IAS/RSX-11

I/O Operations Reference Manual

Order No. AA-M176A-TC

RSX-11M Version 4.0
RSX-11M-PLUS Version 2.0
IAS Version 3.1

digital equipment corporation - maynard, massachusetts



First Printing, December 1975
Revised, December 1976
Revised, December 1977

Revised, June 1979
Revised, November 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its

e L2 2 T e 2 oA
alllllalLTu Lulllpalllcoe.

Copyright () 1975, 1976, 1977, 1979, 1981
by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSX
DECnet IAS UNIBUS
DECsystem-10 MASSBUS VAX
DECSYSTEM-20 PDP VMS
DECUS PDT

g?ggi iter RSTS Erngnan

ZK2058



CONTENTS

Page
PREFACE xi
SUMMARY OF TECHNICAL CHANGES xiii
CHAPTER 1 FILE CONTROL SERVICES
1.1 FILE ACCESS METHODS . . . o« o . . . R ]
1.2 FIL TORAGE REGION (FSR) e s e o s & o o s s e o 1=2
1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES e o o o o 1-3
1.3.1 Data Formats for ANSI Magtape . . . . . . . . . 1-4
1.4 BLOCK I/O OPERATIONS . v v & o o & o o o . e o o o 1=5
1.5 RECORD I/0O OPERATIONS . ©«v v 4 & & o o o o . « « o 1-5
1.6 DATA-TRANSFER MODES . . . v & & o o o o . e ¢ o o 1-6
1.6.1 Move Mode . . . . . . & v v v v v v v v o« v v . 1-6
1.6.2 Locate Mode . . . . . v i 4 v v v v v v v v . . 1-6
1.7 MULTIPLE BUFFERING FOR RECORD I/0 . . . . ... . 1-6
1.8 SHARED ACCESS TO FILES v v & v 4 & o o o o o o . . 1-8
1.9 FILE DESCRIPTOR BLOCK (FDB) e o & o s o o o « « 1-10
1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK . 1-10
1.11 KEY TERMS USED THROUGHOUT THIS MANUAL . . . . . 1-10
1.12 SYSTEM CHARACTERISTICS v o v 4 & & o o o o . e« o 1-12
CHAPTER 2 PREPARING FOR I/0
2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO
DEFINITIONS & & 4 4 v ¢ o v o o o o o o o . o o o 2=2
2.2 FILE DESCRIPTOR BLOCK (FDB) e o s o e o o o s e & 2=-3
2.2.1 Assembly-Time FDB Initialization Macros . . . . 2-3
2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FDB) 2-5
2.2.1.2 FDATSA - Initialize File Attribute Section
of - .
2.2.1.3 FDRCSA - Initialize Record Access Section of
FDB . & & & i i i i et e e e e e e e e e . . 2-8
2.2.1.4 FDBKSA - Initialize Block Access Section of
FDB & & i v i i i e e e e e e e e e e e e . 2-10
2.2.1.5 FDOPSA - Initialize File-Open Section of FDB 2-13
2.2.1.6 FDBFSA - Initialize Block Buffer Section of
) 2-17
2.2.2 Run-Time FDB Initialization Macros . . . . . . 2-21
2.2.2.1 Run-Time FDB Macro-Call Exceptions . . . . . 2-21
2.2.2.2 Specifying the FDB Address in Run-Time
Macro Calls . . v v v v 4 4 v v v v s o o . 2-24
2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS 2-25
2.3.1 Specifying Global Symbols in the Source Coding 2-25
2.3.2 Defining FDB Offsets and Bit Values Locally . 2-26
2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER
PROGRAM . . . & ittt ot e e e e e e e e e 2-26
2.4.1 Dataset Descriptor . + . . . v v v v v v o« . . 2-28



CHAPTER

2.4.2 Default Filename Block - NMBLKS$ Macro Call . .
2.4.3 Dynamic Processing of File Specifications . .
2.5 OPTIMIZING FILE ACCESS . . . . . c e e e e e
2.5.1 Initializing the Filename Block As a Function
of OPENS$x . . . . . . e e s = e e e e s

.2 Manually In1t1a1121ng the F11ename Block . . .

INITIALIZING THE FILE STORAGE REGION . . . . . .
1 FSRSZS - Initialize FSR at Assembly Time . . .
2 FINITS - Initialize FSR at Run Time . . . .

INCREASING THE SIZE OF THE FILE STORAGE REGION .
.1 FSR-Extension Procedures for MACRO-11 Programs
.2 FSR-Extension Procedures for FORTRAN Programs

COORDINATING I/0O OPERATIONS .
.1 Event Flags . . « « ¢« « « .
.2 I/0 Status Block . . . + .« &
.3 AST Service Routine . . . .

NDNNDNDNDNNNDNDNDNDNDN
“ o o s o o e o o o o
[oolNeole o Je« BEN BEN BEN I's ) W o) e JE

. .
. e o o
« o o s e o
. e o o

3 FILE-PROCESSING MACRO CALLS
3.1 OPENSX - GENERALIZED OPEN MACRO CALL . . . « « &
3.1.1 Format of Generalized OPENS$x Macro Call . . .
3.1.2 FDB Requirements for Generalized OPEN$x Macro
Call v ¢ ¢ ¢« o o ¢ o o o s o o s e s s s s s
3.2 OPNSSX - OPEN FILE FOR SHARED ACCESS . . . « « &
3.3 OPNTSW - CREATE AND OPEN TEMPORARY FILE . . . .
3.4 OPNTSD - CREATE AND OPEN TEMPORARY FILE AND MARK
FOR DELETION . . . e o o o o o o s e o s s o
3.5 OFIDS$SX - OPEN FILE BY FILE ID . & o o o o o o »
3.6 OFNBSX OPEN FILE BY FILENAME BLOCK . . . « « . =«
3.6.1 Dataset Descriptor and/or Default Filename
Block . . . . . e & e e o o s s e e e o s =
3.6.2 Default filename Block Oonly .« « ¢« ¢ o « o &
3.7 OPEN$ - GENERALIZED OPEN FOR SPECIFYING FILE
ACCESS &+ v o« o o o o o o o o s o o s o o o o o =
3.8 CLOSES - CLOSE SPECIFIED FILE . . . « o « « « &
3.8.1 Format of CLOSES Macro Call . « « « o o o » &
3.9 GETS — READ LOGICAL RECORD . . « o o« o o o o o o
3.9.1 Format of GETS$ Macro Call . . .« . « « ¢ « « =«
3.9.2 FDB Mechanics Relevant to GETS Operations . .
3.9.2.1 GET$ Operations in Move Mode . . . . . . . .
3.9.2.2 GETS$ Operations in Locate Mode . . . . . . .
3.10 GETSR - READ LOGICAL RECORD IN RANDOM MODE . . .
3.11 GETSS - READ LOGICAL RECORD IN SEQUENTIAL MODE .
3.12 PUTS - WRITE LOGICAL RECORD . & & & ¢ o s o o &
3.12.1 Format of PUTS Macro Call . . & o o o o o o &
3.12.2 FDB Mechanics Relevant to PUT$ Operations . .
3.12.2.1 PUTS Operations in Move Mode . . . « + « « &
3.12.2.2 PUTS Operations in Locate Mode . . . . .
3.13 PUTSR - WRITE LOGICAL RECORD IN RANDOM MODE .
3.14 PUTSS - WRITE LOGICAL RECORD IN SEQUENTIAL MODE
3.15 READS - READ VIRTUAL BLOCK + v o « « o o o s o &
3.15.1 Format of READ$ Macro Call . . . . . e s s
3.15.2 FDB Requirements for READS$ Macro Call e e e .
3.16 WRITES - WRITE VIRTUAL BLOCK « ¢« & ¢ « o o o o« o«
3.16.1 Format of WRITES$ Macro Call . . . . e e e e
3.16.2 FDB Requirements for WRITES Macro Call e e e .
3.17 WAITS - WAIT FOR BLOCK I/0O COMPLETION . . . . .
3.17.1 Format of WAITS Macro Call . . . . . « « « o« .
3.18 DELETS — DELETE SPECIFIED FILE . 4« + ¢« o« « o o o«
3.18.1 Format of DELETS$ Macro Call . . . .« + « « + &

iv

Page

2-30
2-33
2-33

2-34
2-35
2-36
2-37
2-39
2-40
2-40
2-41
2-41
2-42
2-43
2-44



CHAPTER 4

4.1
4.2
4.2.1

-9

«2.2

SN N NI S

L] L] . L] .
SO WwWw W

. L] -

- N

o>
.
.
N

[ A A

* o e e 0
.« e
[N

L
=

.

NSNS [=) I WU 0 0]
.
N

.

o A

L[]

=
.

w N -

.
N =
.
-9

>
.

~N
.

4.11
4.12
4.13
4,14
4.15
4.15.1
4.15.2
4.16

CONTENTS

FILE CONTROL ROUTINES

CALLING FILE CONTROL ROUTINES . &« o ¢ ¢ o o o =«
DEFAULT DIRECTORY-STRING ROUTINES . « ¢ « o o &
.RDFDR - Read $SFSR2 Default Directory String

