TOPS-20 Monitor

Field Service
Training

INTERNAL START IO UTILITIES
;HERE TO START POSITIONING FOR AN IORB

:P4/ I0ORB

sP1,3 SETUP

CALL STRTPS

sRETURN+1:
POSITIONING NOT STARTED,

RETURNS+2: ,
POSITIONING STARTED

e

g we W

STRTPS: HRRZ T1,UDBTWOQ (P3)
MOVST T2, (US.ACT)
TDNE T2,UDBSTS(P3):
QKT DN ge=s o

:NO = MAKE IT,
;UNIT SOON P
R TUP

y LLOWEFR

kM T1
Vel 2
JRM T.
ALL SETS
IALL €Dt ao
SKIPA 5
RETSKP S
B CALL SETOIR

¥ ~ LL CLRPC{3

TOPS-20 MONITOR

Course Number: J1183-A

4 Educational Services
Digital Equipment Corporation
Marlboro, Massachusetts

<<For Internal Use Only>>

DIGITAL , TOPS-2¢) MONITOR

Copyright © 1979 by Digital Equipment Corporation

The material in this document 1is for informational
purposes and is subject to change without notice; it should
not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this
document.

The software described in this document 1is furnished
under a license and may only be used or copied in accordance
with "the terms ©of such license. Digital Equipment
Corporation assumes no responsibility for the wuse or
reliability of 1its software on equipment that 1is not
supplied by Digital or its affiliated companies.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

COMPUTER LABS COMTEX DBMS-19

DBMS-11 DBMS-20 - DDT

DEC DECCOMM DECsystem-10
DECSYSTEM=-20 DECtape DECUS

DIBOL DIGITAL EDUSYSTEM
FLIPCHIP FOCAL INDAC

LAB-8 MASSBUS ' OMNIBUS
0s/8 PDP PHA

RSTS RSX TYPESET-8
TYPESET-1¢ TYPESET-11 TYPESET-20
UNIBUS ' DECSYSTEM-2020

<<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR

NOTE

The material in this course is intended

for internal use only by Digital

personnel. The material in this course

is not to be duplicated nor distributed
. to customers or prospective customers.

i <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR

This page is for notes.

ii <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR

CONTENTS

Student Guide.ceeeeessocssecossossosssonsssSG
Software Introduction .e.eececeeecececeeeesSI
Monitor OVerview .eceeececescccsscssescssscssMO
Coding ConventionS eceeececssccscscssasseseaCC
SYSERR cecececcesccanscscesssassnssssssscssssSER
Troubleshooting seeececescccesssesscosssennssTS
PHYSIO ~ Disk / TaAPE ceseeeesossccsoccsseesDT
Front End/Terminals ceeeescscesccacsccscess FE
Storage Management ..ecceseccecscsccssccsaseesSM
Monitor TablesS .c.cieeessecsscsosccscsnsssnssssnse
Monitor Logic Manual ..eeececscccscoscaccanas
MisSCellaneouUS seeeeescscssccssssssssssesssMIS
APPENdiX I ceeeesceccscsccsssssssccsssssecesAPP
APPENAIiX II seeeceeccscccosscssscccvssscncsescs

Appendix III ® ® 0 0060068000000 0 000800060000 00000000

iii <{KFor Internal Use Only>>

DIGITAL N | TOPS-2¢ MONITOR

iv <<For Internal Use Only>>

TOPS-20 MONITOR

Student Guide

DIGITAL TOPS-200 MONITOR
Student Guide

CONTENTS

Course Description e.eeecesscccsccossscsssSG-1
PrerequUisitesS eceecececcscsoscecccssssssccsessG-1l
Course ObjJectivesS ceeeeccccccssscsccssseaesSG-1
RESOUICES cecssacecccscccsoscssscsscssssscesss G2
Course OUtline cieecesccsssccssccsssncsseeaSG-3
Course Evaluation FOIM ceeeeccscccccssssssSG-9

Appendix A = COUrsSe MaP eeeceescceacsssssassSCG-13

SG-1i <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Student Guide .

This page is for notes.

SG-ii <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR -
Student Guide

COURSE DESCRIPTION

This course 1is addressed to regional and district
support personnel and is designed to help in their task of
determining and isolating system faults occurring in the
TOPS-24 operating system, The approach focuses on
troubleshooting, fault-finding, and error analysis.
Following an overview of the major monitor structures and
coding conventions is a general discussion of debugging
techniques, including the BUGHLT features of the TOPS-20
system. Several of the available tools are covered
thereafter, for example, MDDT and SYSERR. The remainder of
the course is devoted to the main functions of TOPS-24.

PREREQUISITES
The regional or district support specialist is expected
to have completed the courses leading to the the Diagnostics

course in this curriculum, including Software Concepts, ALP,
and Specialist.

COURSE OBJECTIVES

Upon completion of this course, the student will be
able to:

l. Describe how the monitor drives the hardware and,
2. Compare this to the way the diagnostics drive it.

3. Identify the portions of the data base related to a
given problem and,

SG-1 <KFor Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Student Guide

Use FILDDT to examine these parts of the monitor's
data base to extract information related to the
problem.

Use (or create) the tools to determine which of the
devices are causing system problems (even when the
diagnostics identify none).

Determine what 1is/was happening with/toeo the
hardware. ‘

COURSE RESOURCES

Each student should beAgiven a'copy of:

1.

The course materials book including:
1. The Student Guide

2. The Modules

3. The Monitor Tables

4. The Monitor Logic Manual

DECsystem-10/DECSYSTEM-20 Hardware Reference Manual

TOPS-10 and TOPS-2¢ SYSERR Manual

TOPS-20 Microfiche Assembly Listing

SG-2 <<For Internal Use Only>>

DIGITAL

TOPS-2¢ MONITOR

COURSE OUTLINE

Software Introduction

I.

II.

Review of Operating System Principles

A.
B.

Q

[L2) L] . .

HITOQ®M@BUO®PAA WmAEI

Approaches

Functions

l. Scheduling

2. Storage Management

Virtual Memory
1. Paging

File System
Interrupt Handling

Accounting

OPS-2¢ Hardware/Software Interface

Virtual Address Translation - General
User Page Map

 Hardware Page Table - Addressing
~Pointer Types

Storage Addresses

KL Paging

Process Overhead Pages
Special/Shared Page Table (SPT)
Summary of Paging

Monitor Overview

I.

II.

III,

IV,

Monitor Calls

Storage Management

A. Block Diagram

Pager

A, Hierarchical Storage Considerations
B. Implementation - Mapping

C. 1Inter-Level Data Flow

D. Updating Lower Levels

Scheduler

Student Guide

SG-3 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Student Guide

V. File System
A. Data Structure

VI. Job/Fork Structure

VII. Disk And Magtape Service
A. Hardware Principles
B. Monitor Modules
C. 1I/0 Requests

VIII. Front End Service
A. TTY Input
B. TTY Line Buffers And Echoing
C. Line Printer Output

IX. Appendices

Coding Conventions

I. Using MACSYM
A, Symbol Definitions

B. Macros To Manipulate Field Masks
C. Instructions Using Field Masks

D. DEFSTR -~ MSKSTR Data Structure Facilities
1. LOAD '
2. STOR

3. Examples

E. Subroutine Conventions
F. Named Variable Facilities
G. Miscellaneous

II. TOPS-20 Coding Standards
A. Subroutine Calling - JSYS
B. Subroutine Calling
C. AC Definitions
D. AC Saving and Restoration
E. Subroutine Documentation
F. Multi-line Literals
G. Numbers

III. Appendices

SG-4 <<{For Internal Use Only>>

DIGITAL TOPS-2# MONITOR

SYSERR

I.

II.

Student Guide

The SYSERR Program
A. Running the SYSERR Program
B. Examples of SYSERR Output

SYSERR Module Internals
A. SYSERR Block format

1. Header

2. Data
B. Creating a SYSERR Entry
C. The Job @ SYSERR Task
D. The SYSERR JSYS
Troubleshooting
I. CTY Output

A, Explanation of KLERR Output
B. Sample KLERR Output

II. Getting a DUMP
A. How To Get a Dump
B. Where BOOT Lands

III. SYSERR
A. Overview of SYSERR Functions and Data Base
B. Queued SYSERR Blocks In A Crash
C. Moving SYSERR Blocks From a Crash To ERROR, SYS

IvV. BUGHLT
A, BIJG Macro
B. BUGHLT Contents

V. Push Down Lists And Related Data Bases
A. How To Look At a Stack
B. Push Down List / Machine State
C. Stack Usage For Local Storage
D. Stack Adjustment

VI. Machine States and Relevant Data Bases

A, PC Storage
B. AC Storage

5G-5 <<KFor Internal Use Only>>

DIGITAL - TOPS-20 MONITOR
Student Guide

C. Fork Scheduled, Or Not

D. Fork NOSKED

'E. Extended vs. Non-extended Addressing

F., Sizes (Resident, Non~resident, Total)

G. MDDT Page

H. Relevant Data Base for Each Machine State

VII. DDT's

A. FILDDT

B. Relevant DDT/FILDDT Commands
C. MDDT

D. EDDT

PHYSIO - Disk/Tape

I. PHYSIO
A. Data Structure
B. Queueing an IORB
C. Scheduling an IORB
D. .Starting I/0
E. Interrupt Handling

II. Disk Allocation
A, Data Structure (DSKBTTBL)
B. Space allocation
C. Space Deallocation
D. Drum Allocation
E. BAT Blocks

ITII. DISK Dependent I/0
A. Data Structure
B. Disk-Dependent Code
C. Disk Interrupts
D. Disk Errors and Abnormal Conditions

IV. MAGTAPE Dependent I/0
A. Magtape Data Base
B. Magtape IORB
C. CDB, KDB, and UDB
D. Interface to PHYSIO
E. Magtape I/0 Wait
F. CLOSF Device-Dependent Functions
G. Magtape Interrupts
H. Error and Abnormal Conditions

SG-6 <KFor Internal Use Only>>

DIGITAL

Front End/Terminals

I.

I1.

TTY/PTY Dev ice-Dependent Code

A.
B.
c.
D.

DTE
A.
B.
C.

TTY Data Base

TTYIN - TTY-Dependent Input
TTYOUT - TTY-Dependent Output
TTCH7 - 20 ms. Overhead Task

Device-Dependent TTY Code
DTE Data Base

DTE Terminal Output

DTE Interrupts

Storage Management

I.

II.

Storage Management

AO
B.
C.
D.
E.
F.
G.
H.
I.

Introduction

Data Structures

CST Tables

SPT and Parallel Tables

. Working Set Management

System-Wide Page Management
Page Faulting

Adjustment Of the Balance Set
SWPIN and SWPOUT

JSB/PSB Space

A,
B.
cC.
D.

Context Switching the JSB and PSB
JSB and PSB Maps
Use of JSB Space
Use of PSB Space

TOPS-2% MONITOR
Student Guide

SG-7 <<For Internal Use Only>>

DIGITAL : TOPS-2@ MONITOR
Student Guide

This page is for notes.

SG-8 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Student Guide

COURSE EVALUATION FORM

After finishing the course, please complete and return
this form to the course instructor,

Additional comments, whether they deal with a specific
question on the evaluation or are of a general nature, are
most helpful to Digital in improving courses.

1. The most valuable aspect of this course was...

2. The least valuable aspect of this course was...

3. If you were to add or delete material to or from
the course, what would it be? Why?

Please make any additional comments you wish on the next
page.

SG-9 <<{For Internal Use Only>>

DIGITAL ' TOPS-24 MONITOR
: Student Guide

Additional Comments:

SG-1¢ <<For Internal Use Only>>

DIGITAL ‘ TOPS-2@ MONITOR
Student Guide

COURSE EVALUATION (cont.)

For each module and question intersection in. the grid
below, insert a number from 1 to 5, where 1 indicates "very
little" or ‘"poor" and 5 indicates "very much" or
"excellent".

Modul es:

Questions:

H W0
o=
Q0
pelic)|
03
=0
1
W
[i

My effort

Demand on my time

Content matched my need to know

Learning objectives met

Reference materials

Module exercises

Module labs

Module test

Enough time to cover material

Did module stimulate ideas?

Overall quality

Did I meet prerequisites?

Would I recommend this course?

SG-11 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR

Student Guide

SG-12 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Student Guide

"APPENDIX A

COURSE MAP

DT FE SM

PHYSIO-
DISK/TAPE

STORAGE
MANAGEMENT

FRONT END/
TERMINALS

TROUBLE
SHOOTING

cC SER

CODING
CONVENTIONS

MO

MONITOR
OVERVIEW

SOFTWARE

INTRODUCTION

. MR-2717

5G-13 <<For Internal Use Only>>

DIGITAL TOPS=2 MONITOR
' Student Guide

This page is for notes.

SG-14 <<For Internal Use 0n1y>>'

TOPS-20 MONITOR

- Software Introduction

<KFor Internal Use Only>>

DIGITAL TOPS-2 MONITOR
Software Introduction

COURSE MAP

DT FE SM

PHYSIO-
DISK/TAPE

STORAGE
MANAGEMENT

FRONT END/
TERMINALS

TROUBLE
SHOOTING

CcC SER

CODING
CONVENTIONS

MO

MONITOR
OVERVIEW

Sl

\NTRODUCTION;/

MR-2717

SI-i <<For Internal Use Only>>

DIGITAL TOPS-23 MONITOR
Software Introduction

This page is for notes.

SI-ii <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Software Introduction

Software Introduction

INTRODUCTION

Over the years the operating system has
evolved into what some people say is the
most complex piece of software ever devised.
However, it is not fair to speak of
operating systems only in terms of software
because today hardware 1is often designed
with particular aspects of the operating
system in mind.

The operating system acts as the
interface between the computer user and the

hardware. The system must perform many
tasks including multiprogramming,
schedul ing, memory management, file

management, spooling, and device handling.
In so doing, the operating system provides
various services to computer users. Several
types of operating systems have been
developed to handle different user needs.
These include batch, timesharing, and real
time systems.

This module briefly reviews the various
types of operating systems and the functions
they perform. The emphasis, however, will
be on time-sharing systems such as TOPS-20.
Many functions will be related directly to
hardware features (such as address
translation and device handling) to give you
a feel for the operating system's role in
relation to the hardware. TOPS-2@ virtual
address translation will be <covered in
detail in this module.

The operating system not only serves
the users and controls the hardware, it also
detects and reports error conditions in the
machine. To understand what caused an error
which is reported by the operating system
reports, you must understand what the
operating system expects of the machine.

SI-1 <KFor Internal Use Only>>

DIGITAL

Upon completion of this module, the

student will be able to:

1,

Discuss the
timesharing,
systems,

and

Describe the following functions

operating system:

1. Scheduling

2., File organization

3. Memory management

4, Device handling

5. Accounting

Describe the functions
actions performed by,
portions of the wvirtual
system:

1. The Microcode

2. A Page Map

3. The Hardware Page Table

4, The Three Pointer Types

5. ©Storage Addresses

6., The Base Registers

7. The Special/Shared Page Table (SPT)

8. The User and

Tables

LEARNING OBJECTIVES

philosophies
real-time

Executive

TOPS-23 MONITOR
Software Introduction

of batch,

operating

of an

of, and the
the following
memory paging

Process

SI-2

<<For Internal Use Only>>

DIGITAL

TOPS-2A MONITOR
Software Introduction

MODULE OUTLINE

Software Introduction

I.

IT.

Review of Operating System Principles

A,
B.

Approaches
Functions
1. Scheduling

2. Storage Management

Virtual Memory
1. Paging

File System
Interrupt Handling
Accounting

TOPS-2@# Hardware/Software Interface

AO
B,
C.
D.
E.
F.
G.
H.
I.

Virtual Address Translation - General
User Page Map

Hardware Page Table - Addressing
Pointer Types

Storage Addresses

KL Paging

Process Overhead Pages

Special/Shared Page Table (SPT)
Summary of Paging

SI-3 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Software Introduction

This page is for notes.

SI-4 <{For Internal Use Only>>

DIGITAL TOPS-2#1 MONITOR
Software Introduction

REVIEW OF OPERATING SYSTEM PRINCIPLES

An operating system can be summarized as a manager of
resources.. These resources consist of the processor, the
memory, disk storage, and the attached devices. The
operating system must give some portion of these resources
to each process that runs on the machine; it must schedule
the use of these resources when several processes are
competing for them and collect them when a process 1is
finished.

SMALL SYSTEMS

A small operating system provides basic services for
the user's programs. These include device handling routines
and a simple scheduling approach (the allocation of
resources may simply consist of giving everything to the
executing process). The number of devices supported 1is
usually small and the variety of devices is restricted.

LARGE SYSTEMS

A large operating system provides a wide range of
services to ‘the user. A sophisticated scheduler is used
with resources shared or divided among several active
processes, Protection for the system is substantial and the
accounting keeps track of nearly everything. A large number
of various devices are supported with a sophisticated file
manipulation capability built in. Network communications
between computers are often supported.

There is no clear dividing line between large and small
systems. Almost any operating system may have some
attributes which are characteristic of 1larger systems and
some which are not. Both TOPS-14 and TOPS-200 would
generally be considered large systems.

SI-5 <<For Internal Use Only>>

DIGITAL ' TOPS-2@ MONITOR
Software Introduction

‘Approaches

In addition to coming in different sizes, operating
systems have various philosophies on the treatment of users
and on the processing of jobs. The variety of philosophies
results from computer users' differing ideas on what to do
with a computer and varied types of processing, each making
different demands on processors. Some users want a system
capable of reasonable turnaround time on jobs that require a
great deal of input or output (I/0 bound) or require long
arithmetic processing (compute bound). Others want a
computer system designed to service a 1large number of
concurrent users in an interactive environment. Still
others want a system to use as a command and control device
to regulate machinery and respond to changing situations
when reaction time is limited.

BATCH

A batch operating system consists of three components:
spooling systenm, scheduler, and dispatcher. These
components work together to get a user Jjob through the
system, In an operating system that combines batch and
timesharing, as in TOPS-16 and TOPS-2#, these components are
slightly modified and not very distinct. The batch system
for these two operating systems is called Galaxy.

TIMESHARING

A timesharing operating system is designed to give
service to a considerable number of users at the same time.
The object is to allow these users quick and frequent
interaction with the computer in such a way that each user
has the illusion of having the exclusive attention of the
whole system. Since one processor cannot actually be
handling more than one user Jjob at a time, a service
approach very different from that of a batch system must be
used to produce this illusion. Time 1is shared, that 1is,
instead of allowing a few users to monopolize the processor
for long periods of time as might happen under batch, each
user is given a small amount of time on a regular basis.
The amount of time is called a time slice. If a strict

SI-6 <KFor Internal Use Only>>

DIGITAL ‘ TOPS-2@ MONITOR
Software Introduction

rotation of wusers 1is followed and there are N users, each
user gets the processor 1/Nth of the time. This situation
is referred to as round-robin processing. :

SI-7 {<For Internal Use Only>>

8-1S

<<ATuQ @sn Teuisjul 104>>

Terminal 1 ———>
Terminal 2 ——{Memory

"

14

4

Terminal N ——» y

Current
job pointer

n
”

"

=>

Scheduler

Ve

Figure SI-1.

Memory
I
T, !
___1.._5 T,
LT__I_-___
Sched- T2 1 1 Ts |
i
uler T
L T, |} Tk
M\/’ ; .
4 .
\ AN

Processor

Terminal K

e

Timesharing Operating System

Printer

Output
Unspooler

M8 0227

uor3lonNpoijul aiemi3jos

HOLINOW @Z-SdOl

TVLIOIA

DIGITAL TOPS-20 MONITOR
- Software Introduction

A large timesharing system necessarily requires a great
deal of overhead, due to the fact that the system is
performing so many functions for a 1large number of
concurrent users, Their jobs may be short but that does not
mean they are small, Memory management is a prime
consideration with many users on the system. Changing from
job to job, accounting, and communications between jobs all
require time and space. Consequently, few timesharing
systems can support a large number of users without visibly
degraded response time.

Both TOPS-18 and TOPS-2# are principally timesharing
operating systems. The Galaxy batch control system is added
to form a hybrid system. On TOPS-2@ and TOPS-14, batch jobs
are treated the same as timesharing jobs (with a few
restrictions) as far as the operating system is concerned.

In order to enable the operating system to treat the
batch jobs in a manner similar to timesharing users, TOPS-10
and TOPS-2#@ set up pseudo-terminals (PTYs) for them to use.
These are software simulations of terminals which the
operating system treats much like real terminals. By using
the pseudo-terminals, the commands in the control file can
be handled in the same way as those typed at a real
terminal. With a batch Jjob, the complete text of the
session is maintained in a log file for future reference by
the programmer.

S1I-9 <<For Internal Use Only>>

TOPS-284 MONITOR

Software Introduction

DIGITAL

8¢20 8HW

ClLE
indinQ

leulwia | -opnasd J0 asn "Z-|S ainbiy

- ——

10ss320.1d - : 13|npayos

9|4
607

o - - - - 4

9|4
|os3uod

|euiluia|—opnasd

<KFor Internal Use Only>>

SI-10

DIGITAL TOPS-20 MONITOR
Software Introduction

REAL TIME

A real time system can be organized in a manner similar
to a timesharing system. However, there 1is one big
difference -- the response time for the system cannot be
allowed to degrade. 1Inputs to the system can be scanned in
a round-robin-like arrangement as with timesharing;
however, responses must be short. The processor cannot be
tied up by any particular job for so 1long that processing
needs of other jobs are not met.

When real time systems are combined with batch or
regular timesharing, the real time functions must always be
given priority. The operating system must maintain control
if it 1is to provide continued service to all users.
Necessarily then, the operating system must protect itself
from the users and all users from each other.

OPERATION MODES

A simple way to protect the operating system from users
is to have more than one operation mode. TOPS-14 and
TOPS-2@ have two modes: EXECUTIVE mode and USER mode. Only
the operating system may run in executive mode and, as such,
it can issue any instruction which the machine is capable of
executing. All users run in user mode and must request
certain actions to be done for them by the operating system.
Only certain monitor calls and context switching require
executive mode.

Functions

MEMORY ALLOCATION

One of the problems with maintaining several Jjobs at
once 1is managing the memory. Since jobs vary greatly in
size, there is a problem in fitting each into a fixed size
memory. In scheduling the job to be run, the scheduler must
determine if there is available space. One way of handling
the allocation of memory is to force jobs to use memory in
fixed size units called pages. Under this scheme, memory is
divided into pages (each with the same number of contiguous
words) and the allocation for each job is a number of pages.

SI-11 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Software Introduction

On TOPS-20, for example, a page consists of 512. words.

SCHEDULING

A portion of an operating system is its scheduler(s).
The use of all resources in the system must be scheduled and
these schedules are interrelated. On TOPS-20 a job may be
composed of several processes (forks) and it 1is these
processes which are scheduled.

PROCESS STATES

Processes can be placed into three categories:
running, ready, and blocked. The running process is the one
currently executing on the processor; for each processor
there is only one running process.

A ready process is one that can be run but is not
executing at the moment. Ready processes are those which
have all their currently required resources ready. This
implies that memory is allocated to them and devices
assigned. There are usually a number of ready processes
from which the running process is chosen.

A blocked process is one that has some or all of its
resources but still requires something before it can be
considered ready. The most frequent reason for being
blocked is an I/0 WAIT (i.e., the process is waiting for
input or output to occur).

S1-12 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Software Introduction

Blocked

M8 0233

Suspended by User

Figure Sl -3. Process State Transitions

SI-13 <<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR
Software Introduction

TOPS-20 uses the term Balance Set to refer to a group
of processes (initially selected from the group of ready
processes) which include the running process, some of the
ready processes, and possibly some blocked processes. The
group is called "balance" set because an attempt is made to
balance the wusage of physical memory with the needs of all
the processes trying to use the processor. The blocked
processes in the balance set are waiting for disk I/O and
are included because they will be blocked for only a short
time, The TOPS-20 scheduler selects the process to be run
in the next time slice from among the processes in the
balance set.

STORAGE MANAGEMENT

We have already discussed some of the problems of
storage management connected with memory allocation and the
restriction of a user's addressing capabilities. One way to
solve or simplify many of these problems is to use virtual
memory.

Virtual Memory

To understand virtual memory, we must look at the
address space of a process. The address space is the size
of physical memory (number of locations) which can be
addressed using the machine instructions. The size of the
address space is thus primarily dependent on the number of
bits in the address portion of an instruction. On
DECsystem-19 and DECSYSTEM-2# the address portion of an
instruction, when used to access physical memory, is 18 bits
long. Extended addressing adds 5 bits. Thus, 2**23, or
83886MA8, locations can be addressed. The usual size of
physical memory is 256K or 512K.

This wvirtual address «capability 1is 1independent of
programs. Thus, the wvirtual memory can be considerably
larger than the physical memory. Programs can be compiled
or assembled and linked as though the entire virtual memory
were available to each program. However, the loading of an
entire program would be a problem because each program
currently scheduled to use memory would have addresses
ranging from zero to the size of the program (but there is
only one address zero in physical memory).

SI1-14 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Software Introduction

One way to overcome this problem is to modify
(relocate) each of the addresses according to its location
in physical memory. Another solution to the loading problem
is to wuse a mapping function to relate the virtual memory
addresses within the executable module to the physical
memory addresses. Instructions can only be executed when
they are in physical memory. Consequently, the mapping must
be applied to each instruction as it is executed. This
mapping can be done with hardware assistance using process
tables so that all programs can appear to begin at address
zero.

There are several advantages in employing virtual
memory address translation. First, virtual memory does not
need to be mapped into contiguous sections of physical
memory. If physical and virtual memory are both divided
into pages, the virtual memory pages of a program can be
mapped into pages scattered throughout physical memory.

SI-15 <KFor Internal Use Only>>

DIGITAL

TOPS-20 MONITOR
Software Introduction

1 2 3 -\
4 M M Mapping
MMM

A M

Program in

Virtual Memory

(‘ ' represents an unused page.)

Real Memory

M8 0232

Figure SI-4. Virtual Memory Mapping

S1-16

<<KFor Internal Use Only>>

DIGITAL TOPS-2¢% MONITOR
Software Introduction

Second, only those pages of the program that are
actually needed for execution have to be in physical memory.
When more pages are needed, they can be placed anywhere, and
when some pages are no longer needed, they can be removed.
When a removed page needs to be in physical memory again, it
can be placed anywhere. The address translation associated
with virtual memory results in the program being executed as
though the whole virtual memory were real, physical memory.

TOPS-18 and TOPS-2¢ both have wvirtual memory as an
integral part of their operating systems. Each process has
its own page table set up by the operating system and used
by the hardware to translate virtual memory references into
physical memory 1locations. However, the management of
memory at the logical 1level in the two systems is quite
different, TOPS-20@ employs demand paging, whereas TOPS-1%
uses swapping.

PAGING

The use of wvirtual memory with paging requires an
effort to keep track of where the various pages of a process
are, Some pages may be in physical memory, others on disk.
When the process references a page that is not in physical
memory, it must be fetched from the disk and placed 1into a
free page frame 1in physical memory. The referencing of a
non-resident page is referred to as a page fault. The
detection of a page fault and the retrieval of the page are
handled by the hardware (using the page table) and the
operating system working together.

SI-17 <<For Internal Use Only>>

8 I-1IS

<<ATuQ ®sn Teuadjul 104>>

Requested

Page

Change Pointer _

-
-
—

Isage map points to disk

(Blank page in real mémory is free.)

-_—

Figure SI-5. Page Fault Action

Disk

M8 0234

UOI3oNpPOI3UI 91BM3JOS

HOLINOW #4¢-SdOd

TYLIDIA

DIGITAL TOPS—-280 MONITOR
Software Introduction

Virtual memory lends itself easily to the sharing of
physical memory among processes. All that is necessary for
two processes to share physical memory 1is for their page
tables to map some virtual page to the same physical memory
page. Since the use of sharing takes place dynamically (as
the processes run), the operating system has to set up the
sharing. The operating system fills in the page table entry
and adjusts the physical memory usage statistics to show the
page is shared.

A full presentation of TOPS-20 paging appears later in
this module.

File System

The operating system maintains a list of all wusers of
the system by directory name., This list is kept in a system
directory which, on TOPS-20, is called ROOT-DIRECTORY. For
each wuser in the system directory, there is a pointer to an
index block for the wuser's directory. This 1index block
consists of pointers to the various pages of the user's
directory which are on disk. In the directory there 1is a
file descriptor block for each file specifying owner,
protection, date of creation, etc.

The storage of files is similar to that of user
directories in that each file in the directory has a pointer
to an index block. This index block contains pointers to
the pages of the file, which may be scattered anywhere on
the disk. 1If the file is so large that all the pointers to
the pages will not fit into one index block, two levels of
indexing can be used. With two levels of index blocks, the
directory entry points to a super index block which contains
pointers to index blocks.

S1-19 <<For Internal Use Only>>

TOPS-2# MONITOR

Software Introduction

DIGITAL

0Z-SdOL uo 3|14 1asn e 01 $S80VY "Q-|S 3unbiy

GE€20 8MW

9|14 jo sabed

%20|9
xapu| 9|14

sabey
ISTOEL: 3Ty

/ %9019 xepu|

Ai10308.11Q

A1019911 100YH

<<For Internal Use Only>>

SI-290

DIGITAL TOPS-2 MONITOR
Software Introduction

Interrupt Handling

THE INTERRUPT SYSTEM

The operating system must control and provide service
to a wide variety of peripheral devices. Each of these
devices interrupts the processor whenever it requires some
service or has completed some action. Thus, the operating
system can be bombarded with interrupts.

When several devices are competing for the processor's
attention, the physical arrangement of the devices and their
relative importance determines which device gets serviced

first. Interrupt priorities are assigned to each device.
The occurrence of multiple service requests 1is not an
uncommon event; however, the different priorities

immediately resolve these conflicts.

Figure SI-7 shows how normal processing can be
suspended to service interrupts on several levels. Higher
priority interrupts disrupt service to lower priority ones
and lower priority interrupts must wait for the completion
of higher priority interrupts.

S1-21 <<For Internal Use Only>>

TOPS-20 MONITOR

Software Introduction

DIGITAL

(Aiond 3saybiy |) Buissedsold adnuarug Alioug “/-|§ ainbig

LE€ECO 8W
z e L z v > |ans7 uo
& ﬁ 1dnualuy
h & k F Buissasold
‘ JewionN
P um—— 1T 14
€
[4
8
Ayuoud

<<For Internal Use Only>>

SI-22

DIGITAL TOPS-20 MONITOR
Software Introduction

For the most part, interrupt service is the
acknowledgement of some event (an I/0 completion, an error,
or a status change). An interrupt is usually a response to
some request by the operating system for a device operation.

THE DISK MANAGER

Service to the disk requires special recognition since
the operating system relies so heavily upon this device.
Access to files, spooling, unspooling, compiling, 1loading,
paging, swapping -- all require access to the disk. Thus,
it is common for there to be several pending requests for
access to the disk. In most operating systems, a disk
manager determines the order in which these requests are
processed.

The disk manager orders the requests in a queue for
disk access so that average seek time (the time to find the
right cylinder) and average latency time (time for the disk
to rotate so that the desired sector is under the head) are
minimized. The work of the disk manager 1is time critical
because new requests are coming in constantly and the disk
is always rotating.

S1-23 < For Internal Use Only>>

TOPS—-208 MONITOR

Software Introduction

DIGITAL

g€¢0 8W

Ananoy sebeuepy ysiq *g-iS aunbiy

jysiq 104
ananp 1senbay

(4]

A

€1 Ly

asuodsay

1obeue
jysia

l«—— ¢ 1sanbay
«——Z)senbay
«——— | }S8nbay

<{For Internal Use Only>>

SI1-24

DIGITAL TOPS-2% MONITOR
Software Introduction

Accounting

It is essential for the people who pay for the computer
system to know who 1is wusing it and for how long. Most
operating systems have accounting facilities built 1in - to
keep track of the various ways that the computer is used.
These facilities keep account of such things as processor
time used, terminal connect time, amount of disk storage
used, number of pages of printed output, and number of cards
read. TOPS-1¢ and TOPS-2@ accounting systems can keep track
of all these things and can produce reports that can be used
to charge the user.

Accounting systems charge different amounts for each
kind of wusage. Also, the accounting systems have the
ability to treat each user separately so that individual
rates, discounts, etc. can be applied. Most systems also
have the ability to add charges for such things as
consulting services and terminal rental, if appropriate.

S1-25 <<For Internal Use Only>>

DIGITAL , TOPS-20 MONITOR
Software Introduction

TOPS-20 HARDWARE/SOFTWARE INTERFACE

Virtual Address Translation - General

The 18-bit virtual address is considered as two ©parts: .
the high-order nine bits are considered the page number, and
the low-order nine bits are used as an index into a page.
Remember that a page is 512. words long, and nine bits
addresses 512. entries (i.e., words #. through 511. 1in a
g iven page). -

A virtual address must be resolved to a physical
address in the machine, and each address in physical memory
is in one of the physical pages of memory. The hardware
picks up the (9-bit) wvirtual page number, uses it as an
index into a page table to determine where the physical page
is, and then uses that physical page number (9-bits) along
with the index from the virtual address to get the address
in physical memory for the reference.

NOTE

Throughout this document the term "core"
refers to physical memory, whether it is
ferrite core or MOS semi-conductor
memory.

Some of the characteristics of virtual memory are:

1. 256K of available memory for every dser (even 1if
the machine has less than 256K of physical memory)

2. Memory (virtual and physical) is divided into pages
3. Each page is 512, words long
4, Core (or MOS) is paged

5. The disk is paged

SI-26 <<For Internal Use Only>>

DIGITAL

USER!'S

TOPS-20 MONITOR

Software Introduction

VIRTUAL ADDRESS SPACE

ADD AC, 4011

e e 06 W INWw

777777

ADDRESS OF INSTRUCTION
AND ANY ADDRESSES
REFERENCED BY THE
INSTRUCTION ARE CALLED
VIRTUAL ADDRESSES.

USER'S VIRTUAL

ADDRESS SPACE

VIRTUAL ADDR., (18 BITS)
VIRTUAL INDEX
PG # INTO PG
9 9 BITS

USER'S PAGE MAP PROVIDES
THE PHYSICAL PAGE
SUBSTITUTION FOR THE
HARDWARE WHEN IT IS

CALCULATING THE EFFECTIVE

PHYSICAL ADDRESS .

(1 PAGE = 512 WORDS)

PHYSICAL CORE

PARTITIONED INTO PAGES. <
VIRTUAL PAGE # .
AGE .
PAGE 4 399
1 391
2 392
3 23
b4 394
5 395
° . 346
. . 387
° ° (] (]
[) [] o ®
511 * *
- 1023
8191
USER'S PAGE MAP
USER'S PAGE MAP (1 PAGE) FOR ABOVE CASE
PAGE @ 323
PAGE 1 34
PAGE 2 391
. 397
L] [
[] ®
[]
[]

Figure S1-9. Page Mapping

SI1-27 <<KFor

D7 0092

Internal Use Only>>

DIGITAL TOPS—-20 MONITOR
Software Introduction

Since each virtual page maps to a physical page, the
hardware must have a means for determining where the
physical page is. The hardware initially finds the mapping
by using the User Page Map.

User Page Map

The User Page Map is a table 512. words long. Each
entry 1in the table gives the hardware (firmware, microcode,
etc.) the information it needs to determine where the
information physically resides. The user's page map is one
of the overhead pages which are guaranteed to be in core for
each fork in the balance set. (The balance set is the group
of processes which are eligible for running.) When the
hardware first needs to resolve a virtual address for a
user, the address is solved by getting the entry out of the
user's page map. Note that in this first case, an extra
reference to memory is necessary. The first reference is
the only time this "extra" reference is necessary, since the
hardware, once it gets the mapping the first time, puts that
information into a "cache" of addresses called the Hardware
Page Table.

NOTE

Actually, there are other times when the
Hardware Page Table entry is invalid for
some reason; these will be discussed
later.

Hardware Page Table — Addressing

When an address reference occurs, the microcode first
looks 1in the hardware page table to see if there is a valid
entry for the specified page. If there is a wvalid entry,
the memory reference is made to the physical page location
gotten from the hardware page table (this is the number of
the page in physical memory), and the index from the virtual
address requested (this is used as the low-order nine bits

SI-28 <<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR
Software Introduction

for the address). Otherwise, the microcode goes through the
user's page table (in physical memory and requiring a
physical memory reference) to get the physical page mapping.
The mapping information is then placed in the hardware page
table for future references.

NOTE

In the KL-Model B processor, extended
addressing is supported. In these
machines, the page number information
from the Hardware Page Table is composed
of 13 bits of address data, the regular
9 bits, and the extra 4 for extended
addressing of physical memory up to
4096K words (8192 pages). The use of
extended addressing will be discussed
later.

In fact, there are two address spaces using the
hardware page table simultaneously: the user, as we have
just discussed, and the monitor. Since the hardware page
table 1is only one page long, there is a high probability of
conflict. To help out here, each entry in the hardware page
table has a bit (user/exec bit) which tells the microcode
whether the mapping information is either for the user space
or monitor space. A further help 1is the fact that the
monitor addresses are "hashed" so that, for example, page #
of user space and page @ of monitor space do not use the
same hardware page table slot.

The entire hardware page table is cleared at context
switch time. That is, when a different process is chosen to
run, all of the mapping information in the hardware page
table must be re-created.

Earlier we mentioned that the microcode first checks
the Hardware Page Table to see if it contains a valid entry
for the specified page. Along with the user/exec bit, and
the fact that the table is cleared at context switch time,
each page has an age stamp associated with it. Periodically
these age stamps get incremented, and when this happens, the
Hardware Page Table gets cleared.

SI-29 <<For Internal Use Only>>

DIGITAL TOPS~-20 MONITQR
Software Introduction

EFFECTIVE ADDRESS

r———-—
* - 256K WORDS
I 5 9 9 18 BITS = {512 PAGES

L —

*23 BITS =32 256 K SECTIONS

U"SIMPLIFIED'" HDW. PG. TABLE

13
Y U lvlplulsle PHYSICAL
G PAGE
y EXPANSION
13 . 9 29 s = CAPABILITY OF
BIT 4096K WORDS
8192 PAGES

PHYSICAL ADDRESS

/E USER/EXEC MODE
VALID
PUBLIC/CONCEALED PG.
WRITEABLE PG,

SOF TWARE
CACHEABLE PG,

OnEzZoo<C

* EXTENDED ADDRESSING INCLUDES A 5-BIT SECTION NUMBER.

D7 0088

Figure SI-10. Addressing Hardware Page Table

SI1-30 <{For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Software Introduction

Pointer Types
What does an entry in the page table look like?
1. Each slot has access, user /exec, writable,
cacheable bits.
2. Each slot has either an 1immediate pointer or a
pointer to where to 1look next for the storage

address.

3. There are three pdinter types which the microcode

understands:

l. Immediate pointer -- storage address is here.

2. Shared pointer -- the storage address must be
gotten through the shared/special page table
(SPT) .

3. Indirect pointer -- must look in the specified

page table for the next pointer.

SI1-31 <<For Internal Use Only>>

DIGITAL TOPS—-20 MONITOR
Software Introduction

»
LOCATION
‘ . PHYSICAL
oR [VATE SPT STORAGE
POINTER +
Y
Y —~—~—~la> >
SHARED
POINTER PHYSICAL
STORAGE
SPT
i PAGE MAP
N R]
N
INDIRECT) +
POINTER N
PHYSICAL
STORAGE

D7 0057

Figure SI-11. Pointer Types

SI-32 <<KFor Internal Use Only>>

DIGITAL TOPS-29 MONITOR
Software Introduction

® MEDIUM ON WHICH STORAGE EXISTS,
® [OCATION ON MEDIUM,
® (AN APPEAR IN A PAGE TABLE OR THE SPT,

14 15 16 17 18 35
BIT 14 = 1 D 15 - 35 = DISK ADDRESS
BITS 14-15 = @
16 =1 E; 17 - 35 = DRUM ADDRESS
BITS 14 - 17 = @ 18 - 35 = CORE ADDRESS
D7 0042

Figure S1-12. Storage Addresses

SI-33 <{For Internal Use Only>>

DIGITAL TOPS-2@# MONITOR
Software Introduction

The pointer type is encoded in bits 0-2 of the page pointer
The access bits are in bits 3-6. They are:

Access Bits
Pointer Type

0 No A P Public/Concealed
O Access . ' W Writeable
1 Immediate or Private C Cacheable
2 - Shared
: S For Software
3 Indirect r wa

4-7 Not Used, Reserved for future use by DEC

The immediate pointer holds a 13 bit physical page number

in bits 23-35. This is also called a private pointer since
it is private to the page table containing the pointer. This
should not be confused with the public bit which describes
the type Of access allowed.

oo1| p{wislc =0=>. MBZ IF
IN CORE IN CORE

0 2 3 4 5 6 12 17 18 22 23 35

IMMEDIATE POINTER (CODE=1)

The shared pointer contains an index which addresses into

the Special/Shared Pages Table (SPT). The SPT base register,
SBR, (reserved AC block) points to the beginning of the SPT.
The sum of the SBR and SPT index (SPTX) points to a word
containing the storage address of the desired page. The line
number from the virtual address is used to complete the
reference. '

olo|p(w| [c SR Ty X

9 2 3 4 5 ¢ 18 ’ « 35
SHARED POINTER (CODE=2)

Regardless of the number of page tables holding a particular
shared pointer, the physical address is recorded only once
in the SPT. Hence, the monitor may move the page with only
one address to update.

The indirect pointer identifies both another page table and

a new pointer within that page table. This allows one page to
be exactly equivalent to another page in a separate address
space. The object page is located by using the SPT index.

PAGE PAGE TABLE IDENTIFIER
011 P}W| |C NUMBER (SPTX)

0 2 3 4 56 9 17 18 35
INDIRECT POINTER (CODE=3)

D7 0651

Figure SI-13. Page Pointers

SI-34 <KFor Internal Use Only>>

DIGITAL TOPS-2% MONITOR
Software Introduction

Storage Addresses

Once the microcode determines the storage address,
there 1is still work to do since the storage address may
indicate that the page is not currently in core. There are
three 1levels of storage for pages: core, drum, and disk.
The microcode deals only with core storage addresses; if
the referenced page is not in core, a page fault occurs and
the monitor arranges for the desired page to be brought in.
Remember that the term "drum" refers to the swapping space,
which is, in fact, a reserved portion of the disk. Note
that we are still looking for a whole page; we have not yet
even considered the low-order nine bits of the requested
virtual address. The format of a storage address is what
the microcode uses to determine where a page is.

PAGE FAULTS

The term "page fault" indicates that, for some reason,
the microcode was not able to access a page and had to call
the monitor to make the page available. There are several
reasons why a page may not be available:

1. The page is not in core.

2. The page is in core but marked to write out for
repl acement.

3. Null pointer -- the page does not exist.

4, 1Invalid age field.

5. 1Invalid access requested -- €.g., a write to a

non-writable page.

STORAGE ADDRESS FORMAT

If bits 14-17 of a storage address are all 8, the page
is in core and bits 18-35 are the address. If bits 14-17
are not all 9§, the page is on disk or drum. In the latter

case, bit 14 on indicates a disk address; otherwise, it is
a drum address. If the storage address 1indicates memory,

S1-35 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Software Introduction

the microcode copies the storage address into the hardware
page table.

In summary:

l. The User Page Table has slots for all existent
virtual addresses. ’

2. The entries in a User Page Table are either @ (for
non-used pages) or one of three types of pointers:

1. Immediate
2., Share
3. Indirect
3. The translated address is copied into the Hardware
Page Table if the Storage Address is core. ’

4, A page fault occurs if the Storage Address
indicates a location other than core.

