CCuEANY CCNEIDENTIAL -- Do not duplicate ¢-JUL-80

2080 ENGINEERING FUNCTIUNAL SPECIFICATION

Mmajor edition: 3

Edit: 4¢

GMPANY COUNTFIDENTIAL

(@]

This document contains confidential information on new products that
should be disclosed only to those people engaged in the Program.
Under no circumstances should any non-DEC persons be informed about
any aspects of the Program or its existence.

This document should not be duplicated. Additional «copies are
avalilable from:

Laura Chu

MK1-2/E85

DTN # 231-6355

This is copy

Issued to:

This specification is the p?@perty ot Digital Equipment Corporation
and must be surrendered upon termination of employment.

5

COMPANY CONFIDENTIAL -- Do not duplicate 9-JuL-8¢

CHAPTER 1

INTRODUCTICN

1.1 TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

lal TABLE OE‘ CGN’I‘EN’]‘S.......Q..0.00'0.0....0.0...00...0 1-1
1-2 PREFACE-C..'O..l........0.....00...'........‘0.00.. 1—14
CHAPTER 2 SYSTEM DESCRIPTICN

2¢] OVERVIEW: e eeeeenoeneesooooeececannoasssoscecasaneses
«1l PRODUCT STRATEGY.::eeeeeeoococccaoeaconnconeas
2 CPU CLUSTER BLOCK DIAGRAM:ceeeeoeeocoancsacesan
3 SYSTEM CONFIGURATIONS..ceeeneecoooaooansoneons
«l.3.1 INITIAL SHIPMENTS .. .eeeeeeoecoconcoanoasns
«1l.3.2 TARGET SYSTEMS.:eeeeeeeesceaceaconsosncens
RDWARE ORGANIZATION..eeeeeeesocacoonceoasocascnnsa
1 CONSOLE SUMMARY. eeeeeeeeaoecoccocneasoennannans
e2¢1.1 BOOTSTRAP:. et eeesectsosssecaseoasoscnnnnses
©2.1.2 OPERATCOR SUPPORT.cevesnocsonnancnacncnses
«l.3 DIAGNOSTIC SUPPORT.eeeeeeescennccocnconsna
IBOX SUMMARY. ceeieeeennosesnsoneaconasannnnces
EBOX SUMMARY. ittt eneeseossoconcencnnconconsses
ARITHMETIC PROCESSING ACCELERATCR SUMMARY.....
MBOX SUMMARY . eeteeeteeeoeansesaccacannoanonnns
MEMORY SUMMARY. civtitenenenoeceannenasonccnnna
I/0 SUMMARY . et eeeeeeeeonescaacconcananonnnas
FERENCES FROM THE KL1B:seeueeeeeeooonooosoconsces
SUMMARY OF MAJOK DIFFERENCES....eeeeeosesccnas
EXEC AND USER INSTRUCTIONS...ui.eveeeeencoseoes 2-12
NEW EXEC AND USER INSTRUCTIONS.e..eeeeeoo. 2-12
CHANGED EXEC AND USER INSTRUCTIONS....... 2-12
DISCONTINUED EXEC AND USER INSTRUCTIONS.. 2-12
OTHER EXEC AND USER CHANGES..¢eeveeeveass 2-12

|
H WO IS N W W N b

o

Lo

NN
L] * o
i

= e

!
el o
Lol ol

2.3

NRONNNONNDNODNODNNNONNDNNONONDNNDNDN
[}

!
—
—

L]
WwonroDoD NN
L
Ce NI JgO UMD WN e

NN
3

NN
.
.
wwww
« o .
NN
« o o o
B W N

COMPANY CONFIDENTIAL -- Do not duplicate

2.3.2.4.1 PUBLIC MODE.cccccoescoccccescannances
XEC MCDE ONLY INSTRUCTIONS:cececcecascssscescns
1 NEW EXEC MODE ONLY INSTRUCTIONS.....c0...
2 CHANGED EXEC MCDE ONLY INSTRUCTIONS......
3 DISCONTINUED EXEC MODE ONLY INSTRUCTIONS.
4

2.3.3

E

3.3

3.3

3.3.
3.3. OTHER EXEC MODE ONLY CHANGES..ccceeeceese
2.3.3.4.1 OVERFLOW FLAG.¢cccccecccnccsssnsasnss
4 I0 DIFFERENCES.eeeecececcacscccnscscscsosnssccsccscs
5 ADDRESSING DIFFERENCES..cccceceecccacssssccccs
6 INTERRUPT DIFFERENCES. ¢cceececcceesccccnccccscs
7 PAGING DIFFERENCES..cccceecssccoccsssnncaccnsce
«3.7.1 PAGE FAIL CODES..ccecccvccecscccnccacoccscs
8 ERROR KECOVERY DIFFERENCES..ccccesecccccascscns
9 MISC. CHANGES.eeceoececcesccccccccsccssvoscscnccsse

CHAPTER 3 EXEC MODE PROGRAMMING

INTRODUCTION G :eececeeecscccsssccccsscscsscnsccssccsasccnssses
INTERNAL 1/0 INSTRUCTIONS. ¢ ecccccecccccscsscccscnccans
EXTERNAL I/0ccccecceccccccccccccsnscsssosscscsannsossscsccse
NEW INSTRUCTIONS . ceceecsccccosscccecssosossscscscsccsscsse
VIRTUAL ADDRESSING:.vececossccscccsscsssoscssasccscscncs
3.5.1 INtroduUCtiON.eceece.ocessasssccssscscccscsassannsse
3.5.1.1 Pager Data StruCtUre.c.ccecececeecccesccsccccsce
3.5.1.2 Super Section PointersS...ccccececcccccecs
3.6 PROCESS CCNTEXT VARIABLES . ceeccccccccososssssccsscnanse
3.6.1 INtroduUCtiON.ieeececescssocscsscscacssaccossacscss
3.6.1.1 New PC Double Word.eceeeecooocccecsscsnsscsscse
3.6.1.2 Context Changingeceveeceeecescescsaccccccnes

3.7 TRAP HANDLING.:eeeeeseeesocosccccccscscsosscsassnscssssasse
3.7.1 INntroductioN.cececececcsceecsesosccccscscaccsccnsosse
3.7.2 Trap Function WOrd.eeecececeosscseccecccscacccccae
3.8 SPECIAL SYSTEM PAGES (EPT / UPT / IOP)ecceccccccnns

wWwwwww
o s o o o
b W=

— — — —— — — —— — —— — — — —— — ————

CHAPTER 4 INSTRUCTION EXECUTION

4.1 XECUTION UNITS PARTITIONING..ceccesccoscccccoaccnscs

Ove{allooo.oocooonloololoooo.no-.ooo‘oo.ooooo.

IDR.Oo‘c.o..o.ooo.oo.-ca-ooooo'-oo-..ooto.coov

IDL.0..0'."...0ol..0.‘..'0.0.0......0.0...00.
TAG........‘..O‘......'Q.....................Q

MVR...-.....o‘0.....‘0...00‘0oooo..oti..-oo‘l.

MVLeeoeoooeeosoecesoccacscennacanscnnnsnsocssccnse
ESE.cecsceoeccosscccsososssasncncscscsccssacosscsssocscss
CRA v eeeessoccsossscesosscscsccscsonsscscnsssssnsocse
SHReeeeooeeeoossscsccsscsssoscesncnsccassssscsns
SHL.ceeesoconcsscsscccsccssossascsscscanconosscs
SCA.ceececesososscssscscsscsccsscssaacssscnssocsacs
EPIlccececcocososccecsccsscosscscssccssssccsssos
FPA.ceeececcacsossosososssscsscacsanncscccssssss

E‘PB...........O‘C...O0.0....Q...Q..........O.

=t b = OO W

LbhbwNh e

E
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

P O S N R A N I -

L] L] L] . L] * L] L] L]
e e o o o o & o o

E‘PC.-...-.--..0.......co..o.oo'.o.-.o-o.o.oo.

| I T T T I |

[O I N N I B
UMD ABEDDBWWWWWNNNNE

K O N G N - S e
|

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-80

4.1.16 bPD.......'.l..u...0.'......0....'..0...0.."

O O R B 2
4,2 EXECUTION UNITS CCMMON CONTROL . u¢oeeaceococossoscessae
General.icieeeeesecescesoscecoccscsoccnonnccncocnss
Diagnostic Interface..c.ceececescececscecccccocss
Active SCan PathS.iceeeeeeeeccensasosssoccnces
Passive Scan Path.iieeeeeecececccoconooscocees
Scan Read And LOABd.ccecececscssccccnocsoccccses
Error Control LOgiC.iceeeeeeeceescocccccccccans
«1 ERROR DETECTION AND RECORDING.eeesecceces

.
NN
.

e BB De o

BB B D D
1

L] L]

|
HEEwOoOdIIononubmmununu L

—
[S IS]

HARDWARE RECOVERY. .vccececeeccccasassocsses
FAULT ISOLATION.:ceeescsoocoscccccscacceses
rocode Control SpecificatioNeiececeeceeoceceen
Next Address Field <Bits £0-11>..ccccceess
THE NA SWITCH <BITS 12-~17).ccccccccccccscs
CALL <BIT 18>..ccceceeccscocsonscnsnnnsass 4-14
FIELD <BITS 19-21>..ccetesssssccsaceses 4-14
FIELD <bits 22-23>...cccetecsccccsccces 4-=14
FIELD <bits 25-27>..c.iccercceccscccseee 4-15
EARLY <bit 28>..¢.icceeerccccnccnccceas 4-15
FIELD <bits 29-30>.cueetecesceccoccccncsce 4-17
FIELD <bits 31-33>..0cecesccccccccceaes 4=17
@ SC ALU <bit 34 ...cicececcrssccccccccnnos 4-17
1l ©SP FUNCTION Field <bits 35-38>..¢cceeeee 4-17
2 PARITY 0-47 <Dit 390 cceceecenccccnconnns 4-18
3 MO <bitdP>.cieieiieeitnarecscaccanncaess 4-18
4 RE <Kbit 41>..iiuicecirenecreccacancnnnsess 4-18
S SC FIELD <bits 42-44>.....cc0eeeeeennee. 4-18
6 FE FIELD <bits 45-46>...¢¢0cceececceeess 4-18
7 T KBIT 47)cciceieeseecsesscsssancnnnnsas 4-18
8 X1 <bits 48-49>.cceceeccccceccocnoncnees 4-19
S Y1 <bits 56-51>..0ceeeececcececacccncaes 4-19
@ ALU <bits 52-55>...cceecccccccsccccccecses 4-19
1 CARRY <bits 56-58>.cccecececccccccsocnnse 4=20
2
3
4
5
6
7
8
9
e
1
2

NN
e e o
[

Ne e s N WN

oS
.
N

b

-

L N I - - T - - N S T St e Y
{

6
6
6
7
7

e o s e
® o e o o o e o o
RUrMroxXx

. . L] .] .
¢ o e o o o

OP1/WR REG FILE <bit59>....0000veccecees 4-2¢
SW/ X REG RD <bits 66-63>..c00eiceeescee 4-20
R/Y REG RD <EITS 64-67>.ccceccccccccccecs 4-21
COMP <bits 68-69>..ccceccevccsnccnncnses 4-21
LAST CYCLE <bit 7€ ..ccecceecsnccccncees 4-22
STCRE CONTROL <bits 71-73>.cceeecccccces 4=-22
FLAG CONTROL <bits 74-77>..c0eeeceaceses 4-23
PARITY 48-1€1 <bit 78>...icceetccecececes 4-26
L Kbit 79> iceeuieeeeeceescnnsanssncsnnnees 4-26

L]
.

o e
. e

AC/ REG WR CTRL <bit$ 80‘83)...........0 4_26

L R T T - S - S N S N N N N N SR Y NI -G -G . G N O G .
LSS SESESESE SR SESECE VR SESEVE CECECHSESECHSH U S SESE SR S SE S SR XY N

Qe o o

. NUMBER FIELD @#-17 <CL Bits 84-1¢1>...... 4-27
YSTEM CLOCKS.:.eeeeeeeeeeesessaacscscscacanaes 4=27
10 BOX INTERFACE TO THE SYSTEM CLOCK..... 4-27
CPU INTERFACE TO THE SYSTEM CLOCK........ 4-30
MEMORY INTERFACE TO THE SYSTEM CLOCK..... 4-3¢

Y
.
N

|
|
I
!
I
|
I
!
|
I
I
|
I
I
|
I
|
I
|
I
|
I
I
|
I
I
I
I
I
|
I
I
I
[
[
I
|
|
I
I
I
I
[
|
[
I
I
I
I

B S e
. o e
N NN

CHAPTER 5 EBOX

|
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
|
I
|
|
I
|
|
|
|
|
|
|

COMPANY CONFIDENTIAL -~ Do not duplicate

MCVE

= =0 AU S WK -

—
WS

oo,

GEL\IERAL.o.coo-.oo.Qo.oa.o.ooo.oooo‘ooooo-.ooo.o.ooo

MOVE/ALU PATH...Q.....Oca.no.ooo..o-.-oo.o.o-..oo..

OPERA‘I‘ION.....0.......'.........“.....I......

ALU OPERATION. . cveosoosscsosccsccsccscossoscssccssccce
L BUS:eeeeoeocececoosossssoscssonscsssnscncscssccscsccanse
ERROR CONTROL.cceccecovoccccersaccnscsncsccccscscscnse
DIAGNOSTIC INTERFACE...cceveceocscccccccccccccccnse
SHIFT/AC/REG PATH.:ceeeeeoseesncsssessccccocccconcsna
SHIFT CPERATION.cceeecececcccncsscscscsncssscccconssos
KEGISTER FILE OPERATION..ccccccescccsscccsocscccsnscs
AC/MASTER AC OPERATION.:ccveesvssccccnscsccccsscssscs
ERROR CONTROL.ccoeoececoosscascsnsccncccccccsccscsscs
DIAGNOSTIC INTERFACE. . ccceececcsocccsnscccsssccccsns

5.14 SHIFT CCNTROL/METERS/ERROR CONTROL.....ccoeccccses
5615 SCAD:ceccecocccocssossssscscssoscscsscscssscavsossocssscconsae
5.16 1IMS/10US CLOCK. . eceeoccoccescscccssscsscscssacccnsse
5.17 INTERVAL COUNTER.:ecoceocecsacscscsvcscassscscccccnse
5.18 ACCOUNTING METER.:coceeccasscssosscccccscscssccscase
5.19 PIPELINE STOP MECHhANISM.:ececeooecescaccccsccoccsces

5.20 FRU

CODE GENERATION..O...0.00-..0000000000..0....-

5. 21 SCAD ERROR CONTROL. ® ® @ 660 0006060660000 8800500000050
5.22 DIAGNOS]IC INTEREACE. ® 5 006 0 0600 ¢ 06006 060 0608000600000 00000
5 . 23 CON’IIROL STORAGE ® © 0 0 0 5 © 9 0 06 000G 0L 0L LB 0EL N0 s

5.23.1

RAM ARRAYS-.-.ocooo..o....a.oc-ooo..o.00..0.0

5.24 NEXT ADDRESS GENERATION.::cecececscccscssccccccccnns
5625 FLAGS . ceeeoacossccsccccssssssssscsscccssccssssscsssncaoe
5.26 ERROR CONTROL..csoceeoccosocescassoscsscsssccscscnsase
5.27 DIAGNOSTIC INTERFACE. cceeeecceecccccscccccsccnccans

CHAPTER 6 IBOX

— — — . —— S— a— — — —— — — ——— — — — —— — — —

PC...

L] . L]

L]
= b = OOV WN -

[
wN =

L

)W o N Wl We) N W Wer o) Ne) Wl)]

GENERALOO.....0.........Q..'....Q.Q...’...‘...O....
MEMORY ADDRLSS PATH. ® © 6 2 0606 6 0 0606000060008 0000000004000
INDEX AC. R EEEEEIEEI A A B A S S EC AR A B R B B A I B A 4

EIA ALU.0.oo.o..oooot.o.oo.o.o..oc....-c-ooooooooooo

ISl‘REAM PREFETCH.....O......'...........-’........

© ® © 06 8 € 006 0 5 0600 806060 0 6 ¢ 0 00 5006000055000 406005000000 so0o0

CONFLICT COMPARE . ccecevccccccsccccscscsccsosscsoscncnns
ERROR CONTROL.cecoeescsvcacscssscssocscaccccsccascccase
DIAGNOSTIC INTERFACE. . i eeeesceccccccccsccnceccnncccs
MEMCRY OPERAND PATH.cecoesoeeccccsccccccccscsocccscs
OP BUFFER:.ceoeeceoccsscacecscscssccscscscosncsonasns
EA BUFFER & TAG EUFFER:ceccccecececsccsccescecccccne
ERROR CONTROL . :cceoececoccoscsncsoccssccsoncsccsccsss

6.14 DIAGNOSTIC INTEREACE.ceeceovsescocrsscscccccccccccscs
6.15 IBOX CCNTKOL LOGIC.:ceececeooscsccccccsccssossccsncocscass

6.156 1PUT

6.16.1
6.16.2
6.16.3
6.16.4
6.16.5

----- ® 6 06 0 0 2 % 0 0 e 80 0 0B 0060200 000000000000t

INA KEITS C-4>.ceetcectccccnscscscsccscsncassas
BR <BITS 5-8>..cccccecscsccacoccacscsasoscncnsns
ISTK KEIT 1l>.cceeececcccsccsocccocnssassancns
OP2 <BIT 12).cieecececossccccscscscnsonsccnns
WR CEITS 13-14)>.cicccececceccssccccccssssnnns

9-JUL-8¢

vuou;mowm
| T I T T T |
ANV B WWNN -

1
O OO WO

=2

=

RO EGESEGESGRGEGEG RSN, N, NS W N, NE R NS)
i i

b b

SR

5-10
5-11
5-12
5-12
5-13

Porr
N

AN ANADITATADITAANNTATNDN
i

i
WOUWOUNNJomumeasasaLDwwwN

[o)We)We)Ne) Ro) e
1

COMPANY CONFIDENTIAL ~- Do not duplicate

6.16.6 XR CKBITS 15-16>cuuueccccccenecsosascccocneess
6.16.7 El <KBITS 17-18>:cuuteeeeacceeocosssncsacceess
6.16.8 E2 CEITS 19720 1 cteteeeeecocesccacasonoanonsn
6.16.9 EA CARRY <BIT 21t cuiueeeeeenoecccononcenoesnnn
6.16.10 SPl KBITS 2225 4 cteeeeencccsccoancocnnesss.
6.16.11 STR CBITS 26-27 4 eeeeeeneecescsncaceceneeses
6.16.12 SKCE <BITS 28=30 4 tuieeeeneenssocscncecannnns
6.16.13 P 0-31 <BIT 31 ticeieeecenecocosonasasceaness
6.17 STREAM LRU.citieeeeooosoeeaeenoensoannaencocennens
6.18 AC ADDRESS, IC BUFFERS . ..ttt eeeeesneosocccannans
R B T
6.19.1 SKIP/JUMP <BITS £-2 1 cceeeneenccsssnosoncecensn
©.19.2 X1 DISABLE <BIT 3 teeeeeeneoconosoonoeaceeens
6.19.3 Y1 DISABLE <BIT 43¢t cceeeenneennnnnocennnnnss
6.19.4 OP MUX CBITS 56 tuuceeeeeneeenocconcccnnness
0.19.5 P CBIT 7)uuiuiueeeseeeeececcaanssssascoscecneses
6.20 INSTRUCTION VALID BITS.eeeeeeeeecassoassoscennsess
6.21 SELECTED I CONTROLS .t teeteeeeesoaoacncosocecensesss
6.22 INDEX REG CONTROLS ..t ueeeeennoososnnancecnncenesss
6.23 EKROR CONTROL .ot euoseeeeeeenseeasansoonenennnnnn.
6.24 DIAGNOSTIC INTEREACE ... eeeeeeesosssasecooonnnnnnns

CHAPTER 7 FPA

I
I
I
I
I
|
I
l
I
!
[
I
I
|
I
|
I

GENERAL....O...l......................‘.........0..

ARRAY CONTROL .4t eteeeeaoosonnsseoonsonscasnncoscosess
ARRAY CONTROL STORAGE ..ttt eeeennennsnnneennnnnnnns
OPERAND BUFFERS .t ettt intnenneeneenennsoeenennnnen
MULTIPLIER FORMATS . et et eeeennceoeancecasoocnccoesnss
DIVIDE ALGORITHMt ¢ eeeuueeeoosseeensoncoacacncennnns
POST NCRMALIZATION. ¢teeteereeeoconennoosoonnaaceess
ERROR CONTROL ¢ttt eeeesecoonaseconenasnsscecasenssss
DIAGNOSTIC INTERFACE. . uetteteroeeennssnneccccocennss
© MULTIPLY L
1l AC O
7.12 PARTIAL PRODUCT GENERATION . et evetencceensoonannans
7.13 FULL PRODUCT GENERATION e eveeeenneneocncenonansnenn
7.14 DIVIDE PATH . et eeenteeenieeneeeeencenoannnaceenss
7.15 MODULO 3 RESIDUE CHECKING. tteeettieeeneecannnnnnnans
7.16 ERROR CONTROL . s e eseenteeeeesnsoeeeccneoenococeneen
7.17 DIAGNOSTIC INTEREACE . ¢t ittt tiitnnenneeeneennnnens

L] . L] .

NNNNNNNNNNaNN
OB WA -

ChAPTEK 8 MBCX

INTRODUCTION.......................................
TEChNOLCGY...
mMbOX FUNCTIONS AND FEATURES ettt eteceeceancnococcses
PRINCIPLE OF OPERATION . et teteeceeessonescooeneess
8.4.1 Overview......................................
8.5 CACHE DESCRIPTION..................................
8.5.1 Page Table CaChe.ie it enneeeneneeneannnnees
£.5.2 PData CaChe .ot iineeneeeeeecenncneenceneneenn

0 o 0o
L
W N

2-JUL-80

6-9

6-1¢
6-10
6-10
€-10
6~-11
6-11
6-12
6-12
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-16
6-17
6-17
6-18
6-18

[
bt et

\lf\l\l\l\!\l\l\l\l\)\!\l\l\l\l\!
U U R U e
WWNNNNDNNDNONN

i

00 00 ™M 0 MM M
UL
W NN NN e et

COMPANY CONF

8.6 MICK
8.6.1
8.6

8.6.2
8.6

8.7 ETA

D
7
7
7

o o
¢ o

.l
.2
3

‘A
8.1
8.2

8.9 DETA
8.190 FUN
8.10.1
8.10.2
8.10.3
8.11 PER
8.11.1
8.11.2
8.11.3
8.12 1I/0
8.13 R.A
8.13.1
8.13.2
8.13.3
8.13.4
8.1
8.13.5

IDENTIAL -- Do not duglicate

O MACHINES DESCRIPTIONS.eccssccoocscccsccccsccsccs
Data Mover MiCrO..eceececoccosncscsccsossocccsccscss
.1.1 Main MEemMOTY.eeececccccsccoscssossscscccssscsns
8.6.1.1.1 Read RetUrN..cecssscsscccscscsssonscscs
1.1.2 Write Starteseeececcceccccsoscnsscscscs
I/0 TransferS.cceeecececccscscesoscssccsccs
2.1 Read CyCle.iceeeesocecncscccsnccscsccns
2.2 Write Cycle..eecesccecccscsoscsnsccenn
Cache CyCleS.iieeeecosessososssossccncscccccs
.3.1 Cycles To CaCh€eieececocccceccnccscccs
.3.2 Cycles From Cache.cccececcccccccance
@ MiCIOD.eeeooescesscssccccssssasssscscsscscase
e2.]1 IbOX ReferenCeS..cccecssesscccscsscscsccccns
8.6.2.1.]1 Read CyCleS.ceeeeccocoscassscsasacccaen
B.6.2.1.2 Write CycleS.ieceececccccscccscsccccanse
ILED IBOX INTERFACE DESCRIPTIONS.cccevescoccscs
Ibox Virtual References .cceeceesceccccssccccnse
Ebox Physical References_....ceeeesccscccnsons
Ebox Page lable And PT Directory Read Special
FUNCELION . eeoecoscoscassascascssssssssccsncasoscaes
Ebox Page Table And PT Directory write
Special FunctioN.ceeceeeceecocecccccocccccscne
Sweep FunctionsS...ceeeeceeccoccceccccnccccannse
ILED CACHE FUNCTIONAL DESCRIPTION:c¢cecoccsocose
CacChé SWEELS ieeesecccsoscesvsoscsccsoscsscsssacasnacs
Cache Writeback/refill.iceeeececcocsesccaccccsccscs
ILED PAGE TABLE FUNCTIONAL DESCRIPTION...cscece.
CTIONS NOT PERFORMED BY THE MBOX:eeeeoocooccose
A1l Handling Of The UBR/EBR...ccsceccccccassn
The Map INnStructioN.cecesccceccsccecnccocccce
Sbus Diag FUNCLiONS.ceeeeecensccccccccccccccce
FORMANCE e coecoeenscccscoossscscscsscsesccsssccsnccsccs
Overall Goal And Committment....cccececesccee
Page Table..icoeeeeecesoessasssssscsssscnannoccse
Section Pointer Cache..ieeeecscccccsnsnsvconne
INTERFACE ¢ e v ¢ ceesessooeccscsssccaasosscscssscnscsnse
M.P. FEATURES . .t cceeessacosccccoscsscscssscsscccan
GENETrAl .ceesescccasccasascssscsscsccscncssssncnsoescs
Cache MEMOYYieeeesoeccasscsscscsssscosccscancs
MOS MEMOL Yeceooooooscscsosososocscasosscscssscsocscse
Error hHandling.ieceeeoeascooccsceoossoscsccssncsonos
3.4.]1 AdJdress Parityeeeeeececscoscaccscsscncssose
Error Logging.iceceeeceecccececcenccenccncsccns

CHAPTER S MEMORY

OVER

W QL Cw
W N -

9.4.1

INTRODUCTION...Q...O...0..0...00..0..00....00....0.
‘1‘ECHNOLOGY‘...OO..........‘....Q".Q......COOO..O..

