POP-K Todhnical Memorandum # 4

S AN N

Tible: an Instruction Set for the L8-bit PDP-K
Authoris) e Ad van de Goor

o0 [}

indey Reyis Instyuction Satb
op Coda
Data Typas

Distribution
- Reys:

Revizion: None
Obsolete: None

Date: February #9, 137D

PR

P s

Pr.erc Lagtiion

e

An instruction set for anm 18-bit computerl ig proposcl.

It combines the best features of the FOP~11l's architec-

ture and the PDRP-10's instruction set

For soveral reasons, an 18-bit computiy wag consideirad
superior; it sclves both the op code and address spacn
proviems of a 16-bit computer. In addition. it is a
better data base in two important arei's. Pulse Height
Analysis (PHA) programs have proven ihe need for 18 bits
Also, the 36-bit floating-point representation has much
wider acceptance, due to its superiority of 32-hit for-
mats. ’

liﬁag, a computer with a word length of 18 bity,

.

2.0

“l-scruction Format and Terminology

The instruction format of most Yinary (two address)
instructions is shown below. It resembles that of

the PCP-11 and has three fields
Tnestruction

N
P ~

o 7 6

LS — | S—— L ——
oc g D
Field Description
oC: Operation Code
Specifies the binary instruction.
S Source
'+ Specifies the Effective Address (EA) of the
source.
D: Destination
Specifies- the Effective Address (EA) of the
destination.

The formats cf the § and D fields are identical and
shown below. .
Sa O Freld

{-3'3

—— ot
M R
Field Description

" R: Reglster

Denotes 1 out of 8 general registers.

M Mode
Specifies the addressing mode in a similar
way to those for tie PDP-11.1

lsee PDP-11 Handbook.

~

0: R ‘ : 'R contains Zatn»

l: @R ; R contains address of datal
2 @(R)+ C Autoincrement, defer —
.3: @AfR) H Ihdex, defer~/~wa |
(f4; (R) + ; Autoincrement 1
% 5: ~(R) ; Autodecrémentt}
; 6;t @-(R) : Autcdecrement, d fer ,{
{ 7: A (R) ;Index | P

The address as computed from the R and M fields is called
the Effective Address "EA". When M=0, this is from

0 to 7. The location of the memory cell? actually
addressed is called the Effective Location "EL". For
most binary instructions, Ei=EA, i.e., the effective
location = the effective address.

In some instructions, the S or D field denotes
an integer number; for example, to specify the number
" of shifts in a shift instruction. The format id as
follocws: ‘ o
o S o D Freld

o

E‘ e :

| 2

b 7 R L
FR M5 f

- >
R e

EP Field

I"g* is used as the “indirect" symbol.

2) register is also considered "mamory".

Pioc1d

mMS:

FR:

Description

Register
Denotes 1 out of 8 general recgisters.

Modes, Short

Specifies the addressing mode. They are
identical to the first 4 modes of the M
field:

0: R ; EPL is R

1: @R ; EP is (R)?2

2: A(R)+ ~ ; EP is @(R), autoincrement
3: @eA(R) ; EP is (R)+A

Free Bit

Bit not used to determine EP.

The Effective Position "EP" can be interpreted as the

number representing the EA when M would be restricted
to the first 4 combinations. The table below shows
the values EP can have: ‘

values of EP

MS Signed Integer Unsigned Integer
0: R -4 to 0; 0 to +3 0 to +7
1: @R -217 o 0; 0 to 217-1 0 to 218
2: @(R)+ -217 +o0 0; 0 to 2171 0 to 218
I: @A(R ~217 o 0; 0 to 217-1 0 to 218
legpr = Effective_Position‘

27 (R)" = Contents of R_j

3.2.2

Compatibility

introducing a different word length will cause some
compatibility problems.

Pcripheral Compatibility

A separate memorandum will be devoted to this problem.
The incompatibility can be reduced by fraving the same
bus structure for the PDP-X as the PDP-1ll. This is be-
ing considered.

Pfogram Compatibility

Two aspects have to be considered.

