

TOPS-20 MONITOR

Course Number: J 1183-A

Educational Services
Digital Equipment Corporation

Marl boro, Massachusetts

«For Internal Use Only»

DIGITAL TOPS-20 MONITOR

Copyright © 1979 by Digital Equipment Corporation

The material in this document is for informational
purposes a~d is subject to change without notice; it should
not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this
document.

The software described in this document is furnished
under a license and may only be used or copied in accordance
with the terms of such license. Digital Equipment
Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not
supplied ,by Digital or its affiliated companies.

The following are trademarks of
Corporation, Maynard, Massachusetts:

COMPUTER LABS
DBMS-II
DEC
DECSYSTEM-20
OIBOL
FLIPCHIP
LAB-8
-OS/8
RSTS
TYPESET-10
UNIBUS

COMTEX
DSMS-20
DECCOMM
DECtape
DIGITAL
FOCAL
MASSB US
PDP
RSX
TYPESET-II
DECSYSTEM-2020

Dig i tal Equi pment

DBMS-10
DDT
DECsystem-10
DECUS
EDUSYSTEM
INDAC
OMNIBUS
PHA
TYPESET-8
TYPESET-20

«For Internal Use Only»

DIGITAL TOPS-20 MONITOR

NOTE

The material in this course is intended
for internal use only by Digital
personnel. The material in this course
is not to be duplicated nor distributed
to customers or prospective customers.

i «For Internal Use Only»

DIGITAL TOPS-20 MONITOR

This page is for notes.

ii «For Internal Use Only»

DIGITAL TOPS-20 MONITOR

CONTENTS

Student Gu ide •••••••••

Software In t rod uc t ion

Moni tor Overv iew

Coding Conventions

SYSERR .
Troubleshooting .

• • SG

• SI

.MO

.CC

.SER

•• TS

PHYS 10 - Disk / Tape .DT

Front End/Term inal s .FE

Storage Management ••••••••••••••••••••••• • 8M

Monitor Tables .
Monitor Logic Manual

Mi sc ell aneo us

I

.
.MIS

.APP Appendix

Appendix

Appendix

II . ~ . . .
III

iii «For Internal Use Only»

DIGITAL TOl?S-2QJ MONITOR

iv «For Internal Use Only»

TOPS-20 MON ITOR

Student Guide

DIGITAL

CONTENTS

TOPS-20 MONITOR
Student Guide

Course Description ••••• SG-l

Prerequisites •••••••••••••••••••••••••••• SG-l

Course Objectives •••••••••••••••••••••••• SG-l

Resources . ••• SG-2

Co ur se Ou tl ine . •• SG-3

Course Evaluation Form •• SG-9

Appendix A - Course Map •••••••••••••••••• SG-13

SG-i «For Internal Use Only»

DIGITAL

This page is for notes.

SG-ii

TOPS-20 MONITOR
Student Guide

«For Internal Use Only»

DIGITAL

COURSE DESCRIPTION

TOPS-20 MONITOR
Student Guide

This course is addressed to regional and district
support personnel and is designed to help in their task of
determining and isolating system faults occurring in the
TOPS-20 operating system. The approach focuses on
troubleshooting, fault-finding, and error analysis.
Following an overview of the major monitor structures and
coding conventions is a general discussion of debugging
techniques, including the BUGHLT features of the TOPS-20
system. Several of the available tools are covered
thereafter, for example, MDDT and SYSERR. The remainder of
the course is devoted to the main functions of TOPS-20.

PREREQUISITES

The regional or district support specialist is expected
to have completed the courses leading to the the Diagnostics
course in this curriculum, including Software Concepts, ALP,
and Specialist.

COURSE OBJECTIVES

Upon completion of this course, the student will be
able to:

1. Describe how the monitor drives the hardware and,

2. Compare this to the way the diagnostics drive it.

3. Identify the portions of the data base related to a
given problem and,

SG-l «For Internql Use Only»

DIGITAL TOPS-20 MONITOR
Student Guide

4. Use FILDDT to examine these parts of the monitor's
data base to extract information related to the
problem.

5. U$e (or create) the tools to determine which of the
devices are causing system problems (even when the
diagnostics identify none) •

6. Determine what is/was
hardwa re.

COURSE RESOURCES

happening

Each student should be given a copy of:

1. The course materials book incl ud ing:

1. The Student Guide

2. The Modules

3. The Moni tor Tables

4. The Moni tor Log ic Manual

with/to the

2. DECsystem-10/DECSYSTEM-20 Hardware Reference Manual

3. TOPS-10 and TOPS-20 SYSERR Manual

4. TOPS-20 Microfiche Assembly Listing

SG-2 «For Internal Use Only»

DIGITAL

COURSE OUTLINE

Software Introduction

I. Review of Operating System Principles
A. Approaches
B. Functions

1. Sched ul ing
2. Storage Management

C. Virtual Memory
1. Pag ing

D. Fi 1 e System
E. Interrupt Handling
F • Accounting

II. TOPS-20 Hardware/Software Interface

TOPS-20 MONITOR
Student Guide

A. Virtual Address Translation - General
B. User Page Map
C. Hardware Page Table - Addressing
D. Pointer Types
E. Stor ag e Add resses
F. KL Pag ing
G. Process Overhead Pag es
H. Special/Shared Page Tahle (SPT)
I. Summary of Paging

Moni tor Overv iew

I • Mo n i to r Ca 11 s

II. Storage Management
A. Block Diagram

III. Pager
A. Hierarchical Storage Considerations
B. Implementation - Mapping
C. Inter-Level Da ta Flow
D. Updating Lower Levels

IV. Scheduler

SG-3 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR

V. File System
A. Data Structure

VI. Job/Fork Structure

VII. Disk And Magtape Service
A. Hardware Principles
B • Mo n i to r Mo d u1 e s
C. I/O Requests

VIII. Front End Service
A. TTY Input
B. TTY Line Buffers And Echoing
C. Line Printer Output

IX. Appendices

Coding Conventions

I. Us ing MACSYM
A. Symbol Definitions
B. Macros To Manipulate Field Masks
C. Instructions Using Field Masks

Student Guide

D. DEFSTR -- MSKSTR Data Structure Facilities
1. LOAD
2. STOR
3. Examples

E. Subroutine Conventions
F. Named Variable Facilities
G. Miscellaneous

II. TOPS-20 Coding Standards
A. Subroutine' Calling - JSYS
B. Subroutine Calling
C. AC Definitions
D. AC Saving and Restoration
E. Subroutine Documentation
F. Multi-line Literals
G. Numbers

I I I. Append ices

SG-4 «For Internal Use Only»

DIGITAL

SYSF.RR

I. The SYSERR Program
A. Running the SYSERR Program
B. Examples of SYSERR Output

II. SYSERR Module Internals
A. SYSERR Block format

1. He ader
2. Da ta

B. Creating a SYSERR Entry
C. The Job 0 SYSERR Task
D. The SYSERR JSYS

Tro ubleshoot ing

I. CTY Output
A. Explanation of KLERR Output
B. Sample KLERR Output

II. Getting a DUMP
A. How To Get a Dump
B. Where ROOT Land s

III. SYSERR

TOPS-20 MONITOR
Student Guide

A. Overview of SYSERR Functions and Data Base
B. Queued SYSERR Blocks In A Crash
C. Moving SYSERR Blocks From·~ Crash To ERROR.SYS

IV. BUGHLT
A. BUG Macro
B. BUGHLT Contents

V. Push Down Lists And Related Data BaSes
A. How To Look At a Stack
B. Push Down List / Machine State
C • S t a c k Usa 9 e Fo r Lo c a I S tor ag e
D. Stack Adjustment

VI. Machine States and Relevant Data Bases
A. PC Storage
B. AC Storage

SG-5 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Student Guide

c. Fork Scheduled, Or Not
D. Fork NOSKED
E. Extended vs. Non-extended Addressing
F. Sizes (Resident, Non-resident, Total)
G. M.DDT Pag e
H. Relevant Data Base for Each Machine State

VII. DDT's
A. FILDDT
B. Relevant DDT/FILDDT Commands
C. MDDT
D. EDDT

PHYSIO - Disk/Tape

I. PHYSIO
A. Data Structure
B. Que ue ing an IORB
C. Scheduling an IORB
D •. Starting I/O
E. Interrupt Handling

II. Disk Allocation
A. Data Structure (DSKBTTBL)
B. Space allocation
C. Space Deallocation
D. Drum Allocation
E. BAT Blocks

Ill. DISK Dependent I/O
A. Data Structure
B. Disk-Dependent Code
C. Disk Interrupts
D. Disk Errors and Abnormal Conditions

IV. MAGTAPE Dependent I/O
A. Magtape Data Base
B. Mag tape IORB
C. CDB, KOB, and UDB
D. Interface to PHYSIO
E. Magtape I/O Wait
F. CLOSF Device-Dependent Functions
G. Magtape Interrupts
H. Error and Abnormal Conditions

SG-6 «For Internal Use Only»

DIGITAL

Front End/Terminals

I. TTY/PTY Device-Dependent Code
A. TTY Data Base
B. TTYIN - TTY-Dependent Input
C. TTYOUT - TTY-Dependent Output
D. TTCH7 - 20 ms. Overhead Task

II. DTE Device-Dependent TTY Code
A. DTE Data Base
B. DTE Terminal Output
C. DTE Interrupts

Stor age Manag ement

I. Storage Management
A. Introd uction
B. Data Structures
C. CST Tabl es
D. SPT and Parallel Tables
E. Working Set Management
F. System-Wide Page Management
G. Page Faulting
H. Adjustment Of the Balance Set
I. SWPIN and SWPOUT

II. ~JSB/PSB Space
A. Context switching the ~JSB and
B. JSB and PSB Maps
c. Use of JSB Space
D. Use of PSS Space

PSB

TOPS-20M ONITOR
Student Guide

SG-7 «For Internal Use Only»

DIGITAL

This page is for notes.

TOPS-20 MONITOR
Student Guide

SG-8 «For Internal Use Only»

DIGITAL

COURSE EVALUATION FORM

TQPS-20 MONITOR
Student Guide

After finishing the course, please complete and return
this form to the course instructor.

Additional comments, whether they deal with a specific
question on the evaluation or are of a general nature, are
most helpful to Digital in improving cours~s.

1. The most valuable aspect of this course was •••

2. The least valuable aspect of this course was •••

3. If you were to add or delete material to or from
the course, what would it be? Why?

Please make any additional comments you wish on the next
page.

SG-9 «For Internal Use Only»

DIGITAL

Additional ~omments:

SG-10

TOPS-20 MONITOR
Student Guide

«For Internal Use Only»

DIGITAL

COURSE EVALUATION (cont.)

TOPS-20 MONITOR
Student Guide

For each module and question intersection in, the grid
below, insert a number from 1 to 5, where 1 indicates "very
little" or "poor" and 5 indicates "very much" or
" ex c ell en t " •

Modul es:

S A
Questions: S M C E T D F S L

I 0 C R S T E M L

My effort

Demand on my time

Content matched my need to know

Learning objectives met

Reference mater ial s

Mod ul e exerci ses

Mod ul e labs

Modul e test

Enough time to cover material

Did modul e stimulate ideas?

Overall quality

Did I meet prerequisites?

~To uld I recommend this cour se?

SG-ll «For Internal Use Only»

DIGITAL

SG-12

TOPS-20 MONITOR
Student Guide

«For Internal Use Only»

DIGITAL

APPENDIX A

COURSE MAP

TOPS-20 MONITOR
Student Guide

MR-2717

SG-13 «For Internal Use Only»

DIGITAL

This page is for notes.

SG-14

TOPS-20 MONITOR
Student Guide

«For Internal Use Only»

TOPS-20 MONITOR

Software Introduction

«For Internal Use Only»

DIGITAL

COURSE MAP

TOPS-20 MONITOR
Software Introduction

MR-2717

SI-i «For Internal Use Only»

DIGITAL

This page is for notes.

SI-ii

TOPS-20 MONITOR
Software Introduction

«For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

Software Introduction

--------INTRODUCTION ---------.

Over the years the operating system has
evolved into what some people say is the
most complex piece of software ever devised.
However, it is not fair to speak of
operating systems only in terms of software
because today hardware is often designed
with particular aspects of the operating
system in mind.

The operating system acts as the
interface between the computer user and the
hardware. The system must perform many
tasks including multiprogramming,
scheduling, memory management, file
management, spooling, and device handling.
In so doing, the operating system provides
various services to computer users. Several
types of operating systems have been
developed to handle different user needs.
These include batch, timesharing, and real
time systems.

This module briefly reviews the various
types of operating systems and the functions
they perform. The emphasis, however, will
be on time-sharing systems such as TOPS-20.
Many functions will be related directly to
hardware features (such as address
translation and device handling) to give you
a feel for the operating system's role in
relation to the hardware. TOPS-20 virtual
address translation will be covered in
d eta iIi nth ism od ul e.

The operating system not only serves
the users and controls the hardware, it also
detects and reports error conditions in the
machine. To understand what caused an error
which is reported by the operating system
reports, you must understand what the
operating system expects of the machine.

SI-1 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

.------- LEARNING OBJECTIVES -------.

Upon completion of this module, the
student will be able to:

1 • Discuss the
timesharing,
systems.

ph i 1 0 so ph i e s 0 f bat c h ,
and real-time operating

2. Describe the following functions of an
operating system:

3.

1. Sched ul ing

2. F i 1 e 0 r g an i z a t ion

3. Memory management

4. Device handling

5. Accounting

Describe the functions
actions performed by,
portions of the virtual
system:

1. The Microcode

2. A Pag e Map

of, and the
the following
memory pag ing

3. The Hardware Page Table

4. The Three Pointer Types

5. Storage Addresses

6. The Base Registers

7. The Special/Shared Page Table (SPT)

8. The User and
Tables

8I-2

Executive Process

«For Internal Use Only»

DIGITAL

MODULE OUTLINE

Software Introd uc tion

TOPS-20 MONITOR
Software Introduction

I. Review of Operating System Principles
A. Approaches
B. Functions

1. Sched ul ing
2. Storage Management

c. Virtual Memory
1. Paging

D. File System
E. Interrupt Handling
F. Accounting

II. TOPS-20 Hardware/Software Interface
A. Virtual Address Translation - General
B • Use r P ag e Ma p
C. Hardware Page Table - AddresSing
D. Pointer Types
E. Storage Addresses
F. KL Pag ing
G. Process Overhead Pages
H. Special/Shared Page Table (SPT)
I. Summary of Paging

8I-3 «For Internal Use Only»

DlGITAL

This page is for notes.

TOPS-20 MONITOR
Software Introduction

8I-4 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

REVIEW OF OPERATING SYSTEM PRINCIPLES

An operating system can be summarized as a manager of
resources. These resources consist of the processor, the
memory, disk storage, and the attached devices. The
operating system must give some portion of these resources
to each process that runs on the machine; it must schedule
the use of these resources when several processes are
competing for them and collect them when a process is
finished.

SMALL SYSTEMS

A small operating system provides basic services for
the user's programs. These include device handling routines
and a simple scheduling approach (the allocation of
resources may simply consist of giving everything to the
executing process). The number of devices supported is
usually small and the variety of devices is restricted.

LARGE SYSTEMS

A large operating system provides a wide range of
services to the uper. A sophisticated scheduler is used
with resources shared or divided among several active
processes. Protection for the system is substantial and the
accounting keeps track of nearly everything. A large number
of various devices are supported with a sophisticated file
manipulation capability built in. Network communications
between computers are often supported.

There is no clear dividing line between large and small
systems. Almost any operating system may have some
attributes which are characteristic of larger systems and
some which are not. Both TOPS-10 and TOPS-20 would
generally be considered large systems.

SI-5 «For Internal Use Only»

DIGITAL

. Approaches

TOPS-20 MONITOR
Software Introduction

In addition to coming in different sizes, operating
systems have various philosophies on the treatment of users
and on the processing of jobs. The variety of philosophies
results from computer users' differing ideas on what to do
with a computer and varied types of processing, each making
different demands ori processors. Some users want a system
capable of reasonable turnaround time on jobs that require a
great deal of input or output (I/O bound) or require long
arithmetic processing (compute bound). Others want a
computer system designed to service a large number of
concurrent users in an interactive environment. Still
others want a system to use as a command and control device
to regulate machinery and respond to changing situations
when reaction time is limited.

BATCH

A batch operating system consists of three components:
spooling system, scheduler, and dispatcher. These
components work together to get a user job through the
system. In an operating system that combines batch and
timesharing, as in TOPS-10 and TOPS-20, these components are
slightly modified and not very distinct. The batch system
for these two operating systems is called Galaxy.

TIMESHARING

A timesharing operating system is designed to give
service to a considerable number of users at the same time.
The object is to allow these users quick and frequent
interaction with the computer in such a way that each user
has the illusion of having the exclusive attention of the
whole system. Since one processor cannot actually be
handling more than one user job at a time, a service
approach very different from that of a batch system must be
used to produce this illusion. Time is shared, that is,
instead of allowing a few users to monopolize the processor
for long periods of time as might happen under batch, each
user is given a small amount of time on a regular basis.
The amount of time is called a time slice. If a strict

SI-6 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

rotation of users is followed and there are N users, each
user gets the processor l/Nth of the time. This situation
is referred to as round-robin processing.

81-7 «For Internal Use Only»

Cf)
H
I

co

/\
/\
t'1j
o
1"'1

H
::s
c1"
CD
1"'1
::s
OJ
~

c:::
en
CD

o
::s
~

'< v
v

Terminal 1

Terminal 2 ------t-~IMemoryl _I

" " Sched-

" " uler
'I /I

Terminal N -L..I ----J.

Current ~
job pointer ~

Memory

Terminal K
Tl :
----'

I
T4

L 1 --r -_-
T2 : I T3

I I
I r-- -------I

Tn Tk

Processor

Figure SI-1. Timesharing Operating System

Printer

Output

Unspooler

M8 0227

Cf)

o
I'"h
c1"
~

tj
H
G)
H
8
)1/
J:""l

OJ
1'18
(1)0

"tI
HCf)
::s I
c1"N
I"'1ISl
o
0.3:
co
OZ
rtH
.... ·8
00
::s:o

DIGITAL TOPS-20 MONITOR
Software Introduction

A large timesharing system necessarily requires a great
deal of overhead, due to the fact that the system is
performing so many functions for a large number of
concurrent users. Their jobs may be short but that does not
mean they are small. Memory management is a prime
consideration with many users on the system. Changing from
job to job, accounting, and communications between jobs all
require time and space. Consequently, few timesharing
systems can support a large number of users without visibly
d eg r ad ed res po ns e tim e •

Both TOPS-10 and TOPS-20 are principally timesharing
operating systems. The Galaxy batch control system is added
to form a hybrid system. On TOPS-20 and TOPS-10, batch jobs
are treated the same as timesharing jobs (with a few
restrictions) as far as the operating system is concerned.

In order to enable the operating system to treat the
batch jobs in a manner similar to timesharing users, TOPS-10
and TOPS-20 set up pseudo-terminals (PTYs) for them to use.
These are software simulations of terminals which the
operating system treats much like real terminals. By using
the pseudo-terminals, the commands in the control file can
be handled in the same way as those typed at a real
terminal. With a batch job, the complete text of the
session is maintained in a log file for future reference by
the programmer.

8I-9 «For Internal Use Only»

DIGITAL

C) CI)
0 u: ..J

o
;; CI)

Cu. o
o

-.............
......

• I
I

SI-10

..,
~ CI)
0.-.., .-
~u.

0

+ I
I
I

...
0
en
en
CI)
CJ
0 ...

Q.

,-

~

.,.. -
...
CI)

~
"'C
CI)

.I:
CJ en

TOPS-20 MONITOR
Software Int rod uction

00
N
N
a

co
::E

«For Internal Use Only»

DIGITAL

REAL TIME

TOPS-20 MONITOR
Software Introduction

A real time system can be organized in a manner similar
to a timesharing system. However, there is one big
difference -- the response time for the system cannot be
allowed to degrade. Inputs to the system can be scanned in
a round-robin-like arrangement as with timesharing;
however, responses must be short. The processor cannot be
tied up by any particular job for so long that processing
needs of other jobs are not met.

When real time systems are combined with batch or
regular timesharing, the real time functions must always be
given priority. The operating system must maintain control
if it is to provide continued service to all users.
Necessarily then, the operating system must protect itself
from the users and all users from each other.

OPERATION MODES

A simple way to protect the operating system from users
is to have more than one operation mode. TOPS-l~ and
TOPS-20 have two modes: EXECUTIVE mode and USER mode. Only
the operating system may run in executive mode and, as such,
it can issue any instruction which the machine is capable of
executing. All users run in user mode and must request
certain actions to be done for them by the operating system.
Only certain monitor calls and context switching require
executive mode.

Functions

MEMORY ALLOCATION

One of the problems with maintaining several jobs at
once is managing the memory. Since jobs vary greatly in
size, there is a problem in fitting each into a fixed size
memory. In scheduling the job to be run, the scheduler must
determine if there is available space. One way of handling
the allocation of memory is to force jobs to use memory in
fixed size units called pages. Under this scheme, memory is
divided into pages (each with the same number of contiguous
words) and the allocation for each job is a number of pages.

SI-ll «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduqtion

On TOPS-20, for example, a page consists of 512. words.

~CHEDULING

A portion of an operating system is its scheduler(s).
The use of all resources in the system must be scheduled and
these schedules are interrelated. On TOPS-20 a job may be
composed of several processes (forks) and it is these
processes which are scheduled.

PROCESS STATES

Processes can be placed into three categories:
running, ready, and blocked. The running process is the one
currently executing on the processor; for each processor
there is only one running process.

A ready process is one tha t can be run but is not
executing at the moment. Ready processes are those which
have all their currently required resources ready. This
implies that memory is allocated to them and devices
assigned. There are usually a number of ready processes
from which the running process is chosen.

A blocked process is one that has some or all of its
resources but still requires something before it can be
considered ready. The most frequent reason for being
blocked is an I/O WAIT (i.e., the process is waiting for
input or output to occur) •

SI-12 «For Internal Use Only»

DIGITAL

Ready

, , , ,
"

" "

Running

---- - --"- - - ---

Suspended by User

TOPS-20 MONITOR
Software Introduction

"

Blocked

" /
;'

./

/
/

/
/

/

M8 0233

Figure SI-3. Process State Transitions

SI-13 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

TOPS-20 uses the term Balance Set to refer to a group
of processes (initially selected from the group of ready
processes) which include the running process, some of the
ready processes, and possibly some blocked processes. The
group is called "balance" set because an attempt is made to
balance the usage of physical memory with the needs of all
the processes trying to use the processor. The blocked
processes in the balance set are waiting for disk I/O and
are included because they will be blocked for only a short
time. The TOPS-20 scheduler selects the process to be run
in the next time slice from among the processes in the
balance set.

STORAGE MANAGEMENT

We have already discussed some of the problems of
storage 'management connected with memory allocation and the
restriction of a user's addressing capabilities. One way to
solve or simplify many of these problems is to use virtual
m emory.

Virtual Memory

To understand virtual memory, we must look at the
address space of a process. The address space is the size
of physical memory (number of locations) which can be
addressed uSlng the machine instructions. The size of the
address space is thus primarily dependent on the number of
bits in the address portion of an instruction. On
DECsystem-10 and DECSYSTEM-20 the address portion of an
instruction, when used to access physical memory, is 18 bits
long. Extended addressing adds 5 bits. Thus, 2**23, or
8388608, locations can be addressed. The usual size of
physical memory is 256K or 512K.

This virtual address capability is independent of
programs. Thus, the virtual memory can be considerably
larger than the physical memory. Programs can be compiled
ora s sem bl ed and 1 inked as tho ug h the en t ire vir t ua 1 m em 0 ry
were available to each program. However, the loading of an
entire program would be a problem because each program
currently scheduled to use memory would have addresses
ranging from zero to the size of the program (but there is
only one address zero in physical memory).

SI-14 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

One way to overcome this problem is to modify
(relocate) each of the addresses according to its location
in physical memory. Another solution to the loading problem
is to use a mapping function to relate the virtual memory
addresses ,within the executable module to the physical
memory addresses. Instructions can only be executed when
they are in physical memory. Consequently, the mapping must
be applied to each instruction as it is executed. This
mapping can be done with hardware assistance using process
tables so that all programs can appear to begin at address
zero.

There are several advantages in employing virtual
memory address translation. Fjrst, virtual memory does not
need to be mapped into contiguous sections of physical
memory. If physical and virtual memory are both divided
into pages, the virtual memory pages of a program can be
mapped into pages scattered throughout physical memory.

«For Internal Use Only»

'"

DIGITAL

1 2 3

4 fo fo Mapping

ft fo

fi ~ ft

Program in
Virtual Memory

(fi' represents an unused page.)

TOP5-20 MONITOR
So f twa reI n t ro d uc t ion

Real Memory

M8 0232

Figure 81-4. Virtual Memory Mapping

51-If) «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

Second, only those pages of the program that are
actually needed for execution have to be in physical memory.
When more pages are needed, they can be placed anywhere, and
when some pages are no longer needed, they can be removed.
lNhen a removed pag e needs to be in physical memory ag ain, it
can be placed anywhere. The address translation associated
with virtual memory results in the program being executed as
though the whole virtual memory were real, physical memory.

TOPS-10 and TOPS-20 both have virtual memory as an
integral part of their operating systems. Each process has
its own page table set up by the operating system and used
by the hardware to translate virtual memory references into
physical memory locations. However, the management of
memory at the logical level in the two systems is quite
different, TOPS-20 employs demand paging, whereas TOPS-l0
uses swapping.

PAGING

The use of virtual memory with paging requires an
effort to keep track of where the various pages of a process
are. Some pages may be in physical memory, others on disk.
When the process references a page that is not in physical
memory, it must be fetched from the disk and placed into a
free page frame in physical memory. The referencing of a
non-resident page is referred to as a page fault. The
detection of a page fault and the retrieval of the page are
handled by the hardware (using the page table) and the
operating system wo rking together.

SI-17 «For Internal Use Only»

Cf)
H
I

I-'
00

A
A

'(J

'"'"
H
::1
rt'
CD
~

::1
OJ
I-'

c
en
CD

o
::1
I-'

'< v
v

Requested
Page

Page Map

Real Memory ./
,/

Change Pointer

Page map points to disk

Load into l1li
.......
\ ,
I

I

(Blank page in real memory is free.)

Figure SI-5. Page Fault Action

Disk

M8 0234
Cf)

o
H\
rt'
:e:
OJ

t1
H
G)
H
~
):II
t"'

~ t-3
CDO

."
HCf)

::1 I
rt'~
~Sl
o
~3:
c: 0
o Z
rt'H
I-'.~

00
::1 ::0

DIGITAL TOPS-20 MONITOR
Software Introduction

Virtual memory lends itself easily to the sharing of
physical memory among processes. All that is necessary for
two processes to share physical memory is for their page
tables to map some virtual page to the same physical memory
page. Since the use of sharing takes place dynamically (as
the processes run), the operating system has to set up the
sharing. The operating system fills in the page table entry
and adjusts the physical memory usage statistics to show the
pag e is shared.

A full presentation of TOPS-20 paging appears later in
thi s modul e.

File System

The operating system maintains a list of all users of
the system by directory name. This list is kept in a system
directory which, on TOPS-20, is called ROOT-DIRECTORY. For
each user in the system directory, there is a pointer to an
index block for the user's directory. This index block
consists of pointers to the various pages of the user's
directory which are on disk. In the directory there is a
fi~e descriptor block for each file specifying owner,
protection, date of creation, etc.

The storage of files is similar to that of user
directories in that each file in the directory has a pointer
to an index block. This index block contains pointers to
the pages of the file, which may be scattered anywhere on
the disk. It the file is so large that all the pointers to
the pages will not fit into one index block, two levels of
indexing can be used. With two levels of index blocks, the
directory entry points to a super index block which contains
pointers to index blocks.

81-19 «For Internal Use Only»

DIGITAL

SI-20

)(
Q)

"C
C

Q)

LL.

> ...
0
~
(J
Q) ...
C

~
(J
0
m

~
(J
0
m
)(
Q)
"C
C

> ...
o
~
(.)
Q) ...
C ...
o
o
a:

TOPS-20 MONITOR
Software Introduction

Q) Ln
M

LL. N
a -0 co

(/) :E:
Q)
c::J)
CO
a.

0
~
CI)
Q,.-
0
c
0
~
LA: ...
i
:::l

> co ...
U) 9 0

~ Q)
(J c::J) en en
Q) ta § ... a. c <t

«?
en
!
,~
LL.

«For Internal Use Only»

DIGITAL

Interrupt Handling

THE INTERRUPT SYSTEM

TOPS-20 MONITOR
So f t wa reI n t ro d uc t ion

The operating system must control and provide service
to a wide variety of peripheral devices. Each of these
devices interrupts the processor whenever· it requires some
service or has completed some action. Thus, the operating
system can be bombarded with interrupts.

When several devices are competing for the processor's
attention, the physical arrangement of the devices and their
relative importance determines which device 'gets serviced
first. Interrupt priorities are assigned to each device.
The occurrence of multiple service requests is not an
uncommon event; however, the different priorities
immediately resolve these conflicts.

Figure 8I-7 shows how normal processing can be
suspended to service interrupts on several levels. Higher
priority interrupts disrupt service to lower priority ones
and lower priority interrupts must wait for the completion
of higher priority interrupts.

8I-21 «For Internal Use Only»

DIGITAL

r

> ...
'':::
0 ... N (¥) ~ '':::

Go

8I-22

TOPS-20 MONITOR
Software Introduction

-~
'C
0
'i: a.

.--N
en
CD

.--(¥) j
~ ... :r: ...

m
c

's
8 ..
0-

0..
::::s
!
c -
,~ ..

~N
0
'C
a.

~~

'"i"
en
!
~ u:

~(¥)

CD -- c e.G) ca ,-
E ~ ::::s >

.. G) .. G) Q;...J
0 CJ c 2 0 c .. - 0

Q.

«For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

For the most part, interrupt service is the
acknowledgement of some event (an I/O completion, an error,
or a status change). An interrupt is usually a response to
some request by the operating system for a device operation.

THE DISK MANAGER

Service to the disk requires special recognition since
the operating system relies so heavily upon this device.
Access to files, spooling, unspooling, compiling, loading,
paging, swapping -- all require access to the disk. Thus,
it is common for there to be several pending requests for
access to the disk. In most operating systems, a disk
manager determines the order in which these requests are
processed.

The disk manager orders the requests in a queue for
disk access so that average seek time (the time to find the
right cylinder) and average latency time (time for the disk
to rotate so that the desired sector is under the head) are
minimized. The work of the disk manager is time critical
because new requests are coming in constantly and the disk
is always rotating.

SI-23 «For Internal Use Only»

DIGITAL

~
c
o
Q.

= a:

N ...
CD
::l
CD
::l .::t. a en

t----t C
en ...
CD 0
::l u..

t---... i
a:

1
~ N (W)

............
en en en
CD CD CD
::l ::l ::l
C' C' C'
CD CD CD

a:: a:: a::

SI-24

co
M
N
o

TOPS-2eJ MONITOR
Software Introduction

«For Internal Use Only»

DIGITAL

Accounting

TOPS-20 MONITOR
Software Introduction

It is essential for the people who pay for the computer
system to know who is using it and for how long. Most
operating systems have accounting facilities built in to
keep track of the various ways that the computer is used.
These facilities keep account of such things as processor
time used, terminal connect time, amount of disk storage
used, number of pages of printed output, and number of cards
read. TOPS-10 and TOPS-20 accounting systems can keep track
of all these things and can produce reports that can be used
to charge the user.

Accounting systems charge different amounts for each
kind of usage. Also, the accounting systems have the
ability to treat each user separately so that individual
rates, discounts, etc. can be applied. Most systems also
have the ability to add charges for such things as
consulting services and terminal rental, if appropriate.

SI-25 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

TOPS-20 HARDWARE/SOFTWARE INTERFACE

Virtual Address Translation - General

The IS-bit virtual address is considered as two parts:
the high-order nine bits are considered the page number, and
the low-order nine bits are used as an index into a page.
Remember that a page is 512. words long, and nine bits
addresses 512. entries (i.e., words~. through 511. in a
given page) •

~ virtual address must be resolved to a physical
address in the machine, and each addtess in physical memory
is in one of the physical pages of memory. The hardware
picks up the (9-bi t) virtual pag e number, uses it as an
index into a page table to determine where the physical page
is, and then uses that physical page number (9-bits) along
with the index from the virtual address to get the address
in physical memory for the reference.

~--------------------NOTE--------------------~

Throughout this document the term "core"
refers to physical memory, whether it is
ferrite core or MOS" semi-conductor
memory.

Some of the characteristics of virtual memory are:

1. 256K of available memory for every user (even if
the machine has less than 256K of physical memory)

2. Memory (virtual and physical) is divided into pages

3. Each page is 512. words long

4 • Co r e (0 r MOS) i s pag ed

5. The disk is paged

SI-26 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

USERfS VIRTUAL ADDRESS SPACE

~ ADDRESS OF INSTRUCTION
2 AND ANY ADDRESSES
3 ADD AC, 4011

•
•

REFERENCED BY THE
INSTRUCTION ARE CALLED
VIRTUAL ADDRESSES.

•

777777~ __________ __

USER'S VIRTUAL ADDRESS SPACE
PARTITIONED INTO PAGES.

VIRTUAL
PAGE #r-------------~--_

~~------------~
1~------------~
2~------------~
3~------------~
4~------------~
5~------------~
•
•
•
•

•
•
•
•

511~ __________ --~

USER'S PAGE MAP (1 PAGE)
PAGE ~
PAGE 1
PAGE 2

•
•
•

PAGE #
3~~
3~1
3~2
3~3
304
3~5
3~6
307

•
•
•

1023

8191

Figure SI-9. Page Mapping

VIRTUAL ADDR. (18 BITS)

USER'S PAGE MAP PROVIDES
THE PHYSICAL PAGE
SUBSTITUTION FOR THE
HARDWARE WHEN IT IS
CALCULATING THE EFFECTIVE
PHYSICAL ADDRESS.

(1 PAGE = 512 WORDS)

PHYSICAL CORE
• • •

• •
•

USER'S PAGE MAP
FOR ABOVE CASE

30'3
30'4
301
30'7
•
•
•
•

D7 0092

SI-27 «For Internal Use Only»

DIGITAL TOPS-2 ~ MONITOR
Software Introduction

Since each virtual page maps to a physical page, the
hardware must have a means for determining where the
physical page is. The hardware initially finds the mapping
by using the User Page Map.

User Page Map

The User Page Map is a table 512. words long. Each
entry in the table gives the hardware (firmware, microcode,
etc.) the information it needs to determine where the
information physically resides. The user's page map is one
of the overhead pages which are guaranteed to be in core for
each fork in the balance set. (The balance set is the group
of processes which are eligible for running.) When the
hardware first needs to resolve a virtual address for a
user, the add ress is sol ved by getting the entry out 0 f the
user's page map. Note that in this first case, an extra
reference to memo.ry is necessary. The first reference is
the only time this "extra" reference is necessary, since the
hardware, once it gets the mapping. the first time, puts that
information into a "cache" of addresses called the Hardware
Page Table.

~--------------------NOTE --------------------~

Actually, there are other times when the
Hardware Page Table entry is invalid for
some reason; these will be discussed
later.

Hardware Page Table - Addressing

When an address reference occurs, the microcode first
looks in the hardware page table to see if there is a valid
entry for the specified page. If there is a valid entry,
the memory reference is made to the physical page location
gotten from the hardware page table (this is the number of
the page in physical memory), and the index from the virtual
address requested (this is used as the low~order nine bits

51-28 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

for the address). Otherwise, the microcode goes through the
user's page table (in physical memory and requiring a
physical memory reference) to get the physical page mapping.
The mapping information is then placed in the hardware page
table for future references.

__ --------------------NOTE--------------------~
In the KL-Model B processor, extended
addressing is supported. In these
machines, the page number information
from the Hardware Page Table is composed
of 13 bits of address data, the regular
9 bits, and the extra 4 for extended
addressing of physical memory up to
4096K words (8192 pages). The use of
extended addressing will be discussed
1 ater.

In fact, there are two address spaces using the
hardware page table simultaneously: the user, as we have
just discussed, and the monitor. Since the hardware page
table is only one page long, there is a high probability of
conflict. To help out here, each entry in the hardware page
table has a bit (user/exec bit) which tells the microcode
whether the mapping information is either for the user space
or monitor space. A further help is the fact that the
monitor addresses are "hashed" so that, for example, page 0
of user space and page 0 of monitor space do not use the
same' hardware page table slot.

The entire hardware page table is cleared at context
switch time. That is, when a different process is chosen to
run, all of the mapping information in the hardware page
table must be re-created.

Earlier we mentioned that the mIcrocode first checks
the Hardware Page Table to see if it contains a valid entry
for the specified page. Along with the user/exec bit, and
the fact that the table is cleared at context switch time,
each page has an age stamp associated with it. Periodically
these age stamps get incremented, and when this happens, the
Hardware Page Table gets cleared.

8I-29 «For Internal Use Only»

DIGITAL

EFFECTIVE ADDRESS

TOPS-20 MONITOR
Software Introduction

r-~:-- 9 9 118 BITS = [256K WORDS
L ____ ~ ____ .--__ --,-___-__ ~I 512 PAGE S

*23 BITS = 32 256 K SECTIONS

"

"SIMPLIFIED" HDW. PG. TABLE

~E V P W 5 C

13

PHYSICAL

PAGE

"
13 9]22 BITS

~----------~--------~
PHYSICAL ADDRESS

U/E USER/EXEC MODE
V VALID
P PUBLIC/CONCEALED PG.
W WRITEABLE PG.
S SOFTWARE
C CACHEABLE PG.

* EXTENDED ADDRESSING INCLUDES A 5-BIT SECTION NUMBER.

Figure 81-10. Addressing Hardware Page Table

= CAPABILITY OF
[

EXP/INSION

4096K WORDS
81q2 PAGES

D7 0088

8I-30 «For Internal Use Only»

DIGITAL TOPS-20 MONITOR
Software Introduction

Poi nter Types

What does an entry in the page table look like?

1. Each slot has
cacheable bits.

access, user/exec, wr i tabl e,

2. Each slot has either
pointer to where
address.

an immediate
to look next

pointer or a
for the storage

3. There are three pointer types which the microcode
understands:

1. Immediate pointer -- storage address is here.

2. Shared pointer -- the storage address must be
gotten through the shared/special page table
(8PT) •

3. Indirect pointer -- must look in the specified
page table for the next pointer.

SI-3l «For Internal Use Only»