VIEWO..QO.l..".....'.....Q.C.O..Q...O........l

EU[QC'I‘IONALI'IY.o.o‘ooooooooooooooooooooc-..an.o.uo.o

Cfganization...........oo..o...o............-.

9-JUL-80

i
Bt D DWW W

o 0 Co (o ™
I R R L e I L.
[0 30e) W e W) WU, IO IE, UL RO IS

oD Do O MO OO MDD
1

[02]
I
O

W\ WO\
i
[e

CCMPANY CCNFIDENTIAL -- Do not duplicate

9.

9.
9.
9.

9.10

9.
9.
9.

9.11
g.12
9.13

9.
9.

9.14
9.15
S.16

CHAPTER 10

l1g.1
19.2

1.2.1
19.2.2

10.3

I
I
I
|
I
I
I
I
I
|
| 9.
|
I
|
|
!
I
I
|
I
I
|

4-2 CYCleS'oooo.o.cQooo..o.00..0-00...00'000000000
ARRAY ADDRESSING....D....0.‘.'.t...l'.o.'........o.

REERESH.......-......oo-.-o..ooooou.oo..oo..-oc..oc

QUEUES'.oooo.oo...o.'ooo.o.oo.oocoo.oco.ooo..o-ooc.

ARRAY INTERFACE it .ueeeeeeeeeoooossasooosssccscsessas
PERFORMANCE ¢ ¢ v eveetecsecoccceecnscsascccssoccsseans
el ACCESS TiIME.uueereececececoooaoassscsescnsesss
9.2 Cycle TiMme..eeeierieoeooseocaoecsossocacasasoesns
9.3 Bandwidth.ieeieeeeeeeeeeeeoococnossoocsceesess

leEn.oo.ooooo-ooon.oo..oo.o.oo-.o.o.oooooo-ooQooc

10.1 64K

Parto..oo.ao.o.nnt...o.....o.oooo.o.o.ooo

1902 256K part...oooao.'oo.oooool....o.oo.ocooooo‘

10.3 16K

partouo.oo.oo..onooo'oc.t'oaoono.ooloooos

10.4 MiXed PAItSieeeeeecececooconsecosccsoconsesaes
INITIALIZATION e eeeeeoessoencsssscsscsassocsooceceses
RECONEF IGURATION .t e eeeeosccececoosesscocoocosssssss
DIAGNOSTIC FEATURES .t ieeeeeeeeeooseancsocccoonccssss

D O S 4 = - T

13.2 CONELrOllereiuieeeeeeeeeeecaceooocoacncssssneses
POWER REQUIREMENT S ¢ ¢ eeeeecocecsonooesccccoscscessss
BATTERY BACKUP ¢ et eteereseeecenceosocscacsscascscssss
ERKOR HANDLING....................................

IO SUBSYSTEM

DEEINI'I‘ION OE‘ TERlﬂS...‘.....'."...‘....‘.........
GOALS AND STRATEGY . ettt eneaeeeeeeeanaconcnancenees

GOALS‘IC..O.....l..l........'..0....0........

STRAT‘EGY...........'...O..C.I.Q......"......

IOBUS PORTS AND BUS ADAPTERS . ..eeeeeeecconcnnnnaee
10.3.1 1/0

lo.3.1.1
16.3.1.2
19.3.1.3
10.3.1.4

le.3.2 BUS

10.4

16.4.3

16.5

10.5.2
1¢.5.3

l.5.4

190.3.2.1
10.3.2.2
l¢.3.2.3

POR.I‘S........l....Q."......Q.........'..

I/0 PORT Functionality.eeeeeeeoeseonoens
I1/0 PORT PerformanCe.ceeeceeeeeeacennens
I/0 PORT Physical CharacteristicS.......
IOBUS PORT CONTROL STATUS REGISTER. ¢e...
ADAPTERS . ¢t eeeeteesensesecacesonnnsannses
CI LINKeeeoooosoooeoooaosooecoonoscoooasess
IBM CHANNEL BUS ..t eeeeeeecooonesoncoenss
UNIBUS ADAPTER. ¢ iveeeeeeecnnonosncoccnss

1/0 SUBSYSTEM INTERFACE TO CPU AND MEMCRY. eeeoovo..
18.4.1 1/0
lv.4.2 1/0

SUBSYSTEM INTERFACE TO THE CPU.vevevecen.
SUBSYSTEM INTERFACE TO MEMORY . eceveevescess

CONSOLEQ....O...Q..ooooooo'..ooo.o'..-ooooooo

I/0 SUBSYSTEM INTERFACE TO THE OPERATING SYSTEM...
lg.5.1 1/0

PORT COMMAND/RESPONSE PROCESSING..veeesas

PORT CON'IIROL BLOCK (PCB).......l........“..'
BUFFER DESCRIPTOK TABLE AND EUFFEK

DESCRIPTORS....0'.......'........O...0.00....

10.5.4.1
190.5.4.2
1¢.5.4.3

DA’IA MODESC.......0'.........Q...-...O.......

INDUSTRY COMPATIBLE. e eeaeeeeneeceanonss
CCRE DUMP. ® 9 00 0000000000000 e00000s0e00ce0
HIGI" DENSI’I‘Y..0.......0...000......00'..

9-JUL-80

N I Y B
B WNNN

[
(A Ie) e Ne) N Ne) o) NS) W WIS INT, IE, T, T, T, NN

WD WO IWOWWO W IWIWO LW WL LW LWILWOLW LWL
!

1g-1
1¢-2
1g-2
1¢-3
1¢9-4
1¢-4
19-4
1¢-5
1¢~6
1p-6
1e-7
19-7
18-7
10-8
1g-8
1¢-8
10-11
1¢0-13
1¢-13
1¢-13
18-16

10-19
1¢-19
1¢-20
1¢-2¢
10~-20

COMPANY CONFIDENTIAL -- Do not duplicate

1005.404 ASCII.....0..l...‘.......".'......‘....
lﬁoﬁ I/O SUBSYSTEM RAMP.....o......co...'.‘o.ol..00..00

CHAPTER 11 MASSBUS ADPATOR

| 11,1 GOALS.uiteesecososcssasesesasesssossosacsseasssssnssss
| 11.2 GENERAL DESCRIPTION.cecscsococsoscscssncocsasansoss
I 11.3 REGISTER ACCESS BLOCK:eeeooasoossossccssccsccccscss
| 11.4 COMMAND/RESPONSE PROCESSING.::ceeccceccecscscoscssncscse
| 11.5 Q MODE.ceeceeeeoeccsoscsosscsacsscsoscscsscsssssnssscsccas
| 11.6 NON Q MODE:cceoceecscssccscssosscoossocscssosscscscsccscss
| 11.7 CHANNEL COMMAND PACKET FORMAT .ceoeeecccscccsccccse
| 11.8 Q MCDE CHANNEL RESPONSE PACKET .c.ecceoccsccescsacss
| 11.9 BUFFER DESCRIPTORS :ececceccccsscscsoscsacscscscsscsncsscsns
I 11.1¢6 CHANNEL RESET AND LOGOUT AREA..ceceeesaccoccecccs
| 11.11 CHANNEL COMMAND WORD. ceeeeeacsccsccsaccssccsssscssce
| 11.12 CHANNEL COMMAND WORD FORMAT ..cecececescsccsccnccscs
| 11.12.]1 Halt.eeeeeoeeooosocasecsoscscasescscosscscscsses
| 1101202 JUMEeeecossosscsscsscssssossscsssasssssssanss
| 11.12.3 Data Transfer..cceeecececeesescssssssssccccccccss
| 11.13 INTERRUPTS.:eceeeescecsccescscscsosecsssncseascasocns
| 11.14 PORT CONTROL STATUS REGISTER. ceceeececoceccsccocasse
| 11.15 KREGISTERS ACCESSIBLE BY SOFTWARE. .ccccceecccoccas
| 11.15.1 EXTERNAL REGISTERS.:ucceecesscaccscnssoccccns
| 11.16 DESCRIFPTION OF INTERNAL RECISTERS..cceccecoscscsce
| 11.16.1 Logout Address RegiSterl.c.ceesescscscccnccnse
| 11.16.2 Port Control Block Address FRegister.........
I 11.16.3 Transfer Control KegisSter..ieeeececesccecsnss
| 11.16.4 Interrupt Vector Index Register.....eeceeeees
| 11.16.5 Read RegiSterl.ieeeesescoscescsssscccssasssans
| 11.16.6 Write REgiSter.ceeeeeeeeccscosescnscsaasanssns
| 11.16.7 Diagnostic Control Register...ceeeececcececess
| 11.16.8 MBA STATUS RECISTER. :ceeccccocecsccsnsoscscss
| 11.17 MASSEUS PORT INTERFACE TO CPU:ceeccecsccoccancasnses
I 11.18 MASSBUS SIGNALS:eeeesseososessoscsessossssanssscasse

CHAPTEK 12 IBM COMPATIBLE BLOCK MUX CHANNEL

12.] GOALS i etecescsnsosssessscsscassssscssascsssssascssssssssse
12.2 GENERAL DESCRIPTION.:ceececeeccsascccscscasccsascsccnsnsascs
7.1. The interface Letween the two functional

pleces iS a SIMEl€,cceecccesccccssoccvsocccscsnss
12.3 CCMMAND/RESPONSE PROCESSING.ceeeeceosccsoccsscsacas
12.4 CHANNEL COMMAND PACKET FORMAT ¢eeeeeescscosnocssancas
12.5 CHANNEL RESPONSE PACKET ¢ ceeeeoecssocescosscscnncoscse
12.6 BUFFER DESCRIPTORS . e ecececosccscescoscsvsscssossossccascs
12,7 INTERRUPTScatoeescecoacsascsocossscscscsssssanscsssss
12.8 I/0 PORT COMMAND STATUS REGISTER:¢:ecceceeceaoscccncs

CHAPTER 13 PLI INTERFACE SPECIFICATION

9-JUL-8¢€

1¢-21
1¢-21

111
11-1
11-3
11-5
11-5
11-6
11-6
11-6
11-8
11-8
11-1¢@
11-11
11-11
11-11
11-11
11-12
11-13
11-13
11-13
11-13
11-13
11-13
11-13
11-13
11-14
11-14
11-14
11-16
11-21
11-21

CCMPANY CONFIDENTIAL -- Do not duplicate

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

I

I

I

|

I

I

I

!

| 13.
I 13.
| 13.
I 13.
I 13.
I 13.
| 13.
| 13.
I 13.
I 13.
I 13.
I 13.
l 13.
I 13.
I 13.
I

i

I

I

[

I

I

|

13.9
13.16
13.11

13.

13.12
13.13
13.14
13.15

GENERAL...
PLI INTERFACE SIGNALS.............................
DATA (7:0) (TRI-STATE, ASSERTED HIGH) v eeeeceececcan
SELEC1
RCVR BUFFER A FULL (TTL, ASSERTED HIGH) ¢voeececnon.
RCVR BUFFER B FULL (1TTL, ASSERTED HIGH) teeececenes
XMTR ATTENTION (1TL, ASSERTED HIGH) cieeeececoncens
CONTROL (3:0) (TTL, ASSERTED HIGH) ceeeeeecenen
Rkead HKeceiver SLaAtlS ittt eeeeeecennoccaconcens
Read Transmit StatuUS..eeeeeeeeeeeeceeeenenne.
Read Receiver Buffer.ieeeeeeeeeneeenceceacens
Load Transmit o B 3 -
Release Receiver Euffer.ieeieeeeeeeeencanennens
Read Node AQArESS et eneeeeenocnnncoooocosens
Select Read S B 8 -
Select Load Buffer.eeeieeeeeeeseonnoececenns
TransSmit SetUP.i.eeeeeeeeeeeeoneneeceencennnns

PLI
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.1¢
8.11
8.12
8.13
8.14
8.15
LOAD

11.1

(TTL, ASSERTED LOW) teeereeecencececencannase

Tfansmit.............................-......

Reset Transmit StatlS...ii.eeeeeeeeeeeoneeen.
Reset Transmit Buffer.....eeeeeeeeeeeeensen.
Select Maint MOUE . eeeeieteneeeeeeaconoecnees
Abort TransmisSioN.eeeeeeeeeeneeeeeeeoennnn.
Enable LINK Control/Disable LINK Control....

DATA PARITY (ODD) (TTL, ASSERTED HIGH)
RECEIVE DATA PARITY (ODD) (TTL, ASSERTED HIGH) ...
CLOCK (TTL)..................-................-..

Timing......................-...-....-.....-

INITIALIZE (TTL, ASSERTED HIGH) « e iiiiitiineneeen.
RECEIVER e
TRANSMIT o o
PLI INTERFACE SEQUENCE FLOWS .ttt etieirneceencnnns

CHAFTER 14 2¢08¢ TTL BUS

14.1

14.
14.
14.
14.
14,
14.
14.
14,
14,

14.2

14,

14.
14,

INTRODUCTION...oooooooo.oo-ooo...o.oooc..cooooco..
Definition.;-.ooooo.ooooooo.ooooooooto..oooo-

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.¢

2.2

2.3
2.4

N
G

Ome!’)ClatUKE....................-............

oals.ootoooooo.o..-ooooooooo'la.-o'oooo.ooao

Maximuim Transfer o

1

NEormation Path USEG€.ceeeeveeeoeoeeeennnn..

Confirmation.o-o.ooo-.ooonoooooooooooooo‘ooo'
COHthl Signals.................-......o....-

I

nformation Path Widtheieieeeineeeeonneoonnns

B

Arbitration..................................
14.2.2.1 Arbitration Line Assignment....eeeeeeen..
14.2.2.2 Arbitration Line USE.ieisneereooeannnnnes
14.2.2.3 Number Of Bus Ports Arbitrating.........

I

nformation Transfer LinNeSeeeeeeeeeeoocoeeeas

CCYC, DCYC..l.no.-ct..l.o..oo..'.t..'...00.

9-JUL-8¢

13-1
13-2

13-3
13-3

13-6

13-8

13-9

13-1¢
13-10
13-11
13-11
13-12
13-12
13-13
13-13
13-13
13-14
13-14
13-18
13-18
13-18
13-18
13-1¢
13-20
13-20
13-2¢0

14-1
14-1
14-1
14-2
14-2
14-2
14-2
14-2
14-3
14-3
14-3
14-3
14-4
14-4
14-4
14-4
14-4
14-5

COMPANY CONFIDENTIAL -~ Do not duplicate

14.
14.
14.

14.
14.
14.
14.

14.

14.

14.

14.3

14.
14.
14.
14.
14.
14,
14.

4
4
4
S

Read

14.2.9.1
14.2.9.2
14.2.9.3
14.2.9.4
14.2.9.5
14.2.9.6
14.2.9.7

14.2.9.8

14.2.¢.¢
2.16
2.11
2.12
14.2.12.1
14.2.12.2
14.2.12.3
2.13
14.2.13.1
2.14
2.15
14.2.15.1
2.16
14.2.16.1
14.2.16.2
2.17
14.2.17.1
14.2.17.2
2.18
14.2.18.1
14.2.18.2
14.2.18.3
2.19
14.2.19.1
14.2.19.2
14.2.19.3

Lus

ACLC

DCLO

Command/Address C CYC.cseeccecososocsons
DataDCYC‘..O‘..I...0......0......0'...

rl‘AG.....o‘..l..o.....i......o..‘.....ool

SEL(@:B)...o‘oooo-o.oocoooo.o.oooo.'oooooaoc
IO BUSY..o'.oo.oo.ot.ooooo..co.oobooo.-o.ooo.

IREQ<1:7> Interrupt REQuUesSt...ceeeeeacccccecs

Data UNCORRECTABLE......................

Command/Address FOormat.cseececececccccccccccsscs

Comnlands.oo'o.oooooooc.oo-.ooo-oooooool.

READ. cecsovecseceoccscscscsssoscssscscscscscsnsnscnsce
Read INTERLOCK FunctioON.eccecesccscscsscsce
WEIitE@.eeeeoseooosasccocsasososcsnoscocsccsocsnsce
WRITE RELEASE FunctioN...ceecceecesosccecses
READ EPT FUNCtLiON.csceoscecccccccscacecsns
Bus Port Not Imglementing READ
INTERLOCK: cvoeeeecoccoccssscsscsccsccsccsnocscs
A CPU Bus Port Implementation Cf Read
INterloCKeeeeeeeesessososccccccscscssscsncs
vnused Function CodeS.eecececesssscscosss

Physical AdOresSS SpaCeecececesocscccsanccs .

Port Configuration/Status Register......

Confirmation LiNES.cccececscscssnscccocscocccss

Use Of Confirmation...ceeeecececcccccces
Successive Cycle Confirmation...ecceee..
Presumption Of SUCCESS.iceeecssccsccccns

l‘aU].t DeteCtion.........‘..-..-.......o...-.

Status Register FAULT Indicators.......

Interrupt Request LiN€S.ceceeccecscccccscccns
Clock Signals.'..‘.....0..‘.............'...

Use Of Clock Signals...eccececceccccccscse
SigNal.iseeeeeeccsccccosssscncccssccccsscas
Assertion Of ACLC.cecceccecsosocccccscas
Deassertion Of ACLO:ececeorsoscccccccssse
Signal.iceescecccccesccosconsssssassccscs
Bssertion Of DCLO:ceceoacsccoscccsncscoss
Deassertion Of DCLO:cceeecesossccascccss

RESE’T Signal-...ooo..c..o.co.oooo.oo.ooo..o.

P\Ssertion Of RESE’I'......‘..............
Deassertion Cf RESET.cecesccnscccscssses
Device Response To RESET..ceceecceceanan

INTERLOCK signal......‘.0...‘-...‘.....‘....

Assertion Of IN'I‘ERLOCK.......0'........
Deassertion Cf INTERLOCK...veoveansccce
Bus Port Response To INTERLCCK....ccc.e

ELECTRICAL CHARACTERISTICS.cecteecccesoscscnccccnsscs

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Interface IC'S.cecessecsoscsscccscsossoscssssacs
LSI Bus InterfacCeecececescccsceccccccccscncccs
Backpanel CharacteristiCS.ceeececececcecccces
CONNECELIONS teeeeessssacsscssosssscssssscsscscscs
TerminatinnNS .ccececcescscessccosscsccscosssssscnscs
Signal VoltageS.eceeeeoosessnosssssssssscccccs

Timingo..oco.oo-o..-t-oooto..ooo.ooﬁooooooo-o

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-8¢

1403.8 MaXiHlum Lehgth....................o......o... 14-18
14.4 DIAGNOS’I'IC SIGNALS....Q..Q....ooo.-.cooooo..o.oooo 14'18

CHAPTER 15 CCONSOLE HARDWARE

| 15.1 SYSTEM CONSOLE.:::ieeceeecscaconcssocoscsssssasssenses 151
| 15.2 GOALS.eeeeeeososcosscocscssccsscscssosssssssssssscssss 15-3
| 15.3 POWER KEQUIREMENTS . ceceecscccccssosacsnsnssacseose 15-4
| 15.4 ENVIRONMENTAL REQUIREMENTS..¢eeeesceccccssccsacess 15-4
| 15.5 OPTIONS.:eececsccssocsscssesscsssossssssasssessacss 15-4
| 15.6 PRE~RECUISITES.eeeeececccaccsccoansssnosscsssssosssees 15-4
i 15.7 NEGATIVE SPECIFICATIONS.eesceccsosessssssscssccses 15-5
| 15.8 COCNSOLE RAMP..eceeeeceosccscsncscsssosssasssosssesseass 15-5
| 15.9 IMPLEMENTATION.ceeceeececcacccsccscassseassscsssesssocss 15-5
| 15.9.1 CPU Error Detection And Error Logging....ss.. 15-6
| 15.9.2 2289 System Remote Diagnosis.....ceceeeeceee.. 15-6
| 15.9.3 2080 I/0-BUS MONIitOYr .. eeeeeececcassscssosonnes 15=7
| 15.9.4 Console MemMOrY Parity.eeeecessssessccssosaces 15-7
| 15.9.5 Console Memory Error CorrectioN.cieececececeess 15=7
] 15.9.6 Loopback Capabilityeceseeeeesoscccocscccceass 157
| 15.9.7 Environmental Monitoring.c.ecccececeeccessscceess 157
| 15.9.8 DiagnoStiCS.ceeeecscscecssassocasssasssocsesess 15=8
| 15.1¢ SYSTEM CONSOLE DESCRIPTION.veeeeecosccasassccsoes 15-8
I 15,11 F-11 DESCRIPTION....¢oo.. Ceeeeeae s Ceeeteteessees 15-8
| 15.11.1 CONSOLE PROCESSOR........................... 15-9
| 15.11.2 CONSOLE MEMORY. eeoeoesoccoccossasaaesssssses 159
| 15.12 MSU INTERFACE DESCRIPTION. . eeeeeceesccccssassaeass 15-10
| 15,13 SLUcceececesccaocanscscsscscsssscsossssocssscsnssonsssssse 15-11
| 15.14 INTERVAL TIMER DESCRIPTION..cceeocosccescsossssses 15-12
| 15.15 170 BOX INTERFACE DESCRIPTION..ccecececseseessses 15-13
| 15.15.1 INTEKNAL REGISTERS..cecceecccsssosscosssnnaes 15-13
| 15.16 2086 SYSTEM CONTROL PANEL DESCRIPTION..¢eceeeeess 15-14
I 15.17 ENVIKONMENTAL MONITCR.eeeeeovooescossessnssacseaseasas 15-15
| 15.18 SYSTEM CCONSOLE. ceeeceeeccscacesccssacscoscscsccossssss 15~-15
| 15019 EF-llcieeececeocscsccecscscoccscascscscssscsncsscosscssosssascscass 15-16
| 15020 MSUuescoossonccasscsccccsosascsoscecocsscsscscsssssssanse 15-16
| 15.2] SLUceecececcecsascacecocacocscsssoscscscscccscsasscsssosccscscss 15-16
| 15.21.1 Register DescriptionS.c.ccecssccecscsscccscss 15-17
| 15022 TOC.eeeeecoocecoassoocoosassososasssssscsasscsassssess 15-20
| 15.23 SYSTEM CONSGLE.eeeeeeceeccossscsocssceassanssecnsees 15-20
| 15.23.1 System CONSOlE€.eeeeeccescsccsaccsscscsscssssases 15-21
| 15.23.1.1 MEMORY READ FUNCTION..veceooeseocoaseees 15=-22
| 15.23.1.2 EPT READ FUNCTION..ceeeeecavsocsscssnsaeas 15-22
I 15.23.2 WRITE FUNCTIONS.:eeeceessccccesccscsssssosssss 15=22
| 15.23.2.1 MEMOKY WRITE FUNCTICN.:eeooeoocssesases 15-22
| 15.23.2.2 EPT WRITE FUNCTION.eeoeeeoososaccocssses 15-23
| 15.24 REFERENCE CHART .eeeeescoccscscsscsscossassssaccsssse 15=-24

CHAPTER 16 CONSOLE SOFTWARE

I 1601 PRODUC’I' OVERVIEW..O...O‘O‘..O.QII..0..00........'. l
| 16.1.1 Product AbStraCt.eceeececsecscsccscscscscscsscscnscsss 1

. —— L — — — — — — —— — — — — — — — —— — —— —— — —— —— — — — — — — — — — ——————————— — s ————— — — —

COMPANY CONFILCENTIAL -- Do not duplicate

160102

16.2

16.2.1
16.2.2
16.2.3

16.2.4

16.3

16.3.1

16.4
16.5

16.5.1
16.5.2

P[OdUCt A‘]dience..o‘o..'oooaoo.loootcoooonon.

