RT-11 System Subroutine
Library Manual

Order Number AA-PD6MA-TC

August 1991

This manual contains current reference data about the system subroutine library (SSL), a
collection of routines callable from high-level languages (FORTRAN and C).

Revision/Update Information: This information was previously published, along with
reference data about the system macro library, as
part of the RT-11 Programmer’s Reference Manual,
AA-H378D-TC.

Operating System: RT-11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as

set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

© Digital Equipment Corporation 1991
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS-300, DDCMP, DECnet, DECUS,
DECwriter, DIBOL, MASSBUS, MicroPDP-11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT-
11, RTEM-11, UNIBUS, VMS, VT, and the DIGITAL logo.

S1436

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface ix
Summary of Changes xiii
Chapter 1 Using the System Subroutine Library

L1 OVEIVIEW . vttt et e e e e e 1-1
1.1.1 SYSLIB Functional Organization.t 1-2
1.1.2 Applicability e e 1-2
1.2 System Conventionsttt e 1-2
1.2.1 Naming Conventionsttt e 1-3
1.2.2 Subroutines and Functions 1-3
1.2.3 Channel Numbers et 1-3
1.2.4 Completion Routines e 14
1.2.5 Completion Routine Restrictions 14
1.2.6 Device Blockso ot 1-5
1.2.7 INTEGER*4 Support Functions 1-5
1.2.8 User Service Routine (USR) Requirements 1-6
1.2.9 Subroutines Requiring Additional Queue Elements 1-14
1.2.10 System Restrictions i 1-14
1.3 Calling SYSLIB Subroutines or Functions 1-15
1.4 FORTRAN/MACRO Interface. e 1-23
14.1 Subroutine Register Usage. i 1-24
1.4.2 FORTRAN Programs Calling MACRO Subroutines 1-25
1.4.3 MACRO Routines Calling FORTRAN Programs 1-27
1.5 FORTRAN Programs in a Foreground/Background Environment 1-29
15.1 Calculating Workspace for a FORTRAN Foreground Program 1-30
1.5.2 Running a FORTRAN Program in a Foreground/Background Environment 1-31
1.6 Linking with FORLIB e et 1-33
1.7 SYSLIB Services Not Provided by Programmed Requests 1-33
1.7.1 Time Conversion and Date Accessttt 1-33
1.7.2 Program SusSpension 1-34
1.7.3 Two-Word Integer Support INTEGER*4), 1-34
1.74 Radix—50 CONVErSiOnottt ettt e et e e ettt 1-35
1.7.5 Character String Operations it 1-35
1.7.6 Control of Global Regions. it 1-36
1.8 Character String Functions i 1-36
1.8.1 Allocating Character String Variables 1-37

1.8.2 Passing Strings to Subprograms 1-38
1.8.3 Using Quoted-String Literals i 1-39

Chapter 2 System Subroutine Description and Examples

ABTIO/TABTIO 2-2
AJFLT/TAJFLT 2-3
CALLSE . . oo 2-5
CHAIN . . e 2-6
CHCPY/ICHCPY . . . e 2-8
CLOSEC/ICLOSE e e e 2-10
CLOSZ/ICLOSZ e e e e e e e e e e e e e e e et 2-12
CMAP/ICMARP . . . e e e e 2-14
CMKT/ICMEKT e e e e e 2-16
CNTXS/ICNTXS e 2-17
CONCAT . . 2-18
CRAW/ICRAW . . e e 2-20
CRRG/ICRRG e 2-24
CIICSIL . . 2-25
CSTAT/ICSTAT . . . e e e e 2-29
CVTTIM . . . e e e e e e e e e e e e e 2-31
DATE/DATEAY . . . 2-32
DELET/IDELET e e e 2-34
DEVICE/IDEVICE e e e 2-36
DI LT . . 2-37
DSTAT/IDSTAT e 2-38
ELAW/IELAW . . 2-40
ELRG/AIELRG e e e 2-41
ENTER/IENTER e e 2-42
FPROT/IFPROT e e e et 2-44
FREER/IFREER. e 2-45
GCMAP/IGCMARP e e e 2-46
GETR/IGETR e 2-48
GFDAT/IGEFDAT e 2-52
GFINF/IGFINF . . . e 2-53
GESTA/IGESTA . . 2-55
GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS) 2-57
GMOX/IGMCX . . . 2-62
GTDIR/IGTDIR e e e 2-63
GTDUS/IGTDUS . . . e e et 2-69
GTIM . . .o e 2-74
GTIB/IGTIB . ..o 2-75
GTLIN/IGTLIN e 2-77
HERR/THERR e 2-79
TADDR . . . 2-81

IDATE . . 2-82

IDCOMP . . . 2-84
IFWILD . . 2-86
IGTENT . . . 2-89
LI OV 2-91
IN D E X . . 2-92
INSERT . . . 2-93
IPEEK . . 2-94
IPEEKB 2-96
TRADSO . .o 2-97
IO Y . 2-98
ISWILD . .. 2-99
ITLOCK . . . e e e 2-101
ITTINR . . 2-102
ITTOUR . . . e e e e 2-104
IWEEKD . . . 2-105
JADDD . . 2-106
JAF X 2-107
JOM P . . 2-108
JDFIX 2-110
JDIV 2-111
JICV T e 2-113
JICOV T 2-114
JMOV . 2-115
JMUL . . 2-116
JREAD/JREADC/JREADF/JREADW e 2-118
JOUB . . 2-125
JTIME . . e 2-127
JWRITE/JWRITC/JWRITE/JWRITW oo 2-128
KPEEK . . 2-137
KPOKE . .. 2-138
LEN Lo 2-140
LOCK/UNLOCK. . . . e e e e e e e e e e e e e 2-141
LOOKUP . . . e e e e e e e e e 2-144
M AP . . 2-147
MREKT . . 2-148
MO DS . . 2-150
MTATCH . . . 2-151
MTDTCHo e 2-152
MTGET . . . 2-153
MTIN .. 2-154
MTOUT . .. e e e e e e e e e e e e e 2-155
MTPRNT . . 2-156
MTRCTO . . . e e e e e e e e e e e e e e e e e 2-157
M S T . . 2-158

vi

MW AT . . 2-160
POKE/TPOKE e 2-161
POKEB/IPOKEB e 2-162
PRINT . . 2-163
PROTE/MIPROTE. e 2-164
PURGE . . . 2-165
PUT/IPUT . . . e e e e e e e e e e e e 2-166
RB0ASC . .. 2-167
RADSBO . . . 2-168
RAN/RANDU . . . e e e 2-169
RCHAIN .. e 2-170
RCTRLO . .. e 2-171
*RCVD/¥RCVDC/ARCVDE/ARCVDW o o o 2-172
*READ/*READC/AREADF/*READW 2-179
RENAM/IRENAM e e e e e 2-191
REOPN/IREOPN e 2-193
REPE AT . . . 2-195
RESUME . . . 2-197
SAVES/ISAVES 2-198
SCCA/ISCCA/MSCCA . .. e 2-199
SCHED/ISCHED e 2-201
SCOMP/ISCOMP e 2-203
SCOPY . . . 2-204
*SDAT/*SDATC/ASDATFE/*SDATW 2-205
SDTTM/ISDTTMo e e e 2-214
SERR/ISERR 2-216
SETCMD . . . 2-218
SEFDAT/ISFDAT e 2-219
SFINF/ISFINTF . . . e 2-220
SEFSTA/ISEFSTA . . . 2-223
SLEEP/ISLEEP 2-226
SPCPS/ISPCPS . . . 2-227
*SPFN/ASPFNC/*SPFNF/ASPFNW i 2-229
STRPAD . . . 2-239
SUBSTR. . . . 2-240
SUS PN D .. 2-241
BSYTRP . . .o 2-242
TIMASC . . . 2-244
TIME . . 2-245
TIMER/ITIMER 2-246
TRANSL . . 2-248
TRIM . . 2-250
TWAIT/ITWAIT . . . e 2-251
UNMAP/TUNMARP . . . e 2-252

UNPRO/IUNPRO e e e 2-253

UNTIL/TUNTILo e e e e e e e e e e 2-254
VERIFY/IVERIFY . .. e e e e e e 2-256
WAIT/IWAIT . .. e e e e e e e e 2-257
*WRITE/AWRITC/AWRITF/AWRITW ... e 2-258
Index
Figures
1-1 A FORTRAN Program in Memoryttt 1-10
1-2 Subroutine Argument Block 1-24
1-3 Argument Block for Program FINITA 1-27
Tables
1 Functions and Subroutines Deleted from SYSLIB Xiii
2 Routines Added or Changed for I-D Space, Xiv
3 Other Changes to SYSLIB Subroutines Xiv
1-1 PSECT Ordering for FORTRAN Programs (Low to High Memory) 1-9
1-2 PSECT Ordering for PDP-11 RTL Programs i, 1-11
1-3 SYSLIB Subroutines and Functions. 1-16
1-4 Return Value Conventions for Function Subroutines 1-25
1-5 SYSLIB Conversion Calls e 1-34
1-6 Character String Functions i 1-36
2-1 Device Support (SEEAWR/SFARD) e 2-229
2-2 Device Support (SEMWE/SEMWR) e 2-230

Vii

Preface

This manual contains reference data about RT-11 system subroutines, a collection of
call routines contained in system library SYSLIB.OBJ. As a FORTRAN programmer,
you access RT-11 Monitor services through these call routines to the system
subroutine library. Using SYSLIB subroutines, you can write almost all application
programs in FORTRAN without having to write code in any assembly language.
This library is also accessible from PDP-11C.

Reference data about the system macro library, previously contained in the RT-
11 Programmer’s Reference Manual is now contained in a separate manual, RT-11
System Macro Library Manual. See Associated Documents.

Intended Audience

This information is provided for use by advanced RT-11 users, including FORTRAN
IV, FORTRAN-77, and MACRO-11 assembly language programmers and C
language programmers.

Document Structure

Chapter 1 — Using the System Subroutine Library
Describes implementation and effective use of subroutines contained in
SYSLIB.OBJ; provides examples that demonstrate subroutine flexibility and
value in working programs.

Chapter 2 — System Subroutine Description and Examples
Presents all SYSLIB functions and subroutines in alphabetical order; provides
a detailed description of each one. Gives examples of each call in a FORTRAN
program.

Associated Documents

The RT-11 Documentation Set consists of the following associated documents:
Basic Books

e Introduction to RT-11

* Guide to RT-11 Documentation

* RT-11 Commands Manual

e PDP-11 Keypad Editor User’s Guide

* PDP-11 Keypad Editor Reference Card

RT-11 Quick Reference Manual
RT-11 Master Index

RT-11 System Message Manual
RT-11 System Release Notes

Installation Specific Books

RT-11 Automatic Installation Guide
RT-11 Installation Guide
RT-11 System Generation Guide

Programmer Oriented Books

RT-11 IND Control Files Manual

RT-11 System Utilities Manual

RT-11 System Macro Library Manual
RT-11 System Subroutine Library Manual
RT-11 System Internals Manual

RT-11 Device Handlers Manual

RT-11 Volume and File Formats Manual
DBG-11 Symbolic Debugger User’s Guide

Conventions

The following conventions are used in this manual:

Convention

Meaning

Black print

Braces ({ })

Brackets []

UPPERCASE
characters

lowercase
characters

Command
Syntax

RET

In code examples, black print indicates output lines or prompting
characters the system displays.

In command examples, braces enclose mutually exclusive options.
You can choose only one of the options contained in braces.

In command examples, square brackets enclose optional parame-
ters, qualifiers or values. For example:
i = ISFDAT (chan,dblk[,idate][,iold])

In command examples, uppercase characters are command elements
that should be entered exactly as given.

In command syntax examples, lowercase characters are command
elements for which you specify a value. For example:
CALL POKEB (iaddr,ivalue)

Functions and subroutines have different formats:
A function has the format:
i = POKEB (iaddr,ivalue)
A subroutine has the format:
CALL POKEB (iaddr,ivalue)
Alternative commands are shown as:
i = POKEB (iaddr,ivalue)
CALL POKEB (iaddr,ivalue)

in examples and in the example installation represents the
RETURN key.

indicates a control key sequence. While pressing the key
labeled Ctrl, press another key. For example:

Xi

Summary of Changes

This section summarizes additions, deletions and changes to the system subroutine
library (SYSLIB). Refer to Chapter 2 for detailed description of RT-11 system
subroutines.

Changes Between SYSLIB and FORTRAN OTS (FORLIB and F770TS)

The following SYSLIB changes affect the relationship between SYSLIB and the
FORTRAN Object Time Systems (OTS).

* Functions and subroutines DATE, IDATE, RAN, and RANDU, previously in the
distributed FORTRAN subroutine libraries, are now located in SYSLIB.OBJ.

* The following functions and subroutines (see Table 1), specific to FORTRAN
programming, have been deleted from the distributed RT-11 system subroutine
library, SYSLIB.OBJ, because they do not work without a resident FORTRAN
OTS. These functions and subroutines have been added to the FORTRAN IV
distributed FORLIB and the FORTRAN-77 distributed F770TS.

Table 1: Functions and Subroutines Deleted from SYSLIB

GETSTR IFREEC INTSET

TASIGN IGETC IQSET

ICDFN IGETSP PUTSTR

IFETCH ILUN SECNDS
NOTE

Because IQSET is no longer in SYSLIB.OBJ, FORTRAN
programmers who need to add queue elements for
certain other SYSLIB functions, should refer to
the FORTRAN IV distributed FORLIB and the
FORTRAN-77 distributed F770TS.

SYSLIB Subroutines

Changes for I-D Space

Table 2 lists subroutine changes resulting from the addition of Supervisor Mode, I-D
space. One of the major features of V5.6 SYSLIB support added mapping routines
that begin with letter M.

The mapping version of a routine is called in the same manner as an unmapped
version, but has an added argument that specifies the type of mapping required. In

xiii

these cases, mapping is shown as an optional parameter in the generic command
string. For example, ISDATW/MSDATW is shown as:

Form:

i = ISDATW (buff,wcnt)

i = MSDATW (buff,wcnt[,omode])

Table 2: Routines Added or Changed for I-D Space

ICMAP IUNMAP JREADW MREAD MREADC MSPFNC
ICRAW ISCCA JWRITE MREADW MRVCDW MTATCH
ICRRG JREAD JWRITW MRKT MSDS MWRITC
IELRG JREADC MAP MSDAT MSPFN MWRITE
IGCMAP JREADW MRCVD MSDAT MSDATC MWRITW
IGCMX JWRITC MRCVDC MSPFNW MSDATW

SYSLIB Subroutine Changes
Table 3 lists subroutines that have been changed in V5.6.

Table 3: Other Changes to SYSLIB Subroutines

DEVICE IFPROT ISPY
GIWRIT IGTDUS IUNTIL
GTLIN ISFDAT LOOKUP
ICSTAT ISPFN SCCA

Xiv

Chapter 1
Using the System Subroutine Library

1.1 Overview

The system subroutine library is a collection of FORTRAN- and C-callable routines
contained in the SYSLIB.OBJ system library which also contains overlay handlers,
utility functions, a character string manipulation package, and two-word integer
support routines. High-level language programmers use these subroutines to take
full advantage of the latest RT-11 system features. The linker also uses this library
to resolve undefined globals.

If you are not familiar with the PDP-11 FORTRAN Language Reference Manual
and the RT-11/RSTS/E FORTRAN IV User’s Guide, and the Guide to PDP-11
C, you should refer to these manuals before using the material described in this
chapter. C language programmers should also refer to the PDP-11 C Run-Time
Library Reference Manual for information about functions and macros.

The system subroutine library provides the following capabilities:

¢ Complete RT-11 I/O facilities, including synchronous, asynchronous, and event-
driven modes of operation. FORTRAN subroutines can be activated upon
completion of an input/output operation.

* Timed scheduling of completion routines, standard in the multijob and mapped
monitors, is a SYSGEN option for the SB monitor.

* Facilities for communication between foreground and background jobs.

e FORTRAN language interrupt service routines for user devices.

* Complete timer support facilities, including
— Timed suspension of execution in multijob or mapped environments
— Conversion of different time formats, and time-of-day information
— Timer support for facilities using either 50- or 60-cycle clocks

* Facilities for creating, attaching, detaching, and eliminating global regions in
extended memory.

e All RT-11 auxiliary input/output functions: opening, closing, renaming files;
creating or deleting files on any device.

¢ All monitor-level information functions, such as job partition parameters, device
statistics, and input/output channel statistics.

* Support interface and multiterminal environment.

Using the System Subroutine Library 1-1

* Access to the RT-11 command string interpreter (CSI).
* Access to limited instruction-data (I-D) space and Supervisor mode support.

¢ Mapping routines, similar to unmapped routines, having added argument(s) that
specify mapping required.

¢ (Character string manipulation package supporting variable-length character
strings.

e INTEGER*4 support routines that allow two-word integer computations.

In reference to variables, unless otherwise specified, INTEGER means INTEGER*2,
(16-bit integer) and REAL means REAL*4 (single-precision floating point). Integer
and real arguments to subprograms are indicated in this section as follows:

i = INTEGER*2 arguments
j = INTEGER*4 arguments
a = REAL*4 arguments
d = REAL*8 arguments

1.1.1 SYSLIB Functional Organization

RT-11 system subroutines and functions are presented in alphabetical sequence of
their generic name. For example, because READC, IREADC, and MREADC can be
called as subroutines or as functions, they are presented together under *READC to
facilitate easy lookup. An I-prefixed name denotes use as a function; an M-prefixed
name denotes the function or subroutine has extra arguments that specify mapping.

Functionally related calls to enable or disable functions are presented together to
facilitate easy lookup. For example, LOCK and UNLOCK are presented together as
LOCK/UNLOCK.

1.1.2 Applicability

In general, SYSLIB routines were written for use with RT-11 V2 or later
and FORTRAN IV V1B or later versions for RT-11 or FORTRAN may lead to
unpredictable results. SYSLIB now supports virtually all monitor requests. Do
not use a SYSLIB routine on an older monitor that does not support the request
implemented by the routine.

1.2 System Conventions

This section describes system conventions that must be followed for proper
operation of calls to the system subroutine library. (For applicable restrictions, see
Section 1.2.10.)

1-2 RT-11 System Subroutine Library Manual

1.2.1 Naming Conventions

In FORTRAN, subroutine names starting with I-through-N (inclusive) are, by
default, integer returns; names starting with A-through-H and O-through-Z are real
returns.

SYSLIB names are the same as those used in SYSMAC except that, when names in
SYSMAC start with letters other than I-through-N, the letter I is appended to the
beginning. Also the following conventions apply:

* Names that start with the letter I ordinarily are functions that return a 16-bit
value.