DIGITAL TOPS-2 ~ MONITOR
Software Introduction

~~~-L_-O_-C_A~T~I-_O-N~~~=I~-. ------~----------------------------~.~I--------~ 
-" PHYS I CAL 

STORAGE 
PRIVATE 

T POINTER 

SPT 

Y 

~It .... Y ~ - --
SHARED 
POINTER PHYSICAL 

STORAGE 

SPT 

T 
t PAGE MAP 

N Y -T ,. 
N 

INDIRECT Ll POINTER ~ 

PHYSICAL 
STORAGE 

D7 0057 

Figure SI-11. Pointer Types 

SI-32 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Software Introduction 

• MEDIUM ON WHICH STORAGE EXISTS. 
• LOCATION ON MEDIUM. 
• CAN APPEAR IN A PAGE TABLE OR THE SPT. 

14 15 16 1718 

I I I I I 
BIT 14 = 1 
BITS 14-15 = ~ 

16 = 1 [) 

BITS 14 - 17 = 0 [) 

35 

15 - 35 = DISK ADDRESS 

17 - 35 = DRUM ADDRESS 
18 - 35 = CORE ADDRESS 

D7 0042 

Figure SI-12. Storage Addresses 

SI~33 «For Internal Use Only» 



DIGITAL TOPS-2" MONITOR 
Software Introduction 

The pointer type is encoded in bits 0-2 of the page pointer 
The access bits are in bits 3-6. They are: 

Pointer 
o 
1 
2 
J 

4-7 

Type 
No Access 
Immediate 
Shared 
Indirect 
Not Used, 

or Private 

Access Bits 

P 
W 
C 
S 

Public/Concealed 
Writeable 
Cacheable 
For Software 

Reserved for future use by DEC 

The immediate pointer holds a 13 bit physical page number 
in bits 23-35. This ~s also called a private pointer since 
it is private to the page table containing the pointer. This 
should not be confused with the public bit which describes 
the type of access allowed. 

o 2 3 4 5 6 12 

I MBZ IF I 
IN CORE 

17 18 22 23 

IMMEDIATE POINTER (CODE=l) 

35 

The shared 70inter contains an index which addresses into 
the Special Shared Pages Table (SPT). The SPT base register, 
SBR, (reserved AC block) points to the beginning of the SPT. 
The sum of the SBR and SPT index (SPTX) points to a word 
containing the storage address of the desired page. The line 
number from the virtual address is used to complete the 
reference. 

18 

SPT INDEX 
(SPTX) 

SHARED POINTER (CODE=2) 

35 

Regardless of the number of page tables holding a particular 
shared pointer, the physical address is recorded only once 
in the SPT. Hence, the monitor may move the page with only 
one address to update. 

The indirect pointer identifies both another page table and 
a new pointer within that page table. This allows one page to 
be exactly equivalent to another page in a separate address 
space. The Object page is located by using the SPT index. 

2 3 4 5 6 9 

PAGE 
NUMBER 

17 18 

PAGE TABLE IDENTIFIER 
(SPTX) 

INDIRECT POINTER (CODE=3) 

Figure 81-13. Page Pointers 

35 

D7 0651 

SI-34 «For Internal Use Only» 



DIGITAL 

Storage Addresses 

TOPS-20 MONITOR 
Software Introduction 

Once the microcod~ determines the storage address, 
there is still work to do since the storage address may 
indicate that the page is not currently in core. There are 
three levels of storage for pages: core, drum, and disk. 
The microcode deals only with core storage addresses; if 
the referenced page is not in core, a page fault occurs and 
the monitor arranges for the desired page to be brought in. 
Remember that the term "drum" refers to the swapping space, 
which is, in fact, a reserved portion of the disk. ~ote 
that we are still looking for a whole page; we have not yet 
even considered the low-order nine bits of the requested 
virtual aOdress. The format of a storage address is what 
the microcode uses to determine where a page is. 

PAGE FAULTS 

The term "page fault" indicates that, for some reason, 
the microcode was not able to access a page and had to call 
the monitor to make the page available. There are several 
reasons why a page may not be available: 

1. The page is not in core. 

2. The page is in core but marked to write out for 
r epl acemen t • 

3. Null pointer -- the page does not exist. 

4. Invalid age field. 

5. Invalid access requested 
non-writable page. 

STORAGE ADDRESS FORMAT 

e. g. , a wr i te to a 

If bits 14-17 of a storage address are all 0, the page 
is in core and bits 18-35 are the address. If bits 14-17 
are not all 0, the page is on disk or drum. In the latter 
case, bit 14 on indicates a disk address; otherwise, it is 
a drum address. If the storage address indicates memory, 

SI-35 «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
Software Introduction 

the microcode copies the storage address into the hardware 
page table. 

In summary: 

1. The User Page Table has slots for all existent 
virtual addresses. 

2. The entries in a User Page Table are either 9 (for 
non-used pages) or one of three types of pointers: 

1. Immed ia te 

2. Share 

3. Indirect 

3. The translated address is copied into the Hardware 
Page Table if the Storage Address is core. 

4. A page fault occurs if the Storage Address 
indicates a loc~tion other than core. 

SI-36 «For Internal Use Only» 



DIGITAL 

USER BASE REGISTER 

~E55 TABLE 

USECTB~====~--~ 

SPT 
SPT BASE REGISTER 

TOPS-20 MONITOR 
Software Introduction 

PAGE TABLE 

PRIVATE~----m.L-I 

15HAREDt----~ .. I----o..~ 
INDIRECT~IN~II ___ ~.~~ 

PRIVATE PAGE 

I ~I ____ +-__ ~SH~AREDPAGESTABLE 
I 

UPT 

I 

l 
--r---I ...... ...:-~I::-_-_-_-..::-_----'~ ... ::LI -\ 

PAGE TABLE 

Figure SI-14. Layout of KL Paging 

SHARED PAGE 

PRIVATE PAGE 
C+INDIRECT) 

D7 0039 

SI-37 «For Internal Use Only» 



DIGITAL 

KL Paging 

TOPS-2'=' MONITOR 
Software Introduction 

Two hardware registers are loaded for the microcodes' 
use: the ·Exec Base Register (EBR), which contains a pointer 
to the Exec Page Table (EPT), and the User Base Register 
(UBR), which po ints to the (UPT). 

Process Overhead Pages 

Each process needs several ov~rhead pages: the UPT 
(two pages) and the User Page Map. The User Process Table 
(UPT) contains the information which the system needs to run 
a process. Incl ud ed in the UPT is trap, contex t and 
scheduler information. Also in the UPT is a 32. word block 
(USECTB) which contains Page Map locations. There is one 
space allocated the page map of each of the possible 32. 
sections which may exist. 

,......---------- NOTE ----------.... 

At this time the TOPS-2'=' Monitor 
NOT support extended addressing 
users. 

does 
for 

When the microcode needs to find a page for the user, 
the User Page Map is located from the section'=' (USECTB) 
slot in the UPT. (Remember that the physical address of the 
UPT has been put into the UBR.) A similar path is taken by 
the microcode for addressing in the monitor addressing 
space, except that the EBR is used. The EBR points to the 
EXEC Process Table which, in turn~ has the map pointers at 
MSECTB. 

SI-38 «For Internal Use Only» 



DIGITAL 

Name: 

Description: 

UPT 

TOPS-20 MONITOR 
So ftwa re Int rod ucti on 

User Process Table. A one page User Process Table is 
associated with the Scheduler and with each fork in the 
system. (Those associated with forks may be swapped 
out with the fork.) However, there is only one UPT 
known to the hardware/firmware at anyone time. The 
UPT known is the one whose address is pointed to by 
the hardware User Base Register (UBR), which is set-up 
when a process is chosen to run. 

The UPT contains the dispatch address for process 
events (i.e., traps) and the user's section map table. 

Defined In: APRSRV 

Referenced by: APRSRV, SCHED 

FORMAT 

Available to Software 

\ 

I 
\ 

377

1 400 
\ Reserved 

4).7 

420 Address of LUUO Block 

421 User Arith. Overflow Trap Instruction 

422 User Stack Overflqw Trap Instruction 

423 User Trap 3 Trap Instruction 

424 Flags MUUO OP-AC 

Figure 51 .. 15. User Process Table 

\ 

I 
\ 

1 

\ 

HWPTA* 
=776000 

UPTPPM* 
=776400 

UPTTPI* 
=776420 

UPTOV1* 
=776421 

FFL*=KIMUFL* 
=776424 

81-39 «For Internal Use Only» 



DIGITAL 

425 

426 

427 

430 

431 

432 

433 

434 

435 

436 

437 

440 

477 

500 

501 

502 

503 

504 
505 

506 
507 

510 

\ 

TOPS-20 MONITOR 
Software Introduction 

MUUO Old PC 

E of MUUO 

MUUO Process Context 

Kernel No Trap MUUO New PC (word) 
i 

Kernel Trap MUUO New PC (wo rd) 

Supervisor No Trap'MUUO New PC (word) 

Supervisor Trap MUUO New PC (word) 

Concealed No Trap MUUO New PC (word) 

Public Trap MUUO New PC (word) 

Public No Trap MUUO New PC (word) 

Public Trap MUUO New PC (word) 

Reserved for software 

Page Fail Word 

J;>age Fail Flags 

Page Fail Old PC 

Page Fail New PC 

User Process Execution Time 

User Memory Reference Count 

\ 

FPC*=KIMUPC* 
=776424 

KIMUEF* 
=776426 

UPTPCW*=KIMPCW" 
=776427 

UPTDSP* 
=776430 

UPTPFN* ' 
=776500 

TRAPFL*=UPTPFL* 
=776501 

TRAPPC*=UPTPFO* 
=776502 

UPTPFN* 
=776503 

\ \ 
537

1 I 540~-------------U-S-E-R-S-E-C-T--------------~ USECTB* 

Figure SI-16. User Process Table (cont.) 

SI-40 «For Internal Use Only» 



DIGITAL 

Note; 

* 

I 
\ 

577 

600 

777 

USERSECT37 

TOPS .... 20 MONITOR 
So ftware Introduc tion 

I =776540 
\ 

Available to software 

Approximately 1/4 of the UPT is used for hardware 
cells, leaving the rest av~ilable to software. 
The monitor currently uses this area to house the 
first page of the PSB table. (SeePSB table 
description. ) 

These are monitor virtqal memory addresses and are 
used when the monitor wishes to reference the 
current fork's User Process Table. 

Figure SI-17. User Process Table (cont,) 

81-41 «For Internal Use Only» 



DiGITAL 

Name: EPT 

Desc r ip·t ion: 

TOPS-2 e MONITOR 
Software Introduction 

Executive Process Table. This memory resident 
table pointed to by the Executive Base Register 
(EBR), contains the vectored dispatch addresses 
for system events. All device interrupts pass 
control to a specific offset position in this 
table., 

This table also includes the executive section map 
tab~e, the time of day clock and arithmetic trap 
instructions which are executed when arithmetic 
conditions occur in executive mode. 

Locations 444 to 457 are reserved for software and 
used by DTESRV. 

Defined In: STG 

Referenced by: APRSRV, DTESRV, MEXEC, PH~Hll, PHYH2 

KI EPT+0 

37 

40 
41 

42 

Each: 
\ 

! 

FORMAT 

Eight Channel LOgout Areas 

o Initial Channel Command 
1 Gets Channel Status Word 
2 Gets Last Updated Command 
3 Reserved for Channel's 

Vectored Interrupt Location 

Reserved 

\ 

I 
\ 

\Standard Priority Interrupt Instruc. \ 
.57 

60 
Four Channel Block Fill Words 

63 

64 

Figure 81-18. Executive Process Table 

81-42 «For Internal Use Only» 



DIGITAL 

\ 

77 

SMTEPT=KI EPT+l 00 

101 

\ 
137 

DT~EBP=KIEPT+140 
DTETBP=KIEPT+141 
DTEINT=KIEPT+142 

143 
DTEEPW=KI EPT+144 
DTEERW=KIEPT+145 
DTEDPW=KI EPT+14 6 
DTEDR\~=KI EPT+14 7 

\ 

I 
\ 

I 
\ 

177 

EpTMHI=KIEPT+200 

417 

TOPS-20 MONITOR 
So ftware Int roduc ti on 

Reserved 

Pointer to SM10 Vector Table 
(if 2020 System) 

Reserved 

Four 8-word DTE20 Control Blocks 
Each: 0 To ~ll Byte Pointer 

1 To -10 Byte Pointer 
2 Interrupt Location 
3 Reserved 
4 Examine Protection Word 
5 Examine Relocation Word 
6 Deposit Protection Word 
7 Deposit Relocation Word 

DTE1 Control Block 

DTE2 Control Block 

DTE3 Control Block 

Available to Software 

\ 

\ 

\ 

I 
\ 

I 
\ 

EPTPTI=KIEPT+420 LUUO from Executive Mode 
(. LUTRP) * 

421 Executive Arithmetic Overflow Trap 

Figure 81-19. Executive Process Table (cont.) 

81-43 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Software Introduction 

Instruction (JFCL)* 

422 Executive Stack Overflow trap 
Instruction (.PDOVT)* 

423 Executive Trap 3 Trap Instruction 
(JFCL) * 

424 
\ Reserved \ 

437~ _______ ---I1 
440 

443 

DTEFLG=KI EPT+444 

DTECFK=KIEPT+445 

DTECKI=KIEPT+446 

DTETll=KIEPT+447 

DTEF11=KIEPT+450 

DTECMD=KI EPT+4 51 

DTESEQ=KI EPT+4 52 

DTEOPR=KI EPT+4 53 

DTECHR=KIEPT+454 

DTETMD=KI EPT+4 55 

DTEMTI=KIEPT+456 

DTESWR=KIEPT+457 

460 

\ Reserved for Software \ 

Operation Complete Flag 

Clock Interrupt Flag 

Clock Interrupt Instruction 

"To" 11 Argument 

"From" 11 Argument 

Command Word 

DTE20 Operati~n Sequence Number 

Operation in Progress Flag 

Last Typed Character 

Moni tor TTY Output Complete Flag 

Monitor TTY Input Flag 

Console Switch Register 

\ Reserved for Software \ 
477r ________________________________ ~1 

500 
\ Reserved \ 

507 ~I ------------il 
Figure 81-20. Executive Process Table (cont.) 

SI-44 «For Internal Use Only» 



DIGITAL 

510 

511 

512 

513 

Time Base 

TOPS-20 MONITOR 
So ftwa re Int roduc tion 

Per~ormance Analysis Count 

514 Internal Counter Interrupt Instruc. 

MSECTB=KIEPT+540 EXEC SECTION 0 

\ \ 

577 EXEC SECTION 37 

EPTMLO=KI EPT+600 

Available to Software 

* These values are placed into the table when the EPT is 
initialized at system startup. 

Figure SI .. 21. Executive Process Table (cont.) 

SI-45 «For Internal Use Only» 



DIGITAL 

Special/Shared Page Table (SPT) 

TOPS-20 MONITOR 
So ftware Introduction 

The monitor keeps track of the UPT and User Page Map 
pages in the SPT for each process on the system. The SPT is 
a resident table (that is, it is never swapped out) which is 
3000 to 5000 (octal) words long. The SPT keeps track of a 
page·s location since the page may be in core or swapped 
out. The SPT is also used to keep track of file pages and 
system overhead pages:. 

SI-46 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Software Introduction 

SPT REFERENCED DIRECTLY BY PAGER. 

SPTH IS PARALLEL TABLEJ BUT REFERENCED ONLY BY SOFTWARE, 

NOFN[ 

SPT ENTRY 
o 
I SHARE COUNT 

INDEX BLOCKS FOR OPEN FILES 

PSB's) JSB's) USER PAGE MAP TABLES 
AND SHARED FILE PAGES 

11 14 35 

STORAGE ADDRESS 

D7 0058 

Figure SI-22. Shared Pages Table 

81-47 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Software Introduction 

Summary of Paging 

The software sets up the page table locations and 
contents, the microcode does the address translation. How 
does the software tell the microcode where to look? 

1. AC block 6 is set up by the software with the base 
add resses 0 f; 

2. 

3. 

1. SPT Table 

2. CST Table (Core status table) 

3. Age stamp information (for removing old pages 
when necessary) 

NOTE 

The other used AC blocks are: ~ -
moni tor use, I user, 7 - roic rocode 
use. 

EBR is set up by the software 

UBR is set up by the software 

SI-48 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Software Introduction 

Software Introduction 

LAB EXERCISES 

When answering the lab exercises, write down the names 
of the tables where you found the answers. The labs will 
help you understand the monitor data base structure; so 
remember, where to look is more important than what you find 
there. 

The exercises that are marked with a double star (**) 
are more difficult and are optional. If you have the time 
and motivation, do them. 

TOOLS 

FILDDT 

FILDDT is a program that can be used to look at a crash 
or at the running monitor. Use FILDDT as in the example 
below to do this lab's exercises. 

@ENABLE 

$FILDDT 
FILDDT>LOAD <SYSTEM>MONITR.EXE 
FILDDT>PEEK 

;need enabled wheel 
;capability to look at the 
;running monitor. 
;start the program 
;load the symbols 
;peek at the running monitor 

At this point, the usual DDT commands allow yo~ to look at 
the running monitor. You cannot change any locations (i.e., 
you have no write privileges). Also, your process will 
always be running when you look because the mechanism to 
look at the running monitor is like a JSYS whose function is 
to let you use DDT from monitor context. 

SI-49 «For Internal Use Only» 



DIGITAL 

Virtual Address Translation 

TOPS-20 MONITOR 
Software Introduction 

The translation from virtual to physical addresses is 
done by the microcode. However, the page maps and tables 
the hardware uses are all set up by the monitor. Therefore, 
the monitor's page map, the current process's page map and 
the SPT table are all a part of the monitor's address space 
(so the monitor can add and delete pages for itself or for a 
process). Sections 0 and 1 of the monitor are both mapped 
through the same page table which begins at offset MMAP. 
The current process's page table is always mapped into the 
monitor's address space beginning at location UPTA. 

RESOURCES 

1. Read section 3.4 (TOPS-20 paging) of the Hardware 
Reference Manual. 

2. Use the UPTA table in your monitor tables. 

3. Refer to the Storage Addresses handout in your 
Student Guide. 

4. Refer to the Page Pointers handout in your Student 
Guide. 

EXERCISES 

1. Using the page map at .UPTA (which is your process's 
page map) find a share pointer, an immediate 
pointer, and in indirect pointer (if possible). 

2. What is the storage address for each of the 
pointers? 

3. What level of storage does the storage address 
indicate that page is on? 

4. Look at MMAP; why do you think that all the 
pointers in the first portion of MMAP are private? 

** 

8I-50 «For Internal Use Only» 



DIGI,TAL 

EXERCISES 

TOPS-20 MONITOR 
Software Introduction 

Software Introduction 

LAB SOLUTIONS 

1. Using the page map at UPTA (which is your process's 
page map) find a share po inter, an immedia te 
pointer, and in indirect pointer (if possible). 

ANSWER: Bits 0-2 of the pointer contain the 
pointer type; 2 is a share pointer, 3 is an 
indirect pointer, and 1 is an immediate pointer. 

2. What is the storage address for each of the 
pointers? 

ANSWER: A share pointer's storage address is in 
the indicated 8PT slot; an immediate pointer's 
storage address is in bits 12-35 of the pointer 
itself; and the storage address of the indirect 
pointer is determined by the object page map. 

UPTA/124000,,517 ;517 is the storage 
; add ress 

UPTA+l/124000,,622 ;622 is the storage 
; add ress 

UPTA+2/206000,,2167 ;8PT slot 2167 contains 
ithe storage address 

ST-51 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
So ftware lnt roduc tion 

3. What level of storage does the storage address 
indicate each page is on? 

ANSWER: If bits 12-17 are ~, the storage address 
is a core address; if bits 12-14 are ~ but bit 
16=1, the remainder of the word is a drum storage 
address; if bit 14 is on, the remainder of the 
word is a disk storage address. 

UPTA/1i4000,,622 ;core address 

UPTA+2/206000,,2167 ;SPT slot 2167 contains 
;the storage address 

SPT+2167/110,,5174 ;disk address 

UPTA+10/124003,,7034 ;drum address 

4. Look at .MMAP; why do you think that all the 
pointers in the first portion of MMAP are private? 

** 
ANSWER: This is the resident portion of the 
monitor, most of it read in by BOOT. You will also 
notice that the pages are always in core and that 
their core addresses correspond with their virtual 
add resses. 

MMAP/124000,,0 
MMAP+1/124000,,1 
MMAP+2/ 124000,,2 
MMAP+3/ 124000,,3 

• 
• 
• 

MMAP+32/124000,,32 
• 
• 

MMAP+55/124000,,55 

8I-52 «For Internal Use Only» 



DIGITAL· TOPS-20 MONITOR 
Software Introduction 

MODULE TEST 

1. What features of operating systems can be compared 
to determine whether a given'system is large or 
small? 

2. What are the basic aspects of batch, timesharing, 
and real time operating systems? 

3. What advantages does virtual memory's 
translation give an operating system? 

4. What is a page fault and how is it handled? 

5. How are files organi~ed on TOPS-20? 

6. What does the disk manager do? 

address 

51-53 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SI~54 

TOPS-2e MONITOR 
Software Introduction 

«For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Software Introduction 

TEST EVALUATION SHEET 

1. Such things as scheduling approach, devices 
handled, protection, file organization, accounting, 
and network capabilities determine whether a system 
is large or small. 

2. Batch works on long jobs, has sequential job 
submission, few concurrently running jobs, no 
interaction, and is often card-oriented. 
Timesharing includes many interactive users, 
round-robin scheduling, short jobs and is 
terminal-oriented. Real-time is interaction with 
fixed response time constraints. 

3. Virtual memory address translation eliminates 
unusable pages by making all real memory usable by 
any process. It makes partial residency easy to 
maintain dynamically. It provides protection for 
the operating system and users and, finally, it 
reduces the work of the loader program. 

4. A page fault occurs when reference is made to a 
process page that is not in real memory. When a 
page fault occurs, the operating system requests 
the page be load ed into real memory from the disk. 
The process becomes blocked until it arrives. 

5. Files are accessed through directories. Each user 
has a directory which has a pointer to an index 
block for each file. The index block contains a 
pointer to each page of the file on disk. The 
pages of the file may be scattered anywhere on the 
disk. 

~. The disk manager maintains a queue of disk 
requests. The order of requests is such that 
overall seek time and latency time are minimized. 

o SI-55 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

51-56 

TOPS-2~ MONITOR 
Software Introduction 

«For Internal Use Only» 



TOPS-20 MONITOR 

Monitor Overview 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-20 MONITOR 
Monitor Overview 

MR-2717 

MO-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

MO-ii 

TOPS-2~ MONITOR 
Monitor Overview 

«For Internal Use Only» 



DIGITAL 

Monitor Overview 

INTRODUCTION 

TOPS-20 MONITOR 
Monitor Overview 

The DECSYSTEM-20 consists of hardware 
and software designed to allow users to run 
a variety of programs efficiently and 
conveniently. It is specifically designed 
as a paged timesharing system. Normally, 
several active programs are run 
concurrently, with control switched from one 
to another by the monitor. Programs not 
using the CPU can still have active input 
and output devices. This overlapping of I/O 
with the processing of several programs 
permits efficient use of both the CPU and 
the I/O devices. 

The DECSYSTEM-20 has several hardware 
features that facilitate multiprogram 
ope rat ion. Th e two ba sic mod e s 0 f 0 pe rat ion 
are: executive and user. The monitor runs 
in executive mode with no restrictions on 
its operations. In user mode, a program can 
access core memory only within areas 
assigned to it by the monitor. Also, 
certain instructions are not permitted in 
user mode. These include all I/O 
instructions and the instructions to control 
memory access and mode of operation. 

MO-I «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
Monitor Overview 

------ LEARNING OBJECTIVES ------. 

Upon completion of this module, the 
student will be able to: 

1. Name the major functional sections of 
the moni to r. 

2. Describe the function of each of those 
sections. 

3. Identify the major data and monitor 
structures. 

4. Describe the use and function of TOPS-20 
Monitor Calls (JSYSs). 

-----------------RESOURCES--------------~ 

Appendices A and B of this course. 

MO-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

Monitor Overview 

I • Mo n i to r Ca 11 s 

II. Storage Management 
A. Block Diagram 

I I I. Pag er 

TOPS-20 MONITOR 
Moni tor Ov erv iew 

A. Hierarchical Storage Considerations 
B. Implementation - Mapping 
C. Inter-Level Data Flow 
D. Updating Lower Levels 

IV. Sched ul er 

V. Fil e System 
A • Data S t r uc tu r e 

VI. Job/Fork Structure 

VII. Disk And Magtape Service 
A. Hardware Principles 
B. Monitor Modules 
C. I/O Requests 

VIII. Front End Service 
A. TTY Input 
B. TTY Line Buffers And Echoing 
C. Line Printer Output 

IX. Append ices 

MO-3 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

MO-4 

TOPS-2~ MONITOR 
Monitor Overview 

«For Internal Use Only» 



DIGITAL 

MONITOR CALLS 

TOPS-20 MONITOR 
Monitor Overview 

The monitor performs a number of services for user 
programs, including I/O operations. The instruction code, 
104, provides the means for programs to request the monitor 
to perform these services. Each monitor call, referred to 
as a JSYS (Jump to SYStem), has a function code associated 
with it which is stored along with the operation code, 104, 
when the monitor call is assembled. The 104 operation code 
has no hardware function except to give control to the 
monitor. When a JSYS is executed, a routine in the monitor 
decodes the request and calls a subroutine to perform th~ 
requested operation~ After the JSYS request has been 
processed, control 1S returned to the calling program along 
with indications of error conditions, if any. 

Requests for service come from user programs in the 
form of JSYSs. A terminal request for system resources 
simply takes the form of input data to the EXEC program 
which translates the request into appropriate JSYSs. When a 
request is made to start up a program, an inferior fork of 
the EXEC is created, and the locations of the program's 
pagps on disk are placed into the fork's page map table. No 
initial core is assigned to the fork's pages. Rather, pages 
in core are assigned on demand (i.e., when a pag e faul t 
occurs) when the process references them. The most frequent 
requests for service from programs are the I/O JSYSs. These 
JSYSs allow a process to access data by file name on a byte, 
string, or page basis without being concerned about the 
physical location of the data. The monitor computes 
physical addresses on disk, starts I/O transfers, and 
handles the resulting I/O interrupts. 

Control functions are performed as necessary by the 
monitor, according to algorithms which attempt to give 
optimal overall system performance. One of the most 
important of these functions is dividing the available CPU 
time among the active processes. A running process must be 
stopped when a clock tick occurs, and its computational 
state must be preserved so that it may be started at a later 
time. The monitor must decide which pages of user programs 
to keep in physical core and which to swap out to the 

·MO-5 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

swapping device. In addition, it must decide where to put 
user pages in physical core when they are swapped back in, 
replacing other user pages if necessary. The replaced pages 
will be preserved first if needed (i.e., modified pages 
swapped out). 

MO-6 «For Internal Use Only» 



DIGITAL 

Block Diagram 

STORAGE MANAGEMENT 

TOPS-20 MONITOR 
Monitor Overview 

The functions of scheduling and storage management are 
handled by a number of interrelated modules of the 
DECSYSTEM-20 monitor, each with a specific set of operations 
to perform. The following diagram gives the major modules 
of the scheduler and storage management and their 
communication paths with each other. 

I 
BALANCE SET I -- SWAP PER 

CONTROLLER (Requests I/O) -I 

A" 
I 
I 

I 
" I 

PROCESS I CORE ... CONTROLLER 
I 

. MANAGER -
~~ I 

I 

,if I 

STARTUP I 
& I DRUM -DISMISS !·1ANAGER -

INTERFACE I 

STORAGE MANAGEMENT 
SCHEDULER 

D7 0040 

Figure MO-1. Block Diagram 

MO-7 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Monitor Overview 

The Swapper handles communication between the secondary 
storage devices (drum or disk) and core memory. Upon 
receiving a request frQm the Scheduler or Core Manager to 
move pages into and out of core, the swapper constructs an 
I/O reques·t and calls the device-dependent module to start 
the I/O. 

The Drum Manager is responsible for both assigning 
storage on the swappi~g drum and selecting pages to be moved 
to the disk in the event the drun becomes full. 

The Core Manager selects core pages to be used for swap 
read s from the drum 0 r d 1sk, perfo rms some "ag ing n 

operations, and handles the selection of core pages to be 
swapped to the drum. It has principal use and control of 
the Core Status Table (CST) which reflects at all times the 
current state of each page of core memory. The CST is also 
mod ified by the pag ing hardware, recording information about 
the activity of the running process. 

The core manager is invoked when a page fault occurs. 
If the working set of the faulted process can be increased 
by one, the core manager will assign a page from the 
replaceable queue (linked list of free pages) and call the 
swapper to swap in the faulted page. If the working set 
size cannot be increased, garbage collecting for the process 
takes place. That is, the fork's working set will be 
necreased by swapping out the pages least recently 
referenced. Whether the fork's working set size becomes too 
large or not, the fork's working set is periodically 
ex am ined fo r "old" pag es. 

If a process page faults and can legally be granted 
another page and none are available on the replacement 
queue, the fork is put into a wait state and the scheduler 
is called. The scheduler will detect the shortage of pages 
and call the c~re manager to global garbage collect on forks 
no longer in the balance set. The core manager will then 
invoke the swapper to swap out the collected pages. 

MO-8 «For Internal Use Only» 



DIGITAL 

PAGER 

TOPS-20 MONITOR 
Monitor Overview 

The pager is placed logically between the processor and 
the core memories and translates each memory address 
received from the processor into a physical core address 
which is sent to the memories. Control signals allow the 
pager to know what type of access the processor is making 
(read, write, or execute), and allow the pager to signal the 
processor when, for some reason, a reference cannot be 
completed (e.g., when the page is not in core). The virtual 
addresses received from the processor are 18 bits, and the 
page size is 512 words, so the pager is, in fact, 
translating the high-order 9 bits of address, and passing 
the low-order 9 bits throug h unchang ed. 

The pager uses a 512-word hardware page table (indexed 
by virtual page number) to hold physical page information of 
recently referenced virtual pages, but the source of this 
information is always a "page table" in core memory. Page 
tables contain (or point to) the physical storage address, 
if any, of each page of a virtual memory. Thus, each 
process' virtual memory is represented by one page table. 
Page table entries are of one word; hence, a page table for 
a 25nK virtual memory is 512 words, or exactly one page 
long. 

The pager references the page table of the relevant 
process, using the 9 high-order virtual address bits as an 
index, whenever the hardware page table fails to contain the 
physical information for the requested virtual address. The 
pager is capable of interpreting three types of page table 
entries. The first is called a "private" pointer and 
contains a physical storage address. If this is a core 
address, the pager will load the ~ardware page table with 
the information and complete the requested reference. If it 
is any other address, the pager will initiate a trap to the 
monitor for appropriate action. The second type of page 
table entry is called a "shared" pointer which contains an 
index into a system table at a fixed location. This 
"Shared/Special Pages Table" (SPT) contains the physical 
storage address, and the details of its functions are 
described below. 

The third type of page table entry is the "indirect" 
pointer which contains a page number and SPT index. The SPT 
index is used to index into the SPT table to pick up an 

MO-9 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

address of a page table. This page table is indexed by the 
page number given in the indirect pointer to obtain the 
physical storage address. This pointer allows one page to 
be exactly equivalent to another page in a separate space. 

One other fixed table, called the Core Status Table 0 
(CST0), is used by the pager. For each page of physical 
core, this table contains information about recent 
references and notes if the page has been modified. 

Hierarchical Storage Considerat.ions 

In any system using hierarchical (multi-level) storage, 
one is concerned with the movement of data between the 
various levels, the location of current "up-to-date" copy', 
the updating of lower levels, etc. It is usually considered 
essential that the address of the currently valid copy of an 
item of storage resides in only one place. This tends to 
conflict with the goal of sharing, ~hich requires that items 
of storage be made available to multiple processes 
simultaneously. Replication of addresses would appear to 
admit the possibility of unresolvable phase errors, and the 
updating problem itself would unnecessarily complicate the 
software. 

DECSYSTEM-20's solution to the basic storage management 
problem is the shared pages table scheme. In this scheme, 
storage addresses (for shared elements) again reside in only 
one place, a fixed table called the shared/special pages 
table. Processes using an element of storage are given a 
fixed index 'Y' which identifies the SPT entry holding the 
current address, but an entry cannot be deleted from the SPT 
as long as pointers to it exist. Therefore, a share count 
is required for each entry to record the number of pointers 
to it that have been created; this count is kept in the 
SPT. 

MO-10 «For Internal Use Only» 



DIGITAL 

Implementation - Mapping 

TOPS-20 MONITOR 
Monitor Overview 

The following shows how the DECSYSTEM-20 implements the 
file mapping operations discussed in the previous section, 
and how data flows between the several levels of storage. 
The DECSYSTEM-20 storage hierarchy consists of three levels: 
core, swapping, and file. 

As described previously, named memory consists of pages 
within files. A sample file with two of its pages is shown 
in Figure MO-2. The basic structure of the file is an index 
block containing the storage addresses of all of the data 
pages. In fact, this index block is a page table, initially 
containing private pointers. Assume a starting point where 
none of the file pages are mapped in any process, so the 
only place for the storage address of each of these file 
pages is logically and properly the index block of the file 
that owns them. 

FILE INDEX 
BLOCK 

DISK ADR 

PAGES ON DISK 

D7 0053 

Figure MO-2. File Structure 

MO-II «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Next, a process requests that one of these file pages 
be mapped into its address space. The monitor uses the JFN 
portion of the identifier to 'locate the file inde~ block, 
and the PN portion to select the appropriate entry within 
it. Although our aim here is to have just one process using 
the page, we see that, in fact, the page must become shared 
at this point (that is, shared between the file and the 
process). Therefore, the monitor will assign a slot in the 
SPT and place in it ~he disk address obtained from the 
file's in-core copy of the index block. Simultaneously, it 
creates a shared pointer which points to that SPT slot and 
places a copy in both the file's in-core copy of the index 
block and the process page table. The share count for the 
SPT slot is set to reflect the fact that the page is in use 
twice: once by the file, and once by the process. 

PROCESS 
PAGE 
TABLE 

SHR PTR 

SPT 

PHYSICAL 
DISK 

SPTN PAGE 

DISK ADR 
~ 

IN CORE COpy OF 
INDEX BLOCK 

SHR PTR -

D7 0602 

Figure MO-3A. One Process Maps a File Page 

MO-l2 «For Internal Use Only» 



DIGITAL TOP8-20 MONITOR 
Monitor Overview 

A second process wishing to use the same page proceeds 
in the same manner, but now it is only necessary to create 
another copy of the shared pointer and increment the share 
count. This situation is shown in Figure MO-3B. The 
subsequent reduction of the share count to I (when all 
processes unmap the pag~ will indicate that the 8PT entry 
may be reclaimed. 

PROCESS 
PAGE 
TABLE 

SHR PTR 

SHR PTR 

SPT 

PHYSICAL 
DISK 

SPTN PAGE 

DISK ADR 
,..,---

IN CORE COpy 
OFINDEX BLOCK 

SHR PTR r---

D7 0055 

Figure MO-3B. Two Processes Map a File Page 

MO-13 «For Internal Use Only» 



DIGITAL TOPS-2" MONITOR 
Monitor Overview 

Some additional bookkeeping is necessary in order to 
keep track of the owner of the page and to note the fact 
that the file index block is in use. This is shown in 
Figure MO-4. The table labeled SPTH is parallel to and the 
same length as the SPT. For our example file page which was 
assigned to slot 'SPTN', the parallel entry in the SPTH 
records the owning page table of the page. This is shown as 
OFN and PN. The OFN (OpenFi 1 e Number) is the monitor's 
internal equivalent 9f the user's JFN, except that it 
identifies open files over the domain of all jobs in the 
system. The OFN is actually an index into a portion of the 
SPT which is reserved for index blocks, and the PN is the 
page number supplied by the user. The OFN portion of the 
SPTH holds the home addresses of the index blocks currently 
in use. 

The monitor must always open files on the basis of the 
storage address of the index block as obtained from the file 
directory, and a search of this part of the SPTH is 
necessary to determine if the file is alre~dy open. 

SPTH SPT 
~~ --r , 

HOME ADR 
OFN 

~ STG. ADR AREA 

i SPTN 

1 INDEX BLOCK 

OFN I PN .....--

07 0059 

Figure MO-4. Ownership Back Pointers 

MO-14 «For Internal Use Only» 



DIGITAL 

Inter-Level Data Flow 

TOPS-20 MONITOR 
Monitor Overview 

Next, we show what happens when one of the processes 
references the file page which has been mapped. This is 
shown in F·ig ur e MO-S. The pag er in terpr ets the sha red 
pointer found in the process map, and references the SPT. 
It finds, however, that the page is not in core, and so, 
traps to the monitor. The monitor in turn selects a page of 
real core and initiates a read of the disk to bring in the 
page. The SPT slot is then changed to indicate that the 
page is in core. 

Two tables record the state of physical core. These 
are the Core Status Tables (CSTI and CST2). For each page 
of physical core, CSTI holds the physical address of the 
next lower level of storage for the page. In our example', 
this is a disk address because the page is just being read 
from the disk. CST2 records the name of the page table 
holding the pointer to that core page, which in this case is 
an S PT i n d ex. 

SPT 

T 
SPTN 

l~ 

CORE 
PAGE 
NUMBER 

PHYSICAL 
CORE PAGE 

PHYSICAL 
DISK PAGES 

CST2 CSTl --------. - - - - - -r-------...... 

SPTN 
HOME 

DISK ADR 

"-------~~ - - - - --------
D7 0060 

Figure MO-5. A Page is Referenced and Brought into Core 

MO-IS «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Then, we consider what is necessary for the monitor to 
swap the page onto the drum. It is important to note that 
during the course of the drum write (including latency) and 
for a period of time thereafter, the core page still 
contains a current copy of the data, and so we may properly 
leave the SPT slot pointing to it. This will prove useful 
in the event that a process makes another reference to the 
page during this time (since the page will not have to be 
read. into core again).. Thus, to beg in the swapout, the 
monitor selects a free drun page, initiates the drum-write 
operation, and updates CSTI to reflect the fact that the 
next lower level of storage is now the drum. 

However, we cannot discard the home address of the 
page, so one other table is required. The DST (Drum Status 
Table) serves a function for the swapping level of storag-e 
equivalent to that of the CST for core. That is, for each 
page in use on the drum, the DST holds the address of the 
next lower level of storage. It also records whether the 
copy on the drum has been modified with respect to the copy 
on the disk so that the monitor will know whether a write is 
necessary at some time to update the disk copy. The picture 
of a file page with copies on all levels of storage is now 
complete. (Figure MO-6). 

T 
SPTN 

~ 

--

SPT 

'N' t---

I T 
N 

l 
/ 
'-- CORE PAGE NUMBER 

PHYSICAL PAGES 

CORE DRUM DISK 

otO 
CST2 CSTI 

~- - - -t---.'M,---I 

T 
DRUM PAGE 1 
NUMBER 

HOME DISK ADR~ 

DST 

..--

f---

Figure MO-S. A Page is Swapped onto Drum 
D7 0061 

MO-If) «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

One final step is shown in Figure MO-7. If the page 
remains unreferenced for some period of time, the monitor 
will want to use the core page for another purpose. To do 
this, the monitor will move the drum address from CSTI of 
the page being reclaimed to the SPT slot, and succeeding 
attempts to reference the page will reveal that it is no 
long er in core. 

PHYSICAL PAGES 

DRUM DISK 

SPT 

T 
SPTN 

T 'M' 

\ M 

~ 

~ DST 

DRUM PAGE ~ 
NUMBER 

D7 0062 

Figure MO-7. A Core Page is Released 

MO-17 «For Internal Use Only» 



DIGITAL 

Updating Lower Levels 

TOPS-20 MONITOR 
Monitor Overview 

As long as the page remains mapped by one or more 
processes, the share count will keep the SPT slot in use, 
and the page will be moved between the drum and core as 
needed. This suggests that some procedure may be necessary 
to periodically update the home (disk) copy of pages a 
necessity both to guard against loss due to system crash, 
and because some files are mapped when the system starts up 
and are never unm~pped (e.g., the disk assignment bit 
table) • In the DECSYSTEM-20 a special system process 
(DDUMP) takes this responsibility. DDUMP periodically scans 
the open files, finding pages that have been changed since 
being read from the disk. File pages are backed up to the 
disk by setting a request bit in the CST which causes the 
swapper to move the page to the disk instead of the drum. 
File index blocks must also be updated but require a 
different procedure. For these, the backup process 
constructs an image of the index block as it would appear 
with no pages shared. That is, it finds the home address of 
each page and puts it in the index block in the form of a 
private pointer. This copy is then written on the disk. 

MO-IS «For Internal Use Only» 



DIGITAL 

SCHEDULER 

TOPS-20 MONITOR 
Monitor Overview 

There are two main goals of the TOPS-20 Scheduler: 

1. To prov id e rapid respo nse to inter acti ve us er sand 
"fair share" service to compute-bound users of the 
system. 

2. To make efficient use of the machine's principal 
resources: CPU and core. 

The actions of the Scheduler affect the utilization of 
all of the resources in the system, primarily core and CPU 
service. The scheduling algorithm includes procedures to 
affect the scheduling as a result of I/O or other non-CPU 
activity. The fact that TOPS-20 is a paging system greatly 
increases the activity on the swapping channels, which 
imposes an even greater demand on the scheduling procedures 
to interrelate the use of core with the allocation of the 
CPU. 

In trying to allocate equal CPU time to processes on 
the system, the scheduler would like to know how much time a 
process is going to use when it makes a request for CPU. 
service. The scheduler can only guess at the future 
behavior of a process based on its past behavior (but that 
guess may be wrong). 

The most significant piece of data from the recent 
history of a process is the amount of time it has used since 
its last request for service. Two observations from 
monitoring process activity that can be used to predict time 
compl etion ar e: 

1. Within any short period of time, the longer a 
process has run, the closer it is to completion. 

2. The number of processes completed during any fixed 
period of time decreases as the total runtime 
increases; so, the longer a process has run, the 
less likely it is to finish. 

MO-19 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Taking into account these observations, the runtime is 
broken up into separate reg.ions (queues) so that: 

• If ~wo processes are widely separated in accumulated 
runtime (i.e., are in different queues), the one 
with the lesser time is preferred. 

• If two processes are closely spaced (i.e., are in 
the same q~eue), the one with the greater time is 
preferred. 

MO-2eJ «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

This scheduling philosophy has three parameters: the 
factor by which the time on each queue is greater than the 
last, the amount of time allowed in the first queue, and the 
number of queues. 

The values chosen by TOPS-20 are graphically shown 
below where a process runs from its queue for a given 
quantum of time before being requeued to the end of the next 
lowest priority run queue. Processes completing their 
quantum in MAXQ stay in MAXQ. 

(ENTER HERE) 

QUEUE ~ (HIGH-Q) 
FOR INTERACTIVE (OR 1/0) PROCESSES 

QUEUE 1 
FOR "AVERAGE" PROCESSES 

QUEUE 2 

FOR "AVERAGE" PROCESSES 

QUEUE 3 O''IAXQ) 
COMPUTE BOUND 

PROCESSES 

D7 0048 

Figure MO-S. Scheduler Queue Structure 

MO-2l «For Internal Use Only» 



DIGIT.\L TOPS-2g MONITOR 
Moni tor Ov erv iew 

While a process is active in the system, it will be 
either on the go list (GOLST) or on one of the wait lists.* 
The contents of the fork's entry in FKPT supply the list 
name and the link to the next fork on the list. The table 
FKPT holds the chain of fork pointers linked in a forward 
direction for each list. The chain pointed to by the 
contents of GOLST is called the GOLST. 

Fork # FKPT 

GOLS'J;' I BEST 0 

.. 1 GOLST 

2 

3 GOLST 

n GOLST 

D7 0649 

Figure MO-9. GOLST Structure 

*The wait lists are: TTLIST, FRZLST, TRMLST, CLKLST, 
WT2LST, WTLST. 

MO-22 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Each fork is associated with one of the run queues, Q0 
through 03. One can think of the run queues as a linkage of 
forks on the GOLST, where each fork's queue number is stored 
in the table FKQ2. When a fork is removed from the GOLST 
and put onto a wait list, its run queue number is still 
remembered as well as the time it was placed on the run 
queue. This time is kept in the table FKTIME. 

When the fork's wait time is over, it must be placed 
back on the GOLST, its placement determined by: 

1. The queue number of either the former queue or new 
queue given to the fork as described in the previous 
section. 

2. The fork's elapsed real time in the run queue before 
being placed on the wait list. 

MO-23 «For Internal Use Only» 



DIGITAL 

Data Structure 

FILE SYSTEM 

TOPS-20 MONITOR 
Monitor Overview 

File names and pointers to files are kept in a 
directory. Directories are also named, with their names 
kept in a file called the ROOT-DIRECTORY. Each entry in the 
ROOT-DIRECTORY relates the name of the directory to its 
location. Two home blocks (one used as a backup) point to 
the ROOT-DIRECTORY. Whenever a directory is being 
referenced, the entire directory file is mapped into the 
monitor's process address space. Pages are then faulted in 
as needed. As far as disk page allocation is concerned, the 
monitor keeps a disk bit table to keep track of which pages 
are free and in use. This table is kept in a file on the 
disk. Figure MO-l~ illustrates a structural overview of the 
file system. 

HOME BLOCK 
ROOT 
DIRECTORY 

USER 
DIRECTORIES 

FILE 

TEST 1 

TEST 2 

D7 0064 

Figure MO-10. Extended File Structure 

MO-24 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Each file on the disk (ROOT-DIRECTORY, user 
directories, and user files) has at least one index block of 
512 words which is essentially a page table where each entry 
gives the location of one page of the file. A file may be 
logically ,as well as physically non-conti9uous. A file that 
has page numbers <511 is called a short file. Directory 
files are always short files. Files having page numbers 
>511 are called long files. The location of index blocks 
for a long file is given in a higher level index block 
called the Super Index Block. The Super Index Block, being 
512 words long, allows a user file to have 512*512 pages. 
See Figure MO-ll for a more detailed diagram of Figure 
MO-10. 

MO-25 «For Internal Use Only» 



3: 
o 
I 

N 
~ 

A 
A 
I"%j 
o 
t'1 

H 

==' rt 
(1) 
t'1 
;:l 
QJ 
~ 

c:::: 
Ul 
CD 

o 
==' 
~ 

'< v 
v 

MASTER FILE 
DIRECTORY 

HOME INDEX ROOT 
BLOCK BLOCK DIR. 

SMITH 

USER FILE 
DIRECTORY USER FILES 

INDEX USER INDEX 
BLOCK DIR. BLOCK ----, 

I 
~A 

FILE 

INDEX 

INDEX USER 
BLOCK 

BLOCK DIR. 
TEST 11 I SUPER:: 

INDEX BLK. 

TEST2~ INDEX 
BLOCK 

INDEX 
~ 

~SUPER INDEX BLOCK 

PAGE 602 

NEEDED WHEN USER FILE HAS 
REFERENCED A FILE PAGE ~ 512

10 

NOTE: INDEX BLOCKS AND 
DATA BLOCKS ARE 

A PAGE LONG. 

Figure MO-11. Full File Structure 

07 0067 

0 
H 
G) 
H 
1-3 
)I' 
L' 

3: 
01-3 
;:l0 
.... "'0 
rt(J) 
o I 
t'1N 
~ 

o 
<3 
(1)0 
t'12 
<H 
.... 1-3 
CD'O 
~::o 



DIGITAL 

JOB/FORK STRUCTURE 

TOPS-20 MONITOR 
Monitor Overview 

The monitor assigns a job number to a user upon login 
to a DECSYSTEM-20. A job is a set of active resources 
normally under control of a single user. This set of 
resources is composed of one or more hierarchically-related 
processes (forks) that can communicate with each other in 
defined ways and that may contain several running and/or 
suspended programs. The set must always contain at least 
one process, with the Command Processor (the EXEC) being the 
most super ior. 

Except for the top-most process, a process has one 
immediate superior process and can have on~ or more inferior 
processes. A process can communicate with other forks of 
the structure by sharing memory, by the pseudo-interrupt 
system, or by direct control (superior to inferior only 
where the superior fork may confer or withhold privileges, 
suspend, continue or terminate inferior processes). 

MO-27 «For Internal Use Only» 



DIGITAL 

DISK AND MAGTAPE SERVICE 

TOPS-2 ~ MONITOR 
Monitor Overview 

Hardware Principles 

Each disk and magtape unit is connected to a controller 
(RH2~) and all communications to that unit must go through 
the controller. The controller is connected to the CPU by 
the EBUS. Setup and startup operations are communicated 
over the EBUS to the controller. Internal data channels 
contained in the memory control logic of the processor are 
used for transferring data between memory and the 
controllers. 

ME 
( 

MORY BUS 
S BUS) 

MEMORY 

E BUS 

CPU 
I 

RH20 

I MASS BUS C 
DATA 

I J CHANNELS B TM02 
U 
S t 

I TU45 I I TU45 I 
I 

RH20 
~ 

I MASS BUS 

I RP04/6 I I RP04/6 J 

D7 0068 

Figure MO-12. Hardware Configuration 

MO-28 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Each RH20 is associated by the hardware with one of 
eight data channels. Each channel has its own 16-word 
buffer in the processor's memory control unit for data 
transfer and its own 4-word data channel area in the CPU's 
Executive.Process Table (EPT) for holding the: 

• Channel Command List Pointer 
• Status when transfer done" Adr. of Last Chan. 

Command Used 
• Word Count" Adr. of last data word transferred 
• Not Used by Data Channel Hardware. (However, the 

system initialization software programs the RH20 
to trap here on an interrupt, having stored the 
channel's vectored interrupt instruction in this 
wo rd.) 

Data transfers will be to or from consecutive locations 
on the disk/magtape but may be from or to non-contiguous 
core areas. The length and address of each of these core 
areas are on the channel command list. The list is pointed 
to by the channel's 4-word block in the EPT as shown above. 
The total length of the areas on the channel command list 
determine the number of words transferred. 

All controllers can transfer data simultaneously, since 
each controller is connected to the memory system with its 
own built-in channel. Only one device per controller can 
transfer data at anyone time, interrupting when done. But, 
non-data transfer commands (i.e., Seek, Rewind, etc.) can 
overlap and may be issued to any drive at any time. Also, 
non-data transfer commands interrupt on completion even 
during a transfer. 

Each controller has a look-ahead command register, 
which enables the software to preload the next transfer 
request during the current transfer. Thus, the next 
transfer can begin with the next sector on the same device 
with no rotational delay. 

When the controller has finished an operation, it 
interrupts the CPU via a vectored interrupt to the Exec 
Process Table (fourth word of its data channel area) so the 
CPU does not have to poll a series of devices to determine 
which device caused the interrupt. 

MO-29 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Error checking is provided for both the channel and 
device data paths and the controller will terminate a 
command if certain errors are detected, marking the status 
word appropriately in the 4-word data channel area. 

Monitor Modules 

The TOPS-20 disk and magtape software have structures 
that parallel the hardware. At each level there is a module 
corresponding to a hardware device which interfaces to the 
rest of the monitor. All requests for disk. or magtape 
operations are made to PHYSIO from PAGEM or MAGTAP, 
respectively (see Figure MO-13). PHYSIO handles physical 
I/O requests for the channel and device-independent portions 
of the initiation, termination and error-logg ing functions'. 
Some of its responsibilities include: 

• Manipulating device request queues, one per unit 
(RP04/6, TU45) 

• Channel scheduling, (i.e., selection· of the next 
operation to be done on a given channel) 

• Seek schedul ing (i .e. , sel ection 0 f the best 
request for seeking) 

• Detecting timeouts associated with I/O operation 
• Issuing "off-line" messages to the operator 
• Initiating I/O retries. Errors are indicated in 

returns from the channel routine. If an error is 
to bel og g ed , i t make s are qu est tot h e 
error-logging routine 

• Interrupt handling 

PHYH2 is the primary downward interface to PHYSIO and 
handles the RH20 controller-dependent portions of 
initiations, termination, and error recovery. It is called 
on system startup to determ ine which dev ices are present and 
to initializa them via the appropriate device routines. It 
is likewise called to start I/O requests and when device 
requests have timed-out. When interrupts occur, it provides 
the principal interrupt analysis and calls the appropriate 
d ev ice routine. 

Modules PHYP4 and PHYM2 contain the device-dependent 
code for the disk (RP04/6) and magtape (TU45), respectively. 

MO-30 «For Internal Use Only» 



DIGITAL 

MAGTAPE 10 REQUEST 

MAGTAP 

PHYM2 
(TU4S) 

PHYSIO 

I 
I PHYRH2 
I (DATA CHANNEL) 

I 
I 
I 
I 

I 
I 
I , 
I 
I 

TOPS-20 MONITOR 
Monitor Overview 

FILE/PAGING TO REQUEST 

PAGEM 

PHYP4 
(RP04/6) 

D7 0069 

Figure MO-13. Physical I/O Request Paths 

MO-3l «For Internal Use Only» 



DIGITAL 

I/O Requests 

TOPS-20 MONITOR 
Monitor Overview 

I/O Request Blocks (IORBs) are built when an I/O 
function is requested from disk or magtape. The status word 
in this block contains the function (i.e., read, write, 
seek, backspace, etc.) and a bit indicating whether it is a 
disk or a magtape request (i.e., for PAGEM or MAGTAP, 
res pe c t i vel y) • 

Assume this is a read request for the disk. PAGEM 
calls PHYSIO with the IORB request, the physical core 
address and the device pag,e address. PHYSIO determines the 
source unit of the request and places it in that unit's 
queue. If PHYSIO determines the device is idle (i.e., no 
other requests are pending) and needs positioning, it 
initiates a SEEK by calling the controller-dependent module, 
PHYR2, which in turn calls the RP04/6 driver. If the unit 
is positioned and the channel is idle, PHYSIO executes a 
Channel Schedule cycle which would initiate I/O for this 
request. 

Figure MO-14 illustrates the data structure linkages 
for disk and magtape. 

MO-32 «For Internal Use Only» 



DIGITAL 

CHNTAB 

(CHANNEL) 
(DATA) 

CDB (BLOCK) 

-
I 

CDB 

r-----... 

KDB:: 
...... 

8 PTRS. 
~ • • • 

UDB 

UDB 

TOPS-2" M ON ITOR 
Monitor Overview 

(UNIT DATA BLOCK ) 

~ 

UDB 
I----

/ PWQ 
TWQ >---

/1 RPOLf./6 ~ ..... 
IORB i---

/1 
~ 

IORB ~ 

UDB 

/1 
IORB -UDB ~ 

PWQ 

/f TWQ L-. 
IORB -

~KDB (CONTROLLER DATA BLOCK) MAGTAPE ONLY 

D7 0074 

Figure MO-14. PHYSIO Data Structure Linkages 

MO-33 «For Internal Use Only» 



DIGITAL 

FRONT END SERVICE 

TOPS-20 MONITOR 
Monitor Overview 

This section is designed to cover the functional flow 
of information between the two processors of the 
DECSYSTEM-20, the PDP-II, and the KLl~. All unit record 
equipment is attached directly to the PDP-II Front-End 
Processor. Input and output data is buffered by the 
Front-End Processor. to remove some of the burden of I/O 
handling from the KLI0. A program running on the KLI0 will 
pass an entire block of line printer data to the Front-End 
Processor, which will perform the necessary sequences to 
cause it to be printed. The communication link between the 
two processors is the UNIBUS device DTE20. As a UNIBUS 
device, it appears to the PDP-I! operating system, RSX20F, 
as a standard UNIBUS peripheral and the microcode on the 
KL10 side sees the DTE20 as a device on the EBUS. 

TRANSFER BLOCKS 

The primary protocol builds two types of transfer 
blocks: 

1. Direct block - data is contained within the block 

2. Indirect block - data is stored as a seperate buffer 

Both blocks contain a count, function, device and a byte 
pointer. The device may be a pseudo-device similar to a 
PTY. The count indicates directly the number of data items 
to be transferred. The function field is used to indicate 
to the receiver the method to be used in storing this data. 
These blodks are l6-bit words to match the PDP-II format and 
are referred to as a control packet. A control packet may 
be passed in either direction and may occur simultaneously 
to the transfer of a control packet in the opposite 
direction. These two blocks are described in Figure MO-lS. 

MO-34 «For Internal Use Only» 



DIGITAL 

Direct 

COUNT 

FUNCTION 

DEVICE 

SPARE 

· 
· Data 

· 
· 

Indirect 

COUNT 

FUNCTION 

DEVICE 

SPARE 

Figure MO-15. Transfer Blocks 

TOPS-20 MONITOR 
Monitor Overview 

.Data 

D7 0646 

MO-35 «For Internal Use Only» 



DIGITAL 

TTY Input 

TOPS-2A MONITOR 
Monitor Overview 

Characters typed at the terminal are passed from the 
Front-End Processor to the KLl0 processor where they are 
stored in.a "Big Buffer". The monitor periodically sorts 
these characters by line number into line buffers until a 
wake-up character is recognized. This causes the requesting 
process to empty the line buffer and reset the required 
pointers to allow the: next line to be accepted. The same 
type of mechanism is used to build output line buffers to be 
passed to the Front-End processor through its interface to 
the terminal (except that they may be indirect packets). 

The block built by the Front-End contains a count, 
device, and function designator. The data received from the 
terminals is appended to this header to form a Direct 
Transfer Block. An example of this block is shown below. 

18 COUNT 
LC FUNCTION 

DLC DEVICE 
4 / A LINE #/CHARACTER 
6 / Q LINE #/CHARACTER 
5 / L 
2 / E 

D7 0647 

Figure MO-16. Direct Transfer Block (Packet) 

MO-36 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

This block is built by the operating system on the 11 
side (RSX20F) and is transferred to a fixed area in the KL10 
memory under control of the micro-code. The DTE20 connects 
the two processors and holds the transfer parameters to be 
used in requesting a transfer to the KL10. A protocol 
handler on the KL10 side takes the data from this fixed area 
or region in KL10 memory and appends it to the circular 
(ring) buffer known as "TTY Big Buff". Every 20 
milliseconds the monitor empties this buffer into the line 
buffers. If a line buffer becomes full, further typing on 
the terminal will cause the character to be echoed as a 
bell. If a terminal (normally a buffered terminal) exceeds 
the space allotted to it in the input buffer, an XOFF will 
be sent to the terminal. This eliminates buffer overrun and 
allows the terminal to continue upon receipts of an XON from 
the monitor. This sequence is further illustrated in Figure 
MO-l 7. 

RXS-20F /~_D_T_E_2_0_ ... 

__ ---'lIoo-----~ 

TOPS-20 

DIRECT TRANSFER BLOCK 

COUNT 

FUNCTION 

DEVICE 

UNIT/DATA 

• • 
• • 

4 
5 

7 

J.8 

LC 

DLC 

A 
C 

B 

PROCESS 
A 

PROCESS 
B 

D7 0072 

Figure MO-17. TTY Input Overview 

MO-37 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overvi~w 

An arbitrary limit of 100 characters has been set for a 
transfer block. Several direct transfer blocks may be 
linked together (appended to each other) and may be 
terminated by an indirect block. These blocks are passed 
between pr.ocessors as a single request by setting the byte 
count in the DTE20 to be the sum of all blocks to be 
transferred. 

Interrupts from the DTE20 indicate completion of the 
transfer into KL10 memory. The module DTESRV recognizes 
that a block is from a TTY by the device field. During the 
next 20 milli-second scheduler cycle, TTYSRV is called to 
sort the characters from "Big Buffer" into line buffers. A 
process blocked for input will remain in this state until a 
wake-up character is received. The set of wake-up 
characters consists of control characters, punctuation, 
letters and/or numbers as indicated by the parameters of the 
JSYS used. 

Direct Transfer Block Indirect Transfer Block 

16 bits COUNT 
1/15 bi ts ~IU:r--I----t IND/FUNCTION 

16 bits DEVICE 
16 bits spare 

8/ 8 bits LINE #/DATUM 

16 bitSEJCOUNT 
1/15 bits IN.D/FUNCTION 

16 bits DEVICE 
16 bits spare 

8/ 8 bits UNIT #/COUNT 

data 

D7 0650 

Figure MO-18. Detailed Transfer Blocks 

MO-38 «For Internal Use Only» 



DIGITAL 

TTY Line Buffers and Echoing 

TOPS-20 MONITOR 
Monitor Overview 

Two character buffers are assigned to each line that 
becomes active. One buffer is the input buffer which 
accumulates data as characters are moved from Big Buffer. A 
copy of each input character will be placed into the other 
buffer (the output buffer) when the character is to be 
echoed. When the input buffer is full, subsequent 
characters will be echoed as the bell control character. 
The output buffer consists of program characters to be 
printed on the terminal and input characters to be echoed. 

Echoing, if not disabled, is either performed at the 
time the character is typed (immediate mode) or when it is 
passed to the program (deferred). The deferred mode allows 
immediate echoing if the process is in teletype input wait 
when the character is typed. Deferred is the standard echo 
mode and it produces a correctly ordered typescript (i.e., 
program input and output appear in the order they occur) • 

Line Printer Output 

Data to be passed to the printer is represented by a 
header and an address. These are used by the protocol 
handler to deliver the data in the proper format to the 
Front-End, eliminating the requirement to BLT the data to a 
fixed area. The protocol between processors initiates two 
transfers: one to set up the Front-End to receive, and one 
to initiate the data transfer. Both are handled by the 
DTE-20 operating in primary protocol using Indirect Transfer 
Blocks and the doorbell mechanism. 

Since line printer data and terminal output may consist 
of blocks of information that can be passed as contiguous 
data streams, the majority of KL10 to -11 transfers will use 
the indirect mechanism. (Device data for a specific device 
is also implemented by the indirect mechanism.) Transfers 
from the -11 to the KL10 use the direct mechanism supplying 
the line number and datum within the packet. 

An overview of this process is shown in Figure MO-19. 
The JSYS that initiates a line printer transfer invokes a 
device driver. This device-dependent routine passes to the 
protocol handler the parameters necessary to transfer the 
block through the Front-End (to be handled and sequenced by 

MO-39 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Monitor Overview 

RSX2~F) to the printer. The block built contains a count, 
function, and specific device. The KLl~ wakes up the -11 to 
this transaction by ringing the II's doorbell. At the time 
the doorbell is rung, the packet has already been set up and 
stored in the DTE20. When the -11 acknowledges receipt, the 
data packet can then be set up and sent. 

MO-40 «For Internal Use Only» 



DIGITAL 

RSX-20F 

LINE 

PRINTER 

DTE20 

Figure MO-19. Line Printer Overview 

TOPS-20 MONITOR 
Monitor Overview 

TOPS-20 

DATA 

MR-2543 

MO-4l «For Internal Use Only» 



DIGITAL 

This page is for notes. 

MO-42 

TOPS-20 MONITOR 
Monitor Overview 

«For Internal Use Only» 



DIGITAL, TOPS-20 MONITOR 
Monitor Overview 

MODULE TEST 

When' answer ing the lab exerc i ses, wr i te down the nam es 
of the' tables where you found the answers. The labs will 
help you understand the monitor data base structure; so 
remember, where to look is more important than what you find 
there. 

The exercises marked with a double star (**) are more 
difficult and are optional. 

Answering some of the exercises requires use of the 
listings; do not assume that the answer is in the tables. 
After all, this is not a cookbopk course. ' 

TOOLS 

FILDDT 

FILDDT is a program that can be used to look at a crash 
or at the running monitor. Use FILDDT as in the example 
below to do this lab's exercises. 

@ENABLE 

$FILDDT 
FILDDT>LOAD <S~STEM>MONITR.EXE 
FILDDT>PEEK 

;need enabled wheel 
;capability to look at the 
;running monitor. 
;start the program 
;load the symbols 
;peek at the running monitor 

At this point, the usual DDT commands allow you to look at 
the running monitor. You cannot change any locations (i.e., 
you have no write privileges). Also, your process will 
always be running when you look because the mechanism to 
look at the running monitor is I ike a JSYS whose function is 
to let you use DDT from monitor context. 

MO-43 «For Internal Use Only» 



DIGITAL 

EPT (Executi ve Process Tabl e) 

Introduction 

TOPS-2ICJ MONITOR 
Monitor Overview 

The EPT is the hardware/software interface for ,most 
system-wide information. Some EPT locations 'must contain 
hardwa re-defined info rmation. These locations are set up by 
the softwar,e and used! by the hardware. For example, devices 
interrupt to location. In the EPT; the monitor's s~ction 
pointers are in the EPT; 'and the exec mode overflow trap 
instructions are in the EPT. The software loads the base 
address of , the EPT into a hardware register called the EBR 
(exec base register) so the hardware knows where the EPT 
beg ins. 

The EPT is one page in len~th, but only a small 
percentage of the locations have hardware-defined uses. The 
remaining EPT locations are used solely by the software. 
Note a1 so that the hardware uses of the table are different 
for TOPS-2" and TOPS-10; that is, the microcode differs in 
its use of the EPT. 

The EPT is in the monitor's address space beginning at 
1 oca tionKI EPT. 

RESOURCES 

1. Read and use as a reference section 3.4 of the 
Hardware' Reference Manual; this section describes 
TOPS-2e paging and ptocess tables. 

12. The EPT is pictured in the Student Guide. 
) 

3. The EPT table is in the Monitor Tables. 

EXERCISES 

Vectored, Interrupt Locations 

The devices on the sy~tem ,use vectored interrupts; 
these 'interrupts all vector into the EPT (but/do not need 
to). Vectored interrupts make polling all devices on the 

MO-44 «For Internal Use Only» 



DIGITAL TOPS-2~ MONIT,OR 
Monitor Overvi~w 

same priority level unnecessary since each device can vector 
to i t sown ass i 9 ned 1 oc a t ion • See section 3 • 1 (priority 
Interru~ts) of the Hardware Reference Manual for more 
info'rmation. 

,..----------- NOTE ----------...., 

Each interrupt location uses the 
instruction JRST 7,XXX (mnemonic XPCW). 
See the section on the JRST instruction 
(page 2-7~) in the Hardware Reference 
Manual for information on how this 
instruction works. 

1. Where does each DTE-2~ interrupt and where does 
control pass? 

2. Where do RH2~s interrupt and where does control 
pass for each RH2~? 

3. Where does the interval timer interrupt and where 
does control pass? 

Standard Interrupt Locations 

Standard interrupts come in to the EPT at offset 4~ + 
2N where N is the priority interrupt level. 

1. What is in each of 
locations? 

the standard interrupt 

? Where does control pass for each standard interrupt 
locati-on and what processin9 happens there? 

3. Which priority levels do you believe use standard 
interrupts? . 

MO-45 '«For Internal Use Only» 



DIGIT~L TOPS-2 frJ MONITOR 
Monitor Overview 

Exec Mode Trap Instruc tions 

The Exec mode POL overflow anq ~rithmet~c o,,-erf~()wt~ap 
instructions are in the EPT. This is where the processor, 
traps wh~n one of these conditions occurs. The trap 
instruction in the appropriate location is executed. 

"-

I. What is the Exec mode arithmetic overflow trap 
instruc tion?, 

2. What 'will happen when this instruction is executed? 

3. What is the Exec mode stack lover flow instruction? 

4. What will happen when this instruc tion is executed? 

5. What is the trap 3 trap instruc tion? 

Exec Mode Section Pointers 

The Exec mode section pointers are in the EPT beginning 
at location MSECTB. The offset from MSECTB is the section 
number. On a model A maohine, only section A can exist. On 
a model B machine, sections 0-5 are used. Refer to the 
section on extended addressing in your Student Guide for 
information on the use of each section on a model B machine. 
Note that the section pointers are "KL paging" format 
po inter s. 

1. How many sections are .in use on th~ machine you are 
doing your lab with? 

2. What kind of pointer(s) is/are in use for each 
section? 

MO-4~ «For Intern,l Use Only» 



DIGITAL 

DTE-20 Control Blocks ** 

TOPS-20 MONITOR 
Moni tor Overv iew 

The EPT has spacefo r four DTE control blocks, one for 
each possible DTE. Each block is eight words long. Refer 
to the EPT table in your Monitor Tables for a detailed 
layout of ' this area. 

1. What are the examine protection and relocation· 
words used for? What are they set up as in the 
running monitor? ** 

2. What are the deposit protection and relocation 
words used for?' What are they set up as in the 
running monitor? ** 

\ 

3. What are the To -11 and To -l~ byte pointers for.? 

** 

Channel Logout Areas 

There is a channel logout area for each possible RH20 
on the system. Refer to the EPT, table in your Monitor 
Tables; do you know what each word is used for? 

MO-47 «For Internal Use Only» 



DIGITAL TOPS-2A MONITOR 
Monitor Overview 

UPT 

Overv iew 

The UPT is the hardware/software interface for most 
process-specific information. The UPT is one page in length 
but only a few of the locations have hardware-defined uses. 
The remainder of the, UPT page is used for software purposes 
only. The UPT page is called the PSB by the software. This 
page is called the UPT when referring to its hardware 
functions and the PSB when referring to its software 
functions. 

Since the UPT/PSB page has process-speci,fic 
information, it is context switched. The current process's 
UPT/PSB page is always mapped into the monitor's address 
space beginning at location PSB. 

RESOURCES 

1. Hardware Reference Man,ual. 

2. UPT picture in the Student Guide. 

3. PSB table in the Monitor Tables. 

EXERCISES 

Overflow Trapping 

User push down overflow and user arithmetic overflow 
trap to locations in the UPT. 

1. What is the stack overflow trap instruction? 

2. What is the arithmetic overflow trap instruction? 

3. What will happen when the 'stack overflow trap 
instruction is executed? 

MO-48" «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

4. Using the information in the UPT, figure out what 
routine gets executed ona user-mode stack 
overflow. And then, using the microfiche, trace 
the routine; what does the routine do? 

Pag e Faul t Wo rds 

When a page f aul t occurs, the page fail wo rd and the PC 
of the page fault are stored in-the EPT; the processor 
picks up the new PC from the page fail new PC word (and 
switches to Exec mode i~ not already in Exec mode). Read 
the section entitled Page Fail ure on page 3-34 of the 
Hardware Reference Manual for more information. 

1. What is in each of the page faul t wo rds? 

2. Where does page fault handling begin? 

3. Wha t routine handles a page faul t fo r the sched ul er 
and what does this routine do when a page fault 
occurs? ** 

~------------------- NOTE --------~----------~ 

When a page fault occurs, the processor 
always traps to the UPT, regardless of 
the mode the processor is in. 
Therefore, the scheduler has its own UPT 
which is context switched for the 
scheduler when it is running. A copy of 
this UPT is always a part of the 
monitor's address space (even when it is 
not being used as the current UPT); 
thi s ·copy.' beg ins a t add ress SKHWPT. 

MO-49 «For Internal Use Only» 



DIGITAL 

User Section Pointers 

TOPS-29 MONITOR 
Monitor Overv iew 

The user section ~ointers begin at address USECTB. 
Currently, only one user section is supported~ Note that 
these pointers are standard KL paging pointers. 

1. What is the current pointer for user section 9? 

2. What is the storage address for the user's page 
map? 

Accounting Meters 

For information on the accounting meters, read the 
section entitled User Accounts, page 3~52 of the Hardwar~ 
Reference Manual. Note, however, tha t TOPS-29 does not 
currently use the accounting meters. 

MO-59 «For Internal Use Only» 



DIGITAL 

TEST EVALUATION SHEET 

TOPS-20 MONITOR 
Monitor Overview 

EPT (Executive Process Table) 

EXERCISES 

Vectored Interrupt Locations 

1. Where does each DTE-20 interrupt and where does 
control pass? 

ANSWER: Each DTE interrupts into the third word of 
lts DTE-20 control block in the EPT. For each DTE 
on the system, the DTE-20 control block is set up 
dynamically; the interrupt location contains a 
JRST 7,DTETRP+4n where n is the DTE-20 number. The 
old PC is stored in the first two locations of 
DTETRP+4n and the new PC is picked up from the 
second two locations of DTETRP+4n; the new PC is 
DTETRP+4n+5, which is always a JSR to SVDTRJ. 
Location SVDTRJ does a JRST to SVDTAC, which is 
where DTE interrupt processing begins. 

KIEPT+142+4n/ JRST 7,DTETRP+4n 

DTETRP+4n/ old PC flags 
/ old PC 
/ new PC flags 
I new PC = .+1 
I JSR SVDTRJ 

SVDTRJ+l / JRST SVDTAC 

MO-5l «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overvi~w 

2. Where do RH20s interrupt and where does control 
pass for each RH2~? 

ANSWER: Each RH20 vectors into the fourth word of 
its channel logout area in the EPT; that location 
contains a JRST 7,CDB-6 (i.e., six locations in 
front of the channel's COB). Register PI is saved 
in the COB and then control is passed to routine 
PHYINT in PHYSIO. 

KIEPT+3+4n/ JRST 7,CDB-6 

CDB-6 / old PC flags 
/ old PC 
/ new PC flags 
/ new PC = .+1 
/ MOVEM PI,.+2+CDBSVQ 
/ JS P P 1 , PRY INT 

3. Where does the interval timer interrupt and where 
does control pass? 

ANSWER: The 
interrupt to 
JRST 7, TI MINT. 
APRSRV. 

interval timer does a vectored 
KIEPT+5l4; this location contains a 

The new PC is TIMIN0, which is in 

KIEPT+514/ JRST 7,TIMINT 

TIMINT / old PC flags 
/ old PC 
I new PC flags 
/ new PC = TIMIN0 

MO-52 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Standard Interrupt Locations 

1. What is in each of 
I oca tions? 

the 

ANSWER: 
KIEPT+40/ 0 
KIEPT+41/ 0 
KIEPT+42/ 0 
KIEPT+43/ 0 
KIEPT+44/ 0 
KIEPT+45/ 0 
KIEPT+46/ JRST 7,PIAPRX 
KIEPT+47/ 0 
KIEPT+50/ JRST 7,PI4R 
KIEPT+5l/ 0 
KIEPT+52/ JRST 7,PI5R 
KIEPT+53/ 0 
KIEPT+54/ JRST 7,PI6R 
KIEPT+55/ 0 
KIEPT+56/ JRST 7,PISC7R 

standard interrupt 

; level 3 

;level 4 

;level 5 

;level 6 

; level 7 

2. Where does control pass for each standard interrupt 
location and what processing happens there? 

ANSWER: 

Channel 3 - new PC at PIAPRX+3 = PIAPR+I in APRSRV; 
this routine handles interrupts for the APR device. 

Channel 4 - new PC at PI4R+3 = PISC4+l in STG; 
this routine saves a few ACs, restores them and 
dismisses the interrupt. However, note that there 
is some code that is not assembled. 

Channel 5 - new PC at PI5R+3 = PISC5+l in STG; 
this routine saves a few ACs, restores them and 
dismisses the interrupt. However, note that there 
is some code that is not assembled; if the machine 
is 2020, SMFLG=l and the call to UNBCH5 is 
assembled. 

Channel 6 - new PC at PI6R+3 = PISC6+l in STG; 
this routine saves a few ACs, restores them and 
dismisses the interrupt. However, note that there 

MO-53 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Monitor Overview 

is some code that is not assembled; if the machine 
is a 2~2~, SMFLG=l and the call to DZCTIN is 
assembled. 

Channel 7 - new PC at PISC7R+3 = PISC7+1 in SCHED; 
this routine 6andles the "software clock" that 
drives the overhead cycle. 

3. Which priori ty levels do yo u bel ieve use standard 
interrupts? ' 

ANSWER: For standard 2050/20~0 monitors, only 
levels 3 and 7 are used. Level 3 handles the APR 
device (for memory parity errors, etc.) and level 7 
is the "software clock" that drives the scheduler. 
On a 2~20, since there is no front end, more 
priority interrupt levels are used to handle 
devices that the front end handles on a 2050/2060 
or that do not exist on a 2~50/2~60. For a 2020, 
the Unibus adapter is on channelS and uses routine 
UNBCH5; terminal interrupts are on channel 6 and 
are handled by routine DZCTIN. 

Exec Mode Trap Instructions 

1. What is the Exec mode arithmetic overflow trap 
instruction? 

ANSWER: 
offset 
JFCL. 

Exec mode arithmetic overflow traps to 
421 in the EPT. This location contains a 

2. What will happen when this instruction is executed? 

ANSWER: Nothing; it is a no-oPe 

3. What is the Exec mode stack overflow instruction? 

ANSWER: Exec mode stack overflow traps to offset 
422 in the EPT. This location contains: .PDOVT = 
4200~, ,0 

MO-54 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

4. What will happen when this instruction is executed? 

ANSWER: 42 is an illegal op-code and is therefore 
handled as a UUO. However, since itis executed 
from a trap instruction, the new PC is picked up 
from the Kernel trap MUUO new PC word in the UPT 
(offset 431). Offset 431 in the UPT (PSB) 
contains: 1"KITRPS. Therefore, when a push down 
list overflow occurs in Exec mode, routine KITRPS 
is executed. This routine executes a MONPDL 
BUGHLT. 

5. What is the trap 3 trap instruction? 

ANSWER: If the arithmetic overflow and stack 
overflow PC flags are on at the same time, the 
machine traps to the trap 3 trap instruction. This 
never happens unless the PC flags are deliberately 
set. 

Exec Mode Section Pointers 

1. How many sections are in use on the machine you are 
doing your lab with? 

ANSWER: Section pointers are set up for sections 
0-3 whether the machine is a model A or a model B 
machine. However, only section 0 is used on a 
model A machine. Sections 0 and 1 have the same 
section pointer. Section 2 has an indirect pointer 
through location DRMAP in the current PSB; DRMAP 
contains a zero for model A machines. Section 3 
has an indirect po inter through location IDXMAP in 
the current PSS; IDXMAP contains ~ zero for model 
A machines. Location DIRORA (the directory origin) 
contains [DRSECN,,0] for Model B machines and 
[MSECI, ,740000] for Model A machines. Location 
EXADDR is used as a flag to note whether this is a 
model A or model B machine; if EXADDR contains 0, 
this is a model A machine. 

MO-55 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overvi~w 

2. What kind of pointer(s) is/are in use for each 
section? 

ANSWER: Sections 0 and 1 have share pointers to 
MMAP (contents of MMSPTN). Sections 2 and 3 have 
indirect pointers through locations in the PSB. 
Section 4 is used to map the bit table; the bit 
table is only mapped while it is being updated. 

DTE-20 Control Blocks ** 

1. What are the examine protection and relocation 
words used for? What are they set up as in the 
running monitor? ** 

ANSWER: The examine relocation word is the first 
word of KL memory that a DTE-20 has read access to; 
the examine protection word is the size of the 
region (beginning at the examine relocation word) 
that this DTE-20 can read. 

KIEPT 144/ 225 
KIEPT 145/ COMBUF+3 

KIEPT 144+10/ 226 
KIEPT 145+10/ COMBUF+2 

2. What are the deposit protection and relocation 
words used for? Wh~t are they set up as in the 
running monitor? ** 

ANSWER: The deposit relocation word is the first 
word of KL memory that a DTE-20 has write access 
to; the deposit protection word is the size of the 
region (beginning at the deposit relocation word) 
that this DTE-2~ can write into. 

KIEPT 146/ 30 
KIEPT 147/ COMBAS+60 

KIEPT 146+10/ 30 
KIEPT 147+10/ COMBAS+110 

MO-56 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

3. What are the To -11 and To -10 byte pointers for? 
** 
ANSWER: The To -11 byte pointer is used as the 
byte pointer to the data for indirect transfers; 
the To ~10 byte pointer is used as the byte pointer 
for where to put the data transferred from the 
PDP-II. 

Channel Logout Areas 

Th~re is a channel logout area for each possible RH20 
on the system. Refer to the EPT table in your Monitor 
Tables; do you know, what each word is used for? 

ANSWER; The first three words contain channel command list 
lnformation for the last transfer on that channel. Word 4 
is the vectored interrupt location for the channel. 

MO-57 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

UPT 

EXERCISES 

Overflow Trapping 

1. What is the stack overflow trap instruction? 

ANSWER: 
overflow 
42000,,0 

Offset 422 in the UPT (PSS) is 
trap location; it contains 

the stack 
• POOVT = 

2. What is the arithmetic overflow trap instruction? 

ANSWER: Offset 421 in the UPT (PSS) is the 
arIthmetic overflow trap location; it contains 
JFCL (unless the user has enabled the PSI system to 
handle arithmetic overflow). 

3. What will happen when the stack overflow trap 
instruction is executed? 

ANSWER: Op-code 42 is an illegal instruction and 
1s handled as a UUO except that it is being 
executed as a trap instruction; therefore, the new 
MUUO PC is picked up from the concealed trap MUUO 
new PC wo rd whi ch is offset 435 in the UPT. Thi s 
address is KITRPU. 

4. Using the information in the UPT, figure out what 
routine gets executed on a user-mode stack 
overflow. And then, using the microflche, trace 
the routine; what does the routine do? 

ANSWER; KITRPU in APRSRV is 
routine looks to see the if 
channel is enabled for this fork 
and initiates the interrupt. 

executed; this 
the POL overflow 
or its superior 

MO-58 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Pag e Faul t Wo rds 

1. What is in each of the page fault words? 

ANSWER: The page 
following: 

fault words conta in the 

UPTPFN= PSB+500 / page fail word --contains failure 
type code and virtual address that page faulted. 

UPTPFL= PSB+501 / page fail flags (old PC) 

UPTPFO= PSB+502 / old PC 

UPTPFN= PSB+503 / new PC = PGRTRP 

2. Where does page fault handling begin? 

ANSWER: PGRTRP in PAGEM 

3. What routine handles a page fault for the scheduler 
and wha t does thi s routin.e do when a page faul t 
occurs? ** 

ANSWER: Offset 503 of the SKHWPT is the new PC for 
page fault handling; this location contains 
address RIPFS. !his routine executes a BUGHLT 
because the scheduler is currently not expected to 
pag e faul t. 

User Section Pointers 

1. What is the current pointer for user section 0? 

ANSWER: USECT6+0 is the section pointer for 
s~ction 0; it contains a share pointer to the page 
map for section 0. 

2. What is the storage address for the user's page 
map? 

ANSWER: The SPT slot indicated by the share 
pointer contains the storage address for the user's 
page map. 

MO-59 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

MO-60 

TOPS-20 MONITOR 
Monitor Overview 

«For Internal Use Only» 



DIGITAL 

I. MONITOR KERNEL 

A. Management & 
Allocation 

APRSRV 
FORK 
LDINIT 
PAGEM 
POSTLD 
SCHED 
SWPALC 

III. UTILITY MODULES 

BOOT 
COMND 
DATIME 
DIAG 
EDDT 
ENQ 
FUTILI 
IPCF 
MDDT 
MEXEC 
MFLIN 
MFLOUT 
MR 
SYSERR 
TAPE 
TIMER 

APPENDIX A 

MONITOR MODULES 

B. Device Drivers 

CDRSRV 
DTESRV 
IMPANX 
LINEPR 
PHYH2 
PHYM2 
PHYP4 
PHYSIO 
TTYSRV 

TOPS-20 MONITOR 
Monitor Overview 

II. FILE SYSTEM 

DEVICE 
DIRECT 
DISC 
DSKALC 
FESRV 
FILIN I 
FILMSC 
FREE 
GTJFN 
IMPDV 
IO 
LiSYSA 
JSYSF 
LOGNAM 
LOOKUP 
MAGTAP 
MSTR 
NETWRK 
NSPSRV 

IV. DATA BASE 

A-I 

GLOBS 
PARAMS 
PHYPAR 
PROLOG 
SERCOD 
STG 

«For Internal Use Only» 



DIGITAL 

A-2 

TOPS-2 C?J MONITOR· 
Monitor Overview 

«For Internal Use Only» 



DIGITAL 

MONITOR KERNEL 

TOPS-20 MONITOR 
Monitor Overview 

A. Management & Allocation 

APRSRV 

This is the processor dependent service module which 
contains the initialization code for paging, MUUO 
handlers, and the priority interrupt system as well 
as for the clocks, APR, and DTE devices. Interrupt 
handling for these devices, pager control routines, 
and pre- and post- JSYS handling is also performed 
here. 

FORK 

Fork controlling JSYSs and support code. 

LDINIT 

At load time, this module defines storage PCs for 
the JSYS dispatch table JSTAB. 

PAGEM 

TOP8-20 page management code; core management 
routines, swapper routines, pager trap logic, OFN 
control, and CST and 8PT initialization. 

P08TLD 

This code runs immediately following the loading of 
the monitor and performs functions outside the 
capabilities of LINK. It will move the symbol table 
to its runtime location, pruning it as necessary. 
It will then build the MONITOR.EXE file, write a 
BUG8TR text file and delete itself from core. 

SCHED 

This module contains the Channel 7 interrupt routine 
(which performs context switching), the TOPS-20 
scheduler, the job/fork initialization/dismiss 

A-3 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

. routines, and the Program Software Interrupt (PSI) 
analysis and resolution routines. 

SWPALC 

This is the swapping space allocator which handles a 
device of some number (SWPSEC) of sectors, and some 
number (DRMMXB) of tracks. It has a resident bit 
table used to allocate swapping storage. 

B. Device Drivers 

CDRSRV 

Card Reader Service. 

DTESRV 

DTE Service Driver; protocol handler for requests 
to and from the Front-End. 

IMPANX 

This module contains the device dependent code for 
the Interface-Message-Processor (IMP) device 
connected to a-10/-20 on the ARPA--network. 

LINEPR 

Lineprinter service. 

PHYH2 

Channel-dependent code for RH20 controller at direct 
I/O level. 

PHYM2 

Channel-dependent code for TM02/TM45 magtapes at 
direct I/O level. 

A-4 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

PHYP4 

Device-dependent code for RP04/6 disks at direct I/O 
level. 

PHYSIO 

This module handles the channel and driver I/O 
routines. It is responsible for queueing I/O 
requests into their proper queue, choosing the 
"best" request for seeking and/or transferring and 
starting I/O. 

TTYSRV 

This is the terminal service module containing the 
TTY I/O drivers, special control character 
conversion routines, terminal JSYS routines and the 
interface to the primary and secondary protocols in 
DTESRV. Its device dispatch table is contained in 
FILMSC. 

FILE SYSTEM 

DEVICE 

Device and initialization look-up code. 

DIRECT 

Disk file and directory management code. 

DISC 

This module contains the pre-PHYSIO disk-dependent 
routines for I/O JSYSs and a dispatch table of 
vectored addresses (DSKDTB) which points to them. 

DSKALC 

Drive-independent code for disk block allocation. 

A-S «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

FESRV 

Device code for FE devices., This code contains the 
device-dependent routines for the FE pseudo-devices 
F~0-FE3. 

FILINI 

This module contains code to initialize the file 
system at system startup. 

FILMSC 

This module contains miscellaneous routines for the 
PTY, TTY STRING and NULL I/O devices and also 
includes a device dispatch table for each of these 
devices. 

FREE 

Job storage free area management. 

GTJFN 

Contains the code 
supporting look-up, 
file names. 

for GTJFN, and 
recognition, and 

the JSYSs 
creation of 

IMPDV 

IO 

This module contains the Interface-Message-Protcol 
(IMP) 'device-independent code. It runs cyclically 
as a separate fork (i.e., under JOB0) and handles 
the interface to the ARPA network by monitoring 
network activity and managing the message queues. 

Contains most of the device-independent sequential, 
random, and dump input/output routines for BIN, 
BOUT, SIN, SOUT, DUMPI, and DUMPO. 

A-6 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

JSYSA 

Random JSYSs for system and directory access, device 
allocation, job parameter settings, system 
accounting (EFACT) and file/fork mapping (PMAP). 

JSYSF 

Contains code that implements various file system 
JSYSs. 

LOGNAM 

Contains the logical name definition and recognition 
JSYSs and routines. 

LOOKUP 

Device-independent file name look-up. 

MAGTAP 

This module contains the pre-PHYSIO 
mag tape-dependent routines fo r I/O JSYSs and a 
dispatch table of vectored addresses (MTADTB) which 
points to them. 

MSTR 

Contains the code to implement 
structure JSys, MSTR. 

NETWRK 

the mountable 

This module contains the interface for all standard 
I/O JSYS5 that communicate with the ARPA-network. 
It a'l so prov ides a fin i te sta te machine 0 f v ar i ous 
events associated with a connection for the network 
control program (NSP). 

A-7 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

NSPSRV 

This module contains the control routines and JSYS 
interfaces for the host-to-host protticol of DECnet 
known as NSP, which allows communication between 
processes on hosts by means of logical links. 

UTI LITY MODULES 

BOOT 

BOOTSTRAP for the system. 

COMND 

Code for the COMND JSYS, which is used by user 
programs for consistent command parsing. 

DATI ME 

Code for the date and time conversion JSYSs. 

DIAG 

This module contains code to support the DIAG JSYS 
for the KL10. 

EDDT 

Exec mode DDT is loaded as part of 
monitor and used for debugging 
func tions. 

the 
basic 

resident 
moni tor 

Thi s mod ul e impl ements 
control simul taneous 
sharable resources. 

the ENQ/DEQ faBility to 
access to user specified 

A-8 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

FUTILI 

Contains routines to copy strings to/from JSBs and 
routines to get a yes/no answer from CTY. 

IPCF 

Code for the system interprocess communications 
facility; Code for [SYSTEM] IPCC. 

MOOT 

This is a version of DDT which runs in the monitor 
space for debugging processes on TOPS-20. This 
version runs under timesharing. 

MEXEC 

This module contains the MINI-EXEC which is a 
limited command interpreter for certain system 
loading/maintenance functions and swappable monitor 
bootstrap procedures. It is part of the swappable 
monitor and also contains many JSYS routines. 

MFLIN 

Floating point input and conversion JSYSs. 

MFLOUT 

Floating point output and conversion JSYSs. 

MR 

Floating point double-precision arithmetic routines. 

A-9 «For Internal Use Only» 



DIGITAL TOPS..,.20 MONITOR 
Monitor Overview 

SYSERR 

Error reporting module for field service. 

TAPE 

This module contains the tape-table handler and 
record proc~s~or. 

TIMER 

This module implements the TIMER JSYS and all of its 
support. This includes scheduler clock routines 
(called from CLK2CL) and the code to kill the 
pending clock belonging to a dying fork (KSELF). 

DATA BASE MODULES 

GLOBS 

All globals are defined as external herewith QEXT 
macro. (Note, do not confuse thi s mod ul e wi th the 
global cross-reference file, GLOB, produced at 
monitor assembly time.) 

PARAMS 

This module contains one of the parameter files, 
PARBCH, PARSML, PARMIN, PARMED, PARBIG, depending on 
the size of the monitor required by the 
installation. The parameters in these files affect 
the 'space allocated for swapping and monitor 
resident tables. The assembled executable code is 
not affected. 

PHYPAR 

Universal file for PHYSIO and associated modules. 
It contains the definitions for the Channel Data 
Block, Channel Dispatch Table, Unit Data Block, Unit 
Dispatch Table, and the Input/Output Request Block. 

A-10 «For Internal Use Only» 



DIG I1'AL TOPS-20 MONITOR 
Monitor Overview 

PROLOG 

This is a file of parameters, storage assignments, 
and macro deffnitions. The major regions of the 
.monitor address space are defined as well as macros 
affecting PI bug strings, pseudo-interrupts, and 
scheduling. All PSB and JSB storage defined by the 
monitor at assembly time is specified here. 

SEReOD 

STG 

This module contains the error codes and fields for 
SYSERR, a program which produces hardware 
performance reports for field service personnel. 

The bulk of the monitor storage, both resident and 
nonresident, is defined in this module. 

A-Il «For Internal Use Only» 



DIGITAL 

This page is for notes. 

TOPS-2~ MONITOR 
Monitor Overview 

«For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

APPENDIX 8 

MONITOR'S VIRTUAL ADDRESS SPACE 

Every user job in TOPS-20 comprises 
processes. Each process has two memory maps 
the virtual core assignment for the process 
executing in user or monitor mode. The 
completely describes the user space for 
running process; the executive page map 
mapping for the monitor's address space. The 

256K 

PROCESS STORAGE 

JOB STORAGE 

200K 

SWAPPABLE MONITOR. 

102K 
PER PROCESSOR PRIVATE PAGES 

II 
~ 

, , 
.. 

RESIDENT VARIABLES 

EDDT 

SYMBOLS 
23K 

RESIDENT MONITOR 

Figure 8-1. Monitor Virtual Memory Map 

one or more 
which describe 

when it is 
user page map 

the currently 
describes the 

user space and 

}' 
~~ 

MR-3146 

8-1 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Moni to r Overv iew 

the moni tor space are each 256K. - New maps are loaded when a 
new process is selected to run, with the user map reflecting 
the current allocation of the user's virtual address space, 
and the monitor map reflecting the per-process allocation of 
the monitor's address space. Notice, however, that the 
major portion of the monitor's page map is used to map the 
resident and non-resident parts of the- TOPS-20 monitor. 
Figure 8-1 is a simplified diagram of the monitor's virtual 
memory map. 

The monitor consists of two logical sections: resident 
and non-resident code. Resident code is non-swappable and 
contains the scheduler, pager, basic interrupt and JSYS 
dispatch handlers and tables. The non-resident portion on 
TOPS-20 consists of swappable code and data which mayor may 
not be in core at any given time (depending on system 
utilization).' The RESCD macro causes code to be placed in 
the resident portion of the monitor. The SWAPCD macro will 
allow it in the swappable portion. The resident portion of 
the monitor is the same for all processes and will be 
disc us s ed fir st. 

B-2 «For Internal Use Only» 



DIGlTI\L 

RESIDENT MONITOR 

TOPS-20 MONITOR 
Monitor Overview 

Page 1 of the monitor is the JSYS dispatch table: 1000 
wOfds long with one entry for each JSYS. The right half of 
ea~h entry qontains the monitor PC describing where to start 
executing. Page 2 is the Executive Process Table. Page 3 
is the scheduler page table which is used by the scheduler 
when it is called to select a new process to (un. 

VIRTUAL PAGE NUMBER 

2758 

141 

74 

73 

72 

71 

55 

o 

I 

RESIDENT VARIABLES 
(CST'S, SPTO, SPT, ETC.) 

MONITOR'S PAGE TABLE (MMAP) 

SCHEDULER'S UPT (SKHWPT) 

EPT 

EDDT 
MONITOR SYMBOLS 

RESIOENT MONITOR CODE 
(SCHED, PAGEM & DEVICE SERVICE ROUTINES) 

JSYS DISPATCH TABLE 

Figure B-2. Resident Monitor 
MR-3168 

B-3 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Monitor Overview 

Pages 4-60 octal house the resident variables (i.e., 
those defined by the RS macro). Included here are the SPT, 
S5PT, and CST tables used by the pag ing hardwar e. The size 
of this area will vary depending on the size of the system. 

Resident monitor code sits between pages .60 and 140 and 
contains the paging and scheduling software and peripheral 
device interrupt and error processingrout-ines. The symbol 
MONCOR points to the highest location used by the resident 
monitor code. Above this sits an optional area consisting 
of EDDT and symbols. Since this area is 30-40 pages, it is 
only in core when the system is being debugged. 

B-4 «For Internal Use Only» 



DIGITAL 

NON-RESIDENT MONITOR 

TOPS-20 MONITOR 
Monitor Overview 

The swappable code of the monitor really starts at page 
270 (see Figure B-3). Pages 270-276 belong to the 
per-processor private page area. Since the current 
implementation supports only one CPU, this area can be used 
by the swapper for temporary pages. Pages 277-323 contain 
swappable variables the monitor needs and are reserved by 
the NR macro. A free space pool al so si ts here and incl udes 
temporary storage for ENQ/DEQ and IPFC. Pages 324-527 
contain the swappable monitor containing the bulk of the 
JSYS code, MDDT and symbols, and the MINI-EXEC. This area 
is write-protected. Pages 530-617 are swappable page 
storage reservable by the NP macro. Here lies a one-page 
buffer for each line printer and any other device that needs 
one. 

Pages 620-717 are the Job Storage Block, an area that 
is context-switched whenever a new job is run but is shared 
among all forks in a job. This area contains descriptor 
blocks (approximately 20 words in length) for every JFN 
known to the user. These blocks reflect the current state 
of the opening of a file. Pointers to filename, type, 
version, directory and device names, and pointers to the OFN 
and wildcard masks are stored. The GTJFN JSYS builds these 
blocks; the actual ASCII strings are stored in a free space 
pool in the JSB. Information is kept in the JFN for File 
~/O as well (i.e., the file's page, byte position, status, 
length, etc.). 

Pages 720-777 comprise the Per-Process Storage Area. 
This virtual core is switched every time a new process is 
run and is not the same for all forks in a job. Included 
here from pages 740-770 is the directory currently being 
scanned, which is PMAPed directly into this space for use by 
GTJFN and other related JSYSs. Pages 720-737 are used for 
special util ity fork and swapper functions and the IDXFIL 
table. Page 777 is the Process Storage Block which contains 
a per-process pushdown list and a monitor page table for 
pages 720 and up. Also included here is space for saving 
multiple sets of ACs needed in the situation of nested JSYS 
calls, and tables for holding local fork handles. 

B-5 «For Internal Use Only» 



DIGITAL 

7778 

776 

707 

620 

536 

344 

313 

307 

PSB- MAP FOR PAGES 707-777 

TOPS-29 MONITOR 
Monitor Overview 

PROCESS INFO, (I.E., PUSH DOWM LIST, AC SAVE AREA) 

PER PROCESS STORAGE 

PER JOB STORAGE 
(I.E. FI LE STRINGS & FI LE I/O BUFFERS) 

MAP FOR PAGES 620-706, 
JSB-JOB INFO, (I.E., ACCOUNT, FORK STRUCTURES, JFN BLOCKS) 

, .... 

SWAPPABLE PAGE STORAGE 

(LINEPRINTER BUFFERS, ETC.) 

SWAPPABLE MONITOR 
(MOST JSYS'S, MDDT, MINI-EXEC) 

SWAPPABLE VARIABLES 
(MONITOR TABLES, IPCF FREE'SPACE) 

PER PROCESSOR PRIVATE PAGES 

MR-3169 

Figure 8-3. Nonresident Monitor 

8-6 «For Internal Use Only» 



TOPS-20 MONITOR 

Coding Conventions 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-20 MONITOR 
Coding Conventions 

MR-2717 

CC-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

CC-ii 

TOPS-2~ MONITOR 
. Coding Conventions 

«For Internal Use Only» 



DIGITAL 

Cod.ing Conventions 

INTRODUCTION 

TOPS-20 MONITOR 
Coding Conventions 

There is a set of standard macro and 
symbol definitions used in writing monitor 
code (and some support programs). This 
module will cover the use of the more common 
of these macros and other TOPS-20 coding and 
naming conventions. Knowledge of these 
conventions will help greatly in the reading 
of TOPS-20 monitor listings. A listinq of 
MACSYM will be found at the end of this rrodule. 

CC-l «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Coding Conventions 

....------LEARNING OBJECTIVES --------. 

Upon completion· of this module, the 
student will be able to: 

Determine the code generated and/or the 
function a~plied by the various macros and 
pseudo-ops used in the TOPS-2~ monitor. 

CC-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

CODING CONVENTIONS 

I. Using MACSYM 
A. Symbol Definitions 

TOPS-20 MONITOR 
Cod ing Co nvent ions 

B. Macros To Manipulate Field Masks 
C. Instructions Using Field Masks 
D. DEFSTR -- MSKSTR Data Structure Facilities 

1. LOAD 
2. STOR 
3. Exa"mpl es 

E. Subroutine Conventions 
F. Named Variable Facilities 
G • Mi scell aneo us 

II. TOPS-20 Coding Standards 
A. Subroutine Calling - JSYS 
B. Subroutine Calling 
C. AC Definitions 
D. AC Saving and Restoration 
E. Subroutine Documentation 
F. Multi-line Literals 
G. Numbers 

III. Appendices 

CC-3 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

TOPS-20 MO,N ITOR 
Coding Conventions 

""""1':t __ ,._.L. ____ , " __ 1"\,_' .. "-..'-
"rvl. J..U,""Cl.llQJ.. Ui:)C Vll.Ly"""" 



DIGITAL 

USING MACSYM 

TOPS-2eJ MONITOR 
Coding Conventions 

MACSYM is available on SYS: in two forms: MACSYM.UNV 
and MACREL.REL. The first of these is the universal file of 
macro and symbol definitions; the second is a file of small 
support routines used by certain facilities (e.g., stack 
variables). The universal file is normally obtained at 
assembly time by the source statement 

SEARCH MACSYM 

The object file, if necessary, may be obtained by the source 
sta tement 

.REQUIRE SYS:MACREL 

which instructs LINK to load the object file along with the 
main program. The file is loaded only once (even if the 
.REQUIRE appears in several source modules) and no explicit 
LINK command need be given. 

Symbol Definitions 

Conventions 
symbol s are as 
character) : 

observed 
follows 

regarding the construction of 
("x" represents any alphanumeric 

xxxxx. an opdef or macro definition 

.xxxxx a constant value 

xx%xxx a mask, i.e., a bit or bits specifying a 
field 

Symbols containing multiple periods may be used 
internally by some macros. 

Symbols containing "$" are not used or defined by 
DEC and are reserved for customer use. 

The following definitions are available in MACSYM and 
are arranged into groups as shown. 

CC-s «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
Coding Conventions 

MISCELLANEOUS CONSTANTS (SYMBOLS) 

.INFIN = 377777,,777777 ;plus infin i ty 

.MINFI = 49000O,,0 ;minus infinity 

• LHALF = 777777,,0 ; left hal f 

• RHALF = 0,,,777777 ;right half 

• FWORD = 777777,,777777 ; full wo rd 

CONTROL CHARACTERS (SYMBOLS) 

Symbols are defined for all control character codes 
0-37 and 175-177. The following are the commonly used 
characters; see source listing for others. 

.CHBEL = 07 ;be11 

.CHBSP = 10 ;backspace 

.CHTAB = 11 ; tab 

.CHLFD = 12 ;linefeed 

.CHFFD = 14 ; formfeed 

.CHCRT = 15 ; carr iag e return 

.CHESC = 33 ;escape 

.CHDEL = 177 ;delete ( rubout) 

CC-6 «For Internal Use Only» 



DIGITAL 

PC FLAGS (MASK SYMBOLS) 

PC%OVF = 1B0 ;overflow 

PC%CYO = IBI ;carry 0 

PC%CYI = lB2 ;carry 1 

PC%FOV = 1B3 ;floating overflow 

PC%BIS = 1B4 ;first part done 
suppress) 

PC%USR = 1B5 ;user mode 

PC%UIO = 1B6 ;user 10 mode 

TOPS-20 MONITOR 
Coding Conventions 

(byte inc rement 

PC%LIP = 1B7 ;last instruction public 

PC%AFI = 1B9 ;ADDRESS FAILURE INHIBIT 

PC%ATN = 1B10 ;apr trap number 

PC%FUF = IBl1 ;floating underflow 

PC%NDV = 1B12 ;no divide 

Macros to Manipulate Field Masks 

Many of the symbols in MACSYM and MONSYM define flag 
bits and fields. A field mask is a full-word value with a 
single contiguous group of lis in the field. For example, 
000000,,777000 defines a field consisting of bits 18-26. 
The following macros may be used in expressions to deal with 
these masks. 

WID (MASK) 

Width - computes the width of the field defined by the mask, 
i.e., ,the number of contiguous I-bits. The value is not 
defined if the mask contains non-contiguous I-bits. 

POS(MASK) 

Position - computes the position of the field defined by the 

CC-7 «For Internal Use Only» 



DIGITAL TOPS-2g MONITOR 
Coding Conventions 

mask. The position of a field is always represented by the 
bit-number of the bit furthest to the right of the field, 
regardless of the field's width. This is sufficient to 
specify the entire field in the case of flags (I-bit 
fields) .' 

PO INTR (LOC, MASK) 

Byte pointer - constructs a byte pointer to 
which references the byte defined by MASK. 
POINTR(I~~,,77) = POINT 6, 1~~,35 = ~~~6~9, ,l~~ 

FLD (VAL, MASK) 

I oca tion LOC 
For example, 

Field value - Places the value VAL into the field defined by 
MASK. For example, FLD(3,7~~) = ~,,0~~3~~ 

• RTJS T (VAL, MASK) 

Right-justify - Shifts VAL right so that the field defined 
by MASK is moved to the low-order bits of the word. For 
example, .RTJST(300, 7~~) = 3 

MASKB (LB IT, RBIT) 

Mask - constructs a mask word which defines a field from bit 
LBIT to bit RBIT inclusive. E.g., MASKB(18,26) = ~,,777~~~. 

Instru'ctions Using Field Masks 

The following mnemonics are similar to certain machine 
instructions used to move and test bits and fields. These 
macros select the most efficient instruction for the mask 
be ing used. 

MOVX AC, MASK 

Load AC with a constant. MASK may be any constant. This 
assembles one.of the following instructions: MOVEI, MOVSI, 
HRROI"HRLOI, or MOVE literal. 

TXmn AC,MASK 

where m is: N, Z, 0, C 

CC-8 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

n is: E, N , A, null 

There are 16 definitions of thi s form which incl ude 
the modification and testing combinations of 
instructions (i.e., TXNN, TXNE, TXO, TXON, etc.). 
or TO literal is assembled as appropriate. 

IORX AC,MASK 

ANDX AC,MASK 

XORX AC,MASK 

all of 
the test 
A TL, TR, 

These are equivalent to certain TX functions but are 
provided for mnemonic value. 

JXm AC,MASK,ADDRESS 

This is a set of four d e fin i t ions which jump to ADDRESS if 
the field speci fied by MASK meets a certain cond i tion. The 
condition (m) may be: 

E - jump if all masked bits are 0 

N - jump if not all masked bits are 0 

o - jump if all masked bits are I 

F - jump if not all masked bits are 1 (false) 

These macros will assemble into one, two, or three 
instructions as necessary to effect the specified result. 
E.g., JXN TI,lB0,FOO = JUMPL TI,FOO 

JXE TI,770,FOO = TRNN Tl,770 JRST FOO 

DEFSTR - MSKSTR Data Structure Facilities 

This set of macros provides a comprehensive 
for the definition and use of data structures. 
extension of some of the techniques represented by 
mask facilities above. Typically, a data 
definition will include some information about the 

faci Ii ty' 
It is an 

the field 
structure 

I oca tion 

CC-9 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Coding Conventions 

of the data in memory as well as its position within a word. 
These facilities are intended to provide the following 
advantages: 

1. Data items may be referenced mnemonically. For 
example, two data items in the same word would be 
given different names rather than merely being known 
as the left half or right half of the word. 

2. Should the need arise, storage formats may be 
changed without incurring the expense of a search of 
the code to change each reference. 

DEFSTR -- MSKSTR 

These macros both define a data structure called NAME: 

DEFSTR NAME,LOCATION,POSITION,SIZE 

MSKSTR NAME, LOCATION, MASK 

LOCATION specifies the memory location of the desired 
word and consists of address, index, and indirect fields in 
the usual form, i.e., @address(index). Any of the fields 
may be omitted if not needed, and the entire location 
argument may be null in some circumstances. The remalnlng 
arguments define the desired field. DEFSTR specifies the 
field in terms of its position (right-most bit number) and 
size (number of bits), while MSKSTR specifies the field by a 
full-word mask as described earlier. Normally, the actual 
storage to be used is declared separately, e.g., by a BLOCK 
sta tement. 

As a simple example, consider an array of full-word data 
items. We wish to use the name FOO for the data itself, so 
we declare the actual storag e by some other name, e.g., 

FOOl: BLOCK n 

Then, we declare the structure by 

DEFSTR FOO,FOOl(FOOX) ,35,36 

This says that we declare a data item called FOO, that the 
items are addressed by FOOI(FOOX) (assuming that the index 

CC-10 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

is kept in register FOOX), that the items are 36-bit 
quantities with the right-most bit in bit 35 (i.e., full 
words). If instead, we wish to declare that each word of 
FOOl consists of an item in the left half and two 9-bit 
items in the right half, we could write: 

DEFSTR FIRSTD,F001(FOOX) ,17,18 ;LH item 

DEFSTR SECOND,FOOI(FOOX) ,26,9 ;one 9-bit item 

DEFSTR THIRDD,FOOI(FOOX) ,35,9 ;another 9-bit item 

LOAD 

Data items defined with DEFSTR or MSKSTR may .be 
referenced in a general way. At each instance, additional 
location information may be given if necessary. A set of 
reference functions (macros) is defined for most common 
operations, some affecting AC and memory, others only 
memory. For example, the LOAD function loads a data item 
into an AC and is written as 

LOAD AC,NAME,LOCATION 

where: AC is the AC to be loaded 

NAME 

LOC 

is the structure name as defined with DEFSTR 

is the location specification in addition to 
that declared in the structure definition. 
This field may be null in some cases. 

Taking the sample definitions above, we may write 

LOAD TI,FOO 

which would assemble into 

MOVE Tl,FOOI(FOOX) 

or 
LOAD TI,SECOND = LDB Tl,[POINT 9,FOOI(FOOX) ,26] 

LOAD Tl,FIRSTD = HLRZ T1,FOOI(FOOX) 

CC-11 «For Internal Use Only» 



DIGITAL TOPS-2 ~ MONITOR 
Coding Conventions 

Note that the macro compiles the most efficient instruction 
available to reference the specified field. 

The optional third argument is provided to allow some 
of the, location information to be speci fied a teach 
instance. For example, if the definition is 

DEFSTR FOO,FOOI,35,36 
i 

The index may be speci fied a t each instance, for exampl e, 

LOAD TI, FOO, (XX) 

LOAD T2,FOO, (TI) 

The specification given in the definition is concatentated 
with the specification given in the reference. 

STOR 

The following reference 
defined: 

functions 

LOAD AC,NAME,LOC load data item into AC 

are presently 

STOR AC,NAME,LOC store data item from AC into memory 

The data item is right-justified in the AC. 

SETZRO NAME,LOC set the data item to zero 

SETONE NAME,LOC set the data item to all ones 

SETCMP NAME,LOC complement the data item 

INCR 'NAME,LOC increment the data item 

DECR NAME,LOC decrement the data item 

For functions not specifically provided, the following 
may be used:' 

OPSTR OP,NAME,LOC 

OPSTRM OP,NAME,LOC 

CC-12 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

OP is any machine instruction written without an 
address field. It will be assembled so as to reference the 
specified data structure. OPSTR is used if memory is not 
modified; OPSTRM is used if memory is modified. For 
exampl e" 

OPSTRM <ADDM Tl,>,FOO 

to add the quantity in Tl to the data item FOO. 

The following test and transfer functions are presently 
defined: 

JE NAME,LOC,ADDR jump to ADDR if data is 0 

IN NAME,LOC,ADDR jump to ADDR if data is not 0 

The following test and transfer functions take a list 
of structure names (surrounded by angle-brackets) or a 
single structure name. They compile code to test each data 
item in the order given, and will stop as soon as the result 
of the functi on is known (e.g. , ,AND encounter s a fal se 
term) • 

JOR NAMLST,LOC,ADDR jump to ADDR if any data item is 
true (non-0) 

JAND NAMLST,LOC,ADDR jump to ADDR if all data items are 
true (no n-0) 

JNOR NAMLST,LOC,ADDR jump to ADDR if all data items are 
false (0) 

JNAND NAMLST,LOC,ADDR jump to ADDR if any data item is 
fal se (0) 

These functions optim~ze multiple fields in the same word if 
they are adjacent 1n the structure list. If the final 
location is an accumulator, further optimization is done. 

CC-13 «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
Coding Conventions 

EXAMPLES 

As an example of the data structure facility, consider 
the typical case of data organized into unit blocks with 
pointers, to other blocks. Such a block may appear as: 

Flag I Flag 2 Code List pointer 

+ ~ + + 

additional node data 

•••••••• 

We assume that n-word blocks will be allocated from a free 
pool at execution time. The structure of the block is 
declared as follows: 

MSKSTR FLAGI,0,IB9 

MSKSTR FLAG2,0,IBI 

DEFSTR CODE,0,17,9 

DEFSTR LINK,0,35,18 

DEFSTR NODDAT,I,35,36 

Note that the location field contains only the offset 
address of the word within the block; the address of the 
block will be specified in an index at each reference. 
References would appear as follows: 

LOAD'TI,LINK,(TI) ;step to next node in list 

STOR T2,CODE,(TI) ;set new block code 

JE FLAGI,(TI) ,FLOFF ;jurnp if flagl is off 

JAND <FLAGI,FLAG2>,(TI) ,FLGSON ;jump if flagl and 
;flag2 are both on 

CC-14 «For Internal Use Only» 



DIGITAL 

; Q-BLOCK FORMAT 

ENQLJQ: 
BACK POINTER TO 

LAST Q-BLOCK FOR JOB 

ENQLLQ: 
BACK POINTER TO 

LAST Q-BLOCK 

ENQFLG: ENQCHN: 
FLAGS PSI 

CHANNEL 

ENQNR: * OF RESOURCES 
REQUESTED FROM POOL 

ENQLRQ: 
BACK POINTER TO 

LAST Q-BLOCK OF REQUEST 

ENQLBP: 
POINTER TO 
LOCK-BLOCK 

ENQNST: 
NEST COUNT 

TOPS-20 MONITOR 
Coding Conventions 

ENQNJQ: 
FORWARD POINTER TO 

NEXT Q-BLOCK FOR JOB 

ENQNLQ: 
FORWARD POINTER TO 

NEXT Q-BLOCK 

ENQFRK: 
FORK TO INTERRUPT 

WHEN REQUEST IS LOCKED 

ENQID: 
REQUEST ID CODE 

ENQFQ: 
FORWARD POINTER TO 

NEXT Q-BLOCK OF REQUEST 

ENQGRP: 
GROUP * FOR 
SHARABLE REQUESTS 

ENQJFN: 
JFN OF REQUEST 
OR -1, -2, OR -3 

ENQMSK: 
POINTER TO THE 

MASK BLOCK 

CC-lS «For Internal Use Only» 



DIGITAL 

;LOCK-BLOCK FORMAT 

ENQLHC: 
BACK POINTER TO LAST 

ENQNHC: 

TOPS-20 MONITOR 
Coding Conventions 

POINTER TO NEXT 
LOCK-BLOCK ON HASH CHAIN LOCK-BLOCK ON HASH CHAIN 

ENQLLQ: ENQNLQ: 
BACK POINTER TO FORWARD POINTER TO 

LAST Q-BLOCK ON QUEUE FIRST Q-BLOCK ON QUEUE 

ENQFLG: ENQLVL: 
FLAGS LEVEL NUMBER 

OF THIS LOCK 

ENQTR: ENQRR: 
TOTAL i OF RESOURCES REMAINING NUMBER OF 

IN THIS POOL RESOURCES IN THIS POOL 

ENQTS: 
TIME STAMP 

TIME OF LAST REQUEST LOCKED 

ENQFBP: ENQLT: 
FREE BLOCK POINTER LONG TERM LOCK LIST 

TO FREE Q-BLOCK FOR THIS JOB 

ENQOFN: ENQLEN: 
OFN, OR -2, OR -3, LENGTH OF THIS 

OR 400000 + JOB NUMBER LOCK-BLOCK 

ENQNMS: 
NUMBER OF WORDS IN 

THE MASK BLOCK 

ENQTXT: ASCIZ STRING 
OR 

500000 + USER CODE 

CC-l6 «For Internal Use Only» 



DIGITAL 

DEFSTR(ENQLJQ,0,17,18) 
DEFSTR(ENQNJQ,0,35,18) 

DEFSTR(ENQLLQ,I,17,18) 
DEFSTR (ENQNLQ, 1, 35, 18) 
DEFSTR(ENQFLG,2,11,12) 
DEFSTR(ENQCHN,2,17,6) 
DEFSTR(ENQFRK,2,35,18) 
DEFSTR(ENQNR,3,17,18) 
DEFSTR(ENQID,3,35,18) 
DEFSTR(ENQLRQ,4,17,18) 
DEFSTR(ENQFQ,4,35,18) 
DEFSTR(ENQLBP,5,17,18) 
DEFSTR(ENQGRP,5,35,18) 
DEFSTR (ENQJFN,n,35,18) 
DF.FSTR (ENQNST,6,17,18) 
DEFSTR (ENQMSK,7,35,18) 

TOPS-20 MONITOR 
Coding Conventions 

iBACK POINTER TO LAST Q FOR JOB 
iFORWARD POINTER TO NEXT Q FOR JOB 
i ENQNJQ AND ENQLlJQ MUST BE IN '~ORD eJ 
iBACK POINTER TO LAST Q IN LOCK QUEUF. 
iFORWARD POINTER TO NEXT Q OF LOCK 
iFLAGS OF BLOCK (EITHER LOCK OR Q) 
iPSI CHANNEL #, -1 MEANS JOB BLOCKED 
iFORK NUMBER OF CREATOR OF Q-BLOCK 
i# OF RESOURCES REQUESTED 
iID OF ENQ REQUEST 
iBACK POINTER TO REST OF REQUEST 
iFORWARD POINTER TO REST OF REQUEST 
iPOINTER TO LOCK-BLOCK OF THIS Q 
iGROUP NUMBER OF SHARABLE REQUEST 
iJFN OF ENQ REQUEST 
iNEST COUNT 
iPOINTER TO MASK BLOCK 

DEFSTR(ENQLHC,0,17,18) iBACK POINTER TO LAST LOCK IN HASH LIST 
DEFSTR(ENQNHC,0,35,18) iFORWARD PNTR TO NEXT LOCK ON HASH LIST 

iENQNHC AND ENQLHC MUST BE IN WORD eJ 
DEFSTR(ENQLVL,2,35,18) iLEVEL NUMBER OF LOCK 
DEFSTR(ENQTR,3,17,18) iTOTAL # OF RESOURCES IN POOL 
DEFSTR(ENQRR,3,35,18) i# OF RESOURCES REMAINING IN POOL 
DEFSTR(ENQTS,4,35,36) iTIME STAMP OF LAST REQUEST TO BE LOCKED 
DEFSTR(ENQFBP,5,17,18) iPOINTER TO FREE Q-BLOCK 
DEFSTR(ENQLT,5,35,18) iLONG TERM LOCK LIST FOR THIS JOB 

.ENQLT==5 iOFFSET OF LOCK LIST ELEMENT 
DEFSTR(ENQOFN,6,17,18) iOFN, -2, -3, OR 40eJeJeJeJ+JOB NUMBER 
DEFSTR(ENQLEN,6,35,18) iLENGTH OF LOCK-BLOCK 
DEFSTR(ENQNMS,7,17,18) iNUMBER OF WORDS IN THE MASK BLOCK 
DEFSTR(ENQTXT,leJ,35,36) iFIRST WORD OF TEXT OR USER CODE 

.ENTXT==10 iINDEX INTO LOCK-BLOCK FOR TEXT BLOCK 
DEFSTR(ENQOTA,ENQLST,8,9) iENQ/DEQ QUOTA 
DEFSTR(ENQCNT,ENQLST,17,9) iCOUNT OF REQUESTS QUEUED UP 

CC-17 «For Internal Use Only» 



ENQ MACRO %53(111142) 13:36 2111-0ct-78 Page 12 0 
ENQ MAC 16-Nov-77 14:58 .... 

c;) 

539 .... 
54111 i DEQ FUNCTION 111 ~ 
541 )I' 
542 iACCF.PTS IN TIl 111 = INTERNAL MONITOR CALL t"" 
543 -1 = JSYS CALL (READ ARGUMENTS FROM USER SPACE) 
544 
545 111111111274'1112 2~5 1111 111 111111 11111111111143' DEQFNI1I: JSP Tl,SETVAR iSET UP GLOBAL VARIABLES 
546 111111111275'1112 265 16 111 111111 11111111111147* STKVAR (DQFNI1IT,DQFNI1IQ> 
547· 111111111276'1112 1111111111111112 1111111111111112 
548 111111111277 '1112 41112 111111 111 17 777776 SETZM DQFNI1IT iINITIALIZE ERROR COUNTER 
549 1111111113111111'1112 322 1111 111 111111 11111111131115' JUMPE Tl,DQFNI1ID iIF MONITOR CALL, ARGS ARE SET UP 
55111 11111111131111 '1112 26111 17 111 111111 11111111171114' CALL VALARG iVALIDATE THE ARGUMENT BLOCK 
551 11111111131112'1112 263 17 111 111111 111111111111111111 RET iILLEGAL ARGUMENT BLOCK 
552 11111111131113 '1112 26111 17 111 111111 111111111734' DQFNI1IA: CALL VALREQ ,VALIDATE THIS LOCK SPECIFICATION 
553 11111111131114 '1112 254 111111 111 111111 11111111134111' JRST DQFNI1IB i ERROR 
554 11111111131115'1112 26111 17 111 111111 111111211126' DQFNI1ID: CALL HASH iHASH THIS REQUEST 
555 111011131116'1112 254 111111 111 111111 11111111134111' JRST DQFNI1IB iERROR DURING HASH 
556 11111111131117'1112 26111 17 111 111111 111111111133' CALL FNDLOK iFIND THE LOCK-BLOCK 
557 11111111131111'1112 254 111111 111 111111 11111111134111' JRST DQFNI1IB iNO SUCH LOCK-BLOCK 
558 111111111311'1112 135 1112 111 111111 1111112256' LOAD T2,ENQFLG,(Tl) iGET FLAGS OF THE LOCK BLOCK 
559 111111111312'1112 61113 1111 111 111111 1114111111111111 TXNE PI, EN%LTL iIS THIS A LONG TERM LOCK 
56111 111111111313'1112 66111 1112 111 111111 1111111111114111 TXO T2,EN.LTL iYES, REMEMBER THIS IN THE LOCK BLOCK 
561 11l11l11l314 '1112 137 1112 I1l I1II1l 1111112256' STOR T2,ENQFLG,(Tl) 
562 0111111315'1112 2611l 17 I1l 111111 111111111155' CALL FNDQ iFIND THE Q-BLOCK FOR THIS FORK 

() 563 11I~'HBI6'1112 254 111111 111 111111 11111111134111' JRST DQFNI1IB :COULD NOT FIND THE Q-BLOCK 
() 564 11I1111B17 '1112 21112 1111 111 17 777775 MOVEM Tl,DQFNI1IQ ;SAVE THE Q-BLOCK ADDRESS 
I 565 11111111132111'1112 554 1112 111 1111 111111111111~6 LOAD T2,ENQNST, (Tl) ;GET NEST COUNT 
~ 566 JUMPG T2, [DECR ENQNST, (Tl) 
00 567 I1IliHl321 '1112 327 1112 111 111111 1111112274' JRST DQFNI1IC] iTHIS WAS A NESTED ENQ, DO NT DEQ IT 

568 111111111322'1112 554 1112 111 1111 1111111111111113 LOAD T2,ENQNR, (Tl) ;GET NUMBER LOCKED IN ORIGINAL ENQ 
569 JUMPE T2,[CALL DEQMSK ;IF 111, SEE IF DEQ'ING A MASK 
57QJ JRST DQFNI1IE iNOT COMPLETELY DEQUEUED 

1\ 571 MOVE Tl,DQFNI1IQ ;OK TO DELETE THIS Q-BLOCK 
1\ 572' CALL SQDEQ iGO DELETE THIS Q-BLOCK 
I'ZJ 573 111111111323'1112 322 1112 111 111111 1111112277' JRST DQFNI1ICl ;STEP TO NEXT REQUEST 
0 574 111111111324'1112 275 1112 111 12 111111111111111111 SUBI T2,I1I(P3) •.•. ;SEE IF DEQ'ING ALL RESOURCES 
1"'1 575 JUMPL T2,[MOVEI Tl,ENQXI2 

576 111111111325'1112 321 1112 111 111111 111111231114' JRST DQFNI1IB] :DEQ'ING TOO MANY RESOURCES .... 577 JUMPE T2,[CALL SQDEQ iDEQ'ING ALL OF THEM, DELETE Q-BLOCK 

:J 578 11111111132&;'1112 322 1112 111 111111 111111231112' JRST DQFNI1IC] () 

rt 579 111111111327'1112 51116 1112 111 1111 1111111111111113 STOR T2,ENQNR, (Tl) iPUT BACK NEW t OF RESOURCES LOCKED 0 
(1) 58111 11111111133111'1112 554 1111 111 1111 1111111111111115 LOAD Tl,ENQLBP, (Tl) ;GET ADDRESS OF LOCK BLOCK 0.. 
1"'1 581 111111111331'1112 55111 1112 111 1111 1111111111111113 LOAD T2, ENQRR, (Tl) ;GET t OF REMAINING RESOURCES ~.~ 

:J 582 111111111332'1112 271 1112 111 12 111111111111111111 ADDI T2,11I (P3) ;UPDATE THE COUNT :J 0 
D.I 583 111111111333'1112 542 1112 111 1111 1111111111111113 STOR T2,ENQRR, (Tl) iSTORE NEW COUNT OF REMAINING RESOURCES I.Q "0 
~ 584 111111111334'1112 2111111 1111 111 17 777775 DQFNI1IE: MOVE Tl,DQFNI1IQ ;GET Q-BLOCK ADDRESS CJl 

585 111111111335'1112 554 1111 111 1111 1111111111111115 LOAD Tl,ENQLBP, (Tl) ;GET ADDRESS OF THE LOCK BLOCK () I 
C 586 111111111336'1112 26111 17 111 111111 11111117111111' CALL LOKSKD ;GO SCHEDULE THIS LOCK 0 tv 