PRODUC’T GOALS...oo.oo..oo.n.c.ooo.ooooo..ooo.o.a.o

16.2.3.1

Performance............................-.....
En\lironments ® ® 8 65 0 0000060 00000000 000000800000
REIiability Goals.occoooo..cooooo.ooooot‘oo.o

FailSOft GOaIS....o....--oo.............

Non-GoaISoo.o-o.oo.l‘oo.ooo.o.oo..nooooooaoo.

EUNC'I‘IONAL DEE"INITION..‘.................'........

16.3.1.1
16.3.1.2
16.3.1.3
16.3.1.4

16.3.1.
16.3.1.

16.3.1.6
16.3.1.7
16.3.1.8
16.3.1.9
16.3.1.160
16.3.1.11
16.3.1.12
16.3.1.13
16.3.1.14
16.3.1.15

16.3.1.16
16.3..1..17
16.3.1.18

16.3.1.
l16.3.1.
16.3.1.
16.3.1.
16.3.1.

le.3.1.
16.3.1.19
16.3.1.
16.3.1.
16.3.1.
16.3.1.

16.301'

16.3.1.20

"Loadable"

Operational Description...iceeeeceececccccccns
"Hard-core"

COUSOle..-..........-..o....
COﬂSOle.............o.-oooo--

Run~time Support Program (RSP) ceseacssee
Software COnfigurations.......‘0........
16.3.1.5 Console Terminal Handling..eeeeeeeceooes

5'1
5.2

Terminal ModeS.cecececcccscsscscascsse
rl‘erminal Usage..........0'.........

Transitions Between Prompt Levels.......

"Hard-core"

YLoadable"

Consonle ComManNdS.eceeccoccscsecs
Console CommanNdSeecececccoeces

RSP CommandS...l..........I...‘.......l.
Console Memory Parity ErrorsS...ceeeceeses
Console Hardcore TeSt.ceeeecsccesasccnea

Terminal Handler And Command Parser....
ConSOIQ OD'I‘...l...‘.....0....'..."..-.

Console Editor........‘.........ll.....
Power Contrnl And Environmental

Monitoring.o.oco-ooonoooooooocoooo.ooo-

Non-volatile RAM ContentS...cececececccssse
Console Floppy Control..eeeescecscecses

Start/Restart FroceduUreS.eeecececcecsssce
Cold Start Cr Power-fail Restart..
Console Start SwitCheieeeeeeecoons
System Start Switch..ieiieeeeeeenans
Electronic Finger.ceeeeeeeevoonnas
2080 Program Keep-alive Failure...
Non-Automatic Start..ceeeceesscscaes

18.1
18.2
18.3
18.4
18.5
18.6

KLINIK.o'oco.ooooo.toocooooooo.oocoo.oo

19.1
19.2
1%.3
19.4
19.5
2089

KLINIK ACCESS eeeecccoscssscoccccesns
KLINIK PasSSWOrdeeeeeoaosoesossnccas
KLINIK MOJES eeeeooescccscacssocsocsse
KLINIK SituationS.ceeecececcccosces
Modem CoNtrol.eceeeeccececcocacacosce

ErrOrSceeceecececccscecsccsccsccnsssssccs

COMPATIBILITY........".......'..Q.Q.........Q.I.‘
EXTERNAL INTERACTIONS AND IMPACT.cccececesoccsonnses

16.5.2.1

16.5.2.2
16.5.2.
16.5.2.
l16.5.2.

2086 System User To Console Interface........
2080 Program To RSP Interface.ceeececececcsces
General CharacteristiCS.ciceececccccccnas

2080 Program-RSP CommunicatioN.seseecscas

2.1
2.2
2.3

Terminal Input/Output..ceeececccasss
KLINIK/APT Line Input/Output.......
Pseudo~TTY Input/Output..ceceescccas

9-JUL-80

16-4
16-4
16-4
16-4
16-5
16-6
16-6
16-7
16-7
16-7
16-8
16-9
16-1¢
16-12
16-12
16-13
16-14
16-15
16-15
16-18
16-19
16-2¢
16-20
16-22
16-23

16-23
16-25
16~-26
16-26
16-26
16-28
16-2¢8
16-29
16-29
16-29
16-3¢
16-3¢
16-3¢
16-3¢
16-31
16-32
16-34
16-35
16-35
16-35
16-36
16-36
16-38
16-40
16-40
16-41

CCMPANY CONFIDENTIAL -- Do not duplicate

16.5.2.2.4 Consonle Load Cevice Input/Output...
16.5.2'2.5 Stat‘js....0.'.............‘........

lG.S.3
16.5.4

Console Subroutine Package Interface.........
APT Host System To 2080 Console Interface....

16.6 RELIABILITY/AVAILABILITY/SERVICEABILITY (RAS) cee..
16.7 PACKAGING AND SYSTEM GENERATION..ieseeeceoccooaccas
16.8 DOCUMENTATIONG:ceceeoecccoscssoccsosasassnanssncssas
16,9 REFERENCES.:c.cceeceoecscccccccccacsccsssoassancnsse
16.10 GLOSSARY..teeeeecessecccancsossasncsassssscsnnssnsass
16.11 APPENDIXiceeeeceesoeoocccoscsscscssssassaoncssssosacsnssas

16.11.1
16.11.2
16.11.3
16.11.4

2080 Program/RSP Communication Pagé€...eeseee
Console COMMANd Seeeeeccecccecctsscncoccncsscss
EMTs and SubroutineS...ceceececcccccsccsccces
KLINIK MOUECS eeeeeecescssscsscsscscscsscoaccsescs

©-JUL-8¢

le-42
16-42
16-44
16-44
16-45
16-45
16-45
16-45
16-46
16-47
16-47
16-53
16-68
16-G8

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL~-80
INTRODUCTION Page 1-14

1.2 PREFACE

The major goal of the engineering functional sgecification 1is to
provide a current, accurate, and easily updatable description of the
functional characteristics of the 2080 system. The specifications
will describe the goals and functions of the system as & whole as
well as the functions of the individual components, The
specification will also describe the motivations and the "whys"
behind the functional design. The components will be described as
functional wunits (e.g. an IBOX or cache) not as physical parts of
the system such as a particular board.

Emphasis will be placed on «clarity of description and speed of
distribution. English, style, and appearance will be considered only
of secondary importance. Update pages will be issued frequently,
All major changes will be marked with change bars.

The functional specifications describe the hardware and firmware.
They will be the documents from which the diagnostic engineers and
software engineers will write their programs. The functional
specification will serve as input to the technical writers. This
function specification should never be released to customers.

The functional specification will describe the test procedures used
to verify the specification, especially the RAMP specification. This
will allow ECCs and new software releases to be verified with the
sane thoroughness as the original product.

Sections enclosed in double square brackets [[...]] are editoriel
comments and questions. They should be resolved as time goes on.

This function specification describes the entire 208¢ system. Not
all items will be available at the same time. The current schedules
will be part of the "2¢8¢ System Development Plan".

CCMPANY CCNFIDENTIAL -- Do not duplicate 9-JuUL-80

CHAPTER 2

SYSTEM DESCRIPTION

2.1 OVERVIEW
2.1.1 PRODUCT STRATEGY

The 2080 provides the basic upgrade path for current TOPS-10 and
TOPS-20 customers. The 2088 also will allow 26-bit customers to
coexist with VAX by using the corporate interconnect strategy.

when making trade-offs the 2080 project will consider the following
list of primary product goals:

1. Earliest possible time to market (most important)

2. Performance should be 3.5 to 5 X KL1@E (+/- 15 percent). We
will assure that performance is at least 4.¢0 X KL1PE. The
compile times for MRICDl (& COBOL program) and SP1111 (e
FORTRAN program) run under TOPS-206 will be used as the
benchmark to measure logic performance.

3. FORTRAN performance with the APA will be at least 3.5 X
KL1gE. This will be measured as the execution time for
SP1111. Without the APA FORTRAN execution speed will not be
much faster than 2 X KL1PE and some heavy double precision
programs may run slower than the KLI1GE.

4, Lowest possible cost of ownership. This includes the cost
of the 2086, the cost of field service and the impact of
downtime.

5. Provide for coexistence with VAX.

In addition there are the following secondary 208¢ product goals:

1. Provide adequate microcode address space and storage to
allow for future functionality or performance improvements.

2. Perform comprehensive error detection at the interfaces
between modular units to [prevent errors from propageting
into the rest of the system without detection.

COMPANY CONFIDENTIAL -- Do not duplicate
SYSTEM DESCRIPTION

9

~-JUL-80

Page 2-2

3. All detected errors will be logged in non-volatile storage.

4. Provide remote diagnostic capability greater than that
krovided on the KL1P or KS1g.
2.1.2 CPU CLUSTER BLOCK D1AGKAM
trmm——————— + R + R it +
ARITHMETIC 1 ! ! ! !
! HOT I{======= EECX I<{=======>| IBCX !
! EOX ! ! ! ! !
Fomme e + tomm e + tmmm e +
! - ! A .
! ! ! oo vt
! Fmm——————— F————— e e '--+ DATA BUS
! ! ! ! ! 2CDRESS BUS
! ! !
- t——————— + !
CONNECTIONS TO DIAG ! ! !
LOGIC ON EACH BOCARD ! MEOX ! !
- ! ! !
e ——————— + +—————— +

! ! ! ECL !

! e, ———— 1 TO === coszs===s=s=s===
e + ! ! TITL 1 ! ! ! !
! ! Fomm + t—————— + ! ! ! !
! DIAGNOSTIC ! ! ! - ! ! ! !
! CONSOLE ! ! MEMORY i ! tm————— + ! - + !
! ! ! ! ! ! ICCS P v Y IBM 1
Fomm e + o + ! ! PORT ! ! ! PORT ! !

! ! e ———— R S + !
Fo e e + ! !
! !
+-———t +----t

! !
R + o +
! uBA) ! MBA !
! ! ! !
t-————— + Rt +

NOTE

Some details (e.g. packet buffers,
bort modules) are omitted for clarity

COMPANY CCNEFIDENTIAL -~ Do not duglicate 9-JUL-8¢
SYSTEM DESCRIPTION

2.1.3.1
for the
rhases.,
shipments

Page 2-3

CONF IGURATIONS

INITIAL SHIPMENTS - In order to reduce the risk and schedule
2686

system, the configurations are being split into two

First is a

MASSBUS and UNIBUS based system:- to support

during the first year of production. Second is a CI based
system targeted for the majority of the 2080 product life.

The MASSBUS based system will consist of the following options:

2080 SYSTEM PACKAGE

KCl¢ Central Processor with 16 entry I-buffer and 8K word cache

512K words main memory

Two RH28 MASSBUS adaptors (for disk and tape)

One DU28 UNIBUS adaptor

One RPL6-AA disk pack

One front

end
Cne
One
One
One

with 16
CN20-MA
DN2¢-CC
DN25-EC
DN 25-BA

drive.

Asynchronous lines consisting of:
Front End

Cable Cabinet

Asynchronous expansion cabinet
Asynchronous expansion group

One LA34 and one VT100 console terminal peckage.

TOPS-20 Operating System with Extended Features and TOPS-20 License

Initial Support package

mMA28

RH2¢&

RPG6-AA

RFO6-BA

MCS MEMCRY

512K memory expansion kits,

DISK ANC TAPE CCNTRGCLLER

Massbus Controller for disk and tape. This consists of an
I0 port and a MASSBUS adaptor module,.

ADD-ON DISK PACK DRIVES

Single access 4¢ wmillion word add-on disk pack drive.

Dual access 40 million word add-on disk pack drive,

—— . e i e S e, s i s o . e e e . i S, e e, Wit St Gkt e s e e i g s, e W eomivs e s o s e aters s s ot st s et vt

COMPANY CONFIDENTIAL -- Do not duglicate
SYSTEM DESCKIPTION

RPE6-C

RTP28-EA
RTE2¢6-EC
RTP2¢6~FA
RTP2G~-FD
RP26-AC
kP20~-AE

RP20-CB

TU78~-CB

TU78-AF

TXU2~-EE

TU72-EC
TX03-EE
TXu3-FB

TX85-EC

LP20-AA

LP2¢-AC

LP20-BA

9-JUL-80
Page 2-4

RP£6 dual access kit.

RP20 DISK SUBSYSTEMS
Single channel 967Mb master TOPS-10.
Dual channel 967Mb master 10PS-10.
Single channel 929Mb master TOPS-20.
Dual channel 92¢Mb master TOPS-20
Add-on single channel 1TOPS-1p disk.
Add-on single channel TOPS-20 disk.

Slave dual port upgrade kit.
to dual channel disks.

Converts RP20~AC or RP2@¢-AE

TU78 SERIES MAGNETIC TAPE DRIVES

Magnetic tape subsystem including controller and one
master tape drive 9-track, 125 inches per second, 1680/6250
bits per inch.

9-track, 125 ips, 1600/625¢ bpi add on tape drive.
PREREQUISITE: TU78-CE.

TU72 SERIES MACNETIC TAPE DRIVES

Magnetic tape controller and DX2¢ channel for TU72 series
tapes.

9-track, 125 ips, 16008/625¢ bpi add-on tape drive.
Two channel switch option and DX2¢ channel.

Two channel switch for two TXP2 controllers.

Two control unit tape switch option and TXg2.

LINE PRINTERS

366 LPM, LP@5, 64-character, EDP

360 LPM, LP®5, 64-character, SCIENTIFIC

24¢ LPM, LPE5, 96-character, EDP

COMPANY CONFIDENTIAL
SYSTEM DESCRIPTION

LP2¢~BC
LP2¢-CA
LP2¢-CC
LP20-DA
LP2¢~-DC

LP2u@~BA

CL2e-CA

DNZL~-E2

DNZ2C~-DA

DN2¢~Eb

DN21-DA

DN21-EA

DN21-xx

DN25-EC

DN25-DA

DN25-AA
DN25-Ab

DNZ25-BA

-- Do not duplicate ©-JUL-80
Page 2-~5
24¢ LPM, LPO5, 965-character, SCIENTIFIC
9¢¢ LPM, LPl4, 64-character, ELP
9¢y LPM, LPl4, 64-character, SCIENTIFIC
66¥ LPM, LPl4, 96-character, EDP
668 LPM, LPl4, ¢6-character, SCIENTIFIC
LPE¢7 ChHARABAND line printer with LP2¢* control & cable kit,

SPe/12¢6 LPh.

CARLC REALERS

1206 CPM consonle-nondel reasder and control.

SYNCHKGNCUSE LIKE INTERIZCES

Low speec synchironous line controller,

Synchronous expansion drawer, Including one DN2G-BE with
slots for up to 3 additional DN20-~BEs.

Low speed synchronous line interface (24¢¢ baud to 19.2Kb)

Synchronous expansion drawer. Including one DN21-BA with
slots for up to 3 additional CN21-EAs.

High speed synchronous line interface (19.2Kb to 55Kb)

DMC-11 based high speed synchronous line interface
1Mb)

(up to

ASYNCLRCNOUS LINE INTERFACES

Asynchronous expansion cabinet and first drawer
one 8~-line multiplexer.

including

Asynchronous expansion drawer,
nultiplexer.

including one 2-1line

§-line asynchronous line multiplexer,
8-line asynchronous multiplexer with distribution panel.

€-line asynchronous expansion multiplexer.
DN25-AA or DN25-Ab to 16 lines.

Expands the

COMPANY CONFIDENTIAL ~- Do not duplicate °-JUL-8¢
SYSTEM DESCKIPTION Page 2-6

2.1.3.2 TARGET SYSTEMS - Here is a picture of a possible dual 208¢
configuration which should give a good idea of the sorts of things
that can be done. There are two 2¢8¢ systems hooked together with
ICCs., Each 2080 has an HSC50 which can access a number of disks.
Terminals are attached using a MERCURY communications controller on
the ICCS bus.

In practice, this system would have more ICCS 1lines connecting the
2680's to the various I/0 controllers.

e ————— + o mmm +
! R R e +o !
! ! ! o ———— + ! ! !
! 2080 ! ! ! MERCURY ! ! 1 2080 !
+-=1 ! ! o ————— + ! ! !
(I ! ! Lo ! ! !
e + SN A et +
! ! TERMINALS !
Fmm—————— + m—————— + tm————— +
! MERCURY ! ! LSCS@ ! ! HSC5€ !
! coMm ! o ———— + e +
e ————— + ! - + 1 o +
[A A ! ! ! 11 ! !
Py +o—m——- ! DISK l---—-- + H-——--- ! TAPE !
TERM INALS ! ! ! ! ! !
! tmm———— + ! fm————— +
! !
! e + !
! ! ! !
o ! DISK !------ +
8! !
o ———— +

2.2 HARCWAKE ORGANIZATION

This section provides a summary of the major blocks in the 208# CFU
cluster. Full details of each block will be found in later chapters.

2.2.1 CONSOLE SUMMARY

The console performs the traditional "lights and switches" function
on the 298¢ system. It performs three functions for the 2¢8¢ system:
bootstrap, operator support, and diagnostics.

COMPANY CCNFIDENTIAL -- Do not duplicate ¢-JuUL~-8¢
SYSTEM DESCRIPTION Page 2-7

2.2.1,1 BCOTSTRAF - This function turns the machine 1into something
that the software bootstrap can use to 1load the monitor or
diaynostics. The following actions need to take place:

1. Keset the 2080 and verify that nothing is obviously broken.
2. Load the microcode (IBCX, EEOX, MECX, PORT).

3. Load and start a pre-boot from disk or tape.

2.2.1.2 OPERATOR SUPPORT - This node provides several simple
commands to start and stop the system. It also provides operating
system support for the console terminal so the operator can talk to
the operating system.

2.2.1.3 DIACNCSTIC SUPPORT - The console can control the hardware
and monitor outputs to enable programs to execute in the consnle and
diagynose the machine.

2.2.2 1IBGX SUMMARY

The part of the Zu80 most responsible for its speed, (and complexity)
is the IBOX (or instruction unit). The purpose of the IBCX is to
fre—fetch instructions and operands, so that the EBECX (or execution
unit) will have & steady stream of instructions to execute.

The IBUX attempts to gather up to 16 instructions and operands ahead
of the EBOX, so as to smooth the flow between the memory system and
the EBCX, both of which have considerable wvariation 1in their
operation times.

Central to the IBCX is a buffer of 8 even-odd pairs of instructions.
The buffer 1is allocated in pairs since the MBCX can deliver an
even-odd pair in one of its cycles. The storage in the instruction
buffer is dynamically allocated among up to 3 instruction streams,
agepending on the branching characteristics of the program fragment
being pursued. Associated with each of the 16 slots 1in the
instruction buffer are one or two words of operand buffer, the second
operand buffer being included with the optional FPA (floating point
accelerator) .

Since the MECX may return words in a different order than requested,
a system of "tags" is used to keep the returning words straight. The
tag consists of the buffer identifier (instruction, first or second
operand) and the slot number. Each reqguest to the MBCX 1is
accompanied by a tag, which is returned by the MBOX when it completes
the request. Along with the returned tag, the MECX may indicate some
type of failure which prevented it from returning the requested data.

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-890
SYSTEM DESCRIPTION Page 2-8

The IBOX is controlled by an interruptable microcoded engine. The
top level program in the IBOX basically tries to keep the instruction
buffers full by issuing MBOX requests for instructions. It decides
which of the three possible streams to follow, and issues tags for
the resultant requests,

As words come back from the MBOX, IBCX microcode interrupts are
taken, which cause the words to be stored away, and analyzed., 1In the
case of returning instructions, the effective address is comgputed,
and, 1if the instruction requires, another MBOX request is issued for
the data word(s). 1If the instruction is a branch, then, unless all
three instruction streams are active, another stream is activated,
causing both branch paths to be pursued. An associative comparison
is made at each branch to determine whether the target is already
located within the instruction buffer, thus allowing short 1loops to
run without fetching instructions from the MBOX.

A three stage delay pipe 1is employed to &allow the tags of the
possible successor instructions to be stored with each instruction.
This is necessary since the instruction buffer storage allocatinn is
dynamic, and may be entirely scrambled.

All of the above described pre-fetching is done without regard to the
validity of either the 1index registers or the actual data being
fetched. Cache thrashing which occurs as a result of referencing
words which may not, after all, be required is hoped to be minimal.
Attempts to reference words in pages not contained in the rage
translation cache are simply aborted, and the appropriate error
indication is returned by the MBOX. These references are deferred
until the word is actually required by the EBOX. 1In this case, it is
hoped that not too many legitimate translation misses occur, since
that will bottle up the IBOX pre-fetching.

Simultaneous with keeping its buffers filled from the MBCX, the IBOX
is emptying itself by passing instructions and data to the FBOCX.
Although the EBOX microcode engine takes two cycles per
microinstruction, the IBOX supplies the first microinstruction from
its own fast RAMs, allowing many instructions to pess thru the EBCX
in one cycle. If two microinstructions are regquired in the ERCX, the
second one comes from the EBCX microcode, and will be ready to go
after the first IBOX-originated cycle, thus allowing completion in
two cycles. Successive microinstructions take 2 cycles each.

As an instruction is passed to the EBUX, the tags of the two possible
successor instructions become available, and both are read out of the
buffer simultaneously. A static predictor based on the instruction
tyre selects one of the two to be presented to the EBCX. If the
rFrevious instruction takes the contrary branch, one cycle 1is 1lost
while switching to the alternate successor.

The remaining problem is that of "conflicts", which occur when a
result of one instruction affects a successive instruction already in
the IBOX. Since the architecture of the PCP-18 allows arbitrary
storing into the instruction strean, anything done in speculation
might be invalid. Thus, the IBOX keeps 1in associative memory all

CUMPANY CONEFIDENTIAL -- Do not duplicate ©-JuL-8¢
SYSTEM DESCRIPTION Page 2-9

locations, both in memory and in general registers, which were used
in the process of filling its buffers.

Stored in the associative memory are the PC (program counter) values
from which instructions were fetched, the index register locations
used to compute effective addresses, and the accumulator locations
which either are themselves data, or might point to data.

Wwhen the EBOX does an instruction which writes an AC which is either
the AC operand or the memory operand of the next instruction, the
result is "fed forward", substituting for the actual register
contents at no cost in time. The writing of an 2C also forces an
associative lookup against all registers used in the calculation of
the effective addresses for instructions in the IBOX buffers.
Similarly, the writing of a result to memory forces the associative
comparison to be made against memory locations used to fill the IBOCX
buffers.

Should any watches against the IBOX occur, a priority encoder forces
as many refetches as are necessary, although the order in which they
are done does not bear any relation to the order in which they may be
needed. Since the same location may be overwritten, and refetches
issued, up to twice before the MBOX responds, a count of outstanding
MBCX references is kept against each buffer slot. This count must be
zero for the buffer contents to be considered valid.

A special test is made in the IBCX for wunconditional Jjumps (or at
least the most common of them: JRST ¢,). If a JRST is the next
instruction up, and the EBOX signals that it is not storing over the
JRST, which 1is known one cycle early, then the IBOX will fpass over
the JRST, and be ready to feed the successor instruction to the EBOCX,
with no net time spent on the JRST. Since JRSTs account for some 10%
of all instructions executed, this is a significant advantage.

2.2.3 EBOX SUMMARY

The EEOX does all of the "real" computation in the 2¢8¢. The EBCX
has a wide microcode word which directly controls &sll of the logic in
the EBOQOX.

The EBOX does all of the stores required by the progrem. This keeps
everything in sync so that we can recover from a page failure.

2.2.4 ARITHMETIC PROCESSINC ACCELERATCR SUMMARY

The 2680 AFA monitors the 1IBCX and EBCX and speeds up selected
orerations. These include single and double precision floating point
add, subtract, multiply and divide and single precision integer
multiply and divide.

The following classes of instructions will be processed in the 2PA:

CCMPANY CCNFIDENTIAL ~~ Do not duplicate 9-JUL-£84
SYS1EM DESCRIPTION Page 2-10
1. Single Precision Floating Point
2. Single Precision Integer
3. Double Precision Floating Point
4. Expanded Range Double Precision Floating Point

5. Conversion Instructions

2.2.5 MBOX SUMMARY

The MBCX is the central block of the 2¢89 system. It contains the
cache memory and all of the hardware required ton do paging end to
read and write physical memory.

The MEOX has a microprocessor which handles many of the complex MROX
functions (like a cache refill). Simgple virtual memory reads do not
require the microprocessor to do anything.

2.2.6 MEMORY SUMMARY

The 2080 has internal 64K MCS memory. The memory has ECC on every
word. The memory always reads 4 words at one time. These four words
are latched on the memory array cards and sent serially to the MBCX
where they are written into the cache,.

