decsystermio

Monitor Calls Manual

MONITOR CALLS

DEC-10-OMCMA-A-D

This manual reflects the software of the 5.07 and
6.01 releases of the monitor.

digital equipment corporation - maynard, massachusetts

First Printing, June 1971

Revision:
Revision:
Revision:
Revision:

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsi-

bility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a single
computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only for use in such

system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on

equipment that is not supplied by DIGITAL.

Copyright © 1971, 1972, 1973, 1974 by Digital Equipfnent Corporation

Printed in U.S.A.

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s

critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC
COMPUTER LAB DNC KA10
COMSYST EDGRIN LAB-8
COMTEX EDUSYSTEM LAB-8/e
DDT FLIP CHIP LAB-K
DEC FOCAL OMNIBUS
DECCOMM GLC-8 0s/8
DECTAPE IDAC PDP
DIBOL IDACS PHA

PS/8
QUICKPOINT
RAD-8

RSTS

RSX

RT™

RT-11

SABR
TYPESET-10 *
UNIBUS

January 1972
June 1972
March 1973
May 1974

CONTENTS

CHAPTER 1 MEMORY FORMAT

1.1
1.2
1.2.1
1.2.2
1.2.3
1.3
1.4

USER PROGRAMS
MEMORY PROTECTION AND RELOCATION
The KA 10 Processor
The K110 Processor
K110 Processor Utilizing Virtual Memory
JOB DATA AREA (JOBDAT)
VESTIGIAL JOB DATA AREA

CHAPTER 2 INTRODUCTION TO USER PROGRAMMING

2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2223
2.2.3
2.2.4
2.2.5

PROCESSOR MODES
User Mode
User I/O Mode
Executive Mode _
PROGRAMMED OPERATORS (UUOs)
Operation Codes 001-037 (User UUOs)
Operation Codes 040-077 and 000 (Monitor UUQs)
CALL and CALLI
Suppression of Logical Device Names
Restriction on Monitor UUOs in Reentrant User Program
Operation Codes 100-127 (Unimpremented Op Codes)
Illegal Operation Codes
Naming Conventions for Monitor Symbols

CHAPTER 3 NON I/O UUOS

3.1
3.1.1
3.1.1.1
3.1.2
3.1.2.1

3.1.2.2
3.1.2.3
3.13

3.1.3.1
3.1.3.2
3.1.3.3
3.1.3.4
3.1.3.5
3.1.3.6
3.1.3.7
3.1.3.8

EXECUTION CONTROL
Starting
SETDDT AC, or CALLI AC, 2
Stopping :
Iltegal Instructions (700-777, JRST 10, JRST 14) and
Unimplemented Op Codes (101-127)
HALT or JRST 4
EXIT AC, or CALLI AC, 12
Program Trapping, Interception, and Interruption
APRENB AC, or CALLI AC, 16
Error Intercepting
Software Interrupt System
Interrupt Conditions
Interrupt Control Block
PIINI. AC, or CALLI. AC, 135
PISYS. AC, or CALLI AC, 136
DEBRK. or CALLI AC, 137

iii

Page

1-1
1-2
1-2
1-3
1-4
1-6
1-9

2-1
2-1
2-2
2-2

2-2
2-3
2-5
2-18
2.18
2-18
2-18
2-19

3-1

3-1
3-1

3-1

3-2
3-2
3-3
3-4

3-8
3-9
3-11
3-11
3-14

3.1.3.9
3.1.3.10
3.13.11
3.1.4
3.1.4.1
3.1.4.2
3.1.4.3
3.2
3.2.1
3.2.2
32.2.1
3222
3.2.2.3
3.2.24
3.2.3
3.2.4
3.2.5
3.2.5.1
3.2.5.2
3.2.6
3.3
3.3.1
33.2
33.3
3.3.4
3.3.5
3.3.6
3.4
3.4.1
3.4.2
343
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.14
3.5.1.5
3.5.1.6
3.6
3.6.1
3.6.1.1
3.6.1.2

CONTENTS (Cont)

PISAV. AC, or CALLI AC, 140
PIRST. AC, or CALLI AC, 141
Software Interrupt Example
Suspending
SLEEP AC, or CALLI AC, 31
HIBER AC, or CALLI AC, 72
WAKE AC, or CALLI AC, 73
CORE CONTROL
Definition
LOCK AC, or CALLI AC, 60
KA10 Systems
LOCK UUO Extension
Core Allocation Resource
UNLOK. AC, or CALLI AC, 120
CORE AC, or CALLI AC, 11
SETUWP AC, or CALLI AC, 36
Page Fault Handling
Default Page Fault Handler
Page Fault Handler Structure
PAGE. UUO, or CALLI AC, 145
SEGMENT CONTROL
RUN AC, or CALLI AC, 35
GETSEG AC, or CALLI AC, 40
REMAP AC, or CALLI AC, 37
Testing for Sharable High Segments
Determining the High Segment Origin
Modifying Shared Segments and Meddling
PROGRAM AND PROFILE IDENTIFICATION
SETNAM AC, or CALLI AC; 43
SETUUO AC, or CALLI AC, 75
LOCATE AC, or CALLI AC, 62
INTER-PROGRAM COMMUNICATION
TMPCOR AC, or CALLI AC, 44
CODE = 0 (.TCRES) — Obtain Free Space
CODE = 1 (.TCRRF) — Read File
CODE = 2 (.TCRDF) — Read and Delete File
CODE = 3 (.TCRWF) — Write File
CODE = 4 (.TCRRD) — Read Directory
CODE=35 (.TCRDD) — Read and Clear Directory
ENVIRONMENTAL INFORMATION
Timing Information
DATE AC, or CALLI AC, 14
TIMER AC, or CALLI AC, 22

iv

Page

3-14
3-16
3-16
3-18
3-18
3-18
3-19
3-20
3-20
3-20
3-23
3-23
3-24
3-25
3-29
3-30
3-31
3-31
3-31
3-32
3-36
3-36
3-39
3-40
3-41
3-41
3-42
3-43
3-43
3-43
3-45
3-46
3-46
3-46
3-46
3-46
3-47
3-47
3-47
3-47
3-47
3-48
3-48

3.6.1.3
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3
3.6.2.4
3.6.3
3.6.3.1
3.6.3.2
3.6.3.3
3.6.3.4
3.6.3.4.1
3.6.34.2
3.6.3.4.3
3.6.3.4.4
3.6.3.4.5
3.6.3.4.6

3.6.3.4.7
3.6.3.4.8

3.6.3.4.9
3.6.3.4.10
3.6.3.4.11
3.6.3.4.12
3.6.3.4.13
3.6.3.4.14
3.6.3.4.15
3.6.3.4.16
3.6.3.4.17
3.6.3.4.18
3.6.3.4.19
3.6.4
3.6.4.1
3.6.4.2
3.7

3.7.1
3.7.2
3.7.3

3.8

3.8.1
3.8.1.1
3.8.1.2

CONTENTS (Cont)

MSTIME AC, or CALLI AC, 23

Job Status Information

RUN TIME AC, or CALLI AC, 27
PJOB AC, or CALLI AC, 30
GETPPN AC, or CALLI AC, 24
OTHUSR AC, or CALLI AC, 77

Monitor Examination

PEEK AC, or CALLI AC, 33

SPY AC, or CALLI AC, 42

POKE. AC, or CALLI AC, 114

GETTAB AC, or CALLI AC, 41

Entries in Table 6 — .GTPRYV (Privilege Table)

Entries in Table 11 — .GTCNF (Configuration Table)

Entries in Table 12 — .GTNSW (Nonswapping Data)

Entries in Table 13 — .GTSDT (Swapping Data)

Entries in Table 15 — .GTODP (Once-Only Disk Parameters)

Entries in Table 16 — .GTLVD (LEVEL-D Monitor Disk
Parameters

Entries in Table 23 — .GTSLF (GETTAB Immediate)

Entries in Table 25 — .GTWSN (Two-character SIXBIT
names for job queues)

Entries in Table 35 — .GTWCH (WATCH Table)

Entries in Table 36 — .GTSPL (Spooling Table)

Entries in Table 51 — .GTSYS (System Wide Data)

Entries in Table 55 — .GTCOC (CPUO CDB constant table)

Entries in Table 56 — .GTCOV (CPUO CDB Variable Table)

GETTAB Subtables

Entries in Table 71 — .GTFET (Feature Table)

Entries in Table 73 — .GTSCN (Scanner Table)

Entries in Table 74 — .GTSND (Send-all)

Entries in Table 77 — .GTIPC (IPCF Miscellaneous Data)

Entries in Table 113 — .GTVM (General Virtual Memory Data)
Configuration Information

SWITCH AC, or CALLI AC, 20
LIGHTS AC, or CALLI AC, -1

DAEMON AC, OR CALLI AC, 102
.DCORE Function
.CLOCK Function
Returns

REAL-TIME PROGRAMMING
RTTRP AC, or CALLI AC, 57
Data Block Mnemonics
Interrupt Level Use of RTTRP

Page

3-48
3-48
3-48
3-48
3-48
3-48
3-49
3-49
3-49
3-49
3-50
3:55
3-55
3-60
3-61
3-62

3-62
3-64

3-64
3-65
3-66

- 3-66

3-66
3-68
3-69
3-72
3-75
3-76
3-76
3-76
3-77
3-77
3-77
3-77
3-78
3-78
3-79
3-79
3-79
3-81
3-82

3.8.1.3
3.8.1.4
3.8.1.5
3.8.1.6
3.8.1.7
3.8.2
3.8.2.1
3.8.3
3.8.4
3.8.5
3.9

CONTENTS (Cont)

RTTRP Returns
Restrictions
Removing Devices from a PI Channel
Dismissing the Interrupt
Examples

RTTRP Executive Mode Trapping
Example

TRPSET AC, or CALLI AC, 25

UJEN (Op Code 100)

HPQ AC or CALLI AC, 71

METER. AC, OR CALLI AC, 111

CHAPTER 4 1/0 PROGRAMMING

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.3.4
4.2.3.5
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.2
4.3.2.1
43.2.2
4.4
4.4.1
442
443
4.5
4.5.1
4.5.2
4.5.2.1
4.5.2.2
4.5.3
4.6

I/O ORGANIZATION
Files
Job I/O Initialization
DEVICE SELECTION
Nondirectory Devices
Directory Devices
Device Initialization
~ Data Channel
Device Name
Initial File Status
Data Modes
Buffer Header
RING BUFFERS
Buffer Structure
Buffer Ring Header Block
Buffer Ring
Buffer Initialization
Monitor Generated Buffers
User Generated Buffers
FILE SELECTION (LOOKUP AND ENTER)
The LOOKUP Operator
The ENTER Operator
RENAME Operator
DATA TRANSMISSION
Unbuffered Data Modes
Buffered Data Modes
Input
Output
Synchronization of Buffered I/O
STATUS CHECKING AND SETTING

Page

3-82
3-83
3-83
3-83
3-84
3-88
3-88.
3-90
3-92
3-92
3-93

4-1
4-1
4-1
42
42
4-3
4-3
4-3

4-4
44
45
4-6
4-6
4-6
46
48
4-8
4-8
4-9
4-9
4-10
411
413
4-14
415
4-15
4-17
417
4-18

4.6.1
4.6.2
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.9
4.9.1
4.9.2
4.9.3
4.10
4.11
4.11.1

4.11.1.1

4.11.2
4.11.3
4.11.4

4.11.4.1
4.11.4.2

4.11.5
4.12
4.12.1
4.12.2
4.12.3
4.12.4
4125
4.12.6
4.12.7
4.12.8
4.12.9
4.12.10

CHAPTER 5 1/O0 PROGRAMMING FOR NONDIRECTORY DEVICES

3.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.1.2.4
5.1.2.5
5.1.3

CONTENTS (Cont)

File Status Checking
File Status Setting
FILE TERMINATION
DEVICE TERMINATION AND REASSIGNMENT
RELEASE
RESDV. AC, or CALLI AC, 117
REASSIGN AC, or CALLI AC, 21
DEVLNM AC, or CALLI AC, 107

- EXAMPLES

File Reading
File Writing
File Reading/Writing
NON-BLOCKING [/O
THE MULTIPLEXED CHANNEL FEATURE
Buffer Ring Extensions
Device Chains
I/O Modes
Device Identification
UuO’s
CNECT. UUO
ERLST.AC, or CALLI AC, 132
EXAMPLE
DEVICE INFORMATION
DEVSTS AC, or CALLI AC, 54
DEVCHR AC, or CALLI AC, 4
DEVTYP AC, or CALLI AC, 53
DEVSIZ AC, or CALLI AC, 101
WHERE AC, or CALLI AC, 63
DEVNAM AC, or CALLI AC, 64
IONDX. AC, or CALLI AC, 127
CLRST. UUO
MVHDR. AC, or CALLI AC, 131
SENSE AC, or CALLI AC, 133

CARD PUNCH

Concepts

Data Modes
ASCII, Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13
Binary, Octal Code 14

Special Programmed Operator Service

vii

Page

4-19
4-19
4-20
422
4-22
4-23
4-23
4-24
4-24
4-24
4-25
4-25
4-26
4-27
427
4-28
4-28
4-28
4-28
4-28
4-30
4-30
4-33
4-33
4-34
4-35
4-36
4-37
4-38
4-38
4-38
4-39
4-39

52
5-2

5-3
5-3
5-3
5-3

5-3

5.1.4
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5224
5.2.2.5
5.2.2.6
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.4
5.4
54.1
5.4.1.1
54.1.2
5.4.1.3
54.2
543
5.5
5.5.1
5.5.2
5.53
5.5.3.1
5.5.3.2
5.5.3.3
5.5.4
5.5.4.1
5.5.5
5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.1.5

CONTENTS (Cont)

File Status (Refer to Appendix D)
CARD READER
Concepts
Data Modes
ASCILI. Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13
Binary, Octal Code 14
Super-Image, Octal Code 110
Special Programmed Operator Service
File Status (Refer to Appendix D)
DISPLAY WITH LIGHT PEN
Data Modes
Background
Display UUOs
INPUT D, ADR
OUTPUT D, ADR
File Status (See Appendix D)
LINE PRINTER
Data Modes
ASCII. Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Special Programmed Operator Service
File Status (See Appendix D)
MAGNETIC TAPE
Data Modes
Magnetic Tape UUQO’s
Special Programmed Operator Service (UUO’s)
MTAPE UUO
MTAPE D, 11 Rewind and Unload (UNLOAD)
MTCHR. AC, or CALLI AC, 112
Nine-CHANNEL Tapes
Digital-Compatible Mode
File Status (Refer to Appendix D)
PAPER-TAPE PUNCH
Data Modes
ASCII, Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13
Binary, Octal Code 14

viii

Page

5-3
5-4
5-4
5-5

5-5

5-5

5-7

59

5-10
5-10
5-10
5-10
5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-12
5-14
5-15
5-17
5-17
5-17
5-18
5-19
5-19
5-19
5-19
5-19
5-19

5.6.2
5.6.3
5.7
5.7.1
5.7.1.1
5.7.1.2
5.7.1.3
5.7.1.4
5.7.1.5
5.7.2
5.7.3
5.8
5.8.1
5.8.1.1
5.8.1.2
5.8.1.3
58.1.4
5.8.1.5
5.8.2
5.8.3
5.9
5.9.1
59.2
59.3
594
5.9.4.1
5.9.4.2
5.9.4.3
5944
5.9.4.5
5.10
5.10.1
5.10.2
5.10.2.1
5.10.3
5.10.4
5.10.5
5.10.6
5.10.7
5.10.8
5.10.9
5.10.10

CONTENTS (Cont)

Special Programmed Operator Service
File Status (Refer to Appendix D)
PAPER-TAPE READER
Data Modes (Input Only)
ASCII, Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13
Binary, Octal Code 14
Special Programmed Operator Service
File Status (Refer to Appendix D)
PLOTTER
Data Modes
ASCII, Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13
Binary, Octal Code 14
Special Programmed Operator Service
File Status (Refer to Appendix D)
PSEUDO-TTY
Concepts
The HIBER UUO
File Status (Refer to Appendix D)
Special Programmed Operator Service
OUT, OUTPUT UUOs
IN, INPUT UUOs
RELEASE UUO
JOBSTS UUO
CTLJOB UUO
TERMINALS
Data Modes
Model 2741 Terminals
User Interface
DDT Submode
TTCALL UUO 051
GETLIN AC, or CALLI AC, 34
TRMNO. AC, or CALLI AC, 115
TRMOP. AC, or CALLI AC, 116
File Status (Refer to Appendix D)
Paper-Tape Input from the Terminal (Full-Duplex Software)
Paper-Tape Output at the Terminal (Full-Duplex Software)

Page

5-19
5-19
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-22
5-22
5-22
5-22
5-22
5-22
5-23
5-24
5-24
5-25
5-25
5-25
5-25
5-25
5-26
5-26
5-29
5-31
5-33
5-34
5-35
5-38
5-38
5-39
5-43
5-44
5-44

CONTENTS (Cont)

CHAPTER 6 1/0 PROGRAMMING FOR DIRECTORY DEVICES

6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.2
6.1.3
6.1.4
6.1.4.1
6.1.5
6.1.5.1
6.1.5.2
6.1.5.3
6.1.5.4
6.1.6
6.1.6.1
6.1.6.2
6.1.6.3
6.1.6.4
6.1.6.5
6.1.6.6
6.1.7
6.1.8
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.3
6.2.3.1
6.2.4
6.2.5
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.6.4
6.2.6.5
6.2.6.6

DECTAPE
Data Modes
Buffered Data Modes
Unbuffered Data Modes
DECtape Format
DECtape Directory Format
DECtape File Format
Block Allocation
1/O Programming
LOOKUP D, E
ENTER D, E
RENAME D, E
INPUT, OUTPUT, CLOSE, RELEASE
Special Programmed Operator Service
USETID, E
USETO D, E
UGETF D, E
UTPCLR AC, or CALLI AC, 13
MTAPE D, 1 and MTAPED, 11
DEVSTS UUO
File Status (Refer to Appendix D)
Important Considerations

DISK
Data Modes
Buffered Data Modes
Unbuffered Data Modes

Structure of Disk Files
Addressing by Monitor
Storage Allocation Table (SAT) Blocks
~ File Directories
File Format
Access Protection
UFD and SFD Privileges
Disk Quotas(1)
Simultaneous Access
File Structure Names
Logical Unit Names
Physical Controller Class Names
Physical Controller Names
Physical Unit Names
Unit Selection on Output
Abbreviations

Page

6-2
6-2
6-2
6-2
6-3
6-3
6-5
6-6
6-6
6-7
6-8
6-8
6-9
6-10
6-10
6-10
6-10
6-10
6-10
6-11
6-11
6-12
6-13
6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-17
6-18
6-20
6-20
6-21
6-21
6-21
6-21
6-22
6-22

6-22

6-22

6.2.7
6.2.8
6.2.8.1
6.2.8.2
6.2.8.3
6.2.9
6.2.9.1
6.2.9.2
6.2.9.3
6.2.9.4
6.2.9.5
6.2.9.6
6.2.9.7
6.2.9.8
6.2.9.9
6.2.9.10
6.2.9.11
6.2.9.12
6.2.9.13
6.2.9.14
6.2.9.15
6.2.10
6.2.11
6.2.11.1
6.2.11.2
6.2.11.3
6.3
6.3.1

CONTENTS (Cont)

Job Search List
User Programming
Four-word Arguments for LOOKUP, ENTER, RENAME UUOs
Extended Argument for LOOKUP, ENTER, RENAME UUOs
Error Recovery for ENTER and RENAME UUOs
Special Programmed Operator Service
PATH. AC, or CALLI AC, 110
USETI and USETO UUOs
SEEK UUO
RESET UUO
DEVSTS UUO
CHKACC UUO
STRUUO AC, or CALLI AC, 50
JOBSTR AC, or CALLI AC, 47
GOBSTR AC, or CALLI AC, 66
SYSSTR AC, or CALLI AC, 46
SYSPHY AC, or CALLI AC, 51
DEVPPN AC, or CALLI AC, 55
DSKCHR AC, or CALLI AC, 45
DISK. AC, or CALLI AC, 121
Simultaneous Supersede and Update
File Status (Refer to Appendix D)
Disk Packs
Removable File Structures
Identification
IBM Disk Pack Compatibility
SPOOLING OF UNIT RECORD I/O ON DISK
Input Spooling

CHAPTER 7 INTER-PROCESS COMMUNICATION FACILITY

7.1
7.1.1
7.1.2
7.1.3
7.14
7.1.5
7.1.6
1.1.7
7.1.8
7.1.9
7.1.10

INTER-PROCESS COMMUNICATION FACILITY (IPCF)
Packets
Process ID (PID)
Queue
[SYSTEM]INFO
IPCF Controller ([SYSTEM]IPCC)
IPCFS. UUO or CALLI AC, 143
IPCFR. UUO or CALLI AC, 142
IPCFQ. UUO or CALLI AC, 144
USING IPCF
IPCF Example

Xi

Page

6-23
6-24
6-25
6-29
6-35
6-35
6-35
6-40
6-42
6-43
6-43
6-43
6-45

6-47 .

6-48
6-49
6-50
6-50
6-52
6-55
6-56
6-57
6-58
6-59
6-59
6-59
6-59
6-59

7-2
7-2
7-3
7-3
7-4
7-5
7-6
7-7
7-8
7-15

CONTENTS (Cont)

CHAPTER 8 MONITOR ALGORITHMS

8.1 JOB SCHEDULING

8.2 PROGRAM SWAPPING

8.3 DEVICE OPTIMIZATION

8.3.1 Concepts

8.3.2 Queueing Strategy

8.3.2.1 Position-Done Interrupt Optimization

8.3.2.2 Transfer-Done Interrupt Optimization

8.3.3 Fairness Consideration

8.3.4 Channel Command Chaining

8.34.1 Buffered Mode

8.3.4.2 Unbuffered Mode

8.4 MONITOR ERROR HANDLING

8.4.1 Hardware Detected Errors

8.4.2 Software Detected Errors

8.5 DIRECTORIES

8.5.1 Order of Filenames

8.5.2 Directory Searches

8.6 PRIORITY INTERRUPT ROUTINES

8.6.1 Channel Interrupt Routines

8.6.2 Interrupt Chains

8.7 MEMORY PARITY ERROR ANALYSIS, REPORTING AND
RECOVERY

8.7.1 Description of Analysis

APPENDIX A DECTAPE COMPATIBILITY BETWEEN DEC COMPUTERS

APPENDIX B WRITING REENTRANT USER PROGRAMS

B.1 DEFINING VARIABLES AND ARRAYS

B.2 EXAMPLE OF TWO-SEGMENT REENTRANT PROGRAM
B.3 CONSTANT DATA

B.4 SINGLE SOURCE FILE

APPENDIX C CARD CODES

APPENDIX D DEVICE STATUS BITS

APPENDIX E ERROR CODES

APPENDIX F COMPARISON OF DISK-LIKE DEVICES

APPENDIX G MAGNETIC TAPE CODES

xii

Page

8-1
8-2
8-4
8-4
8-5
8-5

8-6
8-6
8-6
8-6
8-6
8-6
8-7
8-7

8-7
8-8
8-8
8-8

8-12
8-12

B-1

B-1
B-1
B-2
B-2

C-1

D-1

CONTENTS (Cont)

APPENDIX H FILE RETRIEVAL POINTERS

H.1
H.1.1
H.2
H.3
H.4
H.S

Figure No.

6-7

Table No.

1-1
1-2
2-1
2-2
3-1
4-1
4-2
4-3
5-1
5-2
6-1

A GROUP POINTER

Folded Checksum Algorithm
END-OF-FILE POINTER
CHANGE OF UNIT POINTER
DEVICE DATA BLOCK
ACCESS BLOCK

ILLUSTRATIONS
Title

KA10 User Address Relocation

KI10 Paging Configuration

Physical and Virtual Page Limits

Locking Jobs In Core on KA 10 Systems
User’s Ring of Buffers

Detailed Diagram of Individual Buffer
Pseudo-TTY

DECtape Directory Format

Format of a File on Tape

Format of a DECtape Block

Basic Disk File Organization for Each File Structure
Disk File Organization

Directory Paths on a Single File Structure
Directory Paths on Multiple File Structures
Sample Layout of a Packet

TABLES
Title

Job Data Area Locations

Vestigial Job Data Area Locations
Monitor Programmed Operators
CALL and CALLI Monitor Operations
GETTAB Tables

Data Modes

File Status Bits

CLOSE Options

Nondirectory Device

MTAPE Functions

Directory Devices

xiii

Page

H-1
H-2
H-2
H-2
H-2

Page

1-3
14
1-5
3-26
4-7
4-7
5-23
6-3
6-5

6-15
6-16
6-39
6-39
7-2

Page

1-6
1-10
2-3
2-5
3-51
4-5
4-18
4-20
5-1
5-13
6-1

TABLES (Cont)

Table No. Title Page
6-2 LOOKUP Parameters 6-7
6-3 ENTER Parameters 6-8
6-4 RENAME Parameters 6-9
6-5 File Structure Names 6-23
6-6 Extended LOOKUP, ENTER, and RENAME Arguments 6-29
6-7 .FSSRC Error Codes 6-47
7-1 [SYSTEM]INFO Request Format 7-4
7-2 Packet Descriptor Block Flags 7-10
7-3 [SYSTEM]INFO Functions 7-11
7-4 IPCC Functions 7-12
7-5 Error Codes 7-13
8-1 Software States 8-5
C-1 ASCII Card Codes C-1
C-2 DEC-029 Card Codes C3
D-1 Device Status Bits D-1
E-1 Error Codes E-1
E-2 IPCF Error Returns E-2
F-1 Disk Devices F-1

G-1 ASCII Codes and BCD Equivalents G-1

xiv

PREFACE

DECsystem-10 Monitor Calls is a complete reference document describing the monitor programmed operators
(UUOs) and is intended for the experienced assembly language programmer. The information presented in this
manual reflects the 6.01 and 5.07 releases of the monitor. The monitor calls are grouped in a manner that facil-
itates easy learning, and once they are mastered, the user can refer to the end of the Table of Contents and to
the Index for an alphabetical list of the UUQs.

DECsystem-10 Monitor Calls does not include reference material on the operating system commands. This in-
formation can be found in DECsystem-10 Operating System Commands (DEC-10-MRDD-D). Included in
DECsystem-10 Operating System Commauds are discussions on commands processed by both the monitor com-
mand language interpreter and the programs in the Batch system. The two manuals, DECsystem-10 Monitor
Calls and DECsystem-10 Operating System Commands, supersede the Timesharing Monitors manual
(DEC-T9-MTZD-D) and all of its updates.

A third manual, Introduction to DECsystem-10 Software (DEC-10-MZDA-D), is a general overview of the
DECsystem-10. It is written for the person, not necessarily a programmer, who knows computers and computing
concepts and who desires to know the relationship between the various components of the DECsystem-10. This
manual is not intended to be a programmer’s reference manual and, therefore, it is recommended that it be read
at least once before reading the above-mentioned reference documents.

SYNOPSIS OF DECsystem-10 MONITOR CALLS

Chapter 1 discusses the format of memory and briefly describes the job data. Chapter 2 introduces all of the
monitor programmed operators available to a user program and the various processor modes in which a user pro-
gram operates. The UUOs available for non-I/O operations are presented in Chapter 3. These programmed
operators are used to obtain execution, core, and segment control; program identification; environmental infor-
mation; and real-time status. An introduction to I/O programming is presented in Chapter 4; the services the
monitor performs for the user and how the user program obtains these services are discussed. 1/O programming
specific to the nondirectory devices and directory devices is explained in Chapters 5 and 6, respectively. Algo-
rithms of the monitor, described in Chapter 7, give the user an insight into system operation. The appendices
contain supplementary reference material and tables.

CONVENTIONS USED IN DECsystem-10 MONITOR CALLS

The following conventions have been used throughout this manual:

dev: Any logical or physical device name. The colon must be included when a device is
used as part of a file specification.

list

jobn
file.ext

core

adr
C(adr)

[proj,prog]

fs

X

n

[directory]

A single file specification or a string of file specifications. A file specification consists
of a filename (with or without a filename extension), a device name, a directory name,
and a protection.

A job number assigned by the system.
Any file legal filename and filename extension.

Decimal number of 1K blocks of core (KA10). Decimal number of pages of core
(KI10).

An octal address.
The contents of an octal address.

Project-programmer numbers; the square brackets must be included in the command
string.

Any legal file structure name or abbreviation.
The symbol used to indicate the ESCAPE Key.

A control character obtained by depressing the CTRL key and then the character
key x.

A back arrow used in command string to separate the input and output file specifica-
tions.

An equal sign used in a command string to separate the input and output file
specifications.

The system program prompt for a command string.
The monitor’s indication that it is awaiting a command.

The symbol used to indicate that the user should depress the RETURN key. This key
may be used to terminate every command to the monitor command language inter-
preter.

Underscoring used to indicate computer typeout.

uA decimal number.

A designation identifying a particular disk area. This designation can be in the form
[proj,prog] which identifies a UFD or [proj,prog,sfd,sfd,...] which identifiesa sub-
file directory path branching from a UFD. The square brackets are required.

September 1974

APRENB, 3.1.3.1
ATTACH, UUOPRV

CAL11., UUOPRV
CHGPPN, UUOPRV
CHKACC, 6.2.9.6
CLOSE, 4.7
CLRST., 4.12.8
CNECT., 4.11.4.1
CORE, 3.2.3
CTLJOB, 5.9.45

DAEFIN, UUOPRV
DAEMON, 3.7
DATE, 3.6.1.1
DDTIN, 5.10.2
DDTOUT, 5.10.2
DEBRK, 3.1.3.8
DEVCHR, 4.12.2
DEVLNM, 4.8.4
DEVNAM, 4.12.6
DEVPPN, 6.2.9.12
DEVSIZ, 4.12.4
DEVSTS, 4.12.1
DEVTYP, 4.12.3
DISK., 6.2.9.14
DSKCHR, 6.2.9.13
DVRST., UUOPRV
DVURS., UUOPRV

ENTER, 4.4.2
ERLST., 4.11.4.2
EXIT, 3.1.2.3

FRCUUO, UUOPRV

GETCHR, 4.10.2
GETLIN, 5.9.5
GETPPN, 3.6.2.3
GETSEG, 3.3.2
GETSTS, 4.6.1
GETTAB, 3.6.3.4
GOBSTR, 6.2.9.9

HIBER, 3.1.4.2,5.9.2

ALPHABETICAL LIST OF MONITOR CALLS

HPQ, 3.8.5

IN, 4.4

INBUF, 4.3.2
INIT, 4.2.3
INPUT, 4.5
IONDX., 4.12.7
IPCFQ., 7.1.8
IPCFR., 7.17
IPCFS., 7.16

JBSET., UUOPRV
JOBPEK, UUOPRV
JOBSTR, 6.2.9.8
JOBSTS; 5.9.4.4

LIGHTS, 3.6.4.2
LOCATE, 3.4.3
LOCK, 3.2.2,3.2.2.2
LOGIN, UUOPRV
LOGOUT, UUOPRV
LOOKUP, 4.4.1

METER., 3.9

MSTIME, 3.6.1.3
MTAID., UUOPRV
MTAPE, 5.5.3.1, 6.1.6.5
MTCHR., 5.5.3.3
MVHDR., 4.12.9

OPEN, 4.2.3
OTHUSR, 3.6.2.4
OUT, 4.4
OUTBUF, 4.3.2
OUTPUT, 4.5

PAGE,, 3.2.6
PATH.,, 6.2.9.1
PEEK, 3.6.3.1
PIINI., 3.1.3.6
PISAV.,, 3.1.3.9
PISYS., 3.1.3.7
PIRST., 3.1.3.10
PJOB, 3.6.2.2
POKE, 3.6.3.3

REASSIGN, 4.8.3
RELEASE, 4.8.1
REMAP, 3.3.3
RENAME, 4.4.3
RESDV,, 4.8.2
RESET, 6.2.9.4
RTTRP, 3.8.1
RUN, 3.3.1
RUNTIM, 3.6.2.1

SEEK, 6.2.9.3
SENSE., 4.12.10
SETDDT, 3.1.1.1
SETNAM, 3.4.1
SETSTS, 4.6.2
SETUUO, 3.4.2
SETUWP, 3.2.4
SLEEP, 3.1.4.1
SPY, 3.6.3.2
STATO, 4.6.1
STATZ, 4.6.1
STRUUO, 6.2.9.7
SUSET., UUOPRV
SWITCH, 3.6.4.1
SYSPHY, 6.2.9.11
SYSSTR, 6.2.9.10

TIMER, 3.6.1.2
TMPCOR, 3.5.1
TRMNO, 5.10.6
TRMOP, 5.10.7
TRPSET, 3.8.3
TTCALL, 5.10.4

UGETF, 6.1.6.3

UIJEN, 3.8.4

UNLOK., 3.2.2.4
USETI, 6.1.6.1, 6.2.9.2
USETO, 6.1.6.2, 6.2.9.2
UTPCLR, 6.1.6.4

WAIT, 4.5.3
WAKE, 3.1.4.3
WHERE, 4.12.5

XTTSK., 2.2.2.1

September 1974

CHAPTER 1
MEMORY FORMAT

1.1 USER PROGRAMS

User programs must first be loaded into core memory before they can be executed. Two methods are available
to load a user program into core. The simplest method is to load a core image stored on a retrievable device
(refer to the Commands Manual, RUN and GET commands). The other method is to use the linking loader to
load a collection of relocatable binary (.REL) files (refer to the LINK-10 manual).

The address space of a user’s program can be divided into two parts, known as segments. Such programs contain
a high segment and a low segment while others contain just a low segment. All user programs must have a low
segment.

When single segment programs are saved, they are given the .SAV extension. The .SAV extension indicates that
the file contains a program with no high segment. When a user program consists of a low segment and a high
segment, the files will be so designated with the extensions .LOW and .HGH . If the high segment of a user job
is sharable, meaning that more than one user job can reference the same copy of the high segment when in core,
the file containing the high segment will be so designated with a .SHR extension.

The high segment (if present) can be used by one user job ((HGH extension), or the same copy of the high seg-
ment can be shared by many user jobs (.SHR extension). The low segment is always used by one individual user
job; and each user job has its own low segment.

The monitor will, by default, write-protect the high segment so that a user job cannot alter the segment’s con-
tents, i.e., write anything into it. Any user job that has the appropriate privileges can request that the monitor
clear the write-protect status of its high segment. A user might desire this, for instance, when making a modifi-
cation to the high segment during the debugging process.

The same high segment can be shared by any number of jobs that each have their own unique low segment, For
instance, there may be five users each with a low segment containing his own BASIC user program. Each of the
five users may then share a high segment containing the BASIC interpreter. The monitor performs this function
automatically; each user believes he has his own high segment containing the BASIC interpreter and is therefore
completely unaware of the existence of other users.

Any user job that attempts to write in a write-protected high segment is aborted and receives an error message.
If the user job consists of two segments and the user has requested that the monitor clear the write-protect status
of the high segment, the user has a two-segment writable user job (refer to Paragraph 3.2.4).

All user programs are assembled and loaded as if they were to execute in an address space starting at zero. In
fact, user programs are never placed in core memory starting at location zero. The monitor places a program at
the most convenient available location. Then, all address references during execution are relocated to actual

physical core memory addresses. The process of relocation is accomplished in different manners depending on
the type of processor included in the system.

1.2 MEMORY PROTECTION AND RELOCATION

When a user program is executing, the processor operates in user mode. In this mode certain operations are ille-
gal (such as I/O instructions) and all address references are relocated. The relocation hardware also prevents a
user from accessing any locations in memory which have not been assigned to him by the monitor for his job;
and conversely, prevents any other user from accessing locations within his assigned area.

The user specifies the size of his program; from that information the DECsystem-10 monitor determines the
position within core memory where the program can reside. There are two types of processors available with the
DECsystem-10 — the KA 10 and the KI10. Monitors for the KI10 are supplied either with the virtual memory
option or without the virtual memory option. There are three methods of relocating, they are:

1. the KA10 method
2. the KI10 method
3. the KI10 with virtual memory method.

The monitor will determine the core resident size and position of each user’s area somewhat differently in each
of these three cases; but to the user program each executes in the same manner. A program that runs on the KI10
with the virtual memory is upwards compatible from those run on the KI10 without virtual memory and those
run on the KA10.

1.2.1 The KA10 Processor

On a KA 10 (DECsystem-1040, 1050, 1055), the monitor relocates each user program on a per segment basis.
Each segment composing the user program (just a low segment, or both a high and a low segment) is relocated
into core memory occupying contiguous blocks of 1024 words each. This relocation is accomplished through
the use of protection and relocation registers. In addition, segment protection is performed by these relocation
(and protection) registers. Protection ensures against one user job accessing the memory assigned to the monitor
or to another user job.

Each segment of a user program has a protection address and a relocation address. The relocation address is the
absolute core address of the first location in the segment, as seen by the hardware. The protection address of
each segment is the maximum relative address the user can reference. The hardware defines these addresses in
units of 1024-word blocks. Relocation is accomplished dynamically by adding the contents of the appropriate
relocation register to every user address reference.

All physical address locations are actually invisible to the user, as is the process of relocation. The relative user
and relocated address configurations on the KA 10 are shown in Figure 1-1, where PL, RL, PH, and RH are the
protection and relocation addresses for the low and high segments, respectively. If the low segment is more
than half the maximum memory capacity (PL greater than or equal to octal 400000), the high segment starts at
the first location after the low segment (at PL+2000). The high segment is limited to 128K.

In summary, the KA 10 relocates each segment of a user program in contiguous blocks of core memory. Reloca-
tion and protection are accomplished via the relocation and protection hardware registers. An entire program
will be core resident when executing.

1-2

(o] 0o

REGISTERS
17 17
\
LOW SEGMENT |\ ILLEGAL
PL+1TTT \
NN RH +400000
ILLEGAL N HIGH SEGMENT
400000 -7\ Mo RH+PHHTTT
HIGH SEGMENT 0N ILLEGAL
PL417T7 -7 N RL
N | LOW SEGMENT
ILLEGAL RL+PL+TTT
ILLEGAL
777777
USER ADDRESS TYPICAL ADDRESS
SPACE BEFORE CONFIGURATION AFTER
RELOCATION RELOCATION

Figure 1-1 KA10 User Address Relocation

1.2.2 The KI10 Processor

KI10 based programs are relocated and protected as KA 10 based programs are; this is accomplished using paging
hardware. When operating with a KI10 processor, user programs are relocated into core memory in the form of
pages. A page consists of 512 words, and the maximum possible user address space is 512 pages or 256K. A user
program that is greater than 512 words in length will, when relocated, be comprised of several pages.

The pages composing a user program are relocated individually. The physical placement of one page in core mem-
ory need have no connection with the placement of any other page. The monitor maintains a map for trans-
lating user addresses into actual physical addresses. The map is kept in a page (invisible to the user) known as

the user process table or the user page map page. The paging hardware in the KI10 employs the user process

table to relocate all user address references. Since all address references must be mapped through the process
table, a user program can access only those physical pages contained in his process table. Therefore, the paging
hardware provides protection and relocation capabilities that are compatible with the KA10’s protection and
relocation registers.

The most important difference between the KA10 and the KI10 (without virtual memory) is that the pages of a
segment do not have to be contiguous on the K110 as they do on the KA10. However, all of the pages forming a
program must be in core whenever that program executes.

1-3

0
LOW ' 4,
SEGMENT »
T
ILLEGAL %
w0000 %
256
2 7
HIGH zs7 /
SEGMENT 250
a
259
ILLEGAL
7TTTTTT
USER ADDRESS SPACE TYPICAL PHYSICAL
BEFORE RELOCATION ADDRESS CONFIGURATION
AFTER RELOCATION

Figure 1-2 KI10 Paging Configuration

1.2.3 KI10 Processor Utilizing Virtual Memory

The virtual memory option of the 6.01 and later releases of the monitor makes further use of the KI10’s paging
hardware. Pages are relocated individually. However, there no longer is a requirement that all of the pages of a
program need be resident in core memory during execution. Some of the pages may be in core while the remain-
der are kept in secondary storage (disk or drum). Therefore, the virtual memory option makes it possible to run
programs that are significantly larger than the physical core memory available for their execution.

Assume that user A has a program consisting of 50 pages, but core memory is filled with information except for
20 blank pages. With the virtual memory option, the monitor can swap into core several of user A’s pages, while
keeping the remainder of the user’s pages on a secondary storage device (disk or drum). When one of the pages
kept in secondary storage is referenced, the page can be brought into core while another page is swapped out to
make room for it.

The decision as to what pages will be stored in core, and what pages will be stored in secondary storage is a func-
tion of the page fault handler. The page fault handler also decides which page will be swapped to secondary
storage when a new page has to be brought into core. Users may create their own page fault handler. If a user-
supplied page fault handler is not present, a default DEC-supplied page fault handler will be used.

Using virtual memory is a privilege which is granted (or denied) by the system administrator. Therefore, not all
users at an installation may utilize the virtual memory features.

1.2.3.1 Virtual Memory Organization — Virtual memory permits a program to reference an address space that
is larger than the actual physical core occupied during execution. No modifications to user programs are needed
when operating under a VM system. It is possible, with the VM option, to execute very large programs (such as
BLISS-10) on small systems.

In order to maintain efficiency and rapid response, the monitor itself is core resident under VM monitors. High
segments can be paged or shared, but not both. A sharable high segment must be completely in core during ex-
ecution.

Every program will not necessarily utilize the virtual memory capability. If a user is authorized to employ the
VM feature, his program will ““go virtual” only when one of the following is true:

1. The program exceeds the user’s physical core limit at the time of the GET or RUN which brings
it into memory.

2. The program uses the CORE UUO (or command) to expand memory beyond the user’s physical
core limit and then references one of the newly created pages.

3. The program assumes direct control of its memory management with the PAGE. UUO.

VIRTUAL
- HMTS _GveL
PHYSICAL
256K LIMITS 256K
SET BY
e | ADMINISTRATION
MVPL
SET B8
ADMINISTRATION
MPRL
cveL
SET. BY USER
cPPL
evpe
SET BY
CPPC USER PROGRAM
SET BY
o PAGE FAULT o
HANDLER

Figure 1-3 Physical and Virtual Page Limits

Figure 1-3 uses the following abbreviations:

GPPL - Global physical page limit (established by a privileged SETUUOQ).

GVPL - Global virtual page limit (established by a privileged SETUUO).

MPPL — Maximum physical page limit (established by a privileged SETUUO executed by LOGIN).

MVPL - Maximum virtual page limit (established by a privileged SETUUO executed by LOGIN).

CPPL - Current physical page limit (set by user with SET PHYSICAL LIMIT command or
SETUUO).

CPPC - Current physical page count (established by user program or page fault handler).

CVPL - Current virtual page limit (set by user with SET VIRTUAL LIMIT and SETUUO).

CVPC - Current virtual page count (established by user program).

At the moment a job’s current physical page count is greater than that of the user’s physical page limit, that job
will go virtual. If a user has been granted the privilege of using virtual memory, he can control how much of his
job will be core resident at any one time. By the user lowéring his physical page limit to fewer pages than his
job consists of, the user forces his job to use virtual memory. A user can control his physical page limit with the
.SET PHYSICAL LIMIT command and his virtual page limit with the .SET VIRTUAL LIMIT command.

1-5

The system administrator can establish a maximum virtual page limit (MVPL) for each user. They are set by
LOGIN using privileged functions of SETUUO. In addition, the administrator can establish a maximum physical
limit that applies to all users (GPPL) and a combined virtual limit that applies to the total amount of virtual
memory (i.e., secondary storage) in use by all virtual memory users (GVPL).

1.3 JOB DATA AREA (JOBDAT)

The first 140 octal locations of the user’s core area are always allocated to the job data area (refer to Table 1-1).
Locations in this area are given mnemonic assignments where the beginning characters are .JB. The job data area
provides storage for specific information of interest to both the monitor and the user. Some locations, such as
JBSA and .JBDDT, are set by the user’s program for use by the monitor. Other locations, such as .JBREL, are
set by the monitor and are used by the user’s program. In particular, the right half of .JBREL contains the
highest legal address set by the monitor when the user’s core allocation changes.

Table 1-1
Job Data Area Locations-
(for user-program reference)

Octal
Name Location Description

JBUUO 40 User’s location 40 (octal). Used by the hardware when processing user
UUOs (001 through 037) for storing op code and effective address.

JB41 41 User’s location 41 (6ctal). Contains the beginning address of the user’s
programmed operator service routine (usually a JSR or PUSHJ).

JBERR 42 Left half: Unused
Right half: Accumulated error count from one system program to the
next. System programs should be written to look at the right half only.

JBREL 44 Left half: Zero.
Right half: The highest relative core location available to the user (i.e.,
the contents of the memory protection register when this user is running).

JBBLT 45 Three consecutive locations where the LOADER puts a BLT instruction
/ and a CALLI UUO to move the program down on top of itself. These
locations are destroyed on every executive UUQO by the executive push-
down list.

JBDDT 74 Left half: The last address of DDT.

Right half: The starting address of DDT. If contents are O, DDT has
not been loaded. If the monitor contains the virtual memory option,
this location contains zero; and the user types the DDT command (refer
to the DECsystem-10 Commands Manual). The monitor will attempt to
read SYS:DDT.VMX into the program’s virtual address space, starting
at the user virtual address 700000 (octal). If successful, the left and
right halves of .JBDDT are set up.

JBPFI 114 All user I/O must be to locations greater than .JBPFI.
(value)

Table 1-1 (Cont)
Job Data Area Locations
(for user-program reference)

Name

Octal
Location

Description

JBHRL

JBSYM

JBUSY

JBSA

JBFF

JBPFH

JBREN

JBAPR

115

116

117

120

121

123

124

125

Left half: First relative free location in the high segment (relative to the
high segment origin so it is the same as the high segment length). Set by
the LOADER and subsequent GETs, even if there is no file to initialize
the low segment. The left half is a relative quantity because the high seg-
ment can appear at different user origins at the same time. The SAVE
command uses this quantity to know how much to write from the high
segment.

Right half: Highest legal user address in the high segment. Set by the
monitor every time the user starts to run or does a CORE or REMAP
UUO. The word is > 401777 unless there is no high segment, in which
case it will be zero. The proper way to test if a high segment exists is

to test this word for a non-zero value.

Contains a pointer to the symbol table created by the linking loader.
Left half: Negative of the length of the symbol table.
Right half: Lowest address used by the symbol table.

Contains a pointer to the undefined symbol table created by the linking
loader or defined by DDT. This location has the same format as .JBSYM.
There are no undefined symbols if the contents are greater than or equal
to 0.

Left half: First free location in low segment (set by the LOADER).
Right half: Starting address of the user’s program.

Left half: Zero.
Right half: Address of the first free location following the low segment.
Set to C (.JBSA) (LH) by RESET UUO.

Left half: The last address of the page fault handler (PFH).

Right half: The starting address of PFH. If the contents are zero, the
program does not currently have a page fault handler. If a page fault
occurs, and .JBPFH contains zero, the monitor will read SYS:PFH.VMX
into the top of the program’s virtual address space and setup the left
and right halves of .JBPFH.

Left half: Unused.
Right half: REENTER starting address. Set by user or by loader and
used by REENTER command as an alternate entry point.

Left half: Zero.

Right half: Set by user program to trap address when user is enabled to
handle APR traps such as illegal memory, pushdown overflow, arithmetic
overflow, and clock. See APRENB UUO.

Table 1-1 (Cont)
Job Data Area Locations
(for user-program reference)

Name

Octal
Location

Description

JBCNI

JBTPC

JBOPC

JBOVL

JBCOR

JBINT

.JBOPS
JBCST

JBVER

126

127

130

131

133

134

135
136

137

Contains state of APR as stored by CONI APR when a user-enabled
APR trap occurs.

Monitor stores PC of next instruction to be executed when a user-
enabled APR trap occurs.

The previous contents of the job’s last user mode program counter are
stored here by monitor on execution of a DDT, REENTER, START,
or CSTART command. After a user program HALT instruction fol-
lowed by a START, DDT, CSTART, or REENTER command, .JBOPC
contains the address of the HALT. To proceed at the address specified
by the effective address, it is necessary for the user or his program to
recompute the effective address of the HALT instruction and to use
this address to start. Similarly, after an error during execution of a
UUO followed by a START, DDT, CSTART, or REENTER command,
JBOPC points to the address of the UUO. For example, if DDT is to
continue after a HALT, type

JBOPC/10000,,3010 JRST @ .$X

Left half: Zero.
Right half: Pointer to header block for root link.

Left half: Highest location in low segment loaded with non-zero data.

No low file written on SAVE or SSAVE if less than 140. Set by LINK-10.
Right half: User argument on last SAVE or GET command. Set by the
monitor.

Left half: Reserved for the future.
Right half: Zero or the address of the error-intercepting block (refer to
Paragraph 3.1.3.2).

Reserved for all object time systems.
Reserved for customers.
Program version number. The bits are defined as follows:

Bits 0-2 The group who last modified the program

0 Digital development group.

1 Other Digital employees.

2-4 Reserved for customers.

5-7 Reserved for customer’s users.

Bits 3-11 Digital’s major version number. Usually incremented
by 1 after a release.

1-8

Table 1-1 (Cont)
Job Data Area Locations
(for user-program reference)

Octal
Name Location Description

JBVER (cont) Bits 12-17 Digital’s minor version number. Usually 0, but may
be used if an update is needed after work has begun
on a new major version.

Bits 18-35 Edit number which is increased by one after each edit.
Usually not reset.

The VERSION and the SET WATCH VERSION commands output the
version number in standard format. Refer to DECsystem-10 Operating
System Commands.

JBDA 140 The value of this symbol is the first location available to the user.

NOTE
Only those JOBDAT locations of significant importance
to the user are given in this table. JOBDAT locations not
listed include those that are used by the monitor and
those that are unused at present. User programs should
not refer to any locations not listed above because such
locations are subject to change.

JOBDAT is loaded automatically, if needed, during the linking loader’s library search for undefined global refer-
ences, and the values are assigned to the mnemonics. JOBDAT exists as a .REL file on device SYS: for loading
with user programs that symbolically refer to the locations. User programs should reference locations by the
assigned mnemonics, which must be declared as EXTERN references to the assembler. All mnemonics in this
manual with a .JB prefix refer to locations in the job data area.

1.4 VESTIGIAL JOB DATA AREA

A few constant data in the job area may be loaded by a two-segment, one-file program without using instructions
on a GET command (.JB41, .JBREN, .JBVER), and some locations are loaded by the monitor on a GET (.JBSA,
JBCOR, .JBHRL). The vestigial job area (the first 10 locations of the high segment) is reserved for these low-
segment constants; therefore, a high-segment program is loaded at the high segment origin +10 (see .JBHGA in
Table 1-2) instead of at the high segment origin (refer to Table 1-2). With the vestigial job data area in the high
segment, the loader automatically loads the constant data into the job data area without requiring a low file on

a GET, R, or RUN command, or a RUN UUOQO. SAVE will write a .LOW file for a two-segment program only if
the LH of .JBCOR is 140 (octal) or greater.

1-9

Table 1-2
Vestigial Job Data Area Locations

Octal

Symbol Location* Description

JBHSA 0 A copy of .JBSA.

JBH41 1 A copy of .JB41.

JBHCR 2 A copy of .JBCOR.

JBHRN 3 LH: restores the LH of .JBHRL.

RH: restores the RH of .JBREN.

JBHVR 4 A copy of .JBVER.

JBHNM 5 High segment name set on a SAVE.

JBHSM 6 A pointer to the high-segment symbols, if any.

JBHGA 7 BYTE (9) 0 (9) high segment origin (18) 0 unused fields are reserved for
further expansion and must contain zero, the monitor places the high
segment at 400000 or at the first available page boundary (1K boundary
on KA 10 based systems) above the low segment, if the segment is larger
than 128K. This 9 bit byte should always be zero on KA 10 based systems.
However, if the field is non-zero on KI10 based systems, it is taken as the
page where the high segment is to start. This field is setup by the linking
loader and the Monitor SAVE Command.

JBHDA 10 First location not used by vestigial job data area.

* Relative to origin of high segment, usually .JBHGH = 400000 (octal).

CHAPTER 2
INTRODUCTION TO
USER PROGRAMMING

2.1 PROCESSOR MODES

In a single-user, non-timesharing system, the user’s program is subject only to those conditions inherent in the
hardware. The program must

1. Stay within the memory capacity.

2. Observe the hardware restrictions placed on the use of certain memory locations.

3. Observe the restriction on interrupt instructions.
With timesharing, the hardware limits the central processor operations to one of three modes: user mode, user
1/0 mode, and executive mode.
2.1.1 User Mode

Normally, user programs run with the processor in user mode and must operate within an assigned area of core.
In user mode, certain instructions are illegal. User mode is used to guarantee the integrity of the monitor and
each user program. The user mode of the processor is characterized by the following:

1. Automatic memory protection and mapping (refer to Chapter 1).

2. Trap to absolute location 40 in the monitor on a KA10; or store the UUO at location 424, the UUO
at location 425, and load a new PC from location 436 of the user’s process table on the KI10 on any
of the following:

a. Operation codes 040 through 077 and operation code 00,
b. Input/output instructions (DATAI, DATAO, BLKI, BLKO, CONI, CONO, CONSZ, and CONSO),

NOTE
The KI10 processor divides executive mode into kernal
and supervisor modes. It divides user mode into con-
cealed and public modes.

c. HALT (i.e., JRST 4,),
d. Any JRST instruction that attempts to enter executive mode or user I/O mode.

3. Trap to relative location 40 in the user area on execution of operation codes 001 through 037.

2-1

2.1.2 User I/O Mode

The user I/O mode (bits 5 and 6 of PC word = 11) of the central processor allows privileged user programs to be
run with automatic protection and mapping in effect, as well as the normal execution of all defined operation
codes (except the HALT instruction on the KI10 processor). The user I/O mode provides some protection
against partially debugged monitor routines and permits infrequently used device service routines to be run as a
user job. Direct control of special devices by the user program is particularly important in real-time applications.

To utilize this mode, the user must have bit 15 (JB.TRP) set in the privilege word. RESET AC, or CALLI 0
terminates user I/O mode. User I/O mode is not used by the monitor and is normally not available to the time-
sharing user (refer to Paragraph 3.8.3).

2.1.3 Executive Mode

The monitor operates with the processor in executive mode, which is characterized by special memory protec-
tion and mapping (refer to Chapter 1) and by the normal execution of all defined operation codes.

User programs run in user mode; therefore, the monitor must schedule user programs, service interrupts, perform
all input and output operations, take action when control returns from a user program, and perform any other
legal user-requested operations that are not available in user mode. The services the monitor makes available to
user-mode programs, and how a user program obtains these services, are described in Chapters 3 and 4.

2.2 PROGRAMMED OPERATORS (UUOs)

Operation codes 000 through 077 in the PDP-10 are programmed operators, sometimes referred to as UUOs.
They are software-implemented instructions because from a hardware point of view, their function is not pre-
specified. Some of these op-codes trap to the monitor, and the rest trap to the user program.

After the effective address calculation is complete, the contents of the instruction register, along with the effec-
tive address, are stored, and an instruction is executed out of the normal sequence. Refer to the Systems
Reference Manual for additional information on UUO handling by the central processor.

Although there is one operating system for all configurations of the DECsystem-10, some UUOs may not be
included in each DECsystem-10. This is especially true of the DECsystem-1040, the basic system intended for
small installations that do not want all of the system’s features because of a constraint on core. UUOs are de-
leted from the DECsystem-1040 by feature test switches defined at MONGEN time. In the standard DECsystem-
1040, many of these switches are off, and therefore, the corresponding UUOs are not available. This saves core
but limits various features of the operating system. In the UUO descriptions that follow, footnotes indicate if
the switch is normally absent in the DECsystem-1040. If not stated, the UUO is available on all configurations
of the DECsystem-10.

2.2.1 Operation Codes 001-037 (User UUOs)

Operation codes 001 through 037 do not affect the mode of the central processor; thus, when executed in user
mode, they trap to user location 40, which allows the user program complete freedom in the use of these pro-
grammed operators.

If a user’s undebugged program accidentally executes one of these op-codes when the user did not intend to use
it, the following error message is normally issued:

HALT AT USER PC addr

2-2

This message is given because the user’s relative location 41 contains HALT (unless his program has overtly
changed it) which is provided by the loader; addr is the location of the user UUO.
2.2.2 Operation Codes 040-077 and 000 (Monitor UUOs)

Operation codes 040 through 077 and 000 trap to absolute location 40 on a KA10; or store the UUO at location
424, the UUO at location 425, and load a new PC from location 436 of the user’s process table on the KI10,
with the central processor in executive mode. These programmed operators are interpreted by the monitor to
perform I/O operations and other control functions for the user’s program.

Operation code 000 always returns the user to monitor mode with the error message:
MLLEGAL UUO AT USER PC addr
Table 2-1 lists the operation codes 040 through 077 and their mnemonics.

Table 2-1
Monitor Programmed Operators

Op Code Call Function
040 CALL AC, [SIXBIT/NAME/], or Programmed operator extension (refer to Para-
NAME AC, graph 2.2.2.1).
041 INIT D, MODE Select I/O device (refer to Paragraph 4.2.3).
SIXBIT/DEV/

XWD OBUF, IBUF
error return
normal return

042 No operation)

043 No operation Reserved for

044 No operation > installation-

045 , No operation dependent

046 No operation .J definition.

047 CALLI AC,N Programmed operator extension (refer to

Paragraph 2.2.2.1).

050 OPEN, D,E Select I/O device (refer to Paragraph 4.2.3).
error return
normal return

E: EXP STATUS

SIXBIT /DEV/
XWD OBUF, IBUF
051 TTCALL AC, ADR Extended operations on job-controlling terminal
(refer to Paragraph 5.10.4).
052 Reserved for future expansion by DEC.

