RSX-11M/M-PLUS
RMS-11 User’s Guide
Order No. AA-L669A-TC

April 1983

This manual provides information on file and task design using
RMS-11. The information includes design considerations for writing
application programs in both MACRO-11 and high-level languages.

SUPERSESSION/UPDATE INFORMATION: This revised document
supersedes the RMS-11
User’s Guide (Order No.
AA-D538A-TC).

OPERATING SYSTEM AND VERSION: RSX-11M Version 4.1,
RSX-11M-PLUS Version 2.1

SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation - maynard, massachusetts

First Printing, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright C) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX

DECnet MASSBUS vMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT

pECUS RsTS dilgiltiall
DECwriter

ZK2168

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corperation Digitai Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the ivcai Digital subsidiary {808-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS

Page

PREFACE
MANUAL OBJECTIVES . & & ¢ o o o o o o o s o o o o o o o & 1ix
INTENDED AUDIENCE . . . e« o o o 6 6 o 6 & e o e o s o » ix
STRUCTURE OF THIS DOCUMENT e 4 e o s e s e e & e e o o o . ix
ASSOCIATED DOCUMENTS e o o e o & e e o e e o o o X

CONVENTIONS USED IN THIS DOCUMENT e e s s s 4 e e s o o o o+ X

SUMMARY OF TECHNICAL CHANGES . . ¢ v v & ¢ « o o o s o o & « o« o xiii

=

CHAPTER RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

CONCEPTS OF DATA ORGANIZATION AND ACCESS . . . « « 1
REeCOXAS v & 4 & ¢ o o ¢ o s o o o o o o o o o & 1=

1

1

N L
NHH P
.
Vs W NP

FIileS & v v 4 v ¢ o o o o o o o o o o o o o o
ACCESS o 4 o o o s o o s o s o o o o o o o o o o 1=
Processing + v o o + 4« o o o o o o o o o + o « 1=1
File Maintenance O
RMS-11 IMPLEMENTATION OF DATA ORGANIZATION AND
ACCESS . « « « & . e o o s+ e e o o o s e o @ 1-11

.

1.2.1 RMS-11 Record Formats e e e s e s e e s e e . 1-11
1.2.2 RMS-11 File Organizations « « « « . 1=11
1.2.3 RMS-11 Record Access Modes . . + « « o o &« « » 1=12
1.2.4 RMS-11 Utilities e o o e o e o o o o 1-12
1.3 RMS-11 PROCESSING ENVIRONMENT e o o e o o o o o 1=-12
1.3.1 RMS-11 Task Structure 1-13
1.3.2 RMS-11 Record Processing . . « « « « o« o « « o« 1-15
1.3.3 RMS-11 File Processing . «. « « o « & o & « « » 1-16
1.4 FILE ATTRIBUTES . . ¢ ¢ ¢ & o o o s « o« o« « o« » 1-18
1.5 PROCESSING BY BLOCK ACCESS . + + « « « o o« « « o 1-20
CHAPTER 2 APPLICATION DESIGN
2.1 WHEN TO DESIGN . &« ¢ o « o o o o o o o o o o o o o 2=2
2.2 DESIGN CONSIDERATIONS . . & & o o s o o o o« o o o 2-3
2.2.1 Speed . . 4 i i s e e e e e e e e e e e e e e s 2=3
2.2.2 SPACE v ¢ 4 o 4 o s s o o s s e e s o s o e o o 2-4
2.2.2.1 Data Storage ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢« ¢ o <« . 2-5
2.2.2.2 Task SiZe& v ¢ & ¢« ¢« &« ¢« ¢« o ¢« o o o o o o o« o & 2=5
2.2.2.3 Buffer Sizes . . . « ¢ ¢ 4 4 ¢ 4 o o o o o o & » 2=5
2.2.3 Shared ACCESS . . &« & & & « s s o o o o s o « « 2=5
2.2.3.1 Bucket Locking . . + ¢ ¢« & ¢ ¢ o« o o« o o o o o « 2-8
2.2.3.2 Sharing among Access Streams « o« « « « =« « « « o« 2=9
2.2.3.3 Programming Considerations . . . « « « « « « o 2=10
2.2.4 Ease of Design . . ¢« & 4 &+ ¢ o o &« o« o« o« o « o 2-10
2.3 DESIGN PROCESS e e o o o o o o o o 2-11
2.4 SELECTING A FILE ORGANIZATION e o o e s s o o o 2=-11
2.4.1 Record Formats . « o ¢ « & & ¢ o o « o o « o« o 2-15
2.4.1.1 Fixed-Length Format . . . « ¢« « « « « + & « « 2=15
2.4.1.2 Variable-Length Format + « « . . 2-15

CONTENTS

Variable-with-Fixed-Control Format . .
Stream Format e s s s s s e e s

Undefined Format . . o & ¢« ¢ « o o o &
I/0 Techniques . .« « « « & « &« & o o« &

¢ v e

N
.
U W

. 0

DNDNDNDN
b by

CHAPTER

w

SEQUENTIAL FILE APPLICATIONS

FILE STRUCTURE &
RECORD SIZE . « + o« o« o &
FILE DESIGN
Data Storage Medium . . .
File Allocation
1 Initial Allocation
2 Default Extension Quantity . .
Contiguity «
ACCESS SHARING . . «o « « o o s o o s o«
.1 Record Access to Sequential Files .
.2 Block Access to Sequential Files . .
RECORD AND FILE PROCESSING OF SEQUENTIAL
Record and Stream Operations .

.
¢ o *
¢ o o o

oot PP LWWWWLWWWND

BWWWWWWNDNNNNHFHHEFEHFEFEHEEHERFHEF

CONNECT

DISCONNECT
FIND . . .
FLUSH e .
GET . e e
POT . . . « « « .
REWIND
TRUNCATE
UPDATE . . « + « &
Record Transfer Mo
Move Mode . . .

Locate Mode . . .
I/0 Techniques . .

.
. o o
. e o o .

-

o e o o o o
e

« e .
WOJaUndwbh -
e * o o o ®

N

des

o * o & o &

U} o o o« o o o o

(e Y
=]

Asynchronous Record Operati
Deferred Write

.1
.2 .
.3 Multiple Buffers
.4 .
5

Multiple Access Streams
. Multiblock Count
File and Directory Operations

WWWWWLwWwwWwWwwWwWwLwWwWwwwwwuwwwwuwwwwwwwuwww
* e e
« ¢ o e

. .

.

.

CHAPTER 4 RELATIVE FILE APPLICATIONS
4.1 FILE STRUCTURE . ¢ o ¢ o o o o o o o o o
4,2 RECORD SIZE . ¢ ¢ o o o o e o o o »
4.3 FILE DESIGN . . ¢ ¢ ¢ o o o o o o o o =
4.3.1 Bucket Size « ¢ ¢ ¢ ¢ ¢ ¢ o o o o o
4.3.2 File Allocation . & ¢ & o ¢ o o o o &«
4.3.2.1 Initial Allocation e o e e
4.3.2.2 Default Extension Quantity
4.3.3 Contiguity« « « ¢« « ¢« « o & . .
4.3.4 Maximum Record Number « .+ .« &
4.4 ACCESS SHARING .+ & « &« o o o o o o o o @
4.4.1 Record Access to Relative Files . . .
4.4.2 Block Access to Relative Files
4.5 RECORD AND FILE PROCESSING OF RELATIVE F
4.5.1 Record and Stream Operations
4.5,1.1 CONNECT . ¢ v « o o o o o o o o o o @
4,5.1.2 DELETE &« & ¢« & o o o o o s o s o o o &
4.5,1.3 DISCONNECT . . + =« &+ & 2 2 2 & = 2 =
4.5.1.4 FIND ©v o 4 ¢« o ¢ o o o o o s o o o o «
4.5.1.5 FLUSH &« &« o ¢ o o o o o o s o s o o =
4.5.1.6 GET & & o o o o o o o o o o o o o o «
4.,5.1.7 PUT & ¢ o o o o o o o o o o s o o s s
4.5.1.8 REWIND . . & & o o ¢ ¢ o o o s s o o =

iv

e » o o
¢« & o o
¢ & o
i1

I o o o o
=
Ll e o o o o o o o
=
e
[

.
.
.

FOWWOUNINNINOOAA O W WN

T WWWWWwWwWwwWwwwuwwwwww

.

ww
1

=

e & o 0 o e ¢ o
| T O I e N e R A D D I |
NHOOXOJIINOAOAAOWUdIxWWNDNNE

® 4 o e o ¢ o 4 & ¢ ¢ o

¢ o o o o e o o

S 4 e o e o @

LI R A T i A L I

e o o o ® s o o o [N o ¢ & o o
e e ® ¢ & 43 ® o & g & g

[N
e

CONTENTS

4.5.1.9 UPDATE & & & ¢ v v v 4 4 v o o v o o v o . . 4-12
4,5.2 Record Transfer Modes « . . . 4-12
4.5.2.1 Move Mode 4-12
4.5.2.2 Locate Mode v v v v v u o 4-13
4.5.3 I/0 Techniques o o v v o .. 4-14
4.5.3.1 Asynchronous Record Operations 4-14
4.5.3.2 Deferred Write v v v v . .. 4-14
4.5.3.3 Multiple Buffers « 4-15
4.5.3.4 Multiple Access Streams 4-15
4.5.4 File and Directory Operations 4-15
CHAPTER 5 INDEXED FILE STRUCTURE AND ACCESS
5.1 PHYSICAL FILE STRUCTURE e e e o o o o 5=2
5.2 CONCEPTUAL FILE STRUCTURE e o e o e o o o 5-4
5.2.1 Data * s o o 4 o e s e o 4 s s e o o . 525
5.2.1.1 Level ¢ of the Primary Index . . . « « « + . . . 5-5
5.2.1.2 Level 0 of an Alternate Index 5-5
5.2,2 Indexes o o . e e« o o 5-6
5.2.3 Random Access U51ng the RMS 11 Indexed Flle
Structure ., . . e ¢ & s+ & 4 ¢ e o o 4o 4 e » & 5-7
5.2.4 Why this Structure’ © + o o o 4 e e e s e« &« « o 5-8
5.3 PROCEDURES FOR PERFORMING RANDOM RECORD OPERATIONS 5-9
5.3.1 Writing a Record . . . « v v . v v v v v . . . 5-10
5.3.1.1 Simplest Case « . . « o . . . e « « . 5-10
5.3.1.2 Bucket Splitting 5-11
5.3.1.3 Incremental Reorganization 5-12
5.3.2 Getting and/or Finding a Record 5-13
5.3.3 Updating a Record e+« o o o B5=14
5.3.4 Deleting a Record © s+ o « « « o« B5-=15
5.4 PROCEDURES FOR PERFORMING SEQUENTIAL RECORD
OPERATIONS * e e « o ¢« « o 5-16
5.5 I/0 COST OF PERFORMING RECORD OPERATIONS e« o o o 5-17
CHAPTER 6 INDEXED FILE DESIGN
6.1 RECORD SIZE .+ © v v ¢ v 4 o w o o o o o . o . . 6-1
6.2 KEY SELECTION . . + v & v 4 o o . . e s ¢ o o o . 6=-2
6.2.1 Number of Keys . . v ¢ v v 4 v o o o o o 6-2
6.2.2 Key Data TYPES « v v v v ¢ v v 4 o 4 o v o o o . 6-3
6.2.2.1 String Type . . © e e o e 4 o e e 4 + o . 6=-3
6.2.2.2 Two-Byte Signed InLeger Type « ¢ ¢ ¢« 4o v &« o« . . 6-4
6.2.2.3 Four-Byte Signed Integer Type . . v o 6-4
6.2.2.4 Two-Byte Unsigned Binary Type . . + « . « . . . 6=5
6.2.2.5 Four-Byte Unsigned Binary Type 6-5
6.2.2.6 Packed Decimal Type . .+ .« o o o o . . « o+ .« o 6-6
6.2.3 Key Size e s 4 4 e o 4 s o . . 6-6
6.2.4 Position of Key in Record e s e 4 e e e s e s . 6=7
6.2.5 Key Characteristies 6-8
6.2.5.1 Duplicates « e o + s+ + . . 6-8
6.2.5.2 Changes e o o 6-9
6.2.5.3 Null Rey o v v v v v v v v v e e e e e . 6-10
6.3 AREAS * e e s e 4 e e 4 4 4 e s « . B=10
6.4 PLACEMENT CONTROL ® + e e o o s s e e s s+ s e« « Bb6-=13
6.5 BUCKET SIZE . . . ¢ v v 4 4 4 v v o o o o o o« . 6-15
6.5.1 Bucket Size for Primary Index 6-16
6.5.2 Bucket Sizes for Alternate Indexes 6-19
6.5.3 Program Syntax .« . . v v v 4 4 4 4 e o4 W u . . 6-21
6.6 FILE ALLOCATION . . & & & & o o .+ . e s e o o o 6=22
6.6.1 Initial Allocation 6-22
6.6.2 Default Extension Quantity 6-26
6.7 POPULATION TECHNIQUES . . . o o o o« o+ e o o . b6-26
6.7.1 Ascending Order by Primary Key e e e e e o o 2 6=27

CONTENTS

6.7.2 Random Insertions after File Population . . .
6.7.2.1 Bucket Fill Size v ¢ o ¢ o o o o o & s = = = =
6.7.2.2 Mass Insertion . « o ¢ ¢ o o o o o o o o o o
CHAPTER 7 RECORD AND FILE PROCESSING OF INDEXED FILES
7.1 ACCESS SHARING . . . e e o o e o o o e s e o
7.1.1 Record Access to Indexed Files « « ¢« ¢ ¢« o o =«
7.1.2 Block Access to Indexed Files « . .
7.2 RECORD AND STREAM OPERATIONS . . ¢ ¢ « o « o o =
7.2.1 CONNECT v ¢ o« o o o o o o o s s o o o o o o
7.2.2 DELETE . ¢ « ¢ « o o s o o o o o o o o o s o o
7.2.3 DISCONNECT . ¢ « o o o o o o o o s o o o o o =
7.2.4 FIND . v o o o o o s o o s o o o o o o o o o =
7.2.5 FLUSH . ¢ « ¢ o o o o o o o s o o o o o s o »
7.2.6 CGET v o v o o o o o o o o o o o o o o o o s =«
7.2.7 PUT v v o « o o o o o o s o o o o o o o o s @
7.2.8 REWIND ¢ « ¢ ¢ o o o o o o o s o o o o s o o =
7.2.9 UPDATE . . e o o s o e o o s e s o e
7.3 RECORD TRANSFER MODES e o & o o e o s e o s e o
7.3.1 MOVE MOAE & « o o o o o o o o o o o o o o o
7.3.2 Locate Mode . . « ¢ o o o o o o « o o o o o =
7.4 I/0 TECHNIQUES . . « &« o o o o o o o o o o o o o
7.4.1 Asynchronous Record Operations
7.4.2 Deferred Write « .« v o o o o o o o o o o o o
7.4.3 Multiple Buffers . . « ¢« ¢« « ¢ « o o o o o & =
7.4.4 Multiple Access Streams . . e e e e e e e
7.4.5 Sequentially Reading erte—Shared Files . . .
7.5 FILE AND DIRECTORY OPERATIONS . . . « o ¢ ¢ «
CHAPTER 8 TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES
8.1 TASK BUILDING WITH RMS-11 ROUTINES . . . « « « =«
8.1.1 Disk-Resident Overlays . . « o« o « « o o o o =
8.1.1.1 ODL FileS v v« ¢ ¢ o o o o o o o o o o o o o =
8.1.2 Memory-Resident Overlays « o .
8.1.2.1 Task Building against the RMS-11 Re51dent
Library .« « o o o o o o o o o o o o s o o o
8.1.2.2 Using RMS-11 Operations from within Your Own
Resident Library . . S
8.1.2.3 Deciding Between Types of overlays .« « « o« « =
8.2 PROGRAM DEVELOPMENT . « &« ¢ o o o o o o o ¢ o =
8.2.1 Fliow of Operations Should Reflect RMS-11 Code
StructUre . ¢ ¢« ¢ o o o o o o o o o o 2 s o
8.2.2 Task Builder Considerations . . . « ¢ ¢ « <« &
8.3 VIRTUAL-TO-LOGICAL-BLOCK MAPPING . . . « + « - =
8.3.1 Retrieval Pointers on Disk . « + « &« &« « ¢ ¢ =«
8.3.2 Retrieval Pointers in Memory . . « ¢ « o o o+ =
8.3.3 Optimizing Window Turning . . « « « « . « o« .
8.4 OTHER OPTIMIZATIONS . ¢ ¢ o o o o o o o o o o
8.4.1 Allocating More Resources to the Task
8.4.2 Disk USQGE + « « o o o o o o o o s o o o o o =
APPENDIX A FILE SPECIFICATION PARSING
A.l STANDARD FILE SPECIFICATION SYNTAX « « - « o o =&
A.l.1 DEVICE v o o o o o o o o o o o s s s = o o »
A.l.2 DIirectory .+ o« « o o o o o o o o o o o 2 3 7 =
A.1.3 NAGME o « o o o o o o o o o o o s o o o o s o o
A.l.4 TYPE o o « o o o o o o o o o o o o o o s o o
A.l.5 Version . ¢ v o o o o o o o o 4 s o e o e e .
A.2 ANSI MAGNETIC TAPE FILE SPECIFICATION SYNTAX . .
A.2.1 DEVICE v« o« v ¢« o o s o o o o o o s o o o o o o

vi

WWWNN =

NN NN
| I T T T T N A O T |

coocwomwIIaoanoautunun

| NN

\Jqu
-

prErETYY
B W W N b

CONTENTS

2 Directory . & v v ¢ 4 v 4t v e e e e e e
.3 Quoted String . . ¢« ¢ v 4 4 e 4 e e e e .
4 Version . . . o . ¢ o e o o s s o
GENERATION OF A FULL FILE SPnCIF;CATLON o o o

APPENDIX B REMOTE FILE AND RECORD ACCESS VIA DECNET

[}

B.1 REMOTE NODE SPECIFICATION . & & & o & o o « &
B.2 REMOTE ACCESS ENVIRONMENTS . . ¢ &+ & o o o o &
B.3 REMOTE ACCESS POOL CONSIDERATIONS

INDEX

FIGURES

FIGURE Record Formats . . . & & v ¢ v ¢ ¢ o o o o o
Files . . . e 4 s 4 e o e s e s s s o s e
Sequential F1le Organization
Relative File Organization . . . « & « « o« . .
Indexed File Organization «. . . .
Indexed File Example . .+ v « v v v o o o o o &
Record Access ModeS . . & ¢ 4 o o o o o o o
RMS-11 Task Structure ¢« ¢ ¢ &« ¢ o o .
Records Spanning BlockS . & v & o o o o o o
Time Factors in an I/0 Operation
System Protection Concepts . . . ¢« « & + « . .
Bucket Locking Example . « « v & o o o o o o
Count Field on Disk and Tape +« « « « &+ « « « .
RMS-11 Task Structure ¢« ¢« « « . .
RMS-11 Task Structure ¢ ¢ ¢ ¢ « o« + .
Indexed File with and without Areas
Formatted Bucket ¢« ¢ ¢ ¢ & o + .
Index as a Pyramid . . . + ¢« & ¢ ¢ ¢ v v o . .
Format for Secondary Index Data Record
Example of a Primary Index . . « « « o « o o &
Search Time CUTVES « ¢ ¢ & ¢ ¢ o o « o« o o o &
Single-Area Indexed File . . . e e e e e e
Example of Single-Area Indexed F11e e« e e s
Two-Area Indexed File e e s e e .
Example of Multi-Area Indexed F11e e e e e e e
RMS-11 Task Structure . . . « ¢ &« ¢ ¢« o o « .
Source-to-Task Sequence . . . ¢« ¢« ¢« « « o . .
RMS-11 TasksS v &« & &« & 4 v ¢ o ¢ o o o« o o o &

I LIS I Y N J O I N R N N |
NHEPFEEWNHEFOOUEWNHEFEEFER®RWONDNHFOONOUTE WN -

| I Y R T N R I P I A B |

VOO UVUUNUTUVEWNNDNNF R
|

TABLES

File Organization Characteristics and
Capabilities . ¢ v & & ¢ ¢ ¢ ¢ o ¢« o o o o o
2 File Organization Advantages and Disadvantages
1 End-of-Block Indicators o o e o
2 Sequential File Data Sizes (in bytes) « o o o
-1 Relative File Data Sizes (in bytes)
1
1

TABLE 1-1 Record Formats and File Organizations e e . .
2-1

I/0 Cost of Performing Record Operations . . .
Key Data TYPES ¢ v v &t ¢ o o o o o o o o o o »

vii

W ww
wwN

[U
B_ENNNNWNOHFFHFONOABRRWWWUOABIRONANU D WN

o e

=
NN
==

L]
- w N
1
1

oo o
[e o2 U I R N I BN O IS, IO, IS, S, BT, I
HHEERT)

PREFACE

MANUAL OBJECTIVES

This document is a guide to using RMS-11 capabilities and operations
in file and task design for application programs written in either
MACRO-11 or high-level languages.

INTENDED AUDIENCE

This document is intended for application programmers who want to
achieve optimal performance with new applications they are writing or
with existing applications.

NOTE

Only MACRO-1l1l programmers can use the
full set of RMS-11 capabilities.
Subsets of these capabilities are
available to high-level language
programmers. See your high-level
language documentation to determine:

e What RMS-11 facilities you can use in
your high-level language

e The syntax for using these facilities

STRUCTURE OF THIS DOCUMENT
This manual contains eight chapters and two appendixes:

e Chapter 1, RMS-11 Concepts and Processing Environment,

introduces the concepts of data organization and access and
the RMGQ_1 ~ 3

4+ AF RlhAaca e
the RMS-11 implementation of tt

i€se concepts.

e Chapter 2, Application Design, presents general considerations
that apply to application design and information that will
help the application designer select a file organization.

® Chapter 3, Sequential File Applications, discusses sequential
file structure, design, and processing.

e Chapter 4, Relative File Applications, discusses relative file
structure, design, and processing.

ix

PREFACE

® Chapters 5, Indexed File Structure and Access, 6, Indexed File
Design, and 7, Record and File Processing of Indexed Files,
discuss indexed file structure, design, and processing.

e Chapter 8, Task Building and Common Optimization Techniques,
describes techniques that can be used to optimize application
programs that use RMS-11, regardless of the file organization
selected,

e Appendix A, File Specification Parsing, documents RMS-11's
handling of file specifications.

e Appendix B, Remote File and Record Access via DECnet, briefly
describes the remote access environment and remote file
specification syntax.

ASSOCIATED DOCUMENTS

In addition to this wuser's guide, the RMS-11 documentation set
contains the following manuals.

RSX-11M/M-=PLUS RMS=11l: An Introduction presents the major concepts of
RMS-11, iIntroduces the RMS-11 operations, and defines key terms
required for understanding RMS-11 capabilities and functions. You
should read the introduction before proceeding to other manuals in the
RMS-11 documentation set.

The RSX-11M/M-PLUS RMS-11 Macro Programmer's Guide is a reference
document for MACRO-11 programmers that describes the macros and
symbols that make up the interface between a MACRO-11 program oOr
subprogram and the RMS-11 operation routines.

The RSX-11M/M-PLUS RMS-11 Utilities manual is both a wuser and a
reference document for all users, both programmers and nonprogrammers.
It describes the RMS-11 utilities that are available for creating and
maintaining RMS-11 files.

In addition, the Mini-Reference 1Insert includes an easy-reference
guide for wusers who are familiar with RMS-11l and its documentation.
It summarizes the RMS-11 utilities and error codes.

CONVENTIONS USED IN THIS DOCUMENT

Convention Meaning

UPPERCASE Uppercase words and letters, used in format examples,
indicate that you should type the word or letter
exactly as shown.

lowercase Lowercase words and letters, used in format examples,
indicate that vyou are to substitute a word or value
of your choice.

quotation marks The term "quotation marks" refers to double quotation
marks (™).

apostrophes The term "apostrophe" refers to a single quotation
mark (').