. Word Length Compatibility

This can be done by hardware by having a 16- and an 18-bit
mode; by software through a conversion pr>gram similar
to that for converting PDP-8 to PDP-9/15 >rograms leaving
certain portions to be recoded "by hand" ‘'e.g., shift
and rotate instructions).

-
o

Instruction Set Compatibility

This can be accomplished through ﬁicropro;ramming. _
Because of the PDP-K's 18-bit word length, microprogram-

ming becomes very attractive because the ’DP-10 can be

emulated,

4.0

4.4

4.5

-y

Proposed PDP-K Instruction Sct

The proposed instruction set is shown in Appendix A.
Only the major instructions are shown. These are the
essential ones or those requiring lots of op code space.
It is assured that the reader has some knowledge of the
PDP-11 instruction set.

The instructions operate on 5 data types.
Bit, "p"1

A bit is a Boolean quantity which is true "T" or
false 'F".

Byte, "¥"

A byte is a character

A woré is:

., A Boolean Array with 18 elements .
2. A signed integer (2's complement)
3. An unsigned integer

Doulle Word, "D"

A double word is a single precision, floating-point
numoer.

Quedruple Word, "Q"

A guadruple word is a double-precision, float1ng~p01nt
number.

lpenotes abbreviation for the particular data type.

- Bytes are handled in a way similar to the PDP-10,

as described in Appendix B, Few instructions operate
on byte because bytes are considered a data Jormat for
characters only.

Most instructions operate on words as the word is con-
sidered the data format for program control ani integer
numbers. It is felt that higher level languages
(FORTRAN, ALGOL, etc.) use integers nostly for subscript-
ing and pirogram control and, therefoce, a single 18-bit
integer is considered sufficient. B

The condition code "CC" is handled in a way as described
in Appendix C. * :

5.0 Dgscr;ptien cf Instructions
Appendix D describes the instruction formats and the
interpretation of the fields of the format.
The data type of the instruction will be indicated by
a letter following the mnemonic of the instruction.
The letters are, as defined before: B = bit, Y = byte,
W = word or no letter (default), D = double word and ‘
- Q = quadruple word. Hence, MOV can be designated by
MOVY, MOVW or MOV, MOVD and MOVQ.
:“Thé.operation.of the individual instructions is given
below. 2 \ : '
MNEM Operation " * Name Format - = =
MOV (3)4D"’5 SR - " Move $spl
{(S) €0)2+C1
{(S)=C)+C2
((8)>0)+C3
coM . (DY-(S) Compare #SD
(r<0)3+cl | |
{r=0) +C2
(r>0)-+C3 .
(Carry=0)-+C . -
(Overflow=l)+V
foML (D) -(S), (S+n) 4~ (D) Compare #SD
({D) «(8))-C1 = = - with Limits ‘
A{{D)2(8))& ((S+n)>(D)))~C2 ‘
{(D)>»(S+n))+C3 :
ADD (D)+(S)+D Add #SD
{r=0)-+C2
(£>0)+C3.
{Carry=1l)-C .
. (Overflow=1)+v
weomyine SRS

;%fof instruction format see Appendix D.
:2“7’((5) <©0)+Cl" means: if (S) € then 1+Cl, else 0-+Cl.
)3‘§*w-iésu1t of operation.)

4»5in"= next data location from the source.

MNEM Operation Name Format
SUB {D)~(8)}+D Subtract #SD
' For CC %ea COoM
MUL m)*(sh&n Q}lj Multiply #SD
{(r<0¥>Cl
(x=0}-+C2
(r>0)+C3
!lr§>217}2¢V
DIV (D), (D+1)/(S}+D,D+1 Divide $SD
(q-0)3+Cl
(g=0)+C2
(g>0)-+C3
([g|2217)av
IMUL- (B}*(S)fp Integer £5D
- . B Multiply
For CC see MUL
IDIV (B)/ (51D, /37‘/' Integer 4SD
SR - bivide
for C@ ﬁic DIV
EXCH (s)-rtenp.,ﬁb)*s,(temp.)+D Exchange #SD-
(is)<c)+c1
{(8)=0)-C3
(153>Q)+C3
COML (D)&(s),((ms(sne(smm Compare #SD
. Logical
((D)& (S)=0) All 1's in (5) are 0 in. (D)
(({L)&(S))@(S]$0) Some 1°'s in (8) are 0 in (D)
((D) & (S) #0) +cC Some i's in (S) ars 1 in (D)
{((D)&(S))&(8S)=0) 1l 1's in (8) are 1 in (D)
AND (D)}&(S)+D Logical #SD
(r<0)+Cl
{r=0)+C2
{x>0)+C3