Descriptor . . « « . . . . e e e o o s
.WDFDR - Write New $$FSR2 Default
Directory-String Descriptor . . . « . . « . .
DEFAULT UIC ROUTINES . + &v v & o o o o o o o s &«
.RDFUI - Read Default UIC . . . « ¢ ¢« &« o« + &
.WDFUI - Write Default UIC . . . . « o o o
DEFAULT FILE-PROTECTION WORD nudTL\nS . .
.RDFFP - Read SS$FSR2 Default File Protectlon
Word . o« ¢ ¢« &« o o« o & . . o o o o o o
.WDFFP - Write New $$FSR2 Default
File-Protection Word . . ¢« &« ¢ ¢ o o o« o o o &
FILE OWNER WORD ROUTINES . . . . e o o o o @
-RFOWN - Read $S$FSR2 File Owner Word e e e e .
.WFOWN - Write New $$FSR2 File Owner Word . .
ASCII/BINARY UIC CONVERSION ROUTINES . . o« « « o
.ASCPP - Convert ASCII Directory String to
Equivalent Binary UIC . . . . . . .
.PPASC - Convert UIC to ASCII D1rectory Strlng
FILENAME BLOCK ROUTINES . . . . e s o e o o o
.PARSE -~ Fill in All Filename Informatlon - .
Device and Unit Information . . . . . . . .
Directory Identification Information . . . .
File Name, File Type or Extension, and File
Version Information . . ¢« ¢ ¢« ¢ ¢ ¢ o o o &
Other Filename Block Information . . . . . .
.PRSDV - Fill in Device and Unit Information
Only « « o - & e s o e & s & 8 o s s s s s s
.PRSDI - Fill in Directory Identification
Information ONly +« o v &« & & « o o o o o o o @
.PRSFN - Fill in File name, File Type or
Extension, and File Version Only « ¢« « « + « .
.ASLUN - Assign Logical Unit Number . . . . .
DIRECTORY ENTRY ROUTINES . « & ¢ ¢ o o o o o o o
.FIND - Locate Directory Entry . . . « . « . .
.ENTER - Insert Directory Entry . . . . « . .
.REMOV - Delete Directory Entry . . . « « « .
FILENAME BLOCK ROUTINES . &+ &« & &« o « o« o o o =
.GTDIR - Insert Directory Information in
Filename BloCk « & & v ¢ ¢ ¢ o o« o « « o o « &
.GTDID - Insert Default Directory Information
in Filename BloCk .+ ¢ & ¢ o o o« o o o o o o »
FILE POINTER ROUTINES . . . « « & . o e .
.POINT - Position File to Spec1f1ed Byte o o .
.POSRC - Position File to Specified Record . .
.MARK - Save Positional Context of File . . .
-POSIT - Return Positional Information fo
Specified Record . « + .+ « . . o s e e e e .
QUEUE I/0 FUNCTION ROUTINE (. XQIO) o o o @
RENAME FILE ROUTINE (.RENAM) . « « o« &« « o o + &
FILE EXTENSION ROUTINE (.EXTND) e o o o o o o o
FILE TRUNCATION ROUTINE (.TRNCL) . ¢ ¢ o« « « o &«
FILE DELETION ROUTINES . . . . . e o o e o o o
.MRKDL - Mark Temporary File for Deletion . .
.DLFNB - Delete File by Filename Block . . . .
DEVICE CONTROL ROUTINE (.CTRL) &« & o« o o o o o &

~

e o o o o

Page

|
N =

|
N

nhhnhnbob-? = b

|
DD W

IS
|
v

Lo S S o
|
Noaoon

g )
| [

J
O WO I

1=y
I
—

4-17
4-17
4-18
4-19
4-19

4-20
4-20
4-20
4-21
4-22
4-22
4-23
4-24
4-25



CONTENTS
Page
CHAPTER 5 FILE STRUCTURES
5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-11) . . . . 5-1
5.1.1 User File Structure . . + « =« o « « o o o o o o 5-1
5.1.2 Directory Files . . . « « o « & & e s s s s o 5-2
5.1.3 Index File o v ¢« ¢« o o o o o o o o o o o o o o o 52
5.1.4 File Header Block . . . e e + e o s o« s s & « 5=3
5.2 MAGNETIC TAPE FILE PROCESSING e e s s s e« s o & o 5-4
5.2.1 Access to Magnetic Tape Volumes . . . . « . . . 5-4
5.2.2 Rewinding Volume Sets . . . « « ¢ ¢ o ¢« ¢« ¢ &« o« 5-5
5.2.3 Positioning to the Next File Position . . . . . 5-5
5.2.4 Single-File Operations . . . ¢« « ¢ « « « « « « & 5-5
5.2.5 Multiple-File Operations . « « « « o« « « « « « « 5-6
5.2.6 Using «CTRL ¢« &+ & & « & = o s o o s o o o o o « 5-6
5.2.7 Examples of Magnetic Tape Processing . . . . . . 5-7
5.2.7.1 Examples of OPENSW to Create a New File . . . 5-7
5.2.7.2 Examples of OPENSR to Read a File . . . . . . 5-8
5.2.7.3 Examples of CLOSES . . . . . . . . . . 5-8
5.2.7.4 Combined Examples of OPENS and CLOSE$ for
Magnetic Tape « + + o « o o o o« o « o o« o« o« o« 5-9
CHAPTER 6 COMMAND LINE PROCESSING
6.1 GET COMMAND LINE (GCML) e e e e o o 4 s e s e s . 62
6.1.1 GCMLBS - Allocate and Initialize GCML Control
Block . . . . . e e« + s e o e s o o o s o 6-3
6.1.2 GCMLDS - Deflne GCML Control Block Offsets and
Bit Values . . . e o o o o o e e s s s e s o s 6-6
6.1.3 GCML Run-Time Macro Calls . &+ v ¢« o o o o o« o« « 6-9
5§.1.3.1 GCMLS - Get Command Line . . . . . . . 6-10
6.1.3.2 RCMLS - Reset Indirect Command F11e Scan . . 6=12
6.1.3.3 CCML$ - Close Current Command File . . . . . 6-12
6.1.4 GCML Usage Considerations . . . . .« .« « « . . 6-13
6.2 COMMAND STRING INTERPRETER (CSI) . . . . 6-14
6.2.1 CSI$ - Define CSI Control Block Offsets and B1t
Values . . e e e e + o« o« 65-15
6.2.2 CSI Control Block Offset and Blt Value
Definitions . ¢« & ¢ ¢ ¢« o o o o« o o o o o o« o 6-15
6.2.3 CSI Run-Time Macro Calls . « « o« o « « « « o« » 6-19
6.2.3.1 CSIS1 - Command Syntax Analyzer . . . . . . 6-19
6.2.3.2 CSI$2 - Command Semantic Parser . . . . . . 6-20
6.2.4 CSI Switch Definition Macro Calls . e + o 6=22
6.2.4.1 CSISSW - Create Switch Descriptor Table Entry 6-23
6.2.4.2 CSISSV - Create Switch Value Descriptor Table
Entry . . . . « e o o o . . « . 6-28
6.2.4.3 CSISND - Deflne End of Descrlptor Table . « 6-30
CHAPTER 7 THE TABLE-DRIVEN PARSER (TPARS)
7.1 CODING TPARS SOURCE PROGRAMS . . . . e e e e o 71-1
7.1.1 TPARS Macros: ISTATS, STATES, and TRAN$ e o e o 12
7.1.1.1 Initializing the State Table: the ISTATS$ Macro 7-2
7.1.1.2 Defining a Syntax Element: the STATE$ Macro . 7-3
7.1.1.3 Defining a Transition: the $TRAN Macro . . . . 7-3
7.1.2 Types of Command Line Syntax Elements . . . . . 7-4
7.1.3 Action Routines and Built-in Variables . . . . . 7-5
7.1.3.1 TPARS Built-in Variables . . . . « ¢« ¢« ¢ « « « 7-5
7.1.3.2 Calling Action Routines . . . . . . « ¢« « + . 7-6
7.1.3.3 Using Action Routines to Reject a
TransitioN « « ¢ ¢ ¢ ¢ ¢ o o o « o s o o o o o 1-6
7.1.3.4 Optional Debug Routine for RSX-11l Users . . . 7-6

vi



~N N
. o o * o e« o o
NN

NNNNNNNNNN
L]
AU WD NDDN

~J

.6

CHAPTER

e

o 00
“ e
w N+

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

L[] . . . . L]
N L

2R X2 K2 RN NANA]

U1 W W N

1=

N - =W N Ll

N =

w

.
—

.
—

CONTENTS

TPARS Subexpressions . . « ¢ o o o « o o o«
GENERAL CODING CONSIDERATIONS . . . . « .« &
Suggested Arrangement of Syntax Types in a
Table . . . . . . e e e e e e e e e e .
Ignoring Blanks and Tabs in a Command Line
Entering Special Characters . . . . . . .
Recognition of Keywords . . « « « « « « &
PSECTS GENERATED BY TPARS MACROS . . . . . .
INVOKING TPARS . o & o o o o o o o o o o o o
Register Usage and Calling Conventions . .
Using the Options Word . . . « « ¢« ¢« « . .
HOW TO GENERATE A PARSER PROGRAM USING TPARS
PROGRAMMING EXAMPLES . . . ¢ ¢ ¢ ¢ o o o o &
Parsing a UFD Command Line . . . . . . . .
How to Use Subexpressions and Reject
Transitions . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o W

Using Subexpressions to Parse Complex Grammars

SPOOLING
PRINTS MACRO CALL « + & o o o o o o o o o &

«PRINT SUBROUTINE . . ¢« ¢ o« o ¢ ¢ o o « o« &
ERROR HANDLING . ¢ ¢ o« ¢ o o o o o o o o s «

FILE DESCRIPTOR BLOCK

FILENAME BLOCK

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES
SAMPLE PROGRAMS

INDEX FILE FORMAT

BOOTSTRAP BLOCK . ¢ ¢ o o o o o ¢ o o o o
HOME BLOCK . ¢ ¢ o « ¢ o o o o o ¢ o o o« o o
INDEX FILE BIT MAP . ¢ ¢ ¢ o o ¢ o o o o o o
PREDEFINED FILE HEADER BLOCK c e o o o o o

FILE HEADER BLOCK FORMAT

HEADER AREA . . . . .
IDENTIFICATION AREA . .
MAP AREA . . . . . . -

o e o

o e e
.
.
.
.
.
.

o e e
.

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

VOLUME AND FILE LABELS . +« ¢ ¢ o o o o o o o
Volume Label Format . ¢« « « o o o o « o &
Contents of Owner Identification Field .
User Volume Labels . ¢« ¢« ¢« ¢« ¢ ¢ o o o o &
File Header Labels « +. ¢« ¢« ¢« o o o o o o« o
File Identifier Processing by Files-11 .
End-of-Volume Labels . . ¢« ¢« ¢ ¢ ¢ o o « &
File Trailer Labels . . ¢ ¢« &« ¢« ¢ o o o =

vii

~
|
0 ~J

I NN
U
U & NN OWLW0 W

NN NN
|
I e

-
1

A

o

C)C)OG")C)OC)Q
NN WWN -



.
(=)

EBWNDNNDDNDND
o« o o o
o wN -

¢ o o o o o

« o @
e o o o
> W -

[aNa NN NARANA NN NN NARANANARA]
~Noaaaa!m

APPENDIX H

APPENDIX I

APPENDIX

i

APPENDIX K

INDEX

FIGURE

" e
N =

K
K

||

~NoasaaoaouvioE =+
|
HWMNHDHENDHWND -

T
N

User File Labels . . . . .
FILE STRUCTURES . . .
Single File Single Volume
Single File Multivolume .
Multifile Single Volume .
Multifile Multivolume . .
END-OF-TAPE HANDLING . . . .
ANSI MAGNETIC TAPE FILE HEADER
COMPATIBLE) e o o o o o o o
THE MAGNETIC TAPE CONTROL TASK
UNLABELED TAPE . ¢« &« &« « « o &
Tape Positioning . . . . . .
Specifying File Attributes .
Translation . . « « « « &

® & o o o o o

e ¢ o o o o o

* o o o o O o o o o o o

e s o o o e e o s 0 2 o

e e & & 0 .~ o o o o o o

Example of EBCDIC Translat1on Tables

EXAMPLE USING AN INDIRECT COMMAND FILE

TAPE « ¢ o ¢ ¢ ¢ o o o o o o @

STATISTICS BLOCK

ERROR CODES

RSX-11M/M-PLUS FCS LIBRARY SYSGEN OPTIONS

FCS LIBRARY OPTIONS . . . . .
JFCTYP & ¢ ¢ ¢ ¢« ¢ o o o o o &«

FIGURES

File-Access Operation . . . .
Record I/O Operations . .

