
RT–11 System Subroutine
Library Manual

Order Number AA–PD6MA–TC

August 1991

This manual contains current reference data about the system subroutine library (SSL), a
collection of routines callable from high-level languages (FORTRAN and C).

Revision/Update Information: This information was previously published, along with
reference data about the system macro library, as
part of the RT–11 Programmer’s Reference Manual,
AA–H378D–TC.

Operating System: RT–11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227–7013.

© Digital Equipment Corporation 1991
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS–300, DDCMP, DECnet, DECUS,
DECwriter, DIBOL, MASSBUS, MicroPDP–11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT–
11, RTEM–11, UNIBUS, VMS, VT, and the DIGITAL logo.

S1436

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface ix

Summary of Changes xiii

Chapter 1 Using the System Subroutine Library

1.1 Overview . 1–1
1.1.1 SYSLIB Functional Organization . 1–2
1.1.2 Applicability . 1–2
1.2 System Conventions . 1–2
1.2.1 Naming Conventions . 1–3
1.2.2 Subroutines and Functions . 1–3
1.2.3 Channel Numbers . 1–3
1.2.4 Completion Routines . 1–4
1.2.5 Completion Routine Restrictions . 1–4
1.2.6 Device Blocks . 1–5
1.2.7 INTEGER*4 Support Functions . 1–5
1.2.8 User Service Routine (USR) Requirements . 1–6
1.2.9 Subroutines Requiring Additional Queue Elements . 1–14
1.2.10 System Restrictions . 1–14
1.3 Calling SYSLIB Subroutines or Functions . 1–15
1.4 FORTRAN/MACRO Interface . 1–23
1.4.1 Subroutine Register Usage . 1–24
1.4.2 FORTRAN Programs Calling MACRO Subroutines . 1–25
1.4.3 MACRO Routines Calling FORTRAN Programs . 1–27
1.5 FORTRAN Programs in a Foreground/Background Environment 1–29
1.5.1 Calculating Workspace for a FORTRAN Foreground Program 1–30
1.5.2 Running a FORTRAN Program in a Foreground/Background Environment 1–31
1.6 Linking with FORLIB . 1–33
1.7 SYSLIB Services Not Provided by Programmed Requests . 1–33
1.7.1 Time Conversion and Date Access . 1–33
1.7.2 Program Suspension . 1–34
1.7.3 Two-Word Integer Support (INTEGER*4) . 1–34
1.7.4 Radix–50 Conversion . 1–35
1.7.5 Character String Operations . 1–35
1.7.6 Control of Global Regions . 1–36
1.8 Character String Functions . 1–36
1.8.1 Allocating Character String Variables . 1–37

iii

1.8.2 Passing Strings to Subprograms . 1–38
1.8.3 Using Quoted-String Literals . 1–39

Chapter 2 System Subroutine Description and Examples

ABTIO/IABTIO . 2–2
AJFLT/IAJFLT . 2–3
CALL$F . 2–5
CHAIN . 2–6
CHCPY/ICHCPY . 2–8
CLOSEC/ICLOSE . 2–10
CLOSZ/ICLOSZ . 2–12
CMAP/ICMAP . 2–14
CMKT/ICMKT . 2–16
CNTXS/ICNTXS . 2–17
CONCAT . 2–18
CRAW/ICRAW . 2–20
CRRG/ICRRG . 2–24
CSI/ICSI . 2–25
CSTAT/ICSTAT . 2–29
CVTTIM . 2–31
DATE/DATE4Y . 2–32
DELET/IDELET . 2–34
DEVICE/IDEVICE . 2–36
DJFLT . 2–37
DSTAT/IDSTAT . 2–38
ELAW/IELAW . 2–40
ELRG/IELRG . 2–41
ENTER/IENTER . 2–42
FPROT/IFPROT . 2–44
FREER/IFREER . 2–45
GCMAP/IGCMAP . 2–46
GETR/IGETR . 2–48
GFDAT/IGFDAT . 2–52
GFINF/IGFINF . 2–53
GFSTA/IGFSTA . 2–55
GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS) . 2–57
GMCX/IGMCX . 2–62
GTDIR/IGTDIR . 2–63
GTDUS/IGTDUS . 2–69
GTIM . 2–74
GTJB/IGTJB . 2–75
GTLIN/IGTLIN . 2–77
HERR/IHERR . 2–79
IADDR . 2–81

iv

IDATE . 2–82
IDCOMP . 2–84
IFWILD . 2–86
IGTENT . 2–89
IJCVT . 2–91
INDEX . 2–92
INSERT . 2–93
IPEEK . 2–94
IPEEKB . 2–96
IRAD50 . 2–97
ISPY . 2–98
ISWILD . 2–99
ITLOCK . 2–101
ITTINR . 2–102
ITTOUR . 2–104
IWEEKD . 2–105
JADD . 2–106
JAFIX . 2–107
JCMP . 2–108
JDFIX . 2–110
JDIV . 2–111
JICVT . 2–113
JJCVT . 2–114
JMOV . 2–115
JMUL . 2–116
JREAD/JREADC/JREADF/JREADW . 2–118
JSUB . 2–125
JTIME . 2–127
JWRITE/JWRITC/JWRITF/JWRITW . 2–128
KPEEK . 2–137
KPOKE . 2–138
LEN . 2–140
LOCK/UNLOCK . 2–141
LOOKUP . 2–144
MAP . 2–147
MRKT . 2–148
MSDS . 2–150
MTATCH . 2–151
MTDTCH . 2–152
MTGET . 2–153
MTIN . 2–154
MTOUT . 2–155
MTPRNT . 2–156
MTRCTO . 2–157
MTSET . 2–158

v

MTSTAT . 2–159
MWAIT . 2–160
POKE/IPOKE . 2–161
POKEB/IPOKEB . 2–162
PRINT . 2–163
PROTE/IPROTE . 2–164
PURGE . 2–165
PUT/IPUT . 2–166
R50ASC . 2–167
RAD50 . 2–168
RAN/RANDU . 2–169
RCHAIN . 2–170
RCTRLO . 2–171
*RCVD/*RCVDC/*RCVDF/*RCVDW . 2–172
*READ/*READC/*READF/*READW . 2–179
RENAM/IRENAM . 2–191
REOPN/IREOPN . 2–193
REPEAT . 2–195
RESUME . 2–197
SAVES/ISAVES . 2–198
SCCA/ISCCA/MSCCA . 2–199
SCHED/ISCHED . 2–201
SCOMP/ISCOMP . 2–203
SCOPY . 2–204
*SDAT/*SDATC/*SDATF/*SDATW . 2–205
SDTTM/ISDTTM . 2–214
SERR/ISERR . 2–216
SETCMD . 2–218
SFDAT/ISFDAT . 2–219
SFINF/ISFINF . 2–220
SFSTA/ISFSTA . 2–223
SLEEP/ISLEEP . 2–226
SPCPS/ISPCPS . 2–227
*SPFN/*SPFNC/*SPFNF/*SPFNW . 2–229
STRPAD . 2–239
SUBSTR . 2–240
SUSPND . 2–241
$SYTRP . 2–242
TIMASC . 2–244
TIME . 2–245
TIMER/ITIMER . 2–246
TRANSL . 2–248
TRIM . 2–250
TWAIT/ITWAIT . 2–251
UNMAP/IUNMAP . 2–252

vi

UNPRO/IUNPRO . 2–253
UNTIL/IUNTIL . 2–254
VERIFY/IVERIFY . 2–256
WAIT/IWAIT . 2–257
*WRITE/*WRITC/*WRITF/*WRITW . 2–258

Index

Figures

1–1 A FORTRAN Program in Memory . 1–10
1–2 Subroutine Argument Block . 1–24
1–3 Argument Block for Program FINITA . 1–27

Tables

1 Functions and Subroutines Deleted from SYSLIB . xiii
2 Routines Added or Changed for I-D Space . xiv
3 Other Changes to SYSLIB Subroutines . xiv
1–1 PSECT Ordering for FORTRAN Programs (Low to High Memory) 1–9
1–2 PSECT Ordering for PDP–11 RTL Programs . 1–11
1–3 SYSLIB Subroutines and Functions . 1–16
1–4 Return Value Conventions for Function Subroutines . 1–25
1–5 SYSLIB Conversion Calls . 1–34
1–6 Character String Functions . 1–36
2–1 Device Support (SF.AWR/SF.ARD) . 2–229
2–2 Device Support (SF.MWE/SF.MWR) . 2–230

vii

Preface

This manual contains reference data about RT–11 system subroutines, a collection of
call routines contained in system library SYSLIB.OBJ. As a FORTRAN programmer,
you access RT–11 Monitor services through these call routines to the system
subroutine library. Using SYSLIB subroutines, you can write almost all application
programs in FORTRAN without having to write code in any assembly language.
This library is also accessible from PDP–11C.

Reference data about the system macro library, previously contained in the RT–
11 Programmer’s Reference Manual is now contained in a separate manual, RT–11
System Macro Library Manual. See Associated Documents.

Intended Audience

This information is provided for use by advanced RT–11 users, including FORTRAN
IV, FORTRAN–77, and MACRO–11 assembly language programmers and C
language programmers.

Document Structure

Chapter 1 — Using the System Subroutine Library
Describes implementation and effective use of subroutines contained in
SYSLIB.OBJ; provides examples that demonstrate subroutine flexibility and
value in working programs.

Chapter 2 — System Subroutine Description and Examples
Presents all SYSLIB functions and subroutines in alphabetical order; provides
a detailed description of each one. Gives examples of each call in a FORTRAN
program.

Associated Documents

The RT–11 Documentation Set consists of the following associated documents:

Basic Books

• Introduction to RT–11

• Guide to RT–11 Documentation

• RT–11 Commands Manual

• PDP–11 Keypad Editor User’s Guide

• PDP–11 Keypad Editor Reference Card

ix

• RT–11 Quick Reference Manual

• RT–11 Master Index

• RT–11 System Message Manual

• RT–11 System Release Notes

Installation Specific Books

• RT–11 Automatic Installation Guide

• RT–11 Installation Guide

• RT–11 System Generation Guide

Programmer Oriented Books

• RT–11 IND Control Files Manual

• RT–11 System Utilities Manual

• RT–11 System Macro Library Manual

• RT–11 System Subroutine Library Manual

• RT–11 System Internals Manual

• RT–11 Device Handlers Manual

• RT–11 Volume and File Formats Manual

• DBG–11 Symbolic Debugger User’s Guide

x

Conventions

The following conventions are used in this manual:

Convention Meaning

Black print In code examples, black print indicates output lines or prompting
characters the system displays.

Braces ({ }) In command examples, braces enclose mutually exclusive options.
You can choose only one of the options contained in braces.

Brackets [] In command examples, square brackets enclose optional parame-
ters, qualifiers or values. For example:

i = ISFDAT (chan,dblk[,idate][,iold])

UPPERCASE
characters

In command examples, uppercase characters are command elements
that should be entered exactly as given.

lowercase
characters

In command syntax examples, lowercase characters are command
elements for which you specify a value. For example:

CALL POKEB (iaddr,ivalue)

Command
Syntax

Functions and subroutines have different formats:
A function has the format:

i = POKEB (iaddr,ivalue)
A subroutine has the format:

CALL POKEB (iaddr,ivalue)
Alternative commands are shown as:

i = POKEB (iaddr,ivalue)
CALL POKEB (iaddr,ivalue)

RET RET in examples and in the example installation represents the
RETURN key.

CTRL/x CTRL/x indicates a control key sequence. While pressing the key
labeled Ctrl, press another key. For example: CTRL/C

xi

Summary of Changes

This section summarizes additions, deletions and changes to the system subroutine
library (SYSLIB). Refer to Chapter 2 for detailed description of RT–11 system
subroutines.

Changes Between SYSLIB and FORTRAN OTS (FORLIB and F77OTS)

The following SYSLIB changes affect the relationship between SYSLIB and the
FORTRAN Object Time Systems (OTS).

• Functions and subroutines DATE, IDATE, RAN, and RANDU, previously in the
distributed FORTRAN subroutine libraries, are now located in SYSLIB.OBJ.

• The following functions and subroutines (see Table 1), specific to FORTRAN
programming, have been deleted from the distributed RT–11 system subroutine
library, SYSLIB.OBJ, because they do not work without a resident FORTRAN
OTS. These functions and subroutines have been added to the FORTRAN IV
distributed FORLIB and the FORTRAN–77 distributed F77OTS.

Table 1: Functions and Subroutines Deleted from SYSLIB

GETSTR IFREEC INTSET

IASIGN IGETC IQSET

ICDFN IGETSP PUTSTR

IFETCH ILUN SECNDS

NOTE
Because IQSET is no longer in SYSLIB.OBJ, FORTRAN
programmers who need to add queue elements for
certain other SYSLIB functions, should refer to
the FORTRAN IV distributed FORLIB and the
FORTRAN–77 distributed F77OTS.

SYSLIB Subroutines

Changes for I-D Space
Table 2 lists subroutine changes resulting from the addition of Supervisor Mode, I-D
space. One of the major features of V5.6 SYSLIB support added mapping routines
that begin with letter M.

The mapping version of a routine is called in the same manner as an unmapped
version, but has an added argument that specifies the type of mapping required. In

xiii

these cases, mapping is shown as an optional parameter in the generic command
string. For example, ISDATW/MSDATW is shown as:

Form:

i = ISDATW (buff,wcnt)

i = MSDATW (buff,wcnt[,bmode])

Table 2: Routines Added or Changed for I-D Space

ICMAP IUNMAP JREADW MREAD MREADC MSPFNC

ICRAW ISCCA JWRITE MREADW MRVCDW MTATCH

ICRRG JREAD JWRITW MRKT MSDS MWRITC

IELRG JREADC MAP MSDAT MSPFN MWRITE

IGCMAP JREADW MRCVD MSDAT MSDATC MWRITW

IGCMX JWRITC MRCVDC MSPFNW MSDATW

SYSLIB Subroutine Changes
Table 3 lists subroutines that have been changed in V5.6.

Table 3: Other Changes to SYSLIB Subroutines

DEVICE IFPROT ISPY

GIWRIT IGTDUS IUNTIL

GTLIN ISFDAT LOOKUP

ICSTAT ISPFN SCCA

xiv

Chapter 1

Using the System Subroutine Library

1.1 Overview

The system subroutine library is a collection of FORTRAN- and C-callable routines
contained in the SYSLIB.OBJ system library which also contains overlay handlers,
utility functions, a character string manipulation package, and two-word integer
support routines. High-level language programmers use these subroutines to take
full advantage of the latest RT–11 system features. The linker also uses this library
to resolve undefined globals.

If you are not familiar with the PDP–11 FORTRAN Language Reference Manual
and the RT–11/RSTS/E FORTRAN IV User’s Guide, and the Guide to PDP–11
C, you should refer to these manuals before using the material described in this
chapter. C language programmers should also refer to the PDP–11 C Run-Time
Library Reference Manual for information about functions and macros.

The system subroutine library provides the following capabilities:

• Complete RT–11 I/O facilities, including synchronous, asynchronous, and event-
driven modes of operation. FORTRAN subroutines can be activated upon
completion of an input/output operation.

• Timed scheduling of completion routines, standard in the multijob and mapped
monitors, is a SYSGEN option for the SB monitor.

• Facilities for communication between foreground and background jobs.

• FORTRAN language interrupt service routines for user devices.

• Complete timer support facilities, including

— Timed suspension of execution in multijob or mapped environments

— Conversion of different time formats, and time-of-day information

— Timer support for facilities using either 50- or 60-cycle clocks

• Facilities for creating, attaching, detaching, and eliminating global regions in
extended memory.

• All RT–11 auxiliary input/output functions: opening, closing, renaming files;
creating or deleting files on any device.

• All monitor-level information functions, such as job partition parameters, device
statistics, and input/output channel statistics.

• Support interface and multiterminal environment.

Using the System Subroutine Library 1–1

• Access to the RT–11 command string interpreter (CSI).

• Access to limited instruction-data (I-D) space and Supervisor mode support.

• Mapping routines, similar to unmapped routines, having added argument(s) that
specify mapping required.

• Character string manipulation package supporting variable-length character
strings.

• INTEGER*4 support routines that allow two-word integer computations.

In reference to variables, unless otherwise specified, INTEGER means INTEGER*2,
(16-bit integer) and REAL means REAL*4 (single-precision floating point). Integer
and real arguments to subprograms are indicated in this section as follows:

i = INTEGER*2 arguments
j = INTEGER*4 arguments
a = REAL*4 arguments
d = REAL*8 arguments

1.1.1 SYSLIB Functional Organization

RT–11 system subroutines and functions are presented in alphabetical sequence of
their generic name. For example, because READC, IREADC, and MREADC can be
called as subroutines or as functions, they are presented together under *READC to
facilitate easy lookup. An I-prefixed name denotes use as a function; an M-prefixed
name denotes the function or subroutine has extra arguments that specify mapping.

Functionally related calls to enable or disable functions are presented together to
facilitate easy lookup. For example, LOCK and UNLOCK are presented together as
LOCK/UNLOCK.

1.1.2 Applicability

In general, SYSLIB routines were written for use with RT–11 V2 or later
and FORTRAN IV V1B or later versions for RT–11 or FORTRAN may lead to
unpredictable results. SYSLIB now supports virtually all monitor requests. Do
not use a SYSLIB routine on an older monitor that does not support the request
implemented by the routine.

1.2 System Conventions

This section describes system conventions that must be followed for proper
operation of calls to the system subroutine library. (For applicable restrictions, see
Section 1.2.10.)

1–2 RT–11 System Subroutine Library Manual

1.2.1 Naming Conventions

In FORTRAN, subroutine names starting with I-through-N (inclusive) are, by
default, integer returns; names starting with A-through-H and O-through-Z are real
returns.

SYSLIB names are the same as those used in SYSMAC except that, when names in
SYSMAC start with letters other than I-through-N, the letter I is appended to the
beginning. Also the following conventions apply:

• Names that start with the letter I ordinarily are functions that return a 16-bit
value.

• Names that start with the letter J return a 16-bit value, but operate on a 32-bit
value.

• Names that start with the letter K (such as KPEEK) are functional extensions
of names beginning with I (such as IPEEK), functionally the same, except that
the K-version has an optional argument.

• Names that start with the letter M (such as MRCVD) indicate that mapping or
multimode mapping has been added to a function (such as IRCVD).

Names that start with the letter M might also identify multiterminal equivalents
of generic functions or subroutines; for example, MTOUT and MTPRINT are
multiterminal equivalents of ITTOUR and PRINT.

1.2.2 Subroutines and Functions

If a SYSLIB routine returns a value, it is more useful as a function than as a
subroutine. If the routine does not return a value, it should only be used as a
subroutine. In instances where they can function as well in either role, SYSLIB
descriptions are presented for both forms. Generally, subroutines whose names start
with letters other than I-through-N either do not return a useful value or return a
floating-point value.

1.2.3 Channel Numbers

A channel number is a logical identifier for a file used to communicate with RT–11.
When you open a file on a particular device, you assign a channel number to that
file. When you refer to an open file, just refer to the appropriate channel number.

The FORTRAN system has 16(decimal) channels available. The call IGETC assigns
a channel to your program and notifies the FORTRAN I/O system, which also
uses these channels, that the channel is in use. When there is no longer need
for a channel, the program should close the channel with a CLOSEC, ICLOSE, or
a PURGE SYSLIB call. The channel should also be closed and returned to the
FORTRAN I/O system with a IFREEC call.

The ICDFN call can activate up to 255(decimal) channels. ICDFN sets aside memory
in the job area to accommodate status information for the extra channels. Use the
ICDFN call during the initialization phase of your program. You can use all channels
numbered higher than 15(decimal). The FORTRAN I/O system uses channels 0
through 15(decimal).

Using the System Subroutine Library 1–3

You must allocate channels in the main program routine or its subprograms. Do
not allocate channels in routines that are activated as the result of I/O completion
events or ISCHED or ITIMER calls.

1.2.4 Completion Routines

A completion routine is a subprogram that executes asynchronously with a main
program and is scheduled to run as soon as possible after the completion of an
associated event, such as an I/O transfer or the passing of a specified time interval.
All completion routines of the current job have higher priority than other parts of
the job. When a completion routine is initiated (because of its associated event), it
interrupts execution of the job and continues to execute until it relinquishes control.

Completion routines can be written in FORTRAN or assembly language, depending
on the function called. Assembly language completion routines exit with a RETURN
instruction. FORTRAN completion routines exit by the execution of a RETURN
or END statement in the subroutine. Names of all completion routines external
to the routine being coded and passed to scheduling calls must be specified in an
EXTERNAL statement in the FORTRAN program unit issuing the call:

A completion routine written in FORTRAN can have a maximum of two arguments:

Form:

SUBROUTINE crtn [(iarg1,iarg2)]

where:

crtn is the name of the completion routine

iarg1 is the equivalent to R0 on entry to an assembly language completion
routine

iarg2 is equivalent to R1 on entry to an assembly language completion
routine

For information on the meaning of R1 and R0 contents, see the RT–11 System Macro
Library Manual:

If an error occurs in a completion routine or in a subroutine at completion level, the
error handler traces back through to the original interruption of the main program.
Thus, the traceback is shown as though the completion routine were called from the
main program.

1.2.5 Completion Routine Restrictions

Certain restrictions apply to completion routines that are activated by the following
calls:

INTSET IREADF ISPFNC IWRITF

IRCVDC ISCHED ISPFNF MRKT

IRCVDF ISDATC ITIMER

IREADC ISDATF IWRITC

1–4 RT–11 System Subroutine Library Manual

When using these calls the following restrictions apply:

• No channels can be allocated by calls to IGETC or freed by calls to IFREEC
from a completion routine. Channels to be used by completion routines should
be allocated and placed in a COMMON block for use by the routine.

Even if the completion routine itself does not issue any programmed requests,
but does perform I/O to a logical unit number through the OTS, that logical unit
number must be opened from the main level. To accomplish this, either issue the
first I/O access or an OPEN statement from main level. A completion routine
may not call CLOSE to close a logical unit.

• FORTRAN subroutines are reusable but not reentrant. That is, a given
subroutine can be used many times as a completion routine or as a routine in
the main program, but a subroutine executing as main program code does not
work properly if it is interrupted and then called again at the completion level.
This restriction applies to all subroutines that can be invoked at the completion
level while they are active in the main program.

• FORTRAN completion routines can be called only by SYSLIB functions that
end in F. Conversely, MACRO completion routines cannot be called by SYSLIB
functions that end in F. (SYSLIB function names ending in the letter F interface
to the FORTRAN run-time system.)

1.2.6 Device Blocks

A device block is a four-word block of Radix–50 information that specifies a physical
device and a file name. In FORTRAN, you can use one of three methods to set up
this block as follows:

• Use the DIMENSION and DATA statements. For example,

Dimension IFILE(4)
Data IFILE /3rSY ,3rFIL,3rE ,3rXYZ/

• Translate the available ASCII file description string into Radix–50 format, using
the SYSLIB calls IRAD50, R50ASC, and RAD50. For example,

Real*8 FSPEC
Call IRAD50(12, ’SY FILE XYZ’, FSPEC)

• Use SYSLIB call ICSI to call the Command String Interpreter (CSI) to accept
and parse standard RT–11 command strings.

1.2.7 INTEGER*4 Support Functions

For a description of INTEGER*4 functions for use by the MACRO programmer, see
Section 1.7.3.

When you use the DATA statement to initialize INTEGER*4 variables, you must
specify both the low- and high-order parts. For example, the code that follows
initializes only the first word:

Integer*4 J
Data J /3/

Using the System Subroutine Library 1–5

The following example shows the correct way to initialize an INTEGER*4 variable
to a constant, such as 3:

Integer*2 M(2)
Data M /3, 0/ !low order, high order

If you are initializing an INTEGER*4 variable to a negative value such as -4, the
high-order (second word) part must be the continuation of the two’s complement of
the low-order part. For example,

Integer*4 L
Integer*2 L2(2)
Equivalence (L, L2)
Data L2 /-4, -1/ !initialize L to -4

1.2.8 User Service Routine (USR) Requirements

The RT–11 User Service Routine (USR) is always resident in all mapped monitors;
therefore, this discussion applies to unmapped monitors only. User-written routines
that interface to the FORTRAN Object Time System (OTS) must account for the
location of the USR. PDP–11 C user-written routines have similar requirements.
USR swapping requirements for FORTRAN and C are discussed in this section.

The USR occupies 2K words. When your program calls a SYSLIB routine that
requests a USR function (such as IENTER or LOOKUP) or when the USR is invoked
by the FORTRAN OTS, the USR is swapped into memory if it is nonresident. The
FORTRAN OTS is designed so that the USR can swap over it.

Because letting USR swap over certain kinds of data and code causes unpredictable
results, you must restrict interrupt service routines and completion routines to
locations outside the USR swapping area. Identify the limits of this swapping area
by examining the link map and, if necessary, change the order of object modules and
libraries as specified to linker.

The following subroutines require the USR:

CLOSEC,ICLOSE
GETSTR (only if first I/O operation on logical unit)
GTLIN
ICDFN (single job only)
ICSI
IDELET
IDSTAT
IENTER
IFETCH
IQSET
IRENAM
ITLOCK (only if USR is not in use by another job)
LOCK (only if USR is in a swapping state)
LOOKUP
PUTSTR (only if first I/O operation on logical unit)

1–6 RT–11 System Subroutine Library Manual

Controlling USR Swapping
You can control USR swapping by using the KMON commands SET USR NOSWAP
and SET USR SWAP:

• SET USR NOSWAP prevents swapping and freezes the USR in memory.

• SET USR SWAP reverses this, allowing the USR to swap under program control.

Another alternative is to compile your FORTRAN main program with the /NOSWAP
option if you are sure that there is space just below the foreground partition or RMON
to make the USR permanent for the duration of your program. Use this option if
your program does not need the 2K words of memory that the USR occupies. If the
/NOSWAP option is not specified, the USR swaps over locations 1000–11000, the 2K
words of your program above the base address, and the part of a FORTRAN program
least likely to violate the USR restrictions.

To prevent USR swapping for part of the program execution time and to allow the
USR to swap out at other times, use the LOCK, UNLOCK, and ITLOCK calls:

• LOCK call locks the USR into main memory and attaches it to the requesting
job.

• The UNLOCK call lets the USR swap again and be used by another job.

• The LOCK and UNLOCK calls are used in a foreground program to prevent
interference from the background during initialization and completion phases
and to minimize the number of swaps.

• If ITLOCK determines another job is already using the USR, it returns an error
code that lets the program try for a lock, but continue with other action if it fails.

Keeping the USR Resident
For a FORTRAN main program, you can keep the USR resident by using the
FORTRAN/NOSWAP command (or the /U compiler option) at compile time. This
forces the USR to remain resident while the program is executing. You cannot use
this option if your FORTRAN programs require the extra 2K words of memory.

Allowing the USR to Swap
As with a MACRO program, the only reason to permit the USR to swap with a
FORTRAN program is to gain access to an additional 2K words of memory. The
USR normally swaps over the FORTRAN OTS (Object Time System). However,
problems occur when the FORTRAN OTS and the program together are less than
2K words long. In this case, the USR swaps over the program’s impure data area,
with unpredictable results. (Since this error is frequently made by inexperienced
programmers, setting the USR to NOSWAP and retrying a program is the first
thing you should do when debugging a FORTRAN program that does not execute
properly.) And USR swapping does not depend on your program’s high limit—that
is, if the USR is allowed to swap, it most definitely will swap. So, do not permit USR
swapping unless your program really needs the extra memory. To enable swapping
for a FORTRAN program, make sure the SET USR SWAP command is in effect, and
eliminate the /NOSWAP or the /U option at compile time.

Using the System Subroutine Library 1–7

PSECT Ordering for FORTRAN
To change the position of code or data to avoid the USR swapping area, or
to move the USR itself, consider the use of program section (PSECT) ordering.
PSECTs contain code and data identified by names as segments of the object
program. Attributes associated with each PSECT direct the Linker to combine
several separately compiled FORTRAN program units, assembly language modules,
and library routines into an executable program.

The order in which program sections are allocated in the executable program is the
same order in which they are presented to the Linker. Applications sensitive to this
ordering typically separate those sections containing read-only information (such as
executable code and pure data) from impure sections containing variables.

The main program unit of a FORTRAN program (normally the first object module
in sequence presented to LINK) declares PSECT ordering as shown in Table 1–1.

The USR can swap over pure code, but must not be loaded over constants or impure
data that can be used as arguments to the USR. The ordering shown in Table 1–1
collects all pure sections before collecting impure data in memory.

It is important to understand where and how the USR swaps so you can design
your FORTRAN program correctly. For a FORTRAN program, the FORTRAN OTS
places a value in $UFLOA location 46 to set up the USR swapping function. When
a FORTRAN program is running, the USR will automatically start swapping at the
base of OTS$I. $UFLOA of the System Communication Area contains the address
where the USR will swap. If the value of $UFLOA is zero, the USR will swap at its
default location, below RMON and handlers.

The FORTRAN compiler examines the sections of your program and sorts them based
on two major attributes: read-only versus read-write, and pure code versus data.
Generally, program instructions are read-only, and program data is read-write. If you
use assembly language routines, use the same PSECT as the FORTRAN compiler.
That is, place pure code and read-only data in section USER$I, and impure data in
USER$D. The compiler forces PSECT into the order shown in Table 1–1. PSECT
attributes shown in this table are abbreviated as follows:

RW, RO—Read/Write, Read Only
I, D—Instructions, Data
REL—Relocatable
CON, OVR—Concatenated, Overlaid
LCL, GBL—Local with overlay segment, Global across segments
SAV—Unconditionally place PSECT in root segment.

See the RT–11/RSTS/E FORTRAN IV User’s Guide and RT–11/FORTRAN 77 User’s
Guide for more information on program sections. See also RT–11 System Internals
Manual and RT–11 System Utilities Manual for information on USR swapping and
PSECT ordering.

1–8 RT–11 System Subroutine Library Manual

Table 1–1: PSECT Ordering for FORTRAN Programs (Low to High Memory)

Section Name Attributes

FORTRAN IV

OTS$I RW, I, LCL, REL, CON

OTS$P RW, D, GBL, REL, OVR

SYS$I RW, I, LCL, REL, CON

USER$I RW, I, LCL, REL, CON

$CODE RW, I, LCL, REL, CON

OTS$O RW, I, LCL, REL, CON

SYS$O RW, I, LCL, REL, CON

$DATAP RW, D, LCL, REL, CON

OTS$D RW, D, LCL, REL, CON

OTS$S RW, D, LCL, REL, CON

SYS$S RW, D, LCL, REL, CON

$DATA RW, D, LCL, REL, CON

USER$D RW, D, LCL, REL, CON

.$$$$. RW, D, GBL, REL, OVR

Other
COMMON
Blocks

RW, D, GBL, REL, OVR

FORTRAN 77

$CODE1 RW, I, LCL, REL, CON

$PDATA RW, D, LCL, REL, CON

$IPDATA RW, D, LCL, REL, CON

$VARS RW, D, LCL, REL, CON

$TEMPS RW, D, LCL, REL, CON

$SAVE RW, D, GBL, REL, CON

This ordering collects all pure sections before impure data in memory. The USR can
safely swap over sections OTSI, OTSP, SYS$I, USER$I, and $CODE. Figure 1–1
shows the arrangement of components when a FORTRAN program is loaded into
memory. The global symbol $$OTSI marks the start of the pure code area. The
global symbol $$OTSC marks its end and the beginning of the impure data area.
FORTRAN puts the value of $$OTSI into location 46, and the USR swaps into
memory starting at that address, thus overlaying the first 2K words of your
program.

Using the System Subroutine Library 1–9

Figure 1–1: A FORTRAN Program in Memory

MEMORY

Resident Monitor

Line Buffer

I/O Buffers

Program

$$OTSC:

$$OTSI:

PSECT $CODE

PSECT OTS$I

OTS

and/or ODT
1000

776

500

476
USR

Interrupt Vectors

60

56

40

36

0

Stack

OTS Work Area

Overlay Handler

Routines

Vectors

Communication Area

Channel Tables

System

Device Handlers

Trap

As with a MACRO program, your FORTRAN program should not have certain
instructions or data in the area where the USR will swap. As a general rule, the
following items should not be in the USR swap area:

• Routines that request USR functions (such as IENTER and LOOKUP)

• Data structures for USR requests

• Interrupt service routines

• Completion routines

• Data areas for interrupt service routines and completion routines

The FORTRAN system itself must also be concerned with USR swapping and its
inherent restrictions. For example, the PSECT OTS$O contains the FORTRAN

1–10 RT–11 System Subroutine Library Manual

OTS routines to open files. This PSECT follows $CODE in the PSECT ordering.
If the start of OTS$O is within 2K words of $$OTSI, the essential information for
the file operation is stored on the job stack before the USR swaps over the code in
OTS$O.

The best way to make sure that the USR swaps into a safe place in your FORTRAN
program is to examine the link map to determine if the USR will swap over restricted
sections. That is, see if the first 2K words above $$OTSI can be overlaid safely. If
not, relink the program and change the order of object modules and libraries you
specify to the linker. One problem is caused by using SYSLIB routines that place
important USR data in the lower 2K words of the job image. An example is the
IFETCH routine, which uses a device block in the program. The USR swaps over
the device block just before it is used, causing an error. To avoid a situation like
this, do not set up device names as constants for a SYSLIB call. Instead, use DATA-
initialized variables. This ensures that the information will be stored high enough
in the job image to avoid being overlaid by the USR.

PSECT Ordering for PDP–11 C
Table 1–2 lists PSECTs used by the PDP–11 Run Time Library and outlines their
use. Under RT–11 if the USR is not resident, the PDP–11 C RTL will attempt to
set the USR to swap at the location of the root C$STDI and C$OTSI PSECTs. See
PDP–11 C Guide to PDP–11 C for more information on PSECT ordering.

Table 1–2: PSECT Ordering for PDP–11 RTL Programs

Section Name Use�
C$CCT0
C$CCT2 � Character collating table. Used for locale-specific routines to determine

the collating sequence of each character set.�
C$CMT0
C$CMT2 � Character mapping table. Used for locale-specific routines to determine

the results of character mapping functions for each character set.�
C$CTT0
C$CTT2 � Character testing table. Used for local-specific routines to determine

the results of character testing functions for each character set.��� �� C$END0
C$END1
C$END2
C$END3

� �� �� The C$ENDx PSECTs are used for end-of-task processing. The
addresses of functions to be called by the PDP–11 C RTL at task-exit
time are place in the PSECT C$END1. For instance, the address of
the routine that ensures all files are closed is placed in C$END1. This
is separate from the atexit system function. The PSECTs C$END0,
C$END1, and C$END3 are reserved for use by the PDP–11 C RTL.
The addresses of routines to be called at task exit can be placed in the
PSECT C$END2. Modules that define this PSECT may not reside in a
resident library.��� �� C$INI0

C$INI1
C$INI2
C$INI3

� � ��� Similar to the C$ENDx PSECTs, the C$INIx PSECTs are used to provide
the addresses of routines to be called at task startup. The PSECTs
C$INIO, C$INI1, and C$INI3 are reserved for use by the PDP–11 C
RTL. The PSECT C$INI2 is available to place the addresses of routines
to be called at task startup. Modules that define this PSECT may not
reside in a resident library.

Using the System Subroutine Library 1–11

Table 1–2 (Cont.): PSECT Ordering for PDP–11 RTL Programs

Section Name Use

C$INIR Code for initialization routines.�
C$MFT0
C$MFT2 � Monetary formatting table. Used for locale-specific routines to

determine the results of monetary formatting functions for each
character set.�

C$NFT0
C$NFT2 � Numeric formatting table. Used for locale-specific routines to determine

the results of numeric formatting functions for each character set.

C$OTSC Constant data for PDP–11 C Object Time System routines.

C$OTSD Read data for the PDP–11 C OTS routines.

C$OTSH RT–11 only. Used to determine size of C$OTSI and C$STDI PSECTs.

C$OTSI Instructions for PDP–11 C OTS routines. These routines handle most
of the math and conversion functions.

C$OTSJ RT–11 only. Used to determine size of C$OTSI and C$STDI PSECTs.

C$OTSR Constant data for PDP–11 C OTS routines.

C$OTSW Writable storage for PDP–11 C OTS routines. Modules that contain this
PSECT may not reside in a resident library.

C$STDC Constant data for the Standard Library routines.

C$STDD Read data for the Standard Library routines.

C$STDI Instructions for the Standard Library routines.

C$STDR Constant data for the Standard Library routines.�
C$TIM0
C$TIM2 � Time formatting table. Used for locale-specific routines to determine the

results of time formatting functions for each character set.

$PIOXT I/O Transfer Vector. This is used to allow PDP–11 C to easily access
several low-level I/O systems. $PIOXT contains two addresses for each
low-level I/O action used by PDP–11 C. One address is for support for
native I/O for that action. The other is for support for either RMS or
FCS I/O for that action. Modules that define this PSECT may not reside
in a resident library.

$PRLUN Bit mask used for reserving LUNs. The first word indicates the number
of words that follow. These make up a mask. Modules that define this
PSECT may not reside in a resident library.

$$C The PDP–11 C OTS work area. This is read/write data space used by
the RTL. Modules that define this PSECT may not reside in a resident
library.

$$CAST OTS work area PSECT containing structure required by asctime
function.

$$CCLK OTS work area PSECT containing storage required for correct use of
the clock function.

1–12 RT–11 System Subroutine Library Manual

Table 1–2 (Cont.): PSECT Ordering for PDP–11 RTL Programs

Section Name Use

$$CEXI OTS work area PSECT containing storage required to register the
addresses of the functions to be called during the executions of the
atexit() routine.

$$CGEN OTS work area PSECT containing storage required to support the
getenv () function.

$$CLOC OTS work area PSECT containing storage required to support the locale
functions.

$$CMLL OTS work area PSECT containing storage required to support memory
allocation functions.

$$CSIG OTS work area PSECT containing storage required to support the signal
functions.

$$CSIO OTS work area PSECT containing storage required to support standard
I/O operations.

$$CTIM OTS work area PSECT containing storage required struct tm.

USR Lockout and Timing—All Monitors
If while one job is using the USR, another job requests it, the requesting job will
be blocked until the other job releases the USR. The requesting job may be locked
out for seconds or minutes at a time. Interrupt service and completion routines can
run, but mainline code cannot. You can minimize or eliminate these resulting timing
problems by observing the following:

• Do not use devices with slow directory operations, such as magtapes.

• Write real-time operations as completion and interrupt service routines in your
foreground job so that a locked-out mainline program does not impede real-time
operations.

• Separate USR and real-time operations.

• Use the ITLOCK call and avoid SYSLIB calls that request the USR while the
USR is owned by another job.

A real-time foreground job has the following typical structure:

• An initialization phase that opens all required channels and begins a real-time
operation

• A real-time phase that performs interrupt service and I/O operations

• A completion phase that halts real-time activity and then closes the channels.

Maintaining this structure in the foreground enables the background task to do
USR operations during the real-time phase without locking out the foreground. This
action simplifies USR swapping because the USR can swap over interrupt routines
and I/O buffers as long as they are inactive.

Using the System Subroutine Library 1–13

1.2.9 Subroutines Requiring Additional Queue Elements

All subroutines in the following list require added queue elements for their proper
operation. Subroutines prefixed with asterisks can be called as they are or may be
prefixed with a letter I or M if they are called as functions or have added arguments
for mapping. For example, *RCVD can have the form RCVD, IRCVD or MRCVD.
These subroutines are as follows:

*RCVD, *RCVDC, *RCVDF, *RCVDW
*READ, *READC, *READF, *READW
IWAIT
SCHED/ISCHED
*SDAT, *SDATC, *SDATF, *SDATW
SLEEP/ISLEEP
*SPFN, *SPFNC, *SPFNF, *SPFNW
TIMER/ITIMER
TWAIT/ITWAIT
UNTIL/IUNTIL
*WRITC, *WRITE, *WRITF, *WRITW
MRKT
MWAIT

One queue element per job is automatically allocated. Issuing more than one request
from the list requires extra queue elements. Additional queue elements can be
allocated by a call to the IQSET function.

NOTE
IQSET is no longer contained in SYSLIB.OBJ. If
you need to add queue elements for certain SYSLIB
functions, refer to FORTRAN IV distributed FORLIB
and to FORTRAN–77 distributed F77OTS.

1.2.10 System Restrictions

Consider the following system restrictions when coding a FORTRAN program that
uses SYSLIB.

• Programs using IPEEK, IPOKE, IPEEKB, IPOKEB, or ISPY to access system-
specific addresses, such as FORTRAN, monitor, or hardware addresses, are not
guaranteed to run under future releases or on configurations other than those
on which they were written. When using these functions, document their use so
you can check your references against the current documentation. Also, these
routines may act differently under the mapped monitor. IPEEK and IPOKE are
not equivalent to programmed requests .PEEK and .POKE. Although IPEEK
and IPOKE are equivalent to KPEEK and KPOKE, Digital recommends using
KPEEK and KPOKE because they function better in a virtual environment.

• Various functions in SYSLIB return values that are of type integer, real, or double
precision. To specify an implicit statement that changes the defaults for external
function types, you must:

1–14 RT–11 System Subroutine Library Manual

— Explicitly declare the type of those SYSLIB functions that return integer or
real results.

— Be sure that the arguments to the SYSLIB routines are the correct type for
the routine. Double-precision functions must always be declared to be type
DOUBLE PRECISION (or REAL*8). Failure to observe this restriction leads
to unpredictable results.

• Names of all completion routines external to the routine being coded and which
are passed to scheduling calls (such as ISCHED, ITIMER, and IREADC) must
be specified in an EXTERNAL statement in the FORTRAN program issuing the
call.

• Certain arguments to SYSLIB calls must be located so that the USR is prohibited
from swapping over them at execution time. This kind of swapping can occur
when the OTS$I section (which contains the all-pure code and data for the
module) is less than 2K words in length. Avoid swapping in this uncommon
situation either by typing the SET USR NOSWAP command to make the USR
resident before starting the job, or by compiling the mainline routine with a
/NOSWAP option. You can also use the linker /BOUNDARY option to make
OTS$O start at word boundary 11000(octal). (This problem generally occurs
only with small FORTRAN programs.)

In FORTRAN IV, FORTRAN 77 and C Language, program sections (PSECTs)
are used to collect code and data into appropriate areas of memory. If USR is
needed, but not resident, it will swap over a FORTRAN program, starting at the
symbol OTS$I for 2K words of memory.

• Unless explicitly stated, null arguments should not be used in calls to SYSLIB
routines.

1.3 Calling SYSLIB Subroutines or Functions

SYSLIB function subprograms and subroutines are called in the same manner as
user-written subroutines. In general, if SYSLIB routines return a value, they are
more useful as functions than as subroutines. If they do not return a value, they
should be used only as subroutines. When functions or subroutines serve equally
well in either role they are called routines. Call them in whichever way they are
most useful. Subroutines whose names start with letters other than I-through-N
either do not return a useful value or return a floating-point value.

PDP–11 C supports SYSLIB routines described in this document. The interface used
to call routines is the FORTRAN subroutine linkage.

Table 1–3 lists SYSLIB functions/subroutines and briefly describes each within
several types of categories:

• File Oriented Operations

• Data Transfer Operations

• Channel Oriented Operations

Using the System Subroutine Library 1–15

• Device and File Specifications

• Timer Support Operations

• RT–11 Services

• INTEGER*4 Support Functions

• Character String Functions

• Radix–50 Conversion Operations

• Multiterminal Operations

• Graphics (GIDCAL) Call Routines

SYSLIB entries are listed in the column that identifies their optimum use as
functions, subroutines or equally well as either, depending on whether or not it
is useful to return a value. Note the convention of prefixing subroutine calls with
an I when called as functions; and prefixing both with an M when functions or
subroutines have an added argument that specifies mapping. The Map column has
two entries:

No SLB—Subroutine/Function cannot be used in Supervisor library.
No I-D—Subroutine/Function cannot be used in separated I-D space.

The Restrictions column lists restrictions to use of a function or subroutine; for
example, ICNTXS can be used only in multijob environments.

SYSLIB subroutines IFREER and IGETR support mapping programmed requests,
and FORTRAN virtual arrays can access extended memory.

Table 1–3: SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

ABTIO IABTIO Chan – –

AJFLT I*4 – –

CALL$F – – – Macro

CHAIN – RT–11 – –

CHCPY ICHCPY Chan – Multijob

CLOSEC ICLOSE File – –

CLOSZ ICLOSZ File – –

CMAP ICMAP Mapping – Full Mapping

CMKT ICMKT Timer – Timer

CONCAT String – –

CNTXS ICNTXS RT–11 – Multijob

CRAW ICRAW Mapping – Mapping

1–16 RT–11 System Subroutine Library Manual

Table 1–3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

CRRG ICRRG Mapping – Mapping

CSI ICSI Dev/File Spec No SLB –

CSTAT ICSTAT Chan – –

CVTTIM Timer – –

DATE Timer No SLB –

DATE4Y Timer No SLB –

DELET IDELET File – –

DEVICE IDEVIC RT–11 – –

DJFLT I*4 – –

DSTAT IDSTAT RT–11 – –

ELAW IELAW Mapping – Mapping

ELRG IELRG Mapping – Mapping

ENTER IENTER File – –

FPROT IFPROT File – –

FREER IFREER Mapping No SLB Mapping

GCMAP IGCMAP Mapping – Full Mapping

GETR IGETR Mapping – Mapping

GFDAT IGFDAT File – –

GFINF IGFINF File – –

GFSTA IGFSTA File – –

GICLOS Graphics No SLB Pro

GIOPEN Graphics No SLB Pro

GIREAD Graphics No SLB Pro

GIWRIT Graphics No SLB Pro

GMCX IGMCX Mapping – Mapping

GTDIR IGTDIR Dev/File Spec No SLB –

GTDUS IGTDUS Dev/File Spec – –

GTIM Timer – –

GTJB IGTJB RT–11 – –

GTLIN IGTLIN Data Transfer – –

HERR IHERR RT–11 – –

Using the System Subroutine Library 1–17

Table 1–3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

IADDR RT–11 – –

IAJFLT IAJFLT I*4 – –

IDATE Timer – –

IDCOMP Timer – –

IDJFLT IDJFLT I*4 – –

IFWILD String No SLB –

IGTENT Dev/File Spec No SLB –

IJCVT I*4 – –

INDEX INDEX String – –

INSERT String – –

IPEEK RT–11 – –

IPEEKB RT–11 – –

IRAD50 IRAD50 RAD50 No SLB –

ISPY RT–11 – –

ISWILD String No SLB –

ITLOCK RT–11 – –

ITTINR Data Transfer – –

ITTOUR Data Transfer – –

IWEEKD Timer No SLB –

JADD JADD I*4 – –

JAFIX JAFIX I*4 – –

JCMP I*4 – –

JDFIX I*4 – –

JDIV JDIV I*4 – –

JICVT JICVT I*4 – –

JJCVT Timer,I*4 – –

JMOV JMOV I*4 – –

JMUL JMUL I*4 – –

JREAD JREAD Data Transfer No SLB –

JREADC JREADC Data Transfer No SLB –

1–18 RT–11 System Subroutine Library Manual

Table 1–3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

JREADF JREADF Data Transfer No I-D,
No SLB

–

JREADW JREADW Data Transfer No SLB –

JSUB JSUB I*4 – –

JTIME Timer – –

JWRITC JWRITC Data Transfer No SLB –

JWRITE JWRITE Data Transfer No SLB –

JWRITF JWRITF Data Transfer No I-D,
No SLB

–

JWRITW JWRITW Data Transfer No SLB –

KPEEK RT–11 – –

KPOKE KPOKE RT–11 – –

LEN String – –

LOCK RT–11 – –

LOOKUP File – –

MAP MAP Mapping – Mapping

MGETR MGETR Mapping No SLB Mapping

MRCVD MRCVD Data Transfer – Full mapping, multijob

MRCVDC MRCVDC Data Transfer – Full mapping, multijob

MRCVDW MRCVDW Data Transfer – Full mapping, multijob

MREAD MREAD Data Transfer – Full mapping

MREADC MREADC Data Transfer – Full mapping

MREADW MREADW Data Transfer – Full mapping

MRKT MRKT Timer – Timer.

MSCCA MSCCA RT–11 – Full mapping

MSDAT MSDAT Data Transfer – Full mapping, multijob

MSDATC MSDATC Data Transfer – Full mapping, multijob

MSDATW MSDATW Data Transfer – Full mapping, multijob

MSDS MSDS Mapping – Full mapping

MSPFN MSPFN Data Transfer – Full mapping

MSPFNC MSPFNC Data Transfer – Full mapping

MSPFNW MSPFNW Data Transfer – Full mapping

Using the System Subroutine Library 1–19

Table 1–3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

MTATCH MTATCH Multiterm – Multiterm

MTDTCH MTDTCH Multiterm – Multiterm

MTGET MTGET Multiterm – Multiterm

MTIN MTIN Multiterm – Multiterm

MTOUT MTOUT Multiterm – Multiterm

MTPRNT MTPRNT Multiterm – Multiterm

MTRCTO MTRCTO Multiterm – Multiterm

MTSET MTSET Multiterm – Multiterm

MTSTAT MTSTAT Multiterm – Multiterm

MWAIT Chan – Multijob

MWRITC MWRITC Data Transfer – Full mapping

MWRITE MWRITE Data Transfer – Full mapping

MWRITW MWRITW Data Transfer – Full mapping

POKE IPOKE RT–11 – –

POKEB IPOKEB RT–11 – –

PRINT Data Transfer – –

PROTE IPROTE RT–11 – –

PURGE Chan – –

PUT IPUT RT–11 – –

R50ASC RAD50 No SLB –

RAD50 RAD50 No SLB –

RANDU RAN Math – –

RCHAIN RT–11 – –

RCTRLO RT–11 – –

RCVD IRCVD Data Transfer – Multijob

RCVDC IRCVDC Data Transfer – Multijob

RCVDF IRCVDF Data Transfer No I-D,
No SLB

–

RCVDW IRCVDW Data Transfer – Multijob

READ IREAD Data Transfer – –

READC IREADC Data Transfer – –

1–20 RT–11 System Subroutine Library Manual

Table 1–3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

READF IREADF Data Transfer No I-D,
No SLB

–

READW IREADW Data Transfer – –

RENAM IRENAM File – –

REOPN IREOPN Chan – Multijob

REPEAT String – –

RESUME RT–11 – –

SAVES ISAVES Chan – Multijob

SCCA ISCCA RT–11 – –

SCHED ISCHED Timer No SLB Timer

SCOMP ISCOMP String – –

SCOPY String – –

SDAT ISDAT Data Transfer – Multijob

SDATC ISDATC Data Transfer – Multijob

SDATF ISDATF Data Transfer No I-D,
No SLB

Multijob

SDATW ISDATW Data Transfer – Multijob

SDTTM ISDTTM Timer – –

SERR ISERR RT–11 – –

SETCMD RT–11 – –

SFDAT ISFDAT File – –

SFINF ISFINF File No SLB –

SFSTA ISFSTA File No SLB –

SLEEP ISLEEP Timer – Timer

SPCPS ISPCPS RT–11 – SPCPS support

SPFN ISPFN Data Transfer – –

SPFNC ISPFNC Data Transfer – –

SPFNF ISPFNF Data Transfer No I-D,
No SLB

–

SPFNW ISPFNW Data Transfer – –

STRPAD String – –

SUBSTR String – –

Using the System Subroutine Library 1–21

Table 1–3 (Cont.): SYSLIB Subroutines and Functions

Subroutine Function Type Map Restrictions

SUSPND RT–11 – –

$SYTRP rt–11 No I-D,
No SLB

Macro

TIMASC Timer – –

TIME Timer – –

TIMER ITIMER Timer – Timer.

TRANSL String – –

TRIM String – –

TWAIT ITWAIT Timer – Timer.

UNLOCK RT–11 – –

UNMAP IUNMAP Mapping – Mapping

UNPRO IUNPRO RT–11 – –

UNTIL IUNTIL Timer – Timer.