2-3 September 1974

Table 2-1 (Cont)
Monitor Programmed Operators

Op Code Call Function
053 Reserved for future expansion by DEC.
054 Reserved for future expansion by DEC.
055 RENAME D, E Rename or delete a file (see Section 4.4.3).
error return
normal return
E: SIXBIT /FILE/
SIXBIT /EXT/
EXP <PROT> B8+DATE
XWD PROJ, PROG
056 IND, INPUT and skip on error or EOF (see Section 4.5).
normal return)
error of EOF return
057 OUT D, OUTPUT and skip on error or EOT (see
normal return Section 4.5).
error return
060 SETSTS D, STATUS Set file status (see Section 4.6.2).
061 STATO D, BITS Skip if file status bits = 1 (see Section 4.6.1).
RO: NO SELECTED BITS =1
R1: SOME SELECTED BITS =1
062 GETSTS D, E Copy file status to E (see Section 4.6.1).
063 STATZ D, BITS Skip if file status bits = 0 (see Section 4.6.1).
RO: SOME SELECTED BITS =1
R1: ALL SELECTED BITS =0
064 INBUF D, N Set up input buffer ring with N buffers (refer
to Paragraph 4.3.2).
065 OUTBUF D, N Set up output buffer ring with N buffers (refer
to Paragraph 4.3.2).
066 INPUT D, Request input or request next buffer (refer to
Paragraph 4.5).
067 OUTPUT D, Request output or request next buffer (refer to
Paragraph 4.5).
070 CLOSE D, Terminate file operation (refer to Paragraph 4.7).
071 RELEAS D, Release device (refer to Paragraph 4.8.1).
072 MTAPE D,N Perform tape positioning operation (refer to

Paragraphs 5.5.3 and 6.1.6.5).

Table 2-1 (Cont)
Monitor Programmed Operators

Op Code Call Function

073 UGETF D, Get next free block number on DECtape (refer
to Paragraph 6.1.6.3).

074 USETI D, E Set next input block number (refer to Paragraph
6.1.6.1 and 6.2.9.2).

075 USETO D, E Set next output block number (refer to Paragraphs
6.1.6.2 and 6.2.9.2).

076 LOOKUPD, E Select a file for input (refer to Paragraph 4.4.1).
error return
normal return
E: SIXBIT /FILE/
SIXBIT /EXT/
0
XWD PROJ, PROG

077 ENTERD, E Select a file for output (refer to Paragraph 4.4.2).
error return

normal return

E: SIXBIT /FILE/

SIXBIT /EXT/
0
XWD PROJ, PROG
100 UJEN , Dismiss real-time interrupt (refer to Paragraph
3.8.4).

2.2.2.1 CALL and CALLI — Operation codes 040 through 077 limit the monitor to 40 (octal) operations. The
CALL operation extends this set by specifying the name of the operation by the contents of the location speci-
fied by the effective address (e.s., CALL [SIXBIT/EXIT/]). This capability provides for indefinite extendability
of the monitor operations, at the overhead cost to the monitor of a table lookup.

The CALLI operation eliminates the table lookup of the CALL operation by having the programmer or the as-
sembler perform the lookup and specify the index to the operation in the effective address of the CALLI.
Table 2-2 lists the monitor operations specified by the CALL and CALLI operations.

Table 2-2
CALL and CALLI Monitor Operations
CALLI* ,
CALLI Mnemonic CALL Function
CALLI AC, -2 Customer defined Reserved for definition by each
... customer installation.

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function
CALLI AC, -1 LIGHTS CALL AC, [SIXBIT/LIGHTS/] Display AC in console lights (refer
to Paragraph 3.6.4.2).

CALLI AC,0 RESET CALL [SIXBIT/RESET/] Reset I/O device (tefer to
return ' Paragraph 4.1.2).

CALLI AC, 1 DDTIN MOVEI AC, BUFFER DDT mode console input (refer to
CALL AC, [SIXBIT/DDTIN/] Paragraph 5.10.3).
only return

CALLI AC, 2 SETDDT MOVEI AC, DDT-start-adr Set protected DDT starting address
CALL AC, [SIXBIT/SETDDTY/] (refer to Paragraph 3.1.1.1).
only return

CALLI AC, 3 DDTOUT MOVEI AC, BUFFER DDT mode console output (refer
CALL AC, [SIXBIT/DDTOUT/] to Paragraph 5.10.3).
only return

CALLI AC, 4 DEVCHR MOVE AC, [SIXBIT/DEV/] Get device characteristics (refer to
or MOVEI AC, channel no. Paragraph 4.12.2).
CALL AC, [SIXBIT/DEVCHR/}
only return

CALLI AC, 5 DDTGT CALL AC, [SIXBIT/DDTGT/] No operation, historical UUO.
only return

CALLIAC, 6 GETCHR AC: =SIXBIT/DEV/ Same as CALLI AC, 4.

’ CALL AC, [SIXBIT/GETCHR/]

only return

CALLI AC, 7 DDTRL CALL AC, [SIXBIT/DDTRL/] No operation, historical UUO.
only return

CALLI AC, 10 WAIT CALL AC, [SIXBIT/WAIT/] Wait until device is inactive
only return (refer to Paragraph 4.5.3).

CALLIAC, 11 CORE MOVE AC, [XWD HIGH ADR or Allocate core (refer to Paragraph
0, LOW ADR or 0] 3.2.3).
CALL AC, [SIXBIT/CORE/]
error return
normal return

CALLI AC, 12 EXIT CALL AC, [SIXBIT/EXIT/] Stop job, may release devices and
return stop the job depending on contents

of AC (refer to Paragraph 3.1.2.3).
CALLIAC, 13 UTPCLR CALL AC, [SIXBIT/UTPCLR/] Clear DECtape directory (refer to

only return

Paragraph 6.1.6.4).

2-6

September 1974

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 14 DATE CALL AC, [SIXBIT/DATE/] Return date (refer to Paragraph
only return 3.6.1.1).
AC: = date in compressed format

CALLI AC, 15 LOGIN** MOVE AC, [XWD -N, LOC] Privileged UUOQ in that the calling
CALL AC, [SIXBIT/LOGIN/] job must not be logged in. Isa
RO: return no-op if executed by a job already

Does not return if C(RO) is logged-in.
a HALT instruction.

CALLIAC, 16 APRENB MOVEI AC, BITS Enable central processor traps
CALL AC, [SIXBIT/APRENB/] (refer to Paragraph 3.1.3.1).
return

CALLI AC, 17 LOGOUT#** CALL AC, [SIXBIT/LOGOUT/] Privileged UUQ available only to
no return system-privileged programs. Is

treated like an EXIT UUO if
executed by a non system-privileged
program.

CALLI AC, 20 SWITCH CALL AC, [SIXBIT/SWITCH/] Read console data switches (refer
return to Paragraph 3.6.4.1).

AC: contents of console switches

CALLI AC, 21 REASSI MOVEI AC, job number Reassign device (refer to Paragraph
MOVE AC+1, [SIXBIT/DEV/] 4.8.3).

CALL AC, [SIXBIT/REASSI/]
return

If C(AC)=0 on return, the job
specified has not been initialized.
If C(AC+1) = 0 on return, the
device not assigned to calling
job, or device is TTY.

CALLI AC, 22 TIMER CALL AC, [SIXBIT/TIMER/] Read time of day in clock ticks
return (refer to Paragraph 3.6.1.2).
AC:=time in jiffies,

right justified.
CALLI AC, 23 MSTIME CALL AC, [SIXBIT/MSTIME/} Read time of day in milliseconds

return
AC:=time in milliseconds,
right-justified.

(refer to Paragraph 3.6.1.3).

2-7

September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 24 GETPPN CALL AC, [SIXBIT/GETPPN/] Return project/programmer
normal return number of job (refer to Paragraph
alternate return 3.6.2.3).

AC:=XWD proj. no., prog. no. of
this job. Alternate return is
taken only if job is privileged
and the same proj-prog num-
ber occurs twice in the table
of jobs logged in.

CALLI AC, 25 TRPSET MOVE AC, [XWD N, LOC] Set trap for user I/O mode (refer
CALL AC, [SIXBIT/TRPSET/] to Paragraph 3.8.3).
error return
normal return
LOC: JSR TRAP

CALLI AC, 26 TRPJEN CALL [SIXBIT/TRPJEN/] Illegal UUO; replaced by UJEN

(op code 100).

CALLI AC, 27 RUNTIM MOVE AC, job number or 0 Return the job’s running time in
CALL AC, [SIXBIT/RUNTIM/] milliseconds (refer to Paragraph
only return 3.6.2.1).

AC:=running time of job

AC:=0 if nonexistent job

CALLI AC, 30 PJOB CALL AC, [SIXBIT/PJOB/1 Return job number (refer to
return Paragraph 3.6.2.2).
AC:=job number, right justified.

CALLI AC, 31 SLEEP MOVE AC, time in seconds Stop job for specified time in
CALL AC, [SIXBIT/SLEEP/] seconds (refer to Paragraph 3.1.4.1).
return

CALLI AC, 32 SETPOV CALL AC, [SIXBIT/SETPOV/] Superseded by APRENB UUO.
return

CALLI AC, 33 PEEK MOVEI AC, exec adr Return contents of executive
CALL AC, [SIXBIT/PEEK/] address (refer to Paragraph 3.6.3.1).
return
AC:=C (exec-adr)

CALLI AC, 34 GETLIN CALL AC, [SIXBIT/GETLIN/} Return SIXBIT name of attached

return

AC:=SIXBIT TTY name,
left-justified (e.g., CTY,
TTY27)

terminal (refer to Paragraph 5.10.5).

2-8

September 1974

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 35 RUN MOVSI AC, start adr increment Transfer control from one program
HRRIAC,E to another (refer to Paragraph 3.3.1).
RUN AC,
error return
normal return

CALLI AC, 36 SETUWP MOVEI AC, BIT Set or clear user mode write pro-
SETUWP AC, tect for high segment (refer to
error return Paragraph 3.2.4).
normal return

CALLI AC, 37 REMAP MOVEI AC, highest adr, in low Remap top of low segment into

seg high segment (refer to Paragraph

or MOVE AC, [XWD high seg 3.3.3).
origin, low seg]
REMAP AC,
error return
normal return

CALLI AC, 40 GETSEG MOVEI AC, E Replace high segment in user’s
GETSEG AC, addressing space (refer to
error return Paragraph 3.3.2).
normal return

CALLI AC, 41 GETTAB MOVSI AC, job. no. or index no. Return contents of monitor table
HRRI AC, table no. or location (refer to Paragraph
GETTAB AC, 3.6.3.4).
error return
normal return

CALLI AC, 42 SPY MOVEI AC, highest physical adr, Make physical core be high seg-
desired ment for examination of monitor
SPY AC, (refer to Paragraph 3.6.3.2).
error return
normal return

CALLI AC, 43 SETNAM MOVE AC, [SIXBIT/NAME/] Set program name in monitor job.
SETNAM AC. table (refer to Paragraph 3.4.1).
return

CALLI AC, 44 TMPCOR MOVE AC, [XWD code, block] Allow temporary in-core file

TMPCOR, AC
error return
normal return

storage for job (refer to Paragraph
3.5.1).

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

. CALLI*
CALLI Mnemonic CALL Function
CALLI AC, 45 DSKCHR MOVE AC, [XWD+N, LOC] Return disk characteristics (refer
DSKCHR AC, to Paragraph 6.2.9.13).
error return
normal return
AC:=XWD status configuration
LOC:=SIXBIT/NAME/
0
0 values returned
0
CALLI AC, 46 SYSSTR MOVEI AC, 0 or Return next file structure name,
MOVE AC, [SIXBIT/FSNAME/] (refer to Paragraph 6.2.9.10).
SYSSTR AC,
error return
normal return
CALLI AC, 47 JOBSTR MOVE AC, [XWD N, LOC] Return next file structure name in
JOBSTR AC, the job’s search list (refer to
error return Paragraph 6.2.9.8).
normal return
AC:=argument
CALLI AC, 50 STRUUO MOVE AC, [XWD N, LOC] Manipulate file structures (refer
STRUUO AC, to Paragraph 6.2.9.7).
error return
normal return
AC:=status or error code
CALLI AC, 51 SYSPHY MOVEI AC, 0 or MOVE AC, Return all physical disk units (refer
[last unit name] to Paragraph 6.2.9.11).
SYSPHY AC,
error return
normal return
CALLI AC, 52 FRECHN Reserved for future use.
CALLI AC, 53 DEVTYP MOVE AC, [SIXBIT/dev/] or Return properties of device (refer
MOVEI AC, channel no. or to Paragraph 4.12.3).
MOVEI AC, UDX :
DEVTYP AC,
error return
normal return
CALLI AC, 54 DEVSTS MOVEI AC, channel no. of device Return hardware device status

DEVSTS AC,
error return
normal return

word (refer to Paragraph 4.12.1).

2-10

September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 55 DEVPPN MOVE AC, [SIXBIT/DEV/] Return the project programmer
or MOVEI AC, channel number associated with a device
DEVPPN AC, (refer to Paragraph 6.2.9.12).
error return
normal return
AC:=XWD proj-prog, number

on a normal return

CALLI AC, 56 SEEK*** AC is software channel number Perform a SEEK to current selected
SEEK AC, block for software channel AC
return (refer to Paragraph 6.2.9.3).

CALLI AC, 57 RTTRP MOVEI AC, RTBLK Connect real-time devices to PI
RTTRP AC, system (refer to Paragraph 3.8.1).
error return
normal return

CALLI AC, 60 LOCK MOVE AC, [XWD high seg code, Lock job in core (refer to
low seg code] Paragraphs 3.2.2 and 3.2.2.2).
or MOVE AC, [XWD -n, adr]
LOCK AC,
error return
normal return

CALLI AC, 61 JOBSTS MOVEI AC, channel no. or Return status information about
MOVNI AC, job device TTY and/or controlled job
JOBSTS AC, (refer to Paragraph 5.9.4.4).
error return
normal return

CALLI AC, 62 LOCATE MOVEI AC, station no. Change the job’s logical station
LOCATE AC, (refer to Paragraph 3.4.3).
error return
normal return

CALLI AC, 63 WHERE MOVEI AC, channel no. or Return the physical station of the
MOVE AC, [SIXBIT/dev/] device (refer to Paragraph 4.12.5).
WHERE AC,
error return
normal return

CALLI AC, 64 DEVNAM MOVEI AC, channel no. or Return physical name of device

MOVEI AC, UDX or
MOVE AC, [SIXBIT/dev/]
DEVNAM AC,

error return

normal return

obtained through generic INIT
OPEN or logical device assignment
(refer to Paragraph 4.12.6).

2-11

September 1974

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 65 CTLJOB MOVEI AC, job number Return job number of controlling
CTLJOB AC, job (refer to Paragraph 5.9.4.5).
error return
normal return

CALLI AC, 66 GOBSTR MOVE AC, [XWD N, LOC] Returnmext file structure name in
GOBSTR AC, an arbitrary job’s search list (refer
error return to Paragraph 6.2.9.9).
normal return

CALLI AC, 67 ACTIVATE

Reserved for the future.

CALLI AC, 70 DEACTIVATE

CALLI AC, 71 HPQ MOVEI AC, high-priority queue no.| Place job in high priority scheduler’s
HPQ AC, run queue (refer to Paragraph
error return 3.8.5).
normal return

CALLI AC,72 HIBER MOVSI AC, enable bits Allow job to become dormant
HRRI AC, sleep time until the specified event occurs
HIBER AC, (refer to Paragraph 3.1.4.2).
error return
normal return

CALLI AC, 73 WAKE MOVE AC, job no. Allow job to activate the specified
WAKE AC, dormant job (refer to Paragraph
error return 3.1.4.3).
normal return

CALLI AC, 74 CHGPPN*#* MOVE AC, new proj. prog. no. Change project-programmer num-
CHGPPN AC, ber. Gives an error return if ex-
error return ecuted by a job already logged-in.
normal return

CALLI AC, 75 SETUUO MOVE AC, [XWD function, Set system and job parameters (re-
argument] fer to Paragraph 3.4.2).
SETUUO AC,
error return
normal return

CALLI AC, 76 DEVGEN Reserved for the future.

CALLI AC, 77 OTHUSR OTHUSR AC, Determine if another job is logged
non-skip return in the same project/programmer
skip return number (refer to Paragraph

AC:=proj. prog. no.

3.6.2.4).

2-12

September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 100 CHKACC MOVEI AC, CHKLOC Check user’s access to the file
CHKACC AC, specified (refer to Paragraph
error return 6.2.9.6).
normal return

CALLI AC, 101 DEVSIZ MOVE AC, [EXP LOC] Determine buffer size for the spec-
DEVSIZ AC, ified device (refer to Paragraph
error return 4.12.4).
normal return

CALLI AC, 102 DAEMON MOVE AC, [XWD+length, adr Request DAEMON to perform a
of arg. list] specified task (refer to Paragraph
DAEMON AC, 3.7).
error return
normal return

CALLI AC, 103 JOBPEK*#* MOVE AC, adr of arg block Read or write another job’s core.
JOBPEK AC, Gives the error return if executed
error return by a non-system-privileged program.
normal return

CALLI AC, 104 ATTACH** MOVE AC [XWD line no., jobno.}| Attach the job to the specified TTY
ATTACH AC, line number. Gives the error return
error return if executed by a non-system-
normal return privileged program.

CALLI AC, 105 DAEFIN** MOVE AC, [XWD+length, adr of Indicate that the request to the
arg. list] DAEMON program has been com-
DAEFIN AC, pleted. Gives the error return if
error return executed by a non-system-
normal return privileged program.

CALLI AC, 106 FRCUUO*#* MOVE AC, [XWD+length, adr Force a command for a job. Gives
of arg. list]. the error return if executed by a
FRCUUO AC, non-system-privileged program.
error return
normal return

CALLI AC, 107 DEVLNM MOVE AC, [SIXBIT/dev/] or Set a logical name for this specified

MOVEI AC, channel no.
MOVE AC+1, [SIXBIT/logical
name/]

or MOVEI AC, UDX
DEVLNM AC,

error return

normal return

device (refer to Paragraph 4.8.4).

2-13

September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 110 PATH. MOVE AC, [XWD+length, adr. of Read or modify the default direc-
argument list] tory path or read the current path
PATH. AC, of a file OPEN on a channel. (Refer
error return to Paragraph 6.2.9.1).
normal return

CALLI AC, 111 METER. MOVE AC, [XWD N, LOC] Provide performance analysis and
METER. AC, metering of dynamic system
error return variables. (Refer to Paragraph 3.9).
normal return

CALLI AC, 112 MTCHR. MOVE AC, [XWD +n, LOC] or Return characteristics of the mag-
MOVEI AC, channel no. or netic tape. (Refer to Paragraph
MOVE AC, [SIXBIT/dev/] 5.5.3.3).
MTCHR. AC,
error return
normal return

CALLI AC, 113 JBSET.** MOVE AC, [2,, BLOCK] Execute the specified function of
JBSET. AC, SETUUO for a particular job.
error return
normal return
BLOCK: 0, , job number
BLOCK+1: function, , value

CALLI AC, 114 POKE. MOVE AC, [3, ,BLOCK] Alter the specified location in the
POKE. AC, Monitor. (Refer to Paragraph
error return 3.6.3.3).
normal return

CALLI AC, 115 TRMNO. MOVEI AC, job number Return number of the terminal
TRMNO AC, currently controlling the specified
error return job. (Refer to Paragraph 5.10.5).
normal return

CALLI AC, 116 TRMOP. MOVE AC, [XWD N, ADR} Perform miscellaneous terminal
TRMOP. AC, functions. (Refer to Paragraph
error return 5.10.7).
normal return

CALLI AC, 117 RESDV. MOVEI AC, channel no. Reset the specified channel.

RESDV. AC,

or MOVEI AC, UDX
error return

normal return

(Refer to Paragraph 4.8.2).

2-14

September 1974

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 120 UNLOK. MOVSI AC, 1 or Allow a job to unlock itself.
MOVSI AC, 0 (Refer to Paragraph 3.2.2.4).
HRRI AC, 1 or
HRRI AC, 0
UNLOK. AC,
error return
normal return

CALLI AC, 121 DISK. MOVE AC, [XWD function, Set or read a disk or file system
ADR] parameter (e.g., set the disk prior-
DISK. AC, ity for a channel or the job). (Refer
error return to Paragraph 6.2.9.14).
normal return

CALLI AC, 122 DVRST.** MOVE AC, [SIXBIT/dev/] or Restrict the specified device to a
MOVEI AC, channel no. privileged job.
DVRST AC,
error return
normal return

CALLI AC, 123 DVURS.** MOVE AC, [SIXBIT/dev/] or Remove the restricted status of
MOVEI AC, channel no. the specified device.
DVURS AC,
error return
normal return

CALLI AC, 124 XTTSK. Reserved for XTCSER.

CALLI AC, 125 CAL11.** MOVE AC, [XWD N, ADR] Front-end debug UUO.

‘ CAL11. AC,

error return
normal return

CALLI AC, 126 MTAID.** MOVE AC, [SIXBIT/DEV] or Privileged UUOQ that associates a
MOVEI AC, channel no. visual identification (REELID)
MOVE AC+1, [SIXBIT/REELID/] | with a magtape drive during a
MTAID. AC, ~mount.
error return
normal return

CALLI AC, 127 IONDX. MOVE AC, channel no. or Returns universal I/O index for

MOVE AC, [SIXBIT/DEV/]
IONDX. AC,

error return

normal return

a device. (Refer to 4.12.7).

2-15

September 1974

Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 130 CNECT. MOVEI AC, PLIST Connect (disconnect) individual
CNECT. AC, devices to (from) an MPX channel.
error return (Refer to Paragraph 4.11.4.1).
normal return

CALLI AC, 131 MVHDR. MOVE AC+1, [new output adr, Move a buffer ring header between
new input adr] core locations. (Refer to
MOVEI AC, channel number Paragraph 4.12.9).

MVHDR. AC,
error return
normal return

CALLI AC, 132 ERLST. MOVEI AC, block Provides user with a list of non-
ERLST. AC, operational devices connected to
error return an MPX channel. (Refer to
normal return Paragraph 4.11.4.2).

CALLI AC, 133 SENSE. MOVE AC, [XWD length, adr] Provide information necessary for
SENSE. AC, error diagnosis and recovery for a
error return specific device (refer to Paragraph
normal return 4.12.10).

CALLI AC, 134 | CLRST. MOVE AC, [XWD length, block] | Allow device to continue after a
CLRST. AC, device error condition (refer to
error return Paragraph 4.12.8).
normal return

CALLI AC, 135 PIINI. MOVE AC, base-address Initializes the software interrupt
PIINI. AC, system. (Refer to Paragraph
error return 3.1.3.6).
normal return

CALLI AC, 136 PISYS. MOVE AC, [flags, , e] Controls the software interrupt
PISYS. AC, system. (Refer to Paragraph
error return 3.1.3.7).
normal return

CALLI AC, 137 DEBRK. DEBRK. Dismisses an interrupt. (Refer to
error return Paragraph 3.1.3.8).

CALLI AC, 140 PISAV. MOVE AC, [size, , addr] Saves the state of the interrupt

PISAV. AC,
error return
normal return

system. (Refer to Paragraph
3.1.3.9).

2-16

September 1974

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

CALLI*
CALLI Mnemonic CALL Function

CALLI AC, 141 PIRST. MOVEI AC, addr Restores the state of the interrupt
PIRST. AC, system. (Refer to Paragraph
error return 3.1.3.10).
normal return

CALLI AC, 142 IPCFR. MOVE AC, [XWD n, LOC] Receives an IPCF packet.
IPCFR. AC, (Refer to Paragraph 7.1.7).
error return
normal return

CALLI AC, 143 IPCFS. MOVE AC, [XWD n, LOC] Sends an IPCF packet. (Refer
IPCFS. AC, to Paragraph 7.1.6).
error return
normal return

CALLI AC, 144 IPCFQ. MOVE AC, [XWD n, LOC] Obtains information about an IPCF
IPCFQ. AC, input queue. (Refer to Paragraph
error return 7.1.8).
normal return

CALLI AC, 145 PAGE. MOVE AC, [XWD function, LOC] Manipulate pages and the data
PAGE. AC, associated with these pages.
error return (Refer to Paragraph 3.2.6).
normal return

CALLI AC, 146 SUSET . ** MOVE AC, [XWD n, LOC] Set next I/O block number.
SUSET. AC,
error return
normal return

CALLI AC, 147 COMPT. Reserved.

CALLI AC, 150 TYPST. TYPST. AC, Special functions for TYPESET
error return devices.
normal return

*The CALLI mnemonics are defined in a separate MACRO assembler table, which is scanned whenever an undefined OP CODE is found. If the

symbol is found in the CALLI table, it is defined as though it had appeared in an appropriate OPDEF statement, that is

RETURN: EXIT
If EXIT is undefined, it will be assembled as though the program contained the statement
OPDEF EXIT [CALLI 12]
This facility is available in MACRO V.43 and later.
**This CALLI is a system-privileged UUO available only to users logged in under [1, 2] or to programs running with the JACCT bit set. Complete
documentation for system-privileged UUOs appears in UUOPRV, a part of the Specifications section of the DECsystem-10 Software Notebooks.

#**kAl] CALLI’s above CALLI 55 do not have a corresponding CALL with a SIXBIT argument. This is to save monitor table space.

The customer-is allowed to add his own CALL and CALLI calls to the monitor. A negative CALLI effective address (-2 or less) should be used to
specify such customer-added operations.

2-17 September 1974

2.2.2.2 Suppression of Logical Device Names — Some system programs, e.g., LOGOUT, require I/O to specific
physical devices regardless of the logical name assignments. Therefore, for any CALLI, if bit 19 (UU.PHS) in
the effective address of the CALLI is not equal to bit 18, only physical names will be used; logical device assign-
ments will be ignored. This suppression of logical device names is helpful, for example, when using the results
of the DEVNAM UUO where the physical name corresponding to a logical name is returned.

2.2.2.3 Restriction on Monitor UUOs in Reentrant User Programs — A number of restrictions on UUOs that
involve a high segment prevent naive or malicious users from interfering with other users while sharing segments
and minimize monitor overhead in handling two-segment programs. The basic rules are as follows:

1. Al UUOs can be executed from the low or high segment although some of their arguments cannot be
in or refer to the high segment.

2. No buffers, buffer headers, or dump-mode command lists may exist in the high segment for reading
from or writing to any I/O device.

3. No I/Ois processed into or out of the high segment except via the SAVE and SSAVE commands.

4. Asa convenience in writing user programs, the monitor makes a special check so that the INIT UUO
can be executed from the high segment, although the calling sequence is in the high segment. The
monitor also allows the effective address of the CALL UUO, which contains the SIXBIT monitor
function name, and the effective address of the OPEN UUO, which contains the status bits, device
name, and buffer header addresses, in the high segment. The address of TTCALL 1, and TTCALL 3,
may be in the high segment for convenience in typing messages.

2.2.3 Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100 (UJEN) Dismiss real-time interrupt from user mode (refer to Paragraph 3.8.4).
Op codes 101-107 Monitor prints 2ILL. INST. AT USER n and stops the job.
114-117
123
Op codes 110-113 These op codes are valid on the KI10. If used on the KA 10, the monitor
120-122 prints ?KI10 ONLY INST. AT USER n and stops the job.
124-127

2.2.4 Illegal Operation Codes

The eight I/O instructions (e.g., DATAI) and JRST instructions with bit 9 or 10 =1 (e.g., HALT, JEN) are
interpreted by the monitor as illegal instructions (refer to the System Reference Manual in the Software
Notebooks). The job is stopped and a question mark is printed immediately. A carriage-return/line-feed is then
output, followed by an error message. For example, a DATAI instruction would produce the following:

?

7 ILL INST AT USER addr

2-18

2.2.5 Naming Conventions for Monitor Symbols

The names of the monitor’s data base symbols contain dots or percent signs so that they can be made user-mode
symbols without conflicting with previously-coded user programs. Data symbols can be divided into five classes:

numbers

masks

UUO names
GETTAB arguments
error codes

RAE IS e

Symbols defining numbers begin with a dot, followed by a two-letter prefix indicating the type of number, and
end with a three-character abbreviation representing the specific number. Numbers are 18-bit quantities and
include core addresses and function codes. The following are examples of names of various numbers:

JIBxxx Job Data Area
GTxxx GETTAB table numbers
RBxxx Extended arguments for LOOKUP, ENTER, RENAME

Names for masks start with a two-letter prefix indicating the individual word, followed by a dot, and end with
three characters representing the specific mask. Masks are 36-bit quantities and include bits and fields. The
following are examples of names of masks:

JP.xxx Privilege word bits
JW.xxx WATCH word bits
PC.xxx PC word bits

Names for UUOs implemented after the 5.03 release of the monitor are five or less characters followed by a dot.
For example,

PATH. UUO to modify directory path.
TRMOP. UUO to perform terminal functions.

Individual words within a GETTAB table start with a percent sign, followed by two characters representing the
generic name of the table, and end with three characters identifying the specific word, For example,

ZNSCMX CORMAX word in the nonswapping data table.
JLCNSTS States word in the configuration table.

Names of bytes and bits within a GETTAB word begin with two characters representing the word, followed by a
percent sign, and end with three characters designating the specific byte.

ST%DSK Byte representing disk system; contained in the states word.
-~ . —ST%SWP _ .. Byte indicating swapping system; contained in the states word.

Error codes returned on a UUQ error have names with the following pattern: two characters indicating the UUO,
three characters designating the failure type, and a terminating percent sign.

DMILF% DAEMON error; illegal function.
RTDIU% RTTRP error; device in use.
LKNLPL% LOCK error; no locking privileges.

Many of the values useful in user programming are encoded in the parameter file CMAC for the convenience
of writing and modifying programs.

CHAPTER 3
NON I/0 UUOS

3.1 EXECUTION CONTROL

3.1.1 Starting

A user program may start another program only by using the RUN or GETSEG UUOs (refer to Paragraphs 3.3.1
and 3.3.2). A user at a terminal may start a program with the monitor commands R, RUN, START, CSTART,
CONT, CCONT, DDT, and REENTER (refer to DECsystem-10 Operating System Commands). The starting ad-
dress of the program either appears as an argument of the command or is stored in the user’s job data area (refer
to Chapter 1).

3.1.1.1 SETDDT AC, or CALLI AC, 2 — This UUO causes the contents of the AC to replace the DDT starting
address, which is stored in the protected job data area location .JBDDT. The starting address is used by the
monitor command DDT.

3.1.2 Stopping

Any of the following procedures can stop a running program:

1. One Control<C from the user’s terminal if the user-program is in a TTY input wait; otherwise, two
Control-C’s (1C1C) from the user’s terminal (refer to DECsystem-10 Operating System Commands);

2. A monitor detected error;

3. Program execution of HALT, EXIT AC, or LOGOUT AC, (CALLIs 12 and 17, respectively).

3.1.2.1 Illegal Instructions (700-777, JRST 10, JRST 14) and Unimplemented OP Codes (101-127) — Illegal
instructions trap to the monitor, stop the job, and print:

?ILL INST, AT USER adr or ?KI ONLY INST, AT USER adr

Refer to Paragraph 2.2.3 for an explanation of op codes 101-127. Note that the program cannot be continued
by typing the CONT or CCONT commands.

3.1.2.2 HALT or JRST 4 — The HALT instruction is an exception to the illegal instructions; it traps to the
monitor, stops the job, and prints:

?HALT AT USER adr

3-1 September 1974

where adr is the location of the HALT instruction. If the HALT instruction is in location 41 and the program
executed a user UUO (operation codes 001-037), the address in the error message is that of the user UUO instead
of address 41.

However, the CONT and CCONT commands are still valid and, if typed, will continue the program at the effec-
tive address of the HALT instruction. After a user program HALT instruction followed by a START, DDT,
CSTART, or REENTER command, .JBOPC contains the address of the HALT. To proceed at the address speci-
fied by the effective address, it is necessary for the user or his program to recompute the effective address of the
HALT instruction and to use this address to start (refer to .JBOPC description, Table 1-1 in Paragraph 1.2.1).
HALT is not the instruction used to terminate a program (refer to Paragraph 3.1.2.3). HALT is useful for indi-
cating impossible error conditions.

3.1.2.3 EXIT AC, or CALLI AC, 12 — When the value of AC is zero, all 1/O devices (including real-time devices)
are RELEASed (refer to Paragraph 4.8.1); the job is unlocked from core; the user mode write protect bit (UWP)
for the high segment is set; the APR traps are reset to 0; the PC flags are cleared; and the job is stopped. If
timesharing was stopped (refer to Paragraph 3.8.3), it is resumed. In other words, after releasing all I/O devices
that close out all files, a RESET is done (refer to Paragraph 4.1.2). The carriage-return/line-feed is performed,
and

EXIT

is printed on the user’s terminal, which is left in monitor mode. The CONT and CCONT commands cannot con-
tinue the program.

When the value of AC is nonzero, the job is stopped, but devices are not RELEASed and a RESET is not done.
Instead of printing EXIT, only a carriage-return and line-feed is performed, and a period is printed on the user’s
terminal. The CONT and CCONT commands may be used to continue the program. In other words, this form
of EXIT does not affect the state of the job except to stop it and return the terminal to monitor mode. Pro-
grams using EXIT 1, (MONRT.) as a substitute for EXIT (to eliminate the typing of EXIT) should RELEASE
all devices first.

3.1.3 Program Trapping, Interception, and Interruption

Execution of a program is normally performed in a sequential manner, whereby one instruction is executed
followed immediately by the next and so 'on. By using skip and branch instructions, it is possible to deviate
from the normal sequential method of execution. Deviation from normal program flow may also be accom-
plished by trapping to user trap-servicing routines (APRENB UUO), enabling for error interception (utilizing
JBINT), or using the software interrupt system. User-trap servicing routines and error interception are simple
methods of controlling error conditions while the software interrupt system provides a much more general and
powerful facility.

Two important reasons for wanting a program to deviate from simple sequential operation are as follows:

1. Responding to special conditions without having to test for them wherever they might arise. For in-
stance, it is possible to test for an arithmetic overflow condition after every instruction which might
cause the condition. However, it is frequently easier to request that the system interrupt normal
sequential operation whenever an overflow takes place and transfer control to an error routine. With
this approach, there is no need to insert a special test after every arithmetic instruction. This reduces
program size and execution time as well as being a less error-prone way to write a program.

32

2. Responding to asynchronous events without having to test i_r (uem repeatedly. For example, some
programs need to take special action when the user types a CONTROL-C, rather than permit control
to return immediately to monitor level. It would be an unreasonable constraint on program design if
the program had to test with high frequency for the user typing a CONTROL-C. It is much more
efficient for the system to interrupt normal sequential operation when a CONTROL-C is typed and
to transfer control to a special processing routine than for the program to have to test for the event
repeatedly.

APR trapping allows a user to handle traps that occur while his job is running, including illegal memory refer-
ences, non-existent memory references, push-down list overflows, arithmetic overflows, floating-point overflows,
and line frequency clock pulses. Error interception may be used when certain conditions occur in the program.
The monitor will intercept, when the condition occurs, and examine location .JBINT in the job data area. It
does this to find out whether an error interception routine has been provided. In addition, the TOPS 10 Monitor
provides a generalized software interrupt mechanism for interrupting sequential operation under a wide variety
of special conditions.

3.1.3.1 APRENB AC, or CALLI AC, 16 — To enable for trapping, an APRENB AC, or CALLI AC, 16 is exe-
cuted, where the AC contains the central processor flags to be tested on interrupts, as defined below:

Name AC Bit Trap On
AP.REN 18 400000 Repetitive enable
AP.POV 19 200000 Pushdown overflow
AP.ILM 22 20000 Memory protection violation
AP.NXM 23 10000 Nonexistent memory flag
AP. PAR 24 4000 Parity error
AP.CLK 26 1000 Clock flag
AP.FOV 29 100 Floating-point overflow
AP.AOV 32 10 Arithmetic overflow

When one of the specified conditions occurs while the central processor is in user mode, the state of the central
processor is conditioned into (CONI) location .JBCNI, and the PC is stored in location .JBTPC in the job data
area (refer to Table 1-1 in Paragraph 1.2.1). Then control is transferred to the user trap-answering routine speci-
fied by the contents of the right half of .JBAPR, after the arithmetic and floating-point overflow flags are cleared.
(However, the job is stopped if the PC is equal to the first or second instruction in the user’s trap routine.) The
user program must set up location .JBAPR before executing the APRENB UUO. To return control to his inter-
rupted program, the user’s trap-answering routine must execute a JRSTF @ .JBTPC which clears the bits that
have been processed and restores the state of the processor.

A "ﬁl’erAPRENB UUO normally enables traps for only one occurrence of any selected condition and must be re-
issued after each condition of a trap. To disable this feature, set bit 18 to a 1 when executing the UUO. How-
ever, even with bit 18 = 1, clock interrupts must be re-enabled after each trap.

If the user program does not enable traps, the monitor sets the PDP-10 processor to ignore arithmetic and
floating-point overflow, but enables interrupts for the other error conditions in the list above, If the user pro-
gram produces such an error condition, the monitor stops the user job and prints one of the following appro-
priate messages:

3-3

?PC OUT OF BOUNDS AT USER PC addr
?ILL MEM REF AT USER PC addr
7NONeEX MEM AT USER PC addr

?7PDL OV AT USER PC addr

?MEM PAR EPROR AT USER BC addr

The CONT and CCONT commands will not succeed after such an error.

3.1.3.2 Error Intercepting — When certain conditions occur in the program, the monitor intercepts the condi-
tion and examines location .JBINT in the job data area. Depending on the contents of this location, control is
either retained by the user program or is given to the monitor for action. If this location is zero, the job is
stopped and the user and possibly the operator are notified by appropriate messages, if any. If location .JBINT
is non-zero, the contents is interpreted as the address of a block with the following format:

LOC: XWD N, INTLOC
LOC+1: XWD BITS, CLASS
LOC+2: 0

LOC+3: 0

where N is the number of words in the block (N > 3).
INTLOC is the location at which the program is to be restarted.

BITS is a set of bits interpreted as follows:
If bit 0 = 1, an error message, if any, is not to be typed on the user’s terminal or, in some cases,
the operator’s terminal.

If bit 0 = 0, an error message, if any, will be typed on the user’s terminal and possibly the
operator’s terminal.

CLASS is a set of bits interpreted as follows:

For each type of error, CLASS has a specific bit. For a given error, the job will be interrupted

if the appropriate bit is 1 and LOC+2 contains zero. The job will be stopped if either the ap-
propriate bit is 0 or the appropriate bit is 1 and the contents of LOC+2 is not zero. By requiring
LOC+2 to be zero, the possibility of a loop occurring is prevented.

The monitor examines the CLASS bits and the contents of LOC+2 to determine if the job is to be stopped or
interrupted on the particular error. If the job is interrupted, the following information is then stored in LOC+2
and LOC+3:

LOC+2 The last user PC word
LOC+3 RH = the channel number
LH = the error bit as defined in CLASS (see below)

The job is then restarted at location INTLOC.

The CLASS bits are defined as follows:

Device Errors
Bit 35(1) (ER.IDV) represents device errors that can be corrected by human intervention. The appropriate
message returned to the user is

DEVICE xxX OPR z2 ACTION REQUESTED

where xxx is the device name, and zz is the number of the station at which the operator is located. The
operator receives the message

%PROBLEM ON DEVICE xXx FOR JOB n

where xxx is the device name, and n is the number of the job that is stopped. When the operator has cor-
rected the error, he starts the job with the JCONT command and the message

CONT BY OPER

appears on the user’s terminal to signify that the error has been corrected.

1C Intercept

Bit 34(1) (ER.ICC) indicates a 1C intercept. This intercept allows the user’s program to process a 1C itself
instead of allowing the job to automatically return to monitor level. If this bit isa 1, the job does not re-
turn to monitor level on two 1Cs (or on one 1C if the job is in TTY input wait), but instead traps to the
user’s interrupt routine. There are no messages associated with this bit. When enabled for 1C, the program
should normally exit immediately by releasing any special resources and issuing an EXIT UUO (MONRT. or
CALLI 1, 12) .. If the user types .CONT, the job continues. ,

(1) This bit depends on FTOPRERR which is normally off in the DECsystem-1040.
(1) This bit depends on FTCCIN which is normally off in the DECsystem-1040.

3-5

TITLE CONCIN =« SAMPLE FOR CONTROL=C INTERCEPT

$THIS ROUTINE SHOWS HOVY TO ENABLE FOR A CONTRQL=C INTERCEPT
JAND HANDLE IT CORRECTLY, THE IDEA IS TO GET THE USER TO
$MONITOR LEVEL AS QUICKLY AS POSSIBLE,

Loc 134 $SET POINTER IN ,JBINT
EXP INTBLK 3TO THE INTERRUPT BLOCK
RELOC

INTBLK: XWD 4,INTLOC 14 WORDS LONG,,PLACE TO START
XWD 0,2 yNO MESSAGE CONTROL,,TYPE 2 (=C)
z , sGETS LAST USER PC
z sLH GETS INTERRUPT TYPE

$ THE INTERRUPT ROUTINE STARTS HERE

INTLOC: MOVEM 1,TEMPY $SAVE AC 1
HLRZ 1,INTBLK+3 $GET REASGN FOR INTERRUPT
CAIE 1,2 ?SEE IF CONTROL=C
HALT . t$FRROR IF NOT

JRELEASE ANY SPECIAL RESOURCES HERE
$BUT BE CAREFUL THAT THIS DOES NOT
$TAKE VERY LONG OR CARUSE A LODOP,

EXIT 1, $RETURN TO MONITOR

MOVE 1,INTBLK+2 $GET RETURN PC

EXCH 1, TEMPY ‘ s RESTORE AC

PUSH P,INTBLK+2 $SAVE RETURN ADDRESS

SETZM INTBLK+2 tCLEAR INTERRUPT TO ALLOW ANOTHER ONE

o) P, $RETURN TO WHERE PROGRAM STOPPED
TEMPL: 2 s TEMPORARY

The following example illustrates user 1C processing by a program which will not let users reach monitor level
by means of a 1C.

Loc 134 $SET UP LJBINT TO POINT TO
EXP INTBLK $ THE INTERRUPT BLOCK
RELOC

INTRLK?: XWD 3,INTLOC $3 WORDS LONG,,PLACE TD START
XWD 0,2 tNO MESSAGE CONTROL,.TYPE 2 ("C)
Z 3GETS LAST USER PC
z sLH GETS INTERRUPT TYPF

JTHE INTERRUPT ROUTINE

INTLOC: SKIPL RENFLA 10K TO FAKE A REENTER?
JRST o*3 tNO, CURRENT ROUTINE CANNOT BE

$ INTERRUPTED,

SETZM INTBLK+2 3 YES, REENABLE INTERRUPT AND GO

JRST REENRT $TO INTERRUPT ROUTINE

SETOM RENSWH $1SET FLAG TO SAY "REENTER AS SOON AS

$YOU CANM

PUSH P,INTBLK+2 $GET LAST PC, PUSH/POP

SETZM INTBLK+2 $RE=ENABLE INTERRUPT

POPJ P, $G0 BACK TO INTERRUPTED ROUTINE

1NOTE THAT IF A CONTROL=C IS
$TYPED AFTER THE SETZM, THE
s INTERRUPTS NEST,

3-6

Off-line Disk Unit
Bit 33 (ER. OFL) indicates a disk unit has dropped off-line. The operator is given the message

UNIT xXx WENT OFF=LINE (FILE UNSAFE)
PLEASE POWER DOWN AND THEN TURN IT ON AGAIN

immediately and then once every minute. The user receives the message

DSK Ts OFFeLINE, WAITING FOR OPERATOR
ACTION, TYPE "C TO GET A HUNG MESSAGE

(IN 15 SECONDS), DONT TYPE ANYTHING TO WAIT
FOR THE OPERATOR TO FIX THE DEVICE,

If the user has a system resource, he receives the additional message:

THE SYSTEM WILL DO NQ USEFUL WORXK UNTIL
THE DRIVE IS FIXED OR YOU TYPE ~C

Full File Structure

Bit 32 (ER. FUL) indicates that a file structure has filled up with data (i.e., there are no free blocks). There
are no messages associated with this bit.

Exhausted Disk Quota
Bit 31 (ER. QEX) indicates that the user’s disk quota has been exhausted. The user receives the message

[EXCEEDING QUOTA file structure name]

Exceeded Time Limit

Bit 30 (ER. TLX) indicates that the user’s run time limit (as set by a previous SET TIME command) has
been exceeded. This bit is used only by non-batch jobs. The user receives the message

?TIME LIMIT EXCEEDED

Error in Job -

Bit 29 (ER. EIJ) indicates that the user has had a fatal error, such as:

?ILLEGAL UUO
?ADDRESS CHECK
?PC OUT OF BOUNDS

3-7

3.1.3.3 Software Interrupt System — The software interrupt system is a generalized mechanism for interrupting
sequential execution under a wide variety of special conditions. In order to use the sofware interrupt system,

it must first be initialized by the PIINI. UUOQ. PIINI. will specify the base address of an interrupt vector. Within
this vector are one or more four-word interrupt control blocks, which control the operation of the software in-
terrupt system. After initializing the software interrupt system, the system must be turned on. The PISYS. UUO
is used to turn the interrupt system.on. This UUO is also used to specify:

L] on what conditions the user wishes control to be passed to an interrupt servicing routine.

® the location of the appropriate interrupt control block (this is specified as an offset from the base of
the interrupt vector).

When a interrupt condition occurs, the monitor first determines whether this type of condition is to cause a
transfer to an interrupt servicing routine. If it is not to cause a transfer of control, the default action for the
condition will take place. If a transfer of control is to take place, control is transferred to the location specified
in the appropriate interrupt control block. This process can be represented by the following illustration:

PROGRAM (USER) INTERRUPT
LEVEL LEVEL

USER P!-'\‘OGRAM

1

INTERRUPT
CONDITION
OCCURS

INTERRUPT
i
YES——"1THE APPROPRIATE

INTERRUPT
CONTROL BLOCK

DID USER ENABLE
FOR THIS
INTERRUPT

CONDITION

NO

TAKE DEFAULT ACTION
(e.g. DO NOTHING,
STOP JOB, PRINT

ERROR MESSAGE, etc.)

l I| DEBRK.UUO

USER PROGRAM

3.1.3.4 Interrupt Conditions — The conditions for which interrupts can be requested are divided into two
categories:

1. I/O interrupts

2. Non-I/O interrupts.

For any device, the user can specify interrupt processing for one or more of the following I/O conditions that
may occur during the execution of a program:

input done

output done

end of file

input error

output error

device off-line

device full

quota exceeded

input/output wait

Examples of non-I/O conditions resulting in a possible interrupt are:
time limitation exceeded
execution of a UUO
address check
overflow of push-down list
APR clock
arithmetic overflow
Control-C
occurrence of an undefined UUO
reference to illegal memory location
non-existent memory reference
floating point overflow

3.1.3.5 Interrupt Control Block — The interrupt control block is the controller of the software interrupt system;
it keeps track of such things as:

© where the program was when an interrupt occurred
o where to find the interrupt servicing routine for processing the current interrupt
© the reason for the interrupt

There may be more than one interrupt condition associated with the same interrupt control block; but the pre-
ferred usage is to associate one interrupt condition with one interrupt control block. An interrupt control block
can be represented as:

BIT (o} 17 18 35

NEW PC

OtD PC

CONTROL FLAGS REASONS

STATUS WORD

39

The monitor stores the PC (program counter) at the time of the interrupt in the second word of the interrupt
block. If a UUO was executed, the word will contain the address of the UUO + 1 or +2 (i.e., the return point
of the UUO). If an attempted UUO was aborted, the address of the UUQ will be contained in PC. The location
of the routine that is to be used in servicing the interrupt is stored in the first word of the interrupt control
block. The control flags, in the left half of the third word, are used to indicate under what circumstances an in-
terrupt is to take place.

The reason for a particular interrupt is indicated by the bits stored in the right half of the same word as the con-
trol flags. The status word contains status information pertinent to the type of interrupt detected.

The bit settings that may be set within the flags half-word are:

Bit Mnemonic Meaning

0 Reserved to DEC.

1 PS.VPO Disable all interrupts until re-enabled by a PISYS. UUO.

2 PS.VTO Disable all interrupts until a DEBRK. UUO is executed.

3 PS.VAI Allow additional interrupts to be received by this interrupt block. Normally,

no other interrupts for the current block are permitted until a DEBRK. UUO
is executed. The use of this bit is not recommended since an interrupt ser-
vicing routine could be interrupted resulting in lost information.

4 PS.VDS Dismiss any additional interrupt requests for this control block that are re-
ceived while an interrupt is in progress. This is useful if the interrupt service
routine wants to perform functions that would cause another interrupt. For
example, a service routine for all UUO’s may want to do UUO’s.

5 PS.VPM Print the standard message (if any) relevant to this interrupt condition.

6 PS.VIP This bit indicates that an interrupt is in progress for this block. The user
should clear this bit at the start of the program. It is set and cleared by the
monitor as interrupts are processed and should not be altered by the user.

The fourth word in the four-word interrupt block contains status information relating to the type of interrupt
condition detected. For instance, a device-related interrupt will cause this word to contain the UDX in its left
half, and a GETSTS value in its right half. For an interrupt on KSYS warning, the word contains the number
of minutes until KSYS (i.e., number of minutes until time-sharing ends).

The new PC word and flags half-word are preset by the user. The old PC word, reasons half-word, and status
word are set by the monitor.

After an interrupt request is granted, the program operates at interrupt level until the user issues a DEBRK. UUO.
DEBRK. will dismiss the interrupt, reenable the interrupt control block (if it was disabled) and cause any pend-
ing interrupt requests to be granted. If there are no pending interrupts, the user job is restarted as if no interrupt
had occurred.

The act of granting an interrupt request does not change any of the conditions which caused the interrupt. If
the user issues a DEBRK. UUO without doing anything else, the result will be the same as if the interrupt con-
dition was not enabled. The monitor does not clear any reason bits on DEBRK. UUQ’s; the user must clear these
himself.

3-10

EXCEPTION: If the interrupt occurs while the machine was executing a UUO for the user, that UUO is aborted.
The only conditions which can cause interrupts during the processing of UUQ’s are error conditions in the UUO.
All other conditions are deferred until the UUO exit.

3.1.3.6 PIINI. AC, or CALLI. AC, 135 — The PIINI. UUO initializes the software interrupt system, specifying
the base address of the interrupt vector block. This interrupt vector block will contain one or more four-word
interrupt control blocks. The format of the UUO is:

MOVE AC, base=address

PIINI, AC, yor CALLI AC, 135
error return ’

normal return

PIINI. will perform the following functions:

® turn off the software priority interrupt system.

o unlink any devices that have enabled interrupt conditions associated with them.

® store the base address of the interrupt vector block.
3.1.3.7 PISYS. AC, or CALLI AC, 136 — PISYS. is the primary means by which the user can control the inter-
rupt system. It accepts a three word interrupt argument block specifying the type of event the user wishes to

service with an interrupt servicing routine and the offset from the interrupt vector base address that points to
the appropriate interrupt control block. The format of PISYS. is:

MQVE AC, ([flaasg,,e]

PISYS, AC, tor CALLI AC, 136
error return

normal return

where: the flags which may be set with this call are:

Bit Mnemonic Meaning
1 PS.FOF Turn the interrupt system off.
2 PS.FON Turn the interrupt system on.
3 PS.FCP Clear all pending interrupts.
4) PS.ECS B o Clear all pending ipte{rupts for a specified device.
5 PS.FRC Remove the specified device or condition.
6 PS.FAC Add the specified device or condition.

e points to a block that contains information pertaining’to the interrupt condition the user wishes to service.

3-11

This block can be represented as:

(o] 17 18 35
DEVICE/CONDITION TO USE
VECTOR OFFSET ENABLED REASONS
PRIORITY LEVEL RESERVED

This first word of the interrupt argument block specifies the device or the condition to be associated with the
interrupt, and is one of the following:

® SIXBIT /device-name/
® channel-number

e UDX

® negative integer

The negative integer is used when desiring to specify a non-I/O condition as the enabled interrupt condition.
Certain non-I/O interrupts will cause information to be stored in the status word of the interrupt control block;
the possible non-I/O conditions, their codes, and the information (if any) that will be stored in the status word

are:

Code Mnemonic Meaning Status Word

-1 PCTLE Time limit exceeded. This interrupt Run time in milliseconds for this
cannot be specified for BATCH jobs. job.

) .PCABT Not yet implemented.

-3 PCSTP Control-C 1B0 = 1 if terminal in input-wait

status; otherwise word = 0.

-4 .PCUUO Any UUO was executed. uuo

-5 .PCIUU Illegal UUO was executed. 0

-6 PCIMR Illegal memory referenced. 0

-7 PCACK Address Check. device name

-10 .PCARI Arithmetic exception. 0

-11 .PCPDL Push down list overflow. 0

-12 PCTT3 Not yet implemented.

-13 PCNXM Non-existent memory referenced. 0

-14 PCAPC Line frequency clock tick. universal date/time word

-15 PCUEJ User-induced fatal error. 0

-16 PCXEJ External condition results in fatal 0

€ITOr.

3-12

Code Mnemonic
-17 PCKSY
-20 .PCDSC
221 PCDAT
-22 PCWAK
-23 PCABK
-24 PCIPC

Meaning
KSYS warning.

Dataset status has been changed.

ATTACH/DETACH was executed.

WAKE UUO was executed.
Address break.

IPCF has received a packet.

Status Word
minutes to KSYS
new status

-1 (if detach) or TTY
UDX (if attach)

job number of waker
0

length (RH) and flags (LH) as-

sociated with first message in the
queue.

The vector offset is the address of the four-word interrupt control block to be associated with this interrupt
condition. The address is given as an offset from the base address specified in the PIINI. UUO. Since the inter-
rupt control blocks are each four words in length, the offset is always given in multiples of four words. The
same four-word interrupt block may be associated with several interrupt conditions, but a one-to-one corre-
spondence is preferred.

If within PISYS., e specifies a device within its first word, the enabled reasons half-word specifies the type of
interrupt the user is interested in. The bit assignments, which may be set, are:

Mnemonic Bit Meaning
PS.RID 19 Input done.
PS.ROD 20 Output done.
PS.REF 21 End-of-file.

PS.RIE 22 Input error.
PS.ROE 23 Output error.
PS.RDO 24 Device off-line.
PS.RDF 25 Device full.
PS.RQE 26 Quota exceeded.
PS.RWT 27 Input/Output wait.

The bit corresponding to the reason for the interrupts will be ORed in the reason field of the four word interrupt
control block also.

The possible error codes which might result from this call are:

Error Code Mnemonic Meaning
0 PSTMA% The right half of the AC is non-zero; no bits in the left half require
an argument block.
1 PSNFS% The left half of the AC does not have any function bits set.
2 PSUKF% The left half of the AC contains function bits which have been

set that have no defined meaning.

3-13

Error Code Mnemonic Meaning

3 PSOOF% In the left half of the AC the bits to turn the system on and to
turn the system off have both been set.

4 PSUKC% The contents of e do not specify a valid device or condition.

5 PSDNO% The device specified by the contents of e has not been INITed
for this job.

6 PSPRV% A restricted condition (illegal) has been specified.

7 PSIVO% The vector table offset is too large or, not a multiple of four

words. A GETTAB table (table number 11, Item 76) provides
the maximum value that the vector offset may assume.

10 PSUKR% An invalid bit was set in E+2.

11 PSPTL% The priority level specified is too large. The maximum priority
level which may be assumed is specified within GETTAB table
number 11, Item 77. (It is O for the 6.01 release.)

12 PSNRW% The reserved half-word (the right half of word three) is non-zero.

13 PSPND% A PIINI. UUO has not been executed.
14 PSARF% Both of the “add the device” and “remove the device” bits have
been set.

3.1.3.8 DEBRK. or CALLI AC, 137 — The DEBRK. UUO is used to dismiss a software interrupt, reenabling
anything which may have been disabled by the occurrence of the interrupt. The DEBRK. UUO will scan the
pending interrupt queue, looking for any conditions which may require servicing by an interrupt servicing
routine. If such a condition does exist, the newly found interrupt request will be granted and a transfer will be
made to the interrupt servicing routine. If there are no pending interrupts, DEBRK. will restart the interrupt
process beginning at the point within the user program where the program was originally interrupted (e.g., the
instruction after the last instruction executed). ,

The format of the DEBRK. UUOQ is:

DEBRK, ror CALLI AC,137
error return

The normal return taken by DEBRK., if no interrupts are pending, is old PC in the interrupt control block. The
skip return is used if the software interrupt system has not been initialized. The error return is only taken when
DEBRK. has not been implemented.

3.1.3.9 PISAV. AC, or CALLI AC, 140 — The PISAV. UUO returns the entire monitor data base related to the

software interrupt facility. This UUO can be used by modules such as QMANGR to save and reload (via PIRST?)
the complete interrupt system. It can also be used to provide detailed error messages.

3-14

The format of the PISAV. UUO is:

MOVE AC, [s5{Ze,,addr]

PISAV, AC, sor CALLI AC, 14¢C
error return

normal return

The state of the interrupt system is not altered by the execution of this UUO.
Size is the length (in words) of the block pointed to by addr. The size of this block can be determined by:
(3 * argblocks) + 2 = size in words

addr points to a block which can be represented as:

(o} 17 18 35
4XI 2ERO] COUNT
BASE ADDRESS
DEVICE/CONDITION
INTERRUPT
VECTOR OFFSET ENABLE REASONS ARGUMENT
BLOCK 1
PRIORITY LEVEL RESERVED
'
'
|
i
!
DEVICE/CONDITION
- INTERRUPT
VECTOR OFFSET ENABLED REASONS ARGUMENT
BLOCK n
PRIORITY LEVEL RESERVED

where: X can be 1 or 0; 1 indicates that the software interrupt system is turned on, 0 indicates that it
is turned off.

count is the number of words the monitor actually returned with the saved status block.

base address is the base address of the interrupt vector block which contains one or more 4-word

interrupt control blocks.