* Names that start with the letter J return a 16-bit value, but operate on a 32-bit
value.

¢ Names that start with the letter K (such as KPEEK) are functional extensions
of names beginning with I (such as IPEEK), functionally the same, except that
the K-version has an optional argument.

* Names that start with the letter M (such as MRCVD) indicate that mapping or
multimode mapping has been added to a function (such as IRCVD).

Names that start with the letter M might also identify multiterminal equivalents
of generic functions or subroutines; for example, MTOUT and MTPRINT are
multiterminal equivalents of ITTOUR and PRINT.

1.2.2 Subroutines and Functions

If a SYSLIB routine returns a value, it is more useful as a function than as a
subroutine. If the routine does not return a value, it should only be used as a
subroutine. In instances where they can function as well in either role, SYSLIB
descriptions are presented for both forms. Generally, subroutines whose names start
with letters other than I-through-N either do not return a useful value or return a
floating-point value.

1.2.3 Channel Numbers

A channel number is a logical identifier for a file used to communicate with RT-11.
When you open a file on a particular device, you assign a channel number to that
file. When you refer to an open file, just refer to the appropriate channel number.

The FORTRAN system has 16(decimal) channels available. The call IGETC assigns
a channel to your program and notifies the FORTRAN I/O system, which also
uses these channels, that the channel is in use. When there is no longer need
for a channel, the program should close the channel with a CLOSEC, ICLOSE, or
a PURGE SYSLIB call. The channel should also be closed and returned to the
FORTRAN 1/O system with a IFREEC call.

The ICDFN call can activate up to 255(decimal) channels. ICDFN sets aside memory
in the job area to accommodate status information for the extra channels. Use the
ICDFN call during the initialization phase of your program. You can use all channels
numbered higher than 15(decimal). The FORTRAN I/O system uses channels 0
through 15(decimal).

Using the System Subroutine Library 1-3

You must allocate channels in the main program routine or its subprograms. Do
not allocate channels in routines that are activated as the result of I/O completion
events or ISCHED or ITIMER calls.

1.2.4 Completion Routines

A completion routine is a subprogram that executes asynchronously with a main
program and is scheduled to run as soon as possible after the completion of an
associated event, such as an I/O transfer or the passing of a specified time interval.
All completion routines of the current job have higher priority than other parts of
the job. When a completion routine is initiated (because of its associated event), it
interrupts execution of the job and continues to execute until it relinquishes control.

Completion routines can be written in FORTRAN or assembly language, depending
on the function called. Assembly language completion routines exit with a RETURN
instruction. FORTRAN completion routines exit by the execution of a RETURN
or END statement in the subroutine. Names of all completion routines external
to the routine being coded and passed to scheduling calls must be specified in an
EXTERNAL statement in the FORTRAN program unit issuing the call:

A completion routine written in FORTRAN can have a maximum of two arguments:
Form:

SUBROUTINE crtn [(iargl,iarg2)]

where:
crtn is the name of the completion routine
iargl is the equivalent to RO on entry to an assembly language completion
routine
iarg2 is equivalent to R1 on entry to an assembly language completion
routine

For information on the meaning of R1 and RO contents, see the RT-11 System Macro
Library Manual:

If an error occurs in a completion routine or in a subroutine at completion level, the
error handler traces back through to the original interruption of the main program.
Thus, the traceback is shown as though the completion routine were called from the
main program.

1.2.5 Completion Routine Restrictions

Certain restrictions apply to completion routines that are activated by the following
calls:

INTSET IREADF ISPFNC IWRITF
IRCVDC ISCHED ISPFNF MRKT
IRCVDF ISDATC ITIMER

IREADC ISDATF IWRITC

1-4 RT-11 System Subroutine Library Manual

When using these calls the following restrictions apply:

* No channels can be allocated by calls to IGETC or freed by calls to IFREEC
from a completion routine. Channels to be used by completion routines should
be allocated and placed in a COMMON block for use by the routine.

Even if the completion routine itself does not issue any programmed requests,
but does perform I/O to a logical unit number through the OTS, that logical unit
number must be opened from the main level. To accomplish this, either issue the
first I/O access or an OPEN statement from main level. A completion routine
may not call CLOSE to close a logical unit.

* FORTRAN subroutines are reusable but not reentrant. That is, a given
subroutine can be used many times as a completion routine or as a routine in
the main program, but a subroutine executing as main program code does not
work properly if it is interrupted and then called again at the completion level.
This restriction applies to all subroutines that can be invoked at the completion
level while they are active in the main program.

e FORTRAN completion routines can be called only by SYSLIB functions that
end in F. Conversely, MACRO completion routines cannot be called by SYSLIB
functions that end in F. (SYSLIB function names ending in the letter F interface
to the FORTRAN run-time system.)

1.2.6 Device Blocks

A device block is a four-word block of Radix—50 information that specifies a physical
device and a file name. In FORTRAN, you can use one of three methods to set up
this block as follows:

¢ Use the DIMENSION and DATA statements. For example,

Di nensi on | FI LE(4)
Data |FILE /3rSY ,3rFIL,3rE ,3rXxvyz

* Translate the available ASCII file description string into Radix—50 format, using
the SYSLIB calls IRAD50, R50ASC, and RAD50. For example,

Real *8 FSPEC
Cal | I RAD50(12, 'SY FILE XYZ', FSPEC)

e Use SYSLIB call ICSI to call the Command String Interpreter (CSI) to accept
and parse standard RT-11 command strings.
1.2.7 INTEGER*4 Support Functions

For a description of INTEGER*4 functions for use by the MACRO programmer, see
Section 1.7.3.

When you use the DATA statement to initialize INTEGER*4 variables, you must
specify both the low- and high-order parts. For example, the code that follows
initializes only the first word:

I nteger*4 J
Data J /3/

Using the System Subroutine Library 1-5

The following example shows the correct way to initialize an INTEGER*4 variable
to a constant, such as 3:

Integer*2 M 2)
Data M /3, 0/ I'l ow order, high order

If you are initializing an INTEGER*4 variable to a negative value such as -4, the
high-order (second word) part must be the continuation of the two’s complement of
the low-order part. For example,

Integer*4 L

Integer*2 L2(2)

Equi val ence (L, L2)

Data L2 /-4, -1/ linitialize L to -4

1.2.8 User Service Routine (USR) Requirements

The RT-11 User Service Routine (USR) is always resident in all mapped monitors;
therefore, this discussion applies to unmapped monitors only. User-written routines
that interface to the FORTRAN Object Time System (OTS) must account for the
location of the USR. PDP-11 C user-written routines have similar requirements.
USR swapping requirements for FORTRAN and C are discussed in this section.

The USR occupies 2K words. When your program calls a SYSLIB routine that
requests a USR function (such as IENTER or LOOKUP) or when the USR is invoked
by the FORTRAN OTS, the USR is swapped into memory if it is nonresident. The
FORTRAN OTS is designed so that the USR can swap over it.

Because letting USR swap over certain kinds of data and code causes unpredictable
results, you must restrict interrupt service routines and completion routines to
locations outside the USR swapping area. Identify the limits of this swapping area
by examining the link map and, if necessary, change the order of object modules and
libraries as specified to linker.

The following subroutines require the USR:

CLOSEC,ICLOSE

GETSTR (only if first I/O operation on logical unit)
GTLIN

ICDFN (single job only)

ICSI

IDELET

IDSTAT

IENTER

IFETCH

IQSET

IRENAM

ITLOCK (only if USR is not in use by another job)
LOCK (only if USR is in a swapping state)
LOOKUP

PUTSTR (only if first I/O operation on logical unit)

1-6 RT-11 System Subroutine Library Manual

Controlling USR Swapping
You can control USR swapping by using the KMON commands SET USR NOSWAP
and SET USR SWAP:

e SET USR NOSWAP prevents swapping and freezes the USR in memory.
e SET USR SWAP reverses this, allowing the USR to swap under program control.

Another alternative is to compile your FORTRAN main program with the /NOSWAP
option if you are sure that there is space just below the foreground partition or RMON
to make the USR permanent for the duration of your program. Use this option if
your program does not need the 2K words of memory that the USR occupies. If the
/NOSWAP option is not specified, the USR swaps over locations 1000-11000, the 2K
words of your program above the base address, and the part of a FORTRAN program
least likely to violate the USR restrictions.

To prevent USR swapping for part of the program execution time and to allow the
USR to swap out at other times, use the LOCK, UNLOCK, and ITLOCK calls:

* LOCK call locks the USR into main memory and attaches it to the requesting
job.

* The UNLOCK call lets the USR swap again and be used by another job.

* The LOCK and UNLOCK calls are used in a foreground program to prevent
interference from the background during initialization and completion phases
and to minimize the number of swaps.

e IfITLOCK determines another job is already using the USR, it returns an error
code that lets the program try for a lock, but continue with other action if it fails.

Keeping the USR Resident

For a FORTRAN main program, you can keep the USR resident by using the
FORTRAN/NOSWAP command (or the /U compiler option) at compile time. This
forces the USR to remain resident while the program is executing. You cannot use
this option if your FORTRAN programs require the extra 2K words of memory.

Allowing the USR to Swap

As with a MACRO program, the only reason to permit the USR to swap with a
FORTRAN program is to gain access to an additional 2K words of memory. The
USR normally swaps over the FORTRAN OTS (Object Time System). However,
problems occur when the FORTRAN OTS and the program together are less than
2K words long. In this case, the USR swaps over the program’s impure data area,
with unpredictable results. (Since this error is frequently made by inexperienced
programmers, setting the USR to NOSWAP and retrying a program is the first
thing you should do when debugging a FORTRAN program that does not execute
properly.) And USR swapping does not depend on your program’s high limit—that
is, if the USR is allowed to swap, it most definitely will swap. So, do not permit USR
swapping unless your program really needs the extra memory. To enable swapping
for a FORTRAN program, make sure the SET USR SWAP command is in effect, and
eliminate the INOSWAP or the /U option at compile time.

Using the System Subroutine Library 1-7

PSECT Ordering for FORTRAN

To change the position of code or data to avoid the USR swapping area, or
to move the USR itself, consider the use of program section (PSECT) ordering.
PSECTs contain code and data identified by names as segments of the object
program. Attributes associated with each PSECT direct the Linker to combine
several separately compiled FORTRAN program units, assembly language modules,
and library routines into an executable program.

The order in which program sections are allocated in the executable program is the
same order in which they are presented to the Linker. Applications sensitive to this
ordering typically separate those sections containing read-only information (such as
executable code and pure data) from impure sections containing variables.

The main program unit of a FORTRAN program (normally the first object module
in sequence presented to LINK) declares PSECT ordering as shown in Table 1-1.

The USR can swap over pure code, but must not be loaded over constants or impure
data that can be used as arguments to the USR. The ordering shown in Table 1-1
collects all pure sections before collecting impure data in memory.

It is important to understand where and how the USR swaps so you can design
your FORTRAN program correctly. For a FORTRAN program, the FORTRAN OTS
places a value in $UFLOA location 46 to set up the USR swapping function. When
a FORTRAN program is running, the USR will automatically start swapping at the
base of OTS$I. $UFLOA of the System Communication Area contains the address
where the USR will swap. If the value of $UFLOA is zero, the USR will swap at its
default location, below RMON and handlers.

The FORTRAN compiler examines the sections of your program and sorts them based
on two major attributes: read-only versus read-write, and pure code versus data.
Generally, program instructions are read-only, and program data is read-write. If you
use assembly language routines, use the same PSECT as the FORTRAN compiler.
That is, place pure code and read-only data in section USER$I, and impure data in
USER$D. The compiler forces PSECT into the order shown in Table 1-1. PSECT
attributes shown in this table are abbreviated as follows:

RW, RO—Read/Write, Read Only

I, D—Instructions, Data

REL—Relocatable

CON, OVR—Concatenated, Overlaid

LCL, GBL—Local with overlay segment, Global across segments
SAV—Unconditionally place PSECT in root segment.

See the RT-11/RSTS/E FORTRAN IV User’s Guide and RT-11/FORTRAN 77 User’s
Guide for more information on program sections. See also RT-11 System Internals
Manual and RT-11 System Utilities Manual for information on USR swapping and
PSECT ordering.

1-8 RT-11 System Subroutine Library Manual

Table 1-1: PSECT Ordering for FORTRAN Programs (Low to High Memory)

Section Name Attributes

FORTRAN IV
OTS$I RW, I, LCL, REL, CON
OTS$P RW, D, GBL, REL, OVR
SYS$I RW, I, LCL, REL, CON
USERS$I RW, I, LCL, REL, CON
$CODE RW, I, LCL, REL, CON
OTS$0 RW, I, LCL, REL, CON
SYS$O RW, I, LCL, REL, CON
$DATAP RW, D, LCL, REL, CON
OTS$D RW, D, LCL, REL, CON
OTS$S RW, D, LCL, REL, CON
SYS$S RW, D, LCL, REL, CON
$DATA RW, D, LCL, REL, CON
USER$D RW, D, LCL, REL, CON
$$3$3. RW, D, GBL, REL, OVR
Other RW, D, GBL, REL, OVR
COMMON
Blocks

FORTRAN 77
$CODE1 RW, I, LCL, REL, CON
$PDATA RW, D, LCL, REL, CON
$IPDATA RW, D, LCL, REL, CON
$VARS RW, D, LCL, REL, CON
$TEMPS RW, D, LCL, REL, CON
$SAVE RW, D, GBL, REL, CON

This ordering collects all pure sections before impure data in memory. The USR can
safely swap over sections OTSI, OTSP, SYS$I, USER$I, and $CODE. Figure 1-1
shows the arrangement of components when a FORTRAN program is loaded into
memory. The global symbol $$OTSI marks the start of the pure code area. The
global symbol $$OTSC marks its end and the beginning of the impure data area.
FORTRAN puts the value of $$OTSI into location 46, and the USR swaps into
memory starting at that address, thus overlaying the first 2K words of your
program.

Using the System Subroutine Library 1-9

Figure 1-1:

As with a MACRO program, your FORTRAN program should not have certain
instructions or data in the area where the USR will swap. As a general rule, the
following items should not be in the USR swap area:

The FORTRAN system itself must also be concerned with USR swapping and its

inherent restrictions. For example, the PSECT OTS$O contains the FORTRAN

$$OTSC:

$$OTSI:

1000
776
500
476

60
56
40
36

0

Routines that request USR functions (such as IENTER and LOOKUP)

A FORTRAN Program in Memory

MEMORY

Resident Monitor

OTS Work Area

Line Buffer

Channel Tables

Device Handlers

¢

}

1/0 Buffers

Program

OoTS
Routines

Overlay Handler
and/or ODT

Stack

Interrupt Vectors

System
Communication Area

Trap
Vectors

Data structures for USR requests

Interrupt service routines

Completion routines

Data areas for interrupt service routines and completion routines

1-10 RT-11 System Subroutine Library Manual

PSECT $CODE

PSECT OTS$I

USR

OTS routines to open files. This PSECT follows $CODE in the PSECT ordering.
If the start of OTS$O is within 2K words of $$OTSI, the essential information for

the file operation is stored on the job stack before the USR swaps over the code in
OTS$0.

The best way to make sure that the USR swaps into a safe place in your FORTRAN
program is to examine the link map to determine if the USR will swap over restricted
sections. That is, see if the first 2K words above $$OTSI can be overlaid safely. If
not, relink the program and change the order of object modules and libraries you
specify to the linker. One problem is caused by using SYSLIB routines that place
important USR data in the lower 2K words of the job image. An example is the
IFETCH routine, which uses a device block in the program. The USR swaps over
the device block just before it is used, causing an error. To avoid a situation like
this, do not set up device names as constants for a SYSLIB call. Instead, use DATA-
initialized variables. This ensures that the information will be stored high enough
in the job image to avoid being overlaid by the USR.

PSECT Ordering for PDP-11 C

Table 1-2 lists PSECTs used by the PDP-11 Run Time Library and outlines their
use. Under RT-11 if the USR is not resident, the PDP-11 C RTL will attempt to
set the USR to swap at the location of the root C$STDI and C$OTSI PSECTs. See
PDP-11 C Guide to PDP-11 C for more information on PSECT ordering.

Table 1-2: PSECT Ordering for PDP-11 RTL Programs

Section Name Use
{ 8388$g } Character collating table. Used for locale-specific routines to determine

the collating sequence of each character set.

C$CMTO Character mapping table. Used for locale-specific routines to determine

C$CMT2 the results of character mapping functions for each character set.

C$CTTO Character testing table. Used for local-specific routines to determine

C$CTT2 the results of character testing functions for each character set.

C$ENDO The C$ENDx PSECTs are used for end-of-task processing. The

C$END1 addresses of functions to be called by the PDP-11 C RTL at task-exit

C$END2 time are place in the PSECT C$END1. For instance, the address of

C$END3 the routine that ensures all files are closed is placed in CSEND1. This
is separate from the atexit system function. The PSECTs C$ENDO,
C$END1, and C$END3 are reserved for use by the PDP-11 C RTL.
The addresses of routines to be called at task exit can be placed in the
PSECT C$END2. Modules that define this PSECT may not reside in a
resident library.

C$INIO Similar to the CSENDx PSECTs, the C$INIx PSECTSs are used to provide

C$INT1 the addresses of routines to be called at task startup. The PSECTs

C$INI2 C$INIO, C$INI1, and C$INI3 are reserved for use by the PDP-11 C

C$INI3 RTL. The PSECT C$INI2 is available to place the addresses of routines

to be called at task startup. Modules that define this PSECT may not
reside in a resident library.

Using the System Subroutine Library 1-11

Table 1-2 (Cont.): PSECT Ordering for PDP-11 RTL Programs

Section Name Use
C$INIR Code for initialization routines.
C$MFTO Monetary formatting table. Used for locale-specific routines to
C$MFT2 determine the results of monetary formatting functions for each

character set.

{ C$NFTO } Numeric formatting table. Used for locale-specific routines to determine

C$NFT2 the results of numeric formatting functions for each character set.

C$0TSC Constant data for PDP-11 C Object Time System routines.

C$0TSD Read data for the PDP-11 C OTS routines.

C$0OTSH RT-11 only. Used to determine size of C$OTSI and C$STDI PSECTs.

C$0TSI Instructions for PDP-11 C OTS routines. These routines handle most
of the math and conversion functions.

C$0TSJ RT-11 only. Used to determine size of C$OTSI and C$STDI PSECTs.

C$0OTSR Constant data for PDP-11 C OTS routines.

C$OTSW Writable storage for PDP-11 C OTS routines. Modules that contain this
PSECT may not reside in a resident library.

C$STDC Constant data for the Standard Library routines.

C$STDD Read data for the Standard Library routines.

C$STDI Instructions for the Standard Library routines.