VERIFY IVERIF String No SLB –

WAIT IWAIT Chan – –

WRITC IWRITC Data Transfer – –

WRITE IWRITE Data Transfer – –

WRITF IWRITF Data Transfer No I-D,
No SLB

–

WRITW IWRITW Data Transfer – –

SYSLIB descriptions in Chapter 2 present these routines as calls or functions or
both, as applicable. Some subroutines and functions have an added argument that
specifies mapping. In these cases, the function or subroutine has an M prefix. In
the following example, RCVD can be called as a function or subroutine, including
the M-prefix version having a mapping argument:

CALL RCVD (buff,wcnt)
i = IRCVD (buff,wcnt)
CALL MRCVD (buff,wcnt[,BMODE=strg])
i = MRCVD (buff,wcnt[,BMODE=strg])

Function Subprograms
A function may return an error code value or other information useful to the purpose
of the calling routine. Function subprograms receive control by means of a function
reference as follows:

1–22 RT–11 System Subroutine Library Manual

i = function name ([arguments])

Subroutines
Subroutines are invoked by a CALL statement as follows:

CALL subroutine name [(arguments)]

Routines
Routine is the term that describes subroutines called as function subprograms, if a
return value is desired, or called as subroutines, if no return value is desired.

Some subroutines have two acceptable formats. For example, you can call the
CLOSEC subroutine or specify the ICLOSE function, since the latter returns an
integer error code return useful in showing either a normal return or error condition.

Quoted-string literals are useful as arguments of calls to routines in SYSLIB,
especially the character string routines. These literals are allowed in subroutine
and function calls (see Section 1.8.3).

1.4 FORTRAN/MACRO Interface

FORTRAN calling routines and subroutines follow a well-defined set of)conventions
by which MACRO programmers adhering to these conventions can write FORTRAN-
callable routines such as those in SYSLIB:

• Transfer of control

• Transfer of information

• Memory usage

• Register usage

Control is transferred to a subroutine by the following assembly language syntax:

CALL SUBR

When control passes to the subroutine SUBR, R5 points to an argument block like
that shown in the left-hand block in Figure 1–2. Null arguments in CALL statements
must be entered as comma pairs (, ,). For example, CALL SUBR (A, ,B) . As shown
in the right-hand block of Figure 1–2, the value -1 is stored in the argument block
as the address of a null argument.

The lower byte of the first word of the argument block contains the number of
arguments that are passed to the subroutine. The rest of the argument block
contains the addresses of those arguments. The argument block is n+1 words long
for n arguments.

The program counter is the linkage register. The subroutine obtains its arguments
through R5. In FORTRAN, the calling program saves the registers, and the
subroutine leaves the contents of the stack pointer intact before returning to the

Using the System Subroutine Library 1–23

Figure 1–2: Subroutine Argument Block

Reserved No. of
Arguments

? 3

Address of Argument 1 A

− 1

.

.

.

Address of Argument n

Address of Argument 2

.

.

.

B

calling program. The RETURN statement of the subroutine is placed by the
assembly language instruction RETURN.

The name of the subroutine must be declared global with the .GLOBL directive in
the calling program or with the double colon (::) construction in the called program.

NOTE
Be sure that the called program does not modify the
argument block passed by the calling program to a
subprogram.

1.4.1 Subroutine Register Usage

A subroutine called by a FORTRAN program does not have to preserve any registers.
However, each push onto the stack must be matched by a pop off the stack before
exiting from the routine.

User-written assembly language programs must preserve all pertinent registers
before calling FORTRAN subroutines or SYSLIB routines, then restore registers
after the subroutine returns. The CALL$F routine is provided to perform this
register save and restore. See CALL$F description in Chapter 2.

Function subroutines return a single result in a register. Table 1–4 shows the
register assignments for returning the different variable types.

NOTE
Floating-point results are returned in the general
purpose registers and not in the Floating Point Unit
(FPU) registers. Assembly language subprograms that
use the FP11 Floating Point Unit may be required to
save and restore the FPU status.

1–24 RT–11 System Subroutine Library Manual

Table 1–4: Return Value Conventions for Function Subroutines

Type Result Placed In

INTEGER*2 R0

LOGICAL*1

INTEGER*4 R0 low-order result

LOGICAL*4 R1 high-order result

REAL(*4) R0 high-order result (including sign and exponent)

R1 low-order result

DOUBLE PRECISION
or REAL*8

R0 highest-order result (including sign and exponent)
R1 next higher order
R2 next higher order
R3 lowest-order result

COMPLEX R0 high-order result
R1 low-order result
R2 high-order imaginary result
R3 low-order imaginary result

1.4.2 FORTRAN Programs Calling MACRO Subroutines

FORTRAN programs can call MACRO subroutines, but several rules must be
followed. In the following example, the program FINITA is a MACRO subroutine
that can be called from a FORTRAN program:

.TITLE FINITA
;+
; Put INIT into the LARRY elements starting at IARRAY
; IERR = FINITA (IARRAY, INIT, LARRAY)
; Default INIT to 0
;
; IERR = 0 success
; -1 invalid LARRY (negative)
; -2 missing argument
;-

.GLOBL $SYSLB ;SYSLIB version and value for $NOARG

.GLOBL $NXADR, $NXVAL ;routines to get args
;IN: R0 is default, R4 count
; R5 current arg list pointer
;OUT:R0 is addr / value
; R4 decremented count

Using the System Subroutine Library 1–25

; R5 incremented pointer
; Carry set if omitted arg

FINITA::
MOV (R5)+,R4 ;Put arg count in R4,

; point R5 to first arg
CALL $NXADR ;Get addr of array
BCS 20$;Error, missing arg
MOV R0,R1 ;save first arg addr
CLR R0 ;use 0 for omitted value
CALL $NXVAL ;Get value to init with
MOV R0,R2 ;save it
CALL $NXVAL ;Get words in array
BCS 20$;Error, missing arg
TST R0 ;Is the length gt 0
BLE 30$;no, can’t init

10$:
MOV R2,(R1)+ ;init array
SOB R0,10$;according to count
RETURN ;done (R0 = 0)

20$:
MOV #-2,R0 ;indicate missing args
RETURN

30$:
MOV #-1,R0 ;indicate invalid count
RETURN
.END

Call the preceding routine as follows:

Macro Call:

CALL FINITA (IAR,IVAL,N)

where:

FINITA is the name of the subroutine

IAR is the name of the array to initialize

IVAL is the initialized value of the array

N is the number of elements to initialize

This program illustrates the rules that must be observed when calling a MACRO
program. The name of the subroutine is made global by using the .GLOBL directive.

Register 5 (R5) is used to pass the arguments. For the program FINITA, the
argument block would appear as shown in Figure 1–3.

Registers R0 through R4 can be freely used because the calling program saves them.
When arguments have been retrieved, you can also use R5.

On completion, the subroutine returns to the calling program through a RETURN. If
your MACRO program pushes data on the stack, make sure that all data is popped
off the stack before the RETURN is executed.

1–26 RT–11 System Subroutine Library Manual

Figure 1–3: Argument Block for Program FINITA

0 3

Address of N

Address of IAR

Address of IVAL

The following FORTRAN program named FINITB calls the subroutine FINITA.

Program FINITB
C
C FORTRAN program to call MACRO subroutine
C

Integer*2 Array
Dimension Array(10)
Data Array /-1,-2,-3,-4,-5,-6,-7,-8,-9,-10/

C
N = 7 !init first seven elements
Do 10 I = 1, 10 !use 10 init values

Call FINITA (ARRAY, I, N)
Write (5, 100) (ARRAY(J), J = 1, 10)

10 Continue
100 Format (’ ’, 10I4)

End

Compile and link both programs, then run the program by typing:

.RUN FINITB RET

The initialized array will be output to the terminal as follows:

1 1 1 1 1 1 1 1 -8 -9 -10
2 2 2 2 2 2 2 2 -8 -9 -10
3 3 3 3 3 3 3 3 -8 -9 -10
.
.
.
9 9 9 9 9 9 9 9 -8 -9 -10

10 10 10 10 10 10 10 10 -8 -9 -10

1.4.3 MACRO Routines Calling FORTRAN Programs

If you want to call FORTRAN subroutines from a MACRO program, create a dummy
main program. For example,

Using the System Subroutine Library 1–27

Program FORINT !setup FTN environment
C
C MAIN program to call MACRO subroutines which in turn
C call FORTRAN subroutines.
C

Call FMAC2F !call first MACRO routine
Call FMACSF !call second MACRO routine
End

where:

FMAC2F is the name of a MACRO program that can call FORTRAN or
MACRO routines.

Creating a dummy program causes the FORTRAN main program to perform the
initialization necessary for FORTRAN subroutines.

In the following example, MACRO program FMAC2F calls a FORTRAN subroutine
named FMAXMN:

.TITLE FMAC2F ;MACRO calling FORTRAN

.GLOBL FMAXMN ;FORTRAN program to call
FMAC2F:: ;entry point

MOV #ARGBLK,R5 ;point to argument block
CALL FMAXMN ;call routine
RETURN ;done

ARGBLK: .WORD 2 ;two arguments
.WORD I ;address of first
.WORD J ;address of second

I: .WORD 28. ;value of first argument
J: .WORD 76. ;value of second argument

.END

First, set up the argument block either on the stack or in a separate area in your
MACRO program. Then point R5 to the top of the argument block prior to calling
the FORTRAN subroutine with a CALL FMAXMN. In the FMAC2F program shown
previously, the argument block is set up in an area of your program.

In the following example, a program named FMACSF performs the same operation
as the FMAC2F program, except that it places the argument blockf on the stack:

.TITLE FMACSF ;MACRO calling FORTRAN

.GLOBL FMAXMN ;FORTRAN program to call
FMACSF:: ;entry point

MOV #J,-(SP) ;build argument block on stack
MOV #I,-(SP) ; ...
MOV #2,-(SP) ; ...
MOV SP,R5 ;point to it
CALL FMAXMN ;call routine
ADD #3*2,SP ;pop argument block from stack
RETURN ;done

I: .WORD 28. ;value of first argument
J: .WORD 76. ;value of second argument

.END

1–28 RT–11 System Subroutine Library Manual

If you set up the argument block on the stack, you must remove the arguments
from the stack prior to the execution of the RETURN. Before calling the FORTRAN
subroutine, you must save all pertinent registers. You do not know which registers
the FORTRAN subroutine is using. The stack pointer remains unchanged across
the call.

You must define the name of the FORTRAN subroutine that the MACRO program
calls as a global. In the FORTRAN subroutine, execute normal FORTRAN
statements and return to the MACRO program with a RETURN statement.

The following program is the FORTRAN subroutine FMAXMIN:

Subroutine FMAXMN (IN1, IN2)
C
C FORTRAN subroutine called by MACRO subroutines
C

Integer*2 Big, Small
If (IN1 .gt. IN2) Then

BIG = IN1
SMALL = IN2

Else
BIG = IN2
SMALL = IN1

End If
Type 10, BIG
Type 20, SMALL

10 Format (’ The bigger number is ’, I10)
20 Format (’ The smaller number is ’, I10)

Return
End

After assembling and linking the programs, type:

.RUN FORINT RET

The program executes as follows:

The bigger number is 76
The smaller number is 28

The bigger number is 76
The smaller number is 28
STOP --

1.5 FORTRAN Programs in a Foreground/Background Environment

FORTRAN programs can be run in a foreground/background environment, which
enables the efficient use of CPU execution time. (See Chapter 5 of Introduction to
RT–11 for a description of running programs in an FB environment.)

Before running your foreground program, use the LOAD command to load the device
handlers required by the foreground job. These device handlers are placed in memory
between RMON and the USR and KMON, causing USR and KMON to move down
in memory.

Using the System Subroutine Library 1–29

Next, use the FRUN command to load your foreground program in memory between
the device handlers and the USR, which causes the USR and KMON to move further
down in memory. You must allocate sufficient workspace when running a FORTRAN
program in the foreground. Allocate workspace by using the /BUFFER:n option of
the FRUN command. Also ensure that any FORTRAN program you run in the
foreground has adequate stack space. You can use one of the options supported by
the linker (See the RT–11 System Utilities Manual).

The background area must be at least 4K words long to accommodate the USR and
KMON. Until you run a background job with the RUN command, KMON is the
background job.

When the USR is required (in unmapped monitors), you must set up a 2K-word area
in each job for the swapping to occur correctly; that is, there must be space for at
least 2K words in the background area and 2K words in the foreground area. For
an explanation of USR swapping, see Section 1.2.8.

1.5.1 Calculating Workspace for a FORTRAN Foreground Program

Additional workspace must be allocated in memory when running a FORTRAN
program in the foreground of a foreground/background environment. For a
foreground job, the space is allocated by the /BUFFER:n option of the FRUN
command. (A background job uses whatever space is available between its high limit
and the system’s low limit.) When you allocate additional workspace in memory to
run a FORTRAN IV program in the foreground, calculate the space required by
using the following formula:
n = [[504+(35*N)+(R-136)+A*512]/2]+[10*qcount]+[6*num]+[25*INTSET]+[64+R/2]

where:

A Specifies the maximum number of files open at one time. Each file
opened as double buffered should be counted as two files.

N Specifies the maximum number of simultaneously open channels
(logical unit numbers). This value is specified when the compiler
is built and can be overridden with the /UNITS option during main
program compilation.

R Specifies the maximum formatted sequential record length. This
value is specified when the compiler is built and can be overridden
with the /RECORD option during main program compilation; the
default value is 136.

qcount Specifies queue elements.

num Specifies the number of channels.

INTSET Specifies the SYSLIB INTSET function.

Include the following optional elements in the formula if you want to use the
indicated system subroutine library (SYSLIB) functions:

1–30 RT–11 System Subroutine Library Manual

[10*qcount] Specifies space for queue elements, which the IQSET function
requires.

[6*num] Specifies space for the number of channels, which the ICDFN
function requires.

[25*INTSET] Specifies space for the number of INTSET calls issued in the
program, which the INTSET function requires.

[64+R/2] Specifies space for completion routines and a second record buffer.
Any functions, including INTSET, that invoke completion routines
must include 6410 words plus the number of words needed to allocate
the second record buffer (default is 68 decimal words).

The length of the record buffer is controlled by the /RECORD option
to the FORTRAN compiler. If the /RECORD option is not used, the
allocation in the formula must be 13610 bytes, or the length that
was set at FORTRAN installation time.

Note that the numbers in the formula presented above are all decimal quantities
for ease in computation, using a calculator. Remember, however, that in entering a
decimal number in the /BUFFER:n option of FRUN, you must include the decimal
point in the numeric value of n.

1.5.2 Running a FORTRAN Program in a Foreground/Background Environment

This section outlines the procedure for running two FORTRAN programs, one in the
background and one in the foreground.

The background program named FBACK is as follows:

Program FBACK !background demo program
Parameter JSW = "44 !JSW address
Parameter TTSPC = "010000 !TT special mode bit
Call IPOKE (JSW, TTSPC .or. IPEEK (JSW))

100 Continue
Call Print (’Hello from the background’)
Call ITTOUR (ITTINR()) !echo input char
Go To 100 !loop until killed
End

This program prints the message "Hello from the background" and will print the
message each time you input a character at the terminal.

The foreground program named FFORE is as follows:

Program FFORE !foreground demo program
Parameter JSW = "44 !JSW address
Parameter TTSPC = "010000 !TT special mode bit
Call IPOKE (JSW, TTSPC .or. IPEEK (JSW))

100 Continue
Call Print (’Hello from the foreground’)
Call ITTOUR (ITTINR()) !echo input char
Go To 100 !loop until killed
End

Using the System Subroutine Library 1–31

After compiling both programs, link them. Link the foreground program using the
LINK command with the /FOREGROUND option. This option produces a relocatable
load module with a .REL file type. For example,

.LINK/FOREGROUND FFORE RET

Then you can assign the device that will be used for the output of the foreground
program. You must also load into memory the peripheral device handlers needed by
the foreground program.

The command FRUN loads and starts execution of a .REL program as the foreground
job. At this point, typing the command:

.FRUN FFORE RET

causes the following error message to display, indicating that additional workspace
allocation is required and that the /BUFFER option must be used. (Refer to the
previous section for the formula to calculate the additional space needed.)

?Err 62 FORTRAN start fail

The command should be typed as follows:

.FRUN FFORE/BUFFER:2000 RET

Execution of this command results in the following output at the terminal:

F>
Hello from the foreground
B>
.

The system first identifies the message as foreground output, then the foreground
job executes and outputs its message. The background monitor next prints the
characters B> and a period (.), indicating that control has returned to monitor
command mode. Command input remains directed to the background job.

For example, when you type:

.RUN FBACK RET

the background job will display the following message:

Hello from the background

Each time you type a character to the terminal, say an "L", the message will be
repeated, as follows:

LHello from the background

Use the CTRL/F command to direct terminal input to the foreground job. The system
prints F> to remind you that you are now directing input to the foreground job. When
you type a character, such as "Y", the foreground job message will be displayed.

1–32 RT–11 System Subroutine Library Manual

F>
YHello from the foreground

Type a CTRL/B to return to the background job or a CTRL/C to return to monitor
command mode. If you are returning to a background environment, you should
unload the foreground job and any handlers to reclaim memory space for background
use. To stop these two example programs, enter CTRL/C to each one.

1.6 Linking with FORLIB

Normally, default system library file SYSLIB.OBJ also includes the overlay handlers
and the appropriate FORTRAN run-time system routines.

To add FORLIB.OBJ modules to the default library SYSLIB.OBJ, use the following
command:

.LIBRARY/INSERT/REMOVE SYSLIB FORLIB RET
Global? $ERRS RET

Global? $ERRTB RET

Global? $OVRH RET

Global? RET

1.7 SYSLIB Services Not Provided by Programmed Requests

SYSLIB provides many services that are not handled by single programmed
requests, for example:

• Time conversion and date access

• Program suspension

• Two-word integer support (INTEGER*4)

• Radix–50 conversion

• Character string manipulation

• Control of global regions in extended memory

1.7.1 Time Conversion and Date Access

Use the following calls to perform time conversions:

CVTTIM Converts a two-word internal format time to hours, minutes, seconds,
and ticks.

JTIME Converts a time given in hours, minutes, seconds, and ticks into the
internal two-word time format.

Use the following calls to print out the time:

TIMASC Converts the time in internal two-word format into an eight-character
ASCII string.

TIME Returns the current time of day as an eight-character ASCII string.

Access the current system date by issuing the DATE/IDATE call:

Using the System Subroutine Library 1–33

where:

DATE Returns date as a string value.

DATE4Y Returns the date as a string value with a four-digit year value.

IDATE Returns date as an integer value.

1.7.2 Program Suspension

You can suspend execution of a program with ITWAIT, ISLEEP, and IUNTIL calls,
where:

ITWAIT Suspends program execution for a specified number of ticks.

ISLEEP Suspends running program for a specified number of hours, minutes,
seconds and ticks.

IUNTIL Suspends job execution until a specific time of day, in hours, minutes,
seconds, and ticks.

1.7.3 Two-Word Integer Support (INTEGER*4)

This support is primarily for FORTRAN IV. It also can be used from MACRO, but
FORTRAN–77 has INTEGER*4 functionality built in. You can make calls to SYSLIB
to manipulate a 32-bit integer that uses two words of storage. The first word contains
the low-order part of the value and the second word contains the sign and the high-
order part of the value. The range of numbers that is represented is -231 to 231-1.
This format differs from the two-word internal time format that stores the high-
order part of the value in the first word and the low-order part in the second word.
Table 1–5 shows the calls you use to convert from one format to another.

Table 1–5: SYSLIB Conversion Calls

From To Call

INTEGER*4 REAL*4 AJFLT/IAJFLT

INTEGER*4 REAL*8 DJFLT/IDJFLT

INTEGER*4 INTEGER*2 IJCVT

REAL*4 INTEGER*2 JAFIX

REAL*8 INTEGER*4 JDFIX

INTEGER*2 INTEGER*4 JICVT

INTEGER*2 are 16-bit integers; INTEGER*4 are 32-bit integers; REAL*4 are 2-
word, single-precision floating-point numbers; REAL*8 are 4-word, double-precision
floating-point numbers.

Calls are also available for you to perform arithmetic operations on INTEGER*4
values, move a value to a variable, and convert a two-word internal time format to
and from an INTEGER*4 value.

1–34 RT–11 System Subroutine Library Manual

1.7.4 Radix–50 Conversion

You can convert ASCII characters to or from Radix–50, using RAD50, IRAD50, and
R50ASC,

where:

IRAD50 Converts a specified number of characters of Radix–50 and returns
the number of characters converted as a function result.

RAD50 Encodes RT–11 file descriptors in Radix–50 notation.

R50ASC Converts a specified number of Radix–50 characters to ASCII.

1.7.5 Character String Operations

SYSLIB provides character string functions that perform string operations such as:

• Concatenating strings

• Comparing strings

• Copying strings

• Replacing strings

• Computing the number of characters in a string

The following example is a program that demonstrates calling a SYSLIB character-
string subroutine from a macro program:

.TITLE FEGT2;2 ;calling SYSLIB from MACRO

.GLOBL CONCAT CALL$F ;SYSLIB routines

.MCALL .PRINT .EXIT ;macros
START::

MOV #STRCON,R2 ;Point to final buffer
MOV #ARGBLK,R5 ;Point to argument block
MOV #CONCAT,R0 ;Point to routine to call
CALL CALL$F ;Call it, saving registers R1-R4
.PRINT R2 ;Print resulting string
.EXIT ;and away

ARGBLK: .WORD 3 ;3 arguments
.WORD STRNG1 ;first input string address
.WORD STRNG2 ;second input string address
.WORD STRCON ;output string buffer address

STRNG1: .ASCIZ "Research and"

STRNG2: .ASCIZ " Development"

STRCON: .BLKB 31

.END START

Running this program concatenates string 1 and string 2, producing the following
terminal output:

Research and Development

For detailed description of character string functions, see Section 1.8.

Using the System Subroutine Library 1–35

1.7.6 Control of Global Regions

Global regions are areas in extended memory which can be used independently from
the program that created them; that is, they are shareable among programs. Use the
IGETR/MGETR and IFREER system subroutines to create, attach to, detach from,
and eliminate global regions in extended memory. All facilities for global region
control are available, using the MGETR and IFREER subroutines:

• MGETR creates or attaches to a global region. (IGETR obsolete; retain for
compatibility.)

• IFREER detaches from or eliminates a global region.

For a complete description of global region support, see the RT–11 System Internals
Manual.

1.8 Character String Functions

SYSLIB character string functions and routines provide variable-length string
support for RT–11 FORTRAN and for MACRO programs. SYSLIB calls that perform
character string operations are listed in Table 1–6.

Table 1–6: Character String Functions

Call Operation

CONCAT Concatenates variable-length strings

INDEX Returns the position of one string in another

INSERT Inserts one string into another

LEN Returns the length of a string

REPEAT Repeats a character string

SCOMP Compares two strings

SCOPY Copies a character string

STRPAD Pads a string with blanks on the right

SUBSTR Copies a substring from a string

TRANSL Performs character modification

TRIM Removes trailing blanks

VERIFY Verifies the presence of characters in a string

String Storage
Strings are stored in BYTE or LOGICAL*1 arrays that you define and dimension.
These arrays store strings in ASCII format as one character per array element, plus
a zero element to indicate the current end of the string.

1–36 RT–11 System Subroutine Library Manual

ASCII Code
The ASCII code used in this string package is the same as that employed by
FORTRAN for A-type FORMAT items, ENCODE/DECODE strings, and object-
time format strings. Whenever quoted strings are used as arguments in the
CALL statement, ASCIZ strings are generated for these routines by the FORTRAN
compiler. Note that a null string (a string containing no characters) can be
represented in FORTRAN by a variable or constant of any type that contains the
value zero or by a LOGICAL variable or constant with the .FALSE. value.

String Length
The length of a string can vary at execution time from zero characters to one less
than the size of the array that stores the string. The maximum size of any string is
32767 characters.

Strings can contain any of the seven-bit ASCII characters except null(0), since the
null character is used to mark the end of the string. The inclusion of a terminating
zero byte constitutes an ASCIZ format, the format set up by a MACRO assembler
directive .ASCIZ. This directive automatically sets up strings with a terminating
zero byte. Bit 7 of each character must be cleared; therefore, valid characters have
a decimal representation range from 1 to 127, inclusive.

In many routines, it is difficult to predict the length of the string produced. To
prevent a string from overflowing the array that contains it, you can specify an
optional integer argument to the subroutine. This argument, called len limits the
length of an output string to the value specified for len plus one (for the null
terminator), so that the array receiving the result must be at least len-plus-one
elements in size.

NOTE
If the string is larger than the array, and you do
not specify a correct len argument, other data may be
destroyed and cause unpredictable results.

When len is specified, you can also include optional argument err. Err is a logical
variable that should be initialized by the FORTRAN program to .FALSE. If a string
function is given the arguments len and err, and len is actually used to limit the
length of the string result, then err is set to the .TRUE. value. If len is not used to
truncate the string, err is unchanged; that is, it retains a .FALSE. value.

The argument len can appear alone; however, len must appear if err is specified.

Several routines use the concept of character position in which each character in a
string is assigned a position number, where the first character in the string is at
position one.

1.8.1 Allocating Character String Variables

A one-dimensional BYTE array can contain a single string whose length can vary
from zero characters to one fewer than the dimensioned length of the array. In the
following example, array A is used as a string variable that can contain a string of
44 or fewer characters.

Using the System Subroutine Library 1–37

Byte A(45) !allocate 1 string

Similarly, a two-dimensional BYTE array can be used to contain a one-dimensional
array of strings, each of which can have a length up to one less than the first
dimension of the BYTE array. There can be as many strings as the number specified
for the second dimension of the BYTE array. The program in the following example
creates string array W that has ten string elements, each of which can contain up
to 20 characters. String I in array W is referenced in subroutine or function calls as
W(1,I).

Byte W(21,10) !Allocate an array of 10 strings

In the following example, the program allocates a two-dimensional string array.

Byte T(14,5,7) !Allocate a 5 by 7 array of
!13 character strings

Each string in array T may vary in length to a maximum of 13 characters. String I,J
of the array can be referenced as T(1,I,J). Note that T is the same as T(1,1,1). This
dimensioning process can create string arrays of up to six dimensions (represented
by BYTE arrays of up to seven dimensions).

1.8.2 Passing Strings to Subprograms

BYTE arrays that contain strings can be placed in a COMMON block and referenced
by any or all routines with a similar common declaration. However, when you place
a BYTE array in a common block, make sure that one of the following is true:

• Array is even in length

• Odd-length arrays are paired to result in an overall even length.

• Strings are together as the last elements in the COMMON block; otherwise, all
succeeding variables in the COMMON block may be assigned odd addresses.

A BYTE array has an odd length only if the product of its dimensions is odd. For
example,

Byte B(10,7) !10*7 = 70, even length
Byte H(21) !21, odd length

These might be handled as shown in the following example:

Common A1, A2, A3(10), H !odd size at end

or

Byte HPAD !odd length
Common A1, A2, H, HPAD, A3(10) !Pair H and HPAD for even

These restrictions apply only to BYTE variables and arrays.

A single string can be passed by using its array name as an argument. In the
following example, the program passes string R to subroutine SUBR.

Byte R(21) !20 char string variable
Call Subr (R)

1–38 RT–11 System Subroutine Library Manual

If the calling program has declared a multidimensional array, and only one string
of that array is to be passed to a subroutine, then the subroutine call should specify
the first element of the string to be passed (this requires that the first dimension of
the array equals the maximum length of each string).

For example,

Byte NAMES(81,20) !20 names max 80 chars each

Do 10 NAMNUM=1, 20 !get 20 lines of input
Call GTLIN (NAMES(1, NAMNUM)) !from terminal/command file

10 Continue

If the maximum length of a string argument is unknown in a subroutine or function,
or if the routine is used to handle many different lengths, the dummy argument in
the routine should be declared as a BYTE array with a dimension of one, such as
BYTE ARG(1). In this case, the string routines correctly determine the length of
ARG whenever it is used, but it is not possible to determine the maximum size of any
string that can be stored in ARG. If a multidimensional array of strings is passed to
a routine, it must be declared in the called program with the same dimensions that
were specified in the calling program.

NOTE
The length argument specified in many of the character
string functions refers to the maximum length of the
string, excluding the necessary null byte terminator.
The length of the BYTE array to receive the string must
be at least one greater than the length argument.

1.8.3 Using Quoted-String Literals

You can use quoted strings as input arguments to any of the string routines invoked
as functions or with the CALL statement. In the following example, the program
compares the string in the array NAME to the constant string SMYTHE, R and sets
the value of the integer variable accordingly.

Call SCOMP (NAME, ’SMYTHE, R’, M)

Using the System Subroutine Library 1–39

Chapter 2

System Subroutine Description and Examples

This chapter presents all SYSLIB functions and subroutines in alphabetical order
by generic name. For example, because READ, IREAD, and MREAD can be called
either as subroutines or functions, presenting them together under *READC will
simplify lookup. An I-prefixed name indicates its use as a function; an M-prefixed
name indicates that mapping is specified.

Each description briefly defines the subroutine or function; gives its argument list,
and defines each parameter and argument contained in the argument list. Function
results and errors are listed for each, as appropriate. Descriptions include specific
examples for each function or subroutine or refer you to examples elsewhere in the
chapter.

System Subroutine Description and Examples 2–1

ABTIO/IABTIO
ABTIO/IABTIO aborts I/O on a specified channel.

Form:

CALL ABTIO (chan)
i = IABTIO (chan)

where:

chan is the channel number for which to abort I/O

Errors:

Value Meaning
i = 0 Success.

Error message TRAP $MSARG will display if chan argument is missing.

Example:

Program FABTIO !demo ABTIO
C
C Pump out 9 buffers to LP using non-wait mode I/O.
C Abort the I/O. This should cause the printout to
C be truncated.
C
C NOTE: using LS7 as a trick to bypass SPOOLING, since
C spooling is normally applied to LP, LP0, LS and LS0.
C

Integer*2 DBLK(4)
Data DBLK /3rLS7, 3rTES, 3rTXX, 3rTMP/ !LS7 to sneak around SP
Integer*2 BUFFER(256,9), CHARS, CRLF

C
CHARS = ’11’ !begin at 1
CRLF = ’015’o + (’012’o * ’400’o) ! CR / LF pair in word
ICHAN = IGETC ()
Call IQSET (20) !get more queue elements
Call ENTER (ICHAN, DBLK, 0)
Do 300, J = 1, 9

Do 200, I = 1, 256
BUFFER(I,J) = CHARS
If (IMOD (I, 60 * 2) .eq. 0) BUFFER(I,J) = CRLF

200 Continue
CHARS = CHARS + ’400’o + 1 !then 2 ... 9
Call WRITE (256, BUFFER(1,J), J - 1, ICHAN)

300 Continue
C
C Comment out the call to ABTIO and observe the difference
C

Call ABTIO (ICHAN) !stop it in midstream
Call CLOSEC (ICHAN)
End

2–2 RT–11 System Subroutine Library Manual

AJFLT/IAJFLT
AJFLT/IAJFLT converts an INTEGER*4 value to a REAL*4 value and returns that
result as the function value.

Form:

ares = AJFLT (jsrc)
i = IAJFLT (jsrc,ares)

where:

jsrc is the INTEGER*4 variable to be converted

ares is the REAL*4 variable or array element to receive the converted
value

Function Results:

i = -1 Normal return; result is negative.

= 0 Normal return; result is 0.

= 1 Normal return; result is positive.

Errors:

Value Meaning
i = -2 Significant digits were lost during the conversion.

Unpredictable results will occur if the jsrc argument is omitted.

Example:

Program FIAJFL !FORTRAN IV
Integer*4 JVAL, J5
Integer*2 IVAL(2), I5(2)
Equivalence (IVAL(1), JVAL), (I5(1), J5)
Real*4 RESULT

C
IVAL(1) = 123 !initial value
IVAL(2) = 1 !really 65536+123 (65659)
I5(1) = 5 !constant value
I5(2) = 0 ! ...

100 Continue
IERR = IAJFLT (JVAL, RESULT)
Type 101, RESULT

101 Format (’ ’, ’!FIAJFL-I-Results’, f16.0)
IERR = JMUL (JVAL, J5, JVAL)
If (IERR .eq. -2) Go To 200
Go To 100

200 Continue
Type 102

102 Format (’ ’, ’!FIAJFL-I-Overflow’)
End

System Subroutine Description and Examples 2–3

AJFLT/IAJFLT

The following example converts the INTEGER*4 value in JVAL to single precision
(REAL*4), multiplies it by 3.5, and stores the result in VALUE:

Real*4 VALUE, AJFLT, THREE5
Data THREE5 / 3.5/
Integer*4 JVAL
JVAL = 123456789
VALUE = AJFLT (JVAL) * THREE5

2–4 RT–11 System Subroutine Library Manual

CALL$F
CALL$F can be called only from a MACRO–11 program.

The CALL$F routine saves the contents of general registers R1 through R4 across a
call to another routine that might destroy the contents of those registers. CALL$F
saves the contents of R1 through R4 on the stack, calls the other routine, and then
restores the saved register contents.

Form:

MOV #rtn,R0
MOV #arg,R5
CALL CALL$F

where:

rtn is the address of the routine you want to call. The current contents
of registers 1 through 4 are preserved during execution of the called
routine

arg is the starting address of the argument list for the routine you want
to call

Errors:
None. Any errors are returned by the routine called by CALL$F.

Example:

.GLOBL GTLIN, CALL$F ;routines from SYSLIB

.PSECT CODE,I ;program code fragment

MOV #GTLIN,R0 ;routine to call (ultimately)
MOV #PARMS,R5 ;argument list to use
CALL CALL$F ;call GTLIN, save R1-R4

.PSECT DATA,D ;program data fragment

PARMS: .WORD 2 ;number of arguments
.WORD BUF ;response buffer
.WORD PROMPT ;prompt string

BUF: .BLKB 81. ;buffer
PROMPT: .ASCII "Enter username>" ;prompt

.BYTE 200 ;without terminating cr/lf

System Subroutine Description and Examples 2–5

CHAIN
The CHAIN subroutine lets a background program transfer control directly to
another background program and pass specified information to it. CHAIN cannot
be called from a completion or interrupt routine. The FORTRAN impure area is not
preserved across a chain. Therefore, when chaining from one program to another,
the information must be reset in the program being chained to. When chaining to
any other program, you should explicitly close the opened logical units with calls to
the CLOSE routine. Any routines specified in a FORTRAN USEREX library call are
not executed if a CHAIN is accomplished. (See Appendix B in the RT–11/RSTS/E
FORTRAN IV User’s Guide.

Form:

CALL CHAIN (dblk,var,wcnt)

where:

dblk is the address of a four-word Radix–50 descriptor of the file
specification for the program to be run (See device block discussion
in Chapter 1) for the format of the file specification

var is the first variable (which must start on a word boundary) in a
sequence of variables with increasing memory addresses to be passed
between programs in the chain parameter area (absolute locations
510 to 777). A single array or a COMMON block (or portion of a
COMMON block) is a suitable sequence of variables

wcnt is a word count specifying the number of words (beginning at var) to
be passed to the called program. The argument wcnt may not exceed
60. If no words are passed, then a word count of 0 must be supplied.

If the size of the chain parameter area is insufficient, it can be increased by specifying
the /B (or /BOTTOM) option to LINK for both the program executing the CHAIN
call and the program receiving control.

The data passed can be accessed through a call to the RCHAIN routine. For more
information on chaining to other programs, see the .CHAIN programmed request.

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:

The following example transfers control from the main program to FRCHAI.SAV on
BIN and passes it variables (See also RCHAIN for FRCHAI.FOR):

2–6 RT–11 System Subroutine Library Manual

CHAIN

Program FCHAIN !demonstrate CHAIN routine
C
C Chain to BIN:FRCHAI.SAV passing 100,200,301
C

Integer*2 DBLK(4)
Data DBLK /3rBIN, 3rFRC, 3rHAI, 3rSAV/
COMMON /CHAIND/ I, J, K !force order
Data I /100/, J /200/, K / 301/ !initialize

C
Call CHAIN (DBLK, I, 3)
End

System Subroutine Description and Examples 2–7

CHCPY/ICHCPY
Multijob Only
CHCPY/ICHCPY opens a channel for input, logically connecting it to a file that is
currently open by another job for either input or output. CHCPY/ICHCPY is used
in a multijob situation to gain shared access to a file already opened by another
job. It substitutes for an OPEN (or LOOKUP or ENTER) in your program, instead
obtaining the parameters of the file from the other job. An ICHCPY must be done
before the first read or write on ochan.

Form:

CALL CHCPY (chan,ochan[,jobblk])
i = ICHCPY (chan,ochan[,jobblk])

where:

chan is the channel the job will use to read the data. You must obtain this
channel through an IGETC call, or you can use channel 16 or higher
if you have done an ICDFN call

ochan is the channel number of the other job that is to be copied

jobblk is a pointer to a three-word ASCII job name

Notes

• If the other job’s channel was opened with an IENTER function or a .ENTER
programmed request to create a file, your channel indicates a file that extends to
the highest block that the creator of the file had written at the time the CHCPY
was executed.

• A channel that is open on a sequential-access device should not be copied, because
requests can become intermixed.

• Your program can write on a copied channel to a file that is being created by the
other job, just as your program could if it were the creator. When your channel
is closed, however, no directory update takes place.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Specified job does not exist. Or specified channel (ochan) open.

= 2 Channel (chan) is already open.

Error message TRAP $MSARG will display if chan or ochan argument is missing.

2–8 RT–11 System Subroutine Library Manual

CHCPY/ICHCPY

Example:

Program FCHCPB !BG program for CHCPY
Parameter SUCCS = ’001’o
Parameter FATAL = ’010’o
Integer*2 BUFFER(513)
Integer*2 FCHCPF(3)
Byte CHCPF(6)
Data CHCPF /’F’, ’C’, ’H’, ’C’, ’P’, ’F’/
Equivalence (FCHCPF(1), CHCPF(1))

C
BUFFER(513) = 0 !null just in case
ICHAN = 14
JCHAN = 15
IERR = ICHCPY (ICHAN, JCHAN, FCHCPF)
If (IERR .ne. 0) Go To 100
IERR = IREADW (512, BUFFER, 0, ICHAN)
If (IERR .ne. 512) Go To 200
Call PRINT (BUFFER)
Call Exit (SUCCS)

C
100 Type *, ’?FCHCPB-F-ICHCPY failed with code ’, IERR

Call Exit (FATAL)
200 Type *, ’?FCHCPB-F-IREADW failed with code ’, IERR

Call Exit (FATAL)
End

Program FCHCPF !FG program for ICHCPY
Integer*2 DBLK(4)
Data DBLK /3rSRC, 3rFCH, 3rCPB, 3rFOR/

C
ICHAN = 15
IERR = LOOKUP (ICHAN, DBLK)
If (IERR .lt. 0) Go To 100
Call SUSPND !sleep (forever)

C
100 Type *, ’?FCHCPF-F-LOOKUP failed with code ’, IERR

End

System Subroutine Description and Examples 2–9

CLOSEC/ICLOSE
The CLOSEC subroutine terminates activity on the specified channel and frees it
for use in another operation.

Form:

CALL CLOSEC (chan[,i])
CALL ICLOSE (chan[,i])
i = ICLOSE(chan)

where:

chan is the channel number to be closed. This argument must be located
so that the USR cannot swap over it

i is the error returned if a protection violation occurs

Notes
Under certain conditions, a handler for the associated device and USR must be
available when issuing a .CLOSE for a channel opened with a .ENTER or .LOOKUP:

• .CLOSE requires a handler and USR, if it is:

— A special directory device (magtape).

— An RT–11 standard directory device, and the file was opened with a .ENTER.

• All other RT–11 operations do not require either handler or USR.

A CLOSEC or PURGE must eventually be issued for any channel opened for input
or output. A CLOSEC call specifying a channel that is not open is ignored.

A CLOSEC performed on a file that was opened via an IENTER causes the device
directory to be updated to make that file permanent. If the device associated with
the specified channel already contains a file with the same name and type, the old
copy is deleted when the new file is made permanent. If the file name is protected,
then a protection error is generated and two files will exist with the same name. A
CLOSEC on a file opened via LOOKUP does not require any directory operations.

When an entered file is closed, its permanent length reflects the highest block of the
file written since the file was entered; for example, if the highest block written is
block number 0, the file is given a length of 1; if the file was never written, it is given
a length of 0. If this length is less than the size of the area allocated at IENTER
time, the unused blocks are reclaimed as an empty area on the device.

Use ICLOSZ, rather than CLOSEC or ICLOSE, to set file size at closure. ICLOSZ
has no effect on the file size when the file was opened by a LOOKUP. (See CLOSZ
/ICLOSZ.)

2–10 RT–11 System Subroutine Library Manual

CLOSEC/ICLOSE

Errors:

Value Meaning
i = 0 Normal return.

= -4 A protected file with the same name already exists on a device. The
CLOSEC is performed, resulting in two files on the device with the
same name.

Error message TRAP $MSARG will display if any argument is missing.

Example:

The following example creates a file which becomes a 0-block permanent file:

Program FCLOSE !demo CLOSEC / ICLOSE
C
C Create and close DK:TEST.TMP w/o I/O.
C Note that this makes a permanent file of 0 length.
C Compare with FCLOSZ.
C

Integer*2 DBLK(4)
Data DBLK /3rDK , 3rTES, 3rT , 3rTMP/
Parameter SUCCS = ’001’o, FATAL = ’010’o

C
ICHAN = IGETC()
If (ICHAN .lt. 0) Go To 100
IERR = IENTER (ICHAN, DBLK, 100)
IF (IERR .lt. 0) Go To (110, 120, 130) IABS(IERR)
CALL CLOSEC (ICHAN, IERR)
If (IERR .eq. -4) Go To 200
Call IFREEC(ICHAN)
Call Exit (SUCCS)

100 Type *, ’ ?FCLOSE-F-No channel available’
Call Exit (FATAL)

110 Type *, ’ ?FCLOSE-F-Channel in use’
Call Exit (FATAL)

120 Type *, ’ ?FCLOSE-F-Not enough room’
Call Exit (FATAL)

130 Type *, ’ ?FCLOSE-F-Device in use’
Call Exit (FATAL)

200 Type *, ’ ?FCLOSE-F-Protected file already exists’
Call Exit (FATAL)
End

System Subroutine Description and Examples 2–11

CLOSZ/ICLOSZ
CLOSZ/ICLOSZ terminates activity on the specified channel and frees it for use in
another operation. ICLOSZ closes any file opened on that channel by an IENTER
and sets the file size to a value you specify. Use ICLOSZ, as opposed to CLOSEC or
ICLOSE, when you want to set the file size at closure. ICLOSZ has no effect on the
file size when the file was opened by a LOOKUP. See also CLOSEC/ICLOSE.

Form:

CALL CLOSZ (chan,size)
i = ICLOSZ (chan,size)

where:

chan is the INTEGER*2 channel number to be closed. If the specified
channel is not open, no action is taken

size is the size of the file in blocks at closure

i is a returned INTEGER*2 result of the function

If the handler for the device associated with the channel is marked FILST$ (supports
the RT–11 file structure) and the file is opened with IENTER, the value you specify
for the file size at closure must be equal to or less than the current allocated file
size. If the handler is marked SPECL$ (supports the special directory file structure),
RT–11 enforces no size constraints when the file is closed. However, the handler may
impose constraints.

The handler for the device associated with the channel must be in memory if the
channel was opened with the IENTER subroutine or if the handler is marked
SPECL$ (supports the special directory structure).

An ICLOSZ performed on a file that was opened with IENTER causes the device
directory to be updated to make that file permanent. If the device associated with
the specified channel already contains a file with the same name and type, the old
copy is deleted when the new file is made permanent. If the file name is protected,
then a protection error is generated. An ICLOSZ on a file opened using a LOOKUP
does not require the USR for RT–11 directory devices, but does require the USR for
special directory devices.

Errors:

Value Meaning
i = 0 Normal return

= -2 Size too big

= -3 Invalid operation

= -4 A protected file with the same name already exists on the device.

= -257 Required argument missing

2–12 RT–11 System Subroutine Library Manual

CLOSZ/ICLOSZ

Example:

Program FCLOSZ !demo ICLOSZ
C
C Create DK.TEST.TMP with 100 blocks, and
C make permanent at that size w/o I/O.
C

Integer*2 DBLK(4)
Data DBLK /3rDK , 3rTES, 3rT , 3rTMP/
Parameter SUCCS = ’001’o
Parameter FATAL = ’010’o

C
ICHAN = IGETC()
If (ICHAN .lt. 0) Go To 100
IERR = IENTER (ICHAN, DBLK, 100)
IF (IERR .lt. 0) Go To (110, 120, 130) IABS(IERR)
IERR = ICLOSZ (ICHAN, IERR)
If (IERR .eq. -4) Go To 200
Call IFREEC(ICHAN)
Call Exit (SUCCS)

100 Type *, ’ ?FCLOSZ-F-No channel available’
Call Exit (FATAL)

110 Type *, ’ ?FCLOSZ-F-Channel in use’
Call Exit (FATAL)

120 Type *, ’ ?FCLOSZ-F-Not enough room’
Call Exit (FATAL)

130 Type *, ’ ?FCLOSZ-F-Device in use’
Call Exit (FATAL)

200 Type *, ’ ?FCLOSZ-F-Protected file already exists’
Call Exit (FATAL)
End

System Subroutine Description and Examples 2–13

CMAP/ICMAP
Full Mapping
CMAP/ICMAP, available only under fully mapped monitors, is a routine that controls
mapping for Supervisor mode and I-D space. CMAP establishes CMAP status in
Supervisor data space, distinct from User data space.

Form:

CALL CMAP (ival [,iold][,ierr])
ierr = ICMAP (ival [,iold])

where:

ierr Error return

ival New value for CMAP status

iold Previous CMAP status

Errors:

Value Meaning
0 Success.

-257 Required argument (ival) argument is omitted.

Example:

C CMPDF.FOR FORTRAN equivalent of .CMPDF
Parameter CMPR0 = ’1’o !unlock PAR0 S-U
Parameter CMPR1 = ’2’o !unlock PAR1 S-U
Parameter CMPR2 = ’4’o !unlock PAR2 S-U
Parameter CMPR3 = ’10’o !unlock PAR3 S-U
Parameter CMPR4 = ’20’o !unlock PAR4 S-U
Parameter CMPR5 = ’40’o !unlock PAR5 S-U
Parameter CMPR6 = ’100’o !unlock PAR6 S-U
Parameter CMPR7 = ’200’o !unlock PAR7 S-U
Parameter CMPAR = ’377’o !PAR locking mask
Parameter CMSXX = ’1000’o !Change Supy I-D
Parameter CMSII = ’1000’o !Supy I = D
Parameter CMSID = ’1400’o !Supy i ne D
Parameter CMS = ’1400’o !Supy ID mask
Parameter CMDUS = ’4000’o !Change PAR locking
Parameter CMXXS = ’20000’o !Change Supy swapping
Parameter CMNOS = ’20000’o !Don’t swap Supy
Parameter CMJAS = ’30000’o !Swap Supy
Parameter CMSUP = ’30000’o !Supy swapping mask
Parameter CMUXX = ’100000’o !Change User I-D
Parameter CMUII = ’100000’o !User I = D
Parameter CMUID = ’140000’o !User I ne D
Parameter CMU = ’140000’o !User ID mask

2–14 RT–11 System Subroutine Library Manual

CMAP/ICMAP

Program FCMAP
C
C Set User D PARs to an unlikely value and then
C turn on User separated I and D, which should set
C the User D PARs to match the User I PARs.
C Verify that this happens.
C
C Perform the same sort of test on MSDS, separating
C PARs 4 through 7
C

Include ’SRC:CMPDF’
Parameter UDPAR0 = ’177660’o, UIPAR0 = ’177640’o
Parameter SDPAR0 = ’172260’o
Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 REQUES !request code for CMAP

C
Do 100, I = UDPAR0, UDPAR0+(7*2), 2

100 Call KPOKE (I, -1) !set User D PARs to unlikely value
C

REQUES = CMUID+CMSID+CMSUP
C request separate U I-D spaces; separate S I-D spaces;
C and turn on Supy

Call CMAP (REQUES) !separate I and D
C

Do 200, I = SDPAR0, SDPAR0+(7*2), 2
200 Call KPOKE (I, -2) !set Supy D PARs to unlikely value
C

REQUES = CMPR7+CMPR6+CMPR5+CMPR4
C and not to lock S and U D PARs 4 through 7

Call MSDS (REQUES) !separate PARs 4 through 7
C !This should also copy some D PARs U to S
C

Do 300, I = UDPAR0, UDPAR0+(7*2), 2
If (KPEEK (I) .ne. KPEEK (I + (UIPAR0 - UDPAR0)))

1 Go To 1000 !do they now match?
300 Continue

Do 400, I = SDPAR0, SDPAR0+(3*2), 2
If (KPEEK (I) .ne. KPEEK (I + (UDPAR0 - SDPAR0)))

1 Go To 1100 !do they now match?
400 Continue

Do 500, I = SDPAR0+(4*2), SDPAR0+(7*2), 2
If (KPEEK (I) .ne. -2)

1 Go To 1200 !do they now match?
500 Continue

Type *,’!FCMAP-I-Success’
Call Exit (SUCCS)

C
1000 Type *,’?FCMAP-F-U(I,D)PAR values are not the same’

Call Exit (FATAL)
1100 Type *,’?FCMAP-F-(S,U)DPAR values are not the same’

Call Exit (FATAL)
1200 Type *,’?FCMAP-F-SDPAR values changes’

Call Exit (FATAL)
End

System Subroutine Description and Examples 2–15

CMKT/ICMKT
CMKT/ICMKT cancels one or more scheduling requests (made by an ISCHED,
ITIMER, or MRKT routine). Support for CMKT in SB requires that you select timer
support during SYSGEN.

Form:

CALL CMKT (id[,itime])
i = ICMKT (id[,itime])

where:

id is the identification integer of the request to be canceled. If id is
equal to 0, all scheduling requests are canceled

itime is the name of a two-word area in which the monitor returns the
amount of time remaining in the canceled request

For further information on canceling scheduling requests, see the .CMKT
programmed request in the RT–11 System Macro Library Manual.

Errors:

Value Meaning
i = 0 Normal return.

= 1 The value of id was not equal to 0 and no scheduling request with
that identification could be found.

Error message TRAP $MSARG will display if id argument is missing.

Example:
See MRKT.

2–16 RT–11 System Subroutine Library Manual

CNTXS/ICNTXS
Multijob Only
CNTXS/ICNTXS establishes a list of locations to be saved when a transition is made
from one running job to another. CNTXS preserves locations that are not preserved
automatically by the monitor. Refer to the RT–11 System Macro Library Manual.

Form:

CALL CNTXS (addr)
i = ICNTXS (addr)

where:

addr is the pointer to the list of addresses to be preserved. The list is
terminated with a zero word

i is a returned INTEGER*2 result of the function.

Errors:

Value Meaning
i = 0 Normal return

= -1 One or more of the conditions specified by addr was violated

= -257 Required argument missing.

Example:

Program FCNTXS !demo ICNTXS
C
C Setup swapping of vectors 400 through 406
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 LIST(5), NOLIST
Data LIST /’400’o, ’402’o, ’404’o, ’406’o, 0/
Equivalence (NOLIST, LIST(5))

C
IERR = ICNTXS (LIST) !swap 400--406
If (IERR .ne. 0) Go To 1000

C
C ...
C

Call CNTXS (NOLIST) !stop swapping
Call PRINT (’!FCNTXS-I-Success’)
Call Exit (SUCCS)

C
1000 Call PRINT (’?FCNTXS-F-Failed’)

Call Exit (FATAL)
End

System Subroutine Description and Examples 2–17

CONCAT
The CONCAT subroutine concatenates two character strings.

Form:

CALL CONCAT (a,b,out[,len[,err]])

where:

a is the array containing the left string. The string must be terminated
with a null byte

b is the array containing the right string. The string must be
terminated with a null byte

out is the array into which the concatenated result is placed. This array
must be at least one element longer than the maximum length of the
resultant string (that is, one greater than the value of len, if specified)

len is the integer number of characters representing the maximum length
of the output string. The effect of len is to truncate the output string
to a given length, if necessary

err is the logical error flag set if the output string is truncated to the
length specified by len.
You must specify err as LOGICAL*1 in FORTRAN 77. It can be any
logical type in FORTRAN IV and any integer type in PDP–11C.