SI-36 <<For Internal Use Only>>

DIGITAL

TOPS~-2@ MONITOR
Software Introduction

USER BASE REGISTER

USER PROCESS TABLE

PAGE TABLE

PRIVATE PAGE
/ ‘
PRIVATE
SHARED
USECTB wqH— ’
INDIRECT [INI o]
' SPT
SPT BASE REGISTER -
[:::::::E:}* SHARED PAGES TABLE
l SHARED PAGE
/-_‘ -
T N—
e
. PRIVATE PAGE
PAGE TABLE (+INDIRECT)
UPT 75—
& J
_

D7 0039

Figure Si-14. Layout of KL Paging

SI1-37 <<For Internal Use Only>>

DIGITAL ' TOPS-2@ MONITOR
Software Introduction

KL Paging

Two hardware registers are loaded for the microcodes'
use: the Exec Base Register (EBR), which contains a pointer
to the Exec Page Table (EPT), and the User Base Register
(UBR), which points to the (UPT).

Process Overhead Pages

Each process needs several overhead pages: the UPT
(two pages) and the User Page Map. The User Process Table
(UPT) contains the information which the system needs to run
a process, Included in the UPT 1is trap, context and
scheduler information. Also in the UPT is a 32. word block
(USECTB) which contains Page Map locations. There is one
space allocated the page map of each of the possible 32.
sections which may exist.

NOTE

At this time the TOPS-2@# Monitor does
NOT support extended addressing for
users.

When the microcode needs to find a page for the user,
the User Page Map 1is located from the section # (USECTB)
slot in the UPT. (Remember that the physical address of the
UPT has been put into the UBR.) A similar path is taken by
the microcode for addressing in the monitor addressing
space, except that the EBR is used. The EBR points to the
EXEC Process Table which, in turn, has the map pointers at
MSECTB. '

S1-38 <<For Internal Use Only>>

DIGITAL

Name:

Description:

Defined In:

Referenced by:

TOPS-2@ MONITOR
Software Introduction

UPT

User Process Table. A one page User Process Table is
associated with the Scheduler and with each fork in the
system. (Those associated with forks may be swapped
out with the fork.) However, there is only one UPT
known to the hardware/firmware at any one time. The
UPT known is the one whose address is pointed to by

the hardware User Base Register (UBR), which is set-up
when a process is chosen to run.

The UPT contains the dispatch address for process
events (i.e., traps) and the user's section map table.

APRSRV

APRSRV, SCHED

FORMAT
HWPTA*
Available to Software =776000
\ \
\ \
377
400 UPTPPM*
\ Reserved \ =776400
417
420 Address of LUUO Block UPTTPI*
=776420
421|User Arith. Overflow Trap Instruction| UPTOV1*
=776421
422)User Stack Overflow Trap Instruction
423 User Trap 3 Trap Instruction
424 Flags MUUO OP-AC FFL*=KIMUFL*
=776424

Figure SI-15. User Process Table

SI1I-39 <<For Internal Use Only>>

DIGITAL

425

426

427

43¢

431
432
433
434
435
436
437

449

477

500

501

502

503

504

585

506
587

510

537

549

TOPS-2@ MONITOR

Software Introduction

MUUOC 01d PpC

E of MUUO

MUUO Process Context

Kernel No Trap MUUO New PC (word)

i

Kernel Trap MUUO New PC (word)

Supervisor No Trap MUUO New PC (word)

Supervisor Trap MUUO New PC (word)

Concealed No Trap MUUO New PC (word)

Public Trap MUUO New PC (word)

Public No Trap MUUC New PC (word)

Public Trap MUUO New PC (word)

Reserved for software

Page Fail Word

Page Fail Flags

Page Fail 014 PC

Page Fail New PC

User Process Execution Time

User Memory Reference Count

USERSECT

FPC*=KIMUPC¥*
=776424

KIMUEF*
=776426

UPTPCW*=KIMPCW*
=776427

UPTDSP*
=776430

UPTPFN*
=776500

TRAPFL*=UPTPFL*
=776501

TRAPPC*=UPTPFO¥
=776502

UPTPFN¥*
=776503

USECTB*

Figure SI-16. User Process Table (cont.)

SI-49

<<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Software Introduction

=776540
\ | | \

577 ’ USERSECT37

600
Available to software

777

-

" Note: Approximately 1/4 of the UPT is used for hardware
cells, leaving the rest available to software.
The monitor currently uses this area to house the
first page of the PSB table. (See PSB table
description.)

* These are monitor virtual memory addresses and are
used when the monitor wishes to reference the
current fork's User Process Table.

Figure SI-17. User Process Table (cont,)

SI-41 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Software Introduction

Name: EPT

Description: Executive Process Table. This memory resident
table pointed to by the Executive Base Register
(EBR), contains the vectored dispatch addresses
for system events. All device interrupts pass
control to a specific offset position in this
table.:

This table also includes the executive section map
table, the time of day clock and arithmetic trap
instructions which are executed when arithmetic
conditions occur in executive mode.

Locations 444 to 457 are reserved for software and
used by DTESRV., '

Defined In: STG
Referenced by: APRSRV, DTESRV, MEXEC, PHYH1ll, PHYH2

FORMAT

‘KIEPT+0 Eight Channel Logout Areas
Each: @ Initial Channel Command
\ 1 Gets Channel Status Word \
2 Gets Last Updated Command
3 Reserved for Channel's

Vectored Interrupt Location

37

40
41 Reserved

42 .
\Standard Priority Interrupt Instruc. \
.57

60
Four Channel Block Fill Words
63

64

Figure SI-18. Executive Process Table

SI-42 <<For Internal Use Only>>

DIGITAL

\

77

TOPS-20 MONITOR
Software Introduction

Reserved \

SMTEPT=KIEPT+100

Pointer to SM1@ Vector Table
(if 2020 System)

141

\
137

Reserved \

DTEEBP=KIEPT+140
DTETBP=KIEPT+141
DTEINT=KIEPT+142

143
DTEEPW=KIEPT+144
DTEERW=KIEPT+145
DTEDPW=KIEPT+146
DTEDRW=KIEPT+147

Four 8=word DTE28 Control Blocks
Each: @ To =11 Byte Pointer

To =10 Byte Pointer
Interrupt Location
Reserved

Examine Protection Word
Examine Relocation Word
Deposit Protection Word
Deposit Relocation Word

N W

\ DTE1l Control Block AN
\ DTE2 Control Block \
\ DTE3 Control Block \
177 !

EPTMHI=KIEPT+240

417

Available to Software

EPTPTI=KIEPT+420

LUUO from Executive Mode
(. LUTRP) *

421

Executive Arithmetic Overflow Trap

Figure S1-19. Executive Process Table (cont.)

SI-43 <<For Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Software Introduction

Instruction (JFCL)*

422 Executive Stack Overflow trap
Instruction (.PDOVT)*

423 Executive Trap 3 Trap Instruction
: (JFCL) *

424
\ Reserved

437

440
\ Reserved for Software

443 ~

DTEFLG=KIEPT+444

Operation Complete Flag

DTECFK=KIEPT+445

Clock Interrupt Flag

DTECKI=KIEPT+446

Clock Interrupt Instruction

DTET11=KIEPT+447

"To" 11 Argument

DTEF11=KIEPT+45¢

"From" 11 Argument

DTECMD=KIEPT+451

Command Word

DTESEQ=KIEPT+452

DTE28 Operation Segquence Number

DTEOPR=KIEPT+453

Operation in Progress Flag

DTECHR=KIEPT+454

Last Typed Character

DTETMD=KIEPT+455

Monitor TTY Output Complete Flag

DTEMTI=KIEPT+456

Monitor TTY Input Flag

DTESWR=KIEPT+457

Console Switch Register

460

\
477

Reserved for Software

500

\
507

Reserved

Figure SI-20. Executive Process Table (cont.)

S1-44

<<For Internal Use Only>>

DIGITAL TOPS~-2@# MONITOR
Software Introduction

510
Time Base
511
512
Performance Analysis Count
513

514| Internal Counter Interrupt Instruc.

MSECTB=KIEPT+540 EXEC SECTION @

\ \
577 EXEC SECTION 37

EPTMLO=KIEPT+609

\ Available to Software \

777

* These values are placed into the table when the EPT is
initialized at system startup.

Figure SI1-21. Executive Process Table (cont.)

SI-A5 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Software Introduction

Special/Shared Page Table (SPT)

The monitor keeps track of the UPT and User Page Map
pages in the SPT for each process on the system. The SPT is
a resident table (that is, it is never swapped out) which is
3000 to 5000 (octal) words long. The SPT keeps track of a
page's location since the page may be in core or swapped
out. The SPT is also used to keep track of file pages and
system overhead pages.

SI-46 <<For Internal Use Only>>

DIGITAL TOPS-203 MONITOR
Software Introduction

SPT REFERENCED DIRECTLY BY PAGER.

SPTH 1s PARALLEL TABLE, BUT REFERENCED ONLY BY SOFTWARE.

NOFN INDEX BLOCKS FOR OPEN FILES

PSB’s, JSB's, USER PAGE MAP TABLES
AND SHARED FILE PAGES

SPT ENTRY
g - 11 14 35

SHARE COUNT STORAGE ADDRESS

D7 0058

Figure S1-22. Shared Pages Table

S1-47 <<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR
: . Software Introduction

Summary of Paging

The software sets up the page table 1locations and
contents, the microcode does the address translation. How
does the software tell the microcode where to look?

1. AC block 6 is set up by the software with the base
addresses of: :

1. SPT Table
2. CST Table (Core status table)

3. Age stamp information (for removing old pages
when necessary) :

NOTE
The other used AC blocks are: @ -
monitor use, 1 - wuser, 7 - microcode
use.,

2. EBR is set up by the software

3. UBR is set up by the software

SI-48 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
Software Introduction

Software Introduction

LAB EXERCISES

When answering the lab exercises, write down the names
of the tables where you found the answers. The labs will
help you understand the monitor data base structure; so
remember, where to look is more important than what you find
there.

The exercises that are marked with a double star (*%*)
are more difficult and are optional., If you have the time
and motivation, do them.

TOOLS

FILDDT

FILDDT is a program that can be used to look at a crash
or at the running monitor. Use FILDDT as in the example
below to do this lab's exercises.

@ENABLE ;need enabled wheel
jcapability to look at the
;running monitor.

SFILDDT ;jstart the program
FILDDT>LOAD <SYSTEM>MONITR.EXE - ;load the symbols
FILDDT>PEEK ;peek at the running monitor

At this point, the usual DDT commands allow you to look at
the running monitor. You cannot change any locations (i.e.,
you have no write privileges). Also, your process will
always be running when you look because the mechanism to
look at the running monitor is like a JSYS whose function is
to let you use DDT from monitor context.

SI1-49 <<For Internal Use Only>>

DIGITAL TOPS-29 MONITOR
Software Introduction

Virtual Address Translation

The translation from virtual to physical addresses is
done by the microcode. However, the page maps and tables
the hardware uses are all set up by the monitor. Therefore,
the monitor's page map, the current process's page map and
the SPT table are all a part of the monitor's address space
(so the monitor can add and delete pages for itself or for a
process). Sections # and 1 of the monitor are both mapped
through the same page table which begins at offset MMAP,
The current process's page table is always mapped into the
monitor's address space beginning at location UPTA.

RESOURCES

l. Read section 3.4 (TOPS-20 paging) of the Hardware
Reference Manual.

2, Use the UPTA table in your monitor tables.

3. Refer to the Storage Addresses handout in your
Student Guide.

4. Refer to the Page Pointers handout in your Student
Guide.
EXERCISES
1, Using the page map at UPTA (which is your process's
page map) find a share pointer, an immediate

pointer, and in indirect pointer (if possible).

2. What 1is the storage address for each of the
pointers?

3. What level of storage does the storage address
indicate that page is on?

4, Look at MMAP; why do you think that all the

pointers in the first portion of MMAP are private?
* %

S1-50 <<For Internal Use Only>>

DIGITAL TOPS~-2@ MONITOR
Software Introduction

Software Introduction

LAB SOLUTIONS

EXERCISES

1. Using the page map at UPTA (which is your process's
page map) find a share pointer, an immediate
pointer, and in indirect pointer (if possible).

ANSWER: Bits @#-2 of the pointer contain the
pointer type; 2 1is a share pointer, 3 is an
indirect pointer, and 1 is an immediate pointer.

2, What 1is the storage address for each of the
pointers?

ANSWER: A share pointer's storage address 1is 1in
the indicated SPT slot; an immediate pointer's
storage address is in bits 12-35 of the pointer
itself; and the storage address of the indirect
pointer is determined by the object page map.

UPTA/ 124000,,517 " 3517 is the storage
;address

UPTA+l/ 1240006, ,622 ;1622 is the storage
;address

UPTA+2/ 2060006, ,2167 ;SPT slot 2167 contains
;the storage address

SI-51 < For Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Software Introduction

What level of storage does the storage address
indicate each page is on?

ANSWER: If bits 12-17 are @, the storage address
Is a core address; if bits 12-14 are @ but bit
16=1, the remainder of the word is a drum storage
address; if bit 14 1is on, the remainder of the
word is a disk storage address.

UPTA/ 124000, ,622 ;core address

UPTA+2/ 2060006, ,2167 :SPT slot 2167 contains
;the storage address
SPT+2167/ 116, ,5174 :disk address

UPTA+106/ 124003,,7034 ;drum address

Look at MMAP; why do you think that all the

pointers in the first portion of MMAP are private?
* %

ANSWER: This is the resident portion of the
monltor, most of it read in by BOOT. You will also

notice that the pages are always in core and that
their core addresses correspond with their virtual
addresses.

MMAP/ 124004,,0
MMAP+l/ 124004, ,1

MMAP+2/ 124009, ,2
MMAP+3/ 124004, ,3

MMAP+32/ 124008, ,32

MMAP+55/ 1240600, ,55

SI-52 <<For Internal Use Only>>

DIGITAL

- TOPS~2@ MONITOR
Software Introduction

MODULE TEST

What features of operating systems can be compar ed
to determine whether a given’'system is large or
small?

What are the basic aspects of batch, timesharing,
and real time operating systems?

What advantages does virtual memory's address
translation give an operating system?

What is a page fault and how is it handled?
How are files organized on TOPS-20?

What does the disk manager do?

SI-53 <<For Internal Use Only>>

L 4]

- DIGITAL : ' - TOPS-2@ MONITOR
Heese : - Software Introduction

This page is for hotes.

SI-54 <<{For Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Software Introduction

TEST EVALUATION SHEET
Such things as schedul ing approach, devices
handled, protection, file organization, accounting,
and network capabilities determine whether a system

is large or small.

Batch works on 1long jobs, has sequential job

submission, few concurrently running 3jobs, no
interaction, and is often card-oriented.
Timesharing includes many interactive users,

round-robin schedul ing, short jobs and is
terminal-oriented. Real-time 1is interaction with
fixed response time constraints.

Virtual memory address translation eliminates
unusable pages by making all real memory usable by
any process. It makes partial residency easy to
maintain dynamically. It provides protection for
the operating system and users and, finally, it
reduces the work of the loader program.

A page fault occurs when reference is made to a
process page that 1is not in real memory. When a
page fault occurs, the operating system requests
the page be loaded into real memory from the disk.
The process becomes blocked until it arrives.

Files are accessed through directories. Each wuser
has a directory which has a pointer to an index
block for each file., The index block contains a
pointer to each page of the file on disk. The
pages of the file may be scattered anywhere on the
disk.

The disk manager maintains a queue of disk

requests. The order of requests 1is such that
overall seek time and latency time are minimized.

» SI-55 <KFor Internal Use Only>>

DIGITAL : TOPS-20 MONITOR
, : Software Introduction

This page is for notes.

SI-56 <{For Internal Use Only>>

TOPS-20 MONITOR

Monitor Overview

<<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

COURSE MAP

DT FE SM

PHYSIO-
DISK/TAPE

STORAGE
MANAGEMENT

FRONT END/
TERMINALS

TROUBLE
SHOOTING

CODING
CONVENTIONS

“ "MONITOR

SOFTWARE

INTRODUCTION

MR-2717

MO-1i <<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR
Monitor Overview

This page is for notes.

MO-ii <<For Internal Use Only>>

DIGITAL TOPS-2¢% MONITOR
Monitor Overview

Monitor Overview

INTRODUCTION

The DECSYSTEM-2# consists of hardware
and software designed to allow users to run
a variety of ©programs efficiently and
conveniently. It 1is specifically designed
as a paged timesharing system. Normally,
several active programs are run
concurrently, with control switched from one
to another by the monitor. Programs not
using the CPU can still have active input
and output devices. This overlapping of I/O
with the processing of several programs
permits efficient wuse of both the CPU and
the I/0 devices.

The DECSYSTEM-20 has several hardware

features that facilitate mul tiprogram
operation. The two basic modes of operation
are: executive and user. The monitor runs

in executive mode with no restrictions on
its operations. In user mode, a program can
access core memory only within areas

assigned to it by the monitor. Also,
certain instructions are not permitted 1in
user mode. These include all I/0

instructions and the instructions to control
memory access and mode of operation.

MO-~-1 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

LEARNING OBJECTIVES

Upon completion of this module, the
student will be able to:

1. Name the major functional sections of
the monitor.

2. Describe Ehe function of each of those
sections.

3. 1Identify the ‘major data and monitor
structures.

4. Describe the use and function of TOPS-20
Monitor Calls (JSYSs).

RESOURCES

Appendices A and B of this course.

MO-2 <KFor Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Monitor Overview

MODULE OUTLINE

Monitor Overview

I.

II.

IIT.

VI.

VII.

VIII.

IX.

Monitor Calls

Storage Management
A. Block Diagram

Pager
A, Hierarchical Storage Considerations

B. Implementation - Mapping
C. 1Inter-Level Data Flow

D. Updating Lower Levels
Scheduler

File System
A., Data Structure

Job/Fork Structure

Disk And Magtape Service
A, Hardware Principles
B. Monitor Modules

C. 1I/0 Requests

Front End Service

A, TTY Input

B. TTY Line Buffers And Echoing
C. Line Printer Output

Appendices

MO-3 <<For Internal Use Only>>

DIGITAL TOPS~-28 MONITOR
Monitor Overview

This page is for notes.

MO-4 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

MONITOR CALLS

The monitor performs a number of services for user
programs, including 1I/0 operations. The instruction code,
144, provides the means for programs to request the monitor
to perform these services. Each monitor call, referred to
as a JSYS (Jump to SYStem), has a function code associated
with it which is stored along with the operation code, 104,
when the monitor call is assembled. The 104 operation code
has no hardware function except to give control to the
monitor. When a JSYS is executed, a routine in the monitor
decodes the request and calls a subroutine to perform the
requested operation. After the JSYS request has been
processed, <control is returned to the calling program along
with indications of error conditions, if any.

Requests for service come from user programs 1in the
form of JSYSs. A terminal request for system resources
simply takes the form of input data to the EXEC program
which translates the request into appropriate JSYSs. When a
request is made to start up a program, an inferior fork of
the EXEC 1is created, and the locations of the program's
pages on disk are placed into the fork's page map table. No
initial core is assigned to the fork's pages. Rather, pages
in core are assigned on demand (i.e., when a page fault
occurs) when the process references them. The most frequent
requests for service from programs are the I/0 JSYSs. These
JSY¥Ss allow a process to access data by file name on a byte,
string, or page basis without being concerned about the
physical location of the data. The monitor computes
physical addresses on disk, starts 1I/0 transfers, and
handles the resulting I/0 interrupts.

Control functions are performed as necessary by the
monitor, according to algorithms which attempt to give
optimal overall system performance. One of the most
important of these functions is dividing the available CPU
time among the active processes. A running process must be
stopped when a <clock tick occurs, and its computational
state must be preserved so that it may be started at a later
time. The monitor must decide which pages of user programs
to keep in physical core and which to swap out to the

MO-5 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

swapping device. In addition, it must decide where to put
user pages in physical core when they are swapped back in,
replacing other user pages if necessary. The replaced pages
will be preserved first if needed (i.e., modified pages
swapped out).

MO-6 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

STORAGE MANAGEMENT

Block Diag}am

The functions of scheduling and storage management are
handled by a number of interrelated modules of the
DECSYSTEM-20 monitor, each with a specific set of operations
to perform. The following diagram gives the major modules
of the scheduler and storage management and their
communication paths with each other.

|
|
BALANCE SET | _ SWAPPER
CONTROLLER | »>- (Requests 1/0) ¢
y |
|
I
' |
PROCESS ' | CORE
CONTROLLER | L. MANAGER e
|
STARTUP |
& | DRUM B
DISMISS MANAGER
INTERFACE |
|
| STORAGE MANAGEMENT
SCHEDULER
|
|

D7 0040

Figure MO-1. Block Diagram

MO-7 . <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

The Swapper handles communication between the secondary
storage devices (drum or disk) and core memory. Upon
receiving a request from the Scheduler or Core Manager to
move pages into and out of core, the swapper constructs an
I/0 request and calls the device-dependent module to start
the I/0. '

The Drum Manager is responsible for both assigning
storage on the swapping drum and selecting pages to be moved
to the disk in the event the drum becomes full,

The Core Manager selects core pages to be used for swap
reads from the drum or disk, performs some "aging"
operations, and handles the selection of core pages to be
swapped to the drum. It has principal use and control of
the Core Status Table (CST) which reflects at all times the
current state of each page of core memory. The CST is also
modified by the paging hardware, recording information about
the activity of the running process.

The core manager is invoked when a page fault occurs.
If the working set of the faulted process can be increased
by one, the core manager will assign a page from the
replaceable queue (linked list of free pages) and call the
swapper to swap in the faul ted page. If the working set
size cannot be increased, garbage collecting for the process
takes place. That 1is, the fork's working set will be
decreased by swapping out the pages least recently
referenced., Whether the fork's working set size becomes too
large or not, the fork's working set 1is periodically
examined for "old" pages.

If a process page faults and can 1legally be granted
another page and none are available on the replacement
queue, the fork is put into a wait state and the scheduler
is called. The scheduler will detect the shortage of pages
and call the core manager to global garbage collect on forks
no 1longer in the balance set. The core manager will then
invoke the swapper to swap out the collected pages.

MO-8 < For Internal Use Only>>

DIGITAL TOPS-2@3 MONITOR
Monitor Overview

PAGER

The pager is placed logically between the processor and
the core memories and translates each memory address
received from the processor into a physical core address
which is sent to the memories. Control signals allow the
pager to know what type of access the processor 1is making
(read, write, or execute), and allow the pager to signal the
processor when, for some reason, a reference cannot be
completed (e.g., when the page is not in core). The virtual
addresses received from the processor are 18 bits, and the
page size 1is 512 words, so the pager 1is, in fact,
translating the high-order 9 bits of address, and passing
the low-order 9 bits through unchanged.

The pager uses a 512-word hardware page table (indexed
by virtual page number) to hold physical page information of
recently referenced virtual pages, but the source of this
information 1is always a "page table" in core memory. Page
tables contain (or point to) the physical storage address,
if any, of each page of a virtual memory. Thus, each
process' virtual memory is represented by one page table.
Page table entries are of one word; hence, a page table for
a 256K virtual memory is 512 words, or exactly one page
long.

The pager references the page table of the relevant
process, using the 9 high-order virtual address bits as an
index, whenever the hardware page table fails to contain the
physical information for the requested virtual address. The
pager is capable of interpreting three types of page table
entries. The first 1is called a "private" pointer and
contains a physical storage address. If this is a core
address, the pager will load the hardware page table with
the information and complete the requested reference. If it
is any other address, the pager will initiate a trap to the
monitor for appropriate action. The second type of page
table entry 1is called a "shared" pointer which contains an
index into a system table at a fixed 1location. This
"Shared/Special Pages Table" (SPT) contains the physical
Storage address, and the details of 1its functions are
described below.

The third type of page table entry 1is the "indirect"

pointer which contains a page number and SPT index. The SPT
index is used to index into the SPT table to pick up an

MO-9 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

address of a page table. This page table is indexed by the
page number given in the indirect pointer to obtain the
physical storage address. This pointer allows one page to
be exactly equivalent to another page in a separate space.

One other fixed table, called the Core Status Table @
(CST@), 1is wused by the pager. For each page of physical
core, this table contains information about recent
references and notes if the page has been modified.

Hierarchical Storage Considerations

In any system using hierarchical (multi-level) storage,
one 1is concerned with the movement of data between the
various levels, the location of current "up-to-date" copy,
the updating of lower levels, etc. It is usually considered
essential that the address of the currently valid copy of an
item of storage resides in only one place. This tends to
conflict with the goal of sharing, which requires that items
of storage be made available to multiple processes
simul taneously. Replication of addresses would appear to
admit the possibility of unresolvable phase errors, and the
updating problem itself would unnecessarily complicate the
software. ' '

DECSYSTEM=-28's solution to the basic storage management
problem is the shared pages table scheme. 1In this scheme,
storage addresses (for shared elements) again reside in only
one place, a fixed table called the shared/special pages
table. Processes using an element of storage are given a
fixed index 'Y' which identifies the SPT entry holding the
current address, but an entry cannot be deleted from the SPT
as long as pointers to it exist. Therefore, a share count
is required for each entry to record the number of pointers
to it that have been created; this count is kept in the
SPT.

MO-14 <<For Internal Use Only>>

DIGITAL TOPS-2¢# MONITOR
Monitor Overview

Implementation - Mapping

The following shows how the DECSYSTEM-2# implements the
file mapping operations discussed in the previous section,
and how data flows between the several 1levels of storage.
The DECSYSTEM-2(1 storage hierarchy consists of three levels:
core, swapping, and file.

As described previously, named memory consists of pages
within files. A sample file with two of its pages is shown
in Figure M0O-2. The basic structure of the file is an index
block containing the storage addresses of all of the data
pages. In fact, this index block is a page table, initially
containing private pointers. Assume a starting point where
none of the file pages are mapped in any process, so the
only place for the storage address of each of these file
pages is logically and properly the index block of the file
that owns them. .

PAGES ON DISK

FILE INDEX
BLOCK >

DISK ADR

D7 0053

Figure MO-2. File Structure

MO-11 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
Monitor Overview

Next, a process requests that one of these file pages
be mapped into its address space. The monitor uses the JFN
portion of the identifier to locate the file index block,
and the PN portion to select the appropriate entry within
it. Although our aim here is to have just one process using
the page, we see that, in fact, the page must become shared
at this point (that is, shared between the file and the
process). Therefore, the monitor will assign a slot in the
SPT and place in it the disk address obtained from the
file's 1in-core copy of the index block. Simultaneously, it
creates a shared pointer which points to that SPT slot and
places a copy in both the file's in-core copy of the index
block and the process page table. The share count for the
SPT slot is set to reflect the fact that the page is in use
twice: once by the file, and once by the process.

PROCESS
PAGE
TABLE

SPT

SHR PTR PHYSICAL
DISK
PAGE

SPTN

DISK ADR >

IN CORE COPY OF
INDEX BLOCK

SHR PTR —

D7 0602

Figure MO-3A. One Process Maps a File Page

MO-12 <<For Internal Use Only>>

DIGITAL | TOPS-2@ MONITOR
Monitor Overview

A second process wishing to use the same page proceeds
in the same manner, but now it is only necessary to create
another copy of the shared pointer and increment the share
count. This situation 1is shown 1in Figure MO-3B. The
subsequent reduction of the share count to 1 (when all
processes unmap the page) will indicate that the SPT entry
may be reclaimed.

PROCESS
PAGE
TABLE
SPT
SHR
PTR PHYSTCAL
DISK
SPTN PAGE
DISK ADR »
SHR PTR

IN CORE COPY
OF INDEX BLOCK

SHR PTR —

D7 0055

Figure MO-3B. Two Processes Map a File Page

MO-13 <<For Internal Use Only>>

DIGITAL ‘ TOPS-2@ MONITOR
Monitor Overview

Some additional bookkeeping is necessary in order to
keep track of the owner of the page and to note the fact
that the file index block is 1in use. This 1is shown in
Figure MO0-4. The table labeled SPTH is parallel to and the
same length as the SPT. For our example file page which was
assigned to slot 'SPTN', the parallel entry in the SPTH
records the owning page table of the page. This is shown as
OFN and PN. The OFN (Open File Number) is the monitor's
internal equivalent of the wuser's JFN, except that it
identifies open files over the domain of all jobs in the
system., The OFN is actually an index into a portion of the
SPT which 1is reserved for index blocks, and the PN is the
page number supplied by the user. The OFN portion of the
SPTH holds the home addresses of the index blocks currently
in use.

The monitor must always open files on the basis of the
storage address of the index block as obtained from the file
directory, and a search of this part of the SPTH is
necessary to determine if the file is already open.

SPTH SpT
- * A
HOME ADR OFN STG. ADR

AREA

¢ SPTN

y INDEX BLOCK

OFN | PN |

D7 0059
Figure MO-4. Ownership Back Pointers

MO-14 <{For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

Inter-Level Data Flow

- Next, we show what happens when one of the processes
references the file page which has been mapped. This is
shown in Figure MO-5. The pager interprets the shared
pointer found 1in the process map, and references the SPT.
It finds, however, that the page is not 1in core, and so,
traps to the monitor. The monitor in turn selects a page of
real core and initiates a read of the disk to bring in the
page. The SPT slot 1is then changed to indicate that the
page is in core.

Two tables record the state of physical core. These
are the Core Status Tables (CST1 and CST2). For each page
of physical core, CST1 holds the physical address of the
next lower 1level of storage for the page. 1In our example,
this is a disk address because the page is just being read
from the disk. CST2 records the name of the page table
holding the pointer to that core page, which in this case is
an SPT index.

PHYSICAL PHYSICAL
SPT CORE PAGE DISK PAGES

T
STN . _ .

csTt2 CsSTL
CORE
PAGE
HOME
NUMBER SPTN DISK ADR [

D7 0060

Figure MO-5. A Page is Referenced and Brought into Core

MO-15 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

Then, we consider what is necessary for the monitor to
swap the page onto the drum. 1Tt is important to note that
during the course of the drum write (including latency) and
for a period of time thereafter, the core page still
contains a current copy of the data, and so we may properly
leave the SPT slot pointing to it. This will prove useful
in the event that a process makes another reference to the
page during this time (since the page will not have to be
read into core again). Thus, to begin the swapout, the
monitor selects a free drum page, initiates the drum-write
operation, and updates CST1 to reflect the fact that the
next lower level of storage is now the drum.

However, we cannot discard the home address of the
page, so one other table is required. The DST (Drum Status
Table) serves a function for the swapping level of storage
equivalent to that of the CST for core. That is, for each
page in use on the drum, the DST holds the address of the
next 1lower level of storage. It also records whether the
copy on the drum has been modified with respect to the copy
on the disk so that the monitor will know whether a write is
necessary at some time to update the disk copy. The picture
of a file page with copies on all levels of storage is now
complete. (Figure MO-6).

PHYSICAL PAGES

CORE DRUM DISK
— - ——,
SPT
SPTN
TN CST2 CST1
N
1 ,
N
SPTN M
{—— CORE PAGE NUMBER /’ DST
/)
DRUM PAGE _!_
NUMBER
HOME DISK ADR

. . D7 0061
Figure MO-6. A Page is Swapped onto Drum

MO-16 <<For Internal Use Only>>

DIGITAL TOPS-2# MONITOR
Monitor Overview

One final step is shown in Figure MO-7. If the page
remains unreferenced for some period of time, the monitor
will want to use the core page for another purpose. To do
this, the monitor will move the drum address from CST1l of
the page being reclaimed to the SPT slot, and succeeding
attempts to reference the page will reveal that it is no

longer in core.

PHYSICAL PAGES

DRUM DISK
SPT -
SPTN ,
¢ DST
IMI T
M

DRUM PAGE_2§

NUMBER

D7 0062

Figure MO-7. A Core Page is Released

MO-17 <KFor Internal Use Only>>

DIGITAL TOPS-2@% MONITOR
Monitor Overview

Updating Lower Levels

As long as the page remains mapped by one or more
processes, the share count will keep the SPT slot in use,
and the page will be moved between the drum and core as
needed. This suggests that some procedure may be necessary
to periodically update the home (disk) copy of pages -- a
necessity both to guard against loss due to system crash,
and because some files are mapped when the system starts up
and are never unmapped (e.g., the disk assignment bit
table) . In the DECSYSTEM-2@ a special system process
(DDUMP) takes this responsibility. DDUMP periodically scans
the open files, finding pages that have been changed since
being read from the disk. File pages are backed up to the
disk by setting a request bit in the CST which causes the
swapper to move the page to the disk instead of the drum.
File index blocks must also be updated but require a
different procedure, For these, the backup process
constructs an image of the index block as it would appear
with no pages shared. That is, it finds the home address of
each page and puts it in the index block in the form of a
private pointer. This copy is then written on the disk.

MO-18 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

SCHEDULER

There are two main goals of the TOPS-20 Scheduler:

1. To provide rapid response to interactive users and
"fair share" service to compute-bound users of the
system.,

2. To make efficient use of the machine's principal
resources: CPU and core.

‘ The actions of the Scheduler affect the utilization of
all of the resources in the system, primarily core and CPU
service., The schedul ing algorithm includes procedures to
affect the scheduling as a result of I/0 or other non-CPU
activity. The fact that TOPS-2# is a paging system greatly
increases the activity on the swapping channels, which
imposes an even greater demand on the scheduling procedures
to 1interrelate the use of core with the allocation of the
CPU.

In trying to allocate equal CPU time to processes on
the system, the scheduler would like to know how much time a
process is going to use when it makes a request for CPU.
service. The scheduler can only guess at the future
behavior of a process based on its past behavior (but that
guess may be wrong).

The most significant piece of data from the recent
history of a process is the amount of time it has used since
its 1last request for service. Two observations from
monitoring process activity that can be used to predict time
completion are:

1. Within any short period of time, the 1longer a
process has run, the closer it is to completion.

2. The number of processes completed during any fixed
period of time decreases as the total runtime
increases; so, the longer a process has run, the
less likely it is to finish.

MO-19 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

Taking into account these observations, the runtime is
broken up into separate regions (queues) so that:

° If two processes are widely separated in accumulated
‘runtime (i.e., are in different queues), the one

with the lesser time is preferred.
) If two processes are closely spaced (i.e., are in

the same queue), the one with the greater time is
preferred.

MO-2¢ <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

This schedul ing philosophy has three parameters: the
factor by which the time on each queue is greater than the
last, the amount of time allowed in the first queue, and the
number of queues.

The values chosen by TOPS-20 are graphically shown
below where a process runs from 1its queue for a given
quantum of time before being requeued to the end of the next
lowest priority run queue. Processes completing their
quantum in MAXQ stay in MAXQ.

QUEVE # (HIGH-Q
FOR INTERACTIVE (OorR I/0) PROCESSES

*(ENTER HERE)

QUEUE 1
FOR “AVERAGE"” PROCESSES

QUEUE 2

FOR “AVERAGE” PROCESSES

QUEUE 3 (MAXQ)

COMPUTE BOUND
PROCESSES

D7 0048

Figure MO-8. Scheduler Queue Structure
MO-21 <<For Internal Use Only>>

DIGITAL ' TOPS—-2@8 MONITOR
Monitor Overview

While a process is active in the system, it will be
either on the go list (GOLST) or on one of the wait lists.*
The contents of the fork's entry in FKPT supply the 1list
name and the link to the next fork on the list. The table
FKPT holds the chain of fork pointers linked in a forward
direction for each 1list, The chain pointed to by the
contents of GOLST is called the GOLST.

Fork # FKPT
GOLST BEST 0
L —» 1| GOLST
2
3| coLsT
n| coLsT 0

D7 0649

Figure MO-9. GOLST Structure

*The wait 1lists are: TTLIST, FRZLST, TRMLST, CLKLST,
WT2LST, WTLST.

MO-22 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

Each fork is associated with one of the run queues, Q@
through Q3. One can think of the run queues as a linkage of
forks on the GOLST, where each fork's queue number is stored
in the table FKQ2. When a fork is removed from the GOLST
and put onto a wait list, its run queue number 1is still
remembered as well as the time it was placed on the run
queue., This time is kept in the table FKTIME.

When the fork's wait time is over, it must be placed
back on the GOLST, its placement determined by:

1. The queue number of either the former queue or new
queue given to the fork as described in the previous
section.

2. The fork's elapsed real time in the run queue before
being placed on the wait list.

MO-23 <<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR
Monitor Overview

FILE SYSTEM

Data Structure

File names and pointers to files are kept in a
directory. Directories are also named, with their names
kept in a file called the ROOT-DIRECTORY. Each entry in the
ROOT-DIRECTORY relates the name of the directory to its
location. Two home blocks (one used as a backup) point to
the ROOT-DIRECTORY. Whenever a directory 1is Dbeing
referenced, the entire directory file is mapped into the
monitor's process address space. Pages are then faulted in
as needed. As far as disk page allocation is concerned, the
monitor keeps a disk bit table to keep track of which pages
are free and in use. This table is kept in a file on the
disk. Figure MO-14 illustrates a structural overview of the
file system.

USER
DIRECTORIES
»| FILE
ROOT
HOME BLOCK DIRECTORY
TEST 1
TEST 2 - [L]

D7 0064

Figure MO-10. Extended File Structure

MO-24 <<For Internal Use Only>>

DIGITAL TOPS-23 MONITOR
Monitor Overview

Each file on the disk (ROOT-DIRECTORY, user
directories, and user files) has at least one index block of
512 words which is essentially a page table where each entry
gives the 1location of one page of the file. A file may be
logically .as well as physically non-contigquous. A file that
has page numbers <511 1is called a short file. Directory
files are always short files. Files having page numbers
>511 are called 1long files. The location of index blocks
for a long file is given in a higher 1level 1index block
called the Super Index Block. The Super Index Block, being
512 words long, allows a user file to have 512*%512 pages.
See Figure MO-11 for a more detailed diagram of Figure
MO-14,

MO-25 <<For Internal Use Only>>

9C-0On

<<ATuQ ®sp TeuIajul I10d4>>

USER FI

INDEX
BLOCK

LES

DATA

|
MASTER FILE | USER FILE
DIRECTORY | DIRECTORY
|
HOME INDEX ROOT { INDEX USER
BLOCK BLOCK DIR. | BLOCK DIR.
SMITH ! >4 FILE
|
|
JONES
INDEX USER
BLOCK DIR.
TEST 1
TEST 2

INDEX
BLOCK

=l

SUPER¥
INDEX BLK.

P

o — — — — — o— ——— o o—— — — —— ——— o— — —

—_— e e e e e e e e - e L e e e e e

INDEX
BLOCK

INDEX
BLOCK

1h

PAGE 602

®SUPER INDEX BLOCK
NEEDED WHEN USER FILE HAS
REFERENCED A FILE PAGEZSI?1

0

NOTE: INDEX BLOCKS AND
| DATA BLOCKS ARE

Figure MO-11. Full File Structure

A PAGE LONG.

D7 0067

IVLIDIA

O 103TUOl
HOLINOW #2-SdOL

mMataasa

DIGITAL TOPS-20 MONITOR
Monitor Overview

JOB/FORK STRUCTURE

The monitor assigns a job number to a user upon 1login
to a DECSYSTEM-24, A Jjob 1is a set of active resources
normally under control of a single user. This set of
resources 1is composed of one or more hierarchically-related
processes (forks) that can communicate with each other in
defined ways and that may contain several running and/or
suspended programs. The set must always contain at 1least
one process, with the Command Processor (the EXEC) being the
most superior.

* Job n

/\
/\

* * *

Except for the top-most process, a process has one
immediate superior process and can have one or more inferior
processes. A process can communicate with other forks of
the structure by sharing memory, by the pseudo-interrupt
system, or by direct control (superior to inferior only
where the superior fork may confer or withhold privileges,
suspend, continue or terminate inferior processes).

MO-27 <KFor Internal Use Only>>

DIGITAL : TOPS-2@ MONITOR
Monitor Overview.

DISK AND MAGTAPE SERVICE

Hardware Principles

Each disk and magtape unit is connected to a controller
(RH20) and all communications to that unit must go through
the controller. The controller is connected to the CPU by
the EBUS. Setup .and startup operations are communicated
over the EBUS to the controller. Internal data -channels
contained in the memory control logic of the processor are
used for transferring data between memory and the
controllers.,

E BUS
cPU
MEMORY BUS RH20
(s BUS : c MASS BUS
DATA : -
CHANNELS P TMO2
s I
| 1
TU45 TUkS
MEMORY |
RH20
| MASS BUS
[1
RPO4/6 RPO4/6

D7 0068

Figure MO-12. Hardware Configuration

M0O-28 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR:
Monitor Overview

Each RH20 is associated by the hardware with one of
eight data channels. Each channel has its own 16-word
buffer in the processor's memory control unit for data
transfer and its own 4-word data channel area in the CPU's
Executive Process Table (EPT) for holding the:

e Channel Command List Pointer

e Status when transfer done,, Adr. of Last Chan.
Command Used

e Word Count,, Adr. of last data word transferred

e Not Used by Data Channel Hardware. (However, the
system initialization software programs the RH20
to trap here on an interrupt, having stored the
channel's vectored interrupt instruction in this
word.)

Data transfers will be to or from consecutive locations
on the disk/magtape but may be from or to non-contiguous
core areas. The length and address of each of these core
areas are on the channel command list. The list is pointed
to by the channel's 4-word block in the EPT as shown above.
The total 1length of the areas on the channel command list
determine the number of words transferred.

All controllers can transfer data simul taneously, since
each controller 1is connected to the memory system with its
own built-in channel. Only one device per controller can
transfer data at any one time, interrupting when done. But,
non~-data transfer commands (i.e., Seek, Rewind, etc.) can
overlap and may be issued to any drive at any time. Also,
non-data transfer commands interrupt on completion even
during a transfer.

Each controller has a 1look-ahead command register,
which enables the software to preload the next transfer
request during the <current transfer. Thus, the next
transfer can begin with the next sector on the same device
with no rotational delay.

When the controller has finished an operation, it
interrupts the CPU via a vectored interrupt to the Exec
Process Table (fourth word of its data channel area) so the
CPU does not have to poll a series of devices to determine
which device caused the interrupt.

MO-29 <<For Internal Use Only>>

DIGITAL . TOPS-20 MONITOR
Monitor Overview

Error checking is provided for both the channel and
device data paths and the controller will terminate a
command if certain errors are detected, marking the status
word appropriately in the 4-word data channel area.

Monitor Modules

The TOPS-28 disk and magtape software have structures
that parallel the hardware. At each level there is a module
corresponding to a hardware device which interfaces to the
rest of the monitor. All requests for disk or magtape
operations are made to PHYSIO from PAGEM or MAGTAP,
respectively (see Figure MO-13). PHYSIO handles physical
I/0 requests for the channel and device-independent portions
of the initiation, termination and error-logging functions.
Some of its responsibilities include:

e Manipulating device request queues, one per unit
(RP@4/6, TUAS)

e Channel scheduling, (i.e., selection of the next
operation to be done on a given channel)

e Seek scheduling (i.e., selection of the best

request for seeking)

Detecting timeouts associated with I/0 operation

Issuing "off-line" messages to the operator

Initiating I/0 retries. Errors are indicated in

returns from the channel routine. If an error is

to be logged, it makes a request to the

error-logging routine

e Interrupt handling

PHYH2 is the primary downward interface to PHYSIO and
handles the RH20 controller-dependent portions of
initiations, termination, and error recovery. It is called
on system startup to determine which devices are present and
to initializa them via the appropriate device routines, It
is 1likewise called to start I/0 requests and when device
requests have timed-out. When interrupts occur, it provides
the principal interrupt analysis and calls the appropriate
device routine.

Modules PHYP4 and PHYM2 contain the device-dependent
code for the disk (RP@4/6) and magtape (TU45), respectively.

