware device flags is set and 

the corresponding bit in the CONSO bit mask is set, the CONSO skips and a trap occurs to the user 

program even though the real-time device was not causing the interrupt on that channel. To avoid this 

situation the user can keep the CONSO bit mask in his user area (refer to Paragraph 3.8.1.1). This 

procedure allows the user to chain a device onto the interrupt level, keeping the CONSO bit mask zero 

until the device is actually put on the proper PI level with a CONSO instruction. This situation never 

arises if the device flags are turned off until the CONO DEV, PIA can be executed. 

4. The user should guard against putting programs on high priority interrupt levels which execute for 

long periods of time. These programs could cause real-time programs at lower levels to lose data. 

5. The user program must not change any locations in the protected job data area (locations 20-114), 

because the user is running at interrupt level and full context switching is not performed. 

6. If the user is using the BLKI/BLKO feature, he must restore the BLKI/BLKO pointer word before 

dismissing any end-of-block interrupts. This is accomplished with another RTTRP UUO or by directly 

modifying the absolute pointer word supplied by the first RTTRP UUO. Failure to reset the pointer 

word could cause the device to overwrite all of memory. 

3.8.1.5 Removing Devices from a PI Channel- When PICHL=O in the data block (see Paragraph 3.8.1.1), all 

occurrences of the device specified in the CONSO instruction are removed from the interrupt system. If the 

user removes a device from a PI chain, he must also remove the device from: the PI level (CONO DEV, 0). 

A RESET, EXIT, or RUN UUO from the timesharing levels removes all devices from the interrupt levels (see 

Paragraph 3.2.2.4). These UUOs cause a CONO DEV, 0 to be executed before the device is removed. Monitor 

commands that issue implicit RESETS also remove real-time devices (e.g., R, RUN, GET, CORE 0, SAVE, 
-- -SSA VE~---- ----------

3.8.1.6 Dismissing the Interrupt - The user program must always dismiss the interrupt in order to allow mon­

itor to properly restore the state of the machine. The interrupt may be dismissed with any UUO other than the 

RTTRP or WAKE UUO or, on the KAIO, any instruction that traps to absolute location 60. The standard 

method of dismissing the interrupt is with a UJEN instruction (op code 100). This instruction gives the fastest 

possible dismissal. 

3-83 



3.8.1.7 Examples 

******~~** EXAMPLE 1 ******~*** 
SINGLE MODE 

TITLE RTSNGL • pApER TAPE READ TEST USING CONSO CHAIN 

PIDF'F=400 
PION=200 
TAPE::400 
BUSY=20 
DONEel0 

PDATAI Z 

PTFTSTI RESET 
MOVE [XWD 1, 1 ] 
LOCK 
JRST FAILED 
SETZM PTRCSO 
SETZM DONFLG 
MOVE! RTBLI< 
RTJ.1RP 
JRS'r FAILED 
MOVEI 1,DONE 
HLRZ 2,RTBLK 
TRO 2,BUSY 
CONO PI,PIOFF 
MOVEM 1,PTRCSO 
eDNa PTR,C2) 
CONO PI,PION 
MOVE I 5 
SLEEP 
SKIPN OONFLG 
JRST ,-3 
EXIT 

RTBLKI XWD 5,TRPADR 
EX? APRTRP 
CONSO PTR,~PTRCSO 
Z 

PTRCsor Z 
DONFLGI Z 
RTBLKlt Z 

Z 
CONSO PTR,O 
Z 

TRPADRI CaNSO PTR,TAPE 
JRST TOONE 
DATA1 PTR,POATA 
UJEN 

APRTRPI Z 
TOONEi MOVEI RTBLK1 

eDNa PTR,O 
PTTRP 
JFCL 
SETOM OONFLG 
SETZM PTRCSO 
UJEN 

,TURN PI SYSTEM OFF 
,TURN PI SYSTEM ON 
,NO MORE TAPE IN READER IF TAPE=O 
,DEVICE IS BUSY READING 
,A CHARACTER HAS BEEN READ 

,LOCATION WHERE DATA IS READ INTO 

'RESET THE PROGRAM 
,LOCK BOTH HIGH AND LOW SEGMENTS 
,LOCK THE JOB IN CORE 
,LOCK UUO FAILED 
,MAKE SURE CONSO BITS ARE ZERO 
,INITIALIZE DONE rLAG 
,GET ADDRESS OF REAL TIME DATA BLOCK 
,PUT REAL TIME DEVICE ON THE PI LEVEL 
,RTTRP UUO FAILED 
,SET UP CONSO BIT MASK 
,GET PI NUMBER FROM PTBLK 
,SET UP CONSO BITS TO START TAPE GOING 
,GUARD AGAINST ANY INTERRUPTS 
,STORE CaNSO BIT MASK 
,TURN PTR ON 
,ALLOW INTERRUPT AGAIN 
,SET UP TO SLEEP FOR 5 SECONDS 

,HAVE WE FINISHED READING THE TAPE 
,NO GO BACK TO SLEEP 

,PI CHANNEL AND TRAP ADDRESS 
,APR ERROR TRAP ADDRESS 
,INDIRECT CaNSO BIT MASK • PTRCSO 
,NO BLKI/O INST~UCTION 
,CaNSO BIT MASK 
,PI LEVEL TO USER LEVEL COMM. 
,DATA BLOCK TO REMOVE PTR 
,FROM PI CHANNEL 

,END OF TAPE? 
,YES, GO STOP JOB 
,READ IN DATA WORD 
,DISMISS THE INTERRUPT 

,APR ERROR TRAP ADDRESS 
,SET UP TO REMOVE PTR 
,TAKE DEVICE OFF HARDWARE PI LEVEL 
,REMOVE FROM SOFTWARE PI LEVEL 
,IGNORE ERRORS 
,MARK THAT READ IS OVER 
,CLEAR CONSO BIT MASK 
,DISMISS THE INTERRUPT 

3-84 



FAILEDI TTC~LL 3, [ASCIZ/RTTRP UUO FAILEDI/] 
EXIT 

END PTRTST 

**~******~ EXAMPLE 2 ********~~ 
FAST BLOCK MODE 

TITLE RTFBLK - pAPER TAPE READ TEST I~ BLKI MODE 

TAPE=400 
BUSY=20 
OONE=10 

BLI<TSTI RESET 
MOVE [XWD 1,1] 
LOCK 
JRST FAlLEn 
SETZM DONFLG 
MOVEY RT8LK 
RTTRP 
JRST FAILED 
HLRZ 2,RTBLK 
TRO 2,BUSY 
COND PTR,(2) 
MOVEI 5 
SLEEP 
SKIPN DONF'LG 
JRST ,-3 
EXIT 

RTBLK: XWD 6,TRPAOR 
EXP APRTRP 
BLKI PTR,POINTR 
Z 

pOINtRI lawn S,TABLE 
OPOINT. lOWD S,TABLE 
TABLE: aLOCl< 5 
DONFLGI Z 
~TBLT<11 Z 

Z 
CONSO PTR,O 
Z 

,NO MORE TAPE IN READER IF TAPEoO 
,DEVICE IS BUSY READING 
,A CHARACTER HAS BEEN READ 

,RESET TH~ PROGRAM 
,LOCK BOTH HIGH AND LOW SEGMENTS 
,LOCK THE JOB IN CORE 
,LOCK UUO FAILED 
,INITAILIZE DONE FLAG 
,GET ADDRESS OF REAL TIME DATA BLOCK 
,PUT REAL TIME DEVICE ON THE PI LEVEL 
,RTTT? UUO FAILED 
,GET PI NUMBER FROM RTBLK 
,SET UP CONO BITS TO START TAPE GOING 
,TURN PTR ON 
,SETUP TO SLEEP FOR 5 SECONDS 

,HAVE WE FINISHED READING THE TAPE 
,NO GO BACK TO SLEEP 

,PI CHANNEL AND TRAP ADDRESS 
,APR ERROR TRAP ADDRESS 
,READ A BLOCK AT A TIME 

'POINTER FOR eLKI INSTRUCTION 
,ORIGINAL POINTER WORO FOR BLKI 
,TABLE AREA FOR DATA BEING READ 
,PI LEVEL TO USER LEVEL COMM, 
,DATA BLOCK TO REMOVE PTR 
,FROM PI CHANNEL 

TRPADRS CONSO PTR,TAPE ,END OF TAPE? 
JRST TOONE ,YES, GO STOP JOB 
MOVE OPOINT ,GET ORIGINAL POINTER WORD 

_ ___________ MOVEM POINTR rJ~~~IOR~_~~K_I_P_O_I1JTER_WORO __ ---~-----
- u~JEN -~ - ~------- - - ,DISMISS THE INTERRUPT 

APRTRP: Z 
TOONE. MOVEl RTBLKl 

eONO PTR,O 
RTTRP 
JFCL 
SETOM DONFLG 
UJEN 

,APR ERROR TRAP ADDRESS 
,SETUP TO REMOVE PTR 
,TAKE DEVICE OFr HARDWARID PI LEVEL 
,REMOVE FROM SOFTWARE PI LEVEL 
,IGNORE ERRORS 
,MARK THAT READ IS OVER 
,DISMISS THE INTER~UPT 

FAILED. TTCALL 3, [ASCIZ/RTTRP UUO FAILED1/] 
EXIT 

END BLKT!T 

3-85 



********** EXAMPLE 3 ********** 
NORMAL BLOCK MODE 

TITLE RTNBLK • PAPER TAPE READ T~ST IN BLKI MODE 

BLKTSTI 

RTBLK' 

POINTR. 
OPOI~TI 
TABLEI 
DONFLG. 
RTBLK1. 

TAPE=400 
BUSY=20 
DONE=10 

RESET 
MOVE [XWD 1, 1 ] 
LOCK 
JRST FAILED 
MOVEI RTBLKl 
RTTRP 
JRST FAILED 
CONO PTR,O 
SETZM OONFLG 
MOVEI RTBLK 
RTTRP 
JRST FAItED 
MOVE POINTR 
MOVEM OPOINT 
HLRZ 2,RTBLK 
TRO 2,BUSY 
CONO PTR,(2) 
MOVEI 5 
SLEEP 
SKIPN DONFLG 
JRST ,-3 
EXIT 

XWD 6,TRPADR 
EXP APRTRP 
CONSO PTR,DONE 
BLKI PTR,POINTR 

lOWD 5,TABLE 
Z 
stOCI< 5 
Z 
Z 
Z 
CONSO PTR,O 
Z 

TRPADRI CONSO PTR,TAPE 
JRST TOONE 
MOVE OPOlNT 
MOVEM POINTR 
UJEN 

APt=tTRPI Z 
TOONEI MOVEI RTBLK1 

CONO PTR,O 
RTTRP 
JP'CL 

,NO MORE TAPE IN READER IF TAPE=O 
,DEVICE IS BUSY READING 
,A CHARACTER HAS BEEN READ 

'10 RESET 
,LOCK BOTH HIGH AND LOW SEGMENTS 
,LOCK THE JOB IN COPE 
,LOCK UUO FAILED 
,GET ADDPESS OF REAL TIME BLOCK 
,GET USER lOT PRIVILEGE 
,UUO FAILEDl 
,CLEAR ALL PTR FLAGS 
,INITIALIZE DONE FLAG 
,GET ADDRESS OF REAL TIME DATA BLOCK 
,PUT REAL TIME DEVICE ON THE PI LEVEL 
,RTTRP UUO FAILED 
,GET RELOCATED POINTER WORD raR LATER 
,STORE F~R INTERRUPT LEVEL USE 
,GET PI NUMBER FROM RTBLt< 
,SET UP CONO BITS TO START TAPE GOING 
,TURN PT~ ON 
,SET UP TO SLEEP FOR 5 SECONDS 

,HAVE WE FINISHED READING THE TAPE 
,NO GO BACK TO SLEEP 

,PI CHANNEL AND TRAP ADDRESS 
,APR ERROR TRAP ADDRESS 
,WAIT ONLY FOR DONE FLAG 
,READ A BLOCK AT A TIME 

,POINTER FOR eLKI INSTRUCTION 

.TABLE AREA FOR DATA BEING READ 
,PI LEVEL TO USER LEVEL COMM. 
,DATA BLOCK TO REMOVE PTR 
,FROM PI CHANNEL 

,END OF TAPE? 
rYES, GO STOP JOB 
,GET ORIGINAL POINTER LOCATION 
,STORE IN POINTER LOCATION 
rDISMISS THE INTERRUPT 

'APR ERROR TRAP ADDRESS 
,SET UP TO REMOVE PTR 
,TAKE DEVICE OFF HARDWARE PI LEVEL 
,REMOVE FROM SOFTWARE PI LEVEL 
,IGNORE ERRORS 

3-86 



stTOM DONP'LG 
UJEN 

,MARK THAT READ IS OVER 
,·DISMISS THE: INTERRUPT 

FAILED. TTCALL 3, [ASCIZ/RTTRP UUO FAILED1/] 
!XIT 

END BKJTST 

3-87 



3.8.2 RTTRP Executive Mode Trapping 

In special cases, the real-time user requires a faster response time than that offered by the RTTRP UUO when 

executed in user mode. To accommodate these cases, the user can specify a special status bit in the RTTRP UUO 

call, which gives the program control in exec mode (refer to Paragraph 2.1.3). Exec-mode trapping gives response 

times of less than 10 sec to real-time interrupts. To use this exec-mode trapping, the job must have real-time 

privileges (granted by LOGIN) and be locked in core (accomplished by the LOCK UUO). On KIlO based sys­

tems, the job must also be mapped contiguously in exec virtual memory (refer to the LOCK UUO). The privilege 

bits required are: 

1. JP.TRP (Bit 15) 

2. JP.LCK (Bit 14) 

3. JP.RTT (Bit 13) 

Several restrictions must be placed on user programs in order to achieve this level of response. On receipt of an 

interrupt, program control is transferred to the user's real-time program without saving ACs and with the pro­

cessor in exec mode. Therefore, the user program must save and restore all ACs that are used, must not execute 

any UUOs, and cannot leave exec mode. This means that the programs must be self-relocating (Le., through the 

use of an·index or base register). 

CAUTION 
Improper use of the exec mode feature of the RTTRP 
UUO can cause the system to fail in a number of ways. 
Unlike the user mode feature of RTTRP, errors are not 
protected against since the programs run in exec mode 
with no ACs saved. 

To specify RTTRP exec-mode trapping, bit 17 of the second word in the data block (RTBLK) must be set to 1. 

This implies that no context switching is to be done and that a JSR TRP ADR is to be used to enter the user's 

real-time interrupt routine. The user program must save and restore all ACs and should dismiss the interrupt 

with a JRSTF @ TRP ADR. This instruction must be set up prior to the start of the real-time device as an ab­

solute or unrelocated instruction. This can be done because the LOCK UUO returns the absolute addresses of 

the low and high segments after the job is locked in a fixed place in memory. 

The exec-mode trapping feature can be used with any of the standard forms of the RTTRP UUO: single mode, 

normal mode, and fast block mode. 

3.8.2.1 Example-

TITLE RTEXEC 

PIA-!5 
DONEc:l0 
aUSY-20 
TAPE-400 
Ial 
AC=2 
OPDEr HIBERNATE [CALLI 72] 

RTEXECI RESET 
SETZM DONP'LG 
MOVE AC,tXWD 1,1] 
LOCK AC, 

.RESET THE PROGRAM 
,INITIALIZE THE DONE FLAG 

,LOCK THE JOB IN CORE 
,ABSOLUTE ADDRESS or JOB IS RETURNED 
,IN AC 

3-88 



JRST FAILED 
HRRZS AC 
LSH AC,9 
l-AOVEM AC,INDEX 

ADOM AC,EXCHND 
ADDM AC,JENWD 
1-40VEI AC,RTBLK 
RTTRP AC, 
JRST FAILED 
CONO PTR,20+PIA 

SLEEPa MOVEI Ac,~Dl0no 
HIBERNATE AC, 
JRST FAILED 
SKIPN DONFLG 
JRST SLEEP 
EXIT 

RTBLK: XWD PIA,TRPADR 
XWD1,APRTRP 
CONSO PTR,OONE 
o 

TRPAOR. 0 
EXCHWDI EXCH I,lNDEX 

CONSO PTR,TAPE 
JRST TDONE(I) 
DATAl PTR,PDATA(I) 

RETU~N: EXCH I,INOEX(I' 
JENWD, JRSTF @~RPAOR 

APRTRPI 0 
TOONEI CONO PIR,O 

SETOM OONFLG(I) 
JRST RETUR.N C I) 

,ERROR RETURN 
,GET ONLY LOW SEGMENT ADDRESS 
,JUSTIFY ADDRESS 
,SAVE BASE ADDRESS FOR USE AT 
,INTERRUPT LEVEL 
,RELOCATE INTERRUPT LEVEL PROGRAM 
,RELOCATE RETURN INSTPUCTION 
,CONNECT REAL TIME DEVICE 
,TO TH~ PI SYSTEM 
,RTTRP UUO FAILED 
,START REAL TIME DEVICE READING 
rSLEEP 
,FOR 10 MILLISECONDS 
,FAILED 
,IS THE INTERRUPT LEVEL PROGRAM DONE 
,NO, GO BACK TO SLEEP 
,'x'ES, EXIT 

,BIT 17 SAYS TRAP IN EXEC MODE 

,JSR TRPADR IS DONE UPON INTERRUPT 
,SET UP INDEX REGISTER 
,TAPE FINISHED? 
,YES, STOP THE READER 
,NO, READ IN THE NEXT CHARACTER 
,RESTORE AC'S USED 
,DISMISS THE INTERRUPT 

'APR ERRORS WILL TRAP HERE 
,TAKE THE READEP OFr LINE 
,HARK THAT THE TAPE IS FINISHED 
,GO DISMISS THE INTERRUPT 

FAILED' TTCALL 3, [ASCIZ/UUO FAILURE/] 
EXIT 

DONF'LG' 0 
PDATA I 0 
INDEX. 0 

END RTEXEC 

,FLAG TO SPECIFY END OF JOB 
,DATA WORD 
,BASE INDEX REGISTER 

3-89 



3.8.3 TRPSET AC, or CALLI AC, 2S( 1) 

The TRPSET feature may be used to guarantee some of the fast response requirements of real-time users. In 

order to achieve fast response to interrupts, this feature temporarily suspends the running of other jobs during 

its use. This limits the class of problems to be solved to cases where the user wants to transfer data in short 

bursts at predefined times. Therefore, because the data transfers are short, the time during which timesharing is 

stopped is also short, and the pause probably will not be noticed by the timesharing users. 

The TRPSET UUO allows the user program to gain control of the interrupt locations. If the user does not have 

the TRPSET privileges (JP .TRP, bit 15), an error return to the next location after the CALLI is always given, and 

the user remains in user mode. Timesharing is turned back on. If the user has the TRPSET privileges, the central 

processor is placed in user I/O mode. If AC contains zero, timesharing is turned on if it was turned off. If the 

LH of AC is within the range 40 through 57 of the central processor, all other jobs are stopped from being sched­

uled and the specified executive PI location (40-57) is patched to trap directly to the user. In this case, the 

monitor moves the contents of the relative location specified in the right half of AC, converts the user virtual 

address to the equivalent exec virtual address, and stores the address in the specified executive PI location. On a 

KI 10-based system, this requires the user segment accessed during the interrupt be locked and mapped contig­

uously in the exec virtual memory (refer to the LOCK UUO). If the segment does not meet these requirements, 

the error return is given. 

On a multiprocessor system, the TRPSET UUO applies to the processor specified by the job's CPU specification 

(refer to the SET CPU command or the SET UUO). If the specification indicates only CPUl, an error return is 

given if the job is not locked in core. When the specification indicates more than one processor, the specification 

is changed to indicate CPUO (the master processor). 

Thus, the user can set up a priority interrupt trap into his relocated core area. On a normal return, AC contains 

the previous contents of the address specified by LH of AC, so that the user program may restore the 9riginal 

contents of the PI location when the user is through using this UUO. If the LH of AC is not within the range 40 

through 57, an error return is given just as if the user did not have the privileges. The basic call is: 

ADR: 

TRAP: 

MOVE AC, [XWD N, ADR] 

TRPSET AC, 

ERROR RETURN 

NORMAL RETURN 

JSR TRAP 

o 

; Instruction to be stored 

; in exec PI location 

; after relocation added to it. 

; Here on interrupt from exec. 

The monitor assumes that user ADR contains either a JSR U or BLKI U, where U is a user virtual address; con­

sequently, the monitor adds a relocation to the contents of location U to make it an absolute IOWD (Le., an exec 

virtual address). Therefore, a user should reset the contents of U before every TRPSET call. 

A RESET UUO returns the user to normal user mode. The following instruction sequence is used to place the 

real-time device RTD on channel 3. 

(1) This UUO depends on FTTRPSETwhich is normally off in the DECsystem-l040. 

3-90 



INT461 

INT471 

START. 

BLKI RTD,INBLOI< 

JSR XITINT 

• MOVEI AC,INT46 
HR.LI AC, 46 
TRPSET AC, 
JRST EXITR 
MOVE AC, [XWD 47, INT47] 
TRPSET AC, 
JRST EXITP. 

• XITINTI 0 

• • • 

,relocation constant 
,for user 1s added 
,to RH when instructions 
rare placed into 46 and 47. 

,error return 
,normal return 

,error return 
,normal return 

,PC saved 
'lnterru~t dism1ss routine 

To maintain compatibility between a KA la-based system and a KIl O-based system, the interrupt routine should 

be executed in exec mode. However, for convenience, the routine can be executed in user mode in order to 

avoid relocation to exec virtual memory. This is possible on KA la-based systems if care is taken when dismissing 

the interrupt (see example below). On KI la-based systems, if there is a possibility that the interrupt may occur 

during the job's background processing, the interrupt routine must be executed in exec mode (and thus must be 

locked and exec-mapped with the LOCK UUO). In particular, if the job is executing a UUO at background level, 

the user of UJEN at interrupt level may cause an error. On KIlO-based systems it is recommended that the 

TRPSET interrupt routines always be coded to run in exec mode (refer to the RTTRP UUO for programming 

techniques). 

On KAla-based systems, the interrupt routine can be coded to run in user mode if the following procedure is 

observed. If the interrupt occurs while some other part of the user's program is running, the user may dismiss 

from the interrupt routine with a JEN @ XITINT. However, if the machine is in exec mode, a JEN instruction 

issued in user mode does not work because of memory relocation. This is solved by a call to UJEN (op code 100). 

This UUO causes the monitor to dismiss the interrupt from exec mode. In this case, the address field of the 

UJEN instruction is the user location when the return PC is stored (i.e., UJEN XITINT). The following sequence 

enables the user program to decide whether it can issue a JEN to save time or dismiss the interrupt with a UUO 

call. 

Example (KAla-based system only): 

---------XI-TI NT.- -- 0--

JRST 1,.+1 

MOVEH AC, SAVEAC 

MOVE AC'!, XITINT 
SETZM EFLAG 

3-91 

-'PC-w1~h-b1t8 in-LH 

,essential instruction. 
,returns machine to 
,user mOde. 
,save accumulator AC 
,service interrupt here 

'Olt PC with bit. 



TLNN AC, 10000 

SETOM Ef'LAG 
MOVE AC, SAVEAC 
SKIPP; EP'LAG 
UJEN XITINT 
JEN @ XITINT 

SA,VEACI 0 

EFLAGI 0 

,was macnine In user 
,mode at: entry? 
,no 
,RESTORE saved AC 

,not in user mode at entry 

On entering the routine from absolute 47 with a JSR to XITINT + REL (where REL. is the relocation constant), 

the processor enters exec mode. The first executed instruction in the user's routine must, therefore, reset the 

user mode flag, thereby enabling relocation and protection. The user must proceed with caution when changing 

channel interrupt chains under timesharing, making certain the real-time job can co-exist with other timesharing 

jobs. 

3.8.4 UJEN (Op Code 100) 

This op code dismisses a user I/O mode interrupt if one is in progress. If the interrupt is from user mode, a 

JRST 12, instruction dismisses the interrupt. If the interrupt came from executive mode, however, this operator 

is used to dismiss the interrupt. The monitor restores all accumulators, and executes JEN @ U where user loca­

tion U contains the program counter as stored by a JSR instruction when the interrupt occurred. 

3.8.5 HPQAC or CALLI AC 71(1) 

The HPQ UUO is used by privileged users to place their jobs in a high priority scheduler run queue. These queues 

are always scanned by the scheduler before the normal run queues, and any runnable job in one of these queues 

is executed before all other jobs in the system. 

In addition, these jobs are given preferential access to sharable resources (e.g., shared device controllers). Thus, 

real-time associated jobs can receive fast response from the timesharing scheduler. 

Jobs in high-priority queues are not examined for swap-out until all other queues have been scanned. If ajob in 

a high-priority queue must be swapped, the lowest priority job is transferred first, and the highest priority job 

last. If the highest priority job is swapped, then that job is the first to be swapped in for immediate execution. 

Therefore, in addition to being scanned before all other queues for job execution, the high-priority queues are 

examined after all other queues for swap-out and before all queues for swap-in. 

The HPQ UUO requires as an argument the high-priority queue number of the queue to be entered. The lowest 

high-priority queue is I, and the highest-priority queue is equivalent to the number of queues that the system is 

built for. The call is as follows: 

MOVE AC, HPQNUM 

HPQAC, 

error return 

normal return 

; get high-priority queue number 

; or CALLI AC, 71 

(1) This UUO depends on FTHPQ which is normally off in the DECsystem-1040. 

3-92 



On an error return, AC contains -1 if the user did not have the correct privileges. The privilege bits are 6 through 

9 in the privilege word (.GTPRV). These four bits specify a number from 0-17 octal, which is the highest prior­

ity queue attainable by the user. 

On a normal return, the job is in the desired high-priority queue. A RESET or an EXIT UUO returns the job to 

the high-priority queue specified in the last SET HPQ command. A queue number of 0 as an argument places the 

job back to the timesharing level. 

3.9 METER. AC, or CALLI AC, 111(1) 

This UUO provides a mechanism for system performance metering by allowing privileged users to dynamically 

select and collect performance statistics from the monitor. The multifunction UUO controls all aspects of the 

metering facility in order that the user can collect, present, or reduce data for performance analysis or can tune 

individual jobs or the entire system. The METER. UUO requires JP.MET (bit 3) to be set in the privilege word 

.GTPRV. 

The general call is: 

where 

MOVE AC, [XWD N, ADR] 

METER.AC, 

error return 

normal return 

. ; or CALLI AC, 111 

N is the number of arguments in the argument list. 

ADR is the beginning of the argument list. 

If N is 0, the default number of arguments depends on the particular function used. Arguments in the list can 

be 

1. arguments for the monitor 

2. values returned from the monitor, or 

3. a combination of both. 

The first word of the argument block is the code for the particular function. The detailed descriptions of the 

various functions of the METER. UUO are presented in the METER. Specification in the Software Notebooks; 

the following is a list of the functions available. 

Function Code 

0 

2 

3 

4 

5 

Name 

.MEFCI 

.MEFCS 

:MEFCR 

.MEFPI 

.MEFPS 

.MEFPR 

Description 

Initialize meter channel 

Obtain meter channel status 

Release meter channel 

Initialize meter points 

Obtain meter point status 

Release meter points 

On an error return, the appropriate error code is returned in AC. 

(1) This UUO depends on FTMETR which is nonnally off in the DECsystem-l040. 

3-93 



On a normal return, AC is preserved. The possible error codes returned are: 

Code 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

Mnemonic 

MEILF% 

MENPV% 

MEIMA% 

MEPDL% 

MEIAL% 

MEIAV% 

MENFC% 

MEICT% 

MEIPT% 

MENXP% 

MENXC% 

MEPNA% 

Meaning 

Illegal function. 

Not a privileged user. 

Illegal memory address. 

PDL overflow. 

Illegal argument list. 

Illegal argument value. 

Not enough free core. 

Illegal channel type. 

Illegal point routine type. 

Non-existent point name. 

Non-existent channel. 

Point not available. 

3-94 



CHAPTER 4 

1/0 PROGRAMMING 

All user-mode I/O programming is controlled by monitor programmed operators. I/O is directed by 

1. Associating a device and a ring of buffers with one of the user's I/O channels (lNIT, OPEN). 

2. Optionally selecting a file (LOOKUP, ENTER). 

3. Passing buffers of data to or from the user program (IN, INPUT, OUT, OUTPUT). 

Device specification may be delayed from program-generation time until program-run time because the monitor 

1. Allows a logical device name to be associated with a physical device (ASSIGN or MOUNT monitor 

command). 

2. Treats operations that are not pertinent to a given device as no-operation code. 

For example: a rewind directed to a line printer does nothing, and file selection operations for devices without 

a filename directory are always successful. 

4.1 I/O ORGANIZATION 

4.1.1 Files 

A file is an ordered set of data on a peripheral device. The extent of a file on input is determined by an end-of­

file condition dependent on the device. For example, a file is terminated by reading an end-of-file gap from 

magnetic tape, by an end-of-file card from a card reader, or by depressing the end-of-file switch on a card reader 

(refer to Chapter 5). The extent of a file on output is determined by the amount of information written by the 

OUT or OUTPUT programmed operators up through and including the next CLOSE or RELEAS operator. 

4.1.2 Job I/O Initialization 

CALL [SIXBIT/RESETf] or CALLI 0 

should normally be the first instruction in each user program. It immediately stops all I/O transmissions on all 

devices without waiting for the devices to become inactive. All device allocations made by the INIT and OPEN 

operators are cleared and, unless the devices have been assigned by the ASSIGN or MOUNT monitor command, 

the devices are returned to the monitor facilities pool. The content of the left half of .JBSA (program break) is 

stored in the right half of .JBFF so that the user buffer area is reclaimed if the program restarts. The left half 

4-1 



of .JBFF is cleared. Any files that have not been closed are deleted on disk. Any older version with the same 

filename remains. The user-mode write-protect bit is automatically set if a high segment exists, whether it is 

sharable or not; therefore, a program cannot inadvertently store into the high segment. Additional functions of 

the RESET UUO include 

I. unlocking the job if it was locked, 

2. releasing any real-time devices, 

3. resetting any high-priority queues set by the HPQ UUO to the value set by the HPQ command, 

4. resuming timesharing if it was stopped as a result of a TRPSET UUO with a non-zero argument, 

5. resetting the action of the HIBER and APRENB UUOs, and 

6. clearing all PC flags except USRMOD, 

7. dropping all PIDs that were to be dropped on reset. 

4.2 DEVICE SELECTION 

For all I/O operations, a specific device must be associated with a software I/O channel. This specification is 

made by an argument of the INIT or the OPEN programmed operators. The INIT or the OPEN programmed 

operators may specify a device with a logical name that is associated with a particular physical device by the 

ASSIGN or MOUNT.monitor command. Some system programs, e.g., LOGOUT require I/O to specific physical 

devices regardless of what logical names have been assigned. Therefore, on an OPEN UUO if the sign bit of word 

o of the OPEN block is I (UU.PHS), the device name is taken as a physical name only, and logical names are not 

searched. A given device remains associated with a software I/O channel until released (refer to Paragraph 4.8.1) 

or until another INIT or OPEN is performed for that channel. Devices are separated into two categories: those 

with no filename directory (refer to Chapter 5) and those with at least one filename directory (refer to Chapter 6). 

Assignable devices (i.e., non-disk and non-spooled devices) in the monitor's pool of available resources are desig­

nated as being either unrestricted or restricted. An unrestricted device can be assigned directly by any job via 

the ASSIGN command or INIT or OPEN UUO. A restricted device can be assigned directly only by a privileged 

job (i.e., a job logged in under [1,2] or running with the JACCT bit set). However, a non-privileged user can 

have a restricted device assigned to him indirectly via the MOUNT command. This command allows operator 

intervention for the selection or denial of a particular device; thus the operator can control the user of assignable 

devices for the non-privileged user. This is particularly useful when there are multiprogramming batch and inter­

active jobs competing for the same devices. The restricted status of a device is set or removed by the operator 

with the OPSER commands :RESTRICT and: UNRESTRICT, which use the privileged UUOs, DVRST. and 

DVURS. (refer to UUOPRV in the DECsystem-IO Software Notebooks). 

4.2.1 N ondirectory Devices 

For nondirectory devices (e.g., card reader and punch, line printer, paper-tape reader and punch, and user ter­

minal), selection of the device is sufficient to allow I/O operations over the associated software channel. All 

other file specifiers, if given, are ignored. Magnetic tape, a nondirectory device, requires, in addition to the name, 

that the tape be properly positioned. It is advisable to use the programmed operators that select a file, so that a 

directory device may be substituted for a non directory device at run time. 

4-2 



4.2.2 Directory Devices 

For directory devices (e.g., a DECtape and disk), files are addressable by name. If the device has a single file 

directory (e.g., DEC tape) the device name and filename are sufficient information~to determine a file. If the 

device has multiple file directories (e.g., disk) the name of the file directory must also be specified. These names 

are specified as arguments to the LOOKUP, ENTER, and RENAME programmed operators. 

4.2.3 Device Initialization 

The OPEN (operation code 050) and INIT (operation code 041) programmed operators initialize a device and 

associate it with a software I/O channel number for the job. These UUOs perform almost identical functions; 

the OPEN UUO is a reentrant form of INIT and is preferred for this reason. In addition to the device name, these 

programmed operators accept, as arguments, an initial file status and the location of the input and output buffer 

headers. The calls are: 

OPEN D,SPEC 

error return 

normal return 

SPEC: EXP STATUS 

SIXBIT/dev/ 

XWD OBUF, IBUF 

INIT D, STATUS 

SIXBIT/dev/ 

XWD OBUF, IBUF 

error return 

normal return 

The normal return is taken if a device is selected, and if the device is associated with a software I/O channel. The 

error return is taken if the requested device is in use, if the requested device does not exist, or if the device is re­

stricted and has not been assigned with the MOUNT command. 

The LH of word 0 of the OPEN UUO contains the following 

Bit Name 

o UU.PHS 

UU.DEL 

2 UU.DER 

3 UU.AIO 

4 UU.IBC 

Meaning 

Sign bit. Implies physical device search. 

Disable error logging. (Used for disk diagnostics. Normally, should not 

be set by user.) 

Disable error re-try. (Used for disk diagnostics. Normally, should not be 

set by user.) 

__ Jndicatesnon:bIQcking UO. 

Prevents the monitor from zeroing buffers after each output. (Can be used 

in programs to save some time.) 

4.2.3.1 Data Channel - These programmed operators establish a correspondence between the device and a 

4-bit channel number, D. Most of the other input/output operators require this channel number as an argument. 

If a device is already assigned to channel D, it is released (refer to Paragraph 4.8.1). 

4-3 



4.2.3.2 Device Name - The device name, dev, is either a logical or physical device name, with logical names 

taking precedence over physical names. With multiple stations, the method of device selection depends on the 

format of the specified SIXBIT device name. 

If devn (e.g., LPT7, CDR3) is specified, the monitor attempts to select the device specifically requested. 

If devSnn (e.g., CDPS14, PTPS12) is specified, the monitor attempts to select any device of the desired type at 

the requested station. If a device of the desired type has been previously assigned to this job at the requested 

station and is not INITed on another channel, it will be selected in preference to an unassigned device. 

If dev (e.g., LPT, DTA) is specified, the monitor attempts to select a device of the desired type at the job's 

logical station. If all devices of this type are in use, the error return is taken. If no device of the desired type 
exists at the user's logical station, the monitor attempts to select the device at the central station. If the desired 

type of device has already been assigned to the job at the appropriate station (either the job's logical station or 

the central station) and is not INITed on another channel, it will be selected instead of an unassigned device. 

In non-disk systems, if the specified device is the system device SYS, the job is placed into a system device wait 

queue and continues to run when SYS becomes available. In disk systems where the system device is one or 

more file structures, control returns immediately. 

The job may pause with the message 

?STATION nn NOT IN CONTACT 

if the requested station is not in contact with the central station. After station nn has established contact with 

the central station, the user types CONTINUE for a return to job execution. 

The Universal Device Index (UDX) is an 18-bit quantity that corresponds to a unique physical device in the sys­

tem. (The UDX may be thought of as a "shorthand" name for that device.) No significance should be attached 

to the number - it is always obtained through the use of the IONDX UUO. 

UDX's can be used as an argument to several UUO's as a replacement for the SIXBIT name. Using the DEVNAM 

UUO will convert the UDX back to a SIXBIT name. The user is cautioned against building UDX's into a pro­

gram; use of the IONDX UUO is strongly recommended. (See Paragraph 4.12.7 for a complete description of 

IONDX.) 

4.2.3.3 Initial File Status - The file status, including the data mode, is set to the value of the symbol STATUS~ 

Thereafter, bits are set by the monitor and may be tested and reset by the user via monitor programmed opera­

tors. Bits 30-35 of the file status are normally set by an OPEN or INIT UUO. Refer to Table 4-3 in Paragraph 

4.6.2 for the file status bits. If the data mode is not legal (refer to Chapters 5 and 6) for the specified device, the 

job is stopped and the monitor prints 

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr, 

where dev is the physical name of the device and addr is the location of the OPEN or INIT operator on the user's 

terminal. The terminal is left in monitor mode. 

4.2.3.4 Data Modes - Data transmissions are either unbuffered or buffered. (Unbuffered mode is sometimes 

referred to as dump mode.) The mode of transmission!s speci~ed by a 4-bit argument to the IN1T, OPEN, or 

SETSTS programmed operator. Table 4-1 summarizes the data modes. 

4-4 September 1974 



Octal Code Name 

o .lOASC 

.lOASL 

2 .lOPIM 

3-7 

10 .I0IMG 

11-12 

13 .lOIBN 

14 .lOBIN 

15 .I0IDP 

16 .lODPR 

17 .I0DMP 

Table 4-1 

Data Modes 

Meaning 

ASCII. Seven bit bytes packed left justified, five characters per word . 

ASCII line. Same as 0, except that the buffer is terminated by a FORM, 

VT, LINE-FEED, or ALTMODE character. Differs from ASCII on TTY 

(half-duplex software) and PTR only . 

Packed image mode. 

Unused. 

Image. A device-dependent mode. Thirty-six bit bytes. The buffer is 

filled with data exactly as supplied by the device. 

Unused. 

Image binary. Thirty-six bit bytes. This mode is similar to binary mode, 

except that no automatic formatting or checksumming is done by the 

monitor. 

Binary. Thirty-six bit bytes. This is blocked format consisting of a word 

count, n (the right half of the first data word of the buffer), followed by 

n 36-bit data words. Checksum for cards and paper tape. 

Image dump. A device-dependent dump mode. Thirty-six bit bytes. 

Dump as records without core buffering. Data is transmitted between any 

contiguous blocks of core and one or more standard length records on the 

device for each command word in the command list. Thirty-six bit bytes. 

Dump one record without core buffering. Data is transmitted between 

any contiguous block of core and exactly one record or arbitrary length 

on the device for each command word in the command list. Thirty-six 

bit bytes. 

4.2.3.5 Buffer Header - Symbols OBUF and IBUF, if non-zero, specify the location of the first word of the 

3-word buffer ring header block for output and input, respectively. Buffered data modes utilize a ring of buf­

fers in the user area and the priority interrupt system to permit the user to overlap computation with his data 

- - transmission. Core memory in the user's area serves as an intermediate Ql.lff~r be!\\f~en Jhe us~r) p~()g~am _~nd __ _ 

the device. The buffer storage mechanism consists of a 3-word buffer ring header block for bookkeeping and a 

data storage area subdivided into one or more individual buffers linked together to form a ring. During input 

operations, the monitor fills a buffer, makes that buffer available to the user's program, advances to the next 

buffer in the ring, and fills that buffer if it is free. The user's program follows the monitor, either emptying the 

next buffer if it is full or waiting for it to fill. 

During output operations, the user's program and the monitor exchange roles; the user program fills the buffers 

and the monitor empties them. Only the headers that will be used need to be specified. For instance, the out­

put header need not be specified, if only input is to be done. Also, data modes 15, 16, and 17 require no header. 

4-5 



If either of the buffer headers or the 3-word block starting at location SPEC lies outside the user's allocated core 

area, (1) the job is stopped and the monitor prints 

ILLEGAL UUO AT USER addr 

(addr is the address of the OPEN or INIT operator) on the user's termina, leaving the terminal in monitor mode. 

The first and third words of the buffer header are set to zero. The left half of the second word is set up with the 

byte pointer size field in bits 6 through 11 for the selected device-data mode combination. 

If the same device (other than disk) is INITed on two or more channels, the monitor retains only the buffer 

headers mentioned in the last INIT (a 0 specification does not override a previous buffer header specification). 

Other I/O operations to any of the channels involved act on the buffers mentioned in the last INIT pre:vious to 

the I/O operations. 

4.3 RING BUFFERS 

4.3.1 Buffer Structure 

The ring buffer (see Figure 4-1) is comprised of a buffer ring header block and buffer rings. 

4.3.1.1 Buffer Ring Header Block - The location of the 3-word buffer ring header block is specified by an 

argument of the INIT and OPEN operators. Information is stored in the header by the monitor in response to 

the user execution of monitor programmed operators. The user's program finds all the information required to 

fill and empty buffers in the header. Bit position 0 of the first word of the header is a flag which, if I, means 

that no input or output has occurred for this ring of buffers. The right half of the first word is the address of 

the second word of the buffer currently used by the user's program. The second word of the header contains a 

byte pointer to the current byte in the current buffer. The byte size is determined by the data mode. The third 

word of the header contains a number of bytes remaining in the buffer. A program may not use a single buffer 

header for both input and output, nor maya single buffer ring header be used for more than one I/O function 

at a time. Users cannot use the same buffer ring for simultaneous input and output; only one buffer ring is as­

sociated with each buffer ring header. 

4.3.1.2 Buffer Ring - The buffer ring is established by the INBUF and OUTBUF operators, or, if none exists 

when the first IN, INPUT, OUT, or OUTPUT operator is executed, a 2-buffer ring is set up. The effective address 

of the INBUF and OUTBUF operators specifies the number of buffers in the ring. The location of the buffer ring 

isspecified by the contents of the right half of .JBFF in the user's job data area. The monitor updates .JBFF to 

point to the first location past the storage area. 

All buffers in the ring are identical in structure. The right half of the first word contains the file status when 

the monitor advances to the next buffer in the ring (see Figure 4-2). Bit 0 of the second word of a buffer, the 

use bit, is a flag that indicates whether the buffer contains active data. This bit is set to I by the monitor when 

the buffer is full on input or being emptied on output, and set to 0 when the buffer is empty on output or is 

being filled on input. In other words, if the use bit = 0, the buffer is available to the filler; if the use bit = I, the 

buffer is available to the emptier. The use bit prevents the monitor and the user's program from interfering with 

each other by attempting to use the same buffer simultaneously. Buffers are advanced by the UUOs and not by 

the user's program. The use bit in each buffer should never be changed by the user's program except by means 

(1) Buffer headers may not be in the user's ACs; however, the buffer headers may be in location above .JBPFI (refer to Table 1·1 in Paragraph 1.2.1). 

4-6 



of the UUOs. Bits 1 through 17 of the second word of the buffer contain the size of the data area of the buffer 

plus 1. The size of this data area depends on the device. The right half of the third word of the buffer is reserved 

for a count of the number of words that actually contain data. The left half of this word is reserved for other 

bookkeeping purposes, depending on the particular device and the data mode. 

BUFFER RING 

FILE STATUS 
USE BIT ----........ 

I SIZE BUF 2 
'4---

BUF 1: -
BOOKKEEPING WORD COUNT 

WORD 

DATA 

BUFFER RING 
HEADER BLOCK 

FILE STATUS 
USEBIT~ 

1 
f4-

USEI ICURRENT SIZE BUF 3 
BIT BUFFER BUF 2: f--

BOOKKEEPING 
BYTE POINTER WORD 

WORD COUNT 

BYTE COUNTER 

DATA 

FILE STATUS 
USE BIT~ 

I SIZE BUF 1 14 
BUF 3: ~ 

BOOKKEEPING 
WORD COUNT 

WORD 

DATA 

10-0539 

Figure 4-1 User's Ring of Buffers 

FILE STATUS FIRST WORD 

USE 
BIT -+ 

I 
SIZE OF 

ADDRESS OF SECOND 
WORD OF NEXT BUFF-

-- -DATA-AREA--- --ER--IN-RING--- -
SECOND WORD 

BOOKKEEPING WORDS COUNT, N THIRD WORD 

N DATA WORDS DATA AREA 

------------
UNUSED 

10-0592 

Figure 4-2 Detailed Diagram of Individual Buffer 

4-7 September 1974 



4.3.2 Buffer Initialization 

Buffer data storage areas may be established by the INBUF and OUTBUF programmed operators, or by the first 

IN, INPUT, OUT, or OUTPUT operator, if none exists at that time, or the user may set up his own buffer data 
storage area. 

4.3.2.1 Monitor Generated Buffers - Each device has an associated standard buffer size (refer to Chapters 5 and 

6). The monitor programmed operators INBUF D,n (operation code 064) and OUTBUF D,n (operation code 

065) set up a ring of n standard size buffers associated with the input and output buffer headers, respectively, 

specified by the last OPEN or IN IT operator on data channel D. If n = 0 on either INBUF or OUTBUF, the de­

fault number of buffers for the specified device is set up. If no OPEN or INIT operator has been performed on 

channel D, the monitor stops the job and prints 

I/O TO UNASSIGNED CHANNEL AT USER addr 

(addr is the location of the INBUF or OUTBUF operator) on the user's terminal leaving the terminal in the 
monitor mode. 

The storage space for the ring is taken from successive locations, beginning with the location specified in the right 

half of .JBFF. This location is set to the program break, which is the first free location above the program area, 

by RESET. If there is insufficient space to set up the ring, the monitor automatically attempts to expand the 

user's core allocation by IK. If this fails, the monitor stops the job and prints 

ADDRESS CHECK FOR DEVICE dev AT USER addr 

(dev is the physical name of the device associated with channel D and addr is the location of the INBUF or 

OUTBUF operator) on the user's terminal, leaving the terminal in monitor mode. 

This message is also printed when an INBUF (OUTBUF) is attempted if the last INIT or OPEN UUO on channel 

D did not specify an input (output) buffer header or if input or output is attempted from a high segment. 

The ring is set up by setting the second word of each buffer with a zero use bit, the appropriate data area size, 

and the link to the next buffer. The first word of the buffer header is set with a I in the ring use bit, and the 

right half contains the address of the second word of the first buffer. 

4.3.2.2 User Generated Buffers - The following code illustrates an alternative to the use of the INBUF pro­

grammed operator. Analogous code may replace OUTBUF. This user code operates similarly to INBUF, SIZE 

must be set equal to the greatest number of data words expected in one physical record. 

GO. OPEN I, QPNBIJI< 
JRST NOTAVL 

MOVE 0, [XWD 400000,BUF1+1l 

~~OVEM 0, MAGBUF 
MOVE 0, [POINT BYTSIZ,0,35l 

MOVEM 0, MAGBUr+l 
JRST CONTIN 

4-8 

,INITIALIZE ASCII MOD! 
,THE 400000 IN THE LEFT 
,HALF 
,MEANS THE BUFrER WAS ~EVER 
,REFERENCED, 

,SET UP NON-STANDARD BYTE 
,SIZE 

,MAGNETIC TAPE UNIT 0 
,INPUT ONLY 



OPNBLK,O 
SIXBIT/MTAO/ 

XWD O,MAGBUF 
MAGaUFI BLOCK 3 

BUF 1 i ° 
XWD SIZE+1,aUF2+1 

BLOCK SIZE +1 

BUF2. 0 
XWD SIZE+l,BUF3+1 
BLOCK SIZE+1 

BUF3. (') 
XWO SIZE+l,BUF1+1 
BLOCK SIZE+1 

4.4 FILE SELECTION (LOOKUP AND ENTER) 

,GO BACK TO MAIN SEQUENCE 
,SPACE FOR BUFFER RING 
,HEADER 

,BUFFER 1, 1ST WORD UNUSED 
,LEFT HALF CONTAIN! DATA 
,AREA 
,SIZE+l, RIGHT HALF HAS 
,ADDRESS OF NEXT BUFFER 
,SPACE FOR DATA, 1ST WORD 
,RECEIVES WORD-COUNT. THUS 

,ONE MORE WORD IS RESERVED 
,THAN IS REQUIRED FOR DATA 
,ALONE 
,SECOND BUFFER 

'THIRD BUP'P'!R 
,RIGHT HALF CLOSES THE RING 

The LOOKUP (operation code 076) and ENTER (operation code 077) programmed operators seled a file for 

input and output, respectively. These operators are not necessary for non directory devices; however, it is good 

programming practice to always use them so that directory devices may be substituted at run time (refer to 

ASSIGN command). The monitor gives the normal return for a LOOKUP or ENTER to a non directory device; 

therefore, user programs can be coded in a device-independent fashion. 

4.4.1 The LOOKUP Operator 

LOOKUP selects a file for input on channel D. 

LOOKUPD,E 

error return 

normal return 

E: SIXBIT/file/ 

SIXBIT/ext/ 

; FILENAME, I TO 6 CHARACTERS, 

; LEFT-JUSTIFIED 

; FILENAME EXTENSION, 0 TO 3 

; CHARACTERS, LEFT -JUSTIFIED 

; THE REMAINING WORDS IN THE 

; ARGUMENT BLOCK 

; ARE IGNORED FOR NONDIRECTORY 

; DEVICES. REFER 

4-9 



;TO PARAGRAPH 6.1.5.1 FOR THE 

;DE<;:TAPE 

; LOOKUP AND PARAGRAPH 6.2.8.1 FOR 

;THE 

; DISK LOOKUP. 

If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the job, prints 

I/O TO UNASSIGNED CHANNEL AT USER LOC addr 

and returns the user's terminal to monitor mode. The input side of channel D is closed if not already closed. 

The output side is not affected. 

On DECtape, LOOKUP searches the device directory as specified by an INIT. On disk, the user's file directory 

as specified by the contents of location E+3 is searched. Refer to Paragraph 6.1.5.1 for details of a DECtape 

LOOKUP and Paragraph 6.2.8.1 for details of a disk LOOKUP. 

If the device is a directory device and the file is found, the normal return is taken and information concerning 

the file is returned in locations E+ 1 through E+3. The normal return is always taken if the device associated 

with the channel D does not have a directory. The error return is taken if 

1. the file is not found, 

2. the file is found but the user does not have access to it (refer to Paragraph 6.2.3 for the description 

of file access codes), or 

3. the device associated with channel D is a non-input device. Refer to Appendix E for the error codes 

returned in bits 18-35 of location E+ 1. 

4.4.2 The ENTER Operator 

ENTER selects a file for output on channel D. 

ENTERD, E 

error return 

normal return 

E: SIXBIT/file/ 

SIXBIT/ext/ 

; FILENAME, 1 THROUGH 6 

; CHARACTERS , LEFT-JUSTIFIED 

; FILENAME EXTENSION, 0 THROUGH 3 

; CHARACTERS, LEFT JUSTIFIED 

; THE REMAINING WORDS IN THE ARGUMENT 

; ARE IGNORED FOR NONDIRECTORY DEVICES. 

; REFER TO PARAGRAPH 6.1.5.2 FOR THE 

; DEC TAPE ENTER AND PARAGRAPH 6.2.8.1 

; FOR THE DISK ENTER. 

4-10 



If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the job, prints 

I/O TO UNASSIGNED CHANNEL AT USER LOC addr 

and returns the user's terminal to monitor mode. The output side of channel D is now closed (if it was not 

closed); the input side is not affected. On DECtape, ENTER searches the device directory as specified by an 

INIT. On disk, the user's file directory, as specified by the contents of location E+3, is searched. 

If the device does not have a directory, the normal return is always taken. On directory devices, if the file is 

found and is not being written or renamed, the file is deleted (the user must have access privileges to the file), 

and the storage space on the device is reclaimed. On DECtape, this deletion must occur immediately on ENTER 

to ensure that space is available for writing the new version of the file. On disk, the deletion of the previous 

version does not occur until output CLOSE time, provided bit 30 of CLOSE is 0 (refer to Paragraph 4.7.7). 

Consequently, if the new file is aborted when partially written, the old version remains. The normal return is 

taken, and the monitor makes the file entry, and records file information. 

The error return is taken if: 

1. The filename in location E is O. 

2. The file is found but is being written or renamed. 

3. The user does not have access to the file, as supplied by the file if it exists or by the UFD if the file 

does not exist. 

4. The device associated with channel D is a non-output device. 

Refer to Paragraph 6.2.8.1 for details of a disk ENTER and Paragraph 6.1.5.2 for details of a DECtape ENTER. 

Refer to Appendix E for the error codes returned in bits 18-35 of location E+ 1. 

4.4.3 RENAME Operator 

The RENAME (operation code 055) programmed operator is used 

1. To alter the filename, filename extension, and file access privileges. 

2. To delete a file associated with channel D on a directory device. 

RENAME D,E 

error return 

normal return 

E: SIXBIT / file/ 

SIXBIT / ext/ 

; FILENAME, 1 TO 6 CHARACTERS 

; FILENAME EXTENSION, 0 TO 3 CHARACTERS. 

; THE REMAINING WORDS IN THE ARGUMENT 

; BLOCK ARE IGNORED FOR 

; NONDIRECTORY DEVICES. 

; REFER TO PARAGRAPH 6.1.5.3 FOR THE 

; DECTAPE RENAME AND PARAGRAPH 6.2.8.1 

; FOR THE DISK RENAME. 

4-11 



If no device has been assigned with channel D, the monitor stops the job, prints 

I/O TO UNASSIGNED CHANNEL AT USER LOC addr 

and returns the user's terminal to monitor mode. 

The normal return is given if: 

1. The device is a non directory device. 

2. If the filename specified in location E is 0, the file is deleted after all read references are completed. 

3. If the file name specified in location E and the filename extension specified in the left half of location 

E+ 1 are the same as the current filename and filename extension, the access protection bits are set to 

the contents of bit 0 to 8 of location E + 2. 

4. If the filename/filename extension specified differ from the current filename/filename extension, a 

search is made for the specified filename and filename extension. If a match is not found 

a. the filename is changed to the filename in location E, 

b. the filename extension is changed to the filename extension in the left half of location E+ I, 

c. the access protection bits are changed to the contents of bits 0-8 of location E+2, and 

d. the access date is unchanged. 

The error return is given if: 

I. No file is selected on channel D. 

2. The specified file is not found. 

3. The file is found but is being written, superseded, or renamed. 

4. The file is found but the user does not have the privileges to RENAME the file. 

5. The filename/filename extension specified differ from the current filename/filename extension, a 

search is made for the specified filename and filename extension. If a match is found, the error return 

is taken. 

6. The UFD is deleted. 

Refer to Appendix E for the error codes returned in bits 18-35 oflocation E+ 1. Refer to Paragraph 6.1.5.3 for 

details of a DEC tape RENAME and Paragraph 6.2.8.1 for details of a disk RENAME. 

Examples 

General Devlee Initialization 

INIOEVr 0 
OPEN 3,OPNBLK 

JRST NOTAVL 

,JSP HERE 
,CHANNEL 3 
,WHERE TO GO IF OTA! IS BUSY 

,FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM 
,REQUIREMENTS 

4-12 



OPNBLt<l 

OBUP'I 
IBUF. 
INNAMI 

OUTNAMI 

MOVE 0, JOBFF 
MOVEM 0, SVJBFF 

INBUF 3,4 
OUTBUF 3,1 
LOOKUP 3, INNAM 

JRST NOTP"ND 

ENTER 3, OUTNAME 
JRST NO~OOM 

,JRST 'INIDEV 
14 
SIXBIT/DTA!51 
XWD OBUP',IBUP' 
BLOCK 3 
BLOCK 3 
SIXBIT/NAMEI 
SIXBIT/EXTI 

o 
o 
SIXBIT/NA1-'EI 
SIXBIT/EXTI 
o 
o 

4.5 DATA TRANSMISSION 

The programmed operators 

INPUT D,E and IN D,E 

normal return 

error return 

,SAVE THE FIRST ADDRESS OF THE BurrER 
,RING IN CASE THE SPACE MUST BE 
,RECLAIMED 
,SET UP 4 INPUT BUFFERS 
,SET UP 1 OUTPUT BUFFER 
,INITIALIZE AN INPUT FILE 
,WHERE TO GO IF THE INPUT FILENAME IS 
,NOT IN THE OIRECTORY 
,INITIALIZE AN OUTPUT FILE 
,WHERE TO GO IF THERE IS NO ROOM IN 
,THE DIRECTORY FOR A NEW FILENAME 
,RETURN TO MAIN SEQUENCE 
,BINARY MODE 
,DEVICE DEC TAPE UNIT 5 
,BOTH INPUT AND OUTPUT 
,SPACE FOR OUTPUT BUFFER HEADER 
,SPACE FOR INPUT BUFFER HEADER 
,FILE NAME 
,FILE NAME EXTENSION (OPTIONALLY 0), 
,RIGHT HALF WOPO RECEIVES THE 
,FIRST BLOCK NUMBER 
,RECEIVES THE D~TE 
,UNUSED FOR NONDUMP 1/0 
,SAME INFORMATION AS IN INNAM 

Transmit data from the file selected on channel D to the user's core area. The programmed operators 

OUTPUT D, E and OUT D, E 

normal return 

error return 

transmit data from the user's core area to the file selected on channel D. If specified, E is the effective address 

of the next buffer to be written;-IfE is not specified, the next buffer in the sequence is implied.-----

If no OPEN or INIT operator has been performed on channel D, the monitor stops the job and prints 

I/O TO UNASSIGNED CHANNEL AT USER addr 

(addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator) on the user's terminal and the 

terminal is left in monitor mode. If the device is a multiple-directory device and no file is selected on channel D, 

bit 18 of the file status is set to 1, and control returns to the user's program. Control always returns to the 

4-13 



location immediately following an INPUT (operation code 066) and an OUTPUT (operation code 067). A check 

of the file status for end-of-file and error conditions must then be made by another programmed operator. Note 

that to trap on a hardware write-locked device, the user should use location .JBINT (refer to Paragraph 3.1.3.2). 

Following an INPUT, the user program should check the word count of the next buffer to determine if it con­

tains data. Control returns to the location immediately following an IN (operation code 056) if no end-of-file or 

error condition exists (i.e., if bits 18 through 22 of the file status are all 0). Control returns to the location im­

mediately following an OUT (operation code 057) if no error condition or end-of-tape exists (Le., if bits 18 

through 21 and bit 25 are all zero). Otherwise, control returns to the second location following the IN or OUT. 

Note that IN and OUT UUOs are the only ones in which the error return is a skip and the normal return is not a 

skip. 

4.5.1 Unbuffered Data Modes 

Data modes 15, 16, and 17 utilize a command list to specify areas in the user's allocated core to be read or 

written. The effective address E of the IN, INPUT, OUT, and OUTPUT programmed operators point to the first 

word of the command list. Three types of entries may occur in the command list. 

1. 10WD n, loc - Causes n words from loc through loc+n-l to be transmitted. The next command is 

obtained from the next location following the 10WD. The assembler pseudo-op 10WD generates 

XWD -n, loc-l. 

2. XWD O,y - Causes the next command to be taken from location y. Referred to as a GOTO word. 

Up to three consecutive GOTO words are allowed in the command list. After three consecutive 

GOTO words, an I/O instruction must be written. 

3. 0 - Terminates the command list. 

Each 10WD which.causes data to be transferred writes a separate record. Thus, for devices other than DECtape, 

the following two examples produce the same result. 

1 • OUTPUT 0, ClOWO 70, SUFi 
lOWD 70, SUF2 

Zl 

2. OUTPUT D, [lOWD 70, BUFi 
Z] 

OUTPUT 0, [lOWD 70, BUF2 
ZJ 

For DECtape (where space is an important consideration), the first example writes one block, and the second 

writes two. 

The monitor does not return program control to the user until the command list has been completely processed. 

If an illegal"address is encountered while processing the list, the job is stopped and the monitor prints 

ADDRESS CHECK AT USER addr 

on the user's terminal and the terminal is left in monitor mode. 

4-14 



Example: Dump Output 

Dump input is similar to dump output. This routine outputs fixed-length records. 

DMPINI I 0 
OPEN O,OPNBLK 

JRST NOTAVL 
JRST @ DMPINI 

OMPOUT I 0 
OUTPUT O,OUTLST 

STATZ 0, 740000 
CALLCSIXBIT IEXIT/] 

JRST @OMPOUT 
DMPDON I 0 

CLOSE 0 
STATZ 0, 740000 

CALL [SIXBlT IEXIT/] 
RELEAS 0, 
JRST @DMPDON 

OPNBLJ< I 16 
SIXBlT IMTA21 
o 

OUTLSTI lOWD BUFSIZ,BUFFER 

o 

BUFFER: BLOCK BUFSIZ 

4.5.2 Buffered Data Modes 

,JSR HERE TO INITIALIZE A FILE 
,CHANNEL 0 
,WHERE TO GO IF MTA2 IS BUSY 
,RETURN 

,JSR HE~E TO OUTPUT THE OUTPUT AR~A 
,SPECIFIES DUMP OUTPUT ACCORDING 
,TO THE LIST AT OUTLIST 
,CHECK ERROR BITS 
,QUIT IF AN ERROR OCCURS 
,RETURN 
,JSR HERE TO WR1TE AN END OF ~ILE 
,WRITE THE END OF FILE 
,CHECK FOR ERROR DURING WRITE 
,END OF FILE OPERATION 
,QUIT IF ERROR OCCURS 
,RELINQUISH THE DEVICE 
,RETURN 
,DU~!P MODE 
,MAGNETIC TAPE 2 
,NO RING BUFFER 
,SPECIFIES DUMPING A NUMBER OF 
,WORDS EQUAL TO eUFSIZ, STARTING 
,AT LOCATION BUFFER 
,SPECIFIES THE END OF THE COMMAND 
,LIST 
,OUTPUT BUFFER, MUST BE CLEARED 
,AND FILLED BY THE MAIN PROGRAM. 

In data modes 0, 1, 10, 13, and 14 the effective address E of the INPUT, IN, OUTPUT and OUT programmed 

operators may be used to alter the normal sequence of buffer reference. If E is 0, the address of the next buffer 

is obtained from the right half of the second word of the current buffer. If E is non-zero, it is the address of the 

second word of the next buffer to be referenced. The buffer pointed to by E can be in an entirely separate ring 

from the present buffer. Once a new buffer location is established, the following buffers are taken from the 

ring started at E. Since buffer rings are not changed if I/O activity is pending, it is not necessary to issue a 

WAITUUO. 

4.5.2.C-Input ~If no input bllffer-riniis established whenthefifsflNPUT or IN is executed,-a-2-buffer ring is-­

set up (refer to Paragraph 4.3.2). 

Buffered input may be performed synchronously or asynchronously at the option of the user. If bit 30 of the 

file status is 1, each INPUT and IN programmed operator performs the following: 

1. Clears the use bit in the second word of the buffer with an address in the right half of the first word 

of the buffer header, thereby making the buffer available for refilling by the monitor. 

2. Advances to the next buffer by moving the contents of the second word of the current buffer to the 

right half of the first word of the 3-word buffer header. 

4-15 



3. Returns control to the user's program if an end-of-file or error condition exists. Otherwise, the 

monitor starts the device, which fills the buffer and stops transmission. 

4. Computes the number of bytes in the buffer from the number of words in the buffer (right half of 

the first data word of the buffer) and the byte size, and stores the result in the third word of the 

buffer header. 

s. Sets the position and address fields of the byte pointer in the second word of the buffer header, so 

that the first data byte is obtained by an ILDB instruction. 