CONCAT sets the string in out to the value of the string in a, immediately followed
by the string in b, followed by a terminating null character.

NOTE
Any combination of string arguments is allowed, so long
as b and out do not specify the same array.

Concatenation stops when a null character is detected in b or when the number of
characters specified by len has been moved.

If either the left or right string is a null string, the other string is copied to out. If
both are null strings, then out is set to a null string. The old contents of out are lost
when this routine is called.

Errors:
Error conditions are indicated by err, if specified. If err is given and the output string
would have been longer than len characters, then err is set to .TRUE.; otherwise,
err is unchanged.

Error message TRAP $MSARG will display if argument b or out is missing.

2–18 RT–11 System Subroutine Library Manual

CONCAT

Example:
The following example concatenates the string in array STR and the string in array
IN and stores the resultant string in array OUT. OUT cannot hold a string longer
than 29 characters:

Program FCONCA !demo CONCAT
C
C Show concatination and truncation
C

Byte IN(22), OUT(30), STR(10)
C

Call SCopy (’abcdefghijklmnopqrstu’, IN)
Call SCopy (’123456789’, STR)
Call CONCAT (STR, IN, OUT, 29)
Call Print (OUT)
End

System Subroutine Description and Examples 2–19

CRAW/ICRAW
Mapping
CRAW/ICRAW are memory mapping routines which create an address window into
an existing memory region. It can be used in both User and Supervisor modes, and
can access both I and D space. See also .CRAW in the RT–11 System Macro Library
Manual.

Form:

CALL CRAW (iwdb [,ierr])
i = ICRAW (iwdb)

where:

iwdb Address of Window Descriptor Block

ierr Error return

Errors:

Value Meaning
i = 0 Function completed successfully.

= -1 Window alignment error.

= -2 Attempt to define more than 7 windows.

= -3 Invalid region identifier.

= -5 Combination of offset into region and size of window to be mapped
is invalid.

= -16 Mode/space not available.

= -257 Required argument missing.

Example:
C RDBDF.FOR -- FORTRAN equivalent of .RDBDF

Parameter RGID = 0 !region id subscript
Parameter RGSIZ = 2/2 !region size subscript
Parameter RGSTS = 4/2 !region status subscript
Parameter RGLLN = 6/2 !local RDB size
Parameter RGNAM = 6/2 !global region name words subscript
Parameter RGBAS = 10/2 !global region base addr subscript
Parameter RGLGH = 12/2 !global RDB size
Parameter RSCRR = ’100000’o !Created region ok
Parameter RSUNM = ’40000’o !1 or more windows eliminated
Parameter RSNAL = ’20000’o !region newly allocated
Parameter RSNEW = ’10000’o !new global region
Parameter RSGBL = ’4000’o !create within a global region
Parameter RSCGR = ’2000’o !create global if not found
Parameter RSAGE = ’1000’o !use auto global elimination
Parameter RSEGR = ’400’o !eliminate global region
Parameter RSEXI = ’200’o !eliminate on exit or abort
Parameter RSCAC = ’100’o !bypass cache
Parameter RSBAS = ’40’o !base address supplied
Parameter RSNSM = ’20’o !non-system memory

2–20 RT–11 System Subroutine Library Manual

CRAW/ICRAW

C WDBDF.FOR -- FORTRAN equivalent of .WDBDF
Parameter WNID = 0 !window ID subscript (low byte)
Parameter WNAPR = 0 !window APR number subscript (high byte)
Parameter WNBAS = 2/2 !window base address subscript
Parameter WNSIZ = 4/2 !window size subscript
Parameter WNRID = 6/2 !region ID subscript
Parameter WNOFF = 8/2 !window offset subscript
Parameter WNLEN = 10/2 !window length subscript
Parameter WNSTS = 12/2 !window status subscript
Parameter WNLGH = 14/2 !WDB size
Parameter WSCRW = ’100000’o !window created ok
Parameter WSUNM = ’40000’o !1 or more windows unmapped
Parameter WSELW = ’20000’o !1 or more windows eliminated
Parameter WSDSI = ’10000’o !D-space inactive
Parameter WSIDD = ’4000’o !I & D spaces different
Parameter WSRO = ’1000’o !read-only
Parameter WSMAP = ’400’o !create and map
Parameter WSSPA = ’14’o !space field
Parameter WSD = ’10’o !D-space
Parameter WSI = 4 !I-space

C !0 is default space
Parameter WSMOD = 3 !mode field
Parameter WSU = 0 !user mode
Parameter WSS = 1 !supervisor mode
Parameter WSC = 2 !current mode

Program FPLAS !demo PLAS requests
C
C This program has two behaviors depending on wether or not
C the global region TSTREG exists.
C If it does not exist, it creates it, get a line from the
C terminal and stores it in the region.
C If it does exist, it prints the line stored in the region
C then eliminates the region.
C In both cases it displays the mapping context of the region.
C

Include ’SRC:RDBDF’ !RDB definitions
Include ’SRC:WDBDF’ !WDB definitions
Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter BASADR = ’160000’o !PAR 7 for gbl region
Parameter REGSIZ = (81 + 63) / 64 !size in chunks
Integer*2 REGNAM(0:1) !global region name
Data REGNAM /3rTST, 3rREG/
Integer*2 WDB (0:WNLGH) !WDB block
Integer*2 RDB (0:RGLGH) !RDB block
Character*7 ERRCAL !code for error call
Integer*2 AREA(0:1) !must disable subscript checking
Integer*2 AREA0 !addr of AREA(0)
Integer PAR7 !subscript for AREA

C
C Find a way of referencing address 160000
C

AREA0 = IADDR (AREA(0)) !find addr of AREA(1)
PAR7 = (’160000’o - AREA0) / 2 !find "element" of AREA

C !that is at 160000
C
C Create (or attach) the global regions

System Subroutine Description and Examples 2–21

CRAW/ICRAW

C
RDB(RGSIZ) = REGSIZ !region size
RDB(RGSTS) = RSGBL + RSCGR !create or attach global
RDB(RGNAM+0) = REGNAM(0)!region name
RDB(RGNAM+1) = REGNAM(1)!region name
IERR = ICRRG (RDB) !can we find it?
ERRCAL = ’CRRG’
If (IERR .ne. 0) Go To 1000 !error

C
C Create an address window
C

WDB(WNAPR) = (BASADR / ’20000’o) * ’400’o
C !Put PAR number in high byte

WDB(WNSIZ) = REGSIZ !region size
WDB(WNRID) = RDB(RGID) !region ID
WDB(WNOFF) = 0 !offset 0
WDB(WNLEN) = 0 !full size
WDB(WNSTS) = 0 !take all defaults
IERR = ICRAW (WDB) !create a window
ERRCAL = ’CRAW’
If (IERR .ne. 0) Go To 1000 !error

C
C Map to it (could be done by ICRAW)
C

IERR = MAP (WDB) !map into it
ERRCAL = ’MAP’
If (IERR .ne. 0) Go To 1000 !error

C
C display mapping context
C

IERR = IGMCX (WDB) !return mapping context
ERRCAL = ’GMCX’
If (IERR .ne. 0) Go To 1000 !error
Type 1, ’ Window ID = ’, IAND (WDB(WNID), ’377’o),
1 ’ Window APR = ’, WDB(WNAPR) / ’400’o,
2 ’ Window Addr = ’, WDB(WNBAS),
3 ’ Window Size = ’, WDB(WNSIZ),
4 ’ Window RgID = ’, WDB(WNRID),
5 ’Window Offset = ’, WDB(WNOFF),
6 ’Window Length = ’, WDB(WNLEN),
7 ’Window Status = ’, WDB(WNSTS)

1 Format (8(’ ’, a16, o7/))
C
C Decide if this is the first or second run
C

If (IAND (RDB(RGSTS), RSNEW) .eq. 0) Go To 100
C else first pass
C
C Collect a line, put it in the global region and exit
C leaving the region for the next run of this program
C

Call GTLIN (AREA(PAR7),,’p’) !get a string and put in region
Call Print (’!FPLAS-I-Pass 1 success’)
Call Exit (SUCCS)

C
C second pass
C

2–22 RT–11 System Subroutine Library Manual

CRAW/ICRAW

C Get the line from the region and display it,
C then eliminate the region.
C
100 Continue

Call PRINT (AREA(PAR7)) !print the string in the region
C
C Unmap the window
C

IERR = IUNMAP (WDB)
ERRCAL = ’UNMAP’
If (IERR .ne. 0) Go To 1000 !error

C
C Delete the window
C

IERR = IELAW (WDB)
ERRCAL = ’ELAW’
If (IERR .ne. 0) Go To 1000 !error

C
C Eliminate the region
C

RDB(RGSTS) = RSEGR !eliminate region
IERR = IELRG (RDB)
ERRCAL = ’ELRG’
If (IERR .ne. 0) Go To 1000 !error
Call Print (’!FPLAS-I-Pass 2 success’)
Call Exit (SUCCS)

C
C Error processing
C
1000 Continue

Type *, ’?FPLAS-F-’, ERRCAL, ’Failed with code’, IERR
Call Exit (FATAL)
End

System Subroutine Description and Examples 2–23

CRRG/ICRRG
Mapping
CRRG/ICRRG (Create Region) is a mapping routine for Supervisor mode, I-D space.
The function allocates or attaches to a region in physical memory for use by the
requesting job. See .CRRG and .RDBDF macros in the RT–11 System Macro Library
Manual.

Form:

CALL CRRG (irdb [,ierr])
ierr = ICRRG (irdb)

where:

ierr Error return

irdb Address of Region Descriptor Block

Errors:

Value Meaning
i = 0 Function completed successfully.

= -7 No region control blocks available.

= -10 Insufficient memory to allocate region of requested size.

= -11 Invalid region size was specified.

= -13 Global region not found.

= -14 Too many global regions.

= -16 Global region privately owned.

= -17 Global region already exists with different base address.

= -257 Required argument missing.

Example: See CRAW.

2–24 RT–11 System Subroutine Library Manual

CSI/ICSI
CSI/ICSI calls the RT–11 Command String Interpreter in special mode to parse a
command string and return file descriptors and options to the program. In this mode,
the CSI does not perform any handler IFETCH, CLOSEC, IENTER, or LOOKUP.
This subroutine requires the USR.

Form:

CALL CSI (filspc,deftyp[,cstring][,option],n)
i = ICSI (filspc,deftyp[,cstring][,option],n)

where:

filspc is the 39-word area to receive the file specifications. The format of
this area (considered as a 39-element INTEGER*2 array) is:

Word 1–4 output file number specification

Word 5 output file number 1 length

Word 6–9 output file number 2 specification

Word 10 output file number 2 length

Word 11–14 output file number 3 specification

Word 15 output file number 3 length

Word 16–19 input file number 1 specification

Word 20–23 input file number 2 specification

Word 24–27 input file number 3 specification

Word 28–31 input file number 4 specification

Word 32–35 input file number 5 specification

Word 36–39 input file number 6 specification

deftyp is the table of Radix–50 default file types to be assumed when a file
is specified without a file type:

deftyp(1) is the default for all input file types

deftyp(2) is the default file type for output file number 1

deftyp(3) is the default file type for output file number 2

deftyp(4) is the default file type for output file number 3

cstring is the area that contains the ASCIZ command string to be interpreted;
the string must end in a zero byte. If the argument is omitted, the
system prints the prompt character (*) at the terminal and accepts
a command string. If input is from a command file, the next line of
that file is used

System Subroutine Description and Examples 2–25

CSI/ICSI

option is the name of an INTEGER*2 array dimensioned (4,x) where x
represents the number of options defined to the program. This
argument must be present if the value specified for n is non-zero.
This array has the following format of the jth option described by the
array:

option(1, j) is the one-character ASCII name of the option

option(2, j) is set by the routine to 0, if the option did not occur;
to 1, if the option occurred without a value; to 2, if
the option occurred with a value

option(3, j) is set to the file number on which the option is
specified

option(4, j) is set to the specified value if option(2, j) is equal to
2

n is the number of options defined in the array option. The n is not
optional. If the n is omitted, specify n as 0.

Notes
The array option must be set up to contain the names of the valid options. For
example, use the following to set up names for five options:

INTEGER*2 SW(4,5)
DATA SW(1,1)/’S’/,SW(1,2)/’M’/,SW(1,3)/’I’/
DATA SW(1,4)/’L’/,SW(1,5)/’E’/

Multiple occurrences of the same option are supported by allocating an entry in the
option array for each occurrence of the option. Each time the option occurs in the
option array, the next unused entry for the named option is used. When there are
identical options, they are placed in the option array in reverse order. The last
occurrence of option in the command line is placed in the first matching entry in
option. You may want to consider putting both upper and lower case versions of the
options in the table, because options might be entered either way.

The arguments of ICSI must be positioned so that the USR cannot swap over them.
For more information on calling the Command String Interpreter, see the .CSISPC
programmed request.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Invalid command line passed by cstring in memory; no data was
returned.

= 2 Invalid device specification occurred in the command string
cstring in memory.

2–26 RT–11 System Subroutine Library Manual

CSI/ICSI

= 3 Invalid option specified; specified option exceeded number
allowed in the option array.

Error message TRAP $MSARG will display if filpc, deftyp, or n argument is missing.

Example:

The following example causes the program to loop until a valid command is typed
at the terminal:

Program FCSI !demo CSI
C
C Accept a command line, parse it into file specifications
C and switches. Display the results of this parsing.
C Note that input files use a trick to allow selection of
C a default type dynamically. The value of the /I switch is
C used as the default type for all input files.
C Switches that are accepted are /S/M/I/L/E.
C

Parameter OPTNUM = 5 !number of options allowed
C !option 1st subscript

Parameter OPTS = 1, OPTM = 2, OPTI = 3
Parameter OPTL = 4, OPTE = 5

C !names for option subscripts
Parameter OPTNAM = 1, OPTTYP = 2, OPTFIL = 3, OPTVAL = 4

C !values for OPTTYP
Parameter OPTNON = 0, OPTNOV = 1, OPTJAV = 2

C !offset for file name parts
Parameter DEV = 0, NAME = 1, TYPE = 3, SIZE = 4

C !subscripts for FILSPC
Parameter OUT1 = 1, OUT2 = 6, OUT3 = 11
Parameter IN1 = 16, IN2 = 20, IN3 = 24
Parameter IN4 = 28, IN5 = 32, IN6 = 36
Integer*2 FILSPC(39) !parsed file specifications
Integer*2 DEFTYP(4) !default file types
Data DEFTYP /-1, 3rOBJ, 3rLST, 3rTMP/
Integer*2 OPTION(4,OPTNUM) !option array
Data OPTION(OPTNAM,OPTS) /’S’/, OPTION(OPTNAM,OPTM) /’M’/
Data OPTION(OPTNAM,OPTI) /’I’/, OPTION(OPTNAM,OPTL) /’L’/
Data OPTION(OPTNAM,OPTE) /’E’/
Character*3 ASCDEV, ASCTYP
Character*6 ASCFIL

C
50 Call CSI (FILSPC, DEFTYP, , OPTION, OPTNUM)
C
C Display output files
C

Do 100 I = 1, 3
J = (I - 1) * (OUT2 - OUT1) + OUT1
If (FILSPC(J+DEV) .ne. 0) Then
Call R50ASC (3, FILSPC(J+DEV), ASCDEV)
Call R50ASC (6, FILSPC(J+NAME), ASCFIL)
Call R50ASC (3, FILSPC(J+TYPE), ASCTYP)
Type 1, ’OUT’, I, ASCDEV, ASCFIL, ASCTYP, FILSPC(J+SIZE)

1 Format (’ ’, a3, i1, ’ ’, a3, ’:’, a6, ’.’, a3, ’ [’, i5, ’]’)

System Subroutine Description and Examples 2–27

CSI/ICSI

End If
100 Continue
C
C Display input files
C

Do 200 I = 1, 6
J = (I - 1) * (IN2 - IN1) + IN1
If (FILSPC(J+DEV) .ne. 0) Then

Call R50ASC (3, FILSPC(J+DEV), ASCDEV)
Call R50ASC (6, FILSPC(J+NAME), ASCFIL)
If (FILSPC(J+TYPE) .eq. -1) !use /I value for default

1 FILSPC(J+TYPE) = OPTION(OPTVAL,OPTI)
Call R50ASC (3, FILSPC(J+TYPE), ASCTYP)
Type 2, ’ IN’, I, ASCDEV, ASCFIL, ASCTYP

2 Format (’ ’, a3, i1, ’ ’, a3, ’:’, a6, ’.’, a3)
End If

200 Continue
C
C Display options
C

Do 300 I = 1, OPTE
If (OPTION(OPTTYP,I) .ne. OPTNON) Then

If (OPTION(OPTTYP,I) .eq. OPTNOV) Then
Type 3, OPTION(OPTNAM,I), OPTION(OPTFIL,I)

3 Format (’ ’, ’/’, a1, ’ on file ’, i2)
Else

Type 4, OPTION(OPTNAM,I), OPTION(OPTVAL,I),
1 OPTION(OPTFIL,I)

4 Format (’ ’, ’/’, a1, ’:’, o6, ’ on file ’, i2)
End If

End If
300 Continue

Go To 50
End

2–28 RT–11 System Subroutine Library Manual

CSTAT/ICSTAT
CSTAT/ICSTAT obtains information about a channel.

Form:

CALL CSTAT (chan,addr[,strng])
i = ICSTAT (chan,addr[,strng])

where:

chan is the channel whose status is desired

addr is a six-word area to receive the status information. The area, as a
six-element INTEGER*2 array, has the following format:

Word 1 channel status word

Word 2 starting absolute block number of file on this channel

Word 3 length of file

Word 4 highest block number written since file was opened

Word 5 unit number of device with which this channel is
associated

Word 6 Radix–50 of device name with which the channel is
associated

strng is the 3-character area to receive the ASCII device name and unit
number associated with the specified channel.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Channel specified is not open.

Error message TRAP $MSARG will display if chan or addr argument is missing.

Example:

The following example obtains channel status information about channel I.

Program FCSTAT !demo CSTAT
C
C This program opens a file on a FORTRAN unit and then
C uses CSTAT to find out about the associated RT-11 channel.
C

Parameter CSW = 1, BGNBLK = 2, LENGTH = 3
Parameter HIH2O = 4, UNIT = 5, R50DEV = 6
Integer*2 REPLY(6) !reply area for CSTAT
Character*3 NAME !device name

C
Open (Dispose=’SAVE’, File=’SY:SWAP.SYS’, Readonly,
1 Status=’OLD’, Unit=1)

System Subroutine Description and Examples 2–29

CSTAT/ICSTAT

Open (Dispose=’DELETE’, File=’DK:TEST.TMP’,
1 Status=’NEW’, Unit=2)
Do 200, I = 0, 15

If (ICSTAT (I, REPLY, NAME) .eq. 0)
1 Type 1, REPLY(BGNBLK), REPLY(LENGTH), NAME, I

1 Format (’ ’, ’ Beginning block=’, I6,
1 ’ File length=’ , I6,
2 ’ Device=’ A3,
3 ’ Channel=’ I2)

200 Continue
End

2–30 RT–11 System Subroutine Library Manual

CVTTIM
The CVTTIM subroutine converts a two-word internal format time to hours, minutes,
seconds, and ticks.

Form:

CALL CVTTIM (time,hrs,min,sec,tick)

where:

time is the two-word internal format time to be converted. If time is
considered as a two-element INTEGER*2 array, then:
time (1) is the high-order time
time (2) is the low-order time

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second for 60-Hz clocks; 1/50
of a second for 50-Hz clocks)

Errors:
Error message TRAP $MSARG will display if any required argument is missing.

Example:

Program FCVTTI !demo CVTTIM
C
C Get current time of day and display appropriate greeting
C

Integer*4 TIME
C

Call GTIM (TIME) !Get current time
Call CVTTIM (TIME, IHRS, IJUNK, IJUNK, IJUNK) !"parse" it
If ((IHRS .ge. 0) .and. (IHRS .lt. 8)) Type *, ’Good Grief’
If ((IHRS .ge. 8) .and.(IHRS .lt. 12)) Type *, ’Good Morning’
If ((IHRS .ge. 12) .and. (IHRS .lt. 17)) Type *, ’Good Afternoon’
If ((IHRS .ge. 17) .and. (IHRS .lt. 22)) Type *, ’Good Evening’
If ((IHRS .ge. 22) .and. (IHRS .lt. 24)) Type *, ’Good Night’
End

System Subroutine Description and Examples 2–31

DATE/DATE4Y
The DATE and DATE4Y subroutines display current (system) date or format a date
you specify.

Previously, the DATE subroutine was located in the distributed FORTRAN
subroutine libraries, FORLIB and F77OTS.

DATE stores the date as a 9-byte string as dd-mmm-yy. DATE4Y stores the date as
an 11-byte string as dd-mmm-yyyy.

where:

dd is the 2-digit day of the month (with leading zero if necessary)

mmm is the 3-character month (all capital letters)

yy is the last two digits of the year (DATE subroutine)

yyyy is the 4-digit year (DATE4Y subroutine)

– is the separating character

Form:

CALL DATE (array[,opdate])
CALL DATE4Y (array[,opdate])

where:

array is a predefined array for receiving the date string.

– For DATE, the array must contain at least nine bytes. The 9-byte
string is set to blanks if the date is invalid.

– For DATE4Y, the array must contain at least eleven bytes. The
11-byte string is set to blanks if the date is invalid.

opdate is an optional RT–11 date word to be formatted. Specifying a 0 value
for opdate returns the current system date.

2–32 RT–11 System Subroutine Library Manual

DATE/DATE4Y

The format of the date word is:

Bits Contents
0-4 Year minus the base (base specified by bits 14,15)

5-9 Day (1–31)

10-13 Month (1–12)

14,15 Age bits. Age bits extend the directory date by 32(decimal) year
increments and have the following meaning:

15 14 Meaning When Set

0 0 Base year 1972

0 1 Base year 2004

1 0 Base year 2036

1 1 Base year 2068

DATE4Y is included within DATE. DATE4Y is functionally the same as DATE,
except that it stores a 4-character year rather than a 2-character year.

Errors:
Error message TRAP $MSARG will display if array argument is missing.

Example:
For DATE4Y, see GTDIR/IGTDIR.
For DATE:

Program FDATE !demo DATE & IWEEK
C
C Display current date and day of week
C

Byte DAYSTR(9)
Integer*4 DAYS(7)
Data Days /’Sun’, ’Mon’, ’Tue’, ’Wed’, ’Thu’, ’Fri’, ’Dat’ /

C
Call IDATE (MONTH, IDAY, IYEAR)
IWD = IWEEKD (MONTH, IDAY, IYEAR)
Call DATE (DAYSTR)
Type 100, DAYS(IWD), DAYSTR

100 Format (’ ’, ’Today’’s date: ’, 6x, a4, 1x, 9a1)
End

System Subroutine Description and Examples 2–33

DELET/IDELET
DELET/IDELET deletes a named file from an indicated device. DELET requires the
USR. It is not supported for magtape handlers supplied by Digital.

Form:

CALL DELET (chan,dblk[,seqnum])
i = IDELET (chan,dblk[,seqnum])

where:

chan is the channel to be used for the delete operation. You must
obtain this channel through an IGETC call, or you can use channel
16(decimal) or higher if you have done an ICDFN call

dblk is the four-word Radix–50 specification (dev:filnam.typ) for the file to
be deleted

seqnum is the file number for magtape operations

Notes
The arguments of DELET must be located so that the USR cannot swap over them.

The specified channel is left inactive when the DELET is complete. DELET requires
that the handler to be used be resident (via an IFETCH call or a LOAD command
from KMON) at the time the DELET is issued. If the handler is not resident, a
monitor error occurs.

For further information on deleting files, see the .DELETE programmed request.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Channel specified is already open.

= 2 File specified was not found.

= 3 Device in use.

= 4 The file is protected and cannot be deleted.

Error message TRAP $MSARG will display if chan or dblk argument is missing.

2–34 RT–11 System Subroutine Library Manual

DELET/IDELET

Example:

Program FDELET !Demo DELET
C
C Delete the file DK:TSTDEL.TMP
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLK(4)
Data DBLK /3rDK , 3rTST, 3rDEL, 3rTMP/

C
If (IDELET (IGETC (), DBLK) .ne. 0) Then

Call Print (’?IDELET-F-Delete failed’)
Call Exit (FATAL)

Else
Call Print (’!IDELET-I-File deleted’)
Call Exit (SUCCS)

End If
End

System Subroutine Description and Examples 2–35

DEVICE/IDEVICE
DEVICE/IDEVICE sets up a list of addresses to be loaded with specified values when
the program is terminated. If a job terminates or is aborted with a CTRL/C from
the terminal, this list is used up by the system to set the specified addresses to the
corresponding values.

This function is primarily designed to allow user programs to load device registers
with necessary values. In particular, it is used to turn off a device’s interrupt enable
bit when the program servicing the device terminates.

Unless link arg1 is used, only one address list can be active at any given time. If
multiple DEVICE calls are issued, only the last one has any effect. The list must
not be modified by the program after the DEVICE call has been issued, and the list
must not be located in an overlay or an area over which the USR swaps.

The second argument of the call link provides support for a linked list of tables. The
link argument is optional and causes the first word of the list to be processed as the
link word. With linked lists, each call adds the new list to the previous lists, rather
than replacing the previous lists.

Form:

CALL DEVICE (ilist[,link])
i = IDEVICE (ilist[,link])

where:

ilist is an integer array that contains two-word elements, each composed
of a one-word address and a one-word value to be put at that address,
terminated by a zero word. On program termination, each value is
moved to the corresponding address.

link is an optional parameter of any value that indicates a linked list table
is to be used.

If the linked list form is used, the first word of the array is the link list pointer.

For more information on loading values into device registers, see the .DEVICE
programmed request.

Errors:
Error message TRAP $MSARG will display if the ilist argument is missing.

Errors:

Value Meaning
i = -1 Value specified for ilist is above 160000 (octal)

Example:

Integer*2 IDR11(3) !DEVICE argument list
Data IDR11 /"167770, 0, 0/ !addr, value, end of list

C
Call DEVICE (IDR11) !setup for job abort

2–36 RT–11 System Subroutine Library Manual

DJFLT
The DJFLT function converts an INTEGER*4 value into a REAL*8 (DOUBLE
PRECISION) value and returns that result as the function value. See IDJFLT.

Form:

d = DJFLT(jsrc)

where:

jsrc specifies the INTEGER*4 variable to be converted

NOTES
If DJFLT is used, it must be defined in the FORTRAN
program, either explicitly (REAL*8 DJFLT) or implicitly
(IMPLICIT REAL*8 (D)). Without a definition, DJFLT
is assumed to be REAL*4 (single precision).

The function result is the REAL*8 value that is the result of the operation.

Errors:
Unpredictable results will occur if the jsrc argument is omitted.

Example:

Program FDJFLT !FORTRAN IV
Real*8 VALUE, DJFLT, THREE5
Data THREE5 / 3.5d0/
Integer*4 JVAL
Integer*2 IVAL(2)
Equivalence (IVAL(1), JVAL)

C
IVAL(1) = 2 !00002
IVAL(2) = 1 !65536
VALUE = DJFLT (JVAL)
VALUE = VALUE * THREE5
Type 101, VALUE

101 Format (’ ’, f16.0)
End

System Subroutine Description and Examples 2–37

DSTAT/IDSTAT
DSTAT/IDSTAT obtains information about a particular device.

Form:

CALL DSTAT (devnam,cblk)
i = IDSTAT (devnam,cblk)

where:

devnam is the Radix–50 device name

cblk is the four-word area used to store the status information. The area,
as a four-element INTEGER*2 array, has the following format:

Word 1 Device status word (See .DSTAT)

Word 2 Size of handler in bytes

Word 3 Entry point of handler (non-zero implies that the
handler is in memory)

Word 4 Size of the device (in 256-word blocks) for block-replaceable
devices; zero for sequential-access devices, the smallest-
sized volume for variable-sized devices. The last block
on the device is the device size -1

Notes
The arguments of IDSTAT must be positioned so that the USR cannot swap over
them.

IDSTAT looks for the device specified by devnam and, if found, returns four words
of status in cblk.

Errors:
Error message TRAP $MSARG will display if any required argument is missing.

Value Meaning
i = 0 Normal return.

= 1 Device not found in monitor tables.

Example:

The following example determines whether the line printer handler is in memory. If
it is not, the program stops and prints a message to indicate that the handler must
be loaded:

2–38 RT–11 System Subroutine Library Manual

DSTAT/IDSTAT

Program FDSTAT !demo DSTAT
Integer*2 DEVNAM
Data DEVNAM /3rLP /
Integer*2 REPLY(4)
Data REPLY /4*0/

C
Call DSTAT (DEVNAM, REPLY)
If (REPLY(3) .eq. 0) Then

Call Print (’!FDSTAT-I-LP is not in memory’)
Else

Call Print (’!FDSTAT-I-LP is in memory’)
End If
End

System Subroutine Description and Examples 2–39

ELAW/IELAW
Mapping
ELAW/IELAW (eliminate window) eliminates a virtual address window. An implied
unmapping of the window occurs when its definition block is eliminated.

Form:

CALL ELAW (iwdb [,ierr])
i = IELAW (iwdb)

where:

iwdb is the address of Window Definition Block (WDB)

ierr is address of location to return error information

Errors:

Value Meaning
i = 0 Normal return.

= -4 Invalid window identifier specified.

= -257 Required argument missing.

Example:
See CRAW.

2–40 RT–11 System Subroutine Library Manual

ELRG/IELRG
Mapping
ELRG/IELRG (eliminate region) eliminates a dynamic region of physical memory
and returns the memory to the free list where it can be used by other jobs.

Form:

CALL ELRG (irdb [,ierr])
ierr = IELRG (irdb)

where:

ierr Error return

irdb Address of Region Definition Block (RDB)

Errors:

Value Meaning
i = 0 Normal return.

= -3 Invalid region identifier specified.

= -12 Deallocation failure.

= -257 Required argument missing.

Example:
See CRAW.

System Subroutine Description and Examples 2–41

ENTER/IENTER
ENTER/IENTER allocates space on the specified device and creates a tentative
directory entry for the named file. If a file of the same name already exists on
the specified device, it is not deleted until the tentative entry is made permanent
by issuing either CLOSEC/ICLOSE or CLOSZ/ICLOSZ. The file is attached to the
channel number specified. This routine requires the USR.

Form:

CALL ENTER (chan,dblk,length[,seqnum])
i = IENTER (chan,dblk,length[,seqnum])

where:

chan is the integer specification for the RT–11 channel to be associated
with the file. You must obtain this channel through an IGETC call,
or you can use channel 16 or higher, if you have done an ICDFN call.

dblk is the four-word Radix–50 descriptor of the file to be operated upon.

length is the integer number of blocks to be allocated for the file. If 0,
the larger of either one-half the largest empty segment or the entire
second largest empty segment is allocated. If the value specified for
length is -1, the entire largest empty segment is allocated (See the
.ENTER programmed request).

seqnum is a magtape file sequence number that can have the values listed
below. (Seqnum is also a file number for cassette.) If this argument
is blank, a value of 0 is assumed.

Value Meaning
-2 Rewind the magtape and space forward until the file name is

found, or until logical-end-of-tape is detected. The magtape
is now positioned correctly. A new logical-end-of-tape is
implied.

-1 Space to the logical-end-of-tape and enter file.

0 Rewind the magtape and space forward until the file name is
found or the logical-end-of-tape is detected. If the file name
is found, an error is generated. If the file name is not found,
then enter file.

n Position magtape at file sequence number n if n is greater
than zero and the file name is not null.

Notes

• ENTER requires that the appropriate device handler be in memory.

• The arguments of ENTER must be positioned so that the USR does not swap
over them.

2–42 RT–11 System Subroutine Library Manual

ENTER/IENTER

For further information on creating tentative directory entries, see the .ENTER
programmed request.

Errors:

Value Meaning
i = n Normal return; number of blocks actually allocated (n = 0 for

non-file-structured IENTER).

= -1 Channel (chan) is already in use.

= -2 In a fixed-length request, no space greater than or equal to
length was found.

= -3 Device in use.

= -4 A file by that name already exists and is protected.

= -5 File sequence number not found.

= -6 File sequence number is invalid.

= -7 Invalid unit number on a special directory device.

Error message TRAP $MSARG will display if chan, dblk or length argument is
missing.

Example:

The following example allocates a channel for file TEMP.TMP on SY0. If no channel
is available, the program prints a message and halts:

Program FENTER ! demo ENTER
Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLK(4)
Data DBLK /3rDK , 3rTEM, 3rT , 3rTMP/

C
ICHAN = IGETC ()

C
C Create temp work file
C

If (IENTER (ICHAN, DBLK, 20) .ne. 20) Then
Call Print (’?FENTER-F-ENTER failed’)
Call Exit (FATAL)

End If
C
C use temp file
C
C ...
C

Call PURGE (ICHAN)
Call IFREEC (ICHAN)
Call Print (’!FENTER-I-ENTER ok’)
Call Exit (SUCCS)
End

System Subroutine Description and Examples 2–43

FPROT/IFPROT
FPROT/IFPROT sets or removes file protection for a file.

Form:

CALL FPROT (chan,dblk[,prot])
i = IFPROT (chan,dblk[,prot])

where:

chan is the channel number to be used for the protect operation. You
must obtain this channel through an IGETC call, or you can use the
channel 16(decimal) or higher if you have done an ICDFN call

dblk is the four-word Radix–50 descriptor of the file to be operated on

prot 1 = protect the file
0 = remove protection from the file

Errors:

Value Meaning
i = 0 Normal return

= 1 Channel is in use

= 2 File not found or not a file-structured device.
To identify which condition returned the error code, issue an
IDSTAT to determine if a device is file structured.

= 3 Invalid operation.

= 4 Invalid prot value.

Error message TRAP $MSARG will display if any required argument is missing.

Example:

This example protects the file SY:RT11FB.SYS against deletion:

Program FFPROT !demo FPROT
C
C protect SY:RT11FB.SYS
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLK(4)
Data DBLK /3rSY , 3rRT1, 3r1FB, 3rSYS/

C
If (IFPROT (IGETC (), DBLK, 1) .ne. 0) Then

Call Print (’?FFPROT-F-FPROT failed’)
Call Exit (FATAL)

Else
Call Print (’!FFPROT-I-Protected: SY:RT11FB.SYS’)
Call Exit (SUCCS)

End If
End

2–44 RT–11 System Subroutine Library Manual

FREER/IFREER
Mapping
FREER/IFREER detaches from a specified global region that you have attached to
using the IGETR/MGETR subroutine. FREER can also eliminate that global region
when you specify the type argument. FREER does not eliminate a global region that
is attached to another job, but does detach the calling job from that global region.

Form:

CALL FREER (work[,<type>])
i = IFREER (work[,<type>])

where:

work is a 7-word work area block. Work area specified in FREER must
be the same as the IGETR work area. The first five words of the
work area block contain information from the region definition block
(RDB):

• A unique region identification (R.GID)

• The size of the region (R.GSIZ)

• The region status word (R.GSTS)

• The region name in two RAD50 words (R.NAME and R.NAME+2)
The last two words in the work block area are reserved by RT–11.

<type> is ’e’ for eliminate. If you do not specify the type argument, you detach
but do not eliminate the global region.

Errors:

Value Meaning
i = 0 Normal return.

= -10 Memory too fragmented to return at .ELRG (-.ELRG)

= -11 Global region not found (-.ELRG)

= -18 Any .ELRG error except memory fragment (-10) and region not
found (-11)

= -19 First character of <type> is invalid; not ’e’

= -20 Required argument work is missing

FREER can be called from MACRO–11 programs if the standard FORTRAN calling
convention is followed. All register contents are destroyed across the call. FREER
calls IGETC and IFREEC, which are FORTRAN-dependent routines. To use FREER
in a MACRO-only program, use the IGETC and IFREEC substitutes shown in the
example.

Example:
See GETR/MGETR.

System Subroutine Description and Examples 2–45

GCMAP/IGCMAP
Full Mapping
GCMAP/IGCMAP returns the previous CMAP status.

Form:

CALL GCMAP (iold [,ierr])
ierr = IGCMAP (iold)

where:

ierr Error return

iold Previous CMAP status

Value Meaning
i = 0 Normal return.

= -257 Required argument missing.

Example:

Subroutine FGCMAP !Display mapping status
C
C Display the mapping status for this job
C

Include ’SRC:CMPDF’ !get bit definition for GCMAP
Parameter CNFG3 = ’466’o !third configuration word in fixed area
Parameter CF3SI = ’100000’o !Monitor supports extended mapping
Parameter CF3HI = ’040000’o !Hardware " " "

C
If (IAND (ISPY (CNFG3), IOR (CF3SI, CF3HI)) .eq.
1 IOR (CF3SI, CF3HI)) Then

Call GCMAP (ISTAT) !get status
If (IAND (ISTAT, CMUID - CMUXX) .eq. CMUID - CMUXX)

1 Type *, ’Separated I and D in User space’
If (IAND (ISTAT, CMJAS - CMXXS) .eq. CMJAS - CMXXS) Then

Type *, ’Supy space enabled’
If (IAND (ISTAT, CMSID - CMSXX) .eq. CMSID - CMSXX)

1 Type *, ’Separated I and D in Supy space’
If (IAND (ISTAT, CMPAR) .eq. 0) Then

Type *, ’All User and Supy Data PARS locked’
Else

If (IAND (ISTAT, CMPR0) .eq. CMPR0)
1 Type *, ’PAR 0 unlocked’

If (IAND (ISTAT, CMPR1) .eq. CMPR1)
1 Type *, ’PAR 1 unlocked’

If (IAND (ISTAT, CMPR2) .eq. CMPR2)
1 Type *, ’PAR 2 unlocked’

If (IAND (ISTAT, CMPR3) .eq. CMPR3)
1 Type *, ’PAR 3 unlocked’

If (IAND (ISTAT, CMPR4) .eq. CMPR4)
1 Type *, ’PAR 4 unlocked’

If (IAND (ISTAT, CMPR5) .eq. CMPR5)
1 Type *, ’PAR 5 unlocked’

2–46 RT–11 System Subroutine Library Manual

GCMAP/IGCMAP

If (IAND (ISTAT, CMPR6) .eq. CMPR6)
1 Type *, ’PAR 6 unlocked’

If (IAND (ISTAT, CMPR7) .eq. CMPR7)
1 Type *, ’PAR 7 unlocked’

End If
Else

Type *, ’Supy space disabled’
End If

Else
Type *, ’Monitor / hardware do not support extended mapping’

End If
Return
End

System Subroutine Description and Examples 2–47

GETR/IGETR
Mapping
GETR/IGETR attaches to a specified global region. GETR can initialize a global
region by reading a portion of a file into the global region or by calling a specified
subroutine.

IGETR does not fetch handlers. Any handler required by I/O in GETR must be
loaded or fetched by the program.

Form:

CALL GETR (arguments)
i = GETR (arguments)
(work,char,name,addr [,csize][,offset[,msize]]
[,chan[,blk]][,file[,blk]] [,sbrtn,-1])

where:

work is a 7-word work area block. The first five words of the work area
block contain information from the region definition block (RDB):

• A unique region identification (R.GID)

• The size of the region (R.GSIZ)

• The region status word (R.GSTS)

• The region name in two RAD50 words (R.NAME and R.NAME+2)

• The last two words in the work block area are reserved by RT–11.

• The work area specified in GETR must also be the work argument
specified in FREER.

char is a character constant specifying the type of ownership of the global
region. Only the first letter of the character constant need be specified
and that letter must be enclosed in single quotes (’). Specify one of
the following:
’private’—Program solely owns global region
’shared’—Global region available to other programs
’age’—Enables automatic global elimination

name is the 2-word name of the global region in six RAD50 characters

addr is a variable specifying the global region’s base address. The base
address must begin on a PAR boundary (4K-word multiples beginning
at 000000)

2–48 RT–11 System Subroutine Library Manual

GETR/IGETR

csize is the size of the global region you want to create, expressed in words.
If you specify csize as zero or omit it, the actual global region size is
used. Specifying zero for csize is invalid unless the global region
already exists

offset is the offset from the beginning of the global region, expressed in
units. A unit is 64(decimal) bytes. The offset is the number of units
you skip before mapping begins. If you specify offset as zero or omit
it, you begin mapping at the beginning of the global region

msize is the number of words you wanted mapped to the global region. If
you specify msize as zero or omit it, you map the whole global region

chan is a channel opened on a file from which to read initialization data.
When specifying chan, the argument value must be from 0 through
255(decimal), and the blk argument cannot be -1

file is a pointer to a 4-word data block. The last three words contain a
device and file specification for a file containing initialization data
to open and read. If the device specification is valid, the first word
contains a value greater than 255(decimal)
The value in the blk argument must be -1.

sbrtn is the name of a subroutine that initializes the global region. The
addr and msize arguments are passed to that subroutine
The value in the blk argument must be -1.

blk is the number of the first block to use in the file that initializes the
global region. Specify a zero value in this argument to load from the
beginning of the file
The value must be -1 if blk is coupled with the sbrtn argument.

The work, name, addr, csize, offset, msize, chan, file, and blk arguments are
INTEGER*2 values. The sbrtn argument is EXTERNAL type.

IGETR can be called from MACRO–11 programs, if the standard FORTRAN calling
convention is followed. All register contents are destroyed across the call. GETR
calls IGETC and IFREEC, which are FORTRAN-dependent routines. To use IGETR
in a MACRO-only program, use the following IGETC and IFREEC substitutes:

Errors:

Value Meaning
i = 0 Normal return (success).

= -1 Invalid addr alignment (detected by IGETR).

= -2 No window definition block for .CRAW.

= -3 Any .CRAW error except no window definition block (-2).

= -4 End-of-file on .READW.

System Subroutine Description and Examples 2–49

GETR/IGETR

= -5 I/O error on .READW.

= -6 Channel closed when .READW attempted; channel not available
from IGETR.

= -7 No region control block for .CRRG.

= -8 Insufficient memory for .CRRG.

= -9 Reserved.

= -10 Memory too fragmented to return at .ELRG.

= -11 Global region not found (and no nonzero size specified).

= -12 No global region control block for .CRRG.

= -13 Reserved.

= -14 Reserved.

= -15 .LOOKUP found channel already open.

= -16 .LOOKUP could not find requested file.

= -17 .LOOKUP found device in use and not shareable.

= -18 Any .ELRG error except memory too fragmented (-10).

= -19 First character of char argument invalid (not ’p’, ’s’, or ’a’).

= -20 Required argument missing: work, char, name, or addr.

IGETR returns the following errors if the .SERR programmed request is in effect:

Value Meaning
i = -129 Called USR from completion routine.

= -130 No device handler; this operation needs one.

= -131 Error doing directory I/O.

= -132 .FETCH error. An I/O error occurred while the handler was
being used or an attempt was made to load the handler over
USR or RMON.

= -133 Error reading an overlay.

= -134 No more room for files in the directory.

= -135 Reserved.

= -136 Invalid channel number. Number is greater than number of
channels that exist.

= -137 Invalid EMT, an invalid function code has been decoded.

= -138 Reserved.

= -139 Reserved.

= -140 Invalid directory.

2–50 RT–11 System Subroutine Library Manual

GETR/IGETR

= -141 Unloaded XM handler.

= -142
through -146

Reserved.

System Subroutine Description and Examples 2–51

GFDAT/IGFDAT
GFDAT/IGFDAT returns the file creation date from a file’s directory entry (E.DATE
word). GFDAT is not supported for the distributed special directory handlers LP,
LS, MM, MS, MT, MU, and SP.

Form:

CALL GFDAT (chan,dblk,idate)
i = IGFDAT (chan,dblk,idate)

chan is a BYTE or INTEGER*2 channel number

dblk is a 4-element INTEGER*2 array containing a 4-word device and file
specification in Radix–50; the file specification for which you want to
return the creation date

idate on return, contains the requested INTEGER*2 creation date of the
specified file

Errors:

Value Meaning
i = 0 Normal return

= -1 Channel was open

= -2 File not found, or not a file-structured device.
To determine what condition returned the error code,
issue a .DSTAT request to determine if a device is file
structured

= -3 Invalid operation (internal error)

= -4 Invalid offset (internal error)

= -257 Required argument missing

Example:

See IDCOMP.

2–52 RT–11 System Subroutine Library Manual

GFINF/IGFINF
GFINF/IGFINF returns the word contents of the directory entry offset you specify
from a file’s directory entry. GFINF is not supported for the distributed special
directory handlers LP, LS, MM, MS, MT, MU, and SP.

Form:

CALL GFINF (chan,dblk,offset,ival)
i = IGFINF (chan,dblk,offset,ival)

where:

chan is a BYTE or INTEGER*2 channel number

dblk is a 4-element INTEGER*2 array containing a 4-word device and file
specification in Radix–50; the file specification for which you want to
return directory entry information

offset is the octal byte offset for the directory entry word you want. The
offset must be even. For example, specifying offset 12 returns the
contents of E.USED in ival

ival on return, contains the requested INTEGER*2 directory entry word

Function Result:

Value Meaning
i = 0 Normal return

= -1 Channel was open

= -2 File not found, or not a file-structured device. (If it is
necessary to determine what condition returned the
error code, issue a .DSTAT request to determine if a
device is file structured.)

= -3 Invalid operation (internal error)

= -4 Invalid offset

= -257 Required argument missing

Example:

Program FGFINF !demo GFINF
C
C Display the file "time",using the contents of offset 10(10)
C of the directory entry. This is treated as units of seconds
C after midnight / 3.
C

Parameter FATAL = ’010’o
Integer*2 CHAN !Channel number
Integer*2 FILSPC(39) !DBLK(s)
Integer*2 DEFTYP(4) !default extensions
Data DEFTYP /4*0/ !none
Integer*2 DBLK(4) !DBLK
Integer*2 ERROR !error/success value

System Subroutine Description and Examples 2–53

GFINF/IGFINF

Integer*2 TIME !time word value
Integer*2 HOUR !hour part
Integer*2 MINUTE !minute part
Integer*2 SECOND !second part
Equivalence (FILSPC(16), DBLK(1)) !use 1st input file only

C
CHAN = IGETC ()

1000 Continue
Call PRINT (’ ’) !clean up display
ERROR = ICSI (FILSPC, DEFTYP, , ,0) !get filename
If (ERROR .ne. 0) Go To 2000 !command error
ERROR = IFETCH (DBLK) !fetch handler
If (ERROR .ne. 0) Go To 2100 !fetch error
ERROR = IGFINF (CHAN, DBLK, 10, TIME) !get "time" word
If (ERROR .eq. -2) Then

Type *, ’File not found ’
Go To 1000 !try again

End If
If (Error .ne. 0) Go To 2200 !gfinf error
HOUR = TIME / (60 * (60 / 3)) !expressed in 3 sec units
TIME = MOD (TIME, (60 * (60 / 3))) !dump hours part
MINUTE = TIME / (60 / 3)
TIME = MOD (TIME, (60 / 3)) !dump minutes part
SECOND = TIME * 3 !back to real seconds
Type 1, HOUR, MINUTE, SECOND

1 Format (’ ’, I3.2, ’:’, I2.2, ’:’, I2.2)
Go To 1000

2000 Type *, ’CSI error’
Go To 3000

2100 Type *, ’Fetch error’
Go To 3000

2200 Type *, ’Gfinf error’
3000 Call Exit (FATAL)

End

2–54 RT–11 System Subroutine Library Manual

GFSTA/IGFSTA
GFSTA/IGFSTA returns the word contents of the directory entry status word
(E.STAT) from a file’s directory entry. GFSTA is not supported for the distributed
special directory handlers LP, LS, MM, MS, MT, MU, and SP.

Form:

CALL GFSTA (chan,dblk,istat)
i = IGFSTA (chan,dblk,istat)

where:

chan is a BYTE or INTEGER*2 channel number

dblk is a 4-element INTEGER*2 array containing a 4-word device and file
specification in Radix–50; the file specification for which you want to
return directory entry status word

istat on return, contains the requested INTEGER*2 directory entry status
word

Errors:

Value Meaning
i = 0 Normal return

= -1 Channel was open

= -2 File not found, or not a file-structured device. (If it is
necessary to determine what condition returned the
error code, issue a .DSTAT request to determine if a
device is file structured.)

= -3 Invalid operation (internal error)

= -4 Invalid offset (internal error)

= -257 Required argument missing

Example:
(See also GFDAT example.)

Program FGFSTA
C
C This program displays the directory
C entry status word contents for the selected file.
C Entries with "?" appended are values that are not expected.
C

Parameter FATAL = ’010’o
Integer*2 CHAN !Channel to use
Integer*2 FILSPC(39) !DBLK(s)
Integer*2 DEFTYP(4) !default extensions
Data DEFTYP /4*0/ !no defaults
Integer*2 DBLK(4) !DBLK
Integer*2 ERROR !error/success value
Integer*2 STATUS !status word value
Integer*2 BIT !sliding bit mask

System Subroutine Description and Examples 2–55

GFSTA/IGFSTA

Character*7 BITNAM(0:15)!names for status word bits
Data BITNAM(0) /’000001?’/, BITNAM(1) /’000002?’/
Data BITNAM(2) /’000004?’/, BITNAM(3) /’000010?’/
Data BITNAM(4) /’000020?’/, BITNAM(5) /’000040?’/
Data BITNAM(6) /’000100?’/, BITNAM(7) /’000200?’/
Data BITNAM(8) /’E.TENT?’/, BITNAM(9) /’E.MPTY?’/
Data BITNAM(10)/’E.PERM ’/, BITNAM(11)/’E.EOS? ’/
Data BITNAM(12)/’010000?’/, BITNAM(13)/’020000?’/
Data BITNAM(14)/’E.READ ’/, BITNAM(15)/’E.PROT ’/
Equivalence (FILSPC(16), DBLK(1))

C
CHAN = IGETC ()

1000 Continue
Call Print (’ ’) !cleanup display
ERROR = ICSI (FILSPC, DEVSPC, , , 0) !get file name
If (ERROR .ne. 0) Go To 2000
ERROR = IFETCH (DBLK) !get handler
If (ERROR .ne. 0) Go To 2100
ERROR = IGFSTA (CHAN, DBLK, STATUS) !get status word
If (ERROR .eq. -2) Go To 2200
If (ERROR .ne. 0) Go To 2300
BIT = 1 !start of the sliding bit
DO 1100, I = 0, 15

If (IAND (STATUS, BIT) .eq. BIT) Type *, BITNAM(I)
BIT = ISHFT (BIT, 1) !try next bit position

1100 Continue
Type *, ’ ’
Go To 1000

2000 Call Print (’?FGFSTA-F-CSI failed’)
Go To 3000

2100 Call Print (’?FGFSTA-F-FETCH failed’)
Go To 3000

2200 Call Print (’?FGFSTA-W-File not found’)
Go To 1000

2300 Call Print (’?FGFSTA-F-GFSTA failed’)
3000 Call Exit (FATAL)

End

2–56 RT–11 System Subroutine Library Manual

GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS)
GIDIS consists of four FORTRAN system subroutines that can be used on the
Professional Series only, instead of using the .SPFUN programmed requests:

GICLOS
GIOPEN
GIREAD
GIWRIT

Each GIDIS subroutine can return error information in a 2-word status array.
Relevant error codes are listed with each subroutine. See GIDIS error codes
description and sample GIDIS program.

GICLOS
The GICLOS subroutine ends the GIDIS connection to the Professional interface
(PI) handler. The output device treats a GICLOS subroutine as an END-PICTURE
instruction. Control is returned to the calling program once all data specified by the
GIWRIT subroutine has been sent to the output device.

Form:

GICLOS (status,lun)

where:

status is a 2-word integer array used to return a code indicating the results
of the requested operation

lun is the unit number assigned by GIOPEN to terminate. If no GIOPEN
has been sent for the specified value, status is set to (-5,-1)

Errors:
See GIDIS error codes.

Example:
See sample GIDIS program.

GIOPEN
The GIOPEN subroutine initiates contact with the Professional interface (PI)
handler and assigns a logical unit number (LUN) for this GIDIS operation. GIOPEN
does not affect the current GIDIS state; all attributes currently selected remain in
force.

To initialize the Professional video screen, execute the INITIALIZE -1 (complete
initialization) instruction followed by the NEW_PICTURE instruction.