MO-30 <{For Internal Use Only>>

DIGITAL TOPS-2@3 MONITOR
Monitor Overview

MAGTAPE I0 REQUEST FILE/PAGING TO REQUEST
MAGTAP PAGEM
I
[
‘ PHYSIO
l

| |
| PHYRH?2 {
| (DATA CHANNEL) |
|

A(f””/”’///’//'r ‘&*~3‘

PHYM2 PHYP4
(Tuk45) (RPO4/6)

D7 0069

Figure MO-13. Physical 1/0 Request Paths

MO-31 <KFor Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

I/0 Requests

I/0 Request Blocks (IORBs) are built when an 1I/O
function is requested from disk or magtape. The status word
in this block contains the function (i.e., read, write,
seek, backspace, etc.) and a bit indicating whether it is a
disk or a magtape request (i.e., for PAGEM or MAGTAP,
respectively).

Assume this is a read request for the disk. PAGEM
calls PHYSIO with the IORB request, the physical core
address and the device page address. PHYSIO determines the
source unit of the request and places it in that unit's
queue. If PHYSIO determines the device is 1idle (i.e., no
other requests are pending) and needs positioning, it
initiates a SEEK by calling the controller-dependent module,
PHYR2, which 1in turn calls the RP@4/6 driver. If the unit
is positioned and the channel is idle, PHYSIO executes a
Channel Schedule cycle which would initiate I/0 for this
request.

Figure MO-14 illustrates the data structure linkages
for disk and magtape.

M0O-32 <{<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR

Monitor Overview

CHNTAB
CCHANNEL)
(DATAD >
CDB (BLOCK) UDB | (UNIT DATA BLOCK)
ubs
uDB
PWQ
TWQ
RPO4/6
10RB
CDB
I0RB
KDB*
uDB
8 PTRS.
H 10RB
2 UDB
PWQ
TWQ —————1_,q
I0RB
*KDB (CONTROLLER DATA BLOCK) MAGTAPE ONLY
D7 0074

Figure MO-14. PHYSIO Data Structure Linkages

MO-33 <KFor Internal Use Only>>

DIGITAL TOPS-2@% MONITOR
Monitor Overview

FRONT END SERVICE

This section is designed to cover the functional flow
of information between the two processors of the
DECSYSTEM-20@, the PDP-11, and the KL14. All unit record
equipment 1is attached directly to the PDP-11 Front-End
Processor. Input and output data 1is buffered by the
Front-End Processor - to remove some of the burden of I/0
handling from the KL14. A program running on the KL1# will
pass an entire block of line printer data to the Front-End
Processor, which will perform the necessary sequences to
cause it to be printed. The communication link between the
two processors is the UNIBUS device DTE24. As a UNIBUS
device, it appears to the PDP-11 operating system, RSX20F,
as a standard UNIBUS peripheral and the microcode on the
KL1¢ side sees the DTE20 as a device on the EBUS.

TRANSFER BLOCKS

The primary protocol builds two types of transfer
blocks:

l. Direct block - data is contained within the block
2. Indirect block - data is stored as a seperate buffer

Both blocks contain a count, function, device and a byte
pointer. The device may be a pseudo-device similar to a
PTY. The count indicates directly the number of data items
to be transferred. The function field is used to indicate
to the receiver the method to be used in storing this data.
These blocks are 16-bit words to match the PDP-11 format and
are referred to as a control packet. A control packet may
be passed 1in either direction and may occur simul taneously
to the transfer of a control packet in the opposite
direction. These two blocks are described in Figure MO-15.

M0O-34 <{For Internal Use Only>>

DIGITAL TOPS-23 MONITOR
Monitor Overview

Direct Indirect

COUNT ' COUNT
FUNCTION FUNCTION

DEVICE DEVICE

SPARE SPARE

Data :

. .Data
D7 0646

Figure MO-15. Transfer Blocks

M0O-35 <KFor Internal Use Only>>

DIGITAL : TOPS-268 MONITOR
Monitor Overview

TTY Input

Characters typed at the terminal are passed from the
Front-End Processor to the KL14 processor where they are
stored in .a "Big Buffer". The monitor periodically sorts
these characters by 1line number into line buffers until a
wake-up character is recognized. This causes the requesting
process to empty the 1line buffer and reset the required
pointers to allow the: next line to be accepted. The same
type of mechanism is used to build output line buffers to be
passed to the Front-End processor through its interface to
the terminal (except that they may be indirect packets).

The block built by the Front-End contains a count,
device, and function designator. The data received from the
terminals is appended to this header to form a Direct
Transfer Block. An example of this block is shown below.

18 COUNT
_ LC FUNCTION
DLC DEVICE
- —
. 4 / A _| LINE #/CHARACTER
l_ 6 / Q _|l LINE #/CHARACTER
2 / E .
p— . .
— . -~ .

D7 0647

Figure MO-16. Direct Transfer Block (Packet)

MO-36 <{For Internal Use Only>>

DIGITAL TOPS-2¢% MONITOR
Monitor Overview

This block is built by the operating system on the 11
side (RSX2AF) and is transferred to a fixed area in the KL1¢
memory under control of the micro-code. The DTE2f connects
the two processors and holds the transfer parameters to be
used in requesting a transfer to the KL14. A protocol
handler on the KL1¢ side takes the data from this fixed area
or region in KL1# memory and appends it to the circular
(ring) buffer known as "TTY Big Buff". Every 20
milliseconds the monitor empties this buffer into the 1line
buffers. If a line buffer becomes full, further typing on
the terminal will cause the character to be echoed as a
bell. If a terminal (normally a buffered terminal) exceeds
the space allotted to it in the input buffer, an XOFF will
be sent to the terminal. This eliminates buffer overrun and
allows the terminal to continue upon receipts of an XON from
the monitor. This sequence is further illustrated in Figure
MO-17.

RXS-20F DTE20 TOPS-20
DIRECT TRANSFER BLOCK <:;ROTOCOL HANDLEE)
COUNT 18
FUNCTION LC Y l
DEVICE DLC |L§]z]?| | l)BIGBUF
UNIT/DATA| 4 [A 7
. 51¢ .
- 7 B SCHEDULER
DH11 BUFFER BUFFER
| usys ysYs |
PROCESS PROCESS
A B
D7 0072

Figure MO-17. TTY Input Overview

MO-37 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

An arbitrary limit of 160 characters has been set for a
transfer block. Several direct transfer blocks may be
linked together (appended to each other) and may be
terminated by an indirect block. These blocks are passed
between processors as a single request by setting the byte
count in the DTE2f0 to be the sum of all blocks to be
transferred.

Interrupts from the DTE2f indicate completion of the
transfer into KL1# memory. The module DTESRV recognizes
that a block is from a TTY by the device field. During the
next 20 milli-second scheduler cycle, TTYSRV is called to
sort the characters from "Big Buffer" into line buffers. A
process blocked for input will remain in this state until a
wake—-up character 1is received. The set of wake-up
characters consists of control characters, punctuation,
letters and/or numbers as indicated by the parameters of the
JSYS used.

Direct Transfer Block Indirect Transfer Block
16 bits COUNT - 16 bits COUNT
1/15 bits [0 IND/FUNCTION 1/15 bits Jil IND/FUNCTION
16 bits DEVICE 16 bits DEVICE
16 bits spare 16 bits spare
8/ 8 bits LINE #/DATUM 8/ 8 bits UNIT #/COUNT
data
D7 0650

Figure MO-18. Detailed Transfer Blocks

MO-38 <{For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

TTY Line Buffers and Echoing

Two character buffers are assigned to each 1line that
becomes active. One buffer 1is the 1input buffer which
accumul ates data as characters are moved from Big Buffer. A
copy of each input character will be placed into the other
buffer (the output buffer) when the character 1is to be
echoed. When the input buffer 1is full, subsequent
characters will be echoed as the bell control character.
The output buffer consists of program characters to be
printed on the terminal and input characters to be echoed.

Echoing, if not disabled, is either performed at the
time the character is typed (immediate mode) or when it is
passed to the program (deferred). The deferred mode allows
immediate echoing 1if the process is in teletype input wait
when the character is typed. Deferred is the standard echo
mode and it produces a correctly ordered typescript (i.e.,
program input and output appear in the order they occur).

Line Printer Output

Data to be passed to the printer is represented by a
header and an address. These are wused by the protocol
handler to deliver the data in the proper format to the
Front-End, eliminating the requirement to BLT the data to a
fixed area. The protocol between processors initiates two
transfers: one to set up the Front-End to receive, and one
to initiate the data transfer. Both are handled by the
DTE-2# operating in primary protocol using Indirect Transfer
Blocks and the doorbell mechanism.

Since line printer data and terminal output may consist
of Dblocks of information that can be passed as contiguous
data streams, the majority of KL14 to -11 transfers will use
the 1indirect mechanism. (Device data for a specific device
is also implemented by the indirect mechanism.) Transfers
from the -11 to the KL1# use the direct mechanism supplying
the line number and datum within the packet.

An overview of this process is shown in Figure MO-19,.
The JSYS that 1initiates a line printer transfer invokes a
device driver. This device-dependent routine passes to the
protocol handler the parameters necessary to transfer the
block through the Front-End (to be handled and sequenced by

MO0-39 < For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
: Monitor Overview

RSX20F) to the printer. The block built contains a count,
function, and specific device. The KL1# wakes up the -11 to
this transaction by ringing the 11's doorbell. At the time
the doorbell is rung, the packet has already been set up and
stored in the DTE208. When the -11 acknowledges receipt, the
data packet can then be set up and sent.

MO-49 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

RSX-20F | TOPS-20
DTE20
LINE
PRINTER PROTOCOL)

HANDLER

JSYS DEVICE
DEPENDENT CODE

JSYS DEVICE
INDEPENDENT CODE

T

DATA

MR-2543

Figure MO-19. Line Printer Overview

MO-41 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

This page is for notes.

MO-42 <<For Internal Use Only>>

DIGITAL. ' TOPS-20 MONITOR
‘ Monitor Overview

MODULE TEST

When answering the lab exercises, write down the names
of the tables where you found the answers. The labs will
help you understand the monitor data base structure; so .
remember, where to look is more important than what you find
there.

The exercises marked With a double star (**) are more
difficult and are optional.-

Answering some of the exercises requires use of the
listings; do not assume that the answer is in the tables.
After all, this is not a cookbook course. -

TOOLS

FILDDT

FILDDT is a program that can be used to look at a crash
or at the running monitor. Use FILDDT as in the example
below to do this lab's exercises.

Q@ENABLE S ;need enabled wheel
: ;capability to look at the
;running monitor.
SFILDDT ' ;start the program
FILDDT>LOAD <SYSTEM>MONITR.EXE ;load the symbols
FILDDT>PEEK o - ;peek at the running monitor

At this point, the usual DDT commands allow you to 1look at
the running monitor. You cannot change any locations (i.e.,
you have no write privileges). Also, your process will
always be running when vyou look because the mechanism to
look at the running monitor is like a JSYS whose function is
to let you use DDT from monitor context.

MO-43 <<For Internal Use Only>>

DIGITAL SRR o o TOPS-28 MONITOR
o ' ‘ ‘ Monitor Overview

EPT (Executivé Process Table)

Intfoduction

o . ;
The EPT is the hardware/software interface for most
system-wide information. Some EPT locations must contain
hardware-defined information. These locations are set up by
the software and used by the hardware. For example, devices
interrupt to locations in the EPT; - the monitor's section
pointers are . in the EPT; 'and the exec mode overflow trap
instructions are in the EPT. The software 1loads the base
address of the EPT into a hardware register called the EBR
(exec base register) so the hardware knows where the EPT
begins. ' '

The EPT is one page in 1length, but only a small
percentage of the locations have hardware-defined uses. The
remaining EPT locations are used solely by the software.
Note also that the hardware uses of the table are different
for TOPS-2¢ and TOPS-1#; that is, the microcode differs in
its use of the EPT.

The EPT is in the monitor's address space beginning at
location KIEPT. ' '
RESOURCES

1. Read and use as a reference section 3.4 of the

Hardware - Reference Manual; this section describes
TOPS-2@ paging and process tables.

2. The EPT is pigtured in the Student Guide.

3. The EPT table is in the Monitor Tables.
EXERCISES
~ Vectored Interrupt Locations
The devices on the 'system use vectored interrupts;

these interrupts all vector into the EPT (but/do not need
to). Vectored interrupts make polling all devices on the

' MO-44 <<For Internal Use Only>>

DIGITAL~" ' TOPS-20 MONITOR
C o Monitor Overview

same priority level unnecessary since each device can vector
to its own assigned location. See section 3.1 (Priority
Interrupts) of the Hardware Reference Manual for nmore
information. IR ' :

NOTE

Each interrupt location uses the
instruction JRST 7,XXX (mnemonic XPCW).
See the section on the JRST instruction
(page 2-7@8) in the Hardware Reference
Manual for information on how this
Tnstruction works. "

l. Where does each DTE-2@ interrupt and where does
control pass?

*

2. Where do RH2f@s interrupt and where does control
- pass for each RH2#?

3. Where does the 1nterva1 tlmer interrupt and where
does control pass?
Standard Interrupt Locations

Standard interrupts come in to the EPT at offset 49 +
2N where N is the priority interrupt level.

l, What is in each of the standard interfupt
locations? :

2, Where does control pass for each standard interrupt
location and what processing happens there?

3. Which priority levels do you believe use standard
interrupts?

- M0-45 ' <<For Internal Use Only>>

DIGITAL SR ' TOPS-20 MONITOR
e AR ’ '~ Monitor Overview

Exec Mode Trap Instructions

The Exec mode PDL overflow and arithmetic overflow trap
instructions are in the EPT. This is where the processor
traps when one of these conditions occurs. The trap
instruction in the appropriate location is executed.

~

1. What is the Exec mode arithmetic overflow trap
instruction?. ' ~

2. What will happen when this instruction is executed?
3. What iS~the'Exec mode stackLoverflow instruction?
4, What will happen when this instruction is executed?

5. What is the trap 3 trap instruction?

Exec Mode Section Pointers

The Exec mode section pointers are in the EPT beginning
at 1location MSECTB. The offset from MSECTB is the section
number. On a model A machine, only section # can exist. On
a model B machine, sections @-5 are used. 'Refer to the
section on extended addressing in your Student Guide for
information on the use of each section on a model B machine.
Note that the section pointers are "KL paging" format
pointers. ‘

l., How many sections are in use on the machine you are
doing your lab with?

2, What kind of pointer(s) 1is/are in use fot éach
section? ’

MO-446 <<For Intern?l Use Only>>

DIGITAL . TOPS-20 MONITOR
: , Monitor Overview

DTE-20 Control Blocks **

The EPT has space for four DTE control blocks, one for
each possible DTE. Each block is eight words long. Refer
to the EPT table in vyour Monitor Tables for a detailed
layout of this area.

1. What are the examine protection and relocation
words used for? What are they set up as in the
running monitor? **

2. What are the deposit protection and relocation
words used for? What are they set up as in the
running monitor? *¥*

3. What are the To -11 and To -10 byte pointers for?
- k%

Channel Logout Areas
There is a channel logout area for each possible RH2%

on the system. Refer to the EPT table in your Monitor
Tables; do you know what each word is used for?

MO-47 <<For Internal Use On1y>$

DIGITAL o . ; i TOPS-2# MONITOR
o Monitor Overview

UPT

Overview

/ The UPT is the hardware/software interface for most
process-specific information. The UPT is one page in length
but only a few of the locations have hardware-defined |uses.
The remainder of the UPT page is used for software purposes
only. The UPT page is called the PSB by the software. This
page 1is called the UPT when referring to its hardware
functions and the PSB when referring to its software
functions. : ‘

Since the UPT/PSB page has process-specific
information, it is context switched. The current process's
UPT/PSB page is always mapped into the monitor's address
space beginning at location PSB.

RESOURCES

l, Hardware Reference Manual.

2. UPT picture in the Student Guide.

3. PSB table in the Monitor Tables.
EXERCISES

Overflow Trapping

User push down overflow and user arithmetic overflow
trap to locations in the UPT.

l. What is the stack overflow trap instruction?

2. What is the arithmetic overflow trap instruction?

3. What will happen when the stack overflow .trap
instruction is executed?

MO-48 -~ <<For Internal Use Only>>

DIGITAL ' TOPS-20 MONITQR~
Monitor Overview

4. Using the information in the UPT, figure out what
routine gets executed on a user-mode stack
overflow. And then, using the microfiche, trace
the routine; what does the routine do?

Page Fault Words

When a page fault occurs, the page fail word and the PC
of the page fault are stored in the EPT; the processor
picks up the new PC from the page fail new PC word (and
switches to Exec mode if not already in Exec mode). Read
the section entitled Page Failure on page 3-34 of the
Hardware Reference Manual for more information.

1. What is in each of the page fault words?
2.' Where does page fault handling begin?
3. What routine handles a page fault for the scheduler

and what does this routine do when a page fault
occurs? k* ’

NOTE

When a page fault occurs, the processor
always traps to the UPT, regardless of
the mode the processor is in.
Therefore, the scheduler has its own UPT
which 1is context switched for the
scheduler when it is running. A copy of
this UPT is always a part of the
monitor's address space (even when it is
not being used as the current UPT);
this copy. begins at address SKHWPT.

MO-49 <<For Internal Use Only>>

DIGITAL IR TOPS-20 MONITOR
1 ’ ‘ : Monitor Overview

" User Section Pointers
v The user section pointersA begin at address USECTB.
Currently, only one user section is supported. Note that
these pointers are standard KL paging pointers.

1. What is the current pointer for user section @?

2. What is the storage address for - the user's page

map? ‘ ~

Accounting Meters.

For information on the accounting meters, read the
section entitled User Accounts, page 3-52 of the Hardware

Reference Manual. Note, however, that TOPS-28 does not
currently use the accounting meters. ,

MO-50 <<For Internal Use 0nly>>

DIGITAL

EPT (Exec

EXERCISES

TOPS-20 MONITOR
Monitor Overview

TEST EVALUATION SHEET

utive Process Table)

Vectored Interrupt Locations

1.

Where does each DTE-28 interrupt and where does
control pass?

ANSWER: Each DTE interrupts into the third word of
1ts DTE-20 control block in the EPT. For each DTE
on the system, the DTE-20 control block is set up
dynamically; the interrupt 1location contains a
JRST 7,DTETRP+4n where n is the DTE-2# number. The
old PC 1is stored in the first two locations of
DTETRP+4n and the new PC 1is picked up from the
second two locations of DTETRP+4n; the new PC is

- DTETRP+4n+5, which 1is always a JSR to SVDTRJ.

Location SVDTRJ doés a JRST to SVDTAC, which is
where DTE interrupt processing begins.

KIEPT+142+4n/ JRST 7,DTETRP+4n
DTETRP+4n/ old PC flags
: / old PC

/ new PC flags

/ new PC = .+1

/ JSR SVDTRJ

SVDTRJ+1 / JRST SVDTAC

MO-51 <<For Internal Use Only>>

DIGITAL

TOPS-2@9 MONITOR
Monitor Overview

Where do RH2@0s interrupt and where does control
pass for each RH2#?

ANSWER: Each RH2# vectors into the fourth word of

its channel logout area in the EPT; that location

contains a JRST 7,CDB-6 (i.e., six 1locations in
front of the channel's CDB). Register Pl is saved
in the CDB and then control is passed to routine
PHYINT in PHYSIO.

KIEPT+3+4n/ JRST 7,CDB-6

'CDB-6 / old PC flags
/ old PC
/ new PC flags
/ new PC = ,+1
/ MOVEM P1l,.+2+CDBSVQ
/ JSP P1l,PHYINT

Where does the interval timer interrupt and where
does control pass?

ANSWER: The interval timer does a vectored

interrupt to KIEPT+514; this location contains a

JRST 7,TIMINT., The new PC is TIMING, which 1is in
APRSRV,

KIEPT+514/ JRST 7,TIMINT

TIMINT / old PC flags
old PC

new PC flags
new PC = TIMIN#

NN\

MO-52 <<For Internal Use Only>>

DIGITAL

TOPS-28 MONITOR
Monitor Overview

Standard Interrupt Locations

1.

What 1is in each of the standard interrupt
locations?

ANSWER:

KIEPT+40/ @
KIEPT+41/ 0
KIEPT+42/ 0
KIEPT+43/ 0
KIEPT+44/ @
KIEPT+45/ @
KIEPT+46/ J
KIEPT+47/
KIEPT+58/ JRST 7,PI4R ;level 4
KIEPT+51/ @

KIEPT+52/ JRST 7,PI5R ;level 5
KIEPT+53/ 0

KIEPT+54/ JRST 7,PI6R ;level 6
KIEPT+55/ @

KIEPT+56/ JRST 7,PISCTR ;level 7

RST 7,PIAPRX ;level 3

Q

Where does control pass for each standard interrupt
location and what processing happens there?

ANSWER:

Channel 3 - new PC at PIAPRX+3 = PIAPR+1 in APRSRV;
this routine handles interrupts for the APR device.

Channel 4 - new PC at PI4R+3 = PISC4+1 1in STG;
this routine saves a few ACs, restores them and
dismisses the interrupt. However, note that there
is some code that is not assembled.

Channel 5 - new PC at PI5S5R+3 = PISC5+1 1in STG;
this routine saves a few ACs, restores them and
dismisses the interrupt. However, note that there
is some code that is not assembled; 1if the machine
is 2@¢26, SMFLG=l1 and the call to UNBCH5 is
assembled. :

Channel 6 - new PC at PI6R+3 = PISC6+1 1in STG;

this routine saves a few ACs, restores them and
dismisses the interrupt. However, note that there

MO-53 <<For Internal Use Only>>

DIGITAL

TOPS~2@ MONITOR
Monitor Overview

is some code that is not assembled; if the machine
is a 2¢28, SMFLG=1 and the call to DZCTIN |is
assembled. '

Channel 7 - new PC at PISCTR+3 = PISC7+1 in SCHED;
this routine handles the "software clock" that

~drives the overhead cycle.

Which priority levels do you believe use standard
interrupts? ° '

ANSWER: For standard 2650/2A66 monitors, only
Tevels 3 and 7 are used. Level 3 handles the APR

device (for memory parity errors, etc.) and level 7

is the "software clock™ that drives the scheduler.
On a 2#2p, since there is no front end, more
priority interrupt 1levels are used to handle
devices that the front end handles on a 2058/2060
or that do not exist on a 2858/2068. For a 20240,
the Unibus adapter is on channel 5 and uses routine
UNBCHS; terminal interrupts are on channel 6 and
are handled by routine DZCTIN,.

Exec Mode Trap Instructions

1.

What is the Exec mode arithmetic overflow trap
instruction?

ANSWER: Exec mode arithmetic overflow traps to
offset 421 in the EPT. This location contains a
JFCL. .

What will happen when this instruction is executed?
ANSWER: Nothing; it is a no-op.

What is the Exec mode stack overflow instruction?
ANSWER: Exec mode stack overflow traps to offset

422 1In the EPT. This location contains: .PDOVT =
42008, ,0 v v ,

MO-54 <<For Internal Use Only>>

DIGITAL

TOPS-26 MONITOR
Monitor Overview

What will happen when this instruction is executed?

ANSWER: 42 is an illegal op-code and is therefore
handled as a UUO. However, since it is executed
from a trap instruction, the new PC 1is picked up
from the Kernel trap MUUO new PC word in the UPT
(offset 431). Offset 431 in the UPT (PSB)
contains: 1,,KITRPS. Therefore, when a push down
list overflow occurs in Exec mode, routine KITRPS
is executed. This routine executes a MONPDL
BUGHLT.

What is the trap 3 trap instruction?

ANSWER: If the arithmetic overflow and stack
overflow PC flags are on at the same time, the
machine traps to the trap 3 trap instruction. This
never happens unless the PC flags are deliberately
set.

Exec Mode Section Pointers

1.

How many sections are in use on the machine you are
doing your lab with?

ANSWER: Section pointers are set up for sections
#-3 whether the machine is a model A or a model B
machine, However, only section # is wused on a
model A machine. Sections # and 1 have the same
section pointer. Section 2 has an indirect pointer
through 1location DRMAP in the current PSB; DRMAP
contains a zero for model A machines. Section 3
has an indirect pointer through location IDXMAP in
the current PSB; IDXMAP contains A zero for model
A machines. Location DIRORA (the directory origin)
contains [DRSECN, ,d] for Model B machines and
[MSEC1,,740008A]1 for Model A machines. Location
EXADDR is used as a flag to note whether this is a
model A or model B machine; 1if EXADDR contains 4,
this is a model A machine.

MO-55 <{<For Internal Use Only>>

DIGITAL

2.

TOPS-28 MONITOR
Monitor Overview

What kind of pointer(s) 1is/are in use for each
section?

ANSWER : Sections @ and 1 have share pointers to
MMAP (contents of MMSPTN). Sections 2 and 3 have
indirect pointers through 1locations in the PSB.

~ Section 4 1is wused to map the bit table; the bit

table is only mapped while it is being updated.

DTE-2@ Control Blocks **

1.

2.

What are the examine protection and relocation
words wused for? What are they set up as in the
running monitor? **

ANSWER: The examine relocation word is the first
word of KL memory that a DTE-2¢ has read access to;
the examine protection word is the size of the
region (beginning at the examine relocation word)
that this DTE-26 can read.

KIEPT 144/ 225
KIEPT 145/ COMBUF+3

KIEPT 144419/ 226
KIEPT 145+18/ COMBUF+2

What are the deposit protection and relocation
words wused for? What are they set up as in the
running monitor? **

ANSWER: The deposit relocation word is the first
word of KL memory that a DTE-20 has write access
to; the deposit protection word is the size of the
region (beginning at the deposit relocation word)
that this DTE-2# can write into.

KIEPT 146/ 39
KIEPT 147/ COMBAS+60

KIEPT 146+10/ 34
KIEPT 147+19/ COMBAS+11¢

MO-56 <<For Internal Use Only>>

DIGITAL " TOPS-2¢% MONITOR
Monitor Overview

3. What are the To -11 and To -10 byte pointers for?
* %

ANSWER: The To -11 byte pointer 1is wused as the
byte pointer to the data for indirect transfers;
the To =10 byte pointer is used as the byte pointer
for where to put the data transferred from the
PDP-11.

Channel Logout Areas

There is a channel logout area for each possible RH20#
on the system. Refer to the EPT table in your Monitor
Tables; do you know what each word is used for?
ANSWER: The first three words contain channel command 1list

information for the last transfer on that channel. Word 4
is the vectored interrupt location for the channel.

MO-57 = <<For Internal Use Only>>

DIGITAL

UPT

TOPS~2@ MONITOR
Monitor Overview

EXERCISES

Overflow Trapping

lo’

What is the stack overflow trap instruction?

ANSWER: Offset 422 in the UPT (PSB) is the stack
overftlow trap location; it contains .PDOVT =

What is the arithmetic overflow trap instruction?

ANSWER: Offset 421 in the UPT (PSB) 1is the
arithmetic overflow trap 1location; it contains
JFCL (unless the user has enabled the PSI system to
handle arithmetic overflow).

What will happen when the stack overflow trap
instruction is executed?

ANSWER: Op-code 42 is an illegal instruction and
Is handled as a UUO except that it 1is being
executed as a trap instruction; therefore, the new
MUUO PC is picked up from the concealed trap MUUO
new PC word which is offset 435 in the UPT. This
address is KITRPU.

Using the information in the UPT, figure out what
routine gets executed on a user-mode stack
overflow, And then, using the microfiche, trace
the routine; what does the routine do?

ANSWER: KITRPU 1in APRSRV 1is executed; this
routine 1looks to see the if the PDL overflow
channel is enabled for this fork or its superior
and initiates the interrupt.

MO-58 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

Page Fault Words

1. What is in each of the page fault words?

ANSWER: The page fault words contain the
following:

UPTPFN= PSB+50#0 / page fail word --contains failure
type code and virtual address that page faulted.

UPTPFL= PSB+501 / page fail flags (old PC)
UPTPFO= PSB+502 / o0ld PC
UPTPFN= PSB+583 / new PC = PGRTRP

2, Where does page fault handling begin?
ANSWER: PGRTRP in PAGEM

3. What routine handles a page fault for the scheduler
and what does this routine do when a page fault
occurs? k¥
ANSWER: Offset 503 of the SKHWPT is the new PC for
page fault handling; this 1location contains
address KIPFS. This routine executes a BUGHLT

because the scheduler is currently not expected to
page fault,

User Section Pointers

1. What is the current pointer for user section 0?
ANSWER: USECTB+@# is the section pointer for
section #; it contains a share pointer to the page

map for section 4.

2., What is the storage address for the wuser's page
map?

ANSWER: The SPT slot indicated by the share
pointer contains the storage address for the user's
page map.

MO-59 <{<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

This page is for notes.

MO-60 <<For Internal Use Only>>

DIGITAL

I.

III.

MONITOR KERNEL

——— — — — - >

Management &
Allocation

APRSRV
FORK
LDINIT
PAGEM
POSTLD
SCHED
SWPALC

UTILITY MODULES

—— ——— - — — ——— —

BOOT
COMND
DATIME
DIAG
EDDT
ENQ
FUTILI
IPCF
MDDT
MEXEC
MFLIN
MFLOUT
MR
SYSERR
TAPE
TIMER

TOPS-20 MONITOR
Monitor Overview

APPENDIX A
MONITOR MODULES

Device

CDRSRV
DTESRV
IMPANX
LINEPR
PHYH2
PHYM2
PHYP4
PHYSIO
TTYSRV

A-1

IT. FILE SYSTEM

Drivers DEVICE
DIRECT
DISC
DSKALC
FESRV
FILINI
FILMSC
FREE
GTJIFN
IMPDV
IO
JSYSA
JSYSF
LOGNAM
LOOKUP
MAGTAP
MSTR
NETWRK
NSPSRV

IV. DATA BASE

GLOBS
PARAMS
PHYPAR
PROLOG
SERCOD
STG

<<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR -
Monitor Overview

A-2 <<For Internal Use Only>>

DIGITAL TOPS~-2/ MONITOR
Monitor Overview

MONITOR KERNEL

A, Management & Allocation

APRSRV

‘This is the processor dependent service module which
contains the 1initialization code for paging, MUUO
handlers, and the priority interrupt system as well
as for the clocks, APR, and DTE devices. Interrupt
handling for these devices, pager control routines,
and pre- and post- JSYS handling is also performed
here.

FORK

Fork controlling JSY¥Ss and support code.

LDINIT

At load time, this module defines storage PCs for
the JSYS dispatch table JSTAB.

PAGEM

TOPS-200 page management code; core management
routines, swapper routines, pager trap logic, OFN
control, and CST and SPT initialization.

POSTLD

This code runs immediately following the loading of
the monitor and performs functions outside the
capabilities of LINK. It will move the symbol table
to its runtime 1location, pruning it as necessary.
It will then build the MONITOR.EXE file, write a
BUGSTR text file and delete itself from core.

SCHED
This module contains the Channel 7 interrupt routine

(which performs context switching), the TOPS-20
schedul er, the job/fork initialization/dismiss

A-3 <<For Internal Use Only>>

DIGITAL . TOPS-2@ MONITOR
Monitor Overview

" routines, and the Program Software Interrupt (PSI)
analysis and resolution routines.
SWPALC

This is the swapping space allocator which handles a

"device of some number (SWPSEC) of sectors, and some
number (DRMMXB) of tracks. It has a resident bit
table used to allocate swapping storage.

B. Device Drivers

CDRSRV

Card Reader Service.

DTESRV

DTE Service Driver; protocol handler for requests
to and from the Front-End.

IMPANX

This module contains the device dependent code for
the Interface-Message-Processor (IMP) device
connected to a -14/-20 on the ARPA-network.

LINEPR

Lineprinter service.

PHYH2

Channel-dependent code for RH20 controller at direct
I/0 level. ' '

PHYM2

Channel-dependent code for TM@#2/TM45 magtapes at
direct 1/0 level.

A-4 <<For Internal Use Only>>

DIGITAL TOPS-2% MONITOR
Monitor Overview

PHYP4

Device-dependent code for RP@4/6 disks at direct I/0O
level.

PHYSIO

This module handles the channel and driver 1I/0
routines. It is responsible for queueing 1I/0
requests into their proper queue, choosing the
"best" request for seeking and/or transferring and
starting I/0.

TTYSRV

This is the terminal service module containing the
TTY I/0 drivers, special control char acter
conversion routines, terminal JSYS routines and the
interface to the primary and secondary protocols in
DTESRV. 1Its device dispatch table is contained in
FILMSC.

FILE SYSTEM

DEVICE

Device and initialization look-up code.

DIRECT

Disk file and directory management code.

DISC

This module contains the pre-PHYSIO disk-dependent
routines for I/0 JSYSs and a dispatch table of
vectored addresses (DSKDTB) which points to them.

DSKALC

Drive-independent code for disk block allocation.

A-5 = <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

FESRV

Device code for FE devices.. This code contains the
device-dependent routines for the FE pseudo-devices
FE@-FE3.

FILINI

This module contains code to initialize the file
system at system startup.

FILMSC

This module contains miscellaneous routines for the
PTY, TTY STRING and NULL I/0 devices and also
includes a device dispatch table for each of these
devices,

- FREE

Job storage free area management.

GTJFN

Contains the code for GTJFN, and the JSYSs
supporting 1look-up, recognition, and creation of
file names.

IMPDV

This module contains the Interface-Message-Protcol
(IMP) device-independent code. It runs cyclically
as a separate fork (i.e., under JOB@#) and handles
the interface to the ARPA network by monitoring
network activity and managing the message queues.

Contains most of the device-independent sequential,
random, and dump input/output routines for BIN,
BOUT, SIN, SOUT, DUMPI, and DUMPO.

A-6 <<For Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
Monitor Overview

JSYSA

Random JSYSs for system and directory access, device
allocation, job parameter settings, system
accounting (EFACT) and file/fork mapping (PMAP).
JSYSF
Contains code that implements various file system
JSY¥Ss.
LOGNAM
Contains the logical name definition and recognition
JSY¥Ss and routines,

LOOKUP

Device-independent file name look-up.

MAGTAP

This modul e contains the pre-PHYSIO
mag tape-dependent routines for I/0 JSYSs and a
dispatch table of vectored addresses (MTADTB) which
points to them.

MSTR
Contains the code to implement the mountable
structure JSYS, MSTR.,

NETWRK
This module contains the interface for all standard
I/0 JSYSs that communicate with the ARPA-network.
It also provides a finite state machine of various

events associated with a connection for the network
control program (NSP). '

A-7 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

NSPSRV
This module contains the control routines and JSYS
interfaces for the host-to-host protocol of DECnet

known as NSP, which allows communication between
processes on hosts by means of logical links.

UTILITY MODULES

BOOT

BOOTSTRAP for the system.

COMND

Code for the COMND JSYS, which 1is wused by user
programs for consistent command parsing.
DATIME

Code for the date and time conversion JS¥Ss.

DIAG

This module contains code to support the DIAG JSYS
for the KL14.

EDDT

Exec mode DDT is loaded as part of the resident
monitor and used for debugging basic monitor
functions.

ENQ
This module implements the ENQ/DEQ faeility to

control simultaneous access to wuser specified
sharable resources. :

A-8 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

FUTILI

Contains routines to copy strings to/from JSBs and
routines to get a yes/no answer from CTY.

IPCF

Code for the system interprocess communications
facility; Code for [SYSTEM] IPCC.

MDDT

This is a version of DDT which runs in the monitor
space for debugging processes on TOPS-2f. This
version runs under timesharing.
MEXEC

This module contains the MINI-EXEC which 1is a
limited command interpreter for certain system
loading/maintenance functions and swappable monitor
bootstrap procedures. It is part of the swappable
monitor and also contains many JSYS routines.

MFLIN

Floating point input and conversion JSYSs.

MFLOUT

Floating point output and conversion JSYSs.

Floating point double-precision arithmetic routines.

A-9 {<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

SYSERR

Error reporting module for field service.

TAPE

This module contains the tape~table handler and
record processor.

TIMER

This module implements the TIMER JSYS and all of its
support, This 1includes scheduler clock routines
(called from CLK2CL) and the code to kill the
pending clock belonging to a dying fork (KSELF).

DATA BASE MODULES

GLOBS

All globals are defined as external here with OQEXT
macro, (Note, do not confuse this module with the
global cross~-reference file, GLOB, produced at
monitor assembly time.)

PARAMS

This module contains one of the parameter files,
PARBCH, PARSML, PARMIN, PARMED, PARBIG, depending on
the size of the monitor required by the
installation. The parameters in these files affect
the space allocated for swapping and monitor
resident tables. The assembled executable code is
not affected.

PHYPAR

Universal file for PHYSIO and associated modules.
It contains the definitions for the Channel Data
Block, Channel Dispatch Table, Unit Data Block, Unit
Dispatch Table, and the Input/Output Request Block.

A-19 <{For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

PROLOG

This is a file of parameters, storage assignments,
and macro definitions. The major regions of the
monitor address space are defined as well as macros
affecting PI bug strings, pseudo-interrupts, and
schedul ing. All PSB and JSB storage defined by the
monitor at assembly time is specified here.

SERCOD

This module contains the error codes and fields for
SYSERR, a program which produces hardware
performance reports for field service personnel.

STG

The bulk of the monitor storage, both resident and
nonresident, is defined in this module.

A-11 <{<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

This page is for notes.

A-12 <<For Internal Use Only>>

DIGITAL ' TOPS-23 MONITOR
Monitor Overview

APPENDIX B

MONITOR'S VIRTUAL ADDRESS SPACE

Every user job in TOPS-2@ comprises one or more
processes. Each process has two memory maps which describe
the virtual core assignment for the process when it 1is

executing in wuser or monitor mode. The user page map
completely describes the user space for the currently
running process; the executive page map describes the

mapping for the monitor's address space. The user space and

256K
PROCESS STORAGE
JOB STORAGE
200K
SWAPPABLE MONITOR.
102K
PER PROCESSOR PRIVATE PAGES
// ' ‘V
4 ’
RES!IDENT VARIABLES
EDDT
SYMBOLS
23K
RESIDENT MONITOR

MR-3146

Figure B-1. Monitor Virtual Memory Map

B-1 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

the monitor space are each 256K. New maps are loaded when a
new process is selected to run, with the user map reflecting
the current allocation of the user's virtual address space,
and the monitor map reflecting the per-process allocation of
the monitor's address space. Notice, however, that the
major portion of the monitor's page map is used to map the
resident and non-resident parts of the- TOPS-2@¢ monitor.
Figure B-1 is a simplified diagram of the monitor's virtual
memory map.]

The monitor consists of two logical sections: resident
and non-resident code. Resident code is non-swappable and
contains the scheduler, pager, basic interrupt and JSYS
‘dispatch handlers and tables. The non-resident portion on
TOPS~2@ consists of swappable code and data which may or may
not be in core at any given time (depending on system
utilization). The RESCD macro causes code to be placed in
the resident portion of the monitor. The SWAPCD macro will
allow it in the swappable portion. The resident portion of
the monitor 1is the same for all processes and will be
discussed first,

B-2 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

RESIDENT MONITOR

Page 1 of the monitor is the JSYS dispatch table: 1000
words long with one entry for each JSYS. The right half of
each entry contains the monitor PC describing where to start
executing. Page 2 is the Executive Process Table. Page 3
is the scheduler page table which is used by the scheduler
when it is called to select a new process to run.

VIRTUAL PAGE NUMBER

2758
141
RESIDENT VARIABLES
(CST'S, SPTO, SPT, ETC.)
74 ,
MONITOR'S PAGE TABLE (MMAP)
73
SCHEDULER’'S UPT (SKHWPT)
72
EPT
71
EDDT
MONITOR SYMBOLS
55
RESIDENT MONITOR CODE
(SCHED, PAGEM & DEVICE SERVICE ROUTINES)
JSYS DISPATCH TABLE
1
V|

MR-3168

Figure B-2. Resident Monitor
B~3 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
‘ : ' Monitor Overview

Pages 4-60 octal house the resident variables (i.e.,
those defined by the RS macro). Included here are the SPT,
SSPT, and CST tables used by the paging hardware. ' The size
of this area will vary depending on the size of the system.

Resident monitor code sits between pages 6# and 14¢ and
contains the paging and scheduling software and peripheral
device interrupt and error processing routines. The symbol
MONCOR points to the highest location used by the resident
monitor code. Above this sits an optional area consisting
of EDDT and symbols. Since this area is 30-40 pages, it is
only in core when the system is being debugged.

B-4 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Monitor Overview

NON-RESIDENT MONITOR

The swappable code of the monitor really starts at page
270 (see Figure B-3). Pages 276-276 belong to the
per-processor private page area. Since the current
implementation supports only one CPU, this area can be used
by the swapper for temporary pages. Pages 277-323 contain
swappable variables the monitor needs and are reserved by
the NR macro. A free space pool also sits here and includes
temporary storage for ENQ/DEQ and IPFC. Pages 324-527
contain the swappable monitor containing the bulk of the
JSYS code, MDDT and symbols, and the MINI-EXEC. This area
is write—-protected. Pages 530-617 are swappable page
storage reservable by the NP macro. Here lies a one-page
buffer for each line printer and any other device that needs
one. ~

Pages 62#-717 are the Job Storage Block, an area that
is context-switched whenever a new job is run but is shared
among all forks in a job. This area contains descriptor
blocks (approximately 28 words in 1length) for every JFN
known to the user. These blocks reflect the current state
of the opening of a file. Pointers to filename, type,
version, directory and device names, and pointers to the OFN
and wildcard masks are stored. The GTJFN JSYS builds these
blocks; the actual ASCII strings are stored in a free space
pool in the JSB. 1Information is kept in the JFN for File
I1/0 as well (i.e,, the file's page, byte position, status,
length, etc.). '

Pages 720-777 comprise the Per-Process Storage Area.
This wvirtual core 1is switched every time a new process is
run and is not the same for all forks in a job. Included
here from pages 740-778 1is the directory currently being
scanned, which is PMAPed directly into this space for use by
GTJFN and other related JSYSs. Pages 720-737 are used for
special utility fork and swapper functions and the IDXFIL
table. Page 777 is the Process Storage Block which contains
a per—-process pushdown list and a monitor page table for
pages 72# and up. Also included here is space for saving
multiple sets of ACs needed in the situation of nested JSYS
calls, and tables for holding local fork handles.

B-5 <{<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Monitor Overview

777 —
&) MAP FOR PAGES 707-777
276 PROCESS INFO, (1.E., PUSH DOWM LIST, AC SAVE AREA)
PER PROCESS STORAGE
707
PER JOB STORAGE
(I.E. FILE STRINGS & FILE 1/O BUFFERS)
1SB. MAP FOR PAGES 620-706
620 JOB INFO, (I.E., ACCOUNT, FORK STRUCTURES, JFN BLOCKS)
SWAPPABLE PAGE STORAGE
(LINEPRINTER BUFFERS, ETC.)
536
 SWAPPABLE MONITOR
(MOST JSYS'S, MDDT, MINI-EXEC)
344 .
SWAPPABLE VARIABLES :
313 (MONITOR TABLES, IPCF FREE -SPACE)
PER PROCESSOR PRIVATE PAGES
307 ‘

MR-3169

Figure B-3. Nonresident Monitor

B-6 <{For Internal Use Only>>

TOPS-20 MONITOR

Coding Conventions

<<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Coding Conventions

COURSE MAP

DT FE SM

PHYSIO-
DISK/TAPE

STORAGE
MANAGEMENT

FRONT END/
" TERMINALS

TROUBLE
SHOOTING

CcC SER

" CoDING
CONVENTIONS

MO

MONITOR
OVERVIEW

SOFTWARE

INTRODUCTION

MR-2717

CC-i <<For Internal Use Only>>

DIGITAL : _ TOPS-20 MONITOR
Coding Conventions

This page is for notes.

Cc-ii <<For Internal Use Only>>

DIGITAL ‘ TOPS-2¢@# MONITOR
Coding Conventions

Coding Conventions

INTRODUCTION

There is a set of standard macro and
symbol definitions wused in writing monitor
code (and some support programs). This
module will cover the use of the more common
of these macros and other TOPS-28 coding and
naming conventions, Knowledge of these
conventions will help greatly in the reading
of TOPS-2@ monitor listings. A listing of
MACSYM will be found at the end of this module.