C$STDR Constant data for the Standard Library routines.

{ C$TIMO } Time formatting table. Used for locale-specific routines to determine the
C$TIM2 results of time formatting functions for each character set.

$PIOXT I/O Transfer Vector. This is used to allow PDP-11 C to easily access
several low-level I/O systems. $PIOXT contains two addresses for each
low-level I/O action used by PDP-11 C. One address is for support for
native I/O for that action. The other is for support for either RMS or
FCS I/O for that action. Modules that define this PSECT may not reside
in a resident library.

$PRLUN Bit mask used for reserving LUNs. The first word indicates the number
of words that follow. These make up a mask. Modules that define this
PSECT may not reside in a resident library.

$$C The PDP-11 C OTS work area. This is read/write data space used by
the RTL. Modules that define this PSECT may not reside in a resident
library.

$$CAST OTS work area PSECT containing structure required by asctime
function.

$$CCLK OTS work area PSECT containing storage required for correct use of

the clock function.

1-12 RT-11 System Subroutine Library Manual

Table 1-2 (Cont.): PSECT Ordering for PDP-11 RTL Programs

Section Name Use

$$CEXI OTS work area PSECT containing storage required to register the
addresses of the functions to be called during the executions of the
atexit() routine.

$$CGEN OTS work area PSECT containing storage required to support the
getenv () function.

$$CLOC OTS work area PSECT containing storage required to support the locale
functions.

$$CMLL OTS work area PSECT containing storage required to support memory
allocation functions.

$$CSIG OTS work area PSECT containing storage required to support the signal
functions.

$$CSIO OTS work area PSECT containing storage required to support standard
I/O operations.

$$CTIM OTS work area PSECT containing storage required struct tm.

USR Lockout and Timing—All Monitors
If while one job is using the USR, another job requests it, the requesting job will
be blocked until the other job releases the USR. The requesting job may be locked
out for seconds or minutes at a time. Interrupt service and completion routines can
run, but mainline code cannot. You can minimize or eliminate these resulting timing
problems by observing the following:

* Do not use devices with slow directory operations, such as magtapes.

* Write real-time operations as completion and interrupt service routines in your
foreground job so that a locked-out mainline program does not impede real-time
operations.

* Separate USR and real-time operations.

* Use the ITLOCK call and avoid SYSLIB calls that request the USR while the
USR is owned by another job.

A real-time foreground job has the following typical structure:

* An initialization phase that opens all required channels and begins a real-time
operation

* A real-time phase that performs interrupt service and I/O operations
* A completion phase that halts real-time activity and then closes the channels.

Maintaining this structure in the foreground enables the background task to do
USR operations during the real-time phase without locking out the foreground. This
action simplifies USR swapping because the USR can swap over interrupt routines
and I/O buffers as long as they are inactive.

Using the System Subroutine Library 1-13

1.2.9 Subroutines Requiring Additional Queue Elements

All subroutines in the following list require added queue elements for their proper
operation. Subroutines prefixed with asterisks can be called as they are or may be
prefixed with a letter I or M if they are called as functions or have added arguments
for mapping. For example, *RCVD can have the form RCVD, IRCVD or MRCVD.

These subroutines are as follows:

*RCVD, *RCVDC, *RCVDF, *RCVDW
*READ, *READC, *READF, *READW
TWAIT

SCHED/ISCHED

*SDAT, *SDATC, *SDATF, *SDATW
SLEEP/ISLEEP

*SPFN, *SPFNC, *SPFNF, *SPFNW
TIMER/ITIMER

TWAIT/ITTWAIT

UNTIL/IUNTIL

*WRITC, *WRITE, *WRITF, *WRITW
MRKT

MWAIT

One queue element per job is automatically allocated. Issuing more than one request
from the list requires extra queue elements. Additional queue elements can be
allocated by a call to the IQSET function.

NOTE
IQSET is no longer contained in SYSLIB.OBJ. If
you need to add queue elements for certain SYSLIB
functions, refer to FORTRAN IV distributed FORLIB
and to FORTRAN-77 distributed F770TS.

1.2.10 System Restrictions

Consider the following system restrictions when coding a FORTRAN program that
uses SYSLIB.

Programs using IPEEK, TPOKE, IPEEKB, IPOKEB, or ISPY to access system-
specific addresses, such as FORTRAN, monitor, or hardware addresses, are not
guaranteed to run under future releases or on configurations other than those
on which they were written. When using these functions, document their use so
you can check your references against the current documentation. Also, these
routines may act differently under the mapped monitor. IPEEK and IPOKE are
not equivalent to programmed requests .PEEK and .POKE. Although IPEEK
and IPOKE are equivalent to KPEEK and KPOKE, Digital recommends using
KPEEK and KPOKE because they function better in a virtual environment.

Various functions in SYSLIB return values that are of type integer, real, or double
precision. To specify an implicit statement that changes the defaults for external
function types, you must:

1-14 RT-11 System Subroutine Library Manual

— Explicitly declare the type of those SYSLIB functions that return integer or
real results.

— Be sure that the arguments to the SYSLIB routines are the correct type for
the routine. Double-precision functions must always be declared to be type
DOUBLE PRECISION (or REAL*8). Failure to observe this restriction leads
to unpredictable results.

* Names of all completion routines external to the routine being coded and which
are passed to scheduling calls (such as ISCHED, ITIMER, and IREADC) must
be specified in an EXTERNAL statement in the FORTRAN program issuing the
call.

* (Certain arguments to SYSLIB calls must be located so that the USR is prohibited
from swapping over them at execution time. This kind of swapping can occur
when the OTS$I section (which contains the all-pure code and data for the
module) is less than 2K words in length. Avoid swapping in this uncommon
situation either by typing the SET USR NOSWAP command to make the USR
resident before starting the job, or by compiling the mainline routine with a
/NOSWAP option. You can also use the linker /BOUNDARY option to make
OTS$0 start at word boundary 11000(octal). (This problem generally occurs
only with small FORTRAN programs.)

In FORTRAN IV, FORTRAN 77 and C Language, program sections (PSECTs)
are used to collect code and data into appropriate areas of memory. If USR is
needed, but not resident, it will swap over a FORTRAN program, starting at the
symbol OTS$I for 2K words of memory.

* Unless explicitly stated, null arguments should not be used in calls to SYSLIB
routines.

1.3 Calling SYSLIB Subroutines or Functions

SYSLIB function subprograms and subroutines are called in the same manner as
user-written subroutines. In general, if SYSLIB routines return a value, they are
more useful as functions than as subroutines. If they do not return a value, they
should be used only as subroutines. When functions or subroutines serve equally
well in either role they are called routines. Call them in whichever way they are
most useful. Subroutines whose names start with letters other than I-through-N
either do not return a useful value or return a floating-point value.

PDP-11 C supports SYSLIB routines described in this document. The interface used
to call routines is the FORTRAN subroutine linkage.

Table 1-3 lists SYSLIB functions/subroutines and briefly describes each within
several types of categories:

¢ File Oriented Operations
* Data Transfer Operations

* Channel Oriented Operations

Using the System Subroutine Library 1-15

* Device and File Specifications

¢ Timer Support Operations

e RT-11 Services

e INTEGER*4 Support Functions

¢ (Character String Functions

* Radix-50 Conversion Operations
¢ Multiterminal Operations

* Graphics (GIDCAL) Call Routines

SYSLIB entries are listed in the column that identifies their optimum use as
functions, subroutines or equally well as either, depending on whether or not it
is useful to return a value. Note the convention of prefixing subroutine calls with
an I when called as functions; and prefixing both with an M when functions or
subroutines have an added argument that specifies mapping. The Map column has
two entries:

No SLB—Subroutine/Function cannot be used in Supervisor library.
No I-D—Subroutine/Function cannot be used in separated I-D space.

The Restrictions column lists restrictions to use of a function or subroutine; for
example, ICNTXS can be used only in multijob environments.

SYSLIB subroutines IFREER and IGETR support mapping programmed requests,
and FORTRAN virtual arrays can access extended memory.

Table 1-3: SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
ABTIO TABTIO Chan - -

AJFLT - -
CALLS$F - - - Macro
CHAIN - RT-11 - -
CHCPY ICHCPY Chan - Multijob
CLOSEC ICLOSE File - -
CLOSZ ICLOSZ File - -
CMAP ICMAP Mapping - Full Mapping
CMKT ICMKT Timer - Timer
CONCAT String - -
CNTXS ICNTXS RT-11 - Multijob
CRAW ICRAW Mapping - Mapping

1-16 RT-11 System Subroutine Library Manual

Table 1-3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
CRRG ICRRG Mapping - Mapping
CSI ICSI Dev/File Spec No SLB -
CSTAT ICSTAT Chan - -
CVTTIM Timer - -
DATE Timer No SLB -
DATE4Y Timer No SLB -
DELET IDELET File - -
DEVICE IDEVIC RT-11 - -
DJFLT I*4 - -
DSTAT IDSTAT RT-11 - -
ELAW IELAW Mapping - Mapping
ELRG IELRG Mapping - Mapping
ENTER IENTER File - -
FPROT IFPROT File - -
FREER IFREER Mapping No SLB Mapping
GCMAP IGCMAP Mapping - Full Mapping
GETR IGETR Mapping - Mapping
GFDAT IGFDAT File - -
GFINF IGFINF File - -
GFSTA IGFSTA File - -
GICLOS Graphics No SLB Pro
GIOPEN Graphics No SLB Pro
GIREAD Graphics No SLB Pro
GIWRIT Graphics No SLB Pro
GMCX IGMCX Mapping - Mapping
GTDIR IGTDIR Dev/File Spec No SLB -
GTDUS IGTDUS Dev/File Spec - -
GTIM Timer - -
GTJB IGTJB RT-11 - -
GTLIN IGTLIN Data Transfer - -
HERR THERR RT-11 - -

Using the System Subroutine Library 1-17

Table 1-3 (Cont.):

SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
IADDR RT-11 - -
TAJFLT TAJFLT - -
IDATE Timer - -
IDCOMP Timer - -
IDJFLT IDJFLT I*4 - -
IFWILD String No SLB -
IGTENT Dev/File Spec No SLB -
IJCVT I*4 - -
INDEX INDEX String - -
INSERT String - -
IPEEK RT-11 - -
IPEEKB RT-11 - -
IRAD50 IRAD50 RAD50 No SLB -
ISPY RT-11 - -
ISWILD String No SLB -
ITLOCK RT-11 - -
ITTINR Data Transfer - -
ITTOUR Data Transfer - -
IWEEKD Timer No SLB -
JADD JADD I*4 - -
JAFIX JAFIX I*4 - -
JCMP I*4 - -
JDFIX I*4 - -
JDIV JDIV I*4 - -
JICVT JICVT I*4 - -
JJCVT Timer,I*4 - -
JMOV JMOV I*4 - -
JMUL JMUL I*4 - -
JREAD JREAD Data Transfer = No SLB -
JREADC JREADC Data Transfer = No SLB -

1-18 RT-11 System Subroutine Library Manual

Table 1-3 (Cont.):

SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
JREADF JREADF Data Transfer = No I-D, -
No SLB
JREADW JREADW Data Transfer = No SLB -
JSUB JSUB I*4 - -
JTIME Timer - -
JWRITC JWRITC Data Transfer = No SLB -
JWRITE JWRITE Data Transfer = No SLB -
JWRITF JWRITF Data Transfer = No I-D, -
No SLB

JWRITW JWRITW Data Transfer = No SLB -

KPEEK RT-11 - -
KPOKE KPOKE RT-11 - -

LEN String - -
LOCK RT-11 - -
LOOKUP File - -
MAP MAP Mapping - Mapping
MGETR MGETR Mapping No SLB Mapping
MRCVD MRCVD Data Transfer - Full mapping, multijob
MRCVDC MRCVDC Data Transfer - Full mapping, multijob
MRCVDW MRCVDW Data Transfer - Full mapping, multijob
MREAD MREAD Data Transfer - Full mapping
MREADC MREADC Data Transfer - Full mapping
MREADW MREADW Data Transfer - Full mapping
MRKT MRKT Timer - Timer.
MSCCA MSCCA RT-11 - Full mapping
MSDAT MSDAT Data Transfer - Full mapping, multijob
MSDATC MSDATC Data Transfer - Full mapping, multijob
MSDATW MSDATW Data Transfer - Full mapping, multijob
MSDS MSDS Mapping - Full mapping
MSPFN MSPFN Data Transfer - Full mapping
MSPFNC MSPFNC Data Transfer - Full mapping
MSPFNW MSPFNW Data Transfer - Full mapping

Using the System Subroutine Library

1-19

Table 1-3 (Cont.):

SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
MTATCH MTATCH Multiterm - Multiterm
MTDTCH MTDTCH Multiterm - Multiterm
MTGET MTGET Multiterm - Multiterm
MTIN MTIN Multiterm - Multiterm
MTOUT MTOUT Multiterm - Multiterm
MTPRNT MTPRNT Multiterm - Multiterm
MTRCTO MTRCTO Multiterm - Multiterm
MTSET MTSET Multiterm - Multiterm
MTSTAT MTSTAT Multiterm - Multiterm
MWAIT Chan - Multijob
MWRITC MWRITC Data Transfer - Full mapping
MWRITE MWRITE Data Transfer - Full mapping
MWRITW MWRITW Data Transfer - Full mapping
POKE IPOKE RT-11 - -
POKEB IPOKEB RT-11 - -
PRINT Data Transfer - -
PROTE IPROTE RT-11 - -
PURGE Chan - -
PUT IPUT RT-11 - -
R50ASC RAD50 No SLB -

RAD50 RAD50 No SLB -
RANDU RAN Math - -
RCHAIN RT-11 - -
RCTRLO RT-11 - -
RCVD IRCVD Data Transfer - Multijob
RCVDC IRCVDC Data Transfer - Multijob
RCVDF IRCVDF Data Transfer = No I-D, -

No SLB

RCVDW IRCVDW Data Transfer - Multijob
READ IREAD Data Transfer - -
READC IREADC Data Transfer - -

1-20 RT-11 System Subroutine Library Manual

Table 1-3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
READF IREADF Data Transfer = No I-D, -

No SLB
READW IREADW Data Transfer - -
RENAM IRENAM File - -
REOPN IREOPN Chan - Multijob
REPEAT String - -
RESUME RT-11 - -
SAVES ISAVES Chan - Multijob
SCCA ISCCA RT-11 - -
SCHED ISCHED Timer No SLB Timer
SCOMP ISCOMP String - -
SCOPY String - -
SDAT ISDAT Data Transfer - Multijob
SDATC ISDATC Data Transfer - Multijob
SDATF ISDATF Data Transfer No I-D, Multijob

No SLB
SDATW ISDATW Data Transfer - Multijob
SDTTM ISDTTM Timer - -
SERR ISERR RT-11 - -
SETCMD RT-11 - -
SFDAT ISFDAT File - -
SFINF ISFINF File No SLB -
SFSTA ISFSTA File No SLB -
SLEEP ISLEEP Timer - Timer
SPCPS ISPCPS RT-11 - SPCPS support
SPFN ISPFN Data Transfer - -
SPFNC ISPFNC Data Transfer - -
SPFNF ISPFNF Data Transfer = No I-D, -

No SLB
SPFNW ISPFNW Data Transfer - -
STRPAD String - -
SUBSTR String - -

Using the System Subroutine Library 1-21

Table 1-3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions
SUSPND RT-11 - -
$SYTRP rt—11 No I-D, Macro

No SLB
TIMASC Timer - -
TIME Timer - -
TIMER ITIMER Timer - Timer.
TRANSL String - -
TRIM String - -
TWAIT ITWAIT Timer - Timer.
UNLOCK RT-11 - -
UNMAP TUNMAP Mapping - Mapping
UNPRO IUNPRO RT-11 - -
UNTIL JTUNTIL Timer - Timer.
VERIFY IVERIF String No SLB -
WAIT IWAIT Chan - -
WRITC IWRITC Data Transfer - -
WRITE IWRITE Data Transfer - -
WRITF IWRITF Data Transfer = No I-D, -

No SLB
WRITW IWRITW Data Transfer - -

SYSLIB descriptions in Chapter 2 present these routines as calls or functions or
both, as applicable. Some subroutines and functions have an added argument that
specifies mapping. In these cases, the function or subroutine has an M prefix. In
the following example, RCVD can be called as a function or subroutine, including
the M-prefix version having a mapping argument:

CALL RCVD (buff,wcnt)

i = IRCVD (buff,wcnt)

CALL MRCVD (buff,wcnt[,BMODE=strg])
i = MRCVD (buff,wcnt[,BMODE=strg])

Function Subprograms

A function may return an error code value or other information useful to the purpose
of the calling routine. Function subprograms receive control by means of a function
reference as follows:

1-22 RT-11 System Subroutine Library Manual

i = function name ([arguments])

Subroutines
Subroutines are invoked by a CALL statement as follows:

CALL subroutine name [(arguments)]

Routines
Routine is the term that describes subroutines called as function subprograms, if a
return value is desired, or called as subroutines, if no return value is desired.

Some subroutines have two acceptable formats. For example, you can call the
CLOSEC subroutine or specify the ICLOSE function, since the latter returns an
integer error code return useful in showing either a normal return or error condition.

Quoted-string literals are useful as arguments of calls to routines in SYSLIB,
especially the character string routines. These literals are allowed in subroutine
and function calls (see Section 1.8.3).

1.4 FORTRAN/MACRO Interface

FORTRAN calling routines and subroutines follow a well-defined set of)conventions
by which MACRO programmers adhering to these conventions can write FORTRAN-
callable routines such as those in SYSLIB:

¢ Transfer of control

* Transfer of information

e Memory usage

* Register usage

Control is transferred to a subroutine by the following assembly language syntax:
CALL SUBR

When control passes to the subroutine SUBR, R5 points to an argument block like
that shown in the left-hand block in Figure 1-2. Null arguments in CALL statements
must be entered as comma pairs (, ,). For example, CALL SUBR (A, ,B). As shown
in the right-hand block of Figure 1-2, the value -1 is stored in the argument block
as the address of a null argument.

The lower byte of the first word of the argument block contains the number of
arguments that are passed to the subroutine. The rest of the argument block
contains the addresses of those arguments. The argument block is n+1 words long
for n arguments.

The program counter is the linkage register. The subroutine obtains its arguments
through R5. In FORTRAN, the calling program saves the registers, and the
subroutine leaves the contents of the stack pointer intact before returning to the

Using the System Subroutine Library 1-23

Figure 1-2: Subroutine Argument Block

Reserved No. of ? 3
Arguments
Address of Argument 1 A
Address of Argument 2 -1
Address of Argument n B

calling program. The RETURN statement of the subroutine is placed by the
assembly language instruction RETURN.