6. Returns control to the user's program. 

Thus, in synchronous mode, the position of a device (e.g., magnetic tape), relative to the current data, is easily 

determined. The asynchronous input mode differs in that once a device is started, successive buffers in the ring 

are filled at the interrupt level without stopping transmission until a buffer whose bit is I is encountered. Control 

returns to the user's program after the first buffer is filled. The position of the device, relative to the data cur­

rently being processed by the user's program, depends on the number of buffers in the ring and when the device 

was last stopped. 

Example: General Subroutine to Input One Character. 

,GET -- ROUTINE TO GET ONE BYTE PROM T~E INPUT rI~E 
, NU~~S (~) WIL~ BE DISCARDED 
CALLI JSP A,GET 
; END-OF~rI~E RETURN 
, RETURN WITH BYTE IN C 

GET: SOSGE 
JRST 
XL-D8 
JUMPN 

JRST 

18+2 
GETBF 
C,16+1 
e,lCA) 

'HERE WH~N INPUT BUFFER IS EMPTY 

JDECREMENT THE BYTE COUNT 
JBUFFER EMPTV··GEl ANOTHER O~E 
ISOMETHING THERE··GET Ii 
JRETURN IF NOT NULL 
J**IF NULLS ~RE SIGNIFICANT, THIS 
J SHOU~D 8E A JRST 1(A) 
JNULL-.L.00P FOR ANOTHER CHARACTER 

,ASK TH~ MONITOR FOR THE NEXT BUfFER ANO JUMP BACK 
,RETURN TO USER IF END-Of-FILE 

GET8r: IN I. 
JRST GET 

GETSTS I, C 
tRNN C,74823 
jRST GET8FE 

, •• INSERT ERROR ROUTINE HERE 
iFOR EXAMP~E. TVPE C IN OCTAL 
,WITH MESSAGE GIVING rILE NAME, 

TR~ 0,74823 
SETSTS I,(e) 

GET8rrE. rRNE 
JRST 
JRST 

0,1822 
( A ) 
GET 

;GET BUFFER FROM MONITOR 
INO ERRORS OR ~O EOF~.JUMP SACK 
,GET ERROR STATUS 
JSEE If ANY ERRORS 
JNO~·GO CH~CK EOr 

ETC. 
;CLEAR ERROR BITS 
.TEl.L. MONITOR 

JSEE Ir END OF rILE 
JYES.~GIVE NON"SKIP RETURN 
INO·-JUMP BACK To PROCESS DATA 

4-16 



4.5.2.2 Output - If no output buffer ring has been established (Le., if the first word of the buffer header is 

0), when the first OUT or OUTPUT is executed, a 2-buffer ring is set up (refer to Paragraph 4.3.2). If the ring 

use bit (bit 0 of the first word of the buffer header) is 1, it is set to 0, the current buffer is cleared to all zeroes, 

and the position and address fields of the buffer byte pointer (the second word of the buffer header) are set so 

that the first byte is properly stored in an IDPB instruction. The byte count (the third word of the buffer header) 

is set to the maximum of bytes that may be stored in the buffer, and control is returned to the user's program. 

Thus, the first OUT or OUTPUT initializes the buffer header and the first buffer, but does not result in data 

transmission. 

If the ring use bit is 0 and bit 31 fo the file status is 0, the number of words in the buffer is computed from the ad­

dress field of the buffer byte pointer (the second word of the buffer header) and the buffer pointer (the first word 

of the buffer header), and the result is stored in the right half of the third word of the buffer. If bit 31 of the 

file status is I, it is assumed that the user has already set the word count in the right half of the third word. The 

buffer use bit (bit 0 of the second word of the buffer) is set to 1, indicating that the buffer contains data to be 

transmitted to the device. If the device is not currently active (Le., not receiving data), it is started. The buffer 

header is advanced to the next buffer by setting the buffer pointer in the first word of the buffer header. If the 

buffer use bit of the new buffer is 1, the job is put into a wait state until the buffer is emptied at the interrupt 

level. The buffer is then cleared to zeroes, the buffer byte pointer and byte count are initialized at the buffer 

header, and control is returned to the user's program. 

Example: General Subroutine to Output One Character 

'PUT -- ROUTINE TO PUT or-IE BYTE INTO THE QUTP!..!T FILE 
.CALL: MOVE C,BYTE 
J JSP A,PUT 
J RETURN 

PUT: 

PUTCa 

SOSG 
JRST 
lOPS 
.. IRST 

08+2 
PUTeF 
C,OB+l 
( A ) 

;ADVANCE 8VT~ COUNTER 
,JUMP IF BUfFER FULL (OR FIRST CALL) 
JPUT BYTE INTO SUFFER 
'RETURN TO CA~LER 

JJUMP HERE W~EN DUFFER IS FULL AND THE NEXT ONE IS NP.EOEO 
,GIVE THE MONITOR THE BUFFER A~O JUMP BACK 

PUT8F: OUT 0, 
JRST PUTe 

~OVEM C,SAVEC# 
GETSTS 0,c 

J** INSERT OUTPUT ERROR ROUTINE 
JfDR EXAMPLE, TYPE C IN OCTAL 
,WITH MESSAGE GIVING FILE NAME, 

TRi! C,74823 
SETSTS 0,(C) 
MOVE; C,SAVEC 
JRST PUTe 

4.5.3 Synchronization of Buffered I/O 

JGIVE BUFFER TO MONITOR 
iNO ERRORS.-JUMP 8ACK 
JERRQR·-SAVE AC FOR STATUS CHECKING 
JGET ERROR STATUS 

HERE 

ETC. 
;CL~AR ERROR 8lTS 
;TEI..L MONITOR 
JRESTORE CHARACTER 
;JUMP BACK TO PROCESS CHARACTER 

In some instances, such as recovery from transmission errors, it is desirable to delay until a device completes its 

I/O activities. The programmed operator 

WAIT Channel or CALLI AD, 10 

4-17 September 1974 



returns control to the user's program when all data transfers on channel D have finished. This UUO does not 

wait for a magnetic tape spacing operation, since no data transfer is in progress. An MTAPE D, 0 (refer to 

Paragraph 5.5.3.1) should be used to wait for the magnetic tape controller to be freed after completing spacing 

and I/O activity on magnetic tape. In addition, the UUO does not wait for physical I/O to the terminal to be 

completed; it waits only until the user's buffer is empty. Therefore, the usual motive for the WAIT UUO, error 

recovery, does not apply to the terminal. If no device is associated with data channel D, control returns imme­

diately. After the device is stopped, the position of the device relative to the data currently being processed by 

the user's program can be determined by the buffer use bits. 

4.6 STATUS CHECKING AND SETTING 

The file status is a set of 18 bits (right-half word), which reflects the current state of a file transmission. The 

initial status is a parameter of the INIT and OPEN operators. Thereafter, bits are set by the monitor, and may 

be tested and reset by the user via the STATZ, STATO, and SETSTS UUO's. Table 4-3 defines the file status 

bits. All bits, except the end-of-file bits, are set immediately by the monitor as the conditions occur, rather than 

being associated with the buffer currently being used. However, the file status is stored with each buffer so that 

the user can determine which bufferful produced an error. The end-of-file bit is set when the user attempts to 

read past the last block of data (Le., it is set on an IN or INPUT UUO for which there is no corresponding data; 

the previous IN or INPUT UUO obtained the end of the data). Therefore, when this bit is set, no data has been 

placed in the input buffer. 

The programmed operators (UUO's) discussed in this section are the software equivalents of the hardware instruc­

tions CONO, CONI, CONSO, and CONSZ. A more thorough description of bits 18 through 29 for each device is 

given in Chapters 5 and 6 and in Appendix D. 

Bit Name 

18 10.lMP 

19 10.DER 

20 10.DTE 

21 10.BKT 

Table 4-2 

File Status Bits 

Meaning 

Improper mode. Attempt to write on a software write-locked tape or 

file structure, or a software detected redundancy failure occurred. Usually 

set by the monitor. 

Hard device error, other than data parity error. This is a search power 

supply, or channel memory parity error. The device is in error rather than 

the data on the medium. However, the data read into core or written on 

the device is probably incorrect. Usually set by the monitor. 

Hard data error. The data read or written has incorrect parity as dete~ted 

by hardware (or by software on CDR, PTR). The user's data is probably 

non-recoverable even after the device is fixed. Usually set by the monitor. 

Block too large. A block of data from a device is too large to fit in a 

buffer; a block number is too large for the unit; the file structure (DSK) or 

unit (DTA) has filled; or the user's quota on the file structure has been 

exceeded. Usually set by the monitor. 

4-18 



Bit Name 

22 IO.EOF 

23 IO.ACT 

24-29 

30 IO.SYN 

31 IO.UWC 

32-35 IO.MOD 

4.6.1 File Status Checking 

Table 4-2 (Cont) 

File Status Bits 

Meaning 

End of file. The user program has requested data beyond the last record 

or block with an IN or INPUT UUO, or USETI has specified a block be­

yond the last data block of the file. When set, no data has been read into 

the input buffer. Usually set by the monitor. 

I/O active. The device is actively transmitting or receiving data. Always 

set by the monitor. 

Device dependent parameters. Refer to Chapter 5 and 6 and Appendix D 

for detailed information about each device. Usually set by the user. 

Synchronous input. Stops the device after each buffer is filled. Usually 

set by the user. 

User word count. Forces the monitor to use the word count in the third 

word of the buffer (output only). The monitor normally computes the 

word count from the byte pointer in the buffer header. Usually set by the 

user. 

Data mode. Refer to Table 4-1. Usually set by the user. 

The file status (refer to Table 4-2) is retrieved by the GETSTS (operation code 062) and tested by the STATZ 

(operation code 063) and STATO (operation code 061) UUO. In each case, the accumulator field of the instruc­

tion selects a data channel. If no device is associated with the specified data channel, the monitor stops the job 
and prints 

I/O TO UNASSIGNED CHANNEL AT USER addr 

(addr is the location of the GETSTS, STATZ, or STATO programmed operator) on the user's terminal and the 

terminal is left in monitor mode. 

GETSTS D,E stores the file status of data channel D in the right half and 0 in the left half of location E. 

STATZ D,E skips if all file status bits selected by the effective address E are o. 

STATO D,E skips if any file status bit selected by the effective address E is 1. 

4.6.2 File Status Setting 

The initial file status is a parameter of the INIT and OPEN UUO's; however, the file status may be changed by 

SETSTS (operation code 060). Error status bits IO.ERR (lO.IMP, IO.DER, IO.DTE, and IO.BKT) must be 

cleared by this UUO if the user is attempting an error recovery. In addition, the SETSTS UUO can be used to 

clear the end-of-file bit, but this is not sufficient to clear the end-of-file condition. Further inputs will not occur 

until the end-of-file condition (determined by an internal monitor flag IOEND) is cleared by a CLOSE or INIT 

UUO. 

4-19 



SETSTS D,E waits until the device on channel D stops transmitting data and replaces the current file status, 

except bit 23, with the effective address E. If the new data mode, indicated in the right four bits of E, is not 

legal for the device, the job is stopped and the monitor prints 

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr 

(dev is the physical name of the device and addr is the location of the SETSTS UUO) on the user's terminal and 

the terminal is left in monitor mode. If the user program changes the data mode, it must also change the byte 

size for the byte pointer in the input buffer header (if any) and the byte size and item count in the output buffer 

header (if any). The output item count should be changed by using the count already placed there by the mon­

itor and dividing or multiplying by the appropriate conversion factor, rather than assuming the length of a buffer. 

Incorrect I/O may result if a data mode change requires a different buffer length. SETSTS does not change buf­

fer lengths. The mode specified in INIT is used to determine buffer sizes even though the buffer ring has not 

been created. 

4.7 FILE TERMINATION 

File fransmission is terminated by the CLOSE D,N (operation code 070) UUO. N is usually zero, but individual 

options may be selected independently to control the effect of the CLOSE. 

Usually a given channel is OPEN for file transmission in only one direction, and CLOSE has the effect of either 

direction, and CLOSE has the effect of either closing input if INPUTS have been done or closing output if 

OUTPUTS have been done. However, disk and DECtape may have a single channel OPEN for both INPUT and 

OUTPUT, in which case the first two options (described below) are useful. 

In the case of the MPX device (a special pseudo-device to which one or more real devices are connected), CLOSE 

affects all of the devices connected to MPX. 

An output CLOSE for MPX causes all buffers to be returned to the free chain. All buffers on device chains are 

first output and the buffer ring header is initialized as usual. 

An input CLOSE for MPX causes the input buffer ring to be initialized (any remaining buffers that have not been 

retrieved via the IN UUO are flushed). 

Table 4-3 shows the CLOSE options. 

Option 

CLOSE D,O 

Table 4-3 

CLOSE Options 

Meaning 

The output side of channel D is closed (bit 35=0). In unbuffered data modes, 

the effect is to execute a device dependent function. In buffered data modes, 

if a buffer ring exists, the following operations are performed: 

I. All data in the buffers that has not been transmitted to the device is written. 

2. Device dependent functions are performed. 

3. The ring use bit (bit 0 of the first word of the buffer header) is set to I 

indicating that the buffer ring is available. 

4. The buffer byte count (the third word of the buffer header) is set to O. 

4-20 



Table 4-3 (Cont) 
CLOSE Options 

Option Meaning 

CLOSE D,l 

CLOSE D,2 

CLOSE D,4 

CLOSE D,10 

CLOSE D,20 

5. Control returns to the user program when transmission is complete. 

The input side of channel D is also closed (bit 34=0). The end-of-file flag is 

always cleared. Further action depends on the data mode in unbuffered data 

modes, the effect is to execute a device dependent function. In buffered data 

modes, if a ring buffer exists, the following operations are performed: 

I. Wait until device is inactive. 

2. The use bit of each buffer (bit 0 of the second word) is cleared indicating 

that the buffer is empty. 

3. The ring use bit of the buffer header (bit 0 of the first word of the buffer 

header) is set to I indicating that the buffer ring is available. 

4. The buffer byte count (the third word of the buffer header) is set to O. 

5. Control returns to the user program. 

On output CLOSE, the unwritten blocks at the end of a disk file are automatically 

deallocated (bit 33=0). On input CLOSE, the access date of a disk file is updated. 

Bit 32=0. 

The closing of the output side of channel D is suppressed. Other actions of 

CLOSE are unaffected. Bit 35=1, CL.OUT. 

The closing of the input side of channel D is inhibited; other actions of CLOSE 

are unaffected. Bit 34= I, CL.IN. 

The unwritten blocks at the end of a disk file are not deallocated. This capability 

is provided for users who specifically allocate disk space and wish to retain it. 

Bit 33=1, CL.DLL. 

Use of this option is meaningful with disk files only and is ignored with non-disk 

files. 

The updating of the access on CLOSE input is inhibited. This capability is in­

tended for use with FAILSAFE, so that files can be saved on magnetic tape 

without causing the disk copy to appear as if it has been accessed. Bit 32= I, 

CL.ACS. 

Use of this option is meaningful with disk files only and is ignored with non-disk 

files. 

The deleting of the NAME block and the access tables in monitor core on CLOSE 

input is inhibited if a LOOKUP was done without subsequent INPUT. This bit is 

used by the COMPIL program to retain the core block in order to speed up the 

subsequent access by compilers such as FORTRAN-IO. Bit 31=1, CL.NMB. 

Use of this option is meaningful with disk files only and is ignored with non-disk 

files. 

4-21 



Option 

CLOSED,40 

CLOSE D,IOO 

Table 4-3 (Cont) 

CLOSE Options 

Meaning 

The deleting of the original file, if any, is inhibited if an ENTER which creates 

or supersedes was done. The new copy of the file is discarded. This bit is used 

by the queue manager (QMANGR) to create a file or a unique name and not 

supersede the original file. Bit 30= I, CL.RST 

Use of this option is meaningful with disk files only and is ignored with non-disk 

files. 

The NAME block and access tables are deleted from the disk data base and the 

space is returned to free core. Bit 29=1, CL.DAT. 

Use of the option is meaningful with disk files only and is ignored with non-disk 

files. 

Any combination of the above bit settings is legal. 

Example: Terminating a File 

DROPDV; " 
CI..OSE 3. 

STATi! 3,74'3000 
JRST OUT ERR 

REL.E:AS 3, 

MOVE 0, SVJ8FF 
MOVEM 0, JOSfF 
JRST ~ OROPDV 

4.8 DEVICE TERMINATION AND REASSIGNMENT 

4.8.1 RELEASE 

I JSR HEF~E 

JWRITE END Of FII..E AND TERMINATE 
J INPUT 
;RECHECK FINAL ERROR RITS 
J ERR 0 R [) URI ~: GeL 0 S E 
; R E l, I N Q IJI S H THE USE. 0 F T ~l E 
JDEVICE, WRITE OUT THE DIRECTORY 

JRECLAIM THE 8ur r ER SPACE 
JRETUHN TO MAIN SEQUENCE 

When all transmission between the user's program and a device is finished, the program must relinquish the de­

vice by performing a 

RELEASED, 

RELEASE (operation code 071) returns control immediately, if no device is associated with data channel D. 

Otherwise, both input and output sides of data channel D are CLOSEd and the correspondence between channel 

D and the device, which was established by the INIT or OPEN UUO's, is terminated. Any errors that occurred 

are recorded in the BAT block if super USETI/USETO was used with channel D. If the device is neither associated 

with another data channel nor assigned by the ASSIGN or MOUNT commands, it is returned to the monitor's 

pool of available facilities. Control is returned to the user's program. 

4-22 



RELEASE first causes a CONDITIONAL DISCONNECT for all devices connected to an MPX channel. The buffer 

rings are then initialized to their original, unused state and the I/O channel is relinquished. The channel may then 

be re-used (via INIT/OPEN) as an ordinary or MPX I/O channel. 

4.8.2 RESDV. AC, or CALLI AC, 117 

This UUO allows a user program to reset a single channel. It is similar to the RELEASE UUO except no files or 

buffers are closed. Files that are open on the channel are deleted; any older version with the same filename re­

mains. All I/O transmissions on the channel are stopped, and device allocations made by the INIT or OPEN UUOs 

on the specified channel are cleared. The device is returned to the monitor pool unless it has been assigned by 

the ASSIGN or MOUNT command. The call is: 

MOVE I AC, channel number or 
MOVEI AC, UDX 
RESDV.AC, 
error return 
normal return 

; or CALLI AC, 117 

On an error return, either the AC is unchanged if the UUO is not implemented, or AC contains -1 if there is no 

device associated with the channel. 

On a normal return, the channel is reset. 

4.8.3 REASSIGN AC, or CALLI AC, 21 

This UUO reassigns a device under program control to the specified job and clears the directory currently in 

core, but does not clear the logical name assignment. A device can be reassigned if it is assigned to the current 

job, or if it is both not assigned to any job and is not detached. A RELEASE UUO is performed unless the job 

issuing the UUO is reassigning the device to itself by specifying -1 in AC or is reassigning the device by specifying 

o in AC. If the device is restricted when it is reassigned with a 0 in AC it is returned to the restructed pool of 

devices and can be reassigned to a non-privileged job by a privileged job. (This is the method by which the 

MOUNT command is implemented.) The REASSIGN UUO will accept a UDX device specification in addition 

to the SIXBIT device names and channel number specifications. An error is indicated on return from the UUO 

if the device specified is connected to an MPX channel when the REASSIGN UUO is issued, or if any other error 

conditions exist. An error is also indicated if the argument of the REASSIGN UUO specifies an MPX channel 

itself (via a channel number or SIXBIT/MPX/ argument). 

The call is: 

MOVE AC, job number 

MOVE AC+l, [SIXBIT/DEVICEf] 

REASSIGN AC, 

return 

; or MOVEI AC+ 1, channel number 

; or CALLI AC, 21 

; error and normal 

If on return the contents of AC = 0, the specified job has not been initialized. If the contents of AC+ 1=0, the 

device has not been assigned to the new job, the device is the job's controlling terminal, the logican name is du­

plicated, or the logical name is a physical name in the system and the job reassigning the device is either logged 

in under a different project-programmer number or is not the operator. 

4-23 September 1974 



4.8.4 DEVLNM AC, or CALLI AC, 107(1) 

This UUO sets the logical name for the specified device. The device can be specified with a SIXBIT device name, 

a channel number or a UDX. Upon call of the UUO, AC contains either the device name or the channel number 

associated with the device. The call is: 

MOVE AC, [SIXBIT/dev/J ; or MOVEI AC, channel no. 

; or MOVEI AC, UDX MOVE AC+I, [SIXBIT/log.name/J 

DEVLNMAC, ; or CALLI AC, 107 

error return 

normal return 

On an error return, AC contains one of the following: 

Name Value 

Unchanged 

DVLNX% -1 

DVLIU% -2 

DVLNA% -3 

Meaning 

UUO not implemented. 

Non-existent device or a channel number was specified. 

Logical name already in use. 

Device not assigned (ASSIGN or MOUNT command not used; 

INIT or OPEN not done.) 

On a normal return, AC and AC+ 1 are unchanged. 

4.9 EXAMPLES 

4.9.1 File Reading 

The following UUO sequence is required to read a file: 

OPEN 

LOOKUP 

INBUF 

INPUT 

.INPUT 

CLOSE 

RELEASE 

Establishes a file structure-channel correspondence (or a set of file structure­

channel correspondences). 

Establishes a file-channel correspondence. Invokes a search of the UFD. Returns 

information from the file system. 

(Optional) Sets up 1 to N ring buffers in the top of core, expand core if necessary. 

Sets up a buffer ring with the default number of buffers, if no INBUF was done. 

Requests buffers of data from the monitor . 

Breaks file-channel correspondence. 

Breaks device-channel correspondence. 

(1) This UUO depends on FTSUUO which is normally orrin the DECsystem-l040. 

4-24 



4.9.2 File Writing 

The following UUO sequence is required to write a file: 

OPEN 

ENTER 

OUTPUT 

OUTPUT 

CLOSE 

RELEASE 

4.9.3 File Reading/Writing 

Forms file structure-channel correspondence (or a set of file structure-channel 

correspondences). 

Forms file-channel correspondence. The monitor creates some temporary storage 

for interlocking and shared access purpose for the filename. No directory entry is 

made. 

Passes buffers of data to monitor for transmission to storage device. Should not 

be used for the final buffer because CLOSE completes the action of ENTER. 

Completes the action of ENTER. Adds filename to file system. Normally returns 

allocated, but unused, blocks to the file system. 

Breaks device-channel correspondence. 

tITI..E FI~TRN -~ SAMP~E 1/0 PROGRAM 

JA PROGRAM THAT READS 7-81T ASCII CHARS FROM FII..E INPIhE.DA; ON 
JDEVICE QATA AND OUTPUTS THEM TO FILE OUTFIL,~ST ON DEVICE ~IST 
.NOTE THAT DEVICES DATA AND LIST ARE LOGICAL NAMES. THUS 
,THE PHYSICAL NAMES ARE DETERMINED AT RUN TIME fO PROVIDE DEVICE 
'INDEPENDENCE. 
,BOTH INPUT AND OUTPUT FILES ARE ACCESSED SEQUENTIAL~Y. 

ST ART: RESET 

OPEN 

HALT 
OPD~ 

HALT 
LOOI~UP 

HALT 
ENTER 

HALT 
INBlJF 

1 

SIXBIT IDATAI 

JDEVIC~ RESET (IN CASE PROGRAM 
J lS RESTARTED) 
JCONNECT DEVICE DATA TO PROG ON CH 1 
~IN ASCII LINE MODE 

XWD 0,IBUF1J ;IBUFl 15 THE INPUT BUFFER HEADER 

1 

SIX8IT ILISTI 

J ERR'OR RETURN 
JCONNECT DEVICE LIST TO CH 2 IN ~SCIt 
JLINE MODE 

X~D OBUF2,0J J08UF2 IS OUTPUT BUPFER HEADER . 
1,Ll 
, 
2,(2 . 
1,3 

IOPEN [I~E INFILE.OAT FOR INPUT 
- .. JERROR RETURN---

JOPEN PIkE OUTrIL,LST FOR OUTPUT 

ICREATE 3 INPUT 8UFr~RS 
JSINCE NO SUFFERS SPEClflEO FOR OUTPUT 
J ON rlRST OUTPUT T~E MONITOR Wl~L 
J MAKE THE OEPAUI..T NUMER 

,THIS IS THE BASIC 1/0 LOOP pOR THE JOe 

NEWCHR: JSR 
JSR 
JRST 

GET 
PUT 
NEWCHR 

.GO GET ON~ INPUT CHARACTER 

.OUTPUT TH~ CHARACTER RECEIV£D 
J~OOP POR NExt ONE 

4-25 



,GET -. ROUTINE TO GET ONE CHARACTER FRO~ THE INPuT rI~E 
IlT ENDS THE PROGRAM AT INPUT (ND-Of-FILE 

GET: 
GET1. 

FOR 

GETBF': 

FINISH: 

t 
SOSGE 
JRST 
ILD8 

JRST 

IN 
JRST 

STAT2 
HALT 

CLOSE 
CL.OSE 
REL.EAS 
REL.EAS 
EXIT 

18UF1+2 
GETgr: 
3,I8UF1+1 

()GET 

1, 
GETl 
1,74823 

1, 
2, 
1, 
2, 

JENTRY/EXIT 
JYES--INPUT FROM DEVICE 

JIF NULL, THROW IT AWAY ANn GET NEXT 
CHARACTER. ThIS IS CONVENTIONAL 

; ASCII DATA.! 
;RETURN WITH QHARACTER IN AC 3 

;00 INPUT FROM DEVICE 
JLOOP IF NO ER~ORS AND NOT EOF 
JSEE IF ERROR READING 
fYES--GlvE UP 

iEOF--CLOSE lNPUT 
JCLOSE OUTPUT 
JRELEASE DEvtCE DATA 
JRELEASE OEVIQE LIST 
JEXIT TO MONITOR 

'PUT~-ROUTINE TO PUT ONE CHARACTER ONTO THE OUTPUT 

PUT: ~ JENTRY/EXIT 
SOSGE OBUF'2+2 lIS OUTPUT BUfFER FUhL? 
JRST PUTSF iYES--GO OlJTPL!T JT 

PUTC. tOP8 3,OSUF2+1 ;PUT CHARACTER I r~ 8lWFER 
JRST @lPUT JRETURN 

PUTBF': OUT 2. ;OUTPUT BUrFER To DEVICE 
JRST PUTe ,OK, NOW STORE CHARACTER If\! SUFFER 

HAL.T IGIVE UP IF OUTPUT ERROR 

,DATA STORAGe: AREA 

SIX8IT IINrIL.EI JINPUT FILE NAME 
SlX8IT IDATI JINPUT EXTE;NSION 
~ 'PROTECTION AND CREATION D,~ TE RETURNeD 
e JINPUT D I RECTORY', 0 MEANS MV OWN 

E:2; SIX8IT IDUTF'ILI JOUTPUT rIL.E NAME: 
SIXSIT ILSTI 'OUTPUT EXTENSION 
i! J PROTECT I 0\1 CAN GO HERE, " ~EANS STD. 
i! .: OUTPUT DIRECToRy, 171 ~EANS ~Y O~JN 

IBUF1: BLOCK 3 JINPUT BUfFER HEADER 
OBl,lF2: 8LOCK 3 .OUTPUT BUFFER HEADER 

END START 

4.10 NON-BLOCKING I/O 

If no buffer is available in buffered data mode, the job blocks until complete. With non-blocking I/O, the monitor 

will not go into I/O wait but will give an error return on an IN or OUT UUO with no error bit set. (This is de­

termined by using a STATZ, STATO or GETST.) In this case, the monitor has not completed I/O yet and the 

user can determine when the I/O is completed by using the software interrupt mechanism (Paragraph 3.1.3) or 

by re-typing the input. To use non-blocking I/O set bit 3 (UU.AIO) in the LH of word 0 of the OPEN UUO. 

4-26 



4.11 THE MULTIPLEXED CHANNEL FEATURE 

The MPX channel is a DECsystem-lO software MPX I/O channel on which an INIT has been used for device 

MPX .. This special case of IN IT (or OPEN), in fact, defines to the monitor (and to the user) a multiplexed 

channel. Without the MPX channel feature, a program is restricted to referencing 16 (1 for each software chan­

nel) simultaneously active devices. An MPX channel connects a large number of devices to one software channel, 

and a single program can support a large number ofl/O devices simultaneously. Any job can create an MPX 

channel in this way, and a single job may create as many MPX channels as required within the normal constraints 

on the maximum number of channels per job. 

To each MPX channel that the user has INITED, he "connects" those devices that he wishes to control via the 

MPX channel. He may connect as many devices (in any order and in an arbitrary mix of device types) to a 

single MPX channel so long as each device connected has the pre-defined characteristic of being controllable via 

the MPX channel. (The DEVTYP UUO indicates whether a device can be controlled by an MPX channel.) 

From the user's point of view, I/O is performed into and out of buffers similar to the buffer ring described in 

Section 4.3. The buffer ring concept is slightly extended to allow the several devices connected to an MPX 

channel to share the same ring. 

The IN and OUT UUO's are utilized in roughly the same way as required for devices other than MPX. However, 

the format of buffers and ring headers has been:modified to provide a unique device ID (UDX) designating the 

source or destination of the data in each buffer. 

4.11.1 Buffer Ring Extensions 

For each MPX channel, one input or one output buffer ring can be defined by the user by usinglNIT, OPEN, 

INBUF, and OUTBUF in their usual way. However, the buffer ring header blocks are 4 words long for the MPX 

device rather than the usual 3. INIT and OPEN define the 4-word ring headers for input and output. INBUF 

and OUTBUF may then be used to create an arbitrary number of buffers for each ring with the buffer header in 

each buffer appropriately initialized. The following shows the 4-word buffer header. 

Word 0 Use Bit I I Current Buffer 

Buffer Pointer 

2 Byte Counter 

3 Universal Device Index (UDX) 

------ .~---- "------

The input ring contains buffers chained together in an endless fashion with pointers in each buffer header to the 

next buffer in the ring. As in the conventional input ring, input data is stored in consecutive buffers in the ring 

and retrieved in the same order for the user via the IN UUO. The MPX channel, however, also stores additional 

information pertaining to the data in the buffer in each buffer's 3-word header area. The 4th word of the ring 

header is loaded with a value identifying the specific device which stored the data. 

The user must store a value identifying the device for which the data is destined. This value is stored in the 4th 

word of the buffer ring header before the OUT UUO is issued to output the data. With the exception of the 

4-27 



4th word in the buffer ring header, the MPX channel user can perform I/O operation in a way that is virtually 

identical to ordinary buffered I/O. Although it has no significant impact on the users, the format of the buffer 

rings is also modified and is a requirement when specifying the MPX device. 

MPX uses buffer rings for input, but for output the format is slightly modified to form one or more device chains 

and a free chain. 

4.11.1.1 Device Chains - Device chains are created when an OUT UUO is issued to cause a buffer of data to be 

output on a particular device. A control block in the monitor address space maintains pointers to the beginning 

of the device chains for each device. The chains are then linked via the normal buffer link pointer (the right half 

of the second word of each buffer) and is terminated by a zero pointer value. Using the chain for output allows 

the monitor to treat each device connected to an MPX channel separately. 

After the device service routine empties the buffer, it is placed on a free chain available for re-use. The free 

chain begins with a pointer in the right half of the first word of the ring header. Buffers are linked via the nor­

mal pointer in each buffer header area, and the chain is again terminated with a pointer value of zero. 

As OUT UUO's are issued, buffers are removed from the free chain and added to a device chain. The ring header 

is updated to the next buffer in the free chain for return to the user upon return of the OUT UUO. Buffers on a 

device chain are returned to the free chain by the monitor when the output has been accomplished. A facility 

also exists to allow the user to force an output buffer off a device chain and back to the free chain when the user 

wishes to abort the output. 

4.11.2 I/O Modes 

All I/O performed on the MPX channel is buffered I/O; that is, I/O is performed to and from buffer rings only. 

All buffered I/O modes are legal for MPX as long as they are legal for all of the devices connected to MPX at 

execution time. In addition, a new buffered I/O mode is defined for the MPX channel called Packed Image 

Mode (PIM). 

4.11.3 Device Identification 

Devices that can be controlled by an MPX channel are identified by the user in.one of several ways. The various 

alternatives provide great flexibility in the specification of individual devices or classes of devices. 

At the first level, all devices are assigned unique identifiers called the "Universal Device Index" (UDX). From 

the user's point of view, the assignment of a particular UDX value to a particular device is completely arbitrary. 

UDX assignment for existing devices is listed under the DEVTYP UUO description. 

4.11.4 UUO's 

4.11.4.1 CNECT. UUO - The CNECT. UUO is used to connect and disconnect individual devices from a par­

ticular MPX channel. CNECT. can only be used for devices which can be controlled by an MPX channel. A 

device must be "connected" to an MPX channel before input or output can occur for that device on the MPX 

channel. One CNECT. must be issued for each device to be controlled by an MPX channel. The CNECT. UUO 

should be issued after the channel has been INITed and after any desired INBUF and OUTBUF UUO's have 

been issued. 

4-28 



CNECT. performs three basic functions: 

Name Function Meaning 

.CNCCN Connect a specific device to an MPX channel. 

.CNCDC 2 Equivalent to a CLOSE and disconnect. 

. CNCDR 3 Equivalent to a RESET and disconnect . 

The calling sequence for CNECT. is 

PLIST: 

where 

MOVEI AC, PLIST 

CNECT.AC, 

error return 

normal return 

XWD OP,D 

SIXBIT /devnam/ or UDX 

D is an INITed MPX channel number, 

; or CALLI AC, 130 

OP is the CNECT. operation code as follows: 

OP = 1 - .CNCCN 

= 2 - .CNCDC 

= 3 - .CNCDR 

devnam is the SIXBIT physical, logical, or generic name of the device to be connected. 

UDX, an alternate specification for the device, is the Universal Device Index for the device. 

The following error codes are possible with the CNECT. UUO 

Code 

2 

3 

4 

5 

6 

7 

10 

11 

12 

Name 

CNCNM% 

CNCUD% 

CNCCM% 

CNCNF% 

CNCNC% 

CNCNO% 

CNCII% 

CNCUF% 

CNCDU% 

CNCSD% 

Meaning 

The channel specified is not OPEN for device MPX: 

The device specified by PLIST+ 1 does not exist in the system. 

The device specified by PLIST+ 1 cannot be connected to device MPX. 

The monitor ran out of core to build control blocks. 

The device specified by PLIST+ 1 is not connected and the requested 

operation is conditional or unconditional disconnect. 

The channel number is in some way illegal or not open. 

An invalid I/O index was specified. 

The function code is invalid. 

The device specified by PLIST+ 1 is already assigned, INITED or 

connected by this or some other job. 

The device specified by PLIST+ 1 is a spooled device. 

4-29 September 1974 



4.11.4.2 ERLST. AC, or CALLI AC, 132 - The ERLST. UUO provides the user with a list of unoperational 

devices connected to a specified MPX channel. In order to make processing of errors for devices on an MPX 

channel somewhat more efficient the UUO allows the user optionally to request a list of only those devices that 

have not been indicated in previous ERLST. calls. 

The user provides an area of arbitrary length in core for the UUO. The UUO will store as many UDX values as 

will fit in the user space allowed. If more space is required, the UUO sets a flag on return to the user indicating 

that the list returned is incomplete. 

The error return is taken if the UUO is not implemented or if the specified channel is not an INITed MPX 

channel. 

The calling sequence is: 

MOVEI AC, BLOCK 

ERLST. AC, 

error return 

normal return 

; or CALLI AC, 132 

BLOCK: # words in BLOCK, , channel # (supplied by user) 

# devices that have errors (returned by monitor) 

UDX for first device, , GETSTS for device (returned by monitor) 

UDX for first device, , GETSTS for device 

This UUO is implemented only if the monitor has the MPX option. 

4.11.5 EXAMPLE 

The following shows a program using MPX. 

TITLE MPX ~- SAMPLE USE or MPXI 

J~~*COPYRIGHT 1974, DIGITAL EQUIPMENT CORp" MAYNARD MASS, 0175400. 

JTHIS PROGRA~ CONNECTS ALL FREE TTY'S TOGETHER IN A GIANT "PARTY 
LINE". 

I ANYTHING TYPED ON A~Y OF THE TERMINALS WIL~ BE TYPED ON EVERY OTHER 
, TERMINAL. 

JAC USAGE 
T1=1 
T2=2 
T3=3 
14=4 
0=5 
1=6 
BP=7 
P=17 

;TEMPS . , t. 
: .. 
; ,. 
;CHARACTER (IN AND OUT) 
;INDEX TO TABLES 
18YTE POINTER 
JPU5H DOWN STACK 

,110 CHAf'llNELS 
MP~=~l iCHAN FOR MPX 

4-30 September 1974 



,START 
START: 

SEARCH C 

THE PROGRAM 
RESET 
MOVE 
SETi!~1 

MOVE 
81.T 
OPEN 

~ALT 
IN8UF 

OUTBUf 

MOVE 

MOVEI 

;GET STANDARD SYM80~S 

Go Ir~G 

P,CIOWD 2~,PfJLJ JSET UP rUSH Down POINTER 
FIR2ER JC~EAR CORE so THAT CONTROL-C 
T1,[FIR2ER"F!R~ER+1J J START WILL NOT LEAVE ANV 
T1,END2ER J JU~K A~OUNO 
MPX,OPNMPX JOPE~ ~EVICE MPX 
• JOPE~ ERRO~ 
MPX,5 JGET S~ME SMALL NUMBER OF 

J SUFFERS rOR 80TH I~PUT AND 
M P X , 5 J 0 U T PUT. 1'10 TEl US I N G M P X WE 

} ~AV rlAVE rEwER BUFFERS THAN 
J CQNNECTEO OEVICES~ 

T4,C·D512"UDXTABJ JpOINTER TO TABI.E OF CONNECTED 
J DEVICES, 
J THIS TABLE WIL~ GET 1 ENTRY 
J FOR EACH TTY WE CO~NECT TO 
: THE ~1P): CHAN t 

T 3, • U X T R /W1 -1 J I 10 I \I D E X 0 F FIR S T TJ v 

'L.OOP TO 
eNLOOP: 

CONNECT 
ADO! 
MOVEI 
MOVEM 
Ci-JECT. 

ALI. FREE TTv'S 
T3,1 
Ti,CON8I.K 
T3,CONDEV 
T1, 

;ADVANCE TO NEXT TTY 
JPOINTER TO ARGUMENT BLOCK 
'STORt THE DEVICE NA~E 

JRST 
MOVEM 

CONERR 
Tl, (T4) 

A08JN T4,CNLOOP 
.HERE ONLY I~ THERE ARE 512 TTY'S AND 
CONERR: CAIN Tl,CNCUO% 

JRST MAIN 

CAIN Tl,CNCOU~ 
JRST CNL.OOP 

JAT THIS POI~T WE HAVE SOME UNEXPECTED 
HALT • 

iHERE IS THE MAIN LOOP OF THE PROGRAM 

J DOT H E C a ~l NEe T 
J ERROR RETUR;'~ 
JSTORE THE UDX RETUR~ED IN AC 
J IN THE TA8~E OF CO~NECTED 
J DEVicES 
JLOOP BACK TO TRY THE NEXT TTV 

THEY ARE ALL CONNECTED TO MpX 
JIS THIS THE LAST TTY? (THAT 
I IS DID WE GET THE UNKOWN 
J OEVICE ERRQR?) 
JVES~·WE CONNECTED EVERYTHING 
J ~)E COULD 
SIS THIS DEVICE BUSY? 
JYES··IG~lonE IT 

ERROR CONDITION. 
}JUST DIE 

MAIN. PUSHJ P,GETLIN .READ A LINE INTO LI~8UF 
MOVEI I,UQXTAB 'POINTER TO START OF TAB~E 

ILOOP OVER ALL TTV'S WHICH ARE CONNECTED AND S~ND OUT 
• THE LINE IN LINBUf 
SNDLIN: MOVE 8P,tPOINT 7,LINBUFJ ,SETUP BVTE POINTER 

MOVE Tl,(l) 'GET UDX fOR NEXT DEVICE 
JUMPE T1,MAIN JA~L DONE If ~ERO 
MOVEM TlrOUTUDx 'SAVE IN OUTPUT BUffER HEADER 

4-31 



'OUTPUT ENTIRE LINE ON ONE TTY 
SNDCHR: ILD8 c,ep 

PUSHJ P,SYTOUT 
JUMPN C,SNDCHR 
OUTPUT MPX, 

AOJA 
,SUBROUTINE TO REAO 
GETLIN: MOVE 

GTLIN1: 
~10VE I 
PUSHJ 
IDPS 

I,SNDLIN 
A L.INE AND STORE IT 
8P,(POINT 7,LINBUFJ 
1,1'078 
P,BYTIN 
c,sp 
C,.CHLFD 

.GET A BVTe: 
'OUTPUT THE ByTE 
JLOOP TILL END Or STRING 
'START TiY TYPING EVEN IP 
, SUF'EER IS NOT 1~mx rULL 
JSEND TO NEXT TTV 
IN LINBur 

'POINTER TO STRING 
'MAX NUMBER OF CHARACTERS 
JGET A BYTE 
ISTORE IN BUrFER 
'IS THIS A LINE FEED? CArE 

SOJG 
'HERE I~ LINE fEED 

MOVEI 

I.GTLINl 
TyPED OR WE GOT 78 

C,0 

INO •• GO GET THE NEXT BYTE 
CHARS 

IDP8 C,8P 
POPJ P ,,'1 

JSTANDARD SUBROUTINE TO GET 1 8YTE AND 
BYTIN: SOSGE INCNT 

JR5T GET8F 
ILDS C,INPTR 
JUMPE C,8YTIN 
POPJ P "D 

.HERE WHEN INPUT BUFFER IS EMPTy 
GeT 8 F : 1 N M P X··~·"·' ./1, "~ 

JRST 
HALT 

BYTIN 

'STORE A ~ERO AS AN END Or 
I STR~NG MARK 
J t t 

'RETURN 
RETURN IT IN 'c' 

'DECREMENT BYTE COUNT 
JBUFFER EMPTY.-GET ANOTHER ONE 
.GET BYTE FROM BurfER 
IIGNORE 2ERO BYTES 
JRETURN 

.1 WA I T rORA LTNE: TO BE TYPED 
J ON ANY CONNECTED TTy. THIS 
, USES THE fEATURE OF MPX 
, WHICH CAUSES IN TO WAXT ON 
J MANY DEVICES AT ONct, 
'NO ERRORS--GET A BYTE 
'INPUT ERROR 

,STANDARD SU8ROUTINE To WRITE 1 BYTE (FROM 'e') 
,NOTE: THE VOX OF THE DEVICE TO GEt THIS PIECE or OUTPUT Is STORED IN 
, OVTUDX PRIoR TO CALLING BYTOUT 
8YTOUT: SOSG OUTCNT 'ROOM IN BUFFER? 

JRST PUTBF JNO •• ~O EMPTY THI~ BUFFER 
PUTe, IDPS C,OUTPTR 'STORE BYTE IN OUTPUT BUfFER 

POPJ P,0 'RETURN 

JHER~ IF BurFER IS FULL 
PUT8F: OUT MPX, 

JRST pUTe 
HALT 

,STORAGE 

.OPEN 8Loe~ FOP MPX, 
OPNMPX: EXP .leAse 

SlX8IT IMPXI 
XWD 08UF,I8UF 

4-32 

'E~PTY THIS BUFFER 
'STORE DATA eyTE 
'OUTPUT ERROR 

JASC1I MODE 
'DEVICE NAME: 
;B~fftR RING HEADERS 



.ARGUMENT B~OCK POR CNECT. UUO 
CONBLK: X~D .C~CCN,MPX 
CONDEV: BLOCK 1 

; FUNCT I O~=r:CH!NECT, , CI-'ANNEL 
HJ A ~1 E ~ FOE VIC ETa CON NEe T 

F'IRi!ER: 

08UF, 
OUTPTRt 
OUTC~H : 

JFIRST LOCATION TO i!ERO ON STARTUP 

OUTUDX: 

IBUF. 
INPTR: 
INCNT: 
INUDX; 

L.IN8UF~ 
POL: 
UOXTAB: 

ENDi!ER=,.l 

BLOCK 
8~OCK 
BL.OCK 
BLOCI< 

B~OCK 
BLOCK 
BLOCK 
BL.OCK 

BL.OCK 
BLOCK 
BL.OCK 
r 

END 

4.12 DEVICE INFORMATION 

1 
1 
1 
1 

1 
1 
1 
1 

,D80/5 
20 
,D512 

START 

4.12.1 DEVSTS AC, or CALLI AC, 54(1) 

J o:~ T PUT q Ij r FER R I tH'; H E A 0 E R 
lBYTE ?OlNTER TO OUTPUT BUFFER 
JBVTE ~OUNT FOR OUTPUT BUFFER 
iDEVICS TO GF.T THIS 8~FFER 

; PlpUT 8'IFrER R pJG HEADER 
)BYTE POI~TER TO I~PUT DATA 
; PJPUT BYTE cour,JT 
; ~JHEPE n·: IS PUFFEf~ CAME FROM 

J LIN E Ell) r F t;: R 
J P :J S H 0 0 I,'! N LIS T 
;TABl.,E OF UIJX'S 
Ji!ERO TO MARK ENn OF TAB~E 
i~AST WaRJ TO ~ERO ON STARTUP 

This UUO retrieves the DEVSTS word of the device data block for an INITed device. The DEVSTS word is used 

by a device service routine to save the results of a CONI after each interrupt from the device. (Refer to Appendix 

D for the device status bits.) Devices that use the DEVSTS UUO are the following: CDR, CDP, MTA, DTA, 

PTR, PTP, DSK, LPT, and PLT. The DEVSTS UUO, when specifying an MPX channel (via a channel number. 

argument or SIXBIT/MPX/), always returns a word of zeroes. It has no meaning in this case. When specifying 

a device controlled by a front-end, DEVSTS is also meaningless, returning a zero word. 

The call is: 

MOVEI AC, channel number of device 

DEVSTS AC, 

error return 

normal return 

; or MOVEI AC, [SIXBIT/devl1 

; or CALLI AC, 54 

; UUO not implemented for any devices 

; AC contains the DEVSTS 

; word of the DDB. 

On return, the contents of the DEVSTS word is returned in AC. Therefore, if the device service routine does 

not store a CONI useless information may be returned to user. Note that an error return is not indicated if the 

device service routine does not use the DEVSTS word for its intended purpose. Devices with both a control and 

data interrupt store the controller CONI (MTS, DTS, DSK, DSK2, DPC, DPC2). 

The DEVSTS UUO is not meaningful when used in asynchronous buffered I/O mode unless a WAIT UUO (see 

Paragraph 4.5.3) is issued first to ensure synchronization of the actual data transferred with the device status 

returned. 

(1) This UUO depends on FT5UUO which is normally off in the DECsystem-lQ4Q. 

4-33 



4.12.2 DEVCHR AC, or CALLI AC, 4 

This UUO allows the user to determine the physical characteristics associated with a device name. When the 

UUO is called, AC must contain either the logical or physical device name as a left-justified SIXBIT quantity, or 

the channel number of the device as a right-justified quantity. 

The call is: 

MOVE AC, [SIXBIT/DEV/J 

DEVCHRAC, 

return 

; or MOVEI AC, channel number of 

; device, or MOVEI AC, UDX 

; or CALLI AC, 4 

If the device is not found or the channel is not INITed, the AC contains a zero on return. If the device is found, 

the following information is returned in AC: 

Name Bit 

DV.DRI Bit 0 = I 

DV.DSK Bit I = 1 

DV.CDR Bit 2 = 1 

DV.LPT Bit 3 = I 

DV.TTA Bit 4 = 1 

DV.TTU Bit 5 = 1 

DV.TTB Bit 6 = 1 

DV.DIS Bit 7 = 1 

DV. LNG Bit 8 = 1 

DV.PTP Bit 9 = 1 

DV.PTR Bit 10 = 1 

DV.DTA Bit 11 = 1 

DV.AVL Bit 12 = 1 

DV.MTA Bit 13 = 1 

DV.TTY Bit14=1 

DV.DIR Bit 15 = 1 

DV.lN Bit 16= 1 

DV.OUT Bit 17 = 1 

DV.ASC Bit 18= 1 

Explanation 

DEC tape directory is in core. This bit is cleared by an ASSIGN 

or DEASSIGN to that unit. 

Device is a disk. 

Device is a card reader (DV.lN = 1) or card punch (DV.OUT = 1). 

Device is a line printer. 

TTY is controlling a job. 

ITY is in use as a user terminal (even if detached). 

Free bit left from SCNSRF. 

Device is a display. 

Device has a long dispatch table (that is, UUOs other than INPUT, 

OUTPUT, CLOSE, and RELEASE perform real actions). 

Device is a paper-tape punch. 

Device is a paper-tape reader. 

Device is a DECtape. 

Device is available to this job or is already assigned to this job. 

Device is a magnetic tape. 

Device is a TTY. 

Device has a directory (DTA or DSK). 

Device can perform input (including MPX). 

Device can perform output (including MPX). 

Device is assigned by a console command. 

4-34 



Name Bit Explanation 

DV.ASP Bit 19 = I Device is assigned by program (lNIT or OPEN) (including MPX). 

DV.MI7 Bit 20 = I Unbuffered one-record dump mode is legal for this device (.IODMP). 

DV.MI6 Bit 21 = I Unbuffered dump mode (more than one record) is legal (.IODMP). 

DV.MI5 Bit 22 = I Unbuffered image dump mode is legal (.IODPR). 

DV.MI4 Bit 23 = I Buffered binary mode is legal (JOBIN). 

DV.MI3 Bit 24 = I Buffered image binary mode is legal (.IOBIN). 

Bits 25 and 26 are not used. 

DV.MIO Bit 27 = I Buffered image mode is legal (.IOIMG). 

Bits 28-32 are not used. 

DV.M2 Bit 33 = I Packed Image mode is legal (including MPX) (.IOPIM). 

DV.MI Bit 34 = I ASCII line mode is legal (.IOASL). 

DV.MO Bit 35 = I ASCII mode is legal (.IOASC). 

DEVCHR also will accept a UDX argument and will return bits appropriate to the condition of the device 

selected. Note that no "device type" bits are set unless the device is, in fact, of a type that is defined for 

DEVCHR. 

4.12.3 DEVTYP AC, or CALLI AC, 53 

The device-type UUO is used to determine properties of devices. This UUO accepts, as an argument, a device 

name in SIXBIT or a right-justified channel number. The call is: 

MOVE AC, [SIXBIT/dev/] 

DEVTYP AC, 

error return 

normal return 

; or MOVEI AC, channel no. 

; or MOVEI AC, UDX 

; or CALLI AC, 53 

The error return is given if the UUO is not implemented. In this case, the DEVCHR UUO should be used. On a 

normal return, if AC=O, the specified device does not exist or the channel is not INITed. If the device exists, 

- ---------the-followinginformation is returned-in AC~--

Name Bit 

TY.MAN Bit 0 = I 

Bits I-II 

TY.AVL Bit 12 = I 

TY.SPL Bit 13 = I 

Explanation 

LOOKUP/ENTER mandatory. 

Reserved for the future. 

Device is available to this job. 

Spooled on disk. (Other bits reflect properties of real device, 

except variable buffer size.) 

4-35 September 1974 



Name Bit 

TY.lNT Bit 14 = 1 

TY.VAR Bit 15 = 1 

TY.lN Bit16=1 

TY.OUT Bit 17 = 1 

TY.JOB Bits 18-26 

Bits 27-28 

TY.RAS Bit 29 

TY.DEV Bits 30-35 

4.12.4 DEVSIZ AC, or CALLI AC, 101 

Explanation 

Interactive device (output after each break character). 

Capable of variable buffer size (user can set his own buffer 

lengths). 

Capable of input. 

Capable of output. 

Job number that currently has device INITed or ASSIGNed. 

Reserved for the future. 

Device is a restricted device (i.e., can be assigned only by a 

privileged job or the MOUNT command). 

Device type code. 

Code 0 (.TYDSK) Disk of some sort 

Code 1 (.TYDTA) DECtape 

Code 2 (.TYMTA) Magnetic tape 

Code 3 (.TYTTY) TTY or equivalent 

Code 4 (.TYPTR) Paper-tape reader 

Code 5 (. TYPTP) Paper-tape punch 

Code 6 (.TYDIS) Display 

Code 7 (. TYLPT) Line printer 

Code 10 (.TYCDR) Card reader 

Code II (.TYCDP) Card punch 

Code 12 (. TYPTY) Pseudo-TTY 
Code 13 (.TYPLT) Plotter 

Code 14 (.TYXTC) External task. 

Code 15 (.TYMPX) Software MPX. 

Code 16 (.TYPAR) PA611-R on DC44 

Code 17 (.TYPCR) PC-II (R) on DC44 

Code 20 (.TYPAP) PA6II-P on DC44 

Code 21 (.TYLPC) LPC-I1 on DC44 

Code 22 (.TYPCP) PC-II (P) on DC44 

Codes 23-57 Reserved for Digital. 

Codes 60-77 Reserved for customer. 

This UUO is used to determine the buffer size for a device if the user wants to allocate core himself. The 
DEVSIZ UUO will return the default buffer size of the MPX channel if any MPX channel is specified as a 

DEVSIZ argument. 

If the argument of DEVSIZ (including UDX specification) is a device that is controlled by an MPX channel, 

DEVSIZ will return the size of aj)~ysical record for the device. If no fixed physical record size exists for the 

4-36 September 1974 



device, the default buffer size for the device (usually the same as the MPX buffer size) is returned. The 

call is: 

MOVE AC, [EXP LOC] 

DEVSIZ AC, 

error return 

normal return 

LOC:EXP STATUS 

LOC+ I: SIXBIT /dev/ 

; or CALLI AC, 101 

; first word of the OPEN block 

; second word of the OPEN block 

The error return is given if the UUO is not implemented. On a normal return, AC contains one of the following 

values: 

Name Value Meaning 

DVSDM% o Device exists but the data mode is dump mode. 

DVSNX% -1 Non-existent device. 

DVSIM% -2 Illegal mode. 

If the device exists and the data mode is legal, AC contains in bits 0-17 the default number of buffers, and in 

bits 18-35 the default buffer size (including the first three words of the buffer). 

4.12.5 WHERE AC, or CALLI AC, 63(1) 

This UUO returns the physical station number of the specified device. When the UUO is called, AC contains. 

either the channel number of the device as a right-justified quantity, or the device name as a left-justified 

SIXBIT quantity. The call is: 

MOVE AC, [SIXBIT /dev/1 

WHEREAC, 

; or MOVEI AC, channel no. 

; or CALLI AC, 63 

error return 

normal return 

If OPR is specified as the device name, the station number at which the job is logically located is returned; if 

OPR is specified, the station number of the central station is returned; and if TTY is specified, the station num­

ber at which the job's TTY is located is returned. 

On a normalreturn, theLH-ofAC -contains- the sfation's-status~andtlie-RH-ofACcontainsthe stitionnumber 

associated with the device. The station's status is represented by the following bits: 

Bit 13 = I if the station is dial-up (.RMSDU). 

Bit 14 = 1 if the station is loaded (.RMSUL). 

Bit 15 = 1 if the station is in the loading procedure (.RMSUG). 

Bit 16 = 1 if the station is down (.RMSUD). 

Bit 17 = 1 if the station is not in contact (.RMSUN). 

(1) This UUO depends on FTREM which is nonnally off in the DECsystem-1040. 

4-37 



The error return is taken if the UUO is not implemented, the specified channel is not INITed, or the requested 

device does not exist. 

4.12.6 DEVNAM AC, or CALLI AC, 64 

This UUO returns the SIXBIT physical name (in the form AAAxxx) of a device obtained through either a generic 

INIT/OPEN or a logical device assignment. When the UUO is called, AC contains either channel number of the 

device as a right-justified quantity, or the device name as a left-justified SIXBIT quantity. The call is: 

MOVE AC, [SIXBIT /devf] 

DEVNAMAC, 

error return 

normal return - SIXBIT name in AC 

; or MOVEI AC, channel no. 

;orUDX 

; or CALLI AC, 64 

The normal return is taken if the specified device is found, and AC contains the SIXBIT physical device name. 

The error return is taken if the UUO is not implemented (AC is unchanged), the specified channel is not INITed, 

or no such device exists. 

4.12.7 IONDX. AC, or CALLI AC, 127 

The IONDX. UUO returns the UDX for the device name specified in the calling parameters. The parameter may 

be either a SIXBIT logical name or a SIXBIT physical name of the form AAAxxx. 

The error return from the UUO is taken if 

1. the UUO is not implemented, or 

2. the device does not exist. 

If the device is specified as SIXBIT/MPX/ the error return is taken. The calling sequence is: 

MOVE AC, [SIXBIT/devnamf] 

IONDX. AC, 

error return 

normal return 

4.12.8 CLRST. UUO 

; or MOVE AC, channel no. 

; or CALLI AC, 127 

; AC=O, if no such device 

; AC=UDX 

The CLRST. UUO is used to allow a device to continue after a device error condition has occurred. 

The calling sequence is: 

MOVE AC, [XWD length, , block] 

CLRST.AC, 

error return 

normal return 

; or CALLI AC, 134 

4-38 September 1974 



BLOCK contains: 

UDX 
o 

UDX 
o 

channel number or SIXBIT/device/ 
SETSTS value 

channel number or SIXBIT /device/ 
SETSTS value 

This UUO is implemented only if the monitor has the MPX option. 

4.12.9 MVHDR. AC, or CALLI AC, 131 

The MVHDR. UUO allows a user to move a buffer ring header from one core location to another. The user may 
issue a MVHDR. UUO at any time after a channel has been INITed. This UUO just changes the monitor's 
pointer to the buffer header. MVHDR does not move anything in the user's core image. 

The calling sequence of the MVHDR. UUO is: 

MOVEI AC, channel 
MOVE AC+ 1, [out-adr , , in-adr] 
MVHDR.AC, 
error return 
normal return 

; or CALLI AC, 131 

If the new header address is zero, the old address is unchanged. An error return is taken if the UUO has not been 
implemented. If the channel has not been INITed, an error return is taken. AC will be equal to one. If invalid 
addresses are specified, the next monitor call that references the ring header will receive an ADDRESS CHECK 
or an ILLEGAL UUO message. 

4.12.10 SENSE AC, or CALLI AC, 133 

The SENSE UUO provides information necessary for a user to diagnose and perform error recovery for a specific 
device. A variable length parameter list is provided to allow upwards compatibility in expansion of the informa­
tion returned by the UUO. 

The error return is taken if the specified device does not exist or if the UUO is not implemented. 

The calling sequence is: 

MOVE AC, [XWD length, , addr] 
SENSEAC, 
error return 
normal return 

addr: UDXor 
channel number or 
SIXBIT/device 

; or CALLI AC, 133 

addr+ 1: length of block, , addr of block 

block: 
block+ 1: 
block+2: 

SIXBIT/device/ 
o , , GETSTS information 
DEVSTS word 

This UUO is implemented only if the monitor has the MPX option. 

4-39 September 1974 





CHAPTER 5 

I/O PROGRAMMING 

FOR NONDIRECTORY DEVICES 

This chapter explains the unique features of each standard nondirectory I/O device. Each device accepts the 

programmed operators explained in Chapter 4, unless otherwise indicated. Table 5-1 is a summary of the char­

acteristics of all nondirectory devices. Buffer sizes are given in octal and include three bookkeeping words. The 

user may determine the physical characteristics associated with a logical device name by calling the DEVCHR 

UUO .. 

Table 5-1 

N ondirectory Device 

Name Controller Unit Programmed Data Buffer Size 

Device Physical Number Number Operators Modes (Octal)* 

Card CDP - CPIOA OUTPUT, A,AL,I, 35 

Punch OUT IB,B 

Card CDR,CDRI - CRIOA INPUT, IN A,AL,I, 36 

Reader 461 (PDP-6) IB, B, SI 

Console CTY - LT33A, INPUT A,AL,I 23 

Terminal LT33B, IN 

LT35A, OUTPUT, 

LT37AC OUT 

626 (PDP-6) 

Display DIS - VR30, VPI0 INPUT, ID Dump 

340B,30 OUTPUT only 

Line LPT, LPT1, - LPI0F LPIOC OUTPUT A, AL, 137 

Printer LPT2 LPI0H 
------- - -- --- -- ---- - - - -- --- --TUI 0-- - ---- - -- -- -----

TU40 

TU41 

Magnetic MTAO, TMI0A TU20A, INPUT, A,AL,I 203** 

Tape MTA1, TMI0B TU20B IN IB, B 

... ,MTA7 TU30A, OUTPUT, DR,D 

516 (PDP-6) TU30B OUT, 

MTAPE 

(*) Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ UUO may be employed. 

(**)The buffer size for magnetic tape may be changed with the SET BLOCKSIZE command (refer to the DECsystem-lO Operating System Commands). 

5-1 



Name 

Device Physical 

Paper-Tape PTP 

Punch 

Paper-Tape PTR 

Reader 

Plotter PLT, 

PLTI 

Pseudo PTY 

TTY 

Terminal TTY 0 

TTY1, 

.... , 
TTY777 

Controller 

Number 

-

-

XYIO 

-

DCIO 

DC68A 

Table 5-1 (Cont) 

Nondirectory Device 

Unit 

Number 

PC09 

761 (PDP-6) 

PC09 

760 (PDP-6) 

XYIOA 

XYIOB 

-

LT33A, 

LT33B 

630 (PDP-6) LT35A, 

LT37AC 

VT06 

Programmed Data Buffer Size 

Operators Modes (Octal)* 

OUTPUT, A,AL,I 43 

OUT IB, B 

INPUT, A,AL,I 43 

IN IB,B 

OUTPUT, A,AL,I 46 

OUT IB,B 

INPUT, A,AL 23 

IN 

OUTPUT, 

OUT 

INPUT, A,AL,I 223 

IN 

OUTPUT, 

OUT 

TTCALL 

(*) Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ UUO may be employed. 

5.1 CARD PUNCH 

The device mnemonic is CDP; the buffer size is dependent on the data mode. 

5.1.1 Concepts 

Data Mode 

A,AL 

I,IB 

B 

Buffer Size 

23(8) (20(8) data) words - 80 7-bit 

ASCII characters 

36(8) (33(8) data) words - 80 12-bit bytes 

35(8) (32(8) data, 33(8) punched) 
words - 26 data words, word count 

and checksum punched. 

The header card is the first card of an ASCII file and identifies the card code used (refer to Appendix C). This 

card is not punched for data modes other than ASCII. The header card has the same punches in all columns. 

This punch depends on the card code used; for example, in 026, the header card has 12-2-4-8 punched in 

columns 1-80. 

The end-of-file (EOF) card is the last of each output file. This card is punched for all data modes. The end-of­

file card has a 12-11-0-1-6-7-8-9 punch in columns 1 through 80. 

5-2 September 1974 



5.1.2 Data Modes 

5.1.2.1 ASCII, Octal Code 0 - ASCII characters are converted to card codes and punched (up to 80 characters 

per card). Tabs are simulated by punching from I to 8 blank columns; form-feeds and carriage returns are ignored. 

Line feeds cause a card to be punched. All other non translatable ASCII characters cause a back slash to be 

punched. Cards can be split between buffers. Attempting to punch more than 80 columns per card causes the 

error bit IO.BKT (bit 21 of status word) to be set. The CLOSE will punch the last partial card and then punch 

an EOF card. 

Cards are normally punched with ANSI card codes. Refer to Appendix C for a list of ANSI card codes. 