COMPANY CONFIDENTIAL -- Do not duplicate 9-JuL-8¢
SYSTEM DESCRIPTION Page 2-11
2.2.7 1/0 SUMMARY

The 2080 uses a microprogrammed IO processor called a “PORT". The
port performs several common functions for all 2¢8¢ 10 interfaces:

l. Interface to the 208¢ TTL bus}

2. Data repacking. In particular, conversion of 36 bit words
into 8 bit byte streams in any one of several formats.

3. Command grocessing. fThe port maintains several queues of
outstanding commands and schedules data transfers.

4. Processing channel command lists and buffer descriptors.
5. Interrugt processing.

There are up to eight ports in the 2¢8¢. Each port can control any
one of four types of IC interface:

1. ICCS link -~ ~connection to other processors, HSC5¢ and
MERCURY.

2. MASSBUS ~ Connection to current disks and tepes (e.g. RP#5,
RP2¢, TU78).

3. UNIBUS (or 1¢/11 interface) =~ —connection to DN2@-style
communications options.

4. IBM ELOCK MUX - connection to PCM disks and tages.

2.3 DIFFERENCES FROM THE KL1¢

2.3.1 SUMMARY OF MAJOR DIFFERENCES

l. Lower transfer cost than a KL1@,.
2, Smaller in size,
3. Much faster than a KL1l@.

4. Both T0PS~1¢ and 17T0PS-20 paging available under fprogram
control.

COMPANY CONFIDENTIAL -- Do not duplicate S-JuL-89
SYSTEM DESCRIPTION Page 2-12

2.3.2 EXEC AND USER INSTRUCTIONS

2.3.2.1 NEW EXkEC AND USEK INSTRUCTIONS - [[this section will be
completed in a future edition]]

2.3.2.2 CHANGED EXEC AND USER INSTRUCTIONS - [[this section will be
completed in a future edition]]

2.3.2.3 DISCONTINUED EXEC AND USEK INSTRUCTIONS - UFA, DFN, FADL,
FSBL, IMPL and EDVL are not available on the 2¢08¢. They all trap as
MUUOs .

These instructions are considered obsonlete.

2.3.2.4 OTHEK EXEC AND USER CHANGES -

2.3.2.4.1 PUBLIC MODE - Public mode is not implemented on the 2£8¢.
All instructions behave as if the machine is in concealed mode.

There is also no supervisor mode. The only exec mode is kernel mode.

2.3.3 EXEC MODE CNLY INSTRUCTIONS

2.3.3.1 NEwW EXEC MCDE ONLY INSTRUCTICNS ~ [[THIS SECTION WILL BE
CCMPLETED IN A FUTURE EDITION]]

2.3.3.2 CHANGED EXEC MODE ONLY INSTRUCTICNS ~ [[THIS SECTION WILL BE
CCMPLETED IN A FUTURE ELDITION]]

2.3.3.3 DISCONTINUED EXEC MODE ONLY INSTRUCTIONS - [[THIS SECTION
WILL BE COMPLETED IN A FUTURE EDITION]]

2.3.3.4 OTHER EXEC MCDE CONLY CHANGES - [[THIS SECTION WILL BE
COMPLETEL IN A FUTURE EDITION]]

COMPANY CONFICENTIAL -- Do not duplicate : °2-JUL-80
SYSTEM DESCRIPTION Page 2-~13

2.3.3.4.1 OVERFLOW FELAG - In the 2¢8@ the overflow flag comes back
as PC flag bit €. In the KL1C last-instruction-public comes back as
PC flag bit ¢.

2.3.4 10 DIFFERENCES

[[THIS SECTION WILL BE COMPLETED IN A FUTURE EDITION]]

2.3.5 ADDRESSING DIFFERENCES

[[THIS SECTION WILL BE COMPLETED IN A FUTURE EDITION]]

2.3.6 INTERRUPT DIFFERENCES

[{THIS SECTION WILL bBE CCMPLETED IN A FUTURE EDITION]]

2.3.7 PAGING DIFFERENCES

Both 10PS-1¢ &end TOPS-20 paging are implemented in one version of the
microcode and selected by bit 21 in WREBR.

2.3.7.1 PAGE FAIL CODES - [[this section will be <completed 1in a
future edition]]

2.3.8 ERROR RECOVERY DIFFERENCES

{[{this section will be completed in a future edition]]

2.3.9 MISC. CHANGES

[[this section will be completed in a future edition]]

.
COMPANY CONFIDENTIAL -- Do not duplicate Lu% 9-JUL-80

~P// 4ﬁf7ﬁ
,50 AO‘}/{) \\)l . _..L‘(\e

AN

¢
(\)é/

CHAPTER 3 -

EXEC MODE PROGRAMMING

3.1 INTRODUCTION

This document describes the operation of the Exec Mode and 1/0
instructions on the KCld. All I/0 instructions are ordinary
instructions with the same format as normal instructions (opcode, AC
and effective address). The opcodes are in the range 70¢ thru 777.

Any operation code in the range 76¢ thru 777, AC number, field or bit
not described in this document should be considered reserved to DEC.
The microcode will attempt to generate an illegal instruction trap
whenever a reserved action is attempted.

Opcodes 700 thru 737 are for exec mode only (I/0 legal) instructions,
Opcodes 740 thru 777 are for exec and user instructions.

Included in this document is a description of the implementation of
all 4096 sections of virtual address space, the EPT/UPT layout, trap
handling and process context variables. Chapter 4 <contains a
rroposal for new instructions for manipulating gueues and physical
memory.
NOTE

Items still to be added to this document:

1. Interrupt protocol description.

2. Address break facility description (if any) .

3. ©System timers and accounting facilities.

COMPANY CONF IDENTIAL -~ Do not

EXEC MODE PROGRAMMING

700
710
720
730
740
750
760
770

o
g1
B2
03
04
85
06
87
19
11
12
13
14
15
16
17

0
APRY
RNGB
INSQHI

INSQUE

1

APR1
RNG BW
INSCTI

REMQUE

New

document
and approval

are

still
by Software

duplicate

OPCCDE Assignment Map
2 3 4 5 6
APR2 - PMOVE PMOVEM -~
SNBSY - - - -
REMCHI REMQTI -~ - -
AC Field Assignments
701 702
- RDSPB
RDUBR RDCSE
CLRPT RDPUR
WRUBR RDCSTM
WREBR RDTIM
RDEBR RDINT
WRIOP UPDTIM
RDIOP -
SWPIA WRCSE
SWEVA WRPUR
SWPUA WRCSTM
SWPPT WRTIM
- WRINT
NOTE
instructions proposed in this

subject to review

Engineering

and the Architecture Committee.

9~-JuL-80
Page 3-2
7

COMPANY CONFIDENTIAL -- Do not duplicate
EXEC MODE PROGRANMMING

3.2 INTERNAL I/O0 INSTRUCTIONS

These instructions control the CFU. They transfer
the outside world and the CPU or memory.

no

cata

9~-JUL~-8¢
Page 3-3

between

CCMPANY CONFIDENTIAL -- Do not duplicate 9-JUuL-8¢

EXEC MODE PROGRAMMING Page 3-4
APRID
APRID
pmm e ———— s T T +
! 700 ! 9@ 1@! XR ! Y !
tmmmm————— i e e B e e e +

This instruction returns the microcode version number, the CPU serial
nuaber, and processor options. This date is stored at F and E+1 in
the followiny formeat:

E:

L-€ keserved for microcode options,

¢-17 Lardware options (These are all zero at present)
18-35 Processor serial number

E+1l:

0-35 Microcode version number (in Standaré format)

I
I
I
|
|
|
|
|
|
I
|
i
I
|
I
I
I
|
|
I
|
I
[
I
I
|
I
|
!
I
|
I
I
I
I
I
I
I
I
|
|
[

COMPANY CONFIDENTIAL -- Do not duplicate 0-JUL~80

EXEC MODE PROGRAMMING Page 3-5
WRAPR
WRAPR
fmm——————— s e L +
! 760 ! @4 1@! XR ! Y !
fm—m—————- e e +

l1his immediate mode instruction decodes its effective address to

control the processor. The effective &address bits are used as
follows:
19 1/0 reset. When this bit is set all internal devices are

reset. In addition, an input/output init is generated.

2¢ Enable conditions selected by bits 24 thru 31 to cause
interrupts.
21 Disable interrupts for conditions selected by bits 24
thru 31.
22 Clear flags indicated by bits 24 thru 21.
23 Set flags indicated by bits 24 thru 21.
WARNING

The action of the processor is not defined when
both bits 2¢ and 21 or 22 and 23 are set in the
same instruction.

24-3¢ To be described
31 Cache sweep done

33-35 PIA

COMPANY CONFIDENTIAL -- Do not duplicate
EXEC mODE PROGRAMMING

RDAPR
RDAPR
e m———— e s st
! 700 ! 95 1@! XR ! Y
e e et S Fom e

This instruction stores the APR status in the word
The status is as follows:

P6~-13 Flags enabled to interrupt (tbd)
13 Cache sweep done

19 Cache sweep busy

24-31 Flags, cause of interrupt (tbd)
31 Cache sweep done

32 Interrupt requested

33-35 PIA

addressed

°-JuL-8¢
Page 3-6
by E.

CCMPANY CONFIDENTIAL ~-- Do not duplicate 9-JuL-ea

EXEC MCDE PROGRAMMING Page 3-7
WKPI
WRPI
$rmmm————— e et e B e e +
! 700 ! 14 !1@! XR ! Y !
pmmmm———— R e e B +

18-29
22
23
24

25

This immediate mocde instruction decodes 1its effective address to
control
are used as follows:

priority interrupt system. The effective address bits

Processor erroy insertion (to be cdefined).

Turn off program reqguests on selected levels (bits 29-35)
Clear FI system,

Initiate interrupts on selected levels (bits 2¢-35)

Turn on selected levels (Lkits 2¢-35)

Turn off selected levels (bits 2¢-35)

WARNING
The action of the Lrocessor is not defined when

both 25 and 26 or 22 and 24 are set in the same
instruction.

Select levels for bits 22, 24, 25, and 26.

CUMFANY CONEFIDENTIAL -- Do not duplicate
EXEC MODE PROGRAMNMING

RCPI

This instruction store the PI status in the word addressed by E.

RDPI
$mmm e i T T +
! 760 ! 15 t@e! XR ! Y !
T — T o T T . +

status is a follows:

11-17
18-2¢
21-27
28

29-35

Program requests on levels,

To be defined (set by WKPI).
Interrupt in progress on levels.
Pl system on.

Levels on,

©-JUL-80
Page 3-8

The

COMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL-8¢

EXEC MODE PROGRAMMING Page 3-9
WRUBR
WRUBR
emm————— e R e e +
! 701 ! g3 1@! XR ! Y !
fmmmm————— e R T +

1his instruction loads user process context with the words at E and

E+l1. The format of the first word (E) is:

g
1
2
3
4

18-35

Load AC block numbers

Load PCS

Load UBR

Clear "kept" pages from the hardware page table.
Do not update accounts.

Physical page number of UPT.

The format ot the second word (E+1) is:

6-17
3p-32

33-35

Previous Context Section
Current 2C block

Previous AC block

If bit 2 is on perform the following functions:

1t bit 4 in E is €, ugdate the user accounts.
Load bits 1€-35 of E into the User Lase Kegister

If bit 3 in E is ¢, clear only those pages marked "kept" in
the Page Table, else; If bit 2 is 1, clear all entries.

I
!
|
|
|
I
|
|
I
|
I
I
|
l
I
I

COMPANY CCNFILCENTIAL -- Do not duplicate 9-JUuL-80

EXEC MODE PROGRAMMING Page 3-1¢
RDUBK
RDUBK
o e s ST TR . +
! 701 I 81 1@! XR 1 Y !
tmmmmm———— R S T R +

This instruction reads back the user process context and returns two
words at E and E+1 in exactly the same format as used by WRUBR. 1In
order to allow these words to be used directly in a WRUBR
instruction, bits ¢ thru 2 are set to 1 and bits 3 and 4 are set to @
in E.

COMPANY CONFILENTIAL ~- Do not duplicate o-JUL-80

EXEC MUDE PRCCRAMMING Page 3-11
CLRPT
CLRPT
fomm—————— e e R +
! 7¢1 ! 62 '@! XR ! Y !
tm——————— ot m e +

This immediate mode instruction clears the hardware page table entry
associated with the EA of this instruction so that the next virtual
reference to the word specified by EA will cause a pager refill trag
to occur,

COMPANY CONFIDENTIAL -- Do not duplicate
EXEC MCDE PROGRAMMING
WREBR

WREBR
pmmm R i TP I +
! 701 ! 04 1€! XR ! Y !
$mmmm et T Tt mmmmm e +

9-JUL-8¢
Page 3-12

This instruction loads the exec mode context from the word at E. The

format of the word is:

6-1 Cache enable (Look and Load).

2 KL10 compatible paging (TOPS-20 see sec 3.5)

3 Extended paging (TCPS-20 see sec 3.5)
WARNING

The effect of turning on both bits 2 and
be undefined.

4 Trap and paging enable.

1€-35 Physical page number of EPT,.

3 will

CCMPANY CONEFIDENTIAL -~ Do not duplicate °-JuL-89

EXEC MCDE PRCGRAMMING Page 3-13
RCEBR
RDEBR
dmmmmm———— $mmmmtmtmmmmtmm e +
! 7¢1 ! ¥5 t@! XR ! Y !
e e e T e bt +

This instruction returns the value given to WREBR and stores it in
the word addressed by E.

CCMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-80

EXEC MCDE PROGRAMMING Page 3-14
WKIOP
WRIOP
b ——— $ommm—tmfmmm e mm—— - +
! 701 ! g6 te! XR ! Y !
fmm e T e +

Tnis immediate mode instruction sets the physical page number of the
1/0 page to be bits 1£-35 of E.

COMFANY CONFIDENTIAL -- Do not duplicate
EXEC MCDE PROGRAMMING

ROIOF
RDIGP
fmmmmmm——— e s Rt ST
! 7¢1 ! 907 1@! XR ! Y
Fmmmmm———— R e e T .

This instruction returns the value given to WRICF and
the word addressed by E.

-

9-JuL-8p

Page 3-15

stores

it in

— — —— —— — — — —— — — — — —— —— —

CCMPANY CONFICENTIAL -- Do not duplicate ¢-JuL-80

EXEC MCDE PROGRAMMING Page 3-16
SWFIA
SWPIA
Femmm————— 4ot ——d e mmm——m——m——— o= +
! 7¢1 f 11 1@! XR ! Y !
fmmmm————— $=m ettt mmmmmmm———m— o — +

Sweep Cache, Invalidate All Pages

Set Sweep Busy and clear the valid and written state in all cache
entries. At the completion of the sweep, clear Sweep Busy and set
Sweep Done, reguesting an interrupt on the level assigned tno the
Lrocessor,

CCMPANY CCNFILCENTIAL -- Do not duplicate 9~-JUL-8¢

EXEC MUDE PKOGRAMMING Page 3-17
SWEVA
SWPVA
Fmmmmm——— $ommmtmdmmm e m e — e +
! 701 ! 12 1@t XR ! Y !
e e T T e e +

Sweep Cache, Vvalidate R1l1l Pages

Set Sweep Busy and write into storage all cache entries that are in
the written state, Clear the written state associated with those
words sent to storage, but do not change the validity of any entries.
At the completion of the sweep, clear Sweep EBusy and set Sweep Done,
reqgquesting an interrupt on the level assigned to the processor.

|
|
|
|
I
|
[
|
!
|
|
I
I
|
!
|
I
|

CCOMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-80

EXEC MCODE PROGRAMMING Page 3-18
SwPUA
SWPUA
et e S T R +
! 701 1 13 1@! XR ! Y !
$mmm e T T T T +

Sweep Cache, Unlnad All Pages

Set Sweep Lusy and write into storage all cache entries that are
the written state. Invalidate all entries (i.e. clear valid
written state). At the completion of the sweel, clear Sweep Busy
set SweeL [one, requesting an interrupt on the level assigned to
processor.

in
and
and
the

COMEANY CONFIDENTIAL ~-- Do not duglicate ©-JuUL-80

EXEC MCDE PROGRAMMING Page 3-19¢
SWPPT
SWPPT
pmmmm e itk St TP PR +
! 7¢1 ! 14 ¢! XR ! Y !
$mmmm————— s S T T T +

Sweep Page Table

Interpret the EA of this instruction as a physical address and clear
all the associated entries in the hardware page table that contain a
virtual to physical mapping to this address.

WARNING

This instruction may actually be slower
than doing & WRUBk followed by the
Fager refill cycles caused by clearing
all of the hardware page taeble entries,

COMPANY CONFIDENTIAL -~ Do not duplicate
EXEC MCDE PROGRAMMING

WRSPB

WRS PR
pmm i e B T +
! 702 ! 10 t@! XR ! Y !
Fmmmm———— s St ST S P +

wWrite SPT Base Register

Load the word at E into the SPT base register.

BASE REGISTER FCRMAT

All base registers are 1loaded with a
rhiysical word address. All high order
bits must be zero. The address need
not be on a page boundary and may be
any place in physical memory. There is
no range check on SPT or CST offsets.
The monitor is assumed to always put
correct data into page tables.

9-JuL-8¢
Page 3-20

COMEANY CONFIDENTIAL -- Do not duplicate
EXEC MODE PROGRAMMING
KDSFB

kDS PB
fommm———— R e T T +
! 762 ! ge t@! XR ! Y !
e ——— e o T S e +

Read SPT Base Register

Store the SPT base register at E.

9-JUL-8¢
Page 3-21

—— — —— — —— ——— — — — — — — — —— —— — —— — — — —— ———- S— — — — o—

CCMPANY CONFIDENTIAL -- Do not duplicate
MUDE PROGRAMMING

EXEC
WRCSB

WRCSB
dmm e p———t
762 t 11 1@! XR ! Y !
o ———— L T +

Write Core Status Table Ease Register

Load the CST base register with the word at E.

BASE REGISTER FCRMAT

All base registers are 1loaded with a
physical word address. All high order
bits must be zero. The address need
not be on a page boundary and may be
any place in physical memory. There is
no range check on SPT or CST offsets,
The monitor is assumed to &always put
correct data into page tables.

9-JUL-8#
Page 3-22

COMPANY CCNFIDENTIAL -- Do not duglicate
EXEC MCLE PROGRAMMING

RDCSE
RDCSB
e e e e +
! 7€2 ! 81 t@! XR ! Y !
tmmm—————- et B e e e +

Read Conre Status Table kase Register

Store the CST base register at E.

9~-JUL-8¢
Page 3-23

COMPANY CONFIDENTIAL -- Do not duglicate 9-JUL-80

EXEC MODE PROGRAMMING Page 3-24
WRPUR
WRPUR
pmm e —— e s S b TP . +
! 702 ! 12 1@! XR ! Y !
o ——— e R i TP . +

Write Process Use Register

Load the process use register from E. The process use register
contains the AGER (age register) in the left few bits. The bits
containing the ACER are cleared by anding the CST entry with the CST
mask, then the entire PUR is ored with the CST entry.

——— — —— — — — — — — —— —— — —

COMPANY CONFIDENTIAL -~ Do nnt duplicate
EXEC MCDE PROGRAMMING

RCPUR
RDPUR
pm—mm———— D s S e TS +
) 762 ! g2 1@! XR ! Y !
$ommm e i e B T +

Read Process Use Register

Store the PUR at E.

9-JUL-80
Page 3-25

— " —— — — ——— — — — T——— — — — — 7

COMPANY CCNFIDENTIAL --
EXEC MCDE PROGRAMMING
WKCSTM

o ———— +
i 702 1
o ——— +

Do

————

Write CST Mask Register

not duplicate

+ - +
(o]
+ - +
x
X
+ -+

Load the CST mask register from E. The

contain a @ for every bit in the ACER and a 1l

positions.

¢-JUL-80
Page 3-25

register should
in all other bit

CUMFANY CCNFICENTIAL ~- Do not duplicate °-JUL-80

EXEC MODE PKOGRAMMING Fage 3-27
RDCSTM
RDCSTM
mmmm—— - e e e B T T +
! 762 ! 93 1@! XR ! Y !
o mm————— s s ToTEE SRS R +

Read CST Mask Register

Store the CST mask register at E.

CCMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-80

EXEC MODE PRGGRAMMING Page 3-28
WKTIM
WKTIM
e ———— fmmmmt e m e mm e m e e — e +
! 702 ! 14 18! XR ! Y !
pmmm—————— s e T B e +

Write Time Ease

This immediate instruction decodes its effective address to control
various system time and accounting meters. For a complete
exrlanation of the time and accounting meters see sec. 3.7. The
effective address bits are used as follows:

1€ Set up accounts (bits 21-23).
21 Enable PI accounting.

22 Ensble Kernel mode accounting.
23 Turn on accounting.

24 Turn off time base.

25 Turn on time base.

26 Clear time base.

33-35 PIA for interval timer.

briefly, the time base consists of two counters that count at a 1 ms.
and 10 us. rate. ‘he millisecond counter consists of 1 wnrd in the
EPT at location 512. The 1€ microsecond counter consists of 2 words
in the EPT at locations 51¢ and 511. 1These two counters are driven
trom the same source and are updated in parallel by the microcode.

CUMPANY CONFIDENTIAL -- Do not duglicate
EXEC MCDE PROGRAMMING
RETIM

RPTIM
fomm e et e e +
! 7¢2 ! 94 1@! XR ! Y !
tom—————— - e e e Tt +
kead Time Base
Read the status of the accounting meters and time
interrupt level assigned to the interval timer

addressed by E. The status is as follows:

21 PI accounting enabled.

22 Kernel mode accounting enabled.
23 Accounting on,

25 Time base on.

33-35 PIA for intervel timer.

base,
into

o-JuL-8e
Page 3-2¢€C

and
the

the
word

COMPANY CONFIDENTIAL ~- Do not duglicate 9-JUL-8¢

EXEC MODE PROGRAMMING Page 3-30
UPDTIM
UPDTIM
Fmmmm————— $omme b - +
! 762 ! 06 1@€! XR ! Y !
Fmmmm————— e e +

Updete Time Ease

Update the time base count from the hardware counter, and transfer
the result from locations 51¢, 511 and 512 in the EPT to locations E,
E+1, and E+2. Updating clears the hardware counter.

CCMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-80

EXEC MODE PROGRAMMING Page 3-31
WRINT
WRINT
pmm—m e i Rt +
! 762 ! 15 1@! XR ! Y !
tmmmm———— s T TR S PP +

Write Interval Timer

This immediate mode instruction decndes 1its effective address to

setup the interval timer. The effective address bits are used as
follows:

18 Clear interval timer.

21 lurn intervel timer on.

22 Clear intervel flags.

24-35 Interval period.

CCMEANY CONFIDENTIAL -~ Do not duglicate 9-JUL-€Q

EXEC MODE PROGRAMMING Page 3-32
RDINT
RDINT
pom e Tt T S +
! 762 ! 05 1@! XR ! Y !
Frm——————— e e e B +

Read The Interval Register

Read the status of the interval timer into the word addressed by E.
The status is as follows:

5~-17 Interval count (current contents of the counter).
21 Interval timer on.

22 Interval timer done (causes interrupt).

23 Overflow (implies bit 22).

24-35 Interval period.

3.3 EXTERNAL I/0

The external I/0 instructions on the KCl¢g allow a program to
communicate with the I/0 ports and the console. In particular they
will manipulate the I/0 Command/Response Queues and Port Coorbell
mechanism, See chapter 1¢ of the 2€80 EFS for a complete description
of the Cueue and Loorbell features. The interface to the 2080 ports
is primarily date areas called "mailboxes" and a doorbell. It is the
doorbell mechanism that the fonllowing instructions manipulate. The
Commeand/Response Queues will be covered by the queue instructions in
the next section,

CCMPANY CCNEIDENTIAL -- Do not duplicate 9-JuUL-8¢

EXEC MODE PROGRAMMING Page 3-33
RNGB
KNGB
e e +
! 710 ! 9o 'e! XR ! Y !
T $mmm—dotmmm—fmmmmmmmm—m———— +

Ring Doorbell

This immediate mode instruction will essert a port or console number
on the TTL bus and set RING ("doorbell"). The EA of this instruction
is the port number and is interpreted as follows:

18 Interrupt 2¢80 Console

33-35 Port number (Ignored if bit 18 set)

—— . — — —— — — —— — —— — —— —— — — — ——— ——

COMPANY CONFIDENTIAL -- Do not duplicate ©¢-JUL-8¢

EXEC MODE PROGRAMMINGC Page 3-34
RNGBW
RNGBW
o T i e ST SRR, +
! 711 ! 00 !1@! XR) Y !
D L T S—— Fmmmm e ——— o +

Ring Doorbell and Wwait

This immediate mode instruction will assert a port or console number
on the TTL bus and set RING ("doorbell"). The EA of this instruction
is the port number and is interpreted as follows:

18 Interrupt 2080 Consnle (does not wait - same function as
RNGB)

33-35 Port number (Ignored if bit 18 set)

COMPANY CONFIDENTIAL ~-- Do not duglicate S-JuL-8¢g

EXEC MOLE PRCGRAMMING Page 3-35
SNBSY
SNESY
e e e e B ————— +
1 712 ! ge 1e! XR ! Y !
pmm————— B e T e +

Skip if BUSY not

g
o
rt

This instruction skips to PC+2 if the EUSY line of the TTL busy 1is
not set. When used in combination with the RNCB instructinn, you can
achieve the identical effect of ENGBW as fnllows:

kNGB pn ; Assert RING to port "gn"
SNBESY ; busy set?
JRET .1 ; Yes, wait.