.

e o s e o o o (Yo o o s o o o

.

e o o o o o o

Single Buffering Versus Mu1t1p1e Bufferlng .

Directory Structure for Single-User Volumes
Directory Structure for Multiuser Volumes

Data Flow During Command Line Processing .

Format of Switch Descriptor Table Entry
Format of Switch Value Descriptor Table Entry

.

Processing Steps Required to Generate a Parser

Program Using TPARS . . . .

Flow of Control When TPARS Is Called from an

Executing User Program . . .

File Descriptor Block Format . . . .

Filename Block Format . . .
ANSI Filename Block Format . .

ANSI Magnetic Tape File Header Block (FCS

Compatible) . « &« ¢ o« « o « &
Statistics Block Format . . .

viii

*

*

Page

(2] OOOC{)OC)C’)

|
o O Y O 00 00 0O 00 00 ™

e De o o o o o @
Q
1
[}
~1

Index-~1

« o o o
AU
U

[}
O NN WNJ W

[e2 W)
UL
NN



Www e W N
L B L I |
W =

[ N T T T Y N B |
N D W N R

RRQOQOQ™EQOQ

CONTENTS

Page
TABLES
Shared File ACCESS « v &« « o o « o o o o o o o o o« 1-9
Macro Calls Generating FDB Information . . . . . . 2-2
File Access Privileges Resulting from OPENSX
Macro €Call . +v o o o o « o o o s o o o o o o o o o 3-3
R2 Control Bits for .EXTND Routine . . . . . . . 4-23

FDB Offset Definitions . o ¢ « o o o o ¢ o o o o o
Filename Block Offset Definitions . . . . . « .« .
Filename Block Status Word (N.STAT) .« « « ¢« o « &
Filename Block Offset Definitions for ANSI

Magnetic Tape .« o o &+ o o o o o o o o o
Summary of I/O-Related System Directives
Home Block Format . « « o o o o o o &
File Header Block . « & &« o o o o o o«
Volume Label Format . « ¢ ¢ ¢ o o o &
File Header Label (HDR1l) . « « ¢ ¢ o o«
File Header Format (HDR2) e o o o e o o o o
File-Header Label (HDR3) ¢ &« « o o o o s o o o o o
FCS Library Descriptions . . . « ¢« ¢ ¢« ¢ &« o o o &
FPCTYP VAlUECS v ¢ o o o o s o o o o s s o o o o &«

CUU|TJD>'
wn W

WNOO?O"QMOW
NHHEAAT S - WH B

ix






PREFACE

MANUAL OBJECTIVES

The purpose of this manual is to familiarize the users of an RSX-11M,
RSX-11M-PLUS, or IAS operating system with the File Control Services
(FCS) facility provided with the system.

INTENDED AUDIENCE

Since the file control services described herein pertain to both
MACRO-11 and FORTRAN programs, the reader is assumed to be familiar
with the manuals describing these program development tools. Also,
since the development of programs in an RSX-11 or IAS environment
necessarily involves the use of the Task Builder, the reader 1is also
assumed to be familiar with this system program.

STRUCTURE OF THE DOCUMENT

Chapter 1 briefly describes the FCS features available for IAS/RSX-11
users and defines some of the terminology that 1is pertinent to
discussions throughout the manual. This chapter is vital to
understanding the balance of the manual.

Chapter 2, perhaps the most important in the manual, describes the
actions you must take at assembly time to prepare adequately for all
intended file I/O processing through FCS. This chapter describes the
data structures and working storage areas that you must define within
a particular program in order to use any of the file control services
provided by the system. Unless you are thoroughly familiar with the
content of this chapter, you are advised to defer a reading of
subsequent chapters, since all that follows 1is dependent upon a
complete working understanding of the material in Chapter 2.

Chapter 3 describes the run-time macro calls that allow you to
manipulate files and to perform I/O operations.

Chapter 4 describes a set of run-time routines used to perform
functions related to controlling files, such as reading and writing
directory entries, renaming or extending files, and so forth.

Chapter 5 describes the structure of files supported by the IAS and
RSX-11 systems. In this context, the structure of files for disks,
DECtapes, and magnetic tapes are covered.

Chapter 6 describes two collections of object library routines called
the Get Command Line (GCML) routine and the Command String Interpreter
(CSI). These routines may be linked with the wuser task to perform
operations associated with the dynamic input of command lines. Such
input consists of file specifications that identify and control the
files to be processed by the user program.

Chapter 7 describes the Table-Driven Parser (TPARS), which provides

Xi



PREFACE

you with the means to define and parse command lines in a unique
user-designed syntax.

Chapter 8 describes the queuing of files for printing. This facility
is available at both the MACRO and subroutine levels.

Finally, a number of appendixes are provided that supply detailed
information of further interest. Appendix A and Appendix B outline in
detail the File Descriptor Block (FDB) and the filename block,
respectively, two structures forming a significant part of the
descriptive material in Chapter 2. Appendix C summarizes a number of
I/0O-related system directives that form a part of the total resource
management capabilities of the RSX-11 or the IAS Executive. Through
simplified sample programs, Appendix D illustrates the use of the
macro calls that create and initialize the FDB. These sample programs
also include some of the macro calls that are used for processing
files.

Appendix E illustrates the structure of the index file of a Files-11
volume, while Appendix F describes in detail the format and content of
a file header block. The format and content of magnetic tape labels
are similarly described in Appendix G. The format and content of the
statistics block are described in Appendix H.

The error codes returned by the system are listed in Appendix I, and
field-size symbols are listed in Appendix J.

Appendix K lists RSX-11M/M-PLUS FCS library SYSGEN options, including
a brief description of each.

ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in either the RSX-11M or RSX-11M-PLUS Information
Directory and Index. The information directories define the intended
readership of each manual in the appropriate set and provide a brief
synopsis of each manual's contents.

CONVENTIONS USED IN THIS DOCUMENT

Unless otherwise noted, the term "RSX-11" refers to both RSX-11M and
RSX-11M-PLUS.

xii



SUMMARY OF TECHNICAL CHANGES

This revision of the IAS/RSX I/0 Operations Reference Manual contains
changes and additions relative to the following:

1.

=3
.

w

New FCS functions:

CLOSES - Truncates the file by default
REWIND - .POINT and .CTRL clear EOF condition

PUT$ - Magtape enhancement

ANSI magtape level 3 compliance (See Appendix G):

An

The magnetic tape ACP now supports the ANSI header labels.

The magnetic tape ACP now supports l7-character file names
that include ANSI "a" characters.

overlayed FCS resident library (FCSRES).

Support for unlabeled tape (See Appendix G).

The

h

ollowing changes to CSI1 and CSI2 (See Chapter 6):

The file name and extension may be replaced by a quoted
string.

The device name may be logical queue name (PRINT:, BATCH:,
etc.).

The file name may contain any combination of wildcards
(A*BRC* ,T*) .,

Quotes may not be used as switch values without quoting
them.

The version number is not completely validated.

The directory specification is validated by rules similar
to those used in VMS.

Longword number conversion is now supported, resulting in
two words of number stored when two words are requested.

Big buffer support (See Chapter 1).

Multibuffering (See Chapter 1).

xiii






CHAPTER 1

FILE CONTROL SERVICES

IAS and RSX-11 File Control Services (FCS) enable you to perform
record-oriented and block~-oriented I/0 operations, and to perform
additional functions required for file control, such as open, close,
wait, and delete operations. To invoke FCS functions, you issue macro
calls to specify desired file control operations. The FCS macros are
called at assembly time to generate code for specified functions and
operations. The macro calls provide the system-level, file control
primitives with the necessary parameters to perform the file access
operations that you request (see Figure 1-1).

FCS is basically a set of routines that are 1linked with the user
program at task-build time from a system global area (IAS) or resident
system library (RSX-11), or a system object module 1library. These
routines, consisting of pure, position-independent code, provide an
interface to the file system, enabling you to read and write files on
file-structured devices and to process files 1in terms of logical
records.

Logical records are regarded by your program as data units that are
structured in accordance with application requirements, rather than as
physical blocks of data on a particular storage medium.

FCS provides the capability to write a collection of data (consisting
of distinct logical records) to a file in a way that enables the data
to be retrieved at will., You can retrieve data from the file without
having to know the exact format in which it was written to the file.

FCS, therefore, is transparent to the user, so that records can be
read or written in logical units that are consistent with particular
application requirements.

| USER-ISSUED MACRO CALL |

!

[ FILE CONTROL SERVICES |

r FILE CONTROL PRIMITIVES J

!

PERIPHERAL DEVICE HARDWARE
~ {e.g., disk, VTO5)

2K-290-81

Figure 1-1 File-Access Operation

1-1



FCS provides an extensive set of macros to simplify your interface to
the system's 1I/0 facilities. 1In addition to generating calls to FCS
subroutines, these macros create and maintain certain data structures
that are required when performing any file 1I/0 operations. The
required data structures include the following:

1. A File Descriptor Block (FDB) that contains information
necessary at execution time for processing the file.

2. A dataset descriptor that is accessed by FCS to obtain ASCII
file name information required when opening a specified file.

3. A default filename block that is accessed by FCS to obtain
default file name information required when opening a
specified file. This data structure is accessed when
complete file information 1is not specified in the dataset
descriptor.