The name of the subroutine must be declared global with the .GLOBL directive in
the calling program or with the double colon (::) construction in the called program.

NOTE
Be sure that the called program does not modify the
argument block passed by the calling program to a
subprogram.

1.4.1 Subroutine Register Usage

A subroutine called by a FORTRAN program does not have to preserve any registers.
However, each push onto the stack must be matched by a pop off the stack before
exiting from the routine.

User-written assembly language programs must preserve all pertinent registers
before calling FORTRAN subroutines or SYSLIB routines, then restore registers
after the subroutine returns. The CALLS$F routine is provided to perform this
register save and restore. See CALLS$F description in Chapter 2.

Function subroutines return a single result in a register. Table 1-4 shows the
register assignments for returning the different variable types.

NOTE
Floating-point results are returned in the general
purpose registers and not in the Floating Point Unit
(FPU) registers. Assembly language subprograms that
use the FP11 Floating Point Unit may be required to
save and restore the FPU status.

1-24 RT-11 System Subroutine Library Manual

Table 1-4: Return Value Conventions for Function Subroutines

Type Result Placed In
INTEGER*2 RO
LOGICAL*1
INTEGER*4 RO low-order result
LOGICAL*4 R1 high-order result
REAL(*4) RO high-order result (including sign and exponent)
R1 low-order result
DOUBLE PRECISION RO highest-order result (including sign and exponent)
or REAL*8 .
R1 next higher order
R2 next higher order
R3 lowest-order result
COMPLEX RO high-order result
R1 low-order result
R2 high-order imaginary result
R3 low-order imaginary result

1.4.2 FORTRAN Programs Calling MACRO Subroutines

FORTRAN programs can call MACRO subroutines, but several rules must be
followed. In the following example, the program FINITA is a MACRO subroutine
that can be called from a FORTRAN program:

.TITLE FIN TA

; Put INIT into the LARRY elenents starting at | ARRAY
; ERR = FINITA (1 ARRAY, INT, LARRAY)

E Default INIT to O

| ERR = 0 success

; -1 invalid LARRY (negative)

.G.OBL $SYsSLB
.GLOBL $NXADR, $NXVAL ;routines to get args

-2 mssing argunent

: SYSLI B version and val ue for $NOARG

:IN. RO is default, R4 count

; R5 current arg list pointer
;QUT: RO is addr / val ue

; R4 decrenent ed count

Using the System Subroutine Library 1-25

; R5 increnented pointer
; Carry set if omtted arg

FI NI TA: :

MOV (R5) +, R4 ; Put arg count in R4,
; point R5 to first arg

CALL $NXADR ; Get addr of array
BCS 20% ;Error, missing arg
MOV RO, R1 ;save first arg addr
CLR RO ;use 0 for onmtted val ue
CALL SNXVAL ;Get value to init with
MoV RO, R2 ;save it
CALL $NXVAL ;Get words in array
BCS 20% ;Error, missing arg
TST RO ;s the length gt 0
BLE 30% :no, can't init

10$:
MoV R2, (R1) + ;init array
SGB RO, 10$;according to count
RETURN ;done (RO = 0)

20%:
MoV #-2, R0 ;indicate m ssing args
RETURN

30%:
MoV #- 1, RO ;indicate invalid count
RETURN
. END

Call the preceding routine as follows:
Macro Call:
CALL FINITA (IAR,IVAL,N)

where:

FINITA is the name of the subroutine

IAR is the name of the array to initialize
IVAL is the initialized value of the array
N is the number of elements to initialize

This program illustrates the rules that must be observed when calling a MACRO
program. The name of the subroutine is made global by using the .GLOBL directive.

Register 5 (R5) is used to pass the arguments. For the program FINITA, the
argument block would appear as shown in Figure 1-3.

Registers RO through R4 can be freely used because the calling program saves them.
When arguments have been retrieved, you can also use R5.

On completion, the subroutine returns to the calling program through a RETURN. If
your MACRO program pushes data on the stack, make sure that all data is popped
off the stack before the RETURN is executed.

1-26 RT-11 System Subroutine Library Manual

Figure 1-3: Argument Block for Program FINITA

0 3

Address of IAR

Address of IVAL

Address of N

The following FORTRAN program named FINITB calls the subroutine FINITA.
Program FI NI TB

g FORTRAN programto call MACRO subroutine

¢ Integer*2 Array

Di nensi on Array(10)
Data Array /-1,-2,-3,-4,-5,-6,-7,-8,-9,-10/

C
N=17 linit first seven el enents
Do 10 1 =1, 10 luse 10 init val ues
Cal | FINITA (ARRAY, I, N)
Wite (5, 100) (ARRAY(J), J =1, 10)
10 Cont i nue
100 Format (' ', 1014)
End

Compile and link both programs, then run the program by typing:

.RUN FINITB

The initialized array will be output to the terminal as follows:

1 1 1 1 1 1 1 1 -8 -9 -10
2 2 2 2 2 2 2 2 -8 -9 -10
3 3 3 3 3 3 3 3 -8 -9 -10

9 9 9 9 9 9 9 9 -8 -9 -10
10 10 10 10 10 10 10 10 -8 -9 -10

1.4.3 MACRO Routines Calling FORTRAN Programs

If you want to call FORTRAN subroutines from a MACRO program, create a dummy
main program. For example,

Using the System Subroutine Library 1-27

Program FORI NT

lcal l
lcal l

I'setup FTN environnent

MACRO subroutines which in turn

first MACRO routine
second MACRO routi ne

C
C MAI' N programto call
C call| FORTRAN subrouti nes.
C

Call FMAC2F

Cal | FMACSF

End
where:

FMAC2F

is the name of a MACRO program that can call FORTRAN or

MACRO routines.

Creating a dummy program causes the FORTRAN main program to perform the
initialization necessary for FORTRAN subroutines.

In the following example, MACRO program FMAC2F calls a FORTRAN subroutine

named FMAXMN:

. TITLE FMAC2F
.GLOBL FNMAXWN
FMAC2F: :
MOV #ARGBLK, R5
CALL FMAXIVN
RETURN
AR&BLK: .WORD 2
. WORD |
.WORD J
l: . WORD 28.
J: . WORD 76.
. END

; MACRO cal | i ng FORTRAN

; FORTRAN programto cal
;entry point

;point to argunent bl ock
;call routine

; done

;two arguments
;address of first
;address of second

;val ue of first argunent
;val ue of second argunent

First, set up the argument block either on the stack or in a separate area in your
MACRO program. Then point R5 to the top of the argument block prior to calling
the FORTRAN subroutine with a CALL FMAXMN. In the FMAC2F program shown
previously, the argument block is set up in an area of your program.

In the following example, a program named FMACSF performs the same operation
as the FMAC2F program, except that it places the argument blockf on the stack:

. TITLE FMACSF
.GLOBL FMAXWN

FMACSF: :
MOV #J, - (SP)
MOV #1, - (SP)
MOV #2, - (SP)
MOV SP, R5
CALL FMAXIWN
ADD #3*2, SP
RETURN

| . WORD 28.

J . WORD 76.
. END

1-28 RT-11 System Subroutine Library Manual

; MACRO cal i ng FORTRAN

; FORTRAN programto call
;entry point

;buil d argunment bl ock on stack

’

;point to it

;call routine

; pop argunent bl ock from stack
; done

;value of first argunent
;val ue of second argunent

If you set up the argument block on the stack, you must remove the arguments
from the stack prior to the execution of the RETURN. Before calling the FORTRAN
subroutine, you must save all pertinent registers. You do not know which registers
the FORTRAN subroutine is using. The stack pointer remains unchanged across
the call.

You must define the name of the FORTRAN subroutine that the MACRO program
calls as a global. In the FORTRAN subroutine, execute normal FORTRAN
statements and return to the MACRO program with a RETURN statement.

The following program is the FORTRAN subroutine FMAXMIN:
Subroutine FMAXWN (I N1, | N2)

C
C FORTRAN subroutine called by MACRO subroutines
C

Integer*2 Big, Snall
If (INL .gt. IN2) Then

BIG= 1INl

SMALL = I N2
El se

BIG=1N2

SMALL = I N1
End If

Type 10, BIG
Type 20, SMALL

10 Format (' The bigger nunber is ', 110)
20 Format (' The smaller nunber is ', 110)
Ret urn
End

After assembling and linking the programs, type:

. RUN FORI NT

The program executes as follows:

The bi gger nunber is 76
The smal |l er nunber is 28

The bi gger nunber is 76
The small er nunber is 28
STOP - -

1.5 FORTRAN Programs in a Foreground/Background Environment

FORTRAN programs can be run in a foreground/background environment, which
enables the efficient use of CPU execution time. (See Chapter 5 of Introduction to
RT-11 for a description of running programs in an FB environment.)

Before running your foreground program, use the LOAD command to load the device
handlers required by the foreground job. These device handlers are placed in memory
between RMON and the USR and KMON, causing USR and KMON to move down
in memory.

Using the System Subroutine Library 1-29

Next, use the FRUN command to load your foreground program in memory between
the device handlers and the USR, which causes the USR and KMON to move further
down in memory. You must allocate sufficient workspace when running a FORTRAN
program in the foreground. Allocate workspace by using the /BUFFER:n option of
the FRUN command. Also ensure that any FORTRAN program you run in the
foreground has adequate stack space. You can use one of the options supported by
the linker (See the RT-11 System Utilities Manual).

The background area must be at least 4K words long to accommodate the USR and
KMON. Until you run a background job with the RUN command, KMON is the
background job.

When the USR is required (in unmapped monitors), you must set up a 2K-word area
in each job for the swapping to occur correctly; that is, there must be space for at
least 2K words in the background area and 2K words in the foreground area. For
an explanation of USR swapping, see Section 1.2.8.

1.5.1 Calculating Workspace for a FORTRAN Foreground Program

Additional workspace must be allocated in memory when running a FORTRAN
program in the foreground of a foreground/background environment. For a
foreground job, the space is allocated by the /BUFFER:n option of the FRUN
command. (A background job uses whatever space is available between its high limit
and the system’s low limit.) When you allocate additional workspace in memory to
run a FORTRAN IV program in the foreground, calculate the space required by
using the following formula:

n = [[504+(35*N)+(R 136) +A*512] / 2] +[10* qcount] +[6* nunj +[25* | NTSET] +[64+R/ 2]
where:

A Specifies the maximum number of files open at one time. Each file
opened as double buffered should be counted as two files.

N Specifies the maximum number of simultaneously open channels
(logical unit numbers). This value is specified when the compiler
is built and can be overridden with the /UNITS option during main
program compilation.

R Specifies the maximum formatted sequential record length. This
value is specified when the compiler is built and can be overridden
with the /RECORD option during main program compilation; the
default value is 136.

gcount Specifies queue elements.
num Specifies the number of channels.

| NTSET Specifies the SYSLIB INTSET function.

Include the following optional elements in the formula if you want to use the
indicated system subroutine library (SYSLIB) functions:

1-30 RT-11 System Subroutine Library Manual

[10*gcount]

[6*nun]

[25* | NTSET]

[64+R/ 2]

Specifies space for queue elements, which the IQSET function
requires.

Specifies space for the number of channels, which the ICDFN
function requires.

Specifies space for the number of INTSET calls issued in the
program, which the INTSET function requires.

Specifies space for completion routines and a second record buffer.
Any functions, including INTSET, that invoke completion routines
must include 64y, words plus the number of words needed to allocate
the second record buffer (default is 68 decimal words).

The length of the record buffer is controlled by the /RECORD option
to the FORTRAN compiler. If the /RECORD option is not used, the
allocation in the formula must be 1361 bytes, or the length that
was set at FORTRAN installation time.

Note that the numbers in the formula presented above are all decimal quantities
for ease in computation, using a calculator. Remember, however, that in entering a
decimal number in the /BUFFER:n option of FRUN, you must include the decimal
point in the numeric value of n.

1.5.2 Running a FORTRAN Program in a Foreground/Background Environment

This section outlines the procedure for running two FORTRAN programs, one in the
background and one in the foreground.

The background program named FBACK is as follows:

Program FBACK ! background denmo program

Paraneter JSW= "44 I JSW addr ess
Par ameter TTSPC = "010000 I'TT special node bit
Call IPOKE (JSW TTSPC .or. |PEEK (JSW)
100 Cont i nue
Call Print ('Hello fromthe background’)
Call ITTOUR (I TTINR()) l'echo input char
Go To 100 I'l oop until killed
End

This program prints the message "Hello from the background" and will print the
message each time you input a character at the terminal.

The foreground program named FFORE is as follows:

Program FFORE ! foreground deno program
Paraneter JSW= "44 I JSW addr ess
Par ameter TTSPC = "010000 I'TT special node bit
Call IPOKE (JSW TTSPC .or. |PEEK (JSW)
100 Cont i nue
Call Print ("Hello fromthe foreground')
Call ITTOUR (I TTINR()) l'echo input char
Go To 100 I'l oop until killed
End

Using the System Subroutine Library 1-31

After compiling both programs, link them. Link the foreground program using the
LINK command with the /[FOREGROUND option. This option produces a relocatable
load module with a .REL file type. For example,

. LI NK/ FOREGROUND FFORE

Then you can assign the device that will be used for the output of the foreground
program. You must also load into memory the peripheral device handlers needed by
the foreground program.

The command FRUN loads and starts execution of a .REL program as the foreground
job. At this point, typing the command:

. FRUN FFORE

causes the following error message to display, indicating that additional workspace
allocation is required and that the /BUFFER option must be used. (Refer to the
previous section for the formula to calculate the additional space needed.)

?Err 62 FORTRAN start fail

The command should be typed as follows:

. FRUN FFORE/ BUFFER: 2000

Execution of this command results in the following output at the terminal:

F>
Hell o fromthe foreground
B>

The system first identifies the message as foreground output, then the foreground
job executes and outputs its message. The background monitor next prints the
characters B> and a period (.), indicating that control has returned to monitor
command mode. Command input remains directed to the background job.

For example, when you type:

. RUN FBACK
the background job will display the following message:

Hell o fromthe background

Each time you type a character to the terminal, say an "L", the message will be
repeated, as follows:

LHel l o fromthe background

Use the CTRL/F command to direct terminal input to the foreground job. The system
prints F> to remind you that you are now directing input to the foreground job. When
you type a character, such as "Y", the foreground job message will be displayed.

1-32 RT-11 System Subroutine Library Manual

F>
YHel o fromthe foreground

Type a CTRL/B to return to the background job or a CTRL/C to return to monitor
command mode. If you are returning to a background environment, you should
unload the foreground job and any handlers to reclaim memory space for background
use. To stop these two example programs, enter CTRL/C to each one.

1.6 Linking with FORLIB

Normally, default system library file SYSLIB.OBJ also includes the overlay handlers
and the appropriate FORTRAN run-time system routines.

To add FORLIB.OBJ modules to the default library SYSLIB.OBJ, use the following
command:

. LI BRARY/ | NSERT/ REMOVE SYSLI B FORLI B RET
d obal ? $ERRS

A obal ? $ERRTB

d obal ? $OVRH [rer

d obal ?

1.7 SYSLIB Services Not Provided by Programmed Requests

SYSLIB provides many services that are not handled by single programmed
requests, for example:

* Time conversion and date access

* Program suspension

* Two-word integer support (INTEGER*4)
¢ Radix-50 conversion

¢ Character string manipulation

* Control of global regions in extended memory

1.7.1 Time Conversion and Date Access
Use the following calls to perform time conversions:

CVTTIM Converts a two-word internal format time to hours, minutes, seconds,
and ticks.

JTIME Converts a time given in hours, minutes, seconds, and ticks into the
internal two-word time format.

Use the following calls to print out the time:

TIMASC Converts the time in internal two-word format into an eight-character
ASCII string.

TIME Returns the current time of day as an eight-character ASCII string.
Access the current system date by issuing the DATE/IDATE call:

Using the System Subroutine Library 1-33

where:
DATE Returns date as a string value.
DATE4Y Returns the date as a string value with a four-digit year value.

IDATE Returns date as an integer value.

1.7.2 Program Suspension

You can suspend execution of a program with ITWAIT, ISLEEP, and IUNTIL calls,
where:

ITWAIT Suspends program execution for a specified number of ticks.

ISLEEP Suspends running program for a specified number of hours, minutes,
seconds and ticks.

IUNTIL Suspends job execution until a specific time of day, in hours, minutes,
seconds, and ticks.

1.7.3 Two-Word Integer Support (INTEGER*4)

This support is primarily for FORTRAN IV. It also can be used from MACRO, but
FORTRAN-77 has INTEGER*4 functionality built in. You can make calls to SYSLIB
to manipulate a 32-bit integer that uses two words of storage. The first word contains
the low-order part of the value and the second word contains the sign and the high-
order part of the value. The range of numbers that is represented is -231 to 231-1.
This format differs from the two-word internal time format that stores the high-
order part of the value in the first word and the low-order part in the second word.
Table 1-5 shows the calls you use to convert from one format to another.

Table 1-5: SYSLIB Conversion Calls

From To Call
INTEGER*4 REAL*4 AJFLT/TIAJFLT
INTEGER*4 REAL*8 DJFLT/IDJFLT
INTEGER*4 INTEGER*2 IJCVT

REAL*4 INTEGER*2 JAFIX

REAL*8 INTEGER*4 JDFIX
INTEGER*2 INTEGER*4 JICVT

INTEGER*2 are 16-bit integers; INTEGER*4 are 32-bit integers; REAL*4 are 2-
word, single-precision floating-point numbers; REAL*8 are 4-word, double-precision
floating-point numbers.

Calls are also available for you to perform arithmetic operations on INTEGER*4

values, move a value to a variable, and convert a two-word internal time format to
and from an INTEGER*4 value.

1-34 RT-11 System Subroutine Library Manual

1.7.4 Radix-50 Conversion

You can convert ASCII characters to or from Radix—50, using RAD50, IRAD50, and
R50ASC,

where:

IRAD50 Converts a specified number of characters of Radix—50 and returns
the number of characters converted as a function result.

RAD50 Encodes RT-11 file descriptors in Radix—50 notation.
R50ASC Converts a specified number of Radix—50 characters to ASCII.

