Infroduction to Programming
and
On-Line Operations

ol -
Chapter Part One

Computer Fundamentals
Programming Fundamentals
Elementary Programming Techniques
System Description and Operation
Input/Output Programming

LN S

Part Two

On-Line Operations

Paper Tape System

Disk Monitor System

8K Programming System
TSS-8 Time Sharing System

S 0 0 2 A

VOLUME

Programming Languages
mz Chapter

\ / 11, FOCAL

~__ 12, RASIC

13. 4K Assemblers

i4. SK Asscmblers

15. SK FORTRAN

16. Floating Point Package
and Math Routines

PROGRAMMING
LANGUAGES

PDP-8 Family Computers

Prepared by |
The Software Writing Group
Programming Department
Digital Equipment Corporation

PDP-8 HANDBOOK SERIES

First Printing, May 1970

The material in this handbook, including but not limited to instruc-
tion times and operating speeds, is for information purposes and is
subject to change without notice.

Copyright © 1970
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DEC | PDP

FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

i

Foreword

This volume is a collection of programming language texts which
DEC makes available for users of the PDP-8 small computer series.
It is an extension of our companion volume, “Introduction to Pro-
gramming,” which is now widely available. This 2-volume set con-
tains most of the standard systenis programming information which
PDP-8 programmers will need. |

We have brought all of these documents together because we
believe that the availability of compact, low-cost, rapid access, in-
formation sources (such as these paperback books), is an essential
catalyst to assist the continuing rapid growth of data processing,
and its many new applications. The need for computer program-
ming skills, such as facility in these languages, will increase during
the decade ahead. ‘ |

I would like to thank the many systems programmers, engineers,
scientists, teachers and students, who, over the years, have con-
tributed to the development and improvement of these programs

and documents.
e oy L

President,
Digital Equipment Corporation

il

Additional copies may be ordered from DEC Progra
Bldg. 3-5, Maynard, Mass. 01754.

$2.00 : quantity discounts available..

Preface

- Like its companion volume, Introduction to Programmmg, this
book-is designed as a portable, compact source of information. Be-
fore you choose a language, we suggest you spend a few moments
studying the way information is organized and indexed.

To find a major section of this book quickly, you should first go
to the index tab guide on the back cover. Bend the book slightly,
place your finger on the corresponding black printed tab, and open
the book to the first page of the desired section.-

For more detailed information, go to the Master Index/Glossary
at the back of the book. The glossary terms are set in italics, and
include most of the specialized terminology used in Programming
Lariguages.

In general, this book is concerned with the languages only. Al-
though we show, by many examples, how the languages may be
used, we do not attempt to cover programming techniques in a de-
tailed or complete manner. Nor do we discuss program preparation,
loading, or testing. These activities are discussed in Introduction to
Programming, and will be explained more fully in forthcoming edi-
tions of that handbook. Operating procedures for these programs
are also contained in the series of System User’s Guides which are
available from the DEC Program Library, Maynard, Mass., 01754.
. Many other programming languages have been implemented on
the PDP-8 series, and some of these are available through the DEC
User’s Society (DECUS). For example, DECUS can send you a
copy of a 4K ALGOL compiler which was developed at the Uni-
versity of Grenoble in France. Or you might want to use a LISP
interpreter from the Technical University of Delft, in Holland. To
find out more about these and other programs which DECUS mem-
bers exchange, write to DECUS, Maynard, Mass., 01754.

v

- We invite you to help us to improve the next edition of this
handbock. If you should find an error, an ambiguity, or misleading
information, send us a note. We would also like to have your
critical evaluation of this book, and the ease (or difficulty) you
experienced in learning a programming language. The addressis:

Manager, Software Writing Group
Digital Equipment Corporation
Buildine 12-2

UULLUIL.l& A sl et

Maynard, Mass. 01754

Introduction

These PDP-8 languages may present a selection problem for.

some users. Which of these languages should you learn, or to state
the problem differently, which language is best for the programs
you will write.

If you want to pick a language Wthh is easy to learn, start with
FOCAL or BASIC. These are conversational, interactive languages
“which are popular in high schools and colleges. They are recom-
mended for non-mathematical programmers and for busy engineers,
scientists, accountants and others who need a Véry high speed,
supercalculator.

It is generally agreed that the most efficient computer programs, -

both in terms of storage use and speed of execution, are programs
written in machine language: in this case the hard-wired instructions
which the PDP-8 can perform. If you are planning to write a pro-
gram which will be used very often, or which must operate in a
small number of core locations, you probably should write your
program for assembly by PAL III, MACRO, PAL-D or SABR.

FORTRAN is the world’s most popular programming language,
and is considered. primarily a scientific language. On the PDP-8
there is a basic 4K FORTRAN system (not included in this vol-
ume), and a more powerful 8K system (see Chapter 15).

- Comparing Programming Languages
All computer languages have certain things in common. It is
helpful to understand what these things are if one wishes to choose
-among or learn several different languages.
Every language has commands for commumcatmg the desires of
_the user to the computer. All computer commands can be placed
into four categories:

1. Input and output commands to transmit raw information;
2. Computational commands to manipulate the information,
thus producing new information;

vii

3. Control commands to tell the program the order of executing

other commands _

- 4. Pseudo commands that do none of the other jobs but merely
tell the computer things it needs to know, like where the end
of a program is.

Every language has data structures to hold the information that
wiil be communicated and mamnuiated Ali data structures may be
p,.aceu into four categories

1. Variables to hold numbers;

2. Text to hold the commands (also called programs);
3. Strings to hold symbolic information;

4. Stacks to hold control information.

Every language implementation may be classified by its primary
modes of operation.

1. Compilers take user-oriented commands and translate them
into machine-oriented commands;

2. Incremental compilers translate only those statements actually
executed;

3. Semi-compilers produce an intermediate code that is then
interpreted.

4, Interpreters scan the user oriented commands and cail appro-
priate subroutines.

5. Assembly language is essentially machine oriented.

Future Developments

If new programming languages continue to proliferate at the
present fast rate, we can expect to see more powerful conversationa
systems such as F '”‘CAL coming into general use.

There will be many other special purpose languages, and adapta-
tions of comimon languages. These are used for numerical machine
control, typesetting, laboratory .automation, library indexing, in-
formaiion management, inventory controi and many other appiica-
tions.

Entirely new fields of study, such as mathematical lingnistics,
which attempts to explore the common characteristics of both
natural and machine languages, and microprogramming, which is
an interesting way of programming at the hardware pulse level, will
provide new ideas for future programming languages.

Contents

Foreword ... il
Preface ... v
Introduction vi
Chapter 11 FOCAL rreeeiannas rreeeeeeens 11-1

A conversational language used on-line with
the computer offering facilities for performing
a wide variety of mathematical calculations.
FOCAL can be used as a simple but powerful
desk calculator or as a sophisticated language
for writing programs.

Chapter 12 BASICccocooooiioeo 12-1
o A conversational language for performing
mathematical calculations. BASIC, originally
developed at Dartmouth College, is easy for
the beginning programmer to learn and use.

Chapter 13 4K Assembly Programs ... 13-1
PAL T ... 13-7
The basic assembler for PDP-8 family com-
puters having paper tape peripheral devices.
Introduces concepts basic to the use of the
advanced assemblers.

MACROooooiiioeeeeeee 13-41
Similar to PAL III. Assembles user defined

macro instructions. Provides double precision
integers, floating point constants, a text facil-

ity, literals, Boolean and arithmetic operators,

and automatic off-page linkage generation.

AK PAL-D ... 13-63
Similar to PAL III and MACRO. Contains
all of the features of MACRO excluding user
defined macros. Includes a larger symbol table.

X

Chapter 14 8K Assembly Programs 14-1
SK PAL-D ..., 14-5
Similar to 4K PAL-D, but designed to operate
in either 8K or 12K of core. Additional -
pseudo-operators provide features such as
pagination of listings, conditional assembly,
and binary output control. '

CADID .
T 53 LT R EER

A one-pass assembler adapted to extended
memory computer configurations. Produces
relocatable binary code with automatically
generated off-page and off-field linkages. Fur-
nished with special Linking Loader.

Chapter 15 8K FORTRAN ... i5
A FORTRAN compiler coupled with the
SARR assembler and Linking T.oader to pro-
duce relocatable binary code. An extensive

Uy
-i).

O

|
i

library of arithmetic and trigonometric sub-

routines supplements the compiler.

Chapter 16 Floating Point System and Math Routines ... 16-1
Floating Point Package for the PDP-8 family
of computers has its own input/output and
arithmetic routines. Also contains facilities
for extended precision and for use of the Ex-

tended Arithmetic Element.

Appendix A2 Permanent Symbol Table e A2-1
Appendix B2 ANSCH Codec.oooiis B2-1
Appendix C2 Leading Procedures ... C2-1

Index GIOSSAIYooooiiiiiiiiiiiiiii e Index—1

Chapter Il

FOCAL

11-2

CONTENTS

Part One
Getting Started in Progranmming 11-5
Communicating With the Computercc.ccvenen...... 11-5
High-speed Calculationsoccoeevvevicoveeeieeieenn., 11-6
- Enclosures et ettt et ettt e eaees 11-6
Another. Command: SETccoooooveeveoeeeeeseeeeeeeen 11-7
The Talking TYPEWIItErovvoeeeeeeeeeeeeeeeseeeeer 11-7
Keeping Track of the Decimal Pointcccocoece...... 11-8
Correcting MiStakesocccoevvveeieeioeereeeeeeeeeeeeen, 11-9
Summary of Part Onecccocooovviiniieiiieceeeeeen . 11-9
Part Two
Sequential Commandsccccooveieiieni 11-11
Indirect Commands e e —————— 11-11 ..
TGO e, i1t
GOTO e 11-11
DO e 11-12
RETURN ..o 11-13
QUIT e, 11-13
COMMENT ..o 11-13
WRITE e e et e s 11-13
More About Symbolscccccveeveiieiieiieiieeeee 11-13
Subscripted Variablescccceoeveeene.n. O 11-14
Error Detection in Indirect Statements 11-15°
COITECHIONS ..eeeviieiieiic e, 11-15
ERASE ... et ————r e 11-16
ASK e, 11-17
TE e 11-18
FOR oo 11-20
MODIFY ..ot 11-21
Using the Trace Feature (Debugging) 11-23
Mathematical Functionscccccecovvvecveneneenn., 11-24

Square Root, Absolute Value, Sign, Integer, Ran-
dom Number Generator, Exponential, Logarithm,
Arc Tangent, Sine, COSINEccceeevveeevueeennnn. 11-25
Calculating Trigonometric Functions in FOCAL ... 11-28

11-3

PROGRAMMING TECHNIQUES ..o,

FOCAL SYSTEMScccvoriecruranuann. SRRSO
Multi-user SEZMENLScceouieeeremeererieniresieneencraesenaees N
QUAD (Four-user FOCAL) ..oooiriiiiiiiiiiieee,
LIBRA (Seven-user FOCAL) ...
Utility Packageccoeeeeins T erreee e naan
CLINE Graphics Package e
Current FOCAL Tapes and DOCUMENISoovvivereenieannns

ESTIMATING PROGRAM LENGTH ..o

" LOADING PROCEDURES ...oovooooooeoeoooeeeeeeeesseeeessee e

Paper-Tape SYSIEMceoeeerirvrirreinierenieiecrenieaeneeencre e
- FOCAL Loading Procedurecccccccovviiniininnnne.

" Restart Procedurecoceeoeveeveeeieseneeienienseecennees
Saving FOCAL Programscccocveiiinicinienceeeninnn.
Multi-user SYStEMS ...coeevriiiniiirireiiieee e
LIBRA ot

DISKIN i, et ree e e e e e a e s

MNTTATY
M2V LML/ ciuccenrcararssraanrrrvrrcartrerrenervranoenn ceressertesnssnaresennane

Utility Packagecccoomiviiiririirreecn i
Graphics Package: CLINE, PLOTR, GRAPH
Disk Monitor SYStem ...ococerrreerriiiiinee i
4K FOCAL ..ot
8K FOCAL ...t

QUAD EITor ProCedures ..ceeeeeeeeeeeeeeeeeeeeeeeeeareemiinsnn

'EQUIPMENT REQUIREMENTS ..o,
THE INITIAL DIALOGUE ...oooooooeeeeeeeeeeeeeeeeeee e

EXAMPLES OF FOCAL PROGRAMS ..o,

Part Three

Summary .of Commands, Operations, and Error Messages .

'FOCAL COMMAND SUMMARY ...ccoooevvvirnninerenneenes
OPERATIONS L. i

-y

ey
Prod ik ek ek ek uemdk
¥

[y

[y

i
et D w3 =1 N O\

- _—y pmt

p— Pk

1 1 t

w L [T N O ©N
W (W8]

(TN
-,
1
wh
h

11-72

11-72
11-74
i1-75

Part One
Getting Started in Programming

This is the starting point for learning how to solve numerical
problems using the FOCAL! (Formulating On-line Calculations
in Algebriac Language) system on PDP-8 series computers.

We will assume that you will type your programs on a Teletype -
terminal, which has a keyboard much like a standard typewriter.
There are some important differences, which we will point out as
we go along.

FOCAL is called a conversational language because the system
reacts immediately to the things that you do.

Let’s start by turning on the Teletype.

COMMUNICATING WITH THE COMPUTER

When you are ready to start, you must turn the round switch
on the front of your Teletype to LINE. This connects you to the
computer.

Next, press down on the Control (marked CTRL) key and at
the same time, press on the C key. If you are now connected to
the computer, FOCAL will respond with “?01.00%”. The “?01.00”
is a coded message from FOCAL meaning the FOCAL program
is loaded into the computer, and the asterisk means FOCAL is
ready for your next command. To help you decipher other coded
messages. we have included a list of these codes, and the meaning
of each, in the back of this chapter. Generally speaking, if you
write a command which FOCAL cannot interpret, or if you break
any of the programming rules for writing FOCAL statements, you
will get a coded error message.

Operating and loading procedures are included at the end of
this chapter.

1 Trademark, Digital Equipment Corp.
11-5

HIGH-SPEED CALCULATIONS USING THE
TYPE COMMAND

You only need to learn one FOCAL command, TYPE (ab-
breviated T), to do calculations such as the following.

3
3 — -
10% X 10-1—21 2

to do this in FOCAL, you type

(and after you press the RE- -

*T 1013 *3/10 + 21-2 TURN key FOCAL computes
= 319.0000 this result. Every line must end

with a RETURN.)

This example shows the arithmetic operations performed by
FOCAL. These are done from left to right except that exponentia-
tion (1) is done first, then multiplication (*), then division (/),
then addition (+) or subtraction (—).

This means that

6 + 6*%2 (which is 15 because multiplication is
done before addition)

is not (6 +6) *2 (which is 24)

ENCLOSURES

To make sure that the computer performs these operations in
the order you want, you can place them inside parenthesis marks.
When the computer sees an expression enclosed in parentheses, it

does that first. lt the statement inciudes parentheses with paren—
theses {nesting) . it computes the innermost first. B

ARNWD LR Y) WVRALpIAANVIS LAY AN L 222

7+(6/3) - (512) %3

1
In this example, the computer first co

expressions enclosed in parentheses: {6/3) is 2, and (512} i
Then 7 + 2 — 25*3 =—66.0000.

You can also use square brackets, [and], and angle brackets,
< and >, to enclose expressions. All of these enclosure symbols

11-6

are evaluated equally, but the innermost will always be done first. -
They must always be used in pairs. The [and] enclosures are -
typed using SHIFT/K and SHIFT/M, respectively.

ANOTHER COMMAND: SET

This useful command tells FOCAL “store this symbol and its
numerical value. When I use this symbol in an expression, insert
the numerical value.”

L4

*SET PI=3-141§93 SET E=2.71828; SET R=9.12739

Symbols may consist of one or two alphanumeric characters. The
first character must be a letter, but must not be the letter F.

Just for practice, let's use FOCAL to calculate the volume of a
sphere which has a radius of 9.12739. (We’re going to use two of
the symbols we have just defined in the SET commands above.)

The formula is V :-;L,rﬁ
~ which we can type like this:

Rt3%xPI%x4/3

You might be interested in running a timing test to show. how
long it takes to do such calculations by hand, with a calculator,
and with FOCAL. :

THE TALKING TYPEWRITER

To make the output of your program absolutely clear to other
people, it is sometimes useful to give FOCAL certain messages or
column headings. We call these character strings. These messages
are enclosed in quotation marks.
*SET E=2.71828

*SET PI=3.14159
*TYPE "PI TIMES E'" PI*E

and FOCAL types out
Pl TIMES E= 8.539 7%
You are not allowed to use the carriage return, line feed or

leader-trailer characters in these character strings. But you can
tell FOCAL to do a carriage return/line feed by inserting an ex-

11-7

‘clamation mark (!). You can get a carriage return by inserting a
number sign ().

*TYPE "JOHN"! "BILL"™! "FRED"! '"'SAM"! T"RICHARD"
JOHN

BILL

FRED

SAM

RICHARD
*

Spaces can be used in character strings as needed.

KEEPING TRACK OF THE DECIMAL POINT

FOCAL results are accurate to six significant digits. As we have
shown in the examples so far, FOCAL assumes at the start that
you want to see your results with 4 digits (or spaces) to the left
of the decimal point and 4 digits to the right of the decimal point.
This is called fixed-point notation.

You can change the output format within a TYPE statement 0y
typing “%x.y” where X is the total number of digits to be out-
put, and vy is the number of digits to the right of the decimal point.
Both x and y are positive integers equal to or less than 31.Ifyis
a single digit, it must be preceded by 0. For example, % 6.02 indi-
cates four digits to the left and two to the right of the decir 1al point.

If your results exceed the format you have specified, FOCAL
gives you results in floating-point format, like this:

= =0.xxxxxxE = Z
where Z is an exponent of 10.

|3 aJ L P, I ~ A nntiem 3 1 1
To switch to foating-point, you include a percent sign (%)

followed by a comma, in a TYPE command.

*TYPE 7%

il
¢

(1]

p—
©
©
SERY
m e
tr e
+

&
o

X

which is 0.11 times 102, or 11. The largest number that
FOCAL can handle is + 0.999999E + 615, and the smallest is
—.0.999999 E + 615.

11-8

CORRECTING MISTAKES

If you should strike the wrong key, you can delete it by striking
‘the RUBOUT key. Each time you strike RUBOUT, another pre-
viously typed character will be deleted. When you strike RUBOUT,
FOCAL echoes back a backslash (\) to tell you how many char-
acters you deleted.

SUMMARY OF PART ONE

In this first part you have learned how one FOCAL command
TYPE, is used to evaluate expressions, to type out character
strings .enclosed in quotes, and to use symbols (defined in SET
commands) in expressions.

In the second part you will learn the other commands, and the
use of line numbers to write a sequence of FOCAL statements.
" As you learn these techniques, you will be advancing rapidly in
. the art of computer programming.

11-9

Part Two
Sequential Commands

INDIRECT COMMANDS

Up to this point, only commands which are executed immediately
by FOCAL have been discussed. If a Teletype line is prefixed by
a line number, that line is not executed immediately; instead, it is
stored in the computer’s memory for later executlon usually as
part of a sequence of commands.

Line numbers must be in the range from 1.01 to 31.99. The
numbers 1.00, 2.00, etc., are illegal line numbers; they are used -
to identify the entire group. The number to the left of the point
is called the group number; the number to the right is called the
~ step number. |

*l«1 SET A=1
*1 .3 SET B=2
*¥1.5 TYPE %1, A+B

Indirect commands are executed by typing GO, GOTO or DO
commands which may be direct or indirect.

GO Command

The GO command causes FOCAL to go to the lowest numbered
line to begin executing the program. If the user types a direct GO
command after the indirect commands in the example above,
FOCAL will carry out the command at line 1.1, and then the
others, sequentially.

%GO
:3*

- GOTO Command

The GOTO command causes FOCAL to transfer control to a
specific line in the indirect program. It must be followed by a
specific line number. After executing the command at the specified

11-11

iine, FOCAL continues to the next higher line. The GOTO causes
a program branch; we have jumped from one sequence of lines to
another. Sometimes we merely jump back and repeat a sequence
of commands. This technique of repeating sequences is called
iteration, and it is often used by experienced .computer program-
mers.

n
(o8]

o 4

* O
[
«

DO Command

The DO command is used to transfer control to a specified step,
or group of steps, and then return automatically to the command
following the DO command.

*1.1 SET A=1; SET B=2
xi.2 TYPE VSTARTING”
*x1.3 DO 3.2

*2.1 TYPE ' FINISHED"

*3.1 SET A=35 SET B=4
*3.2 TYPE 7%i. A+B

*GO

STARTING= 3 FINISHEI= 7%

If a DO command is written without an argument, FOCAL exe-
cutes the entire indirect program.

*1+1 5ET A=1]

*1 .3 SET B=2

*¥1«5 TYPE %1, A+B
*L0

PRS- -5-9-5-9-$ 1 47 R 1

*¥1.1 SET A=l

*1.2 TYPE A

*1e3 DO 2.8

%1 .4 TYPE "FINISHED"

2.1 SET A=A-1
*2.2 TYPE A

DO commands cause specified portions of the indirect program-

11-12

- to be executed as closed subroutines. These subroutines may also
be terminated by a RETURN command, explained below.

RETURN Command _

The RETURN command is used to exit from a DO subroutine.
When a RETURN command is encountered during execution of
a DO subroutine, the program exits from its subroutine status and
returns to the command following the DO command that initiated
the subroutine status.

QUIT Command |

A QUIT command causes the program to halt and return con-
trol to the user. FOCAL types an asterisk and the user may type
another command. :

COMMENT Command
Beginning a command string with the letter C will cause the re-

- mainder of that line to be ignored so that comments may be in- _

serted into the program. Such lines will be skipped over when the
program is executed, but will be typed out by a WRITE command.

WRITE Command

The WRITE command without an argument can be used to cause
FOCAL to print out the entire indirect program, allowing the user
to visually check it for errors.

A group of line numbers, or a specific line, may be typed out with
the WRITE command using arguments, as shown below.

0 -1

=)

Uit)

(FOCAL types all group 2 lines)
(FOCAL types line 2.1)
(FOCAL types all numbered lines)

~3 =1
¢« o o
O\ O
o
[AGINAV)
.« .
—)

U
[
~ e

LS S S S
~1

More about Symbols

The value of a symbolic name or identifier is not changed until
the expression to the right of the equal sign is evaluated by
FOCAL. Therefore, before it is evaluated, the value of a symbolic
name or identifier can be changed by retyping the identifier and
‘giving it a new value.

11-13

*SET Al=312
*SET Al=Al+!
*TYPE %2, Al
= 1%

NOTE
Symbolic names or identifiers must not begin
with the letter F.

_The user may request FOCAL to type out all of the user de-
fiied identifiers, in the order of definition, by typing a dollar sign
($) after a TYPE command.

The user’s symbol table is typed out like this

AR(PRY= 2.33€6051E+el5
Be(ppry= - 1itll.1il
Ceipnr= 39.00080
1e(@@>= - 301.202

ALC3Z = 100000
DR(GADY= @ .O00000
Ee(3@l)= 02.000080
Celgdr= C.280822

*

If an identifier consists of only one letter, an @ is inserted as a
second character in the symbol table printout, as shown in the
example above. An identifier may be longer than two characters,
but only the first two will be recognized by FOCAL and thus stored
in the symbol table. Notice that for numbers with more than one
integer part, the output format operator % 6.05 is ignored so that
the whole number can be printed.

R

Subscripted Variables

1 1

FOCAL always aliows ideniifiers, or variabic Symioois, is be
further identified by subscripts (range *2047) which are enclosed
in parentheses immediately following the identifier. A subscript may
also be an expresson:

*SET Al (I+3%5)=2.713 SET X1 (K+3%J)=2.79

[y
[y

-14

The ability of FOCAL to compute subscripts is especially useful

in generating arrays for complex programming problems.
When FOCAL types out symbol subscripts, only two digits are

shown in the range 00-99. Despite this, subscripts up to £2047

may be used in calculations, but such programs are probably too
long to fit in memory.

ERROR DETECTION IN INDIRECT STATEMENTS

When an error occurs in an indirect statement, the error message
is typed out when the statement is encountered during program
execution. In addition to the error code, FOCAL types the line
number containing the error, as shown in the following example.

*¥1.10 SET A=23 TYPE "a',a,! '
*1.20 SET B=4; TYPE "B",B,!
*¥1.30 GOTO 1.01

*1 .47 TYPE "A+B",A+R

*GO
a= 2.0000
B= 4.0000

?03.05 @ 21.30
*

FOCAL executes lines 1.1 and 1.2 and then recognizes that - -

line 1.3 is an illegal command. Therefore it issued the error mes-
'sage to show you that an illegal command was used.

To pinpoint an error in line 3.3, for example, type “DO 3.3?”
and the program will be traced until the error is found.

CORRECTIONS

If the user types the wrong character, or several wrong charac-
ters, he can use the RUBOUT key as we explained in Part One,
which echoes a backslash (\) for each RUBOUT typed, to erase
one character to the left each time the RUBOUT key is depressed.
For example,

*ERASE ALL

%11 PNTYPE X-Y

¥1.2 SET $=13\\\\X=13
*WRITE
C-FOCAL,1969

@l1.13 TYPE X-Y
01.20 SET X=13

%

11-15

The left arrow (<) erases everything which appears to its left
on the same line. - |

 *WRITE
C-FOCAL»1969

e bt
»
N =

= &
Ln vl

YPE X-
ET X=1:

¥ @
L) =

A Jine can be corrected by retyping the line number and typing
the new command. '

*14.99 SET C9(N+3) = 15

x

is replaced by typing

ERASE Command
" A line or group of lines may be deleted by using the ERASE
1

o

command with an argument. For example, to delete ine 2.21, the
user types

*ERASE 2.21
%

To delete all of the lines in group 2, the user types

*ERASE 2.7

*

Used alone, without an argument, the ERASE command causes
FOCAL to erase the user’s symbols. Since FOCAL may not zero
memory when loaded, it is good practice to ERASE ALL before
starting a new program.

Typing WRITE after making corrections -causes FOCAL to

11-16

print the indirect program as altered. This is useful for checking
commands and for obtaining a “clean” program printout.

ASK Command _

~ The ASK command is normally used in indirect commands to
allow the user to input data at specific points during the execution
of his program. The ASK command is written in the form

*11.99 ASK X5Y,2
*

When line 11.99 is encountered by FOCAL, it types a colon (:).
The user then types a value in any format for the first identifier,
followed by a terminator.2 FOCAL then types another colon and
the user types a value for the second identifier. This continues until
all the identifiers or variables in the ASK statement have been
given values,

*11. 99 ASK X:Y;Z
>|<DO 11.99
14:3%

where the user typed 5, 4, and 3 as the values, respectively, for
X, Y, and Z.

FOCAL recognizes the value when its terminator is- typed.
Therefore, a value can be changed but only before typing its .
terminator. This is done by typing a left arrow (<) immediately
after the value, and then typing the correct value followed by its
terminator. This is the exception to the use of the left arrow, as
explained in the previous section on corrections.

The ALT MODE key, when used as a terminator, is nonspacing
and leaves the previously defined variable unchanged, as shown
below.

*SET A=5
*’?g g*A (user depressed the ALT MODE
*TYPE A key after typing 123)

.= 5e@%

2 Terminators are space, comma, ALT MODE, and RETURN keys.

11-17

- ALT MODE is frequently used when the user does not wish to
change the value of one or more identifiers in an ASK command.

*11.99 ASK X,Y>2

*DO 11299

15s14s33ak (User did not wish to enter new value
*DO 11. .
18,1310, % - ' for Y, so he typed ALT MODE in
*TYPE X>Y,2 i

- 8= 4= 1o+« Tesponse to second colon.)

A text string may be inciuded in an ASK statement by enciosing the
string in quotation marks, just as in the TYPE command.

*1 .13 ASK "HCW MANY APPLES DO YOU HAVE?" APPLES
*DC 1.18

HOW MANY APPLES DO Y0OU HAVE?:25

*

The identifier AP (FOCAL recognizes the first two characters
only) now has the value 25. |

IF Command

In order to transfer control after a comparison, FOCAL con-
tains a conditional IF statement. The normal form of the IF state-
ment consists of the word IF, a space, a parenthesized expression
or variable, and the three line numbers separated by commas.
The expression is evaluated, and the program transfers con-
trol to the first line number if the expression is less than zero, to
the second line number if the expression has a value of zero, or to
the third line number if the value of the expression is greater than
zero. The IF expression or variable must be enclosed in paren-
theses. ' :

The program below transfers control to line number 2.10, 2.30,
or 2.50, according to the value of the expression in the IF state-
ment.
x2.1 TYPE "LESS THAN ZERO™; QUIT

*2.3 TYPE "EQUAL TO ZERO"™; QUIT

*D 5 TVDRDET "ORTATER THAN ZERAOY: QUITT
H 4 g aB Lonlilnil RN Lo s ouull

IF (25-2532.15,2.352.5
Q TO ZERO*

The IF statement may be shortened by terminating it with a
semicolon or carriage return after the first or second line number.
If a semicolon follows the first line number, the expression is
tested and control is transferred to that line if the expression is less

11-18

than zero. If the expression is not less than zero, the program con-
tinues with the next statement,

¥220 IF (XD 18; TYPE "Q"
%

In the above example, when line 2.20 is executed, if X is less
than zero, control is transferred to line 1.8. If not, Q is typed out.

*3.19 IF (BY1.851.9
*3.20 TYPE B
*

In this example, if B is less than zero, control goes to line 1.8, if
B is equal to zero, control goes to line 1.9. If B is greater than
zero, control goes to the next statement, which in this case is line .
3.20, and the value of B is typed out.

If a GOTO or an IF command is executed within a DO sub-
routine, two actions are possible:

1. If a GOTO or IF command transfers to a line inside the DO
group, the remaining: command in. that group will be ex-
ecuted as in any subroutine before returning to the command
following the DO.

2. If transfer is to a line outside the DO group, that line is exe-
cuted and control is returned to the command following the
DO: unless that line contains another GOTO or IF.

*ERASE ALL

*1 .1 TYPE "A"; SET X=-15 D0 3.13 TYPE "3'; DO 2
*1.2 DO 2

kS

*2.1 TYPE '"'C"

*2-2 IF (X)Q-E;;-C;Qa?

*2.5 TYPE '""H"

*2.6 TYPE "I

*2.7 TYPE "J"

*2.8 TYPE "'K"

*2e9 TYPE %2231, X5 TYPE " '"; SET X=X+1

B3

*3.1 TYPE "'8"5 CGOTC 5.15 TYP
%

*5.1 TYPE "C"

*5.2 TYPE "E"

*5.,3 TYPE "L"

*GO

llFl!

&3]

11-19

(FOCAL types the answer)

ABCDGHIJK=~1.0 CGIJK= 9.8 GJK= 1.0 BCEL*

FOR Command

This command is used for convenience in settlng up program
loops and iterations. The general format is

*FOR A=B,C,D; (COMMAND)D

The identifier A is initialized to the value B, then the command
following the semicolon is executed. When the command has been
executed, the value of A is incremented by C and compared to
the value of D. If A is less than or equal to D, the command after
the semicolon is executed again. This process is repeated until A
1s greater than D, at which time FOCAL goes to the next sequential
line.

The identifier A must be a single variable.
ko oithe

hod QV‘!’\"DS(‘! mnro
Vs Cillaivi \./Aylv DENSLLD .

»

B
or numbers. If the comma and
value C are omitted, it is assumed that the increment is one. If C,
D is omitted, 1t is handled like a SET statement and no iteration is
performed.

The computations involved in the FOR statement are done in
floating-point arithmetic, and it may be necessary, in some cir-
‘cumstances, to account for this type of arithmetic computation.

Example 1 below is a simple example of how FOCAL executes
a FOR command. Example 2 shows the FOR command combined
with a DO command.

Examnle 1:

AsirQGhiapriv 4

*FRASE ALL
1.1 SET A=1008
%1.2 FOR B=1,1,55; TYPE %5.02, "B IS'"B+A,!

%GO

B IS= 101.00

B IS= 102.00 _
B IS= 18300 g
B IS= 104.00

B IS= 105.00

*

Example 2:

*¥l.1 FOR X=1,1553D0 2.3
*¥1.2 GOTO 3.i

*2+1 TYPE "Z35"X"X
*¥2.2 SET A=X+100.000
2.3 TYPE 1" "%5.02,"a"A .
ES
*¥3.1 QUIT
*GO

= 1

A= 1@10@@

X= 2

A= 122.00

= 3

= 103.00

= 4

A= 104.00

X= 5

A= 105.20%

4

 -MODIFY Command

Frequently, only a few characters in a particular line require
- changing. To facilitate this job, and to eliminate the need to retype
the entire line, the FOCAL programmer may use the MODIFY
command. Thus, in order to modify the characters in line 541,

the user types MODIFY 5.41. This command is terminated by a.

carriage return, whereupon the program waits for the user to type
that character in the position in which he wishes to make changes
or additions. This character is not printed. After he has typed the
search character, the program types out the contents of that line
until the search character is typed.

At this point, the user has seven options:

1. Type in new characters in addition to the ones that have
already been typed out. :

2. Type a form feed (CTRL/L); this will cause the search to
proceed to the next occurrence, if any, of the search charac-
ter.~

3. Type a CTRL/BELL; this allows the user to change the
search character just as he did when first b ginning to use
the MODIFY command. |

11-21

4. Use the RUBOUT key to delete one character to the left
each time RUBOUT is depressed.

5. Type a left arrow (<) to delete the line over to the left
margin.

6. Type a carriage return to terminate the line at that point,
removing the text to the right.

7. Type a LINE FEED to save the remainder of the line.

The ERASE ALL and MODIFY commands are generaily used
only in immediate mode because they return to command mode
upon completion. :

During command input, the left arrow will delete the line num-
bers as well as the text if the left arrow is-the rightmost character
on the line.

Notice the errors in line 7.01 below.

%7.21 JACK AND BILL W$NT UP THE HALL

~

i
*MODIFY 7.01
JACK AND BNJILL WSN\ENT UP THE HANILL
*WRITE 781

R e e xmw aaeas
AreAl JACK AND Jiill oy

%

To modify line 7.01, a B was typed by the user {0 indicate the
_ character to be changed. FOCAL stopped typing when it en-
countered the search character, B. The user typed the RUBOUT
key to delete the B, and then typed the correct letter J. He then
typed the CTRL/BELL keys followed by the $, the next character
to be changed. The RUBOUT deleted the $ character, and the
- user typed an E. Again a search was made for an A character. This
was changed to I. A LINE FEED was typed to save the remainder

IR IET
O1 1€ 1inc.

Caution

When any text editing is done, the values in the user’s symbol
tabie are reset to zero. Therefore, if the user defines his symbols in
direct statements and then uses a MODIFY command, the values .
of his symbols are erased and must be redefined. '

However, if the user defines his symbols by means of indirect
statements prior to using a MODIFY command, the values will not

11-22

be erased because these symbols are not entered in the symbol
table until the statements defining them are executed.

Notice in the example below that the values of A and B were
set using direct statements. The use of the MODIFY command
reset their values to zero and listed them after the defined symbols.

*ERASE ALL
*SET A=1

*SET B=2

*1.1 SET C=3
*1.2 SET D=4
*1+3 TYPE A+B+C+D; TYPE !; TYPE §
*MODIFY 1.1
SET C=3\5
*GO

= 9.9
Ca(poY= 5.9
DE(OOd= 4.07
AR (0B)= .00
BE(00)= 0.00
%

USING THE TRACE FEATURE ‘
The trace feature is useful in checking an operating program;
those parts of the program which the user has enclosed in question
marks will be printed out as they are executed. ’
In the following example, parts of 3 lines are printed.

*1.4 TYPE %2, 24+35-C72,!
*1 45 TYPE ?B+A/C7?,!
*¥1.6 TYPE ?B-C/A%?

When only one ? is inserted, the trace feature becomes opera-
tive as FOCAL encounters the ? during execution, and the pro-
gram is printed out from that point until another ? is encountered
The program may loop through the same ? until an error is en-

11-23

countered (execution stops and an error message is typed), or until
program completion.

*ERASE ALL

" %1.1 ?SET A=0B3; TYPE %3,A!
%1.2 FOR B=l,1,43 TYPE B+A!
*GO
SET A : TYPE %3,Al ‘
i,1,4; TYPE B+al
B+Aalt

B+A!
B+Al

1

U 'y
(7ot

U T LI (|

-

In this example, FOCAL encountered the ? as it entered line 1.1 -
and traced the entire program. ' '

MATHEMATICAL FUNCTIONS

The functions are provided to improve and simplify arithmetic
capabilities and to give potential for expansion to additional input/
output devices. A standard function call consists of four (or fewer)
letters beginning with the letter F and followed by a parenthetical

expression.

FSGN(A-B*2)

There are three basic types of functions: simple, extended, and
' 1/0. The first type contains integer part, sig
and square root functions.

Tn the second type, the extended arithmetic functions, are loaded
at the option of the user. They compute logarithms, exponentials,
arctangents, sines, and cosines.

The input/output functions are the third type. These include a
nonstatistical random number generator (FRAN) whose value
ranges from .5 to .9. There are also functions available to control
scopes and analog-to-digital converters.

11-24

=
"
o
-
S
)
oy
@
'_O__‘(
o
—
(¢}
«
=N
jew
(¢7

Square Root
The square reot function (FSQT) computes the square root of
the expression within parentheses.

*TYPZ %2, FSQT{4)D
*TYPE FSQT(9)

*TYPE FSQTC(144)

Absolute Value
The absolute value function (FABS) outputs the absolute
or positive value of the number in parentheses.

*TYPE FABS(-6€)
= A6x
*TYPE FABS(-23)
= 23%
*TYPE FABS(-99)
= 9Gx%

Sign
The sign part function (FSGN) outputs the sign part (+ or —)
of a number wiih a value of 1. .

*TYPE FSGN(4-6)
== 1%
*TYPE FSGN(4-4)
= 1 x
*TYPE FSGENC(-7)
== 1x*

Integer
Integer part function (FITR) outputs the integer part of a num-
ber.

FITR(5.2)

*
3
<
o
&3]

ITR(535.€67

-}

-
3 = Ul

% 7] %
")

FITR(77.434)

3 Uour'd oo

[T S L

X%

FITR(-4.1)

*
-3
w
LS
tr}

It
1
i
%

11-25

Random Number Generator _
The random number generator function (FRAN) computes a
nonstatistical pseudo-random number between 0.5000 and 0.9999.

%> FRANC D

Exponential
The exponential function (FEXP) computes e to the power
within parentheses. (e = 2.718281)

E FEXP(.666953)
194829E+Z 1%

E FEXP(1.234356)
343687E+01 *

EF

367

EXP(-1.)

Logarithm
The logarithm function (FLOG) computes the natural logarithm
(log.) of the number within parentheses.

*TYPE FLOC(! .Z@2aa)

= J.0000C0E+00%

*TYPE FLOG(1.98765)

= 5 .B686953E+00%

*TYPE 725.03, FLOG(2.065)
= J.725%

Arc Tangent
The arc tangent function (FATN) caiculates the angle in radians
whose tangent is the argument within parentheses.

-

X
-3

-
K@@
i Toe ‘U
5 Lot - 11

FATN(L)
5398=+30 %
FATN(.31325)
23386E+00x*
FATN(3.141592)
26263E+Q1 %

m

by
.

-

T

R T S TR VAR TR

11-26

Sine
The sine function (FSIN) calculates the sine of an angle in
radians. |

*TYPE %, FSIN(3.14159)
= +333786E-05%

*TYPE FSINCL.430)

= J.985448E+00%

Since FOCAL' requires that angles be expressed in radians, to
find a function of an angle in degrees, the conversion factor, =/180, |
must be used. To find the sine of 15 degrees, '

*SET PI=3.141595 TYPE FSINCIS*xPI/180)
= Q.258819E+00%

*TYPE FSINC45%3.14159/1802)

= QeT0T106E+00* '

Cosine
The cosine function (FCOS) calculates the cosine of an angle
in radians.

*TYPE FCOS(2%3.141592)

= @.999996E+00*

*TYPE FCOSC.50000)>

= P.877582E+00%*

*TYPE FCCSC45%3.141592/188°

= DeT70710TE+DO*

These trigonometric functions may be combined to calculate
other functions as shown in the foilowing table.

11-27

Table 11-1

Calculating Trigonometric Functions in FOCAL

Function

Cosine:

-
tangent

Secant

Cosecant
Cotangent

Arc sine

Arc cosine

Aic tangent

Arc secant

Arc cosecant

Arc cotangent
Hyperbolic sine
Hyperbolic cosine

Hyperbolic tangent

Hyperbolic secant-
Hyperbolic cosecont

Hyperbolic cotangent

Arc hyperbolic sine

Arc hyperbolic cosine

Arc hyperbolic tangent

Arc hyperbolic secant

Arc hyperbolic
cosecant

Arc hyperbolic
cotangent

FOCAL Representation

FCOS(A)
FSIN{A)/FCOS(A}

CU/FCOS(A)

1/FSIN(A)
FCOS(A)/FSIN(A)

FATN{A/FSQT(1-A12)
FATNGF QT(‘- -AT2)/A)

!- H

NiA
FATN(FSQT(AT2)
FATN(I/FSQT(AT2-1))
FATN(I/A)
{FEXP{A)-FEXP{-A}})/2
(FEXP{AY*FEXP(-A))/2
(FEXPIA)-FEXP(-A))/
{FEXP(AY+FEXP{-A))
2/(FEXP{A)+FEXP(-A))
2/(FEXP(AY-FEXP(-A))
XP(AFFEXP(-A)Y/

P(A)~FEXP{-A))
FLOG(A+FSQT(AT2+1))
FLOG{A+FSQT{AT2-1))

(FLOG(1+A)=FLOG{1-A))/2
FLOG((i /AHFSQT((1/AT 2)-1))
SQI((1/AT2#1))

FLOG((i/ARF

(FLOG(X*+1)-FLOG(X~1))/2

[a—y

[r—y
}

[\

[¢¢]

Argument
Range

ne
1

S

Ao
0<'A 1014
0<iAI<iOT4
|A #E(2N+1)w/2
0<IA <1074
AFON /2

[
s

0<|A <1014
A F#2NT
0<IA <1014
‘A #2NT
<A <1

< | 1
N i

«©
. j)

[20 AN

O~

A

\

FS
1

<O

I<aciots
1<A<101300
0<A<i0T615
0<]A K700
0<|A <700

-1
N

"

’ 0(411\ </uu

-1015<A<101600
1<A<101300
Al

O< A <1

< 1A [<101300

1<A10T 616

Function

1< FI0Té

1<IF<1016

0<.F <101440

N

w/2

/n
/&

O<iF

[
T
1 é\ [

Gi<F«:rr/ Z
O<F<n/2
O<F<n/2
O0<F<n/2
aOS?F 1<5*101300

1<F<5* 101300
KIF[Q

O<F<1
o<!Fl<i0t7
i<|F <1017

-12<F<1300
O<F<700
0<IFi<8.31777
O_<_F<7OO

O< |F |<1400

O<F<8

PROGRAMMING TECHNIQUES

To decrease program length, maximize available core area, and
assist in preparing complex routines, the experienced programmer
can implement the following suggestions:

1. All commands can be abbreviated to their first letter.

2. A string of commands, except WRITE, RETURN, MOD-
IFY, QUIT, T $, and ERASE, can be combined on one line
(up to 72 characters), with each command separated by a
semicolon.

3. When creating a lengthy program, it is a good programming
practice to leave free line numbers scattered throughout the
body of the program. This will permit insertion of additional
commands without complicated referencing routines. Re-
member that programs are executed sequentially by line
number; consequently, an addition to the program placed
physically at the end will be executed in turn. Line numbers
must be in the range 1.01 to 31.99. _

4. Some programs may require a keyboard response of YFS or_
NO to a question asked during program execution. The
answer typed to the question determines the next command
to be executed (for example, in the initial dialogue). For this’
purpose, alphanumeric numbers are used in an IF statement
to direct the execution.

x1.1 TYPE "DO YOU WANT A LINE2",!
1.2 ASK "TYPE YES OR NO',ANS,!
%143 IF (ANS-OYES)2.1.2.2,2.1

*

*2.1 QUIT

%2.2 TYPE "-m-=====m—mme- L

*2.3 GOTO 1.1

*G0

DO YOU WANT A LINE?

TYPE YES OR NO:YES

DO YOU WANT A LINE?
TYPE YES OR NO:NO

x

If the user types the answer YES, the identifier ANS is
given the alphanumeric value of YES. When the IF statement

11-29

is executed, the parenthetical express in ANS-OYES equals
zero, and the command at line 2.2 is executed. If the user
types YES in answer to the ASK question, then when its
alphanumeric value is substituted in the parenthetical expres-
sion, the expression will not equal zero and line 2.1 will be
executed. Note that for YES/NO responses, the sign of the
parenthetical expression is irrelevant; only its zero or non-
7zero vaiue 15 of interest, '

A2 L diibva Wil e

5. To avoid filling storage with the push-down list during long
routines, it is helpful to limit the number of levels of nested
expressions in a command. Use of abbreviations and limited
number of variable names will maximize storage space. An
FCOM function to increase variable storage is explained in
DEC-08-AJBB-DL, Advanced FOCAL Technical Specifi-
cations.

FOCAL SYSTEMS

T]ﬂe user w vhn ha as mastered th f‘ nd ment

1T TDIWTAT
Vilg o1 LISa uid 1 LO

LAis S5YS tem

can appreciate the expanded FOCAL capabilities. Primarily, there
are two ways to increase FOCAL’s powers:

1. Share FOCAL on a single computer with more than one
person (muiti-user segments)
2. Expand a single user system to allow longer programs, im-
proved accuracy, and graphic display (additional segments).
Table 11-2 describes 2ail segments of FOCAL. Each is available
on binary coded paper tape. A simple one-pass loading procedure
adds these extra capabilities to the FOCAL system.

FOCAL Segments

Segment Name ' Function

Interpreter System

FOCAL and FLOAT The interpreter, Teletype input/ outj)ut
handler, and modified floating-point
package.

INIT The binary tape for the initial dialogue
' program.

11-30

Table 11-2 (Continued)

FOCAL Segments

Segment Name

Function

Additional Segments

-~ 4WORD
Utility
Package
' 8K
CLINE
Gr aphiCS PLOTR
Package
GRAPH

Extended accuracy overlay to FLOAT
(gives 10 digits).

Allows one user to. take advantage of
an 8K PDP-8. '

Permits scope to interact with FOCAL
to display vectors, arcs and cursors.

For use with an incremental plotter.
For use with KV8/I.

Multi-User Segments
LIBRA

Allows multiple users (up to seven) to

run and save FOCAL programs on an
8K PDP-8 with Disk.

Allows multiple users (up to four) to +
share FOCAL on an 8K PDP-8.

QUAD

Multi-User Segments

FOCAL can be shared simultaneously by more than one user
by parceliing computer time among the various users. Such a sys-
tem, referred to as time-sharing, permits one computer to serve
several persons, allowing each user to feel he has the system all to
himself. No detectable delays occur under normal operating con-
ditions. With a very heavy workioad, some users may detect only
a slight delay, less than a second, in response to their commands
to FOCAL.

The two multi-user systems associated with FOCAL are detailed
below.

QUAD (Four-User FOCAL)

"QUAD permits from one to four persons to use FOCAL simul-
taneously on an 8K PDP-8, -8/L, or -8/1 Computer. Up to four
Teletype consoles and appropriate PT08 (or DCO2 for 8/L) com-
municating units are required.

11-31

LIBRA (Seven-User FOCAL)

LIBRA allows up to seven persons to use FOCAL efficiently
on one 8K PDP-8, 8/1, or 8/L Computer. LIBRA requires, in ad-
dition to from one to seven Teletype consoles, appropriate PT08’s
or DCO2’s, and at least one disk (RFO8 or DF32). There are
two versions of LIBRA available, depending on the user’s disk sys-
tem, ie., RFO8 or DF32 version. A disk initialization routine,

DISKIN, prepares the disk for use by LIBRA. With LIBRA, user
programs can be saved, retrieved, or deleted from the disk by

library capabilities, i.e., each program is assigned a name by the
user, and a three-word command tells LIBRA what to do with
that program. In all cases, the name of a program must be one
to four characters. A directory of saved (stored) user programs:
can also be listed by LIBRA.

LIBRA Commands
There are four LIBRA commands to perform the LIBRARY

[O, S

runctions.
i T ontra o s o ~am 4L J LIV TR 1 1
1. 10 8ave a program on tne aisk, use the command

LIBRARY SAVE name

1 ¥ tlan Aiql- £
will store the entire program on the disk for

Thicg 1
To call a stored program from the disk, the command
3.10 LIBRARY CALL name
will bring the named program into the user’s area. If this is
followed by:
3.11 CONTINUE -
Execution begins at the first line of the calied program, as
if the user had typed a GO command.
3. If a stored program is no longer needed, it may be removed
from the disk by
LIBRARY DELETE name
4. The user may wish to have LIBRA list the names of all
the programs it has stored on the disk. Use
LIBRARY LIST
to obtain the directory of stored program names. Note that
the LIBRARY LIST command destroys any program in the

active user’s area by an ERASE ALL.

Lxzfvvonm v
iutiure use.

o

While using these library commands to the disk, very few errors
are possible. When saving a program (refer to subparagraph (1)
above), LIBRA may find a program with an identical name in its

11-32

zaa~aazs

name, the present program cannot be stored unt1l the user gives it
a new name. Also, the directory may be full already; therefore,
this program cannot be stored.

After the program has been stored and the user wants to call or
delete it from the disk, the only error possible is that LIBRA may
find no such program name in its directory. Check your typing to
be sure you spelled the program name correctly. The error codes
for the above have the same format as normal FOCAL error code.
They are listed in the summary of error messages.

Common Storage Function

LIBRA has swapping abilities which permit users to trade pro-
grams and data. The FCOM function allows a program to pass up
to five arguments to another program. It is used as follows:

FCOM (J,Z) stores element Z in array element J
FCOM (J) retrieves array element J

Index J has a range of 0< J <4.
The FCOM function is explained fully in LIBRA System Spec-
ifications (DEC-08-AJCA-DL).

Limitations on Focal with Libra

When operating at full capacity, LIBRA places only a few
limitations on FOCAL, none of which interfere with normal system
operation, These limitations are:

1. The command for the high-speed reader is inoperable.

2. The FADC (analog to digital conversion) and FDIS (dis-
play) functions may be used by only one user at any given
time.

3. None of the additional FOCAL segments (see below) are
compatible with LIBRA.

4. The use of the trace feature should be limited to prevent
delaying execution of other users’ commands. Trace only as
few character= as are necessary. To stop a program while
using the trace feature, it may be *1ecegeary to depress
CTRL/C more than once.

5. The search character of the MODIFY command is echoed.

- LIBRA is described more fully in LIBRA System Specifications
(DEC-08-AJCA-DL).

11-33

ADDITIONAL SEGMENTS ,

FOCAL’s capabilities can be expanded to provide greater ac-
curacy, larger user program size, increased variable storage, and
handle various graphic devices. These features are provided by
overlay tapes as described below. The powers and auses of the
segments are described below.

e
Utility Package
The utility package includes the following

4WORD

To increase FOCAL’s accuracy to 10 digits for arithmetic op-
erations. Because of this increased accuracy, there is a small de-
crease in the number of program variables that can be stored. Note
that extended functions, trigonometric and exponential, are ac-
curate to 6 places.
8K

To increase program size, the 8K overlay activates an additional
4K of core memory. This permits significantly longer programs to
be used with no decrease in the number of program variables that

1 ? oo i -~ Ve " - oy e Fo o
can be stored. The user's system must have 8K hardware for this.
¥

segment. The 8K system has all the capabilities of 4K FOCAL,
with the exception that the MODIFY command and other text
changes dc not erase variables. Only an ERASE command will
clear the storage area in 8K FOCAL.
CLINE Graphics Package

By interfacing a PDP-8 system with a VC8 control unit which
will handle a variety of display devices (34D, Tektronix 611) and
loading the CLINE overlay, vectors and arcs are displayed for
“visual inspection. The coordinate systems vary for these instru-
ments; programs in this manual are based on a 34D scope, the

coordinate system of which is:

0,800

c,C 800,0

- CLINE is especially useful for numerical control. CLINE e¢an
produce two basic types of lines: vectors and arcs; each type has
a fundamental command string and the two can be combined at
any time. CLINE will dispay a vector, the starting and ending
points of which (X0, YO and X,Y, respectively) have been defined.
To display a line, a DO 17 command must be incorporated into
the program after each set of ending points has been assigned. The
following four lines must be added to the program to display a
line: ‘ |
*16.2 SET P=X-X0; SET Q=Y-Y@3 SET R=FSQT(Q12+P12)
%¥16.3 SET Z=FDIS(6.3%R*C,P,Q,X0,Y05S5/R)

*¥16.4 SET X@=X5 SET Y@=Y .
*17.1 DO 16.25 SET Z=FDIS(R,P/RsQ/R>X0,Y0,0)5 DO 16.4

-

Note that line 17.1 resets the values of X0 and YO to the pre-
vious ending points, X, Y, by a reference to line 16.4; thus, the
end of one line automatically becomes the start of the next line.
To start the next line from a different point, assign new values to
both the starting and ending points. :

To display an arc, the following variables must be defined:
X0, YO center

X, Y starting point (y/ (X—X0)% + (Y—YO0)? =radius)
C circumference, where :

C = .5is a semicircle; C = 1 is a full circle
S direction, where

S =41 counterclockwise; S =—1 clockwise

c=.25
S=+1

X0,Y0 X,Y

After assigning values to the above variables and creating the
routine to perform, increment, and restart the display pattern, a

11-35

‘DO 16 command must be put in the program to perform the actual
display function evaluation for each set of values and then project
the results on the scope. The group 16 commands for arc gen-
eration are as follows:

*¥16.2 SET P=X-X@5 SET Q@=Y-Y0; SET R=FSQT(Q12+P12)
*16«3 SET Z=FDIS(6.3%R*CsP>QsX0-Y0>S/R)
*16.4 SET XB=X; SET Yo@=Y

As with line drawing, the last values assigned to X and Y, now
" the starting point of the arc, become the values of X0 and YO,
which here define the center of the next arc to be drawn.

For example, the following routine will dispay an arc enclosed
within a square on a 34D scope.

*1.10 SET C=.55 SET S=1; SET A=800

*1 .20 SET X0=05 SET Y2=0

*1.3@0 SET X=A; SET Y=Y83 DO 175 SET Y=A5 DO 175 SET X=0; DO 17
k1.4 SET Y=0@5 DO 17

*¥1 .50 SET X@=400; SET Y0=40@3 SET Y=Y23; SET X=20063 DO 16
*1 .60 GOTO 1.20

*16.2 SET P=X-X23 SET Q=Y-Y@: SET R=FSQT(Qt2+Pt2)

¥16.3 SET Z=FDIS(6.3*%R*C,P,Q,X0,Y%>S/R>

*¥16.4 S5ET X@=X;5; SET YB8=Y

*17.1 DO 16+25 SET-Z=FDIS(R,P/R,Q/RsX2,YF,0)5 D0 16.4
*GO

Lines 1.1 and 1.5 defined a semicircle to be displayed inside the
box described in lines 1.2, 1.3, and 1.4. When line 1.6 is reached,
CLINE will first dispay the box, and then jump to the semicircle.
The above program produces the pattern shown in Figure 11-1.

0,800

v

0 800,0

Figure 11-1 CLINE Example

PLOTR
An incremental plotter can be added to a graphics system by

using the PLOTR overlay instead of CLINE (refer to Table 11-3).
The three original CLINE functions (FDIS group) are available to
the user. This system permits the user to design and debug a pic-
ture on a scope with CLINE before obtaining a hard copy with
PLOTR. | '
. An incremental plotter can be added to a graphics system by

using the PLOTR overlay with CLINE (refer to Table 11-3). The
three original CLINE functions (FDIS group) are available to the
user. The PLOTR system permits the user to design and debug a
picture on a scope before obtaining a hard copy.

- GRAPH |
A powerful graphics function is available for the appropriate
KV 8/I device with a joystick cursor. The overlay, GRAPH,
~contains an X-Coordinate Cursor Read function, FCOM(0), and
a Y-Coordinate Cursor Read function, FCOM(1). These two
functions can be combined with the other GRAPH functions which
“are in the form FX(), for complete graphic control, including
display of vectors and arcs, use of the cursors, and erasure of the
screen. The interrupt button causes execution of group 31.

Table 11-3

Graphics Systems |

Name Function Call Results Device
built in FDIS (X,Y) points VC8 and
display 7
) . LAB-8 (AX08)}|
CLINE FDIS (R.P/R, vectors VC8 and
Q/R,X.Y,0) display
EDIS (6.3*R*C,

P.Q.X,Y,S/R) | arcs
FDIS (,,,X,Y,) | points

CLINE and same as CLINE | same as CLINE|LAB-8 (AX08)
LAB-8 '
(manual
patches)

11-37

Table 11-3 (Centinued)

Graphics Systems

FX(,4,,.)
FX (1400,,,)

erases screen
displays cursor

Name Function Call - Results Device
PILOTR same as CLINE ! same as CLINE ; Incremental
Plotter and
vC8
GRAPH FCOM value is cursor | H306 joystick,
X coordinate KV8 and
display
FCOM (1) ~ value is cursor | H306 joystick,
y coordinate KV8 and
display
group 31 called | synchronizes x, | KV8 and
by interrunt v cursors with | digplav
bar external
events
FX (0,441 XY, | vectors
X0.Y0) i
FX (C*64,211, KV8 and
XY, X0,Y0) arcs displays

WORKABLE OVERLAY COMBINATIONS

These overlays can be combined with 4K FOCAL to produce
a system with vastly increased powers that will optimize the in-
dividual user’s system. Table 11-4 shows the workable FOCAL
segment combinations. The initial dialogue and Disk Monitor Sys-

tem are included in these combinations to illustrate the many sets

possibie.

In addition to directing graphlcs instruments, FOCAL can direct
various other instruments using special programs written by the
user. The extended functions® option allows the user to tailor the

3 See DECUS Document FOCAL-17, How to Write New Subroutines.
FOCAL system to his own specifications.

11-38

Table 11-4

Allowable FOCAL Systems

1 —Must be loaded into field one
0 —Must be loaded into field zero -

X—Cannot be accepted

Y—Command may be used if disk system is built

N—Command is illegal
* _Command is different

(for Disk Monitor)

Allowed
Combinations are -
Indicated by Minimum
Entries in Vertical Hardware
Binary Segment Columns Required
FOCAL 600601111 4K
INIT (optional) 0000
"MWORD 00 11 4K
18K 00 8K
QUAD (non-8/S) 0000 8K/PTO08s
LIBRA (non-8/S) 00 8K /PT08s/DF32
CLINE (optional) 0 O ' Graphics Terminal
PLOTR (calcomp) 0 O
‘IGRAPH (KV 8/1) 0 0
LIBRARY COMMAND | YYYYNN* * DF32

FOCAL is always loaded first in the proper field.

Current FOCAL Tapes and Documents

The following program tapes and documents comprise the
FOCAL 1969 software package currently offered by DEC. This
list is subject to revision at any time. The last two letters in these
product codes stand for: D, document; PB, paper tape; LA, listing.

FOCAL-8 Manual

FOCAL, 1969 + INIT (4K, INIT)
Listing (Includes Utility Overlays)
Utility Overlays for FOCAL, 1969 Tape

(4WORD, 8K)

Advanced FOCAL Technical Specifications

11-39

DEC-08-AJAD-D
DEC-08-AJAE-PB
DEC-08-AJAE-LA

DEC-08-AJ1E-PB
DEC-08-AJBB-DL~ -

Graphic Overlays for FOCAL, 1969

(CLINE, PLOTR, GRAPH). DEC-08-AJ2E-PB
Listing (of above) DEC-08-AJ2E-LA
Extended Functions for FOCAL, 1969

(REPLACE, REMOVE) DEC-08-AJ4E-PB

Multi-user Overlays for FOCAL, 1969

(LIBRA.DF32 DISKIN.DF32) DEC-08-AJSE-PB
Listing {of above, DEC-08-AJSE-LA
Multi-user Overlays for FOCAL, 1969

(LIBRA RFO08, DISKIN.RF(0g) - DEC-08-AJ6E-PB
Listing (of above) DEC-08-AJ6E-LA
Four User Overlay for FOCAL, 1969

(QUAD.PTO8) DEC-08-AJ7E-PB
Listing (of above) DEC-08-AJ7E-LA
Four User Overlay for FOCAL, 1969

{QUAD.DCQ02) DEC-08-AJ8E-PB
Listing (of above) , DEC-08-AJ8E-LA .

Ali the above articies may be purchased from the DEC Program
Library, Bldg. 3-5, Maynard, Mass. 01754,

ESTIMATING PROGRAM LENGTH

FOCAL requires five words for each ident lﬁer stored in the
symbol table, and one word for each two characters of stored pro-
gram. This can be calculated by

55 _;_% 1.01 = length of user’s program

where s = Number of identifiers defined
¢ = Number of characters in indirect program

If the total program area or symbol table area becomes too
large, FOCAL types an error message.

FOCAL occupies core locations 15 through 32005 and 46005
through 75765. This leaves approximately 700,, locations for the

nggr < prngrﬂm {xnr{n‘pnf p*‘egram Ider}t}ﬁero’ -:-1(4 pnc]ﬁ dcvvn }.uﬁt}

The extended functions occupy locations 4600-5377. If the user
decides not to retain the extended functions at load-time, there will
be space left for approximately 1100,, characters for the user’s pro-
 gram,

11-40

The following routine allows the user to find out how many core
locations are left for his use:
*FOR 1=1,30083 SET ACI)=I
206.54

*TYPE 7%4,1%5,"LOCATIONS LEFT"

IBSLOCATIONS LEFTx (disregard error code)

A LOCATIONS command can be given with a paper-tape sys- -
tem to determine how much space remains in core for user pro-
grams and variables. Execution of this command causes FOCAL
to print four octal numbers (core memory works on a base 8
number system) representing the following locations within core:

1. start of text buﬁer} space for user’s program

2. end of text buffer space for storing variables as-
3. end of variable list } signed during program
t

4. bottom of push-down Jist (Space for.subroutines

The LOCATIONS command permits the user to optimize his
available storage space and to determine program length. If an 8K
paper-tape system is being used, the values of 1 and 2 point to
field 1. Locations 3 and 4 always point to field 0. The LOCA-
TIONS command, for example, can be used after the three pos-
sible initial dialogue responses to indicate how much core each
allows the user.