Words 2 through n contain one or more interrupt argument blocks. These interrupt argument blocks are those
the user has set up through use of the PISYS. UUO.

~The possible error return resulting from the PISAV. UUO is:

Code Mnemonic Meaning

0 PSBTS% The block is too small to hold the data. The right half of the first
word contains the count of the number of words which would
have been returned, if the block had been large enough.

3-15

3.1.3.10 PIRST. AC, or CALLI AC, 141 — The PIRST. UUO reloads the saved state of the interrupt system. It
does not, however, remember pending instructions. If a condition is still existent within the interrupt block
(i.e., has not been cleared), the interrupt will be granted. The PIRST. UUO should not be used to load the inter-
rupt system at program initialization time, this function is performed by the PIINI. UUO.

The format of the PIRST. UUO is:

MOVEI AC,addr

PIRST, AC, sor CALLI AC, 141
error return

normal return

where: addr is the address of the saved status block which was specified in the PISAV. UUO.

There is one possible error code which may be returned:

Error Code Mnemonic Meaning

0 PSNRS% The user has modified his program prohibiting the PIRST. UUO
from performing its specified task.

3.1.3.11 Software Interrupt Example —
TITLE PISAMP == SAMPLE PROGRAM TO SHOW PSISER USE WITH NON=BLOCKING I/0

$THIS PROGRAM WRITES A FILE CONTAINING THE NUMBERS FROM {1 TO 100,000

$ WHILE DOING A COMPUTE BOUND BACKGROUND COMPUTATION, SINCE THE PROGRAM

3 NEVER BLOCKS FOR I/0 IT CAN USE 100% OF THE AVAILABLE CPU TIME, BY USING
¢ THE PI SYSTEM IT CAN DRIVE THE DISK AT FULL SPEED,

tAC USEACE

Ti=1 $ TEMPORARY

N=2 $NUMBER TO WRITE ON THE DISK
1I/0 CHANS,

DSK=1 $THE DISK FILE

SEARCH € $ SYMBOL DEFS,

$INITIALIZATION

START: RESET ¢+RESET THE WORLD
MOVEI T1,VECTOR tBASE OF INTERRUPT VFCTDR

PTINI, Ti, $INIT PI SYSTEM

HALT JNOT INPLEMENTED

OPEN DSK [UU,ATIO0+,I0RINSOPEN DISK FOR ASYNCHRONOUS BINARY QUTPUT
SIXFIT /DSK/
0B, ,0]
HALT sDISK NOT AVAILABLE
ENTER DSK {SIXBIT "SAMPLE" jENTER THE QUTPUT FILE
SIXBTIT YBINY 3 ON THE DISK
EXP 0,0) | B
HALT sCAN’T WRITE

3-16

MOVE

PISYS,

HALT
MOVEI

T1,[PS.FAC+[EXP DSK

4,,PS,ROD
0]

tOFFSET, ,0UTPUT DONE

s PRIORITY, ,RESERVED

sCALL MONITOR TO TURM ON SYSTEM AND
¢ ENABLE FOR OUTPUT DONE ON CHAN DSK
tPISYS, UUO FAILED

$PRESET N

YHERE ON AN OQUTPUT DONE INTERRUPT OR AT THE START OF THE PROGRAM

OUTDON?: SOSGE
JRST
IDPB
CAME
AQJA
CLOSE
EXIT

DUMPRF: 0QUT
JRST
STATZ
HALT

AT THIS POINT WE FILLED ALL AVAILABLE BUFFERS AN WANT TO GO RACK TO THE

RYTECT
DUMPBF
N,BYTEPT
¥,[*D100000]
N,QUTDON

1,

1,
CUTDON
1,I0,ERR

¢t BACKGROUND TASK,

DEBRK,
HALT

tIF WE GET HERE THERE WAS NO INTERRUPT IN PROGRESS,

$ROOM IN THIS BUFFER?
INO==wGO OQUTPUT BUFFER
$STORE IN BUFFER
tDONE?

JNOweWRITE NEXT NUMRER

$ALL DONE

$WRITE OUT THE BUFFER

§NO ERRORS AND MORE RUFFERS
$ANY ERRORST?T

JFATAL I/0 ERROR

§JDISMISS THE INTERRUPT
§CAN NEVER GET HERE

3 CALLED BY INITIALIZATION AND NOW MUST START THE BACKGROUND TASK,

MOVSI
PISYS,
HALT
MOVEI
AOJA

T1,(PS,FON)
T1,

Ty,0

Tis

$BUFFER RING HEADER

0B1: BLOCK
BYTEPT! BLOCK
BYTECT?: BLOCK

1
1
1

$ INTERRUPT VECTOR

VECTOR?! BLOCK
EXP
EXP
EXP
EXP

END

4
OUTDON
0
0
0

START

) TURN ON THE PI SYSTEM SO WE CAN GET TRAPS

¢t OUT OF THE BACKGROUND TASK,
$CAN’T TURN ON SYSTEM

1 SUPER SIMPLE BACKGROUND TASK

JRYTE POINTER
$BYTE COUNT

sFIRST SLOT IS UNUSED
{NEW PC

s0LD PC STORED HERE
$FLAGS

s STATUS

3-17

TEAT MEANS WE WERE

3.1.4 Suspending

3.1.4.1 SLEEP AC, or CALLI AC, 31 — This UUO temporarily stops the job and continues it automatically
after the elapsed real-time (in seconds) indicated by the contents of the AC. There is an explicit maximum of
approximately 68 sec (82 sec in 50-Hz countries). A program that requires a longer SLEEP or HIBER time
should call DAEMON, via the clock function, then use HIBER with no clock request.

3.1.4.2 HIBER AC, or CALLI AC, 72(2) — The HIBERNATE UUO allows a job to become dormant until a
specified event occurs. The possible events that can wake a hibernating job are:

1. input activity from the user’s TTY or any TTY INITed by this job (both line mode and character mode),
2. PTY activity for any PTY currently INITed by this job,
3. the time-out of a specified amount of sleep time, or

4. the issuance of a WAKE UUO directed at this job either by some other job with wake-up rights or by
this job at interrupt level.

The HIBERNATE UUO must contain in the left half of AC the wake-condition enable bits and in the right half
the number of ms for which the job is to sleep before it is awakened.

The call is as follows:

MOVSI AC, enable bits 1get HIRERNATE conditions
BRRI AL, Ssleer time jnumber of ms to Sleep
HIBER AC, yor CALLI AC, 72

error return
normal return

The HIBERNATE UUO enable condition codes are as follows:

Bits Meaning

18-35 Number of ms sleep time. It is rounded up to an even multiple of jiffies (maximum
being 68 seconds). Zero means no clock request (i.e., infinite sleep).
15-17 WAKE UUO protection code:

Bit 17 (HB.RWT) = 1, project codes must match.
Bit 16 (HB.RWP) = 1, programmer codes must match.
Bit 15 (HB.RWJ) = 1, only this job can wake itself.

13—-14 Wake on TTY input activity:

Bit 14 (HB.RTC) = 1, wake on character ready.
Bit 13 (HB.RTL) = 1, wake on line of input ready.

12 (HB.RPT) Wake on PTY activity since last HIBERNATE.
10 (HB.IPC) IPCF
0 (HB.SWP) Causes job to be swapped out immediately.

(2) This UUO depends on FTHIBWAK which is normally off in the DECsystem-1040.

3-18 September 1974

An error return is given if the UUO is not implemented. The SLEEP UUO should be used in this case. A normal
return is given after an enabled condition occurs.

In order to insure that a job does not sleep for too long, missing an event, the wakeup bit is set by the monitor
even if the event occurs while the job is not sleeping. When the job issues another HIBER UUOQ, the bit will be
cleared and the HIBER will return immediately to the user. Specifically, a job issuing a HIBER UUO must test
all events that may have caused it to wake up, however, the job cannot be assured that any one of the events
actually took place.

Jobs either logged-in as [1,2] or running with the JACCT bit on can wake any hibernating job regardless of the
protection code. This allows privileged programs, which are the only jobs that can wake certain system jobs, to
be written.

A RESET UUO always clears the protection code and wake-enable bits for the job. Therefore, until the first
HIBERNATE UUO is called, there is no protection against wake-up commands from other jobs. To guarantee
that no other job wakes the job, a WAKE UUO followed by a HIBERNATE UUO with the desired protection
code should be executed. The WAKE UUO ensures that the first HIBERNATE UUO always returns immediately,
leaving the job with the correct protection code.

3.1.4.3 WAKE AC, or CALLI AC, 73(1) — The WAKE UUO allows one job to activate a dormant job when
some event occurs. This feature can be used with Batch so that when a job wants a core dump taken, it can

wake up a dump program. Also, real-time process control jobs can cause other process control jobs to run in
response to a specific alarm condition. The WAKE UUO can be called for a RTTRP job running at interrupt level,
thereby allowing a real-time job to wake its background portion quickly in order to respond to some real-time
condition. (Refer to Paragraph 3.8.1.2 for the restrictions on accumulators when using the RTTRP UUO at
interrupt level.)

The call is as follows:

MDVE AC, Johenumber snumber of job to be awakened
WAKE AC, ror CALLI AC, 73

error return

normal return

Job number is -1 if referring to the current job.

An error return is given if the proper wake privileges are not specified. There is a wake bit associated with each
job. If any of the enabled conditions specified in the last HIBERNATE UUO occurs, then the wake bit is set.

The next time a HIBERNATE UUO is executed, the wake bit is cleared and the HIBERNATE UUO returns im-
mediately. The wake bit eliminates the problem of a job going to sleep and missing any wake conditions.

On a normal return, the job has been awakened and has started at the location of the normal return of the HIBER
UUO that caused it to become dormant.

(1) This UUO depends on FTHIBWAK which is normally off in the DECsystem-1040.

3-19

3.2 CORE CONTROL

For various reasons, privileged jobs may desire to be locked in core so that they are never to be considered for
swapping or shuffling. Some examples of these jobs are as follows:

Real-time jobs These jobs require immediate access to the processor in response to an in-
terrupt from an I/O device.

Display jobs The display must be refreshed from a display buffer in the user’s core area
in order to keep the display picture flicker-free.

Batch Batch throughput may be enhanced by locking the Batch job controller
in core.
Performance analysis Jobs monitoring the activities of the system need to be locked in core so

that they can be invoked quickly with low overhead in order to record
activities of the monitor.

3.2.1 Definitions

In swapping and non-swapping systems, unlocked jobs can occupy only the physical core not occupied by locked
jobs. Therefore, the locked jobs and timesharing jobs contend with one another for physical core memory. In
order to control this contention, the system manager is provided with a number of system parameters as de-
scribed below.

Total User Core is the physical core that can be used for locked and unlocked jobs. This value is equal to total
physical core minus the monitor size.

CORMIN is the guaranteed amount of contiguous core that a single unlocked job can have. This value is a con-
stant system parameter and is defined by the system manager at monitor generation time using MONGEN. It
can be changed at monitor startup time using the ONCE ONLY dialogue. This value can range from 0 to Total
User Core.

CORMAX is the largest contiguous size that an unlocked job can be. It is a time-varying system parameter that
is reduced from its initial setting as jobs are locked in core. In order to satisfy the guaranteed size of CORMIN,
the monitor never allows a job to be locked in core if this action would result in CORMAX becoming less than
CORMIN. The initial setting of CORMAX is defined at monitor generation time using MONGEN and can be
changed at monitor startup time using the ONCE ONLY dialogue. CORMAX can range from CORMIN to Total
User Core. A guaranteed amount of core available for locked jobs can be made by setting the initial value of
CORMAX to less than Total User Core.

3.2.2 LOCK AC, or CALLI AC, 60(1)

This UUQ provides a mechanism for locking jobs in user memory. The user may specify if the high segment, low
segment, or both segments are to be locked, and whether the core is to be physically contiguous. Note that on
KA 10-based systems, core is always allocated contiguously, and that the job may be moved to an extremity of
user core before it is locked.

A job may be locked in core if all of the following are true:

1. The job has the LOCK privilege (set from the accounting file ACCT.SYS by LOGIN).

(1) This UUO depends on FTLOCK which is normally off in the DECsystem-1040.

3-20

2. The job, when locked, would not prevent another job from expanding to the guaranteed limit,
CORMIN.

3. The job, when locked, would not prevent an existing job from running. Note that unlocked jobs
can exceed CORMIN.

4. The job, when mapped, if specifying exec mapping, would not exceed the maximum amount of exec
virtual address space available for locking (KI10 only).

The call is:

MOVE AC, (xwd hiab segqg,

LNCK AC,
error return
normal return

code, low seg, code)

tor CALLI AC, 60
1AC contains an
terror code

The segment codes are a series of bits which specify the way in which the high segment (LH code) and the low
segment (RH code) are to be locked. The order and position of the bits in the left half correspond to the order
and position of the bits in the right half; that is, to obtain the bit number for the high segment, subtract 18 from
the corresponding bit for the low segment. The bits are shown below.

Bit 17 (high segment) LK.HLS
Bit 35 (low segment) LK.LLS

Bit 16 (high segment) LK.HNE
Bit 34 (low segment) LK.LNE

Bit 15 (high segment) LK.HNP
Bit 33 (low segment) LK.LNP

If 1, lock the segment in the manner indicated by the following
bits.
If 0, do not lock the segment; the following bits are ignored.

If 0, map contiguously in the exec virtual memory (always implied
on the KA 10). This causes the segment to be added to the exec
virtual address space so that it can be executed in exec mode. For
example, this is required when exec mode real-time trapping
(RTTRP) is used. On the KI10, the amount of exec virtual ad-
dress space used by locked jobs is a limited resource with a de-
fined maximum per processor. If mapping the segment would
cause the maximum to be exceeded, the LKNEM% error return is
given. The maximum amount available can be obtained from the
CPU variable GETTAB table for each processor (GETTAB word
%CVEVM). The current amount used can also be obtained from
the table (%CVEVU).

If 1, do not map in exec virtual memory. If 0, lock in contiguous
physical memory locations (always implied on the KA10). This
causes the segment to be moved and remapped, if necessary, so
that its physical core is contiguous. On the KA 10 system, the
segment is also moved to one end of user core in order to minimize
fragmentation of memory. If 1, do not attempt physical
contiguity.

If the user requests a segment to be locked in contiguous physical memory, the monitor attempts to lock the
segment as low in physical memory as possible. When the segment is locked below 112K, physical and virtual
contiguity are equivalent, and thus in this case, virtual contiguity does not require the exec virtual memory re-
source to achieve contiguity.

3-21

On a KA 10-based system, physical memory is always allocated contiguously and user segments are directly
addressable in exec mode and, therefore, bit codes 1, 3, 5 and 7 are synonymous.

The setting of bits 33 and 34 (bits 15 and 16) is compatible with the implementation of the LOCK UUO on a
KA 10-based system. That is, code 1 is the most restrictive, so that a program coded for the KA10 system that
implicitly uses these properties will also run on the KI10 system. Applications that do not require all properties
can add the appropriate bits to the LOCK UUO.s calling sequence.

On a normal return, the job is locked in core. If there is a high-segment, the LH of AC contains its physical core
address in units of pages (one page is 512 words). The value can be converted to a word address by shifting it
left nine bits. If there is no high segment, the LH of AC contains zero. The RH of AC contains the physical core
address of the low segment, shifted right nine bits. .

On an error return, the job is not locked in core and AC either is unchanged or contains an error code. The AC
is unchanged when the LOCK UUQ is executed in monitors previous to the implementation of the UUO. An
error code indicates the condition that prevented the job from being locked. The error codes are as follows:

Error Code Name Explanation

0 LKNIS% The UUO is not included in this system or the requested function
is not implemented because it has not been defined with
MONGEN or because the appropriate feature test switch is off.

1 LKNLP% The job does not have locking privileges, or RTTRP privileges,
if required.

2 LKNCA% If the job were locked in core, it would not be possible to run the
largest existing non-locked job. (Applies only to swapping
systems.)

3 LKNCM% If the job were locked in core, it would not be possible to meet
the guaranteed largest size for an unlocked job, that is, CORMAX
would be less than CORMIN.

4 LKNEM% The mode of locking requested exec virtual memory mapping but
the allowable amount of exec mapping has been exhausted.

5 LKNIA% An illegal subfunction argument has been supplied.

6 LKNPU% The specified page is unavailable.

NOTE

The CORE UUO may be given for the high segment of

a locked job only if it is removing the high segment from
the addressing space. When the segment is locked in
core, the CORE UUO and the CORE command with a
non-zero argument cannot be satisfied and, therefore,
always give an error return. The program should deter-
mine the amount of core needed for the execution and
request this amount before executing the LOCK UUO.

3-22

Although memory fragmentation is minimized by both the LOCK UUO and the shuffler, the locking algorithm
always allows job locking, even though severe fragmentation may take place, as long as

1. all existing jobs can continue to run, and
2. atleast CORMIN is available as a contiguous space (see Figure 3-1E).

Since memory fragmentation can degrade system throughput, it is important that system managers use caution

when granting locking privileges. The following are guidelines for minimizing fragmentation when using the
LOCK UUO.

3.2.2.1 KA10 Systems — The guidelines for KA 10 systems are:
1. There is no memory fragmentation if two jobs or less are locked in core.

2. There is no fragmentation if the locked jobs do not relinquish their locked status (i.e., no job terminates
that has issued a LOCK UUO). In general, jobs with locking privileges should be production jobs.

3. Ifajobissuing a LOCK UUO is to be debugged and production jobs with locking privileges are to be
run, the job to be debugged should be initiated and locked in core first, since it will be locked at the
top of core. Then, the production jobs should be initiated since they will all be locked at the bottom
of core. This procedure reserves the space at the top of core for the job being debugged and guarantees
that there is no fragmentation as it locks and unlocks.

4. With a suitable setting of CORMIN and the initial setting of CORMAX in relation to Total User Core,
the system manager can establish a policy which guarantees

a. amaximum size for any unlocked job (CORMIN),
b. a minimum amount of total lockable core for all jobs (Total User Core — CORMAX), and

c. the amount of core which locked and unlocked jobs can contend for on a first-come-first-served
basis (Total User Core — initial CORMAX + CORMIN).

3.2.2.2 LOCK UUO Extension — The extension to LOCK is distinguished from the description of LOCK in
Paragraph 3.2.2 by the sign bit in the AC. If the sign bit is off, the LOCK UUO is interpreted as in 3.2.2; but
if the sign bit is on, LOCK will be interpreted as described in the paragraphs that follow. The extended LOCK
UUO is used to lock at a specified page location in physical memory. This is useful when writing diagnostics to
test memory online. The format of the extended LOCK is:

MOVE AC, [XWD =n, ADR)
LOCK AC, tor CALLI AC, 60
error return
- — normal-return - - - - - T s e o

ADR? function
ARG
ARG2

.
ARGn=1
where: function 0 is the only function currently implemented.

3-23

Function Meaning n= ARGl =

0 Lock the high and/or low seg- -2 Left Half = 0 — do not lock the high
ment(s) into physical contig- segment.
uous pages starting at the phys- Left Half # O — lock the high segment
ical page number specified in

starting with page specified
in LH of ARGI1.
Right Half = 0 — do not lock the low
segment.
Right Half # 0 — lock the low segment
starting with page speci-
fied in RH of ARGI.

ARGI.

Note that if the UUO indicates that the low segment is to be locked, the physical page number specified in the
right half of ARG is where the user’s page map page is placed. The first page of the low segment is locked in
the next higher physical page location.

There is one possible error return, it is:

SPECTFIED PRGE(S) NOT AVAILABLE FOR LOCKING

This return would occur when locking the segment at the page(s) specified by ARG1, would either cause the two
segments to overlap, cause one or both segments to overlap another locked job, cause one or both segments to
overlap the monitor, or would cause one or both segments to be outside the range of on-line memory.

An example of the extended LOCK UUQ is:

MOVE AC, [XWD =2, ADR]

LOCK AC,
JRST ERROR
ADRY 0 1function = lock at specified
230,,224 sphysical page.

On a successful return, the user’s page map page would be locked into physical page location 224; the first page
of~the low segment would be locked into page location 225; the second page in 226, and so on. The first page
of the high segment would be locked in page 230, the second page in 231, and so on.

3.2.2.3 Core Allocation Resource — Because routines that lock jobs in core use the swapping and core allocation
routines, they are considered a sharable resource. This resource is the semi-permanent core allocation resource
(mnemonic=CA). When a job issues a LOCK UUO and the system is currently engaged in executing a LOCK UUO
for another job, the job enters the queue associated with the core allocation resource. Because a job may share a
queue with other jobs and because swapping and shuffling may be required to position the job to where it is to be
locked, the actual execution time needed to complete the process of locking a job might be on the order of
seconds.

3-24

When it has been established that a job can be locked, the low segment number and the high segment number
(if any) are stored as flags to activate the locking routines when a swapper and shuffler are idle. The ideal posi-
tion for the locked job is also stored as a goal for the l(')cking routines. In KA 10 swapping systems, the ideal

' position is always achieved to guarantee minimum fragmentation. In nonswapping systems, minimum fragmenta-
tion is achieved only if the ideal position does not contain an active segment (see Figure 3-1).

In swapping systems, after the job is locked in core, the locking routine determines the size of the new largest
region available to unlocked jobs. This value will be greater than or equal to CORMIN. If this region is less than
the old value of CORMAX, then CORMAX is set equal to the size of the new reduced region. Otherwise,
CORMAX remains set to its old value.

3.2.2.4 UNLOK. AC, or CALLI AC, 120(1) — This UUO provides a mechanism for a job to unlock itself with-
out doing a RESET UUOQ. The user can specify if one or both segments are to be unlocked. The call is:

MAVSI AC, n t11f high segment i{s to be unlocked
HRRI AC, m 11€ low seament is to be unlocked
UNLOK, AC, sor CALLI AC, 120

error return
normal return

An error return is given if the UUO is not implemented. If this is the case, a job can relinquish its locked status
when either the user program executes on EXIT or RESET UUO, or the monitor performs an implicit RESET
for the user. Implicit RESETS occur when

1. The user program issues a RUN UUO, or

2. The user types any of the following monitor commands: R, RUN, GET, SAVE, SSAVE, CORE 0, and
any other system program-invoking command.

NOTE
If several jobs are sharing a tocked high segment, the
high segment is unlocked only when the SN%LOK
bit is turned off for all jobs sharing the segment (i.e.,
when all jobs which executed the LOCK UUQ have
performed the unlock function) (refer to GETTAB
Table 14).

On a normal return, the segment (or job) is unlocked and becomes a candidate for swapping and shuffling. Any
meter points METER.UUQ) are deactivated and, if the low segment is unlocked, any real-time devices are RESET.
CORMAX is increased to reflect the new size of the largest contiguous region available to unlocked jobs. How-

— ———ever; CORMAX is never set to a greater value than its initial setting. — - - - i — - — —

(1) This UUO depends on FTLOCK which is normally off in the DECsystem-1040.

3-25

A) BEFORE

x-.--.------------—QUUD-I

! !
! MONITOR !
! !
Y//710000000000000070777%
Y/1777770700700717702277}
V0/000000000007000777277}
1----.------.-------'---1
! TIME=SHARING JOB |
! ISSUING LOCK UUO !
!-.-----.------.----..-.l
Y//000001000000717017177)
Y/00770000007007007777777}%
Y/7007007000007707700077}%
$/7777101771070077712177)
$07700070000000717700177)
$/0077000000007071717077)
V7700700000001 7700700777)
Y/0700170000007070171777}
$/01700070070707770777177)
Y/0017000070000702772777}%
$/7107000000000700777772%
g

Y///77071777777777777¢077771

Y07001770777777770777777771
Y1/77070770777177272777771

l-------------.---------l

B) REFORE

!.-..--------------'--'-!
i l
! MONITOR !
! !
’--...-..---.------'----l
Y07077077007072777727777/77¢71
Y0701107717707777777777/777)
Y2071077707077007/771727777)
!--------.-.-------'..--1
l TIME=SHARING JOB }
} ISSUING LOCK UUQ |
!----'.---..‘.-.-----.--l
Y17107770777077777777777)
Y/00177017071777707717777)
Y/200071071701777774777777771)
Y000110770771107774777777777)
Y170007070721777177777777%
Y00707707770777707777777¢7%
771171077777 777277777777)
$/7177070777177277¢0777771
Y177017077427270771707077)
Y7001707700777777/777777)
V1771707170 7717777077777)
Y770170720771770770777777)
z.-.-.----.-----.------.l
} LOCKED JOB |
])

!---.----.--.----...----1

1 P2 30 3 092 2R DU RN DY OREOY N OMNMI

s v 52 322233 33l 1M

AFTER

! i
! MONITOR !
! !
I T P T Y LY T
Y/7777777770777777777777%
Y07077107777¢00777772/77777771)
Y/017710077770707027777777)
;-------.--.----.---...-!
V7707777777707 77717777777!
Y2/770007¢0777277727277/77/77%
l.---.-.----‘-.-.-------:
Y17007/7777777771277770/77%
Y//7007777701772177777177771%
Y/77/170/7777717/7777777771
$7/0707/7770477777277777771
YI//777/7/77777777777777/771)
Y/10777770777277777/777777771
YI7777701770717777727777771
Y7/7771777777777777777771
/111777777070 277777777¢)
Y1070707027777727777777777%
V1771777770770 7777/7747777
Y1010070777007077777077777)

]v-----.---u----.-------'

! LOCKED JOE !
l !
l------.-.--------------&
AFTER
| |
! MONITOR !
! |
1----------I-------'-ﬂﬂﬂl
) LOCKED JOB !

{ !
IR LT YL LY R Y N
Y0/7072700707777777472772777)
Y1/770177770777777177771777%
Y7/7/07207777077777777707771%
/777777777777 7/72777/7777%
$071177777777707777477¢07/77)
V0110777777777 7717/7777771
V2777777772777 77777707/77)
Y0/7770077/77/777/77777¢0777%
SI1110170771077010777¢477¢47771)
Y117771077077777770777777771
Y777017077772772777¢77¢2777])
Y/70070¢077070/777/777777777771)
V2700772777077 017777777771)
V0700700707777 0717¢2777771)
$7/7077770707777107¢47¢07771)
Y1010 /007770707707777777771
|easnsunnsnesnnanessmnwa]
! LOCKED JOB {
! l

‘------.-.--'-..'---.-.-l

Figure 3-1 Locking Jobs In Core on KA10 Systems (Sheet 1 of 3)

3-26

2322 1 1}

CORMAX

23 %2 22

» 2 02 303D %XUD 3 38 3 3 DM

c) BEFORE

l----------q--------.--.!
| |
! MONTTOR !
! !
!-----—--u---------—--..!
l LOCKED JnB !

! !
!----------------------.x
Y2011121717017777072777777)
V1771777071 777701727777/77)
1-------.----.-.-.----.-l
! TIME=SHARING JOB !
! ISSUING LOCK UU0 l
1-.-------.-------------l
Y0110/11777710770707777777)
2171707070777 717717077/7777)
Y077117770277777077777777%
V110707707 72772717777727771
V2170077772077 77777707777%
Y2070077020770777077774777
V1777007777770 2777772777)
Y0/07000777707770717727777771)
Y0070777070114771071777777]

1.---------.---.----.---l

! LOCKED JoB !
l |
l---.-----------.-------1
D) BEFORE

l--—-----------n-----..-!
) |
! MONITOR |
! |
1----.-----.----u.-----.!
! LOCKED JgB {

! [
l-----'-.---.-.--..'--.-1
Y1071007712107777771717777]
Y27777272277777777777/777)
1—.--ﬂ.-.-----..-.-.----!
! TIME=SHARING JOB l
l ISSUING LQCK uug !
i {
l---...--..--------.----l
L2171472777727707707777777)
V1772077177717 70777777777)
Y27707/70107777777777777771%
Y71700000177077777771771777}
Y1711777171727277¢47777777)
Y777277277722772770777771
Y/0/7727707710707¢277777771
V2007070007 7271127777777771
1.-.-‘.-----------.-----l
) LOCKED JOB !
! !

l------.-----.----------1

COR

I 2 NS NN I I N N I I I I I)]

32 5 0 2 231 30 YR oaoa)

AX

AFTER
!-'-------.-------------l
| !
! MONITOR !
! !
z-'--.------------Q-----!
l LOCKED JOB !
! !
l-.----.-.--.—-..-.---.-!
! LLOCKED JOB I
!

|
‘-------.----.-----.----1
V0107700777707 77227777777)
Y2/07701077077777177777/4771
Y/07070/72777777¢7477777777%
SI01I1111200707027771777)
S2/701707777777¢72¢7777777)
V11071127277 77¢0777/777777)
Y1171772702077770777777771
$01077777077770777717777)
S101077007217072777277/7777%
2107707107 71700777777¢477%
V2170072777 7271777717777%
Y201010027777777777177777)

!------------w----------l

i LOCKED JOB !
i l
AFTER
L e T Y T Ty
! {
! MONITOR !
! {
! LOCKED JOB !
! !
! LOCKED JOB i
! i
! l

IR P P L T Y Yy
YI11177777277717107777707771)
Y117777777707727777777777)
Y1/777777777777727777777)
Y2/70777727277777¢077777771
YI1727077270007/¢777772778
Yi7/7777772770777777777771
L1717017777707770777777771)
8011117777717 777777777771)
V1770777707777 7777/7777777%
$7/070777070727077777777¢7%
l///////////////////////i
|onansusnennesssnsnansan
| LOCKED JOB }
! !

|eoravsansnanneprennesnes

Figure 3-1 Locking Jobs In Core on KA10 Systems (Sheet 2 of 3)

327

(2]
=)
33 29 90 239y D O]}
=
>
>

CORMAX

E)

BEFORE

!------.-----------ﬂ----l

MONITCR

-

TIME=SHARING JOB |

ISSUING LOCK UUD |
!----.--.-.--------.----l
Y07170070007000007707777%
V/10070770177077220777771}
Y/0001700070110777777777%
$/10770700007007777071727%
Y70700770077177777077777}
SI7170700000007707017777}
Y/1071770000077770777777%
Y/1700000000700777712077%
1---.----..----.----.~--l
! LOCKED J0OB !
1---’-------.'--.-------!
Y/0771700000707707007777}%
Y//007700000207717177117}
Y/0000070727701702177777)
Y/7701770070000007071777}
Y/700070000007200710707777}
Y/0700070000007707077177}
l------.-‘---------.---'1
! LOCKED JnR !
! !

’--------.-------.------!

!
!
!
!-----..---u---.--------:
!
!

Unlikely Fragmentation Case

32 %% » 2 ¥) 3

AFTER
LT P L T Y P L Ty
! !
! MONITOR
{ !
1.--------.-.-----------!
V2107707707777 /072710777777)
V77770777777 77772772777777
8770770772707 777/7777777771
L777777777077777/77777¢2¢77)
Y/0707777777277777277777%
§I1/171707777107727770777771)
Y//777707771777/777777¢07771
Y/0077770777077777777077777)
Y1/07077017072727777777771)
$07707077077772777¢277777/771)
Y20770727777777/777777777771
IR Y P T R Y LT TN
1 LOCKED Jor !

!---------.----.--------!

LOCKED JoR

——

!
{
!

1---.-------—----.-.----1

LA17177070777/27777¢0777771)
V1710777777777 707277277777)

z----------u-.---------nl
l LOCKED JOB !
l l

!----------.-I--.---.--ul

!
|
|

Figure 3-1 Locking Jobs In Core on KA 10 Systems (Sheet 3 of 3)

3-28

32 930 9y 3 3}

3.2.3 CORE AC, or CALLI AC, 11

This UUO provides a user program with the ability to expand and contract its core size as its memory require-
ments change. To allocate core in either or both segments, the left half of AC is used to specify the highest user
address to be assigned to the high segment and the right half is used to specify the highest user address in the low
segment. The monitor will assign the smallest amount of core which will satisfy the request. If the left half of
AC contains 0, the high segment core assignment is not changed. If the left half of AC is non-zero and is either
less than 400000 or the length of the low segment, whichever is greater, the high segment is eliminated. If this

is executed from the high segment, an illegal memory error message is printed when the monitor attempts to
return control to the illegal address.

A RH of 0 leaves the low segment core assignment unaffected. The monitor clears new core before assigning it
to the user; therefore, privacy of information is ensured.

The error return is given if:
1. The LH is greater than or equal to 400000 and the system does not have a two-segment capability.

2. The LH is greater than or equal to 400000 and the user has been meddling without write access
privileges (refer to Paragraph 6.2.3).

3. The LH and the RH are both zero.

In swapping systems, this programmed operator returns the maximum number of 1K core blocks (all of core
minus the monitor, unless an installation chooses to restrict the amount of core) available to the user. By re-
stricting the amount of core available to users, the number of jobs in core simultaneously is increased. In non-
swapping systems, the number of free and dormant 1K blocks is returned; therefore, the CORE UUO and the
CORE command return the same information.

For compatibility, the KI10 also returns the number of 1K blocks available even though core is allocated in 512-
word pages. The value returned is truncated to the nearest multiple of 1K (e.g., if 21 pages are available, the
value returned in 10K).

The call is:

MOVE AL, [XWD niogh adr or 0, low addr or 0)

CORE AC, tor CALLI AC, 11
error return

nermal return

The CORE UUO reassigns the low segment (if RH is non-zeio) and then reassigns the high segment (if LH is
non-zero). If the sum of the new low segment and the old high segment exceeds the maximum amount of core
“allowed to a user, the error return is given, the core assignment is unchanged, and the maximum core available to
the user for high and low segments (in 1K blocks) is returned in the AC. In a nonswapping system, the number

of free and dormant 1K blocks is returned.

If the sum of the new low segment and the new high segment exceeds the maximum amount of core allowed to

a user, the error return is given, the new low segment is assigned, the old high segment remains, and the maximum
core available to the user in 1K blocks is returned in the AC. Therefore, to increase the low segment and decrease
the high segment at the same time, two separate CORE UUQs should be used to reduce the chances of exceeding
the maximum size allowed to a user job. An error return is also given if a program attempts to increase the size
of the low segment such that the low and high segments would overlap.

3-29

If the high segment is eliminated by a CORE UUQ, a subsequent CORE UUOQ, in which the LH is greater than
400000, will create a new, nonsharable segment rather than re-establishing the old high segment. This segment
becomes sharable after it has been:

1. Given an extension .SHR.

2. Written onto the storage device.

3. Closed so that a directory entry is made.

4. Initialized from the storage device by GET, R, or RUN commands or RUN or GETSEG UUO:s.

The loader and the SAVE and GET commands use the above sequence to create and initialize new sharable
segments.

A user program which expands core should compare its highest desired address with its highest legal address ob-
tained from the Job Data Area location .JBREL (refer to Chapter 1). If the desired address is greater than the
highest legal address, the program should execute a CORE UUO for the new desired address (not for the highest
old legal address plus 512 or 1024). The monitor then updates .JBREL by the number of words in its basic core
allocatibn unit (i.e., 1024 words on the KA 10 processor or 512 words on the KI10 processor). Subsequent com-
pares of the desired address and the highest legal address do not cause a CORE UUO until the next increase of
core is required. If used this way, a CORE UUOQO will execute on both the KA10 and KI10 processors and will
require less monitor CPU time because the number of CORE UUOs needed will be minimized.

The following example illustrates the method for obtaining core only when needed.

1SUBROUTINE TO GET CORE ONLY WHEN NEEDED
1CALL: MOVE Tl, HIGHEST DESIRED ADDRESS

! PUSHJ P,CHKCOR
! RETURN HERE UNLESS NO MORE (CORE
CHKCOR?! CAMG T1,.JBREL## $GREATER THAN HIGHEST LEGAL ADDRESS?
POPJ Py §NO, PRESENT CORE BIG ENOUGH,
CORE T1, $YES, GET NEXT INCREMENT OF CORE,
JRST ERROR tNOT AVAILABLE
POPJ 13X $ NEXT INCREMENT ASSIGNED,

3.2.4 SETUWP AC, or CALLI AC, 36

This UUO allows a user program to set or clear the hardware user-mode write protect bit and to obtain the pre-
vious setting. It must be used if a user program is to modify the high segment. The call is:

MOVEI AC,bit

SETUWP AC, tor CALLI AcC, 36
error return

normal return

330

— ----—SYS:PFH.VMX will be brought into core on the next page fault.

If the system has a two-register capability, the normal return will be given unless the user has been meddling
without write privileges, in which case an error return will be given. A normal return is given whether or not the
program has a high segment, because the reentrant software is designed to allow users to write programs for two-
register machines, which will run under one-register machines. Compatibility of source and relocatable binary
files is, therefore, maintained between one-register and two-register machines.

If the system has a one-register capability, the error return (bit 35 of AC=0) is given. This error return allows the
user program to find out whether or not the system has a two-segment capability. The user program specifies the
setting .of the user-mode write protect bit in bit 35 of AC (write protect = 1, write privileges = 0). The previous
setting of the user-mode write protect bit is returned in bit 35 of AC, so that any user subroutine can preserve
the previous setting before changing it. Therefore, nested user subroutines, which either set or clear the bit, can
be written, provided the subroutines save the previous value of the bit and restore it on returning to its caller.

3.2.5 Page Fault Handling

Whenever an executing program (on KI10 systems with the virtual memory option) references a location in a
page that is not in core, the system transfers control to a page fault handler. A page fault handler determines
which pages to place in core while the program is executing. A user can include his own page fault handler; or
if he does not supply one, the system default page fault handler will be used.

3.2.5.1 Default Page Fault Handler — The default page fault handler utilizes a modified first-in/first-out (FIFO)
technique. An ordered list of core resident pages is kept by age of page in physical core. Each page has an ac-
cess-allowed bit, which can be set to YES or NO. Periodically, the handler will set every physical page’s access-
allowed bit to the NO position. A page fault will occur the next time one of these pages is referenced, that page’s
access-allowed bit will be changed to the YES position, and execution will continue,

By use of the age-ordered list along with a periodic check on the access-allowed bit, pages will be swapped on a
modified “first-in/first-out least recently used” basis.

3.2.5.2 Page Fault Handler Structure — A page fault handler controls the working set, and is a part of the user’s
core image. If the user does not supply a page fault handler, a default handler will be read into the top of the
user’s address space from SYS:PFH.VMX. If a user-supplied handler is to be used, .JBPFH must point to it.
JBPFH is written in the format:

JBPFH/ pfh-end ., pfh-start

To provide his own page fault handler, the program must ensure that JBPFH contains the address of its handler
before the first page fault occurs. Alternatively, the user may cause the page fault handler to be obtained from
his directory by ASSIGNing DSK to SYS. If the user’s page fault handler is deleted through a CORE UUO,

3-31

PFH start must be of the form:
PFH start: JRST START

PC for fault

page fault word

virtual time since page handler was first brought in
current page rate

0 ; reserved
0 ; reserved
0 ; reserved

START:

The four words following PFH - start are filled in on a page fault. The page fault handler will be given control at
PFH-start, the monitor will store the fault PC into PFH-start + 1, the page fault word in PFH-start + 2, virtual
time since the page fault was first brought in will be stored in PFH-start + 3, and the current page rate will be
stored in PFH-start + 4.

The page fault word has the following format:

Bit 0 = 1 indicates the working set has changed by the monitor or the user program without the
page fault handler being given control. (‘PF.HCB)

Bits 1-17 page number causing the fault. (PF.HPN)

Bits 18-35

Code indicating the type of page fault (PF.HFC), either:

1 — access not allowed (the access-allowed bit has been turned off for the referenced
page). (PFHNA)

2 — page not in core (the referenced page is swapped out). (.PFHNI)

3 — monitor detected (UUQ) (a page containing UUO argument is swapped out).
(PFHUU)

4 — trap after n units in virtual time (as a result of requesting virtual time traps, refer
to the description of the .STTVM option of the SETUUO UUO). (.PFHTI)

5 — allocated but zero page (PFHZI).

6 — allocated but zero after UUO. (PFHZU)

3.2.6 PAGE.UUO, or CALLI AC, 145

The PAGE. UUO is used (on K110 systems with the virtual memory option) to manipulate pages and the data
associated with these pages. The general format for the call is:

MOVE AC, [XWD function, LOC)

PAGE, AC, sor CALLI AC, 145
error return

normal return

3-32

LOC points to an argument BLOCK. The format of the argument block varies according to the specific function
involved. The following functions are available with the PAGE. UUO:

Function Code Mnemonic Meaning
0 .PAGIO Swap a page in/out.
1 PAGCD Create/destroy a page.
2 PAGEM Move/exchange a page.
3 PAGAA Clear/set access allowed.
4 PAGWS Get the working set.
5 PAGGA Get access allowed.
6 .PAGCA Get page accessibility.

The first four functions are used to specify one of two functions (e.g., in/out). To specify which of the two
functions is desired, the user utilizes the sign bit of each word in BLOCK. A detailed description of each func-
tion follows:

Function O (swap a page infout) —
causes pages, which have already been allocated, to be swapped in and added to the working set, or to be
deleted from the working set in core and moved to secondary storage. The argument BLOCK is a set of
entries each in the following form:

0 1 2-26 27-35
S|P N

where: S specified whether the page is to be swapped in (0) or out (1).

P specifies whether the page is to be transferred to fast secondary storage (0) (e.g., fixed head
disk) or to slow secondary storage (1) (e.g., moving head disk).

N specifies the page number to be swapped in or out.
The entries in the argument block must be passed in increasing order by page number.

Function 1 (create/destroy a page) —
causes pages to be created or destroyed. The words in argument BLOCK are of the form:

0 1 2-26 27-35
S |P N

where: S specifies whether a page is to be created (0) or destroyed (1).

P specifies whether the page is to be created on disk (1) or added directly to the working set (0).
(This applies to create only.)

N specifies the page number to be created or destroyed. ‘

Note that if bit 1 is set for any entry, it is then assumed to be set for all entries. Arguments must be
passed in increasing order by page number.

3-33 September 1974

Function 2 (move/exchange a page) —
causes a page to be moved from one location in user virtual address space to another location, or causes
two pages to exchange locations. The words in the argument BLOCK are of the form:

0 1-8 9-17 18-26 27-35
SP DP

where: S specifies whether the specified page is to be moved (0) or exchanged with another page (1).
SP specifies the source page location. ,
DP specifies the destination page location.
A page cannot be moved to an already allocated page.

Function 3 (set/clear access allowed) —
causes access permission to be either set (1) or cleared (0). If a page is a part of the working set, its access
bit can be turned off. When the access bit is in the off state, a page fault will occur the next time that
page is accessed. The page will remain in core, so the access bit may be restored to the on state at any time.
The words in the argument BLOCK are of the form:

0 1-26 27-35
S N

where: S specifies whether the access permission is to be set (1) or cleared (0).
N specifies the page number for which access permission is to be set or cleared.
Arguments must be passed in increasing order by page number.

Function 4 (get the working set) —
determines which pages are currently a part of the working set (i.e., in core). A bit map is returned in
BLOCK. N in the right half of word LOC specifies the number of words in the bit map that are to be
returned. N would normally be 17 (octal) to obtain the entire bit map. Within BLOCK, the bit map is

set up in the following form:

word 0 page 0-35

word 14 pages 504-511

If a bit within this bit map is set, the page associated with that bit is a part of the working set.

Function 5 (get access allowed) —
determines which pages have their access-allowed bits set. A bit map is returned in BLOCK having the
same format as that returned for Function 4. If a bit is set within the bit map, the page associated with

that bit is accessible.

3-34

Function 6 (get page accessability) —
determines the type of access allowed for a given page. The format of this function differs from the
preceding ones. There is no argument block. Instead the contents of AC contain the necessary data in
the following format:

0-17 18-35
C N

where: C specifies the function code (i.e., 6 or PAGCA).
N specifies the page number associated with this function.

One or more of the following bits will be returned in AC upon completion of the instruction:

Bit Mnemonic Meaning
0 PA.GNE Page does not exist.
1 PA.GWR Write access allowed.
2 PA.GAA Access allowed (controlled by function 3).
4 PA.GAZ Zero page (allocated by a CORE, UUO but
not yet referenced).
5 PA.GCP Can be paged out.
6 PA.GPO Is paged out.

There are limitations on what pages may be paged out. Page zero may never be paged out, and if the high seg-
ment is sharable, none of the high segment may be paged out.

The possible error codes which may be returned in AC as a result of the PAGE. UUO are:

Code Mnemonic Meaning
1 PAGIA% Illegal argument.
2 PAGIP% Illegal page number.
3 PAGCE% Page can’t exist, but does.
4 PAGME% Page must exist, but doesn’t.
5 PAGMI% Page must be in core, but isn’t.
6 PAGCI% Page can’t be in core, but it is.
7 PAGSH% Page is in sharable high segment.
10 PAGIO% Paging I/O error.
11 PAGNS% No swapping space available.
- 12 PAGLE% Core limit exceeded. B
13 PAGIL% Not allowed if locked.

3-35

3.3 SEGMENT CONTROL

3.3.1 RUN AC, or CALLI AC, 35

This UUO has been implemented so that programs can transfer control to one another. Both the low and high
segments of the user’s addressing space are replaced with the program being called.

The call is:

MOVSI AC, start-adr-increment

HRRI AC, adr-of-block

RUN AC, ;or CALLI AC, 35
error return

[normal return is not here but to start

address plus increment of new program]

The arguments contained in the six-word block are:

Et SIXBIT/loalcal device name/

SIXBRIT/f1lenama/ jfor either or both high and
tlow £lles
SIXBIT/ext, for low file/ g1if¢ LH = 0, ,LOW is assumed if

sthigh segment exists, ,SAV is
rassumed if hiagh segment does
snot exist,

0
X#D prej, no,, mreg, no, 11f = 0, use current user’s
spred, prog
XWp 0, optiomal core $RH = new hichest user address
assionment t1to be assianed to low
1segment,

ILH is ignored rather than
tsetting high segment,

A user program usually will specify only the first two words and set the others to 0. The RUN UUO destroys
the contents of all the user’s AC’s and releases all the user’s I/O channels; therefore, arguments or devices cannot
be passed to the next program.

The RUN UUO to certain system programs (e.g., LOGIN, LOGOUT) automatically sets the appropriate privileged
bits (JACCT and JLOG). These bits are not set (or are turned off if they were set) for programs that are not
privileged programs from device SYS or for programs whose starting address offset is greater than 1.. Assigning

a device as SYS does not cause these bits to be set.

The RUN UUO clears all of core. However, programs should not count on this action, and must still initialize
core to the desired value to allow programs to be restarted by a C, START sequence without having to do I/O.

Programs on the system library should be called by using device SYS with a null project-programmer number in-
stead of device DSK with the project-programmer number [1,4]. The extension should also be null so that the
calling user program does not need to know if the call system program is reentrant or not.

3-36 September 1974

The LH of AC is added to and stored in the starting address (.JBSA) of the new program before control is
transferred to it. The command 1C followed by the START command restarts the program at the location
specified by the RUN UUO, so that the user can start the current system program over again.

The user is considered to be meddling with the program (refer to Paragraph 3.3.5) if the LH of ACisnot O or 1
unless the program being run is execute-only for this job. In this case, the offset is treated as 0.

Programs accept commands from a terminal or a file, depending on how they were started, due to control by the
program calling the RUN UUO. The following convention is used with all of DEC’s standard system programs:
0 in LH of AC means type an asterisk and accept commands from the terminal. A 1 means accept commands
from a command file, if it exists; if not, type an asterisk and accept commands from the terminal. The conven-
tion for naming system program command files is that the filename be of the form

###111.TMP

where III are the first three (or fewer if three do not exist) characters of the name of the program doing the
LOOKUP, and # # # is the decimal character expansion (with leading zeroes) of the binary job number. The job
number is included to allow a user to run two or more jobs under the same project-programmer number. For
example,

009PIP.TMP
039MAC.TMP

Decimal numbers are used so that a user listing his directory can see the same number as the PJOB command
types. These command files are temporary and may, therefore, be deleted by the KJOB program (refer to KJOB
command and Appendix C in DECsystem-10 Operating System Commands).

At times it is necessary to remember the arguments that a user typed in to invoke a program (i.e., the arguments
on a GET or RUN command). For example, the COBOL program needs these arguments in order to GETSEG
the next overlay from the same place. In all monitors, when the program is first started, this information can be
obtained from the following accumulators:

ACO (.SGNAM) contains the filename.

AC7 (.SGPPN) contains the directory name.

AC11 (.SGDEYV) contains the device name.

AC17 (.SGLOW) contains the extension of the low segment.

Note that the starting address should be changed by the program so that a 1C, START sequence will not destroy
the remembered arguments in the ACs. This information should not be used when desiring to save the current
segment name (GETTAB should be used in this case), but rather when obtaining the call arguments before calling

the next segment.

The RUN UUO can give an error return with an error code in AC if any errors are detected; thus, the user pro-
gram may attempt to recover from the error and/or give the user a more informative message on how to proceed.
Some user programs do not go to the bother of including error recovery code.

The monitor detects this and does not give an error return if the LH of the error return location is a HALT in-
struction. If this is the case, the monitor simply prints its standard error message for that type of error and v

3-37

returns the user’s terminal to monitor mode. This optional error recovery procedure also allows a user program
to analyze the error code received and then execute a second RUN UUO with a HALT if the error code indicates
an error for which the monitor message is sufficiently informative or one from which the user program cannot
recover.

The error codes are an extension of the LOOKUP, ENTER, and RENAME UUO error codes and are defined in
the S.MAC monitor file. Refer to Appendix E for an explanation of the error codes.

The monitor does not attempt an error return to a user program after the high or low segment containing the
RUN UUO has been overlaid. The UUO should be placed in the low segment in case the error is discovered after
the high segment has been released.

To successfully program the RUN UUO for all size systems and for all system programs with a size that is not
known at the time the RUN UUO is coded, it is necessary to understand the sequence of operations the RUN
UUO initiates. Assume that the job executing the RUN UUO has both a low and a high segment. (It can be
executed from either segment; however, fewer errors can be returned to the user if it is executed from the high
segment.)

The sequence of operations for the RUN UUO is as follows:

1. Does a high segment already exist with desired name?
If yes, go to 30.
INIT and LOOKUP filename .SHR. If not found, go to 10.
Read high file into top of low segment by extending it. (Here the old segment and new high segment
and old high segment together may not exceed the maximum user core legally available to this job at
the time of the UUO nor may it cause the total amount of virtual core assigned to all users to exceed
the size of the swapping space.) '

REMAP the top of low segment replacing old high segment in logical addressing space.
If high segment is sharable (.SHR) store its name so others can share it.
Always go to 40 or return to user if GETSEG UUO.

10. LOOKUP filename .HGH. If not found, go to 35 or error return to user if GETSEG UUO.
Read high file into top of low segment by extending it. (The old low segment and new high segment
and old high segment together may not exceed the maximum user core legally available to this job at
the time of the UUO nor may it cause the total amount of virtual core assigned to all users to exceed
the size of the swapping space.)
Check for I/O errors. If any, error return to user unless HALT in LH of return. Go to 41.

30. Remove old high segment, if any from logical addressing space. If a KI10 based system, check that
the new high segment will,overlap the existing low segment, if high is placed at indicated origin (if one
is indicated). If it will, give an error return. .break Go to 40 or return to user if GETSEG UUO.

35. Remove old high segment, if any, from logical addressing space.
(Goto4l.)

40. Copy vestigial job data area into job data area.
Does the new high segment have a low file
(LH of .JBCOR >137)?
If not, go to 45.

3-38

41.

45.

LOOKUP filename .SAV or .LOW or user specified extension. Error if not found. Return to user

if there is no HALT in LH of error return, provided that if the CALL is from the high segment, it is
still the original high segment and has not been removed from the user’s addressing space. Otherwise,
the monitor prints one of the following error messages:

?NOT A SAVE FILE
?filename,SAV NOT FOUND
?TRANSMISSION ERROR
?LOOKUP FAILURE n

?nK OF CORE NEEDED

7NQ START ADR

and stops the job.

Reassign low segment core according to size of file or user specified core argument, whichever is
larger. Previous low segment is overlaid. Read low file into beginning of low segment. Check for
1/0O errors. If there is an error print error message and do not return to user. If there are no errors,
perform START.

Reassign low segment core according to larger of user’s core argument or argument when file saved
(RH of .JBCOR).

NOTE
To be guaranteed of handling the largest number of
errors, the cautious user should remove his high seg-
ment from high logical addressing space (use CORE
UUO with a one in LH of AC). The error handling
code should be put in the low segment along with the
RUN UUO and the size of the low segment reduced
to 1K. A better idea would be to have the error
handling code written once and put in a seldom used
(probably nonsharable) high segment, which could
be gotten in high segment using GETSEG UUO (see
below)'when an error return occurs to low segment
on a RUN UUO.

3.3.2 GETSEG AC, or CALLI AC, 40

This UUO has been implemented so that a high segment can be initialized from a file or shared segment without

affecting the low segment. It is used for shared data segments, shaied program overlays, and run-time routines
such as FORTRAN or COBOL object time systems. This programmed operator works exactly like the RUN

1.

2.

“—~UUO with the following exceptions:

No attempt is made to read a low file.

The accumulators are not preserved. The only change made to JOBDAT is to set the left half of
JBHRL to 0 (a SAVE command then saves all of the high segment) and the right half to the highest
legal user address.

If an error occurs, control is returned to the location of the error return, unless the left half of the
location contains a HALT instruction.

3-39

4. On anormal return, the control is returned to two locations following the UUO, whether it is called
from the low or high segment. It should be called from the low segment unless the normal return
coincides with the starting address of the new high segment.

5. User channels 1 through 17 are not released so the GETSEG UUO can be used for program overlays,
such as the COBOL compiler. Channel 0 is released because it is used by the UUO.

6. .JBSA and .JBREN are zeroed if they point to a high segment that is being removed. This produces
the message:

?ND START ADDRESS

if a START or REENTER command is given.
Refer to steps 1 through 30 of the RUN UUQ description (Paragraph 3.3.1) for details of GETSEG UUO
operation.
3.3.3 REMAP AC, or CALLI AC, 37

This UUQ takes the top part of a low segment and remaps it into the high segment. The previous high segment
(if any) will be removed from the user’s addressing space. The new low segment will be the previous low segment
minus the amount remapped.

The call is:

MOVEI AC, hignhest addr in low seg

or

MOVE AC, [XVWD hiah seg origin, low seq) tKI10 systems in
tlow seq)

REMAP AC, sor CALLI AC, 37

error returr
normal return

The monitor rounds up the address to the nearest core allocation unit of either 1024(10) (2000(8)) words on
KA 10-based systems or 512(10) (1000(8)) words on KI10-based systems. If the argument exceeds the length

of the low segment, remapping will not take place, the high segment will remain unchanged in the user’s ad-
dressing space, and the error return will be taken. The error return will also be taken if the system does not have
a two-register capability.

Also, the error return will be given
e if an origin for the high segment is specified on KA 10 based systems.

® if the specified remapping (on K110 based systems) would cause the new high and low segments
to overlap.

e if the new high segment origin plus its length would result in the high segment starting (or ending) at
an address outside the program’s virtual address space (>256K).

3-40

The content of AC is unchanged. The content of JBREL (refer to Paragraph 1.2.1) is set to the new highest legal
user address in the low segment. The LH of .JBHRL is set to 0 (a SAVE command then saves all of the high
segment) and the RH is set to the highest legal user address in the high segment (401777 or greater or 0). The
hardware relocation will be changed, and the user-mode write protect bit will be set.

This UUO is used by the LOADER to load reentrant programs, which make use of all physical core. Otherwise,
the LOADER might exceed core in assigning additional core and moving the data from the low to the high seg-
ment with a BLT instruction. The GET command also uses this UUO to perform I/O into the low segment in-
stead of the high segment.

3.3.4 Testing for Sharable High Segments

Occasionally, it is desirable for a program to determine whether its high segment is sharable. If the high segment
is sharable, the program may decide not to modify itself. The following code tests the high segment whether or
not

1. the system has a high segment capability, or

2. the job has a high segment.

HRROT T, ,GTSGN tsee 1f high segment is sharable
GETTAR T, tlook at monitor ,GTSGN tahle
JRST ,+2 jtable or UUQ not present

TLNN T, (SHZSHR) t1is sharable bit on?

JRST MNQOTSHER ino, go ahead and modify here

14f hiagh segment 1s sharable,

3.3.5 Determining the High Segment Origin

It is occasionally desirable for a program to determine the or'igin of its high segment (i.e., the starting virtual ad-
dress of the high segment within the program’s address space). This information would be useful, for example,
to a program that wanted to access information in the vestigial job data area or wanted to transfer control to an
entry point in a high segment which had been GETSEGed. Prior to the 5.07 monitor release, the high segment
origin was normally 400000 (octal) or the first available core allocation boundary above the low segment, if the
low segment was larger than 128K. This assumption about the location of the high segment should no longer be
made by programs. Rather, programs should determine the location of their high segment using the following

procedure:
HRRZ T1,,JBHRL JHIGHEST RELATIVE ADR IN HI SEG
JUMPE T1,MOHIGH s JUMP TF NO HI SEG
HRRZ T1,,JRREL sHIGHEST ADR IN LOW SEG

——TRNN- — -T1,400000—— . sLOW _SEG BIGGER THAN 128K? i
MOVEI T1,377777 tNO, ASSUME HI SEG STARTS AT 400000
MOVE T2, [XWD =2, ,GTUPM] $GET HI ORIGIN FROM MONITOR TABLE
GETTAR T2 s ,GTUPM INDEXED BY CURRENT HI SEG NUM,

HRLI T2,1(T1) ¢t TABLE OR UUO NOT PRESENT, USE ASSUMED

LSH T2, ="Di8 s VALUE, CONVERT TO ADR OF HI SEG,
ANDIY T2,777 sCLEAR ANY LOW BITS
MOVEM T2 ,HIORGN JSTORE AS THE ORIGIN OF THE HI SEG

341

3.3.6 Modifying Shared Segments and Meddling

A high segment is usually write-protected, but it is possible for a user program to turn off the user write-protect
bit or to increase or decrease a shared segment’s core assignment by using the SETUWP or CORE UUO. These
UUOs are legal from the high or low segment if the sharable segment has not been “meddled” with, unless the
user has write privileges for the file that initialized the high segment. Even the malicious user can have the priv-
ilege of running such a program, although he does not have the access rights to modify the file used to initialize
the sharable segment.