Form:

GIOPEN (status,lun[,message][,msglen][,devtype][,driver])

System Subroutine Description and Examples 2–57

GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS)

where:

status is a 2-word integer array to return a code indicating the results of
the requested operation

lun is the unit number to associate with this GIOPEN; an integer number
from 0 through 15
If lun is already connected to a GIDIS operation, status is set to (-5,-4)

message is a word containing a 0

msglen is the number of words in the message; normally a 1. If msglen is
less than 0 or greater than 128(decimal) words, status is set to (-5,-3)

devtype is 6. Integer values 0 through 5, 7, and 8 are reserved

driver is 0

Errors:
See GIDIS error codes.

Example:
See sample GIDIS program.

GIREAD
The GIREAD subroutine returns a report from GIDIS requested by a report handling
instruction sent by GIWRIT. GIREAD waits until GIDIS returns a report, then places
the report in the buffer. If the report is longer than the buffer, the excess is lost.
If the report is shorter than the buffer, the trailing words of the buffer are left
unchanged. The first byte of the report contains the number of data words in the
report.

Form:

GIREAD (status,lun,buffer,buflen)

where:

status is a 2-word integer array used to return a code indicating the results
of the requested operation

lun is the unit number assigned by GIOPEN. If no GIOPEN has been
issued for the specified value, status is set to (-5,-1)

buffer is the buffer for the report returned by GIDIS

buflen is the number of words in the report buffer

Errors:
See GIDIS error codes.

Example:
See sample GIDIS program.

GIWRIT
The GIWRIT subroutine sends the buffer of GIDIS command data to the Professional
interface (PI) handler. You can pass a maximum of 2048(decimal) words to PI in one

2–58 RT–11 System Subroutine Library Manual

GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS)

GIWRIT system subroutine. The data in the buffer need not start or end on a
command boundary.

Form:

GIWRIT (status,lun,message,msglen)

where:

status is a 2-word integer array used to return a code indicating the results
of the requested operation

lun is the unit number assigned by GIOPEN. If no GIOPEN has been
executed for the specified value, status is set to (-5,-1)

message is the command data to send

msglen is the number of words in the message.
The msglen parameter accepts a value equal to or greater than
-1. Specify the -1 value for msglen to reset GIDIS. If less than 0 or
greater than 2048(decimal) words, status is set to (-5,-3)

Errors:
See GIDIS error codes.

Example:
See sample GIDIS program.

GIDIS Error Codes
GIDIS subroutines can return the following error codes and subcodes in the 2-word
status array. The error code specifies the class of error and is returned in the first
word of the status array. The subcode specifies the actual error and is returned in
the second word of the status array.

Directive error code (-1) can return the following subcode:

-1 No handler. The output device handler is not loaded.

Interface error code (-5) can return the following subcodes:

-1 Channel not open. The logical unit number (LUN) for that GIDIS is
not assigned.

-2 DEVTYPE is out of range or invalid. The output device specified in
a GIOPEN is invalid.

-3 MSGLEN out of range. The message length in a GIOPEN or GIWRIT
is out of range.

-4 Channel in use. The logical unit number (LUN) specified for that
GIDIS is already in use.

System Subroutine Description and Examples 2–59

GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS)

RT–11 specific error code (-7) can return the following subcodes during a GIDIS
operation:

-1 Required argument missing. A required argument in a GIDIS
subroutine is not specified.

-2 Handler not loaded. The output device handler is not loaded.

-3 File not found. The indicated file was not found on the device.

-4 File open on nonshareable or non-file-structured device.

-5 An attempt was made to read or write past the end-of-file (EOF)
mark.

-6 Hard error. The GIDIS operation experienced a hard error on the
output device.

Errors that occur if .SERR is in effect are listed under the .SERR request in the
RT–11 System Macro Library Manual.

2–60 RT–11 System Subroutine Library Manual

GICLOS/GIOPEN/GIREAD/GIWRIT (GIDIS)

Sample GIDIS Program
The following FORTRAN program fragment uses the GIDIS subroutines to request
the current cursor position:

Program FGIDCA !demo GIDIS interface routines
C
C Declare storage
C

Integer*2 BUFLEN, LUN, MSGLEN, OCLEN, OPCODE
Integer*2 BUFFER(3), MESSAG(1), STATUS(2)

C
C user program here
C

LUN = 5 !assign logical unit number
OPCODE = 55*256 !request current position
OCLEN = 0 !opcode length is 0

C
C Put OPCODE and OCLEN into MESSAG buffer
C

MESSAG(1) = OPCODE + OCLEN
MSGLEN = 1 !length of message

C
C Send to GIDIS
C

Call GIWRIT (STATUS, LUN, MESSAG, MSGLEN)
If (STATUS(1) .le. 0) Go To 999 ! error

C
BUFLEN = 3 !length of report

C
C Get report from GIDIS
C

Call GIREAD (STATUS, LUN, BUFFER, BUFLEN)
If (STATUS(1) .le. 0) Go To 999 ! error

C
C Contents of buffer after successful return:
C
C BUFFER(1) = 258 ((1*256) + 2)
C 1 = report header
C 2 = number of data elements in buffer
C BUFFER(2) = Current ’X’ position
C BUFFER(3) = Current ’Y’ position
C
C more user program
C
999 Continue !diagnose errors here

End

System Subroutine Description and Examples 2–61

GMCX/IGMCX
Mapping
GMCX/IGMCX (get mapping context) returns the mapping status of an extended
memory window. Status is returned in the window definition block.

Form:

CALL GMCX (iwdb [,ierr])
i = GMCX (iwdb)

where:

ierr Error return

iwdb Address of Window Definition Block

Errors:

Value Meaning
i = 0 Normal return.

= -5 Invalid window identifier specified.

= -257 Required argument missing.

Example:
See CRAW.

2–62 RT–11 System Subroutine Library Manual

GTDIR/IGTDIR
GTDIR/IGTDIR (get directory) sets up parameters for a wildcard directory search
operation on an RT–11 file-structured volume or logical disk file. Subsequent calls to
the IGTENT function retrieve the directory entries that meet the criteria specified
in GTDIR. GTDIR performs no searches itself and should be followed by calls to the
IGTENT function.

GTDIR works outside of the USR. If you call GTDIR in a multijob monitor
environment, you may want to explicitly lock the USR by calling the .LOCK and
.UNLOCK routines. Locking the USR prevents alteration of the directory being
searched.

Along with the required parameters, GTDIR supports numerous optional parameters
that determine the criteria used for the directory search. Both required and optional
parameter information are stored in the work area and buffer (after error checking
is performed), and IGTENT then uses that information for the directory search.

If any optional parameter is specified, then any prior parameter not included in the
function call must be marked with a comma pair (, ,) to show the position of that
parameter.

Form:

CALL GTDIR (arguments)
i = IGTDIR (arguments)

(wksize,wkarea,chan,buffer[,header][,dblk][,string]
[,stvalu][,stmask][,datrel][,datewd][,resrv1]
[,resrv2][,stofst])

where:

wksize is a 1-word INTEGER*2 variable containing the value 64

wkarea is a 64-word INTEGER*2 work area array

chan is a 1-word INTEGER*2 variable. The meaning of chan is determined
by the value specified for chan and the contents of the dblk
parameter:

• If the first word of dblk is specified as nonzero and chan is
specified as 0 through 255, then chan is an RT–11 channel, and
dblk is a device or file on which to perform the operation.

• If the first word of dblk is specified as zero and chan is specified
as 0 through 255, then chan is an RT–11 channel which has been
previously opened by a lookup operation. The IGTDIR function
is then directed to the device already opened on the specified
channel.

System Subroutine Description and Examples 2–63

GTDIR/IGTDIR

• If dblk is not specified or is specified as zero and chan
is specified as a value greater than 255, then chan is the
address of an externally supplied MACRO–11 read routine.
Such an external read routine could be written to provide
RT–11 directory segments to IGTDIR in an unconventional
manner. The entry environment of the external read
routine is:

R1 = <buffer address>
R2 = <word count>
R3 = <block number>

buffer is a 512-word INTEGER*2 array used by GTDIR and IGTENT to
contain directory segments

header is a 5-word INTEGER*2 array that, on return, contains the directory
segment header

dblk is a 4-word INTEGER*2 array that can be defined in one of the three
ways, depending on the value of the first word:

• Word one contains a Radix–50 device specification for the device
containing the directory to be searched. Words two, three, and
four contain zero.

• Word one contains a Radix–50 device and file specification for a
logical disk (.DSK) containing the directory to be searched.

• Word one contains the value 0, specifying a special mode
operation. Specifying a special mode operation indicates that
a channel is already open on the device you want to search.
Therefore, an internal lookup operation is not performed; a device
is already open on chan.

• Word two must contain the starting block number for the device
directory.

• Word three of the array controls which entries are returned by
IGTENT:

2–64 RT–11 System Subroutine Library Manual

GTDIR/IGTDIR

– If the third word in the array contains the value 0,
IGTENT returns only those entries that match the
specified GTDIR criteria.

– If the third word in the array contains the value 1,
IGTENT returns all entries, governed only by the
setting of the status characteristics bits in E.STAT.
In this mode, entries returned that do not match the
wildcard string are indicated by IGTENT returning the
function result -20.

• Word four should contain the value zero and is reserved
for Digital.

If dblk is not specified, see chan.

string is a string of up to eight ASCII RT–11 file specifications, separated
by commas (,). Device specifications are not allowed.
Each file specification can contain trailing blanks in either or both
the name and extension fields. Each file name and extension must
be separated by a period (.).
Each file specification can contain general replacement wildcards (*)
or single-character wildcards (%) in either or both the file name and
extension. If either or both the file name or extension is left blank,
it is treated as a general replacement wildcard.

stvalu is an INTEGER*2 value specifying bit values for the directory entry
status (E.STAT) characteristics that apply to the directory search.
The default is E.PERM (002000); only permanent files are returned.

stmask is an INTEGER*2 variable that contains the bit mask of the directory
entry status (E.STAT) bits that are tested against the value specified
in stvalu. By default, stmask checks the values for the E.PERM,
E.TENT, and E.MPTY bits in E.STAT.

System Subroutine Description and Examples 2–65

GTDIR/IGTDIR

datrel is a 2-byte character string that specifies a code to be used in a date
relationship directory search. The relationship is between an RT–11
date word you supply for datewd and directory entry dates. The
default for datrel is ’EQ’ if datewd is specified, or ’AL’ if datewd is
not specified. The following are valid codes:

Value Meaning
’EQ’ Equal

’NE’ Not equal

’LE’ Less than or equal to

’LT’ Less than

’GE’ Greater than or equal to

’GT’ Greater than

’AL’ All dates

datewd is an INTEGER*2 variable specifying the RT–11 date word to check
against directory entry dates.
The default for datewd is the current RT–11 system date if datrel is
specified and all dates if datrel is not specified. The format of the
RT–11 date word is:

Bits Contents
0-4 Year minus the base (base specified by bits 14,15)

5-9 Day (1-31)

10-13 Month (1-12)

14,15 Age bits. Age bits extend the directory date
by 32(decimal) year increments and have the
following meaning:

15 14 Meaning When Set

0 0 Base year 1972

0 1 Base year 2004

1 0 Base year 2036

1 1 Base year 2068

2–66 RT–11 System Subroutine Library Manual

GTDIR/IGTDIR

resrv1 is reserved for Digital

resrv2 is reserved for Digital

stofst is a rarely used INTEGER*2 variable that specifies a starting offset
from which to begin the directory search.
The value for stofst can be supplied from the IGTENT parameter
entofs value. The stofst parameter lets you begin a directory search
at the point where you previously stopped searching the directory.
The stofst parameter is especially useful when GTDIR/GTENT have
previously performed a directory search through to a particular
segment of a device directory. IGTENT can return a value
representing the current directory search position in parameter
entofs. In a subsequent search through the directory, specify the
entofs value from the previous search in the GTDIR parameter stofst,
to begin the search in the directory at that offset.

i is a returned INTEGER*2 result of function

Errors:

Value Meaning
i = 0 Success

= -1 Channel in use

= -2 File not found

= -3 Directory already open

= -5 Invalid directory structure

= -7 Error reading directory segment

= -12 Invalid device for operation

= -13 Invalid date relationship code

= -16 Supplied work area is inadequate

= -19 Invalid arguments

Example:

Program FGTDIR
C
C Display file(s) on SY:
C

Parameter ERRO R= ’010’o
Integer*2 WKAREA(64) !area for IGTDIR/IGTENT
Integer*2 ENTRY(7) !single directory entry
Integer*2 BUFFER(512) !directory buffer
Integer*2 DBLK(4) !Device/file to search
Integer*2 BLOCK2
Integer*4 BLOCK !really unsigned 16 bit
Byte NAME(11) !file name
Byte DATSTR(11) !date in ascii

System Subroutine Description and Examples 2–67

GTDIR/IGTDIR

Byte STRING(81) !filespec(s) w/o device
Byte Prompt(8) !command prompt
Data Prompt /’F’, ’i’, ’l’, ’e’, ’s’, ’?’, ’ ’, ’200’o/
Data DBLK /3rSY , 3*0/ !system device
Data BLOCK /0/
Equivalence (BLOCK2, BLOCK)

C
ICHAN = IGETC ()

1000 Continue
Call RCTRLO !reset ^O
Type *, ’ ’ !blank line
Call GTLIN (STRING, PROMPT) !get filespec(s)
IERR = IGTDIR (64, WKAREA, ICHAN, BUFFER, , DBLK, STRING)
If (IERR .ne. 0) Go To 2000

1100 IERR = IGTENT (WKAREA, ENTRY, , BLOCK2, NAME)
If (IERR .lt. 0) Go To 1000
Call DATE4Y (DATSTR, ENTRY(7))
Type 1, (NAME(I), I = 1, 10), ENTRY(5), DATSTR, BLOCK

1 Format (’ ’, 10a1, ’ ’, i6, ’ ’, 11a1, ’ ’, i6)
Go To 1100

2000 Call Print (’?FGTDIR-F-GTDIR failed’)
Call Exit (FATAL)
End

2–68 RT–11 System Subroutine Library Manual

GTDUS/IGTDUS
GTDUS/IGTDUS provides information about a specified MSCP (DU) or TMSCP (MU)
class device unit. Issue the IGTDUS function only to MSCP or TMSCP class devices.

Information returned by IGTDUS includes:

• Whether the device unit is offline, available, or online.

• Whether the device media is removable (for example, the RC25).

• Whether the device unit is write-protected.

• Whether the device controller supports bad block replacement (MSCP only).

• The number of physical addressable blocks in the device unit (MSCP only).

The MSCP volume size returned by IGTDUS is determined by which partition, if
any, the unit number is mapped to when you issue IGTDUS. If you issue IGTDUS
against the RT–11 unit that is partition zero of the device, it returns the entire
volume size. If the unit number is mapped to a particular partition, IGTDUS
returns the volume size from the base of that partition to the end of the volume.
This change in IGTDUS functionality makes the information it returns more
usable with, for example, the JWRITE subroutine.

• The media name, such as RC25, RCF25, RA60, RA80, RA81, RD31, RD32, RD51,
RD52, RD53, RD54, RX33, RX50, TK50, or TU81.

Form:

CALL GTDUS (dev,ichan,ibuf[,iunit][,itype][,iwork][,isize])
i = IGTDUS (dev,ichan,ibuf[,iunit][,itype][,iwork][,isize])

where:

dev is the Radix–50 device name (MSCP or TMSCP class devices only)

ichan is the integer specification for an RT–11 channel to be opened by
IGTDUS

ibuf is a 7-word buffer containing status information returned by
IGTDUS. The information returned by IGTDUS in the status buffer
includes:

ibuf(1) is the status information word. The following values can
be returned in the status information word:

Value Meaning
0 The device unit is online

1 The device unit is available

System Subroutine Description and Examples 2–69

GTDUS/IGTDUS

2 The device unit is offline

ibuf(2) is the unit bit flag word. One or more of the following
values can be returned in the unit flag word:

Value Meaning
200 Media is removable (always set for TMSCP

devices)

20000 Media is write-protected

100000 MSCP device controller supports bad-block
replacement (never set for TMSCP devices)�

ibuf(3)
ibuf(4) �

For MSCP, a unit-size word is returned as a 28-
bit value (16 bits in ibuf(3) and 12 bits in ibuf(4)),
containing the size of the volume minus the base of
the current partitions.
For TMSCP, the size words are undefined and each
contains the value -1�� � ibuf(5)

ibuf(6)
ibuf(7)

� �� Is the media device name in a fixed format 5-byte
alphanumeric ASCII string, typically consisting of
two characters followed by a space, two numbers,
and a null byte. Sometimes the string contains
three characters, such as for the RCF25, but is
always terminated with a null byte.

iunit is the unit number requested. The meaning of iunit is determined
by itype:

• If the itype parameter is ’RT11’, iunit is optional and is the RT–11
unit number. The valid range is 0 through 778. If the unit number
is higher than 278, include the isize parameter along with the
iwork parameter to allocate a sufficient work area. If iunit is not
specified, the default unit is that specified in the dev parameter.

• If the itype parameter is ’MSCP’, iunit is required and is the
decimal MSCP physical unit number. The valid range is 0
through 255.

2–70 RT–11 System Subroutine Library Manual

GTDUS/IGTDUS

itype is the type of unit number requested; a character constant specified
as ’RT11’ (the default) or ’MSCP’:

’RT11’ Supports TMSCP and MSCP devices.

’MSCP’ Supports TMSCP and MSCP devices and
requires the unit parameter. If MSCP is
specified, iunit is required.

iwork is a recommended work area used internally by IGTDUS. If you do
not define a work area, IGTDUS takes 80 words from the processor
stack area. Allow for that when planning stack allocation to avoid
stack overflow.
If the DU handler does not support extended device units, you can
specify a work area of 80 words and you can omit the isize parameter.
You should specify at least a 160-word work area for iwork, and
include the isize parameter if all the following are true:

• The DU handler has been built to support extended device units

• The itype parameter is specified as RT–11

• The device unit number, iunit, is higher than 278

isize specifies the work area size, together with iwork, when the DU
handler has been built to support extended device units, the itype
parameter is RT–11, and the device unit number is higher than
27(octal). The value supplied for isize should be the same as that
used to declare iwork.

Use the IGTDUS function to determine the unit size before issuing the JREAD
and JWRITE functions to MSCP devices or anytime you need status information
concerning an MSCP or TMSCP device.

IGTDUS implicitly enables .SERR error condition handling while performing the
channel lookup operation for the specified MSCP or TMSCP device. Any errors
reported during the lookup operation are returned by IGTDUS. After the lookup
operation completes, IGTDUS returns error condition handling to any that was
previously enabled. Error condition handling by ISERR or IHERR other than during
the IGTDUS lookup operation must be explicitly enabled in the program.

Errors:

Value Meaning
i = 0 Normal return

= 1 Logic error. Retry the operation. If the error persists, submit an
SPR to Digital.

System Subroutine Description and Examples 2–71

GTDUS/IGTDUS

= 2 Logic error. Retry the operation. If the error persists, submit an
SPR to Digital.

= 3 Logic error. Retry the operation. If the error persists, submit an
SPR to Digital.

= 4 Attempt to read or write past end-of-file or invalid function value

= 5 Hard error occurred on channel

= 6 Channel is not open

= 7 Work area is inadequate; specify at least 160 words for isize and
iwork parameters

8-12 Reserved

= 13 Handler is not loaded

= 14 Handler is not installed

= 15 Channel is already in use

= 16 Logic error (.LOOKUP code 1)

= 17 Channel already open on a nonshareable device

= 18 Device does not support MSCP or TMSCP. Inappropriate device for
IGTDUS function

= 19 First character of type argument is not an ’M’ or ’R’

= 20 Logic error (.LOOKUP code 5)

= 21 Invalid unit

= 22 Reserved

= 23 Required argument missing: dev, ichan, or ibuf arguments

Other error codes can be returned by IGTDUS since the ISERR function is in effect.
See ISERR in this chapter.

Example:

Program FGTDUS !demo GTDUS
C
C Display the (T)MSCP status for the devices listed in
C the DEV array if they are on the system.
C

Integer*2 DEV(9) !devices to check
Integer*2 IBUF(7) !status info returned
Integer*2 IWORK(160) !work area
Character*8 STATUS(0:2) !status strings
Character*3 ANAME !device name in ascii
Byte DTYPE(5) !device type
Equivalence (DTYPE, IBUF(5))
Data DEV /3rDU0, 3rDU1, 3rDU2, 3rDU3,
1 3rDU4, 3rDU5, 3rDU6, 3rDU7, 3rMU0/
Data STATUS /’ONLINE’, ’AVAILBL’, ’OFFLINE’/

2–72 RT–11 System Subroutine Library Manual

GTDUS/IGTDUS

C
ICHAN = IGETC ()
DO 1000, I = 1, 9 !try each device

Call R50ASC (3, DEV(I), ANAME) !get ascii name
IERR = IFETCH (DEV(I)) !get handler
If (IERR .eq. 0) Then
IERR = IGTDUS (DEV(I), ICHAN, IBUF, , , IWORK, 160)
If (IERR .eq. 0) Then

Type 2, ANAME, STATUS(IBUF(1)), DTYPE, (IBUF(J), J=2,4)
2 Format (’ ’, 1a3, ’: Status=’, 1a8, ’, Type="’, 5a1,

1 ’", IBUF(2--4)=’, 3(o6, ’ ’))
Else
Type *, ’?FGTDUS-W-GTDUS failed for ’, ANAME, ’ with’, IERR

End If
Else

Type *, ’?FGTDUS-W-Fetch failed for ’, ANAME
End If

1000 Continue
End

System Subroutine Description and Examples 2–73

GTIM
The GTIM subroutine returns the current time of day. The time is returned in two
words and is given in terms of clock ticks past midnight. If the system does not
have a line clock, a value of 0 is returned. If an RT–11 monitor TIME command
has not been entered, the value returned is the time elapsed since the system was
bootstrapped, rather than the time of day.

Form:

CALL GTIM (itime)

where:

itime is the two-word area to receive the time of day

The high-order time is returned in the first word, the low-order time in the
second word. The CVTTIM routine can be used to convert the time into hours,
minutes, seconds, and ticks. CVTTIM performs the conversion based on the monitor
configuration word for 50- or 60-Hz clocks. Under all monitors, except for SB, the
time-of-day is automatically reset after 24:00; under the SB monitor it is not.

Errors:
Error message TRAP $MSARG will display if itime argument is missing.

Example:
See CVTTIM.

2–74 RT–11 System Subroutine Library Manual

GTJB/IGTJB
GTJB/IGTJB returns information about a job in the system.

Form:

CALL GTJB (addr[,jobblk[,ierr]])
ierr = IGTJB (addr[,jobblk])

where:

addr is the address of an eight-word or twelve-word block into which
the parameters are passed.

jobblk is a pointer to a three-word ASCII logical job name for which
data is being requested:

0–16: Job number for which information is desired
-1 or ’ME’: Information is passed about issuing job
-3: Address of 3-word ASCII job name for which data is
desired

ierr is an error return if the job is not running

The values returned are:

Word 1 Job Number = priority level *2 (background job is 0; system jobs
are 2, 4, 6, 8, 10, 12; and foreground job is 14 in system job
monitors; background job is 0 and foreground job is 2 in non-
system job monitors; job number is 0 in all but SB monitor)

Word 2 High-memory limit

Word 3 Low-memory limit

Word 4 Start of channel area

Word 5 Pointer to impure area

Word 6 Low byte: unit number of job’s console terminal (used only with
multiterminal option; 0 when multiterminal feature is not used)

Word 7 Virtual high limit for a job created with the linker /V option
(mapped monitors; 0 in unmapped monitors and where the
Linker /V option is not used.)

Word 8-9 Reserved for future use

Word 10-12 ASCII logical job name (system job monitors only)

If one argument is used with the call, only the first eight words will be returned.
For example,

Form:

INTEGER IJPARM(8)
CALL GTJB (IJPARM)
ierr = IGTJB (IJPARM)

System Subroutine Description and Examples 2–75

GTJB/IGTJB

At least a comma must follow the argument to pass the information into a 12-word
block. For example,

Form:

INTEGER IJPARM(12)
CALL GTJB (IJPARM ,)
I = IGTJB (IJPARM ,)

Errors:

Value Meaning
i = 0 Normal return.

=-1 No such job is currently running.

Error message TRAP $MSARG will display if addr argument is missing.

Example:

Program FGTJB !Demo GTJB routine
C
C Get information about this job
C

Parameter SUCCS = ’001’o
Parameter FATAL = ’010’o
Integer*2 REPLY(12)

C
REPLY(10) = ’*N’ !assume no job name
REPLY(11) = ’ON’
REPLY(12) = ’E*’
If (IGTJB (REPLY, -1) .ne. 0) Go To 1000
Type *, ’Job Number =’, REPLY(1)
Type 100, REPLY(4)

100 Format (’ ’, ’Addr I/O control blocks =’, o8)
Type 110, REPLY(5)

110 Format (’ ’, ’Addr impure area =’, o8)
Type 120, REPLY(10), REPLY(11), REPLY(12)

120 Format (’ ’, ’Job name = ’, 3a2)
Call Exit (SUCCS)

1000 Continue
Type *, ’?FGTJB-F-Request failed’
Call Exit (FATAL)
End

2–76 RT–11 System Subroutine Library Manual

GTLIN/IGTLIN
GTLIN/IGTLIN can transfer a line of input to your program from the terminal or
from an active indirect file.

You can force GTLIN to accept input only from the terminal, even if the program is
running under the control of an indirect file.

This subroutine requires the USR. The maximum size of the input line is 80
characters. See the .GTLIN programmed request for setting bits in the job status
word (JSW) to pass lowercase letters and establish a nonterminating condition.

Form:

CALL GTLIN (result[,prompt][,term]
[,plain])

i = IGTLIN (result[,prompt][,term]
[,plain])

where:

result is the array receiving the string. This LOGICAL*1 array contains a
maximum of 80 characters plus 0 as the end indicator and therefore
must be dimensioned to at least 81 elements

prompt is a BYTE array containing an optional prompt string to be printed
before the input line is received. The string format is the same as
that used by the PRINT subroutine. If this argument is not present,
no prompt is printed

term is a string constant specified when you want to take input only from
the console terminal, even if the program is running under the control
of an indirect command file. Use the ’term’ argument when direct
response from the program user is required. You need specify only
the first character (’t’); case is unimportant

plain is a string constant specified when you want to take unaltered input
and pass that input to the array specified by the GTLIN result
argument. You must specify the ’plain’ argument to prevent the
operating system from reversing the arguments in the command line.
The plain argument is helpful when a program requires command
input that is not a file specification, such as a SETUP command. You
need specify only the first character (’p’); case is unimportant

GTLIN with the plain argument, checks the word in location 510 in the chain area
for a byte count higher than 1.

• If location 510 does not contain a byte count higher than 1, GTLIN functions as
though the ’plain’ argument was not specified.

• If location 510 contains a word count higher than 1, GTLIN copies the ASCIZ
string, beginning at location 512, into the result argument as specified in the
GTLIN call. GTLIN then clears location 510.

System Subroutine Description and Examples 2–77

GTLIN/IGTLIN

• GTLIN then takes the input (converted by KMON) from the KMON buffer,
thereby purging the buffer. Then GTLIN places the input from the KMON buffer
into the chain area, beginning at location 512.

At the completion of the GTLIN call:

• The program has the unaltered input.

• Location 510 is clear.

• The KMON buffer is clear.

Notes
To avoid possible problems, Digital recommends that the GTLIN subroutine with
the plain argument not be used in a program that uses the .CSIGEN and .CSISPC
requests or the GTLIN subroutine without the plain argument.

GTLIN can be called from MACRO–11 programs if the standard FORTRAN calling
convention is followed. All register contents are destroyed across the call. GTLIN
has no dependencies on FORTRAN code or routines.

Errors:

Value Meaning
i = 0 Success.

= -1 Line too long.

Error message TRAP $MSARG will display if result argument is missing.

Example:

C
C Get input without file (CCL) processing
C

Byte INPUT(81)
Byte PROMPT(6)
Data PROMPT /’N’, ’a’, ’m’, ’e’, ’?’, "200/
Call GTLIN (INPUT, PROMPT, ’P’)

2–78 RT–11 System Subroutine Library Manual

HERR/IHERR
HERR/IHERR turns off ISERR (error interception) and allows the monitor to abort
a job and generate an error message under fatal error conditions. IHERR itself
returns no error codes.

Form:

CALL HERR ()
i = IHERR ()

where:

i is a returned INTEGER*2 result of the function, a flag indicating the
previous IHERR/ISERR setting:

Value Meaning
i = 0 IHERR was in effect

i = 1 ISERR was in effect

Errors:
None.

Example:

Program FHERR !demo HERR and SERR
C
C Demonstrate how to save, modify and restore the
C HERR/SERR status in a subroutine
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLK(4) !unknown device/file
Integer*2 CHAN !channel to use
Integer*2 OLD1 !mainline SERR/HERR setting
Data DBLK /3rZZZ, 3*3rYYY/ !non existant device

C
CHAN = IGETC ()
OLD1 = IHERR () !get old setting
OLD1 = IHERR () !confirm it
Call TEST (CHAN, DBLK) !call routine that uses SERR
If (OLD1 .ne. IHERR ()) Then

Type *, ’?FHERR-F-S/HERR status not saved’
Call Exit (FATAL)

Else
Type *, ’!FHERR-I-Success’

End If
OLD1 = ISERR () !get old setting
OLD1 = ISERR () !confirm it
Call TEST (CHAN, DBLK) !call routine that uses SERR
If (OLD1 .ne. IHERR ()) Then

Type *, ’?FHERR-F-S/HERR status not saved’
Call Exit (FATAL)

Else
Type *, ’!FHERR-I-Success’
Call Exit (SUCCS)

End If

System Subroutine Description and Examples 2–79

HERR/IHERR

End

Subroutine TEST (CHAN, DBLK)
Integer*2 DBLK(4) !unknown device/file
Integer*2 CHAN !channel to use
Integer*2 ERROR !error code
Integer*2 OLDERR !previous SERR/HERR setting

C
OLDERR = ISERR () !set SERR, save old setting
ERROR = LOOKUP (CHAN , DBLK) !open that WILL fail
Type *, ’LOOKUP returned’, ERROR
If (OLDERR .eq. 0) CALL HERR !restore setting
RETURN
END

2–80 RT–11 System Subroutine Library Manual

IADDR
The IADDR function returns the 16-bit absolute memory address of its argument as
the integer function value.

Form:

i - IADDR (arg)

where:

arg is the variable or constant whose memory address is to be obtained.
The value obtained by passing an expression as arg is unpredictable.

Errors:
Error message TRAP $MSARG will display if arg is missing.

Example:

Program FADDR ! demo IADDR function
C
C This is example code of an actual use of IADDR.
C Mapping requests often need addresses on PAR boundaries
C and this code demonstrates how you can create such an address
C dynamically.
C

Implicit Integer*2 (A-Z)
Parameter SUCCS = ’001’o
Parameter FATAL = ’010’o
Integer*2 AREA(0:1) !must disable subscript checking

C
AREA0 = IADDR (AREA(0)) !find addr of AREA(1)
PAR1 = (’20000’o - AREA0) / 2 !find element of AREA

C ! that is base of Par1
AREAN = IADDR (AREA(PAR1)) !verify it
Type 100, AREA0, PAR1, AREAN

100 Format (’ ’, ’Base address of AREA() is ’, o8 /
1 ’ ’, ’Address of AREA(’, i5, ’) is ’ o8)
If (AREAN .ne. ’20000’o) Go To 1000
Type *, ’!FADDR-I-Success’
Call Exit (SUCCS)

C
1000 Continue

Type *, ’?FADDR-F-Failed’
Call Exit (FATAL)
End

System Subroutine Description and Examples 2–81

IDATE
The IDATE function returns three INTEGER*2 values representing the current
(system) month, day, and year or an optional RT–11 date word you provide. IDATE
was previously located in the distributed FORTRAN subroutine libraries, FORLIB
and F77OTS.

Form:

i = IDATE (mon,day,year[,opdate])

where:

mon is an INTEGER*2 variable that, on return, contains an integer
representation of the month. January is represented as 1. December
is represented as 12. Returned as zero if the system date has not
been set

day is an INTEGER*2 variable that, on return, contains the integer day
of the month

year is an INTEGER*2 variable that, on return, contains the positive
difference between 1900 and the current year

opdate is an optional RT–11 date word to be converted. Specifying a 0 value
for opdate returns the current system date. Note that the value you
enter for opdate is not validated. The format of the date word is:

Bits Contents
0-4 Year minus the base (base specified by bits 14,15)

5-9 Day (1-31)

10-13 Month (1-12)

14,15 Age bits.
Age bits extend the directory date by 32(decimal)
year increments and have the following meaning:

15 14 Meaning When Set
0 0 Base year 1972

0 1 Base year 2004

1 0 Base year 2036

1 1 Base year 2068

2–82 RT–11 System Subroutine Library Manual

IDATE

i is one of the following values returned (only when IDATE is called in
the form i = IDATE:)

Value Meaning
i = 0 Success

Error message TRAP $MSARG will display if month, day or year argument is
missing.

Example:
See DATE.

System Subroutine Description and Examples 2–83

IDCOMP
The IDCOMP function compares two RT–11 date words and returns an integer value
that reflects the relationship between those dates.

Form:

i = IDCOMP (date1[,date2])

where:

date1 is the first RT–11 date word; that word is compared against date2.
The format of the RT–11 date word is:

Bits Contents
0-4 Year minus the base (base specified by bits 14,15)

5-9 Day (1-31)

10-13 Month (1-12)

14,15 Age bits. Age bits extend the directory date by
32(decimal) year increments and have the follow-
ing meaning:

15 14 Meaning When Set
0 0 Base year 1972

0 1 Base year 2004

1 0 Base year 2036

1 1 Base year 2068

date2 is the optional second RT–11 date word (default is current system
date)

Function Result:

Value Meaning
i = 0 The dates are the same

< 0 A negative value indicates date1 is before date2

> 0 A positive value indicates date1 is after date2

Errors:

Value Meaning
i = -257 Invalid or missing argument.

2–84 RT–11 System Subroutine Library Manual

IDCOMP

Example:

Program FDCOMP !demo IDCOMP and GFDAT
C
C Compare the creation DATES of an OBJ and associated SAV
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLKO(4), DBLKS(4), CHAN, ODATE, SDATE
Data DBLKO /3rOBJ, 3rFDC, 3rOMP, 3rOBJ/
Data DBLKS /3rSRC, 3rFDC, 3rOMP, 3rFOR/

C
CHAN = IGETC ()
IERR = IGFDAT (CHAN, DBLKO, ODATE)
If (IERR .ne. 0) Go To 300
IERR = IGFDAT (CHAN, DBLKS, SDATE)
If (IERR .ne. 0) Go To 300
If (IDCOMP (ODATE, SDATE)) 110, 120, 130

110 Call Print (’!FDCOMP-I-SAV is newer than OBJ’)
Go To 200

120 Call Print (’!FDCOMP-I-SAV and OBJ have the same date’)
Go To 200

130 Call Print (’!FDCOMP-I-SAV is OLDER than OBJ’)
200 Call Exit (SUCCS)
300 Call Print (’?FDCOMP-F-GFDAT returned an error’)

Call Exit (FATAL)
End

System Subroutine Description and Examples 2–85

IFWILD
The IFWILD function tests a file specification string (file name and extension only)
for a match against up to eight wildcard file specifications (file name and extension
only). IFWILD returns the result of the test (success or no success) and, if the test
is successful, which of the file directory entries produced the match.

Form:

i = IFWILD (tststr,matstr[,explct])

where:

tststr is a character string test file specification; that file name and
extension for which you are seeking a match. The test file
specification can contain trailing blanks in either or both the name
and extension fields, so long as their length does not exceed 6 and
3 characters respectively. The file name and extension must be
separated by a period (.), and the file specification is terminated with
a NULL character.

matstr is a character string of up to eight file specifications separated by
commas (,) and terminated by a NULL. Device specifications are
invalid. Each file specification can contain trailing blanks, general
replacement wildcards (*), or single-character wildcards (%) in either
or both the file name and extension. If the extension is left blank,
it is treated as a general replacement wildcard, unless the optional
parameter explct is specified as ’E’. Each file name and extension
must be separated by a period (.), each file specification must be
separated by a comma (,), and the complete string must be terminated
by a NULL

explct is either ’E’ or ’I’. Specify ’E’ to indicate explicit wildcarding;
functionally equivalent to the command SET WILD EXPLICIT.
Specify ’I’ to indicate implicit wildcarding; functionally equivalent
to the command SET WILD IMPLICIT (the default). If explct is
omitted, current monitor setting of SET WILD is used.

i is the INTEGER*2 function result.

Errors:

Value Meaning
i = -2 Invalid arguments or missing arguments

= -1 No match

= >0 A match occurred and can be interpreted according to the
following bitmap:

2–86 RT–11 System Subroutine Library Manual

IFWILD

Exact
Match

Matching
File SpecificationsReserved

M R R R R nam ext 8 7 6 5 4 3 2 1

15 14 13 12 11 10 89

R

7 6 5 4 3 2 1 0

Bits Contents
15 Clear indicates a match

10-14 Reserved

9 Successful exact match for file name (nam). The test file
specification (tststr) name exactly matched at least one of the
matching file specification (matstr) names. A wildcard match
for file name does not set this bit.

8 Successful exact match for file extension (ext). The test
file specification (tststr) extension exactly matched one of the
matching file specification (matstr) extensions. A wildcard
match for file extension does not set this bit.

0-7 Each bit corresponds to a match string file specification. For
example, bit 0 corresponds to the first file specification in the
match string, and bit 7 corresponds to the eighth. A successful
test string match of the test string file name and extension
with the corresponding match string file specification sets the
corresponding bit. More than one file specification can match,
therefore, more than one bit can be set. Each match can be
an exact match or a wildcard match. Check bits 8 and 9 to
determine if match is exact for file name and/or extension

System Subroutine Description and Examples 2–87

IFWILD

Example:

Program FIFWIL !demo IFWILD
C
C Try to match the wildcard file formats:
C T*.DAT and T*.INP
C Rejecting all command lines that do not match
C

Byte FILSPC(81)
Character*15 MATCH
Data MATCH /’T*.DAT,T*.INP’/
Character*14 PROMPT
Byte P(14)
Equivalence (PROMPT, P)
Data PROMPT /’input file? ’/

C
Call SCOPY (MATCH, MATCH, 14) !null terminate the string
P(14) = ’200’o !and no CRLF on prompt

100 Continue
Call GTLIN (FILSPC, PROMPT)
If (IFWILD (FILSPC, MATCH) .gt. 0) Then

Type 1, ’!FIFWIL-I-Valid file was: ’, (FILSPC(I), I=1,14)
1 Format (’ ’, a27, 14a1)

Call Exit
Else

Type *, ’!FIFWIL-I-Invalid file name, try again’
Go To 100

End If
End

2–88 RT–11 System Subroutine Library Manual

IGTENT
The IGTENT function returns the next directory entry that matches the criteria
specified in the IGTDIR function. If there are no remaining matching entries,
IGTENT returns an error code.

Form:

i = IGTENT (wkarea,entry[,entofs][,filblk][,ascnam])

where:

wkarea is the 64-word work area array specified in the IGTDIR function
wkarea parameter

entry is an INTEGER*2 array, the length and contents of which are
determined by the IGTDIR header parameter.

• If header is not specified in IGTDIR, entry is a 7-word
INTEGER*2 array that, on return, contains the 7-word directory
entry matching the criteria specified in IGTDIR.

• If header is specified in IGTDIR, entry contains the entire
directory entry (including any optional extra words) matching the
criteria specified in IGTDIR. The fourth word in the directory
header returned in the IGTDIR header parameter specifies the
number of extra bytes in directory entries.

entofs is an INTEGER*2 variable that, on return, contains a value
representing the position of the next directory entry (see the IGTDIR
function stofst parameter.)

filblk is an INTEGER*2 variable that, on return, contains the starting
block number for the directory entry that matches the criteria
specified in IGTDIR.

ascnam is an 11-byte array that, on return, contains a fixed-format ASCII
string file specification of the directory entry matching the criteria
specified in IGTDIR. The directory entry is padded in the name and
extension fields with blanks up to 6 and 3 characters respectively and
is terminated with a NULL.

Function Result:

Value Meaning
i = -7 Error reading directory segment

= -9 No directory open

= -10 End of directory encountered

System Subroutine Description and Examples 2–89

IGTENT

= -19 Invalid arguments

= -20 Returned file entry does not match (special mode operation)

= >0 A match occurred and can be interpreted according to the
following bit fields:

Exact
Match

Matching
File SpecificationsReserved

M R R R R nam ext 8 7 6 5 4 3 2 1

15 14 13 12 11 10 89

R

7 6 5 4 3 2 1 0

Bits Contents
15 Clear indicates a match

10-14 Reserved

9 Successful exact match for exact file name (nam). The test file
name exactly matched that of at least one of the matching file
specifications. A wildcard match for file name does not set this
bit

8 Successful exact match for file extension (ext). The test file
extension exactly matched that of at least one of the matching
file specifications. A wildcard match for file extension does not
set this bit

0-7 Each bit corresponds to a match string file specification. For
example, bit 0 corresponds to the first file specification in the
match string and bit 7 corresponds to the eighth. A successful
test string match of the test string file name and extension
with the corresponding match string file specification sets the
corresponding bit. More than one file specification can match,
therefore more than one bit can be set. Each match can be
an exact match or a wildcard match. Check bits 8 and 9 to
determine if match is exact for file name and/or extension

Example:
See example for GTDIR/IGTDIR.

2–90 RT–11 System Subroutine Library Manual

IJCVT
The IJCVT function converts an INTEGER*4 value to INTEGER*2 format. If you do
not specify ires, the result returned is the INTEGER*2 value of jsrc. If you specify
ires, the result is stored there.

Form:

i = IJCVT (jsrc[,ires])

where:

jsrc specifies the INTEGER*4 variable or array element whose value is
to be converted

ires specifies the INTEGER*2 entity to receive the conversion result

Function Result (if ires is specified):

Value Meaning
i = 0 Normal return; the result is 0.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

= -2 An overflow occurred during conversion.

Errors:
Unpredictable results will occur if the jsrc argument is omitted.

Example:

Program FIJCVT !Demo IJCVT
C Demonstrate the boundary conditions for IJCVT
C

Integer*4 JVAL !Long to convert from
Integer*2 IVAL !short to convert into
Integer*2 IERR !error/result codes
Character*8 RESULT(-2:1) !strings describing results
Data RESULT /’Overflow’, ’Negative’, ’Zero’, ’Positive’/

C
JVAL = 0
IERR = IJCVT (JVAL, IVAL)
Type *, JVAL, IVAL, ’ ’, RESULT(IERR)
JVAL = -32768
IERR = IJCVT (JVAL, IVAL)
Type *, JVAL, IVAL, ’ ’, RESULT(IERR)
JVAL = +32767
IERR = IJCVT (JVAL, IVAL)
Type *, JVAL, IVAL, ’ ’, RESULT(IERR)
JVAL = -32769
IERR = IJCVT (JVAL, IVAL)
Type *, JVAL, IVAL, ’ ’, RESULT(IERR)
JVAL = +32768
IERR = IJCVT (JVAL, IVAL)
Type *, JVAL, IVAL, ’ ’, RESULT(IERR)
End

System Subroutine Description and Examples 2–91

INDEX
INDEX searches a source string for the occurrence of a pattern string and returns
the character position of the first occurrence of the pattern within the source.

Form:

CALL INDEX (a,pattrn[,i],m)
i = INDEX (a,pattrn[,i],m)

or

m = INDEX (a,pattrn[,i])

where:

a is the array containing the source string to be searched; it must be
terminated by a null byte

pattrn is the string being sought; it must be terminated by a null byte

i is the integer starting character position of the search in a. If i is
omitted, a is searched beginning at the first character position

m is an integer variable to store the result of the search; m is set to the
starting character position of pattern in a, if found; otherwise, m is
0

Errors:
Unpredictable results will occur if required arguments are omitted.

Example:

The following example searches the array STRING for the first occurrence of strings
EFG and XYZ and searches the string ABCABCABC for the occurrence of string
ABC after position 5.

Program FINDEX !demo INDEX
C
C Show several forms of INDEX (as function and
C subroutine) and w/o optional arguments
C

Byte STRING(10)
C

Call SCOPY (’ABCDEFGHI’, STRING) !init for test
Call INDEX (STRING, ’EFG’, , M) !expect 5
Call INDEX (STRING, ’XYZ’, , N) !expect 0
Type *, ’M=’, M, ’ N=’, N, ’ INDEX =’, !display results
1 INDEX (’ABCABCABC’, ’ABC’, 5) !expect 7
END

2–92 RT–11 System Subroutine Library Manual

INSERT
The INSERT subroutine replaces a portion of one string with another string.

Form:

CALL INSERT (in,out,i[,m])

where:

in is the array containing the string being inserted. The string must be
terminated with a null if the number of characters is less than the
value of m (below), or if m is not specified

out is the array containing the string being modified. The string must
be terminated with a null

i is the integer specifying the character position in out at which the
insertion begins

m is the integer maximum number of characters to be inserted

If the maximum number of characters (m) is not specified, all characters to the right
of the specified character position (i) in the string being modified are replaced by the
string being inserted. The insert string (in) and the string being modified (out) can
be in the same array only if the maximum number of characters (m) is specified and
is less than or equal to the difference between the position of the insert (i) and the
maximum string length of the array.

Errors:
Unpredictable results will occur if required arguments are omitted.

Example:

Program FINSER
C
C Show various options with INSERT
C

Byte S1(11), S2(11), S3(11)
C

Call SCOPY (’ABCDEFGHIJ’, S1) !init test string
Call SCOPY (S1, S2) !and another one
Call SCOPY (S1, S3) !and another one
Call INSERT (’123’, S1, 6) !S1 = ABCDE123
Call INSERT (’123’, S2, 6, 2) !S2 = ABCDE12HIJ
Call INSERT (’123’, S3, 6, 4) !S3 = ABCDE123IJ
Call PRINT (S1)
Call PRINT (S2)
Call PRINT (S3)
End

System Subroutine Description and Examples 2–93

IPEEK
The IPEEK function returns the contents of the word located at a specified 16-
bit address in the current job’s address space. The subroutine can examine device
registers if the registers are located in the current job’s address space.

Form:

i = IPEEK (iaddr)

where:

iaddr is the integer specification of the 16-bit address in the current job’s
address space to be examined. If this argument is not an even value,
a trap results (except on an LSI–11 or a PDP–11/23)

Function Result:
The function result (i) is set to the value of the word examined.

Errors:
Error message TRAP $MSARG will display if argument iaddr is missing.

Example:

Program FPEEK
C
C Use (I)PEEK(B) and (I)POKE(B) to work with
C the SYSCOM area
C

Parameter JSW = ’44’o !Job Status Word
Parameter TTLC = ’040000’o !lower case bit in JSW
Parameter ERRBY = ’52’o !Emt eRRor BYte
Parameter USRRB = ’53’o !USer program eRRor Byte
Parameter SUCCS = ’001’o !success bit
Integer*2 UNKFIL(4) !DBLK for non-existant file
Data UNKFIL /3rSY , 3rXXX, 3rXXX, 3rZZZ/
Integer*2 OLDJSW !original JSW
Byte OLDERR !original ERRBY
Byte BUFFER(81) !character buffer
Byte PROMPT(6) !input prompt
Data PROMPT /’t’, ’e’, ’s’, ’t’, ’:’, ’200’o/

C
OLDJSW = IPEEK (JSW) !get original JSW
Type 1, OLDJSW !display JSW

1 Format (’ ’, ’JSW=’, o7)
OLDERR = IPEEKB (ERRBY) !get old error byte
Type 2, OLDERR

2 Format (’ ’, ’ERRBY=’, o3)
Call Print (’000’o) !clean up screen
Call POKE (JSW, IAND (OLDJSW, NOT (TTLC))) !clear TTLC
Call RCTRLO
Call GTLIN (BUFFER, PROMPT) !get a line (in uppercase)
Call Print (BUFFER) !display it
Call POKE (JSW, IOR (OLDJSW, TTLC)) !set TTLC
Call RCTRLO
Call GTLIN (BUFFER, PROMPT) !get a line (in lowercase)

2–94 RT–11 System Subroutine Library Manual

IPEEK

Call Print (BUFFER) !display it
Call POKE (JSW, OLDJSW) !restore it to the original state
ICHAN = IGETC ()
IERR = LOOKUP (ICHAN, UNKFIL) !look for non-existant file
Type 2, IPEEKB (ERRBY) !get error code from SYSCOM
Call POKEB (USRRB, IOR (IPEEKB (USSRB), SUCCS))

C !set success code
C !(Call EXIT (SUCCS) is easier

Type 3, IPEEKB (USRRB) !display it
3 Format (’ ’, ’USRRB=’, o3)

End

System Subroutine Description and Examples 2–95

IPEEKB
IPEEKB returns the contents of the byte located at a specified 16-bit address in
the current job’s address space. Since this subroutine operates in a byte mode, the
address supplied can be odd or even. The subroutine can examine device registers
if the registers are located in the current job’s address space. The return is zero
extended; that is, the high byte is 0.

Form:

i = IPEEKB (iaddr)

where:

iaddr is the integer specification of the 16-bit address in the current job’s
address space to be examined. Unlike the IPEEK subroutine, the
IPEEKB subroutine allows odd addresses

Function Result:
The function result (i) is set to the value of the byte examined.

Errors:
Error message TRAP $MSARG will display if argument iaddr is missing.

Example:
See IPEEK.

2–96 RT–11 System Subroutine Library Manual

IRAD50
The IRAD50 function converts a specified number of ASCII characters to Radix–50
and returns the number of characters converted. Conversion stops on the first non-
Radix–50 character encountered in the input, or when the specified number of ASCII
characters have been converted.

Form:

n = IRAD50 (icnt,input,output)

where:

n is the integer number of input characters actually converted

icnt is the number of ASCII characters to be converted

input is the area from which input characters are taken

output is the area in which Radix–50 words are stored

Three characters of text are packed into each word of output. The number of output
words modified is computed by the expression (in integer words):

(icnt+2)/3

Thus, if a count of 4 is specified, two words of output are written even if only a
one-character input string is given as an argument.

Function Result:
The integer number of input characters actually converted (n) is returned as the
function result.

Errors:
Unpredictable results will occur if any required argument is omitted.

Example:

Real*8 FSPEC
Call IRAD50 (12, ’SY SWAP SYS’, FSPEC)

System Subroutine Description and Examples 2–97

ISPY
The ISPY function returns the integer value of the word at a specified offset from
the RT–11 resident monitor. This subroutine uses the .GVAL programmed request
to return fixed monitor offsets. (See RT–11 System Macro Library Manual for
information on fixed offset references.)

Form:

i = ISPY (ioff[,ierr])

where:

ioff is the offset (from the base of RMON) to be examined.

ierr is the optional error return.

Function Result:
The function result (i) is set to the value of the word examined.

Errors:

Value Meaning
i = 0 Success

= -1 Offset ioff is out of range. (Not contained within RMON)

= -2 Trap 4: Odd or nonexistent address.

Error message TRAP $MSARG will display if argument ioff is missing.

Example:
See PUT.

2–98 RT–11 System Subroutine Library Manual

ISWILD
The ISWILD function checks for matching, either using or not using wildcards,
between two ASCII strings. Valid wildcards are the asterisk (*) and percent sign
(%).

By default, the strings are terminated by a NULL. Optionally, other terminators can
be specified. By default, the string character comparisons are case-insensitive for
alphabetic characters. Optionally, the comparison can be made case sensitive.