Dialogue response Yes/Yes No/Yes No/No

Locations *L *L *1
3206 3206 3206
3217 3217 3217 -
3217 3217 3217
4617 5177 5377

To get another * in order to continue with FOCAL after it has
printed the four locations, the paper-tape system user must put
5177 in location 7600. If this is neglected, a manual restart is
necessary.

Disk Monitor System users also have a command that indicates
storage allocation: LINK. The LINK command for the Disk Mon-
itor System is more limited than the LOCATIONS command for
the paper tape system. LINK must be used only to return to the
Disk Monitor; it cannot be used arbitrarily to determine core al-

11-41

location. LINK types out four locations, in the same fashion as the
LOCATIONS command, but then types a period, indicating that
control has been transferred to the Disk Monitor. A command to
the disk must then follow. -

When storing a program on the disk, the LINK command max-
imizes storage space by specifying the exact amount of memory
that is filled by text, variables, and subroutines. The core locations
printed out by LINK are used in calls to the Disk Menitor.

LOADING PROCEDURES

Read-In Mode (RIM) Loader
The RIM Loader is used to load the Binary Loader. For a de-
tailed description see Appendix C2.

Binary (BIN) Loader
See the description of the BIN Loader in Appendix C2.

USING THE BINARY LOADER
The RIN Loader will be used to lo ad a varggty of mrocrams withk

oL E1 3§ iR (O35 i.»'l Usi QIlIS vyt

the following general procedures:

1. Put tape-to-be-loaded into the reader with leader-trailer
code over the read head. Set reader control lever to
“START.”

2. Set SWITCH REGISTER to 7777 (all switches up).

3. Set MEM PROTect down (if present).

4. Set INST FIELD to the field address of the BIN Loader
(zero, or all down for the usual case).

5. Set DATA FIELD to the address of the field into which the

tape-to-be-loaded is going. Depress LOAD ADDress.

Tf the }nrrh_cnppﬂ reader i to be nspﬂ pnf down bit 0,

UV Lvauv

Depress LOAD ADDress; depress START switch.

Tape should begin reading in; if not, reload the BIN Loader -

and try again.

9. When tape stops check contents of ACCUMULATOR. If it
li¢ o~

has any lights (0-11) lit, go back

%~ o

pecnih

Paper-Tape System

FOCAL LOADING PROCEDURE
The Binary Loader is used to load FOCAL. Check to see if

11-42

the Binary Loader is in core. If location 7777 contains 5301, the
Binary Loader is probably in core; if not, load again.
The procedure for loading FOCAL is detailed below.

1. Load the FOCAL binary tape into field zero as described
under the Binary Loader.

2. The FOCAL tape will halt once while loading. If all lights
in the ACCUMULATOR are out, depress the CONTinue
key and the tape will finish loading. If any lights are lit in
the ACCUMULATOR, the FOCAL program has been
loaded incorrectly; return to Step 1 immediately preceding.

3. Set INST FIELD and DATA FIELD to zero (down). Set
MEM PROTect up (if present).

4. Place 0200 (the starting address of FOCAL) in the SWITCH
REGISTER, and depress the LOAD ADDress key.

5. Press the START key. The FOCAL Initial Dialogue will
begin. Answer the questions.

FOCAL RESTART PROCEDURE

Two methods for restarting the system are outlined below. -

Hit the CTRL/C key at any time.* FOCAL will type ?701.00
indicating a keyboard restart,. and an asterisk on the next line
indicating it is ready for user input.

OR

1. Depress the STOP switch.

2. Put 0200 in the SWITCH REGISTER (only switch =4 is
up). -

3. Depress the LOAD ADDress switch.

4. Depress the START switch.

S. FOCAL will then type *70C.00 indicating a manual restart,
and an asterisk on the next line. indicating it is readv for
user input.

SAVING FOCAL PROGRAMS
To save a FOCAL program on-line, proceed as follows:
1. Respond to “*” by typing WRITE ALL (do not depress
the RETURN key vet.

4 CTRL/C indicates holding down the Control kev while depressing
the “C” key. This convention is used throughout the loading procedures.

11-43

2. Turn on low-speed tape punch by pushing down the “ON”
button. |

3. Type several “@” signs to get leader tape (simultaneously
hold down the “SHIFT”, “REPT”, and “P” keys in that
order, reiease in the reverse order).
Depress the “RETURN” key.

Wwhen the program has been printed and punched out:

B~

Type several more “(@” signs to get trailer tape.
Tdrn O‘H: tha tarns ~

1L o (.Lk.l\/ tlhll\all

5.
6.
The user may now continue with another FOCAL program. The
- previous FOCAL program still in the computer.

Multi-User Systems

LIBRA LOADING PRGCEDURE
LIBRA is loaded over FOCAL. For this system, FOCAL is

T A T £.13 1 ML YLl T A 1 J
FAV IRV AWAN S .'.11‘!‘:\.-' IInInE . R oaaM RRragr Y OSSUAVILL, HIVUYYL YU '-‘Y' mnqt ho mn ﬁe}d ﬂ

Do not load FOCAL’s Intial Dialogue. Tne Disk “WRITE LOCK”
switch must be off.

1. Load the FOCAL binary segment into field 1 using the
description in the section on the Binary Loader.

2. Load the LIBRA binary segment into field O as described

under the Binary Loader.

When the tape halts, depress the CONTinue switch. The

tape will continue to load in. Load DISKIN (the binary

segment after LIBRA) the same way.

4. Set INST FIELD and DATA FIELD switches to zero.

w)

5. Place 200 in the SWITCH REGISTER and depress the
LOAD ADDress key.

6. Press the START key. The DISKIN Initial Dialogue will
begin. Answer the questions as in the section on DISKIN
Initial Dialogue, described below.
FOCAL/LIBRA is now ready to be shared Dy S€ven USers.
LIBRA STOP AND RESTART PROCEDURE

To stop the system during operation, hold down switch 11 until

the system halts. To resume operation, press CONTINUE or go to
step 4 of the LIBRA 1 OADING PROCEDURE. '

-44

~
/

Jrash
[y

_ NOTE
After running LIBRA or DISKIN, two loca-
tions in the Binary Loader must be restored
before the Loader can be used again. Load
1355 into location 7750, and load 5743 mto
location 7751.

DISKIN INITIAL DIALOGUE

The disk initialize overlay, like LIBRA, has two versions: one
to clear a DF32 Disk System, and the other for a RFO8 Disk Sys-
tem. DISKIN does not save the contents of the disk." ‘

The overlay is short and can be quickly loaded with BIN. It
will not destroy the LIBRA system that is currently in core. This
allows the disk to be cleared at any time without reloading the
entire system.

1. Load the DISKIN overlay tape into field 0 using the Binary
Loader as described in the section on USING THE BI-
NARY LOADER WITH FOCAL. '

2. Start at 0200 in field O as in steps 4 and 5 of Using the
Binary Loader.

3. The overlay types “FOCAL DISK (DF32) INITIALIZE?”
for a DF32 System and “FOCAL DISK (RFOS) INITTIAL-
IZE?” for an RF08 System.

4. To clear the disk directory, type Y. Any other answer causes
the program to go to step 9, below.

5. The overlay types the question “NO. DISK SURFACE"” -
meaning the number of disks to be used.

6. Type 1, 2, 3, or 4 for the number of disk surfaces to be used.
Any other answer goes back to step 5.

7. The overlay then types the number of free blocks available
for use in the form XXX FREE BLOCKS, where XXX is
the octal number of programs that can be stored according
to the number of surfaces selected.

.8. The overlay then cleans the directory and confirms by typing
“DIRECTORY WRITTEN".

9. The overlay then types “SWAP AREA INITIALIZE?”.

11-45

10.

11.

12.

13.

14.

If the swapping areas are to be initialized, type “Y”. Any
other answer returns control to FOCAL.

The overlay cleans the swapping areas and confirms success
by typing “SWAP” AREAS WRITTEN” and returns controi

~ to FOCAL.

The message “TO FOCAL” is typed before entering the
FOCAL system. '

Typing a CTRL/C aborts the dialogue and transfers to
FOCAL.

The message “DISK WRITE ERROR” indicates that the
disk is not operational or write locked. Remedy the cause
of the error and reload the initialize overlay.

QUAD LOADING PROCEDURE

1
4

o

. Load the first Section of the FOCAL tape into field 1 as

described in USING THE BINARY LOADER. When the
tape halts the first time, remove it from the reader.

Place the QUAD tape in the reader. Hit the CONTinue key.
The QUAD tape will read in.

When the tape halts, put 0200 in the SWITCH REGISTER
and set INST FIELD and DATA FIELD switches to O
depress the LOAD ADDress key.

Depress START key. QUAD will respond with 700.60 on
all four Teletypes. FOCAL i1s ready for use at each of the
four Teletypes.

The program can be restarted as outlined in FOCAL RE-
START PROCEDURE. :

The program may only be stopped after typing CTRL/C
on each user Teletype.

UTILITY PACKAGE LOADING PROCEDURE

i.
" FOCAL LOADING PROCEDURE. Complete the Initial

Load and Start FOCAL pius INIT as described under

Dialogue.
Press the STOP key.
' 11-46

3. If 10 digit accuracy is desired, load 4WORD binary tape
(the first segment) into field zero as described in the sec-
tion on the Binary Loader.

4. If long programs are to be run (up to 8000 characters),
load 8K (the 2nd segment) into field one as in. the section
on the Binary Loader.

5. LOAD ADDress 200 as per steps 4 and 5 under the Binary
' Loader.

6. Press the START key.

GRAPHICS PACKAGE LOADING PROCEDURE

This set of three segments permits program control of vector
generation and other graphic controls for different devices. The
three successive binary sections are called CLINE, PLOTR, and
GRAPH, respectively.

1. Load and Start FOCAL as described under FOCAL LOAD-
ING PROCEDURES.

2. Hit the STOP key.

3. Load the desired binary segment into field zero using the
Binary Loader as described in the section on USING THE :
* BINARY LOADER.
a. Use CLINE if using a VC8/I (or 34D).
b. Use PLOTR if using an incremental plotter.
c. Use GRAPH if using a KV8/L

4. Set SWITCH REGISTER to 0200; set DATA FIELD and
INST FIELD to zero; press LOAD ADDress; press START.

Disk Monitor System
Use one of the following sections.

4K FOCAL WITH DISK MONITOR

Having built the Disk Monitor System, copy the FOCAL tape
onto the disk using PIP, and then load and start FOCAL on the
disk system by using the LOAD command. (Refer to DEC-DS8-
SDAB-D, Disk Monitor System, Programmer’s Reference Manual.)
Give a starting address of 200.

1. Complete the Initial Dialogue; press STOP; LOAD ADDress
7600; press START.

11-47

(O8]

Return to Disk Monitor by the FOCAL command “L”.
Initiatize the Disk Files by typing the following SAVE

~commands after the period typed by the Monitor.

SAVE START ! 4600-7577;200
SAVE FOCAL ! 0-3377;

To run a FOCAL program, call FOCAL from the Disk.

JFOCAL

START

700.00 (FOCAL prints the error code for a con-

* - sole restart and an asterisk to indicate it is
ready to accept commands.)

To save a program, it must be given a name. Note that page
0 is also being saved.

*LOCATIONS (User)
(returns command to Disk Monitor)
3206 (a)
3217 (b) (FOCAL)
3217 (¢) (Disk Monitor)
4577 (d)
SAVE(Name): 0.(a) - (b); (User)
¥o continue to use the same program, add the command
START
700.00

*

After FOCAL types the error code and asterisk, the user

TOYAT Temngran
can continue with the same (saved) FOCAL program.

To run a program that has been stored (as previously de-
scribed), LOAD ADDress 7600, press START, and type the
following routine:

JFOCAL

.CALL(name)

START (line feed will not occur) _

200:00 (FOCAL types the error code for a manual
restart and an asterisk to indicate it is ready’
to accept commands.)

11-48

FOCAL WITHOUT SOME EXTENDED FU

P IR WL 78S &)

NCTIONS

NJSivVEE o X 1 A3

UNDER THE DISK MONITOR

To use FOCAL without some of the extended functions, load
FOCAL as under FOCAL Loading Procedures but give a starting
address of 7600. Then issue the following commands to the Disk:

«SAVE FOCAL ! @2-75775290
-FOCAL

Now configure the system you want to use by answering the
dialogue’s questions.

- 8K FOCAL WITH DISK MONITOR

1.

3.

Save 8K FOCAL by issuing the following commands after
the “L” command (see step 8 of 4K FOCAL WITH DISK
MONITOR, preceding).

.SAVE ST8K! (d) - 7577:200
SAVE FCLS! 0-3377
SAVE NULS! 10100;10113 (to initialize program:.

text area)
SAVE NAME: 10100-(b);10113

To run a FOCAL program requiring 8K of memory, get
FOCAL from the Disk.

«FCL8
<NULE
«STEK
20020
*

The above 3 commands to DISK are the appropriate starting
sequence for a FOCAL program.

To save procedure for a finished 8K program is similar
to 4K

SAVE NAME: 1 (a) -1 (b);10113

Add the following command to save a set of variables in
field 0.

SAVE DATS:0,3000 - (c):

11-49

The SAV DATS8 command stores a set of data (variables)

located in field 0.

To set up a new program with a particular data set, type:

FCLE
«CALL
«CALL
«STEK
20027
*

LATH
NAMH

Refer to DEC-08-SDAR-D, Disk Monitor System Programmer’s
Reference Manual for addltlonai information.
08 FIELD © ’ C’S FIELD
i77g page O, BK j—— , o 1274 2K
6 3207g n:eir;rne‘—er !
\\
\
€ SiGiogue AN
L “\.
e \ ST \S/i\
zr.abl _,—-—»(3 sk)
e ,(:2’6 i : i
e cuihE »
- = g
L b'7800C,

g% Moretor hegder s Sinary Locde
a,b.c.d above point to the values indicated by the LOCATIONS
command.

a. Start of text bufier.
b. End of text buffer.
c. End of variabie iist.
d. Bottom of push-down list. Value depends on which func-

tions are retained and which additional system segments

are used.

a’ and b’ point to the corresponding locations in field 1.
The FOCAL interpreter is in field 1 when using QUAD.

Figure 11-8 Core Map for FOCAL
11-50

with Disk Monitor System

QUAD ERROR PROCEDURES

If the four user FOCAL system appears to fail in some way,
determine which of the four circumstances outlined below is ap-
plicable. Then try suggested procedure A under that category.
If this does not restore operation, then try procedure B. If the sys- .
tem still does not respond correctly, as a last resort reload the
overlay. Keep a log of all procedures tried.

1. ‘If interrupt if OFF, and RUN is ON:

A. Hit STOP; note the contents of the PC; plit that number into
Sense Switches and hit LOAD ADDress: hit START.

B. If the system has Power-Fail/Auto-Restart, turn the key to
OFF; turn the key to ON. |

2. If interrupt is OFF, and RUN is OFF:

Try 1.B. -

If the system has a disk, there may be a disk error fiag raised;
try 1.A above. ' '

© >

If the Interrupt is ON: .
. Type Control/C on all Teletypes.
Load Address 200, and START.

3.

A

B - .

4. Tf the Teletypes occasionally produce garbage:

A. Adjust the timing on the Teletype control module.
B

Reload the overlay.
C. Call field service.

QUAD TELETYPE PROBLEMS

Since both the paper tape reader and the Teletype keyboard are
perceived by the computer as similar input channels, some con-
flicts have been known to arise. While it is important for the user
to have control of the computer from the Teletype, he may tempo-
rarily lose that control if:

1. The reader runs so fast as to fill up a program input buffer.
The program will then remove the keyboard momentarily
from the interrupt bus in order to process the input buffer;
the user could prevent the buffer from filling by manually
stopping the tape at intervals.

11-51

The user types so fast as to fill up an input buffer or holds
down the REPEAT and RETURN keys. At this point the
program will ignore a character coming from the Teletype,
possibly reading it as a garbled character.

In the QUAD system there is a procedure for the user to
follow that wili prevent buffer overflow problems: the user
may type a CTRL/R to prevent character echoing. The re-
duced load on the program permits FOCAL to Keep up with
the input buffer.

The more general, but costlier, solution is to install the so-
called “XON L XOFF” control. This device, when instailed
on a Teletype, permits discrimination between keyboard and
reader.

Other problems which may arise are documented below with
suggestions for their solution.

3. When a modem (device which interfaces data between the

W

computer and the Teletype) is attached to the computer, the
program does not have control over the reader. which causes
the reader to look like a fast typist as in example 2, above.
The same solutions may be used to alleviate the problem.
There is another unique problem which arises with the input
of the carriage return character because the carriage return
is echoed by FOCAL as a “carriage return/line feed/
asterisk” combination (a three-for-one expansion). Do not
hold down the REPEAT and RETURN keys as this will fill
the output buffer three times as fast as the input buffer.

T 2

It this happens, FOCAL puts the user into an ouput-wait

status. This reverts to example 1 which disables the user

from the interrupt bus.

When long program tapes are read, the carriage return char-

acters may cause the ocutput buffer to become full as in ex-

~ample 4. The solution here is the same as for exampie 2; the

user must follow the procedure of typing a CTRL/R before
reading in the program tape.

11-52

6. When reading in data tapes, it is also possible to encounter
the three-for-one probiem as in example 4. The solution is
'to use CTRL/R to turn off the echo. In certain severe cases
where much output is interspersed between input data, it will
be necessary to stop the tape manually before the ouput buf-
fers fill. ‘

Once the user has disabled the echo feature of FOCAL and read
in his tape, the echoing can be again enabled by typing CTRL/T.

It, for some reason, the program is manually stopped by the user
or by a power failure, it is possible for user programs to become
garbled. The solution is to install the Power-Fail/Auto- Restart op-
tion on the computer. This simple addition to the system turns
QUAD into a Failsafe/Turnkey system. It is then possible to turn
the key to PANEL LOCK and remove it. This prevents manual
interference and allows the system to be activated by control of the
power source as easily as controlling a light bulb.

EQUIPMENT REQUIREMENTS

FOCAL operates on a 4K PDP-8/I, -8/L, -8/S, -8, -12, -5, or

LINC-8 Computer with a 33 ASR Teletype. Optional equipment
includes an analog-to-digital converter and an oscilloscope display. .

THE INITIAL DIALOGUE

After FOCAL has been loaded and started FOCAL identifies
itself and the type of computer being used; FOCAL then types the
options available to the user for retention of the mathematical
functions. If these functions are not needed, the user answers
FOCAL’s questions by typing NO and the RETURN key, and
FOCAL erases those functions from core; thus, the user gains ad-
ditional core storage for use by his programs.

Alternate initial dialogues are shown below
CONGRATULATIONS!!
YOU HAVE SUCCESSFULLY LOUADED 'FOCAL»1969' ON A PDP-8 COMPUTER.
SHALL I RETAIN LOG, EXP, ATN ?:YES
PROCEED.
*

When the user answers YES tc the above question, all math-
ematical functions are retained, and the user has approximately
700,, locations available for his programs.

11-53

CONGRATULATIONS!!

YOU HAVE SUCCESSFULLY LOADED 'FOCAL»,1969' ON A PDP-8 COMPUTER.
SHALL I RETAIN LOG, EXP» ATN ?2:NC

SHALL I RETAIN SINE, COSINE ?:VES

PEOCEED.

*

~ vﬂ’\ﬂnv

the uger answers NO to the first question, UL \[. asks a
second ques‘uon A YES answer to the second qu on leaves ap-
proximately 900;, locations available for the user’s 1 ograms.

o]
ey

CONGRATULATIONS!!
YOU HAVE SUCCESSFULLY LOADED 'FOCAL, 1969' ON A PDP-8 COMPUTER-.

SHALL I RETAIN LOCGs, EXP>, ATN ?:NO
SHALL I RETAIN SINE, COSINE ?:NO
PROCEED.

*

A NO answer to the second question erases all exterded func-
tions from core, giving the user 1100, locations for use with his
programs. To determine the exact number of locatiOnS avallable,
use the LOCATIONS command.

Note that logarithm, arctangent and exponential functions can-
not be retained without the sine and cosine. Refer to DEC-08-
AIBB-DL, Advanced FOCAL Technical Specifications for another

way to eliminate the extended functions.

After the initial dialogue has been answered, FOCAL auto-
matically erases it from core. FOCAL concludes the initial dialogue
by telling the user to PROCEED followed by an * and waits for
user input.

EXAMPLES OF FOCAL PROGRAMS

Disciaimer

The FOCAL-8 demo programs that follow are exampies or sug-
gestions of procedures for writing games, quizzes and problem
solving routines. These routines are in no way meant to be con-
sidered a final product of development.

Addition Exerciser A

ABSTRACT: This is an educational routine designed for children
in elementary school. The purpose and result of this routine com-
plement each other. First, the purpose of this routine is to quiz the _
child in basic addition, so that he may learn to associate num-
bers and quantities at a more rapid pace. The result of this is that
the student is introduced to the computer at an early age. He will
eventually conclude that he can not only learn and have fun with
the computer, but he may also conclude that it is a very applicable
tool. And there is always that chance that later in life he may re-
member his past experience.

OPERATIONAL PROCEDURES:

1. “Addition Exerciser” is loaded via FOCAL-S.
2. Type “GO” and execution begins.

3. A sample run follows.

*ERASE ALL

*

. #WRITE ALL
C-FOCAL, 1969

@l.85 TYPE "HELLO, PLEASE ADD THE FOLLOWING SETS OF NUMBERS."!
91«10 SET A=FABS(FITRC190@*%FRAN())); SET B=FABS(FITR(99*FRAN()))
Bl1.20 TYPE 27> As!'Bs!*--~--=- e

01.30 ASK REPLY,!

Pl+40 IF (REPLY-A-B) 2+151+552.1

P1.50 SET WR=0:;TYPE "THAT IS CORRECT."!

Pl1.60 GOTO 1.1

@2.10 SET WR=WR+1; IF (WR-2) 2.2,2:253.1
g2.290 T *SORRY. TRY AGAIN,'"!; GOTO l.2

@3.19 T "1F YOU ARE HAVING TROUBLE: ASK YOUR TEACHER FOR HELP.'"!
©3.20 TYPE "THE CORRECT ANSWER IS "A+B,!

23.30 GOTO 1.1

*

*GO

HELLOs PLEASE ADD THE FOLLOWING SETS OF NUMBERS.
= 602

= 73

$133

THAT 1S CORRECT.
= 89

= 53

s152

SORRY» TRY AGAIN.
= 89

= 53

11-55

Prime Factors of Positive Integers

ABSTRACT: After receiving a positive integer as input this
FOCAL-8 routine will dump on the Teletype all the prime factors
of the specified integer.

OPERATIONAL PROCEDURES:
1. “Prime Factors of Positive Integers” is loaded by FOCAL-8.
2. Tyna “GO” and recnnnd to the reguest for a pQS!tlve integer

Lt w A WA S RaARa L0

rime factors will be typed

Uw LY s,

3. A sample run follows.

*ERASE ALL
*

*WRITE ALL
C-FOCAL» 1969

@1.1@ ASK !'!"A POSITIVE INTEGER >1 PLEASE"™ N » 113 SET DI=25;SET PH=0
fi.ii1 IF aFZTF(VE-N} 1217IF (N-13 115587 P-N

Die20 IF {(P/DI-FITR(P/DIJ) ledsrie3sle4

Pi+30 TYPE "PRIME FACTOR®™ DI, {; SET P=P/DI5;GO0TO 1.2

Plesd IF (1-PHY 1lels1e535ET PH=15SET DI=DI+1i5G0T0 1.2

P1+50 SET DI=DI+231IF (DI-PJ 1.651.65 TYPE !"DONE'™!5GOTO 1.1

B1.628 IT (DI-FSQT(FABS(N22Y 1.2,1:2;8ET DI=P3COTC 1:82

*k

*GO

FLEROI: 2

PRIME FACTOR= 5

DONE

A POSITIVE INTEGER >1 PLEASE:63

PRIME FACTOR=
PRIME FACTOR=
PRIME FACTOR=

VA

DONE

- PRIME FACTOR= 47

DONE

11-56

KRepeating Decimals

ABSTRACT, This FOCAL-8 routine computes and types the
repeating decimals that appear in a fraction. The user must input
the numerator and the denominator respectively.

If the output “appears” to be repeating for a line or two, in-
terrupt the output by typing a CONTROL/C (1 C). FOCAL will
give-an error message and an astensk (*). Type “GO” if you
wish to continue.

OPERATIONAL PROCEDURES:
1. Load “Repeating Decimals” with FOCAL-8, type “GO”.
2. Input the numerator and denominator followed by a car-
riage return. And the resuts will be typed on the Teletype.
3. A sample run follows.

*ERASE ALL

*

*WRITE ALL
C-FOCAL, 1969

. P1.85 ASK " ENTER NUMERATOR AND DENOMINATOR "A:B,!

B1.18 SET Z=5

2120 IF (B-A)1.451.3; TYPE * B «"5 GOTO 2.1

21.30 TYPE !"1"!;QUIT

01.40 TYPE !"THIS PROGRAM ONLY EVALUATES FRACTIONS<1"!;QUIT

2.1 SET N=10

02+20 IF (N*A-BY 2354.154.1
9230 SET N=10%*N

P2 <40 TYPE @.05D 6

22+50 GOTO 2.2

02 .87

P4d.1@ SET C=1

P4.20 IF (N*A-C*B) 5.1
@4.3@ SET C=C+1

R4 <4p GOTO 4.2

P25.18 TYPE Z1,C-15 DO 6

05.20 SET A=N*A-(C-1)%RB

P5.30 IF (=8) 5.53TYPE !5 QUIT
B5+50 IF (A-B) 2e151435144

6«10 IF (Z-20) 6.23 SET Z=0; TYPE !
0620 SET Z=Z+13RETURN
*

*GO

ENTER NUMERATOR AND DENOMINATOR :1 t4
@ .= 2= 5

*G0O

ENTER NUMERATOR AND DENOMINATOR :134 :250
@ «= 5= 3= ¢
‘ *G0

11-57

ENTER NUMERATOR AND DENOMINATOR :1 27

@ .= 1= 4= 2= 8= S= 7= 1= 4= 2= &= 5= 7= 1= 4= 2= §
= 5= 7= = f4= 2= = 5= T= 1= 4= 2= 8= = 7= 1= 4= 2= 8= 5= 7
= 1= 4= = 8= S5= 7= = 4= 2= 8= 5= T= = 4= 2= B= 5= T= 1= 4
= 2= 8= = 7= = 4= 2= 8= 5= 7= 1= = = = §H= = i{= = 9= §
= 5= T= = 4= = 8= §= T= 1= 4= 2= = = T= 1= = 2= = 5= 7
= = 4= 2= 8= = T= 1= = 9= = 5= =.1= 4= 2= = §= = = ¢4
= 2= B= 5= T= = 4= 2= = §= T= 1= = = H= §= = 1= = 2= 8
= 5= 7= = 4= = 8= 5= T= (= 4= 2= 8= 5= 7= 1= = 2= = 5= 7
= 1= = 9= 8= 5= 7= 1= 4= 2= 8= = = {= 4= 2= = B§= = 1= 4
= 2= = B= T= 1= 4= 2= = §= T= 1= 4= 2= = 5= 7= 1= = 2= 8
= §= 7= 1= 4= 2= B= 5= 7= 1= 4= 2= B= 5= 9= 1= 4= 2= = §= 7
= i{= 4= 2= 8= S= 7= i= 4= 2= = 5= 7= 1= 4= 2= 8= 5= 7= 1= 4

.
= 5= 7=?00.00 @ 04.30

(Output continues until stopped from the keyboard)

Right Triangle _
ABSTRACT: Given the length of the first side and the degrees of

S P | Ry SV (Y S S S-SR S A hcismmnbnemvran 4l 14 4+

i€ aqjacent angic, tnis IGulne COMmpUIes 18 nypowCnust, wil 1INgut
” 1 h |

of the second side, and the number of degrees for the other angie

ai s2

OPERATIONAL PROCEDURES:
I. “Right Triangie” is ioaded by FOCAL-8. Type “GG”, sup-
ply the length of S1 and the degrees of the adjacent angie.

The results will be returned on the Teletype.

2. A sample run follows.

*ERASE ALL
*

*WRITE ALL
C-FOCAL,» 1969

Pl.18 ASK °'SIDE S! EQUALS™ Si
21-20 A ™ ADJACENT ANGLE A2 EQUALS™ A2; TYPE "DEGREES"!!

11-58

©1.30 S RATI0O=3.141592/1805 SET Al=90-A2
@1.40 SET HYP=S1/FSINCA1*RATIQ); SET S2=FSQTC(HYP12-S5112)
Pg1.50 T "SIDE S2 ", S2,!', "HYPOTENUSE", HYP,!
B#l.60 T 'ANGLE Al"> Al, !
*
*GO
SIDE S1 EQUALS: 4
ADJACENT ANGLE A2 EQUALS: 35
DEGREES

SIDE S2 = 2.801
HYPOTENUSE= 4.883
ANGLE Al= 55.00

*

Roots of a Quadratic
ABSTRACT: Given values a, b, ¢, of a first degree quadratic
equation, this FOCAL-8 program computes the roots of the equa-
tion.
Based on the quadratic equation therum given ax?+bx+c=0,
then x=—b* /b*> — 4ac
2a

Then the following principles are applied:
if: a, b, and c are real then:

1. if b> — 4ac is positive—then the roots are real and unequal.

2. if b2 — 4ac is O—then the roots are real and equal

3. if b?— 4ac is negative—then the roots are imaginary and
unequal.

OPERATIONAL PROCEDURES:
1. Load “Roots of a Quadratic” with FOCAL-8.
2. Type “GO” and input the values of a, b, and c, and ex-
ecution begins. ‘
3. A sample run follows.

*ERASE ALL
*

*WRITE ALL
C-FOCAL, 19€9

21.10 ASK !! ?A B C 7?53 SET ROOT=Bt2-4*A%C

Pl1.20 IF C(AY 145135164 .

21.30 TYFE ! "THIS IS A FIRST DEGREE EQUATION' !; GOTO 1.1

Pl.40 TYPE %6.23s ! " THE ROOTS ARE": IF (ROCT) 175146

21.50 TYPE !'»(-B+FSQTC(ROCT))/2%A5 15 (~-B-FSQT(ROOTII/2%A5G0TO 1.1
P1.60 TYPE ! ~B/2*%A»!'5 GOTO 1.1

P1.7% TYPE " IMAGINARY "!>-B/Z2%A," + (" FSQT(-ROCOTI/Z2%A,")" M%1I"
P1.80 TYPE !',-B/2%4," - ("> FSQT(-ROOCT>/2%A,")*x1", '5G0TC 1.1

%

*G0

11-59

6 15 B 36 C 23

THE ROOTS ARFE IMAGINARY

== (.600 + (= Qe 4903 %1
=- Q.6020 - (= Beld903%1

Perpetual Calendar

ABSTRACT: Given month/date/year, the “Perpetual Calendar”
will type the day of the week.

1 endar” is loaded by FOCAL-8

2. Type "GO” respond to the dialogue and your answer is
typed back immediately.

3. A sample run follows.

*ERASE ALL

*

*WRITE ALL
C~-FOCAL, 1969

ol

Bl.1@ ASK !"WHAT IS THE DATE ? (MM/DD/YYYY) '"MsK.Cs!
@1.20 S C=C/10035S D=FITR(«1+10@*%(C~-FITR(CIJ>J5;5 C=FITR{(C)
Pl1.38 S M=M-2; IF (M) Ss.4, 5.45; GOTO 5.5

25.42 S5 M=M+125;S5 D=D-131 (-D)5.5:,5.5;5 D=%95;S C=C-1

235458 S X=FITR<FITRLZ2:6%¥M=21+K+D+FITRID/LI+FITRIC/ 43 -2%C>
@560 IF (X=6) 54755755 XK=X~-75G 546

@5.7@ T !"THE DAY IS "; DO 6.1

0580 IF (M¥1EG+K*1E4+C - Q)5.9,5.8555.9

8585 T " , TODAY '"

85.90 T i3 GOTO 1.1

610 I (X26.26,56.251 {(X-26.2156+2856-15

@615 1 (X-436.2356.2451 (X-6)6.2556.263

@6.20 T TSUNDAY

@g6.21 T "MONDAY

26.22 T "TUESDAY

26.23 T "WEDNESDAY

@6.24 T "THURSDAY

06.25 T "FRIDAY

06+.26 T ""SATURDAY

26.50 ASH MsK,C3DC 1-.25D 1+35 SET Q=M*1E6+K*1E4+C3G0TO 1.1
*G0

WHAT IS THE DATE ? (MM/DD/YYYY) :4/:3/:1970

THE DAY IS FRIDAY

WHAT IS THE DATE ? (MM/DD/YYYY) :18/:15/:70
THE DAY 1S WEDNESDAY

WHAT 1S THE DATE ? (MM/DD/YYYY) :?00.00 @ 21.10
%

11-60

King of Sumeria

ABSTRACT: The “King of Sumeria” is a game which challenges
your ability to foresee the consumer market. Hamurabi, your ser-
vant, will state the following facts about last year, and you must

decide the number of acres you will need, and how many bushels
of grain you expect to distribute as food. You will base your de- .

cisions on these facts:

Number of people who died of starvation.
Number of new people that came to the city.
Number of acres owned by the city.

Number of bushels harvested per acre.

Total number of bushels that were harvested.
Number of bushels that were destroyed.
Number of bushels currently in storage.

Nk

Then based on your decisions, Hamurabi will state a new report
of the above information.

OPERATIONAL PROCEDURES
1. Load FOCAL-8, without extended functlons
2. Load the “King of Sumeria”, following the loading instruc-
tions for paper tape. _
3. Type “GO” and the game begins. (A sample run follows)

*ERASE ALL

*

*WRITE ALL
C-FOCAL, 1969

1.18 S P=9535 S$=28003S H=30080:;S E=200;S Y=3;S5 A=100805S 1=53S5 Q=1
p2.19 S D=0
B2.20 D 63T !'!1!"LAST YEAR"!D>" STARVED,
P2.25 T 'I," ARRIVED,';S P=P+I3;1I (-Q)2.3
P2.27 S P=FITR(P/2);T !"**xPLAGUE*x*'"!
9230 T !'"POPULATION IS"P.!!'"THE CITY OWNS
22.35 T A,'" ACRES.”!!31 (H-1)2.53T "WE HARVESTED
B2.40 D 3.2
P2.590 T !" RATS ATE "E," BUSHELS,YOU NOW HAVE
2.62 T !5," BUSHELS IN STORE."!
P31 D 65D 8;S ¥Y=C+173T “LAND IS TRADING AT
@3.20 T Y.»" BUSHELS PER ACRE;";S C=1
8332 D 4.33A " BUY?'"IQSI (Q>7.2,3.8
@340 I (Y*Q-S33+9+3+65D 4.65G 3.3
03+50 D 4+455G 3.3
D368 D 395G 4.8
P37 S A=A+Q3S S5=5~Y*Q;S C=0
T P3.820 A !"TO SELL?™!1Q51 (Q)7.2:3.955 Q2=-351 (A+Q)¥3.5
@390 S A=A+Q3S 5=5-Y*Q35S C=0

11-61

g4+1@ T 'UBUSHELS TO USE

Plasll A ™ AS FOOD?"IQ5 I (Q)7+231 (Q-SY4.2,4.73D 4+63G 441
@420 S $5=5-Q@35 C=1
04.3%2 A '"HOW MANY ACRES OF LAND DO YOU WISH TO

@4.35 A !'"PLANT WITH SEED? "D

PLeHA T (D)Te231 CA-DYZ4.4531 (FITR(D/2)-S-1)4.653D 4.63G 4.3
Bae45 D 455G 443 '
Ba.58 D 75T A" ACRES."!

P4.60 D 73D 2.6

P4.65 1 (D-10%P-1)5.13D 73T P,'" PEOPLE."!'3G 4.3

B4e70 D 4.2] _
F4.8% D 63T YOU. HAVE NO GRAIN LEFT AS SEED 1i17iS D=3

$5.10 S S5=5-FITR(D/253D 835 Y=C35 H=D*Y

P5.20 D &3S E=031 (FITR(C/2)-C/2)5.3;S E=S/C

2530 S S=S-E+H3D &3S I=FITR(C*(20%A+S)/P/100+1)35 C=FITR(Q/2¢)
BS540 S Q=FITR(IF*FABS(FRAN()JIJI;I (P-CJ)2.135 D=P-C;3;S P=C3G 2.2
B6.10 T !!"HAMURABI: "%5

@7.10 1 (CY7.23S C=C-1:D 63T "BUT YOU HAVE ONLY':R

P7.26 D 63T !"GOODBYE!"™!!;Q
@8.10 S C=FITR(S5%FABSC(FRAN()))+1

*

*

*G0
HAMURARI :
LAST YEAR

= @ STARVED»

= 5 ARRIVED»
POPULATION 1IS= 196
THE CITY OWNS= 1823 ACRES.
WE HARVESTED= 3 BUSHELS PER ACRE;

RATS ATE = 200 BUSHELS,YQU NOW HAVE

28¢7¢ BUSHELS IN STORE.

HAMURABI ¢ LAND IS TRADING AT = 21 BUSHELS PER ACRE:;

HOW MANY ACRES OF LAND DO YOU WISH TGO BUY?
4]

TO SELL?

HLY]

BUSHELS TO USE AS FQOOD?

120090

HOW MANY ACRES OF LAND DO YOU WISH TO
PLANT "WITH SEED? :8249 :

HAMURABI:

LAST YEAR

= @ STARVED,

= 8 ARRIVED,
POPULATION IS= 108

THE CITY OWNS= 1092 ACRES.

WE HARVESTED= 4 BUSHELS PER ACRE;
RATS ATE = . '@ BUSHELS,>YOU NOW HAVE
= 3690 BUSHELS IN STORE.

HAMURABI: LAND IS TRADING AT-= 22 BUSHELS PER ACRE; .
HOW MANY ACRES OF LAND DO YOU WISH.TO BUY?
: 308

BUSHELS TO USE AS F0OOD?

22040

HOW MANY ACRES OF LAND DO YOU WISH TO
PLANT WITH SEED? :900

. HAMURABI :

LAST YEAR

= 6 STARVED,

= 19 ARRIVED>
POPULATION IS= 112

_THE CITY .0WNS= 1230 ACRES.
WE HARVESTED= 5 BUSHELS PER ACRE;

RATS ATE = @ BUSHELS,YQU NOW HAVE
= 4959 BUSHELS IN STORE.

HAMURABI: LAND IS TRADING AT = 20 BUSHELS PER ACRE:;
HOW MANY ACRES OF LAND DO YOU WISH TO BUY?

:70 :

BUSHELS TO USE AS FO0OOD?

12300

HOW MANY ACRES OF LAND DO YOU WISH TO
PLANT WITH SEED? :950

HAMURABI :

LAST YEAR

= 2 STARVED:

= 12 ARRIVED,
POPULATION IS= 124

THE CITY OWNS= 1188 ACRES.

WE HARVESTED= 4 BUSHELS PER -ACRE;

RATS ATE = 194 BUSHELS,YOU NOW HAVE

= 4381 BUSHELS IN STORE-

HAMURABI: LAND IS TRADING AT = 21 BUSHELS PER ACRE;

HOW MANY ACRES OF LAND DO YOU WISH TO BUY?
700.0¢ & 23.30

11-63

Towers of Hanoi

- ABSTRACT: A Challenging Game in “FOCAL” and an example

of recursive programming.

ORIGIN OF GAME:
According to legend, there exists a secret society of monks living
far underground beneath the city of Hanoi. They possess three

1,

________ o e, s~ A3 ﬁ]nn

lar g¢ stacks or towers on which aif ifferent size dlbkb may be Fia\.«ﬁu

Moving one at a time and never placing a larger upon a smaller
disk, they are endeavoring to move the tower of disks from the
left stack to the right stack. The legend says that when they have
finished moving this tower of 64 disks, the world will end!

What is the minimum number of moves they will have to make?

pr—— o gee—

L il
L I

l
[

Using this program you can try your hand at a smail stack or
watch the computer solve it.

METHOD OF OPERATION:

The program is written in the FOCAL language and will run on
a 4K PDP-8. To start the program, type “GO”, followed by a
carriage return. Type a space following any response made to a
question asked by the program. To terminate the program at any
time, type 2 CTRL/C. The program must be run without extended
functions,

The program first asks for the number of disks (3 to 8). It then

asks fcr thp Lind Af on iy 1t r]pgvraﬂ ag ofl‘hpr 2 r\]nf Q‘F f‘\p (‘YQ]_(

Anaszes A r e wirax L2

positions or as a list of the moves. The final questlon is used to
determine whether you will make the moves manually, or if the
program should proceed automatically {0 to 1).

- A move is selected by determining the stack out (SO) and the
_ vertical disk number out (NO) and the stack in (SI) and the disk
number in (NI). Error checking is not performed.

11-64

Thus the next move is this example

gy S —

L] 2
[T I B

is SO:1 NO:2 SI:2 NI:3

— 1 B -
2 2
L i 3 |] 3] 1
1 2 ' 3
ALGORITHM:

The stacks are represented internally as an array (SS). The
value of a member of this array represents the size of the disk in
that position.

EXPLANATION OF “TOWERS OF HANOIL:.” PROGRAM:

Group 1 —Main Program
Ask for number of disks to be removed.
Initialize the stacks.
Move the stack (DO 2).

Group 2 —Move a specified stack.
Save move request.
To move this stack first move all but one disk

(i.e. NO-NO-1).
11-65

If the resultant stack has an odd number of disks in it,
then move it to temporary storage
(i.e. SI=6 — SO — SI).

If no disk remains to be moved in the output stack,
return. (line #£2.3).

Find the first free position on the input stack. (line
=2.5).

Move the remaining stack and the bottom piece
(#£2.6). Then move that stack back onto the
bottom piece (-**2 7, 2.8).

Restore move request and return (#£2.9).

~Group 5 —User must specify which stack for output (“SO”) and
which disk to move (“NO”). No check is made if he
cheats. (This means the possibility of inventing new
games, by the way.)
A check is made to see if he has finished (#5.4;5.5).

tho + far nf o
giuransicr i a yl'..«\.a\'
’

Group 23—Plot the status of the board.
Each piece has a size value kept the stack array S5(1).
The stacks are scanned (line #23.1) and posi-
tions on each stack checked.

*WRITE ALL
C-FOCAL, 1969

ZlePS5 T ! TOWERS OF HANOI.'!5E
@l1.1¢0 A " NO. OF DISKS? "N,!

P1.20 F I=1,N38 SSCI)=I

@1.30 S S0=13S5 SI=3

@l.40 S NCO=N3;S NI=N;S I=0

Pl.45 A "MOVES#@, PLOTS#1 ? "MOVE,!
P1.46 IF (MOVEDERR»1.47; DO 23

Pl .47 ASK "AUTO#0, MANUAL#1 ? ",451

F1:50 1 (-83¥%.1:D 2:T PIYDONE t"1t:Q

P2.29 1 £55<(S0-1)*N+NO-1>JER-2.95;

A2 .33 S T=I+1:8 NOCIY=N0O:S SOCI>»=80:38 81¢1)Y=51
P2.58 S Si=k SO SIS NO=NC-1:D 335 TEC(I)= \I D 2
@2.60 S SI=SIC13)5;S NO=NC+1;D 35D 6 -

Ve.70 S 50=6-50-515S NO=Tg(I>; DG 35 DO 2

@2.80 S SI=SI(I);S SO0=S0CIJ3S NO=NOCIY:S I=1-1
02.990 R

92.95 D 33D 63R

23.10 S NI=N

D3.20 1 [SSCC(SI-1X2*N+NIJIER,3.355 NI=NI-13G 3.2
@338 R

11-66

$5.12 &4 7 SO N0 717 51 NI 213D 6
25.30 S A=0

B5.40 F I=1,N%*255 A=A+SSCI)

P5.5@ I (=-A) S5.13T '"WELL DONE!'"!;Q
‘P6.1@ S DO=(S0-1)>%*N+NO

P62 S DI=C(SI=-1)%N+NI

P6+30 S SSC(DIY=SS(DO)

@640 S SSC(D0I=Q

06.50 I (MOVE)E»6.73D0 23;R

0670 T

1%2, 2505 NOs !SI NI,?2!

23.10 F J=1sN3T !'3F K=0»70:D0 23.3

23.20 T 1!'1;3R

23.30 IF [K-15+SS(J)*2123.65IF [-K+15+SSCI)*2123+65T *'#

£3.60 IF [K-35+SSCJ+NI*2123.7;IF [~K+35+SSCJI+N)I*2123.73T "'#
23.70 IF [K-55+SSCJ+N+N)*2]123 83 IF [~K+55+SSCJ+N+N)*23123.773T "#
23.77 S K=1083R ’ -
23.80 T ' "

e

*G0

TOWERS OF HANOI.
NO. OF DISKS? :3
MOVES#0, PLOTS#1 ? :1

#EFREH #
FERBHERRFF
FEREFHEEEEFHF # #

I
Lo

AUTO#0, MANUAL#1 2 :0

#
EERRFAEHF # #
BERERRBEREFRA # FHERF
#
#
FERBFBEERARER FREREHARS EREFF
#
FRERE
FREBFHEHEHRFF FERBREFFF #
. F
ERRER
FHEERREFFH FERAFFFRFREAE
‘ . B
#
EEEER HEGHARERS ERREFRIERGFRR

11-67

DONE

*GO

!

#

#HAES

i

TOWERS OF HANOI.
NO. OF DISKS?
PLOTS#1! 7
MANUAL#1 2

MOVES#@.»
TAUTO#0 s
S0, = 1
SI.= 2
S0-= 1
Si-= 3
SC,= 2
Si,= 2
SG, = 1
Si,= 2
SG,= 3
Sis,= 1
50 = 3
SIs= 2
S0, = 1
S1,= 2
50,= 1
Si»= 3
S0, = 2
SIs= 3
S0,= 2
Sls= 1
50, = 3
Sis= 3
506, = 2
Sl,= 3
S0, = 1
Si,= 2

NO.»
NIs

[Tal
NU2»

NI

NOs
NI»

NO»
NI,

i

1

i

1t

11

1]

HE]

it

L

B

(AN

B W w N e 0o W

W W

4]
1]

H

e

11-68

#
LEEE S A RS2
FHEBRABFEREARS

FRAEH
#EVFFELAS
FREASREBHEAESN

S0»
SIs

S0,
SIs

nou
w

W
w

DONE !

Return on Investment

'NO.

NO.»
NI~

n
i

n o
il

NI»

ABSTRACT: The book, Managerial Finance by Weston Brig-

~ham, defines “Return on Investment” (or “Internal Rate of Re-
turn”) as the interest rate that causes “the present value of the ex-
pected future receipts” to be equal to “the present value of the
investment outlay” (page 148). This equality desired could also
be called “Discounted Cash Flow Back” to be equal to “The
Present Value of Capital Employed”. '

OPERATIONAL PROCEDURES:
1. Type “GO” and answer the following:

I <MY TS AN

size of periods (e.g. .25)

number of years

amount to be depreciated

Immediate Expense (tax deductable)
additional working capital (e.g. inventory)

This is followed by a period-by-period estimate of savings
(or income) of expenses. A negative number placed in the
SAVE(T) column will cause the prior year’s savings of ex- -
penses to be repeated automatically for the remainder of -

the periods.

Assumptions: All assumptions may be changed in the ex-

ample program.

a.

b.

Tax rate is taken as 57% per year (line #12.5 in the

sample program) '
Declining balance depreciation is used. (something on

the order of straight-line depreciation when it becomes

faster; lines 5.1 and 5.2).

In computing present value, a discount factor is computed
assuming daily compound interest and distributed re-

ceipts (line 5.4).

d. Annual compound interest may be substituted by:

(5.4 SET DI = 1/(1+K) T)
11-69

*ERASE ALL

*

*WYRITE ALL
C-FOCAL, 1969

@2.20 A "SIZE OF PERIODS,YRS.'SE

$2.38 A Z»™ NUMBER OF YEARS'"N

@2.40 A '"AMOUNT TO BE DEPRECIATED"A

P2.50 5 N=N/Z535 R=«57*%Z
" @2.55 A '"IMMEDIATE EXPENSESYE, !"WORKING CAPITAL

22-60 A WC,!T T SAVEC(T) EXPENSE(T)

@2.70 F T=1,N;D 3

02.86G D 43R

03.20 <ST>3.33T 1Z4.82,T>7 ;A SCTY3I <~-SC(T¥>3.4,3.455 S5T=-1

I
$3.30 S S¢TY=S{T-1)3S E(TI=E(T-123R
?3.40 A 7 UE(T

B4a.1@ SET K=.25

@4.20 SET BA=A3 SET Y=A+WC+E*(1-R}JSET X=0;FOR T=1.N3D0 5
@4.30 SET Z=FABS{X/Y)

D4a.4Q IF <FABS(Z-1)*K-.0081>4.85SET K=K*Z3G0T0 4.2

Q4.80 T '1%6.02" R-0.1."K*1080," %

R4.91 T 117 PROFIT(BEFORE) (AFTER) CASH

P4.93 T ' PERIOD DEPREC. TAXES TAXES FLOW FACTOR
D494 T ™ VALUE™!

©4.95 S BA=A3F T=@,N;5 X=05D 5D 6

3518 S DE=FEXP{-2%T/N>
P5.280 1F <DE~(1-T/NJ)>5.3;5 DE=1-T/N

P5.30 S DE=BA-A*DE3; S BA=BA-DE
£5.40 S DI=FEXP{(K/2-K*T)
P5.50 S X=X+[S{TI-E{(TIii*{i-RI*DI
@#5.60 S Y=Y~-DE*R¥DI
B5.78 S Z=SCTI-E{TY; S Y=Y+Z*{FSGN(Z)-132/(;03*1.25T
B86.10 S Z=X/(1-R)*DI
 @E-20 T TsDEsZs(1-RI*Z,X/DI+DE>%6+24>D1»%6-02,X+DE*DI>!

*

Stock Market Commissions

ABSTRACT: During a stock purchase through a broker, a com-
~ mission will be charged based on a series of rates for units of 100
shares (even lots) and a definite set of charges for smaller units

T oa

{odd lots).

This program accepts a “buy” or “sell” indication plus the num-
ber and price of the shares involved. Given these facts, it then
computes the net vou must “pay” or “receive”.

1. “Stock Market Comm15510ns” is loaded by FOCAL-8."

2. Type “GO” and respond to the dialogue and execution be-
gins.

3. A sample run foliows.

11-70

*ERASE ALL
*

*WRITE ALL
C-FOCAL» 1969

21.05 E

P1.10 A Y!'"%x%x* BUY OR SELL?"OR

P1.20 A Y'"HOW MANY " ?SHARES PRICE 7,1

Pl+40 T %8.32,?PRICE*SHARES?," &'

@1.45 S ODD=SHARES-FITR(SHARES/100)*100

P1.50 1 (-0D) 2.085;

21.55 T” 11""ROUND LOTS

@1.60 S AM=PRICE*SHARES

Ple70 1 CAM-400) 1.73 31 (AM~2400) 1.7531 (AM-5080) 1.77;C

P1.71 S CO=AM*.001+395G 1.8

31.73 S CO=AM*.220+ 353G 1.8

B1+75 S.CO=AM*Q10+ 753G 1.8

#1.77 S CO=AM*.0@5+195G 1.8

?1.80 T "COMMISSION 1S "CO,!

21.85 I (FABS(OR-@BUY))>»>1.863S NET=QU+AM-0C-CO3T "INCOME"™:G 1.87

21.86 SET NET=QU+AM+0C+CO ;T "“OUTGO

81.87 IF (CO+0C-6) 1.9; IF (<OC+CO>/<0D+SH>-1+50) 1.8851.9+1.9
@1.88 T IS ">?NET 2" 3$",! ; GO

21.92 A “EXCEPTIONAL COMMISSION " CO3G 1.85

‘@2.85 T .11"ODD LOTS

22.1@¢ SET BROKER=.125; IF (PRICE~55) 2.2; SET BR=.250
#2.20 S5 SH=SH-0DDS

B2.38 'S5 QU=0D*PR

22.40 IF (QU-400)2.4731IF (QU-240032.45;1F (QU- 5008312 .43
02.41 S CO=QU*+P01+375G 2.8

82443 S CO=QU*.Q005+175G 2.8

B2+45 5 CO=QU*.010+53G 2.8

0247 S CO=QU*.020+15G 2.8

062.82 T "COMMISSION ON *%3,0D,'" ODD SHARES 1S "27. ?2,CO+BR*0D
22.98 S OC=CO+BR*0DDS 3 IF (OF-@BUY) 2.15 2.9 , 3.1

B2.91 T ! OUTGO'"™, OC+QU>!?

22.93 IF (SHYE,@>1.55

03.18 T !" INCOME “QU-0C.,!
03.20 GOTO 2.93

. _

*GO

***% BUY OR SELL?:BUY
HOW MANY SHARES :120 PRICE :22.5g

PRICE*SHARES= 2700.030 %

ODD LOTS COMMISSION ON = 2@ ODD SHARES IS = 12.p02
INCOME = 438.030

ROUND LOTS COMMISSION IS = 29 .52

OUTGO IS NET = 2741.58 §

*¥** BUY OR SELL?:?Q0.00 e 21419

(Program continues until stopped from the keyboard.)

11-71

11-72

Part Three

Summary of Commands,

Operations, and Error Messages

FOCAL COMMAND SUMMARY

Command Abbreviation Example of Form
ASK A ASK X, Y, Z

COMMENT C COMMENT

CONTINUE C C

DO D DO 4.1
DO 4.0
. DO ALL
ERASE E ERASE
ERASE 2.0
ERASE 21
ERASE ALL
FOR F For 1 xy.z;
~ {(commands)
FOR i x,z;
(commands)
GO G GO
GO G? GO
GOTO G GOTO34

11-73

Explanation

FOCAL types a colon for each
variable; the user types a value
to define each variable. .

Ifaline begins with the letter C, |

the remainder of the line will be
ignored.

Dummy lines

Execute line 4.1; return to
command following DO
command.

Execute all group 4 lines.
Return to command following
DO conimand, or when a
RETURN is encountered.

Erases the symbol table.
Erases all group 2 lines.
Deletes line 2.1.
Deletes all user input.

Where the command following
is executed at each new value.

x initial value of i
y - value added to i unitil i is
greater than z.

Starts indirect program at lowest
numbered line number.

Starts at lowest numbered line
number and traces entire
indirect program until another ?
is encountered, until an error

is encountered, or until
completion of program.

Starts indirect program
(transfers control to line 3.4).
Must have argument.

LIBRARY

LIBRARY
DELETE

LiBRARY
LIST

LIBRARY
SAVE

LINK

LOCATIONS

MmIcy
[RN

QUIT
RETURN

SET

TYPE

WRITE

LC

LD

-
-

LS

IF (X)Ln,Ln, Ln
IF (X)Ln, Ln;
(commands)

IF (X) Ln;
(commands)

LIBRARY CALL
name

LIBRARY DELETE

name

LIBRARY LiST

LIBRARY SAVE
name

AANNDIEY 1 15
NS LI g

QUIT
RETURN
SET A= 5/B*C;

TYPEA+B-C;

TYPEA-B, C/E;

TYPE “TEXT
STRING”

WRITE
WRITE ALL

WRITE 1.0

WRITE 1.1

11-74

Where X is a defined identifier,
a value, or an expression, followed
by one tothree line numbers.

If X is less than zero, control-is
transferred to the first line
number, if X is equal to zero,
control is to the second line
number.

if X is greater than zero, control
is to the third line number.
Calls stored program from the
disk.

Removes program from th
disk.

Types directory of stored
program names.

o]

Saves program on the disk.

For disk monitor system;
FOCAL types 4 locations
indicating start and end of text
area, end of variable list and
bottom of push-down list.

For paper-tape system; types
same locations as LINK.

Enables editing of any character
on line 1.15 (see beiow).
Returns contro! to the user.

Terminates DO subroutines,

returning to the original

sequence.

Defines identifiers in the
symboi table.

Evaluates expression and types
out = and resutlt in current
output format.

Computes and types each
expression separated by
commas.

Types test. May be followed by !
to generate carriage return-line
feed, or # to generate carriage
return.

FOCAL types out the entire
indirect program.

FOCAL types out all group 1
lines.

FOCAL types out line 1.1.

FOCAL OPERATIONS AND THEIR SYMBOLS

Mathematical operators:
g Exponentiation
_Multiplication

/ Division

+

Addition
Subtraction

Control Characters:

%o Qutput format delimiter
" Carriage return and line feed

1

Carriage return

$ Type symbol table contents

() Parentheses

[] Square brackets (mathematics)

< > Angle brackets

v Quotation marks (text string)

? 2 Question marks (trace feature)

* Asterisk (high-speed reader input)

Terminators:
SPACE key (names)

RETURN key (lines) (nonprinting)
ALT MODE key (with ASK statement)
Comma (expressions)

; Semicolen (compounds and statements)

11-75

FOCAL'S FUNCTIONS FCOS() Cosine

FSQT() Square Root FATN() Arctangent
FABS() Absolute Value FLOG() NaperianlLog
FSGN() Sign Part of the Expression - FDIS()~ Scope Functions
CFITR() Integer Part of the Expression FADC() Analog to Digital Input
FRAN() A Random number Function,

Cenerator FN EW()
FEXP() Natural Base to the Power FCOM()
FSIN{) Sine

User Function
Storage Function

FOCAL'S ERROR DIAGNOSTICS +

Code Meaning
200.00 Manuat start given from console.
201.00 Interrupt from keyboard via CTRL/C.
201.40 Illegal step or line number used.
201.78 Group number is too large.
?01.96 Double periods found in a line number.
201.:5 Line number is too large.
01,4 Group zero is an illegal line number.
¥02.32 Nonexistent group referenced by ‘DO,
?02.52 Nonesistent line referenced by ‘DO’
202.79 Storage was filled by push-down-list.
203.05 Nonexistent line used after ‘GOTO or “IF".
203.28 lilegal command used.
204.39 Leftof “="in errorin ‘FOR’ or ‘SET".
?04.52 Excess right terminators encountered.
204.60 iilegai terminator in ‘FOR’ command.
04.:3 Missing argument in display command.
205.48 Bad argument to ‘"MODIFY".
206.06 llegal use of function or number.
206.54 Storage is filied by variables.
207.22 Operator missing in expression or double ‘F’.
207.38 No operator used before parenthesis.
%07.:9 No argument given after function call.
207.:6 lllegal function name or double operators.
08.47 Parentheses do not match.
209.11 Bad argument in ‘ERASE".
10,5 Storage was fitled by text.

-211.35 Input buffer has overflowed.
220.34 Logarithm of zero requested.
423.36 Literal number is too large.
226.99 Exponent is too large or negative.
128.73 Division by zero requested.
230.05 Imaginary square roots required.
B1.<7 Hlegal character, unavailable command, or unavailable function

used.

tFor FOCAL, 1969 oply.