H

No - jproceed

e e 0

3.4 NEW INSTRUCT1ONS

The following instructinns have been added to aid the monitor to
manipulate new data structures and to save overhead time and space,.

COMPANY CCNFIDENTIAL -- Do not cduplicate

EAEC MCDE PRCCEAMMINC
ProVE

P
Fmmmm e ——— et
! 7¢4 { AC 101}
dmmmm————— e T

CVE

Physical Move from Memory

Move the physical memory location addressed by E into the

effective address 1is calculated
all indirect words will come from

¢-JuL-€n0
Fage 3-234

AC.

as a 3¢-bit virtual address

Exec Virtual

bits 11-35 will be used for deta references.

NCTE

Addresses ¢-17 will

reference

memory ¢-17, not the ACs.

Pddresses)

chysical

but

The
(i.e.
only

CCMPANY CONEIDENTIAL ~-- Do not duplicate
EXEC MODE PROGRAMNINC
PMCUVER

PMCOVEM
Fmmmm e et S S
! 705 ! AC 1@! XR !
pmmmm e tmmmmtmtm e e

Physical Move to Memory

bove 2C into the physical memory location

adcdressed by

8-JUL-Q0
Page 3-37

E.

The

effective address 1is calculated as a 3¢-bit virtual address (i.e.

all indirect words will come from Exec Virtual
bits 11-35 will be used for data references.

2Addresses)

but

only

— e — —— —— — — — — — — — — o— — — — — — — — — o—— —— — — —— —— —— —— — — — — ——— ———— — —— — — — — — t—

COMPANY CCONFIDENTIAL -- Do not dugplicate 9-JUL-80
EXEC MODE PROGRAMMING Page 3-38
Qgueues

A queue is a «circular, doubly 1linked 1list. A gueue entry is
specified by its address. Each queue entry is linked to the next via
a pair of words. The first word is the forward 1ink (FLINK): it
specifies the location of the succeeding entry. The second word is
the backward 1link (ELINK): it specifies the 1location of the
freceeding entry. The KC1l0 implements two types of links: rphysical
and virtual. A physical link contains a 25-bit physical address
(EXEC mode only) of the entry that it points to. 2 virtual link
contains a 30-bit virtual address of the entry that it points to. A
queue is classified by the type of link it uses.

A yueue 1is specified by a queue header which is identical to a pair
of queue linkage words. The forward 1link of the header is the
address of the entry termed the head of the queue. The backward link
of the header 1is the address of the entry termed to be the tail of
the queue. The forward link of the tail points to the header.

T'wo general operations can be performed on queues: insertion of
entries and removal of entries. Generally entries can be inserted or
removed only at the head or tail of a queue. (Under certain
restrictions they can be inserted or removed elsewhere; this is
discussed later.)

The following is an example of queue operations. 2An empty gueue is
specified by its header at address H:

] 35

g g gy gy g +

H: ! H !
e T T T T T PP +

H+1: ! H !
i T T T L +

If an entry at address E is inserted into an empty queue (at either
the head or tail), the queue is as shown below:

% 3t

e VT Ty T T T '
Wi+ T Ty T :
e e e +

1% 35
be C T T T |
b+1: T-—------‘-—‘—-_———-—__; T

I
I
I
|
I
|
I
I
|
I
I
I
I
I
I
I
I
|
!
I
I
!
I
I
I
I
!
I
I
I
I
I
|
I
I
I
|
I
I
|
I
I
I
I
I
[
I
I
I
I
I
I
I
I
I
I
|

CCMFANY CONEFIDENTIAL ~- Do not duplicate

EXEC MCDE PKROGRAMMING
Queues

8-JguL-8p¢

Page 3-30

If an entry at address & is inserted at the head of the gueue, the
gqueue is show below:
9 35
P e e e L +
ks ! A !
B ey e e e e e e — = -+
H+1: ! ' B !
P e e e e - +
G 35
o e e e e e - +
A ! E !
P e e e e +
A+l: ! H !
tmmmm e e i T T +
v 35
P e e e e e e~ +
E: ! H !
R T T T B gV +
b+1: ! 2 !
P e e e e e e e +
Finally, if an entry at address C is inserted at the tail, the queue
appears as follows:
/] 35
P e e e +
H: ! A !
o e e e e +
h+1: ! C !
Fo e e e e e +
o 35
- e e e +
£ ! E !
P e e e e . +
A+l: ! |3 !
o e e +
0 35
o e e e e +
b: ! C !
P e e e +
BE+1: ! A !
o e e e - +
Y 35
e +
C: ! H !
o e e e e e e e +
C+1: ! E !

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-8#

EXEC MODE PROGRAMMING Page 3-4¢
Queues
If mmore than 1 process can perform operations on a Gueue

simultaneously, 1insertions and removals should only be done at the
head or tail of the qgueue. If only 1 process (or 1 process at a
time) can perform operation on a queue, insertinns and removals can
be made at other that the head or tail of the cueue. 1In the examgle
above with the queue containing entries A, B, and C, the entry at
address B can be removed giving:

4] 35
o +

H: ! A !
e +

H+1: ! C !
ot Oy gy +

4] 35
e T T R +

A ! C !
o e m e +

A+l: ! H !
T T P ROy Uy g S +

7] 35
e — e +

C: ! H !
e e m—mmm— oo +

C+l: ! A !
e e +

The reason for the above restriction is that operations at the head
or tail wre always valid because the queue header is always present;
operations elsewhere in the qgueue depend on specific entries being
present and may become invelid if another process is simultaneously
rerforming operations on the queue.

Two instructions are provided form manipulating virtual queues:
INSCUE and KEM(CUE. INSCUE inserts an entry specified by an entry
operand (AC) into the queue fonllowing the entry specified by the
tredecessor operand (EA). REMQUE remove the entry specified by the
entry operand (EA). Both INSCQUE and KEMCUE are implemented as
non-interruptable instructions,

Four operations can be performed on physicel gueues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore,
these operations are interlocked to allow cooperating processes in &
multiprocessor system (CPU and I/0 ports) to access a shared queue
without additional synchronization. A hardware supported interlocked
mechanism is wused to read the queue header. EBit ¢ of the qgueue
header is used as & secondary interlock and is set when the queue is
being accessed. If an interlocked queue instruction encounters the
secondary interlock set, the CPU waits until it can access the queue
(timeout? page fail?).

CCMPANY CONFIDENTIAL -- Do not duglicate 9-JuL-g¢

EXEC MCDE PROGRAMMING Page 3-41
INSCUE
INSCUE
o mm e e S et s U +
! 740 ! AC !@! XR ! Y !
Fmmm e it et L b LU . +

Insert Entry in Queue

The entry specified by the 3¢-bit virtual address contained in 2C is
inserted into the queue following the entry specified by E. If the

entry inserted was the first one in the gqueue (i.e. C(E) = C(E+1)
atter insertion), the instruction does nnot skip; otherwise it skips
to PC+2. The insertion is a non-interruptable operation. Before

terforming any rpart of the operation, the processor velidetes that
the entire operation can be completed. This ensures that if a page
fail trap occurs, the queue is left in a consistent state.

Lecause the insertion is non-interruptable, processes running in
kernel mode can share gueues with interrupt service routines. The
INSQUE and REMCUE instructions are implemented in such @ way that
cooperating processes in 2 single [processor nay access a cueue
without additional synchronization if the insertinns and remnvels are
only at the head or tail of the queue.

e e —— —— ——— —— — — —— — —— — —— —— o amn — e s e e

COMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL-80

EXEC MODE PROGRAMMING Page 3-42
REMCUE :
REMQUE
pmmmm———— $mmm—tmtmm e —mmmm———— e ——m e +
! 741 ! 2C 1@! XR ! Y !
fmmmm————— $mmmmtmpommmmfmmmmmmm——————m— +

Remove Entry from Queue

The queue entry specified by E is removed from the gueue. The 3p~bit
virtual address of the entry removed is placed in AC. If there was
no entry in the queue (i.e. C(E) = C(E+1) before removel), the
instruction does not skip; otherwise it skips to PC+2. The removal
is a non-interruptable operation. Eefore performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a page f1il trap occurs, the gueue
is left in a consistent state.

because the removal is non-interruptable, processes running in kernel
mode can share gueues with interrupt service routines. The INSCUE
and REMCUE instructions are implemented in such a way that
cooperating fprocesses in a single processor may access a queue
without additional synchronization if the insertions and removals are
only at the head or tail of the queue.

I
I
|
[
!
I
I
I
I
|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|
I
I
|
|
|
|

CCMFPANY CONFIDENTIAL -~ Do not duplicate 9-JUL-38%2

EXEC mCDE PROGRAMMING Page 2-43
INSCHI
INSCHI
e e it sttt Sy +
! 72¢ ! AC 1@! XR ! Y !
e tomm b m e +

Insert Entry into Queue at hHead, Interlocked

The entry specified by the 25-bit physical address contained in AC is
inserted into the queue following the header specified by E. If the

entry inserted was the first one in the queue (i.e. C(E) = C(E+1)
after insertion), the instruction does not skip; otherwise it skips
to pC+2. The insertion 1is & non-interruptable ojeration. The

insertion is interlocked to prevent concurrent interlocked insertion
or removals at the head or tail of the same queue by another process
even in a multiprocessor environment. before performing any rart of
the operation, the processor validates that the entire operation can
be completed. This e¢nsures that 1if a page fail trep occurs, the
gueuye is left in a consistent state.

because the insertion is non-interruptable, processes running in
kernel mode can share queues with interrupt service routines. The
INSCHI, INSCTI, KEMCHI, and KEMQTI instructions are implemented in
such a way that cooperating processes in a multiprocessor may access
a shared queue without additional synchronization.

COMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL-80

EXEC MODE PROGRAMMING Page 3-44
INSCTI
INSQTI
pmmm—————— e e T +
! 721 !t AC 1@! XR ! Y !
pmm T e +

Insert Entry into Queue at tail, Interlocked

The entry specified by the 25-bit physical address contained in AC is
inserted into the queue preceding the header specified by E. If the

entry inserted was the first one in the queue (i.e. C(E) = C(E+1)
after 1insertion), the instruction does not skip; otherwise it skips
to PC+2. The insertion is a non-interrugtable operation. The

insertion is interlocked to prevent concurrent interlocked insertion
or removals at the head or tail of the same queue by another process
even in a multiprocessor environment., Eefore performing any part of
the operation, the processor validates that the entire operation can
be completed. This ensures that 1if a page fail trap occurs, the
queue is left in a consistent state.

Eecause the insertion 1is non-interruptable, processes running in
kernel mode can share queues with interrupt service routines. The
INSCHI, INS(GTI, REMCHI, and KEMQTI instructions oere implemented in
such a way that cooperating processes in a multiprocessor may access
a shared queue without additional synchronization.

CCMPANY CONEFIDENTIAL -- Do not duplicate 8-JUL-80

EXEC MODE PROGRAMMING Page 3-45
REMChI
REMCHI
pmmmm i Tk e B +
! 722 ! AC !@! XR ! Y !
fm———— e Tt e T T +

Remove kntry from Queue at head, Interlocked

The queue entry following the header specified E is removed from the
yueue . The 25-bit physical address of the entry removed is place in
AC. If there was no entry in the queue (i.e. C(E) = C(E+1l) before
removal), the instruction does not skip; otherwise it skips to PC+2.
The removal 1is a non-interruptable operation. The removal is
interlocked to Lprevent concurrent interlocked insertion or removeals
at the head or tail of the same queue by another process even 1in a

nultiprocessor environment. BEefore rfperforming any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a page fail trap occurs, the aqueue

is left in & consistent state,.

because the removal is non-interrugptable, processes running in kernel
mode can share gueues with interrupt service routines. The INSQHI,
INSCTI, KEMCHI, and KEMQTI instructions are implemented in such a way
that cooperating processes in a multiprocessor may access & shared
queue without additional synchronizetion.

COMPANY CONFIDENTIAL -- Do not dupliceate 9-JUL-8¢

EXEC MODE PROGRAMMING Page 3-46
REM(TI
REMCTI
e s e S +
! 723 ! AC 1@) XR ! Y !
o ——— e e T S +

Remove Entry from Queue at 7Tail, Interlocked

The queue entry preceding the header specified E is removed from the
gueue. The 25-bit physical address of the entry removed is place in

AC. 1f there was no entry in the queue (i.e. C(E) = C(E+1) before
removal), the instruction does not skip; otherwise it skips to PC+2.
The removal 1is & non-interruptable operation. The removal is

interlocked to prevent concurrent interlocked insertion or removals
at the head or tail of the same queue by another process even 1in a

nultiprocessor environment. Before performing any gpart of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a page fail trap occurs, the queue

is left in a consistent state.

Eecause the removal is non-interruptable, processes running in kernel
mode can share queues with interrupt service routines. The INSCHI,
INSCTI, REMCHI, and REM(QTI instructions are implemented in such a way
that cooperating processes 1in a multiprocessor may access a shared
gueue without additional synchronization.

3.5 VIRTUAL ADDRESSINGC

This section has been extracted from a memo titled "4('¢5 Sections" by
Len Eosack dated 12-0Oct-78.

CUMPANY CONFIDENTIAL ~- Do not duplicate 8-JUL-8¢0
EXEC MCDE PRCGRAMMING Page 3-47
VIKTUAL ADDRESSING

3.5.1 Introduction

The KL processor implemented 32 sections of virtual address and has a
rager data structure that can accommodate at most 32 sections. The
KCl¢ will implement all 4096 sections of virtual address space
forcing a <change of the |pager data structure to accommondate 4096
section pointers. 1In addition there will be & "KL1¢" compatible
paging mode that will implement only 32 sections (see WREBR
description) .

Tne following paging description is only wvalid when TOPS-2¢ style
raging is enabled:

3.5.1.1 Pager DLata Structure - An address would be converted to a
rhysical page number (PPN) as follows, (KL10 compatibility off):

VMAG:8> is used to index into a "Super" Section Table (SST) 1in the
EPT/UPT. one of 2 pointer types can occur here: No Access, or
Shared (see below). The Ehared Pointer (SFT) index yields the PPN of
a section lable page (ST). VMAC:17> is used to index into the
Section 1lable to obtain a section pointer., 2ddress translation then
proceeds as on the FKL1e after the section pointer fetch. (See
DECsystenli/20 Processor Reference Manual, EK-10/2€-HR for & complete
description),

3.5.1.2 Super Cection pointers - The following pointer types will
only be wvalid 1in the cuper Section Table in the EPT/UPT locations
52¢¥-527. All other pointers will be interpreted as in the KLI17,
including section pointers found in Section Tables.

No Access:

e e — et — et e r—r e ———————————— +
! GG ! !
e e e e e e e e = o = = = - - ————— +
Shared:
trm—— e ———— - - - S o +
VP oge2 ! ! SPT Index !

e e ————— e ———————— +

—— ——— ——— ——— —— — — — — — —— —— — — — —— s, i rrn, i w at e e ms re mtty witn e ne tts ies re. p mmtn stin e h mmne. n tm. rtrie Sti wmn ae.

CCMPANY CCNEIDENTIAL ~- Do not dupliceate e-JuL-2oca
LxeC FCLLE EFRCCRANINC Page 3-4°¢
PRCCESS CCUNTEXT VARIAELES

3.0 FROCELSS CCNTEXT VARIABLES
3.6.1 Introcuction

Thhis section contains a proposal for handling fprocess context
variables wusing &n expanded PC flags word. The source for this
froposal was a memo by Dan MmMurphy dated 15-Feb-77. Further
discussion on a process context switch instruction is still needed.
I hiope that this section will stimulate some suggestions along these
lines.

3.6.1.1 New FC Double word - The formet of the flags word will be:

Rt it PR RN S SR +
! FLACS ! ILEN !CAE!PAE ! PCS !
! (13) 11 (3) t(3)1(3) ! (12) !
Rt T P +

1. In order to facilitate backing up a stored PC to the
beginning of an instruction that ceused a trap, a new field
(LEN) has been adcded that will contain the number of words
in an instruction =~ 1. This will be compatible with all
existing software since this field is normally zero.

2. 1n kernel mode, or when stored on a page fail or MUUCQ, all
of the above fields will be stnred as defined. 1In kernel
mode, an XJRSTF will restore all fields.

3. In user mode, PCS, PAE, and CAE will always be stored as ¢.
An XJRSTF in user mode will treat these fields as it dones
the user mode and user 1/0 fleg now (i.e. ignore them).

3.6.1.2 Context Changing - Returning to a previous context may be
aone with an XJRSTF with restores the context variables stored in the
Freviously saved PC word.

Entering a new context will be done as follows: 211 of the "previous
context" wvariables will be set to their conrresponding values in the
"current context", and the remeinder will be set to pre-defined
values taken from the new PC flag word. The following operations are
defined as entering a new context:

1. Monitor call (MUUO).

2, Page fail trap.

CCMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL-8¢
EXEC MCDE PROCGRAMMING Page 3-4¢
PROCESS CUNTEXT VARIAELES

3. Priority interrupt initiation.

Eachi of these operations will store a PC double-word containing the
"current context" variables and then load a new PC double-word to set
new values for those voariables nnt set automatically. See next
section for a description of the changes necessary to the EPT/UPT to
implement this proposal.

3.7 TRAP HANDLING
3.7.1 Introduction

The current implementation of Overflow Trap handling while guite
general, has some problems relating to extended addressing. A new
method of transferring control to "sections" other than the current
PC section 1is proposed in the following section. This progpnsal
limits the number of possible actions that can be taken on & trag
Compared to what the KI1C and KL1¢ now offer. I do not think
however, that any existing software will be severly compromised. It
méy be necessary for 10PS10 to modify its existing Ponitor Call
associated with this feature.

e e e o —— —— — e —— — — — — — —— — — — ———— — —— — e — . — ——— — | ——— o e e —— — — — —

CCMPANY CONFIDENTIAL ~- Do not duplicate 9~-JuL-8¢
EXEC MODE PROGRAMMING Page 3-5¢
TRAP HANDLING

3.7.2 1rap Function word

Instead of an instruction in EPT/UPT locations 221-423, there will be
a tunction word:

e e +
I'EN! AC 1} Virtual Address !
e e m e ——————————— +

The format of this word is interpreted &as follows:

g-1 Fanction code:
0¥ - Do nothing on overflow (ignore).
¢l - Do MUUCG (use trar MUUO new PC word).
16 - Transfer control to kernel/user (simulate LUUQ).
11 - Transfer control to kernel/user (simulate PUSHJ).

2-5 AC - used to address push-down list register for function
code 3 (PUSHJ), Ignored for condes (-2

6~35 Virtual Address:
Function 2 - pointer tno 4-word block in current context
(kernel/user) to be used to store instruction and
effective address and pickup & new PC as in LUUO
trapping.
Function 3 -~ routine address in current context

(kernel/user) that will be invoked in PUSHJ simulation.

Format of 4-word trap block:

! FLAGS ! ILEN ! CPCCDE v AC L opp L
| o e o e e e - i —————— -]
roge PC !
fmmm e m oo !
T E !
e e !
TV NEW PC !

3.8 SPECIAL SYSTEM PAGES (EPT / UPT / ICP)

The following EPT/UPT layouts are gproposed for the KC10. Iin

COMPANY CONFIDENTIAL -- Do not duplicate 2-JuL-8¢
EXEC MCLE PROGRAMMING Page 3-51
SPECIAL SYSTEM PAGES (EPT / UPT / IGP)

adaition, there is & new page called the 1,0 page (IOP) that is used
by the 2086 ports and the consonle for communication with the CPU.
Upon processor reset, the base address of the EPT and UPT will be .
The base address of the IOP will reset to 1¢0@(8).

NOTE

All areas that CQiffer from the KL1¢ are
narked with an asterisk (*).

COMPANY CCONFIDENTIAL -- Do not duplicate
EXEC m(DE PRCGRAME INGC
SPECIAL SYSTkEM PAGES (EPT / UPT / ICP)

* ¢g=-177
200-377
400-420

421

423
424-507
516-511
* 512
513-517
* 520-527
538-537
546-577
600-757

760-777

Exec Page Table

Reserved

TOPS-1¢ paging (Kernel 49€-~-777).
Reserved.

Kernel Arithmetic COverflow trap function,
Kernel Push-down List Overflow trap function.
Kernel 1Trap Type 3 trap function.
Reserved.

Time base 2 (10 usec timer).

Time Base 1 (Millisecond timer).
Reserved.

"Super" section table (TOPS-2f paging).
Reserved.

KL10 Compatible Paging (TOPS-27)

TOFS~10 paging (Kernel 0-337).

Keserved,

9-JUL-80
Page 3-52

I
I
|
|
|
|
I
!
|
I
|
|
|
I
[
I
I
I
I
|
I
I
I
I
|
I
I
|
I
I
|
l
I
[
|
|
I
I
I
|
|
I
I
I
I
|
I
I
|

CCOMPANY CONFIDENTIAL -- Do not duplicate
EXEC MCDE PROGRAMMING
SPFECIAL SYSTEM PAGCES (EPT / UPT / 1OP)

* % % * % * * * % * % * *

»

v-377
460-417
420

421

422

423

424

425

426

427
43¢-431
432-433
430-431
432-433
449

441

442
443-444
445-446
447-503
5¢4-505
5¢6-5€7
51¢-517
520-527
530~-537
540-577

600-777

User Page Table

TCPS~1P paging (User 0-777).

TOPS-10 paging (Kernel 34¢-377).
Address of LUUO block (TOPS-20).

User Arithmetic Cverflow trap function.
User Push-down List Overflow trap function.
User Trap Type 3 trap function,

MUUC old PC flags.

MUUC old PC.

MUUO Opcode and AC.

MUUO Effective Address,

Kernel no-trap MUUO new PC double word.
Kernel trap MUUO new PC double word.
User no-trap MUUC new PC double wonrd.
User trap MUUC new PC double word.

Page tail code.

Page identifier (TOPS-2¢ paging).

Page fail virtual address.

Page fail old PC double word.

Page fail new PC double word.

Keserved.

User runtime (16 usec clock),

User accounting meter ("chargons").
Reserved.

"super" section table (TOPS-2¢ paging) .
Reserved

KL16 Compatible Paging (TOPS-2¢)

Reserved.

°-JUuL~-8¢

Page 3-53

@ — — ————— — — — — — ———— —— — —— —— — —

CGMPANY CCNFIDENTIAL -- Do not duglicate

EXEC MCDE

PRCGRAMMING

SPECIAL SYSTEM PAGES (EPT / UPT / IOP)

161

162

1083

164-107

119-157

16-377

40-777

1/0 Page

Port Register Access Blocks (8)
Port Interrupt Logout Word

APR Interrupt Vector

Console Interrupt Vector

Interval Timer Interrupt Vector
Reserved

Port Interrupt Vectors (4 per port)
Reserved

Console Communications Region

©-JuL-849
Page 3-54

CCMPANY CONFILDENTIAL -- Do not duplicate ¢-JuL-80

CHAPTER 4

INSTRUCTION EXECUTION

4.1 EXECUTION UNITS PARTITIONING

vl contel stenech 523
' y 1 o

|
I
| sh& e 4
| fco*n¢. : 5'(L 286 EBOX/IBCX PARTITICNING
| P LGN Fot ey
' 6" (V%(Ll, - ‘N\f H PR ~ L
i L J}/ncﬂmqgghu Penve P AT 1 [T
\ e ——— Al ('\‘) ;-w'"" T T e ' ﬁ
I e —t - te———— ."._@A_--.p ————— R R el ﬁ—m-+—---—+-———-+———~-+—-—~—»-+
| ! ! ! ! ! ! ! ! ! ! ! !
| ¢+ oCA)} SHL ! SHR ! CRA ! CLK ! BVL ! MVR ! ESE 1! ! TAG ! IDL ! IDR !
QRSN SV S S Y P S SR S S
[\ / \ /
| \ / \ /
| \/ \/
| EECX CLK IBOX
|
|
|
|
|
|
|
|
|
|
| 2¢8¢ FPA PARTITIONING
|
|
| tem———— tm——— tm———— tr———— te———— te———— +
| !] ! ! ! ! ! !
| ! FFE ! FPD ! FEC ! FPE ! FPA ! ! FPI !
I ! ! ! ! ! ! ! !
| Fm———— tm———— tm———— Fm——— fm———— te———— m———— +
|

COMPANY CCONFIDENTIAL ~-- Do not duplicate 9-JuL-8¢
INSTRUCTION EXECUTION Page 4-2
EXECUTION UNITS PARTITIONING

4.1.1 Overall

The 208@, in its maximum configuration, contains 3 wunits which are
directly 1involved with the execution of instructions: 1IBCX, EEOX,
and FPA. The IBOX fetches streams of instructions, performs
effective address calculations, and fetches the memory operand, <or
operands>, necessary for the instructions it determines may be
required by the EbCX. The EBOX accepts AC addresses, an instruction
code, a memory operand <or operands>, and paging or error information
pertaining to memory addresses of each instructinn, as each is called
up for execution by the "last cycle" micro-order. It then rperforms
the operation indicated by the instruction code. The FPA provides a
speedup of multiply, divide, and instruction requiring two memory
fetches, and as such 1is a logical <and optional> extension of the
IBOX and EBOX.