(]

TKB> //

Unless otherwise
notation.

Unless otherwise
RETURN key.

PREFACE
Square brackets indicate that the enclosed item is
optional.
A horizontal ellipsis indicates that the preceding
item(s) can be repeated one or more times. For
example:

file-spec[,file-spec...]

A vertical ellipsis indicates that not all of the
statements in an example or figure are shown.

In examples of commands vyou enter and system
responses, all output lines and prompting characters
that the system prints or displays are shown in black
letters. All the 1lines you type are shown in red
letters.

noted, all numeric values are represented in decimal

specified, you terminate commands by Dpressing the

Xi

SUMMARY OF TECHNICAI. CHANGES

RMS-11 Version 2,0 supports random access to fixed-format disk
sequential files and sequential block access to disk files of any
format and organization.

The RMS-11 Version 2.0 resident libraries are task independent. This
means that once a program is linked with this library, the library can
be rebuilt or replaced without requiring that the task linked to it be
rebuilt,

RMS-11 Version 2.0 contains no library equivalent to the RMSSEQ
memory-resident library included with RMS-11 Version 1.8. The RMSRES
resident library or the disk-resident ODL files can be used to obtain
equivalent functionality and performance.

New versions of the RMS-11 Version 1.8 ODL files are provided. These
ODL files are: RMS11S.0DL, RMS11X.ODL, RMS12X.ODL, and RMS11.0DL.
The Version 1.8 ODL files will still work with Version 2.0, but the
new versions will be more efficient. RMS-11 V1.8 ODL structures other
than RMS11S.0DL, RMS11X.0ODL, and RMS12X.ODL may not work correctly
with the RMS-11 V2.0 code; when in doubt, verify them by comparison
with the v2.0 RMS11.0DL file. 1In addition, two new ODL files are
provided with Version 2.0: RMS12S.0DL and DAP11X.ODL.

Files with stream and VFC records can now be created on unit-record
devices to avoid the need for special-case code in copy-type
operations.

® For VFC files, the record header 1is thrown away on output
unless the file is a "print format"™ file.

e TFor stream files, if none of the 3 carriage control bits is
set (print file format, carriage control, or FORTRAN carriage
control), and if the 1last character is not a 1linefeed,
formfeed, or vertical tab, the carriage-return/linefeed
(CR/LF) is appended at the end of the record.

® For stream files, if either the carriage control or FORTRAN
carriage control attribute is set, and if the last 2
characters of the record are CR/LF, the trailing CR/LF is
stripped off and then definition of the carriage control
attribute (CR or FTN) is applied.

ar ease-of-copying reasons, RMS-11 now allows creation of

relative and indexed files for output to nondisk devices (for magtape,

however, the record format must be variable length or fixed length).

The RMS-11 File Design Utility (RMSDES) is a new utility that allows
you to design and create files interactively. It is fully documented
in the RSX-11M/M-PLUS RMS-11 Utilities manual.

RMS-11 Version 2.0 supports five new directory operations: SENTER,
SPARSE, SREMOVE, $RENAME, and $SEARCH. These operations are fully
documented in the RSX-11M/M-PLUS RMS-11 Macro Programmer's Guide.

xiii

SUMMARY OF TECHNICAL CHANGES

1

i1i
€111
Ui

“

RMS-11 Version 2.0 supports a new wildcard file specification fac
and a new print-record output handling format. c
documented in the macro programmer's guide.

ty
1y

1

mia o~ ~
These are als

User-provided interlocks allow a special, limited form of sequential
file sharing among a group of accessors that includes at most one
read/write accessor and any number of read-only accessors.

If suitable DECnet facilities exist on your system and on the target
system, RMS-11 Version 2.0 will allow file and record access to files
on remote network nodes, if those nodes include an RMS-1ll-based file
access listener (FAL).

For magtape, RMS-11 now allows fixed-format records to be less than 18
bytes.

Files with stream or VFC records can now be created on unit-record
devices. In addition, RMS-11 now allows the creation of relative and
indexed files for output to nondisk devices, although they will Dbe
treated as sequential files.

<CTRL/Z> and <ESC> are no longer recognized as record terminators for
stream files, and <CTRL/Z> is no longer recognized as a file
terminator for stream files.

RMS-11 Version 2.0 pads stream files with null characters, to the high
block of the file (not just to the end of the current block).

The memory-resident library RMSRES can be clustered with any other
resident library that supports clustering.

On RSX-11M-PLUS systems that include hardware support for supervisor
mode, RMSRES can also be used in supervisor mode.

On RSX-11M systems, an optional subset library, which contains support
for sequential and relative files only, is available.
NOTE
All new RMS-11 features are fully
accessible only to MACRO-1l1 programmers.

See your high-level language
documentation for supported features.

Xiv

CHAPTER 1

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Your business, whether commercial, scientific, governmental, or
educational, relies on data. That data indicates the current state of
your business and helps you control the future of the business.
Therefore, you want fast, efficient access to the right data when you
need it.

You are familiar with dealing with data on paper and know that records
of transactions and reports on your business's activities can occupy a
very large number of file folders. You also know that finding exactly
the data you need can be a time-consuming process.

Computer hardware, however, with its speed and mass data storage
capabilities, provides the means for fast, efficient access to data.
Computer software provides the means for translating the data from the
format you use to a format the computer system can handle -- and back
again.

RMS-11 is such a translater between you and your system. This chapter
introduces RMS-11 in terms of general concepts of data organization
and access, which apply regardless of whether data is stored on paper
or within a computer's memory. It then discusses the RMS-11
implementation of data organization and access, and the RMS-11 data
processing environment.

1.1 CONCEPTS OF DATA ORGANIZATION AND ACCESS

This section examines the general concepts of data organization, using
images from the noncomputer environment you may be most familiar with.

1.1.1 Records

When data is stored on paper, it is recorded in groups of items whose
form is repeated throughout the data. Each group of items is called a
record. Within each record are the specific items of data you are
concerned with,. For example, all the information on an employee
constitutes a personnel record; all the information on a stock item
constitutes an inventory record.

On paper, a record can be a form; different types of records require
different forms. Some forms are always the same length; their
information does not expand with time or use. For example, a product
information form does not vary in size. If the facts about a product
change, you fill out a new form. If a new product is added, you also
fill out a new form.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Other forms vary in length with time and use, continuing on to new
pages as they grow. For example, an employee with the company for 10
years has more data in his or her personnel record than a new

employee.

Other forms might wuse a combination of these two formats. For
example, a record of service on a piece of equipment might begin with
control information describing the specific piece of equipment (name,
model number, date of installation, and so on) and continue on to new
pages documenting the service performed on it.

Figure 1-1 illustrates various record formats.

PRODUCT RECORD SALARY HISTORY [T E.C.O. HISTORY
. — = (7]
s giesg oo — T] T =
G e M A [/@ R P
—— A~ AA— \’ — -
—— *e Casand _ﬁ'\v b 3
- ?\ P B v H
- D R et v L —
I e _Q A= |V 1 <
D e et ot [«
e — —— e 3 g
— s a
END (MAY CONT.) A
(MAY CONT.) HH 8
T (MAY CONT.) (MAY CONT.) H 5
1 (MAY CONT.) i (MAY CONT.) {4 [4 |
1 (MAY CONT) BB =
(MAY CONT.)
(MAY CONT.)
{MAY CONT.)
ZK-1170-82

Figure 1-1: Record Formats

1.1.2 Files

When data is stored on paper records, it 1is wusually gathered into
files and stored physically in filing cabinets, organized by related
records. For example, all employee records might be stored in one
file and placed in one drawer of the filing cabinet.

A file not only keeps related data in one place, it also segregates
that data from other, unrelated data.

As data grows, the file and storage requirements become more
complicated, and the number of filing cabinets multiplies. Then, the
files acquire names or numbers, the drawers acquire signs indicating
the contents of the drawers and who may use them, and
cross-referencing systems are introduced to help locate data. These
identifying characteristics and restrictions upon who may read or
alter specific files can be called attributes.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-2 illustrates data storage using filing cabinets.

ZK-1167-82

Figure 1-2: Files

In general, the person who uses a file establishes a method of
organizing the records within it. This method reflects the file's use
and dictates what information is needed and how much time is required
to locate a record within the file.

There are several typical methods for organizing records in a file,
depending on how the records are used. If you generally use all the
records in a file whenever you open it (that is, you have little or no
need to locate individual records in the file) and the order of the

records is not important, then you can organize the records
sequentially:

® The records assume the physical sequence in which +they are
inserted into the file (that is, records are appended to the
file).

® No empty spaces are left in the sequence of records, where
records could be inserted later. Each record, except the
first, has a record before it; each record, except the last,
has a record following it.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Employee payroll records, for example, might be kept in a sequential
file. Because all the records must be accessed every time the payrell
is done, sequential file organization would allow easy access to the
records.

The overhead and maintenance for sequential files 1is minimal. To
insert a record into the file, you simply put it after the last record
already there. Figure 1-3 illustrates sequential file organization.

ZK-1168-82

Figure 1-3: Sequential File Organization

For more access flexibility than sequential files, if you want to be
able to locate individual records easily, you can set up a series of
file folders and number them in sequence from first folder to last.
Fach folder is the same size; it holds only one record, but it can be
empty. Thus, you do not have to look sequentially through the records
to locate the one you want (although you can if you want to access all
the records). You use the numbers on the folders to locate or insert
records; each record will be numbered relative to the beginning of
the file. The numbers can relate to some numbering system meaningful
to vour business: for example, order numbers or part numbers.

Figure 1-4 illustrates relative file organization.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

ZK-1171-82

Figure 1-4: Relative File Organization

If you have a large file and most of the time you want to be able to
locate individual records, you may want to index your files. Indexing
is useful when you want to be able to use several kinds of information
to locate records. For example, in an employee file, you may want to
use last-name information to obtain a report on all employees, and
job-designation information to obtain a report on all clerical
employees.

When you open an indexed file drawer, you find records filed with
numbered tabs separating them. At the front of the drawer is a set of
small card files, containing groups of cards separated by dividers.
The cards 1in each of these small card files are an index to the
records at the back of the file. To insert a record in the file, you
find the data item marked "key" on the record, and using that
information, consult the appropriate index to determine where the
record should be inserted. Figure 1-5 illustrates indexed file
organization.

To find a record in an indexed file, you look for the specific Kkey
information in the appropriate key file and use that information to
locate the record. For example, if you want the record of a
transaction with the Q,R,&S Company, you open the indexed file drawer
for transactions, which contains data records filed at the back and
indexes at the front. Figure 1-6 illustrates this example.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

ZK-1169-82

Figure 1-5: Indexed File Organization

ROOT

RHESUS INC

ZK-1175-82

Figure 1-6: Indexed File Example

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You know that company name is the primary key for records in the file
and that index 0 indexes the primary keys. The first record in index
0 is the root, which lists selected primary key values, that is, the
company names, in alphabetical order. Not all company names appear
here: 1instead, a small subset of names, distributed fairly evenly
across the full set of names, is wused as the highest level of
indexing. By selecting one name, you establish the region of the file
(range of names) that interests you.

You look down the list until you find a name that either matches
Q,R,&S or occurs after this name in the alphabet. You find Rhesus,
Inc with the number 3 alongside it.

You put the root record back in the file and go to the first divider
and the third index record behind it. Again, the set of names here is
incomplete: only a small set of names distributed fairly evenly
across the range covered by the highest level index entry exists.
This provides an intermediate level of indexing, and further 1limits
the range of names in which you are interested.

Rhesus, Inc is the last entry on this card, but you scan the list and
find the name Queeg Co, which is the first entry at or after ¢,R,&S in
alphabetical sequence. The entry for Queeg Co has the number 7
alongside it.

So you reach into the data records at the back of the drawer to tab
number 7. You search sequentially through the records behind this tab
until you find the record of the Q,R,&S transaction.

For another example, using the same transaction file, suppose you want
to find a record but all you know is its transaction number.
Fortunately, the second alternate key for the file is transaction
number. Index 2 1indexes the second alternate keys (recall from the
previous example, that the indexes are numbered starting with primary
index 0). You look at the root record in index 2 and move through the
index as you did in the previous example until you find a card listing
the transaction number you are looking for. Next to the number is the
code 7/5.

S0 you reach into the data records at the back of the drawer to tab
number 7 and count back to the fifth record behind the tab. You find
that the transaction you are looking for was made with the 0,R,s&S
Company.

Here, only one level of indexing -- the root record -- was used. If
many records exist in the file, another intermediate level would also
be used, as it was in index 0. Use of intermediate index levels

allows the number of entries you must scan in each level to be small,
regardless of the total number of records in the file.

1.1.3 Access

Once you have records organized in a file, you can get, or access,
them in two ways:

® You can search all the records one after the other. This 1is
called sequential access.

® You can use an identifier to 1locate an individual record.
This is called random access.

Note that access means not only retrieving a record from a file but
putting a record into the file as well.

1-7

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-7 illustrates the random and sequential access modes.

ZK-1172-82

Figure 1-7: Record Access Modes

Sequential Access

For sequential access, you pick a point in the file and access the
records beyond that point one at a time. At times, the starting point
is the beginning of the file because you want to look at, or access,
each record in the file. Other times, you may begin midway through
the file.

To read each record, you take it out of the file, marking the position
of the record you just removed with a card or some other marker so
that you know:

e Where to put the record back into the file

® Where the next record is
To insert records sequentially, you reach into the drawer to the place
where vyou want the records to go and mark the position of that place.

Often, the point at which you will insert the new records will be the
end of the file. At other times, it may be midway through the file.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You insert the records by taking the first record from the stack of
new records and slipping it into position in the file. You then mark
the position after the record yocu 3just inserted and add the next
record in that position. You continue in this manner until all the
new records are inserted.

Note that in both retrieving and inserting records yeu move through
the records consecutively. Each record is retrieved or inserted with
respect to the record accessed right before it.

Random Access

For random access, you determine the location of the record you want
on the basis of some identifier, rather than on the basis of the
record's position within the file. 1If, for example, you have a list
of locations of records in the file, you can reach into the file to a
record's exact location. Each record selection is independent of the
previously accessed record and of the next record to be accessed.

The record identifier can be a number, as for relative files, or it
can be a key, as for indexed files. Or, the identifier can be a
physical location within the file drawer; for example, you could
place each record in a numbered slot within the file drawer and use
the slot number to access the records in the file. The slot number
would be the address of the record. This type of random access could
be used with any type of file organization.

Often, you will want to switch the mode of access you use. You may
want to use random access to find the first record in a series and
then use sequential access to retrieve all the records in that series,
For example, if your employee records are grouped by department codes
within the file, you can wuse a specific department code as the
identifier to randomly access the first record with that department
code and then switch to sequential access to consecutively read all
the records with that code.

Context

In either type of access, sequential or random, the marking of
position in the file is important. This is called context: the
position of the record you are accessing is the current "record, and
the position of the record that follows it is the next record.

Access Control

One advantage of the segregation of data provided by files 1is
controlled access. Some files, such as budget or payroll, should be
available to only a small group of authorized people. Other files,
such as inventory or transaction files, may be used by larger groups
of people And some files, such as the telephone directory, must be
3 1
4L

accessib to everyomne.

(VI

Files allow you to control who can use what data. You can Jlock the
filing cabinet that contains the payroll data and give keys to
yourself and the payroll manager only. And you can distribute
telephone directories to every employee.

In addition, within a file, you can further control how the data can
be wused within the group of authorized users. Some users may be
allowed to write new data in the file or to modify existing data,
while others may be allowed only to read the data.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.l.4 Processing

Once you locate, either sequentially or randomly, a record's position
within a file, you will probably want to do something with the record
that belongs there. Record operations fall generally into the
following categories:

o Verify that the record exists in the right location
® Read the record; that is, examine its data contents
e Insert a record in the position that you have located

® Revise the contents of the record; that is, modify some of
its data contents

® Remove the record from the file

1.1.5 File Maintenance

Once you establish files and their records and begin using them
regularly, you will want to be able to maintain them to ensure both
the protection of the data within them and their continued usability.

Typically, maintenance might include the following activities.

® The data in a file is valuable or you would not keep it. You
should have duplicates of your records in some other place in
case something happens to the originals. Therefore, you need
the ability to back up files.

e If something does happen to your original data, you must be
able to obtain, or restore, the duplicate records.

® You need the ability to list, or display, your files, with
their names and other attributes.

@ Files often grow very large and their usage can change over
time. Therefore, you may want to change a file's organization
from sequential to indexed; or you may want to reload a file
that has grown very large to use space more efficiently.
Conversely, usage and file size might decrease and you may
want to make a file simpler. It is also possible that the
information in one file is suitable for another application.
In all these cases, vou would want to be able to convert a
file into a new one, perhaps changing some attributes
(including organization) to make it more usable.

® You want to be able to design and create files that you
require.

e Creating an indexed file and putting records into it can be
complicated and time-consuming. You would want a procedure --
indexed file loading -- that would produce an optimal indexed
file quickly and efficiently.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.2 RMS-11 IMPLEMENTATION OF DATA ORGANIZATION AND ACCESS

RMS-11 provides file structure capabilities that allow you to organize
your data within a computer's memory using the same concepts that were
described in Section 1.1 for paper records in filing cabinets.

The following sections briefly present
capabilities. For more details, see
Introduction.

he RMS-1
S

o 1
[BN
RSX-11iM/M-PLU

1.2.1 RMS-11 Record Formats

RMS-11 supports the following record formats that allow you to define
the size of your data records:

e Fixed length -- Every record in the file is the same size.

e Variable length -- Records in the file are of different
lengths, up to a maximum size that you can optionally specify.

® Variable with fixed control -- Records in the file are of
different lengths, up to a maximum size that you can
optionally specify, and in addition, a fixed-length control

area precedes the data.

® Stream -- Records consist of a continuous stream of ASCII
characters delimited by a special terminator character or
sequence of characters.

e Undefined -- Records in a file may have no record £format or
may be in a format different from the four standard RMS-11
formats.

RMS-11's support of stream and undefined record formats provides
limited support for non-RMS-11 files.

1.2.2 RMS-11 File Organizations
RMS-11 supports three file organizations:

e Sequential -- Records are arranged within the file in the
order in which they were written into the file.

® Relative -- Records are stored in the file in cells, or
fixed-length units of storage, one record per cell. The cells
are numbered sequentially. These numbers, called relative

record numbers, are identifiers for the records.

e Indexed -- Records are arranged in the file in ascending order
by key. A key is a data field within the record that RMS-11
uses as an identifier to access the record. An indexed file
must have one primary key and may optionally have other
alternate keys.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.2.3 RMS-11 Record Access Modes

RMS-11 provides three record access modes for storing and retrieving
records in files:

® Sequential - RMS-11 stores and retrieves records
sequentially, one after another.

e Random by key -- RMS-11 uses either a key (for an indexed
file) or a relative record number (for a relative file or for
a disk sequential file with fixed-length format records) as an
identifier to gain direct access to an individual record in
the file.

e Random by record file address (RFA) —-- RMS-11 uses the RFA as
an identifier to gain direct access to an individual record in
the file. The RFA is a wunique identifier that RMS-11
establishes for every record that it writes into a disk file.

1.2.4 RMS-11 Utilities

RMS-11 provides utility programs that can help you perform file and
record maintenance:

® RMSBCK -- The RMS-11 File Back-Up Utility transfers the
contents of an RMS-11 file to another file, which may be on
another device, to maintain the file should the original file
be lost or damaged.

® RMSRST -- The RMS-11 File Restoration Utility transfers files
that were backed up using RMSBCK back to you so your programs
can access them.

® RMSDSP -~ The RMS-11 File Display Utility produces a concise
description of any RMS-11 file, including back-up files.

® RMSCNV -- The RMS-11 File Conversion Utility reads records
from an RMS-11 file of any organization and loads them into
another RMS-11 file of any organization.

® RMSDES -- The RMS-11 File Design Utility allows you to design
and create sequential, relative, and indexed files.

e RMSIFL -- The RMS-11 Indexed File Load Utility reads records
from an RMS-11 file of any organization and loads them into an
indexed file.

1.3 RMS-11 PROCESSING ENVIRONMENT

The RMS-11 software routines organize data on your computer,
implementing the concepts discussed in the previous sections, and
provide the interface between your application programs and the
computer system.

Your computer system consists of layers of hardware and software:

@ The hardware devices -- magnetic tapes and disks -- to store
the data.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

® The operating system software -- file control processor,
device drivers -- controls the hardware to maintain files.

® RMS-11 software controls the internal structure of files (as
described in Section 1.2).

® Your application program makes use of these hardware and
software facilities to process data records and files.

1.3.1 RMS-1l1 Task Structure

You use the RMS-11 software routines by combining them with a program
you have written in a language that implements RMS-11.

NOTE

Only MACRO-11 programmers can use the
full set of RMS-11 capabilities.
Subsets of these capabilities are
available to high-level language
programmers., See your high-level
language documentation to determine:

e Which RMS-11 facilities you can use
in your high-level language

e The syntax for using these facilities

Once you write your program, you convert it to object code, wusing
either a compiler or an assembler.

To combine your object code with the RMS-11 routines, you use the task
builder, which converts object code (modules) to an executable form
called a task. 1In the process, the task builder not only combines
different object modules, but may also arrange the task so that some
executable modules overlay each other when the task is run.

You can combine RMS-11 routines with your object code in either of the
following ways:

e In the task itself, with nonoverlaid routines or a
disk-resident overlay structure

® In memory-resident overlays, a form apart from your task

The primary difference between these techniques is that
memory-resident overlays can be shared among programs. Nonoverlaid
and disk-resident overlaid routines cannot be shared; each accessing
program must have its own copy of such routines. In addition,
memory-resident overlays eliminate the I/0 operations needed to bring
disk-resident overlays from disk, thereby making your tasks run
significantly faster.

In either case, your task takes a logical form in which program code
exists in one part of the task and the RMS-11 routines run in another
part. When your program performs an RMS-11 operation, it sets up the
necessary parameters and data and calls the appropriate RMS-11
routine. Control jumps to that part of the task, the routine runs to
completion, and control returns to your program. Figure 1-8
illustrates this logical structure.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

{EéEEhENEEBN: ________ 1

|« NUMBER OF FILES OPENED SIMULTANEOUSLY I
|' BUCKET SIZES

USER BUFFERS ﬂ

170
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES

L———TI:——_J

I'SiZE DEPENDS ON:

l e RMS-11 FUNCTIONS USED }
tOVERLAY STRUCTURE USEE]

ZK-1174-82

Figure 1-8: RMS-11 Task Structure

Also part of the task are storage structures, which generally take
three forms:

0

User buffers -- These buffers are used to pass data records
between your program and RMS-11. They are available to your
program and the data in them c¢an be manipulated, read,
changed, used for calculations, and so on.

T/N hiafFFar TAav Aa~h f

I/C buffers -- For cach cpen RMS-11
/

r as , RMS
normally requires at leasL one internal 1/0 buffer. All data
going to or coming from disk is stored in an 1/0 buffer as

foliows:

r)

pe

- RMS-1l1 requests the file control processor to move block(s)
from a disk file into this buffer to satisfy your program's
requirements. Each request normally specifies the same
number of blocks, called an I/0 unit. The size of the I/0
unit depends on the file organization, file design, and
settings at access time (such as multiblock count).

- RMS-11 moves records between the I/0 buffer and the user
buffer. Your program can also directly access a record
within the I/0 buffer in certain restricted circumstances.

Control structures -- RMS-11 c¢ontrel structures, called
control blocks, are used to communicate between your program
and the RMS-11 routines and with each other. Some are

accessible to your program; others are for RMS-11 internal
use only.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.3.2 RMS-11 Record Processing

The RMS-11 stream and record operations are the interface between your
program and the data records your program requires.

Before your program can access records in a file, the file must be
open and an access stream must be initiated.

NOTE

Most high-level languages do not support
access streams at the user level. They
use the RMS-11 access stream facilities
to implement their own file access
techniques.