11-75

~ Chapter12

BASIC

CONTENTS

Introduction to BASIC Programming 12-5
About Computingcooovvrviiiiiiiici, 12-5
How to Use This Chapterc.cooeeiniiiniinnniiinn, 12-7

Fundamentals of Programming in BASIC 12-9
An Example Program and Output ..., 12-9
REM StatemMentceceeiereeeeerereeeerreieniainnieaeaseeneeeeeees 12-9
NUIMDETLS .oeiiieeieeiiiiiiirerrrtrerrereeteseaaeeaeresaesessaneannennenane 12-9
VATIADIES . ioieieiiiiiieiiieie e e e et seeneen e 12-11
LET StatemMent «.u.eeeeeiieeeiiiieeeieireereinereeecnaniseeesnnininenns 12-11
Arithmetic Operationsoc....ccocoiiiiiiiniiinniecie 12-12
Parentheses and SPacescoccvviriiiiieiniiieieninns S 12-13
FUNCHIOMS oovvvvveitieiuieeiererresnesannessarenssanesaeaesseseesesemnsmmmnmines 12-14

More Complex Functionsc..coiemiiiinnniinien, 12-15
RANDOMIZE Statementccccoooevveveieiiiiniiininiinnn. 12-17
User Defined Functions ereereeereerearerenen 12-19

Input/Output Statements e 12-22
READ Statementcccceeeueeeneee. JO TR SORRRP 12-22
DATA Statementcccvevveeeviivererreereenreereeseseresseesseeenes 1 2—23
RESTORE Statementcccccoceeieioiveriieniiniieninnniinennnn, 12-24
INPUT Statementcccccceeeveeeeeeiiiiiiiiecenerenrcieceennenen. 12-25
PRINT SEatementcoceverrvernrnenircenceccsscsenanns - 12-27
TAB Functionooooiieiiiiiie i 12-30

Subscripts and Loopsccoci 12-31
Subscripted Variablesc.ccccccooiiiiiniiiiiiiiiiiiiin. 12-31

DIM Statementccooeviiiiiiiieiiierieiiiini i, 12-33
LOOPS oot e 12-34
FOR Statementocooceureerererienunrmceeeneruecscensonns 12-34
NEXT Statementcccccooeeiiiieirieiervirrneiiieieeiieiinenn, 12-35
Nesting LOOPS ...covovveiiiivicriiiiiiciiiiiecn et eeineee s 12-36

Transfer of Controlociiiiiiii 12-37 -
Unconditional Transfer—GOTO Statement 12-37
Conditional Transferccccccceivviiiiiiiiiiiiine, 12-38

TF-THEN and IF-GOTO Statementsc...ccouun. 12-38

12-3

Subroutines e 12-39

GOSUB Statementcooeeeeeiieiiiiieeiiviiiiieii e 12-39
RETURN Statementcccoooveiiiiiiiiieececeie 12-40
STOP and END Statementsccccceevvuveeeriivnneessinnens 12-41
Nesting Subroutinesccccceevvvriivirereiniiicinineniien 1241
Errors and How to Make Correctionsccc........ee 12-42
Single Letter Correctionsc.ccccccceveeiiiiinniccninninnnnnnne, 12-472
Erasing @ Lineccccoccivviiiiiiiiiiiniceenc e 12-42
Erasing a Program in Corecccccoociirivviinnininnnnnnnnn, “12-43
Stopping a Runcccceeviiiiiiviiincnieecieei,. 1244
Running a BASIC Programccccceevevniciccrennnnnn.., 12-45
LOGIN Procedureccccoverervieneniecneiienireresescaiee e 12-45
Initial Dialogueccccoooiiiiiiiiii e, 12-45
- RUN Commandccooeveeieeiiiennnn. e 12-46
Editing Phaseccc.cccviviiiiiiiniiii e 12-47
SAVE Commandcccooeveeeeieniiieeiiiiiiie e, 1247
REPLACE Command et rra——— 1248
UNSAVE Commandcccoocvvvniiiiiniiiieeiinnrivivennene, 1248
LIST Commandcccoeevviirvmiiiinnc e 12-48
DELETE Commandc.....ccooovevvvivvvmvveninriinieennens 12-49
NEW or OLD Command eerereerrerrr——————— 12-49
CATALOG Commandcccoovvmiimniiniiinieininnn, 12-49
BYE Commandcccccoviiiiiimiiirrneiienieneeeenenenineennns 12-50
ALTMODE Keycoccocciiiriiiiereienieeeiienee rrrrreaaens 12--50
Punching a Paper Tapec.cccccovvivniimmiirccciiennnnnneinnn, 12-50
Reading and Listing a Paper Tapecccccecuverrinnnnnn. 12-51
Transferring a File to Paper Tape
or DECtape from Diskc.ccoociiveieiniiicecninicccnnnnee, 12-52
Implementation Notesc..ccooccvreiviiiiiiirenniininen. 12-52
Advanced BASIC ..., 12-52
EDIT Commandc..cocovvmiiiiereiiieienienniensiniiennnnes .. 12-53
COMPILE Commandcccooeeriiiienieceeniensnenncncnenee, 12-54
File EXtENSiONSccccccccciiviivereiiiieiiiieeneneeneneeeniarsainnse 12-55
Summary of BASIC Statementscccovvvnnnnnenne. 12-56
Summary of BASIC Edit and Control Commands 12-57
Summary of BASIC Error Messagesccccceerenneneenn. 12-60

12-4

INTRODUCTION TO BASIC PROGRAMMING

BASIC is an easy to learn, conversational, computer language
for scientific, business, and educational applications. It is used to
solve both simple and complex mathematical problems and is di-
rected from the user’s Teletype.?

In writing a computer program, it is necessary to use a language
or vocabularly that the computer will recognize. There are many
computer languages and BASIC is one of the simplest because of
the small number of readiy learned commands needed, its easy ap-
plication in solving problems, and its practicality in an educational
environment.

BASIC is similar to other programming languages in many re-
spects and is aimed at facilitating communication between the user
and the computer. The novice computer user will benefit from read-
ing the entire chapter from the beginning. The user who is already
familiar with a language such as FOCAL or FORTRAN should
first turn to the language summary at the end of the chapter.

As a BASIC user, you type in your computational procedure as
a series of numbered statements, making use of common English
words and familiar mathematical notation. You can solve almost
any problem by spending an hour or so learning the necessary ele-
mentary commands A fter becoming more experienced, you can
add the more advan. ..chniques needed to perform more intri-
cate manipulations and to express your problem more efficiently
and concisely. Once you have entered your'statements, you give a
RUN command. This command initiates the execution of your
program and causes the return of your results almost instantly.

About Computing

As we approach a computer terminal, there is a certain way we
attack a problem. It is not enough to understand the technical com-
mands of a computer language, we must also be able to correctly
and adequately express the problem to be solved. For this reason
it will be helpful to outline the process of setting up a problem for
computer solution.

The first step is to define the problem to be solved in detail.
Understand each fact and possibility within the problem before
1 At present BASIC is available only on the TSS/8 system, but plans are be-
ing implemented to provide BASIC for individual use and batch processing.

A stand-alone BASIC system called POLY BASIC is presently available
from DECUS, the DEC User’s Society.

12-5

attempting to go any further. Problems to be solved with BASIC
are generally of a level which admit to fairly straightforward
analysis.

In computing there is always more than one correct way of ap-
proaching a given problem. Generally a standard mathematical
method for solution can be found, or a method developed. Pro-
grams using the same method can still be written in more than one
correct way.

For some complicated programs a flowchart is useful. A flow-
chart is a diagram which outlines the procedure for solving the
problem, step by step.

Having a diagram of the logical flow of a problem is a tremen-
dous advantage to you when determining the mathematical tech-
niques to be used in solving the problem, as well as when you write
the BASIC program. In addition, the flowchart is often a valuable
aid when checking the written program for errors.

A flowchart is a collection of boxes and lines. The boxes
indicate, in a general fashion, what is to be done; the lines indicate
the sequence of the boxes. The boxes have various shapes repre-
senting the type of operation to be'performed in the program (in-
put, computation, etc.). Appendix C in Volume 1 of this set is a
guide to the standard flowchart symbols an< srocedures.

Following satisfactory completion of .. chart, you procede to
write the program. To do this you need to understand the various
instructions and capabilities of the BASIC language. The rest of
this chapter is designed to teach you how to write programs in the
BASIC language in a minimal amount of time.

Once the correct procedure has been coded it is time to try it on
the computer. At this point it is possible the program will not work
perfectly as originally written. BASIC will locate any mistakes the
programmer has made in typing his program and print appropriate
error messages to help him correct them. It is important to under-
stand that even if the program does run, the results will only be
correct if the problem has been correctly analyzed and proper code
written to achieve the correct solution. The computer can only do
what you tell it to do. If you have unknowingly told the computer
to do something other than what you wanted it to do, the results
will be accurate according to the information the computer proc-
essed. The computer cannot know what you really want, only
what you have told it.

12-6

How to Use This Chapter

The most straightforward treatment of the BASIC programming
language will be obtained by reading this chapter from the begin-
ning. Examples are taken directly from Teletype output so that the
reader will become familiar with the computer output and formats.
Once you have mastered the principles of BASIC language, you
will most likely only need to refer to the summaries found at the
end of the chapter. ' ,

Detailed examples appear and may be run on the computer as a
first exercise before attempting an original program.

The early sections of this chapter contain directions on how to
write a BASIC program. The section on Implementation Notes is
recommended for every reader. Once you have written several
BASIC programs you will find the section on Advanced BASIC
helpful; reading that section too early in your programming experi-
ence may be confusing. As soon as you are ready to try running a
BASIC program on the computer turn to the section on Running a
BASIC program. }

19 REMARK - PROGRAM TO TAKE AVERACE OF

15 REMARK - STUDENT GRADES AND CLASS GRADES
29 PRINT "HOW MANY STUDENTS, HOW MANY GRADES PER STUDENT";
3G INPUT AsB i
43 LET I=0

5¢ FOR J=I TO A-1

55 LET V=0

68 PRINT "STUDENT NUMBER ="3J

75 PRINT "ENTER GRADES"

76. LET D=J

8¢ FOR K=D TO D+(B-1)

81 INPUT G

82 LET U=V+G

&5 NEXT K

93 LET V=U/B

95 PRINT "AVERAGE GRADE =";V

96 PRINT

99 LET Q=Q+V

190 NEXT J

121 PRINT

182 PRINT

183 PRINT "CLASS AVERACE ="3Q/A

104 STOP

148 END

RUN

Figure 12-1 An Example BASIC Program
12-7

HOW MANY STUDENTS, HOW MANY GRADES PER STUDENT? 5,4

STUDENT NUMBER = @
ENTER GRADES

? 78

? 86

? g8

? 74

AVERAGE GRADE = 81.5

STUDENT NUMBER = 1
ENTER GRADES

? 59

? 86

T 70

2 87

AVERACGE GRADE = 75.5

STUDENT NUMBER = 2
ENTER GRADES

? 58

? 64

? 75

2 gg

AVERACE CRADE = 69.25

STUDENT NUMBER = 3
ENTER GRADES

7 388

? 92

? 85

? 79

AVERAGE GRADE = 86

STUDENT NUMBER =4
ENTER GRADES
? 60
? 78
? 85
? 80
AVERAGE GRADE

7575

CLASS AVERAGE 7746

READY

FUNDAMENTALS OF PROGRAMMING IN BASIC
An Example Program and Output

At this point the program in Figure 12-1 may mean little to you,
- although the output (following the word RUN) should be fairly
clear. One of the first things you notice about the program is that
each line begins with a number. BASIC requires that each line be
numbered with an integer from 1 to 2046. When the program is.
ready to be run, BASIC executes the statements in the order of
their line numbers, regardless of the order in which you typed the
statements. This allows the later insertion of a forgotten or new
line. The programmer is, therefore, advised to leave gaps in his
numbering on the first typing of a program. Numbering by fives or
tens is a common practice.

The next thing we noticeé about the program is that each line
begins with a word, a command to the computer to tell it what to
do with the information on that line. BASIC does not understand
the statement V=0 unless we write LET V=0. Once we under-
stand the usage of these commands we are able to describe our
problem to the computer.

REM Statement

The REM or REMARK statement allows the programmer to
insert notes to himseif or anyone who will read the program later.
The form is: -

(line number) REM (message)

Everything following REM is ignored by the computer. In Figure
12-1, line 10 is a remark describing what the program does. It is
often useful to put the name of the program and information on
what the program does at the beginning for future reference. Re-
marks throughout the body of a long program will help later de-
bugging by explaining the function of each section of code within
the whole program.

Numbers

In BASIC, as in all languages, there are conventions to be
learned. The most important initial concepts are (1) how do we
express a number to the computer and (2) how do we create
algebraic symbols.

BASIC treats all numbers as decimal numbers, which is to say
that it assumes a decimal point after an integer, or accepts any

12-9

number containing a decimal point. The advantage of treating all
numbers as decimal numbers is that the programmer can use any
number or symbol in any mathematical expression, knowing that
the computer can combine the numbers given. (In some languages
integers must be used separately from decimal numbers.)

A third form (other than integers and real numbers) we use in
expressing numbers to the computer is called exponential form. In
this form a number is expressed as a decimal number times some
power of 10. For example

23.4E2 = 2340

The E can be read as “times 10 to the—power” depending upon
the positive or negative integer following E. A number can be ex-
pressed in exponential form by the programmer anywhere in his
program. You may input data in any form. Results of computa-
tions are printed out as decimal numbers if they are in the range
01<N<1,000,000. Outside this range numbers are automatically
printed out in E format. The computer handles seven significant
digits in normal operation and input/output, as seen below:

Valuc Typed In Valuc Typed Out yB SIC
.01 .01
.0099 9.900000E—3
999909 999999
1000000 1.000000E+6

The computer automatically omits printing leading and irailing
zeros in integer and decimal numbers and formats all exponential
numbers in the following form:

(sign) digit . six digits E = exponent value

For example:

—3.470218E+8 is equai to —347,021,800
7.260000E—4 is equal to .000726

All letters are printed as capitals at the Teletype console. There-
fore, a convention used by programmers, and which occurs on
Teletype output, is that to distinguish zeros from the letter “oh”
we siash zeros ($). This enabies accurate input to the computer

12-10

(when you are typing a program previously written down) and
ease of understanding in reading computer output (in which zeros
are all slashed). Notice that unlike a typewriter, the letter “el”
does not produce the number one (1) on ‘the console keyboard.
All numbers are on the top row of the keyboard. Notice also that
the computer will not insert commas into large numbers; as we are
accustomed to doing (i.e., 1,742,300 is printed as 1742300).

Variables

A variable in BASIC is an algebraic symbol for a number, and
is formed by a single letter or a letter followed by a digit. For -
example: |

Acceptable Variables Unacceptable - Variables
I 2C — a digit cannot begin
B a variable
X AB — two or more letters
cannot form a vari-
able

We assign values to variables by either inputting these values or =~

indicating them in a LET statement.

LET Statement
Before examining the LET statement we should first clarify the
meaning of the equal sign (=). For example, the command:

12 LET A =B + C

tells the computer to add the values of B and C and store the result
in a variable called A (The number 10 is the line number men-
tioned earlier).

20 LET D = 7.2
means to store the value 7.2 in the variable D.

30 LET D = 4p6

causes the value of D which was 7.2 (above) to be chénged to 406,
12-11

The equal sign means replacement rather than equality. In
algebra the formula:

X=X +1

is meaningless, but when we say:

1 X T T W
1Y Lii &

I]

to the current vaiue of X and store the resuit
2

?

—t b

back in the variabie 2 .

Values of variables can be reassigned throughout the program
as the programmer wishes. The equal sign, then shows a replace-
ment relationship where the expression after the equal sign is eval-
uated and replaces the old value (if any) of the variable indicated.

The LET statement is of the form:
(line number) LET (variable) = (formula)

where a formula is either a number, another variable, or an arith-
metic ‘expression. The LET statement is the most elementary
BASIC statement, used when computation is to be performed or,
{o put it more gencrally, whenever 2 new value is assigned to a

variable.

Arithmetic Operations

Looking at the console keyboard we can find some of the usual
arithmetic symbols (4, —, and =). BASIC can perform addition,
subtraction, multiplication, division and exponentiation as well as
other more complicated operations explained later. Each math-
ematical formula fed to the computer must be on a single line,
with 2 line number and an appropriate command. The five op-
erators used in writing most formulas are:

Symbol
Operator Meaning Example
-+ Addition A+ B
— Subtraction A—-B
* Multiplication A *B
/ Division A /B
1 Exponentiation A1B
(Raise A to the
Bth power)

12-12

In BASIC, the mathematical formuia: -

A_7(B2J}4)
= 7(——

13 LET A = 7 % ((Bt2 + 4Y/X)

would be written:

How does the computer know what operation to perform first?
There are conventions built into computer languages; BASIC per-
forms arithmetic operations with the order of evaluation indicated
below:

1. Parentheses receive the top priority. Any expression within
parentheses is evaluated before an unparenthesized expres-
sion. :

2. In absence of parentheses the order of priority is:

a. Exponentiation
b. Multiplication and Division
~ ¢. Addition and Subtraction

3. If 1 or 2 does not clear ambiguity, the order of evaluation is
from left to right as we would read the formula.

. So in the example above, B 1 2 is evaluated first, then (B 1 2+4)

and then ((B12+4)/X), finally 7* ((B12+4)/X). Keeping the
conventions above in mind, A71B1C will be evaluated as -
(A1B) 1C, likewise A/B*C is evaluated as (A/B) *C.

Parentheses and Spaces

Use of parentheses allows us to change the order of priority of
evaluation in rule 2 above. They also prevent any confusion or
doubt on our part as to how the expression is evaluated. To make
a formula easier to write as well as read, it is frequenty a good idea
to provide more parentheses than strictly required. For example,
which is easier to read:

A*B12/7 + B/C*D12
(A*B12)/7 + (B/C)*D12

- ((A*B12)/7) + (B/O)*D12)
((A*B12))/7) + (B/O*(D12))

Each of the above formulas will be executed the same way, but

12-13

which makes the most sense to the programmer reading it, or
perhaps trying to make corrections later? On the other hand,
which has superflous parentheses not required for clarity?

Spaces may also be used freely to make formulas easier to read.

16 LET B = Dr2 + 1

instead of:
1BLETB=D12+1

Functions

BASIC performs several mathematical calculations for the pro-
grammer, eliminating the need for tables of trig functions, square
roots and logarithms. These functions have a three letter call name,
(the argument X can be a number, variabie, formula, or another
function) and are written as follows:

Functions Meaning

SIN(X) Sine of X (where X is expressed in radians)
is returned.

COS(X) Cosine of X (where X is expressed in ra-
dians) is returned. '

TAN(X) Tangent of X (where X is expressed in
radians) is returned.

ATN(X) Arctangent of X is returned as an angle in
radians

EXP(X) e* (where e = 2.712818) is returned.

LOG(X) Natural logarithm of X, log.X, is returned.

ABS(X) Absolute value of X, [X|, is returned.

SQR(X) Square root of X, /X, is returned.

These functions are built into BASIC and can be used in any
statement as part of a formula. For example:

18 LET A = SIN(ABS(X)>)/2

12-14

will cause A’ to be set equal to one half the value of the sine of the
absolute value of X.

MORE COMPLEX FUNCTIONS ,

Three other functions*are available, and although they are not
as readily useful to the beginning programmer, they will become
so as skill in designing program logic increases.

Sign Function, SGN(X) ,

The sign function returns the value +1 if X is a positive value,
0if X is 0, and —1 if X is negative. For example: SGN (3.42) = 1,
SGN(—42) = -1, and SGN(23—-23) =

10 REM- SGN FUNCTION EXAMPLE

20 READ A,B

25 PRINT "A="'A,'"B="'B

30 PRINT "SGN(A)="SGN(A),"SGN(B)="SGN(B)
49 PRINT "SGNCINTCA))="SGNCINT(A))

50 DATA -7.32, .44

68 END

RUN

A==-T.32 B= .44
SGN(AY=~-1 . SGN(B> =1

SGNCINTC(AY)=~1

READY

Integer Function, INT(X)

The integer function returns the value of the greatest integer not
greater than X. For example INT(34.67) = 34. INT can be used
to round numbers to the nearest integer by askmg for INT(X+.5).
For example: INT(34.67+.5) = 35. INT can also be used to
round to any given decimal place, by asking for

INT(X*101D+.5)/101D

where D is the number of decimal places desired, as in the following
program:

12-15

40 PRINT C(1A%RNDCA)),
and tell BASIC to run the program again. This time the resuits
will look as follows

QUm-a3® 9D
U <1 OO O
OO DRy

[OXNNAVER co i N BV]
W RN

it is possible to generate random numbers over any range. For ex-
ample, if the range (A B) is desired, use:

(B—A)*RND(@)+A

to produce a random number in the range A<n<B,

RANDOMIZE STATEMENT _

il you want the random number generator to calculate different
random numbers every time the program is run, BASIC provides
the RANDOMIZE statement. RANDOMIZE is normally placed at
the beginning of a program which uses random numbers {(the RND
function). When executed, RANDOMIZE causes the RND func-
tion to choose a random starting value, so that the same program
run twice will give different results.

For example: .

12 RANDOMIZE
20 PRINT RND(@>
320 END

12-17

will print a different number each time it is run. For this reason,
it is a good practice to debug a program completely before inserting
the RANDOMIZE statement. (RANDOMIZE uses the low order
12 bits of the time of day as a starting value, thus there are 4096
distinct starting points.)

The form of the statement is as follows:

(line number) RANDOMIZE
or (line nunber) RANDOM (abbreviated form)

To demonstrate the effect of the RANDOMIZE statement on two
runs of the same program, we insert the RANDOMIZE statement
as statement 15 below:

15 RANDOM
20 FOR I=1 TC 5 ,
25 PRINT "VALUE" I "IS'™ RND(@)

30 NEXT I

--35 END

RUN

VALUE 1 IS .7004438
VALUE 2 ‘IS «6786673
UVALUE 3 IS .72000898
VALUE 4 IS 2840528
"VALUE 5 IS .2242288
READY

,RW .

VALUE 1 IS -59855
VALUE 2 IS .3409859
VALUE 3 IS «7309656
UVALUE 4 1S .3169203
UVALUE 5 IS .3228311
READY

Clearly, the output from each run is different.

12-18

USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same math-
ematical formula in several different places. BASIC allows the
programmer to define his own functions and call these functions in
the same way he would call the square root or trig functions.

These user defined functions consist of a three-letter function
name, the first two letters of which should be FN.

We define the function once at the beginning of the program
before its first use. The defining or DEF statément is formed as
follows: ~ ‘

(line number) DEF FNA(X) = formula(X)

where A is any letter. The argument (X) must be the same on each
side of the equal sign and may consist of one or more variables.
For example:

19 DEF FNA(S) = St2

will cause a later statement:

20 LET R = FNAC(4)+]

to be evaluated as R=17.
The two following programs

Program #1:

123 DEF FNS(A)Y = Atp
28 FOR I=1 TO 5

33 PRINT I, FNSC(I}
40 NEXT I

50 END

Program #2:

1@ DEF FNS(X) = XtX
20 FOR I=! TO 5

30 PRINT I, FNSCI)
40 NEXT I

56 END

12-19

both cause the same output:

RUN

1 1

2 4

3 27

4 256
5 3125
READY

The argument in the DEF statement can be seen to have no
significance; it is strictly a dummy variable. The function itself can
be defined in the DEF statement in terms of numbers, variables,
other functions or mathematical expressions. For example:

10 ﬁEF FNA (XD X12+3%X+4

15 DEF FNB(X) FNA(X?Y/2 + FNA(X)

2¢ DEF FNCXD

SQRIX+4) + 1

The statement in which the user defined function appears may
have that function combined with numbers, variables, other func-
tions or mathematical expressions. For example:

43 LET R = FNA(X+Y+Z)

The user defined function can be a function of more than one
variable, as shown below: -

25 DEF FNL(X,Y,Z) = SQR(X12 + Yr2 + 212>

A later statement in a program containing the above user defined
function might look like the following:

1
10
11
12
20
21
22
30
31
100
110

120
130
140
150
200
205
210
220
230
240
250
260
270
280
290
300
395
310
320
330
340
350
360
800
810
820
830
840
850
860
870
880
890
900
999
RUN

REM MODULUS ARITHMETIC

REM FIND X MOD M

DEF FNM(X,M)=X-M*xINT(X/M)
REM

REM FIND A+B MOD M
DEF FNA(CA,B,M)=FNM(A+B,M)
REM

REM FIND A%xB MOD M

DEF FNB(A,B,M)=FNM(A*B,M)
PRINT "ADDITION AND MULTIPLICATION TABLES MOD M
PRINT "GIVE ME AN M'; ' ’
INPUT M

PRINT

PRINT "ADDITION TABLES MOD'"; M

GOSUB 809

‘FOR I=0 TO M-1

PRINT Is" ';

FOR J=0 TO M-l
PRINT FNACI,J,M);
NEXT J

PRINT

NEXT I

PRINT

PRINT

PRINT "MULTIPLICATION TABLES MOD" M

GOSUB 800

FOR I=@ TO M-l
PRINT I3 *;

FOR J=0 TO M-1
PRINT FNB(I,J>M);
NEXT J -
PRINT

NEXT I

STOP

PRINT

PRINT TAB(5); 03
FOR I=1 TO M-1
PRINT 1I;

NEXT I

PRINT

FOR I=1 TO 3%M+5
PRINT "-";

NEXT I

PRINT

RETURN

END

ADDITION AND MULTIPLICATION TABLES MOD M
GIVE ME AN M? 7

Figure 12-2 Modulus Arithmetic
12-21

ADDITION TABLES MOD 7

DU D WD~
NUI WD -
QoUW

MULTIPLICATION TABLES MOD 7

S e e B e

2 2 2 @ @2 © 9 0
1 @ 1t 2 3 4 5 6
2 2 4 6 1 3 5
3 2 3 6 2 5 1 4
4 @ 4 1 5 2 6 3
5 @ 5 3 1 6 4 2
& 2 66 5 4 2 2 1
READY

Figure 12-2 Modulus Arithmetic (continued)

INPUT/OUTPUT STATEMENTS

One of the most important groups of statements is the group of
I/O (Input/Output) statements. These I/O statements allow us
to bring data into cur programs during execution when and from
where we choose. Similarly, we can choose the output format which
best suits our needs. In the case of the example programs in Figures
12-1 (at the beginning of the chapter), data was typed in at the

comnsole keyboard as the computer requested it.

READ Statement

A simple way to put data into a program is with READ and
DATA statements. One statement is never used without the other.
LTIV A TN cbmbm e ookt £ blen Bronnn o
XIS INISAALY DLALCHIICIIL 1> UL L1IC 1V,

(iine number) READ (variabies separated by commas)

12-22

For example:

13 READ A,B»,C

where A, B, and C are the variables we wish to assign values. In
order to assure that all variables are assigned values before compu-
tation begins, READ statements are usually placed at the beginning
of a program, or at least before the point where the value is re-
quired for some computation.

DATA Statement

Now that we have told the computer to read the values for three :
variables, we must supply those values in a DATA statement of

the form:
(line number) DATA (numeric values separated by commas)

For example:

70 DATA 1,253

The DATA statement provides the values for the variables in the:
READ statement(s). The values must be separated by commas, in
the same order as the variables are listed in the READ statement.
Thus at execution time A=1, B=2, and C=3 according to the two
lines above.

The DATA statement is usually placed at the end of a program
before the END statement, so as to be easily accessible to the pro-
grammer should he wish to change his values.

A given READ statement may have more or fewer variables
than there are values in any one DATA statement. READ causes
BASIC to search all available DATA statements, in the order of
their line numbers until values are found for each variable. A sec-
ond READ statement will begin reading values where the first
stopped. If at some point in your program you attempt to read
data which is not present or if your data is not separated by com-
mas, BASIC will stop and print an OUT OF DATA IN LINE
XXXX message at the console, indicating the line which caused
the error. "

12-23

RESTORE Statement

If it should become necessary to use the same data more than
once in a program, the RESTORE statement will make it possible
to recycle through the DATA statements beginning with the Iowest
numbered DATA statement. The RESTORE statement is of the
form: ‘

(line number) RESTORE

For exampie:

85 RESTORE

will cause the next READ statement following line 85 to begin
reading data from the first DATA statement in the program, re-
gardless of where the last data value was found.

You may use the same variable names the second time through
the data or not as you choose, since the values are being read as
though for the first time. In order to skip unwanted values dummy
variables must be read. In the following example, BASIC prints:
4 . 2

[9%]

on the last line because it did not skip the value for the original
N when it executed the loop beginning at line 200.

19 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N

25 PRINT "VALUES CF X ARE:"™

38 FOR I=1 TO N

49 READ X

58 PRINT X,

68 NEXT I
72 RESTORE
185 PRINT

1986 PRINT "SECOND LIST OF X VALUES"

200 PRINT "FOLLOWING RESTORE STATEMENT:"
2l FOR I=1 TO N

2280 READ X

232 PRINT X,

242 NEXT I

250 DATA 4,1,2

251 DATA 3,4

YY END

12-24

VALUES OF X ARE:

1 2 3 4
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 e 3

READY

INPUT Statement

The second way to input data to a program is with an INPUT
statement. This statement is used when writing a program to pro-
‘cess data to be supplied while the program is running. The pro-
grammer types in the values as the computer asks for them.
Depending upon how many values are to be brought in by the
INPUT command, the programmer may wish to write himself a
note reminding himself what data is to be typed in at what time.

In the example program in Figure 12-3 the question is asked at -

execution time “INTEREST IN PERCENT?”, “AMOUNT OF..-
LOAN?”, and “NUMBER OF YEARS?” The programmer knows
which value is requested and proceeds to type and-enter the ap- -
propriate number.

-

10 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
20 PRINT "INTEREST IN PERCENT";

25. INPUT J

26 LET J=J/100

30 PRINT "AMOUNT OF LOAN'";

35 INPUT A

49 PRINT "NUMBER OF YEARS'";

45 INPUT N A

5@ PRINT "NUMBER OF PAYMENTS PERX YEAR";
55 INPUT M

60 LET N=Nx*XM

65 LET I=JdsM

79 LET B=1+I

75 LET R=A%I/(1~1/BtN)

78 PRINT

80 PRINT "AMOUNT PER PAYMENT ="3R

85 PRINT "TOTAL INTEREST ="3;R*xN-A

88 PRINT

92 LET B=a

95 PRINT ' INTEREST APP TO PRIN BALANCE"

Figure 12-3 Interest Example Program
12-25

.

LET L=Bx*I

LET P=R-L

LET B=B-P

PRINT L,P>B

IF B>=R GOTO 102

PRINT B*xI,R-B*I]

PRINT "LAST PAYMENT =" BxI+B
END

1900
110
120
132
140
150
169
200
RUN

INTEREST IN PERCENT? 9
AMOUNT OF LOAN? 2522
NUMBER OF YEARS? 2

NUUMRFR OF PAYMENTS PER YEAR? 4

AMOUNT PER PAYMENT = 344.9617

TOTAL INTEREST = 259.6932
INTEREST APP TO PRIN BALANCE
56.25 288.7117 2211.288
49.75399 295.2877 1916.081

- 43.11182 391 .8498 1614.231
36.32019 308.6415 1305.589
29.37576 315.5859 999 .0@35
22,27508 322.6866 667+317
1501463 329.947 337.3555
7.590824 337.3728

LAST PAYMENT = 344.9608

READY

Figure 12-3 Interest Example Program (continued)
The INPUT statement is of the form:
(line number) INPUT (variables separated by commas)

For example:

1@ INPUT A»B-C

will cause the computer to pause during execution, print a question
mark and wait for the user to type in three numerical values sep-
arated by commas and entered to the computer by hitting the RE-
TURN key at the end of the list,

s

matically useful if you care to formulate a verbal question which the

12-26

As you will notice in Figure 12-3, the question mark is gram-

input value will answer. This will be further explained in the sec-
tion on the PRINT Statement.

The output for the program begins after the word RUN and in-
cludes a verbal description of the numbers. This verbal description
on the output is optional with the programmer, although it has a .
definite advantage in ease of use and understanding.

Only one question mark is printed per INPUT statement, so the
programmer must be careful to insert the correct number of vari-
ables at that point, separating them by commas if more than one
are to be typed. When the correct number of variables have been
typed, hit the RETURN key to enter them to the computer

If too few values are listed, the message:

MORE?
will appear. If too many vaues are typed, the message:
TOO MUCH INPUT», EXCESS IGNORED

will be given.

PRINT Statement
The PRINT statement is the output statement for BASIC. De-
pending upon what follows the PRINT command, we can create
numerous different output formats and even plot points on a graph. .
In order to skip a line on the output sheet, type only a line
number and the command PRINT:

13 PRINT

When the computer comes to line 10 during the run, the paper on
the console will be advanced by one line. In the example program
in Figure 12-3, line 53 causes a blank line on the output sheet
between the section where the user enters data to the computer and
the section where the computer supplies the results of the program.

In order to have the computer print out the results of a compu-
tation, or the value of any variable at any point in the program, the -
user types the line number, the command PRINT, and the variable
names separated by commas:

12 PRINT A,BsC,DHE

12-27

This will cause the values of A, C + B, and the square root of A
to be printed in the first three of the five fixed format columns (of
14 spaces each) which BASIC uses for most output. For example
the statement:

1@ PRINT A»C+BsSQRT(A)
will cause the values of the variables to be printed like this:

12.3 i 1243

AV}
L]
(o8]
0o
L]
(03]

12.3
where A, B, C, D, C equal 12.3. When more than five variablies
are listed in the PRINT statement and separated by commas, the
sixth value begins a new line of output.

The third possibility for the PRINT statement is to print out a
message, or some text. The user may ask that any message be
printed by placing the message in quotation marks. For example:

1@ PRINT "THIS IS A TEST"”

when line 10 above is encountered during execution the following
will be printed:

THIS IS A TEST

(Going back to the example program in Figure 12-3, notice the
function of lines 80, 85, and 90.)

Looking at Figure 12-3 shows that the PRINT statement can
combine the second and third options. One PRINT command tells
the computer to print:

AMOUNT PER PAYMENT = 344.9617

It is not necessary to use the standard five column format for

outnnt A cemioprnlan (- \ un“ cauga ‘ﬂﬁp fn"nﬂn‘nﬂ teyt or Adata tn

Llput.e 4 SWaLliTe ULV ALY A CIYP: 4 LSt g A

be printed following the last character of text or data printed. A

12-28

comma (,) will cause a jump to the next of the five output format
columns. BASIC allows the -user to omit format control characters
(,) or (;) between text and data, and assumes a semi-colon. For
example: |

80 PRINT "AMOUNT PER PAYMENT =" R

will result in the same output as line 80 above.

In addition to the capabilities already mentioned, the PRINT
statement can also cause a constant to be printed at the console. -
For example:

18 PRINT 1.234, SQRC10@/4)

will cause the following to be printed at execution time:

1.234 5

Any number present in a PRINT statement will be printed exactly
as shown. Any algebraic expression in a PRINT statement will be 7
evaluated with the current value of the variables and the result
printed. _

In Figure 12-3, line 160 reads:

160 PRINT '"LAST PAYMENT =" Bx*I+B

and caused the following to be printed upon execution:
LAST PAYMENT = 344.9608

This demonstrates the omission of the format control character as
well as the ability of the PRINT statement to print text and do

calculations.
The following example program illustrates the use of the control
characters in PRINT statements:

12-29

1@ READ A»B,C

2@ PRINT A»B,C,AT2,B12,C12
3% PRINT . -

40 PRINT a3;B;3;C3A125B12;C12
53 DATA 4,5,6

68 END

RUN

4 5 6 16 25
36 :
4 5 6 16 25 38

READY

If a number should happen to be too long to be printed on the
end of a single line, BASIC automatically moves the number en-
tirely to the beginning of the next line.

TAB Function

When using the PRINT statement thus far we have had to print
a blank character wherever we wanted blank space; there was no
real control over printing. The TAB function is a more sophisti-
cated technique aliowing the user to position the printing of charac-
ters anywhere on the Teletype paper line. This line is 72 characters
long, and the print positions can be thought of as being numbered
from O to 71, going from left to right. The TAB function argument
can be positive or mnegative: TAB(—1) causes a tab over o
position 71, TAB(3) causes a tab to position 3. (The TAB func-
tion can be thought of as operating modulo 72.)

After performing TAB(n), the next character to be printed will
be placed in position n. If n is a position to the left of the current
position, a carriage return (without a line feed) is used to correctly
position the printing head.

For example:

16 PRINT "X ="3TAB(2)3"/";3.14159

will print the slash on top of the equal sign, as shown below:
X # 3

14159

12-30

The following is an example of the sort of graph that can be drawn
with BASIC using the TAB function:

30 FOR X=0 TO 15 STEP .5

49 PRINT TAB(30+15%SINCXI*EXP(=o1%X)) ;" %"
50 NEXT X

60 END

RUN

READY

SUBSCRIPTS AND LOOPS
Subscripted Variables
In addition to simple variable names, there is a second class of
variables which BASIC accepts called subscripted variables. Sub-
scripted variables provide the programmer with additional comput-
- ing capabilities for dealing with lists, tables, matrices, or any set of
related variables. In BASIC variables are allowed one or two sub-
scripts. A single letter forms the name of the variable followed by

12-31

one or two integers in parentheses, separated by commas, indicating
the place of that variable in the list. You can have up to 26 arrays
in any program (corresponding to the letters of the alphabet),
subject only to the amount of core space available for data storage.
For example, a list might be described as A(1) where I goes from
1 to 5 as shown below:
A(1), A(2), A(3), A(4), A(5)

This allows the programmer to reference each of the five elements

in the list A. A two dimensional matrix A(J, J) can be defined in
a similar manner, but the subscripted variable A can only be used

A/TH
once. A(D) and A{L, I) cannct be used in the same program,

It is possible, however, to use the same variable name as both a
subscripted and as an unsubscripted variable. Both A and A(I)
are valid variable names and can be used in the same program.

Input can be done easily using subscripted variables, as follows:

1@ REM - PROGRAM DEMONSTRATING READING OF
11 REM - SUBSCRIPTED VARIABLES

15 DIM A(53, B(2,3)

18 PRINT "AY(I) WHERE A=1 TO 5:7
20" FOR I=1 TO 5

25 READ A(I)

3% PRINT ACIJ;

35 NEXT 1

38 PRINT

39 PRINT

4@ PRINT "B(I,J) WHERE I=1 TO 2"
41 PRINT * AND J=1 TO 337

A0 T T=Y- TN 0
s LI MR Y PP 3 LIRS 4

43 PRINT

44 FOR J=1 TO 3

48 READ BLI»Q

5¢ PRINT B(I,J);

55 NEXT J

56 NEXT I

60 DATA 15253,4,5:65758
61 DATA 8,7:65554535251

65 END

RUN

ACI) WHERE A=! TQ St
1 2 3 4 5

B(I,J) WHERE I=1 TO 2

AND J=1 TO 3:

6 7 8
8 7 6

READY

DIM STATEMENT

As in the preceding examples, we see that the use of subscripts
requires a dimension (DIM) statement to define the maximum
number of elements in the array. The DIM statement is of the
form: :
(line number) DIM v, (n;), Va(Dy, m»)
where v, indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program. For example:

18 DIM A(6510)

The first element of every array is automatically assumed to
have a subscript of zero. Dimensioning A (6, 10) sets up room for
an array with 7 rows and 11 columns. This matrix can be thought
of as existing in the following form:

Aﬂn -Aml . . . AAmw
. AALH AAL1 . . . XALM
AAZO AAml . . . AAQJO
AA&O AA&l . . . AA&lo

as shown in the program below:

1@ REM - MATRIX CHECK PROGRAM
15 DIM AC6510)>

20 FOR 1=0 TO 6

22 LET ACIs0) = 1

25 FOR J=0 TO 10

28 LET A(23,J) = J

30 PRINT ACI,J)

35 NEXT J

40 PRINT

45 NEXT 1

5@ END

RUN

6 ! 2 3 4 5 ¢ 7 8 9 12
1 2 0 2 0 ¢ o0 09 o 2 0
2 @ 2 0 0 2 9 2 @ g 2
3 0 2 20 @ 2 0 @9 g 2 0
4 ¢ 2 2 2 2 2 2 @ ¢ 2
S 0 0 o 2 2 92 9 2 @ @
& 0 0 2 2 9 23 9 o @ g

12-33

Notice that a variable has a value of zero until it is assigned a
value.

If the user wishes to conserve core space, and not make use of
the extra variables set up within the array, he should, for example,
say DIM A(S5, 9) which woulld result in a 6 by 10 array which
would be referenced beginning with the A(0, 0) element.

You can define more than one array in a single DIM statement:

13 DIM A(2853, B4, 73

 wiil dimension both the List A and the matrix B,

A number must be used to define the maximum size of the array.
A variable inside the parentheses is not acceptable and would re-
sult in an error message by BASIC at run time. The amount of
user core not filled by the program will determine the amount of
data the computer can accept as input to the program at any one
time. In some programs a PROGRAM TOO LARGE message
may occur, indicating that core will not hold an array of the size
requested. In that event, the user should change his program to
process part of the data in one run and the rest later.

Loops

So far in this chapter we have seen FOR and NEXT statements
used several times in examples. These two statements define the
beginning and end of a loop. A loop being a set of instructions
which modifies itself and repeats until some terminai condition 1s
reached.

FOR STATEMENT
The FOR statement is of the form:

(line number) FOR (variable) = (formula) TO (formula)
STEP (formula)

For example:
1g FOR K=2 TO 20 STEP 2

which will iterate (cycle) through the designated loop using K as
2.4, 6,8, ...,20 in calculations involving K. When the value 20
is reached the loop is left behind and the program goes to the line
following the NEXT statement (described below).

12-34

The variable mentioned in the definition must be unsubscripted,
although a common use of such loops is to deal with subscripted
variables using the FOR variable as the subscript of a previously
defined variable. The formulas mentioned in the definition can be
real or integer numbers, variables, or expressions.

NEXT STATEMENT

The NEXT statement signals the end of the loop and at that
point the computer adds the STEP value to the variable and checks
to see if the variable is still less than the terminal value, When
the variable exceeds the terminal value contro] falls through the
loop to the following statement. '

When control falls through the loop the variable value is one
step greater than it was when the loop was last executed. For some
programs this information may be useful.

If the STEP value is omitted, +1 is assumed. Since +1 is the

usual STEP value, that portion of the statement is* frequently

omitted.

In the following example we see a demonstration of the last two
paragraphs. The loop is executed 10 times, the value of I is 11
when control leaves the loop and +1 is the assumed STEP value.

19 FOR I=1 TO 1@
20 NEXT I

3@ PRINT I

49 END

RUN

11

READY

If line 10 had been:
10 FOR I=1Q TO 1 STEP -1

the value printed by the computer would be 0.

The numbers used in the FOR statement can be “formulas” as
indicated earlier. A formula in this case can be a variable, a
mathematical expression, or a numerical value.,

The value of each formula is evaluated upon first encountering

12-35

the loop. While the values of the variables, if any, used in evaluat-
ing these formulas can be changed within the loop, the values as-
signed in the FOR statement remain as they were initially defined.

In the last example program the value of I (in line 10) can be
successfully changed in the program. The loop:

—
%)

R I=1 TO 10
T I=1

10

(SIS IR
zZ

i1 O
S |]

o -

NEXT
"will only be executed once since the value 10 has been reached by
the variable I and the termination condition is satisfied.

. NESTING LOOPS :

it is often useful to have one or more loops within a loop. This
technique is called nesting. Nesting is allowed as long as the field
of one loop (the numbered lines from the FOR statement to the
corresponding NEXT statement, inclusive) does not cross the
field of another loop. A diagram is the best way to illustrate accept-
able nesting procedures:

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES | TECHNIQUES
Two Level Nesting

—FOR ~FOR
FOR FOR
NEXT NEXT
FOR | —NEXT
NEXT

—NEXT

Three Level Nesting

—FOR
—FOR
rFOR
LNEXT
FOR

ANNDWVT
TINLEANAL

—NEXT
L NEXT

NAL - -,

12-36

A maximum of eight (8) levels of nesting is permitted. Exceed-
ing that limit will result in an ILLEGAL FOR NESTING error
message.

If the value of the counter variable is originally set equal to the
terminal value, the loop will execute once, regardless of the STEP
value. If the starting value is beyond the terminal value, the loop
will not execute.

It is also possible to exit from a FOR-NEXT loop without the
counter variable reaching the termination value. A conditional
transfer may be used to leave a loop. Control may only transfer
into a loop which had been left earlier without being completed,
ensuring that the termination and STEP values are assigned.

TRANSFER OF CONTROL

Certain statements can cause the execution of a program to jump
to a different line either unconditionally or depending upon some
condition within the program. Looping is one method of jumping
to a designated point until a condition is met. The following com-
mands give the programmer additional capabilities in this area.

Unconditional Transfer

The GOTO statement is an unconditional command telling the
computer to either jump ahead or back in the program. For ex-
ample:

188 GOTO 50

or

24 GOTO 78

The GOTO statement is of the form:
(line number) GOTO (line number)

When the logic of the program reaches the GOTO statement, the
statement(s) immediately following it will not be executed, but the
statements beginning with the line number indicated are performed.

The program on the following page never ends; it does a READ,
prints something and attemps to do this over and over until it runs
out of data, which is sometimes an acceptable, though not ad-
visable, way to end a program:

12-37

19 REM - PROGRAM ENDING WITH ERROR
11 REM - MESSAGE WHEN OUT OF DATA

20 READ X
o5 PRINT "X="X,"X12="X12
3¢ GOTO 20
35 DATA 155,12,15,28,25
40 END
RUN
= 1 Xtzg= 1
X= 5 Xt2= 25
= 10 X12= 100
X= 15 Xt2= 225
A= Z0 : Xig= 4292
= 25 X12= 685

OUT OF DATA IN LINE 28

READY

Conditional Transfer

if a program requires that two vaiues be Comparea a
logic may direct us to different procedures dependng on thu com-
parison. In computing we logically test values to see e whether they
are equal, greater, or less than another value, or a possible com-
bination of the three.

T order to compare values we use a group of mathematical

symbols not discussed earlier. These symbols are as follows:

BASIC Math BASIC
Symbol Symbol Example Meaning

= = A = B AisequaltoB

< < A < B Aislessthan B
<= < A <= B Aislessthan or equal to B

> > A > B Aisgreater than B

= = A >= B A is greater than or equal

to B
<> # A <> B AisnotequaltoB
IF-THEN AND IF-GOTO
The IF-THEN and IF-GOTOQ statements both allow the pro-

12-38

grammer to test the relationship between two formulas (variables,
numbers, or expressions). Providing the relationship we have de-
scribed in the IF statement is true at that point, control will trans-
fer to the line number indicated. The statements are of the form:

(line number) IF (formula) relation (formula)

{6oro

The use of the word THEN or GOTO is the programmer’s choice.
For example:

(line number)

19 IF A=5 GOTO 70

causes transfer from line 10 to line 70 if A is equal to 5. If A is
not equal to 5, control passes to the next line of the program follow-
ing line 10.
SUBROUTINES

When particular mathematical expressions are evaluated several
times throughout a program, the DEF statement enables the user
to write that expression only once. The technique of looping allows
the program to do a sequence of instructions a specified number
of times. If the program shouid require that a sequence of instruc-
tions be executed several times in the course of the program, this
too is possible. A subroutine is a section of code performing some
operation that is required at more than one point in the program.
Sometimes a complicated I/O operation for a volume of data, a
mathematical evaluation which is too complex for a user defined
function, or any number of other processes may be best performed
in a subroutine. |
GOSUB Statement

Subroutines are placed physically at the end of a program,
usually before DATA statements, if any, and always before the
END statement. The program begins execution and continues
until it encounters a GOSUB statement of the form:

(line number) GOSUB (line number)

where the number after GOSUB is the first line number of the
subroutine. Control then transfers to that line in the subroutine.
For example:

5@ GOSUB 200

12-39

Cdd
RETURN Statement

- Having reached line 50, as shown on the previous page, control
transfers to line 200; the subroutine is processed until the computer
encounters a RETURN statement of the form:

(line number) RETURN ,
which causes control to return to the line following the GOSUB
statement. Before transferring to the subroutine, BASIC internally
records the next line number to be processed after the GOSUB
statement; the RETURN statement is a signal to transfer control
to this line. In this way, no matter how many subroutines or how
many times they are called, BASIC always knows where to go

3o A A A a o At oy e

i, REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
1@ DEF FNA(X)= ABSCINT(XY)

20 INPUT A-B»C

38 GOSUB 12@

46 LET A=FNA{(A)

50 LET B=FNA((B)

60 LET C=FNA(C)

78 PRINT
89 COSUB 100

99 STOP

133 REM - THIS SUBRQUTINE PRINTS QUT THE SOLUTIONS

118 REM - OF THE EQUATION: AXt2 + BX + = @

120 PRINT '"THE EQUATION IS "™ A "%Xt12 + ™ B "xX + " ©
1390 LET D= B*B - 4%A%C

143 1F D<>@ THEN !7@

158 PRINT "ONLY ONE SOLUTION.«. X =" -B/(2%A)

168 RETURN

172 IF D<O THEN 200

186 PRINT "TWO SOLUTIONS.«« X =";

185 PRINT (~-B+S5QR(D))>/(2*A) "AND X =" (-B-SQR(D))/(2%A)
192 RETURN

280 PRINT "IMAGINARY SOLUTIONS+.. X = ('

205 PRINT -B/(2%A) ",'" SQR(-D)/(2%A4) ") AND ('*;

207 PRINT -B/(2%A) "," =-SQR(-D)/(2*4) '">"

218 RETURN .

902 END

RUN

? 1}.5)-.5-
THE EQUATION IS

TWO SOLUTIONS:». X

®X 2 + 5 %X + “;5
.5 AND X =-1

[

THE EQUATION IS 1 *Xt2 + 4@
IMAGINARY SOLUTIONSses X = (@ »

READY

Lines 100 through 210 constitute the subroutine. The subroutine
is executed from line 30 and again from line 80. When control re-
turns to line 90 the program encounters the STOP statement and
terminates execution. Note that even though the program logically
ends with a STOP, the END command must still be present.

For another detailed example of a subroutine, see Figure 12-2.

STOP and END Statements _

The STOP statement is used synonymously with the END state-
ment to terminate execution, but the END statement must be the
last statement of the entire program. STOP may occur several
times throughout the program. No BASIC program will run with-
out an END statement of the form:

(line number) END
The format of the STOP statement is simply:
(line number) STOP

STOP is equivalent to a GOTO nn, where nn is the line number
of the END statement.

Nesting Subroutines :

More than one subroutine can be used in a single program in
which case they can be placed one after another at the end of the
program (in line number sequence). A useful practice is to as-
sign distinctive line numbers to subroutines, for example if you
have numbered the main program with line numbers up to 199,
you could use 200 and 300 as the first numbers of two subroutines.

Subroutines can also be nested, in terms of one subroutine call-
ing another subroutine. If the execution of a subroutine encounters
a RETURN statement it will return control to the line following
the GOSUB which called that subroutine; therefore, a subroutine
can call another subroutine, even itself. Subroutines can be entered
at any point and have more than one RETURN statement where
certain conditions will cause control to reach any one RETURN
statement. It is possible to transfer to the beginning or any part
of a subroutine; multiple entry points and RETURNs make a sub-
routine more versatile.

The maximum level of GOSUB nesting is about forty (40)

12-41

levels, which should prove more than adequate for all normal
uses. Exceeding this limit will result in the message:

€0SUB--RETURN ERROR

ERRORS AND HOW TO MAKE CORRECTIONS
Single Letter Corrections |
Nobody being perfect, we all make typing errors if not logical
errors. The first is by far the easier to correct. If you notice an
error immediately as you type it, for example:

19 LEB

instead of LET as you meant to begin the line, hit the RUBOUT
key or SHIFT/O (back arrow) once for every character you wish
to remove, including spaces. This will result in the printing (by
BASIC) of a back arrow to show that the rubout has been accom-
plished. Make the correction and continue typing as shown below.

1¢- LEB-T A=13%*B

if that was the intended line. The computer does not even see the
mistake; it is erased, except on the console as you typed it. The
typed line enters the computer only when you hit the RETURN
key. Before that time you can correct errors with the RUBOUT
key or SHIFT/O. If you desire a neat, corrected listing at the
end of your work, that is possible too. More on that later.

20 DEN FeeeF FNAMX:YI=XT12+3%Y

is the same as:

to the computer. Notice you erase spaces, as well as printing
characters.

Erasing a Line
If at any time you have typed a line and not yet hit the RE-

12-42

TURN key, the line can be erased by striking the ALTMODE
(ESCAPE on some machines) key. BASIC will echo back:

$ DELETED

at the end of the line to indicate that the line has been removed.
You can continue typing on that line as though it were the start
of a new line or hit the RETURN key to start a fresh line.

Once you have hit the RETURN key and have entered a line:
into the computer it can still be corrected by simply typing the
line number and proceeding to retype the line correctly. The old .
line is automatically deleted as you type the line again, even if it
was longer than the new line.

You can delete an entire line by typing the line number and
hitting the RETURN key. This removes the entire line and line
number from your program.

. NOTE

Typing a line number followed by back ar-
rows does not remove that number from the
line it identifies. If you accidentally type the
line number of a previous line you do not
want erased, the RUBOUT key will remove
the unwanted line number, leaving the orig-
inal line intact. For example:

19 LET A=4
19««20 LET B=A+7 -

will leave line 10 as it is and allow you to
type line 20.

Following an attempt to run a program you may receive an
error message. Most errors can be corrected by typing the line
number, typing the line over again with the correction, and hitting
RETURN. The program is then ready to be run again. You can
make "as many changes or corrections between runs as you wish.
(For a more advanced technique in program editing, see the sec-
tion on Advanced BASIC.)

Erasing a Program in Core
Assuming you have written a program on-line in BASIC, have
completed it and now wish to run another program in BASIC, but

12-43

do not wish to save the old program, when BASIC types READY,
answer: '

SCRATCH
or SCR

The SCRATCH command will erase the old program and leave
a fresh, blank area in which you can work. Only the abbreviation
SCR is necessary. BASIC will again reply READY, and you pro-
ceed from this point. The previous program name is maintained
for the cleared area. You can, alternatively, reply to READY with
NEW, if you wish to create a new program, or OLD, if vou wish
to recall a saved program for further work. SCRATCH is much
faster than NEW or OLD in clearing core.

If, after BASIC types READY, you merely begin typing a new
program without clearing core, BASIC will retain the name of the
previous program and in effect you will write over that program
as though you were changing each single line. However, if you do
not remove or type over all of the previous line numbers you will
discover the unchanged lines appearing in the new program as well.
To avoid this, telling BASIC to SCRATCH the old program and
Create a new program gives you a blank area on which to write.

Stopping a Run

If your program begins to print what you know will be a long
list of unwanted output for one reason or another, you can stop a
Tunning program by depressing the CTRL (control) key and
hitting the C key. CTRL/C will cause 1 C to be printed on the
console paper, and will stop execution, returning you to edit mode
(BASIC prints READY). You can make changes, save the pro-
gram, or whatever you wish.

NOTE

The up arrow (1) in the command 7BS
or TC is not to be confused with the up
arrow used to express exponentiation. The
1 indicated on the console keyboard is for
raising a number to a power. The 1 C, for
example, is a short way of writing CTRL/C
where the CTRL key is depressed while the
C is struck.

12-44

RUNNING A BASIC PROGRAM
LOGIN Procedure

Before you attempt to use TSS/8, someone in charge of the
computer will issue you an account number and a password. When
you sit down-at the Teletype console turn the LINE-OFF-LOCAL
knob to LINE. You should see a period on the left margin of the
paper, if not, hit the RETURN key and one will appear.

In answer to the dot type:

LOGIN account number password

Enter the three terms with a single space between t‘uem and strike
the RETURN key. For example:

«LOCIN 175 DEMO

None of the characters in the line you typed will be printed at the
console, in order to preserve the secrecy of these codes. When you
successfully log onto the system some opening message will likely
be printed ending with another dot. In reply type: |

R BASIC

Initial Dialogue
This puts you in communication with BASIC which will then
type out:

NEW OR OLD--
-

If you are entering a new program you reply NEW, if calling in

an old program you have saved in a file, reply OLD. To enter the

command to BASIC, you must strike the RETURN key. BASIC

will then reply:

NEW PROGRAM NAME--

Or OLD PROGRAM NAME-~--

as the case may be. You will type in any six-or-less character
identifier as your program name. An old program’s name must be
typed correctly, so it is a good idea to choose an appropriate, easily
remembered name. An example of how to call a program which

12-45

you had pfeviously saved would look as follows:

OLD PRCOGRAM NAME--PRIME

where PRIME is the name of the program.
Programs (calted files when they have been saved) may be
- loaded from another user’s account, file protect permitting.2 When

BASIC asks for the old program name, you may reply:
OLD PROGRAM NAME--PRIME 120

where PRIME is the name of a program and 120 is the file account
number under which PRIME is stored.

If a file exists for use of a large number of programmers it will
likely be placed in the System Program Library and may be called
by typing the name of the program immediately followed by, an
asterisk:

OLD PROCRAM NAME--PRIME %

T

will call PRIME from the System Program Library.

Following the program name supplied by the user, BASIC then
types READY.

At this point you may begin to type in a new program hitting
RETURN after each line, or change or run an old program in
accordance with the conventions already established.

RUN Command

When your program is ready to be run {be sure there is an END
statement), type RUN, press the RETURN key, and the program
will attempt to execute. If there is some error in the way you wrote
your BASIC code, an error message will be printed, following
which you may correct the errors one line at a time. Then type the
RUN command again. If the program executes correctly you will
obtain whatever ?rim‘pﬁl output vou requested. When the END

LR &5 ¥4 Addbwnd sl el R Y AAwian waa
gy

2 When you SAVE a file on disk the protection code of that program allows
anvone knowing the account number to access the program. For additional

information on file protection codes, see the TSS/8 User’s Guide (DEC-
T8-MRFB-D).

12-46

statement . is reached, BASIC stopé execution and again types
READY. '

Editing Phase

To simplify matters, we can think of BASIC as having two
phases, a run phase and an editing phase. The run phase is the
time between when you type RUN and when BASIC typés
READY; this 1s the time during which BASIC is compiling and ex-
ecuting your program. Once BASIC has printed READY, it is able
to accept commands directly from your Teletype; during this editing
phase you can prepare your program and can direct BASIC to per-
form a variety of services such as the SCRATCH command. (You
can force an entry to the editing phase with a CTRL/C.) The com-
mands used in the editing phase can all be abbreviated to three
letters, some have arguments, others do not, as explained below.

SAVE COMMAND
When you have completed working on a program, you may save
it on disk to call again in the future. To do this type:

, SAVE
or 'SAV

This would use the same name you typed in response to the ques-
tion NEW PROGRAM NAME--(If you think you might forget
it, write the name in a REMARK statement at the beginning of the
program.)

It is also possible to say:

SAVE name
or SAV name

where name is not the original name you gave as a reply to NEW
PROGRAM NAME--, however, the name you tell BASIC to
save is the name you must give to retrieve the program in response
to a later query of OLD PROGRAM NAME--

NOTE
Spaces do have significance in program
pnames (i.e., SAVE TIP TOP will be saved
as TIP). In general, then, spaces are de-
limiters for all editing phase commands.

12-47

REPLACE COMMAND

If you have called an old program and made some changes in it,
you can then return the corrected program to the disk under its old
name using the REPLACE command. This command deletes the
old program of that name as it enters the new one.

In response to READY, type:

REPLACE
or REP

or, alternatively:

REPLACE name
or REP name

which causes the program presently being worked on to replace the
old copy of the same program on the disk. If a program name is
indicated, that name is used as the file name.

UNSAVE COMMAND ,
If you wish to delete a program from your disk storage area,

type:

UNSAVE name
or UNS name

The program with the name specified will be deleted from your
permanent file. This is done when you no longer plan to use that
program. In general, programs which are not going to be run fre-
quently are best stored on paper tape, reserving disk storage for
single UNSAVE command separating the program names with
commas.

LIST COMMAND

Once your program works you may discover you have several
feet of Teletype paper filled with corrections and other gibberish.
To obtain a clean listing of your program, type LIST or LIS fol-
lowed by the RETURN key. The whole program will be printed.
You can then tell the computer to RUN and your output will
follow.

For debugging purposes it is sometimes useful to list part of your
program. LIST or LIS followed by one line number or two line

12-48

numbers separated by a comma will result in BASIC printing either
that single line or the lines between and including the two numbers
given.

DELETE COMMAND .

DELETE or DEL followed by two line numbers separated by a
comma will cause all lines between and including the two given to
be deleted from the program. If only one line number is given,
that line will be deleted. For example:

DEL 18,20

causes all lines between 10 and 20 inclusive to be deleted.

NEW AND OLD COMMANDS

If you have completed working with one program and have
saved that program for future use, you may wish to work on an-
other BASIC program or leave the terminal. If you wish to call an
old program, type OLD. To indicate that you wish to begin a
new program, type NEW. In either case BASIC will request a pro-
gram name and, following your reply, type READY. These com-
mands may be used at any time, not only in direct response to the
question BASIC asks of NEW or OLD PROGRAM NAME--. |

- CATALOG COMMAND

If you type CAT or CATALOG followed by the RETURN key,
a listing of all program names in your disk file will be printed by
BASIC. For example: "

CATALOG

ok ok ok ok ok ok ok koK
FOOTBL.BAC
PRIME +BAS
FTBALL.BAS
FOO -BAS
PRINO .BAC

READY

The program names have appended to them the terms .BAC and
BAS which are explained in the section on Advanced BASIC.

12-49

BYE COMMAND

- When you are ready to leave the Teletype, type BYE and hit
RETURN, this will return control to TSS/8 Monitor which prints
a dot at the left margin. Then type LOGOUT and hit RETURN.
Wait until the computer has finished its concluding message before
turning the LINE-OFF-LOCAL knob to OFF.

ALTMODE KEY

Striking the ALTMODE key (which .is non- -printing and non-
spacing) will cause any of the preceding commands (DELETE,
LIST, SAVE, etc.) to be erased. ALTMODE must be struck be-
iore the RETURN key which enters the command into the com-
puter. If you do change your mind about a command, you can
alter it as shown below:

SAVE FODS$ DELETED

BASIC replies $ DELETED to show that the command has been
erased, you may then retype the line.

g a Paper Tape
It may be useful in many cases to have a copy of a program you
1 fad

;s £
¢)
el
"CJ
4 ted
..Q
€
=
@
o
foM)
[¥0]
L
‘<1
e
3
]
o
\4'
o
&
b—
)—
Q
<
a
e
Q
=
"'d
el
@
o
)
=Y
k<
@]
<
H
"O
=
Q
aQ
-
5
-
O
ot
B
o

point that you wish to copy it, punch a iisting of it tnrougn BASIC.
The steps involved are:

1. Type TAPE followed by hitting RETURN. Any characters
you type now will not echo on the console or on your tape.

2. Punch the ON button on the tape punch.

3." Type LIST followed by the RETURN key. This causes the
program to be listed on paper tape and on the console.

4. Punch the OFF button on the tape punch.

Using LIST when in TAPE mode will result in the following:
i. The word LIST will not echo. No leadis

- aa FIALL LANIE W00

Bg s
before line numbers as in a normal LIST.
2. Blank tape is “printed” before and after t

spaces ar

PIO

You will notice that when you tear off the tape from the punch
12-50

there will be an arrow head on the tape, this shows the direction in
which the tape is later to be inserted into the machine.

TAIL

ARROWHEAD

Figure 12-4 Paper Tape Diagram

Once you have finished punching your program you will wish to
return to regular operating mode on the computer. During TAPE
mode no characters you type will be echoed, RUBOUTs are
ignored, as is blank tape. Typing KEY followed by the RETURN
key will bring you back to normal operating mode. You may then
continue working on that program, call another program, or log
out.

A paper tape can be duplicated or copies made by positioning
the tape in the reader depress the ON button, turn the LINE-OFF-
LOCAL knob to LOCAL, and turn the reader control switch to
START. Tape will be reproduced as it is..

Reading and Listing a Paper Tape

To read in a paper tape from the low speed reader on the Tele-
type, first create a new program name in BASIC and proceed as
follows:

1. Position paper tape in the reader head:

-a. Raise retainer cover,

b. Set reader control to FREE,

c. Position paper tape with feed holes over the sprocket
wheel and the arrow (cut) pointing outward from the
console.

2. Type TAPE, hit the RETURN key.

12-51

3. Set reader control switch to START until listing has been
completed. Reader will not stop at blank tape. You must turn
the reader control switch to FREE.