4. A file storage region (FSR) that is used by FCS for working
storage.

The FDB is described in detail in Appendix A and Appendix B. The
dataset descriptor and the default filename block are described in
detail in Section 2.4. The FSR is described in Section 1.2.

1.1 FILE ACCESS METHODS

IAS and RSX-11 support both sequential and random access to data in
files on sequential access devices (such as magnetic tapes and card
readers) and random access devices (such as disks). The sequential
access method 1is device independent; that is, sequential access can
be used for both record-oriented and random access devices (for
example, card reader and disk, respectively). You can use the random
access method only for random access devices.

1.2 FILE STORAGE REGION (FSR)

The file storage region (FSR) is an area allocated in your program as
working storage for performing record 1I/0 operations (see Section
1.5). The FSR consists of two program sections that are always
contiguous to each other. These program sections exist for the
following purposes:

$SFSR1 - This area of the FSR contains the block buffers and the
block buffer headers for record I/0 processing. You
determine the size of this area at assembly time by
issuing the FSRSZ$ macro call (see Section 2.6.1). The
number of block buffers and associated headers is based
on the number of files that you intend to open
simultaneously for record I/0 operations.

$SFSR2 - This area of the FSR contains impure data that is used
and maintained by FCS when performing both record and
block I/O operations. Portions of this area are
initialized at task-build time, whereas other portions
are maintained by FCS.



FILE CONTROL SERVICES

The size of the FSR can be changed, if desired, at task-build time.

Section 2.7 presents the procedures that provide you with this
flexibility.

The data flow during record I/O operations is depicted in Figure 1-2.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The
deblocking of records during input is accomplished in the FSR block
buffer, and the blocking of records is similarly accomplished 1in the
FSR block buffer during output. Note also that FCS serves as your
interface to the FSR-block-buffer pool. All record I/0 operations,
which are initiated through GET$ and PUT$ macro calls, are totally

-Patal

synchronized by FCS unless multibuffering is in use.

Record I/O operations are described in detail in Section 1.5.

BLOCK
BUFFER
POOL

™ e
o m——

7/ k7

BUFFER

/C;;;;;/;srsn1 //27
v, BLOCK
BUFFER
USER
DEVICE 4 Ao FCS RECORD
BUFFER

$$FSR1

$$FSR2
IMPURE DATA

ZK-291-81

Figure 1-2 Record I/0 Operations

1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data is transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one
or more logical records created by your program. In FCS terms, a
virtual block in a file consists of 512(decimal) bytes for random
access devices. The size of the logical records in the virtual blocks

is under the control of the user program that originally wrote the
records.

When creating a new file, your program can specify that the records in
the file need not all be the same size. Such records are known as

1-3



variable-length records. Conversely, if your program indicates that
all records in the new file will be equal in size, the records are
known as fixed length.

There are two types of variable-length records: sequenced and
nonsequenced. Both must be word aligned. Sequenced variable-length
records are preceded by a 2-word record header. The first word
contains the 1length of the record, and the second word contains the
value of the sequence number:

16 16 D)

Byte Count Sequence Number n-2 bytes of data
))
(

Nonsequenced variable-length records are preceded by a single-word
record header containing the length of the record:

16 )
o

Byte Count n bytes of data
)
(«

Both fixed- and variable-length records are aligned on a word
boundary. Any extra byte that results from an odd-length record is
simply ignored. (The extra byte is not necessarily a 0 byte.)

Virtual blocks and logical records within a file are numbered
sequentially, each starting at 1. A virtual block number is a file
relative value, whereas a logical block number is a volume relative
value, ordinarily, records may cross block boundaries. This means
that the beginning of a record can fill out the end of a block, while
the rest of the record occupies the beginning of the next block.

1.3.1 Data Formats for ANSI Magtape

You can use both fixed- and variable-length records on magtape; their
format conforms to the ANSI standard.

Dn magtape, a virtual block corresponds ‘to: a physical " xec

default 1length of a block is 512 bytes. Its length can be changed to
any value greater than 8 bytes (14 bytes for a write function) and up
to 2048 bytes with the use of the FDBF$ macro (see Section 2.2.1.6).
Records are not allowed to cross block boundaries. Ay

Fixed-length records are packed into a block with no control
information and no padding for alignment. The block isfgu e ted ®so
that it ends at the word boundary following the end of the last record
that will fit in the block buffer.

Variable-length . records are preceded by a 4-byte .count. . fieldqgs
expressed in decimal in ASCII characters. The count includes the
length of the record and the 4-byte count field. After the last
record in a block (if there is any space left in the block), a caret
character (""", ASCII code 136), which appears where the next byte
count should be, signals the end of data in that block.



FILE CONTROL SERVICES

1.4 BLOCK I/0 OPERATIONS

The READS and WRITES macro calls (see Sections 3.15 and 3.16,
respectively) allow the user to read and write virtual blocks of data
from and to a file without regard to logical records within the file.
Block I/0 operations provide an efficient means of processing file
data, since such operations do not involve the blocking and deblocking
of records within the file. Also, in block I/O operations, you can
read or write files in an asynchronous manner; that is, control may
be returned to your program before the requested I/O operation is
completed.

When block I/0 is used, the number of the wvirtual block to be
processed is specified as a parameter in the appropriate READS$/WRITES
macro call; the virtual blocks so specified are processed directly in
a reserved buffer in user memory space. READ$ and WRITES can be used
only on block-structured devices.

As implied above, you are responsible for synchronizing all block 1I/0
operations. Such asynchronous operations can be coordinated through
an event flag (see Section 2.8.1) specified in the READS/WRITES macro
call, The system uses the event flag to signal the completion of a
specified block I/0 transfer, enabling you to coordinate those block
I/0 operations that are dependent on each other.

1.5 RECORD I/O OPERATIONS

The GET$ and PUT$ macro calls (see Sections 3.9 and 3.12,
respectively) are provided for processing individual user records in
files. Using the FSR block buffers (see Section 1.2), the GET$ and
PUT$ routines perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing your program to access
logical records.

Sequential access mode I/0 operations can be performed for both fixed-
and variable-length records. Random access mode I/0 operations can be
performed only for fixed-length records. Your program accesses
records randomly by specifying a record number. This number
represents the position of the desired record within the
file -- viewing the file as an array of fixed-sized records, with the
number 1 representing the first record physically present in the file
and n the last. Successive GET$ or PUT$ operations in random access
mode can access records anywhere within the file. To do so, your
program need only modify the record number specified as part of the
random record operation. After each such random operation, FCS
increments the record number used in the operation. If your program
does not again modify this number prior to 1issuing another record
operation, the record actually accessed is the next sequential record
in the file.

In contrast to block I/0 operations, all record I/O operations are
synchronous; that is, control is returned to your program only after
the requested I/0 operation is completed.

Because GET$/PUT$ operations process logical records within a wvirtual
block, only a limited number of GET$ or PUTS$ operations result in an



FILE CONTROL SERVICES

actual I/0 transfer (for example, when the end of a data block is
encountered). Therefore, all GETS$/PUTS I/0 requests do not
necessarily involve an actual physical transfer of data.

1.6 DATA-TRANSFER MODES

When record I/0 is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into
the FSR from a file:

1. In move mode, by specifying that individual records are to be
moved from the FSR block buffer to a user-defined record
buffer (see Figure 1-2)

2. In locate mode, by referencing a location in the File
Descriptor Block (see Section 1.9) that contains a pointer to
the desired record within the FSR block buffer

1.6.1 Move Mode

Move mode requires that data be moved between the FSR block buffer and
a user-defined record buffer. For input, data is first read into the
FSR block buffer from a peripheral device and then moved to your
record buffer for processing. For output, your program first builds a
record in the user record buffer; FCS then moves the record to the
FSR block buffer, from which it is written to a peripheral device when
the entire block is filled.

Move mode simulates the reading of a record directly into your record
buffer, thereby making the blocking and deblocking of records
transparent to you.

1.6.2 Locate Mode

Locate mode enables your to access records directly in the FSR block
buffer. Consequently, there is normally no need to transfer data from
the FSR block buffer to your record buffer. To access records
directly 1in the FSR block buffer, you refer to locations in the File
Descriptor Block (see Section 1.9) that contain values defining the
length and the address of the desired record within the FSR block
buffer. These values are present in the FDB as a result of FCS macro
calls that you issued.

Program overhead is reduced in 1locate mode, since records can be
processed directly within the FSR block buffer. Moving data to the
user record buffer in locate mode 1is required only when the last
record of a virtual block crosses block boundaries.

1.7 MULTIPLE BUFFERING FOR RECORD I/0

By supporting multiple buffers for record I/0, FCS provides the
capability for users who select multibuffered FCS (see Appendix K) to
read data into buffers in anticipation of user program requirements,



FILE CONTROL SERVICES

and to write the contents of buffers while the wuser program is
building records for output. You can thus overlap the internal
processing of data with file I/O operations, as illustrated in Figure
1-3.

When read-ahead multiple buffering is used, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, you can use any file access
method with full benefit.

When multiple buffering is used, you must allocate sufficient space in
the FSR for the total number of block buffers in use at any given
time. The FSRSZS$ macro call (see Section 2.6.1) is used to accomplish
the allocation of space for FSR block buffers.

Time -

Single process record write record process record write record coe

Buffer

Multipie process record write record process record write record

Buffer process record write record process record °°°
ZK-292-81

Figure 1-3 Single Buffering Versus Multiple Buffering

Multiple buffering can improve performance for I/O-bound tasks wunder
certain circumstances.

For example, consider an I/0 bound task running as the dedicated or
highest priority application on a system. For such a task, multiple
buffering can decrease execution time by enabling overlap of I/0 and
task execution. If the task uses 1large records or operates on
clusters of records, big buffering is also advantageous. This assumes
that it 1is reasonable to use more task address space and physical
memory for increased buffer space, and more pool for the increased
number of outstanding I/0 packets.

However, if other tasks run at the same priority as that of the
application task described above, then an overlap of I/0 and task
execution is already achieved among these tasks without multiple
buffering. In this case, multiple buffering would use up address
space and pool without improving execution speed. If wvirtual an
physical address space is available, big buffering would improve
performance.

Big buffering reduces the number of disk accesses by allowing
multiblock input and output. Normally, the disk accesses for GETS or
PUT$ operations are performed one sector at a time. Using FCS big
buffers allows you to read or write a specified number of sectors in a
single operation.