CcC-1 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Coding Conventions

LEARNING OBJECTIVES

Upon completion of this module, the
student will be able to:

Determine the code generated and/or the
function applied by the various macros and
pseudo-ops used in the TOPS-20 monitor.

CcC-2 <<For Internal Use Only>>

DIGITAL

TOPS-2(MONITOR
Coding Conventions

MODULE OUTLINE

CODING CONVENTIONS

I.

II.

CIII.

Using MACSYM

A,

B.
cC.

D.

E.
F.
G.

Symbol Definitions
Macros To Manipulate Field Masks
Instructions Using Field Masks

DEFSTR -- MSKSTR Data Structure Facilities
1. LOAD
2. STOR

3. Examples

Subroutine Conventions
Named Variable Facilities
Mi scellaneous

TOPS-20 Coding Standards

A, Subroutine Calling - JSYS
B. Subroutine Calling

C. AC Definitions

D. AC Saving and Restoration
E. Subroutine Documentation
F. Multi-line Literals

G. Numbers

Appendices

CcC-3 <<For Internal Use Only>>

DIGITAL

This page is for notes.

TOPS-20 MONITOR
Coding Conventions

DIGITAL - TOPS-24 MONITOR
Coding Conventions

USING MACSYM

MACSYM is available on SYS: in two forms: MACSYM.UNV
and MACREL.REL. The first of these is the universal file of
macro and symbol definitions; the second is a file of small
support routines wused by certain facilities (e.g., stack
variables). The universal file is normally obtained at
assembly time by the source statement

SEARCH MACSYM

The object file, if necessary, may be obtained by the source
statement

.REQUIRE SYS:MACREL
which instructs LINK to load the object file along with the
main program. The file 1is loaded only once (even if the
«.REQUIRE appears in several source modules) and no explicit
LINK command need be given.
Symbol Definitions

Conventions observed regarding the construction of

symbols are as follows ("x" represents any alphanumeric
character) :

XXXXX. an opdef or macro definition

+XXXXX a constant value

XXx%$xxXx a mask, i.e., a bit or bits specifying a
field

Symbols containing multiple periods may be used
internally by some macros.

Symbols containing "$" are not used or defined by
DEC and are reserved for customer use.

The following definitions are available in MACSYM and
are arranged into groups as shown.

CC-5 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Coding Conventions

MISCELLANEOUS CONSTANTS (SYMBOLS)

« INFIN =.377777"777777 ;plus infinity
.MINFI = 400000, ,0 ;minus infinity
.LHALF = 777777,,0 ;left half

.RHALF = 0,,777777 ;right half

.FWORD = 777777,,777777 ;full word

CONTROL CHARACTERS (SYMBOLS)

Symbols are defined for all control character codes
#-37 and 175-177. The following are the commonly used
characters; see source listing for others.

.CHBEL

@7 ;bell

.CHBSP = 14 ;backspace
.CHTAB = 11 ;tab

«CHLFD = 12 ;linefeed

+.CHFFD = 14 ;formfeed
«CHCRT = 15 ;carriage.return
.CHESC = 33 ;escape

+.CHDEL = 177 ;delete (rubout)

(@]

(@]
|

=)}

<LFor Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
Coding Conventions
PC FLAGS (MASK SYMBOLS)
PC%OVF = 1B@ ;overflow
PC%CYO = 1Bl ;carry @
PC%CY1 = 1B2 ;carry 1
PCFOV = 1B3 ;floating overflow

PC$BIS = 1B4 ;first part done (byte increment
suppress)

PC%USR = 1B5 ;user mode

PC%UIO = 1B6 ;user IO mode

PCSLIP = 1B7 ;last instruction public
PC%AFI = 1B9 ;ADDRESS FAILURE INHIBIT
PC%ATN = 1B1l# ;apr trap number

PCRFUF = 1B1l1l ;floating underflow

PCENDV = 1B1l2 ;no divide

Macros to Manipulate Field Masks

Many of the symbols in MACSYM and MONSYM define flag
bits and fields. A field mask is a full-word value with a
single contiguous group of 1's in the field. For example,
6000AB, ,777008 defines a field consisting of bits 18-26.
The following macros may be used in expressions to deal with
these masks.

WID(MASK)
Width - computes the width of the field defined by the mask,
i.e., the number of contiguous 1l-bits. The value is not
defined if the mask contains non-contiguous l-bits,

POS (MASK)

Position - computes the position of the field defined by the

cc-7 <<For Internal Use Only>>

DIGITAL TOPS-2¢0 MONITOR
Coding Conventions

mask. The position of a field is always represented by the
bit-number of the bit furthest to the right of the field,
regardless of the field's width, This is sufficient to
specify the entire field in the case of flags (1-bit
fields)..

PO INTR (LOC , MASK)

Byte pointer - constructs a byte pointer to 1location LOC
which references the byte defined by MASK. For example,
POINTR(1064,77) = POINT 6,100,35 = 000600, ,100

FLD (VAL, MASK)

Field value - Places the value VAL into the field defined by
MASK. For example, FLD(3,760) = 0,,000300 -

.RTJST(VAL, MASK)
Right-justify - Shifts VAL right so that the field defined
by MASK is moved to the low-order bits of the word. For
example, .RTJST(340,700) = 3

MASKB (LBIT,RBIT)

Mask - constructs a mask word which defines a field from bit
LBIT to bit RBIT inclusive. E.g., MASKB(18,26) = 0,,777000.

Instructions Using Field Masks

The following mnemonics ére similar to certain machine
instructions used to move and test bits and fields. These
macros select the most efficient instruction for the mask

being used.
MOVX AC,MASK

Load AC with a constant. MASK may be any constant. This
assembles one of the following instructions: MOVEI, MOVSI,
HRROI, HRLOI, or MOVE literal.

TXmn AC,MASK

where m is: N, 2, O, C

Q)
)
|
x

{{For Internal Use Onliy>>

DIGITAL TOPS-20 MONITOR
Coding Conventions
n is: E, N, A, null
There are 16 definitions of this form which include all of
the modification and testing combinations of the test
instructions (i.e., TXNN, TXNE, TXO, TXON, etc.). A TL, TR,
or TD literal is assembled as appropriate.
IORX AC,MASK
ANDX AC,MASK
XORX AC,MASK

These are equivalent to certain TX functions but are
provided for mnemonic value.

JXm AC,MASK,ADDRESS

This is a set of four definitions which jump to ADDRESS 1if
the field specified by MASK meets a certain condition. The
condition (m) may be:

E - jump if all masked bits are @
N - jump if not all masked bits are @
0 - jump if all masked bits are 1
F - jump if not all masked bits are 1 (false)
These macros will assemble into one, two, or three

instructions as necessary to effect the specified result.
E.g., JXN T1,1B#,FOO0 = JUMPL T1,FOO

JXE T1,778,FO0 = TRNN T1,778 JRST FOO

DEFSTR - MSKSTR Data Structure Facilities

This set of macros provides a comprehensive facility
for the definition and use of data structures. It is an
extension of some of the techniques represented by the field
mask facilities above. Typically, a data structure
definition will include some information about the 1location

cC-9 <KFor Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Coding Conventions

of the data in memory as well as its position within a word.
These facilities are intended to provide the following
advantages: :

l. Data items may be referenced mnemonically. For
example, two data items in the same word would be
given different names rather than merely being known
as the left half or right half of the word.

2., Should the need arise, storage formats may be
changed without incurring the expense of a search of
the code to change each reference.

DEFSTR -- MSKSTR
These macros both define a data structure called NAME:
DEFSTR NAME,LOCATION,POSITION,SIZE
MSKSTR NAME,LOCATION, MASK

LOCATION specifies the memory location of the desired
word and consists of address, index, and indirect fields in
the usual form, i.e., @address(index). Any of the fields
may be omitted if not needed, and the entire location
argument may be null in some circumstances. The remaining
arguments define the desired field. DEFSTR specifies the
field in terms of its position (right-most bit number) and
size (number of bits), while MSKSTR specifies the field by a
full-word mask as described earlier. Normally, the actual
storage to be used is declared separately, e.g., by a BLOCK
statement.

As a simple example, consider an array of full-word data

items. We wish to use the name FOO for the data itself, so

we declare the actual storage by some other name, e.g.,
FOOl: BLOCK n

Then, we declare the structure by

DEFSTR FO00,F001(F00OX),35,36

This says that we declare a data item called FOO, that the
items are addressed by FOOl(FOOX) (assuming that the index

(@]
@]
|
=t
[~

<<For Internal Use Only>>

DIGITAL TOPS-29 MONITOR
Coding Conventions

is kept 1in register FO0X), that the items are 36-bit
quantities with the right-most bit in bit 35 (i.e., full
words). If instead, we wish to declare that each word of
FOOl consists of an item in the left half and two 9-bit
items in the right half, we could write:

DEFSTR FIRSTD,FO001(FO00X),17,18 ;LH item
DEFSTR SECOND,FO001(FOOX) ,26,9 ;one 9-bit item

DEFSTR THIRDD,FOO01(FOOX),35,9 ;another 9-bit item

LOAD

Data items defined with DEFSTR or MSKSTR may -be
referenced in a general way. At each instance, additional
location information may be given if necessary. A set of
reference functions (macros) is defined for most common
operations, some affecting AC and memory, others only
memory. For example, the LOAD function loads a data item
into an AC and is written as

LOAD AC,NAME,LOCATION

where: AC is the AC to be loaded
NAME is the structure name as defined with DEFSTR
LOC is the location specification in addition to

that declared 1in the structure definition.
This field may be null in some cases.

Taking the sample definitions above, we may write
LOAD T1,FO0

which would assemble into
MOVE T1,FOO01 (FOOX)

or :
LOAD T1,SECOND

LDB T1,[POINT 9,F001l (FO0OX) ,26]

LOAD T1,FIRSTD HLRZ T1,FO001(FO00X)

cc-11 <<For Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
Coding Conventions

Note that the macro compiles the most efficient instruction
available to reference the specified field.

The optional third argument is provided to allow some
of the location information to be specified at each
instance. For example, if the definition is

DEFSTR F00,F001, 35,36

The index may be spécified at each instance, for example,
LOAD T1,F00, (XX) .
LOAD T2,F00,(T1)

The specification given in the definition 1is concatentated
with the specification given in the reference.

STOR

The following reference functions are presently
defined:

LOAD AC,NAME,LOC 1load data itém into AC
STOR AC,NAME,LOC store databitem,from AC into memory
The data item is right-justified in the AC.

SETZRO NAME,LOC set the data item to zero
SETONE NAME,LOC‘set the data item to all ones
SETCMP NAME,LOC complement the data item
INCR NAME,LOC increment the data item
DECR NAME,LOC decrement the data item

For functions not specifically provided, the following
may be used:s '

OPSTR OP,NAME, LOC

OPSTRM OP,NAME,LOC

CC-12 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR

Coding Conventions

OP is any machine instruction written without an
address field. It will be assembled so as to reference the
specified data structure. OPSTR is used if memory 1is not
modified; OPSTRM is wused if memory 1is modified. For
example,.

OPSTRM <ADDM T1,>,FO00
to add the quantity in Tl to the data item FOO.
The following test and transfer functions are presently
defined:

JE NAME,LOC,ADDR jump to ADDR if data is #

JN NAME,LOC,ADDR jump to ADDR if data is not @

The following test and transfer functions take a 1list
of structure names (surrounded by angle-brackets) or a

single structure name. They compile code to test each data
item in the order given, and will stop as soon as the result

of the function is known (e.g., AND encounters a false
term) .
JOR NAMLST,LOC,ADDR jump to ADDR if any data item is
true (non-9)
JAND NAMLST,LOC,ADDR jump to ADDR if all data 1items are
true (non-f#)
JNOR NAMLST,LOC,ADDR jump to ADDR if all data items are
false (9)
JNAND NAMLST,LOC,ADDR jump to ADDR if any data item |is

fal se
These functions optimize mul tipl

they are adjacent in the st
location is an accumulator, furt

CC-13

(2)

e fields in the same word if
ructure list., If the final
her optimization is done.

<<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Coding Conventions

EXAMPLES

As an example of the data structure facility, consider
the typical <case of data organized into unit blocks with
pointers. to other blocks. Such a block may appear as:

Flag 1 Flag 2 Code List pointer

' '

Z

additional node data

We assume that n-word blocks will be allocated from a free
pool at execution time. The structure of the block is
declared as follows:

MSKSTR FLAGl,0,1B@

MSKSTR FLAG2,0,1Bl

DEFSTR CODE,®,17,9

DEFSTR LINK,#,35,18

DEFSTR NODDAT,1,35,36
Note that the 1location field contains only the offset
address of the word within the block; the address of the
block will be specified in an 1index at each reference.
References would appear as follows:

LOAD T1,LINK,(Tl) ;step to next node in list

STOR T2,CODE, (T1l) ;set new block code

JE FLAG1l,(Tl1) ,FLOFF ;jump if flagl is off

JAND <FLAG1l,FLAG2>,(T1l) ,FLGSON ;jump if flagl and
;£lag2 are both on

CC-14 <KFor Internal Use Only>>

DIGITAL TOPS-24 MONITOR
Coding Conventions

; O-BLOCK FORMAT

ENQLJOQ: : ENONJQ:
BACK POINTER TO FORWARD POINTER TO
LAST O-BLOCK FOR JOB NEXT Q-BLOCK FOR JOB
ENQLLQ: ENONLQ:
BACK POINTER TO FORWARD POINTER TO
LAST Q-BLOCK NEXT Q-BLOCK
ENQFLG: ENQCHN: |ENQFRK:
FLAGS pPSI FORK TO INTERRUPT
CHANNEL| WHEN REQUEST IS LOCKED
ENONR: ' ENQID:
OF RESOURCES . REQUEST ID CODE
REQUESTED FROM POOL
ENQLROQ: ENQFOQ:
BACK POINTER TO FORWARD POINTER TO
LAST Q-BLOCK OF REQUEST | NEXT Q-BLOCK OF REQUEST
ENOLBP: ' ENQGRP:
POINTER TO GROUP # FOR
LOCK-BLOCK SHARABLE REQUESTS
ENONST: | ENQJFN:
NEST COUNT JFN OF REQUEST
OR -1, -2, OR -3
ENQMSK:
POINTER TO THE
MASK BLOCK

CC-15 <<KFor Internal Use Only>>

DIGITAL ‘ TOPS-28 MONITOR
Coding Conventions

; LOCK-BLOCK FORMAT

ENQLHC : ENONHC
- BACK POINTER TO LAST POINTER TO NEXT
LOCK-BLOCK ON HASH CHAIN| LOCK-BLOCK ON HASH CHAIN
ENQLLQ: ; ENONLQ:
BACK POINTER TO FORWARD POINTER TO
LAST Q-BLOCK ON QUEUE FIRST Q-BLOCK ON QUEUE
ENQFLG: ' ENQLVL:
FLAGS LEVEL NUMBER
OF THIS LOCK
ENQTR: ’ ENQRR:
TOTAL # OF RESOURCES REMAINING NUMBER OF
IN THIS POOL RESOURCES IN THIS POOL
ENQTS:
TIME STAMP
TIME OF LAST REQUEST LOCKED
ENQFBP: ENQLT:
FREE BLOCK POINTER LONG TERM LOCK LIST
TO FREE Q-BLOCK FOR THIS JOB
ENQOFN: ENQLEN: :
OFN, OR -2, OR -3, LENGTH OF THI
OR 4700@¢# + JOB NUMBER LOCK-BLOCK
ENQNMS:
NUMBER OF WORDS 1IN
THE MASK BLOCK
ENQTXT: ASCIZ STRING
OR
500008 + USER CODE

CC-16 <<For Internal Use Only>>

DIGITAL

DEFSTR (ENQLJQ, #,17,18)
DEFSTR (ENQNJQ, #, 35, 18)

DEFSTR (ENQLLQ,1,17,18)
DEFSTR (ENQONLQ,1,35,18)
DEFSTR (ENQFLG,2,11,12)
DEFSTR (ENQCHN,2,17,6)
DEFSTR (ENQFRK, 2,35, 18)
DEFSTR (ENQNR,3,17,18)
DEFSTR (ENQID, 3,35, 18)
DEFSTR (ENQLRQ, 4,17,18)
DEFSTR (ENQFQ, 4, 35, 18)
DEFSTR (ENQLBP,5,17,18)
DEFSTR (ENQGRP, 5,35, 18)
DEFSTR (ENQJFN,6,35,18)
DEFSTR (ENQNST,6,17,18)
DEFSTR (ENQMSK,7,35,18)

DEFSTR (ENQLHC,®,17,18)
DEFSTR (ENONHC, @, 35, 18)

DEFSTR (ENQLVL, 2, 35, 18)
DEFSTR (ENQTR,3,17,18)
DEFSTR (ENQRR, 3, 35,18)
DEFSTR (ENQTS, 4,35, 36)
DEFSTR (ENQFBP,5,17,18)
DEFSTR (ENQLT, 5, 35,18)
.ENQLT==
DEFSTR (ENQOFN,6,17,18)
DEFSTR (ENQLEN, 6, 35,18)
DEFSTR (ENONMS,7,17,18)
DEFSTR (ENQTXT, 10,35, 36)
.ENTXT==10

DEFSTR (ENQOTA, ENQLST, 8, 9)
DEFSTR (ENQCNT, ENQLST,17,9)

TOPS-20 MONITOR
Coding Conventions

;BACK POINTER TO LAST Q FOR JOB

; FORWARD POINTER TO NEXT Q FOR JOB
;ENQNJQ AND ENQLJQ MUST BE IN WORD #
;BACK POINTER TO LAST Q IN LOCK QUEUE
; FORWARD POINTER TO NEXT Q OF LOCK
;FLAGS OF BLOCK (EITHER LOCK OR Q)

; PSI CHANNEL #, -1 MEANS JOB BLOCKED
; FORK NUMBER OF CREATOR OF Q-BLOCK

; # OF RESOURCES REQUESTED

;ID OF ENQ REQUEST

;BACK POINTER TO REST OF REQUEST
;FORWARD POINTER TO REST OF REQUEST
; POINTER TO LOCK-BLOCK OF THIS Q
;GROUP NUMBER OF SHARABLE REQUEST
;JFN OF ENQ REQUEST

;NEST COUNT

; POINTER TO MASK BLOCK

;BACK POINTER TO LAST LOCK IN HASH LIST
;FORWARD PNTR TO NEXT LOCK ON HASH LIST
; ENONHC AND ENQLHC MUST BE IN WORD 4@
;LEVEL NUMBER OF LOCK

; TOTAL # OF RESOURCES IN POOL

; # OF RESOURCES REMAINING IN POOL

;TIME STAMP OF LAST REQUEST TO BE LOCKED
; POINTER TO FREE Q-BLOCK

; LONG TERM LOCK LIST FOR THIS JOB
;OFFSET OF LOCK LIST ELEMENT

;OFN, -2, -3, OR 400000+J0B NUMBER

; LENGTH OF LOCK-BLOCK

;NUMBER OF WORDS IN THE MASK BLOCK

; FIRST WORD OF TEXT OR USER CODE

; INDEX INTO LOCK-BLOCK FOR TEXT BLOCK
;ENQ/DEQ QUOTA

;COUNT OF REQUESTS QUEUED UP

CC~17 <<For Internal Use Only>>

8T-00

<<KATuQ @sn TeuaalzulI I04>>

ENQ
ENQ

539
544
541
542
543
544
545
546

547

548
549
55@
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
578
571

572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

MACRO %53(1042) 13:36 28-Oct-78 Page 12

MAC 16=Nov=77 14:58
908027482 265 91 7 60 PAPBA43'
#A3275'6G2 265 16 @ 96 G8AG4AT*
600276'62 #00002 00BAN2
ana277'92 4082 @a @ 17 777776
Ag0308'32 322 01 A 68 POA305'
00G301'62 260 17 @ 4@ 600794"
#083062'92 263 17 @ 40 0600000
2AA303'62 2606 17 g 60 9808734
gAN304'32 254 08 ¢ 0 0GA340"
@003¢5'02 260 17 @ @08 002826°
0aA83096'82 254 00 & 60 04G340"
pOB3@7'62 268 17 @ 69 G610433"
peg31a'@2 254 90 0 00 A0A340'
ge9311°'92 135 02 7 @6 092256'
pOG312'92 6683 14 0 90 046000
¢96313'02 660 02 0 00 000040
$P@314'92 137 @62 ¢ 00 682256"
p6@315'92 260 17 @ 0@ 601955'
#00316'02 254 00 9 00 006348°'
#06317'62 262 91 8 17 777775
900326'62 554 02 ¢ @1 P0PBE6
60A321'82 327 @2 # €0 902274'
¢0(3322'32 554 92 0 91 660063
908@323'92 322 062 4 @0 802277"
#46324'02 275 62 9 12 @AGAGY
#P@325'¢2 321 62 0 09 #82304"
¢008325'¢2 322 92 @ 60 0@2302°'
g0@327'92 566 92 § ¢1 800683
p06330'92 554 81 3 @1 G60AGS5
@0e331'62 550 62 8 41 AGGGG3
@006332'¢2 271 @92 2 12 P0AG000
@00333'¢2 542 02 0 91 9068603
p@@334'62 2060 61 4 17 777775
#006335'02 554 91 4 @1 GA6EES
300336'082 268 17 ¢ 00 8061700"'
9A9337'02 254 00 0 60 8006341"
go3348'62 262 @1 @ 17 777776
209341'@2 279 €5 ¢ 15 0006063
pPB342'92 327 65 6 00 9046393
980@343'¢2 337 81 ¢ 17 777776
900344'92 254 00 9 00 006171%*
990345'02 263 17 ¢ 09 000000

;DEQ FUNCTION &

;ACCEPTS IN T1/ @

.
’

DEQFN#: JSP T1,SETVAR

STKVAR <DQFNAT,DQFNAQ>

SETZM DQFNOT
JUMPE T1,DQFN@D

CALL
RET
DOFN@A: CALL

VALARG

VALREQ

JRST DQFN@B

DQFN@D: CALL

HASH

JRST DQFN@B

CALL

FNDLOK

JRST DQFN@B

LOAD
TXNE

T2,ENQFLG, (T1)
P1,ENSLTL

TXO T2,EN.LTL

STOR
CALL

T2,ENQFLG, (T1)
FNDQ

JRST DQFN@B
MOVEM T1,DQFN@Q

LOAD

T2,ENQNST, (T1)

= INTERNAL MONITOR CALL
-1 = JsyYs CALL

(READ ARGUMENTS FROM USER SPACE)

;SET UP GLOBAL VARIABLES

;INITIALIZE ERROR COUNTER

;IF MONITOR CALL, ARGS ARE SET UP
;VALIDATE THE ARGUMENT BLOCK
;ILLEGAL ARGUMENT BLOCK

;VALIDATE THIS LOCK SPECIFICATION
; ERROR

;HASH THIS REQUEST

;ERROR DURING HASH -

;FIND THE LOCK-BLOCK

;NO SUCH LOCK-BLOCK

;GET FLAGS OF THE LOCK BLOCK

;IS THIS A LONG TERM LOCK

;YES, REMEMBER THIS IN THE LOCK BLOCK

;FIND THE Q-BLOCK FOR THIS FORK
;COULD NOT FIND THE Q-BLOCK
;SAVE THE Q-BLOCK ADDRESS

;GET NEST COUNT

JUMPG T2, [DECR ENQNST, (T1)

LOAD

JUMPE T2, [CALL DEQMSK

SUBI

JRST DQFNAC]
T2,ENONR, (T1)

JRST DQFNAE

MOVE T1,DQFN@Q

CALL SQDEQ
JRST DQFN@C],

T2,8(P3) -

.

;THIS WAS A NESTED ENQ, DONT DEQ IT
;GET NUMBER LOCKED IN ORIGINAL ENQ
;IF @, SEE IF DEQ'ING A MASK

;NOT COMPLETELY DEQUEUED

;0K TO DELETE THIS Q-BLOCK

;GO DELETE THIS Q-BLOCK

;STEP TO NEXT REQUEST

;SEE IF DEQ'ING ALL RESOURCES

JUMPL T2, [MOVEI T1,ENQX12

JRST DQFN@B]

JUMPE T2, [CALL SQODEQ

STOR

LOAD

LOAD

ADDI

STOR

DQFN@E: MOVE
: LOAD
CALL

JRST

JRST DQFNAC]
T2,ENQNR, (T1)
T1,ENQLBP, (T1)
T2,ENQRR, (T1)
T2,8(P3)
T2,ENQRR, (T1)
T1,DQFNEQ
T1,ENQLBP, (T1)
LOKSKD
DQFN@C

'"DQFNOB: MOVEM T1,DQFNBT

DQFN@#C: ADD Q1,EDSTP
JUMPG Q1,DQFN@A
SKIPG T1,DQFNOT
RETSKP

RET

CC-1

Sample Listings

:DEQ'ING TOO MANY RESOURCES
;DEQ'ING ALL OF THEM, DELETE Q-BLOCK

;PUT BACK NEW # OF RESOURCES LOCKED
;GET ADDRESS OF LOCK BLOCK

iGET # OF REMAINING RESOURCES
;UPDATE THE COUNT

;STORE NEW COUNT OF REMAINING RESOURCES
;GET Q-BLOCK ADDRESS

;GET ADDRESS OF THE LOCK BLOCK

;GO SCHEDULE THIS LOCK

;DONT COUNT UP ERROR COUNTER

;SAVE THIS ERROR CODE

;STEP TO THE NEXT LOCK REQUEST
;LOOP BACK FOR ALL LOCKS

;ANY ERRORS SEEN?

;NO, DEQUEUING COMPLETED

;YES, RETURN ERROR CODE IN Tl

suorjuaauo) burpod
YOLINOW @T-Sd0dL

TVLIDIA

DIGITAL TOPS-20 MONITOR
Coding Conventions

Subroutine Conventions
The following definitions are used to make subroutine
mechanics mnemonic. Reference is made to these conventions
elsewhere in this document.
CALL address
Call subroutine at address; equivalent to PUSHJ P,address
RET
Return from subroutine; ‘equivalent to POPJ P,
RETSKP
Return from subroutine and skip; equivalent to
JRST [AOS @(P) RET]

CALLRET address

Call the subroutine at address and return immediately
thereafter; equivalent to

CALL address RET
RETSKP

CALLRET assembles as JRST but should be treated as if it

assembles into several instructions and cannot be skipped
over,

AC CONVENTIONS

The facilities described here assume (in some cases) the
following AC conventions:

ACl1-AC4 temporary, may be used to pass and
return values

AC@,AC5-AC15 preserved, i.e., saved and restored
if used by subroutine

CC-19 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Coding Conventions

AC16 temporary, used as scratch by some
MACSYM facilities

ACl17 stack pointer

Named Variable Facilities

A traditional deficiency of machine 1language coding
environments 1is a 1lack of facilities for named transient
storage ("automatic", etc.). Sometimes, permanent storage
is assigned (e.g., by BLOCK statements) when no recursion is
expected. More often, ACs are used for a small number of
local variables. 1In such a case, the previous contents must
usually be saved, and a general mnemonic (e.g., Tl1l, A, X) is
usually used. In some cases, data on the stack .is
referenced, for example,

MOVE T1,-2(P)

But this statement is non-mnemonic and 1likely to fail 1if
additional storage is added to or removed from the stack.

The facilities described here provide 1local named
variable storage. Two of these allocate the storage on the
stack; the third allocates it in the ACs.

STKVAR NAMELIST

This statement allocates space on the stack and assigns
local names. The 1list consists of one or more symbols
separated by commas. Each symbol is assigned to one stack
word, If more than one word is needed for a particular
variable, a size parameter may be given enclosed with the
symbol in angle-brackets. For example,

STKVAR <AA,BB>

STKVAR <AA,<BB,3>>

CC-29 <{For Internal Use Only>>

DIGITAL TOPS-2 MONITOR
Coding Conventions

Variables declared in this way may be referenced as ordinary
memory operands, for example,

MOVE T1,AA
DPB T1,[POINT 6,BB,5]

Each variable is assembled as a negative offset from the
current stackllocation, for example,

MOVE T1,AA = MOVE T1,-2(P)

Hence, no other index may be given in the address field.
Indirection may be used if desired.

There is no explicit 1limit to the scope of the
variables defined by STKVAR, but the following logical
constraints must be observed: :

1. The stack pointer must not be <changed within the
logical scope of the wvariables, e.g., by PUSH or
PUSHJ instructions. This also implies that the
variables may not be referenced within a local
subroutine called from the declaring routine.

N
L]

The declaring routine must return with a RET or
RETSKP, This will cause the stack storage to be
automatically deallocated.

STKVAR assumes that the stack pointer is in P, and it |uses
.AlA” (AC1l6) as a temporary.

TRVAR NAMELIST

This statement allocates stack space and assigns 1local
names. It is equivalent to STKVAR, except that it uses one
additional preserved AC and eliminates some of the scope
restrictions of STKVAR. In particular, it uses .FP (ACl5)
as a frame pointer. .FP is setup (and the previous contents
saved) at the same time as the stack space is allocated.
References to the variables use .FP as the index rather than
P. This provides for additional storage to be allocated on
the stack and allows the variables to be referenced from
local subroutines. Note that all such subroutines (i.e.,
all variable references) must appear after the declaration

cc-21 <<For Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
Coding Conventions

in the source. STKVAR may be used within TRVAR, e.g., by a
local subroutine.

STKVAR and TRVAR declarations are normally placed at
the beginning of a routine. They need not be the first
statement. If a routine has two or more entry points, a
single declaration may be placed in the common path, or
several identical declarations may be used in each of the
separate paths, Care must be taken that control passes
‘through only one declaration before any variables are
referenced. For example,

sMAIN ROUTINE

ENT1: TXO F,FLAG sentry 1, set flag
JRST ENTO :join common code

ENT2: TXZ F,FLAG ;entry 2, clear flag

ENT@: TRVAR <AA,BB> ;common code, declare locals
CALL LSUBR ;call local subroutine
RET

; LOCAL SUBROUTINE

LSUBR: STKVAR <CC> s local subroutine, declare
; locals '
MOVE T1,AA ~ j;reference outer routine
; variable
MOVEM T1,CC ;reference local variable

RETSKP ;skip return

ASUBR NAMELIST

This statement is used to declare formals for a subroutine.
The namelist consists of from one to four variable names.
The arguments are passed to the subroutine in ACs Tl to T4,
and values may be returned in these same ACs. ASUBR causes
these four ACs to be stored on the stack (regardless of how
many formals are declared), and defines the variable names
as their corresponding stack locations. The return does not
restore TI1-T4. The same frame pointer AC is used by both
ASUBR and TRVAR; hence, these declarations may not be used

CC-22 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Coding Conventions

within the same routine. The scope rules are the same here
as for TRVAR.

ACVAR NAMELIST

This statement declares local storage which 1is allocated
from the set of preserved ACs. An optional size parameter
may be given for each variable. The previous contents of
the ACs are saved on the stack and automatically restored on
the next return. Variables declared by ACVAR may be
referenced as ordinary AC operands.

Miscellaneous

TMSG string

Type literal string; uses ACl, outputs to primary output.
For example,

TMSG <TYPE THIS TEXT>

JSERR

Handle unexpected JSYS error; type "2JSYS ERROR: message".
This is a single instruction subroutine call which always
returns +1.

JSHLT

Handle unexpected fatal JSYS érror; same as JSERR except it
does a HALTF instead of returning.

MOD. (DEND, DSOR)

Modulo - In assembly-time expression; this gives the
remainder of DEND divided by DSOR; e.g., MOD. 14,3 = 1.

CcC-23 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
Coding Conventions

TOPS-20 CODING STANDARDS

Subroutine Calling - JSYS

Monitor-call JSYSs may be used in user or monitor code.
All ACs are ©preserved over a JSYS call unless an explicit
statement to the contrary appears in the JSYS description.
ACs are changed over a JSYS call only when values are to be
returned to the caller.

The JSYS name appears as the opcode in the statement
performing the call. The JSYS mnemonic includes the
instruction field, so no other fields are supplied by the

Unimplemented JSYSs will invoke the illegal instruction
sequence (with error code ILINS2). Defined and implemented
JSYSs will return to caller +1 upon success, or will invoke
the 1illegal instruction sequence upon failure. The illegal
instruction sequence recognizes an ERJMP or ERCAL following
the failing JSYS and causes the appropriate action. If that
instruction is not an ERJMP or ERCAL, an illegal instruction
interrupt is requested which will be handled by the
executing fork if enabled, or otherwise, it forces fork
termination. See paragraph below on JSYS returns for proper
indication of JSYS failure.

All constant values, bits, and fields of JSYS arguments
will have mnemonics defined according to the rules in
MONSYM. The JSYS code itself uses these symbols for loading
arguments, testing bits, etc.

When writing code to implement a JSYS, the following
conventions are observed:

l. The entry point of the JSYS is defined by a global
tag consisting of a DOT concatenated with the
symbolic name of the JSYS; e.g., .GTJFN::.

2. The first statement of the JSYS code 1is MCENT
(Monitor Context ENTry). This establishes the
normal JSYS context for a "slow" JSYS. At this
writing, MCENT 1is a null macro and the JSYS entry
procedure is invoked automatically. The use of

cC-24 <<For Internal Use Only>>

DIGITAL

TOPS-2 MONITOR
Coding Conventions

MCENT is required so that this implementation may
be changed in the future if necessary.

All caller ACs are automatically preserved by the

' entry and exit procedures, Therefore, JSYS

routines are specifically required NOT to save and
restore the ACs. The contents of the caller's ACs
1-4 are copied into the callee's ACs. However, no
callee ACs are copied back to the caller's AC block
on return; one of the "previous context"
instructions (i.e., UMOVE, UMOVEM, XCTU
[instruction], etc.) must be used to return any
values to the caller. For example,

UMOVEM T1,T1 ;store monitor Tl into user Tl

A "previous context" instruction may also be used
at any time to fetch the original contents of the
caller's ACs unless they have been explicitly
changed by a previous context store operation. For
example,

UMOVE T2,T1 ;1load user Tl into monitor T2

Return from JSYS code should be effected by the
statement:

MRETNG ;Monitor RETurn Good

This transfers to the JSYS exit sequence (returning
caller +1) and should be wused to indicate
successful completion of the JSY¥S. If the JSYS
could not be completed successfully, the following
statement should be used:

ITERR errcod ;causes an Instruction Trap

;ERRor, leaves
;the error code in LSTERR

CcC-25 <<KFor Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Coding Conventions

Other statements are defined which effect JSYS
returns according to a previous convention. They

_are:
RETERR errcod ;RETurn ERRor, return
;caller +1 with error code
;left in ACl1 and LSTERR
EMRETN errcod ;Error Monitor RETurn, return

;caller +1 with error code left
:in LSTERR

These should not be used in new JSYS code but may
be needed if existing JSYSs are modified.

All error returns include an error code (mnemonic)
that will be defined in MONSYM.MAC. If the
appropriate error code has already been loaded into
ACl, the errcod field may be omitted from the above
with the contents of ACl taken as the error code.
No JSYS shall return other than +1 or instruction
trap; therefore, no occurrence of A0S A#(P) should
ever be required in JSYS code.

When invoking a JSYS error return, it 1is not
necessary to "pop" temporary quantities from the
stack. The successful return, however, should be
given only when the stack is properly cleared.

CC-26 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
Coding Conventions

Subroutine Calling

The allocation of ACs for all inter- and intra-module
subroutine calls are:

ACs 1,2,3,4 -—- General temporary, may be destroyed by a
subroutine.

ACs @, 5-15 -- Preserved, not changed by a subroutine (or
saved and restored, if necessary).

AC 16 -- Temporary, used by the JSYS call/return
procedure and reserved for use by other
call/return procedures.

AC 17 -- Global stack pointer

Call and return are effected by PUSHJ P, and POPJ P,
respectively. A set of assembler mnemonics has been defined
for subroutine mechanics as follows:

'"CALL' (= PUSHJ P,) 1is used to call
subroutines, e.g., CALL SUBR.

'RET' (= POPJ P,) is used to return +1 from
subroutines.

'RETSKP' is used to return +2 from
subroutines. RETSKP is equivalent to:

JRST [AOS @(P)
RET]

'RETBAD errcod' is used to return +1 with an
error code from a subroutine. The error code
field is optional as with JSYS error returns
above. RETBAD is equivalent to:

JRST [MOVEI A,ERRCOD
RET]

CC-27 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Coding Conventions
P
'CALLRET' may be used to call a subroutine and
return immediately thereafter. It is an
abbreviation for

CALL SUBR
RET

or
CALL SUBR
RET
RETSKP

Note that CALLRET 1is not guaranteed to be a single
instruction; therefore, it may not be skipped over. The

other returns above are guaranteed to be single
instructions.

These mnemonics are used to emphasize the FUNCTION
being performed (calling, returning) rather than the
mechanics of the function (pushing, jumping, etc.). Also,
these mnemonics could still be used even if a more general
calling standard were adopted at some time in the future.

Return may also be effected by transferring control to the
global tag R or RSKP, for example,

JUMPE A,R ;equivalent to JUMPE A, [RET]

JUMPN A,RSKP ;equivalent to JUMPN A, [RETSKP]

The general temporaries are used for passing arguments
to subroutines and returning values. ACl is used for a
single argument routine, ACs 1 and 2 for a two-argument
routine, etc.

A routine defined to return caller +2 (skip) upon

success and caller +1 (noskip) upon failure is acceptable.
Returns greater than caller +2 are not permitted.

cC-28 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Coding Conventions

AC Definitions

The following mnemonics have been chosen to be
consistent with the AC use conventions above. The preserved
ACs are divided into three groups: F (1 AC) intended for
Flags, and Ql1-03 and P1-P6 for general use. The ACs within
each group are consecutive.

4 - F 16 - Pl
1 -T1 11 - P2
2 - T2 12 - P3
3 - T3 13 - P4
4 - T4 14 - P5
5 - 0l 15 - Ph
6 - 02 16 - CX
7 - 03 17 - P

The programmer should assume that each group (Tn, ©On,
Pn,) 1is 1in ascending order (e.g., that T2=T1l+1l) though the
specific assignment of numbers may change. Explicit numeric
offsets from AC symbols (e.g., T1l+l) should NEVER be used.
Instructions using more than one AC (e.g., DIV, JFFO) must
be given an AC operand so that the other AC(s) implicitly
affected are in the same group. For example, T3 (and T4) is
OK for IDIV because T3+1=T4, but Q3 is not because Q3+1=22.

AC Saving and Restoration

Several facilities in the monitor save and
automatically restore ACs., Each of these will save all of
the indicated ACs on the stack at the point of execution and
will place a dummy return on the stack which causes these
ACs to be restored automatically when the current routine
returns, Use of these facilities eliminates the need for
matching PUSH/POP pairs at the entry at exits of routines
and eliminates the bugs which often arise from an unmatched
PUSH or POP. The available macros are:

SAVEQ - saves ACs 01-03
SAVEP - saves ACs P1-P6
SAVEPQ - saves ACs 01-Q03 and Pl-P6

SAVET - saves ACs T1-T4

CC-29 <KFor Internal Use Only>>

DIGITAL TOPS-20 MONITOR

Coding Conventions
e

Defining a different mnemonic for a preserved AC may be
of wvalue when the AC is used for a specific function by a
large body of code. However, this may cause confusion
because two different symbols may refer to the same AC
without @ the knowledge of the programmer. In smaller
programs, use of certain ACs can be restricted to specific
functions, and a global definition is appropriate. However,
a timesharing monitor is too large to accommodate all of the
possible dedicated ACs.

Therefore, when a specific function-oriented AC
definition 1is made, it shall be explicitly decided which
modules shall use the definition. Within these modules, the
usual name for the AC must be purged so that there is no
possibility of using two different symbols for the same AC.

Only preserved ACs may be used for special definitions.
Parameters to subroutines may be passed in functionally
defined ACs in the following cases:

l. On an intra-module call where the contents of the
AC is appropriate to its function definition.

2. On an inter-module call where the same definition
exists in both modules and the AC is being used for
its intended function.

A parameter may NOT be passed in a preserved AC unless
both caller and callee know it by the same name, and that
name must be a specific one related to the function the AC
is performing. '

The procedure for declaring a functionally defined AC
is:

DEFAC NEWAC,OLDAC

CC-340 < For Internal Use Only>>

DIGITAL TOPS—-28 MONITOR
Coding Conventions

This must be done at the beginning of an assembly; it
defines NEWAC to be equal to OLDAC. OLDAC must be the
mnemonic for one of the regular preserved ACs; this

mnemonic will be purged and therefore unavailable for use in
the current assembly.

An AC with a special definition should not be used for
other purposes; for example, "JFN" should not be used to
hold some quantity other than a JFN merely because it
happens to be available.

Subroutine Documentation

The following is a suggested format for documenting the
calling sequence of a JSYS or subroutine. A description of
this sort should appear at the beg inning of every
subroutine, no matter how short it may be.

;name of subroutine - function of subroutine, etc.
; T1/ description of first argument

: T2/ description of second argument

; cee

: CALL NAME or JSYSNAME

; RETURN +1: conditions giving this return,

: T1/ value(s) returned

; RETURN +2: conditions and values as above.

1, The arguments, if any, should be documented as the
contents of registers and/or variables as shown.
MONSYM mnemonics should be used when available (for
example, at JSYS entry points).

2. The actual instruction to do the <call should be
shown. It will be "CALL subname" in the case of
internal subroutines, and the single-word JSYS name
in the case of a JSYS entry point.

CC-31 <<For Internal Use Only>>

DIGITAL

o

3.

Examples:

TOPS-2@ MONITOR
Coding Conventions

The return(s) should be noted as shown; "ALWAYS"
or "NEVER" may be used as the condition where
appropriate; the +2 return need not be shown if it
does not exist; values returned should be

. described in the same form as arguments,

SIN - COMPUTES SINE OF AN ANGLE
T1l/ ANGLE IN RADIANS, FLOATING POINT

CALL SIN

ANGE
RETURN +2: SUCCESS, T1/ VALUE, FLOATING POINT

i
H
;
; RETURN +1: FAILURE, UNNORMALIZED NUMBER OR OUT OF
R
;

SIN:: .o

GJINF - GET JOB INFORMATION JSYS

GJINF

RETURN +1: ALWAYS,

T1l/ LOGGED-IN DIRECTORY NUMBER
T2/ CONNECTED DIRECTORY NUMBER
T3/ JOB NUMBER

Ne W Ne We W W W

T4/ TERMINAL NUMBER OR -1 IF DETACHED

.GJINF:: ..

Multi-Line Li‘terals

The use of multi-line 1literals 1is encouraged as a

technique

follow.

1.

for making code more readable and easier to
The following additional rules apply:

The opening bracket for a multi-line literal should
occur in the position the first character of the
address field would have occupied if the
instruction had an ordinary address. For example,

SKIPGE FOO
JRST [

cCc-32 <<For Internal Use Only>>

DIGITAL TOPS—-2@ MONITOR
Coding Conventions

2. The first and all following instructions within the
literal shall begin at the second tabstop. For
example,

JRST [MOVE A,MUMBLE ; COMMENT
JRST FIE] ; COMMENT

The tab between the open bracket and the first
opcode may be omitted if the 1line position is
already at or beyond the second tab stop. For
example,

JUMPGE A, [MOVE A,MUMBLE

3. The closing bracket shall follow the last field of
the 1last instruction (as above), and shall. be
before the comment on the same line.

4, Nesting of multi-line literals to a depth greater
than one is discouraged because of awkward
formatting problems.

5. Tags may not appear in multi-line literals.

6. There are no hard and fast rules concerning when to
use or not wuse multi-line literals. However, a
literal longer than about 14 lines is suspect.