Meddling is defined as any of the following, even if the user has privileges to write the file which initialized the
sharable segment.

1. START or CSTART commands with an argument.

2. DEPOSIT command in the low or high segment.

3. RUN UUO with anything other than a 0 or 1 in LH of AC as a starting address increment.
4. GETSEG UUO.

It is not considered meddling to perform any of the above commands or UUQs with a nonsharable program. It
is never considered meddling to type 1C followed by START (without an argument), CONT, CCONT, CSTART
(without an argument), REENTER, DDT, SAVE, or E command.

When a sharable program is meddled with, the monitor sets the meddle bit for the user. An error return is given
when the clearing of the user write-protect bit is attempted with the SETUWP UUO or when the reassignment
of core for the high segment (except to remove it completely) is attempted with the CORE UUO. An attempt
to modify the high segment with the DEPOSIT command causes the message

?70UT OF BOUNDS

to be printed. If the user write-protect bit was not set when the user meddled, it will be set to protect the high
segment in case it is being shared. The command and the two UUQOs are allowed in spite of meddling, if the user
has the access privileges to write the file which initialized the high segment.

A privileged programmer is able to supersede a sharable program, which is in the process of being shared by a
number of users. When a successful CLOSE, OUTPUT, or RENAME UUO is executed for a file with the same
directory name and filename (previous name if the RENAME UUO is used) as the segment being shared, the
name of the segment is set to 0. New users do not share the older version, but they do share the newer version.
This requires the monitor to read the newly created file only once to initialize it. The monitor deletes the older
version when all users are finished sharing it.

Users with access privileges are able to write programs that access sharable data segments via the GETSEG UUO
(which is meddling) and then turn off the user write-protect bit using SETUWP UUO. With DECtape, write
privileges exist if it is assigned to the job (cannot be a system tape) or is not assigned to any job and is not a
system tape.

When control can be transferred only to a small number of entry points (two), which the shared program is pre-
pared to handle, then the shared program can do anything it has the privileges to do, although the person running
the program does not have these privileges.

3-42

The ASSIGN (and the DEASSIGN, DISMOUNT/REMOV, FINISH, KJOB commands if the device was
previously assigned by console) command clears all shared segment names currently in use, which were initialized
for the device, if the device is removable (DTA, MTA). Otherwise, new users could continue to share the old seg-
ment indefinitely, even if a new version were mounted on the device. Therefore, it is possible to update the
library during regular timesharing, if the programmer has access privileges.

3.4 PROGRAM AND PROFILE IDENTIFICATION

3.4.1 SETNAM AC, or CALLI AC, 43

This UUO is used by LINK-10. The content of AC contains a left-justified SIXBIT program name, which is
stored in a monitor job table. The information in the table is used by the SYSTAT program (refer to Table 3-1
in Paragraph 3.6.3.3). This UUO clears the “SYS:”> program bit .JB.LSY (used by Batch), clears the execute-only
bit, and outputs a SET WATCH VERSION number (refer to DECsystem-10 Operating System Commands).

3.4.2 SETUUO AC, or CALLI AC, 75(1)

This UUOQ is used to set various system or job parameters. To set system parameters, the user must be logged in
under [1,2] or the job must be running with the JACCT bit set. Refer to the Specifications section of the
DECsystem-10 Software Notebooks for a complete description of the privileged functions.

The contents of AC contain a function code in the left half and an argument in the right half. The call is:

MOVE AC, ([(XWD function, aragument)

SETUUD AC, tor CALLI AC, 75
error return

normal return

The functions and arguments are as follows:

Function Name Argument
0 .STCMX CORMAX. Privileged function.
1 .STCMN CORMIN. Privileged function.
2 .STDAY DAYTIME. Privileged function (FTSEDAT).
3 .STSCH SCHED. Privileged function.
4 .STCDR CDR (input name for this job). Not a privileged function. Right half
of AC, 3 SIXBIT characters, is stored in left half of .GTSPL (FTSPL).
5 .STSPL SPOOL for this job. Not a privileged function unless the user is un-
spooling devices. Bits are 31—35 of .GTSPL (FTSPL).
Bit 35 JS.PLP line printer spooling
Bit 34 JS.PPL plotter spooling
Bit 33 JS.PPT paper tape punch spooling
Bit 32 JS.PCP card punch spooling
Bit 31 JS.PCR card reader spooling

(1) This UUO depends on FTSET which is normally off in the DECsystem-1040. If FTSET is on, individual functions depend on the other feature
test switches as noted in the text.

343

Function

6

10
11
12
13
14

15
16
17
20

21

22
23
24
25

Name

STWTC

STDAT

.STOPR

STKSY

.STCLM
STTLM
.STCPU

.STCRN

STLMX

STBMX
.STBMN

.STDFL

STMVM
STMVR
STUVM

.STCVM

Argument

WATCH for this job. Not a privileged function. Bits are bits 1—6
of .GTWCH (FTWATCH).

Bit 1 JW.WDY watch time of day

Bit 2 JW.WRN watch run time

Bit 3 JW.WWT watch wait time

Bit 4 JW.WDR watch disk reads

Bit 5 JW.WDW watch disk writes

Bit 6 JW.WVR watch version numbers.

DATE. Privileged function (FTSEDAT).

OPR. Privileged function.

KSYS. Privileged function (FT5UUO).

CORE limit. Privileged function (FTTLIM).

TIME limit for this job. Privileged function (FTTLIM).

CPU specification for this job. The following bits select the CPU on
which the job is allowed to run.

Bit 35 SP.CRO CPUO
Bit 34 SP.CR1 CPU1
Bit 33 SP.CR2 CPU2
Bit 32 SP.CR3 CPU3
Bit 31 SP.CR4 CrU4

Bit 30 SP.CRS CPUS
CPU runnability. Privileged function.
LOGMAX. Privileged function.
BATMAX. Privileged function.
BATMIN. Privileged function.

DSKFUL for this job. Not a privileged function. An argument of 0
(.DFPSE) causes a pause and an argument of (DFERR) causes an error
when the disk is full or the user’s quota is exceeded. The current set-
ting can be determined by issuing an argument other than 0 and 1. The
value returned is either O or 1 depending on whether PAUSE or ERROR
is set. The initial setting is ERROR.

Maximum virtual memory (GVPL). Privileged function.
Maximum virtual memory rate. Privileged function.
User virtual memory maximum (MVPL). Privileged function.

User current virtual memory maximum. ADR (address of the word that
contains CVPL and CPPL). The left half of the word contains the current
virtual page limit, the right half contains the current physical page limit.
If either CVPL or CPPL is zero, the current value is unchanged.

3-44

Function Name Argument

26 STTVM User virtual time interrupts. Time interval equals the time interval
between virtual time traps in milliseconds. This causes a code 5 page
fault to the page fault handler each time “‘time interval” has elapsed in
virtual time.

27 .STABK Address break. On a normal return, the new address break conditions
and the break address will have been set. Address conditions are:
Bit O break on execute
Bit 1 break on read
Bit 2 break on write
Bit 3 break on MUUO

Note that 1BO+1B1+1B2+1B3 = 0 will clear the address break. If the
user is enabled for address break interrupts, the software interrupt sys-
tem will interrupt when an address break occurs.

The error return is given if
1. the UUO is not implemented
2. the user does not have the correct privileges for the function specified, or
3. the argument specified is invalid.

On a normal return, AC remains unchanged.

3.4.3 LOCATE AC, or CALLI AC, 62(1)

This UUO is used to change the logical station associated with the user’s job. The call is:
MOVEI AC, station number
LOCATE AC, ;or CALLI AC, 62

error return
normal return

The station number requested is contained in AC as follows:

-1 changes the job’s location to the physical station of the job’s controlling terminal.
0 changes the job’s location to the central station.
n changes thejob’s location to remote station n.

The normal return is taken if the UUO is implemented, the station is defined, and the station is in contact. Sub-
sequent generic device specifications are at the new station. The error return is taken if the UUQ is not imple-
mented or the specified station is illegal or not in contact.

(1) This UUO depends on FTREM which is normally off in the DECsystem-1040.

3-45

3.5 INTER-PROGRAM COMMUNICATION

3.5.1 TMPCOR AC, or CALLI AC, 44(2)

This UUO allows a job to leave several short files in core from the running of one user program or system
program to the next. These files are referenced by a three-character filename and are unique to each job. All
files are deleted when the job is killed. This system of temporary storage improves response time and reduces
the number of disk operations. If this UUO fails, the file specification DSK:nnnNAM.TMP, where nnn is the
job number and NAM is the three-character filename, should be used for temporary disk storage.

Each temporary file appears to the user as one dump mode buffer. The actual size of the file, the number of
temporary files a user can have, and the total core a user can use for temporary storage are parameters determined
at MONGEN time. All temporary files reside in a fixed area, but the space is dynamically allocated among differ-
ent jobs and several different files for any given job.

The call is:
MOVE AC, [XWD code, block]
TMPCOR AC, ;or CALLI AC, 44
error return
normal return
BLOCK: XWD NAME, 0 : ; NAME is filename

IOWD BUFLEN, BUFFER ; user buffer area
; (zero for no buffer)

The AC must be set by the user program prior to execution of the UUO and is changed by the UUO on return
to a value that depends on the particular function performed. Functions of the TMPCOR UUO are presented
in the following paragraphs.

3.5.1.1 CODE =0 (.TCRFS) — Obtain Free Space — This is the only form of the UUO that does not use a two-
word parameter block and, therefore, the contents of AC are ordinarily set to 0. A normal return is given (unless
the UUO is not implemented), and the number of the free words available to the user is returned in AC.

3.5.1.2 CODE =1 (.TCRRF) — Read File — If the specified file is not found, the number of free words avail-
able for temporary files is returned in AC and the error return is taken. If the specified file is found, the length
of the file in words (that is, the length in BUFLEN when writing the file rounded up to the next highest multiple
of four) is returned in AC, and as much of the file as possible is copied into the user’s buffer. The user may check
for truncation of the file by comparing the contents$ of AC with BUFLEN.

3.5.1.3 CODE =2 (.TCRDF) - Read and Delete File — This function is similar to CODE = 1, except that if the
specified file is found, it is deleted and its space is reclaimed.

(2) This UUO depends on FTTMP which is normally off in the DECsystem-1040.

3-46

3.5.1.4 CODE =3 (.TCRWF) — Write File — If a file exists with the specified name, it is deleted and its space
reclaimed. The requested size of the file is the value in BUFLEN rounded up to the next highest multiple of
four. If there is enough space

1. The file is written.

2. The number of remaining blocks is returned in AC.

3. The normal return is taken.
If there is not enough space to completely write the file

1. The file is not written.

2. The number of free words available to the user is returned in AC.

3. The error return is taken.
3.5.1.5 CODE = 4 (.TCRRD) — Read Directory — The number of different files in the temporary file area of
the job is returned in AC. An entry is made for each file in the user’s buffer area until either there:is no more

space or all files have been listed. The error return is never taken. The user may check for truncation of the en-
tries by comparing the contents of AC with BUFLEN. The format of a directory entry is as follows:

XWD NAME, SIZE
where NAME is the filename and SIZE is the file length in words.

3.5.1.6 CODE =5 (.TCRDD) — Read and Clear Directory — This function is similar to CODE = 4, except that
any files in the temporary storage area of the job are deleted and their space is reclaimed.

This UUO is used by the LOGOUT program.
3.6 ENVIRONMENTAL INFORMATION

3.6.1 Timing Information

The 5.05 and later monitors use two time and two date standards. The time accounting is performed by two
clocks. The APR clock, driven by the power source frequency (60 Hz in North America; 50 Hz in most other
countries), is accurate over long periods of time. For this reason, it is used to keep the time of day, e.g., for the
TIMER UUO. It can also be used for runtime accounting measurement (i.e., keeping track of the processor time
each job uses). However, there will be some loss of accuracy since the time intervals in which a job runs are
often less than the period of the APR clock.

The DK10 clock, a 100000 Hz clock, is accurate over short periods of time. It is used to perform runtime ac-
counting, and thereby achieves greater accuracy than the APR clock.

The traditional DECsystem-10 date (returned with the DATE UUO) is a 15-bit integer. This integer is incre-
mented by 1 each day, by 31 each month (regardless of the actual number of days:in the month), and by 12*31
each year (also regardless of the actual number of days in the year). This date format is easy to resolve into
year-month-day; however, the difference between two dates in this format is not necessarily the actual number
of days between them.

3-47

The monitor maintains a set of GETTAB values which gives the local date and time in terms of year, month,
day, hours, minutes, and seconds (GETTAB Table 11, Items 56 through 63).

For convenience, the local time (host computer time) can be converted to a universal date-time standard where
the left half of the word is the day and the right half of the word is the time. This day is uniformly incremented
each day (at midnight, Greenwich Mean Time) with 1 being November 18, 1858. The November date is used to
be consistent with the Smithsonian Astronomical Date Standard and other computer installations and systems.
(GETTAB Table 11, Item 64).

The time of day is specified as a fraction of a day allowing the 36-bit value to be in units of days with a binary
point between the right and left halves. The resolution is approximately 1/3 of a second; that is, the least sig-
nificant bit (bit 35) represents approximately 1/3 of a second.

3.6.1.1 DATE AC, or CALLI AC, 14 — A 15-bit binary integer computed by the formula
date=((year-1964)x12+(month-1))x31+day=1

represents the date.
This integer representation is returned right-justified in AC.
3.6.1.2 TIMER AC, or CALLI AC, 22 — This UUO returns the time of day, in clock ticks (jiffies) right justified

in AC. A jiffy is 1/60 of a second (16.6 milliseconds) for 60-cycle power and 1/50 of a second (20 milliseconds)
for 50-cycle power. The MSTIME UUO should normally be used so that the time is not a function of the cycle.

3.6.1.3 MSTIME AC, or CALLI AC, 23 — This UUO returns the time of day, in milliseconds, right justified
in AC.

3.6.2 Job Status Information

3.6.2.1 RUNTIME AC, or CALLI AC, 27 — The accumulated running time (in milliseconds) of the job number
specified in AC is returned right justified in AC. If the job number in AC is zero, the running time of the cur-
rently running job is returned. If the job number in AC does not exist, zero is returned.

3.6.2.2 PJOB AC, or CALLI AC, 30 — This UUO returns the job number right justified in AC.

3.6.2.3 GETPPN AC, or CALLI AC, 24 — This UUO returns in AC the project-programmer pair of the job. The
project number is a binary number in the left half of AC, and the programmer number is a binary number in the
right half of AC. If the program has the JACCT bit set, a skip return is given if the old project-programmer num-
ber is also logged in on another job.

3.6.2.4 OTHUSR AC, or CALLI AC, 77 — This UUO is used to determine if another job is logged in with the
same project-programmer number as the job executing the UUO. The non-SKIP return is given if
1. the UUO is not implemented, in which case the AC remains unchanged, or

2. the UUO is implemented and no other jobs are logged in with the same project-programmer number,
in which case the AC contains the project-programmer number of the job executing the UUO.

3-48 September 1974

The SKIP return is given if the UUO is implemented and other jobs are logged in with the same project-
programmer number. The AC contains the project-programmer number of the job executing the UUO. This
UUO is used by KJOB.

3.6.3 Monitor Examination

3.6.3.1 PEEK AC, or CALLI AC, 33 — This UUO allows a user program to examine any location in the moni-
tor. Itisused by SYSTAT, FILDDT, and DATDMP and could be used for on-line monitor debugging, The
PEEK UUO requires bit 16 (JP.SPA - examine all of core) and/or bit'17 (JP.SPM — examine the monitor) to
be set in the privilege word .GTPRV.

The call is:
MOVEI AC, exec address ; TAKEN MODULO SIZE OF MONITOR
PEEK AC, ;OR CALLI AC, 33

This call :returns with the contents of the monitor location in AC.

NOTE
On a KI10, if the address given is equal to or larger than
340000, this UUO uses the hardware memory map to
fetch the word and not the physical address.

3.6.3.2 SPY AC, or CALLI AC, 42 — This UUOQ is used for efficient examination of the monitor during time-
sharing, Any number of K of physical core (not limited to the size of the monitor) is placed into the user’s
logical high segment. This amount cannot be saved with the monitor SAVE command (only the low segment
is saved), cannot be increased:or decreased by the CORE UUO (error return taken), or cannot have the user-
mode write-protect bit cleared (error return taken). The-call is:

MOVEI AC, highest physical core location desired

SPY AC, ;or CALLI AC, 42
error return
normal return

Any program that is written to use the SPY UUO should try the PEEK UUO if the SPY UUO receives an error
return. The SPY UUO requires bit 16 (JP.SPA = examine all of core) and/or bit 17 (JP.SPM = examine the
monitor) to be set in the privilege word .GTPRV. :

3.6.3.3 POKE. AC, or CALLI AC, 114(1) —This UUO is used by a privileg_ed user to alter one location in the
monitor at a time. The POKE. UUO requires bit 4 (JP.POK) to be set in the privilege word .GTPRV.

The call is:

MOVE AC, [3, ,ADR]}

POKE. AC, ;or CALLI AC, 114
error return

normal return

(1) This UUO depends on FTPOKE which is normally off in the DECsystem-1040.

349

ADR: monitor location
old value
new value

The error return is given if:
The user is not privileged; AC contains 0.

The value specified in ADR+1 as the old value is not the same as the actual value contained in the monitor
location; AC contains 1.

The address specified is not a valid monitor address; AC contains 2.

3.6.3.4 GETTAB AC, or CALLI AC, 41 — This UUO provides a mechanism which will not vary from monitor to
monitor for user programs to examine the contents of certain monitor locations. The call is:

MOVE AC, [XWD index, table number]

GETTAB AC, ;or CALLI AC, 41
‘error return

normal return

The left half of AC contains a job number of some other index to a table. Some job numbers may refer to high
segments of programs by using arguments greater than the highest job number for the current monitor. A LH of
-1 indicates the current job number. A LH of -2 references the job’s high segment. An error return is given if
there is no high segment or if the hardware and software are non-reentrant. The right half of AC contains a table
number from the list of monitor data tables and parameters in Table 3-1. The entries in these tables are globals
in the monitor subroutine COMMON. The actual values of the core addresses of these locations are subject to
change and can be found in the LOADER storage map for the monitor. The complete description of these
globals is found in the listing of COMMON.

The customer is allowed to add his own GETTAB tables to the monitor. A negative right half should be used to
specify such customer-added tables.

An error return leaves the AC unchanged and is given if the job number or index number in the left half of AC
is too high, the table number in the right half of AC is too high, or the user does not have the privilege of access-
ing the specified table.

A normal return supplies the contents of the requested table in AC, or a zero if the table is not defined in the
current monitor.

The SYSTAT program makes frequent use of this UUO.

NOTE
Many GETTAB tables have information in the unde-
scribed bits. This information is likely to change and
should be ignored. Although the field may currently
be zero, there is no reason to believe that it will always
be zero.

3-50

Table 3-1

GETTAB Tables
Table Numbers
(RH of AC) Table Names Explanation

00 .GTSTS Job status word; index by job or segment number.

01 .GTADR Job relocation and protection; index by job or segment number.

02 .GTPPN Project and programmer numbers; index by job or segment
number.

03 .GTPRG User program name;index by job or segment number.

04 .GTTIM Total run time used in units of jiffies; index by job number.
The value of a jiffy can be obtained from bit 6 of the STATES
word (item 17 in the .GTCNF table).

05 .GTKCT Kilo-Core ticks of job; index by job number.

06 .GTPRV Privilege bits of job; index by job number, refer to Paragraph
3.6.3.4.1.

07 .GTSWP Swapping parameters of job; index by job ur segment number.

10 .GTTTY Terminal-to-job translation; index by job number.

11 .GTCNF Configuration table; index by item number, refer to Paragraph
3.6.3.4.2.

12 .GTNSW Nonswapping data; index by item number, refer to Paragraph
3.6.3.4.3.

13 .GTSDT Swapping data; index by item number, refer to Paragraph
3.6.3.4.4.

14 .GTSGN High segment table; index by job number.

Bit 0 = 0, then bits 18—35 are index of high segment (if bits

18—35 =0, then there is no high segment).

Bit 0 = 1, then bits 18—35 are number of K to spy on.

Bit 1 (SN%SHR) = 1 if job has a high segment that is sharable.

Bit 5 (SN%LOK) = 1 if job has a high segment that is locked.
15 .GTODP Once-only disk parameters; index by item number, refer to
R oo Paragraph 3.6.3.4.5. © 7 — o oo

16 .GTLDV 5-series monitor disk parameters; index by item number, refer
to Paragraph 3.6.3.4.6.

17 .GTRCT Disk Blocks read by job; used by DSK commands:

1. Bits 0—11 incremental blocks

2. Bits 12—35 = total blocks since start of job.

Index by job number. Job 0 indicates the number of blocks
swapped in.

3-51

Table 3-1 (Cont)

GETTAB Tables
Table Numbers
(RH of AC) Table Names Explanation
20 .GTWCT Disk blocks written by job:
' 1. Bits 0—11 = incremental blocks.
2. Bits 12—35 = total blocks since start of job.
Index by job number. Job 0 indicates the number of blocks
swapped out.

21 .GTDBS Reserved for future.

22 .GTTDB Reserved for future.

23 .GTSLF Table of GETTAB addresses (GETTAB immediate); index by
GETTAB table number, refer to Paragraph 3.6.3.4.7.

24 .GTDEV Device or file structure name of sharable high segment. Index
by high segment number.

25 .GTWSN Two-character SIXBIT names for job queues; index by item
numbers, refer to Paragraph 3.6.3.4.8.

26 .GTLOC Job’s logical station; index by job number.

27 .GTCOR Physical core allocation. One bit per one K of core if system
does not include LOCK UUOQO. Two bits per entry if system in-
cludes LOCK UUO. A non-zero entry indicates core in use.

30 .GTCOM Table of SIXBIT names of monitor commands.

31 .GTNM1 First half of name of user in SIXBIT; index by job number.

32 .GTNM2 Last half of name of user in SIXBIT; index by job number.

33 .GTCNO Job’s charge number; index by job number.

34 GTTMP Job’s TMPCOR pointers; index by job number.

35 .GTWCH Job’s WATCH bits; index by job number, refer to Paragraph
3.6.3.4.9.

36 .GTSPL Job’s spooling control bits; index by job number, refer to
Paragraph 3.6.3.4.10.

37 .GTRTD Job’s real-time status word; index by job number.

40 .GTLIM Job’s time limit in jiffies and Batch status; index by job number.

1. Bits 1-9 (JB.LCR) = job’s core limit.

2. Bit 10=1 (JB.LBT) if a Batch job.

3. Bit 11 =1 (JB.LSY) if program comes from SYS. Set on R
command or equivalent. Cleared on R command (or equiv-
alent) or SETNAM UUO.

4. Bits 12—35 (JB.LTM) = job’s time limit.

3-52 September 1974

Table 3-1 (Cont)

GETTAB Tables
Table Numbers
(RH of AC) Table Names Explanation

41 .GTQQQ Timesharing scheduler’s queue headers.

42 .GTQJB Timesharing scheduler’s queue that job is in; index by job
number.

43 .GTCM2 Table of SET command names.

44 .GTCRS Status of hardware taken on a crash.

0: CR.SAP =CONI APR,

1: CR.SPI =CONI PI,

2: CR.SSW=DATAI APR

The remainder of the table contains the status of the various
devices.

45 .GTISC Swapper’s input scan list of queues.

46 .GTOSC Swapper’s output scan list of queues.

47 .GTSSC Scheduler’s scan list of queues.

50 .GTRSP Response counter table. Time in jiffies when user started to
wait for his job to run. This time is cleared when the job is
first given to the processor by the scheduler.

51 .GTSYS System variables which are independent of CPU. Refer to
Paragraph 3.6.3.4.11.

52 .GTWHY Operator why comments in ASCIZ.

53 .GTTRQ - Total time job was in run queues whether or not it was running.

54 .GTSPS Job status word of second processor.

Bit 29 (SP.SCO0) - SET CPU command can be used.

Bit 35 (SP.CRO0) = SET CPU UUO can be used.

Bits for other processors can be obtained by shifting left 1 bit
per processor.

55 .GTCOoC CPUO CDB constants; index by item number, refer to
Paragraph 3.6.3.4.12.

56 .GTCoV CPUO CDB variables; index by item number, to Paragraph
3.6.3.4.13.

57 .GTCIC CPU1 CDB constants; index by item number; see .GTCOC.

60 GTC1V CPUI1 CDB variables; index by item number; see .GTCOV.

61 .GTC2C CPU2 CDB constants; index by item number; see .GTCOC.

62 .GTC2V CPU2 CDB variables; index by item number; see .GTCOV.

3-53

Table 3-1 (Cont)

GETTARB Tables
Table Numbers
(RH of AC) Table Names Explanation

63 .GTC3C CPU3 CDB constants; index by item number; see .GTCOC.

64 .GTC3V CPU3 CDB variables; index by item number; see .GTCOV.

65 .GTC4C CPU4 CDB constants; index by item number; see .GTCOC.

66 .GTC4V CPU4 CDB variables; index by item number; see .GTCOV.

67 .GTC5C CPU5 CDB constants; index by item number; see .GTCOC.

70 .GTC5V CPUS5 CDB variables; index by item number; see .GTCOV.

71 .GTFET Currént setting of all features defined in F.MAC, index by
item number, refer to Paragraph 3.6.3.4.15.

72 .GTEDN Table of ersatz device names (e.g., NEW, LIB). The search lists
of these devices and their corresponding project-programmer
numbers can be obtained from the PATH UUO.

73 .GTSCN Contains scanner response data. Refer to Paragraph 3.6.3.4.16.

74 .GTSND Contains last send-all message. Refer to Paragraph 3.6.3.4.17.

75 .GTCMT SET TTY command names.

76 .GTPID Process communication ID (IPCF).

77 .GTIPC IPCF miscellaneous data. Refer to Paragraph 3.6.3.4.18.

100 .GTUPM Physical page number of the user page map if indexed by JOB
number. High order nine bits is the virtual page number where
the high segment starts in the program’s address space when
indexed by the high segment number.

101 .GTCMW SET WATCH command names.

102 .GTCVL Current virtual limit, current physical limit.

103 .GTMVL Maximum virtual limit, maximum physical limit.

104 .GTIPA IPCF statistics per job.

105 .GTIPP IPCF pointers and counts.

106 .GTIPI PID for job’s [system] INFO.

107 .GTIPQ IPCF flags and quotas per job.

110 .GTDVL Pointer to this job’s logical name table.

111 .GTABS Address break word.

112 .GTCMP Reserved.

3-54 September 1974

Table 3-1 (Cont)

GETTAB Tables
Table Numbers
(RH of AC) Table Names Explanation
113 .GTVM General virtual memory data, refer to Paragraph 3.6.3.4.19.
114 .GTVRT Paging rate for job.

3.6.3.4.1 Entries in Table 6 — .GTPRV (Privilege Table) —Each job has a one-word entry to indicate job privi-

leges. The privilege bits are as follows:

Bit
1BO
3B2
1B3
1B4
1B5

17B9
IB10
1B13
1B14
~ 1B15
1B16

1B17

Mnemonic
JB.IPC
JP.DPR
JP.MET
JP. POK
JP.CCC

JP.HPQ
JP.NSP
JP.RTT
JPLCK
JP.TRP
JP.SPA

JP.SPM

Meaning
Job is allowed to perform IPCF privileged functions.
Highest disk priority for this job.
Job is allowed to execute the METER.UUO.
Job is allowed to execute the POKE. UUO.

Job is allowed to change its CPU specification via a command
or UUO.

Highest high-priority queue available to this job.
Job is allowed to unspool devices.

Job is allowed to execute the RTTRP UUO.

Job is allowed to execute the LOCK UUO.

Job is allowed to execute the TRPSET UUO.
Job is allowed to PEEK and SPY on all of core.

Job is allowed to PEEK and SPY on the monitor.

3.6.3.4.2 Entries in Table 11 — .GTCNF (Configuration Table)

Location

ZCNFGO

ZCNFG4
9CNDTO
Z%CNDT1
ZCNTAP

Use

Name of system is ASCIZ.

Date of system in ASCIZ.

Name of system device (SIXBIT).

3-55

Item
10
11
12
13
14
15

16
17

Location
%CNTIM
%CNDAT
Z%CNSIZ
%CNOPR
%CNDEV
%CNSIN

ZCNTWR
ZCNSTS

Use
Time of day in jiffies.
Today’s date (15-bit format).
Highest location in monitor +1.
Name of OPR TTY (SIXBIT)
LH is start of DDB (device-data-block) chain.

LH=-# of .high segments, RH=+# of jobs (counting NULL
job).

Non-zero if system has two-register hardware and software.

Location describing feature switches of this system in LH,
and current state in RH.

Assembled according to MONGEN dialog and S.MAC:
Bit 0=1 if disk system (ST%DSK)
Bit 1=1 if swap system (ST%SWP)
Bit 2=1 if LOGIN system (ST%LOG)
Bit 3=1 if full duplex software (ST%FTT)
Bit 4=1 if privilege feature (ST%PRV)
Bit 5=1 if assembled for choice of reentrant or non-reentrant
software at monitor load time (ST%TWR)
Bit 6=1 if clock is 50 cycle instead of 60 cycle (STZCYC)
Bits 7—9 type of disk system (ST%TDS):
if 0, 4-series disk system.
if 1, 5-series disk system.
if 2, spooled disk.
Bit 10=1 if independent programmer numbers between project
(INDPPN is non-zero) (ST%IND)
Bit 11=1 if image mode on terminal (8-bit SCNSER) (STZIMG)
Bit 12=1 if dual processor system (ST%DUL)
Bit 13=1 if multiple RIBs supported (ST%ZMRB)
Bit 14=1 if high precision time accounting (ST%HPT)
Bit 15=1 if overhead excluded from time accounting (ST%EMO)
Bit 16=1 if real-time clock (ST%RTC)
Bit 17=1 if built to handle FOROTS (ST%MBF)

Set by the privileged operator command, SET SCHED:

Bit 27=1 means no operator is present at central site (ST?%NOP)
Bit 28=1 means unspooling devices (ST%MSP)

Bit 29=1 means assigning devices (ST%ASS)

Bit 30=1 means there are no remote TTY’s (ST%NRT)

Bit 33=1 means only Batch jobs may LOGIN (except from CTY
or OPR) (ST%BON)

Bit 34=1 means no remote LOGINs (ST%ZNRL)

Bit 35=1 means no more LOGINSs except from CTY or OPR
(ST%NLG)

3-56

Item
20

21

22

23

24

25
26
27
30

31
32
33

34

35

36
37
40

Location
CNSER
J%CNNSM

%CNPTY

%CNFRE

%CNLOC

%CNSTB
%CNOPL
ZCNTTF
%CNTTC

%CNTTN
Z%CNLNS
%CNLNP

ZCNVER

ZCNDSC

%CNDLS
CNCCI

%CNSGT

Use
Serial number of PDP-10 processor. Set by MONGEN dialog.

Number of nanoseconds per memory cycle for memory system.
If the GETTAB fails, the number of nanoseconds per memory
cycle is 1D1000. Used by SYSTAT to compute shuffling time.

PTY parameters for Batch.

LH = the number of the first invisible terminal (which is one
greater than the number of the CTY)
RH = the number of PTY’s in the system configuration.

AOBIJN word to use bit map in monitor for allocating 4-word
core blocks.

LH=0. RH=address in monitor for free 4-word core block areas.
(This is never changed while monitor runs.)

Link to STB chain for remote Batch.
Address of the line data block (LDB) of the operator’s terminal.
Pointer to TTY free chunks.

LH=number of TTY chunks.
RH=address of first TTY chunk.

Number of free TTY chunks,
Pointer to current TTY as seen by the command decoder.

Pointer to examine TTY line table, including remote terminals.
LH=-total number of TTY lines.
RH=beginning of line table.

Version of monitor. (Stored in location 137 of monitor as a
save file when monitor is not running.)

Bits 0—17 reserved for customer.

Bits 18—23 monitor level (e.g., 5)

Bits 24—29 monitor release (e.g., 7)

Bits 30—35 used for internal development.

If the GETTAB fails, the monitor is a version previous to 5.03.

Pointer to data set control table.
LH = -length of table.
RH= beginning of control table.

Obsolete.
Obsolete.

Last dormant segment which was deleted to free a segment
number.

3-57

Item
41
42

43

44

45
46

47

50

51

52

53

54
55
56
57
60
61
62
63
64

Location
% CNPOK
JZCNPUC

%CNWHY

9CNTIC

%CNPDB
ZCNRTC

Z%CNCHN

BCNLMX
ZCNBMX

%CNBMN
%CNDTM

%CNLNM
7%CNBNM
%CNYER
%ZCNMON
%CNDAY
%CNHOR
%ZCNMIN

Z%CNSEC

ZCNGMT

Use
Address of last location changed in monitor by the POKE.UUO.

LH=the number of the job which last successfully executed the
POKE.UUO.
RH=the number of successful POKE.UUOs executed.

The reason for the last reload (SIXBIT unabbreviated operator
answer). Refer to ONCE in the DECsystem-10 Software
Notebooks.

The number of clock ticks per second. This is the time-of-day
clock. The number is obtained by conducting a simple experi-
ment of monitor load time. A different clock can be used for
incremental run time accounting (refer to ZCNRTC below).

The pointer to the process data block (PDB) pointer tables.

The run time clock rate (jiffies per second). That is, the rate of
the clock used to measure the run time of the job and the sys-
tem statistics (null, lost, and overhead time). This is the preci-
sion of the measurement, not the units of measurement.

The pointer to the list of channel (DF10) data blocks. LH=the
address of the 1st channel data block.
RH=unused.

LOGMAX. The maximum number of jobs allowed to LOGIN.

BATMAX. The maximum number of Batch jobs allowed to
LOGIN.

BATMIN. The guaranteed number of Batch jobs (i.e., the num-
ber of jobs reserved for Batch).

The host computer time in universal date/time format (refer to
Paragraph 3.6.1).

LOGNUM. The number of jobs currently logged-in.
BATNUM. The number of Batch jobs currently logged-in.
LOCYER. The year.

LOCMON. The month (Jan = 1, Feb = 2, etc.).
LOCDAY. The local day of the month (1, 2, 3,...).
LOCHOR. The local hour in 24-hour format.

LOCMIN Minutes (0, 1, . .. ,59).

LOCSEC. Seconds (0, 1, ...,59).

Reserved.

3-58

Item

65

66
67
70
71
72
73
74
75
76
77

100

101

102

103

104

105

106

107
110
111
112

Location

ZCNDBG

ZCNFRU
Z%CNTCM
%CNCVM
%CNDVM
Z%CNDFC
%CNRTD
%CNHPQ
%CNLDB
ZCNMVO
ZCNMIP
ZCNMER
9%CNET1
ZCNLSD
%CNLLD
%CNLDD
ZCNEXM
ZCNST2

%CNPIM
%CNPIL
Z%CNPIA
ZCNMNT

Use

Debugging status word.

Bit 0=1 System debugging (ST%DBG).

Bit 1=1 Reload on debug stop code (ST%RDC).
Bit 2=1 Reload on job stop code (ST%RIJE)

Bit 3=1 No auto reloads (SP%ZNAR).

Amouut of free core currently in use by the monitor.
Number of 9-bit bytes in TTY chunks.

Customer version number.

DEC version number.

Number of DF10 data channels.

Number of real time devices.

Number of HPQ’s.

Offset from start of TTY DDB to LDB pointer.
Maximum vector offset for PISYS.

Maximum priority for PISYS (currently 0).

LH: Address of MTAO, RH: offset of MTA error RPT word.
User address of EXEC’s AC T1 (for DAEMON).
Length of short DDB.

Length of long DDB.

Length of disk DDB.

Address in JOBDAT of last E/D command.

Software configuration feature indicators.

1B29 ST%NSE Non-superseding ENTER exists.

1B30 ST%MSG MSGSER (MPX channel capability) included.

1B31 ST%PSI PSISER (generalized software interrupt facility)
included.

1B32 ST%IPC IPCF (interprocess communication facility)
included.

1B33 ST%VMS VMSER (virtual memory option) included.

1B34 STZMER MTA error reporting included.

1B35 ST%SSP Swap space in pages.

Minimum condition in PISYS.
Length in internal PIT’s.
Address of JBTPIA.

Monitor type.

3-59 September 1974

Item

113

114

115

Location
%ZCNOCR
ZCNOCP

%CNPGS

Use
LH: First CDR DDB, RH: offset to card count.
CDP (same as %ZCNOCR above).

Unit of core allocation.

3.6.3.4.3 Entries in Table 12 — .GTNSW (Nonswapping Data) — With the 5.05 and later monitors, no new en-
tries will be added to the .GTNSW table because many of the parameters in this table are dependent upon the
processor used and therefore are different for each processor in a multiprocessor system. GETTAB tables
51-70 exist for new parameters as well as the .GTNSW parameters.

Item

0

10

11
12
13
14
15
16
17
20
21
22

23

24

25

26

Location

ZNSCMX

%NSCLS

%NSCTL

%NSSHW
%NSHLF
%NSUPT
%NSSHF
%NSSTU

7NSHIB

P%NSCLW

%NSLST

%NSMMS

%NSTPE

%NSSPE

%NSMPC

Use
Obsolete.

Unspecified data.

CORMAX. Size in words of largest legal user job (Low
segthigh seg).

Byte pointer to last free block.

Total freetdormant+idle K physical core left (virtual core).
Job number shuffler has stopped.

Absolute address of job above lowest hole, 0 if no job.
Time system has been up in jiffies.

Total number of words shuffled by system.

Number of job using SYS if not a disk.

Highest job number currently assigned.

Total number of words cleared by system.

Total number of clock ticks when null job ran and other jobs
wanted to but could not because:

1. Swapped out or on way in or out.

2. Monitor waiting for I/O to stop so it can shuffle or swap.
3. Job being swapped out because of expanding core.

Size of physical memory in words.

Total number of user parity errors (memory) since system was
loaded.

Total number of spurious (refer to Paragraph 7.7) parity errors
(memory).

Total number of multiple parity errors (memory).

3-60

Item

27

30
31

32

33

34
35

36

37
40
41

42

43

44

Location

%NSMPA

%NSMPW
%NSMPP
%NSEPO

%NSEPR

Z%NSNXM
%NSKTM

%NSCMN

%NSABC
%NSABA
%NSLJR

%NSACR

%NSNCR

ZNSSCR

Use

The absolute location of the last user mode memory parity
error.

The contents of the last user mode memory parity error.
The user PC of the last user mode memory parity error.

Total number of PDL OVR’s at UUO level in exec mode which
were not recovered.

Number of PDL OVR’s at UUO level which were recovered by
assigning extended list.

Highest legal value of CORMAX.
Count-down time for SET KSYS UUO.

Amount of core guaranteed to be available after locking jobs
in core (CORMIN).

Count of number of address breaks handled.
Contents of data switches on last address break.
Last job that ran if different from the current job.

Accumulated CPU response. Total number of jiffies that all
users waited for their jobs to initially run after either a com-
mand was issued which ran a job (program) or terminal input
was given that removed the job from a TTY input wait state.

Number of CPU responses for all users waiting for jobs to run
(refer to ZNSACR above). Dividing the value of %ZNSACR by
the value of %ZNSNCR gives the average response time since
system startup.

Accumulated squares of the CPU response time obtained from
9%NSACR.

3.6.3.4.4 Entries in Table 13 — .GTSDT (Swapping Data)

Item

0

1

Location
%SWBGH
%SWFIN

%SWFRC
SWFIT

%SWVRT

Use
Number of K in biggest hole in core.

—Job number of job being swapped out,
+Job number of job being swapped in.

Job being forced to swap out.
Job waiting to be fit into core.

Amount of virtual core left in system in K (initially set to
number of K of swapping space).

3-61

Item

Location

%SWERC

%SWPIN

Use

LH=number of swap read or write errors,
RH=error bits (bits 18—21 same as status bits).
+ number K discarded.

-1 if job swapped in (monitors which swap process data blocks
and FTPDBS = 1) (PDBs only).

3.6.3.4.5 Entries in Table 15 — .GTODP (Once-Only Disk Parameters)

Item

0
1

2

3

Location
%0DSWP

%0ODK4S

%ODPRT
%0ODPRA

Use
Unused, contains zero in 5-series monitors.

K of disk words set aside for swapping on all units in active
swapping list.

In-core protect time multiples size of job in K-1.

In-core protect time added to above result after multiply.

3.6.3.4.6 Entries in Table 16 — . GTLVD (LEVEL-D Monitor Disk Parameters)

Item
0
1

10

11

12

Location

%LDMFD

%LDSYS

%LDFFA
%LDHLP
%LDQUE
%LDSPB

%LDSTR

%LDUNI

%LDSWP

%LDCRN

%LDSTP

Use

Project-programmer number UFDs only [1,1].

Project-programmer number for device SYS [1,4]. In 4-series
monitors [1,1].

Project-programmer number for FAILSAFE [1,2].
Project-programmer number for SYSTAT and HELP [2,5].
Project-programmer number for spooling programs [3,3].

1. LH=address of first PPB block.
2. RH=address of next PPB block to be scanned.

1. LH=address of first file structure data block.

2. RH=relative address of next file structure data block, i.e.,
the address within the data block which points to the ac-
tual address of the next data block.

1. LH=address of data block of first unit in system.
2. RH=relative address of data block of next unit in system.

1. LH=address of first unit for swapping in system.
2. =relative address of next unit for swapping in system.

Number of 4-word access blocks for disk systems allocated at
ONCE - only time.

Standard file protection code (057), can be changed by installa-
tion. In 4-series monitors (055).

3-62

Item

13

14

15

16
17

20
21

22

23

24

25
26

27
30
31
32
33

- 34 .

35
36
37
40
41

Location

%LDUFP

%LDMBN

%LDQUS

%LDCRP
%LDSFD

%LDSPP
%LDSYP

%LDSSP

%LDMNU

%LDMXT

%LDNEW
%LDOLD

%LDUMD
%LDNDB
%LDMSL
%LDALG
%LDBLI
%LDFOR
%LDMAC
%LDUNV
%LDPUB
%LDTED
%LDREL

Use

Standard UFD protection code (775), can be changed by in-
stallation. In 4-series monitors (055).

Number of monitor buffers allocated at once-only time (2).
In 4-series monitors, 1.

SIXBIT name of file structure containing 3,3.UFD for spooling
and OMOUNT queues. In 4-series monitors, DSK.

UFD used for storing system crashes. In 4-series monitors, [10,1].

Maximum mimber of nested SFD’s, which the monitor allows
to be created.

Protection of spooled output files (bits 0—7).

Standard protection for files in SYS: (155) except for files
with an extension of .SYS.

Standard protection for files in SYS: with an extension of
.SYS (157).

Maximum negative argument to USETI which reads extended
RIBS.

Maximum number of blocks transferred with one I/O operation
(one IOWD). Normally 100000 but can be defined at MONGEN
to be smaller so chat a job doing high priority disk I/O will be
locked out for a shorter period of time (since it can be locked
out for as long as the channel is busy).

Project-programmer number for experimental SYS [1,5].

Project-programmer number for library of superseded system
programs [1,3] .

Project-programmer number for user mode diagnostics [6,6].
Default number of disk buffers in a buffer ring.

Maximum units in A.S.L.

ALGOL library ppn [5,4].

BLISS library ppn [5,5].

FORTRAN library ppn [5,6].

MACRO source library ppn [5,7].

Universal library ppn [5,17].

Public user software library ppn [1,6].

Text Editor library ppn [5,10].

REL file library ppn [5,11].

3-63

Item Location Use

42 %LDRNO RUNOFF library ppn [5,12].
43 %LDSNO SNOBOL library ppn [5,13].
44 %L.DDOC DOC file library ppn [5,14].
45 %LDFAI FAIL library ppn [5,15].

46 %LDMUS Music library ppn [5,16].

47 %LDDEC Standard DEC software ppn [10,7].

3.6.3.4.7 Entries in Table 23 — .GTSLF (GETTAB Immediate) — This table is useful for a program that uses
the SPY UUO for efficiency and needs the core address of the monitor tables. Absolute location 410 in the mon-
itor contains the address of the beginning of this table.

The format of each entry is as follows:

LH=Bits 0—8 = maximum item number in table.
Bit 9 = data may be process data.
Bit 10 = data may be segment data.
Bits 14—17 = a monitor AC.

RH=executive-mode address of table (item 0).

Examples:
XWD ITEM + JBTMXL, JOBSTS
XWD ITEM + TTPMXL, TTYTAB

3.6.3.4.8 Entries in Table 25 — .GTWSN (Two-character SIXBIT names for job queues)

Word 0

Bits 0—11 = contain the two SIXBIT character mnemonic of job state code 0.
Bits 12—23 = contain the two SIXBIT character mnemonic of job state code 1.
Bits 24—35 = contain the two SIXBIT character mnemonic of job state code 2.

Word 1

Bits 0—11 = contain the mnemonics of job state code 3.
Bits 12—23 = contain the mnemonics of job state code 4.
Bits 24—35 = contain the mnemonics of job state code 5. etc.

The job state codes for a disk system are as follows:

RN — one of the run queues.

WS — I/O wait satisfied.

TS — TTY 1/O wait satisfied.

DS — disk I/O wait satisfied.

AU — disk alter UFD wait.

MQ — disk monitor buffer wait.
DA — disk storage allocation wait.
CB — disk core block scan wait.
D1 — DECtape control wait.

3-64

D2 — second DECtape control wait.

DC - data control wait.

M1 — magnetic tape control wait.

M2 — second magnetic tape control unit

CA — core allocation wait (to be locked).

I0 — I/O wait.

TI — TTY I/O wait.
DI — disk I/O wait.
PI — paging I/O wait.
SL — sleep wait.

NU — null state.

ST — stop (1C) state.
JD — DAEMON wait.

These state codes are printed by SYSTAT. Note that SYSTAT displays other codes based on analysis, such as

the following:

TO — TTY output.
1C — job stopped.
W — command wait.
OW — operator wait.
HB — hibernate.

3.6.3.4.9 Entries in Table 35 — .GTWCH (WATCH Table) — Each job has a one-word entry to indicate the

WATCH bits. The bits for each word are as follows:

Bit Mnemonic Meaning

1B1 JW.WDY Watch time of day.

1B2 JW.WRN Watch run time.

IB3 JIW.WWT Watch wait time.

1B4 JW.WDR Watch disk reads.

1BS JW.WDW Watch disk writes.

1B6 JW.WVR Watch versions.

1B7 JW.WMT Watch MTA statistics.

7B11 JW.WMS Verbosity level, which is one of the following:

1B9 JW.CCN
1B10 JW.WFL
1B11 JW.WPR

JWWPR=1 prefix

JWWOL=2 one line

JWWPO=3 prefix, first

JWWLG=6- long, no prefix .. _ I
JWWPL=7 prefix and long

Verbosity: continuation
Verbosity: first
Verbosity: prefix

3-65

3.6.3.4.10 Entries in Table 36 — .GTSPL (Spooling Table) — Each job has a one-word entry to indicate the

spooling control bits. These bits are as follows:

Bit

35
34
33
32
31
24-26
0-=17

Mnemonic

JS.PLP
JS.PPL
JS.PPT
JS.PCP
JS.PCR
JS.PRI

Meaning

Line printer spooling.

Plotter spooling.

Paper tape punch spooling.

Card punch spooling.

Card reader spooling.

Disk priority.

Input spooling filename (3 characters). Refer to
Paragraph 6.3.

3.6.3.4.11 Entries in Table 51 — .GTSYS (System Wide Data) —

Bit
0

10
11
12

13

Mnemonic

%SYERR
%SYCCO
%SYDEL

%SY SPC

%SYNDS
%SYNIS
%SYNCP
%SYSIN
%SYSTN
%SYSPN
%SYSUU
%SYSUP

Use
System wide hardware error count.
Number of times COMCNT was off.
Disabled hardware error count.

LH=3 letter name of last STOPCD, RH = adr+1 of
last STOPCD.

Number of DEBUG STOPCD’s.
Number of job STOPCDs.
Number of commands processed.
Last STOPCD — job number.
Last STOPCD — TTY name.
Last STOPCD — program name.
Last STOPCD — UUO

Last STOPCD user PC.

3.6.3.4.12 Entries in Table 55 — .GTCOC (CPUO CDB constants table) —The items in this table correspond to

the items in the constants table for each processor.

CPU1
CPU2
CPU3
CPU4
CPUS

Table 57 — .GTC1C
Table 61 — .GTC2C
Table 63 — .GTC3C
Table 65 — .GTC4C
Table 67 — .GTC5C

3-66

Item

10

11

12

13

14

Location

%CCPTR

ZCCSER

%CCOKP

JCCTOS
%CCLOG
%CCPHY

ZCCTYP

%CCMPT

%CCRTC

%CCRTD

9CCPAR

%CCRSP

%CCDKK

Use

LH=pointer to next CDB, or O if this is the last CDB.
RH=unused.

APR serial number.

If less than or equal to zero, CPU is running ok. If greater than
zero, CPU has stopped running correctly.
Contents of word is the number of jiffies CPU has been stopped.

Trap offset for KA 10 interrupt locations (0 or 100).
Logical CPU name in SIXBIT (CPUn).
Physical CPU name in SIXBIT (CPAn, CPIn, or CP6n).

Type of processor (LH for customers, RH for DEC)
1 (.CC166) =PDP-6
2 (.CCKAX)=KAl0
3 (.CCKIX)=KI10

Relative GETTAB pointer to memory parity bad address subtable.
Refer to Paragraph 3.6.3.4.14.

Bits 0—-8 maximum relative entry in subtable

Bits 18—35 relative address of first word in subtable in CPU
variable GETTAB (GTOV).

If word is O, the subtable has been conditionally assembled out
of the monitor.

Real time clock (DK10) DDB. If word is 0, there is no real
time clock on this CPU.

Real time clock DDB if high precision time accounting. If O,
there is no high precision time accounting on this CPU.

Relative GETTAB pointer to memory parity subtable. Refer
to Paragraph 3.6.3.4.14.

Bits 0—8 maximum relative entry in subtable.

Bits 18—35 relative address of first word in subtable in CPU
variable GETTAB (.GTCOV).

If word is O, the subtable has been conditionally assembled out
of the monitor.

Relative GETTAB pointer to response subtable. Refer to
Paragraph 3.6.3.4.14.

Bits 0—8 maximum relative entry in subtable.

Bits 18—35 relative address of first word in subtable in CPU
variable GETTAB (.GTCOV).

Number of DK10’s on this CPU.

3-67

3.6.3.4.13 Entries in Table 56 — .GTCOV (CPUO CDB Variable Table) — The items in this table correspond
to the items in the variables table for each processor.

Item

12
14

15

16

17

20

21

27 |

30

31
32-34

35

CPUl

CpPU2
CpPU3
CpU4
CPUS

Location
%CVUPT
%CVLST
ZCVTPE

Z%CVSPE

ZCVMPC

%CVMPA

ZCVMPW

%CVMPP

ZCVABC
%CVABA
%CVLIR

WCVSTS

Table 60 — .GTC1V
Table 62 — .GTC2V
Table 64 — .GTC3V
Table 66 — .GTC4V
Table 70 — .GTC5V

Use
Uptime in jiffies for this CPU.
Last time in jiffies for this CPU.

Total memory parity error words detected during all CPU
sweeps on this CPU while processor was in exec or user mode.
If the system halts, this location has already been updated.

Total spurious memory parity errors detected on this CPU (i.e.,
errors which did not reoccur when the CPU swept through core).
Can occur on a read-pause-write which rewrites memory or on

a channel-detected parity not found on the sweep (refer to
%CVPCS in parity subtable).

Multiple memory parity errors for this CPU. That is, the num-
ber of times the operator pushed CONTINUE after a serious
memory parity halt. LH = 1 if serious error on this bad parity
(must halt). LH is cleared on CONTINUE or STARTUP.

Memory parity address for this CPU. That is, first bad physical
memory address found when the monitor swept through core
after processor or channel detected first parity error.

Memory parity word for this CPU. That is, contents of first
bad word found by monitor when it swept through core after the
processor channel detected first bad parity.

Memory parity PC for this CPU. That is, PC of last memory
parity (not counting sweep through core).

Address break count on this CPU:

Address break address on this CPU.

Last job run on this CPU including the null job.

Obsolete. Refer to items 20—23 in the Response Subtable.

Stop timesharing on this CPU. Contains job number which
performed the TRPSET UUO.

3-68

Item Location Use

36 %CVRUN Operator-controlled scheduling for this CPU (OPSER: SET
RUN command).
Bit 0 (CV%RUN)=1 do not run jobs on this CPU.

37 9CVNUL Null time in jiffies for this CPU.

40 %CVEDI LH=exec PC so that offending instruction can be corrected.
RH=number of exec “don’t care” interrupts (i.e., user enabled
APR interrupts which.monitor causes (AOV, FOV).

41 9%CVIOB Current job running on this CPU (0 is null job).

42 9%CVOHT Overhead time in jiffies for this CPU. Includes clock queue pro-
cessing, short command processing, swapping and scheduling
decisions, and software context switching. Does not include
UUO execution or I/O interrupt time, since these times are not
overhead.

43 %CVEVM (K110 only) Maximum amount of exec virtual address space to
be used for mapping user segments on a LOCK UUO.

44 %CVEVU (KI10 only) Current amount of exec virtual address space being
used for mapping user segments on a LOCK UUO.

45 9%CVLLC On a dual processor system, the count of the number of times
a CPU has looped in the CPU interlock while waiting for it to
be relinquished by the second CPU.

46 2CVTUC Total number of UUOs executed on this CPU from exec and
user mode.
47 9CVTIC Total number of job context switches from one job to a differ-

ent job, including the null job, on this CPU.

3.6.3.4.14 GETTAB Subtables — Via the GETTAB mechanism, GETTAB subtables make monitor-collected
data available to user programs and, at the same time, allow the installation to decide if it wants to use more
monitor table space without invalidating any user programs. These subtables are included in all systems except
the DECsystem-1040. However, they may be excluded by changing the appropriate conditional assembly
switches with MONGEN. It is anticipated that only installations that need the core space for other uses will
decide to exclude the subtables.

To reference a subtable, the user program first does a GETTAB UUO to obtain the pointer to the subtable (refer
to Paragraph 3.6.3.4.12). Then the program does a second GETTAB to get the desired item in the subtable. If
the pointer is zero, the desired subtable is not included in this system.

The following example illustrates the method for obtaining the accumulated response times for CPU N for ail
users that waited for their jobs to initially run after TTY input was given.

3-69

%CCRSP==XWD 13,55 JWORD AND TABLE NUMBER FOR RESPONSE

y SUBTABLE
ACVRAI==3 JSUBTABLE INDEX FOR ACCUMULATED TTY
y INPUT UUD
tRESPONSE,
LGTCOV=256 JGETTAB TABLE FOR CPUO VARIABLES

MOVEI T1, N JCPU NUMBER (0,17,40/s5)

LSH T1,N JCONSTANTS TABLE GETTAB INDEX MOVES UP
}BY TWOS,

MOVE T2, [%CCRSP} IRELATIVE GETTAB POINTER WORD FOR
}RESPONSE
ySUBTABLE FOR CPUO,

ADD T2,Ti yFORM GETTAR ARGUMENT FOR CPU N,

GETTAB T2, JGET RELATIVE POINTER TO RESPONSE
) SUBTABLE,

JRST NONE JNOT THERE (MONITOR IS ONE BEFORE 5,05)

JUMPE T2,NONE JIF 0, SUBTABLE NOT INCLUDED IN THIS
JLOAD OF THE MONITOR,

ADDI T2,%CVRAI JFORM DESIRED INDEX IN SUBTABLE WITH
SRESPECT TO VARIABLE GETTAB,

HRL T2,T2 JRELATIVE ADDRESS OF SUBTABLE WITH
JRESPECT TO VARIABLE TABLE,

HRRI T2,,GTCOV(T) JFORM PROPER GETTAB FOR CPU VARIABLES,

GETTAB T2, JGET RESPONSE TIME

JRST NONE INOT THERE, THIS SHOULD NOT HAPPEN

) SINCE
1ZERO TEST ON RELATIVE POINTER
$FAILED,

HERE WITH RESPONSE IN T2

Response Subtable

The response subtable is pointed to by %#CCRSP in the constants table for each processor. This subtable is under
the conditional assembly switch FTRSP. Refer to Paragraph 3.6.3.4.3 for additional response information.

Item Location Use

0 9ZCVRSO Accumulated TTY output UUO responses. That is, the total
number of jiffies users have spent waiting for their jobs to do
a TTY output UUO (on CPUOQ) after either a command was
issued which ran a job or terminal input was given that removed
the job from a TTY input wait state.

1 ZCVRNO Number of TTY output UUO responses for this CPU.

2 %CVRHO The high-order sum of the squares of TTY output UUO responses.
Used for computing standard deviation.

3 %CVRLO The low-order part of the sum of the squares of TTY output
UUO responses.

4 9%CVRSI Accumulated TTY input UUO responses for this CPU. That is,
the total number of jiffies users have spent waiting for thier jobs
to do a TTY input UUO (on CPUQ) after either a command was
issued which ran a job or terminal input was given that removed
the job from a TTY input wait state.