ACC= condition code.
{r! = absolute value of X.

3g = quotiemt of dxvisxmnt

ror OC see WADD

MNEM Operation Name Format
ANDCS (D) & (S) "D Logical — ASD
AND with
For CC see AND. Comple-
mented
Source
IOR {(D)1(S)-~D Logical #SD
Inclusive
: OR
For CC see AND
IORCS (D) ! (S)'-D Logical #3D
Inclusive
Ok with
Compla=-
mented
Souvrce
For CC see ARND
XOR {D;@(8)~-D Logical 4#SD
ST Exclusive
IR OR
¥For CC see AND
XORCS (D} §(8)'~D #SD
Source
FADD (D)4 (S}-D Floating #35
. ADD
{r <G)~C1
{r={}-+C2
{r>0)-C3
{Gverflow=1}+V and trap
(Underflows=l) - '
FSUB (D) -{S)+D Piosting 45D
Subtract
For CC see FADD R
FMUL (D}*(S)-D Floating $5D
, Bultiply ‘
For CC see FADD :
FDIV {0} /{8)+D Floating #8D
Divide

MNEM Operation Name Format
A0S (D) +1-D Add One KCSEP
and Skip

if {(CC=T), then (PI}+R+PC

when skip condition is satisfied,

sc& (B =1+D

{f {CC=T), then (DC)+R+BC

TSTS (D)+D
if (CC=T), then (PC)+R-PC
AOJ {R)¥FI4R

CiE foc=Ty, taew\(v j+BC

S0OJ {R) ~1+R

if lCC%%), then (D)-pC
TSTI (R)+R
if (CC=T), then (D)-pC

LSH shift'(nﬁ*u

@

the PC is

Subtract
one and
Skip

Tagt and
Skip

Add Cne
and Jump

Subtract
One and
Jarmp

Test and
Jump

Loqical
hift

incremented
with the value in the R €ield (0 to 7% of the instruction.

fosup

poomp

$CITMP

$CIMP

$EPD,

$LSH

The shift dlrectlcn and the numhar of shifts depend on
‘the sign and absolute value of the number determined by
the EP in the S field of the instruction.

(r <Q)+Cl
Ar=0)+C2
(r>0)~+C3

. {last bit shxfted out)+C

(Qv&rflow&l) Y

LSHC shift Combined (D), (D+1)

-+ ~,I}+l

For explanation and CC

see LSH -

Logical

Shift

Combined

$EPD,

$LSHC

lﬁvektlaw ccecurs (on 1€ft shifts and rotates only) whenever
the value of the two most significant bits of (D) become
Cn a right shxft OF

unequal. Once V is set, it stays set.

kratate V xs ule&rea.

 MNEM Operatior ’ Name Format

ROT Rotate (D}-D ~ Rotate #EPD, #ROT
The rotate direction and the nuwber of bit positions

‘rotated depend on the sign and absolute value of the .
number d:texrmined by the EF in the § field of the ip-

Cstruction., .
{reg)-C1
{r=0)-+C2
{r>0)-C3 ' : ‘
{(last bit rotated out)sC
{(Overflow=1) L.y
ROTC Rotate Combirned (D), (D41) Rotate $EPD, 4ROTC
=D ,D+1 Combined :
For explanation and CC,
see ROT,
ASH Shift Arithmetically (D)~D Arithaetic ﬁ?ﬁ, BAL
For explanation and ¢C, shift :
see SH.