7. Use of ".+1" is legal in a literal to return to the
main sequence.

FLOW OF CONTROL - BRANCH CONVENTIONS

Jumps, where possible, should be used to tags forward
in the <code (except in the case of loops). The tops of a
loop should be identified by a comment.

The expressions ".+1" and ".-1" are the only legal uses
of "." (this location). All other potential uses should be
avoided in favor of an explicitly defined tag.

"Global" jumps should be - avoided al together.
Higher-level 1languages do not permit them, and with good
reason. The only exceptions are jumps to well-defined and
published exit sequences, for example, R, RSKP (see
subroutine conventions, above).

CcC-33 <<For Internal Use Only>>

DIGITAL TOPS-24 MONITOR
Coding Conventions

Numbers

In general, there should be no occasion to use a
literal . number in in-line code. All parameters, bit
definitions, CONO/CONI codes, etc. should be defined
mnemonically at appropriate places. It is much easier to
err by not using mnemonics enough rather than in using them
too much; therefore, when in the slightest doubt, define a
mnemonic, ‘

CC-34 <<For Internal Use Only>>

DIGITAL TOPS-28% MONITOR
Coding Conventions

APPENDIX A

LIVING IN AN IMPERFECT WORLD

Much of the present TOPS-20 code does not conform to
this standard since it was written before the standard's
existence. Although a great deal of systematic editing has
already been done to improve the code, obvious
irregularities exist. 1In general, new code should conform
exactly to this standard even if it is being integrated with
0ld code. The following are some specific problems that may
arise, with recommended solutions:

1. AC Mnemonics

Some code uses absolute numeric ACs. If new code 1is
being integrated 1into a sequence that uses numeric ACs,
editing the existing code to use the standard mnemonics 1is
desirable, particularly for the preserved ACs. If the
programmer cannot take the time to do this, the mnemonics
Tl1-T4 should be used for ACs 1-4; other ACs should be
referenced in the same way as is done hy the existing code.

Some code uses mnemonics A,B,C,D for the temporary ACs.
These mnemonics should be used for new code being integrated
into such code, or all references can be edited to use the
standard mnemonics.

You may write some code using the standard mnemonics
for preserved ACs and then discover that the module into
which you wish to put this code has redefined some of these
ACs. The solution is one or a combination of the following:

1. Move the new code ¢to a module which does not
redefine the preserved ACs.

2. Use different preserved ACs -- ones which have not
been redefined. (Note it is not acceptable to use
an AC with a special definition for other than its
special purpose.) '

CC-35 <KFor Internal Use Only>>

DIGITAL TOPS-28 MONITOR
Coding Conventions

Clearly, code needing some of the special definitions
must be placed in a module which has these ACs defined and
must therefore use only the other preserved ACs.

Note that a value which usually resides in a special AC
need not ALWAYS reside there. For example, if code in JSYSF
needs to call a routine in PAGEM and pass a JFN index as an
argument, the JFN should be loaded into T1-T4 for the call
since PAGEM does not have JFN defined and cannot accept an
argument in it. '

2, Stack Handling

Use of the several stack variable facilities defined in
MACSYM is recommended. However, some old code uses explicit
PUSH and POP and references of the form -n(P). When notable
modifications must be made to such code, edit it to use
STKVAR or TRVAR,

CC-36 <<For Internal Use Only>>

DIGITAL 3 TOPS-20 MONITOR
Coding Conventions

MODULE TEST

Eof this lab, you are to use the coding conventions and
macros covered in the Coding Conventions module.

The exercises marked with a double star (**) are
optional.

Using MACSYM

.Using any editor with which you are familiar,
demonstrate, by writing as though for a program, the call
required to assure that the definitions in MACSYM are
available.

Data Structure Facilities

With the sample data structure given below, use the
data structure macros (e.g., DEFSTR - MSKSTR etc., and the
field mask definitions) to define names for each of the
specified fields.

BACKP: ’ FORPTR:

18 bits : 18 bits
COUNT1: FOOCNT:' CHRCNT: ; CHAR:
12 bits 10 bits 6 bits 8 bits

TEXT1l: -Text starts here
36 bits

CC-37 <<For Internal Use Only>>

- pIGITAL J ' TOPS-20 MONITOR
RO R T RS ST Coding Conventions
LOAD - STOR
‘Assumind the above‘ﬁéCfos;;Writé the code necessary to:

1. :Get FOOCNT 1nto AC1 (using the standard name of

2. Jump to location WEX if CHRCNT is not .
3. Subtract 1 from CHRCNT.

** Assume the 1location of the above table was
contained in T2: ‘

4, What would the answers to the above three questlons
be? **

Using The Coding Conventions

Using the conventions and standards of the Coding
Conventions module, write and complle a subroutlne (assume
it refers to the data structure given above and that it is

called with CALL) with documentation, which will:

\

1. Define TEM1 and TEM2 as stack variables.
2.> Save the temporary storage ACs. |
3. Put CHAR into TEML.

4, _Add 167 (octal) to BACKP.

5. Jump to location PMW (in the subroutlne) if FORPTR
is not 9.

6. If FORPTR is not o (at PMW) add 4 to it and give
return 2. :

7. Otherwise, give return 1,

. €CC-38 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Coding Conventions

TEST EVALUATION SHEET

Results of the laboratory exercises will be discussed
in class.

CcC-39 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
Coding Conventions

This page is for notes.

CC-49 <<For Internal Use Only>>

Tv-00

<<ATup osn TeUIdIUI 104>>

MACSYM
MACSYM

WO~ WN -

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 1@:47

MACRO %53A(1672) 13:55 29-Dec-78 Page 1

$<3=-UTILITIES>MACSYM.MAC.6, 8-Nov-77 1@#:47:32, EDIT BY KIRSCHEN
;MORE COPYRIGHT UPDATING...

;<3-UTILITIES>MACSYM.MAC.5, 26-Oct=77 11:06:308, EDIT BY KIRSCHEN
;UPDATE COPYRIGHT FOR RELEASE 3

;<3-UTILITIES>MACSYM.MAC.4, 21-Sep-77 15:49:41, EDIT BY OSMAN
;MOVE "PURGE" TO AFTER DEFINITION OF .RLEND
;<3~-UTILITIES>MACSYM.MAC.3, 21-Sep-77 15:35:48, EDIT BY OSMAN
;ADD .RLEND

;<3-UTILITIES>MACSYM.MAC,2, 22-Jun-77 15:4@8:57, EDIT BY MURPHY

; ADDED SETMI (XMOVEI) TO SAVEAC

;<2-UTILITIES>MACSYM.MAC.7, 27-Dec-76 17:06:19, EDIT BY HURLEY
;<2=-UTILITIES>MACSYM.MAC.6, 11-Oct-76 13:01:04, EDIT BY MURPHY

; <2-UTILITIES>MACSYM.MAC.5, 6-Oct-76 11:45:47, EDIT BY MURPHY
;<2-UTILITIES>MACSYM.MAC,.,4, 6-Oct-76 18:41:28, EDIT BY MILLER
;<2=-UTILITIES>MACSYM.MAC.3, 6-Oct-76 10:306:31, EDIT BY MILLER
;CHECK FOR ALREADY DEFINED STKVAR'S AND TRVAR'S
;<2-UTILITIES>MACSYM.MAC.2, 15-Sep-76 14:21:57, EDIT BY MURPHY
;ADDED FMSG, PERSTR, SAVEAC

;<1A-UTILITIES>MACSYM.MAC.54, 10-MAY-76 14:01:20, EDIT BY HURLEY
3 <1A=UTILITIES>MACSYM.MAC.50, 8-APR-76 11:16:25, EDIT BY HURLEY
i <1A~UTILITIES>MACSYM.MAC.49, 8-APR-76 11:11:35, EDIT BY HURLEY
;TCO 1244 - ADD .DIRECT .XTABM FOR MACRO 50 ASSEMBLIES

- +THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY ONLY BE USED

; OR COPIED IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.
i

i

;VERSION 1

IFNDEF REL,<REL==8> ;UNIVERSAL UNLESS OTHERWISE DECIARED

IFE REL,<
UNIVERSAL MACSYM COMMON MACROS AND SYMBOLS
>
IFN REL,<
TITLE MACREL SUPPORT CODE FOR MACSYM
SEARCH MONSYM
SALL

IFNDEF .PSECT,<
-DIRECT .XTABM>
>

; THE STANDARD -VERSION WORD CONSTRUCTION

; VERS - PROGRAM VERSION NUMBER

; VUPDAT - PROGRAM UPDATE NUMBER (1=A, 2=B ...)

; VEDIT - PROGRAM EDIT NUMBER

;7 VCUST - CUSTOMER EDIT CODE (@=DEC DEVELOPMENT, 1=DEC SWS, 2-7 CUST)

DEFINE PGVER. (VERS,VUPDAT,VEDIT,VCUST)<

« «PGVO==, ;3 SAVE CURRECT LOCATION AND MODE
«JBVER=:137 ; sWHERE TO PUT VERSION
LocC .JBVER ;;PUT VERSION IN STANDARD PLACE

COPYRIGHT (C) 1976, 1977, 1978 BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS,

TYLIDICA

suoriusauo) burpo)

HOLINOW @Z-SdOoL

cy-00

<<ATuQ @sn TeuIajuI 104>>

MACSYM
MACSYM

56
57
58
59
60
61
62
63
64
65
66

COMMON MACROS AND SYMBOLS
8=Nov=77 16:47

MAC

7000609
077780
000077

g00000
200000
098000

771717

MACRO %53A(1672) 13:55 29-Dec-78 Page 1-1

BYTE (3)VCUST (9)VERS (6) VUPDAT (18)VEDIT

«ORG ««PGVE

>

;MASKS FOR THE ABOVE

VISWHO==:7B2

2777777835
;ADDED VIS$XXX

; ;RESTORE LOCATION AND MODE

;Customer edit code
;Major version number
sMinor version/update
;Edit number

IVLIOIA

suorjuaauo) buipo)

HOLINOW #Z-SdOd

€y-00

<<ATup esp TeUIdSIUI 104>>

MACSYM
MACSYM

COMMON MACROS AND SYMBOLS
8=Nov=77 16:47

MAC

377777
400000
777777

777777

777777
000000
000000
777777
777777

MACRO %53A(1672) 13:55 29-Dec-~78 Page 2
MISC CONSTANTS

SUBTTL MISC CONSTANTS
MISC CONSTANTS

;PLUS INFINITY
;MINUS INFINITY
;LEFT HALF
;RIGHT HALF

; FULL WORD

JINFIN==:377777,,777777

SUOTI3jUaAUOD HBurpod

HYOLINOW @C-Sd0L

INLIDIA

v¥-00

<<ATup esn TeuidjuUI I04>>

MACSYM
MACSYM

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

COMMON MACROS AND SYMBOLS

MAC

8~Nov=77 18:47

000080
f00A01
0000082
0000063
000004
000005
200006
* 9000087
000010
000011
000012
2808013
napa14
AAna1s
800016
o8aa17
00020
noep2l
000022
3aen23
opnp24
6080825
000026
800027
#60030
p60031
2000832
200333
000034
200035
2000836
000037

990175
90@176
6396177

MACRO $53A(1672) 13:55 29-Dec-78 Page 3

MISC CONSTANTS

SUBTTL SYMBOLS FOR THE

1]

CONTROL CHARACTERS

;NULL

;BELL

;BACKSPACE

; TAB

; LINE-FEED
;VERTICAL TAB
;FORM FEED

; CARRIAGE RETURN

: ESCAPE

;CONTROL BACK SLASH

; CONTROL RIGHT BRACKET
; CONTROL CIRCONFLEX

" ;CONTROL UNDERLINE

;OLD ALTMODE
;ALTERNATE OLD ALTMODE
;DELETE

suorjuaauo)y buipod

HOLINOW @#Z-SdOd

IVLIODIA

Sy-00

<<ATup @sn tTeuaslzul iogd>>

MACS YM
MACSYM

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

COMMON MACROS AND SYMBOLS
MAC 8~Nov=77 18:47

400000 000008
2000068 000080
1000060 0000600
040008 0COPBH0
020000 000000
plO000 $ORAG0
#04000 000000
402000 00380
601000 008000
200608 0VAAGD
gecloe eoooee
000040 000080

MACRO %53A(1872) 13:55.29-Dec~78 Page 4
SYMBOLS FOR THE CONTROL CHARACTERS

SUBTTL HARDWARE BITS OF INTEREST TO USERS

;PC FLAGS

PC30OVF==: 1B0 ;OVERFLOW
;CARRY @
;CARRY 1

;FLOATING OVERFLOW

;BYTE INCREMENT SUPPRESSION
;USER MODE

;USER IOT MODE

;LAST INSTRUCTION PUBLIC
;ADDRESS FAILURE INHIBIT
+APR TRAP NUMBER

;FLOATING UNDERFLOW

;NO DIVIDE

IYLIDIA

suotrjuaauo) burpod

YOLINOW 0¢-SdOL

9v-00

<KATUQ ®sn Teuisjul 104>>

MACSYM COMMON MACROS AND SYMBOLS MACRO %53A(1672) 13:55 29=Dec~78 Page 5

MACSYM MAC 8~Nov=77 18:47 HARDWARE BITS OF INTEREST TO USERS
132
133 SUBTTL MACROS FOR FIELD MASKS
igg : ; STANDARD MACROS
136
137 ;MACROS TO HANDLE FIELD MASKS
132 {conpuwz LENGTH OF MASK, I.E. LENGTH OF LEFTMOST STRING OF ONES
149 ;REMEMBER THAT "L DOES 'JFFO', I.E. HAS VALUE OF FIRST ONE BIT IN WORD
i:é ;COMPUTE WIDTH OF MASK, I.E. LENGTH OF LEFTMOST STRING OF ONES
i:i DEFINE WID(MASK)<<"L<=<<MASK>_<"L<MASK>>>=1>>>
i:g ;COMPUTE POSITION OF MASK, I.E. BIT POSITION OF RIGHTMOST ONE IN MASK
i:g DEFINE POS (MASK)<<“L<KMASK>&<~<MASK>>>>> -
}.gg ;CONSTRUCT BYTE POINTER TO MASK
igé ~ DEFINE POINTR (LOC,MASK)<<POINT WID(MASK),LOC,POS (MASK)>>
i?i ;PUT RIGHT=JUSTIFIED VALUE INTO FIELD SPECIFIED BY nAsx
igg DEFINE FLD(VAL,MSK)<<KVAL>B<POS (MSK)>> .
igg ";MAKE VALUE BE RIGHT JUSTIFIED IN WORD.
123 DEFINE .RTJST(VAL,MSK)<<VAL>B<"D78=POS (MSK)>>
ig; ;CONSTRUCT MASK FROM BIT AA TO BIT BB. I.E. MASKB #,8 = 777B8
igi . DEFINE MASKB (AA,BB)<1B<<AA>=1>=1B<BB>>
igg ;MODULE = GIVES REMAINDER OF DENb DIVIDED BY DSOR
}23 DEFINE MOD. (DEND,DSOR)<<DEND=<DEND/DSOR>*DSOR>>

TYLIOId

suojjuaAuo) burpod

YOLINOW @#C-SdOL

Ly-00

<KATuQ @sn Teuaslzul I104>>

MACSYM
MACSYM

169
17@
171
172
173
174
175
176
177
178
179
189
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
294
205
206
207
208
2049
210
211
212
213
214
215
216
217
218
219
220

COMMON MACROS AND SYMBOLS

MAC

8-Nov=-77 18:47

MACRO %53A(1872) 13:55 29-Dec-78
MACROS FOR FIELD MASKS

SUBTTL MOVX
sMOVX - LOAD AC WITH CONSTANT

DEFINE MOVX (AC,MSK)<
« «MX1==M5K
IFDEF .PSECT,<
.IFN .,MX1,ABSOLUTE,<
MOVE AC, [MSK]>
.IF ..MX1,ABSOLUTE,<
. MX2==
IFE <..MX1>B53,<
. MX2==
MOVEI AC,..MX1>
IFE ..MX2,<
IFE <..MX1>B17,<
. MX2==
MOVSI AC,(..MX1)>>
IFE ..MX2,<
IFE <<..MX1>B53-"0777777
. MX2==
HRROI AC,<..MX1>>>
IFE ..MX2,<
IFE <<..MX1>B17-"0777777
. MX2==
HRLOI AC, (..MX1-"07777
IFE . .MX2,<
MOVE AC, [..MX1]>
>>

IFNDEF .PSECT,<
. eMX2==9
IFE <..MX1>B53,<
. o MX2==1
MOVEI AC,..MX1>
IFE ..MX2,<
IFE <..MX1>B17,<
. e MX2==
MOVSI AC, (..MX1)>>
IFE ..MXx2,<
IFE <<..MX1>B53-"0777777
o e MX2==
HRROI AC,<..MX1>>>
IFE ..MX2,<
IFE <<..MX1>B17-"0777777
.o MX2==1
HRLOI AC, (..MX1-"07777
IFE ..MX2,<
MOVE AC,[..MX1}>

PURGE ..MX1l,..MX2>

Page 6

; ;EVAL EXPRESSION IF ANY

;;FLAG SAYS HAVEN'T DONE IT YET

;;LH &, DO AS RH
;;IF HAVEN'T DONE IT YET,

;RH @, DO AS LH

;IF HAVEN'T DONE IT YET,
<

v

Vome e

;:LH -1 .
;;IF HAVEN'T DONE IT YET,
B17>,<

77)>> ;:;RH -1

i;IF STILL HAVEN'T DONE IT,
;:GIVE UP AND USE LITERAL

; ;iFLAG SAYS HAVEN'T DONE IT YET

H @, DO AS RH
F HAVEN'T DONE IT YET,

;RH @, DO AS LH

;IF HAVEN'T DONE IT YET,
<

’

;;LH -1
;; IF HAVEN'T DONE IT YET,
B17>,<

77)>> ;;RH -1
;;IF STILL HAVEN'T DONE IT,
;:;GIVE UP AND USE LITERAL

TV¥LIDIA

suorjuaAuo) butpoDd

HdOLINOW @Z-SdOd

8¥-00

<<ATuQp @sn TeuIdjUI 104>>

MACSYM COMMON MACROS AND SYMBOLS MACRO %53A(1#72) 13:55 29-Dec-78 Page 7
MACSYM MAC 8-~Nov-77 14:47 MOVX

221 ;VARIENT MNEMONICS FOR TX DEFINITIONS

222

223 DEFINE IORX (AC,MSK)<

224 . TXO AC,<MSK>>

225 :

226 DEFINE ANDX (AC,MSK)<

227 TXZ AC,<"=-<KMSK>>>

228 ’

229 DEFINE XORX (AC,MSK)<

23p TXC AC,<MSK>>

IVLIDId

suoljuaAauo) buipo)

‘HOLINOW #Z-SdOL

6¥—-00

<<KATUQ @sn TeUIa3UI 104>>

MACSYM
MACSYM

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
276
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

COMMON MACROS AND SYMBOLS

MAC

8—Nov-77 10:47

MACRO %53A(1072) 13:55 29-Dec-78 Page 8
MOVX :

SUBTTL TX -- TEST MASK

;CREATE THE TX MACRO DEFINITIONS

;THIS DOUBLE IRP CAUSES ALL COMBINATIONS OF MODIFICATION AND TESTING

;TO BE DEFINED

DEFINE ..DOTX (M,T)<
IRP M,<
IRP T,<
DEFINE TX'M'T (AC,MSK)<
« - TX(M'T, AC,<MSK>)>>>>

«.DOTX (<N,0,Z,C>,<,E,N,A>)" ;DO ALL DEFINITIONS
PURGE ..DOTX

jeTX
;ALL TX MACROS JUST CALL ..TX WHICH DOES ALL THE WORK

DEFINE ..TX{MT,AC,MSK)<
«« TX1==MSK ; EVAL EXPRESSION IF ANY
IFDEF .PSECT,<
.IFN ..TX1,ABSOLUTE,<
TD'MT AC, [MSK}>

.IF ..TX1,ABSOLUTE,< ; sMASK MUST BE TESTABLE
.o TX2== i iFLAG SAYS HAVEN'T DONE IT YET
IFE <..TX1&™0777777B17>,<
oo TX2== ;;LH @, DO AS RH
TR'MT AC,..TX1>
IFE ..TX2,< ;;IF HAVEN'T DONE IT YET,
IFE <..TX1&"0777777>,<
oo TX2==1 ;iRH 8, DO AS LH
TL'MT AC, (..TX1)>>
IFE ..TX2,< ;;IF HAVEN'T DONE IT YET,
IFE <<..TX1>B53-"0777777>,< ;;IF LH ALL ONES,
+.TX3 (MT,AC)>> ;:TRY Z,0,C SPECIAL CASES
IFE ..TX2,< ;;IF STILL HAVEN'T DONE IT,
TD'MT AC, [..TX1]> ;sMUST GIVE UP AND USE LITERAL

PURGE ..TX1,..TX2>>
IFNDEF .PSECT,<

.o TX2==0 ; ;FLAG SAYS HAVEN'T DONE IT YET
IFE <..TX1&"0777777B17>,<
oo TX2== ;;LH 8, DO AS RH
TR'MT AC,..TX1>
IFE ..TX2,< ;;IF HAVEN'T DONE IT YET,
IFE <..TX1&"0777777>,<
.o TX2== ;;RH 8, DO AS LH
TL'MT AC, (..TX1)>>
IFE ..TX2,< ;;IF HAVEN'T DONE IT YET,
IFE <<..TX1>B53-"0777777>,< ;;IF LH ALL ONES,
««TX3 (MT,AC)>> ;;TRY Z2,0,C SPECIAL CASES
IFE ..TX2,< ijiIF STILL HAVEN'T DONE IT,
TD'MT AC, [..TX1]> ;7MUST GIVE UP AND USE LITERAL

PURGE ..TX1l,..TX2>>

TVLIDIA

SUOTI3USAUO) DBUIpoOd

YJOLINOW @Z-SdOdL

8s-00

<<ATuQ @sn TeuIdjuUI 104>>

MACSYM COMMON MACROS AND SYMBOLS MACRO $53A(1872) 13:55 29-Dec-78 Page 9

MACSYM MAC 8-Nov-77 10:47 TX -- TEST MASK
286 ;SPECIAL CASE FOR LH ALL ONES
287
288 DEFINE ..TX3 (MT,AC)<
289 . IFIDN <MT><Z>,< ;;IF ZEROING WANTED
290 .. TX2==1
291 ANDI AC,"-..TX1> ;;CAN DO IT WITH ANDI
292 IFIDN <MT><0>,< ;;IF SET TO ONES WANTED
293) .. TX2==1
294 ORCMI AC,"-..TX1> 3;CAN DO IT WITH IORCM
295 IFIDN <MT><C>,< ;;IF COMPLEMENT WANTED
296 ’ oo TX2==
297 EQVI AC,"-..TX1>> ;:CAN DO IT WITH EQV

IVLIOIA

suor3juaAuo) buipo)d

YOLINOW @8¢C-SdOoL

19-00

<<ATUuQ @sp TeUILSIUI I04>>

MACSYM
MACSYM

298
299
340
341
302
303
364
385
306
307
348
309
319
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
339
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

COMMON MACROS AND SYMBOLS

MAC

8-Nov=-77

1m:47

MACRO $53A(1#72) 13:55 29-Dec-78 Page 10
TX -- TEST MASK

;s JXE
3 JXN
;IX0
;IXF

SUBTTL JX -- JUMP ON MASK

JUMP IF MASKED BITS ARE EQUAL TO @

JUMP I¥ MASKED BITS ARE NOT EQUAL TO ¢

JUMP IF MASKED BITS ARE ALL ONES

JUMP IF MASKED BITS ARE NOT ALL ONES (FALSE)

DEFINE JXE (AC,MSK,BA)<

IFDEF

+ «JX1==MSK ; ;EVAL EXPRESSION IF ANY
.PSECT,<
.IFN ..JX1,ABSOLUTE,<PRINTX MSK NOT ABSOLUTE
e JX1==8> . .
.IF ..JX1,ABSOLUTE,<
JIFA <<L..JX1>-1B@#>,< ;;IF MASK IS JUST B#,

JUMPGE AC,BA>,<

JIFP <KL JX1>+15,< ;;IF MASK IF FULL WORD,
JUMPE. AC,BA>,< 3;USE GIVEN CONDITION
TXNN {AC,..JX1)
JRST BA>>>

PURGE ..JX1>

IFNDEF .PSECT,<

LIFG <<..JX1>-1B@>,< ;;IF MASK IS JUST B®,
JUMPGE AC,BA>,<
VIFA K<L IX1>415,< ;;IF MASK IF FULL WORD,
JUMPE AC,BA>,< ; ;USE GIVEN CONDITION

TXNN (AC,..JX1)
JRST BA>>>
PURGE ..JX1>

DEFINE JXN (AC,MSK,BA)<

IFDEF

e« JX1==MSK ; iEVAL EXPRESSION IF ANY
.PSECT,<

+IFN ..JX1,ABSOLUTE,<PRINTX MSK NOT ABSOLUTE
oo IJX1==0>

.IF ..JX1,ABSOLUTE,<

«IF@ <<£..JX1>-1B@>,< ;;IF MASK IS JUST B#@,
JUMPL AC,BA>,<

LIFA << JX1>+1>,< ;:IF MASK IF FULL WORD,

JUMPN AC,BA>,< ;;USE GIVEN CONDITION

TXNE (AC,..JX1)
JRST BA>>>
PURGE ..JX1>

IFNDEF .PSECT,<

JIFR K<L IXI>-1BA>, < ;;IF MASK IS JUST 8@,
JUMPL AC,BA>,<
JIFP <KL LIXI>H1> < ;;IF MASK IF FULL WORD,
JUMPN AC,BA>,< ; ;USE GIVEN CONDITION

TXNE (AC,..JX1)
JRST BA>>>
PURGE ..JX1>

TYLIDIA

O
[e]
o,
e =3
3 0
Q gy
wn
(oI
oN
o IR
<
o =
S O
t 2
e
o3
5 O
n

¢S-00D

<<ATuQ @spn TeuiIajul 104>>

MACSYM
MACSYM

349
350
351
352
353
354
355
356
357
358
359
366
361
362
363
364
365
366
367
368
369
370
3N
372
373
374
375
376
377
378
379
380
381
382
383
382
385
386
387
388
389
3960
391
392
393
394
395
396
397
398
399
400

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 10:47

MACRO $53A(1672) 13:55 29-Dec-78 Page 11
JX -- JUMP ON MASK

DEFINE JXO (AC,MSK,BA)<
. .JX1==MSK ; ;EVAL EXPRESSION
IFDEF .PSECT,<
.IFN ,.JX1,ABSOLUTE,<PRINTX MSK NOT ABSOLUTE
e o JX1==0>
.IF ..JX1,ABSOLUTE,<
LIFB <<..JX1>-1B@>,<
JUMPL AC,BA>,<
..ONEB (..BT,MSK) ;;TEST MASK FOR ONLY ONE BIT ON
.IFP ..BT,<
SETCM . SAC,AC ; ;GENERAL CASE, GET COMPLEMENTS OF BITS
JXE (.SAC,..JX1,BA)>,< ;;JUMP IF BITS WERE ORIGINALLY ONES
TXNE AC,..JX1 ;s TEST AND JUMP
JRST BA>>>
PURGE ..JX1>
IFNDEF .PSECT,<
JIFB <<, JX1>-1B@>,<
JUMPL AC,BA>,<
..ONEB (..BT,MSK) ; ;TEST MASK FOR ONLY ONE BIT ON
LIF@ ..BT,<
SETCM .SAC,AC ; ;GENERAL CASE, GET COMPLEMENTS OF BITS
JXE (.SAC,..JX1,BA)>,< ;;JUMP IF BITS WERE ORIGINALLY ONES
TXNE AC,..JX1 ;;TEST AND JUMP
JRST BA>>>
PURGE ,.JX1>

DEFINE JXF (AC,MSK,BA)<
e oJX1==MSK ; ;EVAL EXPRESSION
IFDEF .PSECT,<
+IFN ..JX1, ABSOLUTE,<PRINTX MSK NOT ABSOLUTE
o edX1==0>
<IF ..JX1,ABSOLUTE,<
+IFP <<,.JX1>-1B8>,<
JUMPGE AC,BMA>, <
««ONEB (..BT,MSK) ;s TEST MASK FOR ONLY ONE BIT ON
.IF@ ..BT,<
SETCM .SAC,AC ; ;GENERAL CASE, GET COMPLEMENT OF BITS
JXN (.SAC,..JX1,BA)>,< ;;JUMP IF SOME ZEROS ORIGINALLY
TXNN AC,..JX1 ;;TEST AND JUMP
JRST BA>>>
PURGE ..JX1>
IFNDEF .PSECT,<
<IFB <<..JX1>-1B@>,<
’ JUMPGE AC,BA>,<
««ONEB (..BT,MSK) ;s TEST MASK FOR ONLY ONE BIT ON
"o IFP ..BT,<
SETCM .SAC,AC ; ;§GENERAL CASE, GET COMPLEMENT OF BITS
JXN (.SAC,..JX1,BA)>,< ;;JUMP IF SOME ZEROS ORIGINALLY
TXNN AC,..JX1 ; ;TEST AND JUMP
JRST BA>>>
PURGE ..JX1>

suorjusauo) burpod

YOLINOW 8C-SdOodL

TVLIODIA

€9-00

<<ATuQ @sp TeuadjUI I104>>

MACSYM COMMON MACROS AND SYMBOLS MACRO £53A(1@72) 13:55 29-Dec-78 Page 12
MACSYM MAC 8-Nov-77 1#:27 JX -~ JUMP ON MASK
a1
402 SUBTTL SUBFUNCTION MACROS
193
494 . ;. IF® CONDITION, ACTION IF CONDITION @, ACTION OTHERWISE
405
496 DEFINE ,IF@ (COND,THEN,ELSE)<
407 . .IFT==COND ; ;GET LOCAL VALUE FOR CONDITION
408 IFE ..IFT,<
499 THEN .
414 < JIFT==§> ;sRESTORE IN CASE CHANGED BY NESTED .IFg
411 : IFN ..IFT,<
412 ELSE>>
413
414 ;CASE (NUMBER,<FIRST, SECOND, ...,NTH>)
415
416 DEFINE .CASE (NUM,LIST)<
417 . .CSN==NUM
418 ..CSC==
419 IRP LIST,<
120 IFE ..CSN-..CSC,<
421 STOPI
422 : ..CAS1 (LIST)>
423 ..CSC==, .CSC+1>>
424
425 DEFINE ..CAS1 (LIST)<
426 LIST>
427 . i
428 ;TEST FOR FULL WORD, RH, LH, OR ARBITRARY BYTE
429
43¢ DEFINE ..TSIZ (SYM,MSK)<
431 SYM== ; ;ASSUME BYTE UNLESS...
432 IFE <MSK>+1,<S¥YM=8> ; ;FULL WORD IF MASK IS -1
433 IFE <MSK>-"0777777,<{SYM==1> ;;RH IF MASK IS 777777
434 IFE <MSK>-"0777777817,<SYM==2>> ;;LH IF MAST IS 777777, ,0
435
436 ;TEST FOR LOC BEING AN AC -—- SET SYM TO 1 IF AC, ¢ IF NOT AC
437
438 DEFINE ..TSAC (SYM,LOC)<
439 IFNDEF .PSECT,<
449 SyM== ; ;ASSUME NOT AC UNLESS...
441 «.TSAl==<Z LOC> ; ;LOOK AT LOC
442 IFE ..TSA1&~0777777777768,<SWM==1> ;;AC IF VALUE IS §-17
443 >
444 IFDEF .PSECT,<
445 SyM== ; ;ASSUME NOT AC UNLESS...
4446 ..TSA1==<Z LOC> ;:LOOK AT LOC
447 .IF ..TSAl,ABSOLUTE,K ;;SEE IF WE CAN TEST VALUE
448 IFE ..TSA1§&"0777777777768,<SYM==1>> ;;AC IF VALUE IS 0-17
449 PURGE .,TSAl>>
450
451 ;FUNCTION TO TEST FOR MASK CONTAINING EXACTLY ONE BIT. RETURNS
452 ;1 IFF LEFTMOST BIT AND RIGHTMOST BIT ARE SAME
453
452 DEFINE ..ONEB (SYM,MSK)<
455 SYM==<<<~<MSK>>&<MSK>>&<1B< "LLMSK> >>>>

TYLIOIA

suorjusaauo) Burpod

YOLINOW ©8Z-Sd0d

vS-00

<<KATUQ @Sl Teuaajul 104>>

MACSYM
MACSYM

456
457
458
459

COMMON MACROS AND SYMBOLS

MAC

8-Nov—-77 10:47

0008016

MACRO $53A(1872) 13:55 20-Dec-78 Page 12-1
SUBFUNCTION MACROS

;DEFAULT SCRACH AC

+SAC=16

suorjuaauo) burpo)

YOLINOW @9¢C-SdOdL

TYLIDIA

§99-20

<<ATuQ 8sn TeuUIdIUI I104>>

MACSYM
MACSYM

460
461
462
463
464
265
466
467
468
469
470
471
472
473
474
475
476

477"

478
479
489
481
482
483
484
485
486
487
488
489
490
491
492

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 1#:47

e we S w

MACRO $53A(1872) 13:55 29-Dec-78 Page 13
SUBFUNCTION MACROS

SUBTTL DEFSTR —-- DEFINE DATA STRUCTURE

;DEFINE DATA STRUCTURE

NAM - NAME OF STRUCTURE AS USED IN CODE

LOCN - ADDRESS OF DATA

POS - POSITION OF DATA WITHIN WORD (RIGHTMOST BIT NUMBER)
SIZ - SIZE OF DATA (IN BITS) WITHIN WORD

DEFINE DEFSTR (NAM,LOCN,P0S,SIZ)<
NAM==<{-1B<POS>+1B<POS-SIZ>> ;;ASSIGN SYMBOL TO HOLD MASK
IF1,<IFDEF $%'NAM,<PRINTX ?NAM ALREADY DEFINED>>
DEFINE %'NAM (OP,AC,Y,MSK)<
OP (<AC>,LOCN''Y,MSK)>> ;;DEFINE MACRO TO HOLD LOCATION

;ALTERNATE FORM OF DEFSTR —- TAKES MASK INSTEAD OF POS, SI1Z

DEFINE MSKSTR (NAM,LOCN,MASK)<
NAM==MASK ; tASSIGN SYMBOL TO HOLD MASK
IF1,<IFDEF %'NAM,<PRINTX 2?NAM ALREADY DEFINED>>
DEFINE %°'NAM (OP,AC,Y,MSK)<
OP (<AC>,LOCN''Y,MSK)>> ;;DEFINE MACRO TO HOLD LOCATION

;+¢STRO - PROCESS INSTANCE OF STRUCTURE USAGE, SINGLE STRUCTURE CASE.

DEFINE ..STR# (OP,AC,STR,Y)<
IFNDEF STR,<PRINTX STR IS NOT DEFINED
OP (<AC>,Y,.FWORD)> ;;RESERVE A WORD, ASSUME WORD MASK
IFDEF STR,<
IFNDEF %'STR,<
OP (<AC>,Y,STR)> ; ;ASSUME NO OTHER LOCN
IFDEF $'STR,<
$'STR (OP,<AC>,Y,STR)>>> ;;DO IT

TYLIDId

SUOT3UBAUOD DBUTpPOD

HOLINOW #Z-SdOod

96-0D

<<ATUQ @Sn TeUJL3UI I0d>>

MACSYM
MACSYM

493
494
495
496
497
498
499
500
501
502
503
504
585
506
507
508
509
51¢
511
512
513
514
515
516
517
518
519
520
521

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 10:47

MACRO $53A(14#72) 13:55 29-Dec-78 Page 14
DEFSTR —- DEFINE DATA STRUCTURE

;+«STR1, ..STR2, ..STR3, AND ..STR4 ARE INTERNAL MACROS FOR PROCESSING
;INSTANCES OF STRUCTURE USAGE.

DEFINE

+.+.STR1 (OP,AC,STR,Y,CLL}<

. NS== ;:INIT COUNT OF STR'S
IRP STR,<..NS=,.,NS+1> ; iCOUNT STR'S

IFE ..NS,<PRINTX ?EMPTY STRUCTURE LIST, OP>

IFE ..NS-1,< ;;THE ONE CASE, CAN DO FAST
«+STRG (OP,<AC>,<STR>,Y)>

IFG ..NS-1,< ; sMORE THAN ONE, DO GENERAL CASE

.. ICNS ;;INIT REMOTE MACRO

«.CNS (<CLL (OP,<AC>,,>) ;;CONS ON CALL AND FIRST ARGS

IRP STR,< ;D0 ALL NAMES IN LIST

IFNDEF STR,<{PRINTX STR NOT DEFINED>

IFDEF STR,<

IFNDEF $'STR,<

««CNS (<,STR,Y¥>)> ; iASSUME NO OTHER LOCN -
IFDEF %'STR,<

$'STR (..STR2,,Y,STR)> ;;STR MACRO WILL GIVE LOCN TO ..STR2
«.CNS (K)>) ;iCLOSE ARG LIST
«.GCNS ;DO THIS AND PREVIOUS NAME
.. ICNS ; tREINIT CONS .
;sPUT ON FIRST ARGS

..CNS (<CLL (OP,<AC>>)
IFNDEF $'STR,<
..CNS (<,STR,¥Y>)> ; ;ASSUME NO OTHER LOCN
IFDEF $%'STR,<
$'STR (..STR2,,Y,STR)>>> ;;PUT ON THIS ARG, END IRP
++CNS (<,,)>) ;;CLOSE ARG LIST
«+GCNS>> ; ;DO LAST CALL

suo1juaauo) burpo)d

HOLINOW @T-SdOdL

TYLIDIA

LS-0D

<<ATuQ @sn TeuId3UI I04>>

MACSYM
MACSYM

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

COMMON MACROS AND SYMBOLS
MAC

8-Nov-77 10:47

MACRO %53A(1472) 13:55 29-Dec-78 Page 15
DEFSTR -- DEFINE DATA STRUCTURE

;++.STR2 —— CALLED BY ABOVE TO APPEND STRUCTURE NAME AND LOC TO ARG LIST

DEFINE ..STR2 (AA,LOC,STR)<
«+CNS (<,STR,LOC>)> ;;CONS ON NEXT ARG PAIR

;++STR3 -- CHECK FOR ALL STRUCTURES IN SAME REGISTER

DEFINE ..STR3 (OP,AC,S1,L1,82,L2)<
IFDIF <L1><L2>,<
IFNB <L1>,<
OP (<AC>,Ll1l,..MSK) ;;DO ACCUMULATED STUFF
IFNB <L2>,<PRINTX S1 AND S2 ARE IN DIFFERENT WORDS>>
« «MSK==0> ;s INIT MASK
IFNB <L2>,<
« «MSK=, .MSK!<S52>>>

:++STR4 —- COMPARE SUCCESSIVE ITEMS, DO SEPARATE OPERATION IF
;DIFFERENT WORDS ENCOUNTERED

DEFINE ..STR4 (OP,AC,S1,L1,S2,L2)<
IFDIF <L1><L2>,< ;;IF THIS DIFFERENT FROM PREVIOUS
IFNB <L1>,<
OP (<AC>,L1,..MSK)> ;;DO PREVIOUS

« s MSK==0> ; sREINIT MASK
IFNB <L2>,<
. «MSK=, .MSK!<S2>>> ; ;ACCUMULATE MASK

i++STR5 — SAME AS ..STR4 EXCEPT GIVES EXTRA ARG IF MORE STUFF TO
;FOLLOW.