An access stream is a path to the file's data records; record
operations are performed via that stream, one operation at a time.
RMS~11 keeps track of the stream's position, or context, in a file, in
terms of current record and next record. The stream's position
changes at the completion of an operation. Chapters 3, 4, and 7
discuss context for record operations with the different file
organizations.

The stream operations control the stream associated with a file. They
are:

® CONNECT -- initiates an access stream.

® DISCONNECT -- terminates a stream.

e FLUSH -- writes the currrent contents of I/0 buffers to the
file.

® FREE -- releases control of the record or block most recently

accessed (and locked) by the stream.

® REWIND -- resets the stream context to the first record in the
file.
® WAIT -- suspends processing until an outstanding asynchronous

operation is completed.
The record operations process records within a file. They are:

@ FIND -- reads a record from a file to an I/O buffer and sets
the current-record context to that record.

® GET -- reads a record from a file to an I/0 buffer and then to
a user buffer, and sets the current-record context to that
record.

e PUT -- writes a new record from a user buffer to an I/0O buffer

and then to a file.

® UPDATE -- transfers a modified record from a user buffer to an
I1/0 buffer and then to a file, overwriting the previous copy
of the record in the file.

e DELETE -- removes an existing record from a relative or
indexed file.

® TRUNCATE -~ effectively deletes all records in a sequential
file from the current record to the logical end-of-file.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

For the FIND, GET, and PUT operations, your program specifies the

record access mode -- sequential, random by RFA (FIND and GET only),
or random by key -- which determines which record is the target of the

operation.

See RSX-11M/M-PLUS RMS-11: An Introduction, Chapter 4, for a more
detailed Introduction to record processing. Chapters 3, 4, and 7 of
this user's guide describe specifically how the record operations work
depending on the file organization selected and (for FIND, GET, and
PUT) the access mode specified.

1.3.3 RMS-11 File Processing

RMS-11 must manipulate the contents of files so that it can process
records. However, RMS-11 does not directly perform the actual file
manipulation, and the flow of data, control, and overlay segments that
the file manipulation entails. RMS-11 issues requests to the file
control processor to perform the actual I/0 and other operations on
the files. Thus, the file control processor's internal operation,
while invisible to RMS-11, can affect your program's performance.

The file control processor is not concerned with the data records in a
file. It knows only virtual and logical block numbers, directories
and other information, and the disk drivers involved. Therefore,
RMS-11 can direct file manipulation as long as it makes the proper
requests to the file control processor. To do so, RMS-11 maintains
the following structures, or I/0 units:

8 Blocks -- The I/O unit for sequential files is the block. You
can adjust the block count for each record access stream so
that more than one block can be moved during each 1I/0
operation.

In addition, you must decide whether records can cross block
boundaries. When records can cross block boundaries, RMS-11
can pack them with optimal density in the file because a
record can be stored in one or more blocks. This is called
block spanning. Figure 1-9 illustrates block spanning.

When records are restricted by block boundaries, each record
must be no more than 512 bytes (one block) long, and unused
bytes may be left at the end of each block.

® Buckets -- The I/0 unit for relative and indexed files is the
bucket. A bucket consists of one or more blocks that RMS-11
treats as a unit. Records can cross block boundaries but they
cannot cross bucket boundaries. Bucket size 1is a file
attribute that you specify when you create the file.

Buckets are an RMS-11 concept, so when RMS-11 initiates an
operation for a relative or indexed file, it requests the file
control processor to move a bucket by specifying the virtual
block number for the first block in the bucket and the size of
the bucket in bytes. Note that buckets are fixed within the
file; once created, buckets contain the same virtual blocks
at all times.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

[‘— BLOCK—T— BLOCK—»e— BLOCK—T— BLOCK—T— BLOCK—br— BLOCK—P-]

I

R ———

I
|
!
|
1

1
{
I
|
|
1
. RECORDS LESS A

A-R ‘K\\\\‘~RECORDS—”’//

THAN 512
BYTES

1
B. RECORDS GREATER +
\‘“RECORDS”///'k

THAN 512
BYTES

R —

T
|
|
I
!
C. VARIABLE-LENGTH \RECg RDS/

RECORDS

N

ZK-1173-82

Figure 1-9: Records Spanning Blocks

You can also direct RMS-11 to request the file control processor to
place a file on a disk at a specific location. This is called
placement control and can improve performance by taking advantage of,
for example, tracks and cylinders.

RMS-11 provides access sharing; that is, your program can control who
can gain concurrent access to the data in a file and what type of
operations they can perform on the data. See Section 2.2.3 for more
information on access sharing.

The RMS-11 directory and file operations perform the file-level
functions. The directory operations affect file specification entries
in directories (not the contents of the files). They are:

® ENTER -- places a disk file specification in a directory.

¢ REMOVE -- deletes a disk file specification from a directory.

® RENAME -- replaces an existing disk file specification with a
new one.

® PARSE -- returns file specification information +to vyour
program.

® SEARCH -~ examines one or more directories for a specified

file and returns the file specification and location.

1-17

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

NOTE
Most high-level languages do not support
the directory operations. See your
high-level language documentation.

The file operations provide access to files. They are:

® CREATE -- creates a new file with the attributes you specify
and opens it for processing.

e OPEN -- makes an existing file available for processing.

e CLOSE -- terminates access to a file.

® ERASE -- deletes a file and removes its directory entry, if

one is specified.

® EXTEND -- increases the allocated size of an open file.
® DISPLAY —- returns file information about an open file to your
program.

See RSX-11M/M-PLUS RMS-11: An Introduction, Chapter 4, for a more
detalled introduction to file processing. Chapters 3, 4, and 7 of
this user's guide describe specifically how the file operations work
depending on the file organization selected.

1.4 FILE ATTRIBUTES

When you create an RMS-11 file, either through a program (using the
CREATE file operation routine) or by using the RMSDES utility, you
must specify the following information:

e Medium -- Disk or magnetic tape. You can also create files on
unit-record devices, such as line printers and terminals.
Note that relative and indexed files are restricted to disk
devices.

¢ File specificaticon -- The name you assign to a file enables
RMS-11 to find the file later. Use the file specification
conventions specific to your operating system.

® Protection -- RMS-11 allows you to assign a protection code to
a file when you create it. Use the protection codes specific
to your operating system.

e File organization -- Sequential, relative, or indexed.

® Record format -- Fixed length, variable length, VFC, stream,
or undefined.

e Record size -- For fixed-length records, the size is the same
for every record in the file. For variable-length records,
the size is the maximum length any record can be.

For VFC records, there are two size specifications: (1) the
fixed length of the control area, and (2) the maximum length
of the variable data area.

RMS-11 also keeps the length of the 1longest record actually

stored in a sequential file for variable-length and VFC
records.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

e Block spanning (sequential files) -- Whether records can cross
block boundaries.

® Bucket size (relative and indexed files) -- The number of
blocks in each bucket.

® Maximum record number (relative files) -- The maximum number
of records that the file will contain.

e Keys (indexed files) -- The number of keys; the position and
size of each key; the data type for each key; and other key
characteristics.

® Record-output handling -- You can specify three (mutually
exclusive) types of handling for records being written
directly to a unit-record device, although you need not
specify any:

- Carriage control -- The device driver inserts a linefeed
character as a prefix to each record and a carriage-return
character as a suffix to each record before passing it to
the device.

- FORTRAN -- The device interprets the first byte of each
record as a FORTRAN forms control character.

- Print file format (VFC records with a fixed header size of
0 or 2 bytes) -- RMS-11 interprets the first byte of the
header as a prefix for the record and the second byte as a
suffix for the record.

e File allocation -- You must specify two quantities:

- Initial allocation -~ the size of the file in blocks when
it is created.

- Default extension quantity -- the number of blocks to be
added to a file when RMS-11 automatically extends it.

e Contiguity -- Whether the disk space 1initially allocated to
the file 1is to be allocated in continuous, adjacent logical
blocks.

e Placement control -- Where the file 1is to be physically
located on the disk.

During the file creation process, RMS-11 stores this information,
called the file attributes, in the file directory and, for relative
and indexed files, In the first blocks, or prologue, of the file as
well.

After creation, for the life of the file, RMS-11 gets information
about a file from the file itself. This offers several advantages:

® Most file attributes do not change.

® You can design your RMS-11 files offline. No program
accessing the files need specify attributes (except those that
may be required by high-level languages), because RMS-11
requires only a file specification from a program to open a
file.

® You can open an RMS-11 file with its file specification only.
After that, RMS-11 enables you to read the file attributes.
You can write a program or use the RMSDSP utility to display
those attributes.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Note that some of the attributes are interdependent; that 1is, the
selecticon of one attribute directly affects, or restricts, other
attribute options. File organization, record format, and medium are
all interdependent. For example, if you select magnetic tape medium,
you must use sequential file organization. And 1if you select VEC
records, you cannot use indexed file organization and you must use a
disk device.

Table 1-1 lists the record format and file organization
interdependencies.

Table 1-1: Record Formats and File Organizations

File Record Format:
Organization Fixed Variable VFC Stream Undefined

Sequential:

Magtape Yes Yes No No No
Disk Yes Yes Yes Yes Yes
Relative Yes Yes Yes No No
Indexed Yes Yes No No No

Chapters 3 through 7 discuss your file design options in detail,
depending on your selection of file organization. Chapter 2 provides
information to help you make that selection.

1.5 PROCESSING BY BLOCK ACCESS

Your program can bypass RMS~1l1 record processing and process any
RMS-11 file in a mode called block access.

Your program can read or write blocks in a file either sequentially or
(on disk only) randomly by virtual block number (VBN). But your
program must be able to interpret the contents of those blocks.

™oy 1 7 a8 /ax ™mr o nMO T . A
See RBX-11M/M-PLUS RMS-11: An Int

A
block access and processing. See the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide for detailed information on block access and
processing.

n v AImErads 1
n for an intreduction te

1-20

CHAPTER 2

APPLICATION DESIGN

When you write an application program, you want that program to input
data, process it, store it, update it if necessary, and at intervals
output it in the proper formats.

You want all this to happen simply, quickly, and accurately. You must
therefore take the time to design your application by carefully
considering RMS-11 file structure and file and record processing
capabilities. Important RMS-11 considerations are data storage
medium, record format, file organization, access mode, allocation,
overlays, and so on.

If you do not consider RMS-11 capabilities when vyou design your
application, you may not get the best peformance possible from your
application because of the defaults that will be applied automatically
to your files (see Section 2.1).

Example: The first time one user created a file, she used a
high-level language program and took all the defaults. Then she
loaded records into the file; the process was quite lengthy.

However, when she re-examined the file and re-created it applying some
RMS-11 design considerations, the record insertion process went 10
times as fast.

Example: Some users, accustomed to programming with BASIC-PLUS record
I/0, learned that RMS-11 uses 15 bytes of control data in each bucket
and 7 bytes of control data for each fixed-length record in an indexed
file (see Chapter 6). Then, because they were accustomed to working
with whole blocks, they set up single-block buckets (512 bytes) and
subtracted RMS-11 overhead (22 bytes) to come up with a record size of
490 bytes.

But when they used those files, the users were alarmed to sSee them
grow at high rates. They had not read that RMS-11 preserves its fast
sequential and alternate key access during random insertions by moving
records and leaving behind 7-byte pointers (see Chapter 5).
Therefore, when one of those 490-byte records was moved, it left
behind 7 bytes, which meant that no other record fit into that bucket.
Soon the file was filled with practically empty buckets that could not
be used because the designers did not allow for the full implications
of RMS-11 structure.

If you develop an application with a high-level language, you probably
will not worry about RMS-11. You will accept the language's concept
of design, if any. It is possible, however, that the defaults the
language uses 1in its interface with RMS-11 are not well suited for
your application.

APPLICATION DESIGN

This chapter presents general design considerations that apply to all
application designg and information that will help you make the first
important design decision: selection of a file organization.

2.1 WHEN TO DESIGN
There are two times to design an application:
1. Before you write the application, especially if you have:
e Large file(s)
e Many users simultaneously accessing the file(s)

e A high level of activity (many records read, written,
updated, or deleted in a given time period)

2. After you write the application, if you are not happy with
its performance.

Often, poor performance results from default values that are
inappropriate for your application. You can frequently find
improvements by studying the nature and source of the defaults and how
they affect the structure of your application and your file.

Basically, defaults have three sources:
1. Source language compilers

In many instances, source language compilers such as COBOL-81
or BASIC-PLUS-2 supply default values for RMS-11 file
attributes and/or facilities.

Example: RMS-11 does not calculate an optimal bucket size
for indexed files. Rather, the program creating the file
must specify a bucket size. When that program is the product
of a compiler, the bucket size can be explicitly specified in
the source code or it can be implicitly set by the compiler,
using a default value.

2. RMS-11

The interface between the RMS-11 routines and your program
has the same structure in all tasks, regardless of their
source {(PDP-11 COBOL-81, RPG, MACRO-11, and so onj. This
interface consists of control blocks (see the RSX-11M/M-PLUS
RMS-11 Macro Programmer's Guide for details). The
information provided by your program in these blocks
effectively controls RMS-11, causing it to create, open,
access, and close files. However, when explicit information
is not provided, RMS-11 uses its default values.

3. Operating system

RMS-11 acts as an intermediary between your task and the
operating system. As such, RMS-11 can supply control
information for system functions such as protection codes.
However, if RMS-11 supplies no control data, the system uses
its defaults.

APPLICATION DESIGN

2.2 DESIGN CONSIDERATIONS

When you design your application, you are concerned primarily with
four design considerations:

1. Speed -- You want to maximize the speed with which the
programs process data.

2. Space -- You want to minimize the room for the data and the
task on disk and the memory the task takes to run.

3. Shared access -- vou want your data to be exactly as
accessible to the people wusing the computer system as
necessary.

4. Ease of design -- You do not want to spend more time than
necessary writing the application.

Remember, the importance of design is proportional to the complexity
of the file organization. That is, design is least important for
applications using sequential files and most important for
applications using indexed files.

2.2.1 Speed

You can make many performance (speed) decisions before you have to
consider anything else, Therefore, the first criterion to apply
throughout the design process is minimize I1/0 time.

The mechanics of the mass storage devices on your system consume most
of the time for any RMS-11 operation. The memory-resident routines
that prepare the data for I/0 or process it afterwards are very much
faster (one to three orders of magnitude).

An application's entire environment affects I/0 time:

® File structure -- A variety of file attributes affect I/0
time, including:

bucket size (for a relative or indexed file)

number of keys (for an indexed file)

number of duplicate key values (for an indexed file)
initial file allocation

default extension quantity

® File size -- The number of records in the file affects the I/0
operations required to scan a file sequentially or follow an
index.

® Program -- Your program affects I/0 time by requiring 1I/0

operations for file operations (OPEN, CLOSE, and so on) ,
record operations (GET PUT, and so on), and overlays.

; (810

® RMS-11 -- The RMS-11 routines can be structured as
disk-resident overlays or as memory-resident overlays.

® File control processor -- Besides requiring overlay segments
from disk, the file control processor can also request I/0
operations required to map virtual blocks of the file to
logical blocks on the storage device.

APPLICATION DESIGN

e Device hardware -- The storage device that contains the task
and data files is the primary contributor to the length ¢f an
I1/0 operation. The type of device chosen (moving-head,
fixed-head, and so on) and the demands on it (amount of I/0
activity for that device within the system) are crucial to 1/0

performance.

Figure 2-1 illustrates this environment.

DEVICE
DRIVER

‘-~e40

NQ%’TEs
) 0 Se
HEAD MOVEMENT-
LATENCY, AND OTHERS

DEVICE

ZK-1163-82

Figure 2-1: Time Factors in an I/0 Operation

2.2.2 Space
RMS-11 requires space for three reasons:
1. To store data in a file

2. To store the RMS-11 routines either (a) on disk when they are
not in use, or (b) in memory when they are being executed

3. To buffer data in memory while the task runs

APPLICATION DESIGN

2.2,2.1 Data Storage - The space RMS-1l requires to store data is
proportional to the organization of the file, and to the processing
capabilities of that organization:

® Sequential file organization -~ RMS-11 adds to the size of
your data an empty byte, 1if necessary, to align each
fixed-length, variable-length, or VEC record on an
even-numbered byte boundary. When the file contains
variable-length records, RMS-11 also prefixes a count field to
each record.

® Relative file organization -- RMS-11 constructs a series of
record storage cells based on the length of the records. The
cells are 1 byte longer than the fixed size of fixed-length
records or 3 bytes longer than the maximum size specified for
variable-length records.

® Indexed file organization -- RMS-11 adds to your data:
- An index for each defined key.
- 15 bytes of formatting information for each bucket.
- A 7-byte header for each record.
- A count field for each variable-length record.

~ Other overhead of varying lengths for records RMS-11 moves
during file activity and for deleted records.

You should keep the size of records to the minimum required for your
application.

2.2.2.2 Task Size - The space RMS-11 routines occupy in a task
depends on the method you use to link the routines with your program.
See Section 8.1 for more details.

2.2.2.3 Buffer Sizes - You can vary the size of the 1I/0 buffers
RMS-11 wuses to store data in memory. Generally, the larger the
buffers, the faster the task processes data. See Section 3.5.3,
Section 4.5.3, or Section 7.4 for the file organization(s) you are
interested in.

2.2.3 Shared Access

Shared access revolves around the question: Who is allowed to read
from or write to a file? The answer involves your operating system's
protection codes, your access declaration, and your sha
declaration.

ring

System Protection Codes: Before you can access an RMS-11 file, you
must log into your computer system using an account number that will
allow you the kinds of access you need when your access request is
validated against the file's protection codes.

APPLICAT

ION DESIGN

Operating systems allow you to assign a protection code to each file

when it
who are

is created. This code describes concentric circles of users
allowed different levels of access to that file. See your

operating system documentation for specific protection conventions.

Figure 2

-2 illustrates the system protection concepts.

READ ACCESS WRITE ACCESS

9]

N

GROUP

C

SYSTEM

EXTEND ACCESS DELETE ACCESS

WORLD

RSX-11M/M-PLUS

ZK-1166-82

Figure 2-2: System Protection Concepts

Access Declarations: Your program must declare the types of access
you need by specifying the record or block operations it intends to

perform

on the file, as follows:

Read-only access is granted if your program specifies that
only FIND/GET or READ operations can be performed.

No PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations will be
allowed, nor will any other operation which would modify the
file (an EXTEND operation, for example, will not be allowed
for read-only access).

Read/write access is granted if your program specifies that
PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations can be
performed. FIND/GET and READ operations will also be allowed,
as will EXTEND operations.

Note that, in addition to any access declaration, a CREATE
operation always forces read/write access so that the newly
created file can be populated (using PUT operations for record
access or WRITE operations for block access).

2-6

APPLICATION DESIGN

Sharing Declarations: Your sharing declaration specifies the types of
access to the file that your program is willing to allow to other
programs that request access to the file at the same time that your
program is accessing it. These declarations can be:

® No sharing -- You do not want any other program to access the
file.

A no-sharing specification in vyour sharing declaration
overrides any other sharing specification you may also have
included, and guarantees that no other program will have
concurrent read/write access to the file. That is, no other
program will be able to modify the file.

Note, however, that it is not possible to guarantee that
concurrent read-only accessors will be denied access.

® Read-only sharing -- You are willing to allow other programs
read-only access to the file.

® Read/write sharing -- You are willing to allow other programs
read/write, as well as read-only, access to the file.

e Sharing with user-provided interlocks (sequential files only)
-- This specifies a special form of sharing among a group of
programs that includes any number of read-only accessors and
at most one read/write accessor.

User-provided interlocks offer a limited form of access
sharing of sequential files. If the file organization is
sequential, this specification in your sharing declaration
overrides any other sharing specification (except no sharing).
For any other file organization, this specification is
ignored.

NOTE

High-level languages may use slightly
different terms to designate the access
and sharing declarations, and may not
provide equivalents for all the sharing
options. See your high-level language
documentation.

Once the operating system's protection checks are passed, RMS-11 and
the operating system cooperate to determine whether the type of access
you request (your access declaration) and the type of sharing vyou
permit (your sharing declaration) are consistent with any other
current accessors of the file.

If no other tasks have accessed the file at the time that your program
requests access, your access request must only pass the system
protection checks to be granted. However,

Vel ;

i MY M Y amao
if one or more programs

already have access to the file, RMS-11 and the operating system will
use the access and sharing declarations of those programs along with
those of your program to determine whether your program will be
allowed concurrent access.

No-sharing and read-only declarations are processed as described above
for files of all organizations and access method (block or record).
In other cases, however, RMS-11 and the operating system interpret the
access and sharing declarations in the manner best suited to the
file's organization and the access method, as described in Section 3.4
for; sequential files, Section 4.4 for relative files, and Section 7.1
for indexed files.

APPLICATION DESIGN

NOTE

As noted, file sharing is a cooperative
effort between RMS-11 and the operating

system. The RMS-11 processing
algorithms depend upon the detailed
nature of this cooperation. If you

access a file concurrently with multiple
programs, some of which use RMS-11 and
some of which do not, the results may be
unpredictable.

2.2.3.1 Bucket Locking - Any time a record 1is updated, accessing
programs must be assured that the data written to the file is current
until the record is re-accessed and the record updated again.

If no control is placed on access, two or more programs could access
the same record, one after the other, and update it, one after the
other. Only the last update would remain in the file. Access sharing
could thus impair data integrity.

To ensure data integrity, RMS-1l uses bucket locking for a relative or
indexed file when the file is open for write-shared access. From that
point, RMS-11 requests the operating system to lock each bucket read
from disk until RMS-11 explicitly releases the bucket. After a GET,
FIND, or mass-insert PUT operation, only the bucket containing the
data record remains locked. (See Chapter 7 for information on mass
insertion,) While that bucket is locked, no other program can access
it.

RMS-11 requests the operating system to unlock such a bucket when one
of the following occurs:

e The GET, FIND, or PUT operation fails.

e The GET or FIND operation succeeds -- 1if the program has
declared read-only access to the file.

e The program initiates another record operation that accesses a
different bucket.

After the bucket is unlocked, other programs can access it.

Example: Programs A and B are write-sharing a file named RMSREL.DAT.
Both try to wupdate relative record number 12. However, program B
initiates the prerequisite GET operation first, 1locking the bucket
containing the record. The operating system keeps program A from
accessing that bucket while program B wuses it. After program B
updates record 12, RMS-11 unlocks the bucket and the operating system
allows program A to get record 12 (including program B's updated
data) . Figure 2-3 illustrates this example.

Bucket locking incurs costs: The operating system administers bucket
locking. It establishes, for each file, a list of virtual blocks that
are locked. The system must scan this list every time RMS-11 performs
an I/0 operation and then either permit the operation or return an
error. In addition to this lock-list overhead, extra instructions are
executed to lock and unlock the buckets.

APPLICATION DESIGN

PROGRAM B PROGRAM

B

PROGRAM A UPDATE

RECORD

READ RELATIVE
RECORD #12

PROGRAM
TRY AGAIN A

PROGRAM
A

READ RELATIVE
RECORD #12

PROGRAM A
PROGRAM B PROGRAM 8

DO NEXT
RECORD P;‘&%E:Ef

READ RELATIVE
RECORD #12

2K-1164-62

Figure 2-3: Bucket Locking Example

2.2.3.2 Sharing among Access Streams - In addition to the bucket
locking used when programs allow sharing, RMS-11 provides its own
version of bucket 1locking when a program accesses a file for
write-type operations. This locking allows multiple streams to share
the file. RMS-11 bucket locking works the same way as the locking
provided by the operating system, except that the 1locks can be
encountered only by different access streams within the same program.

The overhead for RMS-11 bucket locking is small.

APPLICATION DESIGN

2.2.3.3 Programming Considerations - For the greatest flexibility at
run time, you should assume that access to any record by your program
can be denied because the bucket containing the record 1is 1locked.

RMS-11

returns the error code ERSRLK when the bucket is locked by

another access stream in the same or in another program.

Therefore, you should use the following techniques when vyou write
RMS-11 programs that involve shared access:

Never keep a bucket locked longer than necessary. You should
follow any successful GET or FIND operation with another
record operation of any type as soon as possible. The second
operation unlocks the bucket 1locked by the read-type
operation.