4.1.2 IDR T®OX

IDR <IBOX Datapath Right> contains bits 18-35 of the IBCX memory
address path, operand data path and program counter logic., Operand
memory address conflict detection is present on bits 18-35 of the VM2
<virtual Memory Address>. Instruction memory address conflict
detection of VMA 18-34 is alsno located on this module.

4.1.3 IDL

I1DL <IbOX Datépath Left> contains bits 6-17 of the IBCX memory

address fpath and program counter logic, and bits £€-17 of the operand
data path logic.

4.1.4 16 THmoY

TAG contains control logic for IDR and IDL, along with instruction
code and AC address buffers. The 112G is a 4 bit value representing
the cffective address of an instruction which has been assigned to
the IBOX by I1PUT <IBOX Micro-Code>. The TAC is used to address 16
word register files into which will be placed information pertinent
to the instruction, such as instruction code, global bit, AC address,
effective address calculation, memory operand, jump target address,
etc. IPUT accepts priority trap requests from EECX control and IBCX
state logic, and thereupon directs address and operand peth flow and
TAG assignments.

COMPANY CONFIDENTIAL -~ Do not duplicate 9~JUL-8¢
INSTRUCTION EXECUTION Page 4-3
EXECUTION UNITS PAKTITIONING

4.1.5 MVK ¢EoeoX

MVR contains bits 9-17 and 27-35 of the fast execution path of the
EBCX. It executes binary adds and subtracts, decimal adds and
subtracts, Eoolean functions, hal fword operations, and mask and test
operations. A duplicate copy of all AC sets and temporary registers
<referred to as the master AC backup> is located on this module.

4.1.6 MVL

MVL is physically identical to MVR, and performs the same function as
MVR with logical bits 0-8 and 18-26 of the fast execution path of the
EBOX.

4.1.7 ESE <€ Goy

ESE contains EECX microcode RAMS which control instruction execution
during the first <lst 22ns perind after which orerands become
available> and subsequent cycles. First cycle control comes from
fast 256X4 RAMS, which setup EBCX control fields directly from lnokup
tables addressed by the instruction code. Second cycle conntrol cones
from /STow 4KXI RAMS) which are also addressed by the instruction code.
Third~and[subsequent cycle control comes from the same slow 4KX1 RAMS
addressed| by the next address path.

4.1.8 CRA g gox

CRA contains slow 4KX1 RAMS which control sections of the EBCX during
the 2nd and subsequent cycles of execution. Puring the first cycle
some control fields default to specific options which allow data Eath
gating via forwarding controls. Next address control, AFR flags, and
some of the PC flags are also located on this module.,

4.1.9 SHR ERoy

SHR contains bits 1€-35 of the shifter <which performs a 72 input, 36
output left shift>, bits 16-35 of twn RECFILES and twn copies of the
current AC set <one normally addressed by bits 22-35 of the effective
address calculation, the other normally addressed by the AC field of
the instruction>, and bits 18-35 of the master AC set, a RAM file
containing 8 AC sets plus 128 temporary registers,

CCMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-89
INSTRUCTICN EXECUTION Page 4-4
EXECUTICON UNITS PARTITIONING

4.1.10 SHL €&oX

SHL contains bits ¢-17 of the shifter, register files, AC copies, and
master AC set, and is physically identical to SHR.

4.1.11 sca EGOX

SCA contains a 13 bit shift control path with addition and
subtraction capability. Alsn located on this module are an
accounting meter, interval times, 1MS/10US clock, gpipeline stopping
controls, PC flays associated with shift and floating point
orerations, and FRU code generation. The FRU code, generated as a
result of an EBUX, 1BOX, or FPA error, points to the 1lst and 2nd most
probable modules causing the failure.

4.1.12 FPI

EPI <Floating Point Interface> is the interface between the EBCX,
IECX and the floating point array modules. It conteins CP3L and
CP3R, which are 16 word register files addressed and 1loaded by the
IBUX. OP3L is a duplicate of the operand buffer in the IBCX <OP3L
contains words fetched from address E>. CP3R, for doublewnrd
instructions, «contains words fetched from address E+1. OP3R, for
byte instructions, contains words addressed by the byte pointer or
incremented byte ©pointer. Alsn located on this mocdule is a smeall
control storage which seqguences the FPA, data paths which procduce én
18 bit multiplier from OP3L and CP3R, a reciprocal lookug for divide
instructions <so that the nmultiply array may e&lso be wused for
divide>, and a priority encode for post normalization shift
determination,

4.1.13 FPA :

EPA generates an 18 bit hi-order sgpillover/ from an 18X72 bit
multiply. It is physically identical to GEB-FPE) Recoce nultipliers
and wWallace tree adders are used to develop ~a partial product in
22ns, with a binary ALU to achieve full product in another 22ns. 18
bit sections of the multiplier are gated into the arreay in pipeline
fashion at a 22ns rate. The array is therefore cagable of retiring
18 bits per 22ns. modulo 3 base numbers are generated from both the
multiplier and the multiplicand, and a parallel multiply occurs
against these numbers. The results are compared to the modulo 3
generation off the full product to check for a multiply array error

<called residue check>. Each array card is separately checked for
fault isolation.

COMPANY CONFIDENTIAL -- Do not duplicate 9~JUL~8¢
INSTRUCTION EXECUTION Page 4-~5
EXECUTION UNITS PARTITIONING

4.1.14 EPB

FPb contains bits ¢-17 of the 18X72 array, in addition to bits ¢-17
of the AC addressed by the AC field.

4.1.15 FPC

EPC contains bits 18-35 of the 18X72 array, in addition to bits 18-35
of the AC addressed by the AC field.

4.1.16 FPD

EPD contains bits 36-53 of the 18x72 array, in addition to the
hi-order 18 bits of the AC addressed by the AC field +1.

4.1.17 FPE

FPE contains bits 54-71 of the 18X72 array, in addition to the
lo-order 186 bits of the AC addressed by the 2C field +1.

4.2 EXECUTION UNITS COMMON CCNTROL
4.2.1 General

The functional logic of the 2080 execution units interfaces to, and
is supported by certain common controls which maintain a consistent
convention through all modules. These are the diagnostic interface,
error control logic, microcode control word, and system clocks.

A~
4.2.2 Diaygynostic Interface(j)

The diagnostic interface is the vehicle through which the console 2>
presets execution unit registers to desired states, B> forces contrnl
decodes to manipulate the data paths, C> gains visibility into the
data and control paths, and L[> loads control storage areas. The
160141 shift register is used to achieve all of these. It provides
the ability to locate the scan in/scan out mechanism as a functional
rart of the data path. All 100141 shift registers used in this
manner and strung together <one's shift output connected tn the
other's shift input> are considered to be part of the active scan
path, Other 100141 shift registers, not part of functional logic,
are used for presetting signals to desired states, and scanning data
kath and control states independently of E unit operatinn. These are
linked together as the passive data path.

—.—..—.——._—__....._————————_———_——-—_—.——————-——.—.——————_—-———_—.—

CCMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-8@
INSTRUCTION EXECUTION Page 4-G
EXECUTION UNITS COMMON CONTROL

mSb LSB MSB LSB MSB LSB MSE LSB
m—————- + fomemm——— + o + PR +

+--->1 DSK }---->! DSR l1-->+ +->1! DSR {=--—=>! DSR I~=>+
! pmm————- + b + 1l 4mm———— -+ o + !
! " MODULE A + + MCDULE B !
! ! ! !
! data path +-—t 1
MSB LSB ! !
o + ! !
R ke >! DIAGNOSTIC SHIFT REG Il--—--=>+ !
! e + !
! - !
! ! ! !
! CONSOLE DATA PATH !
! LOAC/REAL !
< {mmmmmm e +

4.2.3 Active Scan Paths

The 2080 CPU contains three active scan paths. Each 1is sourced at
the console and consists of shift registers which, under normal
operation <not clocks stopped due to error or console control>
perform a parallel load when their corresponding system clocks occur.
when the system clocks have been blocked by error freeze or a clock
control stop, the console may perform one of two operations; £#> &
parallel load via its own clock, E> & shift (neormelly hi-order to
lo-oracer) of 1. The three e&ctive <can 1loops eoncompess the
free-running newmory access logic in the MECX, IECX, and ICOBCX, error
stoprable logic in the IBOX and EBCX, and error-stoppable logic in
the FFEA.

4.2.4 Passive Scan Path

The 2080 CPU contains two passive scan loops. Cne passive scan loog
is dedicated to the CLK CONTROL module, while the other encompesses
all other 2080 CPU passive controls and readouts. A command ENAELE
from the console will be used to gate those bits which are used as
presets or KAM write-enables once the desired section of a passive
loop has been loaded.

COMPANY CONFIDENTIAL -- Do not duglicate S-JuL-eg¢
INSTRUCTION EXECUITION Pa
EXECUTICN UNITS COMMCON CONTRCL

4.,2.5 Scan KReed And Load

A 16 bit shift register in the console completes the scan Fath loog.
The register is loaded at the console through a 16 bit mask, thus
keérmitting individual bits to be loaded without altering the masked
bits. The error-stoppable EBCX/IBCX loop is estimated to be 1248
bits in length. This means that, in order to shift the contents out
of positions 1232 to 1247 a&and into the console shift reg at bits
6-15, a diag shift control must be asserted for this loogp, followed
by 16 diag clocks to all shift registers in this loogp. Conversely,
in order to shift the console shift reg contents back to positions
1232-1247, the diay shift control must be asserted, followed by 1232
aiag clocks.

4.2.6 Error Control Logic é§>

Error control logic for 2¢8¢ is designed in such a way as to sugport
3 RAMP goals; a) detection and recording of intermittent as well as
solid failures, b) hardware recovery from a high percentage of CPU
errors, c) fault isolation <to a module> of a high percentage of
errors prior to running of dJdiagnostics and, in the case of
intermittents, without taking the system down. 20 to 25 2 of 2¢8p
logic is devoted to the implementation of these features.

4.2.6.1 EKKOR DETECTION AND RECORDING - 0dd parity is generated for
every bus greater than 4 bits wide. 2 high emphasis is placed in
tlhiree areas:

l. Fault isolation by module
2. Console access to internal data paths

3. 'Catching' intermittent errors as close as Fossible to the
point of failure,

36 bit data paths develop 1 rparity bit for every ¢ deta bits,
mMicrocode storage areas contain 1 parity bit per wnrd except in the
case of EbCX control storage, which contains 2 parity bits for module
fault isolation. The main ALU is compared to a duplicate of itself
every cycle. Parity generation occurs at the output of boolean, ALU,
and shift functions; parity checking occurs at the input of boolean,
ALU, and shift functions. Parity is mnodified and propagated with 1
and 2 bit shifts. & modulo 3 residue checking system is employed for
verification of &ll FPA multiply and divide results.

The scan-in, scan-out mechanism described in section 3.1 1is the
method by which console may assert control or data path signals, and
read out a high percentage of the data path. 10C141 shift registers
constitute approximately 12% of 2080 execution unit 1lngic.

CCUMFANY CONFIDENTIAL -- Do not duplicate . 9-JUL-€0
INSTRUCTION EXECUTICN Page 4-¢
EXECUTION UNITS COMMON CONTRCL

Diagnostic control has reserved to it a section of the microcode
control storage, thus allowing it to route, via set up of next
address to read a micrownrd with desired control decondes, virtually
all reyisters <if not already a 141> through mux paths and into 141s
for scanning. This includes access to 16 word register files and RAM
arrays.

Strategic registers are frozen if an error is detected at their
output, This a&pproach helps in locating the source of an error
likely to be propagated through the system or lost, by the time the
I1BOX, EBCX, and FPA module clocks can be stopped.

4,2.6.2 HARDWARE RECCVERY - When an error has been detected, an
error latch is set at the module level. The error condition may then
block the next clock to the failing register. The error signel is
also sent to the SCA module where it is funneled into the error stog
latch, which will then stop the next «clock ¢, 1 , 2, and 3 1in
succession. A 2 bit code is loaded into the FRU reg which identifies
to the console the status of the IBOX SEL I tag, a 4 bLit wvalue
pointing to the next instruction to be executed. The code is used by
the console to determine the number of PC instructions to step back
in prejaration for a retry of the failing instruction stream. The
console may also elect to arm the EECX AUTC RETRY latch, which will
torce a microcode trap on an error stop conditinn. A restart routine
will branch on the value of the restart code tn & microword
containing the &appropriate command to the IBO¥. The KETRY CODE is
defined as follows:

RETRY CCDE KECCVERY
1% restart from PC BUFFER addressed by SEL I-1
1 restart from PC BUFFER addressed by SEL I-2
2 restart from PC EUFFER addressed by SEL I-2
3 restart from PC EUFFER addressed by SEL T-3
THE FRU REG
B et i ettt T Fermm—————— Fommm————— - +
! FRU1 ! ERU?2 ! RETRY ! SPARE !
! ! ! CCDE ! !
e - tmmmmm e - - o m e +
g~-5 5-11 12-13 14-15

Successful retrys appear to be possible for nearly all instructions
with only 1 result to be stored. However in instructimns with
multi-word results which overlaey previous operands, successful retry
is not probable.

COMPANY CONFIDENTIAL -~ Do not duplicate S-JuL-80
INSTRUCTICN EXECUTION Page 4-9
EXECUTION UNITS COMMON CCNTROL

4.2.6.3 FAULT ISOLATICN - For each error stop, the FRU REGC is loaded
at the SCA module. The FRU REG is 16 bits in length ané identifies
to the console the 1st and 2nd most probable failing modules, and
whether a failing module containing reloadable storage reqguires a
transfer from backup storage. The errors are prioritized so that the
source of the error will be identified, rather than the path which
merely propagated or received erroneous data. Since the errors are
frozen dynamically, and fed through a priority encode to generate the
FRU CCODE, an accurate method of trouble-shooting one error at 2 time
is achieved. A 6 bit code, labeled FRUl, identifies the mnst
krobable failing module. Another 6 bit code, FFU2, identifies the
2nd most probable failing module < if no FRU detected, the code is
set to all ones>. The high order bit off in the code indicates that
reloadable storage has possibly failed in one of the fnllnowing areas:
IDL,IDR AC set i
IPUT microcode
ESE microcode
CRA microcode

S o
SHE, ShL AC sets ,)
SHF, SHL MAC set { w

FPE~E AC sets J;ﬂ \y&f/

FPI divide lookup

FPI microcode i
Each of these areas has a backup. 1In the<casg nf an 2AC set error,

console will rewrite the 16 word set from the MAC backup. In the
case of a microcode or divide lookup error, the diagnostic 1nad
address reg for that storage contains the feiling address; therefore
console may reload that word with data from it's owuwn microstorage
backup. In the case of a MAC error, the hi order 4 bits of the write
address are held at the MAC backup on MVL and MVR, end will be used
by the «console to reload the failing 16 word set from MAC backug.
Eelow is a list of errors versus FKRU codes<@=highest priority>.

ERROR FRU1 FRU2 "

I MICROCODE ERROR ¢ TAG 22 A0){i:p/
ESE MICROCODE ERROR 1 ESE 4 Jo © Y
CRA MICROCGDE ERROR 2 CRA tpﬁa? I N
DIVIDE LCOKUP ERROR 3 FFI wa" % 7

I AC ERROR BYTE 2-3 4 IDR a0 .

I AC EKROK EYTE g-1 5 IDL J%ﬂ 1 5

R REG OK AC ERROR 6 SHR S G

L REG OR AC ERKOR 7 SHL D

R MAC OR Z ERROR 1¢ SHR

L MAC OR Z ERROR 11 SHL

EPE AC EKROR 14 FPE

FPD AC LBKROR 15 FPD

FFC AC ERKOR 16 FPC

FPB AC EKROR 17 FPB

M DATA RIGHT 46 MDR

M DATA LEF1 41 MLL

OP ERROR BYTE2-3 42 1DR

CP EKKOR BbYTE ¢-1 43 IDL

CCMFANY CONFIDENTIAL -- Do not duplicate 9-JuL-80
INSTRUCTICN EXECUTION Page 4-1¢
EXECUTION UNITS CCMMCUON CONTROL

ERKOR FRU1 FRU2
I ACDR ERR BYTE 2-3 44 1IDR
I ADDR ERK BYTE (C-1 45 1IDL
M TAG ERKKOR 46 MCC
I TAG EKROR 47 TAC
MVK OUTPUT ERKOR 50 MVR
MVL OUTPUT ERROR 51 MVL
MVR ALU ERRCR 52 MVR
MVL ALU EKROR 53 MVL
SCALD OUTPUT ERROR 54 SCA
MVR INPUT ERROR 55 MVR
MVL INEUT ERRCR 56 MVL
SCA INPUT ERROR 57 SCaA
FPI OP BYTE 2-3 ERROR 6@ FPI 42 1IDR
FPI OP BYTE £-1 ERKOR 61 FPI 43 IDL
FPE RESIDUE CHECK 62 FPE
FPD RESIDUE CHECK 63 FPD
FPC RESIDUE CHECK 64 FPC
FPb KESIDUE CHECK 65 FPB
FPA RESIDUE CHECK 66 FPA

4,2,7 iicrocode Control Specification(:>

The 2080 EBCUX control storage is comprised of 4.5K words of 1¢2 bits
each. A wide word permits coding flexibility without extending
control storage depth. The fields are defined as follows:

CCMPANY CCNEFIDENTIAL -- Do not duglicate

INSTRUCTION

EXECUTION

EXECUTION UNITS CCMMCN CONTROL

BITS
v-11
12-17
18
19-21
22-23
24
25-27
238
29-3¢
31-33
34
37-3¢8
39

40

41
42-44
45-46
47

BITS

35-36
48-49
50-51
52-55
56-58
59
60-63
64-67
66-69
70
71-73
74-77
7€

79
86-83
84-1i1

CRA

ESE

MODULE

NAME
NEXT ALCDRESS
NA SWITCH

CALL

X

Y

SPARE

D

L EARLY
J

K

SC ALU

SP FUNCTION
PARITY @-34,37-47
MC
RF
sC
FE
7

MODULE
NAME

SP FUNCTION
X1

Y1

ALU

CARRY
OPl/WhK REG FILE

SW/ X REC RD

R/ Y REG RL

CCMFE

LAST CYCLE

STORE CONTROL

ELAC CCNTROL

PARITY 35-36,48-1¢1
L

AC/ KEGC WE CTKL
NUMEER FIELD €~-17

(LC 2 BITS)

(HI 2 BITS)

9-JUL-8¢

Page 4-11
TIMING
EARLY
EARLY
INTERMEDIATE

INTERMEDIATE
INTERMEDIATE

INTERMELIATE
EARLY
INTERMEDIATE
INTERMEDIATE
INTERMECIATE
INTERMELCIATE
INTERMEDIATE
LATE

LATE

LATE

LATE

LATE

TIMINC

INTERMECIATE
LATE

LATE

EARLY

EARLY

EARLY
INTERMEDIATE
INTERMECIATE
INTERMECIATE
INTERMECIATE
INTERMELCIATE
INTERMEDIATE
INTERMFCIATE
LATE

LATE

LATE

CCMFANY CONFIDENTIAL -- Do not duplicate 9-JUL-8¢
INSTRUCTION EXECUTION Page 4-172
EXECUTIGON UNITS COMMCN CONTROL

1.2.7.1 Next Address Field <Bits ¢-11> - In any aiven instruction,
the first cycle control word comes from fast 256X4 RAMS addressed by
the instruction code, the second «cycle control word <22ns later>
comes from 4KX1 RAMS also addressed by the instruction code, and
third and subsequent control words come at 44ns intervals from the
samwe 4KX1 KAMS addressed by the next address path. If control bits
12-17 are not ¢, the hi-order next address is determined by hi-order
next address field bits, and the next address lon-order is determined
by the inclusive or of lo-order next address field bits and the
selected skip or dispatch bits.

4.2.,7.2 THE NA SWITCH <BITS 12-17> - The NA SWITCH field determines
the source of the NEXT ALCCRESS path.

decode function
9] NA FIELD @-11 to NA BUS @-11
1 NA FIELD ©0-1¢ to NA BUS ¢-1€¢, INT RFQ inclusive
or with NA FIELD 11 to NA BUS 11
2 NA FIELD @-1@ to NA BUS (-10, instr AC ALCDR not=0
inclusive or with NA FIELD 11 to NA BUS 11
3 NA FIELD £-10 to NA BUS (-10, X REG bit ¢ inclusive
or with NA FIELD 11 to NA RUS 11
4 NA FIELD €-1@ to NA BUS ¢-1¢, X REG bit 18 inclusive
or with NA FIELD 11 to NA BUS 11
5 NA FIELD ¢-10 to NA BUS @-1¢, SCAD ALU bit ¢
inclusive or with NA FIELD 11 to NA BUS 11
6 NA FIELD £€-10 to NA BUS ¢-1¢, SC REC bit 0
‘ inclusive or with NA FIELD 11 to NA BUS 11
4] 7 NA FIELD €~18 to NA BUS € to 1@, F BUS € inclusive or

with NA FIELD 11 to NA BUS 11 (from ALU operation of
the 1st half of the current microcycle if L EARLY,
from ALU operation of the 2nd half of the previnus
microcycle if not L EARLY)

COMPANY CCONFIDENTIAL
INSTRUCTICN EXECUTICN

-- Do not duplicate 9~JuL-8¢
Page 4-13

EXECUTION UNITS COMMCN CCNTROL

1le

11

12

13

14

15

16

17

20

21

22-57

6¢

61

62

63

64

NA FIELD ©-~1¢ to NA BUS £-1¢, ALU €-35 not=0

inclusive or with NA FIELD 11 to N2 BUS 11 (same timing
as decode 7)

NA FIELD @-1¢ to NA BUS ¢-1¢, ALU ¢~17 not=0

inclusive or with NA FIELD 11 to NA RUS 11 (same timing
as decode 7)

NA FIELD €-10 to NA BUS pP~10, ALU 1€-35 not=¢

inclusive or with NA FIELD 11 to NA EUS 11 (same timing
as cecode 7)

NA FIELD (¢~1€ to NA BUS @-1¢, PC section # not=g
inclusive or with NA FIELD 11 to NA EUS 11

NA FIELD ¢-1¢ to NA EBUS (¢-1¢, USER MCDE bit inclusive
or with NA FIELLD 11 to NA BUS 11

NA FIELD €-10 to NA BUS (-1¢, CARRY CUT of ALU
inclusive or with NA FIELD 11 to NA BUS 11 (same timing
as decode 7)

NA FIELD ¢-10 to NA BUS £-1f, SC REGC not=0>

inclusive or with NA FIELD 11 to NA BUS 11

NA FIELD €6-10 to NA BUS ¢-1f, SCAD PALU not=@

inclusive or with NA FIELD 11 to NA EUS 11

NA FIELD €-10 to NA BUS £-1€, SC REC bit 1

inclusive or with NA FIELD 11 to NA BUS 11

NA FIELD €-1C to NA BUS £-1€, OF2=AC anded with

EACALC global inclusive or with NA FIELD 11 tn

NA BUS 11

spare

NA FIELD (-7 to NA EUS £-7, Instr AC addr inclusive

or with NA FIELLC 8-11 to NA BUS 8-11

NCRMALIZE: NA FIELLC ¢~7 to NA EUS €¢-7, F BUS 0,82,

9,-1 inclusive or with NA FIELD €-11 to NA BUS 8-11
(same timing as decode 7)