DEFINE ..STRS (OP,AC,S1,L1,82,L2)<

IFDIF <L1><L2>,< ;;IF THIS DIFFERENT FROM PREVIOUS,
IFNB <L1>,<
IFNB <L2>,< iiIF MORE TO COME,
OP'l (AC,L1,..MSK)> ;;DO VERSION 1
IFB <L2>,< ;;IF NO MORE,
OP'2 (AC,Ll1,..MSK)>> ;;DO VERSION 2
. «MSK==0> ; ;REINIT MASK
IFNB <L2>,<
« «MSK=. .MSK!<S2>>> ; ;ACCUMULATE MASK

IVLIOId

(@)
(e}
Qu
e =
3 0
Q v
n
Ql
ownN
jo IR
<
o=
30
2
e
o 3
S50
n o

85-00

<<ATuQ 9sn feurd3ul 104d>>

MACSYM COMMON MACROS AND SYMBOLS MACRO $53A(1672) 13:55 29-Dec-78 Page 16
MACSYM MAC 8-Nov-77 10:47 DEFSTR —— DEFINE DATA STRUCTURE

563

564 ; '"REMOTE' MACROS USED TO BUILD UP ARG LIST

565

566 . ;INITIALIZE CONS -- DEFINES CONS

567

568 DEFINE ,.ICNS <

569 DEFINE ..CNS (ARG)<

570 ’ ««CNS2 <ARG>,>

571

572 DEFINE ..CNS2 (NEW,OLD)<

573 ’ DEFINE ..CNS (ARG)<

574 «+CNS2 <ARG>,<OLD'NEW>>>

575 >

576

577 ;GET CONS —~ EXECUTE STRING ACCUMULATED

578

579 DEFINE ..GCNS <

580 DEFINE ..CNS2 (NEW,OLD)<

581 OLD> AKE ..CNS2 DO THE STUFF

M
GET ..CNS2 CALLED WITH THE STUFF

i
i

582 «+«CNS ()>

suoljuaAuUo0) buipod

HOLINOW #Z-SdOdL

TVLIDIA

65-00

<<ATuQ asp TeuId3UI 104>>

MACSYM
MACSYM

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
619
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 18:47

MACRO $53A(1672) 13:55 29-Dec-78 Page 17
DEFSTR —-- DEFINE DATA STRUCTURE

;SPECIFIC CASES

;LOAD, STORE

AC - AC OPERAND

STR — STRUCTURE NAME

Y - (OPTIONAL) ADDITIONAL SPECIFICATION OF DATA LOCATION

~ ~ o~

DEFINE LOAD (AC,STR,Y)<
+«+STRA (..LDB,AC,S5TR,Y)>

DEFINE ..LDB (AC,LOC,MSK)<
..TSIZ (..PST,MSK)
.CASE ..PST,<<
MOVE AC,LOC>,<
HRRZ AC,LOC>,<
HLRZ AC,LOC>,<
LDB AC, [POINTR (LOC,MSK)1>>>

DEFINE STOR (AC,STR,Y)<
+..STR@ (..DPB,AC,STR,Y)>

DEFINE ..DPB (AC,LOC,MSK)<
«.TSIZ (..PST,MSK)
.CASE ,.PST,<<
MOVEM AC,LOC>,<
HRRM AC,LOC>,<
HRLM AC,LOC>,<
DPB AC, [POINTR (LOC,MSK)]1>>>

;SET TO ZERO

DEFINE SETZRO (STR,Y)<
..S5TR! (..TQZ,,<STR>,Y,..5TR4)>

DEFINE ..TQZ (AC,LOC,MSK)<
«.TSIZ (..PST,MSK) ;iSET ..PST TO CASE NUMBER
.CASE ..PST,<K<

SETZM LOC>,< : ;FULL WORD
HLLZS LOC>,< ;iRH
HRRZS LOC>,< ;:LH
..TSAC (..ACT,LOC) ::SEE IF LOC IS AC

.IFf ..ACT,<
MOVX .SAC,MSK : ;NOT AC
ANDCAM ,SAC,LOC>,<
««TX (Z,LOC,MSK)>>>>

TYLIDIA

suoijuaauo) buipo)

YOLINOW @Z-SdO0dL

B9-00

<<ATuQ osn TeUIdIUI 104>>

MACSYM
MACSYM

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

COMMON
MAC

MACROS AND SYMBOLS MACRO %53A (1672) 13:55 29-Dec-78 Page 18
8-Nov-77 1M:47 DEFSTR —- DEFINE DATA STRUCTURE

;SET TO ONE

DEFINE SETONE (STR,Y)<
«+STR1 (..TQO,,<STR>,Y,..STR4)>

DEFINE ..TQO (AC,LOC,MSK)<
..TSIZ (..PST,MSK)
.CASE ..PST,<<
SETOM LOC>,<
HLLOS LOC>,<
HRROS LOC>,<
.+TSAC (..ACT,LOC)
.IF@ ..ACT,<
MOVX .SAC,MSK
IORM .SAC,LOC>,<
..TX (0,LOC,MSK)>>>>

;SET TO COMPLEMENT

DEFINE SETCMP (STR,Y)<
..STR1 (..TOC,,<STR>,Y,..STR4)>

DEFINE ..TQC (AC,LOC,MSK)<
««TSIZ (..PST,MSK)
.IF@ ..PST,< ;:IF FULL WORD,
SETCMM LOC>,< ;;CAN USE SETCMM
..TSAC (..ACT,LOC)" ; ;OTHERWISE, CHECK FOR AC
LIFg ..ACT,<
MOVX .SAC,MSK
XORM .SAC,LOC>,<
.. TX(C, LOC, MSK)>>>

suoijus Auo) HUIpoD

HOLINOW #Z-SdOd

IVLIDIA

15-00

<<ATuQ esn TeuUILd3UI 103>>

MACSYM
MACSYM

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 10:47

MACRO %53A(10872) 13:55 29-Dec-78 Page 19
DEFSTR —-- DEFINE DATA STRUCTURE

;INCREMENT, DECREMENT FIELD

DEFINE INCR (STR,Y)<
«+«STRA (.INCR@,,<STR>,Y)>

DEFINE .INCR# (AC,LOC,MSK)<
. .PST==MSK&<-MSK>
.IF@ ..PST-1,<

; ;GET LOWEST BIT

A0S LOC>,< ;;BIT 35, CAN USE AOS

MOVX .SAC,..PST ;;LOAD A ONE IN THE APPROPRIATE POSITION

ADDM ., SAC,LOC>>

DEFINE DECR (STR,Y)<
..STRG (.DECRgZ,,<STR>,Y¥)>

DEFINE .DECR@ (AC,LOC,MSK)<
« « PST==MSK&<{-MSK>
+IF9 ..PST-1,<

S0S LOC>,< ;sBIT 35, CAN USE SOS
MOVX .SAC,-..PST ;;LOAD -1 IN APPROPRIATE POSITION

ADDM .SAC,LOC>>

;GENERAL DEFAULT, TAKES OPCODE

DEFINE OPSTR (OP,STR,Y)<

+«+«STRA# (.OPST1,<OP>,<STR>,Y¥)>

DEFINE ,.,OPST1 (OP,LOC,MSK)<
«.TSIZ (..PST,MSK)
.IF@ ..PST,<
OP LOC>,< ; ;FULL WORD,

USE GIVEN OP DIRECTLY

«.LDB .SAC,LOC,MSK ;;OTHERWISE, GET SPECIFIED BYTE

OP .SAC>>

DEFINE OPSTRM (OP,STR,Y)<
««.STR? (.0PST2,<0P>,<STR>,Y)>

DEFINE .OPST2 (OP,LOC,MSK)<
«.TSIZ (..PST,MSK)
.IF# ..PST,<

OP LOCY,< ; sFULL WORD,
..LDB .SAC,LOC,MSK
OP .SAC

..DPB ,SAC,LOC,MSK>>

USE OP DIRECTLY

TVYLIDIA

suofljuaauo) burpod
YOLINOW @2Z-Sd0dL

¢9-00

<<ATup @sn TeuIdIUI 104>>

MACSYM COMMON MACROS AND SYMBOLS MACRO %53A(1@72) 13:55 29-Dec-78 Page 20

MACSYM MAC 8-Nov-77 14:47 DEFSTR —- DEFINE DATA STRUCTURE
706
787 ;JUMP IF ALL FIELDS ARE # (ONE REGISTER AT MOST)
708
709 DEFINE JE (STR,Y,BA)<
716 «.STR1 (..JE,<BA>,<STR>,Y,..STR3)>
711
712 DEFINE ..JE (BA,LOC,MSK)<
713 : ..TSAC (..ACT,LOC) ;;SEE IF AC
714 LIF@ ..ACT,<
715 ++TSIZ (..PST,MSK) ;;SEE WHICH CASE
716 : .CASE ..PST,<<
717 SKIPN LOC ; ;FULL WORD, TEST IN MEMORY
718 JRST BA>,<
719 HRRZ .SAC,LOC ;;RIGHT HALF, GET IT
728 JUMPE .SAC,BA>,<
721 HLRZ .SAC,LOC ~ ;;LEFT HALF, GET IT
722 JUMPE .SAC,BA>,< ~
723 MOVE .SAC,LOC ;;NOTA, GET WORD
724 JXE (.SAC,MSK,<BA>)>>>,<
725 JXE (LOC,MSK,<BA>)>>
726
727 : ;JUMP IF NOT ALL FIELDS ARE ¢ (ONE REGISTER AT MOST)
728 '
729) DEFINE JN (STR,Y,BA)<
730 ..STR1 (..JN,<BA>,<STR>,Y¥,..STR3)>
731
732 . DEFINE ..JN (BA,LOC,MSK)<
733 ..TSAC (..ACT,LOC) ;3SEE IF AC
734 .IF@ ..ACT,<
735 ..TSIZ (..PST,MSK)
736 .CASE ..PST,<<
737 SKIPE LOC ;;FULL WORD, TEST IN MEMORY
738 : JRST BA>,<
739 . HRRZ .SAC,LOC ;;RIGHT HALF, GET IT
740 JUMPN . SAC,BA>,<
741 HLRZ .SAC,LOC ;;LEFT HALF, GET IT
742 JUMPN .SAC,BA>,<
743 MOVE .SAC,LOC ;;NOTA, GET WORD
744 JXN - (.SAC,MSK, <BA>)>>>,<
745 JXN (LOC,MSK,<BA>)>>

TYLIDIA

suoijuaauo) buipo)d
@C-SdoL

YOLINOW

€9-00

<KATUuQ @sn Teuldjul I04>>

MACSYM
MACSYM

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 1@:47

MACRO %53A(1#72) 13:55 29-Dec-78
DEFSTR -- DEFINE DATA STRUCTURE

page 21

jJOR — JUMP ON 'OR' OF ALL FIELDS

DEFINE JOR (STR,Y,BA)<

+«.STR1 (..JN,<BA>,<STR>,Y,..STR4)>

;JNAND - JUMP ON NOT 'AND' OF ALL FIELDS

DEFINE JNAND (STR,Y,BA)<

«.STR1 (..JNA3,<BA>,<STR>,Y,..STR4)>

DEFINE ..JNA3 (BA,LOC,MSK)<
..TSAC (..ACT,LOC)
.IFG ..ACT,<
SETCM .SAC, LOC
JXN (.SAC,MSK,<BA>)>,<
JXF (LOC,MSK,<BA>)>>

;;NOT AC, GET COMPLEMENT OF WORD
;;JUMP IF ANY BITS ORIGINALLY OFF
; ;DO AC CASE

suorjuaauo) burpo)
HOLINOW @Z-SdOlL

TVYLIOIA

¥9-00

<<ATUQ °osM TeUIIIUI J0od>>

MACSYM COMMON MACROS AND SYMBOLS MACRO $53A(1072) 13:55 29-Dec-78 Page 22

MACSYM MAC 8-Nov-77 18:47 DEFSTR -- DEFINE DATA STRUCTURE
763
764 ;JAND - JUMP ON 'AND' OF ALL FIELDS
765
766 . DEFINE JAND (STR,Y,BA,3$TG)<
767 «+STR1 (..JAN,<8TG,<BA>>,<STR>,Y,..STR5)
768 3TG:>
769
778 DEFINE ..JAN1 (BAl,BA2,LOC,MSK)<
771 ..JNA3 (BAl,LOC,MSK)> ;;DO JUMP NAND TO LOCAL TAG
772
773 ’ DEFINE ..JAN2 (BAl,BA2,LOC,MSK)<
774 ..TSAC (..ACT,LOC)
775 .IFP ..ACT,<
776 SETCM .SAC,LOC ; sNOT AC, GET COMPLEMENT OF WORD -
777 . JXE (.SAC,MSK,<BA2>)>,< ;;JUMP IF ALL BITS ORIGINALLY ONES
778 JXO (LOC,MSK,<BA2>)>> ;;DO AC CASE
779 -
788 ;JNOR - JUMP ON NOT 'OR' OF ALL FIELDS
781
782 DEFINE JNOR (STR,Y,BA,%TG)<
783) ..STR1 (..JNO,<%TG,<BA>>,<STR>,Y,..STRS)
784 $TG:>
785
786 . DEFINE ..JNO1 (BAl,BA2,LOC,MSK)<
787 ..JN (BAl,LOC,MSK)> ;;DO JUMP OR TO LOCAL TAG
788
789 . DEFINE ..JNO2 (BAl,BA2,LOC,MSK)<
790 ..JE (<BA2>,LOC,MSK)> ;;DO JUMP NOR TO GIVEN TAG
791 ,
792 ;TEST AND MODIFY GROUP USING DEFINED STRUCTURES. TEST-ONLY AND
793 ;MODIFY-ONLY PROVIDED FOR COMPLETENESS.
794 ,
795 DEFINE ..DOTY (M,T)< ; ;MACRO TO DEFINE ALL CASES
796 . IRP M,<
797 IRP T,<
798 DEFINE TQ'M'T (STR,Y)<
799 ««STR1 (..TY,M'T,<STR>,Y,..STR3)>>>>
800
861 ..DOTY (<N,0,Z,C>,<,E,N,A>)" ;DO 16 DEFINES
802 PURGE ..DOTY
803
804 ;ALL TY MACROS CALL ..TY AFTER INITIAL STRUCTURE PROCESSING
865
806 DEFINE ..TY (MT,LOC,MSK)<
887 ..TSAC (..ACT,LOC) :3SEE IF LOC IS AC
808 .IFB ..ACT,<
809 PRINTX ?TQ'MT - LOC NOT IN AC>,<
810 TX'MT LOC,MSK>>

IVLIDIA

suojjuaauo)d bugpo)d

YOLINOW #Z-Sd0d

99-0D

<<KATuQ @sn TeuasjuI 104>>

MACSWM
MACSYM

811
812
813
814
815
816
817
818
819
826
821
822
823
824
825
826
827
828
829
839
831
832
833
834
835
836
837
818
839
848
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

COMMON MACROS AND SYMBOLS
8-Nov-77 18:47

MAC

260740
263740

254000

0A3801
000002

" pepnn3

pAGB16
aneel7

2300080
pAeean

000000

MACRO %53A(1072) 13:55 29-Dec-78 Page 23
DEFSTR —-- DEFINE DATA STRUCTURE
SUBTTL CALL, RET, JSERR

IFE REL,<
EXTERN JSERR@, JSHLT#, R, RSKP>

;CALL AND RETURN

.ACl==1 ;ACS FOR JSYS ARGS

+AC2==

.AC3==

.Al6==16 ; TEMP FOR STKVAR AND TRVAR
pP=17 ;STACK POINTER

OPDEF CALL {PUSHJ P,#]
OPDEF RET [POPJ P, @]

;ABBREVIATION FOR CALL, RET, RETSKP
OPDEF CALLRET (JRST]

DEFINE RETSKP <
JRST RSKP>

;MACRO TO PRINT MESSAGE ON TERMINAL

DEFINE TMSG ($MSG)<
HRROI .AC1,[ASCIZ \$MSG\]
PSOUT>

iMACRO TO OUTPUT MESSAGE TO FILE
; ASSUMES JFN ALREADY IN .ACl

DEFINE FMSG ($MSG)<
HRROI .AC2, [ASCIZ \$MSG\]
MOVEI .AC3,8
SouT>

;MACRO TO PRINT MESSAGE FOR LAST ERROR, RETURNS +1
DEFINE PERSTR ($MSG)<
IFNB <S$MSG>,<
TMSG <SMSG>>
CALL JSMSG@>
;MACRO TO PRINT JSYS ERROR MESSAGE, RETURNS +1 ALWAYS

DEFINE JSERR<
CALL JSERR®>

sMACRO FOR FATAL JSYS ERROR, PRINTS MSG THEN HALTS

DEFINE JSHLT<
CALL JSHLT#>

suotjjuaauo)y burpod

YOLINOW @C-SdOd

TYLIDIA

99-00

<<ATuQ @sn TeuIs3UI 104>>

MACSYM COMMON MACROS AND SYMBOLS MACRO $53A(1672) 13:55 29-Dec-78 Page 23-1
MACSYM MAC 8-Nov-77 10:47 CALL, RET, JSERR

866 ;PRINT ERROR MESSAGE IF JSYS FAILS

867

868 DEF INE ERMSG (TEXT) ,<

869 . ERJMP [TMSG <? TEXT>

878 JSHLT] .

871 >

872

873 " ;MAKE SYMBOLS EXTERN IF NOT ALREADY DEFINED

874

875 DEFINE EXT (SYM)<

876 ' IF2,<

877 IRP SYM,<

878 IFNDEF SYM,<EXTERN SWM

879 SUPPRE SYM>>>>

IVLIDIA

SuoT3juaAuo) HBurpod

YOLINOW @Z-SdOL

L9-00

<<ATuQ @sn Teuiszul Io04>>

MACSYM
MACSYM

880
881
882
883
884
885
886
887
888
889
899
891
892
893
894
895
896
897
898
899
90¢
991
962
963
964
905
9286
967
968
969
910
911
912
913
914
915
916
917
918
919

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 18:47

vowp

o

MACRO $53A (1872) 13:55 29-Dec-78 Page 24
CALL, RET, JSERR

SUBTTL SUPPORT CODE FOR JSERR

IFN REL,<

> W N

;JSYS ERROR HANDLER
; CALL JSERR#
; RETURNS +1: ALWAYS, CAN BE USED IN +1 RETURN OF JSYS'S

JSERR@: :MOVEI A, .PRIIN

CPIBF ;CLEAR TYPAHEAD
MOVEI A,.PRIOU)

DOBE ;WAIT FOR PREVIOUS OUTPUT TO FINISH
TMSG <

? JSYS ERROR: >
JSMSG@: :MOVEI A, .PRIOU
HRLOI B, .FHSLF ;SAY THIS FORK ,, LAST ERROR
SETZ C, :
ERSTR
JFCL
JFCL
TMSG <

RET

;FATAL JSYS ERROR - PRINT MESSAGE AND HALT
; CALL JSHLT@
; RETURNS: NEVER

JSHLT@: :CALL JSERRS ;PRINT THE MSG
JSHLT1: HALTF
TMSG <PROGRAM CANNOT CONTINUE
>
JRST JSHLT1 ;HALT AGAIN IF CONTINUED
> ' ;END OF IFN REL,

TYLIDIA

SUOIjuUa AUOD DPUTPOD

YOLINOW @¢-SdOod

89-00

<<ATup @sn TeuiszuUI 104>>

MACSYM
MACSYM

9240
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
.938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 1@: 47

MACRO %53A(1872) 13:55 29-Dec-78 Page 25
SUPPORT CODE FOR JSERR

SUBTTL STKVAR - STACK VARIABLE FACILITY

;MACRO FOR ALLOCATING VARIABLES ON THE STACK. ITS ARGUMENT IS

;A LIST OF ITEMS. EACH ITEM MAY BE:

1. A SINGLE VARIABLE WHICH WILL BE ALLOCATED ONE WORD

2, A VARIABLE AND SIZE PARAMETER WRITTEN AS <VAR,SIZ>, THE
VARIABLE WILL BE ALLOCATED THE SPECIFIED NUMBER OF WORDS.

;RETURN FROM A SUBROUTINE USING THIS FACILITY MUST BE VIA

sRET OR RETSKP. A DUMMY RETURN WHICH FIXES UP THE STACK IS PUT ON

;THE STACK AT THE POINT THE STKVAR IS ENCOUNTERED.

~ene .

iWITHIN THE RANGE OF A STKVAR, PUSH/POP CANNOT BE USED AS THEY WILL
;CAUSE THE VARIABLES (WHICH ARE DEFINED AS RELATIVE STACK LOCATIONS)

;TO REFERENCE THE WRONG PLACE.
;TYPICAL USE: STKVAR <AA,BB,<00Q,5>,22>

IFE REL,< .
EXTERN ,STKST, .STKRT>

DEFINE STKVAR (ARGS)<
..STKR==18 ; JREMEMBER RADIX
RADIX 8
« - STKN==
IRP ARGS,<

.STKV1 (ARGS)>
JSP .Alh, .STKST
..STKN,,..STKN
RADIX ..STKR
PURGE ..STKN, ..STKR, ..STKQ
>

;INTERMEDIATE MACRO TO PEAL OFF ANGLEBRACKETS IF ANY

DEFINE .STKV1 (ARG)<
.STKV2 (ARG)>

;INTERMEDIATE MACRO TO CALCULATE OFFSET AND COUNT VARIABLES

DEFINE ,STKV2 (VAR,SIZ)<
IFB <SIZ>,<..STKN==,,STKN+1>
IFNB <SIZ>,<..STKN==,,STKN+SIZ>
o« STKQ==, . STKN+1
.STKV3 (VAR,\..STKQ)>

; INNERMOST MACRO TO DEFINE VARIABLE

DEFINE .STKV3 (VAR,LOC)<
IFDEF VAR,<.IF VAR,SYMBOL,<PRINTX STKVAR VAR ALREADY DEFINED>>
DEFINE VAR<-"0'LOC(P)>

$'VAR==<Z VAR>> ;SYMBOL FOR DDT

suotjuaauo) buipod

YOLINOW @C-SdOd

IVLIOIA

69-00

<<ATuQ @sM TeUIBIUI 104d>>

MACSYM COMMON MACROS AND SYMBOLS MACRO %53A(1#72) 13:55 29-Dec-78 Page 26
MACSYM MAC 8-Nov-77 10:47 STKVAR ~ STACK VARIABLE FACILITY
970
971 IFN REL,<
972
973 ;COMMON ENTRY AND EXIT ROUTINE FOR STACK VARIABLE
974
975 .STKST::ADD P,0(.Al6) ;BUMP STACK FOR VARIABLES USED
976 JUMPGE P, STKSOV ;TEST FOR STACK OVERFLOW
977 STKSEl: PUSH P,0(.Al6) ;SAVE BLOCK SIZE FOR RETURN
978 PUSHJ P,1(.Al6) ;CONTINUE ROUTINE, EXIT TO .+1
979 , .STKRT::JRST STKRT@ ;NON-SKIP RETURN COMES HERE
980 POP P,.Al6 ;SKIP RETURN COMES HERE-RECOVER COUNT
981 SUB P, .AlA ;ADJUST STACK TO REMOVE BLOCK
982 AOS 8 (P) ;NOW DO SKIP RETURN
983 RET
984
985 STKRT@: POP P, .Al6 ;RECOVER COUNT
986 SUB P,.Al% ;ADJUST STACK TO REMOVE BLOCK
987 RET ;DO NON-SKIP RETURN
988
989 STKSOV: SUB P,#(.A16) ;STACK OVERFLOW- UNDO ADD
990 HLL .Al6,0(.Al5) ;SETUP TO DO MULTIPLE PUSH, GET COUNT
991 STKSOl: PUSH P, (@] ;DO ONE PUSH AT A TIME, GET REGULAR
992 SUB .Al4,[1,,0] ; ACTION ON OVERFLOW
993 TLNE .Al6,777777 ;COUNT DOWN TO #?
994 JRST STKSO1 ;NO, KEEP PUSHING
995 JRST STKSE1
996 > ;END OF IFN REL,

IVLIDId

suotrjuaauo) butrpo)d
YOLINOW @Z-SdOL

8L-0D

<<KATup @sn TeuUad®3UI 10d>>

MACSYM
MACSYM

997

998

999
1000
1e01
1002
1683
1604
16065
1906
1007
1048
1909
1919
1911
1812
1013
1914
1815
1816
1817

1018

1019
1020
1021
1022
1023
1824
1925
1926
1827
1928
1929
1030
1831
1632
1433
1934
1835
1036
1837
1438
1939
1440
1941
1042
1443
1944
1945
1946
1947

COMMON MACROS AND SYMBOLS

MAC

8-Nov-77 16:47

#0eA1S

MACRO %53A(1872) 13:55 29-Dec-78 Page 27
STKVAR - STACK VARIABLE FACILITY

SUBTTL TRVAR - TRANSIENT VARIABLE FACILITY

; TRANSIENT (STACK) VARIABLE FACILITY - EQUIVALENT TO STKVAR
JEXCEPT ALLOWS VARIABLES TO BE USED WITHIN LOWER LEVEL ROUTINES
;AND AFTER OTHER THINGS HAVE BEEN PUSHED ON STACK.

iN.B. USES .FP AS FRAME POINTER - MUST NOT BE CHANGED WHILE

;VARIABLES IN USE.
«FP==15 ;DEFAULT FRAME POINTER

IFE REL,<
EXTERN ,TRSET, .TRRET, .ASSET, .ASRET>

DEFINE TRVAR (VARS)<

.. TRR==18 ; JREMEMBER CURRENT RADIX
RADIX 8) -
. NV== ;;INIT COUNT OF STACK WORDS
IRP VARS,<

.TRV1l (VARS)> - ; ;PROCESS LIST

JSP .Al6,.TRSET
«NV-1,,..NV-1

RADIX ..TRR ;

PURGE ..TRR,..NV> | H

; sALLOCATE STACK SPACE, SETUP .FP

sRESTORE RADIX
;CLEAN UP

DEFINE .TRV1 (VAR)<
.TRV2 (VAR)> ;;PEEL OFF ANGLEBRACKETS IF ANY

DEFINE .TRV2 (NAM,SIZ)<
«TRV3 (NAM,\..NV)
IFB <SIZ>,<..NV=,.,NV+1l>
IFNB <SIZ>,<..NV=,.NV+SIZ>>

3 :DEFINE VARIABLE

DEFINE .TRV3 (NAM,LOC)< .

IFDEF NAM,<.IF NAM,SYMBOL,<PRINTX TRVAR NAM ALREADY DEFINED>>
DEFINE NAM<"O'LOC(.FP)>
$'NAM==<Z NAM>> ; ;SYMBOL FOR DDT

;AC SUBROUTINE - ENTRY FOR SUBROUTINE CALLED WITH 1-4 ARGS IN ACS T1-T4.
;USES .FP AS FRAME PTR LIKE TRVAR

DEFINE ASUBR (ARGS)<

«+ TRR==10 ; ;SAVE RADIX
RADIX 8
o« o NV==1 ;:INIT ARG COUNT
IRP ARGS,<
«TRV1 (ARGS)> ; ;DEFINE ARG SYMBOL
IFG ..NV-5,<PRINTX 2TOO MANY ARGUMENTS: ARGS>
JSP .Al6, .ASSET ; ;SETUP STACK
RADIX ..TRR ; ;RESTORE RADIX

PURGE ..TRR,..NV>

suor3juaauo) burpod

HOLINOW ¢Z-Sd0OL

TYLIDIA

TL-D0D

<<ATuQ esn Teuadjul 104>>

MACSYM
MACSYM

1048
1949
1450
1951
1052
1853
1654
1855
1856
1857
1058
1959
1068
1061
1062
1063
1064
1065
1666
1067
1868
1369
1070
1971
1872
1973
10874
1075
1076
1677
1078
1679
1080
1981
1082
1083
1084
1085
1086
1087
1088
1089
1690
1091
1092
1493
1094

COMMON MACROS AND SYMBOLS
MAC 8-Nov-77 1#:47

MACRO $53A(1A72) 13:55 29-Dec-78 Page 28
TRVAR - TRANSIENT VARIABLE FACILITY

IFN REL,<
;SUPPORT ROUTINE FOR TRVAR

.TRSET::PUSH P, .FP
MOVE .FP,P
ADD P,#(.Al6)
JUMPGE P, TRSOV
TRSET1: PUSHJ P,1(.Al6)

«TRRET::JRST [MOVEM .FP,P

POP P,.FP
POPJ P,
MOVEM .FP,P
POP P, .FP
A0S #(P)

POPJ P,

TRSOV: SUB P,#(.Al6)
HLL .Al6,8(.Al6)
TRSOV1: PUSH P, (4]
SUB .Al6,[1,,0]
TLNE .Al16,777777
JRST TRSOV1
JRST TRSET1

;SUPPORT ROUTINE FOR ASUBR
.ASSET::PUSH P, .FP

MOVE .FP,P
ADD P,[4,,4]

JUMPGE P,[suB P, [4,,4)]

PUSH P,A
PUSH P,B
PUSH P,C
PUSH P,D

JRST ASSET1]

;PRESERVE OLD .FP
;SETUP FRAME PTR
;ALLOCATE SPACE

;CONTINUE ROUTINE, EXIT VIA
;CLEAR STACK

;RESTORE OLD .FP

;HERE IF SKIP RETURN

;PASS SKIP RETURN

;STACK OVERFLOW - UNDO ADD
;GET COUNT

;DO ONE PUSH AT A TIME, GET REGULAR

; ACTION ON OVERFLOW
;COUNT TO @72

;NO, KEEP PUSHING
;CONTINUE SETUP

;SAVE ,FP

;SETUP FRAME POINTER
;ADJUST STACK

; PROBABLE OVERFLOW

o+l

;DO WITH PUSH, GET INTERRUPT...

DMOVEM A,1l(.FP) ;SAVE ARGS

DMOVEM C,3(.FP)
ASSETl: PUSHJ P,8(.Al6)

+ASRET:: JRST [MOVEM .FP,P

POP P, .FP
POPJ P,]
MOVEM ,FP, P
POP P, .FP
AOS 6(P)
POPJ P,

;CONTINUE ROUTINE

;NO-SKIP RETURN, CLEAR STACK

;SKIP RETURN, CLEAR STZCK

;END OF IFN REL,

TYLIDIA

SuUoOT3lusAUO0) burpo)

HOLINOW @Z-SdOL

¢L=0D

((A[UO oSl Teuasajul 1o0d>>

MACSYM COMMON MACROS AND SYMBOLS

MACSYM MAC

1095
1096
1097
1998
1899
1160
1191
1102
1163
1104
1105
1166
1197
1108
1169
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1128
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
114¢
1141
1142
1143
1144
1145
1146
1147
1148
1149

8-Nov-77 18:47

@808005
006818

MACRO %53A(1672) 13:55 29-Dec-78 Page 29
TRVAR - TRANSIENT VARIABLE FACILITY

;AC VARIABLE FACILITY

IFE REL,<
EXTERN .SAV1, .SAV2,.SAV3, .SAV4,.SAVE)>

+«FPAC==

"« NPAC==14

DEFINE ACVAR (LIST)<

DEFINE

« o NAC==

IRP LIST,<
.ACV1 (LIST)>

+.ACV3 (\..NAC)>

«ACV1 (ITEM)<
<ACV2 (ITEM)>

DEFINE .ACV2 (NAM,SIZ)<

NAM=,FPAC+. .NAC

;FIRST PRESERVED AC
;NUMBER OF PRESERVED ACS

;;INIT NUMBER OF ACS USED
; :PROCESS ITEMS
; :SAVE ACS USED

i+ PEEL OFF ANGLEBRACKETS IF_ ANY

; ;DEFINE VARIABLE

IFB <SIZ>,<..NAC=..NAC+1>
IFNB <SIZ>,<..NAC=,.NAC+SIZ>>

DEFINE .ACV3 (N)<
IFG N-,NPAC,<PRINTX 2TOO MANY ACS USED>

IFLE N-4,<

JSP .Al6,.SAV'N>

IFG N-4,<

JSP .Al6, .SAV8>>

IFN REL,<

;SUPPORT ROUTINES FOR AC VARIABLE FACILITY

+«SAV1:

HE

«SAV2::

PUSH P, .FPAC
PUSHJ P,#(.Al6
SKIPA .
A0S -1(P)

POP P, .FPAC
POPJ P,

PUSH P, .FPAC
PUSH P, .FPAC+1
PUSHJ P,8(.Al6)
SKIPA

A0S -2(P)

POP P, .FPAC+1
POP P, .FPAC
POPJ P,

PUSH P, .FPAC

PUSH P, .FPAC+1
PUSH P, .FPAC+2
PUSH P, .FPAC+3
PUSHJ P,B8(.Al6)

; iSAVE ACTUAL NUMBER USED

;3SAVE ALL

" ;CONTINUE PROGRAM

suotljuaAuo0) burpo)

HOLINOW @Z-SdOL

IVLIOIA

€L-00

<<ATup @osp TeuILd3uUI 104>>

MACSYM
MACSYM

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1179
1171
1172
1173

COMMON MACROS AND SYMBOLS MACRO $53A(1#72) 13:55 29-Dec-78 Page 29-1
MAC 8-Nov-77 14:47 TRVAR - TRANSIENT VARIABLE FACILITY
SKIPA
A0S -4 (P)

.SAV8::

POP P, .FPAC+3
POP P, .FPAC+2
POP P, .FPAC+1
POP P, .FPAC
POPJ P,

ADD P,[10,,16]
JUMPGE P, [HALT .]
DMOVEM .FPAC,-7 (P)
DMOVEM .FPAC+2,-5 (P)
DMOVEM .FPAC+4,-3 (P)
DMOVEM .FPAC+6, -1 (P)
PUSHJ P, 8 (.A16)
SKIPA
AOS -14 (P)
DMOVE .FPAC+6,-1(P)
DMOVE .FPAC+4,-3(P)
DMOVE .FPAC+2,-5(P)
DMOVE .FPAC, -7 (P)
sus P, (14,,1d]
POPJ P,

TINLIDIA

suorjuaauo) buipod

HOLINOW ©@C-SdOd

¥L-0D

<<ATuQ oS TeUIS3UI 104>>

MACSYM
MACSYM

1174
1175
1176
1177

1178
1179
1189
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1292
1203
1204
1205
1286
1207

COMMON MACROS AND SYMBOLS
MAC 8-Nov-77 18:47

peaooe’

NO ERRORS DETECTED

PROGRAM BREAK IS @A¢0000
CPU TIME USED ¢0:03.083

24p CORE USED

MACRO $53A(1872) 13:55 29~Dec~78 Page 30
TRVAR - TRANSIENT VARIABLE FACILITY

;AC SAVE FACILITY - COMPILES OPEN PUSH'S

: SAVEAC <LIST-OF-ACS>

i
;DUMMY ROUTINE PUT ON STACK TO CAUSE AUTOMATIC RESTORE. SUPPORTS

; +1 OR +2 RETURNS.

DEFINE SAVEAC (ACS)<
«NAC==
IRP ACS,<
PUSH P,ACS
.NAC=,NAC+1>
.N1l==_NAC
SETMI .Al6, [CAIA
A0S -.N1(P)
IRP ACS,<
+N1=,N1-1

;SAVE AN AC
;COUNT THEM

; ;STACK DUMMY RETURN
; HANDLE SKIP RETURN

MOVE ACS,-.N1(P)> ;;RESTORE AN AC
SUB P, [.NAC,,.NAC] ;;CLEAR STACK

POPJ P,]
PUSH P, .Al6>

IFN REL,<
;STANDARD RETURNS

RSKP:: AOS #(P)
R:: RET
>

LIT
IFN REL,<
«RLEND==: .~1
> .
IF2,<PURGE REL>
END

;sFINAL RETURN

;END OF IFN REL,
;MAKE SURE LITERALS COME BEFORE END MARK
sMARK END OF CODE IN MACREL

;FLUSH REL FROM UNIV FILE

SUOT3UaAUO) bulpo)

YOLINOW @¢-Sdod

TVLIODIA

SL-0D

<<ATup @spn TeuIalzuI I104>>

MACSYM
MACSYM

CALL
CALLRE
JSERR#
JSHLTA
P
PC¥AFI
PCRATN
PC$BIS
PCYCYH
PC3CY1
PCSFOV
PCRFUF
PCSLIP
PCENDV
PC$OVF
PCUIO
PCRUSR
R

RET
RSKP
VI $EDN
VISMAJ
VISMIN
VISWHO
.Al6
.AC1
.AC2
.AC3
.ASRET
.ASSET
.CHAL2
.CHALT
.CHBEL
.CHBSP
.CHCBS
. CHCCF
.CHCNA
.CHCNB
.CHCNC
.CHCND
.CHCNE
.CHCNF
- CHCNN
. CHCNO
.CHCNP
.CHCNQ
. CHCNR
.CHCNS
. CHCNT
. CHCNU
. CHCNV
. CHCNW
.CHCNX
. CHCNY
.CHCNZ

COMMON
MAC

260740
254400

oaLABH
ana6ag
020000
200000
100000
n40000
230100
an2000
o0anan
490000
ARaBeen
100006

263744
277708

oeae77
700080

MACROS AND SYMBOLS

8-Nov-77 18:47

[A4d41
(A dadd]
naeaan
AAGaeaR
oanaL7
naaaaa
200000
onenBe
003800
oR0A00
oenann
280000
pPoeoe
poneen
oa0000
200808
200000
200060
2030030
aea0a0
777777
200000
noagea
aoAnee
nagBle
200001
nenae2
200003
pAGeaAa
200000
AABL76
anaL75s
aa0a67
neaaLa
AAgA34
nena36
nenoal
200802
300003
poeana
300005
Anpase
2000816
opeal17
000820
700021
anan22
008023
nepa2a
0eaa2s
BAAA26
noeaB27
nana3a
0nge3l
AARA32

ext
ext

sin
sin
sin
sin
sin

"sin

sin
sin
sin
sin
sin
sin
ext

ext
sin
sin
sin
sin
spd
spd
spd
spd
ext
ext
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

- CHCRB
« CHCRT
.CHCUN
.CHDEL
.CHESC
.CHFFD
«CHLFD

«CHNUL -

.CHTAB
.CHVTB
.FP

. FPAC
+«FWORD
- INFIN
. LHALF
«MINFI
«NPAC
« RHALF
« SAC
.SAV]1
.SAV2
.SAV3
. SAV4
.SAVS8
+«STKRT
+«STKST

. TRRET:

. TRSET

MACRO %53A(1972) 13:55 29-Dec-78 Page S-1

SYMBOL TABLE

777777
377777
777777
400000

AABA35
aanaLs
AABA37
ane177
AAAA33
AAAALA
AnaglL2
AAaARA
aaAA11
nena13
oaAn1S
aABanas
777777
777777
anoaan
aaaean
3000610
777777
2ane16
3a00600
290600
aanpee
008000
anenan
oR0000
an00ae
#aGaag
ARaean

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
spd
spd
sin
sin
sin
sin
spd
sin

ext
ext
ext
ext
ext
ext
ext
ext
ext

TYLIDIA

SUOT3UdAUO) DBUTpPOD

HOLINOW 8¢-SdOd

9L-00

<KATuQ @sM TeUIdIUI 104>>

JSERR#A
JSHLTA
P
PCS$AFI
PCSATN
PC$BIS
PCYCYP
PCCY1
PC§FOV
PCSFUF
PCSLIP
PCINDV
PCSOVF
PCSUIO
PCSUSR
R

REL
RSKP
VISEDN
VISMAJ
VISMIN
VISWHO
.Al6
.AC1
LAC2
.AC3
ASRET
.ASSET
.CHAL2
.CHALT
.CHBEL
.CHBSP
.CHCBS
.CHCCF
.CHCNA
.CHCNB
.CHCNC
.CHCND
+CHCNE
.CHCNF
.CHCNN
.CHCNO
.CHCNP
. CHCNQ
.CHCNR
.CHCNS
.CHCNT
.CHCNU
.CHCNV
. CHCNW
.CHCNX
.CHCNY
.CHCNZ

8154%
815#
8234%
1284
129%
1244
121%
1224
123%
130%
1274
1314
12p0%
1264
1254%
815#%
34
8154
65#%
h3%
644
624
8224%
8194
8204
821%
1p09%
1009%
1134%
112%
864#
87%
1074
109%
80 #
81#
82¢#
834#
84#
85#
93%
94%
95%
96 %
974
98 4%
994%
1na%
1014
1024%
193%
194%
1A5%

825

35

824

38

814

883

936

971

1408

1949

1098

1125

1195

1203

1206

TYLIOId

suorjuaauo) buypo)d

HOLINOW #2-SdOd

LL=D2D

<<ATup @sn TeuIslUI I04>>

«CHCRB
«CHCRT
« CHCUN
«CHDEL
.CHESC
.CHFFD
.CHLFD
.CHNUL
+.CHTAB
.CHVTB
.FP
.FPAC
. FWORD
« INFIN
«LHALF
«MINFI
«NPAC
« RHALF
«SAC
.Savl
.SAV2
.SAV3
. SAV4
.SAVS
«STKRT
«STKST
« TRRET
. TRSET

1084%
92%
1104
1144%
1064
914%
894#
794
884
9a#
10064
11014
754%
714
73%
724
1102%
74%
4594
19994
10994
1099%
17994%
1099%
9374
9374
10094%
17094

IVLIDIA

suotjusauo) burpod

YOLINOW @Z~-SdOL

8L-00

<<ATuQ @sn Teuid3lul 104>>

ACVAR
ANDX
ASUBR
CALL
CALLRE
DECR
DEFSTR
ERMSG
EXT
FLD
FMSG
INCR
IORX
JAND
JE

JIN
JNAND
JNOR
JOR
JSERR
JSHLT
JXE
JXF
JXN
JX0
LOAD
MASKB
MOD.
MOVX
MSKSTR
OPSTR
OPSTRM
PERSTR
PGVER.
POINTR
POS
RET
RETSKP
SAVEAC
SETCMP
SETONE
SETZRO
STKVAR
STOR
TMSG
TQC
TQCA
TQCE
TQCN
TON
TONA
TONE
TQONN

1104%
226%
1n38+%
825#
83n#
674%

- 469%

868%
8754
156%
844%
664%
223%
766#
7094
729%
7544
7824
7494
8584%
863#
306%
3764
328%
3504
591%
1644
168#
174%
4774
686#
6964
851%
52%
152%
148%
8264
832#
1180%
649%
632¢%
615#
939%
6024%
8374
8A2%
8024%
8a24%
8024
8024
8024
802#
8A24%

INVLIDIA

SUOT3U3AUOD Bu;pbo

HOLINOW @¢Z-SdOL

6L-00

((AIUO 9sf] Teuasjul a1o04>>

TQO 8024

TQOA 8024
TQOE 8A2¢%
TQON 8024
TOZ 8n24
TQZA 8024
TQZE . Bp2#
TQZN 824
TRVAR 1411¢#
TXC 2464#
TXCA 2464
TXCE 2464
TXCN 2464
TXN 2464
TXNA 2464
TXNE 2464
TXNN 2464
TXO0 246%
TXOA 2464%
TXOE 2464
TXON 2464
TXZ 2464
TXZA 2464#
TXZE 2464
TXZN 2464
WID 1444
XORX 229%
«+.CAS1 4254
..DOTX 2394
..DOTY 7954
..DPB 6854
. .GCNS 5794
..ICNS 5684
. .JAN1 7794
. .JAN2 773%
..JE 7124
..JN . 7324%
««JNA3 7574
..JNO1 7864
..JNO2 789%
..LDB 5944
.. ONEB 454 %
«+STRA 485%
«+STR1 4964%
.+ STR2 5254%
«.STR3 5304
.. STR4 5424
++STR5 5534%
.. TQC 6524
.. TQO 6354
+.TQZ 618%
.. TSAC 4384
..TSIZ 4304

245
891

246
892

IVLIDIA

suoijuaauo) burpo)

HOLINOW @Z-SdOlL

#8-00

<<ATup @sn feuIdlUI I10d>>

.. TX
.. TX3
«. TY
.ACV1
<ACV2
-ACV3
.CASE
«.DECR®
JIFQ
+ INCR#®
+OPST1
.OPST2
+RTJST
+STKV1
« STKV2
«STKV3
. TRV1
. TRV2
«TRV3

251#

2884%

8AhE
1110#
1113#
1118%
4164%
6774
4064
6674
6894
699%
1604
9534%
958#
9664
10224
1025%
10304

suo1juaauo) burpop

HOLINOW @¢-SdOod

IYLIOIA

TOPS-20 MONITOR

SYSERR

<<For Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
SYSERR

COURSE MAP

DT FE SM

PHYSIO-
DISK/TAPE

STORAGE
MANAGEMENT

FRONT END/
- TERMINALS

TROUBLE
SHOOTING

CODING ;
CONVENTIONS S Yerhn

MONITOR
OVERVIEW

SOFTWARE

INTRODUCTION

MR-2717

SER-1 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

This page is for notes.

SER-ii <<For Internal Use Only>>

DIGITAL

TOPS-20 MONITOR

SYSERR

SYSERR

INTRODUCTION

SYSERR is the name of a user error
reporting program and of a monitor module.
The SYSERR program takes a file, ERROR.SYS,
and produces a report of the errors
indicated by the entries in that file. The
monitor SYSERR module contains the code
which puts those entries in the ERROR.SYS

file. This module addresses both of these

aspects of SYSERR, starting with a
discussion of the use of the SYSERR program,
and continuing with a view of the monitor's
internal SYSERR data base. The logic flow
of a SYSERR entry creation is presented, and
finally, there 1is a presentation of the
tools which allow a privileged user to
create ERROR.SYS entries to be reported by
the SYSERR program.

SER-1 <KFor Internal Use Only>>

DIGITAL

TOPS-26 MONITOR

1.

2.

LEARNING OBJECTIVES

SYSERR

Upon completion of this module, the

student will be able to:

Given typical SYSERR output, describe
the information contained.

Given a sample SYSERR message, tell
which data was wused in the monitor to
generate the report.

Use SYSERR to gather information
relevant to a specific problem.

AA-D533A-TK

RESOURCES

TOPS-10 and TOPS-20 SYSERR Manual

DECSYSTEM-2@# Monitor Calls Reference

Manual AA-4166C-TM

SER-2 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

MODULE OUTLINE

SYSERR

I. The SYSERR Program
A. Running the SYSERR Program
B. Examples of SYSERR Output

II. SYSERR Module Internals
A. SYSERR Block format
l. Header
2. Data

B. Creating a SYSERR Entry

C. The Job @ SYSERR Task
D. The SYSERR JSYS

SER-3 <<For Internal Use Only>>

DIGITAL -~ TOPS-2¢ MONITOR
SYSERR

This page is for notes.

SER-4 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
SYSERR

THE SYSERR PROGRAM

OVERVIEW OF SYSERR

SYSERR is a program which produces reports containing
system error information. TOPS-20 collects information such
as the time and reason for each monitor reload, error status
information for all HARD (non-recoverable) and SOFT
(recoverable) errors on devices such as disk and magtape,
the details of each BUGINF, BUGCHK and BUGHLT, the
occurrence of memory parity errors and the memory 1locations
involved, and console front-end reloads. This data is
recorded on disk in file PS:<SYSTEM>ERROR.SYS.

If the TOPS-20 monitor cannot continue due to a BUGHLT,
it collects the error information and then halts. During
the reload, a dump is taken of the contents of main memory
and saved on disk in PS:<SYSTEM>DUMP.,EXE. Program SETSPD
looks in this crash dump file and extracts the error
information. As successive crashes occur, the DUMP.EXE file
is copied to successive generations of DUMP.CPY by SETSPD.

If the KL CPU (DECSYSTEM-20408/58/68 only) halts due to
some error, the console front-end task KLERR takes a
snapshot of the KL CPU. This information is written 1in a
file called KLERRO.SNP in the console front-end files area
(usually on the dual-ported disk in the FILES-11 area, but
written on floppy disk if it 1is the front-end device).
After the system comes back up, SYSJOB appends this
information to ERROR. 8YS. In these ways, ERROR,.SYS
accumul ates a history of system errors of various types.
Note that you should periodically determine the size of
ERROR.SYS. If it is very 1large (e.g., more than 1000
pages), save ERROR.SYS on magtape, delete and expunge, and
let it build up again.