4. In order to get back into regular operating mode where the
characters you type will be echoed at the console, type KEY
and hit the RETURN key.

5. BASIC will type READY, you can then ask BASIC to LIST

e d DYTNT oo)
ana NuUIN your prograrm.

Transferring a File to Paper Tape or DECtape from Disk

It is not in the scope of this manual to describe the transfer of
BASIC programs from disk to paper tape or DECtape. If you wish
to use these facilities, refer to writeups on PIP (Peripheral Inter-
change Processor) and COPY (both found in the T SS/8 User’s
Guide).

IMPLEMENTATION NOTES
The TSS/8 BASIC language is compatible with Dartmouth
BASIC except as noted below:

There are no matrix operations.

There are no character string instructions.

The ON statement has not been implemented.

BASIC has no features which allow reading or writing data

files on the disk. (Although programs may be saved on the

disk for future use.)

5. “All array (subscripted) variables must appear in a DIM
statement. "

6. User defined functions in DEF statements need not begin

with the letters FN as in Dartmouth BASIC.

User defined functions are restricted to one line.

8. Maximum size of a BASIC program can be said to be

roughly 350 lines. The exact size of a program that a user

can run depends upon several factors: the number and size

of arrays, number of nested loops and subroutines, number of

variables, and user defined functions. A program using an

unusually large number of any of these factors will, of course,

have less room in which to run.

RSN E

~

ADVANCED BASIC
This section deals with additional features of BASIC which,
12-52

once you have learned the BASIC language, will make program-
ming somewhat easier.

EDIT Command :
- Frequently it is only necessary to correct several characters in a
line. Rather than retype the entire line, which may be a complex

formula or output format, there is a command which allows you to-
access a single line and search for the character you wish to change.

The form of the EDIT command is as follows:

EDI line number
[character]

Notice that the EDIT command may be abbreviated to three letters.
It is then followed by the line number of the statement to be
changed. Enter the command by striking the RETURN key. At
this point BASIC types [and waits for you to type a search char-
acter after which BASIC types]. The character you give will be
some character which already exists on the line (one of the legal

BASIC characters, ANSCI 240 through 336 inclusive on the '

ANSCII table in Appendix B2). After the search character is typed,
BASIC prints out the contents of that line until the search character

is printed. At this point printing stops, and the user has the follow- - -

ing options:

1. Type in new characters which are inserted following the

~ ones already printed.

2. Type a Form Feed (CTRL/L); this will cause the search
to proceed to the next occurrance, if any,-of the search char-
acter.

3. Type a BELL (CTRL/G) this allows the usér to change
the search character. BASIC types back another [and the
user can specify a new search character. :

4. Use the RUBOUT (or SHIFT/O) key to delete one char-
acter to the left each time RUBOUT is depressed. RUBOUT
echoes as «-. .

5. Type the RETURN key to terminate editing of the line at
that point, removing any text to the right.

6. Type the ALTMODE key to delete all the characters to the
left except the line number.

7. Type the LINE FEED key to terminate editing of the line,
saving the remaining characters.

12-53

On completion of the EDIT operation, BASIC types READY.
Note that line numbers cannot be changed using EDIT, i.e., you
cannot search for a line number digit. Any illegal characters will be
ignored.

The following example demonstrates the EDIT command where
the incorrect line reads as follows:

To edit the line would result in the following output on the Tele-

71’\{3
L

EDIT 60
[6160 PRINT "PI=3.14146++<59[%] ABOU*~T

READY |
LIST 68
6@ PRINT "PI=3.14159 ABCUT!"

he tions involved '- diting the line were as follows: First

ted as the sear»h character. BASIC ig-

nores the line number, but will print it. When the 6 was printed,

RUBOUT was struck twice to remove the two incorrect digits and

55 inserted in their p}aw CTRL/BELL is struck resulting in
T &2 YT

BASIC accepting another search characier. BASIC then prinis

to the search character * which is removed with a RUBOUT and
repiocoﬂ n’lnfk T A ¥ 1N[E TFEED 1 Sfrbck fn t nat +th

o o adit
iLax X A AE L7 4 ll 1L 0L VLIN WAL

and save the remaining characters.

COMPILE Coemmand

When a program is debugged and working to your satisfaction,
it 1s faster to be able to directly RUN a program without waiting
for BASIC to recompile it each time. To enable you to store a
compiled program the COMPILE command has been added to
BASIC. The form of the command is as follows:

COMPILE name
or COM name

The program in core will be compiled and saved in the specified

12-54

file. COMPILE will not overwrite an existing file (it is like SAVE
in this respect); if the name is in use the error message:

DUPLICATE FILE NAME

will be printed, and the program will not be compiled.
The compiled program may then be loaded and run in the usual
manner. For example:

NEW OR OLD--0OLD
OLD PROCRAM NAME--FTBALL*

READY
COMPILE FOOCTBL

READY
OLD
OLD PROGRAM NAME--FOOTBL

READY
RUN

T ¢

In the example above, the programmer told BASIC to load a
System Library Program file named FTBALL into core (the *

after FTBALL indicates the System Library files). The program- o

mer told BASIC to compile the program now in core and store
the compiled program in his personal file with the name FOOTBL.
Once BASIC has done this it replies READY. The programmer
indicates that he wishes to call an old program into core, this old
program is the already compiled version of the original program
which can be made to execute by giving BASIC the RUN com-
mand. '

Compiled BASIC files may not be listed or changed in any way;
therefore a program should not be saved as a compiied file until
it has been completely debugged. If you attempt to list or change
a compiled file the error message:

EXECUTE ONLY FILE

will be printed.

FILE EXTENSIONS
In order for the user to easily tell the difference between com-

12-55

piled, uncompiled, and temporary files within your storage area on
disk, the following conventions are followed and will help you tell
the difference when you run the CATALOG command.

1. SAVE and REPLACE commands will always write out a
- file with the extension .BAS appended to the file name given

by the user.
2. COMPILE will always write out a file with the extension
RA{ 4+ FBin svaman

L5 ACU 10 the 1Iie namie,

CATALOG will only list those files which have a .BAS or a .BAC
extension. The two BASIC temporary files assigned to each user

4 q 3 T T
will be given the extension .TMP.

SUMMARY OF BASIC STATEMENTS

Command Example of Form Explanaticn

LET LET v=f Assign the value of .the formula f
~ to the variable v.
READ READ vi, v2, Variables v1 through vn are as-
...,V signed the value of the correspond- -
ing numbers in the DATA siring.
DATA DATA ni, n2, Numbers nl through nn are to be
..,n0n associated with corresponding vari-
‘ ables in a READ statement.

PRINT PRINT al, az, Print out the values of the spec-
..,an ified arguments, which may be

variables, text, or format control
characters (, or ;).

GOTO . GOTO n Transfer control to line n and
' continue execution from there.

IF-THEN IF f1r £2 If the relationship r between the

THEN n formulas f1 and fZ is true then

transfer control to line n; if not,
continue in regular sequence.

IF-GOTO IF fir £2 Same as IF-THEN
GOTO n
FOR-TO | FOR v=f1 TO Used to implement loops: The
f2 STEP {3 variabie v is set equal to the
formula f1. From this point the

loop cycle is completed following
which v is incremented after each
cycle by £3 until its value is greater
than or equal to f2. If STEP f

is omitted, {3 is assumed to be +1.

12-56

SUMMARY OF BASIC STATEMENTS (CONT.)

Command
NEXT

DIM

GOSUB

RETURN

RANDOMIZE

INPUT

REM

RESTORE

DEF

Example of Form

NEXT v

DIM v(s)
DIM v(sl, s2)

GOSUB n
RETURN

RANDOMIZE
RANDOM

INPUT vl1, v2,
...,VD

REM

RESTORE

DEF FNB (X)=
f(x)

DEF FNB(, y)=

f(x,y)

Explanation

Used to tell the computer to return

to the FOR statement and execute
the loop again until v is greater
than or equal to 2.

Enables the user to create a table
or array with the specified number
of elements where v is the vari-
able name and s is the maximum
subscript value. Any number of
arrays can be dimensioned in a
single DIM statement.

Allows the user to enter a sub-
routine at several points in the
program. Control transfers to line
n.

Must be at the end of each sub-
routine to enable control to be
transferred to the statement fol-

_ lowing the last GOSUB.

Enables the user to obtain an un-
reproducible random number se-
quence in a program using the
RND function.

Causes typeout of a ? to the user
waits for the user to supply the
values of the variables v1 through
VL. :

When typed as the first three let-
ters of a line allows typing of re-
marks within the program.

Sets pointer back to the beginning
of the string of DATA values.

The user may define his own func-
tions to be called within his pro-
gram by putting a DEF statement
at the beginning of a program. The
function name begins with FN and
must have three letters. The func-
tion is then equated to a formula
f(x) which must be only one line
long. Multiple variable function
definitions are allowed.

12-57

SUMMARY OF BASIC STATEMENTS (CONT.)

Command = Example of Form Explanation

STOP STOP Equivalent to transferring control
. to the END statement.

END END ' Last statentent in every program,

signals completion of the program.

Functions
In addition to the usual arithmetic operations of addition (+),
subtraction (—), multiplication (*}, division (/), and exponentia-

tion (1); BASIC provides the following function capabilities:

SIN(X) Sine of X

COS(X) Cosine of X

TAN(X) Tangent of X

ATN(X) Arctangent of X

EXP(X) eX (e=2.712818)

LOG(X) Log of X (natural logarithm)

ABS(X) Absolute value of X (|X])

SOR(X) Square root of X (yX)

INT(X) -Greatest integer in X

RND(X) Random number between O and 1 is a re-
peatable sequence value of X ignored.

SGN (X) Assign value of +1 if X is positive, 0 if 0,
or —1 if negative,

TAB(X) Controls the position of the printing head on

the Teletype.

NOTE: Trig functions use fadians.
SUMMARY OF BASIC EDIT AND CONTROL COMMANDS

Several commands for editing BASIC programs and for con-
trolling their execution enable you to: delete lines, list your pro-
gram, save programs on disk, delete or replace old programs on
disk with new programs, call in programs from disk, etc. The com-
mands may be given at any time during the editing phase, and are
not preceded by a line number,

Command Abbreviation Action

BYE ‘BYE Causes an exist to TSS/8 Monitor,
user has left BASIC.

CATALOG CAT Returns a list of programs which
are on file under vour account
number.

12-58

Command
COMPILE

DELETE

EDIT
KEY

LIST

NEW

OLD

REPLACE

RUN
SAVE
SCRATCH

TAPE

UNSAVE

CTRL/C

Abbreviation
COM name

DEL n

DEL n, m
EDI n

[c]

KEY

LIS

LIS n
LISn, m
NEW
OLD

REP
REP name

RUN

SAV

SAV name
SCR

TAP

UNS name

UNS name, . .

CTRL/C

Action

BASIC compiles the program in
core and stores it on disk with the
given name. '

Delete the line with line number
n, an alternate form is to type the
line number and the RETURN
key.

Delete the lines with line numbers
n through m inclusive

Allows the user to search line n
for the character c.

Return to KEY (normal) mode.

- "(See TAPE)

List the entire program in core.
List line n.

List lines n through m inclusive.

BASIC will clear core and ask for
the new program name.

BASIC will clear core, ask for the - &

old- program name, and retrieve -
the program from disk, leaving it -

in core.

Replace the old file on disk with

the updated version of the same

name currently in core. If a name

is not indicated under which
BASIC is to store the new version,
the old name is retained.

Compile and run the program cur- -

rently in core.

Save the contents of user core as
the file whose name is indicated.

Erase the current program from

COore.

Enter TAPE mode, characters
typed will not echo on the console

paper.

Delete the named program(s)"

from the disk.

Stops a running program, types
1C and returns to the editing
phase. BASIC replies READY,

12-59

-SUMMARY OF BASIC ERROR MESSAGES
The following error messages may be printed by BASIC during

the editing phase:

Message
WHAT?

BAD FILE NAME

CAN'T DELETE: name

DUPLICATE FILE NAME.

ILLEGAL LINE NUMBER

CAN'T FIND “name”

CAN'T FIND “name”
FOR USER n

CAN'T FIND “name”

T OO rOAmeTYR F W YT TR

IN SYSTEM LIBRARY

Explanation

The editor cannot understand the -
command just given.

An illegal character was put in
the file name.

UNSAVE cannot delete the file
with the name given,

BASIC cannot SAVE. over an
existing file, use a different name,
or use the REPLACE command.

Line number was outside range of
1 to 2046.

The file name given foliowing
OLD PROGRAM NAME-—can-
not be opened. Either it does not
exist or it is read protected against
this user, as indicated.

During input to the editor or when executing an INPUT com-
mand the following messages may be printed in response to input:

~ Message

LINE TOO LONG

$ DELETED

{bell-bell)

w» k. P
XXpianation

The line just typed exceeded the
available core buffer, retype the
line.

In response to an ALTMODE
character the line has been de-
leted. Retype the line.

Two bells mean that the previous
character was 1illegal, 1t is auto-
matically deleted.

The following error messages may be typed out by BASIC follow- -

ing a RUN command:

Message

ARRAY USED WITHOUT DIM
STATEMENT IN LINE n

DEF STATEMENT MISSING

DIMENSION TOO LARGE IN
LINE n

FOR WITHOUT NEXT

GOSUB—RETURN ERROR IN
LINE n

ILLEGAL CHARACTER IN
LINE n

ILLEGAL CONSTANT IN
LINE n

ILLEGAL FOR NESTING IN
LINE n

ILLEGAL FORMAT IN
LINE n

ILLEGAL FORMULA IN
LINE n

ILLEGAL INSTRUCTION IN
LINE n

ILLEGAL LINE NUMBER IN
LINE n

ILLEGAL VARIABLE IN
LINE n

IMPROPER DIM STATEMENT
IN LINE n
MISUSED TAB IN LINE n

NEXT WITHOUGH FOR IN
LINE n

Explanation

All arrays must be previously de-
fined in a DIMENSION statement.

A function was called which was.

- not defined in a DEF statement.

12-61

Self explanatory.

Unmatched FOR statement in pro-
gram.

Either subroutines are nested too
deeply, or a RETURN was en-

countered without a previous
GOSUB.

Self explanatory.

Format of a constant
not valid.

FOR-NEXT loops have been
nested too deeply, or NEXT state-
ments were encountered before the
FOR was executed.

Illegal syntax for - BASIC state-
ment.

Error in expression syntax.

Statement in line n was not a legal
BASIC command.

Line number n is outside the range
1 to 2046.

An array variable was used in line
n, where it was not permissible.

Syntax error in DIM statement, or
an array name that was previously
dimensioned is reused.

The TAB function may appear
only in PRINT statements.

Self explanatory.

in line n is

Message
NO END STATEMENT
OUT OF DATA IN LINEn

PROGRAM TOO LARGE.

STACK OVERFLOW IN
LINEn

SUBSCRIPT ERROR IN
LINE n

UNDEFINED LINE NUMBER,

TINDG -
LoliNL, 3L

Explanation
Self explanatory. .

Attempt to do a READ past the
available data.

Self explanatory. Try reducing ar-
rays or use fewer variables.

Expression too complicated. Try
typing if as two separatfe state-
ments.

Negative subscript was calcuated
for an array.

Tried to reference a line which

A : + saf
aoCs not CXist.

The following messages are typed out at execution and are non-
fatal (i.e., the program continues to execute): '

Message
ICIN n

LN INn

MORE?

O
<
o
1
=

PW IN n

TOO MUCH INPUT,
EXCESS IGNORED

Explanation

Illegal constant in INPUT, retype
the value.

An attempt to compute the log-

widblaevn AF myrrmas 1 s A
ritnili 01 4 [uimnoer 188 whnan Of

111
11l 4 ravsn Tha scenwiears o
€guas 10 ZCro. :af maXimum ncga-

tive number will be used as the

D

- result.

Response to INPUT did not con-
tain' the number of wvalues re-
quested. Respond by supplying the
additional values.

Overfiow—value is too iarge for
BASIC to use, the largest possible
number will be used instead.

Attempt to raise a negative num-
ber to a non-integer power. The
absolute value raised to the indi-
cated power will be used instead.

ttempt toc compuile the sguare
root of a mnegative number. The
square root of the absolute value
wiil be used instead,

Response to INPUT contained
more values than requested. This
message has no éffect on the pro-
gram. :

12-62

Message
UN IN n

/$ IN n

Expianation

Underflow—rvalue is too small for
BASIC to use, zero will be used.
instead.

Attempt to divide by zero. The
largest possible number will be
given as a result.

The following errors may occur during any BASIC operation:

Message

ABORT

1 BS

DISK FULL

ILLEGAL OPERATION IN

LINE n
SYSTEM ERROR

SYSTEM 1-O ERROR

Explanation

A non-recoverable disk error has

12-63

occurred. BASIC halts.

There is no room left on the disk;
delete some files and try again.

These are failures of BASIC.

When they occur they should be
reported via a SOFTWARE
TROUBLE REPORT.

TSS/8 disk I/0O failure, try again.

12-64

Chapter I3

4K Assemblers

'CONTENTS

Introduction to 4K Assemblersc.ccoc...ioiii . 13-5
PAL III Programmingccococomomvmoeaaerainn, 13-7
Character Setcoooiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e, 13-7
Numbersc.ccoveune... ettt ee et 13-8
Format Effectorsoooovioiiiiias oo, 13-8
Form Feedccoooviiiiiiviiiiie, e 13-8
Tabulationsccooooiiuiiieie e 13-9
Statement Terminators rererrreeaaaa 13-9
Statements TR et 13-10
Labels ..o e, 13-11
Instructionsc..ccoeceveeennne. e e e e 13-11
Operandscoceeevevvcecneenennn, ettt ea e aaaaareeas 13-11
COMMENES ..oieiiiiicec e 13-11
Coding PractiCescoouiviieeieeoeieeeeeeeeeeeeeeeeeeee, 13-11
Symbols e tett e ea et aeeeeennnrerneranraannaaan 13-12.
Internal Symbol Representationcccecveunnn.... 13-12
Symbolic Addressesocoooveveeeieeeeeieeeeeeeeee 13-13
Symbolic Instructions et 13-15
Symbolic Operandsocccocooveeeemieeeeeeeeoeeee 13-15
Symbol Table ..:.....cccooovviviiiiiiieeeeeeeeeeeeeeennn. 13416
Direct Assignment Statementscoc.ccoovevvein.nn.. 13-16
EXPIeSSIONScccovueviiviiiiiiecieee e 13-18
Address ASSIZNMENLSc.ccooveieieeeeeeeeeeeeeeee e 13-21
Current Address Indicatoricocoecoveeeveveevereeeenen 13-22
Indirect Addressingc.cocoeeeviiiiieioeicieee e, 13-22
AUtOINAEXING .oovvoieieieieeee e, 13-23
INSITUCHIONS ..ouvitiieieie et 13-24
Memory Reference Instructions e 13-24
Microinstructionsccoooveeeeveeeieeeeeeeeseeeeeeeres 13-25
Pseudo-Operatorscoe........... s 13-27
Altering the Permanent Symbol Table 13-31
Program Preparation and Assembler Output 13-33
Operating Proceduresccocooivoeveceeesicerin 13-36
Summary of Diagnostic Messagescoccovvevevrenenn.. 13-38

13-3

MACRO Programimingcccoovvmmiiiimmniiirs 13-41

NUMDEIS oooeeieiiieie e 13-41
Double Precision INTEZETSoocovveviirriiriiiniiiinieneee 13-41
Floating Point Constantsc.coomiimninininn 13-42

CRATACLETS oveeeereeeireeieeeeeesssieneeeeeeassnbrraeeee s st sae s e s 13-44

EXPIESSIONS w.vrueuieminrrsesesrnenresesicassinnnsss s 13-44

OFigin SELUIE ..oovovesireierreenenee s 13-45

LINK Generationccoeeeeerreeeerrirrreeeraeesimsreniaieianees 13-46

LLIEETALS oot eeee e e eeeeae e e cra e 13-48

Text Facility 12-51
Single Character Text Facility ... 13-51
TEXE SEIMES «vervrenreerieieerieremnresse et 13-51

User Defined MACTOS ...oovvverurmemiiioiiiieiieaaeeeeeriaeensenennnaaea 13-52
Defining a Macroccooevieienincnens eereeroreereeneenenees 13253
Restrictions on MACTOSvvvvvririrririrrrereeeieenisinanees 13-54

Symbol Table SIZESocoverriiiiriiie 13-56
Symbol Table Modification ..o 13-56
Symbol Representation in MACRO and PAL-D 13-57

PSelAdO-OPS oo R 13-57

Operating ProcedlIes ..oooereivinni s 13-58
Assembler CULPUL eeriiiiireie e 13-58
Versions of MACRO ... b eeeees 13-58
Operating InStructions ..ot 13-59

Suminary of Eitor DiagnostiCs ...ceccvimremimnenennne 13-61

4K PAL-D Programming ... 13-65

Listing Controlcocooiviiiiniiiiniisn s 13-65

FIELD Psetudo-Op «ooccvviiieriieiiriieiniccneni s 13-65

PSEUdO-OPETAtOrS ..voovrenvimieieniieierereencemn s 13-66

Program Preparation and Assembler Output 13-66
UNAer TSS/8 eviiiicirieee et 13-67
Under the Disk Monitor Systemcocccevemmmiceieinnnnnn. .13-68

Summary of 4K PAL-D Error u1agnostics 13-70

13-4

INTRODUCTION TO 4K ASSEMBLERS

This chapter contains a.description of each of the 4K Assem-
blers: the first and most basic of which is PAL III. After you
become familiar with the PAL III language (information on which
is contained in Volume 1 in this set) you may want to consider
the other two PDP-8 Assemblers: MACRO and 4K PAL-D.

MACRO is similar to PAL III with the following additional
features: user defined macros, double precision integers, floating
point constants, arithmetic and Boolean operators, literals, text
facilities, and automatic off-page linkage generation. It is recom-

mended when any of the additional features mentioned are desired, -

and when a large symbol table is not required.

4K PAL-D is similar to MACRO excluding macros but with a
larger symbol table. It is used only in the PDP-8/I Disk Monitor ="~

System and the PDP-8 Time Sharing System (TSS/8). It also re-
quires a 4K core memory for operation.

It is assumed in this chapter that you are familiar with the
material presented in the first five chapters of Volume 1; the pro-
gramming language discussed in those chapters is PAL III. Load-
ing procedures and operating instructions for PAL III can also be
found in Volume 1.

In Appendix A2 there is a summary of the PDP-8 permanent
symbol tables. These symbols are used in each of the languages
discussed in this chapter with exceptions as noted.

Several other System Library Programs are useful in assembly
language programming. You can use the Symbolic Tape Editor
to change, correct or create your program at the Teletype. After
assembly, DDT is useful for debugging and communicating with
your program. You will find more on these and other useful pro-
grams in Volume 1.

13-5

13-6

PAL IIT PROGRAMMING

PAL I (an acronym for Program Assembly Language, version
I1I) is a two pass Assembler (with an optional third pass) designed
for the 4K PDP-8 family of computers. Your program, written -
in the PAL ‘TII source language, is translated by the Assembler
into a binary tape in two passes through the Assembler. The bi-
nary tape is loaded by the Binary Loader into the computer for
execution. | | |

During the first pass of the assembly, all user symbols are
defined and placed in the Assembler’s symbol table. During the
second pass, the binary equivalents of the input source language
are generated and punched. The Assembler’s third pass produces
a printed assembly listing (a listing of your program’s instructions
with the location, generated binary, and source code side by side
on each line). ‘

The Assembler requires a basic PDP-8 family computer with a
4K core memory, and a Teletype console. The Assembler can use
cither the high-speed reader, the high-speed punch, or both. The
user can change the Assembler’s permanent symbol table to reflect
his specific machine configuration, as explained under the section
on Altering the Permanent Symbol Table. '

CHARACTER SET

Legal Characters
The following characters are acceptable to PAL III:
1. The alphabetic characters: A through Z
2. The numeric characters: 0 through 9
3. The special characters:

a. Printing characters

+ plus ; semicolon
— minus $ dollar sign
» comma . period
= equal sign / slash
* asterisk
b. Nonprinting keyboard characters:
SPACE
TAB
RETURN

13-7

4. Ignored characters:
FORM FEED
blank tape
RUBOUT
code 200
LINE FEED

IMegal Characters

All other characters are illegal (except when used in a COfmi-
ment) and cause the illegal character message:

IC =xxxx AT nnnn

during pass 1, where xxxx is the octal value of ihe ofiending
character and nnnn is the value of the current location counter
where it occurred. Illegal characters are ignored and assembly can
proceed. The current location counter contains the address in
which the next word of object code will be assembled. If the illegal
character occurs in the middle of a symbol, the symbol is termi-
nated at that point.

NUMBERS

Any sequence of digits delimited by punctuation characters
forms a number. For example:
| 1

35
4372

The radix control pseudo-ops, OCTAL and DECIMAL, indi-
cate to the Assembler the radix (number base) to be used in num-
ber interpretation. The radix is initially set to octal (base 8) and
remains octal unless you change it.

The pseudo-op DECIMAL indicates that all numbers which
follow are to be interpreted directly as decimal numbers until the
occurrence of the pseudo-op OCTAL. The pseudo-op OCTAL
indicates that all numbers which follow are to be interpreted as
octal until the next occurrence of the pseudo-op DECIMAL. (For
an explanation of the internal representation of numbers in the

PDP-8, see Volume 1.)

FORMAT EFFECTORS

Form Feed
The form feed code, if present in a PAL III program, will
cause the Assembler to output 12 blank lines during the pass 3

13-8

Assembly listing. This is useful in creating a page by page listing.
form feed is generated by a SHIFT /L.

Tabulations

Tabulations are used in the body of a source program to provide
a neat readable listing. Tabs separate fields into columns; for
details see the Symbolic Tape Editor Manual. For example, a line
written:

GO>TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form:

GO> TAD TOTAL - /MAIN LOOP

Statement Terminators

Either the semicolon (;) or the RETURN key may be used as a
statement terminator. The semicolon is considered identical to a
carriage return/line feed except that it will not terminate a line. -
For example: '

TAD A /THIS IS A COMMENT; TAD B

The entire expression between the slash (/) and the carriage return ..
is considered a comment. The Assembler ignores the TAD B.

If, for example, the user wishes to write a sequence of instruc-
tions to rotate the contents of the accumulator and link six places
to the right, it might look like:

RTR
RTR
RTR

The programmer can alternatively place all three instructions on a
single line by separating them with the special character semicolon
(;) and terminating the line with a carriage return. The above
- sequence of instructions can then be written:

RTR;RTR;RTR

These multi-statement lines are particularly useful when setting
aside a section of data storage for use during processing. For ex-

13-9

ample, a 4-word cleared block could be reserved by specifying
either of the following formats:

LIST, @ F a3 o
or
LIST, @
A
v
o
@
4l £ncanind i
Either format may be used to input data words which may be in

‘the form of numbers, symbols, or expressions. Symbols and ex-
pressions will be explained later. Each of the following lines gener-
ate one storage word in the object program:

DATA> 7777
A+C-B
S
123+B2

STATEMENTS

PAL TII source programs are usually prepared on a Teletype,
with the aid of the Symbolic Tape Editor, as a sequence of state-
ments. Each statement is written on a single line and is terminated
by striking the RETURN key. PAL III statements are virtually
format free; that is, elements of a statement are not placed in
numbered columns with rigidly controlled spacing between ele-
ments, as in punched-card oriented assembiers.

There are four types of elements in a PAL III statement which
are identified by the order of their appearance in the statement, and
by the separating (or delimiting) character which follows or pre-
cedes the element.

Statements are written in the general form:
label, instruction operand . /comment

The Assembler interprets and processes these statements, generat-
ing one or more binary instructions, data words, or performing
an dbbemoly pIOLCbb 1"\ bldlClllCIIL N1ust bUllLdlll di i€ast oil
these elements and may contain all four types.

a
Q

13-10

Labels .

A label is the symbolic name created by the source programmer
- to identify the location of the statement in the program. If present,
the label is written first in a statement and terminated by a comma.

Instructions . :

An instruction may be one or more of the mnemonic machine
instructions (see Appendix A2), or a pseudo-operation (pseudo-op)
which directs assembly processing. The assembly pseudo-ops are
described later in this chapter. Instructions are terminated with one
or more spaces (or tabs if an operand follows) or with a semicolon,
slash, or carriage return.

Operands _

Operands are usually the octal or symbolic addresses of the data
to be accessed when an instruction is executed, but they can be any
expression, or an argument of a pseudo-op. In each case, interpre-
tation of operands in a statement depends on the statement instruc-

tion. Operands are terminated by a semicolon, slash, or carriage -

return.

Comments
" Following a slash mark the programmer may add notes to a
statement. Such comments do not affect assembly processing or
program execution, but are useful in the program listing for later
analysis or debugging. The Assembler ignores everything from
the slash to the next carriage return. (For an example see the
section on Statement Terminators, preceding.)

It is possible to have nothing but a carriage return on a line,
resulting in a space in the final listing. An error message is not
given.

CODING PRACTICES

A neat printout (or program listing, as it is usually called) makes
subsequent editing, debugging, and interpretation much easier
than if the coding were laid out in a haphazard fashion. The coding
practices listed below are in general use, and will result in a read-
able, orderly listing. -

1. A title comment begins with a slash at the left hand margin.

13-11

A

Pseudo-ops may begin at the left margin; often, however,

they are indented one tab stop to line up with the executable

instructions.

3. Address labels begin at the left margin. They are separated
from succeeding fields by a tabulation.

4. Instructions, whether or not they are preceded by a label
field, are indented one tab stop.

5. A comment.is separated from the preceding field by one or

two tabs (as required) and a slash, unless it occupies the

whole Iine, in which case it usually begins with a slash at

the left margin.

[\

- SYMBOLS

A sirmbol Is a string of letters and digits beginning with a letter
and delimited by a non alphanumeric character. Although a symbol
may be any length, only the first six characters are considered, and
any additional characters are ignored; symbols which are identical
in their first six characters are considered identical.

Pseudo-ops have fixed meanings, and cannot be redefined by
the programmer.

The Assembler has in its permanent symbol table definitions of
the symbols for all PDP-8 pseudo-op codes, memory reference,
operate and IOT (Input/Out Transfer) instructions, which may be
used without prior definition by the user. All other symbols must
be defined in the source program. For example:

i. Permanent symbois:

HLT is a symbolic instruction whose value of 7402 is
' taken by the Assembler from the permanent sym-
bol table.
2. User defined symbols:
A i1s a user defined symbol. When used as a sym-

bolic address label, its value is the address of the
instruction it precedes. This value is assigned by
the Assembler. The user may assign values to
symbols by using a direct assignment statement of
the form A = 1234 which will be explained later.

Internal Symbol Representation for PAL 111
Each permanent and user defined symbol occupies four words

i
il

-—

1 ¢ 1 + 5 < gh o the vt ma e
he symbol table storagé area, as shown on the next page.

13-12

Word 1 C1 C2

Word 2 C3 C4

Word 3 Cs5 Cé .

Word 4 _ _ 1 Octal code or address
where C1, C2, . . . , C6 represent the first character, second
character, . . . , sixth character respectively. (Remember, symbols

consist of from one to six characters.) For a permanent symbol,
word 4 contains the octal code of the symbol; for a user defined
symbol, word 4 contains the address of the symbol. For example:
the permanent symbol TAD is represented as follows:

Word | =24, X 1005 + 01 =240130r TA
Word 2 = 044 X 1004 + 00 = 04005 or D
Word 3 = 0000

Word 4 = 1000 (octal code for TAD)

The PAL III Assembler distinguishes between pseudo-ops,

memory reference instruction, other permanent symbols, and user - -

defined symbols by their relative position in the symbol table.

Symbolic Addresses

A symbol used as a label to specify a symbolic address must
appear as the first term in a statement and must be immediately
followed by a comma. When used in this way, a symbol is assigned
a value equal to the current location counter and is said to be
defined. ' ' '

A defined symbol can be used as an operand, or as a reference
to an instruction. As we explained in Volume 1, the user sets or
resets the location counter by typing an asterisk followed by the
~octal absolute address value in which the next program word is
to be stored. If not used, PAL III begins assigning addresses at
location 200.

*¥300 . /SET LOCATION COUNTER TO 300
TAG> CLA

JMP A
B> 2
As DCA B

13-13

The symbol TAG (on the preceding page) is assigned a value of
0300, the symbol B a value of 0302, and the symbol A a value of

0303.
If a symbol is defined more than once in this manner, the
Assembler will print the duplicate tag diagnostic:
DT xxxxxx AT nnnn
where xxxxxx is the symbol, and nnnn is the value of the location
counter at the second occurrence of the symbol definition. The

I

F RN

nr PYﬂmﬂIP
(o Guaapi

. *300
START> TAD A

DCA COUNTER
CONTIN, JMS LEAVE

JMP START
A '74
COUNTER»Q
START», CLA

(9]
r
t-—l

A Y raYe ¥avay

The symbol START would have a value of 0300, the symbol
CONTIN would have a value of 0302, the symbol A would have
a value of 0304, the symbol COUNTER (considered COUNTE by
the Assembler) would have a value of 0305. When the Assembler
processed the next line it would print (during pass 1):

DT START AT 0386

Since the first pass of PAL III is used to define all symbols in
the symbol table, the Assembler will print a diagnostic if, at the

end of pass 1, there are any symbols remaining undefined. For
example:

*7178
A TAD C
CLa CMA
HLT
JMP Al
C-
o g Vi o SR iy -
2 {1nc UU dl" blgll musi [t:I'Hli!ldLC
all PDP-8 assembly programs.)

would produce the undefined address diagnostic:

: _ UA xxxx AT nnon
where xxxxxx is the symbol and nnnn is the location at which it
was first seen. The entire user’s symbol table is printed in alphabeti-
cal order at the end of pass 1. In the case of the above example,
this would look as follows: '

A 7170
UuA Al AT 7173
C 7174

The following are examples of legal symbolic addresses:

ADDR,
TOTAL,
SUM,
Al

The following are examples of illegal symbolic addresses:

ADM, (contains an illegal character)
TABC, (first character must be alphabetic)
LA BEL, (must NOT contain imbedded space)

Symbolic Insiructions .
Symbols used as instructions must be predefined by the Assem-
bler or by the programmer. If a statement has no label, the instruc-
tion may appear first in the statement, and must be terminated by’
a space, tab, semicolon, or carriage return. The following are ex-
amples of legal operators: - '

TAD (a mnemonic machine instruction operator)
PAGE (an Assembler pseudo-op)
Z1P (legal only if defined by the user)

SYMBOLIC OPERANDS

Symbols used as operands normally have a value defined by
the user. The Assembler allows symbolic references to instructions
or data defined elsewhere in the program. Operands may be num-
bers or expressions.

TOTAL> TAD AC1+TAG
The values of the two symbols AC1 and TAG, already defined

by the user, are combined by a two’s complement add. This value
is used as the address of the operand. '

13-15

Symbol Table

The Assembler processes user defined symbols in source pro-
gram statements by adding to its symbol table, which contains all
defined symbols along with the binary value assigned to each
symbol.

Initially, the Assembler’s symbol table contains the mnemonic
op-codes of the machine instructions and the Assembler pseudo-op
codes, as listed in Appendix A2. As the source program is proc-
esscd, user defined symbols are added to the symbol tabie.

If, during pass 1, PAL III detects that the symbol table is full
(in other words, there is no more memory space to store symbols
and theil associaied vaiues), the symbol table full diagnostic:

ST xxxxxx AT nnnn
s printed; xxxxxx is the symbol that caused the overflow condition
and nnnn is the current location when the overflow occurred.
The Assembler halts and may not be restarted.

More address arithmetic should be used to reduce the number
of symbols. It is also possible to segment a program (using the
PAUSE pseudo-op) and assemble the segments separately, taking
care to generate proper links between the assemblies. PAL III’s
symbol capacity when using the high-speed reader is 558 symbols.
The permanent symbol table contains 80 symbols leaving space
for 478 possible user defined symbols. When using the low-speed
reader PAL IIl’s symbol capacity is 656 symbols, ieaving space
for 576 user defined symbol :

aira A NS EKL)'.I..llUUlS.

Direct Assignment Statements

The programmer inserts new symbols with their assigned values
directly into the symbol table by using a direct assignment state-
ment of the form:

SYMBOL = VALUE

VALUE may be a number or expression. No space(s) or tab(s)
may appear between the symbol to the left of the equal sign and
the equal sign. For example: '

Qb

I 2 n

Dok v
-

All symbols to the right of the equal sign must be already de-
fined. The symbol to the left of the equal sign and its associated

13-16

valne is stored in the user’s symbol table. The use of the equal sign
does not increment the location counter. It is, rather, an instruc-
tion to the Assembler itself.

A direct assignment statement may also equate a new symbol

to the value assigned to a previously defined symbol. In this case
the two symbols share the same memory location.

BETA=17
GAMMA=BETA

The new symbol, GAMMA, is entered into the user’s symbol table
with the value 17.
The value assigned to a symbol may be changed as follows:

ALPHA=5
ALPHA=7

The second line of code shown changes the value assigned to
ALPHA from 5 to 7. (This will generate an RD error, as explained -

below
Symbols defined by use of the equal 51gn may be used in any
valid expression. For example: :

*200

A=100 /DOES NOT UPDATE CLC

B=40p0 /DOES NOT UPDATE CLC

A+B /THE VALUE 500 IS ASSEMBLED AT LOC. 200
TAD A /THE VALUE 1106 IS ASSEMBLED AT LOC. 201

If the symbol to the left of the equal sign has already been
defined, the redefinition diagnostic:

RD xxxxxx AT nnnn

will be printed as a warning, where xxxxxx is the symbol name
and nnnn is the value of the location counter at the point of re-

definition. The new value will be stored in the symbol table; for

example:
CLA=7600

13-17

RD CLA AT 2200

Whenever CLA is used after this point, it will have the value 7600.
Multiple assignments can be carried to two levels only. Where
X is some previously defined symbol or combination of symbols:

A=B=X will assemble, but -
A=B=C=X will not assemble.

The expression to the right of the second equal sign must be

~ad fn = / -
composed completely of numbers and/or previcusly defined sym

bols. If this is not the case, a “pushdown stack overflow” dlagnos-
tic of the form:

PO xxxx AT nnnn

will be generated. This is a non-recoverable error condition which
causes the assembly to terminate. Continuation is not possible at
this point. The error must be corrected and the assembly restarted.

EXPRESSIONS
Symbols and numbers are combined by arithmetic and logical
operators to form expressions. There are three operators:

+ plus Signifies two’s complement addition
— minus Signifies two’s compiement subtraction
space Space is interpreted in context

When a space occurs in an expression that does not contain a
memory reference instruction, it means an inclusive OR is to be
performed. For example:

CLA CLL

The symboi CLA has a vaiue of 7200 and the symbol CLL has a

value of 7100; CLA CLL would produce 7300. User defined sym-
ntad + -

13-18

Possible expressions and their values using the symbols just defined
are shown below. Notice that the Assembler reduces each expres-
sion to one 4-octal-digit word: '

-

A 0333

B 0222

A+B 0555

A-—-B 0111

—A 7445

1-B 7557

B—1 0221

A B 0333 (an inclusive OR is performed)
—71 7707

etc.

An expression is terminated by either a comma, carriage return,
or semicolon (;). If any information is generated to be loaded, the
current location counter is incremented. For example:

B-75 A+45 A+B

produces three words of information and the current iocation
counter is incremented after each expression. The statement:

HALT=HLT CLA

produces no information to be loaded (it produces an association
in the symbol table) and hence does not increment the current loca-
tion counter.

*4721
TEMP
TEM2, 2

The location counter is not incremented after the line TEMP, and
hence the two symbols TEMP and TEM2 are assigned the same
value, in this case 4721. 3

Since a PDP-8 instruction has an operation code of three bits
as well as an indirect bit, a page’bit, and seven address bits, the
Assembler must combine memory reference instructions in a man-
ner somewhat differently from the way in which it combines

13-19

the symbols in its permanent symbol table and user defined sym-
bols. The following symbols are used as memory reference instruc-
tions: |

operate or IOT instructions. The Assembler differentiates between

AND 0000 Logical AND

TAD 1000 Two’s complement addition
ISZ 2000 Increment and skip if zero
DCA 3000 Deposit and clear accumulator
JMS 4000 Jump to subroutine

JMP 5000 Jump

FADD 1000 Floating addition

FSUB 2000 Floating subtraction
FMPY 3000 - Floating multiply

FDIV 4000 Floating divide

FGET 5000 Floating GET

FPUT 6000 Floating PUT

When the Assembler has processed one of these symbols, the
space following it acts as an address field delimiter.
| *41 30

VP4
“A> CLA

A has the value 4101, JMP has the value 5000, and the space acts
as a field delimiter. These symbols are represented as follows:

A 100 001 000 001
JMP 166 066 0G0 OGO

The seven address bits of A are taken, i.e.:
000 001 000 001

The remaining bits of the address are tested to see if they are
zeros (page zero reference); if they are not, the current page bit is

cat-

[S L2

G0G 011 0G0 001
The operation code is then ORed into the JMP expression to form:

101 011 000 001

13-20

or, written more concisely in octal:
5301

In addition to the above tests, the page bits of the address field
are compared with the page bits of the current location counter.
If the page bits of the address field are nonzero and do not equal
the page bits of the current location counter, an out-of-page refer-
ence is being attempted and the illegal reference diagnostic is
printed on pass 2 or pass 3. For example:

*4100
A, CLa CLL

*7200
JMP A

The symbol in the address field of the JMP instruction has a
value of 4100 while the location counter (the address where the
instruction is placed in memory) has a value of 7200. This instruc-
tion is illegal because PAL III does not generate off-page reference,

and will be flagged during pass 2 or pass 3 by the illegal reference N

diagnostic:

IR 4188 AT 7200

(Note, such a diagnostic would not be generated when using
MACRO or 4K PAL-D which both automatlcally generate oﬁ—page
references).

ADDRESS ASSIGNMENTS

The PAL III Assembler sets the origin, or starting address, of
the source program to absolute location (address) 0200 unless the
origin is otherwise specified by the programmer. As source state-
ments are processed, PAL III assigns consecutive memory ad-
dresses to the instructions and data words of the object program.
This is done by automatically incrementing the current location
counter each time a memory location is assigned. A statement
which generates a single object program storage word increments
the location counter by one. Another statement might generate six
storage words, incrementing the location counter by six.

Direct assignment statements and some Assembler pseudo-ops

13-21

do not generate storage words and therefore do not affect the lo-
cation counter. '

Current Address Indicator

The special character period (.) always has a value equal to the
value of the current location counter. It may be used as any integer
or symbol (except to the left of an equal sign). For example:

*Z200
JMP . +2

is equivalent to JMP 0202. Also.

*300
« +2407

will produce in location 0300 the quantity 2700. Consider

*2200
CALL=JMS I -

MaAn ey

wuwca !

The second line (CALL=JMS I .) does not increment the current
location counter, therefore, 0027 is placed in location 2200 and
CALL is placed in the user’s symbol table with an associated value
of 4600 (the octal equivalent of JMS 1 .).

Indirect Addressing

When the character I appears in a statement between a memory
reference instruction and an operand, the operand is interpreted
as the address {or location) containing the address of the operand
to be used in the current statement. Consider:

TAD 48

 which is a direct address statement, where 40 is interpreted as the
address on page zero containing the quantity to be added to ihe
- accumulator. References to addresses on the current page and to

13-22

page zero may be done directly. An alternate way to note the page
zero reference is with the letter Z, as follows:

TAD Z 49

This is an optional notation, not differing in effect from the pre-
vious example. Thus, if address 40 contains 0432, then 0432 is
added to the accumulator. Now consider: '

TAD 1 49

which is an indirect address statement, where 40 is interpreted as
the address of the address containing the quantity to be added to
the accumulator. Thus, if address 40 contains 0432, and address
432 contains 0456, then 456 is added to the accumulator.

: NOTE
Because the letter I is used to indicate in-
direct addressing, it is never used as a vari-
able. Likewise the letter Z, which is some-
times used to indicate a page zero reference
is never used as a variable.

- Autoindexing

Interpage references are often necessary for obtaining operands
when processing large amounts of data. The PDP-8 computers
have facilities to ease the addressing of this data. When absolute

locations 10 to 17 (octal) are indirectly addressed, the content of

the location is incremented before it is used as an address and the
incremented number is left in the location. This allows the pro-
grammer to address consecutive memory locations using a min-
imum of statements.

It must be remembered that initially these locations (10 to 17
on page 0) must be set to one less than the first desired address.
Because of their characteristics, these locations are called autoin-
dex registers. No incrementation takes place when locations 10
to 17 are addressed directly. For example, if the instruction to be

13-23

executed next is in location 300 and the data to be referenced is
on the page starting at location 5000, we can use autoindex regis-
ter 10 to address the gata as follows:

2276 1377 TAD C4777 /=5000-1

2277 3012 CA 10 /SET UP AUTO INDEX

2320 1410 TAD 1 10 /INCREMENT TO 5008

. . . /BEFORE USE AS AN ADDRESS
8377 4777 Ca7775 4777

When the instruction in location 300 is executed, the contents
of location 10 will be incremented to 5000 and the contents of
location 5000 will be added to the contents of the accumulator.
When the instruction TAD I 10 is executed again, the contents of
location 5001 will be added to the accumulator, and so on.

INSTRUCTIONS

There are two basic groups of instructions: memory reference
and microinstructions. Memory reference instructions require an
operand; microinstructions do not require an operand.

| Y, PUCU s P S | (.
IYACITIONY Reference umuunu(hm

In PDP-8 computers, some instructions require a reference to
memory. They are appropriately designated memory reference
instructions, and take the following format:

OPERATION MEMORY
CODES ©-5 PAGE
drm
¢) 1 2 3 4 5 6 7 8 8 | 1C . 11
— J | v
INDIRECT ADDRESS
ADDRESSING
Memory Reference Instruction Bit Assignments
Bits { through 2 contain the operation code of the instruction
to be performed. Bit 3 tells the computer if the instruction is in-
direct. that is, if the address of the instruction specifies the loca-

of the address of the operand. Bit 4 tells the computer if the

inst mctmn is referencing the current page or page zero. This leaves
bitg 5 throu gL 11 77 bits\ to gnecifv an addrecs. Tn thege 7 hite

\l] NS DTIVUAAJ Baid ANANGA WIS Liiwids

13-24

200 octal or 128 decimal locations can be specified; the page bit
increases accessible locations to 400 octal or 256. decimal. For a
list of the memory reference instructions and their codes; see
Appendix A2.

In" PAL III a memory reference instruction must be followed
by a space(s) or tab(s), an optional 1 or Z designation, and any
valid expression. In PAL ITI Memory Reference Instructions may
be defined with the FIXMRI instruction, explained under the sec-
tion on Altering the Permanent Symbol Table. Permanent symbols
may be defined using the FIXTAB instruction. In PAL IIT perma-
nent symbols may be used in address fields as shown below:

N

A=1234
FIXTAB
TAD A

Microinstructions :
Microinstructions are divided into two groups: operate and In
put/QOutput Transfer (IOT) microinstructions.

_ _ NOTE
If a programmer mistakenly makes an illegal
combination of microinstructions, the As-
sembler will perform an inclusive OR be-
tween them; i.e.,
CLL SKP is interpreted as SPA
(7100 7410) (7510)

OPERATE MICROINSTRUCTIONS

. Within the operate group, there are two groups of microinstruc-
tions which cannot be mixed. Group 1 microinstructions perform
clear, complement, rotate and increment operations, and are des-
ignated by the presence of a 0 in bit 3 of the machine instruction
‘word. (See Permanent Symbol Table list in Appendix A2.)

ROTATE §
ROTATE POSITION If AQ

OPERATION AC AND L 2 POSITIONS
COBE 7 CLA CMA RIGHT IF A
lauan — ~— ~—
0 1 2 3 4 5 6 7 8 9 10 {1
CONTAINS CLL CML ROTATE 1AC
ADTO AC AND o
SPECIFY LEFT
GROUP

Group 1 Operate Microinstruction Bit Assignments

13-25

Group 2 microinstructions check the contents of the accumu-
lator and link and, based on the check, continue to or skip the
next instruction. Group 2 microinstructions are identified by the
presence of a 1 in bit 3 and a 0 in bit 11 of the machine instruction
word (See Appendix A2).

REVERSE
SKipP
OPERATION SENSING OF

CODE 7 cLa SZA BITS 5,6,7 HLT
— ~— ~ .
1
{ - L.
C i ; 2 3 4 5 B 7 8 9 0] 14
i
S S e S~ S~/
CONTAINS A 1 SMA SNL OSR CONTAINS A @
TO SPECIFY TO SPECIFY
GROUP 2 GROUP 2

Group 2 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined
because bit 3 determines either one or the other.

Within Group 2, there are two groups of skip instructions. They
can be referred to as the OR groups and the AND group.

OR Group AND Group
SMA SPA
SZA SNA
SNL S7Z1.

The OR group is designated by a 0 in bit 8. and the AND group
oy a i in bit 8. OR and AND group instructions cannot be com-
bined because bit 8 determines either one or the other.

If the programmer does combine legal skip instructions, it is
important to note the conditions under which a skip may occur.

1. OR Group—If these skips are combined in a statement, the
inclusive OR of the conditions determines the skip. For
example:

SZA SNL

The next statement is skipped if the accumulator contains
0000, or the iink is a 1, or both conditions exist.

2. AND Group—If the skips are combined in a statement. the

13-26

~

logical AND of the conditions determines the skip. For
example:

SNA SZL

The next statement is skipped only if the accumulator differs.
from 0000 and the link is O.

INPUT/OUTPUT TRANSFER MICROINSTRUCTIONS
These microinstructions initiate operation of peripheral equip-

ment and effect an information transfer between the central proces-

sor and the Input/Output device(s).

The Permanent Symbol Table in Appendix A2 contains the
commonly used IOTs for the disk, TTY. DECtape, and high
speed devices. These and other IOTs are discussed in detail in the
1970 Small Computer Handbook.

Pseudo-Operators :

The programmer uses pseudo-operators to direct the Assembler
to perform certain tasks or to interpret subsequent coding in a
certain manner. Some pseudo-ops generate storage words in the
object program, other pseudo-ops direct the Assembler as to how
to proceed with the assembly. Pseudo-ops are maintained in the
permanent symbol table.

The function of each PAL I11 pseudo-op is described below.

INDIRECT ADDRESSING
I Symbolic representation for indirect addressing, must be
separated on each side by at least one space.

For example:

DCA I ADD

The value of the symbol ADD is used as the address of the address
in which the contents of the accumulator will be stored.

Z Optional method of denoting a page zero reference.

13-27

For example:

'DCA ADD
‘DCA Z ADD

The two statements above have the same meaning and generate
the same code, where ADD is on page zero.

Both Z and I can be present in the same instruction, separated
by at least one space, as follows:

DCA Z I ADD

wn
-+
=

which i

DCA I ADD

RADIX CONTROL

Numbers used in a source program are initially considered to be
octal numbers. However, if the programmer wishes to have certain
numbers interpreted as deCImal he can use the psuedo-op
DECIMAL.

DECIMAL All following numbers are taken as decimal until
the occurrence of the pseudo-op OCTAL.
OCTAL Resets the radix to its original octal base.

EXTENDED MEMORY

When using more than one memory bank, ihe pseudo-op FIELD
instructs the Assembler to output a ﬁeid setting. This field setting
is puuuhcd durm pass 2 and is rec
~which in turn causes all subsequent information to be loaded into
the field specified by the expression. A new origin should be spec-

ified after using the FIELD pseudo-op.

¢ Binary Loader,

O
)
53,
¥
¢
¢
Le

FIELD n Where n is an integer, a previously defined symbot,
or an expression within the range 0 < n < 7.

The FIELD pseudo-op causes a field setting (binary Wora) of the

ANS2 azde

by the Loader, which then begins loading information into the new

field.

P3@1.,

NEXT,

P302,
PRINT.,

P6263,

NOTE
CDF and CIF instructions must be used
prior to any instruction referencing a loca-
tion outside of the current field. as shown
in the following example:

*200

TAD P301
CDF 00
CIF 10
JMS PRINT

CIF 10

JMP NEXT
301 '
FIELD 1
*200

TAD P32
CDF 10
JM5 PRINT
HLT

392

7]

TLS

TSF

JMP .-1

< CLA

RDF

TAD P6283
DCA .+1

002

JMP I PRINT
6203

When FIELD is used, the Assembler follows the new FIELD set-
ting with an origin at location 200. For this reason, if you want to
assemble code at location 400 in field 1 you must write:

FIELD 1

*420

/CORRECT EXAMPLE

13-29

The following is incorrect and will not generate t

*400 /INCORRECT

END OF TAPE

The pseudo-op PAUSE signals the Assembler to stop processing
the paper tape being read. The current pass is not terminated, and
processing coitinues when the user depresses the CONTINUE key
(when using MACRO depress CONTINUE; when using PAL-D,
type CTRL/P).

When processing a segmeniied piograim, ine Prograimimics uUscs
‘the PAUSE pseudo-op as the last statement of each segment (tape)
to halt Assembler processing, giving him time to insert the next
segment of his program.

The PAUSE pseudo-op should be used only at the physical
end of a tape or file and with two or more tapes of one program.
When the Assembler reaches a PAUSE statement it does the
following: "

1. The Assembler stops.

2. This is the physical end of the tape; the Assembier resets
the input buffer pointer. :

3. Operator intervention is required to put the next tape seg-
ment of the program in the reader and press the CON-
TINUE key.

If a PAUSE is encountered somewhere other than at the physical
end of a tape, some of the user code immediately after the PAUSE
‘will not be assembled. This occurs because PAL IIT has an input
buffer to allow maximum use of reader speed. A tape is read in
until the buffer is filled or the physical end of the tape is reached.
The contents of the buffer are then processed. However, upon rec-
ognizing a PAUSE, PAL III resets the buffer to empty and waits
for step 3 above. |

END OF PROGRAM

The special symbol dollar sign {8} indicates the end of a pro-
gram. When the Assembler encounters the dollar sign, it termi-
‘nates the current pass. Thc Asscmbler must read a $

- pass before it will correctly proceed with the assembly.

13-30

ALTERING THE PERMANENT SYMBOL TABLE _
PAL III contains a table of symbol definitions for the PDP-8
and its most common peripheral devices. These are symbols such
as TAD, DCA, and CLA, which are used in most: PDP-8 Pro-
grams. This table is .considered to be the permanent symbol table
for PAL III; all of the symbols it contains are listed in Appendix
A2. " :
If the user purchases one or more optional devices whose in-
- struction set is not defined among the permanent symbols (for
example EAE or an A/D Converter), he would want to add the
necessary symbol definitions to the permanent symbol table in
every program he assembles. Conversely, the user who needs more
space for user defined symbols would probably want to delete all
definitions except the ones used in his program. For such purposes,.
PAL IIT has three pseudo-ops that can be used to alter the perma-
nent symbol table. These pseudo-ops are recognized by the As-
sembler only during pass 1. During either pass 2 or pass 3 they are
ignored and have no effect.

EXPUNGE Deletes the entire permanent symbol table, ex- -
cept pseudo-ops.

FIXTAB Appends all presently defined symbols to the
permanent symbol table. All symbols defined
before the occurrence of FIXTAB are made part
of the permanent symbol table until the Assem-
bler is reloaded. For example, the PAL III Ex-
tended Symbols Tape ends with FIXTAB.

To append the following RFO8 disk IOTs to the symbol table,
the programmer generates an ANSCIT tape of:

DCIM=6611
DIML=6615
DIMA=6616
DFSE=6621
DISK=6623
DCXA=6641
DXAL=6643
DXAC=6645
DMMT=6646
FIXTAB
PAUSE

13-31

The ANSCII tape is then read into core ahead of the symbolic
program tape during pass 1. The PAUSE pseudo-op stops assem-
bly, and the Loader waits for the programmer to put the symbolic
program tape into the tape reader and press CONTINUE.
~ Each time the Assembler is loaded, PAL III’s permanent symbol
table is restored to contain only the permanent symbols shown in
Appendix A2.

Afbne altpnrin +ha oxreemlanl 1
ATIET alicring i€ Syiioo: tavie 1o fi

want to keep PAL III in this state for {

it his needs, the user might
future use. This can be dene -

by punching a binary of the section of core occupied by PAL III
with its new symbol table.
.~ To do this: '

1.
2.

Read in PAL III and modify symbol table as desired.

PAL Til's symbol table begins at location 2332 (octal).
Count all the symbols in the altered symbol table. Since each
symbol and its value require four words multiply this number
by 4. Convert this number to octal and add it to 2332
(octal). This number is the upper limit of PAL III. The
lower limit is 0001.

Using the Binary Punch Routine (DEC-08-YXYA-D},
which does a binary core dump to the high-speed or Tele-

A 1i% iad i
t’ T

type punch, and the limits as stated in 2 above, punch out

the PAL IIT Assembler

The output of the Binary Punch Routine is the Assembler
+hh thna andifad cirrmhal fohilo and fca; la laadad wnat thao

YYELEIL L1V LILTUARRRIGAL a_yx UUL wQUiL il VAL UL UGV AL Y ELLEL jav

Binary Loader. This revised version of the Assembler can
thereafter be used instead of the original version.

The third pseudo-op used to alter the permanent symbol table
in PAL IIT (and not present in MACRO or PAL-D) is FIXMRI
which may be used only after an EXPUNGE instruction:

FIXMRI Fix memory reference instruction. Memory reference

instructions are stored in the permanent symbol table
immediately following the pseudo-ops. The letters
FIXMRI must be foliowed by one space, the symboi
for the instruction to be defined, an equal sign, and
the vaiue of the symbol. The pseudo-op must be re-
peated for each memory reference instruction to be

13-32

defined. All mémory reference instructions must be
defined before the definition of any other®symbols.

For example:

EXPUNGE

FIXMRI TAD=1000
FIXMRI DCA=3000
CLA=T200

FIXTAB

PAUSE

When the preceding program segment is read into the Assembler
during pass 1, all symbol definitions are deleted and the three
symbols listed are added to the permanent symbol table. Notice
that CLA is not a memory reference instruction. This process is
often performed to alter the Assembler’s symbol table so that it

contains only those symbols used at a given installation or by a
given program. This may increase the Assembler’s capacity for . .

user defined symbols in the program.

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language or symbolic tape is punched in ANSCII
code on 8-channel paper tape, using an off-line Model 33 ASR
Teletype or the on-line Symbolic Editor. In general, a program
should begin with leader code which may be blank tape, code 200,
or RUBOUT:.

Certain codes which the Assembler ignores may be used freely
to produce a more readable symbolic program listing. These codes
are TAB and LINE FEED. The Assembler also ignores extraneous
spaces, carriage return/line feed combinations, and blank tape.
When the Assembler encounters a form feed character, it causes
12 blank lines to be output on the listing (in PAL III only).

The two programs below are identical and produce the same
binary code. The second, however, was generated using the TAB
function of the Symbolic Editor and is easier to read. The first
program assembles faster only because there is less paper tape to
be read into the computer.

13-33

*209

/EXAMPLE OF INPUT TO THE FORMAT
/GENERATOR PROGRAM

BEGIN, @/START OF PROGRAM

KCC

KSF/WAIT FOR FLAG

JMP .-1/FLACG NOT SET YET

17 ST ATY TAT MITATIA M T
KRB/READ IN CHARACTER

DCA CHAR
TAD CHAR

TAD MSPACE/IS IT A SPACE?
SNA C1A

ariwis Araaar

HLT/YES

JMP BEGIN+2/NQ: INPUT AFAIN
CHAR,@/TEMPORARY STORAGE
MSPACE,-240/7-ANSCII EQUIVALENT
/END OF EXAMPLE

%

#2500
/EXAMPLE OF INPUT TO THE FORMAT
/GENERATOR PROGRAM

BEGIN.] /5TART OF PROGRAM

KCC

XSF /WAIT FOR FLAG

JMP . -1 /FLAG NOT SET YET
= KRB’ /READ IN CHARACTER

DCA CHAR -

TAD CHAR

TAD MSPACE /715 IT A SPACE?

SNA CLA

HLT /YES

JMP BEGIN+Z2 /NO: INPUT AGAIN
CHAR @ TEWPO RY STORAGE

MSPACE, -243 -ANSCII EBEQUIVALENT

/END OF EXAMPLE
3

13-34

The program consists of statements and pseudo-ops; is termi-
nated by the dollar sign ($), and followed by some trailer code. If
the program is large, it can be segmented using the pseudo-op
PAUSE, which often facilitates the editing of the source program
since each section will be physically smaller.

The Assembler initially sets the current location counter to
0200. This counter is reset whenever the asterisk (*) is processed.

During pass 1, all illegal characters cause a diagnostic to be
printed. The tape should be corrected and reassembled.

The Assembler reads the source tape and defines all symbols
used. The user’s symbol table is printed (or punched) at the end
of pass 1. The symbol table is printed in alphabetical order. If
any symbols remain undefined, the undefined address diagnostic
is printed. If the program listed on the previous page were assem- .
bled, the pass | symbol table output would be:

BEGIN 2200
CHAR 8213
MSPACE @214

During pass 2, the Assembler reads the source tape and gen-
erates the binary code, using the symbol table equivalences de-
fined during pass 1. The binary tape that is punched may be loaded
by the Binary Loader. This binary tape consists of leader code, an
origin setting, and data words. At the end of pass 2, a checksum
- (See Index/Glossary) is punched on the binary tape, and trailer
code is generated. During pass 2, the Assembler may diagnose an
illegal reference; when using the 33 ASR Punch, the diagnostic
is both printed and punched, and is preceded and followed by
RUBOUTSs. The Binary Loader ignores everything that has been
punched on a tape between RUBOUTs.