FILE CONTROL SERVICES

To use big buffers, you must select the buffer size and specify that
buffer size in the parameter lists for each occurrence of both the
FSRSZ$ macro and the FDBDF$ macro in your program.

You should choose a buffer size that is a multiple of 512(decimal)
bytes, the size of one disk block. Since the default amount allocated
by a file extend is five blocks and disks often contain many 5-block
files or parts of files, a buffer size of five blocks is generally a
good choice. Larger amounts may increase performance, but note that
you are trading large amounts of memory for speed.

You must reserve the buffer space in your program and you must make
the buffer size known to the FDB. The FSRSZ$ macro allows you to
specify the total buffer space needed. Specify 512(decimal) bytes for
each normal disk file, plus the buffer size that you have selected for
each big buffered file. For example, assume that a program has three
files: one normal file (512-byte buffer); one file with a big buffer
size of three blocks; and one file with a big buffer size of five
blocks. The following call to the FSRSZ$ macro reserves the space
properly:

FSRSZ$ 3,<<1+3+5>*512.>

In the FDB of each file that has a big buffer, you must override the
default buffer size, using either the FDBF$A macro or the FDBFS$R

macreo. For a file with five bleocks as 2 big buffer, the assembly-time

macro call is:
FDBFSA <5*512.>

On RSX-11M-PLUS systems, the SYSLIB provided as the default 1library
contains all the proper FCS modules for big buffer support. RSX-11M

P~ P IR L S ARTOAT TR L. Al o e 3T o
USers musSc 1ink o ANoLip Of ctnese modauires,

1.8 SHARED ACCESS TO FILES

Files-11 permits shared access to files according to established
conventions., You can issue two macro calls, among several available
in FCS for opening files, to invoke these conventions. The OPNSS$x
macro call (see Section 3.2) is used specifically to open a file for
shared access. The OPENS$x macro call (see Section 3.1), on the other
hand, 1invokes generalized open functions that have shared-access
implications only in relation to other I/0 requests then issued. Both
macro calls take an alphabetic suffix that specifies the type of
operation being requested for the file, as follows:

R - Read existing file.

W - Write (create) a new file.

M - Modify existing file without extending its length.

U - Update existing file and extend its length, if necessary.
A - Append data to end of existing file.

The suffix R applies to the reading of a file, whereas the suffixes W,
M, U, and A all apply to the writing of a file. These macro calls and
the shared access conditions that they invoke are summarized below.

1-8



FILE CONTROL SERVICES

You can use the OPNSS$x and OPENS$xX macro calls as follows for shared
access to files:

1. When the OPNSSR macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of one
or more concurrent write access requests to the file. (The
OPNSSR macro call permits concurrent write accesses to the
file while it 1is being read.) Subsequent write access
requests for this same file are honored. Thus, several
active read access requests and one or more write access
requests may be present for the same file. However, multiple
tasks simultaneously accessing the file for write operations
are subject to certain restrictions, as detailed in point 2.

2. While FCS allows concurrent write access requests through the
use of the OPNSSW, OPNS$SM, OPNSSU, and OPNS$A macro,
synchronizing access to the file is the responsibility of the
user tasks themselves. To avoid the retrieval or storage of
inconsistent data, each such task must implement and use some
user-defined mechanism that ensures that the file is accessed
in a serial fashion.

3. When the OPENSR macro call is issued, read access to the file
is granted, provided that no write access requests for that
file are active. (The OPENSR macro call does not permit
concurrent write access to the file while it is being read.)

Note from the above that readers of a shared file should be aware that
the file may vield inconsistent data from request to request if that
file is also being written.

Shared access during reading does not necessarily mean that the access
requests are all from separate tasks. A file could also be shared by
a single task that has opened the file on several different 1logical
unit numbers.

Table 1-1 shows the circumstances under which Files-11 permits a
second file access when the file is opened for shared access.

Table 1-1
Shared File Access
First Access
Second Access
Read Shared read Write Shared write

Read Yes Yes No No
Shared

Read Yes Yes Yes Yes
Write No Yes No No
Shared

Write No Yes No Yes

1-9



FILE CONTROL SERVICES

1.9 FILE DESCRIPTOR BLOCK (FDB)

The File Descriptor Block (FDB) contains information used by FCS in
opening and processing files. One FDB is required for each file that
is to be opened simultaneously by your program. You initialize some
portions of the FDB with assembly-time or run-time macro calls, and
FCS maintains other portions. Each FDB has five sections that contain
user- or system-initialized information:

e File attribute section

e Record or block access section

e File open section

e Block Buffer Section

e Filename block portion of the FDB

The information stored in the FDB depends upon the characteristics of
the file to be processed. The FDB and the macro calls that cause
values to be stored in this structure are described in detail in
Section 2.2. Appendix A describes in detail the format and the
content of the FDB.

1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK

Normally, either a dataset descriptor or a default filename block is
specified for each file that you intend to open. These data
structures provide FCS with the file specifications required for
opening a file. Although either one or the other is usually defined,
both can be specified for the same file. The dataset descriptor and
the default filename block are summarized below and described in
detail in Sections 2.4.1 and 2.4.2, respectively.

When a file is being opened using information already present in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by FCS for required file information. This
method of file access, which is termed "opening a file by file ID," is
an efficient means of opening files. Section 2.5 describes this
process in detail.

1.11 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed below are terms used throughout this manual that have specific
meanings in the context of FCS operations.

FILE DESCRIPTOR BLOCK (FDB)

The tabular data structure that provides FCS with information
needed to perform I/0 operations on a file. The space for this
data structure is allocated in your program by issuing the FDBDFS$
macro call (see Section 2.2.1.1). Each file to be opened
simultaneously by your program must have an associated FDB.
Portions of the FDB are user defined and others are maintained by
FCS. Assembly-time or run-time macro calls are provided for you
in order to initialize the FDB. The format and content of the
FDB are detailed in Appendix A.



FILE CONTROL SERVICES

FILENAME BLOCK

The portion of the FDB that contains the various elements of a
file specification (that 1is, directory, file name, file type,
file version number, device, and unit) for wuse by the FCS
file-processing routines, Initially, as a file is opened, FCS
fills in the filename block with user-specified information taken
from the dataset descriptor and/or the default filename block
(see below). The methods of creating file specifications for
initializing the filename block are described in detail in
Section 2.4; the format and content of the filename block itself
are described in Appendix B.

ULT FILENAME BLOCK
The default filename block, an area allocated within your program
by issuing the NMBLKS macro call (see Section 2.4.2), contains
the various elements of a file specification. The default
filename block is a user-created structure, whereas the filename
block within the FDB is maintained by FCS. You create the
default filename block to supply file specifications to FCS that
are not otherwise available through the dataset descriptor (see
below) . In other words, from information defined in the default
filename block, FCS creates a parallel structure in the FDB that
serves as the execution time repository for information that FCS
requires in opening and operating on files.

Thus, the terms "default filename block™ and "filename block"
refer to separate and distinct data structures. These
distinctions should be kept clearly in mind whenever these terms
appear in the manual. Though created and used differently, these
areas are structurally identical.

DATASET DESCRIPTOR

The dataset descriptor is a 6-word block in your program
containing the sizes and the addresses of ASCII data strings that
together constitute a file specification (see below). This data
structure, which you also create, is described in detail in
Section 2.4.1. Unless the filename block in the FDB has been
initialized, dataset-descriptor and/or default filename block
information must be provided to FCS before the specified file can
be opened.

DATASET-DESCRIPTOR POINTER

FILE

FILE

An address value that points to the 6-word dataset descriptor
within your program. This address value is stored in the FDB,
allowing FCS to access a user-created file specification in the
dataset descriptor.

SPECIFICATION

Any system or user program having a requirement to refer to files
does so through a file specification. Such information names a
file and allows it to be explicitly referenced by any task. A
file specification, whether for input or output, contains
specific information that must be made available to FCS before
that file can be opened. The term "file specifier" is sometimes
used as a synonym for "file specification."

STORAGE REGION (FSR)

The file storage region (see Section 1.2) is an area of memory
that you reserve for wuse in I/O operations. You can allocate
this area by issuing the FSRSZ$ macro call in your program (see
Section 2.6.1).



FILE C

1.12 SYSTEM CHARACTERISTICS

Listed below are the important characteristics of FCS that are
important in using its I/0 facilities:

o

READ$/WRITES operations are asynchronous; you are responsible
for coordinating all block I/0 activity. In contrast,
GET$/PUT$ operations are synchronized entirely by FCS;
control is not returned to your program until the requested
GET$/PUTS operation is completed.

FCS macro calls save and restore all registers, with the
following exceptions:

1. The file-processing macro calls (see Chapter 3) place the
FDB address in RO.

2. Many of the file control routines (see Chapter 4) return
requested information in the general registers.

The FDBDF$ macro call (see Section 2.2.1.1) 1is issued to
allocate space for an FDB. Once the FDB is allocated,
necessary information can be placed in this data construct
through any logical combination of assembly-time and/or
run-time macro calls (see Sections 2.2.1 and 2.2.2,
respectively). Certain information must be present in the FDB
before FC8 can open and operate on a specified file.

For each assembly-time FDB initalization macro call, a
corresponding run~time macro call is provided that supplies
identical information. Although both sets of macro calls (see
Table 2-1) place the same information in the FDB, each set
does so in a different way. The assembly-time calls generate
.BYTE or .WORD directives that create specific data, while the
run-time calls generate MOV or MOVB instructions that place
desired information in the FDB during program execution.

"

TF " vr ia n
i a err n iS5 ae

»* rAanA
(=38 (SR 14 H -

5 ~F o la o
on d Arrw 3 e s the

uitis “wuLn L.I.I\J all VL
file-processing operations described in Chapter 3, or during
the execution of several of the file control routines (see
Section 4.1), the C-bit (carry condition code) 1in the
Processor Status Word 1is set, and an error indicator is
returned to FDB offset location F.ERR.

n
v

NOTE

When I/0 is being done using the READS$/WRITE macros,
the IOSB parameter must be specified for F.ERR and the
C-bit to be properly returned (see Section 3.15).

If the address of a user-coded, error-handling routine is specified as
a parameter in any of the file-processing macro calls, a JSR PC
instruction to the error-handling routine is generated. The routine
is then executed if the C-bit in the Processor Status Word is set.