Alternatively, you can release the bucket explicitly with a
FREE operation. A FREE operation releases only the bucket
locked by the access stream associated with the operation.

If your program detects an ERSRLK error (or its high-level
language equivalent), its error processing depends on the
number of access streams active on the file:

- Single stream -- Set up a loop that stalls, then
re-initiates the record operation until RMS-11 indicates a
successful completion.

- Multiple streams -- Do not set up a loop that continuously
re-initiates the record operation. You should either (a)
continue processing on the other streams, attempting the
record operation on the locked-out stream periodically, or
(b) release the buckets locked by all other streams, then
re-initiate the record operation that failed. Any
GET-UPDATE or FIND-UPDATE sequences interrupted on the
other streams must be restarted, because the release of a
bucket destroys the record context.

2.2.4 Ease of Design

When you design and write your application, you should consider

yourself

and the person who will maintain the application. Keep the

following design guidelines in mind:

Keep things simple. You can apply this criterion to the whole
development process, from program flowcharts to the record
layouts to file organization and design.

Example: From sequential through indexed, the RMS-11 file
organizations offer increasing capabilities, but they are also
increasingly complex. Choose the organization that supplies
enough capabilities, but no more. For instance, if you want
to randomly access a file by a single key only, you might use
a relative file and a hashing algorithm instead of an indexed
file.

Apply optimizations one by one until you reach a satisfactory
level of performance. Generally, further improvements are not
necessary.

APPLICATION DESIGN

Example: The optimization of performance of applications
using 1indexed files can be involved, but you do not have to
use every technique discussed in this manual. You should only
satisfy current performance requirements. For instance, when
an application program needed optimization, the indexed file
being read was made contiguous (see Chapter 6) and the RMS-11
overlay structure was changed (see Chapter 8). Execution time
dropped from 16 minutes to 8.5. Since this performance was
adequate, no further optimizations were considered.

Some optimizations apply to one type of record operation, but
not to others. Determine whether an optimization will benefit
your processing before you implement it.

2.3 DESIGN PROCESS

The first step in the design process is the selection of the file
organization. Section 2.4 presents information to help you make this
selection.

Once you have selected a file organization, go to the appropriate
chapter (s):

Sequential Chapter 3
Relative Chapter 4
Indexed Chapters 5, 6, 7

Each chapter discusses file structure (physical and conceptual) as
well as design considerations. Indexed files are the most complex to
design because of their power and flexibility.

After you read the file organization chapter(s), go to Chapter 8, Task
Building and Common Optimization Techniques.

Finally, apply the design considerations described in these chapters.
Write your application; create and populate the files, using the
RMS-11 utilities when they are useful; use the programs and files 1in
a simulated environment while you evaluate performance. You may have
to return to this manual, changing your design and/or combining
attributes and RMS-11 facilities in different ways, until the
application runs to your satisfaction.

Good design is important to the success of your RMS-11 application.

2.4 SELECTING A FILE ORGANIZATION

Table 2-1 lists important features of each file organization --
sequential, relative, and indexed -- to help you decide which one(s)
you need. Table 2-2 points out advantages and disadvantages of each
organization.

The sections that follow the tables provide information about two of
the features of file organization -- record format and I/0 techniques
-- to help you select a file organization.

APPLICATION DESIGN

Table 2-1: File Organization Characteristics and Capabilities

Characteristics
and
Capabilities Sequential Relative Indexed
Medium
Disk Yes Yes Yes
Magnetic Tape Yes No No
Unit Record Yes No No

Record Formats

Fixed-length Yes Yes Yes
Variable-length Yes Yes Yes
VFC (disk only) Yes Yes No
Stream (disk only) Yes No No
Undefined (disk only) Yes No No
Overhead per Record None 1 byte 7 bytes
Access Modes

Sequential Yes Yes Yes
Random Yesl Yes Yes
RFA access (disk only) Yes Yes Yes

Record Operations

CONNECT Yes Yes Yes
DELETE No Yes Yes
DISCONNECT Yes Yes Yes
FIND Yes Yes Yes
FLUSH Yes Yes Yes
FREE No Yes Yes

GET Yes Yes Yes
REWIND Yes Yes Yes
TRUNCATE Yes No No
UPDATE (disk only) Yes Yes Yes

PUT Yes Yes Yes

I1/0 Unit 1 or more Bucket Bucket

blocks
I/0 Techniques
Deferred write Normal mode Selectable Selectable
of operation
Multiblock count Yes Bucket size Bucket size
Multiple access No Yes Yes
streams
Multiple buffers No Yes Yes
Mass insertion No No Yes
Access Sharin92 Read-only Read/write Read/write
Other Features Block-span- Maximum record Areas
ning records number

1. For fixed-format disk sequential files only.

2. See exceptions in Section 2.2.3, and in Sections 3.4, 4.4, and
7.1.

APPLICATION DESIGN

Table 2-2: File Organization Advantages and Disadvantages

Organization Advantages Disadvantages
Sequential Simplest organization. To get a record, most
high-level languages
Optimal use of disk and must access all records
memory: before it (no access by
RFA or by key).2
e minimum overhead on
disk You can add records only
® block spanning at end of file.
Optimal if application Interactive process is
accesses all records on awkward: operator must
each run, except if file wait as a program searches
must be write-shared. for a record.2
Most versatile in record Certain compiled programs
formats: cannot access a record
already passed without
o exchange data with closing and re-opening
non RMS-11 systems file (REWIND is not
e compatible with available).
RSX-11M/M-PLUS
FCS filesl You can delete records
e compatible with ANSI only at end of file; use
magnetic tape format TRUNCATE record operation.
e compatible with
RSTS/E stream filesl Sharing normally restricted
to multiple readers.
Most versatile in storage
media; file is portable.
Random by key (RRN)
record access available
on fixed-format disk
sequential files.
Relative Random access in all Restricted to disk.

languages.
Allows deletions.

Allows random GET and
PUT operations.

File contains a cell

for each cell number
between 1 and last
record in file; data may
not be stored densely.

1.RMS-11 can read these file structures and return a record to your program.
However, differences in data storage techniques among programming languages
can keep the program from properly interpreting the contents of that record.

2. These restrictions do not exist for disk sequential files with fixed-length

record format; records in such files can be stored and retrieved using random
by key access, depending on your high-level language capabilities.

(Continued on next page)

APPLICATION

Table 2-2

DESIGN

(Cont.): File Organization Advantages and Disadvantages

Organization

Advantages

Disadvantages

Relative
(Cont.)

Indexed

Optimal if application
accesses all records on
each run and file must
be write-shared.

Random and sequential
access with low overhead.

Can be write-shared.

Most flexible random
access:

e by any one of mul-
tiple keys or RFA

® key access by generic
or approximate value

® you access records by
record contents

Duplicate key values
possible.

Automatic sort of re-
cords by primary and
alternate keys; avail-
able during sequential
access.

Record location is
transparent to user.

Can be write-shared.

Potential range of key
values not physically

present as in relative
file organization.

Variety of data formats
for keys.

Program must know rela-
tive record number or

RFA of record before it
can randomly access the
data; no generic access

as in indexed file organi-
zation.

Interactive access can be
awkward if you do not
access records by relative
number.

You can insert records
only into unused record
cells, but you can update
existing records.

RMS-11 does not allow
duplicate relative record
numbers.

Highest overhead on
disk and in memory.

Restricted to disk.

Least simple program-
ming.

2-14

APPLICATION DESIGN

2.4.1 Record Formats

RMS-11 supports all of the record formats described in the following
sections for sequential files, but restricts relative and indexed file
organizations (see Table 2-1).

2.4.1.1 Fixed-Length Format - Records in the file are the same size,
which is a file attribute. The fixed-length record format requires no
RMS-11 overhead.

RMS-11 limits fixed block-spanning records to 32,765 bytes, while the
minimum valid record is 1 byte of data.

2.4.1.2 Variable-Length Format - Records in the file can be any
length, up to a maximum of 32,763 bytes for block-spanning records.
This file attribute is user-settable and optional. For each record,
RMS-11 maintains a count field specifying the number of data bytes in
the record. The size of this field depends on the storage medium for
the file.

® On disk, the count field is a 2-byte binary count that does
not include the 2 bytes for the field.

® On ANSI magnetic tape, the count field is a 4-character
decimal count that does include the 4 characters for the
field.

Figure 2-4 illustrates the count field for each medium.

LENGTH
AN DATA RECORD ON DISK
EARY
AN P
\\\ \\\~_______——\ e ——— __—//
A) V4 —_—
N~ —
\\ — — e e Pl
~———— e —
LENGTH
A DATA RECORD ON MAGTAPE
| 2] |
A pp——— —
AN — —
\-—/ Se—— \\\\\ __.-——//
ZK-1162-82

Figure 2-4: Count Field on Disk and Tape

Choose the variable-length record format if:

® The data truly varies in length, because the format adds the
length field to each record's size.

® You are designing a new application where future uses may
require records to change length.

APPLICATION DESIGN

NOTE

Changing a record's size during an
UPDATE operation is restricted by file
organization. See Sections 3.5.1,
4.5.1, and 7.2 for more information on
using the UPDATE operation with the
specific file organizations.

RMS-11 limits variable-length block-spanning records on disk to 32,763
bytes because of the count field. RMS-11 allows records to reach this
maximum only in sequential files; other file organizations place
further restrictions on record size. The minimum valid record is 2
bytes of zeroes, representing a null record.

2.4.1.3 Variable-with-Fixed-Control Format - A VFC record consists of
two areas:

e A fixed-length control area from 1 to 255 bytes 1long; the
length is maintained as a file attribute.

e A variable-length area that can vary in length from zero bytes
to the maximum record size stored as a file attribute.

For each record, RMS-11 maintains a count field specifying the number
of data bytes in the record including fixed and variable areas. The
size of this field is a 2-~-byte binary count that does not include the
2 bytes for the field.

RMS-11 limits VFC block-spanning records to 32,763 bytes because of
the count field. The minimum valid record is 3 bytes: the length
field plus the minimum fixed area of 1 byte. The maximum variable
area 1is the difference between 32,763 and the length of the fixed
area.

2.4.1.4 Stream Format - A stream record consists of a series of
contiguous bytes. RMS-11 detects the end of a stream record only by
the presence of one of the following terminators:

Form feed (014 octal)
Line feed (012 octal)
Vertical tab (013 octal)

RMS-11 limits stream format to disk sequential files. In addition,
the format causes the most CPU overhead because RMS-11 must examine
each record character by character for the terminator.

During record operations, RMS-11 processes stream records as follows:

e For FIND and GET operations, RMS-11 scans the stream of bytes,
removing leading NULL (000) characters and searching for the
first occurrence of one of the terminators. If it finds a
form feed, vertical tab, or line feed, RMS-11 includes the
terminator character with the record and considers the record
complete.

APPLICATION DESIGN

If it finds a carriage return, RMS-11 checks the character
following the carriage return. If the next character is a
line feed, RMS-11 discards both characters (carriage return
and line feed) and considers the record complete. Otherwise,
RMS-11 includes the carriage-return character in the record
and resumes its search for a terminator.

During a GET operation, RMS-1l moves each character included
in the record into the user buffer as it scans the stream of
bytes. RMS-11 does not move any data into the user buffer
during a FIND operation.

For PUT and UPDATE operations, RMS-11 checks the last
character of the record in the user buffer. If it finds a
line feed, vertical tab, or form feed, RMS-11 moves the record
as it is to the I/0 buffer. If it does not find one of these
terminators, RMS-11 moves the record to the 1I/0 buffer and
adds a carriage-return/line-feed pair to the end of the
record.

2.4.1.5 Undefined Format - The undefined format means that RMS-11

reads

only blocks, not records. Your program must interpret the

contents of each block.

2.4.2

I/0 Techniques

RMS-11 supports the following I/O techniques so vyou can adjust the
performance of record operations:

Asynchronous record operations - When operating
asynchronously, your program may regain control before the
operation is completed; that is, the program will continue
processing while the operation is being performed. This may
improve processing time.

Multiple access streams -- A stream can handle only one record
at a time, but you can connect more than one access stream to
a relative or indexed file if you want to:

- Process more than one record in a file at a time with
asynchronous record operations.

- Maintain more than one context during the processing of a
file.

Each stream represents an independent, concurrently active
sequence of record operations.

Deferred write -- Normally, every write-type record operation
to a relative or indexed file results 1in a physical 1I/0
operation. However, ycu can scmetimes have RMS-11 defer this
write function wuntil the I/0 buffer is full or must be used
for another bucket. Deferred write is the normal mode of 1I/0

for sequential files.

Multiblock count -- You can open a disk sequential file so
that RMS-11 reads or writes more than one block of the file
into the I/0 buffer at a time. This capability speeds file
processing, though the buffer gets bigger. For relative and
indexed files, you achieve a similar effect by increasing
bucket sizes.

APPLICATION DESIGN

& Multiple buffers -< You can allocate I/0 buffers for a
relative or indexed file beyond RMS-1l's minimum requirements:
one for relative; two for indexed. If the file 1is not

accessed for read/write sharing, RMS-11 uses the buffers to
save in memory, or cache, buckets from the file, so that they
do not have to be read again from disk if needed.

For indexed files, RMS-11 caches the root buckets from indexes
that are used, saving one I/0 operation on every random record
operation. However, for relative files, RMS-1ll makes no
distinction between buckets, saving them until it has to use
the buffer.

e Mass insertion -- Specified before the insertion of a series
of records already sorted in ascending order by primary key,
this mode enables RMS-11 to store the records tightly and
quickly in the file. Records can be mass inserted only at the
logical end of an indexed file. Mass insertion significantly
improves performance for single-key indexed files. However,
with each additional key defined for the file, the percentage
improvement is smaller.

CHAPTER 3

SEQUENTIAL FILE APPLICATIONS

This chapter discusses sequential file structure, design, and
processing. Sequential file design consists generally of determining
the specific attributes, including record size and format, that will
allow you to store, retrieve, and process your data efficiently within
the sequential file structure. Your task design, along with your file
design, will determine your record and file processing options,
including reccrd access modes.

3.1 FILE STRUCTURE

Physical Structure -- Sequential files carry almost no RMS-11
overhead. The operating system's file management software stores
attributes in the file directory. RMS-11 stores data records
beginning with virtual block number (VBN) 1.

e If records cross block boundaries (span blocks), RMS-11 packs
records into the file end-to-end, allowing for control
information and padding.

e If you do not allow records to span blocks, RMS-11 packs
records into each block, allowing for control information and
padding.

NOTE

You will waste space in your file if
both of the following are true:

® You do not allow records to span
blocks.

® Your records do not exactly fit into
a block.

To be compatible with other file management systems, RMS-11 flags
space that 1is not used at the end of each block. When you allow
records to span blocks, the only unused space starts after the 1last
record in the file. Table 3-1 lists the end-of-block indicators.

SEQUENTIAL FILE APPLICATIONS

Table 3-1: End-of-Block Indicators

Medium Record Format End-of-Block Indicator

Disk All but stream -1 in word following last valid byte
Disk Stream nulls (000) to end of file

Magtape All circumflex (°) to end of block

For disk sequential files, RMS-11 uses the end-of-file attribute,
stored in the file directory, to determine where the valid data in a
file ends. This attribute includes a VBN and a byte offset within
this block. The virtual block containing the logical end-of-file may
not be the last block allocated to the file.

RMS-11 reads the end-of-file attribute with the other file attributes
when it opens a file. BRMS-11 also updates the end-of-file in the file
directory when it closes the file if the end-of-file changed while the
file was open. The end-of-file changes if records were added to the
end of the file or if the file was truncated.

Conceptual Structure -- In most cases, RMS-11 stores records in the
Sequence that programs write them, one after the other from the first
record in the file to the last. For these files, RMS-11 can only
access the records sequentially or, for disk files, randomly by record
file address (RFA).

The exception to this structure is the case of disk sequential files
with fixed-length record format. In this case, RMS-11 stores records
in a series of fixed-length cells; this is similar to relative file
organization (see Chapter 4). The cell size 1is the size of the
fixed-length record. Only one record can be put into a cell, and
RMS-11 assumes that each cell contains a record. RMS-11 numbers the
cells consecutively from 1 to n, where n indicates the 1last cell in
the file. A cell number indicates the location of the cell relative
to the beginning of the file, and is associated with the record as a
relative record number (RRN).

RMS-11 can access records in a fixed-format disk sequential file
sequentially, randomly by RFA, or randomly by key (RRN).

NOTE

RMS-11 does not initialize the cells 1in
a fixed-format disk sequential file, nor
does it "know" whether a cell contains a
valid record. Your application program
must maintain this information.

3.2 RECORD SIZE

Records in disk sequential files are word aligned, which means that
RMS-11 adds a pad byte to the end of any record with an odd number of
bytes. RMS-11 uses this convention to maintain structural
compatibility with FCS-11 sequential files.

You can define a sequential file so that RMS-11 writes records across
the boundaries between blocks. Such a sequential file is optimally
dense; all bytes within its allocated space are used, except at the
end of the file where no data has been written.

3-2

SEQUENTIAL FILE APPLICATIONS

Table 3-2 shows the maximum data size for records in a sequential
file. They are adjusted for RMS-11 restrictions and overhead.

Table 3-2: Sequential File Data Sizes (in bytes)

Maximum Size

Format With Block | Without Block Data Size Calculation
Spanning Spanning
Fixed 32,766 512 Your data + MOD(DS/2)1
Variable 32,765 510 Your data + 2 + MOD(DS/2)1
VFC 32,765 509 Fixed + variable + 2 + MOD(DS/2)1
Stream None 5112 Data + terminator (s)

1.MOD(DS/2) is the remainder after the size of your data (DS) in
bytes is divided by 2:

e MOD(DS/2)

0 if the data size is an even number of bytes.

e MOD(DS/2)

1 if the data size is an 0dd number of bytes.
For VFC, DS = fixed + variable

2. Assuming a 1l-byte terminator character; however, 1if the
terminator 1is CR-LF, then the maximum length without block-spanning
records is 510 bytes. Note that these figures do not include the
terminator characters.

3.3 FILE DESIGN
For sequential files, the primary design considerations are:

® Record format (see Section 2.4.1 for a description of the
RMS-11 record formats)

® Data storage medium
e File allocation

e Contiguity

2.3.1 D

Sequential files can be accessed on both disk and magnetic tape. When
you select the medium for your file, you should consider the
following:

e Speed of access -- How long can each record operation take?
Tape is significantly slower than disk.

® Frequency of use -- How often do you use the file? 1If you use
it once a month, a quarter, and so on, you could store the
file on tape and save your disk for more immediate purposes.

SEQUENTIAL FILE APPLICATIONS

® Transportability -- Do you need to use the file on different
operating systems? RSTS/E disk structure is not compatible
with IAS, RSX-11M/M-PLUS, or VAX/VMS, and vice-versa. If vyou
need to use the file across these systems, you should consider
using a magnetic tape file.

3.3.2 File Allocation
Disk file allocation involves two quantities:

e Initial allocation quantity -- the number of blocks assigned
to a file when you create it.

e Default extension quantity -- the number of blocks added to a
file each time RMS-11 automatically extends it.

3.3.2.1 Initial Allocation - Even with sequential files, where a file
extension requires only an allocation of blocks by the operating
system, total allocation of the file when you create it is much more
efficient.

You calculate the allocation (ALQ), in blocks, for block-spanning
records as follows:

ALQ = (NRF*RSZ)/512
where:
ALQ 1is the allocation quantity in blocks

NRF is the largest number of records that will be in the file at one
time

RSZ 1is the size of the record in bytes

For variable-length or VFC records, use the average record size for
RSZ, including 2 bytes for the count field.

For fixed-length records, use the actual record size for RSZ.

Be sure to round RSZ up to a multiple of 2 to account for word
alignment.

This allocation can be done by RMSDES or by your application program,
depending on the capabilities of your high-level language.

3.3.2.2 Default Extension Quantity - If the file cannot be totally
allocated at creation time, you should establish a reasonable default
extension quantity (DEQ) to minimize the number of (and the time spent
on) file extensions. Even if the file is totally allocated when you
create it, you should establish a reasonable DEQ in case the file gets
bigger than planned. The time required for each file extension is
significant, involving:

e A call to the file control processor

® Possible 1I/0 operations to bring file control processor
routines into memory

SEQUENTIAL FILE APPLICATIONS

e I/0 operations to read and change file directory information
e I/0 operations to read and change the disk free-block bit map

A good basis for calculation is the number of records added to the
file in a given period of time, such as a day; use the formula for
allocation quantity in Section 3.3.2.1.

The DEQ can be set by RMSDES or by your application program, depending
on the capabilities of your high-level language. If you do not
specify a DEQ, it will default to zero whether you create the file
with RMSDES or a high-level language. This means that RMS-11 will
extend the file according to the operating system default for file
extensions.

Example: You are inserting 1000 50-byte fixed-length records into a
sequential file. Records do not span blocks; therefore, each block
contains 10 records. The file is currently full; that is, no more
records can be added without an extension.

e If DEQ is zero, RMS-11 extends the file according to operating
system defaults, which are typically only a few blocks.
Therefore, in this example, if the system default is 5 blocks,
RMS-11 extends the file 20 times.

e If DEQ is 1, RMS-11 extends the file for every tenth PUT
operation after the first, for a total of 100 extensions.

e If DEQ is 25, RMS-11 extends the file 4 times.

e If DEQ is 100 or more, RMS-1l1 extends the file only once.

3.3.3 Contiguity

Contiguity can significantly affect performance. Therefore, you
should consider contiguity for a disk sequential file to minimize the
time spent on each I/O operation.

If the blocks in a file are not contiguous, they may be on different
parts of the disk, and thus require significant head movement to
access the file contents.

Physical contiguity, however, ensures that the file is stored on one
track or, at worst, adjacent tracks. Because the disk can read a
track without moving the heads, file contiguity reduces head movement.
This assumes that no other software is accessing the disk at the same
time.

Contiguity also enhances virtual-to-logical-block mapping (see Chapter
8).

To ensure that the blocks in the file are physic

al1l

GJ.I
allocate the whole file when you create it (see Section 3
specify that the allocation be performed contiguously.

3.4 ACCESS SHARING

Access sharing can be specified for disk sequential files, as
described in the following sections. See Section 2.2.3 for general
information on shared access.

SEQUENTIAL FILE APPLICATIONS

3.4.1 Record Access to Sequential Files

Because of their internal structure, record-structured sequential
files are not read/write sharable in the manner of relative and
indexed files. Thus, a read/write sharing declaration for such a file
is converted internally to a read-only sharing declaration before the
file is processed.

As a result, multiple read-only accessors who have specified
no-sharing, read-only sharing, or read/write sharing can access such a
file concurrently as long as no read/write accessor is present; or a
single accessor who has specified no-sharing, read-only sharing, or
read/write sharing can access such a file as long as no other accessor
of any kind is present. Other combinations are rejected: the access
and sharing declarations are incompatible.

Limited sequential file sharing is possible, however, in the case of a
single read/write accessor in combination with multiple read-only
accessors, when the application programs involved (rather than RMS-11)
can take responsibility for any interlocking required.

In this case, the read-only accessors must specify sharing with
user-provided interlocks to gain access; the sharing declaration of
the single read/write accessor is immaterial. Each read-only accessor
cannot read beyond the logical end-of-file mark that existed at the
time that accessor opened the file, and must recognize that
inconsistent data may be returned if the single read/write accessor
modifies data within the accessible portion of the file.

3.4.2 Block Access to Sequential Files

Sequential files can be read/write shared using block access, but for
those accessors who specify read/write sharing, automatic file
extensions will not occur and the logical end-of-file mark in the file
header will be neither respected nor updated. (Again, this is because
of the internal structure of sequential files.) Such read/write
sharing uses the operating system's block-locking facilities to
coordinate shared access.