During pass 3, the Assembler reads the source tape and gen-
erates the code from the source statements. The assembly listing
is printed (or punched). It consists of the current location counter,
the generated code in octal, and the source statement. The symbol
table is printed at the end of the pass. If the sample program listed
above were assembled, the pass 3 output would be:

13-35

Yr.r

*200
/EXAMPLE OF INPUT TO THE FORMAT
/GENERATOR PROGRAM

2200 2000 BEGIN, @ /START OF PROGRAM
2281 6032 KCC '

P22 6031 KSF /WAIT FOR FLAG
9283 5202 JMP -1 /FLAG NOT SET YET
pega 6036 KRB /READ IN CHARACTER
Pegs 3213 DCA CHAR

2206 1213 TAD CHAR

2207 1214 TAD MSPACE /15 IT A SPACE?
geie 7650 sSNa CLA

gall 7498 HLT /YES :
pale 5282 JMP BEGIN+2 /NO: INPUT ACAIN
9213 5853030] CHAR.> (%) /TEMPORARY STORAGE
gal4a 742 MSPACE. -240 /-ANSCII EQUIVALENT

/END OF EXAMPLE

BEGIN 2200
CHAR 2213
MSPACE @214

OPERATING PROCEDURES

The PAL II1 Assembler is provided to DEC customers as a
binary tape, which is loaded into the PDP-8 memory by means of
the Binary Loader, using either the 33 ASR reader or the high-
speed reader. The Assembler also uses either the 33 ASR reader
or the high-speed reader to read the source language tape, and it
uses either the 33 ASR punch or the high-speed punch for output.
The selection of 1/0 dev1ces is made when the Assembler is
started. The source language tape must be in the proper reader,
with the reader and punch turned on.

“When using the high-speed punch, the symbol table is printed
on the 33 ASR Teletype of bit 11 of the switch register is a 0.
The symbol table is punched on the high-speed punch if bit 11 of
the switch register is a 1.

AH dlaonostlcs are prmted n the 3

3 N
puuulcu On g blua

Binary Loader.) The t

OQ!

pass 3. If the machine is not equipped with a high-speed punch,
bit 11 must be set to 0.

In addition to the binary tape of the PAL III Assembler, the
user is provided with an ANSCIT tape (PAL IIT Extended Symbols
Tape) containing symbol definitions for the instruction sets of the
available options to the PDP-8 (card readers, magnetic tapes, and
A/D converters). A limited amount ©of space is available in a 4K
system; therefore, expanding the number of permanent symbols
that the Assembler recognizes will decrease the maximum number
of symbols the user has available. '

The following is a description of steps in using the PAL III
Assembler (this information can also be found in Volume 1,
Chapter 6):

1.- Load the Assembler, using either the 33 ASR reader or the
high-speed reader.

2. Set 0200 into the switch register: press LOAD ADDRESS.

3. Place the source language tape in the reader, turn on the
appropriate reader and the punch.

4. Set bits 0 and 1 of the Switch Register for the proper pass.
These settings are:

Bit 0 Bit 1

0 1 pass 1
1 0 pass 2
1 1 pass 3

Pass 1 is required so that the Assembler can initialize its symbol
table and define all user symbols. After pass 1 has been made,
either pass 2 or pass 3 can be made.

5. Bit 11 switch options:
pass 1 Bit 11=1 Punch the symbol table on the high-
speed punch if it is in the machine
configuration.
Bit 11=0 Print (and punch) the symbol table
on the 33 ASR (low-speed punch).

pass 2 11=1 Punch binary tape on high-speed
punch.

11=0 Punch binary tape on low-speed
punch.

13-37

pass 3 Bit 11=1 Punch the assembly listing tape in
ANSCII, on the high-speed punch.
Bit 11=0 Print the assembly listing on the 33
ASR. '
Bit 10 switch options: .
pass 3 Bit 10=1 Output TAB (code 211) as 8 space
. tab stops. :
10=0 Output TAB as TAB RUBOUT
(code 211 and 377).
Bit 2 switch options:
passes 1 and 3
Bit 2=1 Suppress output of symboi tabie.
2=0 OQutput symbol table. |
6. Press START to begin pass 1 only. Press CONTINUE to
begin passes 2 or 3. The Assembler halts at the end of each
pass. Proceed from step 3. If the Assembler has halted be-
-cause of a PAUSE statement, put the next tape into the
reader and press CONTINUE. :

Summary of Diagnostic Messages for PAL III

PASS 1 DIAGNOSTICS | .
The assembler reads the source tape, defines all user symbols,
and outputs the user symbol tabie in aiphabetical order. Pass
1 diagnostics are:

IC xxxx AT nnnn Illegal Character
Where xxxx is the value of the illegal character and nnnn 18
the value of the current location counter when the character
was processed.

RD xxxx AT nnnn Redefinition
Where xxxx is the symbol being redefined and nnnn is the
value of the current location counter at the point of redef-
inition. The symbol is redefined.

DT xxxx AT nnnn Duplicate Tag
An attempt is being made to redefine a symbol using the
comma. XxxX is the symbol and nnnn is the value of the cui-
rent location count. at the point of redefinition. The previous

13-38

value of the symbol is retained and the symbol is not re-
defined.

ST xxxx AT nnnn Symbol Table Full
Where xxxx is the symbol causing the overflow and nnnn is
the value of the current location counter at the point of over-
flow. The Assembler halts and cannot be restarted.

PO xxxx AT nnnn Pushdown List Overflow
This error message occurs in the most recent version of PAL
III. An attempt is being made to carry a multiple assignment
‘to more than two levels; i.e., the value of the symbol or ex-
pression to the right of the second equal sign was not known
to the Assembler when it was encountered in the multiple
assignment statement. xxxx is the value of the pushdown
stack pointer and, by definition of overflow, this value is the
address of the last location in the stack.

The value of the current location counter when overflow is
detected is nnn. The Assembler halts at this point without
reading more source tape. The CONTINUE key has no effect.
at this time; however, the Assembler can be restarted at loca-
tion 200, as indicated in step 2 under Operating Instructions:

UA xxxxxx AT nnnn ~ Undefined Address
Where xxxxxx is the symbol that was used, but never defined,
and nnnn is the value of the current location counter when
the symbol was first processed. This message is printed with
the symbol table at the end of pass 1. The symbol is assigned
a value equal to the highest address on the memory page-
where it was first used.

PASS 2 DIAGNOSTICS
The Assembler reads the source tape, and, using the symbol
table defined during pass 1, generates and punches the binary
code. This binary tape can then be loaded by the Binary
Loader. The pass 2 diagnostic is:

IR xxxx AT nnnn Illegal Reference
Where xxxx is the address being referenced and nnnn is the
value of the current location counter. The illegal address is

13-39

then treated as if it were on the proper memory page. For
example: _

*7306
JMP 3087

would produce:
IR D387 AT 7306

and would generate 5307 to be loaded into location 7306.

PASS 3 DIAGNOSTICS

The Assembler reads the source tape and, using the symbol
table defined during pass 1, generates and prints the code
represented by the source statements. The current location
counter, the contents, and the source statement are printed
side by side on one line. If bit 11 of the switch register is a 1
and the machine configuration includes the high-speed punch,
the assembly listing is punched in ANSCII. The pass 3 diag-
nostic is Illegal Reference, as in pass 2.

13-40

MACRO PROGRAMMING
Having mastered the sections on assembly language program-
ming in Volume 1 and the material in this chapter on PAL III, we
turn to the MACRO Assembler (sometimes called MACRO-8).
MACRO is compatible in most respects with PAL IIT and has sev-
eral additional features which will be of interest to more advanced
PDP-8 programmers: double precision integers, floating point con-
stants, Boolean operators, link generation, literals, a text facility,
and user defined macros. :

NUMBERS

The types of numbers allowed in MACRO asszmblies are in-
tegers, double precision integers, and double precision floating
point numbers. | '

Double Precision Integers k

Double precision integers may be positive or negative (stored as
two’s complement) according to their sign but may not be com-
bined with operators in expressions. They are always taken as
decimal radix although the current radix of the program is not
disturbed. Each double precision integer is allotted two consecutive
words with the sign indicated by bit O of the first word, as shown

below:

SIGN BIT ——ef WORD 1

WORD 2

12 23

The double precision integer mode is entered through the use
of the pseudo-op DUBL. All numbers encountered after the occur-
rence of DUBL are considered double precision integers (stored in

13-41

2 words) until an alphabetic character is encountered. Each num-
ber is terminated by a carriage return, semicolon (;), or comment.

For example:

* 400
DUBL 679467
44
-3
TAGS cCLA

The preceding section of code would produce

Location Contents
0400 0245
0401 7053
0402 0000
0403 0054
0404 7777
0405 7775
0406 7200

Floating Point Constants

The numbers indicated under Con-
tents are the octal equivalent of the
decimal numbers above. The CLA
instruction is given the value 7200
as found in the permanent symbol

Double precision floating point constants may be positive or
negative according to their sign but cannot be combined with
operators. Decimal radix is assumed but the current radix of the
program Is not altered. Floating point constants are each assigned
three words and are stored in normalized form, as shown below:

SIGN OF BINARY EXPONENT:
EXPONENT TWO'S COMPLEMENT
SIGNED QUANTITY
0 1"
SiGN Cr HIGH ORDER
MANTISSA MANTISSA
12 23
LOW ORDER

MAARITICC A
Wimay L TS

35

13-42

The exponent is a signed two’s complement quantity in one 12-
bit word. The signed mantissa is stored in two 12-bit words, main-
taining 23 bits of significance, making a total of three words for
storage. "

The double precision floating point mode is entered through use
of the pseudo-op FLTG. All numbers encountered after the use of
FLTG will be interpreted as double precision floating point con-
stants until the occurrence of an alphabetic character other than E.
The general input format of a floating point number is:

Tddd.dddE=dd

where each d is a decimal digit. Any character which is not legally

part of the above format (except RUBOUT) terminates input of

the number. For example:

*400
FLTG +509.32E-082
~62+.97E04
1.00E-2
TAG, CLA

would produce upon execution:

Location Contents
0400 0003
0501 2427
0402 6670
0403 0024
0404 5462
0405 0740
0406 7772
0407 - 2436
0410 5564
0411 7200

and the symbol TAG would be assigned a value of 0411.

13-43

etk ey

CHARACTERS IN MACRO
In addition to those characters discussed under PAL III, the fol-
lowing characters are used in MACRO:

Symbol Name
& ampersand
exclamation
point

s

double guote

0 parentheses
{1 square brackets
<> angle brackets

EXPRESSIONS IN MAC

¥

v -
A‘ﬂ cumhnic and numh
LA DYIIIUULS Qlid uuiliy

names, and double precision or floating point constants), may be

Function

Combines symbols or numbers (Béol— :
ean AND)

Combines symbols or numbers (Bool-
ean OR)

Generates ANSCII code
Defines a literal on the current page
Defines a page O literal

Defines a macro

1

combined with certain arithmetic and logical operators to form
expressions. These operators are:

Symbol Name

+ pius

— minus

! exclamation

point

Function

Signifies two’s complemen
modulo 4096 decimal

=3
o0

Signifies two’s complement subtrac-
tion modulo 4096 decimal

Signifies Boolean inclusive OR
{union)

Signifies Boolean AND (intersection)
Interpreted in context; can signify an
inciusive OR, or act as a field delimi-
ter as in PAL T1I

S 122 R

13-44

Symbols and integers may be combined with any of the above
operators. A symbolic expression is evaluated from left to right;
-grouping of terms (i.e., use of parentheses for grouping) is not
permitted. For example:

A B ~A+B A-B AlB A&B

Value 0002 0003 0005 7777 0003 0002
Value 0007 0005 0014 0002 0007 0005
Value 0700 0007 0707 0671 0707 0000

ORIGIN SETTING IN MACRO :

The origin is ordinarily set by use of the special character as-
terisk (*) as described in PAL III. All symbols to the right of the
asterisk must already have been defined. For example, if D has the
value 250 then:

*D+10

will set the location counter to 0260.

To ease the programmer’s addressing problems, a convention
has been defined that divides memory into sections called pages.
Each page contains 200 octal locations (128 decimal) numbered
0 to 177 (octal) on that page. There are 40 octal or 32 decimal
pages numbered O to 37 (octal). Some examples of page numbers
and the absolute and relative locations (addresses) are shown be-
low. It must be borne in mind, however, that there is no physical
separation of pages in memory.

Absolute Relative

Page Address -~ Address
0 0—177 0—177

1 200—377 0—177

2 400—577 0—177
36 7400—7577 0—177
37 7600—7777 0—177

To simplify page handling, the pseudo-op PAGE can be used:

PAGE n The PAGE pseudo-op resets the location counter to
the first address of page n, where n is an integer, a
previously defined symbol, or a symbolic expression.

13-45

For example:

PAGE 2 sets the location counter to 0400
PAGE 6 sets the location counter to 1400

PAGE When used without an argument, PAGE resets the
location counter to the first location on the next suc-
ceeding page. Thus, if a program is being assembled
into page 1 and the programmer wishes to begin the
next segment on page 2 he need only insert the pseudo-
op PAGE, as follows:

PAGE

LINK GENERATION

sy
current page of core memory, MACRO automaticaﬂy gener“tes
links for out- : . c
of the address field with the page bits of
If the page bits of the address field ‘are nonzero (not a page 0
reference) and do not cqual the page bits of the location count
an out-of-page reference is being attempted.

If reference is made to an address not on the page where the
instruction is located, the Assembler sets the indirect bit (bit 3),
and an indirect address linkage will be generated on the current
memory page. If the out-of-page reference is already an indirect
one, the error diagnostic T (illegal indirect) will be printed during
pass 2.

When a link is generated, the LG (link generated) message will
be printed on pass 2 (in MACRO only, not in PAL-D), In the
case of several out-of-page references to the same address, the
link will be genmerated only once, but the LG message will be
printed each time.

10 s pp ess the LG message when links are generated, make the
following change in MACRO (only recommended when the pro-

13-46

gram has been debugged): change the contents of location 1234 to
7200. Do not make this change unless the LG message is not
wanted.

*x2117
A CLA

*2600
JMP A

In the example above, the space preceding the user defined
symbol A acts as an address field delimiter. The Assembler will
recognize that the register labelled A is not on the current page
(in this case 2600 to 2777) and will generate a link to it as follows:

1. In location 2600 the Assembler will place the word 5777
which is equivalent to JMP 1 2777. _

2. In address 2777 (the last available location on the current
page) the Assembler will place the word 2117 (the actual
address of A). '

Although the Assembler will recognize and generate an indirect
address linkage when necessary, the programmer may indicate an
explicit indirect address by using an explicit indirect address by
using the special symbol I. This must be between the instruction
code and the address field, as it would be placed in PAL III. The
Assembler cannot generate a link for an instruction that is already
specified as being an indirect reference. In this case, the Assembler
will print the message II (illegal indirect). For example:

*2117
As CLa

*

*x2600
JMP I A

The above coding will not work because A is not defined on the
page where JMP I A is attempted.

13-47

LITERALS

Symbolic expressions appearing in the operand part of an in-
struction usually refer to locations containing the quantities being
operated upon. Therefore, the programmer must explicitly reserve
locations to hold his constants. The MACRO language provides
a means (known as literals) for using a constant directly. Suppose,
for example, that the programmer has an index which is incre-
mented by two. One way of coding this operation would be as
follows: |] ‘

*200

-

CLA

TAD INDEX
TAD C2
DCA INDEX

-

ca,

Using a literal. the above coding would be rewritten as:

*2C3

cLA

TAD INDEX
TAD ¢2)
DCA INDEX

The left parenthesis is a signal to the Assembler that the expres-
sion following is to be evaluated and assigned a word in the con-

stants table of the current page. This is the same table in which the
indirert 0{"‘(‘]1‘050 “r{kanoa ara ctnrad Tn tha alh~vs mmia tha
ARANARL VL AANINAL OO di AWD AiL DLWERAL, 211 gL U k v, Lilv

quantity 2 is stored in a word in the linkage an

ginning at the top of the current memory page. The instruction
in which the literal appears is encoded with an address referrin

to the address of the literal. A literal is assigned to storage the first
time it is encountered; subsequent reference to that literal from the
current page is made to the same register.

If the programmer wishes to assign literals to page zero rather
than to the current page, he may use square brackets, [and], in
place of the parentheses. This enables the programmer to reference
a single literal from any page of core. For example:

*200
TAD [21

L]
.

*500
TAD f21

For the first and succeeding times the literal 2 is referenced,
identical code is generated to a single location on page zero con-
taining the literal.

Whether on page zero or the current page, the right (closing)
member may be omitted. The following examples are acceptable

TAD (777
AND [JMP

In the second example, the instruction AND [JMP has the same
effect as AND [5000.

Literals can be nested, for example:

*200
TAD (TAT (32

will generate the following:

Location Contents
0200 1376
0376 1377
0377 0030

13-49

This type of nesting can be carried to as many levels as neces-
sary.

Literals are stored on each page starting at page address 177
~ (relative) and extend toward page address O (relative). Only 127
decimal or 177 octal literals may be placed on page zero. If a
literal is generated for a nonzero page and the origin is then set

to another page, the current page literal buffer is punched out
(during Dass 2): this does not effect later execution. If the nﬂgm

e) L33 Lye © LAY waA W LSt L ¥ L8 22 i

is then reset to the previously used page, the same literal will be
generated if used again, but it w:ll not destroy previously used

hfprq]g on fhgf nage
M el -Aid

To summarize, literals may take the following forms:

[C (C

v

[’C (C

u d

[E (E
Where C is a constant, V is a variable, I is an instruction, and E
is an arithmetic expression. | indicates a page 0 reference and (in-

dicates a current page reference.

Arithmetic expressions may consist of constants, variables, and
operators but must not include literals. An instriuction may contain

a hteral, for example:

(JMP I [50@

-3
»
o

is valid, while:
TAD (A+(50

is not valid. Literals may be used as the address part of a memory
reference instruction:

TAD (58

13-50

or in place of an instruction:

(MSG4

which causes the location address of the literal (MSG4 to be as-
sembled at the point where it occurs in the program.

NOTE
If a large number of nested literals or par-
ticularly large numbers of literals are used,
the literal list may be output before the log-
ical end of the page. This will not affect
later execution.

TEXT FACILITY

Single Character Text Facility -

If a single character is preceded by a double quote (), the 8-bit
value of ANSCII code for the character is inserted instead of in-
terpreting the letter as a symbol. For example: '

CLA o -
TAD a

will place the constant 0301 in the accumulator.

Text Strings

A string of text characters can be entered by giving the pseudo-
op TEXT followed by a space, any delimiting character, a string
of text, and a repetition of the same delimiting character. For
example:

TEXT ATEXTA

The character codes are stored two per word in ANSCII code
that has been trimmed to six bits. Following the last character, a
6-bit zero is inserted as a stop code. The above statement would
produce:

2405
3024
0000

13-51

The string in the following example:

TEXT /B0B/

would produce:

0217
0200

The TEXT pseudc-op cculd also be used as part of a calling
sequence to a subroutine:

Evnmﬂ‘o 1.
I AQLUPIV X .
JMS MESS
TEXT/ /
Example 2:
JMS MESS
NOWDS /NO WDS IN MESSAGE
ADDMESS /ADDRESS OF MESSAGE
ADDMESS, TEXT/ /

NOTE
While the TEXT pseudo-op causes charac-
ters to be stored in a trimmed code, the use
of the single character control () causes

characters to be stored as a full &-bit
ANSCII ccde ‘

USER DEFINED MACROS

When writing a program, it often happens that certain coding
sequences are used several times with different arguments. If so,
it is convenient to generate the entire sequence with a single state-
ment. To do this, the coding sequence is defined as a “macro”,
using dummy arguments. A single statement referring to the
macro name, along with a list of real arguments, will generate
the correct sequence in line with the rest of the coding.

13-52

Defining a Macro = : :

The macro name must be defined before it is used. The macro
is defined by means of the pseudo-op DEFINE followed by the
macro name and a list of dummy arguments separated by spaces.
For example, a simple macro to move the contents of word A

to word B and leave the result in the accumulator could be coded. -

as follows:

- DEFINE MOVE DUMMY! DUMMY2
<CLA

TAD DUMMY!1

DCA DUMMY2

TAD DUMMY2> .

The actual choice of symbols used as dummy arguments is.
arbitrary; however, they may not be defined or referenced prior to
the macro definition. The definition of the macro is enclosed in
angle brackets. ' |

The above denition of the macro MOVE can also be written as
follows:

DEFINE MOVE ARGI ARGé
<CLA; TAD ARGi5;DCA ARG2;TAD ARG2>

The definition of the macro is enclosed in angle brackets, as men-
tioned above and the semicolon characters indicate the termination
of a line of code, as in PAL III.

When a macro name is processed by the. Assembler, the real
arguments replace the dummy arguments. For example, assuming
that the macro MOVE has been defined above:

*400
4]
-6

. MOVE A»B

13-53

produces the following code:

Location Contents
0400 0000
0401 7772
0402 7200
0403 1200
0404 3201
0405 1201

Notice that a macro definition has spaces separating the dummy
arguments and the macro call has commas separating the macro
arguments.

A macro need not have any arguments. For example, a sequence
of coding to rotate the accumulator and link six places to the left
might be coded as a macro by means of the following code:

DEFINE ROTL
<RTL3RTLIRTL>

The entire macro definition is piaced in the macro table, two
characters per word, with a dummy argument vaiue repiacing the
symbolic names. For example:

DEFINE LOAD A
<CLA
TAD A>

is stored, in the macro table, roughly as follows:
ICL'A [TAID |7700{>00

where the vertical lines indicate successive 12-bit words. Com-
ments and line feeds are not stored.

The macro definition can consist of any valid coding except for
TEXT (or ” type) statements.

Restrictions on Macros

i. Macros cannot be nested, i.e., another macro name or
definition cannot appear in a macro definition and cannot
be brought in as an argument at the time a macro is refers

enced.

13-54

2. TEXT (or ” type) statements cannot appear in a macro
definition.

3. Arguments cannot be another macro name, a TEXT pseudo-
op or a ” character.

4. The symbols used as dummy arguments must not have been
previously defined or referenced.

5. A macro cannot be redefined.

Consider the following macro definition:

DEFINE LCOP A B
<TAD A

DCA B

TAD COUNT

ISZ B

JMP .-2>

A macro is referenced by giving the macro name, a space, and
the list of real arguments, separated by commas. There must be at
least as many arguments in the macro call as in the corresponding
macro definition. When a macro is referenced, its definition is
- found, expanded, and the real arguments replace the dummy
arguments. The expanded macro is then processed in the normal
fashion. For example the macro call:

LOOP X,Y2

in the context of thé program in which it appears, is equivalent to:

TAD X s
DCA Y2

TAD COUNT

I15Z Y2

JMP .-2

The macro table shares the available space (604 decimal words,
which is equivalent to 151 symbols) with the symbol table. Thus
the programmer must be aware of the amount of room required
by his macros and the fact that each symbol occupies four words
of memory. Also, the arguments of a macro call are temporarily
stored in this buffer space while the macro is being expanded.

13-55

SYMBOL TABLE SIZE ,

To incorporate these new features, it was necessary to decrease
the size of the symbol table and because of this, programs that
were originally coded to be assembled by PAL III might have too
many symbols to be assembled by MACRO. If switch registers
10 ‘and 11 are set to 1 during assembly, MACRO’s external
(user) symbol table will be extended.

Symboi Table Modification

Because of the smail amount of core {604 decimal words) re-
“maining to be used for programmer symbols and the macro table,
the foliowing suggestions are oficied which allow a particular in-
stallation or individual to conserve symbol table space.

By use of the pseudo-ops EXPUNGE and FIXTAB, unneces-
sary instruction mnemonics can be removed from the symbol table,
making more space available for programmer defined symbols and
‘macros. This also decreases assembly time as the unused instruc-
tion symbols are not involved in the symbol table searches. The
most often used instruction mnemonics should be assembled first,
so that they-will be in core next to the special characters and
pseudo-ops. This is desirable because the symbol search routine
starts searching at the top of the table and works down. ’
' i that does not have optional equipment avail-
ion sets can be removed. A sym-

V)
=2
o
-
g
(¢
(@]
O
]
"
[y
<
3
Q
3
&
]
()=}
]
7]
[
.
[l
)
“

and ending with FIXTAR and $ could be
assembled (only during pass 1 is this necessary) by MACRO prior
tc any other assemblies. For example: '

EXPUNGE
AND=00208
TAD=1000
CLA=T7200

FIXTAB -
3

The pseudo-op PAUSE could also be used with the above tape, as
the first tape of a muitiple iape assembly. Sce the list of permanent
symbols in Appendix AZ.

13-56

Internal Symbol Representation for MACRO and PAL-D
Each permanent and user defined symbol occupies four words

(locations) in the symbol table storage area, as shown below:

012
Word 1 Cl X 455 +C2 first 2 charaéters
- Word 2 C3 x45;+C4 second 2 characters
Word 3 C5 x 45, 4+ Cé6 third 2 characters
Word 4 | octal code or address
where Cl, C2, . . ., C6 represent the first character, second
character, . . . , sixth character, respectively. (Remember symbols

can consist of from one to six characters.) Bits 0 and 1 of word 1,
and bit O of word 2 are system flags! For a permanent symbol, -
word 4 contains the octal code of the symbol; for a user defined
symbol, word 4 contains the address of the symbol. For example,
the permanent symbol TAD is represented as follows:

Word 1 =244 X 453+ 01 = 13455 or TA

Word 2 = 045 X 455 + 00 = 2245 + 4000 = 42245 or D
Word 3 = 0000 | '

Word 4 = 1000 (octal code for TAD)

Note that the octal code for each character is always scaled by
the Assembler so that the character is represented using six bits
of a word. For example, ANSCII code for T is 324, it was trimmed
to 24; A 1s 301, it was trimmed to 01, etc. Digits O through 9 are
scaled to the range 33 through 44.

MACRO PSEUDO OPERATORS

Pseudo-Op Description
DECIMAL See PAL 111
OCTAL See PAL III
PAUSE See PAL III
FIELD See PAL III

1Bit 0 of word 1 signifies a pseudo-op, bit 1 signifies an undefined symbol,
bit 0 of word 2 signifies a defined symbol.

13-57

P

Z See PAL 1II
I ' See PAL 1II
EXPUNGE See PAL III and MACRO, sections on
Symbol Table Alteration

FIXTAB See PAL III and MACRO, sections on
Symbol Table Alteration

DEFINE See MACRO, section on User Defined
Macros _

TEXT See MACRO, section on Text Facility

FLTG See MACRO, section on Floating Point
Constants-

DUBL See MACRO, section on Double Precision
Integer Constants

PAGE See MACRO, section on Origin Setting

$ End of pass

MACRO OPERATING PROCEDURES
Assembler Output

MACRO is a two pass Assembier with an optional third pass
which produces an octal/symbolic assembly listing. During the
first pass, MACRO processes the source tape and places all sym-
bol definitions and macro definitions in its symbol table and macro
table, respectively. During the second pass, MACRO processes
the source tape and punches the Binary Format Tape. At the end
of pass 2, MACRO prints the symbol table (it is also punched if
the 33 ASR punch is turned on). This punched table can be read
by DDT. The third pass provides a listing of the generated octal
code and the original source language.

Versions of MACRO

There are two versions of MACRO which differ with respect
to their use of Input/Output equipment: the low speed version
uses the 33 ASR reader for all input and the 33 ASR punch for all
output; the high speed version uses the photoelectric reader for ali
input, the high-speed punch for all binary output, and the 33 ASR
for printable output such as error printouts, symbol table listing
and third pass assembly listing.

[u—
{iu
(7
[e 4]}

NOTE _
In the high ‘speed version of MACRO; the
high-speed punch may be used as the print-
able output device by changing the contents
of location 0004 to 0600. This is useful for
long third pass listings, since the punched
output from the high-speed punch can be
subsequently listed off-line. It is advised
that this change not be made until pass 3,
so that pass 1 and pass 2 error messages will
come out on the 33 ASR.

Operating Instructions

1. Load MACRO with the Binary Loader.

2. Put the source tape in the reader.

3. Set the switch register to 0200.

4. Depress LOAD ADDRESS.

5. Set switch options (see Table 13-1).

6. Depress START.

7. Turn on the 33 ASR reader (if using Tow speed version).

8. When MACRO stops reading (after processing a PAUSE
statement), place the next tape in the reader and depress
CONTINUE. Repeat this step until all-tapes have been -
processed.

9. When MACRO encounters the terminating character, dollar
sign (8), it performs one of the following sets of events de-
pending upon what pass has just been completed (proper
operator intervention is then required):

Pass

Completed Events Operator Intervention
1 Set up. symbol table for use Turn on 33 ASR punch (in

in pass 2. high speed version, symbol
table is output via 33 ASR).
Put source tape in reader,
and proceed from step 2 of -
Operating Procedures
above.

13-59

(]
3
o
:
=3
X
=y
D
2
=
-

o
o}
o

i~

(72
N
o
B
I

a) If pass 3 is desired: (in
bly. Punch out page zero high speed version the con-
constants, -checksum, and tents of word 0004 could
trailer code on binary tape. be altered at this point to
Print and punch RUBOUT, change output devices) Go
the alpha-numericaily or- to step 2 of Operating Pro-
dered symbol table, and cedures above.

EOT code, a RUBOUT,

RS b) If pass 3 is not desired:
and trailer code. Set up for :

Turn off 33 ASR punch,
put next program to be as-
assembled 1n the reader. Go
to step 2 of Operating Pro-
cedures, above.

3 Terminate assembly listing. Turn off 33 ASR punch;
: ' put next program to be as-

sembled in the reader; hit

CONTINUE to enter pass

Switch Up Result
None MACRQO enters the next

MACRQ ent 1ext pa
table. For example: if the p revious assembly was ter—
“minated during or at the end of pass 1, restarting
MACRO with no switches up would cause pass 2 to

be entered. MACRO initially starts at pass 1.
0 Restore symbol table to the permanent basic symbols

and enter pass 1.

1 Enter pass 2.

2 Enter pass 1 without erasing any previously defined
Symbols.

3 ‘nter pass 3. During pass 3, MACRO outputs an octal/
symbolic listing of the assembled program. If this pass

et

s terminated before completion, either switch options

~e 7Y Tan viand A rotiven £ 1 fAe ol
UL L lllay UL UdLU LU 1vilulLll W P(LOD 1 IVL dDuuv

PR

assemblies. MACRQO wili output as much of the

13-60

Switch Up Result

statement (symbolic) as its internal storage capacity will
allow. Because of the internal operations during the
processing of macro statements, the symbolic output
may be meaningless. -

10 The double precision integer and double precision float-
ing point processors are deleted and may be used for
storage of user defined symbols. This increases the size
of the symbol table by 64,, symbols.

11 The macro processor and the number processors (above) |
are deleted and can be used for storage of user defined
symbols. This increases the size of the symbol table
by 1254, symbols.

NOTE: Switches 10 and 11 are sensed whenever pass 1 is entered. MACRO
would have to be reloaded to handle subsequent programs that use macros,
double precision integers, or floating point numbers.

SUMMARY OF MACRO ERROR DIAGNOSTICS
The format of the error messages is:

ERROR CODE ADDRESS

where ERROR CODE is a two character code which specifies the
type of error, and ADDRESS is cither the absolute octal address
where the error occurred or the address of the error relative to
the last symbolic label (if there was one) on that page.

Assembly will continue or can be continued after all errors
except SE (Symbol Table Exceeded). If an SE error occurs, the
Assembler will halt and cannot be restarted.

Error

Code Meaning

PE Current, Non-Zero Page Exceeded
An attempt was made to override a literal with an in-
struction, or override an instruction with a literal. This
can be corrected by decreasing the number of literals
on the -page, or decreasing the number of instructions
on the page.

ZE Zero Page Exceeded

Same as PE only with reference to page 0.

13-61

o cane o we

s
@)

IE

II

LG

The expression to t

Meaning

Illegal Redefinition of a Symbol

An attempt was made to give a previously defined sym-
bol a new value not via =. The symbol was not rede-
fined (This is similar to the Duplicate Tag diagnostic
of PAL III.)

Ty) -
Tilegal Character

1. * 9% .7 @ / were processed other than in a com-
ment or a TEXT field. The character is ignored

and tha ocqpml-\lv continned,

CLLANAE KAEN A AA,A\JA e

A non-valid character was processed. The computer
halts with the illegal character displayed in the ac-
cumulator. Assembly can be continued by putting
the desired character in the switch register and de-
pressing CONTINUE.

Iilegal Equals
An equal sign was used in the wrong context. For ex-
ample:

N

oA T PR)
LRy =0

hF
A+B=C

singie symbol.

Illegal Indirect

An out of page reference was made, and a link couid
not be generated because the indirect bit was already
set. For example

*200
TAD I &

.
»

" PAGE
A, CMA CL

Link Generated
A warning message; a link was generated for an out-of-
page reference at this address. For example:

13-62

Error
Code

SE

IM

US

MP

Meaning

*200
TAD A

PAGE
As CMA CLL

will result in the following:

Location Contents -
0200 1777
0377 ' 0400
0400 7140
Symbol Table Exceeded

The symbol table overlaps the macro table or vice versa.
Assembly is halted and cannot be continued.

Illegal Format in a Macro Definition

The . expression after the DEFINE pseudo-instruction - -

does not comply with the macro definition position, or
structural rules. For example: A macro name is refer-
enced before the macro definition.

Undefined Symbol

A symbol has been processed during pass 2 that was not
defined by the end of pass 1.

Missing Parameter in a Macro Call

An argument, called for by the macro definition, is
missing. For example: * ‘

DEFINE MAC A B

<TAD A
ClAa

DCA B>
MAC SUM

BE

Two MACRO internal tables have overlapped.
This situation can usually be corrected by decreasing
the number of current page literals used prior to this
point on the page. If the error persists, please contact
the Small Computer Systems Programming Group at
Digital Equipment Corporation for assistance.

13-63

13-64

4K PAL-D PROGRAMMING

The 4K PAL-D Assembler is compatible with the PAL IIT As- -
sembler. It is also compatible with MACRO with respect to the .
following features: Boolean operators, linkage generation, literals
and a text facility. 4K PAL-D does not have user defined macros,
floating point constants, or double precision numbers.

Before reading this section the reader should become familiar
with the section on PAL III and read the pertinent sections of
MACRO as indicated above. The following information is supple-
mentary to that already mentioned.

A major difference between PAL III and 4K PAL-D is the way
in which they recognize Memory Reference Instructions. In PAL-D
permanent symbols may not be used in the address field of a
memory reference instruction. PAL-D considers a memory refer-
ence instruction to be defined as a permanent symbol followed by
a space(s) or tab(s) with the address field permitted to be any

valid expression not containing a permanent symbol. For example: - -

A=1234
FIXTAB
TAD A

will not work on 4K PAL-D. The example above would generate
the code 1234 by inclusively ORing 1000 and 1234,

LISTING CONTROL

During pass 3, a listing of the source program is printed (or
punched). The programmer can, however, control the output of
his pass 3 listing by use of the pseudo-op XLIST.

XLIST Those portions of the source program enclosed by
XLIST will not appear in the pass 3 listing.

FIELD PSEUDO-OP

In addition to the information on the FIELD pseudo-op pro-
vided in the section on PAL-III: when using PAL-D, use of the
FIELD pseudo-op causes all literals to be punched.

13-65

PAL-D PSEUDO-OPERATORS

Pseudo-Op Description

FIELD " See PAL III

PAUSE See PAL III

DECIMAL See PAL III

OCTAL _ See PAL III

Z See PAL III

I See PAL II

FIXTAB See PAL IiI

EXPUNGE See PAL III

TEXT See MACRO. section on Text Facility
PAGE See MACRO, section on Origin Settin g
XLIST See 4K PAL-D, section on Listing Contr
3 ' End of Pass.

4K PAL-D PROGRAM PREPARATION AND
- ASSEMBLER OUTPUT

The information on PAL III Program Preparation and Assem-
bler Output is applicab]e to PAL-D except as follows:

T A S i had +} 3
11c DvutuOL tavie is puncinea after the uSUng and is preceae a

and followed by a small amount of leader/traiier (200) code. The
symbol table tape wili be punched whether or not a listing is re-
quested, and will appear either on the Teletype punch or on the
high-speed punch output, depending upon the device being used.

It is possible to terminate any pass of the assembly by typing a
CTRL/P on the console Teletype. 1P causes PAL-D to go on
to the next pass of the assembly. As with the previous version of
PAL-D, assembly can be terminated at any time by typing a
CTRL/C.

During the listing pass note that blank lines will remain in the
listing and the form feed (214 ANSCII) character is ignored.

The 4K PAL-D symbol table has room for 161 symbols in core
{(about 6 to 8 pages as an average). That number can be expanded
as explained in the section about 4K PAL-D on the Disk Monitor

. SR | I
Sysiem IoHowing.

e

Following pass 2, the bmary output can be loaded into core by

tha el A~ Dinars
thc Disk Monitor aymuu Dinary Loader. Under TSS /Q, all three

passes are automatically processed.

13-66

Under TSS/8
- Loading 4K PAL-D in a TSS/8 system is performed by the sys-
tem manager as described in the System Manager's Guide.
Assembling with 4K PAL-D under the TSS/8 Monitor requires
no operator intervention between passes. The symbol table is printed
at the end of pass 2 and the listing at the end of pass 3. The as-
sembly can be terminated at.any point by typing CTRL/C. Con-
trol will revert from PAL-D to the TSS/8 Monitor which prints a
period at the left-hand margin and waits for the next instruction
from the Teletype. _
In order to run a PAL-D program on TSS/8 the user types the
LOGIN command and his account number and password. He then
creates his PAL-D program and saves it as a file using the Symbolic
Editor program. When the program is ready to be run, PAL-D is
brought into core. The user types:

R PALD

in reply to Monitor’s period. PAL-D signals its presence by re-
questing an input file name as follows:

INPUT: TYPEZ2

The user reply in this case was TYPE2, a user defined name for
the source program to be assembled.
PAL-D next requests the name of an output file:

QUTPUT:BIN2

The user response was BIN2, the name under which the as-
sembled program will be stored.

Optionally, the user can type the RETURN key to specify no
output file. This is useful in debugging. A program can be cor-
rected and reassembled any number of times with production of
an output file postponed until a satisfactory version is achieved.

13-67

PAL-D’s final query is whether the user wants a program listing,
as follows: '

OPTION:

There are two responses: N signifying No and RETURN key sig-
nifying Yes. When it receives the last response, PAL-D reads in
the user source program from disk and proceeds with the assembly.

LR e s

After assembly, PAL-D returns control to the Monitor which prints
a period and waits for the user to supply the next command.

The program can be run by calling the program into core to be
run under the direction of the TSS/8 Monitor:

~

.R TYPEZ -

where the period was printed by TSS/8 Monitor and TYPE2 is
the name of the output file in which the compiled binary program
was stored.

Under the Disk Monitor Systeni

Under the Disk Monitor System the user should first build the
Disk Monitor if it is not present on the disk or DECtape, accord-
ing to the instructions in the Disk Monitor System Manuai, DEC-
D8-SDAB-D.

4K PAL-D is loaded into core as explained in the Disk Monitor
System Manual using the Binary Loader.

The Assembler is incorporated in the system by loading the
paper tape into core using the disk Loader. The Assembler can be
saved on the disk or DECtape.

4K PAL-D can be saved on the system device as a system pro-
gram. This is done by typing the following:

+SAVE PALDIDB-757756200

where the period was printed by the Monitor. The user may aiso
want to reserve space on disk for the symbol table by typing, for
exampie:

«SAVE «SYM:$-4377;0

13-68

The limits (O through 4377) are arbitrary and determine the max-
imum length of the symbol table. With the SAVE command |
shown, 4K PAL-D will reserve space for a total of 737 symbols
(161 of which are stored in core). The programmer can now type
PALD to bring the Assembler into core for use with symbolic
source programs, where Monitor types the dot:

. WPALD

"~ PAL-D responds with a request for an output file by printing .
*0UT-

The user selects the 6i1ti)ut device by typing one of the following:

T: for the Teletype (low speed reader/punch) or
R: for the high speed reader/punch, or
S: name for output to the system device as file name

PAL-D now prints:

*IN-

and waits for the user to select the input files. Up to five input files
can be specified (for example: R:, R:, S: name, R:, RY).

When PAL-D is satisfied that the input file(s) is valid, it will re-
quest the third pass listing option by printing:

*0OPT-

The user can type:

T Meaning listing and symbols are to be produced on the
Teletype, or
R Meaning listing and symbols are to be produced on the
high speed punch, or
Carriage Meaning symbols only (any other character means no
Return third pass is desired).

13-69

ne o liatieme A
4as 4 1iStiiig Gcv 1 ce, the al-

[o

When the high- speed punch is selec
phabetic symbol table produced at t he end of pass 3 is also pro-
‘duced on the high-speed punch.

PAL-D will now proceed with the assembly, pausing only when -
user intervention is required (i.e., placing a new paper tape in the
reader, turning on the punch, etc.). On these occasions, PAL-D
will print an up-arrow (1) on the Teletype to indicate user in-
tervention 1is requlred When the user has performed the neces-

sary function and is 1ca
CTRL/P (which does no
- When using the dis k utput device, the compiled binary
is ready io be loaded for execution following pass 2.

The symbol table will be output at the end of pass 2 if the third
pass has not been requested. If pass 3 is requested, PAL-D will
follow the assembly listing with the user’s symbol table in alpha-.
betical order (in addition to the assembled binary output). g

Assembly can be terminated and control returned to the Monitor
at any time by typing CTRL/C. When the assembly is complete,

control will automatically be returned to the Monitor.

CL

e aqcpmhf hp tvnes

[TS 3 V23 rAN VY powS

k<4
et
"3 &}
(¢}
C)
e

SUMMARY OF 4K PAL-D ERROR DIAG\JOST!CS

PAL-D makes many error checks as it cesses source lan-

ted the Agsembler prmfc

b} PhiN 4 B wAkhS s

guauc statements. When an error is
an CITor message. The format of the error messages is

ERROR CODE ADDRESS .

where ERROR CODE is a two letter code which specifies the type
of error, and ADDRESS is either the absolute octal address where
the error occurred or the address of the error relative to the last
symbolic tag (if there was one) on the current page.

The programmer should examine each error indication to de-
termine whether correction is required.

4K PAL-D’s error messages are listed and explained below.

Error

Code Explanation

BE Two PAL-D internal tables have overiapped—This
situation can usually be corrected by decreasing the
jevei of literal nesting or a nuimber of current page liter-

als used prior to this point on the page.

13-70

~ Error
Code

DE

DF

IC

ID

IE

II

ND

Explanation

Systems device error—An error was detected when try-
ing to read or write the system device, after three fail-
ures, control is returned to the Monitor.

Systems device full—The capacity of the systems device
has been exceeded; assembly is terminated and control
is returned to the Monitor.

Illegal Character——An illegal character was encountered
other than in a comment or TEXT field; the character
is ignored and the assembly continued.

Illegal redefinition of a symbol—An attempt was made
to give a previously defined symbol a new value by
other means than the equal sign; the symbol was not
redefined.

Illegal equals——An equal sign was used in the wrong
context. Examples:

TAD A+=B
A+B=C
The expression to the left of the equal sign is not a

single symbol or, the expression to the right of the equal
sign was not previously defined.

Illegal indirect—An off-page reference was made; a
link could not be generated because the indirect bit was
already set.

Example:
*222
TAD I A
PAGE

As 7240

The program terminator, $, is missing (with TSS/8
only).

13-71

PE

PH

SE/ -

U

N

1

7

Current non-zero page exceeded—An attempt was made

to: '

1. Override a literal with an instruction, or

2. Override an instruction with a literal; this can be
corrected by |
(2) Decreasing the number of literals on the page, or
(b) Decreasing the number of instructions on the

page.

Phase error—PAL-D has received input files in an in-
correct order; either program terminator ($) is missing
or misplaced. Assembly is terminated and control is
returned to the Monitor.

Symbol table exceeded—Assembly is terminated and
control is returned to the Monitor; the symbol table may
be expanded to contain up to 1184 user symbols by
saving a file named .SYM on the system device.
Undefined symbol—A symbol has been processed dur-
ing pass 2 that was not defined before the end of pass 1.
Page O exceeded—Same as PE except with reference
to page 0.

13-72

14-2

- Chapter 4~

 ' - 8K Assemblers

- CONTENTS

8K PAL-D Programmmg e e, 14-5
Character Setccooeiivmiiiiioeooeeeeo 14-5
Pseudo-Operatorsc..ccocovvevorevoeini. e, 14-5
Loading and Operating Procedures SR 14-7
Saving 8K PAL-Doooovvo e ————— 14-7
Third Pass Listing Option i 1427
Symbol Tablecoovovovevoieeeeeee 14-7
12K Version of 8K PAL-Dcccooomomii 14-7
SABR Programming ... 14-9
Statementscooovevoueeoeeeeieeeee 14-9
The Character Setcocooumooeeeo 14-11
Statement Elementscoooovoooeooo 14-12
Labels ..oocoovieiiiei e, JES 14-12
Operatorsccceeu...... e 14-12
Operandsccoooovoiiiiiniieeeeeeeeee 14-12 -
ComMMENtS ..o 14-16
Incrementing Operandsccoooovmooemoioioo 14-17
Pseudo-0peratorso.coooovoueeeerooeeeeee 14-18
Assembly Control B USRS 14-19
Symbol Definitioncocoooooooiii 14-23
Data Generating .. e — 14-25
External Subroutine Peudo-operators 14-26 -
CALL and ARGocoooimmooe 14-26
ENTRY and DUMMYcooooovmmim . 14-28
RETRN .o 14-29
Passing Subroutine Arguments 14-30
SABR Operating Characteristicsoooooooo. 14-32
Pagewise Assemblycocoooviviiiiiiieee 14-32
Multiple Word Instructionsocooovovvvvoin... 14-34
Run-time Linkage Routinesc..ccco.o.o.......... 14-34
Skip InStructionscccococovevvevrcrceeoo o 14237

Program Address ...
The Symbol Table .
The Binary Output Tape

..

..

...

Loader Relocation Codescooveiriiimmmmmminninneccienienn

Sample Assembly Listing
Loading and Operating S
Paper Tape System

ABR

Disk MORItOr SYSTEMoooiiimrreeiiririiimneiteeeine
Assembly Procedure ...
Procedure for use as Fortran Pass 2 ..ccooooevvniiniiinnn
The Linking Loaderccoccormininiiiniins
OPETALION -..evvieieirieieies s

Switch Register OPtionsccoooveeieiiiimmmniniiecnes
Loading the Linking Loader ..o

- Loading Relocatable Programs ..o
The Disk Linking Loader ..o
Loading, Saving and Starting LLDR ...
Expanded Configuration ..o
TIDR FUNCHONS .oooiieveiiiieriariaiiiiireee s senaaeeeees
Disk File Assignment Function(D) ..o

Loading Function (

Land O) i

L0aGIiNg EITOTS ..oovioiiiniecimeie e

Utility Functions (C

,Mand U) oo

Exit Functions (E and S) ..o
Overlay Loadingcocoooivvrrniiiii

User Program Exec

11816) 1 BUTTUUVUTUTR R UPT RO

Storage AOCAtION ..ocovveoiiinreniecnen

EITOr MESSAZES .ooovieirierriomesseris ettt

The Subprogram Library

INPut/OUPUL ..ot
Floating Point Arithmetic ...
Integer Arithmetic ...

Subscripting

..

FUTICHONS oneiveeeeee e eeer e eeeeraeansmn e e e rnanneeaasanenesasnnonns
DECtape 1/0 ROULNES ..o

Disk 1/0 Routines
ODISK and CDISK

...

RDISK and WDISK ..o
Demonstration Program Using Library Routines

14-4

8K PAL-D PROGRAMMING
The 8K PAL-D Assembler is similar to 4K PAL-D. The reader

is advised to learn the 4K PAL-D Assembler by studying the
appropriate sections of Chapter 13, then return to this section to
learn the additional features of 8K PAL-D. These additional fea-
tures include assembler directives which permit operation of the
Assembler to be controlled by the source program, page cofitrol,
and the ability to expand to run in 12K of core.

CHARACTER SET
In addition to the characters allowed in 4K PAL-D, the follow-
ing characters are given a special significance in 8K PAL-D: < >
The angle brackets (< >) define the bounds of a conditional
statement. The user should be especially cautious not to use angle
brackets within a comment in any program containing a conditional
assembly statement.

PSEUDO-OPERATORS :
In addition to the pseudo-operators allowed in 4K PAL-D, the
following pseudo-operators are unique to 8K PAL-D:

RESERVING FREE STORAGE
| ZBLOCK n

Where n is an integer, ZBLOCK causes the Assembler to reserve
n words of memory containing zeros, starting at the word indicated
by the current location counter.

CONDITIONAL ASSEMBLY
IFDEF symbol <statements>

If the symbol indicated is previously defined, assemble the
statements contained in the angle brackets. If undefined, ignore
these statements. Any number of statements can be contained in
the angle brackets and may consist of several lines of code. The
format of the IFDEF statement requires a single space before and
after the symbol.

IFZERO expression <statements>

If the evaluated (arithmetic or logical) expression is equal to
zero, assemble the statements contained within the angle brackets;

14-5

if the expression is non-zero, ignore these statements. Any number
of statements can be contained in the angle brackets and may con-
sist of several lines of code. The format of the IFZERO statement
requires that the expression not contain any imbedded spaces and
must have a single space preceding and following it.

BINARY OUTPUT CONTROL

Upon encountering this statement the Assembler continues to

PRSI i PEpS S . 3
assemble the code, but ceases binary output.

This statement causes the Assembler to resume (or continue)
binary output. '

These two pseudo-operators are put into the source program
and are ignored until pass 2 at which time they direct the Assem-
bler to delete some section of code from the final binary punched
tape.

For example, these pseudo-operators could be used where
several programs have the same contents on page Zero. When
these programs are to be loaded and executed together, only one
page zero need be punched.

PAGINATION OF OUTPUT LISTINGS
EJECT

The EJECT command causes the listing to jump to the top of
the next page. The 8K PAL-D Assembler counts output lines and
will format the user’s program into neat, even pages with a page
eject every 55 lines. If the user requires more frequent paging,
he should use the EJECT pseudo-operator. A FORM FEED
_character within the source program wili also cause a page eject.

The pagination process within the 8K PAL-D Assembler causes
an output of carriage return/line feed pairs for the 33 ASR Tele-
type. For users with the 35 ASR Teletype who desire to output
a FORM FEED characier directly, changes should be m

modify the FORMI subroutine found in the 8K PAL-D iisting.
14-6

ad
bc made to

LOADING AND OPERATING PROCEDURES

Saving 8K PAL-D
The 8K PAL-D Assembler is supplied on binary coded paper

tape. It is loaded using the Binary Loader as explamed in Appendix
C2.

The 8K PAL-D Assembler may be saved on the system device as

a system program. This is done by typing the following SAVE
1nstruct10n

+SAVE PALS! MA-5177,660RA-7577;200

The Assembler is now saved as a system program. The programmer
may now type PALS, which brings the assembler into core for
- use with symbolic source programs.

Third Pass Llshng Option
Output devices are the same for 8K PAL-D as for 4K PAL-D.

When 8K PAL-D requests the input file(s), the user may select u D
to ten (10) input files. Valid input devices for 8K PAL-D are as =

follows:
Device Designator Device
T: _ - Teletype
R: High-speed reader/punch
S: name DF 32 disk
Sn: name RF 08 disk
DO: name through D7: name DECtape

Symbol Table

The symbol table for 8K PAL-D provides space for 896 (deci-
mal) user defined symbols. When the SE (symbol table exceeded)
error message occurs, assembly is terminated and control is re-
turned to the Monitor. The user file .SYM is not used by 8K
PAL-D.

12K VERSION OF 8K PAL-D
- The 8K PAL-D Assembler must be reassembled to run in 12K
of core. The 12K version has a larger symbol table, but assembles

at a slower pace. The changes to be made are documented on page
I of the 8K PAL-D listing.

14-7

14-8

SABR PROGRAMMING

SABR (Symbolic Assembler for Binary Relocatable programs)
is an advanced, one-pass assembler producing relocatable binary
code with automatically generated core page and memory field
linkages. It supports an extensive list of pseudo-operators which
provide, among other facilities, external subroutine calling with
argument passing and conditional assembly. *

SABR controls a library of subprograms, any of which can be
assembled into user programs. In an optional second pass, SABR
produces an octal/symbolic listing of assembled programs.

Relocatable programs assembled with SABR are loaded with the
8K Linking Loader. Both SABR and Linking Loader are incor-
porated in the 8K Fortran compiler (see Chapter 15). SABR
functions as the second pass of the compiler, and linking loader
is included as part of the Fortran Operating System.

With the exception of its pseudo-operators, SABR is similar,
from a user’s standpoint, to the PAL-III assembler which produces
location dependent (non-relocatable) binary coding. Introduction
to Programming—Volume 1 of this set—contains an elementary
approach to assembly language programming in Chapters 1-5.
Concepts presented in Chapter 13 of this volume are also pre-
requisite to the use of SABR. |

SABR can be run on any PDP-8/1, -8/L, -8, or -8/S computer
(or on the PDP-5 if it has the extended Iriemory control modifica-
tion) with at least 8K of core storage and a Teletype. A high speed
paper tape reader/punch is recommended.

Statements

SABR symbolic programs are written as a sequence of state-
ments and are usually prepared on the Teletype, on line, with the
aid of the Symbolic Editor program. SABR statements are virtually
format free. Each statement is terminated by typing the RETURN
key. (Editor automatically provides a line feed). Two or more
statements can be typed on the same line using the semicolon as a
separator.

A statemert line is composed of one or all of the following ele-
ments: label, operator, operand and comment, separated by spaces
or tabs (labels require a following comma). The types of elements
in a statement are identified by the order of appearance in the line

14-9

and by the separating or delimiting character which follows or
precedes the element.
Statements are written in the general form

label, operator operand /comment (preceded by slash)

SABR generates, one or possibly more, machine (binary) in-
structions or data words for each source statement.

An input line may be up to 72:o characters long, including
spaces and tabs. Any characters beyond this limit are ignored.

The RETURN key (CR/LF) is both a statement and a line
terminator. The semicolon may be used to terminate an instruction
without terminating a line. If, for example, the programmer wishes
to write a sequence of instructions to rotate the contents of the
accumulator (AC) and link (L) six places to the right, it might look

like this:

RTR
RTR
RTR

But, with the semicolon, the programmer may place all three
RTR’s on a single line, separating each RTR with a semicolon and
terminating the line with the RETURN key. The above sequence

of instructions could then be wntte_n
RTR; RTR; RTR (terminated with the RETURN key)

This format is particularly useful when creating a list of data:

P20 po20 LIST,28:505~-38562
p2eol 0050
azg2 7754

P233 vo62

Null lines may also be used to format program listings. A null
fine is a line containing only a carriage return and possibly spaces
or tabs. Such lines appear as blank lines in the program listing.

14-10

The Character Set

ALPHABETIC:
In addition to the letters A through Z, the following are con-
sidered by SABR to be alphabetic:

[left bracket
] right bracket
\ back slash
T up arrow
NUMERIC:
0-9
SPECIAL CHARACTERS: |
R - Comma delimits a symbolic address label
/ Slash indicates start of a comment
(Left parenthesis indicates a literal
(D indicates numeric literal is
decimal;
(K indicates numeric literal is
octal
“ Quote : precedes an ANSCII constant
- Minus sign negates a constant
* Number sign increases value of preceding sym-
| bol by one
RETURN terminates a statement
(carriage return)
1 Semicolon terminates an 1nstruct10n
J LINE FEED ignored
FORM FEED ignored
SPACE separates and delimits items on
the statement line
TAB same as space
RUBOUT ignored

All other characters are illegal except when used as ANSCII
constants following a quote (“), or in comments or text strings.

Legal characters used in ways different from the above, and all
illegal characters, cause the error message C (Illegal Character) to
be printed by SABR.

14-11

Labels
A label is a symbolic name or location tag created by the pro-
grammer to identify the address of a statement in the program.
Subsequent references to the statement can be made merely by
eferencing the label. If present, the label is written first in a state-
ment and terminated with a comma.

2200 2000 SAVE, @

6201 1200 ABC. TAD SAVE

SAVE and ABC are labels referencing the statements in location
0200 and 0201, respectively.

Operators
An operator may be one of the following:
a. A direct or indirect memory reference instruction
b. An operate or IOT microinstruction (Appendix B2 gives a
summary of microinstructions)
“c. A pseudo-operator
All potentiai SABR oper
Operands
An operand can be a user-defined address symbol, a literal or a
numeric constant.

SYMBOLS

Symbols are composed of legal alphanumeric characters. There
are two major type of symbois, permanent, and user-defined, and
there are variations within each major type. A symbol is delimited
by a non-alphanumeric character.

PERMANENT SYMBOLS. Permanent symbols are predefined

and maintained in SABR’s permanent symbol table. They include

all of the basic instructions and pseudo-operators in Appendix A2.

These symbois may be used without prior definition by the user.

The OPDEF and SKPDF pseudo-operators are used to define
L

o

instruction operators not inciuded in the permanent symooi

non-alphanumeric character. User-defined symbols must conform »
to the following rules:

a. The characters must be legal alphanumerics—
ABCD ... XYZ and 0123456789.
- b. The first character must be alphabetic. -
¢ Only the first six characters are meaningful. A symbol
such as INTEGER would be interpreted as INTEGE.
Since the symbols GEORGE!| and GEORGE?2 differ only
in the seventh character, they would be treated as the same
symbol: GEORGE.
d. A user-defined symbol cannot be the same as any of the
~ predefined permanent symbols.
¢. A user-defined symbol must be defined only once. Sub-
sequent definitions will be ineffective and will cause SABR
to type the error message M (Multiple Definition).

A symbol is defined when it appears as a symbolic address label
or when it appears in an ABSYM, COMMN, OPDEF or SKPDF
statement (see Pseudo-Operators). No more than 64 different user-

~defined symbols- may occur on any one core page.

EQUIVALENT SYMBOLS. When an address label appears alone
on a line—with no instruction or parameter—the label is assigned
the value of the next address assembled.

TAGI,

TAG2, 30

TAG3,

. TAG1 and TAG2 are equivalent symbols, in that they are as-
signed the same value. Therefore, a TAD TAG1 will reference the
data at TAG2. TAG3, however, is not equivalent to TAG2. TAG3
would be defined as ! greater than TAG2.

SYMBOL TABLE FLAGS

Symbols are listed in alphabetic order at the end of the assembly
pass 1 with their relative addresses beside them. The following
flags are added to denote special types of symbols:

ABS The address referenced by this symbol is absolute.

COM The address is in COMMON.
14-13

opP The symbol is an operator.

EXT The symbol is an external one and may or may not
be defined within this program. If not defined there
is no difficulty: it is defined in another program.

UNDF The symbol is not an external symbol and has not
been defined in the program. This is a programmer
error. No earlier diagnostic can be given because it
is not known that the symbol is undefined until the
end of pass 1. A location is reserved for the unde-
fined symbol, but nothing is placed in it.

LITERALS ;

The use of literals is a special and convenient way of generating
constant data in a program. Literals are normally used by TAD
and AND instructions, as in the following examples:

peoe 2376 A, AND 777

2201 1375 TAD (=50

peoa 1374 TAD "C
D274 2323

2375 7730

3376 2777

A literal is always a numeric or ANSCII constant and must be
preceded by a left parenthesis. The value of the literal will be as-
sembled in a table near the end of the core page on which the in-
struction referencing it is assembled. The instruction itself will
be assembled as an appropriate reference to the location where the
numeric value of the literal is assembled. Literals may not be
referenced indirectly. |

The current numeric conversion mode can be changed on a
purely loca! basis for a literal by inserting a D for decimal or 2 K
for octal between the left parenthesis and the constant. '

(D32 becomes 0040 (octai)j
(K-32 becomes 7745 (octal))

This usage does not alter the prevailing permanent conversion

mode (initially octal but controllable with the DECIM and OCTAL
pseudo-operators).

A literal may also be used as a parameter (i.e., with no opera-
tor). In this case the numeric value of the hteral is assembled as
usual in the literal table near the end of the core page currently
being assembled, and a relocatable pointer to the address of the
literal is assembled in the location where the literal parameter
appeared.

2o 0376 P21 A, 20

376 o2

This feature is intended primarily for use in passing external
subroutine arguments with the ARG pseudo-operator.

CONSTANTS

Constants are of two types: numeric and ANSCII. ANSCII con-
stants are used only as parameters. Numeric constants may be used
as parameters or as operand addresses. ‘ ‘

0260 14l2 TAD I 12

Constant operand addresses are treated as absolute addresses,
just as a symbol defined by an ABSYM statement. References to
them are not generally relocatable. Therefore, they should be used
only with great care. The primary use of constant operand ad-
dresses to reference locations on page O (See page 14-52 for
free locations on page O of each field). All constant operand ad-
dresses are assumed to be in the field into which the program is
loaded by the Linking Loader. "

Constants may not be added to or subtracted from each other
or from symbols.

NUMERIC CONSTANTS _ .

A numeric constant consists of a single string of from one to
four digits. It may be preceded by a minus sign (—) to negate the
constant. The digit string will be interpreted as either octal or
decimal according to the latest permanent mode setting by an
OCTAL or DECIM pseudo-operator. Octal mode is assumed at

14-15

the beginning of assembly. The digits 8 and 9 must not appear
in an octal string.

2200 50208 A 5020
peol 7575 . -203

: DECIM
@202 2128 30/

ANSCII CONSTANTS

'Eight-bit ANSCII values may be created as constants by typing
the ANSCII character immediately following a double quotation
mark (7). A minus sign may be used to negate an aiphabetic con-
stant. The minus sign must precede the quotation mark.

@200 0273 4,
2201 7477 S=tp /=301

geg2 2ee7 " /BELL FOLLOWS"

The following characters are iﬂegél as alphabetic constants:
carriage return, line feed, form feed and rubout.

PARAMETERS

An operand on a line with no operator is treated as a parameter.
A parameter may be a numeric constant, a literal, or a user-defined
address symbol.

2200 2209 ABC, - 2003-320; "M
g2e1 7460 '
"peoe 2315
g2e3 @176 . PCINTRs PGOADR

REORC 1000
1000 0576 START TAD I POINTR
1001 1375 TAD (3
Comments

A programmer may add notes to a statement following a slash

\J P ol
mark. Such comments ¢o not affect f“:bt‘!!‘!i’)iv OF Drogi

ram
but are usefui in mterpretmg the program listing for later analysis
pres

and decbu sent in the

program.