ASKC Shift Arvithmetically Com- Aritnmetic 8EPD, $Acr-
~ bined (1), (D+1)+D,L41 Shift Com- : '

khined v v
For explanation and CC, ST <
sea LSH. S :
BIS I+EBLY : : Bit Set FEPD

The EBL is determined ss follows: the EA of the D field
of the instruction is vaken, starting from toe beginnirg

of the word -denoted by EA, EP bit locations are counted.
Note: EP is allowed %o be bigger than 18.

(EBL) D& (0) 01
{EBL) 31 {C) 02
(EBL) 36 (¢} »C3
(EBL) 3 -0

BICL (-EBL | Bit Clear $EPD
For exaplanation and CC,
see BIS.

“overflow occurs (on left shifts and rotates only) whenever
the value of the two most significant bits of (D) become
unequal. Once V is set it stays set. On a right shife oy
rotate, V ig cleared. . B

CUEBL® = affective bit lozaticn,

L3Iﬁﬁh&re}itfikiméaﬁtlth@,iEB&% pricr to change.

 MNE% Opcration . Nane Format
BICM (EBL) '-EBL Bit Com- 4EPD
o plement
for explanation and CC,
see BIS,
BIC® (C)+EBL ' Bit Copy $#BPD

(EBLY Li (0)»c2
(e8L) 11 (c)-c2
(EBL) i@ (C)~C3

(C)+EBL
BIT (EBL)-EBL ‘ CBit Test senpp
For éxplanaticn and cC,
see BIS,
BITC {EBL)-E5L : Bit Test #EPD

(EBL} "& (C)»C1 . Complement
(EBL) ' 1 {C)+C2
{EBL)”Q{C}ﬁC3

{ERL) *up

BIMS (EBL)+(~gp} Bit Move ZPD

: to Stack
the (EBL) is pushed on the stack as if it were an 18- -
bit weorg,

BIM! (3P)++EBL N Bit Move FEPD
‘ ~ . to Memory
If (SP)»= ¢, then 0-EBL e:1se 1+ERL, _
SMOV (D}s-(sP) . gesex $ETD
' ' Move

This is a mwve from meme dry to the stack (R6 is implied
stack pointer), gEp ig interpreted #s a post inlex and
the FR field {s interpr.2ted as a post ingiTeci T,

EiL<= if FR={0 ‘hen EA+EP eLna'fE&+EF}
For CC, e MoV,

MMOV (8P} +-+n S Memory $ERL

' - Move
This is a move fium sts .ck to memory. For furthsr éxplana-
tion and CC, see .ygy, '

BR if (CC=T} the (p(=)+ (OFFS) Branch #BR

o =B . '
When the branch condi 4 on is satisfied, the offset | a
9-bit signed gquantity) “j5 added to the pC.

- In here it is meant the (EBL) prior to change.

e

MNEM Operétign \ L Nama Format

JSR, | ') o Jump to #8PD

sp Subroutine
Spccxal ﬁuhruutxn@ wall passes parameters to the stack

automatically. See. Appendlx E.

ANAL) : Analyse #sD

To be defined later. ‘ :

REPBS , ‘ Repeat #REP
Single

The EP is interpreted as an unsigned integer repre-
senting the repeat count "RC". The repeat action is
stopped when (RC=0)!(CC=T). When REPS stops and
(CC*T)&(RC*O), then the remainder of the repeat count
,xs puzhed on the stack i.e., RCoam*~ (SP).
REPD o] Repeat $REP
_ Double
- Repeat n&xt two instructiang. For explanatxan, see
REPSO .

'JMP if (CC!T) tﬁe (D)*PC Jump $IMP
Jump takes place when jump condition is satisfied.
XCT if (CC=T): then Execute Exe“ute $§IMP

When condition satisfled, the instruction deroted by (D}
$1s executed. o

Xﬁ!ﬂ if (CC*T? the Execute ‘' Execute JIMP
:uv s Undistuxbﬁd . Undis-
- . turbed

Hban canditian satinfze& the*ihstxnﬂtion denoted by
“$hl is executed undisturhed, iu&.; the ‘result of the
qperation is not stored only ihe CC is set,

~15-

6.0 Register Seven

General register “R7" is used in the PDP-11 as the BC
(program counter). Because of this, certain addressing
modes are not advisable or lead to "self-

destruction” of the program. The table below shows
this.