5.1.2.2 ASCII Line, Octal Code 1 - The same as ASCII mode. 

5.1.2.3 Image, Octal Code 10 - In image mode, each buffer contains 27 words, each of which contain three 

12-bit bytes. Each byte corresponds to one card column. Since there is room for 81 columns in the buffer 

(3 x 27) and there are only 80 columns on a card, the last word contains only 2 bytes of data; the third byte is 

thrown away. If the byte size is set by the program to be 12-bit bytes (the monitor normally sets 36-bit bytes), 

the program must skip the last byte in the buffer. Image binary causes exactly one card to be punched for each 

output. A program should not force an output every 80 columns since, if the program is in spooled mode, it will 

waste a large amount of disk space. The CLOSE punches the last partial card and then punches an EOF card. 

5.1.2.4 Image Binary, Octal Code 13 - Same as Image. 

5.1.2.5 Binary, Octal Code 14 - Column 1 contains the word count in rows 12-3. A 7-9 punch is in column 

1. Column 2 contains a checksum as described for the paper-tape reader (refer to Paragraph 5.7.1.5); columns 

3 through 80 contain up to 26 data words, 3 columns per word. Binary causes exactly one card to be punched 

for each output. The CLOSE punches the last partial card and then punches an EOF card. 

5.1.3 Special Programmed Operator Service 

Following a CLOSE, an EOF card is punched. Columns 2 through 80 of the header card and the EOF card con­

tain the same punches that appear in column 1 of either the header or EOF card for each file identification. 

These punches are ignored by the card reader service routine. 

After each interrupt, the card punch stores the results of a CONI in the DEVSTS word of the device data block. 

The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1). 

5.1.4 File Status (Refer to Appendix D) 

5-3 September 1974 



Standard Bits 

Device Dependent Bits 

5.2 CARD READER 

SET BY USER 

SET 
BY MONITOR 

Bit 19 - IO.DER 

Bit 21 - IO.BDT 

Bit 23 - IO.ACT 

18 21 24 27 30 33 35 

111111111111111111111111111111111111 

19 21 23 

IIIIII~ I11111I 11111I 

10-0546 

Punch error 

Reached end-of-card with data remaining in buffer. 

Device is active. 

18 20 22 24 27 

UNUSED 111111 111\\\1 1111111 111111111111111111111111111111 1 

SET BY USER 

Bit 29 - IO.D29 

29 

II1111I 

10-0547 

If 1, punch ANSI card codes. 

If 0, punch 026 card codes 

The card reader device mnemonic is CDR; the buffer size is 36(8) (33(8) data) words. 

5.2.1 Concepts 

For ASCII input, a header card can be the first card of the file and identifies the card code used (026 or 

ANSI standard). The header card is used only when changing from (or back to) installation standard on ASCII 

input. The header card must not be present with any other data modes; if present, the header card is treated as 

an incorrect fonnat or read as data. Refer to Appendix C for the card codes. 

An EOF card (end-of-file) has a 12-11-0-1-6-7-8-9 punch in columns 1 through 80. The EOF card has the same 

effect as the EOF key on the card reader. This key must be depressed or the end-of-file card must be present 

at the end of each input file for all data modes. 

5-4 September 1974 



The header card codes and EOF card codes are: 

EOF 

026 

ANSI 

5.2.2 Data Modes 

12-11-0-1-6-7-8-9 (1) 

12-2-4-8 

12-0-2-4-6-8 

5.2.2.1 ASCII. Octal Code 0 - All 80 columns of each card are read and translated to 7-bit ASCII code. Blank 

columns are translated to spaces. At the end of each card a carriage return/line feed is appended. As many com­

plete cards as can fit are placed in the input buffer, but cards are not split between two buffers. Using the 

standard-sized buffer, only one card is placed in each buffer. 

Cards are normally translated as ANSI card codes (refer to PDP-l 0 System Reference Manual). If a 026 header 

card is encountered, any following cards are translated as 026 codes (refer to Appendix C) until the 026 

conversion mode is turned off. The 026 is turned off either by a RELEASE command or by an ANSI header card. 

Columns 2 through 80 of both of these cards are ignored. 

5.2.2.2 ASCII Line, Octal Code 1 - This mode is the same as ASCII mode. 

5.2.2.3 Image, Octal Code 10 - All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes. 

The first l2-bit byte is in column 1. The last word of the buffer contains columns 79 and 80 as the left and 

middle bytes, respectively. The EOF button is processed as in ASCII mode. Cards are not split between two 

buffers. 

5.2.2.4 Image Binary, Octal Code 13 - This mode is the same as Image. 

5.2.2.5 Binary, Octal Code 14 - Card column 1 must contain a 7-9 punch to verify that the card is in binary 

format. Column 1 also contains the word count in rows 12 through 3. The absence of the 7-9 punch results in 

setting the IO.IMP (bit 18 of status word) flag in the card reader status word. Card column 2 must contain a 

12-bit checksum as described for the paper-tape binary format. Columns 3 through 80 contain binary data, 3 

columns per word for up to 26 words. Cards are not split between two buffers. The EOF button is processed 

the same as in ASCII mode. 

5.2.2.6 Super-Image, Octal Code 110 (2) - Super-image mode may be initialized by setting bit 29 of the card 

reader's lOS word. This mode causes the 36 bits read from the I/O bus to be BLKl'd directly to the user's buffer. 

For this mode, the default size of the input buffer is 81 (10) words (80 (10) data words). 
-.--~--- ---.---- ----- -------------- ----- - ---"-- - --- ---- -- - - -- --

5.2.3 Special Programmed Operator Service 

The card reader, after each interrupt, stores the results of a CONI in the DEVSTS word in the device data block. 

The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1). 

(1) These cards are symmetric in the sense that the pattern of the punches is the same if the card is turned upside down. 

(2) This mode depends on FTCDRSI which is normally off in1the DECsystem-1040. 

5-5 September 1974 



5.2.4 File Status (Refer to Appendix D) 

The file status of the card reader is shown below. 

Standard Bits 

SET BY USER 

SET 
BY MONITOR 

Bit 18 = IO.lMP 

Bit 19 = IO.DER 

Bit 20 = IO.DTE 

Bit 22 = IO.EOF 

Bit 23 = IO.ACT 

18 

UNUSED 

Device-Dependent Bits 

18 21 24 27 30 33 35 

IIIIIIIIIIIIIIIII~IIIIIIIIIIIIIIIII 
18 21 24 

111111111111111111111IIIIIIIII1 

10-0548 

7-9 punch absent in column 1 of a presumed binary card. 

The card reader is stopped. 

Photocell error, card motion error, data missed. The card 

reader is stopped. 

Computed checksum is not equal to checksum read on 

binary card. The card reader is stopped. 

EOF card reader or EOF button pressed. 

Device is active. 

21 24 27 30 33 35 

I1111I 11111111111111111111111111111111111 

10-0549 

18 21 24 27 29 30 33 35 

SET BY USE R 1L---I1---'---'--llllllLIIIII~---..L-----J 
10-0!S49 

Bit 29 = IO.SIM Super-Image mode. 

5.3 DISPLAY WITH LIGHT PEN 

The device mnemonic is DIS; there is no buffer because the display uses device-dependent dump mode only. 

5-6 



5.3.1 Data Modes 

For IMAGE DUMP, Octal Code 15, an arbitrary length in the user area may be displayed on the scope. The 

command list format is as described in Chapter 4 with the addition for the Type 30, VR30 and VP 10 display, 

that, if RH = 0, and LH = 0, then LH specifies the intensity for the following data (4 to 13). 

5.3.2 Background 

During timesharing on a heavily-loaded system, the monitor service routine for the Type 30, VR30, and VP 10 

guarantees a flicker-free picture on the display if the job is locked in core. To maintain this picture, the picture 

data must be available for the display at least every two jiffies. If the system is lightly loaded, it is not necessary 

to keep the job in core. When the job is swapped, a minimum amount of flicker may occur, but the job has high 

priority to the swapped-in again. 

5.3.3 Display UUOs 

The I/O UUOs for both displays operate as follows: 

INIT D, 15 

SIXBIT /DIS/ 

o 
error return 

normal return 

CLOSE D, 

or 

RELEAS D, 

; MODE 15 ONLY 

; DEVICE NAME 

; NO BUFFERS USED 

; DISPLAY NOT AVAILABLE 

; STOPS DISPLAY AND 

; RELEASES DEVICE AS 

; DESCRIBED IN CHAPTER 4 

5.3.3.1 INPUT D, ADR -If a light pen hit has been detected since the last INPUT command, then C(ADR) is 

set to the location of last light pen hit. If no light pen hit has been detected since last INPUT command, then 

C(ADR) is set to -1. 

5.3.3.2 OUTPUT D, ADR - ADR specifies the first address of a table of pointers. This table is composed of 

pointers with the following format: 

o 

For the Type 30, VR30 and VPlO Display: 

If LH = 0 and RH = 0, 

If LH f 0 and RH = 0, 

IfLH = 0 and RH t= 0, 

1718 35 

LH RH 

10-0550 

then this is the end of the command list. 

then LH is the desired intensity for the following data or 

commands. The intensity ranges from 4 to 13, where 4 

is the dimmest and 13 is the brightest. 

then RH is the address of the next pointer. Successive 

pointers are interpreted beginning at RH. 

5-7 



If LH =/= 0 and RH =/= 0, 

o 

then -LH words beginning at address RH+ 1 are output 

as data to the display. The format of the data word is 

the following: 

7 8 1718 25 26 35 

I y-coord x-coord I 
10-0551 

For the Type 340B Display: 

IfRH = 0 

If LH = 0 and RH =/= 0, 

If LH =/= 0 and RH =/= 0, 

then this is the end of the command list. 

then RH is the address of the next pointer. Successive 

pointers are interpreted beginning at RH. 

then -LH words beginning at address RH+ 1 are output 

as data to the display. The format of the data word is 

described in the Precision Incremental CR T Display 

Type 340 Maintenance Manual. 

An example of a valid pointer list for the VR-30 display is: 

OUTPUT 

L.IST, 

L.IST1: 

A: 
B; 
C I 
0; 

SU8P1: 
SU821 

0, LIST 

XWD 
IOWD 
IOWD 
XWD 
I O~lO 
IOWD 
XWO 

XWD 
10WD 
IOWD 
XWD 
OUTPUT 

5, 0 
1, A 
5,SIJBPl 
13,0 
l,e 
2,SU8P2 
0.LlSTl 

10,0 
:1,,8 
1,0 
{J,0 
0, LIST 

XWD 6,6 
XWD 70,105 
XWO 105,70 
XWO lt~YJz!, 200 

BLOCK 5 
BL.OCK 2 

5-8 

'OUTPUT DATA 
'POINTED TO BY L.IST 
)INTENSITY 5 (DIM) 
'PL.OT A 
JP~OT SU8PICiURE 1 
'INTENSITY 13 (BRIGHT) 
JPl.oT C 
IPbOT SU8PICTURE 2 
JTRANSrER TO LIST 1 

JINTENSITY 10 (NORMAL) 
'PL.OT 8 
JPI.OT 0 
lEND OF COMMAND bIST 
'OUiPUT DATA 
IPOINTED TO By I.IST 
lye 6, X=6 
IY: 7~, X=105 
Jy= 105, X=70 
) y'=100~, X=200 

)SUBPICTLJRE 1 
JSUSPICTURE 2 



An example of a valid pointer list for the Type 340B Display is: 

OUTPUT 0, LIST iOUTPUT DATA POINTED 
iTO 8Y POINTER IN LIST 

LIST, IOWD 1,A JSET STARTING POINT TO ( 6 , 6 ) 

10WD 5,SUBPl ; DRA\~ A r. I RCLE 
IOWD l,e ;SET STARTING POINT TO 

(7~d.05) 

iOWD 5,5UBPl )DRAW A CIRCLE 
10WD 1,8 'SET STARTING POINT TO 

(1~5,70) 

lOWD 2,SUBP2 ;DRAW A TRIANGLE 
IOWD 0,L15Tl JTRANSrER TO LlSTl 

1.15T1; IOWD 1,0 JSET STARTING POINT ,TO 
I (100,~200) 

IOWD 5,SUBPl 'DRAW A CIRCl.E 
IOWD 1,A JSET STARTING POl~T TO ( 6 , 6 ) 
IOWD 2,SUBP2 JDRAW A TRIANGI.,.E 
XWD 0,0 JSTOP 

A; X=6 '(=6 
8t X=105 '(=70 
C; X=70 Y=105 
0: X=1f'HH' '(=-200 

SUBP1: Bl,OCK 5 ,ORAW A CIRCLE 
SUBP2: BI.OCK 2 .DRAW A TRIANGLE 

The example shows the flexibility of this format. The user can display a sub picture by setting up a pointer. He 

can also display the same sub picture in many different places by setting up pointers to the subpicture, each pre­

ceded by a pointer to commands for the display to reset its coordinates. 

5.3.4 File Status (See Appendix D) 

The file status of the display is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER ___ I --'--~I.--....II,U,IIII=IIIIIIIIIII.ww.w.IIIIIIIIIII.IJ.W.I.WIIIIIIIIII~ 
23 

SET BY MONITOR 
111111 

10-0552 

Bit 23 = IO.ACT Device is active 

5-9 



18 21 24 27 30 33 35 

UNUSED 1111111111111111111111111111111 111111111111111111111111111111111111 

10-0553 

Device-Dependent Bits - None 

5.4 LINE PRINTER 

The device mnemonic is LPT; the buffer size is 37(8) (36(8) data) words. 

5.4.1 Data Modes 

5.4.1.1 ASCII. Octal Code 0 - ASCII characters are transmitted to the line printer exactly as they appear in 

the buffer. Refer to the PDP-IO System Reference Manual for a list of the vertical spacing characters. 

5.4.1.2 ASCII Line, Octal Code 1 - This mode is exactly the same as ASCII and is included for programming 

convenience. All format control must be performed by the user's program; this includes placing a RETURN, 

LINE-FEED sequence at the end of each line. 

5.4.1.3 Image, Octal Code 10 - This mode is the same as ASCII mode. 

5.4.2 Special Programmed Operator Service 

The first output programmed operator of a file and the CLOSE at the end of a file cause an extra form-feed to 

be printed to keep files separated. 

After each interrupt, the line printer stores the results of a CONI in the DEVSTS word of the device data block. 

The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1). 

5.4.3 File Status (See Appendix D) 

The file status of the line printer is shown below. 

Standard Bits 

18 21 24 27 29 30 33 35 

SET BY USER 
11111111:111111111111111111111111111111111 

Bit 29 = IO.SFF Suppress FORM FEEDS on an OPEN or RELEASE 

23 

SET BY MaN ITOR 
111111 

10-0554 

Bit 23 = IO.ACT Device is active. 

5-10 



UNUSED 11111111111111111111111111111 lilllll/lIII/lII'I'IIIII/l1111 I 
10-0555 

Device-Dependen t Bits - None 

5.5 MAGNETIC TAPE 

Magnetic tape format for the DECsystem-l 0 is industry compatible. The tapes are unlabeled, 7- or 9-channel; 

200, SSG, or 800 bpi. The device mnemonic is MTAx (MTAO, MTAl, etc.) and the buffer size is 203(8) (200(8) 

data) words. (Refer to the System Reference Manual, Section 6 for more specific information on the DEC system-

10 magnetic tape system). 

The user may change the density and/or blocksize of a magnetic tape by using the SET DENSITY and SET 

BLOCKSIZE commands. (Refer to the Operation System Commands Manual.) 

As far as the user is concerned, the tape contains only records and EOF marks signalling the end of the record or 

the end of the file. A file consists of an integral number of physical records, separate from each other by inter­

record gaps. (an area on tape where no data is written). There mayor may not be more than one logical record 

in each physical record. Write and read operations on files are performed sequentially. An EOF mark consists 

of a record containing a 17(8) (for 7-channel tapes) or a 23(8) (for 9-channel tapes). EOF marks are used in the 

following manner: 

1. An EOF mark follows every file. 

2. Two EOF marks follow a file if that file is the last or only file on the tape. (A double EOF is also 

known as an end-of-tape or EOT). 

3. No EOF mark precedes the first file ona tape. 

When an output file is closed the I/O service routine automatically writes two EOF marks and backspaces over 

one of them. If another file is opened, the second EOF mark is written over leaving one EOF mark between files. 

At the end of the in-use portion of the tape, a double EOF (defined as the logical end-of-tape) appears. 

Normally, all data is written with odd parity, 800 bpi unless changed by the installation. A maximum of 200(8) 

words per record is read or written if the monitor has set up the buffer ring. If the user builds his own buffers 

(using SET BLOCKSIZE), a maximum of 4094 words may be specified. The word count is not written on tape. 

If an I/O error occurs or an end-of-tape is reached, reading ahead ceases on input and output is terminated. 

5.5.1 Data Modes 

The following table shows.the data modes available tq_I!l~gne_ti.£t~Reusers: 

Mode 

ASCII 

ASCII 

Line 

Image 

Octal Code 

o 

10 

Meaning 

Data written on magnetic tape appears exactly as it appears in the buffer. 

No processing of any kind is performed by the service routine. Parity 

checking by the magnetic tape system is sufficient assurance that the data 

is correct. 

Same as ASCII. 

The mode is the same as ASCII, but data consists of 36-bit words. 

5-11 



Mode Octal Code 

Image 13 

Binary 

Binary 14 

Dump 16 

records 

(DR) 

Dump (D) 17 

5.5.2 Magnetic Tape UUO's 

Meaning 

Same as Image 

Same as Image 

Data is in the form of standard, fixed-length records, (128 words is the 

standard unless changed by the installation when generating its monitor 

or specified by the user with the SET BLOCKSIZE command). Records 

read into or written from the user's core area are unbuffered. Control for 

read or write operations must be via a command list (described in Chapter 

4, Unbuffered Data Modes) in core memory. For input operations, a new 

record is read for each word in the command list (except GOTO words); 

if the record terminates before the command word is satisfied, the service 

routine reads the next record. If the command word runs out before the 

record terminates, the remainder of the record is ignored. For each out­

put command word, exactly enough standard-length records are followed 

by one short record to write all of the words on the tape. If an I/O error 

occurs or the EOT is reached, no additional commands are retrieved from 

a dump mode command list, and I/O is terminated. When the EOF is 

read, the user receives the standard EOF return (the error return from the 

IN UUO) and the 10.EOF bit is set in the file status word. (This bit can 

be retrieved with the GETSTS UUO.) The EOF character is read into the 

user's buffer. The next INPUT or IN UUO will read the next record on 

tape. 

Variable-length records are read into or written from anywhere in the 

user's core area without regard to the buffering scheme. Control for read 

or write- operations must be via a command list (described in Chapter 4, 

Unbuffered Data Modes) in core memory. For input operations a new 

record is read for each word in the command list (except GOTO words); 

if the record terminates before the command word is satisfied, the service 

routine skips to the next command word. If the command word runs out 

before the record terminates, the remainder of the reco.rd is ignored. For 

each output command word, exactly one record is written. Handling of 

EOF mode is the same as Dump Records (DR) as described above. 

5.5.3 Special Programmed Operator Service (UUO's) 

There are several UUO's that are available for magnetic tape users to perform certain functions. They are dis­

cussed in the following paragraphs. 

5.5.3.1 MTAPE UUO - The MTAPE UUO provides functions such as rewind, backspace record, backspace file, 

and 9-channel tape initialization. The format is: 

MTAPE D, FUNCTION 

where D is the device channel number on which the magnetic tape unit is initialized. FUNCTION is selected 

according to Table 5-2. 

5-12 



Symbol Function 

MTWAT. o 

MTREW. 

MTEOF. 3 

MTSKR. 6 

MTBSR. 7 

MTEOT. 10 

MTUNL. II 

MTBLK. 13 

MTSKF. 16 

MTBSF. 17 

MTDEC. 100 

MTIND. 101 

MTLTH. 200 

Table 5-2 

MTAPE Functions 

Action 

No operation. Waits for spacing and I/O to finish. 

Rewinds to load point. 

Writes EOF. 

Skips one record. 

Backspaces one record. 

Spaces to logical end-of-tape. Terminates at either two consecutive 

EOF marks or at the end of the first record beyond EOT marker. 

Rewinds and unloads. 

Writes 3 inches of blank tape. 

Skips one file. Causes a series of "skip record" operations. 

Backspaces files. Causes a series of "backspace record" operations. 

Initializes for Digital-compatible 9-channel tape. * 

Initializes for industry-compatible, 9-channel tape. ** 

Reserved for future use. 

*Digital-compatible mode writes (or reads) 36 data bits in five frames of a 9-track magnetic tape. The tape can be any density or parity and is 
not industry-compatible. This mode is in effect until a RELEASE D, or a MTCHR D, is executed. 

**Industry-compatible mode writes (or reads) 32 data bits in four frames of a 9-track magnetic tape and ignores the low-order four bits of a 
word. It must be 800 bpi density and odd parity. 

MTAPE waits for the magnetic tape unit to complete the action in progress; bits 18-25 of the status word are 

then cleared, the indicated function is initiated (including no operation) and control is immediately returned to 

the user's program. It is important to remember that the I/O service routine can be reading several blocks ahead 

of the user's program when pe.rforming buffered input/output. MTAPE affects only the physical position of the 

tape and does not change the data that has already been read into the buffers. Therefore, an INPUT UUO or 

OUTPUT UUO following an MTAPE UUO may not retrieve the buffer containing the block requested. However, 

a single buffer ring retrieves the expected block since the device must stop after each INPUT UUO or OUTPUT 

UUO. Alternatively, if bit 30 (I0.SYN) of the file status word is set via the INIT UUO or the SETSTS UUO, the 

device stops after each buffer is filled on an INPUT or OUTPUT. '!'ll~s,_!~_M,!~P~ wi!l_ apply to the buffer 

supplied on the next INPUT or OUTPUT. 

MTAPE functions must be followed by MTAPE 0 if subsequent operations depend on the completion of the 

MTAPE function. If this is not done, subsequent input and output UUO's are ignored until the magnetic tape 

control is freed. This problem occurs frequently in programs that issue a REWIND command at the beginning 

of the program. The tape may actually be positioned to its beginning, but the processing of the MT APE function 

may cause the first input to be ignored. 

5-13 September 1974 



Issuing a backspace file command to a magnetic tape unit moves the tape in the reverse direction until the tape 

has: 

1. Passed the EOF mark. 

2. Reached the beginning of the tape. 

The end of the backspace file operation positions the tape heads either immediately in front of an EOF mark or 

at the beginning of the tape. In most cases, it is desirable to skip forward over this file up to the beginning of 

the file. In this case, giving a "skip file" command would skip the entire first file on the tape, stopping at the 

beginning of the second file rather than leaving the tape positioned at the beginning of the first file. Therefore, 

a correct sequence for "backspace file" would be: 

MTBSF. MT, 

MTWAT.MT, 

STATO MT,4000 

MTSKF.MT, 

; Backspace file 

; Wait for completion 

; Beginning of tape? 

; No, skip over file mark 

Since it is necessary to wait after the MTBSF. (backspace file) instruction to ensure that the move is completed 

before testing tq see whether or not this is the beginning of the tape, the instruction WAIT MT cannot be used 

for this purpose. The WAIT MT instruction waits only for the completion of I/O transfer operation, and 

"backspace file" is a spacing operation not an I/O transfer operation. 

The device service routine must wait until the magnetic tape control is free before processing the MTAPE. MT,O, 

which tells the tape control to do nothing. Thus, the service routine achieves the waiting period necessary for 

the completion of the previous operation and the proper positioning of the tape. The following sequence shows 

an incorrect file backspace: 

MTBSF.MT, 

WAITMT, 

STATO MT, 4000 

MTSKF.MT, 

; Backspace file 

; Wait for completion 

; Beginning of tape? 

; No, skip over file mark 

5.5.3.2 MTAPE D, 11 Rewind and Unload (UNLOAD) - This UUO initializes all automatic error reporting. 

Therefore, reel-specific errors can be summarized regardless of the method used to change reels. An entry into 

the system error log file will be written that includes: 

drive number (MTxn) 

SIXBIT /REELID/ 

number of words read since the last UNLOAD 

number of words written since the last UNLOAD 

number of soft-read errors since the last UNLOAD 

number of hard-read errors since the last UNLOAD 

number of soft-write errors since the last UNLOAD 

number of hard-write errors since the last UNLOAD 

These numbers will be output on both the operator's and the user's terminals in the following format: 

[MTxn/REELID READ (W/H/S) = albic WRITE (W/H/S) = d/e/f] 

5-14 



Where: a = words read 

b hard-read errors 

c = soft-read errors 

d words written 

e = hard-write errors 

f soft-write errors 

Whenever a=b=c=O, the information on READ will not be printed. 

Whenever d=e=f=O, the information on WRITE will not be printed. 

To prevent this message from being printed type: 

SET WATCH NO MTA 

5.5.3.3 MTCHR. AC, or CALLI AC, 112( 1 } -This UUO enables the user to obtain a set of data from which 

the current state of a specified magnetic tape drive can be determined. The call is: 

MOVE AC, [XWD +n,LOC] 

or 

MOVE AC, [SIXBIT/DEV/l ; (This maintains compatibility with 

; pre-601/507 monitors.) 

or 

MOVEI AC, channel number 

MTCHR,AC, 

error return 

normal return 

LOC is a left-justified, SIXBIT physical or logical device name. On normal return the monitor returns values in 

the first N locations after LOC as follows: 

Name 

.MTRID 

.MTWRD 

. MTWWT 

.MTSRE 

. MTHR~ 

. MTSWE 

. MTHWE 

.MTTME 

. MTTDE 

. MTTUN 

. MTNFB 

. MTNRF 

. MTICC 

Word 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

Meaning 

SIXBIT/REELID/ 

Words read. 

Words written . 

Soft-read errors. 

Hard-read errors . 

Soft-write errors . 

_Hard-write errors . 

Total media errors since last unload. 

Total device errors since system loaded . 

Total unloads since system loaded . 

Number of files from beginning of tape . 

Number of records from last EOF . 

Initial error CONI MTC . 

(1) This UUO depends on FT5UUO which is normally off in the DECsystem-l040. 

5-15 September 1974 



Name Word Meaning 

.MTICS 16 Initial error CONI MTS . 

. MTFCC 17 Final error CONI MTC . 

. MTFCS 20 Final error CONI MTS . 

. MTTRY 21 Number of retrys to resolve last error. 

An error return is taken if: 

1. The specified device is not a magnetic tape (i.e., not MTXn.). 

2. The specified device is not present. 

3. The MTCHR. UUO is not implemented. 

If the specified device is not a magnetic tape or is not present, a -1 value is returned to the AC. If the UUO is 

not implemented, the contents of AC are not changed. 

A normal return to AC will contain the following information: 

Word Bit Mnemonic 

0-17 MT.AWC 

18-26 MT.CRC 

27-29 MT.NCR 

31 MT.7TR 

32 MT.WLK 

33-35 MT.DEN 

Contents 

The actual word count for the last record read or written. 

If a 9-channel drive is being used, these bits will contain the last 

Cyclic Redundancy Character (eRC). 

The number of characters read from the tape into the last addressed 

word location in the buffer during the last read operation. 

Indicates 7-track tape. 

The transport write-locked indicator bit; if this bit is 1, the trans­

port is write-locked. 

Any of the following single-digit tape density (i.e., bits per inch) 

iden fifiers: 

Name Function Meaning 

.MTDN2 200 bpi 

.MTDN5 2 556 bpi 

.MTDN8 3 800 bpi 

.MTD16 4 1600 bpi 

5 Reserved for future use. 

In determining the value of the density identifier to be returned to bits 33-35 of the AC, the monitor examines 

the file status bit initialized by the INIT UUO and will return any INIT-specified density identifier. If density 

was not specified by INIT, the monitor then determines if the user specified density using the SET DENSITY 

command and returns any user-specified density identifier to the AC. If the SET DENSITY command was not 

used, the monitor returns the system default identifier to the AC. If no density is specified by INIT, the 

GETSTS UUO will return a 0 to bits 33-35 of AC. If GETSTS is used, the system default density identifier is 

not returned. 

5-16 September 1974 



5.5.4 Nine-Channel Tapes 

Nine-channel magnetic tape may be written and read in two ways: Digital-compatible format and industry­
compatible format. Using an MTAPE CH. 101 automatically sets the density at 800 bits (eight-bit bytes) per 

inch with odd parity. The monitor sets up buffer headers, when necessary, in the usual manner according to 

the I/O mode of the device. In order to operate on eight-bit bytes, the user must insert the byte size in the byte 

pointer before the first IN UUO or OUT UUO. 

5.5.4.1 Digital-Compatible Mode - Most DECsystem-l0 magnetic tapes will be written in Digital-compatible 

mode which allows old 7-channel user programs to read and write 9-channel tapes with no modification. Digital., 

compatible mode writes 36 data bits in five bytes of a nine-track magnetic tape, can be any parity and density 

and is not compatible with other systems. The software mode is specified in the usual manner during initialization 

or with a SETSTS UUO and user-mode I/O is the same as 7-track magnetic tape. 

For the data word in core, there are five magnetic tape bytes per 36-bit word with parity bits unavailable to the 

user. Bits are written on tape as shown below. Bits 30 and 31 are written twice and tracks 8 and 9 of byte 5 

contain O. On reading, parity bits and tracks 8 and 9 of byte 5 are ignored. The OR of bits (B30) is read into bit 

30 of the data word, the OR of bits (B31) is read into bit 31. 

Data Word On Tape 

Tracks 

9 8 7 6 5 4 3 2 1 

BO Bl B2 B3 B4 B5 B6 B7 P 

B8 B9 BI0 Bll B12 B13 B14 B15 P 

B16 B17 B18 B19 B20 B21 B22 B23 P 

B24 B25 B26 B27 B28 B29 (B30) (B31) P 

0 0 (B30) (B31) B32 B33 B34 B35 P 

P = Parity 

BN = Bit N in core. 

5.5.5 File Status (Refer to Appendix D) 

The file status of the magnetic tape is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER 1L....--..I----'------'---.LW.I����~IIIIIIIIIIWLLUJ.W.II~IIIIIIIww.w.J11111111111 
18 21 24 

SET BY MONITOR 1~1111111111.w.J.W&W11111111111~IIIIIIIIIII.wI-1111 ----'----'---'-----' 
10-0556 

5-17 



Bit 18 - 10.lMP 

Bit 19 - 10.DER 

Bit 20 - 10.DTE 

Bit 21 - 10.BKT 

Bit 22 - 10.EOF 

Bit 23 - 10.ACT 

Device Dependent Bits 

Unit was write-locked when output was attempted, or illegal operation 

was specified to the magnetic-tape control. 

Data was missed, tape is bad, or transport is hung. 

Parity error. 

Record read from tape exceeds buffer size. 

EOF mark encountered. A 17(8) (for 7-channe1 tapes) or a 23(8) (for 

9-channe1 tapes) appears in buffer. 

Device active. 

18 21 24 26 27 30 33 35 

SET BY USER I L..-. ---1---'--' --IJOWillll~w.wl.WJ,IIIIIIIIIIOI.I.WII...IIIIIII'~----, 

Bit 26 - 10.P AR 

Bit 27-28 - 10.DEN 

Bit 29 - 10.NRC 

10-0557 

I/O parity. 0 for odd parity, 1 for even parity. Odd parity is preferred. 

Even parity should be used only when creating a tape to be read in binary 

coded decimal (BCD) on another computer. 

I/O density, 00 = System standard. Defined at MaNGEN time and can 

be changed with the SET DENSITY command . 

. 01 = 200 bpi 

10 = 556 bpi 

II = 800 bpi 

I/O no read check. Suppress automatic error correction if bit 29 is 1. 

Normal error correction repeats the desired operation 10 times before 

setting an error status bit. 

18 21 24 25 27 30 33 35 

SET BY MONITOR I &......--'--_-'l.LI.I.II1II II IIIWJ.I.--IIII\ 1'-----"----'----oJ1 
10-0558 

Bit 24 - 10.BOT I/O beginning of tape. Unit is at beginning of tape mark. 

Bit 25 - 10.EOT I/O tape end. Physical end of tape mark encountered. 

5.6 PAPER-TAPE PUNCH 

The device mnemonic is PTP; the buffer size is 43(8) (40(8) data) words. 

5-18 



5.6.1 Data Modes 

5.6.1.1 ASCII, Octal Code 0 - The eighth hole is punched when necessary in order to make even parity. Tape­

feed without the eighth hole (000) is inserted after form-feed. A rubout is inserted after each vertical or horizon­

tal tab. Null characters (000) appearing in the buffer are not punched. 

5.6.1.2 ASCII Line, Octal Code 1 - The mode is the same as ASCII mode. Format control must be performed 

by the user's program. 

5.6.1.3 Image, Octal Code 10 - Eight-bit characters are punched exactly as they appear in the buffer with no 

additional processing. 

5.6.1.4 Image Binary, Octal Code 13 - Binary words taken from the output buffer are split into six 6-bit bytes 

and punched with the eighth hole punched in each line. There is no format control or checksumming performed 

by the I/O routine. Data punched in this mode is read back by the paper-tape reader in the IB mode. 

5.6.1.5 Binary, Octal Code 14 - Each bufferful of data is punched as one checksummed binary block as de­

scribed for the paper-tape reader. Several blank lines are punched after each bufferful for visual clarity. 

5.6.2 Special Programmed Operator Service 

The first output programmed operator of a file causes approximately two fanfolds of blank tape to be punched 

as leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No EOF character is 

punched automatically. 

After each interrupt, the paper-tape punch stores the results of a CONI in the DEVSTS word of the device data 

block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 

4.10.1). 

5.6.3 File Status (Refer to Appendix D) 

The file status for the paper-tape punch is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER I 
I11111111111111111111111111111111111 

23 

SET BY MONITOR I 
11\lli 

10-0559 

Bit 23 - 10.ACT Device is active. 

UN USED 11111111\\1\11\11111\\1111111 111111111111111111111111111111111111 

10-0560 

Device Dependent Bits - None. 

5-19 



5.7 PAPER-TAPE READER 

The device mnemonic is PTR; the buffer size is 43(8) (40(8) data) words. 

5.7.1 Data Modes (Input Only) 

NOTE 
To initialize the paper-tape reader, the input tape must 
be threaded through the reading mechanism and the FEED 
button must be depressed. 

5.7.1.1 ASCII, Octal Code 0 - Blank tape (000), RUB OUT (377), and null characters (200) are ignored. All 

other characters are truncated to seven bits and appear in the buffer. The physical end,of the paper tape serves 

as an EOF, but does not cause a character to appear in the buffer. 

5.7.1.2 ASCII Line, Octal Code 1 - Character processing is the same as for ASCII mode. The buffer is termin­

ated by LINE FEED, FORM, or VT. 

5.7.1.3 Image, Octal Code 10 - There is no character processing. The buffer is packed with 8-bit characters 

exactly as read from the input tape. Physical end-of-tape is the EOF indication but does not cause a character 

to appear in the buffer. 

5.7.1.4 Image Binary, Octal Code 13 - Characters not;having the eighth hole punched are ignored. Characters 

are truncated to six bits and packed six to the word without further processing. This mode is useful for reading 

binary tapes having arbitrary blocking format. 

5.7.1.5 Binary, Octal Code 14 - Checksummed binary data is read in the following format. The right half of 

the first word of each physical block contains the number of data words that follow and the left half contains 

half a folded checksum. The checksum is formed by adding the data words using 2's complement arithmetic, 

then splitting the sum into three 12-bit bytes and adding these using l's complement arithmetic to form a 12-bit 

checksum. The data error status flag (refer to Table 4-3 in Paragraph 4.6.2) is raised if the checksum miscompares. 

Because the checksum and word count appear in the input buffer, the maximum block length is 40, The byte 

pointer, however, is initialized so as not to pick up the word count and checksum word. 

Again, physical end of tape is the EOF indication, but does not result in putting a character in the buffer. 

5.7.2 Special Programmed Operator Service 

After each interrupt, the paper-tape reader stores the results· of a CONI in the DEVSTS word of the device data 

block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 

4.10.1). 

5.7.3 File Status (Refer to Appendix D) 

The file status of the paper-tape reader is shown below. 

5-20 



Standard Bits 

18 21 24 27 30 33 35 

SET BY USER I L...------L--~L.....--JI.LLIIIIWJJ.W.WIIIIIIIIIIIJ.LLIW.LWIIIIIIIIIII.LWJ.LLLWIIIIIIIIIII 
18 20 22 23 

SET BY MONITOR ww....1111111 ..IU.WL.IIIIIII....&IW.II.I.IIIII~IIWL.-III --'------L--~ 

Bit 18 - IO.IMP 

Bit 20 - IO.DTE 

Bit 22 - IO.EOF 

Bit 23 - IO.ACT 

1819 21 

UNUSED I 1111111\11111\ 

10-0561 

Binary block is incomplete. 

Bad checksum in binary mode. 

Physical end-of-tape is encountered. 

No character is stored in the buffer. 

Device is active. 

\lllllllllllltllll\111111111111111111 

10-0562 

Device dependent bits - None. 

5.8 PLOTTER 

The device mnemonic is PLT; the buffer size is 43(8) (40(8) data) words. The plotter takes 6-bit characters with 

the bits of each character decoded as follows: 

-x +x +Y -Y 
PEN PEN DRUM DRUM CARRIAGE CARRIAGE 

RAISE LOWER UP DOWN LEFT RIGHT 

10-0563 

Do not combine PEN RAISE or LOWER with any of the position functions. (For more details on the incremen­

tal plotter, refer to the PDP-l 0 System Reference Manual.) 

5.8.1 Data Modes 

5.8.1.1 ASCII, Octal Code 0 - Five 7-bit characters per word are transmitted to the plotter exactly as they 

appear in the buffer. The plotter is a 6-bit device; therefore, the leftmost bit of each character is ignored. 

5.8.1.2 ASCII Line, Octal Code 1 - This mode is identical to ASCII mode. 

5-21 



5.8.1.3 Image, Octal Code 10 - Six 6-bit characters per word are transmitted to the' plotter exactly as they 

appear in the buffer. 

5.8.1.4 Image Binary, Octal Code 13 - This mode is identical to Image mode. 

5.8.1.5 Binary, Octal Code 14 - This mode is identical to Image mode. 

5.8.2 Special Programmed Operator Service 

The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user data is sent to the 

plotter. The CLOSE operator causes the plotter pen to be lifted after all user data is sent to the plotter. These 

two pen-up commands are the only modifications the monitor makes to the user output file. 

After each interrupt, the plotter stores the results of a CONI in the DEVSTS word of the device data block. The 

DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1). 

5.8.3 File Status (Refer to Appendix D) 

The file status of the plotter is shown below. 

Standard bits 

18 21 24 27 30 33 35 

SET BY USER I 
IIIIIIIIIIIIIIIIIIIII!!!!!!!IIIIIIIII 

23 

SET BY MONITOR I 
1111111 

10-0564 

Bit 23 - IO.ACT Device is active. 

UNUSED 11111111111111111111111111111111111111111111111111111111111111111111 

10-0565 

Device Dependent Bits - None. 

5.9 PSEUDO-TTY 

The device mnemonic is PTYO,PTY 1, ... ,PTYn. (The number of pseudo-TTY s is specified when the monitor 

is generated for a specific installation.) The buffer size is 23(8) (20(8) data) words. 

5-22 



5.9.1 Concepts 

Each job in the DECsystem-1 0 is usually initiated by a user at a physical terminal. Except in the case of a 

DETACH operation, the job remains under the control of the user's terminal until it is terminated by either the 

KJOB command or the LOGOUT UUO. For each physical terminal there is a block of core in the monitor, con­

taining information about the physical terminal and including two buffers as the link between the physical ter­

minal and the job. It is through these buffers that the terminal sends input to the job, and the job returns output 

to the terminal. 

Sometimes it is desirable to allow a job in the DECsystem-1 0 to be initiated by a program instead of by a user. 

Since a program cannot use a physical terminal in the way a user can, some means must be provided in the mon­

itor for the program to send input to and accept output from the job it is controlling. The monitor provides this 

capability via the pseudo-TTY (PTY). The PTY is a simulated terminal and is not defined by hardware. Like 

hardware-defined terminals, each PTY has a block of core associated with it. This block of core is used by the 

PTY in the same manner as a hardware-defined terminal uses its block of core. Figure 5-1 shows the parallel be­

tween a hardware-defined terminal and a software-defined PTY. 

r----, 
DEVICE TTY, 

US ER -+-----+ PHYSICAL I I 
TERMINAL . OR 

I 

CONTROLLING 
PROGRAM 

I 
r---..J 

.J-. 
I 

DEVICE PTY 

DEVICE TTYn 

MONITOR 

DEVICE TTY, I 
OR 

I DEVICE TTYm 

L ________ .J 

Figure 5-1 Pseudo-TTY 

CONTROLLED 
JOB 

CONTROLLED 
JOB 

10-0545 

The controlling program, most commonly the batch processor, uses the PTY in the same way a user uses a 

physical device. It initiates the PTY, inputs characters to and waits for output from the PTY, and closes the 

PTY using the appropriate programmed operators. The job controlled by the program performs I/O to the PTY 

as though the PTY were a physical terminal. 

A controlled job may go into a loop and not accept any input from its associated buffer; therefore, it is not pos­

sible for the controlling program to simply rely on waiting for activity in the controlled job. A controlling pro­

gram may also wish to drive more than one controlled job, and be able to respond to any of these jobs; therefore, 

the controlling program cannot wait for any particular PTY. For these two reasons, the PTY differs from other 

devices in that it is never in an I/O wait state. Timing is accomplished by the HIBER UUO and the status bits of 

the PTY. 

5-23 



5.9.2 The HIBER UUO 

The HIBER UUO (refer to Paragraph 3.1.4.2) allows the controlling program to temporarily suspend its 

operation until either there is activity in the controlled job or the specified amount of sleep time runs out, 

whichever occurs first. If bit 12 in the AC is set in the HIBER UUO call, any PTY activity since the last HIBER 

UUO causes the controlling program to be awakened. If no PTY activity occurs before the limit of sleep' time is 

reached, the controlling program is activated, and it checks the controlled job's run time or other criteria to de­

termine whether the job should be interrupted. If the job should be interrupted, the controlling program may 

output two control-C characters to stop the job. (A timesharing user stops a running job in the same way.) If 

the job should not be interrupted, the controlling program should repeat the HIBER UUO. 

If bit 12 in AC is not set, unnecessary delays might result if activity occurred on a PTY while the controlling job 

was sleeping. To avoid these delays, a check is made when a PTY status bit changes to determine if the control­

ling program is in a sleep. If it is, the sleep time is cleared so the controlling program can service the PTY. 

5.9.3 File Status (Refer to Appendix D) 

The file status of the pseudo-TTY is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER 1"--____ --'---L.---.IW1I��~111111111I10WWWj,1I11I1I1111~1111I11111I 
21 23 

SET BY MON (TOR ___ I ----ilj,11111.I.L.....II1II IIIWL-IIIII --'-----'---~ 
10-0570 

Bit 21 - IO.BKT 

Bit 23 - IO.ACT Device is active. 

Device Dependent Bits 

18 21 24 27 30 33 35 

SET BY M 0 N I TOR ,,--I ____ --w.w.IIIIIIII~IIIIIIIIIII"__1 ____ --'----' 

Bit 24 - IO.PTI 

Bit 25 - IO.PTO 

Bit 26 - IO.PTM 

10- 0571 

Job is in a TTY input wait. The controlling job should perform 

an OUTPUT to the PTY. 

The TTY buffer has output to be read by an INPUT from the 

PTY. 

Any characters typed into the TTY buffer (by OUTPUT to the 

PTY) are read by the monitor command decoder instead of by 

the controlled job (i.e., the controlled job is in monitor mode). 

5-24 



5.9.4 Special Programmed Operator Service 

5.9.4.1 OUT, OUTPUT UUOs - The first OUTPUT operation after an IN IT or OPEN causes the special actions 

of the RELEASE UUO (refer to Paragraph 5.9.4.3) and then the following normal output operations. 

1. Characters from the controlling program's buffer ring are placed in the input buffer of the TTY linked 

to the PTY. 

2. The 10.PTI bit is cleared. 

3. The 10.PTM bit is set or cleared as determined by the state of the TTY. 

The following are exceptions to the normal output actions: 

1. NULLS (ASCII 000) are discarded. 

2. If more OUTPUTs are performed than are accepted by the controlled job and if the limit on this ex­

cess is exceeded, the IO.BKT bit is set and the remainder of the controlling program's buffer is dis­

carded. 

3. Lower case characters sent to the controlling job are translated to upper case if the appropriate bit 

in the TTY is set. 

5.9.4.2 IN, INPUT UUOs - Characters are read from the output buffer of the TTY and are placed in the buffer 

ring of the controlling program. If there are no characters to read, an empty buffer is returned. The INPUT 

UUO does not cause a WAIT. 

All the available characters are passed to the controlling program. If there are more characters to read than can 

fit in the buffer of the controlling program, the 10.PTO bit remains set and another INPUT should be done. If 

the output buffer of the TTY is exhausted by the INPUT UUO, the IO.PTO bit is cleared. 

5.9.4.3 RELEASE UUO - The RELEASE UUO causes the following special actions: 

1. Any characters in the output buffer of TTY are discarded. 

2. If the controlled job is still attached to TTY, it is detached. 

3. The PTY is disassociated from the software channel. 

CAUTION 
Haphazard use of the PTY and subsequent RELEASE 
operations may leave detached jobs tying up core and 
other system resources. 

5.9.4.4 JOBSTS UUO - This UUO provides status information about devices TTY and/or the controlled job in 

order to allow complete and accurate checking of a controlled job. 

The call is: 

MOVEI AC, user channel number 

JOBSTS AC, 

error return 

normal return 

; or MOVNI AC, Job number 

; or CALLI AC, 61 

5-25 



When the UUO is called, AC contains a number n specifying the job and/or the TTY to be checked. If n is from 

o to 17, the specified TTY and job are those currently INITed on the user's channel n. If n is negative, the job 

to be checked is job number (-n). 

The error return is given if one of the following is true: 

I. the UUO is not implemented. If this is the case, check the I/O status word. 

2. n is out of range. 

3. there is no PTY.INITed on channel n. 

Otherwise, the normal return is given and AC contains the following status information: 

Name 

JB.UJA 

JB.ULI 

JB.UML 

JB.UOA 

JB. UDI 

JB.UJC 

JB.UJN 

Bit 

Bit 0 = I 

Bit I = I 

Bit 2 = I 

Bit 3 = I 

Bit 4 = I 

Bit 5 = I 

Bits 6-17 

Bits 18-35 

Explanation 

Job number is assigned. 

Job is logged in. 

TTY is at monitor level. 

TTY output is available. 

TTY is at user level and in input wait, or TTY is at monitor 

level and can accept a command. In other words, there is no 

command awaiting decoding or being delayed, the job is not 

running, and the job is not stopped waiting for operator de­

vice action. 

JACCT is set. In particular, tctc will not work. 

Reserved for the future. 

Job number being checked or 0 if no job number is assigned. 

5.9.4.5 CTLJOB UUO - This UUO is used to determine the job number of the program (job) that is control­

ling the specified job, if any. 

The call is: 

MOVE AC, job number 

CTLJOB AC, 

error return 

normal return 

; -I means user's jo b 

; or CALLI AC, 65 

On a normal return, AC contains the job number of the program (job) that is controlling the controlled job. If 

AC = I, the specified job is not being controlled via a PTY. 

An error return is given if the UUO is not implemented or the job number is too large. 

5.1 0 TERMINALS 

Communication between the user and the DECsystem-1 0 can be accomplished by use of a tenninal. Commands, 

programs or data may be sent directly to the computer by means of a tenninal. Each tenninal is assigned a TTY 

5-26 



number, such as TTY 1 or TTY2 (the maximum number is 512). The console terminal (the terminal connected 

directly to the DECsystem-lO processor) is known as the CTY. The standard buffer size for terminal input and 

output is 23(8) (20(8) data) words. The terminal user may communicate with the operator and other users by 

means of the SEND or PLEASE commands (see Operating System Commands). 

A terminal (under timesharing) may be in monitor mode or user mode. In monitor mode, each line the user 

types is sent to the monitor command language interpreter. 

The execution of certain commands (as noted in the following examples) places the terminal in user mode. When 

the terminal is in user mode, ~t becomes simply an I/O device for that user. In addition, user programs use the 

terminal for two purposes. The user program will either accept user command strings from the terminal or use 

the terminal as a direct I/O device. 

Example (terminal dialogue): 

monitor mode 

user mode 

monitor mode 

user mode 

.RPIP 

*DSK:PROG I.MAC ~TTY: 

THIS IS FILE 1 tz 

*tc 

.RMACRO 

* TTY : ~DSK:PROG 1 

assembly listing 

monitor command 

user command string 

user program using 

terminal as input 

device 

monitor command 

user command string 

user program using 

terminal 

as an output device 

When the system is started, each terminal is in monitor mode ready for users to log in. However, if the system 

becomes fully loaded (i.e., the maximum number of jobs that the system is set to handle has been initiated), 

then any unused terminals from which access is requested will receive the message JOB CAPACITY EXCEEDED. 

A time-sharing user types tc to stop a user program and return the terminal to monitor mode. If the user pro­

gram is waiting for input from the terminal~ the user needs to type only one tc to return the terminal to moni­

tor mode; otherwise, he must type two tc's. Because of this procedure, the user knows that his program is not 

. waiting for inputifthere is noresponseJrom the monitor after one tC. Certain commands cause the user pro­

gram to start running or to continue but leave the terminal in monitor mode. (Refer to the Operating System 

Commands Manual.) 

Control-T (tT) causes the terminal to print status information pertaining to the current user job. The status 

information returned is: 

1. incremen tal day time 

2. incremental run time 

3. incremental disk reads 

5-27 September 1974 



4. incremental disk writes 

5. program name 

6. core size 

7. job state 

8. program counter 

Control-R (tR) retypes the current input line after all rubout processing. For example, if a user types in a line 

incorrectly, then makes correction using the RUBOUT key, the corrected line may be retyped in its entirety by 

typing tR. An example of this is: 

SET TIQ/Q/Y NO/a/O t R 
SETTIYNO 

Control-R will issue a carriage return/line feed before printing the corrected input line. 

Control-U (tU) causes the deletion of the current input line, back to the last break character. The system responds 
with a carriage return, line feed so that the line may be typed again. Once a break character has been typed, line­

editing features (tu and RUBOUT) can no longer be used on that line, except when running TECO. 

Control-O (to) temporarily suppresses output to the terminal. This action is useful when a program begins 

output of a long message which does not interest the user. If he does not want to wait for his terminal to finish 

printing the message, he can stop the output in one of two ways. He can type two control-C's but this action 

will also stop execution of the program. Alternatively, the user can type to and the program will continue to 

execute but its output will not be printed on the terminal. The system responds with a carriage return, line feed 

sequence. Output is restored to the terminal when one of the following conditions occurs: 

1. The executing program requests input from the terminal. 

2. The program terminates and returns control to the monitor. 

3. The user types tc to return to the monitor. 

4. The user types another to. 

At remote stations, the effect of the to may be somewhat delayed. 

The type-ahead technique may be employed by the experienced timesharing user at a terminal. This means that 

the user does not have to wait for the completion of one command before he can begin another. For example, 

if two operations are desired from the monitor, the request for the second operation can be typed before receiv­

ing the period after completion of the first. 

More specific information on terminals may be found in the SCNSER Specification in the Software Notebooks, 

and in the System Reference Manual, Section 3.3. 

On half-duplex terminals, the user may type Control-O to stop unwanted output. To return to the monitor 

during output, type any character until output stops; then type Control C. 

Programs waiting for terminal output are awakened before the output buffer is empty, causing them to be 

swapped in sooner and preventing pauses. Programs waiting for terminal input will be awakened when input is 

received. 

5-28 September 1974 



5.10.1 Data Modes 

ASCII (American Standard Code for Information Interchange) is a standard character set encoded in 7 bits (8 bits 

including a parity bit). The ASCII set consists of 128 characters, 33 of which are non-printing control characters. 

The following table describes how the characters are handled. 

000 

001 

002 

003 

004 

005 

006 

007 

010 

all 

012 

013 

014 

015 

016 

017 

020 

NULL 

tA 

tB 

tc 

tD (EOT) 

tE (WRU) 

tF 

tG (Bell) 

tH (Backspace) 

tI (TAB) 

t J (Linefeed) 

tK (Vertical tab) 

tL (Form) 

tM (Carriage 

return 

tN 

to 

tP 

Ignored on input; suppressed on output. 

No special action. 

No special action. 

Not passed to program. The user's terminal is switched to monitor 

mode the next time input is requested by the program. Two succes­

sive tCs cause the terminal to be immediately switched to monitor 

mode. Performs a tu and a to. For user program control of tc, 

refer to Paragraph 3.1.3.2. 

Not echoed; therefore, typing in a control-D (EOT) does not cause a 

full-duplex data phone to hang up. 

No special action. 

No special action. 

Echoes as Bell and is a break character. 

Echoes as backspace. 

Echoes as a TAB or an equivalent number of spaces. Refer to the 

SET TTY TAB command. 

Echoes as a linefeed and is a break character. 

Echoes as a vertical tab or four linefeeds. Refer to the SET TTY 

FORM command. 

Echoes as a FORM FEED or eight linefeeds. Refer to the SET TTY 

FORM command. 

Passed to program if terminal is in a paper-tape input mode; other­

wise, supplies a linefeed echo, is passed to program as a CR and LF, 

and is a break character due to the LF. 

No special action. 

Not passed to program. Complements output suppression bit allow­

ing users to turn output on or off. INPUT, INIT, and OPEN clear the 

output suppression bit. This bit is also cleared by any other INPUT­

class operation, such as DDTIN and TTCALLS 0, 2, 4, and 5, by in­

put test TTCALLS 13 and 14, and by returning to monitor command 

level via tc or EXIT operations. Echoed as to followed by carriage 

return/linefeed. 

No special action. 

5-29 



021 

022 

023 

024 

025 

026 

027 

030 

031 

032 

033 

034 

035 

036 

037 

040-137 

140-174 

175, and 176 

177 

tQ (XON) 

tR 

ts (XOFF) 

tT 

tu 

tv 

tw 

tx 

tY 

tz 

t [ (ESC) 

t\ 

t] 

tt 

t+-

Starts paper-tape mode if .TTY TAPE command has been given; 

refer to Paragraphs 5.10.8 and 5.10.9. 

Retype the line currently being input, including the effect of any 
edits to the line. 

Ends paper-tape mode; refer to Paragraphs 5.10.8 and 5.10.9. 

Gives job status and timing information. 

Deletes input line back to last wakeup character. Echoed as tu 

followed by a carriage return/linefeed; is a break character. Passed 
to program if special editor mode is true. 

No special action. 

No special action. 

No special actio~. 

No special action. 

Acts as EOF on TTY input. Echoes as tz followed by carriage 

return/linefeed. Is a break character. 

The standard ASCII escape. Echoed as $; is a break character. 

No special action. 

No special action. 

No special action. 

No special action. 

Printing characters, no special action. 

Lower case ASCII; translated to upper case, unless lower case mode 

is on. Echoes as upper case if translated to upper case. 

Old versions of altmode; converted to the standard escape (033) 

unless in special editor mode (lNIT or TRMOP. UUO) or no altmode 

conversion is specified (TRMOP. UUO or SET TTY NO ALT com­

mand). 

RUBOUT or DELETE: 

1. Completely ignored if in paper-tape mode (XON). 

2. Break character, passed to program if either DDT mode or 

special editor mode is true. 

3. Otherwise (ordinary case) causes a character to be deleted for 

each rub out typed. All the characters deleted are echoed be­

tween a single pair of backslashes. If no characters remain to 

be deleted, echoes as a carriage retum/linefeed. 

5-30 



On output, all characters are typed just as they appear in the output buffer with the exception of TAB, VT, and 

FORM, which arc processed the same as on type-in. Programs should avoid sending tD, because it may hang up 

certain data sets. 

Image mode (octal code 10) is legal for TTY input and output except for pseudo-TTY's (refer to Paragraph 5.9). 

Image mode is especially convenient for users of display devices, light pens, etc. since any sequence of input 

characters is allowed. The user must use the ASSIGN command before the INIT command can be used in image 

mode. (The user's own TTY is always assigned by logging in.) An attempt to do input to an unassigned terminal 

results in an error return. Since any sequence of characters must be allowed, Control-C and Control-Z may not 

cause their usual functions. If the user program accepts all characters, and does not release the terminal from 

image mode, no user input will release the user from this state. The terminal would effectively become dead to 

the system. Because of this situation, an image input state is defined. The image input state begins when the 

program starts waiting as a result of an INPUT UUO in image mode. It ends when the program executes any 

non-image mode terminal output operation. If no output is desired, a TTCALL UUO can be executed to output 

a null character. If no input characters are received for 10 seconds the EOF is forced. After another 10 seconds, 

the image input state is terminated by the monitor and a Control-C is simulated. If the user should be in this 

situation, he should stop typing until the Control-C appears. 

5.10.2 Model 2741 Terminals 

The DECsystem-l0 provides support for users of several versions of Model 2741 terminal through use of a DC76 

Communications Interface. The DC76 converts the 2741 character codes to ASCII. 

The 2741 terminals have both upper and lower case characters, but no control characters. It operates in half­

duplex mode only. The two 2741 keyboards are shown on the following page. 

NOTE 
Most 2741 terminals do not have a circumflex key labeled 
as ( 1\ ) and a ( 1 ) (sometimes ±) must be used. Control 
characters are obtained by typing the circumflex key and 
then the corresponding alphabetic character. 

The following shows the required character set: 

2741 Octal Code 

00 
13 

16 

17 

35 

55 

56 

57 

The following shows how to generate special characters: 

To Generate 

t 
escape 

Character 

Space 

EOA (vertical tab) 

Shift 

EDT 

Index (line feed) 

Carriage return 

Backspace 

tt 
t$ 

Null 

Type 

5-31 September 1974 



5-32 

(\J 
CD 
(\J 

" o 

September 1974 



To Generate Type 

left square bracket [ or t( or t< 

right square bracket ] or t) or t> 

left angle bracket < or t[ 

right angle bracket > or t] 

backslash t/ 

034 file separator t4 

035 group separator t5 

036 record separator t6 

037 unit separator t7 

left braces t3 

vertical bar tl 

righ t braces t2 

tilde t-

accent grave t' 

It is strongly recommended that the terminal have a break feature (ATTN), but it is not required. The ATTN 

key unlocks a locked keyboard, enabling the user to type and locks an unlocked keyboard enabling output to 

be typed out. The DC76 recognizes that a terminal is a 2741 through automatic baud recognition (the 2741 

baud rate is 134.5). 

5.10.2.1 User Interface - Alphanumeric characters (ASCII characters 40-176) will appear to be handled in 

the same way as with a Model 33 type terminal. (For instance, striking the capital "A" key on the 2741 will 

transmit an ASCII 101). 

A special set of commands are utilized for Model 2741 terminals. (Refer to the Operating System Commands 

Manual for complete information.) SET TTY DEBREAK tells the system that the terminal has a feature that 

allows the computer to lock the keyboard and start output. This feature is useful for TECO or DDT, where the 

user does not hit carriage return prior to a response from the computer. 

The SET TTY ELEMENT # command changes the typing element. (This command also sets TTY NO LC.) The 

elements available are 

987 APL correspondence 

029 Standard correspondence 

087 Call 360 BASIC 

963 Extended binary 

938 BCD 

988 APL (EBCD) 

SET TTY TIDY command specifies that every character occupies one print position. The terminal normally 

types out characters such that they appear on the page the same way the user types them in. For example [ 

prints out as t<. In TIDY mode, [ prints out as < .. 

On input, lower-case alphanumeric characters are translated to upper-case by the monitor unless the SET TTY 

LC command is given. 

5-33 



CAUTION: Because these tenninals are local copy devices, the characters input may print as lower case even 

when the program is receiving them as upper case. 

When the monitor command "SET TTY LC" is given or SEM (Special Editor Mode) is set by the program, lower­

case alphanumeric characters will not be modified on input. 

Backspace (0 I 0 octal) will be processed in the same way (except in APL mode) that a rub out is processed, except 

it will echo as a backspace. 

The monitor will assume tab stops are set in the standard positions (I, 9, 17, 25, etc.). If the tabs are.set to any 

other place, an incorrect operation will result. 

The following non-ASCII characters on the EBCD (938) type ball are considered to be stylized versions of 

ASCII characters: 

cent sign (4) 

lozenge (#) 

plus-or-minus (±) 

backslash \ 

vertical bar I 
circumflex t 

If the circumflex character is followed by any other non-alphabetic character, the circumflex isignored and only 

the non-alphabetic character is put into the buffer. (These translations do not occur when APL mode is in effect.) 

Occasionally, a tenninal will become hung (a transmission error occurs on a line control character). When this 

happens, switching the terminal quickly from REMOTE to LOCAL (or ON to OFF) will usually clear up the 

"problem. It is important not to confuse this with slow system response. 

5.10.3 DDT Submode(l) 

To allow a user's program using buffered I/O and the DDT debugging program to use the same tenninal without 

interfering with one another, the TTY service routine provides the DDT submode. This mode does not affect the 

TTY status if it is initialized with the INIT operator. It is not necessary to use INIT to perform I/O in the DDT 

submode. I/O in DDT mode is always to the user's tenninal and not to any other device. 

In the DDT submode, the user's program is responsible for its own buffering. Input is usually one character at a 

time, but if the typist types characters faster than they are processed, the TTY routine supplies buffers full of 

characters at the same time. 

To input characters in DDT mode, use the sequence 

MOVE! AC,BuF 
CALL AC, CSIX8IT/DDTIN/J 

BUF is the first address of a 21-word block in the user's area. The DDTIN operator delays, if necessary, until 

one character is typed in. Then all characters (in 7-bit packed fonnat) typed in since the previous occurrence 

of DDTIN are moved to the user's area in locations BUF, BUF+ 1, etc. The character string is always tenninated 

by a null character (000). RUBOUTS are not processed by the service routine but are passed on to the user. The 
special control character tu has no effect. Other characters are processed as in ASCII mode. 

To perform output in DDT mode, use the seque"nce 

MOVE! AC,SUF 
CALL AC,CSrX8IT IDOTOUT/J 

(1) The usage described in this section is obsolete; new programs should use the ITCALL UUO (refer to Paragraph 5.10.3). 

5-34 September 1974 



BUF is the first address of a string of packed 7-bit characters terminated by a null (000) character. The TTY 

service routine delays until the previous DDTOUT operation is complete, then moves the entire ch" acter string 

into the monitor, begins outputting the string, and restarts the user's program. Character processing is the same 

as for ASCII mode output. 

5.10.4 TTCALL UUO 051 

The TTCALL UUO is used to extend the capabilities of the terminal. The TTCALL operations are performed 

for a physical terminal (not a logical name TTY) and most operations reference the terminal controlling the job 

which executed the UUO. (There are exceptions, such as in the case of GETLCH.) 

The general form is 

TTCALL AC, ADR 

The AC field describes the particular function desired, and the argument (if any) is contained in ADR. ADR may 

be an AC or any address in the low segment above the job data area (137). It may be in high segment for AC 

fields 1 and 3. The functions are: 

AC Field Mnemonic* Action 

0 INCHRW Input character and wait 

OUTCHR Output a character 

2 INCHRS Input character and skip 

3 OUTSTR Output a string 

4 INCHWL Input character, wait, line mode 

5 INCHSL Input character, skip, line mode 

6 GETLCH Get line characteristics 

7 SETLCH Set line characteristics 

10 RESCAN Reset input stream to command 

11 CLRBFI Clear type-in buffer 

12 CLRBFO Clear type-out buffer 

13 SKPINC Skip if a character can be input 

14 SKPINL Skip if a line can be input 

15 IONEOU Output as an image character 

16-17 (Reserved for future use) 

*The TTCALL mnemonics are defined in a separate MACRO assembler table, 

which is scanned if an undefined OP CODE is found. If the symbol is found 

in the TTCALL table, it is defined as if it had appeared in an appropriate 

OPDEF statement, for example: 

TYPE: OUTCHR CHARAC 

If OUTCHR is undefined, it will be assembled as though the program con­

tained the statement: 

OPDEF OUTCHR [rrCALL 1,] 

This facility is available in MACRO V.44 and later. 