Sequential files can also be shared in a noninterlocked manner, with
user-provided interlocks. Because of operating system restrictions,
the single read/write accessor must specify no-sharing or sharing with
user-provided interiocks, and multiple read-only accessors must
specify sharing with user-provided interlocks. These restrictions
also prohibit concurrent access to the file by read/write-sharing
accessors or an accessor who specified read-only sharing and
read/write access.

When no write accessor is present, sequential files can be shared
among multiple read-only accessors who have specified no sharing or
read-only sharing.

3.5 RECORD AND FILE PROCESSING OF SEQUENTIAL FILES

The record and file processing capabilities described in
RSX-11M/M-PLUS RMS-11: An Introduction are available for sequential
files. This section discusses the operations and their implementation
and restrictions with sequential files.

SEQUENTIAL FILE APPLICATIONS

3.5.1 Record and Stream Operations

The following record and stream operations can be performed on

sequential files:

CONNECT

DISf"ﬁ TNE‘("H"

(SRS pUL S

FIND

FLUSH
GET

PUT
REWIND
TRUNCATE
UPDATE

In all record operations, RMS-11 establishes the current
context (if any) and the next record context (if applicable).
record operation fails, RMS-11 normally sets the current
context to none and does not change the next record context.

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSX-11M/M-PLUS RMS-11
Macro Programmer's Guide.

record
If any
record

3.5.1.1 CONNECT - A CONNECT operation affects the record context for

the access stream as follows:

® Current record -- There is no current record. Any operation

requiring a current record fails at this point.

® Next record -- If you did not specify that you were going to
append records to the file, the next record is the first

record in the file.

If you did specify that you were going to append records to

the file, the next record is the end-of-file.

3.5.1.2 DISCONNECT - A DISCONNECT operation destroys the

current

record context for the access stream. You cannot resume this context

by reconnecting the stream.

3.5.1.3 FIND - To perform a FIND operation on a sequential

file,

1. Determines the location of the record in the file according

to the specified record access mode:

® In sequential-~access mode, location is indicated by the

next record pointer.

® In key-access mode, location is determined by

the

specified relative record number and match criterion.
(This access mode 1is available for fixed-format disk

sequential files only.)

3-7

SEQUENTIAL FILE APPLICATIONS

3.

4.

e In RFA-access mod
spesified RFA. {

e, locati
This ace

on
S¢

i is
e mode

n

f11es only.)

Reads the block containing the record, or the first part of
the record 1if the record spans blocks, from disk into the
task's I1/0 buffer, if it is not already in memory. The block
may be in memory if the block was required by a previous
operation.

For disk files, returns the RFA to the program, but does not
transfer the record to the program's user buffer.

Returns the RRN for fixed-format disk sequential files.

If no valid record exists in the 1location specified, the response
depends on the access mode:

In sequential-access mode, the error code is ERSEOF, meaning
that no record was located because there are no more records
in the file.

In RFA-access mode, the error code is either ERSRFA, if the
RFA had an invalid format, or ERSEOF, if the RFA specified a
location beyond the end of the file.

In key-access mode for fixed-format disk sequential files, the
error code is ERSKEY, if the key value had an invalid format,
or ERSEOF, if the key value specified a 1location beyond the
end of the file,

A FIND operation affects the record context for the access stream as

follows:

For a sequential-access FIND operation:

- Current record is set to value of the record found, that
is, the next record before the FIND operation started.

Example: You have connected a stream to a sequential file
without specifying that records will be appended to the
file (see Section 3.5.1.1). There is no current record,
but the next record is the first record in the file. If

Al avamnidka 2o ccnnonl--n:n'l FTND nnaratrinn +he nnrvan-l— Yeoor
YCeu CRXECTUTE a Sgeguentid L ainNe Cperlaxicon, tTae eCCr

is set to the first record in the file.

o7

- Next record is set to the record virtually foliowing the
current record.

Example: From the previous example, the next record is the
second record in the file.
For an RFA-access or key-access FIND operation:

- Current record is set to the record found, that 1is, the
record identified by the RFA or RRN.

- Next record is unchanged.

3-8

You use

You can

3.5.1.5
RMS-11:

1.

SEQUENTIAL FILE APPLICATIONS

Example: In the preceding example, you performed a
sequential-access FIND operation after connecting the
stream to the file. You now execute a FIND by RFA. The
current record is set to the record specified, but the next
record is not changed. Therefore, when you perform another
sequential FIND operation, the current record is set to the
second record in the file, not to the record followin the
one found by RFA,

a FIND operation instead of a GET operation for two reasons:

It is faster because the record is not moved to the user
buffer. Although the time required to move a record from one
part of memory to another is very short, do not expend it
unnecessarily.

It does not change the next record in RFA or key access mode.
This convention allows you to branch off sequential
processing for updating or deleting, and keep your place in
the file.

use a FIND operation in the following ways:

To skip records

in sequential access mode by initiating
successive FIND oper

ations.
To establish a random starting point using RFA or key access
mode. You could then initiate successive GET operations,
where the first operation gets the record found by RFA or by
RRN.

To establish a current record for an UPDATE or TRUNCATE
operation.

To determine whether a record cell specified by RRN exists in
a file (for fixed-format disk sequential files only).

FLUSH - A FLUSH operation does not affect the record context
access stream.

GET - To perform a GET operation on a sequential file,

Determines the location of the record in the file according
to the specified access mode:

® In sequential-access mode, location is indicated by the
next record pointer, if the get operation was not
immediately preceded by a successful FIND operation, or
the current record pointer set by an immediately preceding

successful FIND operation.

® Location is determined by the specified relative record
number and match criterion in key-access mode
(fixed-format disk sequential files only).

e Location is determined by the specified RFA in RFA-access
mode (disk files only).

Reads the block containing the record, or the first part of

the record if the record spans blocks, from disk into the
task's I/0 buffer, if the block is not already in memory.

3-9

SEQUENTIAL FILE APPLICATIONS

Example: Your records are 50 bytes long. When you read
sequentially through the file, RMS-11 must regquest a disk I/0
operation for every tenth GET operation that your program
executes,

3. For disk files, returns the RFA to the program and moves the
record from the I/0 buffer to the specified user buffer in
the program unless the program is operating in locate record
transfer mode (see Section 3.5.2). 1If the buffer does not
contain the entire record, RMS-11 reads more blocks into the
I1/0 buffer and assembles the record in the program's user
buffer, regardless of record transfer mode.

4. Returns the RRN for fixed-format disk sequential files.

If no valid record exists in the 1location specified, the response
depends on the access mode:

e In sequential-access mode, the error code is ERSEOF, meaning
that no record was located because there are no more records
in the file.

e In RFA-access mode, the error code is either ERSRFA, 1if the
RFA had an invalid format, or ERSEOF, if the RFA specified a
location beyond the end of the file.

® In key-access mode for fixed-format disk sequential files, the
error code is ER$KEY, if the key value had an invalid format,
or ERSEOF, if the key value specified a location beyond the
end of the file.

A GET operation affects the current record context £for the access
stream as follows:

e Current record is set to the record read.

® Next record is set to the record virtually following the
current record.

Example: You have connected a stream to a sequential file without
specifying that records will be appended to the file (see Section
3.5.1.1). There is no current record, but the next record 1is the

first record in the file. If you execute a sequential-access GET
operation,; the current record is set to the first record in the Ffile

and the next record is the second record in the file.

3.5.1.6 POT - To perform a PUT operation on a sequential file,

1. Determines whether the specified access mode 1is allowed.
Sequential-access mode must be specified unless the file is a
fixed-format disk file; in that case, key-access mode is
allowed. RMS-11 returns the error code ERSRAC if an illegal
access mode is specified.

2. Determines the destination of the record in the file
according to the specified access mode:

e¢ In sequential-access mode, the next record pointer

indicates the destination. The destination must be the
end-of-file; if it is not, RMS-11 returns the error code
ERSNEF.

SEQUENTIAL FILE APPLICATIONS

Your program gets to the end of a sequential file by:

- Specifying that records will be appended to the file
when the program connects the record access stream to
the file (see Section 3.5.1l.1).

d/or GET operations until

- Initiating sequen n
or code.

tial FIND a
RMS-11 returns an ERSEQF err

o3

H

e In key-access mode, the specified relative record number
indicates the destination. Note that RMS-11 does not
check the wvalidity of the designated RRN: if the
destination block is bevond the current end-of-file,
RMS-11 will extend the file to the destination block.

3. Reads the destination block in the file into the I/0 buffer,
if the block is not already in memory. The block may be in
memory if it was required by a previous operation.

4. Moves the record from the user buffer to the task's 1I/0
buffer.

5. Writes the I/0 buffer to disk only if the buffer is fuli. If

there is no room for the block(s) in the file, RMS-11 extends

: T
3.2} and then writes the buffer to

6. For disk files, returns the RFA to the program.
7. Returns the RRN for fixed-format disk sequential files.

A PUT operation affects the context for the access stream as follows:
® For a sequential-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

- Next record -- End-of-file. A sequential FIND or GET
operation fails with error code ERSEOF.

® For a key-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

- Next record -- Unchanged.

3.5.1.7 REWIND - A REWIND operation affects the record context for
the access stream as follows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- Set to the first record in the file.

SEQUENTIAL FILE APPLICATIONS

3.5.1.8 TRUNCATE - A TRUNCATE operation declares end-of-file at the
position of the current record. In doing so, the operation
effectively deletes the current record and all records 1in the
sequential file following that record.

The TRUNCATE operation requires a valid current record. It therefore
should follow a successful GET or FIND operation; otherwise, RMS-11
returns the error code ERSCUR.

A TRUNCATE operation affects the context for the access stream as
follows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- End-of-file.
After a TRUNCATE operation, you can immediately add records to the
file using PUT operations.,
NOTE

The TRUNCATE operation does not reduce
the actual allocated size of a

sequential file on a disk: it merely
specifies a new logical end-of-file
mark.

3.5.1.9 UPDATE -~ In an UPDATE operation, RMS-1ll moves the specified
record from the task's user buffer to the I/0 buffer, replacing the
current record set by a previous GET or FIND operation. However,
RMS-11 does not immediately write the buffer to the file. RMS-11
requests the file control processor to write the changed buffer over
its original 1location on the disk only when the buffer must be
replaced in memory by another operation.

Example: You get a record by RFA and update it,. Then, you get
another record by RFA. RMS-11 writes the buffer containing the first
record you updated only when it must replace the data in the buffer to
satisfy the second GET operation.

UPDATE operations have the following restrictions:

¢ The operation is valid only on disk sequential files. If you
attempt it on magnetic tape files or unit record devices,
RMS-11 returns the error code ERS$IOP.

® The operation requires a valid current record. It therefore
should follow a successful GET or FIND operation; otherwise,
RMS-11 returns the error ERS$SCUR.

@ The size of the record cannot change during an UPDATE
operation. If it changes, RMS-11 returns the error code
ERSRSZ.

® You cannot update stream records. If you attempt it, RMS-1ll
returns the error code ERSRFM.

None of these errors affects the original record in the file on disk.

SEQUENTIAL FILE APPLICATIONS

An UPDATE operation affects the context for the access stream as
follows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- Unchanged.

3.5.2 Record Transfer Modes

You can manipulate reccrds either in the 1I/C buffer or in your
program's user buffer. Each of these options is called a record
transfer mode. You can change record transfer mode at run time, even
between record operations.

Figure 3-1 shows the I/O and user buffers.

{EéEEEﬁ%ﬁgaﬁz ———————— 1
|+ NUMBER OF FILES OPENED SIMULTANEOUSLY |

* BUCKET SIZES |

L NUMBER OF RECORD ACCESS STREAMS

_____________ d
USER BUFFERS ﬁ [
110
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES
TSz DiPENGs N T)
l ® RMS-11 FUNCTIONS USED l
L+ OVERLAY STRUCTURE USED)
ZK-1174-82

Figure 3-1: RMS-11 Task Structure

3.5.2.1 Move Mode - Move mode requires that each record be copied
between the user and I/O buffers:

e On GET operations, RMS-11 moves the record from the I/0 buffer
to the user buffer before returning control to your program.

e On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer. During
the operation, RMS-11 moves the data into the 1I/0 buffer
before updating the file.

Move mode is the default record transfer mode for all programming
languages and all file organizations.

SEQUENTIAL FILE APPLICATIONS

3.5.2.2 Locate Mode - Locate mode enables your program to manipulate
varavrAa in Fha T/ hinffar aliminakrina +ha Aobas Franmafare haoatuaan 14+
E oA A A N~ 4o wiie J./ ~ MULLCL gy \—-I-J-Ill.l-llu\--l.l.l_—’ wiulc “UU . CLUQUODLCT LD MT LWwWCTCTLL P S %
and the user buffer. However, when you specify locate mode, RMS-11

uses it only when such usage does not compromise data integrity.
Otherwise, RMS-11 uses move mode. Therefore, your program must still
contain a user buffer.

Example: RMS-11 uses move mode instead of locate mode when records
span buffers in a sequential file.

Example: RMS-11 uses move mode instead of locate mode if you opened
the file indicating that you were going to perform UPDATE operations
on it.

RMS-~11's use of move mode instead of locate mode 1is transparent to
your program as long as you use RMS-11 facilities to access the record
data.

For sequential files, your program can both performs both GET and PUT
operations in locate mode. See your high-level language documentation
to determine whether the language supports locate mode and, if it
does, what the programming techniques are.

3.5.3 I/0 Techniques

You can use the following techniques to improve the performance of
record operations.

3.5.3.1 Asynchronous Record Operations - Within each access stream,
your program can perform any record operation either synchronously or
asynchronously. In synchronous operations, RMS-11 returns control to
your program after the operation ends, either successfully or with an
error.

When you execute an asynchronous operation, RMS-11 may return control
to your program before the operation 1is complete. The program
continues processing while the physical transfer of data between disk
and memory is carried out. However, you must not initiate another
record operatiom on that stream wuntil the first operation ends;
otherwise, RMS-11 returns the error code ERSACT. See your high-level
language documentation for asynchronous techniques.

3.5.3.2 Deferred Write - The normal mode of operation for sequential
files 1is similar to operations using deferred write with the other
file organizations (see Chapters 4 and 7). Using this technique for
sequential files does not change or improve performance.

3.5.3.3 Multiple Buffers - The multiple buffer capability is not
available to sequential files.

SEQUENTIAL FILE APPLICATIONS

3.5.3.4 Multiple Access Streams - RMS-11 allows each program to use
only one stream on a sequential file because sequential files are not
formatted to permit simple and economical sharing (see Section 3.4).

3.5.3.5 Multiblock Count - Your task can be set up so that more than
one block from a disk sequential file is read or written at one time.
This multiple-block I/0 can improve processing because it tends to
reduce the number of physical I1I/0 operations. However, it also
increases the size of the task, on a one-for-one basis; that is, for
each increment of the multiblock count (MBC), the I/0 buffer in the
task grows by 512 bytes.

An MBC greater than 1 is therefore useful for sequential processing,
including file population.

Example: You are using 50-byte records. During sequential
processing, if the MBC is 1, RMS-11 requests a disk I/0 operation for
every tenth record operation your program executes, whether the
operations are GET or PUT operations. If you set MBC to 5 for
instance, RMS-11 requests a physical I/0 operation for every 50 record
operations.

3.5.4 File and Directory Operations

The following file and directory operations can be performed on
sequential files:

CLOSE
CREATE
DISPLAY
ENTER
ERASE
EXTEND
OPEN
PARSE
REMOVE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided.

CHAPTER 4

RELATIVE FILE APPLICATIONS

This chapter discusses relative file structure, design, and
processing. Relative file design consists generally of determining
the specific attributes, including record size and format, that will
allow you to store, retrieve, and process your data efficently within
the relative file structure. Your task design, along with your file
design, will determine your record and file processing options,
including record access modes.

4.1 FILE STRUCTURE

Physical Structure -- Relative files contain at 1least one block of
RMS-11 information known as the prologue. The operating system's file
management software stores attributes in the file directory. RMS-11
stores the prologue in VBN 1 -- unless the bucket size is 2, 4, or 8
blocks. 1In that case, RMS-11 makes the prologue equal to 1 bucket in
size. Data records begin in the block following the prologue.

RMS-11 allocates relative files in Dbucket increments. The first
bucket begins with the first data block. To support deleted record
control, RMS-11 initializes each bucket (sets all bits to 0) when it
allocates the blocks to the file.

The fixed-length cells are set up in each bucket starting with byte 0
and packed end-to-end, byte-aligned, until no more cells can fit in
the Dbucket (no padding necessary). Cells cannot span bucket
boundaries, although they can cross block boundaries within multiblock
buckets. The first byte of each cell is used by RMS-11 to provide
deleted record control.

Conceptual Structure -- RMS-11 stores records in a series of
fixed-size cells. Only one record can be put into a cell, but all
cells do not have to contain records. The cell size is based on the
length you specify as the maximum for any record in the file. RMS-11
numbers the cells consecutively from 1 to n, where n indicates the
last cell in the file. A cell number relates its location to the
beginning of the file and is associated with the record in the cell,
if any, as a relative record number.

RMS-11 can access records in a relative file either sequentially or
randomly, both by relative record number (key) and by RFA,.

RELATIVE FILE APPLICATIONS

4.2 RECORD SIZE

RMS-11 calculates the number of bytes in each record cell in the file
(CL) of a relative record cell as follows:

CL = 1+RFO+DS+FSZ

where:
1 is a byte for RMS-11 overhead
RFO is bytes for record format overhead: 0 for fixed; 2 for

variable or VFC
FSZ 1is the fixed control size for VFC format; 0 for other formats
DS is bytes of data

For variable-length or VFC record format, DS is the maximum record
size set for the file.

Table 4-1 shows the maximum data sizes for records in a relative file.

These are the sizes of your data; they are adjusted for RMS-11
restrictions and overhead.

Table 4-1: Relative File Data Sizes (in bytes)

Format Maximum Size Record Cell Size Calculation
Fixed 16,383 Data size + 1

Variable 16,381 Maximum record size + 3

VFC 16,381 Fixed + variable + 3

4.3 FILE DESIGN
For relative files, the primary design considerations are:

® Record format (See Section 2.4.1 for a description of the
RMS-11 record formats)

e Bucket size
e File allocation
e Contiguity

® Maximum record number

4,3.1 Bucket Size

Buckets are the I/0 units for relative files. Their size is therefore
critical to the space required by a task and the speed with which the
task performs. Sequential access, especially, benefits when there are
multiple records per bucket. There is, of course, a trade-off: the
larger the bucket size, the larger the task, but the faster the task
reads data sequentially:

® Each block added to the bucket size increases the task size by
512 bytes for each access stream.

RELATIVE FILE APPLICATIONS

e The speed of an RMS-11 operation is closely proportional to
the number of I/0 operations involved. RMS-11 requests an I/0
operation each time it requires a new bucket to locate a
record. Therefore, the more record cells in a bucket, the
fewer I/0 operations RMS-11 needs to read a file sequentially.

However, write sharing a relative file counteracts this
optimization if your program has read-only access to the file.
RMS-11 reads a bucket from disk during each GET operation --
even 1if the next record is in the bucket in memory -- because
the bucket is not locked after each GET operation and a
writing program may have changed the bucket since the record
was last read.

Bucket size can be set by RMSDES or by your application program
depending on the capabilities of your high-level language.

4.3.2 File Allocation
File allocation involves two quantities:

e Initial allocation quantity -- The number of blocks assigned
to a file when you create it

e Default extension quantity -- The number of blocks added to a
file each time RMS-11 automatically extends it

4.3.2.1 1Initial Allocation - Total allocation of a file when you
create it is the most efficient technique regardless of file
organization, but with relative files initial allocation becomes most
critical. Each allocation, whether at creation time or during an
extension, requires RMS-11 to initialize the new buckets by setting
all bits to zero. You can avoid time-consuming file extensions during
normal processing by totally allocating the file when you create it or
by explicitly extending the file when it is not being used for
processing.

You calculate the allocation (ALQ), in blocks, as follows:

ALQ = PLG+ (NRF/NRBKT) *BKS

where:

PLG is equal to 1 block or to BKS if BKS is 2, 4, or 8

NRF is equal to the maximum record number (MRN) or to the number of
records that will be written into the file

BKS is the bucket size in blocks

NRBKT is the number of records in a bucket

RELATIVE FILE APPLICATIONS

You calculate NRBKT as follows:
NRBKT = (512*BKS)/(RSZ+RFO)
where:
RSZ is the size of the record in bytes:
e Data size for fixed-length records
® Maximum record length for variable-length records

e Size of the fixed-length control area plus the maximum size of
the variable-length area for VFC records

RFO 1is the record format overhead:

e RFO 1 byte for fixed-length records

® RFO = 3 bytes for variable-length and VFC records

This allocation can be done during file creation by RMSDES or by your
application program, depending on the capabilities of your high-level
language.

The allocation can also be done by using a PUT operation to write the
"last record" into the file first; that is, the record whose relative
record number is equal to the maximum record number (MRN). Before
RMS~-11 can write this record, it must allocate all record cells from 1
to MRN and initialize the new blocks. After the PUT operation, the
relative file will be completely allocated.

4.3.2.2 Default Extension Quantity - If the file cannot be totally
allocated at creation time, you should establish a reasonable default
extension quantity (DEQ) to minimize the number of (and the time spent
on) file extensions. Even if the file is totally allocated when you
create it, you should establish a reasonable DEQ in case the file must
become bigger than planned.

A good basis for calculation is the number of records that are added
to the end of the file in a given time period, such as a day; use the
formula for allocation quantity in Section 4.3.2.1.

The DEQ for the file can be set by RMSDES or by your application
program, depending on the capabilities of your high-level language.

If you do not specify a DEQ, it defaults to zero. RMS-11 responds to
a DEQ of zero by requesting 4 times the bucket size in blocks from the
file control processor each time it automatically extends the file.

4.3.3 Contiguity

Contiguity can significantly affect performance. Therefore, you
should consider contiguity £for a relative file to minimize the time
spent on each I/0 operation. If the blocks in a file are not
contiguous, they may be on different parts of the disk and thus
require significant head movement to access the file contents.

RELATIVE FILE APPLICATIONS

Physical contiguity, however, ensures that the file is stored on a
single track or, at worst, adjacent tracks. Because the disk can read
an entire track without moving the heads, file contiguity reduces head
movement, This assumes that no other software is accessing the disk
at the same time.

Contiguity also enhances virtual-to-logical-block mapping (discussed
in Chapter 8).

To ensure that the blocks in the file are physically contiguous,
allocate the whole file when you create it (see Section 4.3.2.1).

4.3.4 Maximum Record Number
The MRN associated with a relative file limits the size of the file.
RMS-11 will not put a record into a file with a relative record number
greater than the assigned MRN. However, if an MRN is not set (that
is, MRN 1is zero), RMS-11 only checks whether the record number is
greater than zero before attempting to store a record in a relative
file.
MRN determines the maximum useful size of a file because RMS-11
allocates a record cell for each record between relative record number
1 and the highest relative record number wused. You can explicitly
make the file larger than this maximum, but RMS-11 will not use the
space. The actual size can be smaller than the size that would be set
if a record with the MRN were written into the file.
You can calculate the file size (FSZ) in blocks from the largest
relative record number actually present in the file:

FSZ = PLG+1l+((LRN-1)/((BKS*512)/(RSZ+RF0)))

where:

PLG 1is the size of the prologue: BRKS if BKS = 2, 4, or 8;
otherwise, 1

LRN 1is the largest RRN actually present in the file
BKS 1is the bucket size in blocks
RSZ 1is the size of the record in bytes:
e Data size for fixed-length records
® Maximum record length for variable-length records

® Size of the fixed-length control area plus the maximum size of
the variable-length area for VFC records

RFO 1is the record format overhead:

e RFO

1 byte for fixed-length records

® RFO

3 bytes for variable-length and VFC records

MRN can be set by RMSDES or by your application program, depending on
the capabilities of your high-level language.

RELATIVE FILE APPLICATIONS

4.4 ACCESS SHARING

Access sharing can be specified for relative files as described in the
following sections, See Section 2.2.3 for general information on
shared access.