ADDRESSING MODES FOR RY

Sourece Destination

R7 OK R7 oKX
@Rr7 OK . @R7 ‘Error

@(R7)+ OX @IR7)+ OK

C@A(RT) OK @K(R7) oK

(R7)+ OK. (RT)+ wR?
w(R?} -. Bxroxr ~-{R7) Error
@-(R7) ' Error @-(R7) Error

A(R7) . OK A(R7) OK

Xt Yﬁ'sugg&nted*ﬁdﬁfﬁﬁi§ ta;§§z§§ptﬁthe programsner
£rom meking these errors, but also to turn these
jfigity combinations into something useful.

§.§ Use the destination mode {R7)+ the normal way except
@0 not store the result of the operation. This way

@11l binary Instructions become "test immediate® in-

structions., ' : ' '

LvNR" = produces non-reentrant code.

6.2

-16~

Use the destination modes - (R7) and &-(R7) as flags
indicating the following, :

~{R7) Case

Consider the instruction a sitack operation with the
stack (i.e., there where R6 pcints to) as the destination

- and as source the contents of “(R5)+EN", The Elfective

. - A TEN Soomnkn Ve
Number "EN" is the contents of the § field of fhe instrug-
o, St 4 2 s .) »

tion interpreted as an unsigned integeyr (i.e., from

0 to 63). . The binary instructions look like:

ﬁ‘zﬁz

{5P) Operation ((R5)+EN)~+(5P)

€-(R7) Case

Operation similar to the ~-(R7) case except 2s source
the contents of ((R5)+EN) is taken. Binary instructions
loock like:

(SP) Operation @ ((RS)+EN)~(SP)

; Z‘x?PE%?&;}{ A

Pi?{}?ﬁ&ﬁiﬁ PoP~K INSTRUCTION SET

[

. 3 i
DW< - O

Count Insﬁ?ﬁdﬁicn @&§¢:1§£&0& .,' Bit Byte Word
4 MOV {8)+D MOVe v J Vv
4 COM (D) ~{8) Compare v . -
4 COML (D)~ (S), (S+n)3-(D} Compare with Limits J/ / /
1 ADD (D) +(S)+D add Y/
i SUB . (D) ~(S)~*D Subtract J/
1 MUL (D)*({8)+D,D+1 Multiply T/
1 niv (D) , (D+1) /(8)+D,D+1l Divide J
1 © IMUL (D) *(S5)-D “ Integer Multiply /
1 1DIV (D) /{8}-D,D+1 Integer Divide /
1 EXCH (D)OHS) " Exchange /
1 COML {D}&{S)>CC Compare Loglical /
((D)e(S))®(S)+CC
1 _AND (D}&IS)-D And : v
1 ANDCS {D)&(8) '~D ‘ : * /
i I0R (D)1 (8)-D - Inclusive Or J/
1 IORCS () 1(8) D"~ | /
1 XOR {p)e{s)»o . Exclusive Or Y
1 XORCS - {D)@(S8}'+D /
2 FADD (D)+(8)+D ' Fleating Add J
Z FSUB (D} ~(S)+D Floating Subtract 4
2 FMUL (D)*({8)-D Floating Multiply v
P FDIV (D) /(s)+D Floating Divide v
: v/
i ACS {(D}+1+D, skip? Add One and Skip v
i 50¢& (D)-1+D, skip? Subtract One and Skip /
i TSTS {D)>D, skip? Test and Skip v

lpw = double

20w w'quaéruple word

4) (
“g+n = next data word

- e o
L L

Cald

| Ca@ﬁguﬁi;g&:&gggiaa Pescription

C ERR— S

Byte

Wora

1 AQJ (R)+1+R, jump? Add One and Jump v

i SOJ (R)-1+R, jump? Subtract One and Jump v

1 TSTJI (R)>R, jump? Test and Jump v
i/2 LSH Logical Shitt v
i/2 LSHC Logical Shift Combined v
1/2 ROT Rotate - v /o
1/2 RCTE Rotate Combined o
1/2 ASH Arithmetic Shift v
1/2 ASHC - Arithmetic Shift Combined 4
1/2 BIMS (EBL) +~ (sP) ¢ Bit Move to Stack /