3-70

Item

10

11

12
13
14
15
16
17

20

21

22

23

Location
%CVRNI
%CVRHI

ZCVRLI

ZCVRSR

ZCVRNR

ZCVRHR

%CVRLR

FCVRSX

ZCVRNX

%CVRHX

%CVRLX

ZCVRSC

Z%CVRNC

%CVRHC

Z%CVRLC

Use
Number of TTY input UUO responses for this CPU,

The high-order sum of the squares of TTY input UUO responses.
Used for computing standard deviation.

The low-order part of the sum of the squares of TTY input
UUO responses.

Accumulated CPU quantum requeue responses. That is, total
number of jiffies users spent waiting for their jobs to exceed
the CPU quantum on this CPU after either a command was is-
sued which ran a job or terminal input was given that removed
the job from a TTY input wait state.

Number of CPU quantum requeue responses for this CPU.

The high-order sum of the squares of CPU quantum requeue
response. Used for computing standard deviation.

The low-order part of the sum of the squares of CPU quantum
requeue response.

Accumulated response terminated by the first occurrence of one
of the above 3 events (TTY output, TTY input, or CPU quantum
requeue).

Number of such responses in %CVRSX.

The high-order sum of the squares of responses in ZCVRSX.
Used for computing standard deviation.

The low-order part of the sum of the squares of responses in
ZCVRSX.

Accumulated CPU responses on this CPU. Total number of
jiffies that users waited for their jobs to run after either a com-
mand was issued which ran a job or terminal input was given
that removed the job from a TTY input state.

Number of CPU responses for all users waiting for their jobs
to run. Dividing this value into the value of ZCVRSC gives the
average response time since the system was started.

The high-order part of the sum of the squares of CPU responses -

on this CPU.

The low-order part of the sum of the squares of CPU responses
of this CPU.

3-71

Parity Subtable

The parity table is pointed to by %CCPAR in the constants table for each processor. This subtable is under the
conditional assembly switch FTMEMPAR. Refer to Paragraphs 3.6.3.4.3 and 7.7 for additional parity informa-
tion.

Item Location Use

0 %CVPLA Highest bad memory parity address on last sweep of memory.
Used to tell operator the range of bad addresses.

1 %ZCVPMR Relative address (not virtual address) in the high or low segment
of the last memory parity error.

2 %CVPTS . Number of parity errors on the last sweep of core. Set to 0 at
beginning of the sweep.

3 9%CVPSC Number of parity sweeps by the monitor.
4 %CVPUE Number of user-enabled parity errors. Refer to Paragraph
3.1.3.1.
5 %CVPAA The AND of bad addresses on the last memory parity sweep.
6 %CVPAC The AND of bad contents on the last memory parity sweep.
7 %CVPOA The OR of bad addresses on the last memory parity sweep.
10 %CVPOC The OR of bad contents on the last memory parity sweep.
11 %CVPCS Number of spurious parity errors. (The APR sweep found no

bad parity but the channel had requested the sweep rather than
the processor). This indicates a channel memory port problem.

Bad Address Subtable

The bad address table is pointed to by ZCCMPT in the constants table for each processor. This subtable is under
the conditional assembly switch FTMEMPAR and contains the bad addresses on the last memory parity sweep.
It is not cleared and the number of valid entries is kept in %CVPTS in the parity subtable.

3.6.3.4.15 Entries in Table 71 — .GTFET (Feature Table) — This table provides the user with a mechanism for
determining the current settings of all features defined in F.MAC.

Item Location Use

0 %FTUUO Bit 24 = 1 if PSISER implemented (F%PI).
Bit 25 = 1 if IPCF implemented (F%IPCF).
Bit 26 = 1 if control C intercept (F%CCIN).
Bit 27 = 1 if JOBSTS and CTLJOB UUOs are implemented
(F%PTYU).
Bit 28 = 1 if PEEK UUO implemented (FZPEEK).
Bit 29 = 1 if POKE. UUO implemented (F%ZPOKE).
Bit 30 = 1 if JOB continue (F%JCON).

3-72

Item

0 (cont)

Location

%FTRTS

%FTCOM

%FTACC

%FTERR

Use

Bit 31 = 1 if spooling supported (F%SPL).

Bit 32 = 1 if job privileges supported (F%ZPRV).
Bit 33 = 1 if DAEMON supported (FZDAEM).
Bit 34 =1 if GETTAB exists (FZGETT).

Bit 35 = 1 if 2-register relocation (F%2REL).

Real time and scheduling features

Bit 26 = 1 if virtual memory (F%VM).

Bit 27 = 1 if swapper (F%ZSWAP).

Bit 28 = 1 if shuffler (F%SHFL).

Bit 29 = 1 if DK10 service (FZRTC).

Bit 30 = 1 if LOCK UUO implemented (F%LOCK).
Bit 31 = 1 if TRPSET UUO implemented (F%TRPS).
Bit 32 = 1 if real-time traps implemented (F%RTTR).
Bit 33 =1 if SLEEP UUO implemented (F%SLEE).
Bit 34 =1 if HIBER and WAKE UUOs supported (F%ZHIBW).
Bit 35 = 1 if high priority queues supported (F%HPQ).

Commands

Bit 23 = 1 if COMPIL commands (F%CCL).

Bit 24 = 1 if COMPIL-class (F%CCLX).

Bit 25 = 1 if QUEUE (F%QCOM).

Bit 26 = 1 if SET UUO and command (F%SET).

Bit 27 = 1 if VERSION (F%VERS).

Bit 28 = 1 if Batch control file commands (F%BCOM).
Bit 29 =1 if SET DAYTIME and SET DATE (F%SEDA).
Bit 30 =1 if WATCH (F%WATC).

Bit 31 = 1 if FINISH and CLOSE (F%FINI).

Bit 32 = 1 if REASSIGN (F%REAS).

Bit 33 = 1 if E and D (FZEXAM).

Bit 34 = 1 if SEND (F%TALK).

Bit 35 =1 if ATTACH (F%ATTA).

Accounting information

Bit 31 =1 if time and core limits (F%TLIM).

Bit 32 = 1 if charge number (F%CNO).

Bit 33 = 1 if user name (FAUNAM).

Bit 34 = 1 if kilo-core-ticks accumulation (F%KCT).
Bit 35 = 1 if run-time computation (F%TIME).

Error control and internal options

Bit 25 = 1 if 22 bit channel (DF10C).

Bit 26 = 1 if swapping process data block (F%PDBS).

Bit 27 = 1 if KI10 features at startup time (F%KI110) (always
1 since 5.06).

Bit 28 = 1 if METER. UUO supported (FZMETR).

Bit 29 = 1 if execute-only files (FZEXON).

3-73

Item Location Use

4 (cont) Bit 30 = 1 if illegal instruction message checks for KI10 instruc-
tions (F%KII).
Bit 31 = 1 if code to load BOOTS from disk (F%BOOT).
Bit 32 = 1 if more than one swapping device (F%2SWP).
Bit 33 =1 if DAEMON error logging (F%EL).
Bit 34 = 1 if multi-processor code loaded (F%MS).
Bit 35 = 1 if memory parity error recovery (F%ZMEMP).

5 %FTDEB Debugging features
Bit 28 = 1 if response time measurement (F%RSP).
Bit 29 = 1 if why reload code (F%WHY).
Bit 30 = 1 if patch space left in table (F%ZPATT).
Bit 31 = 1 if back-tracking information left in COMMON
(F%TRAC).
Bit 32 = 1 if monitor halts on error (FHALT).
Bit 33 = 1 if redundancy checking for internal errors (F%RCHK).
Bit 34 = 1 if monitor write-protected (F%ZMONP).
Bit 35 = 1 if monitor check summing (FZCHEC).

6) %FTSTR File structure parameters
Bit 21 = 1 if NUL device (F%NUL).
Bit 22 = 1 if LIB/SYS/NEW (F%LIB).
Bit 23 = 1 if disk priority transfers (FZDPRI).
Bit 24 = 1 if append to last block (F%APLB).
Bit 25 = 1 if append implies read (F%AIR).
Bit 26 = 1 if generic device search (F%GRSC).
Bit 27 = 1 if rename cross directories (F%DRDR).
Bit 28 = 1 if SEEK UUO (F%DSEK).
Bit 29 = 1 if super USETI/USETO (F%DSUP).
Bit 30 = 1 if disk quotas (F%DQTA).
Bit 31 = 1 if multiple file structures (F%STR).
Bit 32 = 1 if 5-series UUOs (F%5UUOQO).
Bit 33 = 1 if physical-only I/O (F%PHYO).
Bit 34 = 1 if sub-file directories (F%SFD).
Bit 35 = 1 if STRUUO functions (F%ZMOUN.).

7 %FTDSK Internal disk parameters
Bit 21 = 1 if DEBUG CB interlock (F%CBDB).
Bit 22 = 1 if LOGIN system (F%LOGI).
Bit 23 = 1 if disk system (F%DISK).
Bit 24 = 1 if race-condition prevention in FILFND (F%FREE).
Bit 25 = 1 if swap read error recovery (F%SWPE).
Bit 26 =1 if bad block marking (F%DBBK).
Bit 27 = 1 if UFD compressor (F%ZDUFC).
Bit 28 = 1 if disk error simulation (F%DETS).
Bit 29 = 1 if extended RIBs supported (F%DMRB).
Bit 30 = 1 if smaller allocation for disk core blocks (F%DSMC).

3-74

Item

7 (cont)

10

11

Location

%FTSCN

%FTPER

Use

Bit 31 = 1 if allocation optimization (F%DALC).
Bit 32 = 1 if disk usage statistics (F%DSTT).

Bit 33 = 1 if hung disk recovery (F%ADHNG).

Bit 34 = 1 if disk off-line recovery (F%DBAD).
Bit 35 = 1 if latency optimization (F%DOPT).

Scanner options

Bit 24 = 1 if TYPESET-10 features in DC76 (F%TYPE).
Bit 25 = 1 if 2741-like terminals supported (F%2741).
Bit 26 = 1 if DC76 (F%CAFE).

Bit 27 =1 if TTY BLANK command (F%TBLK).

Bit 28 = 1 if page and display knowledge (F%TPAG).
Bit 29 = 1 if automatic dialer supported (F%DTAL).

Bit 30 = 1 if special line control (F%SCLC).

Bit 31 = 1 if hardware (DC10 or DC68) scanner (F%ASCNR).
Bit 32 = 1 if modem control (F%MODM).

Bit 33 = 1 if single scanner 630 (F%630H).

Bit 34 = 1 if U.K. modem supported (F%GPO?2).

Bit 35 = 1 if real half-duplex terminals (FZHDPX).

I/O Parameters

Bit 25 = 1 if MSGSER implemented MPX device (FZMSGS).
Bit 26 = 1 if high-speed logical device search (F%HSLN).
Bit 27 = 1 if CDP trouble intercept (F%CPTR).

Bit 28 = 1 if CDR trouble intercept (FZCRTR).

Bit 29 = 1 if CTY 1 supported (FZCTY 1).

Bit 30 = 1 if remote station supported (F%REM).

Bit 31 = 1 if LPT error recovery (F%LPTR).

Bit 32 = 1 if device errors to operator (F%OPRE).

Bit 33 = 1 if CDR super-image mode (F%CDRS).

Bit 34 = 1 if MTA density and buffer size (FZMTSE).
Bit 35 =1 if TMPCOR area (F%TMP).

3.6.3.4.16 Entries in Table 73 — .GTSCN (Scanner Table) — This table allows the user a mechanism whereby he
can access the scanner response data. The items and their meanings are as follows:

Item

0
1

2
3
4

Location

%SCNRI
%SCNXI
%SCNEI
%SCNMB
%SCNAL

Use

Number of RCV Interrupts

Number of XMT Interrupts

Number of Echo Interrupts (subset of %SCNXI)
Maximum buffer size.

Number of active lines.

375

3.6.3.4.17 Entries in Table 74 — .GTSND (Send-all) — The .GTSND table contains the last send-all message
with the first item in this table pointing to the beginning of the message and the second item pointing to the end
of the message. Items 3 through the last items contain 9-bit bytes (4 per entry) making up the text of the send-
all message. Each send-all message ends with two bytes containing 001 and 000 in that order. The table entries
are as follows:

Item Use
0 Byte pointer to first byte of message.
1 Byte pointer to last byte in message.

Message text.

3.6.3.4.18 Entries in Table 77 — .GTIPC (IPCF Miscellaneous Data) —

Item Mnemonic Use

0 %IPCML Maximum packet length.
1 9IPCSI PID of system-wide [SYSTEM] INFO.
2 %IPCDQ Default quota.
3 %IPCTS Total packets sent.
4 %IPCTO Total packets outstanding.
5 %IPCCP PID of [SYSTEM] IPCC.
6 %IPCPM PID mask.
7 %IPCMP Length of PID table.

10 %IPCNP Number of PID’s now defined.

11 %IPCTP Total PID’s defined since reload.

3.6.3.4.19 Entries in Table 113 — .GTVM (General Virtual Memory Data)

Item Mnemonic Use
0 | %VMSWP Swap count.
1 %VMSCN Scan Count.
2 %VMSIP Count of swaps in progress.
3 %VMSLE Count of swap list entries.
4 %VMTTL Total virtual memory in use.
5 %VMCMX Maximum value of VMTTL allowed.
6 %VMRMX Paging rate max for system.
7 %VMCON Constant used in swap rate computation.

3-76 September 1974

Item Mnemonic Use

10 %VMQIJB Job to requeue to PQV (-1 if all)

11 %VMRMJ Paging rate maximum per job.

12 %VMTLF Time of last fault.

13 %VMSPF System page fault counts: LH = not in working set.
RH = in working set.

14 %VMSW 1 Address of SWPLST |

15 %VMSW2 Address of SW2LST

16 %VMSW3 Address of SW3LST

3.6.4 Configuration Information

3.6.4.1 SWITCH AC, er CALLI AC, 20 — This UUO returns the contents of the central processor data switches
n AC. Caution must be exercised in using the data switches because they are not an allocated resource and are
ilways available to all users.

3.6.4.2 LIGHTS AC, or CALLI AC, -1 — This UUO displays the contents of AC in the console lights.

3.7 DAEMON AC, OR CALLI AC, 102(1)

Chis UUO requests the DAEMON program to perform a specified function for the user program. The call is:

MOVE AC, [XWD length(nt1), ADR]

DAEMON AC, ;or CALLI AC, 102
error return

normal return

ADR: function
argl
arg2

arg (n)

——-——-The length of the argument list can be zero if the number of arguments is fixed. The first wor»digf th; argument
list is the code for the requested function. Non-privileged functions of the DAEMON UUQ are presented in the
following paragraphs. Refer to the Specifications section of the DECsystem-10 Software Notebooks for a de-

scription of the privileged functions.

(1) This UUO depends on FTDAEM which is normally off in the DECsystem-1040.

3-77 September 1974

3.7.1 .DCORE Function

This function causes DAEMON to write a dump file of the job’s core area. The call is:

ADR: 1 ; .DCORE function
SIXBIT/dev/
SIXBIT/file/
SIXBIT/ext/
0
XWD ppn
SIXBIT/SFD1/

SIXBIT/SFDN/
If an argument is omitted, the default is the same as in the DCORE command (refer to DECsystem-10 Operating
System Commands).
3.7.2 .CLOCK Function

This function causes DAEMON to enter a request in the clock queue in order to awake the job after the specified
number of seconds has elapsed. The UUQO returns as soon as the request is entered. The HIBER UUO with no
clock request (refer to Paragraph 3.1.4.2) should then be used to place the job in the sleep queue.

The call is:
MOVEI AC, BLOCK
DAEMON AC,
JRST ERROR
SETZ AC,
HIBER AC,
JRST ERROR
ERROR: ... ; simulate the DAEMON UUO
; with the SLEEP UUO.
BLOCK: 2 ; .CLOCK function
+seconds ;number of seconds to
; sleep.

If the job already has a request in the clock queue, the new request supersedes the current request. Thus, jobs
desiring to be awakened several times should issue one request for the soonest wake time.

There is no maximum on the amount of time a job can sleep and therefore, this UUO is useful when a sleep time
of more than 63 seconds is desired (the SLEEP and HIBER UUOs have an implied maximum of 63 seconds). A

request specifying O seconds clears the job’s entry in the clock queue and immediately wakes the job. Note that
the resolution of the timer may be several seconds slow if the system is heavily loaded.

3-78

3.7.3 Returns

The error return is given if the UUO is not implemented, DAEMON is not running, or DAEMON cannot complete
the requested function. If the UUO is not implemented or DAEMON is not running, AC remains unchanged. If
DAEMON cannot complete the request, AC contains one of the following error codes:

Item Location Use
1 DMILF% Illegal function.
2 DMACK% Address check. The argument block is outside of user core or
in the job data area.
3 DMWNA% Wrong number of arguments.
4 DMSNH% Impossible UUO failure (should never happen).
5 DMCWF% Cannot write file. An OPEN or INIT failed.
6 DMNPV% No privileges. An attempt was made to write in the accounting

files without having the proper privileges.
7 DMFFB% FACT format is bad.

10 DMPTH% Invélid path specification.
The normal return is taken if the requested function is successfully completed.
3.8 REAL-TIME PROGRAMMING

3.8.1 RTTRP AC, or CALLI AC, 57(1)

The real-time trapping UUO is set by timesharing users to dynamically connect real-time devices to the priority
interrupt system, to respond to these devices at interrupt level, to remove the devices from the interrupt system,
and to change the PI level on which the devices are associated. The RTTRP UUO can be called from UUO level
or from interrupt level. This is a privileged UUO that requires the job to have real-time privileges (granted by
LOGIN) and to be locked in core (accomplished by LOCK UUQ). These real-time privileges are assigned by the
system manager and obtajned by the monitor from ACCT.SYS. The privilege bits required are:

1. JP.LCK (Bit 14) — allows the job to be locked in core.

2. JP.RTT (Bit 13) — allows the RTTRP UUO to be executed.

WARNING
Improper use of features of the RTTRP UUO can cause
the system to fail in a number of ways. Since design goals
of this UUO were to give the user as much flexibility as
possible, some system integrity had to be sacrificed. The
most common errors are protected against since user pro-
grams run in user mode with all ACs saved. It is recom-
mended that debugging of real-time programs not be done
when system integrity is important. However, once these
programs are debugged, they can run simultaneously with
batch and timesharing programs.

(1) This UUO depends on FTRTTRP which is normally off in the DECsystem-1040.

3-79

Real-time jobs control devices one of two ways: block mode or single mode. In block mode, an entire block of
data is read before the user’s interrupt program is run. In single mode, the user’s interrupt program is run every
time the device interrupts. Furthermore, there are two types of block mode: fast block mode and normal block
mode. These differ in response time. The response time to read a block of data in fast block mode is 6.5 sec per
word and in normal block mode, 14.6 sec per word. (This is the CPU time to complete each data transfer.) In
all modes, the response time measured from the receipt of the real-time device interrupt to the start of the user
control program is 100 sec.

The RTTRP UUO allows a real-time job to either put a BLKI or BLKO instruction directly on a PI level (block
mode) or add a device to the front of the monitor PI channel CONSO skip chain (single mode). Since the BLKI
and BLKO are executed in exec mode, a KI10-based system requires that the job be mapped in exec virtual mem-
ory, in addition to being locked (refer to the LOCK UUO). When an interrupt occurs from the real-time device
in single mode or at the end of a block of data in block mode, the monitor saves the current state of the machine,
sets the new user virtual memory and APR flags, and traps to the user’s interrupt routine. The user services his
device and then returns control to the monitor to restore the previous state of the machine and to dismiss the
interrupt.

In fast block mode the monitor places the BLKI/BLKO instruction directly in the PI trap location followed by a
JSR to the context switcher. This action requires that the PI channel be dedicated to the real-time job during
any transfers. In normal block mode the monitor places the BLKI/BLKO instruction directly after the real-time
device’s CONSO instruction in the CONSO skip chain (refer to Chapter 7).

Any number of real-time devices using either single mode or normal block mode can be placed on any available
PI channel. The average extra overhead for each real-time device on the same channel is 5.5 sec per interrupt.

The call is:
MOVEI AC, RTBLK ; AC contains address of data block.
RTTRP AC, ;or CALLI AC, 57, put device on PI level.
error return ; AC contains an error code.
normal return ; P1 is set up properly.

The data block depends on the mode used. In single mode the data block is:

RTBLK? XWD PICHL, TRPADR 1PI channel (1=6) and trap
jaddress, '
EXP APRTRP $APR trap address, A
CONSO DEV, BITS JCONSO chain instruetion,
0 sno BLKI/BLKO instruction,

The data block in fast block mode is:

RTBLK! X¥Wp PICHL, TRPADR)Pl and trap address when BLKO
jdone,
EXP APRTRP $APR trap address,
BLKO DEV, BLKADR JBLKI or BLKO instruction,
0 §BLKADR points to the IDOWD of

sblock to be sent,

3-80

The data block in normal block mode is:

RTBLK? XWD PICHL, TRPADR jchannel and trap address,
EXP APRTRP 1APR trap address,
CONSO DEV, @RITMSK tcontrol bit mask from user
jarea,
BLKI DEV, BLKADR yBLKI instruetion,

On multiprocessor systems, the real-time trap UUO applies only to the processor specified by the job’s CPU spec-
ification (refer to the SET CPU command or the SET UUO). If the specification indicates more than one pro-
cessor, the specification is changed to indicate CPUO. Note that the PI channel (PICHL) and processor traps
(APRTRP) are only for the indicated CPU.

3.8.1.1 Data Block Mnemonics — The following mnemonics are used in describing the data block associated
with the RTTRP UUO.

PICHL — PICHL is the PI level on which the device is to be placed. Levels 1—6 are legal depending on the system
configuration. If PICHL = 0, all occurrences of the device whose device code is specified in the CONSO instruc-
tion are removed from all levels. When a device is placed on a PI level, normally all other occurrences of the
device on any PI level are removed. If the user desires the same device on more than one PI level simultaneously
(i.e., a data level and an error level), he can issue the RTTRP UUO with PICHL negative. This indicates to the
system that any other occurrence of this device (on any PI level) is not to be removed. Note that this addition

to a PI level counts as a real-time device, occupying one of the possible real-time device slots.

TRPADR — TRPADR is the location trapped to by the real-time interrupt (JRST TRPADR). Before the trap
occurs, all ACs are saved by the monitor and can be overwritten without concern for their contents.

APRTRP — APRTRP is tﬁe trap location for all APR traps. When an APR trap occurs, the monitor simulates a
JSR APRTRP. The user gains control from an APR trap on the same PI level that his real-time device is on. The
monitor always traps to the user program on illegal memory references; nonexistent memory references, and
push-down overflows. This allows the user to properly turn off his real-time device if needed. The monitor also
traps on the conditions specified by the APRENB UUO (see Paragraph 3.1.3.1). No APR errors are detected if
the interrupt routine is on a PI level higher than or equal to the APR interrupt level.

DEV — DEYV is a real-time device code.

BITS — BITS is the bit mask of all interrupt bits of the real-time device and must not contain any other bits. If
the user desires control of this bit mask from his user area, he may specify one level of indirection in the CONSO
instruction (no indexing), i.e., CONSO DEV, @ MASK where MASK is the location in the user area of the bit
mask. MASK must not have any bits set in the indirect or index fields.

~ BLKADR — BLKADR is the address in the user’s area of the BLKI/BLKO pointer word. Before returning to—
the user, the monitor adds the proper relocation factor to the right half of the pointer word. Data can only be
read into the low segment above the protected job area, i.e., above location 114.

Since the pointer word is in the user’s area, the user can set up a new pointer word when the word count goes

to 0 at interrupt level. This allows fast switching between buffers. When the user desires to set up his own
pointer word, the right half of the word must be set as an exec virtual instead of a user virtual address. The job’s
relocation value is returned from both the LOCK UUO and the first RTTRP UUO executed for setting the BLKI/
BLKO instruction. If this pointer word does not contain a legal address, a portion of the system might be over-
written. A check should be made to determine if the negative word count in the left half of the pointer word

3-81

is too large. If the word count extends beyond the user’s own area, the device may cause a nonexistent memory
interrupt, or may overwrite a timesharing job. If all of the above precautions are taken, this method of setting
up the pointer word is much faster and more flexible than issuing the RTTRP UUO at interrupt level.

3.8.1.2 Interrupt Level Use of RTTRP — The format of the RTTRP UUO at interrupt level is similar to the
format at user level except for two restrictions:

1. AC 16 and AC 17 cannot be used in the UUO call (i.e., CALLI 16, 57 is illegal at interrupt level).

2. All ACs are overwritten when the UUO is executed at interrupt level. Therefore, the user must save any
desired ACs before issuing the RTTRP UUO. This restriction is used to save time at interrupt level.

CAUTION
If an interrupt level routine executes a RTTRP UUO that
affects the device currently being serviced, no additional
UUOs of any kind (including RTTRP and WAKE) can be
executed during the remainder of the interrupt. At this
point, any subsequent UUO dismisses the interrupt.

3.8.1.3 RTTRP Returns — On a normal return, the job is given user IOT privileges. These privileges allow the
user to execute all restricted instructions including the necessary 1/O instructions.to control his device.

The IOT privilege must be used with caution because improper use of the I/O instructions could halt the system
(i.e., HALT on the KA10; CONOAPR, 0; DATAO APR, 0; CONO PI, 0 on the KA10 and KI10; and CONO PAG,
0 or DATAO PAG, 0 on the KI10). Note that a user can obtain just the user IOT privilege by issuing the RTTRP
UUO with PICHL = 0.

An error return is not given to the user until RTTRP scans the entire data block to find as many errors as possible.
On return, AC may contain the following error codes.

Name Code Value Meaning
RTINP% Bit 24=1 4000 Job not privileged.
RTNC0% Bit25=1 2000 Not runnable on CPUQ.
RTDIU% Bit26=1 1000 Device already in use by another job.
RTIAU% Bit 27 =1 400 Itlegal AC used during RTTRP UUO at interrupt level.
RTINL% Bit 28 =1 200 Job not locked in core.
RTSLE% Bit29=1 100 System limit for real-time devices exceeded.
RTILF% Bit30=1 40 Illegal format of CONSO, BLKO, or BLKI instruction.
RTPWI% , Bit31=1 20 BLKADR or pointer word illegal.
RTEAB% Bit 32 =1 10 Error address out of bounds.
RTTAB% Bit33=1 4 Trap address out of bounds.
RTPNB% Bit34=1 2 PI channel not currently available for BLKI/BLKO’s.
RTPNA% Bit35=1 1 PI channel not available (restricted use by system).

3-82

CSSAVE), — .

3.8.1.4 Restrictions —

1. Devices may be chained onto any PI channel that is not used for BLKI/BLKO instructions by. the
system or by other real-time users using fast block mode. This includes the APR channel. Normally
PI levels 1 and 2 are reserved by the system for magnetic tapes and DECtapes. PI level 7 is always
reserved for the system.

2. Each device must be chained onto a PI level before the user program issues the CONO DEV, PIA to
set the device onto the interrupt level. Failure to observe this rule or failure to set the device on the
same PI level that was specified in the RTTRP UUO could hang the system.

3. If the CONSO bit mask is set up and one of the corresponding flags in a device is on, but the device
has not been physically put on its proper PI level, a trap may occur to the user’s interrupt service
routine. This occurs because there isa CONSO skip chain for each PI level, and if another device in-
terrupts whose CONSO instruction is further down the chain than that of the real-time device, the
CONSO associated with the real-time device is executed. If one of the hardware device flags is set and
the corresponding bit in the CONSO bit mask is set, the CONSO skips and a trap occurs to the user
program even though the real-time device was not causing the interrupt on that channel. To avoid this
situation the user can keep the CONSO bit mask in his user area (refer to Paragraph 3.8.1.1). This
procedure allows the user to chain a device onto the interrupt level, keeping the CONSO bit mask zero
until the device is actually put on the proper PI level with a CONSO instruction. This situation never
arises if the device flags are turned off until the CONO DEV, PIA can be executed.

4. The user should guard against putting programs on high priority interrupt levels which execute for
long periods of time. These programs could cause real-time programs at lower levels to lose data.

5. The user program must not change any locations in the protected job data area (locations 20—114),
because the user is running at interrupt level and full context switching is not performed.

6. If the user is using the BLKI/BLKO feature, he must restore the BLKI/BLKO pointer word before
dismissing any end-of-block interrupts. This is accomplished with another RTTRP UUO or by directly
modifying the absolute pointer word supplied by the first RTTRP UUO. Failure to reset the pointer
word could cause the device to ove_rwrite all of memory.

3.8.1.5 Removing Devices from a PI Channel — When PICHL=0 in the data block (see Paragraph 3.8.1.1), all
occurrences of the device specified in the CONSO instruction are removed from the interrupt system. If the
user removes a device from a PI chain, he must also remove the device from:the PI level (CONO DEV, 0).

A RESET, EXIT, or RUN UUO from the timesharing levels removes all devices from the interrupt levels (see
Paragraph 3.2.2.4). These UUOs cause a CONO DEV, 0 to be executed before the device is removed. Monitor
commands that issue implicit RESETS also remove real-time devices (e.g., R, RUN, GET, CORE 0, SAVE,

3.8.1.6 Dismissing the Interrupt — The user program must always dismiss the interrupt in order to allow mon-
itor to properly restore the state of the machine. The interrupt may be dismissed with any UUO other than the
RTTRP or WAKE UUO or, on the KA 10, any instruction that traps to absolute location 60. The standard
method of dismissing the interrupt is with a UJEN instruction (op code 100). This instruction gives the fastest
possible dismissal.

3-83

3.8.1.7 Examples

PDATA!
PTRTST!

RTBLK?

PTRCSO!
DONFLG
RTBLK{ ¢

TRPADR!

APRTRP?
TDONE

#ndudsdie EXAMPLE 1 #4ssdsdisas

SINGLE MODE

TITLE RTSNGL = PAPER TAPE READ TEST USING CONSO CHAIN

PIOFF=400
PION=200
TAPE=400
BUSY=20
DONE=$0

Z

RESET

MOVE [XWD 1,1)
LOCK

JRST FAILED
SETZM PTRCSO
SETZM DONFLG
MOVEI RTBLK
RTTRP

JRST FAILED
MOVEI §,DONE
HLRZ 2,RTBLK
TRO 2,BUSY
CONO PI,PIOFF
MOVEM §,PTRCSO
COND PTR, (2)
CONO PI,PION
MOVEI §

SLEEP

SKIPN DONFLG
JRST ,=3

EXIT

XWD 5,TRPADR
EXP APRTRP

CONSO PTR,RPTRCSO

z

Z
Z
Z

Z
CONSO PTR,O0
7

CONSO PTR,TAPE
JRST TDONE
DATA{ PTR,PDATA
UJEN

A
MOVET RTBLK{
CONQ PTR, 0
RTTRP

JFCL

SETOM DONFLG
SETZM PTRCSO
UJEN

sTURN PI SYSTEM OFF

s TURN PI SYSTEM ON

tNO MORE TAPE IN READER IF TAPE=Q
$DEVICE IS BUSY REAPING

1A CHARACTER HAS BEEN READ

sLOCATION WHERE DATA I8 READ INTO

JRESET THE PROGRAM
1LOCK BOTH HIGH AND LOW SEGMENTS
yLOCK THE JOB IN CORE

yLOCK UUO FAILED

yMAKE SURE CONSO BITS ARE ZERO
yINITIALIZE DONE FLAG

JGET ADDRESS OF REAL TIME DATA BLOCK
JPUT REAL TIME DEVICE ON THE PI LEVEL
JRTTRP UUO FAILED

JSET UP CONSO BIT MASK

1GET PI NUMBER FROM RTBLK

ySET UP CONSO BITS TO START TAPE GOING
1GUARD AGAINST ANY INTERRUPTS

JSTORE CONSO BIT MASK

$ TURN PTR ON

yALLOW INTERRUPT AGAIN

ySET UP T0 SLEEP FOR 5 SECONDS

fHAVE WE FINISHED READING THE TAPE
tNO GO BACK TO SLEEP

tPI CHANNEL AND TRAP ADDRESS

1APR ERROR TRAP ADDRESS

$ INDIRECT CONSO BIT MASK « PTRCSO
$NO BLKI/O INSTRUCTION

JCONSO BIT MASK

1PI LEVEL TO USER LEVEL COMM,
$1DATA BLOCK TO REMOVE PTR

yFROM PI CHANNEL

9END OF TAPE?

tYES, GO STOP JOB
tREAD IN DATA WORD
y)DISMISS THE INTERRUPT

$APR ERROR TRAP ADDRESS

1SET UP TO REMOVE PTR

g TAKE DEVICE OFF HARDWARE PI LEVEL
$REMOVE FROM SOFTWARE PI LEVEL

3} IGNORE ERRORS

tMARK THAT READ IS OVER

$CLEAR CONSO BIT MASK

$DISMISS THE INTERRUPT

3-84

FAILED!

TAPE=400
BUSY=20
DONE=10

BLKTST: RESET
MOVE [XWD 1,1}
LockK
JRST FAILED
SETZM DONFLG
MOVET RTBLK
RTTRP
JRST FAILED
HLRZ 2,RTBLK
TRO 2,BUSY
COND PTR,(2)
MOVEI 5§
SLEEP
SKIPN DONFLG
JRST ,=3
EXIT

RTBLK?: XWD 6,TRPADR
EXP APRTRP
BLKI PTR,POINTR
Z

POINTR! IOWD 5,TABLE

OPOINT? IOWD S5,TABLE

TABLE: BLOCK 5

DONFLG: Z

RTBLK1i: Z
A
CONSD PTR,0
Z

TRPADR: CONSO PTR,TAPE
JRST TDONE
MOVE OPOQOINT

_ MOVEM POINTR

UJEN

APRTRP: Z

TDONE; MOVEI RTBLK\}
CONO PTR,O0
RTTRP
JFCL
SETOM DONFLG
UJEN

FAILED!?
EXIT

END BLKTST

EXIT

END PTRTST

TTCALL 3, [ASCIZ/RTTRP UUO FAILEDI|/)

Wit udpias EXAMPLE 2 firaitdidass

FAST BLOCK MODE

TITLE RTFBLK =» PAPER TAPE READ TEST IN BLKI MODE

sNO MORE TAPE IN READER IF TAPESzO
$DEVICE I8 BUBY READING
yA CHARACTER HAS BEEN READ

IRESET THE PROGRAM

$LOCK BOTH HIGH AND LOW SEGMENTS
tLOCK THE JOB IN CORE

s LOCK UUO FAILED

$INITAILIZE DONE FLAG

$GET ADDRESS OF REAL TIME DATA BLOCK
sPUT REAL TIME DEVICE ON THE PI LEVEL
JRTTTP UUOQ FAILED

JGET PI NUMBER FROM RTBLK

$SET UP CONO BITS TO START TAPE GOING
yTURN PTR ON

9y SETUP TO SLEEP FOR 5 SECONDS

sHAVE WE FINISHED READING THE TAPE
gNO GO BACK TO SLEEP

sPI CHANNEL AND TRAP ADDRESS
JAPR ERROR TRAP ADDRESS
JREAD A BLOCK AT A TIME

$POINTER FOR BLKI INSTRUCTION
JORIGINAL POINTER WORD FOR BLKY
3 TABLE AREA FOR DATA BEING READ
sPI LEVEL TO USER LEVEL COMM,
sDATA BLOCK TO REMOVE PTR

JFROM PY CHANNEL

YEND OF TAPE?

JYES, GO STOP JOB

1GET ORIGINAL POINTER WORD

yRESTORE BLKI POINTER WORD. .

yDISMISS THE INTERRUPT

g)APR ERROR TRAP ADDRESS

3y SETUP TO REMOVE PTR

s TAKE DEVICE OFF HARDWARE PI LEVEL
JREMOVE FROM SOFTWARE PI LEVEL

3 IGNORE ERRORS

fsMARK THAT READ IS OVER

yDISMISS THE INTERQUPT

TTCALL 3, [ASCIZ/RTTRP UUD FAILED!/]

3-85

BLKTSTs

RTBLK?

POINTRY
OPOINT
TABLE!

DONFLG1
RTBLK1

TRPADR}

APRTRP1
TDONE 1

SRekutudns EXAMPLE 3 #tdnstudiss

NORMAL BLOCK MODE

TITLE RTNBLK « PAPER TAPE READ TEST IN BLKI MODE

TAPE=400
BUSY=20
DONE=10

RESET

MOVE [XWD 1,1]
LOCK

JRST FAILED
MOVEI RTRLK1
RTTRP

JRST FAILED
CONO PTR,O0
SETZM DONFLG
MOVEI RTBLK
RITRP

JRST FAILED
MOVE POINTR
MOVEM OPOINT
HLRZ 2,RTBLK
TRO 2,BUSY
CONO PTR,(2)
MOVELI S
SLEEP

SKIPN DONFLG
JRST ,=3
EXIT

XWD 6,TRPADR
EXP APRTRP
CONSO PTR,DONE

BLKI PTR,POINTR

I0OWD S,TABLE

™~

BLOCK S

Z

Z

z

CONSD PTR,0
Z

CONSO PTR,TAPE
JRST TDONE
MOVE OPOINT
MOVEM POINTR
UJEN

z
MOVET RTBLK{
CONO PTR,0
RTTRP

JFCL

$§NO MORE TAPE IN READER IF TAPE=O
$DEVICE IS BUSY READING
1A CHARACTER HAS BEEN READ

1I0 RESET

1L.OCK BOTH HIGH AND LOW SEGMENTS
JLOCK THE JOR IN CORE

sLOCK UUQ FAILED

JGET ADDRESS OF REAL TIME BLOCK
1GET USER IOT PRIVILEGE

sUU0 FAILED!

JCLEAR ALL PTR FLAGS

P INITIALIZE DONE FLAG

1GET ADDRES8S OF REAL TIME DATA BLOCK
JPUT REAL TIME DEVICE ON THE PI LEVEL

$RTTRP UUO FAILED

JGET RELOCATED POINTER WORD FOR LATER

$STORE FOR INTERRUPT LEVEL USE
1GET PI NUMBER FROM RTBLK

JSET UP CONO BITS TO START TAPE GOING

yTURN PTR ON ,
ySET UP TO SLEEP FOR 5 SECONDS

yHAVE WE FINISHED READING THE TAPE
JNO GO BACK TO SLEEP

PI CHANNEL AND TRAP ADDRESS
tAPR ERROR TRAP ADDRESS
yWAIT ONLY FOR DONE FLAG
JREAD A BLOCK AT A TIME

yPOINTER FOR BLKI INSTRUCTION

yTABLE AREA FOR DATA BEING READ
yPI LEVEL TO USER LEVEL COMM,
yDATA BLOCK TO REMOVE PTR

JFROM PI CHANNEL

JEND OF TAPE?

$1YES, GO STOP JOB

$1GET ORIGINAL POINTER LOCATION
) STORE IN POINTER LOCATION
$DISMISS THE INTERRUPT

yAPR ERROR TRAP ADDRESS

$SET UP TO REMOVE PTR

yTAKE DEVICE OFF HARDWARE PI LEVEL
JREMOVE FROM SOFTWARE PI LEVEL

1 IGNORE ERRORS

3-86

SETOM DONFLG s MARK THAT READ IS OVER

UJEN $DISMISS THE INTERRUPT
FAILEDS TTCALL 3, [ASCIZ/RTTRP UUQ FAILED!/)
EXIT
END BKJTST

3-87

3.8.2 RTTRP Executive Mode Trapping

In special cases, the real-time user requires a faster response time than that offered by the RTTRP UUO when
executed in user mode. To accommodate these cases, the user can specify a special status bit in the RTTRP UUO
call, which gives the program control in exec mode (refer to Paragraph 2.1.3). Exec-mode trapping gives response
times of less than 10 sec to real-time interrupts. To use this exec-mode trapping, the job must have real-time
privileges (granted by LOGIN) and be locked in core (accomplished by the LOCK UUO). On KI10 based sys-
tems, the job must also be mapped contiguously in exec virtual memory (refer to the LOCK UUQ). The privilege
bits required are:

1. JP.TRP (Bit 15)
2. JP.LCK (Bit 14)
3. JP.RTT (Bit 13)

Several restrictions must be placed on user programs in order to achieve this level of response. On receipt of an
interrupt, program control is transferred to the user’s real-time program without saving ACs and with the pro-
cessor in exec mode. Therefore, the user program must save and restore all ACs that are used, must not execute
any UUOs, and cannot leave exec mode. This means that the programs must be self-relocating (i.e., through the
use of an-index or base register).

CAUTION
Improper use of the exec mode feature of the RTTRP
UUO can cause the system to fail in a number of ways.
Unlike the user mode feature of RTTRP, errors are not
protected against since the programs run in exec mode
with no ACs saved.

To specify RTTRP exec-mode trapping, bit 17 of the second word in the data block (RTBLK) must be set to 1.
This implies that no context switching is to be done and that a JSR TRPADR is to be used to enter the user’s
real-time interrupt routine. The user program must save and restore all ACs and should dismiss the interrupt
with a JRSTF @ TRPADR. This instruction must be set up prior to the start of the real-time device as an ab-
solute or unrelocated instruction. This can be done because the LOCK UUO returns the absolute addresses of
the low and high segments after the job is locked in a fixed place in memory.

The exec-mode trapping feature can be used with any of the standard forms of the RTTRP UUO: single mode,

normal mode, and fast block mode.

3.8.2.1 Example —
TITLE RTEXEC

PIA=S

DONE=10

BUSYa20

TAPE=400

Ing

AC=2

OPDEF HIBERNATE ([CALLI 72)

RTEXECt RESET tRESET THE PROGRAM

SETZM DONFLG pINITIALIZE THE DONE FLAG

MOVE AC,[XWD 1,1]

LOCK AC, JLOCK THE JOB IN CORE
tABSOLUTE ADDRESS OF JOB IS RETURNED
yIN AC

3-88

JRST FAILED
HRRZS AC

LSH AC,9

MOVEM AC,INDEX

ADDM AC,EXCHWD
ADDM AC,JENWD
MOVEI AC,RTBLK
RTTRP AC,

JRST FAILED
COND PTR,20+PIA

yERROR RETURN

JGET ONLY LOW SEGMENT ADDRESS
JJUSTIFY ADDRESS

JSAVE BASE ADDRESS FOR USE AT

y INTERRUPT LEVEL

yRELOCATE INTERRUPT LEVEL PROGRAM
yRELOCATE RETURN INSTRUCTION
JCONNECT REAL TIME DEVICE

yTO THE PI SYSTEM

JRTTRP UUO FAILED

JSTART REAL TIME DEVICE READING

y SLEEP

}FOR 10 MILLISECONDS

yFATLED

yI8 THE INTERRUPT LEVEL PROGRAM DONE
yNO, GO BACK TO SLEEP

JYES, EXIT

$BIT 17 SAYS TRAP IN EXEC MODE

JJSR TRPADR IS DONE UPON INTERRUPT
1SET UP INDEX REGISTER

y TAPE FINISHED?

JYES, STOP THE READER

JNO, READ IN THE NEXT CHARACTER
JRESTORE AC’S USED

JDISMISS THE INTERRUPT

tAPR ERRORS WILL TRAP HERE

1 TAKE THE READER OFF LINE

tMARK THAT THE TAPE IS FINISHED
1)G0 DISMISS THE INTERRUPT

$FLAG TO SPECIFY END OF JOB
tDATA WORD
$BASE INDEX REGISTER

SLEEP: MOVEI AC,®D1000
HIBERNATE AC,
JRST FAILED
SKIPN DONFLG
JRST SLEEP
EXIT

RTBLK: XWD PIA,TRPADR
XWD 1,APRTRP
CONSO PTR,DONE
0

TRPADR1 0

EXCHWD: EXCH I,INDEX
CONSD PTR, TAPE
JRST TDONE(I)
DATAI PTR,PDATA(I)

RETURN: EXCH I,INDEX(I)

JENWDs JRSTF @TRPADR

APRTRP?! 0

TDONE; CONO PTR,0
SETOM DONFLG(I)
JRST RETURN(I)

FAILED: TTCALL 3,[ASCIZ/UUO FAILURE/)
EXIT

DONFLG? 0

PDATAL O

INDEX1 O

END RTEXEC

3-89

3.8.3 TRPSET AC, or CALLI AC, 25(1)

The TRPSET feature may be used to guarantee some of the fast response requirements of real-time users. In
order to achieve fast response to interrupts, this feature temporarily suspends the running of other jobs during
its use. This limits the class of problems to be solved to cases where the user wants to transfer data in short
bursts at predefined times. Therefore, because the data transfers are short, the time during which timesharing is
stopped is also short, and the pause probably will not be noticed by the timesharing users.

The TRPSET UUO allows the user program to gain control of the interrupt locations. If the user does not have
the TRPSET privileges (JP.TRP, bit 15), an error return to the next location after the CALLI is always given, and
the user remains in user mode. Timesharing is turned back on. If the user has the TRPSET privileges, the central
processor is placed in user I/O mode. If AC contains zero, timesharing is turned on if it was turned off. If the
LH of AC is within the range 40 through 57 of the central processor, all other jobs are stopped from being sched-
uled and the specified executive PI location (40—57) is patched to trap directly to the user. In this case, the
monitor moves the contents of the relative location specified in the right half of AC, converts the user virtual
address to the equivalent exec virtual address, and stores the address in the specified executive PI location. On a
KI10-based system, this requires the user segment accessed during the interrupt be locked and mapped contig-
uously in the exec virtual memory (refer to the LOCK UUO). If the segment does not meet these requirements,
the error return is given.

On a multiprocessor system, the TRPSET UUOQ applies to the processor specified by the job’s CPU specification
(refer to the SET CPU command or the SET UUOQO). If the specification indicates only CPU1, an error return is
given if the job is not locked in core. When the specification indicates more than one processor, the specification
is changed to indicate CPUQ (the master processor).

Thus, the user can set up a priority interrupt trap into his relocated core area. On a normal return, AC contains
the previous contents of the address specified by LH of AC, so that the user program may restore the original
contents of the PI location when the user is through using this UUO. If the LH of AC is not within the range 40
through 57, an error return is given just as if the user did not have the privileges. The basic call is:

MOVE AC, [XWD N, ADR]

TRPSET AC,
ERROR RETURN
NORMAL RETURN
ADR: JSR TRAP ; Instruction to be stored
;in exec PI location
; after relocation added to it.
TRAP: 0 ; Here on interrupt from exec.

The monitor assumes that user ADR contains either a JSR U or BLKI U, where U is a user virtual address; con-
sequently, the monitor adds a relocation to the contents of location U to make it an absolute IOWD (i.e., an exec
virtual address). Therefore, a user should reset the contents of U before every TRPSET call.

A RESET UUO returns the user to normal user mode. The following instruction sequence is used to place the
real-time device RTD on channel 3.

(1) This UUO depends on FTTRPSET which is normally off in the DECsystem-1040.

3-90

INT461 BLKI RTD,INBLOK jrelocation constant
1for user is added
INT47: JSR XITINT jto RH when instructions
. jare placed into 46 and 47,

L]
START! MDVETY AC,INT46

HRLI AC,46
TRPSET AC,
JRST EXITR jerror return
MOVE AC, ([XWD 47, INT47) jnormal return
TRPSET AC,
JRST EXITR jerror return
. jnormal return
L]
[]

XITINT: O 1PC saved
“ s s sinterrupt dismiss routine

To maintain compatibility between a KA10-based system and a KI10-based system, the interrupt routine should
be executed in exec mode. However, for convenience, the routine can be executed in user mode in order to
avoid relocation to exec virtual memory. This is possible on KA 10-based systems if care is taken when dismissing
the interrupt (see example below). On KI10-based systems, if there is a possibility that the interrupt may occur
during the job’s background processing, the interrupt routine must be executed in exec mode (and thus must be
locked and exec-mapped with the LOCK UUO). In particular, if the job is executing a UUO at background level,
the user of UJEN at interrupt level may cause an error. On KI10-based systems it is recommended that the
TRPSET interrupt routines always be coded to run in exec mode (refer to the RTTRP UUO for programming
techniques).

On KA 10-based systems, the interrupt routine can be coded to run in user mode if the following procedure is
observed. If the interrupt occurs while some other part of the user’s program is running, the user may dismiss
from the interrupt routine with a JEN @ XITINT. However, if the machine is in exec mode, a JEN instruction
issued in user mode does not work because of memory relocation. This is solved by a call to UJEN (op code 100).
This UUO causes the monitor to dismiss the interrupt from exec mode. In this case, the address field of the
UJEN instruction is the user location when the return PC is stored (i.e., UJEN XITINT). The following sequence
enables the user program to decide whether it can issue a JEN to save time or dismiss the interrupt with a UUO
call.

Example (KA 10-based system only):

———XITINT¢— 0 v = PC-with-bits {n LH

JRST 1,,+1 jessential instruction,
sreturns machine to
juser mode,

MOVEM AC, SAVEAC jsave aceumulator AC

. jservice interruypt here
[]

[]

MOVE AC, XITINT 1get PC with bits

SETZM EFLAG

391

TLNN AC, 10000 jwas macnine {n user
ymode at entry?

SETOM EFLAG jno
MOVE AC, SAVEAC JRESTORE saved AC
SKIPE EFLAG
UJEN XITINT tnot in user mode at entry
JEN @ XITINT
SAVEAC?! 0
FEFLAGS 0

On entering the routine from absolute 47 with a JSR to XITINT + REL (where REL. is the relocation constant),
the processor enters exec mode. The first executed instruction in the user’s routine must, therefore, reset the
user mode flag, thereby enabling relocation and protection. The user must proceed with caution when changing
channel interrupt chains under timesharing, making certain the real-time job can co-exist with other timesharing
jobs.

3.8.4 UJEN (Op Code 100)

This op code dismisses a user I/O mode interrupt if one is in progress. If the interrupt is from user mode, a
JRST 12, instruction dismisses the interrupt. If the interrupt came from executive mode, however, this operator
is used to dismiss the interrupt. The monitor restores all accumulators, and executes JEN @ U where user loca-
tion U contains the program counter as stored by a JSR instruction when the interrupt occurred.

3.8.5 HPQ AC or CALLI AC 71(1)

The HPQ UUO is used by privileged users to place their jobs in a high priority scheduler run queue. These queues
are always scanned by the scheduler before the normal run queues, and any runnable job in one of these queues
is executed before all other jobs in the system.

In addition, these jobs are given preferential access to sharable resources (e.g., shared device controllers). Thus,
real-time associated jobs can receive fast response from the timesharing scheduler.

Jobs in high-priority queues are not examined for swap-out until all other queues have been scanned. If a job in
a high-priority queue must be swapped, the lowest priority job is transferred first, and the highest priority job
last. If the highest priority job is swapped, then that job is the first to be swapped in for immediate execution.
Therefore, in addition to being scanned before all other queues for job execution, the high-priority queues are
examined after all other queues for swap-out and before all queues for swap-in.

The HPQ UUO requires as an argument the high-priority queue number of the queue to be entered. The lowest
high-priority queue is 1, and the highest-priority queue is equivalent to the number of queues that the system is
built for. The call is as follows:

MOVE AC, HPQNUM ; get high-priority queue number
HPQ AC, ;or CALLI AC, 71

error return

normal return

(1) This UUO depends on FTHPQ which is normally off in the DECsystem-1040,

3-92

On an error return, AC contains —1 if the user did not have the correct privileges. The privilege bits are 6 through
9 in the privilege word (.GTPRV). These four bits specify a number from 0—17 octal, which is the highest prior-
ity queue attainable by the user.

On a normal return, the job is in the desired high-priority queue. A RESET or an EXIT UUO returns the job to
the high-priority queue specified in the last SET HPQ command. A queue number of 0 as an argument places the
job back to the timesharing level.

3.9 METER. AC, or CALLI AC, 111(1)

This UUO provides a mechanism for system performance metering by allowing privileged users to dynamically
select and collect performance statistics from the monitor. The multifunction UUO controls all aspects of the
metering facility in order that the user can collect, present, or reduce data for performance analysis or can tune
individual jobs or the entire system. The METER. UUO requires JP.MET (bit 3) to be set in the privilege word
.GTPRV.

The general call is:

MOVE AC, [XWD N, ADR]

METER.AC, ~;0or CALLI AC, 111
error return

normal return

where

N is the number of arguments in the argument list.
ADR is the beginning of the argument list.

If N is 0, the default number of arguments depends on the particular function used. Arguments in the list can
be

1. arguments for the monitor
2. values returned from the monitor, or
3. acombination of both.

The first word of the argument block is the code for the particular function. The detailed descriptions of the
various functions of the METER. UUQ are presented in the METER. Specification in the Software Notebooks;
the following is a list of the functions available.

Function Code Name Description
0 MEFCI Initialize meter channel
1 .MEFCS QObtain meter channel status
2 ‘MEFCR Release meter channel
3 .MEFPI Initialize meter points
4 MEFPS Obtain meter point status
5 .MEFPR Release meter points

On an error return, the appropriate error code is returned in AC.

(1) This UUO depends on FTMETR which is normally off in the DECsystem-1040.

3-93

On a normal return, AC is preserved. The possible error codes returned are:

Code Mnemonic Meaning
1 MEILF% Illegal function.
2 MENPV% Not a privileged user.
3 MEIMA% Illegal memory address.
4 MEPDL% PDL overflow.
5 MEIAL% Illegal argument list.
6 MEIAV% Illegal argument value.
7 MENFC% Not enough free core.
10 MEICT% Illegal channel type.
11 MEIPT% Illegal point routine type.
12 MENXP% Non-existent point name.
13 MENXC% Non-existent channel.
14 MEPNA% Point not available.

3-94

CHAPTER 4
I/0 PROGRAMMING

All user-mode I/O programming is controlled by monitor programmed operators. 1/O is directed by
1. Associating a device and a ring of buffers with one of the user’s I/O channels (INIT, OPEN).
2. Optionally selecting a file (LOOKUP, ENTER).
3. Passing buffers of data to or from the user program (IN, INPUT, OUT, OUTPUT).
Device specification may be delayed from program-generation time until program-run time because the monitor

1. Allows a logical device name to be associated with a physical device (ASSIGN or MOUNT monitor
command).

2. Treats operations that are not pertinent to a given device as no-operation code.
For example: arewind directed to a line printer does nothing, and file selection operations for devices without
a filename directory are always successful.

4.1 1/O ORGANIZATION

4.1.1 Files

A file is an ordered set of data on a peripheral device. The extent of a file on input is determined by an end-of-
file condition dependent on the device. For example, a file is terminated by reading an end-of-file gap from
magnetic tape, by an end-of-file card from a card reader, or by depressing the end-of-file switch on a card reader
(refer to Chapter 5). The extent of a file on output is determined by the amount of information written by the
OUT or OUTPUT programmed operators up through and including the next CLOSE or RELEAS operator.

4.1.2 Job I/O Initialization

CALL [SIXBIT/RESET/] or CALLI 0

should normally be the first instruction in each user program. It immediately stops all /O transmissions on all

devices without waiting for the devices to become inactive. All device allocations made by the INIT and OPEN
operators are cleared and, unless the devices have been assigned by the ASSIGN or MOUNT monitor command,
the devices are returned to the monitor facilities pool. The content of the left half of .JBSA (program break) is
stored in the right half of .JBFF so that the user buffer area is reclaimed if the program restarts. The left half

4-1

of .JBFF is cleared. Any files that have not been closed are deleted on disk. Any older version with the same
filename remains. The user-mode write-protect bit is.automatically set if a high segment exists, whether it is

sharable or not; therefore, a program cannot inadvertently store into the high segment. Additional functions of
the RESET UUO include

1. unlocking the job if it was locked,

2. releasing any real-time devices,

3. resetting any high-priority queues set by the HPQ UUO to the value set by the HPQ command,
4. resuming timesharing if it was stopped as a result of a TRPSET UUO with a non-zero argument,
5. resetting the action of the HIBER and APRENB UUOs, and

6. clearing all PC flags except USRMOD,

7. dropping all PIDs that were to be dropped on reset.

4.2 DEVICE SELECTION

For all I/O operations, a specific device must be associated with a software I/O channel. This specification is
made by an argument of the INIT or the OPEN programmed operators. The INIT or the OPEN programmed
operators may specify a device with a logical name that is associated with a particular physical device by the
ASSIGN or MOUNT .monitor command. Some system programs, e.g., LOGOUT require I/O to specific physical
devices regardless of what logical names have been assigned. Therefore, on an OPEN UUO if the sign bit of word
0 of the OPEN block is 1 (UU.PHS), the device name is taken as a physical name only, and logical names are not
searched. A given device remains associated with a software I/O channel until released (refer to Paragraph 4.8.1)
or until another INIT or OPEN is performed for that channel. Devices are separated into two categories: those
with no filename directory (refer to Chapter 5) and those with at least one filename directory (refer to Chapter 6).

Assignable devices (i.e., non-disk and non-spooled devices) in the monitor’s pool of available resources are desig-
nated as being either unrestricted or restricted. An unrestricted device can be assigned directly by any job via
the ASSIGN command or INIT or OPEN UUO. A restricted device can be assigned directly only by a privileged
job (i.e., a job logged in under [1,2] or running with the JACCT bit set). However, a non-privileged user can
have a restricted device assigned to him indirectly via the MOUNT command. This command allows operator
intervention for the selection or denial of a particular device; thus the operator can control the user of assignable
devices for the non-privileged user. This is particularly useful when there are multiprogramming batch and inter-
active jobs competing for the same devices. The restricted status of a device is set or removed by the operator
with the OPSER commands :RESTRICT and :UNRESTRICT, which use the privileged UUOs, DVRST. and
DVURS. (refer to UUOPRYV in the DECsystem-10 Software Notebooks).