1-12



CHAPTER 2

PREPARING FOR I/0

The MACRO-11 programmer must establish the proper data base and
working storage areas within the particular program in order to
perform input/output operations. The following actions must be
performed:

e Define a File Descriptor Block (FDB) for each file that is to
be opened simultaneously by your program (see Section 2.2).

e Define a dataset descriptor and/or a default filename block
(see Sections 2.4.1 or 2.4.2, respectively) if you intend to
access these structures to provide required file
specifications to FCS.

e Establish a file storage region (FSR) within the program (see
Section 2.6). (The 1initialization procedures for FORTRAN
tasks are described in detail in the FORTRAN-IV User's Guide
and the FORTRAN-IV-PLUS User's Guide.)

This chapter describes the macro calls that must be invoked to provide
the necessary file-processing information for the FDB. Such
information is placed in the FDB in one of three ways:

1. By the assembly-time FDB initialization macro calls (see
Section 2.2.1)

2. By the run-time FDB initialization macro calls (see Section
2.2.2)

3. By the file-processing macro calls (see Chapter 3)

Data supplied during the assembly of the source program establishes
the initial wvalues in the FDB. Data supplied at run time can either
initialize additional portions of the FDB or change values established
at assembly time. Similarly, the data supplied through the
file-processing macro calls can either initialize portions of the FDB
or change previously initialized values.

Table 2-1 lists the macro calls that generate FDB information.

2-1



Table 2-1
Macro Calls Generating FDB Information

Assembly Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls
FDBDF$ (Required) FDATSR OPENS$ (all variations)
FDATSA FDRCSR CLOSES
FDRCSA FDBKSR GET$ (all variations)
FDBKSA FDOPSR PUTS$ (all variations)
FDOPSA FDBFS$R READS
FDBFSA WRITES

DELETS

WAITS

2.1 JMCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All the assembly-time, run-time, and file-processing macro calls (see
Table 2-1 above) that you intend to issue in a program must first be
listed as arguments in an .MCALL directive. Doing so allows the
required macro definitions to be read in from the system macro library
during assembly.

The .MCALL directive and associated arguments must appear in the
program prior to the issuance of any macro call in the execution code
of the program. If the list of macro names is lengthy, several .MCALL
directives, each appearing on a separate source 1line, must be
specified to accommodate the entire list of macro names. The number
of such names that may appear in any given .MCALL statement is limited
only by the availability of space within that 80-byte source line.

The .MCALL directive takes the following general form:
.MCALL argl,arg2,...,argn
argl,arg2,...,argn

A list of symbolic names identifying the macro definitions
required in the assembly of vyour ©program. If more than one
source line is required to list the names of all desired macros,
each additional 1line so required must begin with an .MCALL
directive.

For clarity of functional use, the assembly-time, run-time, and
file-processing macro names may be 1listed in each of three
separate .MCALL statements. The macro names may also be 1listed
alphabetically for readability, or they may be intermixed,
regardless of functional use. All these options are matters of
preference and have no effect whatever on retrieving macro
definitions from the system macro library.

For those users planning to invoke the command 1line processing
capabilities of the Get Command Line (GCML) routine and the
Command String Interpreter (CSI), all the names of the associated
macros must also be listed as arguments in an .MCALL directive.
GCML and CSI, ordinarily employed 1in system or application
programs for convenience in dynamically processing file
specifications, are described in detail in Chapter 6.



PREPARING FOR I/O

The .MCALL directive is described in detail in the PDP-11 MACRO-11
Language Reference Manual. The sample programs in Appendix D also
illustrate the use of the .MCALL directive. Note that these
directives appear as the first statements in the preparatory coding of
these programs.

The object routines described in Chapter 4 should not be confused with
the macro definitions available from the system macro library. The
file control routines, constituting a body of object modules, are
linked into your program at task-build time from the system object
library ([1,1]SYSLIB.OLB). You should consult Section 4.1 for a
description of these routines.

The following statements are representative of the use of the .MCALL
directive:

.MCALL FDBDF$,FDATSA,FDRCSA,FDOPSA,NMBLKS,FSRSZS,FINITS
.MCALL OPENSR,OPENSW,GETS$,PUTS$,CLOSES

NOTE

You can use the macro FCSMC$ to declare
in the .MCALL format the most commonly
used FCS macros, as follows:

.MCALL FCSMCS$
FCSMCS

FCS macros declared in this manner
include: OPENS$x, OPNS$x, CLOSES, READS,
WRITES$, WAITS, GETS, PUTS, DELETS,
FINITS, FSRSZ$, FDBDFS$, FDATSx, FDRCSx,
FCOP$x, FDBFS$x, FDBKSx, and NMBLKS. If
other macros are required, explicit
.MCALLs must be issued. A disadvantage
of wusing this method to declare .MCALL
macros is that unused macros may take up
possibly critical assembler symbol table
space, thus slowing down the assembly
process.

2.2 FILE DESCRIPTOR BLOCK (FDB)

The File Descriptor Block (FDB) is the data structure that provides
the information needed by FCS for all file I/O operations. Two sets
of macro calls are available for FDB initialization: one set is used
for assembly-time initialization (see next section), and the other set
is used for run-time initialization (see Section 2.2.2). Run-time
macros are used to supplement and/or override information specified

during assembly. Appendixes A and B illustrate all the sections of
the FDB in detail.

2.2.1 Assembly-Time FDB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see Section 2.2.1.1) to allocate space for and to define the
beginning address of the FDB. Additional macro calls can then be
issued to establish other required information in this structure.

2-3



PREPARING FCR I/C

The assembly-time macros that accomplish these functions are described
in the following sections. These macro calls take the general form
shown below:

mcnam$A pl,p2,...,pPn
mchamS$SA

The symbolic name of the macro.

pPl,P2,...,Pn

The string of initialization parameters associated with the
specified macro. A parameter may be omitted from the string by
leaving its field between delimiting commas null, Assume, for
example, that a macro call may take the following parameters:

FDOPSA 2,DSPT,DFNB

Assume further that the second parameter field is to be coded as
a null specification. In this case, the statement is coded as
follows:

FDOPS$A 2, ,DFNB

Also, a trailing comma need not be inserted to reflect the
omission of a parameter beyond the last explicit specification.
For example, the macro call

FDOP$SA 2,DSPT,DFNB
need not be specified as
FDOPSA 2,DSPT,

if the last parameter (DFNB) is omitted. Rather, such a macro
call is specified as follows:

FDOP$A 2,DSPT

If any parameter is not specified, that is, if any field in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains 0.

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (1)
between the values, indicating a logical OR operation to the MACRO-11
assembler. Using multiple wvalues in this manner is pointed out in
this manual where such specifications apply.

Throughout the descriptions of the assembly-time macros in the
following sections and elsewhere in this manual, symbols of the form
F.xxx or F.xxxx are referenced (for example, F.RTYP). These symbols
are defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, you can
reference or modify information within the FDB without having to
calculate word or byte offsets to specific locations.

Using such symbols in system/user software has the additional
advantage of permitting the relative position of cells within the FDB
to be changed (in a subsequent release, for example) without affecting

your current programs or the coding style employed in developing new
programs.

2-4



PREPARING FOR I/O

2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FDB) - The FDBDFS$
macro call is specified in a MACRO-1l1l program to allocate space within
the program for an FDB. This macro call must be specified in the
source program once for each input or output £file to be opened
simultaneously by your program in the course of execution. Any
associated assembly-time macro calls (see Sections 2.2.1.2 through
2.2.1.6) must then be specified immediately following the FDBDF$ macro
if vyou desire to accomplish the initialization of certain portions of
this FDB during assembly.

The FDB allocation macro takes the following form:

1—

abel: FDBDFS
label

A user-specified symbol that names this particular FDB and
defines its beginning address. This 1label has particular
significance in all I/0 operations that require access to the
data structure allocated through this macro call. FCS accesses
the fields within the FDB relative to the address represented by
this symbol. .

The following examples are representative of FDBDF$ macro calls as
they might appear in a source program:

FDBOUT: FDBDFS$ ;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBOUT" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

FDBIN: FDBDF$ ;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBIN" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call
logically similar to ‘those above for each file to be accessed
simultaneously by your program. FDBs can be reused for many different
files, as 1long as the file currently using the FDB is closed before
the next file is opened. The only requirement is that an FDB must be
defined for every file to be opened simultaneously.

2.2.1.2 FDATS$A - Initialize File Attribute Section of FDB - The
FDATSA macro call is used to initialize the file attribute section of
the FDB when a new output file is to be created. If the file to be
processed already exists, the first four parameters of the FDATS$A
initialization macro are not required, since FCS obtains the necessary
information from the first 14 bytes of the user file attribute section
of the specified file's header block (see Appendix F). This macro
call has the following format:

FDATSA rtyp,ratt,rsiz,cntg,aloc

rtyp
A symbolic value that defines the type of records to be built as
the new file is created. One of three values must be specified,

as follows:

1. R.FIX - Indicates that fixed-length records are to be
written in creating the file



ratt

cntg

PREPARING FOR I/C

2. R.VAR -~ Indicates that variable-length records are to be
written in creating the file

3. R.SEQ - Indicates variable-length sequenced records are to
be written in creating the file

This parameter initializes FDB offset location F.RTYP. Since the
symbols R.FIX, R.VAR, and R.SEQ initialize the same location in
the FDB, these values are mutually exclusive.

Symbolic values that may be specified to define the attributes of
the records as the new file is created. The following symbolic
values may be specified, as appropriate, to define the desired
record attributes:

e FD.FTN - Indicates that the first byte in each record will
contain a FORTRAN carriage-control character

e FD.CR - Indicates that the record is to be preceded by a
<LF> character and followed by a <CR> character when the
record 1is written to a carriage control device (for
example, a line printer or a terminal)

e FD.BLK - Indicates that records are not allowed to cross
block boundaries

e FD.PRN - Indicates that the record is preceded by a word
containing carriage control information

These parameters initialize the record attribute byte (offset
location F.RATT) in the FDB. The values FD.FTN and FD.CR are
mutually exclusive and must not be specified together. Apart
from this restriction, the combination (logical OR) of multiple
parameters specified in this field must be separated by an
exclamation point (for example, FD.CR!FD.BLK).

A numeric value that defines the size (in bytes) of fixed-length
records to be written to the file. This value, which initializes
FDB offset location F.RSIZ, need not be specified if R.VAR has
been specified as the record type parameter above (for
variable-length records). If R.VAR or R.SEQ 1is specified, FCS
maintains a value in FDB offset location F.RSIZ that defines the
size (in bytes) of the largest record currently written to the
file. Thus, whenever an existing file containing variable-length
records is opened, the value in F.RSIZ defines the size of the
largest record within that file. By examining the value in this
cell, a program can dynamically allocate record buffers for its
open files.

