_		
1	IDENTIFI	CAHON

- 1.1 Maindec 801-3A
- 1.2 PDP-8 Instruction Test (EAE Type 182)—Part 3A
- 1.3 July 19, 1965

			÷

2. ABSTRACT

This program is a test of the Extended Arithmetic Element Type 182. The following instructions are tested:

MQL, MQA, SHL, LSR, ASR, NMI, SCA

An attempt is made to detect and isolate errors to its most basic fault and to the minimum number of logic cards. Multiply and divide are tested Maindec 801-3B.

- 3. REQUIREMENTS
- 3.1 Storage

Memory Locations $10_8 - 5410_8$

3.2 Subprograms and/or Subroutines

High RIM Loader, High Binary Loader

3.3 Equipment

PDP-8, EAE Type 182, keyboard reader and teleprinter.

- 4. USAGE
- 4.1 Loading
- 4.1.1 If the Binary Loader beginning at 77778 is in memory, go to paragraph 4.1.2; otherwise the RIM Loader beginning at 77568 and/or the Binary Loader must be loaded into memory.

The PDP-8 Instruction Test-Part 3A, may now be loaded as follows:

- 4.1.2 Set 7777₈ in the SWITCH REGISTER.
- 4.1.3 Press LOAD ADDRESS key.
- 4.1.4 Place Instruction Test Part 3A in the keyboard reader.
- 4.1.5 Press START key on the operator console.
- 4.1.6 Engage the keyboard reader.
- 4.2 Calling Sequence (Not Applicable)
- 4.3 Switch Settings

Set the SWITCH REGISTER keys to $5000_{\rm R}$ before starting the program.

- 4.4 Startup and/or Entry
- 4.4.1 The starting address of the PDP-8 Part 3A Instruction Test is 0200₈.
- 4.4.2 Set 02008 in the SWITCH REGISTER keys and press the LOAD ADDRESS key.

4.4.3 Set 5000g in the SWITCH REGISTER keys and press the START key.

These initial switch settings will cause the program to print error messages and halt on an error. See paragraph 4.6 for other switch options.

4.5 Errors in Usage

Errors detected by the program cause the following:

Print error information

Halt on error

The following are typical examples of error print information:

4.5.1 NMIT C(AC) C(MQ) 00000000000 010101010101

NMI 0101010100

SCAT 000000001100 SCA 000000001100

NMIT = Normalize and step counter test. Original C(AC) and C(MQ).

NMI = C(AC) and C(MQ) after the NMI instruction was executed.

SCAT = The correct count of the step counter after the normalize instruction was executed.

SCA = The actual count in the step counter as read into the AC by the SCA instruction after the normalize instruction was executed.

Note that Bit 11 of AC in error. C(AC) should equal 2525_a.

4.5.2 SHIFT 11

C(MQ) 001111001011

C(AC) C(MQ)

SHL0 000011100101 LSR0 00000000000 100000000000000000000000111001011

00000000000

SHIFT 11 = Number of shifts to be executed.

C(MQ) = Original C(MQ). (The original C(AC) equal all 0's.)

SHL = C(L), C(AC), and C(MQ) after the SHL instruction was executed.

LSR = C(L), C(AC), and C(MQ) after the results of the SHL instructions were acted upon by the

LSR instruction.

Note that Bit 3 of AC after a SHL instruction is in error. C(AC) should equal 07458.

4.5.3 SHIFT 2

C(AC) 1 011111111111

C(AC)

C(MQ)

ASR 1 11111111111

000000000000

SHIFT 2 = Number of shifts to be executed.

C(AC) = Original C(AC) and C(L). (The original C(MQ) equal to all 0's.)

ASR = C(AC), C(L), and C(MQ) after the ASR instruction was executed.

Note that C(L) should equal a 0, C(AC) should equal 0777₈, C(MQ) should equal 6000₈ after the ASR instruction was executed.

4.5.4 MQLT

AC 1 00000000011 0-AC 1 00000000001

MQLT = MQL instruction test with a link set to a 1.

AC = The original C(AC) and C(L).

0-AC = C(AC) and C(L) after the MQL instruction was executed.

Note that bit 11 of AC should equal 0.

4.5.5 MQLT1

AC 0 00000000001

0-AC 0 00000000001

MQLT1 = MQL instruction test with a link cleared to a 0.

AC = The original C(AC) and C(L).