5-35 September 1974 



INPUT and INPUT TEST operations (TTCALLs 0,2,4, 5, 13 and 14) also clear the effect of the previous to 
type in. 

INCHRW ADR or TTCALL 0, ADR - This inputs a character into the low-order seven bits of location ADR. If 

there is no character yet typed, the program waits. 

OUTCHR ADR or TTCALL 1, ADR - This outputs the character in location ADR to the user's terminal. Only 

the low order seven bits of the contents of ADR are used; the remaining bits need not be zeroes. 

If there is no room in the output buffer, the program waits until room is available. ADR may be in high segment. 

INCHRS ADR or TTCALL 2, ADR - This is similar to INCHRW, except that it skips on a successful return, and 

does not skip if there is no character in the input buffer; it never puts the job into a wait. 

TTCALL 2,ADR 
JRST NONE 

JRST DONE 

OUTSTR ADR or TTCALL 3, ADR - This outputs a string of characters in ASCIZ format: 

TTCALL 3,MESSAGE 
MESSAGE: ASCI~ ITYPE THIS OUTI 

ADR may be in high segment. 

INCHWL ADR or TTCALL 4, ADR - This is the same as INCHRW, except that it decides whether or not to 

wait on the basis of lines rather than characters; as such, it is the preferred way of inputting characters, because 

INCHRW causes a swap to occur for each character rather than each line (compare DDT and PIP input). In other 

words, INCHWL returns the next character in the line if a break character has been typed. (1) If a break character 

has not been typed, INCHWL waits. Repeated uses of INCHWL return each of the successive characters of the 

line. 

Note that a control-C character in the input buffer is sufficient to satisfy the condition of a pending line. There­

fore, when the input is done, the control-C is interpreted and the job is stopped. This definition of a line also 

applies to TTCALL 5, and TTCALL 14,. 

INCHSL ADR or TTCALL 5, ADR - This is the same as INCHR~, except that its decision whether to skip is 

made on the basis of lines rather than characters. 

GETLCH ADR, or TTCALL 6, ADR - This takes one argument, from location ADR, and returns one word, also 

in ADR. The argument is a number, representing a TTY line. Bits 18 and 19 of the line number are ignored since 

terminal numbers begin at 200000. If the argument is negative, the line number controlling the program is as­

sumed. If the line number is greater than those defined in the system, a zero answer is returned. 

The normal answer format is as follows: 

(1) If the input buffer becomes nearly filled, the waiting-of-line condition is satisfied even though no break character appears. This is true of all line­
mode input operations. 

5-36 



Name Bit Meaning 

GL.ITY 0 Line is a pseudo TTY. 

GL.CTY Line is the CTY. 

GL.DSP 2 Line is the display console. 

GL.DSL 3 Line is the dataset data line. 

4 Obsolete. 
GL.HDP 5 Line is half-duplex. 

GL.REM 6 Line is a remote TTY. 

GL.RBS 7 Line is at a remote station. 

GL.LIN 11 A line has been typed in by the user. 

12 Obsolete. 

GL.LCM 13 Lower case input mode is on. 

GL.TAB 14 Terminal has tabs. 

GL.LCP 15 Terminal input is not echoed, because 
device is local copy. 

GL.PTM 16 Control Q (paper-tape) switch is on. 

17 Obsolete. 

18-35 200000 + line number. 

SETLCH ADR or TTCALL 7, ADR - This allows a program to set and clear some of the bits for GETLCH. 

They may be changed only for the job's controlling TTY. Bits 13, 14, 15, and 16 can be modified. Bits 18 and 

19 of the line number argument are ignored. 

Example: 

SE:TO 
GETLCH 
Tl .. i! 
TL.O 
St:TLCH 

AC,0 
AC 
AC,GL.TAB 
AC,GL.LCM 
AC 

RESCAN or TTCALL 10, 0 - This is intended for use only by the COMPIL program. It causes the input buffer 

to be rescanned from the point where the last command began. If bit 35 of E is 1, the error return is given if 

there is a command in the input buffer. If the input buffer is empty, the skip return is given. Obviously, if the 

UUO is executed after the first input, the RESCAN may no longer be in the buffer. ADR is not used, but it is 

address checked. 

CLRBFI or TTCALL 11, 0 - This causes the input buffer to be cleared as if the user had typed a number of 

Control u's. It is intended to be used when an error has been detected (e.g., if a user did not want anything that 

he might have typed ahead to be executed). 

CLRBFO or TTCALL 12, 0 - This causes the output buffer to be cleared as if the user had typed CONTROL O. 

It should be used rarely, since most users want to see all output up to the point of an error. 

SKPINC or TTCALL 13, 0 - This skips if the user has typed at least one character. It does not skip if no char­

acters have been typed; however, it never inputs a character. It is useful for a compute-bound program that 

wants to occasionally check for input and, if any, go off to another routine (such as the FORTRAN operating 

system) to actually do the input. 

5-37 



SKPINL or TTCALL 14, 0 - This is the same as SKPINC, except that a skip occurs if the user has typed at least 

one line. 

10NEOU ADR or TTCALL 15, E - This outputs the low-order eight bits of the contents of E as an image char­

acter. 

5.10.5 GETLIN AC, or CALLI AC, 34 

This UUO returns the SIXBIT physical name of the terminal that the job is attached to: 

The call is: 

GETLIN AC, ;or CALLI AC,34 

The name is returned left justified in the AC. If the job issuing the UUO is currently detached, the left half of 

AC contains a 0 on return. The right half of AC contains the right half of the physical name of the terminal to 

which the job was most recently attached. Therefore, by testing the left half of AC, jobs can determine if they 

are attached to a terminal. 

Example: 

CTY or TTY3 or TTY30 

This UUO is used by the LOGIN program to print the TTY name. 

5.10.6 TRMNO. AC, or CALLI AC, 115(1) 

This UUO is used to obtain the number of the terminal currently controlling a particular job. This terminal 

number can then be used as the argument to the GETLCH (refer to Paragraph 5.10.3.7) and TRMOP. (refer to 

Paragraph 5.10.6) UUOs. 

The call is: 

MOVE AC, job number 

TRMNO.AC, 

error return 

normal return 

; or CALLI AC, 115 

On a normal return, the right half of AC contains the universal I/O index (.UXxxx) for the terminal. The range 

of values is 200000 to 200777 octal. The symbol .UXTRM (octal value 200000) is the offset for the terminal 

indices. 

On an error return, if the AC is unchanged, the UUO is not implemented. If the AC contains zero, one of three 

errors occurred: 

1. The job is currently detached and, therefore, no terminal is controlling it. 

2. The job number is unassigned; i.e., there is no such job. 

3. The job number is out of range and therefore illegal. 

(1) This UUO depends on FT5UUO which is normally off in the DECsystem-1040. 

5-38 



The particular error condition can be determined from the JOBSTS UUO (refer to Paragraph 5.9.4.4). For 

example, 

MOVEI AC, number 

TRMNO.AC, 

JRST.+2 

JRST OK 

JUMPN AC, not implemented 

MOVNI AC, number 

JOBSTS AC, 

JRST illegal number 

JUMPL AC, detached 

JRST no job assigned. 

5.10.7 TRMOP. AC, or CALLI AC, 116(1) 

This UUO allows the user to control, examine, and modify information about any terminal connected to the 

system. Many of the functions of this UUO are extensions to the TTCALL input and output functions (refer to 

Paragraph 5.10.3). Certain functions are privileged, or require that the user have the terminal ASSIGNed. 

Generally, any function is legal for the terminal on which the job issuing the UUO is running. In addition, any 

READ or SKIP function is legal for any terminal if the job issuing the UUO 

1. has the privilege bit JP .SPM set, 

2. is running with the JACCT bit set, or 

3. is logged in as [1,2]. 

A SET or output function is legal for any terminal if the job 

1. has the privilege bit JP.POK set, 

2. is running with the JACCT bit set, or 

3. is logged-in as [ 1,2] . 

The call is: 

ADR: 

ADR+l: 

MOVE AC, [XWD N, ADR] 

TRMOP. AC, 

error return 

normal return 

function code 

universal I/O index (UDX) 

; or CALLI AC, 116 

ADR is the address of the argument block and N is the length (N must be at least 2). The first word of the argu­

ment block contains the code for the requested function. The second word contains the universal I/O index of 

the terminal to be affected (.UXTRM + line number). This index is in the same format as returned by the 

TRMNO. UUO (refer to Paragraph 5.10.5). Remaining arguments in the argument block depend on the particu­

lar function used. 

(1) This UUO depends on FT5UUO which is nonnally off in the DECsystem-l040. 

5-39 



Function codes are defined within the following ranges: 

0000-0777 Perform a specific action. 

1000-1777 Read a parameter. 

2000-2777 Set a parameter. 

3000-3777 Reserved for DEC customers. 

The functions within the range 0000-0777 are as follows: 

.TOSIP 

. TOSOP 

. TOCIB 

. TOCOB 

. TOOUC 

.TOOIC 

.TOOUS 

. TOINC 

. TOIlC 

. TODSE 

.TODSC 

. TODSF 

.TORES 

.TOSTE 

.TOEAD 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

Skip if terminal input buffer is not empty . 

Skip if terminal output buffer is not empty . 

Clear terminal input buffer . 

Clear terminal output buffer . 

Output normal mode character from ADDR+2 to terminal. 

Output image mode (8-bit) character from ADR+2 to terminal. 

Output ASCIZ string to terminal from address at ADR+2 . 

Input character from terminal to AC, normal mode. 

Input character from terminal to AC, image mode (not yet implemented) . 

Enable modem for outgoing call . 

Enable and place outgoing call on modem with dialer. Phone number of up to 17 

digits is stored in 4-bit bytes in ADR+2 and ADR+3 and is terminated by a 17 byte. 

If caller must wait for a second dial tone (e.g., after dialmg a 9), a 16 byte results in 

a 5 second wait. 

Hang up modem (i.e., disconnect call) . 

Do a rescan. 

Set the TTY element from ADDR+2 

Enable automatic baud detection 

The READ (l000-1777) and SET (2000-2777) functions are parallel; i.e., if function 1002 reads a particular 

parameter, then function 2002 sets the same parameter. Values for the READ functions are returned in AC; 

arguments to the SET functions are given in ADR+2. One-bit quantities are not range-checked; instead bit 35 

of ADR+2 is stored. The following description of the READ function codes indicate if there is a corresponding 

SET function code. 

Read Code Range Description Corresponding SET 

1000 1 bit Output in progress (.TOOIP) No 

1001 1 bit Terminal at monitor mode (.TOCOM) No 

1002 1 bit Paper tape mode (.TOXON) Yes 

5-40 



Read Code Range Description Corresponding SET 

1003 1 bit Lower case (if set, no lower case) Yes 
(.TOLCT). 

1004 1 bit Slave switch (.TOSLV). Yes 

1005 1 bit Tab switch (if 0 = spaces, if 1 = tab) Yes 

(.TOTAB). 

1006 1 bit Form switch (if 0 = linefeeds, if 1 = Yes 

formfeeds) (.TOFRM). 

1007 1 bit Local copy switch (if set, no echo) Yes 
(.TOLCP). 

1010 1 bit Free CR-LF switch (if set, no CR-LF) Yes 

(.TONFC). 

1011 o to 377 Horizontal position of carriage (.TOHPS). No 

1012 16. to 200. Carriage width (.TOWID). Yes 

1013 1 bit TTY GAG bit (if set, NO GAG) (.TOSND). Yes 

1014 1 bit Half-duplex line (.TOHLF) Yes, 

privileged 

1015 1 bit Remote line (.TORMT). Yes, 

privileged 

1016 1 bit Display terminal (.TODIS). Yes, 

privileged 

1017 o to 3 Filler class (.TOFLC). Yes 

1020 1 bit Paper tape enabled (.TOTAP). Yes 

1021 1 bit Paged display mode (also set and cleared Yes 

by SET TTY PAGE) ( .. TOPAG). 

1022 1 bit Suspended output (need XON to resume) also Yes 

set by XOFF, formfeed or page size exceeded, 

if paged display mode (.TOSTP). Not implemented. 

1023 o to 63 Page size (number of lines) (also set by SET Yes 

TTY PAGE) (.TOPSZ). Not implemented. 

1024 o to 63 Page counter (number of lines output this page) Yes 

(.TOPCT). 

1025 1 bit Suppress blank lines on output (0 = normal Yes 

output and 1 = suppress multiple linefeeds and 

vertical tabs to linefeeds (also set and cleared by 

SET TTY BLANK) (.TOBLK). 

5-41 



Read Code Range 

1026 1 bit 

1027 1 bit 

1030 * 

1031 * 

1032 1 bit 

1033 -1 bit 

1034 1 bit 

1035 1 bit 

Description 

Suppress AL Tmode conversion on input 

(0 = 175 and 176 converted to 033 and 

1 = no conversion) (also set and cleared by 

SET TTY ALT) (.TOALT). 

APL mode (.TOAPL). 

Receive Speed (.TORSP). 

Transmit Speed (.TDTSP). 

Debreak (.TODBK). 

Line is 2741 (.T0274). 

TIDY (.TOTDY). 

AUTO CR value. If non-zero, the first space 

after COL n is converted to a carriage return. 

(The value of n = 16 to 200). (.TOACR). 

Corresponding SET 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes, 

privileged 

No 

Yes 

(*)This is a four-bit field that contains an octal code corresponding to the speed desired according to the follow­

ing table: 
Code Speed 

1 50 
2 75 
3 110 
4 134.5 
5 150 
6 200 
7 300 

10 600 
II 1200 
12' 1800 
13 2400 
14 4800 
15 9600 
16 External A 
17 External B 

5-42 



On an error return, AC is either unchaged or contains an error code. 

AC 

Unchanged 

o 

2 

3 

4 

6 

7 

Name 

TOPRC% 

TORGB% 

TOADB% 

TOIMP% 

TODIL% 

TOTNA% 

Meaning 

UUO is not implemented. 

The requested function is not implemented. 

User is not privileged to perform this function. 

Argument is out of range. 

Argumen t list length or address is illegal. 

Dataset activity to a non-dataset terminal. 

Subfunction failed (e.g., call not properly com-

pleted from dialer). 

Terminal not available. 

5.10.8 File Status (Refer to Appendix D) 

The file status of the terminal is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY US ER ~I ---L-~'------LWIIII~IIIIIIIIIII.w&W,WJIIIIIIIIIII~11111111111 
23 

SET BY M 0 N I TO R 1OIWI.-1111111 ----'---II.IIIUJJI.-Ilil -"----'--....L.-..-.I 

Bit 18 = 10.lMP 

Bit 23 = 10.ACT 

18 

10-0566 

TTY is not assigned to ajob (for image mode 

input processing). 

Device is active. 

22 24 26 

UNUSED ____ I ~IIIIIII ~IIIIIIII~IIIIIIII_-,,-----, 
10- 0567 

Device Dependent Bits 

18 21 24 27 30 33 35 

SET BY USER ~I ---L-~II.WI.III.WIIIIIIIIIIJ.II.WL.IIIIIII------'-----1 
10-0568 

5-43 



Bit 27 - IO.TEC 

Bit 28 - IO.SUP 

Bit 29 - IO.SEM 

This bit causes 001 through 037, 175, and 176 

(octal) to echo the character exact1y'as received by 

the monitor. THERE IS NO SPECIAL ECHO 

(E.G., $ OR tX). 

Suppresses echoing on the terminal. 

Special editor mode. Pass all characters except lower 

case and tC. Lower case is controlled by the SET 

TTY LC command and corresponding TRMOP. UUO 

function. 

18 19 21 24 28 30 33 35, 

SET BY MaN ITOR L....../..W1 11111.WJ.WW1l1l1l11111.u..L..-111 --'-'------'----1.-----.1 

10-0569 

Bit 19 - IO.DER Ignore interrupts for three-fourths of a second. 

Bit 20 - IO.DTE Echo failure has occurred on output. 

Bit 21 - IO.BKT Character was lost on typein. 

5.10.9 Paper-Tape Input from the Terminal (Full-Duplex Software) 

Paper-tape input is possible from a terminal equipped with a paper-tape reader that is controlled by the XON 

(tQ) and XOFF (tS) characters. When commanded by the XON character, the terminal service reads paper tapes, 

starting and stopping the paper tape as needed, and continuing until the XOFF character is read or typed in. 

While in this mode of operation, any RUBOUTS will be discarded and no free line feeds will be inserted after 

carriage returns. Also, TABS and FORM FEEDS will not be simulated on a Teletype Model 33 to ensure output 

of the reader control characters. To use paper tape processing, the terminal with a paper-tape reader must be 

connected by a full-duplex connection and only ASCII paper tapes should be used. 

The correct operating sequence for reading a paper tape in this way is as follows: 

.R PIP) 
~!'DSK:FILE:--TTY: tQ) 

THIS IS WHAT IS ON TAPE 
MORE OF THE SAME 
LAST LINE t2 
*tC 

5.10.10 Paper-Tape Output at the Terminal (Full-Duplex Software) 

Paper-tape output is possible on any terminal-mounted paper-tape punch, which is controlled by the TAPE, 

AUX ON (tR) AND AUX OFF (tT) characters. The punch is connected in parallel with the keyboard printer 

and, therefore, when the punch is on, all characters on the keyboard are punched on tape. 

5-44 



LT33B or LT33H Teletypes can have the reader and punch turned off and on under program control. When 

commanded by the AUX ON character, the TTY service punches paper tapes until the AUX OFF character is 

read or typed in. The AUX OFF character is the last character punched on tape. 

When writing programs to output to the terminal paper-tape punch, the user should punch several inches of blank 

tape before the AUX OFF character is transmitted. This last character may then be torn off and discarded. 

5-45 





CHAPTER 6 

I/O PROGRAMMING 
FOR DIRECTORY DEVICES, 

This character explains the unique features of the standard directory devices. Each device accepts the program­

med operators explained in Chapter 4, unless otherwise indicated. Table 6-1 is a summary of the characteristics 

of the directory device. Buffer sizes are given in octal and include three bookkeeping words. The user may de­

termine the physical characteristics associated with a logical device name by calling the DEVCHR UUO (refer to 

Paragraph 4.10.2). 

Device Physical Name 

DECtape DTAO, DTAI, 

'" ,DTA7 

DTBO, DTBI, 

... ,DTB7** 

Fixed DSK, FHA, 

Head FHAO, ... , 

Disk FHA3 

DSK, FSA, 

FSAO, ... , 

FSA7 

Controller 

Number 

TDIO 

Table 6-1 

Directory Devices 

Unit 

Number 

TU55 

551 (PDP-6) 555(PDP-6) 

RCIO RDIO 

RHIO RMIOB 

RS04 

Buffer 

Programmed Data Sizes 

Operators Modes (Octal*) 

INPUT, IN A,AL,I 202 

OUTPUT B,IB 

OUT DR,D 

LOOKUP, 

ENTER 

MTAPE, 

USETF, 

USETO, 

USETI 

UTPCLR 

INPUT, IN A,AL,I 203 

OUTPUT, B,IB 

OUT DR,D 

LOOKUP, 

ENTER 

RENAME, 

SEEK 

USETO, 

USETI 

*Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ 
UUO may be employed. 
**Recognized if dual DECtape controller is supported. 

6-1 



Device Physical Name 

Disk Pack DSK,DPA, 

DPAO, ... , 

DPA7 

Table 6-1 (Cont) 

Directory Devices 

Controller Unit 

Number Number 

RPIO RPOI 

RP02 

RP03 

Buffer 

Programmed Data Sizes 

Operators Modes (Octal*) 

INPUT, IN A,AL,I 203 

OUTPUT, B,IB 

OUT DR,D 

LOOKUP, 

ENTER 

RENAME, 

SEEK 

USETO, 

USETI 

*Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ 
UUO may be employed. 

6.1 DECTAPE 

The device mnemonic is DTAO, DTAI, ... , DTA 7; the buffer size is 202 (octal) words (177(8) user data, 200(8) 

transferred). On systems with dual DECtape controllers, the drives on the second controller have the mnemonic 

DTBO, DTBI, ... , DTB7. 

6.1.1 Data Modes 

Two hundred words are written. The first word is the link plus word count. The following 177 (octal) words 

are data supplied to and from user programs. 

6.1.1.1 Buffered Data Modes - Data is written on DECtape exactly as it appears in the buffer and consists of 

36-bit words. No processing or checksumming of any kind is performed by the service routine. The self-checking 

of the DECtape system is sufficient assurance that the data is correct. Refer to Paragraph 6.1.2 for further infor­

mation concerning blocking of information. 

6.1.1.2 Unbuffered Data Modes - Data is read into or written from anywhere in the user's core area without 

regard to the standard buffering scheme. Control for read or write operations must be via a command list in core 

memory. The command list format is described in Chapter 4. On the KI 10, if the IOWD list is modified as the 

result of I/O performed (i.e., an INPUT UUO reads into the IOWD list) and the word count of any of the IOWDs 

read into the list is greater than the following value: 

(maximum word count specified in original list -2)/512+2 

then the job is stopped and the monitor types 

ADDRESS CHECK AT USER adr 

6-2 



File-structured dump mode data is automatically blocked into standard-length DECtape blocks by the DECtape 

service routine. Each block read or written contains 1 link word plus 1 to 177(8) data words. Unless the number 

of data words is an exact multiple of the data portion of a DECtape block (177(8)), the remainder of the last 

block written after each output programmed operator is wasted. The input programmed operator must specify 

the same number of words that the corresponding output programmed operator specified to skip over the' wasted 

fractions of blocks. 

6.1.2 DEC tape Format 

A standard reel of DECtape consists of 578 (1102(8)) pre-recorded blocks each capable of storing 128 (200(8) 

36-bit words of data. Block numbers that label the blocks for addressing purposes are recorded between blocks. 

These block numbers run from 0 to 1101 (8). Blocks 0, 1, and 2 are normally not used during timesharing and are 

reserved for a bootstrap loader. Block 100(10) (144(8)) is the directory block, which contains the names of all 

files on the tape and information relating to each file. Blocks 3(10) through 99(10) (1-143(8)) and 101 (1 0) 

through 577(10) (145-1101(8)) are usable for data. 

If, in the process of DECtape I/O, the I/O service routine is requested to use a block number larger than 1101 (8) 

or smaller than 0, the monitor sets the 10.BKT flag (bit 21) in the file status and returns. 

6.1.3 DECtape Directory Format 

The directory block (block 100(10)) of a DECtape contains directory information for all files on that tape; a 

maximum of 22 files can be stored on anyone DECtape (see Figure 6-1). 

83 WORDS 

22 WORDS 

22 WORDS 

NOTES: 

BLOCK I 2 3 4 5 6 7 

o 

65 

66 

82 

83 

84 

105 

106 

126 

127 
10 

*1*1 I I 

I I I I 

1 1 

1 1 :J BIT 35 CONTAINS 
HIGH ORDER DIGITS 
OF CREATION DATES 

1 1 1 1 1 1 1 J 1 l 1+1+1+1+1 

BIT 35 UNUSED 

FILENAME I 

FILENAME 2 

EXTENSION I lilt LOW DATE 1 

EXTENSION 2 ** LOW DATE 2 

TAPE LABEL 

* Reserved for system, contains 36 as does block 1448 for the 
directory. 

** For zero-compressed files, this area holds the number of lK 
blocks (-1) needed to load the file (up to 64K l. 

+ Represents blocks It 0 2 through 1105, which are not available 
contains 378 , 

10-0572 

Figure 6-1 DECtape Directory Format 

6-3 



The first 83 words (0 through 82 (decimal)) of the directory block contain slots for blocks 1 through 577 on a 

DECtape. Each slot occupies five bits (seven slots are stored per word) and represents a given block on the 

.DECtape. Each slot contains the number of the file (1-26 (octal)) occupying the given block. This allows for 

581 slots (83 words x 7 slots per word). The four extra slots represent nonexistent blocks 1102 through 1105 
(octal). 

Bit 35 of the first 66 words (0 through 65 (decimal)) of the directory block contain the high order three bits of 

the IS-bit creation date of each file on the DECtape. (Note that the low order 12 bits of the creation date of 

each file are contained in words 105 through 126( decimal)). This split format allows for compatibility among 

monitors and media as old as 1964. The high order 3 bits of the IS-bit creation date for file 1 are contained in 

bit 35 of words 0, 22, and 44. Word 44 contains the first (most significant) digit; word 22 contains the second 

and word 0 contains the third. The high order digits for file 2 are contained in bit 35 of words 1, 23 and 45 
with the digits in the same order as described for file 1. The high order digits for the remaining files are organ­

ized in the same fashion. 

Words 83 through 104 (decimal) of the directory block contain the filenames of the 22 files that reside on the 

DECtape. Words 83 contains the filename for file 1, word 84 contains the filename for file 2, filenames are 

stored in SIXBIT code. 

The next 22 words of the directory block (words 105 through 126( 1 0)) primarily contain the filename extensions 

and the low order part of the creation dates of the 22 files that reside on the DEC tape, in the same relative order 

as their filename. The bits for each word are as follows: 

Bits 0 - 17(10) 

Bits 18 - 23(10) 

Bits 24 - 35(10) 

The filename extension in SIXBIT code. 

Zero. 

The low order 12 bits of the date on which the file was created. (Note 

that the high order digits are encoded in bit 35 of words 0 through 

65(10). The creation date is computed with the following formula: 

((year-1964) * 12 + (month-I)) * 31 + day-I. 

Word 127( 1 0) of the directory block is the tape label. 

The message 

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n 

occurs when any of the following conditions are detected: 

1. A parity error occurred while reading the directory block. 

2. No slots are assigned to the file number of the file. 

3. The tape block, which may be the first block of the file (i.e., the first block for the file encountered 

while searching backwards from the directory block), cannot be read. 

Ordinary user programs never manipulate DECtape directories explicitly since the LOOKUP and ENTER pro­

grammed operators (refer to Paragraphs 6.1.5.1 and 6.1.5.2) automatically record all necessary entries in the 

directory for the user. These programmed operators have all the capability needed to process the name and 

creation date of a file. However, a small number of special purpose programs do process directories by explicit 

action rather than using the LOOKUP and ENTER operators. For such programs, the following examples illus­

trate methods for: 

6-4 



1. assembling the IS-bit creation date, and 

2. storing the IS-bit creation date. The number of the file (an integer from 1 to 22) is in register PI and 

the directory block begins at location DIRECT. 

Example 1 Special Purpose Assembly of the Creation Date 

DPS Tl, CPOINT 12, DIRECT+ 't0104 ( P l' , 35J JSAVE LOW PART 
MOVE! t2, 1 JSET UP TO MARK ~OW BIT 
ANDCAM T2, DIR~CT"'l (Pi) JCLEAR DlRECTCRY BIT 
TRNE T1, 1823 JIf BIT IN DATE SET, 
tORM T2, DIRECT""1 (P1) JSET DIRECTORY BIT 
AND CAM t2, DIRECT+ 1'D21 (P1) I 
TRNE Tl, 1822 ;REPEAT FOR EACH B.IT IN 
tORM T2, DIRECT+ 1'021 (Pi) PH GH pART OF DATE 
ANDCAM T2, DIRECT+ 1'D43 (P1) J 
TRNE Tl, 1B21 
IORM T2, DIREC T+ 1'043 (Pi) 

Example 2 Special Purpose Storage of the Creation Date 

LOB Tl, CpotNT 12, DIRECT+ 'D104 (Pi), 35J JGET l.O~; P,,,RT 
MOVEI T2, 1 'SET UP TO TEST ~ow BIT 
TONE 12, DIRECT~l (P1) 'IF SET IN DIRECTORY 
TRO Tl, 1823 JTHE~J SET 8IT PJ DATE 
TONE f2,t DIRECT+ '021 (Pi) JREPEAT FO~ EACH SIT l~ 
TRO Tl, 1922 'HIGH pART OF DATE 
TONE 12. DIRECT+ '043 (Pi) J 
TRQ ti, 1821 • 

6.1.4 DECtape File Format 

A file consists of any number of DECtape blocks. 

~ ............... B B B . ...... { L L L 
K K K 

1 2 3 

END -J DIRECTORY BEGIN 

10-0573 

Figure 6-2 Format of a File on Tape 

6-S 



Each block contains the following: 

Word 0 Left half 

Right half 

Words 1 through 177(8) 

LINK 

The link. The link is the block number of the next block in 

the file. If the link is zero, this block is the last in the file. 

Bits 18 through 27; the block number of the first block of 

the file. Bits 28 through 35; a count of the number of words 

in this block that are used (maximum 177(8)). 

Data packed exactly as the user placed in his buffer or in 

dump mode files, the next 177 words of memory. 

I FIRST BLOCK I WORD 
NUMBER COUNT 

DATA 

10-0574 

Figure 6-3 Format of a DECtape Block 

6.1.4.1 Block Allocation - Normally, blocks are allocated by starting with the first free block nearest the di­

rectory and going backwards to the front of the tape (block 0). When the end of the tape is reached, the direc­

tion of the scan is reversed. Blocks are not written contiguously; rather, they are separated by a spacing factor. 

This allows the drive to stop and restart to read the next block of the file without having to back up the tape. 

The spacing factor is normally four, but for dump mode and UGETF followed by an ENTER, the spacing factor 

is two (refer to Paragraph 6.1.6.3). 

6.1.5 I/O Programming 

DECtape is a directory device; therefore, file selection must be performed by the user before data is transferred. 

File selection is accomplished with LOOKUP and ENTER UUOs. The UUO format is as follows: 

UUOD,E 

where D specifies the user channel associated with this device, and E points to a four-word parameter block. The 

parameter block has the following format: 

E FILE 

E+I EXT HIGHI 0 TBLOCK 
DATE # 

E+2 0 #OFIK I LOW 
BLOCKS DATE 

E+3 -N ADR-I 

10-0575 

6-6 



where 

FILE is the filename in SIXBIT ASCII. 

EXT is the filename extension in SIXBIT ASCII. 

HIGH DATE contains the high order 3 bits of the creation date. 

BLOCK # is the number of the first block of the file. 

# of 1 K blocks is the number of blocks needed to load the file if the file is a zero-compressed 

file (bits 18-23). 

LOW DATE contains the low order 12 bits of the date on which the file was originally created 

(bits 24-35). The format is the same as that used by the DATE UUO. 

-N is the negative word length of the zero-compressed file. 

ADR-l is the core address of the first word of the file minus 1. 

Location E + 3 is used for zero-compressed files. 

6.1.5.1 LOOKUP D, E - The LOOKUP programmed operator sets up an input file on channel D. The contents 

of location E and E + 1 (left half) are matched against the filenames and filename extensions in the DECtape 

directory. If no match is found, the error return is taken (refer to Appendix E). If a match is found, locations 

E + I through E + 3 are filled by the monitor, and the normal return is taken (refer to Table 6-2). Refer to 

Section 4 of Paragraph 6.2.8.1 for sample code for assembling the IS-bit creation date. 

Table 6-2 

LOOKUP Parameters 

On Call On Return 

Parameter Use* Contents Parameter Use* 

E A SIXBIT /FILE/ E V 

E+l A SIXBIT /EXT/ E+l V 

E+2 I - E+2 V 

E+3 I - E+3 V 

*A = argument from user program, V = value from monitor, I = ignored. 

**For zero-compressed files only. 

6-7 

Contents 

SIXBIT /FILE/ 

LH = SIXBIT /EXT / 

RH = high order 3 bits of 

IS-bit creation date (Bits 

18-20) unused (Bits 21-25) 

first block # (Bits 26-35) 

LH=O 

RH = zero. (Bits 18-23)** 

low order 12 bits of IS-bit 

creation date (Bits 24-35)** 

IOWD LENGTH, ADR** 



The first block of the file js then found as follows: 

1. The first 83 words of the DEC tape directory are searched backwards, beginning with the slot imme­

diately prior to the directory block, until the slot containing the desired file number is found. 

2. The block associated with this slot is read in and bits 18 through 27 of the first word of the block 

(these bits contain the block number of the first block of the file) are checked. If the bits are equal 

to the block number of this block, then this block is the first block; if not, then the block with that 

block number is read as the first block of the file. 

6.1.5.2 ENTER D, E - The ENTER programmed operator sets up an output file on channel D. The DECtape 

directory is searched for a filename and filename extension that match the contents of location E and the left 

hqlf of location E + 1. If no match is found and there is room in the directory, the monitor records the infor­

mation in location E through E + 2 in the DECtape directory (refer to Table 6.3). An error return is given if 

there is no room in the directory for the file (refer to Appendix E). Refer to Paragraph 6.2.8.3 for a special 

note on error recovery. If a match is found, the new entry replaces the old entry, the old file is reclaimed imme­

diately, and the monitor records the file information. This process is called superseding and differs from the 

'process on disk in that, because of the small size of DECtape, the space is reclaimed before the file is written 

rather than <;lfter. Refer to Section 4 of Paragraph 6.2.8.1 for sample code for setting the 15-bit creation date. 

On Call 

Parameter Use* 

E A 

E+I A 

E+2 A 

E+3 I 

Table 6-3 

ENTER Parameters 

Contents Parameter 

SIXBIT /FILE/ E 

LH = SIXBIT /EXT / E+I 

RH = high order 3 

bits of 15-bit creation 

date (bits 18-20). 

RH = low order 12 E+2 

bits of desired 15-bit 

creation date or O. (0 

implies current date). 

- E+3 

On Retur~ 
Use* Contents 

V SIXBIT /FILE/ 

V LH = SIXBIT /EXT/ 

RH = high order 3 bits of 

15-bit creation date (bits 

18-20). 

V RH = low order 12 bits of 

15-bit 

creation date (bits 24-35). 

I -

* A = argument from user program, V = value from monitor, I = ignored. 

6.1.5.3 RENAME D, E - The RENAME programmed operator alters the filename or filename extension of an 

existing file, or deletes the file directory from the DECtape associated with channel D. If location E contains a 

0, RENAME deletes the directory entry of the specified file; otherwise, RENAME searches for the file and 

enters the information specified in location E and E + I into the DECtape directory (refer to Table 6-4). RENAME 

is preceded by a LOOKUP or an ENTER, to select the file that is to be RENAMEd, and a CLOSE. The error 

return is given if a LOOKUP or ENTER has not been done (refer to Appendix E). Refer to Paragraph 6.2.8.3 

for a special note on error recovery. 

6-8 September 1974 



Table 6-4 

REN AME Parameters 

On Call On Return 

Parameter Use* Contents Parameter Use* Contents 

E A SIXBIT /FILE/ or 0 E V SIXBIT /FILE/ 

E+1 A LH = SIXBIT /EXT / E+l V LH = SIXBIT /EXT / 

RH = high order 3 RH = high order 3 bits of 

bits of IS-bit creation IS-bit creation date (bits 

date (bits 18-20). 18-20). 

E+2 A RH = low order 12 E+2 V RH = low order 12 bits of 

bits of IS-bit creation IS-bit creation date (bits 

date or 0 (0 implies 24-35). 

current date). 

E+3 I - E+3 I -

* A = Argument from user program, V = value from monitor, I = ignored. 

Unlike on disk, a DEC tape RENAME works on the last file LOOKUPed and ENTERed for the device, not the 

last file for this channel. The UUO sequence required to successfully RENAME a file on DECtape is as follows: 

LOOKUP D,E 

CLOSE D, 

RENAME D,El 

or 

ENTER D,E 

CLOSE D, 

RENAME D,El 

6.1.5.4 INPUT, OUTPUT, CLOSE, RELEASE - When performing nondump input operations, the DECtape 

service routine reads the links in each block to determine what block to read next and when to raise the EOF 

flag. 

When an OUTPUT is given, the DECtape service routine examines the left half of the third w-ord in the output 

buffer (the word containing the word count in the right half). If this half contains -1, it is replaced with a 0 

before being written out, and the file is thus terminated. If this half word is greater than 0, it is not changed 

and the service routine uses it as the block number for the next OUTPUT. If this half word is 0, the DECtape 

service routine assigns the block number of the next block for the next OUTPUT. 

For both INPUT and OUTPUT, block 100 (the directory) is treated as an exceptional case. If the user's program 

gives 

USETI D, 144(8) 

to read block 100, it is treated as a I-block file. 

6-9 



The CLOSE operator places a -1 in the left half of the first word in the last output buffer, thus terminating the 

file. 

The RELEASE operator writes the copy of the directory, which is normally kept in core onto block 100, but 

only if any changes have been made. Certain console commands, such as KJOB or CORE 0, perform an implicit 

RELEASE of all devices and, thus, write out a changed directory even though the user's program failed to give a 

RELEASE. 

6.1.6 Special Programmed Operator Service 

Several programmed operators are provided for manipulating DECtape. These UUOs allow the user to manipu­

late block numbers and to handle directories. 

6.1.6.1 USETI D, E - The USETI programmed operator sets the DECtape on channel D to input block E next. 

Since the monitor reads as many buffers as it can on INPUT, it is difficult to determine which buffer the monitor 

is processing when the USETI is given. Therefore, the INPUT following the USETI may not obtain the buffer 

containing the block specified. However, if a single buffer ring I" used, the desired block is retrieved since the 

device must stop after each INPUT. Alternatively, if bit 30 (lO.SYN) of the file status word is set via an INIT, 

OPEN, or SETSTS UUO, the device stops after each bufferful of data on an INPUT so that the USETI will apply 

to the buffer supplied by the next INPUT. 

6.1.6.2 USETO D, E - The USETO programmed operator sets the DECtape on channel D to output block E 

next. With multiple-buffered I/O, the output following the USETO may not apply to the buffer containing the 

specified block, since the monitor transfers as many buffers as possible with each OUTPUT. Therefore, a single 

buffer ring should be used, or bit 30 (lO.SYN) of the file status word should be set. Refer to Paragraph 6.1.6.1. 

6.1.6.3 UGETF D, E - The UGETF programmed operator places the number of the next free block of the file 

in the user's location E. 

If UGETF is not preceded by an ENTER, the monitor modifies its algorithm in the following manner: 

1. the first block is written nearest the front of the tape instead of nearest the directory. 

2. the spacing factor is changed to 2 instead of 4 so that very large programs can fit almost entirely in a 

forward direction. 

If no LOOKUP or ENTER has been done, UGETF returns a -1. If a LOOKUP has been done, UGETF gives the 

same results as if an ENTER has been done. UGETF returns a block number; it neither marks the directory nor 

sets a particular block to be written, and is a no-op for anything except DTA. 

6.1.6.4 UTPCLR AC, or CALLI AC, 13 - The UTPCLR programmed operator clears the directory of the 

DEC tape on the device channel specified in the AC field. A cleared directory has zeroes in the first 83 words 

except in the slots related to blocks 1, 2, and 1 OO( 1 0) and nonexistent blocks 1102 through 1105(8). Only the 

directory block is affected by UTPCLR. This programmed operator is a no-operation if the device on the chan­

nel is not a DECtape. 

6.1.6.5 MTAPE D, 1 and MTAPE D, 11 - MTAPE D, 1 rewinds the DECtape and moves it into the end zone 

at the front of the tape. MTAPE D, 11 rewinds and unloads the tape, pulling the tape completely onto the 

6-10 



left-hand reel, and clears the directory-in-core bit. These commands affect only the physical position of the tape, 

not the logical position. When either is used, the user's job can be swapped out while the DECtape is rewinding; 

however, the job cannot be swapped out if an INPUT or OUTPUT is done while the tape is rewinding. 

6.1.6.6 DEVSTS UUO - After each interrupt, the DECtape service routine stores the results of a CONI in the 

DEVSTS word of the device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word 

to the user (refer to Paragraph 4.10.1). 

6.1. 7 File Status (Refer to Appendix D) 

The file status of the DECtape is shown on the next page. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER 
1111111111111111111111111111111111111 

SET BY MONITOR 1W!W.WI1I11111I11.w.w.wuIIIIlIIlIIl.lJ.lJ.lllll.llIIIIIIIIIII~1I1I -L-----'--~ 

Bit 18 - 10.IMP 

Bit 19 - 10.DER 

Bit 20 - 10.DTE 

Bit 21 - 10.BKT 

Bit 22 - 10.EOF 

Bit 23 - 10.ACT 

Device Dependent Bits 

Bit 28 - 10.SSD 

UNUSED 

10-0576 

An attempt was made to read block 0 in nonstandard dump mode. 

Data was missed. 

Parity error. 

Block number is too large or tape is full on OUTPUT. 

EOF mark encountered on input. No special character appears 

in buffer. 

Device is active. 

18 21 24 27 30 33 35 

1111111111111111111111111 I~ 
10-0577 

18 21 24 2728 2930 33 35 

SET BY USER I IIIIIIIIIIII~ 
10-0578 

DECtape is in semi-standard I/O mode. The setting of this bit is re­

cognized only if bit 29 (nonstandard I/O mode) is on. Semi-standard 

mode is similar to nonstandard mode except. 

1. block numbers are checked for legality, and 

6-11 



Bit 29 - IO.NSD 

6.1.8 Important Considerations 

2. the tape is started in the same direction as it was previously 

going. 

3. dead reckoning is done. 

DECtape is in a nonstandard I/O mode format as opposed to standard­

I/O mode. No file-structured operations are performed on the tape" 

Blocks are read or written sequentially; no links are generated (output) 

or recognized (input). The first block to be read or written must be set 

by a USETI or USETO. In nonstandard I/O mode, up to 200(8) words 

per block are read or written as user data (as opposed to the standard 

mode of 1 link plus word count followed by 177(8) words). No dead 

reckoning is used on a search for a block number as the tape may be 

composed of blocks shorter than 200 words. The ENTER, LOOKUP, 

and UTPCLR UUOs are treated as no-ops. Block 0 of the tape may not 

be read or written in dump mode if bit 29 is on, because the data must 

be read in a forward direction and block 0 normally cannot be read 

forward. 

When positioning to a desired block on DECtape, the technique of dead reckoning is used. This means that the 

DECtape service routine starts the DECtape spinning and computes the time it should take to reach the desired 

block. Meanwhile, the service routine performs a service for another user, if any, and then returns just before 

the computed time has elapsed. If the desired block has not been reached, this process is repeated until it is 

successful. This technique is used to keep the controller free for other uses while the DECtape is spinning. 

When an attempt is made to write on a write-locked tape or to access a drive that has no tape mounted, the 

message 

DEVICE DTAn OPERATOR zz ACTION REQUESTED 

is given to the user. When the situation has been rectified, CONT may be typed to proceed. However, if this 

message is output because of an attempt to write on a write-locked tape and any operation that causes a RESET 

to be performed (e.g., a GET or RUN command) is then executed, a RELEASE will be done on the DECtape. 

This RELEASE causes any attempt to write the directory to output the same message. To avoid the second 

output of the message, the user should ASSIGN the DECtape again thus causing the DECtape service routine not 

to write the directory on the RELEASE. 

The DECtape service routine reads the directory from a tape the first time it is required to perform a LOOKUP, 

ENTER"or UGETF; the directory image remains in core until a new ASSIGN command is executed from the 

console. To inform the DEC tape service routine that a new tape has been mounted on an assigned unit, the user 

uses an ASSIGN command. The directory from the old tape can be transferred to the new tape, thus destroying 

the information on that tape unless the user reassigns the DECtape transport every time he mounts a new reel. 

Although DECtape is a file-structured block device, there is a limit to the number of files that may be opened 

simultaneously on a single DECtape. A given DECtape may be OPENed or INITed on two software channels 

(maximum) at the same time, once for INPUT and once for OUTPUT. An attempt to INIT on two channels for 

INPUT or two channels for OUTPUT generates no error indication, and only the most recent IN IT is effective. 

This restriction explains why the following examples do not work. 

6-12 



Example: 

.R FILCOM 

*TTY:=DTAI :Pl,DTAl :P2 

FILCOM accepts the command string but the comparison does not work because the DECtape cannot be 

associated with the input side of two software channels at the same time. 

Example 2: 

.RMACRO 

*DTAI :BIN,DTAI : LST+-DTAI :PROG 

MACRO accepts the command string but does not produce the desired results because a single DECtape cannot 

be associated with the output side of two software channels at the same time. However, the following example 

works, because only one file is opened for reading and one file for writing . 

. RMACRO 

*DTAI :BIN=DTAI :SOURCE 

6.2 DISK 

The device mnemonic is DSK, FHA, DP A; the buffer size is 203(8) (200(8) data) words. 

6.2.1 Data Modes 

6.2.1.1 Buffered Data Modes - Data is written on the disk exactly as it appears in the buffer. Data consists of 

36-bit words. 

CAUTION 
All buffered mode operations utilize a 200 octal word 
data buffer. Attempts to set up non-standard buffer 
sizes are ignored. In particular, attempting to use buffer 
sizes smaller than 200 words for input result in data 
being read in past the end of the buffer destroying what 
information was there (e.g., the buffer header of the next 
buffer). 

6.2.1.2 Unbuffered Data Modes -Data is read into or written from anywhere in the user's core area without 

regard to the normal buffering schemes. Control for read or write operations must be via a command list in core 

memory. The command list format is described in Chapter 4. The disk control automatically measures dump 

data into standard-length disk blocks of 200 octal words. Unless the number of data words is an exact multiple 

of the standard length of a disk block (200 words) after each command word in the command list, the remainder' 

of that block is wasted. 

6.2.2 Structure of Disk Files 

The file structures of a disk system minimize the number of disk seeks for sequential or random access during 

either buffered or unbuffered I/O. The assignment of physical space for data is performed automatically by the 

6-13 



monitor when logical files are written or deleted by user programs. Files may be any length, and each user may 

have as many files as he wishes, as long as disk space is available and the user has not exceeded his logged-in 

quota. Users or their programs do not need to give initial estimates of file length or number of files. Files may 

be simultaneously read by more than one user at a time, thus allowing data sharing. A new version of a file may 

be recreated by one user while other users continue to read the old version, thus allowing for smooth replacement 

of shared programs and data files. Finaliy, one user may selectively update portions of a file, rather than create 

a new one. 

6.2.2.1 Addressing by Monitor - The file structure described in this section is generally transparent to the user, 

and a detailed knowledge of this material is not essential for effective user-mode use of the disk. One set of disk­

independent file handling routines in the monitor services all disks and drums. This set of routines interprets and 

operates upon file structures, processed disk UUOs, queues disk requests, and makes optimization decisions. The 

monitor deals primarily with logical units within file structures and converts to physical units in the small device­

dependent routines just before issuing I/O commands. All queues, statuses, and flags are organized by logical 

unit rather than by physical unit. The device-dependent routines perform the I/O for specific storage devices and 

translate logical block numbers to physical disk addresses. 

All referenc~s made to disk addresses refer to the logical or relative addresses used by the system and not to any 

physical addressing scheme involving records, sectors, or tracks, that may pertain to a particular physical device. 

The basic unit that may be addressed is a logical disk block, which consists of 200(8) 36-bit words. 

6.2.2.2 Storage Allocation Table (SAT) Blocks - Unique to each file structure is a file named SAT.SYS. This 

file reflects the current status· of every addressable block on the disk. Only the monitor can modify the contents 

of SAT.SYS as a result of file creation, deletion, or space allocation, although this file may be read by any user. 

The SAT file consists of bits indicating both the portion of file storage in use and the portion that is available. 

To reduce the size of SAT.SYS, each bit can be used to represent a contiguous set of blocks called a cluster. 

Monitor overhead is decreased by assigning and releasing file storage in clusters of blocks rather than single blocks. 

If a particular bit is on, it indicates that the corresponding cluster is bad or nonexistent or has been allocated to 

a file. It mayor may not contain data (i.e., files may contain allocated but unwritten clusters). If the bit is off, 

it indicates that the corresponding cluster is empty, or available to be written on. 

It is recommended that cluster sizes should evenly divide blocks on a unit. In the 5.03 and later monitors, the 

refresher truncates to the largest number of full clusters. With truncation, the last few blocks are not included 

in the addressing space, but may be used for swapping; therefore, they are not part of SWAP.SYS even though 

they are in the swapping space. In addition, any bad blocks in the extra blocks are not included in SWAP.SYS. 

6.2.2.3 File Directories - A directory is a file which contains as data pointers to other files on the disk. There 

are three levels of directories in each file structure: 

1. The master file directory (MFD). 

2. The user file directories (UFDs). 

3. The sub-file directories (SFDs).(l) 

(l)Sub-fIle directories depend on FTSFD which is nonnally off in the DECsystem-l040. 

6-14 



The master file directory consists of two-word entries; the entries are the names of the user file directories on 

the file structure. The first word of each entry contains the project-programmer number of the user. The left 

half of the second word of each entry contains the mnemonic UFD in SIXBITand the right half contains a poin­

ter to the first cluster of the user file directory (see Figure 6-4). The main function of the master file directory 

is to serve as a directory of individual user file directories. A continued MFD is the MFDs on all file structures 

in the job's search list. 

L 

MASTER FILE 
DIRECTORY 

1 1 

UFO -
10 10 

UFO 

20 20 

UFO 

· · · 

V 
~ 

USER FILE 
DIRECTORIES 

FILE 1 

EXT I 
FILE 2 

EXT I 
FILE 3 

EXT I 
· · · 

FILE X 

EXT I 
FILE Y 

EXT I 
FILEZ 

EXT I 
· · · 

DATA FILES 

I 
~ 
V 

-

I 
~ 
V 

-

Figure 6-4 Basic Disk File Organization for Each File Structure 

~ 

~ 

10-0543 

The entries within a user file directory are the names of files existing in a given project-programmer number area 

within the file structure. The first word of each entry contains the filename in SIXBIT. The left half of the 

second word contains the filename extension in SIXBIT, and the right half contains a pointer to the first cluster 

of the file (see Figure 6-4). This pointer specifies both the unit and the super-cluster of the file structure in which 

the file appears. The right half of the directory entry is referred to as a compressed file pointer (CFP). A con­

tinued UFD is all the UFDs for the same project-programmer number on all file structures on the job's search 

list. 

When the user is logged-in, each file structure for which he has a quota contains a UFD for his project-programmer 

number. Each UFD contains the names of all the user's files for that file structure only. UFDs are created only 

by privileged programs (i.e., LOGIN in response to a LOGIN command, and OMOUNT in response to a MOUNT 

command). A user is not prevented from attempting to read a file in another user's UFD on a file structure for 

which he does not have a UFD. Whether or not the user is successful depends on the, protection specified for . 

the file being referenced. 

6-15 



MASTER FILE DIRECTORY 

~ 
I 

UFoT 

9' -0\ 

1 USER FILE DIRECTORY 

RIB DATA 

r-

SWAP 

SYS I 
MAINT 

SYS.I 

t-----;~ BAOBLK 

SYS I 

1 

I 
I 

RIB DATA 

In--IL I--

L----

I L.J N I 
block 10,0 

~ HOME 

I SYS I 

~ ~ n ""'H "~: "m I I 

I WI,Jj4 
I 
I 

I--

L----

t=f~ 
FILE I 

I--

I--
EXT I 

dill 
I ~ 

SFD RI B SFD DATA 

FILEY 

RIB 

N IL- FILEN ~~ EXT j - I FILEY 

SFD 

I 
I 
I 

- FILEZ 

SF"'D'T" 

EXT I 

Figure 6-5 Disk File Organization 

USER FILES 

..r--cl 

L-t--

SFD RIB SFD DATA RIB 

~ SFD 

- ~ 

t-----;=r 
- L---t--



As an entry in the user file directory, the user can include a sub-file directory (SFD). The sub-file directory is 

similar to the other types of directories in that it contains as data all the names of files within the directory. 

This directory is pointed to by a UFD or a higher-level SFD nested in any arbitrary tree structure. The maximum 

number of nested SFDs allowed is defined via a MONGEN question and can be obtained from a GETT AB table 

(GETTAB table .GTL VD, item 17). Files can be written or read in SFDs nested deeper than the maximum but 

SFDs cannot be created. (There is an absolute maximum of six, including the UFD.) Unlike UFDs, a sub-file 

directory can be created by any program. A continued SFD, or sub-directory, is all of the SFDs on all file struc­

tures in the job's search list with the same name and path. 

This third level of directory allows groups of files belonging to the same user to be separate from each other. 

This is useful when organizing a large number of files according to function. In addition, simultaneous batch 

runs of the same program for a single user can use the same filenames without conflicting with each other. As 

long as the files are in different sub-file directories, they are unique. 

A file is uniquely identified in the system by a file structure name, a directory path, a filename and an extension. 

The directory path is an ordered list of directory names, starting with a UFD, which uniquely specifies a direc­

tory without regard to a file structure. The PATH. UUO is used to set or read the default directory path for a 

job (refer to Paragraph 6.2.9.1). Default paths can be a job's UFD, an SFD in a job's UFD, a UFD different 

from the job's UFD, or an SFD in another UFD. If a default path is not specified, it is the job's UFD. The no­

tation FILE.EXT [PPN,A,B, ... ,N] designates the file named FILE.EXT in the UFD [PPN] in the SFD N, which 

is in the SFD ... , which is in the SFD A:.. The path to the file named FILE.EXT is [PPN,A,B, ... ,N]. 

To improve disk access and core searching times, only UFD names are kept in the MFD (project-programmer num­

ber 1, I). All system programs and monitor file structure files are contained in another project-programmer num­

ber directory called the system library. For convenience both to users typing commands and to user programs, 

device name SYS is interpreted as the system library; therefore, no special programming is required to read as a 

specified file from device SYS. In command strings, the abbreviation SYSx: represents the system library on file 

structure DSKx: i.e., SYSA: represents the system library on DSKA. 

6.2.2.4 File Format - All disk files (including directories) are composed of two parts: 

1. pure data. 

2. Information needed by the system to retrieve this data. 

Each data block contains exactly 200(8) words. If a partially filled buffer is output to the disk by a user, a full 

block is written with trailing zeros filling to make 200(8) words. A partial block input later appears to have a 

full 200(8) data words. Word counts associated with individual blocks are not retained by the system except in 

the case of the last block of the file. 

There are three links in the chain by which the system references data on the disk. This chain is transparent to 

the user, who might look on the directory as having four-word entries analogous to DECtapes. The first link is 

the two-word directory entry that points to the second link, the retrieval information block (RIB). The RIB, in 

turn, points to the third link, the individual data blocks of the file (see Figure 6-5). 

The retrieval block contains all the pointers to the entire file. Retrieval information associated with each file is 

stored and accessed separately from the data; therefore, system reliability is increased because the probability 

of destroying the retrieval information is reduced. System performance is improved because the number of 
positionings necessary for random access is reduced. 

6-17 



For recovery purposes, a copy of the retrieval information block is written immediately after the last data block 

of the file when a CLOSE is completed. If the first RIB is lost or bad, the monitor can recover by allowing a 

recovery program to use the second RIB; therefore, a data file of n blocks has two additional overhead blocks: 

relative block 0, containing the primary RIB; and a relative block n + 1, containing the redundant RIB (refer to 

Appendix H). 

6.2.3 Access Protection 

Nine bits of the retrieval information of a file are used to indicate the protection of that file. This protection 

is necessary because the disk is shared by many users, each of whom may desire to keep certain files from being 

written on, read, or deleted by other users. The nine bits are divided into three classes because the users are 

divided into three categories: 

1. the owner of the file. 

2. the users with the same project number as the owner, and 

3. all other users. 

Ordinarily, the owner of a file is any user whose programmer number is the same as the programmer number of 

the UFD containing the file, regardless of whether the two project numbers match. Therefore, in order to main­

tain only one owner for each file, the installation should not assign the same programmer number to different 

users, no matter how many projects the installation has. A user working on more than one project, but having 

the same programmer number, can reference all his files as an owner under each of his project-programmer 

numbers. 

However, some installations may decide that a user is the owner of a file only when both the project and pro­

grammer numbers under which the user is logged in match the pair identifying the UFD. If this is the case, the 

same programmer number can be assigned to different users in different projects. This allows the task of assign­

ing programmer numbers to be delegated to project leaders without concern for duplication since the project 

numbers will be different from one project to another. However, a user working on more than one project can­

not have the same owner access to all the files that he has written. 

The definition of the owner of a file is specified at monitor generation time with MONGEN (lNDPPN). No 

matter how the installation defines an owner, project numbers 0 to 7 are always independent of the project­

programmer number (i.e., a user with a project number from 0 to 7 is considered the owner of all files with that 

project number). 

A member of the owner's project is any user whose logged-in project number is the same as the owner's, regard­

less of his programmer number. 

The three bits associated with each category of users are encoded as follows: 

Code 

7 

Access Protection 

Greatest protection, which means no access privileges. However, the owner may LOOKUP 

the file so that he can change the protection to a less restrictive code via a RENAME. Thus, 

for the owner, this code is equivalent to codes 6 and 5. 

6-18 



Code Access Protection 

6 Execute-only. This disables user fIleddling and examining (DUMP, DCORE, D, E, SAVE, 

SSAVE, START n, CSTART n, DDT, COREn) with the error message ?ILLEGAL WHEN 

EXECUTE ONLY. An error return is given on a LOOKUP to an execute-only file to all 

users except the owner of the file. 

5 Read, ex~cute 

4 Append, read, execute 

3 Update, append, read, execute. 

2 Write, update, append, read, execute 

Rename, write, update, append, read, execute 

o Change protection, rename, write, update, append, read, execute. 

The following example illustrates the 9-bit protection field of a file that has a protection of 057. 

owner 

This code means: 

project 
members 

1. The owner has complete privileges (code 0). 

all other 
users 

2. The project members have read and execute privileges (code 5). 

3. All other users have no access privileges (code 7). 

The greatest protection a file can have is 7, and the least is O. Usually, the owner's field is 0 or 1. However, it is 

always possible for the owner of a file to change the access protection associated with the file even if the owner­

protection is not set to O. Thus, codes 0 and 1 are equivalent when they appear in the owner's field. Access 

protection can be changed by executing a RENAME UUO or by using the PROTECT monitor command as 

follows: 

PROTECT FILE.ext <nnn> ) 

When an ENTER UUO specifies a protection code of 000 and the file does not exist, the monitor substitutes the 

standard protection code as defined by the installation. The normal system standard is 057. This protection 

prevents users in different projects from accessing another user's files; however, a standard protection of 055 is 

recommended for in-house systems where privacy is not as important as the capability of sharing files among 

projects. No program should be coded to assume knowledge of the standard protection. If it is necessary to use 

"this standard, it should be obtained through the GETT AB UUO. 

6-19 



To preserve files with LOGOUT, a protection code of 1 in the owner's field should be associated with the files. 

LOGOUT preserves all files in a UFD for which the protection code for the owner is greater than zero. The 

PRESERVE monitor command can be used to obtain a protection code of 1 in the owner's field. 

6.2.3.1 UFD and SFD Privileges - The protection code associated with each file completely describes the access 

riglits to that file independently of the protection code of the·UFD. UFDs and SFDs may be read in the same 

manner as files but cannot be written explicitly, because they contain RIB pointers to particular disk blocks. For 

UFD and SFD privileges, users are divided into the same three categories as for files. Each category has three in­

dependent bits: 

Bit Access Privileges 

4 Allow LOOKUPS in UFD or SFD. 

2 Allow CREATEs in UFD or SFD. 

Allow the UFD or SFD to be read as a file. 

The owner is permitted to control access to his own UFD and SFD. It is always legal for the owner to issue a 

RENAME to change the protection of his directories. Any program can create or delete SFDs; however, only 

privileged programs are allowed to create, supersede, or delete a UFD. The monitor checks for the following 

types of privileged programs. 

1. Jobs logged in under project-programmer number [1,2] (FAILSAFE). 

2. Jobs running with the JACCT bit set in JBTSTS (LOGIN, LOGOUT). 

Privileged programs are allowed to: 

1. Create UFDs (and SFDs). 

2. Delete UFDs (and SFDs). 

3. Set privileged LOOKUP, ENTER, and RENAME arguments. 

4. Ignore file protection codes. 

UFD and SFD privileges are similar with the exception being that SFDs can be RENAMEd and deleted by both 

privileged programs and the owner of the SFD if his protection byte is 7. 

6.2.4 Disk Quotas( 1) 

Each project-programmer number in each file structure is associated with the quotas that limit the number of 

blocks that can be stored under the UFD in the particular file structure. The quotas are: 

1. Logged-in quota. 

2. Logged-out quota. 

When the user logs in, he automatically starts using his logged-in quota. Because this is not a guaranteed amount 

of space, the user competes with others for it. The logged-out quota is the amount of space that the user must 

be within in order to log off the system. Normally, the logged-out quota is less than or equal to the logged-in 

quota, so that the user must delete temporary files. 

If a user exceeds his logged-in quota, the monitor types the following message: 

[EXCEEDING QUOTA ON Fs] 

(1) Quota checking depends on FTDQTA which is normally off in the DECsystem-1040. 

6-20 



where fs is the name of the file structure. The message appears in square brackets (like the TECO core expansion 

message) to suggest a warning rather than an error. Unlike most monitor messages, this message indicates that 

the user program may continue to run, and the console remains in user mode. The user program can no longer 

create or supersede files (ENTER gives an error return). Files already ENTERed are allowed to continue for a 

specified number of blocks. This amount is called the overdrawn amount and is a parameter of the file structure. 

The overdrawn amount specifies the number of blocks by which the logged-in UFD may exceed its logged-in 

quota. When the user exceeds the overdrawn amount, the IO.BKT bit is set, and further OUTPUTs are not al­

lowed. A CLOSE operates successfully, including the writing of the last buffers and the RIBs. 

When the user logs in, the LOGIN program reads the logged-in quota from the file AUXACC.SYS for all public 

file structures in which the user is allowed to have a UFD. This information is passed to the monitor where it is 

kept in core. If the quota has changed since the user last logged in, LOGIN updates (or creates) the RIB of each 

UFD with the new quotas. 

6.2.5 Simultaneous Access 

In its core area, the monitor maintains two 4-word blocks called access blocks. These blocks control simultaneous 

access to a single file by a number of user channels. All active files have access blocks that contain file status in­

formation. The access blocks ensure that a maximum of one user channel supersedes or updates a given file at a 

given time. 

6.2.6 File Structure Names 

Each file structure has a SIXBIT name specified by the operator at system initialization time. This name can 

consist of four or less alphanumeric characters and must not duplicate any device, unit, or existing file structure 
name or its abbreviation. The recommended names for the file structures in the public pool are DSKA, 

DSKB, ... ,DSKN (in order of decreasing speed). 

When a specific file structure is INITed (e.g., DKSA), LOOKUP and ENTER searches are restricted to that file 

structure. Usually a channel is INITed with the generic name DSK, in which case all file structures in the active 

search list of the job are searched (refer to Paragraph 6.2.7). 

6.2.6.1 Logical Unit Names - When a single file structure name is specified, the set of all the units in that file 

structure is implied; however, it is possible to specify a particular logical unit within a file structure (e.g., DSKAO, 

DSKA 1, DSKA2 are three logical units in the file structure DSKA). The monitor deals with file structures rather 

than with individual units; therefore, when reading files, specifying a logical unit within a file structure is equiv­

alent to specifying the file structure itself. The monitor locates the file regardless of which unit it is on within a 

file structure. However, in writing a file, the monitor uses the logical unit name as a guide in allocating space and 

will, if possible, write the file on the unit specified. In this way, a user can apportion files among different units 

for increased throughput. 