Form:

i = ISWILD (tststr,matstr[,term][,case][,explct])

where:

tststr is the test string; the string you submit to check against a match
string. The test string can contain any ASCII characters and is
terminated with a NULL character or a character specified in the
term parameter

matstr is the match string; the string against which you compare the test
string. The match string can contain any ASCII character except
an embedded NULL. An asterisk wildcard (*) indicates a match-
all sequence of unknown length, while a percent sign wildcard (%)
indicates a match-all sequence of exactly one character

term is an optional ASCIZ string containing other terminators made valid
for this comparison, such as a period (.), comma (,), blank, or tab.
NULL is always recognized as a valid string terminator.

case determines case sensitivity requirements. The default is no
sensitivity; all alphabetic characters are forced to uppercase before
comparison. Specify ’C’ to choose case sensitivity (7-bit ASCII only)

explct is either ’E’ or ’I’. Specify ’E’ to indicate explicit wildcarding;
functionally similar to the command SET WILD EXPLICIT. Specify ’I’
to indicate implicit wildcarding; functionally similar to the command
SET WILD IMPLICIT. Implicit wildcarding is the default.

i contains the result of the comparison.

Errors:

Value Meaning
i = 0 Exact match

= 1 Wildcard match

=-1 No match

=-2 Invalid arguments

System Subroutine Description and Examples 2–99

ISWILD

Example:

Program FISWIL
C
C Search the specified file for lines containing strings
C matching the specified wildcard search argument(*).
C

Byte FILNAM(16), MATCH(80), TEST(80)
Byte PFILE(7)
Data PFILE /’F’, ’i’, ’l’, ’e’, ’?’, ’ ’, ’200’o/
Byte PSTRIN(8)
Data PSTRIN /’S’, ’t’, ’r’, ’i’, ’n’, ’g’, ’ ’, ’200’o/

C
Call GtLin (FILNAM, PFILE)
Open (Unit=2, Name=FILNAM, Type=’OLD’, Err=990)
Call GtLin (MATCH, PSTRIN)

C
LINE = 0

100 Continue
LINE = LINE + 1
Read (2, 1101, End=999) NCH, TEST
TEST(NCH+1) = 0 !terminate string
If (ISWILD (TEST, MATCH) .lt. 0) Go To 100
Write (5, 1105) LINE, (TEST(K), K=1,MIN (72,NCH))
Go To 100

C
990 Write (5, 1991) FILNAM
999 Call Exit
C
1101 Format (q, 80a1)
1105 Format (’ ’, I4, ’:’, 72a1)
1991 Format (’ ’, ’?FISWIL-F-File not found - ’, 16a1)

End

2–100 RT–11 System Subroutine Library Manual

ITLOCK
Multijob
The ITLOCK function is used in a multijob system to attempt to gain ownership of
the USR. It is similar to LOCK in that, if successful, the user job returns with the
USR in memory. However, if a job attempts to LOCK the USR while the other job is
using it, the requesting job is suspended until the USR is free. With ITLOCK, if the
USR is not available, control returns immediately and the lock failure is indicated.

Form:

i = ITLOCK()

For further information on gaining ownership of the USR, see the .TLOCK
programmed request.

Errors:

Value Meaning
i = 0 Normal return.

= 1 USR is already in use.

Example:
See LOCK.

System Subroutine Description and Examples 2–101

ITTINR
The ITTINR function transfers a character from the console terminal to the user
program. If no characters are available, system action is determined by the setting
of bit 6 of the Job Status Word.

Form:

i = ITTINR()

If the function result (i) is less than 0 when execution of the ITTINR function is
complete, it indicates that no character was available. ITTINR does not return a
result of less than zero unless bit 6 of the Job Status Word was on when the request
was issued.

There are two modes of doing console terminal input, and they are governed by bit
12 of the Job Status Word (JSW). The JSW is at octal location 44. If bit 12 is 0,
normal I/O is performed under the following conditions:

• The monitor echoes all characters typed.

• CTRL/U and RUBOUT perform line deletion and character deletion, respectively.

• A carriage return, line feed, CTRL/Z or CTRL/C must be struck before characters
on the current line are available to the program. When one of these is typed,
characters on the line typed are passed one by one to the user program.

If the console is in special mode (bit 12 set to 1), the following conditions apply:

• The monitor does not echo characters typed except for CTRL/C and CTRL/O.

• CTRL/U and RUBOUT do not perform special functions.

• Characters are immediately available to the program.

In special mode, the user program must echo the characters desired. However,
CTRL/C and CTRL/O are acted on by the monitor in the usual way.

Bit 12 in the JSW must be set by the user program if special console mode is desired.
Bit 14 in the JSW must be set if lowercase characters are desired. These bits are
cleared when control returns to RT–11.

Regardless of the setting of bit 12, when a carriage return is entered, both carriage
return and line feed characters are passed to the program; if bit 12 is 0, these
characters will be echoed.

Lowercase conversion is determined by the setting of bit 14. If bit 14 is 0, lowercase
characters are converted to uppercase before being echoed (if bit 12 is 0) and passed
to a program; if bit 14 is 1, lowercase characters are echoed (if bit 12 is 0) and passed
as received. Bit 14 is cleared when the program terminates.

Notes
To set and/or clear bits in the JSW, do an IPEEK and then an IPOKE (See IPOKE
example.) In special terminal mode (JSW bit 12 set), normal FORTRAN formatted
I/O from the console is undefined.

2–102 RT–11 System Subroutine Library Manual

ITTINR

If the single-line editor has been enabled with the SET SL ON and SET SL TTYIN
commands, input from an ITTINR request can be edited by the single-line editor if
JSW bits 4 and 12 are 0. However, if either bit 4 or bit 12 is set, SL will not edit
ITTINR input. If SL is editing input, the state of bit 6 (inhibit TT wait) is ignored
and an ITTINR request will not return until an edited line is available.

In multijob monitors, CTRL/F and CTRL/B (and CTRL/X in monitors with the system
job feature) are not affected by the setting of bit 12. The monitor always acts on
these characters if the SET TT FB command is in effect.

Also under the multijob monitor, if a terminal input request is made and no character
is available, job execution is normally suspended until a character is ready. If a
program requires execution to continue and ITTINR to return a result of less than
zero, it must turn on bit 6 of the JSW before the ITTINR. Bit 6 is cleared when a
program terminates. The results of ITTINR must be stored in an INTEGER type
variable for the purposes of error checking. Once it is known that the call did not
have an error return, the result can be moved into a LOGICAL*1 variable or array
element. Direct placement into a LOGICAL*1 variable will lead to incorrect results,
because the negative flag (bit 15 set) is lost in conversion to a LOGICAL*1 variable.

Function Results:

Value Meaning
i = >0 Character read.

i = <0 No character available.

Example:
See example in Section 1.5.2.

System Subroutine Description and Examples 2–103

ITTOUR
The ITTOUR function transfers a character from the user program to the console
terminal if there is room for the character in the monitor buffer. If it is not currently
possible to output a character, an error flag is returned.

Form:

i = ITTOUR (char)

where:

char is the character to be output, right-justified in the integer (can be
LOGICAL*1 entity if desired)

If the function result (i) is 1 when execution of the ITTOUR function is complete,
it indicates that there is no room in the buffer and that no character was output.
ITTOUR normally does not return a result of 1. Instead, the job is blocked until
room is available in the output buffer. If a job requires execution to continue and
a result of 1 to be returned, it must turn on bit 6 of the JSW before issuing the
request.

Notes
If a foreground job has characters in the TT output buffer, they are not output under
the following conditions:

• If a background job is doing output to the console TT, the foreground job cannot
output characters from its buffer until the background job outputs a line feed
character. This can be troublesome if the console device is a graphics terminal
and the background job is doing graphic output without sending any line feeds.

• If no background job is running (that is, KMON is in control of background),
the foreground job cannot output its characters until the user types a carriage
return or a line feed. In the former case, KMON gets control again and locks out
foreground output as soon as the foreground output buffer is empty.

Note that the use of PRINT eliminates these problems.

Function Results:

Value Meaning
i = 0 Character was output.

= 1 Ring buffer is full.

Errors:
Unpredictable results will occur if required arguments are omitted.

Example:
See example in Section 1.5.2.

2–104 RT–11 System Subroutine Library Manual

IWEEKD
The IWEEKD function, supplied with a month, day, and year returns an integer
value representing the day of the week for that month, day, and year.

Form:

i = IWEEKD (month,iday,iyear)

where:

month is the number of the month between 1 and 12 (no default)

iday is the number of the day between 1 and 31 (no default)

iyear is the number of the year between 72 (representing 1972) and 199
(representing 2099), or 1972 through 2099. No default

Function result:

Value Meaning
i = -1 Invalid argument

= 1 Sunday

= 2 Monday

= 3 Tuesday

= 4 Wednesday

= 5 Thursday

= 6 Friday

= 7 Saturday

Example:
See DATE.

System Subroutine Description and Examples 2–105

JADD
JADD computes the sum of two INTEGER*4 values.

Form:

CALL JADD (jopr1,jopr2,jres)
i = JADD (jopr1,jopr2,jres)

where:

jopr1 is an INTEGER*4 variable

jopr2 is an INTEGER*4 variable

jres is an INTEGER*4 variable that receives the sum of jopr1 and jopr2.

Function Results:

Value Meaning
i = 0 Normal return; the result is zero.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

Errors:

Value Meaning
i = -2 An overflow occurred while computing the result.

Unpredictable results will occur if any argument is omitted.

Example:

Program FJADD !FORTRAN IV
C using JJCVT and TIMASC to display results
C

Integer*4 HOUR1 !value of 1 hour
Integer*4 HOUR12 !value of 12 hours
Integer*4 JA, JB, JC !variables
Logical*1 ASCII(9) !variables
Data ASCII(9) /0/ !terminate string with null

C
C init "constants"
C

Call JTIME (1, 0, 0, 0, HOUR1)
Call JTIME (12, 0, 0, 0, HOUR12)

C
C convert from RT-11 time format to I*4 format

Call JJCVT (HOUR1)
Call JJCVT (HOUR12)
Call JMOV (HOUR1, JA) !JA = 1hr
Call JMOV (HOUR12, JB) !JB = 12hr
Call JADD (JA, JB, JC) !JC = JA + JB
Call JJCVT (JC) !back to time format
Call TIMASC (JC, ASCII) !display results
Call PRINT (ASCII) !...
End

2–106 RT–11 System Subroutine Library Manual

JAFIX
JAFIX converts a REAL*4 value to INTEGER*4.

Form:

CALL JAFIX (asrc,jres)
i = JAFIX (asrc,jres)

where:

asrc is a REAL*4 variable, constant, or expression to be converted to
INTEGER*4

jres is an INTEGER*4 variable that is to contain the result of the
conversion

Function Results:

Value Meaning
i = 0 Normal return; the result is zero.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

Errors:

Value Meaning
i = -2 An overflow occurred while computing the result.

Unpredictable results will occur if any argument is omitted.

Example:

Program FJAFIX !FORTRAN IV
C using JJCVT and TIMASC to display results

Real*4 RTRY !test value
Real*4 RPTRY !previous test value
Real*4 RNEW !reconverted value
Integer*4 JTRY !integer equivalent
Integer*4 JA, JB, JC !variables
Logical*1 ASCII(9) !variables
Data ASCII(9) /0/ !terminate string with null
RTRY = 1. !start at the beginning
RPTRY = RTRY !remember last value

100 Continue
IERR = JAFIX (RTRY, JTRY) ! convert to I*4
If (IERR .eq. -2) Type *, ’?FJAFIX-W-Overflow’, RTRY
RNEW = AJFLT (JTRY) !convert back
If (RNEW .ne. RTRY) Go To 200 !lost some bits
RPTRY = RTRY
RTRY = RTRY * 2.
Go To 100

200 Continue
Type *, RTRY, RNEW
End

System Subroutine Description and Examples 2–107

JCMP
The JCMP function compares two INTEGER*4 values and returns an INTEGER*2
value that reflects the signed comparison result.

Form:

i = JCMP (jopr1,jopr2)

where:

jopr1 is the INTEGER*4 variable or array element that is the first operand
in the comparison

jopr2 is the INTEGER*4 variable or array element that is the second
operand in the comparison

Function Results:

Value Meaning
i = 0 If jobpr1 is equal to jopr2

= 1 If jopr1 is greater than jopr2.

= -1 If jopr1 is less than jopr2.

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FJCMP !FORTRAN IV
C
C Demonstrate J series Integer*4 routines
C using JJCVT and TIMASC to display results
C

Integer*4 HOUR1 !value of 1 hour
Integer*4 HOUR12 !value of 12 hours
Integer*4 SECON1 !value of 1 second
Integer*4 JA, JB, JC !variables
Logical*1 ASCII(9) !variables
Data ASCII(9) /0/ !terminate string with null

C
C init "constants"
C

Call JTIME (1, 0, 0, 0, HOUR1)
Call JTIME (12, 0, 0, 0, HOUR12)
Call JTIME (0, 0, 1, 0, SECON1)

C
C convert from RT-11 time format to I*4 format
C

Call JJCVT (HOUR1)
Call JJCVT (HOUR12)
Call JJCVT (SECON1)

C
Call JMOV (HOUR12, JA) !JA = 12hr
Call JMOV (SECON1, JB) !JB = 1sec
Call JADD (JA, JB, JC) !JC = JA + JB

2–108 RT–11 System Subroutine Library Manual

JCMP

If (JCMP (HOUR12, JC) .ge. 0)
1 Stop ’12:00:00 ge 12:00:01’
Call JJCVT (JC) !back to time format
Call TIMASC (JC, ASCII) !display results
Call PRINT (ASCII) !...

C
Call JSUB (JA, JB, JC) !JC = JA - JB
If (JCMP (HOUR12, JC) .le. 0)
1 Stop ’12:00:00 le 11:59:59’
Call JJCVT (JC) !back to time format
Call TIMASC (JC, ASCII) !display results
Call PRINT (ASCII) !...
End

System Subroutine Description and Examples 2–109

JDFIX
The JDFIX function converts a REAL*8 (DOUBLE PRECISION) value to
INTEGER*4.

Form:

i = JDFIX (dsrc,jres)

where:

dsrc is a REAL*8 variable, constant, or expression to be converted to
INTEGER*4

jres is an INTEGER*4 variable to contain the conversion result

Function Results:

Value Meaning
i = 0 Normal return; the result is zero.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

Errors:

Value Meaning
i = -2 An overflow occurred while computing the result.

Unpredictable results will occur if any argument is omitted.

Example:

Program FJDFIX !FORTRAN IV
C using JJCVT and TIMASC to display results

Real*8 RTRY !test value
Real*8 RPTRY !previous test value
Real*8 RNEW !reconverted value
Integer*4 JTRY !integer equivalent
Integer*4 JA, JB, JC !variables
Logical*1 ASCII(9) !variables
Data ASCII(9) /0/ !terminate string with null
RTRY = 1. !start at the beginning
RPTRY = RTRY !remember last value

100 Continue
IERR = JDFIX (RTRY, JTRY) ! convert to I*4
If (IERR .eq. -2) Type *, ’?FJDFIX-W-Overflow’, RTRY
RNEW = AJFLT (JTRY) !convert back
If (RNEW .ne. RTRY) Go To 200 !lost some bits
RPTRY = RTRY
RTRY = RTRY * 2.
Go To 100

200 Continue
Type *, RTRY, RNEW
End

2–110 RT–11 System Subroutine Library Manual

JDIV
JDIV computes the quotient of two INTEGER*4 values.

Form:

CALL JDIV (jopr1,jopr2,jres[,jrem])
i = JDIV (jopr1,jopr2,jres[,jrem])

where:

jopr1 is an INTEGER*4 variable that is the dividend of the operation

jopr2 is an INTEGER*4 variable that is the divisor of jopr1

jres is an INTEGER*4 variable that receives the quotient of the operation;
that is, jres=jopr1/jopr2.

jrem is an INTEGER*4 variable that receives the remainder of the
operation. The sign is the same as that for jopr1

Function Results:

Value Meaning
i = 0 Normal return; the quotient is 0.

= 1 Normal return; the quotient is positive.

= -1 Normal return; the quotient is negative.

Errors:

Value Meaning
i = -3 An attempt was made to divide by 0.

Unpredictable results will occur if any required argument is omitted.

Example:

Program FJDIV !FORTRAN IV
C
C Demonstrate J series Integer*4 routines
C using JJCVT and TIMASC to display results
C

Integer*4 JA, JB !variable
Integer*4 JHOUR, JMIN, JSEC !more vars
Integer*4 J60 !constant
Logical*1 ASCII(8)

C
C init "constants"
C

Call JTIME (23, 59, 59, 59, JA)
Call JICVT (60, J60)

C
C convert from RT-11 time format to I*4 format
C

Call JMOV (JA, JB) !save time format version
Call JJCVT (JA) !make I*4 format version

C

System Subroutine Description and Examples 2–111

JDIV

C split out ticks
C

Call TIMASC (JB, ASCII) !convert w/SYSLIB
C
C convert w/JDIV
C

Call JDIV (JA, J60, JA) !dump ticks
Call JDIV (JA, J60, JA, JSEC) !get seconds
Call JDIV (JA, J60, JHOUR, JMIN) !get minutes and hours

C
Type 100, JHOUR, JMIN, JSEC, ASCII

100 Format (’ ’, i2, ’:’, i2, ’:’, i2, ’ ’, 8a1)
End

2–112 RT–11 System Subroutine Library Manual

JICVT
JICVT converts a specified INTEGER*2 value to INTEGER*4.

Form:

CALL JICVT (isrc[,jres])
i = JICVT (isrc[,jres])

where:

isrc is the INTEGER*2 quantity to be converted

jres is the INTEGER*4 variable or array element to receive the result

Function Results:

Value Meaning
i = 0 Normal return; the result is 0.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

Errors:

Unpredictable results will occur if any argument is omitted.

Example:

Program FJICVT !FORTRAN IV
C
C Demonstrate J series Integer*4 routines
C

Integer*4 JA, JB !variables
Integer*2 IA(2), IB(2) !overlay vars
Equivalence (JA, IA(1)), (JB, IB(1))
Data IA /12345, 23456/ !junk patterns
Data IB /31234, 11111/

C
Call JICVT (+32000, JA)
Call JICVT (-2, JB)

C
Type 100, IA, IB

100 Format (’ ’, 2o7, ’ ’, 2o7)
End

System Subroutine Description and Examples 2–113

JJCVT
The JJCVT subroutine interchanges words of an INTEGER*4 value to form an
internal format time (or vice versa) whenever the INTEGER*4 variable is to be
used as an argument in a timer-support function such as ITWAIT. When a two-word
internal format time is specified to a function such as ITWAIT, it must have the
high-order time as the first word and the low-order time as the second word.

Form:

CALL JJCVT (jsrc)

where:

jsrc is the INTEGER*4 variable whose contents are to be interchanged

Errors:

Error message TRAP $MSARG will display if any argument is missing.

Example:
See JDIV.

2–114 RT–11 System Subroutine Library Manual

JMOV
JMOV assigns the value of an INTEGER*4 variable to another INTEGER*4 variable
and returns the sign of the value moved.

Form:

CALL JMOV (jsrc,jdest)
i = JMOV (jsrc,jdest)

where:

jsrc is the INTEGER*4 variable whose contents are to be moved

jdest is the INTEGER*4 variable that is the target of the assignment

Function Result:

The value of the function is an INTEGER*2 value that represents the sign of the
result as follows:

Value Meaning
i = 0 Normal return; the result is 0.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

Errors:
Unpredictable results will occur if any argument is omitted.

Example:
See JCMP.

System Subroutine Description and Examples 2–115

JMUL
JMUL computes the product of two INTEGER*4 values.

Form:

CALL JMUL (jopr1,jopr2,jres)
i = JMUL (jopr1,jopr2,jres)

where:

jopr1 is an INTEGER*4 variable that is the multiplicand

jopr2 is an INTEGER*4 variable that is the multiplier

jres is an INTEGER*4 variable that receives the product of the operation

Function Results:

Value Meaning
i = 0 Normal return; the product is 0.

= 1 Normal return; the product is positive.

= -1 Normal return; the product is negative.

Errors:

Value Meaning
i = -2 An overflow occurred while computing the result.

Unpredictable results will occur if any argument is omitted.

Example:

Program FJMUL !FORTRAN IV
C
C Demonstrate J series Integer*4 routines
C using JJCVT and TIMASC to display results
C

Integer*4 JA, JB, JC !variable
Integer*4 JHOUR, JMIN, JSEC, JTICK !more vars
Integer*4 J60, J3600 !constant
Logical*1 ASCII1(8), ASCII2(8)

C
C init "constants"
C

Call JTIME (23, 59, 59, 59, JA)
Call JICVT (59, JTICK)
Call JICVT (59, JSEC)
Call JICVT (59, JMIN)
Call JICVT (23, JHOUR)
Call JICVT (60, J60)
Call JICVT (3600, J3600)

C
C convert w/JMUL
C

Call JMOV (JTICK, JB) !put ticks in accum
Call JMUL (JSEC, J60, JC) !calc sec value

2–116 RT–11 System Subroutine Library Manual

JMUL

Call JADD (JC, JB, JB) !add in
Call JMUL (JMIN, J3600, JC) !calc min value
Call JADD (JC, JB, JB) !add in
Call JMUL (JHOUR, J3600, JC) !calc hour value
Call JMUL (JC, J60, JC) !...
Call JADD (JC, JB, JB) !add in
Call JJCVT (JB) !convert to time format

C
Call TIMASC (JA, ASCII1)
Call TIMASC (JB, ASCII2)
Type 100, ASCII1, ASCII2

100 Format (’ ’, 8a1, ’ ’, 8a1)
End

System Subroutine Description and Examples 2–117

JREAD/JREADC/JREADF/JREADW
JREAD/JREADC/JREADF/JREADW use non-file-structured access to transfer into
memory a specified number of words from an MSCP device. They are therefore
especially useful because they use a 32-bit starting block number and can read from
any block on any DU device.

Use the IQSET function to allocate the extra queue element required with JREAD,
JREADC, JREADF functions. JREADW doesn’t require an extra queue element
since it is synchronous.

JREAD
The JREAD function transfers into memory a specified number of words from an
MSCP device associated with the indicated channel. The channel must be opened
to the MSCP device in a non-file-structured manner. The monitor returns control
to the user program immediately after the JREAD function is initiated. No special
action is taken when the transfer is completed.

Form:

CALL JREAD (wcnt,buff,jblock,chan[,area][,BMODE=strg])
i = JREAD (wcnt,buff,jblock,chan[,area][,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the buffer; that array must contain at
least wcnt words

jblock is a 2-word (32-bit) starting block number of the MSCP device to
be read. The first word contains the low order bits. The second
word contains the high order bits.
For all currently supported Digital MSCP devices, the high
four bits of the second word must be zero. (In FORTRAN–77,
jblock can be expressed as an INTEGER*4 variable, and can be
manipulated as such.) The first block of the MSCP device is
physical block 0. The first block of each MSCP device partition
is logical block 0. The jblock argument is offset from physical or
logical block number 0.
The jblock argument refers to a physical block when the MSCP
disk has not been partitioned, or to a logical block when the
MSCP disk has been partitioned. When an MSCP disk has
been partitioned, the block you address with the jblock argument
depends on which partition is assigned to the RT–11 unit (DU0
through DU7 or D10 through D77).

2–118 RT–11 System Subroutine Library Manual

JREAD/JREADC/JREADF/JREADW

The jblock argument must be updated (incremented) when
necessary. For example, if the program is reading two sequential
blocks at a time, jblock should be incremented by two for each
read

chan is the integer specification for the RT–11 channel to be used

area is accepted and ignored

BMODE=strg Specify one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’. Value is
used to specify the mapping mode for the buff argument.

Issue an IWAIT function when the user program needs to access the data read on the
specified channel. IWAIT makes sure that the JREAD operation has been completed.
IWAIT indicates if a hard error occurs during the transfer.

Errors:

Value Meaning
i = 0 Normal return.

= -2 Hardware error occurred on channel on last completed operation.

= -3 Specified channel is not open.

= -4 Invalid request (attempted file access), channel is opened to a
file.

= -5 Channel not open as a non-file-structured device.

= -6 Address translation not available in monitor.

= -19 Invalid BMODE value.

= -257 Required argument missing.

Example:
See JREADW. See also RCVD.

JREADC
The JREADC function transfers into memory a specified number of words from an
MSCP device associated with the indicated channel. The channel must be opened
to the MSCP device in a non-file-structured manner. The monitor returns control
to the user program immediately after the JREADC function is initiated. When the
operation is complete, the monitor enters the specified assembly language routine
(crtn) as an asynchronous completion routine.

Form:

CALL JREADC (wcnt,buff,jblock,chan,[,area],crtn[,BMODE=strg][,CMODE=strg])
i = JREADC (wcnt,buff,jblock,chan,[,area],crtn[,BMODE=strg][,CMODE=strg])

System Subroutine Description and Examples 2–119

JREAD/JREADC/JREADF/JREADW

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the buffer; that array must contain at
least wcnt words

jblock is a 2-word (32-bit) starting block number of the MSCP device
to be read. The first word contains the low order bits. The
second word contains the high order bits. For all currently
supported Digital MSCP devices, the high four bits of the second
word must be zero. (In FORTRAN–77, jblock can be expressed
as an INTEGER*4 variable, and can be manipulated as such.)
The first block of the MSCP device is physical block 0. The
first block of each MSCP device partition is logical block 0. The
jblock argument is offset from physical or logical block number
0. The jblock argument refers to a physical block when the
MSCP disk has not been partitioned, or to a logical block when
the MSCP disk has been partitioned. When an MSCP disk has
been partitioned, the block you address with the jblock argument
depends on which partition is assigned to the RT–11 unit (DU0
through DU7 or D10 through D77).
The jblock argument must be updated (incremented) when
necessary. For example, if the program is reading two sequential
blocks at a time, jblock should be incremented by two for each
read

chan is the integer specification for the RT–11 channel to be used

area is accepted and ignored

crtn is an assembly language routine to be activated when the
transfer is complete. That routine must be specified in the
EXTERNAL statement in the FORTRAN routine that issues the
JREADC function

BMODE=strg Specify one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’. Value is
used to specify the mapping mode for the BUFF statement.

CMODE=strg Specifying strg as string "S" specifies Supervisor address.

Errors:

Value Meaning
i = 0 Normal return.

= -2 Hardware error occurred on channel on last completed operation.

= -3 Specified channel is not open.

= -4 Invalid request (attempted file access), channel is opened to a
file.

2–120 RT–11 System Subroutine Library Manual

JREAD/JREADC/JREADF/JREADW

= -5 Channel not open as a non-file-structured device.

= -6 Address translation not available in monitor.

= -19 Invalid BMODE or CMODE value.

= -257 Required argument missing.

Example:

See JREADW. See also RCVDC.

JREADF
JREADF transfers into memory a specified number of words from an MSCP device
associated with the indicated channel. The channel must be opened to the MSCP
device in a non-file-structured manner. The monitor returns control to the user
program immediately after JREADF is initiated. When the operation is complete,
the monitor enters the specified FORTRAN subprogram (frtn) as an asynchronous
completion routine.

Form:

CALL READF (wcnt,buff,jblock,chan,[,area],lblk,frtn)
i = JREADF (wcnt,buff,jblock,chan,[,area],lblk,frtn)

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the buffer; that array must contain at
least wcnt words

jblock is a 2-word (32-bit) starting block number of the MSCP device to
be read. The first word contains the low order bits. The second
word contains the high order bits.
For all currently supported Digital MSCP devices, the high four
bits of the second word must be zero. (In FORTRAN–77, jblock can
be expressed as an INTEGER*4 variable, and can be manipulated
as such.) The first block of the MSCP device is physical block 0.
The first block of each MSCP device partition is logical block 0. The
jblock argument is offset from physical or logical block number 0.

System Subroutine Description and Examples 2–121

JREAD/JREADC/JREADF/JREADW

The jblock argument refers to a physical block when the MSCP disk
has not been partitioned, or to a logical block when the MSCP disk
has been partitioned. When an MSCP disk has been partitioned,
the block you address with the jblock argument depends on which
partition is assigned to the RT–11 unit (DU0 through DU7 or D10
through D77).
The jblock argument must be updated (incremented) when
necessary. For example, if the program is reading two sequential
blocks at a time, jblock should be incremented by two for each read

chan is the integer specification for the RT–11 channel to be used

area is accepted and ignored

lblk is a 4-word area to be set aside for link information; that area must
not be modified by the FORTRAN program or swapped over by
the USR. That area can be reused by other FORTRAN completion
functions when frtn has returned

frtn is a FORTRAN routine activated on completion of the transfer.
This name must be specified in an EXTERNAL statement in the
routine that issues the JREADF call

Errors:

Value Meaning
i = 0 Normal return.

= -2 Hardware error occurred on channel on last completed operation.

= -3 Specified channel is not open.

= -4 Invalid request (attempted file access), channel is opened to a
file.

= -5 Channel not open as a non-file-structured device.

= -6 Address translation not available in monitor.

= -257 Required argument missing.

Example:

See JREADW. See also RCVDF.

JREADW
JREADW transfers into memory a specified number of words from an MSCP device
associated with the indicated channel. The channel must be opened to the MSCP
device in a non-file-structured manner. The monitor returns control to the user
program when the transfer is complete or when an error is detected.

2–122 RT–11 System Subroutine Library Manual

JREAD/JREADC/JREADF/JREADW

Form:

CALL JREADW(wcnt,buff,jblock,chan[,area][,BMODE=strg])
i = JREADW(wcnt,buff,jblock,chan[,area][,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the buffer; that array must contain at
least wcnt words

jblock is a 2-word (32-bit) starting block number of the MSCP device
to be read. The first word contains the low order bits. The
second word contains the high order bits. For all currently
supported Digital MSCP devices, the high 4 bits of the second
word must be zero. (In FORTRAN–77, jblock can be expressed
as an INTEGER*4 variable and can be manipulated as such.)
The first block of the MSCP device is physical block 0. The
first block of each MSCP device partition is logical block 0. The
jblock argument is offset from physical or logical block number
0. The jblock argument refers to a physical block when the
MSCP disk has not been partitioned or to a logical block when
the MSCP disk has been partitioned. When an MSCP disk
has been partitioned, the block you address with the jblock
argument depends on which partition is assigned to the RT–11
unit (DU0 through DU7 or D10 through D77). Do not specify
a block number higher than the physical size of the device (the
physical size of an MSCP device is returned by the IGTDUS
function). The jblock argument must be updated (incremented)
when necessary. For example, if the program is writing two
sequential blocks at a time, jblock should be incremented by two
for each write

chan is the integer specification for the RT–11 channel to be used

area is accepted and ignored

BMODE=strg Specify one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’. Value is
used to specify the mapping mode for the buff argument.

Errors:

Value Meaning
i = 0 Normal return.

= -2 Hardware error occurred on channel on last completed operation.

= -3 Specified channel is not open.

= -4 Invalid request (attempted file access), channel is opened to a
file.

System Subroutine Description and Examples 2–123

JREAD/JREADC/JREADF/JREADW

= -5 Channel not open as a non-file-structured device.

= -6 Address translation not available in monitor.

= -19 Invalid BMODE value.

= -257 Required argument missing.

Example:

Program FJREAD
C
C Read the first block following the last user block
C
C NOTE: writing in this area would be a disaster!!!!
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLK(4) !device name
Data DBLK /3rSY , 0, 0, 0/ !no file name
Integer*2 REPLY(7) !info from IGTDUS
Integer*4 BLK !block number
Equivalence (BLK, REPLY(3)) !overlay in reply area
Parameter WRKSIZ = 80 !size of work area for IGTDUS
Integer*2 WORK(WRKSIZ) !work area for IGTDUS
Parameter WCNT = 256 !I/O word count
Integer*2 BUFFER(WCNT) !I/O buffer

C
ICHAN = IGETC() !get a channel
IERR = IGTDUS (DBLK, ICHAN, REPLY, , , WORK, WRKSIZ)
If (IERR .ne. 0) Go To 1000 !failed
Call LOOKUP (ICHAN, DBLK) !open up system device
IERR = JREADW (WCNT, BUFFER, BLK, ICHAN)
If (IERR .ne. 0) Go To 1100 !failed
Type 100, BLK

100 Format (’ ’, ’Block number = ’, i12)
Do 500 I = 0, 255/8

Type 101, I*16, (BUFFER(J), J=I, I+7)
101 Format (’ ’, o3.3, 8o8.6)
500 Continue

Close (Unit=5)
Call EXIT (SUCCS)

C
1000 Type *, ’?FJREAD-F-IGTDUS failed, code = ’, IERR

Call EXIT (FATAL)
1100 Type *, ’?FJREAD-F-JREAD failed, code = ’, IERR

Call EXIT (FATAL)
End

2–124 RT–11 System Subroutine Library Manual

JSUB
JSUB computes the difference between two INTEGER*4 values.

Form:

CALL JSUB (jopr1,jopr2,jres)
i = JSUB (jopr1,jopr2,jres)

where:

jopr1 is an INTEGER*4 variable that is the minuend of the operation.

jopr2 is an INTEGER*4 variable that is the subtrahend of the operation.

jres is an INTEGER*4 variable that is to receive the difference between
jopr1 and jopr2; that is, jres=jopr1-jopr2.

Function Results:

Value Meaning
i = 0 Normal return; the result is 0.

= 1 Normal return; the result is positive.

= -1 Normal return; the result is negative.

Errors:

Value Meaning
i = -2 An overflow occurred while computing the result.

Unpredictable results will occur if any argument is omitted.

Example:

Program FJSUB !FORTRAN IV
C
C using JJCVT and TIMASC to display results
C

Integer*4 HOUR1 !value of 1 hour
Integer*4 HOUR12 !value of 12 hours
Integer*4 JA, JB, JC !variables
Logical*1 ASCII(9) !variables
Data ASCII(9) /0/ !terminate string with null

C
C init "constants"
C

Call JTIME (1, 0, 0, 0, HOUR1)
Call JTIME (12, 0, 0, 0, HOUR12)

C
C convert from RT-11 time format to I*4 format
C

Call JJCVT (HOUR1)
Call JJCVT (HOUR12)
Call JMOV (HOUR1, JA) !JA = 1hr
Call JMOV (HOUR12, JB) !JB = 12hr
Call JSUB (JB, JA, JC) !JC = JB + JA

System Subroutine Description and Examples 2–125

JSUB

Call JJCVT (JC) !back to time format
Call TIMASC (JC, ASCII) !display results
Call PRINT (ASCII) !...
End

2–126 RT–11 System Subroutine Library Manual

JTIME
The JTIME subroutine converts the time specified to the internal two-word format
time.

Form:

CALL JTIME (hrs,min,sec,tick,time)

where:

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second for 60-Hz clocks; 1/50
of a second for 50-Hz clocks)

time is the two-word area to receive the internal format time: time(1) is
the high-order time; time(2) is the low-order time.

Errors:
Unpredictable results will occur if any argument is omitted.

Example:
See JMUL.

System Subroutine Description and Examples 2–127

JWRITE/JWRITC/JWRITF/JWRITW
JWRITE/JWRITC/JWRITF/JWRITW, issued as functions or subroutines, use non-
file-structured access to transfer a specified number of words from memory to an
MSCP (DU) device. They use a 32-bit starting block number and can, therefore,
write to any block on any DU device. JWRITE, JWRITC, and JWRITW have optional
arguments that specify mapping for the buff argument.

When you don’t know the physical size of an MSCP device, use IGTDUS to determine
the size of that device, then specify a starting block that is lower than the device
size returned by IGTDUS.

CAUTION
If you inadvertently specify a block number higher
than the device size returned by IGTDUS, you corrupt
formatting and bad-block replacement information
contained on the device, making it unusable. You must
reformat the device, removing all information contained
on it.

Use the IQSET function to allocate the extra queue element required with JWRITE,
JWRITC, JWRITF functions. JWRITW does not require an extra queue element,
since it is synchronous.

2–128 RT–11 System Subroutine Library Manual

JWRITE/JWRITC/JWRITF/JWRITW

JWRITE
The JWRITE function transfers a specified number of words from memory to an
MSCP device associated with the indicated channel. The channel must be opened
to the MSCP device in a non-file-structured manner. The monitor returns control to
the user program immediately after queuing the request. No special action is taken
upon completion of the operation.

Form:

CALL JWRITE (wcnt,buff,jblock,chan[,area][,BMODE=strg])
i = JWRITE (wcnt,buff,jblock,chan[,area][,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the output buffer

jblock is a 2-word (32-bit) starting block number of the MSCP device to
be written. The first word contains the low order bits. The
second word contains the high order bits. For all currently
supported Digital MSCP devices, the high 4 bits of the second
word must be zero. (In FORTRAN–77, jblock can be expressed
as an INTEGER*4 variable and can be manipulated as such.)
The first block of the MSCP device is physical block 0. The
first block of each MSCP device partition is logical block 0. The
jblock argument is offset from physical or logical block number
0. The jblock argument refers to a physical block when the
channel is opened on the first partition or to a logical block when
the channel is opened on any other partition. When an MSCP
disk has been partitioned, the block you address with the jblock
argument depends on which partition is assigned to the RT–11
unit (DU0 through DU7 or D10 through D77). Do not specify
a block number higher than the physical size of the device (the
physical size of an MSCP device is returned by the IGTDUS
function). The jblock argument must be updated (incremented)
when necessary. For example, if the program is writing two
sequential blocks at a time, jblock should be incremented by two
for each write

chan is the integer specification for the RT–11 channel to be used.
Obtain this channel through an IGETC call or use channel
16(decimal) or higher, if you have obtained extra channels with
an ICDFN call

area is accepted and ignored

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
Value specifies the mapping mode of the buff argument.

System Subroutine Description and Examples 2–129

JWRITE/JWRITC/JWRITF/JWRITW

Errors:

Value Meaning
i = 0 Normal return

= -2 Hardware error occurred on channel on last completed operation

= -3 Channel is not open

= -4 Invalid request (attempted file access), channel is opened to a
file

= -5 Channel not open as non-file-structured device.

= -6 Address translation not available in monitor.

= -19 Invalid BMODE argument.

= -257 Required argument missing.

Example:
See JREADW. See also SDAT.

2–130 RT–11 System Subroutine Library Manual

JWRITE/JWRITC/JWRITF/JWRITW

JWRITC
JWRITC transfers a specified number of words from memory to an MSCP device
associated with the indicated channel. The channel must be opened to the MSCP
device in a non-file-structured manner. The monitor queues the request and returns
control to the user program. When the transfer is complete, the monitor enters the
specified assembly language routine (crtn) as an asynchronous completion routine.

Form:

CALL JWRITC (wcnt,buff,jblock,chan,[,area],crtn[,BMODE=strg][,CMODE=strg])
i = JWRITC (wcnt,buff,jblock,chan,[,area],crtn[,BMODE=strg][,CMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the output buffer

jblock is a 2-word (32-bit) starting block number of the MSCP device to
be written. The first word contains the low order bits. The
second word contains the high order bits. For all currently
supported Digital MSCP devices, the high 4 bits of the second
word must be zero. (In FORTRAN–77, jblock can be expressed
as an INTEGER*4 variable and can be manipulated as such.)
The first block of the MSCP device is physical block 0. The
first block of each MSCP device partition is logical block 0. The
jblock argument is offset from physical or logical block number
0. The jblock argument refers to a physical block when the
channel is opened on the first partition or to a logical block when
the channel is opened on any other partition. When an MSCP
disk has been partitioned, the block you address with the jblock
argument depends on which partition is assigned to the RT–11
unit (DU0 through DU7 or D10 through D77). Do not specify
a block number higher than the physical size of the device (the
physical size of an MSCP device is returned by the IGTDUS
function). The jblock argument must be updated (incremented)
when necessary. For example, if the program is writing two
sequential blocks at a time, jblock should be incremented by two
for each write.

chan is the integer specification for the RT–11 channel to be used.
Obtain this channel through an IGETC call or use channel
16(decimal) or higher, if you have obtained extra channels with
an ICDFN call

area is accepted and ignored

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

System Subroutine Description and Examples 2–131

JWRITE/JWRITC/JWRITF/JWRITW

CMODE=strg Specifying strg as string "S" specifies a Supervisor address.

crtn is an assembly language routine to be activated when the
transfer is complete. That routine must be specified in the
EXTERNAL statement in the FORTRAN routine that issues the
JWRITC function.

Errors:

Value Meaning
i = 0 Normal return

= -2 Hardware error occurred on channel on last completed operation

= -3 Channel is not open

= -4 Invalid request (attempted file access), channel is opened to a
file

= -5 Channel not open as non-file-structured device.

= -6 Address translation not available in monitor.

= -19 Invalid BMODE or CMODE argument.

= -257 Required argument missing.

Example:

See JREADW. See also SDATC.

2–132 RT–11 System Subroutine Library Manual

JWRITE/JWRITC/JWRITF/JWRITW

JWRITF
JWRITF transfers a specified number of words from memory to an MSCP device
associated with the indicated channel. The channel must be opened to the MSCP
device in a non-file-structured manner. The monitor returns control to the user
program immediately after queuing the request. When the transfer is complete,
the monitor enters the specified FORTRAN subprogram (crtn) as an asynchronous
completion routine.

Form:

CALL JWRITF (wcnt,buff,jblock,chan,[,area],lblk,frtn)
i = JWRITF (wcnt,buff,jblock,chan,[,area],lblk,frtn)

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the output buffer

jblock is a 2-word (32-bit) starting block number of the MSCP device to
be written. The first word contains the low order bits. The second
word contains the high order bits. For all currently supported Digital
MSCP devices, the high 4 bits of the second word must be zero. (In
FORTRAN–77, jblock can be expressed as an INTEGER*4 variable
and can be manipulated as such.) The first block of the MSCP device
is physical block 0. The first block of each MSCP device partition
is logical block 0. The jblock argument is offset from physical or
logical block number 0. The jblock argument refers to a physical
block when the channel is opened on the first partition or to a logical
block when the channel is opened on any other partition. When an
MSCP disk has been partitioned, the block you address with the
jblock argument depends on which partition is assigned to the RT–11
unit (DU0 through DU7 or D10 through D77). Do not specify a
block number higher than the physical size of the device (the physical
size of an MSCP device is returned by the IGTDUS function). The
jblock argument must be updated (incremented) when necessary. For
example, if the program is writing two sequential blocks at a time,
jblock should be incremented by two for each write

chan is the integer specification for the RT–11 channel to be used. Obtain
this channel through an IGETC call or use channel 16(decimal) or
higher, if you have obtained extra channels with an ICDFN call

area is accepted and ignored

lblk is a 4-word area to be set aside for link information; this area
must not be modified by the FORTRAN program or swapped over
by the USR. This area can be reused by other FORTRAN completion
functions when crtn has returned

System Subroutine Description and Examples 2–133

JWRITE/JWRITC/JWRITF/JWRITW

frtn is a FORTRAN routine to be activated on completion of the transfer.
This name must be specified in an EXTERNAL statement in the
routine that issues the JWRITF call

Errors:

Value Meaning
i = 0 Normal return

= -2 Hardware error occurred on channel on last completed operation

= -3 Channel is not open

= -4 Invalid request (attempted file access), channel is opened to a
file

= -5 Channel not open as non-file-structured device.

= -6 Address translation not available in monitor.

= -257 Required argument missing.

Example:
See JREADW. See also SDATF.

2–134 RT–11 System Subroutine Library Manual

JWRITE/JWRITC/JWRITF/JWRITW

JWRITW
JWRITW transfers a specified number of words from memory to an MSCP device
associated with the indicated channel. The channel must be opened to the MSCP
device in a non-file-structured manner. The monitor returns control to the user
program when the transfer is complete.

Form:

CALL JWRITW (wcnt,buff,jblock,chan[,area][,BMODE=strg])
i = JWRITW (wcnt,buff,jblock,chan[,area][,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is an array to be used as the output buffer

jblock is a 2-word (32-bit) starting block number of the MSCP device to
be written. The first word contains the low order bits. The
second word contains the high order bits. For all currently
supported Digital MSCP devices, the high 4 bits of the second
word must be zero. (In FORTRAN–77, jblock can be expressed
as an INTEGER*4 variable and can be manipulated as such.)
The first block of the MSCP device is physical block 0. The
first block of each MSCP device partition is logical block 0. The
jblock argument is offset from physical or logical block number
0. The jblock argument refers to a physical block when the
channel is opened on the first partition or to a logical block when
the channel is opened on any other partition. When an MSCP
disk has been partitioned, the block you address with the jblock
argument depends on which partition is assigned to the RT–11
unit (DU0 through DU7 or D10 through D77). Do not specify
a block number higher than the physical size of the device (the
physical size of an MSCP device is returned by the IGTDUS
function). The jblock argument must be updated (incremented)
when necessary. For example, if the program is writing two
sequential blocks at a time, jblock should be incremented by two
for each write

chan is the integer specification for the RT–11 channel to be used.
Obtain this channel through an IGETC call or use channel
16(decimal) or higher, if you have obtained extra channels with
an ICDFN call

area is accepted and ignored

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

Errors:

System Subroutine Description and Examples 2–135

JWRITE/JWRITC/JWRITF/JWRITW

Value Meaning
i = 0 Normal return

-2 Hardware error occurred on channel on last completed operation

-3 Channel is not open

-4 Invalid request (attempted file access), channel is opened to a
file

-5 Channel not open as non-file-structured device.

-6 Address translation not available in monitor.

-19 Invalid BMODE argument.

-257 Required argument missing.

Example:
See JREADW. See also SDATW.

2–136 RT–11 System Subroutine Library Manual

KPEEK
The KPEEK function returns the contents of the word located at a specified 16-bit
address. The function can examine any location in Kernel memory. For description
of PS, see KPOKE.

Form:

i = KPEEK (iaddr[,ierr])

where:

iaddr is the integer specification of the 16-bit (Kernel-mapped) address to
be examined. As a special case, if the value -2 is specified for iaddr,
KPEEK returns the PS associated with the calling program, rather
than the monitor. However, condition codes are undefined.

ierr is a returned error condition.

Function result:

Value Meaning
i = n Value (n) of the location in Kernel mapping.

Errors:

Value Meaning
ierr = 0 Normal return

= -2 Odd or nonexistent address

Error message TRAP $MSARG will display if argument iaddr is missing.

Example:

Program FKPEEK
C
C Demo program to show using KPEEK and KPOKE accessing the PS
C
C WARNING: invoking KPEEK uses an EMT which is executed at PR0!
C

Integer*2 PS, PR7 !Proc status register, priority 7 mask
Data PS /"177776/, PR7 /"000340/
Integer*2 OLDPS, NEWPS !copies of PS
Integer*2 SHARED !location shared with a
Common /STATUS/ SHARED ! completion routine
Integer*2 OLDSHR !local copy of old value

C
OLDPS = KPOKE (PS, PR7, ’BIS’) !Set PS to PR7 (BIS)
NEWPS = KPEEK (PS) !get modified PS
OLDSHR = SHARED !get current value
SHARED = SHARED + 3 !change shared location, protected

C ! with PR7 from interference
CALL KPOKE (PS, OLDPS, ’MOV’) !Put old PS back
Type 100, OLDPS, NEWPS, KPEEK (PS) !display PSs

100 Format (’ ’, 3o10)
End

System Subroutine Description and Examples 2–137

KPOKE
KPOKE, either as a function or as a subroutine, stores a specified 16-bit integer
value into a 16-bit (Kernel mapped) address. The subroutine can store values at
any location in Kernel memory.

Form:

CALL KPOKE (iaddr,ivalue[,type][,ierr])
i = KPOKE (iaddr,ivalue[,type][,ierr])

where:

iaddr is the integer specification of the 16-bit address to be modified. As
a special case, if the value -2 is specified for iaddr, KPEEK returns
the PS associated with the calling program, rather than the monitor.
However, condition codes are undefined.

ivalue is the integer value to be stored in the address specified by the iaddr
argument.

type is the operation to be used to modify the address to the value specified
by the ivalue argument:

• MOV = Replace with a MOV operation (default).

• BIC = Change with a BIC operation.

• BIS = Change with a BIS operation.

ierr is a returned error condition.

Function result:

Value Meaning
i = n Value (n) of the location in Kernel mapping.

Errors:

Value Meaning
i = 0 Normal return

= -2 Odd or nonexistent address (has meaning only if ierr is specified.

Error message TRAP $MSARG will display if any required argument is missing or
if type argument is incorrect.

Altering the Processor Status Word
The KPOKE request can successfully alter priority bits in the processor status (PS)
word:

• A KPOKE function returns the contents of the PS with undefined condition codes.

• A KPOKE can modify all bits in the PS except the 000020 (trace trap) and 140000
(current mode) bits. However, modifying the 000400 (instruction suspension)

2–138 RT–11 System Subroutine Library Manual

KPOKE

or 004000 (register set) bits can cause unexpected results and, although not
prohibited, is not recommended.

Modifying the priority bits is supported. However, changing processor priority
with KPOKE automatically lowers processor priority to zero (PR0) during the
time KPOKE is executing. Therefore, a period of lowest processor priority exists
between the time the processor is running at a given priority and the time the
processor priority change takes effect.

Setting the carry bit is not recommended as it causes KPOKE to return an error.

• The priority bits of the modified PS are preserved at the completion of KPOKE.

Example:
See KPEEK.

System Subroutine Description and Examples 2–139

LEN
The LEN function returns the number of characters currently in the string contained
in a specified array. This number is computed as the number of characters preceding
the first null byte encountered. If the specified array contains only a null string, a
value of 0 is returned.

Form:

i = LEN (a)

where:

a specifies the array containing the string, which must be terminated
by a null byte

Errors:
Unpredictable results will occur if argument a is omitted.

Example:
See SDAT.

2–140 RT–11 System Subroutine Library Manual

LOCK/UNLOCK
The LOCK subroutine, in a multijob environment, keeps the USR in memory for
a series of operations involving various RT–11 file management functions. The
UNLOCK subroutine releases the User Service Routine (USR) from memory, if it
was placed there by the LOCK routine.

LOCK
If all the conditions that cause swapping are satisfied, a portion of the user program
is written out to the disk file SWAP.SYS and the USR is loaded. Otherwise, the
USR in memory is used, and no swapping occurs. The USR is not released until
an UNLOCK is given. (Note that in a multijob system, calling the CSI can also
perform an implicit UNLOCK.) To save time in swapping, a program that makes
multiple USR requests can LOCK the USR in memory, make all the requests, and
then UNLOCK USR.

Form:

CALL LOCK

In a multijob environment, LOCK inhibits another job from using USR. USR should
be locked only for as long as necessary.

Notes
If any job does a LOCK, it can cause the USR to be unavailable for other jobs for
a considerable period of time. The USR is not reentrant and only one job has use
of the USR at a time, which should be considered for systems requiring concurrent
foreground and background jobs. This is particularly true when magtape and/or
cassette are active.

File operations by the USR require a sequential search of the tape for magtape and
cassette. This could lock out the foreground job for a long time while the background
job does a tape operation. The programmer should keep this in mind when designing
such systems. The multijob monitors supply the ITLOCK routine, which permits the
job to check for the availability of the USR.

After a LOCK has been executed, the UNLOCK routine must be executed to release
the USR from memory. The LOCK/UNLOCK routines are complementary and must
be matched. That is, if three LOCKs are issued, at least three UNLOCKs must be
done, otherwise the USR is not released. More UNLOCKs than LOCKs can occur
without error; the extra UNLOCKs are ignored.

The LOCK call must not come from within the area into which the USR will be
swapped. If this should occur, the return from the USR request would not be to
the user program, but to the USR itself, since the LOCK function causes part of the
user program to be saved on disk and replaced in memory by the USR. Furthermore,
subroutines, variables, and arrays in the area where the USR is swapping should
not be referenced while the USR is locked in memory.

System Subroutine Description and Examples 2–141

LOCK/UNLOCK

Once a LOCK has been performed, it is not advisable for the program to destroy the
area the USR is in, even though no further use of the USR is required. This causes
unpredictable results when an UNLOCK is done.

LOCK cannot be called from a completion or interrupt routine.

If a SET USR NOSWAP command has been issued, LOCK and UNLOCK do not
cause the USR to swap. However, LOCK still inhibits the other job from using the
USR, and UNLOCK allows the other job access to the USR.

The USR cannot accept argument lists, such as device file name specifications,
located in the area into which it has been locked.

Errors:
None.

Example:

Program FLOCK
C
C Demo ITLOCK, LOCK, & UNLOCK
C

If (ITLOCK () .eq. 0) Go To 100 !USR available
C
C do stuff not requiring the USR
C
100 Continue

Call LOCK !USR now required
C
C do stuff requiring the USR
C

Call UNLOCK
End

2–142 RT–11 System Subroutine Library Manual

LOCK/UNLOCK

UNLOCK
The UNLOCK subroutine releases the User Service Routine (USR) from memory if it
was placed there by the LOCK routine. If the LOCK required a swap, the UNLOCK
loads the user program back into memory. If the USR does not require swapping,
the UNLOCK involves no I/O. The USR is always resident in mapped monitors.