A signed numeric value that defines the number of blocks that are
allocated for the file as it is created. The signed values have
the following significance:

@ DPositive Value - Indicates that the specified number of

blocks is to be allocated contiguously at file-create time,
and further that the file is to be contiguous

2-6



aloc

PREPARING FOR I/O

e Negative Value - Indicates that the two's complement of the
specified number of blocks is to be allocated at
file-create time, not necessarily contiguously, and further
that the file is to be noncontiguous

This parameter, which has 15 bits of magnitude (plus a sign bit),
initializes FDB offset location F.CNTG.

(You can specify an allocation of up to 24 bits by using the
.EXTND routine.)

If you have a firm idea as to the desired length of the file, it
is more efficient to allocate the required number of blocks at
file-create time through this parameter, rather than requiring
FCS to extend the file, if necessary, during the writing of the
file (see aloc parameter below).

If this parameter is not specified, then the file is created as
an empty file; that is, no space is allocated within the file as
it is created.

Issuing the CLOSES macro call at the completion of
file-processing resets the value in F.CNTG to 0. Thus, the usual
procedure is to initialize this location at run time just before
opening the file. Reinitialization is necessary if the FDB is
reused.

A signed numeric value that defines the number of blocks by which
the file 1is extended, if FCS determines that file extension is
necessary during the writing of the file. When the end of
allocated space in the file is reached during writing, the signed
value provided through this parameter causes file extension ¢to
occur, as follows:

e Positive Value - Indicates that the specified number of
blocks is to be allocated contiguously as additional space
within the file, and further that the file 1is to be
contiguous.

NOTE

Once a file has had blocks allocated,
all future file extensions cause the
file to become noncontiguous, even when
aloc is a positive value.

e Negative Value - Indicates that the two's complement of the
specified number of blocks is to be allocated
noncontiguously as additional space within the file, and
further that the file is to be noncontiguous.

This parameter, which also has 15 bits of magnitude (plus a sign
bit), initializes FDB offset location F.ALOC. If this optional
parameter is not specified, file extension occurs as follows:

e If the number of wvirtual blocks yet to be written is
greater than 1, the file is extended by the exact number of
blocks required to complete the writing of the file.



PREPARING FOR I/0

e 1If only one additional block is required to complete the
writing of the file, the file is extended in accordance
with the volume's default extend value.

The volume default extend size is established through the INITIALIZE,
INITVOLUME, or MOUNT command, respectively. The volume default extend
size cannot be established at the FCS level; this wvalue must be
established when the volume is initially mounted.

The following statement is representative of an FDATSA macro call.
This statement initializes the FDB in preparation for creating a new
file containing fixed-length, 80-byte records that will be allowed to
cross block boundaries.

FDATSA R.FIX,,80.

In the above example, the record attribute (ratt) parameter has been
omitted, as indicated by the second comma (,) in the parameter string.
Also, the cntg and aloc parameters have been omitted. Their omission,
however, occurs following the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter
string. Since the aloc parameter has been omitted, file extension (if
it becomes necessary) is accomplished in accordance with the current
default extend size in effect for the associated volume.

If morc than cne reccrd attribute is specified in the ratt parameter
field, such specifications must be separated by an exclamation point
(1), as shown below:

FDATSA R.VAR,FD.FTN!FD.BLK

The above macro call enables a file of variable-length records to be
created. The records will contain FORTRAN vertical-formatting
information for carriage control devices; the records will not be
allowed to cross block boundaries.

2.2.1.3 FDRCSA - Initialize Record Access Section of FDB - The FDRCSA
macro call is used to initialize the record access section of the FDB,
and to indicate whether record or block I/O operations are to be wused
in processing the associated file.

1f record I/O operations (GET$ and PUTS macro calls) are to be used,
the FDRCSA or the FDRCS$R macro call (see Section 2.2.2) establishes
the FDB information necessary for record-oriented I/0. If block I/0
operations (READ$ and WRITE$ macro calls) are to be used, however, the
FDBKSA macro call (see Section 2.2.1.4) or the FDBKSR macro call (see
Section 2.2.2) must also be specified in order to establish other
values in the FDB required for block I/0. In this case, portions of
the record access section of the FDB are physically overlaid with
parameters from the FDBKS$SA/FDBK$R macro call.

You must appropriately initialize the FDB to indicate whether record
or block I/O operations are to be used in processing the associated
file, prior to issuing the OPEN$ macro call to initialize file
operations.,

The FDRCS$A macro call takes the following format:

FDRCSA racc,urba,urbs



racc

urba

PREPARING FOR I/O

Specifies which variation of block or record I/0 is to be used to
process the file. This parameter initializes the record access
byte (offset location F.RACC) in the FDB. The first value below
applies only for block I/0O (READS/WRITES) operations; all
remaining values are specific to record I1/0 (GETS/PUTS)
operations: ’

e FD.RWM - Indicates that READS/WRITES (block I/0) operations
are to be wused in processing the file. 1If this value is
not specified, GET$/PUTS (record I/0) operations are used
by default.

Specifying FD.RWM necessitates issuing an FDBK$A or an
FDBKSR macro call in the program to initialize other
offsets in the block access section of the FDB. Note also
that the READ$ or WRITES macro call allows the complete
specification of all the parameters required for block 1/0
operaticns.

e FD.RAN - Indicates that random access mode is to be used in
processing the file. If this wvalue 1is not specified,
sequential access mode 1is used by default. Refer to
Section 1.5 for a description of random access mode.

o FD.PLC - Indicates that 1locate mode is to be used in
processing the file. If this value is not specified, move
mode is used by default.

e FD.INS - This value, which applies only for sequential
files (and therefore cannot be specified jointly with the
FD.RAN parameter above), indicates that a PUTS operation
performed within the body of the file shall not truncate
the file.

Should you wish to perform a PUT$ operation within the body
of a file, the .POINT routine described in Section 4.10.1
may be called. This routine, which permits a 1limited
degree of random access to a file, positions the file to a
user-specified byte within a virtual block in preparation
for the PUTS operation.

If FD.INS is not specified, a PUT$ operation within the
file truncates the file at the point of insertion; that
is, the PUT$ operation moves the logical end-of-file (EOF)
to a point just beyond the inserted record. However, no
deallocation of blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a PUTS
operation that is in fact beyond the current logical end of
the file resets the logical end of the file to a point just
beyond the inserted record.

The symbolic address of a user record buffer to be used for GETS
operations in move and locate modes, and for PUT$ operations in
locate mode. This parameter 1initializes FDB offset location
F.URBD+2, and is specified only for record I/0 operations.



urbs

A numeric value that defines the size (in bytes) of the user
record buffer to be employed for GET$ operations in move and
locate modes, and for PUTS$ operations in locate mode. This
parameter initializes FDB offset location F.URBD, and is
specified only for record I/O operations.

You allocate and label a record buffer in a program by issuing a .BLKB
or .BLKW directive. The address and the size of this area is then
passed to FCS as the urba and the urbs parameters above. For example,
a user record buffer may be defined through a statement that is
logically equivalent to that shown below:

RECBUF: .BLKB 82.
RECBUF

Is the address of the buffer and 82(decimal) is 1its size (in
bytes).

Beginning user record buffers on a word boundary can improve
performance by allowing FCS to move the data with MOV instructions
rather than MOVB instructions.

Under certain conditions, you need not allocate a record buffer or
specify the buffer descriptors (urba and urbs) for GET$ or PUTS
operations. These conditions are described in detail 1in Sections
3.9.2 and 3.12.2, respectively.

The following statement is representative of an FDRCSA macro call that
is issued for a file that may be accessed in random mode:

FDRC$A FD.RAN,BUF1,160.

The address of the user record buffer is specified through the symbol
BUFl, and the size of the user record buffer (in bytes) is defined by
the numeric value 160 (decimal).

If more than one value is specified in the record access (racc) field,
an exclamation point (!) must separate the multiple values, as shown
below:

FDRCS$A FD.RAN!FD.PLC,BUF1,160.

In addition to the functions described for the first example, this
example specifies that locate mode is to be used in processing the
associated file. Note that the multiple parameters specified in the
first field are separated by an exclamation point (!).

2.2.1.4 FDBKS$A - Initialize Block Access Section of FDB - The FDBKSA
macro call is used to initialize the block access section of the FDB
when block I/0 operations (READ$ and WRITES macro calls) are to be
used for file processing. Initializing the FDB with this macro call
allows you to read or write virtual blocks of data within a file.

Use of the FDBKS$A macro call implies that the FDRC$SA macro call has

also been specified, since the FD.RWM parameter of the FDRCSA macro
call does initial declaration of block I/O operations. Thus, for

2-10



PREPARING FOR I/O

block I/0 operations, the FDRCS$A macro call must be specified, as well
as any one of the following macro calls, to appropriately initialize
the block access section of the FDB: FDBK$A, FDBKS$R, READS, or
WRITES.

Issuing the FDBKSA macro call causes certain portions of the record
access section of the FDB to be overlaid with parameters necessary for
block I/0 operations. Thus, the terms "record access section" and
"block access section" refer to a shared physical area of the FDB that
is functional for either record or block I/0 operations.

The block I/0 and record I/O FDB-initialization macros use the same
area of the FDB for different data. Therefore, if record I/0
operations are to be employed, neither the FDBKS$A nor the FDBKSR macro
call must be issued.

The FDBKSA macro call is specified in the following format:
FDBK$A bkda,bkds,bkvb,bkef,bkst,bkdn
bkda

The symbolic address of an area in user memory space to be
employed as a buffer for block I/0O operations. This parameter
initializes FDB offset location F.BKDS+2.

bkds

A numeric value that specifies the size (in bytes) of the block
to be read or written when a block I/O request (READ$ or WRITES
macro call) is issued. This parameter initializes FDB offset
location F.BKDS. The size specified must be an even, positive
(sign bit must not be set) value; thus, the maximum number of
bytes that can be specified is 32766. If an integral number of
blocks are to be specified, the practical maximum number of bytes
that can be specified is equal to 63 virtual blocks, or
32256 (decimal) bytes.

bkvb

A dummy parameter for compatibility with the FDBKSR macro call.
The bkvb parameter is not specified in the FDBK$A macro call for
the reasons stated in item 4 of Section 2.2.2.1. In short,
assembly-time initialization of FDB offset locations F.BKVB+2 and
F.BKVB with the virtual block number is meaningless, since any
version of the generalized OPENS$x macro call resets the virtual
block number in these cells to 1 as the file is opened.
Therefore, these cells can be initialized only at run time
through either the FDBKSR macro call (see Section 2.2.2) or the
I/0-initiating READ$S and WRITES macro calls (see Sections 3.15
and 3.16, respectively).