1.7.5 Character String Operations

SYSLIB provides character string functions that perform string operations such as:
* Concatenating strings

* Comparing strings

* Copying strings

¢ Replacing strings

¢ Computing the number of characters in a string

The following example is a program that demonstrates calling a SYSLIB character-
string subroutine from a macro program:
. TITLE FEGTZ2; 2 ;calling SYSLIB from MACRO

.GLOBL CONCAT CALL$F ;SYSLIB routines
.MCALL .PRINT .EXIT ; Macr os

START: :
MoV #STRCON, R2 ;Point to final buffer
MOV #ARGBLK, R5 ; Point to argunent bl ock
MoV #CONCAT, RO ;Point to routine to call
CALL CALLSF ;Call it, saving registers R1-R4
.PRINT R2 ;Print resulting string
CEXNT ;and away

ARGBLK: .WORD 3 ;3 argunents
.VWWORD STRNGL ;first input string address
.WORD STRN®& ;second input string address
.VWWORD STRCON ;output string buffer address

STRNGL: .ASClZ "Research and"
STRN&: .ASClIZ " Devel opnent™
STRCON: .BLKB 31

. END START

Running this program concatenates string 1 and string 2, producing the following
terminal output:

Research and Devel opnent

For detailed description of character string functions, see Section 1.8.

Using the System Subroutine Library 1-35

1.7.6 Control of Global Regions

Global regions are areas in extended memory which can be used independently from
the program that created them; that is, they are shareable among programs. Use the
IGETR/MGETR and IFREER system subroutines to create, attach to, detach from,
and eliminate global regions in extended memory. All facilities for global region
control are available, using the MGETR and IFREER subroutines:

¢ MGETR creates or attaches to a global region. (IGETR obsolete; retain for
compatibility.)

e JFREER detaches from or eliminates a global region.

For a complete description of global region support, see the RT-11 System Internals
Manual.

1.8 Character String Functions

SYSLIB character string functions and routines provide variable-length string
support for RT-11 FORTRAN and for MACRO programs. SYSLIB calls that perform
character string operations are listed in Table 1-6.

Table 1-6: Character String Functions

Call Operation

CONCAT Concatenates variable-length strings

INDEX Returns the position of one string in another
INSERT Inserts one string into another

LEN Returns the length of a string

REPEAT Repeats a character string

SCOMP Compares two strings

SCOPY Copies a character string

STRPAD Pads a string with blanks on the right
SUBSTR Copies a substring from a string

TRANSL Performs character modification

TRIM Removes trailing blanks

VERIFY Verifies the presence of characters in a string

String Storage

Strings are stored in BYTE or LOGICAL*1 arrays that you define and dimension.
These arrays store strings in ASCII format as one character per array element, plus
a zero element to indicate the current end of the string.

1-36 RT-11 System Subroutine Library Manual

ASCII Code

The ASCII code used in this string package is the same as that employed by
FORTRAN for A-type FORMAT items, ENCODE/DECODE strings, and object-
time format strings. Whenever quoted strings are used as arguments in the
CALL statement, ASCIZ strings are generated for these routines by the FORTRAN
compiler. Note that a null string (a string containing no characters) can be
represented in FORTRAN by a variable or constant of any type that contains the
value zero or by a LOGICAL variable or constant with the .FALSE. value.

String Length
The length of a string can vary at execution time from zero characters to one less

than the size of the array that stores the string. The maximum size of any string is
32767 characters.

Strings can contain any of the seven-bit ASCII characters except null(0), since the
null character is used to mark the end of the string. The inclusion of a terminating
zero byte constitutes an ASCIZ format, the format set up by a MACRO assembler
directive .ASCIZ. This directive automatically sets up strings with a terminating
zero byte. Bit 7 of each character must be cleared; therefore, valid characters have
a decimal representation range from 1 to 127, inclusive.

In many routines, it is difficult to predict the length of the string produced. To
prevent a string from overflowing the array that contains it, you can specify an
optional integer argument to the subroutine. This argument, called len limits the
length of an output string to the value specified for len plus one (for the null
terminator), so that the array receiving the result must be at least len-plus-one
elements in size.

NOTE
If the string is larger than the array, and you do
not specify a correct len argument, other data may be
destroyed and cause unpredictable results.

When len is specified, you can also include optional argument err. Err is a logical
variable that should be initialized by the FORTRAN program to .FALSE. If a string
function is given the arguments len and err, and len is actually used to limit the
length of the string result, then err is set to the .TRUE. value. If len is not used to
truncate the string, err is unchanged; that is, it retains a .FALSE. value.

The argument len can appear alone; however, len must appear if err is specified.

Several routines use the concept of character position in which each character in a
string is assigned a position number, where the first character in the string is at
position one.

1.8.1 Allocating Character String Variables

A one-dimensional BYTE array can contain a single string whose length can vary
from zero characters to one fewer than the dimensioned length of the array. In the
following example, array A is used as a string variable that can contain a string of
44 or fewer characters.

Using the System Subroutine Library 1-37

Byte A(45) lallocate 1 string

Similarly, a two-dimensional BYTE array can be used to contain a one-dimensional
array of strings, each of which can have a length up to one less than the first
dimension of the BYTE array. There can be as many strings as the number specified
for the second dimension of the BYTE array. The program in the following example
creates string array W that has ten string elements, each of which can contain up
to 20 characters. String I in array W is referenced in subroutine or function calls as
W(1,D).

Byte W21, 10) I'All ocate an array of 10 strings

In the following example, the program allocates a two-dimensional string array.

Byte T(14,5,7) IAllocate a 5 by 7 array of
113 character strings

Each string in array T may vary in length to a maximum of 13 characters. String I,J
of the array can be referenced as T(1,I,J). Note that T is the same as T(1,1,1). This
dimensioning process can create string arrays of up to six dimensions (represented
by BYTE arrays of up to seven dimensions).

1.8.2 Passing Strings to Subprograms

BYTE arrays that contain strings can be placed in a COMMON block and referenced
by any or all routines with a similar common declaration. However, when you place
a BYTE array in a common block, make sure that one of the following is true:

* Array is even in length
¢ (dd-length arrays are paired to result in an overall even length.

e Strings are together as the last elements in the COMMON block; otherwise, all
succeeding variables in the COMMON block may be assigned odd addresses.

A BYTE array has an odd length only if the product of its dimensions is odd. For

example,
Byte B(10,7) 110*7 = 70, even length
Byte H(21) 121, odd length

These might be handled as shown in the following example:

Conmon Al, A2, A3(10), H lodd size at end
or
Byt e HPAD lodd | ength

Conmon Al, A2, H HPAD, A3(10) !Pair H and HPAD for even
These restrictions apply only to BYTE variables and arrays.

A single string can be passed by using its array name as an argument. In the
following example, the program passes string R to subroutine SUBR.

Byte R(21) 120 char string variable
Cal | Subr (R)

1-38 RT-11 System Subroutine Library Manual

If the calling program has declared a multidimensional array, and only one string
of that array is to be passed to a subroutine, then the subroutine call should specify
the first element of the string to be passed (this requires that the first dimension of
the array equals the maximum length of each string).

For example,

Byt e NAMES(81, 20) 120 nanmes max 80 chars each
Do 10 NAWMNUMEL, 20 lget 20 lines of input
Call GILIN (NAMES(1, NAWMNUM) !fromterm nal/conmmand file
10 Cont i nue

If the maximum length of a string argument is unknown in a subroutine or function,
or if the routine is used to handle many different lengths, the dummy argument in
the routine should be declared as a BYTE array with a dimension of one, such as
BYTE ARG(1). In this case, the string routines correctly determine the length of
ARG whenever it is used, but it is not possible to determine the maximum size of any
string that can be stored in ARG. If a multidimensional array of strings is passed to
a routine, it must be declared in the called program with the same dimensions that
were specified in the calling program.

NOTE
The length argument specified in many of the character
string functions refers to the maximum length of the
string, excluding the necessary null byte terminator.
The length of the BYTE array to receive the string must
be at least one greater than the length argument.

1.8.3 Using Quoted-String Literals

You can use quoted strings as input arguments to any of the string routines invoked
as functions or with the CALL statement. In the following example, the program
compares the string in the array NAME to the constant string SMYTHE, R and sets
the value of the integer variable accordingly.

Call SCOWP (NAME, 'SMWTHE, R, M

Using the System Subroutine Library 1-39

Chapter 2
System Subroutine Description and Examples

This chapter presents all SYSLIB functions and subroutines in alphabetical order
by generic name. For example, because READ, IREAD, and MREAD can be called
either as subroutines or functions, presenting them together under *READC will
simplify lookup. An I-prefixed name indicates its use as a function; an M-prefixed
name indicates that mapping is specified.

Each description briefly defines the subroutine or function; gives its argument list,
and defines each parameter and argument contained in the argument list. Function
results and errors are listed for each, as appropriate. Descriptions include specific
examples for each function or subroutine or refer you to examples elsewhere in the
chapter.

System Subroutine Description and Examples 2-1

ABTIO/IABTIO
ABTIO/IABTIO aborts I/O on a specified channel.

Form:

CALL ABTIO (chan)
i = IABTIO (chan)

where:

chan is the channel number for which to abort I/0
Errors:

Value Meaning

i= 0 Success.

Error message TRAP $MSARG will display if chan argument is missing.

Example:
Program FABTI O !deno ABTIO
C
C Punp out 9 buffers to LP using non-wait node I/Q
C Abort the I/O This should cause the printout to
C be truncated.
C
C NOTE: using LS7 as a trick to bypass SPOOLI NG since
C spooling is normally applied to LP, LPO, LS and LSO.
C
I nt eger *2 DBLK(4)
Data DBLK /3rLS7, 3rTES, 3rTXX, 3rTMP/ !LS7 to sneak around SP
I nt eger *2 BUFFER(256, 9), CHARS, CRLF
C
CHARS = " 11’ Ibegin at 1
CRLF = '0150 + (012’0 * "400'0) ! CR/ LF pair in word
| CHAN = | GETC ()
Call 1 QSET (20) I get nore queue el enents
Cal | ENTER (1 CHAN, DBLK, 0)
Do 300, J =1, 9
Do 200, | =1, 256
BUFFER(I,J) = CHARS
If (IMOD (I, 60 * 2) .eq. 0) BUFFER(l,J) = CRLF
200 Cont i nue
CHARS = CHARS + "400'0 + 1 !then 2 ... 9
Call WRITE (256, BUFFER(1,J), J - 1, |CHAN
300 Conti nue
C
C Conment out the call to ABTIO and observe the difference
C
Call ABTI O (I CHAN) Istop it in mdstream
Cal | CLOSEC (| CHAN)
End

2-2 RT-11 System Subroutine Library Manual

AJFLT/NAJFLT

AJFLT/TAJFLT converts an INTEGER*4 value to a REAL*4 value and returns that
result as the function value.

Form:

ares = AJFLT (jsrc)
i = IAJFLT (jsrc,ares)

where:
jsrc is the INTEGER*4 variable to be converted
ares is the REAL*4 variable or array element to receive the converted

value

Function Results:
i = -1 Normal return; result is negative.
= 0 Normal return; result is 0.

= 1 Normal return; result is positive.

Errors:
Value Meaning

i = -2 Significant digits were lost during the conversion.
Unpredictable results will occur if the jsrc argument is omitted.

Example:

Program FI AJFL ! FORTRAN |V

I nteger*4 JVAL, J5

Integer*2 | VAL(2), 15(2)

Equi val ence (1VAL(1), JVAL), (15(1), J5)
Real *4 RESULT

C
I VAL(1) = 123 linitial value
IVAL(2) =1 Ireally 65536+123 (65659)
I5(1) =5 I constant val ue
15(2) =0 [
100 Cont i nue

|ERR = | AJFLT (JVAL, RESULT)
Type 101, RESULT
101 Format (' ', '!FIAJFL-l-Results’, f16.0)
IERR = JMUL (JVAL, J5, JVAL)
If (IERR .eq. -2) Go To 200

Go To 100
200 Cont i nue
Type 102
102 Format (' ', "!FIAJFL-1-Overflow)

End

System Subroutine Description and Examples 2-3

AJFLT/IAJFLT

The following example converts the INTEGER*4 value in JVAL to single precision
(REAL*4), multiplies it by 3.5, and stores the result in VALUE.:

Real *4 VALUE, AJFLT, THREES5
Data THREE5 / 3.5/

I nteger*4 JVAL

JVAL = 123456789

VALUE = AJFLT (JVAL) * THREE5

2-4 RT-11 System Subroutine Library Manual

CALLSF
CALLSF can be called only from a MACRO-11 program.

The CALLS$F routine saves the contents of general registers R1 through R4 across a
call to another routine that might destroy the contents of those registers. CALL$F
saves the contents of R1 through R4 on the stack, calls the other routine, and then
restores the saved register contents.

Form:

MOV #rtn,RO
MOV #arg,R5
CALL CALLS$F

where:
ren is the address of the routine you want to call. The current contents
of registers 1 through 4 are preserved during execution of the called
routine
arg is the starting address of the argument list for the routine you want
to call
Errors:

None. Any errors are returned by the routine called by CALLS$F.

Example:
.G.OBL GITLIN, CALLS$F ;routines from SYSLIB
. PSECT CODE, | ; program code fragnent
MOV #GTLI N, RO ;routine to call (ultimately)
MoV #PARMS, R5 ;argunent list to use
CALL CALLSF ;call GILIN, save R1-R4
. PSECT DATA, D ; program data fragnent
PARMS: . WORD 2 ; nunber of argunents
.WORD BUF ; response buffer
.WORD PROWPT ;pronpt string
BUF: .BLKB 81. ; buf fer
PROWPT: .ASCII "Enter usernane>" ; pronpt
.BYTE 200 ;without terminating cr/lf

System Subroutine Description and Examples 2-5

CHAIN

The CHAIN subroutine lets a background program transfer control directly to
another background program and pass specified information to it. CHAIN cannot
be called from a completion or interrupt routine. The FORTRAN impure area is not
preserved across a chain. Therefore, when chaining from one program to another,
the information must be reset in the program being chained to. When chaining to
any other program, you should explicitly close the opened logical units with calls to
the CLOSE routine. Any routines specified in a FORTRAN USEREX library call are
not executed if a CHAIN is accomplished. (See Appendix B in the RT-11/RSTS/E
FORTRAN 1V User’s Guide.

Form:
CALL CHAIN (dblk,var,wcnt)

where:

dblk is the address of a four-word Radix-50 descriptor of the file
specification for the program to be run (See device block discussion
in Chapter 1) for the format of the file specification

var is the first variable (which must start on a word boundary) in a
sequence of variables with increasing memory addresses to be passed
between programs in the chain parameter area (absolute locations
510 to 777). A single array or a COMMON block (or portion of a
COMMON block) is a suitable sequence of variables

went is a word count specifying the number of words (beginning at var) to
be passed to the called program. The argument went may not exceed
60. If no words are passed, then a word count of 0 must be supplied.

If the size of the chain parameter area is insufficient, it can be increased by specifying
the /B (or /BOTTOM) option to LINK for both the program executing the CHAIN
call and the program receiving control.

The data passed can be accessed through a call to the RCHAIN routine. For more
information on chaining to other programs, see the .CHAIN programmed request.

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:

The following example transfers control from the main program to FRCHAI.SAV on
BIN and passes it variables (See also RCHAIN for FRCHAI.FOR):

2-6 RT-11 System Subroutine Library Manual

OO0

CHAIN

Program FCHAIN !denmonstrate CHAIN routine
Chain to BIN FRCHAI. SAV passi ng 100, 200, 301
I nt eger *2 DBLK(4)

Data DBLK /3rBIN, 3rFRC, 3rHAl, 3rSAV/
COMWON /CHAINDY 1, J, K Iforce order
Data | /100/, J /200/, K/ 301/ linitialize

Cal|l CHAIN (DBLK, I, 3)
End

System Subroutine Description and Examples 2-7

CHCPY/ICHCPY

Multijob Only

CHCPY/ICHCPY opens a channel for input, logically connecting it to a file that is
currently open by another job for either input or output. CHCPY/ICHCPY is used
in a multijob situation to gain shared access to a file already opened by another
job. It substitutes for an OPEN (or LOOKUP or ENTER) in your program, instead
obtaining the parameters of the file from the other job. An ICHCPY must be done
before the first read or write on ochan.

Form:

CALL CHCPY (chan,ochan[,jobblk])
i = ICHCPY (chan,ochan[,jobblk])

where:

chan is the channel the job will use to read the data. You must obtain this
channel through an IGETC call, or you can use channel 16 or higher
if you have done an ICDFN call

ochan is the channel number of the other job that is to be copied

jobblk is a pointer to a three-word ASCII job name

Notes

e If the other job’s channel was opened with an IENTER function or a .ENTER
programmed request to create a file, your channel indicates a file that extends to
the highest block that the creator of the file had written at the time the CHCPY
was executed.

* A channel that is open on a sequential-access device should not be copied, because
requests can become intermixed.

* Your program can write on a copied channel to a file that is being created by the
other job, just as your program could if it were the creator. When your channel
is closed, however, no directory update takes place.

Errors:
Value Meaning
i = 0 Normal return.
= 1 Specified job does not exist. Or specified channel (ochan) open.

= 2 Channel (chan) is already open.

Error message TRAP $MSARG will display if chan or ochan argument is missing.

2-8 RT-11 System Subroutine Library Manual

Example:

100

200

100

CHCPY/ICHCPY

Pr ogram FCHCPB ! BG program for CHCPY

Par amet er SUCCS = ' 001’ o

Par amet er FATAL = ' 010’ o

I nt eger *2 BUFFER(513)

I nt eger *2 FCHCPF(3)

Byt e CHCPF(6)

Data CHCPF /' F, 'C, '"H, 'C, "P, "F/
Equi val ence (FCHCPF(1), CHCPF(1))

BUFFER(513) = 0 'null just in case
| CHAN = 14
JCHAN = 15

| ERR = | CHCPY (I CHAN, JCHAN, FCHCPF)
If (IERR .ne. 0) Go To 100

| ERR = | READW (512, BUFFER, 0, |CHAN)
If (IERR .ne. 512) Go To 200

Call PRINT (BUFFER)

Call Exit (SUCCS)

Type *, ' ?FCHCPB-F-1 CHCPY failed with code ', I ERR
Call Exit (FATAL)

Type *, ' ?FCHCPB-F-| READWfailed with code ', |IERR
Call Exit (FATAL)

End

Pr ogram FCHCPF ! FG program for | CHCPY
I nt eger *2 DBLK(4)
Data DBLK /3rSRC, 3rFCH, 3rCPB, 3rFOR/

| CHAN = 15
| ERR = LOOKUP (1 CHAN, DBLK)
If (IERR.It. 0) Go To 100

Cal I SUSPND I'sleep (forever)
Type *, ' ?FCHCPF-F- LOOKUP failed with code ', |IERR
End

System Subroutine Description and Examples 2-9

CLOSEC/ICLOSE

The CLOSEC subroutine terminates activity on the specified channel and frees it
for use in another operation.