4.2.1 Nondirectory Devices

For nondirectory devices (e.g., card reader and punch, line printer, paper-tape reader and punch, and user ter-
minal), selection of the device is sufficient to allow I/O operations over the associated software channel. All
other file specifiers, if given, are ignored. Magnetic tape, a nondirectory device, requires, in addition to the name,
that the tape be properly positioned. It is advisable to use the programmed operators that select a file, so that a
directory device may be substituted for a nondirectory device at run time.

4-2

4.2.2 Directory Devices

For directory devices (e.g., a DECtape and disk), files are addressable by name. If the device has a single file
directory (e.g., DECtape) the device name and filename are sufficient information:to determine a file. If the
device has multiple file directories (e.g., disk) the name of the file directory must also be specified. These names
are specified as arguments to the LOOKUP, ENTER, and RENAME programmed operators.

4.2.3 Device Initialization

The OPEN (operation code 050) and INIT (operation code 041) programmed operators initialize a device and
associate it with a software I/O channel number for the job. These UUOs perform almost identical functions;

the OPEN UUO is a reentrant form of INIT and is preferred for this reason. In addition to the device name, these
programmed operators accept, as arguments, an initial file status and the location of the input and output buffer

headers. The calls are:

OPEN D,SPEC INIT D, STATUS
error return SIXBIT/dev/
normal return XWD OBUF, IBUF

error return
normal return

SPEC: EXP STATUS
SIXBIT/dev/
XWD OBUF, IBUF

The normal return is taken if a device is selected, and if the device is associated with a software I/O channel. The
error return is taken if the requested device is in use, if the requested device does not exist, or if the device is re-
stricted and has not been assigned with the MOUNT command.

The LH of word 0 of the OPEN UUO contains the following

Bit Name Meaning
0 UU.PHS Sign bit. Implies physical device search.
1 UU.DEL Disable error logging. (Used for disk diagnostics. Normally, should not
be set by user.)
2 UU.DER Disable error re-try. (Used for disk diagnostics. Normally, should not be
set by user.)
'3 UUAIO __ __Indicates non-blockingl/O. __ . _ _ .
4 UU.IBC Prevents the monitor from zeroing buffers after each output. (Can be used

in programs to save some time.)
4.2.3.1 Data Channel — These programmed operators establish a correspondence between the device and a

4-bit channel number, D. Most of the other input/output operators require this channel number as an argument.
If a device is already assigned to channel D, it is released (refer to Paragraph 4.8.1).

43

4.2.3.2 Device Name — The device name, dev, is either a logical or physical device name, with logical names
taking precedence over physical names. With multiple stations, the method of device selection depends on the
format of the specified SIXBIT device name.

If devn (e.g., LPT7, CDR3) is specified, the monitor attempts to select the device specifically requested.

If devSnn (e.g., CDPS14, PTPS12) is specified, the monitor attempts to select any device of the desired type at
the requested station. If a device of the desired type has been previously assigned to this job at the requested
station and is not INITed on another channel, it will be selected in preference to an unassigned device.

If dev (e.g., LPT, DTA) is specified, the monitor attempts to select a device of the desired type at the job’s
logical station. If all devices of this type are in use, the error return is taken. If no device of the desired type
exists at the user’s logical station, the monitor attempts to select the device at the central station. If the desired
type of device has already been assigned to the job at the appropriate station (either the job’s logical station or
the central station) and is not INITed on another channel, it will be selected instead of an unassigned device.

In non-disk systems, if the specified device is the system device SYS, the job is placed into a system device wait
queue and continues to run when SYS becomes available. In disk systems where the system device is one or
more file structures, control returns immediately.

The job may pause with the message
ISTATION nn NOT IN CONTACT

if the requested station is not in contact with the central station. After station nn has established contact with
the central station, the user types CONTINUE for a return to job execution.

The Universal Device Index (UDX) is an 18-bit quantity that corresponds to a unique physical device in the sys-
tem. (The UDX may be thought of as a ““shorthand” name for that device.) No significance should be attached
to the number — it is always obtained through the use of the IONDX UUO.

UDX’s can be used as an argument to several UUQ’s as é replacement for the SIXBIT name. Using the DEVNAM
UUO will convert the UDX back to a SIXBIT name. The user is cautioned against building UDX’s into a pro-
gram; use of the IONDX UUO is strongly recommended. (See Paragraph 4.12.7 for a complete description of
IONDX.)

4.2.3.3 Initial File Status — The file status, including the data mode, is set to the value of the symbol STATUS,
Thereaftef, bits are set by the monitor and may be tested and reset by the user via monitor programmed opera-
tors. Bits 30—35 of the file status are normally set by an OPEN or INIT UUO. Refer to Table 4-3 in Paragraph
4.6.2 for the file status bits. If the data mode is not legal (refer to Chapters 5 and 6) for the specified device, the
job is stopped and the monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,

where dev is the physical name of the device and addr is the location of the OPEN or INIT operator on the user’s
terminal. The terminal is left in monitor mode.

4.2.3.4 Data Modes — Data transmissions are either unbuffered or buffered. (Unbuffered mode is sometimes
referred to as dump mode.) The mode of transmission is specified by a 4-bit argument to the INIT, OPEN, or
SETSTS programmed operator. Table 4-1 summarizes the data modes. '

4-4 September 1974

Table 4-1

Data Modes
Octal Code Name Meaning
0 JOASC ASCII. Seven bit bytes packed left justified, five characters per word.
1 JOASL ASCII line. Same as 0, except that the buffer is terminated by a FORM,
VT, LINE-FEED, or ALTMODE character. Differs from ASCII on TTY
(half-duplex software) and PTR only.
2 JOPIM Packed image mode.

3-7 Unused.

10 JIOIMG Image. A device-dependent mode. Thirty-six bit bytes. The butfer is
filled with data exactly as supplied by the device.

11-12 Unused.

13 .IOIBNV Image binary. Thirty-six bit bytes. This mode is similar to binary mode,
except that no automatic formatting or checksumming is done by the
monitor.

14 JOBIN Binary. Thirty-six bit bytes. This is blocked format consisting of a word
count, n (the right half of the first data word of the buffer), followed by
n 36-bit data words. Checksum for cards and paper tape.

15 I0IDP Image dump. A device-dependent dump mode. Thirty-six bit bytes.

16 JODPR Dump as records without core buffering. Data is transmitted between any
contiguous blocks of core and one or more standard length records on the
device for each command word in the command list. Thirty-six bit bytes.

17 .JODMP Dump one record without core buffering. Data is transmitted between

any contiguous block of core and exactly one record or arbitrary length
on the device for each command word in the command list. Thirty-six
bit bytes.

4.2.3.5 Buffer Header — Symbols OBUF and IBUF, if non-zero, specify the location of the first word of the
3-word buffer ring header block for output and input, respectively. Buffered data modes utilize a ring of buf-
fers in the user area and the priority interrupt system to permit the user to overlap computation with his data
-- —— transmission.- Core memory in the user’s area serves as an intermediate buffer between the user’s program and

the device. The buffer storage mechanism consists of a 3-word buffer ring header block for bookkeeping and a
data storage area subdivided into one or more individual buffers linked together to form a ring. During input

operations, the monitor fills a buffer, makes that buffer available to the user’s program, advances to the next

buffer in the ring, and fills that buffer if it is free. The user’s program follows the monitor, either emptying the
next buffer if it is full or waiting for it to fill.

During output operations, the user’s program and the monitor exchange roles; the user program fills the buffers
and the monitor empties them. Only the headers that will be used need to be specified. For instance, the out-
put header need not be specified, if only input is to be done. Also, data modes 15, 16, and 17 require no header.

4-5

If either of the buffer headers or the 3-word block starting at location SPEC lies outside the user’s allocated core
area, (1) the job is stopped and the monitor prints

ILLEGAL UUO AT USER addr

(addr is the address of the OPEN or INIT operator) on the user’s termina, leaving the terminal in monitor mode.

The first and third words of the buffer header are set to zero. The left half of the second word is set up with the
byte pointer size field in bits 6 through 11 for the selected device-data mode combination.

If the same device (other than disk) is INITed on two or more channels, the monitor retains only the buffer
headers mentioned in the last INIT (a O specification does not override a previous buffer header specification).
Other I/O operations to any of the channels involved act on the buffers mentioned in the last INIT previous to
the I/O operations.

4.3 RING BUFFERS

4.3.1 Buffer Structure

The ring buffer (see Figure 4-1) is comprised of a buffer ring header block and buffer rings.

4.3.1.1 Buffer Ring Header Block — The location of the 3-word buffer ring header block is specified by an
argument of the INIT and OPEN operators. Information is stored in the header by the monitor in response to
the user execution of monitor programmed operators. The user’s program finds all the information required to
fill and empty buffers in the header. Bit position 0 of the first word of the header is a flag which, if 1, means
that no input or output has occurred for this ring of buffers. The right half of the first word is the address of
the second word of the buffer currently used by the user’s program. The second word of the header contains a
byte pointer to the current byte in the current buffer. The byte size is determined by the data mode. The third
word of the header contains a number of bytes remaining in the buffer. A program may not use a single buffer
header for both input and output, nor may a single buffer ring header be used for more than one I/O function
at a time. Users cannot use the same buffer ring for simultaneous input and output; only one buffer ring is as-
sociated with each buffer ring header. n
4.3.1.2 Buffer Ring — The buffer ring is established by the INBUF and OUTBUF operators, or, if none exists
when the first IN, INPUT, OUT, or OUTPUT operator is executed, a 2-buffer ring is set up. The effective address
of the INBUF and OUTBUF operators specifies the number of buffers in the ring. The location of the buffer ring
isspecified by the contents of the right half of .JBFF in the user’s job data area. The monitor updates .JBFF to
point to the first location past the storage area.

All buffers in the ring are identical in structure. The right half of the first word contains the file status when

the monitor advances to the next buffer in the ring (see Figure 4-2). Bit 0 of the second word of a buffer, the
use bit, is a flag that indicates whether the buffer contains active data. This bit is set to 1 by the monitor when
the buffer is full on input or being emptied on output, and set to 0 when the buffer is empty on output or is
being filled on input. In other words, if the use bit = 0, the buffer is available to the filler; if the use bit = 1, the
buffer is available to the emptier. The use bit prevents the monitor and the user’s program from interfering with
each other by attempting to use the same buffer simultaneously. Buffers are advanced by the UUOs and not by
the user’s program. The use bit in each buffer should never be changed by the user’s program except by means

(1) Buffer headers may not be in the user’s ACs; however, the buffer headers may be in location above .JBPFI (refer to Table 1-1 in Paragraph 1.2.1).

4-6

of the UUQs. Bits 1 through 17 of the second word of the buffer contain the size of the data area of the buffer
plus 1. The size of this data area depends on the device. The right half of the third word of the buffer is reserved

for a count of the number of words that actually contain data. The left half of this word is reserved for other

bookkeeping purposes, depending on the particular device and the data mode.

BUFFER RING
USE BIT FILE STATUS
“a SIZE BUF 2 “
BUF Y I ooKKEEPING]
HKEE WORD COUNT
DATA
BUFFER RING
HEADER BLOCK
| FILE STATUS
USE BIT
USE CURRENT—_\PJ | size BUF 3
BIT BUFFER BUF 2! [o
BYTE POINTER WORD WORD COUNT
BYTE COUNTER
DATA
USE BIT FILE STATUS
sur o) | size BUF1 [
' | BOOKKEEPING
WORD WORD COUNT
DATA
10-0539
Figure 4-1 User’s Ring of Buffers
FILE STATUS FIRST WORD
USE SIZE OF ADDRESS OF SECOND
BIT — | SIZE OF | WORD OF NEXT BUFF-| SECOND WORD
——|—| DATA-AREA —|-ppINRING - |-
BOOKKEEPING | WORDS COUNT, N THIRD WORD
N DATA WORDS DATA AREA
UNUSED
10-0592

Figure 4-2 Detailed Diagram of Individual Buffer

47

September 1974

4.3.2 Buffer Initialization

Buffer data storage areas may be established by the INBUF and OUTBUF programmed operators, or by the first
IN, INPUT, OUT, or OUTPUT operator, if none exists at that time, or the user may set up his own buffer data
storage area.

4.3.2.1 Monitor Generated Buffers — Each device has an associated standard buffer size (refer to Chapters 5 and
6). The monitor programmed operators INBUF D,n (operation code 064) and OUTBUF D,n (operation code
065) set up a ring of n standard size buffers associated with the input and output buffer headers, respectively,
specified by the last OPEN or INIT operator on data channel D. If n = 0 on either INBUF or OUTBUF, the de-
fault number of buffers for the specified device is set up. If no OPEN or INIT operator has been performed on
channel D, the monitor stops the job and prints

1/0 TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the INBUF or OUTBUF operator) on the user’s terminal leaving the terminal in the
monitor mode.

The storage space for the ring is taken from successive locations, beginning with the location specified in the right
half of .JBFF. This location is set to the program break, which is the first free location above the program area,
by RESET. If there is insufficient space to set up the ring, the monitor automatically attempts to expand the
user’s core allocation by 1K. If this fails, the monitor stops the job and prints

ADDRESS CHECK FOR DEVICE dev AT USER addr

(dev is the physical name of the device associated with channel D and addr is the location of the INBUF or
OUTBUF operator) on the user’s terminal, leaving the terminal in monitor mode.

This message is also printed when an INBUF (OUTBUF) is attempted if the last INIT or OPEN UUO on channel
D did not specify an input (output) buffer header or if input or output is attempted from a high segment.

The ring is set up by setting the second word of each buffer with a zero use bit, the appropriate data area size,
and the link to the next buffer. The first word of the buffer header is set with a 1 in the ring use bit, and the
right half contains the address of the second word of the first buffer.

4.3.2.2 User Generated Buffers — The following code illustrates an alternative to the use of the INBUF pro-
grammed operator. Analogous code may replace OUTBUF. This user code operates similarly to INBUF, SIZE
must be set equal to the greatest number of data words expected in one physical record.

GOt OPEN I,0PNBLK JINITIALIZE ASCII MODE
JRST NOQTAVL §THE 400000 IN THE LEFT
JHALF
MOVE 0, [XWD 400000,BUFi+1] JMEANS THE BUFFER WAS NEVER
REFERENCED,
MOVEM 0, MAGBUF 1SET UP NON=STANDARD BYTE
MOVE 0, [POINT BYTSI1Z,0,35) 1SIZE
MOVEM 0, MAGBUF+} JMAGNETIC TAPE UNIT O
JRST CONTIN yINPUT ONLY

4-8

OPNBLK10 9GO0 BACK TO MAIN SEQUENCE

SIXBIT/MTAO/ 9 SPACE FOR BUFFER RING
yHEADER
XWD 0,MAGBUF
MAGBUFs BLOCK 3 yBUFFER {, 1ST WORD UNUSED
JLEFT HALF CONTAINS DATA
) JAREA
BUF1t © 98IZE+1, RIGHT HALF HAS
XWD SI1ZE+1,BUF241 s ADDRESS OF NEXT BUFFER

1SPACE FOR DATA, {ST WORD
tRECEIVES WORD=COUNT, THUS

BLOCK SIZE +!{ $ONE MORE WORD IS RESERVED
JTHAN IS REQUIRED FOR DATA
§ALONE
$ SECOND BUFFER

BUF2:t 0 'THIRD BUFFER
XWD SIZE+1,BUF3+1 $RIGHT HALF CLOSES THE RING
BLOCK SIZE+1%

BUF3s 0

XWD SIZE+1,BUFi+!
BLOCK SIZE+1%

4.4 FILE SELECTION (LOOKUP AND ENTER)

The LOOKUP (operation code 076) and ENTER (operation code 077) programmed operators select a file for
input and output, respectively. These operators are not necessary for nondirectory devices; however, it is good
programming practice to always use them so that directory devices may be substituted at run time (refer to
ASSIGN command). The monitor gives the normal return for a LOOKUP or ENTER to a nondirectory device;
therefore, user programs can be coded in a device-independent fashion.

4.4.1 The LOOKUP Operator
LOOKUP selects a file for input on channel D.
LOOKUP D,E

error return
normal return

E: SIXBIT/file/ ; FILENAME, 1 TO 6 CHARACTERS,

; LEFT-JUSTIFIED
SIXBIT/ext/ ; FILENAME EXTENSION, 0 TO 3

; CHARACTERS, LEFT-JUSTIFIED

- ; THE REMAINING WORDS IN THE
; ARGUMENT BLOCK

- ; ARE IGNORED FOR NONDIRECTORY
; DEVICES. REFER

4-9

; TO PARAGRAPH 6.1.5.1 FOR THE

; DECTAPE

; LOOKUP AND PARAGRAPH 6.2.8.1 FOR
;THE

; DISK LOOKUP.

If no device has been associated with channel D by an INIT or OPEN UUOQO, the monitor stops the job, prints
I/O TO UNASSIGNED CHANNEL AT USER LOC addr
and returns the user’s terminal to monitor mode. The input side of channel D is closed if not already closed.

The output side is not affected.

On DECtape, LOOKUP searches the device directory as specified by an INIT. On disk, the user’s file directory
as specified by the contents of location E+3 is searched. Refer to Paragraph 6.1.5.1 for details of a DECtape
LOOKUP and Paragraph 6.2.8.1 for details of a disk LOOKUP.

If the device is a directory device and the file is found, the normal return is taken and information concerning
the file is returned in locations E+1 through E+3. The normal return is always taken if the device associated
with the channel D does not have a directory. The error return is taken if

1. the file is not found,

2. the file is found but the user does not have access to it (refer to Paragraph 6.2.3 for the description
of file access codes), or

3. the device associated with channel D is a non-input device. Refer to Appendix E for the error codes
returned in bits 18—35 of location E+1.

4.4.2 The ENTER Operator
ENTER selects a file for output on channel D.
ENTER D, E

error return
normal return

E: SIXBIT/file/ ; FILENAME, 1 THROUGH 6

; CHARACTERS, LEFT-JUSTIFIED
SIXBIT/ext/ ; FILENAME EXTENSION, 0 THROUGH 3

; CHARACTERS, LEFT JUSTIFIED
- ; THE REMAINING WORDS IN THE ARGUMENT
— ; ARE IGNORED FOR NONDIRECTORY DEVICES.
; REFER TO PARAGRAPH 6.1.5.2 FOR THE
; DECTAPE ENTER AND PARAGRAPH 6.2.8.1
; FOR THE DISK ENTER.

4-10

If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the job, prints
1/O TO UNASSIGNED CHANNEL AT USER LOC addr

and returns the user’s terminal to monitor mode. The output side of channel D is now closed (if it was not
closed); the input side is not affected. On DECtape, ENTER searches the device directory as specified by an
INIT. On disk, the user’s file directory, as specified by the contents of location E+3, is searched.

If the device does not have a directory, the normal return is always taken. On directory devices, if the file is
found and is not being written or renamed, the file is deleted (the user must have access privileges to the file),
and the storage space on the device is reclaimed. On DECtape, this deletion must occur immediately on ENTER
to ensure that space is available for writing the new version of the file. On disk, the deletion of the previous
version does not occur until output CLOSE time, provided bit 30 of CLOSE is 0 (refer to Paragraph 4.7.7).
Consequently, if the new file is aborted when partially written, the old version remains. The normal return is
taken, and the monitor makes the file entry, and records file information.

The error return is taken if:
1. The filename in location E is 0.
2. The file is found but is being written or renamed.

3. The user does not have access to the file, as supplied by the file if it exists or by the UFD if the file

does not exist.

4. The device associated with channel D is a non-output device.
Refer to Paragraph 6.2.8.1 for details of a disk ENTER and Paragraph 6.1.5.2 for details of a DECtape ENTER.
Refer to Appendix E for the error codes returned in bits 18—35 of location E+1.
4.4.3 RENAME Operator
The RENAME (operation code 055) programmed operator is used

1. To alter the filename, filename extension, and file access privileges.

2. To delete a file associated with channel D on a directory device.

RENAME D.E

error return
normal return

E: SIXBIT/file/ ; FILENAME, 1 TO 6 CHARACTERS
SIXBIT/ext/ ; FILENAME EXTENSION, 0 TO 3 CHARACTERS.
- ; THE REMAINING WORDS IN THE ARGUMENT
- ; BLOCK ARE IGNORED FOR
; NONDIRECTORY DEVICES.

; REFER TO PARAGRAPH 6.1.5.3 FOR THE
; DECTAPE RENAME AND PARAGRAPH 6.2.8.1
; FOR THE DISK RENAME.

4-11

If no device has been assigned with channel D, the monitor stops the job, prints

I/O TO UNASSIGNED CHANNEL AT USER LOC addr

and returns the user’s terminal to monitor mode.
The normal return is given if:
1. The device is a nondirectory device.
2. If the filename specified in location E is 0, the file is deleted after all read references are completed.

3. If the file name specified in location E and the filename extension specified in the left half of location
E+1 are the same as the current filename and filename extension, the access protection bits are set to
the contents of bit O to 8 of location E + 2.

4. If the filename/filename extension specified differ from the current filename/filename extension, a
search is made for the specified filename and filename extension. If a match is not found

a. the filename is changed to the filename in location E,
b. the filename extension is changed to the filename extension in the left half of location E+1,
c. the access protection bits are changed to the contents of bits 0—8 of location E+2, and
d. the access date is unchanged.
The error return is given if:

1. No file is selected on channel D.

2. The specified file is not found.

3. The file is found but is being written, superseded, or renamed.

4. The file is found but the user does not have the privileges to RENAME the file.

5. The filename/filename extension specified differ from the current filename/filename extension, a
search is made for the specified filename and filename extension. If a match is found, the error return
is taken.

6. The UFD is deleted.

Refer to Appendix E for the error codes returned in bits 18—35 of location E+1. Refer to Paragraph 6.1.5.3 for
details of a DECtape RENAME and Paragraph 6.2.8.1 for details of a disk RENAME.

Examples
General Device Initialization
INIDEV:Y O))JSR HERE
OPEN 3,0PNBLK s CHANNEL 3
JRST NOTAVL tWHERE T0 GO IF DTAS IS BUSY

JFROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM
JREQUIREMENTS

4-12

MOVE 0, JOBFF

MOVEM 0, SVJBFF §)SAVE THE FIRST ADDRESS oF THE BUFFER
gRING IN CASE THE SPACE MUST BE
JRECLAIMED
INBUF 3,4 9SET UP 4 INPUT BUFFERS
OUTBUF 3,1 $SET UP § OUTPUT BUFFER
LOOKUP 3, INNAM s INITIALIZE AN INPUT FILE
JRST NOTFND jJWHERE TO GO IF THE INPUT FILENAME IS
sNOT IN THE DIRECTORY
ENTER 3, OUTNAME $INITIALIZE AN OUTPUT FILE
JRST NOROOM §WHERE TO GO IF THERE IS NO ROOM IN
§JTHE DIRECTORY FOR A NEW FILENAME
$JRST RINIDEV $RETURN TO MAIN SEQUENCE
OPNBLK: 14 pBINARY MODE
SIXBIT/DTAS/ JDEVICE DECTAPE UNIT 5§
XWD OBUF,IBUF 9BOTH INPUT AND OQUTPUT
OBUF 1 BLOCK 3 3 SPACE FOR OUTPUT BUFFER HEADER
IBUF? BLOCK 3 $SPACE FOR INPUT BUFFER HEADER
INNAM SIXBIT/NAME/ sFILE NAME
SIXBIT/EXT/ $FILE NAME EXTENSION (OPTIONALLY 0},

§RIGHT HALF WORD RECEIVES THE
tFIRST BLOCK NUMBER

0 JRECEIVES THE DATE

0 JUNUSED FOR NONDUMP I/0
OUTNAMI SIXBIT/NAME/ §SAME INFORMATION AS IN INNAM

SIXBIT/EXT/

0

0

4.5 DATA TRANSMISSION
The programmed operators
INPUT D,E and IND,E

normal return
error return

Transmit data from the file selected on channel D to the user’s core area. The programmed operators
OUTPUT D, E and OUT D, E

normal return
error return

transmit data from the user’s core area to the file selected on channel D. If specified, E is the effective address

-- of the next buffer-to be written.If E is not-specified, the next buffer in-the sequence is implied.”— — T

If no OPEN or INIT operator has been performed on channel D, the monitor stops the job and prints
I/O TO UNASSIGNED CHANNEL AT USER addr
(addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator) on the user’s terminal and the

terminal is left in monitor mode. If the device is a multiple-directory device and no file is selected on channel D,
bit 18 of the file status is set to 1, and control returns to the user’s program. Control always returns to the

4-13

location immediately following an INPUT (operation code 066) and an OUTPUT (operation code 067). A check
of the file status for end-of-file and error conditions must then be made by another programmed operator. Note
that to trap on a hardware write-locked device, the user should use location .JBINT (refer to Paragraph 3.1.3.2).
Following an INPUT, the user program should check the word count of the next buffer to determine if it con-
tains data. Control returns to the location immediately following an IN (operation code 056) if no end-of-file or
error condition exists (i.e., if bits 18 through 22 of the file status are all 0). Control returns to the location im-
mediately following an OUT (operation code 057) if no error condition or end-of-tape exists (i.e., if bits 18
through 21 and bit 25 are all zero). Otherwise, control returns to the second location following the IN or OUT.
Note that IN and OUT UUOs are the only ones in which the error return is a skip and the normal return is not a
skip.

4.5.1 Unbuffered Data Modes

Data modes 15, 16, and 17 utilize a command list to specify areas in the user’s allocated core to be read or
written. The effective address E of the IN, INPUT, OUT, and OUTPUT programmed operators point to the first
word of the command list. Three types of entries may occur in the command list.

1. IOWD n, loc — Causes n words from loc through loctn-1 to be transmitted. The next command is
obtained from the next location following the IOWD. The assembler pseudo-op IOWD generates
XWD -n, loc-1.

2. XWD 0,y — Causes the next command to be taken from location y. Referred to as a GOTO word.
Up to three consecutive GOTO words are allowed in the command list. After three consecutive
GOTO words, an I/O instruction must be written.

3. 0 — Terminates the command list.

Each IOWD which:causes data to be transferred writes a separate record. Thus, for devices other than DECtape,
the following two examples produce the same result.

i, OUTPUT D, [IOWD 70, BUF!
I0WD 70, BUF2
2]

2, OUTPUT D, [IOWD 70, BUF!
2]

OUTPUT D, [IOWD 70, BUF2
z]

For DECtape (where space is an important consideration), the first example writes one block, and the second

writes two.

The monitor does not return program control to the user until the command list has been completely processed.
If an illegal ‘address is encountered while processing the list, the job is stopped and the monitor prints

ADDRESS CHECK AT USER addr

on the user’s terminal and the terminal is left in monitor mode.

414

Example: Dump Output

Dump input is similar to dump output. This routine outputs fixed-length records.

DMPINT

DMPOUT?

DMPDON1

OPNBLK!

OUTLST!

BUFFER:?

0

OPEN 0,0PNBLK
JRST NOTAVL

JRST @ DMPINI

0
OUTPUT 0,0UTLST

STATZ 0, 740000
CALLISIXBIT /EXIT/)

JRST QDMPOUT

0

CLOSE 0

STATZ 0, 740000

CALL [SIXBIT /EXIT/)
RELEAS 0,
JRST @DMPDON
16
SIXBIT /MTA2/
0
IOWD BUFSIZ,BUFFER

0

BLOCK BUFSIZ

4.5.2 Buffered Data Modes

1)JSR HERE TO INITIALIZE A FILE
JCHANNEL 0

§WHERE TO GO IF MTA2 IS8 BUSY

§ RETURN

JJSR HERE TO OUTPUT THE OUTPUT AREA
}SPECIFIES DUMP OUTPUT ACCORDING
JTO THE LIST AT OUTLIST

JCHECK ERROR BITS

JQUIT IF AN ERROR OCCURS

yRETURN

jJSR HERE TO WRITE AN END OF FILE
yWRITE THE END OF FILE

JCHECK FOR ERROR DURING WRITE
JEND OF FILE OPERATION

1QUIT IF ERROR OCCURS

JRELINQUISH THE DEVICE

yRETURN

$DUMP MODE

IMAGNETIC TAPE 2

1NO RING BUFFER

)SPECIFIES DUMPING A NUMBER OF
JWORDS EQUAL TO BUFSIZ, STARTING
}AT LOCATION BUFFER

JSPECIFIES THE END OF THE COMMAND
JLIST

jOUTPUT BUFFER, MUST BE CLEARED
}AND FILLED BY THE MAIN PROGRAM,

In data modes 0, 1, 10, 13, and 14 the effective address E of the INPUT, IN, OUTPUT and OUT programmed
operators may be used to alter the normal sequence of buffer reference. If E is 0, the address of the next buffer
is obtained from the right half of the second word of the current buffer. If E is non-zero, it is the address of the
second word of the next buffer to be referenced. The buffer pointed to by E can be in an entirely separate ring
from the present buffer. Once a new buffer location is established, the following buffers are taken from the
ring started at E. Since buffer rings are not changed if I/O activity is pending, it is not necessary to issue a

WAIT UUO.

~ 4.5.2.1 Input — If no input buffer ring is established when the first INPUT or IN is executed, a 2-buffer ringis~

set up (refer to Paragraph 4.3.2).

Buffered input may be performed synchronously or asynchronously at the option of the user. If bit 30 of the
file status is 1, each INPUT and IN programmed operator performs the following:

1. Clears the use bit in the second word of the buffer with an address in the right half of the first word
of the buffer header, thereby making the buffer available for refilling by the monitor.

2. Advances to the next buffer by moving the contents of the second word of the current buffer to the
right half of the first word of the 3-word buffer header.

3. Retuns control to the user’s program if an end-of-file or error condition exists. Otherwise, the
monitor starts the device, which fills the buffer and stops transmission.

4. Computes the number of bytes in the buffer from the number of words in the buffer (right half of
the first data word of the buffer) and the byte size, and stores the result in the third word of the
buffer header.

5. Sets the position and address fields of the byte pointer in the second word of the buffer header, so
that the first data byte is obtained by an ILDB instruction.

6. Returns control to the user’s program.

Thus, in synchronous mode, the position of a device (e.g., magnetic tape), relative to the current data, is easily
determined. The asynchronous input mode differs in that once a device is started, successive buffers in the ring
are filled at the interrupt level without stopping transmission until a buffer whose bit is 1 is encountered. Control
returns to the user’s program after the first buffer is filled. The position of the device, relative to the data cur-
rently being processed by the user’s program, depends on the number of buffers in the ring and when the device
was last stopped.

Example: General Subroutine to Input One Character.

}GET == ROUTINE TO GET ONE BYTE FROM THE INPUT FILE

l NULLS (@) WILL BE DISCARDED

CALLtY JSP A GET

i ENO=-OF~FILE RETURN

[RETURN WITH BYTE IN C

GET: 80SGE 1B+2 JDECREMENT THE BYTE COUNT
JRST GETBF JBUFFER EMPTY==GET ANQTHER ONE
ILOB Cr1B+1 JSOMETHING THERE==GET 1T
JUMPN Cr1(8) SRETURN IF NOT NULL

jue IF NULLS ARE SIGNIFICANT, THIS
' H SHOULD BE A JRST 1(A)
JRST Cel(a) INULL~=LOOP FOR ANOTHER GHARACTER

JHERE WHEN INPUT BUFFER IS EMPTY
JASK THE MONITOR FOR THE NEXT BUFFER AND JUMP BACK
JRETURN TO USER IF END=-OF=-FILE

GETBF: IN 1 iGET BUFFER FROM MONITOR
JRST GET INO_ERRORS QR NO EOFm=JUMP BACK

GETSTS 1.C JGET ERROR STATUS

TRNN €,74323 JSEE IF ANY ERRORS

JRST GETBFE INO==GO CHECK EOF

1#s INSERT ERRQR ROUTINE HERE
IFOR EXAMPLE, TYPE C IN OCTAL
JWITH MESSAGE GIVING FILE NAME, ETC,

TRZ C174B23 JCLEAR ERROR BITS
SETSTS I1.(C) JTELL MOMITOR
GETBFE! TRNE c.1B22 }SEE IF END OF FILE
JRST (A) JYES==GIVE NON=SKIP RETURN
JRST GET INO=~JUMP BACK TO PROCESS DATA

4-16

4.5.2.2 Output — If no output buffer ring has been established (i.e., if the first word of the buffer header is

0), when the first OUT or OUTPUT is executed, a 2-buffer ring is set up (refer to Paragraph 4.3.2). If the ring
use bit (bit O of the first word of the buffer header) is 1, it is set to 0, the current buffer is cleared to all zeroes,
and the position and address fields of the buffer byte pointer (the second word of the buffer header) are set so
that the first byte is properly stored in an IDPB instruction. The byte count (the third word of the buffer header)
is set to the maximum of bytes that may be stored in the buffer, and control is returned to the user’s program.
Thus, the first OUT or OUTPUT initializes the buffer header and the first buffer, but does not result in data
transmission.

If the ring use bit is 0 and bit 31 fo the file status is 0, the number of words in the buffer is computed from the ad-
dress field of the buffer byte pointer (the second word of the buffer header) and the buffer pointer (the first word
of the buffer header), and the result is stored in the right half of the third word of the buffer. If bit 31 of the
file status is 1, it is assumed that the user has already set the word count in the right half of the third word. The
buffer use bit (bit 0 of the second word of the buffer) is set to 1, indicating that the buffer contains data to be
transmitted to the device. If the device is not currently active (i.e., not receiving data), it is started. The buffer
header is advanced to the next buffer by setting the buffer pointer in the first word of the buffer header. If the
buffer use bit of the new buffer is 1, the job is put into a wait state until the buffer is emptied at the interrupt
level. The buffer is then cleared to zeroes, the buffer byte pointer and byte count are initialized at the buffer
header, and control is returned to the user’s program.

Example: General Subroutine to Qutput One Character

IPUT == ROUTINE TO PUT OME BYTE INTO THE QUTPUT FILE
JCALLY MOVE C)BYTE

} JSP AsPUT
} RETURN
PUT S0SG 0B+2 s ADVANCE BYTE COUNTER
JRST PUTBF ;JUMP 1F BUFFER FULL (QR FIRST CALL)
PUTCt 10PB C,)0B*+1 $PUT BYTE INTO RUFFER
JRST (A) JRETURN TO CALLER

§JUMP HERE WHEN BUFFER IS FULL AND THE NEXT QONE IS NEEDED
JIGIVE THE MONITOR THE BUFFER AND JUMP BACK

PUTBF: QUT 2, 3GIVE BUFFER TO MONITOR
JRST PUTC ;NO ERRORS==JUMP RACK
MOVEM C)SAVECH $ERROR==SAVE AC FOR STATUS CHECKING
GETSTS #yC iGET ERROR STATUS

j## INSERT QUTPUT ERROR RQUTINE HERE
JFOR EXAMPLE, TYPE C IN OCTAL
JWITH MESSAGE GIVING FILE NAME., ETC,

TRZ €,74823 ;CLEAR ERRQR RITS

SETSTS &,(C) JTELL MONITOR

MOVE C)SAVEC j}RESTORE CHARACTER

JRST PUTC ; JUMP BACK TO PROCESS CHARACTER

4.5.3 Synchronization of Buffered I/O

In some instances, such as recovery from transmission errors, it is desirable to delay until a device completes its
I/O activities. The programmed operator

WAIT Channel or CALLI AD, 10

4-17 September 1974

returns control to the user’s program when all data transfers on channel D have finished. This UUO does not
wait for a magnetic tape spacing operation, since no data transfer is in progress. An MTAPE D, 0 (refer to
Paragraph 5.5.3.1) should be used to wait for the magnetic tape controller to be freed after completing spacing
and I/O activity on magnetic tape. In addition, the UUO does not wait for physical I/O to the terminal to be
completed; it waits only until the user’s buffer is empty. Therefore, the usual motive for the WAIT UUO, error
recovery, does not apply to the terminal. If no device is associated with data channel D, control returns imme-
diately. After the device is stopped, the position of the device relative to the data currently being processed by
the user’s program can be determined by the buffer use bits.

4.6 STATUS CHECKING AND SETTING

The file status is a set of 18 bits (right-half word), which reflects the current state of a file transmission. The
initial status is a parameter of the INIT and OPEN operators. Thereafter, bits are set by the monitor, and may
be tested and reset by the user via the STATZ, STATO, and SETSTS UUQ’s. Table 4-3 defines the file status
bits. All bits, except the end-of-file bits, are set immediately by the monitor as the conditions occur, rather than
being associated with the buffer currently being used. However, the file status is stored with each buffer so that
the user can determine which bufferful produced an error. The end-of-file bit is set when the user attempts to
read past the last block of data (i.e., it is set on an IN or INPUT UUO for which there is no corresponding data;
the previous IN or INPUT UUO obtained the end of the data). Therefore, when this bit is set, no data has been
placed in the input buffer.

The programmed operators (UUQ’s) discussed in this section are the software equivalents of the hardware instruc-
tions CONQO, CONI, CONSO, and CONSZ. A more thorough description of bits 18 through 29 for each device is
given in Chapters 5 and 6 and in Appendix D.

Table 4-2
File Status Bits
Bit Name Meaning
18 10.IMP Improper mode. Attempt to write on a software write-locked tape or

file structure, or a software detected redundancy failure occurred. Usually
set by the monitor.

19 I0.DER Hard device error, other than data parity error. This is a search power
supply, or channel memory parity error. The device is in error rather than
the data on the medium. However, the data read into core or written on
the device is probably incorrect. Usually set by the monitor.

20 I0.DTE Hard data error. The data read or written has incorrect parity as detected
by hardware (or by software on CDR, PTR). The user’s data is probably
non-recoverable even after the device is fixed. Usually set by the monitor.

21 10.BKT Block too large. A block of data from a device is too large to fitin a
buffer; a block number is too large for the unit; the file structure (DSK) or
unit (DTA) has filled; or the user’s quota on the file structure has been
exceeded. Usually set by the monitor.

4-18

Table 4-2 (Cont)
File Status Bits

Bit Name Meaning

22 I0.EOF End of file. The user program has requested data beyond the last record
or block with an IN or INPUT UUO, or USETI has specified a block be-
yond the last data block of the file. When set, no data has been read into
the input buffer. Usually set by the monitor.

23 I0.ACT 1/O active. The device is actively transmitting or receiving data. Always
set by the monitor.

24-29 Device dependent parameters. Refer to Chapter 5 and 6 and Appendix D
for detailed information about each device. Usually set by the user.

30 I0.SYN Synchronous input. Stops the device after each buffer is filled. Usually
set by the user.

31 1I0.UWC User word count. Forces the monitor to use the word count in the third
word of the buffer (output only). The monitor normally computes the
word count from the byte pointer in the buffer header. Usually set by the
user.

32-35 10.MOD Data mode. Refer to Table 4-1. Usually set by the user.

4.6.1 File Status Checking

The file status (refer to Table 4-2) is retrieved by the GETSTS (operation code 062) and tested by the STATZ
(operation code 063) and STATO (opération code 061) UUOQ. In each case, the accumulator field of the instruc-
tion selects a data channel. If no device is associated with the specified data channel, the monitor stops the job
and prints

I/O TO UNASSIGNED CHANNEL AT USER addr
(addr is the location of the GETSTS, STATZ, or STATO programmed operator) on the user’s terminal and the
terminal is left in monitor mode.
GETSTS D,E stores the file status of data channel D in the right half and O in the left half of location E.
STATZ D,E skips if all file status bits selected by the effective address E are 0.

STATO D,E skips if any file status bit selected by the effective address E is 1.

4.6.2 File Status Setting

The initial file status is a parameter of the INIT and OPEN UUQ’s; however, the file status may be changed by
SETSTS (operation code 060). Error status bits IO.ERR (I0.IMP, IO.DER, I0.DTE, and I0.BKT) must be
cleared by this UUOQ if the user is attempting an error recovery. In addition, the SETSTS UUO can be used to
clear the end-of-file bit, but this is not sufficient to clear the end-of-file condition. Further inputs will not occur
until the end-of-file condition (determined by an internal monitor flag IOEND) is cleared by a CLOSE or INIT
uvo.

4-19

SETSTS D,E waits until the device on channel D stops transmitting data and replaces the current file status,
except bit 23, with the effective address E. If the new data mode, indicated in the right four bits of E, is not
legal for the device, the job is stopped and the monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr

(dev is the physical name of the device and addr is the location of the SETSTS UUO) on the user’s terminal and
the terminal is left in monitor mode. If the user program changes the data mode, it must also change the byte
size for the byte pointer in the input buffer header (if any) and the byte size and item count in the output buffer
header (if any). The output item count should be changed by using the count already placed there by the mon-
itor and dividing or multiplying by the appropriate conversion factor, rather than assuming the length of a buffer.
Incorrect I/O may result if a data mode change requires a different buffer length. SETSTS does not change buf-
fer lengths. The mode specified in INIT is used to determine buffer sizes even though the buffer ring has not
been created.

4.7 FILE TERMINATION

File transmission is terminated by the CLOSE D,N (operation code 070) UUO. N is usually zero, but individual
options may be selected independently to control the effect of the CLOSE.

Usually a given channel is OPEN for file transmission in only one direction, and CLOSE has the effect of either
direction, and CLOSE has the effect of either closing input if INPUTS have been done or closing output if
OUTPUTS have been done. However, disk and DECtape may have a single channel OPEN for both INPUT and
OUTPUT, in which case the first two options (described below) are useful.

In the case of the MPX device (a special pseudo-device to which one or more real devices are connected), CLOSE
affects all of the devices connected to MPX.

An output CLOSE for MPX causes all buffers to be returned to the free chain. All buffers on device chains are
first output and the buffer ring header is initialized as usual.

An input CLOSE for MPX causes the input buffer ring to be initialized (any remaining buffers that have not been
retrieved via the IN UUOQO are flushed).

Table 4-3 shows the CLOSE options.

Table 4-3
CLOSE Options
Option Meaning
CLOSE D,0 The output side of channel D is closed (bit 35=0). In unbuffered data modes,

the effect is to execute a device dependent function. In buffered data modes,
if a buffer ring exists, the following operations are performed:

1. All data in the buffers that has not been transmitted to the device is written.
2. Device dependent functions are performed.

3. The ring use bit (bit 0 of the first word of the buffer header) is set to 1
indicating that the buffer ring is available.

4. The buffer byte count (the third word of the buffer header) is set to 0.

4-20

Table 4-3 (Cont)
CLOSE Options

Option

Meaning

CLOSE D,1
CLOSE D,2

CLOSE D,4

CLOSE D,10

CLOSE D,20

5. Control returns to the user program when transmission is complete.

The input side of channel D is also closed (bit 34=0). The end-of-file flag is
always cleared. Further action depends on the data mode in unbuffered data
modes, the effect is to execute a device dependent function. In buffered data
modes, if a ring buffer exists, the following operations are performed:

1. Wait until device is inactive.

2. The use bit of each buffer (bit 0 of the second word) is cleared indicating
that the buffer is empty.

3. The ring use bit of the buffer header (bit O of the first word of the buffer
header) is set to 1 indicating that the buffer ring is available.

4. The buffer byte count (the third word of the buffer header) is set to 0.
5. Control returns to the user program.

On output CLOSE, the unwritten blocks at the end of a disk file are automatically
deallocated (bit 33=0). On input CLOSE, the access date of a disk file is updated.
Bit 32=0.

The closing of the output side of channel D is suppressed. Other actions of
CLOSE are unaffected. Bit 35=1, CL.OUT.

The closing of the input side of channel D is inhibited; other actions of CLOSE
are unaffected. Bit 34=1, CL.IN.

The unwritten blocks at the end of a disk file are not deallocated. This capability
is provided for users who specifically allocate disk space and wish to retain it.
Bit 33=1, CL.DLL.

Use of this option is méaningful with disk files only and is ignored with non-disk
files.

The updating of the access on CLOSE input is inhibited. This capability is in-
tended for use with FAILSAFE, so that files can be saved on magnetic tape
without causing the disk copy to appear as if it has been accessed. Bit 32=1,
CL.ACS.

-~ Use of this option is meaningful with disk files only and is ignored with non-disk

files.

The deleting of the NAME block and the access tables in monitor core on CLOSE
input is inhibited if a LOOKUP was done without subsequent INPUT. This bit is
used by the COMPIL program to retain the core block in order to speed up the
subsequent access by compilers such as FORTRAN-10. Bit 31=1, CL.NMB.

Use of this option is meaningful with disk files only and is ignored with non-disk
files.

421

Table 4-3 (Cont)

CLOSE Options
Option Meaning
CLOSE D,40 The deleting of the original file, if any, is inhibited if an ENTER which creates

or supersedes was done. The new copy of the file is discarded. This bit is used
by the queue manager (QMANGR) to create a file or a unique name and not
supersede the original file. Bit 30=1, CL.RST

Use of this option is meaningful with disk files only and is ignored with non-disk
files.

CLOSE D,100 The NAME block and access tables are deleted from the disk data base and the
space is returned to free core. Bit 29=1, CL.DAT.

Use of the option is meaningful with disk files only and is ignored with non-disk
files.

Any combination of the above bit settings is legal.

Example: Terminating a File

DROPDV: @ 1SR HERE
CLOSE 3, JURITE END OF FILE AND TERMINATE
. PINPUT
STATZ 3, 74c20¢ JRECHECK FINAL ERRQR RITS
JRST OUTERR PERROR DURING CLOSE
RELEAS 3, SRELINQUISH THE USE QF THE

FDEVICE, WRITE QUT THE DIRECTORY

MOVE @, SVJBFF
MOVEM @, JORFF JRECLAIM THE BUFFER SPACE
JR3T & DROPDV JRETURN TO MAIN SEQUENCE

4.8 DEVICE TERMINATION AND REASSIGNMENT

4.8.1 RELEASE

When all transmission between the user’s program and a device is finished, the program must relinquish the de-
vice by performing a

RELEASE D,

RELEASE (operation code 071) returns control immediately, if no device is associated with data channel D.
Otherwise, both input and output sides of data channel D are CLOSEd and the correspondence between channel
D and the device, which was established by the INIT or OPEN UUO"s, is terminated. Any errors that occurred

are recorded in the BAT block if super USETI/USETO was used with channel D. If the device is neither associated
with another data channel nor assigned by the ASSIGN or MOUNT commands, it is returned to the monitor’s
pool of available facilities. Control is returned to the user’s program.

4-22

RELEASE first causes a CONDITIONAL DISCONNECT for all devices connected to an MPX channel. The buffer
rings are then initialized to their original, unused state and the I/O channel is relinquished. The channel may then
be re-used (via INIT/OPEN) as an ordinary or MPX I/O channel.

4.8.2 RESDV. AC, or CALLI AC, 117

This UUO allows a user program to reset a single channel. It is similar to the RELEASE UUO except no files or
buffers are closed. Files that are open on the channel are deleted; any older version with the same filename re-
mains. All I/O transmissions on the channel are stopped, and device allocations made by the INIT or OPEN UUOs
on the specified channel are cleared. The device is returned to the monitor pool unless it has been assigned by

the ASSIGN or MOUNT command. The call is:

MOVEI AC, channel number or

MOVEI AC, UDX

RESDV .AC, ;or CALLI AC, 117
error return

normal return

On an error return, either the AC is unchanged if the UUO is not implemented, or AC contains —1 if there is no
device associated with the channel.

On a normal return, the channel is reset.

4.8.3 REASSIGN AC, or CALLI AC, 21

This UUO reassigns a device under program control to the specified job and clears the directory currently in
core, but does not clear the logical name assignment. A device can be reassigned if it is assigned to the current
job, or if it is both not assigned to any job and is not detached. A RELEASE UUO is performed unless the job
issuing the UUO is reassigning the device to itself by specifying ~1 in AC or is reassigning the device by specifying
0in AC. If the device is restricted when it is reassigned with a 0 in AC it is returned to the restructed pool of
devices and can be reassigned to a non-privileged job by a privileged job. (This is the method by which the
MOUNT command is implemented.) The REASSIGN UUO will accept a UDX device specification in addition
to the SIXBIT device names and channel number specifications. An error is indicated on return from the UUO
if the device specifiéd is connected to an MPX channel when the REASSIGN UUO is issued, or if any other error
conditions exist. An error is also indicated if the argument of the REASSIGN UUO specifies an MPX channel
itself (via a channel number or SIXBIT/MPX/ argument).

The call is:

MOVE AC, job number

MOVE AC+1, [SIXBIT/DEVICE/] ;or MOVEI AC+1, channel number
REASSIGN AC, T ;or CALLI AC, 21

return ;error and normal

If on return the contents of AC = 0, the specified job has not been initialized. If the contents of AC+1=0, the
device has not been assigned to the new job, the device is the job’s controlling terminal, the logican name is du-
plicated, or the logical name is a physical name in the system and the job reassigning the device is either logged
in under a different project-programmer number or is not the operator.

4-23 September 1974

4.8.4 DEVLNM AC, or CALLI AC, 107(1)

This UUO sets the logical name for the specified device. The device can be specified with a SIXBIT device name,
a channel number or a UDX. Upon call of the UUO, AC contains either the device name or the channel number
associated with the device. The call is:

MOVE AC, [SIXBIT/dev/] ; or MOVEI AC, channel no.
MOVE AC+1, [SIXBIT/log.name/] ;or MOVEI AC, UDX
DEVLNM AC, ;or CALLI AC, 107

error return

normal return

On an error return, AC contains one of the following:

Name Value Meaning
Unchanged UUO not implemented.
DVLNX% -1 Non-existent device or a channel number was specified.
DVLIU% -2 Logical name already in use.
DVLNA% -3 Device not assigned (ASSIGN or MOUNT command not used;

INIT or OPEN not done.)
On a normal return, AC and AC+1 are unchanged.
4.9 EXAMPLES

4.9.1 File Reading

The following UUO sequence is required to read a file:

OPEN Establishes a file structure-channel correspondence (or a set of file structure-
channel correspondences).

LOOKUP Establishes a file-channel correspondence. Invokes a search of the UFD. Returns
information from the file system.
INBUF (Optional) Sets up 1 to N ring buffers in the top of core, expand core if necessary.
INPUT Sets up a buffer ring with the default number of buffers, if no INBUF was done.
: INPUT Requests buffers of data from the monitor.
CLOSE Breaks file-channel correspondence.
RELEASE Breaks device-channel correspondence.

(1) This UUO depends on FTSUUO which is normally off in the DECsystem-1040.

424

4.9.2 File Writing

The following UUO sequence is required to write a file:

OPEN Forms file structure-channel correspondence (or a set of file structure-channel
correspondences).

ENTER Forms file-channel correspondence. The monitor creates some temporary storage
for interlocking and shared access purpose for the filename. No directory entry is
made.

OUTPUT

OUTPUT Passes buffers of data to monitor for transmission to storage device. Should not
be used for the final buffer because CLOSE completes the action of ENTER.

CLOSE Completes the action of ENTER. Adds filename to file system. Normally returns
allocated, but unused, blocks to the file system.

RELEASE Breaks device-channel correspondence.

4.9.3 File Reading/Writing
TITLE FILTRN == SAMPLE]/0 PROGRAM

JA PROGRAM THAT READS 7=BIT ASCI1 CHARS FROM FILE INFILE,DAT ON
JDEVICE DATA AND OUTPUTS THEM TO FILE OUTFIL,LST ON DEVICE LIST
INOTE THAT DEVICES DATA AND LIST ARE LOGICAL NAMES, THUS

J)THE PHYSICAL NAMES ARE DETERMINED AT RUN TIME To PROVIDE DEVICE
J INDEPENDENCE,

JBOTH INPUT AND OUTPUT FILES ARE ACCESSED SEGUENTIALLY,

START: RESET SCEVICE RESET (IN CASE PROGRAM
3 1S RESTARTED)
OPEN 1,C 1 $CONNECT DEVICE [DATA TO PROG ON CH 3

JIN ASCID LINE MODE
SIXBIT /DATA/
XWD £,1BUF1] 3IBUFL 1S THE INPUT BUFFER HEADER

HALT $ERROR RETURN
QFEN 2,0 1 $CONNECT DEVICE LIST TO CH 2 IN ASCI!
$LINE MODE

SIXEIT /L1ST/
XD ORUF2,Z) ;0BUF2 IS OUTPUT BUFFER HEADER

HALT .

LOOKUP 1,L1 _ _3OPEN FILE INFILE,DAT FOR INPUT -
HALT - IERROR RETURN

ENTER 2,E2 JOPEN FILE OUTFIL,LST FOR OUTPUT
HALT

INBUF 1,3 JCREATE 3 INPUT BUFFERS

JSINCE NO BUFFERS SPECIFIED FOR OUTPUT
3 ON FIRST OUTPUT THE MONITOR WILL
} MAKE THE DEFAULT NUMER

JITHIS IS THE BASIC 1/2 LOOP FOR THE JOB

NEWCHR: JSR GET }JG0 GET ONE INPUT CHARACTER
JSR PUT JOUTPUT THE CHARACTER REGCEIVED
JRST NEWCHR JLOOP FOR NEXT ONE

4-25

JGET == ROUTINE TO GET ONE CHARACTER FROM THE INPUT FILE
JIT ENDS THE PROGRAM AT INPUT END=QOF=FILE

GET: Z JENTRY/ZEXIT
GET11 SOSGE IBUFL+2 JYES==INPUT FRQM REVICE
JRST GETRF
1LD8 3, IBUFL+1 JIF NULL, THROW IT AWAY AND GET NEXT
Fo i CHARACTER, TKIS 1S CONVENTIONAL
0
;3 ASCII DATA,
JRST 0GET JRETURN W1TH CHARACTER IN AC 3
GETBF: IN 1, $00 INPUT FROM DEVICE
JRST GET1 JLOOP IF NO ERPORS AND NOT EOF
STATZ 1,74B23 $JSEE IF ERRQR READING
HALT JYES==GIVE UP
FINISH: CLOSE i, JEOF»=CLOSE INPUT
CLOSE 2y JCLOSE QUTPYT
RELEAS 1, JRELEASE DEVICE DATA
RELEAS 2, JRELEASE DEVICE LIST
EXIT JEXIT TO MONITOR

JPUT~=ROUTINE TO PUT ONE CHARACTER ONTO THE QUTPUT

PUT: 2 JENTRY/ZEXIT
SOSGE 0BUF2#+2 $1S OUTPUT BUFFER FULL?
JRST PUTBF JYES==GQ QUTPUT 1T
PUTCt 10PB 3)0BUF2+1 $PUT CHARACTER IN BUFFER
JRST @PUT JRETURN
PUTBF: qUT 2, ;O0UTPUT BUFFER To DEVICE
JRST PUTC 10K, NOW STORE CHARACTER IN BUFFER
HALT ‘ JGIVE UP IF QUTPUT ERROR

JDATA STORAGE AREA

L1 SIXBIT /INFILE/ FINPUT FILE NAME
SIXBIT /DAT/ JINPUT EXTENSION
z JIPROTECTION AND CREATION DATE RETURNED
Z JINPUT DIRECTORY, #Z MEANS MY OWN
E2% SIXBIT /0UTFIL/ SQUTPUT FILE NAME
SIX31T /LST/ JOUTPUT EXTENSION
Z IPROTECTION CAN GO HERE, @ MEANS STD,
4 $OUTPUT DIRECTORY, & MEANS MY OWN
IBUFL: BLOCK 3 ;INPUT BUFFER HEADER
0BYUF2: BLOCK 3 JOUTPUT BUFFER HEADER
END START

4.10 NON-BLOCKING I/O

If no buffer is available in buffered data mode, the job blocks until complete. With non-blocking I/O, the monitor
will not go into I/O wait but will give an error return on an IN or OUT UUO with no error bit set. (This is de-
termined by using a STATZ, STATO or GETST.) In this case, the monitor has not completed I/O yet and the
user can determine when the I/O is completed by using the software interrupt mechanism (Paragraph 3.1.3) or

by re-typing the input. To use non-blocking I/O set bit 3 (UU.AIQ) in the LH of word 0 of the OPEN UUO.

4-26

4.11 THE MULTIPLEXED CHANNEL FEATURE

The MPX channel is a DECsystem-10 software MPX I/O channel on which an INIT has been used for device
MPX.. This special case of INIT (or OPEN), in fact, defines to the monitor (and to the user) a multiplexed
channel. Without the MPX channel feature, a program is restricted to referencing 16 (1 for each software chan-
nel) simultaneously active devices. An MPX channel connects a large number of devices to one software channel,
and a single program can support a large number of I/O devices simultaneously. Any job can create an MPX
channel in this way, and a single job may create as many MPX channels as required within the normal constraints
on the maximum number of channels per job.

To each MPX channel that the user has INITED, he “connects” those devices that he wishes to control via the
MPX channel. He may connect as many devices (in any order and in an arbitrary mix of device types) to a
single MPX channel so long as each device connected has the pre-defined characteristic of being controllable via
the MPX channel. (The DEVTYP UUO indicates whether a device can be controlled by an MPX channel.)

From the user’s point of view, I/O is performed into and out of buffers similar to the buffer ring described in
Section 4.3. The buffer ring concept is slightly extended to allow the several devices connected to an MPX
channel to share the same ring.

The IN and OUT UUO’s are utilized in roughly the same way as required for devices other than MPX. However,
the format of buffers and ring headers has been:modified to provide a unique device ID (UDX) designating the
source or destination of the data in each buffer.

4.11.1 Buffer Ring Extensions

For each MPX channel, one input or one output buffer ring can be defined by the user by using INIT, OPEN,
INBUF, and OUTBUEF in their usual way. However, the buffer ring header blocks are 4 words long for the MPX
device rather than the usual 3. INIT and OPEN define the 4-word ring headers for input and output. INBUF
and OUTBUF may then be used to create an arbitrary number of buffers for each ring with the buffer header in
each buffer appropriately initialized. The following shows the 4-word buffer header.

Word 0 Use Bit Current Buffer
1 Buffer Pointer
2 Byte Counter
3 Universal Device Index (UDX)

The input ring contains buffers chained together in an endless fashion with pointers in each buffer header to the
next buffer in the ring. As in the conventional input ring, input data is stored in consecutive buffers in the ring
and retrieved in the same order for the user via the IN UUO. The MPX channel, however, also stores additional
information pertaining to the data in the buffer in each buffer’s 3-word header area. The 4th word of the ring
header is loaded with a value identifying the specific device which stored the data.