{Jl 587 11l11l11l337 '1112 254 111111 111 111111 111111111341' JRST DQFNI1IC ;DONT COUNT UP ERROR COUNTER :J 51 
(1) 588 11111111134111'1112 21112 1111 111 17 777776 DQFNI1IB: MOVEM Tl,DQFN0T ;SAVE THIS ERROR CODE <: 

589 111111111341'1112 27111 1115 111 15 1111111111111113 DQFNI1IC: ADD Ql,EDSTP ;STEP TO THE NEXT LOCK REQUEST (1) 3: 
0 59111 111111111342'1112 327 1115 111 111111 11111111131113' JUMPG Ql, DQFNI1IA ;LOOP BACK FOR ALL LOCKS ::3 0 
::3 591 111111111343'1112 337 1111 111 17 777776 SKIPG Tl,DQFNI1IT ;ANY ERRORS SEEN? rtZ 
~ 592 111111111344'1112 254 111111 111 111111 111111111171* RETSKP ;NO, DEQUEUING COMPLETED ......... 
"< 593 111111111345'1112 263 17 111 111111 111111111111111111 RET ;YES, RETURN ERROR CODE IN Tl 0 ~ 
V :J 0 
V en ::0 

CC-1 Sample Listings 



DIGITAL 

Subroutine Conventions 

TOPS-20 MONITOR 
Coding Conventions 

The following definitions are used to make subroutine 
mechanics mnemonic. Reference is made to these conventions 
e I s e wh e r. e in t his doc urn en t • 

CALL address 

Call subroutine at address; equivalent to PUSHJ P,address 

RET 

Return from subroutine; equivalent to POPJ P, 

RETSKP 

Return from subroutine and skip; equivalent to 

JRST [AOS 0{P) RET] 

CALLRET address 

Call the subroutine at address and return immediately 
thereafter; equivalent to 

CALL address RET 
RETSKP 

CALLRET assembles as JRST but should be treated as if it 
assembles into several instructions and cannot be skipped 
over. 

AC CONVENTIONS 

The facilities described here assume (in some cases) the 
following AC conventions: 

ACl-AC4 

AC0,AC5-ACl5 

temporary, may be used to pass and 
return values 

preserved, i.e., saved and restored 
if used by subroutine 

CC-l9 «For Internal Use Only» 



DIGITAL 

ACl6 

ACl7 stack pointer 

Named' Variable Facilities 

TOPS-2r2J MONITOR 
Coding Conventions 

temporary, used as scratch by some 
MACSYM facilities 

A traditional deficiency of machine language coding 
environments is a lack of facilities for named transient 
storage ("automatic", etc.). Sometimes, permanent storage 
is assigned (e.g., by BLOCK statements) when no recursion is 
expected. More often, AC's are used for a small ntunber of 
local variables. In such a case, the previous contents must 
usually be saved, and a general mnemonic (e.g., TI, A, X) is 
usually used. In some cases, data on the stack .is 
referenced, for example, 

MOVE TI,-2(P) 

But this statement is non-mnemonic and likely to fail if 
additional storage is added to or removed from the stack. 

The facilities described here provide' local named 
variable storage. Two of these allocate the storage on the 
stack; the third allocates it in the ACs. 

STKVAR NAMELIST 

This statement allocates spac~ on the stack and assigns 
local names. The list consists of one or more symbols 
separated by commas. Each symbol is assigned to one stack 
word. If more than one word is needed for a particular 
variable, a size parameter may be given enclosed with the 
symbol in angle-brackets. For example, 

STKVAR <AA,BB> 

STKVAR <AA,<BB,3» 

CC-2r2J «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

Variables declared in this way may be referenced as ordinary 
memory oper and s, fo r ex ampl e, 

MOVE Tl,AA 

DPB Tl,[POTNT ~,BB,5] 

Each variable is assembled as a negative offset from the 
current stackllocation, for example, 

MOVE Tl,AA = MOVE Tl,-2(P) 

Hence, no other index may be given in the address field. 
Indirection may be used if desired. 

There is no explicit limit 
variables defined by STKVAR, but 
constraints must be observed: 

to the sco pe 0 f the 
the following logical 

1. The stack pointer must not be changed within the 
logical scope of the variables, e.g., by PUSH or 
PUSHJ instructions. This also implies that the 
variables may not be referenced within a local 
subroutine called from the declaring routine. 

2. The declaring routine must 
RETSKP. This will cause 
automatically deallocated. 

return with a RET or 
the stack storage to be 

STKVAR assumes that the stack pointer is in P, and it uses 
• Ale) (AClf) as a tempo r ary. 

TRVAR NAMELIST 

This statement allocates stack space and assigns local 
names. It is equivalent to STKVAR, except that it uses one 
additional preserved AC and eliminates some of the scope 
restrictions of STKVAR. In particular, it uses .FP (AC15) 
as a fr arne po inter. • FP is setup (and the previo us content s 
saved) at the same time as the stack space is allocated. 
References to the variables use .FP as the index rather than 
P. This provides for additional storage to be allocated on 
the stack and allows the variables to be referenced from 
local subroutines. Note that all such subroutines (i.e., 
all variable references) must appear after the declaration 

CC-2l «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Coding Conventions 

in the source. STKVAR may be used within TRVAR, e.g., by a 
local ~ubroutine. 

STKVAR and 'l'RVAR declarations are normally placed at 
the beg,inning of a routine. They need not be the first 
statement. If a routine has two or more entry points, a 
single declaration may be placed in the common path, or 
several identical declarations may be used in each of the 
separate paths. ~are must be taken that control passes 

,through only one l declaration before any variables are 
referenced. For example, 

;MAIN ROUTINE 

ENTl: 

ENT2: 
ENT0: 

TXO F,FLAG 
JRST ENT~ 

TXZ F,FLAG 
TRVAR <AA,BB> 

CALL LSUBR 

RET 

;LOCAL SUBROUTINE 

LSUBR: STKVAR <CC> 

ASUBR NAMELIST 

MOVE Tl, AA 

MOVEM Tl, CC 

RETSKP 

;entry 1, set flag 
;join common code 

;entry 2, clear flag 
;common code, declare locals 

;call local subroutine 

;local subroutine, declare 
; locals 
;reference outer routine 
; variable 
;reference local variable 

;skip return 

This statement is used to declare formals for a subroutine. 
The namelist consists of from one to four variable names. 
The arguments are passed to the subroutine in ACs Tl to T4, 
and values may be returned in these same ACs. ASUBR causes 
these four ACs to be stored on the stack (regardless of how 
many formals are declared), and defines the variable names 
as their corresponding stack locations. The return does not 
restore TI-T4. The same frame pointer AC is used by both 
ASUBR and TRVAR; hence, these declarations may not be used 

CC-22 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

within the same routine. The scope rules are the same here 
as fo r TRVAR. 

ACVJ\R NAMELIST 

This statement declares local storage which is allocated 
from the set of preserved ACs. An optional size parameter 
may be given for each variable. The previous contents of 
the ACs are saved on the stack and automatically restored on 
the next return. Variables declared by ACVAR may be 
referenced as ordinary AC operands. 

Miscellaneous 

TMSG string 

Type literal string; uses ACl, outputs to primary output. 
For example, 

TMSG <TYPE THIS TEXT> 

JSERR 

Handle unexpected JSYS error; type "?JSYS ERROR: message". 
This is a single instruction subroutine call which always 
returns +1. 

JSHLT 

Handle unexpected fatal JSYS error; same as JSERR except it 
does a HALTF instead of returning. 

MOD. (DEND,DSOR) 

Modulo In assembly-time expression; 
remainder of DEND divided by DSOR; e.g., 

this gives the 
MOD. 10,3 = 1. 

CC-23 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Coding Conventions 

TOPS-20 CODING STANDARDS 

Subroutine Calling - JSYS 

Monitor-call JSYSs may be used in user or monitor code. 
All ACs are preserved over a JSYS call unless an explicit 
statement to the contrary appears in the JSYS description. 
ACs are changed over a JSYS call only when values are to be 
returned to the calier. 

The JSYS name appears as the opcode in the statement 
perform ing the call. The JSYS mnemonic incl udes the 
instruction field, so no other fields are supplied by the 
user. 

Unimplemented JSYSs will invoke the illegal instruction 
sequence (with error code ILINS2). Defined and implemented 
JSYSs will return to caller +1 upon success, or will invoke 
the illegal instruction sequence upon failure. The illegal 
instruction sequence recognizes an ERJMP or ERCAL following 
the failing JSYS and causes the appropriate action. If that 
instruction is not an ERJMP or ERCAL, an illegal instruction 
interrupt is requested which will be handled by the 
executing fork if enabled, or otherwise, it forces fork 
termination. See paragraph below on JSYS returns for proper 
indication of JSYS failure. 

All constant values, bits, and fields of JSYS arguments 
will have mnemonics defined according to the rules in 
MONSYM. The JSYS code itself uses these symbols for loading 
arguments, testing bits, etc. 

When writing code to implement a JSYS, the following 
conventions are observed: 

1. The 'entry point of the JSYS is defined by a global 
tag consisting of a DOT concatenated with the 
symbolic name of the JSYS; e.g~, .GTJFN::. 

2. The first statement of the JSYS code is MCENT 
(Monitor Context ENTry). This establishes the 
normal JSYS context for a "slow" JSYS. At this 
writing, MCENT is a null macro and the JSYS entry 
procedure is invoked automatically. The use of 

CC-24 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Cod ing Conventions 

MCENT is required so that this implementation may 
be changed in the future if necessary. 

3. All caller ACs are automatically preserved by the 
entry and exit procedures. Therefore, JSYS 
routines are specifically required NOT to save and 
restore the ACs. The contents of the caller's ACs 
1-4 are copied ipto the callee's ACs. However, no 
callee ACs are copied back to the caller's AC block 
on return; one 0 f the "pr ev ious c ontex til 
instructions . (i .e., UMOVE, UMOVEM, XCTU 
[instruction], etc.) must be used to return any 
values to the caller. For example, 

UMOVEM Tl,Tl ; store moni tor Tl into user- Tl 

A "previous context" instruction may also be used 
at any time to fetch the original contents of the 
caller's ACs unless they have been explicitly 
changed by a previous context store operation. For 
exampl e, 

UMOVE T2,Tl ;load .user Tl into monitor T2 

4. Return from JSYS code should be effected by the 
statement: 

MRETNG ;Monitor RETurn Good 

This transfers to the JSYS exit sequence (returning 
caller +1) and shouln be used to indicate 
successful completion of the JSYS. If the JSYS 
could not be completed successfully, the following 
statement should be used: 

ITERR errcod ;causes an Instruction Trap 
;ERRor, leaves 
;the error code in LSTERR 

CC-2S «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Coding Conventions 

Other statements are defined which effect 
returns according to a previous convention. 
are: 

JSYS 
They 

RETERR errcod 

EMRETN errcod 

;RETurn ERRor, return 
;cal1er +1 with error code 
;left in AC1 and LSTERR 

;Error Monitor RETurn, return 
;cal1er +1 with error code left 
;in LSTERR 

These should not be used in new JSYS code but may 
be needed if existing JSYSs are modified. 

All error returns include an error code (mnemonic) 
that will be defined in MONSYM.MAC. If the 
appropriate error code has already been loaded into 
ACI, the errcod field may be omitted from the above 
with the contents of ACI taken as the error code. 
No JSYS shall return other than +1 or instruction 
trap; therefore, no occurrence of AOS 0(P) should 
ever be required in JSYS code. 

When invoking a JSYS error return, it is not 
necessary to "pop" temporary quanti ties from the 
stack. The successful return, however, should be 
given only when the stack is properly cleared. 

CC-26 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

Subroutine Calling 

The allocation of ACs for all inter- and intra-module 
subroutine calls are: 

ACs 1,2,3,4 General temporary, may be destroyed by a 
subroutine. 

ACs 0, 5-15 -- Preserved, not changed by a subroutine (or 
s a v ed and res tor ed, i f n e c e s sa r y) • 

AC In 

AC 17 

Temporary, used by the JSYS call/return 
procedure and reserved for use by other 
call/return procedures. 

Global stack pointer 

Call and return are effected by PUSHJ P, and POPJ P, 
respectively. A set of assembler mnemonics has been defined 
for subroutine mechanics as follows: 

'CALL' (= PUSHJ 
subroutines, 

P, ) is used to 
e.g., CALL SUBR. 

call 

'RET' (= POPJ P,) is used to return +1 from 
subroutines. 

'RETSKP' is used to return +2 from 
subroutines. RETSKP is equivalent to: 

JRST [ AOS 0(P) 
RET] 

'RETBAD errcod' is used to return +1 with an 
error code from a subroutine. The error code 
field is optional as with JSYS error returns 
above. RETRAD is equivalent to: 

JRST MOVEI A,ERRCOD 
RET] 

CC-27 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

'CALLRET' may be used to call a subroutine and 
return immediately thereafter. It is an 
abbreviation for 

or 

CALL SUBR 
RET 

CALL SUBR 
RET 

RETSKP 

Note that CALLRET is not 
instruction; therefore, it 
other returns above are 
instructions. 

guaranteed to be a single 
may not be skipped over. The 
guaranteed to be single 

These mnemonics are used to emphasize the FUNCTION 
being performed (calling, returning) rather than the 
mechanics of the function (pushing, jumping, etc.). Also, 
these mnemonics could still be used even if a more general 
calling standard were adopted at some time in the future. 

Return may also be effected by transferring control to the 
global tag R or RSKP, for example, 

JUMPE A,R ;equivalent to JUMPE A, [RET] 

JUMPN A,RSKP ;equivalent to JUMPN A,[RETSKP] 

The general temporaries are used for passing arguments 
to subroutines and returning values. ACI is used for a 
single argument routine, ACs 1 and 2 for a two-argument 
ro utine, etc. 

A r 0 uti n"e de fin ed tor e t ur n call e r + 2 ( ski p) u po n 
success and caller +1 (noskip) upon failure is acceptable. 
Returns greater than caller +2 are not permitted. 

CC-28 «For Internal Use Only» 



DIGITAL 

AC Definitions 

TOPS-20 MONITOR 
Cod ing Conventions 

The following mnemonics have been chosen to be 
consistent with the AC use conventions above. The preserved 
ACs are divided into three groups: F (1 AC) intended for 
Flags, and QI-Q3 and Pl-p6 for general use. The ACs within 
each group are consecutive. 

0 - F 10 - PI 
1 - Tl 11 - P2 
2 - T2 12 - P3 
3 - T3 13 - P4 
4 - T4 14 - P5 
5 - Ql 15 - Pf) 
6 - Q2 16 - CX 
7 - Q3 17 - P 

The programmer should assume that each group (Tn, Qn, 
Pn,) is in ascending order (e.g., that T2=Tl+l) though the 
specific assignment of numbers may change. Explicit numeric 
offsets from AC symbols (e.g., Tl+l) should NEVER be used. 
Instructions using more than one AC (e.g., DIV, JFFO) must 
be given an AC operand so that the other AC(s) implicitly 
affected are in the same group. For example, T3 (and T4) is 
OK for IDIV because T3+1=T4, but Q3 is not because Q3+1=?? 

AC Saving and Restoration 

Several facilities in the monitor save and 
automatically restore ACs. Each of these will save all of 
the indicated ACs on the stack at the point of execution and 
will place a dummy return on the stack which causes these 
ACs to be restored automatically when the current routine 
returns. Use of these facilities eliminates the need for 
matching PUSH/POP pairs at the entry at exits of routines 
and eliminates the bugs which often arise from an unmatched 
PUSH or POP. The available macros are: 

, 
SAVEQ - saves ACs QI-Q3 

SAVEP - saves ACs Pi--P6 

SAVEPQ - saves ACs Ql-Q3 and PI-Po 

SAVET - saves ACs Tl-T4 

CC-29 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

? 

Defining a different mnemonic for a preserved AC may be 
of value when the AC is used for a specific function by a 
large body of code. However, this may cause confusion 
because two d lfferent symbols may refer to the same AC 
without the knowledge of the programmer. In smaller 
programs, use of certain ACs can be restricted to specific 
functions, and a global definition is appropriate. However, 
a timesharing monitor is too large to accommodate all of the 
possible dedicated ACs. 

i 

Therefore, when a specific function-oriented AC 
definition is made, it shall be explicitly decided which 
modules shall use the definition. Within these modules, the 
usual name for the AC mus·t be purged so that there is no 
possibility of using two different symbols for the same AC. 

Only preserved ACs may be used for special definitions. 
Parameters to subroutines may be passed in functionally 
defined ACs in the following cases: 

1. On an intra-module call where the contents of the 
AC is appropriate to its function definition. 

2. On an inter-module call where the same definition 
exists in both modules and the AC is being used for 
its intended func tion. 

A parameter may NOT be passed in a preserved AC unless 
both caller and cal lee knQw it by the same name, and that 
name must be a specific one related to the function the AC 
i s pe r fo rm i ng • 

The procedure for declaring a functionally defined AC 
is: 

DEFAC NEWAC,OLDAC 

CC-3r2J «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

This must be done at the beginning of an assembly; it 
defines NEWAC to be equal to OLDAC. OLDAC must be the 
mnemonic for one of the regul ar preserved ACs; this 
mnemonic will be purged and therefore unavailable for use in 
the current assembly. 

An AC with a special definition should not be used for 
other purposes; for example, "JFN" should not be used to 
hold some quantity other than a JFN merely because it 
happens to be available. 

Subroutine Documentation 

The following is a suggested format for documenting the 
calling sequence of a JSYS or subroutine. A description of 
this sort should appear at the beginning of every 
subroutine, no matter how short it may be. 

;name of subroutine - function of subroutine, etc. 
; Tl/ description of first argument 
; T2/ description of second argument 
; 

CALL NAME or JSYSNAME 
; RETURN +1: conditions giving this return, 
; Tl/ val ue (s) returned 

RETURN +2: conditions and values as above. 

1. The ar~uments, if any, should be documented as the 
contents of registers and/or variables as shown. 
MONSYM mnemonics should be used when available (for 
example, at JSYS entry points) • 

2. The actual instruction to do the call should be 
sho~n. It will be "CALL subname" in the case of 
internal subroutines, and the single-word JSYS name 
in the case of a JSYS entry point. 

CC-3l «For Internal Use Only» 



DIGITAL TOPS-2f2J MONITOR 
Coding Conventions 

3. The return (s) should be noted as shown; II ALWAYS" 
or "NEVER" may be used as the condition where 
appropriate; the +2 return need not be shown if it 
does not exist; values returned should be 
described in the same form as arguments. 

Examples: 

;SIN - COMPUTES SINE OF AN ANGLE 
; TIl ANGLE IN RADIANS, FLOATING POINT 
; CALL SIN 
; RETURN +1: FAILURE, UNNORMALIZED NUMBER OR OUT OF 
RANGE 
; RETURN +2: SUCCESS, TIl VALUE, FLOATING POINT 

SIN: : . . 

;GJINF - GET JOB INFORMATION JSYS 
; GJINF 
; RETURN +1: ALWAYS, 
; TIl LOGGED-IN DIRECTORY NUMBER 
; T21 CONNECTED DIRECTORY NUMBER 
; T31 JOB NUMBER 
; T41 TERMINAL NUMBER OR -1 IF DETACHED 

.GJINF:: •• 

Multi-Line Literals 

The use 0 f mul ti-l ine liter al sis encourag ed as a 
technique for making code more readable and easier to 
follow. The following additional rules apply: 

1. The opening bracket for a multi-line literal should 
occur in the position the first character of the 
address field would have occ~pied if the 
instruction had an ordinary address. For example, 

SKIPGE FOO 
JRST [ 

CC-32 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

/ 

2. The first and all following instructions within the 
literal shall begin at the second tabstop. For 
exampl e, 

JRST [ MOVE A,MUMBLE 
JRST FIE] 

The tab between the open 
opcode may be omitted 
already at or beyond the 
example, 

JUMPGE A, [MOVE A,MUMBLE 

iCOMMENT 
iCOMMENT 

bracket and the first 
if the line position is 
second tab stop. For 

3. The closing bracket shall follow the last field of 
the last instruction (as above), and shall- be 
before the comment on the same line. 

4. Nesting of multi-line literals to a depth greater 
than one is discouraged because of awkward 
formatting problems. 

5. Tags may not appear in multi-line literals. 

6. There are no hard and fast rules concerning when to 
use or not use multi-line literals. However, a 
literal longer than about 10 lines is suspect. 

7. Use of ".+1" is legal in a literal to return to the 
main sequence. 

FLOW OF CONTROL - BRANCH CONVENTIONS 

Jumps, where possible, should be used to 
in the code (except in the case of loops). 
loop should be identified by a comment. 

tags forward 
The tops of a 

The expressions ".+1" and ".-1" are the only legal uses 
of "." (this location). All other potential uses should be 
avoided in favor of an explicitly defined tag. 

"~lobal" jumps should be avoided altogether. 
Higher-level languages do not permit them, and with good 
reason. The only exceptions are jumps to well-defined and 
published exit sequences, for example, R, RSKP (see 
subroutine conventions, above). 

CC-33 «For Internal Use Only» 



DIGITAL 

Numbers 

TOPS-2~ MONITOR 
Cod ing Conventions 

In general, there should be no occasion to use a 
literal. number in in-line code. All parameters, bit 
defini.tions, CONO/CONI codes, etc. should be defined 
mnemonically at appropriate places. It is much easier to 
err by not using mnemonics enough rather than in using them 
too much; therefore, when in the slightest doubt, define a 
mnemonic. 

CC-34 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Coding Conventions 

APPENDIX A 

LIVING IN AN IMPERFECT WORLD 

Much of the present TOPS-20 code does not conform to 
this standard since it was written before the standard's 
existence. Although a great deal of systematic editing has 
already been done to improve the code, obvious 
irregularities exist. In general, new code should conform 
exactly to this standard even if it is being integrated with 
old code. The following are some specific problems that may 
arise, with recommended solutions: 

1. AC Mnemonics 

Some code uses absolute numeric ACs. If new code is 
being integrated into a sequence that uses numeric ACs, 
editing the existing code to use the standard mnemonics is 
desirable, particularly for the preserved ACs. If the 
programmer cannot take the time to do this, the mnemonics 
TI-T4 should be used for ACs 1-4; other ACs should be 
referenced in the same way as is done by the existing code. 

Some code uses mnemonics A,B,C,D for the temporary ACs. 
These mnemonics should be used for new code being integrated 
into such code, or all references can he edited to use the 
standard mnemonics. 

You may write some code using the standard mnemonics 
for preserved ACs and then discover that the module into 
which you wish to put this code has redefined some of. these 
ACs. The solution is one or a combination of the following: 

1. Move the new code to a module which does not 
redefine the preserved ACs. 

2. Use different preserved ACs -- ones which have not 
been redefined. (Note it is not acceptable to use 
an AC with a special definition for other than its 
spec ial purpo se.) 

CC-35 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Coding Conventions 

Clearly, code needing some of the special definitions 
must he placed in a module which has these ACs defined and 
must therefore use only the other preserved ACs. 

Not~ that a value which usually resides in a special AC 
need not ALWAYS reside there. For example, if code in JSYSF 
needs to call a routine in PAGEM and pass a JFN index as an 
argument, the JFN should be loaded into TI-T4 for the call 
since PAGEM does not have JFN defined and cannot accept an 
argument in it. 

2. Stack Handling 

Use of the several stack variable facilities defined in 
MACSYM is recommended. However, some old code uses explicit 
PUSH and POP and references of the form -n(P). When notable 
modifications must be made to such code, edit it to use 
STKVAR or TRVAR. 

CC-36 «For Internal Use Only» 



DIGITAL 

MODULE TEST 

TOPS-2~ MONITOR 
Cod ing Conventions 

For this lab, you are to use the coding conventions and 
macros covered in the Coding Conventions module. 

The exercises marked with a double star (**) are 
optional. 

Using MACSYM 

. Using any editor with which you are familiar, 
demop.strate', by wri ting as though for a program, the call 
required to assure that the definitions in MACSYM are 
available. 

Data Structure Facilities 

With the sample data structure given below, use the 
data structure macros (e.g., DEFSTR - MSKSTR etc., and the 
field mask definitions) to define names for each of the 
specified fields.' 

BACKP: FORPTR: 
18 bits 18 bits 

COUNTl: FOOCNT: CHRCNT: CHAR: 
12 bits 10 bits 6 bits 8 bits 

TEXTl: -Tex t starts here I 

36 bits 

CC-37 «For Internal Use Only» 



DIGITAL 

LOAD - STOR 

TOPS-20 MONITOR 
Coding Conventions 

Assuming the above macros, write the cod.,e necessary to: 

1. Get FOOCNT into ACI (using the standard name of 
ACl). 

2. Jump to location WEX if CHRCNT is not 0. 

3. Subtract 
, 

1 from CHRCNT. 

** Assume the location of the above table was 
contained in T2: 

4. What would the answers to the above three questions 
be? ** 

Using The Coding Conventions 

Using the . conventions and standard s of the Cod ing 
Conventions module, write and compile a subroutine (assume \ 
it refers to the data structure given above and. that it is 
called with CALL) with documentation, which will: 

1. Define TEMI and TEM2 as stack variables. 

2. Save the temporary .storage ACs. 

3. Put CHAR into TEMI. 

4. Add 167 (octal) to BACKP. 

5. ,Jump to location PMW (il1 the subroutine) if FORPTR 
is riot 0. 

6. If FORPTR is not 0 (at PMW) add 4 to it and give 
return 2. 

7~ Otherwise, give return 1. 

CC-38 «For Internal Use Only» 



DIGITAL 

TEST EVALUATION SHEET 

TOPS-20 MONITOR 
Coding Conventions 

Results of the laboratory exercises will be discussed 
in class. 

CC-39 «For Internal Use Only» 



DIGITAL 

This page is for notes~ 

CC-40 

TOPS-20 MONITOR 
Coding Conventi"ons 

«For Internal Use Only» 



MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 HI: 47 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

(') 25 
(') 20 
1 27 
~ 28 
~ 29 

30 
31 
32 

/\ 33 
/\ 34 

'TJ 35 
0 36 

'"'" 
37 
38 

H 39 
;:J 40 
r1" 41 
CD 42 
1"1 43 
;:J 44 
OJ 45 
1-1 46 

47 

C 48 
00 49 
CD 50 

51 
0 52 
;:J 53 
~ 54 
~ 55 
V 
V 

MACRO %53A(1072) 13:55 29-Dec-78 Page 

i<3-UTILITIES)MACSYM.MAC.6, 8-Nov-77 10:47:32, EDIT BY 
iMORE COPYRIGHT UPDATING ••• 
i<3-UTILITIES)MACSYM.MAC.5, 26-0ct-77 11:06:30, EDIT BY 
iUPDATE COPYRIGHT FOR RELEASE 3 
i<3-UTILITIES)MACSYM.MAC.4, 21-Sep-77 15:49:41, EDIT BY 
iMOVE "PURGE" TO AFTER DEFINITION OF .RLEND 
i<3-UTILITIES)MACSYM.MAC.3, 21-Sep-77 15:35:48, EDIT BY 
iADD .RLEND 
i<3-UTILITIES)MACSYM.MAC.2, 22-Jun-77 15:40:57, EDIT BY 
;ADDED SETMI (XMOVEI) TO SAVEAC 
i<2-UTILITIES)MACSYM.MAC.7, 27-Dec-76 17:06:19, EDIT BY 
i<2-UTILITIES)MACSYM.MAC.6, 11-0ct-76 13:01:04, EDIT BY 
i<2-UTILITIES)MACSYM.MAC.5, 6-0ct-76 11:45:47, EDIT BY 
i<2-UTILITIES)MACSYM.MAC.4, 6-0ct-76 10:41:20, EDIT BY 
i<2-UTILITIES)MACSYM.MAC.3, 6-0ct-76 10:30:31, EDIT BY 
iCHECK FOR ALREADY DEFINED STKVAR'S AND TRVAR'S 
i<2-UTILITIES)MACSYM.MAC.2, 15-Sep-76 14:21:57, EDIT BY 
iADDED FMSG, PERSTR, SAVEAC 
i<1A-UTILITIES)MACSYM.MAC.54, 10-MAY-76 14:01:20, EDIT 
; <1A-UTILITIES)MACSYM.MAC. 50, 8-APR-76 11:16:25, EDIT 
; <1A-UTILITIES)MACSYM.MAC.49, 8-APR-76 11:11:35, EDIT 
iTCO 1244 - ADD .DIRECT .XTABM FOR MACRO 50 ASSEMBLIES 

KIRSCHEN 

KIRSCHEN 

OSMAN 

OSMAN 

MURPHY 

HURLEY 
MURPHY 
MURPHY 
MILLER 
MILLER 

MURPHY 

BY HURLEY 
BY HURLEY 
BY HURLEY 

iTHIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY ONLY BE USED 
OR COPIED IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE. 

;COPYRIGHT (C) 1976, 1977, 1978 BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. 

iVERSION 1 

IFNDEF REL,<REL==0) 
IFE REL,< 

UNIVERSAL MACSYM 
> 
IFN REL,< 

) 

TITLE MACREL 
SEARCH MONSYM 
SALL 
IFNDEF • PS ECT, < 
.DIRECT .XTABM) 

iUNIVERSAL UNLESS OTHERWISE DECLARED 

COMMON MACROS AND SYMBOLS 

SUPPORT CODE FOR MACSYM 

;THE STANDARD ·VERSION WORD CONSTRUCTION 
VERS - PROGRAM VERSION NUMBER 
VUPDAT - PROGRAM UPDATE NUMBER (1=A, 2=B ••• ) 
VEDIT - PROGRAM EDIT NUMBER 
VCUST - CUSTOMER EDIT CODE (0=DEC DEVELOPMENT, 1=DEC SWS, 2-7 CUST) 

DEFINE PGVER. (VERS,VUPDAT,VEDIT,VCUST)< 
•• PGV0==. iiSAVE CURRECT LOCATION AND MODE 
.JBVER=:137 iiWHERE TO PUT VERSION 
LOC .JBVER iiPUT VER~ION IN STANDARD PLACE 

(') 
o 
CL 

0 
H 
G) 
H 
8 
;:1)1 
tt 

..... P-3 
;:JO 
1.0"0 

(J) 

(')1 
o l\,) 

;:J~ 
<: 
CDJ: 
;:JO 
r1"Z 
.... ·H 
OP-3 
;:JO 
00::0 



n 
n 
I 

0l::Io 
l\J 

A 
A 
~ 
0 
1"1 

H 
:J 
rt 
CD 
1"1 
::s 
OJ 
~ 

c:: 
{J} 

CD 

0 
::s 
~ 

'< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1":47 

56 
57 
58 
59 
6" 
61 
62 
63 
64 
65 
66 

7""""" 
"777"" 
''''''1''''77 

"""""" """""111 """""" .777777 

MACRO %53A(1"72) 13:55 29-Dec-78 Page 1-1 

BYTE (3)VCUST(9)VERS(6)VUPDAT(18)VEDIT 
.ORG •• PGV" ;;RESTORE LOCATION AND MODE 

> 

;"ASKS FOR THE ABOVE 

VI%WHO==: 7B2 
VUMAJ==:777Bll 
VUMIN==: 77B17 
VIlEDN==:777777B35 
;ADDED VUXXX 

Customer edit code 
"ajor version number 
Minor version/update 
Ed it number 

n 
0 
0. 

o 
H 
G) 
H 
~ 
)' 
t'1 

~t-i 
:J 0 
\Q'tJ 

en 
nl o (I..) 

::s~ 
< 
CD3 
::SO 
rtZ 
..... H 
o ~ 
::s 0 
{J} ::a 



MACSYM COMMON MACROS AND SYMBOLS MACRO %53A(1~72) 13:55 29-Dec-7~ Page 2 0 
MACSYM MAC 8-Nov-77 10: 47 MISC CONSTANTS H 

G) 
67 SUB TTL MISC CONSTANTS H 
68 ~ 
69 :MISC CONSTANTS )I' 
70 t"1 
71 377777 777777 .INFIN== 377777,,777777 PLUS INFINITY 
72 4000fIJfIJ 000000 .MINFI== 1B0 MINUS INFINITY 
73 777777 000000 .LHALF== 777777B17 LEFT HALF 
74 777777 • RHALF== 777777 RIGHT HALF 
75 777777 777777 .FWORD== -1 FULL WORD 

n 
n 
1 
~ 
W 

/\ 
/\ 
t'%j 
0 
t; 

H 
:J n 
rt 0 
CD Q, 
t; ..... ~ 
:J :J 0 
D1 \O'tJ 
I-' Ul 

nl 
c:: ON 
Ul :JlSl 
CD <: 

CD 3: 
0 :J 0 
:J rtZ 
I-' .... ·H 

~ 
o ~ 
:J 0 

V Ul!lj 



() 
() 
I 
~ 

~ 

1\ 
1\ 
t'Zj 
0 
t1 

H 
::s 
rt 
CD 
t1 
::s 
III 
~ 

C 
en 
CD 

a 
::s 
~ 

~ 
v 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
81) 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
HJ2 
HI3 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
1,14 

000000 
000001 
000002 
000003 
000004 
000005 
000000 

. 000007 
000010 
000011 
000012 
000013 
000014 
000015 
01110tH6 
000017 
I1HH'1020 
000021 
000022 
000023 
000024 
000025 
000026 
000027 
000030 
000031 
000032 
000033 
000034 
000035 
000036 
000037 

01110175 
000176 
000177 

MACRO %53A(1072) 13:55 29-Dec-78 Page 3 
MISC CONSTANTS 

SUBTTL 

.CHNUL== 000 

.CHCNA== 001 

.CHCNB== 002 

.CHCNC== 003 

.CHCND== 004 

.CHeNE== 2105 

.CHCNF==:0216 

.CHBEL==:007 

.CHBSP==: 010 

.CHTAB==: 011 

.CHLFD==: 012 

.CHVTB==: 013 

.CHFFD==:014 

.CHCRT==: 015 

.CHCNN==: 011) 

.CHCNO==: 017 

.CHCNP==:020 

.CHCNQ==: 021 

.CHCNR==:022 

.CHCNS==:023 

.CHCNT==: 024 

.CHCNU==: 025 

.CHCNV==: 026 

.CHCN\l1==: 027 

.CHCNX==: 030 

.CHCNY==: 031 

.c HCNZ==: 032 

.CHESC==: 033 

.CHCBS==:034 
• CHCRB==: 035 
.CHCCF==: 036 
.CHCUN==: 037 

.CHALT== 175 

.CHAL2== 176 

.CHDEL== 177 

SYMBOLS FOR THE CONTROL CHARACTERS 

;NULL 

BELL 
BACKSPACE 
TAB 
LINE-FEED 
VERTICAL TAB 
FORM FEED 
CARRIAGE RETURN 

ESCAPE 
CONTROL BACK SLASH 
CONTROL RIGHT BRACKET 
CONTROL CIRCONFLEX 
CONTROL UNDERLINE 

OLD ALTMODE 
ALTERNATE OLD ALTMODE 
DELETE 

() 
o 
Q, 

o 
H 
(;) 
H 
~ 
)I' 
t'1 

.... ~ 
::SO 
Ul~ 

en 
()I 
Ot\) 
::StSl 
< 
(1)3 
::SO 
rtZ 
... ·H 
0.-3 
::sO en::o 



() 
() 
I 
~ 

U1 

/\ 
A 
"'Zj 
0 ,., 
H 
::l 
it 
(J) 

"'1 
::l 
Q.I 
~ 

c::: 
Ul 
(J) 

0 
::l 
~ 

~ 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 

40~000 
20e000 
le00e0 
040000 
020000 
010000 
004000 
002000 
001000 
e"0600 
000100 
01110040 

00000171 
000~00 
000000 
000000 
000-".100 

. 000-".100 
000000 
000000 
0000""0 
000000 
000000 
01110000 

MACRO %53A(1072) 13:55.29-Dec-78 Page 4 
SYMBOLS FOR THE CONTROL CHARACTERS 

SUB TTL 

;PC FLAGS 

PC%OVF==~IB0 

PC%CY0==:IBl 
PC%CYl==:IB2 
PC%FOV==:IB3 
PC%BIS==:IB4 
PC%USR==: IB 5 
PC%UIO==;IB6 
PC%LIP==:IB7 
PC%AFI==:IB8 
PC%ATN==: 3BHl 
PC%FUF==: IB11 
PC%NDV==:lB12 

HARDWARE BITS OF INTEREST TO USERS 

iOVERFLOW 
iCARRY 0 
iCARRY 1 
iFLOATING OVERFLOW 
iBYTE INCREMENT SUPPRESSION 
iUSER MODE 
iUSER lOT MODE 
iLAST INSTRUCTION PUBLIC 
iADDRESS FAILURE INHIBIT 
iAPR TRAP NUMBER 
iFLOATING UND~RFLOW 
iNO DIVIDE 

() 
0 
0.. 

tj 
H 
G) 
H 
~ 
»I 
Lot 

..... ~ 
::l 0 
~"'O 

CJ) 

()I 
ON 
::l~ 
<: 
(J) 3: 
::l 0 
rtZ 
.... ·H 
o ~ 
::lO 
Ul ::0 



(') 
(') 

1 
~ 
0"1 

A 
A 
~ 
o 
1"1 

H 
::1 
cT 
CD 
1"1 
::1 
OJ 
...... 

c:: 
til 
CD 

o 
::1 
...... 
'< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 

MACRO %53A(1072) 13:55 29-Dec-78 Page 5 
HARDWARE BITS OF INTEREST TO USERS 

SUB TTL MACROS FOR FIELD MASKS 

;STANDARD MACROS 

;MACROS TO HANDLE FIELD MASKS 

;COMPUTE LENGTH OF MASK, I.E. LENGTH OF LEFTMOST STRING OF ONES 
;REMEMBER THAT AL DOES 'JFFO', I.E. HAS VALUE OF FIRST ONE BIT IN WORD 

;COMPUTE WIDTH OF MASK, I. E." LENGTH OF LEFTMOST STRING OF ONES 

DEFINE WID(MASK)«AL<-«MASK> <A L<MASK»>-1»> 

;COMPUTE POSITION OF MASK, I.E. BIT POSITION OF RIGHTMOST ONE IN MASK 

DEFINE POS(MASK)«AL«MASK>&<-<MASK»»> 

;CONSTRUCT BYTE POINTER TO MASK 

DEFINE POINTR(LOC,MASK)«POINT WID(MASK),LOC,POS(MASK»> 

;PUT RIGHT-JUSTIFIED VALUE INTO FIELD SPECIFIED BY MASK 

DEFINE FLD(VAL,MSK) «VAL>B<POS (MSK»> . 

";MAKE VALUE BE RIGHT JUSTIFIED IN WORD. 

DEFINE .RTJST(VAL,MSK)«VAL>B<AD70-POS(MSK»> 

;CONSTRUCT MASK FROM BIT AA TO BIT BB. I.E. MASKB 0,8 

DEFINE MASKB (AA,BB)<lB«AA>-l>-lB<BB» 

;MODULE - GIVES REMAINDER OF DEND DIVIDED BY DSOR 

DEFINE MOD. (DEND,DSOR)«DEND-<DEND/DSOR>*DSOR» 

777B8 

(') 
o 
a, 

o 
H 
G) 
H 
t-3 
~ 
t"' 

..... t-3 
::1 0 
UlttJ 

(Jl 
(')1 
o tv 
::1lSl 
< 
CD 3 
::1 0 
cTZ 
..... H 
o t-3 
::10 
tIl::O 



() 
n 
I 
~ 
....J 

A 
A 
l'%j 
o 
~ 

H 
~ 
rt 
CD 
~ 

~ 
OJ 
I--' 

C 
en 
CD 

o 
~ 
I--' 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
21-6 
217 
218 
219 
220 

MACRO %53A(1072) 13:55 29-Dec-78 Page 6 
MACROS FOR FIELD MASKS 

SUBTTL MOVX 

;MOVX - LOAD AC WITH CONSTANT 

DEFINE MOVX (AC,MSK)< 
•• MX1==MSK ;;EVAL EXPRESSION IF ANY 

IFDEF .PSECT,< 
.IFN •• MX1,ABSOLUTE,< 

MOVE AC, (MSK] > 
.IF •• MX1,ABSOLUTE,< 

•• MX2==0 ;;FLAG SAYS HAVEN'T DONE IT YET 
IFE < •• MX1>B53,< 

•• MX2==1 
MOVEI AC, •• MX1> ~;LH 0, DO AS RH 

IFE •• MX2,< ;;IF HAVEN'T DONE IT YET, 
IFE <~.MX1>B17,< 

• .MX2==1 
MOVSI AC,( •• MX1»> ;;RH 0, DO AS LH 

IFE •• MX2,< ;;IF HAVEN'T DONE IT YE~, 
IFE « •• MX1>B53-~0777777>,< 

• .MX2==1 
HRROI AC,< •• MX1»> ;;LH -1 

IFE •• MX2, < ;; IF HAVEN'T DONE IT YET, 
IFE « .. MXl>B17-~0777777B17>,< 

• .MX2==1 
HRLOI AC, ( •• MX1-~0777777)>> ; ;RH -1 

IFE •• MX2,< ;;IF STILL HAVEN'T DONE IT, 
MOVE AC,( •• MX1]> ;;GIVE UP AND USE LITERAL 

» 

IFNDEF .PSECT,< 
•• MX2==0 ;;FLAG SAYS HAVEN'T DONE IT YET 
IFE < •• MX1>B53,< 

•• MX2==1 
MOVEI AC, •• MX1> ;;LH ~, DO AS RH 

IFE •• MX2,< ;;IF HAVEN'T DONE IT YET, 
IFE < •• MX1>B17,< 

•• MX2==1 
MOVSI AC,( •• MX1»> ;;RH 0, DO AS LH 

IFE •• MX2,< ;;IF HAVEN'T DONE IT YET, 
IFE « •• MX1>B53-~0777777>,< 

•• MX2==1 
HRROI AC,< •• MX1»> ;;LH -1 

IFE •• MX2,< ;;IF HAVEN'T DONE IT YET, 
IFE « •• MX1>B17-~0777777B17>,< 

•• MX2==1 
HRLOI AC,( •• MX1-~0777777»> ;;RH-1 

IFE •• MX2,< ;;IF STILL HAVEN'T DONE IT, 
MOVE AC,( •• MX1]> ;;GIVE UP AND USE LITERAL 

> 
PURGE •• MX1, •• MX2> 

(l 
o 
a, 

t1 
H 
(;) 
H 
~ 
> 
Lt 

..... ~ 
~O 
\0"0 

CJ) 
(ll 
ON 
~tS1 
<: 
CD 3: 
~ 0 
rtZ 
.... ·H 
o ~ 
~O 
en ::0 



() 
() 

I 
.b 
00 

A 
A 
t1:j 
0 
1'1 

H 
~ 
cT 
CD 
1'1 
~ 
Il.I 
I-' 

C 
en 
('I) 

0 
~ 
I-' 

'< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

221 
222 
223 
224 
225 
22fi 
227 
228 
229 
230 

MACRO %53A(1072) 13:55 29-Dec-78 Page 7 
MOVX 

;VARIENT MNEMONICS FOR TX DEFINITIONS 

DEFINE IORX (AC,MSK)< 
TXO AC,<MSK» 

DEFINE ANDX (AC,MSK)< 
TXZ AC,<A_<MSK»> 

DEFINE XORX (AC,MSK)< 
TXC AC,<MSK» 

() 
0 
a. 

t:j 
H 
G') 
H 
1-3 
>' 
t'" 

..... 1-3 
:::30 
~ttJ 

til 
()I 
o l\J 
~Sl 
< 
CD 3: 
~ 0 
cTZ 
.... ·H 
o 8 
::l 0 en::o 



() 
() 

I 
~ 
1..0 

A 
A 
I"1j 
o .., 
H 
::s 
rt 
CD .., 
::s 
OJ 
~ 

c 
Ul 
m 

o 
::s 
...... 
"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

231 
232 
233 
234 
235 
236 
237 
238 
23-g 
24" 
241 
242 
243 
244 
245 
246 
247 
248 
249 
25~ 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 

MACRO %53A(1072) 13:55 29-Dec-78 Page 8 
MOVX 

SUB TTL TX -- TEST MASK 

;CREATE THE TX MACRO DEFINITIONS 

;THIS DOUBLE IRP CAUSES ALL COMBINATIONS OF MODIFICATION AND TESTING 
;TO BE DEFINED 

DEFINE •• DOTX (M,T)< 
IRP M, < 

; •• TX 

IRP T,< 
DEFINE TX'~'T (AC,MSK)< 

~.TX(M'~,AC,<MSK»»» 

•• DOTX «N~O,Z,C>~<,E,N,A»A ;DO ALL DEFINITIONS 
PURGE •• DOTX 

;ALL TX MACRDS JUST CALL •• TX WHICH DOES ALL THE WORK 

DEFINE •• TX(MT,AC,~SK)< 
•• TXl==MSK ;;EVAL EXPRESSION IF ANY 

IFDEF .PSECT,< 
.IFN •• TX1,ABSOLUTE,< 

TD'MT AC,(MSK]> 
.IF •• TXl,ABSDLUTE~< ;;MASK MUST BE TESTABLE 

•• TX2==" ;;FLAG SAYS HAVEN'T DONE IT YET 
IFE < •• TXl&A~777777BI7>,< 

•• TX2==1 ::LH 0, DO AS RH 
TR'MT AC, •• TXl> 

IFE •• TX2,< ::IF HAVEN'T DONE IT YET, 
IFE < •• TXl&A0777777>,< 

•• TX2==1 ::RH 0, DO AS LH 
TL'MT AC,( •• TXl»> 

IFE •• TX2,< ::IF HAVEN'T DONE IT YET, 
IFE « •• TXl>B53- A 0777777>,< ;;IF LH ALL ONES, 

•• TX3 (MT,AC»> ::TRY Z,O,C SPECIAL CASES 
IFE •• TX2,< ::IF STILL HAVEN'T DONE IT, 

TD'MT AC,( •• TXl]> ::MUST GIVE UP AND USE LITERAL 
PURGE •• TXl, •• TX2» 

IFNDEF .PSECT,< 
•• TX2==0 ::FLAG SAYS HAVEN'T DONE IT YET 
IFE < •• TXl&A0777777BI7>,< 

•• TX2==1 ::LH 0, DO AS RH 
TR'MT AC, •• TXl> 

IFE •• TX2,< ::IF HAVEN'T DONE IT YET, 
IFE < •• TXl&A 0 777777>,< 

•• TX2==1 ::RH 0, DO AS LH 
TL'MT AC,( •• TXl»> 

IFE •• TX2,< ::IF HAVEN'T DONE IT YET, 
IFE « •• TXl>B53- A0777777>,< ::IF LH ALL ONES, 

•• TX3 (MT,AC»> TRY Z,O,C SPECIAL CASES 
IFE •• TX2,< IF STILL HAVEN'T DONE IT, 

TD'MT AC,( •• TXl]> MUST GIVE UP AND USE LITERAL 
PURGE •• TXl, •• TX2» 

() 
o 

t1 
H 
G) 
H 
~ 
> 
rt 

0.. 
~o~ 
::s 0 
~"'O 

(J) 
()I 
ON 
::s~ 
<: 
CD 3: 
::SO 
rtZ 
""oH 
O~ 
::SO 
Ul ::0 



(") 
() 
I 

01 
~ 

1\ 
1\ 
tzJ 
0 
t; 

H 
::s 
rt 
CD 
t; 

::s 
OJ 
f-I 

c:: 
en 
CD 

0 
::s 
f-I 
~ 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 19:47 

286 
287 
288 
289 
299 
291 
292 
293 
294 
295 
296 
297 

" 

MACRO %53A(1972) 13:55 29-Dec-78 Page 9 
TX -- TEST MASK 

;SPECIAL CASE FOR LH ALL ONES 

DEFINE •• TX3 (MT,AC)< 
IFIDN <MT><Z>·,< 

•• TX2==1 
ANDI AC,A- •• TX1>. 

IFIDN <MT><O>,< 
•• TX2==1 
ORCMI AC,A-•• TX1> 

IFIDN <MT><C>,< 
•• TX2==1 
EQVI AC,A- •• TX1» 

;;IF ZEROING WANTED 

;;CAN DO IT WITH ANDI 
;;IF SET TO ONES WANTED 

;;CAN DO IT WITH IORCM 
;;IF COMPLEMENT WANTED 

;;CAN DO IT WITH EQV 

() 
0 
a. 

t::7 
H 
c;) 
H 
I-i 
):It 
t'"'i 

.... ~ 
::J 0 
\Q"tJ 

CIl 
()I 
o (\.) 
::s ~ 
< 
CD 3: 
::s 0 
rtZ 
.... ·H 
o I-i 
::s 0 
en ::0 



() 
() 
I 

lTI 
~ 

/\ 
/\ 
t-z:I 
o 
1"'1 

H 
::s 
rt 
CD 
1"'1 
::s 
OJ 
I-' 

c: 
00 
CD 

o ::s 
I-' 
"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

29-8 
299 
3vH'J 
301 
302 
303 
304 
305 
30fi 
3{1)7 
308 
309 
31.0 
3n 
312 
313 
314 
315 
31fi 
317 
31R 
319 
320 
321 
322 
323 
324 
325 
32fi 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
34fi 
347 
348 

MACRO %53A(1072) 13:55 29-Dec-78 Page 10 
TX -- TEST MASK 

SUB TTL JX -- JUMP ON MASK 

JXE JUMP IF MASKED BITS ARE EQUAL TO 0 
JXN JUMP IF MASKED BITS ARE NOT EQUAL TO 0 
JXO JUMP IF MASKED BITS ARE ALL ONES 
JXF JUMP IF MASKED BITS ARE NOT ALL ONES (r'ALSE) 

DEFINE JXE lAC ,-=MSK, BA) < 
•• .JX~==MSK ;; EVAL EXPRESSION IF ANY 

IFDEF .PSEC'I',< 
.IFN _ •• JXl,ABSOL-UTE,<PRINTX MSK NOT ABSOLUTE 

•• JXl==.QI> 
.IF •• JX1,ABSOLUTE,< 
.IF0 «.~JXl>-IB0>,< iiIF MASK IS JUST B0, 

JUM-PG E A-C, SA> , < 
.IF0 « •• JXl>+I>,< iiIF MASK IF FULL WORD, 

JUMPE AC,BA>,< ;;USE GIVEN CONDITION 
TXNN (AC, •• JXl) 
JRST BA>>> 

PURGE •• JXl> 
IFNDEF .PSECT,< 

.IF0 « •• JXl>-IB0>,< iiIF MASK IS JUST B0, 
JUMPGE AC,BA>,< 

.IF0 « •• JXl>+I>~< i;IF MASK IF FULL WORD, 
JUMPE AC,BA>,< iiUSE GIVEN CONDITION 

TXNN (AC, •• JXl) 
JRST BA»> 

PURGE •• JXl> 

DEFINE JXN (AC,MSK,BA)< 
•• JXl==MSK ;iEVAL EXPRESSION IF ANY 

IFDEF .PSECT,< 
.IFN •• JXl,ABSOLUTE,<PRINTX MSK NOT ABSOLUTE 

•• JXl==0> 
.IF •• JXl,ABSOLUTE,< 
.IF0 « •• JXl>-IB0>,< iiIF MASK IS JUST B0, 

JUMPL AC,BA>,< 
.IF0 « •• JXl>+I>,< iiIF MASK IF FULL WORD, 

JUMPN AC,BA>,< iiUSE GIVEN CONDITION 
TXNE (AC, •• JXl) 
JRST BA»> 

PURGE •• JXl> 
IFNDEF .PSECT,< 

.IF0 « •• JXl>-IB0>,< iiIF MASK IS JUST B0, 
JUMPL AC,BA>,< 

.IF0 « •• JXl>+I>,< iiIF MASK IF FULL WORD, 
JUMPN AC,BA>,< iiUSE GIVEN CONDITION 

TXNE (AC, •• JXl) 
JRST BA»> 

PURGE •• JXl> 

t1 
H 
G) 
H 
~ 
~ 
t'"1 

() 
o 
0, 
~.t-3 
::SO 
~"O 

(J) 

()I 
ON 
::sS1 
<: 
CD3 
::sO 
rtZ 
~·H 

01-3 
::sO 00" 



n 
n 
• U"I 

tv 

I\. 
I\. 
t'Zj 
o 
1"1 

H 
:J 
rt 
CD 
1"1 
::s 
OJ 
~ 

c:: 
[I) 

CD 

o 
::s 
~ 

~ 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 19:47 

349 
359 
351 
352 
353 
354 
355 
356 
357 
358 
359 
369 
361 
362 
363 
364 
365 
366 
367 
368 
369 
379 
371 
372 
373 
374 
375 
376 
377 
378 
379 
389 
381 
382 
383 
384 
385 
386 
387 
388 
389 
399 
391 
392 
393 
394 
395 
396 
397 
398 
399 
49(11 

MACRO %53A(1(1172) 13:55 29-Dec-78 Page 11 
JX -- JUMP ON MASK 

DEFINE JXO (AC,MSK,BA)< 
•• JX1==MSK 

IFDEF .PSECT,< 
;;EVAL EXPRESSION 

.IFN •• JX1,ABSOLUTE,<PRINTX MSK NOT ABSOLUTE 
•• JX1==(II> 

.IF •• JX1,ABSOLUTE,< 

.IF9 « •• JX1>-1B9>,< 
JUMPL AC,BA>,< 

•• ONEB ( •• BT,MSK) ;;TEST MASK FOR ONLY ONE BIT ON 
.IF9 •• BT,< 

SETCM • SAC ,AC ; ;GENERAL CASE, GET COMPLEMENTS OF BITS 
JXE (.SAC, •• JX1,BA»,< ;;JUMP IF BITS WERE ORIGINALLY ONES 

TXNE AC, •• JX1 : :TEST AND JUMP 
JRST BA»> 

PURGE •• JXl> 
IFNDEF .PSECT,< 

.IF9 « •• JX1>-1B(II>,< 
JUMPL AC,BA>,< 

•• ONEB ( •• BT,MSK) ;;TEST MASK FOR ONLY ONE BIT ON 
.IF(II •• BT,< 

SETCM .SAC,AC ; GENERAL CASE, GET COMPLEMENTS OF BITS 
JXE (.SAC, •• JX1,BA»,< ;JUMP IF BITS WERE ORIGINALLY ONES 

TXNE AC, •• JX1 TEST AND JUMP 
JRST BA»> 

PURGE •• JX1> 

DEFINE JXF (AC,MSK,BA)< 
•• JX1==MSK ::EVAL EXPRESSION 

IFDEF .PSECT,< 
.IFN •• JX1,ABSOLUTE,<PRINTX MSK NOT ABSOLUTE 

•• JX1=='D 
.IF •• JX1,ABSOLUTE,< 
.IF9 « •• JX1>-1B(II>,< 

JUMPGE AC, BA>, < 
•• ONEB ( •• BT,MSK) ;;TEST MASK FOR ONLY ONE BIT ON 
• IF(II •• BT,< 

SETCM .SAC,AC ;;GENERAL CASE, GET COMPLEMENT OF BITS 
JXN (.SAC, •• JX1,BA»,< ;;JUMP IF SOME ZEROS ORIGINALLY 

TXNN AC, •• JX1 ;;TEST AND JUMP 
JRST BA»> 

PURGE •• JX1> 
IFNDEF .PSECT,< 

.IF(/J « •• JX1>-1B(/J>,< 
JUMPGE AC, BA>, < 

•• ONEB ( •• BT,MSK) ::TEST MASK FOR ONLY ONE BIT ON 
.IF(/J •• BT,< 

SETCM .SAC,AC GENERAL CASE, GET COMPLEMENT OF BITS 
JXN (.SAC, •• JX1,BA»,< ;JUMP IF SOME ZEROS ORIGINALLY 

TXNN AC, •• JX1 TEST AND JUMP 
JRST SA»> 

PURGE •• JXl> 

n 
o 
a. 

o 
H 
G) 
H 
t-3 
> 
t'1 

..... t-3 
::s 0 
I.QtoO 

CIl n. 
o tv 
::StSl 
< 
CD 3: 
::s 0 
rtZ 
.... ~H 
o t-3 
::s 0 
[I) ::0 



MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC R-Nov-77 HI: 47 

401 
402 
403 
404 
405 
4011 
407 
408 
409 
410 
411 
412 
413 
414 

-415 
410 
417 
41B 
419 
420 
421 
422 
423 
424 

(1 425 
() 4211 

I 427 

U'1 428 

W 429 
430 
431 
432 

A 433 

A 434 

~ 
435 

0 431) 

t; 437 
43B 

H 439 

;:] 440 
441 cT 442 ('I) 

t; 443 

;:] 444 

OJ 445 

t-' 4411 
447 

C 448 

00 449 

C1> 
450 
451 

0 452 

=' 453 
t-' 454 

"< 
455 

V 
V 

MACRO %53A(1072) 13:55 29-Dec-7B Page 12 
JX -- JUMP ON MASK 

SUBTTL SUBFUNCTION MACROS 

~. IF0 CONDITION, ACTION IF CONDITION 0, ACTION OTHERWISE 

DEFINE .IF.0 (COND,THEN,ELS"E)< 
•• IFT==COND 
IFE ~.IFT,< 
THEN 
•• IFT==0> 
IFN •• IFT,< 
ELSE» 

;~GET LOCAL VALUE FOR CDNDITION 

;;RESTORE IN CASE CHANGED BY NESTED .IF0 

~CASE -(NUMBER,<FIRST, SECOND, ••• , NTH)} 

DEFINE .CASE (NUM,LIST)< 
•• CSN==NUM 
•• CSC==0 
IRP LIST,< 
IFE •• CSN- •• CSC,< 

STOPI 
•• CAS1 (LIST» 

•• CSC== •• CSC+1» 

DEFINE •• CAS1 (LIST)< 
LIST> 

~TEST FOR FULL l'lORD, RH, LH, OR ARBITRARY BYTE 

DEFINE •• TSIZ (SYM,MSK)< 
SYM==) ~~ASSUME BYTE UNLESS ••• 
IFE <MSK>+1,<SYM=0> ~~FULL WORD IF MASK IS -1 
IFE <MSK>-~0777777,<SYM==1> ~~RH IF MASK IS 777777 
IFE <MSK>-~0777777B17,<SYM==2» ~;LH IF MAST IS 777777,,0 

;TEST FOR LOC BEING AN AC -- SET SYM TO 1 IF AC, 0 IF NOT AC 

DEFINE •• TSAC (SYM,LOC)< 
IFNDEF .PSECT,< 
SYM==0 ~;ASSUME NOT AC UNLESS ••• 
•• TSA1==<Z LOC> ~~LOOK AT LOC 

IFE •• TSA1&~0777777777760,<SYM==1> ~;AC IF VALUE IS 0-17 
> 
IFDEF .PSECT,< 
SYM=='" ~ ~ASSUME NOT AC UNLESS ••• 
•• TSA1==<Z LaC> ~~LOOK AT LOC 
.IF •• TSA1,ABSOLUTE,< ~~SEE IF WE CAN TEST VALUE 

IFE •• TSA1&~0777777777760,<SYM==1» ~~AC IF VALUE IS 0-17 
PURGE •• TSA1» 

~FUNCTION TO TEST FOR MASK CONTAINING EXACTLY ONE BIT. RETURNS 
~1 IFF LEFTMOST BIT AND RIGHTMOST BIT ARE SAME 

DEFINE •• ONEB (SYM,MSK)< 
SYM==«<-<MSK»&<MSK»&<1B<~L<MSK?»» 

() 
o 
Q, 

\:1 
H 
Q 
H 
1-3 
)I' 
t""I 

..... ~ 
;:]0 
~"O 

(J) 
()I 
ON 
;:]tSl 
<: 
('1)3: 
;:]0 
cT2! 
I-\·H 
O~ 
;:]0 
00::0 



(') 
(') 
I 

U1 
~ 

/\ 
/\ 
~ 
0 ,., 
H 
::l 
rt 
CD ,., 
::l 
OJ 
~ 

C 
{J) 

CD 

0 
:s 
....... 

~ 
v 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1~:47 

456 
457 
458 
459 ~~~~16 

MACRO %53A(1~72) 13:55 29-Dec-78 Page 12-1 
SUBFUNC~ION MACROS 

iDEFAULT SCRACH AC 

.SAC=16 

(') 
0 
0. 

tj 
H 
G') 
H 
1-3 
> 
toot 

.... 1-3 
::SO 
~"O 

en 
01 o tv 
::s s 
< 
CD 3: 
::l 0 
rtZ 
.... ·H 
o 1-3 
:s a 
en :tJ 



() 
n 
I 

lJ1 
lJ1 

/\ 
/\ 
I'%j 
o .., 
H 
::s 
it 
CD .., 
::s 
OJ ...... 

c::: 
Ul 
CD 

o 
::s 
...... 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1~:47 

460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
48'" 
481 
482 
483 
484 
485 
486 
487 
48S 
489 
490 
491 
492 

MACRO '53A(1072) 13:55 29-Dec-78 Page 13 
SUB FUNCTION MACROS 

SUBTTL DEFSTR -- DEFINE DATA STRUCTURE 

DEFINE DATA STRUCTURE 
NAM - NAME OF STRUCTURE AS USED IN CODE 
LOCN - ADDRESS OF DATA 
POS - POSITION OF DATA WITHIN WORD (RIGHTMOST BIT NUMBER) 
SIZ - SIZE OF DATA (IN BITS) WITHIN WORD 

DEFINE DEFSTR (NAM,LOCN,POS,SIZ)< 
NAM==<-1B<POS>+1B<POS-SIZ» iiASSIGN SYMBOL TO HOLD MASK 
IF1,<IFDEF ,'NAM,<PRINTX ?NAM ALREADY DEFINED» 
DEFINE ,'NAM (OP,AC,Y~MSK)< 

OP (AC>,LOCN"Y,MSK»> iiDEFINE MACRO TO HOLD LOCATION 

iALTERNATE F~RM OF DEFSTR -- TAKES MASK INSTEAD OF POS,SIZ 

DEFINE MSKSTR (NAM~LOCN,MASK)< 

NAM==MASK i iASSIGN SYMBOL TO HOLD MASK 
IF1,<IFDEF "NAM~<PRINTX ?NAM ALREADY DEFINED» 
DEFINE "NAM (OP,AC,Y,MSK)< 
OP «AC>,LOCN"Y,MSK»> iiDEFINE MACRO TO HOLD LOCATION 

i •• STR0 - PROCESS INSTANCE OF STRUCTURE USAGE, SINGLE STRUCTURE CASE. 

DEFINE •• STR0 (OP,AC,STR,Y)< 
IFNDEF STR,<PRINTX STR IS NOT DEFINED 

OP «AC>,Y,.FWORD» i;RESERVE A WORD, ASSUME WORD MASK 
IFDEF STR,< 
IFNDEF "STR,< 

OP «AC>,Y,STR» ;;ASSUME NO OTHER LOCN 
IFDEF "STR,< . 

"STR (OP,<AC>,Y,STR»» ;;DO IT 

n 
o 
Q, 

o 
H 
G) 
H 
.-3 
:J>I 
t""I 

..... 1-3 
::s 0 
Ul"'O 

(J) 

nl 
Or-...> 
::Stg 
< CDJ: 
::SO 
itZ ....·H 
0.-3 
::SO en" 



o 
o 
I 

U1 
0'\ 

1\ 
1\ 
t'Zj 
o 
t1 

H 
::s 
rt 
CD 
t1 
::s 
QI 
I-' 

c::: 
en 
CD 

o 
::s 
I-' 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

493 
494 
495 
491) 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
51n 
517 
518 
519 
520 
521 

MACRO %53A(1072) 13:55 29-Dec-78 Page 14 
DEFSTR -- DEFINE DATA STRUCTURE 

; •• STRl, •• STR2, •• STR3, AND •• STR4 ARE INTERNAL MACROS FOR PROCESSING 
;INSTANCES OF STRUCTURE USAGE. 

DEFINE •• STRI (OP,AC,STR,Y,CLL)< 
•• NS==0 ;;INIT COUNT OF STR'S 
IRP STR,< •• NS= •• NS+l> ;;COUNT STR'S 
IFE •• NS,<PRINTX ?EMPTY STRUCTURE LIST, OP) 
IFE •• NS-l,< ;;THE ONE CASE, CAN DO FAST 

•• STR0 (OP,<AC>,<STR>,Y» 
IFG •• NS-l,< ;;MORE THAN ONE, DO GENERAL CASE 
•• ICNS ;;INIT REMOTE MACRO 
•• CNS «CLL (OP,<AC),,» ;;CONS ON CALL AND FIRST ARGS 
IRP STR,< ; ;DO ALL NAMES IN LIST 

IFNDEF STR,<PRINTX STR NOT DEFINED> 
If'DEF STR,< 
IFNDEF % 'STR, < 
•• CNS «,STR,Y»> ;;ASSUME NO OTHER LOCN 
IFDEF %'STR,< 
%'STR ( •• STR2"Y,STR» ;;STR MACRO WILL GIVE LOCN TO •• STR2 
•• CNS «») ; ;CLOSE ARG LIST 
•• GCNS iiDO THIS AND PREVIOUS NAME 
•• ICNS iiREINIT CONS 
•• CNS «CLL (OP,<AC») iiPUT ON FIRST ARGS 
IFNDEF % 'STR,< 
•• CNS «,STR,Y»> iiASSUME NO OTHER LOCN 
IFDEF %'STR,< 
%'STR ( •• STR2"Y,STR»» iiPUT ON THIS ARG, END IRP 

•• CNS «,,) » ; iCLOSE ARG LIST 
•• GCNS» i iDO LAST CALL 

o 
o 
Q, 

t1 
H 
(;) 
H 
~ 
»I 
t'"1 

..... ~ 
::s 0 
\Q~ 

CIl 
01 o ~ 
::s& 
<: 
CD 3: 
::s 0 
rtZ 
.... ·H 
o ~ 
::s 0 
en ::0 



() 
() 

I 
U'I 
'-ol 

/\. 
/\. 
I-%J 
o 
t; 

H 
;:1 
rt 
CD .., 
;:1 
OJ ...... 

c:: 
00 
CD 

o 
::J 
I-' 

"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1~:47 

522 
523 
524 
525 
5215 
527 
528 
529 
53~ 
531 
532 
533 
534 
535 
536 
537 
538 
539 
54~ 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
56~ 
561 
562 

MACRO %53A(1072) 13:55 29-Dec-78 Page 15 
DEFSTR -- DEFINE DATA STRUCTURE 

; •• STR2 -- CALLED BY ABOVE TO APPEND STRUCTURE NAME AND LOC TO ARG LIST 

DEFINE •• STR2 (AA,LOC,STR)< 
•• CNS «,STR,LOC»> ;;CONS ON NEXT ARG PAIR 

; •• STR3 -- CHECK FOR ALL STRUCTURES IN SAME REGISTER 

DEFINE •• STR3 (OP,AC,Sl,Ll,S2,L2)< 
IFDIF <Ll><L2>,< 

IFNB <Ll>,< 
OP «AC>,Ll, •• MSK) ;;DO ACCUMULATED STUFF 
IFNB <L2>,<PRINTX SI AND S2 ARE IN DIFFERENT WORDS» 

•• MSK==~> ;;INIT MASK 
IFNB <L2>,< 

•• MSK= •• MSK!<S2»> 

; •• STR4 -- COMPARE SUCCESSIVE ITEMS, DO SEPARATE OPERATION IF 
;DIFFERENT WORDS ENCOUNTERED 

DEFINE •• STR4 (OP,AC,SI,Ll,S2,L2)< 
IFDIF <Ll><L2>,< ;;IF THIS DIFFERENT FROM PREVIOUS 

IFNB <Ll>,< 
OP {<AC>,Ll, •• MSK» ;;DO PREVIOUS 

•• MSK==0> ;;REINIT MASK 
IFNB <L2>,< 

•• MSK= •• MSK!<S2»> ;;ACCUMULATE MASK 

; •• STRS - SAME AS •• STR4 EXCEPT GIVES EXTRA ARG IF MORE STUFF TO 
;FOLLOW. 

DEFINE •• STR5 (OP,AC,SI,Ll,S2,L2)< 
IFDIF <Ll><L2>,< ;;IF THIS DIFFERENT FROM PREVIOUS, 

IFNB <Ll>,< 
IFNB <L2>,< ;;IF MORE TO COME, 

OP'1 (AC,Ll, •• MSK» ;;DO VERSION 1 
IFB <L2>,< ;;IF NO MORE, 

OP'2 (AC,Ll, •• MSK»> ;;DO VERSION 2 
•• MSK==~> ;;REINIT MASK 

IFNB <L2>,< 
•• MSK= •• MSK!<S2»> ;;ACCUMULATE MASK 

() 
o 
0.. 

o 
H 
G) 
H 
.-3 
)' 
t""f 

..... .-3 
;:10 
~~ 

(Jl 
()I 
Or-.> 
::J:g 
< 
CD 3: 
::JO 
rtZ 
.... ·H 
0.-3 
;:10 
00::0 



n 
n 
I 

U1 
ex> 

/\ 
/\ 
I'Zj 
o ,., 
H 
::s 
rt 
CD ,., 
::s 
OJ 
1--' 

c:: 
en 
CD 

o 
::s 
~ 

"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 

MACRO %53A(1072) 13:55 29-Dec-78 Page 16 
DEFSTR -- DEFINE DATA STRUCTURE 

;'REMOTE' MACROS USED TO BUILD UP ARG LIST 

;INITIALIZE CONS -- DEFINES CONS 

DEFINE •• ICNS < 
DEFINE •• CNS (ARG)< 

•• CNS2 <ARG>, > 

DEFINE •• CNS2 (NEW,OLD)< 
DEFINE •• CNS (ARG)< 

•• CNS2 <ARG>,<OLD'NEW»> 
> 

;GET CONS -- EXECUTE STRING ACCUMULATED 

DEFINE •• GCNS < 
DEFINE •• CNS2 (NEW,OLD)< 

OLD> 
•• CNS () > 

;;MAKE •• CNS2 DO THE STUFF 
;;GET •• CNS2 CALLED WITH THE STUFF 

n 
o 
Q, 

tj 
H 
Cl 
H 
1-3 
):II 
tot 

..... 1-3 
::s 0 
\.0"0 

en 
nl 
o tv 
::s tSl 
<: 
CD 3: 
::s 0 
rtZ 
.... ·H 
o 1-3 
::s 0 
Ul ::0 



(") 
(") 

I 
111 
1.0 

/\ 
/\ 
I'1:j 
o 
1"1 

H 
:J 
rt 
CD 
1"1 
:J 
QI 
...... 

c 
en 
CD 

o 
:J 
...... 

"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1e:47 

583 
584 
585 
58fi 
587 
588 
589 
5ge 
591 
592 
593 
594 
595 
596 
597 
598 
599 
6~e 

6e1 
6e2 
6e3 
6e4 
6e5 
6e6 
6e7 
6e8 
6e9 
61e 
611 
612 
613 
614 
615 
616 
617 
618 
619 
62e 
621 
622 
623 
624 
625 
626 
627 
628 

MACRO %53A(le72) 13:55 29-Dec-78 Page 17 
DEFSTR -- DEFINE DATA STRUCTURE 

iSPECIFIC CASES 

LOAD, STORE 
AC - AC OPERAND 
STR - STRUCTURE NAME 
Y - (OPTIONAL) ADDITIONAL SPECIFICATION OF DATA LOCATION 

DEFINE LOAD (AC,STR,Y)< 
•• STR0 ( •• LDB ,AC, STR, Y» 

DEFINE •• LDB (AC,LOC,MSK)< 
•• TSIZ ( •• PST,MSK) 
.CASE •• PST,« 

MOVE AC,LOC>,< 
HRRZ AC,LOC>.< 
HLRZ AC, LOC>, < 
LDB AC,[POINTR (LOC,MSK)]»> 

DEFINE STOR (AC,STR,Y)< 
•• STRe ( •• DPB,AC,STR,Y» 

DEFINE •• DPB (AC,LOC,MSK)< 
•• TSIZ ( •• PST, MSK) 
.CASE •• PST,« 

MOVEM AC,LOC>,< 
HRRM AC, LOC>, < 
HRLM AC, LOC>, < 
DPB AC,[POINTR (LOC,MSK)]»> 

iSET TO ZERO 

DEFINE SETZRO (STR,Y)< 
•• STR1 ( •• TQZ,,<STR>,Y, •• STR4» 

DEFINE •• TQZ (AC,LOC,MSK)< 
•• TSIZ ( •• PST,MSK) 
.CASE •• PST,« 

SETZM LOC>,< 
HLLZS LOC>, < 
HRRZ S LOC>, < 

•• TSAC ( •• ACT, LOC) 
.IF~ •• ACT,< 

;;SET •• PST TO CASE NUMBER 

i iFULL WORD 
RH 
LH 
SEE IF LOC IS AC 

MOVX .SAC,MSK iiNOT AC 
ANDCAM .SAC,LOC>,< 
•• TX (Z,LOC,MSK»»> 

(") 
o 
0, 

o 
H 
G) 
H 
~ 
):I' 
J:"1 

..... ~ 
:JO 
I.Q"'O 

(/) 
01 
ON 
:JS 
<: 
CD 3: 
:JO 
rtZ 
....·H 
O~ 
:JO en::o 



() 
() 

I 

'" !Sl 

1\ 
1\ 
t'Ij 
o 
~ 

H 
::J 
rt 
(I) 
1'1 
::J 
OJ ...... 

c 
en 
CD 

o 
::J 
...... 
'< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 lA:47 

629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 

MACRO %53A(1072) 13:55 29-Dec-78 Page 18 
DEFSTR -- DEFINE DATA STRUCTURE 

;SET TO ONE 

DEFINE SETONE (STR,Y)< 
•• STRI ( •• TQO,,<STR>,Y, •• STR4» 

DEFINE •• TQO (AC,LOC,MSK)< 
•• TSIZ ( •• PST,MSK) 
.CASE •• PST,« 

SETOM LOC>,< 
HLLOS LOC>, < 
HRROS LOC>,< 

•• TSAC ( •• ACT,LOC) 
.IF9 •• ACT,< 

MOVX .SAC,MSK 
IORM .SAC,LOC>,< 
•• TX (O,LOC,MSK»»> 

;SET TO COMPLEMENT 

DEFINE SETCMP (STR,Y)< 
•• STRI ( •• TQC,,<STR>,Y, •• STR4» 

DEFINE •• TQC (AC,LOC,MSK)< 
... TSIZ ( •• PST,MSK) 
.IF0 •• PST,< 

SETCMM LOC>-, < 
•• TSAC ( •• ACT,LOC) 
• IF" •• ACT,< 

MOVX • SAC, MSK 
XORM .SAC,LOC>,< 
•• TX(C,LOC,MSK»» 

IF FULL WORD, 
CAN USE SETCMM 
OTHERWISE, CHECK FOR AC 

() 
o 
Q, 

o 
H 
G) 
H 
t-3 
)I' 
t"'4 

.... t-3 
::J 0 
\.0'"0 

en 
()I 
o I\J 
::J S1 
< 
CD 3 
::J 0 
rtZ 
.... H 
o t-3 
::J 0 
en :::0 



() 
() 

I 
:J'\ ....., 

A 
A 
I'Tj 
o 
1"'1 

H 
::s 
rt" 
CD ..., 
::s 
01 ....., 

c: rn 
CD 

o 
::s ....., 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
690 
697 
698 
699 
700 
701 
702 
703 
711.14 
71115 

MACRO %53A(111l72) 13:55 29-Dec-78 Page 19 
DEFSTR -- DEFINE DATA STRUCTURE 

;INCREMENT, DECREMENT FIELD 

DEFINE INCR (STR,Y)< 
•• STRIIl (.INCRIIl,,<STR>,Y» 

DEFINE .INCRIIl (AC,LOC,MSK)< 
• .PST==MSK&<-MSK> ; ;GET LOWEST BIT 
• IFill •• PST-1,< 

AOS LOC>,< ;;BIT 35, CAN USE AOS 
MOVX .SAC, •• PST ;;LOAD A ONE IN THE APPROPRIATE POSITION 
ADDM.SAC,LOC» 

DEFINE DECR (STR,Y)< 
•• STRIIl (.DECRIIl,,<STR>,Y» 

DEFINE .DECRIIl (AC,LOC,MSK)< 
•• PST==MSK&<-MSK> 
• IFill •• PST-1, < 

SOS LOC>,< ;;BIT 35, CAN USE SOS 
MOVX .SAC,-•• PST ;;LOAD -1 IN APPROPRIATE POSITION 
ADDM .SAC,LOC» 

;GENERAL DEFAULT, TAKES OPCODE 

DEFINE OPSTR (OP,STR,Y)< 
•• STRIIl (.OPST1,<OP>,<STR>,Y» 

DEFINE .OPST1 (OP,LOC,MSK)< 
•• TSIZ ( •• PST,MSK) 
.IFIIl •• PST,< 

OP LOC>,< ;;FULL WORD, USE GIVEN OP DIRECTLY 
•• LDB .SAC,LOC,MSK ;;OTHERWISE, GET SPECIFIED BYTE 
OP .SAC» 

DEFINE OPSTRM (OP,STR,Y)< 
•• STRIIl (.OPST2,<OP>,<STR>,Y» 

DEFINE .OPST2 (OP,LOC,MSK)< 
• • TS I Z ( •• PS T , MSK) 
• IFill •• PST,< 

OP LOC>,< ;;FULL WORD, USE OP DIRECTLY 
•• LDB .SAC,LOC,MSK 
OP • SAC 
•• DPB .SAC,LOC,MSK» 

() 
o 
a.. 

tj 
H 
G) 
H 
1-3 
)I' 
t"1 

.... 1-3 
::sO 
\.Q~ 

en 
()I 
ON 
::S5l 
<: 
CD3 
::SO 
rt"Z 
.... H 
01-3 
::sO 
rn::t' 



() 
() 

I 
~ 
r-...> 

/'\ 
/'\ 
t'Zj 
o ..., 

"H 

::s 
rt 
('1) ..., 
::s 
OJ ...... 

c:: en 
CD 

o ::s 
...... 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1~:47 

7~6 
707 
708 
709 
7U 
711 
712 
713 
714 
715 
716 
717 
718 
719 
729 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 

.744 
745 

MACRO %53A(1A72) 13:55 29-Dec-78 Page 20 
DEFSTR -- DEFINE DATA STRUCTURE 

;JUMP IF ALL FIELDS ARE 0 (ONE REGISTER AT MOST) 

DEFINE JE (STR,Y,BA)< 
•• STR1 ( •• JE,<BA>,<STR>,Y, •• STR3» 

DEFINE •• JE (BA,LOC,MSK)< 
•• TSAC ( •• ACT,LOC) ;;SEE IF AC 
• IF0 •• ACT,< 

•• TSIZ ( •• PST,MSK) ;;SEE WHICH CASE 
.CASE •• PST,« 

SKIPN LOC ; ;FULL WORD, TEST IN MEMORY 
JRST BA>,< 
HRRZ .SAC,LOC ;;RIGHT HALF, GET IT 
JUMPE .SAC,BA>,< 
HLRZ .SAC~LOC ;;LEFT HALF, GET IT 
JUMPE .SAC,BA>,< 
MOVE .SAC,LOC ;;NOTA, GET WORD 
JXE (.SAC,MSK,<BA»»>,< 

JXE (LOC,MSK,<BA»» 

;JUMP IF NOT ALL FIELDS ARE 0 (ONE REGISTER AT MOST) 

DEFINE IN (STR,Y,BA)< 
•• STR1 ( •• IN,<BA>,<STR>,Y, •• STR3)> 

D~FINE •• IN (BA,LOC,MSK)< 
•• TSAC ( •• ACT ,LOC) 
.IF0 •• ACT,< 

•• TSIZ ( •• PST,MSK) 
.CASE •• PST,« 

SKIPE LOC 
JRST BA>,< 

;;SEE IF AC 

;;FULL WORD, TEST IN MEMORY 

HRRZ .SAC,LOC ;;RIGHT HALF, GET IT 
JUMPN • SAC, BA>, < 
HLRZ .SAC,LOC ;;LEFT HALF, GET IT 
JUMPN .SAC,BA>,< 
MOVE .SAC,LOC ;;NOTA, GET WORD 
JXN (.SAC,MSK,<BA»»>,< 

JXN (LOC,MSK,<BA»» () 
o 
Q, 

o 
H 
G) 
H 
1-3 
)II 
L' 

..... 1-3 
::SO 
\O"tJ 

CIl 
(). 
o ~ 
::s lSl 
< 
CD 3: 
::s 0 
rtZ 
..... H 
o t-i 
::s 0 
en ::0 



() 
() 
1 

'" W 

1\ 
1\ 
I"%J 
0 ,., 
H 
::s 
rt 
(I) 
1"'1 
::s 
Q1 
I-' 

c: 
Ul 
(I) 

0 
::s 
I-' 

"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
7fi2 

MACRO %53A(1072) 13:55 29-Dec-78 Page 21 
DEFSTR -- DEFINE DATA STRUCTURE 

;JOR - JUMP ON 'OR' OF ALL FIELDS 

DEFINE JOR (STR,Y,BA)< 
•• STR1 ( •• IN,<BA>,<STR>,Y, •• STR4)> 

;JNAND - JUMP ON NOT 'AND' OF ALL FIELDS 

DEFINE JNAND (STR,Y,BA)< 
•• STR1 ( •• JNA3,<BA>,<STR>,Y, •• STR4» 

DEFINE •• JNA3 (BA,LOC,MSK)< 
•• TSAC ( •• ACT,LOC) 
.IF0 •• ACT,< 

SETCM .SAC,LOC ;;NOT AC, GET COMPLEMENT OF WORD 
JXN (.SAC,MSK,<BA»>,< ;;JUMP IF ANY BITS ORIGINALLY OFF 
JXF (LOC,MSK,<BA»» ;;DO AC CASE 

0 
0 
0, 

o 
H 
G) 
H 
1-3 
)II 
L' 

~.1-3 
::sO 
~"tJ 

CJl 
01 
ON 
::s~ 
<: 
(I) 3: 
::SO 
rtZ 
~'H 

01-3 
::sO 
00:::0 



n 
n 
• en 
~ 

" " "'IJ 
o 
1"1 

..... 
::l 
rt' 
CD 
1"1 
::s 
OJ 
...... 

c::: 
en 
CD 

o 
::l 
...... 
'< 
V 
V 

MACSYM COMMON MACROS AND S¥MBOLS 
MACSYM MAC 8-Nov-77 10:47 

7ti3 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
Bin 
802 
803 
804 
805 
806 
807 
808 
889 
819 

MACRO %53A(1072) 13:55 29-Dec-78 Page 22 
DEFSTR -- DEFINE DATA STRUCTURE 

~JAND - JUMP ON 'AND' OF ALL FIELDS 

DEFINE JAND (STR,Y,BA,%TG)< 
•• STR1 ( •• JAN,<%TG,<BA»,<STR>,Y, •• STRS) 

%TG:> 

DEFINE •• JAN1 (BA1,BA2,LOC,MSK)< 
•• JNA3 (BA1,LOC,MSK» ~~DO JUMP NAND TO LOCAL TAG 

DEFINE •• JAN2 (BA1,BA2,LOC,MSK)< 
•• TSAC ( •• ACT,LOC) -
.IF0 •• ACT,< 

SETCM .SAC,LOC ;;NOT AC, GET COMPLEMENT OF WORD 
JXE (.SAC,MSK,<BA2»>,< ;;JUMP IF ALL BITS ORIGINALLY ONES 
JXO (LOC,MSK,<BA2»» ;;DO AC CASE 

;JNOR - JUMP ON NOT 'OR' OF ALL FIELDS 

DEFINE JNOR (STR,Y,BA,'TG)< 
•• STRI ( •• JNO,<%TG,<BA»,<STR>,Y, •• STR5) 

%TG:> 

DEFINE •• JN01 (BA1,BA2,LOC,MSK)< 
•• IN (BA1,LOC,MSK» ~;DO JUMP OR TO LOCAL TAG 

DEFINE •• JN02 (BAl,BA2,LOC,MSK)< 
..JE «BA2>,LOC,MSK» ;;DO JUMP NOR TO GIVEN TAG 

;TEST AND MODIFY GROUP USING DEFINED STRUCTURES. TEST-ONLY AND 
;MODIFY-ONLY PROVIDED FOR COMPLETENESS. 

DEFINE .~DOTY (M,T)< ;;MACRO TO DEFINE ALL CASES 
IRP M,< 
IRP T,< 

DEFINE TQ'M'T (STR,Y)< 
•• STRI ( •• TY,M'T,<STR>,Y, •• STR3»»> 

•• DOTY «N,O,Z,C>,<,E,N,A»~ ;DO 16 DEFINES 
PURGE •• DOTY 

~ALL TY MACROS CALL •• TY AFTER INITIAL STRUCTURE PROCESSING 

DEFINE •• TY (MT,LOC,MSK)< 
•• TSAC ( •• ACT ,LOC) i iSEE IF LOC IS AC 
.IF0 •• ACT,< 

PRINTX ?TQ'MT - LOC NOT IN AC>,< 
TX'MT LOC,MSK» 

() 
o 
Q, 

t7 
1-4 
Cl 
1-4 
t-i 
>' 
t"i 

.... Jooi 
::SO 
lQ." 

(Jl 

n. 
o l\J 
::s& 
< 
CD 3: 
::s 0 
rt'Z 
..... 1-4 
o t-i 
::sO 
(J) ::0 



MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 H'J: 47 

811 
812 
813 
814 
815 
816 
817 
818 
819 'HHHHH 
8UJ 0IHHH'l2 
821 000003 
822 000016 
823 000017 
824 
825 2fi074f1l fIl0f1lfllfllfll 
826 2fi374f1l fIl0f1lfllfll0 
827 
828 
829 
830 254000 000000 
831 
832 
833 
834 

() 835 
() 836 

I 837 

~ 838 

l.T1 839 
84f1l 
841 
842 

1\ 843 

1\ 844 
I'%j 845 
0 846 

1'1 847 
848 

H 849 

::s 850 

~ 
851 

(1) 852 

1'1 853 

::s 854 

OJ 855 
...... 856 

857 

C 
858 
859 00 860 (1) 
861 

0 8152 

::s 863 
864 ...... 
865 

'< 
V 
V 

MACRO %53A(1072) 13:55 29-Dec-78 Page 23 
DEFSTR -- DEFINE DATA STRUCTURE 

SUBTTL CALL, RET, JSERR 

IFE REL,< 
EXTERN JSERR0,JSHLT0,R,RSKP> 

iCALL AND RETURN 

.ACl==l 

.AC2==2 

.AC3==3 

.A1fi==lfi 
P=17 

OPDEF CALL [PUSHJ P,0] 
OPDEF RET [POPJ P,0] 

iACS FOR JSYS ARGS 

iTEMP FOR STKVAR AND TRVAR 
iSTACK POINTER 

iABBREVIATION FOR CALL, RET, RETSKP 

OPDEF CALLRET [JRST] 

DEFINE RETSKP < 
JRST RSKP> 

iMACRO TO PRINT MESSAGE ON TERMINAL 

DEFINE TMSG ($MSG)< 
HRROI .ACl,[ASCIZ \$MSG\] 
PSOUT> 

iMACRO TO OUTPUT MESSAGE TO FILE 
i ASSUMES JFN ALREADY IN .AC1 

DEFINE FMSG ($MSG)< 
HRROI .AC2, [ASCIZ \$MSG\] 
MOVE I .AC3," 
SOUT> 

iMACRO TO PRINT MESSAGE FOR LAST ERROR, RETURNS +1 

DEFINE PERSTR ($MSG)< 
IFNB <$MSG>,< 

TM SG <$M SG> > 
CALL JSMSG0> 

iMACRO TO PRINT JSYS ERROR MESSAGE, RETURNS +1 AUWAYS 

DEFINE JSERR< 
CALL JSERR0> 

;MACRO FOR FATAL JSYS ERROR, PRINTS MSG THEN HALTS 

DEFINE JSHLT< 
CALL JSHLT0> 

() 
o 
Q, 

o 
H 
G) 
H 
~ 
)IJ 
t"i 

..... ~ 
=,0 
\.Q"tJ 

m 
(')1 
ON 
::sS 
< (1)3: 
::SO 
rt2! 
..... H 
Ot-i 
::SO 
00::0 



n 
n 
I 

CJ'\ 

'" 
1\ 
1\ 
~ 
0 .., 
H 
:l 
rT 
CD .., 
::l 
OJ 
I-' 

c::: 
(J) 

CD 

a 
::l 
I-' 

'< 
V 
v 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 IB:47 

866 
867 
868 
869 
87B 
871 
872 
873 
874 
875 
876 
877 
878 
879 

MACRO %53A(1~72) 13:55 29-Dec-78 Page 23-1 
CALL, RET, JSERR 

;PRINT ERROR MESSAGE IF JSYS FAILS 

DEFINE ERMSG(TEXT),< 

> 

ERJMP [TMSG <? TEXT> 
JSHLT] . 

. ;MAKE SYMBOLS EXTERN IF NOT ALREADY DEFINED 

DEFINE EXT (SYM)< 
IF2,< 

IRP SYM,< 
IFNDEF SYM,<EXTERN SYM 
SUPPRE SYM»» 

n 
0 
Q, 

t:j 
H 
G'l 
H 
I-i 
)II 
t-t 

..... I-i 
::sO 
.~ "'0 

(J) 

nl 
ON 
:lS 
< 
CD 3: 
:lO 
rTZ 
..... H 
o I-i 
::sO 
(J) " 



() 
n 
I 
0\ 
-...J 

A 
A 
I-zJ 
o 
'"1 

H 
::s 
rr 
(1) 

'"1 
::s 
OJ 
~ 

c::: 
00 
(1) 

o 
::s 
~ 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

880 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 
898 
899 
900 
901 
911J2 
903 
904 
905 
9 III 6 
91117 
9 III 8 
91119 
91 III 
911 
912 
913 
914 
915 
916 
917 
918 
919 

MACRO %53A(111J72) 13:55 29-Dec-78 Page 24 
CALL, RET, JSERR 

SUBTTL SUPPORT CODE FOR JSERR 

A=l 
B=2 
C=3 
D=4 

IFN REL, < 

JSYS ERROR HANDLER 
CALL JSERRIIl 

RETURNS +1: ALWAYS, CAN BE USED IN +1 RETURN OF JSYS'S 

JSERRIIl::MOVEI A,.PRIIN 
CFIBF 
MOVEI A, .PRIOU 
DOBE 
TMSG < 

? JSYS ERROR: > 
JSMSGIIl::MOVEI A,.PRIOU 

HRLOI B, .FHSLF 
SETZ C, 

> 

ERSTR 
JFCL 
JFCL 

TMSG < 

RET 

iCLEAR TYPAHEAD 

iWAIT FOR PREVIOUS OUTPUT TO FINISH 

iSAY THIS FORK " LAST ERROR 

iFATAL JSYS ERROR - PRINT MESSAGE AND HALT 
CALL JSHLTIIl 

RETURNS: NEVER 

JSHLT0::CALL JSERR0 iPRINT THE MSG 
JSHLTl: HALTF 

> 

> 

TMSG <PROGRAM CANNOT CONTINUE 

JRST JSHLTI iHALT AGAIN IF CONTINUED 
iEND OF IFN REL, () 

o 
0, 

o 
H 
G) 
H 
1-3 
~ 
t"" 

..... ~ 
::lO 
u:l""O 

(J) 
(ll 
01\) 
::s1Sl 
<: 
(1)3 
::sO 
rrZ 
.... ··H 
08 
::sO 
00::0 



() 
() 
I 

V'\ 
00 

A 
A 
tTJ o 
1"1 

H 
:;3 
rt 
CD 
1'1 
::s 
OJ 
I-' 

c:: en 
CD 

o 
:;3 
I-' 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 19:47 

929 
921 
922 
923 
924 
925 
926 
927 
928 
929 
939 
931 
932 
933 
934 
935 
936 
937 
938 
939 
949 
941 
942 
943 
944 
945 
946 
947 
948 
949 
959 
951 
952 
953 
954 
955 
956 
957 
958 
959 
969 
961 
962 
963 
964 
965 
966 
967 
968 
969 

MACRO %53A(1972) 13:55 29-Dec-78 Page 25 
SUPPORT CODE FOR JSERR 

SUBTTL STKVAR - STACK VARIABLE FACILITY 

1MACRO FOR ALLOCATING VARIABLES ON THE STACK. ITS ARGUMENT IS 
;A LIST OF ITEMS. EACH ITEM MAY BE: 
; 1. A SINGLE VARIABLE WHICH WILL BE ALLOCATED ONE WORD 
; 2. A VARIABLE AND SIZE PARAMETER WRITTEN AS <VAR,SIZ>. THE 
1 VARIABLE WILL BE ALLOCATED THE SPECIFIED NUMBER OF WORDS. 
1RETURN FROM A SUBROUTINE USING THIS FACILITY MUST BE VIA 
1RET OR RETSKP. A DUMMY RETURN WHICH FIXES UP THE STACK IS PUT ON 
1THE STACK AT THE POINT THE STKVAR IS ENCOUNTERED. 
;WITHIN THE RANGE OF A STKVAR, PUSH/POP CANNOT BE USED AS THEY WILL 
;CAUSE THE VARIABLES (WHICH ARE DEFINED AS RELATIVE STACK LOCATIONS) 
;TO REFERENCE THE WRONG PLACE. 
1TYPICAL USE: STKVAR <AA,BB,<QQ,5>,ZZ> 

IFE REL, < 
EXTERN .STKST,.STKRT> 

DEFINE STKVAR (ARGS)< 

> 

•• STKR==1 111 1 ;REMEMBER RADIX 
RADIX 8 
•• STKN==111 
IRP ARGS,< 

.STKVl (ARGS» 
JSP .AI6, .STKST 

•• STKN" •• STKN 
RADIX •• STKR 
PURGE •• STKN, •• STKR, •• STKQ 

1INTERMEDIATE MACRO TO PEAL OFF ANGLEBRACKETS IF ANY 

DEFINE .STKVl (ARG)< 
.STKV2 (ARG» 

;INTERMEDIATE MACRO TO CALCULATE OFFSET AND COUNT VARIABLES 

DEFINE .STKV2 (VAR,SIZ)< 
IFB <SIZ>,< •• STKN== •• STKN+l> 
IFNB <SIZ>,< •• STKN== •• STKN+SIZ> 
•• STKQ== •• STKN+l 
.STKV3 (VAR,\ •• STKQ» 

1INNERMOST MACRO TO DEFINE VARIABLE 

DEFINE .STKV3 (VAR,LOC)< 
IFDEF VAR,<.IF VAR,SYMBOL,<PRINTX STKVAR VAR ALREADY DEFINED» 

DEFINE VAR<-AO'LOC(P» 
$'VAR==<Z VAR» ;SYMBOL FOR DDT 

() 
o 
a, 

tj 
H 
Q 
H 
.-3 
>' 
r 

..... .-3 
:;3 0 
~." 

til 
()I 
o r-.J 
:;3S 
< 
CD 3: 
:;3 0 
rtZ 
.... ·H 
o .-3 
:;3 0 
en ::t' 



() 
() 

I 
;J'\ 

\0 

/\ 
/\ 
ITJ 
o 
I""C 

H 
::s 
cT 
CD 
I""C 
::s 
OJ 
I--' 

c:: en 
CD 

o 
::s 
I--' 

"< 
V 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 1~:47 

97~ 
971 
972 
973 
974 
975 
970 
977 
978 
979 
98~ 
981 
982 
983 
984 
985 
986 
987 
988 
989 
99{11 
991 
992 
993 
994 
995 
9% 

MACRO %53A(1072) 13:55 29-Dec-78 Page 20 
STKVAR - STACK VARIABLE FACILITY 

IFN REL, < 

;COMMON ENTRY AND EXIT ROUTINE FOR STACK VARIABLE 

.STKST::ADD P,~(.A16) 
JUMPGE P, STKSOV 

STKSEl: PUSH P,~(.Alfi) 
PUSHJ P,1(.A16) 

.STKRT::JRST STKRT~ 
POP P, .A16 
SUB P, .Alfi 
AOS ~ (P) 
RET 

STKRT~: POP P,.Alfi 
SUB P, .Alfi 
RET 

STKSOV: SUB P, ~ (.Alfi) 
HLL .Alfi,0(.Alfi) 

STKSOl: PUSH P,[~] 

> 

SUB • Al fi , [ 1 , , III 1 
TLNE .Alo,777777 
JRST STKSOI 
JRST STKSEI 

;BUMP STACK FOR VARIABLES USED 
iTEST FOR STACK OVERFLOW 
iSAVE BLOCK SIZE FOR RETURN 
;CONTINUE ROUTINE, EXIT TO .+1 
iNON-SKIP RETURN COMES HERE 
iSKIP RETURN COMES HERE-RECOVER COUNT 
iADJUST STACK TO REMOVE BLOCK 
iNOW DO SKIP RETURN 

RECOVER COUNT 
ADJUST STACK TO REMOVE BLOCK 
DO NON-SKIP RETURN 

iSTACK OVERFLOW- UNDO ADD 
iSETUP TO DO MULTIPLE PUSH, GET COUNT 
;DO ONE PUSH AT A TIME, GET REGULAR 
i ACTION ON OVERFLOW 
iCOUNT DOWN TO ~? 
iNO, KEEP PUSHING 

; END OF I FN REL, 

() 
o 
a, 

tj 
H 
G) 
H 
t-7J 
> 
t-t 

..... t-7J 

::s 0 
~." 

til 
()I 
Of\.) 
::S~ 
<: 
CD3 
::sO 
cTZ 
..... H 
O"i 
::SO en::o 



MACSYM COMMON MACROS AND SYMBOL~ 
MACSYM MAC 8-Nov-77 10:47 

997 
998 
999 

1000 
1001 
1002 
1003 
1004 
1005 
1006 90'H115 
1007 
101118 
1009 
1010 
19111 
1012 
1013 
1014 
BUS 
1016 
1017 
1018 
1019 
1020 

n 1021 
n 1022 
I 1023 

....,J 1024 
tg 1025 

1926 
1027 
1028 

/\ 1029 
/\ 1030 

"ZJ 1931 
0 1032 ,., 111133 

1934 
H 1~35 

::s 1036 

rt 1937 
CD 19138 ,., 1039 

::s 111140 

OJ 1941 
...... 1042 

111143 

c: 111144 
til 1045 
CD 1046 

1947 

0 
::s 
...... 
~ 
V 

MACRO %53A(1072) 13:55 29-Dec-78 Page 27 
STKVAR - STACK VARIABLE FACILITY 

SUBTTL TRVAR - TRANSIENT VARIABLE FACILITY 

TRANSIENT (STACK) VARIABLE FACILITY - EQUIVALENT TO STKVAR 
EXCEPT ALLOWS VARIABLES TO BE USED WITHIN LOWER LEVEL ROUTINES 
AND AFTER OTHER THINGS HAVE BEEN PUSHED ON STACK. 
N.B. USES .FP AS FRAME POINTER - MUST NOT BE CHANGED WHILE 
VARIABLES IN USE. 

.FP==15 ~DEFAULT FRAME POINTER 

IFE REL,< 
EXTERN .TRSET,.TRRET,.ASSET,.ASRET> 

DEFINE TRVAR (VARS)< 
•• TRR==19 
RADIX 8 
•• NV==l 
IRP VARS,< 

.TRV1 (VARS» 
JSP • A16, • TRSET 

•• NV....:1" •• NV-1 
RADIX •• TRR 
PURGE •• TRR, •• NV> 

DEFINE .TRV1 (VAR)< 
• TRV2 (VAR» 

DEFINE .TRV2 (NAM,SIZ)< 

~~REMEMBER CURRENT RADIX 

~~INIT COUNT OF STACK WORDS 

~ ~ PROCESS LIST 
~~ALLOCATE STACK SPACE, SETUP .FP 

~ ~ RESTORE RADI X 
nCLEAN UP 

~~PEEL OFF ANGLEBRACKETS IF ANY 

.TRV3 (NAM,\ •• NV) ~~DEFINE VARIABLE 
IFB <SIZ>,< •• NV= •• NV+1> 
IFNB <SIZ>,< •• NV= •• NV+SIZ» 

DEFINE .TRV3 (NAM,LOC)< 
IFDEF NAM,<.IF NAM,SYMBOL,<PRINTX TRVAR NAM ALREADY DEFINED» 

DEFINE NAM<AO'LOC(.FP» 
S'NAM==<Z NAM» ~~SYMBOL FOR DDT 

~AC SUBROUTINE - ENTRY FOR SUBROUTINE CALLED WITH 1-4 ARGS IN ACS T1-T4. 
~USES .FP AS FRAME PTR LIKE TRVAR 

DEFINE ASUBR (ARGS)< 
•• TRR==10 ~~SAVE RADIX 
RADIX 8 
•• NV==l ~~INIT ARG COUNT 
IRP ARGS,< 

.TRV1 (ARGS» ~~DEFINE ARG SYMBOL 
IFG •• NV-5,<PRINTX ?TOO MANY ARGUMENTS: ARGS> 
JSP .A16,.ASSET ~~SETUP STACK 
RADIX •• TRR ;;RESTORE RADIX 
PURGE •• TRR, •• NV> 

n 
o 
Q, 

tj 
H 
G) 
H 
~ 
)I' 
t"1 

..... t-i 
::s 0 
(,Q." 

CIl 
nl 
o ~ 
::s s 
< 
CD 3 
::s 0 
rtZ 
... ·H 
o t-i 
::s 0 
til ::0 



n 
n 
I 
~ 
J-I 

/'\ 
/'\ 
~ 
o 
~ 

H 
::s 
rt 
CD 
~ 

::s 
OJ 
J-I 

c::: 
Ul 
CD 

a 
::s 
...... 

~ 
v 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

1048 
HJ49 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 
1058 
1059 
1060 
1061 
1062 
1063 
1064 
1065 
1066 
H'67 
1068 
HJ69 
1070 
HJ71 
1072 
1073 
1074 
1075 
Hl76 
1077 
1078 
1079 
1080 
1081 
1082 
10183 
1084 
1085 
1086 
1~B7 
10BB 
1089 
1090 
1091 
1092 
1093 
1094 

MACRO %53A(1072) 13:55 29-Dec-78 Page 28 
TRVAR - TRANSIENT VARIABLE FACILITY 

IFN REL,< 
iSUPPORT ROUTINE FOR TRVAR 

.TRSET::PUSH P,.FP 
MOVE .FP,P 
ADD P, 0 (.A16) 
JUMPGE P,TRSOV 

TRSET1: PUSHJ P,1{.A16) 
.TRRET::JRST [ MOVEM .FP,P 

POP P, .FP 
POPJ P,] 

MOVEM .FP, P 
POP P,.FP 
AOS 0{P) 
POPJ P, 

TRSOV: SUB P,0{.A16) 
HLL .A16,0{.A16) 

TRSOV1: PUSH P,[0] 
SUB .A16, [1,,0] 
TLNE .A16,777777 
JRST TRSOVl 
JRST TRSET1 

iSUPPORT ROUTINE FOR ASUBR 

.ASSET::PUSH P,.FP 
MOVE • FP, P 
ADD P,[4,,4] 
JUMPGE P,[SUB P, [4,,4] 

PUSH P,A 
PUSH P, B 
PUSH P,C 
PUSH P,D 
JRST ASSET1] 

DMOVEM A,l{.FP) iSAVE 
DMOVEM C,3{.FP) 

ASSET1: PUSHJ P,0{.A16) 
.ASRET:: JRST [ MOVEM .FP,P 

POP P, .FP 

> 

POPJ P,] 
MOVEM .FP,P 
POP P,.FP 
AOS 0{P) 
POPJ P, 

iPRESERVE OLD .FP 
iSETUP FRAME PTR 
iALLOCATE SPACE 

iCONTINUE ROUTINE, EXIT VIA .+1 
iC LEAR STACK 
iRESTORE OLD .FP 

iHERE IF SKIP RETURN 

iPASS SKIP RETURN 

STACK OVERFLOW - UNDO ADD 
GET COUNT 
DO ONE PUSH AT A TIME, GET REGULAR 

ACTION ON OVERFLOW 
COUNT TO 0? 
NO, KEEP PUSHING 
CONTINUE SETUP 

SAVE .FP 
SETUP FRAME POINTER 
ADJUST STACK 
PROBABLE OVERFLOW 
DO WITH PUSH, GET INTERRUPT ••• 

ARGS 

iCONTINUE ROUTINE 
iNO-SKIP RETURN, CLEAR STACK 

iSKIP RETURN, CLEAR STZCK 

iEND OF IFN REL, 

n 
o 
0.. 

o 
H 
G) 
H 
.-3 
)II 
Lt 

.... .-3 
::SO 
lQ"O 

Ul 
nl 
ON 
::S~ 
<: 
CD3 
::sO 
rtZ 
...·H 
0.-3 
::sO 
cn;:o 



() 
() 
I 
~ 
r..J 

1\ 
1\ 
I"Ij 
o 
1"'1 

H 
::J 
it 
CD 
1"'1 
::J 
OJ 
t-' 

c:: 
en 
CD 

a 
::J 
t-' 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 18:47 

111195 
111196 
1897 
B'98 
1899 
1188 
1181 11181111111115 
1182 0111811118 
1183 
1U4 
1U5 
1186 
1187 
lU8 
lU9 
111111 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
112111 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
113111 
1131 
1132 
1133 
1i34 
1135 
113fi 
1137 
1138 
1139 
1148 
1141 
1142 
1143 
1144 
1145 
1146 
1147 
1148 
1149 

MACRO %53A(1872) 13:55 29-Dec-78 Page 29 
TRVAR - TRANSIENT VARIABLE FACILITY 

;AC VARIABLE FACILITY 

IFE REL,< 
EXTERN .SAV1,.SAV2,.SAV3,.SAV4,.SAV8> 

• FPAC==5 
.• NPAC==l~ 

DEFINE ACVAR (LIST)< 
•• NAC==1iJ 
IRP LIST,< 

.ACV1 {LIST» 
.ACV3 (\ •• NAC) > 

DEFINE .ACV1 (ITEM)< 
.ACV2 (ITEM) > 

DEFINE .ACV2 (NAM,SIZ)< 

;FIRST PRESERVED AC 
;NUMBER OF PRESERVED ACS 

;;INIT NUMBER OF ACS USED 

; ; PROCESS ITEMS 
; : SAVE ACS USED 

; ; PEEL OFF ANGLEBRACKETS IF_ANY 

NAM=.FPAC+ •• NAC ;;DEFINE VARIABLE 
IFB <SIZ>,< •• NAC= •• NAC+1> 
IFNB <SIZ>,< •• NAC= •• NAC+SIZ» 

DEFINE .ACV3(N) < 
IFG N-.NPAC,<PRINTX ?TOO MANY ACS USED> 
IFLE N-4,< 

JSP • A16, .SAV'N> ; ; SAVE ACTUAL NUMBER USED 
IF-G N-4,< 

JSP .A16, .SAV8» ; ; SAVE ALL 

IFN REL,< 
:SUPPORT ROUTINES FOR AC VARIABLE FACILITY 

.SAV1:: PUSH P,.FPAC 
PUSHJ P,I1I(.A16) 

SKIPA 
AOS -l(P) 
POP P,.FPAC 
POPJ P, 

.SAV2:: PUSH P,.FPAC 
PUSH P, • FPAC+1 
PUS HJ P, 8 ( • A lfi ) 

.SAV3:: 

SKIPA 
AOS -2(P) 
POP P, • FPAC+1 
POP P, • FPAC 
POPJ P, 

.SAV4:: PUSH P,.FPAC 
PUSH P,.FPAC+l 
PUSH P,.FPAC+2 
PUSH P, • FPAC+3 
PUSHJ P,8(.A16) 

. :CONTINUE PROGRAM 

() 
o 

o 
H 
G) 
H 
8 
~ 
Lt 

Oa 
... ·8 
::J a 
\.Q'tI 

en 
()I 
o r..J 
::Jtg 
< 
CD 3: 
::J 0 
itZ 
... ·H 
o ~ 
::J 0 
en ::0 



() 
() 
I 

....J 
W 

/\ 
/\ 
"'%j 

o 

""" 
H 
::s 
rt 
CD 

""" ::s 
III 
I-' 

c: 
00 
CD 

o 
::s 
I-' 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC B-Nov-77 10:47 

1150 
1151 
1152 
1153 
1154 
1155 
1156 
1157 
115B 
1159 
1160 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
116B 
1169 
1170 
1171 
1172 
1173 

MACRO %53A(1072) 13:55 29-Dec-7B Page 29-1 
TRVAR - TRANSIENT VARIABLE FACILITY 

SKIPA 
AOS -4(P) 
pOP P,.FPAC+3 
pOP P, • FPAC+2 
POP P,. FPAC+l 
pOP P, • FPAC 
POPJ P, 

• SA VB:: ADD P, [1 0 , , 10 ] 
JUMPGE P,[HALT .] 
DMOVEM .FPAC,-7(P) 
DMOVEM .FPAC+2,-5(P) 
DMOVEM .FPAC+4,-3(P) 
DMOVEM .FPAC+6,-I(P) 
PUSHJ P,0(.Alfi) 

> 

SKIPA 
AOS -10 (P) 
DMOVE .FPAC+6,-I(P) 
DMOVE .FPAC+4,-3(P) 
DMOVE .FPAC+2,-5(P) 
DMOVE .FPAC,-7(P) 
SUB P, [H'l, ,HI] 
POPJ P, 

() 
o 
Q, 

o 
H 
G) 
H 
8 
;J:II 
t""1 

..... 1-3 
::sO 
\0'"0 

(/l 
()I 
Of\.) 
::s1Sl 
<: 
CD3 
::sO 
rtZ 
HoH 

01-3 
::SO 
00::0 



n 
() 
I 

....,J 
~ 

/\ 
/\ 
t'Zj 
o 
t'1 

H 
:::l 
rt 
CD 
t'1 
:::l 
OJ 
I-' 

c: 
en 
CD 

o 
:::l 
I-' 

~ 
V 

MACSYM COMMON MACROS AND SYMBOLS 
MACSYM MAC 8-Nov-77 10:47 

11 74 
1175 
1176 
1177 
1178 
1179 
1180 
1181 
1182 
1183 
1184 
1185 
11811 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 
1200 
1201 
1202 000000' 
121B 
1204 
1205 
1206 
1207 

NO ERRORS DETECTED 

PROGRAM BREAK IS 000000 
CPU TIME USED 00:03.083 

24P CORE USED 

MACRO %53A(1072) 13:55 29-Dec-78 Page 30 
TR~R - TRANSIENT VARIABLE FACILITY 

AC SAVE FACILITY - COMPILES OPEN PUSH'S 
SAVEAC <LIST-OF-ACS> 

DUMMY ROUTINE PUT ON STACK TO CAUSE AUTOMATIC RESTORE. SUPPORTS 
+1 OR +2 RETURNS. 

DEFINE SAVEAC (ACS)< 
.NAC==0 
IRP ACS, < 

PUSH P,ACS 
.NAC=.NAC+l> 

.Nl==.NAC 
SETM I .AI6, (CAIA 

AOS -.Nl(P) 
IRP ACS,< 

.Nl=.Nl-l 

i iSAVE AN AC 
i i COUNT THEM 

iiSTACK DUMMY RETURN 
i;HANDLE SKIP RETURN 

MOVE ACS~-.N1(P» iiRESTORE AN AC 
SUB P, (.NAC" .NAC] i iCLEAR STACK 
POPJ P,] iiFINAL RETURN 

PUSH P, .AI6> 

IFN REL, < 
iSTANDARD RETURNS 

RSKP:: AOS 0(P) 
R:: RET 

> iEND OF IFN REL, 

LIT 
IFN REL, < 

• RLEND==: .-1 
> 

IF2,<PURGE REL> 
END 

;MAKE SURE LITERALS COME BEFORE END MARK 

iMARK END OF CODE ~N MACREL 

;FLUSH REL FROM UNIV FILE 

n 
o 
Q, 

tj 
H 
G) 
H 
toi 
):I' 
t"1 

~.t-i 
:::lO 
\Q~ 

til 
nl o I\) 

:::lS 
< 
CD 3: 
:::l 0 
rtZ 
~·H 

o 1-3 
:J 0 
en :::0 



MACSYM COMMON MACROS AND SYMBOLS MACRO %53A(1072) 13:55 29-Dec-78 Page S-l 0 
MACSYM MAC 8-Nov-77 10: 47 SYMBOL TABLE H 

G) 
CALL 2110740 000000 .CHCRB 000035 sin H 
CALLRE 254000 000000 .CHCRT 000015 sin 1-3 
JSERR0 000000 ext .CHCUN 000037 sin > JSHLT0 000000 ex t .CHDEL 000177 sin t-t 
P 000017 .CHESC 000033 sin 
PC%AFI 001000 000000 sin .CHFFD 000014 sin 
PC%ATN 0001)00 000000 sin .CHLFD 000012 sin 
PC%BIS 020000 000000 sin .CHNUL 000000 sin 
PC%CY0 20100001 000000 sin .CHTAB 000011 sin 
PC%CYI 100000 000000 sin .CHVTB 000013 sin 
PC%FOV 040000 000000 . sin .FP 000015 spd 
PC%FUF 000HJ0 000000 sin • FPAC 000005 spd 
PC%LI P 002000 000000 sin • FWORD 777777 777777 sin 
PC%NDV 000040 000000 sin • INF IN 377777 777777 sin 
PC%OVF 400000 000000 sin .LHALF 777777 000000 sin 
PC%UIO 004000 000000 sin .MINFI 400000 000000 sin 
PC%USR 010000 000000 sin .NPAC 000010 spd 
R 000000 ext • RHALF 777777 sin 
RET 21)3740 000000 • SAC 000010 
RSKP 000000 ext .SAVI 000000 ext 
VI %EDN 777777 sin .SAV2 000000 ext 
VI%MAJ 077700 000000 sin .SAV3 000000 ext 
VI%MIN 000077 000000 sin • SAV4 000000 ext 
VI%WHO 700000 000000 sin .SAV8 000000 ext 

() .All1 0000111 spd • STKRT 000000 ext 

() .AC1 000001 spd .STKST 000000 ext 

I .AC2 000002 spd .TRRET 000000 ex t 

....J .AC3 000003 spd .TRSET 000000 ext 

U1 .ASRET 000000 ext 
.ASSET 1"00000 ext 
• CHAL2 0001711 sin 
.CHALT 1"00175 sin 

/\ .CHBEL 000007 sin 

/\ .CHBSP 000010 sin 

tTJ .CHCBS 1"00034 sin 

0 • CHCCF 000031) sin .., .CHCNA 000001 sin 
.CHCNB 1"1"0002 sin 

H .CHCNC 00001"3 sin 

::3 .CHCND 000004 sin () 

rt .CHCNE 000005 sin 0 
CD .CHCNF 000001) sin a, .., • CHCNN 0000111 sin ..... 1-3 
::3 .CHCNO 000017 sin ::30 
OJ .CHCNP 000020 sin Ul"'O 
f-I .C-HCNQ 1"00021 sin (J) 

.CHCNR 000022 sin () I 
C .CHCNS 000023 sin Ol\.) 
en .CHCNT 000024 sin ::l~ 
CD .CHCNU 000025 sin <: 

• CHCNV 000021) sin CD3 
0 .CHCNW 000027 sin ::30 
::3 .CHCNX 000030 sin rtZ 
f-I • CHCNY 000031 sin .... ·H 
~ 

.CHCNZ 000032 sin 01-3 
V ::30 
V en" 



() 
() 

1 
....J 

'" 
1\ 
1\ 
t'Ij 
o .., 
H 
~ 
rt 
CD .., 
~ 
OJ 
...... 

c:: 
en 
CD 

o 
~ 
...... 

~ 
v 

JSERR0 
JSHLT0 
P 
PC%AFI 
PC%ATN 
PC%BIS 
PC%CY0 
PC%CY1 
PC%FOV 
PC%FUF 
PC%LIP 
PC%NDV 
PC%OVF 
PC%UIO 
PC%USR 
R 
REL 
RSKP 
VI%EDN 
VI%MAJ 
VI%MIN 
V!%WHO 
.A11; 
.AC1 
.AC2 
.AC3 
.ASRET 
.ASSET 
.CHAL2 
.CHALT 
.CHBEL 
.CHBSP 
.CHCBS 
.CHCCF 
.CHCNA 
.CHCNB 
.CHCNe 
.CHCND 
.CHCNE 
.CHCNF 
.CHCNN 
.CHCNO 
.CHCNP 
.CHCNQ 
.CHCNR 
.CHCNS 
.CHCNT 
• CHCNU 
.CHCNV 
.CHCNW 
.CHCNX 
.CHCNY 
.CHCNZ 

B15# 
H15# 
823# 
12B# 
129# 
124# 
12H 
122# 
123# 
130# 
127# 
13H 
120# 
126# 
125# 
B15# 

34 
815# 

fi5# 
fi3# 
64# 
fi2# 

822# 
B19# 
820# 
82H 

1009# 
1009# 

113# 
112# 

81;# 
87# 

107# 
109# 

B0# 
BU 
82# 
B3# 
BH 
85# 
93# 
941 
95# 
9fi# 
97# 
9B# 
99# 

11'11" • 
10U 
1I1J2# 
lin # 
104# 
105# 

B25 82fi 

35 3B 814 883 936 971 1008 1049 1098 1125 1195 1203 1206 

n 
o 
0. 

o 
H 
G') 
H 
t-i 
> 
t"1 

.... t-i 
~O 
\Q"O 

til 
01 
01\) 
::S~ 
< 
(1) 3: 
::SO 
rtZ 
~·H 

o t-i 
::s 0 
en ::t' 



n 
n 
I 

....,J 

....,J 

1\ 
1\ 
t'%J 
o .., 
H 
::l 
rt 
CD .., 
::l 
OJ 
J-.;I 

c 
Ul 
CD 

o 
::l 
J--I 
"< v 
v 

.CHCRB 

.CHCRT 

.CHCUN 

.CHDEL 

.CHESC 

.C HFFD 

.CHLFD 

.CHNUL 

.CHTAB 

.CHVTB 

.FP 

.FPAC 
• FWORD 
.INFIN 
.LHALF 
.MINFI 
.NPAC 
• RHALF 
.SAC 
.SAV1 
.SAV2 
.SAV3 
.SAV4 
.SAV8 
.STKRT 
.STKST 
.TRRET 
.TRSET 

Hl8# 
92 # 

110# 
114# 
106# 

91# 
89# 
79# 
R8# 
90# 

1006# 
1101# 

75# 
71# 
73# 
72# 

1102# 
74# 

459# 
111199# 
1099# 
1099# 
1099# 
1099# 

937# 
937# 

1009# 
1009# 

n 
o 
0, 

o 
H 
Cl 
H 
t-3 
)II 
t"i 

..... 1-3 
::l0 
I.QPtJ 

CJ) 

nl 
ON 
::llSl 
<: 
CD 3: 
::lO 
rt~ 
.... ·H 
o 1-3 
::30 en::o 



ACVAR 110H 
ANDX 220# 

0 
H 

ASUBR HB8# G) 
CALL 825# H 
CALLRE 830# 
DECR 0741 

I-i 
DEFSTR 409# 

):I-

ERMSG 868# 
t'1 

EXT 875. 
FLD 150# 
FMSG 8441 
INCR 064t 
IORX 223. 
JAND 700# 
JE 709. 
IN 729# 
JNAND 754# 
JNOR 782# 
JOR 749' 
JSERR 85A. 
JSHLT 803# 
JXE 300# 
JXF 370# 
JXN 32A. 
JXO 350# 
LOAD 591# 
MASKB 1041 

() MOD. 108# 
() MOVX 1741 

I MSKSTR 477# 
....,J OPSTR 686# 

00 OPSTRM 6915# 
PERSTR 85H 
PGVER. 52# 
POINTR 152# 

1\ POS 148# 

1\ RET 826# 

I'Xj RETSKP 832# 

0 SAVEAC 1180# 

t1 SETCMP 649# 
SETONE 632# 

H SETZRO 615# 

::3 STKVAR 939. 

rt STOR 602# 
() 

CD TMSG 837# 
0 

t1 TQC 802# 
~ 

::3 TQCA A02. 
.... I-i 

D.J TQCE 802# ::s 0 

...... TQCN A02# 
lQ"O 

CIl 
T~ 802# 

C TQNA 802# 
() I 

en TQNE A02# 
o ~ 

CD TQNN 802# 
::3 e:i:l 
< 
CD ::s:: 

0 ::3 0 
::3 rtZ 
...... ....·H 
"S o t-i 

::SO 
V en ::n 



TQO 802# 
TQOA 802# 0 

H 
TQOE 802# 
TQON 802# 

G) 

TQZ 802# 
H 

TQZA 802* ~ 

TQZE 802# 
)' 

TQZN 802# t'"" 
TRVAR HHU 
TXC 246# 
TXCA 246# 
TXCE 24fi* 
TXCN 24fi# 
TXN 246# 
TXNA 24fi# 
TXNE 24fi# 
TXNN 246# 
TXO 246# 
TXOA 246# 
TXOE 246# 
TXON 246# 
TXZ 246# 
TXZA 246# 
TXZ E 246# 
TXZN 24fi# 
WID 144# 
XORX 229# 

() • .CASI 425# 
() • .OOTX 239* 245 24fi 

1 • .OOTY 795# 801 802 

'-ol • .OPB 605# 

"" • .GCNS 579* 
•• lCNS 568# 
• .JANI 770# 
• .JAN2 773# 

1\ •• JE 712# 

1\ • .IN 732# 

torJ • .JNA3 757# 

0 • .JNOI 786# 

""'" 
• .JN02 789* 
•• LDB 594# 

H •• ONEB 4541 

~ • .STR0 485# 

rt • .STRI 496# () 

CD •• STR2 525# 0 

""'" 
• .STR3 530# 

Q, 

~ 
•• STR4 542# ..... ~ 

OJ • .STR5 553# ~O 

I-' • .TQC 1)52# \0"0 

• .TQO 635# til 

c::: • .TQZ 618# (')1 

en • • TSAC 438# Ot\.) 

CD •• TSlZ 430# ~& 
<: 

0 
CD 3: 

:l 
~O 
rtZ 

I-' .... ·H 
'< 
V 

O~ 

V 
~O 
m:;rJ 



() 
() 
I 

CX) 

~ 

1\ 
1\ 
t'Zj 

0 
t1 

H 
::s 
rt 
(1) 
t1 
::s 
OJ 
I-' 

c:: 
en 
(1) 

0 
::s 
I-' 

'< 
V 
v 

• .TX 
• .TX3 
• .TY 
.ACV1 
.ACV2 
.ACV3 
.CASE 
.DECR0 
.IF0 
.INCR0 
.OPST1 
.OPST2 
• RTJST 
.STKV1 
.STKV2 
.STKV3 
.TRV1 
.TRV2 
.TRV3 

251# 
288* 
801'i* 

1110* 
1113* 
1118* 

416* 
677l1: 
40fi# 
fi67# 
689# 
699# 
160# 
953# 
958* 
91'ifi* 

1022l1: 
10125# 
1030* 

() 
0 
0. 

tj 
H 
G') 
H 
1-3 
):II 
t'"1 

.... 1-3 
::s 0 
~"'O 

en 
()I 
o t\) 

::S~ 
< 
(1) 3 
::s 0 
rtZ 
~'H 
o 1-3 
::s 0 
en ::0 



TOPS-20 MONITOR 

SYSERR 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-29 MONITOR 
SYSERR 

MR-2717 

SER-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SER-ii 

TOPS-2~ MONITOR 
SYSERR 

«For Internal Use Only» 



DIGITAL 

SVSERR 

TOPS-20 MONITOR 
SYSERR 

--------------INTRODUCTION--------------

SYSERR is the name of a user error 
reporting program and of a monitor module. 
The SYSERR program takes a file, ERROR.SYS, 
and produces a report of the errors 
indicated by the entries in that file. The 
monitor SYSERR module contains the code 
which puts those entries in the ERROR.SYS 
file. This module addresses both of these 
aspects of SYSERR, starting with a 
discussion of the use of the SYSERR program, 
and continuing with a view of the monitor's 
internal SYSERR data base. The logic flow 
of a SYSERR entry creation is presented, and 
finally, there is a presentation of the 
tools which allow a privileged user to 
create ERROR.SYS entries to be reported by 
the SYSERR program. 

SER-I «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
SYSERR 

.------LEARN ING OBJECTIVES------

Upo'n compl etion of thi s modul e, the 
student will be able to: 

1. Given typical SYSERR output, describe 
the information contained. 

2. Given ~ sample SYSERR message, tell 
which data was used in the monitor to 
generate the report. 

3. Use SYSERR to gather information 
relevant to a specific problem. 

,....-------- RESOURCES----------. 

1. TOPS-10 and 
AA-D533A-TK 

TOPS-20 SYSERR 

2. DECSYSTEM-20 Monitor Calls 
Manual AA-4166C-TM 

Manual 

Reference 

SER-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

SYSERR 

I. The SYSERR Program 
A. Running the SYSERR Program 
B. Examples of SYSERR Output 

II. SYSERR Module Internals 
A. SYSERR Block format 

1. Head er 
2. Da ta 

B. Creating a SYSERR Entry 
C. The Job 0 SYSERR Task 
D. The SYSERR JSYS 

TOPS-20 MONITOR 
SYSERR 

SER-3 «For Internal Use Only» 



DIGITAL'~ 

This page is for notes. 

SER-4 

TOPS-20 MONITOR 
SYSERR 

«For Internal Use Only» 



DIGITAL 

OVERVIEW OF SYSERR 

THE SVSERR PROGRAM 

TOPS-20 MONITOR 
SYSERR 

SYSERR is a program which produces reports containing 
system error information. TOPS-20 collects information such 
as the time and reason for each monitor reload, error status 
information for all HARD (non-recoverable) and SOFT 
(recoverable) errors on devices such as disk and magtape, 
the details of each BUGINF, BUGCHK and BUGHLT, the 
occurrence of memory parity errors and the memory locations 
involved, and console front-end reloads. This data is 
recorded on disk in file PS:<SYSTEM>ERROR.SYS. 

If the TOPS-20 monitor cannot continue due to a BUGHLT, 
it collects the error information and then halts. During 
the reload, a dump is taken of the contents of main memory 
and saved on disk in PS:~SYSTEM>DUMP.EXE. Program SETSPD 
looks in this crash dump file and extracts the error 
information. As successive crashes occur, the DUMP.EXE file 
is copied to successive generations of DUMP.CPY by SETSPD. 

If the KL CPU (DECSYSTEM-2040/50/60 only) halts due to 
some error, the console front-end task KLERR takes a 
snapshot of the KL CPU. This information is written in a 
file called KLERRO.SNP in the console front-end files area 
(usually on the dual-ported disk in the FILES-II area, but 
written on floppy disk if it is the front-end device). 
After the system comes back up, SYSJOB appends this 
information to ERROR.SYS. In these ways, ERROR.SYS 
accumulates a history of system errors of various types. 
Note that you should periodically determine the size of 
ERROR.SYS. If it 'is very large (e.g., more than 1000 
pages), save ERROR.SYS on magtape, delete and expunge, and 
let it build up again. 

The SYSERR program uses ERROR.SYS as an input file and 
creates a large variety of reports, depending on the 
commands you give. Basically, you can select error reports 
according to device, type of error, amount of detail, and 
time frame. This is done by specifying switches in commands 
to SYSERR. You can also obtain an error summary covering 
all devices and error types for a selected time period. 

SER-5 «For Internal Use Only» 



DIGITAL TOPS-2(2J MONITOR 
SYSERR 

Running the SYSERR Program I 

To run SYSERR, type 

@SYSERR 

FOR HELP, TYPE "/HELP" 

* 
When SYSERR is ready for a command, it replies with an 
asterisk. The command format is 

*output-filespec = input-filespec/switchl/switch2 •••• 

where "output-filespec" is the report to be created and ,the 
input file is usually SYSTEM:ERROR.SYS. If you do not 
specify an input file, SYSERR will use PS: (SYSTEM>ERROR. SYS 
by default. You may'need to enable privileges in order to 
read ERROR.SYS. If you omit the output file specification, 
the operating system will give the report a default name 
(determined by the switches) with file type .LST. The 
switches specify the device or type of error you wish to 
report. The switches also specify the time frame. Some of 
the common switches are: 

/ALL 
/ALLSUM 
/CPUALL 
/MASALL 

/DEV:name 

/DEV:type 

/DETAIL 

!List all errors. 
!List the summary only. 
!List all processor related errors. 
!List all MASSBUS device errors (TU4S, 
! RP (2J 6 , e tc .) •.. 
!List errors for the specified device only. 
!This allows you to select a particular 
!magtape drive or disk drive. 
!List errors for the specified type of 
!device, for example, TU4S, LP2(2J, the CPU, 
! etc. 
!List all information instead of a brief 
!listing. 

/BEGIN:mm-dd-yy:hh:mm:ss !begin the listing on the 
!date specified. You may 

/END:mm-dd-yy:hh:mm:ss 

SER-6 

! al so use the fo rmat 
!/BEGIN:-nD to obtain all 
lerrors for the past n days. 
lend the listing on the date 
!specified. To obtain errors 

«For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
SYSERR 

!up to n days ago, use the 
! format lEND: -nO. 

To obtain a summary of all errors, use the switch 
IALLSUM. This report can be obtained and printed each day. 
It is useful for keeping track of such errors as HARD disk 
errors, which can indicate a serious problem with a disk 
pack. Whatever switches are used, the error summary is 
always a part of each report. 

Examples of SYSERR Output 

Figures SER-l, SER-2, and SER-3 at the end of this 
section show examples of output produced by SYSERR. Figure 
SER-l shows two entries: a MASSBUS device error and a 
BUGINF. In the MASSBUS device error entry, the unit name is 
DP2f)0. This name indicates a drive on channel 2 (RH20 
controller number 2) with unit number 6. The 0 has no 
significance for disk. The unit type is RP0n, the name of 
the structure SNARK:. LBN stands for the Logical Block 
Number on the pack being addressed when the error occurred, 
and is translated to cylinder, surface and sector to provide 
physical location. The last line indicates that the error 
was recoverable (SOFT error). The line before the last 
shows that the operation was retried twice before 
succeeding. The operation being tried is also indicated 
following OPERATION AT ERROR:. If an error is not 
recoverable after a reasonable number of retries, the 
attempt to retry ceases and the error is classified as 
non-recoverable (HARD error) • 

A hard error usually involves loss of data, or failure 
for some user or system operation. It is important to keep 
statistics of the hard and soft errors which occur on each 
disk pack. In this way, you can detect a bad pack or one 
about to go bad. The physical location of the errors (given 
in terms of cyl inder, surface and sector) can also be used 
to locate a bad spot (sc ratch, etc.) on the pack. If errors 
keep occurring in the same physical location, a bad spot is 
indicated. If many hard errors occur at once in a variety 
of locations, the pack may have experienced a head crash. 

The second example in Figure SER-l is for a BUGINF 

SER-7 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
SYSERR 

whose name was DN20ST. The user and program name are useful 
in determining the cause of the problem, especially in the 
case' of BUGCHKs and BUGHLTs. If the same user and program 
are specified each time a BUGHLT 'occurs, a good place to 
start i,n investigating the cause of the crashes would be 
with the user and user program. 

Figure SER-2 shows an entry for a MASSBUS device error 
caused by a tape operation. The device unit name is MT310. 
This indicates a drIve on channel 3 (RH20 controller 3), 
TM02 unit number 1, the drive being logical unit 0 on the 
TM~2. The position on the tape when the error occurred is 
given in terms of the file and record numbers. The user and 
program are also given. In this example, the error was 
recoverable. This type of entry can be used to track down 
bad tapes or a malfunctioning drive. 

Figure SER-3 shows two portions of an error summary. 
Under FILE ENVIRONMENT are the input and output file names 
and the switches used when running SYSERR. The input file 
used to create this report was SYSTEM:ERROR.SYS. The total 
number of errors in the categories BUGHLT-BUGCHK, MASSBUS 
DEVICE and FRONT END DEVICE are given. There is also a 
breakdown of the BUGHLT-BUGCHK types. The hardware detected 
error summary for DP260 is another portion of the error 
summary, showing the total number of such errors, both hard 
and soft. Similar summaries are given for magtape drives. 

For further information about SYSERR and the reports it 
creates, refer to the DECSYSTEM-20 Operator's Guide and the 
DECSYSTEM-2A20 Operator's Guide 

SER-8 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
SYSERR 

SYSTEM ERROR REOORl' CCMPILED rn. M:>rrlay, ~y 8, 1978 14:45:45 
*********************************************** 
MASSBUS lEVICE ERROR 

PAGE 1 

LOGGED ON Mon 8 May 78 14:01:20 MONITOR UPTIME ~ 14:29:47 
DETECI'ED ON SYSTEM # 2102. 
RECCRD SEQUENCE NUMBER: 1438. 

*********************************************** 

UNIT W\Pt1E: DP 260 
UNIT TYPE: RP06 
UNIT SERIAL #: 0597 • 
VOLLME ID: ENA.RK 
LBN: 11157~4 = 
CYL: 794. SURF: 17. SECT: 8. 
OPERATION AT ERROR: DEV.AVAIL., GO + RFAD DATA (70) 
F~L ERROR STATUS: 200000,7 
RETRIES PERFORMED: 2. 
ERROR: ROCOVERABLE IRIVE EXCEPTION ,CRN ERROR, IN CCNI'ROLrER CONI 

OCR, IN DE VI CE ERROR Rffi ISTER 

=====REST CF INFCD1ATION AVAILABLE BY USN; /DETAIL SttITTCH==== 

SYSTEM ERROR REOORl' CCMPILED ON M:>rrlay, M3y 8, 1978 14: 46: 49 
*********************************************** 
TOPS20 BOOHLT-BUGCHK 

Pl\GE 4 

LOGGED ON .MDn 8 May 78 12:48:01 MONITOR UPTIME ~ 13:16:28 
DETECTED ON SYSTEM #: 2102. 
ROCCRD SEQUENCE NUMBER: 1415. 

*********************************************** 

ERROR INF rnMAT I ON : 
DATE-TIME OF ERROR: Mon 8 May 78 12:47:57 
#: OF ERRORS SINCE RELClAD: 84. 
FORK #: & JOB #:: 117,0 
USER'S LOGGED IN DIR: OPERATOR 
PROGRAM NAME: SYSJOB 
ERROR: BUGINF 
ADDRESS OF ERROR: 502633 
~~E: DN20ST 
DESCRIPTION: DTESRV- DN20 S'IDPPED 

====REST CF INFrnMATION AVAIlABLE BY USI'f\[;· /DETAIL SWITCH==== 

Figure SER-1. Output from SYSERR 

SER-9 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
SYSERR 

SYSTEM .ERROR REPORT CCMPlIED ON M:>rXlay, M:ly 8, 1978 14: 41: 54 

*********************************************** 
MASS3lE DEVICE ERROR 

PAGE 1 

Lro:;ED ON Sa t 6 May 78 14: 56 : 28 MONITOR UPl'IME WAS 7: 44 : 04 
IETECTED ON SYS'lEM t 2l02. 
RB:CRD SECUENCE NUMBm: 917. 

*********************************************** 

UNIT N1\ME: MT310 
UNIT TYPE: TU45 
UNIT SERIAL #: 0148. 
VOLUME ID: 
LOCATION: RECCRD # 12. OF FILE # 0. 
USER'S LOGGED IN DIR: OPERATOR 
USER'S roM: EXEC 
OPERATION AT ERROR: DEV.AVAIL. GO + WRITE FWD. (60) 
FINAL ERROR STATtS: 0,3 
RETRIES PERFORMED: 0. 
ERROR: RECOVERABLE DRIVE EXCEPI'ION, IN CCNl'ROLIER CONI 

crn/CRC, IN IE VI CE ERROR R83ISTER 

=====REST CF INFrnMATION AVAIlABLE BY USING /DETAIL &WITCH=== 

Figure SER-2. Output from SYSERR 

SER-10 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
SYSERR 

SYSn<.:M ERROR REPORT COMPILED ~ Monday May 8, 1978 14:46:50 
- SYSn<.:M SUMMARY FOO SYSTEM it 2102. 

PAGE 23 

****************************************************************** 

FIrE ENVIRONMENT 
SYSERR VERSION 10(546) 
INrur FILES: SYS:ERROR.SYS CREATED: Man 8 May 78 2:eJ6:40PM 
ourPtJr FILE: OOK:ERR.5 
SNI'OCHES: /CPUALL /BEGIN: 8-May-78 AT 12:4~: 39 
DA'IE OF FIRST ENTRY PROCESSED: Tue 18 Apr 77 1: 33 : 36PM 
DA'IE OF LAST ENTRY PROCESSED: Mo n 8 Ma y 78 2: 06: 40PM 
NUMBER OF ~IES PROCESSED: 1439. 
it OF INCONSISTENCIES DETECTED IN ERROR FILE: eJ • 

ENTRY OCCURRENCE COONTS 
TarAL TOPS20 BOOHLT-Bt.x:;CHK: 
Tar.AL MASSBUS DEVICE ERROR: 
TarAL FRONI' END mvrcE REPORT: 

TOPS20 BUGHLT-BUGCHK 
BUGHLT /BUGCHK BREAKDOWN: 

DN20ST 1. 

1. 
~. 

21. 

SYSTEM ERROR REFORT CCJI1PILED ON M:>rrlay May 8, 1978 14: 46: 52 
PAGE 24 - M&SSBUS SYSTEM ~LYSIS(RH20) 

DP260 HARD 
SOFT 

HARIJIlARE IETECTED 
PAR LWC Sl"'C CRN RES OVR 
ERR EXC ERR ERR ERR ERR RAE RUN 

6. 3. 

Figure SER-3. Output from SYSERR 

SER-11 «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
SYSERR 

SVSERR MODULE INTERNALS 

Error reporting, often called SYSERR, 
composed, of three steps: 

is really 

I'. A request to generate a SYSERR block is created and 
queued via the SYERR JSYS or, if generated by the 
monitor, r~quested generally by calling the SYERR 
routines directly. 

2. The SYSERR fork (part of Job 0) writes all queued 
requests to the 'file PS:<SYSTEM>ERROR.SYS. 

3. The SYSERR user program reads the ERROR.SYS file 
and generates the error reports and summaries. 

SVSERR Block Format 

HEADER 

Each entry in the ERROR.SYS file is made up of two 
parts: the header, which has a fixed length and format (See 
Figures SER-4 and SER-5), and a data portion, whose content 
is dependant on the type of event being reported. See 
Figure SER-6 for an example. Note that the diagram shown in 
Figure SER-4 and SER-5, the first two words are part of the 
internal header, but do NOT appear in the ERROR.SYS file. 

The fixed information in the header includes the event 
code (the type given here tells the user SYSERR reporting 
program the type and format of the data portion of the 
message), and the block length (not including the two words 
of monitor he'ader). The block lengths of the standard event 
types are fixed on an ad hoc basis. The other standard 
words are Universal format ~a~ and time of the blocks 
creation, the uptime at that point, and APR serial number of 
the system generating the report. 

SER-12 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
SYSERR 

SEBBFR: SYSERR BUFFER BLOCKS 

1 

2 

3 

4 

5 

SEBDAT=6 

Word 
o 

SYSERR BLOCK FORMAT 

SEBCOD SEBSIZ SEBCDR 
Code Blk Size with HDR Pointer to Next Block 

6 SEBSOF 17 SEBFN 
Offset to Free JOB 0 Function to Call 

String Space 

SEHCOD SEHLEN 
Event Code Block Length 

SEHTAD 
Date and Time 

SEHUTM 
Uptime 

SEHSER 
APR ID \"'0 rd 

(Processor Serial Number) 

Body of Error Block 
(Dependent on Event Type 

1 
See Below) 

1 
o 234 5 6 17 18 35 

SEBCOD SEBSIZ SEBCDR 
Code Blk Size with HDR Pointer to Next Block 

Bits Pointer Meaning 

3-5 SEBCOD State Code 
SBCFRE=0 on Free List 
SBCREL=l Released 
SBCACT=2 Active 

f)-17 SEBSIZ Block Si ze Incl ud ing Header 

18-35 SEBCDR Pointer to Next in List 

Figure SER-4. SYSERR Block Format Header, 

SER-13 «For Internal Use Only» 



DIGITAL 

Word 
2 I . SEHCQD 

.. Event Code 

Bits 

0-8 

27-35 

8 

Po inter 

SEHCOD 

SEHLEN 

Meaning 

27 

TOPS-29 MONITOR 
SYSERR 

35 

I SEHLEN 
Block Length 

Event Code (i.e., Block Type) 
SEC%RL=10l System Reload 
SEC%BG=102 BUGHLT/BUGCHK/BUGINF 
SEC%FE=130 Front End Error 
SEC%11=13l F.E. Reload Entry 

(Gives -11 Reboot Info.) 
SEC%PT=160 Processor Parity Trap 
SEC%PI=16l Processor Parity Intrp. 
SEC%MB=lll Massbus Device Error 

Block Length (Including Header) 
RL%LEN - System Reload Block Length 
BG%LEN - BUGHLT/CHK/INF Block Length 
FE%LEN -F.E. Errors Blk Length 
Rl%LEN -F.E. Reload Entry Blk Length 
PT%LEN - Proc. Pa r i ty Tr ap Bl k Leng th 
PI%LEN -Proc. parity Interrupt Blk Lgh 
MB%LEN -Massbus Dev. Err Blk Length 

Figure SER-5. Expansion of Word 2 of Header 

DATA 

The data portion of an entry is dependent on the event 
typ~ being reported. When the monitor is generating a 
SYSERR block, it takes specific information from specific 
locations and puts that data into the SYSERR block in a 
pre-defined order. The user SYSERR reporting program is 
coded to know what information the monitor has placed in 
which word, and is thus able to format that data in a more 
meaningful way. The example in figure SER-6 shows a typical 
data po rtion. 

SER-14 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
SYSERR 

Event Type 101 
System Reloaded Error Block Data 

RL%SVN=eJ ASCII Byte Pointer to System Name 

RL%STD=l Time of System Build (Un i v. Format) 

RL%VER=2 System Version Number 

RL%SER=3 APR Serial Number 

RL%OPR=4 ASCII Byte Pointer to "Why Reload" 

RL%HLT=5 BUGHLT Address (if Auto-Reloaded) 

RL%FLG=6 Flags 

Monitor Name (Tex t) 

"Why Reload" Answer String (Text) 

RL%LEN=61 

Figure SER·6. Sample SYSERR Block Data 

Figures SER-4, SER-S and SER-6 were taken from the 
TOPS-20 Monitor Tables, which has diagrams of the several 
event types data formats. The TOPS-10 and TOPS-20 SYSERR 
Manual also has descriptions of the ERROR.SYS entry formats. 

INTERNAL QUEUE STRUCTURE 

The monitor SYSERR blocks are taken from a queue of 
free blocks reserved for them, and through the calling of 
various monitor routines, these blocks are queued for the 
SYSERR fork to write to ERROR.SYS. In referring to Figure 
SER-4, note that the right half of the first word is 
reserved for a pointer to the next block (if any). Location 

SER-IS «For Internal Use Only» 



DIGITAL TOPS-2f(J MONITOR 
SYS,ERR 

24 of the machine contains a pointer to the first queued 
block. When the SYSERR fork is awakened, that task checks 
to see if location 24 (SEBQOU) is non-zero. If there is an 
address there, that SYSERR block and any other queued SYSERR 
blocks a~e appended to PS:<SYSTEM>ERROR.SYS. 

~------------------NOTE --------------------~ 

BUGHLT isi a spec ial case where the 
SYSERR block is created and queued but 
the SYSERR fork is not started, and the 
informatidn is ' not written to 
PS:<SYSTEM>ERROR.SYS until the system 
comes up after the crash. 

, Creating a SVSERR Entry \ 

The following are the steps taken by the monitor in 
creating a SYSERR block. The. calls described are generally 
called individually by the monitor, but they are the same 
ones as called by the SYERR JSYS (discussed below). 

1. Generate SYSERR entry 

1. Put information in header 

2 • Put data in data 
following the he~der) 

po rtion, (imm ed iately 

2. Call the internal monitor routines (or SYERR JSYS) 

1. ALSEB - allocate a SYSERR block 

2. SEBCPY - copy data to block 

3. QUESEB - queue the SYSERR block; that is, put 
address into SEBQOU or on end of queue of 
ex isting blocks •. Thi s c.all al so wakes the Job 
f(J SYSERR task through an AOS @SECHKF~ 

SER-16 «For Internal Use Only» 



DIGITAL 

The Job g SVSERR Task 

TOPS-20 MONITOR 
SYSERR 

The Job 0 SYSERR task executes code in the module 
SYSERR at SEBCHK, which checks the queue at SEBQOU (location 
24). For each entry in the queue, SYSERR will: 

1. Unlink and remove the block from the queue 

2. Write the block to PS:<SYSTEM>ERROR.SYS 

3. Call RELSEB to release the block for reallocation 

BUGHLT is a special case. The BUGHLT code generates 
and queues a BUGHLT SYSERR block (event type 102), then 
shuts the system down. This block is NOT written out to 
ERROR.SYS at the time of the crash. When the system 
reloads, SETSPD, a Job 0 task, reads the dump and does a 
SYERR JSYS for any queued SYSERR blocks. (There will always 
be a BUGHLT block, but there may also be others which had 
not yet been written before the crash.) Refer to the Monitor 
Tables descriptions or the SYSERR Manual for a breakdown of 
the contents of the BUGHLT SYSERR error block format. 

The SYERR JSVS 

The SYERR JSYS is available to the privileged user who 
wishes to make entries in ERROR.SYS for the SYSERR program 
to report. WHEEL, OPERATOR, or MAINTENANCE capabilities 
must be enabled to execute the SYERR JSYS. The monitor 
makes no check of the event code (other than 0 is illegal). 
When the SYSERR program detects an unknown event code, the 
output contains a message to that effect and the contents of 
the block a're reported in octal. However, event code 117 
(17 on TOPS-10) is defined in the SYSERR program and is 
intended for this special use. When event code 117 is 
detected, the SYSERR program labels it as "Software 
Requested Data" and produces a report with the data as both 
octal and SIXBIT. The data reported may be gathered by a 
monitor patch, the PEEK JSYS, the SNOOP JSYS, etc. See the 
SYSERR Manual under "Software Requested Data", and the 
Monltor Calls Manual for further information. 

SER-17 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SER-l8 

TOPS-2~ MONITOR 
SYSERR 

«For Internal Use Only» 



DIGITAL 

EXERCISES 

TOPS-2Q1 MONITOR 
SYSERR 

1. With the SYSERR Manual and the sheet of sample 
. SYSERR report: 

1. Tell the event type of the error report and the 
type of error. 

2. Describe how the monitor selected the values 
reported. 

2. Describe how you, as a user, might wish to use the 
SYERR JSYS. 

SER-19 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SER-20 

TOPS-2S MONITOR 
SYSERR 

«For Internal Use Only» 



DIGITAL 

EXERCISE SOLUTIONS 

TOPS-20 MONITOR 
SYSERR 

Check with your instructor and your classmates for answers. 

SER-2l «For Internal Use Only» 



DIGITAL 

Thi s page is for notes. 

SER-22 

TOPS-2~ MONITOR 
SYSERR 

«For Internal Use Only» 



DIGITAL 

SVSERR 

LAB EXERCISES 

TOPS-2eJ MONITOR 
SYSERR 

When'answering the lab exercises, write down the names 
of the tables where you found the answers. The labs will 
help you understand the monitor data base structure; So 
remember, where to look is more important than what you find 
there. 

The exercises marked with a double star (**) are more 
d i fficul t and are optional. If you have the time and 
motivation, do them. 

Some of the exercises require use of the listings to 
find the answer; do not assume that the answer is in the 
tables. 

TOOLS 

FILDDT 

To use FILDDT on a crash, use the GET command instead 
of the PEEK command. For the following exercise, the crash 
you are to look at is in a file called 
<MONITOR-INTERNALS>SYSERR.CRSH. Use FILDDT as in the 
example below to do the following exercise. 

~ENABLE 
$FILDDT 
FILDDT)LOAD <MONITOR-INTERNALS>R3-MONITOR.EXE 
FILDDT>GET <MONITOR-INTERNALS>SYSERR.CRSH 

;get symbols 

At this point, the usual DDT commands allow you to look at 
the crashed monitor. Note the following things: 

1. Only those pages that were in core at the time of 
the crash are a part of the crash dump. 

2. BOOT has overwritten a part of the monitor-­
currently, it overwrites a part of APRSRV. 

SER-23 «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
SYSERR 

3. You must tell FILDDT to use the monitor's page 
table if you want to look at the monitor's address 
space. By default, you are looking at physical 
addresses when you look at a crash with FILDDT. 
FILDDT knows how to simulate TOPS-29 paging; the 
command that causes FILDDT"to use TOPS-29 paging 
and which specifies the page map to use is: n$U 
where n is the SPT slot belonging to the page table 
FILDDT should use to do the address translation. 
For most cases, you want FILDDT to use MMAP, which 
is the monitor's page map for sections 9 and 1. 
The SPT slot belong ing the the moni tor'"s pag e map 
is in location MMSPTN. Location MMSPTN conta ins a 
493 for standard monitors; however, you should 
check to be sure. If the limit on open files has 
been changed for a monitor, the SPT slot belonging 
to MMAP is also changed. To set monitor context 
(i.e., to use MMAP ) do the following: 

MMSPTN/ 493 
403$U 

Queued SYSERR Blocks 

iMMAP's SPT slot 

If there were any SYSERR blocks queued to be written at 
the time of the crash, location SEBQOU= 24 will be the queue 
header. The right half of the first word of each SYSERR 
block will contain a pointer to the next block or 9 if there 
are no more queued blocks. Normally, the BUGHLT block will 
still be queued up and will be written to ERROR.SYS when the 
SYSERR fork starts up again. If the system gets a 
KEEP-ALIVE CEASED, there can be SYSERR blocks left in the 
queue. 

RESOURCES 

1. SYSERR related tables in the Monitor Tables. 

SER-24 «For Internal Use Only» 



DIGITAL 

EXERCISES 

TOPS-20 MONITOR 
SYSERR 

1. Beginning at SEBQOU, trace the queue of SYSERR 
blocks; use the tables to determine if each block 
.is active. 

2. What type of block is each queued block? 

3. Find a processor parity interrupt error block 
match the information stored there with 
information the tables say is stored in that 
type. ** 

and 
the 

block 

SER-25 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SER-26 

TOPS-2" MONITOR 
SYSERR 

«For Internal Use Only» 



DIGITAL 

EXERCISES 

SVSERR 

LAB SOLUTIONS 

TOPS-20 MONITOR 
SYSERR 

1. Beginning at SEBQOU, trace the queue of SYSERR 
blocks; use the tables to determine if each block 
is active. 

2. 

ANSWER: 

24/ SEBBFR+67 

SEBBFR+~7/ 20104"SEBBFR+173 

SEBBFR+173/20104"SEBBFR+277 

SEBBFR+277/20067"SEBBFR+366 

SEBBFR+366/20104"SEBBFR+472 

SEBBFR+472/20104,,0 ; last queued 
; block 

Each queued block points to the next queued block; 
the last queued block has a zero in the right half 
indicating there are no more queued blocks. Bits 
3-5 contain the state code; a value of 2 means 
active. Each of these blocks is active. 

What type of block is each que ued block? 

ANSWER: 'Nord 2 of each block has the block type in 
blts 0-8. 

SEBBFR+67+2/102000,,0 ; type= 102 = SEC%BG 

SEBBFR+173+2/ 102000,,0 ;type= 102 = SEC%BG 

SEBBFR+277+2/ 161000,,0 ;type= 161 = SEC%PI 

SEBBFR+36fl+2/ 102000,,0 ;type= 102 = SEC%BG 

SEBBGR+472+2/ 102000,,0 ;type= 102 = SEC%BG 

SER-27 «For Internal Use Only» 



DIGITAL 

3. 

TOPS-29 MONITOR 
SYSERR 

Block type SEC%BG labels a block as a 
BUGHLT/BUGINF/BUGCHK type. Block type SEC%PI 
labels a block as a process parity interrupt type. 

Find a processor parity interrupt error block and 
match the information stored there with the 
information the tables say is stored in that block 
type. ** 

ANSWER: Use the SYSERR block tables to compare the 
two. 

SER-28 «For Internal Use Only» 



DIGITAL 

MODULE TEST 

TOPS-20 MONITOR 
SYSERR 

The module test for this module is in two parts. 
First, obtain a sample SYSERR report from your instructor, 
and with it (using any available resources) determine where 
in the monitor each of the reported data came from. You may 
use either the micro-fiche, the running monitor with FILDDT, 
or any of the class lab system crash files, (also using 
FILDDT). 

Second, locate and describe the unreported SYSERR 
entries in a system crash file using FILDDT. See your 
instructor for the name of the crash file to use. 

SER-29 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SER-30 

TOPS-2g MONITOR 
SYSERR 

«For Internal Use O~ly» 



DIGlTAL 

TEST EVALUATION SHEET 

TOPS-20 MONITOR 
SYSERR 

The ,results of these problems will be discussed in 
class after the laboratory session. 

SER-31 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SER-32 

TOPS-2('J MONITOR 
SYSERR 

«For Internal Use Only» 



TOPS-20 MONITOR 

Troubleshooting 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-2f2J MONITOR 
Troubleshooting 

MR-2717 

TS-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

TS-ii 

TOPS-2~ MONITOR 
Troubleshooting 

«For Internal Use Only» 



DIGITAL 

Troubleshooting 

TOPS-20 MONITOR 
Troubleshooting 

..-------- I NTRODU eTION --------. 

This module contains information on 
debugging and crash analysis, with the final 
section devoted to MDDT, EDDT, and FILDDT. 

There is a great difference between 
analyzing a crash and debugging one. While 
analysis simply tells you what happened, 
debugging gives you reasons why (and thus, 
impl ies remed ies) • 

Successful crash analysis depends 
heavily on how well you know the data base 
and whether you can discover inconsistencies 
that give you clues about what happened. 
The information in this module shows you how 
to use available tools in looking at a crash 
and how to find basic information about the 
state of the machine at the time of the 
crash. Further analysis of a crash requires 
that you are able to propose a reason for 
what happened that matches the state of the 
data base. 

TS-l «For Internal Use Only» 



DIGITAL TOPS-2flJ MONITOR 
Troubleshooting 

r------ LEARNING OBJECTIVES -----..., 

Upon completion of this module, the 
~tudent will be able to: 

1. Identify the mode of the operating 
system a~ the time of a crash. 

2. Determine which, if any, fork was 
running at that time. 

3. Ded uce, from the stack, which of the 
save macros put what on the stack. 

4. El ic ita dump. 

5. Ex tract saved SYSERR blocks from a 
cra$h. 

6. Designate the reI event portions of the 
data base. 

r--------- RESOURCES ---------, 

DECsystem-lflJ/DECSYSTEM-2flJ Hardware Reference 
Manual 

TS-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

T r 0 ub I e s ho 0 t i ng 

I. CTY Output 
A. Explanation of KLERR Output 
B. Sample KLERR Output 

II. Getting a DUMP 
A. How To Get a Dump 
B. Where BOOT Lands 

I I I. SYSERR 

TOPS-20 MONITOR 
Tro ubI eshoot i ng 

A. Overview of SYSERR Functions and 
Da ta Base 

B. Queued SYSERR Blocks In A Crash 
C. Moving SYSERR Blocks From a Crash 

To ERROR.SYS 

IV. BUGHLT 
A. BUG Macro 
B. BUGHLT Contents 

V. Push Down Lists And Related Data Bases 
A. How To Look At a Stack 
B. Push Down List / Machine State 
C. Stack Usage For Local Storage 
D. Stack Adjustment 

VI. Machine States and Relevant Data Bases 
A. PC Storage 
B~ AC Storage 
C. Fork Scheduled, Or Not 
D. Fork NOSKED 
E. Extended vs. Non-extended Addressing 
F. Sizes (Resident, Non-resident, Total) 
G. MDDT Page 
H. Relevant Data Base for Each Machine 

State 

VII. DDT's 
A. FILDDT 
B. Relevant DDT/FILDDT Commands 
C. MDDT 
D. EDDT 

TS-3 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

TS-4 

TOPS-2~ MONITOR 
Troubleshooti ng 

«For Internal Use Only» 



DIGITAL TOPS-2eJ MONITOR 
Troubleshooting 

CTY OUTPUT 

Collect any CTY output that is relevant to the crash. 
This should include the KLERR printout and the BUGHLT (as 
well as recent BUGCHKs and BUGINFs, if any). If the machine 
got a KEEP-ALIVE CEASED, the KLERR output is the only 
r,el iable information you get. (See the section 0 n the 
BUGHLT location for an explanation.) 

Explanation of KLE R R Output 

KLERR includes the PC, the last memory fetch and 
information on the PI system. The PI information includes 
the following: 

PI STATE: ON or OFF 

PION: n 

PI HLD: n 

PI GEN: n 

Sample KLERR Output 

indicates whether the PI 
system is on or not. 

n indicates which of 
the 7 channels are 
enabled. 

n indicates which of 
the 7 channels have 
an interrupt in progress. 

n indicates which of 
the 7 channels have 
a pending interrupt. 

Here is an example of the KLERR output on a KEEP-ALIVE 
CEASED error: 

%DECSYSTEM-20 NOT RUNNING 

KEEP ALIVE CEASED 
KLERR -- VERSION VeJ2-02 RUNNING 

TS-5 «For Internal Use Only» 



DIGITAL 

KL NOT IN HALT LOOP 

TOPS-20 MONITOR 
Troubleshooting 

KLERR 
KLERR 
KLERR 
KLERR 
KLERR 

KL ERROR OTHER THAN CLOCK ERROR STOP 
KL VMA: 000000 035717 pc: 000000 035717 
PI STATE: ON, PION: 177, PI HLD: 004, PI GEN: 001 
EXIT FROM KLERR 

GETTING A DUMP 

DUMP.EXE is a pre-allocated file into which BOOT writes 
the dump. When the system comes up, SETSPD copies DUMP.EXE 
to DUMP.CPY. 

How to Get a Dump 

If the system does an auto-reload, the console front 
end will give BOOT the commands to get a dump. If the 
auto-reload does not work for some reason, you can force a 
dump by typing /d to the BOOT> Prompt. 

KLI VERSION V806-07 RUNNING 
KLI ALL CACHES ENABLED 
KLI BOOTSTRAP LOADED AND STARTED 
?DUPL STR UNI?DUPL STR UNI 

BOOT> /d 

BOOT> 

Where BOOT Lands 

iproblem because two PS: 
istructures on line. 
irequest a dump (after the 
iproblem is corrected) • 

itype CR for default monitor 

The console front end l-oads BOOT into KL memory. Of 
course, this overwrites whatever used to be in that part of 
memory. Therefore, BOOT is always loaded into a part of the 
monitor that contains pure code (i.e., so no data is 
destroyed). Currently, BOOT is brought in on top of a part 
of APRSRV. If you need to look at code that is loaded where 
BOOT lands, you must go to the 1 istings. BOOT al so uses 
some of high core to build the EXE directory for the file 
DUMP. EXEi for example, on a machine with 256K, no page 
above 761 is dumped. 

TS-6 «For Internal Use Only» 



DIGITAL 

SYSERR 

TOPS-20 MONITOR 
Troubleshooting 

Overview of SYSERR Functions and Data Base 

SYSERR is a program that reads PS:<SYSTEM>ERROR.SYS and 
generates reports on hardware errors, system crashes, front 
end reloads, etc. Entries in the file ERROR.SYS are written 
via the SYERR JSYS. For a description of each of the types 
of entries, see the monitor tables. 

When an ERROR.SYS entry is desired, the caller (which 
is one of the system programs such as QUASAR or the monitor 
itself) builds a SYSERR block as described ln the monitor 
tables and does the SYERR JSYS. The SYERR JSYS adds the 
block to a queue in the monitor's address space; the queue 
header is SEBQOU (location 24). It then wakes up the Job 0 
task which processes the queue and writes the queued entries 
to ERROR.SYS. 

Queued SYSERR Blocks In a Crash 

A BUGHLT entry is generated when the system BUGHLTs; 
this entry is queued but not written to ERROR.SYS. The 
system is considered to be in an unsafe state at the time of 
the crash. When the system comes back up, code in SETSPD is 
called to move any queued SYSERR blocks in the dump to 
ERROR.SYS. 

The queue header is location 24 (called SEBQOU); each 
SYSERR block consists of the standard SYSERR header followed 
by the information in the specific block type. 

Sometimes it is useful to look at the queued SYSERR 
blocks in a crash, particularly the BUGHLT block. The 
BUGHLT block contains certain status information at the time 
of the crash. The status words are described below: 

1. CONI APR, 

Read the status of the processor error and 
sweep flags. This information is stored in offset 
BG%APS of the BUGHLT block. The flags and status 
information returned by a CONI APR are described in 
the Hardware Reference Manual. 

TS-7 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

2. CONI PAG, 

This information is stored in offset BG%PGS of 
the BUGHLT block. A CONI PAG reads the system 

,status of the pager. If TOPS-20 paging is on, 
there is a 1 in bit 21. Bits 23-35 contain the 
contents of the EBR (the address of the EPT). For 
a description of all the fields, see the Hardware 
Reference Manual. 

t 

3. DATAl PAG, 

This information is stored in offset BG%PGD of 
the BUGHLT block. A DATAl PAG returns the process 
status of the pager. DATAl PAG, returns the 
current and previous contex AC blocks, and the 
address of the UPT. For a complete description of 
the fields returned by a DATAl PAG, see the 
Hardware Reference Manual. 

4. CONI PI, 

This information is stored in offset BG%PIS of 
the BUGHLT block. A CONI PI returns the status of 
the priority interrupt system; it indicates which 
levels are on, whether the PI system is on, and on 
which levels interrupts are currently being held. 
For a complete description, see the Hardware 
Reference Manual. 

Moving SYSERR Blocks From a Crash to ERROR.SYS 

As stated before, SETSPD moves queued SYSERR blocks 
from the crash to ERROR.SYS. A Job 0 task starts the SETSPD 
program at START3; this code copies DUMP.EXE to DUMP.CPY 
and then issues a SYERR JSYS for each queued SYSERR block in 
the crash. 

TS-8 «For Internal Use Only» 



DIGITAL 

BUGHLT 

TOPS-20 MONITOR 
Tro ubleshooting 

Location BUGHLT contains the location the BUGHLT came 
from. The latter contains an XCT BUGHLT-name. All BUGHLT 
code is generated by the BUG macro defined in PROLOG. 

BUG Macro 

DEFINE BUG(TYP,TAG,STR,REGS,%NAM,%STR)< 

%STR: 

> 

XCT [TAG:: JSR BUG'TYP 
IRP REGS,< 

Z REGS> . 
SIXBIT /TAG/] 
.PSECT BGSTR 
ASCIZ \STR\ 
.ENDPS BGSTR 
• PSECT BGPTR 
XWD TAG,%STR 
• ENDPS -BGPTR 

This is an example of a call to the BUG macro: 

BUG(HLT,J0NRUN,<JOB 0 NOT RUN FOR TOO LONG, ••• 
••• PROBABLE SWAPPING HANGUP» 

If a J0NRUN BUGHLT occurred, the data base would look like 
this: 

BUGHLT/ CAIA CLK2+6 ;address the BUGHLT came from 

CLK2+6/ XCT J0NRUN ;generated by BUG macro 

J0NRUN/ JSR BUGHLT 
/ SIXBIT \J0NRUN\ 

BUGHLT Contents 

Again, location BUGHLT is set up with the location the 
BUGHLT came from if the machine BUGHLTed. That location 
contains an XCT BUGHLT-name. All the BUGHLTs are listed in 
the Operator's Guide with a short descriptive phrase. 
(Appendix I of this course contains a list of all BUGHLTs, 
BUGCHKS and BUGINFs.) 

TS-9 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Troubleshooting 

If there is a zero in location BUGHLT, the machine 
probably got a KEEP-ALIVE CEASED. This happens if either a 
"clock error stop" or "deposit/examine failure" occurs. 
Both of these errors are hardware failures and Field Service 
should be called. Although these two errors are the 
probable' causes of KEEP-ALIVE CEASED, you cannot rule out 
the possibility of a software bug. Get the KLERR output 
from the CTY. It will have the PC and PI state. 

Because the coriso1e front end simply reloads for a 
KEEP-ALIVE CEASED, the information in the dump is not 
dependable because the cache has not been written out, the 
ACs have not been saved, etc. (These functions are normally 
done by the BUGHLT code.) The only valid information is the 
CTY output from KLERR. 

PUSH DOWN LISTS AND RELATED DATA BASES 

In general" the pushdown list in use at the time of the 
crash implies what was going on. For example, if the 
scheduler was running, SKDPDL is the push down list. If a 
page fault was in progress, TRAPSK is the push down list, 
and the former.P is saved. 

How to Look at a Stack 

1. P contains the current stack pointer. 

2. If an entry was made on the stack by a PUSHJ, the 
entry will look like a pc. This is not a hard and 
fast rule, but it can help. A user mode pc usually 
has bits 1,2, and 3 on and a monitor PC has bits 1 
and 2 on. 

3. If a' return address is still on the stack (i.e., 
the entry is at an address less than the stack 
pointer), you have not returned from the routine. 

4. The monitor uses the stack for 
.The macros STKVAR, TRVAR, etc. 
entries on the stack. Knowing 
helps you recognize which stack 
used as temporary storage. 

temporary storag e. 
leave recognizable 
these conventions 

locations are being 

TS-10 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
T r 0 ub 1 e sh 0 0 t i ng 

Push Down List/Machine State 

The monitor uses different stacks to do different 
things. Register P is the stack pointer and indicates which 
stack was in use at the time of the crash. The stacks and 
their uses are listed below: 

1. UPDL -- Used when running in Exec mode for the 
user, that is, when doing a JSYS. Also used by the 
Job 0 tasks that run in exec mode. 

2~ TRAPSK -- Used for page fault handling. 

3. PIPDB -- Used for software interrupt handling. 

4. SKDPDL 
cycle. 

Used by the scheduler for the overhead 

5. DTESTK DTE interrupt level stack (PI level 6). 

6. PHYPDL Used by PHYSIO when queueing an IORS. 

7. PHYIPD Used when PHYSIO is handling an 
interrupt. 

8. MEMPP -- Used when handling APR interrupts. 

Stack Usage for Local Storage 

Several macros that provide local storage use the 
stack. What they put on the stack is usually recognizable. 
(See MACSYM.MEM for further information.) 

1. STKVAR 

STKVAR uses the stack as temporary storage; 
the local variables have names that are really 
stack locations. STKVAR uses n stack locations for 
local variables (where n is the number of local 
variables requested) a count of local variables, 
the return address .STKRT. On the stack you will 
see: 

TS-ll «For Internal Use Only» 



DIGITAL 

I local 
I local 
/ . 
I • 
I local 
/ n, ,n 

variable 
variable 

variable n 

TOPS-20 MONITOR 
Troubleshooting 

;count of local variables (used to 
;adjust the stack) 

/ .STKRT ;routine to clean up the stack and 
; return 

Therefore, when you find .STKRT on the stack, the 