6.2.6.2 Physical Controller Class Names - In addition to DSK, single file structure names (DSKA), and logical 

unit names (DSKAO), it is possible to specify a class of controllers. If the system has one controller of the type 

specified, the result is the same as if the user had specified the physical controller name. The controller classes 

supported by DEC are: 

DR (future drum), FH, DP, FS 

6-21 September 1974 



6.2.6.3 Physical Controller Names - It is possible to specify any of the units on a particular controller. The 

monitor relates that name to the file structures, which contain at least one unit on the specified controller. More 

than one file structure may be specified when a physical controller name is used. The controllers that DEC sup­
ports are: 

DRA, DRB (future drum), FHA, FHB, DPA, DPB, FSA, FSB 

6.2.6.4 Physical Unit Names - When a physical controller name is specified, all units on that controller are im­

plied. It is possible to specify a physical unit name on a particular controller. The physical unit names that DEC 

supports are: 

DRAO, DRBO 

FHAO, ... , FHA3 

FHBO, ... , FHB3 

FSAO, ... , FSA 7 

DPAO, ... , DPA7 

DPBO, ... ,DPB7 

Reserved for future drum (RX I 0). 

Mixture or Burroughs fixed-head disks (RD 10) and Bryant drums 

(RM I OB) on RC 10 control. 

Mixture of Burroughs fixed-head disks (RD 10) and Bryant drums 

(RM lOB) on second RC I 0 control. 

RS04 disk on RH I O. 

Mixture of RP02 and RP03 disk packs on RP I 0 control. 

Mixture of RP02 and RP03 disk packs on second RP I 0 control. 

6.2.6.5 Unit Selection on Output -If the user specifies a file structure name on an ENTER, the monitor 

chooses the emptiest unit on the file structure which does not currently have an open file (UFDs are not con­

sidered opened) for the job. This selection improves disk throughput by distributing files for a particular job 

on different units. For example, in a MACRO assembly with two output files and one input file, it is probable 

that the monitor would allocate the output files on units separate from each other and from the input file. If 

this were the only job running, there would be almost no seeks. Therefore, to take advantage of this, programs 

should LOOKUP input files before ENTERing output files. 

6.2.6.6 Abbreviations - Abbreviations may be used as arguments to the ASSIGN command and the INIT and 

OPEN UUOs. The abbreviation is checked for a first match when the ASSIGN, INIT, or OPEN is executed. The 

file structure or device eventually represented by the particular abbreviation depends on whether a LOOKUP or 

ENTER follows. A LOOKUP applies to as wide a class of units as possible, whereas an ENTER applies to a re­

stricted set to allow files to be written on particular units at the user's option. For example, consider the follow­

ing configuration: 

File Structure 

DSKA 

DSKB 

DSKC 

DSKD 

PRVA 

Physical Unit 

FHAO, FHAI, FHA2 

FHBO, FHBI 

DPAO,DPAI,DPA2,DPA3 

DPBO, DPB I, DPB2 

DPB3 

Table 6-5 shows the file structures and units impiled by the various names and abbreviations. 

6-22 September 1974 



Argument Supplied to 

ASSIGN, MOUNT, INIT, OPEN 

D, DS, DSK 

P, PR, PRY, PRVA 

F, FH, FHA 

FHB 

FHAO 

FHBO 

DP 

DPA 

DPB 

DPAO 

DPB2 

DPB3 

*Only if user has done a MOUNT. 

6.2.7 Job Search List 

Table 6-5 

File Structure Names 

File Structures or Units Implied 

LOOKUP 

Generic DSK according to job search list 

(refer to Paragraph 6.2.7). 

PRVA 

DSKA, DSKB 

DSKB 

DSKA 

DSKB 

DSKC, DSKD, PRVA* 

DSKC 

DSKD, PRVA* 

DSKC 

DSKD 

PRVA 

ENTER 

PRVA 

FHAO 

FHBO 

FHAO 

FHBO 

DSKC 

DSKC 

DSKD 

DPAO 

DPB2 

PRVA 

To a user, a file structure is like a device; that is, a file structure or a set of file structures may be specified by an 

INIT or OPEN UUO or by the first argument of the ASSIGN or MOUNT command. A console user species a file 

structure by naming the file structure and following it with a colon. 

There is a flexible naming scheme that applies to file structures; however, most user programs INIT device DSK, 

which selects the appropriate file structure, unless directed to do otherwise by the user. The appropriate file 

structure is determined by a job search list. A job search list is divided into the two parts: 

1. an active search list (usually referred to as the job search list), and 

2. a passive search list. 

The active search list is an ordered list of the file structures that are to be searched on a LOOKUP or ENTER 

when device DSK is used. The passive search list is an unordered list of file structures maintained by the mon­

itor for LOGOUT time. At this time, LOGOUT requires that the total allocated blocks on each UFD in both the 

active and passive search lists be below the logged-out quota. Each job has its own active search list (established 

by LOGIN) with file structures in the order that they appear in the admfuistrative control file AUXACC.SYS. 

Thus, a user has a UFD for his project-programmer number in each file structure in which LOGIN allows him to 

have files. With the MOUNT command, mounted file structures may be added to the active search list. The fol­

lowing is an example of a search list: 

6-23 



DSKB,DSKA,FENCE,DSKC 

DSKB and DSKA comprise the active search list. These file structures are represented by generic name DSK for 

this job. DSKC is the name of a file structure that was previously in the active search list. FENCE represents 

the boundary between the active and passive search list. 

Each file structure in a job search list may be modified by setting one of two flags with the JOBSTR UUO: 

1. Do not create in this. structure if just generic DSK is specified. 

2. Do not write in this structure. 

Setting the "do not create" flag indicates that no new files are to be created on this file structure unless explicitly 
stated. For example, if the "don't create" flag is set 

DSKA: FOO~ 

allows FOO to be created on DSKA, but 

DSK: FOO~ 

does not. For LOOKUPs on device DSK, the monitor searches the structures in the order specified by the job 

search list. For ENTERs when the filename does not exist (creating, see below), the file is placed on the first file 

structure in the search list that has space and does not have the "do not create" flag set. For ENTERs when the 

filename already exists on any file structure in the search list (superseding, see below), the file is placed on the 

same structure that contains the older file. If the write-lock bit is set for the file structure, a write-lock error 

(ERWLK%) is given on the supersede. Because superseding is treated differently from creating, a user may ex­

plicitly place a file on a particular file structure, for example, a fast one with the do not create bit set, so that 

subsequent supersedes will remain on that file structure even though generic DSK is used. 

6.2.8 User Programming 

Three types of writing on the disk may be distinguished. If a user does an ENTER with a filename which did 

not previously exist in his UFD, he is said to be creating that file. If the filename previously existed in his UFD, 

he is said to be superseding that file; the old version of the file stays on the disk (and is available to anyone who 

wants to read it) until the user does the output CLOSE. At the time of the CLOSE, the user's UFD is changed 

to point to the new version of the file and the old version is either deleted immediately or marked for deletion 

later if someone is currently reading it; the space occupied by deleted files is always reclaimed in the' SAT tables 

(refer to Paragraph 6.2.2.2). Finally, if a user does a LOOKUP followed by an ENTER (the order is important) 

on the same filename on the same user channel, he will be able to modify selected blocks of that file, using 

USETO and USETI UUOs (refer to Paragraph 6.2.9.2) without creating an entirely new version; this third type 

of writing, called updating, eliminates the need to copy a file when making a small number of changes. A 

LOOKUP followed by an ENTER and OUTPUT (in that order) writes the output at the beginning of the file. 

To append information to the file, a USETI -1 is used before the output. 

As a standard practice, user programs should read, create, and supersede (new file with same filename) files on 

different user channels. However, for compatibility with DECtapes, it is possible to read and create, or read and 

supersede, two files on the same user channel as long as all OUTPUTs and the CLOSE output are done before the 

LOOKUP and the first input, or vice versa. In other words, a CLOSE UUO is required between successive 

LOOKUPS and ENTERs unless updating is intended. 

6-24 

/ 



The actual file structure of the disk is generally transparent to the user. In programming I/O on the disk, a 

format analogous to that of DECtapes is used; that is, the user assumes a 4-word directory entry similar in form 

to the first four words of retrieval information. The UUO format is approximately the same as for DECtapes: 

UUO D,E 

Where UUO is an I/O programmed operator, and D specifies the user channel associated with this device. E points 

either to a 4-word directory entry or an extended argument block in the user's program. 

6.2.8.1 Four-word Arguments for LOOKUP, ENTER, RENAME UUOs - The 4-word argument block has the 

following format: 

where 

E NAME 

E+l EXT I HIGH ~I DATE 2 DATE 1 

E+2 PROT I M I I LOW TIME DATE 2 OR 

PROJECT I PROGRAMMER 
NUMBER NUMBER 

E+3 E+3 o ADR 

10-0593 

NAME is the filename in SIXBIT, or, if a UFD, is the project number in the left half and the 

programmer number in the right half. 

EXT is the filename extension in SIXBIT ASCII. 

HIGH DATE 2 contains the high order 3 bits of the date on which the file was originally created 

(bits 18-20). 

DATE 1 is the data that the file was last referenced (RENAME, ENTER, or INPUT) in the format 

of the DATE UUO (bits 21-35). 

PROT is the protection code for the file (bits 0-8). 

M is the data mode (ASCII, binary, dump) (bits 9-12). 

TIME is the time that the file was originally created, represented as the number of minutes past 

midnight of the creation date (bits 13-23). 

- LOW DATE 2 hdhe low order 12 bits of the date (in the same format as the DATE UUO) on 

which the file was originally created (bits 24-35). 

NOTE 
The 2-part format for DATE 2 (creation date) is used to 
maintain compatibility with monitors and media as old 
as 1964. 

6-25 



The programmed operators (UUOs) operate as follows: 

1. ENTER UUO - ENTER D, E causes the monitor to store the 4-word directory entry for later entry 

into the proper UFD or SFD when user channel D is closed or released. 

NAME 

EXT 

HIGH DATE 2 

DATE 1 

PROT 

M 

TIME, LOW DATE 2 

PROJECT NUMBER 

PROGRAMMER NUMBER 

The filename must be nonzero; otherwise, an error return results. 

The filename extension may be zero; if so, the monitor leaves it as 
zero. 

If a nonzero date is obtained by concatenating the high order 3 bits 

in this field with the low order 12 bits in LOW DATE 2, then the 

monitor uses that value as the creation date for the file. 'If the date 

is zero, the monitor supplies the high order three bits from the 15-

bit value representing the current date. 

The date may be zero, in which case the monitor substitutes the cur­

rent date. The date must not be in the future; if this is so, the cur­

rent date is used. 

If the protection code is 0, the monitor substitutes the installation 

standard as specified at MaNGEN time. If the protection code is ° 
and this ENTER is superseding a file, the protection of the new file 

is copied from the old file. RENAME may be used to change the 

protection after a file has been completely written and when it is 

being closed. 

The data mode is supplied by the monitor. It was set by the user in 

the last INIT or SETSTS UUO on channel D. 

If these are 0, and bits 18-20 of E + 1 are zero the monitor supplies 

the current date and time as the creation date and time for the file. 

The high order digits of the creation date overflow to bits 18-20 

of E + 1 (HIGH DATE 2). If either is nonzero, the monitor uses the 

HIGH DATE 2 supplied by the user in E + 1 and the TIME and LOW 

DATE 2 supplied in E + 2. Thus, files may be copied without 

changing the original creation time and date. 

If this word is 0, the file will be written in the default directory. (For 

example, if the default path is [10, 10, A] , the file will be written in 

SFD A which is contained in [10,10] .UFD.) The default path is de­

termined by the PATH. UUO (refer to Paragraph 6.2.9.1). If a de­

fault path has not been specified via the PATH. UUO, it is the job's 

UFD (Le., the project-programmer number under which the user is 

logged in). 

If this word is a project-programmer number, the file will be written 

in the UFD specified (i.e., sub-directories will not be scanned). This 

allows the program to write in the disk area under which the job is 

logged in although the default directory is different. Note that it is 

generally not possible to create (ENTER) files in another user's area 

6-26 



• 

of the disk, because UFDs are usually protected from all but the 

owner when creating files. 

If this word is XWD 0, ADR, the file will be written according to 

the path specified by ADR. The argument block beginning at ADR 

is the same as in the PATH. UUO (refer to Paragraph 6.2.9.1) except 

that the first two arguments (ADR and ADR + 1) are ignored. The 

scan switch (ADR + 1) is not needed since if the file is found in the 

specified directory, it will be superseded, and if not found, it will be 

created at the end of the path of the specified directory, even if a 

file with the same name appears in an upper-level directory. A path 

specification in the ENTER block overrides any default path specifi­

cation given in the PATH. UUO. 

With certain types of error returns peculiar to the disk, the right half of E + 1 is set to a specific num­

ber to indicate the error that caused the return. For example, if the extension UFD is specified and 

bit 18 (RP.DIR) of the file status word is not set, the right of E + 1 is set to 2 (protection failure). 

Refer to Paragraph 6.2.8.3 for a special note on error recovery. Refer to Appendix E for the error codes 

returned on the ENTER UUO . 

When an ENTER is executed by the monitor on a file that exists, a new file by that name is written, and 

those bits in the SAT blocks that correspond to the blocks of the old file are zeroed when the CLOSE 

(or RELEAS) UUO is executed provided that bit 30 of the CLOSE is ° (refer to Paragraph 4.7.7). 

Space is thereby retrieved and available to other users after the new file has been successfully written. 

If a file structure is INITed on channel D, the monitor maximizes the job's throughput by selecting the 

emptied unit for which the job has no opened files (refer to Paragraphs 6.2.6.5 and 6.2.6.6). 

2. LOOKUP UUO - LOOKUP D, E causes the monitor to read the appropriate UFD or SFD. If a later 

version of the file is being written, the old version pointed to by the UFD is read. 

NAME 

EXT 

DATE 1, PROT, M, TIME, 

LOW and HIGH DATE 2 

PROJECT NUMBER 

PROGRAMMER NUMBER 

The same as on an ENTER. 

The same as on an ENTER. 

These arguments are ignored. The monitor returns these quantities 

to the user in E + 1 and E + 2. 

If this word is 0, the file will be read from the user's default directory 

path. The entire path is searched only if the scan switch is set via the 

PATH, UUO (refer to Paragraph 6.2.9.1). If a default path has not 

been specified, it is the project-programmer number under which the 

user is logged in. If a project-programmer number is specified (Le., 

sub-directories will not be scanned). Thus, it is possible to read files 

in another user's directories, provided the file's protection mask per­

mits reading and the UFD permits LOOKUPs. If this word is 

XWD 0, ADR, the file will be read according to the path specified by 

ADR. The argument block beginning at ADR is the same as in the 

6-27 September 1974 



PATH. UUO except that the first argument is ignored and the second 

argument, if 0, uses the default value of the scanned switch (refer to 

the PATH. UUO). A path specification in the LOOKUP block over­

rides any default path specification given in the PATH. UUO. 

The monitor returns the negative word count (or positive block count for files larger than 2( 17) words) 

in the LH of E + 3, ° in RH of E + 3 when the 4-word argument block is given. As a result, the mon­
itor treats a negative project-programmer number as if it were 0; however, this will not always be true; 

therefore, programs must be written to either clear E + 3 before doing a LOOKUP, ENTER, or 

RENAME or set E + 3 to the desired project-programmer number. In the future, a negative project­

programmer number may be used to indicate SIXBIT alphabetic characters for project and programmer 

initials. 

The numbers placed in the RH of E + 1 on an error return have a significance analogous to that de­

scribed for the ENTER UUO (refer to Appendix E). 

If the file is currently being superseded, the old file is used. 

3. RENAME UUO - RENAME D, E is used to alter the filename, the filename extension and/or protec­

tion of a file, or to delete a file from the disk. This UUO can be used to change the name of an SFD, 

but an attempt to change the extension or project-programmer number associated with an SFD, the 

name, extension, or project-programmer number associated with a UFD, or the project programmer 

number of a device with an implied project-programmer number (e.g., SYS:, NEW:, OLD:) results in a 

protectioncerror. To RENAME a file, a LOOKUP or ENTER must first be done to identify the file for 

the RENAME UUO. Locations E through E + 2 are as described for ENTER. If E + 3 = 0, there is no 

change in the directory of the file. If E + 3 is the default project-programmer number, the file is re­

named in .that UFD. If E + 3 has a different project-programmer number than the one in which the 

file is LOOKUPed or ENTERed (Le., E + 3 is not the default project-programmer number), the mon­

itor deletes the directory entry from the old directory (UFD or SFD) and inserts the directory entry 

into the specified UFD, provided the user has the privileges to delete files from the old directory, and 

to create files in the new UFD. (This is an efficient way to move a file from one UFD to another, 

since no I/O needs to be done on the data blocks of the file.) If E + 3 = XWD 0, ADR, the file is re­

named into a new SFD or UFD according to the path specified by ADR. (Refer to the PATH. UUO.) 

Therefore, the only way to RENAME a file into a SFD different from the one which it is in is to give 

an explicit path via an argument block. 

A CLOSE is optional because RENAME performs a CLOSE~ However, a CLOSE should not be issued 

between a LOOKUP and RENAME if the file is not in the default path or cannot be obtained from 

the default path by scanning because CLOSE erases all memory of the path of a file. If a CLOSE is 

performed and the file is not in the default path, the RENAME returns the FILE NOT FOUND error. 

In addition, disk accesses are minimized if a CLOSE does not precede a RENAME. 

RENAME enters the information specified in E through E + 2 into the retrieval information and proper 

directory. If the contents ofE is zero, RENAME has the effect of deleting the file. Although only a 

privileged job can delete a UFD, any job can delete an SFD. If the directory is not empty or if a job 

is currently using the directory, the RENAME returns the DIRECTORY NOT EMPTY error. (Refer 

to Appendix E for the error codes.) Refer to Paragraph 6.2.8.3 for a special note on error recovery. 

When issuing a RENAME UUO, the user must ensure that the status at locations E through E + 3 are 

as he desires. An ENTER or LOOKUP must have preceded the RENAME; therefore, the contents of 

E through E + 3 will have been altered, or filled:if the E is the same for all UUOs. 

6-28 



4. Examples - The sample code below can be used to assemble the IS-bit creation date of a disk (or 

DECtape) file in register TI after a successful LOOKUP. The four-word argument block begins at 
location E. 

HRRZ 

LDB 

DPB 

TI, E+2 

T2, [POINT 3, E+ 1, 20] 

T2, [POINT 6, Tl, 23] 

; GET LOW-ORDER PART 

; GET HIGH-ORDER PART 

; MERGE THE TWO PARTS 

Using a zero in the date tields as an ENTER causes the Monitor to substitute the current date. The 

following sample code illustrates setting the IS-bit creation date in the four-word ENTER argument 

block from the value in register T 1. 

DPB Tl, [POINT 12, E+2, 3S] ; STORE LOW-ORDER PART 

ROT Tl,-tDI2 ; POSITION HIGH PART 

DPB Tl, [POINT 3, E+l, 20] ; STORE HIGH-ORDER PART 

6.2.8.2 Extended Argument for LOOKUP, ENTER, RENAME UUOs - A number of quantities have been added 

to the existing four-word block. The user program may specify exactly the number of words in the argument 

block. If the left half of E is 0 and the right half of E is three or greater, the right half of E is interpreted as the 

count of the number of words which follow. If the right half of E is less than three, a file-not-found return is 

given because the user program is not supplying enough arguments. Allowed arguments supplied by the user pro­

gram are returned by the monitor as values. If the user program supplies arguments that are not allowed, the 

monitor ignores these arguments and supplies values on return. Table 6-6 indicates the arguments that may be 

supplied by a user program. 

Table 6-6 

Extended LOOKUP, ENTER, and RENAME Arguments 

Create Update 

ReI. Loc Symbol Lookup Supers Rename Arguments and Value 

0 .RBCNT A A A Count of arguments following 

1 .RBPPN AO AO AO Directory name (project-programmer no.) or 

pointer 

2 .RBNAM A A A Filename in SIXBIT 

3 .RBEXT A A A File extension (LH) 

V AO A High order 3 bits of IS-bit creation date 

(bits 18-20). Access date (bits 21-3S) 
-- -----

-- - ---
4 .RBPRV V ---AO-- A--- Privilege (bits 0-=-8) 

V V A Mode (bits 9-12) 

V AO A Creation time (bits 13-23) 

V AO A Low order 12 bits of IS-bit creation date 

(bits 24-3S) 

S .RBSIZ V V V Length of file in data words written 

(+no. words) 

6 .RBVER V A A Octal version number (36 bits) 

6-29 



Table 6-6 (Cont) 

Extended LOOKUP, ENTER, and RENAME Arguments 

Create Update 
ReI. Loc Symbol Lookup Supers Rename Arguments and Value 

7 .RBSPL V A A Filename to be used in output spooling. 

10 .RBEST V A A Estimated length of file (+no. blocks) 

11 .RBALC V A A Highest relative block number within the file 

allocated by user or monitor to file . 

12 . RBPOS V A A Logical block no. of first block to allocate 

within F.S . 

13 . RBFTI V A A Future non privileged argument - reserved 

for DEC 

14 .RBNCA V A A Nonprivileged argument reserved for customer 

to define 

15 .RBMTA V Al Al Tape label if on backup tape 

16 .RBDEV V V V Logical unit name on which the file is located 

17 .RBSTS V Al Al 1. LH=Combined status of all files in UFD 

2 . RH=Status of this file 

20 . RBELB V V V Bad logical block within error unit 

21 .RBEVN V V V 1. LH=Logical unit no. within F.S. of bad 

unit (0 , , , N). 

2. RH=No. of consecutive blocks in bad 

region 

22 .RBQTF V Al Al (UFD-only) FCFS logged-in quota in blocks 

23 .RBQTO V Al Al (UFD-only) logged-out quota in blocks 

24 .RBQTR V Al Al (UFD-only) reserved logged-in quota 

25 .RBUSD V Al Al (UFD-only) no. of blocks used at last logout 

26 .RBAUT V Al Al Author project-programmer number (creator, 

up dater or superseder) 

27 .RBNXT V Al Al Next file structure name if file continued 

30 .RBPRD V Al Al Predecessor file structure name if file 

continued 

A = Argument (supplied by privileged or nonprivileged user program) and returned by monitor as a value. 

AO = Argument like A with the addition that a 0 argument causes the monitor to substitute a default value. 

V = Value (returned by monitor) cannot be set even by privileged program, monitor ignores argument. 

Al = Argument if privileged program (ignored if nonprivileged). 

6-30 

/' 



Table 6-6 (Cont) 

Extended LOOKUP, ENTER, and RENAME Arguments 

Create Update 

ReI. Loc Symbol Lookup Supers Rename Argumen ts and Value 

31 .RBPCA V Al Al Privileged argument word reserved for each 

customer to define as he wishes. 

32 .RBUFD V V V Logical block number within F.S. (not cluster 

no.) of the RIB of the UFD in which the nam e 

of this file appears. 

33 .RBFLR V V V Relative block number in file of first block 

in RIB 

34 .RBXRA V V V Extended RIB address 

35 .RBTIM V V V Creation date in universal date-time standard 

(refer to Paragraph 3.6). 

A = Argument (supplied by privileged or nonprivileged user program) and returned by monitor as a value. 

AO = Argument like A with the addition that a 0 argument causes the monitor to substitute a default value. 

V = Value (returned by monitor) cannot be set even by privileged program, monitor ignores argument. 

Al = Argument if privileged program (ignored if nonprivileged). 

The following explanation is a more complete description of the terms used in Table 6-6. 

. RBCNT 

. RBPPN 

.RBNAM 

.RBEXT 

LH=unused (must be zero) . 

RH=number of arguments following. 

If bit 18 is set on ENTER, it is a non-superseding ENTER. 

LH=octal project number (right-justified) . 

RH=octal programmer number. 
The project-programmer number is of the UFD in which the file is to be LOOKedUP, 

ENTERed, or RENAMEd. To LOOKUP the MFD, .RBPPN must contain a 1 in the left 

half and a 1 in the right half indicating that the filename (.RBNAM) is to be LOOKedUP 

in project 1, programmer 1 's UFD (the MFD). 

SIXBIT filename, left justified with trailing nulls. If the MFD or UFD is being LOOKedUP, 

ENTERed, or RENAMEd, this location contains the project-programmer number. If a 

SFD is being LOOKedUP, ENTERed, or RENAMEd, this location contains the directory 

name. The argument can be 0 only on a RENAME, in which case the file is deleted. If 

the filename is not left justified on ENTER, mqst programs are unsuccessful on a subse­

quent LOOKUP. The monitor cannot left-justify the argument because it may be an 

octal project-programmer number. 

LH=SIXBIT filename extension, left justified with trailing nulls. Null extensions are dis­

couraged because they convey no information. If the extension is not left justified on 

ENTER, most programs are unsuccessful on a subsequent LOOKUP. RH, bits 18-20 = 

high order 3 bits of l5-bit creation date (RB.CRX) , bits 21-35 = access date in standard 

format (RB.ACD). If an error return is given, bits 18-35 are set to an error code by the 

monitor before the error (no skip) return is taken. Refer to Paragraph 6.2.8.3 for a special 

note on error recovery. 

6-31 September 1974 



.RBPRV 

.RBSIZ 

. RBVER 

. RBSPL 

.RBEST 

.RBALC 

Bits 0-8 = protection codes. (RB.PRV) 

Bits 9-12 = data mode in which file is created. (RB.MOD) 

Bits 13-23 = creation time in minutes since midnight (RB.CRT) 

Bits 24-35 = low order 12 bits of IS-bit creation date in standard format (RB.CRD) 

Written length of file. The word is the positive number of words written in the file. For 

extended arguments, this word is never used for project-programmer numbers. (The four­

word block remains compatible so that LH = - number of words in file, RH=O.) This ar­

gument is ignored, and a value is always returned . 

Octal version number like the contents of location 137 in the job data area. 

LH=patch level (A= 1, B-2, etc.) 

Set by monitor except in the case of privileged programs. 

RH=octal version number, never converted to decimal. This argument is accepted, except 

on a LOOKUP. If a user program wishes to increase the version number by 1 on each 

UPDATE, it should add 1 to location E + 6 between the LOOKUP and the ENTER . 

Filename to be used to label the output on a device which is being spooled. The filename 

is taken from the ENTER to the device, or is 0 if an ENTER was not done. 

Estimated length of file in positive number of blocks. On an ENTER, FILSER uses this 

value as the number of blocks to allocate for the file. If requested # of blocks can't be 

allocated, partial allocation will be performed, but no error return will be given. .RBALC 

will always contain, on a UUO return, the actual number of blocks allocated. 

Number of contiguous I 28-word blocks, N, to be allocated to the file on an ENTER or 

RENAME. This number includes the RIBS of the file. N is equivalent to the last relative 

block number of the file. 

A 0 means do not change allocation instead of deallocating all the blocks of the file. All 

of the data blocks can be deallocated by superseding the file and doing no outputs before 

the CLOSE. This argument can be used to allocate additional space onto the end of the 

file, deallocate previously allocated but unwritten space, or truncate written data blocks. 

The smallest unit of disk space that the monitor can allocate is a cluster of 128-word 

blocks. Typically small devices use a cluster size ,of 1 block. If N is not the last block of 

a cluster, the monitor rounds up, thereby adding a few more blocks than the user requested. 

IfN is too large, the partial allocation error (17) is given; however, you may still write to 

the file. 

NOTE 
To create a file of pre-specified length, do an extended 
ENTER with .RBEST set and .RBALC equal to zero. 
To create a file of pre-specified length with contiguous 
blocks, do an extended ENTER with .RBALC set and 
.RBEST equal to zero. After an ENTER, .RBALC always 
contains the accurate allocated file length. 

6-32 



.RBPOS 

. RBFTI 

. RBNCA 

.RBMTA 

. RBDEV 

.RBSTS 

Logical block number, L, of the first block to be allocated for a new group of clusters 

appended to the file. A logic::!l block number is specified with respect to the entire file 

structure. Logical block numbers begin with logical block number O. This feature com­

bined with DSKCHR UUO allows a user program to allocate a file with respect to tracks 

and cylinders for maximum efficiency when the program runs alone. Because SAT blocks, 

swapping space, and bad blocks are scattered throughout a file structure, programs using 

this feature must be prepared to handle such contingencies. It is discouraged for any pro­

grams to depend on blocks actually used for allocation to operator without errors. 

Future nonprivileged argument reserved for DEC . 

Nonprivileged argument reserved for customer definition . 

A 36-bit tape label if file has been put on magnetic tape. If allocated space is 0, then file 

was deleted from disk when it was copied on magnetic tape. Argument is accepted only 

from privileged programs; otherwise, it is ignored . 

The logical name of the unit on which the file is located. Ignored as an argument, re­

turned as a value. 

File status word 

LH=status of UFD Bit 0=1 (RP.LOG) if the user is logged in and set by LOGIN. 

LOGOUT clears this bit. 

RH=status of file. 

Bit 18=1 (RP.DIR) if file is a directory file; needed to protect the system from a user 

who might try to modify a directory file. The protection error is given if extension UFD 

is given on an ENTER or RENAME and this bit is not set. 

Bit 19=1 (RP.NDL) if file cannot be deleted, renamed, or superseded, even by a privileged 

program or by a user logged in under [1,2] . 

Bit 21=1 (RP.NFS) if file should not be dumped by FAILSAFE because certain files are 

needed before FAILSAFE can run. 

Bit 22=1 (RP.ABC) if file always has bad checksum (because the monitor never recom­

putes the checksum) e.g., SWAP.SYS, SAT.SYS. 

Bit 25= 1 (RB.NQC) if file is a non-quota checked file. 

Bit 26=1 (RP.CMP) ifUFD compressing. 

Bit 27=1 (RB.FCE) if file contains a checksum,error. 

Bit 28= 1 (RB.FWE) if file contains a write error. 

Bit 32=1 (RP.BFA) if file is bad because of a FAILSAFE restore. 

Bit 33= 1 (RP.CRH) if file was closed after a crash. 

Bit 35=1 (RP.BDA) if file is bad because of damage assessment. 

6-33 



.RBSTS (cant) The following bits appear in both the LH and RH of this location: 

. RBELB 

. RBEVN 

. RBQTF 

.RBQTO 

. RBQTR 

.RBUSD 

Bit 11 (RP.URE) = 1 if any file in the UFD has had a hard data error while reading. 

Bit 29 (RP.FRE) = 1 if this file has had a hard data error while reading. (The IO.DTE bit 

has been set.) An entry is made in the BAT block so that the bad region is not reused. 

Bit 10 (RP.UWE) = 1 if any file in this UFD has had a hard data error while writing. Bit 

28 (RP.FWE) = 1 if this file has had a hard data error while writing. (The IO.DTE bit 

has been set.) An entry is made in the BAT block so that the bad region is not reused. 

Bit 9 (RP.UCE) = 1 if any file in this UFD has had a software checksum error or a redun­

dancy check error. Bit 27 (RP.FCE) = 1 if this file has had a software checksum error or 

a redundancy check error. (The IO.IMP bit has been set.) 

NOTE 
Device errors (IO.DER) are not flagged in the file status 
word because they refer to a device and disappear when 
a device is fixed . 

Logical block number within the unit on which last date error (lO.DTE) occurred, as op­

posed to block within file structure. Set by the monitor in the RIB on a CLOSE when 

the hardware detects either a hard bad parity error or a search error while reading or 

writing the file. Device errors, checksum, and redundancy errors are not stored here. 

This argument is ignored, and a value is returned . 

LH=logical unit number within file structure on which last bad region was detected. 

RH=number of bad blocks in the last-detected bad region. The bad region may extend 

beyond the file. This argument is ignored, and a value is returned . 

Meaningful for UFD only. Contains first-come-first-served logged-in quota. This quota 

is the maximum number of data and RIB blocks that can be in this directory in this 

structure while the user is logged in. The UFD and its RIB are not counted. Argument 

is ignored unless it is from a privileged program. 

Meaningful for UFD only. Contains logged-out quota. This quota is the maximum num­

ber of data and RIB blocks that can be left in this directory in this file structure after the 

user logs off. LOGOUT requires the user to be below this quota to log off. LOGIN stores 

these quotas in the RIB of the UFD, so that LOGOUT does not have to scan ACCT.SYS 

at LOGOUT time to find the quota. Argument is ignored unless it is from a privileged 

program. 

Meaningful for UFD only. (Reserved for the future.) Contains reserved logged-in quota . 

This quota is the guaranteed number of blocks the user has when he logs in. Argument is 

ignored unless it is from a privileged program. 

Meaningful for UFD only. Contains number of data and RIB blocks used in this directory 

in this file structure by the user when he last logged off. LOGIN reads this word so that 

it does not have to LOOKUP all files in order to set up the number of blocks the user has 

written. LOGIN sets bit 0 of the file status word (.RBSTS) and LOGOUT clears it in 

order to indicate whether LOGOUT has stored the quantity. Argument is ignored unless 

it is from a privileged program. 

6-34 



.RBAUT 

. RBNXT 

. RBPRD 

. RBPCA 

. RBUFD 

.RBFLR 

. RBXRA 

. RBTIM 

Contains project-programmer number of the creator or superseder of the file, as opposed 

to owner of file. Usually the author and the owner are the same. Only when a file is 

created in a different directory are these different. This argument is used by Batch for 

validating queue entries in other directories. Argument is ignored unless it is from a 

privileged program . 

Reserved for future . 

Reserved for future . 

Privileged argument reserved for customer definition . 

The logical block number (not cluster number) in the file structure of the RIB of the UFD 

in which the name of this file appears. 

The relative block number of the file to which the first pointer of this RIB points. It is 

used for multiple RIBs (i.e., 0 for prime RIB) . 

The extended RIB address (logical unit number and cluster address of next RIB in a 

multiple-RIB file) . 

The date and time of creation of the file in the universal date-time standard (refer to 

Paragraph 3.6). That is, the LH contains the date and the RH contains the time as a 

fraction of a day. 

6.2.8.3 Error Recovery for ENTER and RENAME UUOs - Error codes for the LOOKUP, ENTER, and 

RENAME UUOs are returned in the right half of location E + 1 of the four-word argument block and in the right 

half of location E + 3" (.RBEXT) in the extended argument block. This means that the error code overwrites the 

high order three bits of the creation date and the entire access date. Since the vast majority of programs recover 

from these errors either by aborting or by reinitializing the entire argument block, this overwriting of data does 

not cause any problems. However, a small number of programs may attempt recovery by fixing just the incor­

rect part of the argument block and then retrying the UUO. These programs should always restore the right half 

of location E + 1 before retrying an ENTER or a RENAME UUO. (In order to eliminate problems for programs 

recovering from errors for files with zero creation dates, which is the most common case, error codes are restricted 

to a maximum of 15 bits even though the entire right half of E + 1 is used. In addition, the 5.06B and later mon­

itors force access dates to be greater than or equal to the creation date, but never greater than the current date.) 

6.2.9 Special Programmed Operator Service 

The following are special programmed operator service UUOs. 

6.2.9.1 PATH. AC, or CALLI AC, 11 O( 1) - This UUO sets or reads the default directory path, or reads the 

current directory path on a channel. The call is: 

MOVE AC, [XWD n, ADR] 

PATH. AC, 

error return 

normal return 

(1) This UUO depends on FTSFD which is normally off in the DECsystem-l 040. 

6-35 



ADR: arg 

scan switch 

ppn 

SFD(I) name 

SFD(2) name 

ADR+n-l: 0 

The first word of the argument block contains one of the following: 

C(ADR)=SIXBIT device name, or XWD 0, D(2) 

Return the current path for the specified device or channel D. 

C(ADR)=XWD JOB, -I 

Return the default directory path. 

C(ADR)=-2 

Define the default directory path. 

C(ADR)=-3 

Define the additional path to be searched when a file is not found in the user's directory path. 

C(ADR)=XWD JOB, -4 

Return the additional path to be searched when a file is not found in the user's directory path. 

If the left half of ADR is a job number N and the right half of ADR is -lor -4, the returned values are for either 

I. job N if O<N< the highest legal job number, or 

2. the current job if N is outside the above range (Le., N<O or N> the highest legal job number). 

When defining a path within a UFD (C(ADR)'= -2), ADR+ I is the scan switch, ADR+2 is the default project­

programmer number, and the remainder of the argument block up to the first zero word defines the default path. 

The scan switch determines whether or not the monitor scans for the file on a LOOKUP. If the switch is I, the 

monitor examines the specified directory only; higher level directories are not searched. If the switch is 2, the 

following occurs: 

1. The monitor searches the UFD or SFD specified by the path (either explicit or default path). If the 

file is found, the scan is terminatetl. 

2. If the file is not found, the monitor backs up one directory along the path and continues the scan (i.e., 

it scans the directory in which the current SFD appears). The scan is terminated when the UFD is 

searched or when the file is found. 

Scanning allows directories to be nested since any file not found in the current SFD is obtained automatically 

from a higher level directory. This is useful when a user has a default directory in use containing files he is cur­

rently working on and a higher level directory containing checked-out routines. Since SFDs are continued across 

file structures but the depth of the nesting of directories is not necessarily the same on each file structure, each 

scan searches the file structures that are: 

(1) This UUO depends on FTSFD which is normally off in the DECsystem-1 040. 

(2) Note that this function of the PATH. UUO is available even if FTSFD is turned off. 

6-36 



1. in the job's search list and 

2. have SFDs to the depth specified in the path. 

The file structures are searched in the same order as they appear in the search list. 

On an ENTER, the scan switch is ignored; if the file is found in the specified directory, it will be superseded. If 

the file is not found, it will be created at the end of the path in the specified directory whether or not a file with 

the same name appears in a higher level directory. 

When defining the additional path to be used after the user's directory path is searched (C(ADR)=-3), ADR+ 1 

indicates if SYS (bit 35 = 1) or experimental SYS (bit 34 = 1) is to be scanned, and ADR+2 is the project­

programmer number to be used for a user library. These locations are used as follows. If the file is not found in 

the user's directory path on a LOOKUP DSK:, the directory specified in ADR+2 is searched for the file. This 

directory must be a UFD and allows users with different directory paths to share a common directory of files. 

If the file is not found in the library and if bit 35 of ADR+ 1 is set, the system library (SYS: [1,4]) is searched. 

In addition on a LOOKUP SYS:, if bit 34 of ADR+ 1 is set, the directory area [1,5] is searched before the system 

library area [1,4]. The [1,5] area is called the experimental SYS area (NEW:) and can be used to separate soft­

ware that is near the end of the development and testing stages from the standard system software on the system 

library [1,4] . 

When returning a path, ADR+ 1 contains the following: 

bits 34 and 35 

bit 33=1 

the scan switch 

if experimental SYS (NEW:) is searched 

if SYS is searched bit 32=1 

bit 31=1 

bit 30=1 

bits 27-29 

if there is a user library 

if the user-supplied project-programmer number is to be ignored on 

a LOOKUP or ENTER UUO and the implied project-programmer of 

the device is to be used (e.g., [1,4] if SYS; [1,5] if NEW). The im­

plied project-programmer number is returned in ADR+2. 

the type of search list: 

o a non-standard search list (e.g., DSKA) 

1 job search list 

2 ALL search list 

3 SYS search list 

and ADR+2 through ADR+n-1 is the path. If the path is less than n-l words, a zero word is stored at the end. 

If ADR contains a device name or channel number when the UUO is called, the file structure name or ersatz 

device name is returned in ADR depending on the name specified (e.g., SYS is returned only ifC(ADR) = SYS 

and the job does not have a device with the logical name SYS). If a LOOKUP or ENTER has been done on the 

specified device or channel number, the following is returned in the argument block. 

ADR: 

ADR+I: 

ADR+2: 

ADR+3: 

ADR+m 

the SIXBIT name of the file structure or ersatz device. 

the scan switch. 

the actual project-programmer number associated with the file. 

the actual path of the file. 

o the end of the path if m <U-I. 

6-37 



If no LOOKUP or ENTER has been done, the following is returned: 

ADR: 

ADR+I: 

ADR+2: 

SIXBIT DSK or ersatz device name. 

the scan switch. 

the job's default project-programmer number (or the project-programmer number 

of the ersatz device). 

ADR+3: the default path to the file. 

ADR+m: o the end of the path if m <n-I. 

On an error return, 

AC is unchanged if the UUO is not implemented. (SFD remains a reserved extension, but all SFD code 

disappears.) The GETT AB which returns the maximum number of SFDs allowed returns 0 or fails. The 

default path is the user's project-programmer number. 

AC is 0 if the device or channel number does not represent a disk. 

AC is -I if an SFD in the path specification is not found. 

Examples 

1. This example sets the default path to [27,235,SUB) with no scanning in effect. 

MOVE 1, [XWD 5, A) 

PATH. I, 

error 

normal 

A: -2 

27,235 

SUB 

0 

2. Refer to Figure 6-6. The path plus filename for file A is X.MAC [10,63). The path plus filename 

for file B is Y.C BL [14,5). The path plus filename for file C is Z.ALG [14,5,M). 

3. Refer to Figure 6-7. The job's search list is DSKA/N, DSKB, DSKC, and the default path is [PPN, A, 

B,C, D). 

a. LOOKUP DSK: with no matches scans in order; DSKA:D (.SFD), DSKA:C, DSKB:C, DSKA:B, 

DSKB:B, DSKA:A, DSKB:A, DSKA:PPN (.UFD), DSKB:PPN, DSKC:PPN. 

b. LOOKUP DSK: FILE2 finds DSKA: FILE2 [PPN, A, B, C) . 

c. LOOKUP DSKB: FILE2, or LOOKUP DSKC: FILE2 fails. 

d. ENTER DSK: FILE9 receives an error since no file structure has both the no-create bit off and 

the directory structure [PPN, A, B, c, D). 

e. ENTER DSKA: FILEI creates the file at the end of the path on DSKA (the file designated by 

(FILE I) in diagram). 

6-38 



X·MAC y. CBl 

Z·AlG 
10-08:n 

Figure 6-6 Directory Paths on a Single File Structure 

10-0838 

Figure 6-7 Directory Paths on Multiple File Structures 

6-39 



The default path is [PPN, A, B, C] : 

a. ENTER DSK: FILE6 creates DSKB: FILE6 [PPN, A, B, C] (the file designated by (FILE6) 
in diagram). 

b. ENTER DSK: FILE2 supersedes FILE2 in DSKA: [PPN, A, B, C] . 

c. LOOKUP DSK: FILE4 fails. 

d. ENTER DSK: FILE7 supersedes FILE7 in DSKB: [PPN, A, B, C]. 

4. The user defines the following path. 

MOVE 1, [XWD 5, A] 

PATH. 1 

error 

MOVE 1, [XWD 3, B] 

PATH. 1, 

error 

A: -2 Define the default directory path. 

2 Scanning is in effect. 

10,63 The UFD [10,63]. 

NAME The SFD [NAME] 

° The default path is [1 0,63,NAME] . 

B: -3 Define an additional path. 

3 Both experimental SYS and SYS are searched. 

10,7 The user library is [10,7] . 

If the user is logged in as [10,10] and does a LOOKUP DSK: FIL TST, the following directories are searched 

in order: 

[NAME,SFD] 

[ 10,63.UFD] 

[ 10,7.UFD] 

[ 1,5.UFD] 

[ 1,4.UFD] 

job's search list. 

system's search list. 

If the user is logged in as [10,10] and does a LOOKUP DSK: PRJFIL [10,155], the following directories are 

searched: 

[ 10,155.UFD] 

[l0,7.UFD] 

[ 1,5.UFD] 

[l,4.UFD] 

job's search list. 

system's search list. 

6.2.9.2 USETI and USETO UUOs - The function of these UUOs is to notify the disk service routines that a 

particular relative block (instead of the next block in sequence) is to be used on the following INPUT or OUT­

PUT on the specified channel. USETI and USETO do not perform I/O; they simply change the current position 

of the file. Note that each INPUT or OUTPUT also logically advances the file; therefore, to reread or rewrite 

the same block a USETI (or USETO) must be given before each INPUT (or OUTPUT). On a USETO, the mon­

itor will write out all buffers whose use bit is on (FULL BUFS) before advancing the file. 

6-40 



Since the monitor reads (or writes) as many buffers as it can on INPUT (OUTPUT),.it is difficult to determine 

which buffer the monitor is processing when the USETI (USETO) is given. Thus, the INPUT (OUTPUT) follow­

ing the USETI (USETO) may not read (write) the buffercontaining the block specified with the USETI 

(USETO). However, a single buffer ring reads (writes) the desired block since the device must stop after each 

INPUT (OUTPUT). Alternatively, if bit 30 of the status word (IO.SYN) is set via an INIT, OPEN, or SETSTS 

UUO, the device stops after each bufferful of data on an INPUT (OUTPUT) so that the USETI (USETO) will 

apply to the buffer supplied on the next INPUT (OUTPUT). The calls are: 

USETI D, Nand USETO D, N 

where D is the channel number, and N designates a block relative to the beginning of the file. N can be in the 

following ranges: 

N 

1-777777(8) 

o 
-2, .... ,-10(8) 

-1 

Block Represented 

Blocks of the file 

Prime (1st) RIB 

Extended (2nd to the 8th) RIB( 1) 

Last block accessed (USETO) or end-of-file (USETl). 

Note that the 18-bit effective address used for N is interpreted as both an unsigned positive integer and a signed 

(2's complement) integer. This is required since, with extended RIBs, there can be more than 377777(8) 

(largest positive signed integer) blocks in a file. The exact interpretation of N depends upon the context of the 

USETI/USETO (Le., reading, writing, updating). 

When reading or writing a file, USETI precedes an INPUT and USETO precedes an OUTPUT (i.e., USETI is 

illegal for a non-privileged program unless a LOOKUP has been done, and USETO is illegal for a non-privileged 

program unless an ENTER has been done). However, there:.are special cases when updating a file (both a LOOKUP 

and an ENTER have been done) when USETI may be followed by an OUTPUT and USETO may be followed by 

an INPUT. The action performed on a USETI or USETO depends on the value of N. 

When N is a block number less than or equal to the current size of the file in blocks (Le., N is a block that has 

been previously written), USETI or USETO points to block N in order to read or write that block on the next 

INPUT or OUTPUT. 

When N is a block number greater than the current size of the file in blocks, USETI followed by an INPUT re­

ceives the end-of-file return (e.g., if the file is five blocks long, USETI with n=7 receives the end-of-file return). 

On a USETO followed by an OUTPUT' the monitor allocates the intervening blocks, writes zeroes in the first 

new block up to block N-I, and then writes block N. For example, if the file is two blocks long, USETO with 

N=4 writes zeroes in block 3 and the data on the OUTPUT in block 4. If the number of blocks requested cause 

the disk to be filled or the user's quota to be exceeded, as many blocks as allowed will be allocated and the 

10.BKT bit will be set in the status word. In addition, in update mode, USETI followed by an OUTPUT appends 

the data to the end of the file (i.e., makes the file larger). USETO followed by an INPUT allocates and zeroes the 

first new block up to block N-1 and then receives the end-of-file return. 

When N=O on reading, writing, and updating, USETI and INPUT read the prime RIB, and USETO and OUTPUT 

receive the 10.BKT error. In addition, in update mode, USETO and INPUT read the prime RIB, and USETI and 

OUTPUT receive the 10.BKT error. 

(1) The number of extended RIBs allowed on the system can be changed with MONGEN and can be obtained from a GETIAB table (.GTLVD, item 
23). Extended RIBs depend on FTMRIB which is normally off in the DECsystem-l040. 

6-41 



When N=-2 to -10(8), a USETI and INPUT read the indicated extended RIB (-2 is the 2nd RIB, ... ,-10(8) is 

the 8th RIB). USETO followed by an OUTPUT attempts to allocate a large number of blocks (since N is inter­

preted as an unsigned integer) and, therefore, is not recommended because the user's disk quota will probably 

be exceeded. 

When N=-I, USETO and OUTPUT rewrite the last block in which I/O was performed. USETI and INPUT re­

ceive the end-of-file return. In addition, in update mode, USETI followed by OUTPUT appends the data to the 

end ,of the file, and USETO and INPUT read the last block in which I/O was performed. 

The user can append data to the last block of an append-only file by specifying a USETO followed by an OUT- , 

PUT to the last block(l). The monitor then reads the block (of N words) into a monitor buffer, copies words 

N+ 1 through 200 from the user's buffer into the monitor buffer, and rewrites the block. The current length of 

the block can be obtained from the LOOKUP/ENTER block. It is not necessary to read the last block of the file 

before appending to it because the data already existing in the block is not changed. 

When appending data to the last block of a file, the 10.BKT bit is set and no output is done if 

1. Any block before the last block is written. 

2. The last block already contains 200 words. 

3. Fewer words are written than the current size of the block. 

If the last block is written with a buffer-mode OUTPUT, the size of the last block becomes 200 words and, there­

fore, cannot be appended to. 

Append-only files can be read only if FTAIR is on. Note that BASIC stores data at the beginning of files that it 

must read and, therefore, to run BASIC, FTAIR must be turned on. 

All uses of USETI and USETO for the disk without a prior LOOKUP UUO or ENTER DUO being issued on the 

channel will cause an illegal instruction trap. The job currently being performed will stop and the monitor will 

print the following line on the controlling terminal. 

?ILLEGAL UUO AT USER addr 

The terminal at this point will enter into the monitor mode of operation. 

6.2.9.3 SEEK UUO(2) - This UUO, when used in conjunction with USETI and USETO, allows user programs 

control over the time at which positioning operations occur. Following a USETI or USETO, positioning is to the 

cylinder containing the requested relative block within a file. 

The call is: 

SEEKAC, 

return 

; or CALLI D, 56 

D specifies a software channel number. The SEEK UUOs are honored by the monitor only if the unit for which 

they are issued is idle. If the unit is in any other state, the SEEK UUO is a no-operation. 

(l)This feature depends on FTAPLB, which is normally off in the DECsystem-1040. Therefore, a new block must be written in order to append to a fIle. 

(2)This UUO depends on FTDSEK which is normally off in the DECsystem-1040. 

6-42 



SEEK UUOs issued for public file structures are treated in the same way as private file structures. This allows 

users to debug programs using a public disk pack and later run the same programs using a private disk pack. 

The following is the proper UUO sequence for issuing a SEEK. 

For output 

a. USETO to select a block (relative or actual) 

b. SEEK to request positioning 

c. computations 

d. OUTPUT to request actual output 

For input 

a. USETI to select a block (relative or actual) 

b. SEEK to request positioning 

c. computations 

d. INPUT to request actual input. 

6.2.9.4 RESET UUO - This UUO causes files that are in the process of being written, but have not been 

CLOSEd or RELEASed, to be deleted; the space is reclaimed. If a previous version of the file with the same 

name and extension existed, it remains unchanged on the disk (and in the UFD). If the programmer wishes to 

retain the newly created file and to delete the older version, he must CLOSE or RELEASE the file before doing 

aRESETUUO. 

6.2.9.5 DEVSTS UUO - After each interrupt, FILSER stores the results of a CONI in the DEVSTS word of 

the device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer 

to Paragraph 4.10.1). 

6.2.9.6 CHKACC UUO - The CHKACC UUO provides a consistent and uniform method of determining whether 

or not a file may be accessed. User programs should not make assumptions about the access rights to a file, but 

should employ CHKACC to insure that access is permitted. This is especially true for privileged programs which 

are constrained by the access privileges of a non-privileged project-programmer number for which they may be 

performing a task. For instance, LPTSPL must check the access rights of the user issuing a PRINT command to 

verify that the user is actually allowed to read the file. 

The right to access a file is determined by: 

I. The type of access desired (e.g., read). 

2. The project-programmer number of the user desiring access to the file. 

3. The project-programmer number of the directory in which the file resides. 

4. The protection field of the file or the protection field of the directory. 

Note that access to a file is not dependent upon the filename. However, the filename is needed if a LOOKUP 

must be performed (e.g., to obtain the protection field of the file). 

6-43 



The type of access to be checked is represented by one of the following codes: 

o 

2 

3 

4 

5 

6 

7 

10 

.ACCPR 

. ACREN 

.ACWRI 

. ACUPD 

. ACAPP 

.ACRED 

.ACEXO 

. ACCRE 

. ACSRC 

Change protection. 

Rename . 

Write. 

Update . 

Append . 

Read. 

Execute only. 

Crea te in UFD . 

Read directory as file . 

The format of the call to CHKACC is: 

MOVEI AC, CHKLOC 

CHKACC AC, 

error return 

normal return 

; or CALLI AC, 100 

CHKLOC: BYTE( 18)ACCESS(9)Directory-Protection(9)File-Protection 
directory PPN 

where: 

user's PPN 

ACCESS is the code for the type of access desired. 

DIRECTORY-PROTECTION is the 9-bit protection field for the directory containing the file 

(see Paragraph 6.2.3.1). 

FILE-PROTECTION is the 9-bit protection for the file (see Paragraph 6.2.3). 

DIRECTORY PPN is the project/programmer number of the directory (UFD) containing the file. 

USER'S PPN is the project/programmer number of the user desiring access to the specified file. 

The error return is taken if the UUO is not implemented. On a normal return, AC is set to zero if access is 

allowed, and -1 if otherwise. 

For functions 0 through 6 the monitor will ignore the DIRECTORY-PROTECTION, and for functions in Tand 

10, the monitor will ignore the FILE-PROTECTION. 

The following sample code checks to see if user [36,402] has access rights to the file specified as PRIVAT.TXT 

[1206, 124] . 

6-44 



MOVEl 
HRLM 
LOOKUP 
JRST 

LDB 
HRRrv1 
nOVE 
r~o VE ~1 
!10VE 
MOVEM 
MOVEI 
CHKACC 
JRST 

AC, • ACRED 
AC,CHKLOC 
CH,LKPBLK 
ERROR 

AC, [POINT 9, FILPRO, 
AC,CHKLOC 
AC,FILPPN 
AC,CHKLOC+l 
AC,[XWD 36,402] 
AC,CHKLOC+2 
AC,CHKLOC 
AC, 
NOTIMP 

,GET CODE FOR "READ FILE" 
'STORE TYPE OF ACCESS DESIRED 
,LOOKUP PRIVAT.TXT [1206,124] 
,ERROR RETURN WHEN FILE CANNOT BE 
,FOUND 

B),GET FILE'S PROTECTION fIELD 
'STORE PROTECTION CODE 
,GET PPN OF DIRECTORY 
'STORE DIRECTORY PPN 
,GET USER'S PPN 
,SAVE USER'S PPN 
,SET UP FOR CHKACC 
,GET ACCESS RIGHTS FROM MONITOR 
,ERROR RETURN WHEN UUO NOT IMPLE­
,MENTED 

JU~lPE 

NOACCESSI 
AC,ALLQWD ,ACCESS IS ALLOWED IF AC CONTAINS 0 

,ELSE IF AC CONTAINS ~1 ACCESS 

LKPBLKI 
FILNAMI 
FILEXT: 
FILPROI 
FILPPNI 
CHKLOCI 

SIXBIT/PRIVATI 
SIXBIT/TXTI 
o 
XWD 1206, 124 
BLOCK 3 

'IS NOT PERMITTED 

6.2.9.7 STRUUO AC, or CALLI AC, SO - This UUO manipulates file structures and is intended primarily for 

monitor support programs. 

The call is: 

MOVE AC, [XWD N, LOC] 

STRUUOAC, 

error return 

normal return 

; or CALLI AC, 50 

; AC contains an error code 

; AC contains status information 

N is the number of words in the argument list starting at location LOC. For the functions with a fixed length 

argument list, N may be O. 

The first word of the argument list specifies the function to be performed. Function 0 (.FSSRC) is the only 

unprivileged function; the remaining functions are available only to jobs logged-in under [1,2] or to programs 

running with the JACCT bit set. (Refer to the Specifications section of the DECsystem-IO Software Notebooks 

for a complete description of the privileged functions and their appropriate error codes.) 

The present functions are as follows: 

Function Name 

o .FSSRC 

.FSDSL 

Argument 

Define a new search list for this job. This is the only unprivileged 

function. 

Define a new search list for any job or for the system. Privileged 

function. 

6-45 



Function 

2 

3 

4 

5 

6 

7 

10 

LOC: 
LOC+l: 

LOC+2: 

LOC+3: 

LOC+4: 

LOC+5 

LOC+6: 

Name 

.FSDEF 

. FSRDF 

.FSLOK 

.FSREM 

. FSULK 

. FSUCL 

. FSETS 

Argument 

Define a new file structure. Privileged function . 

Redefine an existing file structure. Privileged function. 

Prevent any further new INITs, ENTERs, or LOOKUPs. Privileged 

function. 

Remove file structure from system. Privileged function . 

Test and set UFD interlock. Privileged function . 

Clear UFD interlock. Privileged function .. 

Simulate disk hardware errors. Privileged function. 

MOVE AC, [XWD N, LOC] 

STRUUOAC, 

error return 

normal return 

0 ; .FSSRC 

first file structure name 

0 

status bits 

second file structure name 

0 

status bits 

The argument list consists of word triplets, which specify the new search list in order to replace the current 

search list. The current search list may be determined with the JOBSTR UUO. The first word contains a left­

justified file structure name in SIXBIT. The second word is not usedat present. The third word contains the 

following status bits: 

Bit 0 = I if software write-protection is requested for this file structure. 

Bit I = 1 if files are not to be created on this file structure unless the specific file structure is 

specified in an ASSIGN command or in an INIT or OPEN UUO. 

The user may use the MOUNT command to add a new file structure name to his search list. The MOUNT 

program 

1. Requests the file structure to be mounted (if it is not already mounted). 

2. Creates a UFD for the user if he has a logged in quota in file SYS: QUOT A.SYS on that file structure. 

6-46 



A user cannot create files on a file structure unless he or the project-programmer number specified has a UFD 

on that file structure. However, by using the .FSSRC function, the user may add a file structure name to his 

search list if the file structure is mounted and either the user has a UFD for that file structure or he does not 

want to write on that file structure. If the user attempts to delete a file structure name from his search list by 

the .FSSRC function, the monitor moves the file structure name from the active search list to the passive search 

list. The DISMOUNT command must be used to remove the file structure from the active or passive search list. 

The DISMOUNT command causes the mount count to be decremented, signifying that the user is finished with 

the file structure, and checks that the user has not exceeded his logged out quota on the file structure. 

Table 6-7 
.FSSRC Error Codes 

Symbol Code Explanation 

FSILF% 0 Illegal function code. 

FSSNF% One or more file structures not found. 

FSSSA% 2 One or more file structures single access only. 

FSILE% 3 Illegal entry in list. 

FSTME% 4 Too many entries in search list. 

FSUNA% 5 Unit not available. 

FSPPN% 6 PPN does not match. 

FSMCN% 7 Mount count greater than one. 

FSNPV% 10 Not a privileged user. 

FSFSA% 11 Structure already exists. 

FSILL% 12 Illegal argument list length. 

FSUNC% 13 Unable to complete UUO. 

FSNFS% 14 System full of file structures. 

FSNCS% 15 . Insufficient free core for data blocks. 

FSUNF% 16 Illegal unit. 

FSRSL% 17 File structure is repeated in a search list definition. 

6.2.9.8 JOBSTR AC, or CALLI AC, 47(1) - This UUO returns the next file structure name in the job's search 

list along with other information about the file structure. Programs like DIRECT use this UUO to list a user's -

directory correctly and specify in which file structure the files occur, as well as the order in which they a!e 

scanned. 

The call is: 

MOVE AC, [XWD N, LOC] 

JOBSTRAC, 

error return 

normal return 

; or CALLI AC, 47 

LOC is the address of the N-word argument. When the UUO is called, the first word should be one of the 

following: 

1. -1 to return the first file structure name in the search list. 

2. a file structure name to return the next file structure following the specified name. 

(1) In the DECsystem-l040, FTSTR is normally off so that there is only one me structure on the system. However, this UUO is implemented and 
returns the me structure name or -1. 

6-47 



3. 0 to return the file structure name immediately following the FENCE. (Refer to Paragraph 6.2.7. 

On normal return, the first word contains: 

1. the first file structure name in the search list if -1 was specified. 

2. the next file structure name appearing after the specified name or after the FENCE (if 0 was specified). 

3. 0 if the item after the specified name is the FENCE. 

4. -1 if there are no more file structure names in the search list, or the search list is empty. 

The second word contains 0 (reserved for a future argument), and the third word contains status bits. Current 

status bits are: 

Bit 0 = 1 

Bit 1 = 1 

if software write protection is in effect for this job. 

if files are not to be created on this file structure, when a multiple file 

structure name is specified in an INIT or OPEN UUO. Files can be created 

if a specific file structure or physical unit is specified. 

The following is an example of reading a job's search list. 

SETOM LoC 

LOOPI MOVE I AC,LOC 
JOBSTR AC, 
J~ST ERROR 
MOVE AC,LOC 
JUMPE AC,FENCE 
ItOJE AC,ENO 

• JRST LOOP 
LOC I -1 

o 
o 

'Place ~1 1n LOC to get 1st 
,name in search list. 
,set up AC. 
,do the UUO, 
,error return 
,qet file structure name returned, 
,jum~ if it 1s the FENCE. 
,jump if end of search list (-1). 

,LOe has next file strueture name 

,repeat With next f1le structure name, 
,f1le structure name. 
,reserVed for future use. 
,status bits. 

6.2.9.9 GOBSTR AC, or CALLI AC, 66 - This UUO returns successive file structure names in the search list 

of either an arbitrary job or the system. The GOBSTR UUO is a generalization of the JOBSTR UUO (see Para­

graph 6.2.9.8), It is a privileged UUO unless information being requested is either about the system search list 

or the jobs logged in under the same project-programmer number as the calling job's number. For example, the 

KJOB program needs information about the search lists of jobs logged in under the same project-programmer 

number as the job logging out. The privilege bits required are either JP.SPA (bit 16) or JP.SPM (bit 17) of the 

privilege word (.GTPRV). 

The call is: 

MOVE AC, [XWD N, LOC] 

GOBSTRAC, 

error return 

normal return 

; or CALLI AC, 66 

; AC contains an error code 

6-48 



When the UUO is called, AC specifics the length (N) and address (LOC) of an argument list. N may be 0, 3,4, 

or 5 where N = 0 has the same effect as N = 3. The status word is used or returned only if N = 5. The argument 

list is as follows: 

LOC: job number 

XWD proj, prog 

SIXBIT /file stmcture name/ 

o 
Status 

; job whose search 

; list is desired. 

; project-programmer 

; number of above job. 

; or -lor O. 

; currently unused. 

; status bits are the same 

; as in JOBSTR UUO. 

If the job number = - I, the number of the job issuing the UUO is used. If the job number = 0, the given project­

programmer number is ignored and the system search list is used. When the given project-programmer number 

is -I, the project-programmer number of the job issuing the UUO is used. On a normal return, the next file 

structure in the specified search list is returned in LOC + 2. If there are no more file structures in the search 

list, - I is returned in this location. 

On an error return, AC contains one of the following error codes: 

Code Mnemonic Meaning 

3 DFGIF% If LOC+2 is not 0, -I, or a file structure name in job's search list. 

6 DFGPP% If job number (LOC) and project-programmer number (LOC+ I) 

do not correspond. 

10 DFGNP% If job issuing the UUO is not privileged. 

12 DFGLN% If the length specified for the argument list is not valid. 

6.2.9.10 SYSSTR AC, or CALLI AC, 46 - This UUO provides a simple mechanism to obtain all the file struc­

ture names in the system. The proper technique to access all files in all UFDs is to access the MFD on each file 

structure spearately. Monitor support programs use this UUO to access all the files in the system. 

The call is: 

MOVEI AC, 0 

SYSSTRAC, 

error return 

normal return 

An error return is given if either 

1. The UUO is not implemented 

2. The argument is not a file structure name. 

; or MOVE ac, [SIXBIT /FSNAME/] 

; or CALLI AC .. 46 

6-49 September 1974 



On a normal return, the next public or private file structure name in the system is returned in AC. A return of 0 

in the AC on a normal return means that the list of file structure names has been exhausted. If 0 is specified as 

an argument, the first file structure name is returned in AC. The argument cannot be a physical disk unit name 
or a logical name. 