0-AC = C(AC) and C(L) after the MQL instruction was executed.

Note that bit 11 of AC should equal 0.

4.5.6 MQAT

AC 1 00000000001

MQL)

MQA) 1 00000000000

MQAT = MQA, MQL instructions test with a link set to a 1.

AC = Original C(AC) and C(L).

MQL MQA = The C(AC) and C(L) after the execution of an MQL instruction.

Note that bit 11 of AC should equal a 1.

4.5.7 MQAT1

AC 0 10000000000

MQL)

MQA) 0 01111111111

MQAT1 = MQA, MQL instructions test with a link set to a 1.

AC = Original C(AC) and C(L).

MQL MQA = The C(AC) and C(L) after the execution of an MQL instruction followed by an MQA instruction.

Note that C(AC) should equal 4000_Q.

4.5.8 MQAT2

AC 1 111111111110 MQ 00000000001 MQVAC 1 000000000000

MQAT2 = MQA instruction test.

AC = Original C(AC) and C(L).

MQ = Original C(MQ).

MQVAC = The C(AC) and C(L) after the execution of an MQA instruction.

Note that C(AC) should equal 7777₈.

4.5.9 MQAT3

AC 0 111111111110 MQ 00000000001 MQVAC 0 000000000000

MQAT3 = MQA instruction test.

AC = Original C(L) and C(AC).

MQ = Original C(MQ).

 $M \supseteq VAC$ = The C(AC) and the C(L) after the execution of an MQA instruction.

Note that C(AC) should equal 77778.

4.5.10 The following table contains the test mnemonic, starting address, error halt address, and instructions tested.

Mnemonic	Instructions	Start ing <u>Address</u>	Error <u>Halt</u>
MQLT	MQL	0200	0240
MQLTI	MQL	0427	0500
MQAT	MQL, MQA	0600	0661
MQATI	MQL, MQA	1000	1061
MQAT2	MQA	1200	1261
MQAT3	MQA	1 400	1 460
STEST	SHL, LSR	1600	1671
STESTI	SHL, LSR	2400	2723
STEST2	ASR	3200	3355
STEST3	ASR	4000	4060
NORMT	NMI, SCA	4200	4261
NORMT1	NMI, SCA	5000	5143
NORMT2	NMI	5200	5324

The module table (see paragraph 11.4) should be used after a visual check of the program error printout.

4.5.11 Table 1 should be used on testing MQAT, MQAT1, etc, after determining which bit of the AC and/or MQ is in error.

- 4.5.12 Table 1 should also be used on testing STEST1, STEST2, etc. After determining which two bits may be in error in the AC and/or MQ, reference Table 1 for the module identification of the two bits in question.
- 4.5.13 Table 2 should be used in conjunction with Table 1 when a step count error may exist.
- 4.6 Recovery from such Errors

Press CONTINUE or set up one of the following switch register controls followed by pressing the CONTINUE key.

4.6.1 SWITCH REGISTER keys 0, 1, 2, 3 are used for error recovery as follows:

Switch 0 = Halt on error.

Switch 1 = Scope mode (repeat pattern and/or test).

Switch 2 = Print error information.

Switch 3 = Inhibit exiting current test.

4.6.2 Multiple switch settings are as follows:

Switches 0, 2 = Print error information and halt at error stop.

Switches 1, 2 = Scope mode and print error information.

Switches 0, 2, 3 = Inhibit exiting current test, print error information and halt at error stop.

Switches 0, 1, 2 = Scope mode, print error information, and halt at error stop.

RESTRICTIONS

Before running this test, all basic PDP-8 processor tests should have been run successfully.

- 6. DESCRIPTION
- 6.1 Discussion

The PDP-8 Instruction Test—Part 3A tests the following extended arithmetic element instruc-

tions:

MQL, MQA, SHL, LSR, SCA, ASR, NMI

The extended arithmetic element is tested using patterns necessary to detect and isolate errors to the basic cause and minimum logic card involved. If a failure does occur, the test will stop at a predetermined error halt.

Two look-up tables are provided for error repair methods containing the following information:

AC, MQ, and SC bit numbers Processor logic drawing number Logic board type Logic board location

The program starts at memory address 02008 and will print "3A" at the completion of the test and jump back to location 0200 to repeat the entire test. The test is assembled in binary format.