Form:

CALL UNLOCK

Notes

• You should give at least as many UNLOCK calls as LOCK calls. Otherwise, the
USR remains locked in memory. Extra UNLOCK calls are ignored.

• When running in a multijob system, use the LOCK/UNLOCK pairs only when
absolutely necessary. If one job locks the USR, the other job cannot use the USR
until it is unlocked.

• In a multijob system, calling the CSI (ICSI) with input coming from the console
terminal performs a temporary implicit UNLOCK.

For further information on releasing the USR from memory, see the .LOCK
/.UNLOCK programmed requests.

Errors:
None.

Example:
See LOCK.

System Subroutine Description and Examples 2–143

LOOKUP
The LOOKUP function associates a specified channel with a device and/or file for
the purpose of performing I/O operations. The channel used is then busy until one
of the following functions is executed:

CLOSEC/ICLOSE
CLOSZ
ISAVES
PURGE

Form:

CALL LOOKUP (chan,dblk[,seqnum,])
i = LOOKUP (chan,dblk[,seqnum,])
CALL LOOKUP (chan,jobdes)
i = LOOKUP (chan,jobdes)

where:

chan is the integer specification for the RT–11 channel to be associated
with the file. You must obtain this channel through an IGETC call,
or you can use channel 16(decimal) or higher if you have done an
ICDFN call

dblk is the four-word area specifying the Radix–50 file descriptor. Note
that unpredictable results occur if the USR swaps over this four-word
area

seqnum is a file number.
For magtape, it describes a file sequence number. The action taken
depends on whether the file name is given or null. The sequence
number can have the following values:

-1 Suppress rewind and search for the specified file name
from the current tape position. If a file name is given,
a file-structured lookup is performed (do not rewind). If
the file name is null, a non-file-structured lookup is done
(tape is not moved). You must specify a -1 and no other
negative number.

0 Rewind to the beginning of the tape and do a non-file-
structured lookup.

n Where n is any positive number. Position the tape at file
sequence number n and check that the file names match.
If the file names do not match, an error is generated. If
the file name is null, a file-structured lookup is done on
the file designated by seqnum.

2–144 RT–11 System Subroutine Library Manual

LOOKUP

jobdes is an argument that allows communication between jobs in a system
job environment. It is a pointer to a four-word job descriptor of the
job to which messages will be sent or received. The syntax is:

jobdes: .RAD50 /MQ/
.ASCII /logical-job-name/

where the logical-job-name is six characters long (right-padded with
nulls). If the logical-job-name is zero, the channel will be opened
only for .READ/C/W requests, and such requests will accept messages
from any jobs.

Non-File-Structured Lookup
The handler for the selected device must be in memory for a LOOKUP. If the first
word of the file name in dblk is 0 and the device is a file-structured device, absolute
block 0 of the device is designated as the beginning of the file. This technique, called
a non-file-structured lookup, allows I/O to any physical block on the device. If a file
name is specified for a device that is not file structured (such as NL:FILE.TYP), the
name is ignored.

Since a non-file-structured lookup allows I/O to any physical block on the device, in
this mode, you could possibly overwrite the RT–11 device directory, destroying all
information on the device. Position the LOOKUP arguments so that the USR does
not swap over them.

Function Result:

Value Meaning
i = >0 Successful file-structured lookup on a random-access storage

volume. Value is length in blocks of file just opened. Note: Value
can be of sufficient size to create a negative value.

= 0 Successful non-file-structured lookup on both random-access
and non-file-structured volumes, or a successful file-structured
lookup on magtape.

Errors:

Value Meaning
i = -1 Channel specified is already open.

= -2 File specified was not found on the device.

= -3 Device in use.

= -6 Invalid argument error with a non-file-structured volume.

= -7 Invalid unit number.

Error message TRAP $MSARG will display if any argument is missing.

System Subroutine Description and Examples 2–145

LOOKUP

Example:
See also CHCPY.

Program FLOOKU
C
C demo JOB LOOKUP
C

Integer*2 JBLK(4) !jobblk
Logical*1 JNAM(6) !name part
Equivalence (JBLK(2), JNAM(1))
Data JBLK(1) /3rMQ /
Data JNAM /’S’, ’P’, ’O’, ’O’, ’L’, "000/

C
C open a message channel to SPOOL
C

ICHAN = IGETC ()
If (LOOKUP (ICHAN, JBLK) .lt. 0)
1 Call PRINT (’?FLOOKU-F-SPOOL is not running’)
End

2–146 RT–11 System Subroutine Library Manual

MAP
Mapping
The MAP (MAP window) function maps a previously defined address window into a
dynamic region of extended memory or into the static region in the lower 28 KW.

Form:

ierr= MAP (iwdb)
CALL MAP (iwdb [,ierr])

where:

ierr Error return

iwdb Address of Window Descriptor Block

Errors:

Value Meaning
i = 0 Function completed successfully.

= -3 Invalid region identifier specified.

= -4 Invalid region identifier specified.

= -5 Specified region not mapped because of one of the following:

• Offset is beyond the end of the region.

• Window is larger than the region.

• Window would extend beyond the bounds of the region.

= -16 Mode/space not available.

= -257 Required argument missing.

Example:
See CRAW.

System Subroutine Description and Examples 2–147

MRKT
Timer (SYSGEN Option)
MRKT schedules an assembly language completion routine to be entered after a
specified time interval has elapsed. An optional parameter, CMODE, can be used to
specify a Supervisor address.

Form:

CALL MRKT (id,crtn,time[,CMODE=strg])
i = MRKT (id,crtn,time[,CMODE=strg])

where:

id is an integer identification number to be passed to the routine
being scheduled

crtn is the name of the assembly language routine to be entered when
the time interval elapses. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues the
MRKT call

time is the two-word internal format time interval; when this interval
elapses, the routine is entered. If considered as a two-element
INTEGER*2 array:

time(1) is the high-order time.
time(2) is the low-order time.

CMODE=strg Specifying strg as string "S" sets on low bit of crtn address to
indicate an S-I address.

Notes

• MRKT requires a queue element, which should be considered when the IQSET
function is executed.

• If the system is busy, the time interval that elapses before the completion routine
is run can be greater than that requested.

For further information on scheduling completion routines, see the .MRKT
programmed routine discussion in the RT–11 System Macro Library Manual.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No queue element was available; unable to schedule request.

= -19 Invalid CMODE value.

Error message TRAP $MSARG will display if any argument is missing.

2–148 RT–11 System Subroutine Library Manual

MRKT

Example:

Program FMRKT ! Demo MRKT and CMKT
C
C Run two timers at 5 and 50 ticks each, shutdown
C first timer after 5 times and wait for second.
C

Integer*2 COUNT
Integer*4 TIME, TIME2, RTIME
Common /TIMING/ COUNT, TIME
External FAMRKT !macro completion routine

C
Call IQSET (10) !get some queue elements
COUNT = 1 !init count
TIME = 5 !init at 5 ticks
Call JJCVT (TIME) !and convert from int to time
TIME2 = 50 !init at 50 ticks
Call JJCVT (TIME2) !and convert from int to time
Call MRKT (12345, FAMRKT, TIME) !timer 1
Call MRKT (02222, FAMRKT, TIME2)!timer 2

100 Continue
Call SUSPND !wait for completion
If (COUNT .eq. 5) Then

Call CMKT (12345, RTIME) !on 5th, shutdown timer 1
Go To 200

Else
Go To 100

End If
C
200 Continue

Call PRINT (’!FMRKT-I-Normal Termination’)
End

.TITLE FAMRKT macro completion routine for FMRKT

.MCALL .RSUM .PRINT .MRKT

FAMRKT::
.PRINT #HERE ;indicate entered
INC COUNT ;indicate entered
.RSUM ;resume suspended mainline
.MRKT #AREA,#TIME,#FAMRKT ;reissue the request
RETURN

AREA: .BLKW 3

HERE: .ASCIZ "... in FAMRKT"

.PSECT TIMING,RW,D,GBL,REL,OVR ;Common /TIMING/ ...
COUNT: .BLKW 1
TIME: .BLKW 2

.END

System Subroutine Description and Examples 2–149

MSDS
Full Mapping
The MSDS subroutine controls the linkage of Supervisor and User data space.

Form:

CALL MSDS (ival [,iold] [,ierr])
ierr = MSDS (ival [,iold])

where:

ierr Error return

ival New value for CMAP status

iold Previous CMAP status

Errors:

Value Meaning
i = 0 Success.

i = -257 Required argument missing.

Example:
See CMAP.

2–150 RT–11 System Subroutine Library Manual

MTATCH
Multiterminal Option
The MTATCH subroutine attaches a terminal for exclusive use by the requesting
job. This operation must be performed before any job can use a terminal with
multiterminal programmed requests. An optional argument, amode, lets you specify
an S-D address.

Form:

CALL MTATCH (unit[,addr][,jobnum][,AMODE=strg])
i = MTATCH (unit[,addr][,jobnum][,AMODE=strg])

where:

unit is the unit number of the terminal

addr is the optional address of an asynchronous terminal status word.
Omit this argument. For example:

I = MTATCH (unit,,jobnum)

jobnum is the job number associated with the terminal if the terminal
is not available

AMODE=strg Specify amode as the string "S" to set on the low bit of the
address of iflag to indicate an S-D address.

Errors:

Value Meaning
i = 0 Normal return.

= 3 Nonexistent unit number.

= 5 Unit attached by another job (job number returned in jobnum.)

= 6 In XM monitor, the optional status word address is not in a valid
user virtual address space.

= 7 Unit attached by handler (name returned in jobnum.)

=-19 Invalid AMODE value.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

System Subroutine Description and Examples 2–151

MTDTCH
Multiterminal Option
The MTDTCH subroutine is the complement of the MTATCH subroutine. Its
function is to detach a terminal from a particular job and make it available for
other jobs.

Form:

CALL MTDTCH(unit)
i = MTDTCH(unit)

where:

unit is the unit number of the terminal to be detached

Errors:

Value Meaning
i = 0 Normal return.

= 2 Invalid unit number; terminal is not attached.

= 3 Nonexistent unit number.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

2–152 RT–11 System Subroutine Library Manual

MTGET
Multiterminal Option
The MTGET subroutine furnishes the user with information about a specific terminal
in a multiterminal system. You do not need to do an MTATCH before using MTGET.

Form:

CALL MTGET (unit,addr[,jobnum])
i = MTGET (unit,addr[,jobnum])

where:

unit is the unit number of the line and terminal whose status is desired

addr is the four-word area to receive the status information.

jobnum is the job number associated with the terminal if the terminal is not
available

Status information including bit definitions for the terminal configuration words
and the terminal state byte are described in detail under the .MTGET programmed
request.

Errors:

Value Meaning
i = 0 Normal return.

= 3 Nonexistent unit number.

= 5 Unit attached by another job (job number returned in jobnum.)

= 6 In XM monitor, the optional status word address is not in a valid
user virtual address space.

= 7 Unit attached by handler (name returned in jobnum.)

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

System Subroutine Description and Examples 2–153

MTIN
Multiterminal Option
MTIN transfers characters from a specified terminal to the user program. This
subroutine is a multiterminal form of ITTINR. If no characters are available, an
error flag is set to indicate an error upon return from the subroutine. If no character
count argument is specified, one character is transferred.

Form:

CALL MTIN (unit,char[,chrcnt][,ocnt])
i = MTIN (unit,char[,chrcnt][,ocnt])

where:

unit is the unit number of the terminal

char is the variable to contain the characters read in from the terminal
indicated by the unit number

chrcnt is an optional argument that indicates the number of characters to
be read

ocnt is an optional argument that indicates the number of characters
actually transferred

When a request for a multiple-character transfer is requested, if the optional fourth
argument (ocnt) is specified and bit 6 of the M.TSTS word is set, the variable
specified as the argument will have a value equal to the actual number of characters
transferred upon return from the subroutine.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No input available.

= 2 Unit not attached.

= 3 Nonexistent unit number.

= 6 In XM monitor, the optional status word address is not in a valid
user virtual address space.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

2–154 RT–11 System Subroutine Library Manual

MTOUT
Multiterminal Option
The MTOUT subroutine transfers characters to a specified terminal. This subroutine
is a multiterminal form of ITTOUR. If no room is available in the output ring buffer,
an error flag is set to indicate an error upon return from the subroutine. If no
character count argument is specified, one character is transferred.

Form:

CALL MTOUT (unit,char[,chrcnt][,ocnt])
i = MTOUT (unit,char[,chrcnt][,ocnt])

where:

unit is the unit number of the terminal

char is the variable or array containing the characters to be output, right-
justified in the integer (can be LOGICAL*1 if desired)

chrcnt is an optional argument that indicates the number of characters to
be output

ocnt is an optional argument that indicates the number of characters
actually transferred

When a request for a multiple-character transfer is requested, if the optional fourth
argument ocnt is specified and bit 6 of the M.TSTS word is set, the ocnt will have
a value equal to the actual number of characters transferred upon return from the
subroutine.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No room in output ring buffer.

= 2 Unit not attached.

= 3 Nonexistent unit number.

= 6 In the XM monitor, the address of the user buffer is outside the
valid program limits.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

System Subroutine Description and Examples 2–155

MTPRNT
Multiterminal Option
The MTPRNT subroutine allows output to be printed at any terminal in a
multiterminal environment. This subroutine has the same effect as the PRINT
subroutine. See PRINT.

Form:

CALL MTPRNT (unit,string)
i = MTPRNT (unit,string)

where:

unit is the unit number associated with the terminal

string is the character string to be printed. Note that all quoted literals
used in FORTRAN subroutine calls are in ASCIZ format, which ends
in null (0) for a RETURN instruction or a 2008 to suppress RETURN
instruction

Errors:

Value Meaning
i = 0 Normal return.

= 2 Unit not attached.

= 3 Nonexistent unit number.

= 6 In the XM monitor, the address of the character string is outside
the valid program limits.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

2–156 RT–11 System Subroutine Library Manual

MTRCTO
Multiterminal Option
The MTRCTO subroutine resets the CTRL/O command typed at the specified
terminal in a multiterminal environment. This subroutine has the same effect as
the .MTRCTO programmed request.

Form:

CALL MTRCTO(unit)
i = MTRCTO(unit)

where:

unit is the unit number associated with the terminal

Errors:

Value Meaning
i = 0 Normal return.

= 2 Unit not attached.

= 3 Nonexistent unit number.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

System Subroutine Description and Examples 2–157

MTSET
Multiterminal Option
The MTSET subroutine sets terminal and line characteristics. The set conditions
remain in effect until the system is booted or the terminal and line characteristics
are reset. See the .MTSET programmed request for more details.

Form:

CALL MTSET (unit,addr)
i = MTSET (unit,addr)

where:

unit is the unit number of the line and terminal whose characteristics are
to be changed

addr is a four-word area to pass the status information. The area is a
four-element INTEGER*2 array

Errors:

Value Meaning
i = 0 Normal return.

= 2 Unit not attached.

= 3 Nonexistent unit number.

= 6 In the XM monitor, the address of the status block is outside the
valid program limits.

Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

2–158 RT–11 System Subroutine Library Manual

MTSTAT
Multiterminal Option
The MTSTAT subroutine returns multiterminal system status in an eight-word
status block.

Form:

CALL MTSTAT (addr)
i = MTSTAT (addr)

where:

addr is the address of an eight-word array where multiterminal status
information is returned. The status block contains the following
information:

addr(1) Offset from the base of the resident monitor to
the first Terminal Control Block (TCB).

addr(2) Offset from the base of the resident monitor to
the terminal control block of the console terminal
for the program.

addr(3) The value (0-16 decimal) of the highest logical
unit number (LUN) built into the system.

addr(4) The size of the terminal control block in bytes.

addr(5)-(8) Reserved.

Errors:

Value Meaning
i = 0 Normal return.

= 6 In the XM monitor, the address of the status block is not in valid
user address space.

Example:
Refer to the RT–11 System Macro Library Manual for an example.

System Subroutine Description and Examples 2–159

MWAIT
Multijob
The MWAIT subroutine suspends main program execution of the current job until
all messages sent to or from the other job have been transmitted or received. It
provides a means for ensuring that a required message has been processed. MWAIT
is used primarily in conjunction with the IRCVD and ISDAT calls, where no action is
taken when a message transmission is completed. This subroutine requires a queue
element, which should be considered when the IQSET function is executed.

Form:

CALL MWAIT

Errors:
None.

Example:
See SDAT.

2–160 RT–11 System Subroutine Library Manual

POKE/IPOKE
IPOKE stores a specified 16-bit integer value into a 16-bit address in the current
job’s address space. The subroutine can store values in device registers if the register
is in the current job’s address space.

Form:

CALL POKE (iaddr,ivalue)
i = IPOKE (iaddr,ivalue)

where:

iaddr is the integer specification of the 16-bit address in the current job’s
address space to be modified. If this argument is not an even value,
a trap results (except on an LSI-11 or a PDP–11/23)

ivalue is the integer value to be stored in the address specified by the iaddr
argument

Errors:
None.

Example:

To set bit 12 in the JSW without zeroing any other bits in the JSW, refer to example
under PEEK.

System Subroutine Description and Examples 2–161

POKEB/IPOKEB
POKEB/IPOKEB stores a specified 8-bit integer value into a 16-bit address in the
current job’s address space. Since this subroutine operates in a byte mode, the
address supplied can be odd or even. The subroutine can store values in device
registers if the register location is in the current job’s address space.

Form:

CALL POKEB(iaddr,ivalue)
i = IPOKEB(iaddr,ivalue)

where:

iaddr is the integer specification of the 16-bit address in the current job’s
address space to be modified. Unlike the IPOKE subroutine, the
IPOKEB subroutine allows odd addresses

ivalue is the integer value to be stored in the address specified by the iaddr
argument. Only the low byte of ivalue is actually stored

Errors:
None.

Example:
See PEEK.

2–162 RT–11 System Subroutine Library Manual

PRINT
Refer to WRITE, MWRITC, MWRITW.

The PRINT subroutine prints output from a specified string to the terminal. This
routine can be used to print messages from completion routines without using the
FORTRAN formatted I/O system. Control returns to the user program after all
characters have been placed in the output buffer.

Form:

CALL PRINT (string)

where:

string is the string to be printed. Note that all quoted literals used in
FORTRAN subroutine calls are in ASCIZ format, as are all strings
produced by the SYSLIB string-handling package (The CONCAT
routine can be used to append an octal 200 to an ASCIZ string; see
example.)

The string to be printed can be terminated with either a null (0) byte or a 200(octal)
byte. If the null (ASCIZ) format is used, the output is automatically followed by a
carriage return/line feed pair (octal 15 and 12). If a 200 byte terminates the string,
no carriage return/line feed pair is generated.

In the FB monitor, a change in the job that is controlling terminal output is indicated
by a B> or F>. Any text following the message has been printed by the job indicated
(foreground or background) until another B> or F> is printed. In a system job
monitor the job name is printed; for example, SPOOL>. When PRINT is used by
the foreground job, the message appears immediately, regardless of the state of the
background job. Thus, for urgent messages, PRINT should be used rather than
ITTOUR.

Errors:
If an argument is missing, a random portion of memory is printed, as if it were text.

Example:

Program FPRINT
C
C This shows calls to PRINT with normal CRLF and with
C it suppressed.
C

Byte PROMPT (80)
C

Call PRINT (’This is a normal line of output’)
Call CONCAT (’Name? ’, ’200’o, PROMPT)
Call PRINT (PROMPT) !and one w/o CRLF
Call Print (’Frank Johnson’) !"answer" prompt
End

System Subroutine Description and Examples 2–163

PROTE/IPROTE
PROTE/IPROTE lets a job obtain exclusive control of a two-word vector in the region
0 to 474. If PROTE returns successfully:

• Specified locations are not currently in use by another job or the monitor.

• Calling job can place an interrupt address and priority in the protected 2-word
vector and begin the device associated with those vectors.

Form:

CALL PROTE (addr)
i = IPROTE (addr)

where:

addr is the address of the 2-word vector pair to be protected

Errors:

Value Meaning
i = 0 Normal return

= -1 Protect failure; location already in use.

= -2 Addr is greater than 474 or not a multiple of 4.

= -257 Required argument addr missing.

Example:

Program FPROTE
C
C Try to protect all the vectors, see which are
C already protected.
C Then unprotect all of them.
C

Parameter MAXVEC = ’474’o
Integer*2 VEC !vector to try

C
Do 100, VEC = 0, MAXVEC, 4

If (IPROTE (VEC) .ne. 0) Type 1, VEC
1 Format (’ ’, o3, ’ was protected’)

Call UNPRO (VEC) !just unprotect everything (we can)
100 Continue

End

2–164 RT–11 System Subroutine Library Manual

PURGE
The PURGE subroutine deactivates a channel. Any tentative file currently
associated with the channel is not made permanent. This subroutine prevents
entered (IENTER or .ENTER) files from becoming permanent directory entries.

Form:

CALL PURGE(chan)

where:

chan is the integer specification for the RT–11 channel to be deactivated

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:
Refer to the example under ENTER/IENTER.

System Subroutine Description and Examples 2–165

PUT/IPUT
PUT replaces the value of a monitor fixed offset. PUT uses the monitor .PVAL
programmed request.

Form:

CALL PUT (ioff,value[,operation][,ierr])
ierr = IPUT (ioff,value[,operation])

where:

ioff is the offset (from the base of RMON) to be modified

value Specifies an integer replacement value to replace current
contents of offset location or specifies a BIC/BIS mask, if
operation is specified.

operation If specified, one of the following:

• MOV = Replace with a MOV operation (default).

• BIC = Change with a BIC operation.

• BIS = Change with a BIS operation.

ierr the word that will get the error status of the request.

Errors:

Value Meaning
i = 0 Success, except for trap message.

= -1 Offset out of range.

= -2 Trap 4 (odd address/non-existent memory.) location.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FPUT
C Change the default max file size to 10 and try
C a ENTER to verify the effect, then put it back.

Parameter MAXBL = ’314’o !fixed offset for max block
Integer*2 OLDMAX !old value
Integer*2 DBLK(4)
Data DBLK /3rDK , 3rTES, 3rT , 3rTMP/
OLDMAX = ISPY (MAXBL) !get old value
Type 1, OLDMAX

1 Format (’ ’, ’MAXBL=’, o7)
Call PUT (MAXBL, 10) !set it to 10
IERR = IENTER (IGETC (), DBLK, 0) !ask for default space
Type 2, IERR

2 Format (’ ’, ’Created file size’, o7)
Type 1, IPUT (MAXBL, OLDMAX) !put it back
Type 1, ISPY (MAXBL) !verify
End

2–166 RT–11 System Subroutine Library Manual

R50ASC
The R50ASC subroutine converts a specified number of Radix–50 characters to
ASCII.

Form:

CALL R50ASC (icnt,input,output)

where:

icnt is the integer number of ASCII characters to be produced

input is the area from which words of Radix–50 values to be converted are
taken. Note that (icnt+2)/3 words are read for conversion

output is the area into which the ASCII characters are stored

Errors:
Error message TRAP $MSARG will display if any argument is missing.

If an input word contains illegal Radix–50 codes—that is, if the input word is greater
(unsigned) than 174777(octal)—the routine outputs question marks for the value.

Example:
See CSI.

System Subroutine Description and Examples 2–167

RAD50
The RAD50 function provides a method of encoding RT–11 file descriptors in
Radix–50 notation. The RAD50 function converts six ASCII characters from the
specified area, returning a REAL*4 result that is the two-word Radix–50 value.

Form:

a = RAD50 (input)

where:

input is the area from which the ASCII input characters are taken

The RAD50 call:

A = RAD50 (LINE)

is exactly equivalent to the IRAD50 call:

CALL IRAD50 (6,LINE,A)

Function Results:
The two-word Radix–50 value is returned as the function result.

Errors:
Unpredictable results will occur if any required argument is omitted.

Example:

Real*8 FSPEC
Call IRAD50 (12, ’SY SWAP SYS’, FSPEC)

2–168 RT–11 System Subroutine Library Manual

RAN/RANDU
RT–11 adds the RAN function and RANDU subroutine, uniform pseudo-random
number generators to SYSLIB. These are the same default routines as those
previously supplied with FORTRAN–77. RAN and RANDU were previously located
in the FORTRAN IV and FORTRAN–77 object time system libraries. RAN and
RANDU are different from the routines previously supplied with FORTRAN IV.

RAN and RANDU generate a floating-point number that is evenly distributed in the
range between 0.0 inclusive and 1.0 exclusive (1.0 is never generated).

When you provide a 32-bit seed number, that number is automatically updated
according to the following:

SEED = 69069 * SEED +1 (MOD 2**32)

The value of SEED is a 32-bit number. The high-order 24 bits of SEED are converted
to floating point and returned as the result f.

Form:

f = RAN (jseed)
f = RAN (iseed1,iseed2)
CALL RANDU(iseed1,iseed2,f)

where:

f is a 32-bit floating-point variable

jseed is an INTEGER*4 seed number

iseed1 is the low-order INTEGER*2 seed variable

iseed2 is the high-order INTEGER*2 seed variable

RAN and RANDU are multiplicative-congruential, general-random-number
generators. They are fast, but prone to nonrandom sequences if you construct and
analyze triples of generated numbers.

There are no restrictions on the seed. The seed should be initialized to different
values on separate runs to obtain different random sequences.

Errors:
Unpredictable results will occur if any required argument is omitted.

Example:

This example illustrates a simple way to get a uniform random integer selector.
Multiply the value returned by the RAN function by the number of cases—in this
example, five.

GO TO (1,2,3,4,5), (1 + IFIX(5.*RAN(JSEED)))

The explicit IFIX is necessary before adding 1 to avoid possible rounding during the
normalization after the addition of floating-point numbers.

System Subroutine Description and Examples 2–169

RCHAIN
The RCHAIN subroutine allows a program to determine whether it has been chained
to and to access variables passed across a chain. If RCHAIN is used, it must be used
in the first executable FORTRAN statement in a program.

Form:

CALL RCHAIN (flag,var,wcnt)

where:

flag is an integer variable that RCHAIN will set to -1 (true) if the program
has been chained to; otherwise, it is 0 (false)

var is the first variable in a sequence of variables with increasing memory
addresses to receive the information passed across the chain (See
CHAIN).

wcnt is the number of words to be moved from the chain parameter area to
the area specified by var. RCHAIN moves wcnt words into the area
beginning at var.

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:
See also CHAIN.

Program FRCHAI ! test RCHAIN routine
C
C Receive .CHAIN and expect 100,200,301 as input
C

Logical*2 FLAG
Parameter SUCCS = ’001’o, ERROR = ’004’o, FATAL = ’010’o
Common /RCHAIN/ L, M, N

C
Call RCHAIN (FLAG, L, 3)
If (.not. FLAG) Go To 1000 !not chained to
If (L .ne. 100) Go To 2000 !wrong value
If (M .ne. 200) Go To 2000 !wrong value
If (N .ne. 301) Go To 2000 !wrong value
Type *, ’ !FRCHAI-I-Successful chain entry’
Call EXIT (SUCCS)

C
1000 Type *, ’ ?FRCHAI-F-Not chained to’

Call EXIT (FATAL)
C
2000 Type *, ’ ?FRCHAI-E-Wrong value’

Call EXIT (ERROR)
End

2–170 RT–11 System Subroutine Library Manual

RCTRLO
The RCTRLO subroutine resets the effect of any console terminal CTRL/O command
that was typed. After an RCTRLO call, any output directed to the console terminal
prints until another CTRL/O is typed. It should also be issued after the program
changes any JSW bits, to synchronize internal monitor data structures.

Form:

CALL RCTRLO

Errors:
None.

Example:
See PEEK.

System Subroutine Description and Examples 2–171

*RCVD/*RCVDC/*RCVDF/*RCVDW
Multijob
Four forms of *RCVD can be used in conjunction with the ISDAT (send data)
functions to allow a general data/message transfer system. All forms of *RCVD,
issued either as a function or subroutine, issue RT–11 receive-data programmed
requests. These functions require a queue element which should be a consideration
when the IQSET function is executed.

Specify mapping for MRCVD, MRCVDC and MRCVDW by optional parameters
BMODE and CMODE.

RCVD/IRCVD/MRCVD
RCVD/IRCVD/MRCVD requests data and continues execution. The operation is
queued and the issuing job continues execution. When the job has to receive the
transmitted message, an MWAIT should be executed. This causes the job to be
suspended until all pending messages have been received.

Form:

CALL RCVD (buff,wcnt)
i = IRCVD (buff,wcnt)
CALL MRCVD (buff,wcnt[,BMODE=strg])
i = MRCVD (buff,wcnt[,BMODE=strg])

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received because
the first word contains the integer number of words actually
transmitted when IRCVD is complete.

wcnt is the maximum integer number of words that can be received

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
Value specifies the mapping mode of the buff argument.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No other job exists in the system. A job exists as long as it is
loaded, whether or not it is active.

= -19 Invalid BMODE value.

Error message TRAP $MSARG will display if buff or wcnt argument is missing.

2–172 RT–11 System Subroutine Library Manual

*RCVD/*RCVDC/*RCVDF/*RCVDW

Example:

Program FRCVD !demo RCVD (use with FSDATx)
C
C Try to get a message from the other job, when
C you get it, display it and exit.
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter RCVCNT = 0, RCVMSG = 1, WCNT = 42
Integer*2 CTRLZ
Data CTRLZ /’032’o/
Integer*2 BUFFER(RCVCNT:WCNT)

C
100 Continue

IERR = IRCVD (BUFFER, WCNT) !try for a message
If (IERR .eq. 1) Go To 100 !wait for the job
If (IERR .ne. 0) Go To 200 !unknown error
Call MWAIT !wait for a message
If (BUFFER(RCVMSG) .eq. CTRLZ) Go To 300 !"EOF"
Call PRINT (BUFFER(RCVMSG)) !display message (skip count)
Go To 100 !get another

C
200 Call PRINT (’?FRCVD-F-Unknown error code from IRCVD’)

Call EXIT (FATAL)
C
300 Call PRINT (’!FRCVD-I-Normal termination’)

Call EXIT (SUCCS) !and done
End

RCVDC/IRCVDC/MRCVDC
RCVDC/IRCVDC/MRCVDC requests data and enters an assembly language
completion routine when the message is received. RCVDC/IRCVDC/MRCVDC is
queued, and program execution stays with the issuing job. When the other job
sends a message, the completion routine specified is queued and run according to
standard scheduling of completion routines.

Form:

CALL RCVDC (buff,wcnt,crtn)
i = IRCVDC (buff,wcnt,crtn)
CALL MRCVDC (buff,wcnt,crtn[,BMODE=strg][,CMODE=strg])
i = MRCVDC (buff,wcnt,crtn[,BMODE=strg][,CMODE=strg])

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received because
the first word contains the integer number of words actually
transmitted when IRCVDC is complete

wcnt is the maximum integer number of words to be received

System Subroutine Description and Examples 2–173

*RCVD/*RCVDC/*RCVDF/*RCVDW

crtn is the assembly language completion routine to be entered. This
name must be specified in a FORTRAN EXTERNAL statement
in the routine that issues the IRCVDC call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

CMODE=strg Specify strg as string ’S’ to specify a Supervisor address.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No other job exists in the system. A job exists as long as it is
loaded, whether or not it is active.

=-19 Invalid BMODE or CMODE value.

Error message TRAP $MSARG will display if buff, wcnt, or crtn argument is missing.

Example:
See SFDAT examples.

2–174 RT–11 System Subroutine Library Manual

*RCVD/*RCVDC/*RCVDF/*RCVDW

RCVDF/IRCVDF
RCVDF/IRCVDF requests data and enters a FORTRAN completion subroutine when
the message is received. The RCVDF/IRCVDF is queued, and program execution
continues with the issuing job. When the other job sends a message, the FORTRAN
completion routine specified is entered.

Form:

CALL RCVDF (buff,wcnt,area,frtn)
i = IRCVDF (buff,wcnt,area,frtn)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received because
the first word contains the integer number of words actually
transmitted when IRCVDF is complete

wcnt is the maximum integer number of words to be received

area is a four-word area to be set aside for linkage information. This
area must not be modified by the FORTRAN program and the
USR must not swap over it. This area can be reclaimed by other
FORTRAN completion routines when crtn has been entered

frtn is the FORTRAN completion routine to be entered. This name
must be specified in an EXTERNAL statement in the FORTRAN
routine that issues the RCVDF call

Errors:

Value Meaning
i = 0 Normal return.

= 1 No other job exists in the system. A job exists as long as it is
loaded, whether or not it is active.

Error message TRAP $MSARG will display if buff, wcnt, area or frtn argument is
missing.

Example:
See also SDAT*.

Program FRCVDF !demo RCVDF (use with FSDATx)
C
C Try to get a message from the other job, when
C you get it, display it and exit.
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter RCVCNT = 0, RCVMSG = 1, WCNT = 42
Integer*2 BUFFER(RCVCNT:WCNT)
Common /DATA/ BUFFER
Integer*2 LINKAG(4) !area for linkage
External FRCVDG !completion routine

C
100 Continue

System Subroutine Description and Examples 2–175

*RCVD/*RCVDC/*RCVDF/*RCVDW

IERR = IRCVDF (BUFFER, WCNT, LINKAG, FRCVDG) !try for a message
If (IERR .eq. 1) Go To 100 !wait for the job

If (IERR .ne. 0) Go To 200 !unknown error
C
C other processing not requiring message could be done here
C

Call SUSPND !wait for completion routine to
C ! resume us

Call PRINT (’!FRCVDF-I-Termination successfully completed’)
Call EXIT (SUCCS) !and done

C
200 Call PRINT (’?FRCVDF-F-Unknown error code from IRCVDF’)

Call EXIT (FATAL)
End

Subroutine FRCVDG !completion routine for FRCVDF
Parameter FATAL = ’010’o
Parameter RCVCNT = 0, RCVMSG = 1, WCNT = 42
Integer*2 CTRLZ
Data CTRLZ /’032’o/
Integer*2 BUFFER(RCVCNT:WCNT)
Common /DATA/ BUFFER
Integer*2 LINKAG(4) !area for linkage
External FRCVDH !fakeout the recursion detection

C
If (BUFFER(RCVMSG) .eq. CTRLZ) Go To 100 !"EOF"
Call PRINT (BUFFER(RCVMSG)) !print the data
IERR = IRCVDF (BUFFER, WCNT, LINKAG, FRCVDH) !try for next message
If (IERR .ne. 0) Go To 200 !unknown error
Return

C
100 Call RESUME !restart mainline so it can exit

Return
C
200 Call PRINT (’?FRCVDG-F-Unknown error code from IRCVDF’)

Call EXIT (FATAL) !can’t really exit cleanly from
C !completion, but dying is ok anyway

End

.TITLE FRCVDH -- Just call FRCVDG

FRCVDH::CALLR FRCVDG ;slip around recursion detection
;in the compiler

.END

2–176 RT–11 System Subroutine Library Manual

*RCVD/*RCVDC/*RCVDF/*RCVDW

RCVDW/IRCVDW/MRCVDW
RCVDW/IRCVDW/MRCVDW requests data and waits until it is available. This
function queues a message request and suspends the job issuing the request until
the other job sends a message. When execution of the issuing job resumes, the
message has been received, and the first word of the buffer indicates the number of
words transmitted.

Form:

CALL RCVDW (buff,wcnt)
i = IRCVDW (buff,wcnt)
CALL MRCVDW (buff,wcnt[,BMODE=strg])
i = MRCVDW (buff,wcnt[,BMODE=strg])

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received because
the first word contains the integer number of words actually
transmitted when IRCVDW is complete

wcnt is the maximum integer number of words to be received

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No other job exists in the system. A job exists as long as it is
loaded, whether or not it is active.

=-19 Invalid BMODE value.

Error message TRAP $MSARG will display if buff or wcnt argument is missing.

Example:
See also SDAT*.

Program FRCVDW !demo RCVDW (use with FSDATx)
C
C Try to get a message from the other job, when
C you get it, display it and exit.
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter RCVCNT = 0, RCVMSG = 1, WCNT = 42
Integer*2 CTRLZ
Data CTRLZ /’032’o/
Integer*2 BUFFER(RCVCNT:WCNT)

C
100 Continue

IERR = IRCVDW (BUFFER, WCNT) !try for a message
If (IERR .eq. 1) Go To 100 !wait for the job
If (IERR .ne. 0) Go To 200 !unknown error
If (BUFFER(RCVMSG) .eq. CTRLZ) Go To 300 !"EOF"

System Subroutine Description and Examples 2–177

*RCVD/*RCVDC/*RCVDF/*RCVDW

Call PRINT (BUFFER(RCVMSG)) !display message (skip count)
Go To 100

C
200 Call PRINT (’?FRCVDW-F-Unknown error code from IRCVDW’)

Call EXIT (FATAL)
C
300 Call PRINT (’!FRCVDW-I-Success’)

Call EXIT (SUCCS) !and done
End

2–178 RT–11 System Subroutine Library Manual

*READ/*READC/*READF/*READW
Multijob
Four forms of *READ, issued as a function or as a subroutine, transfer a specified
number of words from a file into memory. These functions require a queue element,
which should be considered when the IQSET function is executed.

Specify mapping for MREAD, MREADC and MREADW by optional parameters
BMODE and CMODE.

READ/IREAD/MREAD
READ/IREAD/MREAD issued either as a function or subroutine, transfers a
specified number of words from memory to the device or file specified by channel.
Control returns to the user program immediately after the READ/IREAD/MREAD
function is initiated. No special action is taken when the transfer is completed.

Form:

CALL READ (wcnt,buff,blk,chan)
i = IREAD (wcnt,buff,blk,chan)
CALL MREAD (wcnt,buff,blk,chan[,BMODE=strg])
i = MREAD (wcnt,buff,blk,chan[,BMODE=strg])

where:

wcnt is the relative integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain at
least wcnt words

blk is the integer block number of the file to be read. The first block
of a file is block number 0. The blk argument must be updated
when necessary. For example, if the program is reading two
blocks at a time, blk should be updated by 2

chan is the integer specification for the RT–11 channel to be used

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI.’
This value specifies the mapping mode of the buff argument.

Function Return:

i = Normal return; i equals the number of words requested (0 for non-
file-structured read, multiple of 256 for file-structured read). If the
read is from a magtape, the number of words requested is returned.
For example:

• If wcnt is a multiple of 256 and less than that number of words
remain in the file, i is shortened to the number of words that
remain in the file; thus, if wcnt is 512 and only 256 words remain,
i=256.

System Subroutine Description and Examples 2–179

*READ/*READC/*READF/*READW

• If wcnt is not a multiple of 256 and more than wcnt words
remain in the file, i is rounded up to the next block; thus,
if wcnt is 312 and more than 312 words remain, i = 512,
but only 312 are read.

• If wcnt is not a multiple of 256 and less than wcnt words
remain in the file, i equals a multiple of 256 that is the
actual number of words being read.

Errors:

Value Meaning
i = -1 Attempt to read past end-of-file; no words remain in the file.

= -2 Hardware error occurred on channel.

= -3 Specified channel is not open.

= -19 Invalid BMODE value.

Error message TRAP $MSARG will display if any argument is missing.

Notes
If an asynchronous operation on a channel (for example, IREAD) results in end-of-
file, the following IWAIT will not detect it. IWAIT detects only hard error conditions.
A subsequent operation on that channel will detect end-of-file and returns the end-
of-file error code. Under these conditions, the subsequent operation is not initiated.

Example:

Program FREAD
C
C Demonstrate IREAD and IWAIT
C Scan SRC: and try to find this source file
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter NULL = ’000’o, HT = ’011’o
Parameter LF = ’012’o, CR = ’015’o
Integer*2 BUF(256) !block buffer
Byte CBUF(512) !char overlay for BUF
Equivalence (CBUF(1), BUF(1))
Integer*2 CHAN !channel number to use
Integer*2 SRC(2) !device dblk
Data SRC /3rSRC, 0/ !whole device (no file name)
Integer*2 BLK !current block number
Integer*2 IERR !function return value
Byte Search(17) !our first few chars
Data Search /HT, ’P’, ’r’, ’o’, ’g’, ’r’, ’a’, ’m’,
1 ’ ’, ’F’, ’R’, ’E’, ’A’, ’D’, CR, LF, NULL/

C
CHAN = IGETC() !allocate a channel
BLK = 0 !begin at the beginning
Call LOOKUP (CHAN, SRC) !open the device

2–180 RT–11 System Subroutine Library Manual

*READ/*READC/*READF/*READW

100 Continue
IERR = IREAD (256, BUF, BLK, CHAN)
If (IERR .ne. 256) Go To 200 !failure

C
C The program could do something not dependent on
C the I/O here
C

IERR = IWAIT (CHAN) !wait for the data
If (IERR .ne. 0) Go To 300 !failure
Call SCOPY (CBUF, CBUF, 16) !truncate the string
If (ISCOMP (CBUF, SEARCH) .eq. 0)

1 Type 101, BLK !Eureka!
101 Format (’ ’, ’!FREAD-I-Self discovery at block ’, i6)

BLK = BLK + 1 !try next block
Go To 100

C
200 Continue

If (IERR .eq. -2) Go To 400 !hard err is expected
If (IERR .eq. -1) Type 102

102 Format (’ ’, ’?FREAD-F-EOF from IREAD’)
If (IERR .ne. -1) Type 103, IERR

103 Format (’ ’, ’?FREAD-F-Unexpected error from IREAD’, i6)
Call EXIT (FATAL)

300 Continue
If (IERR .eq. 2) Go To 500 !hard err is expected
Type 104, IERR

104 Format (’ ’, ’?FREAD-F-Unexpected error from IWAIT’, i6)
Call EXIT (FATAL)

400 Type 105
105 Format (’ ’, ’!FREAD-I-Success (probably)’)

Call EXIT (SUCCS)
500 Type 106
106 Format (’ ’, ’?FREAD-F-Hard error from IREAD’)

Call EXIT (SUCCS)
End

System Subroutine Description and Examples 2–181

*READ/*READC/*READF/*READW

READC/IREADC/MREADC
READC/IREADC/MREADC, issued either as a function or subroutine, transfers
a specified number of words from memory to the device or file specified by
channel. Control returns to the user program immediately after the READC
/IREADC/MREADC function is initiated. When the operation is complete, the
specified assembly language routine (crtn) is entered as an asynchronous completion
routine.

Form:

CALL READC (wcnt,buff,blk,chan,crtn)
i = IREADC (wcnt,buff,blk,chan,crtn)
CALL MREADC (wcnt,buff,blk,chan,crtn[,BMODE=strg][,CMODE=strg])
i = MREADC (wcnt,buff,blk,chan,crtn[,BMODE=strg][,CMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain at
least wcnt words

blk is the integer block number of the file to be read. The user
program normally updates blk before it is used again. The first
block of a file is block number 0.

chan is the integer specification for the RT–11 channel to be used

crtn is the assembly language routine to be activated when the
transfer is complete. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues the
IREADC call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

CMODE=strg Specify strg as string ’S’ to specify Supervisor address.

Function Return:

i = Normal return; i equals the number of words requested (0 for non-
file-structured read, multiple of 256[decimal] for file-structured read).
If the read is from a magtape, the number of words requested is
returned. For example:

• If wcnt is a multiple of 256 and less than that number of words
remain in the file, i is shortened to the number of words that
remain in the file; thus, if wcnt is 512 and only 256 words remain,
i=256.

2–182 RT–11 System Subroutine Library Manual

*READ/*READC/*READF/*READW

• If wcnt is not a multiple of 256 and more than wcnt words
remain in the file, i is rounded up to the next block; thus,
if wcnt is 312 and more than 312 words remain, i = 512,
but only 312 are read.

• If wcnt is not a multiple of 256 and less than wcnt words
remain in the file, i equals a multiple of 256 that is the
actual number of words being read.

Errors:

Value Meaning
i = -1 Attempt to read past end-of-file; no words remain in the file.

= -2 Hardware error occurred on channel.

= -3 Specified channel is not open.

= -19 Invalid BMODE or CMODE value.

Error message TRAP $MSARG will display if any argument is missing.

System Subroutine Description and Examples 2–183

*READ/*READC/*READF/*READW

Example:
See RCVDF for FRCVDM routine.

Program FREADC
C
C This program demonstrates READC and WRITC
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLKI(4), DBLKO(4) !file names
Data DBLKI /3rSRC, 3rFRE, 3rADC, 3rFOR/
Data DBLKO /3rDK , 3rFRE, 3rADC, 3rTMP/
Parameter WCNT = 256 !buffer size
Integer*2 BUFFER (WCNT) !buffer itself
Integer*2 ICHAN, OCHAN !channel numbers
Integer*2 BLK !block number
External FRCVDM

C
ICHAN = IGETC() !get channel numbers
OCHAN = IGETC() ! ...
ISIZE = LOOKUP (ICHAN, DBLKI) !open input file
If (ISIZE .lt. 0) Go to 1000 !error
IERR = IENTER (OCHAN , DBLKO, ISIZE) !open output file
If (IERR .lt. 0) Go To 1100 !error
Do 500, BLK = 0, ISIZE-1 !copy all the blocks

IERR = IREADC (WCNT, BUFFER, BLK, ICHAN, FRCVDM)
If (IERR .ne. WCNT) Go To 1200

C here you could do something else while waiting for I/O
Call SUSPND !wait for completion routine
IERR = IWRITC (WCNT, BUFFER, BLK, OCHAN, FRCVDM)
If (IERR .ne. WCNT) Go To 1300

C here you could do something else while waiting for I/O
Call SUSPND !wait for completion routine

500 Continue
Call CLOSEC (ICHAN)
Call CLOSEC (OCHAN)
Call EXIT (SUCCS)

C
1000 Type *, ’?FREADC-F-LOOKUP failed, code = ’, ISIZE

Call EXIT (FATAL)
1100 Type *, ’?FREADC-F-ENTER failed, code = ’, IERR

Call EXIT (FATAL)
1200 Type *, ’?FREADC-F-READC failed, code = ’, IERR

Call EXIT (FATAL)
1300 Type *, ’?FREADC-F-WRITC failed, code = ’, IERR

Call EXIT (FATAL)
End

2–184 RT–11 System Subroutine Library Manual

*READ/*READC/*READF/*READW

READF/IREADF
READF/IREADF issued as either as a function or subroutine, transfers a specified
number of words from memory to the device or file specified by channel. Control
returns to the user program immediately after the IREADF function is initiated.
When the operation is complete, the specified FORTRAN subprogram (frtn) is
entered as an asynchronous completion routine.

Form:

CALL READF (wcnt,buff,blk,chan,area,frtn)
i = IREADF (wcnt,buff,blk,chan,area,frtn)

where:

wcnt is the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain at least
wcnt words

blk is the integer block number of the file to be used. The user program
normally updates blk before it is used again. The first block of a file
is block number 0

chan is the integer specification for the RT–11 channel to be used

area is a four-word area to be set aside for link information; this area
must not be modified by the FORTRAN program or swapped over by
the USR. This area can be reclaimed by other FORTRAN completion
functions when frtn has been activated

frtn is the FORTRAN routine to be activated on completion of the transfer.
This name must be specified in an EXTERNAL statement in the
routine that issues the READF call. See description of completion
routines.

Function Return:

i = Normal return; i equals the number of words requested (0 for non-
file-structured read, multiple of 256[decimal] for file-structured read).
If the read is from a magtape, the number of words requested is
returned. For example:

• If wcnt is a multiple of 256 and less than that number of words
remain in the file, i is shortened to the number of words that
remain in the file; thus, if wcnt is 512 and only 256 words remain,
i=256.

System Subroutine Description and Examples 2–185

*READ/*READC/*READF/*READW

• If wcnt is not a multiple of 256 and more than wcnt words
remain in the file, i is rounded up to the next block; thus,
if wcnt is 312 and more than 312 words remain, i = 512,
but only 312 are read.

• If wcnt is not a multiple of 256 and less than wcnt words
remain in the file, i equals a multiple of 256 that is the
actual number of words being read.

Errors:

Value Meaning
i = -1 Attempt to read past end-of-file; no words remain in the file.

= -2 Hardware error occurred on channel.

= -3 Specified channel is not open.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FREADF
C
C demonstrate READF and WRITF routines
C

Integer*2 ICHAN, OCHAN !channel numbers
Integer*2 BLK !current block number
Integer*2 SIZE !file size (hi BLK+1)
Parameter WCNT = 256 !word cound
Integer*2 BUFFER(WCNT) !buffer
Integer*2 ERROR !error indicator
Common /JFWCCW/ ICHAN, OCHAN, BLK, SIZE, BUFFER, ERROR
Integer*2 DBLK1(4), DBLK2(4) !file names
Data DBLK1 /3rSY , 3rRT1, 3r1XM, 3rSYS/
Data DBLK2 /3rDK , 3rRT1, 3r1XM, 3rTMP/

C
ICHAN = IGETC()
OCHAN = IGETC()
SIZE = LOOKUP (ICHAN, DBLK1) !open input
If (SIZE .lt. 0) Go To 1000
IERR = IENTER (OCHAN, DBLK2, SIZE) !open output
If (IERR .lt. 0) Go To 1100
SIZE = SIZE - 1 !highest block number
BLK = -1 !since we preincrement in FREADG
Call FREADG (0) !start the I/O

C here we could do other stuff while to I/O is happening
Call SUSPND !wait for I/O to finish
If (ERROR .eq. 0) Go To 900 !success
Type *, ’?FREADF-F-A completion routine reported code = ’, ERROR
Call EXIT (FATAL)

C
900 Type *, ’!FREADF-I-Success’

2–186 RT–11 System Subroutine Library Manual

*READ/*READC/*READF/*READW

Call EXIT (SUCCS)
1000 Type *, ’?FREADF-F-LOOKUP failed, code = ’, SIZE

Call EXIT (FATAL)
1100 Type *, ’?FREADF-F-ENTER failed, code = ’, IERR

Call EXIT (FATAL)
End

Subroutine FREADG (STATUS)
C
C Completion routine for WRITF (does a READF)
C

Integer*2 STATUS !status of previous operation
Integer*2 ICHAN, OCHAN !channel numbers
Integer*2 BLK !current block number
Integer*2 SIZE !file size (hi BLK+1)
Parameter WCNT = 256 !word cound
Integer*2 BUFFER(WCNT) !buffer
Integer*2 ERROR !error indicator
Common /JFWCCW/ ICHAN, OCHAN, BLK, SIZE, BUFFER, ERROR
Integer*2 AREA(4) !linkage area
External FREADH

C
If (IAND (STATUS, 1) .ne. 0) Go To 1000
BLK = BLK + 1 !read next block
If (BLK .gt. SIZE) Go To 900
IERR = IREADF (WCNT, BUFFER, BLK, ICHAN, AREA, FREADH)
If (IERR .ne. WCNT) Go To 1100
Return

C
900 ERROR = 0

Call RESUME
Return

1000 ERROR = -2 !hard error
Call RESUME
Return

1100 ERROR = IERR !returned error
Call RESUME
Return
End

Subroutine FREADH (STATUS)
C
C Completion routine for READF (does a WRITF)
C

Integer*2 STATUS !status of previous operation
Integer*2 ICHAN, OCHAN !channel numbers
Integer*2 BLK !current block number
Integer*2 SIZE !file size (hi BLK+1)
Parameter WCNT = 256 !word cound
Integer*2 BUFFER(WCNT) !buffer
Integer*2 ERROR !error indicator
Common /JFWCCW/ ICHAN, OCHAN, BLK, SIZE, BUFFER, ERROR
Integer*2 AREA(4) !linkage area
External FREADG

C
If (IAND (STATUS, 1) .ne. 0) Go To 1000
IERR = IWRITF (WCNT, BUFFER, BLK, ICHAN, AREA, FREADG)

System Subroutine Description and Examples 2–187

*READ/*READC/*READF/*READW

If (IERR .ne. WCNT) Go To 1100
Return

C
1000 ERROR = +2 !hard error

Call RESUME
Return

1100 ERROR = -IERR !returned error
Call RESUME
Return
End

2–188 RT–11 System Subroutine Library Manual

*READ/*READC/*READF/*READW

READW/IREADW/MREADW
READW/IREADW/MREADW issued either as a function or subroutine, transfers a
specified number of words from memory to the device or file specified by channel.
Control returns to the user program when the transfer is complete or when an error
is detected.