6.2.9.11 SYSPHY AC, or CALLI AC, 51(1) - This UUO returns all physical disk units in the system. The 

SYSPHY UUO is similar to the SYSSTR UUO (see Paragraph 6.2.9.10). 

The call is: 

MOVEI AC, 0 or the last unit name returned by previous 

SYSPHY 

SYSPHY AC, 

error return 

normal return 

; or CALLI AC, 51 

; not implemented or not a physical disk 

; unit name 

On the first call AC should be 0 to request the return of the first physical unit name. On subsequent calls, AC 

should contain the previously returned unit name. 

An error return is given if AC does not contain a physical disk unit name as zero. On a normal return, the next 

physical unit name in the system is returned in AC. A return of 0 in AC indicates that the list of physical units 

has been exhausted. 

6.2.9.12 DEVPPN AC, or CALLI AC, 55( 1) - This UUO allows a user program to obtain the project-programmer 

number associated with a disk device. The device argument given can be a logical device name, a physical device 

name, or one of the special devices called ersatz devices. (Refer to DECsystem-l0 Operating System Commands 

for the list of system devices.) 

When the UUO is called, AC must contain either the device name as a left-justified SIXBIT quantity, or the chan­

nel number of the d~vice as a right-justified quantity. 

The call is: 

MOVE AC, [SIXBIT /DEV /l 
DEVPPN AC, 

error return 

normal return 

The error return is taken if: 

; or MOVEI AC, channel number 

; or CALLI AC, 55 

1. The UUO is not implemented; therefore, the contents of AC remain the same on return. In this case, 

obtain the appropriate project-programmer number as follows: 

a. For the user's area, use the GETPPN UUO (refer to Paragraph 3.6.2.3). 

b. For the special ersatz devices, use the default project-programmer numbers appearing in the 

following list: 

(1) This UUO depends on FT5UUO which is normally off in the DECsystem-! 040. 

6-50 



Device Project-programmer Number 

ALG: [5,4 ] 

ALL: USER'S 

BAS: [5,1] 

BLI: [5,5] 

COB: [5,2] 

DMP: [5,11 ] 

DOC: [5,14] 

DSK: User's 

FAI: [5,15] 

FOR: [5,6] 

HLP: [2,5] 

LIB: Set by each user 

MAC: [5,7] 

MUS: [5,16] 

MXI: [5,3] 

NEW: [ 1,5] 

OLD: [1,3] 

REL: [5,11 ] 

RNO: [5,12] 

SNO: [5,13] 

SYS: [1,4 ] 

TED: [5,10] 

UNV: [5,17] 

2. The device does not exist or the channel is not INITed; therefore, zero is returned in AC. 

3. The device is not a disk; the user's project-programmer number is returned in AC. 

If a legal device is specified, the normal return is given and the project-programmer number associated with the 

device is returned in AC. However, if the user has device NEW: enabled in his search list and device SYS: is 

given as the argumenf to the DEVPPN UUO, the project-programmer number returned is [l,5] . 

The following is an example for reading a UFD if either device SYS: or the user's area is specified. 

6-51 September 1974 



MOVE1 A,16 ,GET MFD PROJECT-PROGRAMMER NUMBER 
GETTAB A, ,NO CHANGE IF NO GETTAB 

MOVE A,rl"l] , IN CASE OF LEVEL C 
MOVEM A,MFDPPN ,STORE MFD DIRECTORY NUMBER 

MOVE A,DEVNAM ,GET DEVICE NAME TYPED BY USER 
MOVEM A,MODE+l ,STORE FOR OPEN 
DEVPpN A, ,GET PROJECT-~ROGRAMMER NUMBER 

JRST GETPPX , ~OT IMpLEMENTED OR NO SUCH DEVICE 

'BACK HERE WITH IMPLIED PpN IN A 

GOTPpNI MOVEM A,PPN ,STORE PPN IMPLIED BY DEVICE NAME 

OPEN I,MODE ,TRY TO OPEN DEVICE 
JRST ERP.OR ,NOT AVAILABLE 

LOOKUP I,PPN ,TRY TO LOOKUP UFO 
JRST ERROJ~ ,NOT THERE 

IN I, ,READ FIRST BLOCK 
JRST USEIT ,GO DO USEFUL WORK 

JRST E~ROR ,ERROR OR END OF FILE 

,HERE IF OEVPPN FAIIJS 

GET'PPX I CAMN A, [SIXBlT ISYS/] 'SEE IF DEVICE NAME 51'S: 
JRST GETPPS ,YES-aGO HANDLE SYS: 
GETPPN A, ,NO-.GET OWN PPN 

JFCL ,eIN CASE OF JACCT) 
JRST GOTPPN ,OK·.PROCEED ABOVE 

GETPPSI MOVE A,Cl,,16 'FIND SYS, PPN 
GETTAB A, ,FROM MONITOR TABLES 

MOVE A,Cl"l] ,eIN CASE OF LEV, e) 
JRBT GOTPPN ,OK •• PROCEED ABOVE 

MODEl 14 'BINARY READ 
0 ,DEVICE NAME 
O"INBUP'H ,BUFFER HEADER 

PPNr 0 'DIRECTORY NAME 
5IXBIT IUFDI ,EXTENSION 
0 

MFDPPNI 1 , , 1 'LOOKUP UFO IN MFO 

6.2.9.13 DSKCHR AC, or CALLI AC, 45 - The disk characteristics UUO provides necessary information for 

allocating storage efficiently on different types of disks. Most programs are able to use the generic device name 

DSK rather than special disk names; however, this UUO is needed by special monitor support programs. 

This UUO accepts, as arguments, names o( file structures (e.g., DSKA), types of controllers (e.g., DP), controllers 

(e.g., DPA), logical units (e.g., DSKA3), physical disk units (e.g., DPA3) or logical device names (e.g., ALPHA). 

If the argument in LOC specifies more than one unit, the values returned in AC are for the first unit of the speci­

fied set. If the argument specifies more than one file structure (Le., DSK or logical device name for disk), the 

first unit of the first file structure is returned. 

6-52 



The call is: 

MOVE AC, [XWD+N,LOC] 

DSKCHRAC, 

error return 

normal return 

; N is the number of locations 

; of arguments and values starting 

; at location LOC 

; or CALLI AC, 45 

; not a disk 

On a normal return, AC contains status information in the left half and configuration information in the right 

half. The left half bits have been chosen so that the normal state is O. 

Name 

DC.RHB 

DC.OFL 

DC.HWP 

DC.SWP 

DC.SAF 

DC.ZMT 

DC.STS 

.DCSTD 

.DCSTN 

. DCSTD 

.DCSTP 

DC.MSB 

DC.NNA 

DC.AWL 

DC.TYP 

Bit 

Bit 0 = 1 

Bit 1 = 1 

Bit 2 = 1 

Bit 3 = 1 

Bit 4 = 1 

Bit 5 = I 

Bit 6 = 1 

Bits 7 & 8 

=01 

=10 

=11 

=00 

Bit 9 = I 

Bit 10= 1 

Bit 11 = 1 

Bit 12-14 

Bits 15-17 

Explanation 

The monitor must reread the home block before the next operation 

to ensure that the pack ID is correct. The monitor sets this bit when 

a disk pack goes off-line. 

The unit is off-line. 

The unit is hardware write-protected. 

The unit belongs to a file structure that is write-protected by software 

for this job. 

The unit belongs to a single-access file structure. 

The unit belongs to a file structure with a mount count that has gone 

to zero (Le., no one is using the file structure). Available in 5.02 

monitors and later. 

Reserved for the future. 

Unit status. 

The unit is down. 

No pack is mounted . 

Reserved for the future. 

A pack is mounted. 

The unit has more than on SAT block. 

The unit belongs to a file structure for which the operator has requested 

no new INITs, LOOKUPs, or ENTERs; set by privileged STRUUO 

function. 

The file structure is write-locked for all jo bs. 

Reserved for future expansion. 

The code identifies which type of argument was passed to the monitor 

in location LOC. 

6-53 



Name Bit 

DC.DCN Bits 18-20 

DC.CNT Bits 21-26 

.DCCFH =1 

.DCCDP =2 

DC.CNN Bits 27-29 

DC.UNT Bits 30-32 

DC.UNN Bits 33-35 

Explanation 

Data channel number that software believes hardware is connected to; 

first data channel is O. 

Controller types: 

FH (Burroughs disk, Bryant drum) controller RC 10 

DP (Memorex disk packs) controller RPlO 

Controller number; first controller of each type starts at 0 (e.g., 

DP A = 0, DPB = 1) 

Unit type; a controller-dependent field used to distinguish various 

options of a unit on its controller. 

If bits 21-26 and bits 30-32 then type is 

1 

2 

2 

o 

2 

RD 1 0 Burroughs disk (.DCUFD) 

RMlOB Bryant drum (.DCUFM) 

RP02 disk pack (.DCUD2) 

RP03 disk pack (.DCUD3) 

Physical unit number within controller; first unit is O. 

The user program supplies in location LOC a left-justified, SIXBIT disk name which,may be one of the following: 

.DCTDS 0 generic disk name 

.DCTAB subset of file structures because of file structure abbreviation 

.DCTFS 2 file structure name 

.DCTUF 3 UI),it within a file structure 

~DCTCN 4 controller type 

.DCTCC 5 controller 

.DCTPU 6 physical disk unit name 

or a logical name for one of the above assigned by the ASSIGN or MOUNT monitor command. 

On a normal return, the monitor returns values in the following locations: 

LOC (.DCNAM) The argument name. 

LOC+l (.DCUFT) The number of blocks left of the logged in job quota before the 

UFD of the job is exhausted on the uni~ specified in LOC. If 

negative, the UFD is overdrawn. If the negative number is 

400000 000000, the UFD has not been accessed since LOGIN; 

therefore, the monitor does not know the quota. 

LOC+2 (.DCFCT) The number of blocks on a first-come first-served basis left for all 

users in the file structure. 

LOC+3 (.DCUNT) The number of blocks left for all users on the specified unit. 

LOC+4 (.DCSNM) The file structure name to which this unit belongs. 

6-54 



LOC+5 

LOC+6 

LOC+7 

LOC+I0 

LOC+ll 

LOC+12 

LOC+13 

LOC+14 

LOC+15 

LOC+16 

LOC+17 

(.DCUCH) 

(.DCUSZ) 

(.DCSMT) 

(.DCWPS) 

(.DCSPU) 

(.DCK4S) 

(.DCSAJ) 

(.DCULN) 

(.DCUPN) 

(.DCUID) 

(.DCUFS) 

Characteristic sizes 

1. Bits 0-8 are the number of blocks/ cluster (DC.UCC). 

2. Bits 9-17 are the number of blocks/track (DC.UCT). 

3. Bits 18-35 are the number of blocks/cylinder (DC.UCY) (see 

Appendix F). 

The number of I 28-word blocks on the specified unit. 

The mount count for the file structure. The mount count is the 

number of jobs that have done a MOUNT command for this file 

structure without executing a DISMOUNT command; it is a use 

count. 

The number of words containing data bits per SAT block on this 

unit. 

Number of SAT blocks per unit. 

Number of K allocated for swapping. 

Zero if none or more than one job has this file structure mounted. 

XWD -1, ,n if only job n has file structure mounted bit it is not 

single access. XWD 0, , n if job has file structure mounted and it 

is single access. 

The unit's logical name (e.g., DSKBO). 

The unit's physical name (e.g., DPAO). 

The unit's ID (e.g., 2RP003). 

The first logical block used for swapping on this unit. 

6.2.9.14 DISK. AC, or CALLI AC, 121 - The DISK. UUO is a general-purpose call designed for setting and 

examining parameters of the disk and file systems. Its present function allows the user to assign a priority for 

disk operations (data transfers and head positionings) either for a user I/O channel or for his job (all I/O chan­

nels). Therefore, when a disk operation is initiated, the request with the highest 'priority is selected. If there is 

more than one request with the same priority, the one most satisfying disk optimization is chosen (refer to 

Chapter 8). 

The range of permissible disk priorities is -3 to +3 with 0 being the normal timesharing priority. Thus, a job can 

request a lower than normal priority (e.g., when the job is a background job). The maximum priority (greater 

than 0) that the user is allowed to assign is set by bits 1 and 2 (JP.PRI) 'of the privilege word .GTPRV~ 

The call is: 

MOVE AC, [XWD function, ADR] 

DISK. AC, 

error return 

normal return 

; or CALLI AC, 121 

6-55 



The error returns are: 

o UUO not implemented 

-1 DUILF% Illegal function 

-2 DUILP% Illegal priority 

The present function is: 

Function Name Description 

o .DUPRI Set the disk priority 

ADR contains, in the right half, the desired priority (-3 to +3) and in the left half, one of the following: 

LH (ADR) = n 

LH (ADR) =-1 

LH (ADR) =-2 

Sets the priority for channel n (n is from 0 to 17) 

Sets the priority for all channels OPENed by the job. 

Sets the priority for the entire job. 

When a priority is set for a channel, it overrides any priority set for the job and remains in effect until the chan­

nel is RELEASed. When set for the job, the priority remains in effect until reset by another DISK. UUO or 

the SET DSKPRI command (refer to DECsystem-1 0 Operating System Commands). 

6.2.9.15 Simultaneous Supersede and Update - Files that may be simultaneously superseded or updated by 

several different users should be treated with care. The problem arises when one user has a copy of information 

to be superseded by another user. For example, file F contains a count of the number of occurrences of a certain 

event. The count is 10 at a given time. When two users observe separate instances of the event, each tries to in­

crement the count. 

Supersede - Incorrectly 

Job 1 

LOOKUP A,F 

READ COUNT (=10) 

ADD 1 (=11) 

ENTERB,F 

WRITE OUT (= 11) 

CLOSE B, 

In this example, job 2 ignored job 1 's increment. 

Job 2 

LOOKUPC, F 

READ COUNT (=10) 

ADD 1 (=11) 

ENTERD, F 

ENTERD, F 

WRITE OUT (=11) 

CLOSE D, 

6-56 

(Fail) 

(Succeed) 

September 1974 



Supersede - Correctly 

Job 1 

ENTER B, F 

LOOKUP A, F 

INPUT A, (= 10) 

ADDI (=11) 

OUTPUT B, (=11) 

CLOSE B, 

Job 2 

ENTERD, F 

ENTERD, F 

LOOKUPC, F 

INPUT C, (=11) 

ADDI (=12) 

OUTPUT D, (=12) 

CLOSE D, 

(Fail) 

(Succeed) 

In this example, both jobs perfonned the ENTER FIRST; therefore, incorrect copies were not made and the in­

cremen t of each job was recorded properly. 

The similar problem with an update can be avoided by never using the information returned by the LOOKUP: 

Job 1 

LOOKUPA,F 

INPUT A, 

ENTER A, F 

OUTPUT 

CLOSE 

6.2.10 File Status (Refer to Appendix D) 

The file status of the disk is shown below: 

Bit 18 = IO.IMP 

Job 2 

LOOKUPB, F 

INPUT B, 

ENTERB,F (Fail) 

Here any information 

from the LOOKUP 

and INPUT must be 

discarded. 

1. INPUT UUP attempted on a read-protected file. 

2. INPUT UUO when no LOOKUP was done (or super­

USETI/USETO previously attempted by non privileged 

user) 

3. OUTPUT UUO when no ENTER was done (or super­

USETI/USETO previously attempted by non privileged 

user) 

4. Software-detected checksum error 

5. Software-detected redundancy error in SAT block or RIB, or 

6-57 



Bit 19 = 10.DER 

Bit 20 = 10.DTE 

Bit 21 = 10.BKT 

Bit 22 = 10.EOF 

Bit 23 = 10.ACT 

Bit 29 = 10.WHD 

6.2.11 Disk Packs 

6. Buffered mode I/O attempted after super-USETI/USETO. 

7. OUTPUT UUO attempted on a write-locked unit. 

Search error, power supply failure. 

Disk or data channel parity error. Checksum failure on INPUT. 

1. Quota is exhausted (past overdrawn) 

2. File structure is exhausted. 

3. RIB is full. 

4. Super-USETI/USETO block is too large for the file structure. 

5. More than 777777 blocks were read with one super - -USETI/ 

USETO. 

6. Block number specified is too low for writing in a file that 

has an append protection code (4). The block number must 

be greater than the current highest block number of the file. 

Not set on a USETI or USETO. 

7. A super-USETI or USETO was issued by a non-privileged 

program. 

EOF encountered on INPUT. No special character appears in the 

buffer. 

Device is active. 

Write disk pack headers 

A disk pack system combines disk and the DECtape features. Some packs (similar to individual DECtapes) are 

designed to be private, assignable, and removable. The other packs make up part or all of the public disk storage 

area where system programs and user files are stored. These disk packs belong to file structures in the storage 

pool and cannot be assigned to any single user. The system library and shared on-line storage are maintained, 

and swapping storage is assigned within the public disk pack area. 

The only distinction between public and private packs is that private packs are intended to be removed from the 
system.during regular operation. Public packs usually stay on-line all the time. However, the file structure for­

mat for public and private disk packs is identical. 

User programs can exercise much greater control over private packs. For example, a program may attempt to 

position the arms of disk packs in anticipation of future I/O (refer to Paragraph 6.2.9.3). This capability is use­

ful to a program that is aware of the contents of a disk and is able to use this information to optimize position­

ing. The program may also specify the position of files on the disk by using the allocate arguments of the ex­

tended LOOKUP, ENTER, and RENAME UUOs. 

Private packs may be accessed by more than one job (multi-access) or restricted to only one job (single access). 

To access a private file structure, the user must type the MOUNT monitor command. If the private file structure 

6-58 



is already mounted, on-line, and multi-access, the user receives an immediate response and may start using the 

private pack. When the user is finished using the private file structure, he should type the DISMOUNT monitor 

command. If no other job is using the file structure, a message is typed to the operator informing him that the 

drives belonging to the file structure are free. 

6.2.11.1 Removable File Structures - All file structures are designed as if they could be removed from the 

system; therefore, disk packs are handled the same as other types of disks. 

6.2.11.2 Identification - Disk packs have identifying information written on the home block, a block on every 

unit identifying the file structure to which the unit belongs and its position within the file structure. Part of this 

information is the pack ID, a one- to six-character SIXBIT name uniquely identifying the disk pack. The MOUNT 

and OMOUNT programs check that the operator has mounted the proper packs by comparing the pack ID in the 

home block with the information stored in the system administration file STRLST.SYS. 

6.2.11.3 IBM Disk Pack Compatibility - The data format of IBM disk packs has variable-length sectors and no 

sector headers. DEC format has fixed-length sectors (128 words) and specially written sector headers. Latency 

optimization is employed to improve system throughput (refer to Paragraph 8.3). DEC's significantly simpler 

hardware controller is used without reducing user capabilities. 

To transfer data from an IBM pack system to a DECpack system, a simple program in a higher-level language 

should be written for both machines. The program then reads the IBM disk pack on the IBM computer and 

writes the files onto magnetic tape. The magnetic tape is then transferred to a DEC computer and read by an­

other program, which writes the files onto the DEC RPO 1, RP02, or RP03 packs. 

6.3 SPOOLING OF UNIT RECORD I/O ON DISK 

Devices capable of spooling (card reader, line printer, card punch, paper-tape punch, and plotter) have an as­

sociated bit in the job's .GTSPL word (refer to Paragraph 3.6.3.4.10). If this bit is on when the device is 

ASSIGNed or INITed, the device is said to be in spool mode. While in this mode, all I/O for this device is inter­

cepted and written onto the disk rather than onto the device. System spooling programs later do the actual I/O 

transfer to the device. 

Spooling allows more efficient use of the device because users cannot tie it up indefinitely. In addition, since 

the spooling devices are generally slow and the jobs that are to be spooled are usually large, the jobs do not spend 

unnecessary time in core. 

6.3.1 Input Spooling 

If a LOOKUP is given after the IN IT of the card reader, it is ignored and an automatic LOOKUP is done on the 

first INPUT, using the filename given in the last SET CDR command and the filename extension of .CDR. (This 

action is also taken if no LOOKUP is given.) If the automatic LOOKUP fails, the INPUT returns with bit 21 

(IO.BKT) and bit 22 (lO.EOF) on. After every automatic LOOKUP, the name in the input-name counter .GTSPL 

(refer to Paragraph 3.6.3.4.10) is incremented so that the next automatic LOOKUP will use the next filename in 

order. 

The ordering of the input names in .GTSPL is as follows: 

QAA, ... , QAZ, QBA, ... , QBZ, ... RAA, ... , RAZ, ... ZZZ 

The next name after ZZZ begins with the SIXBIT character after Z (i.e., [AA]). 

6-59 



6.3.2 Output Spooling 

If an ENTER is done, the filename specified is stored in the RIB in location .RBSPL so that the output spooler 

can label the output. Therefore, programs should specify a filename, if possible. 

If an ENTER is not done, an automatic ENTER is given, using a filename in the general form 

xxxyyy.zzz 

where xxx is a 3-character name manufactured by the monitor to make the 9-character name unique. 

yyy is 

1. an appropriate station number Snn if a generic device name is INITed, or 

2. a unit number if a specific unit is INITed. 

zzz is the generic name of the device-type (LPT, CDP, PTP, or PL T). 

Output spooling should not concern the user because all requests are queued when the user logs off the system. 

The files are moved to the output queues before the logged-out quota is computed. 

6-60 September 1974 



CHAPTER 7 

INTER-PROCESS 
COMMUNICATION FACILITY 

7.1 INTER-PROCESS COMMUNICATION FACILITY (IPCF) 

The Inter-Process Communication Facility (IPCF), a feature of the DECsystem-10 Monitor (5.07 and later), 

provides a capability for communication between jobs running on the system. This communication is accom­

plished by the use of three UUO's: IPCFS., IPCFR., and IPCFQ. (Refer to Paragraphs 7.1.6, 7.1.7, and 7.1.8 

for complete descriptions of these UUO's.) 

Jobs communicate by sending "packets" of information (using the IPCFS. UUO) that contain a destination and 

a return address, some flags, and data. The receiver of a packet can find out if a packet has been sent (IPCFQ.) 
and retrieve it (IPCFR.). 

Each job sending a packet declares a symbolic name and acquires a Process ID (PID). (The name/PID relation­

ship is similar to that of the assembly language label/address relationship.) A PID is a concise, unique identifier 

for the sender and receiver and is associated with both the symbolic name and the job number. The job acquires 

this PID through the [SYSTEM] INFO facility of IPCF which may be used to find out other information: names 
associated with other PID's, PID's for other names, etc. 

When receiving a packet, a job will have a "mailbox" in the form of a short linear FIFO queue. Packets from a 

sender (or senders) are put in this queue and remain until the receiving job retrieves them. Many applications 

require a more complex queueing structure; this can be built within the receiver's program. 

A typical example of the use.of IPCF might be a program running a special I/O device such as a photo­

composition machine. The program takes disk files as input, performs some character manipulation and produces 

output on the photo-composition machine. The program runs continuously and whenever it finishes with one 

disk file, it waits until another is provided. In this example, any job in the system could, using IPCF, send the 

names of files to be output and any instruction. Return messages might indicate the length of time required to 

output the requested file, report completion of the task or list accounting charges. 

More complex communication is possible using IPCF, but the example described is indicative of the process. 

IPCF will most likely be used for communication between user jobs and special system jobs, but is available for 

general use. 

Note that IPCF is not directly accessible at the monitor command level and has no connection with the SEND 
command. 

Additional information on the basic concepts of inter-process communication is contained in Process Communi­

cation Pre-Requisites or the IPC Set-Up Revisited, M.J. Spier, Proceedings of the 1973 Sagamore Computer 
Conference on Parallel Processing, pp. 79-88. 

A sample program illustrating the use of IPCF is shown in Paragraph 7.1.10. 

7-1 September 1974 



7.1.1 Packets 

A packet consists of 36-bit words that are passed between jobs in order to accomplish an IPCF communication. 

A packet contains a four-word descriptor block (containing flags, the sender's PID, the receiver's PID, the length 

of the packet and a pointer to the start of the data portion of the packet) and data (a message). Figure 7-1 shows 

a sample layout of a packet. 

Packet 

Word 0 

2 

3 

Flags 

Sender's PID 

Receiver's PID 

Length of packet I Start of data 

Lf Data (Message) I 
Figure 7-1 Sample Layout of a Packet 

Packet 

Descriptor 

Block 

On systems with the virtual memory option (6.01 monitor and later), the message portion of a packet can con­

sist of either words or one page. (A page contains 512 decimal or 1000 octal words.) 

The maximum length of the message portion of a non-page packet may be found by referring to the %IPCML 

(.GTIPC 0,,77) entry of the GETTAB UUO table. (Typically, the maximum length is set to approximately 12 

words in order to limit monitor storage.) If large amounts of data are to be sent, the message portion of the 

packet may be used as a pointer to a file containing the data. 

7.1.2 Process ID (PID) 

A PID is a 36-bit value that substitutes for a user-declared symbolic name. The PID serves as a destination or 

source address for a packet and remains assigned to the name as long as the user wishes to use that name. The 

association between a PID and a name is always released when the job logs off the system or through a request 

to [SYSTEM] INFO. Alternatively, the job may request that the association be freed when a RESET UUO is 

executed. After a PID is released, the same value is not re-used. This protects against any messages being sent 

to the wrong job by accident. 

The user acquires a PID by declaring a name (i.e., by notifying [SYSTEM] INFO of this name) and requesting 

that a PID be assigned to the name. The name cannot duplicate other names in use at the same installation and 

has certain restrictions. (See Paragraph 7.1.9 for details.) Figure 7-2 shows a sample request to INFO to get a 

PID. 

When using the page mode option (virtual memory monitors), ADDR will be a page number (1-511). In most 

uses of IPCF, the PID and job number may be used interchangeably, but this is not recommended. The fact 

that the PID is unique ensures the validity of the source and destination addresses of the packet. For instance, 

if the job number is used instead of a PID and the intended receiver has logged out, the job that receives the 

packet may not be the intended receiver. 

7-2 September 1974 



Word 0 Flag , 

2 

3 

1-_____ 0 ____ ---1' (My PID) Packet descriptor 
(see Table 7-4) ) 

.--__ P_I_D_O_F_IN_F_O_---I '" (Can be 0) Block 

addr 0 
1 

2 

3 

4 

5 

6 

7 addr 

MYREQ I .IPCII 
PHOTO 

COMP 

ACME 

PRESS 

5MAR 

#3365 

h 

I ...... 

(assign name and return PID 

see Table 7-5) 

Words 1-6 contain my name 

Message 

Currently, each PID has only one name associated with it, but each job may have several PID's. Jobs with the 

special IPCF privilege can assign PID's; ordinary jobs can get a PID only through requests to [SYSTEM] INFO. 

If the job sends a packet and specifies the sender's PID as 0, it indicates the sender is the originator of the re­

quest. If the sender's PID is associated with another job, a duplicate of any answer will be sent to the PID 

specified. 

7.1.3 Queue 

The monitor keeps a linear queue (the "mailbox") for each job using IPCF. The queue holds a packet (or packets) 

until the job is ready to retrieve the packet. The queue is not created until another job sends an IPCF packet to 

the job and does not occupy any space until that time. 

The maximum number of packets allowed in a queue at anyone time is determined by a "receive" quota that 

may be set at each installation for each user. (If no quota is set by the installation, the standard default is five.) 

The receiver should always endeavor to empty his queue promptly to avoid losing (because of a full queue) 

packets sent to him. In addition, each outstanding packet occupies monitor space which may become exhausted 

even if the receive quota is not exceeded. 

7.1.4 [SYSTEM]INFO 

The [SYSTEM] INFO facility acts as a central information utility for IPCF and performs several functions con­

nected with names and PID's. [SYSTEM] INFO will, on request, assign a PID, find a name associated with a 

PID, assign a name, or drop PID's associated with names. 

The IPCFS. VUO is used to send a packet to INFO with the message portion of the packet containing the request. 

This request must be in the format shown in Table 7-1. 

The PID of [SYSTEM] INFO may be obtained by sending a request to the IPCF Controller [SYSTEM] IPCC. 

(See Paragraph 7.1.5 for a complete description of IPCC.) It is usually not necessary to determine INFO's PID 

since a destination PID of zero implies INFO is the destination. 

7-3 September 1974 



Offset 

o 

2-7 

CODE 

FUNCTION 

Table 7-1 

[SYSTEM] INFO Request Fonnat 

(Message Portion of Packet) 

Content 

CODE, ,FUNCTION 

PID of job to receive duplicate copy of response (or 0) 

FUNCTION Argument 

A user-declared quantity that will enable the user to associate an answer with 

a request. If no answer is expected, it is not necessary to use a CODE and the 

CODE field should contain a zero. 

One of seven operations that a user may request [SYSTEM] INFO to perform. 

FUNCTION and FUNCTION argument are shown in Table 7-3. 

Any answer from [SYSTEM] INFO will be in the form of a packet sent to the requester with the message portion 

of the packet in the same format as the request. The following shows the response format: 

Offset Content 

0 CODE, ,FUNCTION (copied from the request) 

I Response 

7.1.5 IPCF Controller ([SYSTEM] IPCC) 

The IPCF Controller ([SYSTEM] IPCC) supports a number of functions and will, on request, enable (or disable) 

a job for receiving packets, give the PID of [SYSTEM] INFO, create a [SYSTEM] INFO, destroy a PID, create a 

PID or set a send/receive quota for a job. Table 7-4 shows all of the [SYSTEM] IPCC functions. 

To send a request to [SYSTEM] IPCC, a packet is sent (using the IPCFS. UUO) with the message portion of the 

packet in the format as shown below. 

Offset 

0 

l-n 

CODE 

FUNCTION 

Content 

CODE, ,FUNCTION 

FUNCTION argument 

A user-declared quantity that will enable the user to associate an answer 

with a request. If no answer is expected, it is not necessary to use a CODE 

and the CODE field should contain a zero. 

One of several operations that a user may request [SYSTEM] IPCC to perform. 

FUNCTION and FUNCTION argument are shown in Table 7-4. 

The PID of IPCC is obtained by referring to the %IPCCP (.GTIPC 5 , , 77) entry of the GETI AB table. 

7-4 September 1974 



The request to IPCC should be long enough for any reply to fit into the same space. (The maximum length of 

a request to IPCC is defined at monitor generation time.) The format of the reply from [SYSTEM] IPCC is 

shown below. 

Offset Content 

0 CODE, ,FUNCTION (copied from the request) 

l-n Response 

7.1.6 IPCFS. UUO or CALLI AC, 143 

The IPCFS. UUO is used to send an IPCF packet. Each packet has a four-word descriptor block in the following 

format: 

Offset Name Meaning 

o Flags (See Table 7-2) 

Sender's PID 

2 PID of intended receiver 

3 

.IPCFL 

.IPCFS 

.IPCFR 

.IPCFP Message length, ,address of message 

.IPCFS may be a PID, a job number or zero . 

.IPCFR may be a PID, a job number or may be zero if the intended receiver is [SYSTEM]lNFO. 

When the appropriate "indirect bits" are set in word 0, .IPCFS and .IPCFR contain the address of the location 

where the PID is to be found, rather than the PID itself. 

On systems with the virtual memory option, an IPCF user may specify "page mode" by setting a flag in word 0 

of the packet descriptor block. If this flag is set (Bit 19, IP.CFV), the message length (.IPCFP) should always be 

specified as octal 1000 and the address of the message should be a page number (1-511). 

If there is room in the receiver's queue, for a packet being sent, it is put in the queue. If there is no room, the 

UUO will take the error return (not block). Even when the UUO gives the successful return, there is no guarantee 

that the message has been received, and the sender should always code to be able to handle a return packet indi­

cating that the packet that was sent was not delivered. This non-delivery message might be generated if the re­

ceiver dropped his PID or logged out before the packet was received. Non-delivery is indicated (on a return 

message) if the IP .CFM field in word 0 of the packet descriptor block is set to 1. 

-Thefonn-of-an-IPCFS. call is:--- -----

MOVE AC, [XWD N,LOC] 

IPCFS. AC, 

error return 

normal return 

; or CALLI AC, 143 

N is the number of words in the packet descriptor block at LOC (must be four) 

LOC is the location (word address) of the packet descriptor block 

7-5 September 1974 



On an error return, an error code will be either in the AC or in the flag field (bits 24-29, IP.CFE) of the packet 

descriptor block. (See Table 7-8 for a list of error codes.) 

Using the page mode option (a page is sent), the page is removed from the user's addressing space and if an at­

tempt is made to reference it afterwards, an illegal memory reference (page fault) error will result. 

Example: 

MOVE 
IPCFS, 

POPJ 
JRST 

• 

T1,[4"LOC] 
Tl, 
P, 
.POPJ1# • 

,LOAD SIZE"ADR OF DESC, BLOCK 
rSEND THE MESSAGE 
,ERROP-RETURN WITB CODE IN T1 
,GOOD RETURN 

z.,OC, IP,CF'R ,INDIRECT RECEIVER 
, SEND FRO~~ US o 

PIOHIM ,TO PIO IN PIDHIM 
·Oe"MSG ,SEND 8 WORDS AT MsG 

7.1.7 IPCFR. UUO or CALLI AC, 142 

The IPCFR.UUO is used to receive an IPCF packet. Each packet has a four-word descriptor block in the follow­

int format: 

Offset 

o 

2 

3 

Name 

.IPCFL 

.IPCFS 

.IPCFR 

.IPCFP 

Meaning 

Flags (see Table 7-2) 

Sender's PID 

Receiver's PID (filled in by sender) 

Message length, ,address 

.IPCFS will be a PID or job number . 

.IPCFR will be a PID or job number . 

.IPCFP specifies the length and location of a block of core (or a page number) 

in which to receive the packet from the input queue. 

The format of the call is: 

MOVE AC, [XWD N, LaC] 

IPCFR. AC, 

error return 

normal return 

I 

; or CALLI, 142 

N is the number of words in the packet descriptor block at LaC (must be four) 

LaC is the location of the packet descriptor block. 

7-6 



On systems with the virtual memory option, an IPCF user may specify "page mode" by setting a flag in word 0 

of the packet descriptor block. If this flag is set (bit 19, IP .CFV), the message length (JPCFP) should always be 

specified as octal 1000 and the address should be a page number (1-511). If the packet to be received is in page 

mode, and the packet descriptor block ofIPCFR. UUO doesn't have bit 19 set, doesn't specify the length as 1000 

or doesn't specify a page number for the address, an error will result. When a page is received, it is put in the 

user's addressing space and then may be referenced. 

The user should "reserve" pages in his addressing space to receive packets. (Refer to the PAGE UUO for infor­

mation on creating and deleting a page in the address space.) 

The user also specifies in his call whether or not to block if no packet is in the input queue (bit 0, IP.CFB in 

word 0 of the packet descriptor block). If the process blocks, then it is placed in the monitor's SLEEP queue 

with a HIBER-style wakeup condition of IPCF. 

Any job can send any message to any other job. Therefore, it is important that the receiver be able to discard 

"junk mail". In examining for "junk mail", the user can 

1. use the IPCFQ. uuo to check the sender (to see if he wants to receive "mail" from that sender) 

2. use the IPCFQ. uuo to check the length of the packet (to see if he wants a packet of that length) 

3. check the message and if not interested, simply ignore the message (or any request). 

If the packet is too big to receive and bit 4 of word 0 (lP.TTL) is set, as much of the packet as will fit in the 

space specified will be received and the rest of the packet will be lost. If the IPCFR. UUO is issued, the block 

specified to receive the packet is not long enough and IP .TTL is not set, the packet will remain in the queue and 

the error return will be taken. A simple method for discarding an unwanted packet is to set IP.TTL and specify 

a length of zero. 

On a successful return, the AC will contain an "associated variable" (LH= length is words, RH=flags from packet 

descriptor block) for the following entry (the top packet) in the queue. If the queue is now empty the associated 

variable will be zero. (This associated variable is the same as that of the IPCF interrupt and should be used to 

update the IPCF receive status.) 

Any job that is disabled for receiving packets may still receive any packets already in the queue but will appear 

to be disabled to any user attempting to send. 

7.1.8 IPCFQ. UUO or CALLI AC, 144 

The IPCFQ. uuo is used to "query" the status of the input queue and returns information in the packet descriptor 

block about the next packet in the queue. 

The format of the packet descriptor block is: 

Offset Name Meaning 

o JPCFL Flags for top packet in queue (see Table 7-2) 

.IPCFS Sender's PID 

2 .IPCFR Receiver's PID 

3 .IPCFP Length of top packet, ,length of queue 

7-7 September 1974 



The format of the call is: 

MOVE AC, [XWD N,LOC] 

IPCFQ. AC, 

error return 

normal return 

; or CALLI AC, 144 

N is the number of words in the packet descriptor block (must be four) 

LOC is the location of the packet descriptor block. 

Error returns are shown in Table 7-4. 

IPCFQ. never blocks but only reads out the status of the caller's receive queue. 

7.1.9 USING IPCF 

The following flow chart shows the general process of sending and receiving a packet. 

The user should keep in mind that there are two levels in the send/receive transaction: the UUO level and the 

message level. The UUO level invokes setting up the UUO call with the correct packet descriptor block. For 

instance, if the user specifies "page mode" in word 0 of the flag field, the "start of data" in the right half of 

word 3 should be a page number. The message level involves a special format only if the request is to 

[SYSTEM] INFO. For instance, the function must be inserted according to Tables 7-3 and 7-4 and the proper 

format for the name sent to INFO must be followed. 

There are also two levels of PID quotas. The monitor keeps a PID table of all PID's currently in use. 

[SYSTEM] INFO keeps a list of the PID's currently assigned to each user and the PID quota. (Currently, each 

job's quota of PID's is 2). The user who does not expect to receive an answer from his request is not required 

to have a PID. 

The send and receive quotas may be set (by the system administrator) for all users at an installation or for cer­

tain users (using the .IPCSQ function in a request to IPCC). The send quota for a job may be set at zero or 

"unlimited" . 

If the IPCF user is enabled for receiving a software interrupt, he will receive an interrupt when a packet is put 

into his receive queue. (For more information on the Software Interrupt System, refer to Paragraph 3.1.3). 

If the IPCF user is not enabled to receive a software interrupt, he must check (every few milliseconds) to see if 

the packet has been put into the queue. 

It is possible to give any job the privileges normally associated with [SYSTEM] INFO. This would usually be 

done to create a private network controller such as a transaction processing control program. Privileges are 

invoked by programs setting the privilege bit (bit 18 of word 0 of the packet descriptor block, IP .CFP). A 

privileged job may create or drop a PID. 

[SYSTEM] INFO may be set up as a public or private INFO. All users on a system would have access to the 

public INFO but only certain jobs would have access to the private INFO. If a request is made to IPCC for the 

PID of INFO, the job will get the PID of the INFO it has access to. If using the private INFO, zero is the default 

PID and a privileged job can find out the PID of the public INFO (and use it) by referring to the %IPCSI 

(.GTIPC 1 , , 77) with the GETTAB UUO. 

7-8 September 1974 



-J 

'" 

No PID needed for sender if: 
1. Sender has one 
2. Sender doesn't need an 

answer 

No PID needed for receiver if: 
1. Sender knows receiver's 

PID 
2. Sending to INFO and using 

o 
NO 

Send packet 
(JPCFS.I 

YES' 

Implement program 
so it will be able to 
handle any return 
packet 

E 

Send name to INFO 
with request for a 
PID. (JPCFS.) 

INFO assigns your 
PID and sends it back 

(
alternativ.eIY, use ) rYES 
software Interrupt 

Retrieve it. 
(JPCFR.I 

Get your PID from 
word 1 of message. 

Get Receiver's PID 

Send name or job 
number to INFO 

INFO finds PID 
and sends it back 

YES 

Retrieve it. 
(JPCFR.I 

( 
alternativ.elY, use ) 
software Interrupt 

Get PID from 
word 1 of 
message 

10-1283 



Table 7-2 

Packet Descriptor Block Flags 

Bit Name Meaning Related UUO 

0 IP.CFB Don't block IPCFR. 

1 IP.CFS Indirect sender's PID IPCFS. 

2 IP.CFR Indirect receiver's PID IPCFS. 

3 IP.CFO Allows one "send" above quota IPCFS. 

4-17 Reserved for future use (must be zero). 

18 IP.CFP Request is privileged(*) IPCFS. 

19 IP.CFV Page mode - indicates the message is a page. For a receiver, 

this bit must be set for the top pacj<.et in the queue if it is in 

page mode. An error is returned on a receive if this bit is not 

set to correspond to the top message in the queue. 

20-23 Reserved for future use. (Must be 0) 

24-29 IP.CFE Error code field. See Table 7-5 for a list of error codes. IPCFR. 

IPCFQ. 

IPCFS. 

30-32 IP.CFC System and sender code. IPCFR. 
(Privileged) IPCFS . 

.IPCCC 1 = S end by IPCC IPCFQ . 

.IPCCF 2 = Sent by public INFO 

.IPCCP 3 = Sent by private INFO 

33-35 IP.CFM Special message return. IPCFR. 

(privileged) IPCFS. 

If = 1, packet not delivered . IPCFQ. 
.IPCFN 

If = 0, normal delivery. 

If the packet is undeliverable, the packet is sent back to the 

sender with this field set to 1. 

Table 7-3 describes the functions for a request to [SYSTEM] INFO. Unless specifically stated, the PID and job 

number can be used interchangeably. If the request sent to [SYSTEM] INFO is for action to be performed for 

another job, the requester must be privileged and any answer will be sent to the affected job. 

All requests to INFO contain in word 1 the PID (or job number) to receive a duplicate copy of a successful 

answer. If word 1 = 0, the answer is sent only to the sender of the request. 

(*)1he monitor will allow the sender/receiver to set this bit only if the job has the IPCF privilege. This bit indicates that the associated packet has a 
privileged request. If the receiver sets this bit (and has the IPCF privilege) then IPCFR. and IPCFQ. will return the setting of the bit in any reply. If 
not set, then the bit will be zero when the packet is copied to the user's queue. If the job is not privileged and this bit is set, an error is returned. 

7-10 September 1974 



The symbolic name is limited to 30 characters and cannot contain any control characters except TAB (octal code 

11). In order to initiate communication between jobs, there should be a mutual understanding between the two 

jobs of the symbolic names to be used. This frees the communications procedure from any dependencies on sys­

tem characteristics (such as job numbers) that might change between executions. 

Examples: 

[SYSTEM] PHOTOCOMP 

FILEPROCESSOR[ 10,1521 ] 

PHOTOCOMP [SYSTEM] 

TEST PROGRAM ['ANY', 151] 

In order to prevent a malicious or careless user from assigning a name that you want, a small restriction is placed 

on the kinds of names that may appear within square brackets. The only things that may appear are: 

[PROJ.#, PROG.#] 

['ANY', PROG.#] 

['ANY', 'ANY'] 

[PROJ.#, 'ANY'] 

[SYSTEM] 

where PROJ.# and PROG.# must be the numbers under which the job is currently running. 

A job may specify [SYSTEM] as part of the name only if the job is privileged (the JACCT bit is set), is running 

under [1,2] or has the IPCF privileges. When trying to find the PID of a name, the name must be sp~cified 

exactly as it appears, character for character. 

Function Name 

1 .IPCIW 

2 .IPCIG 

3 .IPCII 

4 .IPCIJ 

5 .IPCID** 

6 .IPCIR** 

Table 7-3 

[SYSTEM] INFO Functions 

Description 

Find PID for the name contained in the 

the function argument 

Find name for the PID contained in the 

function argument 

Assign the name contained in the function 

argument to the job number making this 

request. (This name is dropped when a 

RESET UUO is done by the job.) 

Assign the name contained in the function 

argument to the job number making this 

request. (This name is dropped on LOGOU,T.) 

Drop the PID contained in the function 

argument . 

Drop all PID's that were created (by .IPCII) 

for the job number in the function argument. 

7-11 

Function Argument 

ASCIZ of name 

PID 

ASCIZ of name 

ASCIZ of name 

PID or job number 

Job number 

September 1974 



Function Name 

7 .IPCLQ 

Table 7-3 (Cont) 
[SYSTEM] INFO Functions 

Description 

Drop all PID's associated with the job number 

contained in function argument. 

Function Argument 

Job number 

10-14 Reserved for future use. 

15 .IPCIS 

**This is a privileged function. 

Sen t by IPCC . 

If word 0 = 0, ,15 a RESET was done by this job 

If word 0 = -1, ,15 a LOGOUT was done by this job 

NOTE 
When sending a packet to INFO, a 0 can be specified 
as the receiver's PID. Functions 5, 6 and 7 are priv-

ileged unless the requester is the "owner" of the job. 

Table 7-4 describes the functions for a request to [SYSTEM] IPCC. Unless specified otherwise, the job number 

and PID may be used interchangeably. 

The user is normally enabled to received packets when the job is logged in or after sending a packet to IPCC. 

All requests to IPCC contain in word 1 the PID (or job number) to receive a duplicate copy of a successful answer. 

If word 1 = 0, the answer is sent only to the sender of the request. 

Function Name 

1 .IPCSE 

2 .IPCSD 

3 .IPCSI 

4 .IPCSF 

5 .IPCSG 

6 .IPCSC 

Table 7-4 

IPCC Functions 

Description 

Enable user's ability to receive 

packets. 

Disable user's ability to receive 

packets. 

Asks for the PID of [SYSTEM] INFO 

Create a [SYSTEM] INFO. 

(privileged) 

Destroy a PID (Privileged) 

Create a PID (privileged) 

7-12 

Function Argument 

PID of job to be enabled 

PID of job to be disabled 

Word 1: PID of job. 

Word 2: PID of [SYSTEM] INFO re-

turned by IPCC. 

Word 1: PID of job to set it for. 

Word 2: PID given to INFO-returned 

to requester 

Word I: PID to be destroyed 

Word 1: Bit 0 = 0 permanent PID 

= 1 delete on RESET 

Remainder of word 1 contains job num-

ber to be associated with the PID create d. 
Word 2: PID created (answer) 

September 1974 



Function Name 

7 .IPCSQ 

10 .IPCSO 

11 .IPCSJ 

12 .IPCSP 

13 .IPCSR 

14 .IPCSW 

15 .IPCSS 

Table 7-4 (Cont) 

IPCC Functions 

Description 

Set send and receive quota (Privileged) 

Change the job number associated 

with a PID (*) (Privileged) 

Find the job number of a PID 

Find one or more PID's of a job 

number. 

Find send and receive quota of a 

job number. 

Unblock ajob from RESET. (Sent 

to IPCC by INFO)** 

Indicates to INFO whether a job was 

RESET or logged out. 

Function Argument 

Word 1: PID of job to set it for ~:::1 

Word 2: LH = 0 (reserved) 

RH = quota bits 18-26 = send 

quota 

bits 27-35 = receiv 

quota 

Word 1: PID 

Word 2: new job number 

Word 1: PID 

Word 2: answer (job number) 

Word 1: job number (cannot be PID) 

Word 2: PID ('s) with a zero at the end 

of the list 

Word 1: job number 

Word 2: answer (same form as function 

7) 

job number 

Word 1: RH = job number 

LH = 0 indicates RESET 

LH = 1 indicates logged out 

(*)This function may be useful in systems work in the case where two systcm proccsses perform the same function. Using .IPCSO would allow one 
of them to be "turned off". 

(**)This is a privileged function. 

Value Where Returned 

1 AC 

2 AC 

3 AC 

4 Reserved 

5 AC 

Table 7-5 

Error Codes 

Mnemonic 

IPCAC% 

IPCNL% 

IPCNP% 

IPCTL% 

7-13 

Reason 

Address Check 

Length of packet descriptor block not speci-

fied as 4 

No packet in receive queue 

Data too long for user's buffer. (Not enough 

room specified in an IPCFR. UUO.) 

September 1974 

e 



Value Where Returned 

6 AC 

or 

IP.CFE 

7 AC 

10 AC 

11 AC 

12 AC 

13 AC 

14 AC orIP.CFE 

15 AC orIP.CFE 

16 IP.CFE 

17 IP.CFE 

20 IP.CFE 

21 AC 

22 AC 

70 AC 

71 IP.CFE 

72 IP.CFE 

73 IP.CFE 

74 IP.CFE 

75 IP.CFE 

76 IP.CFE 

77 IP.CFE 

Table 7-5 (Cont) 

Error Codes 

Mnemonic 

IPCDU% 

IPCDD% 

IPCRS% 

IPCRR% 

IPCRY% 

IPCUP% 

IPCIS% 

IPCPI% 

IPCUF% 

IPCBJ% 

IPCPF% 

IPCPR% 

IPCIE% 

IPCCU% 

IPCCF% 

IPCFF% 

IPCBP% 

IPCBP% 

IPCDN% 

IPCNN% 

IPCEN% 

*If [SYSTEM] INFO should crash and restart, all existing PID's will be lost. 

7-14 

Reason 

Destination unknown. (Receiver's PID is 

invalid.) 

Destination disabled. 

No room in sender's quota. (May use 

IP.CFO) 

No room in receiver's quota. (Queue is filled. 

No room in system for packet. 

Unknown page on send. Duplicate page on 

receive. 

Sender's' invalid PID. 

Privilege insufficient. 

Unknown function. 

Bad job number. 

PID table full. 

Page tequested, page not in top of queue. 

Paging I/O error. 

[SYSTEM] INFO has an unknown, internal 

error. 

[SYSTEM] IPCC request failed. 

[SYSTEM] INFO failed to complete a request 

to assign a PID or name. 

PID quota exceeded. 

Unknown PID*. 

Duplicate name. 

Unknown name. 

Name has illegal characters. (Square brackets 

not used properly.) 



7.1.10 IPCF Example 

,EXAMPLE INITIALIZATION OF ANY IPCF USER 
,CALLED WITH A BLOCK OF SIX WORDS FROM NAME 

CONTAINING AN ASCIZ STRING TO BE 
SIGNED OUT BY THIS PROCESS 
IF ERROR, NON-SKIP WITH Tl=ERROR CODE 
SKIP RETURN IF SUCCESSFUL 

IPCINII PUSHJ 
HOVEl 
MOVE~1 

SETZM 
MOVE 

P,.SAVE4## ,PRESERVE P1-4 
Tl,.IPClI ,SIGN OUT UNTIL RESET 
Tl,NAME-2 ,SAVE AS FUNCTION 
NAME-l ,CLEAR WHO WANTS ANSWER 
Tl,t 4,,[ 0 ,NOFLAGS 

o ,SEND FROM US 
o 'SEND TO [SYSTEM]INFO 
""08, , NA1-1E-2]] , POINT TO ARGUMENT 

IPCFS. Tl, ,SEND REQUEST 
POPJ P, ,ERROR, GIVE UP WITH CODE IN T1 

,NOW BLOCK AND WAIT FOR AN ANSWER 
,NOTE, THAT JUNK MUST BE DISCARDED 

INILP21 MOVE 
MOVEI 
MOVEI 
SETZB 
MOVE 
IPCFR. 

Tl,[4"Pl] ,POINT TO ARGUMENT BLOCK 
Pl,O , 
Pl,O ,CLEAR FLAGS 
P2,P3 ,ZERO ARG BLOCK 
P4,t~D8,.DBLKl ,POINT TO DATA 
Tl, ,RECEIVE 

POPJ 
MOVE 
LOB 
CAIE 
CAIN 
CAIE 
JRST 
LOB 
JUMPN 
MOVE 
MOVEM 
JRS! 

p, .GIVE UP IF FAIL RETURNING ERROR IN T1 
Tl,DBLK ~GET FUNCTION CODE 
T2, [POINT 3,Pl,32] JGET SENDER~S CODE 
T2,.IPCCF ,SEE IF FROM SYSTEM [SYSTEMlINFO 
T2,.IPCCP , OR IF FROM LOCAL [SYSTEM]INFO 
T1,.IPCII ,YES.~SEE IF INFO NAME MATCH 
INILP2 ,NO~.TRY AGAIN 
Tl,[POINT 6,Pl,29] sGET MESSAGE ERPOR CODE 
Tl,.POPJ## ,ERROR IF SET, RETURN TO CALLER IN T1 
Tl,D8LK.1 ,GET,PID ASSIGNED 
Tl,PIDU5 ,SAVE FOR TRANSACTIONS 
,POPJ1## ,GIVE OK RETURN 

,ROUTINE TO IDENTIFY A RECEIVER 
,CALLED WITH NAMe OF RECEIVER I~ SIX WORDS 
, FROM NAME IN ASCIZ 
, NON·SK!PS IF ERROR WITH CODE }N 11 
, .GT.O IS IPCSER ERROR CODE 
J -1 IF RECEIVER UNKNOWN 
,SKIP RETURNS WITH PIC IN PIDHIM 

7-15 September 1974 



IDRCVRI PUSHJ 
MOVEI 
MOVEM 
SETZM 
MOVE 

IPCFS. 

IDRLP21 Move 
~OVEI 

SETZB 
MOVE 
IPCf'R. 

POPJ 
MOVE 
LOB 
CAIE 
CAIN 
CAIE 
JRST 
LOB 
JUMPN 
SKIPN 
GVERR$ 
MOVEM 
JUST 

P,.SAVE4## 
Tl,.IPCIW 
T1 ,~rAME-2 
NAME-1 

,PRESERVE pl-4 
:ASK WHO IS 
,SAVE AS FUNCTION 
,CLEAR WHO WANTS ANSWER 

Tl, [ 4" t 0 ,INDIRECT RECEIVER 
o ,SEND FROM US 
o 'SEND TO [SYSTEMlINFO 
·OB"NAME-2]] ,POINT TO ARGUMENT 

,SEND REQUEST 

T1,C4"P1J ,POINT TO ARGUMENT BLOCK 
Pl,O ,CLgAR FLAGS 
P2,P3 ,ZERO ARG BLOCK 
P4,t-09"OBLKJ ,POINT TO DATA 
Tl, ,RECEIVE 
p, ,FIVE UP IF FAIL WITH ERROR IN T1 
Tl,DBLK ,GET FUNCTION CODE 
T2,[POINT 3,Pl,32] ,GET SENDER'S CODE 
T2,.IPCCF ,SEE IF FROM SYSTEM [SYSTEMJINFO 
T2"IPCCP , OR IF FROM LOCAL [SYSTEMJINfO 
Tl"IPCIW ,SEE IF INFO NAME MATCH 
IORLP2 ,NO--TRY AGAIN 
Tl,[POINT 6,Pl,29] ,ISOLATE ERROR CODE 
Tl,.POPJ.~ ,IF SET, ERROR--RETURN IN Tl 
Tl,08LK+l ,GET PIO ASSIGNED 
-1 ,IF NOT SET, ERROR 
T1,PIDHIM ,SAVE FOR TRANSACTIONS 
.POPJ1## ,GIVE OK RETURN 

,ROUTINE TO SEND A MESSAGE OF 8 WORDS IN MSG 
,IT IS SENT TO THE PID IN PIDHIM 
,NON-SKIP ON ERROR WITH CODE IN T1 
,SKIP IF OK 

SNDMSGI MOVE T 1 , [ 4" [ IP.CFR 'INDIRECT RECEIVER 
0 ,SEND FP.OM US 
PIDHIM , 5 END TO H I r~ 
-D8"MSB]1 ,POINT TO DATA 

IPCFS. Tl, ,SEND 
POPJ p, ,ERROR.-RETURN WITH CODE IN T1 

JRST ,POPJ1## ,GOOD 

,ROUTINE TO BLOCK UNTIL A MESSAGE IS RECEIVED 
,IT CA~ HANDLE UP TO 8 WaRPS, STORED IN MSG 
,NON-SKIP RETURNS IF ERROR WITH ERROR IN T1 
,SKIPS WITH Tl=LENGTH AND WITH SENDER IN PIDHIM 

RCVMSGI PUSHJ 
MOVE 
.MOVEI 
SETze 
MOVE 
IPCFR, 

P,.SAVE4## 
Tl,[4"Pl] 
Pl,O 

·P2,P3 
P4,["'DB"MSG 
Tl, 

,PRESERVE Pl-4 
,POINT TO ARGUMENT BLOCK 
,CLEAfl FLAGS 
,ZERO ARG BLOCK 
,POINT TO DATA AREA 
,BLOCK WAITING 

POPJ 
MOVEM 
HLRZ, 
JRST 

P, 
P2,PIOHIM 
Tl,P4 
.POPJl## 

,ERROR, GIVE UP WITH ERROR CODE IN Tl 
,STORE SENDER 
,GET ACTUAL LENGTH 
,GOOD RETURN 

,ROUTINE TO ISSUE A FATAL IPCF ERROR MESSAGE AND START OVER 
,ENTERREO WITH ERROR CODE IN T1 

7-16 September 1974 



T2,T1 ,GET POSITIVE FORMAT 
T2,-1 ,SEE IF STUFF IN LEFT HALF 

IPCERRI MOVM 
TLNE 
MOVEI 
CAlL 
CAlLE 
JRST 
SUBI 
JRST 

T1,0 ,YES--UUO MUST NOT BE IMPLEMENTED 
Tl,INFEPR ,SEE IF INFO ERROR 
Tl,77 , (RANGE INFERR TO 77) 
IPCER1 ,NO-·TRY NORMAL IPCF ERRORS 
T1,INFERR-MAXERR-l ,YES •• REMOVE TABLE OFFSET 
IPCER2 ,AND ISSUE MESSAGE 

IPCER1J CAlLE 
JRST 

IPCER2: OUTSTR 
JRST 

Tl,M~XERR ,SEE IF ERROR WE UNDERSTAND 
UNKEPP INO--GO HANDLE SEPARATELY 
@ERRTBL(Tl) ,OUTPUT TEXT (***TEMP***) 
FINERP .FINISH UP 

UNKERR: OUTSTR [ASCIZ \1 UNKNOWN IPC ERROR CODE \] 
PUSHJ P"TOCTW## ,ISSUE IN OCTAL 

FINERRI OUTSTR [ASCIZ \ 
\l 

EXIT 

,TABLE OF ERROR MESSAGES 

DEFINE M(S~ES),< 
[ASCIZ \1 SMES\l 

> 
M UNKNOWN RECEIVER 

ERRTBLI M IPCF NOT IMPLEMENTED 
M ADDRESS CHECK 
M UUO BLOCK NOT LONG ENOUGH 
M NO PACKET IN QUEUE 
M PAGE IN USE 
M DATA TOO LONG FOR BUFFER 
M DESTINATION UNKNOWN 
M DESTINATION DISABLED 
M SENDING QUOTA EXCEEDED 
M RECEIVING QUOTA EXCEEDED 
~ SYSTEM STORAGE EXCEEDED 
M UNKNOWN PAGE (SEND), EXISTING PAGE (RECEIVE) 
M INVALID SENDER 
M INSUFFICIENT PRIVILEGES 
M UNKNOWN FUNCTION 
M BAD JOB NUMBER 
M PIO TABLE FULL 
M PAGE REQUESTED WITH NON.PAGE PACKET NEXT 
M PAGING 1/0 ERROR 

MAXERR==.<ERRTBL-l> rHIGHEST KNOWN ERROR CODE 
M INFO HAD INTERNAL ERROR 
M INFO RAN INTO AN IPCF REJECTION 
M INFO FAILED TO COMPLETE AN ASSIGN 

--~-~----.----~---~-~-- ---M---- IN F O-R A W- 0 U T~-0 F - PI D '- S-

M INFO COULD NOT IDENTIFY THE PID 
M INFO FOUND A DUPLICATE NAME 
M INFO KNEW OF NO SUCH NAME 
M INFO DETERMINED THAT NAME HAS IL~EGAL CHARACTERS 

INFERR==100-<.-<ERRT8L+MAXERR+l» ,FIRST INFO ERROR 

'~ITERALS 

XLIST 
LIST 

7-17 September 1974 



'RELOC 

,IMPURE STORAGE 

OFFSETS BLOCK 
ORGP'F: BLOCK 

ZCOR I 1 
PDLST: BLOCK 

BLOCK 2 
NAME I BLOCK 
ENAME==,-l 
FLSR I BLOCK 

PIOUSI BLOCK 
PIDHIMI BLOCK 

DBLK I BLOCK 
MSa I BLOCK 
EMSG==,-1 
EZCOR==,-l 

END 

1 
1 

,eCL START CODE 
,ORIGINAL .JBFF".JBREL 

'START OF AREA TO CLEAR 
LNSPDL+2 ,PUSH-DOWN LIST 

6 ,TRANSMISSION NAME 

1 ,1=5END, 2=RECEIVE 

1 
1 

8 
8 

IPCFEX 

'PIO OF US 
'PID OF OTHER GUY 

7-18 



CHAPTER 8 

MONITOR ALGORITHMS 

8.1 JOB SCHEDULING 

The number of jobs that may be run simultaneously must be specified in creating the DECsystem-1 0 Monitor. 

Up to 127 jobs may be specified. Each user accessing the system is assigned a job number. 

In a multiprogramming system all jobs reside in core, and the scheduler decides what jobs should run. In a swap­

ping system, jobs exist on an external storage device (usually disk or drum) as well as in core. The scheduler de­

cides not only what job is to run but also when a job is to be swapped out onto the disk (drum) or brought back 

into core. 

In a swapping system, jobs are retained in queues of varying priorities that reflect the status of the jobs at any 

given moment. Each job number possible in the system resides in only one queue at any time. A job may be in 

one of the following queues: 

1. Run queues - for runnable jobs waiting to execute. (There are three run queues of different levels of 

priorities.) 

2. I/O wait queue - for jobs waiting while doing I/O. 

3. I/O wait satisfied queue - for jobs waiting to run after finishing I/O. 

4. Sharable device wait queue - for jobs waiting to use sharable devices. 

5. TTY wait queue - for jobs waiting for input or output on the user's console. 

6. TTY wait satisfied queue - for jobs that completed a TTY operation and are awaiting action. 

7. Stop queue - for processes that have been completed or aborted by an error and are awaiting a new 

command for further action. 

8. Null queue - for all job numbers that are inactive (unassigned). 

Each queue is addressed through a table: The position of a queue address in-a table represents the priority of the 

queue with respect to the other queues. With certain queues, the position of a job determines its priority with 

respect to the other jobs in the same queue. For example, if a job is first in the queue for a sharable device, it 

has the highest priority for the device when it becomes available. However, if a job is in a I/O wait queue, it re­

mains in the queue until the I/O is completed. Therefore, in an I/O wait queue, the job's position has no signif­

icance. The status of a job changes each time it is placed into a different queue. Each job, when it is assigned to 

run, is given a quantum time. When the quantum time expires, the job ceases to run and moves to a lower prior­

ity run queue. The activities of the job currently running may cause it to move out of the run queue and enter 

one of the wait queues. For example: When a currently running job begins input from a DECtape, it is placed 

8-1 



in the I/O wait queue, and the input is started. A second job is set to run while the input of the first job proceeds. 

If the second job then decides to access a DECtape for an I/O operation, it is stopped because the DECtape con­

trol is busy, and it is put in the queue for jobs waiting to access the DECtape control. A third job is set to run. 

The input operation of the first job finishes, making the DECtape control available to the second job. The I/O 

operation of the second job is initiated, and the job is transferred from the device wait queue to the I/O wait 

queue. The first job is transferred from the I/O wait queue to the highest priority run queue. This permits the 

first job to preempt the running of the third job. When the quantum time of the first job becomes zero, it is 

moved into the second run queue, and the third job runs again until the second job completes its I/O operations. 

Data transfers also use the scheduler to permit the user to overlap computation with data transmission. In un­

buffered modes, the user supplies an address of a command list containing pointers to relative locations in the 

user area to and from which data is to be transferred. When the transfer is initiated, the job is scheduled into an 

I/O wait queue where it remains until the device signals the scheduler that the entire transfer has been completed. 