Form:

CALL CLOSEC (chanl,i])
CALL ICLOSE (chanl,i])

i = ICLOSE(chan)
where:
chan is the channel number to be closed. This argument must be located
so that the USR cannot swap over it
[is the error returned if a protection violation occurs
Notes

Under certain conditions, a handler for the associated device and USR must be
available when issuing a .CLOSE for a channel opened with a . ENTER or .LOOKUP:

e .CLOSE requires a handler and USR, if it is:

— A special directory device (magtape).

— An RT-11 standard directory device, and the file was opened with a . ENTER.
e All other RT-11 operations do not require either handler or USR.

A CLOSEC or PURGE must eventually be issued for any channel opened for input
or output. A CLOSEC call specifying a channel that is not open is ignored.

A CLOSEC performed on a file that was opened via an IENTER causes the device
directory to be updated to make that file permanent. If the device associated with
the specified channel already contains a file with the same name and type, the old
copy is deleted when the new file is made permanent. If the file name is protected,
then a protection error is generated and two files will exist with the same name. A
CLOSEC on a file opened via LOOKUP does not require any directory operations.

When an entered file is closed, its permanent length reflects the highest block of the
file written since the file was entered; for example, if the highest block written is
block number 0, the file is given a length of 1; if the file was never written, it is given
a length of 0. If this length is less than the size of the area allocated at IENTER
time, the unused blocks are reclaimed as an empty area on the device.

Use ICLOSZ, rather than CLOSEC or ICLOSE, to set file size at closure. ICLOSZ
has no effect on the file size when the file was opened by a LOOKUP. (See CLOSZ
/ICLOSZ.)

2-10 RT-11 System Subroutine Library Manual

CLOSECI/ICLOSE

Value Meaning
i = 0 Normal return.

=-4 A protected file with the same name already exists on a device. The
CLOSEC is performed, resulting in two files on the device with the
same name.

Error message TRAP $MSARG will display if any argument is missing.
Example:

The following example creates a file which becomes a 0-block permanent file:

Program FCLOSE !denp CLOSEC / | CLOSE

C
C Create and cl ose DK TEST. TMP w/ o |/ QO
C Note that this makes a permanent file of O |ength.
C Conpare with FCLOSZ.
C
I nt eger *2 DBLK(4)
Data DBLK /3rDK , 3rTES, 3rT , 3rTMP/
Par amet er SUCCS = * 001" o, FATAL = '010' o
C
| CHAN = | GETC()
If (ICHAN .I1t. 0) Go To 100
| ERR = | ENTER (| CHAN, DBLK, 100)
IF (IERR .1t. 0) Go To (110, 120, 130) | ABS(!|ERR)
CALL CLCSEC (I CHAN, | ERR)
If (IERR .eq. -4) Go To 200
Cal | | FREEC(| CHAN)
Call Exit (SUCCS)
100 Type *, ' ?FCLCSE-F-No channel avail abl e’
Call Exit (FATAL)
110 Type *, ' ?FCLCSE- F- Channel in use’
Call Exit (FATAL)
120 Type *, ' ?FCLCSE-F- Not enough room
Call Exit (FATAL)
130 Type *, ' ?FCLCSE-F-Device in use’
Call Exit (FATAL)
200 Type *, ' ?FCLOSE-F-Protected file already exists’
Call Exit (FATAL)
End

System Subroutine Description and Examples 2-11

CLOSZ/ICLOSZ

CLOSZ/ICLOSZ terminates activity on the specified channel and frees it for use in
another operation. ICLOSZ closes any file opened on that channel by an IENTER
and sets the file size to a value you specify. Use ICLOSZ, as opposed to CLOSEC or
ICLOSE, when you want to set the file size at closure. ICLOSZ has no effect on the
file size when the file was opened by a LOOKUP. See also CLOSEC/ICLOSE.

Form:

CALL CLOSZ (chan,size)
i = ICLOSZ (chan,size)

where:

chan is the INTEGER*2 channel number to be closed. If the specified
channel is not open, no action is taken

size is the size of the file in blocks at closure
i is a returned INTEGER*2 result of the function

If the handler for the device associated with the channel is marked FILST$ (supports
the RT-11 file structure) and the file is opened with IENTER, the value you specify
for the file size at closure must be equal to or less than the current allocated file
size. If the handler is marked SPECL$ (supports the special directory file structure),
RT-11 enforces no size constraints when the file is closed. However, the handler may
impose constraints.

The handler for the device associated with the channel must be in memory if the
channel was opened with the IENTER subroutine or if the handler is marked
SPECLS$ (supports the special directory structure).

An ICLOSZ performed on a file that was opened with IENTER causes the device
directory to be updated to make that file permanent. If the device associated with
the specified channel already contains a file with the same name and type, the old
copy is deleted when the new file is made permanent. If the file name is protected,
then a protection error is generated. An ICLOSZ on a file opened using a LOOKUP
does not require the USR for RT-11 directory devices, but does require the USR for
special directory devices.

Errors:
Value Meaning
i= 0 Normal return
= -2 Size too big
= -3 Invalid operation
= -4 A protected file with the same name already exists on the device.
= -257 Required argument missing

2-12 RT-11 System Subroutine Library Manual

Example:

o000

100

110

120

130

200

CLOSZ/ICLOSZ

Program FCLOSZ !deno | CLOSZ

Create DK. TEST. TMP with 100 bl ocks, and
nmake pernanent at that size wo I/QO

I nt eger *2 DBLK(4)

Data DBLK /3rDK , 3rTES, 3rT , 3rTMP/
Par amet er SUCCS 001’ o

Par amet er FATAL 010’ o

CHAN = | GETC()

f (ICHAN .1t. 0) Go To 100

RR = | ENTER (| CHAN, DBLK, 100)

(IERR .It. 0) G To (110, 120, 130) | ABS(|ERR)
RR = | CLOSZ (| CHAN, | ERR)

(IERR .eq. -4) Go To 200

Cal | | FREEC(| CHAN)

Call Exit (SUCCS)

Type *, ' ?FCLOSZ-F-No channel avail abl e’

Call Exit (FATAL)

Type *, ' ?FCLOSZ- F- Channel in use’

Call Exit (FATAL)

Type *, ' ?FCLOSZ- F- Not enough room

Call Exit (FATAL)

Type *, ' ?FCLOSZ-F-Device in use’

Call Exit (FATAL)

Type *, ' ?FCLOSZ-F-Protected file already exists’
Call Exit (FATAL)

End

System Subroutine Description and Examples 2-13

CMAP/ICMAP

Full Mapping

CMAP/ICMAP, available only under fully mapped monitors, is a routine that controls
mapping for Supervisor mode and I-D space. CMAP establishes CMAP status in
Supervisor data space, distinct from User data space.

Form:

CALL CMAP (ival [,iold][,ierr])
ierr = ICMAP (ival [,iold])

where:
ierr Error return
ival New value for CMAP status
iold Previous CMAP status
Errors:

Value Meaning

0 Success.

-257 Required argument (ival) argument is omitted.

Example:
C CMPDF. FOR FORTRAN equi val ent of . CMPDF

Parameter CMPRO = "1’ 0 lunl ock PARO S-U
Paraneter CMPR1L = ' 2’0 lunl ock PAR1L S-U
Parameter CMPR2 = "4’ 0 lunl ock PAR2 S-U
Parameter CMPR3 = ' 10’ o lunl ock PAR3 S-U
Paraneter CVMPR4 = ' 20’0 lunl ock PAR4 S-U
Parameter CMPR5 = '40’' o lunl ock PARS S-U
Parameter CMPR6 = ' 100’ o lunl ock PAR6 S-U
Paraneter CMPR7 = ' 200’ o lunl ock PAR7 S-U
Par ameter CMPAR = ’* 377 0 I PAR | ocki ng mask
Paramet er CVBXX = ' 1000’ o I Change Supy |-D
Parameter CVsIl = '1000' o ISupy | =D
Parameter CWVSI D = ’ 1400 o I'Supy i ne D
Parameter CM5 = ' 1400 o I Supy | D nmask
Par amet er CVMDUS = ' 4000’ o I Change PAR | ocki ng
Par anet er CMXXS = ' 20000’ o I Change Supy swappi ng
Par amet er CVNOS = ' 20000’ o I'Don’t swap Supy
Parameter CMJIAS = ' 30000’ o I Swap Supy
Par amret er CMSUP = * 30000’ o I Supy swappi ng nmask
Par amet er CMUXX = ' 100000’ o I Change User |-D
Parameter CMUIl = '100000' o lUser | =D
Parameter CMUI D = ' 140000’ o lUser | ne D
Paraneter CVU = ' 140000 o I User | D mask

2-14 RT-11 System Subroutine Library Manual

CMAP/ICMAP

Pr ogr am FCVAP

C
C Set User D PARs to an unlikely value and then
C turn on User separated | and D, which should set
C the User D PARs to match the User | PARs.
C Verify that this happens.
C
C Performthe sanme sort of test on MSDS, separating
C PARs 4 through 7
C
I ncl ude ' SRC. CMPDF’
Par amet er UDPARO = ’ 177660 o, U PARO = ’ 177640 o
Par amet er SDPARO = ' 172260’ o
Par amet er SUCCS = ' 001’ o, FATAL = '010'o
I nt eger *2 REQUES ! request code for CMVAP
C
Do 100, | = UDPARO, UDPARO+(7*2), 2
100 Call KPCKE (I, -1) !set User D PARs to unlikely val ue
C
REQUES = CMJI D+CMsI D+CVSUP
C request separate U |I-D spaces; separate S |-D spaces;
C and turn on Supy
Call CVAP (REQUES) !separate | and D
C
Do 200, | = SDPARO, SDPARO+(7*2), 2
200 Call KPCKE (I, -2) !set Supy D PARs to unlikely val ue
C
REQUES = CMPR7+CMPR6+CMPR5+CMVPR4
C and not to lock S and U D PARs 4 through 7
Call MSDS (REQUES) ! separate PARs 4 through 7
C ! This should al so copy some D PARs Uto S
C
Do 300, | = UDPARO, UDPARO+(7*2), 2
If (KPEEK (1) .ne. KPEEK (I + (U PARO - UDPARO0)))
1 Go To 1000 !do they now natch?
300 Conti nue
Do 400, | = SDPARO, SDPARO+(3*2), 2
If (KPEEK (1) .ne. KPEEK (I + (UDPARO - SDPAR0D)))
1 Go To 1100 I'do they now match?
400 Conti nue
Do 500, | = SDPARO+(4*2), SDPARO+(7*2), 2
If (KPEEK (1) .ne. -2)
1 Go To 1200 I'do they now match?
500 Cont i nue
Type *,’ | FCMAP-1 - Success’
Call Exit (SUCCS)
C

1000 Type *,’ ?FCMAP-F-U(|, D) PAR val ues are not the sange’
Call Exit (FATAL)

1100 Type *,’ ?FCVAP- F- (S, U) DPAR val ues are not the sange’
Call Exit (FATAL)

1200 Type *,’ ?FCVAP- F- SDPAR val ues changes’
Call Exit (FATAL)
End

System Subroutine Description and Examples 2-15

CMKT/ICMKT

CMKT/ICMKT cancels one or more scheduling requests (made by an ISCHED,
ITIMER, or MRKT routine). Support for CMKT in SB requires that you select timer
support during SYSGEN.

Form:

CALL CMKT (id[.itime])
i = ICMKT (id[,itime])

where:
id is the identification integer of the request to be canceled. If id is
equal to 0, all scheduling requests are canceled
itime is the name of a two-word area in which the monitor returns the

amount of time remaining in the canceled request

For further information on canceling scheduling requests, see the .CMKT
programmed request in the RT-11 System Macro Library Manual.

Errors:
Value Meaning
i= 0 Normal return.

= 1 The value of id was not equal to 0 and no scheduling request with
that identification could be found.

Error message TRAP $MSARG will display if id argument is missing.

Example:
See MRKT.

2-16 RT-11 System Subroutine Library Manual

CNTXS/ICNTXS

Multijob Only

CNTXS/ICNTXS establishes a list of locations to be saved when a transition is made
from one running job to another. CNTXS preserves locations that are not preserved
automatically by the monitor. Refer to the RT-11 System Macro Library Manual.

Form:

CALL CNTXS (addr)
i = ICNTXS (addr)

where:

addr is the pointer to the list of addresses to be preserved. The list is
terminated with a zero word

i is a returned INTEGER*2 result of the function.

Value Meaning
i=0 Normal return
= -1 One or more of the conditions specified by addr was violated
= -257 Required argument missing.
Example:
Pr ogram FCNTXS ! denp | CNTXS

C
C Set up swappi ng of vectors 400 through 406
C

Par ameter SUCCS = ' 001’ o, FATAL = '010'o
Integer*2 LIST(5), NOLIST

Data LI ST /’400’ 0, '402’ 0, '404' o0, ’'406' o, 0/
Equi val ence (NOLI ST, LI ST(5))

| ERR = | CNTXS (LI ST) I swap 400- - 406
If (IERR .ne. 0) Go To 1000

OO0

Cal | CNTXS (NOLI ST) I'stop swappi ng
Call PRINT ('!FCNTXS-1-Success’)
Call Exit (SUCCS)

1000 Call PRINT (' ?FCNTXS- F-Fail ed’)

Call Exit (FATAL)
End

System Subroutine Description and Examples 2-17

CONCAT

The CONCAT subroutine concatenates two character strings.

Form:

CALL CONCAT (a,b,out[,len[,err]])

where:

a is the array containing the left string. The string must be terminated
with a null byte

b is the array containing the right string. The string must be
terminated with a null byte

out is the array into which the concatenated result is placed. This array
must be at least one element longer than the maximum length of the
resultant string (that is, one greater than the value of len, if specified)

len is the integer number of characters representing the maximum length
of the output string. The effect of len is to truncate the output string
to a given length, if necessary

err is the logical error flag set if the output string is truncated to the

length specified by len.

You must specify err as LOGICAL*1 in FORTRAN 77. It can be any
logical type in FORTRAN IV and any integer type in PDP-11C.

CONCAT sets the string in out to the value of the string in a, immediately followed
by the string in b, followed by a terminating null character.

NOTE
Any combination of string arguments is allowed, so long
as b and out do not specify the same array.

Concatenation stops when a null character is detected in b or when the number of
characters specified by len has been moved.

If either the left or right string is a null string, the other string is copied to out. If
both are null strings, then out is set to a null string. The old contents of out are lost
when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and the output string
would have been longer than len characters, then err is set to .TRUE.; otherwise,
err is unchanged.

Error message TRAP $MSARG will display if argument b or out is missing.

2-18 RT-11 System Subroutine Library Manual

CONCAT

Example:

The following example concatenates the string in array STR and the string in array
IN and stores the resultant string in array OUT. OUT cannot hold a string longer
than 29 characters:

Pr ogr am FCONCA ! denpo CONCAT
Show concatinati on and truncati on

Byte I N(22), OUT(30), STR(10)

O 000

Call SCopy (' abcdefghijkl mopgrstu’, IN)
Call SCopy (’'123456789', STR)

Call CONCAT (STR, IN, QUT, 29)

Call Print (OUT)

End

System Subroutine Description and Examples 2-19

CRAW/ICRAW

Mapping

CRAW/ICRAW are memory mapping routines which create an address window into
an existing memory region. It can be used in both User and Supervisor modes, and
can access both I and D space. See also .CRAW in the RT-11 System Macro Library

Manual.

Form:

CALL CRAW (iwdb [,ierr])
i = ICRAW (iwdb)

where:

iwdb Address of Window Descriptor Block

ierr Error return
Errors:

Value Meaning

i= 0 Function completed successfully.
=-1 Window alignment error.
=-2 Attempt to define more than 7 windows.
=-3 Invalid region identifier.
=-5 Combination of offset into region and size of window to be mapped

is invalid.

=-16 Mode/space not available.

= -257 Required argument missing.

Example:

C RDBDF. FOR - - FORTRAN equi val ent

Parameter RAD =0

Paranmeter RGSIZ = 2/2

Par amet er RGSTS = 4/2

Par anmeter RGLN = 6/2

Par amret er RGNAM = 6/ 2

Par anet er RGBAS = 10/ 2
Parameter RAGH = 12/2

Par amet er RSCRR = ' 100000’ o
Par amet er RSUNM = ' 40000’ o
Paramet er RSNAL = ' 20000’ o
Par amet er RSNEW = ’* 10000’ o
Par amet er RSGBL = ' 4000’ o
Par amet er RSCGR = ' 2000’ o
Par amet er RSAGE = ' 1000’ o
Par anet er RSEGR = ' 400’ o
Parameter RSEXI = '200' o
Par anmet er RSCAC = ' 100’ o
Paramet er RSBAS = ' 40’ o
Paramet er RSNSM = " 20’ o

2-20 RT-11 System Subroutine Library Manual

of . RDBDF

Iregion id subscript

I'regi on size subscript

I'region status subscript

I'l ocal RDB size

I gl obal region name words subscri pt
I gl obal region base addr subscript
I gl obal RDB size

I Created regi on ok

'l or nore wi ndows elim nated
Iregion newy allocated

I new gl obal region

lcreate within a global region
Icreate global if not found

luse auto global elimnation
lelimnate gl obal region
lelimnate on exit or abort

I bypass cache

I base address supplied

I non-system nenory

O00000000

[eXeXe

OO0

CRAW/ICRAW

WDBDF. FOR - - FORTRAN equi val ent of .\WDBDF

Parameter WNID = 0 I'wi ndow | D subscript (low byte)

Par amreter WNAPR = 0 I'wi ndow APR nunber subscript (high byte)
Par amret er WNBAS = 2/2 I'wi ndow base address subscri pt

Parameter WNSI Z = 4/2 I'wi ndow si ze subscri pt

Parameter WNRID = 6/2 I'region I D subscript

Par amret er WNOFF = 8/ 2 I'wi ndow of f set subscri pt

Par amret er WNLEN = 10/ 2 I'wi ndow | ength subscri pt

Par amret er WNSTS = 12/ 2 I'wi ndow st at us subscri pt

Par ameter WNLGH = 14/ 2 I VDB si ze

Par amret er WBCRW = ' 100000’ o !w ndow created ok
Par aret er WSUNM = ’ 40000’ o 'l or nore wi ndows unmapped

Par anmet er WSELW = ’ 20000’ o 11 or nore wi ndows elimnated
Par amet er WBDSI = ’ 10000’ o I D-space i nactive
Paranet er WSI DD = ' 4000’ o I'l & D spaces different
Par amet er WSRO = ' 1000’ o I'read-only
Par amet er WBMAP = " 400’ o lcreate and nap
Par anet er WSSPA = ' 14’ o I space field
Parameter WD = ' 10’ o I D- space
Parameter WSI = 4 I'l -space
10 is default space
Par amet er WBMOD = 3 I'mode field
Paraneter WU = 0 luser node
Parameter W5S = 1 I supervi sor node
Par ameter WSC = Icurrent node

Program FPLAS ! deno PLAS requests

Thi s program has two behavi ors dependi ng on wether or not

t he gl obal region TSTREG exi sts.