The user must store a value identifying the device for which the data is destined. This value is stored in the 4th
word of the buffer ring header before the OUT UUO is issued to output the data. With the exception of the

4-27

4th word in the buffer ring header, the MPX channel user can perform I/O operation in a way that is virtually
identical to ordinary buffered I/O. Although it has no significant impact on the users, the format of the buffer
rings is also modified and is a requirement when specifying the MPX device.

MPX uses buffer rings for input, but for output the format is slightly modified to form one or more device chains
and a free chain.

4.11.1.1 Device Chains — Device chains are created when an OUT UUO is issued to cause a buffer of data to be
output on a particular device. A control block in the monitor address space maintains pointers to the beginning
of the device chains for each device. The chains are then linked via the normal buffer link pointer (the right half
of the second word of each buffer) and is terminated by a zero pointer value. Using the chain for output allows
the monitor to treat each device connected to an MPX channel separately.

After the device service routine empties the buffer, it is placed on a free chain available for re-use. The free
chain begins with a pointer in the right half of the first word of the ring header. Buffers are linked via the nor-
mal pointer in each buffer header area, and the chain is again terminated with a pointer value of zero.

As OUT UUQO’s are issued, buffers are removed from the free chain and added to a device chain. The ring header
is updated to the next buffer in the free chain for return to the user upon return of the OUT UUO. Bufferson a
device chain are returned to the free chain by the monitor when the output has been accomplished. A facility
also exists to allow the user to force an output buffer off a device chain and back to the free chain when the user
wishes to abort the output.

4.11.2 1/O Modes

Al 1/O performed on the MPX channel is buffered I/O; that is, I/O is performed to and from buffer rings only.
All buffered I/O modes are legal for MPX as long as they are legal for all of the devices connected to MPX at
execution time. In addition, a new buffered I/O mode is defined for the MPX channel called Packed Image
Mode (PIM).

4.11.3 Device Identification

Devices that can be controlled by an MPX channel are identified by the user in.one of several ways. The various
alternatives provide great flexibility in the specification of individual devices or classes of devices.

At the first level, all devices are assigned unique identifiers called the “Universal Device Index” (UDX). From
the user’s point of view, the assignment of a particular UDX value to a particular device is completely arbitrary.

UDX assignment for existing devices is listed under the DEVTYP UUO description.
4.11.4 UUO’s

4.11.4.1 CNECT.UUO — The CNECT. UUO is used to connect and disconnect individual devices from a par-
ticular MPX channel. CNECT. can only be used for devices which can be controlled by an MPX channel. A
device must be “connected” to an MPX channel before input or output can occur for that device on the MPX
channel. One CNECT. must be issued for each device to be controlled by an MPX channel. The CNECT. UUO
should be issued after the channel has been INITed and after any desired INBUF and OUTBUF UUQ’s have
been issued.

4-28

CNECT. performs three basic functions:

Name Function
.CNCCN 1
.CNCDC 2
.CNCDR 3

The calling sequence for CNECT. is

PLIST:

where

MOVEI AC, PLIST
CNECT. AC,

error return
normal return

XWD OP,D
SIXBIT /devnam/ or UDX

D is an INITed MPX channel number,

Meaning
Connect a specific device to an MPX channel.
Equivalent to a CLOSE and disconnect.

Equivalent to a RESET and disconnect.

;or CALLI AC, 130

OP is the CNECT. operation code as follows:

OP =1 - .CNCCN
=2 — .CNCDC
=3 — .CNCDR

devnam is the SIXBIT physical, logical, or generic name of the device to be connected.
UDX, an alternate specification for the device, is the Universal Device Index for the device.

The following error codes are possible with the CNECT. UUO

Code

1

10

11

12

Name Meaning

CNCNM% The channel specified is not OPEN for device MPX:

CNCUD% The device specified by PLIST+1 does not exist in the system.

CNCCM% Th;e device specified by PLIST+1 cannot be connected to device MPX.

CNCNF% The monitor ran out of core to build control blocks.

CNCNC% The device specified by PLIST+1 is not connected and-the requested
operation is conditional or unconditional disconnect.

CNCNO% The channel number is in some way illegal or not open.

CNCI1% An invalid I/O index was specified.

CNCUF% The function code is invalid.

CNCDU% The device specified by PLIST+1 is already assigned, INITED or
connected by this or some other job.

CNCSD% The device specified by PLIST+1 is a spooled device.

4-29 September 1974

4.11.4.2 ERLST. AC, or CALLI AC, 132 — The ERLST. UUO provides the user with a list of unoperational
devices connected to a specified MPX channel. In order to make processing of errors for devices on an MPX
channel somewhat more efficient the UUO allows the user optionally to request a list of only those devices that
have not been indicated in previous ERLST. calls.

The user provides an area of arbitrary length in core for the UUO. The UUO will store as many UDX values as
will fit in the user space allowed. If more space is required, the UUO sets a flag on return to the user indicating

that the list returned is incomplete.

The error return is taken if the UUO is not implemented or if the specified channel is not an INITed MPX

channel.
The calling sequence is:

MOVEI AC, BLOCK
ERLST. AC, ;or CALLI AC, 132

error return
normal return

BLOCK: # words in BLOCK, , channel # (supplied by user)
devices that have errors (returned by monitor)
UDX for first device , , GETSTS for device (returned by monitor)

UDX for first device , , GETSTS for device

This UUO is implemented only if the monitor has the MPX option.

4.11.5 EXAMPLE

The following shows a program using MPX.

TITLE MPX == SAMPLE USE OF MPX!

J##oCOPYRIGHT 1974, DIGITAL EQUIPMENT CORP,, MAYMARD MASS, @1754#es

JTHIS PROGRAM CONNECTS ALL FREE TTY'S TOGETHER IN A GIANT "PARTY
LINE".

} ANYTHING TYPED QN ANY OF THE TERMINALS WILL BE TYPED ON EVERY OTHER
) TERMINAL,

JAC USAGE

Ti=1 }TEMPS

T2=2 -

73=3 | I

T4=4 I

C=5 FCHARACTER (IN AND oUT)
1=6 JINDEX TO TABLES

BP=7 }BYTE POINTER

P=17 JPUSH DOWN STACK

1170 CHAWNNELS
MPX=m1 $CHAN FOR MPX

4-30 September 1974

SEARCH C

;GET STANDARD SYMREOQLS

}START THE PROGRAM GOING

START: RESET
MOVE
SETZM
MOVE
BLT
OPEN
HALT
INBUF

OUTBUF

MOVE

MOVET

P,L10WD 22,PNL) JSET UP PUSH DOWN POINTER
FIRZER ICLEAR CORE SO THAT CONTRQOL=C
T1,[FIRZER,,FIRZER+11 3 START WILL MNOT LEAVE ANY
TL1,ENDZER POJUNK ARQUAND
MPX, OPNMPX JOPEN NEVICE MPY
. JOPEN ERROR :
MPX,5 JGET SOME SMALL NUMBER OF

} BUFFERS FQR BOTH INPUT AND
MPX,5 3 DUTPUT, «OTE! USING MPX WE

3 MAY HAVE FEWER BUFFERS THAN
i COMNECTED DEVICES,
T4,[«D512,,UDXTAB] POINTER TO TABLE OF CONNECTED
} DEVICES,
5 THIS TABLE WILL GET 1 ENTRY
3 FOR EACH TTY WE CONNECT TO
3 THE MPY CHAN,
H

T3, UXTRM=1 1/0 INDEX QF FIRST TTY

JLOOP TO CONNECT ALL FREE TTY’S

CNLOOP? AQDI
MOVEL

MOVEM

CNECT,

JRST

MOVEM

AOBUN
JHERE ONLY IF THERE
CONERR: CAIN

73,1 FADVANCE TO NEXT TTY
T1,CONBLK JPOINTER TO ARGUMENT BLOCK
T3,CONDEY JSTORE THE DEVICE NAME
T, 3100 THE coOMNECT
CONERR JERROR RETURN
T1,(T4) JSTORE THE UDX RETURNED IN AC
} IN THE TABLE QF CONNECTED
} DEVICES
T4,CNLOOP JLOOP BACK TO TRY THE NEXT TTY
ARE 512 TTY'S AND THEY ARE ALL CONNECTED TO MPX
Ti,CNCUDY 318 THIS THE LAST TTY? (THAT

§ 18 DID WE GET THE UNKOWN
} DEVICE ERROR?)

JRST MAIN JYESw=WE CONMECTED EVERYTHING
} WE COULD
CAIN Ti,CNCDU%Z $1S THIS DEVICE BUSY?
JRST CNLOOP JYES==IGHORE [T
JAT THIS POINT WE HAVE SOME UNEXPECTED ERROR CONDITION,
HALT . JJUST DlE
yHERE 1S THE MAIN LOOP OF THE PROGRAM
MAINI PUSHJ P)GETLIN JREAD A LINE INTO LINBUF
MQVEI 1,UDXTAB JPOINTER TO START OF TABLE

1LOOP OVER ALL TTY’S WHICH ARE CONNECTED AND SEND OUT
} THE LINE I8 LINBUF

SNDLIN: MQVE BP,CPOINT 7,LINBUF] JSETUP BYTE POINTER
MOVE T, (1) JGET UDX FOR NEXT DEVICE
- JUMPE TL/MAIN JALL DONE IF ZERO
MOVEM T1,0UTUDX JSAVE IN QUTPUT BUFFER HEADER

4-31

JOUTPUT ENTIRE LINE ON OME TTY

SNOCHR: 1L.0B CrBP
PUSHJ PsBYTOUT
JUMPN CsSNDCHR

QUTPUT MPX,
AQUA I1,SNDLIN

JSUBROQUTINE TO READ A LINE AND STORE 1IT
' BP,LPOINT 7,LINBUF]

GETLIN: MOVE

IGET A BYTE

IQUTPUT THE BYTE

JLOOP TILL END OF STRING
JSTART TTY TYPING EVEN IF
} BUFFER 15 NOT 128% FULL
JSEND TO NEXT TTY
IN LINBUF

IPOINTER TO STRING

JMAX NUMBER QOF CHARACTERS
JGET A BYTE

ISTORE IN BUFFER

}1S THIS A LINE FEED?
INOe=GO GET THE NEXT BYTE

JSTORE A ZERO AS AN END OF
} STRING MARK

)

JRETURN

JSTANDARD SURROUTINE TO GET 4 BYTE AND RETURN IT IN ‘g

JDECREMENT BYTE COUNT

JBUFFER EMPTY~=GET ANOTHER ONE
IGET BYTE FROM BUFFER

} 1GNORE ZERQ BYTES

MOVE] 1,4D78
GTLIND: PUSHJ PsBYTIN
10rB CiBP
CAlE C» CHLFD
S0J6G 1.GTLIND
JHERE IF LINE FEED TYPED OR WE GOT 78 CHARS
MOVE! C)8
IDPB C)BP
Pory Py
BYTING SOSGE INCNT
JRST GETBF
ILDR C,INPTR
JUMPE CrBYTIN
POPJ Py0

JHERE WHEN INPUT BUFFER 1S EMPTY

GETBF: I MP X tes9

JRST BYTIN
HALT

JRETURN

IWAIT FOR & L'™E TO BE TYPED
} ON ANY CONNECTED TTY, THIS
} USES THE FEATURE OF MPX

} WHICH CAUSES IN TO WAIT ON
I MANY DEVICES AT ONCE,

INC ERRQRS«==GET A BYTE
JINMPUT ERROR

JSTANDARD SUBROUTINE TO WRITE 1 RBYTE (FROM rC*)
JINOTE: THE ynX OF THE DEVICE TO GET THIS PIECE OF CUTPUT IS STORED IN

} OUTUDX PRIOR TO CALLING BYTOUT
BYTOUT: S0s6 OUTCNT

JRST PUTBF
PUTC3 IDFB CrQUTPTR

PORJ Pi0
JHERE IF BUFFER 1S FukL
PUTEF: ourT mPX,

JRST PUTC

HALT

JSTORAGE

JOPEN BLOCK FOP MPXi

OPNMPX: EXP .I0ASC
SI¥BIT /MPX/
XWh 0BUF, 1BUF

4-32

JROOM IN BUFFER?

INO==GZ EMPTY THIS BUFFER
JSTORE BYTE IN OUTPUT BUFFER
JRETURN

JEMPTY THIS BUFFER
}STORE DATA BYTE
JOQUTPUT ERROR

JASCI1 MODE
JOEVICE NAME
IBUFFER RING HEADERS

$ARGUMENT BLOCK FOR CNECT, LU0
CONBLK: XwD +CNCCN,MPX SFUNCTION=2CONNECT, » CHANNEL
CONDEV: Bl.OCK 1 JNAME OF DEVICE TO CONNECT

FIRZER: JFIRST LOCATION TO ZERO oM STARTUP

OBUF 1 BLOCK 1 JOLTPUT 2UFFER RING HEADER
OUTPTR? BLOCK 1 JBYTE PQINTER TG OQUTPUT BUFFER
OUTCNT: BLOCK 1 1RYTE NOUNT FOR OUTPUT BUFFER
oUTUDX: BLoCK 1 JDEVICE TC GET THIS BUFFER
1BUF1 BLOCK 1 PINPUT BYFFER RING HEADER
INPTR: BLOCK 1 SBYTE POINTER TO INPUT DATA
INCNT: BLLOCK 1 FPIMNPUT BYTE COQUNT
INUDX:? BLOCK 1 JWHERE Tr1S RUFFER CAME FROM
L INBUF BLOCK +08p/5 JLINE BUFFER
PDL: BLACK 23 JPUSH DOWN LIST
UDXTAB:S BL.OCK +D512 JTABLE OF UDX’S
z JZERO TO MARK END OF TABLE
ENDZER=, =1 iLAST WORD TO ZERQ CN STARTUP
END START

4.12 DEVICE INFORMATION

4.12.1 DEVSTS AC, or CALLI AC, 54(1)

This UUO retrieves the DEVSTS word of the device data block for an INITed device. The DEVSTS word is used
by a device service routine to save the results of a CONI after each interrupt from the device. (Refer to Appendix
D for the device status bits.) Devices that use the DEVSTS UUO are the following : CDR, CDP, MTA, DTA,
PTR, PTP, DSK, LPT, and PLT. The DEVSTS UUO, when specifying an MPX channel (via a channel number
argument or SIXBIT/MPX/), always returns a word of zeroes. It has no meaning in this case. When specifying

a device controlled by a front-end, DEVSTS is also meanirigless, returning a zero word.

The call is:
MOVEI AC, channel number of device ; or MOVEI AC, [SIXBIT/dev/]
DEVSTS AC, ;or CALLI AC, 54
error return : ; UUO not implemented for any devices
normal return ; AC contains the DEVSTS

; word of the DDB.

On return, the contents of the DEVSTS word is returned in AC. Therefore, if the device service routine does
not store a CONI useless information may be returned to user. Note that an error return is not indicated if the
device service routine does not use the DEVSTS word for its intended purpose. Devices with both a control and
data interrupt store the controller CONI (MTS, DTS, DSK, DSK2, DPC, DPC2).

The DEVSTS UUO is not meaningful when used in asynchronous buffered I/O mode unless a WAIT UUO (see
Paragraph 4.5.3) is issued first to ensure synchronization of the actual data transferred with the device status
returned.

(1) This UUO depends on FT5UUO which is normally off in the DECsystem-1040.

4-33

4.12.2 DEVCHR AC, or CALLI AC, 4

This UUQ allows the user to determine the physical characteristics associated with a device name. When the
UUO is called, AC must contain either the logical or physical device name as a left-justified SIXBIT quantity, or
the channel number of the device as a right~justified quantity.

The call is:
MOVE AC, [SIXBIT/DEV/] ; or MOVEI AC, channel number of
; device, or MOVEI AC, UDX
DEVCHR AC, ;or CALLI AC, 4
return

If the device is not found or the channel is not INITed, the AC contains a zero on return. If the device is found,
the following information is returned in AC:

Name Bit Explanation

DV.DRI Bit0=1 DECtape directory is in core. This bit is cleared by an ASSIGN
or DEASSIGN to that unit.

DV.DSK Bitl=1 Device is a disk.

DV.CDR Bit2=1 Device is a card reader (DV.IN = 1) or card punch (DV.OUT = 1).

DV.LPT Bit3=1 Device is a line printer.

DV.TTA Bit4=1 TTY is controlling a job.

DV.TTU Bit5=1 TTY is in use as a user terminal (even if detached).

DV.TTB Bit6=1 Free bit left from SCNSRF.

DV.DIS Bit7=1 Device is a display.

DV.LNG Bit8=1 Device has a long dispatch table (that is, UUOs other than INPUT,
OUTPUT, CLOSE, and RELEASE perform real actions).

DV.PTP Bit9=1 Device is a paper-tape punch.

DV.PTR Bit 10=1 Device is a paper-tape reader.

DV.DTA Bit11=1 Device is a DECtape.

DV.AVL Bit 12=1 Device is available to this job or is already assigned to this job.

DV.MTA Bit 13=1 Device is a magnetic tape.

DV.TTY Bit 14=1 Device isa TTY.

DV.DIR Bit 15=1 Device has a directory (DTA or DSK).

DV.IN Bit 16 =1 Device can perform input (including MPX).

DV.OUT Bit17=1 Device can perform output (including MPX).

DV.ASC Bit 18=1 Device is assigned by a console command.

4-34

Name Bit Explanation

DV.ASP Bit 19=1 Device is assigned by program (INIT or OPEN) (including MPX).
DV.M17 Bit 20=1 Unbuffered one-record dump mode is legal for this device (IODMP).
DV.M16 Bit21=1 Unbuffered dump mode (more than one record) is legal (IODMP).
DV.MI15 Bit22=1 Unbuffered image dump mode is legal (IODPR).

DV.M14 Bit 23 =1 Buffered binary mode is legal (.IOBIN).

DV.MI13 Bit 24 =1 Buffered image binary mode is legal (.IOBIN).

Bits 25 and 26 are not used.
DV.M10 Bit27=1 Buffered image mode is legal (IOIMG).

Bits 28—32 are not used.

DV.M2 Bit33=1 Packed Image mode is legal (including MPX) (IOPIM).
DV.MI Bit 34=1 ASCII line mode is legal (I0ASL).
DV.MO Bit35=1 ASCII mode is legal (.I0OASC).

DEVCHR also will accept a UDX argument and will return bits appropriate to the condition of the device
selected. Note that no “device type” bits are set unless the device is, in fact, of a type that is defined for
DEVCHR.

4.12.3 DEVTYP AC, or CALLI AC, 53

The device-type UUO is used to determine properties of devices. This UUO accepts, as an argument, a device
name in SIXBIT or a right-justified channel number. The call is:

MOVE AC, [SIXBIT/dev/] ; or MOVEI AC, channel no.
;or MOVEI AC, UDX

DEVTYP AC, ;or CALLI AC, 53

error return

normal return

The error return is given if the UUO is not implemented. In this case, the DEVCHR UUO should be used. On a
normal return, if AC=0, the specified device does not exist or the channel is not INITed. If the device exists,
- ——-——the-following-information is returned in AC. — ———— "~ e - T

Name Bit Explanation
TY MAN Bit0=1 LOOKUP/ENTER mandatory.
Bits 1-11 Reserved for the future.
TY.AVL Bit12=1 Device is available to this job.
TY.SPL Bit 13=1 Spooled on disk. (Other bits reflect properties of real device,

except variable buffer size.)

4-35 September 1974

Name
TY.INT
TY.VAR

TY.IN
TY.OUT

TY.JOB

TY.RAS

TY.DEV

4.12.4 DEVSIZ AC, or CALLI AC, 101

Bit
Bit 14=1

Bit15=1

Bit16=1
Bit 17 =1
Bits 18—26
Bits 27—28

Bit 29

Bits 30—35

Explanation

Interactive device (output after each break character).

Capable of variable buffer size (user can set his own buffer

lengths).
Capable of input.

Capable of output.

Job number that currently has device INITed or ASSIGNed.

Reserved for the future.

Device is a restricted device (i.e., can be assigned only by a
privileged job or the MOUNT command).

Device type code.
Code 0 (.TYDSK)
Code 1 (TYDTA)
Code 2 (TYMTA)
Code 3 (TYTTY)
Code 4 (. TYPTR)
Code 5 (-TYPTP)
Code 6 (.TYDIS)
Code 7 (TYLPT)
Code 10 (.TYCDR)
Code 11 (.TYCDP)
Code 12 (.TYPTY)
Code 13 (.TYPLT)
Code 14 (. TYXTC)
Code 15 (TYMPX)
Code 16 (. TYPAR)
Code 17 (.TYPCR)
Code 20 (.TYPAP)
Code 21 (. TYLPC)
Code 22 (. TYPCP)
Codes 23-57
Codes 60—77

Disk of some sort
DECtape

Magnetic tape

TTY or equivalent
Paper-tape reader
Paper-tape punch
Display

Line printer

Card reader

Card punch
Pseudo-TTY
Plotter

External task.
Software MPX.
PA611-R on DC44
PC-11 (R) on DC44
PA611-P on DC44
LPC-11 on DC44
PC-11 (P) on DC44
Reserved for Digital.
Reserved for customer.

This UUO is used to determine the buffer size for a device if the user wants to allocate core himself. The
DEVSIZ UUO will return the default buffer size of the MPX channel if any MPX channel is specified as a

DEVSIZ argument.

If the argument of DEVSIZ (including UDX specification) is a device that is controlled by an MPX channel,
DEVSIZ will return the size of a physical record for the device. If no fixed physical record size exists for the

4-36

September 1974

device, the default buffer size for the device (usually the same as the MPX buffer size) is returned. The
call is:

MOVE AC, [EXP LOC]

DEVSIZ AC, ;or CALLI AC, 101
error return

normal return

LOC:EXP STATUS ; first word of the OPEN block
LOC+1: SIXBIT /dev/ ; second word of the OPEN block

The error return is given if the UUO is not implemented. On a normal return, AC contains one of the following

values:
Name Value Meaning
DVSDM% 0 Device exists but the data mode is dump mode.
DVSNX% -1 Non-existent device.
DVSIM% -2 Illegal mode.

If the device exists and the data mode is legal, AC contains in bits 0—17 the default number of buffers, and in
bits 18—35 the default buffer size (including the first three words of the buffer).

4.12.5 WHERE AC, or CALLI AC, 63(1)

This UUO returns the physical station number of the specified device. When the UUO is called, AC contains _
either the channel number of the device as a right-justified quantity, or the device name as a left-justified
SIXBIT quantity. The call is:

MOVE AC, [SIXBIT /dev/] ; or MOVEI AC, channel no.
WHERE AC, ;or CALLI AC, 63

error return

normal return

If OPR is specified as the device name, the station number at which the job is logically located is returned; if
OPR is specified, the station number of the central station is returned; and if TTY is specified, the station num-
ber at which the job’s TTY is located is returned.

associated with the device. The station’s status is represented by the following bits:

Bit 13=1 if the station is dial-up (RMSDU).

Bit 14=1 if the station is loaded (RMSUL).

Bit 15=1 if the station is in the loading procedure ((RMSUG).
Bit 16 =1 if the station is down ((RMSUD).

Bit 17 =1 if the station is not in contact (RMSUN).

(1) This UUO depends on FTREM which is normally off in the DECsystem-1040.

4-37

The error return is taken if the UUO is not implemented, the specified channel is not INITed, or the requested
device does not exist.

4.12.6 DEVNAM AC, or CALLI AC, 64

This UUO returns the SIXBIT physical name (in the form AAAxxx) of a device obtained through either a generic
INIT/OPEN or a logical device assignment. When the UUO is called, AC contains either channel number of the
device as a right-justified quantity, or the device name as a left-justified SIXBIT quantity. The call is:

MOVE AC, [SIXBIT /dev/] ;or MOVEI AC, channel no.
;or UDX

DEVNAM AC, ;or CALLI AC, 64

error return

normal return — SIXBIT name in AC

The normal return is taken if the specified device is found, and AC contains the SIXBIT physical device name.

The error return is taken if the UUQ is not implemented (AC is unchanged), the specified channel is not INITed,
or no such device exists.
4.12.7 IONDX. AC, or CALLI AC, 127

The IONDX. UUO returns the UDX for the device name specified in the calling parameters. The parameter may
be either a SIXBIT logical name or a SIXBIT physical name of the form AAAxxx.

The error return from the UUO is taken if
1. the UUO is not implemented, or
2. the device does not exist.

If the device is specified as SIXBIT/MPX/ the error return is taken. The calling sequence is:

MOVE AC, [SIXBIT/devnam/] ; or MOVE AC, channel no.

IONDX. AC, ;or CALLI AC, 127
error return ; AC=0, if no such device
normal return ; AC=UDX

4.12.8 CLRST.UUO
The CLRST. UUO is used to allow a device to continue after a device error condition has occurred.
The calling sequence is:

MOVE AC, [XWD length , , block]

CLRST. AC, ;or CALLI AC, 134

error return
normal return

4-38 September 1974

BLOCK contains:

UDX channel number or SIXBIT/device/
0 SETSTS value

UDX channel number or SIXBIT/device/
0 SETSTS value

This UUO is implemented only if the monitor has the MPX option.

4.12.9 MVHDR. AC, or CALLI AC, 131

The MVHDR. UUO allows a user to move a buffer ring header from one core location to another. The user may
issue a MVHDR. UUO at any time after a channel has been INITed. This UUO just changes the monitor’s
pointer to the buffer header. MVHDR does not move anything in the user’s core image.

The calling sequence of the MVHDR. UUO is:

MOVEI AC, channel

MOVE AC+1, [out-adr, , in-adr]

MVHDR. AC, ;or CALLI AC, 131
error return

normal return

If the new header address is zero, the old address is unchanged. An error return is taken if the UUO has not been
implemented. If the channel has not been INITed, an error return is taken. AC will be equal to one. If invalid
addresses are specified, the next monitor call that references the ring header will receive an ADDRESS CHECK
or an ILLEGAL UUO message.

4.12.10 SENSE AC, or CALLI AC, 133

The SENSE UUO provides information necessary for a user to diagnose and perform error recovery for a specific
device. A variable length parameter list is provided to allow upwards compatibility in expansion of the informa-
tion returned by the UUO.

The error return is taken if the specified device does not exist or if the UUO is not implemented.
The calling sequence is:

MOVE AC, [XWD length , , addr] ;or CALLI AC, 133
SENSE AC,

error return

normal return

addr: UDX or

__ channel numberor o o R
SIXBIT/device R

addrt+1: length of block , , addr of block

block: SIXBIT/device/
block+1: 0, , GETSTS information
block+2: DEVSTS word

This UUO is implemented only if the monitor has the MPX option.

4-39 September 1974

CHAPTER 5
I/0 PROGRAMMING
FOR NONDIRECTORY DEVICES

This chapter explains the unique features of each standard nondirectory I/O device. Each device accepts the

programmed operators explained in Chapter 4, unless otherwise indicated. Table 5-1 is a summary of the char-

acteristics of all nondirectory devices. Buffer sizes are given in octal and include three bookkeeping words. The

user may determine the physical characteristics associated with a logical device name by calling the DEVCHR

Uuo0.

Table 5-1

Nondirectory Device
Name Controller Unit Programmed Data Buffer Size
Device Physical Number Number Operators Modes (Octal)*

Card CDP — CP10A OUTPUT, A AL, I, | 35
Punch ouT IB,B
Card CDR,CDRI1 - CR10A INPUT, IN A AL L | 36
Reader 461 (PDP-6) IB, B, SI
Console CTY - LT33A, INPUT A,AL, T 23
Terminal LT33B, IN

LT35A, OUTPUT,

LT37AC ouT

626 (PDP-6)
Display DIS - VR30, VP10 INPUT, ID Dump

340B, 30 OUTPUT only
Line LPT, LPT], - LP10F LP10C OUTPUT | A, AL, 137
Printer LPT2 LP10H
— - = |—-TUI0-- — [——— _ __ B — . _

TU40

TU41
Magnetic MTAO, TM10A TU20A, INPUT, A AL, I 203%*
Tape MTAL, TM10B TU20B IN IB,B

... ,MTA7 TU30A, OUTPUT, DR,D
516 (PDP-6) TU30B OUT,
MTAPE

(*) Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ UUO may be employed.

(**)The buffer size for magnetic tape may be changed with the SET BLOCKSIZE command (refer to the DECsystem-10 Operating System Commands).

5-1

Nondirectory Device

Table 5-1 (Cont)

Name Controller Unit Programmed Data Buffer Size
Device Physical Number Number Operators Modes (Octal)*
Paper-Tape | PTP - PC09 OUTPUT, A, AL, I 43
Punch 761 (PDP-6) ouT IB, B
Paper-Tape PTR - PC09 INPUT, A,AL,I 43
Reader 760 (PDP-6) IN IB,B
Plotter PLT, XY10 XY10A OUTPUT, AAL,I 46
PLTI XY10B ouT IB,B
Pseudo PTY - - INPUT, A, AL 23
TTY IN
OUTPUT,
ouT
Terminal TTYO DC10 LT33A, INPUT, A,AL,I 223
TTY1, DC68A LT33B IN
e 630 (PDP-6) LT35A, OUTPUT,
TTY777 LT37AC ouT
VT06 TTCALL

(*) Buffer sizés are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ UUO may be employed.

5.1 CARD PUNCH

The device mnemonic is CDP; the buffer size is dependent on the data mode.

5.1.1 Concepts

Data Mode

A, AL

I,IB

B

Buffer Size

23(8) (20(8) data) words — 80 7-bit

ASCII characters

36(8) (33(8) data) words — 80 12-bit bytes

35(8) (32(8) data, 33(8) punched)

words — 26 data words, word count
and checksum punched.

The header card is the first card of an ASCII file and identifies the card code used (refer to Appendix C). This
card is not punched for data modes other than ASCII. The header card has the same punches in all columns.
This punch depends on the card code used; for example, in 026, the header card has 12-2-4-8 punched in

columns 1-80.

The end-of-file (EOF) card is the last of each output file. This card is punched for all data modes. The end-of-

file card has a 12-11-0-1-6-7-8-9 punch in columns 1 through 80.

5-2

September 1974

5.1.2 DataModes

5.1.2.1 ASCII, Octal Code 0 — ASCII characters are converted to card codes and punched (up to 80 characters
per card). Tabs are simulated by punching from 1 to 8 blank columns; form-feeds and carriage returns are ignored.

Line feeds cause a card to be punched. All other nontranslatable ASCII characters cause a back slash to be
punched. Cards can be split between buffers. Attempting to punch more than 80 columns per card causes the
error bit IO.BKT (bit 21 of status word) to be set. The CLOSE will punch the last partial card and then punch
an EOF card.

Cards are normally punched with ANSI card codes. Refer to Appendix C for a list of ANSI card codes.

5.1.2.2 ASCII Line, Octal Code 1 — The same as ASCII mode.

5.1.2.3 Image, Octal Code 10 — In image mode, each buffer contains 27 words, each of which contain three
12-bit bytes. Each byte corresponds to one card column. Since there is room for 81 columns in the buffer

(3 x 27) and there are only 80 columns on a card, the last word contains only 2 bytes of data; the third byte is
thrown away. If the byte size is set by the program to be 12-bit bytes (the monitor normally sets 36-bit bytes),
the program must skip the last byte in the buffer. Image binary causes exactly one card to be punched for each
output. A program should not force an output every 80 columns since, if the program is in spooled mode, it will
waste a large amount of disk space. The CLOSE punches the last partial card and then punches an EOF card.

5.1.2.4 Image Binary, Octal Code 13 — Same as Image.

5.1.2.5 Binary, Octal Code 14 — Column 1 contains the word count in rows 12—3. A 7—9 punch is in column
1. Column 2 contains a checksum as described for the paper-tape reader (refer to Paragraph 5.7.1.5); columns
3 through 80 contain up to 26 data words, 3 columns per word. Binary causes exactly one card to be punched
for each output. The CLOSE punches the last partial card and then punches an EOF card. .

5.1.3 Special Programmed Operator Service

Following a CLOSE, an EOF card is punched. Columns 2 through 80 of the header card and the EOF card con-
tain the same punches that appear in column 1 of either the header or EOF card for each file identification.
These punches are ignored by the card reader service routine.

After each interrupt, the card punch stores the results of a CONI in the DEVSTS word of the device data block.
The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1).

5.1.4 TFile Status (Refer to Appendix D)

" The file status of the card punch isshownas follows. ™~ """ "7—— e

5-3 September 1974

Standard Bits

18 21 24 27 30 33 35
19 21 23
SET [
BY MONITOR
10-0546
Bit 19 — IO.DER Punch error
Bit 21 — I0.BDT Reached end-of-card with data remaining in buffer.
Bit 23 — I0.ACT Device is active.
18 20 22 24 27
UNUSED)
Device Dependent Bits
29
SET BY USER
10-0547
Bit 29 — 10.D29 If 1, punch ANSI card codes.

If 0, punch 026 card codes

5.2 CARD READER

The card reader device mnemonic is CDR; the buffer size is 36(8) (33(8) data) words.

5.2.1 Concepts

For ASCII input, a header card can be the first card of the file and identifies the card code used (026 or

ANSI standard). The header card is used only when changing from (or back to) installation standard on ASCII
input. The header card must not be present with any other data modes; if present, the header card is treated as
an incorrect format or read as data. Refer to Appendix C for the card codes.

An EOF card (end-of-file) has a 12-11-0-1-6-7-8-9 punch in columns 1 through 80. The EOF card has the same
effect as the EOF key on the card reader. This key must be depressed or the end-of-file card must be present
at the end of each input file for all data modes.

5-4 September 1974

_ For this mode, the default size of the input buffer is 81 (10) words (80 (10) data words).

The header card codes and EOF card codes are:

EOF 12-11-0-1-6-7-8-9 (1)
026 12-2-4-8
ANSI 12-0-2-4-6-8

5.2.2 Data Modes

5.2.2.1 ASCIL. Octal Code 0 — All 80 columns of each card are read and translated to 7-bit ASCII code. Blank
columns are translated to spaces. At the end of each card a carriage return/line feed is appended. As many com-
plete cards as can fit are placed in the input buffer, but cards are not split between two buffers. Using the
standard-sized buffer, only one card is placed in each buffer.

Cards are normally translated as ANSI card codes (refer to PDP-10 System Reference Manual). If a 026 header
card is encountered, any following cards are translated as 026 codes (refer to Appendix C) until the 026
conversion mode is turned off. The 026 is turned off either by a RELEASE command or by an ANSI header card.
Columns 2 through 80 of both of these cards are ignored.

5.2.2.2 ASCII Line, Octal Code 1 — This mode is the same as ASCII mode.

5.2.2.3 Image, Octal Code 10 — All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes.
The first 12-bit byte is in column 1. The last word of the buffer contains columns 79 and 80 as the left and
middle bytes, respectively. The EOF button is processed as in ASCII mode. Cards are not split between two
buffers.

5.2.2.4 Image Binary, Octal Code 13 — This mode is the same as Image.

5.2.2.5 Binary, Octal Code 14 — Card column 1 must contain a 7—9 punch to verify that the card is in binary
format. Column 1 also contains the word count in rows 12 through 3. The absence of the 7—9 punch results in
setting the IO.IMP (bit 18 of status word) flag in the card reader status word. Card column 2 must contain a
12-bit checksum as described for the paper-tape binary format. Columns 3 through 80 contain binary data, 3
columns per word for up to 26 words. Cards are not split between two buffers. The EOF button is processed
the same as in ASCII mode.

5.2.2.6 Super-Image, Octal Code 110 (2) — Super-image mode may be initialized by setting bit 29 of the card
reader’s [OS word. This mode causes the 36 bits read from the I/O bus to be BLKI'd directly to the user’s buffer.

5.2.3 Special Programmed Operator Service

The card reader, after each interrupt, stores the results of a CONI in the DEVSTS word in the device data block.
The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1).

(1) These cards are symmetric in the sense that the pattern of the punches is the same if the card is turned upside down.
(2) This mode depends on FTCDRSI which is normally off in‘the DECsystem-1040.

5-5 September 1974

5.2.4 File Status (Refer to Appendix D)

The file status of the card reader is shown below.
Standard Bits

18 21 24 27 30 33 35

18 21 24

SET

10-0548
Bit 18 =10.IMP 7—9 punch absent in column 1 of a presumed binary card.
' The card reader is stopped.
Bit 19 =10.DER Photocell error, card motion error, data missed. The card
reader is stopped.
Bit 20 =10.DTE Computed checksum is not equal to checksum read on

binary card. The card reader is stopped.
Bit 22 = 10.EOF EOF card reader or EOF button pressed.

Bit 23 =10.ACT Device is active.

33 35

UNUSED o |MMMMH):

10-0549

Device-Dependent Bits

18 21 24 27 29 30 33 35

SET BY USER[I I l JM I l

10-08549

Bit 29 =10.SIM Super-Image mode.

5.3 DISPLAY WITH LIGHT PEN

The device mnemonic is DIS; there is no buffer because the display uses device-dependent dump mode only.

5-6

5.3.1 Data Modes

For IMAGE DUMP, Octal Code 15, an arbitrary length in the user area may be displayed on the scope. The
command list format is as described in Chapter 4 with the addition for the Type 30, VR30 and VP10 display,
that, if RH =0, and LH = 0, then LH specifies the intensity for the following data (4 to 13).

5.3.2 Background

During timesharing on a heavily-loaded system, the monitor service routine for the Type 30, VR30, and VP10
guarantees a flicker-free picture on the display if the job is locked in core. To maintain this picture, the picture
data must be available for the display at least every two jiffies. If the system is lightly loaded, it is not necessary
to keep the job in core. When the job is swapped, a minimum amount of flicker may occur, but the job has high
priority to the swapped-in again.

5.3.3 Display UUOs

The I/O UUOs for both displays operate as follows:

INIT D, 15 ; MODE 15 ONLY
SIXBIT /DIS/ ; DEVICE NAME
0 ; NO BUFFERS USED
error return ; DISPLAY NOT AVAILABLE
normal return
CLOSE D, ; STOPS DISPLAY AND
or ; RELEASES DEVICE AS
RELEAS D, ; DESCRIBED IN CHAPTER 4

5.3.3.1 INPUT D, ADR — If a light pen hit has been detected since the last INPUT command, then C(ADR) is
set to the location of last light pen hit. If no light pen hit has been detected since last INPUT command, then
C(ADR)is set to —1.

5.3.3.2 OUTPUT D, ADR — ADR specifies the first address of a table of pointers. This table is composed of
pointers with the following format:

0 17 18 35

LH RH

For the Type 30, VR30 and VP10 Display:
IfLH=0and RH =0, then this is the end of the command list.

IfLH#0and RH=0, then LH is the desired intensity for the following data or
commands. The intensity ranges from 4 to 13, where 4
is the dimmest and 13 is the brightest.

IfLH=0and RH# 0, then RH is the address of the next pointer. Successive
pointers are interpreted beginning at RH.

57

IfLH# 0and RH#0, then -LH words beginning at address RH+1 are output
as data to the display. The format of the data word is
the following:

0 7 8 17 18 25 26 35
y-coord x-coord
10-0551
For the Type 340B Display:
IfRH=0 then this is the end of the command list.
IfLH=0and RH#0, then RH is the address of the next pointer.. Successive

pointers are interpreted beginning at RH.

IfLH# 0 and RH # 0, then -LH words beginning at address RH+1 are output
as data to the display. The format of the data word is
described in the Precision Incremental CRT Display
Type 340 Maintenance Manual.

An example of a valid pointer list for the VR-30 display is:

QUTPUT Ds LIST JQUTPUT DATA
JPOINTED TO BY LIST
LIST XWD 5, 2 FJINTENSITY 5 (DIM)
1oWwD 1, A JPLOT A
1040 5,8UBPL iPLOT SUBPICTURE 1
XWD 13,3 FINTENSITY 43 (BRIGHT)
Iowd 1.cC IPLOT €
I0WD 2,SUBP2 IPLOT SURPICTURE 2
XWD 8,L1STL JTRANSFER TO LIST 1
LISTa: XWD 12,9 JINTENSITY 1@ (NORMAL)
1owd 1,8 JPLOT B
10WD 1.0 iPLOT D
XWD 2,0 JEND OF COMMAND LIST
OUTPUT D, LIST JQUTRUT DATA
PPOINTED TO BY LIST
Al %WD 6,6 JYs 6, X=6
B XWD 72,125 iys 7¢, X=195
ct XWD 125,72 ty= 105, X=70
D XWD 1827,209 1y=4009, X=220
SUBRPYL! 3LOCK 5 JSUBPICTURE 1
sys21 BLOCK 2 JSUBPICTURE 2

5-8

An example of a valid pointer list for the Type 340B Display is:

OUTPUT D, LIST sOUTPUT DATA PQINTED
;TO BY POINTER IN LIST
LISTy 10WD 1,A JSET STARTING POINT TQ (6,6)
10WD 5,5UBPY }DRAW A CIRGLE
10WD 1l.C +SET STARTING POINT TO
(72,105)
10uWD 5,5UBPL JDRAW A CIRCLE
10WD 1,8 JSET STARTING POINT T0
(135,72)
10WD 2,SUBP2 JORAW A TRIANGLE
10WD @,L1STL JTRANSFER TO LIST1
LIST4: 10WD 1,0 JSET STARTING POINT TO
1(192,~220)
10WD 5,SUBP1 JDRAW A CIRCLE
10W0 1,A JSET STARTING POINT TO (6,6)
10WD 2,5UBp2 J}DRAW A TRIANGLE
XWD 2,2 1STOP
Al Xs6 Y=6
B1 X=1085 VY=70
Ci X278 Y=1085
b H X=21080 Y==200
SUBPY! BLOCK 5 JDRAW A CIRCLE
susp2: BLOCK 2 JORAW A TRIANGLE

The example shows the flexibility of this format. The user can display a subpicture by setting up a pointer. He
can also display the same subpicture in many different places by setting up pointers to the subpicture, each pre-
ceded by a pointer to commands for the display to reset its coordinates.

5.3.4 File Status (See Appendix D)
The file status of the display is shown below.
Standard Bits

18 21 24 27 30 33

ﬁ]

23
SET BY MONITOR | ﬂ

10-0552

Bit 23 =10.ACT Device is active

8 24 27 30 33 35

1 21
owseo [TTTIY (NI

10-0553

Device-Dependent Bits — None

5.4 LINE PRINTER

The device mnemonic is LPT; the buffer size is 37(8) (36(8) data) words.
5.4.1 DataModes

5.4.1.1 ASCII. Octal Code 0 — ASCII characters are transmitted to the line printer exactly as they appear in
the buffer. Refer to the PDP-10 System Reference Manual for a list of the vertical spacing characters.

5.4.1.2 ASCII Line, Octal Code 1 — This mode is exactly the same as ASCII and is included for programming
convenience. All format control must be performed by the user’s program; this inctudes placing a RETURN,
LINE-FEED sequence at the end of each line.

5.4.1.3 Image, Octal Code 10 — This mode is the same as ASCII mode.

5.4.2 Special Programmed Operator Service

The first output programmed operator of a file and the CLOSE at the end of a file cause an extra form-feed to
be printed to keep files separated.

After each interrupt, the line printer stores the results of a CONI in the DEVSTS word of the device data block.
The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1).

5.4.3 File Status (See Appendix D)

The file status of the line printer is shown below.

Standard Bits

18 21 24 27 29 30 33 35

e A

Bit 29 = 10.SFF Suppress FORM FEEDS on an OPEN or RELEASE

23

SET BY MONITOR

10-0554

Bit 23 =10.ACT Device is active.

5-10

s A L M

10-0555

Device-Dependent Bits — None

5.5 MAGNETIC TAPE

Magnetic tape format for the DECsystem-10 is industry compatible. The tapes are unlabeled, 7- or 9-channel;
200, 556, or 800 bpi. The device mnemonic is MTAx (MTAOQ, MTAI, etc.) and the buffer size is 203(8) (200(8)
data) words. (Refer to the System Reference Manual, Section 6 for more specific information on the DECsystem-
10 magnetic tape system).

The user may change the density and/or blocksize of a magnetic tape by using the SET DENSITY and SET
BLOCKSIZE commands. (Refer to the Operation System Commands Manual.)

As far as the user is concerned, the tape contains only records and EOF marks signalling the end of the record or
the end of the file. A file consists of an integral number of physical records, separate from each other by inter-
record gaps.(an area on tape where no data is written). There may or may not be more than one logical record
in each physical record. Write and read operations on files are performed sequentially. An EOF mark consists
of a record containing a 17(8) (for 7-channel tapes) or a 23(8) (for 9-channel tapes). EOF marks are used in the
following manner:

1. An EOF mark follows every file.

2. Two EOF marks follow a file if that file is the last or only file on the tape. (A double EOF is also
known as an end-of-tape or EOT).

3. No EOF mark precedes the first file on a tape.

When an output file is closed the I/O service routine automatically writes two EOF marks and backspaces over
one of them. If another file is opened, the second EOF mark is written over leaving one EOF mark between files.
At the end of the in-use portion of the tape, a double EOF (defined as the logical end-of-tape) appears.

Normally, all data is written with odd parity, 800 bpi unless changed by the installation. A maximum of 200(8)
words per record is read or written if the monitor has set up the buffer ring. If the user builds his own buffers
(using SET BLOCKSIZE), a maximum of 4094 words may be specified. The word count is not written on tape.
If an I/O error occurs or an end-of-tape is reached, reading ahead ceases on input and output is terminated.

5.5.1 Data Modes

--The following table shows the data modes available to magnetic tape users: = . o T e

Mode Octal Code Meaning

ASCII 0 Data written on magnetic tape appears exactly as it appears in the buffer.
No processing of any kind is performed by the service routine. Parity
checking by the magnetic tape system is sufficient assurance that the data

is correct.
ASCII 1 Same as ASCII.
Line
Image 10 The mode is the same as ASCII, but data consists of 36-bit words.

5-11

Mode Octal Code
Image 13
Binary

Binary 14
Dump 16
records

(DR)

Dump (D) 17

5.5.2 Magnetic Tape UUO’s

Meaning

Same as Image

Same as Image

Data is in the form of standard, fixed-length records, (128 words is the
standard unless changed by the installation when generating its monitor
or specified by the user with the SET BLOCKSIZE command). Records
read into or written from the user’s core area are unbuffered. Control for
read or write operations must be via a command list (described in Chapter
4, Unbuffered Data Modes) in core memory. For input operations, a new
record is read for each word in the command list (except GOTO words);
if the record terminates before the command word is satisfied, the service
routine reads the next record. If the command word runs out before the
record terminates, the remainder of the record is ignored. For each out-
put command word, exactly enough standard-length records are followed
by one short record to write all of the words on the tape. If an I/O error
occurs or the EOT is reached, no additional commands are retrieved from
a dump mode command list, and I/O is terminated. When the EOF is
read, the user receives the standard EOF return (the error return from the
IN UUO) and the IO.EQF bit is set in the file status word. (This bit can
be retrieved with the GETSTS UUO.) The EOF character is read into the
user’s buffer. The next INPUT or IN UUO will read the next record on
tape.

Variable-length records are read into or written from anywhere in the
user’s core area without regard to the buffering scheme. Control for read
or write operations must be via a command list (described in Chapter 4,
Unbuffered Data Modes) in core memory. For input operations a new
record is read for each word in the command list (except GOTO words);
if the record terminates before the command word is satisfied, the service
routine skips to the next command word. If the command word runs out
before the record terminates, the remainder of the record is ignored. For
each output command word, exactly one record is written. Handling of
EOF mode is the same as Dump Records (DR) as described above.

5.5.3 Special Programmed Operator Service (UUQ’s)

There are several UUQ’s that are available for magnetic tape users to perform certain functions. They are dis-

cussed in the following paragraphs.

5.5.3.1 MTAPE UUO — The MTAPE UUO provides functions such as rewind, backspace record, backspace file,
and 9-channel tape initialization. The format is:

MTAPE D, FUNCTION

where D is the device channel number on which the magnetic tape unit is initialized. FUNCTION is selected

according to Table 5-2.

5-12

Table 5-2

MTAPE Functions
Symbol Function Action
MTWAT. 0 No operation. Waits for spacing and I/O to finish.
MTREW. | Rewinds to load point.
MTEOF. 3 Writes EOF.
MTSKR. 6 Skips one record.
MTBSR. 7 Backspaces one record.
MTEOT. 10 Spaces to logical end-of-tape. Terminates at either two consecutive

EOF marks or at the end of the first record beyond EOT marker.

MTUNL. 11 Rewinds and unloads.

MTBLK. 13 Writes 3 inches of blank tape.

MTSKEF. 16 Skips one file. Causes a series of “skip record” operations.
MTBSF. 17 Backspaces files. Causes a series of “backspace record” operations.
MTDEC. 100 Initializes for Digital-compatible 9-channel tape.*

MTIND. 101 Initializes for industry-compatible, 9-channel tape.**

MTLTH. 200 Reserved for future use.

*Digital-compatible mode writes (or reads) 36 data bits in five frames of a 9-track magnetic tape. The tape can be any density or parity and is
not industry-compatible. This mode is in effect until a RELEASE D, or a MTCHR D, is executed.

**Industry-compatible mode writes (or reads) 32 data bits in four frames of a 9-track magnetic tape and ignores the low-order four bits of a
word. It must be 800 bpi density and odd parity.

MTAPE waits for the magnetic tape unit to complete the action in progress; bits 18—25 of the status word are
then cleared, the indicated function is initiated (including no operation) and control is immediately returned to
the user’s program. It is important to remember that the I/O service routine can be reading several blocks ahead
of the user’s program when performing buffered input/output. MTAPE affects only the physical position of the
tape and does not change the data that has already been read into the buffers. Therefore, an INPUT UUO or
OUTPUT UUO following an MTAPE UUO may not retrieve the buffer containing the block requested. However,
a single buffer ring retrieves the expected block since the device must stop after each INPUT UUO or OUTPUT
UUO. Alternatively, if bit 30 (I0.SYN) of the file status word is sct via the INIT UUO or the SETSTS UUO, the
device stops after-each buffer is filled on-an. INPUT or OUTPUT. Thus, the MTAPE will apply to the buffer
supplied on the next INPUT or OUTPUT. -

MTAPE functions must be followed by MTAPE 0 if subsequent operations depend on the completion of the
MTAPE function. If this is not done, subsequent input and output UUQ’s are ignored until the magnetic tape
control is freed. This problem occurs frequently in programs that issue a REWIND command at the beginning

of the program. The tape may actually be positioned to its beginning, but the processing of the MTAPE function
may cause the first input to be ignored.

5-13 September 1974

Issuing a backspace file command to a magnetic tape unit moves the tape in the reverse direction until the tape
has:

1. Passed the EOF mark.
2. Reached the beginning of the tape.

The end of the backspace file operation positions the tape heads either immediately in front of an EOF mark or
at the beginning of the tape. In most cases, it is desirable to skip forward over this file up to the beginning of
the file. In this case, giving a “skip file’ command would skip the entire first file on the tape, stopping at the
beginning of the second file rather than leaving the tape positioned at the beginning of the first file. Therefore,
a correct sequence for “backspace file” would be:

MTBSF. MT, ; Backspace file
MTWAT. MT, ; Wait for completion
STATO MT,4000 ; Beginning of tape?
MTSKF. MT, ; No, skip over file mark

Since it is necessary to wait after the MTBSF. (backspace file) instruction to ensure that the move is completed
before testing to see whether or not this is the beginning of the tape, the instruction WAIT MT cannot be used
for this purpose. The WAIT MT instruction waits only for the completion of I/O transfer operation, and
“backspace file” is a spacing operation not an I/O transfer operation.

The device service routine must wait until the magnetic tape control is free before processing the MTAPE. MT,0,
which tells the tape control to do nothing. Thus, the service routine achieves the waiting period necessary for
the completion of the previous operation and the proper positioning of the tape. The following sequence shows
an incorrect file backspace:

MTBSF. MT, ; Backspace file

WAIT MT, ; Wait for completion
STATO MT, 4000 ; Beginning of tape?
MTSKF.MT, ; No, skip over file mark

5.5.3.2 MTAPE D, 11 Rewind and Unload (UNLOAD) — This UUQ initializes all automatic error reporting.
Therefore, reel-specific errors can be summarized regardless of the method used to change reels. An entry into
the system error log file will be written that includes:

drive number (MTxn)

SIXBIT/REELID/

number of words read since the last UNLOAD
number of words written since the last UNLOAD
number of soft-read errors since the last UNLOAD
number of hard-read errors since the last UNLOAD
number of soft-write errors since the last UNLOAD
number of hard-write errors since the last UNLOAD

These numbers will be output on both the operator’s and the user’s terminals in the following format:

[MTxn/REELID READ (W/H/S) = a/b/c WRITE (W/H/S) = d/e/f]

5-14

Where: = words rcad

= hard-read errors

= soft-read errors

= hard-write errors

a
b
c
d = words written
e
f

= soft-write errors

Whenever a=b=c=0, the information on READ will not be printed.

Whenever d=e={=0, the information on WRITE will not be printed.

To prevent this message from being printed type:

SET WATCH NO MTA

5.5.3.3 MTCHR. AC, or CALLI AC, 112(1) —This UUOQ enables the user to obtain a set of data from which
the current state of a specified magnetic tape drive can be determined. The call is:

MOVE AC, [XWD +n,LOC]
or

MOVE AC, [SIXBIT/DEV/] ;(This maintains compatibility with
; pre-601/507 monitors.)

or

MOVEI AC, channel number
MTCHR, AC,

error return

normal return

LOC is a left-justified, SIXBIT physical or logical device name. On normal return the monitor returns values in

the first N locations after LOC as follows:

Name

MTRID
MTWRD
MTWWT
MTSRE
MTHRE
MTSWE
" MTHWE
MTTME
MTTDE
MTTUN
MTNFB
MTNRF
MTICC

Word

~N N Lt DWN =

10

12
13
14
15

_Hard-write errors.

Meaning

SIXBIT/REELID/
Words read.
Words written.
Soft-read errors.
Hard-read errors.
Soft-write errors.

Total media errors since last unload.

Total device errors since system loaded.

Total unloads since system loaded.

Number of files from beginning of tape.

Number of records from last EOF.
Initial error CONI MTC.

(1) This UUO depends on FT5UUO which is normally off in the DECsystem-1040.

5-15

September 1974

Name Word Meaning

MTICS 16 Initial error CONI MTS.

MTFCC 17 Final error CONI MTC.

.MTFCS 20 Final error CONI MTS.

MTTRY 21 Number of retrys to resolve last error.

An error return is taken if:
1. The specified device is not a magnetic tape (i.e., not MTXn.).
2. The specified device is not present.
3. The MTCHR. UUO is not implemented.

If the specified device is not a magnetic tape or is not present, a ~1 value is returned to the AC. If the UUO is
not implemented, the contents of AC are not changed. :

A normal return to AC will contain the following information:

Word, Bit Mnemonic Contents
0-17 MT.AWC The actual word count for the last record read or written.
18-26 MT.CRC If a 9-channel drive is being used, these bits will contain the last
Cyclic Redundancy Character (CRC).
27-29 MT.NCR The number of characters read from the tape into the last addressed
word location in the buffer during the last read operation.
31 MT.7TR Indicates 7-track tape.
32 MT.WLK The transport write-locked indicator bit; if this bit is 1, the trans-

port is write-locked.

33-35 MT.DEN Any of the following single-digit tape density (i.e., bits per inch)
idenfifiers:
Name Function Meaning
.MTDN2 1 200 bpi
.MTDNS5 2 556 bpi
.MTDN8 3 800 bpi
MTD16 4 1600 bpi
5 Reserved for future use.

In determining the value of the density identifier to be returned to bits 33—35 of the AC, the monitor examines
the file status bit initialized by the INIT UUO and will return any INIT-specified density identifier. If density
was not specified by INIT, the monitor then determines if the user specified density using the SET DENSITY
command and returns any user-specified density identifier to the AC. If the SET DENSITY command was not
used, the monitor returns the system default identifier to the AC. If no density is specified by INIT, the
GETSTS UUO will return a 0 to bits 33—35 of AC. If GETSTS is used, the system default density identifier is
not returned.

5-16 September 1974

5.5.4 Nine-Channel Tapes

Nine-channel magnetic tape may be written and read in two ways: Digital-compatible format and industry-
compatible format. Using an MTAPE CH. 101 automatically sets the density at 800 bits (eight-bit bytes) per
inch with odd parity. The monitor sets up buffer headers, when necessary, in the usual manner according to
the I/O mode of the device. In order to operate on eight-bit bytes, the user must insert the byte size in the byte
pointer before the first IN UUO or OUT UUO.

5.5.4.1 Digital-Compatible Mode — Most DECsystem-10 magnetic tapes will be written in Digital-compatible
mode which allows old 7-channel user programs to read and write 9-channel tapes with no modification. Digital-
compatible mode writes 36 data bits in five bytes of a nine-track magnetic tape, can be any parity and density
and is not compatible with other systems. The software mode is specified in the usual manner during initialization
or with a SETSTS UUO and user-mode I/O is the same as 7-track magnetic tape.

For the data word in core, there are five magnetic tape bytes per 36-bit word with parity bits unavailable to the
user. Bits are written on tape as shown below. Bits 30 and 31 are written twice and tracks 8 and 9 of byte 5
contain 0. On reading, parity bits and tracks 8 and 9 of byte 5 are ignored. The OR of bits (B30) is read into bit
30 of the data word, the OR of bits (B31) is read into bit 31.

Data Word On Tape
Tracks
9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 BS B6 B7 P
B8 B9 B10 B1l B12 B13 B14 B15 P
Bl6 B17 B18 B19 B20 B21 B22 B23 P
B24 B25 B26 B27 B28 B29 (B30) (B31) P
0 0 (B30) (B31) B32 B33 B34 B35 P

P = Parity
BN = Bit N in core.