In buffered modes, each buffer contains a use bit to prevent the user and the device from using the same buffer 

at the same time (refer to Paragraph 4.3). If the user overtakes the device and requires the buffer currently being 

used by the device as his next buffer, the user's job is scheduled into an I/O wait queue. When the device finishes 

using the buffer, the device calls the scheduler to reactivate the job. If the device overtakes the user, the device 

is stopped at the end of the buffer and is restarted when the user finishes with the buffer. 

Scheduling occurs at each clock tick (l/60th or 1/50th of a second) or may be forced at monitor level between 

clock ticks if the current job becomes blocked (unrunnable). The asynchronous swapping algorithm is also called 

at each clock tick and has the task of bringing a job from disk into core. This function depends on 

I. The core shuffling routine, which consolidates unused areas in core to make sufficient room for the 

incoming job. 

2. The swapper, which creates additional room in core by transferring jobs from core to disk. 

Therefore, when the scheduler is selecting the next job to be run, the swapper is bringing the next job to be run 

into core. The transfer from disk to core takes place while the central processor continues computation for the 

previous job. 

8.2 PROGRAM SWAPPING 

Program swapping is performed by the monitor on one or more units of the system independent of the file struc­

tures that may also use the units. Swapping space is allocated and deallocated in clusters of IK words on a KAla 

(Pages on a KI I 0); this size is the increment size of the memory relocation and protection mechanism. Direc­

tories are not maintained, and retrieval information is retained in core. Most user segments are written onto the 

swapping units as contiguous units. Swapping time and retrieval information is, therefore, minimized. Segments 

are usually read completely from the swapping unit into core with one I/O operation. The swapping space on 

all units appears as a single system file, SWAP.SYS, in directory SYS in each file structure. This file is protected 

from all but privileged programs by the standard file protection mechanism (refer to Paragraph 6.2.3). 

The reentrant capability reduces the demands on core memory, swapping space, swapping channel, and storage 

channel; however, to reduce the use of the storage channel, copies of sharable segments are kept on the swapping 

device. This increases the demand for swapping space. To prevent the swapping space from being filled by user's 

files and to keep swapped segments from being fragmented, swapping space is preallocated when the file struc­

ture is refreshed. The monitor dynamically achieves the space-time balance by assuming that there is no shortage 

of swapping space. Swapping space is never used for anything except swapped segments, and the monitor keeps 

8-2 



a single copy of as many segments as possible in this space. (The maximum number of segments that may be 

kept may be increased by individual installations but is always at least as great as the number of jobs plus one.) 

If a sharable segment on the swapping space is currently unused, it is called a dormant segment. An idle segment 

is a sharable segment that is not used by users in core; however, at least one swapped-out user must be using the 

segment or it would be a dormant segment. 

Swapping disregards the grouping of similar units into file structures; therefore, swapping is done on a unit basis 

rather than a file structure basis. The units for swapping are grouped in a sorted order, referred to as the active 

swapping list. The total virtual core, which the system can allocate to users, is equal to the total swapping space 

preallocated on all units in the active swapping list. In computing virtual core, sharable segments count only 

once, and dormant segments do not count at all. The monitor does not allow more virtual core to be granted 

than the system has capacity to handle. 

When the system is started, the monitor reads the home blocks on all the units that it was generated to handle. 

The monitor determines from the home blocks which units are members of the active swapping list. This list 

may be changed at once-only time. The change does not require refreshing of the file structures, as long as swap­

ping space was preallocated on the units when they were refreshed. All of the units with swapping space allo­

cated need not appear in the active swapping list. For example, a drum and disk pack system should have swap­

ping space allocated on both drum and disk packs. Then, if the drum becomes inoperable, the disk packs may be 

used for swapping without refreshing. Users cannot proceed when virtual core is exhausted; therefore, FILSER 

is designed to handle a variety of disks as swapping media. The system administrator allocates additional swap­

ping space on slower disks and virtually eliminates the possibility of exhausting virtual core; therefore, in periods 

of heavy demand, swapping is slower for segments that must be swapped on the slower devices. It is also un­

desirable to allow dormant segments to take up space on high-speed units. This forces either fragmentation on 

fast units or swapping on slow units; therefore, the allocation of swapping space is important to overall system 

efficiency. 

The swapping allocator is responsible for assigning space for the segment the swapper wants to swap out. It must 

decide 

1. Onto which unit to swap the segment. 

2. Whether to fragment the unit if not enough contiguous space is available. 

3. Whether to make room by deleting a dormant segment. 

4. Whether to use a slower unit. 

The units in the active swapping list are divided into swapping classes, usually according to device speed. For 

simplicity, the monitor assumes that all the units of class 0 are first followed by all the units of class 1. Swapping 

classes are defined when the file structures are refreshed and may be changed at once-only time. 

When attempting to allocate space to swap out at a low or high segment, the monitor performs the following: 

Step 

2 

3 

Procedure 

The monitor looks for contiguous space on one of the units of the first swapping 

class. 

The monitor looks for noncontiguous space on one of the units in the same class. 

The monitor checks whether deleting one or more dormant segments would yield 

enough contiguous or noncontiguous space. 

8-3 



If all of these measures fail, the monitor repeats the process on the next swapping class in the active swapping 

list. If none of the classes yields enough space, the swapper begins again and deletes enough dormant segments 

to fragment the segment across units and classes. When a deleted segment is needed again, it is retrieved from 

the storage device. 

8.3 DEVICE OPTIMIZATION 

8.3.1 Concepts 

Each I/O operation on a unit consists of two steps: positioning and data transferring. To perform I/O, the unit 

must be positioned, unless it is already on a cylinder or is a non-positioning device. To position a unit, the con­

troller cannot be performing a data transfer. 

If the controller is engaged in a data transfer, the positioning operation of moving the arm to the desired cylinder 

cannot begin until the data transfer is complete. 

The controller reads the sector headers to ensure that the heads actually moved to the correct cylinder. If they 

did not, the software recalibrates the positioner by moving it to a fixed place and beginning again. Finally, the 

data is transferred to or from the desired sectors. To understand the optimization, the transfer operation includes 

verification, searching, and actual transfer. The time from the initiation of the transfer operation to the actual 

beginning of the transfer is called the latency time. The channel is busy with the controller for the entire trans­

fer time; therefore, it is important for the software to minimize the latency time. 

The FILSER code, the routines that queue disk requests and make optimization decisions, handles any number 

of channels and controllers and up to eight units for each controller.(1) Optimization is designed to keep: 

1. As many channels as possible performing data transfers at the same time. 

2. As many units positioning on all controllers, which are not already in position for a data transfer. 

Several constraints are imposed by the hardware. A channel can handle only one data transfer on one control at 

a time. Furthermore, the control can handle a data transfer only on one of its units at a time. However, the 

other units on the control can be positioning while a data transfer is taking place provided the positioning com­

mands were issued prior to the data transfer. Positioning requests for a unit on a controller that is busy doing a 

data transfer for another of its units must be queued until the data transfer is finished. When a positioning com­

mand is given to a unit through a controller, the controller is busy for only a few microseconds; therefore, the 

software can issue a number of positioning commands to different units as soon as a data transfer is complete. 

All units have only one positioning mechanism that reaches each point; therefore, only one positioning operation 

can be performed on a unit at the same time. All other positioning requests for a unit must be queued. 

The software keeps a state code in memory for each active file, unit, controller, and channel, to remember the 

status of the hardware. Reliability is increased because the software does not depend on the status information 

of the hardware. The state of a unit is as follows: 

I 

SW 

Idle; No positions or transfers waiting or being performed. 

Seek Wait; Unit is waiting for a control to become idle so that it can initiate position­

ing (refer to Paragraph 6.2). 

(1) Disk latency optimization depends on FTDOPTwhich is nonnally off in the DECsystem-l040. If this switch is off, all requests are handled on a 
first-come first-served basis. 

8-4 



S 

PW 

P 

TW 

T 

Seek; Unit is positioning in response to a SEEK UUO; no transfer of data follows. 

Position Wait; Unit is waiting for control to become idle so that it can initiate 

positioning. 

Position; Unit is positioning; transfer of data follows although not necessarily on this 

controller. 

Transfer Wait; Unit is on cylinder and is waiting for the controller/channel to become 

idle so that it can transfer data. 

Transfer; Unit is transferring; the controller and channel are busy performing the 

operation. 

Table 8-1 lists the possible states for files, units, controllers, and channels. 

8.3.2 Queueing Strategy 

File * Unit 

I I 

SW 

S 

PW PW 

P P 

TW TW 

T T 

Table 8-1 

Software States 

Controller 

I 

T 

Channel 

I 

T 

*Cannot be in S or SW state because SEEKs are ignored if the 
unit is not idle. 

When an I/O request for a unit is made by a user program because of an INPUT or OUTPUT UUO, one of several 

things can happen at UUO level before control is returned to the buffer-strategy module in UUOCON, which may, 

in turn, pass control back to the user without rescheduling. If an I/O request requires positioning of the unit, 

either the request is added to the end of the position-wait queue for the unit if the control or unit is busy, or the 

positioning is initiated immediately. If the request does not require positioning, the data is transferred immedi-

. ately. If the channel is busy, the request is added to the end of the transfer-wait queue for the channel. The 

control gives the processor an interrupt after each phase is completed. Optimization occurs at interrupt level 

when a position-done or transfer-done interrupt occurs. 

8.3.2.1 Position-Done Interrupt Optimization - Data transfer is started on the unit unless the channel is busy 

transferring data for some other unit or control. If the channel is busy, the request goes to the end of the trans­

fer-wait queue for that channel. 

8.3.2.2 Transfer-Done Interrupt Optimization - When a transfer-done interrupt occurs, all the position-done 

interrupts inhibited during the data transfer are processed for the controller, and the requests are placed at 

the end of the transfer-wait queue for the channel. All units on the controller are then scanned. The requests 

8-5 



in the position-wait queues on each unit are scanned to see the request nearest the current cylinder. Positioning 

is begun on the unit of the selected request. All requests in the transfer-wait queue for all units on the channel 

that caused the interrupt are then scanned and the latency time is measured. The request with the shortest 
latency time is selected, and the new transfer begins. 

8.3.3 Fairness Consideration 

When the system selects the best task to run, users making requests to distant parts of the disk may not be ser­

viced for a long time. The disk software is designed to make a fair decision for a fixed percentage of time. Every 

n decisions, the disk software selects the request at the front of the position-wait or transfer-wait queue and 

processes it, because that request has been waiting the longest. The value of n is set to 10 (decimal) and may be 

changed by redefining symbols with MONGEN. 

8.3.4 Channel Command Chaining 

8.3.4.1 Buffered Mode - Disk accesses are reduced by using the chaining feature of the data channel. Prior to 

reading a block in buffered mode, the device independent routine checks to see if there is another empty buffer, 

and if the next relative block within the file is a consecutive logical block within the unit. If both checks are 

true, FILSER creates a command list to read two or more consecutive blocks into scattered core buffers. Cor­

responding decisions are made when writing data in buffered mode and, if possible, two or more separate buffers 

are written in one operation. The command chaining decision is not made when a request is put into a position­

wait or transfer-wait queue; instead, it is postponed until the operation is performed, thus increasing the chances 

that the user program will have more buffers available for input or output. The default size of the channel com­

mand list is 20 decimal words and can be changed by redefining CCWMAX with MONGEN. 

8.3.4.2 Unbuffered Mode --:- Unbuffered modes do not use channel chaining and, therefore, read or write one 

command word at a time. Each command word begins at the beginning of a I 28-word block. If a command 

word does not contain an even multiple of 128 words, the remaining words of the last block are not read, if 

reading, and are written with zeroes, if writing. 

8.4 MONITOR ERROR HANDLING 

The monitor detects a number of errors. If a hardware error is detected, the monitor repeats the operation three 

times on a search error, ten times on a data error; then recalibrates, repositions, and tries three or ten more times. 

This entire cycle will be repeated ten times. If the failure occurs eleven times in a row, it is classified as a hard 

error. If the operation succeeds after failing one to ten times, it is a soft error. 

8.4.1 Hardware Detected Errors 

Hardware detected errors are classified either as device errors or as data errors. A device error indicates a mal­

function of the controller or channel. A data error indicates that the hardware parity did not check (the user's 

data is probably bad). 

A device error sets the IO.DER bit in the channel status word, and a data error sets the IO.DTE bit. 

Disk units may have imperfect surfaces; therefore, a special non-timesharing diagnostic program, MAP, is pro­

vided to initially find all the bad blocks on a specified unit. The logical disk addresses of any bad regions of one 

or more bad blocks are recorded in the bad allocation table (BAT) block on the unit. The monitor allocates all 

storage for files; therefore, it uses the BAT block to avoid allocating blocks that have previously proven bad. 

8-6 



The MAP program writes two copies of the BAT block because the BAT block might be destroyed. If the MAP 

program is not used, the monitor discovers the bad regions when it tries to use them and adds this infonnation to 

the BAT block. However, the first user of the bad region loses that part of his data. 

A hard data error usually indicates a bad surface; therefore, the monitor never returns the bad region to free 

storage. This results in the bad region causing an error only once. The bad unit and the logical disk address are 

stored in the retrieval information block (RIB) of the file when the file is CLOSEd or RESET and the extent of 

the bad region is determined. The origin and length of the bad region is stored in the bad allocation table (BAT) 
block. 

8.4.2 Software Detected Errors 

The monitor makes a number of software checks on itself. It checks the folded checksum (refer to Appendix H) 

computed for the first word of every group and stored in the retrieval pointer. The monitor also checks for in­

consistencies when comparing locations in the retrieval information block with expected values (filename, file­

name extension, project-programmer number, special code, logical block number, block number of directory 

RIB). The monitor checks for inconsistencies in the storage allocation table block when comparing the number 

of free clusters expected with the number of zeroes. A checksum error or an inconsistency error in the SAT 

block or RIB normally indicates that the monitor is reading the wrong block. When these errors occur, the mon­

itor sets the in:Iproper mode error bit (lO.lMP) in the user channel status word and returns control to the user 

program. 

8.5 DIRECTORIES 

8.5.1 Order of Filenames 

In 5.02 and earlier monitors, the names of newly created files are appended to the directory if the directory does 

not contain more than 64 filenames. If the directory contains more than 64 filenames, a second block is used 

for the new filenames. When filenames are deleted from the first block, entries from the second block are not 

moved into the first. When additional new files are created, their names are added to the end of the first block 

of the directory instead of the end of the directory. Thus, the order of the filenames in the directory may not 

be according to the date of creation. 

In 5.03 and later monitors, if FTDUFD = 1, files are always entered in the directory in the order in which they 

are created. In the DECsystem-1 040, FTDUFD is normally off, indicating that the order of filenames is the 

same as in the 5.02 and earlier monitors. 

8.5.2 Directory Searches 

Table space in core memory is used to reduce directory searching time. The JBTPPB table contains pointers to 

a list of four-word blocks for the user's project-programmer njImber, one block for each file structure on which 

the user has a UFD. 

Four-word name and access blocks contain copies of LOOKUP information for recently-accessed files and may 

reduce disk accesses to zero or one directory read for a LOOKUP on a recently-active file. Recent LOOKUP 

failures are also kept in core, but are deleted when space is needed. 

8-7 



8.6 PRIORITY INTERRUPT ROUTINES 

8.6.1 Channel Interrupt Routines 

Each of the seven PI channels has two absolute locations associated with it in memory: 40+2n and 4l+2n, 

where n is a channel number (1-7). When an interrupt occurs on a channel, LOC 40+2n is executed to the first 

of the two associated locations (unless an interrupt on a higher priority channel is being processed). For fast 

service of a single device, the first location contains either a BLKI or BLKO instruction. For service of more 

than one device on the same channel, the first location contains a JSR to location CHn in the appropriate chan­

nel interrupt routine. The JSR ensures that the current state of the program counter is saved. 

Each channel interrupt routine (mnemonic name, CHn, where n is the channel number) consists of three separate 

routines: 

CHn: 

SAVn: 

XITCHn: 

8.6.2 Interrupt Chains 

The contents of the program counter is saved in location CHn. CHn+ I contains 

a JRST to the first device service routine in the interrupt chain. 

The routine to save the contents of a specified number of accumulators. It is 

called from the device service routines with a JSR. 

The routine to restore saved accumulators. Device service routines exit to 

XITCHn with a POPJ PDP, if SAVn was previously called. 

Each device routine contains a device interrupt routine DEVINT where DEV is the three-letter mnemonic for 

the device concerned. This routine checks to determine whether an interrupt was caused by device DEV. The 

interrupt chain of a given channel is a designation for the logical positioning of each device interrupt routine 

associated with that channel. 

The monitor flow of control on the interrupt level through a chain is illustrated below. Channel 5 is used in the 

example. 

Monitor Routine 

Absolute 

Locations 

CHAN 5 

PTPSER 

Relevant Code 

52/JSR CH5 

53/ 

CH5: 0 

JRSTPTPINT 

PTPINT: CONSO PTP,PTPDON 

JRST LPTINT 

8-8 

Explanation 

; control transferred here 

; on interrupt 

; contents of PC saved here 

; control transfers to 

; first link in interrupt 

; chain 

; if PDP done bit is 

; on, PTP was cause 

; of interrupt -

; otherwise, go to 

; next device 



Monitor Routine 

LPTSER 

Relevant Code Explanation 

LPTINT: CONSO LPT,LPTLOV+LPTERR+LPTDON 
JEN@CH5 ; three possible bits 

; may indicate that 

; LPT caused interrupt 

When a real-time device is added to the interrupt chain (CONSO skip chain) by a RTTRP UUO (refer to Para­

graph 3.8.1), the device is added to the front of the chain. After putting a real-time device on Channel 5 in single 

mode (refer to Paragraph 3.8.1), the chain is as follows: 

Monitor Routine 

Absolute 

Locations 

CHAN5 

RTDEV 

PTPSER 

LPTSER 

Relevan t Code 

52/JSR CH5 

53/ 

CH5 0 
JRST RDTINT 

RTDINT: CONSO RTD,BITS 

JRSTPTPINT 

JRST <context switcher and 

dispatch for real-time 

interrupts> 

PTPINT: CONSO PTP ,PTPDON 

JRSTLPTINT 

Explanation 

; control transferred here 

; on interrupt 

; contents of PC saved here 

; control transfers to first 

; link in interrupt chain 

; if PTP done bit is 

; on, PTP was cause 

; of interrupt -

; otherwise, go to 

; next device. 

LPTINT: CONSO LPT, LPTLOV+LPTERR+LPTDON 

JEN @ CH5 ; three possible bits 

; may indicate that 

; LPT caused interrupt 

After putting a real-time device on channel 5 in normal block mode (refer to Paragraph 3.8.1), the chain is as 

follows: 

Monitor Routine 

Absolute 

Locations 

CHAN 5 

Relevant Code 

52/JSRCH5 

53/ 

CH5: 0 
JRST RTDINT 

8-9 

Explanation 

; control transferred here 

; on iriterrupt 

; contents of PC saved here 

; control transfers to first 

; link in interrupt chain 



Monitor Routine 

RTDEV 

PTPSER 

LPTSER 

Relevant Code 

RTDINT;CONSO RTD,BITS 

JRSTPTPINT 

BLKI RTD,POINTR 

JRST <context switcher> 

JEN@CH5 

PTPINT: CONSO PTP ,PTPDON 

JRST LPTINT 

Explanation 

; if PTP done bit is 

; on, PTP was cause 

; of interrupt -

; otherwise, go to 

; next device 

LPTINT: CONSO LPT, LPTOV+LPTERR+LPTDON 
JEN@CH5 ; three possible bits 

; may indicate that 

; LPT caused interrupt. 

After putting a real-time device on channel 6 in fast block mode (refer to Paragraph 3.8.1), the chain is as 

follows: 

Monitor Routine 

Absolute 

Locations 

CHAN6 

Relevant Code 

54/BLKO RTD,POINTR 

55/JSRCH6 

CH6: 0 . 

JRST <context switcher> 

Explanation 

; control transferred 

; here on interrupt 

; contents of PC saved 

; control transfers to 

; context switcher. 

The exec mode trapping feature can be used with any of the standard forms of the RTTRP UUO; single mode, 

normal block mode, and fast block mode. The following examples illustrate the chain when used with each of 

the three modes. 

Monitor Routine 

Absolute 

Locations 

CHAN5 

RTDEV 

Single Mode (Exec Mode) 

Relevant Code 

52/JSR CH5 

53/ 

CH5: 0 

JRSTRDTINT 

RTDINT: CONSO RTD BITS 

JRSTPTPINT 

JSR TRPADR 

JEN@CH5 

8-10 

Explanation 

; control transferred here 

; on interrupt 

; contents of PC saved here 

; control transfer to first 

; link in interrupt chain 



PTPSER 

LPTSER 

Monitor Routine 

Absolute 

Locations 

CHAN 5 

RTDEV 

PTPSER 

LPTSER 

Monitor Routine 

Absolute 

Locations 

Single Mode (Exec Mode) (Cont) 

PTPINT: CONSO PTP,PTPDON 

JRST LPTINT 

; if PTP done bit is 

; on, PTP was cause 

; of interrupt -

; otherwise, go to 

; next device 

LPTINT: CONSO LPT, LPTLOV+LPTERR+LPTDON 

JEN @ CH5 ; three possible bits 

; may indicate that 

Normal Block Mode (Exec Mode) 

Relevant Code 

52/JSR CH5 

53/ 

CH5: 0 

JRST RTDINT 

RTDINT: CONSO RTD, BITS 

JRSTPTPINT 

BLKI RTD, POINTR 

JSR TRPADR 

JEN@CH5 

PDPINT: CONSO PTP ,PTPDON 

JRST LPTINT 

; LPT caused interrupt 

Explanation 

; control transferred here 

; on interrupt 

; contents of PC saved here 

; control transfers to first 

; link in interrupt chain 

; if PTP done bit is 

; on, PDP was cause 

; of interrupt -

; otherwise, go to 

; next device 

LPTINT: CONSO LPT,LPTLOV+LPTERR+LPTDON 

JEN @ CH5 ; three possible bits 

; may indicate that 

Fast Block Mode (Exec Mode) 

Relevant Code 

54/BLKO RTD,POINTR 

55/ JSR CH6 

8-11 

; LPT caused interrupt. 

Explanation 

; control transferred here 

; on interrupt 



CHAN 6 

RTDEV 

Fast Block Mode (Exec Mode) (Cont) 

CH6:: 0 

JRST RDTINT 

RTDINT: JSR TRPADR 

JEN@CH6 

; contents of PC saved here 

; control transfers to first 

; link in interrupt chain 

8.7 MEMORY PARITY ERROR ANALYSIS, REPORTING AND RECOVERY(1) 

The memory parity error analysis and recovery software allows the machine to run with PARITY STOP off, 

thereby gaining increased CPU speed (10% more on the KAIO processor and 100% more on the KIlO processor), 

better error reporting, and improved failsafe recovery. The analysis software considers its goals to be 

1. Never jeopardize the system or the user program by allowing it to continue with bad data from 

memory. 

2. Always maintain the running of the system with the maximum number of users as possible as long 

as there is no possibility of violating the integrity of the system or the user program. 

-In either case, complete information is printed for the operator so that he can reconfigure the memories and 

reload the system when necessary. Additional information is recorded on the disk by DAEMON for field service 

in order that the cause of the error can be located and fixed. 

8.7.1 Description of Analysis 

The error analysis software differentiates between user mode and executive mode when a parity error occurs. 

If the processor is executing in user mode and the user is enabled for parity trapping (refer to Paragraph 3.1.3.1), 

control is transferred to the user's routine. Otherwise, the execution of the user's job is stopped and the user 

receives the error messages 

. ?ERROR IN JOB n 

?MEM PAR ERR AT USER PC nnnnnn 

Simultaneously, a request is made for the lowest priority channel routine to sweep through core in order to lo­

cate all words with bad memory parity, in case there is more than one word. During the sweep, all locations 

with bad parity are rewritten, so that subsequent references usually will not receive a parity error. After the 

sweep of core is completed, all jobs (including the current job) with parity errors in their low segments receive 

the above ERROR IN JOB message. All jobs with errors in their high segments are swapped out if the high seg­

ment has the hardware user-mode write protect bit set, since a copy exists on the swapping space. In this case 

recovery occurs for all jobs sharing the high segment except for the currently running job. If the high segment 

is not write protected for a job (so that there is no copy on the disk), if the high segment is locked, or if one 

of the sharing job's low segments is locked, all jobs sharing the high segment are stopped and receive an error 

message since no recovery is possible. In addition, the segment name is cleared so that new users will receive a 

new copy from the file system on a R, RUN, or GET command or a RUN or GETSEG UUO. 

If the processor is in executive mode when the error occurs, the analysis procedure depends on the value of the 

PC. Two conditions are recognized as not being harmful: 

1. a parity error during the PI 7 sweep of memory. 

(l)This feature depends on FTMEMPAR which is nonnally off in the DECsystem-I040. 

8-12 



2. a parity error during the storing of data words around the location of a channel-detected memory 

parity error. 

If the PC is at the BL T instruction which moves user core to facilitate core allocation, the bad word is deter­

mined from the BLT pointer. If the pointer is in the protected part of the job data area, this area is cleared so 

the monitor will not attempt to use the bad words, since they contain executive mode addresses. In either case, 

the user's job is stopped and an error message is output to the user. In addition, the memory sweep procedure is 

invoked to find additional words with bad parity. 

If the PC is in executive mode location and there are no PIs in progress, the UUO is run to completion, the cur­

rent user receives an error message, and the memory sweep procedure is invoked. If the sweep routine detects 

bad parity in an address within the monitor or detects no words with bad parity (because they have been re­

written on a read-pause-write instruction), the routine prints on the Cry (instead of OPR), 

?EXEC PARITY HALT 

n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CPUn FOR JOBx [program] 

and then HALTS. This message is printed without using the interrupt system in order to maximize the chances 

of the message being output. Although the operator can attempt to continue the system by pushing the CONT 

console switch, this is not a recommended operator procedure (e.g., the monitor may have incorrect data thereby 

causing more damage). (Refer to MEMPAR in Notebook 8 of the DECsystem-lO Software Notebooks for com­

plete operator instructions on memory parity error recovery.) 

If a PI is in progress when the parity error is detected, a sweep of core is made at the high priority APR PI level. 

If a word with bad parity is discovered in the monitor area or no parity errors are found, the monitor prints the 

above message to the operator and halts. The finding of words without bad parity is considered serious because 

the read-pause-write class instructions rewrite memory before the parity interrupt occurs so that the parity error 

is usually corrected. In this case, the operator receives the message 

?O MEM PAR ERRORS 

On all recoverable or non-recoverable parity errors, the operator receives on either OPR or CTY a message similar 

to the following: 

?n MEM PAR ERRORS FROM aaaaaa TO bbbbbb ON CPUn for JOB x [program] 

preceded by five bells. This alerts him to potential problems and gives him the necessary information for recon­

figuring the memories. In addition, the operator is notified of the jobs that have been stopped in case they are 

crucial to the operation of the system. If they are, he can take appropriate action to restart them. 

If the DF 10 channel detects a memory parity error while reading for file I/O from memory, the user's job is not 

stopped and the user does not receive an error message. Instead, the error is treated as a device error and the 

10.DER error bit is set. Ho~ever, the operator receives the message 

?n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CHANNEL n 

where n is the logical channel number starting with the fastest device as defined by MONGEN. For example, 

the fastest disk unit is on the first channel and the magnetic tape TM lOB control is on the last channel. 

8-13 



If the DF I 0 channel detects a memory parity error while swapping a job out of core, the user's job is stopped 

and the user receives the following error message: 

?ERROR IN JOB n 

?SWAP OUT CHN MEM PAR ERR 

The operator receives the message 

?m MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CHANNEL n for JOB x [prog]. 

If the error is detected in a high segment on the swap out, all jobs using the high segment receive the error mes­

sage. The high segment name is cleared so that new users will receive a new copy of the segment from the file! 

system. 

On all parity errors detected by the processors or the channels, DAEMON is awakened to correct the information 

stored by the monitor's analysis routine. DAEMON writes this information in the hardware log file on the disk 

for the use of field service in diagnosing and solving the problem. 

8-14 



APPENDIX A 
DECTAPE COMPATIBILITY 

BETWEEN DEC COMPUTERS 

The following chart illustrates the ability to read the indicated tapes with a suitable program. In general, the 

standard software of machines of one family will not read tapes written by the standard software of machines 

of a different family. 

The standard tapes of the PDP-I, PDP-4, PDP-6, PDP-7, PDP-9, PDP-I 0, PDP-II, and PDP-IS consist of S78 

blocks of 128 36-bit words (2S6 18-bit words). The standard tapes of the PDP-IS and the PDP-8 family consist 

of 4096 blocks of 129 I2-bit words (43 36-bit words). 

A-I 



.~ by 
Written 

by 

PDP-I 

PDP-4 

PDP-5 

PDP-6 

PDP-7 

PDP-S 

PDP-S/I,L 

PDP-S/E 

LINC-S & 
Converter 

PDP-9 

~ PDP-IO 
N 

PDP-ll 

PDP-12 & 
TCI2-F 

PDP-15 

PDP-I PDP-4 PDP-5 PDP-6 PDP-7 PDP-S PDP-S/I,L PDP-S/E LINC-S PDP-9 PDP-IO 
550,550-A 550 552 551 550-A 552, TCOI TCOI, TCOS TCOS-P, And TC02 TOlO 

And And And And And And And TDSE Optional And And 
555, TU55, 555, TU55, 555, TU55, 555, TU55 555, TU55, 555,TU55, TU55,TU56 And Converter TU55, TU55,TU56 

TU56 TU56 TU56 TU56 TU56 TU56 TU55, And TU56 
TU56 LINOape 

Drive 

A Z Z Z Z Z Z Z Z Z Z 

Z A D D A D D D E D D 

Z D A B C A A A E A A 

Z D A A C A A A E A A 

Z A C C A C C C E C C 

Z D A B C A A A E A A 

Z D A B C A A A E A A 

Z D A B C A A A E A A 

Z E E B E E E E A E E 

Z D A A C A A A E A A 

Z D A A C A A A E A A 

Z D A B C A A A E A A 

Z E E B E E E E A E E 

Z D A A C A A A E A A 
-

KEY: A Can be done. 

B Can be done only by ignoring indicated checksum errors. 

C Can be done with programmed checksum. 

D Can probably be done as in (C) except that PDP-4 is too slow for calculating the exclusive-or checksum 
in line; calculations must be done before writing and after reading. 

z 

NOTES: 

Program and optional hardware exist to convert to and from UNOape format. Standard PDP-12 and 
LINC-S tapes are in LINOape format which is incompatible. DEOapes must be formatted on another 
machine before writing on PDP-12 or LINC-S. 

No information available. 

I. PDP-S/S cannot use DEOape. Classic LINC only uses LINOape which is incompatible with DEOape. 

2. The PDP-6 and 10 (and probably other machines) cannot find the first or last block when searching from 
the end zone. 

3. The PDP-9 and -15 software writes data in reverse order in blocks which are written whi Ie moving 
in the reverse direction. 

PDP-II PDP-12 PDP-15 -
TCll TCI2 TC02, TCI5 
And And And 

TU56 TCI2-F TU55, TU56 
TU55, 
TU56 

Z Z z i 

. 

D E D 

A E A I 

I 

A E A I 

I 

C E C 
I 

A E A I 

A E A I 

A E A 
! 

E A E 
I 

A E A I 

A E A 

A E A 

E A E 

A E A 



APPENDIX B 

WRITING REENTRANT USER PROGRAMS 

B.I DEFINING VARIABLES AND ARRAYS 

The LOADER simplification makes it somewhat more difficult to define variables and arrays. The easiest way 

to define variables and arrays, so the resulting relocatable binary can be loaded on a one- or two-segment ma­

chine, is to put them all in a separate subprogram as internal global symbols using Block 1 and Block N pseudo­

ops. All other subprograms refer to this data as external global locations. Most reentrant programs have at least 

two subprograms, one for the definition of low segment locations and one for instructions and constants for the 

high segment. (This last subprogram must have either a HISEG pseudo-op or a TWOSEG pseudo-op followed by 

RELOC 400000.) Programs are self-initializing; therefore, they clear the low segment when they are started al­

though the monitor clears core when it assigns it to a user. 

Block 1 and Block N pseudo-ops cause the LOADER to leave indications in the job data area (LH of JOBCOR) 

so a monitor SAVE command will not write the low segment. This is advantageous in sharable programs for two 

reasons. It reduces the number of files in small DEC tape directories (the maximum is 22 files). Also, I/O is ac­

complished only on the first user's GET that initializes the high segment, but not on any subsequent user's GETs 

for either the high or low segment. 

B.2 EXAMPLE OF TWO-SEGMENT REENTRANT PROGRAM 

LOW SEGMENT SUBPROGRAM. 

TITLE LOW • EXAMPLE OF LOW SEGMENT SUB-PROGRAM 
JOBVER=137 
LOC JOBVER 
3 ,VERSION 3 
RELOC 0 
INTERNAL LOWSEG,DATA,DATA1,DATA2,TABLE,TABLEl 

LOWBEGI 
DATAl 
DATA11 
DATA2: 

BLOCK 1 
BLOCK 1 
BLOCK 1 

TABLEI BLOCK 10 
TABLEll BLOCK 10 
LO~END-.-l 

END 
,LAST LOCATION TO BE CLEARED 

HIGH SEGMENT SUBPROGRAM. 

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB-PROGRAM 
HISEG ,OR TWOSEG 

B-1 



,RELOC 400000 
EXTERN LOWBEG,LOWEND 
T=l 

BEGIN: SETZM IJO~lEG ,CLEAR DATA AREA 

MOVEI T,LOWBEG+l 
H~LI T,LOWBEG 
BLT T,LOWEND 
MOVE T,DATAl ,COMPUTE 
ADDI 1 , 1 
MOV~~M T, DATA2 

• END BEGIN ,STARTING ADDRESS 

B.3 CONSTANT DATA 

Some reentrant programs require certain locations in the low segment to contain constant data, which does not 

change during execution. The initialization of this data happens only once after each GET, instead of after each 

START; therefore, programmers are tempted to place these constants in the subprogram that contains the defi­

nitions of the variable data locations. This action requires the SAVE command to write the constants out and 

the GET command to load the constants again; therefore, the constant data should be moved by the programs 

from the high segment to the low segment when the rest of the low segment is being initialized. The exception 

is when the amount of code and constants in the high segment needed to initialize the low segment constants 

take up too much room in the high segment. In this case, it is best to have I/O in the low segment on each GET. 

A rule to follow in deciding between this segment core space and the low segment GET I/O time is: put the code 

in the high segment ifit does not put the high segment over the next IK boundary. 

BA SINGLE SOURCE FILE 

A second way of writing single save file reentrant programs is to have a single sOlJrce file instead of two separate 

ones. This is more convenient, although it involves conditional assembly and, therefore, produces two different 

relocatable binaries. A number of system programs have been written this way. The idea is to have a conditional 

switch which is I if a reentrant assembly and 0 if a non-reentrant assembly. 

B-2 



t::d 
W 

DEMO • DEMO ONE SOURCE REENTRANT PROGRAM -V002 MACRO 44.0,4 14:30 2-APR-71 PAGE 1 
DEMO 

1 
2 
3 000137 
4 000137 000000 000002 
5 000000' 
6 
7 
8 
9 

10 400000' 
11 400000' 
12 
13 400000' 047000 oooono 
14 400001' 200000 400007' 
15 400002' 402000 000000' 
16 400003' 251000 000203' 
17 400004' 000000 400004' 
18 400005' 000000 400005' 
19 400006' 000000 400006' 
20 
21 000000' 
22 
23 000000' 
24 000000' 
25 000001' 
26 000201' 000000 000201' 
27 000202' 000000 000202' 
28 00020)' 000000 000203' 
29 000204' 
30 
31 400007' 
32 400007' 
33 400007' 000000' 000001' 
34 400000 

NO ERRORS DETECTED 

HI-SEG. BREAK IS 400010 
PROGRAM BREAK IS 000204 

2K CORE USED 

TITLE DEVO • DEMO ONE SOURCE REENTRANT PROGRAM -V002 

LOC <JOBVEP=137> 
EXP 002 ,VERSION NUMBER 
HELOC 

INTERN JOBVER,PURE 

IFNDEF PURE,<PURE==l> ,ASSUME REENTRANT IF PURE UNDEFINED 
IFN PURE,<TWOSEG> ,TELL LOADER TO EXPECT TWO SEGMENTS 
IFN PURE,<RELOC 400000> ,START OF HIGH SEGMENT RELOCATION 

BEGI RESET ,RESET ALL 1/0 
MOVE 0, [DATAS, ,DATAS+1J 
SETZM DATAB ,NOW CLEAR DATA REGION 
BLT 0,DATAE-1 ,UP TO LAST LOCATION , 
, 
, 

IFN PURE,<RELOC> ,SET RELOCATION COUNTER TO LOW SEGMENT 

DATASI ,FIRST LOCATION CLEARED ON STARTUP 
DATAl BLOCK 1 
TABLEI ALOCK -012B , 

, 

OATAEI ,END OF DATA AREA 

IFN PURE,<RELOC> ,BACK TO HIGH SEGMENT 
LIT ,PUT LITERALS IN HIGH SEGMENT 

END BEG 





ASCII Octal 

Character Code 

NULL 00 

CTRL-A 01 

CTRL-B 02 

CTRL-C 03 

CTRL-D 04 

CTRL-E 05 

CTRL-F 06 

CTRL-G 07 

CTRL-H 10 

TAB 11 

LF 12 

VT 13 

FF 14 

CR 15 

CTRL-N 16 

CTRL-O 17 

CTRL-P 20 

CTRL-Q 21 

CTRL-R 22 

CTRL-S 23 

CTRL-T 24 

CTRL-U 25 

CTRL-V 26 

CTRL-W 27 

CTRL-X 30 

CTRL-Y 31 

CTRL-Z 32 

ESCAPE 33 

CTRL-\ 34 

CTRL-] 35 

Table C-I 

ANSI Card Codes 

Card ASCII 

Punches Character 

12-0-9-8-1 CTRL-t 

12-9-1 CTRL-+-

12-9-2 SPACE 
12-9-3 ! 
9-7 " 
0-9-8-5 # 
0-9-8-6 $ 

0-9-8-7 % 
11-9-6 & 

12-9-5 , 

0-9-5 ( 

12-9-8-3 ) 

12-9-8-4 * 
12-9-8-5 + 
12-9-8-6 , 
12-9-8-7 -
12-11-9-8-1 

11-9-1 / 
11-9-2 0 

11-9-3 1 
9-8-4 2 

9-8-5 3 
9-2 4 

0-9-6 5 
11-9-8 6 
11-9-8-1 7 

9-8-7 8 

0-9-7 9 
11-9-8-4 : 

11-9-8-5 , 

C-l 

APPENDIX C 

CARD CODES 

Octal Card 

Code Punches 

36 11-9-8-6 

37 11-9-8-7 

40 

41 12-8-7 

42 8-7 

43 8-3 

44 11-8-3 

45 0-8-4 

46 12 

47 8-5 

50 12-8-5 

51 11-8-5 

52 11-8-4 

53 12-8-6 

54 0-8-3 

55 11 

56 12-8-3 

57 0-1 

60 0 

61 1 

62 2 

63 3 

64 4 

65 5 

66 6 

67 7 

70 8 

71 9 

72 8-2 

73 11-8-6 

September 1974 



ASCII 

Character 

< 
= 
> 
? 
@ 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 

P 

Q 
R 

S 

T 

U 

V 

W 

X 

Y 

Z 
[ 

\ 
] 

Octal 

Code 

74 

75 

76 

77 

100 

101 

102 

103 

104 

105 

106 
107 

110 

III 

112 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

Table C-l fCont) 

ANSI Card Codes 

Card ASCII 

Punches Character 

12-8-4 tA 
8-6 ~ 

0-8-6 \-
0-8-7 a 

8-4 b 
12-1 c 
12-2 d 
12-3 e 
12-4 f 
12-5 g 
12-6 h 
12-7 i 
12-8 j 
12-9 k 
11-1 1 
11-2 m 
11-3 n 
11-4 0 

11-5 p 
11-6 q 
11-7 r 
11-8 s 
11-9 t 
0-2 u 
0-3 v 
0-4 w 
0-5 x 
0-6 y 
0-7 z 
0-8 { 
0-9 I 
12-8-2 } 
0-8-2 

~ 

11-8-2 DEL 

NOTE 
The ASCII character ESCAPE (octal 33) is also 
CTRL-[ on a terminal. 

The ASCII characters} and ..... (octal 175 and 176) 
are treated by the monitor as ALT-MODE and are 
often considered the same as ESCAPE. 

C-2 

Octal Card 

Code Punches 

136 11-8-7 

137 0-8-5 

140 8-1 

141 12-0-1 

142 12-0-2 

143 12-0-3 

144 12-0-4 

145 12-0-5 

146 12-0-6 

147 12-0-7 

150 12-0-8 

151 12-0-9 

152 12-11-1 

153 12-11-2 
154 12-11-3 

155 12-11-4 

156 12-11-5 

157 12-11-6 

160 12-11-7 

161 12-11-8 

162 12-11-9 

163 11-0-2 

164 11-0-3 

165 11-0-4 

166 11-0-5 

167 11-0-6 

170 11-0-7 

171 11-0-8 

172 11-0-9 

173 12-0 

174 12-11 

175 11-0 

176 11-0-1 

177 12-9-7 

September 1974 



9 ...... 

til 

Device Function I 

CDP 

CDR 

SETSTS 

GETSTS 

SETSTS 

GETSTS 

DIS SETSTS 
GETSTS 

DSK SETSTS 

.g GETSTS -('1) 

S 
0" 
('1) 
>-t 
...... 
\0 
-.....J 
.J:>. 

18 19 

Punch 
Error 

No Data 
7-9 Missed 
Punch 

Write Search 
Lock Error 

20 21 22 

Data 
when 
EOC 
reached 

Binary EOF 
Check card 
sum EOF 
Error button 

Disk Block End 
Parity No. of 

Error Too File 
Large 

23 

I/O 
Active 

I/O 
Active 

I/O 
Active 

I/O 
Active 

Table D-l 
Device Status Bits 

24 25 26 27 28 

APPENDIX D 

DEVICE STATUS BITS 

29 30 31 32 33 34 35 

ANSI User Data Mode i 

Word 
Count 

Super Sync Data Mode 
I Image Input I 

Mode 
I 

Data Mode 
I 

Write Sync User Data Mode 
Head Input Word 
ers Count 

- -



t::I 
N 

Device Function I 

DTA SETSTS 

GETSTS 

LPT SETSTS 

GETSTS 

MTA SETSTS 

GETSTS 

PLT SETSTS 

GETSTS 

PTP SETSTS 

GETSTS 

PTR SETSTS 

GETSTS 

18 19 

Write Data 
Lock Missed 

Write Data 
Lock Missed 
Illegal 
Opera-
tion 

Block 
Incom-
plete 

20 21 22 23 

Parity Block End I/O 
Error No. of Active 

Too File 
Large 

I/O 
Active 

Parity Record End I/O 
Error Too of Active 

Long File 

I/O 
Active 

I/O 
Active 

Check End I/O 
sum of Active 
Error Tape 

24 

Load 
Point 

Table D-l (Cont) 
Device Status Bits 

25 26 

Write 
Even 
Parity 

End 
Point 

Rewind-
ing 

27 28 

Semi-
Stand 
ard 

~O ode 

Tape Density 

29 30 

Non- Sync 
struc- Input 
tured 
Dump 
Mode 

Suppress 
Form 
Feeds 

No Sync 
Retry Input 

Sync 
Input 

31 32 33 34 35 

User Data Mode 
Word 
Count 

User Data Mode 
Word 
Count 

User Data Mode 
Word 
Count 

User Data Mode 
Word 
Count 

User Data Mode 
Word 
Count 

Data Mode 

- -



t1 
W 

Device Function 18 19 20 21 22 23 

PTY SETSTS 
GETSTS Block I/O 

No. Active 
Too 
Large 

TTY SETSTS 

GETSTS TTY Ignore Echo Char- I/O 
Not Inter- Fail- acter Active 
Assig- rupt ure Lost 
ned 
for 
image 
mode 
input 

Table D-l (Cont) 
Device Status Bits 

24 25 26 27 

PTY TTY Wt.on itor 
Wait Re- Mode 

sponse 

Echo 
of $ 
Sup-
press 

28 29 30 31 32 I 33 I 34 I 35 

Data Iv\ode 

Echo Full Sync User Data Mode 
Sup- Char- Input Word 
press acter Count 

Set 

-

Note 1: SETSTS UUO may set all bits except Bit 23 and GETSTS UUO may return all bits (18-35); however, the two are separated to show those 
bits normally set by the user program on INIT, OPEN, or SETSTS as distinct from those normally set by the monitor (GETSTS). 

Note 2: Unused bits should always have the value O. 

Note 3: Refer to the appropriate device sections in Chapters 5 and 6 for the complete description of each status bit. 





APPENDIX E 

ERROR CODES 

The error codes in Table E-l are returned in AC on RUN and GETSEG UUOs, in the right half of location E + 1 

on 4-word argument blocks of LOOKUP, ENTER, and RENAME UUOs, and in the right half of location E + 3 

on extended LOOKUP, ENTER, and RENAME UUOs. The codes are defined in the C.MAC file. 

Symbol 

ERFNF% 

ERIPP% 

ERPRT% 

ERFBM% 

ERAEF% 

ERISU% 

ERTRN% 

ERNSF% 

ERNEC% 

ERDNA% 

ERNSD% 

ERILU% 

Code 

o 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

Table E-l 

Error Codes 

Explanation 

File not found, illegal filename (0, *), filenames do not match (UPDATE), 

or RENAME after a LOOKUP failed. 

UFO does not exist on specified file structures. (Incorrect project­

programmer number.) 

Protection failure or directory full on OT A. 

File being modified (ENTER, RENAME). 

Already existing filename (RENAME) or different filename (ENTER 

after LOOKUP) or supersede (on a non-superseding ENTER). 

Illegal sequence of UUOs (RENAME with neither LOOKUP nor ENTER, 

or LOOKUP after ENTER). 

1. Transmission, device, or data error (RUN, GETSEG only). 

2. Hardware-detected device or data error detected while reading the 

UFD RIB or UFO data block. 

3. Software-detected data inconsistency error detected while reading 

the UFO RIB or file RIB. 

Not a saved file (RUN, GETSEG only). 

Not enough core (RUN, GETSEG only). 

Device not available (RUN, GETSEG only). 

No such device (RUN, GETSEG only). 

Illegal UUO (GETSEG only). No 2-register relocation capability. 

E-l September 1974 



Symbol Code 

ERNRM% 14 

ERWLK% 15 

ERNET% 16 

ERPOA% 17 

ERBNF% 20 

ERCSD% 21 

ERDNE% 22 

ERSNF% 23 

ERSLE% 24 

ERLVL% 25 

ERNCE% 26 

ERSNS% 27 

Table E-l (Cant) 

Error Codes 

Explanation 

No room on this file structure or quota exceeded (overdrawn quota 

not considered). 

Write-lock error. Cannot write on file structure. 

Not enough table space in free core of monitor. 

Partial allocation only. 

Block not free on allocated position. 

Cannot supersede an existing directory (ENTER). 

Cannot delete a non-empty directory (RENAME). 

Sub-directory not found (some SFD in the specified path was not found). 

Search list empty (LOOKUP or ENTER was performed on generic device 

DSK and the search list is empty). 

Cannot create a SFD nested deeper than the maximum allowed level of 

nesting. 

No file structure in the job's search list has both the no-create bit and 

the write-lock bit equal to zero and has the UFD or SFD specified by 

the default or explicit path (ENTER on generic device DSK only). 

GETSEG from a locked low segment to a high segment which is not a 

dormant, active, or idle segment. (Segment not on the swapping space.) 

Table E-2 shows the IPCF Error Returns. 

Mnemonic Code 

IPCAC% 

IPCNL% 2 

IPCNP% 3 

IPCIU% 4 

IPCTL% 5 

IPCDU% 6 

IPCDD% 7 

IPCRS% 10 

IPCRR% 11 

IPCRY% 12 

IPCUP% 13 

IPCIS% 14 

Table E-2 

IPCF Error Returns 

;ADDRESS CHECK 

;NOT LONG ENOUGH 

Meaning 

;NO PACKET IN RECEIVE QUEUE 

;PAGE IN USE (VM) 

;DATA TOO LONG FOR USER'S BUFFER 

;DESTINATION UNKNOWN (RECEIVER'S PI D) 

;DESTINATION DISABLED 

;NO ROOM IN SENDER'S QUOTA 

;NO ROOM IN RECEIVER'S QUOTA 

;NO ROOM IN SYSTEM STORAGE 

;UNKNOWN PAGE ON SEND; DUPLICATE PAGE ON RECEIVE (VM) 

;INVALID SEND PID 

E-2 



Table E-2 (Cont) 

IPCF Error Returns 

Mnemonic Code Meaning 

IPCPI% 15 ;PRIV INSUFFICIENT 

IPCUF% 16 ;UNKNOWN FUNCTION 

IPCBJ% 17 ;BAD JOB NUMBER 

IPCPF% 20 ;PID TABLE FULL 

IPCPR% 21 ;PAGE REQUESTED, NORMAL NEXT 

IPCIE% 22 ;PAGING I/O ERROR 

IPCFU% 70 ;[SYSTEM] INFO HAS AN UNKNOWN, INTERNAL ERROR 

IPCCF% 71 ;[SYSTEM] IPCF REQUEST FAILED 

IPCFF% 72 ;[SYSTEM] INFO FAILED TO COMPLETE AN ASSIGN 

IPCQP% 73 ;PID QUOTA EXCEEDED 

IPCBP% 74 ;BAD (UNKNOWN) PID 

IPCDN% 75 ;DUPLICATE NAME 

IPCNN% 76 ;NO SUCH NAME 

IPCBN% 77 ;NAME HAS ILLEGAL CHARACTERS 

E-3 





APPENDIX F 

COMPARISON OF DISK-LIKE DEVICES 

Device Name 

Manufacturer 

Device Type 

Controller 

Maximum Disks per 

Controller 

Maximum Controllers 

per System 

Hardware Mnemonic 

Software Mnemonic 

Capacity Minimum 

(XIO**6 words) 

Maximum (1 control) 

(XIO**6 words) 

Blocks/Track 

Blocks/Cylinder 

Blocks/Unit 

Rotational 

Speed (rpm) 

Revolution Time 

(msec) 

128-Word B1ocks/ 

Revolution 

Transfer Rate [J.S word 

Table F-l 

Disk Devices 

Fixed-Head Disk 

Burroughs 

RDIO 

RCIO 

4 

2 

DSK 

FHA, FHB 

.5 

2 

20 

4000 

4000 

1800 

33 

20 

13 

F-1 

Drum Removable Disk Pack(s) 

Bryant Memorex, ISS 

RMIOB RP02 RP03 

RCIO RPIO RPIO 

4 8 8 

2 3 3 

DSK DPC DPC 

FHA, FHB DPA, DPB, DPA, DPB, 

DPC DPC 

.345 5.2 lOA 

1.38 41.4 82.8 

30 10 10 

2700 200 400 

2700 40000 80000 

3600 2400 2400 

17 25 25 

30 10 10 

4.3 15 15 



Device Name 

Manufacturer 

Device Type 

Controller 

Seek Time 

Average (msec) 

Minimum (msec) 

Maximum (msec) 

Table F-I (Cont) 

Disk DEvices 

Fixed-Head Disk Drum 

Burroughs Bryant 

RDIO RMIOB 

RCIO RCIO 

0 0 

0 0 

0 0 

Removable Disk Pack(s) 

Memorex, ISS 

RP02 RP03 

RPIO RPIO 

50 50 

20 20 

80 80 

Swapping Times (msec) (includes 30 ms verify) 

IK 

4K 

10K 

25K 

25 13 84 

73 27 144 

154 54 256 

358 120 589 

NOTE 
Although the Bryant drum is a drum in every sense, its 
software mnemonic is still FHA because it is connected 
to the system through the IlXed head disk control. 

F-2 

84 

144 

264 

589 



APPENDIX G 

M·AGNETIC TAPE CODES 

Table G-l 

ASCII Codes and BCD Equivalents 

Character Character 

ASCII Symbol BCD ASCII Symbol BCD 

040 blank 20 074 < 76 
041 ! 52 075 = 13 
042 " 17 076 > 16 
043 # 32 077 ? 72 
044 $ 53 
045 % 77 

100 @ 57 

046 & 35 
101 A 61 

047 , 
14 

102 B 62 
103 C 63 

050 ( 34 104 D 64 
051 ) 74 105 E 65 

052 * 54 
106 F 66 

053 + 60 
107 G 67 

054 , 
33 110 H 70 

055 - 40 111 I 71 
056 73 112 J 41 
057 / 21 113 K 42 

060 0 12 
114 L 43 

061 1 01 
115 M 44 

062 2 02 
116 N 45 

063 3 03 
117 0 46 

064 4 04 120 P 47 
065 5 05 121 Q 50 
066 6 06 122 R 51 
067 7 07 123 S 22 

070 8 10 
124 T 23 

071 9 11 
125 U 24 

072 15 
126 V 25 

073 56 
127 W 26 , 

G-l 



Table G-l (Cont) 

ASCII Codes and BCD Equivalents 

Character Character 

ASCII Symbol BCD ASCII Symbol BCD 

130 X 27 134 \ 36* 

131 Y 30 135 ] 55 

132 Z 31 136 t ILLEGAL 

133 [ 75 137 - 37 

*Code used for all illegal codes. 

When converting from ASCII to BCD, the following is done for ASCII codes 000-037 and 140-177: 

000 ignored. 

001-010 same as ASCII 134. 

011 same as ASCII 040. 

012-014 constitutes end of line. 

015 ignored. 

016-031 same as ASCII 134. 

032 end of file. 

033-037 same as ASCII 134. 

140 same as ASCII 134. 

141-172 same as ASCII 101-132. 

173-176 same as ASCII 134. 

177 ignored. 

G-2 



APPENDIX H 

FILE RETRIEVAL POINTERS 

Sequential and random file access are handled more efficiently by the monitor if all the information describing 

the file can be kept in core at once. To understand this effect, it is necessary to know how the monitor accesses 

files. 

With each named file, UFD, and MFD, the monitor writes a special block containing necessary information 

needed to retrieve the data blocks that constitute the file. This block is called a retrieval information block, or . 

RIB. 

Retrieval pointers in the RIB describe contiguous blocks of file storage space called groups. Each pointer occu­

pies one word and has one of three forms: 

1. A group pointer 

2. An EOF pointer 

3. A change of unit pointer. 

H.I A GROUP POINTER 

A group pointer has three fields: 

1. A cluster count 

2. A folded checksum 

3. A cluster address within a unit. The width of each field may be specified at ONCE-only time; there­

fore, the same code can handle a wider variety of sizes of devices. 

The cluster count determines the number of consecutive clusters that can be described by one pointer. The 

folded checksum is computed for the first word of the first block of the group. I ts main purpose is to catch 

hardware or software errors when the wrong block is read. The folded checksum is not a check on the hardware 

parity circuitry. The size of the cluster address field depends on the largest unit size in the file structure and on 

the cluster size. A cluster address is converted to a logical block address by multiplying the number of blocks 

per cluster. 

H.I.I Folded Checksum Algorithm 

This algorithm takes the low order n-bit byte, repeatedly adds it to the upper part of the word, and then shifts. 

The code is: 

H-I 



LOOPI T1,T 
T,LOW ORDER N BITS OF T1 

ADD 
LOB 
L5H 
JUMPN 
DONE 

Tl,·~ ,RIGHT SHIFT BY N BITS 
Tl,LOOP 

,ANSWER IN T 

This scheme eliminates the usual overflow problem associated with folded checksums and tenninates as soon as 
there are no more bits to add. 

H.2 END-OF-FILE POINTER 

The EOF is indicated by a zero word. 

H.3 CHANGE OF UNIT POINTER 

A file structure may comprise more than one unit; therefore, the retrieval information block must indicate which 

unit the logical block is on. Because a file can start on one device and move to another, a,method of indicating 

a chang~ from one unit to another in the middle of the file is necessary. To show this movement, a zero count 

field indicates that the right half of the word specifies a change in unit. A zero count field contains a unit num­

ber with respect to the file structure. The first retrievarpointer, with respect to the RIB, always specifies a,unit 

number. Bit 18 is 1 to guarantee that the word is non-zero; otherwise, it might be confused with an EOF pointer. 

H.4 DEVICE DATA BLOCK 

The monitor keeps a copy of up to six retrieval pointers in core at once. Therefore, if a file is allocated in six or 

less contiguous blocks (Le., described in six or less pointers), all of the retrieval infonnation can be kept in core 

and no additional accesses to the RIB are necessary. 

H.S ACCESS BLOCK 

For each active file, the monitor keeps eight words of storage called an access block. These access blocks remain 

dormant in monitor core after a file is closed and are reclaimed only when the core space is needed. Therefore, 

if a 4-word LOOKUP is done after a file has been active, access to the UFD and RIB blocks will not require I/O. 