1/2 BIMM (SP)++EBL Bit Move to Memory /

1/2 BIS 1+EBLL Bit Set /

/2 BICL 0-+EBL _ Bit Clear v/

1/2 BICM (EBL)'»EBL ; Bit Complement K4

1/2 BICP ()2 +E3L Bit Copy v

1/2 BIT (EBL) »CC3 Bit Test '

1/2 81TC (EBL) '~CC Bit Test Complement /

3 SMOV m(§)¢—(sé)‘ Stack Move, Multiple Indexed Y

3 MMOV (SP) ++D . Memory Move, Multiple Indexed v/
2 3R Branch o

2 JSR, J8P Subroutine Call

1 ; AEAL L Analyze

1/8 REPS Repeat Single Cond, N

1/8 REPD Repeat Double Cond, N .

1/4 JMP Jump Cond, D

1/4 XCT Execute Cond, D

1/4 XCTU Execute Undisturbad Cond, D
4/64 TST (D) +cC Test / v

lgpr = effective bit location

&
Cee

= condition code

= contents of carry, status bit .

dgp = stack pointer

,.81'_

R

Count Zistrnction~ Description

(~ Bit

L i e e

4/64
1/64
1/64

1/64
1/64

1/64
3/64

1/64
1/64
1/64

1,64

1764
1/64

1/64
1/64

1/256
1/256

1/4096

. 3/64
1/64

SETZ
SETPO
SETMO

ADDC
SuBC

“TOC

TC

CIFS

CIFD
- DESI

CPSD
CFDI1
CFDS

0-+-D
1+D
-1+D

{D)+(C)~+D
(D)= (C)+D

(D) '-D
(D) *+1-+D

(D) »-(SP)
(D) >~ (8P)
(D)+-(85P)
(D) +~-(8P)
(D) +~-{(SP)
(D) +~(SP)

INCBP

DECBP

MCCS
MCCC
MSCC

NECH
LOCK

(CC) -+~ (SP)
- (cC)+C
(8P)+~+C

(!i)::’..(b-*n)

({D)=0)=>(SP)++D

Set to all Zeros
Set to Plus One
Set to Minus One

Add Carry
Subtract Carry

Take One's Complement

‘Take Two's Complement

Convert Integer to Float. Single
Convert Integer to Float. Double
Convert Float. Single to Integer

Convert Float. Single to Float. D.

Convert Float. D. to Integer
Convert Float. D. to Float. S.

. Increment Byte Pointer

Decrement Byte Pointer

Move CC to Stack
Move CC to C Bit
Move Stack to C Bit

Next ﬁ&chanée
Lock

/ v/
/
v
v
/
/
v
v

/

/
v/
7

Byte Word DC’

NN

Ui,

..6‘[_.

APPENDIX B

PDP~K Byte Handling

The PDP-K will handle bytes in the same manner as the PDP-10.

The format of the byte instructions w111 be similar to all
other 1nstructions.

Instruction

6 | 6 6
A Logd (S
oc S (>

The possible 0OC's aré{MOVY, COMY, and COMLY.

The S and D fields are identical in format and define the .
locations of the source and destination byte pointers "SYP
and DYP". The S and D fields are interpreted the same way
as the EP field, described in qoction 2.0 and as shown belaw;

SorD Fl&ld
/| 2 | 3
FR Hs R
EP ‘

The locations of ‘the SYP (source byte pointer) and the DYP
(destination byte pointer) azxe determined by the contents
of the EP's of the 8 and D fields of the instructions. The
free bits "FR" are used to allow for incrementing the byte
pointer.