4.4.1 Record Access to Relative Files

Relative files allow fully interlocked read/write sharing, dependent
upon the compatibility of the access and sharing declarations of
multiple accessors, as follows:

e If you have requested read/write access, your request will be
denied wunless all other accessors have allowed read/write
sharing. (Otherwise, your read/write access request will
conflict with the sharing declaration of at least one other
accessor.)

e If you have not permitted read/write sharing, your request for
read/write access will be denied if any other read/write
accessor is present. (In this case, the read/write accessor
does not meet the requirements of your sharing declaration.)

4.4.2 Block Access to Relative Files

Because block access bypasses the record structure and interlocking
algorithms wused with relative files, read/write sharing cannot be
permitted. Any read/write sharing declaration is converted internally
to read-only before the file 1is processed (this 1is similar to
record-accessed sequential files).

Thus, multiple read-only accessors (regardless of their sharing
declarations) can share relative files concurrently using block
access, as 1long as no read/write record accessor is present.
Read-only block accessors can share files with read-only record
accessors. In addition, a single read/write accessor can access a
relative file using block access (regardless of sharing declaration)
as long as no other accessor of any kind is present.

Other combinations are rejected: the access and sharing declarations

4.5 RECORD AND FILE PROCESSING OF RELATIVE FILES

The record and file processing capabilities described in
RSX-11M/M-PLUS RMS-11: An Introduction are available for relative
files. This section discusses the operations and their implementation
and restrictions with relative files.

RELATIVE FILE APPLICATIONS

4.5.1 Record and Stream Operations

The following record and stream operations can be performed on a
relative file:

CONNECT
DELETE
DISCONNECT
FIND

FLUSH

GET

PUT

REWIND
UPDATE

In all record operations, RMS-11 establishes the current record
context (if any) and next record context (if applicable). If any
record operation fails, RMS-11 normally sets the current record
context to none and does not change the next record context.

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSX-11M/M-PLUS RMS-11
Macro Programmer's Guide.

4.5.1.1 CONNECT - A CONNECT operation affects the current record
context for the access stream as follows:

e Current record -- There is no current record. Any operation
requiring a current record fails at this point.

® Next record -- The next record is the first record cell in the
file.

4.5.1.2 DELETE - In a DELETE operation, RMS-11 flags the current
record cell to indicate that it contains a deleted record. RMS-11
does this by setting the RMS-11 control byte in the cell to a certain
value. Then, RMS-11 writes the bucket over its original location on
the disk, unless you have specified deferred write (see Section
4,5.3.2).

A DELETE operation requires a valid current record. Therefore, a
DELETE operation should follow a successful GET or FIND operationj;
otherwise, RMS-11 returns the error code ER$CUR. This error does not
affect the original record in the file on disk.

A DELETE operation affects the current record context for ‘the access
stream as follows:
e Current record -- None. Any operation requiring a current

record fails at this point.

® Next record -- Unchanged.

RELATIVE FILE APPLICATIONS

4.5.1.3 DISCONNECT - A DISCONNECT operation destroys the current

record

context for the access stream. You cannot resume thie context

by reconnecting the stream.

FIND -~ To perform a FIND operation on a relative file,

Determines the location of the record in the file according
to the specified access mode:

® In sequential-access mode, location is indicated by the
next record pointer.

® In key-access mode, location is determined by the
specified relative record number and match criterion.

® In RFA-access mode, location is determined by the
specified RFA.

Reads the bucket containing the indicated cell from disk into
the task's 1I/0 buffer, if the bucket 1is not already in
memory. The bucket may be in memory if it was required by a
previous operation.

Returns the RFA and the RRN to the program, but does not
transfer the record to the program's user buffer.

If the cell is empty or contains a deleted record, the
response depends on the access mode:

® In sequential-access mode, RMS-11 repeats steps 1 through
3, moving through cells until the MRN is exceeded (ERSMRN)
or the end of the file is reached (ERSEOF) .

® In key-access mode, RMS-11 reacts according to the
specified match criterion:

- On an equal match, RMS-11 returns the error code
ERSRNF.

- On a greater-than or greater-than-or-equal match,
RMS-11 internally adds 1 to the relative record number
and repeats steps 1 through 3, until cither the MRN is

exceeded (ERSMRN) or the end of the file is reached

(ERSRNF) .
® In RFA-access mode, RMS-11 returns the appropriate error
code:
- ERS$RNF -- No valid record has ever existed at the

specified location.

- ER$DEL -- The control byte in the cell indicates that
the record in it was deleted.

A FIND operation affects the record context for the access stream as

follows:

For a sequential-access FIND operation:

- Current record is set to the relative record number of the
record found, that 1is, the next record before the FIND
operation started.

You use

You can

RELATIVE FILE APPLICATIONS

Example: You have connected a stream to a relative file.
There is no current record, but the next record is the
first record in the file. If you execute a
sequential-access FIND operation, the current record is set
to the first record in the file.

- Next record is set to a relative record number 1 higher
than the relative record number for the current record.

Example: From the previous example, the next record is the
second record cell in the file.

For a key-access or RFA-access FIND operation:

- Current record is set to the record found, that is, the
record identified by the relative record number or RFA.

- Next record is unchanged.

Example: In the preceding examples, you performed a
sequential-access FIND operation after connecting the
stream to the file. You now execute an RFA-access ,FIND
operation. The current record 1is set to the record
specified, but the next record is not changed. Therefore,
when you perform another sequential-access FIND, the search
will begin in the second record cell in the file, not 1in
the cell following the one found by RFA.

a FIND operation instead of a GET operation for two reasons:

It is faster because the record is not moved to the wuser
buffer. Although the time required to move a record from one
part of memory to another is very short, there is no use
expending it if you do not need to.

It does not change the next record in key-access mode or
RFA-access mode. This allows you to branch off sequential
processing for purposes of updating or deleting records, and
keep your place.

use a FIND operation in the following ways:

To skip records in sequential-access mode by initiating
successive FIND operations.

To establish a random starting point for sequential processing
using RFA-access mode. You could then initiate successive GET
operations, where the first operation gets the record found by
RFA.

To establish a current record for a DELETE or UPDATE
operation.

To determine the existence of a record by using a random
access mode.

RELATIVE FILE APPLICATIONS

5 FLUSH - A FLUSH operation does not affect the record context

4,5.1.6 GET - To perform a GET operation on a relative file, RMS-11:

1. Determines the location of the record in the file according
to the specified access mode:

e In sequential-access mode, location is indicated by: (a)
the next record pointer, 1if the GET operation was not
immediately preceded by a successful FIND operation; or
(b) the current record pointer set by an immediately
preceding FIND operation.

e In key-access mode, location 1is determined by the
specified relative record number and match criterion.

® In RFA-access mode, location is determined by specified
RFA,

2. Reads the bucket containing the indicated cell from disk into
the task's 1I/0 buffer, if the bucket 1is not already in
memory. The bucket may be in memory if it was required by a
previous operation.

Example: Your fixed-length records are 50 bytes 1long;
bucket size is 2 blocks. When you read sequentially through
the file, RMS-11 must request a disk I/0 operation every
twentieth GET operation that your program executes.

NOTE

If you have opened a relative file with read-only
access and read/write sharing declarations, each GET
operation causes an I/0 operation.

3. Returns the RFA and the RRN to the program and moves the
record from the I/0 buffer to the specified user buffer in
the program -- unless the program 1is operating in 1locate
record transfer mode (see Section 4.5.2.2).

if the cell is empty or contains a deleted record, the
response depends on the access mode:

® In sequential-access mode, RMS-11 repeats steps 1 through
3, moving through cells until the MRN is exceeded (ERSMRN)
or the end of the file is reached (ERSEOF).

® In Kkey-access mode, RMS-11 reacts according to the
specified match criterion:

- On an equal match, RMS-11 returns the error code
ERSRNF.

- On a greater-than or greater-than-or-equal match,
RMS-11 1internally adds 1 to the relative record number
and repeats steps 1 through 3, until either the MRN is
exceeded ({ERSMRN} or the end of the file is reached
(ERSRNF) .

RELATIVE FILE APPLICATIONS
® In RFA-access mode, RMS-11 returns the appropriate error
code:

- ERSRNF -- No valid record has ever existed at the
specified location.

- ERSDEL -- The control byte in the cell indicates that
the record in it was deleted.

A GET operation affects the record context for the access stream as

follows:

4.5.1.7

Current record is set to the relative record number of the
record read.

Next record is set to a relative record number 1 higher than
the relative record number for current record.

POUT - To perform a PUT operation on a relative file, RMS-11:

Determines the destination of the record in the file
according to the specified access mode:

¢ In sequential-access mode, the next record pointer
indicates the destination.

® In key-access mode, the specified relative record number
indicates the destination.

Determines whether the bucket containing the indicated cell
is in the file. 1If it is, RMS-11 goes to the next step. If
it is not, RMS-11 extends the file until it has enough blocks
for all buckets up to and including the required one. Then,
RMS-11 initializes all newly allocated buckets.

Reads the bucket containing the indicated cell from disk into
the task's 1I/0 buffer, if the bucket 1is not already in
memory. The bucket may be in memory if it was required by a
previous operation.

Checks the indicated «cell: if it already contains an
existing, valid record, RMS-11 returns error code ERSREX;
otherwise, RMS-11 goes to the next step.

Note that in some cases, you may be able to update an
existing, valid record in a cell. See your high-level
language documentation.

Moves the record from the user buffer in the program to the
task's I1/0 buffer.

Returns the RFA and the RRN

to the program.

Writes the I/O buffer to disk, unless you have specified
deferred write (see Section 4.5.3.2).

A PUT operation affects the record context for the access stream as

follows:

For a sequential-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

RELATIVE FILE APPLICATIONS

- Next record -- The cell with a relative record number 1
higher than the relative record number of the record just

inserted.
® For a key-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

- Next record -- Unchanged.

4.5.1.8 REWIND - A REWIND operation sets the context of the access
stream to the beginning of the relative file. 1In doing so, it affects
the record context for the stream as follows:

® Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- Set to the first record cell in the file.

4.5.1.9 UPDATE - In an UPDATE operation, RMS-11 moves the specified
record from the task's user buffer to the I/0 buffer, replacing the
current record set by a previous GET or FIND operation. Then, RMS-11
writes the bucket over its original location on the disk, unless you
have specified deferred write (see Section 4.5.3.2).

An UPDATE operation requires a valid current record. Therefore, an
UPDATE operation should follow a successful GET or FIND operation;
otherwise, RMS-11 returns the error code ERSCUR. This error does not
affect the original record in the file on disk.

An UPDATE operation affects the current record context for the access
stream as follows:

® Current record -- None. Any operation requiring a current
record will fail at this point.

¢ Next Reccrd --~ Unchanged.

4,5.2 Record Transfer Modes

You can manipulate records either in the I/0 buffer or in your
program's user buffer. Each of these options is called a record
transfer mode. You can change record transfer mode at run time, even
between record operations. Figure 4-1 illustrates the RMS-11 task
structure. ’

4.5.2.1 Move Mode - Move mode requires that each record be copied
between the user and I/0 buffers:

e On GET operations, RMS-11 moves the record from the I/0 buffer
to the user buffer before returning control to your program.

® On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer and,
during the operations, RMS-11 moves the data into the 1/0
buffer before updating the file.

RELATIVE FILE APPLICATIONS

Move mode is the default record transfer mode for all programming
languages and all file organizations.

4.5.2.2 Locate Mode - Locate mode enables your program to manipulate
records in the I/0 buffer, eliminating the data transfers between it
and the user buffer. However, when you specify locate mode, RMS-11
uses it only when such usage does not compromise data integrity.
Otherwise, RMS-11 uses move mode. Therefore, your program must still
contain a user buffer.

fEiEBEﬁ&EEGN: ________ 7
|» NUMBER OF FILES OPENED SIMULTANEOUSLY |
+ BUCKET SIZES |

_____________ 1
USER BUFFERS ————~\
1’0
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES
I'SizE DEPENDS ON: __1
!-HM841FUNCHONSUSED }
L+ OVERLAY STRUCTURE USED,
ZK-1174-82

Figure 4-1: RMS-11 Task Structure

Example: RMS-11 uses move mode instead of locate mode when a relative
file is shared.

Example: RMS-11 uses move mode instead of locate mode if you opened a
file indicating you were going to perform UPDATE operations on it.

RMS-11's use of move mode instead of locate mode 1is transparent to

your program as long as you use RMS-11 facilities to access the record
data

For relative files, your program can only perform GET operations in
locate mode. See your high-level language documentation to determine
whether the language supports locate mode and, if it does, what the
exact programming techniques are.

RELATIVE FILE APPLICATIONS

4.5.3 1/0 Techniques

You can use the following techniques to improve the performance of
record operations.

4.5.3.1 Asynchronous Record Operations - Within each access stream,
your program can perform any record operation either synchronously or
asynchronously. In synchronous operations, RMS-11 returns control to
your program after the operation ends, either successfully or with an
error.

When you execute an asynchronous operation, RMS-11 may return control
to your program before the operation 1is complete. The program
continues processing while the physical transfer of data between disk
and memory is carried out. However, you must not initiate another
record operation on that stream until the first operation ends;
otherwise, RMS-11 returns the error code ERSACT. See your high-level
language documentation for asynchronous techniques.

4.5,.3.2 Deferred Write - Normally, each write-type record operation
(DELETE, UPDATE, and PUT) results in a bucket being written to disk.
This convention emphasizes data integrity: you know that when a
write-type operation has ended successfully, the file reflects that
operation.

However, you can improve the performance of sequential write-type
operations by using deferred write. Basically, deferred write directs
RMS-11 to write a bucket to disk only when RMS-11 must wuse the 1I/0
buffer for some other purpose.

NOTE

Deferred write, although not illegal, is
essentially invalidated while a relative
file is being shared by multiple tasks
or streams. In that environment, every
write-type operation results in an 1I/0
operation so that:

e The bucket locked by the previous GET
or FIND (Eor UPDATE and DELETE
operations) or by the PUT operation
can be released.

e The new data 1is available to the
other tasks or streams.

Therefore, if you perform sequential write-type operations on a
nonshared relative file, deferred write improves performance. RMS-11
writes out the buffer only when it must read another bucket to
complete an operation.

Example: Your records are 304 bytes long and the bucket size is 3
blocks. During sequential write-type operations, deferred write
causes 1I/0 operations per bucket to drop from 5 to 1.

Deferred write offers 1little or no benefit to random write-type
operations or read-type operations in any access mode.

RELATIVE FILE APPLICATIONS

4.5.3.3 Multiple Buffers - When you open a relative file, RMS-11
normally allocates 1 bucket-sized I/0 buffer in your task's address
space. RMS-11 uses this buffer dquring record operations. However,
you can direct RMS-11 to allocate more than the one buffer.

RMS-11 uses any extra buffers to keep, or cache, buckets in memory.
When a record operation requires that a bucket be read from disk,
RMS-11 checks its cache first. RMS-11 does not perform an I/0
operation if both of the following are true:

e The requested bucket is already in memory.

e That bucket is still valid, that is, the file 1is not shared
and/or the bucket has been kept locked.

You do not benefit from multiple buffers during sequential operations.
You can improve performance with multiple buffers during random
operations only if your program accesses the same buckets often.

4.5.3.4 Multiple Access Streams - RMS-11 allows each program to use
multiple streams on a relative file.

4.,5.4 File and Directory Operations

The following file and directory operations can be performed on
relative files:

CLOSE
CREATE
DISPLAY
ENTER
ERASE
EXTEND
OPEN
PARSE
REMOVE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided.

CHAPTER 5

INDEXED FILE STRUCTURE AND ACCESS

DIGITAL designed the RMS-11 indexed file organization to achieve the
following goals:

Content-addressable record access -- Each record in the file
can be located on the basis of the values in designated
portions of the data, called key fields.

Uniform random access time -- Each record in the file can be
located with approximately the same number of I/0 operations,
regardless of when it was added to the file.

Alternate key capabilities (comply with ANSI COBOL Level 2) --
Each record 1in the file can be located via more than one key
field.

Very good performance on sequential access by primary key -- A
program can sequentially read a reasonably designed indexed
file by primary key almost as fast as it can sequentially read
a sequential file.

Good performance on sequential access by alternate keys --
Each record in the series can be accessed with (typically) one
to three I/0 operations.

Unique record address for the life of the file (data base key

concept) =-- A record in a file can be located via a unique
identifier (record file address) established by the PUT
operation. The record may be deleted, but its unique

identifier is never reused.

Preserve the state of processing despite a system failure --
Normally, each logical write operation results in a physical
transfer of data from memory to disk. Therefore, the file
reflects each record inserted. However, you can override this
mode with deferred write in some cases.

More importantly, RMS-11 performs record operations so that both of
the following are true:

File corruption is avoided or minimized even if a system
failure occurs during a write-type record operation.

Even if some corruption exists, user data can still be
accessed.
NOTE
You should still reorganize your file if

the system fails during write-type
processing on an RMS-11 indexed file.

5-1

INDEXED FILE STRUCTURE AND ACCESS

5.1 PHYSICAL FILE STRUCTURE
On disk, an indexed file consists of three kinds of blocks:

® Prologue -- RMS-11 information about the file, including
attributes and key and area descriptions

e Index -- Index records for primary and alternate keys pointing
the way to a data record

e Data -- Your data records and index data records

The prologue contains information about the keys and areas of the
file. RMS-11 allocates at least one block for the key descriptors and
at least one block for the area descriptors. RMS-11 uses more blocks
as needed. Size calculations are discussed in Section 6.6.1.

Areas are portions of an indexed file that are treated independently
for initial allocation, extensions, placement, and bucket sizes. Like
subfiles, but invisible to the operating system, areas allow you to
divide indexed files logically into separate units for each index and
for the data records to improve performance; see Section 6.3 for more
information on areas.

In addition, RMS-11 extends the prologue to an integral multiple of
the area 0 bucket size, if the area 0 bucket size is 2, 4, or 8
blocks. See Section 6.5 for more information on bucket sizes.

The location of the index and data blocks is up to you:

e If the file is a single area, RMS-11 allocates data and index
blocks in buckets as it needs them; they are therefore
interspersed throughout the file.

e If the index and data are set up in separate areas, RMS-11
allocates each type of bucket from the appropriate area; the
index is therefore set apart physically from the data portion
of the file.

Figure 5-1 illustrates an indexed file both with and without areas.
RMS-11 formats buckets in an indexed file as it requires them for
record storage. The RMS-11 control bytes are set to their initial

values:

e 14 bytes, beginning with byte 0 of the bucket contain bucket
control information.

e The last byte of the last block duplicates the first byte of
the bucket for checking I/0 completion.

RMS-11 packs index or data records, including record format overhead,
into each bucket, beginning with byte 14, end-to-end and byte-aligned.

Figure 5-2 shows the RMS-11 bucket format.

INDEXED FILE STRUCTURE AND ACCESS

START OF FiLE

PROLOGUE

PRIMARY
INDEX

DATA
RECORDS

ALTERNATE

WITHOUT AREAS WITH AREAS

Pl = PRIMARY INDEX
DR = DATA RECORDS
Al = ALTERNATE INDEX

ZK-1165-82

Figure 5-1: Indexed File with and without Areas

INDEXED FILE STRUCTURE AND ACCESS

BUCKET BOUNDARIES
éé\

RECORDS

' L o [
CONTROL FLAGS
LEVEL IN INDEX
VBN OF NEXT BUCKET IN LEVEL

RECORD IDENTIFIER INFORMATION
POINTER TO FREE SPACE IN BUCKET
BUCKET ADDRESS SAMPLE
_ AREA CONTAINING. THIS BUCKET
CHECK BYTE EQUALS LAST BYTE——/

ZK-1160-82

Figure 5-2: Formatted Bucket

5.2 CONCEPTUAL FILE STRUCTURE

No matter how it 1is 1laid out physically, the indexed file is
conceptually a prologue plus a group of indexes, one per key. Each
index consists of horizontal chains of buckets called levels. Figure
5-3 illustrates this structure as a pyramid.

ROOT LEVEL 2
|
. -
e LEVEL 1
| | / \ /T\
7 7] NN Vd I] N\ N 2 7 A [+ 4 Y \ T~ 14] \ N
LEVEL O
r

VA A AW AW W AW A WA I WA W AW W O W W W W W A W AW R

BUCKET

—J

2¢.7120.82

Figure 5-3: Index as a Pyramid

INDEXED FILE STRUCTURE AND ACCESS

The lowest level of an index 1is 1level 0. The level number is
incremented for each successive (and smaller) level, that is, level 1,
level 2, and so on. The highest level in an index is a single bucket
called the root; this bucket is the entry point to the index for
random accesses using this key. Each index has at least two levels (0
and 1).

The depth of an index is equal to the level number of the root. An
index depth relates to the time needed to randomly access any record
in the file via that index.

5.2.1 Data

Level 0 of each index is called the data level; it consists of data
buckets. In the primary index, level 0 contains buckets of your data
records. 1In the alternate indexes, level 0 buckets contain pointers
to your data records.

5.2.1.1 Level 0 of the Primary Index - RMS-11 physically orders data
records by ascending primary key value along the bucket chain. The
records having the lowest primary key value reside in the first bucket
of the 1level and the records with the highest primary key values
reside in the last bucket. RMS~1l1l preserves this order regardless of
the insertion sequence of the records.

Each bucket in level 0 shares the following properties:

® The last data record in a bucket has an equal or higher key
value than any other record in the bucket.

® The last data record in a bucket has a lower Xkey value than
the first record in the next bucket in the chain.

Each bucket thus has a high-key value, located in the last record of
the bucket. This concept is the core of RMS-11 index file structure.

NOTE

RMS-11 places records with duplicate key
values next to each other on a first-in,
first-out (FIFO) basis. If these
duplicate records cannot fit in the same
bucket, RMS-11 stores the overflow in a
continuation bucket. Continuation
buckets are extensions of level 0
buckets and, as such, are not indexed.
This extension storage preserves the
high-key concept.

5.2.1.2 Level 0 of an Alternate Index - Level 0, the data 1level, of
an alternate index contains secondary index data records (SIDRs). A
SIDR consists of two elements:

1. An alternate key value from a data record stored in the

primary data level, The SIDRs in the data level of each
alternate index are stored in ascending order by this key
value.

INDEXED FILE STRUCTURE AND ACCESS

2. One or more pointers to data records in the primary data
level. "Miultipleé peointers occur when you allow duplicates for

the alternate key and records with duplicate values for the
key actually exist in the file.

Figure 5-4 illustrates the SIDR format.

A. DUPLICATES ALLOWED POINTER ARRAY ——————»

Yl

SIZE
DURLSATEl OF | keY éZ%ALUE 6? VBN 6‘]
ARRAY
. 1/ . — / 1 /
t SIDR IDENTIFIER t DATA RECORD ID
CONTROL FLAG BYTE
\—POINTER TO PRIMARY —/

LEVEL 0

iy

B. NO DUPLICATES ALLOWED

SIZE
OF KEY VALUE VBN
SIDR
7/ 7/
! LSIDR IDENTIFIER | LDATA RECORD ID
CONTROL FLAG BYTE
L_ POINTER TO PRIMARY
LEVEL O

ZK-1152-82

Figure 5-4: Format for Secondary Index Data Record

5.2.2 Indexes

Levels 1 and above in an index are called the index levels; they
consist of 1index buckets. Index buckets contain index records that
guide RMS-11 through the levels to the data records in primary level
0. An index record consists of two elements:

1. The high-key value of a bucket in the next lower level in the
index. Because RMS-11 arranges these values in ascending
sequence, there is a high-key value for index buckets also.
However, the last high-key value in the last index bucket of
a level is set to the highest possible key value, rather than
the highest key value in the file. The associated pointer

- W P rha awdt TArrawr Tawal
references the last bucket in the next lower LEVEL.

2. A pointer to the bucket associated with the high-key value.

Example: The buckets in level 1 of the primary index contain the
high-key values of the data buckets in 1level 0. Then, level 2
contains the high-key values from level 1 and so on. Figure 5-5 shows
an example of a primary index.

In other words, each bucket on a given 1level 1is represented by an
index record 1in the next higher level. Thus, the number of buckets
required on each successive level decreases exponentially wuntil the
root bucket is reached.