ENORMALIZE: NA FIELD (-7 to NA BUS ¢#-7, F BUS £,

11, 12, -1 inclusive or with NA FIELD £-~11 to NA

BUS 8-11 <same timing as decode 7>

DIVIDE: NA FIELD £-8 to NA BUS (-8, SC REC bit ¢,

X REG bit ¢, CARRY CUT of ALU inclusive nr with NA
FIELD ©2-11 to NA BUS 9-11 (same timing as decode 7)
RETURN: AL STACK ¢-11 inclusive or with NA FIELD ¢-11
to NA BUS. The AD STACK is a 16 word LIFC <lest in,first
out> file containing NA BUS values stored under the
CALL microorder,

COMPANY CONEIDENTIAL -~ Do not duplicate 9-JUL-80
INSTRUCTION EXECUTION Page 4-114
EXECUTION UNITS COMMON CCNTROL

65 MUL: NA FIELD @-8 to NA EUS ¢-8, SC FEC 0, MO REG
34 and 35 inclusive or with NA FIELD 9-11 to NA BUS
9-11

66 BYTE: NA FIELD §-8 to NA EUS ¢-8, F EBUS 12 anded

with PC sect not=g, SCAD ALU bit ¢, FIRST FPART DONE

flag inclusive or with NA FIELD 9-11 to NA EUS ©-11
67 ALU SIGN: NA FIELLC 0-9 to NA BUS -2, Y KEG @,

ALU not=0 inclusive or with NA FIELD 10-11 to

NA bUS 1@-11

7¢ SIGNS: NA FIELD ¢-9 to NA BUS £-9, X REC ¢, Y REG ¢
inclusive or with NA FIELD 1@-11 to NA BUS 1¢-11
71 RETRY: NA FIELD (£-¢ to NA BUS #~9, RETRY CCDE <FRU

REG 12-13> inclusive or with NA FIELD 1¢-11 to
NA BUS 1¢-11
72-77 <TO BE SUPPLIED>

4.2.7.3 CALL <EIT 18> ~ The CALL microorder will cause the address
dispatch stack to be loaded with the value of the previous NA BUS.
The AD STACK is a 16 word LIFO register file, and may be read by the
RETURN microorder,

4.2.7.4 X FIELD <LITS 19-21> - The X field controls inputs into the
X bBUS wvia the X MUX at the SHL and SHR modules. The field decndes
are as follows:

decode function :

] X AC £-35 to X BUS ¢-35, X AC bit ¢ to X BUS
-2 and -1 -

1 XREG FILE ©-35 to X BUS -2-33,zeros to 34,35

2 XREG FILE ¢-35 to X BUS -1-34,zerno to 35, XREG
FILE bit ¢ to X BUS -2

3 XREG FILE ¢-35 to X BUS ¢-35, XREC FILE bit ¢
to X BUS -2 and -1

4 D mMUX ©6-35 to X BUS (-35, D MUX bit ¢ teo X BRUS
-2 and -1

5 XREG FILE bit ¢ to X BUS -2-35

6 # FIELD €-17 to X BUS £-17, § FIELD €-17 to X PUS
18-35, # FIELD @ to X BUS -2 and -1

7 Z BUS £-35 to X BUS ¢-35, Z RUS bit ¢ to

X BUS -2 and -1

4.2.7.5 Y FIELD <bits 22-23> - The Y field controls inputs into the
Y bUS via the Y MUX at the SHL and SHR modules. The field decodes
are as follows:

|
I
|
I
|
!
|
|
I
I
|
|
!
I
I
|
|
|
|
I
|
I
|
|
|
I
I
I
|
|
|
I
I
|
I
I
|
|
I
I
l
I
[
|
|
I
|
!
[
I
|
I

COMPANY CCONFILDENTIAL ~- Do not duplicate ¢~JuL-38¢
INSTRUCTION EXECUTION Page 4-15
EXECUTIUN UNITS CCMIMCON CONTROL

decode function
o Y AC ¢-35 to Y BUS @-35
1 YREC FILE ¢~-35 to Y BUS f£-35
2 D MUX €-35 to Y BUS @©-35
3 MC ©-35 to Y BUS £-35

4.2.7.6 D FIELD <bits 25-27> - The D field controls the I MUX at the
SHL and SHR modules. The field decndes are as follows:
decode function
) L1 REG £6-35 to L MUX £-35
1 L1 REG 1-35 to D MUX @~34, MC REC @ to D MUX 35,MQ REG
1-35 to M{ REG (-34, zero to MC REC 35
2 L1 REG €¢-34 to [MUX 1-35, L1 REG 35 to MC REC ¢,

zero to D MUX ##, MC REC (C-34 to M{ REG 1-35

Ll REC €-33 to D MUX 2-35, L1 REC 32-35 to MC REG
0-1, zeros to D MUX C~-1, MC RFC 0-33 to MC REC 2-35
Z MUX 8-35 to L MUX ¢-35

Z mUX 6-35 to [MUX 6-35, SCALD BLU ¢-5 to [MUX @-5
Z MUX 9-35 to D MUX 9-35, SCAL ALU @-8 tn [MUX (-8
Z MUX 12-35 to D MUX 12-35, SCALD ALU ¢-11 to D MUX
g-11

w

~N oy

4.2.7.7 L EAKLY <bit 28> - The L EAKLY bit determines one of two
modes of 44ns cycle operation:

1. L EARLY off indicates that an ALU or MCVE oreration
occurring in the second half of a 44ns microcycle mey store
results in the second half of the next microcycle if a write
to REG FILE or AC is issued. In this mode, a read of REC
FILE is performed during the first half of the current
microcycle and may be used for an ALU or MCVE operation in
the second half of the current microcycle. L EARLY off
indicates that L1 BUS is velid at CLK 3 of the first half of
the next micro cycle. During the first cycle of any
instruction, L EARLY is forced off.

L EARLY oft also indicates that all SHIFT MATRIX inputs are
clocked at CLK 2 of the 1st half of the current microcycle
<X REG, Y REG, SC REG, SCAL ALU> &nd SHIFT FATRIX results
are clocked into Z MUX at CLK 3 of the 2nd half of the
current microcycle.

2. L EARLY on indicates that en 2LU or MOVE oreration occurring
in the 1st half of & microcycle may store results in the
first half of the next nicrocycle if a write to REG FILE or
AC is issued. In this mode, a read of REC FILE is performed
during the second half of the current microcycle and may be
used for an ALU or MOVE operation in the first half of the
next microcycle. L EARLY on indicates that L1 BUS is valig
at CLK 3 of the 2nd half of the current microcycle.

I
I
I
!
|
|
I
I
I
I
I
I
i
I
I
I
|
I
I
|
[
I
I
I
!
!
I
I
|
I
I
I
|
I
I
I
|
I
I
|
|
I
|
I
|
I
I
I
[
I
|
|
!
[
I
|
I

—— — . —— — — — —— — —— — — — — — — — — ——— — — — ——— — —— — — ——— ——— — — —— —— ——— —— ——— e o .

COMPANY CCNFIDENTIAL -- Do not duplicate 9-JuL-&¢
INSTRUCTION EXECUTICN Page 24-16
EXECUTION UNITS COMMON CCONTRCL

L EAKLY on also indicates that all SHIFT MATRIX inputs are
loaded at CLK 2 of the 2nd half of the current microcycle,
and SHIF1 MATRIX results are clocked into Z MUX at CLK 3 of
the 1lst half of the next microcycle.

EXAMPLE: ~L EARLY on in 1lst cycle, off in 2nd microcycle

! FIRST CYCLE ! SECOND MICRCCYCLE !
] 1] 1
4 0 2 ¢
+ Fmm + Fmm
! -L EARLY A ! 2 ! 300 2
e ————————— + ! dmmm e — o + !
! ! ¥ RLG ! X REC
! Z FUX Y REG z FUX Y REC
! FE REG FE DFC
! SC REG SC REC
DLY
! 2 2 2 2
! + fomm— e ———— + tmm—————
+--=> | -L EAKLY B ! ! !
+ + o +
] 3 f
! ! !
! ! !
! F EUS F BUS
! Kk MUX RE MUX
!
DLY
1
! 1 1 1
1 + Fmmm— - +
tmm————— > ! =L EARLY C ! !
fomm e ———— + tommmm e —————
! 3 3
! ! !
! L1 REC L1 REG
1
DLY
]
! 9 o
! + Fommmmm e
o > ! -L EARLY D !
T T T TR +
2
!
STCRE

-—

+ -+

COMFANY CONFIDENTIAL -- Do not duplicate 9-JuUL-80
INSTRUCTION EXECUTION Page 4-17
EXECUTION UNITS CCMMCN CONTKOL

4.2.7.8 J FIELD <bits 29-30> - The J field controls the J input to
the SC ALU <SCA mondule> via the J MUX. The field decodes are as
follows:

decode function
g SC REG €~11 to J MUX ¢-11
1 § FIELD #-11 to J MUX ¢-11
2 X REG 18 TO J MUX 0-3, X REG 28-35 to J MUX 4-11
3 zeros to J MUX ¢-5, Y REG -5 to J MUX 6-1]

4.2.7.9 K FIELD <bits 31-33> - The K field controls the K input to
the ©SC ALU <SCA module> via the K MUX. The field decodes are as

follows:
decode function

9] # FIELD @-11 to K MUX f-11

1 zeros to K MUX €-5, Y REG 6-11 to K MUX 6-11

2 zeros to K MUX 0-5, FPA SHF ENCODE to K MUX 6-11

3 zero to K MUX @, OE Y REC ¢ with Y REGC 1-8 tn K
MUX 1-8, zeros to K MUX 9-11

4 zero to K MUX €, CE Y REC ¢# with Y REC 1-11 tn K
MUX 1-11

5 FE REG €-11 to K MUX £-11

6 zeros to K MUX 0-7, instruction XR value 14-17 ton
K MUX 8-11

7 zerns to K MUX 0-7, Y REC 2-5 tn K MUX 8-11

4.2.7.10 SC ALU <bit 34> - The SC ALU bit determines the SC 2LU
function:

¢=add

l=subtract K from J

4.2.7.11 SP FUNCTION Field <bits 35-38> - The SPECIAL FUNCTION field
issues control commands to the EBCX under the following decndes:

decode function

4 no-otg

1 turn on accounting meter

2 turn off accounting meter

3 select MASTER AC €-35 to 2 EUS (-35

4 force 1s to SEL OP2

5 lpdate accounting meter +1

6 SSEL: Send encoded port address of accepted IC

interrupt to the console

7 Sgare
le force 1s to SEL OPl

11 select FPA SHF ENCCDE £-5 to SC MUX #-5

12-17 spare

CCMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL-80
INSTRUCTION EXECUTION Page 4-18
EXECUTICN UNITS COMMON CONTROL

4.2.7.12 PARITY @-47 <bit 39> - PARITY 9-47 is turned on or off so
that odd parity is achieved for bits €-47.

4.2.7.13 MC <bitd4@> - The MC bit determines the mode of the MO REC.
If on, the MC REG clock is enabled. 1If off, the MC REG is held at
the previously clocked value.

4.2.7.14 RF <bit 41> - The RF bit determines selection of either R
BUS or A BUS to the L MUX input at the MVL and MVR modules. First
cycle control of this field forces selection of R EUS. Since the RF
bit is a late control, the results of the move path operation during
first cycle are selected into the RF BUS. The decode is as fnllows:
= R BUS @-35 to RF BUS ¢-35
1= A EUS €£-35 to RF BUS ¢-35

4.2.7.15 SC FIELD <bits 42-44> - The SC field controls the §SC REG
and SC MUX on the SCA module. Bit 42 on causes a hold of previously
clocked contents of the SCAD ALU output. Eit 42 off allows SC REC to
clock. Bits 43-44 decode as follows:

decode function
Y] SC REG 6-11 to EC MUX @-5
1 SC ALU 6-11 to SC MUX 0-5
2 # FIELD 12-17 TC SC MUX ©-5
3 SC ALU 3-8 TO SC MUX @-5

A third signal causes selection of the FPA shift velue 2-5
<determined from post normalization priority encoders> into the SC
MUX. 1This signal is generated by SP FUNCTION decode=4.

4.2.7.16 FE FIELD <bits 45-46> - The FE field controls the FE REGC
and FE MUX on the SCA module. Bit 45 on causes a hold of previously
clocked contents of the FE MUX output. Bit 45 off allows FE REC to
clock. Bit 46 selects FE MUX as follows:

Bit 46 off K MUX @-11 to FE MUX 0-11

Bit 46 on SCAD ALU ©0-11 to FE MUX €-11

4.2.7.17 T <BIT 47> - T bit on will cause the current microword to
hold for an additional 44ns cycle.

COMPANY CONFIDENTIAL ~-- Do not duplicate 9~JuL~-ga

INSTRUCTION EXECUTION

Page 4-19

EXECUTION UNITS COMMCN CONTROL

4.2.7.18 X1 <bits 48-49> - The X1 field controls the X1 MUX &t MVL

and MVR.

the first cycle of an instruction, forwarding

compare logic from TAC and SH modules determine selection. During
second &and subsequent cycles firmware has control with the following

field decodes:

decode

WA=

function

F EUS (-35 to X1 BUS ¢-35, F BUS £ to X1 BUS -2,-1

RF BUS ¢-35 to X1 BUS (-35, RF BUS ¢ to X1 BUS -2,-1
X BUS -2-35 to X1 BUS -2-35

OP2 BUS ¥-35 to X1 BUS {-35,CP2 BUS ¢ to X1 BUS -2,-1

4.2.7.1% Y1 <kits 50-51> - The Y1 field controls the Y]l MUX and 2RF

mMUX at MVL

and MVR < an enable to Y1 in first cycle comes from the

IbOX>. During the first cycle, forwarding compare logic from TAC and
Sh modules determine selection. During second and subseguent cycles
firmware has control with the following decodes:

decode
g
1
2
3

function

F EUS €-35 to AF,Y1l BUS £-35
RF BUS5 ©-35 to 2EF,Y]1l BUS ¢-35
X BUS £-35 to AF,¥Yl £-35

Y BUS £-35 to AF,Y1l P-35

ALU input -2,-1 are equal the value of Yl BUS ¢

4.2.7.20 ALU <bits 52-55> ~ The ALU field controls the 36 bit 2ZLU on

the NMVL and
subtract operations,
cross from 10 to 8,

modules. Carry into 35 nust be asserted for all

For BCD, bits ©,%,18,27 are ignored <carry will
1S to 17, 28 to 26> during the ALU oreration and

forced to zero at the F EUS. The decodes are as follnws:

decode
G

function

X1 plus Y1 BCD (32 bit add, 1-8,1¢-17,1¢-26,28-35)
X1l minus Y1l BCE (32 kit subtract)
Y1l minus X1 ECD (32 bit subtract)
¢ minus Y1 BCD (32 bit subtract)
X1 plus Y1 Binary (36 Lbit)
invalid op

Yl minus X1 Binary (36 bit)
invalid op

X1l equal Yl

X1l EOR Y1

Xl + Yl(inclusive or)

X1

not Yl

Yl

Xl.Yl(logical &nd)

Zeros

CCIMPANY CONFIDENTIAL -- Do not duplicate 9-JUuL~-80
INSTRUCTION EXECUTION Page 4-2¢
EXECUTICON UNITS COMMCN CONTROL

4.2.7.21 CAKRY <bits 56-58> - The CARRY field controls the carry in
to 17 and carry in to 35 of the 36 binary ALU and 32 bit decimal ALU.
Decodes are as follows:

DECIMAL OPERATION <bits 52,53=0(>

decode function
g-1 invalid op
2 carry into 35
3-5 invalid op
6 no carry into 35
7 invalid op

bINARY OPERATION <bits 52~-53 not equal 0¢>
decode function
sign Y= Cn to 35, 36 bit ALU
no Cn to 35, 36 bit 2ALU
no Cn to 35, 18 bit ALUs
no Cn to 35, 18 bit ALUs if FACALC not global
no Cn to 35, 36 bit ALU if EACALC global
Cn to 35, force Cn to 17
Cn to 35, 36 bit ALU
Cn to 35, 18 kit ALUS
Cn to 35, force Cn to 17 if EACALC not global
Cn to 35, 36 bit ALU if EACALC global

WA =T

NS oau s

4.2.7.22 GCPl/WR REG FILE <bit59> ~ During first cycle bit 59
controls the OGPl MUX at MVL and MVR as follows:

59=0 AF MUX @-35 to SEL OP1 (-35

59=1 AF MUX €-17 to SEL 0Pl 18-35,AF MUX 18-3% to

SEL OP1 9-17

During second and subsequent cycles, OPl MUX control is forced to
zero <AF @-35 to CSEL OP1 ¢-35>, and bit 5¢ performs the fonllowing
operation in conjunction with the L EARLY bit:

Bit 59 L EARLY<bit 28> function
] g read REG FILE in 1lst half current cycle
0 1 read FEG FILE in 2nd half current cycle
1 y write REC FILE in 2nd half next cycle,
read REG FILE in 1lst helf current cycle
1 1 write REG FILE in 1lst half next cycle,

read REC FILE in 2nd helf current cycle

4.2.7.23 8w/ X REC RD <bits 6£-53> - The SW/ X REC RD field performs
a dwal function. It addresses the X REC FILE words (#-15 on SHL and
SHR modules, and controls the swapping and merge operation of the Sw

MUX on MVL and MVR modules. SW MUX is controlled by the following
decodes:

CCHMPANY CCONEIDENTIAL ~-- Do not duplicate S-JUL-80
INSTRUCTIGN EXECUTION Page 4-21
EXECUTION UNITS COMMON CONTROL

Left swap control <bits 6¢-61>

decode function
0] OP1 18-35 to PASS ¢-17
1 OPl (¢-17 to PASS @-17
2 CP2 18-35 to PASS ¢-17
3 0P2 €¢-17 to PASS ¢-17

Kight swap control <bits 62-53>

decode function
3} CPl1 18-35 to PASS 18-35
1 OP1 6-17 to PASS 18-3%
2 OP2 18-35 to PASS 18-35
3 CF2 €~-17 to PASS 18-3%

4.2.7.24 R/Y REG RLC <BITS 64-67> -~ The R/Y REC RD field performs a
dual function. It addresses the Y REG FILE words ¢-15 on SHL and SHR
modules, and controls the operation of the K MUX on MVL and MVR
modules. K control bits are decoded as fonllows:

decode function
4] zeros to R BUS ¢~-17, PASS 18-35 tn K BUS 18-35
1 zeros to R BUS ¢-35
2 PASS £~-17 to R EUS (-17, zerns tn 18~3%
3 zernos to R BUS £-35
4 SEL OP2 bit @ to K BUS r-17,PASS 18-35 to R EUS 18-35
5 PASE ¢-35 to R BUS ¢-35
6 PASS €~17 to R BUS (-17, SEL 0OP2 bit ¢ to R EUS
7 COCMPARE EUS ©6-17 to R BUS (-17
10 ones to R BUS (-17, PASS 12-35 tno F BUS 18-35%
11 ones to K EUS ¢-35
12 PASS €-17 to K EUS ¢-17, nnes to K BUS]12-3%
13 ones to Kk BUS (C-35
14 SEL OP2 bit 18 to K EUS ¢-17,PASS 18-35 to R BUS 18-3°
15 ~PASS (-35 to R EUS £-35
16 PASS €-17 to K BUS ¢-17, SEL OP2 Lit 18 ton R RUS 18~-3¢
17 ~COMPARE ¢£-35 to R BUS ¢-35

4.2.7.25 COMP <bits 68-69> - The COMP field determines the mode of
operation of the comparators on the MVL and MVR modules per the
following decondes:

CGMPANY CONFIDENTIAL ~-- Do not duplicate 9-JUL-8¢
INSTRUCTION EXECUTION Page 4-22
EXECUTION UNITS COmMMON CONTROL

Eit 68 on= comfpare to ones<7s>
a) compare CCMP BUS 1-34 to ones
b) compare F BUS €-35 to ones
bit 68 off= compare to zeros<not 7s>
a)compare COMP BUS 1-34 to zeros
b) compare F BUS £-35 to zeros
Bit 69 on= comfpare to 1
a) compare CCMP BUS 35 to one
Bit 69 off= compare to zero
a) compare COMF BUS 35 to zero

4.2.7.26 LAST CYCLE <kit 70> - The LAST CYCLE bit controls the
update of the PC, Instruction Code, AC addresses, and selection of
Ck, CI, and CL MUXxes during the first cycle of the next instruction.
when the lest cycle bit is on and L EAKLY is also on, PC, IC, and 2C
addresses are updated in the next 22ns clock period (if in 44ns
microcycle,during the 2nd half of the cycle containing the last cycle
bit. Wwhen the LAST CYCLE bit is on and L EARLY is off, PC, IC, and
AC addresses are updated in the 1st 22ns period following this
microcycle.

CB, €I, and CL MUXes select between first and subseguent cycle
control words for early <CLK 0>, intermediate <CLK 1 or 2> and late
<CLK 3 or P> control bits. LAST CYCLE bit on causes fast 256X4 FRAMS
and forwarding controls to be selected into the control woréd of the
next cycle, which represents the first cycle of the next instruction,

An interrupt may block the operation of the LAST CYCLE bit, thus
allowing slow microcode to trap to an interrupt handling routine.
Once this routine is completed, a LAST CYCLE microorder must again be
issued to cause instruction execution to continue.

Instruction invalid coming from the IBCX at LAST CYCLE will cause the
microword containing the LAST CYCLE order to hold if no interrupts
are pending, L EARLY will be forced off in the next «cycle so that
only one store operation will occur,

4.2.7.27 STORE CONTRCGL <bits 71-73> - The STICRE CCNTROL field causes
store, MBOX, and FPA operations to occur per the fonllowing decodes:

COMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL~-8¢

INSTRUCTION EXECUTION

Page 4-23

EXECUTION UNITS COwmMCN CONTROL

deconde
©
1

function

no og

Write MEM with data on L BUS. Write AC if EACALC is
an AC. L EARLY on will cause data to latch at M or
write to occur at 2C in the 1st half of the next
cycle. L EARLY off will cause dete to letch at M or
write to occur at AC in the 2nd half of the next cycle,
Write to AC and MASTER AC. L EARLY on will cause the
write to occur in the 1st half of the next cycle.

L EARLY off will cause the write to occur in the 2nd
half of the next cycle.

Write AC and MAC if AC field not=¢. Timing is the same
as decode 2,

hrite MAC only with data on L BUS. L EARLY on will
cause the write to occur in the 1st half of the

next cycle. L EARLY off will cause the write to nccur
in the 2nd half of the next cycle,

Start FPA at address @gf, #field 13-17

STEP CTRS: Read the MASTER AC twice followed by an
update of it's lo-order 4 address by +1. In the next
microcycle write into 2C copies twice followed by an
update of their write address by +1. This microorder
rereated 8 times will cause a load »of all AC copies
with an AC set from the MASTER AC block.

4.2,7.28 FLAG CONTROL <bits 74-77> - The FLAC CONTROL field causes
flag and miscellaneous operations to occur under control of ¥ FIELD

and data path bits,.
decode
4]
1

function

no op

LD FLAGS: load FC flags from F BUS (-12. If # field
bit 5 is on protect USER and USER IO from illegel
modification. If # field bit 6 is on 1oad PCU from
previous USER flag.

I BUS flag
0o ov

1 CRY(
B2 CRY1
63 FCV
04 FPD
s USER
06 USER IC/ PCU
29 TRAP2
1¢ TRAP1
11 FXU

12 NC DIV

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-8¢
INSTRUCTION EXECUTION Page 4-24
EXECUTION UNITS COMMON CONTROL

|

|

|

|

| decode function

|

| 2 PC FLAGS: set or clear selected PC flags from § field.
| # field function

| 0L set CV

| g1 set CRY@

| g2 set CRY]

[03 set ECV

| 04 set EPD

| 29 set TRAP2

i 10 set TRAF]

| 11 set FXU

| 12 set NO DIV

| 13 clear QV

| 14 clear CRYO

| 15 clear CRY1

| 16 clear TRAPl and TRAP2
| 17 clear FPD

| 3 LD STATE:Set or clear selected STATE REC bits from %
| FIELD 0-15. Set overrides clear.
| # FIELD FUNCTION

| 00 set 0@

| 91 set @1

| g2 set €2

| 23 set 3

| 04 set P4

| 05 set 5

| 06 set @6

| 07 set 7

I oe reset @@

| g9 reset 1

| 10 reset £2

| 11 reset (3

| 12 reset @4

] 13 reset €5

} 14 reset {5

15 reset 07

————— — — — — — s s . Sttt it S e, e s e e et i S, st ., e s et . i A Sottem.

COMPANY CONFIDENTIAL -- Do not duplicate 9-JUL-840

INSTKUCTION EXECUTION

Page 4-25

EXECUTION UNITS CCMMON CONTROL

AD FLACS: Update CRY£, CRYl, and OV from the ALU
results of the current microcycle.