If it does not exist, it creates it, get a line fromthe
term nal and stores it in the region.

If it does exist, it prints the line stored in the region
then elinmnates the region.

In both cases it displays the nmappi ng context of the region.

I ncl ude ' SRC. RDBDF’ ! RDB definitions

I ncl ude ’ SRC: WDBDF’ ' WDB definitions

Par amet er SUCCS = * 001" o, FATAL = '010' o

Par anet er BASADR = ' 160000’ o ! PAR 7 for gbl region
Parameter REGSI Z = (81 + 63) / 64 !size in chunks
I nt eger*2 REGNAM 0: 1) I gl obal region nane

Dat a REGNAM / 3r TST, 3r REG

Integer*2 WDB (0: WVNLGH) ! WDB bl ock

Integer*2 RDB (0: RGLGH) ! RDB bl ock

Char acter*7 ERRCAL lcode for error call

I nt eger*2 AREA(O0: 1) I'must di sabl e subscript checking
I nt eger*2 AREAQ laddr of AREA(O0)

I nt eger PAR7 I'subscript for AREA

Find a way of referencing address 160000

AREAO = | ADDR (AREA(0)) !find addr of AREA(1)

PAR7 = (’160000'0 - AREAO) / 2 !find "element" of AREA
I'that is at 160000

Create (or attach) the gl obal regions

System Subroutine Description and Examples 2-21

CRAW/ICRAW

C
RDB(RGSI Z) = REGSI z I'region size
RDB(RGSTS) = RSGBL + RSCGR !create or attach gl obal
RDB(RGNAM+0) = REGNAM 0) ! r egi on nane
RDB(RGNAM+1) = REGNAM 1) ! regi on nane
| ERR = | CRRG (RDB) lcan we find it?
ERRCAL = ' CRRG
If (IERR .ne. 0) Go To 1000 !'error
C
C Create an address w ndow
C
WDB(WNAPR) = (BASADR / ' 20000'0) * '400' o
C !'Put PAR number in high byte
VWDB(WNSI Z) = REGSI Z I'region size
VWDB(WNRID) = RDOB(RA D) !region ID
VWDB(WNOFF) = 0 loffset O
WDB(WNLEN) = O 'full size
VDB(WNSTS) = 0 Itake all defaults
| ERR = | CRAW (V\DB) lcreate a w ndow
ERRCAL = ' CRAW
If (IERR .ne. 0) Go To 1000 !'error
C
C Map to it (could be done by |ICRAW
C
| ERR = MAP (\\DB) !'map into it
ERRCAL = ' MAP
If (IERR .ne. 0) Go To 1000 !error
C
C di spl ay mappi ng cont ext
C
| ERR = | GVCX (V\DB) I'return mapping context
ERRCAL = ' GVCX
If (IERR .ne. 0) Go To 1000 !error
Type 1, ° Wndow ID ="', |AND (WDB(WNID), '377'0),
1 ' W ndow APR = ', WDB(WNAPR) / ’'400’ o,
2 W ndow Addr ="', WDB(WABAS),
3 " Wndow Size ="', WDB(WNSI 2),
4 Wndow RglD = ', WDB(WARI D),
5 "Wndow OFfset = ', WDB(WNOFF),
6 "W ndow Length =", WDB(WALEN),
7 "Wndow Status = ', VWDB(WNSTS)
1 Format (8(' ', al6, o7/))
C
C Decide if this is the first or second run
C
If (I AND (RDB(RGSTS), RSNEW .eq. 0) Go To 100
C el se first pass
C
C Collect aline, put it in the global region and exit
C | eaving the region for the next run of this program
C
Call GILIN (AREA(PAR7),,’ p’) !'get a string and put in region
Call Print ('!FPLAS-1-Pass 1 success’)
Call Exit (SUCCS)
C
C second pass
C

2-22 RT-11 System Subroutine Library Manual

'5000

OO0 OO0

OO0

1000

CRAW/ICRAW

Get the line fromthe region and display it,
then elimnate the region.

Cont i nue
Call PRINT (AREA(PAR7)) !print the string in the region

Unmap the wi ndow

| ERR = | UNVAP (W\DB)
ERRCAL = ' UNVAP’
If (IERR .ne. 0) Go To 1000 'error

Del ete the w ndow

| ERR = | ELAW (\DB)
ERRCAL = ' ELAW
If (IERR .ne. 0) Go To 1000 !'error

Elim nate the region

RDB(RGSTS) = RSEGR lelimnate region
| ERR = | ELRG (RDB)

ERRCAL = ' ELRG

If (IERR .ne. 0) Go To 1000 !error

Call Print ('!FPLAS-1-Pass 2 success’)
Call Exit (SUCCS)

Error processing
Cont i nue
Type *, '?FPLAS-F-’, ERRCAL, 'Failed with code’, |IERR

Call Exit (FATAL)
End

System Subroutine Description and Examples 2-23

CRRG/ICRRG

Mapping
CRRG/ICRRG (Create Region) is a mapping routine for Supervisor mode, I-D space.
The function allocates or attaches to a region in physical memory for use by the
requesting job. See .CRRG and .RDBDF macros in the RT-11 System Macro Library
Manual.

Form:

CALL CRRG (irdb [,ierr])
ierr = ICRRG (irdb)

where:

ierr Error return
irdb Address of Region Descriptor Block

Errors:

Value Meaning

i=0 Function completed successfully.
=-7 No region control blocks available.
=-10 Insufficient memory to allocate region of requested size.
=-11 Invalid region size was specified.
=-13 Global region not found.
=-14 Too many global regions.
=-16 Global region privately owned.
=-17 Global region already exists with different base address.
= -257 Required argument missing.

Example: See CRAW.

2-24 RT-11 System Subroutine Library Manual

CSI/ICSI

CSI/ICSI calls the RT-11 Command String Interpreter in special mode to parse a
command string and return file descriptors and options to the program. In this mode,

the CSI does not perform any handler IFETCH, CLOSEC, IENTER, or LOOKUP.
This subroutine requires the USR.

Form:

CALL CsSI (filspc,deftyp[,cstring][,option],n)
i = ICSI (filspc,deftyp[,cstring][,option],n)

where:

filspc

deftyp

cstring

is the 39-word area to receive the file specifications. The format of
this area (considered as a 39-element INTEGER*2 array) is:

Word 1-4 output file number specification
Word 5 output file number 1 length
Word 6-9 output file number 2 specification
Word 10 output file number 2 length
Word 11-14 output file number 3 specification
Word 15 output file number 3 length
Word 16-19 input file number 1 specification
Word 20-23 input file number 2 specification
Word 24-27 input file number 3 specification
Word 28-31 input file number 4 specification
Word 32-35 input file number 5 specification
Word 36-39 input file number 6 specification

is the table of Radix—50 default file types to be assumed when a file
is specified without a file type:

deftyp(1) is the default for all input file types

deftyp(2) is the default file type for output file number 1
deftyp(3) is the default file type for output file number 2
deftyp(4) is the default file type for output file number 3

is the area that contains the ASCIZ command string to be interpreted;
the string must end in a zero byte. If the argument is omitted, the
system prints the prompt character (*) at the terminal and accepts
a command string. If input is from a command file, the next line of
that file is used

System Subroutine Description and Examples 2-25

CSI/ICSI

option is the name of an INTEGER*2 array dimensioned (4,x) where x
represents the number of options defined to the program. This
argument must be present if the value specified for n is non-zero.
This array has the following format of the jth option described by the
array:

option(1, j) is the one-character ASCII name of the option

option(2, j) is set by the routine to 0, if the option did not occur;
to 1, if the option occurred without a value; to 2, if
the option occurred with a value

option(3, j) is set to the file number on which the option is
specified
option(4, j) is set to the specified value if option(2, j) is equal to
2
n is the number of options defined in the array option. The n is not

optional. If the n is omitted, specify n as 0.

Notes
The array option must be set up to contain the names of the valid options. For
example, use the following to set up names for five options:

| NTEGER*2 SW(4, 5)
DATA SW1,1)/° S /,SW1,2)/ " M/,SW1,3)/ 1"/
DATA SW1,4)/' L' /,SW1,5)/ E/

Multiple occurrences of the same option are supported by allocating an entry in the
option array for each occurrence of the option. Each time the option occurs in the
option array, the next unused entry for the named option is used. When there are
identical options, they are placed in the option array in reverse order. The last
occurrence of option in the command line is placed in the first matching entry in
option. You may want to consider putting both upper and lower case versions of the
options in the table, because options might be entered either way.

The arguments of ICSI must be positioned so that the USR cannot swap over them.
For more information on calling the Command String Interpreter, see the .CSISPC
programmed request.

Errors:
Value Meaning
i=0 Normal return.
=1 Invalid command line passed by cstring in memory; no data was
returned.
= 2 Invalid device specification occurred in the command string

cstring in memory.

2-26 RT-11 System Subroutine Library Manual

CSl/ICSI

allowed in the option array.

= 3 Invalid option specified; specified option exceeded number

Error message TRAP $MSARG will display if filpc, deftyp, or n argument is missing.

Example:

The following example causes the program to loop until a valid command is typed
at the terminal:

O 00000000

O O O O

000g0o

Program FCSI ! deno CSI

Accept a conmand line, parse it into file specifications
and switches. Display the results of this parsing.

Note that input files use a trick to allow selection of

a default type dynamically. The value of the /1 switch is
used as the default type for all input files.

Swi tches that are accepted are /SIMI/L/E.

Par aret er OPTNUM = 5 ! nunber of options all owed
loption 1st subscript
Parameter OPTS = 1, OPTM = 2, OPTI = 3
Parameter OPTL = 4, OPTE = 5
I names for option subscripts
1, OPTTYP = 2, OPTFIL = 3, OPTVAL = 4
!'val ues for OPTTYP
0, OPTNOV = 1, OPTJAV = 2
loffset for file nane parts
Paraneter DEV = 0, NAME = 1, TYPE = 3, SIZE = 4
I'subscripts for FILSPC
Parameter QUT1 = 1, QUT2 = 6, QUT3 = 11

Par anet er OPTNAM

Par amet er OPTNON

Parameter IN1L = 16, IN2 = 20, IN3 = 24

Paranmeter N4 = 28, IN5S = 32, IN6 = 36

I nt eger*2 FI LSPC(39) I'parsed file specifications
I nt eger*2 DEFTYP(4) ldefault file types

Data DEFTYP /-1, 3rOBJ, 3rLST, 3rTMWm/

I nteger*2 OPTI ON(4, OPTNUM) !option array

Dat a OPTI ON(OPTNAM OPTS) /' S/, OPTI ON(OPTNAM OPTM /' M/
Data OPTI ON(OPTNAM OPTI) /' 1/, OPTI ON(OPTNAM OPTL) /' L’/
Dat a OPTI ON(OPTNAM OPTE) /' E'/

Char acter*3 ASCDEV, ASCTYP

Character*6 ASCFI L

Call CSlI (FILSPC, DEFTYP, , OPTION, OPTNUM
Di splay output files

Do 100 I =1, 3
J=(I - 1) * (Qurz2 - QJrl) + QU1
If (FILSPC(J+DEV) .ne. 0) Then
Cal | R50ASC (3, FILSPC(J+DEV), ASCDEV)
Cal | R50ASC (6, FILSPC(J+NAME), ASCFIL)
Call R50ASC (3, FILSPC(J+TYPE), ASCTYP)
Type 1, "OQUT', |, ASCDEV, ASCFIL, ASCTYP, FILSPC(J+SIZE)
Format (* ', a3, i1, ' ', a3, ':’, a6, '.’, a3, ' [, i5

System Subroutine Description and Examples

1)

2-27

CSI/ICSI

End | f
100 Cont i nue
C
C Di splay input files
C
Do 2001 =1, 6
J=(1 - 1) * (IN2 - INl) + INL
If (FILSPC(J+DEV) .ne. 0) Then
Call R50ASC (3, FILSPC(J+DEV), ASCDEV)
Cal | R50ASC (6, FILSPC(J+NAME), ASCFIL)
If (FILSPC(J+TYPE) .eq. -1) 'use /I value for default
1 FI LSPC(J+TYPE) = OPTI ON(OPTVAL, OPTI)
Cal | R50ASC (3, FILSPC(J+TYPE), ASCTYP)
Type 2, ' IN, |, ASCDEV, ASCFIL, ASCTYP
2 Format (' ', a3, i1, ' ', a3, ':', a6, '.’, a3)
End | f
200 Cont i nue
C
C Di spl ay options
C
Do 300 | =1, OPTE
If (OPTION(OPTTYP, 1) .ne. OPTNON) Then
If (OPTION(OPTTYP, 1) .eq. OPTNOV) Then
Type 3, OPTION(OPTNAM), OPTION(OPTFI L, I)
3 Format (' ', /', al, ' on file ', i2)
El se
Type 4, OPTION(OPTNAM |), OPTI ON(OPTVAL, 1),
1 OPTI ON(OPTFI L, 1)
4 Format (" ', /', al, ":', 06, ' on file ', i2)
End |f
End | f
300 Cont i nue
Go To 50

End

2-28 RT-11 System Subroutine Library Manual

CSTAT/ICSTAT

CSTAT/ICSTAT obtains information about a channel.

Form:

CALL CSTAT (chan,addr[,strng])
i = ICSTAT (chan,addr[,strng])

where:
chan
addr

strng

Errors:

Value

is the channel whose status is desired

is a six-word area to receive the status information. The area, as a
six-element INTEGER*2 array, has the following format:

Word 1 channel status word

Word 2 starting absolute block number of file on this channel

Word 3 length of file

Word 4 highest block number written since file was opened

Word 5 unit number of device with which this channel is
associated

Word 6 Radix—50 of device name with which the channel is
associated

is the 3-character area to receive the ASCII device name and unit
number associated with the specified channel.

Meaning
Normal return.

Channel specified is not open.

Error message TRAP $MSARG will display if chan or addr argument is missing.

Example:

The following example obtains channel status information about channel I.

Pr ogr am FCSTAT ! denb CSTAT

C
C This programopens a file on a FORTRAN unit and then
C uses CSTAT to find out about the associated RT-11 channel.
C
Paranmeter CSW= 1, BGNBLK = 2, LENGIH = 3
Parameter HH2O = 4, UNIT = 5, R50DEV = 6
I nt eger*2 REPLY(6) 'reply area for CSTAT
Char acter *3 NAME I devi ce nane
C

Open (Di spose=" SAVE' , File=" SY: SWAP. SYS', Readonly,
1 Status="OLD, Unit=1)

System Subroutine Description and Examples 2-29

CSTAT/ICSTAT

Open (Di spose=’ DELETE' , Fil e="DK: TEST. TMP' ,
1 Status="NEW, Unit=2)

Do 200, | =0, 15
If (ICSTAT (I, REPLY, NAME) .eq. 0)

1 Type 1, REPLY(BGNBLK), REPLY(LENGTH), NAME,
1 Format (' ', ' Beginning block=", |86,

1 " File length=" | 186,

2 " Device=" A3,

3 ' Channel =" 12)
200 Conti nue

End

2-30 RT-11 System Subroutine Library Manual

CVTTIM

The CVTTIM subroutine converts a two-word internal format time to hours, minutes,
seconds, and ticks.

Form:
CALL CVTTIM (time,hrs,min,sec,tick)
where:
time is the two-word internal format time to be converted. If time is
considered as a two-element INTEGER*2 array, then:
time (1) is the high-order time
time (2) is the low-order time
hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds
tick is the integer number of ticks (1/60 of a second for 60-Hz clocks; 1/50
of a second for 50-Hz clocks)
Errors:

Error message TRAP $MSARG will display if any required argument is missing.

Example:

O 000

Program FCVTTI !denmp CVITIM
Get current time of day and di splay appropriate greeting

I nteger*4 TI ME

Call GIIM (TI M) IGet current time

Call CVITIM (TIME, IHRS, 1JUNK, IJUNK, IJUNK) !"parse" it

If ((IHRS .ge. 0) .and. (IHRS .It. 8)) Type *, ' CGood Gief’

If ((IHRS .ge. 8) .and.(IHRS .It. 12)) Type *, ' Good Morning’
If ((IHRS .ge. 12) .and. (IHRS .It. 17)) Type *, ' Good Afternoon’
If ((IHRS .ge. 17) .and. (IHRS .It. 22)) Type *, ' Good Evening’
If ((IHRS .ge. 22) .and. (IHRS .It. 24)) Type *, ' Good N ght’

End

System Subroutine Description and Examples 2-31

DATE/DATEA4Y

The DATE and DATEA4Y subroutines display current (system) date or format a date
you specify.

Previously, the DATE subroutine was located in the distributed FORTRAN
subroutine libraries, FORLIB and F770TS.

DATE stores the date as a 9-byte string as dd-mmm-yy. DATE4Y stores the date as
an 11-byte string as dd-mmm-yyyy.

where:
dd is the 2-digit day of the month (with leading zero if necessary)
mmm is the 3-character month (all capital letters)
yy is the last two digits of the year (DATE subroutine)
yyyy is the 4-digit year (DATE4Y subroutine)
- is the separating character
Form:

CALL DATE (array[,opdate])
CALL DATEA4Y (array[,opdate])

where:

array is a predefined array for receiving the date string.

— For DATE, the array must contain at least nine bytes. The 9-byte
string is set to blanks if the date is invalid.

— For DATEA4Y, the array must contain at least eleven bytes. The
11-byte string is set to blanks if the date is invalid.

opdate is an optional RT-11 date word to be formatted. Specifying a 0 value
for opdate returns the current system date.

2-32 RT-11 System Subroutine Library Manual

DATE/DATEA4Y

The format of the date word is:

Bits Contents

0-4 Year minus the base (base specified by bits 14,15)

5-9 Day (1-31)

10-13 Month (1-12)

14,15 Age bits. Age bits extend the directory date by 32(decimal) year

increments and have the following meaning:

15 14 Meaning When Set
0 0 Base year 1972
0 1 Base year 2004
1 0 Base year 2036
1 1 Base year 2068

DATEA4Y is included within DATE. DATE4Y is functionally the same as DATE,

except that it stores a 4-character year rather than a 2-character year.

Errors:
Error message TRAP $MSARG will display if array argument is missing.