The £omts of the SYP and DYP are idonticql ‘and shown below.
3)'P. or DYP ‘

-21~

Field Description

YP ‘*he position of the first bit of the byte in the
double word addressed by YL.

YS The length of the byte in bits.

YL YL is interpreted as a regular destination ani de-

notes the location of the double word containng the
byte.

.22

APPENDIX C

Condition Codes

The PDP~-K condition code differs from the PDP-1ll because

of the speciil requirements imposed by the single bit diddling
instructions! of PDP-K. The. instructions making use of tne
condition code have 4 bits to specify the condition. The
function of 4 of the condition code flip-flops will be discussed
below. Condition Codsg Flip- Flops

c1 | c2 c3 | C
Z . = -
& i L

Cl: indicates " < in arithmetic operations
indicates "&" in single bit operations

€2: indicates "=" in arithmetic operations
"indicates "1°® in single bit operations

C3:- indicates ">" in arithmetic operations
" indicates "#" in single bit operations

C:;* carry bit also used as test bit in single bit
' operations o

In arithmetic operations the flip-flops Cl, C2, C3 and C are
used as listed in the table below and interpretad as follows.
Cl=l when the result is <0; C2=] when result =0; C3=1 when
‘result 20, and Cs1 when there is a carry or when there is no
boxxrow. ' 7
n ey . i

In the case of bit diddling, .the flip-flops are used as
follows: : : .

(epL) 25 (C) 3+c1

(EBL) ! (C)+C2

(EBL)®(C)~C3
(EBL)+C

a;}séq Appendix A inst:uqﬁions BIS, BICL, BICD, BIT, BITC,aﬁd BICP.

2gpy = contents of Effective Bit Location,complemented when
the BTC (bit test complement) instruction is used. _

3(c) = contents of the carry flip-flop.

-23-

The operation above allows all 16 boolean operators between
2 variables directly and allows complex boolean equations

to be evaluated easily.

The interpretation of the contents of the flip-flops Cl, C2
and C3 for signed arithmetic and bit didling is shown below
and required 8 "condition code combinations" out of the 16

total.
TABLE Cl

& ! ® Signed Bit

< = > Arithmetic Diddling

Ccl c2 - C3 Interpretation Interpretation
o 0 0 0 False BNOT
1 0] 1 > BGT ® BXOR
2 0 1 (1] = BEQ -1 BIOR
3 0 1 1 2 BGE' &' BNAND
4 1 0 0 < BLT & " BAND
5 1 0 1 x | BNE 1 BNIOR
6 1 1 o < BLE o' BNXOR
7 1l 1l 1l True . BRA True * BRA

The remaining 8 cbmbinati&hs are used as shown in the table
below. Together with the BEQ and BNE conditions from above

they contain all conditions for unsigned arithmetic.

~24-

TABLE C2
Special Unsigned
Condition - Arithmetic
Interpretation Interpretation
0 Repeat count = 0 BZR |
1 | > BHI
2 overflow BOV |
3 No Carry BNCA 2 BHIE
4 Carry BCA < BLO
5 No Overflow BNOV
6 s BLdE
7 Repeat count % 0 BNZ;!

-25=

APPENDIX D

Instruction Formats

D.1 Format #SD, Source Destination

Instruction has 3 fields of 6 bits

instruction
—— A\ -
6 6 6 OC = operatior code
N ~ v ~ J § = source
b = destination
oC s D :

The S and D fields havg the same format as shown below.
S or D field |

LN

w

R = register field
’ M = mode figld

3
v
M

79

D.2 Format #CSKP, Conditional Skip

Instruction has 4 fields. The SC field (skip

. condition) is interpreted as in Table Cl of Appendix C.
The R field contains the number of words to be skipped
(fxrom O to 7).

D.3

D.5

~26-

vormat ¥CIMP, Conditiconal Jump

piis instruction has 4 fields. The JC field contains
the jump condition, interpreted as shown in Table C1
of Appendix C. The R field dcnotes the register to be
tested after an increment {(decrement or test).