word before it is the count of local variables 
which tells you how many locations on the stack are 
in use by STKVAR. 

2. TRVAR 

TRVAR uses the stack in much the same way as 
STKVAR does, but it also uses AC15, the current 
contents of which is pushed on the stack first. 

-The stack locations it uses look like this: 

I AC15 
I local variable 
I local variable 
I . 
I . 
I local variable n 
I n, ,n 
I .TRRET 

Therefore, when you find .TRRET on the stack, the 
word before it is the count of local variables, 
with register 15 stored on the stack in front of 
the local variables. 

3. ASUBR 

ASUBR saves AC15, ACs 1-4, followed by the 
return address .ASRET, which is a routine to clean 
up the stack. When you see the address .ASRET on 
the stack, you can expect the following in this 
part of the stack: 

TS-12 «For Internal Use Only» 



DIG"ITAL 

/ AC15 
/ ACI 
/ AC2 
/ AC3 
/ AC4 
/ .ASRET 

TOPS-20 MONITOR 
Troubleshooting 

4. ACVAR 

ACVAR can save AC5, AC5 and AC6, AC5-AC7, 
AC5-AC10, or AC5-AC14, depending on the arguments 
given. In each case, the return address to clean 
up the stack is the last item pushed on the stack 
by the ACVAR macro; the return address stored on 
the stack is the clue to what else was pushed on 
the stack. Each of the possible cases is listed 
below: 

1. AC5 saved 

/ AC5 
/ .SAVl+2 ; return address 

2. AC5 and AC6 saved 

/ AC5 
/ AC6 
/ .SAV2+3 ; return add ress 

3. AC5, AC6, AC7, and AC10 saved 
/ AC5 
/ AC6 
/ AC7 
/ .SAV3+4 ;return address 

4. AC5, AC6, AC7, and AC10 saved 
/ AC5 
/ AC6 
/ AC7 
/ AC10 
/ .SAV4+5 ;return address 

TS-13 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

5. AC5 through AC14 saved 

5. SAVEAC 

/ AC5 
/ AC6 
/ AC7 
/ AC10 
/ ACll 
/ AC12 
/ AC13 
/ AC14 
/ .SAV8+7 ;return address 

SAVEAC takes a list of ACs to be saved as an 
argument. It pushes the list of ACs on the stack, 
followed by the address of a literal which is the 
routine that restores the stack. One of the 
instructions in the literal does a SUB 
P,[.NAC".NAC]. This macro does not leave easily 
recognizable data on the stack, but if you find a 
return address on the stack that is a literal that 
does the following, SAVEAC was used. (If you look 
at the code in the literal, you will be able to 
tell which ACs were pushed on the stack and how 
many there were. .NAC is the count of ACs pushed. 

/ AC 
/ AC 
/ . 
/ . 
/ last AC saved 
/ address of literal to restore stack 

The literal to restore the 
(approximately) like this: 

stack looks 

LIT= address of literal to restore stack for 
this example. 

TS-14 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

LIT-II 3,,3 
LITI CAIA 0 

lAOS -N(P) 

;count of ACs saved =3 

I MOVE 1,-2(17) 
I MOVE 5,-1(17) 
I MOVE 10,0(17) 
I SUB 17,LIT-l 
I POPJ P, 

;restore ACl 
;restore AC5 
;restore ACl0 
;reclaim stack locations 
;return to callee 

6. SAVEP 

This macro calls the routine SAVP (in APRSRV) 
to save the ACs PI-P6 on the stack, followed by the 
address RESTP, which is the routine to restore the 
ACs. 

7. SAVEQ 

I PI 
I P2 
,I P3 
I P4 
I P5 
I P6 
I RESTP 

This macro calls the routine SAVQ (in APRSRV) 
to save the ACs QI-Q3 on the stack, followed by the 
address RESTQ, which is the routine to restore the 
ACs. 

8. SAVEPQ 

I Ql 
I Q2 
I Q3 
I RESTQ 

This macro calls the routine SAVPQ (in APRSRV) 
to save the ACs QI-Q3 and PI-P6 on the stack, 
followed by the address RESTPQ, which is the 
routine to restore the ACs. 

TS-l5 «For Internal Use Only» 



DIGITAL 

I 01 
I 02 
1 Q3 
I PI 
1 P2 
1 P3 
1 P4 
1 PS 
1 P6, 
1 RESTPQ 

TOPS-2rl1 MONITOR 
Troubleshooting 

9. SAVET 

This macro calls the routine SAVT (in APRSRV) 
to save the ACs TI-T4 on the stack, followed by the 
address RESTT, which is the routine to restore the 
ACs. 

Stack Adjustment 

_I Tl 
1 T2 
1 T3 
1 T4 
1 RESTT 

Many times the stack pointer is adjusted. Table SHC, 
indexed by n, contains n"n which may be added to or 
subtracted from the stack pointer. 

TS-16 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

MACHINE STATES AND RELEVANT DATA BASES 

PC Storage 

1. PC at the time of the crash. 

Location BUGHLT contains the PC at the time of 
the crash. 

2. PC when JSYS began. 

Two copies of the PC are saved on the stack. 

3. PFL/PPC 

Current PC of process 
last context switched. 
user mode PC. 

4. PIFL/PIPC 

when the process was 
May be either an exec or 

The exec mode PC is saved here while the 
software interrupt code is in progress. 

5. Temporary PC storage 

When the system is changing state, it must 
always be prepared for a context switch. This is a 
concern when a JSYS is starting, when a process 
blocks, and when a software interrupt begins. In 
each case, the PC is temporarily stored in case of 
a context switch while the state change is in 
progress. 

1. SKOFL/SKOPC - PC is saved here while process is 
blocking. 

2. MONFL/MONPC - PC is saved here while the nested 
JSYS is starting. 

3. ENSKR/ENSKR+l - PC is saved here while it is 
entering the scheduler via the ENTSKD macro. 
This is the PC the ENTSKO macro was called 
with. 

TS-l7 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubl eshooting 

AC Storage 

AC STORAGE IN THE PSB 

Each process's PSB contains several storage areas for 
saving ACs. ACs are saved in the PSB in these cases: 

1. Nested JSY~ (JSYS called by a JSYS). 

When a user called JSYS is in progress, AC 
block 0 contains the monitor's ACs (the current 
JSYS code ACs) and AC block 1 contains the user 
mode ACs. If the JSYS code does a JSYS, AC block 1 
(user mode ACs) are saved in the UACB area and the 

AC block 0 ACs are moved to AC block 1. For each 
level of JSYS, the AC block 1 ACs are pushed onto 
the UACB stack and the AC block 0 ACs are moved to 
AC block 1. Therefore, the AC block 1 ACs are 
always' the prev ious context ACSi i.e., the ACs 
when the JSYS was called. 

If a nested JSYS is in progress, the user mode 
ACs are the first stacked ACs in UACB. If the 
nesting is more than one level deep, each 
subsequent JSYSs calling ACs are also saved in 
UACBi the current JSYS ACs are saved in UAC if the 
process is not currently running, or in BUGACU if 
the process was running at the time of the crash. 
The maximum nesting level for JSYSs is 5; this 
limit is dependent on how much storage is reserved 
for AC stacking in UACB. 

ACBAS is the "pointer" for the AC stack UACB, 
but is not stored as an add ress. The contents 0 f 
ACBAS must be shifted left 4 places to make it an 
address. The resulting address is the first saved 
AC for the last pushed AC block (i.e., the saved 
ACs for the next higher level of nesting). If 
there are no saved ACs pushed on the stack, ACBAS 
contains its initial value of <UACB>B39-1=37677i 
if ACBAS contains anything else, there are pushed 
AC blocks saved in UACB. 

TS-1S «For Internal Use Only» 



DIGITAL 

2. 

3. 

Process is contex t switched 
mode. 

The current ACs (i.e., 
.saved in block UAC. 

Process is context swi tched 
mode. 

while 

TOPS-20 MONITOR 
Troubleshooting 

running in user 

the user mode ACs) are 

while running in exec 

The current ACs are saved in block PAC. The 
previous context ACs are saved in block UAC. The 
ACs saved in UAC are the user mode ACs unless a 
nested JSYS is in progress; in this case, the ACs 
saved in UAC are the ACs the nested JSYS was called 
with. The user mode ACs for this case are saved on 
the AC stack called UACB; the user mode ACs are 
the first saved ACs on UACB. 

4. Software interrupt processing. 

The exec mode ACs are saved in block PIAC 
while a software interrupt is in progress. 

AC STORAGE AT THE TIME OF THE CRASH 

1. BUGACS 

Exec mode ACs at the time of the crash, copied 
to current ACs when using FILDDT. 

2. BUGACU 

Previous context ACs at the time of the crash. 
These are the user mode ACs unless a nested JSYS 
was in progress, i~e., if a JSYS called from a 
JSYS~ If a nested JSYS was in progress at the time 
of the crash, BUGACU contains the ACs the current 
JSYS was called with. In such a case, the user 
mode ACs are saved in the AC stack called UACB. 

TS-19 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Troubleshooting 

SUMMARY OF AC STORAGE 

1. UAC 

Previous context ACs are saved here when the 
user is context switched. For the currently 
scheduled process, UAC contains the ACs from the 
last time the process was dismissed. Once again, 
if a nested: JSYS was in progress, the UACs contain 
the ACs the JSYS was called with. In such a case, 
the user mode ACs are saved in the AC stack called 
UACB. 

2. UACB and ACBAS 

Pushed AC blocks when a nested JSYS is in 
prog ress. 

3. PAC 

Exec mode ACs saved here for process when it 
is dismissed. 

4. PIAC 

Exec mode ACs saved here when a software 
inter,r upt is in prog ress. 

5. BUGACS 

Ex ec mode ACs a t time 0 f crash. 

6. BUGACU 

Previous context ACs at time of crash. 

Fork Scheduled, or Not 

If a fork is scheduled, location FORKX contains the 
fork's system fork number. The scheduled fork's PSB and 
per-process pages, JSB and per-job storage, and the page 
table are all mapped into the monitor's address space. If 
no fork is currently scheduled, location FORKX contains a 
-1. 

TS-2~ «For Internal Use Only» 



DIGITAL 

Fork NOSKEO 

TOPS-20 MONITOR 
Troubleshooting 

If a fork is NOSKED, its fork number is stored in 
SSKED; if there is no NOSKED fork, SSKED contains -1. 

Extended vs. Non-Extended Addressing 

If the machine supports extended 
EXADDR contains a 1; if the machine 
extended addressing, EXADDR contains 0. 

Sizes (Resident, Non-Resident, Total) 

add ressi ng , f1 ag 
does not support 

MONCOR/ ntmlber 0 f pag es in resident moni tor 

TOTRC/ total number of swappable core pages 

NHIPG/ highest physical core page ntmlber 

MOOT Page 

When MDOT is in use for a process, DOTPPG (currently 
page 774) exists. If the running process's page 774 exists, 
that process has been using MDDT. (You might suspect the 
crash was caused by an accidental deposit in MOOT, for 
examp1 e.) 

Relevant Data Base for Each Machine State . 

JSYS 

1. Stack 

UPDL 

2. Initial stack setup 

Initial UPOL setup for JSYS if from user mode: 

/ PC at time of JSYS 
/ PC f1 ag sat time 0 f JSYS 

TS-21 «For Internal Use Only» 



DIGITAL 

/ PC at time 'of JSYS 
/ PC fl ags at time 0 f JSYS 

TOPS-20 MONITOR 
Tro ubI eshoo ti ng 

Initial UPDL setup for JSYS if from exec mode 
(nested) : 

/ INTDF 
/ M~P (for higher level JSYS) 
/ PC at time of JSYS (return PC) 
/ PC flags at time of JSYS 

3. Previous PC 

The return PC is pushed on to the stack; MPP 
is the stack pointer for the return PC. 

4. Saved ACs 

ACs saved in UACB if the JSYS is nested. See 
section on AC STORAGE for a description of UACB. 

5. Saved stack po inter 

If the JSYS was from user mode, this is not 
relevant. If the JSYS is nested, the previous JSYS 
also used this stack and the MPP pointer can, be 
used to determine where the stack pointer was when 
thi s JSYS beg an: 

Previous 
stack ptr-> / 

/ INTDF 
/ MPP (for higher level JSYS) 
/ MONPC 

MPP ->/ PC at time of JSYS (return PC) 

6. AC usage 

There is no standard for AC usage to which all 
JSYSs conform. 

TS-22 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubl eshooting 

7. Related storage 

1. MPP -- points to: 

--return PC for JSYS 

--last location of initial setup for this 
JSYS 

2. FPC = KIMUPC -- dispatch address for JSYS 

3. KIMUUl -- last UUO from user in format: 

KIMUUl/ fl ag s, ,opcod e 
/ JSYS number 

4. INTDF 

Indicates if the process is NDINT, and to 
how many levels. Set to -1 if the process is 
not NOINT, greater than or equal to zero if the 
process is NOINT. 

PAGE FAULT 

1. Stack 

TRAPSK 

2. Initial stack setup 

The initial stack setup differs for each of 
three cases: 

--pag e faul t from user mode 

--page fault from exec mode 

--recursive page fault 

TS-23 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Troubleshooting 

1. Stack setup upon page fault from user mode: 

/runtime 
Ireturn PC 
/return PC f1 ag s 

2. Stack setup upon page fault from exec mode: 

/ AC1 
/ AC2 
/ AC3 
/ AC4 
/ AC7 
/ AC16 
/ TRAPSW 
/ runtime 
/ PC 
/ PC flags 

3. Stack setup upon recursive page fault: 

/ AC1 
/ AC2 
/ AC3 
/ AC4 
/ AC7 
/ AClfi 
/ TRAPSW 
/ PC 
/ PC flags 

3. Previous PC 

. Saved on stack; see initial stack setup for 
location. 

4. Saved ACs 

The ACs that are saved are kept on the stack. 
See the initial stack setup to learn where each AC 
is saved. 

TS-24 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
T r 0 ub Ie sho 0 t i ng 

5 • S a v ed s t a c k po in t e r 

TRAPAP 

6. ,AC usag e 

Differs for each type of page fault. 

7. ReI ated storag e 

1. TRPID --identity of the page causing the trap 
in the form PTN"PN or PTN 

This is the identity of the page the page 
fault handler is working on. TRPID contains 
the page's page table identity while the page's 
page table is brought into core (if the page 
table was not in core) • 

2. TRPPTR 

Storage address of the page the page fault 
handl er is wo rki ng on. 

3. TRAPSW (copy of TRAPS0) 

4. TRAPC 

o if the first 
greater than 0, it 
recursion. 

level page fault; if 
indicates the level of 

5. TRAPFL/TRAPPC = UPTPFL/UPTPFO 

FI ag s and. PC a t time 0 f pag e faul t. 

6. TRAPS0 = UPTPFW 

Page fail word; contains the ADDRESS that 
pag e faul ted. 

TS-2S «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
Troubleshooting 

SCHEDULER 

1. Stack 

SKDPDL 

2. Initial stack setup 

None. , 

3. Prev ious PC 

S av ed in PS B fo r a pr oc e s s upo n a con t ex t 
switch to the scheduler; the PC is saved in 
PFL/PPC of the process's PSB. If FORKX contains a 
fork number, it is the number of the fork running 
when the scheduler was invoked. If FORKX is not 
set up, you cannot determine which fork was running 
1 ast. 

4. Saved ACs 

The process's ACs are saved in block PAC (exec 
mode ACs) and block UAC (previous context ACs) of 
the PSB for the process. If FORKX is not setup, 
you cannot determine which process was running 
1 ast. 

5. Saved stack pointer 

In the saved ACs. 

6. AC usage 

FX/ -1 if no ,fork was chosen, or the system 
fork number of the chosen fork 

7. Related storage 

1. FORKX FORKX contains a -1 if no fork is 
chosen, or the fork number of the chosen fork. 

2. Temporary storage while entering scheduler. 

TS-26 «Fo r Internal Use Onl y» 



DIGITAL TOPS-2~ MONITOR 
Troubleshooting 

PHYSIO QUEUEING LEVEL 

1. Stack 

PHYPDL 

2. Initial stack setup 

The P and Q ACs are saved on the stack by the 
macro SAVEPQi the ACs are saved in order of Ql 
through Q3 followed by PI through P6. See the 
section on Stack Usage for Local Storage for the 
fo rmat. 

3. Previous PC 

Since PHYSIO is called with a PUSHJ, the 
previous PC is the top of the saved stack. 

4. Saved ACs 

ACs QI-Q3 and PI through P6 are saved on the 
stack. See the section in Stack Usage for Local 
Storage entitled SAVEPQ. 

5 • S a v ed s t a c k po i n t e r 

The previous stack pointer is saved in PHYSVP. 

6. AC usage 

P4/ address of IORS being queued 

Pl/ address of CDB 

P3/ address of UDB 

P2/ address of KDB or ~ if no KOB 

7. Related storage 

None. 

TS-27 «For Internal Use Only» 



DIGITAL TOPS-2g MONITOR 
Troubleshooting 

PHYSIO INTERRUPT LEVEL 

1. Stack 

PHYIPD 

2. Initial stack setup 

None ., 
i 

3. Previous PC 

The previous PC is saved by the XPCW 
instruction in a two word block, beginning at the 
CDB-n. 

4. Saved ACs 

PHYACS -- block where ACs saved 

5 •. Saved stack pointer 

6. AC 

The saved stack pointer is in PHYACS+17. 

usage 

Pl/ address of CDB 

P2/ add ress of KDB or g if none 

P3/ address of UDB 

P4/ IORS address or argument indicating 
ac tion code: 

P4<0 
P4=g 
P4>0 

schedule a channel cycle (P4) = -1 
dismiss interrupt 
housekeep current request 

(contains IORB address) 

7. Related storage 

Home block check funtion. In STG, starts at 
CHSUDB. 

TS-28 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

APR INTERRUPT LEVEL 

1. Stack 

MEMPP 

2. Initial stack setup 

/UPTPFO= TRAPPC 
/UPTPFL= TRAPFL 
/UPTPFN 
/UPTPFW~ TRAPS0 

3. Pr ev io us PC 

Saved as a double-word PC by XPCW in locations 
PIAPRX and PIAPRXI. 

4. Saved, ACs 

MEMPA block where ACs 0-10 are saved. 

NOTE ----------.... 

Release 3A uses a different AC block 
while at APR interrupt level; therefore, 
no ACs are saved. 

5. Saved stack pointer 

MEMAP -- previous stack pointer saved there. 

6. AC usag e 

None. 

7. Related storage 

1. Sets II local II pag e fail routine to MEMPTP. 

TS-29 «For Internal Use Only» 



DIGITAL 

DTE INTERRUPT LEVEL 

1. Stack 

DTESTK 

2. Initial stack setup 

None. ! 

i 

3. Previous PC 

Saved in DTETRA. 

4. Saved ACs 

TOPS-2~ MONITOR 
Troubleshooting 

DTEACB -- block where ACs are saved. 

5. Saved stack pointer 

Previous stack pointer is saved in DTEACB+17. 

6. AC usage 

Fir e s u1 t 0 f C ON I DTEn, 

AI DTE number of DTE that caused interrupt 

31 count (if RSX2~F protocol) 

41 Byte pointer (if RSX2~F protocol) 

7. Related storage 

None. 

TS-3~ «For Internal Use Only» 



DIGITAL 

PSI HANDLING 

1. Stack 

PIPDB 

2. Initial stack setup 

None. 

3'. Previous PC 

PIDL/PIPC 

4. Saved ACs 

TOPS-20 MONITOR 
Troubleshooting 

PIAC -- block where ACs are saved. 

5. Saved stack pointer 

Previous stack pointer is saved in PIAC+17. 

6. AC usage 

FX/ interrupt flags from FKINT 

7. Related storage 

None. 

JOB 0 EXEC MODE TASKS 

1. Stack 

UPDL 

2. Initial stack setup 

None. 

TS-3l «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

3. Previous PC 

Since these are scheduled processes, this is 
not relevant. 

4. Saved ACs 

Since these are scheduled processes, this is 
not relevant •. 

5. Saved stack pointer 

Since these are scheduled processes, this is 
not re1 evant. 

6. AC usage 

None. 

7. Related storage 

1. How can you tell this use of UPDL from a JSYS? 

If the FKJOB entry for the running fork is 
Job 0, the current process is probably a Job 0 
task as opposed to a JSYS in progress. If the 
PC is in a Job 0 routine, this also indicates a 
Job 0 task. 

USER MODE 

The system never BUGHLTs in user mode, but it could 
KEEP-ALIVE CEASE. The ,PC is from user mode if the flag 
UMODF is set in the pc. 

TS-32 «For Internal Use Only» 



DIGITAL 

FILDDT 

DDT's 

TOPS-20 MONITOR 
T r 0 ub Ie sho 0 t i ng 

The latest version of DUMP.CPY is the last crash. The 
program FILDDT is used to analyze a crash. 

HOW TO USE FILDDT ON A CRASH 

To look at a crash with FILDDT you need 
the monitor file it came from (for symbols). 

the dump and 
For example: 

@ENABLE 
$FILDDT 
FILDDT>LOAD <SYSTEM>MONITR.EXE 
FILDDT>GET <SYSTEM>DUMP.CPY 

; load symbol s 
; load dump 

The ACs contain their contents at the time of the dump. By 
default you look at physical (not virtual) addresses. 

$U COMMAND 

FILDDT can simulate KL paging. If you want to look at 
a particular address space, use the n$U (altmode U) command. 
The n is the address space's page table's 8PT slot. 
Usually, you wish to look at the monitor's address space. 
MMAP's SPT slot is in location MMSPTN (usually it is 403, 
but you should check the contents of MMSPTN if you are 
looking at an unfamiliar monitor) ~ In the part of the 
monitor that BOOT loads, there is a one-to-one 
correspondence between physical and virtual addresses; 
MMSPTN is in this part of the monitor's address space. 

If you wish to look at some fork's address space, find 
its page table's SPT slot in the left half of FKPGS, indexed 
by fork number. 

If you wish to return td physical addressing (i.e., no 
KL paging simulation), type $U (no n argument) • 

TS-33 «For Internal Use Only» 



DIGITAL 

Relevant DDT/FILDDT Commands 

TOPS-20 MONITOR 
Troubleshooting 

These are standard DDT commands; however, you may not 
be familiar with them. They are included here along with 
example$ of their use. 

QUESTION MARK (?) 

If you type a symbol followed by a question mark, DDT 
tells you which module(s) that symbol appears in; the 
module name is followed by a G if the symbol is global. A 
local symbol may be defined in more than one module. 

This facility can be used to locate symbols, like GLOB, 
but faster. 

BUGSTO? 
APRSRV ;symbol is local and defined in APRSRV 

SPT? 
STG G ;symbol is global and defined in STG 

UNDERSCORE 

A value followed by an underscore is a request to DDT 
to find a symbol with that value. 

This facility can be used to locate the symbolic 
address of a value. 

14156 L8CHED+5 

101400 8PT 

EFFECTIVE ADDRESS SEARCH ($E) 

The $E command is used to search for all locations 
where the effective address, following all indirect and 
index-register chains to a maximum length of 64 (base 10) 
equals the address being searched for. 

TS-34 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

The format of the command is a<b>c$E; a<b> is the 
range and is optional. If no range is specified, the whole 
address space is assumed. The c argument is the address to 
search for. 

MMSPTN$E 
PGRI10+3/ MOVEM Tl,MMSPTN 
FPTA4/ SKIPA Tl,MMSPTN 
MLKPGM+2/ CAMN T2,MMSPTN 
SWPER3+2/ CAMN T2,MMSPTN 
GSMLER+ll/ HRL Tl,MMSPTN 
BSMGPl+2/ HRL Tl,MMSPTN 
212777/ HRL Tl,MMSPTN 
SNPF0A+15/ HRL Tl,MMSPTN 
SNPF5B+l~/ HRL Tl,MMSPTN 
UTlLL+l/ HRL Tl,MMSPTN 

JSB<JSB+5>0$E 
JOBMAP+2/ 0 
JOBMAP+3/ 0 
JOBMAP+5/ ~ 

WORD SEARCH ($W) 

Word search compares each storage word with the word 
being searched for in those bit positions where the mask, 
located at $M, has ones. The mask word contains all ones 
unless set by the user. If the comparison shows equality, 
the word search types out the address and the contents of 
the location; if the comparison results in inequality, the 
word search types out nothing. 

The format of the command is a<b>c$W. a<b> is the 
range and c is the quantity searched for. To set the mask, 
type n$M where n is the quantity to be placed in the mask 
word. 

Suppose we wish to find all share pointers in the 
current user's page map between pages 0 and 10. In this 
case, store a 7 (for pointer type) in bits 0-2 of the mask. 
The command is UPTA<UPTA+10>200000,,0$W and works as 
follows: 

TS-35 «For Internal Use Only» 



DIGITAL 

7999909,,9$M 

UPTA<UPTA+10>200000,,0$W 
,UPTA+2/206000,,1244 
UPTA+4/ 206~00,,1242 

NOT WORD SEARCH ($N:) 

TOPS-20 MONITOR 
Troubleshooting 

Not word search works like word search, the only 
difference is that it types out the contents of the register 
when the comparison is an inequality, and types nothing when 
an equality is found. 

Not word search is commonly used to type out all 
non-zero locations in some range. Suppose you wish to find 
all existent (non-zero) entries in the JSB map; you would 
type: 

MOOT 

-l$M 
JOBMAP<JOBMAP+66>0$N 
JOBMAP/224000,,635 
JOBMAP+l/124003,,7044 
JOBMAP+4/124003,,2764 
JOBMAP+6/124003,,7050 

,MQDT is a part of the monitor that allows you to look 
at the running monitor with the standard DDT commands; your 
process is always the running process when you use MDDT. 
You can also call monitor routines to map pages, etc.; 
however, extreme caution spould be taken when using MDDT. 
I~ you change any locations, you can crash the monitor. It 
is ~ good practice to type carriage return immediately after 
yo~ open any location to prevent accidental deposits into 
memory. 

You can enter MDDT in either of two ways. In the first 
example, the running fork will be the top fork of your job, 
i.e., the EXEC. In the second example, the running fork 
will be the fork running user level DDT. 

@EN}\BLE 

TS-36 «For Internal Use Only» 



DIGITAL 

$AEQUIT 
MX>/ 
MOOT 

@ENABLE 
$SOOT 
JSYS 777$X. 
MOOT 

TOPS-20 MONITOR 
Troubleshooting 

You can use either method to enter MOOT~ Return from 
MOOT by calling the routine MRETN. 00 this by typing: 

EDDT 

MRETN$G 

While you are in EOOT, timesharing ceases. 

Loading the Monitor With EOOT 

Switch registers: 0,1,2,7 

BOOT>/L 
BOOT>/G141 
EOOTF/ 1 
OBUGSW/ 2 
143$G 

TS-37 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

TS-38 

TOPS-29 MONITOR 
Troubleshooting 

«For Internal Use Only» 



DIGITAL 

MODULE TEST 

TOPS-2" MONTTOR 
Troubleshooting 

When answering the 1 ab exerc i ses, wr i te down the names 
of the tables where you found the answers. The labs will 
help you understand the monitor data base structure. So 
remember, where to:look is more important than what you find 
there. ' 

The exercises marked with a double star (**) are more 
difficult and are optional. As the course progresses, you 
may feel more comfortable about these portions; feel free 
to come back to them later. 

ILLUUO Crash 

TOOLS 

This set of exercises uses a crash named <MONITOR­
INTERNALS>ILLUUO.EXE. The monitor you should use to load 
your symbol sis named <MONITOR-INTERNALS>I LLUUO-MONITR. EXE. 
Do not forget to set monitor context! 

TS-39 «For Internal Use Only» 



! 

DIGITAL 

EXERCISES 

TO PS-20 MON.IT"oR 
Troubleshooting 

You should attempt to. analyze why the ILLUUO crash 
occurred. The following questions should/help ybu look in 
the rig~t directions. Good luck! 

1. What is the BUGHLT? What does it mean to get this 
BUGHLT type? 

2. What was the PC that caused the BUGHLT? 

3. What was the instruction that ~rapped as an illegal 
UUO? 

4. What stack was in use? 

5. What mode was the processor in when the illegal UUO 
occurred? 

6. How did it get to that instruction? ** 

TS-4g «For Internal Use Only» 



DIGITAL 

EXERCISES 

TEST EVALUATION SHEET 

TOPS-20 MONITOR 
Troubleshooting 

1. What is the BUGHLT? What does it mean to get this 
BUGHLT type? 

ANSWER: The BUGHLT is an ILLUUO. This means the 
monitor executed an illegal instruction, which, in 
turn, generally means that either the monitor 
somehow started executing data or its ACs or that 
some code was garbaged. 

2. What was the PC that caused the SUGHLT? 

ANSWER: Since it is a UUO, the PC is stored in the 
MUUO old PC word; address KIMUPC (this is offset 
424 in the UPT/PSS page). Remember that this is 
the updated PC, so it is usually 1 greater than the 
UUO. 

KIMUPC/304000,,1 

3. What was the instruction that trapped as an illegal 
UUO? 

ANSWER: The updated PC was Ii so the illegal UUO 
1S in AC0. 

0/ 0 icertainly looks illegal 

4. Wha"t stack was in use? 

ANSWER: The stack in us~ tells us what was 
generally going on. 

P/ UPDL+125"UPDL+30 iJSYS in progress 

TS-4l «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

5. What mode was the processor in when the illegal UUO 
occurred? 

ANSWER: The PC flags have bit UMODF on if it was 
user mode; but a ILLUUO cannot happen anyway 
unless it was monitor mode. 

KIMUPC/304000,,1 

UMODF= 10000,,0 ;not user mode 

6. How did it get to that instruction? ** 

ANSWER: The best way to figure this out is to look 
at the stack. There are these basic facts that 
help to make sense of the stack: 

1. P contains the current stack pointer. 

2. MPP contains the stack pointer at the time the 
last JSYS began. If MPP does not point to the 
start of the stack plus 1 (UPDL+1), there is a 
JSYS that called a JSYS. 

3. If an entry was made on the stack by a PUSHJ, 
it will look like a PC. This is not a hard and 
fast rule, but it can help. A user mode PC 
usually has bits 1,2, and 3 on and a monitor PC 
has bits 1 and 2 on. 

4. When a JSYS begins, it pushes the old PC on the 
stack twice. 

5. If a return address is still on 
(i.e., has an address less than 
pointer), then you have not returned 
routine. 

the stack 
the stack 
from the 

6. The monitor uses the stack for temporary 
storage. The macros STKVAR, TRVAR, etc. leave 
recognizable things on the stack. Knowing 
these conventions helps you recognize which 
stack locations are being used as temporary 
storage. 

TS-42 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Troubleshooting 

Using these points, try to fit the pieces together. 
Here is the stack and deductions from it: 

PI UPDL+125"UPDL+30 

MPPI UPDL+76"UPDL+1 

UPDL/310000,,442531 
I 310000,,442531 
I 0 ' 
I 1,,1 
I MMAP".STKRT 

I CAIA SOUT1+1 

I MMAP+400"SWP~LK+3 
I JSTAB+161 

UPDL+101 CAIA SOUTB+6 
I CAIA BYTOUA+l3 
I CAIA NOPGT0+15 
I -1 
I 1,,160000 
I -1 
I JSTAB+161 
I 4,,4 

UPDL+201 CAIA .STKRT 
I CAIA NEWWNA+6 
I -1 
I JSTAB+160 
I CAIA JFNOF5+20 
I UPDL+77"UPDL+2 
I Tl 
I CAIA .ASRET 

UPDL+301 JSTAB+563,,10 

I -1 

I CAIA .TRRET 

I CAIA GTFDB2+14 
I CAIA USTDIR+l 

TS-43 

;current stack pointer 

ion1y one JSYS 

iPC at time of JSYS 
i 2nd copy of PC 

i looks 1 ike tempo rary 
istorage macro (STKVAR) 
i looks 1 ike a PC 

i and the add ress 
iimplies this 
iis a SOUT jsys. 

i 1 00 k s like a PC 

;4 temporary 
istorage locations 
; ano ther STKVAR 
ilooks like a PC 

i looks like a PC 

ilooks like a PC 
ithis is our top 
iof stack 
isince this is the 
i last location 
iPopped off the stack; 
iroutine for return 
iwi th TRVAR 

«For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Troubleshooting 

P and the stack indicate there is a SOUT going on; 
'MPP indicate it is not a nested JSYS. The PC at 
the time of the JSYS (in UPDL) is a user mode PC 
because UMODF is on. 

Loca tions UPDL+2 t.hrough UPDL+4 are STKVAR 
locations; .STKRT is the return routine STKVAR 
sets up and the location before it (containing 
1, ,1) is the count of temporary storage locations, 
that is, l~ 

It looks as if the SOUT called NEWWNA to 
change the file window page. That code'called 
JFNOF5, which made a call to NEWLFP; this is 
indicated by the entry in UPDL+24, which is the 
return address from NEWLFP. Looking at the code, 
and what gets called, it seems that NEWLFP went to 
NEWFLL and called NEWLFS, which failed. In the 
literal at NEWFLL+3, it calls and returns from 
USTDIR, and then it adjusts the stack. This causes 
it to POPJ to -1, the next higher entry on the 
stack. 

So it adjusted the stack by 1, which in this 
case, it should not have. The code apparently 
expected one more thing to be on the stack. 

TS-44 «For Internal Use Only» 



TOPS-20 MONITOR 

PHYSIO - Disk/Tape 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-2~ MONITOR 
PHYSIO - Disk/Tape 

MR-2717 

DT-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

DT-ii 

TOPS-2f(J MONITOR 
PHYSIO - Disk/Tape 

«For Internal Use Only» 



DIGITAL 

PHYSIO - Disk/Tape 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

r-------- I NTRODUCTION ------~ 

This module covers, in depth, the flow 
of the physical I/O for Magnetic Tape and 
Disk transfers. The flow starts with the 
generation of disk/magtape I/O Request 
Blocks (IORBs), through their queueing to 
the calling of the device-dependent, unit 
specific code. The channel and unit data 
bases are discussed, along with a 
description of the algorithms used for the 
selection of the appropriate transfer to be 
executed. Interrupt and error processing 
are also addressed. 

DT-l «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
PHYSIO - Disk/Tape 

,..------ ,LEARNING OBJECTIVES -----.... 

Upon completion of this module, the 
student will be able to: 

1. Describe the overall structure of the 
Physic~l I/O data base. 

I 

2. Identify the data contained in each of 
the structures relating to the Physical 
I/O data base. 

3. List the various error counts and 
specify the location of each. 

4. Describe the disk allocation algorithms 
and the relevant portions of the data 
base. 

--------------, RESOURCES 

1. Monitor Tables 

2. Micro-fiche of the Monitor 

DT-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

PHYSIO-Disk/Tape 

I. PHYSIO 
A. Data Structure 
B. Queueing an IORB 
C. Scheduling an IORB 
D. Starting I/O 
E. Interrupt Handling 

II. Disk Allocation 

TOPS-2g MONITOR 
PHYSIO - Disk/Tape 

A. Data Structure (DSKBTTBL) 
B. Space allocation 
C. Space Deallocation 
D. Drum Allocation 
E. BAT Blocks 

III. DISK Dependent I/O 
A. Data Structure 
B. Disk-Dependent Code 
C. Disk Interrupts 
D. Disk Errors and Abnormal Conditions 

IV. MAGTAPE Dependent I/O 
A. Magtape Data Base 
B. Magtape IORB 
C. CDB, KDB, and UDB 
D. Interface to PHYSIO 
E. Magtape I/O wait 
F. CLOSF Device-Dependent Functions 
G. Magtape Interrupts 
H. Error and Abnormal Conditions 

DT-3 «For Internal Use Only» 



DIG ITAL 

This page is for notes. 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

DT-4 «For Internal Use Only» 



./ 

DIGITAL 

Data Structure 

IORB (I/O REQUEST BLOCK) 

PHYSIO 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

An IORB is built by the disk or magtape dependent code. 
Short IORBs are built for most disk I/O requests; magtape 
I/O always uses long IORBs. 

CHANNEL DATA BLOCK 

The channel data block, or COB, contains 
channel-dependent status information. All interrupts for 
the channel begin processing in the COB and are dismissed by 
code in the CDB; 'interrupts come in at offset CDBINT=-6 and 
are dismissed at offset CDBJEN. Offset CDBDSP has the 
address of the channel dispatch table (RH2DSP). The KDB 
addresses for magtape, or the UDB addresses for disk, begin 
at offset CDBUDB. The channel number is in offset CDBADR. 

Each COB has a device-dependent portion beginning at 
CDBDDP. For RH20s, this portion is a 4-word block with the 
CONI, CONO, DATAl, and DATAO instructions in it. For RHlls, 
the portion contains the device registers, the UNIBUS status 
register address, and the UNIBUS bus address base address. 

CONTROLLER DATA BLOCK 

The controller data block, or KDB, exists for magtape 
controllers. Disk units each have their own controller 
built in; there is no KDB for disk. The KDB has the 
addresses of the unit data blocks for each magtape unit on 
the controll'er; one controller can handle a maximum of 
eight units. 

Offset KDBDSP has the address of the RDB function 
dispatch table. Offset KDBUDB is the first of eight 
possible UDB addresses, and each KDB has a device-dependent 
portion beginning at offset KDBDDP. I/O instructions and 
current unit status information is kept in this portion. 

DT-5 «For Internal Use Only» 



DIGITAL 

UNIT DATA BLOCK 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

Each magtape and disk unit has a unit data block, or 
UDB. Each UDB has unit-dependent status information for the 
unit. Offset UDBPWQ is the header for the unit's position 
wait queue, and offset UDBTWQ is the header for the unit's 
transfer wait queue. 

Each UDB has a, device-dependent portion beginning at 
offset UDBDDP. RP~4 and RP06 devices have the hardware I/O 
instructions here, plus the twenty drive registers. Magtape 
devices have the slave address on the slave bus, error 
information for the drive, and the tape cleaner flag stored 
here also. 

FINDING EACH DATA STRUCTURE 

The CHNTAB table, indexed by channel number, contains 
the address of the channel data block, or COB. For disk, 
offset CDBUDB of the COB is the first of eight pointers for 
the eight possible unit data blocks, or UDBsi if the unit 
exists, the pointer has the address of the unit's UDB. For 
magtape units, offset ~DBUDB contains the address of the 
KDB, or controller data block. The KDB has the pointers to 
the magtape UDBS, beginning at offset KDBUDBi each 
controller can support a maximum of eight units. 

For magtape units, MTCUTB, indexed by unit number, 
contains the CDB address for the unit in the left half and 
the UDB address for the unit in the right half. 

RH20 CHANNEL DISPATCH TABLE 

Table PHYCHT contains the addresses of the channel 
dispatch tables for each channel supported. Currently, this 
table has one entry and all systems have the address RH2DSP. 
However, the RH2DSP table is in PHYH2 or PHYHII, and only 
one of these modules will exist in a monitor; PHYHII is the 
2020 channel-dependent module and PHYH2 is in all other 
TOPS-20 monitors. 

The channel dispatch table offsets are described in the 
CDS table in the Monitor Table Descriptions section. Each 
offset serves a different function. For example, offset 

DT-6 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

CDSINI initializes the channel and builds the COB. 

UNIT DISPATCH TABLE 

Table PHYUNT has the dispatch table addresses for all 
supported unit types. The possible dispatch tables are: 

1. RS4DSP 

2. RP4DSP 

3. TM2DSP 

RS04 dispatch table 

RP04/RP06 dispatch table 

TM02 dispatch table 

The KDB, at offset KDBDSP, contains the KDB dispatch table 
TM2DSP, the same table referred to above as the unit 

d ispa tch tabl e. 

Many channel-depend ent functions (i .e. , ro uti nes 
dispatched to through the channel dispatch table) will also 
dispatch through the unit dispatch table. For example, 
RH2DSP plus CDSSIO (start I/O offset) does some 
channel-dependent functions and then dispatches through 
offset UDSSIO of the TM2DSP table, or the RP4DSP table, 
depending on the unit type. 

Queueing an IORB 

The IORB is added to either the transfer or position 
wait queue for the relevant unit. If the unit's channel is 
inactive, the request is serviced; that is, positioning or 
transfer is started, depending on the request type. 

QUEUING A MAGTAPE IORB 

For magtape, routine MTAIRQ is called to set up the 
IORB transfer list and fill in other IORB fields. MTAIRQ 
then calls QUEIRB (in PHYSIO) which calls routine PHYSIO (in 
PHYSIO) to add the IORS to the unit's transfer wait queue or 
position wait queue. 

Magtape requests must be serviced in the order they are 
requested. To insure this happens, requests are handled as 
follows: 

DT-7 «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
PHYSIO - Disk/Tape 

1. In a transfer request with the position wait queue 
(PWQ) empty, add the request to the transfer wait 
queue (TWQ). 

2. In a posi tion request, add the request to the PlflQ. 

3. In a transfer request with the position wait queue 
not empty, add the request to the PWQ. 

For an explanation of how this affects scheduling, see 
the section on how IORB's are scheduled for magtape. 

QUEUING A DISK IORB 

For disk, read operations are triggered via the page 
fault mechanism. Write operations are triggered by UFPGS 
JSYS, un-mapping a file page, DDMP action, or by one of the 
garbage collectors (XGC or GCCOR). 

Read requests call SWPIN; write requests call SWPOUT. 
These routines do any necessary overhead operations (such as 
mapping the index block, getting a page from RPLQ, setting 
up the core manag ement data base, putting the page on RPLQ, 
assigning drum space, etc.) and then call DSKIO to set up a 
short IORB. (Index block read sand wr i tes go through 
UDSKIO). 

For disk requests, routine PHYSIO will add the IORB to 
either the unit's position wait queue or transfer wait 
queue. If the unit is positioned at the same cylinder as 
the requested cylinder and the fairness count for the unit 
has not expired, the request is added to the unit's transfer 
wait queue; otherwise, the request is added to the unit's 
position wait queue. 

If the channel is not active, positioning or data 
transfer (depending on whether the request was added to the 
PWQ or to the TWQ) is started. If the channel is busy, the 
request is scheduled at interrupt level; if the request is 
added to the TWQ for disk, it may be stuffed into the backup 
register. A request is added to the backup register if: 

DT-8 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

1. The primary command is active. 

2. It is for the cylinder at which the unit is 
positioned. 

3. Full latency optimization is enabled. 

4. Its sector address is within minimum latency time. 

Scheduling an IORS 

Most sched ul ing of IORBs is done at interrupt level. 
When a transfer done interrupt occurs for a unit, another 
transfer is started for the channel. Each unit has a 
transfer wait queue; however, the chpnnel can handle only 
one data transfer at a time. When a disk unit's transfer 
wait queue is empty, a new cylinder is selected via the scan 
algorithm, and positioning is started for that unit. Note 
that positioning can be started for a unit (or units) with 
data transfer started on another unit; that is, positioning 
and data transfer can go on simultaneously for units on the 
same channel. However, the positioning requests must be 
started before any data transfer is requested because once a 
data transfer begins, the channel is busy until the transfer 
done interrupt occurs. 

The algorithms used to choose a transfer request for 
disk and magtape are as follows. 

Fo r mag tape: 

Requests must be serviced in the order they are given. 
Choose the next request on the ~WQ. If the TWQ is empty, 
look at the first request on the PWQ. If it is a 
positioning request, start positioning. An empty TWQ, with 
the first request on the PWQ being a transfer request, 
implies that the last serviced request for this unit was a 
position request; move all transfer requests (up to the 
next positioning request) from the PWQ to the TWQ. Service 
the first request on the TWQ. The unit is chosen in 
round-robin fashion. 

DT-9 «Fo r Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
PHYSIO - Disk/Tape 

For disk: 

1. Choose the best latency request from TWQ fo reach 
unit and, then, the best latency for all units on 
the channel. 

2. If the fairness count for best latency across units 
has expired, step one unit from where marker CDBCUN 
(in the COB) points. 

l 

3. If a unit's TWQ is empty, start positioning the 
unit using the SCAN algorithm with read preference 
(next higher numbered cylinder read request; if 
none, take next higher numbered wr i te request; if 
none, start algorithm over at lowest cylinder). 
IORBs in the PWQ for the cylinder positioned to are 
moved to the TWQ. Note: the channel can 
simultaneously transfer data and postion units. 

When a request has been chosen, start I/O. 

If the primary command is active when the interrupt 
comes in, it is likely that there was a backup register 
request which became the primary command when the request 
(whose interrupt is being serviced) was finished 
transferring. Moving the backup register command to the 
primary command is done by the hardware if the backup 
register has a command in it when the primary command 
finishes. When the routine that schedules transfers at 
interrupt level sees that the primary command is active, it 
looks for a transfer request in the TWQ whose sector address 
is less than minimum latency; if there is such a request, 
it is stuffed in the backup register. 

Starti ng I/O 

The routine in offset CDSSIO of the channel dispatch 
table is called to start I/O for the channel. 

DT-l~ «For Internal Use Only» 



DIGITAL 

Interrupt Handling 

TOPS-2 A MONITOR 
PHYSIO - Disk/Tape 

All disk and magtape interrupts vector to the fourth 
word of the channel's data logout area in the EPT; this is 
the vec~ored interrupt location, which always contains: 

JRST 7,CDB -6 (where COB is that channel's COB). 

This instruction stores the old PC and flags in the first 
two locations and picks up the new PC from the next two 
locations. The PC picked up is COB-I; the instruction in 
this location saves AC 10 and then does a JSP l0,PHYINT. 
Routine PHYINT does the standard pre-processing for disk and 
magtape. 

PHYINT calls channel-dependent code through offset 
CDSINT of the channel dispatch table to analyze the cause of 
the interrupt. The channel-dependent routine for RH20s is 
RH~INT. Lower level routines called by RH2INT (i.e., unit 
dependent routines) return an argument in accumulater P4; 
this argument is passed to PHYINT to indicate whether to 
dismiss the interrupt (argument is zero), schedule another 
channel cycle right away (argument less than zero) , or 
housekeep the current request (argument greater than zero). 
For example, the argument returned can have the following 
meaning s: 

1. Request to dismiss (P4=0) -- the done flag is on 
and the channel is not occupied. 

2. Request for immediate channel cycle (P4 < 0) 
positioning done interrupt has occurred and there 
is no transfer in progress. 

3. Housekeep current request (P4 > 0) -- Transfer done 
interrupt occurred and transfer done requires 
housekeeping before another request can be 
schedul ed. 

DT-ll «For Internal Use Only» 



DIGITAL TOPS-2g MONITOR 
PHYSIO - Disk/Tape 

DISK ALLOCATION 

Data Structure (DSKBTTBL) 

Each structure on the system has a file, called 
STR:<ROOT-DIRECTORY>DSKBTTBL, containing the current 
structure allocation information. This file is divided into 
two parts. The ,first portion holds a word containing a 
count of free page~ for each cylinder on the structure. The 
second portion has one bit for each page on the structure; 
if the bit for a page is on, the page is free. 

This file must be mapped into the monitor's address 
space in order to allocate space on a structure. For Model 
B processors using extended addressing, it is mapped into 
section BTSEC (BTSEC = 4, currently) beginning at address 0. 
For systems not using extended addressing, the bit table is 
mapped into section 0 beginning at location BTB. The bit 
table is mapped only when space is being allocated or 
deallocated. 

Space Allocation 

The routine DSKASN in DSKALI allocates space on the 
disk. The caller can request a specific cylinder; when a 
new page is allocated for an existing file, the caller 
requests a page from the same cylinder that the last file 
page was allocated from. 

If a cylinder is requested, and no page is free on that 
cylinder, this algorithm is used to select a page: 

1. Look for the next higher cylinder on the current 
unit.with any free page. 

2. If no page is found on this unit, step to other 
units in the current structure. 

DT-12 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

If no cylinder is requested, the search for a page to assign 
begins at the cylinder number stored in location SDBLCA of 
the SDB; this location contains the cylinder from which a 
page was last allocated. The algorithm works as follows: 

1. Start with the last cylinder a page was assigned 
from (contents of SDBLCA). 

2. Look at it;s cylinder number (across all units) for 
at I east SDBMFP pag es. (SDBMFP is in the SDB and 
contains the minimum free pages below which DSKASN 
changes its assignment algorithm. SDBMFP is 
initialized to the value stored in table MINFPG for 
this structure's unit type.) 

3. If there are less than SDBMFP pages free on this 
cylinder, increment the cylinder number and look at 
that cylinder for SDBMFP pages across all units. 

4. If no cylinder has at least SDBMFP pages, choose 
the cylinder with the most pages and set SDBMFP to 
this value. 

Once a cylinder is chosen, the count of free pages on 
the cylinder is decremented in the first part of DSKBTTBL 
and the bit for the chosen page is turned off. DSKBTTBL 
will always be updated before the index block of a file is 
updated. 

Space Deallocation 

Routine DSKDEA is called to release a disk page. The 
bit is set to 1 for the page and its cylinder's free page 
count is incremented. 

DT-13 «For Internal Use Only» 



DIGITAL 

Drum Allocation 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

Table DRMCNT has a one word entry for each cylinder in 
the swapping space; table DRMBBT has one bit for each page 
in the $wapping space. Location DRMFRE is the total number 
of fre& pages on the swapping space. Routine DRMASN assigns 
swapping space while DASDRM, de-assigns it. 

Routine DRMASN, is called to assign a page anywhere on 
the drum and DRMASA is called to assign a specific address. 
DRMASN looks for the first free page of swap space, 
beginning where a page was last assigned. The cylinder a 
page was last assigned from is remembered in location 
DRMBN0. Routine DRMASA tries to assign the requested page; 
if the page is not free, it gives an error return. For most 
cases, DRMASN is the routine called to assign a page. 
DRMASA is called: for swappable monitor space when the 
system is initialized, by GCCOR when it writes a group of 
pages, and to mark bad spots in the swapping space (to keep 
them from being allocated). 

BAT Blocks 

Any page in a bad spot on the disk is marked in the BAT 
blocks and is also marked as assigned in the bit table for 
disk or drum. When the disk is formatted, the BAT blocks 
are allocated and any bad spots on the disk at thi s time are 
marked in the BAT blocks. If, at any later time, a page 
gets a hard read or a hard write error, the file's FDB is 
marked. When the page is released from the file, the page 
is marked in the BAT blocks. 

The channel-dependent routine also records error 
information so that PHYINT can see if error recovery is in 
progress or should be started. 

If the 'interrupt is a positioning complete or transfer 
done interrupt, the IORB is removed from the PWQ or TWQ and 
the IORB is posted as done. If the interrupt is from a disk 
unit and the backup register had a request, the backup 
register request is serviced while the interrupt handling is 
in prog ress. 

OT-14 «For Internal Use Only» 

..• ~.J ~:. 



DIGITAL 

Data Structure 

FILE WINDOW PAGE 

DISK DEPENDENT I/O 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

All disk I/O is done by mapping a file page to or from 
a virtual address space. The PMAP JSYS is the way a user 
maps a file page. The sequential and dump mode JSYSs al so 
use page mapping for disk I/O. However, this mapping is 
invisible to the user. The page will be mapped through a 
page called the file window page. There can be one file 
window page per JFN. 

File window pages are allocated in the JSB space, and 
the address of a file window page is stored in offset FILWND 
of the JFN block. When the user executes an I/O JSYS 
(sequential or dump mode) to a disk file, the data is moved 
from the user's address space to the file window page (if 
writing) or from the file window page to the user's address 
space (if reading). When the window page is either full or 
empty, it is unmapped and the next page of the file is 
mapped. If the file is being written, unmapping the page 
insures that the updated information is on disk. 

JFN BLOCK ENTRIES 

FILBYT is the current byte pointer into the file window 
page. FILCNT is the number of bytes left in the file window 
page. FILCNT is decremented for each byte removed from the 
file window page (if reading) or added to the file window 
page (if writing). When FILCNT goes to zero, the next page 
of the file is mapped to the file window page. FILBYN is 
the byte number of the last byte read or written. FILLEN is 
the total length of the file in bytes. If the file is being 
written and FILBYN becomes greater than FILLEN, .FILLEN is 
set to FILBYN. The OFN of the current index block is stored 
in the left half of FILOFN. 

A long file is one with a data page whose page number 
is greater than 777. When a file is long it has a super 
index block (also called a page table table). This is 
required because with only one index block, there are slots 

DT-IS «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

for only pages 0-777. Note that a file can be long but have 
only one page whose page number is greater than 777. When 'a 
long file is open, the OFN of the super index block is 
stored in ~he right half of FILOFN. FILeOD has the OFN of 
index b~ock 0; this is the unique identity ENQ/DEQ uses for 
a file. When a short file goes long, index block 0 is used 
because it is the only overhead page that is constant. 
Index block 0 always exists for a file, even if there are no 
pages in the file ~ith page numbers between 0 and 777. 

The left half of FILLFW contains the count of pages 
mapped. The file cannot be closed until there are no pages 
mapped. FILFDB has the address of the file's FDB, the 
offset from the beginning of the directory. 

DISK IORBS 

Disk file data I/O requests use short IORBs. A short 
IORB is an entry in table eSTS. The offset into eSTS is the 
physical core page that is to be read into or written out. 
An entry in eSTS that is a queued IORB has the link to the 
next IORB in the right half and status bits in the left 
hal f • ( I not he r wo r d s, ash 0 rt lOR B i s 0 ne wo r d long an d 
has the same format as the first word of a long IORB.) 
Status bit IS.SHT is on if the IORB is short. The parallel 
entry in eST3 is the disk address to be read from or written 
to. Routine DSKIO creates short IORBs. 

Index blocks and other disk pages that are not data 
pages of a TOPS-20 file (such as front end file pages, and 
home blocks) use long IORBs. Routine UDSKIO creates long 
IORBs for disk pages. The DSKOP JSYS al so creates a long 
disk IORB when necessary. See the tables descriptions for 
the 1 ayout of along disk IORB. 

Disk requests (IORBs) will always be for one page at a 
time. 

Disk- Dependent Code 

The disk-dependent code for sequential and dump mode 
JSYSs is called through offsets in table DSKDTB. Each time 
the file window page is full or empty (when FILCNT goes to 
zero), the disk-dependent code is called to map a new page 

DT-16 «For Internal Use Only» 



DIGITAL 

into the file window page. 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

MAPPING A NEW PAGE INTO THE FILE WINDOW PAGE 

A c'ombination of the following factors determines what 
happens when a new page needs to be mapped: 

1. The new page does or does not exist 

2. The user is reading or writing 

3. The file is long 

4. The file is going long 

If the new page exists and is in the same index block 
as the previous page, the new page is mapped and control 
returns to the caller. 

If the new page exists but is in a different index 
block than the previous page, an OFN is needed for that 
index block. The previous OFN is released and the new OFN 
is stored in the left half of FILOFN. 

If the new page does not exist, and the user is 
reading, a private core page of zeroes is set up in the file 
window page. The user will see data as zeroes when reading 
from non-existent pages before the EOF mark. 

If the new page does not exist, and the user is 
writing, the directory's quota must be checked. If the page 
to be mapped is not in the same index block, an OFN is 
needed for the index block. The OFN is stored in FILOFN and 
the OFN previously in use is released. 

If the file is going long, a super index block is 
created, an OFN assigned for the super index block and 
stored in the right half of FILOFN, and the super index 
block is mapped to a page of the JSB space with its mapped 
address stored in the right half of FILLFW. 

DT-17 «For Internal Use Only» 



DIGITAL 

Disk Interrupts 

TOPS-2eJ MONITOR 
PHYSIO - Disk/Tape 

All disk and magtape interrupts vector to the fourth 
word of the channel's data logout area in the EPTi however, 
all dis~ and magtape interrupt handling begins at PHYINT (in 
PHYSIO) • See the PHYSIO section for a description of what 
happens in the CDB before dispatching to location PHYINT in 
PHYSIO. After standard pre-processing, long disk IORBs 
dispatch to UDIINT" the interrupt address set up in the 
right half of offset IRBIVA in the IORB. If flag IS.SHT 
(short IORB) is set, go directly to SWPDON. Since the 
interrupt location cannot be specified for short IORBs, it 
is defaulted to SWPDON. 

Disk Errors and Abnormal Conditions 

Before each transfer for a long disk IORB is started, 
routine UDISIE is called to see if the unit is offline. If 
so, the transfer is aborted. This check is not made for 
short IORBs. 

DT-IS «For Internal Use Only» 



DIGITAL 

MAGTAPE DEPENDENT I/O 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

The magtape device-dependent code is called through 
offsets in table MTADTB; each function has an offset in 
MTADTB. , 

'Magtape Data Base 

Of the several levels of magtape data base, the 
principle ones are for the MAGTAP and PHYSIO modules. The 
MAGTAP data base looks at the world from a magtape drive 
point of view and has tables with per-drive entries. The 
PHYSIO data base works with disk and magtape I/O requests; 
PHYSIO maintains the position and transfer wait queues and 
schedules requests from them. I/O requests for disk and 
magtape have formats defined by PHYSIO; a request is called 
an I/O request block, or IORB. A magtape IORB is built by 
MAGTAP and passed to PHYSIO to be queued and scheduled. 
There is also a small amount of data that must be maintained 
for the channels, controller, and units. 

MAGTAPE BUFFERS AND RELATED DATA BASE 

For sequential I/O, buffers are built in the JSB space 
of the job. The buffer size is determined by the record 
size the user has set at the time of the first read or 
write. For record sizes larger than a page, a 
non-contiguous set of pages makes up the buffer. Each 
magtape unit has a list of buffer page pointers. The 
maximum size of a record is 20 (octal) pages and there are 
two buffers; therefore, the buffer page pointer list needs 
40 (octal) entries. The buffers are built when the first 
sequential I/O request is made. 

Table MTANR2, indexed by uni t number,' has the address 
of the list of buffer page pointers for that ,drive. Table 
MTANR3, indexed by drive number, has fields MTCUB (current 
user buffer) and MTCSB (current service routine buffer) • 
Table MTANR4, indexed by drive number, has a field MTCUP 
(current user page) for storing the offset into the buffer 
page pointer area. 

DT-19 «For Internal Use Only» 



DIGITAL 

USE OF JFN BLOCK LOCATIONS 

TOPS-20 MONITOR 
~PHYSIO - Di sk/Tape 

FILLEN is set to the number of bytes in a record (the 
record size). FILCNT is set to the number of bytes in the 
current ,page of the buffer (this will be less than a full 
page of bytes if the record size is less than a page or if 
this is the last page of-the buffer and it is only partially 
used) • When FILCNT goes to zero, it is time to step to the 
next buffer page or" if this was the last page of the 
buffer, read ~r write the next record. The 
magtape-dependent code i~ called whenever FILCNT goes to 
zero; it determines if it should set up the JFN block to 
point to the next buffer page or, if this was the last page 
of the buffer, step to the next record. FILLEN is the 
number of bytes in" the whole record, so if FILBYN has 
reached FILLEN, it is "time to step to the next record. 

When the magtape-dependent code returns to the 
device-independent code: FILCNT contains the number of 
bytes in this buffer page, FILBYT is a byte pointer to the 
beginning of this buffer page, and FILBYN is set to zero. 
FILLEN is the number of bytes in the whole record. 

Magtape IORB 

Magtapes use long IORBs. These have a 7-word header, 
followed by the number of hardware bytes in the record, 
followed by the channel command list. 

COB, KOB, and UDB 

The Channel Data Block (COB) contains channel-dependent 
information. There is one COB for each channel. The six 
locations immediately preceeding the COB for each channel 
contain ~he' interrupt storage and vectors for the specific 
channel. (This is the space pointed to by the interrupt 
locations in the channel logout area of the EPT.) The COB 
contains status information, channel timers, error counts, 
etc. See the table descriptions for a full breakdown of the 
COB Table. 

The Kontroller Data Block (KDB) exists only for TM02 
tapes. The KDB contains MASSBUS addresses and the una table 
for these units. 

DT-20 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

The Unit Data Slock (UDS) contains unit specific 
information. Among the data in the UDS are the error 
counts, timers, and pointers to the units' queued IORBs. 
See the table descriptions for the specific contents of the 
UDB. 

Interface to PHYSIO 

When a record needs to be read in or written out, 
MAGTAP uses the IORB pointed to by field MTCIRB in table 
MTANR4, indexed by drive number. The pages of the buffer 
are locked in core and the physical page numbers of the 
buffer pages are written into the left half of the MTBUF 
entries. MAGTAP then builds an I/O list in the IORS, 
beginning at offset MTIRSL+l. This I/O list is composed of 
channel command words, or CCWs. MAGTAP then calls PHYSIO to 
queue the request. 

Magtape I/O Wait 

If the other buffer is al so queued (that is, 
unavailable to the user to fill or empty), the process must 
block. The process is put into balance set wait for a 
maximum of 50 ms. A standard wait list test is also set up; 
the blocking reason is the IORB number and the test routine 
is MTARWT. If 50 ms. expires before the record is ready, 
the process is moved to WTLST. 

CLOSF Device-Dependent Functions 

When a CLOSF is issued for a magtape, several 
device-dependent functions must be performed. If the tape 
is open for read, the tape is left positioned after the tape 
mark. If the tape is open for write, any partial buffers 
are forced out, two tape marks are written, the tape is 
positioned between the tape marks, and any remaining IORBs 
are fl ushed • 

DT-21 «For Internal Use Only» 



DIGITAL 

Magtape Interrupts 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

All disk and magtape interrupts vector to the channel's 
data logout area in the EPTi however, interrupt handling 
fo r bot.h disk and mag tape beg ins a t location PHYINT (in 
PHYSIO). See the PHYSIO description for an explanation of 
how control passes from the EPT to PHYINT. After standard 
pre-processing, magtape interrupts dispatch to MTAINT, the 
interrupt address ~et up in the right half of offset IRSIVA 
of the lORS. 

Routine MTAINT unlocks the buffer pages associated with 
the IORS (they are locked when the IORS is queued because 
they must be in core for the data transfer). It also checks 
for errors and aborts any other queued IORSs for this drive 
if there are errors. 

Error and Abnormal Conditions 

Before each magtape transfer is started, routine MTCHKA 
is called to check if the abort flag has been turned on for 
the IORB. If the abort flag is on, the transfer is aborted. 
MTCHKA is the address set up in the right half of offset 
IRBIVA of all magtape IORBs. 

DT-22 «For Internal Use Only» 



DIGITAL 

MODULE TEST 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

When answering the lab exercises, write down the names 
of the tables where you found the answers. The labs will 
help you understand the monitor data base structure. So 
remember, where to look is more important than what you find 
there. 

The exercises marked with a double star (**) are more 
difficult and are optional. If yo~ .have the time and/or 
motivation, do them. 

I/O - Magtape Dependent Data Base 

Since there are not enough magtape drives to go around 
for the whole class, this part of the lab uses a "set up 
crash"; that is, while using a magtape and while the 
monitor was in a desired state, the system was deliberately 
crashed. 

Tools 

For the following exercises, use FILDDT on the crash 
named <MONITOR-INTERNALS>TAPE.CPY. For symbols, use the 
monitor named <MONITOR-INTERNALS)R3-MONITOR.EXE. Be sure to 
set monitor context! 

EXERCISES 

1. Wh ich mag tape d rives are in use? 

2. Are there any magtape buffers set up? What is the 
buffer size? 

3. Which pages of the JSB space are in use as magtape 
buffers? 

4. Are the pages locked in core? ** 

DT-23 «For Internal Use Only» 



DIGITAL TOPS-2A MONITOR 
PHYSIO - Disk/Tape 

5. Which buffer and which page of the buffer is the 
sequential I/O code'currently using? 

6. Is there a queued magtape IORB? If so, what is the 
transfer list for the IORB? ** 

7. What is the status of each magtape drive? 

I/O - PHYSIO Dependient Data Base 

Because much of the PHYSIO data base changes rapidly, 
the exercises for this section make use of a crash. 

Tools 

The crash for this part of the lab is 
<MONITOR-INTERNALS>BADBTB.CPY. For symbols, use the monitor 
in the file <MONITOR-INTERNALS>R3-MONITOR.EXE. Do not 
forget to set monitor context! 

DT-24 «For Internal Use Only» 



DIGITAL 

EXERCISES 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

1. Find the location of each channel data block. 

2. Find the location of each unit data block. 

3. Which channel is each UDS associated with? 

4. How many units are on channel 0? 
l 

5. Which channels have disk units on them? ** 

6. Which UOSs are for units that are part of the 
structure ps:? ** 

7. Find the TWQ for unit 0 of the public structure. 

8. Find the UDS for MTA0: 

9. Were any magtape units in use at the time of the 
crash? 

10. Trace the TWQ for each disk unit. 

11. Trace the PWQ fO,r each unit of PS: 

12. Are there any long IORBs in the PWQ for the units 
of PS:? ** 

13. What routine is called to 
unit? For a magtape 
routine in? ** 

DT-25 

start I/O for a disk' 
unit? What module is each 

«For Internal Use Only» 



DIGITAL 

This page is for notes. 

DT-26 

TOPS-2eJ MONITOR 
PHYSIO - Disk/Tape 

«For Internal Use Only» 



DIGITAL 

TEST EVALUATION SHEET 

TOPS-2~ MONITOR 
PHYSIO - Disk/Tape 

I/O Magtape Dependent Data Base 

EXERCISES 

1. Which magtape drives are in use? 

ANSWER: Table MTASTS, indexed by drive number, 
contains a drive's status. When a drive is not in 
use, its status is~. Location MTINDX contains the 
highest real unit number in the right h~lf. 

MTINDX/ -7,,1 

MTASTS/ 0 
MTASTS+l/410000,,400000 

2. Are there any magtape buffers set up? What is the 
buffer si ze? 

ANSWER: Table MTANR2, indexed by drive number, 
contains the pointer to the buffer pages list. If 
the buffer is set up, the buffer pages list 
contains the JSB space virtual address for the 
ass i g ned pag es in the rig h t hal f 0 f e a c hen try 0 n 
the list. The buffer size is in the right half of 
MTANRl, indexed by drive nLUnber. 

MTANR2+1/ 444400,,127325 

127325/ 674,,627~00 ipag e 627 is a buffer 
ipage 

/ 677,,630000 ipage 630 is a buffer 
i page 

/ 700,,031000 ipage 631 is a buffer 
ipage 

/ 701,,632000 ipage 632 is a buffer 
i page 

/ 0 

MTANR1+1/ 10041,,1006 i si ze is 1006 

DT-27 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

Since the size is 1006, and since there are always 
2 buffers assigned, pages 627 and 630 are for 
buffer 1 and pages 631 and 632 are for buffer 2. 

3. Which pages of the JSB space are in use as magtape 
buffers? 

4. 

ANSWER: As stated above, pages 627, 630, 631, and 
632 are iri use as magtape buffers. 

Are the pages locked in core? ** 
ANSWER: First find the page's current storage 
address; if the page is in core, table CST1, 
indexed by page number, contains the lock count. 

MMAP+627/324007,,400 

MMAP+630/324010,,400 

MMAP+n31/324011,,400 

MMAP+632/324012,,400 

JSB+7/124003,,1474 

JSB+10/124003,,1510 

JSB+l1/124000,,566 

JSB+12/124003,,1520 

CST1+5~6/ 3,,1514 

; mapped ind ir ec t 
; thro ugh slot 7 
;of the JSB map 
; mapped ind irec t 
; t h r 0 ug h s lot 10 
;of the JSB map 
;mapped indirect 
; through slot 11 
;of the JSB map 
; mapped ind irec t 
; thro ugh slot 12 
; of the JSB map 

;page on drum 

; page on drum 

;page in core (so 
;might be locked) 

; pag eon d r urn 

; lock count = 0 

No page is locked in core; only one page is in 
core. 

DT-28 «For Internal Use Only» 



DIGITAL TOPS-20M ONITOR 
PHYSIO - Disk/Tape 

5. Which buffer and which page of the buffer is the 
sequential I/O code currently using? 

. 
ANSWER: Table MTANR4, indexed by drive number, 
contaIns the IORB, if any, that the service routine 
is using in the left half and the current user page 
in the right half. The current user page is the 
buffer page that the JFN block is currently moving 
bytes to ,or from; that is, the pag e of the buffer 
the sequential I/O code is currently using. 

MTANR4+1/ 127330 

127330/ 701,,632000 

;this is the offset 
;in the buffer pages 
;list which contains 
;the address of the 
;current buffer page. 

;currently on page 
; 632 

Note that it is the second page of the second 
buffer. 

6. Is there a queued magtape IORB? If so, what is the 
transfer list for the IORB? ** 

ANSWER: We need to look at the TWQ and PWQ for the 
unIt; table MTCUTB, indexed by drive number, 
contains the unit's UDS address. The TWQ and PWQ 
headers are in the UDS. 

MTCUTB+l/555253,,555435 

555435+UDSPWQ/555463,,0 

555435+UDBPWQ=5554fi3 

;555435 is 
; the UDS for 
;unit 1 

;this is an 
;empty queue. 
;When the 
; queue is 
;empty, the 
;tail pointer 
;points to 
;the header 
;itself. 

DT-29 «For Internal Use Only» 



DIGITAL 

555435+UDBTWQ/555464,,0 

555435+UDBTWQ= 555404 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

; t his i sal so 
; an empty 
;queue. 

7. What is the status of each magtape drive? 

ANSWER: Table MTASTS, indexed by unit number, 
contains the status. 

MTASTS/ 0 ; not in use 

MTASTS+l/4l0000,,400000 

OPN= 400000,,0 
BUFA=100000,,0 
MT%ILW=400000 

Drive 1 is open, has buffers assigned, and is write 
locked. 

I/O - PHYSIO Dependent Data Base 

EXERCISES 

1. Find the location of each channel data block. 

ANS~1ER: Each channel data block is pointed to by 
an entry in CHNTAB; the offset from CHNTAB is the 
channel number. 

CHNTAB/ 555007 ;address of CDB for 
, ; channel QJ 

/ 555253 ;address of CDB for 
;channel 1 

DT-30 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

2. Find the location of each unit data block. 

ANSWER: Beginning at offset CDBUDB in each COB, 
there is space reserved for pointers to the 
channel's UDBsi there can be as many as eight 
entries and if a channel has less than eight units, 
those entries are 0. If the channel has magtape 
units, the pointer is to the KDB and the KDB points 
to the ma9tape unit's UDBs. 

555007+CDBUDB/ 555065 
/ 555155 

555253+CDBUDB/ 555331 

555331+KDBUDB/ 555365 
/ 555435 

iUDB for unit 0 
i UDB fo r un it 1 

i po inter to ROB 
i (channell) 
iused for magtapes. 

iunB for MTA unit 0 
iUDB for MTA unit 1 

3. Which channel is each unB associated with? 

4. 

ANSWER: Offset unBCDB of each UDB contains the 
unit's COB address. 

555l55+UDBCDB/ 555007 -> 
share same COB 

555065+UDBCDB/ 555007 -> 

555365+UDBCDB/ 555253 -> 
share same COB 

555435+UDBCDB/ 555253 -> 

How many units are on channel 0? 

ANSWER: Two units because there are two UDBs 
pointed to by channel 0's COB. 

DT-31 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

5. Which channels have disk units on them? ** 
ANSWER: Channel 0 has two disk units. Each UDB 
has a status word at offset UDBSTS with the unit 
type in bits 31-35. 

555155+UDBSTS/4004,,146 

555065+UDBSTS/44004,,146 

555365+UDBSTS/400002,,143 

555435+UDBSTS/400102,,143 

.UTT16= 3 iTlJ45 

.UTRP6:;: 6 i RP06 

itype 

i type 

itype 

itype 

= n 

= h 

= 3 

= 3 

We have two RP06s and two TU45s. Note that for 
historical reasons the TU45s have TU1n-like 
mnemonics! 

6. Which UDBs are for units that are part of the 
structure PS:? ** 
ANSWER: The structure data block has a list of 
pointers to the structure's UDBs (for its upits) 
beginning at SDBUDB. 

STRTAB/ SDDBL0 iPS'S SDB 

SDDBL0+SDBUDB/300000,,555065 
/ til 

7. Find the TWQ for unit 0 of the public structure. 

ANSWER: The previous question located the UDB for 
unit 0 of PS: The TWQ for unit 0 begins at offset 
UDB'IWQ. 

555065+UDBTWQ/ CST5+647"CST5+647 itai1" 
ihead of 
i un it's 
iTWQ 

DT-32 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/T~pe 

8. Find the UDB for MTA0: 

ANSWER: Table MTCUTB, indexed by magtape unit 
number, contains that unit's CDB address in the 
left half and the unit's UDB address in the right 
hal f. 

MTCUTB/555253,,555305 ;CDB"UDB for unit 0 

9. Were any magtape units in use at the time of the 
crash? 

ANSWER: Table MTASTS, indexed by unit number, has 
that unit's status. There are status bits to say 
the drive is ·open, do ing a JSYS, etc. 

MTASTS/ 0 

/ " 
; not in use 
; not in use 

10. Trace the TWQ for each disk unit. 

ANSWER: Each unit's TWQ header is at offset UDBTWQ 
of the unit's UDB. The queue is a linked list. 
From previous exercises, we know that the disk unit 
UDBs begin at 555155 and 555065. 

555l55+UDBTWQ/ CST5+307"CST5+307 ;onlyone 

CST5+307/400003,,0 

; pag e on queue 
; it is pag e 307 

; no nex t IORB 

5550fi5+UDBTWQ/ CST5+647"CST5+647 ;a1so only one 
; page on queue 

;it is core 
;page 647 

CST5+647/400001,,0 

DT-33 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

11. Trace the PWQ for each unit of PS: 

ANSWER: From previous exercises, we know PS: has 
only one unit whose UDB begins at 555065. A P"'TQ's 
head er is at 0 ffset UDBPWQ. 

555065+UDBPWQ/ CST5+670"CST5+513 

CST5+513/400001"CST5+737 

CST5+737/400001"CST5+717 

CST5+717/ 400001"CST5+616 

CST5+616/ 400001"CST5+622 

CST5+622/ 400001"CST5+321 

CST5+321/ 400001"CST5+551 

CST5+551/ 400001"CST5+670 

CST5+670/ 400001,,0 ;end of queue 

12. Are there any long IORBs in the PWQ for the units 
of PS:? ** 

ANSWER: No, there are no long IORBs. If there 
were a long IORB, it would be allocated from the 
IORB pool and all the IORBs on the queue would be 
in CST5. 

DT-34 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

13. What routine is called to start I/O for a disk 
unit? For a magtape unit? What module is each 
routine in? ** 

ANSWER: To start I/O, PHYSIO first calls the 
channel-dependent level code in PHYH2i this code 
is dispatched to through offset CDSSIO in the 
channel's CDS table. This routine does the 
channel-dependent functions and then dispatches to 
unit-dependent code through the unit's UDS table at 
offset UDSSIOi the UDS table for magtape is in 
module PHYM2 and for disk, in module PHYP4. Table 
PHYCHT contains the addresses of the channel 
dispatch tables for each channel supportedi 
currently, this is only RH2DSP for RH20s. Table 
PHYUNT has the dispatch addresses for all supported 
unit typesi in this monitor, RP4DSP (for RP06s) 
and TM 2DS P ( fo r mag tape) are 0 fin t ere st. 

PHYCHT/l"RH2DSP i RH20 dependent 
i dispatch table 

RH2DSP+CDSSIO/ JRST RH2SIO idispatch here 
ito start I/O 

PHYUNT/ l"RP4DSP 

4, ,TM2DSP 

i for a c ha nne 1 • 

iRP04/6 dependent 
i d ispa tch tabl e 
iTM02 dependent 
i dispatch table 

RP4DSP+UDSSIO/ JRST RP4SIO idispatch here 
ito start I/O 
i fo r an RP04/6 

TM2DSP+UDSSIO/ JRST TM2SIO idispatch here to 
istart I/O 
i fo r a TM02 

DT-35 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

DT-36 

TOPS-20 MONITOR 
PHYSIO - Disk/Tape 

«For Internal Use Only» 



TOPS-20 MONITOR 

Front End/Terminals 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-20 MONITOR 
Front End/Terminals 

MR-2717 

FE-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

FE-ii 

TOPS-20 MONITOR 
Front End/Terminals 

«For Internal Use Only» 



DIGITAL 

Front End/Terminals 

TOPS-20 MONITOR 
Front End/Terminals 

INTRODUCTION ---------. 

This module covers data flow between 
the host processor and the front end in 
terms of the DTE formats for the I/O. Al~o 
addressed 1's the terminal handling data base 
and flow both within the host processor and 
the DTE. This module covers the -10 side of 
these transactions in depth. The processing 
within the -11 is not addressed here. 

FE-l «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

----- LEARNING OBJECTIVES -------

Upon completion of this module, the 
,student will be able to: 

1. Describe the format of the three types 
of DTE transfer packets. 

2. Identify the portions of the terminal 
data base in terms of the tables and the 
routines effecting terminal I/O. 

3. List the modules used to configure the 
monitor for terminal I/O with a given 
system. 

-------- RESOURCES --------. 

1. Monitor Tables 

2. Micro-fiche of the Monitor 

FE-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

Front End/Terminals 

TOPS~2~ MONITOR 
Front End/Terminals 

I. TTY/PTY Device-Dependent Code 
A. TTY Data Base 
B. TTYIN - TTY-Dependent Input 
C. TTYOUT - TTY-Dependent Output 
D. TTCH7 - 2~ ms. Overhead Task 

II. DTE Device-Dependent TTY Code 
A. DTE Data Base 
B. DTE Terminal Output 
C. DTE Interrupts 

FE-3 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

TOPS-20 MONITOR 
Front End/Terminals 

FE-4 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Front End/Terminals 

TTY/PTY DEVICE-DEPENDENT CODE 

The ter~inal device-dependent code is called for each 
character for TTYs and PTYs from the JSYS level code. The 
device-dependent code exists on several levels; the first 
level 1S dispatched to via the dispatch tables TTYDTB for 
TTYs and PTYDTB for PTYs. Calls to subsequent levels come 
from the current level. 

This code is fnitially dispatched to through offsets in 
TTYDTB for input and output. The TTCH7 code is called 
cyclically from the scheduler overhead cycle; the TTCH7 
routine moves characters from BIGBUF to their respective 
line buffers. 

TTY Data Base 

DEVICE TABLES AND DEVICE DISPATCH TABLES 

Table TTLINV contains the addresses of the 
device-dependent dispatch tables for each type of line that 
can be supported by a TOPS-2~ monitor. 

TTLINV: TTFEVT 
TTMCVT 

TTPTVT 
TTDCVT 
TTNTVT 
TTDZVT 

--console front end lines 
--MCB lines (not used -- future table for 

command terminal support on DECnet nodes) 
--PTY lines 
--DC10 lines (not used -- historical) 
--network virtual lines 
--DZll lines 

A subset of the dispatch tables will exist for a particular 
hardware configuration. Here is a list of standard 
configurations and the dispatch tables that would exist for 
such configurations: 

2040 or 2050 -- TTFEVT and TTPTVT 
2020 -- TTDZVT and TTPTVT 
ARPA net system -- TTFEVT, TTPTVT and TTNTVT 

Each entry of a dispatch table is the transfer vector of a 
particular line-type-dependent function. Each function has 
the same offset into each dispatch table. Each line type 
that does not exist in a monitor will dispatch through a 

FE-5 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

dummy vector table called TTDMVT, with its table name set 
equal to TTDMVT. Entries in that table return immediately, 
give an error, or bughal t, depend ing on the function. 

DATA BASE FOR EACH LINE 

Tables indexed by line number (resident tables): 

TTSTAT - fl~gs and line type (offset into TTLINV 
table) 

TTCSAD - address of special request routine 
TTCSTM - time to call special request routine 

Tables indexed by line number (non-resident tables): 

TTSPWD - input and output line speed 
TTACTL - address of dynamic data for line 

Dynamic data block for each line: 

The dynamic area is created for a line when it becomes 
fully active. The dynamic area length (TTDDL2 = 26 (octal» 
contains items such as: 

number of input and output buffers for the line 
number of characters in input and output buffers for 

the line 
terminal data mode 
byte pointer for removing/adding a character from/ 

to an input or output buffer 
terminal characteristics 

Sometimes, output needs to be sent to an inactive line, 
as in one of these cases: a send-all message, "Logging in 
on local terminals is not allowed", or sending a "ding" when 
any character but CTRL/C is typed on an inactive line. 
There are two shortened forms of the dynamic data block that 
are built for these cases: send-all block and message 
block. The send-all block is the smallest block; it is not 
used on KL systems because the front end does the send-all. 
This block is used on the 2020. 

FE-6 «For Internal Use Only» 



DIGITAL 

Line buffer allocation: 

TOPS-20 MONITOR 
Front End/Terminals 

TTFREB - head of free list for TTY buffers 
TTFREC - free buffer count; initialized to NTTBF = 

214 (oc tal) 
TTSIZ - 20 (octal) buffer size 

Input and output buffers for each line: 

When buffers aCre needed, they are assigned from the 
free list TTFREB. Each of these buffers is 20 (octal) words 
long. Routine TTGTBF assigns the requested number of 
buffers and links them circularly, (that is, the last buffer 
points to the first). The dynamic data block for the line 
points to the first buffer and also has a byte pointer for 
the current character. The output buffer contains 
characters to be echoed as well as output characters. 
Currently, two input buffers and two output buffers are 
assigned for each active line; that is, a line's output 
buffer consists of two buffers assigned from TTFREB and a 
line's output buffer consists of two buffers assigned from 
TTFREB. Each character is stored in a 9-bit byte; 
therefore, four characters are stored in each word. 

Several fields in the dynamic data block for a line are 
used for byte pointers into the line buffers and as 
character counts in those buffers. The dynamic data block 
fields relevant to line buffers are: 

TTNIN / count of input buffers 
TTNOU / count of output buffers 
TTOCT / number of characters in output buffer 
TTOOUT / byte pointer for removing characters from output 

buffer 
TTOIN / byte pointer for adding characters to output buffer 
TTICT / number of characters in input buffer 
TTIOUT / byte pointer for removing characters from input 

buffer 
TTIIN / byte pointer for adding characters to input buffer 

TTYIN - TTY-Dependent Input 

This is the routine for handling BIN, SIN, an~ SINR 
JSYSs. TTYIN is the dispatch address in TTYDTB + BIND. 

FE-7 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminal s 

The code first translates the JFN, TTY device number, 
or -1 (implies the controlling job's terminal), to an actual 
line number and checks if it is legal for this process to 
read from the line. If not, an error is returned. 

At this point, one of three choices is made: 

1. If the user just issued a BKJFN, repeat the last 
char acter., 

2. If the terminal is set for binary mode, dispatch 
for binary input at TCIB. 

3. If the terminal is not set for binary mode, 
dis pa tc h to TC I • 

Routines Tel and TCIB both pick up the next character 
from the input buffer if there is one. If there is no 
character in the input buffer, the process is blocked with 
an MDISMS. The MDISMS code adds the fork to TTILST with 
test data equal to the line number and test routine set to 
TCITST. 

If the process goes into TTY input wait, when it wakes 
up will be determined by its wake up class. The decision to 
wake up the process is made when characters are being moved 
from BIGBUF to their individual line buffers. See the 
section on TTCH7 for more detail s. 

If deferred echoing is in effect, the character is 
echoed now (that is, as it is removed from the line buffer 
and read by the pr 0 c e s s) if i t ha s no tal read y been ec ho ed • 
Each character in the input buffer has a flag indicating 
whether or not it has been echoed; this flag is TTXECO and 
is on if the character has been echoed. The character will 
already have·been echoed if immediate echoing is on, or, in 
the case of deferred echoing, if the line was in TTY input 
wait when the character was moved from BIGBUF to its line 
buffer. Binary mode does not echo. Therefore, the 
character is echoed at the time the character is read from 
its input buffer only if echoing is on and if the TTXECO 
fl ag fo r the character is not 0 n. 

FE-8 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

If an echo is needed, the character is sent by placing 
it in the line's output buffer, as with any other character 
to be output to the line. Deferred echoing assures a clean 
typescript, that is, characters are not added to the output 
buffers.unless the line is in input wait or the process is 
reading characters from the line buffer. Therefore, echoed 
characters will not be scrambled with output. 

Some characters are treated specially. For example, if 
the character being read is a carriage return, it is echoed 
as a carriage return and a line feed. The TTYIN code also 
handles such things as raising the case of the character 
before echoing it if terminal-raise is set. 

If the character picked up from the input buffer is an 
enabled interrupt character, the character is flushed and 
the code tries again for the next character. An enabled 
interrupt character is one of the class of characters (such 
as control characters) that a process can enable a software 
interrupt on; when an enabled interrupt character is typed, 
the process gets a software interrupt. In the case of 
interrupt characters, the interrupt is initiated at the time 
the character is moved from BIGBUF to its line buffer. 

An XOFF or XON will be sent to the line if necessary. 
The XOFF is sent a few characters before the input buffer is 
full. 

It is an undefined condition to have more than one fork 
of a job in TTY input. wait at any given time. It is 
impossible to determine which process will receive the 
character. If this situation occurs, however, the conflict 
is resolved as follows: all forks in TTY input wait that 
are inferior to the fork receiving the character are halted; 
all forks in TTY input wait that are not inferior to the 
fork receiving the character are put in fork wait. 

TTYOUT - TTY-Dependent Output 

This is the dispatch address in offset BOUTD of TTYDTB 
for SOUT, BOUT, and SOUTR JSYSs. 

First, determine if the terminal is in binary mode. If 
it is, transfer to TCOB; if it is not, transfer to TeO. 
Routine TCOB does not use the eeoc (control character output 

FE-9 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

control) words for control character translation. 

Each terminal has two control character output control 
words. Each word consists of 2-bit bytes, one byte for each 
of the control characters (ASCII codes 0-37). The bytes are 
interpreted as follows: 

00: ignore (send nothing) for the character 
01: ind icate by X (where X is the character) 
10: send actual code to terminal 
11: simulate format action for character 

The terminal data mode may be set so that the CCOC words are 
used: 

1. For both echoing and output (the normal mode) 

2. For neither echoing nor output (binary mode) 

3. For echo translation only 

The CCOC words themselves can be set for the translation of 
each character for ASCII codes 0-37. 

Routine TCO must first check the 
terminal. If the data mode is 
translation, routine TCOY is called to 
character code. 

data mode 
set for no 
output the 

of the 
output 
actual 

If the character code is not between 0 and 37, TCOY is 
called to output the character directly. 

If the character is between 0 and 37, several more 
checks must be made to determine what to do. If the 
character is an escape, it is handled as a special case: if 
the corresponding CCOC byte is equal to 01, send A[; if the 
CCOC byte is' equal to 11, send a $; if the eeoc byte equals 
00, flush the character, and if 10, send the character. 

If the ccoe byte for the 
character is flushed; that 
terminal. 

character is a zero, the 
is, nothing is sent to the 

If the CCOC byte for the character is 01, the character 
is converted to its printing equivalent (i.e., AX) and TCOY 
is called to print the A first and then the X. 

FE-10 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

If the CCOC bits for the character are set to 10 (send 
actual character) or to 11 ( simulate format action), call 
TCOY to output the character. In simul ating format action, 
device-dependent code for the terminal type will be called 
(according to the hardware terminal characteristics). For 
example, a form feed is handled differently on a VT50 than 
on an LA36. 

The code beginning at TCOE is also called for echoing a 
character. TCOE 'will be called from Tel or TTCH7 (the 
overhead cycle task to move characters from BIGBUF to their 
individual line buffers), depending on when the character is 
echoed. 

TCOY 

Routine TCOY is the second level TTY device-dependent 
routine. It handles a device's idiosyncracies and spacing 
(e.g., adding a CRLF sequence if at right margin). Here, 
also, lower case is converted to upper case for terminals 
that do not support lower case and A is placed in front of 
the character if the character is upper case and 
terminal-indicate is turned on. 

Special characters such as form feed or tab are handled 
based on the terminal characteristics by dispatching through 
table CHITAB. Also, any necessary padding is done here. 

TCOUT 

TCOY calls TCOUT, which is the third level 
TTY-dependent output routine. TCOUT handles the parity bit 
by dispatching through offset TTVT12 of the TTXXVT table for 
terminal type XX. 

If the line is currently linked to another terminal, 
routine TTLNK3 is called to output the character to the 
other terminal as well. 

If output is currently control Oed, return because 
output is to be discarded. 

FE-II «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

If there is no room in the output line buffer for this 
character, set up a scheduler test of line-number" TCOTST 
and give an error return. The calling code will MDISMS and 
put the fork on WTLST. The fork will become runnable again 
when the characters currently in the output buffer have been 
sent to the terminal. WTLST is checked for processes that 
have become runnable in one of the long cycle tasks. 

If there are no output buffers for the line, routine 
TTGTBF is called to assign two output buffers for the line. 

, The character is then stored in the output buffer using 
the byte pointer-in offset TTOOUT of the line's dynamic data 
area and the count of characters in the output buffer is 
inc remented. 

If output is not active on the line, routine STRTOU is 
called to start output. This routine dispatches through the 
TTVT13 offset of the TTXXVT table where XX is the terminal 
type. 

Terminal type: 

TTFEVT 

TTPTVT 

Dispatch address in TTXXVT+TTVT13: 

STRT01 -- calls DTESRV to send the 
character out to the 
line. See section on 
TTFEVT functions. 

STRT02 -- converts internal line 
number to PTY number. 

TTCH7 - 20 ms. Overhead Task 

TTCH7 moves characters from BIGBUF to their respective 
line buffers. Characters are added to BIGBUF at interrupt 
level by either the DTE interrupt code for systems with 
front end lines, or, for the 2020, by the DZ11 interrupt 
code. For systems using RSX20F front end lines, the DTE 
transfers packets of characters to BIGBUF from the front 
end. For 2020 systems, the characters are added to BIGBUF 
one at a time when the interrupt from the character is 
handled. 

FE-12 «For Internal Use Only» 



DIGITAL TOPS-2 A MONITOR 
Front End/Terminals 

~n entry in BIGBUF is one word with the line number in 
the left half and the character in the right half. Cell 
TTBIGC contains the count of characters currently in BIr,BUF. 
TTRIr,O has the address of the next character to be removed 
from BIGBUF. 

Routine TTCH7 is called cyclically from the scheduler 
overhead cycle, currently during the short clock cycle. 

If TTBIGC, the count of characters in BIGBUF, is 
non-zero, pick up the next entry from SIGBUF using pointer 
TTBIGO. This will be an entry in the form line number" 
character. Decrement TTBIGC, which is the count of 
characters in AIGBUF. 

Dispatch through offset TTVT2n of TTXXVT 
line-type-dependent table, where XX is the line type. These 
routines return immediately for all supported line types and 
it exists for historical reasons only. 

Some entries in BIGBUF may not be characters destined 
for input line buffers. Such entries will have the line 
number in the left half and either flag TTOIRQ, DLSRCF, or 
DLSCXF in the right half. These entries are placed in 
BIGBUF to flag conditions that are noted at DTE interrupt 
level but cannot be handled due to interrupt routine time 
constraints. If flag TTOIRQ is on in an entry, the line's 
output buffer was emptied and the process has asked for an 
interrupt when the output buffer became empty. When this 
type of entry is picked up from BIGBUF, a software interrupt 
for terminal code .TICTO is generated for the process. Flag 
DLSXCF indicates carrier transition was noted; flag DLSRCF 
is ignored. After handling anyone of these conditions, 
loop back to TTCH7 for more characters. 

If the entry picked up from BIGBUF is an input 
character, call routine TTCHI to place the character in the 
appropriate line buffer. TTCHI will initiate an interrupt 
if the character is an enabled interrupt character, echo the 
character if appropriate, and wake up the process if it was 
in TTY input wait and the character is in the wake up class 
set for the terminal. After returning from TTCHI, loop to 
TTCH7 for the next character. If there are no more 
characters, control will transfer to TTCH7X to handle any 
special line requests. 

FE-13 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

When BIGBUF is empty, cqntrol is transferred to TTCH7X 
and if there are any special requests queued, they are 
handled here. If there are any requests, cell TTQCNT will 
contain the count of requests. Special requests are set up 
for front end lines, primarily when the buffer space for TTY 
packets is full. For the 2020, the queued requests will be 
checking for data set line conditions, such as carrier on. 

Requests are handled for a maximum of eight lines 
beginning with the line number in TTCQLN. Routine DOLINE is 
called to handle each line's request. The requested 
function's routine address is in field TROUT of offset 
TTCSAD in the line's dynamic data block. The function may 
have a designated time at which it is to be performed; the 
time is stored in the parallel table TTCSTM. 

FE-14 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Front End/Terminals 

,DTEQS IS A TABLE CONTAINING THE QUEUE HEADER FOR 
EACH DTE. DTEQS·+ DTE NUMBER IS THE QUEUE HEADER 
FOR A PARTICULAR DTE. 

DTEQS + DTE NUMBER: 

LINKED LIST OF 
PACKETS QUEUED TO 
SEND OVER THE DTE-2~. 

IF THE PACKET'WAS BUILT 
BY DTEQ, IT MUST BE 
RE-FORMATTED BEFORE 
SENDING. 

DTSNGL PACKETS 
CONFORM TO 
RSX2~F PROTOCOL. 

TAIL POI~TER"HEAD 

M8 0263 

Figure FE-1. DTE Packet Queue 

FE-IS «For Internal Use Only» 



I'%j 
t%j 

I 
~ 

~ 

/\ 
/\ 

d 
1"'1 

H 
::s 
rt 
CD 
1"'1 
::s 
OJ 
I-' 

c::: 
en 
CD 

o ::s 
I-' 
'< 
V 
V 

JllREil.~MJ.!I.TI-C!iI\BSI) PACKET 
(UP TO 6) 

15 16 

SNGPK 1 II ND 2: I 

PKTADR: 

PACKET BYTE CNT FUNCTION 

DEVICE SPARE 

LI NE # DATUM LINE # DATUM 

LINE # DATUM LINE # DATUM 

LINE # DATIJM LINE # DATUM 

DIRECT (SINGlE C )* HAR PACKET 

~ 15 16 31 32 

I HDCNT 1 HDFNC 

PACKET BYTE FUNCTION 
CNT 

HDDEV I HDSRR 

DEVICE 

HDLlN 

LINE # 

HDDAT 

DATUM 
(CHAR, ) 

SPME 

35 

*SINGLE CHARACTER PACKETS WILL ONLY BE SENT WHEN 
THE TWO PACKETS, SNGPKI AND SNGPK2 ARE FULL OR 
UNAVAILABLE OR WHEN THE TTY'S OUTPUT BUFFER HAS 
ONL Y 1 CHARACTER, 

PKTADR: 

TTY'S 
OUTPUT BUFFER 

~~ [PTR TO DATA GIVEN 
SEPARATELY TO DTE] 

HDCNT 

PACKET BYTE 
CNT 

HDDEV 

DEVICE 

HDLlN 

LINE 

16 

HDFNC 

FUNCTION 

HDSRR 

SPARE 

~ 

DATA 

-

M8 0303 

Figure FE-2. Packet Types Sent Over DTE (RSX20F Protocol) 

I'%j .., 
o 

tj 
H 
G) 
H 
t-3 
J:=o' 
~ 

::J 
rtt-3 

o 
t:tl'"O 
::SCJl 0,' ,N 
t-3~ 
CD 
1"'13: 
30 
.... ·z 
::JH 
OJt-3 
1-'0 
cn::O 



-DIGITAL 

TTOUT/OUTP 
BUF 

DTSNGL QUEUED PACKET 
a n~ ~ 

TOPS-29 MONITOR 
Front End/Terminals 

SNGPK1/2: [ __ -.:~~ ___ L!:E~:!~~~J]NOT TRANSFER ED OVER THE DTE 

DOES NOT NEED 
REFORMATTING. 

QUEUED OVER 
DTE FROM HERE 

. 

o 15 16 31 32 35 , ~--'------r=:.--------- f .... 
PACKE~2:~TE CNT FUNC.=.DFHLC 

'DEVICE SPARE 
l' 

LINE # I BYTE LINE # I BYTE ;, 

LINE # I BYTE LINE # I BYTE 

LINE # ! BYTE LINE # I BYTE 

" 

* FLAGS I NO I CATE WHETHER 
THE PACKET IS FULL, 
AVA ILABLE, OR ALREADY 
LINKED ON QUEUE. 

THE LINK WORD AND THE REMAINDER CF THE PACKET ARE CONTIGlXlUS. 

FORMAT OF PACKET 
LINKED ON DTE 
QUEUE IN COMQ 

AREA. 
~ 

f'f6 
DTEQ QUEUED PACKET 

1718 35 
QINT QLlNK 
POSTING ROUTINE LIN~ TO 

ADDRESS NEXT PACKET 

QFNC QDEV 
FUNCTION DEVICE CODE 

QLlN 
LINE # IJ/1 BYTE/IJ/ 

BYTE CNT. 
NEEDS REFORMATTING 
TO RSX2,iJF PROTOCOL 

QMO]QCNT 

IQPNTR BYTE PTR FOR INDIRECT PTR. 

CASE 1 

CASE 2 

- OR -LO-CAL- CHAR :-ii QC~T--HoLDs- ;-- ~ TH I S CASE I S NOT USED FOR TTY I S 

QCOD 
UNIQUE CODE RETURNED 
TO INTERRUPT ROUTI NE 

" 
DIRECT PACKET FORMAT 

QINT QLINK 
TTYINT LINK 

QFNC QDEV 
.DFHLC • FEDLS/. FECTY 

QLlN 
LINE # IJI f6 

8 BIT CHARACTER 

QCO!) UNIQUE CODE RETURNED 
TO INTERRUPT ROUTINE. 

INDIRECT PACKET FORMAT 
QINT QLINK 

TTYINT LINK 

QFNC QDEV 
.DFHSD • FEOLS/. FECTY 

QLlN IQCNT 
LINE # 1 BYTE CNT 

QPNTR 

TRANSFORMED 
TO RSX2f6F 
PROTOCOL 

TRANSFORMED 
TO RSX2J/JF 
PROTOCOL 

c:t> 

HDCNT HDFNC , 

128 .DFHLC 

HODEV HDSRR 
.FEDLS/ SPARE 
.FECTY 

HDL~4HDOAT 
LINE CHAR 

HDCNT HDFNt. 
128 .DFHSD 

HODEV HDSRR 
• FEDLS/ SPARE 
.FECTY 

9-BIT BYTE PTR TO CHARS 

UT,( OCOO UNIQUE CODE RETURNED 
PTR TO INTERRUPT ROUTINE. 

1fl.1~I~T 
LINEdirYT.fo 

# BE SENT 

F f6 f6 

. B A R 

· · · M8 0295 

Figure FE-3. DTE Packets 

FE-17 «For Internal Use Only» 



DIGITAL TOPS-2" .MONITOR 
Fro nt End/Term inal s 

DTE DEVICE-DEPENDENT TTY CODE 

For front end lines, characters are assembled as 
packets and tranferred over the DTE. For output, packets 
consist.of characters from output line buffers to be sent by 
the front end to the terminal lines. For input, the front 
end gathers characters from the terminals, sends them over 
the DTE, and the DTE interrupt code places them in BIGBUF. 
TTCH7, one of the 20 ms. scheduler tasks, moves the 
characters from BIGBUF to their line buffers, as described 
in the section above. 

DTE Data Base 

Data is sent across the DTE in packets composed of 
header or overhead information, and the characters to be 
transferred. Packets may be either direct or indirect. If 
the header block is followed immediately by the characters, 
the packet is a direct packet. If the header block and 
characters are not contiguous, the packet is an indirect 
packet. . 

When a packet is sent to the front end, its header will 
always have the following format: 

HDCNT - count in bytes HDFNC - function 

HDDEV - device HDSPR - spare 

HDLINIHDDAT or HODTl 

Some packet headers need to be reformatted to conform to 
RSX20F protocol before they are sent. All packets queued by 
the routine DTEQ need reformatting, but packets queued by 
DTSNG L do not. 

Each DTE has a transfer wait queue. The header for 
each queue is in table DTEQS and the header for a particular 
DTE is in DTEQS, indexed by DTE number. Each DTE queue 
header word has this format: 

tail pointer"head pointer 

FE-18 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

The queue is a linked list and the first word of each packet 
contains the link to the next packet (or a 0 if the packet 
i s 1 as ton t he que ue) • 

NoW, we will look at how TOPS-20 initiates OTE 
transfers for TTY output, and later, at the interrupt code 
that fills BIGBUF. 

DTE Terminal Output 

Three different data structures, or packets, are built 
to transfer characters from an output line buffer over the 
DTE to the front end. The type of packet used depends on 
whether the line has output that is currently actlve (i.e, 
output queued or being transferred to the front end by the 
DTE) and whether there, are any packets available for use. 

If the line currently has no active output, routine 
STRTOI will call OTSNGL. DTSNGL has two standard packets 
that it fills and queues; their purpose is to start I/O for 
lines which are inactive. These standard packets have the 
format shown above. (See DTSNGL Queued Packet.) 

If there is no room in either of DTSNGL's standard 
packets, routine DTEQ is called to build a packet for that 
single character. This packet has the format shown above. 
(0 i rect Packe t Fo rma t) 

If DTEQ is unable to get space for a packet, and cannot 
block to wait for the space, a request to have the packet 
built later is set up. Blocking is not possible for one of 
the following reasons: 

1. The process is NOSKED 

2. The'request to queue the packet was made by the 
sched ul er (TTCH7 20 ms. task) 

3. The request to queue the packet was made at DTE 
interrupt level 

When the TTCH7 task has finished emptying BIGBUF, it 
services special requests for terminal lines; a maximum of 
eight requests will be serviced in one call to TTCH7. A 
special line request is made by storing the address of the 

FE-19 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

routine to be called in table TTCSAD (indexed by line 
number) the time to call the routine in TTCSTM (also indexed 
by line number) and incrementing TTQCNT, which is the count 
of special line requests. 

When a packet for a front end line cannot be queued 
because there is no packet space, a special line request is 
set up for that line. TTSN10 is the routine address stored 
when the request is to queue the packet; this is the only 
type of special request made for a front end line. TTCH7 
calls the routine TTSN10, which tries to get packet space to 
queue the packet. DZ11 lines (on 2020 systems) use the 
special request mechanism for carrier off line and other 
related conditions handled by the front end on systems with 
a front end. 

Once a line has been activated by one of the methods 
above (i.e., the first character has been output), the 
TTYINT routine, which is called when a DTE transfer done 
interrupt occurs for a TTY packet, will queue the next 
packet for the line if there are any characters in the 
line's output buffer. If the packet whose transfer was 
completed was a DTSNGL packet, TTYINT will be called for 
each line that had a character in the packet. If there are 
at least two characters in a line's output buffer, TTYINT 
will call DTEQ to build a string data packet. String data 
packets are indirect packets and have the indirect packet 
format. String data packets hold a maximum of 40 (decimal) 
characters; this limit is imposed by RSX20F buffer space. 
Note that the packet built is an indirect packet. The 
characters will be in the line's output buffer and the 
packet header byte pointer will point there. 

The normal sequence of events for a line that is doing 
output is: 

1. The' line buffers are assigned only while they have 
characters in them; therefore, the first two 
output line buffers must be assigned. 

2. The FIRST character is queued via DTSNGL. This 
will add the character to one of DTSNGL's standard 
packets. TTOTP in the line's dynamic data block is 
set to indicate the line is active. 

FE-20 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

3. When t;he transfer done interrupt occurs, TTYINT 
will pick up any characters in the line's output 
buffer and call DTEQ to build a string data packet 
for the characters. 

NOTE ----------------------~ 

TTYINT is ~alled for each line that has a 
9haracter in the DTSNGL packet; 
therefore, a packet is built and queued 
for each line (if it has characters to 
output) • 

4. Each time a transfer done interrupt occurs, TTYINT 
will build an indirect (string data) packet for the 
line if there are at least two characters in the 
line's output buffer. 

5. If there is only one character in the line's output 
buffer, DTSNGL will be called to add that character 
to one of its standard packets. This is done to 
keep to a minimum the number of single character 
packets that are sent. 

6. If the line has no characters, its state is changed 
to inactive. Flag TTOTP indicates whether or not a 
I ine is active. 

7. The line is now inactive and the output buffers are 
released. When there is a character for the line, 
the output buffers must be allocated and the line 
must be reactivated as described before. 

A TTOTP' flag indicating that a line is active means 
that at the time a character is added to the line buffer, 
there is no need to worry about getting the character out 
because the TTYINT routine will queue another packet when 
the currently active packet for the line gets a transfer 
done interrupt. 

Note that DTEQ called to send a single character 
(because the DTSNGL standard packets are full) is really a 
special case of the usual call to DTEQ by TTYINT; that is, 

FE-21 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

all calls to DTEQ will construct a packet with characters in 
it for a single line. If only one character is being sent, 
DTEQ will use a direct packet; if multiple characters are 
being sent, an indirect packet is built. 

If a character is being echoed from TTCH7, and the line 
must be activated, and if there is no room for the character 
in one of the DTSNGL standard packets, DTEQ is not called. 
Instead, a special request is added to the queue that is 
examined when TTCH7 has finished emptying BIGBUF. 

When TTYINT sets up a string data packet for DTEQ, it 
will never send beyond an escape character. An escape 
character is a a 9-bit byte with its high order bit on. The 
only defined escape character right now is stop output, 
which is used for terminal page (so it will not output more 
than one screen at a time). Routine FNDEND is called to 
scan the output buffer, and if an escape character is found, 
only the characters up to the escape character are sent in 
this packet. If the next character in the output buffer is 
the stop output escape character, output cannot be 
reactivated until a CTRL/Q is typed by the user. 

TTYINT will be called for all TTY output transfer done 
interrupts. It is set up in the packet as the posting 
routine to calIon transfer done. If the packet was queued 
by DTEQ, there will always be a posting routine address in 
the left half of the first word of the packet; the posting 
address is passed to DTEQ by the caller. DTSNGL character 
packets also call TTYINT, although TTYINT is not set up in 
their packet header as the routine to call. If the two 
high-order bits in the first word of the packet are on, the 
packet is a DTSNGL, and TTYINT is called as the posting 
routine. 

TTYINT will call DTEQ to send the characters, if there 
are at least two. If there is only one character, TTSND is 
called which, in turn, calls DTSNGL to add the character to 
one of its standard packets. 

All packets, whether TTY output or line printer output, 
are put on queue DTEQS. Each DTE has its own offset into 
the queue. Routine DTESKD is called to start the transfer 
on the top packet in the queue, which is the active packet. 

FE-Z2 «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Front End/Terminals 

DTSNGL packet headers and DTEQ packet headers do not 
have the same form~t. DTSNGL builds packets that conform to 
queued protocol, while the packets built by DTEQ must have 
their headers re~formatted to conform to queued protocol. 
Routine,DTESKD takes the top packet from DTEQS, re-formats 
it if it was built by DTEQ, and sends it to the DTE. DTESKD 
knows the packet is a DTSNGL packet if bits ~ and 1 of the 
first word of the packet are on; a DTSNGL packet is sent as 
it is. 

DTE Interrupts 

All DTE interrupts come to INTDTE. This routine checks 
the reason-for the interrupt and dispatches on type: 

1. TOl~DN TO-l~ transfer done (input) 

2. 'DINGME l~ doorbell 

3. TOllDN TO-II transfer done (output) 

10 TO 11 TRANSFER DONE INTERRUPT (OUTPUT) 

TOllDN will be called when a transfer over the DTE to 
the 11 is complete; that is, when an output request 
finishes. There are two basic tasks to be completed in this 
case: 

1. Schedule the next DTE transfer 

2. Post the packet 

Routine'DTESKD schedules 10 to 11 DTE transfers. The 
first entry in a DTE's queue will be sent. (This will be 
the entry pointed to by the right half of DTEQS, indexed by 
DTE number. Remember that the DTE can transfer 
simultaneously in both directions, so it will not be busy in 
the to 11 direction when DTESKD is called.) 

The packet header will have the name of the posting 
routine to call (in offset QINT) unless the packet was 
queued by DTSNGL. For TTY output, this will always be set 

FE-23 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

up to TTYINT. The posting of TTY packets includes some 
housekeeping and queuing of other packets that need to be 
sent for the line (or lines) in the packet whose transfer 
was just completed. 

Housekeeping means updating the relevant data 
structures to say the data has been successfully sent. In 
the case of TTY transfers, this means updating the count of 
characters in the line's output buffer (field TTOCT in the 
line's dynamic data block) , updating the byte pointer to 
take characters from the output buffer (field TTOOUT in the 
line's dynamic data block), and, if there are no more 
characters in the output buffer, setting the line to 
inactive (field TTOTP set to zero). If the output buffers 
are empty, they are released at this time. 

If there is only one character in the output line 
buffer, send the single character by calling TTSND (which 
will call DTSNGL). To activate a line, see the mechanism 
described in the section above on DTE Terminal output. 

If there is more than one character, set TTYINT as the 
interrupt handler and call DTEQ to send the characters. See 
the description of DTEQ in the DTE output section. 

11 TO 10 TRANSFER DONE INTERRUPT (INPUT) 

T010DN will be called when a transfer over the DTE from 
the 11 to the 10 is finished. The major task of this code 
is to put the packet in its proper buffer. For TTYs, this 
will mean putting the characters into BIGBUF. 

The T010DN code dispatches, depending on the function 
code in the packet through table FNCTBL in DTESRV. TTY 
character input dispatches to TAKLC, which calls routine 
DTESTO for each character. DTESTO calls BIGSTO to store the 
character into BIGBUF, using pointer TTBIGI to place 
characters. Each entry in BIGBUF is one word containing a 
line number in the left half, and the character in the right 
half. Since BIGBUF is a circular buffer, if TTBIGI reaches 
TTBIGO, BIGBUF is full and the monitor BUGCHK's. When all 
characters in the packet have been moved to BIGBUF, the 
interrupt can be dismissed. 

FE-24 «For Internal Use Only» 



DIGITAL 

MODULE TEIT 

TOPS-2ftJ MONITOR 
Front, End/Terminals 

When answering the lab exercises, write down the names 
of the tables where you found the answers. The labs will 
help you understand the monitor data base structure. So 
remember,where to .look is more important than what you find 
there. 

The exercises marked with a double star (**) are more 
d ifficul t and are optional. If you have the time and/or 
motivation, do them. 

I/O - TTY Dependent Data /Sase 

TOOLS 

Use the PEEK command of FILDDT; i.e., look at the 
running monitor to answer these exercises. 

EXERCISES 

1. What TTY line types exist in this monitor? 

2. What is the address of your terminal line's dynamic 
data block? 

3. Is anyone linked to your line? ** 

4. What is your line speed set to? 

5. What line-type is your line? 

6. How many line buffers are currently on the free 
list? ** 

7. What device-dependent routine is called to send a 
character for your line's line-type? ** 

FE-25 «For Internal Use Only» 



DIGITAL 

DTE - DTE Dependent Data Base 

TOPS-20 MONITOR 
Front End/Terminals 

This set of exercises also uses a deliberate crash. 

TOOLS 

Use the crash <MONITOR-INTERNALS>DTEQS.CPY for this set 
of exercises. For symbols, use the monitor 
< MONITOR-INTERNALS>R3-MONITOR. EXE. Do not forget to set 
moni to r contex t! 

EXERCISES 

1. Are there any packets queued to be sent over the 
DTE? 

2. How many characters are in each of the DTSNGL 
packets? 

3. Which routine (DTEQ or DTSNGL) buil t each of the 
queued packets? 

FE;""26 «For Internal Use'Only» 



DIGITAL 

TEST EVALUATION SHEET 

TOPS-20 MONITOR 
Front End/Terminals 

I/O - TTY Dependent Data Base 

EXERCISES 

1. What TTY line types exist in this monitor? 

ANSWER: If a line type exists, it will have a 
llne-type-dependent dispatch table pointed to by 
the appropriate entry in TTLINV. If a line does 
not exist, the offset in TTLINV for that line-type 
will point to the dummy table TTDMVT. 

TTDMVT=43300 

TTLINV/400000"TTFEVT = 400000, , 43 3 54 
/ 400000"TTNTVT = 400000,,43300 i does not 

iexist 
/ 400000"TTPTVT = 400000,,44235 
/ 4 00000, ,TTNTVT = 400000,,43300 idoes not 

i ex ist 
/ 400000"TTNTVT = 400000,,43300 idoes not 

i ex ist 
/ 40000Ci1"TTNTVT = 400000,,43300 idoes not 

i ex ist 

The table TTLINV says that offset 0 is for front 
end lines and offset 2 is for PTYsi therefore, 
these two types of lines exist for this monitor. 

2. What is the address of your terminal line's dynamic 
data block? 

ANSWER: Given your job number, you can get your 
I ine number from JOBPT, indexed by job riumber, (in 
the left half). Table TTACTL, indexed by line 
number, contains the address of the line's dynamic 
data bloc k. 

$INFORMATION JOB 
Job 26, User DONALEEN, CD:<DONALEEN>, 

FE-27 «For Internal Use Only» 



DIGITAL 

Account LSCD, TTY32 
$CONT 

JO~PT+26./ 32,,56 

TTACTL+32/ 556235 

TOPS-20 MONITOR 
Front End/Terminals 

iline's dynamic data 
i block 

3. Is anyone linked to your line? ** 

ANSWER: If there are any lines linked to this one, 
the line numbers are stored in the line's dynamic 
data block at offset TTLINKi there are four 9-bit 
fields in this word to store a maximum of four 
1 inks. 

55~235+TTLINK/ -1 ino links 

4. What is your line speed set to? 

ANSWER: The line speed for a terminal is stored in 
table TTSPWD, indexed by line number. 

TTSPWD+32/ 150,,9~00 i (decimal) 

5. What line-type is your line? 

ANSWER: A terminal's line-type is stored in bits 
12-17 of table TTSTAT, indexed by line number. 

TTSTAT+32/ 24000 ithis line's type is 
i0 - i.e., this is 
ia front end line. 

6. How many line buffers are currently on the free 
list? ** 
ANSWER: Location TTFREC contains the count of free 
buffers. 

TTFREC/ 154 

FE-2B «For Internal Use Only» 



DIGITAL TOPS-2~ MONITOR 
Front End/Terminals 

7. What device-dependent routine is called to send a 
character for your line's line-type? ** 

ANSWER: Table TTLINV, indexed by line type, 
contains the address of the 1ine-type-dependent 
function table for a line type; that table, at 
offset TTVT32 contains the dispatch address to send 
a character to a line. 

TTLINV/' 4~~000 TTFEVT ;vector table for 
;thi~ line type 

TTFEVT+TTVT23/ 4~000~ TTSND1 ;TTSND1 is the 
;routine to send 
; a character to 
;this line type. 

DTE - DTE Dependent Data Base 

EXERCISES 

1. Are there any packets queued to be sent over the 
DTE? 

ANSWER: Table DTEQS, indexed by DTE, contains the 
queue header for packets queued to be sent over the 
DTE. 

DTEQS/126040,,126033 ; ta i1 , ,head 
;of queue 

/ 0 

2. How many characters are in each of the DTSNGL 
packets? 

ANSWER: The DTSNGL packets are called SNGPK1 and 
SNGPK2; SNGPK1 is queued to be sent (and 
therefore, can be expected to have valId unsent 
data in it). The byte count for a packet includes 
the header portion, but not the first word because 
this is only for queueing and is not sent over the 
DTE. An empty packet (i.e, header portion only) 
contains 10 bytes. There is room in a DTSNGL 
packet for six characters total; each character 

FE-29 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Front End/Terminals 

takes two bytes -- one byte for the character and 
one byte for its line number. Therefore, a full 
packet can contain 10 header bytes plus 14 
character bytes equals 24 bytes. Flag SNGAVL in 
the header word indicates there is room in the 
packet. 

SNGPKI/700001,,126052 

/ 0,12,O,4 

/ O,4,O,O 
/ 17,215,5,317 

/ 0,0,0,0 

SNGPK2/ 0 

iSNGAVL= bit 1; 
; SNGACT= bi t 2 
; (type out set to 
is-bit bytes) 
;there are 12 bytes 
; in thi s packe t. 
;Therefore, there is 
; 0 n e c ha r act e r • 

;line number and 
; character 

; pa c ke tis no t 
; queued 

3. Which routine (DTEQ or DTSNGL) built each of the 
que ued packe ts? 

ANSWER: Only packets SNGPK1 and SNGPK2 are used by 
DTSNGL; therefore, only SNGPKl of the queued 
packets was built by DTSNGL. 

FE-30 «For Internal Use Only» 



TOPS-20 MONITOR 

Storage Management 

«For Internal Use Only» 





DIGITAL 

COURSE MAP 

TOPS-20 MONITOR 
Storage Management 

MR-2717 

SM-i «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SM-ii 

TOPS-20 MONITOR 
Storage Management 

«For Internal Use Only» 



DIGITAL 

Storage Management 

TOPS-20 MONITOR 
Storage Management 

-------- INTRODUCTION ---------. 

This module covers the portion of 
TOPS-20 which is responsible for storage 
management. The areas addressed by storage 
management include: the physical location 
of each page, the movement of pages between 
the several levels of storage, the 
manangement of reserved space, garbage 
collection, working set control and balance 
set adjustment. The emphasis in this module 
is on data base tables associated with the 
tasks mentioned above, and refers to the 
table descriptions section of the course 
materials, along with the micro-fiche. 

SM-l «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

----....--- LEARNING OBJECTIVES-----...., 

Upon completion of this module, the 
student will be able to: 

1. Describe the uses of the data contained 
in the various storage management 
related tables, specifically, the CST 
tables, the SPT and parallel tables, and 
the JSB/PSB space. 

2. List the uses of the 
allocated monitor space. 

dynamically 

3. Describe the uses of the JSB and the PSB 
in context switching. 

,....-------- RESOU RCES ----------. 

1. The Monitor Table Descriptions 

2. The TOPS-20 Micro-fiche 

SM-2 «For Internal Use Only» 



DIGITAL 

MODULE OUTLINE 

TOPS-20 MONITOR 
Storage Management 

Storage Management 

I. Storage Management 
A. Introd uc tion 
B. Data Structures 
C. CST Tables 
D. SPT and Parallel Tables 
E. Working Set Management 
F. System-Wide Page Management 
G. Pag e Faul ting 
H. Adjustment Of the Balance Set 
I. SWPIN and SWPOUT 

II. JSB/PSB Space 
A. Context Switching the JSB and PSB 
B. JSB and PSB Maps 
C. Use of JSB Space 
D. Use of PSB Space 

SM-3 «For Internal Use Only» 



DIGITAL 

This page is for notes. 

SM-4 

TOPS-20 MONITOR 
Storag e Management 

«For Internal Use Only» 



DIGITAL 

STORAGE MANAGEMENT 

Introduction 

Storage management is responsible 
location, changing a page's level of 
collection, and reserving storage for 
responsibilities are implemented in: 

1. Working set management 

2. System wide page management 

3 • P ag e fa u 1 t i ng 

4. Adjustment of the balance set 

Data Structures 

PAGE TABLES 

TOPS-20 MONITOR 
Storage Manag ement 

for each page's 
storage, garbage 

fo rks. These 

Both forks and files have page tables. (A file's page 
table is also called its index block). While a file (or a 
section of a long file) is in use, its index block is copied 
into core; this copy cannot be written to disk (but can be 
swapped to "drum") and is called the in-core copy of the 
index block. Each page of the file that is currently mapped 
has a share pointer or an immediate pointer in the in-core 
copy of the index block. 

STORAGE ADDRESSES 

The page table entry for a page tells you where to find 
the page's storage address. If the pointer for the page is 
an immediate pointer, the storage address is in hits 14-35 
of the page table entry. If the pointer for the page is a 
share pointer, the storage address is in bits 14-35 of the 
SPT slot that belongs to the page. 

SM-5 «For Internal Use Only» 



DIGITAL 

CST Tables 

TOPS-20 MONITOR 
Sto rag e Manag ement 

The CST tables are parallel tables; there is one word 
entry per page of physical core in each table. The amount 
of physical core determines the size of these tables. The 
CST tables are all resident. 

CST0 

CST0 is the only CST table that both the microcode and 
the software use. The microcode writes into the CST0 table 
and the software uses the information. A CST0 table entry 
is divided into three fields: the age, the PUR (process use 
register), and the modify bit. See the CST0 table in the 
Monitor Tables for a diagram. 

The age field is in bits 0-8; when a page is 
referenced, the running fork's current age is stamped in the 
age field of the page's CST0 entry (if the fork has not 
referenced the page since its last age increment -- or since 
it was context switched). 

The Hardware Reference Manual incorrectly states that 
the age is in bits 0-5. The age field is actually in bits 
0-8, but if the value stored in this field is not at least 
10, the microcode traps to the software. Note that a number 
smaller than 10 in this field would be only in bits 6-8. 

The PUR (process use register) is in bits 9-32. The 
PUR is used to indicate if a page has been referenced by 
more than one process; that is, whether or not the page is 
shared. Each process in the balance set is assigned a bit 
(called its core number) in the range of bits 9-32. When a 
process references a page, its core number is inclusively 
ORed into the page's PUR in its CST0 entry; this happens 
only if the process has not referenced the page since its 
last age stamp increment (or since it was context switched) • 

The modify bit indicates if a page has been modified. 

CSTI 

The lock count and next level of storage for a page are 
stored in its CSTI entry. A page cannot be swapped out 
while its lock count is non-zero. The overhead pages for a 