Example:
For DATEA4Y, see GTDIR/IGTDIR.
For DATE:

Progr am FDATE Ideno DATE & | VEEEK
C
C Di splay current date and day of week
C

Byt e DAYSTR(9)
I nt eger*4 DAYS(7)

Data Days /' Sun’, 'Mon', 'Tue', 'Wd', 'Thu', 'Fri’, ’'Dat’
C

Cal | | DATE (MONTH, | DAY, | YEAR)

WD = | WEEKD (MONTH, | DAY, | YEAR)

Cal | DATE (DAYSTR)

Type 100, DAYS(IWD), DAYSTR
100 Format (' ', 'Today’'’'s date: ', 6x, a4, 1x, 9al)

End

System Subroutine Description and Examples

/

2-33

DELET/IDELET

DELET/IDELET deletes a named file from an indicated device. DELET requires the
USR. It is not supported for magtape handlers supplied by Digital.

Form:

CALL DELET (chan,dblk[,segnum])
i = IDELET (chan,dblk[,segnum])

where:

chan is the channel to be used for the delete operation. You must
obtain this channel through an IGETC call, or you can use channel
16(decimal) or higher if you have done an ICDFN call

dblk is the four-word Radix—50 specification (dev:filnam.typ) for the file to
be deleted

segnum is the file number for magtape operations

Notes
The arguments of DELET must be located so that the USR cannot swap over them.

The specified channel is left inactive when the DELET is complete. DELET requires
that the handler to be used be resident (via an IFETCH call or a LOAD command
from KMON) at the time the DELET is issued. If the handler is not resident, a
monitor error occurs.

For further information on deleting files, see the .DELETE programmed request.
Errors:
Value Meaning
i= 0 Normal return.
1 Channel specified is already open.
= 2 File specified was not found.
3

Device in use.

4 The file is protected and cannot be deleted.
Error message TRAP $MSARG will display if chan or dblk argument is missing.

2-34 RT-11 System Subroutine Library Manual

Example:

OO0

DELET/IDELET

Program FDELET ! Deno DELET
Delete the file DK TSTDEL. TMP

Parameter SUCCS = ' 001’ o, FATAL = '010'o
I nt eger *2 DBLK(4)
Data DBLK /3rDK , 3rTST, 3rDEL, 3r TMP/

If (IDELET (I GETC (), DBLK) .ne. 0) Then
Call Print (' ?IDELET-F-Delete failed)
Call Exit (FATAL)

El se
Call Print ("!'IDELET-1-File deleted)
Call Exit (SUCCS)

End If

End

System Subroutine Description and Examples 2-35

DEVICE/IDEVICE

DEVICE/IDEVICE sets up a list of addresses to be loaded with specified values when
the program is terminated. If a job terminates or is aborted with a CTRL/C from
the terminal, this list is used up by the system to set the specified addresses to the
corresponding values.

This function is primarily designed to allow user programs to load device registers
with necessary values. In particular, it is used to turn off a device’s interrupt enable
bit when the program servicing the device terminates.

Unless link argl is used, only one address list can be active at any given time. If
multiple DEVICE calls are issued, only the last one has any effect. The list must
not be modified by the program after the DEVICE call has been issued, and the list
must not be located in an overlay or an area over which the USR swaps.

The second argument of the call link provides support for a linked list of tables. The
link argument is optional and causes the first word of the list to be processed as the
link word. With linked lists, each call adds the new list to the previous lists, rather
than replacing the previous lists.

Form:

CALL DEVICE (ilist[,link])
i = IDEVICE (ilist[,link])

where:
ilist is an integer array that contains two-word elements, each composed
of a one-word address and a one-word value to be put at that address,
terminated by a zero word. On program termination, each value is
moved to the corresponding address.
link is an optional parameter of any value that indicates a linked list table

is to be used.
If the linked list form is used, the first word of the array is the link list pointer.

For more information on loading values into device registers, see the .DEVICE
programmed request.

Errors:
Error message TRAP $MSARG will display if the ilist argument is missing.

Errors:
Value Meaning
i=-1 Value specified for ilist is above 160000 (octal)
Example:
I nteger*2 | DR11(3) ! DEVI CE argunent |ist
c Data | DR11 /"167770, 0, O/ !addr, value, end of |ist

Cal | DEVI CE (I DR11) !setup for job abort

2-36 RT-11 System Subroutine Library Manual

DJFLT

The DJFLT function converts an INTEGER*4 value into a REAL*8 (DOUBLE

PRECISION) value and returns that result as the function value. See IDJFLT.

Form:
d = DJFLT(jsrc)
where:
jsrc specifies the INTEGER*4 variable to be converted

NOTES
If DJFLT is used, it must be defined in the FORTRAN
program, either explicitly (REAL*8 DJFLT) or implicitly
(IMPLICIT REAL*8 (D)). Without a definition, DJFLT
is assumed to be REAL*4 (single precision).

The function result is the REAL*8 value that is the result of the operation.

Errors:
Unpredictable results will occur if the jsrc argument is omitted.

Example:

Program FDIJFLT ! FORTRAN |V
Real *8 VALUE, DJFLT, THREE5
Data THREE5 / 3.5d0/

I nteger*4 JVAL

I nteger*2 | VAL(2)

Equi val ence (I1VAL(1), JVAL)

C
I VAL(1) =2 1 00002
IVAL(2) =1 1 65536
VALUE = DIFLT (JVAL)
VALUE = VALUE * THREES5
Type 101, VALUE

101 Format (' ', f16.0)

End

System Subroutine Description and Examples

2-37

DSTAT/IDSTAT
DSTAT/IDSTAT obtains information about a particular device.

Form:

CALL DSTAT (devnam,cblk)
i = IDSTAT (devnam,cblk)

where:
devnam is the Radix—50 device name

cblk is the four-word area used to store the status information. The area,
as a four-element INTEGER*2 array, has the following format:

Word 1 Device status word (See .DSTAT)

Word 2 Size of handler in bytes

Word 3 Entry point of handler (non-zero implies that the
handler is in memory)

Word 4 Size of the device (in 256-word blocks) for block-replaceable

devices; zero for sequential-access devices, the smallest-
sized volume for variable-sized devices. The last block
on the device is the device size -1

Notes
The arguments of IDSTAT must be positioned so that the USR cannot swap over
them.

IDSTAT looks for the device specified by devnam and, if found, returns four words
of status in cblk.

Errors:
Error message TRAP $MSARG will display if any required argument is missing.

Value Meaning
i=0 Normal return.
=1 Device not found in monitor tables.
Example:

The following example determines whether the line printer handler is in memory. If
it is not, the program stops and prints a message to indicate that the handler must
be loaded:

2-38 RT-11 System Subroutine Library Manual

DSTAT/IDSTAT

Pr ogr am FDSTAT ! denbo DSTAT
I nt eger *2 DEVNAM

Dat a DEVNAM / 3rLP /

I nt eger*2 REPLY(4)

Data REPLY /4*0/

Cal | DSTAT (DEVNAM REPLY)
If (REPLY(3) .eqg. 0) Then
Call Print (’!FDSTAT-1-LP is not in nenory’)
El se
Call Print ('!FDSTAT-1-LP is in nenory’)
End If
End

System Subroutine Description and Examples 2-39

ELAW/IELAW

Mapping
ELAW/IELAW (eliminate window) eliminates a virtual address window. An implied
unmapping of the window occurs when its definition block is eliminated.

Form:
CALL ELAW (iwdb [ierr])
i = IELAW (iwdb)
where:
iwdb is the address of Window Definition Block (WDB)
ierr is address of location to return error information
Errors:
Value Meaning
i= 0 Normal return.
=-4 Invalid window identifier specified.
= -257 Required argument missing.
Example:
See CRAW.

2-40 RT-11 System Subroutine Library Manual

ELRG/IELRG

Mapping
ELRG/IELRG (eliminate region) eliminates a dynamic region of physical memory
and returns the memory to the free list where it can be used by other jobs.

Form:

CALL ELRG (irdb [,ierr])
ierr = IELRG (irdb)

where:

ierr Error return
irdb Address of Region Definition Block (RDB)

Errors:
Value Meaning
i =0 Normal return.
= -3 Invalid region identifier specified.

= -12 Deallocation failure.

-257 Required argument missing.

Example:
See CRAW.

System Subroutine Description and Examples 2-41

ENTER/IENTER

ENTER/IENTER allocates space on the specified device and creates a tentative
directory entry for the named file. If a file of the same name already exists on
the specified device, it is not deleted until the tentative entry is made permanent
by issuing either CLOSEC/ICLOSE or CLOSZ/ICLOSZ. The file is attached to the
channel number specified. This routine requires the USR.

Form:

CALL ENTER (chan,dblk,length[,segnum])
i = IENTER (chan,dblk,length[,segnum])

where:

chan is the integer specification for the RT-11 channel to be associated
with the file. You must obtain this channel through an IGETC call,
or you can use channel 16 or higher, if you have done an ICDFN call.

dblk is the four-word Radix—50 descriptor of the file to be operated upon.

length is the integer number of blocks to be allocated for the file. If O,
the larger of either one-half the largest empty segment or the entire
second largest empty segment is allocated. If the value specified for
length is -1, the entire largest empty segment is allocated (See the
.ENTER programmed request).

segnum is a magtape file sequence number that can have the values listed
below. (Seqnum is also a file number for cassette.) If this argument
is blank, a value of 0 is assumed.

Value Meaning

-2 Rewind the magtape and space forward until the file name is
found, or until logical-end-of-tape is detected. The magtape
is now positioned correctly. A new logical-end-of-tape is
implied.

-1 Space to the logical-end-of-tape and enter file.

0 Rewind the magtape and space forward until the file name is
found or the logical-end-of-tape is detected. If the file name
is found, an error is generated. If the file name is not found,
then enter file.

n Position magtape at file sequence number n if n is greater
than zero and the file name is not null.

Notes
* ENTER requires that the appropriate device handler be in memory.

* The arguments of ENTER must be positioned so that the USR does not swap
over them.

2-42 RT-11 System Subroutine Library Manual

ENTER/IENTER

For further information on creating tentative directory entries, see the .ENTER
programmed request.

Errors:
Value Meaning
i=n Normal return; number of blocks actually allocated (n = 0 for

non-file-structured IENTER).

=-1 Channel (chan) is already in use.

=-2 In a fixed-length request, no space greater than or equal to
length was found.

=-3 Device in use.

=-4 A file by that name already exists and is protected.

=-5 File sequence number not found.

=-6 File sequence number is invalid.

=-7 Invalid unit number on a special directory device.

Error message TRAP $MSARG will display if chan, dblk or length argument is
missing.

Example:

The following example allocates a channel for file TEMP.TMP on SYO0. If no channel
is available, the program prints a message and halts:

Program FENTER ! deno ENTER

Par ameter SUCCS = ' 001’ o, FATAL = '010'o
I nt eger *2 DBLK(4)

Data DBLK /3rDK , 3rTEM 3rT , 3rTMP/

C
| CHAN = | GETC ()
C
C Create tenp work file
C
I f (1ENTER (I CHAN, DBLK, 20) .ne. 20) Then
Call Print (' ?FENTER-F-ENTER failed)
Call Exit (FATAL)
End If
C
C use tenp file
C
C
C

Cal | PURGE (| CHAN)

Cal | | FREEC (| CHAN)

Call Print ('!FENTER-I-ENTER ok’)
Call Exit (SUCCS)

End

System Subroutine Description and Examples 2-43

FPROT/IFPROT
FPROT/IFPROT sets or removes file protection for a file.

Form:

CALL FPROT (chan,dblk[,prot])
i = IFPROT (chan,dblk][,prot])

where:

chan is the channel number to be used for the protect operation. You

must obtain this channel through an IGETC call, or you can use the
channel 16(decimal) or higher if you have done an ICDFN call

dblk is the four-word Radix—50 descriptor of the file to be operated on
prot 1 = protect the file

0 = remove protection from the file

Errors:
Value Meaning
i=0 Normal return
=1 Channel is in use
=2 File not found or not a file-structured device.

To identify which condition returned the error code, issue an
IDSTAT to determine if a device is file structured.

=3 Invalid operation.

=4 Invalid prot value.

Error message TRAP $MSARG will display if any required argument is missing.

Example:

This example protects the file SY:RT11FB.SYS against deletion:

Program FFPROT ! deno FPROT

C

C protect SY: RT11FB. SYS

C
Par amet er SUCCS = * 001’ o, FATAL = '010' o
I nt eger *2 DBLK(4)
Data DBLK /3rSY , 3rRT1, 3r1FB, 3rSYS/

C

If (IFPROT (I GETC (), DBLK, 1) .ne. 0) Then
Call Print (' ?FFPROT-F-FPROT failed)
Call Exit (FATAL)
El se
Call Print ('!FFPROT-1-Protected: SY:RT11FB.SYS)
Call Exit (SUCCS)
End | f
End

2-44 RT-11 System Subroutine Library Manual

FREER/IFREER

Mapping

FREER/IFREER detaches from a specified global region that you have attached to
using the IGETR/MGETR subroutine. FREER can also eliminate that global region
when you specify the type argument. FREER does not eliminate a global region that
is attached to another job, but does detach the calling job from that global region.

Form:

CALL FREER (work[,<type>])
i = IFREER (work[,<type>])

where:

work is a 7-word work area block. Work area specified in FREER must
be the same as the IGETR work area. The first five words of the
work area block contain information from the region definition block
(RDB):

* A unique region identification (R.GID)

* The size of the region (R.GSIZ)

* The region status word (R.GSTS)

* The region name in two RAD50 words (R.NAME and R.NAME+2)

The last two words in the work block area are reserved by RT-11.

<type> is’e’ for eliminate. If you do not specify the type argument, you detach
but do not eliminate the global region.

Errors:
Value Meaning
i= 0 Normal return.

=-10 Memory too fragmented to return at .ELRG (-.ELRG)
=-11 Global region not found (-.ELRG)
=-18 Any .ELRG error except memory fragment (-10) and region not

found (-11)
=-19 First character of <type> is invalid; not e’
=-20 Required argument work is missing

FREER can be called from MACRO-11 programs if the standard FORTRAN calling
convention is followed. All register contents are destroyed across the call. FREER
calls IGETC and IFREEC, which are FORTRAN-dependent routines. To use FREER
in a MACRO-only program, use the IGETC and IFREEC substitutes shown in the
example.

Example:
See GETR/MGETR.

System Subroutine Description and Examples 2-45

GCMAP/IGCMAP

Full Mapping
GCMAP/IGCMAP returns the previous CMAP status.

Form:

CALL GCMAP (iold [,ierr])
ierr = IGCMAP (iold)

where:

ierr Error return
iold Previous CMAP status

Value Meaning
i=0 Normal return.

= -257 Required argument missing.

Example:

Subr outi ne FGCVAP ! Di spl ay mappi ng status

Di spl ay the mapping status for this job

OO0

I ncl ude ' SRC. C\VPDF’ lget bit definition for GCMVAP

Par amet er CNFG3 466’0 !third configuration word in fixed area
Par amet er CF3S| 100000’ o ! Moni tor supports extended mappi ng
Par amet er CF3HI ' 040000’ o ! Har dwar e ' " "

If (IAND (I SPY (CNF&), IOR (CF3SI, CF3HI)) .eq.
1 |OR (CF3SI, CF3HI)) Then
Cal | GCVAP (I STAT) !get status
If (IAND (I STAT, CMJ D - CMIXX) .eq. CMJ D - CMIXX)
1 Type *, 'Separated | and D in User space’
If (I AND (I STAT, CMIAS - CMXXS) .eq. CMIAS - CWMXXS) Then
Type *, 'Supy space enabl ed’
If (1AND (1 STAT, CMBID - CMBXX) .eq. CMBID - CMVSBXX)
1 Type *, 'Separated | and D in Supy space’
If (I AND (I STAT, CMPAR) .eq. 0) Then
Type *, "All User and Supy Data PARS | ocked’

El se

If (I AND (I STAT, CMPRO) .eq. CMPRO)
1 Type *, 'PAR 0 unl ocked’

If (I AND (I STAT, CWPR1l) .eq. CWVPR1)
1 Type *, 'PAR 1 unl ocked’

If (1AND (I STAT, CMPR2) .eq. CWPR2)
1 Type *, ' PAR 2 unl ocked’

If (I AND (I STAT, CWPR3) .eq. CWVPR3)
1 Type *, 'PAR 3 unl ocked’

If (I AND (I STAT, CVPR4) .eq. CVPR4)
1 Type *, 'PAR 4 unl ocked’

If (I AND (I STAT, CWPR5) .eq. CMPR5)
1 Type *, 'PAR 5 unl ocked’

2-46 RT-11 System Subroutine Library Manual

GCMAP/IGCMAP

If (1 AND (I STAT, CMPR6) .eq. CMPRG)

1 Type *, 'PAR 6 unl ocked’
If (I AND (I STAT, CWPR7) .eq. CWVPR7)
1 Type *, 'PAR 7 unl ocked’
End |f
El se
Type *, 'Supy space disabl ed’
End | f
El se

Type *, 'Mnitor / hardware do not support extended mappi ng’

End | f
Ret urn
End

System Subroutine Description and Examples 2-47

GETR/IGETR

Mapping

GETR/IGETR attaches to a specified global region. GETR can initialize a global
region by reading a portion of a file into the global region or by calling a specified
subroutine.

IGETR does not fetch handlers. Any handler required by I/O in GETR must be
loaded or fetched by the program.

Form:

CALL GETR (arguments)

i = GETR (arguments)
(work,char,name,addr [,csize][,offset[,msize]]
[.,chan[,bIK]][.file[,blKk]] [,sbrtn,-1])

where:

work is a 7-word work area block. The first five words of the work area
block contain information from the region definition block (RDB):
* A unique region identification (R.GID)
* The size of the region (R.GSIZ)
* The region status word (R.GSTS)
* The region name in two RAD50 words (R.NAME and R.NAME+2)
* The last two words in the work block area are reserved by RT-11.
* The work area specified in GETR must also be the work argument

specified in FREER.
char is a character constant specifying the type of ownership of the global

region. Only the first letter of the character constant need be specified
and that letter must be enclosed in single quotes (’). Specify one of
the following:

‘private’—Program solely owns global region

’shared’—Global region available to other programs

J

age’—Enables automatic global elimination
name is the 2-word name of the global region in six RAD50 characters

addr is a variable specifying the global region’s base address. The base
address must begin on a PAR boundary (4K-word multiples beginning
at 000000)

2-48 RT-11 System Subroutine Library Manual

csize

offset

msize

chan

file

sbrtn

blk

GETR/IGETR

is the size of the global region you want to create, expressed in words.
If you specify csize as zero or omit it, the actual global region size is
used. Specifying zero for csize is invalid unless the global region
already exists

is the offset from the beginning of the global region, expressed in
units. A unit is 64(decimal) bytes. The offset is the number of units
you skip before mapping begins. If you specify offset as zero or omit
it, you begin mapping at the beginning of the global region

is the number of words you wanted mapped to the global region. If
you specify msize as zero or