JFCL: Clear OV if CV and AC field bit 9 are on; clear
CRYC if CRY@ and AC field bit 10 are on; clear CRY1
if CRYl and AC field bit 11 are on; clear FCV if FCV
and AC field bit 12 are on. If any of these flags are
cleared, force jump successful at the IBCX.

LD APR: Set selected AFR flags from X RFC 24-31, reset
selected APR flags from Y REC 24-31. Set overrides
reset if both are on.

EN APR: Enable selected APR interrupts per X REGC 24-31.
command to IbOX per # field 14-17
#14-17 decode function

%) preset IBCX
1 lnad PC from L RUS
2 read PC<via CP2 BUS> of SFL 1
3 read EACALC<via CP2 BUS> of SEL I
4 read mem op<via CP2 BUS> of SEL I
5 read mem, VMA from L BUS, data
via 0P2 BUS
6 write mem, VM2 from L BUS, data
from L BUS nne cycle later
7 read mem,IBCX EACALC of L BUS 18-35
plus XR 1£-35 addrcessed by WR MUX,
VMA 6~18 from PC
16 initialize PC to curr instruction
11 initialize PC to curr instr -1
12 initislize PC to curr instr -2
13 backstepr SEL T -1
14 step SEL I +1
15 START IBCX

16~-17 spare

COMEANY CONFIDENTIAL -- Do not duplicate 9-JUL-3¢
INSTRUCTION EXECUTION Page 4-25
EXECUTION UNITS COMMON CONTRCL

11 LD PI: Set interrupt reqguests for PI levels 1-7 from
X REC 29-35, reset interrupt reqguests for PI levels
1-7 from Y REG 29-35. Reset nverrides set if both are

on.
12 EN PI: Enable interrupts for selected PI levels per
X REG 2¢-35.
13 Load interval timer from Y REC (-17.
14 PDL OV: Set trap 2 if F BUS compare eguals value of
COMP field.
15 Read flags or meters per § FIELD 15-17 into the next
micro cycle's number field €¢-17.
decode function
5] APR 24-31 to } FIELD 6A-13
1 Interval counter 0-17 to } FIELD -17
2 Accounting meter £-17 to } FIELD £-17
3 Pl flags to # FIELD 11-~-17
4 STATE flags to § FIELD @-7
5 PC flags to # FIELD £-12
6-7 spare
16 Load accounting meter from Y REG @¢-17

17 sgare

4.2.7.29 PAKITY 48-1p1 <bit 78> ~ Parity 48-1¢1 is turned on or off
so that odd parity is achieved for bits 48-1¢1.

4.2.7.30 L <bit 79> - The L bit controls the selection of the L MUX
on MVL and MVR modules according to the following deconde:

L=p P BUS (-35 to L MUX £-35

L=1 REF BUS £-35 to L MUX ¢-35

4.2.7.31 AC/ REGC WR CTRL <bits 2£-83> - The AC/ REC WR CTRL field
performs a dual function, IF bit 59 is on, the X and Y REC FILES
will be written into in the next microcycle according to the setting
of L EARLY. The X and Y REC write address is generated from bits
86-83., If bit 59 is off, the 2AC/ REG WR field will be used to
control the addressing of the ACs at SHL, SHR, IDL, ICR, and FPB-E
modules. In this mode, bits 80-83 have the following significance:

|
|
|
|
I
I
|
|
|
|
|
|
|
|
I
|
I
I
|
|
|
|
I
|
I
|
I
|
|
I
|
|
I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
I
I
I
I
|
I

COUMPANY CONEFIDENTIAL -- Do not duplicate 9-JUL-~-8¢
INSTKUCTION EXECUTION Page 4-27
EXECUTION UNITS CCMMCN COCONTRCL

bLit 86¢=0 Wk MUX plus # FIELD 14-17 to XRD MUX <bit 8¢=0 and
bit 59=0 causes XRD MUX to clock>.

Bit 8¢=1 EACALC 32-35 to XRD MUX if LAST CYCLE, hold previously

clocked contents if not LAST CYCLE.

Lit 81=¢ SC bits 2-5 to YRD MUX, # FIELD 16#-13 to HMA MUX
<bit 81=@ and bit 5¢=0 causes YRD MUX to clock>

kit 81=1 AC field 14-17 of instruction to YRL MUX if LAST CYCLE,
hold previously clocked contents if not LAST CYCLE.

Lit 82=9 Select XRD MUX to WR MUX

Bit 82=1 Select YRD MUX to WR MUX

bit 83=0 Select CURR REC to HMA MUX

BEit 83=1 Select PREV REC to EMA MUX

4.2.7.32 NUMEER FIELD 0-17 <CL bits 84-1¢1> - The number field is an
12 bit field which is used in conjunction with other microorders as a
direct input into data or control logic.

4.2.8 SYSTEM CLOCKS ()

The 2088 clock controls gprovide the gsting of a single 181.8 Mhz
master oscillator source in such a way that synchronous clock phases
will result at the IO Box, IBUX, EEOX, FPA, MECX, and memory array.
The «clock control logic will &alsn include start, stop, and count
mechanisms for diagnostic and error recovery purgoses,

4.2.8.1 10 ECX INTERFACE TC THE SYSTEM CLOCK - Ontputs from clock
control module to IO Box:

COMPANY CCONFIDENTIAL -- Do not duplicate °-JuL-2g¢
INSTRUCTION LXECUTION Page 4-28
EXECUTION UNITS COMMCN CONTROL

IC Clock

The clock control module will send a 45.45 Mhz pul se,
llns on, 1llns off, to the IO Eox. The positive
transition of this pulse will correspond to the
negative transition of phase ¢ at the CPU. It

will be free-running at all times.

L time
]
—————— + e m e} -
! Phe ! ! !
tm——— + , - +
———————————— + Fmmmm e em +—-—-
! PH1 ! ! !
e + Fmm——— +
oo + e — ————— + 4
! PH2 ! ! !
dm———— + tm———- +
e e T S u— + oo + t=——
! PH3 ! ! !
pm———— + $emm—— +
pomm e + Fommm e +
! I0 CLK ! l1lns ! llns ! llns !
+ T T + Fmmm e —— +

Diag CLK Return

This signal is the return path of the shifted nut clnck
control register.

CLK Error

CLK Error represents a synchronization error between the CLFK
CCNTROL module and the CPU free-running clocks.
Inputs to Clock Control Module From IO Eox:

The IO BOX sends controls to the clock control module to set up and
execute the clock start/stop features., 2 serial line permits the IO
BOX to shift into a control register a field representing a 16 Lit

command .

CMLC to CLK

CMD to CLK is the input to the clock control register shift in path.
CLK CMLC ENABLLE

CLK CMD ENAELE gates a fpreviously loaded and decoded command to
control the start/stop mechanisms of the CLK Control module.

CCMPANY CCNFIDENTIAL -- Do not duplicate 9-JUL~-80
INSTRUCTION EXECUTION Page 4-2°¢
EXECUTION UNITS CCMMCN CONTKOL

Comnand EBits of the Clock Control Register:

CLOCK CONTROL FREG

e ———— $mm——— e tmm———— - fm————— $mmmm————— e +
! SPARE ! TIC ! DISA ! DISE ! ESTP ! SYNC ! COQUNT g€-255 !
e ——— tom——— o ——— $mmm——— tm———— $m————— Fmmmmm e +

CCUN1 Field (bits 7-6)

The CCUNT field represents a count of clock phases to be stepped in
the M™MECX, 1BCX, EBCX and FPA, when clock TIC (bit 12) is on, For
example, Disable A (bit 11) on will stop all clocks in the CPU at the
next active rphase 9 (phase 0 on, phase 1, 2, and 3 off). Following
this, a count of @¢¥l and TIC on will step all clocks in the CPU to
phase 1. Count increments of 4 represent machine cycles (22ns).

SYNC (bit 8)

The SYNC command, when on will cause a load of the clock distribution
chips (1€¢141 shift register) on all CPU modules to an active phase
g, inactive phase 1, 2, and 3. The ESYNC command must always be
preceded by turning on and executing the LDCISABLE 2 command, and
followed by turning of and executing TISAELE A. This fprocedure
eliminates any need for adjustment of the SYNC signal going to each
module. This command will be used only if the 10141 shift register
is employed as a distribution methond.

ESTOF (Lkit §)

The ESTGF command will cause a stop of all FBOX, FPA, and EBOX
controlled 1BOX clocks at the phase ¢ following the rise of "ERROR
S10p" from the EBCX. The console may then scan the EBCX, FPA, and
IbOX module Lphose ¢ scan bits to determine if the FRRCR STOP was
caused by a clock sync error in one of these modules.

DISABLE E (bit 1¢)

The DISABLE E command will stop all EECX, FPA &nd EECYX controlled
IBECX clocks at the next active phase ¢. flurning DISAELE E off will
start the clocks in these areas in the same manner as DISAELE 2.
DISAbLE A (bit 11)

The LISABLE A command will stop all CFU clocks at the next active
phase G. Turning DISABLE A off will start all CPU clocks with a
positive (treiling edge phase f/negetive (leading) edge phase 1.

TIC (bit 12)

The clock 1IC command will step all CPU clocks the number of phases
specified by the count.

CCmFANY CCNEF IDENTIAL ~- Do not duplicate 9-JuL-2¢
INSTRUCITION EXECUTION Page 4-30
EXECUTICN UNITS COMMCN CONTROL

4.2.8.2 CFU INTEKEACE 10 THE SYSTEM CLOCK -
Outputs From Clock Control Module to the CPRU:
SYSTEM CLK to (module name) (total = 23, 45, or 92)

bach CFU module will receive either a 181.8 Mhz clock, two 45,45 Mhz,
or the four phase clocks (depending upon decision by 208¢ technoloay
group) . These clocks will be Lowered independently at the clock
control card. Two identical sets will go to the IBCX cdata path cards
to allow for separate control by DISAELE A and DISAELE F.

SYNC

Four sync lines will be driven to the 21 CPU modules; SYNC A will go
to the MECX, SYNC E to IBCX and MV nodules, SYNC C will gn to the
remaining EbCX modules; and SYNC D will go to the FPA modules. The
SYNC signals will be stubbed, with termination at the module farthest
trom the clock control. These lines are logically identical, driven
by the enabled SYNC command bit.

Inputs to Clock Control Module From the CPU:
Check Phase @

The five MBUX, along with 2 IBOX dote peth modules, each will send &
buffered phase ¢ back to the clock control. These will be compared
to internal clock control phase generation to determine whether or
not a synchronization error has nccurred. Cnly free running cloncks
utilizing the 160141 shift register will be checked in this manner.,
the 7 check bits will be loaded into a register at the clock control
so that its bits may be shifted out as Fart of the active diagnostic
scan Lpath. The serialized input and output of this scan register
connect to modules adjacent to the clock control module.

ERROK S10P

ERKOR S1CP from the CPU SCAD module indicates that an IBCX, EECX, or
FPA error has occurred, and that all goted clocks in these areas have
Leen stopped.

4.2,8.3 MEMGRY INTERFACE TO THE SYSTFM CLOCK - Outputs From Clock
Control to Memory Modules:

mMEM CLK

Individually driven, free-running, 45.45 Mhz clocks will be sent to
¢ach of 16 memory array cards, and each of twn repeater cards. The
clock will be 1llns on, 1llns off, with positive transition
corresponding to the positive transition of the I0 CONSOLE CLOCK.

T T T T e T T e e T e e e e e ————— e e

COMPANY CONFIDENTIAL -- Do not duplicate 2-JuL-8n

maet Jqpc}(%hASﬁ
oy

£ 2 (mo:g_/ﬂlil

59 3/)/%/HC//U’C

< 12 shilt (mﬁl/&(/mﬁf!w/zé,w

«

onT rol

553 Conl@l sfmaqgu

CHAPTER 5

EECX

5.1 GENERAL

lhe 2080 EBOX is designed in such a way that maximum rerformance is
derived from & limited number of ICs. Emphasis is placed on the fast
execution of commonly used instruction grours including mask and
test, full and halfword moves, arithmetic, stack, and boolean. In
approaching the design, it was found to be more efficient to make an
entire group run fast rather then focus on a few highly used
instructions. This in turn also served to recduce considerably the
amount of control logic reqguired to deal with the exception cases,

Since instruction mix analysis showed that the above-named groups
occupied from 80-90% of dynamic execution, it was decided to create a
hierarchical design, with MOVE <executing move and mask&testd> and ALU
<executing arithmetic, stack, and bnolean> were contrnlled fron fast
256X4 kAMS, and all other instructions executed in the traditional
method of microprogram control. Thus, the 2080 EECX executes nearly
366 instructions in one or twn 22ns cycles,

22ns prior to the start of execution, the IBCX supplies the EBECX with
the instruction code, AC addresses <fnr both AC field and EACALC
32-35>, and an instruction/operand wvalid bit which permits the
instruction execution to proceed. The instruction code addresses the
fast 256X4 and slower 4kXl RAMs simultaneously. In the next cycle
<first cycle of execution>, the micrownrd controlling the FEBCX is
selected trow the fast KAMS. The second cycle of execution may be
either & 22ns cycle or a 44ns cycle depending on the setting of the
LAST CYCLE and L EARLY bits < LAST CYCLE and L EARLY both on indicate
a 22ns cycle>, The second and subsequent micro words are selected
from the 4kX1 RAMs each 44ns.

The fast 256X4 RAMS control only the 22ns path <MCVE, ALU>, whereas
the 4kX1 KAMs control a 44ns shift and shift control Fath as well as
utilizing the MCVE and ALU sections as part of a larger 44ns peth.,
This fprovides the microprogram with a very powerful arithmetic,
boolean, merge, compare, and shift capability.

—.————————___.—.__.__._—.-—-_.——_.—___—-__——a——_—.—.——-_—_——_—.-—_—-—_—_——

CCOMPANY CONFIDENTIAL -- Do not duplicate . 9-JUL-80
EBOX Page 5-2
MOVE/ALU PA'lH

5.2 MOUVE/ALU PATHh

Thne MOVE/ALU path is contained on two identical mocules, MVL and MVR.
It consists of two 22ns loops, each of which may receive inputs from
the other, or from REC, FPA, or IBOX operand paths, under the control
of x1, Y1, or ht fields.

5.3 #MGVE GPERATION

Two operands are presented to the MCVE path at CLK 2, SFL COF1 and SEL
OF2. SEL OFl1 1in the first cycle of execution receives a word from
one of the fonllowing:

1. X or Y AC sets < X is addressed by EACALC 32-35, and Y |is
addressed by AC field> on the X or Y EUS

2. A forwarded result through L1, L[, and X or Y <if current
instructions requires an operand from an AC word which is in
the process of being stored

3. F BUS < if «conflict compare indicates that previous
instruction result selected at L MUx is from F and current
instruction uses it as an operand>

4., Kf BUS < if conflict compare indicates that previous
instruction result selected at L MUX is from RF and current
instruction uses it as an operand>. SEL OP2 in the first
cycle of executinn receives & word from one 0of the
following:

a) the X AC on the X BUS <X AC addressed by EACALC 22-35>

b)a torwarded result through L1, [, and X <if current
instruction requires an operand from an AC word which is in
the process of being stored>

5. ‘lhe IBCX OP2 BUS if no results are being forwarded and the
EACALC does not regresent an 2C

6. From K BUS or F BUS via the same forwarding controls applied
to SEL OPl.

In second and subsecuent cycles SEL CP1 and SFEL CP2 1inputs are

controlled entirely from 4kX1l control storage RAM fields X1, Y1, and
RE .

Half word instructions are executed via SW and F MUX controls. Sw
MUX permits merging of either left or right helf of SEL OP2 with the
left or right half of SEL OPl. R MUX may select either half= zeros
or ones, or either half = SEL OP2 bit ¢ or 18. Move, Zeros, and Cnes
instructions are alsn executed via SW and R MUX controls,

COMPANY CONFIDEINTIAL -- Do not duplicate 9-JUL-8¢
EBUX Page 5-3
MCVE OFEKATION

masking for test instructions occurs at an AND functinon with inputs
from SEL CPl and CEEL CP2. The AND true outputs connect to
comparators which, under CCMP field contrnl perform & partial compare
<in the first cycle> of the AND outputs to the values -1, ¢, and +1.
Compare results and SEL CP2 sign bit <G> go to the IROX where skip/
jump successful determination will be made. 1In the case of TEST LEFT
instructions, SEL OF1 receives the AC oprerand with it's 1left and
right halves swapped at the CPl1 MUX, and SEL OF2 receives CP2 BUS
from the IBOX with zeros in it's left half, and the lo order 18 bits
of the EACALC in the right half.

All MOUVE path results are clocked into the RF MUX at CLK € of the
next cycle, <CLK € gated by L EARLY B from the current cycle's
niicroword>,

5.4 ALU OPERATION

ALU inputs are logically identical to MVE inputs, with the exception
that 1in the first cycle, the Y1 MUX may be disabled to force zerons
intno the Y1 ALU input. This is used with an ALU decode 4 and forced
carry to provide a fast add 1 or subtract 1 to either ALU half, while
Al MUX, also under Y1 FIELD control, is gating the 2C orerand into
the MOVE path.

The main ALU is 36 bits wide, divided intn two 1€ bit sections, an
extension of two bits 1is made on the high order end to facilitate
multiply operations, thus providing F EUS -2 and -1 to the SHL
module, The ALU performs binary and decimal adds and subtracts, and
boolean functions in 22ns. The ALU (¢-35 may also be separated into
two 18 bit sections with carry control to both.

ALU results are clocked into the F MUX at CLK ¢ of the next cycle
<CLK & gyated by L EARLY E of the current cycle's micrnword>,

5.5 L bUs

The L BUS is used to transfer results from the R BUS <MCVE>», F BUS
<ALU>, or A BUS <FPA> to the following mndules:
negative L bUS <1 backpanel stub at ID>
a) IEOXx IDL and IDR
b) MBCX MLDL and MLCR

positive L BUS <2 backpanel stubs, one each at SH and IP>

C) EbBCX ShL and SHR

d) FPB,D and FPC,L
The L MUX is clocked at CLK 1. The L MUX select is valid during the
CLK 1 of the 2nd 22ns period after the control word has been issued
tor the first cycle of execution, and is valid during the CLK 1 of
the 2nd and 3rad 22ns periods after the control word has been issued
for subsequent 44ns microcycles. Since it is a stubbed bus, 1l¢ns are

— . — —— — — — — — — — — —— o —— — — — — — — —— — {—— — — —— —— — ————— — —— — —— — o— —— — — —— —— _—

CCMPANY CONFILENTIAL ~~- Do not duplicate 9-JUL-80
EBCX Page 5-4
L BUS

allowed before it's destination registers are clocked.

+ pmmm——m————————— + T + +
! ! 1ST CYCLE] ! 2ND CYCLE ! !
+=--==-+ EAKLY CONTROL +-=—--+ EARLY CCNTROL Hm———t
G ¢ e
+ o —— + o e e
! ! 1ST CYCLE ! ! 2ND CYCLE
+----+ LATE CONTROL +----+ LATE CCNTROL
3 3
! ! !
CLK L CLK L CLK L

5.6 EKRKOR CCNTROL

Parity generation occurs at the output of the F BUS < ALU result> and
at the output of the AND function of the MOVE path. A parity bit is
generated for each byte, composed of bits ¢-8, 6-17, 18-26, and
27-35, respectively. Parity checking is performed at the output of
the SEL OP1 MUX, SEL CP2 MUX, and L MUX. If a parity error |is
detected at either SEL OPl or SEL OP2, the following CLK ¢ will set
the MVL or mMVR INPUT ERROR latch which will a) klock the next CLK 2
to SkEL OPl1l, SEL OP2, and ALU, and b) will signal to the error control
logic on the SCA module to stop all gated IBCX, EBCX, and EP2 clocks
starting with CLK ¢ 2¢ns later, and sequentially stopping CLK 1, CLK
2, and CLK 3, in that order.lllf a parity error is detected at the L
mUX, the following CLK 2 will set the MVL or MVR QUTFUT ERROR latch
which will a) bklock the next CLK ¢ to the L MUX and MAC EACKUP
ADDRESS, and the next CLK 1 to the leading edge control of the MAC
EACKUP write-enables, and b) will signal the error control 1ogic on
the SCA module to stop all gated IBCX, EBOX, and FPA clocks starting
with CLK ¢ 3¢ns later.

The carry generates of the two duplicate ALUs are compared to
determine whether an ALU error has occurred, If the results of the
two ALUs combined produce an odd count, an error trigger is set at
the next CLK 3, followed by a clocking of the MVL or MVR ALU FRR
latch at the following CLK 0. The MVL or MVR ALU ERR signal will
cause the SCA error control to stop all IBCX, EBCX, and FPA clocks
starting with CLK 0 20ns later.

System reset will reset F, RF, SEL OPl, SEL OP2, and L MUXes to zeros
with good parity. Error reset will reset MV OUTPUT EPFPR, MV INPUT
ERK, AND MV ALU ERR.

I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
|
|
I
I
|
|
I
I
I
I
|
I
|
I
I
I
I
|
I
|
|
|
|
I
|
I
I
|
|
I
I
I
!
[
I
I
|

COMFANY CONFIDENTIAL -- Do not duplicate 9-JUL-89
EBOX Page 5-5
DIAGNOSTIC INTERFACE

5.7 DIAGNGSTIC INTERFACE

The passive scan path of MVL is composed of 40 bits from the F BUS
and MAC BKUP scen registers. 1he signals sre labeled as follows:
SCAN INPUT= 'CIZC PAS CUT ESE E'
SCAN REG bITS= 'R BUS £0 H' to 'R BUS (7 H',
'R BUS 18 H' to 'R BUS 25 H',
'R BUS POE-08 H',
'R £US P1€-26 H',
'R EUS €8 H',
'R EUS 26 H',
'AC BACKUP Per-08°
'AC BACKUP P1E€-26"
'AC EACKUP (8 H'
'AC BACKUP 26 H'
'AC BACKUP €@ H' to 'AC EACKUP 07 R'
'AC BACKUP 18 H' to 'AC EACKUP 25 H'
SCAN CUTPUT= 'DIAC PAS CUT MVL H'®
The MVR passive scan path signals are labeled as follows:
SCAN INPUT= 'DIAG PAS OUT MVL H'
SCAN REC BITS= 'F EUS (¢ H' to 'F BUS 15 H',
'F EUS 27 H' to 'F BUS 234 BH',
'F BUS P£9Y-17 H',
'F BUS P27-35 H',
' EUS 17 H',
' BUS 35 H',
'AC EACKUP P(S-17 H',
'AC BACKUP P28-35 H',
'AC EACKUP 17 ',
'AC BACKUP 35 H',
'AC BACKUF €9 H' to 'AC EACKUP 15 H',
'AC EACKUP 27 H' to 'AC BACKUP 34 H'
SCAN OUTPUT= 'DIAC PAS CUT MVR H'
The ictive scen path of MVL is composed of 22 bits from the MASTER AC
EACKUP ALCDRESS, L REC, and error control bits. 1The signals are
labelead as follows:
SCAN INPUT= 'DIAG ACT CUT ESF BH'
SCAN KEC EITS= 'L AC EACKUP 0 H' to 'L AC EACKUP 7 H',
'L REG € H' to 'L REC (7 fn',
'L REC 18 H' to 'L REC 25 H',
'L REC Pee-£8 H',
'L KEG Pplg-26 H',
'L REG (€ H',
'L REC 26 H',
'MVL INPUT ERR L',
'MVL ALU ERR BH',
'MVL OUTPUT ERK BH'
'SPARE'
SCAN CUTPUT= 'DIAC ACT CUT MVL H'
The MVR active scan path signals are labeled as follows:

COMPANY CONFIDENTIAL -- Do not duglicate °o-JuL-8¢
EbOX Page 5-6
DIACNOSTIC INTERFACE

SCAN INPUT= 'DIAC ACT CUT MVL H'

SCAN KEC BITS= 'R AC BACKUP @ H' to 'R AC EACKUP 7 H',
'L REG 09 H' to 'L REG 16 H',
'L REG 27 H' to 'L REGC 34 H',
'L REC P@Y-17 H',
'L REC P27-35 H',
'MVR INPUT ERR H',
'MVR ALU ERR H',
'MVR OUTPUT EKR H',
'SPAKE"

SCAN CUTPUT= 'DIAGC ACT OUT MVR H'

5.8 SHIF1/AC/REG PATH

The SHIFT/AC/REG path is contained on two identical modules, SHL and
SHR. It consists of a 44ns loop through a SHIFT MATRIX, AC sets and
register files, and muxing necessary to route the outputs nof all of
these intn either the SHIFT MATRIX or the MCVE/ALU path.

5.% SHIF1 OPEKRATION

The SHIF1 MATRIX is a 72 bit input, 25 bit ou<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>