Aw s él
Livs

1 EXCCULIO

.':J

lines of comments may ‘be »

Nr/a WA iligixwaAwiS All

None of the special characters or symbols have significance
when they appear in a comment,

/THIS IS A COMMENT LINE.
/THIS TO0O. TAD3CALLs #"-2C+=! :
A TAD SAVE /SLASH STARTS COMMENT

. INCREMENTING OPERANDS

Because SABR is a one-pass assembler and also because it
sometimes generates more than one machine instruction for a
single user instruction, operand arithmetic is impossible. State-
ments of the form, :

TAD TAG+3
TAD LIST-LIST2
JMP «+6

are illegal. However, by appending a number sign to an operand
the user can reference a location exactly one greater than the
location of the operand (the next sequential location): TAD LOC+#
is equivalent to the PAL language statement TAD LOC=+1. -

2200 2020 LOC>» 20

G201 2030 30

g2p2 1200 START, TAD LocC /GET 20

2203 1201 TAD LOC# /GET 30
- PAGE

2400 2200 As LOC

2401 2201 B> LOC#

In assembling #-type references SABR does not attempt to
determine if multiple machine code words are generated at the
symbolic address referenced.

START, TAD I = LOC /LOC 1S OFF-PAGE
NOP /USER HOPES TO MODIFY
TAD (7588 /sMA
DCA START#

In the example above the user wishes to change the NOP in-
struction to an SMA. However, this is not possible because TAD
I LOC will be assembled as three machine code words; if START

14-17

is at 0200, the NOP will be at 0203. The SMA will be inserted at
0201, thus destroying the second word of the TAD I LOC execu-
tion. '
To avoid this error, the user should carefully examine the as-
sembly listing before attempting to modify a program with #-type
references. In the previous example the proper sequence is:

START, TAD I LocC

‘7Aa;3 Z\JO.D
TAD (7580
DCA VAR
., The #-sign feature is intended primarily for manipulating

DUMMY variables when picking up arguments from external sub-
routines and returning from external subroutines (see Picking up
Subroutine Arguments).

PSEUDO-OPERATORS

Table 14-1 lists all the pseudo-operators available in SABR,
whether used as a free-standing assembler, or in conjunction with
the Fortran compiler {see 8K Fortran, Chapter 15). The pseudo-
operators are categorized and explained in the following para-

graphs
Table 14-1.
SARR Pcenda-Onerators

- Mnemonic Code Operation
ABYSM Direct Absolute Symbol Definition -
ARG Argument for Subroutine Call
BLOCK Reserve Storage Block
CALL Call External Subroutine
COMMN Common Storage Definition
CPAGE Check if Page Will Hold Data
DECIM Decimal Conversion
DUMMY Dummy Argumem Definition
EAP ' Enter Automatic Paging Mode
END End of Program
ENTRY Define Program Eniry Point
FORTR Assemble FORTRAN Tape

14-18

Table 14-1. (Cont.)

Mnemonic Code Operation
IF Conditional Assembly
LAP Leave Automatic Paging
OCTAL Octal Conversion
OPDEF Define Non-Skip Operator
PAGE Terminate the Page
PAUSE Pause for Next Tape
REORG Terminate Page and Reset Origin
RETRN Return from External Subroutine
SKPDF Define Skip-Type Operator
TEXT Text String

Floatmg Point Accumulator
ACH 20% high-order word
ACM 21%* middle word
ACL 22% low-order word

* The floating point accumulator is in field 1.

Assembly Control

END

PAUSE

Every program or subprogram to be assembled
must contain the END pseudo-op as its last line.
If this requirement is not met, an error message
(E) is given.

The PAUSE pseudo-op causes assembly to halt.
It is designed to allow the user to break up large
source tapes into several smaller segments. To do
this, the user need only place a PAUSE statement
at the end of each section of this source except the
last. Then when assembly halts at a PAUSE, he
may remove the source tape just read from the
reader and insert the next one. Assembly may then
be continued by pressing the console CONTinue
switch.

WARNING

The PAUSE pseudo-op is designed specifi-
cally for use at the end of partial tapes and
should not be used otherwise. "

14-19

DECIM

OCTAL

The reason for this is that the reader routine may
have read data from the paper tape into its buffer
that is actually beyond the PAUSE statement.
Consequently, when CONTinue is pressed after
the PAUSE is found by the line interpreting rou-
tine, the entire content of the reader buffer fol-
lowing the PAUSE is destroyed, and the next tape
begins reading into a fresh buffer. Thus, if there
is any meaningful data on the tape beyond the
PAUSE statement, it will be lost.

Initially the numeric conversion mode is set for
octal conversion. However, if the user wishes, ne
may change it to decimal by use of the DECIM
pseudo-op.

If the numeric conversion mode has been set to
decimal, it may be changed back to octal by use
of the OCTAL pseudo-op.

No matter which conversion mode has been per-
manently set, it may always be changed locally
for literals by use of the (D or (K syntax described

r
Liwioe

2202 2320 START 324
DECIM
geel @588 320
page 8377 g1 (K320
2283 1228 512
: 0CTAL
0204 B512 512
0265 2376 o1 {BS1
2226 2320 320
- END
9376 10060
8377 @320
The assembler is initially set for automatic genera-
tion of jumps to the next core page when the page
being assembled fills up (Page Escapes), or when
PAGE or REORG pseudo-ops are encountered
This feature mav be suppressed bv uge of the

EAP

PAGE

REORG

CPAGE

If the user has previously suppressed the auto-
matic paging feature, it may be restored to op-
eration by use of the EAP (Enter Automatic
Paging) pseudo-op.

The PAGE pseudo-op causes the curreit core
page to be assembled as is. Assembly of succeed-
ing instructions will begin on the next core page.
No argument is required.

The REORG pseudo-op is similar to the PAGE
pseudo-op, except that a numerical argument
specifying the relative location within the sub-
program where assembly of succeeding instruc-
tions is to begin must be given. A REORG below
200 may not be given .A REORG should always
be to the first address of a core page. If a REORG
address is not the first address of a page, it will
be converted to the first address of the page it
is on. :

2200 7200 START> CLA"

_ : ' " PAGE
24080 7040 CcMA _
: , REORG 10060

10080 7041 ' cIa

The CPAGE pseudo-op followed by a numerical
argument N specifies that the following N words of
code* must be kept together in a single unit and
not be split up by page escapes and literal tables.
If the N words of code will not fit on the current
page of code, the current page is assembled as if a
PAGE pseudo-op had been encountered. The N
words of code will then be assembled as a unit on
the next core page.

NOTE

N must be less than or equal to 200 (octal)
in nonautomatic paging mode or less than or
equal to 176 octal in automatic paging mode.

* Normally data. However, if these N words are instructions, for example
a CALL with arguments, it is the user's responsibility to count extra
machine instructions which must be inserted by SABR.

14-21

IF

ragtrintin
resincuon app:

START» CLA

LAP /INHIBIT PAGE ESCAPE
CPAGE 260 /CLOSES THE

NAMEL /CURRENT PAGE

NAME2 /& ASSEMBLES THE

/NEXT PACE-.

The conditional pseudo-op, IF, is used with the
following syntax: '

iF NAME 7

The action of the pseudo-op, so given, is io firsi
determine whether the symbol NAME has been
previously defined. If NAME is defined, the
pseudo-op has no effect. If NAME is not defined,
the next seven symbolic instructions (not counting
null lines and comment lines) will be treated as
comments and not assembled. '

/ABSYM NAME 178

IF NAMES 2 /THE NEXT LINE 70
CLL RTL /ASSEMBLED WILL BE
RAL /"DCA LOC™

/1% THE SLASH BEFORE "ABSYM NAME 176" 1S

/REMOVED, THE ''CLL RTL'" AND "RAL" WILL

/BE ASSEMBLEZID.

g

=

Normally the symbol referenced by an IF state-

. sl] hn A
ment should be either an undefined symbol or a

symbol defined by an ABSYM statement. If this
is done, the situation_mentioned below cannot
occur.

WARNING

In a situation such as the following, a special

IF NAME, 3

[y
£
L]
N
[\

Symbol Definition

ABSYM

OPDEF
SKPDF

The restriction is that if the line NAME, 0 hap-
pens to occur on the same core page of instruc-
tions as the IF statement, then, even though it is
before the IF statement, NAME will not have been
previously defined when the IF statement is en-
countered, and on the first pass (though not.in the
listing pass) the three lines after the IF statement
will not be assembled. The reason for this is that
location tags cannot be defined until the page on
which they occur is assembled as a unit. '

An absolute core address may be named using the
ABSYM pseudo-op. This address must be in the
same core field as the subprogram in which it is
defined. The most common use of this pseudo-op
is to name page zero addresses not used by the
operating system. These addresses are listed on -
page 14-52. '
Operation codes not already included in the sym-
bol table may be defined by use of the OPDEF or
SKPDF pseudo-ops. Non-skip instructions must
be defined with the OPDEF pseudo-op and skip-
type instructions must be defined with the SKPDF
pseudo-op.

Examples of ABSYM, OPDEF and SKPDF syn-
tax: ’ :

ABSYM TEM 177 /PAGE ZERO ADDRESSES
ABSYM AX 10
OPDEF DTRA 6761 /A NON-SKIP INSTR.
SKPDF DTSF 6771 /SKIP-TYPE INSTRUCTICNS
SKPDF SMZ 7548

NOTE

ABSYM, OPDEF and SKPDF definitions
must be made before they are used in the
program.

14-23

lne L/U}VILVil‘V prUUU-UP lb UbCU {0 naime lULd‘
tions in field 1 as externals so that they may be
referenced by any program. If any COMMN state-
ments are used, they must occur at the beginning
of the source, before everything else including
the ENTRY statement. COMMON storage is al-
ways in field 1 and is allocated from location 0200
upwards. Since the top page of field 1 is reserved,
nio more than 38400 words of COMMON stor ag
may be defined.

A COMMN statement normaHy takes a symbolic -
address 1&061 Sifice storage is ucxug anocated.
However, COMMON storage may be allocated
without an address label.

A COMMN statement always takes a numerical
argument which specifies how many words of
COMMON storage to be allocated; however, a
0 argument is allowed. A COMMN statement
with O argument allocates no COMMON storage;
it merely defines the given location symbol at the
next free COMMON location.

The syntax of the CO‘AV\ statement is shown
halow

kS YY

A, : COMMN 20
B COMMN 1o
COMMN 320
Co, COMMN 2
D» COMMN i0

ENTRY SUBRUT

In this example 20 words of COMMON storage
are allocated from 0200 to 0217, and A is defined

at location 0200. Then, 10 words are allocated
from 0220 to 0227, and B is defined at 0220.

Notice that if A is actually a 30 word array, this

nnnnnnnnnnnnnn 1 . .
EXaIT -p-:; gguates B{1) with AIZI\).

b

The example continues by allocating COMMON
storage from 0230 to 0527 with no name hemg

pppppp 3 Lic hloel
assigned to - this block.

located from 0530 to 0537 with both C and D
being defined at 0530. |

Data Generating

BLOCK

The BLOCK pseudo-op given with a numerical
argument N will reserve N words of core by
placing zeros in them. This pseudo-op creates
binary output, and thus may have a symbolic
address label. ‘
Before the N locations are reserved, a check is
made to see if enough space is available for them
on the current core page. If not, this page is as-
sembled and the N locations are reserved on the
next core page. The action here is similar to that
of the CPAGE pseudo-op. Similar restrictions on
the argument apply.

/EXAMPLE 'OF HOW LARGE BLOCK STORAGE
/MAY BE ACHIEVED WITHIN A SUBPROGRAM AREA

LAP /INHIBIT PAGE ESCAPES
BLOCK 20@ '/RESERVE 500

BLOCK 2022 /(OCTAL> LOCATIONS
BLOCK 128

EAP- /RESUME NORMAIL CODING

As a special use, if the BLOCK pseudo-op is used
with a location tag (but with no argument or a
zero argument), no code zeros are assembled; in-
stead the symbolic address label is made equiv-
alent to the next relative core location assembled.
(This is equivalent to using a symbolic address
label with no instruction on the same line.)

LIST, BLOCK 3 /ASSEMBLES AS
/3 ZEROS WITH
/"LIST'" DEFINED
/AT THE 1ST LOCATION

NAMEl, BLOCK /DEFINES NAMEIL=
NAME2, BLOCK 0 /NAME2=NAME3=
NAME3., /NAME4

NAME4, BLOCK 2

14-25

gaoe
0201

mAamn

G282
g2e3
2204
2285
2286
(/=37 }
pa1g
pall

2495
3224
4005
3031
15208
1405
4061
6263
5273
7708

The TEXT pseudo-op is used to obtain packed
six-bit ANSCII text strings. Its function and use
are almost exactly the same as for the BLOCK
pseudo-op except that instead of a numerical ar-
gument, the argument is a text string. In partic-
ular, a check is made to be sure that the text
string will fit on the current page without being
interrupted by literals, etc.

The text string argument must be contained on
the same line as the TEXT pseudo-op. Any print-
ing character may be used to delineate the text
string, This character must appear at both the be-
ginning and the end of the string. Carriage return,
line feed and form feed are illegal characters
within a text string (or as delineators). All char-
acters in the string are stored in simple stripped
six-bit form. Thus, a tab character (ANSCII 211)
will be stored as an 11, which is equivalent to the
coding for the letter 1. In general, characters out-
side the ANSCII range of 240-337 should not be
used.

TAG, TEXT /TEXT EXAMPLE 123%37/

EXTERNAL SUBROUTINE PSEUDO-OPERATORS

SABR and the linking Loader utilize CALL, ARG, ENTRY,
DUMMY and RETURN pseudo-ops for calling external subpro-
grams, passing arguments among them and returning from them.
COMMON storage may also be utilized for this purpose.

CALL and ARG
A CALL statement consists of the CALL pseudo-operator foi-
lowed by two indicators: the first. a one or two-digit number (64:0

14-26

maximum) indicating the number of arguments to be passed to the
subroutine; the second, separated from the first by a comma, is
the symbolic name of the subroutine entry point.

ARG statements consist of an ARG pseudo-operator symbol
followed by one of the arguments to be passed. One ARG state-
ment must be coded for each argument. ARG is used only in con-
junction with CALL.)

In the following example the main program (or a subroutine)
calls a subroutine named SUBR. and supplies two arguments.

TAG, CALL -25 SUBR

Nl ARG (50

NZ., ARG LOCATN o
ETCJ L

The above instructions are assembled as follows:

CPAGE 6 /MAKE SURE THE FOLLOWING
/2N+2 WORDS WILL FIT
/0N THE CURRENT CORE PACE.
TAG, JMS LINK /CALL THE CALL LINKAGE ROUT
228X (86> /WHERE 2=THE NUMBER OF
/ARGUMENTS AND X=THE
/LOCAL NUMBER OF THE
/SUBPROGRAM BEING CALLED
/V1Z., SUBR. '

Nl CDF CUR(85) /FIELD ADDRESS OF ARGUMENT
/1IN FORM OF CDF INSTRUCTION
POINTER. /ADDRESS IN THE LITERAL
/TABLE WHERE THE 58 IS
/ASSEMBLED.
N2 CDF CUR OR CDFli@2 /FIELD OF THE ARGUMENT

/DEPENDING ON WHETHER IT
: /1S OR IS NOT IN COMMON.
LOCATN /ADDRESS OF ARGUMENT

When a subprogram is referenced in a CALL statement, the
Run-Time Linkage Routine LINK executes the transfer to the
subprogram. It assumes that the entry point to the program is a
two-word block. Into the first word of this block it places the
number of the field where the CALL to the subprogram occurred.

14-27

In the
plus 2.

In the example above, SUBR would receive a 62M1 where
TAG is in field M, and SUBR # would receive the address of N1.
If there were no arguments, SUBR# would receive the address of
ETC. Thus, the two-word block at the ENTRY point serves as
storage for the 15-bit address vector for picking up arguments and
also for returning from the subprograrh.

Execution of the subprogram begins at the first location follow-

ing the two-word entry block.

When the ARG pseudo-op is used with a literal, as in the above
examnles the actual literal (50 in this case) is generated in the

=+
*

second word it places the address where the call occurred

= ¥V xa & (¢ 23 -~ 3

cadn QWilalx 23 2

literal table and a relocatable pointer to the literal is generated in
the location following the CDF CUR (see Loader Relocation
Codes). This is the same as using the literal as a parameter.

If the ARG statement contains a true constant parameter, the
constant itself is assembled in the location following the CDF in-
struction: in this case the CDF is useless.

The advantage of using the ARG-literal method is that it allows
a subroutine to pick up an argument which is sometimes a variable
and sometimes a constant.

ENTRY and DUMMY

The ENTRY pseudo-operator is used at the beginning of a sub-
program to estapblish the name of its entry point and define it as
external for the Linking Loader.

The ENTRY statement must occur before the symbolic name
of the entry point appears as a symbolic address label. The actual
entry location must be a two-word reserved space so that both the
return address and field can be saved when the routine is called.

ENTRY SUBROU
SUBROU. BLOCK 2
CLA

An entry point name in an ENTRY statement acquires all of

the nranertice of a DMTTMMYVY vyariahle
’tl\/.l Liwnd Wi L BN ¥ RALAVAL/IAW &

CAAW iJLU AVvAiva &

A DUMMY variable is a special type in the SABR/FORTRAN
system. It must be defined in the subprogram which references it.
When referenced directlv. a DUMMY variable is treated as a local

LAN kb ANk it siVLiy s & SRS VALY S Vhaealliv 43 o S e

symbol. However, when referenced indirectly it causes a call to -
the DUMMY Variable run-time linkage routine (see Run-Time
Linkage Routines). This routine assumes that the DUMMY vari-
able is a two-word reserved space where the first word is a 62N1
(with N the field of the address to be referenced) and the second
word contains the 12-bit address. DUMMY variables are used in
passing arguments to and from subroutines.

ENTRY Al

DUMMY X

DUMMY Y

Al BLOCK 2
X %

Y, N
RETRN

The RETRN statement is used to return from a subprogram to-
the calling program. The name of the subprogram being returned
from must be specified so that the Return Linkage Routine can
determine the action required, and because a subprogram may have

differently-named entry points. It is possible for the careful user '~

to return to the location following the last call of any subprogram
merely by specifying it in a RETRN statement.

. TAG, RETRN SUBROU

Before the return statement is used, however, the pointer in the
second word of the subprogram entry must be incremented to the
point following all arguments in the CALL statement.

EXAMPLE:

A user wishes to write a long main program, MAIN, which uses
two major subroutines, S1 and S2. S1 requires two arguments and
S2 one argument. The user would then write MAIN, S1 and S2
as three separate programs in the following manner:

14-29

MAINS cLa - /START OF MAIN
CALL 2551

CALL 1,52

£t
i

5

A]

jao]

-5
Wt
. [’_—"‘“Z"

ENTRY S22
52, BLOCK 2

RETRN S52
END

S1 could contain calls to SZ, or S2 calls to Si. In addition, the
subprograms could make use of dummy variables.

The user then assembles each of these subprograms with SABR
and loads all of them with the Linking Loader. During the loading
process, all of the proper addresses will be saved in tables so that
when the user begins execution of MAIN, the Run-Time Linkage
Routines (see under SABR Operating Characteristics) which were
automatically loaded, will be able to execute the proper reference.
Thus, MAIN w1ll be abie to fully use SI and S2 and be able to

pass data to and

PRS- S = P * _ & N
assing Subroutine Arguments

The following example shows how SUBR would pick up the
arouments 50 and TOCATN and denosit them in OW'1 and
MLD“LAAVL&I'U AsNS L AR AN CALANE uvyuo 3 Lll\tlll X3a P LW A e CALrANE
LOC2

14-30

/MAIN PROGRAM

MAIN, CLA
TAG> CALL 2, SUBR
Nl ARG (50
N2, ARG LCCATN
ETC>» cee
END
/SUBROUTINE
- ENTRY S5SUBR
DUMMY TEM
SUBR.» BLOCK 2 ‘
TAD 1 SUBR /THIS GIVES THE FIELD ADD-
/RESS (CDF CUR) OF THE (50
: /1.E. THE CONTENTS OF NI
DCA TEM /TO FIRST WORD OF DUMMY
INC SUBR# /MOVE ARG POINTER TO N1#
TAD 1 SUBR /GET ADDRESS OF (50
/1<E. CONTENTS OF N1#
bCa TEM# /TO 2ND WORD OF DUMMY
TAD I TEM /PICK UP THE (5@
DCA LOoCl1

INC SUBR# /MOVE ARG POINTER TO N2

.
-

/SIMILAR METHOD TO PICK UP CONTENTS

/0F LOCATN
INC SUBR# /MOVE PTR FOR RETURN
/AT ETC
"CLA
RETRN SUBR
TEM. BLOCK 2

Constant arguments are specified as literais because the sub-
~.program may not know that a constant argument is being used.
Hence, specifying constant arguments as literals will ensure that
the second word of every assembled argument is actually the ad-
dress of the argument.

The ARG statement may be used with a constant (e.g., if a
constant address is intended). The following technique may be
used if SUBR can assume that the first argument is always a con-
stant:

14-31

/MAIN PROGRAM ,
TAG. CALL 2, SUBR
N1, ' ARG 50
N2, ARG LOCATN
ETC.

END

/SUBROUTINE
ENTRY SUBR
TEM

DUMMY M
SUBR.» BLOCK 2
INC SUBR# /MOVE ARG PTR TON!#
TAD I SUBR /THIS CGETS THE 59
/IMMEDIATELY
DCA © LOCI1
INC SUBR# /CET C(LOCATN)Y IXN

/THE USUAL WAY

To summarize: an advanced technique for picking up subpro-
gram arguments is provided because subroutine arguments are
two-word addresses and the calling program and the subprogram
may reside in different fields.

A subprogram entry point is assumed to have been defined as a
two—word reserved block and defined in an ENTRY statement.
The appearance of the subprogram name in an ENTRY statement
gives the two-word block the properties of dummy variable. This

meang that when Hf\:: cnkprna m name.ig T rafarencad 1nr11rpnﬂv a

am LO)-R 03 S5 5L LS8
~ot

call is generated to the Dummy Varlab]e Run-time Linkage Rou-
tine where the details of locating and picking up the argument
address words are worked out. Thus, the user, need only use the
number sign (z£) feature to increment the argument pointer in the
second word of the entry point.

SABR OPERATING CHARACTERISTICS
Pagewise Assembly

ABR assembles page-by-page rather -thar

1
time. To accomplish this it builds various tables as instructions

n

are read. When a full page of instructions has been collected
(c@ountinor literals, off-page pointers and multiple word instruc-
fr o) A 10 o ml\in/] el vrrev s Thnd Cawvrnrnl smonnndaA_~narat Ara
LiV1Id) l.lb yasu 1D abbb.{ 1TUIVAE Alivg yuup IV, v yvlal PDUUUU‘UPUL LD

n be used to control page assembly.

PAGE FORMAT
A normal assembled page of code is formatted as below:

X000

ASSEMBLED
INSTRUCTIONS

PAGE
ESCAPE

LITERALS
AND
OFF -PAGE
POINTERS

x3rt PAGE

ESCAPE

Literals and off-page pointers are intermingled in the table at

the end of the page.

PAGE ESCAPES

SABR is normally in automatic paging mode: it connects each
assembled core page to the next by an appropriate jump. This is
called a page escape. For the last page of code, SABR leaves the -
Automatic Paging Mode and issues no page escape. The LAP
(Leave Automatic Paging) pseudo-operator turns off the automatic
paging mode. EAP (Enter Automatic Paging) turns it back on if
it has been turned off. '

Two types of page escape may be generated depending on
whether or not the last instruction is a skip. If the last instruction
is not a skip. the page escape is as follows:

last instruction (non-skip)
5377 (JMP to x177)
literals
and
off-page
pointers

x177/NOP

14-33

If the last instruction on the page is a skip type, the page escape
takes four words, as follows:

last instruction (a skip)
5376 (JMP to x176)
5377 (JMP to x177)
literals
etc.

x176/SKP

(O3 h- N

x177/SKP

Multiple Word Instructions

Certain instructions, in the source program require SABR to
assemble more than one machine language ins
page indirect references and indirect references where a data field
re-setting may be required). In the listing, the source instruction
will appear beside the first of the assembled binary words.

A difficulty arises when a multiple word instruction follows a
skip instruction. In such a case, extra instructions must be as-

sembled to enable the skip to be effected correctly.

These routines are d by the Linking Loader and perform
their tasks automatically when certain pseudo-ops or coding se-
quences are encountered in the user program. The user needs

knowiedge of them only to better understand the program listing.
There are seven linkage routines:
a. Change data field to current and skip CDFSKP
b. Change data field to 1 (COMMON) and skip CDZSKP
c. Off page indirect reference linkage OPISUB
d. Off bank (COMMON) indirect reference
linkage OBISUB

e. Dummy variable indirect reference linkage =~ DUMSUB
f. Subroutine call linkage LINK
g. Subroutine return linkage TN

The individual linkage routines function as follows

a. CDFSKP is called when a direct off-page memory refer-

ence foilows a skip-type instruction requiring the data field to be
reset to the current field.

14-34

Assembled

Program Code Meaning
SZA 7440
DCA LOC 4045 call CDFSKP
' 7410 SKP in case AC=10 at .—2
3776 execute the DCA via a
' pointer near the end of the
page.

b. CDZSKP is called when a direct memory reference is
- made to a lecation in COMMON (which is always in Field 1). The
action of CDZSKP is the same as that of CDFSKP except that it
always executes a CDF 10 instead of a CDF current.

Assembled
Program Code Meaning
SZA 7440
DCA CLOC 4051 call CDZSKP
7410 - SKPincase AC=0at.—2
3776 - execute the DCA via a point--

er near the end of the page.

c. OPISUB is called when there is an indirect reference to |
an off page location. |

Assembled
Program Code Meaning
DCAIPIR 4062 call OPISUB
0300 01 relative address of PTR
3407 execute the DCA 1 via 0007

d. OBISUB is called when there is an indirect reference to a
location in COMMON. In such a case it is assumed that the loca-
tion in COMMON which is being indirectly referenced points to
some location that is also in COMMON.

. Assembled
Program Code Meaning
DCA 1 CPTR 4055 call OBISUB
1000 address of CPTR in Field 1
3407 execute the DCA 1 via 0007

14-35

e. DUMSUB is called when there is an indirect refcrence to
a DUMMY variable. In such a case, DUMSUB assumes that the
DUMMY variable is a two-word vector in which the first word is
a 62N1, where N = the field of the address to be referenced, and
the second word is the actual address to be referenced.

Assembled
Program Code Meaning
"DCA I DMVR - 4067 call DUMSUB
030C 01 relative address of
' " DMVR
3407 execute DCA | via pointer

in location 0007

f. LINK 1s called to execute the linkage required by a CALL
statement in the user’s program. When a CALL statement is used,
it is assumed that the entry point of the subprogram is named in
the CALL and that this entry point is a two-word, free block fol-
lowed by the executable code of the subprogram. LINK leaves the
return address for the CALL in these two words in the same format

“as a DUMMY variable. |

Assembled
Program Code Meaning
CALL 2, SUBR 4033 call LINK
0205 06 code word
ARG X 62M1 X resides in field M
0300 01 relative address of X
ARG C 6211 C is in COMMON
1007 absolute address of C

. g RTN is called to execute the linkage by a RETRN state-
ment in the user’s program.

>
Program Code Meaning
RETRN SUBR 4040 call RTN
0005 06 number of the subprogram

being returned fro (SUBR)

Skip Instructions .

In page escapes and multiple word instructions, skip-type in-
structions must be distinguished from non-skipping instructions.
For this reason, a special pseudo-operator, SKPDF, must be used
to define skip instructions not in the permanent symbol table,
should these be used in source programs.

This also explains why both ISZ and INC are included in the
permanent symbol table. ISZ is considered to be a skip instruction
and INC is not. INC should be used to conserve space when the
programmer desires to increment a memory word without the pos-
sibility of a skip.

The first example below shows the code which is assembled for
an indirect reference to an off-page location following an INC in-
struction. The second example shows the same code following an
[SZ instruction. ‘

EXAMPLE 1:

INC POINTR 0028 2376 .

TAD I LOC2 @221 4862
222 @520 81 \ /OFF PAGE INDIRECT EXECUTION
2223 1407

EXAMPLE 2:

T A COUNTR 8228 2376

TAD I LOC2 2221 7410 /SKIP TO EXECUTION

pz222 5226 /JUMP OVER EXECUTION

2223 4862

@224 @520 81 /0FF PAGE INDIRECT EXECUTION
g225 1407

Program Addresses

Since cach assembly is relocatable, the addresses specified by
SABR always begin at 0200, and all other addresses are relative
to this address. At loading time, the Linking Loader will properly
adjust all addresses. For example, if 0200 and 1000 are the relative
addresses of A and B, respectively, and if A is loaded at 2000,
the B will be loaded at 1000 + 1600, or 2600. _

All programs to be assembled by SABR must be arranged to fit
into one field of memory, not counting page O of the field, or the

14-37

top page (/7600 — 7777). If a program is too]arge to fit into one
field, it should be split into several subprograms.

Explicit CDF or CIF instructions are not needed by SABR pro-
grams because of the availability of external subroutine calling and
common storage. Explicit CDF or CIF instructions cannot be as-
sembled properly. -

The Symbol Table

Entries in the symbol tabie are variable in length. A one or two-
character symbol requires three symbol table words. A three- or
four-character symbol requires four words, and a five- or six-
character symbol, five words. Thus, for long programs it may be
to the user’s advantage to use short symbols whenever possible.

The symbol table, not counting permanent symbols, contains
2644, words of storage. However, this space must be shared
when there are unresolved forward and external references tem-
porarily stored as two-word entries.

If we may assume that a program being assemb!ed never has
more than 100,, of these unresolved references at any one time,
this leaves 2464,, words of storage for symbols. Using an average
of four words per symbol, this allows room ‘"cr é:ém symbol"s.

Symbol table overflow is a

as a 16-bit word contained in two 8-bit frames of paper tape. The

t r bits contain the relocation code used by the Linking
Loader to determine how to load the data word The last 12 bits
contain the data word itself.

L3

¥ LJ LB L L
RELOCATION HIGH ORDER OF
CODE DATA WORD FIRST FRAME

_LOW ORDER OF DA'I:'A WORD SECOND FRAME -

frames of tape before the trailer code. It appears as a normal 16-bit
word, as shown below.

L] 1] L] 1§ L] 2 J
| HIGH ORDER OF
1 . 0 og 0 ORDER FIRST FRAME
:Low' ORDER OF DATA WORD SECOND FRAME

All assembled programs have a relative origin of 0200.

Loader Relocation Codes
The four-bit relocation codes issued by SABR for use by the
Linking Loader are explained below. The codes are given in octal.

00

2205

0242
2356

01

@376

Absolute Load the data word at the current
loading address. No change is re-
quired.

5277 JMP LOC /WHERE LOC IS -

_ /AT 8277 (ON

7500 SMA /PAGE)

2028 20 /A CONSTANT

Simple Add the relocation constant to the

Relocation word before loading it. (The relo-
cation constant is 200 less than the
actual address where the first word
of the program is loaded.) Items
with this code are always program
addresses. .

520 @1 A, LOC2

In the above example, LOC2 is at
relative address 0520. If the first
word of the program (relative ad-
dress 0200) is loaded at 1000, then
the actual address of A is 1176
and location 1176 will be loaded
with the value 1320, which will

14-39

be the actual address of LOC2

L va il Cens i W

when loaded.

03 External The data word is the relative ad-
Symbol dress of an entry point. Before en-
Definition*® tering this definition in the Linkage

Tables so that the symbol may be
referenced by other programs at
run-time, the Linking Loader must
add the relocation constant to it.
The six frames of paper tape fol-
lowing the two-frame definition are
the ANSCII code for the symbol,

n3 T’\ nNoc oo
o [T o9

ADDRESS LOW ORDER

04 Reorgin*® Change the current loading address
to the value specified by the data
word plus the relocation constant.

05 CDF The data word is always a 6201

' Current (CDF) instruction which has been
generated automatically by SABR.
The code 05 indicates to the Link-
ing Loader that the number of the
field currently being loaded into
must be inserted in bits 6-8 before

loading.
23022 6201 @5 A, TAD LOC2
3301 1776 /WHERE LOC2 IS OFF PAGE SO THAT
/THE TAD INSTRUCTION MUST BE
/INDIRECT.

8376 2520 o1

* Does not appear in assembly listings,

14-40

06

Subroutine
Linkage
Code

If the program containing this code
is being loaded into field 4, relative
location 0300 will be loaded with
6241. :

Such an instruction is referred to
in this document as CDF Current.
They are generated automatically
by SABR when a direct reference
instruction must be assembled as
an indirect, and there is the pos-
sibility that the current data field
setting is different from the field
where the indirect reference occurs.
The data word is a special con-
stant enabling the Linking Loader
to perform the necessary linking -
for an external subroutine -call.
(cf., CALL Pseudo-op). The
structure of the data word is shown.
below.

BITS 0-5 BITS 6-11
NUMBER OF LOCAL. PROGRAM
ARGUMENTS NUMER ASSIGNED
FOLLOWING TO THE EXTERNAL
THE CALL SUBROUTINE

BEING CALLED
o i e

Before the 12-bit, two-part code
word is loaded into memory, a
global external number will be sub-
stituted for the local external sym-

14-41

10 Leader/Trailer*
and
Checksum

12 High Common*

17 Transfer*
Vector

bol number in the right half of the
data word.

2200 4033 CALL 3, SUB
2201 @307 06
ARG X
ARG Y A
ARG Z

Here. SUB has been assigned the
local number 07 during assembly.
At loading time this number wiil
be changed to the global number
(for example, 23), which is as-
signed to SUB. In this example,
0323 would actually be loaded at
relative address 0201.

This code represents normal
ieader/trailer. At the first occur-
rence of this code following the
assembled program, the computer
word contains the checksum.

The data word is the highest loca-
tion in Field 1 assigned to COM-
MON storage by the program. This
item will occur exactly once in
every binary tape and it must be
the first word after the leader. If
no COMMON storage has been
allocated in the program, the data
will be 0177.

Signifies that reference to an ex-
ternal symbol occurs in the as-
sembled program. The 12-bit data
word is meaningless. The next six
frames contain the ANSCII code
for the symbol.

* Does not appear in assembly listings;

14-42

The Linking Loader uses this def-
inition to create a transfer table,
whereby local external symbol
numbers assigned during assembly
of this particular program can be
changed to the global external
symbol number when several pro-
grams are being loaded.

SAMPLE ASSEMBLY LISTING .

This program is offered only to illustrate many of the features
and formats of a SABR program. The program cannot be run
(see also, Demonstration Program Using Library Routines).

PDP-8 SABR DEC-Q8-A2B2
HIGH SPEED READER? Y
HIGH SPEED PUNCH? Y
LISTING ON HIGH SPEED PUNCH? N

DTCA
DTSF
LGoC
MUL
NAME
POINTR
SUB
St
St2
se
S3
54
TAG
X

Y

z

67620P
67710P
A@@PUNDF
CABREXT
1ggpcoM
18013
P20BEXT
pepe
B214
g214
Be27
P233
@177ABS
G400
GRS
B4apd2

6762
6771

2177

2009

/SAMPLE OF SABR CODE

OPDEF DTCA 6762

SKPDF DTSF 6771

/ABSYM LOC 176

ABSYM TAG 177
DECIM

NAME» COMMN 8

ENTRY suBs
DUMMY X
LAP

14-43

22020 P20 SUB» BLCCK 2

2201 0000
' EAP
OCTAL
2202 @eoe St 4
2203 4067 : TAD I SUB
2204 0200 01
G205 . 1487
0206 7106 CLL RTL3 RTL
0207 7006 _
2210 6211 ' DCA: NAME#
goll 3776 -
p212 6201 85 INC POINTR
2213 2775 :
st2,
z214 4633 52, CALL 3,MUL
2215 2322 26
g216 6201 05 ARG X
‘9217 2408 01 ‘
3220 €201 05 ARG (20
@221 8374 01
EEE 6201 ARG -1
@223 71177
G224 1373 TAD (D-49
IF LOCs 1
PAUSE
@225 1372 TAD (-2
0226 5200 © JMP SUB
CPAGE 4
6227 4233 53 JMS 4
2232 0204 4
@231 . 0200 NAME
p232 2371 01 (37
2233 6762 5S4, DTCA
2234 5377
0371 8037
2372 7501
@373 7717
@374 0020
@375 1913 @1
8376 1001
2377 7000
: PAGE
0400 2000 X -
¢4z 2214 31 Y St2
2402 2301 Zs TEXT "SAMP@=X/2456"
2403 1520
G40 4 2875
0405 4052
2486 5777
B4B 7 6465
G410 6600
241 6771 DTSF

gaiz 5376

D413 5377

2576 7410

@577 7410 . :
REORG 1900

10002 7410 SKP

1801 . 7410 TAD I St2

1902 5206 ’

1003 4962

1004 g2l14 01

1005 1487

1006 1377 TAD (333

1007 6211 DCA NAME

1212 3776

1911 40 40 RETRN SUB

1212 PBBl 66

1913 103530 POINTR> 0

1176 1020

1177 2333

END

For a multiple word instruction the actual instruction line is
typed beside the first instruction.

B650¢ 6201 25 LOC2, JMP NAME /0FF PAGE
2651 5774

B652 7106 CLL RTL3;RTL;RTL

B653 7006

B654 7006

For an erroneous instruction, the error flag appears in the ad-
dress field. The instruction is not assembled.

14-45

re

2702 7208 N2, CLA
1 CLL SKP
2731 7402 HLT

The page escape and literal and off-page pointer table are typed
with nothing except the correct address, value and loader code.

2770 7006 N3, RTL
2771 7500 sMA
g772 5376 -
277 5377

0774 2200 01

2775 0020

8776 7410

8777 741

- LOADING AND OPERATING SABR

Procedures for loading SABR and assembling a source program
are given below. See Appendix C2 for instructions for use of
the Binary Loader.

Loading in a Paper Tape System
1. Make sure the Binary Loader is in memory, say in field n.

2. Set the console switches as follows:
Instruction Field = n, Switch Register = 7777.

3. Press LOAD ADDress.

4. Insert the SABR binary tape into the reader.

5. If using the high-speed reader, depress Switch Regigter Rit 0
6. Press START

7. SABR will now be loaded into memory bv the Binary

Loader; portions of SABR will load into field 0 and field 1.

Loading in a Disk Monitor System

1. Make sure the Disk Monitor is in memory. (Type CTRL/C7
or START at 07600.)

2. When the Monitor responds with a dot, call the system
Loader as foliows:

LOAD (followed by the RETURN key)

3. Insert the SABR binary tape in the reader.

4. Answer the loading command dialogue as follows:
*IN-R: for high speed reader or *IN-T: for Teletype.
*
*ST = :
T <CIRL/P> 1 <CTRL/P >

5. SABR is now loaded into memory, partly in field 0 and
partly in field 1. It may be saved on the user’s system device
by responding to the monitor’s dot as follows: -
* SAVE SABR! 0-7177;200
* SAVE SAB1! 700,1700-12427

6. SABR is now saved on the user’s system device and may be -
called as follows:
» SAB1
« SABR
The field 1 portion must be called first.

Assembly Procedure

It is assumed that the programmer has written his program in
SABR language and punched this source program on paper tape in .
ANSCII code. The source tape may have been split into several
separate tapes by placing a PAUSE statement at the end. of each

section except the last. The last tape must have an END statement -

at the end. -

After SABR has been loaded into memory, it is used to assemble
the source program. In Pass 1 the relocatable binary version of the
user’s program is created and, at the end of this pass, the symbol
table is either typed or punched, according to whether this listing
is to be typed or punched. Pass 2 is the listing pass. The assembly
is carried out as follows.

NOTE
If SABR has been saved on the System 1/0
device, it will start automatically at Step 3
below when called into memory. The source
tape (first section) should be inserted in the
reader before operation begins.

14-47

W

10.

Set the console switches as follows:

Data field = 0, Instruction Field = 0,
Switch Register = 0200.

Press LOAD ADDress and START.
SABR now types a sequence of two or three questions;

HIGH SPEED READER?

HIGH SPEED PUNCH?
LISTING ON HIGH SPEED PUNCH?

3-&
v]
3
2]
4
<
]
1
J
4

o Tmrvod PITS R Ve e ETI AT 1o
iS 1IiiusSt O auawcu: wWiLit 1 ll LllC alidwcl .lb

yes. Any other answer is assumed to be no. The third ques-
tion is typed-only if the second is answered Y. If the third is
answered Y, both the symbol table and the listing are
punched on the high-speed paper tape punch. Otherwise,
they are typed on the teletypewriter. The user need not wait
for the full question to be typed before responding.

As soon as SABR has echoed the user’s response to the last
question, turn on the punch device and, if it is being used,
the ASR reader. If the low-speed reader is used, the error
messaOP E indicates that the user has waited too long before

At h is pomt Pa<s 1 beg.n,. SABR reads the source tape
and punches the binary tape. After the binary tape has bee
co n]pfpﬂ SARR v r

table. :

If the source tape is in several sections (separate tapes with
PAUSE:s at the end of all except the last), SABR halts at the
end of each section. At this point, insert the next section in
the reader and then press CONTinue.

At the end of Pass 1, SABR halts.

If an assembly listing is desired, reposition the beginning of
the source tape in the reader and if using the ASR reader,

set it to START, and then press CONTinue.
At the end of Pass 2, SABR again halts. To restart SABR
Tﬂ(\r o nnO{-iﬂ T o £ S A,

iV ussemuix Ag afiGuid Ograiil, p,- CSS k/Ui\ Uuuc

To restart SABR at any time, press STOP set the Switch
Register = 0200, press LOAD ADDress and START. How-

ever, the first pass must always be repeated.

14-48

11. After assembling in a Disk Monitor environmenf, control
may be returned to Monitor by restarting at location 7600.

Procedure For Use as Fortran Pass 2

In addition to its status as a stand-alone assembler, SABR
serves as pass 2 of the 8K Fortran compiler. For this purpose,
SABR procedures differ slightly. The Fortran. compiler, in one -
pass, converts the user’s Fortran source program into a symbolic
source program containing standard PDP-8 mnemonics. SABR
then converts the symbolic tape into a relocatable, binary-coded
program. _

The symbolic tape produced by the Fortran compiler is not in
standard Format; it is arranged as shown below.

s

E T
L | 5 | symsoL oeFiNTIONs | p | R
e o g?";R%AGEM; £ | A | COMMON, ARRAYS, Al A
D |® ExecuTaLe b | R | DA AND g1
e EXEC A | PROGRAM ENTRY L
R |R : : POINT. E

0 R

‘_\‘\TRUE START
3' OF BLANK TAPE

The tape is arranged this way because the data at the end of the
tape cannot be inserted in the midst of the executable code, and
some data which should be at the beginning of the tape is not
known until later. Thus, the true start of the symbolic program is
near the end of the symbolic tape, preceded by a segment of -
blank tape code and followed by a PAUSE statement.

To assemble such a tape with SABR, one of three methods must
be followed. Actually, the general procedure is the same as that
described in Assembly Procedure, differing in special details. The
differences are covered by the three methods below.

METHOD 1

The simplest method is to cut the symbolic tape into two parts.
The cut should be made at the middle of the blank tape which
separates the executable code from the symbol definitions. The
latter section of the tape should then be marked “Section 1” and
the former section (the executable code) should be marked “Section

14-49

2.7 Assembly then proceeds with the two-part symbolic tape as
previously described.

METHOD 2
The user may avoid actually cutting the symbolic tape by manip-
ulating the tape as if it were in two parts as explained above. The

tape should initially be inserted in the reader with the separator
blank tape over the read-head. When SABR halts at the PAUSE

qcfatemant at the pnycn‘f;u Pnr‘] nf fnp fﬁh!—‘- |‘nF‘ LISEer Qn(‘ni d]‘r’_‘—.pOSiﬁQn

the tape, putting the physical bmmmng of the tape in the reader.
Then press CONTinue. The assembly pass will end at the sep-

aw w1l 4
arator blank tape code. The assembly listing can be produced in 2

similar manner, pressing CONTinue to start the listing pass.

METHOD 3

The third method requires SABR to pass over the symbolic tape
two times for each pass of the assembly. However, it allows the
tape to be inserted at its physical beginning. It is based on the fact
that a symbolic tape output by the FORTRAN Compiler has as
its physical first line the special pseudo-op, FORTR. This pseudo-
op has no effect except when a symbolic tape output by the Com-
piler is assembled using this third method.

1. Insert the symbolic tape in the reader at its physical beginning.
2. Start SABR as usual.

3. Sensing the FORTR statement as the ﬁrst line, SABR ignores
all further data until after it passes over the END statement.
SABR then begins the actual assembly by processing the sym-
bol definitions, etc., which are at the latter end of the tape.

4. Then, SABR halts at the PAUSE statement which is at the
physical end of the tape. At this time the user should reposi-
tion the symbolic tape in the reader at the physical beginning
of the tape, and then press CONTinue. SABR now assembles
the executable code portion of the tape in the normal way.

(93]

. If an dSbemDW usung is desire p oceed as in Method 2 after
SABR finishes the assembly pass.

THE LINKING LOADER

Relacatahle hmary prnorgm tapes p nroduced hv SABR asse

ANwA AL Ay wazadas

14-50

The Linking Loader is capable of loading and linking a user’s
program and subprograms in any fields of memory. It is even cap-
able, in a special way, of loading programs over itself. The Linking
Loader also has options which give storage maps and core avail-
ability.

The Linking Loader requires a PDP-8/1, -8/L, -8, -8/S or -5
Computer with a least 8K words of core memory. Either high- -speed
or ASR paper tape input is acceptable, however, a high-speed
reader is highly recommended.

The software requirements are:

a. Binary paper tape copy of the Linking Loader .

b. Relocatable binary paper tape copies of both Part 1 and -
Part 2 of the 8K System Library

c. The relocatable binary paper tapes of the user’s own pro-
gram and subprograms which have been produced by as-
sembling his programs with SABR.

Operation _

Generally speaking, the Linking Loader is capable of loading
any number of user and Library programs into any field of PDP-8
memory. These programs are loaded consecutively via the high-
speed reader (or the ASR reader). The choice of which field to
load each program into is a switch register option. Usually, sev-
eral programs may be loaded into each field. Because of the space
reserved for the Linkage Routines the available space in field O is
three pages smaller than in all other fields.

Any COMMON storage reserved by the programs being loaded
is allocated in field 1 from location 0200 upwards. The space re-
served for COMMON is obviously subtracted from the available
loading area in field 1. The program reserving the largest amount
of COMMON storage must be loaded first.

The Linking Loader uses the following special method to enable
loading data over itself. When the Linking Loader encounters data
which must be loaded over itself, it punches this data onto paper
tape in RIM format. Then, after the user has finished loading all
his relocatable binary program tapes, he simply loads the RIM
format tape using the standard RIM loader.

The Run-Time Linkage Routines which are necessary to execute
SABR programs are automatically loaded into the required areas
of every field by the Linking Loader as a part of its initialization.

14-51

For the user, the only required knowiedge O
particular areas of core they occupy.
Linkage Routine Locations

Because' the Library Linkage Routines must be in core when
SABR assembled programs are run, certain core locations are not
available as follows:

Field O Locations 0400-0777
Field 0, 1,2, ... Locations 0007 and 0033-0073
Thus in every field of memory the following page 0 locations
are available to the user:

0000-0006 - for interrupts, debugging. etc.
0010-0017 ~ auto-index registers
0023-0032 arbitrary

0074-0177 arbitrary

RESERVED LOCATIONS. Locations 20, 21, 22 in field 1 are
used for the Floating-Point Accumulator. The user should use
these locations with great care. When using the Library routines,
locations 20-32 in the field where the routines reside, are used for
temporary storage by the routines. Locations 176 and 177 in the
field where the I/O handler routines (IOH) reside are used for
temporary storage by the I/O handler.

The 8K System Library subprograms, which may be used by any
SABR program, are loaded in the same way as other relocatable
binary programs. Only those library programs which the user’s
programs actually call need to be loaded.

Switch Register Options
During the loading operation with the Linking Loader, two user
cptions are available to obtain {nformation about what has already
been loaded. The switch register is used to select these options..
Either option may be selected after any program has finished
loading.
WARNING
The Teletype punch must be at OFF or FREE
before selecting these options.

The switch register bits used are as follows:

RIT O = 1 selects the Core Availability option;
BIT 1 = 1 selects the Storage Map option

The Core Availability option causes the number of free pages of .
memory in every field of memory to be typed in a list on the Tele-
~ type. For example, if the user has a 16K configuration, a list like
the following might be typed.

0002 (number of free pages in field 0)
0010 (number of free pages in field 1)
0030 “(number of free pages in field 2)
0036 (number of free pages in field 3)

S .
The number of pages initially available in field 0 is 0033 and in all
other fields is 0036. :

The Storage Map option causes a list of all program entry points
to be typed, along with the actual address at which they have been
loaded. The entry points of programs which have been called but
which have not been loaded are also listed along with a U flag for
undefined. Such flagged programs must be loaded before execution
of the user’s programs is possible. The Core Availability list is -
automatically appended to the Storage Map. A sample is shown
below.

MAIN 10200
READ 21055
WRITE 21066
I0H 23031
SETERR 20000 U
ERROR 20000 U
TTYOUT 000%e U
HSOUT 20000 U
TTYIN 00080 U
HSIN 20000 U
FDV 4722
CLEAR 25247
IFAD 35131
FMP 04632
ISTO 05874
STO Qa4a47
FLOT 25210
FAD 24010
DIV 02020 U

14-53

Loading the Linking Loader
The Linking Loader must be loaded into the highest available
field of memory.

1.

2.

wh

e

Make sure the Binary Loader is in memory, for example, in
field m.
Let h represent the number of the highest field.in the user’s
configuration.
Set the console switches as follows:

Data Field = h. Tnstruction Field = m, Switch Register =

77717. '

ress LOAD ADDress.

Place the binary paper tape of the Linking Loader in the

reader.

If using a high-speed reader, depress switch reg1ster Bit O.
Press START. The Linking Loader will now be loaded into
memory.

“Loading Relocatable Programs

The Linking Loader is used to
grams and 8K Library subprogra

w

]

.l

QY ¥ R
11

118

NOTE

The program or subprogram which uses the
largest amount of COMMON storage should
be loaded first. (The Library subprograms
do not use COMMON.)

After the Linking Loader has been loaded into the highest
memory field, h, the user should set the console switches -
as follows: Data Field = h, Instruction Field = h, Switch
Register = 0200.

Press LOAD ADDress.

Place the relocatable binary tape for the first program to
be loaded in the reader. Position the tape with leader code
in the reader.

Set switch register t 0000. n, if loading via the Tele-
type reader is required, raise switch register bit 6. If the

user does not havu a high-speed punch, he should raise

Then
ge Sy

e

- switch register bit 7. Finally, set switch register bits 9-11

14-54

- to the number of the field into which the first program or
subprogram is to be loaded.

SWITCH REGISTER %
o1t 21314)15|e]718]910]1
o0} o 1 1 Cl1 1

—
L srorace map _ NUMBER OF
CORE PAGES LOADING FIELD
: ASR PUNCH
ASR READER
Example:

- If the user wishes to load his first program into field 3, and
if he has no high-speed I/0 device, then he should set the
switch register to 0063 before the next step.

Press START.

6. The user’s relocatable binary program will now be loaded.

When loading is completed, the Linking Loader halts.

The user may now either load another program or select

one of the options in steps 9 and 10. :

8. To load another program, insert the program relocatable
binary tape in the reader, set switch register bits 9-11 to
the number of the field the program is to be loaded into,
and then press CONTinue.

9. To select the Core Availability option, set switch register

- bit 0 =1, and press CONTinue.

10. To select the Storage Map option, set switch register bit 1 =

1, and press CONTinue.*

If the ASR punch is turned on for possible RIM format
data punching. as explained on page 14-5!, ensure that it
is turned off before selecting either of the opticns. Turn it
on again after the typing of the options is completed.

11. The user may continue loading more programs as in step

8 after using either of the options.
Any time the Linking Loader halts, the user may access
memory directly via the DEPosit and EXAMine console

hd

=~

* All other switch register bits are irrelevant.

14-55

switches. After this is done the Linking Loader ma
restarted via the console switches at location 7200 (in
highest field, where the Linking Loader resides).

| S
uc

the

‘<I

THE DISK LINKING LOADER

The Disk Linking Loader (LLDR) is used to load and execute
8K FORTRAN compiled and 8K SABR assembled user programs
when the system configuration includes one or more disks and the
Disk Monitor System. Such user programs exist as a main program
with several subprograms (including necessary 8K library subpro-
grams), all of which must be on punched paper tape in relocatable
hinary format. LLDR loads these multiple-part programs in a page-
wise relocatable manner, and links all calls to and returns from
external subprogrames.

The user communicates with LLDR via the keyboard in a sim-
ple, straightforward manner; LLDR types *OPT- and the user
responds with a one-letter code which causes LLDR to perform
one of seven possible functions (operations).

LLDR, unlike the standard 8K Linking Loader, is entirely
keyboard oriented and makes extensive use of the disk. For ex-
ample:

a. It allows user programs to be loaded over LLDR itself by
utilizing temporary disk storage in the Disk Monitor System en-
v1r0nment

b. It provides two levels of program overlaying so that much
larger programs can be run. Up to eight files (programs and sub-
programs) can be loaded into each overlay area. Overlay files are
saved on the disk and called into core as needed at program execu-
tion time. - _

c. It provides several utility and convenience features such as
storage map listing, a listing of necessary subprograms not present
in core, a listing of available (unoccupied) core, and automatic
program starting.

d. It includes load-time monitoring via the keyboard rather
han the console switches, and several other minor features.
LLDR accepts paper tape input only, from either the low- or

hich_speed readers. as do both the RK FORTRAN and {K SARR

OIgN-speed roallis, a5 Ll oulh uil L) B\,
systems. However, the user program (during execution) can use
both disk and DECtape for input/output.

The operating system (Run-Time Linkage Routines) necessary

A
=Y

for execution of 8K FORTRAN and 8K SABR programs is con-
tained within the LLDR program, and its use is entirely automatic.

Two loading techniques are provided: normal loading and over-
lay loading. In normal loading, each file is loaded into a separate
core area where it remains during execution. In overlay loading,
several files are sequentially loaded into the same core area and
saved on the disk. At execution time, each file is brought from the
disk into core when it is needed. LLDR provides two levels of
overlay, and each allows up to eight files per overlay level. A norm-
ally loaded program may call a program in either overlay level,
and a program in either overlay level may call a program in the
other level.

The following main stipulations should be remembered when
‘using LLDR.

a. A program in an overlay level may not call another ex-
ternal program in the same overlay level, except as explained in
Overlay Loading.

b. Common étorage (i.e., data storage accessible by all pro- . .

grams and subprograms) is always located in field 1.

¢. The program or subprogram which requests the largest
amount of common storage must be loaded first. , :

d. No one program or subprogram may be greater than 4K
in length. '

e. Programs may not be loaded across field boundaries, al-
though they may be loaded into any available field.

f. Overlay files may not be loaded over LLDR, although
normal files may be.

. LLDR requires a PDP-8/1, -8/L, -8, or -8/S computer with at
least 8K words of core, a Teletype and at least one disk. A high-
speed paper tape reader is optional but highly recommended.
LLDR can use all available core memory and disk storage.

Loading, Saving and Starting LLDR

LLDR is furnished on punched paper tape in binary-coded
format, and is loaded into field 0 by the standard Binary Loader
(refer to PDP-8/1 System User’s Guide, DEC-08-NGCB-D).

Before using LLDR or saving it as a systems program on the
disk, it should be properly initialized for the amount of core avail-

14-57

able and for the type of paper tape reader to be used. LLDR is
initially set for a basic configuration of 8K words of core and a
high-speed paper tape reader. With any other configuration, LLDR
should be started and initialized as explained under Expanded
Configuration. Complete loading, saving, and calling procedures
are given below for both basic and expanded configurations. The
following procedures assume that the user is familiar with the Disk

Monitor System, and that the system is available for use. |

BASIC CONFIGURATION. The user with 8K of core and a high-
speed reader should use the following procedures.

a. Determine t

e P r\"‘l‘*AhT

CTIRL/C* or STAR
b. When Monitor responds with a dot, call the system loader
by typing |
.LOAD (followed by the RETURN key)
c. Insert the LLDR binary tape in the high-speed reader.

d. Answer the loading command dialogue as follows:

*IN-R: Keys shown within angle brackets
* are not echoed on the teleprinter
*OPT1-1 when typed by the user.
HCQT —

L —

T <CTRL/P>1 <CTRL/P>

After each up-arrow which is typed by Monitor, the user types
CTRL/P by holding down the CTRL key while typing the P key;
this is equivalent to pressing the CONT switch when loading
manually.

e. LLDR is now loaded into core; save it on the disk by
typing '
.SAVE LLDR!0-6777;200

f. LLDR may now be called to load relocatable binary

ograms by typing

" T 1LDR

* CTRL/C is typed by holding down the CTRL key while typing the C
kev. '

14-58

EXPANDED CONFIGURATION
The user, with any configuration other than the basic configura-
tion mentioned above, should use the following procedure:

‘a. Determine that the Disk Monitor is in memory (Type
CTRL/C or START at 07600.)

b. When Monitor responds with a dot, call the system loader
by typing |

.LOAD - .

. Insert the LLDR binary tape in the appropriate reader.

d. Answer the loading command dialogue as follows:

*IN-R: (R: for high-speed reader
* T: for ASR reader)
*OPT-1

*ST = 7400

T <CTRL/P>1 <CTRL/P>

e. LLDR is now loaded into core. It automatically starts at
location 7400, causing it_to type out its initialization questions.
Answer the questions as shown below.

*GIVE SIZE OF MEMORY IN K-12 (user typed 12)
*HIGH SPEED READER? Y (user typed Y)
When answering the first question, the user should type the amount
of available core memory after K-; the user should type Y for yes,

or N for no in answer to the second.

f. When the above questions have been properly answered, -
LLDR may be saved on the disk by typing

.SAVE LLDR!0-6777;200

g LLDR may now be called to load relocatable binary pro-
grams by typing

.LLDR
LLDR Functions

When LELDR has been initialized and started as described in the

preceding section, it types its program version number (also found
on the paper tape identification label) and option statement and
then waits for the user to specify the desired function to be per-
formed. For example:

PDP-8 DEC-08-A2B4-02
*OPT-

14-59

The user’s response to *OPT- is in the form of a one-letter code
followed by the RETURN key. LLDR’s functions and correspond-
ing one-letter function codes are listed below.

Cade Function
C Core availability listing
D Disk file assignment
E Exit with halt
L Normal loading
M . Storage map listing
0] Overlay loading
S Start main program

ogram listing

c
-
£,
(@]
o
2.

Functions may be called whenever needed or desired, except
that the M, U, and S functions must not be called first. Upon com-
pletion of a function (except E or S), LLDR will request another
by repeating the option statement (*OPT-). Any error made by the
user when responding to an option statement will cause LLDR to
type a question mark, ignore the response, and repeat the option

tnénrvmaont

S1ailCIIiciin.

LLDR may be stopped (e.g., to make a program patch) and
restarted without aitering the state of the computer by using the
console STOP switch and restarting at 6000 FIELD 0. This method
may be used at any time after completion of a i
than D, except during overiay loading or while a tape is actually
being read. - :

At any time during the use of LLDR (except while 2 tape 1
being read in), control may be returned to the Disk Monitor. This
is done by typing CTRL/C; however, when CTRL/C is typed, all

data temporarily stored on the disk is lost.

=
=
O
ek
Q
=
o
o+
=
o
=t

W

Disk File Assignment Function (D)

If the user’s programs or subprograms create or use disk data
files with the RDISK and WDISK library functions, the D function
must be the first function used. The D function performs the pre-
liminary job of enering the names of user files into the disk direc-
tory. This prepares the way for using the RDISK and WDISK
library functions, which allow the user to read and write data on

the disk at execution time.

14-60

Use of the D-function proceeds as shown below:

PDP-8 DEC-08-A2B4-01

*OPT-D

*FILES-ABC, WXYZ, M1, M2, 5H, R, 3, P
*OPT- :

where a directory entry is assigned to each of the eight file names.
File names may be from one to four characters in length, and up
to ten files may be specified. All such files must be named in one
execution of the D function. ' .

The order in which the data files are named for the D function is
-especially important. The reason for this is that when the user’s
program references disk data files using the RDISK and WDISK
library functions, he must reference these files not by name but by
logical number (1, 2, . . ., 10). This logical number is determined
by the order in which he names the files for the D function. For
example, if files have been named in the D function as shown in
the previous example, the user’s program will reference file M1 by
statements of the form :

CALLRDISK (3, ..)

because M1 was the third file named.

Before using the D function the user should study thoroughly _
the operation and use of the RDISK and WDISK library functions
under Disk I/0 Routines.

The disk directory will accommodate ten file names. If the di-
rectory is too full to accommodate all files named, a meaningful
error message is printed by LLDR. In the example above, if the
directory had room for only four files, the error message

DISK WILL NOT HOLD 5H & FOLLOWING FILES

would have been printed. If this happens, the entire D function
request is ignored and LLDR prints another *OPT- to allow the
user to repeat the D function with fewer files or to specify a different
function.

After the D function has been performed, LLDR will again
print *OPT- for the user to continue with the process of loading
his program. After the D function has been used or when a differ-
ent function has been called, the D function is no longer available

14-61

My
~—11

as an 1ilega1 function code. :

Again, if the D function is to be used, it must be the first func-
tion used. If it is not chosen as the first function, it is not available
for use until a fresh image of LLDR is brought into core from
-the disk.