fork are locked when the fork enters the balance set, and 

SM-6 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

pages being read or written are locked when the page is 
queued. The lock count can be greater than one; for 
example, if two forks from the same job are in the balance 
set, the job's JSB is locked twice. 

The CST2 entry for a page indicates its "home" 
either its owning SPT slot, or its owning page table's SPT 
slot and its offset in that page table. The CST2 entry for 
a page is the internal identity on that page; it uniquely 
identifies any page on the system. If a core page is not 
assigned, its CST2 entry is zero. 

CST3 

The CST3 table is used for multiple purposes, depending 
on the state of the page. If the page is on the RPLQ, its 
CST3 entry contains the list pointers for the RPLQ. If the 
page is on the deletion queue or special memory queue, its 
CST3 entry is the list pointer for that queue. When a core 
page is queued to be read from disk or written to disk, its 
CST3 entry contains the local disk address. 

CST5 

The CST5 table is used for short IORBs. If a page is 
linked on a disk unit's transfer wait queue or position wait 
queue, the entry in CSTS for the core page being read to or 
from contains status flags and the pointer to the next item 
in the queue. 

SPT and Parallel Tables 

The SPT and SPTH are parallel tables. SPTO is parallel 
to the OFN portion. 

SPT 

The SPT contains the storage addresses for all fork 
page tables, JSBs, PSBs, in-core copies of index blocks, and 
file pages with share pointers in bits 14-35. The OFN 
portion of the SPT also contains the ALOCX index for the OFN 
in bits 0-11; the remainder of the SPT table keeps the 
share count on the SPT slot in bits 0-11. For a shared file 

SM-7 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

page, this is the number of pointers to the SPT slot. 

SPTH 

The SPTH table contains flags and the disk address of 
the index block iri the OFN portion. The remainder of the 
SPTH table slots are used to identify the page's origin. If 
the page is a file page, its SPTH slot contains the owning 
OFN and the offset (page number) into that index block. If 
the page is not a file page, its SPTH slot is the owning 
fo rk number. 

SPTO 

The SPTO table contains the OFN's share count and the 
structure number the file is from. 

DISK BIT TABLE 

Each structure has a file in its <ROOT-DIRECTORY> 
called DSKBTTBL.BIN. This file contains one bit for each 
page in the structure. The file is mapped whenever a page 
is allocated or deallocated on that structure. If the bit 
for a page is 0, the page is allocated; if it is a one, the 
page is free. See the write-up on disk allocation for more 
info rmation. 

FORK AGING 

A fork always has an age associated with it based on 
the amount of time it has run. When a fork is created, it 
is assigned an age of 100; each time it has accumulated 
AGTICK ms. (currently 40 ms.), the fork's age is 
incremented. The fork's current age is stored in the FKNR 
table, indexed by the system fo rk number. 

RPLQ 

RPLQ, which is linked through the CST3 table, is the 
header for the linked list of available core pages. NRPLQ 
is the count of pages on this free list. A page is added to 
the head of the RPLQ if it is not expected to be referenced 
again; for example, del~ted pages are added to the front of 

SM-8 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

the RPLQ. A page is added to the end of the RPLQ if there 
is a high probability the page will be referenced again; 
for example, index blocks are added to the end of the RPLQ. 

When the system needs a core page, it takes one from 
the RPLQ. For example, when a process page faults (for 
not-in-core), the system takes a page from the RPLQ to swap 
the page into. When NRPLQ (the number of pages on the RPLQ) 
gets low (currently NRPMIN), the overhead cycle does a 
global garbage collect (GCCOR). 

WORKING SETS 

Each fork has both a reserve working set size and a 
current working set size. The current working set size is 
the count of pages currently in core. It is stored in table 
FKPGS and indexed by the system fork number. The reserve 
working set size is the count of pages reserved for the fork 
when it is in the balance set; the reserve working set size 
is stored in table FKNR, indexed by the system fork number. 
The reserve working set is always at least as large as the 
current working set. 

Working Set Management 

Pages are removed from a fork's working set by the 
local garbage collector (called XGC). The local garbage 
collector is invoked when a process page faults and the fork 
has run at least 2000. ms. since its last local garbage 
collection. The CST tables are scanned for pages to 
collect. A page is removed if: 

1. The last reference to the page was more than 3 
seconds ago. 

2. It is private. The PUR must have only this fork's 
core number stored. 

3. It is not locked. 

4. It does not have write in progress. 

SM-9 «For Internal Use Only» 



DIGITAL 

System-Wide Page Management 

GCCOR 

TOPS-20 MONITOR 
Storage Management 

The' overhead cycle checks if the RPLQ has at least 
NRPMIN pages; if the free list is low or if a fork is being 
deleted, the global garbage collector (GCCOR) is called to 
collect pages for the free list. GCCOR scans the CST tables 
and take s pag es : 

1. Whose owning fork is outside the balance set. If 
the PUR i nd ica tes the page is shared and the owner 
is on the GOLST, it is left. If the owner is not 
on GOLST and there are sharers, the page is 
colI ected anyway. 

2. That are not locked. 

3. That are not being written. 

GCCOR collects a maximum of 1/2 of swappable core. 
Note that even if a page is added to the free list, its 
owner can still reclaim the page. See the diagram on 
re-claiming a page from the RPLQ. 

DDMP 

DDMP is a Job 0 fork that runs in exec mode; its task 
is to move file pages from the swapping space back to disk. 
This both cleans up the swapping space and updates the disk 
copy of the page. DDMP is invoked both cyclically (every 
minute) and when the swapping space gets low. 

Page Faulting 

Although page faulting often refers to a page' that is 
not in core, there are actually several types of page 
faults. A page fault occurs when the microcode traps to the 
monitor because it cannot complete a reference for one of 
several reasons. Page faults are divided into hard and soft 
types; if flag 'lWHPFF is on in TRAPSW, it is a hard page 
fault. The soft page fault types are: 

SM-10 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

1. NIC - not in core. When the microcode did the 
address translation, it found the storage address 
was not in core. 

2. TRP0 - illegal age. The age field contains zeroes 
'in bits 0-5. This means the page is in a special 
state. (For example, a read may be in progress.) 
See the CST0 table for an explanation of each of 
the special states. 

3. NPG - null pointer. The page table entry is zero. 
The page must be created. 

4. WCpy - copy on write. There has been a write 
reference to a page with copy-on-write access set. 

5. ILWR - illegal write. A write-protected page has 
had a write reference. 

6. ILRD - illegal read. A reference was made to a 
read-protected page or to a page from a file on a 
structure that has been dismounted. 

Adjustment of the Balance Set 

The balance set defines which processes have reserved 
core. The balance set is adjusted when one of the following 
is true: 

1. 8UMNR is greater than MAXNR. The number of pages 
needed by balance set processes exceeds available 
core. 

2. It is time for the periodic adjustment of the 
b a1 ance set. 

These factors determine whether a process is added to the 
b a1 ance set: 

1. GOL8T priority 

2. If it will fit in its partition. 

8M-II «For Internal Use Only» 



DIGITAL 

SWPIN and SWPOUT, 

TOPS-20 MONITOR 
Storage Management 

The routines SWPIN and SWPOUT are called for all 
storage management functions that require a page to be read 
or written. These routines call DSKIO or DRMIO to set up 
the request that is passed to PHYSIO to queue the page. The 
SWPOUT routine may not need to write the page if the page 
has not been modified. Also, the SWPOUT routine can decide 
to swap a file page to its disk home if the swapping space 
is low. The following system routines and JSYSs call SWPIN 
and/ or SWPOUT: 

1. Page fault not-in-core calls SWPIN. 

2. Page fault null pointer calls SWPIN to assign and 
zero a core page if a private page is created. 

3. Page fault copy-on-write calls SWPIN to assign a 
core page and copy the source page to the new page. 

4. GCCOR calls SWPOUT for collected pages. 

5. XGC calls SWPOUT for collected pages. 

6. DDMP calls SWPIN to read pages in from the "drum" 
and then calls SWPOUT to write them to their homes 
on disk. 

7. AJBALS calls SWPIN to read in a fork's overhead 
pages when it is added to the balance set. 

8. UFPGS JSYS calls SWPOUT to update file pages on the 
disk. 

9. CLOSF JSYS can call SWPOUT to write any modified 
file pages to the disk. 

10. PMAP JSYS can call SWPIN or SWPOUT, depending on 
the requested function. 

SM-12 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Manag ement 

JSB/PSB SPACE 

Each job has a JSB (Job Storage Block) and each process 
has a PSB (Process storage Block). The JSB and PSB 
associated with a fork are context switched with that fork. 
Also, all virtual pages between 620 and 777 of the monitor's 
address space are context switched with the process. And, 
for Model B machines, sections 2 and 3 are context switched 
with the process. How these parts of the monitor are used 
and context switched is explained below. 

Pages 620-706 are called the JSB space and contain job 
specific information. Pages 707-777 are called the PSB 
space and contain process specific information. On model B 
machines, sections 2 and 3 also contain process specific 
information; namely, the process's currently mapped 
directory and the IDXFIL for the structure the process 
accessed last. 

Context Switching the JSB and PSB 

Each JSB and PSB has its own SPT slot. When a process 
is running, its JSB is currently mapped to pag e 620 of the 
monitor's map and its PSB is currently mapped to pages 776 
and 777 of the monitor's map. Therefore, to context switch, 
all that is necessary is to set up share pointers in MMAP 
slots 620, 776, and 777 for the fork's JSB and PSB pages. 
By changing the map slots, the virtual address space of the 
monitor is changed to include the current fork's PSB and JSB 
pages. The fork tables FKJOB, FKPGS, and FKeNO (all indexed 
by fork number) contain the SPT offsets for a fork's JSB and 
PSB pages. 

However, as discussed above, many more pages than just 
the JSB and PSB proper are context switched with the 
process. It is possible to change both the MMAP entries for 
each of the pages that is context switched and th~ section 
pointers for sections 2 and 3; but the cost in time would 
be exo rb i tant. 

SM-13 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

JSB and PSB Maps 

as a 
used 
for 
PSB, 

To simplify context switching, part of the JSB is used 
page map for the JSB space pages and part of the PSB is 
as a page map for the PSB space pages. The MMAP slots 
these pages are indirect pointers through the JSB and 
respec ti ve1y. 

To avoid having to set up SPT offsets for the JSB and 
PSB, the monitor reserves SPT slot 400 for the current JSB, 
and SPT slot 401 for the current PSB page containing the PSB 
space map. When a process is context switched, the monitor 
gets its JSB and PSB SPT offsets from the FKJOB and FKPGS 
tables, picks up the current storage addresses from the 
relevant SPT slots, and copies the JSB's storage address to 
SPT slot 400 and the PSB's storage address to SPT slot 401. 

Suppose fork 71 needs to be context switched, and the 
FKPGS and FKJOB entries for the fork contain the following: 

FKJOB+71/ xx,,503 

FKPGS+71/ xx,,451 

i503 is the SPT offset for 
ithe JSB belonging to this 
ifork's job 

i451 is the SPT offset for 
i the PSB page 

The storage addresses for these pages are in their SPT 
offsets. Suppose the SPT offsets contain the following: 

SPT+503/300,,213 

SPT+451/100,,451 

ithe page is currently in 
icore page 213 

ithis page is currently in 
i core page 451 

To context switch, copy the current storage addresses above 
to SPT slots 400 and 401, respectively. 

What must MMAP look 1 ike to make thi s wo rk? . MMAP+620 
contains a share pointer for SPT slot 400. MMAP+621 through 
MMAP+706 contain indirect pointers through the JSB map in 
the JSB (that is, indirect pointers through SPT slot 400). 
The JSB map begins at 620000, the start of the JSB. 
Therefore, the JSB space is represented in MMAP as: 

SM-14 «For Internal Use Only» 



DIGITAL 

MMAP+621/3xxxxl,,400 
MMAP+622/3xxxx2,,400 
MMAP+623/3xxxx3,,400 

MMAP+706/3xxx66,,400 

TOPS-20 MONITOR 
Storage Management 

;indirect through 
;offset 66 in the 
;JSB. 

For the PSB, things are a little more complex. 
Remember that the PSB is also the UPT; therefore, several 
locations in the PSB have hardware-defined uses. For this 
reason, the PSB map cannot begin at the start of the PSB 
page. The PSB map begins at offset 666 of the PSB. 
Therefore, the PSB space is represented in MMAP as: 

MMAP+707/3xx666,,401 
MMAP+710/3xx667,,401 

MMAP+775/3xx754,,401 
MMAP+776/ 2xxxxx,,401 ;share pointer to 

;PSB page itself 
MMAP+777/3xx756,,401 

Use of JSB Space 

The JSB space is divided into reserved and dynamically 
allocated areas. 

RESERVED JSB SPACE 

Beginning at location FILSTS, space for 140 JFN 
is reserved. Each JFN block has a size of MLJFN.' 
page itself has defined uses for each location; 
Monitor Tables for a description of the JSB. 

blocks 
The JSB 

see the 

SM-15 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Sto rag e Manag ement 

DYNAMICALLY ALLOCATED SPACE 

The JSB space is allocated both a page at a time and an 
n-word block at a time. 

JBCOR - is an allocation table with one bit for each 
page in the JSB space. If the bit is on, the 
pag e is free. I f the bit is 0 ff, the pag e is 
in use. Pages 620-706 are represented here. 

JSBFRE - is the head of the blocks of free storage. 

Routine ASGPAG is called to allocate a page of storage. 
Pages of JSB space are allocated for: 

1. Magtape buffers. 

2. File window pages. 

3. To add more space to the free list, JSBFRE. 

4. Mapping the super index block of a file. 

5. Mapping the EXE file directory page and other such 
uses when a temporary page is needed. 

Routine ASGJFR is called to allocate a free block; the 
caller passes the desired block size. If there is no block 
of the desired size, ASGJFR calls ASGPAG to assign another 
page. Blocks are used to store name strings for the JFN 
block. Name strings have this format: 

-1, ,n in is size of block including this word 

in-l words containing name in ASCIZ. 

Use of PSB Space 

The PSB space is used differently for Model A and Model 
B machines. 

SM-16 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Sto rag e Manag ement 

MODEL A VERSUS MODEL B MACHINES 

On Model B machines, directories are mapped to section 
2; on Model A machines, directories are mapped to page 
740000 of section 0 (the only section). On Model B 
machines~ IDXFIL is mapped to section 3; on Model A 
machines, IDXFIL is mapped to pag e 720000 of section 0. 
Pages 720000 through 770000 of sections 0 (and 1) are unused 
on Model B machines. 

PSB SPACE LAYOUT 

DRMAP 

1. CXBPG- page 707; used to temporarily map index 
blocks. 

2. CPTPG- pag e 710; used to tempo rar ily map fork pag e 
tables. 

3. CPYPG - pag e 711; used to map the source pag e 
while a copy-on-write page fault is in progress. 

4 • F PG 0, FPG 1 , F PG 2 , FPG 3 - pa g e s 71 2 t h r 0 ug h 715 ; 
called temporary fork pages; currentlY,unused. 

5. PSIPG - pages 716 and 717; meant for temporary PSI 
storage; currently unused. 

6. IDXFIL - pages 720 through 737; IDXFIL mapped here 
on Model A machines; unused on Model' B machines. 

7. Directory pages - pages 740 through 770; directory 
mapped here on Model A machines; unused on Model B 
machines. 

8. DDTPG - page 774; MDDT page; used while MDDT is 
in use. 

For Model B machines, MSECTB+2 (the section pointer for 
section 2) contains an indirect pointer through location 
DRMAP of the current PSB. DRMAP contains a share pointer 
for the index block of the currently mapped directory. For 
exampl e: 

SM-17 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

M8ECTB+2/324643,,401 

DRMAP=P8B+643/ 224000"OFN of mapped directory 

Therefore, when the PSB is context switched, the currently 
mapped directory is also context switched. 

I DXMAP 

For Model B machines, 
section 3) contains an 
IDXMAP of the current PSB. 
for the index block of the 
example: 

MSECTB+3 (the section pointer for 
indirect pointer through location 

IDXMAP contains a share pointer 
relevant structure's IDXFIL. For 

MSECTB+3/324643,,401 

IDXMAP=P8B+644/ 224000"OFN of IDXFIL 

8M-18 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

MODULE TEST 

When answering the lab exercises, write down the names 
of the tables where you found the answers. The labs will 
help you understand the monitor data base structure; so 
remember, where to look is more important than what you find 
there. 

The exercises marked with a double star (**) are more 
d ifficul t and are optional. I f you have the time and/or 
motivation, do them. 

Storage Management Data Structures 

Tools 

Use the crash <MONITOR-INTERNALS>SM.CPY for 
exercises. 

EXERCISES 

these 

1. Find an in-core page in the running fork's' page 
table: Is it locked in core? If so, what is the 
lock count for the page? 

2. Is the fork's page table locked in core? ** 

3. Does the fork have an in-core page with no backup 
add ress on the drum? 

4. Find' an in-core page with its own SPT slot. 

5. Is there an in-core page with write in progress? 
With read in progress? 

6. What page is at the head of the RPLQ? 

7. How many pages are on the RPLQ? 

SM-19 «For Internal Use Only» 



OIGITAL TOPS-20 MONITOR 
Storage .Management 

8. Find a mapped file page in the running fork's page 
map. What is the owning OFNs backup level of 
storag e? ** 

9. Using CST2, find a core page that is not ,currently 
'assig ned. ** 

10. What is the running fork's current age? 

11. What is the~ running fork's current working set 
size? 

12. What is the running fork's reserve working set 
size? 

13. How many pages are on the swapping space free list? 
** 

14. Does the running fork have any mapped file page 
with an indirect pointer?** 

15. How many of the pages of the running fork's JSB 
space actually exist? ** 

16 • Wh a tar e the S PT 0 f f set s for the r un n i ng for k ' s 
JSB, PSB and user page table? 

17. Verify that the storage addresses for the running 
fork's JSB and PSB match the storage address in 
slots 400 and 401. 

Internal Mapping Using MOOT ** 

MOOT is a part of the monitor that allows you to look 
at the running monitor with the standard OOT commands; your 
process is always the running process when you use MODT. 
You can also call monitor routines to map pages; however, 
extreme caution should be taken when using MOOT. If you 
change ,any locations, yqu can crash the monitor.' It, is a 
good practice to type carriage return immediately after you 
open any location to prevent accidental deposits into 
memory. This part of the lab uses MOOT to map directories 
and/or other pages using their internal identities. 

SM-20 «For Internal Use Only» 



DIGITAL 

Tools 

TOPS-20 MONITOR 
Storage Management 

You can enter MOOT in either of two ways. In the first 
example, the running fork will be the to~ fork of your job 
(i.e., the EXEC). In the second example" the rUnning fork 
will be the fork running user level ODT. 

@ENABLE 
$AEQUIT 
MX>/ 
MODT 

@ENABLE 
$SDOT 
Jgys--777$X 
MOOT 

;go to the mini-exec 
;enter MOOT 

;you can use SOOT or UOOT 
;jsys 777 causes you to enter MOOT 

You can use either method to enter MDOT. You can return 
from MOOT by calling the routine MRETN. You do this by 
typing: . 

MRETN$G 

You will also need the writeup in the OEBUGGING section 
called Mapping Page 677 and from your Student Guide. 

EXERCISES 

Map the pages in the following exerc i ses to pag e 677. 
This is a page out of your job's JSB space and is the 
traditional page to use. 

1. Map some other page table. It can be the page 
table of one of your .friend's forks or, any page 
table you choose. 

SM-2l «For Internal Use Only» 



"-
D~GITAL TOPS-20 MONITOR 

Storag e Management, 

~--------------------NOTE --------------------~ 

Hint: If you know the fork number of 
the fork whose page table you want to 

. map, where would yo u find the pag e 
table's internal identity? 

2. Map some other JSB. For example, ask your neighbor 
what his/he'r fork number is and then find out what 
the corresponding JSB's intern~l identity is. 

3. Map an OFN. 

~------------------- NOTE --------------------~ 

Suggestion: You may wish to map the OFN 
of the program running in your fork and 
verify that the in-core-copy of the 
index block has share pointers that 
match the share pointe~s' for your fork's 
mapped pages from the file. 

4. Map a page of some other process. ** 

5. Map a JSB space page from some other JSB. 

6. Un-map the last page. 

** 

~---------------------NOTE--------------------~ 

If you do not un-map the page, the job 
will hang when you try to LOGOUT because 
the JBCOR table does not have the page 
allocated. 

SM;...22 «For Internal Use Only» 



DIGITAL TOPS-2(?J MONITOR 
Storag e Management 

. Page Fault Crash ** 

The crash for this exercise fs BADBTB.CPY. Try and 
figure out why the system crashed. The questions below 
should help point you in the right direction. To look at 
the crash, do the following: 

@ENABLE 
$FILDDT 
FILDDT>LOAD <MONITOR-INTERNALS>R3-MONITOR.EXE 
FILDDT>GET <MONITOR-INTERNALS>BADBTB.CPY 

1. Why does a BADBTB crash happen? 

2. What push down list is in use (i.e., what was 
generally going on when the system crashed)? 

3. What instruction made the reference that caused the 
BADBTB? 

SM-23 «For Internal Use Only» 



DIGlTAL 

This page is for notes. 

SM-24 

TOPS-2f2J MONITOR 
Storage Management 

«For Internal Us~ Only» 



DIGITAL 

TEST EVALUATION SHEET 

TOPS-20 MONITOR 
Storage Management 

Storage Management Data Structures 

EXERCISES 

1. Find an in-core page in the running fork's page 
table. Is it locked in core? If so, what is the 
lock count for the page? 

ANSWER: The running fork's page table is mapped to 
the monitor's address space beginning at UPTA. 
Look for a page whose storage address indicates it 
is in core; that is, bits 12-17 of the storage 
address are 0. The CSTI entry for that page 
contains the lock count in bits 0-11. 

UPTA/124000,,742 

CSTl+742/3,,12704 

;this is an immediate 
;pointer, therefore, 
;the storage address 
;is in bits 12-35. 
;Bits 12-17 are 0, 
;indicating the page 
; is in core. 

;page is not locked 
;in core lock count 
;is zero. 

2. Is the fork's page table locked in core? ** 

ANSWER: The fork's page table is mapped at UPTA. 
Currently UPTA=775. Therefore, we want to trace 
down MMAP+775; see if the page is in core, and if 
so, is it locked. 

UPTA= 775000 

MMAP+775/324754,,401 ;mapped indirect 
;through offset 754 
;of SPT slot 401 

SM-25 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

; (which is the first 
; pa g e 0 f the PS B) • 

PSB+754/224000,,1131 ;share pointer so 
; sto rag e add ress in 
; SPT slot 1131 

SPT+1131/100,,250 ;storage address is 
; core page 250 

CST1+250/503,,12524 ;lock count = 5 

3. Does the fork have an in-core page with no backup 
address on the drum? 

ANSWER: The next level of storage back up address 
for a core page is in its CST1 entry; if the page 
has a copy on the drum, the CST1 entry has a drum 
address. So, you want to look for a CST1 entry 
with no drum address. 

UPTA+4/124000,,210 

CST1+210/ 1,,0 ;not a drum address. 
;Therefore, this page 
;has no drum copy. 

4. Find an in-core page with its own SPT slot. 

ANSWER: If an in-core page has its own SPT slot, 
tne ~eft half of its CST2 entry is zero and the 
right'half is the SPT slot. 

CST2+56/ 536 
CST2+57/403,,45 

CST2+60/ 520 

;has own SPT slot =536 
;does not have own SPT 
;slot 
;has SPT slot =520 

5. Is there an in-core page with write in progress? 
With read in progress? 

ANSWER: If a page has read or write in progress, 
its age field in its CST0 entry is equal to PSRIP 

SM-26 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

or PSWIP, respectively. See the CST0 table for a 
description of the age field states. 

CST0+615/4010,,0 ithis page has write 
iin progress. 

There is no page with read in progress. 

6. What page is at the head of the RPLQ? 

ANSWER: RPLQ is the queue header for the linked 
lIst of free pages. The replaceable queue is a 
linked list through CST3. The page number is its 
offset from CST3. 

RPLQ/77403,,77611 

CST3=77000 

77611-77000~611 

itai1"head of free 
i1ist 

ipage 611 is the head 
iof the free list. 

7. How many pages are on the RPLQ? 

ANSWER: Location NRPLQ contains the count of free 
pages. 

NRPLQ/ 30 ithere are 30 free 
ipages 

8. Find a mapped file page in the running fork's page 
map. What is the owning OFN's backup level of 
storage? 

ANSWER: 
pointer 
entry. 

A mapped file page 
has the owning OFN 

UPTA+5/204000,,517 

that has a share 
stored in its SPTH 

SPTH+517/17,,2 iOFN in left half 

SPT+17/403,,15770 iOFNs currently on 

SM-27 «For Internal Use Only» 



DIGITAL 

SPTH+17/10,,577554 

9. Using CST2, find a core page 
assigned. ** 
ANSWER: If a core page is 
entry is 0. 

CST2+71/ 0 

TOPS-20 MONITOR 
Storage Management 

; drum. 

;therefore next level 
; 0 f s tor ag e i s dis k • 
;SPTH entry for an 
;OFN always contains 
;the disk address. 

that is not currently 

unassigned, its CST2 

;unassigned page 

10. What is the running fork's current age? 

ANSWER: A fork's current age is stored in it FKNR 
entry in bits 9-17. 

FORKX/ 40 

FKNR+40/100127,,166 ;current age is 127 

11. What is the running fork's current working set 
size? 

ANSWER: A fork's current working set size is in 
its FKWSP entry. 

FKWSP+40/ 166 ; current si ze 

12. What is the running fork's reserve working set 
size? 

ANSWER: A fork's reserve working set size is in 
its FKNR entry, right half. 

FKNR+40/100127,,160 ;reserve size = 1n6 

SM-28 «For Internal Use Only» 



DIGITAL TOPS-29 MONITOR 
Storage Management 

13. How many pages are on the swapping space free list? 
** 

ANSWER: Location DRMFRE contains 
.free swapping pages. Routine 
swapping space and uses DRMFRE. 

the number of 
DRMASN assigns 

DRMFRE/ 3325 

14. Does the running fork have any mapped file page 
with an indirect pointer?** 

ANSWER: If the running fork has any indirect file 
page pointers, the page map entry has an indirect 
pointer through an OFN; that is, the SPT slot is 
less than NOFN. Search the page table (i.e., UPTA) 
for indirect pointers whose right half is less than 
NOFN. In this case, there are none. 

15. How many of the pages of the running fork's JSB 
space actually exist? ** 

ANSWER: The JSB space pages are all 
indirectly through the JSB map; if a page 
exists, its JSB space map slot contains a 
and if the page does not exist its JSB 
contains a zero. 

JSB<JSB+66>9$N 

JSB/224909,,1132 
JOBMAP+4/ 124903,,12574 
JOBMAP+6/ 124009,,241 

mapped 
actually 
pointer 

map slot 

16. What are the SPT offsets for the running fork's 
JSB, PSB and user page table? 

ANSWER: Table FKJOB indexed by fork number 
contains the JSB's SPT offset in the right half. 
Table FKPGS, indexed by fork number, contains the 
user page table SPT offset in the left half and the 
first page of the PSB's SPT offset in the right 
half. Table FKeNO, indexed by fork number, 

SM-29 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

conta ins the second pag e 0 f the PSB' s SPT 0 ffset in 
the left half. 

FORKX/ 40 

FKJOB+40/13,,1132 

FKPGS+40/1131,,454 

FKCNO+40/1130,,15 

iJSB's SPT offset=1132 

iuser page table SPT 
ioffset"PSB first 
i SPT 0 ffset 

iPsa second page SPT 
ioffset=1130 

17. Verify that the storage addresses for the running 
fork's JSB and PSS match the storage address in 
slots 400 and 401. 

ANSWER: 

SPT+1132/100,,200 
SPT+400/200,,200 

SPT+454/100,,464 
SPT+401/200,,464 

iJSB storage address 
imatches SPT slot 400 

iPSB storage address 
;matches SPT slot 401 

Internal Mapping Using MOOT ** 

EXERCISES 

1. Map some other page table. It can be the page 
table of one of your friend's forks or any page 
table you choose. 

ANSWER: Every page table has its own SPT slot; 
t fie r e for e , its i n t ern ali den tit Y i s t hat ,S PT s lot. 
If you know the fork number, its SPT slot is stored 
in the left half of FKPGS, indexed by fork number. 
Therefore, you should call SETMPG with that SPT 
slot as the argument in ACI. 

S.M-30 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

2. Map some other JSB. For example, ask your neighbor 
what his/her fork number is and then find out what 
the corresponding JSB's internal identity is • 

. ANSWER: Every JSB also has its own SPT slot; its 
8PT slot is stored in FKJOB indexed by fork number 
(for every fork in t~e job). This SPT slot is a 
JSB's internal identity and is the argument you 
give in AC~ fO'r SETMPG. 

3. Map an OFN. 

4. 

ANSWER: The OFN (i.e., its SPT slot) is its 
internal identity; the OFN is the argument in ACl 
when you call SETMPG. 

Map a page of some other process. ** 
ANSWER: To map a page of another process, you need 
the process page table's SPT slot in the left half 
and the page number in the right half. 

5. Map a JSB space page from some other JSB. ** 
ANSWER: A JSB page's internal identity is the 
JSB's SPT slot in the left half and the page's 
offset in the JSB map in the right half. 

6. Un-map the last page. 

ANSWER: To unmap a page, call SETMPG with AC2 set 
up as usual and a 0 in AC1. 

Page Fault Crash ** 

EXERCISES 

1. Wh Y does a BADBTB c rash happen? 

ANSWER: A BADBTB happens when a page where the bit 
table is mapped is referenced when the bit table is 
not currently mapped. 

SM-3l «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

2. What push down list is in use (i.e., what was 
generally going on when the system crashed)? 

ANSWER: The push down list that is in use tells 
·you what type of thing the monitor was doing at the 
time of the crash. 

p/ -36"TRAPSK+23 ;a page fault was in 
; prog ress. 

3. What instruction made the rieference that caused the 
BADBTB? 

ANSWER: We want the instruction that page faulted. 
The address of the instruction that page faulted 
and the page fault address are stored in the page 
fault old PC (UPTPFO) and the page fault word 
(TRAPS0), respectively. 

TRAPS0/1000,,551100 

UPTPFL/ JUMP 0 
UPTPFO/ 26255 

BTB=540000 

BTB LEN=150 00 

;address that page 
; faul ted 
; fl ag s 
;address of 
; instruction that 
; pag e faul ted 
;i.e., the effective 
; add r ess 0 fits 
;contents is 551100. 

;base address where 
;bit table mapped 

;size in words of 
;bit table reserved 
iarea. 

Therefore, we see the reference is definitely in 
the area. Now, why was the reference made? Was 
the code actually trying to reference the bit table 
and did not map it first, or was it a garbaged 
reference? 

26255/ LDB TI, 25643 ;this is the 

SM-32 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

i inst ruc tion tha t 
i caused the faul t 

256431 3002,,101400 ithis is the byte 
i pointer. Note 
i it is indexed by AC2 

SPT= 101400 ithis is the SPT base 
i add ress 

551100-101400= 447500 ithis must have been 
ithe contents of AC2. 

Using listingsl microfiche and FILDDT, find where 
the instruction is. 

SECG37+221 JRST GETTPI 
1 HRRZ T2,Tl 

1 MOVEM T2,TRPID 
1 LOB T1,25643 

;looks like 
;the start 
; 0 f ali ter al 

; here is 0 ur 
; instruction 

0, ,-I$M ;set the mask for the right 
;half 

SECG37+23$W 

GETTPl+271 JRST SECG37+23 ;here is 
;where we 
;came from 
;i.e, how we 
;got to the 
; 1 iter al 

So, this page fault came from the routine GETTPD, 
which is page fault code itself. We have a page 
fault within a page fault. Look on the stack for 
evidence of what the old page fault was and what 
was happening to cause this page fault. Also, 
remembering what our byte pointer looks like, that 
is, SPT table base address indexed by an AC, 
implies that the LDB was trying to pick up some 
information from an SPT slot; however, 447500 is 

SM-33 «Fo r Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

not a legal SPT slot. Also, location TRAPC is zero 
if this is not a recursive page fault and if TRAPC 
is positive, the number indicates the level of 
recursion. 

TRAPCI 1 ;one level of recursion 

PI -36"TRAPSK+23 

TRAPSK+231 JUMP 0 ; top 0 f stack now. 

TRAPSKI 10 
I 447500 
I 224000,,447500 

;looks like our index 
;share pointer with 

; 0 ur index! 
I 2000,,0 
I 221120,,531 
I 300000"CHKDM0+1 ;looks like a PC 
I 401000, ,6070 
I 32, ,541636 

TRAPSK+101 MRP4+12 
I 300000,,0 
I 300000"TRPRST+1 ;looks like a PC 
I 447500 lour index again 
I 224000,,447500 
I 1000,,707010 
I MOVE Tl,PIPGA(T1) 
I 75 

TRAPSK+201 300000"CHKDM0+1 ;looks like a PC 
I 1000,,707010 
I 26255 
I 320000,,0 

SM-34 «For Internal Use Only» 



DIGITAL TOPS-20 MONITOR 
Storage Management 

Using your crash wr i teup, look at wha t gets pushed 
on the stack when a page fault begins. In order of 
appearance, we get ACl, AC2, AC3, AC4, AC7, AC16, 
TRAPSW, the ,runtime (if not recursive fault), the 
,return PC, and the flags. So, stack locations 0-11 
are these locations at the time of the first page 
fault. Note that the first page fault came from 
MRP4+l2. Then, we have something on the stack that 
looks like a return address. It is the return from 
the call to GETTPD in the routine TRPRST. Then, we 
have the set up from the second page fault. Note 
that AC2 contained a 447500 in the right half, as 
we suspected. And note that it looks very much 
like a share pointer, also as we expected. 
Location TRAPSW is the previous saved TRAPS0, that 
is, the page faul t wo rd. So the pr ev ious pag e 
fault was on address 707010. See why it faulted. 

MMAP+707/324600,,401 

PSB+666/224000,,447500 ;here is the 
;share pointer 
;we saw on 
;the stack. 

It is not a legal share pointer because 447500 is 
not a legal offset into the SPT. So, somehow, the 
PSB page map got a bad share pointer. 

what 
why. 

The original page fault was from MRP4+12. See 
that routine was doing, how it got called and 

MRP4+12/ MOVE T3,CXBPGA(Tl) ;here is the 
i reference to 
ipage 707 that 
ithat originally 
ipage faulted. 

When a page fault starts, the old P is saved in 
location TRAPAP. 

TRAPAP/ UPDL+26"UPDL+25 

So, there was a JSYS going on and the JSYS code 
called MRP4. See what JSYS it was. 

SM-35 «For Internal Use Only» 



DIGITAL 

MPP/ UPDL+10"UPDL+7 

UPDL/ 5623 
/ CAM 104000 
/ 5623 
/ CAM 104000 
/ -1 
/ UPDL+4"UPDL+3 
/ FFFFPL+l 
/ MEMPSl+3,,104000 

UPDL+10/ UPDL+5"UPDL+4 
/ 137 
/ .TRRET 
/ CAl RPACSl+10 
/ 1 
/ 1 
/ IMULI T2,@53l 
/ 0 

UPDL+20/ 137 
/ DSKDTB 
/ HRR DSKDTB 
/ 0 

TOPS-20 MONITOR 
Storage Management 

;this indicates that 
ia JSYS has called a 
iJSYS. 

If we look at the stack, it seems that an FFFFP 
JSYS called an RPACS. 

RPACl+7/ CALL MRPACS 

The routine MRPACS calls MRP4, which is where the 
orig inal page fault came from. Inspection 0 f the 
code seems to indicate that all traces of who 
messed up the map entry for page 707 are gone. The' 
code' in MRP4 call s SETXBl to map the index block 
and it looks as though the routine set up a bad 
share pointer somehow. 

SM-36 «For Internal Use Only» 



Monitor Tables 





DECsystem-2~ Monitor Tables 

Table Of Contents 

(ALOC1) Allocation 1 Table. • • • • • • • • • • • • • • • • • • • • • • 1 

(ALOC2) Allocation 2 Table. • • • • • • • • • • • • • • • • • • • • • • 2 
; 

(BALSET) Balance Set Table. • • • • • • • • • • • • • • • • • • • • • 3 

(BAT) Bad Allocation Table. • • • • • • • • • • • • • • • • • • • • • • 4 

(BSPT) Balance Set Process Table ••••••••••••••••• 6 

(BSQ) Balance Set Quantum Table •••••••••••••••••• 7 

(BTB) Bit Table for Disk ••••••••••••••••••••••••• 8 

(BUG-HLT/CHK/INF-STORAGE-AREA) 
BUGHLT, BUGCHK, and BUGINF Storage Area ••••••••• 10 

(CDB) Channel Data Block~ •••••••••••••••••••••••• 11 

(CDR-Storage-Area) • 
Card Reader (Physical) Storage Area ••••••••••••• 15 

(CDS) Channel Dispatch Service Routine Table ••••• 18 

(CHNTAB) Channel Table ••••••••••••••••••••••••••• 19 

(CST0) Core Status Table ~ ••••••••••••••••••••••• 20 

(CSTl) Core Status Table 1 ••••••••••••••••••••••• 22 

(CST2) Core Status Table 2 ••••••••••••••••••••••• 23 

(CST3) Core Status Table 3 ••••••••••••••••••••••• 25 

(CST5) Core Status Table 5 ••••••••••••••••••••••• 27 

(DEVCHR) Device Characteristics Table •••••••••••• 28 

(DEVCHl) Device Characteristics Table 1 •••••••••• 29 

(DEVCH2) Device Characteristics Table 2 •••••••••• 30 

i 



(DEV'DTB) Device Dispatch Table •••••••••••••••••• 31 

(DEVDSP) Device Dispatch Table Addresses ••••••••• 33 

·(DEVNAM) Device Name Table ••••••••••••••••••••••• 34 

(DEVUNT) Device Unit Table ••••••••••••••••••••••• 35 

(DIRECTORY) Directo~y Format ••••••••••••••••••••• 36 

(DRMBBT) Drum Bit Table •••••••••••••••••••••••••• 44 

(DRMCNT) Drum Count Table •••••••••••••••••••••••• 45 

(DSKSIZ) Disk Size Pointer Table ••••••••••••••••• 40 

(DSKSZ'n) Disk Size Table •••••••••••••••••••••••• 47 

(DSKUTP) Disk Unit Type •••••••••••••••••••••••••• 48 

(DST) Drum Status Table •••••••••••••••••••••••••• 49 

(DTE-STORAGE-AREA) DTE Storage Area •••••••••••••• 50 

(DTEDTV) DTE Protocol Device Dispatch Table •••••• 61 

(END/DEQ - STORAGE AREA). 
Enqueue/Dequeue Storage Area •••••••••••••••••••• 62 

(ENQ-LOCK-BLOCK) Enqueue Lock Block ~ ••••••••••••• 63 

(EPT) Executive Process Table •••••••••••••••••••• 65 

(EXEC-PG-MAP-TBL) Executive Page Map Table ••••••• 69 

(FDB) File-Description Block ••••••••••••••••••••• 71 

(FE-STORAGE-AREA) Front End Storage Area ••••••••• 74 

(FKCNO) Fork Core Number Table ••••••••••••••••••• 76 

(FKINT) Fork Interrupt Table ••••••••••••••••••••• 77 

(FKINTB) Fork Interrup~ Buffer Table ••••••••••••• 79 

(FKJOB) Fork Job Table ••••••••••••••••••••••••••• 80 

ii 



(FKJTQ) Fork JSYS Trap Queue~ •••••••••••••••••••• 81 

(FKNR) Fork Number of Reserve Pages Table •••••••• 82 

(FKPGS) Fork Page and Process Storage Table •••••• 83 

( FKPGST) 
Fork BALSET Wait Satisfied Test Table •••••••• 0 ••• 84 

(FKPT) Fork List Pointer Table ••••••••••••••••••• 85 

(FKQl) Fork Run Queue Table 1 •••••••••••••••••••• 86 

(FKQ2) Fork Run Queue Table 2 •••••••••••••••••••• 87 

(FKSTAT) Fork Status Table ••••••••••••••••••••••• 88 

(FKTIME) Fork Time Table ••••••••••••••••••••••••• 89 

(FKWSP) 
Fork Working Set (In-Memory Size) Table ••••••••• 90 

(HOM) Home Block ••••••••••••••••••••••••••••••••• 91 

(HOME) Home Table •••••••••••••••••••••••••••••••• 93 

(HOMTAB) 
Logical Unit's Channel and Unit Table ••••••••••• 94 

(IDXFIL) Index Table File •••••••••••••••••••••••• 95 

(INDEX) Index Block Table •••••••••••••••••••••••• 97 

(INIDEV) Initialization Device Routines •••••••••• 98 

(INIDV1 ) 
Front End Initialization Device Routines •••••••• 99 

(INIDVT) Device Initialization Table ••••••••••••• 100 

(IORB) I/O Request Block ••••••••••••••••••••••••• 103 

(IPCF-MESSAGE-HEADER). IPCF Message Header ••••••• 107 

(IPCF-PID-HEADER). IPCF Process ID Header •••••••• 108 

iii 



(IPCF-STORAGE-AREA) Inter-Process Communication 
Facility Storage Area ••••••••••••••••••••••••••• 109 

(JOBDIR) Job Directory Table ••••••••••••••••••••• 110 

(JOBNAM) Job Name Table •••••••••••••••••••••••••• 111 

(JOBPNM) Job Program Name •••••••••••••••••••••••• 112 

(JOBPT) Job Process Table •••••••••••••••••••••••• 113 

(JOBRT) Job Runtime Table •••••••••••••••••••••••• 114 

(JOBRTL) Job Runtime Limit ••••••••••••••••••••••• 115 

(JSB) Job Storage Block •••••••••••••••••••••••••• 116 

(RDB) Kontroller Data Block (TM02 only) •••••••••• 125 

(LOGICAL-NAME-DEFINITION). Logical Name Definition 
Block ••••••••••••••••••••••••••••••••••••••••••• 126 

(LOGICAL-NAMES-LIST) Logical Names List ••••••••• ,127 

(LPT-STORAGE-AREA) Line Printer Storage Area ••••• 128 

(MTA-STORAGE-AREA) Magtape Storage Area •••••••••• 134 

(NAMUTP) Name Unit Type Pointers ••••••••••••••••• 138 

(NBQ) Negative Balance Set Hold Quantum •••••••••• 139 

(NBW) Balance Set Wait Time •••••••••••••••••••••• 140 

(OFNLEN) Open File Length Table •••••••••••••••••• 141 

(PHYCHT) PHYSIO Channel Dispatch Tables •••••••••• 142 

(PHYUNT) PHYSIO Unit Dispatch Tables ••••••••••••• 143 

(PIDCNT) Process ID Count Table •••••••••••••••••• 144 

(PIDTBL) Process ID Table •••••••••••••••••••••••• 145 

(PSB) Process Storage Block •••••••••••••••••••••• 146 

(PTYSTS) Pseudo Terminal Status Table •••••••••••• 153 

iv 



(QBLOCK) Queue Block ••••••••••••••••••••••••••••• 154 

(RES-FREE-SPACE) Resident Free Space Storage ••••• 156 

(SCDRQB) Scheduler Request Table ••••••••••••••••• 158 

(SDS) Structure Data Block ••••••••••••••••••••••• 159 

(SNAMES) Subsyste, Names ••••••••••••••••••••••••• 162 

(SNBLKS) Sybsystem Blocks •••••••••••••••••••••••• 163 

(SPFLTS) Subsystem Page Faults ••••••••••••••••••• 1~4 

(SPT) Special Pages Table •••••••••••••••••••••••• 165 

(SPTH) Special Pages Table Home Information •••••• 168 

(SPTO) Special Pages Table O ••••••••••••••••••••• 170 

(SSIZE) Subsystem Working Set Size ••••••••••••••• 171 

(STIMES) Subsystem Runtimes •••••••••••••••••••••• 172 

(STRTAB) Sturcture Data Block Table •••••••••••••• 173 

(SWAP-FREE-SPACE) 
Swappable Free Space Pool Format •••••••••••••••• 174 

(SYNMTB) System Logical Name Table ••••••••••••••• 175 

(SYS-STARTUP~VECTORS) 

System Startup Transfer Vectors ••••••••••••••••• 176 

(SYSERR-STORAGE-AREA) 
Syserr Storage Area ••••••••••••••••••••••••••••• 177 

(TT-LINE-DYN-DATA-BLK) 
Teletype Line Dynamic Data Block •••••••••••••••• 188 

(TTACTL) Teletype Active Line Table •••••••••••••• 191 

(TTBUFS) Teletype Buffers •••••••••••••••••••••••• 192 

(TTCSAD) 
Terminal Call Special Request Address Table ••••• 193 

v 



(TTCSTM) 
Terminal Call Special Request Time Table •••••••• 194 

(TTLINV) Terminal Type Line Vector Table ••••••••• 195 

(TTSPWD) Terminal Speed Word Table ••••••••••••••• 196 

(TTSTAT) Teletype Status Table ••••••••••••••••••• 197 

(TTXXVT) 
Teletype Device Specific Vector Table .•••••••••• 198 

(TTY-STORAGE-AREA) 
Teletype Storage Area ••••••••••••••••••••••••••• 200 

(UDB) Unit Data Block •••••••••••••••••••••••••••• 202 

(UDIORB) UDSKIO rORB Pool •••••••••••••••••••••••• 205 

(UDS) Unit Dispatch Service Routine Table •••••••• 206 

(UPT) User Process Table ••••••••••••••••••••••••• 207 

(USER-PG-MAP-TBL) 
User Page Map Table ••••••••••••••••••••••••••••• 210 

vi 



/ 

Description: 

Oefined in: 

Reference by: 

ADIRN 
ALOCl 

ALOCl 

Allocation 1 Table. This table of lenqth 
NOPN (aize of orN area in SPT) is used to 
help enforce disk quotas for each active 
directory. 

STG 

PJ(GEM 

CDIRe 
Directory No. OPN Directory Count 

· · · · · · · 
Note: Each SPr entry in the crN area contains an index into this 

table. 

-1-



Name: ALOC2 

Cescription: Allocation 2 Table. This table of length 
NOFN (size of OFN area is SPT) is used in 
disk quota enforcement for each active 
directory. 

Defined In: STG 

Referenced by: DISC, PAGEM 

F..ormat 

PGLFT 
ALOC2 Count of Pages Left for This Directory 

(may be negative) 

Note: Each SPT entry in the OFN area contains an'index 
into this table. 

-2-



Description: Balance Set Table. This table contains the set 
of .o.t eligible forks for CPU servIce whose 
coabined working set size. are balanced with the 
aaaunt of physical core available. -Only fork. 
In this table can be chosen to run. Posi tion In 
this table is arbitrary and has no effect on run 
priority (Position on GOLST deteraine. this). 

Defined in: SCREn 

Referenced by: PAGDI 

Po mat 

Bsrx 
BALSET Pork Status Pork Index 

fIJ 1 2 3 4 5 

BALS!T I I I I I I 
Syllbol 

Iswm 

ISNSK 

BSNUL 

BSHLD 

6 

· · · · · · · · · 
17 18 

Pork Index 

Ilta COntent 

I If 1, fork waiting for I/O 
(disk or drua) 

I If 1, fork Is MOSIED (no 
scheduling of other forks 
allowed) or NOSWAP 

35 

2 If 1, free BALS!T slot (Deleted 
entry) 

4 If 1, fork being held in Balance 
Set 

-3-



Na.e: BAT 

Description: BAd Allocation Table. The BAT Block is one sector 
In len9th (128 words). It conslsts of 4 words of 
header, followed by data, e.ch 2 word data entry 
imUeat.s ttl. bad spot3 on the disk. 

Defined in: PROLOG 

Referenced by: DSKALC, DISC, DEVICE, PRYB2 

Po mat 

SIXBIT/BAT/ 

BA'!'PR 
!Te. Block. Left 

9 BTHer 17 

• of Pairs 
Added By 

Mapper 

B'l'MC'r 

• of Pairs Added by Monitor 

Bad Block Infor.ation 

9 ADD 27 
Addre •• of Starting Sector 

.. 
· · · · · · · · · · · 

BATCOD-176 Unlikely Code 68686. 

Sector NWIlber of the BAT Block 

35 

\ 

/ 

\ 

/ \ 

Seader 

\ / 

\ 
~ata 

/ Pair 

\ 
:.Data 
/ Pair 

/ 



Data Pair fI 8 18 2. 21 22 23 35 

word 1 BA'l'NI InNM APRNM 
Bad Blk. cnt Controller. Type Apr Serial • 

Bit. Pointer Content 

"-8 BATMB Couat of a.td Blt. 1n Pair 
la-2_ BTlNa M ••• bua Controller • 

21 BACT Type field in BAT Pair 
23-35 APRINt APR Seri.l t 

word 2 
Bits 

18-35 ADD1! Old .tyle disk addre •• of 
starting sector 

9-35 AD!) 27 New style address of 
starting sector 

-5-



O.scription: Balance Set Proc.ss Table. This table is a 
doubly link.d list of all forks in the balanc. 
s.t and i. parallel to the BALS!T table. Th. 
point.rs to the be9inninq and'end of the list 
are k.pt 1n the r •• id.nt storage addr •• s, BALLST. 
The Schedul.r .cans this ordered list from the 
top for the next eligible fork to run. When a 
fork ha •• xhaust.d it's balanc. set quantum (Se. 
BSQ table), it vill be requ.u.d to the bette. of 
the SSP! lat. allowing the Scheduler to Clive 
round-robin CPU •• rvice to the balance •• t 
proc •••••• 

Co_put_bound proc..... (Q3 forks ) ar. placed 
at the end of the BSP'!' 1 ist when th.y .nter the 
balance s.t. Int.ractiv. process •• (0', Ql, Q2 
fork.) ar. initially favored in th.ir plac ••• nt 
on the BSPI' list a. th.y are placed above Q3 
forks and above any forks that have run 80re 
than th.ir balanc. s.t quantua. (1 ••• , have been 
r.queued one.). 

onc. 1nteractive proc ••••• have exhau.t.d th.ir 
balanc. set quantu.., howev.r, th.y are requ.u~d 
to the botta. and co.pete equally vith other 
fork. for CPU servic •• 

Def~ned in: STG 

Ref.r.n~.d by: SCREC 
FORMAT 

BSP!' 

S.ckward List Ptr. Forvard List Ptr. 

· · · · · · · · · · 
Note: Th. end of the list vill be aarked by the 

addre •• , BALLST. 



Na.e: aSQ 

Description: Balance Set Quantum Table. This table Is parallel 
to the BSP? table and holds the balance set quantua 
for a fork in the Balance Set. When the balance •• t 
quantua has .. pi red for a fork, the fork i. requeued 
to • lower run priority In the BSPT table and its 
quantu. reinitialized. 

Defined in: STG 

Referenced by: SCHED 

18 35 

BSQTM 
Balance Set Quantum* 

* The initialization value 1s currently 21. ms. 

-7~ 



~ .. , 
Description: 

Bft· 

Bit Table for Disk. ~is table haa mapped 
into it pointers to the file STRNAM:(ROOT 
-DIRECTORY) DSKBTTBL, when pacJe. are allo­
cated or d •• llocated fro. the di.k unites) 
belonging to structure, STRNAM. The bit 
table file a. shown below indicate. which 
p.; •• are a •• igned (bits off) and ~ich 
are available (bits on). 

It c:oa.a!.U of ttllO parts, ~ top __ ~lf_ ~ ._. 
tain. tile n .. ber of fr_ paq •• for uch 
cylinder. in the ,structure and the bottaa 
balf contain. a bit .. p ( 1 bit Per peg e) 
for all p.ge. of each cylinder 1ft the 
structure. 

At initialization ti.e, all of this struc­
ture'. pege. belonging to the 8o.e block., 
swpping space and pointed to by the BAT 
block. are ••• igned in the Bi t Table file. 

Defined in: STG 

Referenc::ed by: DSItALC 

Pree Page. on Cylinder /I 

Pree P8ge. on Cylinder 1 

· · · · · · · · · · 
Pree Page. on Cylinder n 

~ , \ 

8 



Note: 

\ 

l 
\ 
~ 

\ 
\ 

\ 

l 
\ 

\ 
\ 

Cylinder e 
I 

\ 
Cylinder 1 
I 

\ 
Cylinder n 
I 

In the bit map each cylinder starts on a word boundary 
and contains as many full words as are needed for all 
of its pages. 

*For Systeas which have sectioning, the BTa table doe. 
not hold the map. for the disk bit table file. Rather, 
the monitor will aap the disk bit table file for a 
structure into section four of the monitor's address 
space.when it ne.ds.to allocate or deallocate disk pages. 
That .i., the index block of thi. file vill be the page 
table pointed to by the aonitor's section pointer for 
.ection four. 



Name: BUG-BLT/CBK/INF-STORAGE-AREA 

Description: BUGHLT, BUGCRK, and BOGINF Storaqe Area. This re.ident 
storaqe ia used to hold such information as the pu.h 
down list, PC, ACe and dispatch address wben a aUCBLT/ 
IUGCBK/BUGINP occurs. BUGS!B holds the pointer to the 
l.st queued up SYSERR block. (Se. SYSERR-6TORAGE-AREA) 

Def ined in: STG 

Refer"enced by: APRSRV, DIVICE, DIAG, DIREa, DISC, DSKALe, D'rESRV, 
DO, nSRV, nLIMI,PIUlSC, rORK, FREI, rtnILI, G'l'J1'N, 
IMPPBY, IMPDV, 10, IPCr, JSYSA, JSYSP, LINPR, LOGNAM, 
LOOKUP, MAGTAP, MIXEC, MSft, !lITWRK, !lSPSRV, PAGIM, 
PHYBll, PRYB2, PIIYM2, PHn .. , PHYSIO, SCBID, S!'G, 
SWPALe, SYSIRR, TAPE, TTYSRV 

BUGHLT 

SVVEXM 

BUGLCK 

BUGCBK 

BooIH!' 

BUGACS· 

BOOPDL 

BUGOft' 

BUGsn 

BooP 

BUGPl 

BUGP2 

BUGP3 

\ , 

PORftAT 

• (PC Stored here on BUGHLT) 

JRST BUGHO the BUGBLT vas issued 

Save Va11d Ix_lne 1n BUGTYO 

Lock on BUGxxx Ro utine. 

• (PC Stored here on BUGeR!) 

JRST BooeO 

• (PC Stored here on BUCINP) 

JRST BUGIO 

AC'. Saved on • IUGRLT , 
(Contents of AC' •• t time of BUGHL~) , 

Push Down List ('''0 12 words) , 

Count of BUG Block. in SYSERR Queue 
(Maxi.ua of BUGMAX-S) 

!luaber of BUGHLT/CRK/INrs since STARTUP 

Ptr to last queued up SYSERR Block 
due to • BUGHLT/CB!/IHr 

Place to Store P OUr1nq BUG BLT/CHIt/INP 

Te.p Storage for BUGSTO Routine 

Te.p Storaqe for BUGSTO Routine 

Temp Storaqe for BUGSTe Routine 

-1.0-



H •• e: CDB 

De.cription: ChanDel Data Block. Thia table, one per ebannel, 
contain. channel dependent instruction. and data, 
pointers to the units (I.e. ODBs) belonging to 
the channel end information aboat the currently 
active unit. When the channel interrupts, 
control passe. (via a JSP instruction) to COBINT. 
The COB addre •• is stored in AC, Pl, and the 
principal analysis routine, PHYINT; 1s called. 

Defined in: PB1PAR 

~fft.need~: PltYSIO, PllTB2, PRYM2, PRYP4 

COBIN,. 

-s 
-4 

-3 

-2 

-1 

CDBSTS-' 

CDBODT 

COBICP 

COBIUli 

CoaCUN 

COBDSP 

coarCT 

COB PAR 

CDBNXM 

COBUR 

COBCCL r-

, 
\ 

COSUDS \ 
\ 

Unit 

Pormat 

I (2-word PC stored on interrupt) 

• 
(nags) • 

I" .+1 

MOVBM P1, • +2-+CDBSVQ 

JSP Pl, PBYIliT 

Status and Configuration Intoraation 

Me.ory Bandwidth Scheduling Intoraation 

OVerdue Tl.er wben Data Transter Active 

EXEC Virtual Adrs (!P! Adrs) of 
Data Logout Are." Interrupt Vector 

Initi.l AOBJII Pointer to tms Table 

current A08J11 Pointer to tJD8 Table 

Utilities Dispatch Main Entry Dispatch 
(Channel Dispatch Table) 

Pairness Count for Latency 

Ctannel Me.ory Parity Errors 

Channel MXMs 

Currently Transferring OD8 

Channel Command List (3 words) 

UDS Table (8 word.) 

-11-

\ 
\ 



CDBSVQ 

CDB.JEM 

CDBRS't 

CWCRI 

CDBOHR 

CDBADR 

CDB~SI 

CDBCSl 

CD8CS2 

CDBCCl 

COBCC2 

CD80VR 

CDBICR 

CDBCL2 

CPBDDP 

\ 

I' 

\ 

1 

P1 Saved llel"e on VeetOl" Interrupt Entry 

BL'!' 11, 1T (Interrupt 01_1 •• ) 

DA'!'AI RB, CDBRST 

XJD COB INT (P 1 ) 

Location U.ed by CDBJEM 

Channel CONI at Start of Interrupt 

'ork _0 saa Olannel In Mai.,t. Mode 

Humber of Thi. Channel (CBln'AB index) 

Channel Statu. I at Error 

Channel Status 1 

Channel Statu. 2 

First CCW 

Second CCW 

Number of Overruns 

Initial STCR When Device Started 

Alternat& cow List (3 words) 

CD8 Device De endent Block p 
\ 

1 

-12-



8 1 2 3 4 S 6 

COBSTS I , 1 1 I I 1 

COBDSP 

SYlibol 

CS.OPL 
CS.AC1 
CS.AC2 
CS.MAI 
CS.JIfRQ 
CS.ERC 
CS.STK 
CS.ACL 

Sits 

8 
1 
2 
3 
4 
S 
6 
7 

26-28 
31-35 

Se. Table., UDS and CDS 

coaoop 

2S 26 28 9 8 31 

PIA 

Content 

Offilne 
Pri.ary coa.and aetiy. 
Secondary co .. and active 
a.anne1 is In .atnt. aode 

TYP! 

35 

".lnt •• ode requested for a unit 
Error recovery in pro9re •• 
Channel Support Command Stackin9 
Alternate COW List is CUrrent 

PIA fi.1d 
Channel type field 

COB Device Oependent Block for the RB21 Controller 

COBODPaRR2CNI CONI RR2, TI 

CONO RH2, T2 

DATAl RR2, Tl 

DATAO RR2, T2 

-13-



COB Device Dependent Block for the IBll Controller 

CI)8PDP-RClCSl 

RClDS 

RClDl 

RClMR 

RClA! 

RClDA 

RClD'l' 

RClLA 

RClSH 

RClor 

RClOC 

RClCA 

RC1ER2 

RClERJ 

RC1!Cl 

RelBC2 

RClWC 

RC1BA 

RClCS2 

U8ACSW 

UBBASA 

Control Status 1 

Drive Status Register 

JrrorRe91st~rl 

Maintenance Register 

Attention Su .. ary Register 

De.ired Address Register 

Driver Type Register 

Look Ahead Register 

Serial Number Register 

Offset Register 

Desired Cylinder Register 

Current Cylinder Register 

Error Register 2 

Error Register 3 

ICC Register 1 

ICC Register 2 

Word Count Register 

Current Addre •• Register 

Control and Statu. Register 2 

Unibus Statu. Register Addre •• 

Unibus Bus Addr. Base Addr. 

-14-



Deecription: Storage Are. for card Beaders Cphysical). 
Each entry (except for CORLex and CDRCNT) 
i. CORN word. 10n9 where CORN equals the 
nUliber of card reader. on the ayst_. 

Defined in: STG 

Referenced by: CDRSRV 

CORCTl Buffer Count , 
~ ~ 

CDRCKT Word for Scheduler Test , 
~ 

CDRSTS , Statu. Word , 
~ 

CDRSTl Second Status Word 

CDRST2 Third Status Word , 
~ ~ 

CARDCT Count of cards Read \ 

CARDER Number of -Hardware- Errors , 
~ 

CDRLCK CDR Lock Wo rd 

CDRCNT Count of CDRa Opened 

The Non-resident area cantaina: 

CDRBUP i __________ C_4_r_d __ R.e.a.d_e_r_B.u_f_f.e_r __ C.l __ p_a_9_e_) ___________ f 

-15-



• 17 8 9 21 35 

emR$TSI_.~-.~~_OWn __ .l_ft9 __ .~_r_k __ -.~ .. ~I_I __ I ___ CCl __ BB_L_._s_t __ E_r_r_o_r.c.o.n_4_1_t_l_o.-nl 

8lts 

1-17 
18 
19 

21-35 

• 1 234 5 

CIlRSTll I'IILI 
~its 

e 
1 
2 
3 
4 

12 
13 
14 
lS 
l6 
17 

Polnt!ll" 

enoL 
CDBLK 

ClZRR 

Content 

OVDlnq fork 
If on., carda In r.ad.r 
Waitint for a card 
~.t error eond~tion 

11 2 3 4 5 6 17 18 35 

IIII i 111C:~ant I~tarnal StmqaWord I 
Point.~ 

COAII 
CDATN 
CtMSG 
COOPN 
CrER 
CDCNT 
CDEO, 
coaUF 
COPIR 
COBPI 
CODON 

Content 

COR open.d in ASCII 
CPR needs attention 
Suppress $yste. messages 
COR is pp.n 
Error In this CDR 
Count of byte. now In bu~fer 
EOP button was pushed 
Buffer for process level 
Proc,ss needs interrUPt 
Suffer for PI l.vel 
If one, doing a buffer by proc.ss 

-16-



• 1 2 3 • 5 6 7 8 9 • 1 12 

CDRST21111 

JUts Pointer 

CDSHA 
CtMWS 

CatLD 
CDPSI 

ctBST 

17 8 9 21 

CDPSI 

Content 

·Status ha. arrived· flag 
MTOPR is waltin9 for statu. to 
arrive 

Front end ha. reloaded 
PSI chan. no. for on-line 
·tran.itlon. 

SoftllJere .tatu .. -wrd 

Syabol Bits 

.DVPP! 28 Oevice ha. a 
fatal, unre-

35 

coverable error 
.OVl'LG 29 Error 1099in9 

in~o. follows 
.DVP!F 31 !OF 
.DVFIP 31 I/O in pro9re •• 
• DWSE 32 Software cond • 
.OVFH£ 33 Hardware error 
.DVFOL 34 Offline 
.DVPNX 3S Nonexistent device 

-17-



Oescription: Channel Dispatch Service Routine Table. 
This table contains vectored addre.... to 
channel dependent functions. and is given in lta 
generalized fora. ~he specific channel dispatch 
table for the RB21 beqins at RB2DSP In PBYB2. 
See PRYPAR for definition. of arguaents given 
and returned on calls to these channel routines. 

Dee i ned. 1n: PBYPAR 

Referancad Jly: PRYB2, P1ITJI'2, PBYP4, PRYSIO, S'fG 

ronaat 

Initialize and Build Data Structure 

Stack Second Channel Co .. and, Skip it OK 

Start I/O on IORB (skip if started O.K.) 

COSPOS-3 Do POSitioning to Idle Unit (skips if O.K.) 

Return Latency and aest Reque.t (I.e. best IORS) 

CDSI~'1'-5 Interrupt Entry 

Generate Single CCW Entry 

CDSBNG.7 Rung Re.et 

<::DSRST-li On Restart, Reset Channel and All Device. 

CDSCHK-ll Periodic Check Entry, PIA, etc. 

-18-



Description: Channel Table, indexed by channel number, 
contains channel data block (COB) pointers. 

De(1ned in: STG 

Referenced by: DSKALC, PBYR2, PHYSIO 

Pormat 

CBN'l'At CDS Pointer /1' 
Chan. 

,L 

-1.9-

t 



CST0 

Name: CST~ 

Description: Core Status Table 9 (sometimes referred to as 
CST). Each entry in this table, indexed by 
physical page I, 1s principally defined by the 
pager. If the page is in us., the entry contains 
the age stamp for the page, which process.s 
have referenced it and whether the page has b •• n 
modified. The ag. stamp field is used to show 
the page's stat. if it is not assigned to a 
proc •••• 

Oefined 1n: STG 

Referenced by: APRSRV, DSKALC, PAGEM 

Format 

CST AGE 
Age Process Use Register 

or 

CST AGE CFXRO 
Page State Fork • 

· · · · · · · · · · · · · · · · · 

-20-

M 
/ \ 

Physical 
Page t 

\ / 



Symbol Bits Pointer 

A-8 CST1l.GE 

PUFLD 

COflMB 35 

AGP:MSK 

PSTPLD 15...a2 CFXTtD 

3314 CSTPST 

Content 

If page in use, contents of 
pager age register ( >- 100 
at last age register reload 

Process use register if age 
field indicates page is in use 
( i.e., age >-10~). Bit n is 
1 if process with core number n 
has referenced it. (Core number 
is stacked in the FRCNO table) 

This is the -modified- bit which 
1s set by the pager on any write 
reference. This bit will be 1 if 
the page has been written since 
the last operation. 

If page not in use, this field 
indicates (right-justified) the 
page state as follows: 

PSRPQ .. ~ 

PSDEL - 1 

PSRDN - 2 
PSWIP - 4 
PSRIP - 6 
PSSPQ - 7 

PSASN - 10 

On replaceable queue 
To be put on replace 
able queue 

Read completed 
Write in progress 
Read in progress 
Page on special memory 
queue 

Page assign to process 
if age field >­
PSASN. 
(The age field should 
always be strictly 
greater than lS as 
it is initialized 
to l0a and increases 
in value as process 
runs. ) 

Number of fork which initiated 
read if page not in use 
(i.e. age field < 10). 

Special page state 

PSTAVL-.MCPSA-0 Available for 
RPLQ when freed 

PSTSPM-.MCPSS-l Place on SPMQ 
when freed 

PSTOFL-.MCPSO-2 Offline-ection 
as PSTSPM 

PSTERR- •. MCPSE-3 Offline due to 
error action as 
PSTSPM 

-21-



Name: CST1 

Description: Core Status Table 1. This table, indexed by physical 
core paqe number, is referenced only by the software 
and ls parallel to CST9. It contains the lock count 
which indicates the number of system events requiring 
the page be locked in core (l.e., page table contains 
other core addresses) and the backup address (next 
level of storage) for each page 1n core (1999999 
if unassiqned). 

Defined in: STG 

Referenced by: PAGEM, PHYSIO, SCHED 

0 PLK 11 14 35 
CSTl Lock Count BaCkUp Address 

· · · · · · · · · · · · · · · · 
Note: If· the lock count is non-zero, the page will not be 

considered for swapping. 

-22-

/ \ 

Physical 
Page 

• 

\ / 



~ame: 

Description: 

CST2 

Core Status Table 2 (Home Map Location). This 
table, indexed by physical page number, is ref­
erenced only by the software and is parallel to 
CST0. It contains the home map location for the 
page (i.e., the page table which contains the 
core address pointing ·to the page). 

If the left half is 0, the home map is the SPT 
and the right half contains the 5PT index. 
If the left half is not I, the home mwp i~ a 
page table or index block, where PTN is the 
SPT index of that map and PN is the page number 
within that map. 

(See the SPT and SPTH table descriptions.) 

Oefined in: STG 

Referenced in: PAGEM 

Format 

CST2 P~ I PN 

or 

0 I SPTN 

· · · · · · · · · · · · · · · 

-23-

/ \ 

Physical 
Page 

t 

\ / 



Note; The SPTN/PTN value (both SPT indexes) is used to specify 
the kind of page represented in the CST2 table. For 
example, if the SPTN in the second format above is 
greater than or equal to NOFN (length of the OFN area) , 
the process' page is a file page pointed to by a shared 
pointer or fork overhead page. Otherwise (i.e., 
SPTN(NOFN), it's an index block page.* 

Likewise, 1f the PTN value in the first format above is 
greater than or equal to NOFN, the page is a private 
process page (l.e., pointed to by a direct pointer from 
the process' map). Otherwise (i.e., PTN(NOFN), i~ is a 
process' file page pointed to by an indirect pointer 
through the file's own page table, the index block.* 

* In both of these cases when an index block is 
involved (i.e., SPTN/PTN< NOFN), it is common to find 
in the monitor listings the symbolic notation, OFN, 
replacing SPTN/PTN. 

-24-



CST3 

Name: 

Description: 

CST3 

Core Status Table 3. This table, indexed by 
physical core page number, is referenced only 
by the software and is parallel to CSTI. An 
entry in this table is used for a variety of _ 
purposes, generally as a list pointer for groups 
of page. on various queues. 

Por example, when on the replaceable queue, 
the left half and right half contain back­
ward and forward list pointeTs, ~espeet1vely. 
When on a swapping device queue, the right 
half contains a forward list pointer and BI 
i. 1 if write and I if read. Other queues 
threaded through this table are the deletion 
and special memory queues. 

When the page is in use (not linked on one of 
the queue.), it contains the local disk address 
for PHYSIO and the fork • assigned to the page. 

Defined in: STG 

Referenced by: PAGEM, PHYSIO, SCHED 

Format 

Backward List Pointer , Forward List Pointer 

or 

I I Forward List Pointer 

or 

CSTOFK CSTLOA 
Flags Pork • Local Disk Address 

· · · · · · · · · · · · · 

-25-

/ \ 

Physical 
Page , 

\ / 



CSTOFK 

Symbol 

DWRBIT 

SWPERR 

DSKSWB 

Fork • 
Bits 

1 

2 

3-14 

15-35 

CSTLDA 

Pointer 

CSTOFK 

CSTLDA 

-26-

Local Disk Address 

Content 

Set if write in progress. 
The bit is cleared by the 
swapper when the write 
completes. 

Set if an unrecoverable 
error occurred when this 
page read in from disk/drum 

Swap to disk requested by 
DDMP (periodic routine that 
trickles file pages to the 
disk) or by monitor when 
certain monitor calls are 
issued, e.g., CLOSF 

Process to which this page 
is assi9ned (7777 is not 
assigned). 

Local disk address for 
PHYSIO 



Name: CSTS 

Description: Core 'Status Table S. This table, indexed by ph~ 
sical core page number, 1s referenced only by the 
software and is parallel to CSTI. It is a table 
of short lORSs. (See the IORS table description 
for fonaat of the IRBSTS entry.) 

Defined in: STG 

Referenced by: PHYSIO 

Format 

CSTS Fla9S I Next Disk IORB(short/long) 

-27-

/ \ 

Physical 
Page t 

\ / 



Name: DEVCHR 

Oescription: Device Characteristics ~able. ~is table contains 
indexed information about each device unit and is 
initialized fro. the INIDVT table at syste. startup ti... Se. IlI11)VT table for bit definitions. 

Defined in: STG 

Referenced by: DEVlCE r DISC, GTJFN r JSYSA, JSYSF, MEXEC 

Format 

8 9 17 18 35 

DEVCHR CHAR1* I TYPE I MODES / , 

NDEV 

*CHAA1 
Sit 5 can take on another meaning (i.e., DVOPN-1B5i 
Fi1~ Open on Device) than the one described in INIDVT. 

Note: A resident word, DEVLCK (Free is -1), 1s used to 
lock the data base in the DEVXXX Tables when they 
are being manipulated. 

-28-

, / 



"aile: 

De.cription: 

Defined 1n: S'1'G 

DEVeRl 

Device Characteristics Table 1. This table, 
contain. another word of information about each 
device unit in the system and is initialized from 
the INID~ table at syste. start up ti.e. 

Referenced by: DEVICE, DISC, GT"",, JS'YSA, J5YSP 

Format 

DEVCRl Device Characteristics (word 2) / \ 

NDEV 

\ / 

Symbol Bit Content 

Dl'SPL • Device is spooled 
Dl'ALC 1 Device is under control 

of allocator 
Dl'VVL 2 Volume valid 
DltNIU 3 Device slot not is use 
DltINI 4 Device is being initialized 

currently for structures 
only) 

'-29-



Name: ~VCH2 

Description: Device Characteristes Table 2. This table contains 
spool dir.ctory information and is parallel to th~ 
DEVCRl table. 

Defined in: S'1'G 

Referenced by: DISC, JSYSA 

Format 

DEVC;R2 01 rectory Nwnber of Spool Ql.reetory / \ 

NDEV 

\ / 

-30-



Na ... e: 

De.cr.iption: 

Defined in: 

DLUKD-e 

NLUKD-l 

VLUKD-3 

PLUKD-4 

SLUKD-6 

OP!Ml)-' 

CLOSO-12 

D!tO-l4 

DMPIO-1S 

OMPOO-16 

DEV'OTB 

Dispatch Table. Each device has its own di.patch 
table that confor •• to the format de.cribed below. 
An error return dispatch addre.. 1. placed in tho.e 
word. which have no corre.ponding device function. 
The naming convention for the.e table. is the 
device na.e concatenated with DTB (i.e. MTADTB, 
DSKnTa, TTYDTB, etc.) 

PROLOG 

Pormat 

Directory Setup 

Na.e Lookup 

Extension Lookup 

Version Lookup 

Protection Insertion 

Account Insertion 

Status Modification 

Open File 

Sequential Byte Input 

Sequential Byte Output 

Clo.e rl1e 

Rena .. e rile 

Delete Pl1e 

Dump Mode Input 

Ou.p Mode Output 

-31-



-mTD-17 

DSMD-29 

INOO-21 

MTPO-22 

GDSTD-23 

SDSTD-24 

RECOU-r-2S 

RFTAI)O-26 

SFTADO-27 

JFNID-3" 

~'NOD-31 

.\TRO-32 

Mount 

Dismount 

Initialize a Directory 

MTAPE Operations 

Get Deviee Status 

Set Deviee Statl,l8 

Poree Record Out (SOU~) 

Read Pile ~l.e and Oate 

Set Pl1e Time and Date 

Set JFN for Input 

Set "PM for Output 

Cheek Attribute 

-32-



~ame: DEVDSP 

nescription: Device Dispatch Table. This table contains the 
device dispatch table for each device unit and 
is initialized from the INIDVT table at system 
startup tille. 

Defined in: STG 

Referenced by: DEVICE, JSYSF 

DEVDSP Device Type Index 
(Not Referenced) 

Pormat 

Dispatch Table Address 

-33-

/ \ 

NOEV 

\ / 



Name: PEW AM 

Oescription~ Device Name Table. This table contains the 
SIxatT device n .. e for each device unit. The 
generic device n •• e is obtained fro. INIDVT, 
modified to include unit number (if device has 
units) and stored in this table at syste. start 
up time. 

Defined in: STG 

Referenced by: DEVICE, JSYSA, MEXEC 

Pormat 

OEVNAM SIXBIT I Name I 

-34-

I \ 

NDEV 

\ / 



Name: DEVUNT 

Description: Device Unit Table. This table, contain. info­
mation about the job aaaoci.ted with. unit, 
where the unit information in DEVUNT 1s built 
at system startup utilizing data from the 
INIDVT table. 

Defined in: STG 

Referenced by~ TTYSRV, DEVlCE, JSYSA~ J~YSP, MEXEC 

DEVUNT 

Pormat 

Assigner's Job./Oev Fr.e(-1) Unit. or No Unit Dev(-1) 
or being controlled by 
the allocator (-2) 

-35-

/ \ 

NOEV 

\ / 



Name: DIRECTORY 

Description: Directory rormat. The following illustrations 
show the format of a TOPS-21 directory. 

Defined: PROLOG 

Referenced by: DIRECT, DISC, DS~ALL 

0gerv i.w of .. D1 ntetury 

Page" 

Page 1 

· · · · · · · · · 
Page n 

Symbol Table 

Reserved f~r Directory Expansion 

-36-



First Page of a Directory 

" 17 18 23 24 

DRTYP DRVER DRHLN 
4""3"" Ver •• tenqth of Beader 

DRRPN DRNUM 
Relative Page • in DIR Directory NUilber 

ORFFS 
Pointer to First Fre. Block 

ORSBT 
Address of Bottom of Symbol Table 

ORSTP 
Address of Top of Symbol Table 

ORFTP 
Address of Last Used .Word +1 for Strinqs and FOBs 

DRrST 
Pointer to Free Bit Table 

DRDPW 
Default rile Protection 

DRPRT 
Oefault Directory Protection 

DRDBK 
Backup Specification 

DRLIO 
Logged In Quota 

DRLOO 
Logged Out Quota 

DROCA 
Current Directory Allocation 

DRNAM 

-37-



Pointer to Directory Name String 

DRPSW 
Pointer to Password String 

DRPRV 
privilege Bits 

DRMOD 
Mode Bits 

DRDAT 
Date and Time of Last LOGIN 

DRUGP 
Pointer to User Group List 

DROOP 
Pointer to Directory Group List 

DRUDT 
Date and Time of Last Update to Directory 

ORSD,., DRSDC 
Nax , of Subdirectories Count of Subdirectories 

ORCUG 
CRDIR allowed specifying these User Groups 

DRACT 
Pointer to Dir. Default Account 

Spare Words 

Fre. Space for Strings and rOBs 

-38-



Subsequent Directory Pages 

DRTYP DRVER DRHLH 
4"13"" Ver •• Length of IkNd.r 

DRRPN DRNUM 
Relative Page • in DIR Directory Number 

DRFFB 
Pointer to First Free Block 

Free Space for Strings and FOBs 

Symbol Table 

SYMTY SYMON 
411488 Dir. • of Sym.Tbl. 

-1 

SYMET SYMAD 
Type Address of FDB 

SY"IVL 
First 5 Characters of Name, Account or User 
Name for last writer/author 

· · · · · · · · 

-39-

\ 
\ 
> 

/ 
/ 

\ 
\ 
> 

/ 
/ 



" 1 2 3 35 

I~·I Addre.s of POB 

Bits Pointer Content 

0-2 SYMET Entry Type 
o • .ETNAM Name 
2 • .!TUNS User Name 
4 • .!TACT Account 

3-35 SYMAD Address of roB 

User Name String 

UNTYP UNLEM 
411114 Ver •• Length 

UNSHR 
Share Count of User Name String 

UNVAL 
ASCIZ User Name String 

-40-



Malle StrirMJ 

Nfl'l'YP Nit LEN 
4""'1 Ver. I LenCJth 

NMVAL 
ASCIZ Na.e String (1st 5 characters) 

Extenaion String 

EX1'YPE !XLEN 
4""""2 Var.' Length 

ASCIZ Extension String 

Account String 

ACTYP ALLEN 
4 •••• 3 Ver. I Length 

ACSRR 
Share Count 

ACVAL 
ASCIZ Account String 

-41-



File Descriptor Block (FOB) 

FBT'YP FaVER FBLEN 
41"18" Ver. I Len9th 

See PnB ~l. for DetAil. of thia Block 

1 1 

Free Space 

.. 
FRTYP FRVER FRLEN 

48858" Ver. I Len9th 

FRNFB 
Pointer to Next Free Block or I if at end 

, Remainder of Free Block 

1 

-'2-



Free Storage Bit Table 

.1161" Ver. I Length 

Bit Table Containing 1 Bit per Directory Page ~ 

I - No Room on the Paqe 
1 - There is Roo. on the Page 

Group List 

411'09 Ver. I Length 

Group • Group • 
Group • 0 



Name: DRMBBT 

D •• crl"ption: Oru. Bit Table. '!'his bit table indicate. which 
pages are in use and which pages are available 
in the swapping area. 

Defined in: STG 

Poraat 

\ \ \ 
l~ __________________________________________ ~lCy~ind.r I 

Cylinder 1 
/ 

\ 
'_~ ___________________________________________________ lCY;ind.r n 

Note; The bit map for each cylinder starts on a word boundary 
and contains as many full words as are needed for all of ita 
pages. 

-44-



Name: DRMCNT 

Deecription~ Dro. Count Table. ~is table, indexed by 
cylinder, records the free page count for the 
drum (logical swapping area). The total free 
page count for all the cylinders is kept in the 
storage word, DRMFRE. 

nefined in: S1'G 

Referenced by: SWPALC 

Format 

/ \ 
DRMCN'1' Drum Free Page Count - Cylinder " 

· · · · DRMMXB 

· · · 
Drum Free Page Count - Cylinder n 

\ / 

-45-



Name: OSKSIZ 

Description: Disk Size Pointer Table. This table contains 
pointers to the disk size data table.. DSKSIZ 
is parallel to DSKUTP which contains codes for 
the known disk types. When an entry .is added 
to OSKUPT, • corresponding entry must be added 
to PSKSI% to point to the correct size data 
for that type of disk. 

Oefined in: STG 

Referenced by: DSRAte 

Format 

OSl(SIZ Pointer to RPI4 Table (OSKSZI) 

Pointer to RPIS Table (OSKSZI) 

Pointer to RPe6 Table (OSKSZ1) 

Pointer to RMI3 Table (OSKSZ3 ) 



Name: 

Description: 

DSKSZ" n 

Disk Size Table (for type n). The resident 
table contains size data (for disks) based 
on type. 

n ."' 
n • 1 
n - 3 

for RPI4 and RPIS 
for RPI6 
~or JUU3 

Defined 1n: STG 

Referenced by: DSICALC 

DSKSZ"n/SEGPAC-B 

CYLUNT-3 

SECUNT-4 

B'lWCYL-S 

MINPPGa6 

MAXPPw7 

No. of 

Min1mUll 

Paq .. 

Format 

Sectors per Page 

Sectors per Cylinder 

Pages per Cylinder 

Cylinders per Unit 

Sectors per Unit 

Bit Words in Bit Table per Cylinder 

Fr •• Page. for Free Choice Allocation 

per Unit for OSKASN turning po1nt 

-47-



Name: DSKUTP 

Description: Disk Unit Type. This table contains the unit 
types used by the file system. 

Def ined in: AI YSlO 

Referenced by: DSKALC 

POrllat 

OSruTP RP'4 Disk Unit Code ( .trrRP4 • 1) 

RPeS Disk Unit Code e .UTRP5 • 5) 

RPe6 Disk Unit Code e .UTRP6 • 6) 

RM'3 Disk Unit Code e .UTRM3 • 11) 

-48-



Name: 

Description: Drua Status Table. This table is indexed as a 
function of the drua (swapping space) addres •• 
The routine GDSTX converts a drum address into 
a CST index. The CST holds the address of the 
next lo~er level of storage (usually disk) for 
the page stored at that address on the drum. 

BWRBrf (bit 11) indicat •• i~ the page haa been 
changed since being read from the lower level 
storage. The page will only be copied back on 
to th. lower level storage if BWRBIT is .et 
(i.e., page modified) when the page is no longer 
in use. A slot no longer 1n use contains a -1. 

Defined in: STG 

Referenced by: PAGEM 

Pormat 

11 14 35 

OST II I Storage Address 
/ \ 

~----------------------------------------------------~Orum Page 
Number 

\ / 

-49-



Naat: 

Description: 

DTE-STORAGE-AR!A 

OTE Storage Area. This storage area contains 
storage for each OTE. It contains the 
Communication Area for each processor in COMBAS, 
the linked output packet queues (pointed to by 
OTEQS), the OTE input buffers, and local storage 
(i.e., ACs, PC, , POL) for the OTE Protocol 
Handler, OTESRV. 

A packet in the COMQ area must be reformatted to 
RSX28P protocol and stored in PK~ADR before being 
sent over the DTE. The before and after packet 
formats are described below. 

Two single packets, SNGPKl and SNGPK2 (already 
formatted as direct packets to RSX28F 
protocol See below) are set aside for the 
OTSNGL routine. This routine is responsible for 
activating lines and sending single characters over 
the OTE if the output buffer has only one 
character. 

Normally output buffer characters are sent via 
indirect packets over the OTE, where the indirect 
packet (after being reformatted and stored in 
PKTADR) is sent first followed by the line's output 
buffer characters. 

Defined in: STG 

Referenced by: DTESRV, SPRSRV, MEXEC, SCRED 

UPFLAG Word to Generate Continued Message 

LOADll Says if -11 Needs to Reload 

LODFRK Handle of Monitor Pork Doing -11 Reboot 

DTEDTE The Interrupting OTE 

CTYUNT FE Physical Unit for TS TTY 

DTEQS Drive Queue Header for OTE 1 
(Ptr. to 1st Queued Packet in COMO) , 

PI . . 
Oriver Queue Header for OTE n 

COMQ 

Area for Queue Packets , 
\ (apacket Size * A D2e ) \ 

I I 

-so-



COMH Queue Header (Points to lst Pree Packet in COMO) 

OTESTS OTt 1 Status Word 

· , 
· OTt n Status Word 

OTEST~ OTE 1 Secondary Status word 

· 
~ · OTE n Secondary Status Word 

OTBBF!" 

Buffer Pool 
\ \ 

(Two ·03l-Word Input Buffers/RSX20F protocol OTE) 

OTEFWO Hdr. Word for OTt 1 Buf 
(Ptr. to 2nd Input Buf" Ptr. to lst Input Buf) 

· · Header Word for OTt n Buffer 

OTETRA Interrupt Return PC for OTE 1 

· ~ 

~ · f' 
Interrupt Return PC for OTt 2 

OTESKP 
, Local POL Stack , 
~ f' 

OTtACB , Block to Save ACs ~ 

OTtINO Storage for Indirect Punction for OTE 1 

· , · Storage for Indirect Punction for OTE n 

PKTAOR Storage for Queue Packets 
(One 3-Word Packet/RSX29P protocol OTt) 

, 

-51-



COMBUF 

COMBAS 

TAOll 

TOIITM 

KLIOTA 

SNGPtU 

SNGP~2 

Processor • 

, 
~ 

, 

, 

, 

, 
I' 

Index into COMBAS to get to 
4 Proce.sor's Comm Area 

3 •• 
2 •• 

1 " 

I t • 

XL1I -OWned- Area 

-To· OTEl Area 

-To- OTE2 Area 

· · · 
-To· OTEn Area 

OTE1 ·Owned· Area 

-To· KLli Area 

· · · 
DT!n -owned- Area 

-To· KLli Area 

Tim. Packet froID -11 (3 Words) 

Time Packet to -11 C3 Words) 

KLINIK Data Bas. CAOli Words) 

Slngle-Packet-1 Header Word 

Packet Data C5 Words) 

Single-Packet-2 Header Word 

Packet Data (5 Words) 

-52-

this 

~ 

II' I \ 

H.ader 
Area 

J/ 
\ 

\ 
\ 

\ 
Master 

Process 
Comm 
Area 
I 

IComlluni­
I cation 

I Reqion 
\ 

I 

\ 

\ OTEl 
\Comm 
IArea 

I 

\ OTEn 
\ Co_ 
I Area 

I \ I 
/ 



O1'ES1'S 

" O1'ERL 

1)'1'1 
exists 
if set 

1 

O1'EBF 
Which 

Buf 1s 
in use 
for 
RSX21, 
Protocol 

Bits 

1 
1 

2 

3 
4 
5 

6-17 
18-29 

31-35 

2 3 

O1'PRV O'1'RLD 
0'1'£; Set-)ll 

privi- is 
ledged beinq 

Reloaded 

Pointer 

O'1'ERL 
O'1'EBI' 

MBLK 

MRLO 
O'1'l(AC 
OT5'1'I 
OTEBl 
D'1'EBC 

D1'EST 

4 5 6 11 18 29 31 

O'1'UC O'1'S1'I O'1'EBl O'1'EBC 
Status Byte Byte 

Set-> Packet Count Count 
11 is is of Last Re.ain 
ill Split Xfer. inq for 

Subs_ 
quent 
Xfer 

Content 

If set, DrE exists 
Says which buffer is in use 
for RSX21 of protocol 

Por MeB, to KL11 is bloCked 
on free space 

If set, -11 is being reloaded 
If set, -11 is ill 
Status pocket is split 
Byte count of list transfer 
Byte count r .. aining for 
subsequent transfer 

DTE status 

-53-

DTET11-1 
KLll is receiving last 

fraq.ent of message 
MEll-2 

-11 is receiving byte. 
OT£11I-4 

-11 is receiving an 
indirect queue entry 

0'1'£11'-11 
KL11 is recelvinq 1st 
frag.ent of a .es •• qe 

35 

0'1' EST 
D'1'! 

Status 



DTESTl Is parallel to OT!STS and contains current 
operation 

data and special request bits for ·'1'0· -11 
condition.. 

1 15 31 32 33 

DTIPC DTIOV OTITM DT1ID 
Current CUrren.t 
Function Code Oevice Code 

Bit. Pointer Contents 

1-15 M'lrC Current funct.ion code 
16-31 OT1DV Current device code 

32 DTITM ··11 wants ti •• of day 
33 OTIID Waltinq for indirect 

setup 

OTEIND (Storaqe for indirect packets) 

" 7 8 15 16 17 

IINUNT IINCNT INVLO 

Unit Count 

Bits Pointer Contents 

1-7 INUNT Unit 
8-15 INCNT· Count 
16 INVLO If set, says unit 

field is invalid 

-54-

34 35 

35 



COfI'Q Area for queue packets where a packet (5 words in length) 
has the form: 

I OINT OLINIC 
Int toe for this Punction Link to Next Packet 

1 OrNe OOZV 
runction Word for this O~! Dev. Code for this 
Request Request 

2 OLIN QIIIDDI! 19 OCH'l' 35 
1)evlce-1Jnlt I indirect ~e Count or Byte 

Data Must or • 
be Byte 
Mode 

3 OPN'1'R 
Byte Pointer fo rInd i rect Operation or Local a-bit Datum 
if OCNT • • 

4 QCOO 
Unique Code Returned to Interrupt Routine, TTYINT 

COMO are. is currently a.se.bled for room of A021 packets. 

PKTADR 

1 

2 

Storage for currently activated DT! packet for each DTE (Packet taken 
from the linked list of packets on the queue in COMO and place here). 

The packet has the following form: 

15 16 31 32 35 

HDCNT BDPlIC 
Count Function 

HDDEV HDSPR 
Device Code Spare 

I 7 8 15 
HDLIN HODAT 

Line • Datu.· 

" or 15 
HOOT 1 

Datau. for Sin91e 
Datum Packet 

• Datum could be a character (direct packet case) or 
Max • of characters to be sent (indirect packet case) 

-55-



15 16 31 32 35 
SNGPK1/2 

'lags Link to Next Packet 

Packet Byte Count Function 

Device Spare 

Line • DatUID Line t Datwa 

Line t Datu. Line • DatUII 

Line t DatUli Line t DatWi 

" 1.2 16 31 

Header Word I I I I ,Link to Next packett 

Symbol Bits Contents 

SNGONO " On the OTE packet 
queue pointed to by 
OTEOS 

SNGAVL 1 Packet has space 
available 

SNGACT 2 Packet active (i.e. 
DTE processinq it) 

1~-3l Link to next packet 



COMBAS 
·OWned· Area Block Pormat 

1 2 3 4 5 6 11 12 16 17 19 21 35 

• 0l'l'!N CJIIV!R CPVER OlMPR OlSIZ CMMAM 
Processor Na.e 

1 CMUff( 
Pointer to Next Processor 

---

, 

-C·l;(AC 
Proce.sor Keop Alive Count 

-" . PC Word 

COMI PI, Word 

COMI PAG, WOrd 

CMPDWD-11 DATAI PAG, Word 

CONI APR, Wo rd 

CMDAPR-13 DATAl APR, Word 

14 
~ r 

-57-



word " " 1 
2 3 4 5 6 11 12 16 17 19 2& 

I I I I CPVER I CMNPR "ICMNAM 
N···I proc.ssor 

Bits Pointer Contents 

" CM'1'!N Set If area belongs to KL1" 
1-3 CMV!R Com.unication area version 

nuaber 
6-11 CPVER Protocol veraion nuaber 

12-16 CMNPR Nuaber of processors 
represented 1n this 
are. (including owner) 

17-19 CMSIZ Size of area In a-word 
blocks 

21-35 CMNAM Processor name 4 

(a serial number) 

-S8-



1 

1 

2 

3 

4 

5 

8 1 2 3 11 16 17 19 28 35 

CMPRO CMM'E ou:mr CMVRR CMSIZ CMPNM 
-To· Proce •• or Ho. 

CMP" 
Pointer to ·To- Proce •• or's awned COllmunication Area 

I 1 2 3 .c 12 13 14 16 17 18 19 21 27 28 35 
CMPWP CML11 OIIMI 0ftS'r OIOP CMPND CMOte CM1tC 

" 3 4 19 21 35 
CM'rMD CMPCI CMQC'l' 
Mode of Piec.ea1 Ctr. (Bits 1.19 Used Count of Word. in 
Xfer by Prot. Ver. VNMCB Only) Current Queue 

CMRLP 
Reload Par .. eter for ·To· Processor 

CMKAK 
OWning proce •• or'. 

Word II 

1 1 2 3 

[ III 
Bit. 

I 

1 

2-3 

11-16 

17-19 

21-35 

Copy of -To· Proce •• or's Keep Alive Count 

11 16 .17 19 21 35 

I
CMVRR ICMSIZ ICMPNM I 

. . -To· Processor Number 

Pointer 

CMPRO 

CMOTE 

CMM'H 

CMVRR 

CMSIZ 

CMPNM 

-59-

Contents 

If set, it implies connected 
to a XLl. 

If set, there 1. a DrE 
connecting this processor 
and owning proce.sor 

If CMOTE is set, this 1s 
the number of that 
connecting DrE 

Protocol in use by the two 
processors 

Size of -to· area 1n 
Seword blocks 
-To· processor nuaber 



" 1 234 12 13 14 16 17 18 19 20 27 28 35 

Word 2 CMOIC CMIIC 
To llIC To llIC 
for Queue for Queue 
Xfer Xfer 

Symbol Bits Pointer Contents 

t CMPWP Power fail indicator - 11 
1 CMLll wants reload (set by -11) 
2 CMINI Initialization bit for 

Mca protocol only 
3 CM'rST Valid examine if set 

(should always be set) 
13 <:MOP Set if using queued 

protocol 
17 CMPND -11 doing full word 

transfer (set by -11) 
CMIP 18 -11 doing indirect 

transfer 
CMTOT 19 -Toit e bit. Set to 1 by 

KL1" in -ll's section 
of -11's Comm area 
after -11 sets QMode bit 
or increments o-count, 
and after -10 processes 
the doorbell. 

Cleared by KLli after 
receiving Tll"DN~ 
Assures -11 that the 
KLli has not 
lost a T81"DN interrupt 

21-·27 ·CMOIC -11s wrap around count 
of direct Q transfer 

28-35 CMIle KL1"'s wrap around count 
of direct Q transfers. 



Name: OTEDTV 

De.cription: DT! Protocol Device Dispat~h Table. The 
entri .. with the dispatch address, TTYDTV 
are for the C'n'. DLll. nUl and DLS device •• 

Defined in: STG 

Referenc;ed by: OTESRV 

Format 

DTEDTV Re.erved for Unknown Device 

TTYD1'V 

TTYDTV 

TTYDTV 

'M'YDTV 

LPTDTV 

CDRDTV 

iii (Unknown Device) 

FEDTV 

-61-



Name: tNQIOEQ - STORAGE AREA 

Oescription: Enqueue/Dequeue Storage Area. The non-resident 
local area for ~he ENOIOEO Facilty is illus­
trated first followed by the resident bit tables, 
ENPKTB and tcKDBT. A bit is set in the ENrKTS 
bit table it the fork should be woken up or 
interrupted because it owns a lock. (The 
Scheduler's wake-up test routine address is 
ENQTST. ) 

Defined iD1 STG 

Reterenced by: ENO, IPCP, DIRECT 

FORMAT 

RSB'1'BL* ~ 
\ 

Rash Table fo r 
ENO Locks 

l 
\ 

ENOLOK 

ENOS PC 

ENOLTL 

ENOLTS 

, (Name/Number of Lock hashed) 

Data Base Lock For ENO and DEO 
(-1 if Fre.) 

Count of .Fre. Space 
Available for ENO's 

List of Long Term Locks 

Time of next Garbage Collect 

Resident Storage: 

ENFKT9 

LCKDBT 

I II I · · 
Wake-up Table (1 bit/Fork) 

I I I I · · 
Bit Tbl for OIR Lock ENOIOEO 

(1 bit/fork) 

*The name (or identifying number) of a lock block 
is hashed to provide a number1 This number, modulo 
the size of the hash table is used as an index 
into HSHTBL. If the hashing algorithm yields the 
same index for more than one lock block name, the 
lock blocks will be linked together; the HSHTBL 
entry will be the linked list header. 

-62-



Name: ENo-LOCK-BLOCK 

De~i~ion: Each resource 1s described in a lock block. Th. 
lock block Is created at the time of the first 
request. 

Defined 1n: !NO 

Refere~c.d by: ENO 
FORMAT 

ENOLHC: !NQNHC: 
Sack Pointer to Last Pointer to Next 

Lock-Block on Bash Chain Lock-alock on Rash O1a1n 

ENQLLQ: !NCJNLQ: 
1 Back Po inter to Porward Pointer to 

L.st O-Block on Queue 'irst O-Block on Queue 

ENOPLG: ENOLVL: 
Flags Level Number 

of this Lock 

ENQTR: ENORR: 
3 Total • of Resources Remaining Number of 

in this Pool Resources in this Pool 

ENQTS: 
4 Time Stamp 

Time of LAst Request Locked 

ENOFSP: ENOLT: 
• ENOLT-5 Fre. Block Pointer Long Term Lock List 

to Free O-Block for this Job 

ENQOFN: ENOLEN: 
6 OrN, or -2, or -3, Length of this 

or 4888"" + Job Number Lock-Block 

ENONMS: 
7 Number of Words in 

the Mask Block 

ENQTXT: ASCIZ String 
or 

588888 + User Code 

-63-



I 11 12 17 18 3S 

Word. [ ENQFLG ENQLVL 
Level • of this Lock nags 

Syabol Sita Pointer Meaning 

J:!i • .L1'l.-41 6 LQng Term Block 
EN. INV-2. 7 This Q-Bloek 1s invisible 
D.LOK-l. 8 '!'he Q-Block has the Lock 

Locked. 
EN.TXT-" 9 This Block has a Text 

String Identity. 
EN. EXC-2 111 Request is Exclusive 
EN. ~ .. l 11 ~is is the Lock-Block 

13-17 !HQCHN PSI Channel (-1 .eans job 
Blocked) 

18-35 ENQLVL Level I of this lock. 

-64-



Name: IPr 

Executiv. Proce •• Table. This ._ory re.id.nt 
table pointed to by the Executiv. a..e R.gi.ter 
(IBR), contain. the vectored dispatch addr ••••• 
for syst .. ev.nts. All device int.rrupt. p •• s 
control to a .pecific off.et position in this 
tabl •• 

This table also includ.s the executive .ection map 
tabl., the ti.e of day clock and arith •• tic trap 
instruction. wbich ar. execut.d wh.n arithaetic 
condition. occur in executive .od •• 

Location. 444 to 451 ar. re.erved for .oftware and 
used by D'l'ISRV. 

Defin.d In: STG 

Referenced by: APRSRV, DTESRV, MEXIC, PHDll, PRYH2 

FORMAT 

KIEPT+& 

37 

41 
41 

42 

S7 

6& 

63 

64 

!lght Channel Logout Areas 

Each: & Initial Channel Command , 
1 Gets Channel Status Word ~ 
2 Gets Last Updated Command 
3 Re.erved for Channel's , 

Vectored Interrupt Location 

Re •• rv.d 

, Standard Priority Interrupt Instruc. 

rour Channel Block r11l Words 

-65-

, 
r-

, 

, 



. 
77 

SMTEP'l'wfCIEPT+l" 

111 

137 

DTEEBP-KIEP'l'+141 
DTETB P-KI EP'l' +141 
DTEINT-KIEP'l'+142 
. 143 
DTEEPW-KIEP'l'+144 
DTEERW-KIEPT+145 
DTEDPW-KIEPT+146 
DTEDRW-KIEPT+147 

177 

EPTMHI-KIEP'l'+21" 

417 

EPTPTI-KIEPT+421 

421 

1 

, 

I' 

~ 

, 

Reserved ~ 

Pointer to 8M11 Vector "able 
e if 2"2" System) 

Re •• rved , 
r-

Pour 8eword DTE21 Control Blocks 
Bach: I To -11 Byte Pointer 

1 To -11 Byte Pointer 
2 Interrupt Location 
3 Reserved 
4 Examine Protection Word 
5 Examine Relocation Word 
6 Deposit Protection Word 
7 Deposit Relocation Word 

OTE1 Control Block , 

OTE2 Control Block 1 

DTE3 Control Block 

Available to Software 

LUUO fro. Executive Mode 
e. LUTRP) * 

Executive Arithmetic Overflow Trap 

-66-



422 

423 

424 

437 

441 

443 

DTEPtG-KIEPT+444 

DTECPJ(-KIEPT+445 

DTECJ(l-KIEPT+446 

DTET1I-KIEPT+447 

DTEFII-KIEPT+451 

DTECMD-KIEPT+451 

DT!SEQ-KIEPT+452 

DTEOPR-KIEPT+453 

DTEQHR-KIEPT+454 

DTETMD-KI!PT+455 

P'l'Dl'l'l ~I EP!'+4 56 

PTESWR-KtEPT+457 

461 

477 

581 

587 

~ 

~ 

Instruction (JFCL) * 

Executive Stack OVerflow trap 
Instruction (.PDOVT) * 

Executive Trap 3 Trap Instruction 
(JP'CL) * 

Reserved 

Reserved for Software 

Operation" Complete 'lag 

Clock Interrupt 'lag 

Clock Interrupt Instruction 

-To- 11 Argument 

·'rom- 1l Argument 

Command Word 

DTE28 Operation Sequence Nuaber 

Operation in Progress Flag 

Last Typed Character 

Monitor TTY OUtput Complete 'lag 

Monitor ftY Input nag 

Console Swi tch Register 

Reserved for Software 

Reserved 

~7-



'18 

511 

512 

513 

514 

577 

, 

'1'1 •• sa •• 

Performance Analysis Count 

Int.rnal Counter Interrupt In.truc. 

ZXEC SECTION I 
, 

EXEC SECTION 37 

Available to Software , 

* The.e value. are placed into the table when the EPT is 
initialized at syste. startup. 

-68-



Bx.e~t1v. '.9. Map Tabl.. This S12-word ... ory r •• id.nt 
table hold. or point. to other table. that hold all of 
the .. pping i~o~.tion n •• d.d by th. f1r.war. to tr.ns­
lit' ex.cutiv. (monitor) virtual .ddr ••••• in a giv.n 
•• c~ion into phy.ic.l ... ory .ddr...... It i. pointed 
to by an entry In the monitor', ,.ction table 1n the 
I •• cutive'roc ••• Table (IPr). 

Tb. fO" po •• ibl. foz-.ata for an _try 1n this table 
(1~ •• , lmae4tate, .hare4, indirect or null point.rs) are 
illustrated below. The d.tail. of th •• e four po •• ibl. 
pointer word. a. well a. the •• chanics of the virtual 
~o phy.ical tran.lation proce •• for a monitor pa9. is 
identical to that de.cribed for tn. U •• r-Pa9. Map Table 
(S •• U •• r-'9-Map-Tbl) 

o.(ln.d il;\: STG 



FORMAT 

" / \ 
Immediate Pointer 

" 2 3 8 12 35 
Op Acce •• Bita STGAOR 
Code Storage Addre •• 

1 

or 

Shared Pointer 

" 2 3 8 18 35 
Op Acce.s SPrX 
Code Bits SPr. index 

2 (Hold. Pq'. Stor Adr.) 

or 
Virtual 

Pg • 
O-m octal 

Indirect Pointer 

" 2 3 8 9 17 18 35 
Op Access IPPGN SPrX 
Code Bits PH SP1' index 
3 (Hold. Pg Tb's Store Adr) 

or 

Null Pointer 

" 2 3 8 
Op Acee." Bits • (Nonexistent Pq) 
Code 

I I 

· · · 
* Currently MMAP is the monitor's page map table for section" 

and section 1. The layout of the monitor's virtual address 
space for section" is described in Appendix B of the Monitor 
Structures Book. 

-70-

\ / 



Pe.cr1ptioa: Pll. De.cription Block. All attribute. of a file 
are stored In ita d •• cription block (rDB) aaintained 
in the file'. directory. An rDa i. built in the 
directory's free space area when a tile 1. ereated. 
This ~.ble i. referenced by the PIR table. 

Defined In: PROLOG. MOHSlN 

"R.f.~enoe4 by: 'DISC, DIRECT, tSDtc, -GTJlN ,JaYS", JS'!S?, 
'ILIMI, LINEPR, 10, S~I!RR, DTlSRV 

• 17 18 23 24 
n'!'YP PlVlR PI LEN 

• ABDR 41.11 • Vera • LenCJth 

Plrta 
Flag. 

nlXt. 
.PBIXL Link to PDB at Next Extenaion 

nAIR 
.'BADR Disk Addre •• at File'. Index Block 

PaPR,. 
• 'SPRT 518 •• 1 Pile Acee •• Bit. 

PlCR! 
.'SCRI Pate and ,.i.e at La.t Writ. to Pile 

PlLW. PBAT. 
.'BUSI DIR • of Last Writer DIR • of Author 

PIAU,. 
.PBAtrr Pointer to Author String 

"PILWR 
.PBUfR Pointer to Last Writer String 

nGEN 

35 

Generation Number IPBCRN 
Dir.' (it it'. a Di r Pile) 

-71-

f' 



I'BACT 
588"''',,1 + Account Number 

or 
.FBACT Pointer to Account Strine) 

" 5 6 11 14 17 18 35 
PBGNR FB8SZ !'BMOC FBNPG 

.FB8YV • Gens. Byte Sz Mode • of Pages in Fl1e 

!'BSI% 
.!"BST% .f of Byt.s in 1'11e 

PBCRV 
.FBCRV Cate and Tl.e of Creation 

FBWRT 
.FSWRT Cate and Time of Last User Write 

PBR!F 
• FBREr Cate and Tlme of Last Nonwrlte Acces • 

FBNWR PBNRF 
• FBeNT • of Writes • of References 

FBSJCI 
.FS8K" Backup Word .1 

PBSll 
.FB8Kl Backup Word '2 

P'BBK2 
.!,B8R2 Backup Word .3 

PBBK3 
.FB8K3 Backup Word '4 

PBBI4 
.FB8K4 Backup Word '5 

PBUSW 
.PBUSW User Settable Word 

PBGML 
.FBGNL Link to P'DB of Next Generation 

PB.M 
• FSlaM Pointer to rile Name Block 

PBEXT 
.FBEXT Pointer to Extension Block 

.rBLWR Pointer to Last Writer String 

-72-



• 1 2 3 • 5 6 7 8 9 1. 

• ,SCTL I I I I , I· I I I I I 
Syabol 

n.,.,.p 
'1 'PM 
PIUlex 

'.'DEL 
,.UlXP 

ntLNG 
ntH,. 
"'DIR 
,.UlOD 

,a GAT 
",rer 

lit. 

• 1 
2 

3 .. 
5 
6 
7 
8 

9 
14-17 

13 1 • 

Pointer 

17 18 27 28 

Content 

rile is t .. porary 
rile is per.anent 

35 

No exten.ion for this file 
ye., file doe.n't really 
exist. 

rile i. deleted 
rile doesn't exist (first 
write not eo.pl.te) 

Long file 

rl1. is • dir.ctory 
r11. 1s not saved by backup 

syst •• 
rl1 •• ay have bad page. 

rl1. cla.. fi.ld 
• • .rBNRM 

1 •• 'BRMS 

Not an 
RMS file 

MS file 

N~t.: s •• Monitor Call'. Referen~. Manual (Chapter 2) for 
more inforaatlon. 

-73-



Name: PE-STORAGE-AREA 

O.scription: Storage area for front end deviees. Each entry 
is rEN words long (except FEUNVW), where FEN 
eqJal.s tha nuaber of front eDd davice •• 

Defined In: STe 

~efer.nced by: PISRV 

\ 
FEUBDO \ 

PEUDBl 

, 
PEUDB2 } , 
FEUDB3 

PEUDB4 

PEUNVW 

Pla9s 

PEICT 
Current Input 

Byte Count 

PEIP'!' 

PIIBP 
Input 

8 2 
• PEs 

Buffer 

Format 

PlFEM PEn! 
PE Alloc Pork • OWninCJ Device 

nICM PEFEI 
MaxillU8 Input Byte. Now in PE 

Byte Count 

Input Byte Pointer 

PEOBP 
Addre.s Output Buffer Address 

Input Input Pointer 

Input Input Pointer 

\ 

} 

The buffer are. for the front end 1. 1n the .onltor's nonr.sident 
addre •• space. 

PEBUPF \ 1 Pa9- in Length \ 

-74-



"12 ~ 4 5 

I1II11 

Blt(s) 

'-1 
2 
3 
4 
5 

12~11 
18-35 

Point.er 

PSDn 
rEBUt 
PI PST 
PlIOP 
PIVOT 
"PIM 
PIl'RK 

12 11 

1'!PRK 
Pork • OWning Device 

Content 

O'l'E owning this device 
Unit is blocked 
Waiting for ~I Past 
Input EOP declared by PI 
FE ••• ignaent 1. valid 
PI Allocation 
Pork • owning device 

-75-



tfame: PKCNO 

Description: Pork Core Number Table. This table, indexed by 
fork I, contains the core number (qiven when a 
process enters the balance set) for each fork. 
The core number is u.ed to set ."eorrespondinq 
bit in the pager's proce.s use register (PUR) 
when the fork is chosen to run. 

The left half of this table is used to hold the 
SPT index for the .econd page of each fork's 
PSB table. (see RPGS table for SPT index for 
first page of each fork's PSB). 

Defined In: STG 

Referenced by: PAGEM, SCBED 

Format 

FKeNO FSSP1'/HWPTN Core Number 
SP1'n for 2nd PC) of PSB 

-76-

/ \ 

fork • 

\ / 



Na.e: PKINT 

Description: Pork Interrupt Table. This table, indexed by 
fork ., contaln. the p.eudo-interrupt coaauni­
cation reg ister. for eacb fork. !he laft balf of 
each entry contains bits recordinq the type of 
reque.t. The symbols for the •• reque.ts have 
right half blt a •• ignments (i.e. bits 28-31) 
but are te.ted against the left half of tbetable .. 

Defined in: S1G 

RefereDced by: T'l'YS1tV, PORK, MIUC, SCB'£D 

FKINT 

Symbol 

NEWPKP(B21) 
NEWJBr (1821)' 

Bits 

Blt 

I 
1 
2 
3 

Poraat 

I Channel • of Last PSI Req. 

-77-

Content 

Interrupt Reque.t(s) pending 
Pork not in~.rrupt.ble 
Initiate new fork 
Initiate new job 

I \ 

\ I 



PSIIP(1822) 

PSIT1F (1823·) 
PSIT2F (1824) 
SUSP'KR (1825 
PSIWTF (lB26) 
PSILOB(lB27) 
FRZB1 (lB28) 
FRZ82 (lB29) 
PSICOB(lB38) 
PSITL! (1B31) 
PSIJTR(lB32) 
JTPRZB(lB33) 
ADRBKP (lB34) 
ABPRZB(lB35) 

4 

5 
6 
7 
8 
9 

11 
11 
12 
13 
14 
15 
16 
17 

Channel interrupt ~equested 
in PKINTB 
Terminal code Interrupt, Phase 1 
Terminal code Int~rTupt. Pbase 2 
Suspend fork request 
Job vas 1n wait state 
Logout job request 
Direct freeze has been done 
Indirect freeze has been done 
Carrier off action request 
Tl .. Liait Exceeded interrupt 
JSYS trap request 
JSYS trap freeze 
Addre.s Break Reque.t 
Addre.s Break Freeze 

-78-



Name: "KINTB 

Descriptioft: Pork I~terrupt Buffer Table. This table, indexed 
by fork I, contain. the buffer for the paeudo­
interrupt channel requests pendin9 for e.ch fork 
since the fork'. la.t PSI interrupt. 

Defined in: STG 

Referenced by: SCRED 

Ponaat 

P'KINTB Interrupt Channel RequestCs) Pending 

-79-

I \ 

fork • 

\ / 



Name: P&JOB 

Description: Fork Job Table. This table, indexed by fork ., 
holds each fork's job number and JSB address 
(SPT index). 

Defined in: STG 

Referenced by: APRSRV, DTESRV, ENQ, 'ILMSC, 'ORK, IPCF, MEXEC, 
PAGEM, PHYSIO, SCBED 

"?ormat 

'KJOBN FKJSB 
FKJOB Job Number JSe (SPT Index) 

· · · · · · · · · · · · · · · 

-80-

/ \ 

Fork' 

\ / 



Ma.e: PKJTQ 

De.cription: Pork JSYS Trap Queue. This doubly linked list i. 
a JSYS 'rap. Queue of fork. vaiting to prograa 
software interrupt (PSI) the aonitor. JTLST points 
to the top fork on the linked JSYS trap. queue in 
PKJTQ. 

When a fork tries JTLOCK (in the JSB) and so •• other 
fork ha. the lock, the fork i. added to P1tJTQ and 
blocked. When the lock i. cle.red. the queue i. 
scanned for the first fork (if any) waltinq Oft the 
lOCk. That fork 1. re.oved from the queue and 
allowed to run. 

Defined in: STa 

Referenced by: SCBED 

PORMAT 

l'KJTQ Ptr. to Previous Entry I Ptr. to Next Entry 

-81-

/ \ 



Name: rDR 

Oeseriptlon: Fork Number of Reserve Pages Table. This table, 
indexed by fork ., containa in the right half 
the current re.erve working set size for each 
fork. Also, it contains in the left half the 
current age stamp (to be loaded into the pager'. 
age resister when the fork is chosen to run) and 
the age stamp value at the last time local garbage 
collection (re.oval o~ Ie •• fr,quently u.ed 
pag •• ) took p~c. for the fork. 

Defined In: STe 

Referenced by: PAGEM, SCHED 

Por.at 

8 9 17 18 

PXXAGE P'!CAGE 'JCWSS 
FKNR Age -La.t XGC Current Age Reserve Working Set Size 

· · · · 

/ \ 

· Fork' 

· · · · · · · · · · \ / 

-82-



Name: PKPGS 

Oe.cription: Pork Paqe and Proce •• Storage Table. This table, 
indexed by fork I, contain. the page table and 
PS8 locations (SPT indexe.) for each fork. 

Oefined in: STG 

Referenced by: PORK, IPC1, JSYSA, PAGEM, SCBEC 

Format 

Run F1(PSB 
FKPGS Page Table (SPT Index) PS8 (SPT Index) 

for 1st page of PS8 

· · · · · · · · · · · · · · · 
• See PKCNO table de.cription for SPT index for second 

page of PSBje 

-83-

• 
I \ 

Fork I 

\ I 



~ame: 

Oesc ription: 

PXPGS,. 

This table, indexed by fork I, holds test routine 
information for forks In a balance set wait state. 
The te.t routine checks if wait satisfied haa occurred. 

Por forks on a wait list (and therefore not in the 
balance set), this table contains the time of day the. 
fork entered the list. 

Referenced by: $CHED 

Pormat 

/ \ 
Test Routine for 

PKPGST Test Data BALSE'l' Wai t Satisfied 

or 

Time of Oay Entered a Wait List 

· · · · · Fork I 

· · · · · · · · · · · \ I 

-84-



Name: 

Oescription: Fork List Pointer Table. This table, indexed by 
fork If gives the ch.in of forks for e.ch list 
of forks 1n the syste.. That ls, It holds the 
linked list of forks on TTILST, CLKLST, GOLST, 
etc. A fork Is either on one of the vait-lists 
or the go-list. 

The right half contains the list po1nte~ 
to the next fo~k on the .... list and the 
left half contains ~ST or GOLST. If the left 
half contains WTLST, the type of vait-list can 
be obtained fro. the right half of F~Q2. 

Oefined 1n: STG 

Referenced by: APRSRV, FORK, MEXEC, PAGEM, SCBEO 

Format 

FKPT Current Location (GOLSTI List Pointer 
WTLST) or 411111 if fork 

free 

· · · · · · · · · · · · · · · · 

-85-

I \ 

Fork I 

\ I 



Name: FKQl 

Description: Fork Run Queue Table 1. This table, indexed by 
fork •• contains each fork·s remaining run quantum. 
When this quantum expires, the process will be 
requeued to a lower run position and given the 
the quantum ••• ociated with that run queue. 

Defined in: STG 

Ref.re'ftced by: SC'BE]) 

Format 

P'K01 nQTM 
Pork's Remaining Run Quantum 

/ \ 

Fork, 

\ / 

-86-



Name: rKQ2 

Des~ription: Pork Run Queue Table 2. This table, indexed by 
fork ., contain. tbe queue level nu.ber and fork 
location [i.e., list addre •• (T?ILST, GOLST, etc.) 
or BA~S!T table index] for each fork. . 

Oetlned in: STG 

R.fereneed by~ PAGIM, SCBED 

roraat 

FKQ2 PKQN "LOC· 
Queue Level Number Location of Pork 

· · · · · 

/ \ 

· Fork' . 
· · · · · · · · · 

* If rKLOC ~ontain. a number le.s than NPB (size of BALS!T 
table) I then the fork is in the balance set. Otherwise, 
it cont,ins the li,t addre •• of which list it's on. 

-87-

\ / 



Hue: 

Description: 

PICSTAT 

Pork Status Table. This table, indexed by fork 
•• bas us.ful information when a fork blocks 
and leave. the GOLST (i .... , LH (PlCPT, co.ntains 
the list addre.s,'WTLST). 

Th. block.d fork's entry in this table will 
contain·the addrass of the test routine which, 
when called, determine. if wait satisfied has 
occurred for the fork. 

De£ ined in: STG 

Ref.r.nced by: DIRECT, FORK, SCHED 

Pormat 

PKSTAT 'r.st Data I Test Routine Address 

-88-

/ \ 

Pork I 

\ / 



•• ame: rk'l'IME 

Description: ~ork Time Table. This table, indexed by fork I, 
give. the, time of day (TODCLK) at which each fork 
was put on its current run queue. 

Defined 1n; STG 

ReterenQed bV= $CHED 

Format 

P'KTIM!; Tl~e When Fork Put on Run Queue 

-89-

/ \ 

Fork I 

\ / 



Name: F~SP 

Description: Fork Working Set (physical in-core size) Table. 
This table, indexed by fork t, contains in the right 
half the number of physical pages currently assigned 
to each fork. The left half is used to hold the pre­
load size as determined by LDJOB when a fork enters 
the balance set. 

Defined In; -S~G 

Referenced by: PACEM. SCBlD 

Format 

rXCSIZ / \ 
FKWSP Preload Size Current Size 

Fork t 

\ / 

-90-



Name: HOM 

Description: Home Block. Block on each disk unit which contains 
vital statistics that cannot be built in when a 
monitor is generated. These are primarily para­
meters of the unit and the STR to which it belongs. 

Def1ne~ ip: DSKALC 

Referenced in: DSKALC, PHYSIO, JSYSA 

SIXBIT/HOM! 

SIXBIT/Unit IO/ 

Physical Disk Address Physical Disk Address 

HOM LUNIIII4 

aOMHOM1II5 

ROMP 4S l1li6 

HOMBXS"ll 

HOMFW-12 

HOMSIZ-13 

aOMBTB 1d4 

HOMMIll-15 

, 

of This Home Block of Other Home Block 

SIXBIT/Structure Name/ 

• of Packs in STR Logical Unit • Within STR 

Block' of Block • of 
This Home Block Other Home Block 

• of pages for Swapping on 'l1lis Structure 

First Swapping Track on Unit 

Address of Index Block of ROOT-DIRECTORY 

Address of Index Block of 
BACKUP-COP"..., -«OOT -eIRECTORY 

Flags 

Number of Sectors in This Unit 

Number of Tracks in Structure 

Pack Unique Code 

Reserved for Expansion 

-91-

, 



HOMFE"-61 

HOMFEl-62 

HOMFE2-1"1 

HOMFE3-182 

HOMUID-165 

ROMOID-17" 

ROMFSN-173 

HOMCOD-176 

ROMSLF-177 

12 

Front End File System (sector .) 

Front End File System (t of sectors) 

Reserved for the Front End , 

BOOTSTRAP. BIN Word One (Sector I) 

BOOTSTRAP. BIN Word Two (I of Sectors) 

Res.erved for Expansion 

12 Character Unit I.D. (PDP~ll Format) (3 words) , 

12 Character OWner I. O. (POP-1l Format) (3 words) , 

Character File System Name (PDP-l1 Format) (3 words) 

8 787878 

" This Block t 

-92-



Name:' 

I)escription: 

HOME 

Home Table. This table contains the disk pages 
for the HOME and BAT blocks and the 11 Bootstrap 
pro9ralll. 

Defined in: STG 

Ref.r~nced by: DSKALC 

Format 

HO,..! S (11 Boots,trap) 

1 (Home Block ) 

2 ( BAT Block ) 

3 Reserved 

4 · 
5 · 
6 · 
7 · 

18 · 
11 · 
12 (Secondary Bome BloCk) 

13 (Secondary Rome Block) 

-93-



Name: HOM TAB 

Description: This table contains the logical to physical mapping 
(channel and unit) per logical unit, and its length 
equals the maximum number of packs in a structure. 

Defined in: STG 

Referenced by: DSKALC 

Format 

HOM TAB Phystcal Channel I Physical Unit / \ 

Logical 
Unit' 

\ / 

-94-



IDUIL 

Defined in: 

.R"fet.nc.,d 1n: 

PROLOG 

!'t'Ll'NI, 'DIRECT 

D.,crlption: The Index Table File of the structure 
currently mapped for a process. Each 
structure has an index table file. The 
ftle is indexed by 2- directory number 
as. each entry 1. two war~ lonq. For 
.ach directory on the structure, an 
entry will contain the addre.s of the 
rOB for the directory and the disk 
addre •• of the index block for the 
directory. 

The table, IDXFIL, in the PSB, is mapped 
from the index block of the file, STRNAM: 
<ROOT-DIRECTORY)INOEX-TABLE.BIN. The file 
pointed to by the IDXFIL map has the format 
shown below. 

When a structure is mounted (physically) 
the system get. on orN for this file 
and stores it in entry, STRIDX, in the 
SOB table for that structure. The table 
entrie. are created at this time (mount-time). 

Format 

/ \ 

· · · 
IDXSD IOXFoa Dir No.*2 
Superior Oir. Adr. of FOB for 

this Oir. 

:ID~FG lOXIa 
Flags Disk.Adr of Index Blk of Oir. 

· · · 
\ / 

-95-



Word ~ of Pair 

8 1 2 3 456 3S 

II IOXIS I 
Osk·Adr of Index Blk of Oir. 

Symbol Bits Pointer Meaning 

IOX'IV 5 If set, indicates that this 
lOX entry is invalid. 
(IDX'IV is set equal to 1, 
but is posi~ioned at bit 5) 

6-35 IOXIB OJsk address of index block 
of directory. 

-96-



.am.: INDEX 

De.ertption: The Index Block (1 page) exis~s for each disk file 
and contain. pointers to where each of the file'. 
page. re.ide. on di.k. If more than one index 
block i. needed for non-directory file., a super 
index block (1 page) is cr.ated which points to 
the home disk addre •• of each index block. (Note 
that the maximum file size ia 512*512 pages.) 

Oefined in: 

When the file 1. rMferenced, AD 1n-core copy of 
the index block i. maintained which keeps track 
of the file'. active page. in the .ystem. 
(i ••• Whether the pege. ar. in-cor., on the 
swapping area, or on disk.) 

R.f.~enced by: PAGEM, PHYSIO 

Format 

I 8 
C Storage Addr.ss 

S 

I ! 8 
C Storage Addre.s 
It 

(5 8 
S Storage Addre.s 

U 

" M 8 
StoraC)e Addre •• 

Storage Addre.s 

· · · 

Storage Address 

-97-



Name: INIDEV 

Description: Initialize Devices. This table contains calls to 
initialize devices after loading the swappable 
monitor. 

Defined in: STG 

Referenced hI: FILINI 

Format 

INIDEV CALL MTA 

CALL LPT 

RET 

-98-



Name: INIDVl 

Description: Device initiation for front end devices. 

Defined in: STG 

Referenced by: DTESRV 

Format 

INtDVl CALL nINI 

CALL CDRINI 

CALL LPTINI 

RET 

-99-



Name: INIDVT 

Description: Device Initialization Table. This static table 
generated at assembly time, cont.ins a 4 word 
block for eaen type of device on the system. It 
is used at system startup time to generate unit 
• of entries per device type in the device tables, 
DEVCHR, DEVCHl, DEVNAM, 'DEVUNT. Thus, each unit 
of each device type has an entry in the device 
tables. 

Defined in: STG, MONSYM 

Referenced by: DEVICE 

Format 

SIXBIT/Name/ \ 

Device Type Index • . " I DISPatch Adr. 

CHARll <TYPE>Bl7 I MODES 

CHAR2 + Number of Units / 

· · · · · · · · · · · · · · · · 
SIXBIT \Name\ \ 

\ 
\ 

) 

/ 
/ 

I 
\ 

Device Type Index • 

Charl 

Char2 

• n Dispatch Adr. 

I <TYPE>Bl7 , Modes 

· + Number of Units 

-100-

/ 

\ 
) 

/ 
/ 



CHARl can be a combinAtion of ·the following: 

Symbol Bit Meanine; 

DV"OUT " Can do output 
DV"IN 1 Can do input 
DV"DIR 2 Has a directory 
DV"AS 3 Is u.ig~le 
Dn'MTm .. ~s a multiple-dir.~ory device 
DV"AV • 5 Is available to this job 
DV"ASN * 6 Is a.sie;ned by ASHD 
DV"MOV 7 Is a mountable device 
DV"MNT * 8 Is mounted 

T~PE is one of the fo llowine;: 

Symbol Value Meaning 

.DVDSK " Disk 

.DVMTA 2 Magtape 
• DVPTP 5 Spooled PTP 
.DVLPT 7 Spooled , physical line printer 
• DVCDR 19 Spooled , physical card reader 
• DVFE 11 Front End Device 
.DVTTY 12 Terminal 
• DVPTY 13 Pseudo TTY 
.DVNUL 15 Null Device 
• DVPLT 17 Spooled Plotter 
• DVCDP 21 Spooled Card Punch 

MODES can be a combination of the following: 

Symbol Bit Meanine; 

DV"M" 35 Can be opened 1n mode " DV"M1 34 • 1 
DV"M2 33 • 2 
DV"M3 32 • 3 
DV"M4 31 • 4 
DV"M5 30 • 5 
DV"M6 29 • 6 
DV'.'M7 28 • 7 
DV"M10 27 • 1" 
DV"Mll 26 • 11 
DV"M12 25 • 12 
DV"M13 24 • 13 
DV"M14 23 • 14 
DV"M15 22 • 15 
DV"M16 21 • 16 
DV"M17 20 • 17 

-101-



CRAR2 can be a combination of the following: 

Symbol 

Ol%%SPL 
Ol%%ALC * 
Ol%%VVL * 
Ol%%NIU * 
Dl%%INI * 

Bit 

a 
1 
2 
3 
4 

Meaning 

Is spooled 
Is under control of allocator 
Volume valid 
Device slot not in use 
Device is being initialized 

(currently for structures only) 

* These bits are zero at assembly time and are set 
by the monitor when appropriate in their corres%­
ponding device tables. (i.e. DEVCHR or OEVCH1) 

-102-



Name~ IORB 

Description: I/O Request Slock. Whenever a request for 
massbus I/O (i.e. DSK or MTA) occurs, an IORS 
is;built for that request. It is of the long 
form d •• cribed below for aagtape requests and 
speeial disk I/O. However, the most common IORS 
format for disk I/O is a one word IORS, consist­
ing of just the status word, IRBSTS, and stored 
in the CSTS table. 

Defined: PBYPAR 

Refereneed by: PHYSIO, STO 

Format 

IRLNK 
IRBSTS-g Status Next IORS g-IRBLNK 

IRBMOO-l Mode, priority, Density, Parity 

IRBCNT-2 Count of Hardware Bytes Transfered 

IRBTL IRBHO 
IRBXFL-3 Transfer List Tail Transfer List Head 

IRBIVA-4 Address of Termination Routine 

IRBADR-S Physical Oevice Address (if needed) 

IRBLEN-6 I' Device Dependent Data 

-103-



e 1 2 3 4 5 6 7 8 9 e 1 2 3 4 5 6 17 18 

IRBSTS I , I I I I I I I I I I I I I 
Symbol 

IS.SHT 
IS.DON 
IS. ERR 
IS.NRT 
IS.WGU 
IS.TPM 
IS.EOT 
IS.WLK 
IS.IER 
IS.DER 
IS. HER 
IS. BOT 
IS.RTL 
IS.IEL 

Symbol 

IRFRED 
IRFRDF 

IRFWRT 
IRFWTF 
IRFSEK 
IRFFSB 
IRFBSB 
IRFWTM 
IRFERG 
IRFREW 
IRFRUN 
IRFRDR 
IRFRCR 

Bits Pointer 

9 
1 
2 ISERR 
3 
4 
5 ISTPM 
6 
7 
8 
9 

19 
11 
12 
13 

14-17 IFSCN 
18-35 IRLNK 

Content 

Short form (pAGEM) request 
Done with this job 
Error on this operation 
No more retries 
Wrong unit interrupted 
Hit tape mark 
On write only, hit physical EOT 
Write locked 
Inhibit error recovery 
Data error 
Hardware error on device 
Hit BOT 
Record too long (buffer too small) 
Inhibit error logging 
Function code 
When referring to link 

Function Codes for ISFCN 

Code 

1 
2 

3 
4 
5 
6 
7 

le 
11 
12 
13 
14 
15 

Function 

Read data 
Read data and format (count, key, 
header) 

Write Data 
Write format 
Seek 
Forward space block 
Backspace block 
Write tape mark 
Erase gap 
Rewind 
Rewind and unload 
Read reverse 
Recovery read 

-104-

35 



" 14 5 6 17 18 26 7 8 9 8 1 32 35 

IRBMOO I I 
Bits Pointer Content 

15-17 TRBDM "Data Mode 
27-3" IRBPRI Priority 
31 IRBPAR Parity 
32-35 IRBON Density 

Data Modes for IRBOM 

Symbol Code Meaning 

IRMWRO 1 Word mode 
IRM6BT 2 Six bi t 
IRM7BT 3 Seven bit 
IRM8BT 4 Eight bit 

If device is OSK, IRBLEN becomes: 

IRBLEN Transfer List 

-105-



If device is MTA, IRBLEN-MTIRSD becomes: 

IRPLG 
MTIRSD Flags 

MTIRBL 

I' 

o 1 2 3 456 789 

MTIRSD I I I II 
Bits 

" 1 
2 

3 
4 

9-17 
18-35 

Pointer 

IRBFR 
IRBFO 
lRBFA 

IRBAB 
IRBFF 
lRBUN 

IRBPB 

IRBUN IRBPS 
Unit No •. Ptr to Buffer of pOage Ptrs 

IRBOC 
Original Count 

(Copy of IRBCNT) 

Transfer List 

· , 
· · · 

17 18 35 

IRBUN IRBPB 
Unit No Ptr to Buffer of Page Ptrs 

Content 

Buffer ready for use 
Current buffer flag 
Active flag, lORB being filled 
or emptied by service routine 

lORB aborted due to an error 
IORB free 

Unit number 
Pointer to buffer of page pointers 

-106-



N.me: IPCF-Me.saqe-He.der 

D •• cription: IPcr M •••• g. h.ader. Thi. table de.crib •• the format 
of the m ••• ag. he.d.r for •••• ag ••• nt by the Int.r­
Proc ••• Communication. Facility. 

D.fin.d in: IPCF 

R.fer.nced by: IPCF 

MESLNIC MESLEN 

" 
1 

Link to N.xt M •••• g. Length of Thi. 

MESSJN MESFLG 
S.nder's Job Number Flags 

2 MESSPD 
Sender's PID 

3 MESLDN 
Logg.d in Directory t of Sender 

4 MESENS 
Enabled Capabiliti •• of S.nd.r 

5 MESCDN 
Connected Dir.ctory t of Sender 

MESACT 
Account String Slack 

MESWDI-17 MESWOO 
Messaqe 

(PTN. PH in Page Mod.) 

MSFTM 
28 Mask into Fork Page Bit Table 

(PAGE Mod. only) 

MESPAC MSMI 
21 Access Bi1:s Index into 

Block 

of Page Fork Si t Table 

-107-

~ 

, 



Name: IPCF -PIO -HEADER 

Oescription: Overhead information for each PIO in u ••• 

~.fln.d in: IPCF 

Referenced QY: IPCF 

PIDUN PIORQ PTDRC 
Unique Receive Receive 

(LH of PIO) Quota Count 

PIDFLG PIOCHN PIOPW 
Flags Chn Fork Number of 

Wai ting Fo rk 

PIOFO 
Fork Number of 

Owner of this PIO 

PIDNL PIOOL 
Link to Link to 

Newest Message Oldest Message 

18 35 

PIOCHN PIOFW 
CRN Fork Number of 

Waiting Fork 

Symbol Bits Pointer Meaning 

PD%JWP 8 PIO is a Job-wide PIO 
PO%OIS 9 PIO is disabled 
PO%CHN 19 A channel is set up to 

get interrupts 
PO%NOA 11 No access by other forks 

12-17 . PIOCHN Channel t to interrupt 
waiting fork on. 

18-35 PIOFW Fork waiting for message 
to this PIO 

-108-



Hame: IPCF-STORAGE-AREA 

Description: Inter-Process Communication Pacility Storage Area. 
This non-re.ident storaqe is described followed by 
the resident wake-up bit table (POFKTB). See also 
the tables, PIOCHT and PIOTaL. 

Defined In: STG 

Referenced by: GTJFN, IPCP, LOGNAM, MEXEC 

FORMAT 

SPID'l'B ~ 
Table of Commonly Used PIOS 

PIOLOK Lock o~ PIO Free Pool and Data Structure 

NXTPIO Next Unique t to be used as LH of PIO 

INFOPO PIO of SYSTEM INFO 

INFOPV Publ ic Value of SYSTEM INFO PIO 

PIOLST Number of Pirst Fre. PIO, " if none 

PIOMXP Highest Page in Pages-In-Transit File 

, Bit Table of Pages-In-Transit File , PIOPBT 

SWPFRE* 1 
Free Space Header Block (7 words) 1 , 

~ 

SWFREE* 

POFKTB 1 " I I · · 

Free Space Pool 
(PIO Headers & Message. 
Assigned Space here) 

Bit Wakeup Table (l/Fork) 

* Se. Swap-Fre.-Space-Pool Table. 

-109-

1 



Hame: JOBDtR 

Description: Job Directory Table. This table, indexed by job I, 
contains the number of the login directory for each 
job. 

Defined In: STG 

Referenced by: APRSRV, 'M'YSRV, DIRECT, DISC, DTESRV, FILINI, IPCF, 
JSYSA, MAGTAP, MEXEC 

Format 

JOBDIR Reserved I Login Directory. 
I \ 

Job • 

\ / 

-llO-



Name: JOBNAM 

Description: Job Name Table. This table, indexed by job I, 
contains an index into the subsystem name tables 
(SNAMES, STIMES, etc.) indicating what subsystem, 
if any, each job Is running. The name index is 
for statistics only and is not used by the monitor. 

Defined In: STG 

Referenced by: FORK, MEXEC, PAGEM, PHYSIO, SCBED 

Format 

JOBNAM II I Name Index 
/ \ 

Job I 

Symbol 

JWAKE!' 

Bit 

" 
1 

18-35 

Pointer 

HIBFL 

DIAFL 

-1ll-

Content 

Flag used by HIBER JSYS. 
If set, implies a wakeup 
signal to THIBR 

Job has DIAG resources 

Name index 

\ / 



N4ame: JOBPNM 

Oescription: Job Prograa Na.e. This table, indexed by job I, 
contains each job·s program name. 

Oefined In: STG 

Referenced by: DTESRV, IPCP, MAGTAP, M!X!C 

Pormat 

J08PNM Program NalDe 

-l12-

/ \ 

Job t 

\ / 



Name: JOBPT 

Description: Job Process Table. This tabla, indexed by job I, 
contains the number of the controlling terminal, 
or -1 for a detached job, and the index of tha top 
fork of the job. 

Defined in: STG 

Referenced by: TTYSRV, DEVICE, FILMSC, FORK, IO, IPCF, JSYSA, 
"'EXEC, SCHED 

Format 

JOBPT Controlling Terminal I Top Fork Index 

-1l3-

/ \ 

Job t 

\ / 



NBm~~ JOBRT 

Description: Job Runtime Table. This table, indexed by job I, 
contains the total runtime of each job (sum of all 
forks) in milliseconds. If a word contains a -1, 
the job does not exist. 

Defined in: STG 

Referenced by: ENO, FORK, IPCF, JSYSA, MEXEC, SCHED 

Format 

JOBRT Runtime 

-ll4-

/ \ 

Job • 

\ / 



Name: JOBRTL 

Description: Job Runtime Limit. This table, indexed by job I, 
contains the number of clocks (via TIMER JSYS) 
in uae by each job and a pointer to the runtime 
limit TIMER block. A description of the TIMER 
block is described below. (Se. RES-FREE-SPACE). 

Defined in: STG 

Referenced by: MEXEC, SCHED, TIMER 

Format 

12 13 

TIMCNT JOBRTP 
JOBRTL • of Clks • in Ptr to Runtime Limit Block 

Use 

· · · · · · · · · · · · · 
TIMER Run Timer Limit Block 

TIMLNK 
Link to Next Block (O ) 

TIMTIM 
Time Word (When Clock Should Go Off 

e 5 6 17 18 25 
TIMCHN TIMJOB TIMFRK 

Job. that Sys. Fork Handle 
Set Clock to be PaI'd 

TIMKNL 
Back Link to Previous Clock 

-115-

/ \ 

Job • 

\ / 



Name: 

Oescription: 

JSB 

Job Storage Block. Each job ha. a Job Storage 
Block whic~ holds per-job information such as 
the job's fork structure, line number of 
controlling TTY, terminal interrupts enabled 
and accounting and logical na.e information. 

The JOBMAP map in the JSB points to all of the 
per-job storage (including the JS8 page itself). 
When the monitor references this current job's 
storage area it us.s virtual addresses 628000-
786777. (The monitor's mapped slots in MMAP 
for virtual pages 620-706 point to the JOBMAP 
map via indirect pointers.) 

JBCOR contains a bit table which keeps track 
of which pages in the Job Storage Area are in 
use (bit(s) • 0) and which are free (bit(s) - 1). 
The first several pages of this Job Common Area 
will always be allocated for the JSB page plus 
expansion pages for the JFN blocks and for the 
JSYS trap header word and trap blocks (See 
FKJTQ table). The first non-reserved page 
begins at FREJPA (-626999). 

JSBFRE is the free block header. If a block of 
words (i.e., <512 words) is required, it is 
allocated from the JSFREE area in the JSB. 
Blocks in the JSFREE area are linked and when 
a block of words is required, the free list is 
search looking for a large enough block. If the 
free list area in JSFREE is depleted, a new page 
(space outside the JSB in the Job Storage Area) 
is allocated and its space added to the free 
list for block usage. 

Pages are assigned from the bit table, JBCOR, 
by the routine, ASGPAG, and are used for temporary 
job pages such as file window pages, magtape 
buffer pages, mapping a super index block, getting 
more space for the free block storage linked in 
JSBFRE, and mapping EXE file directory pages. 

Blocks of words are assigned from the free list, 
headed by JSBFRE by the routine, ASGFRE, and are 
used to hold temporary storage such as name 
strings for JFN blocks, the job-wide Logical 
Names List, and the Logical Name Definition 
Blocks. 

Defined in: ~TG 

Referenced by: PAGEM, SCHED, FORK, POSTLD, PROLOG, OSKALC, OISC, 
JSYSA, JSYSF, FILINI, FREE, GTJFN, IO, IPCF, 
LOGNAM, MAGTAP, MEXEC, MSTR, NETWRK, NSPSRV, TAPE 

-116-



JOB"'''P· ! 

SYSFK 

l'KCT'l"l 

FKJTB 

FT<PTRS 

FT<PSIE 

FKOPSI 

P'R!JFK 

FKLOCK 

LSTLGN 

CTRLTT 

TTSPSI 

TTSDPS 

TTJTIW 

CONSTO 

CTIMON 

, 
,. 

, 

1 

Pormat 

Object Map for Job-Co .. on Ar.a 

Job Pork Ind.. to Syst.. Pork Index Tabl. 
(1 Entry /Job Pork) 

Job Pork " Ptr Job Fork 1 Ptr 

. . . . 
Adr of JSYS Trap Block 

(1 Entry /Job Fork) . . 
Fork Pointers ( Structur.) Tabl. 

(1 Entry /Job Pork) 

Terminal Interrupt Enabled WOfd Table 
(1 Entry /Job Pork) 

Deferred Terainal Interrupts ~ask Table 
(1 Entry /Job Pork) 

Pre. Job Pork Slot List 

Lock for Pork Structure Modification 

Last LOGIN oate and Tim. 

Line Number of Controlling TTY 

Code Enabled Anywhere in This Job 

Terminal Interrupt Code Deferred 

Terminal Interrupt Enable Mask 

Console Time On (TODCLK units) 

Connect Time On (GTAD uni ts) 

-1l7-

1 
1 

,. 

.1 
~ 



CONCON 

JBRUNT 

JBNOO! 

JBBNAM 

JBSSEQ 

ACCTSL 

ACCTSR 

ACCTSX 

CSHACT 

CSHACX 

JSSRM 

USRNAM 

JFNLCK 

MAXJFN 

ENQLST 

TIMALC 

LNTABP 

LNMLCK 

JOBUNT 

JBCLCK 

JBCOR 

JSBFRE 

, 
, 

Console Connect Time (for usage) 

Job Run Time (for usage) 

Node Name (SIXBIT) 

Batch Job Name (SIXBIT) 

Batch Sequence Number 

Length of ACCTSR 

Account String 

Expiration Data of ACCTSR 

Most recently Validated Account 

CSHACT E~piration Date 

Session Remark 

User Name String 

Lock to Prevent Tampering with JFNs 

ENQ Quotas , Counts I Pointer to ENQ 0 Blocks 
for this Job 

TIMER Clocks Limit 

Pointer to Logical Name Table (Tbl is in JSB Space) 

Lock for Logical Name Data Base 

Connected Disk Unit 

Loc k fo r ASGPAG 

Paae Allocation Bit Table for Job Storage Area 

Ptr. to 1st Free Block I " 
Lock 

Space Counter 

Most Common Block Size 

Max rop of Free Store I Min. Bottom of Free Store 

Temp 

Temp 

-118-

, 

, 

, 
, 

T 
Job area 

free 
storage 
header 

\ / 



.,7SFREE 

JSSTR'l' 

JSSTLJt 

JSBSDN 

JSBCOS 

MODES 

GROUPS 

RSCNPT 

RSCNBP 

JSINFO 

JSCDR 

JSM'l'Al 

JBFtAG 

JSLOpD 

JSLOJB 

JSFSTK 

JSFLCK 

CRJPLG 

\ 
\ 
\ 
\ , 

, 
\ , 
~ 

JSSn,. 

~SGRP 

rr •• Storage Ar.a in Job Block (-064 word.) 

[Pr.e Blocks hav. Bdr. Wd of: 
Ptr. to N.xt Ilk" Langth] 

JSsn-
r1ag. Structur. Unique Code 

IaOBJM 1'o1'ftH~ to Li st ~ <koapa 

JSADII 
·*Unu •• d*· Acc •••• d DIR • for ,",1s S'rR 

(3 Words per Structur.) 

Lock on the JSSft'l' Block 

JSUC JSDIK 
Conn.ct.d S'l'R Unique Cod. Connected Dir.ctory • 
• 21 35 

dSCDr JSCDS 
String Ptr. Ptr. to Connect.d 
Valid if •• t Dir. Na ... String 

DDSMOO Word fro. tOO IN 

Groups to Which LOGIN U.er 8e10n9-

RESCAN Point.r 

Ptr. to R!SCAM Buff.r ( •• x. but. si,. 1s 777) 

PIO of Private (SYSTEM)INI'O for JOB 

Next V.rsion • (or -1) Adr. of Spool Set String 
for CDR 

M'l'A Parity, Density, Mod., and Default Record Size 

Spooler Flags 
(Sent on CLOSE/LOGOUT General Job-wid. Flags 

PIO to get LOGOU'l'messag8 fro. CRJOB 

Job • of Who Logged OUt this Job 

Stack of Things to b. Oone oR Fork Cl.anup 

Lock for ,",is JSFSTK Structure 

Flag that this 1s CRJOB Startup.CUsed by MEXEC , LOGIN) 

-119-

\ 
\ 
\ 
\ 
~ 

, 
\ 

\ , 
~ 



OCNCNT 

JFNX 

\ 
\ 

DC1'tAX DCCUR 
Job's Network Link Quota Current Count of Open Links 

JFN Descriptor Block 

\ 
\ 

Each JFN uses a block of 19 words. (Since JFNs can grow beyond the 
end of the JSB into successive pages, the JFN blocks must be the 
last storage defined in the JSB.) 

-120-



JFN descriptor block format: 

FlLB'lT(l)." 

FlLBYN(2)-1 

FlLAC 

FIl.LEN 

FILCNT 

rILLCK 

FlLWND(3) 

FILSTS 

FILDEV 

FlLOFN(4) 

FILLFW(S) 

FlLDDN 

FILDNM 

FILNEN 

FILVER 

FILMSl (6) 

FlL~S2(7) 

rILlDB(S) 

FILCOD . 

Byte Pointer to Current Window 

Byte t of Current Byte 

Ptr to Account String or Account • 
Total File Length in Byte. 

Byte. Remaining in Current Buffer 

rile Lock Word 

Current Page • Location of Current Window 

File Status Bits Status 1 Mode 

STR 
Structure Number DEV'DTB (i.e .Dev Oisp. Tbl) 

OFN for This File OFN of Long File PT Table 

Count of Pages Mapped Loe. of Page Table Table 