Form:

CALL READW (wcnt,buff,blk,chan)
i = IREADW (wcnt,buff,blk,chan)
CALL MREADW (wcnt,buff,blk,chan[,BMODE=strg])
i = MREADW (wcnt,buff,blk,chan[,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain at
least wcnt words

blk is the integer block number of the file to be read. The user
program normally updates blk before it is used again

chan is the integer specification for the RT–11 channel to be used

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

Function Return:

i = Normal return; i equals the number of words requested (0 for non-
file-structured read, multiple of 256[decimal] for file-structured read).
If the read is from a magtape, the number of words requested is
returned. For example:

• If wcnt is a multiple of 256 and less than that number of words
remain in the file, i is shortened to the number of words that
remain in the file; thus, if wcnt is 512 and only 256 words remain,
i=256.

• If wcnt is not a multiple of 256 and more than wcnt words
remain in the file, i is rounded up to the next block; thus,
if wcnt is 312 and more than 312 words remain, i = 512,
but only 312 are read.

• If wcnt is not a multiple of 256 and less than wcnt words
remain in the file, i equals a multiple of 256 that is the
actual number of words being read.

System Subroutine Description and Examples 2–189

*READ/*READC/*READF/*READW

Errors:

Value Meaning
i = -1 Attempt to read past end-of-file; no words remain in the file.

= -2 Hardware error occurred on channel.

= -3 Specified channel is not open.

= -19 Invalid BMODE value.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FREADW
C Demonstrate IREADW
C Scan SRC: and try to find this source file

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter NULL = ’000’o, HT = ’011’o
Parameter LF = ’012’o, CR = ’015’o
Integer*2 BUF(256) !block buffer
Byte CBUF(512) !char overlay for BUF
Equivalence (CBUF(1), BUF(1))
Integer*2 CHAN !channel number to use
Integer*2 SRC(2) !device dblk
Data SRC /3rSRC, 0/ !whole device (no file name)
Integer*2 BLK !current block number
Integer*2 IERR !function return value
Byte Search(18) !our first few chars
Data Search /HT, ’P’, ’r’, ’o’, ’g’, ’r’, ’a’, ’m’,
1 ’ ’, ’F’, ’R’, ’E’, ’A’, ’D’, ’W’, CR, LF, NULL/

C
CHAN = IGETC() !allocate a channel
BLK = 0 !begin at the beginning
Call LOOKUP (CHAN, SRC) !open the device

100 Continue
IERR = IREADW (256, BUF, BLK, CHAN)
If (IERR .ne. 256) Go To 200 !failure
Call SCOPY (CBUF, CBUF, 17) !truncate the string
If (ISCOMP (CBUF, SEARCH) .eq. 0)

1 Type 101, BLK !Eureka!
101 Format (’ ’, ’!FREADW-I-Self discovery at block ’, i6)

BLK = BLK + 1 !try next block
Go To 100

200 Continue
If (IERR .eq. -2) Go To 400 !hard err is expected
If (IERR .eq. -1) Type 102

102 Format (’ ’, ’?FREADW-F-EOF from IREADW’)
If (IERR .ne. -1) Type 103, IERR

103 Format (’ ’, ’?FREADW-F-Unexpected error from IREADW’, i6)
Call EXIT (FATAL)

400 Type 105
105 Format (’ ’, ’!FREADW-I-Success (probably)’)

Call EXIT (SUCCS)
End

2–190 RT–11 System Subroutine Library Manual

RENAM/IRENAM
Multijob
RENAM/IRENAM causes an immediate change of the name of a specified file.

Form:

CALL RENAM (chan,dblk)
i = IRENAM (chan,dblk)

where:

chan is the integer specification for the RT–11 channel to be used for the
operation. You must obtain this channel through an IGETC call,
or you can use channel 16(decimal) or higher if you have done an
ICDFN call. The channel is again available for use once the rename
operation is completed

dblk is the eight-word area specifying the name of the existing file and
the new name to be assigned. If considered as an eight-element
INTEGER*2 array, dblk has the form:

• Words 1-4 specify the Radix–50 file descriptor for the old file name

• Words 5-8 specify the Radix–50 file descriptor for the new file
name

NOTE
IRENAM arguments must be positioned so USR does
not swap over them.

If a file already exists with the same name as the new file on the indicated device, it
is deleted. IRENAM requires that the handler to be used be resident at the time the
IRENAM is issued. If it is not, a monitor error occurs. The device names specified
in the file descriptors must be the same.

For more information on renaming files, see the .RENAME programmed request.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Specified channel is already open.

= 2 Specified file was not found.

= 3 Invalid operation.

= 4 A file by that name already exists and is protected.

Error message TRAP $MSARG will display if chan or dblk argument is missing.

System Subroutine Description and Examples 2–191

RENAM/IRENAM

Example:

Program FRENAM
C
C Demonstrate renaming a file
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 CHAN !i/o channel
Integer*2 IERR !error code
Integer*2 DBLK2(8) !a pair of DBLKS
Data DBLK2
1 /3rDK , 3rFAT, 3r , 3rTMP,
2 3rDK , 3rPOR, 3rTLY , 3rTMP/

C
CHAN = IGETC () !get a channel
IERR = IRENAM (CHAN, DBLK2) !apply euphemism
If (IERR .ne. 0) Go To 100 !problem
Call PRINT (’!FRENAM-I-Success’)
Call EXIT (SUCCS)

100 Continue
Type *, ’?FRENAM-F-Unexpected error’, IERR
Call EXIT (FATAL)
End

2–192 RT–11 System Subroutine Library Manual

REOPN/IREOPN
Multijob
REOPN/IREOPN identifies a specified channel with a file on which an ISAVES was
performed. The ISAVES/IREOPN combination is useful when a large number of files
must be operated on at one time. Necessary files can be opened with LOOKUP and
their status preserved with ISAVES. When data is required from a file, an IREOPN
enables the program to read from the file. IREOPN is not required to reference same
channel as the original LOOKUP and ISAVES.

Form:

CALL REOPN (chan,cblk)
i = IREOPN (chan,cblk)

where:

chan is the integer specification for the RT–11 channel to be associated
with the reopened file; this channel must be initially inactive

cblk is the five-word block where the channel status information was
stored by a previous ISAVES. This block, considered as a five-element
INTEGER*2 array, has the following format:

cblk (1) Channel status word.

cblk (2) Starting block number of the file; zero for non-file-
structured devices.

cblk (3) Length of file (in 256-word blocks).

cblk (4) Reserved for future use.

cblk (5) Two information bytes:

• Even byte: I/O count of the number of requests
outstanding on this channel.

• Odd byte: Unit number of the device associated
with the channel.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Specified channel is already in use.

Error message TRAP $MSARG will display if chan or cblk argument is missing.

System Subroutine Description and Examples 2–193

REOPN/IREOPN

Example:

Program FREOPN
C
C Demo SAVES and REOPN operations on channels
C

Parameter WCNT = 256
Integer*2 DBLK1(4), DBLK2(4) !file names
Data DBLK1 /3rSRC, 3rFRE, 3rOPN, 3rFOR/
Data DBLK2 /3rBIN, 3rFRE, 3rOPN, 3rSAV/
Integer*2 DBLK3(4) !TT:
Data DBLK3 /3rTT , 0, 0, 0/
Integer*2 CBLK1(5), CBLK2(5) !channel blocks
Integer*2 ICHAN, OCHAN !channel numbers
Integer*2 BUFFER(WCNT) !block buffer
Integer*2 BLK !block number

C
ICHAN = IGETC() !get a channel
IERR = LOOKUP (ICHAN, DBLK1) !lookup the source file
CALL SAVES (ICHAN, CBLK1) !save the src lookup
IERR = LOOKUP (ICHAN, DBLK2) !lookup the sav file
Call SAVES (ICHAN, CBLK2) !save the sav lookup
Type 100, CBLK1(3), CBLK2(3) !compare sizes

100 Format (’ ’, ’Source = ’, i6, ’ save = ’, i6///)
Call IREOPN (ICHAN, CBLK1) !now open the src again
OCHAN = IGETC() !get an output channel
Call LOOKUP (OCHAN, DBLK3) !open TT:
Do 200 BLK = 0, CBLK1(3)-1 !reveal ourselves

Call READW (WCNT, BUFFER, BLK, ICHAN)
Call WRITW (WCNT, BUFFER, BLK, OCHAN)

200 Continue
Call CLOSEC (ICHAN)
Call CLOSEC (OCHAN)
End

2–194 RT–11 System Subroutine Library Manual

REPEAT
The REPEAT subroutine concatenates a specified string with itself to produce the
indicated number of copies. REPEAT places the resulting string in a specified array.

Form:

CALL REPEAT (in,out,i[,len][,err])

where:

in is the array containing the string to be repeated; it must be
terminated with a null byte

out is the array into which the resultant string is placed. This array
must be at least one element longer than the value of len, if len is
specified. Because string handling always creates null terminated
strings, out will be a null terminated string when it returns.

i is the integer number of times to repeat the string

len is the integer number representing the maximum length of the output
string

err is the logical error flag set if the output string is truncated to the
length specified by len

Input and output strings can specify the same array only if the repeat count (i) is 1
or 0. When the repeat count is 1, this routine is the equivalent of SCOPY; when the
repeat count is 0, out is replaced by a null string. The old contents of out are lost
when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and the output
string will be longer than len characters, then err is set to .TRUE.; otherwise, err is
unchanged.

NOTE
The argument err must be specified as BYTE in
FORTRAN 77. It can be any logical type in FORTRAN
IV and any integer type in PDP–11 C.

Error message TRAP $MSARG will display if argument a, b, or out is missing.

System Subroutine Description and Examples 2–195

REPEAT

Example:

Program SREPEA
C
C This will build a ruler of length 1 to 99
C

Integer*2 SIZE !length of ruler
Byte LINE1(100), LINE2(100) !strings for ruler

C
SIZE = 12
Call Ruler (SIZE, LINE1, LINE2)
Call PRINT (LINE1)
Call PRINT (LINE2)
SIZE = 36
Call Ruler (SIZE, LINE1, LINE2)
Call PRINT (LINE1)
Call PRINT (LINE2)
End

Subroutine RULER (SIZE, LINE1, LINE2)
Integer*2 SIZE !length of ruler
Byte LINE1(*), LINE2(*) !ruler strings
Byte NUM19(11) !constant
Data NUM19 /’1’, ’2’, ’3’, ’4’, ’5’,
1 ’6’, ’7’, ’8’, ’9’, ’0’, ’000’o/

C
Call REPEAT (’0’, LINE1(1), 9, SIZE)
Do 100 I = 1, SIZE/10

ICHAR = NUM19(I) !get single char with null term
Call REPEAT (ICHAR, LINE1(I*10), 10, SIZE+1-(I*10))

100 Continue
Call REPEAT (NUM19, LINE2(1), 10, SIZE)
Return
End

2–196 RT–11 System Subroutine Library Manual

RESUME
The RESUME subroutine allows a job to resume execution of the main program. A
RESUME call is normally issued from an asynchronous FORTRAN routine entered
on I/O completion or because of a schedule request (See SUSPND subroutine).

Form:

CALL RESUME

Errors:
None.

Example:
See RCVDF.

System Subroutine Description and Examples 2–197

SAVES/ISAVES
Multijob
SAVES/ISAVES stores five words of channel status information into a user-specified
array. These words contain all the information that RT–11 requires to completely
define an RT–11 file. (Special directory devices cannot have their file status saved
with this request.) When an ISAVES is finished, the data words are placed in
memory and the specified channel is closed, so that it is again available for use.
When the saved channel data is required, the IREOPN function is used.

ISAVES can be used only if a file was opened with a LOOKUP call. If IENTER
was used, ISAVES returns an error. Note that ISAVES is not valid on magtape or
cassette files.

Form:

CALL SAVES (chan,cblk)
i = ISAVES (chan,cblk)

where:

chan is the integer specification for the RT–11 channel whose status is to
be saved. You must obtain this channel through an IGETC call, or
you can use channel 16 or higher if you have done an ICDFN call

cblk is a five-word block in which the channel status information
describing the open file is stored (See IREOPN for format of this
block)

The ISAVES/IREOPN combination is very useful, but care must be exercised when
using it. In particular, the following cases should be avoided.

If an ISAVES is performed on a file and the same file is then deleted before it is
reopened, the space occupied by the file becomes available as an empty space which
could then be used by another file. If this sequence occurs, there is a change in the
contents of the file whose status was supposedly saved.

Although the handler for the required peripheral need not be in memory for execution
of an IREOPN, a fatal error is generated if the handler is not in memory when an
IREAD or IWRITE is executed.

Errors:

Value Meaning
i = 0 Normal return.

= 1 The specified channel is not currently associated with any file.

= 2 The file was opened with an IENTER call.

Error message TRAP $MSARG will display if any argument is missing.

Example:
See REOPN.

2–198 RT–11 System Subroutine Library Manual

SCCA/ISCCA/MSCCA
SCCA/ISCCA provides a CTRL/C intercept to:

• Inhibit a CTRL/C abort.

• Indicate that a CTRL/C has been entered.

• Distinguish between single and double CTRL/C command.

Global support provides an ISCCA function variant. An optional parameter, itype,
provided for both SCCA and ISCCA subroutines lets you set local or global SCCA
support. An optional parameter, AMODE, lets you specify a Supervisor data space
address. See RT–11 System Macro Library Manual for .SCCA information on local
and global SCCA support.

Form:

CALL SCCA [([iflag][,itype])]
i = ISCCA ([iflag][,itype])
CALL MSCCA [([iflag][,itype][,AMODE=strg])]
i = MSCCA ([iflag][,itype][,AMODE=strg])

where:

iflag is an integer terminal status word that must be tested and
cleared to determine if two CTRL/Cs were typed at the console
terminal; the iflag must be an INTEGER*2 variable (not
LOGICAL*1).

itype is the mode of SCCA operation.
Specify 0 (the default) or 1 to select LOCAL or GLOBAL SCCA
support:

itype = 0 LOCAL (default) mode of SCCA operation

itype = 1 GLOBAL mode of SCCA operation

i is the returned address of the previous SCCA terminal status
word

AMODE=strg Specify AMODE string "S" to select a Supervisor-Data
address.

Notes
When a CTRL/C is typed, if SCCA is in effect, it is placed in the input ring buffer.
While residing in the buffer, the character can be read by the program. The program
must test and clear the iflag to determine if two CTRL/C commands were typed
consecutively. The iflag is set to non-zero when two CTRL/Cs are typed together.
It is the responsibility of the program to abort itself, if appropriate, on an input
of CTRL/C from the terminal. The SCCA subroutine with no argument disables
the CTRL/C intercept. A CTRL/C from indirect command files is not intercepted by
SCCA.

System Subroutine Description and Examples 2–199

SCCA/ISCCA/MSCCA

Errors:

Value Meaning
i = -19 Invalid AMODE value.

Error message TRAP $MSARG will display if argument itype is missing.

Example:

Program FSCCA
C
C Demonstrate SCCA preventing job termination by ^C
C

Type 1
1 Format (’ ’, ’Enter chars, including a ^C or ^C^C and ret’ /)

IFLAG = 0 !init flag word
Call SCCA (IFLAG) !protect from ^C

10 If (ITTINR() .ne. ’003’o) Go To 10 !look for ^C
Type 2

2 Format (’ ’, ’A ^C was typed’ /)
If (IFlag .eq. 0) Go To 10 !continue until ^C^C
Type 3

3 Format (’ ’, ’Actually a double ^C^C’ /)
Call SCCA () !unprotect from ^C
Type 4

4 Format (’ ’, ’Enter ^C to terminate program’ /)
20 Go To 20 !loop, see loop

End

2–200 RT–11 System Subroutine Library Manual

SCHED/ISCHED
SB Timer (SYSGEN Option)
SCHED/ISCHED schedules a specified FORTRAN subroutine to be run as an
asynchronous completion routine at a specified time of day.

Form:

CALL SCHED (hrs,min,sec,tick,area,id,frtn)
i = ISCHED (hrs,min,sec,tick,area,id,frtn)

where:

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-Hz clocks; 1/50
of a second on 50-Hz clocks)

area is a four-word area that must be provided for link information; this
area must never be modified by the FORTRAN program, and the
USR must not swap over it. This area can be reclaimed by other
FORTRAN completion functions when crtn has been activated

id is the integer identification to be passed to the routine being
scheduled

frtn is the name of the FORTRAN subroutine to be entered at the time
of day specified. This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues the ISCHED call.
The subroutine has one argument. For example:

SUBROUTINE frtn(id)
INTEGER id

When the routine is entered, the value of the integer argument is the
value specified for id in the appropriate ISCHED call

Notes

• The scheduling request made by ISCHED can be canceled at a later time by an
ICMKT function call.

• If the system is busy, the actual time of day that the completion routine is run
may be later than the requested time of day.

• A FORTRAN subroutine can periodically reschedule itself by issuing its own
ISCHED or ITIMER calls from within the routine.

• ISCHED requires a queue element; this should be considered when the IQSET
function is executed.

System Subroutine Description and Examples 2–201

SCHED/ISCHED

Errors:

Value Meaning
i = 0 Normal return.

= 1 No queue elements available; unable to schedule request.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FSCHED
C
C This program uses timer support to announce lunch.
C

Integer*2 LINK1(4) !linkage area for FTN completion
C

IERR = IQSET (2) !add some queue elements
IERR = ISCHED (12, 0, 0, 0, LINK1, 73, NOON)

C
Type *, ’Do some work’
Call SUSPND
Type *, ’Off to lunch’
End

Subroutine NOON (ID)
Type *, ’Time for LUNCH’
Call RESUME
Return
End

2–202 RT–11 System Subroutine Library Manual

SCOMP/ISCOMP
The SCOMP/ISCOMP routine compares two character strings and returns the
integer result of the comparison.

Form:

CALL SCOMP (a,b,i)
i = ISCOMP (a,b)

where:

a is the array containing the first string; it must be terminated with a
null byte

b is the array containing the second string; it must be terminated with
a null byte

i is the integer variable that receives the result of the comparison

The strings are compared from left to right, one character at a time, using the
collating sequence specified by the ASCII codes for each character. If the two strings
are not equal, the absolute value of variable i (or the result of the function ISCOMP)
is the character position of the first inequality found. Strings are terminated by a
null (0) character.

If the strings are not the same length, the shorter one is treated as if it were padded
on the right with blanks to the length of the other string. A null string argument is
equivalent to a string containing only blanks.

Function Results:

i < 0 If a is less than b.
= 0 If a is equal to b.
> 0 If a is greater than b.

Errors:
Unpredictable results will occur if any argument is omitted.

Example:
See SDTTM.

System Subroutine Description and Examples 2–203

SCOPY
The SCOPY routine copies a character string from one array to another. Copying
stops either when a null (0) character is encountered or when a specified number of
characters have been moved.

Form:

CALL SCOPY (in,out[,len][,err])

where:

in is the array containing the string to be copied; it must be terminated
with a null byte if len is not specified, or if the string is shorter than
len

out is the array to receive the copied string. This array must be at least
one element longer than the value of len, if len is specified. It also
must be terminated with a null byte if len is specified

len is the integer number representing the maximum length of the output
string. The effect of len is to truncate the output string to a given
length, using null termination

err is a logical variable that receives the error indication if the output
string was truncated to the length specified by len

NOTE
The argument err must be specified as LOGICAL*1 in
FORTRAN 77. It can be any logical type in FORTRAN
IV and any integer type in PDP–11C.

The input (in) and output (out) arguments can specify the same array. The string
previously contained in the output array is lost when this subroutine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and the output string
was truncated to the length specified by len, then err is set to .TRUE.; otherwise,
err is unchanged.

Unpredictable results will occur if either in or outargument is omitted.

Example:
See INSERT.

2–204 RT–11 System Subroutine Library Manual

*SDAT/*SDATC/*SDATF/*SDATW
Multijob Only
Four forms of *SDAT, are used with the IRCVD, IRCVDC, IRCVDF, and IRCVDW
calls to allow message transfers under the FB or XM monitor. Note that the buffer
containing the message should not be modified or reused until the message has been
received by the other job. These functions require a queue element, which should
be considered when the IQSET function is executed.

Specify mapping for MSDAT, MSDATC and MSDATW by optional parameters
BMODE and CMODE.

SDAT/ISDAT/MSDAT
SDAT/ISDAT/MSDAT transfers a specified number of words from one job to the other.
Control returns to the user program immediately after the transfer is queued. When
your program needs to wait until the other program has received the data, an IWAIT
function should be issued to ensure that the ISDAT operation has been completed.
If an error occurred during the transfer, the IWAIT function indicates the error.

Form:

CALL SDAT (buff,wcnt)
i = ISDAT (buff,wcnt)
CALL MSDAT (buff,wcnt[,BMODE=strg])
i = MSDAT (buff,wcnt[,BMODE=strg])

where:

buff is the array containing the data to be transferred

wcnt is the integer number of data words to be transferred

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode for the buff argument.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No such job currently exists in the system. A job exists as long
as it is loadable, whether or not it is active.

= -19 Invalid BMODE value.

Error message TRAP $MSARG will display if buff or wcnt argument is missing.

Example:
See also *RCVD.

System Subroutine Description and Examples 2–205

*SDAT/*SDATC/*SDATF/*SDATW

Program FSDAT !demo SDAT (use with FRCVDx)
C
C Try to send a message to the other job
C send a null message for EOF and exit
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter WCNT = 42
Integer*2 SNDCNT
Integer*2 BUFFER(WCNT)
Integer*2 CTRLZ
Data CTRLZ /’032’o/ !^Z null string equiv
External LEN !use RT-11 SYSLIB LEN func

C
100 Continue

Call GTLIN (BUFFER) !get a line
SNDCNT = LEN (BUFFER) !get byte count (-1)
If (SNDCNT .eq. 0) Then !is it a null string

BUFFER(1) = CTRLZ !yes, send ^Z
SNDCNT = 1 !...

End If
SNDCNT = (SNDCNT + 2) / 2 ! get word count

200 Continue
IERR = ISDAT (BUFFER, SNDCNT) !try sending a message
If (IERR .eq. 1) Go To 200 !wait for the job

If (IERR .ne. 0) Go To 300 !unknown error
Call MWAIT !wait for a message
If (BUFFER(1) .ne. CTRLZ) Go To 100

Call PRINT (’!FSDAT-I-Normal termination’)
Call EXIT (SUCCS) !and done

C
300 Call PRINT (’?FSDAT-F-Unknown error code from ISDAT’)

Call EXIT (FATAL)
End

2–206 RT–11 System Subroutine Library Manual

*SDAT/*SDATC/*SDATF/*SDATW

SDATC/ISDATC/MSDATC
SDATC/ISDATC/MSDATC transfers a specified number of words from one job to
another. Control returns to the user program immediately after the transfer is
queued. When the other job accepts the message through a receive data request,
the specified assembly language routine (crtn) is activated as an asynchronous
completion routine.

Form:

CALL SDATC (buff,wcnt,crtn)
i = ISDATC (buff,wcnt,crtn)
CALL MSDATC (buff,wcnt,crtn[,BMODE=strg][,CMODE=strg])
i = MSDATC (buff,wcnt,crtn[,BMODE=strg][,CMODE=strg])

where:

buff is the array containing the data to be transferred

wcnt is the integer number of data words to be transferred

crtn is the name of an assembly language routine to be activated on
completion of the transfer. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues the
ISDATC call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

CMODE=strg Specify strg as string "S" to specify a Supervisor address.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No such job currently exists in the system. A job exists as long
as it is loadable, whether or not it is active.

= -19 Invalid BMODE or CMODE value.

Error message TRAP $MSARG will display if buff, wcnt or crtn argument is missing.

Example:

Program FSDATC !demo SDATC (use with FRCVDx)
C
C Try to send a message to the other job
C after sending a null message, exit
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter WCNT = 42
Integer*2 SNDCNT
Integer*2 BUFFER(WCNT)
Integer*2 CTRLZ
Data CTRLZ /’032’o/ !^Z null string equiv
External FRCVDM !completion routine
External LEN !use RT-11 SYSLIB LEN func

C

System Subroutine Description and Examples 2–207

*SDAT/*SDATC/*SDATF/*SDATW

100 Continue
Call GTLIN (BUFFER)
SNDCNT = LEN (BUFFER) !get byte count (-1)
If (SNDCNT .eq. 0) Then !is it a null string

BUFFER(1) = CTRLZ !yes, send ^Z
SNDCNT = 1 !...

End If
SNDCNT = (SNDCNT + 2) / 2 ! get word count

200 Continue
IERR = ISDATC (BUFFER, SNDCNT, FRCVDM) !try sending a message
If (IERR .eq. 1) Go To 200 !wait for the job

If (IERR .ne. 0) Go To 400 !unknown error
C
C other processing not requiring message could be done here
C

Call SUSPND !wait for completion routine to
C ! resume us

If (BUFFER(1) .ne. CTRLZ) Go To 100
300 Call PRINT (’!FSDATC-I-Successful normal termination’)

Call EXIT (SUCCS) !and done
C
400 Call PRINT (’?FSDATC-F-Unknown error code from ISDATC’)

Call EXIT (FATAL)
End

2–208 RT–11 System Subroutine Library Manual

*SDAT/*SDATC/*SDATF/*SDATW

SDATF/ISDATF
SDATF/ISDATF transfers a specified number of words from one job to the other.
Control returns to the user program immediately after the transfer is queued and
execution continues. When the other job accepts the message through a receive data
request, the specified FORTRAN subprogram (frtn) is activated as an asynchronous
completion routine.

Form:

CALL SDATF (buff,wcnt,frtn)
i = ISDATF (buff,wcnt,area,frtn)

where:

buff is the array containing the data to be transferred

wcnt is the integer number of data words to be transferred

area is a four-word area to be set aside for link information; this area
must not be modified by the FORTRAN program and the USR must
not swap over it. This area can be reclaimed by other FORTRAN
completion functions when crtn has been activated

frtn is the name of a FORTRAN routine to be activated on completion
of the transfer. This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues the ISDATF call

Function Return:

i = Normal return; i equals the number of words requested (0 for non-
file-structured read, multiple of 256[decimal] for file-structured read).
If the read is from a magtape, the number of words requested is
returned. For example:

• If wcnt is a multiple of 256 and less than that number of words
remain in the file, i is shortened to the number of words that
remain in the file; thus, if wcnt is 512 and only 256 words remain,
i=256.

• If wcnt is not a multiple of 256 and more than wcnt words remain
in the file, i is rounded up to the next block; thus, if wcnt is 312
and more than 312 words remain, i = 512, but only 312 are read.

• If wcnt is not a multiple of 256 and less than wcnt words remain
in the file, i equals a multiple of 256 that is the actual number of
words being read.

Errors:

Value Meaning
i = 0 Normal return.

System Subroutine Description and Examples 2–209

*SDAT/*SDATC/*SDATF/*SDATW

= 1 No such job currently exists in the system. A job exists as long
as it is loadable, whether or not it is active.

= -19 Invalid BMODE value.

Error message TRAP $MSARG will display if buff or wcnt argument is missing.

Example:

Program FSDATF !demo SDATF (use with FRCVDx)
C
C Try to send a message to the other job
C after sending a null message, exit
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter WCNT = 42
Integer*2 SNDCNT
Integer*2 BUFFER(WCNT)
Common /DATA/ SNDCNT, BUFFER
Integer*2 LINKAG(4) !area for linkage
Integer*2 CTRLZ
Data CTRLZ /’032’o/ !^Z null string equiv
External FSDATG !completion routine
External LEN !use RT-11 SYSLIB LEN function

C
100 Continue

Call GTLIN (BUFFER) !get a line to send
SNDCNT = LEN (BUFFER) !get byte count (-1)
If (SNDCNT .eq. 0) Then !is it a null string

BUFFER(1) = CTRLZ !yes, send ^Z
SNDCNT = 1 !...

End If
SNDCNT = (SNDCNT + 2) / 2 ! get word count

200 Continue
IERR = ISDATF (BUFFER, SNDCNT, LINKAG, FSDATG)

C !try sending a message
If (IERR .eq. 1) Go To 200 !wait for the job

If (IERR .ne. 0) Go To 300 !unknown error
C
C other processing not requiring message could be done here
C

Call SUSPND !wait for completion routine to
C ! resume us

Call PRINT (’!FSDATF-!-Termination successfully completed’)
Call EXIT (SUCCS) !and done

C
300 Call PRINT (’?FSDATF-F-Unknown error code from ISDATF’)

Call EXIT (FATAL)
End

Subroutine FSDATG !completion routine for FSDATF
Parameter FATAL = ’010’o
Parameter WCNT = 42
Integer*2 SNDCNT
Integer*2 BUFFER(WCNT)
COMMON /DATA/ SNDCNT, BUFFER
Integer*2 LINKAG(4) !area for linkage

2–210 RT–11 System Subroutine Library Manual

*SDAT/*SDATC/*SDATF/*SDATW

Integer*2 CTRLZ
Data CTRLZ /’032’o/ !^Z null string equiv
External FSDATH !fakeout the recursion detection
External LEN !use RT-11 SYSLIB LEN func

C
Call GTLIN (BUFFER) !get a line for sending
SNDCND = LEN (BUFFER) !get length

If (SNDCNT .eq. 0) Then !is it a null string
BUFFER(1) = CTRLZ !yes, send ^Z
SNDCNT = 1 !...

End If
SNDCNT = (SNDCNT + 2) / 2 ! get word count

IERR = ISDATF (BUFFER, SNDCNT, LINKAG, FSDATH) !try for next message
If (BUFFER(1) .eq. CTRLZ) Go To 100 !"EOF"
If (IERR .ne. 0) Go To 200 !unknown error
Return

C
100 Call RESUME !restart mainline so it can exit

Return
C
200 Call PRINT (’?FSDATG-F-Unknown error code from ISDATG’)

Call EXIT (FATAL) !can’t really exit cleanly from
C !completion, but dying is ok anyway

End

.TITLE FSDATH -- Just call FSDATG

FSDATH::CALLR FSDATG ;slip around recursion detection
;in the compiler

.END

SDATW/ISDATW/MSDATW
SDATW/ISDATW/MSDATW transfers a specified number of words from one job to
the other. Control returns to the user program when the other job has accepted the
data through a receive data request.

Form:

CALL SDATW (buff,wcnt)
i = ISDATW (buff,wcnt)
CALL MSDATW (buff,wcnt[,BMODE=strg])
i = MSDATW (buff,wcnt[,BMODE=strg])

where:

buff is the array containing the data to be transferred

wcnt is the integer number of data words to be transferred

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode of the buff argument.

System Subroutine Description and Examples 2–211

*SDAT/*SDATC/*SDATF/*SDATW

Function Return:

i = Normal return; i equals the number of words requested (0 for non-
file-structured read, multiple of 256[decimal] for file-structured read).
If the read is from a magtape, the number of words requested is
returned. For example:

• If wcnt is a multiple of 256 and less than that number of words
remain in the file, i is shortened to the number of words that
remain in the file; thus, if wcnt is 512 and only 256 words remain,
i=256.

• If wcnt is not a multiple of 256 and more than wcnt words remain
in the file, i is rounded up to the next block; thus, if wcnt is 312
and more than 312 words remain, i = 512, but only 312 are read.

• If wcnt is not a multiple of 256 and less than wcnt words remain
in the file, i equals a multiple of 256 that is the actual number of
words being read.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No such job currently exists in the system. A job exists as long
as it is loadable, whether or not it is active.

= -19 Invalid BMODE value.

Example:

Program FSDATW !demo SDATW (use with FRCVDx)
C
C Try to send a message to the other job
C after sending a null message, exit
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Parameter WCNT = 42
Integer*2 SNDCNT
Integer*2 BUFFER(WCNT)
Integer*2 CTRLZ
Data CTRLZ /’032’o/ !^Z null string equiv
External LEN !use RT-11 SYSLIB LEN func

C
100 Continue

Call GTLIN (BUFFER) !get a line to send
SNDCNT = LEN (BUFFER) !get byte count (-1)
If (SNDCNT .eq. 0) Then !is it a null string

BUFFER(1) = CTRLZ !yes, send ^Z
SNDCNT = 1 !...

End If
SNDCNT = (SNDCNT + 2) / 2 ! get word count

200 Continue
IERR = ISDATW (BUFFER, SNDCNT) !try sending a message

2–212 RT–11 System Subroutine Library Manual

*SDAT/*SDATC/*SDATF/*SDATW

If (IERR .eq. 1) Go To 200 !wait for the job
If (IERR .ne. 0) Go To 300 !unknown error
If (BUFFER(1) .eq. CTRLZ) Go To 400 !"EOF"
Go To 100

C
300 Call PRINT (’?FSDATW-F-Unknown error code from ISDATW’)

Call EXIT (FATAL)
C
400 Call PRINT (’!FSDATW-I-Success’)

Call EXIT (SUCCS) !and done
End

System Subroutine Description and Examples 2–213

SDTTM/ISDTTM
SDTTM/ISDTTM sets the system date and time. An argument of -1 leaves the
corresponding value unchanged.

Form:

CALL SDTTM (date,hitime,lotime)
i = ISDTTM (date,hitime,lotime)

where:

date is the new system date

hitime is the high-order time of day, in ticks past midnight

lotime is the low-order time of day, in ticks past midnight

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FSDTTM
C
C Accept date in German and set it
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
Byte MONATE(4, 12)
Data MONATE !month names
1 /’J’, ’A’, ’N’, 0,
2 ’F’, ’E’, ’B’, 0,
3 ’M’, ’A’, ’R’, 0,
4 ’A’, ’P’, ’R’, 0,
5 ’M’, ’A’, ’I’, 0,
6 ’J’, ’U’, ’N’, 0,
7 ’J’, ’U’, ’L’, 0,
8 ’A’, ’U’, ’G’, 0,
9 ’S’, ’E’, ’P’, 0,
1 ’O’, ’K’, ’T’, 0,
2 ’N’, ’O’, ’V’, 0,
3 ’D’, ’E’, ’C’, 0/
Byte INPUT(81) !raw input
Byte PROMPT(6) !prompt
Data PROMPT /’D’, ’a’, ’t’, ’e’, ’?’, ’200’o/
Integer*2 DAY, YEAR !day and year integer values
Byte MONTH(4) !month string value
Data MONTH(4) /0/ !with suffixed null
Character*10 DMMMY !DD-MON-YY

2–214 RT–11 System Subroutine Library Manual

SDTTM/ISDTTM

C
Call GTLIN (INPUT, PROMPT) !ask for date
If (INPUT(2) .eq. ’-’) Then

Call CONCAT (’0’, INPUT, DMMMY) !D-MON-YY
Else
Call SCOPY (INPUT, DMMMY) !DD-MMM-YY

End If
Read (DMMMY, 101, ERR=200) DAY, DUMMY1, (MONTH(I), I=1,3),
1 DUMMY2, YEAR

101 Format (i2, a1, 3a1, a1, i2)
If ((DUMMY1 .ne. ’-’) .or. (DUMMY2 .ne. ’-’)) Go To 200
DO 100 IMON = 1, 12

If (ISCOMP (MONATE(1, IMON), MONTH) .eq. 0) Go To 300
100 Continue
200 Continue

Type *, ’?FSDTTM-F-Invalid input’
Call EXIT (FATAL)

300 Continue
If (YEAR .lt. 73) Go To 200
If (DAY .gt. 31) Go To 200
Call SDTTM (IMON*1024+DAY*32+YEAR-72, -1, -1)
Call EXIT (SUCCS)
End

System Subroutine Description and Examples 2–215

SERR/ISERR
SERR/ISERR performs the following functions:

• Inhibits the monitor from aborting a job

• Causes an error return to the EMT that produced the error.

Those error conditions are listed at the end of this section. ISERR itself returns
no error codes.

If SERR is in effect and an error occurs on a channel, the channel must be closed by
a CLOSEC or PURGE call. Otherwise, subsequent operations on that channel will
fail.

Form:

CALL SERR ()
i = ISERR ()

where:

i is a returned INTEGER*2 result of the function, a flag indicating the
previous IHERR/ISERR setting:

Value Meaning
i = 0 IHERR was in effect

= 1 ISERR was in effect

Errors:

The following list contains error codes that can be returned to other EMT requests
if SERR is in effect:

Value Meaning
i = -129 Called USR from completion routine

= -130 No device handler; this operation needs one

= -131 Error doing directory I/O

= -132 .FETCH error. An I/O error occurred while the handler was
being used, or an attempt was made to load the handler over
USR or KMON

= -133 Error reading an overlay

= -134 No more room for files in the directory

= -135 Reserved

= -136 Invalid channel number; number is greater than actual number
of channels that exist

2–216 RT–11 System Subroutine Library Manual

SERR/ISERR

= -137 Invalid EMT, and invalid function code has been decoded

= -138 Reserved

= -139 Reserved

= -140 Invalid directory

= -141 Unloaded XM handler

= -142
through
= -146

Reserved

Example:
See HERR.

System Subroutine Description and Examples 2–217

SETCMD
The SETCMD routine allows a user program to pass a command line to the keyboard
monitor to be executed after the program exits. This routine can be used in a program
running in the background. The command lines are passed to the chain information
area (500-777 octal) and stored beginning at location 512(octal). No check is made to
determine if the string extends into the stack space. For this reason, the command
line should be short and the subroutine call should be made in the main program
unit near the end of the program just before completion.

The monitor commands REENTER, START, and CLOSE are not allowed if the
SETCMD feature is used.

Form:

CALL SETCMD (string)

where:

string is a keyboard monitor command line ASCIZ format with no embedded
carriage returns or line feeds

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FSETCM
C
C Issue any command supplied as input
C

Byte INPUT(81), PROMPT(8)
Data PROMPT /’P’, ’r’, ’o’, ’m’, ’p’, ’t’, ’?’, ’200’o/

C
Call GTLIN (INPUT, PROMPT) !get a command
Call SETCMD (INPUT)
End

2–218 RT–11 System Subroutine Library Manual

SFDAT/ISFDAT
SFDAT/ISFDAT allows user programs to modify the creation date of an RT–11 file.
The device must have an RT–11 file structure.

Form:

CALL SFDAT (chan,dblk[,idate][,iold])
i = ISFDAT (chan,dblk[,idate][,iold])

where:

chan is the integer value of the RT–11 channel to be used for the operation.
You must obtain this channel through an IGETC call, or you can use
channel 16(decimal) or higher if you have done an ICDFN call

dblk is the four word RT–11 file specification, in Radix–50, of the file whose
date is being changed

idate is the integer date in RT–11 date format

iold is the INTEGER*2 result of the request; the original creation date
(E.DATE) of the specified file

Errors:

Value Meaning
i = 0 Normal return.

= 1 Channel in use.

= 2 File not found.

= 3 Invalid operation for magtape.

Error message TRAP $MSARG will display if any argument is missing.

Example:
This example changes the date of the file DY1:OLD23.DAT to July 4, 1976.

Program FSFDAT
C
C This program sets the file date of 4 July 1976 on the
C file DK:BI100L.TMP.

Parameter SUCCS = ’001’o, FATAL = ’010’o
Integer*2 DBLK(4) !file name
Data DBLK /3rDK , 3rBI1, 3r00L, 3rTMP/

C
ICHAN = IGETC() !get a channel
IDATE = 7*1024 + 4*32 + (1976-1972) !RT-11 format date
IERR = ISFDAT (ICHAN, DBLK, IDATE) !set it
If (IERR .ne. 0) Go To 100
Call PRINT (’!FSFDAT-I-Success’)
Call EXIT (SUCCS)

100 Continue
Call PRINT (’?FSFDAT-F-Revolting development’)
Call EXIT (FATAL)
End

System Subroutine Description and Examples 2–219

SFINF/ISFINF
SFINF/ISFINF function saves and then modifies the contents of the directory entry
offset you specify from a file’s directory entry. ISFINF is not supported for the
distributed special directory handlers LP, LS, MM, MS, MT, MU, and SP.

Form:

CALL SFINF (chan,dblk,value,oper,offset,[iold])
i = ISFINF (chan,dblk,value,oper,offset,[iold])

where:

chan is a BYTE or INTEGER*2 channel number

dblk is a 4-element INTEGER*2 array containing a 4-word device and file
specification in Radix–50; the file specification for which you want to
return directory entry information.

value is the value to be placed in the specified offset location.
For RT–11 file structured volume directories, if the offset is 0
(E.STAT) and the operation is a BIC or BIS, E.STAT bits 000400,
001000, and 004000 must be clear. If the offset is E.STAT and the
operation is a MOV, only the bottom 4 bits of E.STAT are moved. For
special directory volumes, no bit restrictions are enforced

oper is the name or octal value indicating the type of operation to be
performed:

Name/Value Type Meaning
’G’ GET Get value, an IGFINF operation

’C’ CLEAR Bit clear (BIC) operation

’S’ SET Bit set (BIS) operation

’M’ MOVE Word move (MOV) operation

128-255 USER Reserved for the user

offset is the octal byte offset for the directory entry word for this operation.
The offset must be even, and cannot be 8 (E.LENG). For example,
specifying offset 10 saves the current contents of E.USED in iold and
opens that location for modification.

iold is the returned INTEGER*2 previous value in the modified directory
entry word

2–220 RT–11 System Subroutine Library Manual

SFINF/ISFINF

Errors:

Value Meaning
i = 0 Normal return

= -1 Channel was open

= -2 File not found

= -3 Invalid operation argument

= -4 Invalid offset

= -257 Required argument missing

Example:

Program FSFINF !demo SFINF
C
C This program modifies the directory entry at offset 10.,
C setting it to a value based on the value entered for the
C /T switch. The /T switch is used as follows:
C
C /T:11. 11:00:00
C /T:11.:22. 11:22:00
C /T:11.:22.:33. 11:22:33
C
C The value placed in the entry is the number of seconds
C past midnight in the switch value divided by 3.
C

Parameter FATAL = ’010’o
Integer*2 CHAN !Channel number
Integer*2 FILSPC(39) !DBLK(s) area
Integer*2 DEFTYP(4) !default types
Integer*2 DBLK(4) !DBLK
Integer*2 SW(4,6) !switch parsing table
Parameter LETTER = 1, FLAG = 2, FILE = 3, VALUE = 4
Integer*2 ERROR !error / success value
Integer*2 TIME !time value to store
Integer*2 HOUR !hour part
Integer*2 MINUTE !minute part
Integer*2 SECOND !second part
Equivalence (FILSPC (16), DBLK(1)) !use first input file only
Data DEFTYP /4*0/ !no default types
Data SW(LETTER,1) /’T’/, SW(LETTER,4) /’t’/
Data SW(LETTER,2) /’T’/, SW(LETTER,5) /’t’/
Data SW(LETTER,3) /’T’/, SW(LETTER,6) /’t’/

C
CHAN = IGETC ()

1000 Continue
Call Print (’ ’) !clean up display
ERROR = ICSI (FILSPC, DEFTYP, , SW, 6) !get file and switches
If (ERROR .ne. 0) Go To 2100
ERROR = IFETCH (DBLK) !Get handler into memory
If (ERROR .ne. 0) Go To 2200
If (SW(FLAG,1) .eq. 0) Then !lower case ’t’ used

Do 1100, I = 1, 3 !copy info from LC to UC entries
SW(FLAG,I) = SW(FLAG,I + 3)
SW(VALUE,I) = SW(VALUE,I + 3)

System Subroutine Description and Examples 2–221

SFINF/ISFINF

1100 Continue
End If
MINUTE = 0 !assume nothing
SECOND = 0
If ((SW(FLAG,2) .eq. 0).and.(SW(FLAG,3) .eq. 0)) Then

HOUR = SW(VALUE,1)
End If
If ((SW(FLAG,2) .ne. 0).and.(SW(FLAG,3) .eq. 0)) Then

MINUTE = SW(VALUE,1)
HOUR = SW(VALUE,2)

End If
If ((SW(FLAG,2) .ne. 0).and.(SW(FLAG,3) .ne. 0)) Then

SECOND = SW(VALUE,1)
MINUTE = SW(VALUE,2)
HOUR = SW(VALUE,3)

End If
If ((HOUR .gt. 23).or.(HOUR .lt. 0)) Go To 2300
If ((MINUTE .gt. 59).or.(MINUTE .lt. 0)) Go To 2400
If ((SECOND .gt. 59).or.(SECOND .lt. 0)) Go To 2500
TIME = (HOUR * (60*60/3) + MINUTE * (60/3) + SECOND /3)
ERROR = ISFINF (CHAN, DBLK, TIME, ’M’, ’12’o) !set "time"
If (ERROR .eq. -2) Go To 2600
If (ERROR .ne. 0) Go To 2700
Go To 1000 !loop for next

2100 Call Print (’?FSFINF-F-CSI error’)
Go To 3100

2200 Call Print (’?FSFINF-F-Fetch error’)
Go To 3100

2300 Call Print (’?FSFINF-W-Hour out of range (0-23)’)
Go To 1000

2400 Call Print (’?FSFINF-W-Minute out of range (0-59)’)
Go To 1000

2500 Call Print (’?FSFINF-W-Second out of range (0-59)’)
Go To 1000

2600 Call Print (’?FSFINF-W-File not found’)
Go To 1000

2700 Call Print (’?FSFINF-F-SFINF error’)
3100 Call Exit (FATAL)

End

2–222 RT–11 System Subroutine Library Manual

SFSTA/ISFSTA
SFSTA/ISFSTA saves and then modifies the contents of the directory entry status
word (E.STAT) from a file’s directory entry. ISFSTA is not supported for the
distributed special directory handlers LP, LS, MM, MS, MT, MU, and SP.

Form:

CALL SFSTA (chan,dblk,value,oper,[iold])
i = ISFSTA (chan,dblk,value,oper,[iold])

where:

chan is a BYTE or INTEGER*2 RT–11 channel number

dblk is a 4-element INTEGER*2 array containing a 4-word device and file
specification in Radix–50; the file specification for which you want to
return directory entry information

value is the value to be placed in the directory entry status word.

• If the operation is a BIC or BIS, E.STAT bits 000400, 001000, and
004000, must be clear.

• If the operation is a MOV, only the bottom 4 bits of E.STAT are
moved.

For special directory volumes, no bit restrictions are enforced.

oper is the name or octal value indicating the type of operation to be
performed:

Name/Value Type Meaning
’C’ CLEAR A bit clear (BIC) operation

’S’ SET A bit set (BIS) operation

’M’ MOVE A word move (MOV) operation

128-255 USER Reserved for the user

iold is the returned INTEGER*2 previous value in the modified directory
entry status word

System Subroutine Description and Examples 2–223

SFSTA/ISFSTA

Error:

Value Meaning
i = 0 Normal return

= -1 Channel was open

= -2 File not found

= -3 Invalid operation argument (internal error)

= -4 Internal error.

= -257 Required argument missing

Example:
See also GFSTA.

Program FSFSTA
C
C This program modifies the directory status entry
C setting it to indicate either read-write or read-only.
C The command is a file name and a switch.
C /R read-only
C /W read-write
C

Parameter EREAD = ’040000’o !read-only bit
Integer*2 CHAN !Channel number to use
Integer*2 FILSPC(39) !DBLKs return area
Integer*2 DBLK(4) !The interesting DBLK
Equivalence (FILSPC(16), DBLK(1)) !First input file
Integer*2 DEFEXT(4) !Default extensions
Data DEFEXT /0,0,0,0/ !None
Integer*2 SWITCH(4, 4) !Switch parsing table
Parameter LETTER = 1, FLAG = 2, FILE = 3, VALUE = 4
Data SWITCH(LETTER,1) /’R’/, SWITCH(LETTER,2) /’r’/
Data SWITCH(LETTER,3) /’W’/, SWITCH(LETTER,4) /’w’/
Integer*2 TYPE !Type of operation flag
Byte OPER(2) !Operations to perform
Data OPER /’S’, ’C’/ !set for first / clear for second
Integer*2 ERROR !Error/success flag

C
CHAN = IGETC() !get a channel

1000 Continue !main loop
Call PRINT (0) !blank line
ERROR = ICSI (FILSPC, DEFTYP, , SWITCH, 4) !get command
If (ERROR .ne. 0) Go To 1100 !failed
ERROR = IFETCH (DBLK(1)) !load handler
If (ERROR .ne. 0) Go To 1200 !failed
TYPE = 0 !assume no switch specified
If ((SWITCH(FLAG,1).ne.0).or.(SWITCH(FLAG,2).ne.0)) TYPE = 1
If ((SWITCH(FLAG,3).ne.0).or.(SWITCH(FLAG,4).ne.0)) TYPE = 2
If (TYPE .eq. 0) Go To 1300 !no switch
ERROR = ISFSTA (CHAN, DBLK, EREAD, OPER(TYPE)) !set/clr bit
If (ERROR .eq. 0) Go To 1000

If (ERROR .eq. -2) Go To 1400
Call PRINT (’?FSFSTA-F-Unexpected error from SFSTA’)
Call EXIT (FATAL)

2–224 RT–11 System Subroutine Library Manual

SFSTA/ISFSTA

1300 Call PRINT (’?FSFSTA-W-Switch required, supply /R or /W’)
Go To 1000

1400 Call PRINT (’?FSFSTA-W-File not found’)
Go To 1000

1100 Call PRINT (’?FSFSTA-F-Unexpected error from CSI’)
Call EXIT (FATAL)

1200 Call PRINT (’?FSFSTA-F-Unexpected error from FETCH’)
Call EXIT (FATAL)
End

System Subroutine Description and Examples 2–225

SLEEP/ISLEEP
Timer Support
SLEEP/ISLEEP suspends the main program execution of a job for a specified amount
of time. The specified time is the sum of hours, minutes, seconds, and ticks specified
in the ISLEEP call. All completion routines continue to execute.

Form:

CALL SLEEP (hrs,min,sec,tick)
i = ISLEEP (hrs,min,sec,tick)

where:

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-Hz clocks; 1/50
of a second on 50-Hz clocks)

Notes

• When you execute IQSET, remember that SLEEP requires an extra queue
element.

• If the system is busy, time execution may be suspended longer than specified.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No queue element available.

Unpredictable results will occur if any arguments are omitted.

Example:
See also TIMER for FTIMEA and FTIMEC.

Program FSLEEP
C
C demonstrate the SLEEP routine
C

Integer*2 HRS, MIN, SEC, TIC
Integer*2 AREAA(4)
External FTIMEA !fast timer completion

C
Call IQSET (10) !allocate extra queue elements
Call TIMER (0, 0, 1, 0, AREAA, 12345, FTIMEA)
CALL ISLEEP (0, 0, 5, 0)!sleep for 5 seconds
Call PRINT (’!FSLEEP-I-Exiting’)
End

2–226 RT–11 System Subroutine Library Manual

SPCPS/ISPCPS
SYSGEN Option
SPCPS/ISPCPS lets a program’s completion routine change the flow of control of the
mainline code. ISPCPS saves the mainline PC and PS and changes the mainline PC
to a new value.

If ISPCPS is issued by a program running under a monitor for which .SPCPS support
was not generated, no action is taken and no error is returned.

Form:

CALL SPCPS (addr)
i = ISPCPS (addr)

where:

addr is the address of the three-word block in user memory. The first word
contains the new mainline PC. The following two words, on return,
contain the saved mainline PC and PS

Errors:

Value Meaning
i= 0 Normal return

= -1 ISPCPS was issued from mainline code rather than from a
completion routine

= -2 A previous ISPCPS call is outstanding

= -257 Required argument missing

Example:

Program FSPCPS
C
C This program demonstrates SPCPS and its ability to change
C the main-line flow of control in an async completion routine.
C

Parameter SUCCS = ’001’o, FATAL = ’010’o
External FSPCPC
Integer*2 DBLK(4) !file name
Data DBLK /3rSY , 3rSWA, 3rP , 3rSYS/
Integer*2 IAREA(4) !argument area
Integer*2 BUFF(4096) !buffer
Data WCNT /4096/ !transfer word count
Data BLK /0/ !beginning block
Integer*2 NEWPC !address to set PC to
Integer*2 OLDPC !previous PC value
Integer*2 OLDPS !old PS
Common /SPCPS/ NEWPC, OLDPC, OLDPS !argument block for SPCPS

C

System Subroutine Description and Examples 2–227

SPCPS/ISPCPS

ICHAN = IGETC() !get a channel
IERR = LOOKUP (ICHAN, DBLK) !open a known file
If (IERR .lt. 0) Go To 300 !error?
Assign 200 to NEWPC !get PC for SPCPS

C
IERR = IREADF (WCNT, BUFF, BLK, CHAN, AREA, FSPCPC)
If (IERR .lt. 0) Go To 400 !error?