The SYSERR program uses ERROR.SYS as an input file and
creates a large variety of reports, depending on the
commands you give. Basically, you can select error reports
according to device, type of error, amount of detail, and
time frame. This is done by specifying switches in commands
to SYSERR. You can also obtain an error summary covering
all devices and error types for a selected time period.

SER-5 <KFor Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

Running the SYSERR Program:

To run SYSERR, type
'@SYSERR

FOR HELP, TYPE "/HELP"
* l

Wheh SYSERR is ready for a command, it replies with an
asterisk, The command format is

*output-filespec = input-filespec/switchl/switch2....

where "output-filespec" is the report to be created and .the
input file is usually SYSTEM:ERROR,.SYS. If you do not
specify an input file, SYSERR will use PS:<SYSTEM>ERROR.SYS
by default. You may need to enable privileges in order to
read ERROR.SYS. If you omit the output file specification,
the operating system will give the report a default name
(determined by the switches) with file type .LST. The
switches specify the device or type of error you wish to
report. The switches also specify the time frame. Some of
the common switches are: ‘

/ALL IList all errors.
/ALLSUM !List the summary only.
/CPUALL tList all processor related errors.
/MASALL tList all MASSBUS device errors (TU45,
: 1RP@6, etc.).
/DEV:name IList errors for the specified device only.

1This allows you to select a particular
Imagtape drive or disk drive.

/DEV: type IList errors for the specified type of
tdevice, for example, TU45, LP24, the CPU,
letc. _ :

/DETAIL IList all information instead of a brief
1listing.

/BEGIN:mm~-dd-yy:hh:mm:ss !begin the listing on the

! date specified. You may

lalso use the format

! /BEGIN:-nD to obtain all

lerrors for the past n days.
/END:mm-dd-yy:hh:mm:ss tend the listing on the date

!specified. To obtain errors

SER~-6 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

fup to n days ago, use the
! format /END:-nD.

To obtain a summary of all errors, use the switch
/ALLSUM, This report can be obtained and printed each day.
It is useful for keeping track of such errors as HARD disk
errors, which can indicate a serious problem with a disk
pack. Whatever switches are used, the error summary 1is
always a part of each report.

Examples of SYSERR Output

Figures SER-1, SER-2, and SER-3 at the end of this
section show examples of output produced by SYSERR. Figure
SER-1 shows two entries: a MASSBUS device error and a
BUGINF. 1In the MASSBUS device error entry, the unit name is
DP26@. This name indicates a drive on channel 2 (RH20
controller number 2) with wunit number 6. The # has no
significance for disk. The unit type is RP#6, the name of
the structure SNARK:. LBN stands for the Logical Block
Number on the pack being addressed when the error occurred,
and is translated to cylinder, surface and sector to provide
physical location. The last line indicates that the error
was recoverable (SOFT error). The 1line before the last
shows that the operation was retried twice before
succeeding. The operation being tried is also indicated
following OPERATION AT ERROR:. If an error is not
recoverable after a reasonable number of retries, the
attempt to retry ceases and the error 1is classified as
non-recoverable (HARD error).

A hard error usually involves loss of data, or failure
for some user or system operation. It is important to keep
statistics of the hard and soft errors which occur on each
disk pack. In this way, you can detect a bad pack or one
about to go bad. The physical location of the errors (given
in terms of cylinder, surface and sector) can also be used
to locate a bad spot (scratch, etc.) on the pack. 1If errors
keep occurring in the same physical location, a bad spot is
indicated. If many hard errors occur at once in a variety
of locations, the pack may have experienced a head crash.

The second example in Figure SER-1 is for a BUGINF

SER-7 <KFor Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

whose name was DN2@ST. The user and program name are useful
in determining the cause of the problem, especially in the
case of BUGCHKs and BUGHLTs. If the same user and program
are specified each time a BUGHLT occurs, a good place to
start in investigating the cause of the crashes would be
with the user and user program.

Figure SER-2 shows an entry for a MASSBUS device error
caused by a tape operation. The device unit name is MT314.
This indicates a drive on channel 3 (RH20 controller 3),
TM@2 wunit number 1, the drive being logical unit @ on the
TM@#2, The position on the tape when the error occurred 1is
given in terms of the file and record numbers. The user and
program are also given. In this example, the error was
recoverable. This type of entry can be used to track down
bad tapes or a malfunctioning drive. -

Figure SER-3 shows two portions of an error summary.
Under FILE ENVIRONMENT are the input and output file names
and the switches used when running SYSERR. The input file
used to create this report was SYSTEM:ERROR.SYS. The total
number of errors in the categories BUGHLT-BUGCHK, MASSBUS
DEVICE and FRONT END DEVICE are given. There is also a
breakdown of the BUGHLT-BUGCHK types. The hardware detected
error summary for DP26# 1is another portion of the error
summary, showing the total number of such errors, both hard
and soft. Similar summaries are given for magtape drives.

For further information about SYSERR and the reports it
creates, refer to the DECSYSTEM-2@ Operator's Guide and the
DECSYSTEM-2020 Operator's Guide

SER-8 <<For Internal Use Only>>

DIGITAL » TOPS-20 MONITOR
SYSERR

SYSTEM ERROR REPORT COMPILED ON Monday, May 8, 1978 14:45:45 PAGE 1

g e e K e de de e e de de o do de e o de e e de e e e g de e o e do e e e do o e g de ok do ok dede ke dede ke de

MASSBUS DEVICE ERROR

LOGGED ON Mon 8 May 78 14:01:20 MONITOR UPTIME WAS 14:29:47
DETECTED ON SYSTEM # 2102.

RECORD SEQUENCE NUMBER: 1438,
R T L T 220

UNIT NAME: DP250

UNIT TYPE: RP@#6

UNIT SERIAL #: @597.

VOLWE ID: SNARK

LBN: 1115764 =

CYL: 794, SURF': 17. SECT: 8.

OPERATION AT ERROR: DEV.AVAIL., GO + READ DATA(70)
FINAL FRROR STATUS: 200000,7

RETRIES PERFORMED: 2.

ERROR: RECOVERABLE TRIVE EXCEPTION,CHN ERROR, IN CONTROLLER CONI
DCK, IN DEVICE ERROR REGISTER

=====REST OF INFORMATION AVAILABLE BY USING /DETAIL SWITCH=====

SYSTEM ERROR REPORT COMPILED ON Monday, May 8, 1978 14:46:49 PAGE 4

edddeddedded de e dededededededed dedede deod e dode e de ok ok dede ok de de ko ok e ek e e e

TOPS2¢ BUGHLT-BUGCHK

LOGGED ON Mon 8 May 78 12:48:01 MONITOR UPTIME WAS 13:16:28
DETECTED ON SYSTEM # 21402,

RECORD SEQUENCE NUMBER: 1415.
Kkkdkdkhhhhdhhdkhddhkddddidddidkkddiihkhkhkiikkik

ERROR INFORMATION: :
DATE-TIME OF ERROR: Mon 8 May 78 12:47:57

OF ERRORS SINCE RELOAD: 84.

FORK # & JOB #: 117,0

USER'S IOGGED IN DIR: OPERATOR

PROGRAM NAME: SYSJOB

ERROR: BUGINF

ADDRESS OF ERROR: 502633

NAME: DN23ST

DESCRIPTION: DTESRV- DN2¢ STOPPED

=====REST OF INFORMATION AVAILABLE BY USING /DETAIL SWITCH=====

Figure SER-1. Output from SYSERR

SER-9 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
SYSERR

SYSTEM ERROR REPORT COMPILED ON Monday, May 8, 1978 14:41:54 PAGE 1

Fededededododododo do o do de oo de o de Fod de do e dede de ke de dede e de o e de o dede e de e e de ke de ke Fe

MASSBUS DEVICE ERROR |
LOGGED ON Sat 6 May 78 14:56:28 MONITOR UPTIME WAS 7:44:04
DETECTED ON SYSTEM # 2102.

RECORD SEQUENCE NUMBER: 917.
R L L T ———

UNIT NAME: MT319
UNIT TYPE: TU45
UNIT SERIAL #: 0148,
VOLUME ID:

LOCATION: RECORD # 12. OF FILE # #.
USER'S LOGGED IN DIR: OPERATOR

USER'S PGM: EXEC

OPERATION AT ERROR: DEV.AVAIL, GO + WRITE FWD., (60)
FINAL ERROR STATUS: 2,3

RETRIES PERFORMED: a.

ERROR: RECOVERABLE DRIVE EXCEPTION, IN CONTROLLER CONI
COR/CRC, IN DEVICE ERROR REGISTER

=====REST OF INFCRMATION AVAILABLE BY USING /DETAIL SWITCH====

Figure SER-2. Output from SYSERR

SER-10 <{For Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
SYSERR

SYSTEM ERROR REPORT COMPILED ON Monday May 8, 1978 14:46:50 PAGE 23

- SYSTEM SUMMARY FOR SYSTEM # 2102.
LR T T T T L e

FILE ENVIRONMENT
SYSERR VERSION 14 (546)

INPUT FILES: SYS:ERROR.SYS CREATED: Mon 8 May 78 2:06:40PM

OUTPUT FILE: DSK:ERR, 5

SNITCHES: /CPUALL /BEGIN: 8-May-78 AT 12:46:39
DATE OF FIRST ENTRY PROCESSED: Tue 18 Apr 77 1:33:36PM
DATE OF LAST ENTRY PROCESSED: Mon 8 May 78 2:06:40PM
NUMBER OF ENTRIES PROCESSED: 1439,

OF INCONSISTENCIES DETECTED IN ERROR FILE: a.

ENTRY OCCURRENCE COUNTS

TOTAL TOPS2@ BUGHLT-BUGCHK: 1.
TOTAL MASSBUS DEVICE ERROR: 6.
TOTAL FRONT END PEVICE REPORT: 21.

TOPS2% BUGHLT-BUGCHK
BUGHLT/BUGCHK BREAKDOWN:
DN2AST 1.

SYSTEM ERROR REPORT COMPILED ON Monday May 8, 1978 14:46:52
PAGE 24 - MASSBUS SYSTEM ANALYSIS (RH2#)

HARDWARE DETECTED
PAR IWC SWC CHN RES OVR
ERR EXC ERR ERR ERR ERR RAE RUN
DP26@ HARD ,
SOFT 6. 3.

Figure SER-3. Output from SYSERR

SER-11 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

SYSERR MODULE INTERNALS

Error reporting, often called SYSERR, is really
composed of three steps:

1. A request to generate a SYSERR block is created and
queued via the SYERR JSYS or, if generated by the
monitor, requested generally by calling the SYERR
routines directly.

2. The SYSERR fork (part of Job @) writes all queued
requests to the file PS:<SYSTEM>ERROR.SYS.

3. The SYSERR user program reads the ERROR.SYS file
and generates the error reports and summaries.

SYSERR Block Format
HEADER

Each entry in the ERROR.SYS file is made up of two
parts: the header, which has a fixed length and format (See
Figures SER-4 and SER-5), and a data portion, whose content
is ‘dependant on the type of event being reported. See
Figure SER-6 for an example. Note that the diagram shown in
Figure SER~4 and SER-5, the first two words are part of the
internal header, but do NOT appear in the ERROR.SYS file.

The fixed information in the header includes the event
code (the type given here tells the user SYSERR reporting
program the type and format of the data portion of the
message), and the block length (not including the two words
of monitor header). The block lengths of the standard event
types are fixed on an ad hoc basis. The other standard
words are Universal format date and time of the blocks
creation, the uptime at that point, and APR serial number of
the system generating the report.

SER-12 <<For Internal Use Only>>

DIGITAL TOPS—-20 MONITOR
SYSERR

SEBBFR: SYSERR BUFFER BLOCKS

SYSERR BLOCK FORMAT

. SEBCOD SEBSIZ SEBCDR
%} Code |Blk Size with HDR Pointer to Next Block

6 SEBSOF 17 SEBFN
1 Offset to Free JOB @ Function to Call
String Space

SEHCOD SEHLEN
2 Event Code Block Length

SEHTAD
3 Date and Time

SEHUTM
4 Uptime

SEHSER
5 APRID Word
(Processor Serial Number)

SEBDAT=6
Body of Error Block
(Dependent on Event Type

See Below)

23456 17 18 35

Word
] SEBCOD SEBSIZ - SEBCDR

Code |Blk Size with HDR Pointer to Next Block

Bits Pointer Meaning

3-5° SEBCOD State Code
SBCFRE=0 on Free List
SBCREL=]1 Released
SBCACT=2 Active

6-17 SEBSIZ Block Size Including Header

18-35 SEBCDR Pointer to Next in List

Figure SER-4. SYSERR Block Format Header .

SER-13 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
SYSERR

a 8 27 35

Word
2 - SEHCOD SEHLEN
Event Code Block Length

Bits Pointer Meaning

n-8 SEHCOD Event Code (i.e., Block Type)
SEC%RL=101 System Reload
SEC%BG=10#2 BUGHLT/BUGCHK/BUGINF
SEC%FE=130 Front End Error
SEC%11=131 F.E. Reload Entry

(Gives =11 Reboot Info.)

SEC%PT=160 Processor Parity Trap
SEC%PI=161 Processor Parity Intrp.
SEC$MB=111 Massbus Device Error

27-35 SEHLEN Block Length (Including Header)
RLSLEN —System Reload Block Length
BG%LEN —BUGHLT/CHK/INF Block Length
FESLEN —~F.E. Errors Blk Length
R1%LEN —~F.E. Reload Entry Blk Length
PT$LEN -—Proc. Parity Trap Blk Length
PISLEN -—Proc. Parity Interrupt Blk Lgh
MBSLEN - Massbus Dev. Err Blk Length

Figure SER-5. Expansion of Word 2 of Header

DATA

The data portion of an entry is dependent on the event
type being reported. When the monitor 1is generating a
SYSERR block, it takes specific information from specific
locations and puts that data into the SYSERR block in a
pre-defined order., The user SYSERR reporting program is
coded to know what information the monitor has placed in
which word, and is thus able to format that data in a more
meaningful way. The example in figure SER-6 shows a typical
data portion.

SER-14 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

Event Type 101
System Reloaded Error Block Data

RL%SVN=0 ASCII Byte Pointer to System Name

RL%STD=1 Time of System Build (Univ. Format)

RL&VER=2 System Version Number

RL%SER=3 APR Serial Number

RL%0OPR=4 ASCII Byte Pointer to "Why Reload"

RL&HLT=5 BUGHLT Address (if Auto-Reloaded)

RL%FLG=6 Flags

Monitor Name (Text)

"Why Reload" Answer String (Text)

RLRLEN=61

Figure SER-6. Sample SYSERR Block Data

Figures SER-4, SER-5 and SER-6 were taken from the

TOPS-20 Monitor Tables, which has diagrams of the several
event types data formats. The TOPS-10 and TOPS-2# SYSERR
Manual also has descriptions of the ERROR.SYS entry formats.

INTERNAL QUEUE STRUCTURE

The monitor SYSERR blocks are taken from a queue of
free blocks reserved for them, and through the calling of
various monitor routines, these blocks are queued for the
SYSERR fork to write to ERROR.SYS. In referring to Figure
SER-4, note that the right half of the first word is
reserved for a pointer to the next block (if any). Location

SER=-15 <<For Internal Use Only>>

DIGITAL _ TOPS-2@ MONITOR
SYSERR

24 of the machine contains a pointer to the first queued
block. When the SYSERR fork is awakened, that task checks
to see if location 24 (SEBQOU) is non—-zero. If there is an
address there, that SYSERR block and any other queued SYSERR
blocks are appended to PS:<SYSTEM>ERROR,SYS.

NOTE

BUGHLT 1is' a special case where the
SYSERR block 1is created and queued but
the SYSERR fork is not started, and the
information is not written to
PS:<SYSTEM>ERROR.SYS until the system
comes up after the crash.

Creating a SYSERR Entry .

The following are the steps taken by the monitor in
creating a SYSERR block. The calls described are generally
called individually by the monitor, but they are the same
ones as called by the SYERR JSYS (discussed below).

l. Generate SYSERR entty

1. Put information in header
2., Put data in data portion, (immediately
following the header)

2, Call the internal monitor routines (or SYERR JSYS)

1. ALSEB - allocate a SYSERR block
2. SEBCPY - copy data to block
3. QUESEB - queue the SYSERR block; that is, put
address into SEBQOU or on end of queue of

existing blocks. This call also wakes the Job
@ SYSERR task through an AOS @SECHKF.

SER-16 <<For Internal Use Only>>

DIGITAL TOPS-2¢ MONITOR
SYSERR

The Job & SYSERR Task

The Job # SYSERR task executes code in the module
SYSERR at SEBCHK, which checks the queue at SEBQOU (location
24) . For each entry in the queue, SYSERR will:

l. Unlink and remove the block from the queue

2., Write the block to PS:<SYSTEM>ERROR.SYS

3. Call RELSEB to release the block for reallocation

BUGHLT is a special case. The BUGHLT code generates
and queues a BUGHLT SYSERR block (event type 102), then
shuts the system down. This block is NOT written out to
ERROR.SYS at the time of the <crash. When the system
reloads, SETSPD, a Job # task, reads the dump and does a
SYERR JSYS for any queued SYSERR blocks. (There will always
be a BUGHLT block, but there may also be others which had
not yet been written before the crash.) Refer to the Monitor
Tables descriptions or the SYSERR Manual for a breakdown of
the contents of the BUGHLT SYSERR error block format.

The SYERR JSYS

The SYERR JSYS is available to the privileged user who
wishes to make entries in ERROR.SYS for the SYSERR program
to report. WHEEL, OPERATOR, or MAINTENANCE capabilities
must be enabled to execute the SYERR JSYS. The monitor
makes no check of the event code (other than # is illegal).
When the SYSERR program detects an unknown event code, the
output contains a message to that effect and the contents of
the block are reported in octal. However, event code 117
(17 on TOPS-10) is defined in the SYSERR program and 1is
intended for this special |use. When event code 117 is
detected, the SYSERR program 1labels it as "Software
Requested Data" and produces a report with the data as both
octal and SIXBIT. The data reported may be gathered by a
monitor patch, the PEEK JSYS, the SNOOP JSYS, etc. See the
SYSERR Manual wunder "Software Requested Data", and the
Monlitor Calls Manual for further information.

SER-17 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

This page is for notes.

SER~-18 <<For Internal Use Only>>

DIGITAL

TOPS-2# MONITOR
SYSERR

EXERCISES

With the SYSERR Manual and the sheet of sample

'SYSERR report:

1. Tell the event type of the error report and the
type of error,

2. Describe how the monitor selected the values
reported.

Describe how you, as a user, might wish to use the
SYERR JSYS.

SER-19 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

This page is for notes.

SER-20 <<For Internal Use Only>>

DIGITAL » TOPS-20 MONITOR
SYSERR

EXERCISE SOLUTIONS

Check with your instructor and your classmates for answers.

SER-21 <{For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

This page is for notes.

SER-22 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
SYSERR

SYSERR
LAB EXERCISES

When answering the lab exercises, write down the names
of the tables where you found the answers. The labs will
help you understand the monitor data base structure; so
remember, where to look is more important than what you find
there.

The exercises marked with a double star (**) are more
difficult and are optional. If you have the time and
motivation, do them.

Some of the exercises require use of the 1listings to
find the answer; do not assume that the answer is in the
tables.

TOOLS
FILDDT

To use FILDDT on a crash, use the GET command instead
of the PEEK command. For the following exercise, the crash
you are to look at is in a file called
<MONITOR~INTERNALS>SYSERR.CRSH., Use FILDDT as 1in the
example below to do the following exercise.

@ENABLE

SFILDDT

FILDDT>LOAD <MONITOR-INTERNALS>R3-MONITOR,EXE ;get symbols
FILDDT>GET <MONITOR-INTERNALS>SYSERR.CRSH

At this point, the usual DDT commands allow you to 1look at
the crashed monitor. Note the following things:

1. Only those pages that were in core at the time of
the crash are a part of the crash dump.

2. BOOT has overwritten a part of the monitor--
currently, it overwrites a part of APRSRV.

SER-23 <<For Internal Use Only>>

DIGITAL TOPS=20 MONITOR
SYSERR

3. You must tell FILDDT to use the monitor's page
table 1if you want to look at the monitor's address
space., By default, you are 1looking at physical
addresses when you 1look at a crash with FILDDT.
FILDDT knows how to simulate TOPS-20 paging; the
command that causes FILDDT to use TOPS-2f paging
and which specifies the page map to use 1is: n$uU
where n is the SPT slot belonging to the page table
FILDDT should use to do the address translation.
For most cases, you want FILDDT to use MMAP, which
is the monitor's page map for sections @ and 1.
The SPT slot belonging the the monitor's page map
is in location MMSPTN. Location MMSPTN contains a
493 for standard monitors; however, you should
check to be sure. If the limit on open files has
been changed for a monitor, the SPT slot belonging
to MMAP is also changed. To set monitor context
(i.e., to use MMAP) do the following: ’

MMSPTN/ 403 iMMAP's SPT slot
49350

Queued SYSERR Blocks

If there were any SYSERR blocks queued to be written at
the time of the crash, location SEBQOU= 24 will be the queue
header. The right half of the first word of each SYSERR
block will contain a pointer to the next block or @ if there
are no more queued blocks. Normally, the BUGHLT block will
still be queued up and will be written to ERROR.SYS when the
SYSERR fork starts up again. If the system gets a
KEEP-ALIVE CEASED, there can be SYSERR blocks left in the
queue. '

RESOURCES

l. SYSERR related tables in the Monitor Tables.

SER-24 <<For Internal Use Only>>

DIGITAL TOPS-~-2 MONITOR
SYSERR

EXERCISES
1. Beginning at SEBQOU, trace the queue of SYSERR
blocks; use the tables to determine if each block
is active,
2. What type of block is each queued block?
3. Find a processor parity interrupt error block and
match the information stored there with the

information the tables say is stored in that block
type. **

SER-25 <<For Internal Use Only>>

DIGITAL TOPS-28 MONITOR
SYSERR

This page is for notes.

SER-26 <<For Internal Use Only>>

DIGITAL TOPS-2@0 MONITOR
SYSERR

SYSERR
LAB SOLUTIONS

EXERCISES
1. Beginning at SEBQOU, trace the queue of SYSERR
blocks; use the tables to determine if each block
is active.
ANSWER:
24/ SEBBFR+67
SEBBFR+47/ 20104, ,SEBBFR+173
SEBBFR+173/ 20184, ,SEBBFR+277
SEBBFR+277/ 20067, ,SEBBFR+366
SEBBFR+366/ 20104, ,SEBBFR+472

SEBBFR+472/ 20104,,0 ; last queued
;block

Each queued block points to the next queued block;
the 1last queued block has a zero in the right half
indicating there are no more queued blocks. Bits
3-5 contain the state <code; a value of 2 means
active. Each of these blocks is active.

2. What type of block is each queued block?

ANSWER: Word 2 of each block has the block type in
bits 7-8.

SEBBFR+67+2/ 102004, ,0 ; type= 102 = SEC%BG

SEBBFR+173+2/ 1020008,,0 ;type= 182 = SEC%BG

SEBBFR+277+2/ 1610008,,8 ;type= 161 = SECPI
SEBBFR+366+2/ 1042800, ,# ;type= 142 = SEC%BG

SEBBGR+472+2/ 102008,,8 ;type= 102 = SEC%BG

SER-27 <<For Internal Use Only>>

DIGITAL

TOPS—~2# MONITOR
SYSERR

Block type SECSBG labels o a block as a
BUGHLT/BUGINF/BUGCHK type. Block type SECS%PI
labels a block as a process parity interrupt type.

'Find a processor parity interrupt error block and

match the information stored there with the
information the tables say is stored in that block
type. * % .

ANSWER: Use the SYSERR block tables to compare the
two.

SER-28 <<For Internal Use Only>>

DIGITAL ' TOPS-2¢ MONITOR
SYSERR

MODULE TEST

The module test for this module is in two parts.
First, obtain a sample SYSERR report from your instructor,
and with it (using any available resources) determine where
in the monitor each of the reported data came from. You may
use either the micro-fiche, the running monitor with FILDDT,
or any of the class 1lab system crash files, (also using
FILDDT). ‘

Second, 1locate and describe the unreported SYSERR
entries in a system crash file using FILDDT. See your
instructor for the name of the crash file to use.

SER-29 <<For Internal Use Only>>

DIGITAL | i | o TOPS-20 MONITOR
Ry : IR | o - SYSERR

kThis‘pageIIS'for notes.

‘ kSER-30' <<For Internal Use Only>>

DIGITAL - TOPS-2¢ MONITOR
SYSERR

TEST EVALUATION SHEET

The results of these problems will be discussed in
class after the laboratory session.

SER-31 <<For Internal Use Only>>

DIGITAL TOPS=-20 MONITOR
SYSERR

This page is for notes.

SER-32 <<For Internal Use Only>>

TOPS-20 MONITOR

Troubleshooting

<<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Troubleshooting

COURSE MAP

DT FE SM

PHYSIO-
DISK/TAPE

STORAGE
MANAGEMENT

FRONT END/
TERMINALS

CODING
CONVENTIONS

MO

MONITOR
OVERVIEW

SOFTWARE

INTRODUCTION

MR-2717

TS-i <<For Internal Use Only>>

DIGITAL TOPS-~-2@ MONITOR
: Troubleshooting

This page is for notes.

TS-ii <<For Internal Use Only>>

DIGITAL TOPS-2 MONITOR
’ Troubleshooting

Troubleshooting

INTRODUCTION

This module contains information on
debugging and crash analysis, with the final
section devoted to MDDT, EDDT, and FILDDT.

There is a great difference between
analyzing a crash and debugging one. While
analysis simply tells you what happened,
debugging gives vyou reasons why (and thus,
implies remedies).

Successful crash analysis depends
heavily on how well you know the data base
and whether you can discover inconsistencies
that give vyou <clues about what happened.
The information in this module shows you how
~to use available tools in looking at a crash
and how to find basic information about the
state of the machine at the time of the
crash. Further analysis of a crash requires
that you are able to propose a reason for
what happened that matches the state of the
data base.

TS-1 <<For Internal Use Only>>

DIGITAL

TOPS~2@ MONITOR
Troubleshooting

LEARNING OBJECTIVES

Upoﬁ completion of this module, the
student will be able to:

1, Identify the mode of the operating
system at the time of a crash.

2. Determine which, if any, fork was
running at that time.

3. Deduce, from the stack, which of the
save macros put what on the stack.

4, Elicit a dump.

5. Extract saved SYSERR blocks from a
crash.

6. Designate the relevent portions of the
data base.

RESOURCES

DECsystem—-10/DECSYSTEM~2f Hardware Reference
Manual

TS-2 <<For Internal Use Only>>

DIGITAL

TOPS~2@ MONITOR
Troubleshooting

MODULE OUTLINE

Troubleshooting

I.

II.

III.

Iv,

VI.

VII.

CTY Output
A, Explanation of KLERR Output
B. Sample KLERR Output

Getting a DUMP
A, How To Get a Dump
B. Where BOOT Lands

SYSERR

A. Overview of SYSERR Functions and
Data Base

B. Queued SYSERR Blocks In A Crash

C. Moving SYSERR Blocks From a Crash
To ERROR,SYS

BUGHLT
A, BUG Macro
B. BUGHLT Contents

Push Down Lists And Related Data Bases
A. How To Look At a Stack

B. Push Down List / Machine State

C. Stack Usage For Local Storage

D. Stack Adjustment

Machine States and Relevant Data Bases
A, PC Storage

B. AC Storage

C. Fork Scheduled, Or Not

D. Fork NOSKED ‘

E. Extended vs. Non-extended Addressing
F. Sizes (Resident, Non-resident, Total)
G. MDDT Page

H. Relevant Data Base for Each Machine

State
DDT's
A. FILDDT
B. Relevant DDT/FILDDT Commands
C. MDDT
D. EDDT

TS-3 <<For Internal Use Only>>

DIGITAL ' TOPS-28 MONITOR
Troubleshooting

This page is for notes.

TS-4 <<For Internal Use Only>>

DIGITAL ’ TOPS-204 MONITOR
Troubleshooting

CTY OUTPUT

Collect any CTY output that is relevant to the crash.
This should include the KLERR printout and the BUGHLT (as
well as recent BUGCHKs and BUGINFs, if any). If the machine
got a KEEP-ALIVE CEASED, the KLERR output 1is the only
reliable information you get. (See the section on the
BUGHLT location for an explanation.)

Explanation of KLERR Output

KLERR includes the PC, the 1last memory fetch and
information on the PI system. The PI information includes
the following:

PI STATE: ON or OFF —= indicates whether the PI
system is on or not.

PI ON: n —- n indicates which of
the 7 channels are
enabled.

PI HLDQ n -= n indicates which of

the 7 channels have
an interrupt in progress.

PI GEN: n - == n indiéates which of

the 7 channels have
a pending interrupt.

Sample KLERR Output

Here is an example of the KLERR output on a KEEP-ALIVE
CEASED error:

$DECSYSTEM=-20 NOT RUNNING

KEEP ALIVE CEASED
KLERR =- VERSION V@2-02 RUNNING

TS-5 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR

Troubleshooting
KLERR =- KL NOT IN HALT LOOP
KLERR —=- KL ERROR OTHER THAN CLOCK ERROR STOP
KLERR ~- KL VMA: (000008 635717 PC: 0000080 635717
KLERR -- PI STATE: ON, PI ON: 177, PI HLD: @84, PI GEN: @41
KLERR -- EXIT FROM KLERR

GETTING A DUMP

DUMP.EXE is a pre-allocated file into which BOOT writes
the dump. When the system comes up, SETSPD copies DUMP, EXE
to DUMP.CPY.

How to Get a Dump

If the system does an auto-reload, the console front
end will give BOOT the commands to get a dump. If the
auto-reload does not work for some reason, you can force a
dump by typing /d to the BOOT> Prompt.

KLI -- VERSION VB@6-07 RUNNING
KLT -- ALL CACHES ENABLED
KLI -- BOOTSTRAP LOADED AND STARTED

?DUPL STR UNI?DUPL STR UNI
;problem because two PS:
;structures on line.

BOOT> /d ;request a dump (after the
;problem is corrected).

BOOT> ;type CR for default monitor

~

Where BOOT Lands

The console front end loads BOOT into KL memory. of
course, this overwrites whatever used to be in that part of
memory. Therefore, BOOT is always loaded into a part of the
monitor that contains pure code (i.e., so no data is
destroyed). Currently, BOOT is brought in on top of a part
of APRSRV. If you need to look at code that is loaded where
BOOT lands, you must go to the 1listings. BOOT also uses
some of high core to build the EXE directory for the file
DUMP.EXE; for example, on a machine with 256K, no page
above 761 is dumped.

TS-6 <<For Internal Use Only>>

DIGITAL TOPS-203 MONITOR
Troubleshooting

SYSERR

Overview of SYSERR Functions and Data Base

) SYSERR is a program that reads PS:<SYSTEM>ERROR.SYS and

generates reports on hardware errors, system crashes, front
end reloads, etc. Entries in the file ERROR.SYS are written
via the SYERR JSYS. For a description of each of the types
of entries, see the monitor tables.

When an ERROR.SYS entry is desired, the caller (which
is one of the system programs such as QUASAR or the monitor
itself) builds a SYSERR block as described in the monitor
tables and does the SYERR JSYS. The SYERR JSYS adds the
block to a queue in the monitor's address space; the qgueue
header 1is SEBQOU (location 24). It then wakes up the Job 0
task which processes the queue and writes the queued entries
to ERROR.SYS.

Queued SYSERR Blocks In a Crash

A BUGHLT entry is generated when the system BUGHLTs;
this entry is queued but not written to ERROR.SY¥S. The
system is considered to be in an unsafe state at the time of
the crash., When the system comes back up, code in SETSPD is
called to move any queued SYSERR blocks in the dump to
ERROR,. SYS.

The queue header is location 24 (called SEBQOU); each
SYSERR block consists of the standard SYSERR header followed
by the information in the specific block type.

Sometimes it is useful to look at the queued SYSERR
blocks in a <crash, particularly the BUGHLT block. The
BUGHLT block ¢ontains certain status information at the time
of the crash. The status words are described below:

1. CONI APR,

Read the status of the ©processor error and
sweep flags. This information is stored in offset
BG%APS of the BUGHLT block. The flags and status
information returned by a CONI APR are described in
the Hardware Reference Manual.

TS=-7 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Troubleshooting

2. CONI PAG,

This information is stored in offset BG%PGS of
the BUGHLT block. A CONI PAG reads the system
~status of the pager. If TOPS-260 paging 1is on,
there 1is a 1 in bit 21. Bits 23-35 contain the
contents of the EBR (the address of the EPT). For
a description of all the fields, see the Hardware
Reference Manual.

3. DATAI PAG,

This information is stored in offset BG%PGD of
the BUGHLT block. A DATAI PAG returns the process
status of the pager. DATAI PAG, returns the
current and previous contex AC blocks, and the
address of the UPT. For a complete description of
the fields returned by a DATAI PAG, see the
Hardware Reference Manual.

4, CONI PI,

This information is stored in offset BG%PIS of
the BUGHLT block. A CONI PI returns the status of
the priority interrupt system; it indicates which
levels are on, whether the PI system is on, and on
which levels interrupts are currently being held.
For a complete description, see the Hardware
Reference Manual. ~

Moving SYSERR Blocks From a Crash to ERROR.SYS

As stated before, SETSPD moves dqueued SYSERR blocks
from the crash to ERROR.SYS. A Job # task starts the SETSPD
program at START3; this code copies DUMP,.EXE to DUMP.CPY
and then issues a SYERR JSYS for each queued SYSERR block in
the crash. :

TS~-8 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Troubleshooting

BUGHLT

Location BUGHLT contains the location the BUGHLT came
from. The latter contains an XCT BUGHLT-name. All BUGHLT
code is generated by the BUG macro defined in PROLOG.

BUG Macro

DEFINE BUG (TYP,TAG, STR,REGS, $NAM, $STR)<
XCT [TAG:: JSR BUG'TYP
IRP REGS,<
Z REGS)> -
SIXBIT /TAG/]
.PSECT BGSTR
$STR: ASCIZ \STR\
.ENDPS BGSTR
.PSECT BGPTR
XWD TAG, $STR
.ENDPS BGPTR
>

This is an example of a call to the BUG macro:

BUG (HLT,JANRUN,<JOB ¢ NOT RUN FOR TOO LONG,...
« +« .PROBABLE SWAPPING HANGUP>)

If a JANRUN BUGHLT occurred, the data base would 1look 1like
this:

BUGHLT/ CAIA CLK2+6 ;address the BUGHLT came from
CLK2+6/ XCT JONRUN ;generated by BUG macro

JPNRUN/ JSR BUGHLT
/ SIXBIT \JONRUN\

BUGHLT Contents

Again, location BUGHLT is set up with the location the
BUGHLT came from if the machine BUGHLTed. That location
contains an XCT BUGHLT-name. All the BUGHLTs are listed in
the Operator's Guide with a short descriptive phrase.

(Appendix I of this course contains a list of all BUGHLTs,
BUGCHKS and BUGINFs.,)

TS-9 <<For Internal Use Only>>

DIGITAL TOPS=-2@ MONITOR
‘ Troubleshooting

If there is a zero 1in 1location BUGHLT, the machine
probably got a KEEP-ALIVE CEASED. This happens if either a
"clock error stop" or "deposit/examine failure" occurs.
Both of these errors are hardware failures and Field Service
should be called. Although these two errors are the
probable causes of KEEP-ALIVE CEASED, you cannot rule out
the possibility of a software bug. Get the KLERR output
from the CTY. It will have the PC and PI state.

Because the console front end simply reloads for a
KEEP-ALIVE CEASED, the information in the dump 1is not
dependable because the cache has not been written out, the
ACs have not been saved, etc. (These functions are normally
done by the BUGHLT code.) The only valid information is the
CTY output from KLERR.

PUSH DOWN LISTS AND RELATED DATA BASES

In general, the pushdown list in use at the time of the
crash 1implies what was going on. For example, if the
scheduler was running, SKDPDL is the push down list. If a
page fault was in progress, TRAPSK is the push down 1list,
and the former P is saved.

How to Look at a Stack

l. P contains the current stack pointer.

2. If an entry was made on the stack by a PUSHJ, the
entry will look like a PC. This is not a hard and
fast rule, but it can help. A user mode PC usually
has bits 1,2, and 3 on and a monitor PC has bits 1
and 2 on.

3. If a return address is still on the stack (i.e.,
the entry is at an address less than the stack
pointer), you have not returned from the routine.

4, The monitor uses the stack for temporary storage.
_The macros STKVAR, TRVAR, etc. 1leave recognizable
entries on the stack. Knowing these conventions
helps you recognize which stack locations are being
used as temporary storage.

TS~-10 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Troubleshooting

Push Down List/Machine State
The monitor uses different stacks to do different
things. Register P is the stack pointer and indicates which
stack was in use at the time of the crash. The stacks and
their uses are listed below:
1. UPDL =-- Used when running in Exec mode for the
user, that is, when doing a JSYS. Also used by the
Job @ tasks that run in exec mode.

2. TRAPSK -- Used for page fault handling.

3. PIPDB -- Used for software interrupt handling.

4., GSKDPDL -- Used by the scheduler for the overhead
cycle.
5. DTESTK -- DTE interrupt level stack (PI level 6).

6. PHYPDL -- Used by PHYSIO when queueing an IORB.

7. PHYIPD =-- Used when PHYSIO is handling an
interrupt.

8. MEMPP -- Used when handling APR interrupts.

Stack Usage for Local Storage

Several macros that provide local storage use the
stack. What they put on the stack is usually recognizable.
(See MACSYM.MEM for further information.)

1. STKVAR

STKVAR uses the stack as temporary storage;
the 1local variables have names that are really
stack locations. STKVAR uses n stack locations for
local wvariables (where n 1is the number of local
variables requested) a count of 1local variables,
the return address .STKRT. On the stack you will
see:

TS-11 <{<For Internal Use Only>>

DIGITAL

TOPS-20 MONITOR
Troubleshooting

local variable
local variable

[]
local variable n
n,,n

NN

;count of local variables (used to
! ;adjust the stack)
/ +STKRT ;routine to clean up the stack and
;return

Therefore, when you find .STKRT on the stack, the
word before it 1is the count of local variables
which tells you how many locations on the stack are
in use by STKVAR.

TRVAR

TRVAR uses the stack in much the same way as
STKVAR does, but it also uses AC15, the current
contents of which is pushed on the stack first.

-The stack locations it uses look like this:

/ AC15
local variable
local wvariable

local variable n
n,,n
. TRRET

N

Therefore, when you find .TRRET on the stack, the
word before it is the count of local variables,
with register 15 stored on the stack in front of
the local variables.

ASUBR

ASUBR saves ACl5, ACs 1-~4, followed by the
return address .ASRET, which is a routine to clean
up the stack. When you see the address .ASRET on
the stack, vyou can expect the following in this
part of the stack:

TS-12 <<For Internal Use Only>>

DIGITAL

TOPS~2@3 MONITOR
Troubleshooting

AC15
AC1
AC2
AC3
AC4
«ASRET

NN

ACVAR

ACVAR can save AC5, AC5 and AC6, AC5-AC7,
AC5-ACl10, or AC5-ACl4, depending on the arguments
given. 1In each case, the return address to clean
up the stack is the last item pushed on the stack
by the ACVAR macro; the return address stored on
the stack is the clue to what else was pushed on
the stack. Each of the possible cases 1is 1listed
below:

1. ACS saved

/ ACS
/ SAV1+2 ;return address

2. ACS5 and AC6é saved

/ ACS5
/ AC6

/ <SAV2+3 ;return address

3. AC5, AC6, AC7, and ACl# saved
/ ACS
/ AC6
/ AC7
/ <SAV3+4 ;return address

4, AC5, AC6, AC7, and ACld saved
/ ACH
/ AC6
/ AC7
/ AClg
/ .SAV4+5 ;return address

TS-13 <<For Internal Use Only>>

DIGITAL

TOPS~2¢ MONITOR
Troubleshooting

5. AC5 through ACl4 saved

ACS
AC6
AC7
ACl0
ACll1
AC12
AC13
ACl4

+«SAVS8+7 s;return address

NONNNNNNNN

SAVEAC

SAVEAC takes a list of ACs to be saved as an
argument, It pushes the list of ACs on the stack,
followed by the address of a literal which 1is the
routine that restores the stack. One of the
instructions in the literal does a SUB
P,[.NAC,,.NAC]. This macro does not leave easily
recognizable data on the stack, but if you find a
return address on the stack that is a literal that
does the following, SAVEAC was used. (If you 1look
at the code 1in the literal, you will be able to
tell which ACs were pushed on the stack and how
many there were. .NAC is the count of ACs pushed.

/ AC

/ AC

/ .

/ . .

/ last AC saved

/ address of literal to restore stack

The 1literal to restore the stack looks
(approx imately) like this:

LIT= address of literal to restore stack for
this example.

TS-14 <<For Internal Use Only>>

DIGITAL TOPS-2¢) MONITOR
Troubleshooting

Lir-1/ 3,,3 ;count of ACs saved =3
LIT/ CAIA ¢
/ A0S ~N (P)
/ MOVE 1,-2(17) ;restore ACl
/ MOVE 5,-1(17) ;restore ACS
/ MOVE 10,0(17) ;restore AClQO
/ SUB 17,LIT-1 ;reclaim stack locations
/ POPJ P, ;return to callee

6. SAVEP

This macro calls the routine SAVP (in APRSRV)
to save the ACs P1-P6 on the stack, followed by the
address RESTP, which is the routine to restore the
ACs.

Pl
P2
P3
P4
P5
P6
RESTP

NN NN NN

7. SAVEQ .

This macro calls the routine SAVQ (in APRSRV)
to save the ACs Ql-03 on the stack, followed by the
address RESTQ, which is the routine to restore the

ACS.
/ Ql
/ Q2
/ Q3
/ RESTQ
8. SAVEPQ

This macro calls the routine SAVPQ (in APRSRYV)
to save the ACs Ql1-03 and Pl-P6 on the stack,
followed by the address RESTPQ, which 1is the
routine to restore the ACs.

TS-15 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Troubleshooting

Q1
Q2
Q3
Pl
P2
P3
P4
P5
P6
RESTPQ

NN NNN

9. SAVET

This macro calls the routine SAVT (in APRSRV)
to save the ACs T1-T4 on the stack, followed by the
address RESTT, which is the routine to restore the
ACs.

Tl
T2
T3
T4
RESTT

NN NN

Stack Adjustment
Many times the stack pointer is adjusted. Table BHC,

indexed by n, contains n,,n which may be added to or
subtracted from the stack pointer.

TS-16 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Troubleshooting

MACHINE STATES AND RELEVANT DATA BASES

PC Storage
1. PC at the time of the crash.

Location BUGHLT contains the PC at the time of
the crash.

2, PC when JSYS began.
Two copies of the PC are saved on the stack.
3. PFL/PPC

Current PC of process when the process was
last context switched. May be either an exec or
user mode PC.

4, PIFL/PIPC

The exec mode PC 1is saved here while the
software interrupt code is in progress.

5. Temporary PC storage

When the system is changing state, it must
always be prepared for a context switch. This is a
concern when a JSYS is starting, when a process
blocks, and when a software interrupt begins. 1In
each case, the PC is temporarily stored in case of
a context switch while the state change is in
progress.