METHODS (Not Applicable)

```
FORMAT (Not Applicable)
8.
9.
            EXECUTION TIME
            35 sec.
 10.
            PROGRAM
10.4
            Program Listing
              /EAE PART 3A OF INSTRUCTION TEST
             CAM=7621
             SCA=7441
              NMI = 7411
              ASR = 7415
              MQL = 7421
              MQA = 7501
              LSR=7417
             SHL=7413
              *0020
                      Ø
0020
      0000
              GEN,
0021
      2125
                      ISZ Z GENX
                      JMP I GEN
0022
       5420
                                              /TEST SW 3
0023
                      CLA OSR
       7604
                      RTL CLL
0024
       7106
                      RTL
0025
       7036
       7430
                      SZL
0026
0027
       5431
                      JMP I BACK
                      JMP I NEXT
0030
       5432
                      0000
0031
       0000
             BACK,
                      0000
0032
              NEXT,
       0000
                                  MQLT1
             XMQLTI,
0033
       0427
0034
       0600
             XMQAT, MQAT
             XMQATI,
                                  MQATI
0035
       1000
0036
       0000
             CRLF, '
0037
       7240
                      CLA CMA
0040
       0130
                      AND CR
                                              /CR
0041
                      JMS PRXLOP
       4046
0042
       7240
                      CLA CMA
                                              /LF
0043
      Ø131
                      AND LF
                      JMS PRXLOP
0044
       4046
                      JMP I CRLF
ØØ 45
       5436
             PRXLOP,
                                  0
0046
       0000
                      TLS
                                              /PRINT LOOP
0047
       6046
0050
      6041
                      TSF
       5050
                      JMP
ØØ51
0052
       7200
                      CLA
                      JMP I PRXLOP
0053
       5446
0054
                      Ø
       0000
             PLINK.
                      CLA CMA
2055
       7240
                                              /LINK
0056
      0143
                      AND LINK
3057
       4061
                      JMS ONZER
3360
      5454
                      JMP I PLINK
```


		<i>,)</i>

11. DIAGRAMS

11.4 Error Graphs for Functions

11.4.1 Table Number 1

AC, MQ				
Bit 11	R212	R210	R111	Rlll (Module Type)
	PF22	PA18 PB18	PE21	PE20 (Module Position)
	D182-0-2	D802	D182-0-2	D182-0-2 (Drawing No.)
Bit 10	R212	R210	·· R111	R111
	PF22	PA1 <i>7</i> PB1 <i>7</i>	PE21	PE20
	D182-0-2	D802	D182-0-2	D182-0-2
Bit 9	R212	R210	R111	RIII
	PF21	PA16 PB16	PE21	PE20
	D182-0-2	D802	D182-0-2	D182-0-2
Bit 8	R212	R210	R111	
	PF21	PA15 PB15	PE19	
	D182-0-2	D802	D182-0-2	Y
Bit 7	R212	R210	RIII	RIII
	PF20	PA14 PB14	PE18	PE19
	D182-0-2	D802	D182-0-2	D182-0-2
Bit 6	R212	R210	RIII	
	PF20	PA13 PB13	PE18	
	D182-0-2	D802	D182-0-2	
Bit 5	R212	R210	R111	
	PF19	PA12 PB12	PE18	
	D182-0-2	D802	D182-0-2	

Bit 4	R212	R210	R111
	PF19	PAll PBll	PE17
	D182-0-2	D802	D182-0-2
Bit 3	R212	R210	
	PF18	PA10 PB10	
	D182-0-2	D802	
Bit 2	R212	R210	
	PF18	P A09 P B09	
	D182-0-2	D802	
Bit 1	R212	R210	
	PF17	PA08 PB08	
	D182-0-2	D802	
Bit O	R212	R210	RIII
	PF17	P A07 P B07	PE17
	D182-0-2	D802	D182-0-2
AC, Link	R210		
	P A06 P B06		
	D802		
Table Numb	per 2		
SC	-005	~111	
Bit O	R205 PF25	R111 PE19	
	D182-0-2	D182-0-2	
Bit 1	R205	R111	
DIT I	PF25	PE19	
	D182-0-2	D182-0-2	

11.4.2

,

Bit 2	R205	RIII
	PF27	PE20
	D182-0-2	D182-0-2
Bit 3	R205	RIII
DIT O	PF27	PE20
	D182-0-2	D182-0-2
		•
Bit 4	R205	_R111
	PF27	PE20
	D182-0-2	D182-0-2