Ptr. to Oeviee String Block Directory • 
FILDIR FILATL 

Directory Name String Ptr to Attribute List 

File Name String Blk. Ptr. Ext. String Blk. Ptr. 

Fork' of JFN Originator Version t 

'ILDMS FILNMS 
Directory Wild Mask Name Wild Mask 

FILEMS 
Extension Wild Mask 

Address of FOB in the Oi rectory 

rlLUC FILPO 
STR Unique Code PTO OFN fo r Long File 

-121-



These definitions are used in the above positions only during the 
GT"FN procedure: 

(1) FILTMP / Ptr. to temp string block for default " Ptr. to 
temp string block 

(2) FILPRT / Ptr. to protection string or protection t 
(3) FILSKT / Arpanet connection no." Unused 

FILOPT /8yte Ptr. to Store String in GTJEN 
(4) FILLIB / For DECNET, Ptr to LL Block 
(5) FILLNM / Ptr. to RDTEXT buffer " Ptr. to logical name 

chain ** 
(6) FILSFO / For DECNET, Output Buffer Ptr. 
(7) FILIDX / 0 " Index into device tables for original 

devices GTJFNed 
{(i.e., doesn't change during spooling)} 

FILSFI / For DECNET, Ptr. to Input Buffer 
(8) FILBCT / For DECNET, Ptr. to Counts 

** Logical Name Header Format 

LNMCNT LNMSTP 
Depth Count Step Counter 

LNMLNK LNMPNT 
Link to Next BLK Logical Name String Ptr 

Bits Pointer ':ontent 

0-17 LNMCNT Depth count for logical 
names 

18 LMMIDX Index into logical name 
tables 

19-35 LNMSTP Step counter at time of 
chaining 

0-17 LNMLNK Link to next chain block 
18-35 LNMPNT Pointer to logical name 

string 

-122-



FILSTS 
e 1 2 3 4 5 6 7 8 9 1S 11 12 13 14 15 16 17 18 19 2e 21 22 23 31 35 

I I I I, I I I I I I I I I I I I I I I I f r 1 t J MOdel 

FILSTS 

Symbol 

OPNF 
READF 
WRTF 
XCTF 
RNDF 

NONXF 

NWTF 
LONGF 
EOFF 

ERRF 
NAMEF 

ASTF 
ASGF/BLKF 

HLTF 
WNDF 

ENOF/TRNSL 

SIZE 

FRKF 

PASLSN 

SKIPBY 

XOTAF 
FILDUD 
FILINP 
FILOUP 

Bits 

" 1 
2 
3 
4 

5 

6 
7 
8 

9 
le 

11 
12 

13 
14 

15 

16 

17 

18 

19 

2S 
21 
22 
23 

31-35 

Pointer 

IOMODE 

-123-

Meaninq 

File Is open 
File is OK to read 
File is OK to write 
File is OK to execute 
File is OK to reset ptr. 
(i.e., not append) 

Non-existent File, delete 
FDB on RLJFN 

No wait on DUMP I/O 
File is a long file 
End of file if read 
attempted 

Bytes read may be wrong 
Name is associated with 
this JFN 

An * was typed in 
JFN is being assigned or 
service routine wants to 
block; shares a bit 
position with ASGF 

Halt if I/O error 
A window page has been 

set up 
File is past end of maximum 
length. 

Bit timeshared with ENOF to 
say the JFN is in a trans­
itional state and may not 
be accessed. 

Illegal to change size of 
byte 

File is restricted to fork 
in LH(FILVER) 

Set to skip line number 
checking on ASCII files 

Set by BYTINA to remember 
that it has to discard. 

Quota exceeded Flag 
Suppress DDMP action if set 
Direction of I/O is input 
Direction of I/O is output 
Mode File is opened in 



Structure 3-word Block (starts at JSSTRT) 

" 123 17 18 35 

a\1 I I JSSTN 
word Structure Unique Code 

8it Pointer Content 

" JSSDM Structure 1s d1smount.d 
1 JSMCI Mount count has been incremented by 

structure 
2 JSXCL Structure is mounted exclusively by 

the structure 
18-35 JSSTN Structure unique code 

9 " 1 2 3 4 5 6 17 18 35 

JSMTO JSMTM JSMTR 
JSMTAl Density Mode Default Record Size 

Bits Pointer Content 

1" JSMTP Parity 
11-14 JSMTO Density 
15-17 JSMTM Mode 
18-35 JSMTR Default record size (hardware bytes) 

" 1 2 3 4 35 

JBFLAGf I t I 
Symbol Bits Pointer Content 

SP'BAT " Job is being controlled 
by BATCH 

SP'DFS 1 Spooling is deferred 
SP'ELO 2 Job executed LOGOUT JSYS 
SP'FLG 3 Job forced to LOGOUT by 

top Fork error 
SP'OLO 4 Job logged out by other 

job 
18 JBMAX Job has been in the 

mini-exec 

-U4-



Name: RDB 

Descrtption: Kontroller Data Block (TM02 only) 

Defined in: PHYPAR 

Referenced by: PHYM2 

KDBSTS .. 

KDBION-l 

KDBCUN-2 

KDBDSP-3 

KDBUDB-4 

TM2ADR/ 
KDBDDP=14 

KDBSTS 

, 

I' 

" 1 

I I 
Symbol 

I 

Format 

.F~9S t .un it -Type 

Initial AOBJ'N Word to ODB Table 

Current AOBJ'N Word to UDB Table 

Dispatch for Service Routine 

UDB Table (8 words long) 

Start of Device Dependent Code (6 words) 
Massbus Adr of TM02 
Current UDB (if any) 

CONI of RH 
DATAl RH Control Register 
DATAl RH Data Register 

Drive Registers 

17 18 

Bit Pointer Content 

, 

35 

KS.ACT 1 Controller Active if set 
18-35 Unit type 

-125-



Description: 

Defined in: 

Reference by: 

LNBLK-9 

LNDEV-1 

LNDIR-2 

LNNAM-3 

LNEXT=4 

LNVER=S 

LNACT-6 

LNPRT-7 

LOGICAL-NAME-DEFINITION 

Logical Name Definition Block. The block 
format given below is used for system and 
job-wide logical name definitions. The first 
definition block for a logical name 1s 
pointed to by its Logical Name List and is 
store in the swappable free space 1f a 
system logical name or in the JSB space 1f 
a job-wide logical name. 

LOGNAM 

LOGNAM 

PTR TO NEXT DEFINITION SIZE OF THIS BLOCK 
(OR ZERO IF NONE) (USUALLY 12) 

ASCII BYTE PTR TO DEVICE BLOCK (IF ANY) 

ASCII BYTE PTR TO DIRECTORY BLOCK (IF ANY) 
(-3 MEANS STAR WAS TYPED) 

ASCII BYTE POINTER TO NAME BLOCK (IF ANY) 

ASCII BYTE POINTER TO FILE TYPE (IF ANY) 
(-2 MEANS A NULL FIELD WAS SPECIFIED) 

5~9~~~"a + GENERATION NUMBER (IF ANY) 

5~~~90,,9 + ACCOUNT NUMBER -CR-
ASCII BYTE POINTER TO ACCOUNT STRING (IF ANY) 

S~~999,,9 + FILE PROTECTION (IF ANY) --9 IF PERMANENT OR -1 IF TEN peMRY (I F ANY) 

LNATR-11 PREFIX VALUE OF CURRENT PTR TO ATTRIBUTE CHAIN 
PREFIX 

-126-



Name: LOGICAL-NAME5-LIST 

Oescription: List of Currently Defined Logical Names. 
The list described below is the format used 
for the system logical names list (pointed 
to by SYLNTB) and the job wide logical names 
list (pointed to by the JSB entry, LNTABP.) 

The system logical names list is built in 
the swappable free space from the entries in 
SYNMTB at system initialization time. (See 
SWAP-FREE-SPACE and SYNMTB tables). A job's 
logical names list is built in the JSB space 
the first time a logical name is created. 

An entry in a logical names list has a 
pointer to the logical name string (in ASCIZ) 
in the left half and a link to the first 
definition block in the right half (See 
LOGICAL-NAME-DEFINITION description) • 

O,fined in: STG 

Referenced by: LOGNAM 

t OF DEFINED LOG NAMES SPACE ALLOCATED IN TABLE 

LOGICAL NAME BLK ADDR LINK TO FIRST DEFINITION 

LOGICAL NAME BLK ADDR LINK TO FIRST DEFINITION 
, . 
\ \ 

-127-



Name: LPT-STORAGE-AREA 

Description: Storage area for line printers. Each entry in the 
resident area Is LPTN words long, where LPTN equals 
the number of line printers on the system. 

Defined in: STG 

Referenced by: LINEPR 

-"Format -

LPTTYP , 
Type of LPT Vector for Dev. Independence 

LPTSTS Status Word 

LPTST1 Second Status Word 

LPTST2 Third Status Word 

LPTST3 , 
Fourth Status Word , 

LPTERR , Last Error Word 

LPTCNT , Buffer Counter 

LPTCLS , LPTCHK Clock Switch ~ 

LPTCCW , BLKI/O Pointer f\ 

LPTICT , Interrupt Byte Count ~ 

LPTCKT , Interv2'l for LPTTIM ~ ----
LPTLCK ~ Lock on O'9tti'~ing LPT ~ 

PGDATA , Page Counter to be Sent to -11 

-128-



The following LPT: storage items are in the nonresident area 
of the ~onitor. 

LPTBt)F 2 Buffers (each 49" words) for Each LPT: 

VFUOFN RAMOFN 
LPTOFN \ VFU RAM 

OFN's to Prevent Opens or Write (1 entry/DTE) 

VFUFIL Swappable Storaeg Area for VFU File Names 

RAMFIL Swappable Storage Area for RAM File Names 

If the assembly flag, SMFLG, is set, indicating a 2929 Monitor, 
then the following additional storage is assem~led in the 
resident area of the monitor. 

LllA \ Holds Fake -11 Adr of Buf 
(1 entry / LPT ) 

LPACS AC Storage During LPT Interrupt 

I LPP~~ Pointer to LpT Stack 

LPSTAK 
\ POL During LP'1' Interrupt , 

LPXJEN XJEN Instr. for Dismissing LPT Interrupt 

LPXPTB LPT Interrupt Instr. 1s XPCW to this 4-word Blk 

\ , 
~ 

, , 

\ 

! 
\ 

, 



11 12 23 24 35 

LPTFE LPTMX 
LPTSTS Bytes Now in Front Max. Bytes Allowed 

End in FE 

Symbol Bits Pointer Content 

9-11 LPTFE Bytes now in front end 
12-23 LPTMX Max. bytes allowed in front end 

LP'LHC 24 LPLHC Loading has completed flag for 
RAM/VFU load 

LP%HE 25 LPTHE Hard error on this LPT: 
LP%OBF 26 LPOBF Output is being flushed 
LP%MWS 27 LPMWS MTOPR is waiting for a status to 

arrive 
LP%ER 28 LPTER LPT had an error 
LP%OL 29 LPTOL LPT on-line 
LP%TBL 3~ LPTBL LPT is over allocation 
LP%TWT 31 LPTWT Request on O. 
LP%THN 32 LPTHN OTEO failed 
LP%OPN 33 LPOPN LPT is opened 
LP%ALI 34 ALTI Interrupt buffer pointer 
LP'ALP 35 ALTP Buffer Pointer 

-130-



t.PTSTl 

5 6 

LPPSI LfPAG 
PSI Chan. t 

Symbol 

LP'LCP 
LP'SHA 

Bits 

8-5 

6-l7 
18 
19 

2rtJ-35 

Page Counter 

Pointer 

LPPSI 

LPPAG 
LPLCP 
LPSHA 
LPSST 

17 18 19 2rtJ 3S 

LPSST 
Software Status Word 

Content 

Channel t on which PSI's are 
desi.red­

Page Counter 
Lower case printer 
Status haa arrived 
Software status word 

Symbol Bits Content 

.DVFFE 28 Device has a 
fatal, unre-
coverable error 

.DVFLG 29 Error logging 
information 
follows 

.OVFEF 39 Eor 

.DVFIP 31 IIO in progress 

.OVFSE 32 Software condition 

.OVFHE 33 Hardware error 
• DVFOL 34 Offline 
.DVFNX 35 Nonexistent device 

-131-



17 18 19 2e 35 

LPFRK LPERR 
LPTERR Fork ID of Owning PSI Last Error Indication 

Program 

Symbol Bits Pointer Content 

e-17 LPFRK Fork ID of owning PSI 
process 

LP'MSG 18 LPMSG If on, suppress standard 
messages 

LP'PCI 19 LPPCI Page counter has 
interrupted 

2e-35 LPERR Last error indication 

e 5 16 17 18 35 

LPTCLS I LPBSZ I 
: Byte Size: I I I 
Symbol Bits Pointer Content 

e-5 LPBSZ Byte size of OPENF 
LP%RLD 16 LPRLD Front end was reloaded 
LP%NOE 17 LPNOE Note occurrence of EOF 

-132-



15 16 17 31 32 33 34 35 

PGFNC PGCTR 
PGOATA Function Code: Load Page Counter Value 

Page Ctt .. 

Symbol Bits Pointer Content 

8-15 PGFNC Function code: load 
page counter 

16 POENB Enable interrupts 
17-31 PGCTR Page counter value 

LP'IRP 32 LPIRP Interrupt request 
pending 

LP'RBR 33 LPRBR RAM or VFU being 
reloaded 

LP'LTR 34 LPLTR Translation RAM 
requires reloading 

LP'LVF 35 LPLVF VFU requires reloading 

-133-



Name: MTA-~ 

Description: Magtape storage area; each entry (unless otherwise 
noted) is MTAN words long where MTAN equals the 
number of magtape units on the system. 

Defined in: STG 

Referenced by: MAGTAP 

MTALCK 

MTASTS 

MTAR'SI 

MTINDX 

MTCUTB 

MTAPBF 

MTIRBF 

MTlOWD 

MTBlOW 

MTAOLS 

MTARCE 

REWCNT 

MTERAS 

MTPNTR 

MTAUNT 

MTERRC 

MTERFL 

MTACOM 

MTOIN'R 

MTACLS 

CHCML 

Ml~BF 

, 

\ 
t , 
\ 
\ 

l 
\ 
\ , 

, 
r-

, 

, 

Format 

Lock Word 

Status of Unit 

Resident Storage for Magtape 

Number of Real MTAs on System 

CDB Table UDB Table 
(1 Entry/UDB) 

Space for Buffer Page Pointers (2*2~(octal)*MTAN) 

Space fo r IORBs (2*31{octal)*MTAN) 

IOWD for Next Transfer 

Backup IOWD for Next Transfer 

Length of last Xfer I 
Total Error Count 

Number of Rewi nd ing Un its 

Rewrite Erase Counter 

IOWD During Transfer 

Unit Currently Attached to Controller 

Retry Counter 

State of Retry 

CONO Word of Current Operation 

Return Address for· Data Interrupt 

Clock Routine Swi tch, 3 for No Clock Wanted 

DFl~ Command List 

Flag - Non-0 if TMl0B 

-134-

, 

, 

, 

\ 
t 
-{ 
\ 
\ 

l 
\ 
\ , 

, 

, 

, 

, 



The following MTA storage items are in the nonresident area 
of the MOnitor and each item is MT~ words long. 

MTRS 
MTANRl Plags, Density, Mode Rae size in Rdw. Bytes 

MTBn' MTBUF 
MTANR2 Initial LH of FILBY'!' Ptr. to Buffer Pages List' 

" 511 11 12 17 18 23 
MTHBW MTUBF MTCSB MTCUB 

MTANR3 Rdw.Byts UserByts Current Current 
, 

Per Wd Per Wd Service User 
Routine Buffer 
Buffer 

MTeIRB MTCUP 
MTANR4 Current IORS in Use Current User Page 

MTUSB MTUBP 
MTANR5 User Bytes per Buffer User Bytes per Page 

MTLCTC MTLIRB 
MTANR6 Last Transfer Count Last Dump Mode IORS Adr. , 

-135-



" 123 456 789 

MTASTS I I I I I I I I I I 
Symbol 

OPN 
OPND 

DMPWT 

LTERR 

BUFA 
CLOF 
MTOWT 
MTIEL 
MT%ILW 
MT%DVE 
MT%DAE 
~·!I'%SER 

MT%EOF 
MT%IRL 
MT%BOT 
MT%EOT 
MT%EVP 
MT%DEN 

MT%CCT 

Bits 

" 2 

3 

4 

5 
6 
7 
8 

18 
19 
20 
21 
22 
23 
24 
25 
26 

27-28 

29-31 

17 8 9 0 1 2 3 4 5 6 7 8 9 1 2 35 

I I I I I I I I I I 
Pointer 

-136-

Content 

Unit has been opened 
Unit has been opened for 

dum mode 
Waiting for a dump mode 

to finish 
Error Occurred on last 

dump mode 
Buffers have been assigned 
CLOSF fn progress 
MTOPR in progress 
Inhibit error logging 
Write lock 
Hardware device error 
Data error 
No error retry 
EOF 
Illegal record length 
Beginning of tape 
Physical end of tape 
Even Parity 
Density (0 is normal) 

.MTLOD=l Low Density 
(20" BPI) 

.MTMED-2 Medium Density 
(556 BPI) 

.MTHID=3 High Density 
(8 "0 BPI) 

Character Counter 



MTARS1 

MTANR1 

o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 17 8 9 0 21 29 30 35 

Bits 

20 
21-29 
3"-35 
3"-35 

" 1 2 

MTFCN 

Bits 

"-1 
2 ... 5 

6 
7 

8-1" 
11-14 
15-17 
18-35 

Pointer 

ABORTF 
MTPPB 
MTNIR 
MTANIR 

Content 

An error occurred and lORSs aborted 
Number of pages per buffer 
Number of lORSs queued 
Absolute version of MTNIR 

5 6 7 8 10 11 14 15 17 18 35 

MTSTC MTDN MTDM MTRS 
Record Size in Hdw. Bytes 

Pointer Content 

MTNTM Count of EOFs written 
MTFCN Last function performed 
MTPAR Parity 
MTRSF Reading backwards flag 
MTSTC CLOSF function counter 
MTDN Density 
MTDM Data mode 
MTRS Record size in hardware bytes 

-137-



Name: NAMUTP 

Description: Name Unit Type Pointers. This table contains 
pointers to unit type names for disks (i.e., 
RP96, RM93, etc.) and magtapes (i.e., TU45, 
TU77, etc.). 

Defined in: PHYSIO 

Referenced by: PHYSIO 

Format 

NAMUTP POINT 7, [ASCIZ/ (Illegal Type: 9) /] 

POINT 7, [ASCIZ/RP~4/] 

· · · · · · · · · · · · · · 

-138-



Name: NBO 

Description: Negative Balance Set Hold Quantum. This table 
parallels the BALSET table and maintains the 
minim~ hold quantum for each fork in the 
balance set. When the fork's quantum has been 
exhausted, it becomes eligible for removal 
from the balance set. 

Defined in: SCHEO 

Referenced by: SCBED 

Format 

NBO Negative BALSET Hold Quantum 

-139-



Name: NBW 

Description: Balance Set Wait Time. This table records the 
time of day each fork in the balance set goes 
into a balance set wait state waiting for diskl 
drum I/O. When ·wait satisfied· occurs, total 
wait time can be calculated and stored for system 
statistics. (Parallel table to BALSET) 

Defined in: SCHED 

Referenced by: SCHED 

Format 

NBW Time (in ms) of Start of Last Wait 

-140-



Name: OPNLEN 

Description: Open File Length Table. This table, indexed by 
OrN, contains the current file byte size and file 
byte count for each open file. It 1s parallel to 
the orN areas of the SPT and SPTH tables. 

Defined in: STG 

Relerenced by: DISC, JSYSF, PAGEM 

OFNLEN 

5 6 

OFNBSZ 
Byte Sz 

OFNBC 
File Bye Count 

-141-

35 

\ / 



Name: PHYCHT 

Description: This table contains the names of function 
dispatch tables for all supported channel 
types. Currently supported channel types are 
the RH20F and the RHllF. Both are supported 
by the same named dispatch table, RH2DSP, in 
their respective monitor modules, PHYH2 or . 
PHYHll. However, only one of these modules 
is present in a given monitor. 

Defined in: STG 

Referenced by: PHYSIO 

Format 

PHYCHT Flags , Channel Dispatch 

Note: This table currently contains only one entry .CTRH2"RH2DSP 

-142-



Name: PHYUNT 

Description: Table of known unit 'dispatch routines, (i.e., one 
for disk and one for magtape). 

Defined 1n: STG 

Referenced by: PHYH2 

Pot'1'ftat 

PHYUNT Type (DSK)·. UTRP4 DSJ( Unit Dispatch Mr. 
• RH2DSP 

Type (MTA}-.UTTM2 MTA Unit Dispatch Adr. 
- TM2DSP 

-143-



Name: PIDCNT 

Description: Process ID Count Table. This non-resident 
table, indexed by job I, holds the send 
quota and count and the PIO quota and 
count for each job. 

Referenced by: IPCF 

FORMAT 

8 9 17 18 26 27 35 

PIDCNT PIOSQ PIOSC PIOPQ PIOPC / \ 
SEND SEND PID PIO 

QUOTA COUNT QUOTA COUNT 

Job i 

\ / 

-144-



Name: PIOTBL 

Description: Process IO Table. This non-resident table, indexed by 
job " is a table of halfword entries, one entrY per 
PIO; the number of entries in the table is two times 
the number of jobs. (The monitor is assuming an 
average of 2 PIDs per job.) If a PID is in use, the 
table entry will contain the address of the PIO 
header. PIO's not in use are linked together; PIDLST 
is the free PIO header. 

Defined 1n: STG 

Referenced by: IPCF 

AOR of PIO Header 1 or AOR of PIO Header 2 or / \ 
Link to Next Free PIO Link to Next Free PIO 

· · · · Job t 

· · · · · · \ / 

-145-



Name: 

Description: 

PSB 

Process Storage Block. Each fork has a Process 
Storage Block which holds per-process information 
such as: the fork's PC and ACs when not running; 
the forks known to this process, and accounting, 
PSI, paging and directory infarmation. 

It also holds trapping information and the hardware 
cells for the fork's User Process Table (See UPT 
Table). Page 2 of the PSB houses the push down 
list used by the monitor ~en executing ~SYSs. 
(i.e. in process context,. 

The PSBMAP map In the PSB points to all of,the 
per~rocess storage area (including the PSB itself). 
When the monitor references the current fork's per­
process area, it uses virtual addresses, 707000-
777777. (The monitor's mapped slots in MMAP for 
virtual pages 707-777 point to the PSBMAP via 
indirect pointers). 

Monitor virtual pages in the per-process area are 
used for the PSB table, the User's Page Map Table, 
and IDXFIL. Some per-process pages are used tem­
porarily by the Swapper and Map routines and by 
by the Program Software Interrupt (PSI) and fork 
utility routines. 

Defined in: PROLOG 

Referenced by: APRSRV, DATIME, DIRECT, DISC, DSKALC, DTESRV, 
ENQ, FESRV, FILINI, FILMSC, FORK, FREE, GTJFN, 
10, IPCF, JSYSA, JSYSF, LINEPR, LOGNAM, MAGTAP, 
MEXEC, PAGEM, PHYSIO, POSTLD, SCHED, SYSERR 

-146-



UACB 

JOBNO 

JOBBIT 

FNPMAX 

JOBCK" 

JOBCKl 

RUNT2 

F{(TAB 

FORKN 

FKRT 

PRARGP 

MPP 

PRIMRY 

SLOWF 

INTOF 

INTOFF 

M.JRSTF 

ACBAS 

ITFFL 

ITFPC 

TRPIO 

TRPPTR 

UAC 

PAC 

\ 
\ 
\ 
~ 

, 

, 

Pormat 

Monitor Call AC Stack 

Job • to Which Fork Belongs 

SCHED Control Bits 

Maximum Number of Pages in Wo rki ng Set for This 

Variables for Scheduler Time Guarantee 

Variables for Scheduler Time Guarantee 

Run Time Fractional Parts of a Millisecond 

Local Fork Handle to Job Handle Table 

Job Fork • at Top Fork J This Fork 

Fork Run Time 

Pointer to Process Arguments 

Monitor Saved Stack Pointer at Last MENTR 

Primary I/O Indirection Pointers 

Slow MaN Routine Flag 

Defer Interrupts IF .GE. e 

SOS INTDF or JSYS PSISVl 

XJRSTF FFL or JSYS PSISVe 

Current AC Stack Pointer 

Flags on Interrupt to MEXEC 
(Must be contiguous with ITFPC) 

PC on Interrupt to MEXEC 

IDENT of PT or Page Causing Trap 

Storage Address or Pointer Causing Trap 

User ACs (from AC block 1) 

Process ACs 

-147-

Fork 

\ 
\ 
\ 

, 



'" 
PFL Process Flag s (Must be contiguous with PPC) 

PPC Process PC 

NSKED N&-schedule Word 

RSKED N~chedule Trap JFCL/JSR RSKCHK 

TRAPSK Stack Used During Pager Traps 

TRAPSW Trap Status Word 

TRAPAP Page Trap Saved P 

TRAPC Pager Trap Recursion Count 

UTRPCT Count of Pager Traps for This Process 

USWPCT Count of SWPINW Calls for This Process 

PTTIM Time Spent in Pager Traps 

IFAV Inte~ault Average, 

CAPT Working Set Window S1 ze (in MS) 

WSPGS Work1n g Set Pa g es Bit Table , 
\ \ 
\ \ 
\ \ 
\ \ 

PIPDS l PSI Routine Stacks ~ 
\ \ 

PIAC l Saved User ACs During Break Start ~ 
PSICHA l Channel Assigned to TERM Code ~ 

\ \ 

-148-



PIMSK 

PSIBW 

!'ORCTe 

PSICHM 

SUPCHN 

PSIBIP 

428 

ENSI<R 

ENSKR+3 

ADRBRK 

AORBKl 

MONBK 

PIFL 

PIPC 

IFTIM 

SKOFL 

SKOPC 

MONFL 

MONPL 

, , 
\ 
\ 
\ 
\ , 

, 

PSI Request Word Being Passed to PSI Service 

Break Waitin9 Word 

Channel Which Caused Forced Fork Termination 

Channel Enabled Word 

Channels Reserved by Superior 

Br.ak in Progress Word (Lwvelll) 

Hardware Storage (UPT cells) 

(see UPT Table Description) 

Scheduler Temp (Return) (3 words) 

JRST ENSKEO 

Address Break Information 

Address of Instruction Causing Address Break 

Interrupt to Monitor if No~ero 

Saved Flags (Must be with PIPC) 

Saved PC during Initial PI Service (J-Words) 
(called with XPCW) 

Time Since Page Fault 

Scheduler Temp (Ret Flags) 

Scheduler Temp (Ret PC) 

Temp Monitor Fla9s 

Temp Monitor PC 
(Must stay with MONFL) 

-149-

\ 
\ 
\ 
\ , 

i' 



PSIPT PSI Storage List Pointer 

PIOLOS FKSTAT Prior to PSI If Was Wai ting 

LEVCHN Level Table Address I Channel Table Address 

PSISYS No~ero If PSI System Off 

MONCRN Channels Reserved by Moni tor 

UTRSW Saved TRAPSW for User 

UMUUOW , Save MUUO Wo rd fo r User (2 words) .. 
KIMUUl Last UUO Word from User (2 words) 

JTJNO 
JSYS Number for Last User JSYS 

PGTIM Time Since Age Register Tick 

FKTOFF Time at which CPU Clock Turned off 

FKTLST Lost Time while Clock Turned off 

DRLOC Location in Directory During Searches 

DRINP Pointer to Input Name During Lookup 

DRINL Length of Input String 

DRMSK Mask of 9 Bits in Last Word of String 

DRSCN Pointer to FOB Link Our ing Lookup 

9 17 18 19 3S 
DROFN ORLFDB DRROF DIROFN 

Last FDB Checked by Release OFN of Current Mapped 
FDBCRK OFN Directory 

DRMAP Adr of Map Page when SEC2 

IOXMAP Adr of IDX Tb1. Pg Map When Extended Addressing 

9 17
1
18 

1
19 3S 

-150-



STRINF 

!NTVEC 

PATAOR 

PATU4" 

PATUPC 

O~SAOR 

OMSU4A 

DMSUPC 

CABMSK 

C"PENB 

SNPPGS 

SNPLST 

LST~RR 

!RRSAV 

PSBMAP 

JTBLI< 

JTLCK 

JTTRW 

JT'l'FK 

, 

CU'RUC IDXFLG CURSTR 
Unique Code of XB File Str. No. of Cur. 
Currently Mapped Index ~apped Mapped Index File 
File 

Entry Ve~tor Pointer 

1" IS" Compatability Entry Vector 

Where to Store C (4"), Setup as UMOVEM 1,XX 

Where to Store PC, Setup as UMOVEM 1, XX 

OMS !nt;.ry Vector 

Where to Store C(4") on OMS Call 

Where to Store PC Qf PMS Call 

Capability Mask 

Capabilities !nable4 

Count Page • qf First Page Locked 
Down for Snoopins 

Flags Link t.o 1st BF for Fork 

Last Error Number 

Block of ~rror ~aramet;.ers 

Map for Proces$ A~ea 

FKJTB t forkn for this fork 

Lock on JSYS Trap to Monitor (this) fork* 

JSYS Trap Word (Set by interrupting fork) 
Contains trapping instruction 

IJTFRI< 

-151-

, 

\ 
\ 



JTMNW 

PNSKDC 

, 
\ 
\ 
\ 
\ 

1 

Forkn of Trapping Fork 

12 17 
JTMCN JTNMI 
Monitor's Forkn of Man Interrupted 
PSI Chan (PSI • d) 

NOSKED's Done by DIAG & other Reso~rce Managers 

/ /./ / / / / / / / / / / / / / / / / / / / / / / / / 

User POL for Monitor Calls 
(Beg ins at top of second PSB page) 

* JTLCK: Lock protects JTTRW and allows only one JSYS trap 
interrupt at a time to this monitor 

-152-

\ 
\ 
\ 
\ 

t 



Neme: PTYSTS 

O.sorlptlon: Pseudo Terminal Status Tapla. This table, indexed 
by PrY, contains the PrY's st.tu. word. 

Defined In: STG 

Referenced by: FILMSC 

Formet 

P'rYSTS PTY Status Bits 

-153-

/ \ 

PTY • 

\ / 



Name: O-BLOCK 

Description: The information for each ENQ request is stored in 
a Q-BLOCK. OBLOCK's are doubly linked for each 
job; the list~ header is in the right half of ENOLST 
in the JSB. Also, QBLOCK are doubly linked on a 
system wide list for each lock block; the list 
header Is in the lock block. 

Defined in: ENQ 

Referenced by: ENQ 
FORMAT 

ENOLJQ: ENQNJO: 
Back Po inter To Forward Po inter To 

Last Q-Block For Job Next Q-Block For Job 

ENQLLQ: ENQNLQ: 
1 Back Pointer To Forward Pointer To 

Last Q-Block Next Q-Block 

ENQFLG: ENQCHN: ENQFRK: 
2 Flags PSI Fork to Interrupt 

Either Lock or Q Channel When Request is Locked 

ENQNR: ENQIO: 
3 t of Resources Request IO Code 

Requested From Pool 

ENQLRQ: ENQFQ: 
4 Back Pointer To Forward Pointer To 

Last Q-Block of Request Next Q-Block of Request 

ENQLBP: ENQGRP: 
5 Pointer to Group • For 

Lock-Block of this 0 Sharable Requests 

ENQNST: ENQJFN: 
6 Nest Count JFN of Request 

or -1, -2, or -3 

ENQMSK: 
7 Pointer to the 

Mask Block 

-154-



11 12 17 18 35 
Word 2 

ENOCHN ENOl'RK 
PSI Channel Fork to interrupt when 

request is locked 

Symbol Bits Pointer Ma.anJ.nq 

EN. LTL-49 6 Long Term Block 
EN.INV-29 7 This O-Block is invisible 
EN. LOK-10 8 The Q-Block has the Lock 

locked. 
EN. TXT-4 9 This Block has a Text 

String Identity. 
EN. EXC-2 10 Request is Excl~sive 
EN. LB-l 11 This is the Lock-Block 

13-17 ENOCHN PSI Channel (-1 means job 
blocked) 

18-35 ENQFRK Fork' of Creator of 
O-Block 

-155-



Nam.~ RES-rREE-SPAC! 

Description: Resident Free Space Storage. This area contains 
the resident free space bit table, RESBTS, which 
indicates which 4-word blocks of the resident free 
space pools are in use. 

The resident free space (in RESFRP) is pooled by 
PHYSIO for building UDBs, COBs, KOBs, and SOBs; 
by TTYSRV for terminal messages and line dynamic 
data blocks: by NETSRV for an input and output 
buffer for each active line; and by TIMER for the 
TI~ER JSYS when it builds a job's run-time limit 
block. (See JOBRTL table). 

This area also contains a resident free space 
usage table, RESUTB, which indexed by pool I, 
holds the amount of free space left for each pool. 

Defined in: STG 

Referenced by: OSKALC, FREE, FESRV, NSPSRV, PHYSIO, TIMER, 
TTYSRV 

FORMAT 

RSMIN Min Level for All But 
Level 1* Reqests 

RESAVE Average Amount of Free Space Locked 

RESFRE Count of Free Blocks Left 

RESFFB First Free 4-Word Block 

RESIFL Initialization Flag 
(-1 During Startup) 

RESBTS I I I I I I ... . . 
Resident Free· Space Bit Table , 

r-

RES BAS Base Adr of the Resident Free Pool 

RESUTB Resident Fre-e Space Usage Table 
(indexed by pool') , 

-156-



The following stoT.g. is in the non-rasidant area of the 
monitor. 

RSEFRP t 
1 

Resident Free Space Pools 
l 
1 

*Note: Requests for Resident Fr •• Space are given 
priority levels where: 
Level 1 - Has highest priority and monitor 

always tries to assign space. Page 
faults are not allowed. 

Level 2 - Has second level pr iori ty where 
monitor will not assign space if 
free storage would go below RESMIN. 
Page faults are not allowed. 

Level 3 - Has lowest priority and requests for 
this level are made in process con­
text. Page Faults are allowed. 

-157-



Description: Scheduler Request Table. During the scheduler's 
overhead cycle, the initial job startup request 
is placed in this table when the first CTRL/C is 
processed. The table is later examined in the 
same cycle and all entries are processed by dis 
patching to each entry's dispatch address. 

Defined in: SCHED 

Referenced by: SCBED, TTYSRV 

Format 

SCDRQB Data I Dispatch Address 

· · · · · · · · · · · · · · · , 

-158-



Name: SOB 

Description: Structure Data Block. This block, one per structure, 
contains information about the structure's units, 
master directory (i.e. Root-Directory), bit map for 
disk page allocation/deallocation, and assigned 
swapping area. It also contains mount and open-file 
information. SDBBLO is the name of the storage are. 
re.erved for handling the SDS for the Public 
Structure (PS). 

Defined in: STG 

Referenced by; DEVlCZ. DIRECT, DSKALC, PILINI, 'UTILI, 10, PHYSIO, 
JSYSA, JSYSF, MEXEC, MSTR 

Format 

STRNAM 
SOBNAM-0 Structure Name (in SIXBIT) 

STRNUM 
SDBNUM-l Number of Units in Structure 

STRSIZ 
SOBSIZ • Size (in sectors) of Each Unit in Structure 

STRSTS STRJB 
SDBSTS Status Flags Initing Fork • 

STRRXB 
SOBRXB Address of Root Directory Index Block 

STRBXB 
SOBBXB Address of Backup Copy of Root Oirectory Index Block 

STRNSS 
SOBNSS Number of Swapping Sectors per Unit 

STRFSS 
SOBFSS First Swapping Sector per Unit 

STRBTa 
SOBBTB OFN of Bit Table 

STRFC 

-159-



SOBFRC 

SOBIOX 

SOB LON 

SOBLCA 

SOBCYL 

SDBBTe 

SDBSTl 

SDBTYP 

SDBFLK 

SDBCNT 

SDSPUC 

, 

SDSUDB \ 
\ 
\ 
\ 

Count of Pree Pages o~ Structure 

STRRDO 5nIDX 
Handle of Root Directory orN of Index Tabl. 

STRLDN 
Last Directory Number on This Structure 

STRLCA 
Last Cylinder Assigned by DSKASN 

STRCYL 
Total Cylinders in Structure 

STRBO 
Lenqth of Top Ralf of Bit Table 

STRBl 
Lenqth of Bottom Ralf of Bit Table 

STRTYP 
Address of DSKSIZ Table for This Type of Disk 

STRUC STRUS STRLK 
Unique Code in SDB· Str t Fl1e Lock Count 

STRMC STROF 
Mount Count Open File Count 

STRMI 
Pack Unique Code for Med ia Identification 

SDBOMF 
Oriqinal Minimun Free Page Limit 

SOBMXF 
Boundary Above Which SOBMFP-SDBOMr 

SDBMPP 
Min. Free Pqs. below which DSKASA Chanqe. 

Assiqnment Alqorithm 

STRUDB 
Flaqs Po inter to UDB 

-160-

, 
\ 
\ 
\ 
\ 



a 1 2 3 15 16 17 18 35 

SDBSTS IL....JII....II...",I _____ ~I -'-' ..... '_~.....----.-.01~ ...... : I 

Symbol 

MSPS 
MSDIS 
MSDOM 

Bits 

a 
1 
2 
16 

17 

18-35 

Pointer 

STPS 
"STOIS .-
~OM 

STIDX 

STCRD 

STRJ8 

-161-

Content 

Structure 1, ~ublic 
·--Struc:~."ls--b.lnq "Qismounted 

Structure 1$ Q~me.tic 
Index table fJle orN h.s b~en 
•• t up 

Creating Root Directory on 
~hls Structure 
Inlt1.1izin~ job • (9nly legal 
user wni1e structur, 1$ being 
initialized) 



Name: SNAMES 

Description: Subsystem Names. Each entry contains a subsystem 
program name. 

Defined in: STG 

Referenced by: MEXEC 

Format 

SNAMES SIXBIT/Name/ 

-162-



Name: SNBLKS 

Oescription: Subsystem Blocks. Each entry contain_ the number 
of blocks for a subsystem prQ~ram. This table is 
parallel to SNAMES. 

Oefined in: STG 

Referenced by: MEXEC 

Format 

; , 

SNB~KS Number of Blocks 

-163-



Nlrme: SPFLTS 

Description: Subsystem Page Faults. Each entry contains the 
accumulated number of page faults of a subsystem 
program. This 1s a parallel table to SNAMES. 

Defined in: STG 

Referenced by: MEXEC, PAGEM 

Format 

SPFLTS Accumulated Page Faul ts 

-164-



Name: 

De,cription: 

SPT 

Special Pages Table. This table is pointed 
to. by the firmware's SPT Base Register <an AC 
in an AC Block reserved for qardware/firmware 
registers) which is setup by the monitor at 
syste. initialization ti~ •• 

It is referenced directly by the paging fi~m­
ware (bits 12-35 only) when virtual to phys~cal 
address translation takes p14ce and shared and 
indirect pointers are involved. 

The first part of the tabl, {of l~th MOrN) 
is used to point to inde~ blocKs in memory 
(or swapping area) for OPen fil •• 4nd an 
index into this part is often ~.fe~red to as 
an OFN (Open F1le Num~er) ~ The remainder of 
the table is used to point to PSBs, JS8s, VPTs, 
UPTAs, (User page Map Tabl,.), and $har,d file 
pages. 

The ALOCX value in the OrN area is ~~'d ae an 
~ndex into the allocation tables (~LOCl , ACOC~) 
to obtain information abo~t th~ directory oft.he 
open file, (i.e., page$ left 1n quot,>. The snaf' 
count in the non - orN area is

l 

indexed for taCO 
sharing of the page. 

Defined in: STC 

Referenced py: APRSRV, FORK, PAGEM,SCH~O 

-165-



Format 

ALOCX 11 12 STGAOR 35 / \ 
Index Storage Address 

(Index Block page) 

· · OFN t 

SPTSHC 11 12 STGADR 35 
Shared Count Storage Address 

(Shared File Pg/Ovhd Pg/page of 
another Pg Tb1 

· .> · · 

-166-



SYMBOL BITS 

NCORTM 12'-17 

PSKAB 14 

DSKNB 15 

O~MAB 16 

PRt10B 17 

UAABC 17'-35 

POINTER 

STGAOR 

CONTENTS 

Storage addr.ss 
(Interpretation follow.) 

Non'-Core Test Mask yielding 
type of storage. 

Bits '<12'-17'>-8 ~,> 
Bits '<18'-3S'>-Memory Pg ~dr. 

Bits '<12"17.>-1 .,> 
Bits '<le'~35'>.Drum/DsK Adr~ 

Storage address is a disk 
address 

Temporary bit used with 
OSKAB to say that disk 
address is newly aS$igned. 

Storage address 1s a drum 
address 

Used.with DRMA! to indicate 
that the swapping are. has 
overflowed to the disk file 
system. (Since TOPS'-28 cur'· 
rently uses only the disk file 
system for swapping, a drum 
storage address will always 
have bits 16 & 17 set.) 

Temporary bit used by the 
monitor'S page trap handler 
when a copy,-on,-write page 
trap has occurreQ. If the 
page to be copied is ~ drum 
address, it ~ill be faulted 
in befor these bits are used, 
avoiding conflict over bit 
17. These bits will signify 
to a lower level routine, 
SWPIN, that the page just 
gotten from the free list 
has no backup address and 
that it 15 to get a copy of 
another page. 

-167-



Name: 

Description: 

SPTH 

Special Pages Table Home Information. This 
table, parallel to the SPT table is referenced 
only by the software and is divided into two 
parts. The first part, indexed by OFN, is used 
to point .to the home address of each open file 
(i.e., to its index block) and to hold status 
information about each OFN. 

The second part is used mainly to show the page's 
origin. Por a shared file, this is indieated by 
OrN " Page Number, where paqe number is within 
open file, OFN. Por PSBs, JSBs, and UPTs, the SPTH 
word contains I " Fork Index. The free slots in 
this part are on a list chained through the SPT 
where. the free list pointer resides in FRESPT. 

Defined in: STG 

Referenced by: DISC, DSKALC, FILINI, PAGEM 

Format 

SPTH Flags .1 Home (DSK) Address of Index Block 

· · · · · 
OrN I Page Number 

or 

" I Fork Index 

· · · · · · · · · 

-168-



I 1 2 3 4 5 6 7 ;8 9 " 1 2 3 14 35 

SPTR I , J , , t I ) I I I ~ddre.s of ;ndex Block : .. 1 

Symbol Bits Content 

*PILWB 1 Pile write bit in SPTH and ASOFN 
argument 

*THAWB 2 Thawed bit 
PILHB 3 -File new" bit 
SPTLKB 4 LH of SPTH(OFN), XB (Index Bloc~' 

in use by DDMP 
OFNWRB 5 OFN has been ~Qd,ifi.d 
OFNBAT 6 Index block coo~ains a bad bloQ~ 
OFNERR 7 Error in fila (i ••• , MPE) 
OFNDMO 8 orN is on a dis~Qunt.d .tructur, 
OFNDUD 9 Suppress DDMP 

* I~' file is OPENed with thawed access (OrTHW), then botn 
FILWB and THAWS will be set to 1. If OPEN'ed with restricted 
acoess, then the THAW! bit will be on ~nd the FI~WB will be 
o·ff. 

Not~: A fil~ is opened by searching the QrN part Qf SPTH for ~~e 
ind~x bl~ck a~dress. If the address is found and the ,rite 
and thawe~ bits are legal, it Is a s~ar.d opening and the 
mame index 1s used. If the addre,. Is not found, a new 
entry is made from one of the free (-1) slots in SPTH. 

-169-



Name: SPTO 

Description: Special Pages Table o. This table is parallel 
to the OFN area of the SPT table and contains the 
structure number and open file share count for 
each open file. The eFN share count Is indexed 
for each opening of the file and for each shared 
page within the open file. 

Defined in: STe 

Referenced by: PAGEM 

Format 

OPNSHC STRX 
SPTe eFN Share Count Structure. 

-170-

/ \ 

erN • 

\ / 



'OesoriptiC)n: Subsystem Working Set S1ze. Eaoh entry cQntalns 
t~. workinq set size integral fQr a subsY$te~ 
program. This is a par.1Iel table to SNAf'tES", 

Defined in: STG 

Refereneed by; MEXEC 

. Fonnat 

iii, I 

SSIZE 

-171-



Neme1 STIMES 

Description: Subsystem Runtim... Eaeh entry contains the 
accumulated runtime ot a subsystem program. 
This 1s a.parallel table to SNAMES. 

Defined in: STG 

Referenced by: MEXEC 

Format 

STIMES Accumulated Runtime 

-172-



Na~e: STRTAB 

Descr1ptiorq Structure Data Block Table" Th!s table, indexed ~y 
s~ruat~re number, ~ontains pointers ~o each struc­
ture d.ta block 1n the system. 

Defined in: STG 

Referenced by: I)S~LC, PHYSIO 

Format 

STR1AB Pointer to SOB 

-173-

/ \ 

S.TR • 

\ I 



Name: SWAP-FREE-SPACE 

Description: Swappable Free Space Pool Format. This table describes 
the header area that is used in the assignment and 
deassignment of swappable free space (by ASGFRE) and 
the usage of this space when assigned. 

Defined in: STG 

Referenced by: IPCF, LOGNAM 

FORMAT 

SWPFRE Adr of 1st Free Block I Unused 

Lock on Free Space 

Space Counter 

Most Common Block Size 

Max Top of Free Area , Bottom of Free Area 

Temporary Work Space 

Temporary Work Space 

SWFREE Free Space Pool 

Space for the Assignment of: 
PID Headers & Messages 
ENO/DEO Blocks 
System Wide Logical Name List and 

Definitions Blocks 
USAGE JSYS Blocks 
Checkpoint Records 
Network Strings 

-174-



N~e~ S~M~ 

Description: System Logical Name Table: This table contains 
pointers to the initial ASCIZ strings for the 

system lo~ical names. 

Defined in: STG 

Referenced by: LOGNAM 

FORMAT 

XWD[ASCIZ/SYS/],[ASCIZ/PS:<SUBSYS>/] 

XWD{ASCIZ/HLP/],{ASCIZ/SYS:/l 

XWD{ASCIZ/SYSTEM,] [ASCIZ/PS:<NEW-SYSTEM,PS:<SYSTEM>/] 

-175-



Description: Startup Transfer Vectors. This table, in resident 
locations 141-147, contains the startup vectors 
for the monitor as well as vectors to enter £oDT. 

Defined in: STG 

Referenced by: STG, POSTLD 

'J'ormat - .. -

EVDDT-140 JRST DDTX (EDDT) 

JRST SYSDDT (Reset and go to EDDT) 

EVDDT2-142 JRST DDTX (Copy of £OOT in ease 
other clobbered) 

EVDDT2-143 JRST SYSLOD (Initialize disk file 
system) 

XPCW RLODPC (Keep al i ve execute 
address) 

EVRST-145 JRST SYSRST (Restart) 

EVLOGO-146 JRST SYSGO (Reload and start) 

EVGO-147 JRST SYSGOl (Start) 

-176-



Name: SYSERR-STORAGE-AREA 

Description: SYSERR STORAGE AREA. This area contains the buffer 
for all SYSERR error blocks which are later 
written by JOBS into the SYSERR.LOG file. In 
and out pointers. into the buffer area are main. 
tained for JOBS as well as pointers to the free 
and rele.sed SYSERR blocks. 

Defined in: STG 

Referenced by: SYSERR 

SYSERR HDR S~SERR 
~----------------------------------------------~~BUFFER 

Body of Error Code (+ pg.) 

~----------------------------------------------~. ,I; , . 
SEBFRE Ptr to Beginning of Free Contiguous 

Area in SYSERR Buffer 

SEBEFE Ptr to End of Free Contiguous 
Area in SYSERR Buffer 

SEBQIN* JOB 3 Queue - IN PTR 

SEBFCT 

SeBRLQ 

SEBJFN 

SEeHKF 

SEIETM 

Free Count-Contiguous Buffer Space 

Ptr to Queue of Released Blocks 

JFN for SYSERR.LOG File 

Flag to wake Job S SYSERR FORK 

Time after which failing to OPEN 
SYSERR LOG File can try again 

* Although the In-pointer is in this storage area the 
corresponding Out-pointer in SEBQUO is in a fixed 
place in lower core (i.e., location 24), so JOB Scan 
queue up a BUGHLT block after a crash. One can examine 
the last SYSERR block by adding to the right half of the 
contents of SEBOUO, SEBDAT plus offset into SYSERR block. 

-177-



SEBBFR: SYSERR BUFFER BLOCKS 

S~SERR BLOCK FORMAT 

SEBCOD SEBSIZ SEBCOR 
Code Blk Size with HOR -Pointer to Next Block 

6 SEBSOF 17 SEBFN 
1 Offset to Free JOB " Function to Call 

String Space 

SEHCOD SEBLEN 
2 Event Code Block Leng th 

SEHTAD 
3 Da te and Time 

SEHUTM 
4 Uptime 

SEHSER 
5 APRIO Word 

(Processor Serial Number) 

SEBDAT-6 
Body of Error Block 

(Oependent on Event Ty e p 

1 
See Below) 

" 234 5 6 17 18 
Word 

o 

Bits 

3-5 

6-17 

18-35 

SEBCOD 
Code 

SEBSIZ SEBCDR 
Blk S1ze with HDR Pointer to Next Block 

Pointer Meaning 

SEBCOD State Code 
SBCFRE-9 on Free List 
SBCREL-l Released 
SBCACT-2 Active 

SEBSIZ Block Size Including Header 

SEBCDR Pointer to Next in List 

-178-

35 

, 

I 



Word 
2 I SEHeoo 

EventCo~ 

Bits 

9-8 

27-35 

8 

Pointer 

SEHCOD 

SEHLEN 

27 3S 

·1 
1 SEHLEN 
1I1.ock Len9th 

Meaninq 

Event Code (i.e., Block Type) 
SEC'RL-l"l System Reload 
SEC'BG-l"2 BUGHLT/BUGCHK/BUGINF 
SEC'FE-130 Front End Error 
SECtll-l31 .~~ Reload Entry 

(Give. -11 Reboot Info.) 
SEC'PT-169 Processor Parity Trap 
SEC'PI-161 Processor Pari ty Intrp. 
SEC'MB-lll Mas.bus Device Error 

Block Length (Including Header) 
RL'LEN - System Reload Block Length 
BG'LEN - BUGHLT/CHK/INF Block Lellgth 
FE'LEN -F.E. Errors Blk I,.ength 
Rl'LEN -F.E. Reload Entry Blk Length 
PT'LEN -Proc. parity Trap Blk Length 
PI'LEN -Proc. parity Interrupt Blk I!Jh 
MB'LEN -Massbus Dev. Err Blk Length 

-179-



Word 6 to End (Body of Error Block - Dependent on Event Type) 
Event type 182 

BUGHLT/CHK/INF Error Block Data 

System Name (ASCI%) 

BG'SER-l APR Serial Number 

BG'VER-2 Monitor Version 

BG'SOT-3 TAD of Monitor Build 

Type (1,2 or 3) of BUG Call: 
(BG'CBK-1: BG'INF-2: BG'HLT-3) 

BGUOR-S Address of HLT/CHK 

BG'JOB-6 FORKX 
J 

Job Number 

BG'USR-7 User Number 

BG'PNM-UJ Program Name (SIXBIT) 

Message (ASCIZ) 

BGUCS-l2 ACS 
I 

BG'PIS-32 PI Status 

BG'RCT-33 Register Count 

BG'REG-34 Registers (Maximum of 4) 

SIXBIT Name of Check 

BG'OAT-4l Time and Date of BUG8LT/BUGCHK 

BG'CNT-42 Number of BUG Checks Since Startup 

BG'APS-43 APR Flags (CONI APR,) 

BG'PGS-44 Pager Flags (CONI PAG, ) 

BG'PGO-4S Pager Data (DATA I PAG, ) 

, String Area 

, String Area 

BG%LEN-76 

-180-



Event Type un 
System Reloaded Error Block Data 

ASCII Byte Pointer to System Name 

Time of Syste. Build (Unlv. Format) 

System Version Number 

APR Serial Number 

RL'OPR-4 ASCII Byte Pointer to -Why Reload-

RL'HLT-S BUGHLT Address (if Auto-Reloaded) 

Flags 

Monitor Name (Text) 

-Why Reload- Answer String (Text) 

RL'LENa6l 

-181-



· Event Type 139 
Front End Errors Data Block 

Fork Numberr,Job Number 

Directory Numbers 

Front End Software Version 

SIXBIT Name of Program 

Protocol Device Code e lBe-Unknown) 

FE%SYT-7 

Event Type 131 
Front End Reload 

Rl%NUM-" 

Rl%STS-l 

-Length of Data" Start of Data 

DTE Number 

t of -11 Bytes in the Message 

ERROR BLOCK DATA 

-11 Number 

Reload Status Bits 

File Name Po inter 

-11 Error Word 

String Area (,-D2e words) 

-182-

, 



Symbol Sits 

.RlOT!' I 
.R1OPF 1 
• R1DPP' 2 
.Rll"E 3 
.RlllE 4 
• RlASF 5 
-.. RlRLl" 6 
.R1PDF 7 
.R1POF 8 
• R1RMF 9 

.R1BSF 1" 

.R1NRL 11 

.RIRTC 33-35 

Contents 

GTJFN failed for Dump r11e 
OPENF failed for Dump File 
Dump failed 
To -1" Error on Dump 
To -11 Error on Dump 
ASGPAG failed on Dump 
Reload failed 
-11 didn't Power Dawn 
-11 didn't Power Up 
ROM did not ACKnowledge 
the -1" . 

-11 Boot Program didn't 
make it to the -11 

-11 took more than 1 Min. 
to Reload. 

Retry Count 

2 17 18 19 2" 35 
Word ~--~------------------~----~----------------~ R1%ERW.3t IFault Code Parity Register 

Symbol Bits 

2-17 

-183-

Contents 

Fault code as 3 RAD5" 
characters 

Parity Register Valid Only 
if it is Nonzero 



Event Type 16" 
Processor Parity Trap Error Block Data 

Page Fail Word 

Bad Data Word 

Good Data Word 

User Number 

FORKX I JOBN 

Program Name (SIXBIT) 

PT'PMA-6 Physical Memory Address 

PT'TRY-7 Flags I Retry Count 

PT'LEN-l" 

1 234 18 3S 
Word 

I PT'TRY.71 I I I I Retry Count 

Symbol Bits Contents 

PT'HRO 1 Hard Error 
PT%CC P 2 Cache Failure 
PT%CC H 3 Cache in Use 
PT'ESW 4 Error on Sweep to Core 

18-35 Retry Count 

-184-



Event Type 161 
Processor Parity Interrupt Error Data Block 

PI ICNI"S CONI APR 

ERA 

PI,rpc -2 PC 

Number of Errors This Sweep 

PItAAO-4 Logical 41AND- of Bad Addresses 

PI'OAO-S Logical ·OR· of Bad Addresses 

Logical ·ANO" of Bad Data 

Logical ·OR" of Bad Data 

PI'SBD-HJ SBUS DIAG Function Data , , 

PI'ADD-22 Fi rst 19. Bad Addresses , 
r-

PI'DAT-34 First 19. Bad Data Words , , 

Core Ref of First 19. Bad Add resses , , 

Flags 

PI'LEN-61 

-185.-



Event Type 111 
MASS BUS OEV Error Data Block 

MB'FES-4 

MBteNI-S 

MBte IF-6 

MB%WRT-ll 

MB%USR-13 

MB%PGM-14 

MB%01I-1S 

MB%P1F-16 

MB%02I-17 

MB%02F-2B 

MB%IRS-22 

Device Name (if available) 

Volume IO (SIXBIT) 

Channel"Oeviee Type - See PHYPAR 

Location of Error - Sector or File, ,Record 

Pinal Error State - Oevice Dependant 

CONI Initial 

CONI Final 

Number of Seeks 

Number of Blocks/Frames Read 

Number· of Blocks/Frames Written 

Filename (Pointer) 

User Making Request (Pointer) 

Program Running 

DATAl PTCR Initial 

DATAl PTCR Final 

DATAl PBAR Initial 

OATAI PBAR Final 

Unit Oata Block for JOB B BAT Blocks 

IORB Status Word, IS.ERR if Hard (See PHYPAR) 

-186-



MB'SRE-23 

MB'SWE-24 

MB'WU:-25 

MB'HWE-26 

MB'PS2-38 

MBteS'-31 

MB':Sl-32 

MBtcS2-33 

MBtcC 1.34 

MBtcC 2-35 

MB'MPE-36 

MB'NXM-37 

MBtcAO-41 

MB,UAO-42 

MB'SPEII!43 

MB'Ica-46 

MB'REG-47 

MB'LEN-67 

, 

Soft Read Errors 

Soft Write Errors 

Hard Read Errors 

Hard Write Errors 

Position, CYL if Disk, File if Tape 

SURF/SEC or Record 

Channel Loqout " 
Channel Loqout 1 

Channel Loqout 2 

First CCW 
.' 

Second CCW 

Count of MPE 

Count of NXM 

Final Error Co~nt 

Channel Address 

Unit Address 

Soft Positionin9 Errors 

Hard Position~ng Errors 

Overruns 

Ini tia1 1t:R 

Units Massbus Registers in order with their: 
Final Contents" Initial Error Contents 

-187-



Name: 

Description: 

TT-LI~E-DYN-DATA-BLK 

Teletype Line Dynamic Data Block.. This block 
pointed to by the line's entry in TTACTL, holds 
line specific data and is built when the line 
become. active. It is deallocated when the 
line becomes inactive. 

T~ere are two shortened forms of the dynamic 
data block, one used for a SENDALL type of 
message and the other for .ending a -ding­
when any character but CTJU./C is typed on an 
inactive line. 

Defined in: TTYSRV 

Referenced by: TTYSRV 

TTFLG1-e Plags 

TTDAT1-l 3 8 ~ 17 18 
TLTYP TTTYP TINTL 

Line Type Terminal Type Internal Line Number 

35 

(index into static data) 

TTSALl-2 TSALC 
Send All Character Count 

TSALP 
Send All Byte Pointer 

Device dependent word 
(See Device module. for definitions) 

TTBFRC-5 " 7 8 12 13 17 18 26 27 35 
TOWRN T'l'NIN 'l"l'NOU TlMAX TOMAX 

Wake Up • of • of Max byte. Max bytes 
Count Input Output In Input Buf In Output Buf 

Bufs Bufs 

Number of Characters in Output Buffer 

Pointer for Removing Char from Output Buffer 

Pointer for Entering Char into Output Buffer 

-188-



7 8 9 17 
TYLMD TYLCR TPWID 

TTY data Last Charcter Removed Page width 
mode for from Input Buffer 
Last Inp (For Backup Char JSYS) 
Char. 

Number Characters in Input Buffer 

TTIOUT-13 Pointer for Removing Char from Input Buffer 

Pointer for Entering Char in.to Input Buffer 

Control Character OUtput Control Words 

possible Values for each Char. (2 Bits/Char) 
CCNON! - 0 Send nothing 
CCIND - 1 Indicate via -
CCSEND - 2 Send Actual Code 
CCSIM 

- 3 
Simulate Format Action 

TTDPSI-17 Bit for Terminal Oode Set it O~ferred Interrupt 

TTPSI-2e alii for Terminal Code Set if Interrupt 

TTL!NK-21 Lines linked to (9 bit$ per line) 

TTLPOS-22 0 17 18 35 
TPGPS TLNPS 

Current Line position in Page Current Charcter position 
within Line 

TTFLGS-23 e 111) 17 
TOFLG TPLEN 
.... 0 was page length 

typed 

TCJOB TWFRK 
Controlling Job Number Fork Number In Input Wait;. 

on this Line 

TTFRI<1-25 TTPFK 
Fork which is Top Fork of 

a SCTTY Tree (-1 if None) 

-189-



8 1 2 3 4 5 6 789 30 3S 

TTFLGl I I 11JI 1.11.1 I ITTLCK r.>ekRI en". of 

Symbol Bits Pointer Contents 

TT'SAL " TTSAL Sendall being done to 
this line 

TT'SHT 1 'l'TSHT This is a short block 
TT'MES 2 TTMES This is a system 

message block 
TT'OTP 3 'l'TOTP Output Is enroute to 

the lIne 
TT'FWK 4 TT!'WI< Porced wakeup 
TT'SFG 5 TTSFG CTRL/S was typed 
TT'RFG 6 TTRFG Repeat last character 

(BKJFN) 
TTtwFG 7 'M'WFG Blocked on input 
TT'PRM 8 TTPRM Don't deallocate 

dynamic data 
TT'BAC 9 TTBAC Permanent and becoming 

active 
TT'LCK 3"~35 TTLCK Count of locks on tl1is 

block 

-190-



N~me: TTACTL 

Description: T.l.~yp. A9tive Line T~ble. ~i$ re$~~.nt 
table~ indeKed by lIne I, contain, a poin~er 
to each active linels dynamic data block. 

D.f!ned in~ STQ 

Referenced by: M!XEC, T1YSRV 

TTACTL Addr •• , of dynamic1!ata-~~--eeti.."., 
or .,..1 if be1:omrng ~t;ti.ve 

or 9 if In.ctive 

... 191-

/ \ 

line • 

\ I 



Name: tt"1'B UFS 

Description: Teletype Buffers. This storage ar.a contains the 
input and output buffers for each line (TTY and 
PTY) on the system. Input and output pointers 
to each buffer are kept in the line's dynamic 
data block. These buffers are fixed length and 
are assigned on demand. When there is no character 
activity, the buffers are deassigned. 

Defined in:STG 

Referenced by: TTYSRV 

Format 

TTBUFS Pointer to Next Buffer 

\ / 

· · · · · · 
Pointer to Next Buffer 

/1\ 
Buffer 

\ I 

· · · · · · 

Note: The free buffers are linked and are pointed to by TTFREB. 

-192-



Name: TTCSAO 

Terminal Call Spe~ial ~qu •• t Address Table. 
This res~d.nt t4ble, index,d by line n~ber, 
1s u~ed to hold the dispa~~p ~dd,ess of a 
scheduler routine for a ~peeial 11ne r.q~.$t. 

Special 11ne requests are mad, when ~he OTtO 
routine is unable to obtain space for a packet 
and cannot block to wait for the space~ (i.e. 
process is ~OSREO, o~ re~ue~t made .t interrupt 
or scheduler level). A special ~ine request 
is ma4e S~ that a pa~k.t w~ll b. que~ed later 
by the Scheduler. (Se~ Table, T1CSTM). 

Defined in: STG 

Refe~ence~ by: TTYSRV, T~OUT 

TtcSAO 

-193-

I \ 



Nam e : T'ft: STM 

Description: Terminal Call Special Request Time Table. 
1his resident table, indexed by line number, 
parallels the TTCSAD table and holds the 
time .the Scheduler is to call the .pecial 
request routine in TTCSAD. 

Defined in: STG 

Referenced by: TTYSRV, TTIME 

TTCSTM Time for scheduler to call routin. in TTCSAD 

-194-

/ \ 

line • 

\ / 



Name: TTLINV 

p.finitiqn: Terminal Type Line Vector Table. Thls v_ctor table, 
indexed by device type, gives the device table 
addresses of the form, TTXXVT~ These tables hol~ 
the device speqifie vectors fpr device tunctlons. 
(See TTXXV'l' Tabl_). 

Defined In: TTYSRV 

Referen~eq by: TTYSRV 

TTLI~V: 

Pot'l'Qat 

IFIW ! TTFEVT P~ Vec;:tar Tabl. 
'. IFIW ! TTM(:VT* ~B. V,etor Table 

IFIW ! TTPTV'l' P'l'Y V~otor Tapl. 
I 

IFIW ! TTtcVT* CC18 Vector. Table 

IFIW ! TTNTVT Ne~work Vector 1,ble 
., 

IFIW ! TTDZV'l' PZll V.cto~ Table 
'I 

~OT~. 

I~ a term!nal type does not e~ist, l~s corre$ponding vec~or 
tabl. address in TTLINV w~ll be se~ equal to the ~ec~o~ 
table addr,ss, TTDMVTItThis t,blevec:tpn;tq routines ~!oh 
BUGRL~. 

* Are currently not in use. 

-195-



Name: 'M'S PIlD 

Description: Terminal Speed Word Table. This nonresld.nt 
table, inde~ed by l~ne number (TTYs only), 
contains the terminal speeds for .ach 
terminal. 

Defined in: S~G 

Referenced by: TTySRV 

Format 

Input spee~ I Ou tpu t Spee,d 

-196-

I \ 

TTY 
11ne • 

\ / 



Name: TTSTAT 

Description: Teletype Status Table. This resident table, 
inde~ed by line I, contains the ter~inal 
charaoteristic flags 

Def ined in: $'1'G 

Referenced by: TTYSRV 

'l'TSTA'l' Terminal Characterist~c. Flags / \ 

line I 

\ / 

o 1 2 3 4 5 6 7 12 17 8 9 ZIJ 27 ~8 35 

TTYSTY TSPMC T'l'FSB 
lipe ~ype m~x. ~Qunt fQr en~EI'Y co~nt 

front enQ Quff~r in BIGBU, 
1 .1 

Symbol Blts Pointer Contents 

TT'r~M ., 'rTr~ J..ine is remot~ 
TT'NTS 1 'M'N'l'S Don'~ send system l'Ilesg. 
TT\FXO 2 TTrxo Line needs XON 
TT'CON 3 ,",CON Carrier is on 
TT\FSP 4 TTFSP ~ine needs speed set 
TT\FXF' 5 TTFXF Line needs XOF 
TT\IGI 6 TTIGI Ignore input when line 

is inactive 
TT'AUT 7 TTAUT Line is auto-speed 

12-17 TTYSTY Line type which y~e1ds 
the offset into the 
TTLINV table 

2"-~7 'rSFMe M~x count fQr front 
end buffer 

28-35 TTFBB Entry count in Big ~uf 

-197-



Name: 

Description: 

nxxVT 

Teletype Device Specific Vector Table. TTXXVT is 
the vector table (in generalized format) for data 
and routine addr.ss.s for device xx. Th. offsets 
giv.n b.low can be used when re£.rencing a device 
specific vector table. 

Teletype service consists of the module -
TTYSRV - which contains all device-independent 
code, and one module for each line type. The 
latter modules contain all the. device-dependent 
code for their lIne type. 

Each device-dependent module, of name TTXXDV, 
has a transfer v.ctor table of the name TTXXVT, 
wh.re XX is unique for each line type (i •• ·., 
XX - FE/DZ/DC/MC/NT/PT); (S.e TTLINV Table). 

Defined in: TTYSRV 

Referenced by: TTYSRV 

TT1LIN-l 

TTVT02-4 

TTVT03-S 

'nVT84-6 

TTVT8S-' 

TTVT06-l0 

TTVT0S-l2 

TTVT09-l3 

TTVT10-l4 

TTVT1.2-l6 

TTVTl3-l7 

TTVT14-20 

Length of dynamic data for this type 

First line of this type/-l no lines 

Initialize tables at system startup 

Activate lines at startup or restart 

Clear output buffer 

Set line speed 

Read line speed 

Set terminal/non-terminal status 

Read terminal/non-terminal status 

STO JSYS 

STPAR JSYS 

CKPHYT - see if physical terminal 

Process XON from terminal 

Deassign TTY Data Base 

TCOUT - add parity to character 

Start output to line 

Send XOF!' to terminal 

-198-



TTV'l'lS-21 

TTVT16-22 

TTVT17-23 

TTV'l'lS-24 

TTV'1'19-2S 

TTVT28-26 

TTVT21-27 

TTVT22-38 

TTVT23-3l 

TTVT24-32 

TTVT2S-33 

TTVT26-34 

TTVT27-3S 

TTVT2S-36 

TTVT29-37 

TTV'l' 3" -4 " 

TTVT3l-41 

TTVT32-42 

TTVT33-.43 

TTVT34-44 

TTVT3S-4S 

TTVT36·-46 

TTVT37--47 

TTVT3S--S8 

TTVTMX··Sl 

Send XON to terminal 

TTCH7 - Process TTCS words 

Handle carrier/on 

Handle carrier/off 

Hangup, reactivate remote line 

Process XOFF from terminal 

Handle CTRL/C from inactive line 

BIQSTO - Store character in '1'TBBUF 

TTSND - Send character to line 

Detaoh job on this line 

Handle overflow of TTBBUF 
. , 

Remove character from TTBBUF 

00 TTMSG for one line 

Enable/Disable Data.ets 

TTCH7 after emptying TTBBUF 

Clear input buffer 

DOBE 

Input GA 

Set Initial Values for a line 

SOBE 

Wakeup if output buffer empty 

Senda1l for one line 

Senda11 for all lines 

Adjust wakeup class 

Maximum number of vector entries 

-199-



Name: TTY-STORAGE-AREA 

Description: Teletype Storage Area. This resident area contains 
hung and special line information, the Big Buffer, 
and information about the Big Buffer. (See 
TT-LINE-DYN-DATA-BLK, TTACTL, TTBUFS, TTCSAD, 
TTCSTM, TTLINV, TTSPWD, TTSTAT, and TTXXVT Tables). 

Defined in: STG 

Referenced by: Tl'YSRV 

CTYNIT 

TCOERR 

SALCNT 

TTFREC 

TTFREB 

TTBIGI 

TTBIGO 

TTBIGC 

TTBBUF 

Unit 

TCOUT 

No. on the .FEDLS Device by which the 
Front End Knows the CTY 

Sets this if Fails in Scheduler Context 

Count of Lines Doing SENDALL 

Count of Free Buffers 

List of Free Buffers 

Input Index into Big Buffer 

Output Index into Big Buffer 

Char Count In Big Buffer 

Big Buffer ("0128 Words) 

I' Storage for all TTY Input Chars. Before Being Placed 
Into Individual Input Line Buffers in TTBUFS 

TTOCNT 

TTCQLN 

TTHNGL 

TTHNGT Time 

Area 

Count of Special Line Items 

Control of Current Line Number 

Line Being Examined for Bung 

at Which Line Will be Defined as Bung 

-200-



TTHNGN 

LINKF 

IMECHF 

TTCHIC 

D%CHCT* 

S'NOALL 

Last Hung Lin. -, No. of Unhangs Cone 

Linked Output Character if not " 

I ..... diat. Echo Output Char if not " 
Input Character in TTCHI 

-Clock- for 0%11 PI Check 

,,' Send All Buffer ("'016 Words) r-

* Only assembled if the assembly flag, SMFLG, does not 
equal zero. (i.e., Have a 2"2e System). 

-201-

, 



Name: 

Description: 

Defined in: 

Referenced by: 

UOBSTs-e 

UDBMBW-l 

DBOOT 

UDBERR 

UOBERP 

UOBOSP 

UDBCOS 

UDB 

Unit Data Block. This block, one per unit, 
contains information about the current activity 
on the unit. 

PHYPAR 

PHY:SIO 

Format 

Status and Configuration Information 

Memory Bandwidth Scheduling Information 

Overdue Timer for Seeks and the Like 

Error Recovery Status Word 

Error Reporting Work Area if Nonzero 

Unit Routine Main Entry Dispatch 

Secondary CDS primary COB 

UOBAOR Secondary Unit Address Primary Unit Address 

UOBAKA Current COB Current Chain Address 

UOBVIO Volume IO 

UDBSTR Pointer to Structure Data Block 

UOBROB Pointer to KOB, if any 

UDBDSN Drive Serial Number 

UOBSEK Seeks 

UOBREO Reads (Sectors if Disk, Frames If Tape) 

UOBWRT Writes (Sectors if Disk, Frames if Tape) 

UDBSRE Soft Read Errors 

-202-



UDBSWE 

UOBHRE 

UOBHWE 

UOBPSl 

UDBSP2 

UDSPWQ 

UOBTWQ 

UOBONR 

UOBERC 

UOBSPE 

UOBHPE 

UOBPNM 

UDBUOR 

UOBSIZ 

UOBFCT 

UDBCHB 

UOBFCR 

UDBDDP 
\ 
\ 

I 

Soft Write Errors 

Hard Read Errors 

Hard Write Errors 

Current Cylinder (if Disk), File (if Tape) 

Current Sector (if Disk), Record (if Tape) 

Position Wait Queue Tail Position Wait Queue 

Transfer Wait Queue Tail Transfer iU.!.t ,Queue 

Fork Which Owns This Unit (Maint. Mode) 

Current Retry Count 

Soft Positioninq Error 

Hard Positioninq Error 

Program Name to Loq on Error 

User Directory Number to Log on Error 

Unit Size (Number of Cylinders) 

Seek Fairness Count 

IORB Used by Home Block Check 

Fairness Cnt. for Read Seek Preference 

Device Dependent Part for MTA or for DSK 
(See PHYM2 and PHYP4 monitor modules) 

-203-

Head 

aead. 

\ 
\ 

I 



9 1 2 3 4 5 6 7 8 9 9 1 2 3 4 5 6 17 18 31 35 

UDBSTS I I I I I II " I I I I I I I I I I 
Symbol 

us.ors 
US.CHB 

US.POS 
US.ACT 
US. BAT 
US.BLK 

US. PGM 

US.MAI 
US.MRQ 

US. BOT 
US.REW 
US.WLK 
US.MAL 
US.OIR 

US. OMS 

US.PRQ 
US. TAP 
US.IDB 

Symbol 

.UTRP4 

.UTRS4 
• UTT16' 
.UTTM2 
.UTRP5 
.UTRP6 

lits 

9 
1: 

2 
3 
4 
5 

6 

7 
8 

9 
19 
11 
12 
13 

14 

15 
16 
17 

31 -35 

Pointer 

usorL 

USTYP 

Content 

Offline or unsafe 
Check home blocks before any 

normal I/O 
Positioning in progress 
Active 
Bad blocks on this unit 
Lock bit for this units BAT 
blocks 

Dual port switch in (A or B) 
(RP94,5, 6) 

Unit is in MAINT mode 
MAINT mode is requested on this 
unit 

Unit is at BOT 
Unit is rewinding 
Unit is write locked 
MAINT mode allowed on this unit 
operator intervention required. 
Set at interrupt level, checked 
at SCHED. 

Once a minute message to operator. 
Used in conjunction with US.OIR 

Positioning required on this unit 
Tape type device 
Tape - lOB seen on previous 
operation 
Unit Type 

Type Code for USTYP 

Code 

1 
2 
3 
4 
5 
6 

Unit 

RP94 
RS94 
TU16 
'!'Ma2 (as unit) 
RPa5 
RP96 

-204-



Hame: UCIORB 

Description: UDSKIO IORS Pool. The free tORBS are linked 
together in UOIORB and this list is pointed 
to by UIOLST. 

Defined in: STG 

Referenced by: PHYSIO 

UDIORS \ 
\ 

\ 
\ 

I 

Format 

-205-

\ 
\ 

\ 
\ 
J 



Name: UDS 

Description: Unit Dispatch Service Routine Table. This table, 
one per unit type, contains vectored addresses to· 
unit dependent functions, and is given in its 
generalized form. The specific unit dispatch 
tables are ~P4DSP (in PHYP4) for the disk device, 
and TM2DSP (in PHYM2) for the magtape device. 
See PHYPAR for definitions of arguments given 
and returned on calls to these unit routines. 

Defined in: PHYPAR 

Referenced by: PHYSIO, PRYH2, PHYM2(MTA), PHYP4(OSK), STG 

UOSINI-" 

UOSSIO-l 

UOSINT-2 

UOSERR-3 

UDSHNG-4 

UOSCNV-S 

UDSLTM-6 

UDSPOS-7 

UOSATN-ll 

UDSPRQ-ll 

UDSSTK-12 

Format 

Initialize 

Start I/O on an IORB, skips if O.K. 

Interrupt Routine (called on interrupts for XFER done) 

Initiate Error Retry (skips if no more retrys) 

Hung Reset (called from TIMER to reset hung devices) 

Convert Unit Linear Address to CYL, SURF, SEC 

Return Latency or Best Request 

Start Positioning on IORS (skips if O.K.) 

Attention Interrupt 

Skip if Positioning Required 

Stack Second Command, Skip if OK 

-206-



Name: 

Description: 

UPT 

Use~ P~ocess Table. A one page User Process Table 1s 
associated with the Scheduler and with each fork in the 
system. (Those associated with forks may be swapped 
out with the fork.) However, there is only one UPT 
known to the hardware/firmware at anyone time. The 
UPT known 1s the one whose address is pointed to by 
the hardware User Base Register (UBR), which is set-up 
when a process is chosen to run. 

The UPT contains the dispatch address for process 
events (i.e., traps) and the user's section map table. 

Defined In: APRSRV 

Referenced by: APRSRV, SCHED 

FORMAT 

'" ~'----------------------------------~ 

\ 

I 
\ 

377

1 4"'''' 

417 

42'" 

421 

422 

423 

424 

\ 

User 

User 

Available to Software 

r 
\ 

1 
Reserved \ 

Address of LUUO Block 

Arith. Overflow Trap Instruction 

Stack Overflow Trap Instruction 

User Trap 3 Trap Instruction 

Flags MUUO OP-AC 

-207-

HWPTA* 
-776""'''' 

UPTPPM* 
-7764"'" 

UPTTPI* 
-77642'" 

UPTOV1* 
-776421 

FFL*-KIMUFL* 
-776424 



425 1IlUUO Old ItC 

426 E of MUUO 

42; MOue PTocess Context 

431 Kernel No Trap MUUO New PC (word) 

Xernel Trap MUUe New PC (woTd) 

Supervisor No Trap MUUO New PC (word) 

Supervisor Trap MUUO New PC (word) 

431 

432 

433 

434 

435 

436 

437 

441 

Concealed No Trap MUUO New PC (word) 

\ 

477 

511 

511 

512 

513 

514 
SIS 

516 
517 

511 

\ 

Public Trap MUUO New ~C (word) 

Public No Trap MUUO New PC (word) 

Public Trap MUUO New PC (word) 

Reserved for software 

Paqe Fail Word 

Paqe Pail Plaqs 

Paqe Pall Old PC 

Paqe Fail New PC 

User Process Execution Time 

User Memory Reference Count 

\ 

\ , 
537~ ________________________________ ~ 

548 USERSECT 

-208-

PPC*-KIMUPC'* 
-776424 

KIMUEF* 
-776426 

UPTPCW*-KIMPCW* 
-776427 

UPTDSP* 
-776439 

UPTPFN* 
-776511 

TRAPFL*-UPTPFL* 
-776581 

TRAPPC*-UPTPFO* 
-776592 

UPTPFN* 
-776593 

USECTB* 



Note: 

* 

577 

699 

777 

I 
\ 

USERSECT37 

Available to software 

I .77654.1 
\ 

Approximately 1/4 of the UPT is used for hardware 
cells, leaving the r$st available to software. 
The monitor currently uses this area to house the 
first page of thePSa table. (See psa table 
description. ) 

These are monitor virtual memory addresses and are 
used when the monitor wishes to reference the 
current fork's User Process Table. 

-209-



Name: USER-PG-MAP-TBL 

Description: User Page Map Table. This S12-word swappable table, 
holds or points to other tables that hold all of the 
mapping information needed by the firmware to translate 
user mode virtual addresses in a given section into 
physic.l .emory .ddr •••• s. It is pointed to by an entry 
in the forks' .eetion t.bl. in its U.er Proce.s Table 
(UPT). l (See UPT table description.) 

The U.er P.ge M.p, indexed by a 9 bit virtual page 
number (1), contains either the storag_ addr ••• for 
the virtual p.ge if the pag_ exists (i .. ediate pointer) 
or a pointer to where the storag_ addre.s re.ide. in 
.nother table (shared or indirect pointer). The 
storage addre.s can b. a ••• ory, swapping area, or 
disk page addre ••• 

If the Storage addre •• for the virtual page referenced 
by the proce •• contains a memory page address (i.e., 
Storage Address Bits <12-17>-1), then the microcode, 
after copying this translation information along with 
the page's access bits into the CPU's Hardware Page 
Table (2), concatenates this memory page number with 
the index into the page to compose the complete physical 
address. . 

If the storage address for the virtual page referenced 
doe. not contain a memory address (i.e., Storage Address 
Bits <12-17> not equal to 0), or the page is non-e.xistant 
(i.e., Null Pointer word) or the page is being illegally 
accessed, the microcode will cause a page trap to the User 
Process Table (UPT). The monitor is then invoked to per­
form the analysis and resolution of the trap condition. 

Defined in: PROLOG 

Referenced by: DIAO, FORK, PAOEM, SCHEC 

-210-



UPTA* 

Immediate Pointer 

" 2 3 8 12 3~ 
Op Access Blts STGAQR 
Code Storage Addre.s 

1 

or 

Shared Pointwt 

fJ 2 3 8 18 35 
Op Access SPTX 
Code Bits 6PT. index 

2 (Holds P9'ti Stcr Adr .. ) 

or 

Indirect Polnter 

" 2 3 8 9 17 18 35 
Op Ace.ss IPPGN SPTX 
Code Bits PN SPT index 

3 (Holds Pg rrbl'$ Strar. Adr) 

or 

Null Pointer 

" 2 3 8 
Op Access Bits " (Nonexistent Pg) 
Code 

" " 
I 

· · · 
* UPTA is the monitor's symbol used when it wishes to 

reterence the current user's page m~p table for section " • 

... 211-

/ \ 

Vlrtual 
P9' 

( "-777 
oct.l) 

\ I 



(1) A fork'. virtual la-bit addre •• within a section 
Is viewed as an address within a S12-word pag., 
(i ••• , vi"rtu.l page number - 9 bits), Index into 
page 9-bits. i . 

(2) This 5l2-word table is examined first by the 
microcode for the virtual page translation 
information. If not there, it then goes to 
the fork's UPTA in memory. 

123 4 5 6 7 a 9 3S 

Page Pointer 
Word 

. 10.pendent on Pointer Type in Bits <8-2> 

Symbol 

PTRCOD 

P'l'BUB 
P'l'WR 
P'l'SOF'l' 
P'l'CACH 
P'l'CPY 
P'l'LOK 

Bits 

3 
4 
S 
6 
7 
8 

Pointer Meaning 

Operation Code for the page 
pointer type 

IMMCOD • 1 Immediate Pointer 
SHRCOD • 2 Share Pointer 
INOCOD • 3 Indirect 

Public Bit 
Write Acce.s 
Software Bl t 
Cache Bit 
Copy-on-Write (Software Only) 
Page is Locked (Immediate 
Pointer only) 

-212-



'Pointer Types: 

2 3 8 9 11 2 3 4 5 6 7 18 35 

Immediate Pointer 1 IAccess Bi ts I I I I I I I I 
Symbol Bits 

0-8 

S'l'ORAGE ADDRESS 

12-35 

NCORTM 12-17 

OSKAB 14 

OSRNB 15 

ORMAB 16 

ORMOB 17 

Pointer 

STGADR 

-213-

Meaning 

See above 

Storage address 
(Interpretation follows) 

Non-Core Test Mask yielding 
type of storage. 

Bits <12-17>-0 -> 
Bits <18-35>-Memory 

Pg Adr. 
Bits <12-17> not equal e -> 

Bits <18-35>-Orum/OSK 
Adr. 

Storage address is a disk 
address 

Temporary bit used with OSKAB 
to say that disk address is 
newly assigned. 

Storage address is a drum 
address 

Used with ORMAB to indicate 
that the swapping area h~s 
overflowed to the disk file 
system. (Since TOPS-2~ 
currently uses only the di$k 
file system for swapping, a 
drum storage address will 
always have bi~s 16 & 17 set.) 



UAABC l7-35 

I 2 3 

Null Pointer I IAcee •• 

Symbol Bits 

.0-8 

UAAB 17 

-te.porary bit used by the 
monitor'. page trap handler 
when a copy-on-write page 
trap haa occurred. If" the 
page to be copied i. a aru. 
addre •• , it~ll be faulted 
1n before th •• e bits are u.ed, 
avoiding conflict over bit 17. 
The.e bits will signify to a 
lower level routine, SWPIN, 
that the page just ,otten fro. 
the fr.. list h •• no beekup 
addre •• and -that it i. to gP.t 
a copy of another page. 

8 9 II 2 3 4 ~ 6 7 18 35 

Bitsl I 

-214-

I I II I I 
Meaning 

These bits will have a value 
of I for the Null Pointer 
ea.e. 

Temporary bit used by th:t 
monitor's page trap h~ndler 
to say that the page has no 
assigned backup address on 
disk/drum. 



a 1 2 3 8 

Shared Pointer 2 IACCeSS! 
Bits! 

Sits Pointer 

"-8 

18-35 SPTX 

" 1 2 3 8 9 

Indirect Pointer 

Bits 

a-8 
9-17 

18-35 

3 Access! IPPGN 
Bits! Page 

Pointer 

'IPPGN 

SPTX 

-215-

t 

18 

I 

17 

35 

SPTX 
SPT index 

Meaning 

See Above 

The SPT index is used 
to obtain from the 
the page's storage 
address. 

18 

SPTX 
SPT index 

Meaning 

See Above 

SPT, 

35 

.~ 

Page , whose value is used 
as an offset into the Page 
Table (pointed to by the 
SPT table address plus the 
SPT index in bits <18-35» 
to obtain the page's trans­
lation' information. 

The SPT index is used to 
obtain from the SPT the 
page table'S storage 
address. The table's 
address plus the offset 
specified in bits <9-17> 
holds the virtual page's 
translation information. 





Monitor Program Logic Manual 



DIGITAL 

Copyright ec) 1978 by Digital Equipment Corporation. 

The material in this .document is for informational 
purposes and is subject to change without notice; it should 
not be construed as a commitment by Digital Equipment 
Corporation. Dig!tal Equipment Corporation assumes no 
responsibility for 'any errors that may appear in this 
document. 

The software described in this document is furnished 
under a license and may only be used or copied in accordance 
with the terms of such license. Digital Equipment 
Corporation assumes no. re$ponsibility for the use or 
reliability of its software on .equipment that is not 
supplied by Digital or,its affiliated companies. 

The following are trademarks of 
Corporation, Maynard, Massachusetts: 

COMPUTER LABS 
DBMS-ll 
DEC 
DECSYSTEM-20 
DIBOL 
FLIPCHIP 
LAB-8 
OS/8. 
RSTS 
TYPESET-l0 
UNIBUS 

COMTEX 
DBMS-20 
DECCOMM 
DECtape 
DIGITAL 
FOCAL 
MASSBUS 
PDP 
RSX 
TYPESET-ll 
DECSYSTEM-2020 

Digital Equipment 

DBMS-l0 
DDT 
DECsystem-l0 
DECUS 
EDUSYSTEM 
INDAC 
OMNIBUS 
PHA 
TYPESET-8 
TYPESET-20 

«For Internal Use Only» 



I. 

II. 

III. 

IV .. 

V. 

VI. 

VII. 

VIII. 

DECSYSTEM ... 20 MONITOR FLOWCHARTS 

Sched\ller 

Page Fault Handling 

JSYS Calls - Device Independent L~v~l 

JSYS Calls - Disk Dep,n4ent L~vel 

JSYS Calls - Magtape Dependent ~evel 

Requesting DSK/MTA I/O & Interrupt Handling 

JSYS Calls - TTY D~pendent ~evel 

Request~ng TTY I/O & Interrupt Handling 

1 



2 



.SCHEDULER FLOWCHARTS 

Channel 7 Interrupt - Context Switching Overview PI71 

PISC7 - Detailed Context Switching PI72 

SCHEDO - Process Controller SCHl 

UCLOCK - Process and System ~cco~nting SGH2 

SKCL~ - Up4ate Glocks SCH2 

TCLKS - T~st Clocks & Perform Action on Timeo~t SCH2 

SCDRQl - Process Requests in Scheduler's Qu~~~ S~H9 

JOaSRT - JQb Startup 

SKDJOB - Select P~ocess to Ru~ 

GCCOR - Global Ga+page CQlleot 

TSTBAL - Ch~c;k if aalance Set N~eQ.s 
Adj\,1semE!nt 

SeH9 

SCH3 

SCH7 

SCH5 

AJBALS - Adjust Balaqce Set SeMS 

3 



4 



CHANNEL 7 INTERRUPT 
AN OVERVIEW 

Channet 7 
Interrupt 

PI71 

HOUSlkHP 

Sit Process Clk 
Flag (SKEDF3) 

Do Context Swit(fhing for 
Proceu Chosen to Run 

Dismiss Interrupt 

Set Trap to Cause 
Procels to Interrupt 
Here When Can 
Reschedule 

5 



CHANNEL 7 INTERRUPT 

NOSKED Procesl Can 
Now Be Interrupted. 

>----4 ..... Store Its PC in Proper 
Ves ptllClt. 

(ie In PISC7Rt 

Store PC in PSS 
Rnet NOSKED Trap 
in PSB to a NOOP 
Increm.nt "In Sched" 
Flav (lNSKEDt 

KISSAV 

Seve Time Schld Ovhd Started 
Store Fork's Runtime in FKRTT 
Save User's Acs in Blk 1 in 
PSB(UAC .r .. 1 

Call Scheduler 
XJEN@ [0 

Set Up II Resum. Process 

scow: 

No 
Set Trap at Adr. RSKED 
in PSB to Caute Interrupt 

>--......... On OKSKED (JSR 
RSKCHK .. RSKED) 

SCDR: 

Remember Scheduling .. 
is Needed So 
Increment SCHEDF3 II 
Set Deferred Sched. Trap 
(JSR RSKCHK .. RSKED) 

If at Point of Return to 
User (At GOUSR + 1 ), 

>---~ Adjust PC to Re.xecute 
Ves SETUSR When Resumed 

6 

PI72 

KISLOI). 

Restore Unr ACs (UAC) to Blk 1 
Store Fork'. Starting Tim. 
a..,.. Sched Overheed 

Rntore Blk 0 ACs from 
PAC Ar .. in PSB 

Set up Unr or Monitor 
Context D.pending on 

No 

Run Proc.ss 
PFL@PPC 



Process Scheduler 
(Entry to Scheduler) 

Setup Sched's POL Ptr 
Update TODCLK (UPDTCK) 
& Increment Keep-Alive Cnt. 

TCLKS pSCH2 

T<:1t Clks81 
Perform Actions 
on Timeout 

No 

Set Paging 
to Sched 
Context 

SWTST 

SCH1 

7 

pSCH2 

Set 
Alarm 
Clock 

CI.ar SKEDF3 Flag 
& Set Sched's 
Chan-7 Req Flag 
(SKEDF1) 

SCI-iPRE: 

Flush Cur. Fork 
Dump & DiSible Cache 
Weit 2 ms for I/O 
to Stop Before 
Powering Down 

SI(DJOB pSCH3 

No Schedule 
Next Proceu 

Move Old PC to 
Pipe in PSB 

Xfer PI Req. Info 
into pSB 

Set PC (PPC) to 
PIRQ 



Compute Increm. 
Run Time & Subt. 
from BSONT 

Update FKTLST if nec., 
Job's Run Time, 
Fork's Run Time, & 
Time Since SETRT 

Set Bit 0 " TLE Bit in 
>---1 .... Fork'. PSI Int.,rupt 

Ves 

Word In FKINT 

PSIR4 
Start. the Fork Up if 
On a Weit Un 
Otherwise, Mov .. it 
to a Higher Run 0. 

Increment Ate 
Stamp and Load it Into,...,,,,,,, 
Into J7KNR 

Decrement Interval 
From 20 MS and 
100 MS Clks 
(TIM' 8& TIM2) 

SCH2 

8 

Set Alarm to Short Cycle Time 
(Move 20 MS Into SCKA TM, 
Sched's Alarm Cock) 

DISMSJ 

Dismiss 
>-V-........... Current Job 

No 

v •• 

No 

Ves 

No 

(Force SKOJOB) 

SKDLV 

Do Integrals for SUMNR 
& NRPLO 
Do Dev-Dep. Task. (i.e. Chk) 
for OECNET Messages 
Chk for Chars in TTV Buffer 
Chk Oeleted·Pg Queue 
Chk Forks Waiting for 
Clk Wakeup 
Dismist Current Process if 
Page I/O Satisfied hal 
Occurred 
R.et TIM1 to 20 MS 

CLK2 

OismilS Current Process 
RlSet TIM2 to 100 MS 
CheckWTLST 
Calf Device o.p. Routines 
Whose Timan Have Expired 
C .. ,QSKED 



SKOJFC: 

Remove All Forks 
From the BALSET 
& Collect All Pgs 
That Are Not Locked 

Clear (SKEOFC) 

Balance Set Scheduler 
Called to Select Process to Run 

TSTBAL pSCH5 

Test & Adjust 
Balance Set 
if Necessary 

SCH3 

9 

No 

GCCOR pSCH7 

_~-I Global 
Ves Garbage 

Collection 



Get List of BALSET 
forks from BSPT Queue 

Compute BALSET Inde. 
& Get Fork's Entry in 
BALSET Tabl. 

No 

No 

SKCB4: Yes 

> _____ ..... 1 E?~:':: 
SKDJ2: 

SETPPG 
Setup ager: 

MMAP Entries for 
CurJSB8tPSB 
inSPT 
Age & Pur Regs 
CI • ., Hdw lbl 

No 

Clear BALSET Flaos for Fork 
Store Remaining Run Quant. 
into RJQNT & BS Quant. 
into BSQNT. 
Clear Increm. Time Kept 
in FKT1 

Put Fork's Q Level & Core No. 
in SJOBO (Loc 21 ) 

SETOVF: 

Setup Overflow Trap (Op Code 041) 
in UPT if User hu Enabled for 

. Overflow Interrupts 

SCH3a 

UPDTCK 

XCLKS 

Do Periodic Action. 
CaU SKCLK pSCH2 
Call SKDLV8 

10 

Call CLK2 

WTCHK 

Chk Non-Speciat 
Waiting Forks 

AJBALS pSCH5 

Adjust Balance Set 

BKGND2: 

ota, Have No Fork 
to Run 
(-1 .... FX) 

WTCHK 

Chk Non-Spacial 
Waiting Forks 

Return to 
Process Controller 



Test Waiting Ballet Forks 

Set Up Fork's 
Test Data & 
Call Test Routine 
for Wait Chk 

Clear Balance 
Set Wait Flag & 
Decr. NBWT 

Compute Time Waited 
and Add to Total 
Wait in BSWT 

Add Wait Time 
to DSKWT 

DISMT5: ' 

Reduce Fork's BS Hold 
Time, BS Quantum 
& Run Quantum By 
MIN(S MS, Actual Wait} 

Add Wait Time t---t-' 
ToDRMWT 

Add Wait Time 
To DWRWT 

SCH4 

11 

Put Fork Back Into 
BALSET Wait State, 
Increment NBWT, & 
Reset Time Started 
to Wait in NBW Tbl. 

Increment Global 
Garb. Collection 
Flag (CGFLG) 

Return Unrunnable 

Return Runnable 

SKDJS1: 

SOSNEB 

Remove Preload Size 
From Core Reserve 
(NRPMIN~ & 
Deerem. NEBAL 

PRELD 

Preload 
Working 
Set 

t.oad as Mqch as 
Possible Now 



TlSt if AJBALS 
CI"r AJlODN 
CIa, Running HQ 

and La Sums 

Save(BALSHC)ln(BSHCII 
Init SUMNR Cnt to 
(BALSHC) + BSPAD 

(5) 

Cnt. BALSET Fork 
Add WS to Accum. Sum 
Remember Last Fork 

in AJBLFK 

AJBUQS 

Update Q Sums 

12 

No 

AJBSHK 

Shrink It 
So It Does (61 



Shrink Fork 
So It Fitl (6) 

SCH5a 

13 

Chk for Consistency 
in BALSET Sum 
Calculated & SUMNR 
(BUGCHK if not OK) 

AJBALY: 

Set Time for Next 
Periodic Call to 
AJBALS 
Now + 1 Sec. -+ (NXTAJB) 

If More Than' Fork in the 
BALSET, Remove the Last 
One Kept in the BALSET 
with Hold Time Left. (7) 



Ve, 
, _______ ...... Sub (Diff + 2) 

from Res WS and 
from SUMNR 

Update Q Sums for 
either HQ or La 
(Running Total of Pili 
(Running # of Forksl 

SCH6 

14 



For 1st N Pgs on RPLQ, 
Undo Their Ptn, Flush Their 
Back Ptn, & Clear Their 
CST2 Entries 

Setup in P2 All the Bit 
Positions for Forks in 
the BALSET 

GCCOR2 

Store P2 Comptement (Forks Not 
in BALSET) in PUBCL 

SCH7 

15 

Don't Collect Pg, But 
Continue Scan If More 
Pgs to Look at 

Adjust SUMNA bV 
(BSHC1) - (BALSCH) 
Set (BALSCH) to (BSHC1) 
Clear BSCHl 

No 

Continue 
Scan 

Collect 
Pg 



Collect Page 

Design Pg 
From Fork 

SWPOML pPF12 

Put Pg on List 

No 

Yes 

Inerem. 
BSHe1 

Do Single Pg 
SwpOut 

SCH8 

16 

Continue Scan 

Remember Last Page 
Done-in GCCLPG 

SWPOMG pPF13 

Do All Swaps 
Queued Above 



Get Entry From 
Reg Tble, SCORQB 
(Data, Disp Add 

Dispatch To 
Routine (i.e. 
JOBSRT) 

Scheduler Request 
Processor 

SCH9 

17 

ASSFK pSCH10 

Get a 
Fork 

ASFSB 

Assign a SPT Slot & 
Adjust Shr Count 

Store 
NEWJBF Flag .. TTY No. 
in the Pseudo-Interrupt 
Communications 
Table, FKINT 

Yes 

JOBSR1: 

Prints "Full" 

Clear TTY's 
Entry in TTFORK 
Table 



Aslign Fork Slot 

ASSFK 

~ 
Get Fork No 
From FREFK 
Unked List 

t 
Set Up Wait Test 

l Routin. for Fork 
In FKSTAT 
(0,. JSKP) 

t 
SetUp 
FKOTM-Ouantum (300ms 
FKTIME - Tim. Fork Put 
on Run 0 (TODCLK) 
FKQN - Run Q Lev.1 (0) 

t 
WTCONC 

Put on Wait 
Queu. (9) 

t 
Set Flags in LH of FKINT 
(400000 + ftJEWFKF) 

r 
Clear Entries for Fork in 
Following Fork Tables 
FKINTB, FKPGS, 
FKCNO, FKJOB, 
FKWSP 

t 
Set Fork's Ag. 
Stamp to 100 &. 
Res.ne Working 
Set to 3 

t 
Call AS FSB Three Times 
to Obtain Three SPT Slou, 
Each with Their Share 
Count Updated. Th. SloU 
are for the Fork's PSB,& 
UPT A Tables. , 

Return) 

SCHIO 

18 



Scheduler Comments 

SCHEDO: 

(1) Running averages, exponentially weighed over intervals 
of 1, 5, and 15 minutes,are maintained for the number 
of runnable processes overall, as well as for those in 
High Run Queues and those in the Low Run Queues. 

(2) Final phase of powerdown seq. clears the priority 
interrupt system and causes the system to loop iu the 
ACs until power actually vanishes. If the power fail 
interrupt was spurious, the loop will time out after a 
few seconds and the system will be continued at 
address SYSRST. . 

(3) A very l~ted set of central functions for debugging 
purposes has been built into the Scheduler. To invoke 
a function, the appropriate bit or bits are set into loc 20 
(SCTLW) via MDDT. The word is scanned from left to 
right (JFFO)i the first bit found set on the scan 
selects the function. 

Bit 0 

Bit 1 

Bit 2 

Causes the scheduler to dismiss the 
current process and to stop timesharing. 
Useful to effect a clean manual transfer 
to Exec-mode DDT. System may be res~~ed 
at SCHEDO if no IOB reset is done. 

Causes job specified by (20)RH to be run 
exclusively. 

Forces running of Job a back-up function 
before halting the system. 

If loc 30 (SHLTW) is set not equal to ~" the system 
will crash. (Same as setting bit 2 of SCTLW word.) 

19 



AJBALS 

(4) Upper Limit for LQ=MAXNR-MIN [Max HO Reserve, HQ Load Avg.* (16)] 

Upper Limit for HQ=MAXNR-MIN [Max LQ Reserve, No. of LQ forks * (32)] 

(5) SUMNR reflects the number of timesharing pages in use. Its value 
after AJBALS equals the number of pages reserved for balance set" 
members plus BALSHC (the number of pages shared, but not owned, by 
balance set members plus the number of locked pages) • 

BSPAD reflects the number of pages set aside for balance set members 
as their working set reserves grow. The real value of BSPAD is 
offset by a factor of BSPADO. When forks are trying to stay in the 
balance set, the adjustment algorithm allows the pad offset to be 
subtracted from the accumulated sum before it checks if the fork 
can fit. 

i.e., n 
(BSPAD + ~ Res. WS ) - BSPADO + Res. WS 1. MAXNR· 

i=l i n+l 

The adjustment algorithm does the opposite (i.e., adds the BSPADO 
factor) for forks trying to get into the balance set. The overall 
affect of this is to ensure (as much as possible) a certain number 
of pages be available for balance set forks. 

(6) The shrink algorithm shrinks the fork's reserve working set by: 

MIN [Reserve WS - Current WS, Accum. Sum + Fork's Res WS-MAXNR] 

Notice that the fork's reserve working set will not be reduced 
below its current working set. 

(7) This is the rare case of forks, with hold-time left, expanding. 

GCCOR 

The lowest priority one is removed. If there is only one fork in 
the balance set, it is not removed. (Note: it is possible for one 
fork to be greater than MAXNR due to the BALSHC count changing). 

(8) If it is a forced clear, then GCMINO is made very large so all of 
core will be collected. However, its usual value is much lower. 
(Currently 64 decimal). 

20 



~SSFK 

(9) The fork is actually placed on the GOLST at this time. WTCONC, 
after putting a fork on WTLST, checks if the wait condition is 
satisfied. The test routine, JSKP, gives a skip return indi­
cating that the wait is satisfied. This causes UNBLKI to be 
called which in turn calls SCHEDJ to unblock the fork and to 
requeue it from the WTLST to the GOLST. 

21 



22 



PAGE FAULT HANDLING FLOWCHARTS 

PGRTRP - Perfo'rms the Principal Accounting, Analysis, PFl 
and Resolution of Page Faults 

PGTACC - Accounts for Page Traps PF2 

XGC - Local Garbage Collection PF4 

SWPOUT - Swapping Out a Page PFl4 

NICCKS - Check In-Core Size Limits PF3 

GETTPD - Determine Cause of Trap PF5 

NIC - Not in Core Trap PF6 

SWPINW - Swap In and Wait PFlO 

SWPIN - Swap In a Page PFll 

WCpy - Write Copy Trap PF8 

ILRD - Illegal Read Trap PF7 

ILWR - Illegal Write Trap PF7 

TRPO - Age < 100 Trap PF9 

23 



24 



Entlr H .... on Po Fault 

SliWI AC P 
Slitup Trap Stk Ptr 

(TRAPSPI -- P 
Incrlm Trap Cntr. 
+1 -+ UTRPCT 

No 

Sliw. AC'sl-4.7,tX 
>--..... and (TRAPSWI on 

If Pg Trap Tim. Flag 
ilPTIMI is Set, 00 Not 
Charge P. F. Handling 
to Fork's Run Time 

Init Tim. Int.rval of 
Trap Codl unless 
Already InitialiZid 
lie, Nest.d Trap) 

Stk Adr +(BHC +1) 

PGTACC pPF2 

Account for on. Pg Trap 

25 

Dispatch to Err. Handler 
PGRTH: Pg Tb ParitY/Refill Error 
I L R 0: Proprietary 
ADRCMP: Address Compare 
IlSCN: Illegal Section 
ILIND: Illegal Indirect 

PGUNTP Retry r----.... -1..:!!!:~~ if RlCowe~ab". 
pPF1. 

;Pg or Pg Tbl Age < 100 
---"" (pPF9) 

---~ 
;Null Ptr (PPFS) 

\~::=::-' 
;Writ. Copy (pPFS) 



Page OK to Ref. 

If 1st Trap & Including 
Pg Trap Time, Read Current 
Time to Complete Timing 
of Trap Code & Update 
PTTIM HSPTTM SPTTIM 

Ves 

Restore Flags, PC to 
TRAPFL, TRAPPC & ACs 
1-4,7, CX & TRAPSW 
from Stack 

PF1a 

Flags, PC -+ F F L, FPC 
-1 -+ TRAPC 
OKSKED 
-l-INTDF 

GOUSR: 

26 

Setup User AC BIK 
as current Blk 

Return 
XJRST@ FFL 



Account for on. Pg Trap 

; 

Get Subsyst.m I nd.x 
(if any for job) and 
account for Pg fault 

Get Diff.r.nce betwe.n 
Ag. at last XGC and 
Curr.nt Age (Adjust for 
wrap around if nee.) 

No 

Calculat. Ratio of Actual 

; Interfault Avg to Desired 
(Desired • 2 x Avg Swp Lad 

.,V_"_--l ..... lncreas. Window Size (CAPT) 
(CAPT) + ~ - (CAPT) 

; 

j 
Reduce Window Size (CAPT) 
(CAPT) - (CAPT) - (CAPT) 

-1-6-

See if CAPT within Limits 
; If > CAPTMX, Set CAPT to CAPTMX 

If < CAPTMN, Set CAPT to CAPTMN 

16 

No 

PF2 

27 

~ 
XGC pPF4 

Local Garbage Collect 

Yes 

Reduce R.s.rve WS 
and SUMNR by X 
X-R.s Ws..(Cur WS + 41 

NICMGI: 

NICCKS pPF3 

Check for 
Allowable Size 

s.t Bit for Faulted 
Pg in ~he Fork's WS 
Bit Tabl. in the PSB 



Ves 

Ves 

Check Overall Size for 
Physical Core Limit 

'nit Temp Window Size to 
7(CAPT) for Possible XGC 
-8-

Set Res WS -.Cur WS + 1 
Update SUMNR IBALSET TOTAL) 

Set up Schad Test 
for BALSET Size 
NICTST- ACI 
RDISMS 

No 

PF3 

28 

NIC3...,: ___ .. 

Reduce Temp 
Window by CAPT 

-2-

Get CurWS + 1 



LOC8t G.rb ... Collection 

Setup to Selin 
. CSTO Beyond R .. Mon 

Comput. MIX No. of Pgs For 
To CoUect (All of Pgs For 
Proc:eu in Corel 

Cllculau Cutoff Age 

XGcz:r-________________ ~ 

DASWSP 

D .... ign Pg From Proceu 
Decr. WSP 
R ...... Core No. if 

WSP .. O 
Mark Pg Un .. signed 

in CSTOFK 

No 

No 

Ve. 

29 

pF4 

XGCS: 

sdupto do 
Housekeeping for 
the Fork's Working Set 

For Each Pg in the Fork's WS • 
Clear iu bit in the WS Bit Tbl (in PSB) 
if the Pg is: 

DeI.t.d. Not in Core, or Unassigned 
in CSTO (Unless Rd. Compl.l 

If the Pg is Rd. Compl.te, C.II AGESN 
to Asaign the Pg & S.t the Age 



Construct 
Identity 
of Pg 
Pointed to 

Determine Cause of Trap 

Get Disp Adr 
NPG 

PF5 

30 

Gtt Disp Adr 
WCpy 

Get Disp Adr 
!LWR 



AcctSMd 
Chked 
Alr .. dy 

Must See if (31 
Write is Poaible 
Rechk Access 8t If 
Can't, then go to IlRD 

No 

aCHK 

Chk for Enough 
Disk SplIce for 
Pg er •• tion 

Swpln 
PI 

Get Core Adr 8t 
lock it in CST1 
in Ca_ Resked 
Below 

(41 

No Room 

PF~ 

31 

AA.D* 
Adrfor File 
Pv 

Set up Sched Test 
Blk until "Unlocked 
ACI/OFNlKT 
MDISMS 



Yes 

Illegal Reference Traps 

Store Trap Stlt\ .. Word 
in UTRSW in PSB 
(In Case User Wants it) 

Simulate PUSHJ by 
Updating PO L Ptr 

Yes 

No, Post Interrupt 

(BHC +1) + (TRAPAP) -. (TRAPAP) 
and Saving Instr Trap Adr + 2 
(Ret Add on The Updated Stk. (5) 

ILRFI: .--____ --' _____ ..., 

Get Adr to Transfer to 
from Word Following the 
Instr Causing til. Trap 

Alter Return Adr Stored on 
Stack Pointed to by AC P 
by Storing Adr to Transf to 

Illegal Write 

ILRFU: 

ITRSIM 

Check for ERJMp· 
or ERCAL 

PSI ROO 

Request 
Interrupt 
for This Fork 

Get it Seen 
by Executing 
CHKINT Macro 
(je AOS SKEDF3 
- ISB SCDCHN) 

PF7 

32 

Alter Ret Adr 
With Adr Gotten 
from ITRSIM 
Routine and 
Prune POL Ptr 
(Subt. BHC + 1 ) 

Incre, Ret Adr 
Stored on Stack 
(Skp over I n5tr 
Causing Trap) 



Copy On Write TrIP 

Clnr Write Ref Bit 
in Pg F.ilure Word 
(TRAPSW) 

GETTPD pPF5 

See if Pg Rndlbl. 

SETSPG 

MIIP Th. PTin 
Th. Monitor Mlp 

Get Ptr & Modify Ptr 
Type to Immed. With 
Select Access Bits8t 
, CoPY' Adr and Store 
in Pg TbI 

RELSP(; 

R.I .... Monitor Map Slot 

SWPINP 

NOSKED 
CALL SWPINW pPF10 
OKSKED 

Will Copy from CPYPG 
to New Page 

Handl. Oth.r 
ea .. 

PF8 

33 

MRPT 

G.t Id,nt of 
Shlrld Pg Bling Rei .... 

RELMPG 

Rei .... Orig Pg 
from CPYPG 

RELCPT 

Cle.r Map 
Entry 

JFNDCR 

Decrem. Map 
Count for JFN 

Ya 



Pg Not in Existance Trap 

BUGHL T if Pg Not 
in Legal Range if 
Monitor Trapped 
or Illegal Section 

Setup an Immed 
Ptr With 0 for Storage 
Adr & UAAB (bit 17) Set 
in Pg Tble 

Set err Code ~ 
Reg Int •• ICNXP 

PSIREQ 

PSI Ref. 

Get Int Seen 
With CHKINT IViacro 

PF 8a 

34 



Make Sure Enough 
Pages on RPlQ 

TRPSPM: 

No 

TRPSPI: 

RPCST 

Remove Pg 
From CST 

ONSPMQ 

Place On 
SPMQ 

Pg or Pg Thle 
Age < 100 Trap 

Dispatch to One of 
The Following Based 
On Age Field 

SKPNWR pPF9a 

Skp If No Writes In 
Progress On Core Pg. 
Otherwise Reschedule 
Until Write Complete 

Untrap & 
Try Again 

PF9 

35 

Set Up Sched Test 
AC1/Age Field .. SWPRT Wait for Pg 
ROISMS 



Set Up Sched Test 
AC1/(NRPMX),. TRPOCT 
RDISMS 

I ncrement Global Garbage 

Collection Flag (CGFLG) 

unsuccessful 

Increment DWRCFL Flag 
(Says Fork Waiting for 
Write Completion) 

Set up Schedule Test 
AC1/Core Pg No ••• DWRTST 
RDISMS 

PF9a 

36 



REQUESTING DRUM OR DISK READ 

(PAGEM LEVEL) 

SWPINpPF11 

Swap in & Wait 
f9r Completion 

Swap In & Wait· 
for Completion 

SWPINW 

Fix Age on Pg 

SWPIW4: 

SWPIW1: 

SWPIN pPF11 

Swap the 
Orig Pg 

Chks If Pg State Code 
Says Read In Progress 
and RDISMS if so 

PF10 

37 

Swap in PT 

OKSKED 
Lock Pg in CST1 
Wait to Fi nish 
With PDISMS 

AGESN 
Assign Pg 
an Age 



REQUESTING DRUM OR DISK READ (Continued) 
(PAGEM. LEVEL) 

Decrement NRPlO & 
Remove Pg From 
Replacement 0 (linked 
List in CST3) (6) 

Rsset Previous 
Ownership 

Map PT Through 
Monitor Map 

Lock PT in Core 
(BUGHlT if Pg in Pg 
1b Already in Core) 

Release Slot in 
Monitor Map 

When Reached 

SWPOT: 

Set up Sched Test 
>------__ -t SWPWTT ~ AC1 

No 

No,SPT 

PF11 

38 

PDISMS 

BUGHLT 
If Adr From 
SPT In Core 

Store New Core 
Adr (Pg From 
Repl. 0) in 
SPT Slot 





MULTIPLE PAGE SWAP OUT ROUTINE 
SWPOMI • Init List 
SWPOML . Called to Add Page to Swap Out List if Possible 
SWPOMG· To Begin I/O for All Pages on Swap Out List 
SWPOUT . Initiate Swap Out of Single Page 

Add Pg to Swap Out List if Possible 

GETSHR 

Get Share 
Count 

GDS.TX 

Get DST 
Index for 
Drum Addr 

Get Adr of Pg 
On Drum & if 
Modified bit is 
Set~ Set Modified 
Bit in CSTO Entry 

Clear DST Entry & 

No, Exception Case 

No, XBor PT 

No 

SWPOUT pPF14 

Use Singl. 
Pg Swpout 

Init Swap Out List 

Pg Can't be Written on Drum 
or his no Drum Address 

DASDRM 

Deassign 
Drum Addr 

Put Pg Want 
to Swap Out 
on End of 
Swap Out List 

I ncrement Count 
of Pgs on List 
(SWPRCO) 

Put its Former Contents ..... -------------­
Into CST1 

PF12 

40 



Assign New Drum Storage & 
Initiate °1/0 for All Pages on 
SWPOUT list 

G.t lilt of Pgs To 00 
Get Count of Pgs left 
on Ust 

DRMAM 

Try to Get 
Specified No. 
of Sequential 
Pages 

DRMASA 

Assign 
Adron Drum 

Store Drum Adr 
in CST1 Entry 
for Page & Former 
Contents of CST1 
(Disk Adr) into DST 
Entry for the Drum 
Address, Marking the 
Modified Bit (BWRBIT) 
if Pg to be Swapped Was 
Modified in Core. 

PF13 

41 

Increment Writes in Progress (lOIP) 
and Drum Writers (DRMWR) 

DRMIAD 

Bump Drum Adr to 
Next Page 

Get Ptr to Next Gp., Tie Off 
Current list & Set Up Next 
list 

DRMIOM 

00 Multipage Write 
(Calls DRMfO pPHY1 
for Each Pg.) 



ONRQ 

Put Pg on End 
of RPLQ 

Return 

PF14 

42 

Set Drum Adr as 
New Adr in CST1 & 
Put Former Adr. in 
DST 



Swap to Disk 

GDSTX 

Get DST Inde. 

Release DST Slot 
(Satto -1) & 
Put Former Contents 
of DST Slot into 
CST1 Entry 

DASDRM 

Deassign 
Drum Adr. 

No 

PF15 

43 

Entry 

Request Write 
Increm DSKWR 
& 10lP 

Set Write-in-Progresl 
(PSWIPI in Age Field 
of CSTO 

DSKIO pPHY1 

Requests I/O 
to Disk 

PUt Pg on 
Top of 
RPLQ 



44 



Page Fault Handling Comments 

PGTACC 

(1) Checks if process has accrued more than or equal to 
the number of age ticks of GCRATE • Currently, this 
is set to 5~, which implies 2 sec. of process 
virtual time (i.e., the age stamp is incremented 
every 4~ ms of process run time). 

NICCKS 

(1) GNPSAS is currently initialized at system startup to 
zero and is incremented/decremented only when pages 
are locked/unlocked. It is currently only tested by 
NICCKS as well. 

GETTPD 

NIC 

(2) The age field when used to hold the age stamp, will 
always have a value of l~~ or greater. This checks 
if any of the lefthand 6 bits of the age field are 
set. 

(3) Co uld take the ILRD path, for example, when OPENed 
file for write, but PMAPed for each of a nonexistent 
page. A page would have to be created which would 
then imply a write which was not enabled under PMAP. 

(4) If file page faulted does not have its own SPT slot, 
but has to be mapped (using indirect pointer) via 
the index blk slot in the OFN area, then the index 
blk will be locked in core. (So can't be swapped in 
case of reschedule.) 

(5) Note in the predispatch code that ACI was stored in 
SHC + 1 and AC, P, which holds a push down list 
pointer, was saved in TRAPAP. 

45 



SWPINW 

(6) SWPINW will invoke SWPIN to swap in a page irito a' 
page from the RPLQ. However, this same code can 
also be entered with different flag settings and be 
used to swap in a page into a page from the special 
memory queue (SPMQ), a queue used by the memory 
error handling code. 

SWPOUT 

(7) SWPOUO is called from: 

SWPOTO which clears the SWPKPF bit (for top of 
RPLQ) before calling SWPOUO and 

SWPOTK (called from the UPDPGS JSYS) which sets 
the SWPKPF bit (for end of RPLQ) before 
calling SWPOUO. 

46 



GTJFN -

OPENF -

SIN/SINR-

JSYS CALL FLOWCHARTS 

DEVICE INDEPENDENT LEVEL 

Get a JFN 

Open a File 

Sequential Input 

BYTINA - Call Device Dependent Code 
to Get a Byte 

SIOR2 - String I/O Multiple Byte 
Transfer 

GJl 

OPI 

Sl 

S2 

S2 

SOUT/SOUTR - Sequential Output S3 

BYTOUA - Send Byte to a Service Routine S4 

PMAP - Map a File or Fork PMl 

UFPGS - Update File Pages UDI 

CLOSF - Close a File CLI 

47 





GTJFN JSYS 

Assign First Free 
JFN Block in JSB 
(This Determines JFN #) 

Parse User Arguments 
Field By Field. Default 
the Arguments Not 
Specified if Have legal 
Default 

Store Argument 
in JFN Block 

GETFDB 

(2) 

Address of FOB - FllFDB 
(May Have to Create FOB 

No 

(1) 

No 

for New File) (3) 

GJ1 

49 

ERR·GJFX3 

ERROR 

Setup User 
ACI with 
JFN 



CHKJFN 

Check JFN 
Validity. Set 
Status Bits 

Store Bytnize 
in FILBYT (0 Implies 
A Byte Size of a Word) 

OPENF JSYS 

OP1 

50 

Setup Dispatch 
Tabl. Adr 

Init JFN Blk Variables 
1 -+ FILLFW(LH) 
Flap-+ FILSTS 

Successful 
Return 

'1 ) 



PMAP JSYS 

PMAPO 

Call This 
~-Y-e·s"" Routine 

for Pgs up 
to the Pg 
Tble 
Boundary 

ERR-PMAPX2 

ERR-PMAPX1 

No 

ERR-PMAPX2 

PM1 

51 

Destination Is a Fork 

No 

MSETPT 

Set up Pg Tables 
R.I .... Old Contents 
of Dest. & Have New 
Contents a. Set With 
Copy-on-Write Access 

Increment 
Cnt of Pgs 
Mapped in 



Update Bytt 
Ptrs in User 
ACS No 

SIN/SINR JSYS 

If Thit i, Special 
Byte Ptr (·1 in LH) 
Cr .. te Equivllent 
RtOul. Byte Ptr. (1) 

CHKJFN 

ChkJFN 
Vllidity & Stt 
Up Stetul FII" 

Sttup& 00 
Byte Blk Xfer 

(4) 

UNLCKF 

52 

51 

Rec. Size Longer 
Thin User's Request 



No 

JFNIO(OEV'OTB) 

Init JFN for 
Input 

SINTT1: 

BYTINA pS2 

SIND 

Put Byte 
inU .... '. 
Adr. Space 

SIONXT 

Chk if "End 
of String" 
Ch.r 

SIN/SINR JSYS (continued) 

From oft Routine 

S1a 

53 

BYTINApS2 

Get Byte 
from Source 

SIND 

Put Byte 
in User's 
Adr. Space 

SIONXT 

Chk if "End 
of String 
Cher 



Call Device DIp. Code to 
Get. BYtI 
~----........ 

BYTINX 

Getml 
Bytl 

Strino Input/Output Multiple Byte Xf., 

BYTeLT 

Do the 
Transfer 

Set Flag to TeU 
CaUer JSYS is 
Finished 

Return 

BUGCHK if BLKF Flag 
.Set. (Should Only Be 
Set by Cod. Ahlld) 

BIND(DEV'DTB) 

Dispatch Through 
DEV'DTB Table to 
Device Dependent 
Codl 

Chk for Une #s 
& Terminator 
Transfen Byte One at a Time, 
Until Terminator Found or 
FILCNT (Buffer Pg Cnd or 
User Count Exhausted 

Transfer Byte 
One at a Time 
Until FI LCNT 
or User Count 
Exhausted 

Transfer Byte to User 
Until Page Cnt (Buffer 
or Window) or User 
Count is Exhausted S2 

54 



UNLCKF 

Unlock the 
JFN 

No 

SOUT !SOUTR JSYS 

If Using ( ·1, Addrl 
Special Bvte Ptr, 
Change to 7·Bit 
Bvte Ptr. 

SOUTO: 

CHKJFN 

Chk JFN Validity 
(Err Ret if Not OK) 
Setup JFN StatuI 

JFNOO(DEV'DTB) 

Init JFN for 
Output 

55 

SOUTB pS4 

Send Bvte 
Through Dev. 
Dep. Code 

SOUBYT: 

SIOR2 pS2 

Setup & 
Do Bvte Blk 
Transfer (4) No 

..... -----...... -t Return to User 

Call Device 
Dep Code to 
Write Out the 
Record 

Call Dev Dep Code 
to do a Record Out 

Yes 

UNLDIS 



Send Byt. to 
Service Routine 

APPNUL 

Append 
Null to 
String 

SIONXT 

V.s 

MDISMS 
with Sched 
Test Routine 
From S.rvic. 
Routin. 

S4 

56 

BUGCHK if BIKF Flag 
Set (Should Only Be 
Set By Dew Dep Cod.) 

BOUDCOEV'OTB) 

Call Dev Dep. 
Code Through 
Dispatch Tabl. 

Unsuccessful 
Error Return 

UnsuCC8S1ful 
Return 



v •• 

SETMG 

R ...... 
Index Blk 
from Map 

Updltt 'If. P .... 
C.UII a,lnted PI ... 
to be Written to DI.k 

SKPNWR pPF9 

UFPGI JSVS/DDMP 

Check if Writ. 
in Progr.ea. 
RDISMS if so. 

Ves, Recheck Pg 

Allign Page 

UD1 

57 

No,U ..... ign .. 
Pg -Ignor. 

No 

SWPOTK 

Set SWPKPF .. 1 
Call SWPOUO(pPF 14 
to Swep Out the Pg 

Request Swap to 
Disk. Set DSKSWB 
Bit in CST3' Entry 



CLOSFJSVS 

REUFN 

R ...... JFN 

CL1 

58 

CLZALL 

Does a CLZFF 
JSYS for .FHSLF 
(Fork luuing Call) 



Not OK, Err Ret 

Call Device Oap Code 
CLOSO(OEV'OTB) ............ -----t 

When 
Unblked 

UN LOIS 

Does MDISMS ..... I------C 
with Reason 
to Blk 

Ves 

'fes 

No 

CL2 

59 

Assign Pg 
Map Cntto 
that JFN (2) 

UNLKF 

Unlock file 

UNLKF 

Unlock file 
I--~""-(( Error) 



60 



GTJFN Comments 

(1) This code is looking for a file specification of the form: 

Dev:Directory Name, type, gen;T (temporary) ;P(protection) ;A(account) 

One or more fields can be defined by logical names. 
If any fields are omitted from the specification, the 
system will default the values as follows: 

Device 
Directory 
Name 

Generation 

Protection 

Account 

DSK: 
Connected directory 
No default for disk 
Null for other devices 
Highest existing for input 
Next highest for output 
As specified for directory or 
protection of next lower generation 
Current user account 

(2) The internal GTJFN code uses several locations in the 
JFN block as temporary cells. These locations have two 
names in the JFN block table descriptions. The JFN 
block storage locations set up or used by GTJFN are: 

FILLCK* 
FILTMP* 
FILACT* 
FILOPT* 
FILDEV 

FILDDN 
FILPRT 
FILSTSl 
FILLNM* 
FILDNM 

FILNEN 
FILVER 
FILCOD (LH) 

*Used internally only by the GTJFN JSYS. 

(3) The creation process of the FDB simply asks for space 
in the directory for the FDB. 

61 



.OPBNF Comments 

(1) Cell FILDEV in the JFN blk has the device dispatch 
table address. For example, for disk, GTJFN sets 
the dispatch table address to DSXDTB. If spoolinq 
to disk, GTJFN sets the dispatch table address to 
SPLDTB, but the OPENP code chanqes the dispatch 
table address to DSXDTB and sets up a file 
specification in the JFN block. 

62 



· SIN!-. SOUT Comments 

(1) TOPS-20 allows a user to specify a special byte pointer 
of -1" Address which is interpreted as a 7-bit byte 
size beginning on the word boundary, Address. 

(2) A user can do I/O from one place to another in core by 
specifying byte pointers for both source and destination. 
This differs from BLT in that the use can transfer 
on non-word boundaries. 

(3) For disk files, FILCNT will be the number of bytes 
remaining in the window page. For magtape and other 
devices it will be the number of bytes remaining in 
the current paqe of the buffer. 

(4) The routineBYTBLT only moves data up to the page 
boundary of the current buffer page. 

(5) If the user has not specified OF%PLN in the OPENF, 
line numbers are stripped off the beqinning of each 
line. (See SIN JSYS in Monitor Calls manual for 
defini~ion of terminator.) 

63 



.PMAP Comments 

(1) A paqa is private if it is not shared between a 
file and a fork. 

64 



UPDPGS Cpmments 

(1) Routine scans paqe table twice: first t~e to request 
writes on all chanqed pages. Second time to wait for 
completion of writes. '(This is faster than waitinq 
for each write to complete as it is requested.) 

(2) If paqe has not been modified, a check is made to see 
if the drum is full and if so, to release this page 
back to the drum. The map pointer to the page will be 
changed to its disk address. 

65 



CLOSE' Comments 

(1) If user has switched primary I/O to some other JFN 
and attempts to close it, an error results. 

(2) The page map count in FILFW reflects the number of 
pages mapped and • CLOSF can't be done on a file if this 
count is greatar than _ • 

66 



JSYS CALL FLOWCHARTS 

DSK DEPENDENT LEVEL 

DSKOFN - Disk Opening of a File 

ASFOFN - Assign OFN 

UPDOFN - Update OFN 

DSKSQI/O -Disk Sequential Input/Output 

NEWWND - New Window Page (Next Page of File) 

DSKCLZ - Disk Closing of a File 

RELOFN - Release OFN 

DASOFN - Deassign OFN 

MOVDSK - Move page Back to Dil$k 

67 

OD! 

OD2 

OD! 

SDl 

SD2 

CD! 

CD2 

CD3 

CD3 



68 



Disk Dew DeP. Code 
Called From Table Slot 
OPEND (DSKDTB) 

Update Date Time Info 
in FOB. Update Last 
Writer If Writing. 

If Superceding (i.e. Opened 
for Write Only to an 
Existing File), Delete File 
and Mark File as New 

Yes 

OPENF9: 

Translate OPEN F Access Bits 
to OFN Bits for SPTH 
Comparison or Storage 
if New OFN (1) 

Assign OF.N for 
Index Block 
If Err, Err Return 

UPDOFN pCDS 

Write XB on Disk 

Yes 

(if Opened New File 
With Thawed Access) 

OPENF·DISK 
Dev Dep Code 

DSKASN 

Assign Disk Space 
. for Index Blk 

OPNLNG: 

ASFOFN pOD2 

Assign OFN for 
Super Index Blk 
If Error, Err Return 

ASFOFN pOD2 

Assign OFN for 
Index Block 0 
If Error, Err Return 

Store OFN in LH of 
FILOFN and RH of 
FILCOD (2) 

001 

69 

GETLEN 

Sit up FILLEN from 
OFNLEN Table 

UPDBTB 

Update Bit 
Table 



Assign OFN 

ASOFC: 

Get Store Adr. for XB 
and Bits Caller 
Allowed to Specify 

Seerch OFN Portion of 
SPTH Table for Matching 
Str. No. & X8 Adr. 

UPSHR 

Update Shr Cnt 
in SPTO Tbl. 

Success Ret with 
OFN in AC1 

OPENF • DISK (Contl 

When 
Rescheduled 

Set up Sched Tnt 
OFN •• OFNLKT ~ AC1 
MDISMS 

002-

70 

Ac:cess & Stor Adr ~ SPTH(OFN) 
Stor Adr ~ SPT(OFN) 
Str. No. ~ SPTO(OFN) 

PGTCAL 

If This Directory on This Str. 
Already Has Open Files, Store 
Its ALOC1 & ALOC2 Index 
Into the SPT Emry. If Not 
Mlk. New ALOC1 & ALOC2 
Tble Entri ... 

Increment OFN Use Cnt in RH 
of ALOC1 

Update Shr Cnt for 
OFN in SPTO(OFN) 

SETXB1 

Map Index Blk 
Through PSB Slot 

Mark OFNWRB 
>-.... ~ bit in SPTH so 

DDMP will 
migrate the pg 

RELCXB 

Retease (Unmap) 
Index Blk 

Ves 



Get Byte No. of 
Cur. Byte From 
FllBVN in JFN BlK 

No 

SEQUENTIAL I/O·DSK 

(String & Byta Dav Dap Coda) 

SETWND 

Set Window 
PgUp 
CaIlIASGPAG 
To AlSign. 
JSBP ... 
Cle." FIlCNT 

NEWWND pSD2 

Get ·New Pg in 
WindowPg. 

Set FllCNT to 
No. of by tel in • Pg 

S01 

71 

Upd.te OFN Length 
in OFNlEN TbI 

SETWND 

Assign Pg 
from JSB 
~ce 

NEWWNOpS02 

Get Next 
Pg into 
Window 



Set Flq to Say 
Ailow Pg Tbl, 
Cr ... 

UnmapOId 
Pate· in Window 

JFNOF5 

GetOFN" PN 
For This Pg 

Map the Pg 
into Window 

SD2 

72 

Routine to Conv.rt Your JFN, PN to 
OFN, PN. Creates Long Fil. Pg Table 
if Le .... and Requested 

JFNOFS 

OMOCHK 

Chk That 
Structure 
Still Mounted 

Store Pg Adr in 
FILBYT & Bytes 
Per Pg into FILCNT 

ADJCNT 

Adiust FILCNT if 
FILBYN Notat 
Beginning of Pg 



Update FI LLEN 
Before Close 

If Opened for Write and 
Have a Window, Update 
FOB Entries, FBBSZ, 
FBMOD, FBSIZ 

Write Index 
Blk to Disk 
If Modified 

Update FOB 

v .. 

Last Dir Change Time 
(If Open for Writ.,) 
Quota Info 
Pg Count for File 
Byte Size, Mode, Size 
in Bytes 

DSKDV 

Delete 
Excess File 
Versions 

CLOSF - DSK 
Oev. Dep. Code 

Un map Window Pg 
Return Space to JSB 
Free Space 

CNTLNG 
Clo.e 
Long 
File 

COl 

73 

Count all 
Pgs in Use 
for File 

SETMPG 

Unmap Super 

index block 

RELPAG 

Return Page 
to JSB Free 
Space 

RELOFN p C02 

Relea.e OFN 
of Super­
Index Blk 



UPDOFN pCD5 V •• 

Writ. XB 
to 

DISK 

DASOFN pCD4 

Deassign OFN 

CLOSF·DSK (Continued) 

No 

GETSHR 

G.t OFN Shr Cnt 
from SPTO rbl. 

SETXB1 

Map XB into 
PSB Map 

Touch Index Pg 
(So Will Be Brought 
Into Core if Not 
Already in Core) 

SKPNWR PPF9 a 
If Writes in Progress 
for XB, RDISMS 
with Sk.d Test, 
Pg #" DWRTST 

C02 

74 

Mark Del.t. 
Pgs Flag 

Not Last Close 
ofOFN 

RELOF6: 

Froz.n Writer of 
the File, Turn Off 
The Write Bit 

No 



Mov. All of 
Pili to Disk 

No 

Scan XB& R ...... 
All figs from Disk 
Bit Tbl for Str and 
Z.ro Each Pg's Slot 
inXB 

RE LOF7: DWNSHR 

D.crem.OFN 
Shr Cnt in SPTO 
(BUGHLT if Cnt 
Already 0) 

Flush Cor. & 
Drum Adr. 

Yes 

CLOSF·OSK (Continued) 

Scan XB & R.I .... 
Onlv Good Pili from 
Disk Bit Tbt 
CI,., XB Slot Wh.ther 
Pg is Good or Bad 

DEDSK 

>-Y_es--l..-t Delet. Disk Adr 

RElCXB 

Rele.se Temp 
Mapping 

of XB from Bit 
Tabl. for Str 

CD3 

75 

SKPNWR pPF9a 

W.it for Writ. 
to Compl.ta 

RPCST 

No 

OFRQ 

Put Pg on Top 
of RPLQ 

Fore. Disk Adr 1--------...-01-' 
Back to XB 



v. 

SKPNWR p PF9a 

RDISMSif 
Write in 

. Protareu 

Swap Pgsto 
Disk. Remove 
Pgfrom CST3 
Entry 

CLOSF - DISK (Continued) 

Move File Page 
to itt Home on 
Diak' 

Swap Pg into Core 
8t Wait for Completion 

CD4 

76 

O .... ign 
OFN 

0+ SPTH (OFN) 
0+ ALOCX Field 

in SPT(OFN) 

No More Files Open 
for Oir., So Clear 
ALOC1 & ALOC2 
Entrin 

0+ OFNSHC 
Decrement Open 
File Cnt 

No 



UPDBTB 

Update Bit 
Table 

UPDOFO 

Write Index 
Blk to Disk 

CLOSF·DISK (continued) 

77 

SETMPG 

Map Index Blk 
Through PSB 

Set up, to do 
chksum for XB 

Put Disk Adrs of 
Existi ng Pgs in XB 
Slots & Store 
Checksum in XB 

UDSKIO pPHY1 

Write XB to Disk 

MSETMP 

Unmap I ndex Block 

CD5 



78 



OPENF-DISK Comments 

(1) OFN bits: O-read, lO-write, ll=thawed, Ol=restricted 

(2) For a lonq file, the OFN of index block ~ is 
remembered in the JFN blk and used as the identity 
of the file by t~e ENQ/DEQ facility. 

79 



CLaSF-DISK ,Comments 

(1) All storaqe addre.ses placed in an index blk have the 
pointer type fiel; set to immediate • 

./ 

80 



MTAOPN - Magtape 

MTASQI - Magtape 

MTAIRQ -

MTASQO - Magtape 

MTACLZ - Magtape 

JSYS's CALLS 

MTA DEPENDENT LEVEL 

Opening of a File 

Sequential Input 

Queue Up Specified I ORB 

Sequential Output 

Closing of a File 

81 

OMl 

SMl 

SM2 

5M3 

CMl 



82 



OPENF - MAGTAPE 
DEVICE DEPENDENT CODE 

----... Called via Contents of 
OPEND (MTADTB) 

Error 

OM1 

83 

Initialize Per Unit 
Storage and Figure 
Bytes Par Word 

Store Magtape Parameters 
Density -+ MTON 
Parity -+ MTPA R 
0-+ FILCNT, FILLEN, 

FILBYT (2) 

Init Units IORBs 

Init MTBUF & MTCUP 

Store Prog. Name & Logged-in 

Oir. Number in UOS 



MTAAS8 

Call ASGPAG to Anign 
JSB Pgs for 2 Buff.,.. 
EKh of Size RIC. Length. 
Store Adr of Buf PIS in 
Ust Pointed to by MTBUF 

Zero FILLEN. 
FILBVN. FILCNT 

Mlrk IORB 
As Fr .. 

Stet) Buffer No. in 
MTCUB for this Unit 

SEQUENTIAL INPUT - MTA 
(STRING at BYTE DEV. DEP. CODE) 

Called At JSVS Len! 
Through BIND (MTADTBt 

CHKERI 

Chk IORBfor 
E"Oft. (Ret ifsot 

Queue up any Fr .. 
IORB's (Rudy for 
Filling) 

GETUBF 

Get next IORB for User 
to Empty.lf N ..... to Blk. 
Setup Sched Test: 

No 

IORB Waiting for .. MTARWT 

No 

Yes 

Step to Next Pg of Buffer 
Byte Ptr for this Pg .... FILBVT 
MIN (No. of Bytes Left in Buf, 
No. of User BytH/Pg) .... FILCNT 

Increment Buf Pg if Reading Forward 
Dec:rement Buf Pg if Reading Backward 

MTSQI2: 

Unsuccessful Return 

SM1 

84 

Decrement FILCNT 
Increment FILBVN 
Get Byte from Buffer 



Queu. up any Fr .. 
IORB's for Filling 

MITR:,.=QO::.;.: _"'-_--, 
~ETCSB 

Yes 

,--..;:G:.::E;.;T~IR_B __ ..... Should Not 

MTAIRQ 

Qu",. up 
thislORB 

Block 

Return 

Qu.u. up Specified IORB 

Frames Cnt "IRBCNT 
Char Cnt .. I RBOC 
Func Cod. -+ IRBSTS 
(Adr of Wit 
of Buf Pgs)-+ IRBPB 

MTIR02: 

SM2 

85 

For Each Pg in Buf: 
1. Put Phy Pg Adr in LH 
of Each Buf Pg Ptr 

2. Call PHYSIO & D.w. 
D.p Cod. to Set up Chan 
Command Word in Xf" 
Wit for the pg. 

Data Mod', D.nsity, 
Parity -+ I RBMOD 

MTCHKA" MT AINT 
-+ IRBIVA 

Qu.ueup 
IORB 

Set StatUi Bits 
for IORB 

Step IORB for 
this Unit 

Get Adr of COB & UDB 
for this Unit 

PHYSIO pPHY2 



CI'''' at JaYS Le.eI 
Throuih lOUD (MTADTBI 

GETIRB 

Get Next .ORB 
for UMfto Fill 

Chk for 
Erron 

Byt./Buf'" FILUN 
0'" FILCNT 
0'" FaLBYN 

SEQUENTIAL OUTPUT - MT A 
STRING 8& BYTE OEV. DEP. CODE 

YH 

Step to Nut " of Buf 
Iyte Ptr for tIrit Pv ... FI LIYT 
ZIfo IuffIr ,. 

Decrement FILCNT 
Increment FaLBYN 
Sto ... Byt. in luff., 

Succ8lfu1 

SM3 

86 

Output Buffer 

Qat RlCIOrd Sin & 
Convert to Hdw Bytes 

MTAIRQpSM2 

Queue Up 
IORB 



CLOSF - MAGTAPE 

Clear Close Func 
Cnt (MTSTC) 
Mlrk Close in 
Progr ... 

Incrtm FUM Cnt 
(Used to Index Into 

>-....... a Tlble EWowl 

MTACLW 

Chk if Need to Blk (Any 
IORBs Left in 071 
If so, Return with Sched 
Test (Unit No." MTAWAT 

Don't Force Out 
LIlt Buf. 

MTACLA: 

CM1 

87 

Wait for Activity 
to Stop 

Do Next FUM in Fat. Table Indexed by Func. 
CALL MTRECO - Force Out Last Partial Buf 
CALLMTCHKE - Chk if EOF's Need Writing 
CALL MT ABKE - Then Backspace over 2nd EOF 
CALL MTFLSH - Flush Out all Remaining IORBs 

Wait for Finish 

Unit nO.,MTAWAT-AC1 
MDISMS 

MTPOSO 

Sequential Read -
Go Lea"e Tape In 
Correct Position (1 ) 

MTACLW 

Wait for Activity to 
Stop. 

No 



88 



OPENF-MAGTAPE Comments 

(1) One can open for read and write only in dump mode. 

(2) FILCNT/Count of bytes left to use in current page of 
buffer. 

FILLEN/Count of bytes in buffer. 
FILBYN/Buffer byte number use~ is referencing. 

89 



CLOSF - MAGTAPE Comments 

(1) Since the monitor reads ahead, backspacing to jus~ aft~f last user 
record read may be necessary. 

90 



REQUESTING DISK/MTA I/O & INTERRUPT HANDLING FLOWCHARTS 

(PHYSIO LEVEL) 

DRMIO/DSKIO/UDSKIO - Requesting Drum or Disk Read/Write 

PHYSIO - Queue Up IORB Request for Disk, Drum 
or Magtape 

SIOI - Post IORB 

PHYI 

PHY2 

PHY2 

STRTPS - Start Unit Positioning PRY3 

STRTIO - Start Unit Transferring PRY3a 

PRYINT - Disk and Magtape Interrupt Handler 

DONIRB - Post 10RB as Done 

SWPDON/UDIINT -

MTAINT -

Housekeep for 
Drum/Disk Done 

Housekeep for Magtape 
Done 

SCHSEK - Schedule "Best" Seek Request 

SCHXFR - Schedule "Best" Transfer Request 

91 

PRY4 

PHYS 

PHY8 

PHY9 

PRY6 

PHY7 



92 



REQUESTING DRUM OR DISK READ/WRITE 
(PHYSIO LEVEL) 

If Writing, Set 
DWRBIT Bit in 
CST3 Entry for Pg. 

PAGEM Interface 
DRM/DSK I/O 

Set IS.SHT Bit and Function 
Code into Short 10RB (1 Word 
Blk in CSTS Entry for Pg) 

Enqueue 
I/O Request 

No 

PHY1 

93 

Called From UPDOFN for 
Writing Out Index Blk. 

Get 10RB + CCW Block 
From Pool. Wait if Nec. 

Store Disk Adr, Count, 
Function & Specific 
StatuI Biu in 10RB 

Store UDISIE in IRBIVA 
if Calle, Wants Error on 
Offline Unit. 

Store 
Tail" Head of CCW List 
Int. Routine Ad.', UDIINT 
in 10RB 

PHYSIO pPHY2 

Enqueue I/O 
Request 

(I0RB ADR" 
UDWDON) ~ AC1 
PDISMS 

Release this 
IORB 

Wait for Done on this 
10RB as a Pg Fault 



---.... Call to Queue Up 10RB 

SI01 

Determine 
Chan & Unit 
and Pan 
10RB 

for Disk/Drum or MT A 
Post 10RB 

GETCUB 

Get CDB & 
UDB From 
PAGEM Adr 

Get Core Pg No. 
From Offset in 
CST5 

Store Unit No. I~o 
CST3 Entry for Pg. 

PHY2 

94 

Add to 
TWQ 

Anyway, 



Add Req to PWQ 

ONPWQ 

Put 10RB 
Req On End of PWQ 

STRTPS pPHY3 

Unit Free 
Start Positioning 

PHY2a 

95 

Here When Request 
Needs No Positioning 

ONTWQ 

Place IORB on 
End of TWa 

STRTIO pPHY3a 

Start up This 
10RB 



Here to Start Positioning 
for an IORB 

STRTPS 

BUGCHK 
Inconsistency 

Yes Chk 

No 

If There is a Controller, 
Set KS.ACT in KoB 
(BUGH L T if Already Sed 

Clear All Err Bits in 
IORB StatUI Word 

Store Overdue nme 
for Xfer in UOB 
Get Channel's oisp Adr 
from CoBOSP (COB) 

CoSPOS (Chan Oisp Adr) 

Dispatch to Lower Level 
Positioning Function 

Set Operator 
NHded Bit 

CLRPOS 
Clear Positioning 
Active Bits, 
US.ACT & US.POS 

Unsuccessful 
Return 

PHY3 

96 

RETSKP 

Succeuful Ret 



Here To Start I/O 
on an 10RB 

Set Chan, Control, & 
Unit Active Bits in 
COB. KOB, & UDB 

Mark in COB that a Unit 
is Holding the Chan 

SETIO 

Set Up For 10-Ciear 
All Err Bits & Set 
Overdue Time 
(Now +17 Sec) 

COSSIO (Chan Disp Adr) 

Go Start I/O at 
lower level 

ClRACT 

Clear Chan & 
Unit Active Bits 

Set Operator 
I ntervention bit 

Clear Overdue n mer 

Yes 

97 

Unsuccessful 
Return 

PHY3a 

Ves 

No 

Get STRTIO Exit 
Adr from 10RB 
(lH of IRBIVA) 

DSK-UDISIE 
MTA-MTCHKA 

Execute Routine 
DSK-Sets Bits if 
Unit Offline 

MT A-Sets Bit if 
ABORTF on 

Clear US.OI R & 
US.OMS Bits (Don't 
Need any longer 
for Oper_ Intervention) 

OFFTWO 

Remove Req 
from TWO 

DONIRB p PHV5 

Flag as Done 

Unsuccessful 
Return 



Here When Int. Dev. 
Hu BMn Determined 

""-Se-ve-A-C-'s"'i-n-P-H-Y-A"'CS;';";;~ (COB ~r Indi· 
cates thIS) 

Setup Interrupt POL 
(Starts et PHYIPO) 

Get Channel's Oisp. Tbl 
Adr. ie COBOSP (COB) 

COSINT (Chan Oisp Tbl Adr) 

Anal,ze Causa of Interrupt 
at Channel DIp. Level (1 ) 

Here When 
IORBTerminetes 

INT2: 

OFFPWQ 

Pull From PWQ 

INT3: 

Pull From TWO 

SCHSEK pPHY6 

Schedul. Seeks 
(If Needed) 

SCHXFR pPHY7 

Schedule 

Oismisslnt. 

OONIRB pPHY5 

Post IORB as Done 

CLRPOS 

Cle., Positioning Flag 

DONIRB pPHY5 

Post IORB as Done 

PHV4 

98 

SCHSEK pPHV6 

Schedul. Seeks 

Schedule Transfen 



Yes 

Yes Set Err Rec. 
Bit for Chan. 

ERRSET 

Create Error Blk 

UDSERR (Unit Disp Add 

Invoke Error Retry 

No Done with 
Recovery 

PHY4a 

99 

Clear Err Rec 
Bit if Xferring 



Here to Post an IORB Complete 

Set Don. Flag 
in IRBSTS 

Set Error Bit 
Ve. IS.ERR in IORB 

DONIR1: 

No Get Int Oi.p. Adr. 
From Long IORB Entry t--... ..J 

Notify 
PAGEM 

(RH of IRBIVA) 

Ve. 

~--! .... Set Error Bit, SWPERR, in 
Short IORB for PAGEM 

PHV5 

100 

UOINT pPHV8 or 
MTAINT pPHV9 or 
MTDtNT (Dump Mode) 

Do Dew (Oisk/MTA) 
Dependent IORB Done 
Code. (The Two MTA 
Interrupt Routines 
Perform the Same 
Cleanup Tasks) 



Yes 

101 

Get Best Req & Remove 
it from its Position in the 
PWQ to the Beginning 
of the PWQ 

Scan Algorithm with 
Read Pref Remembers 
'Best' (2) 



Yes, See if 
Anything Else 

STRTPS pPHY3 

Try to Start 

102 

PHY6a 

ON TWO 

Append to 
TWO 

OFFPWO 

Pull Request 
from PWO 



SCHEDULE TRANSFER 

SCHLTM: 

Init to Very Large 
Latency & No 
'Best'lORB 

UDSL TM (Unit Disp 'fbI) 

Call Dey. Dep Code to 
Get Best Latency Req 
From All Xfer 
Requests for the Unit 

Time to Round 
Robin 

103 

STRTIO pPHV3a 

Attempt to Start 
I/O 

pHY7 



XFRCHB: 

If Unit Available, 
Move Special 10RB 
to Head of TWO 

XFRX 

Try to Start I/O for 
this Unit 
Call STRTIO pPHY3a 

No 

Pull 10RB from TWO 
Indicate Hard Err. 
Post as Done (DONIRB 

pPHY51 

Setup to Continue Scan 
From Last Active Unit 
(Kept in CoaCUN) 

XFRX 

Try to Start I/O 
for this Unit 
Call STRTIO pPHY3a 

No 

PHY7a 

104 

Try to Start I/O 
for this Unit 
Call STRIO pPHY3a 

No, Try Another Unit 



No 

No 

No 

No 

No 

Stack Command 
Call CDSSTK (Chan Disp Tbl) 

PHY7b 

105 



"INTERRUPT DONE" DSK/DRUM DEPENDENT CODE 

Called When Short IORB 
Done for Disk or Drum 

Clear Write Bit in 
CST3 Age Field 

ONRQ 

Put Pg on 
End of RPLQ 

Increm. PSKED 
(Tell Sched Rd 
Complete) 

Store Rd Done for 
Pg State Code in 
CSTO Entry 

Put Pg on Deteted 
Queue & Set Pg 
State to Deleted 

Put Pg on End 
of RPLQ 

OFRO 
Put Pg on Top 

of RPLO 

PHY8 

106 

Called When Long 10RB Done 
for Disk (Infrequent Col .. ) -------.. Increment Page I/O 

Satisfied Flag 
(PSKEO) 

SWPER3: 

Find Type of 
Fork Page 

Dispatch to 
Correct 
BUGHLT 

Dispatch to 
Correet 
BUGHLT 



."INTERRUPT DONE" MAGTAPE DEPENDENT CODE 
Called When Non-Dump Xfer Done For 
MTA At Interrupt Level 

MTAINT 

Ves 

MTAINE: 

MTAIND 

Unlock Pgs & 
Mark Done 

MTAKIL 

Kill All 10RB's Left 
On Queue for This Unit 

MTAIND 

Unlock Pgs & 
Mark Done 

Only Want To Abort 
for a Good Reason 

1.07 

PHY9 

Set "Abort All 10RB's 
For This Unit" 
Flag (ABORTF) 

PHVKILL 

Dequeue All Nonactive 
10RB's From TWQ 
for Unit 

Mark All 10RB's 
as Aborted 
(J RBAB Flag) 

Call MTAINT 
for Each 10RB 
for This Unit 

Mark Buffer Ready 
Flag (I RBFR) & 
Clear Active Bit 
(lRBFA) 

MULKCR 

Unblock All 
Buffer Pgs. 

Decrement No. of 
Requests Pending 

MTAINTis 
Being Called 
Recursively 



, . 108 



SIal 

Requesting DISK/MTA I/O Comments 

(1) The algorithm for queuing up a MTA request is: 

If the request requires positioning, append the 
request to the PWQ. 

If the request requires no positioning (i.e., 
Read/Write Forward or Read Reverse) append the 
request to the TWQ only if the PWQ is empty. 
Otherwise, append it to the PWQ. 

109 



DSK/MTA Interrupt Handling .Comments 

PHYINT 

(1) The channel dependent routine (RH2INT for RH2~s) is 
called to analyze the interrupt. Lower level routines 
called by RH2INT (i.e., Unit dependent routines) return 
an argument in AC, P4, to PHYINT to indicate whether to 
dismiss the interrupt (P4 = ~), to schedule another 
channel cycle right away (P4 < ~) or to housekeep the 
current request (P4 > ~) before scheduling another 
channel cycle. The channel dependent routine also 
records error information so that PHYINT can see if 
error recovery is in progress or should be started. 

The request to dismiss (P4 = ~) is invoked for example 
when the done flag is on and the channel is not 
occupied. The request for an immediate channel cycle 
(P4 < ~) is made when a positioning done interrupt has 
occurred and there is no transfer in progress. Transfer 
Done requests will require further housekeeping (P4 > ~) 
by PHYINT before scheduling another channel cycle. 

SCHSEK 

(2) The scan algorithm with read preference in effect 
performs as follows: 

Take the next higher-numbered cylinder read request from 
the current cylinder. If none, take the next 
higher-numbered cylinder (write) request from the 
current cylinder. 

If none, take the lowest numbered cylinder read request 
from the current cylinder. If none, take the lowest 
numbered cylinder (write) request from the current 
cylinder. 

110 



JSYS CALL FLOWCHARTS 

TTY DEPENDENT LEVEL 

TTYOPN - Teletype Opening of a File 

TTYIN - Teletype Sequential Input 

TCl/TClB - Get Character from Line's 
Input Buffer 

TClO - Get a Character 

TCOE - Echo Character 

TTYOUT - Teletype Sequential Output 

TCO/TCOB - 1st Level: Output a Single 
Character - Translate According 
to Fork's Specification 

TCOY - 2nd Level: Do Links & Formats 
for a Particular Device 

TCOUT - 3rd Level: Do Buffering 
and Output 1 Character 

TTSND - Send Character to Line 

TTYCLS - Teletype Closing of a File 

111 

OTTI 

STTI 

STT2 

STT3 

STT5 

STT4 

STT5 

STT6 

STT7 

STT8 

CLTTI 



, 112 



Setup in AC1 
Line No." TSACT1/2 

and MOISMS 

TTYOPN 

CKJFTT 
See if Oevice 
is TTY: 

LCKOVL 

Yes 

Lock the DEV T Is. Lock, 
OEVLCK· & Go NOINT 

FNOUNT 
Get OEV Tbls. Index 
for this Unit 

OEVAV 

rTYASO 

113 

OPENF-TTY 
Dev. Dep. Code 

RETSKP 

Successful 
Return 

Store this User's Job No. 
for Line in OEVUNT Thl. 

Set Open Bit, OV%OPN, 
for Line in OEVCHR Thl. 

Unlock OEV This. 
Lock,OEVLCK 

Setup to Return 
with SIZF Bit Set 

Successful 
Return 



Get 1 Input Char 
for the Line 

SEQUENTIAL INPUT· TTY 
STRING & BYTE DEV. DEP. CODE 

Get Un. No.. for 
.... ---t .... Job from JOBPT 

TTYINB: 

~-I"'" Get Dispatch Adr., 

Get Dispatch Adr., 
TCI 

(Routine that Allows 
Translation) 

TCIB 

TTVATW 

Wait for Attach 

ULKTTV 
>---... ..... Unlock Dynamic 

No Data for Line 

Indicate Error to 
Caller (Set ERRF Bid 

STT1 

114 

Yes 

Perform R ESCAN 
Housekeeping 

Use Normal Mode 
for TTVs 

Get Char from 
RSCAN Buffer 

ULKTTV 
Unlock Dyn. Data 
for Line 

(Allow Alice.) 

Setup to Return in 
AC, A, Just Byte Size 
of Char Specified 
at OPENF 

Ves, 
Try Again 



Indicate Alrudy 
Echoed 

Return LF with 
No Echo 

TCIO pSTT3 

TCITTI 

G.t eMr From 
Input Buff.,. 
Called from TTYIN 

Test for TTY Interrupt 
on this Char 8& Let 
PSI Handle It 

Yes 

TCI2: 

Return 

Unsuccessful Yas 

Return 

Yes 

Echo CR-LF 
Call TCIECO 
for Each Char 

'Raise' Input 
Char if Nee. 

TCIECO 

Echo Char 
if Necessary 

Save Last Char in TYLCH 
in Dyn. Data Block for Lin. 

Char in T1. 
Successful Return STT2 

115 

Get Binary Char 
from I nput Buffer 
Called from TTYIN 

Set Flag to Indicate 
Binary Terminal Mode 

TCIO pSTT3 

Get a Char 

TCITTI 

Setup to Return in 

T1 Char. + Parity 

Input Request Means 
Implicit Clear of 
CTR UO so Clear 
CTRL/O Flag. TOFLG 

TCOE pSTTS 

Echo Character 

Yes 

Clear Repeat Char Flag 
Get Last Char Input 

Will Echo Char if 
Not Echoed by Sched. 



,..""'!""" __ Get Char From 
Une InpUt Buffer 
Called from TCIITCIB 

Mak. Sur. No Oth.r 

~----------""'---"""'"'i....a""'---" Fork is Waiting, No ..... -_-.. Th.n Go Into Input' 

TCI01: 

TTICNO: 

BUGHLT if No 
Ptr. for Char. 

Get Next Char. & 
tore Updated Ptr. 

in TTIOUT 

Successful 
Return 

TTRLBF 
R.I .... 
Buffan 

Wait 

Sav. Data Mode 
Record 1ftis Fork i. 

Waiting for TTY 
(in lWFRK) 

Indicate No Forced 
Wakeup in TTFW 

Dispatch to 
Function Table 

TTXXVT 
at Offset, 

TTVT32 
(FE OisP. Adr.-;' Aet.) 
(P'r Oi,p. Adr. • TCIPTY 

(I nput Char.)) 

Perform 
Housekeeping 
Tasks 

ULKTTY 

Unlock Dynamic 
Data'Blk for Line 

Get into AC1 
Line No." TCITST 

& MDISMS 

ULKTTY 
Release TTY Lock 
&GoOKINT 

TTFRKT 
Resolv. Conflict by 
Halting Fork if it's 
Inferior or Putting 
it in Fork Wait 
if Not 

Return 

Non-skip Return 
to Reverify TTY 
in Case W. Blocked 

,...~........... Non-Skip Ret to Say 
'---""" a Block has Qccured 

STT3 

116 

VII 



.... ------...... Output 1 Char 
to the TTY 

SEQUENTIAL OUTPUT· TTY 
STRING & BYTE DEV. DEP. CODe 

Yes 

If 1st 3 Char of Dev. Name 
are Ti"v, G~t ~~trolling 
TTY No. from JOBPT 

Setup to Send Out in 
AC, A, Just Byte Size of 
Char Specified at OPENF 

TTYOUB: 

Dispatch to 
TCO/TCOB pSTTS 

to Output Char 

ULKTTY 
Unlock Dynamic 
Data for Li ne 

>-___ ..... G.t Dispatch Adr., 
TCOS 

G.t Dispatch Adr., 
TCO 

lCKTTY 
lock Dynamic 
Data for Line 

No 

No 

TTYATW 

Wait for 
Attach 

UlKTTY 
Unlock Dynamic 
Data for Line 

Indicate Error to 
Caller (Set ERR F Bit) 

117 

Call Output 
Routine in 
TTYSRV 

Translation 

STT4 



Ves 

TCO ~ 1st Le ..... Tr ..... te Accordino to Program's Desi .... 
TCOY • 2nd ....... Do Links & Format for a Particular Dewice 
fCOITf· 3rd Lev" • Do Buffering, etc. 

1st Lev": Called From TTYOUT 
OutpUt. Single Char. 1st Lev": Called From TTYOUT 

Output a Binary Char. 

Yes 

No 

Echo Character 
Called from Scheel. 

If in' Page Mode, CI_ 
Li .. Position Within 
Page to Prewent XOFF 

TCOUl pSTT7 

Output the Char. 
Without Adding Parity 

Get Output Control Mode Bits 
for CTRL Char. 

Ves 

Ves 

Ves 

00 • Send Nothing 
01 • Indicate, ie. t 
10 • Send Actual Code 
11 • Simulate Format Action 

(For Escape, Use $~ 

STTS 

118 

TC10: 

Get t Code 8& if 
Echoing (lMECHF =/& O~, 
Incr. LINKF Flag 

Print Char. 



Send CMr. ut 
Directly 

~ __ ..... 2nd Level: Called from TCO/TCOE 
"'-~p.;."'" Handle Dew. Idiosyncrasies 

and Ch.racter Accounting 

TTOHA 

No 

>----------------s! .. ~-...... Yes, Echo CTRL Func. 

Yes 

TTC06:~~~ ____ ~ 
TCOP 

Output Char. 
& Account Space 

If Lower Case 
Char. Convert to ............ 
Upper Case 

STT6 

119 

Use Char. Code to Index in CHITAS 
to Pick up Disp. Adr.: 

TCOUTpSTT7 
or 

Format Routine (ie for CR, FF etc.) 
(Later Calls TCOUT) 

Call Routines to 
Output CR & LF 
& Reset Line Positio 

Step to Next 
Position on Line 



3rd lnel: Called Fram TCOVITCQB 
"'-ii .... iiiiI!iiII,,, Do Buff ...... ~.1 Ch .... 

Do Parity logic By 
Executing Instr. intbl. 

TTXVT 
at Ofhet 

TTVT12 

TTlNK3 

Scan Unk Word, 
Sending Chan. 
to lin. SpKified 

Return 

~'!"'!'"!~, Special Schad Entry Point When 
'Iiiii ...... IIIiiii" Entering from TTEMES 

If Parity Bit Needed 
For Char., Do Parity logic 
By Executing Instr. in TbI. 

TTXXVT 

Setup Sc:hed. Test Word 

Go Store in 
Output Buffer 

>----1..-. Line No." TCOTST 

Store Char. in Output Buf. 
Updated Ptr. in TTOIN 

& Updated Cnt in TTOCT 

STRTOU 

Start Output to Line if Needed 
Displtch to Table 

TTXVT 
at Offset 

TTVT13 
(Disp. Adr • STRT01 for TTFEVT) 

& MOISMS 

Vel 

TTGBF 
Try to Allign 
Needed No. of Buffan 

Setup Sched. Test Word 
No. Needed" TTBUFW ..... - .... 

&MDISMS 

..... ___ .... Stor. Byte Ptr. (to 
New Buf) into TTOUT 