Example: If an index bucket can hold 10 index records, then:

e If level 0 contains 2000 data buckets:

Level 1 contains 200 index buckets
Level 2 contains 20 index buckets

INDEXED FILE STRUCTURE AND ACCESS

Level 3 contains 2 index buckets
Level 4 contains 1 index bucket

If level 0 contains 10,000 data buckets:
Level 1 contains 1000 index buckets
Level 2 contains 100 index buckets
Level 3 contains 10 index buckets
Level 4 contains 1 index bucket

'I%FE;LT? \ |l Jones | ISZIMAXIMUM KEY VALUEJ|

/ N\

f <
/ AN

, . , ,
LEVEL 1 @@ lt)gﬂ SMITH | é ﬁmmmum KEY VALUEJ!
o ly L = / / \ .

| | | \
/ | | |

) /L
[|] |
LEVEL 0 | [ABLE ELM AVE. 362 |_Jones maIN sT. | SMITH HOLT RD 589 INS [voos FirsT sT. 9782
by /A
AT

I - ZK-1151-82

Figure 5-5: Example of a Primary Index

5.2.3 Random Access Using the RMS-11 Indexed File Structure

The following steps show how RMS-11 uses the indexed file structure to

execute

called

1.

a random access operation. These steps constitute a process

"follow the index."

RMS-11 examines memory-resident index descriptors to find the
location of the root for the specified index. Note that the
root can be cached (see Section 7.4.3), eliminating the 1I/0
operation to read the root in the next step.

RMS-11 reads the root and scans for the first value greater
than or equal to the key value specified when the operation
was initiated. If all else fails, the search will find the
highest possible key value in the last index record.

RMS-11 reads the bucket indicated by the pointer associated
with the selected key value and scans for the first key value
greater than or equal to the value specified. RMS-11 repeats
this step through the levels until level 0 is reached.

INDEXED FILE STRUCTURE AND ACCESS

Example: Refer to Figure 5-5 for this example.
The specified primary key value is "Y00S."

RMS-11 determines the VBNs of the root bucket from the memory-resident
index descriptors and requests the file control processor to read
those blocks into an I/0 buffer. RMS-11 scans the index records in
the root. The first key value equal to or greater than "YOOS" is the
maximum key value in the last record.

RMS-11 uses the bucket pointer in this index record to request another
I/0 operation. The file control processor reads the specified blocks
into the 1/0 buffer, and RMS-11 scans them looking for a key value
equal to or greater than "Y00S." Again, it finds no qualifying key
value until the last record in the bucket, which contains the maximum
key value. This index record points to a level 1 bucket.

Upon RMS-1l's request, the file control processor brings the indicated
bucket into memory. RMS-11 searches the bucket, terminating with the
last record in the bucket, which contains the maximum key value.

The file control processor reads the indicated 1level 0 bucket at
RMS-11's request,

5.2.4 Why this Structure?

Mechanical data storage devices make I/0O operations the slowest part
of file processing. Ideally, a file is read into memory when it is
opened and maintained there, without additional I1/0 operations, until
the file is closed. Some very small files allow this approach and are
handled most efficiently by your own search techniques rather than by
RMS-11's indexing facilities.

However, most indexed files are very much larger than the memory
available for data buffering. Such files are therefore partitioned
into pieces that can be read to memory. RMS-11 calls these pieces
buckets. By definition, one I/0 operation is required to access one
bucket.

If no index to the data exists, a task must scan sequentially through

the buckets of a file to find a specific record. Such a search, on

the average, accesses half the buckets in the file. Figure 5-6 plots
i oc Av 3 ha

+he imos onr £
- LN N A e ~

-l

r

T ravrina
v VG LD

e
£

r

[

1i1a aAanwr~ o
e LTALTHING

You can optimize nonindexed access by:
e Ordering the records by a key value
® Using a binary search technique
Then, the number of accesses required to find a record approaches log2

of the total number of buckets (see Figure 5-6). This better, but
still mediocre, speed is realized on one of perhaps many keys.

The RMS-11 indexed structure uses buckets so that your programs can
handle files more efficiently. In most cases, RMS-11 uses n+l 1I/0
operations to locate a record by primary key, where n is the depth of
the file's primary index.

INDEXED FILE STRUCTURE AND ACCESS

In a small file, this technique 1is not appreciably £faster than a
sequential scan. However, given typical key sizes, a primary index of
depth 3 can represent from 1,000 to 125,000 buckets of data records,
using only single-block buckets. Normally, four disk accesses are
needed to get any record by primary key value.

Example: You want to search 50 buckets of data for records with
specific primary key values. The average number of buckets you read
during each search depends on your search technique (see Figure 5-6):

25.5 buckets for a nonindexed search of unsorted records
5+ buckets for a binary search of records sorted by primary
key
2 buckets for an RMS-11 indexed search

5.3 PROCEDURES FOR PERFORMING RANDOM RECORD OPERATIONS

The procedures for performing random record operations on indexed
files depend on the circumstances for the individual operation, the
file's design, and whether alternate indexes must be updated.

RMS-11 PRIMARY INDEX SEARCH,
10 RECORDS PER INDEX BUCKET*

BINARY SEARCH FOR PRIMARY KEY,
RECORDS ORDERED BY PRIMARY KEY
125 —
1004 —
NUMBER OF i
PRIMARY DATA o7
BUCKETS r
504
- RD
L OF\‘\EOO
25+ SERING
i wo O
act
L s
ExeP
L ON\ND
0 11=|||||rA|||:||||411||1=
0 5 10 15 20 25

NUMBER OF BUCKETS READ IN SEARCH

“LINE SHIFTS TO LEFT AND BREAK RIGHT MOVES UP
AS NUMBER OF INDEX RECORDS PER BUCKET GOES UP,
ASSUMING OPTIMAL PACKING
ZK-11589-82

Figure 5-6: Search Time Curves

5-9

INDEXED FILE STRUCTURE AND ACCESS

5.3.1 Writing a Record

When your program initiates a PUT operation, RMS-11 moves the data
from the task to the proper bucket in level 0 of the primary index and
updates all indexes involved with the record. This process can be
simple, requiring minimal 1I/0 operations. It can also be complex,
requiring more procedures and data transfers. The complexity depends
on whether there is enough room for the new record in its data bucket.

5.3.1.1 Simplest Case - In the simplest PUT operation, RMS-11 finds
room 1in the target data bucket to insert the record. To execute the
operation, RMS-11 performs the following steps:

1. Determines the value of the primary key field from the
record.

2. Follows the primary index to the proper level 0 bucket.

3. Reads the level 0 bucket and sequentially scans for the first
record with a primary key value greater than the specified
value. RMS-11 then establishes a position before that
record, or after the last existing record in the bucket if:

e The key values are equal.

e The first record in the next data bucket has a higher key
value.,

4. Compresses deleted records. RMS-1ll1l can reuse bytes in a
deleted record depending on the record format and whether you
allow duplicates in the primary key field. Section 6.2.5
discusses reusing space from deleted records.

5. Determines whether the record to be inserted fits in the
bucket (in this simplest case, it does).

6. Inserts the record at the established position. No primary
index buckets are updated since no high-key value has
changed.

7. 1f there are alternate keys, updates those indexes, using the
following sequence of steps for each one:

® Follows the alternate index to the proper level 0 bucket.

® Reads the level 0 bucket and sequentially scans for the
key value specified in the record:

- If a value higher than the one specified is found,
inserts a SIDR for the record before the SIDR for the
higher value.

- If a match is found, determines whether duplicates are
allowed for the alternate key:

If duplicates are allowed, RMS-11 follows the duplicate
pointer array in the SIDR to the end, then inserts a
pointer to the newly inserted record. This procedure
preserves the first-in, first-out convention. After
the last alternate key, RMS-11 returns a successful
completion code to the program.

5-10

INDEXED FILE STRUCTURE AND ACCESS

If duplicates are not allowed, RMS-11 returns to level
0 of the primary index, flags the newly inserted record
as deleted, logically removing it, and returns an error
code to the program.

Example: Refer to Figure 5-5 for this example.

RMS-11 examines the record in the user buffer of the record access
stream initiating the PUT operation. The value in the primary key
field is "JACKSON." RMS-11 locates the primary root and requests the
file control processor to read the bucket into the 1I/0 buffer
associated with the stream. When that I/0 operation completes, RMS-11
scans the bucket, 1looking for a key value equal to or greater than
"JACKSON." It finds "JONES."

RMS-11 requests the bucket indicated by the pointer in the "JONES"
index record. When RMS-11 scans this level 2 bucket, it finds that
"JONES" again ends the search. Following the pointer in this index
record, RMS-11 requests another bucket. 1Its search of the level 1
bucket ends in another "JONES"™ index record.

RMS-11 requests the level 0 bucket indicated by this last index
record. It finds that a data record with a primary key value of
"JONES" is the only occupant of the bucket. There are no deleted
records to compress, so RMS-11 writes the "JACKSON" record before the
"JONES" data record, moving the "JACKSON" record down in the bucket.

There are no alternate keys. RMS-11 returns a successful completion
code to the program.

5.3.1.2 Bucket Splitting - If there is not enough room in the target
data bucket for the record, RMS-11 allocates a new bucket and
reorganizes the records in the old one between the two buckets. This
procedure is called bucket splitting.

Bucket splitting is identical with the simplest case (Section 5.3.1.1)
to step 5 where RMS-11 determines whether the new record fits in the
bucket. When there is not enough room, RMS-11 does the following:

1. Reads the appropriate area descriptor from the file prologue.
If enough blocks for a bucket are allocated for the area,
RMS-11 formats the blocks into a bucket and updates the area
descriptor to reflect the new bucket. Otherwise, RMS-11
requests the operating system to allocate enough blocks, and
then formats them into a bucket and updates the area
descriptor.

2. Splits the target bucket at the point where the record should
be inserted. RMS-11 moves the records in the high portion of

the bucket into the new bucket; these records have primary
key values highnr than those of the new record

QL el Qi Lot Lo L AW LUl Lil.

INDEXED FILE STRUCTURE AND ACCESS

5.3.1.3

NOTE

When RMS-11 moves a record between buckets, it marks
the record's original location with a record
reference vector (RRV). An RRV is a copy of the
record's header (both contain 7 bytes). RRVs
preserve alternate key and RFA access, holding the
original 1location of the record and pointing to its
current location. Only one RRV 1is created for a
record: if the record moves again, RMS-11 updates
the RRV with the record's new location.

Since the original location of a record 1is filled,
either with the record or a pointer to that record,
RMS-11 does not have to update alternate indexes
every time a record moves. This convention means one
extra I/0 operation may be needed to find or get a
record via an alternate Xkey, but it prevents a
complex and costly index wupdate for each bucket
split.

Inserts the data record in the original target bucket. If
the record will not fit, RMS-11 inserts it into the new
bucket. If the record will not fit there either, RMS-11 will
create another bucket (see step 1) and put the record there.

Updates the 1level 0 Dbucket chain to include the new
bucket (s).

Returns to the primary root bucket and follows the index to
the 1level 1 index bucket that points to the data bucket that
split.

Inserts index record(s) for the new data bucket(s). If the
index bucket splits, RMS-11 uses a procedure similar to this
to move the index records and update the next higher level of
the index. Splitting can occur all the way to the root where
a new root is created and the file prologue updated.

If there are alternate keys, RMS-11 updates those indexes as

described 1in step 7 of the simplest case (Section 5.3.1.1).
Bucket splitting can occur in alternate indexes also.

Incremental Reorganization - The process of inserting each

data record where it belongs in level 0 and updating the indexes when
RMS-11 inserts the record is called incremental reorganization of the

file.

Incremental reorganization has the following advantages:

It eliminates reorganization periods where special software
incorporates overflow areas into the main file and that file
is not available for processing

It ensures equal access time to 0ld and new records

It enables performance on sequential access by primary key to
approach the speed of sequential access to a sequential file

INDEXED FILE STRUCTURE AND ACCESS

This process has its costs: additional I/O operations occur when a
bucket splits. But with good file design and file loading, bucket
splitting (and the time for each bucket split) is minimal. Chapter 6
discusses these considerations in detail.

5.3.2 Getting and/or Finding a Record

To execute a key-access GET or FIND operation, RMS-11 performs the
following steps:

-

1. Determines from the instruction initiating the operation the
following criteria:

e Key of reference, indicating which index to search and
which key field within the data record to examine

® Value to find
® Match criterion (equal to, greater than, or both)
® Number of characters to match

2. Follows the index to the proper level 0 bucket.

3. Reads the level 0 bucket, sequentially scanning for the first
record with a value in the specified key field that matches
the specified value according to the match criterion. This
search can continue into other buckets:
® If no such record is found, RMS-11 returns an error code.
e If such a record is found, RMS-11:

- Determines which index has been read:

If it is the primary index, RMS-11 goes to the next
step.

If it is an alternate index, the record 1located is a
SIDR. RMS-11 follows the SIDR pointer to the primary
level 0 data record.

- For a GET operation only, moves the record to the user
buffer associated with the access stream performing the
operation.

- Sets the current context for the stream performing this
operation. The effect of each record operation on
context is described in Section 7.2.

- Returns a successful completion code.

Example: Refer to Figure 5-5 for this example.

RMS-11 determines the key (and index) of reference and the value to
find from the instruction initiating the operation. 1In this case,
they are the primary key (key 0) and "ABI."

INDEXED FILE STRUCTURE AND ACCESS

RMS-11 1locates the primary root and requests the file control
processor to read the bucket into an I/0 bufifer. RMS-11 sequentially
scans the root for an index record whose key value 1is equal to or

greater than "ABI." It finds "ABRAM."

RMS-11 requests the bucket indicated by the pointer in the "ABRAM"
index record. When RMS-11 searches this level 2 bucket, it finds an
index record containing the key value "ABNER." Following the pointer
in this 1index record, RMS-11l requests another bucket. The search of
the level 1 bucket ends in the key value "ABLE."

RMS-11 requests the level 0 bucket indicated by this 1last index
record. RMS-11 changes its search criteria to that specified in the
initiating instruction: it looks for a record where the first 3 bytes
of the primary key field equal "ABI." Since the only record in the
bucket contains "ABLE" in its primary key field, RMS-11 cannot satisfy
the search requirements. It returns a "record not found" error code
to the program.

5.3.3 Updating a Record

RMS-11 requires an UPDATE operation to be preceded by a GET or FIND
operation, although some high-level languages hide this prerequisite.

To execute an UPDATE operation, RMS-11 performs the following steps:
1. Locates the key fields of the revised record in the user
buffer associated with the access stream performing the
operation. RMS-11 compares those key values with the values
in the current record:

e If the primary key value changed, RMS-11 returns an error
code.

e If an alternate key value changed, RMS-11] checks whether
you allowed changes for that key:

- If not, RMS-11 returns an error code.
- 1If so, RMS-11 continues processing.
2. For each alternate key where the key value changed, RMS-11
performs the following steps to delete the pre-update value

from the alternate index:

e Reads the data bucket containing the current record, if
that bucket is not in memory.

e Saves the pre-update alternate key value from the current
record.

e Follows the index to the 1level 0 bucket that should
contain the SIDR for the pre-update key value.

e Reads the level 0 bucket and sequentially scans for the
pre-update key value:

- If a value higher than the one specified is found,
RMS-11 goes to the next alternate index.

INDEXED FILE STRUCTURE AND ACCESS

Example: RMS-11 scans a bucket, searching for a
pre-~update key wvalue of "D." It finds a record with a
key value of "E." Since "E" is greater than "D,"™ RMS-11
ends the search and this step in the procedure.

- If a match is found, RMS-11 scans the duplicate pointer
array in the SIDR to the entry for the record being
updated and flags it as deleted.

NOTE

To allow keys to change, RMS-11 requires that you
also allow duplicates. Therefore, if you allow
alternate key values to change, there is a
duplicate pointer array in the SIDR for each key
value. However, you should refer to your
high-level 1language documentation for specific
information on your compiler's implementation of
this capability.

3. Reads the data bucket containing the current record, if that
bucket is not in memory. RMS-11 replaces the current record
in the I/0 buffer with the updated version in the user
buffer.

4. Writes the bucket to the file.

5. For each alternate key where the key value changed, RMS-11
performs the following steps to insert the post-update value
in the alternate index:

e Reads the data bucket containing the current record, if
that bucket is not in memory.

® Follows the index to the 1level 0 bucket that should
contain the post-update key value.

e Reads the level 0 bucket and sequentially scans for the
post-update key value:

- If a value higher than the one specified is found,
RMS-11 inserts a SIDR for the new record before the
SIDR for the higher value.

- If a match is found, RMS-11 follows the duplicate
pointer array in the SIDR to the end, then inserts a
pointer to the new record.

After the last alternate key is updated, RMS-11 returns a
successful completion code to the program.

5.3.4 Deleting a Record

RMS-11 requires a DELETE operation to be preceded by a GET or FIND
operation, although some high-level languages hide this prerequisite.

INDEXED FILE STRUCTURE AND ACCESS

To execute a DELETE operation, RMS-11 performs the following steps:

1.

6.

If there are alternate keys, RMS-11 updates those indexes as
follows, using the same sequence of steps for each:

® Reads the data bucket containing the current record, 1if
that bucket is not in memory.

e Follows the index to the 1level 0 bucket that should
contain the SIDR for the key value in the deleted record.

® Reads the level 0 bucket and sequentially scans for the
specified key value:

If a value higher than the one specified is found, RMS-11
goes to the next alternate index, if any.

If a match is found, RMS-11 determines whether you have
allowed duplicates:

- If so, RMS-11 follows the duplicate pointer array in
the SIDR to the entry for the record being deleted and
flags it as deleted.

- If not, RMS-11 deletes the SIDR.

Reads the data bucket containing the current record, if that
bucket is not in memory.

Changes the flag byte in the header of the current record to
indicate that the current record is deleted.

Writes the bucket to the file.

If the record has moved, reads the level 0 bucket containing
the RRV. RMS-11 changes the flag byte in the RRV to indicate
that the record is deleted.

Writes the bucket to the file.

RMS-11 does not compress a deleted record until it needs space to

insert

another user data record into the bucket (see Section 5.3.1).

RMS-11 does not compress deleted RRVs.

NOTE

RMS-11 does not modify or reduce any
index structure or allocation during a
DELETE operation.

5.4 PROCEDURES FOR PERFORMING SEQUENTIAL RECORD OPERATIONS

Your program can use sequential access mode to perform the following
record operations:

FIND
GET
PUT

INDEXED FILE STRUCTURE AND ACCESS

During sequential-access GET and FIND operations, RMS-11 does not
usually read an index to locate the specified record. Instead, RMS-11
uses the record context for the stream performing the operation to
identify the proper data bucket.

For FIND operations, RMS-1l uses the next record pointer to identify
the target bucket. For GET operations, RMS-11 uses the next record
pointer, if the GET operation was not immediately preceded by a
successful FIND operation. The current record pointer is used if the
GET operation was immediately preceded by a successful FIND operation.

Next, RMS-11 requests the file control processor to move the target
bucket into the 1I/0 buffer, if that bucket is not in memory. If it
has requested a SIDR bucket, RMS-11 then follows the appropriate
pointer to the user data record.

During sequential-access PUT operations, RMS-11 compares the primary
key value of the specified record with the primary key value of the
last record written:

@ If the specified record's primary key value is equal to or
greater than the 1last record's primary key value, RMS-11
performs a key-access PUT operation (described in Section
5.3.1).

e If the specified record's primary key value is less than the
last recozd's primary key value, RMS-11 returns an error code
to the program.

5.5 1/0 COST OF PERFORMING RECORD OPERATIONS

Table 5-1 provides simple algorithms for predicting the number of 1I/0
operations any RMS-11 record operation requires:

® The value n = index depth of the indicated key; all indexes
do not necessarily have the same depth.

® Algorithms do not include I/0O operations caused by program or
RMS-11 overlays, operating system overhead, or by file
extensions (see Chapter 8).

INDEXED FILE STRUCTURE AND ACCESS

Table 5-1: I/0 Cost of Performing Record Operations

Each
Primary Alternate
Record Operation Key KRey
Key-access GET or FIND
Record in original location n+l n+2
RRV in original location (record moved) n+l n+3
Sequential-access GET or FIND 0-22 1-4b
PUT
Simplest case n+2 n+2
Split in data level 2n+6 € 2n+6 €

Bucket split up entire index

(n**2+11n+20) /24

(n**2+11n+20) /29

UPDATE ©
Alternate key value did not change 1 0
Alternate key value changed 1 2(n+2)f
DELETE
Record in original location 1 n+29
RRV in original location (record moved) 3 n+2

2Breaks down to:

0or 1 I1/0 to position to current record

0 orl I1/0 to locate next record

bBreaks down to:

0 or i I/0 to position to SIDR for current record
0orl I1/0 to locate SIDR for next record
1l or 2 I/0s to retrieve user data record

CBreaks down to:

n+2 I1/0s to read and write the old bucket
n+l I/0s to read and write the level 1 index bucket
3 I/0s to write the new bucket and update the area
descriptor in the prologue

dpreaks down to:
(n+2)+(n+l)+n+(n-1)+...+3+2

I1/0s to return to the primary root and read and
write updated buckets from level 0 to the root

3(n+l) 1/0s for each bucket split (see footnote c)
5 I/0s to create the new root

€yalues assume record length does not change and cause bucket

splitting.

fh+2 if either the old or new key value does not belong in the
index; for example, the field contains the null key value
defined for the key, or a variable-length record does not
contain the whole key field.

9value is different if one of the following is true:

® You specified the "fast delete" option (available in MACRO-11
only) when you initiated the DELETE operation. Then, RMS-11 does
not update alternate indexes in which duplicate keys are allowed.

® RMS-11 has to scan a 1long duplicate array into one or more
continuation buckets. Then, one I/0 operation is needed for each
additional bucket.

CHAPTER 6

INDEXED FILE DESIGN

Indexed file design ranges from the basic elements of your application

{record definition and key selection)
to the methods used to put the data
includes:

1. Record size

2. Key selection

3. Areas

4. Placement control

5. Bucket size

6. Allocation

7. Population techniques

6.1 RECORD SIZE

You can use only fixed- and variable-length records in RMS-11

into the file.

files. RMS-11 calculates length (RL), in bytes, as follows:
RL = 7+RFO0+DS

where:

7 is bytes for RMS-11 record header

RFO is bytes for record format overhead: 0 for fixed,

DS is bytes of data

Set your record size to reflect application requirements;

adjust it to fit bucket size. For instance, if you are usi

buckets, you should not, if you can avoid it, set a record

the records just fit into the buckets:

of indexed file overhead per bucket

512 bytes in a block

-15 bytes

497 bytes left for records

-7 bytes for the record header
490 bytes

do
ng l-block
length so

to the structure of the file and
This

range

indexed

2 for variable

not

left for the data and record format overhead

INDEXED FILE DESIGN

This calculation seems ideal at first. However, when the record moves

during a bucket split or RMS-11l deletes the record, and some RMS-11
overhead is left in the bucket, a normal data record cannot fit: the
bucket is essentially useless, with up to 490 bytes of unused space.
If your application requires 490-byte records, you should use then,
keeping the preceding limitation in mind and, perhaps, choosing a
different bucket size.
NOTE

Records in an indexed file cannot span

buckets and bucket sizes are limited by

the operating system to 32 blocks.

Therefore, the maximum record size,
including overhead, is 16,369 bytes.

6.2 KEY SELECTION
A file's keys can take up significant space in an indexed file and can
have a significant effect on the number of I/O operations needed to
access the file. During key selection, you should consider the
following:

® Number of keys

® Key data type

® Key size

® Position of key in record

® Key characteristics

6.2.1 Number of Keys
You can specify from 1 to 255 keys for an indexed file:

® One primary key that RMS-11 requires for every indexed file

® 254 alternate keys
There are overhead costs in key specification: For each key specified
in an indexed file, RMS-11 builds an index. Since RMS-11 requires a
primary key, you must accept that key's index overhead, but you should
consider the cost before specifying an alternate key for the file:

® RMS-11 updates alternate indexes when your program:

- Puts a new record into the file

- Updates a record in the file and the alternate key values
change

- Deletes an existing record

The time required for this update relates to the number of I/0
operations needed to follow each alternate index from the root
to level 0, to change or insert the SIDR, and to rewrite the
bucket. RMS-11 can require additional time if one or more
buckets in the index split.