This dummy parameter should be reflected as a null specification
(with a comma) in the parameter string only in the event that an
explicit parameter follows. This null specification is required
in order to maintain the proper position of any remaining
field(s) in the parameter string.



bkef
A numeric value that specifies an event flag to be used during
READS/WRITES operations to indicate the completion of a block I/0
transfer. This parameter initializes FDB offset location F.BKEF;
if not specified, event flag 32(decimal) is used by default.
The function of an event flag is described in further -detail in
Section 2.8.1.
bkst
The symbolic address of a 2-word I/0 status block 1in your
program. If specified, this optional parameter initializes FDB
offset location F.BKST. :
The I/0 status block, if it is to be used, must be defined and
appropriately labeled at assembly time. Then, if the bkst
parameter is specified, information is returned by the system to
the I/0 status block at the completion of the block I/0 transfer.
This information reflects the status of the requested operation.
If this parameter is not specified, no information is returned to
the I/0 status block.
NOTE
If an error occurs during a READS or
WRITES operation that would normally be
reported as a negative value in the
first byte of the I/O status block, the
error is not reported unless an I/0
status block address is specified.
Thus, you are advised to specify this
parameter to allow the return of block
I/0 status information and to facilitate
normal error reporting.
The creation and function of the I/O status block are described
in detail in Section 2.8.2.
bkdn

The symbolic address of an optional wuser-coded AST service
routine, If present, this parameter causes the AST service
routine to be initiated at the specified address upon completion
of block 1I/0; if not specified, no AST trap occurs. This
parameter initializes FDB offset location F.BKDN.

Considerations relevant to the use of an AST service routine are
presented in Section 2.8.3.

The following example shows an FDBK$A macro call that wutilizes all
available parameter fields for initializing the block access section
of the FDB:

FDBKSA BKBUF,240.,,20.,ISTAT,ASTADR
In this macro call, the symbol BKBUF identifies a block I/0 buffer

reserved in the user program that will accommodate a 240 (decimal) -byte
block. The virtual block number is null (for the reasons stated above



PREPARING FOR I/0

in the description of this parameter), and the event flag to be set
upon block 1I/0 completion is 20(decimal). Finally, the symbol ISTAT
specifies the address of the I/O status block, and the symbol ASTADR
specifies the entry point address of the AST service routine.

2.2.1.5 FDOP$A - Initialize File-Open Section of FDB - The FDOPSA
macro call is used to initialize the file-open section of the FDB. 1In
addition to a logical unit number, either a dataset descriptor pointer
and/or a default filename block address is normally specified for each
file that is to be opened. The latter two parameters provide FCS with
the linkage necessary to retrieve file specifications from these
user-created data structures in the program.

Although both a dataset descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FDB before that file can be
opened. If, however, certain information is already present in the
filename block as the result of prior program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and. the file is opened through a process called "opening a file by
file 1ID." This process, which 1is an efficient method of opening a
file, is described in detail in Section 2.5.

The dspt and dfnb parameters represent address values which point to
user-defined data structures in the program. These data structures,
which are described in detail in Section 2.4, provide file

The FDOPS$SA macro call takes the following form:
FDOP$A 1lun,dspt,dfnb,facc,actl
lun

A numeric value that specifies a 1logical unit number. This
parameter initializes FDB offset 1location F.LUN. All 1I/0
operations performed in conjunction with this FDB are done
through the specified logical unit number (LUN). Every active
FDB must have a unique LUN.

The logical unit number specified through this parameter may be
any value from 1 through the largest value specified to the Task
Builder through the UNITS option. This option specifies the
number of logical wunits to be used by the task (see the Task
Builder Reference Manual of the host operating system).

dspt

The symbolic address of a 6-word block in the wuser program
containing the dataset descriptor. This user-defined data
structure consists of a 2-word device descriptor, a 2-word
directory descriptor, and a 2-word file name descriptor, as
outlined in Section 2.4.1.

The dspt parameter initializes FDB offset location F.DSPT. This
address value, called the dataset descriptor pointer, is the
linkage address through which FCS accesses the fields in the
dataset descriptor.

2-13



dfnb

facc

When the Command String Interpreter (CSI) is used to process
command string input, a file specification is returned to the
calling program in a format identical to that of the manually
created dataset descriptor. The use of CSI as a dynamic command
line processor is described in detail in Section 6.2.

The symbolic address of the default filename block. This
structure is allocated within the user program through the NMBLK$
macro call (see Section 2.4.2). When specified, the dfnb
parameter initializes FDB offset location F.DFNB, allowing FCS to
access the fields of the default filename block in building the
filename block in the FDB.

Specifying the dfnb parameter in the FDOP$A (or the FDOP$R) macro
call assumes that the NMBLK$ macro call has been issued in the
program. Furthermore, the symbol specified as the dfnb parameter
in the FDOP$A (or the FDOP$R) macro call must correspond exactly
to the symbol specified in the label field of the NMBLK$ macro
call.

Any one, or any appropriate combination, of the following
symbolic values 1indicating how the specified file is to be
accessed:

e FO.RD - Indicates that an existing file is to be opened for
reading only.

e FO.WRT - Indicates that a new file is to be <created and
opened for writing.

e FO.APD - Indicates that an existing file is to be opened
for append.

~ e d el d ~ £33 A
CAl1DLiNYy Lidc

[(]
n
cr
o
cr
a
jal]
P
0]
cr
Q
o
(]
(@)
3
g)

FO.MFY - dai
for modificat
e FO.UPD - Indicates that an existing file is to be opened
for update and, if necessary, extended.

e FA.NSP - Indicates, in combination with FO.WRT above, that
an old file having the same file specification is not to be
superseded by the new file. Rather, an error code is to be
returned if a file of the same file name, type, and version
exists.

e FA.TMP - Indicates, in combination with FO.WRT above, that
the created file is to be a temporary file.

e FA.SHR - Indicates that the file is to be opened for shared
access.

The facc parameter initializes FDB offset location F.FACC.
The symbolic values FO.xxx, described above, represent the
logical OR of bits in FDB location F.FACC.

The information specified by this parameter can be

overridden by an OPEN$ macro call, as described in Section
3.7. It is overridden by an OPEN$x macro call.

2-14



PREPARING FOR I/O

actl

A symbolic value that is used to specify the following control
information in FDB location F.ACTL:

1. Magnetic tape position

2. Whether a disk file that is opened for write 1is to be
locked if it 1is not properly closed; for example, the
task terminates abnormally

3. Number of retrieval pointers to allocate for a disk file
window

4. Enable block locking

Normallly, FCS supplies default values for F.ACTL. However, 1if
FA.ENB is specified in combination with any of the symbolic
values described below, FCS uses the information in F.ACTL.
FAENB must be specified with the desired values to override the
defaults. The following are the defaults for location F.ACTL:

e For file creation, magnetic tapes are positioned to the end
of the volume set.

e At file open and close, tapes are not rewound.

e A disk file that is opened for write is locked if it is not
properly closed.

e The volume default is used for the file window.
The values listed below can be used in conjunction with FA,.ENB:

e FA.POS - Is meaningful only for output files and is
specified to cause a magnetic tape to be positioned just
after the most recently closed file for creating a new
file. Any files that exist after that point are lost. If
rewind is specified, it takes precedence over FA.POS, thus
causing the tape to be positioned just after the VOL1l label
for file creation. See Section 5.2.3.

e FA.RWD - Is specified to cause a magnetic tape to be
rewound when the file is opened or closed.

Examples of using FA.ENB with FA.POS and FA.RWD are
provided in Section 5.2.8.

e FA.DLK - Is specified to cause a disk file not to be locked
if it is not properly closed.

The number of retrieval pointers for a file window can be
specified in the 1low-order byte of F.ACTL. The default
number of retrieval pointers is the file-window mapping
pointer count parameter (/WIN) included in the Initialize
Volume or Mount Volume MCR commands; the default value for
this parameter is 7. Retrieval pointers are used to point
to contiqguous blocks of the file on disk. Access to
fragmented files may be optimized by increasing the number
of retrieval pointers, that is, by increasing the size of
the window. Similarly, since retrieval pointers use up
pool space, additional memory can be freed by reducing the
number of pointers for files with 1little or no
fragmentation, for example, contiqguous files.

2-15



e FA,LKLIFA.EXL - Is specified to lock all blocks that are
accessed. See the RSX-11M/M-PLUS 1I/0 Drivers Reference
Manual for further information on block locking.

As noted, if neither the dspt nor the dfnb parameter 1is specified,
corresponding offset 1locations F.DSPT and F.DFNB contain 0. In this
case, no file is currently associated with this FDB. Any attempt to
open a file with this FDB results in an open failure. Either offset
location F.DSPT or F.DFNB must be initialized with an appropriate
address value before a file can be opened using this FDB. Normally,
these cells are initialized at assembly time through the FDOP$SA macro
call; but they may also be initialized at run time through the FDOPS$R
or the generalized OPEN$X macro call (see Section 3.1).

The following examples represent the FDOP$A macro call as it might
appear in a source program:

FDOP$A 1,,DFNB

FDOPSA 2,0FDSPT

FDOP$SA 2,0FDSPT,DFNB
FDOPSA 1,CSIBLK+C.DSDS
FDOPSA 1,,DFNB,,FA.ENB!16.

Note in the first example that the dataset descriptor pointer (dspt)
is null, requiring that FCS rely on the run-time specification of the
dataset descriptor pointer for the FDB or the use of the default
filename block for required file information.

In the second example, a dataset descriptor pointer (OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descriptor
for required file information.

The third example specifies both a dataset descriptor pointer and a
default filename block address, causing FDB offset locations F.DSPT
and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCS can access the dataset descriptor and/or
the default filename block for required file information. By
convention, FCS first seeks such information 1in the dataset
descriptor; if all the required information is not present 1in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

The fourth example shows a macro call that takes as 1its second
parameter a symbolic value that causes FDB offset location F.DSPT to
be initi