1. SKDFL/SKDPC - PC is saved here while process is
blocking.

2. MONFL/MONPC - PC is saved here while the nested
JSYS is starting.

3. ENSKR/ENSKR+1 - PC is saved here while it is
entering the scheduler via the ENTSKD macro.
This is the PC the ENTSKD macro was called
with,

TS=-17 <<For Internal Use Only>>

DIGITAL TOPS-~28 MONITOR
Troubleshooting

AC Storage

AC STORAGE IN THE PSB

Each process's PSB contains several storage areas for
saving ACs. ACs are saved in the PSB in these cases:

1. Nested JSYS (JSYS called by a JSYS).

When a user called JSYS 1is 1in progress, AC
block # contains the monitor's ACs (the current
JSYS code ACs) and AC block 1 contains the user
mode ACs, If the JSYS code does a JSYS, AC block 1
(user mode ACs) are saved in the UACB area and the
AC block @ ACs are moved to AC block 1. For each
level of JSYS, the AC block 1 ACs are pushed onto
the UACB stack and the AC block # ACs are moved to
AC block 1. Therefore, the AC block 1 ACs are
always- the previous context ACs; 1i.e., the ACs
when the JSYS was called.

If a nested JSYS is in progress, the user mode
ACs are the first stacked ACs in UACB. 1If the
nesting is more than one level deep, each
subsequent JSYSs calling ACs are also saved in
UACB; the current JSYS ACs are saved in UAC if the
process 1is not currently running, or in BUGACU if
the process was running at the time of the <crash.
The maximum nesting 1level for JSY¥Ss is 5; this
limit is dependent on how much storage is reserved
for AC stacking in UACB.

ACBAS is the "pointer" for the AC stack UACB,
but is not stored as an address. The contents of
ACBAS must be shifted left 4 places to make it an
address. The resulting address is the first saved
AC for the last pushed AC block (i.e., the saved
ACs for the next higher 1level of nesting). 1If
there are no saved ACs pushed on the stack, ACBAS
contains its initial wvalue of <UACB>B39-1=37677;
if ACBAS contains anything else, there are pushed
AC blocks saved in UACB.

TS-18 <<For Internal Use Only>>

DIGITAL

AC

TOPS-2% MONITOR
Troubleshooting

Process is context switched while running in user
mode.

The current ACs (i.e., the user mode ACs) are
.saved in block UAC.

Process is context switched while running 1in exec
mode.

The current ACs are saved in block PAC,. The
previous context ACs are saved in block UAC. The
ACs saved in UAC are the user mode ACs unless a
nested JSYS is in progress; 1in this case, the ACs
saved in UAC are the ACs the nested JSYS was called
with., The user mode ACs for this case are saved on
the AC stack called UACB; the user mode ACs are
the first saved ACs on UACB.

Software interrupt processing.

The exec mode ACs are saved in block PIAC
while a software interrupt is in progress.

STORAGE AT THE TIME OF THE CRASH
BUGACS

Exec mode ACs at the time of the crash, copied
to current ACs when using FILDDT.

BUGACU

Previous context ACs at the time of the crash.
These are the user mode ACs unless a nested JSYS
was in progress, i.e., if a JSYS called from a
JSYS. If a nested JSYS was in progress at the time
of the crash, BUGACU contains the ACs the current
JSYS was called with. In such a case, the user
mode ACs are saved in the AC stack called UACB.

TS-19 <<For Internal Use Only>>

DIGITAL TOPS—-20 MONITOR
Troubleshooting

SUMMARY OF AC STORAGE
l. UAC

: Previous context ACs are saved here when the
user is context switched. For the currently
scheduled process, UAC contains the ACs from the
last time the process was dismissed. Once again,
if a nested JSYS was in progress, the UACs contain
the ACs the JSYS was called with. 1In such a case,
the user mode ACs are saved in the AC stack called
UACB.

2. UACB and ACBAS

Pushed AC blocks when a nested JSYS is in
progress.

3. PAC

Exec mode ACs saved here for process when it
is dismissed.

4. PIAC

Exec mode ACs saved here when a software
interrupt is in progress.

5. BUGACS
Exec mode ACs at time of crash.
6. BUGACU

Previous context ACs at time of crash.

Fork Scheduled, or Not

If a fork is scheduled, 1location FORKX contains the
fork's system fork number. The scheduled fork's PSB and
per-process pages, JSB and per-job storage, and the page
table are all mapped into the monitor's address space., If
no fork is currently scheduled, location FORKX contains a
-1.

TS=-20 <{For Internal Use Only>>

DIGITAL TOPS=-20 MONITOR
Troubleshooting

Fork NOSKED

If a fork is NOSKED, 1its fork number is stored 1in
SSKED; 1if there is no NOSKED fork, SSKED contains -1l.

Extended vs. Non-Extended Addressing

If the machine supports extended addressing, flag
EXADDR contains a 1; if the machine does not support
extended addressing, EXADDR contains #@.

Sizes (Resident, Non-Resident, Total)
MONCOR/ number of pages in resident monitor

TOTRC/ total number of swappable core pages

NHIPG/ highest physical core page number

MDDT Page
When MDDT is in use for a process, DDTPPG (currently
page 774) exists. If the running process's page 774 exists,

that process has been using MDDT. (You might suspect the

crash was caused by an accidental deposit in MDDT, for
example.)

Relevant Data Base for Each Machine State
JSYS
l. Stack
UPDL
2, Initial stack setup
Initial UPDL setup for JSYS if from user mode:

/ PC at time of JSYS
/ PC flags at time of JSYS

TS=-21 <<For Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Troubleshooting

/ PC at time of JSYS
/ PC flags at time of JSYS

Initial UPDL setup for JSYS if from exec mode
(nested):

/ INTDF

/ MPP (for higher level JSYS)

/ PC at time of JSYS (return PC)
/ PC flags at time of JSYS

Previous PC

The return PC is pushed on to the stack; MPP
is the stack pointer for the return PC.

Saved ACs

ACs saved in UACB if the JSYS is nested. See
section on AC STORAGE for a description of UACB.

Saved stack pointer

If the JSYS was from user mode, this 1is not
relevant, If the JSYS is nested, the previous JSYS
also used this stack and the MPP pointer can. be
used to determine where the stack pointer was when
this JSYS began:

Previous

stack ptr=> /
/ INTDF
/ MPP (for higher level JSYS)
/ MONPC

MPP -> / PC at time of JSYS (return PC)
AC usage

There is no standard for AC usage to which all
JSYSs conform.

TS=-22 <KFor Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Troubleshooting

7. Related storage

l. MPP -- points to:
--return PC for JSYS
--last location of initial setup for this
JSYS
2. FPC = KIMUPC —— dispatch address for JSYS
3. KIMUUl -~ last UUO from user in format:
KIMUUl/ flags,,opcode
/ JSYS number
4., INTDF
Indicates if the process is NOINT, and to
how many levels, Set to -1 if the process is
not NOINT, greater than or equal to zero if the
process is NOINT,
PAGE FAULT
1. Stack

TRAPSK

2., 1Initial stack setup

The initial stack setup differs for each of

three cases:

-~page fault from user mode
--page fault from exec mode

--recursive page fault

TS-23 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Troubleshooting

l. Stack setup upon page fault from user mode:

/runtime
/return PC
/return PC flags

2, Stack setup upon page fault from exec mode:

AC1l

AC2

AC3

AC4

AC?

ACl6
TRAPSW
runtime
PC

PC flags

SNONNSNNNNNNNN

3. Stack setup upon recursive page fault:

AC1l

AC2

AC3

AC4

AC7

ACl6
TRAPSW
PC

PC flags

SNNNNNNNNN

3. Previous PC

" Saved on stack; see initial stack setup for
location,

4, Saved ACs
The ACs that are saved are kept on the stack.

See the initial stack setup to learn where each AC
is saved.

TS=-24 <<For Internal Use Only>>

DIGITAL

TOPS-2@ MONITOR
Troubleshooting

Saved stack pointer

TRAPAP

.AC usage

Differs for each type of page fault.

Related storage

1.

TRPID --identity of the page causing the trap
in the form PTN, ,PN or PTN

This is the identity of the page the page
fault handler 1is working on. TRPID contains
the page's page table identity while the page's
page table 1is brought into core (if the page
table was not in core).

TRPPTR

Storage address of the page the page fault
handler is working on.

TRAPSW (copy of TRAPS#H)
TRAPC

@ if the first 1level page fault; if
greater than @, it indicates the 1level of
recursion.
TRAPFL/TRAPPC = UPTPFL/UPTPFO

Flags and PC at time of page fault.
TRAPS@ = UPTPFW

Page fail word; contains the ADDRESS that
page faul ted.

TS=-25 <<KFor Internal Use Only>>

DIGITAL

TOPS-28 MONITOR

Troubleshooting
SCHEDULER
l. Stack
SKDPDL
2. Initial stack setup

None. .
Previous PC

Saved in PSB for a process upon a context
switch to the scheduler; the PC 1is saved in
PFL/PPC of the process's PSB., If FORKX contains a
fork number, it is the number of the fork running
when the scheduler was invoked. If FORKX 1is not
set up, you cannot determine which fork was running
last. '

Saved ACs

The process's ACs are saved in block PAC (exec
mode ACs) and block UAC (previous context ACs) of
the PSB for the process. If FORKX is not setup,
you cannot determine which process was running
last. '
Saved stack pointer

In the saved ACs.
AC usage

FX/ -1 if no fork was chosen, or the system

fork number of the chosen fork

Related storage

1. FORKX - FORKX contains a -1 if no fork |is
chosen, or the fork number of the chosen fork.

2., Temporary storage while entering scheduler.

TS=-26 <<For Internal Use Only>>

DIGITAL

TOPS~-2@ MONITOR
Troubleshooting

PHYSIO QUEUEING LEVEL

1.

7.

Stack

PHYPDL
Initial stack setup

The P and Q ACs are saved on the stack by the
macro SAVEPQ; the ACs are saved in order of Ql
through 03 followed by Pl through P6. See the
section on Stack Usage for Local Storage for the
format.

Previous PC

Since PHYSIO 1is called with a PUSHJ, the
previous PC is the top of the saved stack.

Saved ACs
ACs Q1-Q03 and Pl through P6 are séved on the
stack. See the section in Stack Usage for Local
Storage entitled SAVEPQ.
Saved stack pointer
The previous stack pointer is saved in PHYSVP.
AC usage
P4/ address of IORB being queued
Pl/ address of CDB
P3/ address of UDB

P2/ address of KDB or @ if no KDB

Related storage

None.

TS=-27 <<For Internal Use Only>>

DIGITAL TOPS-2¢0 MONITOR
Troubleshooting
PHYSIO INTERRUPT LEVEL
1. Stack
PﬁYIPD
2, Initial stack setup
Noneﬁ
3. Previous PC
The ©previous PC 1is saved by the XPCW
instruction 1in a two word block, beginning at the
CDB-6,
4. Saved ACs
PHYACS -- block where ACs saved
5. 'Saved\stack pointer '
The saved stack pointer is in PHYACS+17.
6. AC usage
Pl/ address of CDB
P2/ address of KbB or @ if none
P3/ address of UDB

P4/ IORB address or argument indicating
action code:

P4<@ schedule a channel cycle (P4) = -1

P4=¢ dismiss interrupt

P4>3 housekeep current request
(contains IORB address)

7. Related storage

Home block check funtion. 1In STG, starts at
CHBUDB.

TS=-28 <<For Internal Use Only>>

DIGITAL

TOPS-2# MONITOR
Troubleshooting

APR INTERRUPT LEVEL

1.

Stack
MEMPP
Initial stack setup
/UPTPFO= TRAPPC
/UPTPFL= TRAPFL
/UPTPFN
/UPTPFW= TRAPS#

Previous PC

Saved as a double-word PC by XPCW in locations
PIAPRX and PIAPRX1.

Saved. ACs

MEMPA -- block where ACs #-19 are saved.

NOTE

Release 3A uses a different AC block
while at APR interrupt level; therefore,
no ACs are saved.

Saved stack pointer

MEMAP -- previous stack pointer saved there.
AC usage

None.
Related storage

1. Sets "local" page fail routine to MEMPTP,

TS-29 <{<For Internal Use Only>>

DIGITAL

TOPS-23 MONITOR

Troubleshooting
DTE INTERRUPT LEVEL
1. Stack
DTESTK
2, 1Initial stack setup
None.,
3. Previous PC
Saved in DTETRA.
4, Saved ACs
DTEACB -- block where ACs are saved.
5. Saved stack pointer
érevious stack pointer is saved in DTEACB+17.
6. AC usage
F/ result of CONI DTEn,
A/ DTE number of DTE that caused interrupt
3/»count (if RSX20F protocol)
4/ Byte pointer (if RSX20F protocol)
7. Related storage

None.

TS=-30 <<For Internal Use Only>>

DIGITAL

PSI

1.

TOPS-28 MONITOR
Troubleshooting

HANDLING
Stack
PIPDB
Initial stack setup
None.
Previous PC
PIDL/PIPC
Saved ACs
PIAC -- block where ACs are saved.
Saved stack pointér
érevious stack pointer is saved in PIAC+l7.
AC usage

FX/ interrupt flags from FKINT

Related storage

None.

EXEC MODE TASKS
Stack

UPDL
Initial stack setup

None.

TS=-31 <<For Internal Use Only>>

DIGITAL TOPS=-20 MONITOR
Troubleshooting
3. Previous PC
Since these are scheduled processes, this 1is
not relevant,
4, Saved ACs
Since these are scheduled processes, this 1is
not relevant.
5. Saved stack pointer
Since these are scheduled processes, this is
not relevant.
6. AC usage
None,
7. Related storage
l. How can you tell this use of UPDL from a JSY¥S?
If the FKJOB entry for the running fork is
Job @, the current process is probably a Job @
task as opposed to a JSYS in progress. If the
PC is in a Job # routine, this also indicates a
Job @ task.
USER MODE

The system never BUGHLTs in user mode, but it could
KEEP-ALIVE CEASE. The PC 1is from user mode if the flag
UMODF is set in the PC.

TS=-32 <<For Internal Use Only>>

DIGITAL TOPS-~2@ MONITOR
Troubleshooting

DDT's

FILDDT

The latest version of DUMP.CPY is the last crash. The
program FILDDT is used to analyze a crash.

HOW TO USE FILDDT ON A CRASH

To look at a crash with FILDDT you need the dump and
the monitor file it came from (for symbols). For example:

@ENABLE

SFILDDT

FILDDT>LOAD <SYSTEM>MONITR.EXE ;load symbols
FILDDT>GET <SYSTEM>DUMP.CPY ;load dump

The ACs contain their contents at the time of the dump. By
default you look at physical (not virtual) addresses.

$U COMMAND

FILDDT can simulate KL paging. If you want to look at
a particular address space, use the n$SU (altmode U) command.
The n 1is the address space's page table's SPT slot.
Usually, you wish to look at the monitor's address space.
MMAP's SPT slot is in location MMSPTN (usually it 1is 403,
but you should check the contents of MMSPTN if you are
looking at an unfamiliar monitor). In the part of the
monitor that BOOT loads, there is a one-to-one
correspondence between physical and virtual addresses;
MMSPTN is in this part of the monitor's address space.

If you wish to look at some fork's address space, find
its page table's SPT slot in the left half of FKPGS, indexed
by fork number.

If you wish to return to physical addressing (i.e., no
KL paging simulation), type $U (no n argument).

TS=33 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
Troubleshooting

Relevant DDT/FILDDT Commands

These are standard DDT commands; however, you may not
be familiar with them. They are included here along with
examples of their use.

QUESTION MARK (?)

If you type a symbol followed by a question mark, DDT
tells you which module(s) that symbol appears in; the
module name is followed by a G if the symbol is global. A
local symbol may be defined in more than one module.

This facility can bevused to locate symbols, like GLOB,
but faster.

BUGSTO?
APRSRV ;symbol is local and defined in APRSRV

SPT?
STG G ;symbol is global and defined in STG
UNDERSCORE

A value followed by an underscore is a request to DDT
to find a symbol with that value.

This facility can be used to 1locate the symbolic
address of a value,

14156 LSCHED+5

101400 _SPT

EFFECTIVE ADDRESS SEARCH (SE)

The $E command is used to search for all 1locations
where the effective address, following all indirect and
index-register chains to a maximum length of 64 (base 10)
equals the address being searched for.

TS-34 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
Troubleshooting

The format of the command is ac$E; a 1is the
range and is optional. If no range is specified, the whole
address space is assumed. The c argument is the address to
search for.

MMSPTNSE

PGRI1@+3/ MOVEM T1,MMSPTN
FPTA4/ SKIPA T1,MMSPTN
MLKPGM+2/ CAMN T2,MMSPTN
SWPER3+2/ CAMN T2,MMSPTN
GSMLER+11/ HRL T1,MMSPTN
BSMGP1+2/ HRL T1,MMSPTN
212777/ HRL T1,MMSPTN
SNPF@A+15/ HRL T1,MMSPTN
SNPF5B+1¢/ HRL T1,MMSPTN
UT1LL+1/ HRL T1,MMSPTN

JSB<KJISB+5>03SE
JOBMAP+2/ @
JOBMAP+3/ @
JOBMAP+5/ @

WORD SEARCH ($W)

Word search compares each storage word with the word
being searched for 1in those bit positions where the mask,
located at $M, has ones. The mask word contains all ones
unless set by the user. 1If the comparison shows equality,
the word search types out the address and the <contents of
the 1location; 1if the comparison results in inequality, the
word search types out nothing.

The format of the command is acSW. a 1is the
range and c is the quantity searched for. To set the mask,
type nSM where n is the quantity to be placed in the mask
word.,

Suppose we wish to find all share pointers in the
current user's page map between pages @ and 1@4. 1In this
case, store a 7 (for pointer type) in bits @-2 of the mask.
The command is UPTA<KUPTA+1#>200008,,05W and works as
follows:

TS=-35 <<For Internal Use Only>>

DIGITAL TOPS~28 MONITOR
: Troubleshooting

700800008, ,0$M

UPTAKUPTA+10>200000, ,8SW
UPTA+2/ 206000, ,1244
UPTA+4/ 206000, ,1242

NOT WORD SEARCH (S$N)

Not word search works 1like word search, the only
difference is that it types out the contents of the register
when the comparison is an inequality, and types nothing when
an equality is found.

Not word search is commonly used to type out all
non-zero locations in some range. Suppose you wish to find
all existent (non-zero) entries in the JSB map; you would

type:

-15M

JOBMA P<JOBMAP+66 >3 $N
JOBMAP/ 22404040, ,635
JOBMAP+1/ 124003, ,7044
JOBMAP+4/ 124003, ,2764
JOBMAP+6/ 124003, ,7050

MDDT

'MDDT is a part of the monitor that allows you to 1look
at the running monitor with the standard DDT commands; your
process is always the running process when you use MDDT.
You can also call monitor routines to map pages, etc.;
however, extreme caution should be taken when wusing MDDT.
If you change any locations, you can crash the monitor. It
is @ good practice to type carriage return immediately after
you open any 1location to prevent accidental deposits into
memory.

You can enter MDDT in either of two ways. In the first
example, the running fork will be the top fork of your job,
i.e., the EXEC. In the second example, the running fork
will be the fork running user level DDT.

@ENABLE

TS-36 <<For Internal Use Only>>

DIGITAL TOPS-2@3 MONITOR
Troubleshooting

$“EQUIT
MX>/
MDDT

@ENABLE
$SDDT

JSYS 7778X .
MDDT ‘

You can use either method to enter MDDT. Return from
MDDT by calling the routine MRETN. Do this by typing:

MRETNSG

EDDT
While you are in EDDT, timesharing ceases.
Loading the Monitor With EDDT
Switch registers: 9,1,2,7
BOOT> /L
BOOT> /G141
EDDTF/ 1

DBUGSW/ 2
143sG

TS-37 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
: Troubleshooting

This page is for notes.

TS-38 <<For Internal Use Only>>

DIGITAL - \ TOPS-2@ MONITOR
: : o Troubleshooting

MODULE TEST

When answering the lab exercises, write down the names
of the tables where you found the answers. The labs will
help you understand the monitor data base structure. So
remember, where to look is more important than what you find
there. :

The exercises marked with a double star (**) are more
difficult and are optional. As the course progresses, you
may feel more comfortable about these portions; feel free
to come back to them later.

ILLUUO Crash

TOOLS

This set of exercises uses a crash named <MONITOR-
INTERNALS>ILLUUO, EXE. The monitor you should use to load
your symbols is named <MONITOR-INTERNALS>ILLUUO-MONITR.EXE,
Do not forget to set monitor context!

TS-39 <<For Internal Use Only>>

DIGITAL | TOPS-208 MONITOR
P JRIRE » , : Troubleshooting
EXERCISES | FE

You should attempt to analyze why the ILLUUO crash

occurred. The following questions should help y0u look in
the right directions. Good luck!

/

1, What is the BUGHLT? What does it mean to get this
BUGHLT 1:ype‘>

2. What was the PC that caused the BUGHLT?

3. What was the 1nstruction that trapped as an 111ega1
uuo? :

4, What stack was in use?

5. What ﬁode was the processor in when the illegal UUO
occurred?

6. How did it get to that instruction? **

S

- TS-40 <<For Internal Use Only>>

DIGITAL ' TOPS-~20 MONITOR
Troubleshooting

TEST EVALUATION SHEET

EXERCISES

1. What is the BUGHLT? What does it mean to get this
BUGHLT type?

ANSWER: The BUGHLT is an ILLUUO. This means the
monitor executed an illegal instruction, which, in
turn, generally means that either the monitor
somehow started executing data or its ACs or that
some code was garbaged.

2. What was the PC that caused the BUGHLT?
ANSWER: Since it is a UUO, the PC is stored in the
MUOUO o0l1ld PC word; address KIMUPC (this is offset
424 in the UPT/PSB page). Remember that this 1is
the updated PC, so it is usually 1 greater than the
uuo.

KIMUPC/ 304000,,1

3. What was the instruction that trapped as an illegal

uuo?

ANSWER: The updated PC was 1; so the illegal UUO
1s 1n ACQ.

g/ @ ;certainly looks illegal

4, What stack was in use?

ANSWER: The stack 1in wuse tells us what was
generally going on.

P/ UPDL+125, ,UPDL+38 ;JSYS in progress

TS-41 <<For Internal Use Only>>

DIGITAL

TOPS-208 MONITOR
Troubleshooting

What mode was the processor in when the illegal UUO
occurred?

ANSWER: The PC flags have bit UMODF on if it was
user mode; but a ILLUUO cannot happen anyway
unless it was monitor mode.

KIMUPC/ 304000,,1
UMODF= 10000, ,0 ;not user mode
How did it get to that instruction? *¥*

ANSWER: The best way to figure this out is to look
at the stack. There are these basic facts that
help to make sense of the stack:

l. P contains the current stack pointer.

2. MPP contains the stack pointer at the time the
last JSYS began. If MPP does not point to the
start of the stack plus 1 (UPDL+l1), there is a
JSYS that called a JSYS.

3. If an entry was made on the stack by a PUSHJ,
it will look like a PC. This is not a hard and
fast rule, but it can help. A user mode PC
usually has bits 1,2, and 3 on and a monitor PC
has bits 1 and 2 on.

4, When a JSYS begins, it pushes the old PC on the
stack twice.

5. If a return address 1is still on the stack
(i.e., has an address 1less than the stack
pointer), then you have not returned from the

" routine.

6. The monitor uses the stack for temporary
storage. The macros STKVAR, TRVAR, etc. leave
recognizable things on the stack. Knowing
these conventions helps you recognize which
stack locations are being used as temporary
storage.

TS-42 <<For Internal Use Only>>

DIGITAL

TOPS-20 MONITOR
Troubleshooting

Using these points, try to fit the pieces together.
Here is the stack and deductions from it:

P/ UPDL+125, ,UPDL+30
MPP/ UPDL+76, ,UPDL+1

UPDL/ 310000,,442531
/ 310000, ,442531
/8
/ 1,,1
/ MMAP,,.STKRT

/ CAIA SOUT1+1

/ MMAP+400,,SWPMLK+3

/ JSTAB+161
UPDL+10/ CAIA SOUTB+6
CAIA BYTOUA+13
CAIA NOPGT@+15
-1
1,,160000
-1
JSTAB+161
/ 4,4

NONNNYNN

UPDL+20/ CAIA .STKRT
CAIA NEWWNA+6

-1

JSTAB+160

CAIA JFNOFS5+20
UPDL+77, ,UPDL+2
T1

CAIA .ASRET
UPDL+38/ JSTAB+563,,10

/ =1

NNNNNN N

/ CAIA .TRRET

/ CAIA GTFDB2+14
/ CAIA USTDIR+1

TS-43

;current stack pointer

;only one JSYS

;PC at time of JSYS
:2nd copy of PC

1looks like temporary
;storage macro (STKVAR)
;looks 1like a PC

;and the address
;implies this

;is a SOUT jsys.

:looks like a PC

;4 temporary
;istorage locations
;another STKVAR
:looks like a PC

;looks like a PC

;looks like a PC

;this is our top

;of stack

;since this is the
;last location

;popped off the stack;
;routine for return
;with TRVAR

<{For Internal Use Only>>

DIGITAL

TOPS-200 MONITOR
Troubleshooting

P and the stack indicate there is a SOUT going on;

‘MPP indicate it is not a nested JSYS. The PC at

the time of the JSYS (in UPDL) is a user mode PC
because UMODF is on.

Locations UPDL+2 through UPDL+4 are STKVAR
locations; «STKRT 1is the return routine STKVAR
sets up and the 1location before it (containing
1,,1) 1is the count of temporary storage locations,
that is, 1.

It looks as if the SOUT called NEWWNA to
change the file window page. That code called
JFNOF5, which made a call to NEWLFP; this 1is
indicated by the entry in UPDL+24, which is the
return address from NEWLFP. Looking at the code,
and what gets called, it seems that NEWLFP went to
NEWFLL and called NEWLFS, which failed. In the
literal at NEWFLL+3, it calls and returns from
USTDIR, and then it adjusts the stack. This causes
it to POPJ to -1, the next higher entry on the
stack.

So it adjusted the stack by 1, which in this

case, it should not have. The code apparently
expected one more thing to be on the stack.

TS¥44 ~<<For Internal Use Only>>

TOPS-20 MONITOR

PHYSIO - Disk/Tape

<<{For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

COURSE MAP

DT FE SM

STORAGE
MANAGEMENT

FRONT END/
TERMINALS

TROUBLE
SHOOTING

CcC SER

CODING
CONVENTIONS

MO

MONITOR
OVERVIEW

SOFTWARE

INTRODUCTION

MR-2717

DT-i <<For Internal Use Only>>

DIGITAL TOPS-204 MONITOR
PHYSIO - Disk/Tape

This page is for notes.

DT-ii <<For Internal Use Only>>

DIGITAL TOPS-=28 MONITOR
PHYSIO - Disk/Tape

PHYSIO - Disk/Tape

INTRODUCTION

This module covers, in depth, the flow
of the physical 1I/0 for Magnetic Tape and
Disk transfers. The flow starts with the
generation of disk/magtape I/0 Request
Blocks (IORBs), through their queueing to
the calling of the device-dependent, unit
specific code. The channel and unit data
bases are discussed, along with a
description of the algorithms used for the
selection of the appropriate transfer to be
executed. Interrupt and error processing
are also addressed.

DT-1 <<For Internal Use Only>>

DIGITAL

TOPS-2# MONITOR
PHYSIO - Disk/Tape

"student will be able to:

LEARNING OBJECTIVES

Upon completion of this module, the

1. Describe the overall structure of the
Physical I/0 data base.

2, 1Identify the data contained in each of
the structures relating to the Physical
I/0 data base.

3. List the various error counts and
specify the location of each.

4, Describe the disk allocation algorithms

and the relevant portions of the data
base.

"RESOURCES

l., Monitor Tables

2. Micro-fiche of the Monitor

DT-2 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

MODULE OUTLINE
PHYSIO-Disk/Tape

I. PHYSIO
A, Data Structure
B. Queueing an IORB
C. Scheduling an IORB
D. Starting I/0
E. Interrupt Handling

ITI. Disk Allocation
A, Data Structure (DSKBTTBL)
B. Space allocation
C. Space Deallocation
D. Drum Allocation
E. BAT Blocks

ITII. DISK Dependent I/0
A. Data Structure
B. Disk-Dependent Code
C. Disk Interrupts
D. Disk Errors and Abnormal Conditions

IV. MAGTAPE Dependent I/O
A. Magtape Data Base
B. Magtape IORB
C. CDB, KDB, and UDB
D. Interface to PHYSIO
E. Magtape I/0 Wait
F. CLOSF Device-Dependent Functions
G. Magtape Interrupts
H. Error and Abnormal Conditions

DT-3 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

This page is for notes.

DT-4 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

PHYSIO

Data Structure
IORB (I/0 REQUEST BLOCK)

An IORB is built by the disk or magtape dependent code.
Short IORBs are built for most disk I/0 requests; magtape
I/0 always uses long IORBs.

CHANNEL DATA BLOCK

The channel data block, or CDB, contains
channel-dependent status information. All interrupts for
the channel begin processing in the CDB and are dismissed by
code in the CDB; interrupts come in at offset CDBINT=-6 and
are dismissed at offset CDBJEN. Of fset CDBDSP has the
address of the channel dispatch table (RH2DSP). The KDB
addresses for magtape, or the UDB addresses for disk, begin
at offset CDBUDB. The channel number is in offset CDBADR.

Each CDB has a device-~dependent portion beginning at
CDBDDP, For RH20s, this portion is a 4-word block with the
CONI, CONO, DATAI, and DATAO instructions in it. For RHlls,
the portion contains the device registers, the UNIBUS status
register address, and the UNIBUS bus address base address.

CONTROLLER DATA BLOCK

The controller data block, or KDB, exists for magtape
controllers, Disk units each have their own controller
built in; there is no KDB for disk, The KDB has the
addresses of the unit data blocks for each magtape unit on
the controller; one controller can handle a maximum of
eight units.

Offset KDBDSP has the address of the KDB function
dispatch table. Offset KDBUDB 1is the first of eight
possible UDB addresses, and each KDB has a device-dependent
portion beginning at offset KDBDDP. I/0 instructions and
current unit status information is kept in this portion.

DT=5 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

UNIT DATA BLOCK

Each magtape and disk unit has a unit data block, or
UDB. Each UDB has unit-dependent status information for the
unit. Offset UDBPWQ is the header for the unit's position
wait queue, and offset UDBTWQ is the header for the unit's
transfer wait queue.

Each UDB has a. device-dependent portion beginning at
offset UDBDDP. RP@4 and RP@6 devices have the hardware 1/0
instructions here, plus the twenty drive registers. Magtape
devices have the slave address on the slave bus, error
information for the drive, and the tape cleaner flag stored
here also.

FINDING EACH DATA STRUCTURE

The CHNTAB table, indexed by channel number, contains
the address of the channel data block, or CDB., For disk,
offset CDBUDB of the CDB is the first of eight pointers for
the eight possible unit data blocks, or UDBs; if the unit
exists, the pointer has the address of the unit's UDB, For
magtape units, offset CDBUDB contains the address of the
KDB, or controller data block. The KDB has the pointers to
the mag tape UDBs, beginning at offset KDBUDB; each
controller can support a maximum of eight units.

For magtape units, MTCUTB, indexed by unit number,
contains the CDB address for the unit in the left half and
the UDB address for the unit in the right half.

RH2¢ CHANNEL DISPATCH TABLE

Table PHYCHT contains the addresses of the channel
dispatch tables for each channel supported. Currently, this
table has one entry and all systems have the address RH2DSP.
However, the RH2DSP table is in PHYH2 or PHYH1ll, and only
one of these modules will exist in a monitor; PHYH1ll is the
2028 channel-dependent module and PHYH2 1is in all other
TOPS-20 monitors.

The channel dispatch table offsets are described in the

CDS table 1in the Monitor Table Descriptions section. Each
offset serves a different function. For example, offset

DT-6 <{For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
PHYSIO - Disk/Tape

CDSINI initializes the channel and builds the CDB.

UNIT DISPATCH TABLE

Table PHYUNT has the dispatch table addresses for all
supported unit types. The possible dispatch tables are:

1. RS4DSP -- RS@4 dispatch table
2. RP4DSP -- RP@4/RPB6 dispatch table
3. TM2DSP -- TM@2 dispatch table

The KDB, at offset KDBDSP, contains the KDB dispatch table
-- 'TM2DSP, the same table referred to above as the unit
dispatch table.

Many channel-dependent functions (i.e., routines
dispatched to through the channel dispatch table) will also
dispatch through the unit dispatch table. For example,
RH2DSP plus CDSSIO (start 1/0 offset) does some
channel-dependent functions and then dispatches through
offset UDSSIO of the TM2DSP table, or the RP4DSP table,
depending on the unit type. .

Queueing an IORB

The IORB is added to either the transfer or position
wait queue for the relevant unit. If the unit's channel is
inactive, the request is serviced; that is, positioning or
transfer is started, depending on the request type.

QUEUING A MAGTAPE IORB

For magtape, routine MTAIRQ is called to set up the
IORB transfer 1list and fill in other IORB fields. MTAIRQ
then calls QUEIRB (in PHYSIO) which calls routine PHYSIO (in
PHYSIO) to add the IORB to the unit's transfer wait queue or
position wait queue.

Magtape requests must be serviced in the order they are
requested. To insure this happens, requests are handled as
follows:

DT-7 <<{For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

l., In a transfer request with the position wait queue
(PWQ) empty, add the request to the transfer wait
queue (TWQ).

2, In a position request, add the request to the PWQ.

3. In a transfer request with the position wait queue
not empty, add the request to the PWQ.

For an explanation of how this affects scheduling, see
the section on how IORB's are scheduled for magtape.

QUEUING A DISK IORB

For disk, read operations are triggered via the page
fault mechanism. Write operations are triggered by UFPGS
JSYS, un-mapping a file page, DDMP action, or by one of the
garbage collectors (XGC or GCCOR).

Read requests call SWPIN; write requests call SWPOUT.
These routines do any necessary overhead operations (such as
mapping the index block, getting a page from RPLQ, setting
up the core management data base, putting the page on RPLQ,
assigning drum space, etc.) and then call DSKIO to set up a
short 1IORB., (Index block reads and writes go through
UDSKIO) . '

For disk requests, routine PHYSIO will add the IORB to
either the unit's position wait queue or transfer wait
queue., If the unit is positioned at the same cylinder as
the requested cylinder and the fairness count for the unit
has not expired, the request is added to the unit's transfer
wait queue; otherwise, the request is added to the unit's
position wait queue.

If the channel 1is not active, positioning or data
transfer (depending on whether the request was added to the
PWQ or to the TWQ) is started. If the channel is busy, the
request 1is scheduled at interrupt level; if the request is
added to the TWQ for disk, it may be stuffed into the backup
register. A request is added to the backup register if:

DT-8 <{{For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

l. The primary command is active.

2, It is for the cylinder at which the wunit 1is
positioned.

3. Full latency optimization is enabled.

4, 1Its sector address is within minimum latency time.

Scheduling an IORB

Most scheduling of IORBs is done at interrupt 1level.
When a transfer done interrupt occurs for a unit, another
transfer is started for the channel. Each unit has a
transfer wait queue; however, the channel can handle only
one data transfer at a time. When a disk unit's transfer
wait queue is empty, a new cylinder is selected via the scan
algorithm, and positioning is started for that unit. Note
that positioning can be started for a unit (or units) with
data transfer started on another unit; that is, positioning
and data transfer can go on simul taneously for units on the
same channel. However, the positioning requests must be
started before any data transfer is requested because once a
data transfer begins, the channel is busy until the transfer
done interrupt occurs.

The algorithms used to choose a transfer request for
disk and magtape are as follows.

For magtape:

Requests must be serviced in the order they are given.
Choose the next request on the TWQ. If the TWQ is empty,
look at the first request on the PWQ. If it 1is a
positioning request, start positioning. An empty TWQ, with
the first request on the PWQ being a transfer request,
implies that the last serviced request for this unit was a
position request; move all transfer requests (up to the
next positioning request) from the PWQ to the TWQ. Service
the first request on the TWQ. The unit 1is chosen 1in
round-robin fashion.

DT-9 <<For Internal Use Only>>

DIGITAL TOPS-29 MONITOR
PHYSIO - Disk/Tape

For disk:

1. Choose the best latency request from TWQ for each
unit and, then, the best latency for all units on
the channel.

2, If the fairness count for best latency across units
has expired, step one unit from where marker CDBCUN
(in the CDB) points.

3. If a unit's ™WQ is empty, start positioning the
unit using the SCAN algorithm with read preference
(next higher numbered cylinder read request; if
none, take next higher numbered write request; if
none, start algorithm over at 1lowest cylinder).
IORBs in the PWQ for the cylinder positioned to are
moved to the TWQ. Note: the channel can
simul taneously transfer data and postion units.

When a request has been chosen, start I/0.

If the primary command is active when the interrupt
comes 1in, it 1is 1likely that there was a backup register
request which became the primary command when the request
(whose interrupt is being serviced) was finished
transferring. Moving the backup register command to the
primary command is done by the hardware if the backup
register has a command in it when the primary command
finishes. When the routine that schedules transfers at
interrupt level sees that the primary command is active, it
looks for a transfer request in the TWQ whose sector address
is less than minimum latency; if there is such a request,
it is stuffed in the backup register.

Starting 1/0

The routine in offset CDSSIO of the channel dispatch
table is called to start I/0 for the channel.

DT-10 <<For Internal Use Only>>

DIGITAL TOPS-2@# MONITOR
PHYSIO - Disk/Tape

Interrupt Handling

All disk and magtape interrupts vector to the fourth
word of the channel's data logout area in the EPT; this is
the vectored interrupt location, which always contains:

JRST 7,CDB -6 (where CDB is that channel's CDB).

This instruction stores the o0ld PC and flags in the first
two locations and picks up the new PC from the next two
locations. The PC picked up is CDB-1; the instruction in
this location saves AC 10 and then does a JSP 10,PHYINT.
Routine PHYINT does the standard pre-processing for disk and
mag tape.

PHYINT calls channel-dependent code through offset
CDSINT of the channel dispatch table to analyze the cause of
the interrupt. The channel-dependent routine for RH28s 1is
RH2INT. Lower level routines called by RH2INT (i.e., unit
dependent routines) return an argument in accumulater P4;
this argument is passed to PHYINT to indicate whether to
dismiss the interrupt (argument is zero), schedule another
channel cycle right away (argument 1less than zero), or
housekeep the current request (argument greater than zero).
For example, the argument returned can have the following
meanings:

1. Request to dismiss (P4=@) -- the done flag 1is on
and the channel is not occupied.

2. Request for immediate channel cycle (P4 < gy --
positioning done interrupt has occurred and there
is no transfer in progress.

3. Housekeep current request (P4 > @) =-- Transfer done
interrupt occurred and transfer done requires
housekeeping before another request can be
schedul ed.

DT-11 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

DISK ALLOCATION

Data Structure (DSKBTTBL)

Each structure on the system has a file, called
STR: <ROOT-DIRECTORY>DSKBTTBL, containing the current
structure allocation information. This file is divided into
two parts. The first portion holds a word containing a
count of free pages for each cyl inder on the structure. The
second portion has one bit for each page on the structure;
if the bit for a page is on, the page is free.

This file must be mapped into the monitor's address
space 1in order to allocate space on a structure. For Model
B processors using extended addressing, it 1is mapped into
section BTSEC (BTSEC = 4, currently) beginning at address 4g.
For systems not using extended addressing, the bit table 1is
mapped into section @ beginning at location BTB. The bit
table is mapped only when space 1is being allocated or
deallocated.

Space Allocation

The routine DSKASN in DSKAL1l allocates space on the
disk. The caller can request a specific cylinder; when a
new page is allocated for an existing file, the <caller
requests a page from the same cyl inder that the last file
page was allocated from.

If a cylinder is requested, and no page is free on that
cylinder, this algorithm is used to select a page:

1., Look for the next higher cylinder on the current
unit with any free page.

2, If no page is found on this wunit, step to other
units in the current structure.

DT-12 <<For Internal Use Only>>

DIGITAL TOPS-20 MONITOR
PHYSIO - Disk/Tape

If no cylinder is requested, the search for a page to assign
begins at the cylinder number stored in location SDBLCA of
the SDB; this location contains the cylinder from which a
page was last allocated. The algorithm works as follows:

l. Start with the last cylinder a page was assigned
from (contents of SDBLCA).

2. Look at its cylinder number (across all units) for
at least SDBMFP pages. (SDBMFP is in the SDB and
contains the minimum free pages below which DSKASN
changes its assignment algorithm. SDBMFP is
initialized to the value stored in table MINFPG for
this structure's unit type.)

3. If there are less than SDBMFP pages free on this
cylinder, increment the cyl inder number and look at
that cylinder for SDBMFP pages across all units.

4, 1If no cylinder has at least SDBMFP pages, choose
the cylinder with the most pages and set SDBMFP to
this value.

Once a cylinder is chosen, the count of free pages on
the cylinder 1is decremented in the first part of DSKBTTBL
and the bit for the chosen page 1is turned off. DSKBTTBL
will always be updated before the index block of a file is
updated.

Space Deallocation

Routine DSKDEA is called to release a disk page. The
bit 1is set to 1 for the page and its cylinder's free page
count is incremented.

DT-13 <<For Internal Use Only>>

DIGITAL TOPS-2@/ MONITOR
PHYSIO - Disk/Tape

Drum Allocation

Table DRMCNT has a one word entry for each cylinder in
the swapping space; table DRMBBT has one bit for each page
in the swapping space. Location DRMFRE is the total number
of free pages on the swapping space. Routine DRMASN assigns
swapping space while DASDRM. de-assigns it.

Routine DRMASN is called to assign a page anywhere on
the drum and DRMASA is called to assign a specific address.
DRMASN 1looks for the first free page of swap space,
beginning where a page was last assigned. The cylinder a
page was last assigned from is remembered in 1location
DRMBN4. Routine DRMASA tries to assign the requested page;
if the page is not free, it gives an error return. For most
cases, DRMASN is the routine called to assign a page.
DRMASA is called: for swappable monitor space when the
system is initialized, by GCCOR when it writes a group of
pages, and to mark bad spots in the swapping space (to keep
them from being allocated).

BAT Blocks

Any page in a bad spot on the disk is marked in the BAT
blocks and 1is also marked as assigned in the bit table for
disk or drum. When the disk is formatted, the BAT blocks
are allocated and any bad spots on the disk at this time are
marked in the BAT blocks. If, at any later time, a page
gets a hard read or a hard write error, the file's FDB is
marked. When the page is released from the file, the page
is marked in the BAT blocks.

The channel-dependent routine also records error
information so that PHYINT can see if error recovery is in
progress or should be started.

If the interrupt is a positioning complete or transfer
done interrupt, the IORB is removed from the PWQ or TWQ and
the IORB is posted as done. If the interrupt is from a disk
unit and the backup register had a request, the backup
register request is serviced while the interrupt handling is
in progress.

DT-14 <<For Internal Use Only>>

DIGITAL TOPS-2@ MONITOR
PHYSIO -~ Disk/Tape

DISK DEPENDENT 1/0

Data Structure

FILE WINDOW PAGE

All disk I/0 is done by mapping a file page to or from
a virtual address space. The PMAP JSYS is the way a user
maps a file page. The sequential and dump mode JSYSs also
use page mapping for disk I/0. However, this mapping is
invisible to the user. The page will be mapped through a
page called the file window page. There can be one file
window page per JFN.

File window pages are allocated in the JSB space, and
the address of a file window page is stored in offset FILWND
of the JFN block. When the user executes an I/0 JSYS
(sequential or dump mode) to a disk file, the data is moved
from the user's address space to the file window page (if
writing) or from the file window page to the user's address
space (if reading). When the window page is either full or
empty, 1t 1is wunmapped and the next page of the file is
mapped. If the file is being written, unmapping the page
insures that the updated information is on disk.

JFN BLOCK ENTRIES

FILBYT is the current byte pointer into the file window
page. FILCNT is the number of bytes left in the file window
page. FILCNT is decremented for each byte removed from the
file window page (if r