6-2

INDEXED FILE DESIGN

® An index takes room in the file. You can estimate the disk
space for an alternate index (see Section 6.6.1).

Whether the cost of each alternate key is bearable depends on vyour
application. If the primary purpose of the application is to write,
update, or delete records, each alternate key will noticeably burden
the operations; therefore, the number of alternate keys should be
kept to the minimum. Rarely used alternate access paths call for a
separate program that sorts by the desired nonkey field and then
processes the data.

However, if the primary purpose of your application is to get records
from the file, then alternate keys do not burden processing. 1In fact,
alternate keys give flexibility to information retrieval. However,
the cost of the extra keys 1is borne on those few occasions when
records are added to the file.

6.2.2 Key Data Types
Each key in an indexed file can be one of the following data types:

String

2-byte signed integer
4-byte signed integer
2-byte unsigned binary
4-byte unsigned binary
Packed decimal

6.2.2.1 String Type - RMS-11 interprets each character of the key in
a byte by its binary contents. Permissible values are not limited to
valid ASCII codes.

Example: The key value "RMS-11l" is represented as follows:

7 0

01 0 1 0 0 1 0] MOSTSIGNIFICANT BYTE = R
[W W WU NN NN |

0I1|0|0|1|1|0I1 =M

o 1t 0 1 0 0 1 1] =S8
(U N R TR B B

o o0 1+ 0 1 1 0 1} =-
[S W W W NN R |

o 0 1 1 0 0 0 1] =1
[l 1 1 1 1 1 1

6 o t 1 0 06 0 1] =1
[W S S N N

ZK-1191-82

The first (lowest-addressed) byte of the key is the most significant
byte of a string key for collating purposes. RMS-11 compares primary
keys byte-by-byte, first-to-last, when it determines where the record
should be placed in the file.

The maximum key value is all bits in each byte set to 1 (octal 377).
There is a cost in the number of bytes specified as the key 1length.

For example, if you specify a key length of 12, each representation of
the key in the data record and in the index takes 12 bytes.

6-3

INDEXED FILE DESIGN

6.2.2.2 Two-Byte Signed Integer Type - Each key requires 2 bytes;
RMS-11 interprets the data in the following format:
7 0
LEAST SIGNIFICANT BYTE
1 1 1 1 1 I 1 .
Lo 4 41 MOST SIGNIFICANT BYTE
SIGN BIT
ZK-1192-82
NOTE

The least significant byte of an integer
or binary key 1is the byte with the
lowest address. Significance increases
with address. Within a byte, the lowest
significant bit is bit 0, and
significance increases with position.
See your PDP-11 Processor Handbook.

A 2-byte signed integer can represent the decimal values -32,768
through +32,767.

Maximum key value is +32,767.

The cost in key size is 2 bytes per representation.

6.2.2.3 Four-Byte Signed Integer Type - Each key requires 4 bytes;
RMS-11 interprets the data in the following format:

~d
(&}

LEAST SIGNIFICANT BYTE

Ll 1 a1y MOST SIGNIFICANT BYTE

f

SIGN BIT

ZK-1193-82

A 4-byte signed integer can
-2,147,483,648 through +2,147,483,64

Maximum key value is +2,147,483,647.

The cost in key size is 4 bytes per

6.2.2.4 Two-Byte Unsigned Binary Type - Each key

RMS-11 interprets the data in the fo

INDEXED FILE DESIGN

represent the decimal values

7.

representation.

llowing format:

LEAST SIGNIFICANT BYTE

MOST SIGNIFICANT BYTE

A 2-byte unsigned binary value can
through +65,535.

Maximum key value is 65,535.

The cost in key size is 2 bytes per

ZK-1194-82

represent the decimal values

representation.

requires 2 Dbytes;

0

6.2.2.5 Four-Byte Unsigned Binary Type - Each key requires 4 bytes;

RMS-11 interprets the data in the fo

llowing format:

LEAST SIGNIFICANT BYTE

MOST SIGNIFICANT BYTE

A 4-byte unsigned binary value can
through +4,294,967,295.

Maximum key value is 4,294,967,295.

The cost in key size is 4 bytes per

ZK-1195-82

represent the decimal values

representation.

0

INDEXED

6.2.2.6
the Ke
followi

where:

D1-DI

SIGN

Max imum

6.2.3

Keys fo

FILE DESIGN

Packed Decimal Type - RMS-11 recognizes 2 decimal digits of
cach Dbyte except] t s th

y in each byte except the 1last. The key format
ng form:

i

(]

i P
ane

7 0
D1 D2 A
D3 D4 A+1
r DI I SIGN A+N-1

ZK-1196-82

is an address: A, A+l,... are increasing (byte) addresses.

are decimal digits: D1 is the most significant digit and DI is
the least significant digit.

has a value of 10 through 15: + is represented by a 10, 12,
14, or 15; and - is represented by an 11 or 13.

is the length of the key in bytes (maximum of 16)

is the length of the digit string, an odd number in the range
of 1 through 31, where I = 2N -1

key value is 99 in each byte with the sign positive.

Key Size

r indexed files have length restrictions according to their

data types. Table 6-1 lists these restrictions.

-

P R B S 5 TNo koo mMo
Taple o—1. Aey vata lypes

Data Type Length (bytes)

String 1
15-bit signed integer 2
31-bit signed integer 4
16-bit unsigned binary 2
32-bit unsigned binary 4
packed decimal 1

The cost of each key's size is borne in the data record and 1in the

index:

RMS-11 stores an entire key value in each index record.

INDEXED FILE DESIGN

6.2.4 Position of Key in Record
You can locate any key anywhere in the record:
® Alternate keys can precede the primary key.
® Keys can overlap each other. Note, however, that COBOL-81, in
keeping with the ANSI standard, does not permit more than one

key to start at the same position. The standard calls this
leftmost correspondence.

You benefit from careful placement of keys within the record:

® Deleting a record -- When you allow duplicates in the primary
key of variable-length records, RMS-11 compresses a deleted
record by removing all data except:

- The record header
- Enough of the record to contain the primary key

Therefore, you can optimize DELETE operations if you place the
primary key at the beginning of the record. The closer the
key is to the beginning of the record and the shorter the key,
the fewer overhead bytes remain in the file.

However, if you have fixed-length records or do not allow
primary key duplicates, the position of that key in the record
is not significant, See Section 6.2.5.1 for more information
on duplicates.

® Writing a record -- You can optimize PUT operations for
variable-length records, by placing alternate keys at the end
of the record. Then, if no valid data 1is present in an
alternate key field, you can shorten the record to exclude
that field, thus reducing the record space in the data level
as well as eliminating a reference to that record in the
alternate index.

You can segment string keys; all other key data types must be
contiguous bytes. You can specify up to eight segments in one string
key, each segment with its own length; the total of the 1lengths
cannot exceed 255 bytes. Note that some high-level languages do not
make this capability available; see your high-level language
documentation.

RMS-11 concatenates the segments you specify before performing any
operations requiring a value for the key. RMS-11 defines a segment by
byte position within the record and length in bytes. Therefore, the
key segments you define with either a MACRO-11 program or RMSDES do
not have to align with the data fields you define within the records:
RMS-11 has no knowledge of the form of such files.

Example: You have an inventory application with a master product
file. Within the product records, you have fields for vendor number,
vendor's part code, and your part number, among others. You can

define the following keys for the file regardless of the placement of
the fields.

Primary key = vendor number + vendor part code
Alternate key 1 vendor number + your part number
Alternate key 2 vendor number

Alternate key 3 your part number

INDEXED FILE DESIGN

For cost, see the preceding considerations about the placement of
within a record, knowing that a key consists of all segments.

6.2.5 Key Characteristics
Rey characteristics include:
e Duplicates
o Changes
e Null key
Characteristics are restricted according to key number:

Characteristics Primary Key (0) Alternate Keys (1+)

Duplicates Allowed Allowed
Changes Not allowed Allowed
Null key Not allowed Allowed

The combination of changes and duplicates is also restricted by
number:

Combination Primary Key (0) Alternate Keys (1l+)
CHG+DUP Error Allowed
CHG+NODUP Error Error
NOCHG+DUP Allowed Allowed
NOCHG+NODUP Al lowed Allowed
NOTE
COBOL-81 allows the CHG+NODUP
combination for alternate keys. To

enable this option, the COBOL-81 OTS
uses a hidden FIND operation to check on
duplicates each time an alternate Kkey
value changes on an UPDATE operation
(REWRITE in COBOL-81).

6.2.5.1 Duplicates - If duplicates are allowed for a key, more
one record can have the same value in that key field. The over
costs are:

e File space —- Duplicates have little effect on space usage
long as records are not frequently updated with changing
values or deleted. 1If anything, records with duplicate
values are stored more efficiently than records
nonduplicate values: fewer index records are required
cover data records with duplicate primary keys.

In alternate indexes, one SIDR with one representation of
key value 1is needed to cover multiple data records with
same value in the key field.

e Writing a record -- RMS-11 stores records with duplicate
values for first-in, first-out access. Writing (and updat
records containing duplicate key values takes more time as
number of duplicates builds up.

keys

key

than
head

as
key
key

with

to

the
the

key
ing)
the

INDEXED FILE DESIGN

A PUT operation can fail because duplicates are not allowed
for one of the keys. If this is the primary key, RMS-11 has
wasted little time since it has performed only the 1/0
operations to find the previous record with that value in the
key field.

However, if you allowed no duplicates in one of the alternate
keys, RMS-11:

1. Updates the primary index, including the data level.
2. Updates the preceding alternate indexes.

3. Discovers that it cannot insert the record because a
record already exists with that key value.

4. Reverses the actions it has taken, removing all updates
from the 1indexes it has already rewritten. Entries made
in SIDR duplicate arrays are flagged as deleted and not
compressed out of existence. However, RMS-11 cannot
reverse bucket splits.

5. Returns an error code.

® Deleting a record -- If you do not allow duplicate values for
the primary key, RMS-11 compresses a deleted record to a
2-byte indicator when it performs a DELETE operation.
However, 1if you allow duplicate values for the primaryv key,
RMS-11 keeps enough of the record to contain the entire
primary key:

1. If the format is fixed, the entire record remains in the
file.

2. If the format is variable, enough of a record remains in
place to hold the entire primary key.

e If you do not allow duplicate values for an alternate key,
RMS-11 removes the SIDR when it deletes the data record.
However, if duplicates are allowed, the pointer remains in the
SIDR array with the delete flag set.

e Updating a record -- If you allow duplicate values for the
primary key, the length of a variable record cannot be changed
during an UPDATE operation. In addition, updating records
containing duplicate key values takes more time as the number
of duplicates builds up. Finally, the SIDR pointers for
deleted records are flagged as deleted, but not removed from
the duplicate array.

® Summary -- Duplicates are not costly for write-type operations
unless there are too many of them. Pick a key field that
minimizes duplicates.

Example: Fields where there are only two choices for entries,
such as sex, are not good candidates for key fields.

6.2.5.2 Changes - The value of a primary key field cannot change
during an UPDATE operation; however, you can allow the value in any
alternate key field to change if you are willing to allow duplicate
values in that key.

INDEXED FILE DESIGN

During any UPDATE operation, RMS-11 checks the characteristics of all
keys and compares the new key values (in the record about to be
rewritten) with the old values: if you do not allow changes in a key
field, but changes have been made, RMS-11 immediately terminates the
UPDATE operation with an error code.

Cost: If an alternate key value changes during an UPDATE operation,
RMS-11 must trace the 0ld SIDR and delete it, then insert the new one,
starting with the root of the index for both processes. If the data
does not change, however, RMS-11 does not update the alternate index.

6.2.5.3 Null Key - You can specify the null key characteristic for
any alternate key. If RMS-11 finds that an alternate key field is
filled with the null key value specified for that key, it does not
insert an entry into the index for the record being written.

Zero is the null key value for the numeric key data types (integers,
binaries, and packed decimal). The null key character for string keys
can be any octal value (000 through 377) including an ASCII character:
if all bytes in the key field contain this value, the key is
considered null,

Cost: The use of a null key value can reduce the disk space that an

alternate index occupies, but it also precludes accessing those
records not entered in the index via that alternate key.

6.3 AREAS

You should divide an indexed file into areas. An area is a portion of
the file that RMS-11 treats as an entity for:

e Initial allocation
® Extensions
® Bucket size
e Placement on disk
Areas allow you to gather logical elements of the file into groups of
continuous ranges of VBNs. These VBNs can be mapped onto a contiguous
set of logical blocks on disk. This tight sequence of VBNs 1is 1lost
when RMS-11 extends an area.
NOTE
Unless you completely allocate each area
when you <create the indexed file, the
division of the file into areas may not
improve performance.
Areas can be set up for:
e Primary index level 0 (the data records)

e Primary index level 1 {the lowest index level)

e Primary index levels 2 and greater (the rest of the index)

INDEXED FILE DESIGN

@ Alternate index level 0 (SIDRs)
e Alternate index level 1 (the lowest index level)
e Alternate index levels 2 and greater (the rest of the index)

Dividing a file into areas primarily saves I/O time. As explained 1in
Section 5.1, in a single-area file, RMS-11 intersperses index and data
buckets: 1index buckets are scattered among the data buckets. During
each random record access, RMS-11 consults the appropriate index
descriptor in memory and then directs (through the operating system)
the disk head to read the root and levels 2 and greater, level 1, then
the appropriate level 0 bucket. These buckets can be anywhere in the
file, and the disk head can travel large distances several times to
complete one access operation. Figure 6-1 shows an indexed file with
one area. Figure 6-2 shows an example of a single-area indexed file.

BUCKET

NUMBER 1 2 3 4 , K N
ROOT
PRIMARY OF
DATA | \\DEx | DATA | DATA prIMARY| DATA | DATA | DATA [eee
INDEX
/L
ZK-1153-82

Figure 6-1: Single-Area Indexed File

ROOT
VBN 17933
\
LEVEL 2 VBN 305
/
LEVEL 1 VBN 14
/
LEVEL 0 VBN 20433

VBN = VIRTUAL BLOCK NUMBER
ZK-1158-82

Figure 6-2: Example of Single-Area Indexed File

INDEXED FILE DESIGN

To randomly access a specific record in the file illustrated in Figure
6-2, RMS-11 makes the following I/0 requests:

1. Read VBN 17933
2. Read VBN 305
3. Read VBN 14

4. Read VBN 20433

You can now realize how much the device has to move its read head to
service one random access operation.

A multiarea file, on the other hand, can have all index buckets
allocated contiguously (if enough blocks were initially allocated):
all index information is available in one physical part of the disk.
RMS-11 can then traverse an index with little or no head movement
until it reads the indicated data bucket. 1In addition, a sequential
read of the file moves the head mechanism smoothly through the
physically contiguous area assigned to the primary index level 0.
Figure 6-3 shows an indexed file with two areas.

BUCKET
NUMBER 1 2 3 4 N-1 N

ROOT
PRIMARY |PRIMARY OF PRIMARY
INDEX INDEX [PRIMARY| INDEX
INDEX

| _J 1 _J

AREA 0 AREA 1

‘DATA DATA DATA DATA

ZK-1154-82

Figore 6-3: Two-Area Indexed File

To refine your file even more, place the lowest level of each index
(level 1) in an area separate from the rest of the index (levels 2 and
greater).

Figure 6-4 shows an example of a multiarea indexed file.

To randomly access a specific record in the file illustrated in Figure
6-4, RMS-11 makes the following I/0 requests:

1. Read VBN 418
2. Read VBN 423
3. Read VBN 1537
4. Read VBN 14703

You can now realize how much the proper use of areas reduces disk head
movement during a random access operation,

INDEXED FILE DESIGN

ROOT VBN 418

N\
AN

LEVEL 2 VBN 423
AREA 0
AREA 1
LEVEL 1 VBN 1537
AREA 1
/ AREA 2
LEVEL O VBN 14703

VBN = VIRTUAL BLOCK NUMBER
ZK-1161-82

Figure 6-4: Example of Multi-Area Indexed File

When you specify and preallocate multiple areas, RMS-11 arranges them
in order 1in the file: area 0 (including the file prologue) in the
first virtual blocks of the file, then area 1, and so on. If you
specify contiguity for the entire file, this control over the
distribution of structural elements of the file is propagated from the
virtual block sequence to the logical block sequence on the disk.

Contiguity is very important to performance. For more information on
contiguity, Section 8.3.

6.4 PLACEMENT CONTROL

Placement control enables you to specify the location on a disk for a
file or the areas of a file. You use placement control for the
following reasons:

e To start a file or area at the first block of a track or
cylinder so that the file or area can reside in one or more
contiguous tracks or cylinders. This effort minimizes head
movement during file access.

INDEXED FILE DESIGN

e To place the files used by a single application together on a
disk. This effort reduces I/0 time by minimizing head
movement among the files.

Example: You want to run a general ledger application that
uses several files (an accounts file, a transaction file, and
so on). The application consists of several tasks. So, you
start with an 1initialized disk and copy the tasks onto it.
Then, you create (and populate) your data files, placing them
near the tasks.

This effort reduces the distance the disk head moves to
service I/0 operations required by an RMS-11 program:
disk-resident overlays (discussed in Chapter 8) and data file
accesses.

Note, however, you gain more improvement if you eliminate head
contention by placing the individual files on separate disks.

You calculate track and cylinder starting block numbers as follows:

1. Read the documentation that came with your disk drive. Find
and write down the following numbers:

® Number of surfaces on a volume (or pack or disk)

® Number of tracks on a surface

® Number of sectors in a track

NOTE

On most DIGITAL disk drives, a sector equates to a
logical block. For example, the following decimal
numbers apply to an RP06 only:

Number of cylinders per disk = 815
Number of tracks per cylinder = 19
Number of sectors per track = 22

2. Establish the starting logical block number (LBN) for each
track on the disk by writing down the multiples of
sectors-per-track. Since LBNs start with 0, tracks start at
multiples of track length.

Example: From the RP06 specifications, the first 10 tracks
start at LBNs: 0, 22, 44, 66, 88, 110, 132, 154, 176, 198.

3. Multiply sectors-per-track by tracks-per-cylinder to get
sectors-per-cylinder. Establish the starting LBN for each
cylinder on the disk by writing down the multiples of
sectors-per-cylinder.

Example: For an RP06, the first 10 cylinders start at the
following LBNs: 0, 418, 836, 1254, 1672, 2090, 2508, 2926,
3344, 3762,

After you decide where on the disk you want to place your file, vyou
create the file using RMS-11 placement control. 1In the process, you
place area 0 (which will position the whole file, if the file Iis
contiguous) at the location you calculated.

If you are using a high-level language, you can specify placepent

control by using RMSDES. If you are programming in MACRO-11l, you can
specify placement control through the use of allocation XABs.

6-14

INDEXED FILE DESIGN

6.5 BUCKET SIZE

Buckets are the units of access for indexed files. Bucket size is
critical to the virtual address space required by a task and to the
speed with which a task performs. There is, of course, a trade-off:
the larger a bucket, the 1larger the task, but the faster it reads
data:

e The speed of an RMS-11 operation is closely proportional to
the number of I/0 operations involved. For indexed files, the
number of data transfers during a random retrieval operation
is approximately equal to the depth of the index (in most
cases, one more than the depth). That number includes only
the I/0 operations directly related to the record operation;
other data transfers can be required to service the operation,
including overlays and system overhead (discussed in Chapter
8).

Therefore, the larger the buckets, the shallower the index,
and the faster the random retrieval operation. Without other
considerations, you should pick the largest possible bucket.
The maximum bucket size allowed is 32 blocks.

e The larger the bucket, the more records it can contain, and
sequential access can require fewer I/0 operations.

However, there are other considerations. RMS-11 requires two 1I/0
buffers, each the size of the largest bucket, when it connects a
record access stream to an indexed file. By making bucket size
smaller, you reduce the =size of the buffers your task requires.
Depending on the record operations your program requires, that virtual
address space may be better used in overlay structure optimization
(discussed in Section 8.2).

Therefore, you should set bucket size to some lower value that still
allows good performance; a reasonable goal is an index depth of 2 or
3 (root at level 2 or 3), although very large files can require four
levels of index, in addition to the data level (level 0).

Each area can have its own bucket size, but normally you should use
the maximum size for all buckets:

® You should consider more than the size of your data record
(plus the 7-byte header) when you calculate primary data
bucket size:

- Records that move from one bucket to another leave a 7-byte
pointer.

- Deleted records leave from 2 bytes to enough to hold the
primary key to the whole record.

Therefore, you should consider the predominant activity in the
file:

- If you intend to populate the file and then only read from
it, you do not consider activity overhead. You must
populate the file with records in ascending order by
primary key value (discussed in Section 6.7).

- If you intend to populate the file and then insert and/or
delete a 1lot of records, you should allow for those
activities in your bucket size calculations.

INDEXED FI

6.5.1 Buc

You can ca

Step 1:

Calculate
3, and so

NIRBK
NDRBK
where:
NIRBK
NDREBK
BKS
PKL

BPL

RSZ

RFO

AO

LE DESIGN

ket Size for Primary Index

lculate bucket sizes in two steps.

the following quantities for different bucket sizes (1, 2,
on) :

= ((512*BKS)-15) / (PKL+BPL) (Equation 1la)

((512*BKS)-15-A0) / (RSZ+RFO) (Equation 1lb)

is the number of index records per level 1+ index buckets
is the number of data records per level 0 bucket

is the bucket size as number of blocks

is the primary key length in bytes

is the bucket pointer length:

BPL is 3 for pointers to the first 65,535 blocks in the
file
BPL is 4 for pointers to the blocks numbered between

65,536 and (2**24)-1

BPL is 5 for pointers to the blocks numbered between
2*%*24 and (2**32)-1

is the size of the record:

e data size for fixed-length records

® average record length for variable-length records

is the record format overhead:

RFO is 7 bytes for fixed-length records

RFO is 9 bytes for variable-length records

is activity overhead. 1If any noticeable number of bucket
splits will occur {(due to random record insertions or UPDATE
operations that increase record sizes), specify a value of
at least 7 (more 1if bucket splits will be common). If
insertion and deletion activity will occur often,
significantly larger values of A0 may be desirable, as well

as occasional file reorganizations to reclaim space and
improve access performance.

INDEXED FILE DESIGN

When you load a file using RMS-11 bucket fill factors, you preallocate
space in each bucket for future activity. 1In such a case, Equation la
becomes:

NIRBK = (FF-15)/(PKL+BPL)
and Equation 1lb becomes:

NDRBK = (FF-15)/(RSZ+RFO)
where:

FF 1is the appropriate fill factor in bytes and has been adjusted to
leave extra space in each bucket to accommodate future activity

overhead.
Step 2:

Select bucket size for data and index areas where the following
equation is true:

NIRBK**n 2> NRF/NDRBK (Equation 2)
where:
NRF is the number of data records in the file
n is the depth of the index

This equation portrays the exponential relationship between the number
of data records in a file and the depth of its index. You use the
values for NIRBK and NDRBK you calculated in step 1.

a. Set up a grid (see the example after step 2e).

b. For each value of NIRBK, calculate the left side of Equation
2, for n = 2, 3, and for very large files, 4.

c. For each value of NDRBK, calculate the right side of Equation
2.

d. Where the equation is true, that is, the left side is greater
than or equal to the right side, you have a valid combination
of bucket sizes. The bucket size used to calculate the left
side may be equal to the size used to calculate the right
side, but it does not have to be.

NOTE
You gain no advantage using different index and data
bucket sizes. RMS-11l requires two I/O buffers, both

the size of the largest bucket defined for the file.

In fact, PDP-11 COBOL users must not choose different
index and data bucket sizes.

e. Select one of the valid combinations according to vyour
application's require