5.5.5 File Status (Refer to Appendix D)

The file status of the magnetic tape is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER

21 24

18
ser ey woror [/ 11

10-0556

5-17

Bit 18 — IO.IMP

Bit 19 — IO.DER
Bit 20 — IO.DTE
Bit 21 — I0.BKT

Bit 22 — IO.EOF

Bit 23 —10.ACT

Device Dependent Bits

SET BY USER " I I

Bit 26 — I0.PAR

Bit 27—-28 — I0.DEN

Bit 29 — IO.NRC

SET BY MONITOR M

Bit 24 — 10.BOT

Bit 25 — I0.EOT

5.6 PAPER-TAPE PUNCH

Unit was write-locked when output was attempted, or illegal operation
was specified to the magnetic-tape control.

Data was missed, tape is bad, or transport is hung.
Parity error.
Record read from tape exceeds buffer size.

EOF mark encountered. A 17(8) (for 7-channel tapes) or a 23(8) (for
9-channel tapes) appears in buffer.

Device active.

18 21 24 26 27 30 33 35

10-0557

I/O parity. O for odd parity, 1 for even parity. Odd parity is preferred.
Even parity should be used only when creating a tape to be read in binary
coded decimal (BCD) on another computer.

I/O density, 00 = System standard. Defined at MONGEN time and can
be changed with the SET DENSITY command.

01 = 200 bpi
10=556 bpi
- 11 =800 bpi

I/O no read check. Suppress automatic error correction if bit 29 is 1.
Normal error correction repeats the desired operation 10 times before
setting an error status bit.

18 21 24 25 27 30 33 35

10-0558

I/O beginning of tape. Unit is at beginning of tape mark.

I/0 tape end. Physical end of tape mark encountered.

The device mnemonic is PTP; the buffer size is 43(8) (40(8) data) words.

5-18

5.6.1 Data Modes

5.6.1.1 ASCII, Octal Code 0 — The eighth hole is punched when necessary in order to make even parity. Tape-
feed without the eighth hole (000) is inserted after form-feed. A rubout is inserted after each vertical or horizon-
tal tab. Null characters (000) appearing in the buffer are not punched.

5.6.1.2 ASCII Line, Octal Code 1 — The mode is the same as ASCII mode. Format control must be performed
by the user’s program.

5.6.1.3 Image, Octal Code 10 — Eight-bit characters are punched exactly as they appear in the buffer with no
additional processing.

5.6.1.4 Image Binary, Octal Code 13 — Binary words taken from the output buffer are split into six 6-bit bytes
and punched with the eighth hole punched in each line. There is no format control or checksumming performed
by the I/O routine. Data punched in this mode is read back by the paper-tape reader in the IB mode.

5.6.1.5 Binary, Octal Code 14 — Each bufferful of data is punched as one checksummed binary block as de-
scribed for the paper-tape reader. Several blank lines are punched after each bufferful for visual clarity.
5.6.2 Special Programmed Operator Service

The first output programmed operator of a file causes approximately two fanfolds of blank tape to be punched
as leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No EOF character is
punched automatically.

After each interrupt, the paper-tape punch stores the results of a CONI in the DEVSTS word of the device data
block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph
4.10.1).

5.6.3 File Status (Refer to Appendix D)
The file status for the paper-tape punch is shown below.

Standard Bits

18 21 24 27 30

33 3
SET BY USER H“l H‘H]]]MM

5

23
SET BY MONITOR
10-0559
Bit 23 — I0.ACT Device is active.
ovuseo [T TN
10-0560

Device Dependent Bits — None.

5-19

5.7 PAPER-TAPE READER

The device mnemonic is PTR; the buffer size is 43(8) (40(8) data) words.

5.7.1 Data Modes (Input Only)

NOTE
To initialize the paper-tape reader, the input tape must
be threaded through the reading mechanism and the FEED
button must be depressed.

5.7.1.1 ASCII, Octal Code 0 — Blank tape (000), RUBOUT (377), and null characters (200) are ignored. All
other characters are truncated to seven bits and appear in the buffer. The physical end.of the paper tape serves
as an EOF, but does not cause a character to appear in the buffer.

5.7.1.2 ASCII Line, Octal Code 1 — Character processing is the same as for ASCII mode. The buffer is termin-
ated by LINE FEED, FORM, or VT.

5.7.1.3 Image, Octal Code 10 — There is no character processing. The buffer is packed with 8-bit characters
exactly as read from the input tape. Physical end-of-tape is the EOF indication but does not cause a character
to appear in the buffer.

5.7.1.4 Image Binary, Octal Code 13 — Characters not’having the eighth hole punched are ignored. Characters
are truncated to six bits and packed six to the word without further processing. This mode is useful for reading
binary tapes having arbitrary blocking format.

5.7.1.5 Binary, Octal Code 14 — Checksummed binary data is read in the following format. The right half of
the first word of each physical block contains the number of data words that follow and the left half contains

half a folded checksum. The checksum is formed by adding the data words using 2’s complement arithmetic,

then splitting the sum into three 12-bit bytes and adding these using 1’s complement arithmetic to form a 12-bit
checksum. The data error status flag (refer to Table 4-3 in Paragraph 4.6.2) is raised if the checksum miscompares.
Because the checksum and word count appear in the input buffer, the maximum block length is 40. The byte
pointer, however, is initialized so as not to pick up the word count and checksum word.

Again, physical end of tape is the EOF indication, but does not result in putting a character in the buffer.

5.7.2 Special Programmed Operator Service

After each interrupt, the paper-tape reader stores the results of a CONI in the DEVSTS word of the device data
block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph
4.10.1).

5.7.3 File Status (Refer to Appendix D)

The file status of the paper-tape reader is shown below.

5-20

Standard Bits

18 21 24 27 30 33

[T

SET BY USER

i

18 20

SET BY MONITOR

il

10-056!

Bit 18 — IO.IMP Binary block is incomplete.

Bit 20 — [IO.DTE Bad checksum in binary mode.

Bit 22 — IO0.EOF Physical end-of-tape is encountered.

No character is stored in the buffer.

Bit 23 — I0.ACT Device is active.

1819 21

UNUSED

[l

I

10-0562

Device dependent bits — None.

5.8 PLOTTER

The device mnemonic is PLT; the buffer size is 43(8) (40(8) data) words. The plotter takes 6-bit characters with
the bits of each character decoded as follows:

-X +X +Y -y

PEN PEN DRUM DRUM CARRIAGE | CARRIAGE

RAISE LOWER upP DOWN LEFT RIGHT
10-0663

Do not combine PEN RAISE or LOWER with any of the position functions. (For more details on the incremen-
tal plotter, refer to the PDP-10 System Reference Manual.)

5.8.1 DataModes

5.8.1.1 ASCII, Octal Code 0 — Five 7-bit characters per word are transmitted to the plotter exactly as they
appear in the buffer. The plotter is a 6-bit device; therefore, the leftmost bit of each character is ignored.

5.8.1.2 ASCII Line, Octal Code 1 — This mode is identical to ASCII mode.

5-21

5.8.1.3 Image, Octal Code 10 — Six 6-bit characters per word are transmitted to the plotter exactly as they
appear in the buffer.

5.8.1.4 Image Binary, Octal Code 13 — This mode is identical to Image mode.
5.8.1.5 Binary, Octal Code 14 — This mode is identical to Image mode.

5.8.2 Special Programmed Operator Service

The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user data is sent to the
plotter. The CLOSE operator causes the plotter pen to be lifted after all user data is sent to the plotter. These
two pen-up commands are the only modifications the monitor makes to the user output file.

After each interrupt, the plotter stores the results of a CONI in the DEVSTS word of the device data block. The
DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to Paragraph 4.10.1).

5.8.3 File Status (Refer to Appendix D)

The file status of the plotter is shown below.

Standard bits

18 21 24 27 30 33 35

23

SET BY MONITOR J[mr

10-0564

Bit 23 — I0.ACT Device is active.

wwwseo [T MO

10-0565

Device Dependent Bits — None.

5.9 PSEUDO-TTY

The device mnemonic is PTYO,PTY1, ... PTYn. (The number of pseudo-TTYs is specified when the monitor
is generated for a specific installation.) The buffer size is 23(8) (20(8) data) words.

5-22

5.9.1 Concepts

Each job in the DECsystem-10 is usually initiated by a user at a physical terminal. Except in the case of a
DETACH operation, the job remains under the control of the user’s terminal until it is terminated by either the
KJOB command or the LOGOUT UUO. For each physical terminal there is a block of core in the monitor, con-
taining information about the physical terminal and including two buffers as the link between the physical ter-
minal and the job. It is through these buffers that the terminal sends input to the job, and the job returns output
to the terminal.

Sometimes it is desirable to allow a job in the DECsystem-10 to be initiated by a program instead of by a user.
Since a program cannot use a physical terminal in the way a user can, some means must be provided in the mon-
itor for the program to send input to and accept output from the job it is controlling. The monitor provides this
capability via the pseudo-TTY (PTY). The PTY is a simulated terminal and is not defined by hardware. Like
hardware-defined terminals, each PTY has a block of core associated with it. This block of core is used by the
PTY in the same manner as a hardware-defined terminal uses its block of core. Figure 5-1 shows the parallel be-
tween a hardware-defined terminal and a software-defined PTY.

USER <+—=| PHYSICAL | | oEvice T | _ controLten
TERMINAL —> 0B
I DEVICE TTYn l
|_ —_—— _.l MONITOR l
DEVICE TTY, |
O e <—I> DEVICE PTY > OR SggTROLLED
I DEVICE TTYm I
10-0545

Figure 5-1 Pseudo-TTY

The controlling program, most commonly the batch processor, uses the PTY in the same way a user uses a
physical device. It initiates the PTY, inputs characters to and waits for output from the PTY, and closes the
PTY using the appropriate programmed operators. The job controlled by the program performs 1/O to the PTY
as though the PTY were a physical terminal.

A controlled job may go into a loop and not accept any input from its associated buffer; therefore, it is not pos-
sible for the controlling program to simply rely on waiting for activity in the controlled job. A controlling pro-
gram may also wish to drive more than one controlled job, and be able to respond to any of these jobs; therefore,
the controlling program cannot wait for any particular PTY. For these two reasons, the PTY differs from other
devices in that it is never in an I/O wait state. Timing is accomplished by the HIBER UUQ and the status bits of
the PTY.

5-23

5.9.2 The HIBER UUO

The HIBER UUO (refer to Paragraph 3.1.4.2) allows the controlling program to temporarily suspend its
operation until either there is activity in the controlled job or the specified amount of sleep time runs out,
whichever occurs first. If bit 12 in the AC is set in the HIBER UUO call, any PTY activity since the last HIBER
UUO causes the controlling program to be awakened. If no PTY activity occurs before the limit of sleep time is
reached, the controlling program is activated, and it checks the controlled job’s run time or other criteria to de-
termine whether the job should be interrupted. If the job should be interrupted, the controlling program may
output two control-C characters to stop the job. (A timesharing user stops a running job in the same way.) If
the job should not be interrupted, the controlling program should repeat the HIBER UUO.

If bit 12 in AC is not set, unnecessary delays might result if activity occurred.on a PTY while the controlling job
was sleeping. To avoid these delays, a check is made when a PTY status bit changes to determine if the control-
ling program is in a sleep. If it is, the sleep time is cleared so the controlling program can service the PTY.

5.9.3 File Status (Refer to Appendix D)
The file status of the pseudo-TTY is shown below.
Standard Bits

18 21 24 27

30 33 35
I

21 23

SET BY MONITOR M

10-0570
Bit 21 — I0.BKT
Bit 23 — I0.ACT Device is active.
Device Dependent Bits
18 21 24 27 30 33 35
SET BY MONITOR W
10-0571
Bit 24 — IO.PTI Job isin a TTY input wait. The controlling job should perform
an OUTPUT to the PTY.
Bit 25 — I0.PTO The TTY buffer has output to be read by an INPUT from the
PTY.
Bit 26 — I0.PTM Any characters typed into the TTY buffer (by OUTPUT to the

PTY) are read by the monitor command decoder instead of by
the controlled job (i.e., the controlled job is in monitor mode).

5-24

5.9.4 Special Programmed Operator Service

5.9.4.1 OUT, OUTPUT UUOs — The first OUTPUT operation after an INIT or OPEN causes the special actions
of the RELEASE UUO (refer to Paragraph 5.9.4.3) and then the following normal output operations.

1. Characters from the controlling program’s buffer ring are placed in the input buffer of the TTY linked
to the PTY.

2. The IO.PTI bit is cleared.

3. ThelO.PTM bit is set or cleared as determined by the state of the TTY.
The following are exceptions to the normal output actions:

1. NULLS (ASCII 000) are discarded.

2. If more OUTPUTs are performed than are accepted by the controlled job and if the limit on this ex-
cess is exceeded, the IO.BKT bit is set and the remainder of the controlling program’s buffer is dis-
carded.

3. Lower case characters sent to the controlling job are translated to upper case if the appropriate bit
in the TTY is set.

5.9.4.2 IN, INPUT UUOs — Characters are read from the output buffer of the TTY and are placed in the buffer
ring of the controlling program. If there are no characters to read, an empty buffer is returned. The INPUT
UUO does not cause a WAIT.

All the available characters are passed to the controlling program. If there are more characters to read than can
fit in the buffer of the controlling program, the IO.PTO bit remains set and another INPUT should be done. If
the output buffer of the TTY is exhausted by the INPUT UUO, the IO.PTO bit is cleared.

5.9.4.3 RELEASE UUO - The RELEASE UUO causes the following special actions:
1. Any characters in the output buffer of TTY are discarded.
2. If the controlled job is still attached to TTY, it is detached.
3. The PTY is disassociated from the software channel.
CAUTION
Haphazard use of the PTY and subsequent RELEASE

operations may leave detached jobs tying up core and
other system resources.

5.9.4.4 JOBSTS UUO — This UUO provides status information about devices TTY and/or the controlled job in
order to allow complete and accurate checking of a controlled job.

The call is:
MOVEI AC, user channel number ;or MOVNI AC, Job number
JOBSTS AC, ;or CALLI AC, 61

error return

normal return

5-25

When the UUO is called, AC contains a number n specifying the job and/or the TTY to be checked. If n is from
0 to 17, the specified TTY and job are those currently INITed on the user’s channel n. If n is negative, the job
to be checked is job number (-n).

The error return is given if one of the following is true:
1. the UUO is not implemented. If this is the case, check the I/O status word.
2. nisout of range.
3. there is no PTY INITed on channel n.

Otherwise, the normal return is given and AC contains the following status information:

Name Bit Explanation
JB.UJA Bit0=1 Job number is assigned.
JB.ULI Bitl=1 Job is logged in.
JB.UML Bit2=1 TTY is at monitor level.
JB.UOA Bit3=1 TTY output is available.
JB. UDI Bit4=1 TTY is at user level and in input wait, or TTY is at monitor

level and can accept a command. In other words, there is no
command awaiting decoding or being delayed, the job is not
running; and the job is not stopped waiting for operator de-

vice action.
JB.UJC Bit5=1 JACCT is set. In particular, $C1C will not work.
Bits 6—17 Reserved for the future.
JB.UJN Bits 18—35 Job number being checked or 0 if no job number is assigned.

5.9.4.5 CTLJOB UUO — This UUO is used to determine the job number of the program (job) that is control-
ling the specified job, if any.

The call is:

MOVE AC, job number ; —1 means user’s job
CTLJOB AC, ;or CALLI AC, 65
error return

normal return

On a normal return, AC contains the job number of the program (job) that is controlling the controlled job. If
AC = 1, the specified job is not being controlled via a PTY.

An error return is given if the UUO is not implemented or the job number is too large.

5.10 TERMINALS

Communication between the user and the DECsystem-10 can be accomplished by use of a terminal. Commands,
programs or data may be sent directly to the computer by means of a terminal. Each terminal is assigned a TTY

5-26

number, such as TTY1 or TTY2 (the maximum number is 512). The console terminal (the terminal connected
directly to the DECsystem-10 processor) is known as the CTY. The standard buffer size for terminal input and
output is 23(8) (20(8) data) words. The terminal user may communicate with the operator and other users by
means of the SEND or PLEASE commands (see Operating System Commands).

A terminal (under timesharing) may be in monitor mode or user mode. In monitor mode, each line the user
types is sent to the monitor command language interpreter.

The execution of certain commands (as noted in the following examples) places the terminal in user mode. When
the terminal is in user mode, it becomes simply an I/0 device for that user. In addition, user programs use the
terminal for two purposes. The user program will either accept user command strings from the terminal or use
the terminal as a direct I/O device.

Example (terminal dialogue):

monitor mode .RPIP monitor command
user mode *DSK:PROG1.MAC+TTY: user command string
THIS IS FILE 1 1Z user program using
terminal as input
device
*1C
monitor mode .RMACRO monitor command
user mode *TTY: «<DSK:PROG1 user command string

user program using
terminal

. as an output device
assembly listing

When the system is started, each terminal is in monitor mode ready for users to log in. However, if the system
becomes fully loaded (i.e., the maximum number of jobs that the system is set to handle has been initiated),
then any unused terminals from which access is requested will receive the message JOB CAPACITY EXCEEDED.

A time-sharing user types 1C to stop a user program and return the terminal to monitor mode. If the user pro-
gram is waiting for input from the terminal, the user needs to type only one 1C to return the terminal to moni-
tor mode; otherwise, he must type two 1C’s. Because of this procedure, the user knows that his program is not
* waiting for input if there is no response from the monitor after one 1C. Certain commands cause the user pro-
gram to start running or to continue but leave the terminal in monitor mode. (Refer to the Operating System
- Commands Manual.)

Control-T (1T) causes the terminal to print status information pertaining to the current user job. The status
information returned is:

1. incremental day time
2. incremental run time
3. incremental disk reads

5-27 September 1974

4. incremental disk writes
5. program name

6. core size

7. job state

8.

program counter

Control-R (1R) retypes the current input line after all rubout processing. For example, if a user types in a line
incorrectly, then makes correction using the RUBOUT key, the corrected line may be retyped in its entirety by
typing TR. An example of this is:

SET TTQ/Q/Y NO0/0/O 1R
SET TTY NO

Control-R will issue a carriage return/line feed before printing the corrected input line.

Control-U (tU) causes the deletion of the current input line, back to the last break character. The system responds
with a carriage return, line feed so that the line may be typed again. Once a break character has been typed, line-
editing features (U and RUBOUT) can no longer be used on that line, except when running TECO.

Control-O (10) temporarily suppresses output to the terminal. This action is useful when a program begins
output of a long message which does not interest the user. If he does not want to wait for his terminal to finish
printing the message, he can stop the output in one of two ways. He can type two control-C’s but this action
will also stop execution of the program. Alternatively, the user can type 1O and the program will continue to
execute but its output will not be printed on the terminal. The system responds with a carriage return, line feed
sequence. Qutput is restored to the terminal when one of the following conditions occurs:

1. The executing program requests input from the terminal.
2. The program terminates and returns control to the monitor.
3. The user types 1C to return to the monitor.
4. The user types another 1O.
At remote stations, the effect of the 1O may be somewhat delayed.

The type-ahead technique may be employed by the experienced timesharing user at a terminal. This means that
the user does not have to wait for the completion of one command before he can begin another. For example,
if two operations are desired from the monitor, the request for the second operation can be typed before receiv-
ing the period after completion of the first.

More specific information on terminals may be found in the SCNSER Specification in the Software Notebooks,
and in the System Reference Manual, Section 3.3.

On half-duplex terminals, the user may type Control-O to stop unwanted output. To return to the monitor
during output, type any character until output stops; then type Control C.

Programs waiting for terminal output are awakened before the output buffer is empty, causing them to be
swapped in sooner and preventing pauses. Programs waiting for terminal input will be awakened when input is
received.

5-28 September 1974

5.10.1 DataModes

ASCII (American Standard Code for Information Interchange) is a standard character set encoded in 7 bits (8 bits
including a parity bit). The ASCII set consists of 128 characters, 33 of which are non-printing control characters.

The following table describes how the characters are handled.

000 NULL Ignored on input; suppressed on output.

001 tA No special action.

002 1B No special action.

003 1C Not passed to program. The user’s terminal is switched to monitor
mode the next time input is requested by the program. Two succes-
sive 1Cs cause the terminal to be immediately switched to monitor
mode. Performs a tU and a 1O. For user program control of 1C,
refer to Paragraph 3.1.3.2.

004 1D (EOT) Not echoed; therefore, typing in a control-D (EOT) does not cause a
full-duplex data phone to hang up.

005 1E (WRU) No special action.

006 1tF No special action.

007 1G (Bell) Echoes as Bell and is a break character.

010 tH (Backspace) Echoes as backspace.

011 11 (TAB) Echoes as a TAB or an equivalent number of spaces. Refer to the
SET TTY TAB command.

012 1J (Linefeed) Echoes as a linefeed and is a break character.

013 1K (Vertical tab) Echoes as a vertical tab or four linefeeds. Refer to the SET TTY
FORM command.

014 tL (Form) Echoes as a FORMFEED or eight linefeeds. Refer to the SET TTY
FORM command.

015 M (Carriage Passed to program if terminal is in a paper-tape input mode; other-

return wise, supplies a linefeed echo, is passed to program as a CR and LF,
and is a break character due to the LF.

016 N No special action.

017 10 Not passed to program. Complements output suppression bit allow-
ing users to turn output on or off. INPUT, INIT, and OPEN clear the
output suppression bit. This bit is also cleared by any other INPUT-
class operation, such as DDTIN and TTCALLS 0, 2, 4, and 5, by in-
put test TTCALLS 13 and 14, and by returning to monitor command
level via 1C or EXIT operations. Echoed as 1O followed by carriage
return/linefeed.

020 1P No special action.

5-29

021 1Q (XON)

022 R

023 1S (XOFF)
024 AT

025 ‘U

026 v

027 W

030 X

031 1Y

032 1z

033 [(ESC)
034 N

035 N

036 1

037 e
040—137

140—174

175 and 176

177

Starts paper-tape mode if .TTY TAPE command has been given;
refer to Paragraphs 5.10.8 and 5.10.9.

Retype the line currently being input, including the effect of any
edits to the line.

Ends paper-tape mode; refer to Paragraphs 5.10.8 and 5.10.9.
Gives job status and timing information.

Deletes input line back to last wakeup character. Echoed as tU
followed by a carriage return/linefeed; is a break character. Passed
to program if special editor mode is true.

No special action.
No special action.
No special action.
No special action.

Acts as EOF on TTY input. Echoes as 1Z followed by carriage
return/linefeed. Is a break character.

The standard ASCII escape. Echoed as $; is a break character.
No special action.

No special action.

No special action.

No special action.

Printing characters, no special action.

Lower case ASCII; translated to upper case, unless lower case mode
is on. Echoes as upper case if translated to upper case.

Old versions of altmode; converted to the standard escape (033)
unless in special editor mode (INIT or TRMOP. UUO) or no altmode
conversion is specified (TRMOP. UUO or SET TTY NO ALT com-

mand).

RUBOUT or DELETE:
1. Completely ignored if in paper-tape mode (XON).

2. Break character, passed to program if either DDT mode or
special editor mode is true.

3. Otherwise (ordinary case) causes a character to be deleted for
each rubout typed. All the characters deleted are echoed be-
tween a single pair of backslashes. If no characters remain to
be deleted, echoes as a carriage return/linefeed.

5-30

On output, all characters are typed just as they appear in the output buffer with the exception of TAB, VT, and
FORM, which are processed the same as on type-in. Programs should avoid sending 1D, because it may hang up
certain data sets.

Image mode (octal code 10) is legal for TTY input and output except for pseudo-TTY’s (refer to Paragraph 5.9). -
Image mode is especially convenient for users of display devices, light pens, ctc. since any sequence of input
characters is allowed. The user must use the ASSIGN command before the INIT command can be used in image
mode. (The user’s own TTY is always assigned by logging in.) An attempt to do input to an unassigned terminal
results in an error return. Since any sequence of characters must be allowed, Control-C and Control-Z may not
cause their usual functions. If the user program accepts all characters, and does not release the terminal from
image mode, no user input will release the user from this state. The terminal would effectively become dead to
the system. Because of this situation, an image input state is defined. The image input state begins when the
program starts waiting as a result of an INPUT UUO in image mode. It ends when the program executes any
non-image mode terminal output operation. If no output is desired, a TTCALL UUO can be executed to output
a null character. If no input characters are received for 10 seconds the EOF is forced. After another 10 seconds,
the image input state is terminated by the monitor and a Control-C is simulated. If the user should be in this
situation, he should stop typing until the Control-C appears.

5.10.2 Model 2741 Terminals

The DECsystem-10 provides support for users of several versions of Model 2741 terminal through use of a DC76
Communications Interface. The DC76 converts the 2741 character codes to ASCII.

The 2741 terminals have both upper and lower case characters, but no control characters. It operates in half-
duplex mode only. The two 2741 keyboards are shown on the following page.

NOTE
Most 2741 terminals do not have a circumflex key labeled
as (A)anda (1) (sometimes +) must be used. Control
characters are obtained by typing the circumflex key and
then the corresponding alphabetic character.

The following shows the required character set:

2741 Octal Code Character
00 Space
13 EOA (vertical tab)
16 Shift
17 EOT
35 Index (line feed)
i 55 Cafriage return
56 Backspace
57 Null

The following shows how to generate special characters:

To Generate Type
t)
escape 13

5-31 September 1974

2821=-0l

LU |
HRH B EE

™) ' =
138
LdIHS
v
po)

S EE N HIH N
EHaHNE

1821-01

{)
=) DO MEEEE])
DOOOODODODEM =

$
i

V «~

)
o) (e] L] _US:fﬁ:

HEOODDDODDODDLE

September 1974

5-32

To Generate Type

left square bracket [or M(or 1<
right square bracket] or M) or t>
left angle bracket <or 1

right angle bracket >or 1]
backslash 1/

034 file separator 14

035 group separator 15

036 record separator 16

037 unit separator 17

left braces 13

vertical bar !

right braces 12

tilde t-

accent grave !

It is strongly recommended that the terminal have a break feature (ATTN), but it is not required. The ATTN
key unlocks a locked keyboard, enabling the user to type and locks an unlocked keyboard enabling output to
be typed out. The DC76 recognizes that a terminal is a 2741 through automatic baud recognition (the 2741
baud rate is 134.5).

5.10.2.1 User Interface — Alphanumeric characters (ASCII characters 40—176) will appear to be handled in
the same way as with a Model 33 type terminal. (For instance, striking the capital *“A” key on the 2741 will
transmit an ASCII 101).

A special set of commands are utilized for Model 2741 terminals. (Refer to the Operating System Commands
Manual for complete information.) SET TTY DEBREAK tells the system that the terminal has a feature that
allows the computer to lock the keyboard and start output. This feature is useful for TECO or DDT, where the
user does not hit carriage return prior to a response from the computer.

The SET TTY ELEMENT # command changes the typing element. (This command also sets TTY NO LC.) The
elements available are

987 APL correspondence
029 Standard correspondence
087 Call 360 BASIC

963 Extended binary

938 . _ BCD

988 APL (EBCD)

SET TTY TIDY command specifies that every character occupies one print position. The terminal normally
types out characters such that they appear on the page the same way the user types them in. For example [
prints out as 1<. In TIDY mode, [prints out as <."

On input, lower-case alphanumeric characters are translated to upper-case by the monitor unless the SET TTY
LC command is given.

5-33

CAUTION: Because these terminals are local copy devices, the characters input may print as lower case even
when the program is receiving them as upper case.

When the monitor command “SET TTY LC” is given or SEM (Special Editor Mode) is set by the program, lower-
case alphanumeric characters will not be modified on input.

Backspace (010 octal) will be processed in the same way (except in APL mode) that a rubout is processed, except
it will echo as a backspace.

The monitor will assume tab stops are set in the standard positions (1, 9, 17, 25, etc.). If the tabs are:set to any
other place, an incorrect operation will result.

The following non-ASCII characters on the EBCD (938) type ball are considered to be stylized versions of
ASCII characters:

cent sign (¢) backslash \
lozenge (#) vertical bar |
plus-or-minus (%) circumflex %

If the circumflex character is followed by any other non-alphabetic character, the circumflex isignored and only
the non-alphabetic character is put into the buffer. (These translations do not occur when APL mode is in effect.)

Occasionally, a terminal will become hung (a transmission error occurs on a line control character). When this
happens, switching the terminal quickly from REMOTE to LOCAL (or ON to OFF) will usually clear up the
“problem. It is important not to confuse this with slow system response.

5.10.3 DDT Submode(1)
To allow a user’s program using buffered I/O and the DDT debugging program to use the same terminal without
interfering with one another, the TTY service routine provides the DDT submode. This mode does not affect the

submode. I/0 in DDT mode is always to the user’s terminal and not to any other device.

In the DDT submode, the user’s program is responsible for its own buffering. Input is usually one character at a
time, but if the typist types characters faster than they are processed, the TTY routine supplies buffers full of
characters at the same time.

To input characters in DDT mode, use the sequence

MOVE! AC,BUF
CALL AC, [SIXBIT/DDTIN/I

BUF is the first address of a 21-word block in the user’s area. The DDTIN operator delays, if necessary, until
one character is typed in. Then all characters (in 7-bit packed format) typed in since the previous occurrence

of DDTIN are moved to the user’s area in locations BUF, BUF+1, etc. The character string is always terminated
by a null character (000). RUBOUTS are not processed by the service routine but are passed on to the user. The
special control character tU has no effect. Other characters are processed as in ASCH mode.

To perform output in DDT mode, use the sequence

MOVET AC,BuUF
CALL AC,CSIXBIT ¢»DOTOUT/]

(1) The usage described in this section is obsolete; new programs should use the TTCALL UUO (refer to Paragraph 5.10.3).

5-34 September 1974

BUF is the first address of a string of packed 7-bit characters terminated by a null (000) character. The TTY
service routine delays until the previous DDTOUT operation is complete, then moves the entire che acter string
into the monitor, begins outputting the string, and restarts the user’s program. Character processing is the same
as for ASCII mode output.

5.10.4 TTCALL UUO 051

The TTCALL UUO is used to extend the capabilities of the terminal. The TTCALL operations are performed
for a physical terminal (not a logical name TTY) and most operations reference the terminal controlling the job
which executed the UUO. (There are exceptions, such as in the case of GETLCH.)

The general form is
TTCALL AC, ADR
The AC field describes the particular function desired, and the argument (if any) is contained in ADR. ADR may

be an AC or any address in the low segment above the job data area (137). It may be in high segment for AC
fields 1 and 3. The functions are:

AC Field Mnemonic* Action
0 INCHRW Input character and wait
OUTCHR Output a character
2 INCHRS Input character and skip
3 OUTSTR Output a string
4 INCHWL Input character, wait, line mode
5 INCHSL Input character, skip, line mode
6 GETLCH Get line characteristics
7 SETLCH Set line characteristics
10 RESCAN Reset input stream to command
11 CLRBFI Clear type-in buffer
12 CLRBFO Clear type-out buffer
13 SKPINC Skip if a character can be input
14 SKPINL Skip if a line can be input
15 IONEOU Output as an image character
16—17 . (Reserved for future use)

*The TTCALL mnemonics are defined in a separate MACRO assembler table,
which is scanned if an undefined OP CODE is found. If the symbol is found
in the TTCALL table, it is defined as if it had appeared in an appropriate
OPDEF statement, for example:
' TYPE: OUTCHR CHARAC
If OUTCHR is undefined, it will be assembled as though the program con-
tained the statement:

OPDEF OUTCHR [TTCALL 1,]
This facility is available in MACRO V.44 and later.

5-35 September 1974

INPUT and INPUT TEST operations (TTCALLs 0, 2, 4, 5, 13 and 14) also clear the effect of the previous 10
type in.

INCHRW ADR or TTCALL 0, ADR — This inputs a character into the low-order seven bits of location ADR. If
there is no character yet typed, the program waits.

OUTCHR ADR or TTCALL 1, ADR — This outputs the character in location ADR to the user’s terminal. Only
the low order seven bits of the contents of ADR are used; the remaining bits need not be zeroes.

If there is no room in the output buffer, the program waits until room is available. ADR may be in high segment.

INCHRS ADR or TTCALL 2, ADR — This is similar to INCHRW, except that it skips on a successful return, and
does not skip if there is no character in the input buffer; it never puts the job into a wait.

TTCALL 2,ADR

JRST NONE
JRST DONE

OUTSTR ADR or TTCALL 3, ADR — This outputs a string of characters in ASCIZ format:

TTCALL 3,MESSAGE
MESSAGE: ASCIZ /TYPE THIS QUT/

ADR may be in high segment.

INCHWL ADR or TTCALL 4, ADR — This is the same as INCHRW, except that it decides whether or not to

wait on the basis of lines rather than characters; as such, it is the preferred way of inputting characters, because
INCHRW causes a swap to occur for each character rather than each line (compare DDT and PIP input). In other
words, INCHWL returns the next character in the line if a break character has been typed. (1) If a break character
has not been typed, INCHWL waits. Repeated uses of INCHWL return each of the successive characters of the
line.

Note that a control-C character in the input buffer is sufficient to satisfy the condition of a pending line. There-

fore, when the input is done, the control-C is interpreted and the job is stopped. This definition of a line also
applies to TTCALL 5, and TTCALL 14,.

INCHSL ADR or TTCALL 5, ADR — This is the same as INCHRS, except that its decision whether to skip is
made on the basis of lines rather than characters.

GETLCH ADR, or TTCALL 6, ADR — This takes one argument, from location ADR, and returns one word, also
in ADR. The argument is a number, representing a TTY line. Bits 18 and 19 of the line number are ignored since
terminal numbers begin at 200000. If the argument is negative, the line number controlling the program is as-
sumed. If the line number is greater than those defined in the system, a zero answer is returned.

The normal answer format is as follows:

(1) If the input buffer becomes neatly filled, the waiting-of-line condition is satisfied even though no break character appears. This is true of all line-
mode input operations.

5-36

Name Bit Meaning

GL.ITY 0 Line is a pscudo TTY.
GL.CTY 1 Line is the CTY.
GL.DSP 2 Line is the display console.
GL.DSL 3 Line is the dataset data line.
4 Obsolete.
GL.HDP 5 Line is half-duplex.
GL.REM 6 Line is a remote TTY.
GL.RBS 7 Line is at a remote station.
GL.LIN 11 A line has been typed in by the user.
12 Obsolete.
GL.LCM 13 Lower case input mode is on.
GL.TAB 14 Terminal has tabs.
GL.LCP 15 Terminal input is not echoed, because
device is local copy.
GL.PTM 16 Control Q (paper-tape) switch is on.
17 Obsolete.
18-35 200000 + line number.

SETLCH ADR or TTCALL 7, ADR — This allows a program to set and clear some of the bits for GETLCH.
They may be changed only for the job’s controlling TTY. Bits 13, 14, 15, and 16 can be modified. Bits 18 and
19 of the line number argument are ignored.

Example:
SETO AC, 2
GETLCH AC
TLZ AC,GL,TAB
TLO AC,GL,LCM
SETLCH AC

RESCAN or TTCALL 10, 0 — This is intended for use only by the COMPIL program. It causes the input buffer
to be rescanned from the point where the last command began. If bit 35 of E is 1, the error return is given if
there is a command in the input buffer. If the input buffer is empty, the skip return is given. Obviously, if the
UUO is executed after the first input, the RESCAN may no longer be in the buffer. ADR is not used, but it is
address checked.

CLRBFI or TTCALL 11, 0 — This causes the input buffer to be cleared as if the user had typed a number of
Control u’s. It is intended to be used when an error has been detected (e.g., if a user did not want anything that
he might have typed ahead to be executed).

CLRBFO or TTCALL 12, 0 — This causes the output buffer to be cleared as if the user had typed CONTROL O.
It should be used rarely, since most users want to see all output up to the point of an error.

SKPINC or TTCALL 13, 0 — This skips if the user has typed at least one character. It does not skip if no char-
acters have been typed; however, it never inputs a character. It is useful for a compute-bound program that
wants to occasionally check for input and, if any, go off to another routine (such as the FORTRAN operating
system) to actually do the input.

5-37

SKPINL or TTCALL 14, 0 — This is the same as SKPINC, except that a skip occurs if the user has typed at least
one line. ‘

IONEOU ADR or TTCALL 15, E — This outputs the low-order eight bits of the contents of E as an image char-

acter.

5.10.5 GETLIN AC, or CALLI AC, 34
This UUO returns the SIXBIT physical name of the terminal that the job is attached to:

The call is:
GETLIN AC, ;or CALLI AC,34

The name is returned left justified in the AC. If the job issuing the UUO is currently detached, the left half of
AC contains a 0 on return. The right half of AC contains the right half of the physical name of the terminal to
which the job was most recently attached. Therefore, by testing the left half of AC, jobs can determine if they
are attached to a terminal.

Example:
CTY or TTY3 or TTY30
This UUO is used by the LOGIN program to print the TTY name.

5.10.6 TRMNO. AC, or CALLI AC, 115(1)

This UUOQ is used to obtain the number of the terminal currently controlling a particular job. This terminal
number can then be used as the argument to the GETLCH (refer to Paragraph 5.10.3.7) and TRMOP. (refer to
Paragraph 5.10.6) UUOs.

The call is:
MOVE AC, job number
TRMNO. AC, ;or CALLI AC, 115

error return
normal return

On a normal return, the right half of AC contains the universal I/O index (.UXxxx) for the terminal. The range
of values is 200000 to 200777 octal. The symbol .UXTRM (octal vatue 200000) is the offset for the terminal
indices.

On an error return, if the AC is unchanged, the UUO is not implemented. If the AC contains zero, one of three
errors occurred:

1. The job is currently detached and, therefore, no terminal is controlling it.
2. The job number is unassigned;i.e., there is no such job.

3. The job number is out of range and therefore illegal.

(1) This UUO depends on FTSUUO which is normally off in the DECsystem-1040.

5-38

The particular error condition can be determined from the JOBSTS UUO (refer to Paragraph 5.9.4.4). For
example,

MOVEI AC, number
TRMNO. AC,

JRST +2
JRST OK
JUMPN AC, not implemented
MOVNI AC, number
JOBSTS AC,

JRST illegal number
JUMPL AC, detached
JRST no job assigned.

5.10.7 TRMOP. AC, or CALLI AC, 116(1)

This UUO allows the user to control, examine, and modify information about any terminal connected to the
system. Many of the functions of this UUQ are extensions to the TTCALL input and output functions (refer to
Paragraph 5.10.3). Certain functions are privileged, or require that the user have the terminal ASSIGNed.
Generally, any function is legal for the terminal on which the job issuing the UUQO is running. In addition, any
READ or SKIP function is legal for any terminal if the job issuing the UUO

1. has the privilege bit JP.SPM set,
2. is running with the JACCT bit set, or
3. isloggedinas[1,2].
A SET or output function is legal for any terminal if the job
1. has the privilege bit JP.POK set,
2. is running with the JACCT bit set, or

3. islogged-inas [1,2].

The call is:
MOVE AC, [XWD N, ADR]
TRMOP. AC, ;or CALLI AC, 116
error return
normal return
ADR: function code
ADR+1: universal I/O index (UDX)

ADR is the address of the argument block and N is the length (N must be at least 2). The first word of the argu-
ment block contains the code for the requested function. The second word contains the universal I/O index of
the terminal to be affected (UXTRM + line number). This index is in the same format as returned by the
TRMNO. UUO (refer to Paragraph 5.10.5). Remaining arguments in the argument block depend on the particu-
lar function used.

(1) This UUO depends on FTSUUO which is normally off in the DECsystem-1040.

5-39

Function codes are defined within the following ranges:

0000-0777
1000-1777
2000-2777

3000-3777

Perform a specific action.
Read a parameter.
Set a parameter.

Reserved for DEC customers.

The functions within the range 0000-0777 are as follows:

.TOSIP
.TOSOP
.TOCIB
.TOCOB
.TOOUC
.TOOIC
.TOOUS
.TOINC
.TOIIC
.TODSE

.TODSC

.TODSF
.TORES
.TOSTE
.TOEAD

1
2

10
11
12
13

14

15
16

17

Skip if terminal input buffer is not empty.

Skip if terminal output buffer is not empty.

Clear terminal input buffer.

Clear terminal output buffer.

Output normal mode character from ADDR+2 to terminal.

Output image mode (8-bit) character from ADR+2 to terminal.

Output ASCIZ string to terminal from address at ADR+2.

Input character from terminal to AC, normal mode.

Input character from terminal to AC, image mode (not yet implemented).
Enable modem for outgoing call.

Enable and place outgoing call on modem with dialer. Phone number of up to 17
digits is stored in 4-bit bytes in ADR+2 and ADR+3 and is terminated by a 17 byte.
If caller must wait for a second dial tone (e.g., after dialing a 9), a 16 byte results in
a 5 second wait.

Hang up modem (i.e., disconnect call).
Do a rescan.
Set the TTY element from ADDR+2

Enable automatic baud detection

The READ (1000-1777) and SET (2000-2777) functions are parallel;i.e., if function 1002 reads a particular
parameter, then function 2002 sets the same parameter. Values for the READ functions are returned in AC;
arguments to the SET functions are given in ADR+2. One-bit quantities are not range-checked; instead bit 35
of ADR+2 is stored. The following description of the READ function codes indicate if there is a corresponding
SET function code.

Read Code
1000
1001
1002

Range Description Corresponding SET
Output in progress ((TOOIP) No
Terminal at monitor mode (.TOCOM) No
Paper tape mode (.TOXON) Yes

5-40

Read Code

1003

1004

1005
1006
1007
1010

1011
1012
1013

1014
1015
1016

1017
1020

1021

1022

1023
1024

1025

Range

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

0 to 377

16. to 200.

1 bit

1 bit
1 bit
1 bit

Oto3
1 bit

1 bit

1 bit

0to 63
0to 63

1 bit

Description

Lower case (if sct, no lower case)
(.TOLCT).

Slave switch (.TOSLV).

Tab switch (if 0 = spaces, if 1 = tab)
(. TOTAB).

Form switch (if O = linefeeds, if 1 =
formfeeds) (TOFRM).

Local copy switch (if set, no echo)
(.TOLCP).

Free CR-LF switch (if set, no CR-LF)
(. TONFC).

Horizontal position of carriage (TOHPS).
Carriage width ((TOWID).
TTY GAG bit (if set, NO GAG) (.TOSND).

Half-duplex line (.TOHLF)

Remote line ((TORMT).

Display terminal (.TODIS).

Filler class (.TOFLC).
Paper tape enabled ((TOTAP).

Paged display mode (also set and cleared
by SET TTY PAGE) (. .TOPAG).

Suspended output (need XON to resume) also
set by XOFF, formfeed or page size exceeded,

Corresponding SET

Yes

Yes

Yes

Yes

Yes

Yes

No
Yes
Yes

Yes,
privileged

Yes,
privileged

Yes,
privileged

Yes
Yes
Yes

Yes

if paged display mode (.TOSTP). Not implemented.

Page size (number of lines) (also set by SET
TTY PAGE) (.TOPSZ). Not implemented.

Page counter (number of lines output this page)

(.TOPCT).

Suppress blank lines on output (0 = normal

output and 1 = suppress multiple linefeeds and
vertical tabs to linefeeds (also set and cleared by

SET TTY BLANK) (. TOBLK).

5-41

Yes

Yes

Yes

Read Code

1026

1027
1030
1031
1032
1033

1034

1035

Range

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

Description

Suppress ALTmode conversion on input
(0= 175 and 176 converted to 033 and

= no conversion) (also set and cleared by
SET TTY ALT) (.TOALT).

APL mode (.TOAPL).
Receive Speed (.TORSP).
Transmit Speed (. TDTSP).
Debreak (.TODBK).

Line is 2741 (.TO274).

TIDY (.TOTDY).

AUTO CR value. If non-zero, the first space

after COL n is converted to a carriage return.

(The value of n = 16 to 200). (TOACR).

Corresponding SET

Yes

Yes
Yes
Yes
Yes

Yes,
privileged

No

Yes

(*)This is a four-bit field that contains an octal code corresponding to the speed desired according to the follow-

ing table:

Code Speed
1 50
2 75
3 110
4 134.5
5 150
6 200
7 300
10 600
11 1200
12- 1800
13 2400
14 4800
15 9600
16 External A
17 External B

5-42

On an error return, AC is either unchaged or contains an error code.

AC Name Meaning
Unchanged UUO is not implemented.
0 The requested function is not implemented.
1 TOPRC% User is not privileged to perform this function.
2 TORGB% Argument is out of range.
3 TOADB% Argument list length or address is illegal.
4 TOIMP% Dataset activity to a non-dataset terminal.
6 TODIL% Subfunction failed (e.g., call not properly com-

pleted from dialer).
7 TOTNA% Terminal not available.

5.10.8 File Status (Refer to Appendix D)
The file status of the terminal is shown below.

Standard Bits

18 21 24 27 30 33 35
SET BY USER mm mmu
23
SET BY MONITOR ml I””l
10-0566
Bit 18 =10.IMP TTY is not assigned to a job (for image mode
input processing).
Bit 23 =10.ACT Device is active.
18 22 24 26
UNUSED m‘ H
10- 0567

Device Dependent Bits

18 21 24 27 30 33 35

N 10-0568

5-43

Bit 27 — I10.TEC This bit causes 001 through 037, 175, and 176
(octal) to echo the character exactly as received by
the monitor. THERE IS NO SPECIAL ECHO

(E.G., $ OR 1X).
Bit 28 — I0.SUP Suppresses echoing on the terminal.
Bit 29 — I0.SEM Special editor mode. Pass all characters except lower

case and 1C. Lower case is controlled by the SET
TTY LC command and corresponding TRMOP. UUO
function.

1819 21 24 28 30 33 35.

SET BY MONITOR mm.mwm”

10-0569
Bit 19 — I0.DER Ignore interrupts for three-fourths of a second.
Bit 20 — I0.DTE Echo failure has occurred on output.

Bit 21 — I0.BKT Character was lost on typein.

5.10.9 Paper-Tape Input from the Terminal (Full-Duplex Software)

Paper-tape input is possible from a terminal equipped with a paper-tape reader that is controlled by the XON
(1Q) and XOFF (18) characters. When commanded by the XON character, the terminal service reads paper tapes,
starting and stopping the paper tape as needed, and continuing until the XOFF character is read or typed in.
While in this mode of operation, any RUBOUTS will be discarded and no free line feeds will be inserted after
carriage returns. Also, TABS and FORMFEEDS will not be simulated on a Teletype Model 33 to ensure output
of the reader control characters. To use paper tape processing, the terminal with a paper-tape reader must be
connected by a full-duplex connection and only ASCII paper tapes should be used.

The correct operating sequence for reading a paper tape in this way is as follows:

.R PIP,)
*DSKFILE«TTY:1Q)

THIS IS WHAT IS ON TAPE
MORE OF THE SAME

LAST LINE tZ

*1C

5.10.10 Paper-Tape Output at the Terminal (Full-Duplex Software)

Paper-tape output is possible on any terminal-mounted papér-tape punch, which is controlled by the TAPE,
AUX ON (1R) AND AUX OFF (4T) characters. The punch is connected in parallel with the keyboard printer
and, therefore, when the punch is on, all characters on the keyboard are punched on tape.

5-44

LT33B or LT33H Teletypes can have the reader and punch turned off and on under program control. When
commanded by the AUX ON character, the TTY service punches paper tapes until the AUX OFF character is
read or typed in. The AUX OFF character is the last character punched on tape.

When writing programs to output to the terminal paper-tape punch, the user should punch several inches of blank
tape before the AUX OFF character is transmitted. This last character may then be torn off and discarded.

5-45

CHAPTER 6
I/0 PROGRAMMING
FOR DIRECTORY DEVICES

This character explains the unique features of the standard directory devices. Each device accepts the program-
med operators explained in Chapter 4, unless otherwise indicated. Table 6-1 is a summary of the characteristics
of the directory device. Buffer sizes are given in octal and include three bookkeeping words. The user may de-

termine the physical characteristics associated with a logical device name by calling the DEVCHR UUO (refer to
Paragraph 4.10.2).

Table 6-1
Directory Devices

Buffer
Controller Unit Programmed Data Sizes
Device Physical Name Number Number Operators Modes (Octal®)

DECtape DTAO, DTAL, TD10 TUSS INPUT, IN A,AL,I 202
..., DTA7 551 (PDP-6) 555(PDP-6) OUTPUT B, 1B
DTBO, DTBI, ouT DR,D
..., DTB7** LOOKUP,
ENTER
MTAPE,
USETF,
USETO,
USETI
UTPCLR

Fixed DSK, FHA, RCI10 RD10 INPUT, IN A,ALI 203
Head FHAO, ..., RH10 RM10B OUTPUT, B,IB
Disk FHA3 RS04 OouT DR,D
DSK, FSA, LOOKUP,
FSAO,..., ENTER
FSA7T RENAME,
SEEK
USETO,
USETI

*Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ
UUO may be employed.

**Recognized if dual DECtape controller is supported.

Table 6-1 (Cont)
Directory Devices

Buffer
Controller Unit Programmed Data Sizes
Device Physical Name Number Number Operators Modes (Octal*)
Disk Pack DSK, DPA, RP10 RPO1 INPUT, IN A, AL, I 203
DPAO, ..., RP02 OUTPUT, B, 1B
DPA7 RPO3 ouT DR,D
LOOKUP,
ENTER
RENAME,
SEEK
USETO,
USETI

*Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A DEVSIZ
UUO may be employed.

6.1 DECTAPE

The device mnemonic is DTAO, DTAL, ..., DTA7; the buffer size is 202 (octal) words (177(8) user data, 200(8)
transferred). On systems with dual DECtape controllers, the drives on the second controller have the mnemonic
DTBO, DTB1, ..., DTB7.

6.1.1 Data Modes

Two hundred words are written. The first word is the link plus word count. The following 177 (octal) words
are data supplied to and from user programs.

6.1.1.1 Buffered Data Modes — Data is written on DECtape exactly as it appears in the buffer and consists of
36-bit words. No processing or checksumming of any kind is performed by the service routine. The self-checking
of the DECtape system is sufficient assurance that the data is correct. Refer to Paragraph 6.1.2 for further infor-
mation concerning blocking of information. A

6.1.1.2 Unbuffered Data Modes — Data is read into or written from anywhere in the user’s core area without
regard to the standard buffering scheme. Control for read or write operations must be via a command list in core
memory. The command list format is described in Chapter 4. On the KI10, if the IOWD list is modified as the
result of I/O performed (i.e., an INPUT UUQ reads into the IOWD list) and the word count of any of the IOWDs
read into the list is greater than the following value:

(maximum word count specified in original list -2)/512+2

then the job is stopped and the monitor types

ADDRESS CHECK AT USER adr

File-structured dump mode data is automatically blocked into standard-length DECtape blocks by the DECtape
service routine. Each block read or written contains 1 link word plus 1 to 177(8) data words. Unless the number
of data words is an exact multiple of the data portion of a DECtape block (177(8)), the remainder of the last
block written after each output programmed operator is wasted. The input programmed operator must specify
the same number of words that the corresponding output programmed operator specified to skip over the wasted
fractions of blocks.

6.1.2 DECtape Format

A standard reel of DECtape consists of 578 (1102(8)) pre-recorded blocks each capable of storing 128 (200(8)
36-bit words of data. Block numbers that label the blocks for addressing purposes are recorded between blocks.
These block numbers run from 0 to 1101(8). Blocks 0, 1, and 2 are normally not used during timesharing and are
reserved for a bootstrap loader. Block 100(10) (144(8)) is the directory block, which contains the names of all
files on the tape and information relating to each file. Blocks 3(10) through 99(10) (1-143(8)) and 101(10)
through 577(10) (145-1101(8)) are usable for data.

If, in the process of DECtape I/O, the I/O service routine is requested to use a block number larger than 1101(8)
or smaller thanVO, the monitor sets the IO.BKT flag (bit 21) in the file status and returns.
6.1.3 DECtape Directory Format

The directory block (block 100(10)) of a DECtape contains directory information for all files on that tape; a
“maximum of 22 files can be stored on any one DECtape (see Figure 6-1).

5 6 7

P 2 3 4
*x] [1 1 | BIT 35 CONTAINS

BLOCK

(=]

HIGH ORDER DIGITS
OF CREATION DATES

66
|~sn' 35 UNUSED
oo | | [+[+[+]+]

83| FILENAME 1
22 WORDS 84| FILENAME 2

83 WORDS

105| EXTENSION 1 x» LOW DATE 1
106| EXTENSION 2 ** | OW DATE 2

22 WORDS

127 TAPE LABEL

NOTES:

%* Reserved for system, contains 36 as does block 144g for the
directory.

%% For zero-compressed files, this area holds the number of 1K
blocks (-1) needed to load the file (up to 64K).

+ Represents blocks 1102 through 1105, which are not available
contains 378,

10-0572

Figure 6-1 DECtape Directory Format

6-3

The first 83 words (0 through 82 (decimal)) of the directory block contain slots for blocks 1 through 577 on a
DECtape. Each slot occupies five bits (seven slots are stored per word) and represents a given block on the
DECtape. Each slot contains the number of the file (1-26 (octal)) occupying the given block. This allows for
581 slots (83 words x 7 slots per word). The four extra slots represent nonexistent blocks 1102 through 1105
(octal).

Bit 35 of the first 66 words (0 through 65 (decimal)) of the directory block contain the high order three bits of
the 15-bit creation date of each file on the DECtape. (Note that the low order 12 bits of the creation date of
each file are contained in words 105 through 126(decimal)). This split format allows for compatibility among
monitors and media as old as 1964. The high order 3 bits of the 15-bit creation date for file 1 are contained in
bit 35 of words 0, 22, and 44. Word 44 contains the first (most significant) digit; word 22 contains the second
and word O contains the third. The high order digits for file 2 are contained in bit 35 of words 1, 23 and 45
with the digits in the same order as described for file 1. The high order digits for the remaining files are organ-
ized in the same fashion.

Words 83 through 104 (decimal) of the directory block contain the filenames of the 22 files that reside on the
DECtape. Words 83 contains the filename for file 1, word 84 contains the filename for file 2, filenames are
stored in SIXBIT code.

The next 22 words of the directory block (words 105 through 126(10)) pn'marily contain the filename extensions
and the low order part of the creation dates of the 22 files that reside on the DECtape, in the same relative order
as their filename. The bits for each word are as follows:

Bits 0 — 17(10) The filename extension in SIXBIT code.
Bits 18 — 23(10) Zero.
Bits 24 — 35(10) The low order 12 bits of the date on which the file was created. (Note

that the high order digits are encoded in bit 35 of words O through
65(10). The creation date is computed with the following formula:
((year-1964) * 12 + (month-1)) * 31 + day -1.

Word 127(10) of the directory block is the tape label.

The message
BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n

occurs when any of the following conditions are detected:
1. A parity error occurred while reading the directory block.
2. No slots are assigned to the file number of the file.

3. The tape block, which may be the first block of the file (i.e., the first block for the file encountered
while searching backwards from the directory block), cannot be read.

Ordinary user programs never manipulate DECtape directories explicitly since the LOOKUP and ENTER pro-
grammed operators (refer to Paragraphs 6.1.5.1 and 6.1.5.2) automatically record all necessary entries in the
directory for the user. These programmed operators have all the capability needed to process the name and
creation date of a file. However, a small number of special purpose programs do process directories by explicit
action rather than using the LOOKUP and ENTER operators. For such programs, the following examples illus-
trate methods for:

6-4

1. assembling the 15-bit creation date, and

2. storing the 15-bit creation date. The number of the file (an integer from 1 to 22) is in register P1 and
the directory block begins at location DIRECT.

Example 1

DPB
MOVE1L
ANDCAN
TRNE
10RM
ANDCAM
TRNE
10RM
ANDCAM
TRNE
[0RM

Special Purpose Assembly of the Creation Date

T,
T2,
T2,
T1,
2,
T2,
L,
T2,
T2,
T,
T2,

CPOINT 12,

1

DIRECT=1 (P1)
1823

DIRECT~1 (P1)
DIRECT+ tD2%
1822

DIRECT+ D21
DIRECT+ +D43
1B21
DIRECT+

(PL)

(PL)
(PLY

1043 (PL)

Example 2 Special Purpose Storage of the Creation Date

L0B
MOVE!
TDNE
TRO
TDNE
TRO
TDNE
TRO

6.1.4 DECtape File Format

DIRECT+ *D1p4 (P1), 351

JSAVE LOW PART

JSET UP TO MARK LOW BIT
JCLEAR DIJRECTCRY BIT
JIF BIT IN DATE SET,
}JSET DIRECTORY BT

H

JREPEAT FOR EACH BIT 1IN
JHIGH PART OF DATE

- we e

ISET UP TO TEST LOW BIT
JIF SET IN DIRECTORY
JTHEN SET BIT IN DATE
JREPEAT FOR EACH BIT IN
JHIGH PART OF DATE

TL, CPOINT 12, DIRECT# D104 (P1), 35] JGET LQW PART
T2, 4
T2, DIRECT=1 (P1)
T1, 1823
T2, DIREGCT+ ¢D21 (P1)
Ti, 1822
T2, DIRECT+ *D43 (PL) i
Ti, 1821)
A file consists of any number of DECtape blocks.
B B B
L L L
[EX AT R R PN Y] K K K eoceoce
@ ! 2 3 {

END

DIRECTORY -

Figure 6-2 Format of a File on Tape

BEGIN

10-0573

Each block contains the following:

Word 0 Left half The link. The link is the block number of the next block in
' the file. If the link is zero, this blo_ck is the last in the file.

Right half Bits 18 through 27; the block number of the first block of
the file. Bits 28 through 35;a count of the number of words
in this block that are used (maximum 177(8)).

Words 1 through 177(8) Data packed exactly as the