T s
caliea a secoiia tiinie or a

Loading Functions (L and O)

The two loading functions, L for normal loading and O for
overiay loading, are avaua“ﬂe for use at any time. These are the
principal functions of LLDR—to load relocatable programs for
execution. Programs and subprograms may be loaded in any order
“and into any field. The on y restric aons are listed below.

a. The buuyu.;slaf“ WQICil
common storage must be loaded first.

b. No subprogram may be loaded across a core field bound-
ary; i.e., no subprogram may be longer than 4K in length.

c. A maximum of 64 subprograms may be loaded, including
multiple entry points for single programs.

" LLDR loads subprograms in the order presented and into the
field specified (see below) from the lowest avaiiable memory up-
ward. Common storage is aliocated in the lower portion of
before loading actualiy starts. A maximum of 3840 words of com-
mon storage fills field 1.

- LLDR loads in a page-wise relocatable fashion (each program
begins at the start of a new core page), establishing external links
so that each subprogram is properly executed.

NORMAIL LOADING (L)

In normal loading, the user’s program is loaded directly into
core memory where it remains available for, throughout, and after
execution. The core area occupied by each normally loaded pro-
gram is the property of that program, and no other program can
be loaded into its core area.

To perform normal loading, the user responds to *OPT- with
the letter L. When this is done, LLDR types a request for the
number of the field in which the user wishes to load. This specified

A
Fagy | . -r e~ i m 1. P RN ,\-4 e ise
field must exist in the con xguxat ion. For ¢xa mpic:

£.13 1
Hewa 1

Had field 2 been nonexistent, the following would have occurréd:

*OPT-L
*FIELD-2
9

*OPT-

where LLDR ignored the user’s response, typed the question mark,
and repeated the option statement.

When LLDR is satisfied with user response, it then types an
up-arrow. At this point LLDR will pause and wait for the user to
place his relocatable binary tape in the tape . reader, and to type
CTRL/P which causes LLDR to load the program into core.
When the program has been loaded, LLDR will type another up-
arrow and pause for user response. If the user wishes to load an-
other program into the same field, he need only place the tape in
the reader and then type another CTRL/P (or press the CONTinue
switch and then‘type CTRL/P if using the low-speed tape reader).
When the user no longer wishes to load into the same field, he .
should respond to the up-arrow by typing the RETURN key, and
LLDR will type another option statement.

The user may respond to an up-arrow with CTRL/N, which
causes LLDR to by-pass the next program on a multi-program
tape. This situation may, for example, occur with a library sub-
program tape.

A typical example of normal loading is shown below, where
three programs are loaded into field 0 and two into field 1, with
one program being by-passed.

*OPT-L

*FIELD-0

* 1 <CTRL/P>1 <CTRL/P> %1 <CTRL/P> %}
*OPT-L

*FIELD-1

*1 <CTRL/P>1 <CTRL/N>1 <CTRL/P> 1
*OPT-

If the low-speed reader had been used in the example abave, the
CONTinue switch would have been pressed just before each
CTRL/key combination.

14-63

OVERLAY LOADING (O)

Overlay loading allows the user to load as many as 16 sub-
programs into the same core area. The user may load one or two
overlay levels (each O function call constitutes an overlay level)
of subprograms (files) with up to eight files per level. Overlay
loading is possible only when no two subprograms of the same

level need to be in core at the same time; i.e., they do not call each

other.

All subprograms loaded during the operation of an O function
are loaded into the same core area (overlay level) and automatically
saved in separate files on the disk. At execution time each file is
called back into core as needed. No protection is given to the file
of this overlay level that was previously in core. It is completely
overwritten in core. Overlay files should use common storage for
data which must remain in core.

Files in a given level may be loaded in any order, provided they

“are all loaded during the same execution of O function. Files in a
given level need not be the same length; enough ‘core is allocated
for the largest file in the level.

Loading with the O function is quite similar to loading a2 string
"of programs in the same ficld using the L function. An example

aedad

is given below, where three files are loaded into the first ievel and
two files into the second level, with one file being passed over.

*QPT-O

*FTIELD-1

* 1 <CTRL/P>1 <CTRL/P>1 <CTRL/P>1

*OPT-O

*FIELD-1 .

#* 4 <CTRL/P>1 <CTRL/N>?1 <CTRL/P>1

*OPT-
Loading of a single overlay level is terminated with the RETURN
key. Loading of an overlay level will automatically be terminated
after eight files have been loaded.

As with the L function, if the low-speed reader had been used
in the cxample above, the CONTinue switch would have been
pressed just before each CTRL/key combination.

When the main program is removed from core, linkage to its
overiay files is broken. Therefore, for subsequent execution, files
must be reloaded with the main program.

14-64

Loading Errors
When LLDR detects an cisor during loading of a program, it
types an error message of the following form:

ERROR 000n

where n is a digit from 1 to 6, representing the type of error de-
tected. If the error is fatal, control returns to the Disk Monitor.
If it is not fatal, the user may be able to continue loading.

Error No. Error " - Fatal?

1 Attempt to load more than 64 Yes
subprograms :

2 Field overflow No

3 Subprogram with largest common Yes
assignment not loaded first

4 Checksum error No

5 - Improper or damaged tape or No
reader error

6 Disk overflow : No

NON-FATAL ERRORS

Error 2—During normal loading, loading may be continued in ,
a different memory field. During overlay loading, the entire overlay
level must be reloaded into a different memory field.

Errors 4 and 5—During either type of loading, the user may
reposition the faulty tape in the reader and type CTRL/P in re-
sponse to the new up-arrow. If the error persists, reassembly or
hardware maintenance will be necessary.

Error 6—Occurs during normal loading only when the user is
loading into the upper portion of field 0; the program which caused
the error must be loaded into a different field. During overlay
loading, the current overlay level will be closed with only the files
that were loaded successfully. The file which caused the overflow
(the last file read) and succeeding files will have to be loaded
normally.

Utility Functions (C, M, and U)

CORE AVAILABILITY (C)
The user may at any time request a list of the number of pages

14-65

available for loading in each core field. The following example as-
sumes that the user has a 16K computer (4 fields):

*QPT-C

0033

0036

0036

0036
- *QPI-
The numbers listed are the octal number of free pages left in fields
0,1, 2,and 3, 1'espective}y.

STORAGE MAP (M)

During the link-loading process, LLDR builds a list of external
symbols; i.e., main program and subprogram entry points and their
actual starting addresses. This list forms a complete storage map

of all programs loaded, as shown below:

*OPT-M
MAIN 10200
READ 01055

- WRITE 01066
IOH 03031
SETERR 00000 U
TTYIN 00000 U

FLOAT 05046
FIX 04513
*OPT

Starting - addresses are expressed in five octal digits—the first
digit represents the memory field and the other four the address in
that field. The U means that the stated subprogram has been cailed
but has not been loaded, and therefore must be loaded before
successful execution is possible.

Listing of the storage map may be prematurely terminated by
typing CTRL/P.

14-66

UNLOADED PROGRAM LISTING (U)

This function is used to obtain a list of those subprograms which
must still be loaded before successful execution is possible. All
symbols flagged with a U in a storage map listing will be listed as
shown below:

*OPT-U

SETERR

TTYIN

TTYOUT

HSIN

HSOUT

*OPT-

‘This listing may also be prematurely terminated by typing
CTRL/P.

Exit Functions (E and S) .

The E function is used to cause a halt after all loading is com-
plete. The S function is used to automatically start execution of
the loaded program at the beginning of the main program. ,
- Both of these functions signal LLDR that loading is complete.
They each cause any data which has been temporarily saved on the
disk (except overlay files) to be read into core.

When the E function is used, LLDR reads in all data tempo-
rarily stored on the disk and then halts. The users’ entire program
(except overlay files) will be in core, ready for patching, execution,
or saving on the disk.

When the S function is used, LLDR checks for a subprogram
called MAIN (such as a FORTRAN main program). If found,
execution will automatically start at the starting address of MAIN.
If MAIN is not found, the S function is executed as an E function.
Overlay Loading

In general, any group of subprograms which do not call each
other (either directly or indirectly) may be loaded into the same
overlay level. A typical situation follows:

MAIN contains calls to A,B,C,DE
A contains calls to D,E,F

B contains calls to D,G

C contains calls to D,E,H

D contains calls to E

E,F, G, H, contain no external calls

14-67

The above combination may be loaded as follows:

Normal | Overlay 0 - Overlay 1
MAIN A D
E B F
C G
H

If D contains a call to any other than E, it would be better to
load D normally and put E in overlay 1. If F were to call B, the
above loading situation would not work; A would be calling B
indirectly, and these two are in the same overlay level.

It is posqibie however, to call another program in the same over-

et 4l
Uurn to taoe

retu

lay level only if the called program never attempts to
calling program. In this way, simple cha1m ng may be achieved.
For example, a very long FORTRAN main program can be split
into sections with each section terminated by a call to the next.

Such a situation is shown below.

MAIN calls A, B, C and is terminated by a call to

MAIN2
MAIN2 calls A, B, C and is tcrminated by a call to
MAIN3
MAIN3 calis A, B, C and is terminated by a call to
MAIN4
]
L
. .
MAINS calis A, B, C and stops
A, B, C contain no external calls

The above combination may be loaded as follows:

Overlay 0 Overlay 1
MAIN A
MAIN2 B
MAIN3 C
MAINS

When the MAIN program is contained in an overlay area, the
E function cannot be used unless MAIN is loaded last into the
overlay level. The S function will work with the above combination
since it works regardless of the order in which the segments of
MAIN are loaded. ,

With FORTRAN programming alone, a subprogram other than
a MAIN program may not be chained. However, this is possible
with careful assembly language programming. An example of such
programming is shown below, where SUB is split into a two-part
chain, SUB and SUB2. MAIN is a standard FORTRAN program
containing calls to SUB in the form:

CALL SUB (A1, A2, A3)

SUB is written as a standard FORTRAN program which does
part of the work for the entire subroutine chain, including pro-
cessing arguments Al and A2. It is written with two arguments .
and concludes with Z, which is any dummy argument. After SUB
has been compiled and before the intermediate compiler sym-

bolic is assembled, it should be edited to inciude the insertions -

enclosed in brackets.

(% commyz]
ENTRY SUB
SUB, BLOCK 2
TAD SUB /SAVE RETURN FIELD
DCA X
TAD . (-2 /-2%N2. OF ARGS TO PASS
TAD sus# /SAUS ARCUMENT ADDRESS
(pca X# |
CALL 1,SUB2
ARG z
END

SUB2 is also a standard FORTRAN program containing the
latter portion of the entire subroutine, including the processing of
argument A3. The actual contents of SUB2 is coded in FORTRAN
just as if it were a subroutine taking one argument. After SUB2
has been compiled, the compiler symbolic output is edited as
shown below:

14-69

ix C
— ENTRY SUB2
SUB2, BLOCK 2

TAD X /REPLACE ARG POINTER
DCA SuUBZ2
TAD X#
DCA SUB# _
. /CONTINUE NORMAL FORTRAN
. /CODE> CONCLUDING WITH
RETRN 5UBZ2
END

User Program Execution

If the user chooses not to execute his program automatically
with the S function, he may determine the exact address for the
start (using the storage map or assembly listing), and execute his
program, using the console switches or the Disk Monitor.

At execution time, the Run-Time Linkage Routines must be in
core. These routines accomplish the necessary linkage for all calls
to and returns from external subprograms, all off-page indirect ref-
erences, and all off-field references (mcludlno those to common
and passing subroutine arguments). :

If. during execution of a user program. a call is made to a non-
existent program or subprogram, an unconditional halt will occur
and control will return to the Disk Monitor. This error is fatal.

Program execution may be terminated at any time by typing
CTRL/C. However, when CTRL/C is typed, all overlay files
stored on the disk are lost.

Storage Allocation
The following core availability map allows the user to plan his
loading. _ -

Field O
0000-0777 Used by the Run-Time Linkage Routines and
not available to the user for loading. '

1000-4377 Avaiiabie for an

4000-7577 Residence of LLDR during Ioading. Avai1~
1 -
i

Win fAaw «
1

a0i€ 10r norn

overlay loading.
<1 b vge am g s i d oot T o
7600-7777 Dib}\ J'IU;'&UL peiiianciit resiaeice

ERROR MESSAGES

SABR

Because SABR is a one-pass automatic paging assembler object
errors are difficult to correct. If there are errors in the source, the
assembled binary code will be virtually useless. Both errors E and
S are fatal, assembly halts when they are encountered. The other
types of errors are not fatal, but they cause the line in which they
occur to be treated as a comment and thus essentially ignored. An
address label on such a line will remain undefined and no space is
reserved in the binary output for the erroneous data.

During the assembly pass error messages are typed on the tele-
type as they occur.

C AT LOC +0004

This means that an error of type C has occurred at the fourth

_ instruction after the location tag LOC. This line count includes .

comment lines and blank lines.

During the listing pass, the error is typed in the address field

of the instruction line.
The following error messages may occur.

A Too many or too few ARGs follow a CALL statement.

C An illegal character appears on the line. This could possibly
be an 8 or 9 in an octal digit string or an alphabetic char-
acter in a digit string.

M A symbol is multiply defined (occurs only during Pass 1).
It is impossible to resolve multiple definitions during Pass
2; therefore, listings of programs which contain multiple
definitions will have unmarked errors.

I An illegal syntax has been used. Below are listed the types

of illegal syntax that may occur.

a. A pseudo-op with improper arguments.

b. A quote mark with no argument.

c. A non-terminated text-string.

d. A memory reference instruction with improper ad-
dress.

e. An illegal combination of micro-instructions.

There is no END statement.

either one of three things:

a. The symbol table has overflowed. This can be cor-

14-71

2N es!

srctam i i e e =

rected Uy ubxug fewer symbols, using shorter syin-
bols, or by breaking the program into smaller parts.

b. Common storage has been exhausted.

c. More than 64 different user-defined symbols have
occurred in a core page.

d. More than 64 external symbols have been declared.

One further type of error may occur. This is an undefined sym-
bol. Because SABR is a one-pass assembler, an undefined symbol
cannot be determined until the end of the assembly pass. so the
error diagnostic UNDF is given in the symbol table hstmg.

LINKING LOADER

If during the process of loading a pro r
Linking Lo ader encounters an error, the user is notified by an error
message; the partially loaded program or subprogram is ignored,
removed from the field, and core is freed. The error messages are

typed out in the form

ram the

3
;@
3
3
=
S

gram

ERROR XXXX

where XX XX is the error code number.

Error Code Explanation
0001 More than 64, subprogram names have been

seen by the Loader (64, subprogram names
is the capacity of the Loader’s symbol table).

0002 The current field is full, or load was to non-
existent memory.
0003 The current subprogram has too large a

COMMON storage assignment. (Subprogram
with largest common storage declaration
must be loaded first.) This is a semi-fatal
error. Re-initialize the Linking Loader as ex-
plained below and reload the programs in the
proper order.

0004 Checksum error in input tape. If the error
persists, re-assembly is necessary.
0005 Illegal Relocation Code has been encoun-

tered. This can occur only if the relocatable
kjnory fapn iQ bad or 1+' fhp ugar 15 nsxrnn- 1+

Aidlai a0 e ¥

1TA_TTD
R Sl V)

improperly (e.g., not starting at the beginning -
of the tape, or reader error, or punch error).
If the error persists, reassembly is necessary. "

Recovery from errors 2, 4, and 5 is accomplished by reposition-
ing the tape in the reader to the leader code at the beginning of the
subprogram and then pressing CONTinue. When attempting to
recover from one of these errors,” no other program should be
loaded before reloading the program which caused the error. Ob-
viously, on Error 2 a different field should be selected before press-
ing CONtinue. : _

The entire loading process may be restarted via the console:
switches, at any time by reinitializing the Linking Loader. To do
this, set the console switches as follows: Data Field = h (the field
where the Linking Loader resides), Instruction Field = h, Switch
Register = 6200; then press LOAD ADDress and START.

DISK LINKING LOADER (See section entitled, DISK LINKING
LOADER)

LIBRARY PROGRAM .
“During execution, the Library programs check for certain errors
and type out the appropriate error messages in the form

“XXXX” ERROR AT LOC NNNN

where XXXX specifies the type of error, and NNNN is the loca-
tion of the error. When an error is encountered, execution stops,
and the error must be corrected.

When multiple error messages are typed, the location of the
last error message is relevant to the user program. The other error
messages are to subprograms called by the statement at the rel-
evant location.

Error Code Explanation

“ALOG” Attempt to compute log of negative number
“ATAN” Result exceeds capacity of computer
“DIVZ” Attempt to divide by O

“EXP” Result exceeds capacity of computer
“FIPW?” Error in raising a number to a power

“FMT1” Multiple decimal points
“FMT2” E or. in integer

14-73

Error Code Explanation

“FMT3” Illegal character in I, E. or F field
“FMT4” Multiple minus signs

“FMT5” Invalid FORMAT statement

“FLPW” Negative number raised to floating power
“FPNT” Floating point error: may be caused by

Division by zero; floating point overflow; at-
o~ 1

tempt to fix too large a number.
“SQRT” Attempt to take root of a negative number

To pinpoint the location of a Library execution error:

1. From the Storage Map. determine the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.

2. Subtract in octal the entry point location of the program or
subroutine containing the error from the LOC of the error
in the error message. :

3. From the assembly symbol table. determine the relative ad-
dress of the external symbol found in step 1 and add that
relative address to the result of step 2.

4. The sum of step 3 is the relative address of the error. which
can then be compared with the relative addresses of the
numbered statements in the program.

THE SUBPROGRAM LIBRARY
The Library is set of subprograms which may be CALLed by
any FORTRAN/SABR program. The relocatable binary versions
of these subprograms are arranged in two paper tapes for the
convenience of the user. Part 1 contains those subprograms which
are used by almost everv FORTRAN/SABR program. All the
Library subprograms are described below.

Many of the subprograms reference the Floating-Point Ac-

cumulator located at ACH, ACM, ACL (20, 21, 22 of field 1).

Input/Cuput
READ is called to initialize the I/O handler before reading data.
4 1

XYM YT G 11
WERIIE I8 catied

IOH is called for each item to b

he r‘s!”gd \'X'I;‘ﬂ‘\ a 7ern ar
- - ah A LR S <« LN AN e

quence. -

-1 J
1 1

{

-
]
et
o]
oo
e
HOI
o
s
—
I
D
[hin)
bed
-

‘{3 h iler hefore writing dat
F nangier peIigre writing aaia.

aiRizvex

14

All of these programs require that the Floating-Point Accumu-
lator be set to zero before they are called.

CALL 2, READ
ARG (n ' /n=DEVICE- NUMBER
ARG fa /fa=ADDR OF FORMAT
CALL 1, IOH
ARG data 1 /data 1=ADDR OF HIGH
/ORDER WORD OF
" /FLOATING POINT
NUMBER
CALL 1, IOH
ARG data 2
CALL 1, IOH
ARG 0
CALL 2, WRITE
ARG (o

ARG fa

The following device numbers are currently implemented:

1 (Teletype keyboard/printer)
2 (High-speed reader/punch)

Floating Point Arithmetic

FAD is called to add the argument to the Floating-Point Ac-
cumulator. '

CALL 1, FAD
ARG addres

FSB is called to subtract the argument from the Floating-Point
Accumulator.

CALL 1, FSB
ARG addres

14-75

FMP is called to multiply the Floating-Point Accumulator by
the argument.

CALL 1, FMP
ARG addres

FDV is called to divide the Floating-Point Accumulator by the
argument. |

CALL 1. FhV

i B Sm Ls A

ARG addres

CHS is called to change the sign of the Floating-Point Accu-
mulator.

CALL 0, CHS

All of the above programs leave the result in the Floating-Point
Accumulator. The address of the high-order word of the floating-
point number is “addres”. _ _

STO is called to store the contents of the Floating-Point Ac-
cumulator in the argument address. The floating-point accumulator
is cleared. '

CALL 1, §STO

ARG storag /storag=ADDRESS WHERE
/RESULT IS TO BE PUT

IFAD is called to execute an indirect fioating point add to the
Floating-Point Accumulator.

CALL 1, IFAD

ARG ptr /ptr=2-word POINTER
/TO HIGH ORDER

/ADDRESS OF FLOATING
/POINT ARGUMENT

ISTO is called to execute an indirect floating point store.

CALL 1, ISTO
ARG ptr

CLEAR is called to clear the Floating-Point Accumulator. The

AC is unchanged.

CALL G, CLEAR

FLOT is called to convert the integer contained in the AC
(processor accumulator) to a floating point number and store it in
the Floating-Point Accumulator. :

CALL 0, FLOT

FIX is called to convert the number in the Floating-Point Ac-
cumulator to a 12-bit signed integer and leave the result in the AC.

CALL 0, FIX

ABS leaves the absolute value of the floating point number at
“addr” in the Floating-Point Accumulator.

CALL 1, ABS
ARG addr
Integer Arithmetic

MPY is called to multiply the integer contained in the AC by
the integer contained in “addr.” The result is left in the AC.

CALL 1, MPY
ARG addr

DIV is called to divide the integer contained in the AC by the
integer contained in “addr.” The result is left in the AC.

CALL 1, DIV
ARG addr

IREM leaves the remainder from the last executed integer divide
in the AC. ‘ ’

CALL 1, IREM
ARG 0
(The argument is ignored.)

TABS leaves the absolute value of the integer contained in
“addr” in the AC.

CALL 1, TABS
ARG addr

- IRDSW reads the value set in the console switch register into
the AC.

CALL 0O, IRDSW
14-77

Subscripting

SUBSC is called to compute the address of a subscripted vari-
able. The address is left in the AC. When SUBSC is called, it
assumes that the AC contains the first dimension of the array.
This dimension should be positive if the subscripted variable is an
integer, and negative if the subscripted variable is a floating point
number.

Assume S is a 203 X 20z floating-point array.

TAD (20
CIA
CALL 3, SUBSC
ARG i - /i1=ADDRESS OF 2ND
/SUBSCRIPT v
ARG 12 /12=ADDRESS OF 1ST
' /SUBSCRIPT
ARG base /BASE ADDRESS
/OF ARRAY
Functions

SQRT leaves the square root of the floating-point number at
“addr” in the Floating-Point Accumulator.

CALL 1, SORT

ARG addr
~ SIN, COS, TAN leave the specified function of the floating—point
argument at “addr” in the Floating-Point Accumulator.

CALL 1, SIN

ARG addr

ATAN leaves the arctangent of the floating-point number at
“addr” in the Floating-Point Accumulator.

CALL 1, ATAN
ARG aqdr

ALOG leaves the natural logarithm of the floating-point num-
ber of “addr” in the Floating-Point Accumuiator.

M

ALL

1, ALOG
ARG addr

.3>
CL'

EXP raises “e” to the power specified by the floating-point num-
ber at “addr” and leaves the result in the floating-point accu-
mulator.

CALL 1, EXP
ARG addr

Al of these subprograms require that the ﬂoatmg -point accu-
" mulator be set to zero before they are called.

POWER (ITPOW, IFPOW, FIPOW, FFPOW)

These routines are called by FORTRAN to implement expo-~

nentiation. The address of the first operand is in the AC (floating-

point or processor depending on mode), and the address of the o
second is an argument. The address of the result is in the appro- -

priate AC upon return.

MODE OF

MODE OF
TNawE O Ao | CEXPONENTS MROE%%L?F
IIPOW INTEGER INTEGER INTEGER
IFPOW INTEGER FLOATING POINT | FLOATING POINT
FIPOW FLOATING POINT | INTEGER FLOATING POINT
FEPOW "FLOATING POINT | FLOATING POINT | FLOATING POINT
CALL 2, FFPOW ' _
ARG addr 2 /ADDRESS OF OPERAND 2 _’
LIBRARY ORGANIZATION
Part 1. “IOH” contains IOH, READ, WRITE
“FLOAT” contains FAD, FSB, FMP, FDV, STO,
FLOT, FLOAT, FIX, IFIX,
. - IFAD, ISTO, CHS, CLEAR
“INTEGER” contains LREM, ABS, IABS, DIV,
MPY, IRDSW
“UTILITY” contains TTYIN, TTYOUT, HSIN,
HSOUT, OPEN, CKIO
“ERROR” contains SETERR, CLRERR, ERROR
Part 2. “SUBSC” contains SUBSC
“POWERS” contains IIPOW, IFPOW, FIPOW,
FFPOW, EXP, ALOG
“SQRT” contains SQRT
“TRIG” contains SIN, COS, TAN
“ATAN” contains ATAN

14-79

DECTAPE I/0 ROUTINES

RTAPE and WTAPE (read and write tape) are the DECtape
read and write subprograms for the 8K FORTRAN and 8K SABR
systems. The subprog*ams are furnished on one relocatable binary-
coded paper tape which must be loaded into field 0 by the 8K
Linking Loader, whera, they occupy one page of core.

RTAPE and WTAPE allow the user to read and write any
amount of core-image data ontc DECtape in absolute, non-file-
structured data blocks. Many such data blocks may be stored on a
single tape, and a block may be from 1 to 4096 words in length.

RTAPE and WTAPE are subprograms which may be called
with standard, explicit CALL statements in any 8K FORTRAN or

SABR program. Each subprogram requires four arguments sep-
arated by commas. The arguments are the same for both subpro-
grams and are formatted in the same manner. They specify the

following:

S.\)

a. DECtape unit number (from O to 7)

b. Number of the DECtape block at which transfer is to
start. The user may direct the DECtape service routine to begin
searching for the specified block in the forward direction rather
than the usual backward direction by making tmﬁ argument the
two’s complement of the block number.

c. Number of words to be transferred (1<N<4096)

d. Core address at which the transfer is to start.

In 8K FORTRAN, ihe CALL statements to RTAPE and
WTAPE are written in the following format (arguments are taken
as decimal numbers):

CALL RTAPE (6. 128, 388, LOCAj
In 8K SABR, they are written in the following format (arguments
may be either octal or decimal numbers):

CALL 4, WTAPE /WOULD BE SAME FOR RTAPE

ARG (6 /DATA UNIT NUMBER

ARG (200 /STARTING BIL.LOCK NUMBER IN
OCTAL

ARG (604 /WORDS TGO BE TRANSFERRED
IN OCTAL

ARG LOCB /CORE ADDRESS, START OF
TRANSFER

14-80

In these examples, LOCA and LOCB may or may not be in COM-
MON.

As a typical example of the use of RTAPE and WTAPE, as-
sume that the user wants to store the four arrays A, B, C, and D
on a tape with word lengths of 2000, 400, 400, and 20 respectively.
Since PDP-8 DECtape is formatted with 1612 blocks (numbered
1-2700 octal) of 129 words each (for a total of 207,948 words),
A, B, C, and D will require 16, 4, 4, and 1 blocks respectively.
Each array must be stored beginning at the start of some DECtape
block. The user may write these arrays on tape as follows:

CALL WTAPE (0, 1, 2000, A)
CALL WTAPE (0, 17, 400, B)
CALL WTAPE (0, 21, 400, C)
CALL WTAPE (0, 25, 20, D)

The user may also read or write a large array in sections by
specifying only one DECtape block (129 words) at a time. For
example, B could be read back into core as follows: _

CALL RTAPE (0, 17,258, B(1))
CALL RTAPE (0, 19, 129, B(259))
CALL RTAPE (0, 20, 13, B(388))

As shown above, it is possible to read or write less than 129
words by starting at the beginning of a DECtape block. It is im-
possible, however, to read or write starting in the middle of a
block. For example, the last 10 words of a DECtape block may
not be read without reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward
search for the desired block number. To save searching time, the
user may request RTAPE or WTAPE to start the block number
search in the forward direction. This is done by specifying the
negative of the block number. This should be used onmly if the
number of the next block to be referenced is at least fourteen block
numbers greater than the last block number used. For example,
if the user has just read array A and now wants array D, he may
write:

CALL RTAPE (0, 1,2000, A)
CALL RTAPE (0, -25. 20, D)

14-81

DISK I/0 ROUTINES

ODISK and CDISK (open disk and close disk) and RDISK and
WDISK (read disk and write disk) are the four DECdisk (DF32/
DS32) input and output subprograms for the 8K FORTRAN and
8K SABR systems. They are furnished on one relocatable binary-
coded paper tape which is loaded into core using the Linking
Loader, where they occupy eight pages of core.

ODISK and CDISK _

ODISK is used to open (activate) a file (named using the Link-
ing Loader D function) so that the file can be read or written using
RDISK or WDISK. CDISK will close (deactivate) a file which was
opened with ODISK so that the contents of the file cannot be
altered.

The ODISK and CDISK subprograms may be called with stan-
dard, explicit CALL statements, in any 8K FORTRAN or 8K
SABR program. ODISK requires one argument when opening a
file. However, it requires two arguments when specifying or changing
the size (in blocks) of a file. CDISK always requires only one

aroiiriant
Cl:lsulllbl.lb. .

—— R dah7d *

Tne first argument of both ODISK and CDISK is the logical
number (from 1 thru 10 inclusive) of the fiie as it was named using
the Linking Loader. The second argument to ODISK is the num-
ber of blocks (from 1 thru 128) to be saved for the file.

w~T

CDISK are written in the following format (arguments must be

decimal integer numbers):
CALL ODISK (1)

when opening a file, or
CALL ODISK (1, 5)

when specifying or changing the size of a file, and
CALL CDISK (1)

when closing an opened file.
In 8K SABR, the CALL statements to ODISK and CDISK are

14-82

written in the following format (arguments may be either octal or
decimal numbers): '

CALL 1, ODISK : '
ARG (1 - /LOGICAL FILE NUMBER

when opening a file, or

- CALL 2, ODISK .
ARG (1 /LOGICAL FILE NUMBER
ARG (5 /NUMBER OF BLOCKS, OCTAL

when specifying or changing the size of a file, and

CALL 1, CDISK |
ARG (1 /LOGICAL FILE NUMBER

when closing an opened file. :

ODISK prepares the file named for data transfer. When running
the user program using the Disk Monitor System, ODISK uses
Disk Monitor I/0O and the three scratch blocks on disk zero for a
window whenever a file is opened. ‘

All open files: should be closed before terminating program
execution, thus preserving the contents of the files.

RDISK and WDISK _

The RDISK and WDISK subprograms may be called with
standard, explicit CALL statements in any SK FORTRAN or 8K
SABR program. The ODISK subprogram must be used to open
the file concerned before using the RDISK or WDISK subprograms.

Each of these subprograms requires four arguments, arranged
as listed below: ’

1. Logical file number (determined using the Linking Loader
D function),

2. Logical block of the file number (block number of the file
where data transfer is to begin),

3. Number of words to be transferred (from 1 thru 4096)

4. Core address where data transfer is to start (field 0).

Both RDISK and WDISK require the arguments above.

In 8K FORTRAN, the CALL statements to RDISK and
WDISK are written in the following format (arguments are taken
as decimal numbers):

CALL RDISK (4, 2, 55, LOCA)
14-83

when reading file 4, beginning with block 2. transferring 55 words,
starting at the location of tag LOCA, which may be the name of an
array defined in a DIMENSION statement. WDISK would be for-
matted in the same fashion.

In 8K SABR, the CALL statements to RDISK and WDISK are
written in the following format (arguments may be either octal or
decimal numbers):

CALL 4. RDISK /SAME FOR WDISK

ARG (4 /LOGICAL FILE NUVBER

ARG (2 /BLOCK OF FILE

ARG (35 /WORDS TO TRANSFER, OCTAL
ARG LOCA /CORE ADDRESS OF START, FIELD 0

WDISK would be formatted in the same fashion.

A variable number of words may be transferred. It is not neces-
sary to transfer in 200-word blocks, as with the Disk Monitor
System.

. DEMONSTRATION PROGRAM USING LIBRARY
ROUTINES

The following de‘nonstration program is a
showing the use of the library routines. The program is written to
two integer rumbers, convert the result into floating

integer and floating-point form

e
(1]
et
o
w
]
[¢)
w1
=
o
et =
=
oy
Q
e+
ool
b
e

assembled program was then lo
Loader.

The system configuration consisted of a PDP-8/I with 8K
words of core, DF32 Disk, Teletype, and high-speed reader and
punch. The Disk Monitor System, Symbolic Editor, and SABR
Assembler were available on the disk. The Teletype paper tape
reader was used during assembly for demonstration (printout)
purposes.

Comments are interspersed tnroubnour the listing to provide a
step-by-step analysis.

14-84

After writing the source program it was printed and punched
using the Symbolic Editor.

CTRL/C was typed after the asterisk to return control to the
Disk Monitor.

SABR was transferred from the disk into core.
The source program tape was placed in the teletype reader.

When started, SABR printed its identification and initial di-
alogue questions which were answered.

The TTY reader must be set to START within 3 seconds after
typing N to the last question. Otherwise, as was the case. here,
the error message will appear, and SABR must be restarted at]oca-
tion 0200, as was done here.

The initial dialogue questions are repeated and again answered.

After typing the N to the last question, the TTY reader was
- immediately set to START and assembly commenced.

The Symbol Table concluded the assembly.

Here the source program tape was again placed in the TTY

reader and the CONTinue switch was depressed. The program list- .

ing was printed.

The 8K Linking Loader was loaded into core using the Binary
Loader, and started at location 0200 of field 1.

When started, the Linking Loader printed its identification.

Library Tape Part 1 was loaded into core by placing the tape
in the TTY reader, setting the reader to START, and pressing
CONTinue.

After loading the library subprograms, switch register bit 1 was
set to 1, and CONTinue was pressed to get the storage map of the
programs and subprograms loaded into core.

The last two numbers represent the number of free (available)
pages in each core field—0004 free pages in field 0, and 0036
free pages in field 1.

To execute the compiled program, the switch register was set to

14-85

01000, the starting address of the main program (determined
from the Storage Map).

The LOAD ADDress switch was pressed and then START
switch was pressed.

The program ran as planned, producing the desired results.

START.,

FORMT
Ns
As
B,
C,
12s

ENTRY START

CALL 2,0PEN /1INITiALIZE I0 DEVICES

TAD A /COMPUTE C = A + B

TAD B

DCA C

CALL 1,FLOAT /CONVERT TO FLOATING POINT
ARG C

CALL 1,570

ARG D

caLLl 2, WRITE /INITIALIZE THE 10 HANDLER
ARG N /DEVICE NUMBER ELETYPE
ARG FORMT /FORMAT SPECIF -

CALL 1, I0H STYPE THID INTRI

ARG o

~"'\Y '_ 1 TOH ATYDT TUT R NATT ooonn T ™ =
ARG D

calL 1, I0H JCOMPLETE THE IC

ARG &

HLT

TEXT "('THEZ ANSWERS ARE', 15,7723

1

o

2

A

BLOCH 3

END

Demonstration Program

14-86

.5SAB1
«SABR

PDP-8 SABR DEC-28-A2B2~12

HIGH SPEELD RMADER? N

HIGHE SPEED PUNCH? Y

LISTING ON HIGH SPEED PUNCH? N

E AT +0032
HIGH SPEED READER? N

HIGH SPEED PUNCH? Y
LISTING ON HICH SPEED PUNCH? N

0240 5347 FORMT, TEXT '"('THE ANSWERS ARE',IS5,F7.2)"

B4l 2410

pa242 2540

8243 Pl1l6

ga44 2327

B245 @522

pa46 2340

p247 glez

pasy 0547

2251 5411

ges2 6554.-

2253 2667

p2s4 5662

P255 5120

8256 2081 N» 1
@257 g2a2 A C 2
p260 gp22 B» 2
ga26l pge2 Co» 2
pese 20006 D> BLOCK 3

p263 2000
P24 Bo00o

A 3257
3 2263
C B261
D pae2

FLOAT P0A2EXT
FORMT 2249

I0H GOBBEXT
N 0256

OPEN POIBEXT
START 9A20BEXT
STO QOBBEXT

WRITE BAOAEXT

. Demonstration Program
14-87

0200
0201
2202
0203
0204
2285
2206
0207
210
2211
o212
2213
6214
2215
2216
8217

A DR
XL

gagl
geez
2223
gazy
225
2226
paa7
2230
@231
gasa
2233
2234
2235
2236
a237

Doo2 06

START»> CALL

ARG
ARG
CALL
ARG

CALL

ENTRY ST

#,0PEN

2,WRITE
N

FORMT

1,I0OH

1,I0H

PDP-8 LINKING LOADER DEC-28-A2B3-26

START
OPEN

T AT
IFl.uR g

STO
WRITE
IOH
READ
SETERR
ERROR

TTYOUT

HSCUT
TTYIN

TIO T AT

L% Y
FDV
CILEAR

(RIS A

41000
ge1es
@5234
Basan
J1322
63142
gra7l

06200
26323
B6g27
26355
26222
Z2ea4s
2471l

25227

Demonstration Program

14-88

ART

Z/INIT 10 DEVS

/C = A + B

© /CONVT TO FP

/INIT I0 HNDLR
/DEV NR 1| = TELE
/FORMAT SPEC

/TYPE INTGER NR

/TYPE FP NR

IFAD
FMP
ISTO
FLOT
FAD
DIV
IREM
FSB
FIX
IFIX
CHS
ABS
1ABS
MPY
IRDSW
CKIO
EXIT.
CLRERR
P00 4
0036

THE ANSWERS ARE

25116
04623
25061
¥5153
64n10
25445
@55616
D4avod

-04510

24556
05211
05636
05679
05420
5713
g6121
@61 42
06231

Demonstration Program
14-89

- Chapter 5

3K FORTRAN

15-2

CONTENTS

Introductioncccccooeeiiueinan., e, 15-5
FORTRAN Statementscccoccooviiivreeeeeeiiiiiin, 15-6
Statement NUmMDEISoooooveeeeeeeeee e 15-7
Line Continuation Designatorcccocveveveeeeeeen... - 15-7
COMIMENES oottt 15-7
Arithmetic Statementscccoii 15-8
Character Stueeiiieiieeeeeeee e 15-8
CONSLANTS ..o 15-9
Variables et erttieeeerrr—rert e rtran e s aeneans 15-10
EXPIESSIONS ..eoviiiiiiieiiieiie e 15-12
Function Callsccccoo....... s e —— 15-14
Library Subprograms e ———— e 15-14
Floating Point Arithmeticcc.ccovvvivvi i s 15-16
Control Statements ... 15-16
GO TO Statementcoocovvemoueeoeieeeeeeoe 15-16
IF Statement e 15-17
DO Statementcc.ooooeeeooieeeees oo 15-17
CONTINUE Statementccocoveevooevoeooooo 15-18
PAUSE, STOP and END Statementsooo...... 15-19
Input/Output Statementsccoooooeevviei 15-20
FORMAT Statementc.cccocoevoveoveeeeoseeeeeoeee, 15-20
Data Transmission Statements ... 15-26
READ Statement ..tc...ooooeoooeeeooeeoeeeeeeeeeooe 15-27
WRITE Statementcoooovvvoeemoeeeee oo 15-27
DECtape I/O Routinescccooeveeennn.. e 15-28
Disk I/O ROULINES ...oveovvivieeseeeeeeoeeeeeee 15-30
Specification Statements 15-33
COMMON ' Statementcoocoeveeeeeeeeeeeeeeeeeeeeeeeenn 15-33
DIMENSION Statementccccoooveeveeoeieeeeeeeinneian, 15-33
EQUIVALENCE Statemento.cooveeeciveeeeeeeeiiieeeiin, 15-34

Function Subprogramsccevvviiirinieirenniiiice

Subroutine Subprograms EUUNUUUUUUPRUPPPRPPRI ‘

Operating Instructions e s
Loading the Compllercccccoviviiiniiiii
Operating the Compiler ...
EITOIS oottt

Operating the SABR Assembler ...
Executing the FORTRAN Program ...

Demonstration Programcccccoiiiiiiiiiiniinnnnnn.
Statement and Format Specification

Storage Allocation ...
Representation of Constants and Variables
Storage Of AITAYS .oovriieiiiiiiiiiiiiiiiiiiiie e
Common Storage Allocation ..o,

ARAQrELW LS BSNF AANS NS AT vessesrmsrrresuceriaseseariatertrtesese bttt iitttsneny

FORMAT Handling ... S
Numeric Input Conversioncccocoeiivviniiiiininnn
Alphanumeric Data Within FORMAT Statements
Special I/0 Devices ...

15-4

INTRODUCTION

This chapter presents a version of FORTRAN II speCIﬁcally
designed for the PDP-8/1, —8/L, —8, —8S and —5 computers

with at least 8K words of core memory, and a Teletype, with an o

optional high-speed reader and punch.
It is assumed that the reader is familiar with the basic concepts
of FORTRAN programming. Several excellent elementary texts

are available, such as, “FORTRAN Programming”, by Frederic

Stuart, published by John Wiley and Sons, New York, 1969.

8K FORTRAN (an acronym for FORmula TRANslation) is
used interchangeably to designate both the 8K FORTRAN lan-
guage and the translator or compiler.

The language enables the programmer to express his problem
using English words and mathematical statements similar to the
language of mathematics and yet acceptable to the computer. The
compiler translates the programmer’s source program into sym-
bolic language (SABR). The symbolic version of the program is
then assembled into (relocatable) binary code, which is the
language of the computer. The binary code is output on paper tape
and loaded into the computer for execution.

The 8K FORTRAN system has the following features:

Subroutines

Two levels of subscripting

Function subprograms

Input/output supervisors ~

Relocatable output adapted to the Linking Loader
COMMON statements

I, F, E, A, X, and H format specifications
Arithmetic and trigonometric library subroutines

15-5

PNV R W

The 8K FORTRAN system consists of a one-pass FORTRAN
Compiler, the SABR Assembler, the Linking Loader, and a library
of subprograms. If the equipment configuration includes a disk and
the Disk Monitor System, the Disk Linking Loader (LLDR)
should be used to load and execute 8K FORTRAN programs.
LLLDR is described in Chapter 15.

FORTRAN STATEMENTS

dmm vy o PO L T fa
ifiay appear iil 6 StaiCimes nt feld

ement
ach statement must begin on a separate

tat
(columns 7 througn 7)
line.

FORTRAN statements are of five types:
1. Arithmetic, which define calculations to be performed;

2. Control, governing the sequence of execution of statements

.)
within 2 program;

_-.JJ
"-(
\
Q

nni
1puf,
ram

4. Specification, which describe the form and content of data
within the program;

5. Subprogram, defining the form and occurrence of subpro-

e A il i A
grams anda suoroutiies.

When programs are prepared on-line with the Symbolic Editor,
statements are coded following a TAB character (generated by
holding down the CTRL key and depressing TAB) or space, unless
a statement number is used.

Except for data within a Hollerith field, (see Input/Output
Statements)}, spaces are ignored and may be used freely to organize

data into columns for easier reading.

statement must start on a separate line. An atement

A4 a

et e
may be preceded by a positive number of from one to digits
which serves subsequently as an address label.

15-6

('F

THIS PROGRAM W:iLL SORT AN ARRAY OF NUMBERS
INTO ASCENDING ORDER.

FIRST READ THE NUMBERS, THEN SORT THE
NUMBERS> LAST, WRITE THE NUMBERS IN ORDER&

aaQaaq

DIMENSION AC1030)
ND=2
N=100
_ DO 10 I=1,N»2
10 READ (ND>12) ACID>ACI+1)
12 FORMAT (2E12.0)
DO 30 K=2,N
J=K-1
20 IF CACJ)-ACJI+1)) 3@,30,22
22 TEM=ACJ)
ACI)=ACJI+1)D
ACJ+1)=TEM
J=J-1
IF (J) 30,30,20
30 CONTINUE
49 DO 42 I=1,Ns2 \
42 WRITE (ND,»44) ACII-ACI+1)
STOP
44 FORMAT (2El6.8)
END

Figure 16-1 A Sample FORTRAN Program

Statement Numbers _

Statement numbers, when used, are coded in columns 2 through
5 of the 72 column line, they are typed preceding the statement,
and separated from it by a space. When using the Symbolic Editor,
CTRL/TAB causes a jump over the statement number golumn.

Statement numbers may be assigned non-sequentially, but no
two statements can have the same number. Statement numbers are
limited to a value of 2047 or less.

Line Continuation Designator

Statements too long for the statement field or a single Teletype
line, may be continued. Continued portions of statements may not
be given line numbers, and must have an alphanumeric character
(other than 0) in column 6. In Teletype input with the Symbolic -
Editor a digit from 1 to 9 must be used following the CTRL/TAB.

Comments
The letter C in column 1 of a line designates that line as a com-

15-7

ment line. A comment has no effect on program compilation, but
appears in the program listing. There is no limitation on the number
of comment lings which may appear in a given program.

ARITHMETIC STATEMENTS

Constants and variables, identified as to type and connected by
logical and arithmetic operators form expressions: one or more
expressions form an arithmetic statement. Arithmetic statements

are of the ge

V=E

where V is a variable name (subscripted or nonsubscripied), E is
an expression, and = is a replacement operator. The arithmetic
statement causes the FORTRAN object program to evaluate the
expression E and assign the resultant value to the variable V. Note
that = signifies replacement, not equality. Thus, expressions of the
form:

Lo Ry N o N
TQ""A'”"C. LB

N*ZETA* (ALPHA+EM/P 1)

tT.l[‘D*

The expression value is made to agree in type with the variable
before replacement occurs. For example, in the statement:

META=W*x(ABETA+E)

if META is an integer and the expression is real, the expression
value is truncated to an integer before assignment to META.

T hamantar Saé
Laargoier TR

The following characters are used in the FORTRAN language.?

2 Appendix B2 lists the octal and decimal representations of the FORTRAN
character set. :

15-8

1. The alphabetic characters, A through Z.
2. The numeric characters, O through 9.
3. The special characters:

' 3

« (
$)
% - +
& _
* /
#*
; <
: >
? (space)

Constants

Constants are self-defining numeric values appearing in source
,statements. Two types of constants, integer and real, are permitted
in a FORTRAN source program.

INTEGER CONSTANTS

Integer (fixed point) constants are represented by a digit string
of from one to four decimal digits, written with an optional sign,
and without a decimal point. An integer constant must fall within
the range —2047 to +2047. For example:

47

+47 (+ sign is optional)

-2

0434 (leading zeros are ignored)
-0 (same as zero)

REAL CONSTANTS

Real constants are represented by a digit string, an explicit
decimal point, an optional sign, and possibly an integer expo-
nent to denote a power of ten (7.2 X 103 is written 7.2E+03).
A real constant may consist of any number of digits but only the
leftmost eight digits appear in the compiled program. Real con-
stants must fall within the range .14 X 1038 to 1.7 x 1038,

15-9

+4.50 (+ is optional)

4.50

—23.09

—3.0E14 (same as —3.0 X 10%)

Variables
A varaible is a named quantity whose value may change during

execution of a program. Variables are specified by name and type
The name of a variable consists of one or more alphanumeri

a sa xalsriaw £23 LR VLS 8 w2 2RIVIE L alpil

characters the first of which must be alphabetic. Only the first ﬁVD
characters are interpreted as defining the variable name, the rest

2 hafa] !"ﬂ Y'PA
L2 Asx;vn wika.

The type of variable (integer or real) is determined by the
first letter of the variable name. A first letter of I, J, K, L, M, or -
N indicates an integer variable, and any other first letter indicates
a real variable. Variables of either type may be either scalar or
array variables. A variable is an array variable if it first appears in
a DIMENSION statement.

INTEGER VARIABLES

Integer variables undergo arithmetic calcu utomatic

()
g
Q
o
w
2
&
o

o1l i i
of K is 5 and the current value of J is 9, J/K would yield
a result.

Integer variables may be converted to real variabies by the func-
tion FLOAT (see Function Calis) or by an arithmetic statement.
Integer variables must fall within the range —2048 to +2047.

Integer arithmetic operations do not check for overfiow. For
example, the sum 2047+2047 will yield a result of —2. For more
information refer to Chapter 1 of Introduction to Programming
(Volume 1 in this set) or any text on binary arithmetic.

REAL VARIABLES
A variable is a real variable when its name begins with any char-
acter other than I. J, K, L, M or N. Real variables may be con-

£ i /c = 43
function .IT J’ ee Function

R | 2* b] ¥ st
ithmetic calculations

1
iviiiai £ HEV) § Yo

15-10

For example:

IM
A
G2
TOTAL
: J
ARRAY VARIABLES
An array variable represents a single element of a one- or two-
dimensional array of quantities. The array element is denoted by
the array name followed by a subscipt list enclosed in parentheses.
The subscript list may be any integer expression or two-integer
expressions separated by a comma. The expressions may be arith-
metic combinations of integer variables and integer constants.
Each expression represents a subscript, and the values of the ex-
“pressions determine the referenced array element. For example,
the row vector A; would be represented by the subscripted variable
A(I), and the element in the second column of the first row of
the matrix A, would be represented by A (1, 2).
For example:

Y(1)
PORT (K)
AB*K+2,1)

The arrays above (Y, PORT, and A) would have to appear in
a DIMENSION statement prior to their first appearance in an
executable statement. The DIMENSION statement specifies the
number of elements in the array.

Arrays are stored in increasing storage locations with the first
subscript varying most rapidly (see Storage Allocation). The two-
dimensional array B (J, K) is stored in the following order:

B(1,1),B(2,1),...,B{J, 1),B(1,2),B(2,2),...,B(,2),
..., B, K)

SUBSCRIPTING

Since excessive subscripting tends to use core memory ineffi-
ciently, it is suggested that subscripted variables be used judi-
ciously. For example, the statement:

A=C(BC(I)+C2I*BCI)+C1)*B(I)

15-11

could be rewritten with a considerable saving of core memory as
follows:

T=BC(I)
A=C(T+C2)*T+C1)*T

Expressions

An expression is a sequence of consiants, variabies, and function
references separated by numeric operators and parentheses in ac-
cordance with mathematical convention and the rules given below.

Without parentheses, aigebraic operations are performed in the
following descending order:

*¥ exponentiation
- unary negation
*and / multiplicaticn and division

+ and — addition and subtraction
= equals or replacement sign

Parentheses are used to change the order of precedence. An

operation enclosed in parentheses is performed before its resuit
. . : £

1
P |

in wea M FS A PR Sy T <k ~ao ~ And: e P R
is used in other OpCrauiliis. an wif Cas€ 01 OpLerauosins Or equad
A +hon 1aés . n maeFmaemad Funsa 1405 40 ot +

Preceience, uic calculstions are PEILOIIICa ITOMNI &1t WO ught.

i
Integers and real numbers may be raised to either integer or real

£ 4lan Fasen
powers. An expression of the form
A**B

meansA® and is real unless both A and B are integers. Exponential
(e¥) and natural logarithmic (log.(x)) functions are supplied as
subprograms and are explained later.

Excluding ** (exponentiation), no two numeric operators may
appear in sequence unless the second is a unary plus or minus.

The mode (or type) of an expression may be either integer or
real and is determined by its constituents. Variable modes may not
be mixed in an expression with the following exceptions:

osmk

i. A real variable may be raised to an integer power:

A**)
2. Mode may be altered by using the functions IFIX and
FLOAT
A*FLOAT(I)

15-12

The I in example 2, above, indicates an integer variable; it is
changed tq real (in floating point format) by the FLOAT function.

Zero raised to a power of zero will yield a result of 1. Zero
raised to any other power will yield a zero result. Numbers are
raised- to integer powers by repetitive multiplication. Numbers
are raised to floating point powers by calling the EXP and ALOG
functions. A negative number raised to a floating point power will
not cause an error message but will use the absolute value. Thus,
the expression (—3.0)**3.0 will yield a result of +27.

Any numeric expression may be enclosed in parentheses and be
considered a basic element. '

IFIX(X + Y)/2
(ZETA)
(COS(SIN(PT*EM) + X))

A numeric expression may consist of a single element (constant,
variable, or function call). For example:

2.71828
Z(N)
TAN(THETA)

Compound numeric expressions may be formed using numeric
operators to combine basic elements. For example:

X + 3.
TOTAL/A
TAN(PI*EM)

Alphabetic expressions preceded by a + or a — sign are also
numeric expressions. For example:

+X
—(ALPHA*BETA)
—SORT(-GAMMA)

As an example of a typical numeric expression using numeric
15-13

operators and a function call, the expression for the large<t root of
the general quadratic equation

—b+ /b2 —dac

2a

woiild be coded as
(—B + SQRT(B**2 — 4.*A*C))/(2.*A)

Function Calls ,

In addition to the basic numeric operators, function calls are
provided to facilitate the evaluation of functions such as sine,
cosine, and square root. A function is a subprogram which acts
upon one or more quantities (arguments) to produce a single
quantity called the function value. A function call may be used in
place of a variable name in any arithmetic expression.

Function calls are denoted by the identifier which names the
ion (i.e., SIN, COS, etc.) followed by an argument enclosed

in parentheses as shown bexow.
IDENT (ARG, AGR, ..., ARG)

where IDENT is the identifying function name and .ARG is an
argument which may be any expression. A function call is eval-
uated before the expression in which it is contained.

Library Subprograms
The. standard FORTRAN library contains built-in functions,
including user defined functions and subroutine subprograms.
Table 2-1 lists the built-in functions. These are open subroutines:
they are incorporated into the compiied program each time the
source prooram names them. |

1
ritinegr the !"
LUURILICDy Laavad

wr thentioah 111emn_tun

Ugn juimp-iy P
hnkages.

Table 2-1 Function Library
Name Call Definition Argument
Absolute Value ABSor | | X | Real
IABS | X | Integer
Float FLOAT | Conversion from Integer
integer to real
Fix IFIX Conversion from Real
‘ real to integer
Remainder IREM | Remainder of last Integer
integer divide?
Exponential EXP eX Real
Switch Register IRDSW | Read console switch | Integer
_ reg.
Natural Logarithm ALOG | log.(x) Real
Trigonometric Sine* SIN sine(x) Real
Trigonometric Cosine* COS cos(X) Real
Tangent* TAN tan(x) Real
Square Root SQRT (x)1/2 Real
Arctangent?t ATAN | arctan(x) Real

The IRDSW function call (Switch Register) takes the decimal
equivalence of the octal integer in the switch register as its result.
For example, if the contents of the switch register is 1234 (668 in
decimal) when the statement

N=IRDSW(2)

is executed, the switch register is read and its contents becomes the

value of N:

N = 668

3 If IREM is called as IREM(I/J), the remainder of I/J will be returned.
If the argument of IREM does not contain a division, the remainder of
the last integer division will be returned.

1 Trigonometric functions use radians rather than degrees.

15-15

1. Before executing the FORTRAN program, after pressing
LOAD ADD and before pressing START.

2. During execution of the FORTRAN program, following a
PAUSE statement.

Floating Point Arithmetic

In general ﬂ'oating point arithmetic calculations are accurate to
SEVEilL uxgub with the clgmn Lugl[Dcmg quesuoname buosequent
digits are not significant even though severai may be typed to
satisfy a field width requirement.

The floating point arithmetic routines check for both overflow
and underflow. Overflow will cause the EPNT error message to be
typed and program execution will be terminated. Underflow is
detected but will not cause an error message. The arithmetic opera-
tion involved will yield a zero result. The drctangent function is
accurate to six decimal places for arguments whose absolute value
~ is greater than .01.

CONTROL STATEMENTS

The control statements GO TO, IF, DO, PAUSE, STOP, and
END alter the sequence of statement execution, temporarily or
permanently halt program execution, and stop compilation.

GO TO Statement _
The GO TO statement has two forms: unconditional and com-
puted.

UNCONDITIONAL GO TO
Unconditional GO TO statements are of the form:

GO TO n

where n is the number of an executable statement. Control is trans-
ferred to the statement numbered n.

COMPUTED GC TO
Computed GO TO statements have the form:

GG TG (ﬂl, g, ..., D0) H
where nl, no, C. nk are statement numbers and J is a nonsub-

18_14
1J-1vY

statement numbered ny, n,, . . ., ny if J has the value ,2,...,k,
respectively. The index (J in the above example) of a computed |
GO TO statement must never be zero or greater than the number
of statement numbers in the list (in the example above, not greater
than k). For example, in the statement:

GC TO(20,1055),K

the variable K acts as a switch, causing a transfer to statement 20
if K =1, to statement 10 if K = 2, or to statement 5 if K = 3.

IF Statement
Numerical IF statements are of the form:

IF (expression) i, Ny, Ny

where ny, n., n, are statement numbers. This statement transfers
control to the statement numbered Iy, N, Ny if the value of the -
numeric expression is less than, equal to, or greater than ZETO,
respectively. The expression may be a simple variable or any
arithmetic expression.

IF (ETAY457,12
IF(KAPPA-L(10))20,14,14

DO Statement :
The DO statement simplifies the coding of iterative procedures.
DO statements are of the form:

:DC)ni::Hh,nh,Hh

where n is a statement number, i is a nonsubscripted integer
variable, and m;, m», my are integer constants or nonsubscripted
integer variables. If m; is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to
and including the statement numbered n, to be executed repeatedly.
This group of statements is called the range of the DO statement.
In the example above, the integer variable i is called the index, the -
values of my, m,, m, are, respectively, the initial, terminal, and in-
crement values of the index.

15-17

For example:

DO 1@ 131: 5:2
DO 20 I'—‘J:K:S
0 3¢ L=I:J5K
The index is incremented and tested before the range of the DO

is executed. If the terminal value is less than the initial vaiue, the
range of the DO will not be executed.

After the last execution of the range, control passes to the staie-
ment immediately following the range. This exit from the range
s called the normal exit. Exit may also be accomplished by a trans-
fer from within the range.

The range of a DO statement may include other DO statements,
provided the range of each contained DO statement is entirely
within the range of the containing DO statement. That is, the
ranges of two DO statements must intersect completely or not at
all. A transfer into the range of a DO statement from ouside the
range is not allowed.

Within the range of a DO statement, the index is available for
use as an ordinary variable. After a transfer from within the rangg,
the index retains its current value and is available for use as 2
variable.? The values of the initial, terminal, and increment vari-
ables for the index and the index of the DO loop may mot o¢
altered within the range of the DO statement.

The last statement of a DO loop must be executable, and must
not be an IF, GO TO, or DO statement.

Implied DO Loops
See Implementation Notes.

CONTINUE Statement
This is a dummy statement, used primarily as a target for trans-
ers, particularly as the last statement in the range of a DO state-

5 The index of a DO loop should not be used as a variabie after a normai
exit from that DO loop until it has been redefined.

15-18

DO K=INIT,LIMIT

~1

IF (X(K)) 22,1357

7 CONTINUE

a positivé value of X(K) begins another execution of the range.
The CONTINUE provides a target address for the IF statement
and ends the range of the DO statement.

PAUSE, STOP and END Statements

The PAUSE and STOP statements effect FORTRAN object pro-
gram operation; the END statement effects assembler operation
only.

PAUSE STATEMENT

The PAUSE statement enables the program to incorporate oper-
ator activity into the sequence of automatic events. The PAUSE
statement assumes one of two forms:

PAUSE
or PAUSE n

where n is an unsigned decimal number.

Execution of the PAUSE statement causes the octal equivalent
of the decimal number n, to be displayed in the accumulator on
the user’s console. Program execution may be resumed (at the next
executable statement) by depressing the CONTinue key on the
console.

In some cases the PAUSE statement may be usd to give the
operator a chance to change data tapes or to remove a tape from
the punch. When this i1s done it is necessary to follow the PAUSE
statement with a call to the OPEN subroutine. This subroutine
initializes the I/O devices and sets hardware flags that may have
been cleared by pressing the tape feed buttons. For example:

PAUSE
CALL OPEN

15-19

STOP STATEMENT
The STOP statement has the form:

STOP

It terminates program execution. STOP may occur several times
within a single program to indicate alternate points at which ex-
ecution may cease. Program control is directed either to or around
STOP statements.

- END STATEMENT
The END statement is of the form:

END

and signals the compiler to terminate compilation. The END state-
ment must be the last statement of every program.

INPUT/OUTPUT STATEMENTS

Input/Output (I/0O) statements are used to control the transfer
of data between computer memory and peripheral devices and to
specify the format of the output data. I/O statements may be di-
vided into two categories.

1. Nonexecutable FORMAT statements enable conversion be-
tween internai data (within core memory) and external data.

2. Data transmission statements, READ and WRITE, specify
transmisssion of data between computer memory and 1I/0
devices. |)

FORMAT Statement

The nonexecutable FORMAT statement enables the user to
specify the form and arrangement of data on the selected external
device. (See Implementation Notes for special uses of the FOR-
MAT statement.)

FORMAT statements are of the form:

n FORMAT (S;,S,,...,8,)

where n is a statement number and each S is a data field specifica-
fion

naNsak.

FORMAT statements may be placed anywhere in the source

nroaocram I Inlace tha FORMAT ctatamant ~ranfaine Anlo alnha_
PEVUSLGiil. URIVOS UIV L NSANIVASL L StalvIIvLIL LULQILD VLY adpuaa

numeric data for direct input/output transmission, it will be used in

15-20

conjunction with the list of a data transmission statement.

During transmission of data, the object program scans the desig-
nated FORMAT statement; if a specification for a numeric
field is present (see Data Transmission Statements) and the data
‘transmission statement contains items remaining to be transmitted,
. transmission takes place according to the specification. This pro-
cess ceases and execution of the data transmission statement is
terminated as soon as all specified items have been transmitted.
The FORMAT statement may contain specifications for more
items than are indicated by the data transmission statement. The
FORMAT statement may also contain specifications for fewer
items than are indicated by the data transmission statement, in -
which case, format control will revert to the rightmost left paren-
thesis in the FORMAT statement. _

Both numeric and alphanumeric field specifications may appear
in a FORMAT statement. The FORMAT statement also provides
for handling multiple record formats, skipping characters, space
insertion, and repetition. If an input list requires more characters
than the input device supplies for a given unit record, blanks are

inserted.

NUMERIC FIELDS _
Numeric field specification codes and the corresponding internal
and external forms of the numbers are listed in the following table.

Table 16-2 Numeric Field Codes

Conversion
Code Internal Form External Form
E Binary floating point { Decimal floating point®
: with E exponents: .324E-+10
F Binary floating point {Decimal floating point with no
: exponent: 283.75
I Binary integer |Decimal integer: 79

Conversions are specified by the form:

rEw.d
rFw.d
rlw

6 When using the WRITE statement with either E or F format, and
numbers less than 1.0, a zero will not be typed to the left of the decimal
point.