& 3 3 & .
JC = jump condition
_M_v__,“_____,/ Sy /r"“" \‘-‘\\.f*'"*/ _w_,__u___\/,_,_____w/
oC JC R D

Format #EPD, Effective rosition-Destination

6 1 5 6 ~
p— DA / Ep = efigg?ﬁve position
N fielc
oC ' EP D

FR = free bit used to extend the OC field

D is a regular destination field, EP is a reqular ef-
fective position field.

Format #LSH, Logical Shift

(D)
“A

0 > high 18 low 4 0

D.

8

Format #LSHC, Logical Shift Combined

(D) (D+D
> M N\ -~ N\ “
r - , —
l o —* high 18 low | _ galhigh 18 iow |“® o0
L , e
Format #ROT, Rotate
{D)
/ i N i Y
] bag-
o high , 18» low
) N
y
Format #ROTC, Rotate Combined
~ . o _ -
: (D) {D+1)
' N~ 7 M\ -\
P — N N et
-p»|high 18 low | g Nigh 18 low

b e e e e e e e

D.9 Format $ASH, Arithmetic Shift

®

L4

igh- |
st —#—1 high

17

. low & Q

D.10 Format #ASHC, Arithmetic Shift Combined

St

 highy highy
bit Bl it k& ‘
(D), | | L (p+1)
% i
. -
, » , L
}hlgh 17 low g Digh 17 low j@
. “ V—' __.__/ », V— o
D.11 Format #BR, Branch) (M+ 1
5 4 9
S MY ~— .)
oC BC NEEfant #C = branch condition

Offset = 9~-bit signed integer

D.12 Format ¥REP, Repeat

S —

8 4 1 5 1
- v A\ v - — ’
oc COND EP

single/double bit

' D.13 Format $JMP, Jump

oC COND

“‘ R

APPENDIX E

Subroutine Calls

Besides the standard PDP-11 JSR, the PDP-K will have a more
powerful subroutine call. This new call "JSP" (Jump to
Subroutine with Parameters) auvtomatically passes parameters

to the stack and does "stack house-keeping” in such a way that
subroutine returns can be done ia a trivial way while the
stack is "cleaned up” automatically.

The format of the call is #EPD where the EP field is in-
terpreted as the number of parameters to be pushed on ths
stack. Register R5 is used tc point to the first passed
parameter after it has been pushed on the stack. The example
below shows how the JSP could be implemented. Note that in
addition to the parameters themselves, three other quantities
have :o be pushed on the stack to allow for automatic up- "
dating upon return from the subroutine. :

1. The number of parameters "NP”
2. A link to the previocus call "LNK"

3. The return address "RA"

Below is shown how the JSP actually operates. The left

stack shows the situation just prior to the call of subroutine
2, the right stack shows the situation just after the call.

R51 amm—

Free stack

area

Scratch 1

‘RAl
LNK1

NP1

P1.0
Pl.1

Stack just prior

. to the call

n, Supz2”

"JSP

Free stack

area

RAZ2
LNK2

NP2

P2.0
Pz.l

e s o

P2.n-2

P2.n-1

Scratch 1

RAl
LNK1

NP1

P1.0

Pl.1

?4—1

Stack just after

the call
n, SUB2"

*Jsp

«32-

The passing on of parameters which are passed as parameters
is taken care of by giving the to-be-passed-on parameter an
address relative toc the parameter pointer, i.e., (R5). A
parameter following a subroutine call is considered a "new”
parameter when its value is 264 and a passed parameter
otherwise., See example below:

JSP n,SUBL /call SUBl with n parameters

P1.0
. Pl.1
Pl.n-1
I —
~ J5P m,SUB2 ‘/eall SUB2 with m
£2.0 /paganct-z'
P2.1
P2.2
'1' ;/parameterl§.63 so it
i Q:.&J 1lviﬁtetprated as a

passed parameter, not

$im-1 ‘*1" but ((R5)+1) will

. | ‘be pushed'on the stack.
This is just parametex .
21.1 of_ the previous

eall.