C
C here we hang (wasting CPU cycles)
C
100 Go To 100 !loop, infinite: see infinite loop
C
C here we derail to from completion routine
C
200 Continue

Type *, ’!FSPCPS-I-Got back via derail’
Type 101, OLDPC, NEWPC, OLDPS

101 Format (’ ’, ’OLDPC=’, o6, ’NEWPC=’, o6, ’OLDPS=’, o6)
Call EXIT (SUCCS)

C
C error messages
C
300 Continue

Type *, ’?FSPCPS-F-LOOKUP failed’, IERR
Call EXIT (FATAL)

C
400 Continue

Type *, ’?FSPCPS-F-IREADF failed’, IERR
Call EXIT (FATAL)
End

SUBROUTINE FSPCPC
Integer*2 NEWPC !address to set PC to
Integer*2 OLDPC !previous PC value
Integer*2 OLDPS !old PS
Common /SPCPS/ NEWPC, OLDPC, OLDPS !argument block for SPCPS
Type *, ’!FSPCPS-I-In completion routine’
Call SPCPS (NEWPC)
Return
End

2–228 RT–11 System Subroutine Library Manual

*SPFN/*SPFNC/*SPFNF/*SPFNW
*SPFN/*SPFNC/*SPFNF/*SPFNW, issued either as functions or subroutines, are
used in conjunction with special functions to various handlers having special device-
dependent characteristics. Asterisk prefixes indicate generic SPFN forms can begin
with the letter I when issued as a function or with the letter M when the function
or subroutine specifies mapping.

You can specify mapping for MSPFN, MSPFNC, and MSPFNW by adding optional
arguments BMODE and CMODE. For details on programming for specific devices,
see the RT–11 Device Handlers Manual.

All *SPFN forms provide a means of doing device-dependent functions, such as
rewind and backspace, to those devices. If ISPFN function calls are made to any
other devices, the function call is ignored. To use these functions, the handler must
be in memory, and a channel must be associated with a device. These functions
require a queue element; this should be a consideration when the IQSET function
is executed.

Functions—ISPFN 376, 377
Two ISPFN subroutine calls, 376 and 377, perform a non-file-structured write and
read operation, using a 32-bit starting block number. See Table 2–1.

Table 2–1: Device Support (SF.AWR/SF.ARD)

Device Code Name Action

DL/DM/DU 376 SF.AWR Write operation without doing bad block replacement;
returns definitive error data.

377 SF.ARD Read operation without doing bad block replacement;
returns definitive error data.

DW 376 SF.AWR Write

377 SF.ARD Read

DX/DY/DZ 376 SF.AWR Write absolute sector

377 SF.ARD Read absolute sector

DU Support
The DU handler has support for ISPFN 376 (SF.AWR) and 377 (SF.ARD). For DU,
SF.AWR performs a write to the specified sector, and SF.ARD performs a read from
the specified sector. Those writes and reads are not absolute; bad-block replacement
and block vectoring remain in effect. See RT–11 Device Handlers Manual for
information.

System Subroutine Description and Examples 2–229

*SPFN/*SPFNC/*SPFNF/*SPFNW

For DU, SF.AWR and SF.ARD can return the following error code (in addition to
those returned by DM):

Code Explanation

140000 A forced error occurred.

• If the device is a disk drive that supports bad block replacement
(BBR), the device controller or DU handler discovered bad
data on a good (replaced) block. (Bad-block replacement was
performed, but no data was recovered.)

• If the device does not support BBR, this is an unexpected
condition. Refer to RT–11 Device Handlers Manual for
appropriate action.

DW Support
For DW, ISPFN 376 (SF.AWR) and 377 (SF.ARD) use logical block numbers rather
than physical block numbers in the blk argument. Therefore, to address a write
or read to physical block zero, specify -1 for the blk argument. That is necessary
because the physical block number of a DW device is one less than the logical block
number.

MU Support
MU, ISPFN 374 (SF.MWE, write with extended file gap) executes as ISPFN 371
(SF.MWR, write). The TK50 magtape device does not support SF.MWE functionality;
however, future release of RT–11 may add support for this functionality for other MU
devices. See Table 2–2.

Table 2–2: Device Support (SF.MWE/SF.MWR)

Device Code Name Action

DM 374 SF.SIZ Return unit size. Parameter arguments for SF.SIZ for LD
and DM are identical.

MU 371 SF.MWR After initial non-file-structured .LOOKUP and SF.USR,
perform write operations of variable word count blocks.

MU 374 SF.MWE Write with extended gap.

2–230 RT–11 System Subroutine Library Manual

*SPFN/*SPFNC/*SPFNF/*SPFNW

SPFN/ISPFN/MSPFN
SPFN/ISPFN/MSPFN queues the specified operation and immediately returns
control to the user program. The IWAIT function can be used to ensure completion
of the operation.

Form:

CALL SPFN (code,chan[,wcnt,buff,blk])
i = ISPFN (code,chan[,wcnt,buff,blk])
CALL MSPFN (code,chan[,wcnt,buff,blk][,BMODE=strg])
i = MSPFN (code,chan[,wcnt,buff,blk][,BMODE=strg])

where:

code is the integer numeric code of the function to be performed

chan is the integer specification for the RT–11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call

wcnt is the integer number of data words in the operation. This
parameter is optional with some ISPFN calls, depending on the
particular function. Default value is 0. In magtape operations,
it specifies the number of records to space forward or backward.
For a backspace operation (wcnt=0), the tape drive backspaces
to a tape mark or to the beginning-of-tape. For a forward space
operation (wcnt=0), the tape drive forward spaces to a tape mark
or the end-of-tape.

buff is the array to be used as the data buffer. This parameter is
optional with some ISPFN calls, depending on the particular
function. Default value is 0

blk This parameter is optional with some ISPFN calls, depending
on the particular function. Default value is 0.
When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to zero.
The error and status block must always be mapped when
running in the XM monitor, and the USR must not swap over it.
To obtain the address of the error block, execute the following
instructions:

System Subroutine Description and Examples 2–231

*SPFN/*SPFNC/*SPFNF/*SPFNW

INTEGER*2 ERRADR, ERRBLK(4)
DATA ERRBLK /0,0,0,0,/

.

.

.
ERRADR = IADDR (ERRBLK) !GET THE ADDRESS OF

!THE 4-WORD ERROR BLOCK
ICODE = ISPFN (CODE,ICHAN,WDCT,BUF,ERRADR)

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode for the buff argument.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Attempt to read or write past end-of-file.

= 2 Hardware error occurred on channel.

= 3 Channel specified is not open.

= -19 Invalid BMODE value.

Example:
See SPFNW. See also SDAT.

2–232 RT–11 System Subroutine Library Manual

*SPFN/*SPFNC/*SPFNF/*SPFNW

SPFNC/ISPFNC/MSPFNC
SPFNC/ISPFNC/MSPFNC queues the specified operation and immediately returns
control to the user program. When the operation is complete, the specified assembly
language routine (crtn) is entered as an asynchronous completion routine.

Form:

CALL SPFNC (code,chan,wcnt,buff,blk,crtn)
i = ISPFNC (code,chan,wcnt,buff,blk,crtn)
CALL MSPFNC (code,chan,wcnt,buff,blk,crtn[,BMODE=strg][,CMODE=strg])
i = MSPFNC (code,chan,wcnt,buff,blk,crtn[,BMODE=strg][,CMODE=strg])

where:

code is the integer numeric code of the function to be performed

chan is the integer specification for the RT–11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call

wcnt is the integer number of data words in the operation; the default
value for this argument is 0

buff is the array to be used as the data buffer; the default value for
this argument is 0

blk This parameter is optional with some ISPFN calls, depending
on the particular function. Default value is 0.
When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to zero.
The error and status block must always be mapped when
running in the XM monitor, and the USR must not swap over it.
To obtain the address of the error block, execute the following
instructions:

INTEGER*2 ERRADR, ERRBLK(4)
DATA ERRBLK /0,0,0,0,/

.

.

.
ERRADR = IADDR (ERRBLK) !GET THE ADDRESS OF

!THE 4-WORD ERROR BLOCK
ICODE = ISPFN (CODE,ICHAN,WDCT,BUF,ERRADR)

System Subroutine Description and Examples 2–233

*SPFN/*SPFNC/*SPFNF/*SPFNW

crtn is the name of an assembly language routine to be activated on
completion of the operation. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues the
ISPFNC call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode for the buff argument.

CMODE=strg Specify strg as string "S" to specify a Supervisor address.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Attempt of read or write past end-of-file.

= 2 Hardware error occurred on channel.

= 3 Channel specified is not open.

= -19 Invalid BMODE or CMODE value.

Error message TRAP $MSARG will display if any argument is missing.

Example:
See SPFNW. See also SDATC.

2–234 RT–11 System Subroutine Library Manual

*SPFN/*SPFNC/*SPFNF/*SPFNW

SPFNF/ISPFNF
SPFNF/ISPFNF queues the specified operation and immediately returns control
to the user program. When the operation is complete, the specified FORTRAN
subprogram (frtn) is entered as an asynchronous completion routine.

Form:

CALL SPFNF (code,chan,wcnt[,buff][,blk],area,crtn)
i = ISPFNF (code,chan,wcnt[,buff][,blk],area,crtn)

where:

code is the integer numeric code of the function to be performed

chan is the integer specification for the RT–11 channel to be used for the
operation. You must obtain this channel through an IGETC call, or
you can use channel 16(decimal) or higher if you have done an ICDFN
call

wcnt is the integer number of data words in the operation; this argument
must be 0 if not required

buff is the array to be used as the data buffer; this argument must be 0
if not required

blk This parameter is optional with some ISPFN calls, depending on the
particular function. Default value is 0.
When this argument is supplied by magtape, it is the address of a
four-word error and status block used for returning the exception
conditions. The four words must be initialized to zero.
The error and status block must always be mapped when running in
the XM monitor, and the USR must not swap over it. To obtain the
address of the error block, execute the following instructions:

INTEGER*2 ERRADR, ERRBLK(4)

DATA ERRBLK /0,0,0,0,/

.

.

.

.

ERRADR = IADDR (ERRBLK) !GET THE ADDRESS OF

!THE 4-WORD ERROR BLOCK

ICODE = ISPFN (CODE,ICHAN,WDCT,BUF,ERRADR)

System Subroutine Description and Examples 2–235

*SPFN/*SPFNC/*SPFNF/*SPFNW

area is a four-word area to be set aside for linkage information; this area
must not be modified by the FORTRAN program, and the USR must
not swap over it. This area can be reclaimed by other FORTRAN
completion functions when frtn has been activated

frtn is the name of a FORTRAN routine to be activated on completion
of the operation. This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues the ISPFNF call.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Attempt to read or write past end-of-file.

= 2 Hardware error occurred on channel.

= 3 Channel specified is not open.

Error message TRAP $MSARG will display if any argument is missing.

Example:

REAL*4 MTNAME(2),AREA(2)
DATA MTNAME/3RMT0,0./
EXTERNAL DONSUB
.
.
.
I=IGETC() !ALLOCATE CHANNEL
CALL IFETCH(MTNAME) !FETCH MT HANDLER
CALL LOOKUP(I,MTNAME) !NON-FILE-STRUCTURED LOOKUP ON MT0
IERR-ISPFNF("373,I,0,0,0,AREA,DONSUB) !REWIND MAGTAPE
.
.
.
END
SUBROUTINE DONSUB

C
C RUNS WHEN MT0 HAS BEEN REWOUND
C

.

.

.
END

2–236 RT–11 System Subroutine Library Manual

*SPFN/*SPFNC/*SPFNF/*SPFNW

SPFNW/ISPFNW/MSPFNW
SPFNW/ISPFNW/MSPFNW queues the specified operation and returns control to
the user program when the operation is complete.

Form:

CALL SPFNW (code,chan[,wcnt,buff,blk])
i = ISPFNW (code,chan[,wcnt,buff,blk])
CALL MSPFNW (code,chan[,wcnt,buff,blk][,BMODE=strg])
i = MSPFNW (code,chan[,wcnt,buff,blk][,BMODE=strg])

where:

code is the integer numeric code of the function to be performed

chan is the integer specification for the RT–11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call

wcnt is the integer number of data words in the operation. This
parameter is optional with some ISPFNW calls, depending on
the function

buff is the array to be used as the data buffer. This parameter is
optional with some ISPFNW calls, depending on the function

blk This parameter is optional with some ISPFN calls, depending
on the particular function. Default value is 0.
When this argument is supplied by magtape, it is the address
of a four-word error and status block used for returning the
exception conditions. The four words must be initialized to zero.
The error and status block must always be mapped when
running in the XM monitor, and the USR must not swap over it.
To obtain the address of the error block, execute the following
instructions:

INTEGER*2 ERRADR, ERRBLK(4)
DATA ERRBLK /0,0,0,0,/

.

.

.

.
ERRADR = IADDR (ERRBLK) !GET THE ADDRESS OF

!THE 4-WORD ERROR BLOCK
ICODE = ISPFN (CODE,ICHAN,WDCT,BUF,ERRADR)

System Subroutine Description and Examples 2–237

*SPFN/*SPFNC/*SPFNF/*SPFNW

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
This value specifies the mapping mode for the buff argument.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Attempt to read or write past end-of-file.

= 2 Hardware error occurred on channel.

= 3 Channel specified is not open.

= -19 Invalid BMODE argument.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FSPFNW
C
C Demonstate SPFUN
C

Parameter VARSZ = ’000400’o !variable size bit
Parameter SFSIZ = ’373’o !spfun code for size
Integer*2 DBLK(4) !device name (no file)
Data DBLK /3rSY , 0, 0, 0/ !system device
Integer*2 REPLY(4+1) !DSTATUS reply area
Integer*4 SIZE !trick for unsigned display
Equivalence (SIZE, REPLY(4))

C
ICHAN = IGETC () !Get a channel
Call DSTAT (DBLK, REPLY) !check on the device
REPLY(5) = 0 !clear high part of I4 Var
If (IAND (REPLY(1), VARSZ) .eq. VARSZ) Then

Call LOOKUP (ICHAN, DBLK) !open (CAN’T fail)
Call SPFNW (SFSIZ, ICHAN, 1, REPLY(4), 0)
Type *, ’Volume size (Variable) = ’, SIZE
Else
Type *, ’Volume size (Constant) = ’, SIZE
End If

End

2–238 RT–11 System Subroutine Library Manual

STRPAD
The STRPAD routine pads a character string with right-most blanks until that string
is a specified length. This padding is done in place; the result string is contained in
its original array. If the present length of the string is greater than or equal to the
specified length, no padding occurs.

Form:

CALL STRPAD (a,len[,err])

where:

a is the array containing the string to be padded. This array must be
one element longer than the value of len if len is specified. It must
be terminated by a null byte

len is the integer length of the desired result string

err is the logical error flag that is set to .TRUE. if the string specified by
a exceeds the value of len in length

Errors:

Error conditions are indicated by err, if specified. If err is given and the string
indicated is longer than len characters, err is set to .TRUE.; otherwise, the value of
err is unchanged.

NOTE
The argument err must be specified as LOGICAL*1 in
FORTRAN 77. It can be any logical type in FORTRAN
IV and any integer type in PDP–11C.

Unpredictable results will occur if any argument is omitted.

Example:

Program FSTRPA
C
C This program demonstrates the STRPAD function
C

Byte BUFFER(61)
Byte BUF1(81)

C
Do 100 I = 1, 60

BUFFER(I) = ’?’
100 Continue

BUFFER(61) = ’000’o
Call SCOPY (’test’, BUFFER)
Type 101, (BUFFER(I), I=1,60)

101 Format (’ ’, ’(’, 60a1, ’)’)
C

Call STRPAD (BUFFER, 60)
Type 101, (BUFFER(I), I=1,60)
End

System Subroutine Description and Examples 2–239

SUBSTR
The SUBSTR routine copies a substring from a specified position in a character
string. If desired, the substring can then be placed in the same array as the string
from which it was taken.

Form:

CALL SUBSTR (in,out,i[,len])

where:

in is the array from which the substring is taken; it is terminated by a
null byte

out is the array to contain the substring result. This array must be one
element longer than len, if len is specified. It also is terminated by a
null byte if len is specified

i is the integer character position in the input string of the first
character of the desired substring

len is the integer number of characters representing the maximum length
of the substring

Errors:
Unpredictable results will occur if any argument is omitted.

2–240 RT–11 System Subroutine Library Manual

SUSPND
The SUSPND subroutine suspends main program execution of the current job and
allows only completion routines for I/O and scheduling requests to run.

Form:

CALL SUSPND

The monitor maintains a suspension counter for each job. This count is decremented
by SUSPND and incremented by RESUME. A job will actually be suspended only
if this counter is negative. When RESUME is issued before a SUSPND, the latter
routine will return immediately.

A program must issue an equal number of SUSPND and RESUME calls.

A SUSPND subroutine call from a completion routine decrements the suspension
counter but does not suspend the main program. If a completion routine does a
SUSPND, the main program continues until it also issues a SUSPND, at which
time it is suspended. Two RESUME calls are then required to proceed.

Because SUSPND and RESUME are used to simulate an ITWAIT in the monitor, a
RESUME issued from a completion routine and not matched by a previously executed
SUSPND can cause the main program execution to continue past a timed wait before
the entire time interval has elapsed.

For further information on suspending main program execution of the current job,
see the .SPND programmed request.

Errors:
None.

Example:
See MRKT.

System Subroutine Description and Examples 2–241

$SYTRP
Trap Handler
$SYTRP processes SYSLIB-generated TRAP instructions for programs not linked
with FORTRAN libraries. $SYTRP should not be called by any program that will
be linked with FORTRAN libraries F77OTS.OBJ or FORLIB.OBJ.

You include the $SYTRP trap handler module by writing the following line in the
program:

Form:

.GLOBL $SYTRP

When some SYSLIB routines detect an error condition, they execute a TRAP
instruction, using a unique error number symbol, $MSARG. $SYTRP evaluates the
$MSARG value, prints an error message, and terminates the execution. If the error
condition, and therefore the TRAP instruction, is caused by a routine being called
with an invalid argument list (too few parameters), $SYTRP prints the following
error message:

?SYSLIB-F-Invalid argument

Any other TRAP instruction produces the following error message:

?SYSLIB-F-Unknown error

If no trap handler module is called, execution of a TRAP instruction causes the
program to terminate.

The following is the source listing for $SYTRP:

.MCALL .MODULE

.MODULE SYTRP,VERSION=04,COMMENT=^\SYSLIB/$SYTRP\,IDENT=NO,LIB=YES

.NLIST BEX

.SBTTL Definitions:

.SBTTL . $MSARG Definition

.WEAK $MSARG ; Invisible definition

.GLOBL $SYSLB ; Include system library work area.

$MSARG ==: 128.+1. ; Global definition of $MSARG

.SBTTL . Macro references

.MCALL .PRINT, .EXIT

.LIBRARY "SRC:SYSTEM.MLB"

.MCALL .SAVDF .SYCDF .UEBDF

.SYCDF

.UEBDF

.SAVDF E==:

.SBTTL . TRAP Vector Contents

2–242 RT–11 System Subroutine Library Manual

$SYTRP

.ASECT

. = SV.NID ;any .SAV file linked

.WORD 000001 ;to CMPLT.

.=34 ; TRAP vector

.WORD $SYTRP ; PC after TRAP

.WORD 030000 ; PS = USER-USER, priority 0

.SBTTL . Error Message Text

.PSECT SYS$S,D
MSG1: .ASCIZ /?SYSLIB-F-Invalid argument/
MSG2: .ASCIZ /?SYSLIB-F-Unknown error/

.EVEN

.SBTTL $SYTRP - TRAP Handler Code

.PSECT SYS$I,I

$SYTRP:: ; Trap handler entry point
MOV @SP,R0 ; get old PC
CMP -2(R0),#TRAP+$MSARG ; was it OUR trap?
BNE 10$
MOV #MSG1,R0 ; print error message,
BR 20$

10$: MOV #MSG2,R0 ; print error message,
20$: .PRINT

CMP (SP)+,(SP)+ ; eat PS and PC caused by TRAP
..WARN::BISB #ERROR$,@#$USRRB ; announce error condition

.EXIT ; exit program.

.END

System Subroutine Description and Examples 2–243

TIMASC
The TIMASC subroutine converts a two-word internal format time into an ASCII
string, hh:mm:ss.

where:

hh is the two-digit hours indication

mm is the two-digit minutes indication

ss is the two-digit seconds indication

Form:

CALL TIMASC (itime,strng)

where:

itime is the two-word internal format time to be converted, where

• itime(1) is the high-order time

• itime(2) is the low-order time

strng is the eight-element array to contain the ASCII time

Errors:
Error message TRAP $MSARG will display if any argument is missing.

Example:
See JDIV.

2–244 RT–11 System Subroutine Library Manual

TIME
The TIME subroutine returns the current system time of day as an eight-character
ASCII string, hh:mm:ss

where:

hh is the two-digit hours indication

mm is the two-digit minutes indication

ss is the two-digit seconds indication

Form:

CALL TIME (strng)

where:

strng is the eight-element array to receive the ASCII time

NOTE
A 24-hour clock is used (for example, 1:00 p.m. is
represented at 13:00:00).

Errors:
Unpredictable results will occur if any argument is omitted.

Example:
See TWAIT.

System Subroutine Description and Examples 2–245

TIMER/ITIMER
SYSGEN Option for SB
TIMER/ITIMER schedules a specified FORTRAN subroutine to be run as an
asynchronous completion routine after a specified time interval has elapsed. For
SB monitor, you must select timer support during SYSGEN.

Form:

CALL TIMER (hrs,min,sec,tick,area,id,scrtn)
i = ITIMER (hrs,min,sec,tick,area,id,scrtn)

where:

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-Hz clocks; 1/50
of a second on 50-Hz clocks)

area is a four-word area that must be provided for link information; this
area must never be modified by the FORTRAN program, and the
USR must never swap over it. This area can be reclaimed by other
FORTRAN completion functions when scrtn has been activated

id is the identification integer to be passed to the routine being
scheduled

scrtn is the name of the FORTRAN subroutine to be entered when the
specified time interval elapses. This name must be specified in
an EXTERNAL statement in the FORTRAN routine that references
ITIMER. The subroutine has one argument. For example:

SUBROUTINE scrtn(id)

INTEGER id

When the routine is entered, the value of the integer argument is the
value specified for id in the appropriate ITIMER call.

Notes

• This function can be canceled at a later time by an ICMKT function call.

• If the system is busy, the actual time interval after which the completion routine
is run can be longer than the time interval requested.

• FORTRAN subroutines can periodically reschedule themselves by issuing
ISCHED or ITIMER calls.

• ITIMER requires a queue element, which should be considered when the IQSET
function is executed.

2–246 RT–11 System Subroutine Library Manual

TIMER/ITIMER

For more information on scheduling completion routines, see program routines and
.MRKT programmed request.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No queue elements available; unable to schedule request.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FTIMER
C
C demonstrate the FORTRAN timer completion routine
C

Integer*2 HRS, MIN, SEC, TIC
Integer*2 AREAA(4), AREAB(4)
External FTIMEA !fast timer completion
External FTIMEB !slow timer completion

C
Call IQSET (10) !allocate extra queue elements
Call TIMER (0, 0, 1, 0, AREAA, 12345, FTIMEA)
Call TIMER (0, 0, 5, 0, AREAB, 23456, FTIMEB)
Call SUSPND
Call PRINT (’!FTIMER-I-Exiting’)
End

Subroutine FTIMEA (ID)
C
C demonstrate the FORTRAN timer completion routine
C

Integer*2 HRS, MIN, SEC, TIC
Integer*2 AREAA(4)
External FTIMEC !fast timer completion

C
Call TIMER (0, 0, 1, 0, AREAA, 12345, FTIMEC)
Call PRINT (’!FTIMEA-I-Entered’)
End

Subroutine FTIMEB (ID)
C
C demonstrate the FORTRAN timer completion routine
C

Call RESUME
Call PRINT (’!FTIMEB-I-Entered’)
End

.TITLE FTIMEC - bypass recursion test in F77
.GLOBL FTIMEA

FTIMEC::JMP FTIMEA ;let FTIMEA refer to itself
.END

System Subroutine Description and Examples 2–247

TRANSL
The TRANSL routine performs character translation on a specified string and
requires approximately 64(decimal) words on the R6 stack for its execution. This
space should be considered when allocating stack space.

Form:

CALL TRANSL (in,out,r[,p])

where:

in is the array containing the input string; it is terminated by a null
byte

out is the array to receive the translated string; it is not terminated by
a null byte

r is the array containing the replacement string; it is terminated by a
null byte

p is the array of characters in in to be translated; it is terminated by
a null byte

The string specified by array out is replaced by the string specified by array in,
modified by the character translation process specified by arrays r and p. If any
character position in in contains a character that appears in the string specified by
p, it is replaced in out by the corresponding character from string r. If the array
p is omitted, it is assumed to be the 127 seven-bit ASCII characters arranged in
ascending order, beginning with the character whose ASCII code is 001. If strings r
and p are given and differ in length, the longer string is truncated to the length of the
shorter. If a character appears more than once in string p, only the last occurrence
is significant. A character can appear any number of times in string r.

Errors:
Unpredictable results will occur if any argument is missing.

Examples:

Program FTRAN1
C
C demonstrate translating characters
C The following uppercases all the letters
C and changes all numbers to #.
C

Byte IN(81), OUT(81) !string arguments
Byte FROM(81), TO(81) !translation table

C
Call SCOPY (’qwertyuiopasdfghjklzxcvbnm’, FROM)
Call SCOPY (’QWERTYUIOPASDFGHJKLZXCVBNM’, TO)
Call CONCAT (FROM, ’0123456789’, FROM)
Call CONCAT (TO , ’##########’, TO)

C
Call SCOPY (’abcABC123’, IN)

2–248 RT–11 System Subroutine Library Manual

TRANSL

Call TRANSL (IN, OUT, TO, FROM)
Call PRINT (IN)
Call PRINT (OUT)
End

The following is an example of TRANSL being used to format character data.

Program FTRAN2
C
C This shows a way to shuffle a string using TRANSL
C

Byte STRING(27), RESULT(27), PATTER(27)
C
C 00000000011111111112222222
C 12345678901234567890123456
C The horn blows at midnight
C

Data PATTER
1 /16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 15,
2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0/

C
Call SCOPY (’The Horn Blows at Midnight’, STRING)

C
C The following call to TRANSL rearranges the chars of
C the input string to the order specified by the pattern.
C

Call TRANSL (PATTER, RESULT, STRING)
C
C RESULT now contains the string ’at Midnight the Horn Blows’.
C In general, this method can be used to format strings of up
C to 127 chars. The resultant string will be as long as the
C pattern string.
C

Call PRINT (STRING)
Call PRINT (RESULT)
End

System Subroutine Description and Examples 2–249

TRIM
The TRIM routine shortens a specified character string by removing all trailing
blanks. A trailing blank is a blank that has no non-blanks to its right. If the
specified string contains all blank characters, it is replaced by the null string. If the
specified string has no trailing blanks, it is unchanged.

Form:

CALL TRIM (a)

where:

a is the array containing the string to be trimmed; it is terminated by
a null byte on input and output

Errors:
Unpredictable results will occur if the argument is omitted.

Example:

Program FTRIM
C
C This demonstrates the TRIM function
C

External LEN !use the RT-11 LEN function
Byte INPUT(81) !input buffer

C
Accept 100, (INPUT(I), I=1,80)

100 Format (80a1)
Call SCOPY (INPUT, INPUT, 80) !punch in a null
Type *, LEN (INPUT) !length before trimming
Call TRIM (INPUT) !trim trailing blanks
Type *, LEN (INPUT) !length after trimming
End

2–250 RT–11 System Subroutine Library Manual

TWAIT/ITWAIT
SYSGEN Option for SB
TWAIT/ITWAIT suspends the main program execution of the current job for a
specified time interval. All completion routines continue to execute. For SB monitor,
you must select timer support during SYSGEN.

Form:

CALL TWAIT (itime)
i = ITWAIT (itime)

where:

itime is the two-word internal format time interval

itime(1) is the high-order time

itime(2) is the low-order time

Notes
TWAIT requires a queue element, which should be considered when the IQSET
function is executed.

If the system is busy, the actual time interval during which execution is suspended
may be longer than the time interval specified.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No queue element available.

Unpredictable results will occur if any argument is omitted.

Example:

Program FTWAIT
C
C Wait 10 seconds
C

Integer*4 TIMEWD !time variable
Byte ASCTIM(9)

C
Call JTIME (0, 0, 10, 0, TIMEWD) !set for 10 sec
Call TIME (ASCTIM) !get current time
Call PRINT (ASCTIM) !display it
Call TWAIT (TIMEWD) !wait 10 seconds
Call TIME (ASCTIM) !get current time
Call PRINT (ASCTIM) !display it
End

System Subroutine Description and Examples 2–251

UNMAP/IUNMAP
Mapping
UNMAP/IUNMAP is used to eliminate the mapping window. See MAP subroutine.
See also .WDBDF in the RT–11 System Macro Library Manual.

Form:

CALL UNMAP (iwdb [,ierr])
ierr = IUNMAP (iwdb)

where:

ierr Error return

iwdb Address of Window Descriptor Block

Errors:

Value Meaning
ierr = 0 Function completed successfully.

= -4 Invalid window identifier.

= -6 Specified window was not already mapped.

= -16 Mode/space not available.

= -257 Required argument missing.

Example:
See CRAW.

2–252 RT–11 System Subroutine Library Manual

UNPRO/IUNPRO
UNPRO/IUNPRO cancels any protection for the specified 2-word vector in the 0 to
474 area. UNPRO is the complement of PROTE. If the specified two-word vector is
currently not protected, UNPRO is ignored.

Form:

CALL UNPRO (addr)
i = IUNPRO (addr)

where:

addr is the address of the two-word vector pair for which protection is to
be canceled.

Errors:

Value Meaning
i = 0 Normal return.

= -2 Addr is greater than 474 or not a multiple of 4.

= -257 Required argument addr missing.

Example:
See PROTE/IPROTE.

System Subroutine Description and Examples 2–253

UNTIL/IUNTIL
The UNTIL/IUNTIL suspends main program execution of the job until the time-of-
day specified. All completion routines continue to run. For SB monitor, you must
select timer support during SYSGEN.

Form:

CALL UNTIL (hrs,min,sec,tick)
i = IUNTIL (hrs,min,sec,tick)

where:

hrs is the integer number of hours

min is the integer number of minutes

sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-Hz clocks; 1/50
of a second on 50-Hz clocks)

NOTES

• IUNTIL requires a queue element, which should be
considered when the IQSET function is executed.

• If the system is busy, the actual time of day that the
program resumes execution may be later than that
requested.

Errors:

Value Meaning
i = 0 Normal return.

= 1 No queue element available.

Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FUNTIL
C
C This program wait until the next even minute (sec=00)
C

Integer*4 NOW
Integer*2 HOURS, MINUTE, SECOND, TICKS
Byte ASCTIM(9)
Data ASCTIM(9) /0/

C
Call GTIM (NOW) !get current time
Call CVTTIM (NOW, HOURS, MINUTE, SECOND, TICKS) !dissect it
MINUTE = MINUTE + 1
If (MINUTE .eq. 60) Then

MINUTE = 0

2–254 RT–11 System Subroutine Library Manual

UNTIL/IUNTIL

HOUR = HOUR + 1
If (HOUR .eq. 24) HOUR = 0
End If

SECOND = 0
TICKS = 0
Call UNTIL (HOURS, MINUTES, SECOND, TICKS)
Call TIME (ASCTIM)
Call PRINT (ASCTIM)
End

System Subroutine Description and Examples 2–255

VERIFY/IVERIFY
VERIFY/IVERIFY checks that a given string is composed entirely of characters from
a second string. If a character does not exist in the string being examined, VERIFY
returns the position of the first character in the string being examined that is not
in the source string. If all characters exist, VERIFY returns a 0.

Form:

CALL VERIFY (a,b,i)
i = IVERIF (a,b)

where:

a is the array containing the string to be scanned; it is terminated by
a null byte

b is the array containing the string of characters to be accepted in a;
it is terminated by a null byte

Function Result:

Value Meaning
i = 0 If all characters of a exist in b; also if a is a null string.

i = n Where n is the character position of the first character in array
a that does not appear in array b; if b is a null string and a is
not, i equals 1.

Errors: Error message TRAP $MSARG will display if any argument is missing.

Example:

Program FVERIF
C
C Verify that the entered string contains only "hex"
C characters (0-9, a-f, A-F).
C

Character*81 INPUT !input buffer
Byte VALID(23) !valid chars
Data VALID
1 /’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’,
2 ’a’, ’b’, ’c’, ’d’, ’e’, ’f’,
3 ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’000’o/

C
100 Continue

Call GTLIN (INPUT) !get a command line
IERR = IVERIF (INPUT, VALID) !check it
If (IERR .eq. 0) Then

Type *, ’!FVERIF-I-Valid input’
Else
Type *, ’?FVERIF-W-Invalid input - ’, INPUT(IERR:IERR)
End If

Go To 100
End

2–256 RT–11 System Subroutine Library Manual

WAIT/IWAIT
WAIT/IWAIT suspends execution of the main program until all input/output
operations on the specified channel are complete. This function is used with *READ,
*WRITE, and *SPFN calls. Completion routines continue to execute.

Form:

CALL WAIT (chan)
i = IWAIT (chan)

where:

chan is the integer specification for the RT–11 channel to be used. You
must obtain this channel through an IGETC call, or you can use
channel 16(decimal) or higher if you have done an ICDFN call

For further information on suspending execution of the main program, see the .WAIT
programmed request in the RT–11 System Macro Library Manual.

Errors:

Value Meaning
i = 0 Normal return.

= 1 Channel specified is not open.

= 2 Hardware error occurred during the previous I/O operation on
this channel.

Error message TRAP $MSARG will display if any argument is missing.

Example:
See READ.

System Subroutine Description and Examples 2–257

*WRITE/*WRITC/*WRITF/*WRITW
*WRITE/*WRITC/*WRITF/*WRITW, issued either as function or subroutine,
transfers a specified number of words from memory to the device or file specified by
channel. The *WRITE functions require queue elements; this should be considered
when the IQSET function is executed.

Specify mapping for MWRITE, MWRITC and MWRITW by adding optional
parameters BMODE and CMODE.

WRITE/IWRITE/MWRITE
WRITE/IWRITE/MWRITE transfers a specified number of words from memory to
the specified channel. Control returns to the user program immediately after the
request is queued. No special action is taken upon completion of the operation.

Form:

CALL WRITE (wcnt,buff,blk,chan)
i = IWRITE (wcnt,buff,blk,chan)
CALL MWRITE (wcnt,buff,blk,chan[,BMODE=strg])
i = MWRITE (wcnt,buff,blk,chan[,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again.

chan is the integer specification for the RT–11 channel to be used. You
must obtain this channel through an IGETC call, or you can use
channel 16(decimal) or higher if you have done an ICDFN call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
Value specifies the mapping mode for the buff argument.

Errors:

Value Meaning
i = n Normal return; n equals the number of words written, rounded

to a multiple of 256 (0 for non-file-structured writes). If the word
count returned is less than that requested, an implied end-of-file
has occurred, although the normal return is indicated.

= -1 Attempt to write past end-of-file; no more space is available in
the file.

= -2 Hardware error occurred.

= -3 Channel specified is not open.

=-19 Invalid BMODE or CMODE value.

Error message TRAP $MSARG will display if any argument is missing.

2–258 RT–11 System Subroutine Library Manual

*WRITE/*WRITC/*WRITF/*WRITW

Example:
See ABTIO.

System Subroutine Description and Examples 2–259

*WRITE/*WRITC/*WRITF/*WRITW

WRITC/IWRITC/MWRITC
WRITC/IWRITC/MWRITC issued either as function or subroutine, transfers a
specified number of words from memory to the device or file specified by channel.
The request is queued and control returns to the user program. When the
transfer is complete, the specified assembly language routine (crtn) is entered as
an asynchronous completion routine.

Form:

CALL WRITC (wcnt,buff,blk,chan,crtn)
i = IWRITC (wcnt,buff,blk,chan,crtn)
CALL MWRITC (wcnt,buff,blk,chan,crtn[,BMODE=strg][,CMODE=strg])
i = MWRITC (wcnt,buff,blk,chan,crtn[,BMODE=strg][,CMODE=strg])

where:

wcnt is the relative integer number of words to be transferred

buff is the array to be used as the output buffer

blk is the relative integer block number of the file to be written.
The user program normally updates blk before it is used again
(for example, if the program is writing two blocks at a time, blk
should be updated by 2)

chan is the relative integer specification for the RT–11 channel to be
used. You must obtain this channel through an IGETC call, or
you can use channel 16(decimal) or higher if you have done an
ICDFN call

crtn is the name of the assembly language routine to be activated
upon completion of the transfer. This name must be specified in
an EXTERNAL statement in the FORTRAN routine that issues
the IWRITC call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
Value specifies the mapping mode for the buff argument.

CMODE=strg Specifying strg as the string "S" specifies a Supervisor address.

Errors:
Same errors as *WRITE.

Example:
See READC.

2–260 RT–11 System Subroutine Library Manual

*WRITE/*WRITC/*WRITF/*WRITW

WRITF/IWRITF
WRITF/IWRITF issued either as function or subroutine, transfers a specified number
of words from memory to the device or file specified by channel. The transfer request
is queued and control returns to the user program. When the operation is complete,
the specified FORTRAN subprogram (frtn) is entered as an asynchronous completion
routine.

Form:

CALL WRITF (wcnt,buff,blk,chan,area,frtn)
i = IWRITF (wcnt,buff,blk,chan,area,frtn)

where:

wcnt is the integer number of words to be transferred

buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user program
normally updates blk before it is used again

chan is the integer specification for the RT–11 channel to be used. You
must obtain this channel through an IGETC call, or you can use
channel 16(decimal) or higher if you have done an ICDFN call

area is a four-word area to be set aside for link information; this area
must not be modified by the FORTRAN program, and the USR must
not swap over it. This area can be reclaimed by other FORTRAN
completion functions when frtn has been activated

frtn is the name of the FORTRAN routine to be activated upon completion
of the transfer. This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues the IWRITF call.

Errors:
See the errors under *WRITE.

Example:
See IREADF.

System Subroutine Description and Examples 2–261

*WRITE/*WRITC/*WRITF/*WRITW

WRITW/IWRITW/MWRITW
WRITW/IWRITW/MWRITW issued either as function or subroutine, transfers a
specified number of words from memory to the device or file specified by channel.
Control returns to the user program when the transfer is complete.

Form:

CALL WRITW (wcnt,buff,blk,chan)
i = IWRITW (wcnt,buff,blk,chan)
CALL MWRITW (wcnt,buff,blk,chan[,BMODE=strg])
i = MWRITW (wcnt,buff,blk,chan[,BMODE=strg])

where:

wcnt is the integer number of words to be transferred

buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again

chan is the integer specification for the RT–11 channel to be used. You
must obtain this channel through an IGETC call, or you can use
channel 16(decimal) or higher if you have done an ICDFN call

BMODE=strg Specify strg with one of the following: ’UI’/’UD’/’SI’/’SD’/’CD’/’CI’.
Value specifies the mapping mode for the buff argument.

Errors:
See the errors under *WRITE.

Example:
See REOPN.

2–262 RT–11 System Subroutine Library Manual

Index

A
ABTIO/IABTIO

description, 2–2
example, 2–2

Accessing addresses
under mapped monitors, 1–14
using KPEEK, KPOKE, 1–14

Additional queue elements
allocating, 1–14
subroutines requiring, 1–14

AJFLT/IAJFLT
description, 2–3
example, 2–3

C
Calculating workspace

formula, 1–30
CALL$F

description, 2–5
example, 2–5

Calling SYSLIB
subroutines or functions, 1–15

Calling SYSLIB routines
FORTRAN subroutine linkage, 1–15
PDP–11 C support, 1–15

Calling the command string interpreter, 1–5
CHAIN

description, 2–6
example, 2–6

Character string
allocating variables, 1–37
ASCII code, 1–37
err argument, 1–37
len argument, 1–37
length, 1–37
multidimensional arrays, 1–39
passing to subprograms, 1–38
quoted strings, 1–39
restrictions, 1–37
storage, 1–36
unknown length, 1–39

Character string functions
description, 1–36
table, 1–36

CHCPY/ICHCPY
description, 2–8
example, 2–8

CLOSEC/ICLOSE
description, 2–10
example, 2–10

CLOSZ/ICLOSZ
description, 2–12
example, 2–12

CMAP/ICMAP
description, 2–14
example, 2–14
mapping control, 2–14

CMKT/ICMKT
description, 2–16
example, 2–16

CNTXS
description, 2–17
example, 2–17

Completion routine
certain restrictions, 1–4

Completion routines
error handling, 1–4
written in FORTRAN, 1–4

CONCAT
description, 2–18
example, 2–18

Conventions
return values, 1–24

CRAW/ICRAW
description, 2–20
example, 2–20

CRRG/ICRRG
description, 2–24
example, 2–24

CSI/ICSI
description, 2–25
example, 2–25

CSTAT/ICSTAT

Index–1

CSTAT/ICSTAT (Cont.)
description, 2–29
example, 2–29

CVTTIM
description, 2–31
example, 2–31

D
DATE/DATE4Y

description, 2–32
example, 2–32

DELET/IDELET
description, 2–34
example, 2–34

Device blocks
setting up in FORTRAN, 1–5

DEVICE/IDEVICE
description, 2–36
example, 2–36

DJFLT
See also IDJFLT
description, 2–37
example, 2–37

DSTAT/IDSTAT
description, 2–38
example, 2–38

E
ELAW/IELAW

description, 2–40
example, 2–40

ELRG/IELRG
description, 2–41
example, 2–41

ENTER/IENTER
See also CLOSEC, CLOSZ
description, 2–42
example, 2–42

F
FORTRAN

workspace for FB program, 1–30, 1–31
FORTRAN/MACRO interface

description, 1–23
FORTRAN OTS

interfacing user-written routines, 1–6
FORTRAN Programs

in FB environment, 1–29

FPROT/IFPROT
description, 2–44
example, 2–44

FREER/IFREER
description, 2–45
example, 2–45

Functions
invoking, 1–23

G
GCLOS

example, 2–57
GCMAP/IGCMAP

description, 2–46
example, 2–46

GETR/IGETR
description, 2–48
example, 2–48

GFDAT/IGFDAT
description, 2–52
example, 2–52

GFINF/IGFINF
description, 2–53
example, 2–53

GFSTA/IGFSTA
description, 2–55
example, 2–55

GICLOS
description, 2–57

GIDIS
error codes, 2–59
example, 2–59

GIOPEN
description, 2–57
example, 2–57

GIREAD
description, 2–58
example, 2–58

GIWRIT
description, 2–58
example, 2–58

Global regions
See IGETR/MGETR, IFREER
attaching to, 1–36
control of, 1–33
detaching from, 1–36

GMCX/IGMCX
See also CRAW
description, 2–62

Index–2

GTDIR/IGTDIR
description, 2–63
example, 2–63

GTDUS/IGTDUS
description, 2–69
example, 2–69

GTIM
See also CVTTM
description, 2–74

GTJB/IGTJB
description, 2–75
example, 2–75

GTLIN/IGTLIN
description, 2–77
example, 2–77

H
HERR/IHERR

description, 2–79
example, 2–79

I
IADDR

description, 2–81
IDATE

See also DATE
description, 2–82

IDCOMP
description, 2–84
example, 2–84

IFWILD
description, 2–86
example, 2–86

IGTENT
See also GTDIR/IGTDIR
description, 2–89

IJCVT
description, 2–91
example, 2–91

INDEX
description, 2–92
example, 2–92

INSERT
description, 2–93
example, 2–93

INTEGER*4
arithmetic operation, 1–34
two-word support, 1–34

INTEGER*4 support functions

INTEGER*4 support functions (Cont.)
how to initialize, 1–5

IPEEK
description, 2–94
example, 2–94

IPEEKB
description, 2–96
example, 2–96

IPROTE
example, 2–164

IRAD50
description, 2–97
example, 2–97

IRCVD/MRCVD
See also SFDAT
description, 2–172
example, 2–172

ISPY
description, 2–98
example, 2–98

ISWILD
description, 2–99
example, 2–99

ITLOCK
description, 2–101
example, 2–101

ITTINR
description, 2–102
example, 2–102

ITTOUR
description, 2–104

IWEEKD
See also DATE
description, 2–105

J
JADD

description, 2–106
example, 2–106

JAFIX
description, 2–107
example, 2–107

JCMP
description, 2–108
example, 2–108

JDFIX
description, 2–110
example, 2–110

JDIV

Index–3

JDIV (Cont.)
description, 2–111
example, 2–111

JICVT
description, 2–113
example, 2–113

JJCVT
See also JDIV
description, 2–114

JMOV
See also JCMP
description, 2–115

JMUL
description, 2–116
example, 2–116

JREAD
See also RCVD
description, 2–118

JREADC
See also RCVDF
description, 2–119

JREADF
See also RCVDF
description, 2–121

JREADW
See also RCVDC
description, 2–122
example, 2–122

JSUB
description, 2–125
example, 2–125

JTIME
See also JMUL
description, 2–127

JWRITC
See also SDATC
description, 2–131

JWRITE
See also SDAT
description, 2–129

JWRITF
See also SDATF
description, 2–133

JWRITW
See also SDATW
description, 2–135

K
KPEEK

KPEEK (Cont.)
See also KPOKE
description, 2–137
example, 2–137

KPOKE
See KPEEK
description, 2–138

L
LEN

See also SDAT
description, 2–140

LOCK
description, 2–141
example, 2–141

LOOKUP
See also CHCPY
description, 2–144
example, 2–144

M
MACRO subroutines

See also DOFOR
See FINITA
called by FORTRAN programs, 1–25

MAP
See CRAW
description, 2–147

MRKT
description, 2–148
example, 2–148

MSDS
See also CMAP
description, 2–150

MTATCH
description, 2–151

MTDTCH
description, 2–152

MTGET
description, 2–153

MTIN
description, 2–154

MTOUT
description, 2–155

MTPRNT
description, 2–156

MTRCTO
description, 2–157

MTSET

Index–4

MTSET (Cont.)
description, 2–158

MTSTAT
description, 2–159

MWAIT
See also SDAT
description, 2–160

O
Operations>

Character string, 1–35

P
POKE

See also PEEK
POKEB/IPOKEB

See also PEEK
description, 2–162

POKE/IPOKE
description, 2–161

PRINT
description, 2–163
example, 2–163

Program suspension
ITWAIT, ISLEEP, IUNTIL, 1–33, 1–34

PROTE
description, 2–164

PSECT ordering
avoiding USR swapping, 1–8
for PDP–11 C, 1–11
for RTL programs, 1–11

PSET
allocating, 1–8

PURGE
See also ENTER/IENTER
description, 2–165

PUT/IPUT
description, 2–166
example, 2–166

R
R50ASC

See also CSI
description, 2–167

RAD50
description, 2–168
example, 2–168

RAN/RANDU

RAN/RANDU (Cont.)
See also CHAIN, RCHAIN
description, 2–169
example, 2–169

RCHAIN
See also CHAIN
description, 2–170
example, 2–170

RCTRLO
See also IPEEK
description, 2–171

RCVDC/IRCVDC/MRCVDC
description, 2–173
example, 2–173

RCVDF/IRCVDF
description, 2–175
example, 2–175

RCVDW/IRCVDW/MRCVDW
description, 2–177
example, 2–177

READC/IREADC/MREADC
description, 2–182
example, 2–182

READF/IREADF
description, 2–185
example, 2–185

READ/IREAD/MREAD
description, 2–179
example, 2–179

READW/IREADW/MREADW
description, 2–189
example, 2–189

Register
See also CALL$F
save and restore, 1–24

RENAM/IRENAM
description, 2–191
example, 2–191

REOPN/IREOPN
description, 2–193
example, 2–193

REPEAT
description, 2–195
example, 2–195

RESUME
description, 2–197
example, 2–197

Routines
invoking, 1–23

Index–5

S
SAVES/ISAVES

See also REOPN
description, 2–198

SCCA/ISCCA
description, 2–199
example, 2–199

SCHED/ISCHED
description, 2–201
example, 2–201

SCOMP/ISCOMP
See also SDTTM
description, 2–203

SCOPY
description, 2–204
example, 2–204

SDATC/ISDATC/MSDATC
description, 2–207
example, 2–207

SDATF/ISDATF
description, 2–209
example, 2–209

SDAT/ISDAT/MSDAT
description, 2–205
example, 2–205

SDATW/ISDATW/MSDATW
description, 2–211
example, 2–211

SDTTM/ISDTTM
description, 2–214
example, 2–214

SERR/ISERR
See also HERR
description, 2–216

SETCMD
description, 2–218
example, 2–218

SFDAT/ISFDAT
description, 2–219
example, 2–219

SFINF/ISFINF
description, 2–220
example, 2–220

SFSTA/ISFSTA
description, 2–223
example, 2–223

SLEEP/ISLEEP
See also TIMER
description, 2–226

SPCPS/ISCPS
description, 2–227
example, 2–227

SPFN
Added support, 2–229
DU support, 2–229
DW support, 2–229
MU support, 2–229

SPFNC/ISPFNC/MSPFNC
description, 2–233

SPFNF/ISPFNF
See also SDATF
description, 2–235

SPFN/ISPFN/MSPFN
description, 2–231

SPFNW/ISPFNW/MSPFNW
description, 2–237
example, 2–237

STRPAD
description, 2–239
example, 2–239

Subroutine
register usage, 1–24

Subroutines
added queue elements, 1–14
invoking, 1–23

SUBSTR
description, 2–240
example, 2–240

SUSPND
See also MRKT
description, 2–241

SYSLIB
applicability of routines, 1–2
conversion calls, 1–34
FORTRAN naming conventions, 1–3
functional organization, 1–2
list of functions, 1–16
list of subroutines, 1–16
services not provided, 1–33
system conventions, 1–2

SYSLIB conversion calls
table, 1–34

System conventions
allocating channels, 1–4
channel numbers, 1–3
completion routines, 1–4
functions, 1–3
subroutines, 1–3

$SYTRP

Index–6

$SYTRP (Cont.)
description, 2–242
example, 2–242

T
TIMASC

See also JDIV
description, 2–244

TIME
See also TWAIT
description, 2–245

TIMER/ITIMER
description, 2–246
example, 2–246

TRANSL
description, 2–248
example, 2–248

TRIM
description, 2–250
example, 2–250

TWAIT/ITWAIT
description, 2–251
example, 2–251

U
UNLOCK

description, 2–143
example, 2–143

UNMAP/IUNMAP
See also CRAW
description, 2–252

UNPRO/IUNPRO
See also PROTE/IPROTE
description, 2–253

UNTIL/IUNTIL
description, 2–254
example, 2–254

USR
See also LOCK, UNLOCK, ITLOCK
allowing swapping, 1–7
automatic swapping, 1–8
controlling swapping, 1–7
Keeping USR resident, 1–7
preventing swapping, 1–7
PSECT order table, 1–8
requests for functions, 1–6
restrictions, 1–10
SET USR NOSWAP, 1–7
SET USR SWAP, 1–7

USR (Cont.)
subroutines requiring, 1–6
swapping over data, 1–6

USR requirements
in mapped monitors, 1–6
in unmapped monitors, 1–6

USR restrictions
examining link map, 1–11

V
VERIFY/IVERIFY

description, 2–256
example, 2–256

W
WAIT/IWAIT

See also READ
description, 2–257

WRITC/IWRITC/MWRITC
See also READC
description, 2–260

WRITE/IWRITE/MWRITE
See also ABTIO
description, 2–258

WRITF/IWRITF
See also IREADF
description, 2–261

WRITW/IWRITW/MWRITW
See also REOPN
description, 2–262

Index–7