~~~, Start Output to 
Line if Nee.

Ves

TTSNDO

Send Chlr. Routine
NOSKD1 Callable from
Turn Off DLS Chi Non.PI Context
Call TTSND pSTT8

Turn On DlS Chan.
STT7 OKSKD1

120

Send CMr. to Line
--~~~ ~lIad at Interrupt Level, or

in Schad/Procell Context with
TTY Interrupts Disabl"

Get Buf Ptr from
TTOOUT. (BUGHL T
if No Ptr.) & Save it

Step to Next Buf. if
at End of Current Buf.
& Update Ptr. in TTOOUT

Clear Output-Active Flag

CLENUP

Call TTR LOB to Release
Output Buffers

If Int. On Empty Output
Buf. Requested, Put
a Word in BIG BUF
with Bit TTOIRQ Set

. (Schad. (li'CH7)
Will Find ttl

Simulate CTR LIS
(Set TTSFG Flag)

Call Dev. Dep. Code to
Send it to TTY by
Dispatching to

TTXXVT
at Offset

TTVT23
(FE Disp Adr ,. TTSND1)
(PT Disp Adr "" Ret)

BUGCHK
TTSND·Unrecogniz:~_ ~
Escape Code ~---

STT8

121

,...~ '"""" Start Up a Line Xfer
~';;';;'~.;.J via the DTE20

Set Waiting for 11 Done
& Line Active Flags
Incre .. Cnt. of Bytes in 11

Setup Nee. Args
for Call to DTESRV

DTECHO

Output via
Secondary

Deer. Bytes in-11
Restore 6rig~ -Ptr.i~

TTOOUT
Incr. TTOCT

Go, Schad. Retry

Note Not Waiting
for Packet

(ie Clear TTFPK

Get Line No., Time Until
Event (000), & Disp. Adr.
(=TTSN10)

TTQAD

Compute Time to Do Function
for Une & Save in TTIME

Save Disp. Adr. in TROUT
Incr. TTQCNT
Set Scan Ptr. to Here if

First Entry

TTYCI.l

CKJFTT
See if JFN is

LCKOVL

GTCJOB

CLOSF·TTY
Dev.Dep.Code

TTVOEA

TTYCL2:

> ___ Unlock DEV Tbls.
Lock, DEVLCK

Ves

No

RETSKP

SUCCIIIfuI
Return

TTVCL4:

>-____ ... Unlock DEV Tbls.
Lock,OEVlCK

No

TTYCLO:

Indicate No Job Owns
line in DEVUNT Tbl.

Indicate Line No Longer
Opened (OV%OPN Bid
in DEVCHR Tbl.

CLTT1

Unlock DEV Tbls.
Lock, OEVLCK

Successful
Return

122

If Suppose to Blk, Setup
AC1/Line No." TSACT3

and Set BlKF Bit

Unsuccessful
Return

SCHEDULER TTY INPUT ANALYSIS & STORAGE

TTCH7 - Moves Characters from the Big Buffer
to Line Buffers

TTCHI - Initiates a PSI Interrupt if
Needed, Echoes if Appropriate
& Wakes Up Waiting Forks

123

SCHTTI

SCHTT2

124

Do
Next
Char.

TTPSRO

Go Wake
Up Process

SCHEDULER TTY INPUT ANALYSIS & STORAGE

Sched. Short Cycle Task
"'~I!'PP.I~ Moves Chan from Big Buf

to Une Buffers
Do Dev. Dep Functions for Lines

Get Next Entry
(Line-No. + Char .)
Decr. TTBIGCCnt.

Deer. Line's Cnt. in
TTFBB ·of Big Buf
Entries

SNDXON

Sand XON if Needed

No,
Shouldn't

Happen

Get 7 Bits of Char.
+ ParitV

TTCHI pSCHTT2
Put Char. in Lines
Input Buffer

Yes

TT1CX:

SCHTT1

125

TTCH7X:

TTCOLN:

Setup to Check 8
Lines for Special
Requt!sts

No

DOLINE

Do Une's Req if it's
Time to Do it. Where
Disp Adr is in TROUT
in Une's Dyn. Data Blk

Decr. TTOCNT if do Func.
Housekeep Message Blk

or Output Buf if Nee.

No

TTC05:

Start at this Line Next
Time (Store it in TTCOLN)

Set TTCON Flag &
oi"Spa"t"ch to T-bl

TTXXVT
at Offset

TTVT17
(FE Disp Adr = TTCON1) (1)

Clear TTCON Flag &
Dispatch to Tbl

TTXXVT
at Offset

TTVT17
(FE Disp Adr. = NTYCOF){i

ClUed from:
TTCH7 if Chlf. Found in Bit Buf;
Initiattla PSI InterNpt if Needed;
Echoel if APfH'OPriate 8& Wak .. up
Waiting Forlu ---....

TTCHI2:

If in Page Mode 8& Char. a
XON/XOF, DisPitch through
TTXXVT + TTV101TTV20
to po XON/XOF 8& Ref to TTCH7

Return

Clr.IMECHF
8& NoteChlf.
Not Echotd

Turn off CTRL/S FI-..
ifPr ... nt

Set Echo Char. Flag for
TCOUT(-1 to IMECHF)

Echo Char. via Norm ..
OutPUt Stream

Set Char. Echoed Bit
(Most Stg Bit of 90BIt Char.)
& Clear IMECHF

Assign Buff.n if
NIC. (Ring Bell 8& Ret
if Fail) Seve Ptr. in
TTIO T

If at End of Buf, Step
to Next Buf.

Store Char in Lin'l Input
Buf.

Update Ptr in TTIIN 8&
Cnt. in TTICT

SCHTT2

126

Send XOF to TTY
if Input Buf. Cnt. within
8 of the Max.

If Char. Caused Buf. to
Become Full, Request
PSI Int. if Job Enabled
for Input Buf. Full Int.

Ten Sched to Unblk Fork
(i. Call UNBLKF) if:

Data Mod. Binary or
Inp. Buf -t '032 Chan

Away from B.ing Full or
Char il in Wkup CI_

Specified by Job or
Failed to Echo a Char.

Line Not Fully Active
and/or Has No Controlling Job

Raturn

Go Create Job
on Line if LOGINs

Allowed

TTEMS

Get Ben Clear-t Send Short Message Send Bell
..... ------~ (i.e. Bell from & Lose

Interrupt Char.

TTCLPS

Clear Pg Ctr.

Sched. (3) Char.

TTFWAK

TTCIBF

Clear Inp. Buf.
(on Double Int.)

Force Wake
(So Program Can

See Interrupt

SCHTT3

127

128

Scheduler TTY Input Comments

TTCH7

(1) The carrier-on routine for the FE device is TTCON1.
If the line is in use or a job is being created, it
just returns. Otherwise, it creates a job by the
CTRL/C mechanism (i.e., putting a request in
Scheduler's Request Queue, SCDRQB) before re­
turning.

(2) The carrier-off routine for the FE device is
NTYCOF. It flushes outputs and issues an interrupt
via the PSI system if process has enabled for
carrier-off interrupt. It then issues a monitor­
internal interrupt via routine, PSIR4, which causes
the top fork to go to JOBCOF in MEXEC to cause the
job to be detached.

TTC7N

(3) TTEMES is called at Scheduler Level to send a short
message to a line. If the line is active, it
appends characters to the line's output buffer. If
the line is not active, it creates a message-length
dynamic block for the line and puts the characters
into this block.

TTEMES calls SCDTCO (pSTT7) to output each char­
acter via TCOUT to the buffer or message block.

129

130

REQUESTING DTE OUTPUT & DTE INTERRUPT HANDLING FLOWCHARTS

(DTE PROTOCOL HANDLER)

DTSNGL - Queue Up a Single Character Output Request

DTEQ - DTE Request Queues for RSX2~F Protocol

DTESKD - Start a To -11 Operation

SKVERI - Process RSX2~F Packet

INTDTE - DTE Interrupt Handler

DNIIX - To -11 Done

DEQDTE - Dequeue Completed Request,
Post it, and Schedule Next
One

TTYINT - Complete a TTY Output
Request

DNSNGL - Post Single Character Done

DINGME - l~ Received a Doorbell Interrupt

DOFRGM - Start a To -10 Transfer

DN10RS - To -10 Done

TAKLC2 - Process To -10 Done for
RSX20F Protocol

BIGST2 - Store Character into the
Big Buffer

131

DTE1

DTE1

DTE2

DTE2

DTE3

DTE4

DTE4

DTES

DTE4

DTE6

DTE7

DTE8

DTE9

DTE10

13~

REQUESTING DTE OUTPUT
Called From Interrupt, JSYS

& Scheduler Levels

~~ ___ Oueue up I Single
~ '" Char Output Request

(Called from TTSND pSTTS)

Get Interrupt Loc.,
TTYINT

(To Be Stored Into QINT
Field of a DTEO Packet)

DTE Request Oueue
for RSX20F Protocol
(Called from DTSNGL,
Sched. & Interrupt Levels)

~------~------~

Get Comm Region
Pointan

ASGNDI

DTSNG6:

DTSNG2

Get a Request Node
from COMO Area

Add Line No. & Byte to
Single Packet

Link Packet to DTEQS Oueue
if N~t Already The,.

Update Packet's Byte Cnt
& Flag Bits (If Full,
Set SNGAV L Bit)

If DTE Inactive, Start It
CaU DTESKD pDTE2

Successful
Return

DTE1

133

Get a Request Node
from COMO Area
(Blk. if Nee.)

Hav~ a C.OMO
HAVNOD: Packet Adr.

Store CaUer's Args into
Packet's Fields:

OINT, OMODE, QCNT,
OPNTR, OLIN, & QDEV

DTEQ13:

Put Unique Code from
Caller into QCOD
(For TTY I NT's Benefit
at I nt. Level)

DTEQ1:

Add Packet to End
ofDTEQS a.

Return

Routine to S"t1 •
~~-.... To .. 11 Operation from
~ --"" the Top of ttMt DTE's

Driver Queue

SETRGN

Get My Comm. Region
to This ·11

Use Protocol's Ven. No.
in CMVRR to Pick Up
Disp. Adr in SKDVEC Tbl.

Vector to Dispatch Adr
& Start T;ansfer

(Oisp. Adr. • SKVER1 for
RSX20F Protocol)

~--,......... Proces. Protocol Venion 1
~ --.., (RSX20F) Packets

Set DTE1 1 Bit in OTESTS &
>--........ Active Bit (SNGACT) in Single

Yes, Packet
TSNGL Packe

(No Formatting ----.... ----......
Nnded)

If Pack.t Flushed (OFNC-o),
Go to "

DEOOTE pOTE4
to Post Packet & Return

From Packet in COMO Area,
SetuP in PKTAOR:

HOOEV & HOfNC
& Clear HDSPR

No

Indir~t

Packet

Stene Datum from
QPNTR into HOOT1

Set DTE 11 Bit in DTESTS
(·11 Receiving Bytes)

STOREG:

Store tOIO in HDCNT &
QLIN-lif '* 0) into HOLIN

STORG1:

SETRGN

Get My Comm. Region

Get a Packet Byte
COUnt of toio

Build 8·Bit Byte Ptr to
RSX20FFormatted Packet
Zero cM"FwDTi.e.,Byte Mode)

DTSTRT:

Store Packet's Byte Cnt in
_CMQ.CT"
Incr. To· 11 Cnt in CM11C
Store S-Bit Byte Packet Ptr~.

in DTEEBP (in ·EPT TblT

DTE2

134

SETRGN
Get My Comm.
Region

Get Singht Packet's
Byte Count

Store in HDOAT
MIN [OCNT, MAXINPJ

Set Indir Bit, OTE111 in
OTESTS

Zero HOLIN

All Primary Protocol Interrupt.
Come Here After AC's Are
Stored by DTETRP Routine

DTEPRG:

DTREST

Reset the DTE

POW11:

DTEPF1

Tell ·11 About
Power Fail by
Ringing 11', Doorbell

DTE3

135

Clear DTETDN Bit by CONO Instr.

Dismiss
Interrupt

Tell Job 0 of
Reload

(+1 to LOAD11)

Schedule Job 0

(+1 to JBOFLG)

Reload the Machine

Prorl'ssing Adr.,
DN10RS

DTREST

Reset this
DTE

Say Not Running
a Protocol

(Clear DTRLD)

CLRDTE:

If DTE Inactive &
DTEGS Not Empty,
Dequeue & Post
(Via DEQDTE"pDTE4)
All Requests for this
DTE

T 0-11 Done Inte...,.pt

Cle., CMIP Bit
~----..... (No Longer Doing

DN11.:

Set To 11 Bit, DTE11
Store MIN[(QCNT),MAXINP]

intoCMQCT

Setup Approp. Byte Ptr
If a Full Word Ptr., Set

CMFWD Bit

NOTWRD:

Store Byte Ptr. into
DTEEPP

SIt CMIP Bit (i.I.
Indir. Ptr. is Set Up)

DING11

Go Ring thl ·11

Indirect)

TSTSGL

See if This
is a Single
Packet Gp

Update QCNT by No.
of Chars. Already Sent

Adjust Byte Ptr. & Store
into QPNTR

DTESKD pDTE2

Go Do Next
Part

DTE4

136

Dequeue Completed Request,
Post it, & Scheel. Next Req.

Put Next Packet on
Top of DTEQS QUeul &
Get Args from Packet

RLENOD

Free the Node

If QINT=FO,

Vector to its Disp. t-....; "-~R!!etu~r!!..Jn
Adr., TTY!.~~

pDTE5

Return to Post a
Single Char. Done

Put Next Packet on Top
of DTEQS Queue

Clear Single Packet Flag Wd.

DTESKD pDTE2

Reactivate the DTE

SNGPST:

For each Line No., Char Entry
in the Packe1, Pick Up the Line No.,
& With Unique Code - 0, Do the
Post Via Call to:

TTYINT pDTE5

Called at Int. Level to Complete
a TTY Output Request __

(Chin. hIve been sent to
the -11, but not acknowledged)

Get Proper
Line

TTYIN1:

Add No. of Chan. Sent
to F.E. Cnt, TTFCT

Clear T 0-11 Done Pending
Bit, TTFPK

Get Line's Allocation
from TTIFMC

Update No. of ChIn.
By No. of Chan. Sent

Store New Cnt in TTOCT

Set Line Waiting For
Unblock Bit, TTFOW

Clear Output Active
Bit, TTOTP

Clear Output Active
Bit, TTOTP & Clean up

Get Output Ptr .• TTOOUT
. & Advance if Nee.

CNTSET

Adjust Output Cnt.

FNDEND

Go Get Chan.

Store New Output Ptr.
inTTOOUT

Get Cnt. of By1lts Found
Get Int. Disp. Adr (a TTYINT)
Set Waiting for -11 Done

Bit, TTFPK
Store Line's Dyn. Data

Adr. into TTYVR2

Get Line No., Cnt. &
String Data;
rOFHSO-;,.FEDLS]

FIXARGS

Fix Up the Args

DTEQpDTE1

Queue the Request

DTE5

137

DTEQ Failed;
Restore ena. &
Arrange Schad. to
Restart Output

Add Buf Cnt. (TTOCT)
to Adr. of Dyn. Data.

Store Orig. Outp. Byte
Ptr. into TTOOUT

Get Args:
Line No.
Time Until Event (... 0)
Disp. Adr. (a TTSN10)

TTQAD:

Compute Time to Do Func.
for Line & Save in TTIME

Save Disp. Adr. in TROUT
Incr. TTQCNT
Set Scan Ptr. to this EntrY

if 1st Entry

~~!'!"!'!!IIII. ·10 RlCeiwd •
DoorbeIIlntarnlpt

~~!i-iiiii' Start to ·10 Transfer

Get Cormn Region

Go Reload

Clear Expecting
>---.... -t Indir. Bit (DT1ID) 1---; ... <

Set TOfT Bit in Comm
Region" (c,ifO,.n4)

~!»,
error

DINGM4:

BUGINF • To ·10
In Progress on
Doorbell

BUGINF· 11'5
a Count = 0

No

DTE6

138

DINGM6:

BUGINF· Incorrect
Indirect Setup

Dilmiss
Interrupt

DINGM3:

BUGINF· To ·10
CnD Don't Match

Go Reload

BUGINF·
BMi Indir. Cnt.

DOFRGM pDTE7

Start
Transfer

Dismiss Interrupt

Routine to Start
a To ·10 Transfer

SETRGN

GetComm
Region

Get Protocol Type &
Dispatch to its uTo"
·10 Xfer Routine
(Disp. Adr =- DOFRRS

for RSX20F)

RSX20F Protocol
To ·10 Transfer

Save Cur. Buf &
Store Next Buf
into DTEBF

Set Up Approp. Byte
Ptr. (Full Word (16 Bits)
or Byte Mode) According
to CMFWD Bit

Clear DTEBC (No Pending
Operation)

Store Q Cnt (Bytes Left)
~-t.... into DTEB1

Yes Get Neg. Wd Cnt & I Bit into

Set ·10 is Receiving 1st
Frag. Message Bit, DTET1 F
in AC, P2

Store No. Left for
Subsequent Reads
into DTEBC

If Byte Mode, Get No.
of Bytes or if Not, Word
Cnt into AC, B-&
Store Buf Size (in Bytes)
into DTEB1

AC,B

Set Doing ·10 Transfer (Last
Fragment) Bit, DTET10,
in AC, P2

DTE7

139

SET2:

Store Approp. Byte
Ptr. in DTETBP

Update Status Word, DTESTS,
From AC, P2

Start To· 10 Transfer Sending
by Sending Contents Count
of AC, B, (Via DATAO Over
Instr.) Over the DTE the DTE

DOFRGM pDT!7

Y II Stlrt ttli. Ffltlmlflt

CI •• r Intrlnsit Bit.
CMTOT

Get Cnt of Campi ...
R", from DTIB1

G.t Cur. Buf from DTEBF

DODMS1:

M.k. Buf Byte Ptr from
Adr. in DTBFWD

G'1 ArGl from PICket
Store Func with Indir.

Bit CI in DT1 FC
Store Dey. Cod. into DT10V
Skip Spare

Set W.iting for Indir.
Setup Bit, onlD

$lye Cl'1t in INCNT
& Lin. in ,NUNT

SIt Valid Unit Bit, INVLD

Get INCNT

BUGCHK
T010DN - PICk.t
TooSmtll
U ••• < 128)

Dismin
Interrupt

CI •• INVLO
(Unit in Indir. Word
is Iny.lid)

Dismiss
Int.rrupt

DTE8

140

Clear INCNT
Find Local Residual

Cnt.
G.t Next Function

OilPa1I:h to Adr. in TbI,
FNCTBL (5)

at Func. Cod. Offset
(011P Adr· TAKLC
for DLS Line Chan)

Sav. Cnt. in
Next Pack.t
in aNCNT

G.t PICk.t Size
& DTE No.

'-' ", Une Chan (for DLS)

TAKLC2

Call Processing Routin.

Clear
SAVOFS

ISCTY:

-11 Has Sent
Line Chan.

Get Dev. Type from
DT1DV & Store into
SAVTYP

Get Li ne Offset
& Save in SAVOFS

Save Byte Cnt in BYTC
& Byte Ptr. in BYTP

Subtract 2 from BYTC

Get Byte, Line No. & Line
Offset & Type

DTESTO

Store in Big Buf.

BUGCHK· Odd
Byte Cnt. for
Line Chan.

DTE9
1 L1 1

Store Char.
in Big Buf.

Indicate Data is Char for
TTYBUF by Setting DLSRCF Bit
Get Dev. Type & Char.

GETLIN

Get Internal Line
No. for this Line

Get Internal Line
No. & Char into AC1

BIGSTO:

Dispatch to Tbl.
TTXXVT
at Offset
TTVT22

F.E. Disp Adr. = BIGST2
pDTE10

Beyond a.d Called from BIGSTO
'-...... ~.." to Check Una Limit

at Store Char.
,..-_________ Guy Cutoff

Store Updated Cnt.
in TTFBB

Incr. In Ptr to
Big Buf (TTBIGI)
& AJljust for Wrap
Around if Nee.

Store AC1 Contents
into TTBBUF &
Increment TTBIGC

Vel

Char.

SNOXOF

Send X-OFF
to Terminal

OLS$X1:

BUGCHK - Big
Buffer Overflow

at offset
TTVT25

F.E.Oilp. Adr· DLSSX2

Decrement Big
Buf Cnt, TTFBB

Send X-OFF to
Terminal

Big Buf Has
Overflowed

OTE10

142

Get ·Line in AC, C
Get [.OFTOL ... FEDLSJ into AC, B
Claar AC, A (To the Master)
Get .OFTLO (Tum it off Func.)

into AC, 0 .

FIXARG

Fix Arguments

OTEQpOTE1

Output it

Setup Wh8n to Restore
Una (tD6000)

TTQAO:

Get Oisp. Adr. to
Call TTTOBL

Compute Time to Do Func.
for Line & Save in TTl ME

Save Oisp. Adr. in TROUT
Incr. TTQCNT
Set Scan Ptr. to this Entry

if Fint Entry

Make it a
Longer Wait
Time (t06000)

DTE Interrupt Handling Comments

TTYINT

(1) The Unique Code argument of form (0, count) tells
TTYINT the number of characters that have been sent
to the -11 in some call to DTEQ that specified
TTYINT as its return address.

DINGME

Count = 0 implies this was a single
character (DTSNGL was called)
and buffer counts have already
been updated.

Count ~ 0 implies this was multiple
characters and the count must
be updated.

(2) T010IC and TOllIC are wrap-around counters of In­
direct Transfers where T010IC is maintained by the
-11 and TOllIC is maintained by the -10. If the two
wrap-around counters are equal, it means the trans­
fer finished correctly.

(3) If the difference between the wrap-around counters
is greater than 1, the -11 has tried to send a
direct transfer before the last indirect transfer
finished or a doorbell has been lost in a previous
transaction.

(4) Receiver sets TOIT equal to 1 in Sender's section
of Receiver's communication region after Sender
sets @ or increments Q count and rings the· door­
bell; Receiver clears TOIT upon getting To-Receiver
Done (This assures that the Receiver doesn't lose
an interrupt).

143

DN10RS

(5) The function table has dispc;ltches for such features
as:

• F. E. tell ing about the CTY
• String data for the CDR
• Line characters (for DLS)
• -11 Sending error information
• -11 wants or is send ing time of day
• Line dialed up, hung up or line buffer empty
.Set1ine speed or allocation
• Take -11 reload information
• Acknowledge all dev ices and uni ts
• Take KLINIK data.

144

DIGITAL

INTRODUCTION

Job Startup

TOPS-20 MONITOR
Job Startup

A job is started by putting a request in table SCDRQB,
the scheduler special request table. An entry in SCDRQB is
one word with the following format: data in the left half
and dispatch address in the right half. The dispatch
address for job startup is JOBSRT. All jobs are started
this way, including Job 0.

A request to start Job 0 is put in 8CDRQB by the system
startup code. Requests for later jobs will be added to
SCDRQB at the TTYSRV interrupt level when the user types
CTRL/C on an inactive line.

If the job being started is Job 0, some special system
initialization routines are called.

OVERHEAD CYCLE JOB STARTUP TASKS

Table SCDRQB is checked in the overhead cycle for
requests. Currently, SCDRQB is used only.for job startup
requests; routine JOBSRT is called in the overhead cycle to
start a job.

JOB8RT checks the availability of system resources such
as the number of free 8PT slots, the amount of drum space
available, the number of free job and fork slots. If there
are not enough system resources to start the job, the
message "FULL" is typed on the terminal and the job is not
started.

If enough resources are available to start the job, the
necessary slots are assigned in the 8PT table and the job
and fork numbers are assigned. The fork is added to WTLST
with a null wait test of [0"JSKP]. JSKP is a routine which
will always give the skip return, indicating that the fork's
wait is satisfied and the fork can be moved to the GOLST.
The new job and new fork flags are set in table FKINT,
indexed by fork number. JOBSRT then returns and the
overhead cycle continues.

MIS-.1

DIGITAL TOPS-20M ONITOR
Job Startup

When routine WTCHK is called by the overhead cycle, the
fork will be moved to the GOLST. WTCHK is called by the 100
ms. clock when there is no fork to schedule. Note that
when Job 0 is being started, there ~ill be no other forks on
the system; therefore, WTCHK will be called to move the
fork to the GOLST.

When SKDJOB chooses the fork to run, it will see both
the new job and new fork flags and will set the PC for the
fork to PIRQ; when the fork starts, it will begin execution
there.

JOB STARTU~ TASKS IN PROCESS CONTEXT,

When the process is chosen to run, it executes code in
EXEC mode to complete job startup. When Job 0 is started,
special routines are called to finish system startup. The
job startup routines and their functions are described
below.

1. PIRQ (fork startup code)

The PSB and JSB (if appropriate)
initialized and EXEC0 is stored as the PC.
software interrupt is dismissed. When the
resumes execution, the PC is EXEC0.

2. EXEC0

If this is the first job on the system
(Job 0), call the following routines:

1. -SEBINI - initialize SYSERR data base

2. -FSIINI - mount the public structure.
incl ud es:

are
The

fork

This

1. Call FSIDIA if the file
initialized (FSIDIA is
define PS:)

system is being
the dialogue to

2. Read the home block

MIS-2

DIGITAL TOPS-20 MONITOR
Job Startup

3. Create SDB and STRTAB entries for PS:

3. -SWPINI - initialize the swapper data base
tables

4. -CHKBAT - read the BAT blocks and perform quick
consistency check for the PS: structure.

5. -GETSWM - get swappable monitor, using VBOOT

6. -RESLCK - lock down some resident free space

After getting the swappable
initialization code joins
GOTSWM.

3. GOTSWM

monitor, the Job 0
normal job startup at

1. -The fork structure (tables FKPTRS and SYSFK)
in the JSB is initialized for the job

2. -The software interrupt channels the monitor
uses are reserved

3 • -JB F IN lis call e d to in i t i ali ze J S B 1 0 cat ion s

If this is Job 0 initialization (SYSIFG equals
zero), the following tasks are completed (after
which Job 0 initialization rejoins normal job
initialization at SYSINE):

1. -FILINI - file system initialization; if flag
MI%RFS is on in STARTF, the file system is
buil t

2. -PIDINI - IPCF data base initialization

MIS-3

DIGITAL TOPS-20 MONITOR
Job Startup

3. -SLNINI - initialize system logical names

4. -GETNAM - read MONNAM.TXT to get system banner

5. -Initialize the time zone

6. -Initialize accounting flags

4. SYSINE

1. -Initialize job's PlD and ENQ/DEQ quota

2. -If CRJOB JSYS, set controlling job and TTY
locations

3. -TTYASN - assign controlling terminal number

4. -TTCKSP - set terminal speed if necessary

If t his i s a s pe cia 1 job, log i tin as
operator and dispatch to the appropriate address
from table SPECJT, index ed by job number.
Currently the only special job is Job 0; it
dispatches to RUNDD, whose functions are described
below. .

If this is a normal job, set up terminal
information (such as setting terminal type to
standard). Get a JFN on the EXEC, GET it and start
it.

5. RUNDD (Job 0 only)

1. -Set CTY as controlling TTY

2. -TTSPIN - initialize terminal speeds to null

3. -PROINI - start primary protocol

MIS-4

DIGITAL TOPS-20 MONITOR
Job Startup

4. -DTRMDS - tell console front end not to answer
data sets

5. -Try to get time
front end; if
operator

and date from the
it does not know,

console
ask the

6. -Run SETSPD to set line speeds, system logical
names, and other system parameters

7. -If regular startup (DBUGSW equal 0 or I), tell
all users that system is restarting

8. -LOGSST - log system restart in SYSERR file

9. -Run CHECKD, if necessary

10. -SERINI initialize SYSERR logging fork;
starts fork at SEBRUN in exec mode. This fork
opens the SYSERR log file and MDISMSs with wait
test [0"SEBTST]. When there is a request is
queued for SYSERR, its wait condition is
satisfied and it processes the request

11. -USGINI - start accounting;
CHECKPOINT files

opens USAGE and

12. -Run SETSPD to copy DUMP.EXE to DUMP.CPY and
move any queued SYSERR blocks from the dLUnp to
ERROR.SYS

13. -Start DDMP in this fork and send message to
CTY saying DDMP is running

14. -IMPBEG - start NCP fork, if any (for ARPA
systems)

15. -NSPINI - initialize DECnet fork and data base

1~. -Create fork and start SYSJOB in it

17. -Go to CHKR, the background task that runs
every 10 seconds.

MIS-5

DIGITAL TOPS-20 MONITOR
Job Startup

NOTE ----------....

Job 0 (the DDMP fork) runs only in exec
mode, using the monitor address space.

MIS-fi

DIGITAL

System Startup

TOPS-20 MONITOR
System Startup

STARTUP VECTORS

The system can be started at one of several addresses,
depending on the kind of startup. The system startup code
begins in STG with a set of startup vectors; the first
vector is loaded at 140. The startup vectors and their
functions are as follows:

EVDDT=140/ JRST DDTX

Starts the monitor in EDDT; does not do a
reset first. Can be used for debugging when a
restart without resetting the machine is desired.

141/ JRST SYSDDT

Resets the machine and starts the monitor in
EDDT. Can be used for debugging when a reset and
restart is desired or when a restart alone does not
work.

EVDDTX=142/ JRST DDTX

Copy of 140 in case 140 is
(Provided for historical reasons.)

EVSLOD=143/ JRST SYSLOD

clobbered.

Initializes the file system. Used for system
installation.

144/ XPCW RLODPC

Reloads vector for front end.

EVRST=145/ JRST SYSRST

Meant for use with power fail;
supported.

.MIS-7

not really

DIGITAL TOPS-20M ONITOR
System Startup

EVLGO=146/ JRST SYSGO

Provided for historical reasons.

EVGO=147/ JRST SYSG01

Normal restart.

Of these startup;vectors, only 140, 141, 143 and 147
currently provide really useful and separate system
startups. Functionally, they provide:

1. Enter EDDT -- Both 140 and 141 enter EDDT

Startup vector 141 does a reset of the machine
first by calling PIRST (to reset the PI system) and
IORST (to set up EBR, set up UBR, and clear paging
and cache).

2. Initialize file system (vector 143)

Sets flag MI%RST in STARTF to note the file
system is being initialized and then joins regular
system startup code at SYSLOD+l. This flag
triggers the file system initialization in the Job
o code.

3. Normal startup (vector 147)

Sets STARTF flag to indicate normal startup
and begins system startup at SYSLOD+l.

SYSTEM STARTUP CODE

The system startup code which begins at SYSLOD+1 calls
routines to initialize the monitor data base, puts a job
request in the scheduler request table and goes to the
scheduler. The scheduler schedules the Job 0 fork, which
does the remainder of system startup. The routines called
to initialize the monitor data base (before the Job 0 fork
is started), and their functions are:

MIS-8

DIGITAL TOPS-20 MONITOR
System Startup

1. SYSLOD code (in STG)

1. -Execute PIRST and IORST (see above).

2. -Ini tial i ze DTEs

3. -Clear resident storage area

4. -Read APR serial number

5. -Initialize bit table data base

6. -Read APR serial number

7. -Set extended addressing flag to indicate if
machine has extended addressing

8. -Set up BUGCHK, BUGHLT, and BUGINF (in case
a breakpoint was set)

9. -Note if EDDT is to be flushed

10. -Initial ize SWPCOR

2. RESFPI (in FREE)

Initialize resident free pool.

3. PAGRST (in APRSRV)

Set up EPT, scheduler's UPT and set up for
TOPS-20 paging. This includes:

1. -Store SPT and CST base addresses in AC block
6 (microcode/software interface AC block)

2. -Initialize CSTDAT and CSTMSK in AC block 6

3. -In i tial ize EPT, using tempI ate IEPT0

4. -Initialize scheduler's UPT, using template
IUPT0

MIS-9

DIGITAL TOPS-20 MONITOR
System Startup

5. -Store KIPFS as page fail dispatch address in
sched ul er' s UPT

6. -Set up CONOPG for KL paging, (but do not turn
on KL pag ing)

4. PGRINI (in PAGEM)

Initialize pager data base and turn on KL
pag ing.

1. -Initialize DST, SPT, SPTH, and CST tables

2. -Assign SPT slots for running fork's PSB, JSB
and for the bit table and MMAP

3. -Initialize MMAP

4. -Initialize FPTABL (PAGEMs section dispatch
table); makes all sections illegal

5. -Set up section pointer(s) for monitor in
MSECTB; set up dispatch addresses in FPTABL
for all legal sections in this monitor

6. -Initialize MMSPTN (MMAPs SPT slot)

7. -Set up MMAP entries for resident monitor
(virtual and physical addresses are the
same)

8. -Set up MMAP entries for the bit table
(indirect pointers through the bit table's
index block)

9. -Set up MMAP entries for JSB area and PSB area
(indirect pointers through the JSB and PSB
maps)

10. -Set up ARPANET section (if this is an ARPA
machine)

MIS-10

DIGITAL TOPS-20 MONITOR
System Startup

11. -Set scheduler context

12. -Turn on TOPS-20 paging (call PGRON)

13. -Construct RPLQ

14. -Set up core management constants

5. UNBINI *2020 only*

Initialize UNIBUS related data base.

6. PH YIN I (in PH YS IO)

Initialize the PHYSIO data base. A CDS is set
up for each channel and a UDB for each disk and
magtape unit. The IORB free list is built.

7. TTINIT (in TTYSRV)

Initialize TTY data base.

1 • - In i t i ali ze TTY b uf fer s

2. -Initialize TTY tables that are indexed by
line

3. -Establish line type for each line

4. -Assign internal line numbers for all lines

5. -Initialize BIGBUF data base

8. SCDIN (in SCHED)

Initialize scheduler data base.

1. -Initialize scheduler flags

2. -Set up OKSKED locations (RSKCHK)

MIS-II

DIGITAL TOPS-20 MONITOR
System Startup

3. -Set up JSYS trap queue

4. -Initialize free fork list

5. -Initialize free job list

fi. -Turn off Job 0 alarm (until Job 0 fork
is' sta rted)

7. -Initialize balance set queue

9. PIINIT (in APRSRV)

Initialize priority interrupt system.

1. -Set up XPCW instructions in the standard
interrupt locations for levels 4-7

2. -Set up for power fail

3. -Initialize DTE. (set up XPCW instructions for
each DTE vectored interrupt location and
set up the DTE PI channel for vectored
interrupts)

4. -Set up interval timer (set up XPCW instruction
for interval timer, set the interval, and
set its P I ass i 9 nm en t)

10. SCDRQ7 (in SCHED)

Put a request for a new job in the scheduler
request table; this starts the first Job 0 fork.

Enter the scheduler at SCHED0; that is, start the
overhead cycle. The overhead cycle services requests in the
scheduler request table and this starts the first Job 0
fork. The rest of system initialization happens in process
context (Job 0 context). See the job startup description
for the rest of system startup. (Note that the system has
not yet read in the swappable monitor, has not asked for the
time and date, etc.)