H-2 



AC, Display, 2-6 
Access, 

Check user's, 2-13 
Data File, 6-43 
File, 2-13 
Single packs, 6-58 

Access bit, 
Clear, 3-33 
Set, 3-33 

Access-allowed bit, 3-31 

A 

Accessibility, Get page, 3-33 
Accumulated 

error count, 1-6 
run time, 3-48 

Activate a dormant job, 2-12, 3-19 
ACTIVATE UUO, 2-12 
Address, 

break word, 3-54 
DDT start, 3-1,3-2 
physical, 1-2 
program start, 3-1, 3-2, 3-37 
references, 1-2 
in sub table, 3-72 

Administration file, System, 6-59 
ALG: Device, 6-51 
ALL: Device, 6-51 
Allocation 

Blocks, 6-6 
of core, 2-6, 3-29 
storage blocks, 6-14 

Alter specified location, 2-14 
Analysis, 

Memory parity error, 8-12 
Provide performance, 2-14 

ANSI Codes, Appendix C 
APR traps, 1-7, 1-8 
APRENB UUO, 2-7, 3-2, 3-3, 3-4 
Area, Job data, 1-6 
Argument, 

ENTER, 6-25 
ENTER Extended, 6-29, 6-30, 6-31 
LOOKUP Extended, 6-25, 6-29, 6-30, 6-31 
RENAME Extended, 6-25, 6-29, 6-30, 6-31 

Arithmetic overflow trap, 3-3, 3-4 

INDEX 

A (Cont) 

ASCII, 
Codes, G-I 
Character set, 5-29, 5-30 
Line mode, 4-5 
Mode, 4-5 

ASSIGN Command, 4-2 
Attach a job, 2-13 
ATTACH UUO, 2-13 
Automatic error reporting, 5-14 

B 

Backspace, 
A file, 5-12 
A record, 5-12 

Bad address subtable, 3-72 
BAS: Device, 6-51 
BCD Codes, G-l 
Binaries, Loading relocatable, 1-1 
Binary mode, 4-5 
Binary mode, Image, 4-5 
Bits, 

File status, 4-18 
JACCT,3-36 
JLOG, 3-36 

BLI: Device, 6-51 
Block, 

Allocation, 6-6 
Buffer ring header, 4-6 
Error-intercepting, 1-8 
Home, 6-59 
Interrupt control, 3-8, 3-9, 3-10 
Interrupt vector, 3-11, 3-12 
Manipulation, 6-10 
Mode Interrupt, 3-85, 3-86 
Numbers, 2-5, 2-17, 6-3 
Storage allocation, 6-14 

Break word, Address, 3-54 
Buffer, 

Headers, 4-5 
Initialization, 4-8 
Monitor generated, 4-8 
Rings, 2-4 
Ring extensions, 4-27 

Index-l September 1974 



B (Cont) 

Ring header, 2-16 
Ring header block, 4-6 
Size of, 2-13,4-36,5-1,5-2,6-1,6-2 
Structure, 4-6 

Buffered 
Data Mode, 4-15, 6-2,6-13 
1/0,4-15,4-17 
Mode, 8-6 

CALlI. UUO, 2-15 
CALL operations, 2-5 
CALLI operations, 2-5 
Card, 

End-of-file, 5-2 
Punch, 5-1, 5-2 

C 

Punch data modes, 5-3 
Punch file status, 5;..3, 5-4 
Reader, 5-1, 5-4 
Reader data modes, 5-5 
Reader file status, 5-6 

CCONT Command, 3-1 
CDP, 5-2 
CDR, 5-4 
Central processor traps, 2-7 
Chaining, Channel command, 8-6 
Chains, 

Device, 4-28 
Interrupt, 8-8 

Change 
Logical station number, 3-45 
Project/Programmer number, 2-12 

Channel, 
Command chaining, 8-6 
Data, 4-3 
Interrupt routines, 8-8 
MPX, 2-16, 4-27 
MPX I/O modes, 4-28 
Priority-interrupt, 3-83, 8-8 
Reset a, 2-14 

Character Set, ASCII, 5-29, 5-30 
Characteristics, 

Device, 4-34, 6-52, 6-53 
Disk, 2-10, 6-52, 6-53 
Get device, 2-6 
of a physical device, 4-34 
Magnetic tape, 2-14 

Charge number, Job's, 3-52 

INDEX (Cont) 

C (Cont) 

Check, 
File Status, 4-18, 4-19 
User's access, 2-13 

CHKACC UUO, 2-13, 6-43 
Clear, 

Access bits, 6-10 
DECtape directory, 2-6 
Directory, 6-10 
Shared segment names, 3-43 
User mode, 2-9 
Write - protect bit, 3-30, 3-42 
Write - protect status, I-I 

Clock flag trap, 3-3, 3-4 
.CLOCK -Function, 3-78 
Close a file, 4-20 
CLOSE UUO, 2-4,4-20, 6-9 
CLRST. UUO, 2-16, 4-38 
CNECT. UUO, 2-16, 4-28 
COB: Device, 6-51 
Codes, 

ANSI, C-I, C-2 
ASCII, G-I 
BCD, G-I 
Card, C-I, C-2 
IPCF Error, 7-13, 7-14, E-2 
Magnetic tape, G-I 
PAGE, Error, 3-35 

Command, 
ASSIGN,4-2 
CCONT, 3-1 
CONT,3-1 
CSTART, 3-1 
DDT,3-1 
Force a, 2-13 
JCONT, 3-5, 3-6 
MOUNT, 4-2 
PLEASE, 5-27 
R,3-1 
REENTER,,3-1 
RUN,3-1 
SEND,5-27 
SET PHYSICAL LIMIT, 1-5 
SET TTY, 5-33 
SET VIRTUAL LIMIT, 1-5 
START, 3-1 

Command chaining, Channel, 8-6 
Command files, System program, 3-37 

Index-2 September 1974 



C (Cont) 

Communication, 
Inter-program, 3-46 
Inter-process, Chapter 7 
Interface (DC76), 5-31 
Job, 7-1 

Compatibility, IBM Disk Pack, 6-59 
COMPT. UUO, 2-17 
Concealed mode, 2-1 
Conditions, 

I/O Interrupt, 3-13, 3-14 
Interrupt, 3-8, 3-9, 3-12, 3-13, 3-14 
Non-I/O Interrupt, 3-12, 3-13 

Configura tion 
Information, 3-77 
of KIlO Paging, 1-4 
Table, 3-51, 3-55 

Connect Devices to PI System, 2-11 
Console switches, Read, 2-7 
Console terminal, 5-1 
CONT Command, 3-1 
Contents of data switches, 3-77 
Continuation, Device, 2-16 
Contract core size, 3-29 
Control, 

Core, 3-20 
Execution, 3-1 
Interrupt block, 3-8, 3-9, 3-10 
Interrupt flags, 3-10, 3-11 
Segment, 3-36 
Transfer of, 2-9 
Transfer program, 3-36 

CONTROL-C 
General discussion of, 3-1, 5-27 
Interception, 3-5, 3-6 
Processing, 3-6, 3-7 

CONTROL-O, 5-28 
CONTROL-R, 5-28 
CONTROL-T, 5-27 
CONTROL-U, 5-28 
Controller, 8-4 
Controller, IPCF, 7-4 
Controller numbers, 6-1, 6-2 
Controlling program, 5-23 
Conventions for monitor symbols, Naming, 2-19 
Copy file status, 2-4 

INDEX (Cont) 

Core, 
Allocate, 2-6, 3-29 
Control, 3-20 

C (Cont) 

Guaranteed amount of contiguous, 3-20 
Image, loading a, 1-1· 
Highest location, 1-6 
Lock jobs, in, 2-11, 3-20, 3-26, 3-27, 3-28 
Read a job's, 2-13 
Size, 3-29 
Temporary, 3-46 
Total user, 3-20 
Write a job's, 2-13 

CORE UUO, 2-6, 3-22, 3-29, 3-42 
CORMAX, 3-20 
CORMIN, 3-20 
Count, 

Current physical page, 1-5 
Current virtual page, 1-5 

Counter table, Response, 3-53 
CPPC, 1-5 
CPPL, 1-5 
Creat.e 

a Page, 3-33 
a PID, 7-4 

CST ART Command, 3-1 
CTLJOB UUO, 2-12, 5-26 
Current, 

Date, 3-48 
Path read, 2-14 
Physical page count, 1-5 
Physical page limit, 1-5, 3-54 
Virtual page count, 1-5 
Virtual page limit, 1-5, 3-54 

CVPC, 1-5 
CVPL, 1-5 

D 

DAEFIN UUO, 2-13 
DAEMON UUO, 2-13, 3-77 
Data, 

Channel, 4-3 
File access, 6-43 
General virtual memory, 3-76 
IPCF, 3-54, 3-76 

Index-3 September 1974 



D (Cont) 

Non-swapping, 3-51, 3-60 
Scanner response, 3-54 
Swapping, 3-61 
Switches, 3-77 
System-wide, 3-67 
Transferring, 8-4 
Transmit, 4-13 
Word on tape, 5-17 

Data area, 
Job, 1-6 
Vestigial, 1-9, 1-10 

Data modes, 
Buffered, 4-15, 6-2, 6-13 
Card punch, 5-3 
Card reader, 5-5 
DECtape, 6-2 
Device, 5-1, 5-2 
Disk, 6-13 
Display unit, 5-7 
Line printer, 5-10 
Magnetic tape, 5-11 
Paper-tape punch, 5-19 
Paper-tape reader, 5-20 
Plotter, 5-21 
Terminal, 5-29 
Unbuffered, 4-14, 6-2, 6-13 

Data modes for disk, 6-13 
Date, 

Current, 3-48 
Return, 2-7 

DATE UUO, 2-7, 3-47, 3-48 
Day, Time of, 3-48 

DC76 Communications Interface, 5-31 
.DCORE Function, 3-78 

DDT 
Command, 3-1 
Last address of, 1-6 
Start address of, 1-6, 3-1, 3-2 
Submode, 5-34 

DDTGT UUO, 2-6 
DDTIN UUO, 2-6 
DDTOUT UUO, 2-6 
DDTRL UUO, 2-6 
DEACTIVATE UUO, 2-12 
DEBRK. UUO, 2-16, 3-10, 3-11, 3-14, 3-15 
DECpack System, 6-59 

INDEX (Cont) 

D (Cont) 

DECtape, 
Compatibility, Appendix A 
Data modes, 6-1, 6-2 
Directory, 2-6, 6-3 
File format, 6-5 
File status, 6-11 
Format of, 6-3 
I/O programming with, 6-6 

Default, 
Directory, 2-14 
PFH, 3-31 

Delete, 
a File, 6-43 
the current line, 5-28 

Destroy 
a Page, 3-33 
a PID, 7-4 

Detected errors, 8-6 
Determine high segment origin, 3-41 
DEVCHR UUO, 2-6 
DEVGEN UUO, 2-12 
Device, 

ALG:, 6-51 
ALL:, 6-51 
BAS:, 6-51 
BLI:, 6-51 
Buffer size, 4-36, 5-1, 5-2, 6-1, 6-2 
Chains, 4-28 
Characteristics, 2-6, 4-28, 4-34, 6-52, 6-53 
COB:, 6-51 
Continuation, 2-16 
Data modes, 5-1, 5-2 
Directory, 4-3,6-1,6-2 
DMP:, 6-51 
DOC:, 6-51 
DSK:, 6-51 
Error interception, 3-5, 3-6 
Error recovery, 2-16,4-39 
FAI:, 6-51 
File Status, 6-57 
FOR:, 6-51 
HLP:, 6-51 
Identification, 4-28 
Index, universal, 4-4, 4-38 
Initialization, 4-3, 4-12 
LIB:, 6-51 

Index-4 September 1974 



MAC:, 6-51 
MPX, 2-16 
MUS:, 6-51 
MXI:, 6-51 

D (Cont) 

Names, 2-11, 2-13, 2-18, 3-54, 4-4, 4-24, 4-38 
NEW:, 6-51 
Nondirectory, 4-2, 5-1 
OLD:, 6-51 
Optimization, 8-4 
PPN, 6-50 
Privileged job, 2-15 
Prop erties, 2-10, 4-35 
Reassignment, 2-7,4-22,4-23 
Release a, 2-6 
Rename a, 3-83 
REL:, 6-51 
Release a, 3-2, 3-3, 4-22 
Reset a, 2-6, 4-23 
RNO:, 6-51 
Selection, 2-3, 4-2 
SNO:, 6-51 
Status, 2-10, 2-15, 4-2, 4-33,6-43 
Status bits, Appendix D 
Structure name, 3-52 
SYS:, 6-51 
TED:, 6-51 
Tennination, 4-22 
Type, 4-35 
UNV:, 6-51 ' 

DEVLNM UUO, 2-13, 4-24 
DEVNAM UUO, 2-11, 4-4, 4-38 
DEVPPN UUO, 2-11,6-50 
DEVSIZ UUO, 2-13, 4-36 
DEVSTS UUO, 2-10,4-33,6-11,6-43 
DEVTYP UUO, 2-10, 4-35 
Digital-compatible Mode, 5-17 
Directory, 

Clear a, 2-6, 6-10 
Default,2-14 
Devices, 4-3, 6-1, 6-2 
Fonnat, DECtape, 6-3 
Master file, 6-14 
Modify the default, 2-14 
Paths, 6-39 
Searches, 8-6 
Sub-file, 6-14 
User file, 6-14 

Discriptor block flags, Packet, 7-10 

INDEX (Cont) 

D (Cont) 

Disk, 
Characteristics, 2-1_0, 6-52, 6-53 
Comparisons, Appendix F 
Data modes for, 6-13 
File status, 6-57 
File structure, 6-13 
Fixed head, 6-1, 6-58 
Moveable head, 6-58 
Packs, 6-2, 6-58, 6-59 
Parameters, 2-15, 3-62, 6-55 
Project/Programmer Number, 6-50 
Quota, 3-7, 3-8 
Space identification, 6-59 
Units, 2-10, 3-7, 3-8, 6-13, 6-50 

DISK. UUO, 2-15, 6-55, 6-56 
Dismiss an interrupt, 2-5, 2-16, 3-14, 3-15, 3-83, 3-92 
Display AC, 2-6 
Display lights, 3-77 
Display unit, 5-1, 5-6 
Display unit data modes, 5-7 
Display unit file status, 5-9 
DMP: Device, 6-51 
DOC: Device, 6-51 
Donnant job, 

Activate a, 2-12 
Active a, 3-19 

Drive, State of tape, 5-15 
DSK, Generic, 6-23 
DSK: Device, 6-51 
DSKCHR UUO, 2-10, 6-52 
DSKCHR. UUO, 6-53 
DTAx, 6-2 
Dump mode, 

Image, 4-5 
Record, 4-5 

DVRST. UUO, 2-15 
DVURS. UUO, 2-15 

Element numbers, 5-33 
End-of-file, 4-1, 5-2 
ENTER, 

Argument, 6-25 
Error Recovery, 6-35 

E 

Extended Argument, 6-29, 6-30, 6-31 
Operator, 4-9 
UUO, 2-5, 6-8, 6-26 

Index-5 September 1974 



E (Cont) 

Environmental information, 3-47 
EOF Card, 5-2 
EOF Marks, 5-11 
ER.EIJ, 3-7, 3-8 
ER.FUL, 3-7, 3-8 
ER.lCC, 3-5, 3-6 
ER.lDV, 3-5, 3-6 
ER.OFL, 3-7, 3-8 
ER.QEX, 3-7, 3-8 
ER.TLX, 3-7, 3-8 
ERLST UUO, 2-16, 4-30 
Error analysis, Memory parity, 8-12 
Error code data symbols, 2-19 
Error Codes, 

IPCF, 7-13, 7-14, Appendix E 
PAGE, 3-35 

Error count, Accumulated, 1-6 
Error handling, Monitor, 8-6 
~rror in job interception, 3-7, 3-8 
Error interception, 3-2, 3-3, 3-4, 3-5, 3-6 
Error recovery, 

Device, 2-16, 4;-39 
ENTER, 6-35 
Memory parity, 8-12 
RENAME, 6-35 

Error reporting, 
Automatic, 5-14 
Memory parity, 8-12 

Error-intercepting block, 1-8 
Errors, 

Hardware detected, 8-6 
Software detected, 8-6 

Ersatz device names, 3-54 
Examine, 

Monitor location, 3-49, 3-50 
Parameters, 6-55 

Example, Software interrupt, 3-16 
Exceeded interception, Time limit, 3-7, 3-8 
Exchange a page, 3-33 
Execution control, 3-1 
Executive, 

Mode, 2-1, 2-2 
Mode trapping, 3-88 

Exhausted disk quota interception, 3-7, 3-8 
EXIT UUO, 2-6, 3-2, 3-3 
Expand core size, 3-29 

INDEX (Cont) 

E (Cont) 

Extended Argument, 
ENTER, 6-29, 6-30, 6-31 
LOOKUP, 6-29, 6-30, 6-31 
RENAME, 6-29, 6-30, 6-31 

Extension, 
Buffer ring, 4-27 
.HGH, 1-1 
.LOW, 1-1 
Null, 3-36 
Programmed operator, 2-3 
.SAV, 1-1 
.SHR, 1-1 

F 

FAI: Device, 6-51 
Fast block mode interrupt, 3-85 
Fault handler, Page, 1-4, 1-7,3-31,3-32 
Feature table, 3-72 
File, 

Access, 2-13, 6-43 
Backspace a, 5-12 
Close a, 4-20 
Delete a, 6-43 
Directories, 6-14 
Input a, 2-5 
I/O Organization, 4-1 
Format, 6-5 
Output a, 2-5 
Parameters, 2-15, 6-55 
Read a, 4-24 
Rename a, 4-11 
Retrieval pointers, H-l 
Selection, 4-9-
Status bits, 4-18 
Storage, 2-9 
Termination, 2-4, 4-20 

File status, 
Bits, 4-18 . 
Card punch, 5-3, 5-4 
Card reader, 5-6 
Check, 4-18, 4-19 
Copy, 2-4 
DECtape, 6-11 
Disk device, 6-57 
Display unit, 5-9 

Index-6 September 1974 



F (Cont) 

Initial, 4-4 
Line printer, 5-10 
Magnetic tape, 5-17 
Paper-tape punch, 5-19 
Paper-tape reader, 5-20 
Plotter, 5-21 
Pseudo-TTY, 5-24 
Set, 2-4,4-18,4-19 
T enninal, 5-43 

File Structure, 
Description of, 6-14 
Interception, 3-7, 3-8 
Manipulation, 6-45 
Multiple, 6-39 
Names, 2-10, 2-12, 3-52, 6-23, 6-49 
Removable, 6-59 

File Names, Order of, 8-6 
Fixed head disk, 6-1, 6-58 
Flags, 

Interrupt control, 3-10, 3-11 
Packet discriptor block, 7-10 

Floating-point overflow trap, 3-3, 3-4 
FOR: Device, 6-51 
Force a command, 2-13 
F.ormat, 

DECtape, 6-3 
DECtape Directory, 6-3 
DECtape File, 6-5 
[SYSTEM] INFO Request, 7-4 
[SYSTEM] IPCC Request, 7-4 

FRCUUO UUO, 2-13 
FRECHN UUO, 2-10 
Full file structure interception, 3-7, 3-8 
Full-duplex software, 5-44 
Function, 

.CLOCK, 3-78 

.DCORE, 3-78 
IPCC, 7-12, 7-13 
MTAPE, 5-13 
Page, 3-33 
[SYSTEM] INFO,7-11 
[SYSTEM] INFO, 7-12 
Tenninal, 2-14, 5-35 
TYPESET, 2-1 7 

INDEX (Cont) 

G 

General device initialization, 4-12 
General virtual memory data, 3-76 
Generic DSK, 6-23 
Get, 

device characteristics, 2-6 
page accessibility, 3-33 
PPN, 3-51 

GETCHR UUO, 2-6 
GETLIN UUO, 2-8, 5-38 
GETPPN UUO, 2-8,3-48 
GETSEG UUO, 2-9, 3-1, 3-39 
GETSTS UUO, 2-4,4-19 
GETTAB Argument Data Symbols, 2-19 
GETTAB Subtables, 3-69 
GETTAB UUO, 2-9, 3-50 
GHGPPN UUO, 2-12 
Global limits, 1-5 
GOBSTR UUO, 2-12, 6-48 
GPPL, 1-5, 1-6 
Guaranteed amount of contiguous core, 3-20 
GVPL, 1-5, 1-6 

H 

Half-duplex mode, 5-31 
HALT AT USER PC Message, 2-2 
HALT Instruction, 3-1, 3-2, 3-3 
Handling, 

MOI1,itor error, 8-6 
Page fault, 1-4, 1-7,3-31,3-32 

Hardware, 
Detected errors, 8-6 
Paging, 1-3, 1-4 
Relocation, 1-2 

Head disk, 
Fixed, 6-1, 6-58 
Moveable, 6-58 

Header, 
Buffer ring block, 4-5, 4-6 
Card, 5-2 
Move buffer ring, 2-16 
Scheduler's queue, 3-53 

.HGH Extension, 1-1 
HIBER UUO, 2-12, 3-18, 3-19, 5-24 
High priority run queue, 3-92 

Index-7 September 1974 



H (Cont) 

High segment, 
Initialize, 3-39 
Origin, 3-41 
Paging, 1-5 
Remove a, 3-40 
Replace, 2-9 
Sharing, 1-5, 3-41 
Write-protect the, 1-1 

Highest relative core location, 1-6 
HLP: Device, 6-51 
Home block, 6-59 
HPQUUO, 2-12, 3-92 

I/O, 
Device selection, 2-13 
Index, universal, 2-15 

I 

Interrupts, 3-8, 3-9, 3-13, 3-14, 3-92 
Job initialization, 4-1 
Modes, 2-2, 2-8, 4-28 
MPX Channel, 4-28 
Non-blocking, 4-26 
Operations, 8-4 
Organization files, 4-1 
Programming, 4-1, 6-6 
Unit-mode, 4-1 
Wait queue, 8-1 

IBM Disk Pack Compatibility, 6-59 
IBUF, 4-5 
Identification, 

Device, 4-28 
Disk space, 6-59 
Profile, 3-43 
Process; 3-54, 7-1, 7-2 
Program, 3-43 
Reel, 2-15 

?ILL INST AT USER adr Message, 2-18 
Illegal instructions, 2-18, 3-1, 3-2 
Illegal op-codes, 2-18 
?ILLEGAL UUO AT USER PC Message, 2-3 
Image mode, 

binary, 4-5 
dump, 4-5 
packed, 4-5 

IN UUO, 2-4, 4-13, 5-25 
INBUF UUO, 2-4 

INDEX (Cont) 

I (Cont) 

Index, 
Universal device, 4-4, 4-38 
Universal I/O, 2-15 

Information, 
Device, 4-33 
Environmental, 3-47 
Job status, 3-48, 5-25, 5-26 
Terminal, 5-39 
Timing, 3-47 

IN IT UUO, 4-2, 4-3,5-1 
Initialize, 

a buffer, 4-8 
a device, 4-3, 4-12 
a high segment, 3-39 
job 1/0,4-1 
the software interrupt system, 2-16 

Input, 
Buffered, 4-15 
Buffer ring, 2-4 
File, 2-5 
Paper-tape, 5-44 
Queue status, 7-7 
Request, 2-4 
Select a file for, 2-5 
Spooling, 6-59 

INPUT UUO, 2-4, 4-13, 5-7, 5-25, 6-9 
Instructions, Illegal, 2-18, 3-1, 3-2 
Inter-process communication facility, 7-1 
Inter-program communication, 3-46 
Interception, 

Control-C, 3-5, 3-6 
Device error, 3-5, 3-6 
Error, 3-2, 3-3, 3-4, 3-5 
Error in job, 3-7, 3-8 
Exhausted disk quota, 3-7, 3-8 
Full file structure, 3-7, 3-8 
Off-line disk unit, 3-7, 3-8 
Program, 3-2, 3-3 
Time limit exceeded, 3-7, 3-8 
Zfull file structure, 3-8 

Interface, DC76 Communications, 5-31 
Interrupt, 

Chains, 8-8 
Channels, 8-8 
Conditions, 3-8, 3-9, 3-12, 3-13, 3-14 
Control blocks, 3-9, 3-10 
Control flags, 3-10, 3-11 

Index-8 September 1974 



I (Cont) 

Dismiss an, 2-5, 2-16, 3-14, 3-15, 3-83 
Dismiss an I/O, 3-92 
Example (PSISER), 3-16 
Fast block mode, 3-85 
Level use of RTTRP, 3-82 
Nonnal block mode, 3-86 
Optimization, 8-5 
Process, 3-8, 3-9 
Real-time, 2-5 
Routines, 8-8 
Single-mode, 3-84 
System, 2-16, 3-2, 3-3, 3-8, 3-9 
Vector block, 3-8, 3-9, 3-11, 3-12 

10NDX.UUO, 2-15, 4-4, 4-38 
IPCC Functions, 7-12, 7-13 
IPCF, 7-1 to 7-18 
IPCF, 

Controller, 7-4 
Data, 3-54 
Error codes, 7-13, 7-14, Appendix E 
Example, 7-15 
Input queue, 2-17, 7-7 
Miscellaneous data, 3-76 
Packet, 2-17, 7-6 
Queue, 7-3 
Quota, 7-4 
Using, 7-8 

IPCFQ. UUO, 2-17, 7-1, 7-7 
IPCFR. UUO, 2-17, 7-1, 7-6 
IPCFS. UUO, 2-17, 7-1, 7-5 

JACCT Bit, 3-36 
JB.LSY, 3-43 
.JB41, 1-6 
.JBAPR, 1-7,3-3,3-4 
.JBBLT, 1-6 
.JBCNI, 1-8, 3-3, 3-4 
.JBCOR, 1-8 
.JBCST, 1-8 
.JBDA, 1-9 
.JBDDT, 1-6,3-1, 3-2 
.JBERR, 1-6 
.JBFF, 1-7 
.JBH41, 1-10 
.JBHCR, 1-10 

J 

INDEX (Cont) 

.JBHDA, 1-10 

.JBHGA, 1-10 

.JBHNM, 1-10 

J (Cont) 

.JBHRL, 1-7,3-39,3-41 

.JBHRN, 1-10 

.JBHSA, 1-10 

.JBHSM, 1-10 

.JBHVR, 1-10 

.JBINT, 1-8,3-2, 3-3, 3-4, 3-5 

.JBOPC, 1-8, 3-2, 3-3 

.JBOPS, 1-8 

.JBOVL, 1-8 

.JBPFH, 1-7, 3-31 

.JBPFI, 1-6 

.JBREL, 1-6, 3-30, 3-41 

.JBREN, 1-7 

.JBSA, 1-7,3-37 
JBSET. UUO, 2-14 
.JBSYM, 1-7 
.JBTPC, 1-8,3-3, 3-4 
.JBUSY, 1-7 
.JBUUO, 1-6 
.JBVER, 1-8, 1-9 
JCONT Command, 3-5, 3-6 
Jiffies, Time limit in, 3-52 
JLOG Bit, 3-36 
Job, 

Activate a dormant, 2-12, 3-19 
Attach a, 2-13 
Charge number for a, 3-52 
Communication, 7-1 
Core for a, 2-13 
Data area, 1-6, 1-9, 1-10 
Data area symbols, 2-19 
Dormant, 2-12, 2-18 
I/O initialization, 4-1 
Interception, 3-7, 3-8 
Lock in core, 2-11, 3-20, 3-26, 3-27, 3-28 
Numbers, 2-8, 2-12, 3-48, 5-26, 8-1 
Parameters, 2-12, 2-43 
Privileged device for, 2-15 
Privileges, 3-55 
Project/Programmer number, 2-8 
Protection, 3-51 
Queue names, 3-64 
Relocation, 3-51 
Run time of a, 2-8 

Index-Q September 1974 



J (Cont) 

Scheduling, 8-1 
Search list, 6-23, 6-47, 6-48 
Status, 3-48, 5-25, 5-26 
Status word, 3-51,3-53 
Stop a, 2-6, 2-8, 3-2, 3-3, 3-18 
Suspend a, 3-18, 3-90 
Unlock a, 3-20 

JOBDAT, 1-6, 1-7, 1-8, 1-9 
JOBPEK UUO, 2-13 
JOBSTR UUO, 2-10, 6-47 
JOBSTS UUO, 2-11,5-25 
JRST 4 Instruction, 3-1, 3-2 

K 

KA10 Processor, 1-2 
KA10 Relocation, 1-2, 1-3 
Kernal mode, 2-1 
Keyboards, Model 2741,5-32 
KIlO Paging Configuration, 1-4 
KIl 0 Processor, 1-2, 1-3 
KIlO Protection, 1-3 
KIlO Relocation, 1-3 
KIlO with Virtual Memory, 1-4 
Kilo-core ticks, 3-51 

L 

Last address of DDT, 1-6 
Leve1-D Monitor Parameters, 3-62 
LIB: Device, 6-51 
Lights, Display, 3-77 
LIGHTS UUO, 2-6, 3-77 
Limit, 

Current physical page, 1-5,3-54 
Current virtual page, 1-5, 3-54 
Global physical page, 1-5 
Global virtual page, 1-5 
Maximum physical page, 1-5,3-54 
Maximum virtual page, 1-5, 1-6, 3-54 

LIMIT Command, 
.SET PHYSICAL, 1-5 
.SET VIRTUAL, 1-5 

Line, 
Delete current, 5-28 
Retype current, 5-28 

Line Mode, ASCII, 4-5 

INDEX (Cont) 

L (Cont) 

Line printer, 
Data modes, 5-10 
Discussion, 5-1, 5-10 
File status, 5-10 

List, Job search, 6-23, 6-47, 6-48 
Loading, 

a core image, 1-1 
Programs, 1-1 
Re10catable binaries, 1-1 

LOCATE UUO, 2-11, 3-45 
Location, 

Examine monitor, 3-49, 3-50 
Highest relative core, 1-6 

LOCK Bits, 3-21 
LOCK Error Codes, 3-22 
Lock, 

Job in Core, 2-11, 3-20, 3-26 to 3-28 
Page, 3-23 

LOCK UUO, 2-11, 3-20, 3-21 
LOCK UUO Extension, 3-23, 3-24 
Logical, 

Device names, 2;.13, 2-18,4-4,4-24 
Station number, 2-11, 3-45, 3-52 

LOGIN UUO, 2-7 
LOGOUT UUO, 2-7 
LOOKUP, 

Arguments, 6-25 
Extended argument, 6-29, 6-30, 6-31 
UUO, 2-5, 4-9, 6-7, 6-27 

.LOW Extension, 1-1 
Low segment, Remap the, 1-1, 3-40 
LPT,5-10 

MAC: Device, 6-51 
Made, User, 1-2 
Magnetic tape, 

Characteristics, 2-14 
Codes, G-l 
Data modes, 5-11 
File status, 5-17 
Units, 5-1, 5-11 

Manipulate, 
Blocks, 6-10 

M 

File structures, 2-10, 6-45 
Pages, 2-17, 3-32 

Index-l 0 September 1974 



M (Cont) 

Map page, User page, 1-3, 3-54 
Mapping, Mcmory, 2-1 
Marks, EOF, 5-11 
Mask data symbols, 2-19 
Master file directory, 6-14 
Maximum physical page limit, 1-5,3-54 
Maximum virtual page limit, 1-5, 1-6,3-54 
Mcddling, 3-42 
Mcmory, 

Mapping, 2-1 
Organization (virtual), 1-4, 1-5 
Parity error, 8-12 
Protection, 1-2, 2-1 
Relocation, 1-2 
Violation trap, 3-3, 3-4 
Virtual, 1-4, 3-76 

Messages, Send-all, 3-54 
METER. UUO, 2-14, 3-93 
Mctering, System performance, 3-93 
MFD, 6-14, 6-49 
Milliseconds, Run time in, 2-8 
Mode, 

ASCII, 4-5 
ASCII Line, 4-5 
Binary, 4-5 
Buffered, 8-6 
Buffered data, 4-15,6-2, 6-13 
Card punch data, 5-3 
Card reader data, 5-5 
Clear user, 2-9 
Concealed, 2-1 
Data, 4-4,6-1,6-2 
Device data, 5-1, 5-2 
Digital-compatible, 5-17 
Disk unit data, 6-13 
Display unit data, 5-7 
Executive, 2-1, 2-2 
Half-duplex, 5-31 
Image, 4-5 
Image binary, 4-5 
Image dump, 4-5 
Line printer, 5-10 
Kernal, 2-1 
Magnetic tape data, 5-11 
MPX Channel I/O, 4-28 
Packed image, 4-5 
Paper-tape punch data, 5-19 
Paper-tape reader data, 5-20 
Plotter data, 5-21 

INDEX (Cont) 

Proccssor, 2-1, 2-2 
Public, 2-1 
Rccord dump, 4-5 

M (Cont) 

Sct Trap for Uscr I/O, 2-8 
Set user, 2-9 
S upcrvisor, 2-1 
Terminal data, 5-29 
Trapping, Executive, 3-88 
Unbuffered, 8-6 
Unbuffered data, 4-14,6-2,6-13 
User, 2-1 
User I/O, 2-2 

Mode Interrupt, 
Fast block, 3-85 
Normal block, 3-86 
Single, 3-84 

Model 2741 Terminals, 5-31, 5-32 
Modify shared segments, 3-42 
Modify the default directory, 2-14 
Monitor, 

Error handling, 8-6 
Examination, 3-49, 3-50 
Generated buffers, 4-8 
Parameters, 3-62 
Programmed operators, 2-3 
Symbols, 2-19 
UUOs, 2-3, 2-18 

MOUNT Command, 4-2 
Move buffer ring header, 2-16 
Moveable head disk, 6-58 
MPPL, 1-5 
MPX, 

Channel, 2-16,4-27 
Channel I/O Modes, 4-28 
Devices, 2-16 

MSTIME UUO, 2-7, 3-48 
MTAID. UUO, 2-15 
MTAPE UUO, 2-4, 5-12, 5-13, 6-10 
MTAx, 5-11 
MTCHR. UUO, 2-14, 5-15 
Multi-access packs, 6-58 
Multiple file structures, 6-39 
Multiplexed channel feature, 4-27, 4-28 
Multiprogramming system, 8-1 
MUS: Device, 6-51 
MVHDR. UUO, 2-16 
MVPL, 1-5, 1-6 
MXI: Device, 6-51 

Index-II September 1974 



INDEX (Cont) 

N 

Name, 
Clear shared segment, 3-43 
Device, 2-11,4-4,4-38 
Device logical, 2-13 
Device structure, 3-52 
Ersatz device, 3-54 
File structure, 2-10, 2-12,3-52,6-23,6-49 
Job queue, 3-64 
Logical device, 2-18, 4-4, 4-24 
Physical device, 2-18, 4-4 
Page, 3-33 
Set program, 2-9, 3-43 
Terminal, 2-8, 5-38 
User program, 3-51 

NEW: Device, 6-51 
Nine-channel tape, 5-17 
Non-blocking 1/0,4-26 
Non-I/O Interrupt Conditions, 3-8, 3-9, 3-12, 3-13 
Nondirectory devices, 4-2, 5-1 
Nonswapping data, 3-51, 3-60 
Normal block mode interrupt, 3-86 
Null, 

extension, 3-36 
project/programmer number, 3-36 
queue, 8-1 

Number, 
Block, 6-3 
Change logical station, 3-45 
Controller, 6-1, 6-2 
data symbols, 2-19 
Element, 5-33 
Job, 2-8, 3-48, 5-26, 8-1 
Job's charge, 3-52 
Logical station, 2-11, 3-52 
Number TTY, 2-14 
Physical station, 2-11, 4-37 
Program version, 1-8, 1-9 
Project/programmer, 2-11, 3-48, 6-50 
Return job, 2-8, 2-12 
Set block, 2-5, 2-17 
Terminal, 2-14, 5-38 

o 

OBUF, 4-5 
Off-line disk unit interception, 3-7, 3-8 
OLD: Device, 6-51 
Once-only disk parameters, 3-62 

Op-codes, 
Illegal, 2-18 

o (Cont) 

Unimplemented, 2-18, 3-1, 3-2 
OPEN UUO, 2-3, 4-2, 4-3 
Operations, 

1/0,8-4 
Terminal,2-3 
Terminate file, 2-4 

Operator, 
ENTER, 4-9 
IN,4-13 
INPUT, 4-13 
LOOKUP, 4-9 
OUT,4-13 

Operator extension, Programmed, 2-3 
Optimiza tion, 

Device, 8-4 
Position-done interrupt, 8-5 
Transfer-done interrupt, 8-5 

Options, CLOSE, 4-20 
Order of filenames, 8-6 
Organization, Virtual memory, 1-4, 1-5 
Organization files, I/O, 4-1 
Origin, 

Determine high segment, 3-41 
High segment, 3-41 

OTHUSR UUO, 2-12, 3-48 
?OUT OF BOUNDS Message, 3-42 
OUT UUO, 2-4, 4-13 
OUTBUF UUO, 2-4 
Output, 

buffer rings, 2-4 
Buffered, 4-17 
file, 2-5 
Paper-tape, 5-44 
Request, 2-4 
Select a file for, 2-5 
Spooling, 6-60 
Suppress, 5:..28 

OUTPUT UUO, 2-4, 5-7, 6-9 
Overlays, Shared program, 3-39 

P 

Pack Compatibility, IBM Disk, 6-59 
Packed image mode, 4-5 

Index-12 September 1974 



P (Cont) 

Packet, 
Receive an IPCF, 2-17, 7-6 
Send an IPCF, 2-17, 7-1, 7-2 

Packet discriptor block flags, 7-10 
Packs, 

Disk, 6-2, 6-58 
Multi-access, 6-58 
Private, 6-58 
Public, 6-58 
Single access, 6-58 

Page, 
Count, 1-5 
Create a, 3-33 
Destroy a, 3-33 
Exchange a, 3-33 
fault hand1er, 1-4, 1-7, 3-31, 3-32 
functions, 3-33 
limit, 

Current physical, 1-5 
Current virtual, 1-5 
Global physical, 1-5 
Global virtual, 1-5 
Maximum physical, 1-5 
Maximum virtual, 1-5, 1-6 

location, Lock at specified, 3-23 
locking, 3-23 
map, User, 3-54 
Name a, 3-33 
Swap a, 1-4, 3-33 
User page map, 1-3 

Page accessibility, Get, 3-33 
PAGE, Error Codes, 3-34, 3-35 
PAGE. UUO, 2-17, 3-32, 3-33, 3-34 
Paging Configuration, KIlO, 1-4 
Paging hardware, 1-3, 1-4 
Paper-tape 

input, 5-44 
output, 5-44 
punch, 5-2, 5-18 
punch data modes, 5-19 
punch file status, 5-19 
reader, 5-2, 5-20 
reader data modes, 5-20 
reader file status, 5-20 

Parameters, 
Examine, 6-55 
Level-D Monitor, 3-62 
Once-only disk, 3-62 
Read disk, 2-15 

INDEX (Cont) 

Read file, 2-15 
RENAME,6-9 

P (Cont) 

Set disk, 2-15, 6-55 
Set file, 2-15, 6-55 
Set job, 2-12, 3-43 
Set system, 2-12, 3-43 
Swapping, 3-51 

Parity 
error analysis, Memory, 8-12 
error recovery, Memory, 8-12 
error reporting, Memory, 8-12 
error trap, 3-3, 3-4" 
subtable, 3-72 

PATH. UUO, 2-14,6-35 
Paths, Directory, 2-14, 6-39 
PC Word symbols, 2-19 
PEEK UUO, 2-8, 3-49 
Percent (%) sign, 2-19 
Performance, Metering system, 2-14, 3-93 
PFH, 1-7,3-31 
Physical 

addresses, 1-2 
device characteristics, 4-34 
device name, 4-4 
device names, 2-18 
disk units, 6-50 
disk units, Return, 2-10 
page count, Current, 1-5 
page limits, 1-5 
records, 5-11 
station number, 2-11, 4-37 

PHYSICAL LIMIT Command, .SET, 1-5 
PI channel, rename device from, 3-83 
PI Channels, 8-8 
PI System, Connect Devices to, 2-11 
PID, 

Create a, 7-4 
Destroy a, 7-4 
[SYSTEM] INFO, 3-54, 7-3 

PIINI. UUO, 2-16,3-8,3-9,3-11,3-12 
PIRST. UUO, 2-17 
PISAV. UUO, 2-16, 3-14, 3-15 
PISYS. UUO, 3-8, 3-9, 3-11, 3-12 
PJOB UUO, 2-8, 3-48 
PLEASE Command, 5-27 
Plotter data modes, 5-2, 5-21 
Plotter file status, 5-2, 5-21 
PLT, 5-21 
Pointer to symbol table, 1-7 

Index-13 September 1974 



P (Cont) 

Pointers, File Retrieval, H-I 
POKE UUO, 2-14, 3-49 
Position-done interrupt optimization, 8-5 
PPN, 

Disk device, 6-50 
Get, 3-51 

Print status information, 5-27 
Printer, Line, 5-1, 5-10 
Priority, 

Interrupt channel, 3-83 
Interrupt system, 8-8 
Interrupt routines, 3-92 
Run queue, High, 3-92 

Private packs, 6-58 
Privileged, 

Bits, 3-51 
Device job, 2-15 
Job, 3-55 
Word symbols, 2-19 

Privileges, wake, 3-19 
Process Communication ID, 3-54 
Process ID, 7-1, 7-2 
Processing, Control-C, 3-6, 3-7 
Processor, 

KAI0, 1-2 
KIlO, 1-2, 1-3 
Modes, 2-1, 2-2 
Traps, 2-7 

Profile identification, 3-43 
Program, 

Command files, 3-37 
Controlling, 5-23 
Control files, system, 3-36 
Identification, 3-43 
Interception, 3-2, 3-3 
Interruption, 3-2, 3-3 
Loading, I-I 
Name, 2-9, 3-43, 3-51 
Operators, 2-2, 2-3 
Overlays, 3-39 
Segments, 1-1 
Start address, 1-1,3-1,3-2,3-37 
Stopping, 3-1, 3-2, 5-27 
Supersede a sharable, 3-42 
Swapping, 8-2, 8-3 
SYSTAT, 3-50 
Transfer control between, 3-36 
Trapping, 3-2, 3-3 
User, I-I 
Version number, 1-8, 1-9 

INDEX (Cont) 

Programming, 
1/0,4-1 
Real-time, 3-79 

P (Cont) 

With DECtape, I/O, 6-6 
Project/programmer number, 2-11,3-48, 6-50 
Project/programmer number, 

Change, 2-12 
Job's, 2-8 
Null, 3-36 

Properties, Device, 2-10, 4-35 
Protection, 

Codes, WAKE UUO, 3-18 
Job,3-51 
KIlO, 1-3 
Memory, 1-2, 2-1 
Registers, 1-2 
Segment, 1-2 

Provide performance analysis, 2-14 
Pseudo TTY, 5-2, 5-23 
Pseudo-TTY File Status, 5-24 
PTP,5-18 
PTR,5-20 
PTYx, 5-23 
Public mode, 2-1 
Public packs, 6-58 
Punch, 

Card, 
Data modes, 5-1, 5-2, 5-3 
File Status, 5-3, 5-4 

Paper-tape, 
Data modes, 5-2, 5-18, 5-19 
File Status, 5-19 

Pushdown overflow trap, 3-3, 3-4 

Quantum time, 8-1 
Queue, 

Q 

Header's, Schedulers, 3-53 
High priority run, 3-92 
I/O wait, 8-1 
IPCF, 7-3 
Names, 3-64 
Null, 8-1 
Scheduler run, 3-92 
Status of input (lPCF), 7-7 
Strategy, 8-5 
Stop, 8-1 
TTY wait satisfied, 8-1 

Index-14 September 1974 



Q (Cont) 

Quota, 
Exhausted disk, 3-7,3-8 
IPCF, 7-4 

R Command, 3-1 
RCI0, F-l 
RDI0, F-l 
Read, 

Console switches, 2-7 
Current path, 2-14 
Default directory, 2-14 
Disk parameters, 2-15 
File example, 4-24 
File parameters, 2-15 

Reader, 
Data Modes, 

R 

Card, 5-1, 5-4, 5-5 
Paper-tape, 5-2, 5-20 

File Status, 
Card, 5-6 
Paper-tape, 5-20 

Real-time 
Interrupt, 2-5 
Programming, 3-79 
Status word, 3-52 
Trap, 3-79 

REASSI UUO, 2-7 
Reassign a device, 2-7, 4-22, 4-23 
REASSIGN UUO, 4-23 
Receive an IPCF Packet, 2-17, 7-6 
Receive Quota (lPCF), Set, 7-4 
Record, 

Backspace a, 5-12 
Dump mode, 4-5 
Physical, 5-11 
Spooling unit, 6-59 
Unit I/O, 6-59 

Recovery, 
Device error, 2-16, 4-39 
ENTER Error, 6-35 
Memory parity error, 8-12 
RENAME Error, 6-35 

Reel identification, 2-15 
REELID, 5-14 
REENTER Command, 1-7, 3-1 

reentrant user program, Appendix B 
References, Address, 1-2 

INDEX (Cont) 

Registers, 
Protection, 1-2 
Relocation, 1-2 

REL: Device, 6-51 

R (Cont) 

Relative core location, Highest, 1-6 
Release a device, 2-6, 3-2, 3-3, 4-22 
RELEASE UUO, 4-22, 5-25, 6-9 
Relocatable binaries, Loading, 1-1 
Relocating pages, 1-2, 1-3, 1-4 
Relocation, 

address, 1-2 
Job, 3-51 
hardware, 1-2 
KAI0, 1-2, 1-3 
KIlO, 1-3 
Memory, 1-2 
Process of, 1-2 
registers, 1-2 

Remap the low segment, 3-40 
REMAP UUO, 2-9, 3-40 
Removeable file structures, 6-59 
Remove, 

Device Status, 2-15 
High Segment, 3-40 

Rename, 
Device from PI channel, 3-83 
File, 4-11 

RENAMEUUO, 
Arguments, 6-25 
Description, 2-4, 6-8, 6-28 
Error recovery, 6-35 
Extended Argument, 6-29, 6-30, 6-31 
Parameters, 6-9 

Repetitive enable trap, 3-3, 3-4 
Replace high segment, 2-9 
Reporting, 

Automatic error, 5-14 
Memory parity error, 8-12 

Request, 
Format of [SYSTEM] INFO, 7-4 
Format of [SYSTEM] IPCC, 7-4 
Input, 2-4 
Next buffer, 2-4 
Output, 2-4 

RESDV. UUO, 2-14, 4-23 
Reset, 

Channel, 2-14 
Device, 2-6,4-23 

RESET UUO, 2-6,4-1,6-43 

Index-IS September 1974 



Response, 
Counter table, 3-53 
Scanner data, 3-54 
Subtable, 3-70 

R (Cont) 

Restrictions, Monitor UUO, 2-18 
Restrictions on RTTRP, 3-83 
Retrieval pointers, File, H-1 
Return, 

Date, 2-7 
Device name, 2-11 
File structure name, 2-10, 2-12 
Job Number, 2-8, 2-12 
Name of Terminal, 2-8 
Physical disk units, 2-10 
RTTRP, 3-82 

Retype current line, 5-28 
Rewind a tape, 5-12, 6-10 
Ring, 

Buffers, 2-4, 4-6 
Buffer extensions, 4-27 
Header, 2-16, 4-6 

RM10B, F-1 
RNO: Device, 6-51 
Routines, 

Channel interrupt, 8-8 
Priority interrupt, 8-8 
Trap-servicing, 3-2, 3-3 

RP 1 0, E-l, F-1 
RP03, F-1 
RP02, F-l 
RTTRP, 

Interrupt level use of, 3-82 
Restrictions, 3-83 
Returns, 3-82 
UUO, 2-11, 3-79, 8-9 

RUBOUT Key, 5-28 
RUN Command, 3-1 
Run, 

Queue, 3-92, 8-1 
Time, 

Job's, 2-8 
Milliseconds of, 2-8 
Routines, 3-39 
Total,3-51 

RUN UUO, 2-9, 3-1, 3-36, 3-37, 3-38, 3-48 
RUNTIM UUO, 2-8 

INDEX (Cont) 

S 

SAT.SYS, 6-14 
Satisfied queue, TTY Wait, 8-1 
.SA V Extension, 1-1 
Scanner, 

Response data, 3-54 
Table, 3-75 

Scheduler, 8-1 
Scheduler run queue, 3-92 
Scheduler's queue headers, 3-53 
Scheduling, 8-1 
Scheduling, Job, 8-1 
Search list, Job, 6-23, 6-47, 6-48 
Searches, Directory, 8-6 
Secondary storage, 1-4 
Sectors, Variable-length, 6-59 
SEEK UUO, 2-11,6-42,6-43 
Segment, 

Control, 3-36 
High, 1-1 
Initialize a high, 3-39 
Initialize high, 3-39 
Low, 1-1 
Modify shared, 3-42 
Names, Clear shared, 3-43 
Origin, 

Determine high, 3-41 
High,3-41 

Paging, high, 1-5 
Relocating per, 1-2 
Remap the low, 3-40 
Remove a high, 3-40 
Replace high, 2-9 
Sharing, 1-1,3-39 
Test for sharable high, 3-41 
User program, 1-1 
Write-protect the high, 1-1 

Select, 
File, 2-5, 4-9 
I/O Device, .2-3, 4-9 

Send an IPCF Packet, 2-17 
SEND Command, 5-27 
Send Quota (lPCF), Set, 7-4 
Send-all messages, 3-54 
SENSE. UUO, 2-16,4-39 

Index-16 September 1974 



S (Cont) 

Set, 
ASCII characters, 5-29, 5-30 
Access bit, 3-33 
Block number, 2-5, 2-17 
Disk parameters, 2-15, 6-55 
File parameters, 2-15, 6-55 
File status, 2-4, 4-18, 4-19 
Job parameters, 2-12,3-43 
Logical name, 4-24 
Program name, 2-9, 3-43 
Receive quota (IPCF), 7-4 
Send quota (IPCF), 7-4 
System parameters, 2-12, 3-43 
Trap for User I/O Mode, 2-8 
Up input buffer ring, 2-4 
Up output buffer ring, 2-4 
User mode, 2-9 
Write-protect bit, 3-30 

SET DDT UUO, 2-6, 3-1, 3-2 
SET NAM UUO, 2-9,3-43 
SET PHYSICAL LIMIT, 1-5 
SETPOV UUO, 2-8 
SETSTS UUO, 2-4,4-18 
SET TTY, 5-33 
SETUUO, 2-12, 3-43 
SETUWP, 2-9, 3-30, 3-42 
SET VIRTUAL LIMIT, 1-5 
SFD, 6-14 
Shared, 

Data segments, 3-39 
High segments, 1-1, 1-5,3-41,4-42 
Program overlays, 3-39 
Segments, 1-1, 1-5,3-41,3-42 
Segment names, 3-43 

.SHR Extension, 1-1 
Simultaneous supersede and update, 6-56 
Single, 

Access packs, 6-58 
File Structure, 6-39 
Mode Interrupt, 3-84 

Size, 
Buffer, 2-13 
Contract core, 3-29 
Device buffer, 4-36, 5-1, 5-2, 6-1, 6-2 
Expand core, 3-29 
Page, 1-3 

SLEEP UUO, 2-8, 3-18, 2-8c 
SNO: Device, 6-51 

INDEX (Cont) 

Software, 
Full-duplex, 5-44 
Detected errors, 8-6 

S (Cont) 

Interrupt system, 3-2, 3-3, 3-8, 3-9, 3-16 
States, 8-5 

Space, Swapping, 8-2 
Space identification, Disk, 6-59 
Spooling, 

Control bits, 3-52 
Input, 6-59 
Output, 6-60 
Table, 3-66 
Unit records, 6-59 

Spy UUO, 2-9, 3-49 
Start 

a user program, 3-1 
address, 

DDT, 1-6, 3-i, 3-2 
Program, 3-1,3-2,3-37 
User program, 1-7 

START Command, 3-1 
State of tape drive, 5-15 
States, Software, 8-5 
Station number, 

Change logical, 3-45 
Logical, 2-11, 3-52 
Physical, 2-11, 4-37 

STATO UUO, 2-4,4-18 
Status, 

Card punch file, 5-3, 5-4 
Card reader file, 5-6 
Check file, 4-18, 4-19 
Clear write-protect, 1-1 
Copy file, 2-4 
DECtape File, 6-11 
Device, 2-11, 4-2 
Disk device file, 6-57 
Display unit file, 5-9 
File, 4-18 
Initial file, 4-4 
Input Queue, 7-7 
Job, 3-48, 5-25, 5-26 
Line printer file, 5-10 
Magnetic tape file, 5-17 
Paper-tape punch file, 5-19 
Paper-tape reader file, 5-20 
Plotter file, 5-21 
Print, 5-27 

Index-17 September 1974 



S (Cont) 

Pseudo-TTY File, 5-24 
Remove device, 2-15 
Set file, 2-4, 4-18 
Tape drive, 5-15 
Terminal file, 5-43 

Status word, 
Device, 2-10, 4-33, 6-43 
Job, 3-51, 3-53 
Real-time, 3-52 

STATZ UUO, 2-4, 4-18 
Stop, 

a job, 2-6, 2-8, 3-2, 3-3, 3-18 
a program, 3-1, 3-2, 5-27 
queue, 8-1 

Storage, 
allocation blocks, 6-14 
File, 2-9 
Secondary, 1-4 
Temporary, 1-4 

Strategy, Queuing, 8-5 
STRLST.SYS, 6-59 
Structure, 

Buffer, 4-6 
File, 6-13,6-14 
Interception, 3-7, 3-8 
Manipulation, 2-10, 6-45 
Multiple file, 6-39 
Names, 2-10, 2-12, 3-52, 6-23, 6-49 
Removable file, 6-59 
Single file, 6-39 

STRUUO UUO, 2-10, 6-45, 6-46 
Sub-file directory, 6-14 
Submode, DDT, 5-34 
Subtable, 

Bad address, 3-72 
Parity, 3-72 
Response, 3-70 

Sub tables, GETTAB, 3-69 
Supersede a sharable program, 3-42 
Supersede and update, Simultaneous, 6-56 
Supervisor mode, 2-1 
Suppress output, 5-28 
Suppression of logical device names, 2-18 
SUSET. UUO, 2-17 
Suspend ajob, 3-18 
Suspend other jobs, 3-90 
SWAP.SYS, 8-2 

INDEX (Cont) 

Swapping, 
Data, 3-61 
Page, 1-4, 3-33 
Parameters, 3-51 
Program, 8-2, 8-3 
Space, 8-2 
System, 8-1 

S (Cont) 

SWITCH UUO, 2-7, 3-77 
Switches, 

Contents of data, 3-77 
Read console, 2-7 

Symbols, 
Error code data, 2-19 
GETTAB Argument Data, 2-19 
Job'data area, 2-19 
Mask data, 2-19 
Naming conventions for monitor, 2-19 
Number data, 2-19 
PC Word, 2-19 
Privilege word, 2-19 
Table, 1-7 
User mode, 2-19 
UUO name Data, 2-19 
WATCH Word, 2-19 

Synchronization of Buffered I/O, 4-17 
SYS: Device, 6-51 
SYS: PFH. VMX, 3-31 
SYSPHY UUO, 2-10, 6-50 
SYSSTR UUO, 2-10, 6-49 
SYSTAT program, 3-50 
System 

Administration file, 6-59 
DECpack, 6-59 
Initialize software interrupt, 2-16 
Multiprogramming, 8-1 
Parameters, 2-12, 3-43 
Performance, 3-93 
Priority - interrupt, 3-79 
Program command files, 3-37 
Software interrupt, 3-2, 3-3, 3-8, 3-9 
Swapping, 8-1 
Variables, 3-53 
Wide data, 3-67 

[SYSTEM] INFO, 7-1, 7-2, 7-3, 7-4, 7-8, 7-11, 7-12 
[SYSTEM] IPCC, 7-4 

Index-l 8 September 1974 



T 

Table, 
Configuration, 3-51, 3-55 
Feature, 3-72 
Pointer to symbol, 1-7 
Response counter, 3-53 
Scanner, 3-75 
Spooling, 3-66 
WATCH, 3-65 

Tape, 
Data word an, 5-17 
Drive, 5-15 
Magnetic, 

Characteristics, 2-14 
Data modes, 5-11 
File Status, 5-17 
Units, 5-1, 5-11 

Nine-channel, 5-17 
Positioning operations, 2-4 

TED: Device, 6-51 
Temporary 

core, 3-46 
storage, 1-4 

Terminal, 
Console, 5-1, 5-2 
Data Modes, 5-29 
File Status, 5-43 
Functions, 2-14, 5-35 
Information, 5-39 
Model 2741, 5-31 
Name, 2-8, 5-38 
Number, 2-14, 5-38 
Operations, 2-3 
Return name of, 2-8 

Terminate file operation, 2-4, 4-20 
Termination, 

Device, 4-22 
File, 4-20 

Test for sharable high segments, 3-41 
Testing for sharable high segments, 3-41 
Time, 

Accumulated run, 3-48 
Job's run, 2-8 
Quantum, 8-1 
Total run, 2-8, 3-51 

Time limit exceeded interception, 3-7, 3-8 
Time limit in jiffies, 3-52 
Time of day, 3-48 
TIMER UUO, 2-7, 3-47, 3-48 
Timing information, 3-47 
TMPCOR UUO, 2-9, 3-46 

INDEX (Cont) 

T (Cont) 

Total 
run time, 3-51 
user core, 3-20 

Transfer, 
Control, 2-9, 3-36 
Data, 8-4 
Interrupt optimization, 8-5 
Program control, 3-36 

Transmission, Data, 4-13 
Transmit data, 4-13 
Trap, 

Central processor, 2-7 
Executive mode, 3-88 
Program, 3-2, 3-3 
Real-time, 3-79 
Servicing routines, 3-2, 3-3 
User I/O mode, 2-8 

TRMNO. UUO, 2-14, 5-38 
TRMOP. UUO, 2-14, 5-39 
TRPJEN UUO, 2-8 
TRPSET UUO, 2-8, 3-90 
TTCALL UUO, 2-3 
TTY, 

Command, SET, 5-33 
Number, 2-14, 5-26 
Pseudo, 5-2 
Wait satisfied queue, 8-1 

TTYCALL UUO, 5-35 
Type, Device, 4-35 
TYPST. UUO, 2-17 

UDX, 4-4 
UFD files, 6-14, 6-49 
UGETF UUO, 2-5, 6-10 
UJEN UUO, 2-5, 3-92 

U 

Unbuffered data modes, 4-14, 6-2, 6-13, 8-6 
Unimplemented op-codes, 2-18, 3-1, 3-2 
Unit, 

Data modes, 5-7, 6-13 
Disk, 2-10, 6-13, 6-50 
Display, 5-1, 5-6 
File Status, 5-9 
Magnetic tape, 5-1, 5-11 
Numbers, 5-1, 5-2, 6-1, 6-2 
Record I/O, 6-59 

Universal I/O Index, 2-15, 4-4, 4-38 
Unlocked jobs, 3-20 
UNLOK. UUO, 2-15, 3-25 

Index-19 September 1974 



U (Cont) 

UNV: Device, 6-51 
Update, Simultaneous supersede and, 6-56 
User, 

Access checking, 2-13 
File directory (UFD), 6-14 
Generated buffers, 4-8 
I/O mode, 2-2, 2-8, 4-1 
Mode, 1-2,2-1,2-9,2-19 
Page map, 1-3, 3-54 
Process table, 1-3 
Programs, 1-1, 1-7, 3-1,3-51 
UUOs, 2-2 

USETI UUO, 2-5, 6-10, 6-40, 6-41 
USETO UUO, 2-5, 6-10, 6-40, 6-41 
Using IPCF, 7-8 
UTPCLR UUO, 2-6,6-10 
UU.PHS, 2-18 
UUO, 

ACTIVATE, 2-12 
APRENB, 2-7, 3-2, 3-3, 3-4 
ATTACH, 2-13 
CALlI., 2-15 
CHKACC, 2-13, 6-43 
CLOSE, 2-4,6-9 
CLRST., 2-16, 4-38 
CNECT., 2-16 
COMPT., 2-17 
CORE, 2-6, 3-22, 3-29, 3-42 
CTLJOB, 2-12, 5-26 
DAEFIN, 2-13 
DAEMON, 2-13, 3-77 
DATE, 2-7, 3-47, 3-48 
DDTGT, 2-6 
DDTIN, 2-6 
DDTOUT, 2-6 
DDTRL, 2-6 
DEACTIVATE, 2-12 
DEBRK., 2-16, 3-10, 3-11, 3-14, 3-15 
DEVCHR, 2-6 
DEVGEN, 2-12 
DEVLNM, 2-13,4-24 
DEVNAM, 2-11, 4-4, 4-38 
DEVPPN, 2-11,6-50 
DEVSIZ, 2-13, 4-36 
DEVSTS, 3-10,4-33, 6-11, 6-43 
DEVTYP, 2-10, 4-35 
DISK., 2-15, 6-55, 6-56 
DSKCHR, 2-10, 6-52 
DSKCHR., 6-53 

INDEX (Cont) 

DVRST., 2-15 
DVURS., 2-15 

U (Cont) 

ENTER, 2-5, 6-8, 6-26 
ERLST, 2-16 
EXIT, 2-6, 3-2, 3-3 
FRCUUO, 2-13 
FRECHN, 2-1 ° 
GETCHR, 2-6 
GETLIN, 2-8, 5-38 
GETPPN, 2-8, 3-48 
GETSEG, 2-9,3-1, 3-39 
GETSTS, 2-4, 4-19 
GETTAB, 2-9, 3-50 
GHGPPN,2-12 
GOBSTR, 2-12, 6-48 
HIBER, 2-12, 3-18, 3-19, 5-24 
HPQ, 2-12, 3-92 
IN, 2-4, 5-25 
INBUF,2-4 
INIT, 4-2, 4-3 
INPUT, 2-4, 5-7, 5-25, 6-9 
10NDX., 2-15, 4-4 
IPCFQ., 2-17, 7-7 
IPCFR., 2-17, 7-6 
IPCFS., 2-17, 7-5 
JBSET., 2-14 
JOBPEK, 2-13 
JOBSTR, 2-10, 6-47 
JOBSTS, 2-11, 5-25 
LIGHTS, 2-6, 3-77 
LOCATE, 2-11, 3-45 
LOCK, 2-11, 3-20, 3-21 
LOGIN, 2-7 
LOGOUT, 2-7 
LOOKUP, 2-5,6-7,6-27 
METER., 2-14 
MSTIME, 2-7, 3-48 
MTAID., 2-15 
MTAPE, 2-4, 5-12, 6-10 
MTCHR., 2-14, 5-15 
MVHDR., 2-16,4-39 
OPEN, 2-3,4-2,4-3 
OTHUSR, 2-12, 3-48 
OUT,2-4 
OUTBUF, 2-4 
OUTPUT, 2-4,5-7,6-9 
PAGE., 2-17, 3-32, 3-33, 3-34 
PATH., 2-14, 6-35 
PEEK, 2-8, 3-49 

Index-20 September 1974 



U (Cont) 

PUN!., 2-16, 3-8, 3-9, 3-11, 3-12 
PIRST., 2-17 
PISAV., 2-16, 3-14, 3-15 
PISYS., 3-8, 3-9, 3-11, 3-12 
PJOB, 2-8, 3-48 
POKE, 2-14, 3-49 
REASSIGN, 2-7, 4-23 
RELEASE, 4-22, 5-25, 6-9 
REMAP, 2-9, 3-40 
RENAME, 2-4, 6-8, 6-28 
RESDV., 2-14 
RESET, 2-6, 4-1 
RTIRP, 2-11, 3-79,8-9 
RUN, 2-9, 3-1, 3-36, 3-37, 3-38, 3-48 
RUNTIM, 2-8 
SEEK, 2-11, 6-42, 6-43 
SENSE., 2-16,4-39 
SETDDT, 2-6,3-1,3-2 
SETNAM, 2-9, 3-43 
SETPOV, 2-8 
SETSTS, 2-4, 4-18 

. SETUUO, 2-12, 3-43 
SETUUP, 3-30 
SETUWP, 2-9, 3-30,3-42 
SLEEP, 2-8, 3-18, 2-8c 
SPY, 2-9, 3-49 
STATO, 2-4, 4-18 
STATZ, 2-4, 4-18 
STRUUO, 2-10, 6-45, 6-46 
SUSET., 2-17 
SWITCH, 2-7, 3-77 
SYSPHY, 2-10, 6-50 
SYSSTR, 2-10, 6-49 
TIMER, 2-7, 3-47, 3-48 
TMPCOR, 2-9, 3-46 
TRMNO, 5-38 
TRMNO., 2-14 
TRMOP., 2-14, 5-39 
TRPJEN, 2-8 
TRPSET, 2-8, 3-90 
TTCALL, 2-3, 5-35 
TYPST., 2-17 
UGETF, 2-5,6-10 
UJEN, 2-5, 3-92 
UNLOK., 2-15, 3-25 
USETI, 2-5, 6-10, 6-40, 6-41 
USETO, 2-5, 6-10, 6-40, 6-41 
UTPCLR, 2-6, 6-10 
WAIT, 2-6, 4-17 

INDEX (Cont) 

WAKE, 2-12, 3-19 
WHERE, 2-11, 4-37 
XTISK., 2-15 

U (Cont) 

UUO Extension, LOCK, 3-23, 3-24 
UUO name Data Symbols, 2-19 
UUO Protection Codes, WAKE, 3-18 
UUO Restrictions, Monitor, 2-18 
UUOs, 

Monitor, 2-3 
User, 2-2 

UWP bit, 3-2, 3-3 

v 

Variables, defining, Appendix B 
Variable-length sectors, 6-59 
Variables, System, 3-53 
Vector, Interrupt, 3-8, 3-9, 3-11, 3-12 
Version number, Program, 1-8, 1-9 
Vestigial job data area, 1-9, 1-10 
Virtual limit, 

Current, 3-54 
Maximum, 3-54 

VIRTUAL LIMIT Command, .SET, 1-5 
Virtual Memory, KIlO with, 1-4 
Virtual memory data, General, 3-76 
Virtual memory organization, 1-4, 1-5 
Virtual page limit, 

Current, 1-5 
Global, 1-5 
Maximum, 1-5, 1-6 

Wait Queue, I/O, 8-1 
WAIT UUO, 2-6, 4-17 
Wake privileges, 3-19 
WAKE UUO, 2-12, 3-19 

w 

WAKE UUO Protection Codes, 3-18 
WATCH Table, 3-65 
WATCH Word Symbols, 2-19 
WHERE UUO, 2-11,4-37 
Word, 

Address break, 3-54 
Device status, 2-10, 6-43 
Job status, 3-51, 3-53 
Tape data, 5-17 

Write a file example, 4-25 
Write a job's core, 2-13 

Index-21 September 1974 



W (Cont) 

Write-protect bit, 3-2, 3-3, 3-30, 3-42 
Write-protect status, Clear, I-I 
Write-protect the high segment, I-I 
Writing on disk, 6-24 

x 

XTTSK. UUO, 2-15 

Z 

Zfull file structure interception, 3-8 

INDEX (Cont) 

Index-22 September 1974 



HOW TO OBTAIN SOFTWARE INFORMATION 

SOFTWARE NEWSLETTERS, MAILING LIST 

The Software Communications Group, located at corporate headquarters in 
Maynard, publishes newsletters and Software Performance Summaries (SPS) 
for the various Digital products. Newsletters are published monthly, 
and contain announcements of new and revised software, programming 
notes, software problems and solutions, and documentation corrections. 
Software Performance Summaries are a collection of existing problems 
and solutions for a given software system, and are published periodi­
cally. For information on the distribution of these documents and how 
to get on the software newsletter mailing list, write to: 

Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

SOFTWARE PROBLEMS 

Questions or problems relating to Digital's software should be reported 
to a Software Support Specialist. A specialist is located in each 
Digital Sales Office in the united States. In Europe, software problem 
reporting centers are in the following cities. 

Reading, England 
Paris, France 
The Hague, Holland 
Tel Avi.v, Israel 

Milan, Italy 
Solna, Sweden 
Geneva, Switzerland 
Munich, West Germany 

Software Problem Report (SPR) forms are available from the specialists 
or from the Software Distribution Centers cited below. 

PROGRAMS AND MANUALS 

Software and manuals should be ordered by title and order number. In 
the United States, send orders to the nearest distribution center. 

Digital Equipment Corporation 
Software Distribution Center 
146 Main Street 
Maynard, Massachusetts 01754 

Digital Equipment Corporation 
Software Distribution Center 
1400 Terra Bella 
Mountain View, California 94043 

Outside of the United States, orders should be directed to the nearest 
Digital Field Sales Office or representative. 

USERS SOCIETY 

DECUS, Digital Equipment Computer Users Society, maintains a user ex­
change center for user-written programs and technical application in­
formation. A catalog of existing programs is available. The society 
publishes a periodical, DECUSCOPE, and holds technical seminars in the 
United States, Canada, Europe, and Australia. For information on the 
society and membership application forms, write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street 
Maynard, Massachusetts 01754 

DECUS 
Digital Equipment, S.A. 
81 Route de l'Aire 
1211 Geneva 26 
Switzerland 





READER'S COMMENTS 

DECsystem-lO MONITOR CALLS 
DEC-IO-OM CMA-A-D 

NOTE: This form is for document comments only. Problems with software should be 
reported on a Software Problem Report (SPR) fonn 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs required for use of the software described in this 
manual? If not, what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

D Assembly language programmer 
D Higher-!evellanguage programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
D Student programmer 
D Non-programmer interested in -computer concepts and capabilities 

Name Date 

Organization ____________________________________ _ 

Street _______________________________________ ___ 

City ____________ State ________ Zip Code _____ __._-------

or 
Country 

If you do not require a written reply, please check here. D 



- - - - - - - - - - - Fold Here - - - - - - - - - - -

- - - - - - - - DoNotTear-FoldHereandStaple - - - - - - - ~ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN TIlE UNITED STATES 

Postage will be paid by: 

Digital Equipment Corporation 
Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 

fBe 
s 

A , 
, 
M 

I 

• 



) 



Printed in U.S.A. 