MIS-12

Appendix I
PART A

Alphabetical List of BUGHLTs,

BUGCHKs and BUGINFs

DIGITAL

BUG(HLT,ABKSKD,<ADDRESS BREAK FROM SCHEDULER CONTEXT»
BUG(HLT,ADDONF,<ADDOBJ-LLLKUP FAILED»
BUG(HLT,APRNXl,<NXM DETECTED BY APR>,<A»
BUG(HLT,APRNXl,<NXM DETECTED BY APR»
BUG(HLT,APRNX2,<NXM DETECTED BY APR» iYES
BUG(HLT,ASGSW2,<SWPOMG-CAN'T ASSIGN RESERVED DRUM ADDRESS»
BUG(HLT,ASOFNF,<DELFIL: ASOFN GAVE FAIL RETURN FOR LONG FILE XB»
BUG(HLT,ASTJFN,<GETFDB: CALLED FOR JFN WITH OUTPUT STARS»
BUG(HLT,BADBTB,<NIC- ILLEGAL REFERENCE TO BIT TABLE»
BUG(HLT,BADDAC,<INSACT - NULL ACCOUNT STRING SEEN»
BUG(HLT,BADREC,<FILINI - Reconstruction of ROOT-DIRECTORY failed»
BUG(HLT,BADROT,<FILIN2: ROOT-DIRECTORY IS INVALID»
BUG(HLT,BADTTY,<TRANSFER TO NONEXISTENT TTY CODE»
BUG (HLT,BADTYP,<BAD LABEL FIELD DESC»
BUG(HLT,BADXTl,<INDEX TABLE MISSING AND CAN NOT BE CREATED»
BUG (HLT,BADXTB,<FILIN2: Could not initialize index table»
BUG (HLT,BKUPDF,<BKUPD - BAD CSTI ENTRY OR INCONSISTENT CST»
BUG (HLT,BOOTCR,<GETSWM - NOT ENOUGH CORE FOR SWPMON»
BUG (HLT,BOOTER,<GETSWM - ERROR LOADING SWPMON»
BUG(HLT,BOOTLK,<GSMDSK - FAILED TO LOCK NEEDED PAGES»
BUG (HLT,BOOTMP,<GSMDSK - CANNOT MAP BOOTSTRAP PAGES»

TOPS-20 MONITOR
APPENDIX I

BUG(HLT,BTBCRl,<FILINI - NO BIT TABLE FILE AND UNABLE TO CREATE ONE»
BUG(HLT,BTBCRT,<FILINI - COULD NOT INITIALIZE BIT TABLE FOR PUBLIC STRUCTURE»
BUG(HLT,CDILVT,ILLEGAL DEVICE TYPE)
BUG(HLT,CKDFRK,<JOB 0 CFORK FAILED»
BUG(HLT,CLRACE,UNABLE TO CLEAR REGISTER ACCESS ERROR)
BUG(HLT,CST2Il,<PAGE TABLE CORE POINTER AND CST2 FAIL TO CORRESPOND»
BUG(HLT,CST212,<MVPT-CST2 INCONSISTENT»
BUG(HLT,CST213,<PAGE TABLE CORE POINTER AND CST2 FAIL TO CORRESPOND»
BUG(HLT,DELNDF,<DELNOD-LLLKUP FAILED»
BUG(HLT,DGUTPG,<DIAG - LOCKED PAGE LIST PAGE LOCKED AT DIAG UNLOCK»
BUG (HLT,DGZTPA,<DIAG - LOCKED PAGE LIST PAGE WAS ZERO»
BUG(HLT,DNOPT0,<DSKCLZ-JFNOFN FAILED FOR PAGE 0»
BUG (HLT,DRMFLl,<ASFSB-UNEXPECTED DRUM FULL»
BUG (HLT,DRMFUL,<DRUM COMPLETELY FULL»
BUG (HLT,DRMIBT,<DRMASN-BIT TABLE INCONSISTENT»
BUG (HLT,DRMNFR,<DRMAM-CAN'T FIND PAGE WHEN DRMFRE NON-0»
BUG (HLT,DRUMPl,<DRMIO - DRUMP ON BUT NO DRUM CODE IN SYSTEM»
BUG (HLT,DST2SM,<SWPINI-DST TOO SMALL»
BUG(HLT,DTECAR,<DTESRV- CARRIER FUNCTION WITH NO LINE NUMBER PRESENT»
BUG (HLT,DTEDEV,<LINEAL -ILLEGAL DEVICE»
BUG(HLT,DTEIDP,<DTESRV- INDIRECT POINTER WITH GARBAGE PACKET»
BUG(HLT,DTEIFR,<DTESRV-ILLEGAL FUNCTION REQUEST FROM 11»
BUG(HLT,DTEMCC,<DOFRGM-MCB DISAGREES WITH COUNT» iNO
BUG (HLT,DTETTY,<TAKLC-NON-TTY DEVICE ON FUNCTION CODE 4»
BUG(HLT,DTEUIF,<DTESRV-UNIMPLEMENTED FUNCTION FROM 11»
BUG(HLT,DUPCOR,<No core for DUPl1»
BUG(HLT,DUPCOR,<No core for DUPll»
BUG(HLT,DUPUBA,<no Unibus Address»
BUG(HLT,DUPUBA,<no Unibus Address»
BUG(HLT,DZCLRB,<UNABLE TO RESET DZll»
BUG (HLT,EXPAFK,<EXPALL: JOB 0 CFORK FAILED»
BUG (HLT,FATAPE,<FATAL ADDRESS PARITY ERROR>,<A»
BUG (HLT,FATCDP,<FATAL CACHE DIRECTORY PARITY ERROR>,<A»
BUG(HLT,FATMER,<FATAL MEMORY ERROR»
BUG(HLT,FILBTB,<UNABLE TO WRITE BIT TABLE FILE»
BUG(HLT,FILIRD,<FILINW COULD NOT INITIALIZE THE ROOT DIRECTORY»
BUG(HLT,FILMAP,<FILIN2 COULD NOT MAP IN ROOT-DIRECTORY»
BUG(HLT,FILRID,<FILINW INDEX TABLE ALREADY SET UP FOR ROOT DIR»
BUG(HLT,FRKNPT,<FKHPTN - FORK HAS NO PAGE TABLE»

APP-l

DIGITAL

BUG (HLT,FRKPTE,<BADCPG-FATAL ERROR IN FORK PT PAGE»
BUG (HLT,FRKSLF,<SUSFK - GIVEN SELF AS ARG»
BUG (HLT,GLFNF,<GLREM - FORK NOT FOUND»
BUG (HLT,GTFDB2,<NEWLFP: GETFDB FAILURE FOR OPEN FILE.»
BUG(HLT,GTFDB3,<DSKREN-GETFDB FAILURE FOR OPEN FILE»
BUG (HLT,GTFDB6,<CRDI0A: CANNOT DO GETFDB ON ROOT-DIRECTORY»
BUG(HLT,HSYFRK,<HSYS-JOB 0 CFORK FAILED»
BUG(HLT,IBCPYW,<COPY-WRITE POINTER IN INDEX BLOCK»
BUG (HLT, IBOFNF, <FILINI: ASOFN FAILURE FOR ROOT DIRECTORY IB»
BUG(HLT,IDXNOS,<FILINI - COULD NOT ASSIGN FREE SPACE FOR IDXTA~»
BUG(HLT,ILAGE,<BAD AGE FIELD INCST0»
BUG(HLT,ILBOOT,<GETSWM-ILLEGAL VALUE OF BOOTFL»
BUG (HLT,ILCHSl,<PHYSIO - ILLEGAL CHANNEL STATUS AT SIO»
BUG (HLT,ILCHS2,<PHYSIO - ILLEGAL CHANNEL STATE AT STKIO»
BUG(HLT,ILCNST,<PHYSIO - ILLEGAL CALL TO CONSTW»
BUG(HLT,ILCNSP,<PHYSIO - ILLEGAL CALL TO CONSPW»
BUG(HLT,ILCSTl,<ILLEGAL ADDRESS IN CSTl ENTRY, CAN'T RESTART»
BUG(HLT,ILDEST,<ILLEGAL DESTINATION IDENTIFIER TO SETMPG OR SETPT»
BUG(HLT,ILDRA2,<DRMIAD-ILLEGAL DRUM ADDRESS»
BUG(HLT,ILFPTE,<ILLFPT: ILLEGAL SECTION NUMBER REFERENCED»
BUG (HLT,ILGDAl,<GDSTX - BAD ADDRESS»
BUG(HLT,ILGDA2,<GDSTX - BAD ADDRESS»
BUG (HLT,ILIRBL,<PHYSIO - IORB LINK NOT NULL AT ONFPWQ»
BUG(HLT,ILLIND,<ILLEGAL INDIRECT»
BUG(HLT,ILMADR,<ILLEGAL ADDRESS REFERENCE IN MONITOR»
BUG(HLT,ILOFNl,<MSCANP-ILLEG IDENT»
BUG (HLT, I LOKSK, <OKSKED WHEN NOT NOSKE D»
BUG(HLT,ILPAGN,<MRKMPG-INVALID PAGE NUMBER»
BUG(HLT,ILPAGl,<SWPOT0-INVALID PAGE»
BUG(HLT,ILPDAR,<PHYSIO - ILLEGAL DISK ADDRESS IN PAGEM REQUEST»
BUG(HLT,ILPLKl,<MLKPG-ILLEGAL ARGS»
BUG (HLT,ILPPTl,<UPDOFN-BAD POINTER IN PAGE TABLE»
BUG(HLT,ILPPT2,<UPDPGS-BAD POINTER IN PAGE TABLE»
BUG(HLT,ILPPT3,<BAD POINTER IN PAGE TABLE»
BUG(HLT,ILPTNl,<MRPACS-ILLEG PTN»
BUG(HLT,ILRBLT,<PHYSIO - IORB LINK NOT NULL AT ONF/STWQ»
BUG(HLT,ILRFPD,<PDL-OV IN ILLEGAL PAGE REFERENCE»
BUG(HLT,ILSPTI,<ILLEGAL SPT INDEX GIVEN TO SETMXB»
BUG(HLT,ILSPTH,<SETPT-SPTH INCONSISTENT WITH XB»
BUG(HLT,ILSRC,<ILLEGAL SOURCE IDENTIFIER GIVEN TO SETPT»
BUG(HLT,ILSTP3,<VERLU~: IMPOSSIBLE SKIP RETURN FROM EXTLUU»
BUG (HLT,ILSWPA,<SWPIN - ILLEGAL SWAP ADDRESS»
BUG(HLT,ILTWQ,<PHYINT - TWQ OR PWQ INCORRECT» ;NO.
BUG (HLT,ILTWQP,<PHYSIO - PWQ OR TWQ TAIL POINTER INCORRECT»
BUG(HLT,ILULKl,<MULKPG - TRIED TO UNLOCK PAGE NOT LOCKED»
BUG(HLT,ILULK2,<TRIED TO UNLOCK PAGE NOT LOCKED»
BUG(HLT,ILULK3,<MULKMP - ILLEGAL MONITOR ADDRESS»
BUG(HLT,ILULK4,<MULKCR - ILLEGAL CORE PAGE NUMBER»
BUG(HLT,ILUSTl,<PHYSIO - UNIT STATUS INCONSISTENT AT SIO»
BUG(HLT,ILUST5,<PHYSIO - ILLEGAL UNIT OR CHANNEL STATE AT STKIO»
BUG(HLT,ILUST4,<PHYSIO - CONTROLLER ACTIVE AT SPS»
BUG(HLT,ILUST3,<PHYSIO - SCHSEK - IMPOSSIBLE UNIT STATUS»
BUG(HLT,ILWRT2,<ATTEMPTED WRITE REF TO PROTECTED MONITOR»
BUG(HLT,ILXBP,<SETPT-BAD POINTER IN XB»
BUG(HLT,IMPAFB,<IMPCQ: ATTEMPT TO UNLOCK BUFFER ON FREELIST»
BUG(HLT,IMPALF,<IMPLKB: ATTEMPT TO LOCK BUFFER ON FREELIST»
BUG (HLT,IMPAUF,<IMPEIN: BUFFER ON FREELIST USED FOR INPUT»
BUG (HLT,IMPCCF,<CAN'T CREATE IMP FORK»
BUG(HLT,IMPNBC,<PKMSG: NEGATIVE RESIDUAL BYTE COUNT»
BUG(HLT,IMPNII,<NO IMP INPUT BUFFERS»

APP-2

TOPS-20 MONITOR
APPENDIX I

DIGITAL TOPS-20 MONITOR
APPENDIX I

BUG(HLT,IMPRMI,<IMP - REGULAR MESSAGE ON IRREG QUEUE»
BUG(HLT,IMPUBF,<IMULKB: ATTEMPT TO UNLOCK BUFFER ON FREELIST»
BUG(HLT,IMPUFB,<IMIPl: ATTEMPT TO UNLOCK BUFFER ON FREELIST»
BUG(HLT,IMPUUO,<IMPOSSIBLE MUUO»
BUG(HLT,INVDTE,<DTEQ- INVALID DTE SPECIFIED»
BUG(HLT,IONXM,<I/O NXM ON UNIBUS DEVICE»
BUG(HLT,IOPGF,<IO PAGE FAIL>,<Ql»
BUG (HLT,IPCOVL,<PIDINI: PIDS AND FREE POOL OVERLAP, IPCF WON'T WORK!»
BUG(HLT,J0NRUN,<JOB 0 NOT RUN FOR TOO LONG, PROBABLE SWAPPING HANGUP»
BUG(HLT,JSBNIC,<SETPPG-JSB NOT IN CORE»
BUG(HLT,JTENQE,<JTENQ WITH BAD NSKED»
BUG(HLT,KMCIII,<KMCll illegal input interrupt>,<Tl,T2»
BUG(HLT,KMCIII,<KMCll illegal input interrupt>,<Tl,T2»
BUG(HLT,KPALVH,<KEEP ALIVE CEASED»
BUG(HLT,LCKDIR,<ATTEMPT TO LOCK DIRECTORY TWICE FOR SAME FORK»
BUG(HLT,LUUMN0,<LUUO IN MONITOR CONTEXT»
BUG (HLT,LUUMON,<.LBCHK: ILLEGAL LUUO FROM MONITOR CONTEXT»
BUG(HLT,MAP4lF,<MAPF4l FAILED TO SKIP»
BUG(HLT,MAPBTl,<OFN FOR BIT TABLE IS ZERO»
BUG (HLT,MDDJFN,<GETFDB: CALLED FOR NON-MDD DEVICE»
BUG(HLT,MNTLNG,<MNTBTB - BIT TABLE IS A LONG FILE»
BUG(HLT,MONPDL,<OVERFLOW OR PDL OVERFLOW TRAP IN MONITOR»
BUG (HLT,MPEUTP, <PFCDPE-UNKNOWN TRAP ON TEST REFERENCE»
BUG(HLT,MTARIN,<MTAINT: INTERRUPT RECEIVED FOR NONACTIVE IORB»
BUG (HLT,MTFCNX,<MTLFCN: FUNCTION CODE TOO LARGE»
BUG (HLT,NCDWA,<KSINI: NO CARDREADER UBA WINDOW»
BUG (HLT,NETBAU,<ASNTBF: ATTEMPT TO ASSIGN A BUFFER ALREADY IN USE»
BUG (HLT,NETBAF,<RLNTBF: ATTEMPT TO RELEASE BUFFER ALREADY ON FREE LIST»
BUG (HLT,NETIEF,<NETOPN: EXT DEC FAILURE AFTER PREVIOUS NON-FAILURE.»
BUG(HLT,NETNNI,<NETINI: NNTBFS NOT INTEGRAL MULTIPLE OF MAXWPM»
BUG (HLT,NETRBL,<ASNTBF: REQUEST FOR BUFFER LARGER THAN MAXWPM»
BUG (HLT,NETRBG,<RLNTBF: ATTEMPT TO RELEASE BUFFER AT GARBAGE LOCATION»
BUG (HLT,NETWNS,<WATNOT: WAS CALLED FROM SCHEDULER LEVEL.»
BUG(HLT,NEWBAK,<FILRFS - NEWIB FAILURE FOR BACKUP ROOT-DIR»
BUG(HLT,NEWROT,<FILRFS - NEWIB FAILURE FOR ROOT-DIRECTORY»
BUG(HLT,NLWA,<L2INI: No lineprinter window available»
BUG(HLT,NOACB,<MENTR - NO MORE AC BLOCKS»
BUG(HLT,NOAnXB,<RELOFN-NO DSK ADR FOR XB»
BUG(HLT,NOBTR~,<FILINI - UNABLE TO GET SIZE OF BOOTSTRAP.BIN FILE»
BUG(HLT,NOCTY,<UNABLE TO ALLOCATE DATA FOR CTY»
BUG(HLT,NOFEFS,<FILINI - UNABLE TO GET SIZE OF FRONT END FILE SYSTEM»
BUG(HLT,NOFNDU,<FNDUNT-CAN'T FIND DEVICE FOR JFN»
BUG(HLT,NOIORB,<SETIRB - MISSING IORB»
BUG(HLT,NOLEN,<UPDLEN: NO LENGTH INFO FOR OFN»
BUG (HLT,NOPGT0,<OPNLNG: NO PAGE TABLE 0 IN LONG FILE.»
BUG (HLT,NORSXF,<FAILED TO GET SPACE FOR MASTER DTE»
BUG (HLT,NOSEB2,<PGMPE-NO SYSERR BUFFER AVAILABLE»
BUG(HLT,NOTOFN,<UPDOF0-ARG NOT OFN»
BUG (HLT,NOUBWA,<RH2NCH: NO UNIBUS WINDOW FOR RHll»
BUG(HLT,NOXADR,<EXTENDED ADDRESSING CONFUSION»
BUG(HLT,NSKDIS,<DISMISS WHILE NOSKED OR WITH NON-RES TEST ADDRESS»
BUG(HLT,NSPFRK,<NSPINI-CFORK FAILED»
BUG (HLT,NSPUDF,<UNSUPPORTED NETWORK FUNCTION»
BUG (HLT,NULQTA,QCHK ~ NO QUOTA INFO SETUP)
BUG(HLT,OFFSPE,<OFFSPQ- PAGE NOT ON SPMQ»
BUG(HLT,OPOPAC,<MRETN - TRIED TO OVER-POP AC STACK»
BUG(HLT,OVFLOW,<ASOFN - ALLOCATION TABLE OVERFLOW»
BUG(HLT,PAGLCK,<DESPT-PAGE LOCKED»
BUG(HLT,PAGNIC,<GETCPP-PAGE NOT IN CORE»
BUG(HLT,PFCDP,<MEMORY PARITY ERROR»

APP-3

DIGITAL

BUG (HLT,PGNDEL,<REMFPB-PAGE NOT COMPLETELY DELETED»
BUG(HLT,PH2WUI,<WRONG UNIT INTERRUPTED»
BUG(HLT,PHYCHl,<PHYSIO - HOME BLOCK CHECK IORB ALREADY ON TWQ»
BUG(HLT,PHYICA,<PHYINI - ILLEGAL ARGUMENT TO CORE ALLOC»
BUG(HLT,PHYLTF,<PHYSIO - SCHLTM - UNEXPECTED LATOPT FAILURE»
BUG(HLT,PHYP~E,<PHYALZ - PAGE ~ STORAGE EXHAUSTED»

TOPS-20 MONITOR
APPENDIX I

BUG (HLT,PIITRP,<INSTRUCTION TRAP WHILE PI IN PROGRESS OR IN SCHEDULER»
BUG(HLT,PISKED,<ENTERED SCHEDULER WITH PI IN PROGRESS»
BUG(HLT,PITRAP,<PAGER TRAP WHILE PI IN PROGRESS»
BUG(HLT,PRONX2,<NXM DETECTED BY PROCESSOR»
BUG(HLT,PSBNIC,<SETPPG-PSB NOT ~N CORE»
BUG(HLT,PSISTK,<PSI STORAGE STACK OVERFLOW»
BUG(HLT,PTAIC,<SWPIN - PT PAGE ALREADY IN CORE»
BUG(HLT,PTDEL,<DESPT-PT NOT DELETED»
BUG(HLT,PTMPE,<PAGE TABLE P~RITYERROR»
BUG(HLT,PTNICl,<SWPIN - PAGE TABLE NOT IN CORE»
BUG(HLT,PTNON~,<SETPT~ - PREVIOUS CONTENTS NON-0»
BUG(HLT,PTOVRN,<UPDPGS-COUNT TOO LARGE»
BUG (HLT,PVTRP,<PROPRIETARY VIOLATION TRAP»
BUG(HLT,PWRFL,<FATAL POWER FAILURE» iCRASH AND RELOAD
BUG(HLT,PYILUN,<PHYSIO - ILLEGAL UNIT NUMBER»
BUG(HLT,RHIICC,<PHYHll - ILLEG~L CHANNEL COMMAND WORD»
BUG(HLT,RHIICF,<PHYHll - INVALID CHANNEL FUNCTION»
BUG(HLT,RH2ICF,<PHYRH2 - INVALID CHANNEL FUNCTION»
BUG(HLT,RP4FEX,<PHYP4 - ILLEGAL FUNCTION»
BUG(HLT,RP4IF2,<PHYP4 - ILLEGAL FUNCTION AT STKIO»
BUG(HLT,RP4IFC,<PHYP4 - ILLEGAL FUNCTION AT CNV» iYES TO EITHER
BUG(HLT,RP4ILF,<PHYP4 - ILLEG~L FUNCTION ON INTERRUPT»
BUG(HLT,RP4LTF,<PHYP4 - FAILED TO FIND TWQ ENTRY AT RP4LTM»
BUG(HLT,RP4PNF,<PHYP4 - DISK PHYSICAL PARAMETERS NOT FOUND»
BUG(HLT,RP4UNF,<PHYP4 - UNIT TYPE NOT FOUND:>,Tl)
BUG(HLT,RPGERR,<BADCPG-FATAL ERROR IN RESIDENT PAGE»
BUG (HLT, RSMFAI, <RESSMM-FAILED TO ASSIGN SWAP MON PAGE»
BUG(HLT,SECEXl,<SETMPG-ATTEMPT TO MAP NON-EX SECTION»
BUG(HLT,SECG37,<ILSCN-SECTION NUMBER GREATER THAN 37»
BUG (HLT,SECGTl,<PGRT3 - SECTION NUMBER GREATER THAN MAXSEC»
BUG(HLT,SECNX,<CREATING PAGE TABLE FOR NON-0 SECTION»
BUG(HLT,SERFRK,<SERINI-CANNOT CREATE SYSERR FORK»
BUG(HLT,SHRN00,<DESPT-SHARE COUNT NON-ZERO»
BUG(HLT,SHROFN,<UPSHR-OFN SHARE COUNT OVERFLOW» iYES
BUG(HLT,SHROFD,<DWNSHR-OFN SHARE COUNT UNDERFLOW»
BUG(HLT,SKDCLl,<CALL TO SCHEDULER WHEN ALREADY IN SCHEDULER»
BUG (HLT,SKDCL2, <CALL TO SCHEDULER WHEN ALREADY IN SCHEDULER»
BUG(HLT,SKDMPE,<MPE IN SCHEDULER OR PI CONTEXT»
BUG(HLT,SKDPFl,<PAGE FAIL IN SCHED CONTEXT» iNO
BUG(HLT,SKDTRP,<INSTRUCTION TRAP WHILE IN SCHEDULER»
BUG(HLT,SMNOFR,<NO FREE SPACE FOR SM10 VECTORS»
BUG(HLT,SPTFLl,<SPT COMPLETELY FULL»
BUG (HLT, SPTFL2, <SPT COMPLETELY FULL»
BUG(HLT,SPTPIC,<SWPIN - SPT PAGE ALREADY IN CORE»
BUG(HLT,SPTSHR,<UPSHR-SPT SHARE COUNT OVERFLOW»
BUG(HLT,STKOVF,<MONITOR ST~CK OVERFLOW»
BUG (HLT,STRBAD,<ASOFN-ILLEGAL STRUCTURE NUMBER»
BUG(HLT,STZERO,<FILINI: STRTAB ENTRY FOR PS IS 0»
BUG(HLT,SWPMNE,<SWAP ERROR IN SWAPPABLE MONITOR»
BUG(HLT,SWPPSB,<SWAP ERROR IN PSB PAGE»
BUG(HLT,SWPPTP,<SWAP ERROR IN UNKNOWN PT PAGE»
BUG(HLT,SWPPT,<SWAP ERROR IN UNKNOWN PT»
BUG(HLT,SWPUPT,<SWAP ERROR IN UPT, OR PSB»
BUG (HLT,TTBADl,<BAD DEVICE DESIGN~TOR FOR TERMINAL AT ATACH2»

APP-4

DIGITAL TOPS-20 MONITOR

BUG (HLT,TTDASl,<HLTJB: UNABLE TO DEASSIGN CONTROLLING TERMIN~L»
BUG(HLT,TTICN0,<TCI - NO BUFFER POINTER BUT COUNT NON-0»
BUG(HLT,TTNAC8,<CAN'T ASSIGN TERMINAL AT DEVINI»
BUG (HLT,TTNAC5,<CTY NOT ACTIVE AT FSIINI»
BUG(HLT,TTNAC4,<CTY NOT ACTIVE AT FSIPBI»
BUG (HLT,TTNAC3,<CTY NOT ACTIVE AT FSIPBO»
BUG(HLT,TTOCN0,<TTSTO - NO BUFFER BUT COUNT NON-0»
BUG(HLT,TTONOB,<TTY OUTPUT - NO BUFFER BUT COUNT NON-0»

APPENDIX I

BUG(HLT,TWQNUL,<PHYSIO - PWQ OR TWQ WAS NULL AT A SEEK OR TR~NSFER COMPLETION»
BUG(HLT,UBAN~,<I/O NMX FROM UNIBUS DEVICE>,<UPTPFW,UPTPFO»
BUG(HLT,UIONIR,<UDSKIO - NO IORB FOR NOSKED FORK»
BUG(HLT,UNPGFl,<MEMPAR-PARITY ERROR DURING MEM SCAN»
BUG(HLT,UNPGF2,<UNKNOWN PAGE FAILURE TYPE»
BUG(HLT,UNTRAP,<UNKNOWN TRAP INSTRUCTION»
BUG(HLT,UNXMPE,<PFCDPE-UNEXPECTED PARITY ERROR TRAP»
BUG(HLT,UXXCKP,<COULDN'T CREATE CHECKPOINT FILE»
BUG(HLT,UXXCRE,<CANNOT CREATE USAGE FILE»
BUG (HLT,UXXILL,<USGMES: ILLEGAL FUNCTION CODE»
BUG (HLT,UXXMAP,<USGMAP: CALL TO JFNOFN FAILED»
BUG(HLT,UXXOPN,<UNABLE TO OPEN USAGE FILE»
BUG(HLT,WRTLNG,<WRTBTB - BIT TABLE IS A LONG FILE»
BUG (HLT,XSCORE,<CST TO SMALL FOR PHYSICAL CORE PRESENT»

APP-5

DIGITAL TOPS-20 MONITOR
APPENDIX I

BUG (CHK,ASAASG,<DSKASA - ASSIGNING ALREADY ASSIGNED DISK ADDRESS>,<Tl,T2»
BUG(CHK,ASGBAD,<DSKASA - ASSIGNING BAD DISK ADDRESS>,<T3,T2»
BUG (CHK,ASGBPG,<INIBTB-FAILED TO ASSIGN BAD PAGE(S»,<Tl,T2»
BUG(CHK,ASGREQ,<ILLEGAL POOL NUMBER GIVEN TO ASGRES»
BUG(CHK,ASGREP,<ILLEGAL PRIORITY GIVEN TO ASGRES»
BUG(CHK,ASGSWB,<SWPINI-CAN'T ASSIGN BAD ADDRESS»
BUG(CHK,BADBAT,<BAT BLOCKS UNREADABLE»
BUG(CHK,BADBAK,<FILIN2 - BACKUP COpy OF ROOT DIRECTORY IS NOT GOOD»
BUG (CHK,BADDIS,<TAPE: INCONSISTENT STATE CODE»
BUG(CHK,BADHDR,<bad DDCMP header>,<Tl,T2»
BUG(CHK,BADHDR,<bad DDCMP header>,<Tl,T2»
BUG (CHK,BADIDX,<IDXINI: PARTIALLY UNSUCCESSFUL INDEX TABLE REBUILD»
BUG(CHK,BADTAB,<VERACT - SPURIOUS HASH TABLE ENCOUNTERED»
BUG (CHK,BADXT2,<INDEX TABLE MISSING AND WAS CREATED»
BUG (CHK,BLKFl,<BYTINA: BLKF SET BEFORE CALLING SERVICE ROUTINE»
BUG (CHK,BLKF2,<BYTOUA: BLKF SET BEFORE CALL TO SERVICE ROUTINE»
BUG(CHK,BLKF3,<CLZDO: BLKF SET BEFORE CALL TO SERVICE ROUTINE»
BUG(CHK,BLKF4,<.GDSTS: BLKF SET BEFORE CALL TO DEVICE ROUTINE»
BUG(CHK,BLKF5,<.MTOPR: BLKF SET BEFORE CALL TO DEVICE ROUTINE»
BUG(CHK,BLKF6,<.SDSTS: BLKF SET BEFORE CALL TO DEVICE ROUTINE»
BUG(CHK,CDBDIN,<CDll LOST INTERRUPT ENABLE>,T4)
BUG (CHK,CKLBLK, <CKLERR: CLOSE AND ABORT BLOCKED»
BUG(CHK,CLZABF,<CLZFFW: SERVICE ROUTINE BLOCKED ON AN ABORT CLOSE»
BUG(CHK,CPYUFl,<CACCT: IMPOSSIBLE FAILURE OF CPYFU1.»
BUG (CHK,CRDBAK, <CRDIR3: COULD NOT MAKE BACKUP COpy OF ROOT-DIRECTORY»
BUG(CHK,CRDBKl,<CRDIR4:COULD NOT MAKE BACKUP COpy OF ROOT-DIRECTORY»
BUG (CHK,CRDNOM,<CRDIR-FAILED TO MAKE MAIL.TXT FILE»
BUG (CHK,CRDOLD,<CRGDGB: OLD FORMAT CRDIR IS ILLEGAL»
BUG (CHK,CRDSDF,<CRDIRl: SETDIR FAILED ON NEW DIRECTORY»
BUG(CHK,CRSPAG,<VERACT - ACCOUNT DATA BLOCK CROSSES A PAGE BOUNDARY»
BUG(CHK,DEABAD,<DSKDEA - DE~SSIGNING BAD DISK ADDRESS>,<T3,T2»
BUG(CHK,DEAUNA,<DEDSK-DEASSrGNING UNASSIGNED DISK ADDRESS>,<Tl,T2»
BUG (CHK,DEQMDF,<DEQUE: INTERNAL MONITOR DEQ FAILED»
BUG (CHK,DEVUCF,<DEVAV - UNEXPECTED CHKDES FAILURE»
BUG (CHK,DIRACT,<ACTBAD: ILLEGAL FORMAT FOR DIRECTORY ACCOUNT BLOCK IN DIRECTORY:>,<A,B»
BUG (CHK,DIRB2S,<RLDFBl: DIRECTORY FREE BLOCK TOO SMALL IN DIRECTORY:>,<A,B»
BUG(CHK,DIRB2L,<RLDFB2: DIRECTORY FREE BLOCK TOO L~RGE IN DIRECTORY:>,<A,B»
BUG(CHK,DIRBAD,<SETDI4: SMASHED DIRECTORY NUMBER:>,<A,SETDNM»
BUG (CHK,DIRBAF,<RLDFB5: BLOCK ALREADY ON DIRECTORY FREE LIST IN DIRECTORY:>,<A,B»
BUG (CHK,DIRBCB,<RLDFB3: DIRECTORY FREE BLOCK CROSSES PAGE BOUNDARY IN DIRECTORY:>,<A,S»
BUG(CHK,DIRBLK,<BLKSCN: ILLEGAL BLOCK TYPE IN DIRECTORY:>,<A»
BUG (CHK,DIRDNL,<ULKDIR-DIRECTORY NOT LOCKED, DIRECTORY NUMBER:>,<Tl,T2»
BUG (CHK,DIREXT,<EXTBAD: ILLEGAL FORMAT FOR DIRECTORY EXTENSION BLOCK IN DIRECTORY:>,<A,B»
BUG(CHK,DIRFDB,<ILLEGAL FORMAT FOR FDB IN DIRECTORY:>,<A,B»
BUG(CHK,DIRFKP,<SETDIR-DIR PAGE 0 BELONGS TO FORK IN DIRECTORY:>,<B,SETDNM»
BUG(CHK,DIRFRE,<FREBAD: ILLEGAL FORMAT FOR DIRECTORY FREE BLOCK IN DIRECTORY:>,<A,B»
BUG(CHK,DIRIFB,<RLDFB4: ILLEGAL BLOCK TYPE ON DIRECTORY FREE LIST IN DIRECTORY:>,<A,B»
BUG (CHK,DIRNAM,<NAMBAD: ILLEGAL FORMAT FOR DIRECTORY NAME BLOCK IN DIRECTORY:>,<A,B»
BUG (CHK,DIRPG0,<DR0CHK: ILLEGAL FORMAT FOR DIRECTORY PAGE 0 IN DIRECTORY:>,<A,B»
BUG (CHK,DIRPGl,<DRHCHK: DIRECTORY HEADER BLOCK IS BAD IN DIRECTORY:>,<A,B»
BUG (CHK,DIRRHB,<RLDFB6: ATTEMPTING TO RETURN A HEADER BLOCK IN DIRECTORY:>,<A,B»
BUG(CHK,DIRSYl,<DELDL8: DIRECTORY SYMBOL TABLE FOULED UP FOR DIRECTORY:>,<A,B»
BUG(CHK,DIRSY2,<MDDNAM: SYMBOL TABLE FOULED UP IN DIRECTORY:>,<A,B»
BUG (CHK,DIRSY3,<LOOKUP: SYMBOL SEARCH FOULED UP IN DIRECTORY:>,<C,B»
BUG (CHK,DIRSY4,<NAMCM4: DIRECTORY SYMBOL TABLE FOULED UP IN DIRECTORY:>,<A,B»
BUG (CHK,DIRSY5,<SYMBAD: ILLEGAL FORMAT FOR DIRECTORY SYMBOL TABLE IN DIRECTORY:>,<A,B»
BUG (CHK,DIRSY6,<RBLDST: PREMATURELY RAN OUT OF ROOM IN SYMBOL TABLE IN DIRECTORY:>,<A,B»
BUG (CHK,DIRULK,<ULKMD2: ATTEMPT TO UNLOCK ILLEGALLY FORMATTED DIR, DIR NUMBER:>,<Tl,T2»
BUG (CHK,DIRUNS,<UNSBAD: ILLEGAL FORMAT FOR DIRECTORY USER NAME BLOCK IN DIRECTORY:>,<A,B»
BUG (CHK,DMPRLF,<DMPREL-FAILED TO RELEASE PAGE»

APP-n

DIGITAL TOPS-20 MONITOR
APPENDI X I

BUG (CHK,DSKBTl,<DSK BIT TABLE FOULED, CAN'T FIND FREE PAGE ON TRACK WITH NON-0 COUNT>,<T2,
BUG (CHK,DSKBT3,<DISK BIT TABLE ALREADY LOCKED AT LCKBTB>,<Tl»
BUG(CHK,DTEDAT,<TAKTOD- ILLEGAL FORMAT FOR TIME/DATE»
BUG(CHK,DTEERR,<DTESRV-DTE DEVICE ERROR>,<A,F»
BUG(CHK,DTEODD,<TAKLC-ODD BYTE COUNT FOR LINE CHARACTERS»
BUG (CHK,DTEP2S,<T010DN-PACKET TOO SMALL»
BUG(CHK,DTEPGF,<DTE TRANSFER PAGE FAIL>,<A»
BUG(CHK,DTETIP,<DTETDN-T010 DONE RECEIVED WITH NO TRANSFER IN PROGRESS»
BUG (CHK,DVCHRX,<DVCHRI - UNEXPECTED CHKDES FAILURE WITHIN .DVCHR»
BUG(CHK,DX2DIE,<PHYX2 - DX20 HALTED>,<Tl»
BUG(CHK,DX2FGS,<PHYX2 - FAIL TO GET SENSE BYTES» iPUT OUT BUGCHK
BUG(CHK,DX2FUS,<PHYX2 - FAIL TO UPDATE SENSE BYTES»
BUG(CHK,DX2HLT,<PHYX2 - DX20 HALTED>,<Tl»
BUG (CHK,DX2IDM,<PHYX2 - ILLEGAL DATA MODE AT DONE INT>,<T2»
BUG (CHK,DX2IEC,<PHYX2 - ILLEGAL ERROR CLASS CODE>,<Tl»
BUG (CHK,DX2IFS,<PHYX2 - ILLEGAL FUNCTION AT START IO>,<Ql»
BUG(CHK,DX2MCF,<PHYX2 - DX20 MICROCODE CHECK FAILURE»
BUG (CHK,DX2NRT,<DX2ERR - IS.NRT SET ON SUCCESSFUL RETRY»
BUG (CHK,DX2NUD,<PHYX2 - CHANNEL DONE INTERRUPT BUT NO UNIT ACTIVE»
BUG(CHK,DX2NUE,<PHYX2 - NO ACTIVE UDB AND DX20 COMPOSITE ERROR SET>,<T4,Tl»
BUG(CHK,DX2RFU,<PHYX2 - ERROR RECOVERY CONFUSED»
BUG(CHK,DX2UPE,<PHYX2 - FAIL TO UPDATE SENSE BYTES DURING INITIALIZATION»
BUG(CHK,DZLINT,<DZll LOST INTERRUPT ENABLE>,<T2»
BUG (CHK,DZNENB,<DZSNDI - TRANSMIT NOT ENABLED ON INTERRUPT»
BUG(CHK,DZOVER,<DZll SILO OVERRUN>,Tl)
BUG (CHK,EFACF3,<EFACT: FAILED TO WRITE INTO FACT FILE»
BUG(CHK,EFACFl,<EFACT: CLOSF FAILED TO CLOSE FACT FILE.»
BUG (CHK,ENQMLF,<ENQUE: INTERNAL ENQ OF A MONITOR LOCK FAILED»
BUG(CHK,EXPRCD,<EXPALL: RCDIR FAILURE»
BUG(CHK,FEBAD,<FEHSD-WRONG FE» iNO
BUG(CHK,FEBFOV,<FEHSD-BUFFER OVERFLOW>,<A,C» iNO
BUG (CHK,FEOCPB,<FEFSYS - FAILED TO BACKUP ROOT-DIRECTORY>,<Tl»
BUG(CHK,FEUSTS,<FESSTS-UNKNOWN STATUS»
BUG (CHK,FILBAK,<FILCRD: COULD NOT CREATE BACKUP OF ROOT-DIR»
BUG(CHK,FILBOT,<COULD NOT CREATE BOOTSTRAP. BIN FILE»
BUG(CHK,FILCCD,<Could not create directory»
BUG(CHK,FILFEF,<Could not create Front End File System»
BUG(CHK,FILHOM,<UNABLE TO REWRITE HOME BLOCKS IN WRTBTB»
BUG (CHK,FILJBl,<FILCRD: No room to create standard system directories»
BUG(CHK,FIXBAD,<Could not re-write Home Blocks to point to FE Filesystem»
BUG(CHK,FIXBDB,<COULD NOT RE-WRITE HOME BLOCKS TO POINT TO BOOTSTRAP.BIN»
BUG(CHK,FKWSPl,<LOADBS-UNREASONABLE FKWSP>,<Tl,T2,T3»
BUG (CHK,FLKINT,<FLOCK-CALLED WHILE NOINT»
BUG (CHK,FLKNS,<FUNLK-LOCK NOT SET»
BUG(CHK,FLKTIM,<FLOCK-TIMEOUT»
BUG (CHK,FRKBAL,<AGESET-FORK NOT IN BALSET»
BUG (CHK,FRKNDL,<FORK NOT PROPERLY DELETED»
BUG (CHK,GTFDBl,<DSKINS: GETFDB FAILURE.»
BUG(CHK,HARDCE,<HARD CACHE ERRORS--CACHE DESELECTED»
BUG (CHK,HSHERR,<VERACT - HASH VALUE OUT OF RANGE»
BUG(CHK,IDFODl,<AT MENTR - INTDF OVERLY DECREMENTED»
BUG(CHK,IDFOD2,<AT MRETN - INTDF OVERLY DECREMENTED»>
BUG (CHK,ILDRAl,<DASDRM-ILLEGAL OR UNASSIGNED DRUM ADDRESS»
BUG (CHK, ILIBPT,<BAD POINTER TYPE IN INDEX BLOCK»
BUG(CHK,ILJRFN,<JFKRFH - BAD JRFN, IGNORED»
BUG (CHK,ILLDMS,<BADDMS: ILLEGAL DMS JSYS FROM MONITOR CONTEXT»
BUG(CHK,ILLTAB,<TABLK2: TABLE NOT IN PROPER FORMAT»
BUG(CHK,ILLUUO,<KIBADU: ILLEGAL UUO FROM MONITOR CONTEXT>,<KIMUFL,KIMUPC,KIMUEF»
BUG(CHK,ILPIDl,<CREPID: ATTEMPT TO CREATE ILLEGAL PID»
BUG(CHK,ILPID2,<DELPID: VALIDATED PID TURNED ILLEGAL»

APP-7

DIGITAL

BUG(CHK,ILPSEC,<ILLEGAL SECTION NUMBER>,<TRAPPC,TRAPSW»
BUG(CHK,ILUST2,<PHYSIO - UNIT STATUS INCONSISTENT AT SPS»
BUG(CHK,IMPHNW,<LHOSTN DISAGREES WITH THE IMP»
BUG(CHK,IMPIFH,<IMPGC-IMPOSSIBLE FAILURE OF IMPHFL»
BUG(CHK,IMPLTF,<IMPLT FULL»
BUG(CHK,IMPMSL,<PKMSG - MSG TOO LARGE»
BUG(CHK,IMPNMA,<PKBYl: NO MSG ALLOCATION>,T2)
BUG (CHK,IMPREM,<UPBRB: RECEIVED EXCESSIVE MESSAGES>,T2)
BUG (CHK, IMPTMB,<NvrXGl: TOO MANY BREAKS OUTSTANDING»
BUG(CHK,IMPUX~,<IMP JB~ FORK - UNEXPECTED INTERRUPT»
BUG (CHK,IPCFKH,<CHKPDD: COULD NOT FIND LOCAL FORK HANDLE»
BUG (CHK, IPCFRK, <PIDINB: CANNOT CREATE FORKS FOR IPCF»
BUG(CHK,IPCJB~,<PIDINI: NOT IN CONTEXT OF JOB ~»
BUG (CHK,IPCMCN,<MESREC: MESSAGE COUNT WENT NEGATIVE»
BUG (CHK, IPCSOD,<GETMES: SENDER'S COUNT OVERLY DECREMENTED»
BUG(CHK,KLIOVF,<DTESRV-KLINIK DATA BASE TOO LARGE>,<C»
BUG(CHK,KMCNTI,<KMCll not taking input»
BUG(CHK,KMCNTI,<KMCll not taking input»
BUG(CHK,LNGDIR,<LONG DIRECTORY FILE IN DIRECTORY:>,<T3»
BUG (CHK,LNMILI,<LNMLUK: ILLEGAL VALUE OF LOGICAL NAME TABLE INDEX»
BUG(CHK,LP2IEN,<LINEPRINTER LOST INTERRUPT ENABLE>,U)
BUG (CHK,MPIDXO,<MAPIDX - No OFN for Index Table File»
BUG(CHK,MSGCLB,<DDCMP transmit message clobbered»
BUG(CHK,MSGCLB,<DDCMP transmit message clobbered»
BUG(CHK,MSGPTR,<Bad msg pointer»
BUG (CHK,MSGPTR,<Bad msg pointer»
BUG(CHK,MTANOI,<GETUBF: NO QUEUED-IORB'S FOR INPUT»
BUG (CHK,MTANOQ,<IRBDNl: IRBDON CALLED FOR NON-QUEUED UP rORB»
BUG (CHK,MTANOA, <IRBDN2: IRBDON CALLED FOR AN ACTIVE IORB»
BUG (CHK,MTAORN,<MTDIR0: MAGTAPE IORB OVERRUN»
BUG (CHK,NETDET,<NVTDET: COUtO NOT CLOSE NVT>,<Tl»
BUG (CHK, NOALCM,<ALCMES: CANNOT SEND MESSAGE TO ALLOCATOR»
BUG(CHK,NOBATl,<FAILED TO WRITE PRIMARY BAT BLOCK>,<Tl,T2»
BUG (CHK,NOBAT2,<FAILED TO WRITE SECONDARY BAT BLOCK>,<Tl,T2»
BUG(CHK,NOBTB,<FILINI - UNABLE TO OPEN BIT TABLE FILE»
BUG (CHK,NODIRl,<SPLMES: DIRST FAILED ON EXISTING DIRECTORY NAME»
BUG (CHK,NOFRSP, <ttspst- COULD NOT GET A FREE BLOCK»
BUG (CHK,NOINTR,<ITRAP AND PREVIOUS CONTEXT WAS NOINT»
BUG (CHK,NOMHDR,<ILLEGAL MESSAGE WITH NO HEADER»
BUG (CHK,NOPID,<PIDKFL: PID DISAPPEARED»
BUG(CHK,NOSERF,<CAN'T GTJFN ERROR REPORT FILE»
BUG(CHK,NOSKTR,<ITRAP FROM NOSKED CONTEXT»
BUG(CHK,NOSLNM,<SLNINI: CANNOT CREATE SYSTEM LOGICAL NAME»
BUG (CHK,NOSPLM,<RELJFN: COULD NOT SEND SPOOL MESSAGE TO QUASAR»
BUG(CHK,NOUTFl,<SPLOPN: NOUT OF DIRECTORY NUMBER FAILED»
BUG(CHK,NOUTF2,<SPLMES: NOUT OF GENERATION NUMBER FAILED»
BUG(CHK,NPWQPD,<PHYSIO - NULL PWQ AT POSITION DONE»
BUG(CHK,NRFTCL,<PHYSIO - NO REQUESTS FOUND FOR CYLINDER SEEKED»
BUG(CHK,NSKDT2,<PGRTRP-BAD INTDF»
BUG (CHK,NSKDT2,<PGRTRP-BAD NSKED OR INTDF»
BUG(CHK,NSPRTH,<NSPTSK- INVALID ROUTING HEADER>,<Tl,T2»
BUG(CHK,NWJTBE,<NO FREE JTB BLOCKS»

TOPS-20 MONITOR
APPENDIX I

BUG(CHK,PllPAR,<PHYH~l -- CONTROL WRITE PARITY ERR>,<Tl,T2»
BUG(CHK,PlNEDl,<PHYHll - RHIl NON EX DISK READING REGISTER>,<Tl,T2»
BUG(CHK,P2RAE2,<PHYHII - REGISTER ACCESS ERR WRITING REG>,<Tl,T2,T3»
BUG(CHK,P2RAEl,<PHYH2 - RH2~ REGISTER ACCESS ERROR READING REGISTER>,<Tl,T2,T3»
BUG(CHK,P2RAE2,<PHYH2 - REGISTER ACCESS ERR WRITING REG>,<Tl,T2,T3,T4»
BUG(CHK,P2RAE3,<PHYH2 - REGISTER ACC ERR ON DONE OR ATN INTERRUPT>,<Tl,T2,T3»
BUG(CHK,PHIIHM,<PHYHII - ILLEGAL HDW MODE - WORD MODE ASSUMED»
BUG(CHK,PHIPIE,<PHYHll - RHIl LOST INTERRUPT ENABLE»

APP-8

DIGITAL

BUG(CHK,PH2IHM,<PHYH2 - ILLEG~LHDW MODE - WORD MODE ~SSUMED»
BUG (CHK,PH2PIM,<PHYH2 - RH20 LOST PI ASSIGNMENT>,<T2»
BUG(CHK,PHYNIR,<PHYSIO - NULL INTERRUPT ROUTINE ~T OPER~TION DONE»
BUG(CHK,PI1ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CH~NNEL 1»
BUG(CHK,PI2ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CH~NNEL' 2»
BUG(CHK,PI4ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CH~NNEL 4»
BUG(CHK,PI5ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CH~NNEL 5»
BUG(CHK,PI6ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CH~NNEL 6»
BUG(CHK,PIDFLF,<CREPID: FREE PID LIST FOULED UP»
BUG (CHK, PIDOD1,<MUTCHO: PID COUNT OVERLY DECREMENTED»
BUG (CHK, PIDOD2, <DELPID: OVERLY DECREMENTED PID COUNT»
BUG(CHK,PM2SIO,<PHYM2 - ILLEG~L FUNCTION ~T ST~RT IO»
BUG(CHK,PSINSK,<PSI FROM NOSKED CONTEXT»
BUG(CHK,PWRRES,<POWER REST~RT» iGIVE CH~NCE TO LOOK ~ROUND
BUG(CHK,RELB~D,<RELFRE-B~D BLOCK BEING RELE~SED»

BUG (CHK,RELRNG,<RELFRE: BLOCK'OUT OF R~NGE»
BUG(CHK,RESB~D,<RELRES: ILLEG~L ~DDRESS P~SSED TO RELRES»
BUG(CHK,RESB~Z,<RELRES: FREE BLOCK RETURNED MORE TH~N ONCE»

TOPS-20 MONlTOR
APPENDIX I

BUG (CHK,RESBND,<RELRES: RELE~SING SP~CE BEYOND END OF RESIDENT FREE POOL»
BUG(CHK,RFILPF,<REFILL ERROR P~GE F~IL»

BUG(CHK,RP4SSC,<PHYP4 - STUCK SECTOR COUNTER>,<T1,T2»
BUG(CHK,SEBISS,<SEBCPY-INSUFFICIENT STRING STOR~GE IN BLOCK»
BUG (CHK, SEBUDT,<SEBCPY-UNKNOWN D~T~ TYPE>,<T1,T4»
BUG(CHK,SERFOF,<C~N'T OPENF ERROR REPORT FILE»
BUG(CHK,SERGOF,<SETOFI-C~NNOT GTJFN/OPEN SYSERR FILE»
BUG (CHK,SNPIC,<SNPFN3: INSTRUCTION BEING REPL~CED H~S CH~NGED»
BUG (CHK, SNPLKF,<SNPFN0: C~NNOT LOCK DOWN P~GE INTO MONITOR»
BUG (CHK,SNPODB,<SNPF4C: COUNT OF INSERTED BRE~K POINTS OVERLY DECREMENTED»
BUG(CHK,SNPUNL,<SNPF5~: C~NNOT UNLOCK SNOOP PAGE»
BUG(CHK,SPWRFL,<SPURIOUS POWER F~IL INDIC~TION»
BUG (CHK,SRQOVF,<SCDRQ-SCHED REQUEST QUEUE OVERFLOW»
BUG(CHK,SUMNR1,<~JB~LS-SUMNR INCORRECT»
BUG(CHK,SUMNR2,<SUMNR INCORRECT»
BUG(CHK,SWPASF,<CHKB~T-F~ILED TO ~SSIGN B~D SW~PPING ~DDRESS>,<C,CKBDR~»
BUG(CHK,SWPFPE,<SWAP ERROR IN SENSITIVE FILE P~GE»
BUG(CHK,SWPIBE,<SWAP ERROR IN INDEX BLOCK»
BUG(CHK,SWPJSB,<SWAP ERROR IN JSB PAGE»
BUG(CHK,SYSERF,<LOGSST-NO SYSERR STORAGE FOR RESTART ENTRY»
BUG (CHK,TM2CCI,<PHYM2 - TM02 SSC OR SL~ WONT CLEAR»
BUG (CHK,TM2HER,<TM2ERR - IS.HER SET ON SUCCESSFUL RETRY»
BUG(CHK,TM2IDM,<PHYM2 - ILLEGAL D~T~ MODE AT DONE INT»
BUG(CHK,TM2IF2,<PHYM2 - ILLEGAL FUNCTION ON COMMAND DONE»
BUG(CHK,TM2NUD,<PHYM2 - CHANNEL DONE INTERRUPT BUT NO UNIT ACTIVE»
BUG(CHK,TM2RFU,<PHYM2 - ERROR RECOVERY CONFUSED>,<T1,Q1,T3»
BUG(CHK,TRPSIE,<NO MONITOR FOR TR~PPED FORK»
BUG(CHK,TTILEC,<TTSND-UNRECOGNIZED ESCAPE CODE>,<2,3»
BUG(CHK,TTN~C1,<LINE NOT ACTIVE ~T PTYOPN»
BUG(CHK,TTN~C7,<DEALLOCATING IN~CTIVE LINE>,T2)
BUG(CHK,TTYBBO,<TTYSRV-BIG BUFFER OVERFLOW»
BUG(CHK,TTYNTB,<RAN OUT OF TTY BUFFERS»
BUG(CHK,ULKBAD,<UNLOCKING TTY WHEN COUNT IS ZERO>,T2)
BUG(CHK,ULKSTZ,<OVERLY DECREMENTED STRUCTURE LOCK»
BUG(CHK,UNBFNF,<UNBLK1 - FORK NOT FOUND»
BUG(CHK,UNPIRX,<UNPIR-NO PSI IN PROGRESS»
BUG(CHK,UXXCL1,<UNABLE TO CREATE NEW US~GE FILE»
BUG(CHK,UXXCL2,<UN~BLE TO OPEN NEW USAGE FILE»
BUG(CHK,UXXCL3,<UN~BLE TO CLOSE USAGE FILE»
BUG(CHK,UXXFAI,<USAGE JSYS FAILURE»
BUG(CHK,UXXWER,<WRITE ERROR IN US~GE FILE>,<T1»
BUG(CHK,WRTBT4,<~SOFN ON BIT T~BLE FILE FAILED>,<T2»

APP-9

DIGITAL

BUG(CHK,WRTCPB,<WRTBTB - FAILED TO BACKU~ ROOT-DIRECTORY>,<Tl»
BUG (CHK,WSPNEG,<SOSWSP-WSP NEGATIVE»
BUG (CHK,X8WERR,<UPDOFN-DSK WRITE ERROR ON X8»

APP 10

TOPS-20 MONITOR
APPENDIX I

DIGITAL

BUG (INF,CLZDIN,<NETCLZ-COULD NOT SEND DI»
BUG (INF,DELBDD,<DELDIR: BAD DIRECTORY DELETED. REBUILD BIT TABLE»
BUG (INF,DLDEF,<LOGICAL NAME DEFINE FAILED FOR FE CTY»
BUG(INF,DN2~ST,<DTESRV- DN2~ STOPPED>,<B»
BUG(INF,DTIIDN,<DTECHK- l~ LOST TOIIDN INTERRUPT»
BUG (INF,DTECDM,<DTESRV- TO -l~ COUNTS DON'T MATCH>,<A»
BUG (INF,DTEDIN,<DTESRV- TO -l~ IN PROGRESS ON DOORBELL>,<A»
BUG (INF,DTEDME,<DTESRV- ZERO Q COUNT>,<A»
BUG(INF,DTELDB,<DTECHK- 11 LOST DOORBELL»
BUG (INF,DTELPI,<DTECHK- DTE LOST PI ASSIGNMENT»
BUG(INF,DTEPNR,<DTESRV- INCORRECT INDIRECT SETUP>,<A»
BUG(INF,DX2IDX,<PHYX2 - ILLEGAL 'RETRY BYTE POINTER»
BUG (INF,DX2IRF,<PHYX2 - ILLEGAL FUNCTION DURING RETRY»
BUG(INF,DX2N2S,<PHYX2 - MORE TU7~S THAN TABLE SPACE, EXCESS IGNORED»
BUG(INF,DX2UNA,<PHYX2 - ATTENTION INTERRUPT AND UDB NOT ACTIVE»
BUG (INF,ILLSTR,<NSPTSK-ILLEGAL INIT MESSAGE>,<Ql»
BUG(INF,IMINXl,<UNUSUAL ANI INTERRUPT, CONI ANI IS>,<Tl»
BUG(INF,IMINX2,<IMIERR CALLED, CONI ANI IS>,<Tl»
BUG (INF,IMPABF,<ASNTBF FAILED»
BUG(INF,IMPBSC,<MESSAGE HAS BAD SIZE OR COUNT>,<Tl,T2»
BUG(INF,IMPCTH,<IMPNCL TOO HIGH»
BUG (INF,IMPCUL,<RECD CTL MSG FOR UNKNOWN LINK>,<Tl,T2,T3»
BUG(INF,IMPHIF,<HSTINI FAILED TO FIND HOST NAME FILE»
BUG(INF,IMPIFC,<ILL FMT CTL MSG>,<T2,T3»
BUG(INF,IMPLAE,<IMPOPL: LINK ALREADY EXISTS>,T2)
BUG (INF,IMPLEO,<CAN'T FIND LT ENTRY FOR OUTPUT MESSAGE>,<Tl,T2»
BUG(INF,IMPMSO,<MESSAGE STUCK IN OUTPUT QUEUE>,T2)
BUG (INF,IMPMUL,<RECEIVED MSG FOR UNKNOWN LINK>,<Tl,T2»
BUG(INF,IMPNEA,<NVT RECEIVED BYTES EXCEEDING ALLOCATION»
BUG(INF,IMPOFL,<MESSAGE BUFFER OVERFLOW>,<Tl,T2,T3,T4»
BUG (INF,IMPREA,<RECD EXCESS ALL>,T2)
BUG(INF,IMPRNO,<RFNM OVERDUE>,T2)
BUG (INF,IMPRNE,<RECD NCP ERR>,<Tl,T2»
BUG (INF,IMPXBO,<IRREG MSG BUFFER OVERFLOW»

TOPS-20 MONITOR
APPENDI X I

BUG (INF,IMPXUT,<RECEIVED IRREG MSG WITH UNKNOWN LINK OR TYPE>,<Tl,T2,T3»
BUG (INF,INDCNT,<DTESRV- BAD INDIRECT COUNT»
BUG(INF,NCPFUN,<NCP FSM RECIEVED FUNNY INPUT>,<Tl,T2,UNIT»
BUG(INF,OVRDTA,<PHYSIO - OVERDUE TRANSFER ABORTED>,<Tl,T3,T2»
BUG(INF,PINED3,<PHYHll - NON EX DISK ON DONE OR ATN INTERRUPT>,<Tl,T2»
BUG (INF,PH2DNA,<PHYH2 - DONE INTERRUPT AND CHANNEL NOT ACTIVE>,<T2»
BUG(INF,PHYCH2,<PHYSIO - HOME BLOCK CHECK IORB TIMED OUT»
BUG(INF,PHYCH3,<PHYSIO - HOME BLOCK CHECK IORB TIMED OUT BUT WAS NOT ON TWQ»
BUG(INF,PHYICE,<PHYINI - FAILED TO ASSIGN RESIDENT STG»
BUG (INF,SBSERF,<SBSERR-COULD NOT GET ERROR BLOCK»
BUG(INF,TM2IDX,<PHY~2 - ILLEGAL RETRY BYTE POINTER»
BUG(INF,TM2IRF,<PHYM2 - ILLEGAL FUNCTION DURING RETRY»
BUG(INF,TM2N2S,<PHYM2 - MORE DRIVES THAN TABLE SPACE, EXCESS IGNORED»
BUG(INF,TM2UNA,<PHYM2 - DONE INTERRUPT AND UDB NOT ACTIVE>,<Ql,P3,Tl»
BUG(INF,TTYPI2,<SCANNER LOST PI ASSIGNMENT, COULD NOT RESTORE»
BUG(INF,TTYPIl,<SCANNER LOST PI ASSIGNMENT, SUCCESSFULLY RESTORED»
BUG(INF,USGHOL,<LOST PAGE(S) IN USAGE FILE»
BUG(INF,UXXFIT,<CHECKPOINT FILE NOT IN CORRECT FORMAT FOR THIS SYSTEM, REBUILDING ••• »

APP-ll

DIGITAL

APP-12

TOPS-20 MONITOR
APPENDIX I

Appendix I

PART B

List of BUGHLTs, BUGCHKs

and BUGINFs by Module

DIGITAL

ANNBIG.MAC.2

ANNLGE.MAC.1

ANNMED.MAC.2

ANNSML.MAC.2

ANPBIG.MAC.6

ANPLGE.MAC.4

ANPMED.MAC.7

ANPSML.MAC.5

APRSRV.MAC.157

BUG(HLT,LUUMN0,<LUUO IN MONITOR CONTEXT»
BUG(HLT,FATCDP,<FATAL CACHE DIRECTORY PARITY ERROR>,<A»
BUG(HLT,FATAPE,<FATAL ADDRESS PARITY ERROR>,<A»
BUG(HLT,APRNX1,<NXM DETECTED BY APR>,<A»
BUG(HLT,APRNX1,<NXM DETECTED BY APR»
BUG(HLT,STKOVF,<MONITOR STACK OVERFLOW»
BUG(HLT,PWRFL,<FATAL POWER FAILURE» iCRASH AND RELOAD
BUG(HLT,IOPGF,<IO PAGE FAIL>,<Q1»
BUG(HLT,KPALVH,<KEEP ALIVE CEASED»
BUG(HLT,FATMER,<FATAL MEMORY ERROR»
BUG(HLT,UNPGF1,<MEMPAR-PARITY ERROR DURING MEM SCAN»
BUG(HLT,SMNOFR,<NO FREE SPACE FOR SM10 VECTORS»
BUG(HLT,LUUMON,<.LBCHK: ILLEGAL LUUO FROM MONITOR CONTEXT»
BUG(HLT,IMPUUO,<IMPOSSIBLE MUUO»
BUG(HLT,SKDPFl,<PAGE FAIL IN SCHED CONTEXT» iNO
BUG(HLT,UNTRAP,<UNKNOWN TRAP INSTRUCTION»
BUG (HLT,MONPDL,<OVERFLOW OR PDL OVERFLOW TRAP IN MONITOR»
BUG(HLT,PTNIC1,<SWPIN - PAGE TABLE NOT IN CORE»
BUG(HLT,UNPGF2,<UNKNOWN PAGE FAILURE TYPE»
BUG(HLT,IONXM,<I/O NXM ON UNIBUS DEVICE»
BUG (HLT,PVTRP,<PROPRIETARY VIOLATION TRAP»
BUG(HLT,PTMPE,<PAGE TABLE PARITY ERROR»
BUG(HLT,SKDMPE,<MPE IN SCHEDULER OR PI CONTEXT»
BUG(HLT,APRNX2,<NXM DETECTED BY APR» iYES
BUG(HLT,NOSEB2,<PGMPE-NO SYSERR BUFFER AVAILABLE»
BUG(HLT,UNXMPE,<PFCDPE-UNEXPECTED PARITY ERROR TRAP»
BUG(HLT,MPEUTP,<PFCDPE-UNKNOWN TRAP ON TEST REFERENCE»
BUG(HLT,PRONX2,<NXM DETECTED BY PROCESSOR»
BUG(HLT,PFCDP,<MEMORY PARITY ERROR»

BUG(CHK,PI1ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CHANNEL 1»
BUG(CHK,PI2ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CHANNEL 2»
BUG(CHK,PI4ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CHANNEL 4»

APP-13

TOPS-20 MONITOR
APPENDIX I

DIGITAL

BUG(CHK,SPWRFL,<SPURIOUS POWER FAIL INDICATION»
BUG(CHK,PWRRES,<POWER RESTART» ;GIVE CHANCE TO LOOK AROUND
iBUG(CHK,MPEDEV,<MEMORY PARITY ERROR DETECTED BY APR OR DEVICE»

TOPS-20 MONITOR
APPENDIX I

BUG (CHK,ILLUUO,<KIBADU: ILLEGAL UUO FROM MONITOR CONTEXT>,<KIMUFL,KIMUPC,KIMUEF»
BUG (CHK,ILLDMS,<BADDMS: ILLEGAL DMS JSYS FROM MONlTOR CONTEXT»
BUG(CHK,RFILPF,<REFILL ERROR PAGE FAIL»
BUG(CHK,ILPSEC,<ILLEGAL SECTION NUMBER>,<TRAPPC,TRAPSW»
BUG(CHK,HARDCE,<HARD CACHE ERRORS--CACHE DESELECTED»

BUG(INF,SBSERF,<SBSERR-COULD NOT GET ERROR BLOCK»

ARPAF.MAC.3

BOOT. MAC. 39

CDKLDV.MAC.8

CDKSDV.MAC.57

BUG (HLT,NCDWA,<KSINI: NO CARDREADER UBA WINDOW»

BUG(CHK,CDBDIN,<CD11 LOST INTERRUPT ENABLE>,T4)

CDRSRV.MAC.3

BUG (HLT,CDILVT,ILLEGAL DEVICE TYPE)

COMND. MAC .12

DATIME.MAC.54

DDT. MAC. 10

DDTBLT. MAC. 3

DDTU.MAC.4

DEVICE. MAC. 96

BUG (HLT,TTNAC8,<CAN'T ASSIGN TERMINAL AT DEVINI»
BUG(HLT,NOFNDU,<FNDUNT-CAN'T FIND DEVICE FOR JfN»

BUG (CHK,DEVUCF,<DEVAV - UNEXPECTED CHKDES FAILURE»

DIAG.MAC.8

BUG(HLT,DGZTPA,<DIAG - LOCKED PAGE LIST PAGE WAS ZERO»
BUG(HLT,DGUTPG,<DIAG - LOCKED PAGE LIST PAGE LOCKED AT DIAG UNLOCK»

DIRECT.MAC.4

APP-14

DIGITAL

BUG(HLT,BADDAC,<INSACT - NULL ACCOUNT STRING SEEN»
BUG(HLT,LCKDIR,<ATTEMPT TO LOCK DIRECTORY TWICE FOR SAME FORK»

TOPS-20 MONITOR
APPENDIX t

BUG (CHK,DIRSYl,<DELDL8: DIRECTORY SYMBOL TABLE FOULED UP FOR DIRECTORY:},<A,B»
BUG (CHK,DIRBAD,<SETDI4: SMASHED DIRECTORY NUMBER:>,<A,SETDNM»
BUG(CHK,DIRFKP,<SETDIR-DIR PAGE 9 BELONGS TO FORK IN DIRECTORY:>,<B,SETDNM»
BUG (CHK,DIRULK,<ULKMD2: ATTEMPT TO UNLOCK ILLEGALLY FORMATT~D DIR, DIR NUMBER:>,<Tl,T2»
BUG (CHK,DIRDNL,<ULKDIR-DIRECTORY NOT LOCKED, DIRECTORY NUMB~:>,<Tl,T2»
BUG(CHK,LNGDIR,<LONG DIRECTORY FILE IN DIRECTORY:>,<T3»
BUG (CHK,DIRSY2,<MDDNAM: SYMBOL TABLE FOULED UP IN DIRECTORY:>,<A,B»
BUG (CHK,DIRSY3,<LOOKUP: SYMBOL SEARCH FOULED UP IN OIRECTORY:>,<C,B»
BUG (CHK,DIRSY4,<NAMCM4: DIRECTORY SYMBOL TABLE FOULED UP IN DIRECTORY:>,<A,B»
BUG (CHK,MPIDXO,<MAPIDX - No OFN for Index Table File»
BUG (CHK,OIRPG9,<DR9CHK: ILLEGAL FORMAT FOR DIRECTORY PAGE 9 IN OIRECTORy:>,<~,B»
BUG(CHK,DIRPGl,<DRHCHK: DIRECTORY HEADER BLOCK IS BAD IN DIRECTORY:>,<A,B>'
BUG (CHK,DIRSY5,<SYMBAD: ILLEGAL FORMAT FOR DIRECTORY SYMBOL TABLE IN DIRECTORY:},<A,B»
BUG(CHK,OIRFDB,<ILLEGAL FORMAT FOR FOB IN DIRECTORY:>,<A,B»
BUG (CHK,DIRNAM,<NAMBAD: ILLEGAL FORMAT FOR DIRECTORY NAME BLOCK IN DIRECTORY;>,<A,B»
BUG(CHK,DIREXT,<EXTBAD: ILLEGAL FORMAT FOR DIRECTORY EXTENSION BLOCK IN DtRECTORY:),<A,8»
BUG (CHK, DIRACT, <ACTBAD: ILLEGAL FORMAT FOR DIRECTORY ACCOUNT BLOCK IN DIRECTORY: >,<A, B»
BUG (CHK,DIRFRE,<FREBAD: ILLEGAL FORMAT FOR DIRECTORY rREE BLOCK IN DIR~CTORy:>,<A,B»
BUG (CHK,DIRUNS,<UNSBAD: ILLEGAL FORMAT FOR DIRECTORY USER NAME BLOCK IN DIRECTORY:>,<A,8)
BUG (CHK,DIRSYfi,<RBLDST: PREMATURELY RAN OUT OF ROOM IN SYMBOL TABI.E IN DIRECTORY:>,<A;B»
BUG (CHK,DIRBLK,<BLKSCN: ILLEGAL BLOCK TYPE IN DIRECTORY:>,<A»
BUG(CHK,DIRB2S,<RLDFB1: DIRECTORY FREE BLOCK TOO SMALL IN DIRECTORY:},<A,B»
BUG(CHK,DIRB2L,<RLDFB2: DIRECTORY FREE BLOCK TOO LARGE IN DIRECTORY:>,<A,~»
BUG (CHK,OIRBCB,<RLDFB3: DIRECTORY FREE BLOCK CROSSES PAGE BOUNDARY IN DIRECTORY:>,<A,B»
BUG (CHK,DIRIFB,<RLDFB4: ILLEGAL BLOCK TYPE ON DIRECTQRY FREE LIST IN OIRECTORY:>,<A,B»
BUG(CHK,DIRBAF,<RLDFB5: BLOCK ALREADY ON DIRECTORY FREE LIST IN DIRECTORy:},<A~B»
BUG (CHK,DIRRHB,<RLDFBfi: ATTEMPTING TO RETURN A HEAOER BLOCK IN DIR~CTORY:),<A,B»

DISC.MAC.7

BUG(HLT,NOPGT9,<OPNLNG: NO PAGE TABLE 9 IN LONG FILB.»
BUG(HLT,GTFDB2,<NEWLFP: GETFDB FAILURE FOR OPEN FILE.»
BUG(HLT,DNOPT9,<DSKCLZ-JFNOFN FAILED FOR PAGE 9»
BUG (HLT,ASOFNF,<DELFIL: ASOFN GAVE FAIL RETURN· FOR LONG FILE XB»
BUG (HLT,NOLEN,<UPDLEN: NO LENGTH INFO FOR OFN»
BUG(HLT,GTFDB3,<DSKREN-GETFDB FAILURE FOR OPEN FILE»

BUG(CHK,GTFDBl,<DSKINS: GETFDB FAILURE.»
BUG (CHK,NOUTFl,<SPLOPN: NOUT OF DIRECTORY NUMBER FAILED»

DSKALC. MAC .11

BUG(HLT,WRTLNG,<WRTBT8 - BIT TABLE IS A LONG FILE»
BUG(HLT,MNTLNG,<MNTBTB - BIT TABLE IS A LONG FILE»
BUG(HLT,MAPBTl,<OFN FOR BIT TABLE IS ZERO»
BUG(HLT,TTNAC5,<CTY NOT ACTIVE AT FSIINI»
BUG (HI.T,TTNAC4,<CTY NOT ACTIVE AT FSIPSI»
BUG (HLT,TTNAC3,<CTY NOT ACTIVE AT FSIPBO»

BUG(CHK,DSKBTl,<DSK BIT TABLE FOULED, CAN'T FIND FREE PAGE ON TRAC~ WITH NON-~ COUNT>,<T2,T3»
BUG (CHK,ASAASG,<DSKASA - ASSIGNING ALREADY ASSIGNED DISK ADPRE$S>,<Tl,T2»
BUG(CHK,ASGBAD,<DSKASA - ASSIGNING BAD DISK ADDRESS>,<T3,T2»
BUG(CHK,DEAUNA,<DEDSK-DEASSIGNING UNASSIGNED DISK ADDRESS>,<Tl,T2»
BUG{CHK, DEABAD, <DS KDEA -. DEASSIGNING BAD DI SK ADDRESS>, <T3, T2»
BUG(CHK,ASGBPG,<INIBTB.,.FAILED TO ASSIGN BAD PAGE(S»,<Tl,T2»
BUG(CHK,WRTCPB,<WRTBTB - FAILED TO BACKUP ROOT-DIRECTORY>,<Tl»
BUG(CHK,WRTBT4,<ASOFN ON BIT TABLE FILE FAILED>,<T2»

APP-15

DIGITAL

BUG(CHK,DSKBT3,<DISK BIT TABLE ALREADY LOCKED AT LCKBTB>,<Tl»
iRUG(CHK,N02PRT,<FEFSYS-NO DUAL-PORTED DISK. USING LOGICAL ~»
BUG(CHK,FEOCPB,<FEFSYS - FAILED TO BACKUP ROOT-DIRECTORY>,<Tl»
BUG(CHK,RADBAT,<BAT BLOCKS UNREAOABLE»

TOPS-20 MONITOR
APPENDIX I

BUG(CHK,SWPASF,<CHKBAT-FAILED TO ASSIGN BAD SWAPPING ADDRESS>,<C,CKBDRA»
BUG(CHK,NOBATl,<FAILED TO WRITE PRIMARY BAT BLOCK>,<Tl,T2»
BUG (CHK,NOBAT2,<FAILED TO WRITE SECONDARY BAT BLOCK),<Tl,T2»

DTESM.MAC.18

DTESRV.MAC.24

BUG (HLT,NORSXF,<FAILED TO GET SPACE FOR MASTER DTE»
BUG(HLT,DTEIOP,<DTESRV- INDIRECT POINTER WITH GARBAGE PACKET»
BUG(HLT,DTEIFR,<DTESRV-ILLEGAL FUNCTION REQUEST FROM 11»
BUG(HLT,DTEUIF,<DTESRV-UNIMPLEMENTED FUNCTION FROM 11»
BUG (HLT,DTETTY,<TAKLC-NON-TTY DEVICE ON FUNCTION CODE 4»
BUG (HLT,DTECAR, <DTESRV- CARRIER FUNCT~ON WITH NO LINE NUMBER PRESENT»
BUG (HLT,DTEDEV,<LINEAL -ILLEGAL DEVICE»
BUG(HLT,DTEMCC,<DOFRGM-MCB DISAGREES WITH COUNT» iNO
BUG(HLT,INVDTE,<DTEQ- INVALID DTE SPECIFIED»

BUG(CHK,DTETIP,<DTETDN-TOl~ DONE RECEIVED WITH NO TRANSFER IN PROGRESS»
BUG(CHK,DTEP2S,<TOl~DN-PACKET TOO SMALL»
BUG(CHK,DTEODD,<TAKLC-ODD BYTE COUNT FOR LINE CHARACTERS»
BUG(CHK,DTEDAT,<TAKTOD- ILLEGAL FORMAT FOR TIME/DATE»
BUG (CHK,KLIOVF,<DTESRV-KLINIK DATA BASE TOO LARGE>,<C»
BUG (CHK,DTEERR,<DTESRV-DTE DEVICE ERROR>,<A,F»
BUG (CHK,DTEPGF,<DTE TRANSFER PAGE FAIL>,<A»

BUG (INF,INDCNT,<DTESRV- BAD INDIRECT COUNT»
BUG (INF,DTECDM,<DTESRV- TO -10 COUNTS DON'TMATCH>,<A»
BUG (INF,DTEDIN,<DTESRV- TO -10 IN PROGRESS ON DOORBELL>,<A»
BUG (INF,DTEDME,<DTESRV- ZERO Q COUNT>,<A»
BUG(INF,DTEPNR,<DTESRV- INCORRECT INDIRECT SETUP>,<A»
BUG (INF,DTELPI,<DTECHK- DTE LOST PI ASSIGNMENT»
BUG(INF,DTELDB,<DTECHK- 11 LOST DOORBELL»
BUG(INF,DTIIDN,<DTECHK- 10 LOST TOIIDN INTERRUPT»
BUG (INF,DN20ST,<DTESRV- DN20 STOPPED>,<B»

DUPSRV.MAC.2~

BUG(HLT,DUPUBA,<no Unibus Address»
BUG(HLT,DUPCOR,<No core for DUPll»
BUG(HLT,KMCIII,<KMCll illegal input interrupt>,<Tl,T2»

BUG(CHK,KMCNTI,<KMCll not taking input»
BUG(CHK,BADHDR,<bad DDCMP header>,<Tl,T2»
BUG(CHK,MSGCLB,<DDCMP transmit message clobbered»
BUG (CHK,MSGPTR,<Bad msg pointer»

EODT.MAC.8

ENQ.MAC.77

BUG (CHK,ENQMLF,<ENQUE: INTERNAL ENQ OF A MONITOR LOCK FAILED»
BUG (CHK,DEQMDF,<DEQUE: INTERNAL MONITOR DEQ FAILED»

APP-16

DIGITAL

EXPRE.MAC.o

FDDT.MAC.4

FESRV.MAC.3

BUG (CHK,FEUSTS,<FESSTS-UNKNOWN STATUS»
BUG (CHK, FEBAD, <FEHSD-WRONG FE» ;NO
BUG(CHK,FEBFOV,<FEHSD-BUFFER OVERFLOW>,<A,C» ;NO

F I LDDT • MAC .6

FILINI .MAC. 7

BUG(HLT,BADREC,<FILINI - Reconstruction of ROOT-DIRECTORY failed»
BUG(HLT,IBOFNF,<FILINI: ASOFN FAILURE FOR ROOT DIRECTORY IB»
BUG(HLT,BTBCRl,<FILINI - NO BIT TABLE FILE AND UNABLE TO CREATE ONE»

TOPS-20 MONITOR
APPENDIX I

BUG (HLT,BADXTl,<INDEX TABLE MISSING AND CAN NOT BE CREATED»
BUG(HLT,BTBCRT,<FILINI - COULD NOT INITIALIZE BIT TABLE FOR PUBLIC STRUCTURE»
BUG(HLT,NEWROT,<FILRFS - NEWIB FAILURE FOR ROOT-DIRECTORY»
BUG(HLT,NEWBAK,<FILRFS - NEWIB FAILURE FOR BACKUP ROOT-DIR»
BUG(HLT,IDXNOS,<FILINI - COULD NOT ASSIGN FREE SPACE FOR IDXTAB»
BUG (HLT,FILRID,<FILINW: INDEX TABLE ALREADY SET UP FOR ROOT DIR»
BUG (HLT,FILIRD,<FILINW: COULD NOT INITIALIZE THE ROOT DIRECTORY»
BUG(HLT,FILBTB,<UNABLE TO WRITE BIT TABLE FILE»
BUG(HLT,NOFEFS,<FILINI - UNABLE TO GET SIZE OF FRONT END FILE SYSTEM»
BUG(HLT,NOBTBN,<FILINI - UNABLE TO GET SIZE OF BOOTSTRAP.BIN FILE»
BUG (HLT,FILMAP,<FILIN2: COULD NOT MAP IN ROOT-DIRECTORY»
BUG (HLT,BADROT,<FILIN2: ROOT-DIRECTORY IS INVALID»
BUG (HLT,STZERO,<FILINI: STRTAB ENTRY FOR PSIS 0»
BUG (HLT,BADXTB,<FILIN2: Could not initialize index table»

BUG (CHK,NOBTB,<FILINI - UNABLE TO OPEN BIT TABLE FILE»
BUG(CHK,BADXT2,<INDEX TABLE MISSING AND WAS CREATED»
BUG(CHK,FILHOM,<UNABLE TO REWRITE HOME BLOCKS IN WRTBTB»
BUG(CHK,FILFEF,<Could not create Front End File System»

_
UG(CHK,FILBOT,<COULD NOT CREATE BOOTSTRAP.BIN FILE»
UG (CHK,BADBAK, <FILIN2 - BACKUP COPY OF ROOT DIRECTORY IS NOT GOOD»
UG(CHK,FIXBAD,<Could not re-write Home Blocks to point to FE Filesystem»

BUG(CHK,FIXBDB,<COULD NOT RE-WRITE HOME BLOCKS TO POINT TO BOOTSTRAP. BIN»
BUG(CHK,FILJBl,<FILCRD: No room to create standard system directories»
BUG(CHK,FILCCD,<Could not create directory»
BUG (CHK,FILBAK,<FILCRD: COULD NOT CREATE BACKUP OF ROOT-DIR»
BUG (CHK,BADIDX,<IDXINI: PARTIALLY UNSUCCESSFUL INDEX TABLE REBUILD»

FILMSC.MAC.4

BUG(CHK,TTNACl,<LINE NOT ACTIVE AT PTYOPN»

FORK.MAC.8

BUG(HLT,FRKSLF,<SUSFK - GIVEN SELF AS ARG»
BUG(HLT,MAP41F,<MAPF41 FAILED TO SKIP»
BUG(HLT,FRKNPT,<FKHPTN - FORK HAS NO PAGE TABLE»

BUG(CHK,ILJRFN,<JFKRFH - BAD JRFN, IGNORED»
BUG (CHK,FLKINT,<FLOCK-CALLED WHILE NOINT»

APP-17

DIGITAL

BUG (CHK,FLKTIM,<FLOCK-TIMEOUT»
BUG (CHK,FLKNS,<FUNLK-LOCK NOT SET»

TOPS-2 ~ MONITOR
APPENDIX I

IBUG(CHK,NOXRFH,<DASFKH - ATTEMPT TO DEASSIGN NONEXISTANT RFH, IGNORED»
BUG(CHK,NWJTBE,<NO FREE JTB BLOCKS»

FREE.MAC.8

BUG (CHK,RELRNG,<RELFRE: BLOCK OUT OF RANGE»
BUG (CHK,RELBAD,<RELFRE-BAD BLOCK BEING RELEASED»
BUG(CHK,ASGREQ,<ILLEGAL POOL NUMBER GIVEN TO ASGRES»
BUG (CHK,ASGREP,<ILLEGAL PRIORITY GIVEN TO ASGRES»
BUG (CHK,RESBAD,<RELRES: ILLEGAL ADDRESS PASSED TO RELRES»
BUG (CHK,RESBND,<RELRES: RELEASING SPACE BEYOND END OF RESIDENT FREE POOL»
BUG (CHK,RESBAZ,<RELRES: FREE BLOCK RETURNED MORE THAN ONCE»

FUTILI. MAC. 91

BUG (CHK,ULKSTZ,<OVERLY DECREMENTED STRUCTURE LOCK»

GLOBS.MAC.93

GTJFN. MAC. 3

BUG(CHK,NOSPLM,<RELJFN: COULD NOT SEND SPOOL MESSAGE TO QUASAR»

IMPANX.MAC.10

BUG(HLT,IMPNII,<NO IMP INPUT BUFFERS»
BUG (HLT,IMPAUF,<IMPEIN: BUFFER ON FREELIST USED FOR INPUT»

BUG(CHK,IMPHNW,<LHOSTN DISAGREES WITH THE IMP»

BUG (INF,IMINX1,<UNUSUAL ANI INTERRUPT, CONlANI lS>,<Tl»
BUG (INF,IMPOFL,<MESSAGE BUFFER OVERFLOW>,<Tl,T2,T3,T4»
BUG (INF, IMINX2, <IMIERR CALLED, CONI ANI IS>, <Tl»

IMPDV. MAC. 5

BUG (HLT,IMPCCF,<CAN'T CREATE IMP FORK»
BUG(HLT,IMPUFB,<IMIP1: ATTEMPT TO UNLOCK BUFFER ON FREELIST»
BUG (HLT,IMPRMI,<IMP - REGULAR MESSAGE ON IRREG QUEUE»
BUG (HLT,IMPNBC,<PKMSG: NEGATIVE RESIDUAL BYTE COUNT»
BUG (HLT,IMPALF,<IMPLKB: ATTEMPT TO LOCK BUFFER ON FREELIST»
BUG (HLT,IMPAFB,<IMPCQ: ATTEMPT TO UNLOCK BUFFER ON FREELIST»
BUG (HLT,IMPUBF,<IMULKB: ATTEMPT TO UNLOCK BUFFER ON FREELIST»

BUG (CHK,IMPUX0,<IMP JB0 FORK - UNEXPECTED INTERRUPT»
BUG (CHK,IMPLTF,<IMPLT FULL»
BUG(CHK,IMPIFH,<IMPGC-IMPOSSIBLE FAILURE OF IMPHFL»
BUG (CHK,IMPREM,<UPBRB: RECEIVED EXCESSIVE MESSAGES>,T2)
BUG(CHK,IMPMSL,<PKMSG - MSG TOO LARGE»
BUG(CHK,IMPNMA,<PKBY1: NO MSG ALLOCATION>,T2)

BUG(INF,IMPHIF,<HSTINI FAILED TO FIND HOST NAME FILE»
BUG (INF,IMPMUL,<RECEIVED MSG FOR UNKNOWN LINK>,<Tl,T2»
BUG(INF,IMPRNO,<RFNM OVERDUE>,T2)
BUG(INF,IMPMSO,<MESSAGE STUCK IN OUTPUT QUEUE>,T2)
BUG(INF,IMPXBO,<IRREG MSG BUFFER OVERFLOW»
BUG (INF,IMPXUT,<RECEIVED IRREG MSG WITH UNKNOWN LINK OR TYPE>,<Tl,T2,T3»

APP-18

DIGITAL

BUG (INF,IMPCTH,<IMPNCL TOO HIGH»
BUG(INF,IMPIFC,<ILL FMT CTL MSG>,<T2,T3»
BUG (INF,IMPREA,<RECD EXCESS ALL>,T2)
BUG (INF,IMPRNE,<RECD NCP ERR>,<T1,T2»
BUG(INF,IMPCUL,<RECD CTL MSG FOR UNKNOWN LINK>,<T1,T2,T3»
BUG (INF,IMPLAE,<IMPOPL: LINK ALREADY EXISTS>,T2)
BUG(INF,IMPBSC,<MESSAGE HAS BAD SIZE OR COUNT>,<T1,T2»
BUG (INF,IMPLEO,<CAN'T FIND LT ENTRY FOR OUTPUT MESSAGE>,<T1,T2»
BUG (INF,IMPABF,<ASNTBF FAILED»

IO.MAC.7

BUG (CHK,BLKF1,<BYTINA: BLKF SET BEFORE CALLING SERVICE ROUTINE»
BUG (CHK,BLKF2,<BYTOUA: BLKF SET BEFORE CALL TO SERVICE ROUTINE»
BUG(CHK,DMPRLF,<DMPREL-FAILED TO RELEASE PAGE»

IPCF.MAC.133

BUG (HLT,IPCOVL,<PIDINI: PIDS AND FREE POOL OVERLAP, IPCF WON'T WORK!»

BUG (CHK,IPCMCN,<MESREC: MESSAGE COUNT WENT NEGATIVE»
BUG (CHK,PIDOD1,<MUTCHO: PID COUNT OVERLY DECREMENTED»
BUG (CHK,IPCFKH,<CHKPDD: COULD NOT FIND LOCAL FORK HANDLE»
BUG (CHK,PIDFLF,<CREPID: FREE PID LIST FOULED UP»
BUG (CHK,ILPID1,<CREPID: ATTEMPT TO CREATE ILLEGAL PID»
BUG(CHK,PIDOD2,<DELPID: OVERLY DECREMENTED PID COUNT»
BUG(CHK,ILPID2,<DELPID: VALIDATED PID TURNED ILLEGAL»
BUG(CHK,IPCSOD,<GETMES: SENDER'S COUNT OVERLY DECREMENTED»
BUG (CHK,NOPID,<PIDKFL: PID DISAPPEARED»
BUG(CHK,NODIR1,<SPLMES: DIRST FAILED ON EXISTING DIRECTORY NAME»
BUG (CHK,NOUTF2,<SPLMES: NOUT OF GENERATION NUMBER FAILED»
BUG (CHK,NOALCM,<ALCMES: CANNOT SEND MESSAGE TO ALLOCATOR»
BUG(CHK,IPCJB0,<PIDINI: NOT IN CONTEXT OF JOB 0»
BUG(CHK,IPCFRK,<PIDINB: CANNOT CREATE FORKS FOR IPCF»

JSYSA. MAC. 25

BUG(CHK,CPYUF1,<CACCT: IMPOSSIBLE FAILURE OF CPYFU1.»
BUG (CHK,EFACF3,<EFACT: FAILED TO WRITE INTO FACT FILE»
BUG (CHK, EFACF1,<EFACT: CLOSF FAILED TO CLOSE FACT FILE.»

TOPS-20 MONITOR
APPENDIX I

BUG (CHK,SNPLKF,<SNPFN0: CANNOT LOCK DOWN PAGE INTO MONITOR»
BUG(CHK,SNPIC,<SNPFN3: INSTRUCTION BEING REPLACED HAS CHANGED»
BUG(CHK,SNPODB,<SNPF4C: COUNT OF INSERTED BREAK POINTS OVERLY DECREMENTED»
BUG(CHK,SNPUNL,<SNPF5A: CANNOT UNLOCK SNOOP PAGE»
BUG(CHK,HSHERR,<VERACT - HASH VALUE OUT OF RANGE»
BUG(CHK,CRSPAG,<VERACT - ACCOUNT DATA BLOCK CROSSES A PAGE BOUNDARY»
BUG(CHK,BADTAB,<VERACT - SPURIOUS HASH TABLE ENCOUNTERED»

JSYSF. MAC. 341

BUG(HLT,GTFDB6,<CRDI0A: CANNOT DO GETFDB ON ROOT-DIRECTORY»

BUG (CHK,CLZABF,<CLZFFW: SERVICE ROUTINE BLOCKED ON AN ABORT CLOSE»
BUG(CHK,BLKF3,<CLZDO: BLKF SET BEFORE CALL TO SERVICE ROUTINE»
BUG (CHK,CRDSDF,<CRDIR1: SETDIR FAILED ON NEW DIRECTORY»
BUG (CHK,CRDBAK,<CRDIR3: COULD NOT MAKE BACKUP COPY OF ROOT-DIRECTORY»
BUG {CHK,CRDOLD,<CRGDGB: OLD FORMAT CRDIR IS ILLEGAL»
BUG (CHK,CRDNOM,<CRDIR-FAILED TO MAKE MAIL.TXT FILE»
BUG (CHK,CRDBK1,<CRDIR4:COULD NOT MAKE BACKUP COPY OF ROOT-DIRECTORY»
BUG(CHK,DVCHRX,<DVCHRl - UNEXPECTED CHKDES FAILURE WITHIN .DVCHR»

APP-19

DIGITAL

BUG(CHK,BLKF4,<.GDSTS: BLKF SET BEFORE CALL TO DEVICE ROUTINE»
BUG(CHK,BLKF5,<.MTOPR: BLKF SET BEFORE CALL TO DEVICE ROUTINE»
BUG(CHK,BLKF6,<.SDSTS: BLKF SET BEFORE CALL TO DEVICE ROUTINE»

BUG(INF,DELBDD,<DELDIR: BAD DIRECTORY DELETED. REBUILD BIT TABLE»

KDPSRV.MAC.29

BUG(HLT,DUPUBA,<no Unibus Address»
BUG(HLT,DUPCOR,<No core for DUPll»
BUG(HLT,KMCIII,<KMCll illegal input interrupt>,<Tl,T2»

BUG(CHK,KMCNTI,<KMCll not taking input»
BUG(CHK,BADHDR,<bad DDCMP header>,<Tl,T2»
BUG (CHK,MSGCLB,<DDCMP transmit message clobbered»
BUG(CHK,MSGPTR,<Bad msg pointer»

KLBPRE. MAC.l

KLPRE.MAC.l

KSPRE. MAC. 2

LDINIT. MAC. 73

LINEPR. MAC .19

LOGNAM. MAC. 66

BUG (CHK,NOSLNM,<SLNINI
BUG (CHK,LNMILI,<LNMLUK
BUG (CHK, ILLTAB,<TABLK2

LOOKUP.MAC.l

CANNOT CREATE SYSTEM LOGICAL NAME»
ILLEGAL VALUE OF LOGICAL NAME TABLE INDEX»
TABLE NOT IN PROPER FORMAT»

BUG (HLT,ASTJFN,<GETFDB: CALLED FOR JFN WITH OUTPUT STARS»
BUG(HLT,MDDJFN,<GETFDB: CALLED FOR NON-MOD DEVICE»
BUG (HLT,ILSTP3,<VERLUK: IMPOSSIBLE SKIP RETURN FROM EXTLUU»

LPFEDM.MAC.6

LPFEDV.MAC.l

LPKSDV.MAC.75

BUG (HLT,NLWA,<L2INI: No lineprinter window available»

BUG (CHK,LP2IEN,<LINEPRINTER LOST INTERRUPT ENABLE>,U)

MAGTAP.MAC.10

BUG (HLT,MTARIN,<MTAINT: INTERRUPT RECEIVED FOR NONACTIVE IORB»

APP-20

TOPS-20 MONITOR
APPENDIX I

DIGITAL

BUG (CHK,MTANOI,<GETUBF
BUG (CHK,MTANOQ,<IRBDNI
BUG (CHK,MTANOA,<IRBDN2
BUG (CHK,MTAORN,<MTDIR0

MDDT.MAC.7

MEXEC.MAC.3n

NO QUEUED IORB'S FOR INPUT»
IRBDON CALLED FOR NON-QUEUED UP IORB»
IRBDON CALLED FOR AN ACTIVE IORB»
MAGTAPE IORB OVERRUN»

BUG(HLT,CKDFRK,<JOB 0 CFORK FAILED»
BUG (HLT,ILBOOT,<GETSWM-ILLEGAL VALUE OF BOOTFL»
BUG (HLT,BOOTCR,<GETSWM - NOT ENOUGH CORE FOR SWPMON»
BUG(HLT,BOOTMP,<GSMDSK - CANNOT MAP BOOTSTRAP PAGES»
BUG(HLT,BOOTLK,<GSMDSK - FAILED TO LOCK NEEDED PAGES»
BUG (HLT,BOOTER,<GETSWM - ERROR LOADING SWPMON»
BUG(HLT,HSYFRK,<HSYS-JOB 0 CFORK FAILED»
BUG (HLT,EXPAFK,<EXPALL: JOB 0 CFORK FAILED»
BUG(HLT,TTBADl,<BAD DEVICE DESIGNATOR FOR TERMINAL AT ATACH2»
BUG(HLT,UXXCRE,<CANNOT CREATE USAGE FILE»
BUG(HLT,UXXOPN,<UNABLE TO OPEN USAGE FILE»
BUG (HLT,UXXCKP,<COULDN'T CREATE CHECKPOINT FILE»
BUG (HLT,UXXMAP, <USGMAP: CALL TO JFNOFN FAILED»
BUG (HLT,UXXILL,<USGMES: ILLEGAL FUNCTION CODE»

BUG(CHK,NOSERF,<CAN'T GTJFN ERROR REPORT FILE»
BUG(CHK,SERFOF,<CAN'T OPENF ERROR REPORT FILE»
BUG(CHK,SYSERF,<LOGSST-NO SYSERR STORAGE FOR RESTART ENTRY»
BUG (CHK, EXPRCD,<EXPALL: RCDIR FAILURE»
BUG(CHK,UXXFAI,<USAGE JSYS FAILURE»
BUG(CHK,UXXWER,<WRITE ERROR IN USAGE FILE>,<Tl»
BUG(CHK,UXXCLl,<UNABLE TO CREATE NEW USAGE FILE»
BUG(CHK,UXXCL2,<UNABLE TO OPEN NEW USAGE FILE»
BUG(CHK,UXXCL3,<UNABLE TO CLOSE USAGE FILE»

BUG(INF,USGHOL,<LOST PAGE(S) IN USAGE FILE»

TOPS-20 MONITOR
APPENDIX I

BUG(INF,UXXFIT,<CHECKPOINT FILE NOT IN CORRECT FORMAT FOR THIS SYSTEM, REBUILDING ••• »

MFLIN.MAC.25

MFLOUT.MAC.26

MR.MAC.19

MSTR.MAC.4

N20MED.MAC.l

N20SML.MAC.l

N60BIG.MAC.l

N6~MAX.MAC.l

APP-21

DIGITAL

NAMAMI1l.MAC.2

NAMAN. MAC. 1

NAMBCH.MAC.4

NAMBIG. MAC. 4

NAMDEV. MAC. 3

NAMKST.MAC.l

NAMMED.MAC.4

NAMMIN • MAC • 4

NAMSML. MAC. 3

NCOMND. MAC. 1

NETWRK.MAC.6

NNTBFS NOT INTEGRAL MULTIPLE OF MAXWPM»
EXTDEC FAILURE AFTER PREVIOUS NON-FAILURE.»
WAS CALLED FROM SCHEDULER LEVEL.» .
REQUEST FOR BUFFER LARGER THAN MAXWPM»

TOPS-20 MONITOR
APPENDIX I

BUG (HLT,NETNNI,<NETINI
BUG (HLT,NETIEF,<NETOPN
BUG (HLT,NETWNS,<WATNOT
BUG (HLT,NETRBL,<ASNTBF
BUG (HLT,NETBAU,<ASNTBF
BUG (HLT,NETRBG,<RLNTBF
BUG (HLT,NETBAF,<RLNTBF

ATTEMPT TO ASSIGN A BUFFER ALREADY IN USE»
ATTEMPT TO RELEASE BUFFER AT GARBAGE LOCATION»
ATTEMPT TO RE~EASE BUFFER ALREADY ON FREE LIST»

BUG (CHK,NETDET,<NVTDET: COULD NOT CLOSE NVT>,<Tl»

BUG(INF,NCPFUN,<NCP FSM RECIEVED FUNNY INPUT>,<Tl,T2,UNIT»

NSPSRV.MAC.65

BUG (HLT,NSPFRK,<NSPINl-CFORK FAILED»
BUG(HLT,DELNDF,<DELNOD-LLLKUP FAILED»
BUG(HLT,ADDONF,<ADDOBJ-LLLKUP FAILED»

BUG(CHK,NSPRTH,<NSPTSK- INVALID ROUTING HEADER>,<Tl,T2»
BUG(CHK,NOMHDR,<ILLEGAL MESSAGE WITH NO HEADER»

BUG (INF,CLZDIN,<NETCLZ-COULD NOT SEND DI»
BUG(INF,ILLSTR,<NSPTSK-ILLEGAL INIT MESSAGE>,<Ql»

P20MDD. MAC. 3

APP-22

DIGITAL

P 20MED. MAC. 5

P20SMD.MAC.3

P20SML. MAC. 7

P60B IG • MAC. 3

P60MAX.MAC.6

PAGEM.MAC.696

BUG(HLT,RSMFAI,<RESSMM-FAILED TO ASSIGN SWAP MON PAGE»
BUG(HLT,ILCSTl,<ILLEGAL ADDRESS IN CSTl ENTRY, CAN'T RESTART»
BUG(HLT,NOTOFN,<UPDOF0-ARG NOT OFN»
BUG(HLT,ILPPTl,<UPDOFN-BAD POINTER IN PAGE TABLE»
BUG(HLT,PTOVRN,<UPDPGS-COUNT TOO LARGE»
BUG(HLT,ILPPT2,<UPDPGS-BAD POINTER IN PAGE TABLE»
BUG(HLT,STRBAD,<ASOFN-ILLEGAL STRUCTURE NUMBER»
BUG(HLT,OVFLOW,<ASOFN - ALLOCATION TABLE OVERFLOW»
BUG(HLT,NOADXB,<RELOFN-NO DSK ADR FOR XB»
BUG(HLT,SPTFLl,<SPT COMPLETELY FULL»
BUG(HLT,SHRN00,<DESPT-SHARE COUNT NON-ZERO»
BUG(HLT,PTDEL,<DESPT-PT NOT DELETED»
BUG(HLT,PAGLCK,<DESPT-PAGE LOCKED»
BUG (HLT,DRMFLl, <ASFSB-UNEXPECTED DRUM FULL»
BUG(HLT,ILOFNl,<MSCANP-ILLEG IDENT»
BUG(HLT,ILPTNl,<MRPACS-ILLEG PTN»
BUG (HLT,SECEXl, <SETMPG-ATTEMPT TO MAP NON-EX SECTION»
BUG(HLT,XSCORE,<CST TO SMALL FOR PHYSICAL CORE PRESENT»
BUG(HLT,ILSRC,<ILLEGAL SOURCE IDENTIFIER GIVEN TO SETPT»
BUG(HLT,ILXBP,<SETPT-BAD POINTER IN XB»
BUG(HLT,PTNON0,<SETPT0 - PREVIOUS CONTENTS NON-0»
BUG(HLT,ILSPTI,<ILLEGAL SPT INDEX GIVEN TO SETMXB»
BUG(HLT,ILDEST,<ILLEGAL DESTINATION IDENTIFIER TO SETMPG ORSETPT»
BUG(HLT,SPTFL2,<SPT COMPLETELY FULL»
BUG(HLT,CST2Il,<PAGE TABLE CORE POINTER AND CST2 FAIL TO CORRESPOND»
BUG(HLT,ILSPTH,<SETPT-SPTH INCONSISTENT WITH XB»
BUG(HLT,CST2I2,<MVPT-CST2 INCONSISTENT»
BUG(HLT,CST2I3,<PAGE TABLE CORE POINTER AND CST2 FAIL TO CORRESPOND»
BUG(HLT,SHROFN,<UPSHR-OFN SHARE COUNT OVERFLOW» iYES
BUG(HLT,SPTSHR,<UPSHR-SPT SHARE COUNT OVERFLOW»
BUG(HLT,SHROFD,<DWNSHR-OFN SHARE COUNT UNDERFLOW»
BUG(HLT,PGNDEL,<REMFPB-PAGE NOT COMPLETELY DELETED»
BUG(HLT,RPGERR,<BADCPG-FATAL ERROR IN RESIDENT PAGE»
BUG(HLT,FRKPTE,<BADCPG-FATAL ERROR IN FORK PT PAGE»
BUG(HLT,ILFPTE,<ILLFPT: ILLEGAL SECTION NUMBER REFERENCED»
BUG (HLT, ILPAGN ,<MRKMPG-INVALID PAGE NUMBER»
BUG(HLT,ILPLKl,<MLKPG-ILLEGAL ARGS»
BUG(HLT,ILULKl,<MULKPG - TRIED TO UNLOCK PAGE NOT LOCKED»
BUG(HLT,ILULK2,<TRIED TO UNLOCK PAGE NOT LOCKED»
BUG(HLT,ILULK3,<MULKMP - ILLEGAL MONITOR ADDRESS»
BUG(HLT,ILULK4,<MULKCR - ILLEGAL CORE PAGE NUMBER»
BUG(HLT,PAGNIC,<GETCPP-PAGE NOT IN CORE»

APP-23

TOPS-20 MONITOR
APPENDlX I

DIGITAL

BUG (HLT,PSBNIC,<SETPPG-PSB NOT IN CORE»
BUG(HLT,JSBNIC,<SETPPG-JSB NOT IN CORE»
BUG (HLT,ASGSW2,<SWPOMG-CAN'T ASSIGN RESERVED DRUM ADDRESS»
BUG(HLT,ILPAGl,<SWPOT~-INVALID PAGE»
BUG (HLT,DRMFUL,<DRUM COMPLETELY FULL»
BUG(HLT,BKUPDF,<BKUPD - BAD CSTl ENTRY OR INCONSISTENT CST»
BUG(HLT,SECGTl,<PGRT3 - SECTION NUMBER GREATER THAN MAXSEC»
BUG(HLT,PITRAP,<PAGER TRAP WHILE PI IN PROGRESS»
BUG(HLT,UBANXM,<I/O NMX FROM UNIBUS DEVICE>,<UPTPFW,UPTPFO»
BUG (HLT,ABKSKD,<ADDRESS BREAK FROM SCHEDULER CONTEXT»
BUG (HLT,ILLIND,<ILLEGAL INDIRECT»
BUG (HLT,SECG37,<ILSCN-SECTION NUMBER GREATER THAN 37»
BUG(HLT,SECNX,<CREATING PAGE TABLE FOR NON-~ SECTION»
BUG (HLT,ILAGE,<BAD AGE FIELD IN CST~»
BUG (HLT,ILRFPD,<PDL-OV IN ILLEGAL PAGE REFERENCE»
BUG (HLT,ILWRT2,<ATTEMPTED WRITE REF TO PROTECTED MONITOR»
BUG (HLT,ILMADR,<ILLEGAL ADDRESS REFERENCE IN MONITOR»
BUG (HLT,ILPPT3,<BAD POINTER IN PAGE TABLE»
BUG (HLT,IBCPYW,<COPY-WRITE POINTER IN INDEX BLOCK»
BUG(HLT,BADBTB,<NIC- ILLEGAL REFERENCE TO BIT TABLE»
BUG (HLT,NULQTA,QCHK - NO QUOTA INFO SETUP)
BUG (HLT,SPTPIC,<SWPIN - SPT PAGE ALREADY IN CORE»
BUG(HLT,PTAIC,<SWPIN - PT PAGE ALREADY IN CORE»
BUG(HLT,ILSWPA,<SWPIN - ILLEGAL SWAP ADDRESS»
BUG(HLT,SWPMNE,<SWAP ERROR IN SWAPPABLE MONITOR»
BUG(HLT,SWPPSB,<SWAP ERROR IN PSB PAGE»
BUG(HLT,SWPPTP,<SWAP ERROR IN UNKNOWN PT PAGE»
BUG(HLT,SWPPT,<SWAP ERROR IN UNKNOWN PT»
BUG(HLT,SWPUPT,<SWAP ERROR IN UPT, OR PSB»
BUG (HLT,OFFSPE,<OFFSPQ- PAGE NOT ON SPMQ»

BUG (CHK,XBWERR,<UPDOFN-DSK WRITE ERROR ON XB»
BUG(CHK,ILIBPT,<BAD POINTER TYPE IN INDEX BLOCK»
BUG (CHK,WSPNEG,<SOSWSP-WSP NEGATIVE»
BUG (CHK,NSKDT2,<PGRTRP-BAD INTDF»
BUG (CHK,NSKDT2,<PGRTRP-BAD NSKED OR INTDF»
BUG(CHK,FRKBAL,<AGESET-FORK NOT IN BALSET»
BUG(CHK,SWPFPE,<SWAP ERROR IN SENSITIVE FILE PAGE»
BUG(CHK,SWPIBE,<SWAP ERROR IN INDEX BLOCK»
BUG(CHK,SWPJSB,<SWAP ERROR IN JSB PAGE»

PARAM0. MAC. 2

PARAMS.MAC.9

PARAN. MAC. 3

PARBCH.MAC.7

PARBIG.MAC.l~

PARDEV.MAC.S

PARKST.MAC.l2

APP-24

TOPS-20 MONITOR
APPENDIX I

DIGITAL

PARMED.MAC.4

PA RM IN • MAC. 8

PARSM L. MAC. 8

PHYH 11. MAC. 53

BUG (HLT,NOUBWA,<RH2NCH: NO UNIBUS WINDOW FOR RH11»
BUG(HLT,CLRACE,UNABLE TO CLEAR REGISTER ACCESS ERROR)
BUG(HLT,RH1ICF,<PHYH11 - INVALID CHANNEL FUNCTION»
BUG(HLT,RH11CC,<PHYH11 - ILLEGAL CHANNEL COMMAND WORD»

BUG(CHK,PH1PIE,<PHYH11 - RH11 LOST INTERRUPT ENABLE»
BUG(CHK,P1NED1,<PHYHll - RHll NON EX DISK READING REGISTER>,<Tl,T2»
BUG(CHK,P11PAR,<PHYH11 -- CONTROL WRITE PARITY ERR>,<T1,T2»
BUG(CHK,P2RAE2,<PHYH11 - REGISTER ACCESS ERR WRITING REG>,<T1,T2,T3»
BUG(CHK,PH1IHM,<PHYH11 - ILLEGAL HDW MODE - WORD MODE ASSUMED»

TOPS-2~ MONITOR
APPENDIX I

BUG(INF,P1NED3,<PHYH11 - NON EX DISK ON DONE OR ATN INTERRUPT>,<T1,T2»

PHYH 2. MAC. 71

BUG(HLT,RH2ICF,<PHYRH2 - INv.ALID CHANNEL FUNCTION»
BUG(HLT,PH2WUI,<WRONG UNIT INTERRUPTED»

BUG (CHK,PH2PIM,<PHYH2 - RH2~ LOST PI ASSIGNMENT>,<T2»
BUG(CHK,P2RAE1,<PHYH2 - RH2~ REGISTER ACCESS ERROR READING R~GISTER>,<Tl,T2,T3»
BUG(CHK,P2RAE2,<PHYH2 - REGISTER ACCESS ERR WRITING REG>,<T1,T2,T3,T4»
BUG(CHK,PH2IHM,<PHYH2 - ILLEGAL HOW MODE - WORD MODE ASSUMED»
BUG(CHK,P2RAE3,<PHYH2 - REGISTER ACC ERR ON DONE OR ATN INTERRVPT>,<T1,T2,T3»

BUG(INF,PH2DNA,<PHYH2 - DONE INTERRUPT AND CHANNEL NOT ACTlVE>,<T2»

PHYM2. MAC. 2~

BUG(CHK,PM2SIO,<PHYM2 - ILLEGAL FUNCTION AT START 10»
BUG(CHK,TM2NUD,<PHYM2 - CHANNEL DONE INTERRUPT BUT NO UNIT ACTIVE»
BUG(CHK,TM2IDM,<PHYM2 - ILLEGAL DATA MODE AT DONE INT»
BUG(CHK,TM2IF2,<PHYM2 - ILLEGAL FUNCTION ON COMMAND DONE»
BUG (CHK,TM2HER,<TM2ERR - IS.HER SET ON SUCCESSFUL RETRY»
BUG(CHK,TM2RFU,<PHYM2 - ERROR RECOVERY CONFUSED>,<T1,Ql,T3»
BUG(CHK,TM2CCI,<PHYM2 - TM02 SSC OR SLA WONT CLEAR»

BUG(INF,TM2N2S,<PHYM2 - MORE DRIVES THAN TABLE SPACE, EXCESS IGNORED»
BUG(INF,TM2UNA,<PHYM2 - DONE INTERRUPT AND UDB NOT ACTIVE>,<Q1,P3,Tl»
BUG(INF,TM2IDX,<PHYM2 - ILLEGAL RETRY BYTE POINTER»
BUG(INF,TM2IRF,<PHYM2 - ILLEGAL FUNCTION DURING RETRY»

PHYP4. MAC. 8~

BUG(HLT,RP4UNF,<PHYP4 - UNIT TYPE NOT FOUND:>,Tl)
BUG(HLT,RP4PNF,<PHYP4 - DISK PHYSICAL PARAMETERS NOT FOUND»
BUG(HLT,RP4FEX,<PHYP4 - ILLEGAL FUNCTION»
BUG(HLT,RP4IF2,<PHYP4 - ILLEGAL FUNCTION AT STKIO»

APP-25

DIGITAL

BUG(HLT,RP4IFC,<PHYP4 - ILLEGAL FUNCTION AT CNV» iYES TO EITHER
BUG(HLT,RP4LTF,<PHYP4 - FAILED TO FIND TWQ ENTRY AT RP4LTM»
BUG(HLT,RP4ILF,<PHYP4 - ILLEGAL FUNCTION ON INTERRUPT»

BUG(CHK,RP4SSC,<PHYP4 - STUCK SECTOR COUNTER>,<Tl,T2»

PHYPAR.MAC.4

PHYSIO.MAC.172

BUG(HLT,PHYP0E,<PHYALZ - PAGE 0 STORAGE EXHAUSTED»
BUG(HLT,PHYICA,<PHYINI - ILLEGAL ARGUMENT TO CORE ALLOC»
BUG(HLT,ILTWQ,<PHYINT - TWQ OR PWQ INCORRECT» iNO.

- ILLEGAL DISK ADDRESS IN PAGEM REQUEST»
ILLEGAL UNIT NUMBER»
MISSING IORB»
IORB LINK NOT NULL AT ONF/STWQ»
PWQ OR TWQ TAIL POINTER INCORRECT»
IORB LINK NOT NULL AT ONFPWQ»
ILLEGAL CALL TO CONSTW»
ILLEGAL CALL TO CONSPW»

TOPS-20 MONITOR
APPENDIX I

BUG(HLT,ILPDAR,<PHYSIO
BUG (HLT,PYILUN,<PHYSIO
BUG (HLT,NOIORB,<SETIRB
BUG (HLT,ILRBLT,<PHYSIO
BUG (HLT,ILTWQP,<PHYSIO
BUG (HLT,ILIRBL,<PHYSIO
BUG (HLT,ILCNST,<PHYSIO
BUG (HLT,ILCNSP,<PHYSIO
BUG (HLT,TWQNUL,<PHYSIO
BUG (HLT,ILU8T1,<PHYSIO
BUG (HLT,ILCHS1,<PHYSIO
BUG (HLT,ILUST5,<PHYSIO
BUG(HLT,ILCHS2,<PHYSIO
BUG (HLT,ILUST4,<PHYSIO
BUG (HLT,ILUST3,<PHYSIO
BUG (HLT,PHYCH1,<PHYSIO
BUG (HLT,PHYLTF,<PHYSIO
BUG (HLT,UIONIR,<UDSKIO

PWQ OR TWQ WAS NULL AT A SEEK OR TRANSFER COMPLETION»
UNIT STATUS INCONSISTENT AT SIO»
ILLEGAL CHANNEL STATUS AT SIO»
ILLEGAL UNIT OR CHANNEL STATE AT STKIO»
ILLEGAL CHANNEL STATE AT STKIO»
CONTROLLER ACTIVE AT SPS»
SCHSEK - IMPOSSIBLE UNIT STATUS»
HOME BLOCK CHECK IORB ALREADY ON TWQ»
SCHLTM - UNEXPECTED LATOPT FAILURE»
NO IORB FOR NOSKED FORK»

BUG(CHK,PHYNIR,<PHYSIO - NULL INTERRUPT ROUTINE AT OPERATION DONE»
BUG(CHK,NRFTCL,<PHYSIO - NO REQUESTS FOUND FOR CYLINDER SEEKED»
BUG(CHK,NPWQPD,<PHYSIO - NULL PWQ AT POSITION DONE»
BUG(CHK,ILUST2,<PHYSIO - UNIT STATUS INCONSISTENT AT SPS»

BUG(INF,PHYICE,<PHYINI - FAILED TO ASSIGN RESIDENT STG»
BUG(INF,PHYCH2,<PHYSIO - HOME BLOCK CHECK IORB TIMED OUT»
BUG(INF,PHYCH3,<PHYSIO - HOME BLOCK CHECK IORB TIMED OUT BUT WAS NOT ON TWQ»
BUG(INF,OVRDTA,<PHYSIO - OVERDUE TRANSFER ABORTED>,<Tl,T3,T2»

PHYX2.MAC.14

BUG(CHK,DX2FGS,<PHYX2 - FAIL TO GET SENSE BYTES» iPUT OUT BUGCHK
BUG(CHK,DX2HLT,<PHYX2 - DX20 HALTED>,<T1»
BUG(CHK,DX2FUS,<PHYX2 - FAIL TO UPDATE SENSE BYTES»
BUG(CHK,DX2DIE,<PHYX2 - DX20 HALTED>,<T1»
BUG(CHK,DX2IEC,<PHYX2 - ILLEGAL ERROR CLASS CODE>,<T1»
BUG(CHK,DX2MCF,<PHYX2 - DX20 MICROCODE CHECK FAILURE»
BUG(CHK,DX2UPE,<PHYX2 - FAIL TO UPDATE SENSE BYTES DURING INITIALIZATION»
BUG(CHK,DX2IFS,<PHYX2 - ILLEGAL FUNCTION AT START IO>,<Q1»
BUG (CHK,DX2NUD,<PHYX2 - CHANNEL DONE INTERRUPT BUT NO UNIT ACTIVE»
BUG (CHK,DX2NUE,<PHYX2 - NO ACTIVE UDB AND DX20 COMPOSITE ERROR SET>,<T4,Tl»
BUG(CHK,DX2IDM,<PHYX2 - ILLEGAL DATA MODE AT DONE INT>,<T2»
BUG (CHK,DX2NRT,<DX2ERR - IS.NRT SET ON SUCCESSFUL RETRY»
BUG(CHK,DX2RFU,<PHYX2 - ERROR RECOVERY CONFUSED»

APP-26

DIGITAL

BUG(INF,DX2N2S,<PHYX2 - MORE TU7~S THAN TABLE SPACE, EXCESS IGNORED»
BUG(INF,DX2UNA,<PHYX2 - ATTENTION INTERRUPT AND UDB NOT ACTIVE»
BUG(INF,DX2IDX,<PHYX2 - ILLEGAL RETRY BYTE POINTER»
BUG(INF,DX2IRF,<PHYX2 - ILLEGAL FUNCTION DURING RETRY»

PMT.MAC.l

POSTLD.MAC.10

PROKL.MAC.9

PROKS.MAC.30

PROLG0.MAC.8

PROLOG.MAC.52

PSM.MAC.3

SCHED.MAC.10

BUG(HLT,NSKDIS,<DISMISS WHILE NOSKED OR WITH NON-RES TEST ADDRESS»
BUG(HLT,SKDCLl,<CALL TO SCHEDULER WHEN ALREADY IN SGHEDU~ER»
BUG(HLT,SKDCL2,<CALL TO SCHEDULER WHEN ALREADY IN SCHEDULER?)
BUG(HLT,ILOKSK,<OKSKED WHEN NOT NOSKED»

TOPS-20 MO~~TOR
APPENDIX I

BUG(HLT,SKDTRP,<INSTRUCTION TRAP WHILE IN SCHEDULER»
BUG(HLT,PIITRP,<INSTRUCTION TRAP WHILE PI IN PROGRESS OR IN SCHEDULER»
BUG(HLT,PISKED,<ENTERED SCHEDULER WITH PI IN PROGRESS»
BUG(HLT,J~NRUN,<JOB 0 NOT RUN FOR TOO LONG, PROBABLE SWAPPING HANGUP»
BUG(HLT,GLFNF,<GLREM - FORK NOT FOUND»
BUG (HLT,TTDASl, <HLTJB: UNABLE TO DEASSIGN CONTROLLING TERM~NAL»
BUG(HLT,PSISTK,<PSI STORAGE STACK OVERFLOW»
BUG (HLT,JTENQE,<JTENQ WITH BAD NSKED»
BUG(HLT,NOACB,<MENTR - NO MORE AC BLOCKS»
BUG (HLT,OPOPAC,<MRETN - TRIED TO OVER-POP AC STACK»

BUG (CHK,NOINTR,<ITRAP AND PREVIOUS CONTEXT WAS NOINT»
BUG(CHK,NOSKTR,<ITRAP FROM NOSKED CONTEXT»
BUG(CHK,SRQOVF,<SCDRQ-SCHED REQUEST QUEUE OVERFLOW»
BUG(CHK,SUMNRl,<AJBALS-SUMNR INCORRECT»
BUG(CHK,SUMNR2,<SUMNR INCORRECT»
BUG(CHK,FKWSPl,<LOADBS-UNREASONABLE FKWSP>,<Tl,T2,T3»
BUG(CHK,UNBFNF,<UNBLKI - FORK NOT FOUND»
BUG(CHK,FRKNDL,<FORK NOT PROPERLY DELETED»
BUG(CHK,UNPIRX,<UNPIR-NO PSI IN PROGRESS»
BUG(CHK,PSINSK,<PSI FROM NOSKED CONTEXT»
BUG(CHK,TRPSIE,<NO MONITOR FOR TRAPPED FORK»
BUG (CHK, IDFODl,<AT MENTR - INTDF OVERLY DECREMENTED»
BUG(CHK,IDFOD2,<AT MRETN - INTDF OVERLY DECREMENTED»>

SERCOD.MAC.16

APP-27

DIGITAL

SMPRE. MAC. 6

SMPRM~. MAC. 1

SMPRMS. MAC .14

STG.MAC.53

BUG (HLT,NSPUDF,<UNSUPPORTED NErwORK FUNCTION»
BUG (HLT,NOXADR,<EXTENDED ADDRESSING CONFUSION»
BUG(HLT,DRUMP1,<DRMIO - DRUMP ON BUT NO DRUM CODE IN SYSTEM»

BUG(CHK,PI5ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CHANNEL 5»
BUG (CHK,PI6ERR,<UNEXPECTED UNVECTORED INTERRUPT ON CHANNEL 6»

SWPALC. MAC. 35

BUG (HLT,DRMIBT,<DRMASN-BIT TABLE INCONSISTENT»
BUG(HLT,DRMNFR,<DRMAM-CAN'T FIND PAGE WHEN DRMFRE NON-0»
BUG (HLT,ILGDA1,<GDSTX - BAD ADDRESS»
BUG (HLT,ILGDA2,<GDSTX - BAD ADDRESS»
BUG (HLT,ILDRA2,<DRMIAD-ILLEGAL DRUM ADDRESS»
BUG (HLT,DST2SM,<SWPINI-DST TOO SMALL»

BUG(CHK,ILDRA1,<DASDRM-ILLEGAL OR UNASSIGNED DRUM ADDRESS»
BUG (CHK,ASGSWB,<SWPINI-CAN'T ASSIGN BAD ADDRESS»

SYS ERR. MAC. 1

BUG (HLT,SERFRK,<SERINI-CANNOT CREATE SYSERR FORK»

BUG(CHK,SEBUDT,<SEBCPY-UNKNOWN DATA TYPE>,<T1,T4»
BUG(CHK,SEBISS,<SEBCPY-INSUFFICIENT STRING STORAGE IN BLOCK»
BUG (CHK,SERGOF,<SETOFI-CANNOT GTJFN/OPEN SYSERR FILE»

TAPE. MAC. 80

BUG (HLT,MTFCNX,<MTLFCN: FUNCTION CODE TOO LARGE»
BUG (HLT,BADTYP,<BAD LABEL FIELD DESC»

BUG (CHK,BADDIS,<TAPE: INCONSISTENT STATE CODE»
BUG (CHK,CKLBLK,<CKLERR: CLOSE AND ABORT BLOCKED»

TIMER.MAC.6

TTDCDV.MAC.17

BUG(INF,TTYPI2,<SCANNER LOST PI ASSIGNMENT, COULD NOT RESTORE»
BUG(INF,TTYPI1,<SCANNER LOST PI ASSIGNMENT, SUCCESSFULLY RESTORED»

TTDZDV. MAC .154

BUG(HLT,DZCLRB,<UNABLE TO RESET DZ11»

APP-28

TOPS-20 MONITOR
APPENDIX I

DIGITAL

BUG(CHK,DZNENB,<DZSND1 - TRANSMIT NOT ENABLED ON INTERRUPT»
BUG(CHK,DZLINT,<DZ11 LOST INTERRUPT ENABLE>,<T2»
BUG(CHK,DZOVER,<DZ11 SILO OVERRUN>,Tl)

TTFEDV.MAC.9

BUG(CHK,NOFRSP,<ttspst- COULD NOT GET A FREE BLOCK»

BUG(INF,DLDEF,<LOGICAL NAME DEFINE FAILED FOR FE CTY»

TTMCDV. MAC .16

TTNTDV.MAC.7

BUG (CHK, IMPTMB,<NVTXG1: TOO MANY BREAKS OUTSTANDING»

BUG(INF,IMPNEA,<NVT RECEIVED BYTES EXCEEDING ALLOCATION»

TTPTDV. MAC.1

TTYSRV.MAC.43

BUG(HLT,NOCTY,<UNABLE TO ALLOCATE DATA FOR CTY»
BUG (HLT,TTOCN0,<TTSTO - NO BUFFER BUT COUNT NON-0»
BUG(HLT,TTICN0,<TCI - NO BUFFER POINTER BUT COUNT NON-0»
BUG(HLT,TTONOB,<TTY OUTPUT - NO BUFFER BUT COUNT NON-0>,
BUG(HLT,BADTTY,<TRANSFER TO NONEXISTENT TTY CODE»

BUG(CHK,ULKBAD,<UNLOCKING TTY WHEN COUNT IS ZERO>,T2)
BUG(CHK,TTNAC7,<DEALLOCATING INACTIVE LINE>,T2)
BUG(CHK,TTYNTB,<RAN OUT OF TTY BUFFERS»
BUG(CHK,TTYBBO,<TTYSRV-BIG BUFFER OVERFLOW»
BUG(CHK,TTILEC,<TTSND-UNRECOGNIZED ESCAPE CODE>,<2,3»

VERSIO.MAC.184

APP-29

TOPS-20 MONITOR
APPENDIX I

DIGITAL

APP-30

TOPS-20 MONITOR
APPENDIX I