15-21

where T is a repetition count, E, F, and I designate the conversion
‘code, w is an integer specifying the field width, and d is an integer
specifying the number of decimal places to the right of the decimal
point. For E and F input, the position of the decimal point in the
external field takes precedence over the value of d. For example:

FORMAT (I55F10.+«2,E16+8)

- could be used to output the line
32 -17.68 +59625476E+03

on the output listing.

The field width shouid always be large enough to include the
decimal point, sign, and exponent. In all numeric field conversions,
if the field width is not large enough to accommodate the converted
number, the excess digits on the left are lost; if the number is less
than the field width, the number is right-justified in the field.

ALPHANUMERIC FIELDS
Alphanumeric data can be transmitted in a manner similar to
numeric data by use of the form

rAw

where 1 is a repitition count, A is the control character, and w is
the number of characters in the field. Alphanumeric characters are
transmitted as the value of a variable in an input/output list; the
variable may be either integer or real.

Although w may have any value, the number of characters trans-
mitted is limited by the maximum number of characters which can
be stored in the space allotted for the variable. This maximum
depends upon the variable type; for a real variable the maximum
is six characters, for an integer variable the maximum is two
characters. If w exceeds the maximum, the leftmost characters are
lost on input and replaced with blanks on output. If, on input, w
is less than the maximum, blanks are filled in.to the right of the
given characters until the maximum is reached. If, on output, w
is less than the maximum, the leffmost w characters are transmitted

ALIRRELES [oX 2 5 LS 2o 5-55 8 00 9

t~ th +5 1A 1
10 10C ¢Xigrniar Govice.

15-22

HOLLERITH CONVERSION
Alphanumeric data may be transmitted directly from the FOR-
MAT statement by using Hollerith (H) conversion. H-conversion
format is referenced by WRITE statements only. -
In H-conversion, the alphanumeric string is specified by the form

nH h]. ho, ..., hn

P

where H is the control character and n is the number of characters
in the string, including blanks. For example; the statement below
can be used to print PROGRAM COMPLETE on the output list-

ing.

FORMAT(17H PROGRAM COMPLETE)D

A Hollerith string may consist of any characters capable of
representation in the processor. The space character is a valid and
significant character in a Hollerith string. (See Implementation
Notes for an alternate method of outputting alphanumeric data.)

-

MIXED FIELDS
A Hollerith format field may be placed among other fields of
the format. The statement

FORMAT(I5,7H FORCE=F10.5)
can be used to output the line:

22 FORCE= 17.68901

The separating comma may be omitted after a Hollerith format
field, as shown above.

REPETITION OF FIELDS

Repetition of a field specification may be specified by preceding
the control character E, F, or I by an unsigned integer giving the
number of repetitions desired.

FORMAT(2E12.45315)

15-23

is equivalent to

FORMAT(E12¢45E12.4515,15515)

REPETITION OF GROUPS
A group of field specifications may be repeated by enclosing the .
group in parentheses and preceding the whole with the repetition

numher
A X L Sy

Avaiaa

For example:

FORMAT(218:2(E15.5:2F8.3))

is equivalent to

FORMAT(218,E15+552F83,E15+5,2F8.3)

MULTIPLE RECORD FORMATS

To handle a group of output records where different records
have different field specifications, a slash is used to indicate a new
record. For example, the statement

FORMAT(318)

for the first record and

- FORMAT(I5,2F8.4)

for the second record.

The separating comma may be omitted when a slash is used.
When n slashes appear at the end or beginning of a format, n blank
records may be writien on output {producing a carriage return/
line feed for each record) or ignored on input. When n siashes
appear in the middle of a format, n-1 blank records are writ-
ten or n-1 records skipped. Both the siash and the ciosing par-
entheses at the end of the format indicate the termination of a

15-24

record. If the list of an input/output statement dictates that trans-
mission of data is to continue after the closing parenthesis of the
format is reached, the format is repeated from the last open paren-
thesis of level one or zero. Thus, the statement:

FORMAT(F7.2,(2(E15+55,E15.4),17))

level 0 - level 1
level 1 level O

causes the format:
F7¢2,2(E15+5,E1544),17

to be used on the first record, and the format:
2(E15.5,E15+4),17

to be_used' on succeeding records. _
As a further example, consider the statement:

FORMAR(F7+2/(2(E15.5,E15.4),17))
The first record has the format:
F7.2
and successive records have the format:
2(E15.5,E15+4),17
BLANK OR SKIP FIELDS

Blanks may be introduced into an output record or characters
skipped on an input record by use of the specification nX. The
control character is X; n indicates the number of blanks or char-

acters skipped and must be greater than zero. For example, the
statement:

FORMAT(5H STEPIS5,10X2HY=F7.3)

15-25

may be used to output the line:

STEP 28 Y= 3.872

DATA TRANSMISSION STATEMENTS

There are two data transmission statements, READ and WRITE.
Data transmission statements accomplish input/output transfer of
data that may be listed in a FORMAT statement. The data trans-
mission statement contains a list of the quantities to be transmitted.
The data appears on the external device in the form of records.

1. Input/Output Lists'—The list of an input/output statement
specifies the order of transmission of variable values. During
input, the new values of listed variables may be used in
subscript or control expressions for variables appearing later
in the list. For example:

READ(Z2,100017L,ACL)>BIL+1)

reads a new value of L and uses this value in the subscripts
of A and B; where 2 is the r? ice designation .-d.., and
1000 is a FORMAT statement nur n‘Ler.

2. Input/Output Records—All information appearing on in-
put is grouped into records. On output to the printer a record
is one line. The amount of information contained in each
ANSCII record is specified by the FORMAT reference and
the input/output list.

Each execution of an input or output statement initiates the

transmission of a new data record. Thus, the statement:

READ(I,10@)FIRST>SECOND, THIRD

is not necessarily equivalent to the statements below where 100 is
the FORMAT statement referen

tne FURKNMAL statement re nce

D..

READ(1,1Q@3FIRST
READ(1,100)SECOND
READ(1,10@)>THIRD

7 The implied DO in input/output lists is not impiemented.

15-26

In the second case, at least three separate records are required,
whereas, the single statement

READ (4, f) FIRST, SECOND, THIRD

may require one, two, three, or more records depending upon
FORMAT statement f. -

If an input/output statement requests less than a full record of
information, the unrequested part of the record is lost and cannot
be recovered by another input/output statement without reposi-
tioning the record.

If an input/output list requires more than one ANSCII record of
information, successive records are read.

READ Statement _

The READ statement specifies transfer of information from a
selected input device to internal memory, corresponding to a list
. of named variables, arrays or array elements. The READ statement
assumes the following form:

READ (d, f) list

where d is a device designation which may be an integer constant
or an integer variable, f is a format reference, and list is a list of
variables. : . |
The READ statement causes ANSCII information to be read
from the device designated and stored in memory as values of the
variables in the list. The data is converted to internal form as
specified by the referenced FORMAT statement.
For example: :

READ(1,15)ETA»PI

WRITE Statement

The WRITE statement is used to transmit information from
the computer to a specified output device. The WRITE statement
assumes one of the following forms:

WRITE (d,) list
WRITE (d, f)

where d is a device designation (integer constant or integer vari-
able), f is a format reference, and list is a list of variables.

15-27

The first form of the WRITE statement causes the values of the
variables in the list to be read from memory and written on the
device designated in ANSCII form. The data is converted to exter-
nal form as specified by the designated FORMAT statement.

The second form of the WRITE statement causes information
to be read directly from the specified format and written on the
device designated in ANSCII form.

2

DEVICE DESIGNATIONS
The 1/0 device designations are used in the READ and WRITE
statements. The device codes are:

Device Code : Designating
1 ‘ Teletype and low-speed reader and punch
2 " High-speed reader and punch

For additional I/O information, see SABR, chapter 15.

DECtape I/ 0 Routines

RTAPE and WTAPE (read tape and write tape) are the DEC-
tape read and write subprograms for the 8K FORTRAN and 8K
‘SABR systems. The subprograms are furnished on one relocatable
binary-coded paper tape which must be loaded into field O by the
8K Linking Loader, where they occupy one page of core.

RTAPE and WTAPE allow the user to read and write any
amount of core-image data onto DECtape in absolute, non-file-
structured data blocks. Many such data blocks may be stored on
a single tape, and a block may be from 1 to 4096 words in length.

RTAPE and WTAPE are subprograms which may be called with
standard, explicit CALL statements in any 8K FORTRAN or
SABR program. Each subprogram requires four arguments sep-
arated by commas. The arguments are the same for both subpro-
grams and are formatted in the same manner. They specify the
following:

Jmaml
-

DECtape unit number (from 0 to 7)

)

Number of the DECtape block at which transfer ig to start.
The user may direct the DECtape service routine to begin
searching for the specified block in the forward direction
rather than the usual backward direction by making this

argument the two’s complement of the block number. For

15-28

additional information on this and other features the reader
is referred to the DECtape Programmer’s Reference Man-
ual.
- 3. Number of words to be transferred (1<N<4096).
4. Core address at which the transfer is to start.
The general form is:
CALL RTAPE (Ill, ns, Nz, n4) _
where n, is the DECtape unit number, n is the block number, n;
is the number of words to be transferred, and n, is the starting
address.
In 8K FORTRAN, an example CALL statement to RTAPE
could be written in the following format (arguments are taken as
decimal numbers): '

CALL RTAPE(6,128,388,L0CA)

In this example, LOCA may or may not be in COMMON.,

As a typical example of the use of RTAPE and WTAPE, assume
that the user wants to store the four arrays A, B, C, and D on a
tape with word lengths of 2000, 400, 400, and 20 respectively.
Since PDP-8 DECtape is formatted with 1612 blocks (numbered
1-2700 octal) of 129 words each (for a total of 207,948 words),
A, B, C, and D will require 16, 4, 4, and 1 blocks respectively.
Each array must be stored beginning at the start of some DECtape
block. The user may write these arrays on tape as follows:

CALL WTAPE(2,1,2000,A)
CALL WTAPE(@,17,400.B)
CALL WTAPE(@.,21,420,C)
CALL WTAPE(2,25,20,D)

The user may also read or write a large array in sections by
specifying only one DECtape block (129 words) at a time. For
example, B could be read back into core as follows.

CALL RTAPE(@,17,258,B(1))
CALL RTAPE(0,19,129,B(259))
CALL RTAPE(®,20,13,B(388))

As shown above, it is possible to read or write less than 129
words starting at the beginning of a DECtape block. It is impos-
sible, however, to read or write starting in the middle of a block.

15-29

For example, the last 10 words of a DECtape block may not be
read without reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward
search for the desired block number. To save searching time, the
user may request RTAPE or WTAPE to start the block number
search in the forward direction. This is done by specifying the neg-
ative of the block number. This should be used only if the number
of the next block to be referenced is at least fourteen block num-
bers greater than the last block number used. For example, if the
user has just read array A and now wants array D, he may write:

CALL RTAPE(Z,1-2000-8)
CALL RTAPE(D®,-25,20,D)

The following is a section of a program demonstrating the use
of DECtape 1/0. Assume that values are already present on the
DECtape.

DIMENSION DATA(583)

NB=g
SUM=0

DO 180 N=1,10

CALL RTAPE(1,-NB,1500,DATA)

TEM=02
DO 50 K=1,500
50 TEM=TEM+DATA(K)
SUM=SUM+TEM
190 NBE=NB+24

AMEAN=SUM/500202.
WRITE(1,112>5UM,AMEAN
CALL EXIT
119 FORMAT('SUM=",E15.7' MEAN='>E15.7///)
END

Disk I/0 Routines
ODISK AND CDISK (open disk and close disk) and RDISK

ead disk and write disk) are the four DECdisk

™ 2 h

i

{D3F32/DS32 i ut and outnut subnrosrams for r‘np RE Tir-
\LICDL/10554) mpul and ouiput subprogram he 8K FUK

RAN system. They are furnished on one relocatable binary-coded
nanar fane whir 1e Inadsd inta rare nicing tha T intine T nadar
IIMtIVL tut}v YY1i1Awid A ALTLANAWNE ARANVY WAL UOAIAS L -‘4‘111\11]5 L_J\Juuvl’

ODISK AND CDISK

ODISK is used to open (activate) a file (named using the Link-
ing Loader D function) so that the file can be read or written using
RDISK or WDISK. CDISK will close (deactivate) a file which
was opened with ODISK so that the contents of the file cannot be
altered. : ‘

The ODISK and CDISK subprograms may be called with stand-
- ard, explicit CALL statements in any 8K FORTRAN program.
ODISK requires one argument when opening a file. However, it
requires two arguments when specifying or changing the size (in
blocks) of a file. CDISK always requires only one argument.

The first argument of both ODISK and CDISK is the logical
number (from 1 thru 10 inclusive) of the file as it was named
using the Linking Loader. (Refer to Chapter 15 for a discussion of
logical file numbers.) The second argument to ODISK is the num-
ber of blocks (from 1 thru 128) to be saved for the file.

In 8K FORTRAN, the CALL statements to ODISK and CDISK
are written in the following format (arguments are taken as decimal
integer numbers). '

CALL ODISK(1)

when opening a file, or

CALL ODISK(1,5)

when specifying or changing the size of a file, and

CALL CDISKX(1)

when closing an opened file.

ODISK prepares the file named for data transfer. When running
the user program using the Disk Monitor System, ODISK uses
Disk Monitor I/0 and the three scratch blocks on disk zero for a
window whenever a file is opened.

All open files should be closed before terminating program
execution, thus preserving the contents of the files.

15-31

RDISK AND WDISK - _

The RDISK and WDISK (read disk and write disk) subpro-
grams may be called with standard, explicit CALL statements in
any 8K FORTRAN or 8K SABR program. The ODISK subpro-
gram must be used to open the file concerned before using the
RDISK or WDISK subprograms.

Each of these subprograms requires four arguments, arranged
as listed below.

1. Logical file number (determined using the Linking Loader
D function), .

2. Logical biock of fiie number (biock number of the iile
where data transfer is to begin), '

3. Number of words to be transferred (from 1 thru 2047), and

4. Core address where data transfer is to start (field 0).

Both RDISK and WDISK require the arguments above. The gen-
eral form is:

CALL RDISK (n;, No, Na, 1'1,_1)

In 8K FORTRAN, the CALL statements to RPISK and
WDISK are written in the following format {arguments are taken

as decimal numbers).
CALL RDISK(4,2,55,L0CA)

when reading file 4, beginnig with block 2, transferring 55 words,
starting at location of tag LOCA, which may be the name of an
array defined in a DIMENSION statement. WDISK would be
formatted in the same fashion.

A variable number of words may be transferred. It is not neces-
sary to tranmsfer in 200-word blocks as with the Disk Menitor

Svystem

Sresediia

The sample code written as an example of DECtape 1/0 usage
has been recorded below to demonstrate disk I/0. Again, assume

the data is on the disk.

15-32

DIMENSION DATA (500)

CALL ODISK(1)

NB=0

SUM=0

DO 180 N=1,10

CALL RDISK(1,NB,152%,DATA)D
TEM=0

DO 50 K=1,500

- 50 TEM=TEM+DATA (K>

SUM=5UM+TEM
100 NB=NB+12
AMEAN=SUNM/5000 .
WRITE (1,110)SUM,AMEAN
CALL CDISK(1)
CALL EXIT
110 FORMAT('SUM="'5El15.7,"'" MEAN=',E15.7///)
END

SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information
about variables and constants to the compiler. The specification
statements are DIMENSION, COMMON, and EQUIVALENCE,
and when used, must appear in the program prior to any executable
statement. ‘ ' '

COMMON Statement

The COMMON statement causes specified variables or arrays
to be stored in an area available to other programs. By means of
COMMON statements, the data of a main program and/or the
data of its subprograms may share a common storage area. Vari-
bles in COMMON statements are assigned to locations in ascend-
ing order in field 1 beginning at location 200 storage allocation.
The COMMON statement has the general form: .

COMMON v, vy, ..., Vv,

where v is a variable name.

DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be
array identifiers and to specify the number and bounds of the
array subscripts. The information supplied in a DIMENSION
statement is required for the allocation of memory for arrays. Any

15-33

number of arrays may be declared in a single DIMENSION state-
ment. The DIMENSION statement has the form:

DIMENSION s, 85,..., 58,

where s is an array specification. For example:

DIMENSION AC1828)
DIMENSION Y(18),PORT(25),B(185187,J(32)

NOTE
When variables in COMMON storage are
~ dimensioned, the COMMON statement must
appear before the DIMENSION statement.

EQUIVALENCE Statement
The EQUIVALENCE statement causes more than one variable

within a given program to share the same storage location. The
EQUIVALENCE statement has the form:

EQUIVALENCE (v, vs,...),

where v is a variable name.

The inclusion of two or more references in a parenthetical list
indicates that the quantities in the list are to share the same mem-
ory location. For example:

EQUIVALENCE(RED,BLUE)

— e L S

Enns ¢l £ P .,\L ~ DY .- 3 Y Y7
DlJ\.«\.« oD LudL ui€ variaoics nilis and pr.ur aic bLUlCU 111 LUC saiiic
c

place, and therefore they have the same value. The subscripts of
array variables must be integer constants. For example:

EQUIVALENCE(X,A(3),Y(2,1)), (BETA(2,2),ALPHA)

Identifiers may not appear in both EQUIALENCE and COMMON
statements..

Because of core memory restrictions within the compiler, vari-
abies cannot appear in EQUIVALENCE statements more than

would be valid, but the statement

EQUIVALENCE(A>BY» (B>C)

would not compile correctly.

SUBPROGRAM STATEMENTS : -

_ External subprograms are defined separately from the programs
that call them, and are complete programs which conform to all
the rules of FORTRAN programs. They are compiled as closed
subroutines, that is, they appear only once in core memory regard-
less of the number or times they are used. External subprograms
are defined by means of the statements FUNCTION and SUB-
ROUTINE. Function and subroutines must be compiled indepen-
dent of the main program and then loaded together with the main
program by the Linking Loader.

Subprogram definition statements contain dummy identifiers,
representing the arguments of the subprogram. They are used as
ordinary identifiers within the subprogram and indicate the sort of
arguments that may appear and how the arguments are used. The
dummy identifiers are replaced by the actual arguments when the
subprogram is executed.

Function Subprograms

A function subprogram is a smgle -valued function that may be
called by using its name as a function name in an arithmetic ex-
pression, such as FUNC(N), where FUNC is the name of the sub-
program that evaluates the corresponding function of the argument
N. A function subprogram begins with a FUNCTION statement
and ends with an END statement. It returns control to the calling
program by means of one or more RETURN statements.

The FUNCTION statement has the form:

FUNCTION identifier (a;, az,-. . . ,a,)

This statement declares that the program which follows is a func-
tion subprogram. The identifier is the name of the function being
defined. This identifier must appear as a scalar variable and be as-
signed a value, which is the function value during execution of
the subprogram.

15-35

Arguments appearing in the list enclosed in parentheses are

\rgumen
dummy arguments representing the function argument. The argu-
ments must agree in number, order and type with the actual
arguments used in the calling program. Function subprograms
may have expressions and array names as arguments.

Dummy arguments may appear in the subprogram as scalar
identifiers or array identifiers. A function must have at least one
dummy argument. Dummy arguments representing array names

MNT gfafasmane
must appear within the subprogram in a DIMENSION statement.

Dimensions must be indicated as constants and should be smaller
than or equal to, the dimensions of the corresponding arrays in the

calling program.

A function should not modify any arguments which appear in
the FORTRAN arithmetic expression calling the function. The
only FORTRAN statements not allowed in a function subprogram
are SUBROUTINE and other FUNCTION statements,

The type of function is determined by the first letter of the
identifier used to name the function, in the same way as variable
names. \

The following short example calculates the gross salary of an
individual on the basis of the number of hours he has worked
(TIME) and his hourly wage (RATE). The function calculates
time and a half for overtime beyond 40 hours, The function is
called SUM and would look as follows:

FUNCTION SUMITIMESRATE}
IF (TIME-40.) 10,100,220
10 SUM = TIME * RATE
RETURN
20 SUM = (40.%RATE) + (TIME-40.)%*1 +5%RATE
RETURN

Depending upon which path the program takes, control will
return to the main program at one of the two RETURN state-
ments with the answer. We would probably have set up the main
program with a statement to read the employee’s weekly record

from a list of information prepared on the high-speed reader:

i1t S R eaiaNaiazln [+ 3 S W]

READ(2,5) NAME, NUM»> NDEP, TIME, RATE

15-36

This statement reads the person’s name, number, department num-
ber, time worked, and hourly wage. The main program would then
go on to calculate his gross pay with a statement like the following:

GROSS = SUM(TIME,RATE)

and go on to calculate withholdings, etc.

Subroutine Subprograms
A subroutine subprogram may be multivalued and can be re-
ferred to only by a CALL statement. A subroutine subprogram
begins with a SUBROUTINE statement and returns control to the
calling program by means of one or more RETURN statements.
The SUBROUTINE statement has the form:

SUBROUTINE identifier (a;, as, a,)

This statement declares the program which follows to be a sub-
routine subprogram. The first identifier is the subroutine name.
The ‘arguments in the list enclosed in parentheses are dummy ar-
guments representing the arguments of the subprogram. The
dummy arguments must agree in number, order, and type with the
actual arguments used by the calling program.

Subroutine subprograms may have expressions and array names
as arguments. The dummy arguments may appear as scalar or
array identifiers. _

Dummy identifiers which represent array names must be dimen-
sioned within the subprogram by a DIMENSION statement. The
dummy arguments must not appear in an EQUIVALENCE or
COMMON statement in the subroutine subprogram.

A subroutine subprogram may use one or more of its dummy
identifiers to represent results. The subprogram name is not used
for the return of results. A subroutine subprogram need not have
any arguments, or may use the arguments to return numbers to
the calling program. Subroutines are generally used when the result

. of a subprogram is not a single value.
Example SUBROUTINE statements may look as follows:

SUBROUTINE FACTOR (COEFF,N>ROOTS)
SUBROUTINE RESIDU(NUM,»N,DEN,M,RES)
SUBROUTINE SERIES

15-37

The only FORTRAN statements not allowed in a subroutine
subprogram are FUNCTION and other SUBROUTINE state—
ments.

The following short subroutine takes two integer numbers from
the main program and exchanges their values. If this is to be done
at several points in the main program it IS a procedure best per-
formed by a subroutine.

The calling statement for this subroutine might look as follows:

CALL ICHANGE(M,N)

where the values for the variables M and N-would be exchanged.

CALL STATEMENT
The CALL staiement assumes one of two forms:

~ L3 PRLY.
CALL identifier

or CALL identifier (ay, as,..., a,)

The CAILL statement is used to transfer control to a subroutine
subprogram. The identifier is the subroutine name.

The arguments (indicated by a;, through a,) may be expres-
sions or array identifiers. Arguments may be of any type, but must
agree in number, order, type, and array size with the corresponding

~arguments in the SUBROUTINE statement of the called sub-
routine. Unlike a function, a subroutine may produce more than
one value and cannot be referred to as a basic element in an ex-

pression.

A s"“ outine may use one or more of its arguments to return
results to the calling pmgfam IF no arguments at all are required,
S Ry oSN .St R S P |
LIRS BRENG 1IN BN UINQ4l ¢ H

The identifier used to name the subroutine is not assigned a
type and has no relation to the types of the arguments. Arguments
which are constants or formed as expressions must not be modified
by the subroutine.

RETURN STATEMENT
The RETURN statement has the form:

RETURN

This statement returns control from a subprogram to the cailing
program. Each subprogram must contain at least one RETURN
statement. Normally, the last statement executed in a subprogram
is a RETURN statement; however, any number of RETURN
statements may appear in a subprogram. The RETURN statement
may not be used in a main program.

OPERATING INSTRUCTIONS A
The Compiler, SABR Assembler, and Linking Loader are used
(in that order) to compile, assemble, and execute FORTRAN pro-
grams. In carrying out the following procedures. the Data Field
setting can be ignored since all system tapes, with the exception
of Linking Loader, have field settings coded on them. For detailed
information on the Linking Loader see Chapter 15, SABR.

Loading the Compiler

PAPER TAPE SYSTEM
1. Make sure the Binary Loader is in memory, say field 1.
2. Place the FORTRAN Compiler binary tape in the reader.

3. Set the console switches as follows: (Data field is ignored)
instruction field = 1, Switch Register = 7777.

4. Press LOAD ADDress.

5. Depress Switch Register bit 0.

6. Press START

7. The FORTRAN Compiler has now been loaded into mem-

ory by the Binary Loader. Parts of the compiler will load into
field O and field 1.

15-39

vy AW V%t ¥ ’ T /AT o rey

DIS IONITOR SYSTEM
1. Make sure the Disk Monitor is in memory. (Type CTRL/C*
or START at 7600).
2. When the Monitor responds with a dot, call the system
loader by typing
.LOAD (the denotes typing the RETURN key)
Place the Compiler binary tape in the reader.
4. Answer the Loader command dialogue as follows:
*IN-R:
*
" *ST =
CTRL/P> t <CTRL/P>

5. The FORTRAN Compiler has now been loaded into mem-
ory, parts into field O and field 1. It must now be saved on
the system device as follows:

W

«SAVE FTC@!2-757755363
«SAVE FTC1!'2008,10820-1577,2600,6000-16377;

6. The compiler has now been saved on the user’s system device
and may be called as follows:

=)

Ci
TC@®

'T))

The field 1 part must be called first.

Operating the Compiler

It is assumed that the programmer has written his main program
and possibly one or more subprograms, and that these source pro-
grams have been punched on paper tape in ANSCII format. Re-
member that each source tape must have an END statement at the
end of the tape.

After the compiler has been loaded into memory, it is used to
translate each FORTRAN statement into one or more SABR as-
sembler instructions. The compiler output will be punched in two
parts separated by approximately three feet of blank tape. The
first part, (executable code) will be punched as the source tape is
read. The second part, (variable storage and constants) will be
punched after the entire source tape has been read.

* CTRL/C and CTRL/P are typed by holding the CTRL key while typing
the C or P key. They do not echo (print) when typed, therefore, their
presence are indicated by being enclosed in angle brackets.

15-40

If the compiler has been saved on the Disk Monitor System it
will halt after it is loaded into memory. Be sure that the source
tape has been placed in the reader and the punch has been turned
ON, then simply press CONTinue to initiate compiler output.

It may be desirable to suppress all compiler output the first time
a particular program is compiled, simply to check for errors. To do
this it is necessary to load the compiler and then deposit 3075 in
location 0356 (field 0), prior to starting the compiler. '

I. Set the console switches as follows: Data field = 0, Instruc-
tion field = 1 Switch Register = 1000. (The compiler may
also be started at location 5364 in field 0.)

2. Place the FORTRAN program source tape in the reader,

and press the punch ON.

Press LOAD ADDress and START.

4. As soon as the compiler has typed out an identification num-
ber, it will begin compiling the user’s program. The compiler
output will generally be several times the length of the FOR-
TRAN source program.

w

Errors

All compile time, assembly time, and execution time errors are
fatal (the program will not be further processed). For this reason
it is desirable to suppress punched output of the compiler and
assembler until the source program is believed to be correct. For
specific instructions refer to the appropriate System User’s Guide.

Note especially that the compiler will not detect undefined state-
ment numbers. Therefore it is important to examine the assembly
symbol table for undefined symbols before loading and executing
the program.

Do not attempt to load or run a program which has assembly
errors. Do not attempt to proceed after an execution time error by
pressing CONTinue. Unpredictable results will be obtained in
either case.

Compiler Error Messages

When an error is encountered during compilation of a statement
the incorrect statement and an error message are printed. Further
compilation of that statement is terminated, and output is sup-
pressed for the rest of the compilation. The compiler, however,
will scan the remaining statements for errors. and will print an

15-41

A=B+M(62I+N(1)
1

MIXED MODE EXPRESSION

Note that an 1 was printed directly below the incorrect statement.
Thi$ indicates that the error occurred somewhere between the point
and the beginning of the statement. In some cases the arrow may
point directly at the illegal character or word, but this cannot
always be assumed.
If an error oceurs in the m dd}e f a series of continuation lines,

A1l wemraaimiee
ail 1C11141111ﬁ5 lines in that state

message ILLEGAL CONTINUATION
Compiler error messages are self-explanatory:

-ARITHMETIC EXPRESSION TOO COMPLEX
EXCESSIVE SUBSCRIPTS

ILLEGAL ARITHMETIC EXPRESSION
ILLEGAL CONSTANT

ILLEGAL CONTINUATION

ILILEGAL EQUIVALENCING

ILTLEGAL OR EXCESSIVE DO NESTING
ILLEGAL STATEMENT

LI EGAL STATEMENT NUMRBER

A e AT Y A Asavaz si PAL BB .

MIEGAT VARTIART E

RE SR IR INIE AR AANAL RASR s

MIXED MODE EXPRESSION
SYMBOL TABLE EXCEEDED
SYNTAX ERROR (usually illegal punctuation)

If an error is discovered in the user’s FORTRAN program,
the compiler will type the incorrect line, followed by an error
message. Although compiler output will be suppressed, the rest of
the user’s program will be read, and additional error messages may
be typed.

L

When the compiler has ﬁmshed punching both sections of tape

4 1 hale To Tan
It Win Qa1 mMay oc restart

pressing CONTinue.

om 1a Anal nraoram i‘\
L7 W NJRERLFAIN, \‘UALIU ALLE plngaA lc ‘,
k

CL
.
)
Q
3
%
Y

The FORTRAN Compiler may be retarted at any time by press-
ing STOP and resetting the console switches.

15-42

Loading The SABR Assembler
See Chapter 14, or the appropriate System User’s Guide for di-
rections on loading the SABR Assembler.

SABR is loaded into memory, partly in Field O and parly in
Field 1. It may be saved on the user’s system device by responding
to the monitor’s dot as follows:

Operating The SABR Assembler

In addition to being a stand-alone assembler, SABR also serves
as the second pass of 8K FORTRAN compilation. For this purpose
the use of SABR is sightly different from that described in Chap-
ter 14. This difference in the operation of SABR is due only to the
unusual format of the FORTRAN compiler output.

The compiler, in one pass, converts the user’s FORTRAN
source program into a symbolic machine language program tape.
SABR then converts the symbolic tape into relocatable binary.
However, the symbolic tape produced by the compiler is not a
standard format SABR language tape. It is arranged as shown in
the figure on the facing page.

B
L
L A | T
E|F Symbol Definitions |P | R
. E N Common, Arrays, |A |A
A | O [Main part of program; K ’ ys,
_ N Data and Ul
D | R| Ezxecutable code.
D Program Entry S |L
EAT T Point E|E
R [R Al Tomt R
' P
E
1 True Start

The tape is arranged this way because the data at the end of the
tape cannot be inserted in the midst of the executable code, and
some of it which should be at the beginning of the tape is not
known until later. Thus the true start of the symbolic program is

near the end of the symbolic tape preceded by a segment of blank
tape and followed by a PAUSE statement.

To assemble such a tape with SABR, one of three methods must
be followed. Actually, the general procedure is the same as that
described in the SABR manual, but in particular details it differs.

15-43

The differences are covered by the three methods explained below.
METHOD 1 ‘

The simplest method is to cut the symbolic tape into two parts.
The cut should be made at the middle of the blank tape which
separates the executable code from the symbol definitions. The
Jatter section of the tape should then be marked “Sectiorr 17 and
the former section (the executable code) should be marked “Sec-
tion 2.” Assembly then proceeds with the two part symbolic tape
exactly as described below. ' ‘

After SABR has been loaded into memory, it is used to assemble
the compiler output. In the first pass through SABR the relocatable
binary version of the user’s program is created and, at the end of
this pass, the symbol table may be typed and/or punched. Pass 2
is the listing pass. The assembly is carried out as follows.

If SABR has been saved on the system I/O device it will start
automatically at step (3) on the next page when called into mem-
ory. The source tape (first section) should be inserted in the
reader before operation begins.

It may be desirable to suppress all assembler output the first
time a particular program is assembled, simply to check for errors.
To do this it is necessary to load SABR and then deposit 5370
in location 3165 (Field 0) before beginning step (1) below.

1. Set the console switches as follows: Data field = 0, In-
struction field = 0, Switch Register = 0200.
2. Press LOAD ADDress and STAKT.
3. SABR now types a sequence of two or three questions;
HIGH SPEED READER?
HIGH SPEED PUNCH?
LISTING ON HIGH SPEED PUNCH?
These questions mut be answered with “Y” if the answer
is “yes.” Any other answer is assumed to be “no.” The
third question is typed only if the second is answered “Y.”
If the third is answered “Y,” both the symbol table and the
listing will be punched on the high-speed paper tape punch.
Otherwise, they are typed on the teletypewriter. Incidentaily,
the user need not wait for the full question to be typed be-
fore responding. _
4, As soon as SABR has echoed the user’s response to the last
question, the punch device and, if it is being used, the ASR

15-44

b4

reader should be turned on. If using the low-speed reader,
the error message E indicates that the user has waited too
long before turning the reader on. He will have to start over.

5. At this point, pass 1 begin. SABR reads the source tape and
punches the binary tape. After the binary tape has been
completed SABR will type or punch the program symbol
table.

6. If the source tape is in several sectlons.(separate tapes with
PAUSE at the end of all except the last), SABR will halt
at the end of each section. At this point the user should in-
sert the next section in the reader and then press CONTinue.

7. At the end of Pass 1 SABR wilLhalt.

8. If the user desires an assembly listing, he should now re-
position the beginning of the source tape in the reader and
press CONTinue.

If the listing is going to be punched on the high speed

punch, the user may want to list the symbol table (at the = -

end of the binary relocatable tape) before beginnig Pass 2.
9. At the end of Pass 2 SABR will again halt. It may be re- -
started for assembling another program by pressing CON-
Tinue.
10. SABR may be restarted at any time by pressing STOP, set-

ting the switch register =0200, pressing LOAD ADDress

and START. However, Pass 1 must always be repeated.

METHOD 2 _

~ The user may avoid actually cutting the symbolic tape by ma-
nipulating the tape as if it were two parts, as explained above. The
tape should initially be inserted in the reader with the separator
blank tape over the read-head. When SABR halts at the PAUSE
statement at the physical end of the tape, the user should reposition
the tape, putting the physical beginning of the tape in the reader.
Then press CONTinue. The assembly pass will end at the separator
blank tape code. The assembly listing can be produced in a similar
manner, pressing CONTinue to start the listing pass.

METHOD 3

The third method requires SABR to pass the symbolic tape two
times for each pass of the assembly. However, it allows the tape
to be inserted at its physical beginning. It is based on the fact that

15-45

a symbolic tape output by the FORTRAN Compiler

physical first line the special pseudo-op, FORTR. This pseudo-op
has no effect except when a symbolic tape output by the compiler
is assembled using this third method.

The method is this:

1as as its

1. Insert the symbolic tape in the reader at its physical begin-

ing.

Start SABR as usual. ' ' ‘

Sensing the FORTR statement as the first line, SABR ig-

nores all further data until after it passes over the END

seatement. SABR then begins the actual assembly by pro-
cessing the symbol definitions, etc., which are at the latter
end of the tape.

4. Then SABR halts at the PAUSE statement which is at the
physical end of the tape. At this time the user should re-
position the symbolic tape in the reader at the physical
beginning of the tape, and then press CONTinue. SABR
will now asemble the executable code portion of the tape
in the normal way.

5. If the user desires an assembly listing, he should proceed
as in Method 2 after SABR finishes the assembly pass.

!\.)

W

One other type of error may occur. This is an undefined sym-
bol. Because SABR is a one-pass assembler, this can not be de-
termined until the end of the assembly pass, so the error diagnostic
UNDF is given in the symbol table listing.

The Linking Loader
See Chapter 14.

Executing The FORTRAN Program

Determine the starting address of your main program by using
the Linking Loader Storage Map option. The address will be
typed in the form:

1. Set Data Field = d, Instruction Field = d, Switch Rcgister
= nnnn.
15-46

2. Turn on paper tape punch and/or put data tape in reader
as required.

3. Press LOAD ADDress, and START.
Program execution will begin.

DEMONSTRATION PROGRAM

This program computes the factorials of the even integers from
1 through 34. The MAIN program calls the subprogram to per-
form the computation. .

This demonstration program was run on a PDP-8/I with 8K
words of core memory and high-speed reader/punch. The demon-
stration, from start to finish, required 15 minutes. Actual Teletype
printout is used on the following pages.

Both source programs were written using the Symbohc Editor,
listed on the Teletype for inclusion here, and punched on the high-
speed punch.

c FORTRAN DEMONSTRATION PROGRAM
DIMENSION A(35)
DO 10 N=2,34,2
AMNI=FACT(ND

10 WRITE (1,60)N>,A(N)
STOP
602 FORMAT (I354H! = »E12.7)
END '
P
L

FORTRAN FUNCTION .TO COMPUTE FACTCRIALS
FUNCTION FACTN)D
IF (N-34) 15555
IF (N) 2,452
2 M=N-2
FACT=N
DO 3 K=1,M
C=N-K
FACT=FACT*C
RETURN
4 FACT=1.
RETURN
5 WRITE (1,6) N
FACT=0
RETURN
6 FORMAT (I15,32H! EXCEEDS CAPACITY OF PROGRAM.>
END

aQ

-

(93]

15-47

This is the system program tape identification. At this point we
have loaded the FORTRAN Compiler and compiled both source
programs. '

PDP-8& FORTRAN DEC-28-A2Bl1-3
PDP-8 SABR DEC-28-A2B2-10

HIGH SPEED READER? Y

HIGH SPEED PUNCH? Y

LISTING ON HIGH SPEED PUNCH? N

' CKIO GRCBEXT

FACT PPOBEXT
10H PBBPEXT
ISTO GOBBEXT
MAIN @352EXT
OPEN GOBBEXT

SUBSC GOBOEXT
WRITE GOBBEXT

(o @512
\A 2200
\N @351
\1@ G426
\60 . @501
1A P361
o @473
1C g4l
tD 2450
tE Pae3
TF Pare
1 G gsie
HIGH SPEED READER? Y
HIGH SPEED PUNCH? VY

LISTING ON HIGH SPEED PUNCH? N

FACT @215EXT
FAD QUGBEXT
FLOT BOPBBEXT
FMP POBBEXT
iCH DECCCEXT
OPEN QOBVEXT
STO 0OV EXT
WRITE BRBOEXT
o 2473
\C 2205
\FACT 22el -
K B264
M 22Be
\N a7l
N 2251
\E 2ol
N3 2331

oy
(4}
|

\4 0354

\5 Q4@ 6
\N6 B4a4as
13 p21e
1A @365
1B 2346
1C- gaze
1D aa71

Loaded the SABR Assembler, responded to the initial dialogue
and assembled both compiled programs.

Load the Library programs using the Linking Loader. Set the
switch register for the memory map.

DEC-28-A2B3-5

MAIN P1152
OPEN 18325
SUBSC 11000
FACT 21415
ISTC P6062
VRITE 02066
10H 03744
CKIO 19321
FLOT - 26200
STO 25444
FAD 05010
FMP 25623

READ 22055
SETERR 104060
ERROR 10583
TTYOUT 1g227
HSOUT ipass
TTYIN 10229

HSIN 10245
FDV @5711
CLEAR 6237
IFAD 06117
DIV 6443
IREM pe6le
FSB 25000
FLOAT P6034
FIX 255192
IFIX 25556
CHS pe221
ABS 6636
IABS 26700
MPY 06422
IRDSW 6723
EXIT 18344
CLRERR 10431
Boo3

Bo32

15-49

- 4 R DR N P aTAc O g
i.oad the relocatable binary tapes and start the MAIN program

at location 01152 (see meméry map).

21
41
6!
g!
1@
121
141

i AT

181
201!
221
aut
26!
28!
30!
32!

nonou

0ot

i

341

34!

+2000000E+D1
« 2400000 E+D2
. 7200000 E+D3
< 4P 320D0E+DS
« 362882BE+D T
«47900 1 6E+09

871 7829E+11

.2092279E+14

cBABSITLUE+1 6

.24329P2E+19

.1124001E+22

cEORLARAE+DA

40 32915E+27

3P 48BRIE+30

.2652529E+33

.26313B8E+36 :
EXCEEDS CAPACITY OF PROGRAM.
.0PP00BBE+3D

End of expected program output.

STATEMENT AND FORMAT SPECIFICATIONS

Table 16-3 Statement Specifications

STATEMENT FORM

WHERE

prohibited statement number,
N indicates a nonexecutable
statement)

(R or P indicates a required oxi :

COMMENT __INP | “C” in column 1

columns 2 through 80
will be ignored.

CONTINUE CONTINUE control goes to next
) statement.
ARITHMETIC v=—e variable name—
expression.
GO TO GO TO n in is a statement number.

GO TO (@, ..., o), 1

1 <1< m and control
goes to statement n;. i is
a nonsubscripted integer
variable.

iF (E) n,, 1y, Ty

1 -
. I
F4

¢
L
[4
[4
AN

15-50

Table 16-3. Statement Specifications (Cont.)

STATEMENT

FORM

WHERE

DO

DO n i=m,, m,, m,

repeated execution
through statement n
beginning with i=m,,
incrementing by my,
while i is less than or
equal to m,. m’s and i
may not be subscripted.

DO n i=m,, m,

m, assumed to be 1.

PAUSE

PAUSE

temporary halt, resumed
by CONTinue key.

PAUSE n

octal equivalent of the
integer n displayed.

STOP

STOP

must be used to halt
execution of a main
program.

STOP n

octal equivalent of the
integer n displayed.

END

NP

END

an END statement at the|
end of a subprogram tellg

' the compiler there is no

more program.

READ
WRITE

READ (d,)1
WRITE (4, 1) 1

-d is device number, f

is a FORMAT statement
number and 1 is list of
variable names separated
by commas.

FORMAT

NR

FORMAT (k, ,...,k,)

>Tn

k’s are format specifica-
tions

COMMON

NP

COMMON a, b,...,n

a,...,n are nonsub-
scripted variable names

DIMENSION

NP

DIMENSION
ay k). oa, (k)

a’s are array names and
k’s are maximum
subscripts.

FUNCTION

| NP

FUNCTION name
(@;,...,a,)

a’s are dummy arguments
and name must be
defined as a variable
containing the value of
the function.

SUBROUTINE

NP

SUBROUTINE name
(a] 3. .9 a")

a’s are dummy arguments
and name may not

{ appear elsewhere in

the subroutine.

15-51

Table 16-3 Statementi Specifications {(Cont.j
STATEMENT FORM WHERE
CALL CALL name a’s are actual arguments

@ ,...,a) of a subroutine and may
be expressions.
RETURN RETURN for subroutines, control
returned to statement
following CALL. For
functions, evaiuation of
expression in calling pro-
gram 1s resumed using
value of the function.
EQUIVALENCE | NP [EQUIVALENCE v's are variables or sub-
vy y VL) s , scripted array names.
(V‘n’ ’ “"n) .
Table 16-4. FORMAT Specifications
KIND FORM WHERE
Integer | riw It is the repetition count; w is total
! jfield width in characters.
; Floating Point} rFw. d r is the repetition count, w is field !
i (Decimal) width including sign and decimal
point, and d is number of charac-
ters to right of decimal point.
Exnonential rEw d r is the repetition count, w is field
width including sign, decimal point,
and d is the number of characters
in exponent.
Alphanumeric | rAw r is the repetition count, w is field
: width.
H (Hollerith nHcharacters |n is total number of characters fol-
or Literal) ‘characters’ lowing H. Parentheses in each for-
' mat statement must balance. Char-
acters enclosed within single quotes
(SHIFT/7) are also printed.
Parentheses n {specification)l format specification in parentheses
is repeated n times
Carriage indicates beginning of a new dafa
Control

record.

15-52

STORAGE ALLOCATION
Representation of Constants and Variables
INTEGERS
Integers are each allocated one machine word. They are repre-
sented in two’s complement binary.

p | 11
sign . Two’s complement magnitude

Positive numbers in two’s complement bmaly are represented as-
straight binary with the first bit zero. '

0 11 111 111 111
37775 = +2047,0, the largest positive integer.

Negative numbers are represented by replacing each 0 bit with .
a 1 and each 1 bit with a 0, then adding 1 to the binary result.

+1 is

0 00 000 000 001

-1 is 1 11 111 111 110|+l= 111111 111 1117777

The largest negative number is —2048 which is represented by
40004 or

1 00 000 000 000

REAL NUMBERS

Real numbers are each allocated three machine words. They
are represented as a binary mantissa multiplied by 2 raised to a
binary exponent:

Word 1 .

0 1 89 11

sign exponent mantissa

Word 2 :

0 11

mantissa

Word 3

0 11

mantissa -

The sign of the number is bit 0 of word 1 (0=+, 1=—). The
value and sign of the exponent are obtained by subtracting
1 000 000, (or 2004) from bits 1 through 8 of word 1.

15-53

Example 1

110 000 001 100
—0—
Sign: 1o

Exponent: 10 000 0001,
Mantissa: .100,
Exponent = 2013—2005=13
Mantissa = .44

No. = — .44 X 231
=—1/2 X 2 = —1
- Example 2
010 000 101 100
0
__0..
Sign: 0.
Exponent: 10000 101,
Mantissa: 1.

Mantissa = .44
Exponent = 2053—2005=355
No. = .44 X 245

=15 x 32 = 16

Storage of Arrays
Array variables are stored in core according to USA Standards,
in columns and from top to bottom. For example, the array 1J

DIMENSION IJ(53

if started at location 0705 would be stored:

01 i1
IRIE) 0705
i@ 0706
IT (3) 0707
I (4) 0710 -
I 5 0711

15-54

The real array, T

DIMENSION T(3)

starting in Jocation 0612 would appear:

01 89 11

T [0612
0613
| 0614
T [] 0615
0616
0617
T 3) [0620
0621
0622

Two-dimensional arrays are stored as shown below.

-

DIMENSION I(4,2)

01 11

1(1,1) _ 0566
12, 1) - 0567
1(3,1) 0570
I@4,1) - 0571
1(1,2) 0572
1(2,2) 0573
1(3,2) 0574
1(4,2) 0575

In the array A(M(J, K)), M is a two-dimensional integer array
stored as indicated above. No element of M may be less than 1.

If the element M(3, 4) contains the integer 7, then A(M(3, 4))
will be evaluated as A(7). The largest integer stored in M must
not exceed the dimensions of A.

REPRESENTATION OF N-DIMENSIONAL ARRAYS
Although arrays of more than two dimensions are illegal, the
values of the subscripts of larger arrays may be calculated by using
the following algorithm:
i1 +D*(1,—1)+D*Du(iy—1)+. . .D1*D.. . Dy(i,—1)

15-55

where the subscript values are iy, i.. . .I, in an array whose dimen-
sions are Dy, D.. . .D,.

Subprograms may be written to compute and insert subscript
values in such illegal arrays. For example, in an array A(3, 4, 5),
the following subprogram inserts the value of element A(N1, N2,
N3): '

DIMENSION ARRAY (605
READ (1:5) N1.N2.N3,VALUE
I=NL+3%(N2-1 2 +3%4%(N3-1)
ARRAY(I)=VALUE

5 FORMAT (3I1,F5.3)
END

Common Storage Allocation

Common storage begins in absolute location 200 in field 1.
Variables are assigned locations in the common storage area in
ascending order as they appear in COMMON statements.
For example:

COMMON A-JsX
DIMENSION A{(Z2,23,40(4)

would be stored as follows.

- 200
A1, 1) L 201
202
, 203
A2, 1) 204
205
206
A(l,2) 207
210
_ 211
A2,) 212
- 213
) B 214
) 215
)
)

~ 5 L

4190

217

2.0
L LS

o 9

w

15-56

NOTE
K does not appear in a DIMENSION statement.

If the COMMON statement of another subprogram defines

COMMON J
DIMENSION J(5)

J(1) through J(5) will be assigned to locations 200 through 204
respectively, thus overlapping the variables A(l, 1) and A(2, 1).
The Loader is not aware of this, therefore it is advisable to make
COMMON statements identical in all subprograms in which they
appear. |

However, the statements

COMMON DUMMY.»J
DIMENSION DUMMY(2,2),J(4)

would not produce overlapping and could be used in subprograms.
In the example above, DUMMY is an arbitrary variable which-
need not be used in the subprogram. -

IMPLEMENTATION NOTES
Implied DO Loops

Because of core memory restrictions, 8K FORTRAN does not
have implied DO loops in READ and WRITE statements. How-
ever, a simple way to circumvent this restriction has been imple-
mented. Normally a carriage return/line feed (CR/LF) is produced
at the end of each WRITE statement. The CR/LF can easily be
suppressed by terminating the WRITE statement with a comma.
The CR/LF can be generated explicitly in one of two ways:

1. By using a WRITE (d, f) instruction.
2. By using a FINI pseudo instruction.

The second method is more efficient since it generates only four
words of code, whereas the first method will generate somewhat
more than that. For example, the following statements:

DO 10 J=1,M
10 WRITE (1,28)> (ACJ,K)-K=1,N)
20 FORMAT (1QF7.3)

15-57

ree QX7

which are not legal in 8K FOR

DO 15 J=1,M
DO 10 K=1,N

10 WRITE (1,22) AC(JI5K),
15 WRITE (1,20)

20 FORMAT (F7.3)

or

DO 15 J=i-M
DO 1@ K=1,N

12 WRITE (1528) AC(JI>KIY,
15 FINI
20 FORMAT (F7.3)

The second method is preferred for more efficient utilization of core
memory. Note that it is not necessary to specify a repetition count in
the FORMAT statement since the I/O handler initializes itself to
the beginning of the FORMAT statement each time the WRITE
statement is executed.

FORMAT Handling

For more complicated FORMAT handling a somewhat different
technique can be used. For example:

WVRITE (1,20) (AC(KI),K=1,N)
20 FORMAT (F7.2:2E15.86)

which again is not legal in 8K FORTRAN, could be written as
follows:

{(comma suppresses CR/LF)

" WRITE (1,200,
DO 10 K=1l,N

1z CALL IOHC(AC(KY)
FINI
20 FORMAT (F7+.2,2E15.6)

In the example above, the statement WRITE (1, 20), generates the
following assembly code:

CALL2,WRITE
ARG (1
ARG \2g

15-58

- The statement CALL IOH (A(K)) will generate code to call the
subscripting routine SUBSC and will then generate the following
code: ' .

CALL 1,IOH
ARG [0

where [0 is a temporary location generated by the compiler. Finally
the FINI pseudo instruction will generate the following: .

CALL 1,ICH
ARG 0

which will cause execution of the WRITE statement to be com-
pleted. ,

‘Although only WRITE statements have.been shown in the pre-
vious examples, the ‘same techniques apply equally to READ -
- statements. To read in an array of arbitrary size, one might use the
following FORTRAN 1V statements

DO 15 I-1,M
15 READ (ID»1080) (ACI,Jd)sJd=1,N)
120 FORMAT (F5.2,F5¢0,2F5.2,2F5.0

‘This will not work with 8K F ORTRAN, but the correct resulfs can .
be obtained using the following.

DO 15 I=1,M
READ (ID,102)
DO 1@ J=1,N

10 CALL IOHCACI,J))
15 FINI

120 FORMAT (F5.2,F5.0,2F5.2, 2F5.0)

Numeric Input Conversion
In general, numeric input conversion is compatible with most
other FORTRAN processors. A few exceptions are listed below:

1.. Blanks are ignored except to determine in what field digits

15-59

fall. Thus numbers are treated as if they were right justified
within a field. In an F5.2 format, the following:

12
12
.12
78012
would be read as the number 0.12.

5 A null line delimited by twe CR/LFs will be treated as a
line of blanks, and blanks will be appended to the right of a
line (if necessary) to fill out a FORMAT statement. Thus:

READ(1,33)A5B
30 FORMAT (4HA = »F7.2/4HB = »F7.2)

would all be identical under an F5.2 format. Ii an entire line
is blank, numeric data from that line will be read as zeros.

3 No distinction is made between E and F format on input.
Thus

S mE T

would all be read identically under either an F5.2 or E5.2
format.

Alphanumeric Data Within FORMAT Statements _

Alphanumeric data may be transmitted directly from the FOR-
MAT statement by two different methods: H-conversion or the use
of single quotes .

Hollerith (H) format is used to output data only. An attempt to
use H format specifications with a READ statement will cause char-
acters from the format field to be either typed or punched. This may
" occasionally be a useful feature since it provides a simple way of
identifying data that is to be read from the Teletype. For example,

sb fa¥inuing inctruet .
ihie foilowing instructions:

FORMAT (°*PROGRAM COMPLETE®)

15-60

would cause A = and B = to be typed out before the data was read.

The same effect is achieved by merely enclosing the alphanumeric
data in single quotes. The result is the same as in H-conversion; on
input, the characters between the single quotes are replaced by input
characters, and, on output, the characters between the single quotes
(including blanks) are written as part of the output data. For ex-
ample, when referred to from a WRITE statement,

5@ FORMAT ('PROGRAM COMPLETE")

would cause PROGRAM COMPLETE to be printed. This method
eliminates the need to count characters.

Special I/0 Devices
I/O can be performed on devices other than Teletype and high-
speed paper tape reader and punch in several different ways:

1. If it is desired to use other devices in place of the high-speed
paper tape reader and punch, rewrite the Ultility library sub-
routine defining the entry points-for the desired input and -

- output devices as HSIN and HSOUT respectively. The source —
tape for the utility subroutine is available from the program
library and is very short. Refer to Chapter 14 for more
information.

2. 1If it is desired to input or output on a special device but not
in ANSCII format write a subroutine to handle the particular
device in the SABR assembly language. For more informa-
tion refer to Chapter 14.

3. If it is desired to add additional devices which can be used
with READ and WRITE statements, then edit part I of the
Library Subroutine IOH. New entries must be made in the
device transfer table at the beginning of IOH. Copies of this
source tape and listings of the library subroutines are avail-
able from the program library. The service routines for the
additional I/O devices must be written in SABR assembly
language and can then be assembled along with the revised
version of IOH.

4. Programs written in SABR language can call PAL subrou-
tines in various ways:

a) A JMS 7000 instruction will call a PAL program which
starts at location 7000 in the same memory field. '

15-61

b A CONTINUE (or PAUSE) statement might be inserted
in the user’s FORTRAN program. Then JMS to the
PAL subroutine may be inserted using the switch regis-
ter.

It is possible to load any size. PAL III program linkage with an
8K FORTRAN program by merely dimensioning an integer vari-
able to the proper size for the PAL III program. This offers two
advantages, virtuaily unlimited size programs in PAL III can be
linked to 8K FORTRAN main programs, and none of the library
routines are disturbed by this linkage.

Chapterlo

 F loating Point
& Math Routines

[REY

@)

o

TABLE OF CONTENTS

' Floating Point System S SRR UOURURURURORIOY. > 16-5
Floating Point Representationcccccevveennn... 16-5
StOTAZE ..o, 16-6
Normalizationcccoevviiieiiiiiiiieee e 16-6
Instruction Set ...l e 16-7
Interpreteroocooiiiiii e 16-9

Floating Point Package Versions ... 16-10
Assembly Instructionsccooeeeviieein., - 16-11
Input Routine e et 16-11
OVErflow e, 16-13
Output Routine ... 16-14
Output Controller e et ——————————aia—iaes - 16-15 -
User Subroutinesc..iccceievmieriirecrsienene. s— - .16-15 .
Summary of Basic Packagec.ocooeviiiiviicennn, - 16-16
Floating Point Algorithmsc.ccoocoeviiiiiiiee - 16-17
Fixed to Floating/Floating to Fixedc.cccccocvviunen... 16-19
Extended Floating Point Package 16-21
Using Extended Functionscccocoeveiiiviccnne. 16-24
Math Routines e S 16-25
Implementation Notesccooooiiiiiiiii, 16-27
Tape Formatccccoeovmvvieievicciciciinin, e 16-27
SIENS e 16-28
External Callsccooooviiiiiiiiiiicece e 16-28
Program Controlcccooooiiiiiiiiiiiiee 16-28
Errorsoooooiiii S e, 16-29

16-3

[

o

FLOATING POINT SYSTEM

The floating point system maintains a constant number of
significant digits throughout programmed computations and per-
forms its own input, arithmetic and output operations.

Floating point notation is particularly useful for computations
involving numerous multiply and divide operations where operand
magnitudes may vary widely. The system stores very large and very
small numbers by saving only the significant digits and computing
an exponent to account for leading and trailing zeroes..

Floating Point Representation :
A floating point number consists of a mantissa and an exponent
such that the mantissa, multiplied by the base (radix) of the num-
ber system in use, raised to a power as supplied in the exponent,
gives the value of the number in fixed point notation.
As an example, in fixed point notation the number twelve can be
represented as

12
or '
12.0

In floating point notation with radix of 10, the number might
appear as '

A2+ 107
where the mantissa is .12 and the exponent, 2.
A fraction, such as twelve ten-thousandths, is represented as
.0012
in fixed-point notation. It appears in floating point representation as
12 - 102
16-5

A =

the minus sign before the exponent indicating that the significant
digits of the mantissa are to be shifted right from the decimal point

BINARY NOTATION
With radix of two, the decimal number twelve is represented as

1100

Its representation in floating point format is, logically,

1NN « 24
V)

i
LLAVY

<

In computer operations there is no necessity for keeping track
of the base; all operations are in binary. Multiplication and divi-
sion are accomplished by shift operations: each one-place shift

1afs i
o the left represents multiplication by two; each equivalent shift

to the.right represents division by two (see Introduction to Pro-
gramming, Chapter 1). Thus, the binary exponent is used to keep
track of the number (and direction) of shift operations necessary
to correctly scale the mantissa.

Storage

The floating point system utilizes three consecutive locations,
registers 44, 45 and 46, to store the exponent and double precision
mantissa.

BiNARY EXPONENT!
EXPONERT] TWOS COMPLEMENT
SIGNED QUANTITY
o} 11
SIGN OF HIGH ORDER
MANTISSA MANTISSA
12 23
LOW ORDER
MANTISSA
24 . 35

These registers form the ficating pseudo accumuiator.

Normalization
in computmg a mantissa from decimal input the system uses

12 < IMANTISSA| < 1.

107 o
10-0

The input value is said to be normalized when scaled i in this man-
ner. The value of the number is then:

MANTISSA ¢ 2EXPONENT

where the MANTISSA is a signed quantity.

Instruction Set

The basic floating-point operations are:
Load floating accumulator
Store floating accumulator
Add to floating accumulator
Subtract from floating accumulator
Multiply by floating accumulator
Divide into floating accumulator
Normalize floating accumulator

The floating-point instructions are:

Op Code

1

Mnemonic

FADD

FSUB

FMPY

FD1V

FGET

Eftect

Floating Addition
Add the contents of the eﬁectlve ad-
dress to the floating accumulator.

Floating Subtract

Subtract the contents of the effective
address from the floating accumu-
lator.

Floating Multiply

Multiply the floating accumulator
by the contents of the effective ad-
dress.

Floating Divide
Divide the floating accumulator by
the contents of the effective address.

Floating Get
Load the floating accumulator with
the contents of the effective address.

16-7

Op Code Mnemonic

Effect

6 FPUT Floating Put
Store th& contents of the floating
accumulator at the locations speci-
fied by the effective address. The
contents of the floating accumulator
are unchanged.

7 FNOR Floating Normaiize
Normalize the contents of the float-
ing accumulator.

0 is decoded as follows:

Bits 8-11 = 0000

= 0001

= 0010

nntt . 1111
Uvlil 1111

Floating Exit
Return control to following instruc-
tion.

Floating Square
Square the contents of the floating
accumulator.

Floating Square Root :
Take the root of the absolute value
of the floating accumulator.

The PAL III and MACRO assemblers recognize all of these
mnemonics except SQUARE and SQROOT, which may be de-

fined as:

SQUARE = 0001
"SQROOT = 0002

NOTE

The PAL-D disk assembler does not recog-
nize these Floating point mnemonics. Thus
the mnemoenics FADD through FPUT must

P

PRULT TErRee e

hn Swond ao sssarimsy vafassman o
OC 1iXCO aSs Mmemiory ICiciCiiCe Insuuctioiis,

and the mnemonics for FNOR through
QAT ot Lo 3oL e azemae cmyaamll o1
DURNUUL HUSL DC UCHIITU dd UdTL dDYLIVDULS
in any program to be assembled with PAL-D.

16-8

Floating point operations are summarized by the following ex- |
pressions.
FADD Y; 1000; C(FAC) + C(Y) - C(FAC)
FSUB Y; 2000; C(FAC) — C(Y) » C(FAC) |Result is
FMPY Y; 3000; C(FAC) X C(Y) — C(FAC) [rormalized | c(y)
FDIV Y; 4000; C(FAC) + C(Y) —» C(FAC) unchanged
FGET Y; 5000; C(Y)— C(FAC)

-~ FPUT Y; 6000; C(FAC) - C(Y)

FNOR ; 7000; C(FAC) normalized - C(FAC)

FEXT ; 0000, exit from interpreter to instruction following
this command |

SQUARE ; 0001; C(FAC)2 - C(FACO)

SQROOT ; 0002; C(FAC)Y2 — C(FAQ)

Interpreter

All arithmetic operations are called through an interpreter. The
interpreter contains, at all times, the address of the memory loca-
tion containing the next pseudo instruction to be executed. This is -
initially stored when the program enters the interpreter using an
effective JMS 5600. ‘

When the interpreter encounters an instruction with an op code
of 0 and with bits 8-11 of the psesudo instruction equal to 0, it
exits to the next memory location.

Example:

SQROOT=2082

*7

5600

*2002
JMS 1 7
FGET A
SQROOT
FPUT I B
FEXT :
HLT

As Vo33
2000
0200

B, 300

16-9

When this program is started at 0200, it will halt at location
205. The state of the machine will be:

44/ 0002

45/ 2000 floating accumulator contains
46/ 0000 (Y2) « 22 or 2.0

206/ 0003 _

207/ 2000 register A contains 4.0

216/ G000

300/ 0002

30i/ 2000 answer stored here

302/ 0000

FLOATING POINT PACKAGE VERSIONS
The four versions of the floating-point package are:

PACKAGE 1—DEC-08-YQ1B-PB
This is the basic floating-point package, consisting of the basic
input/output routines and basic arithmetic instructions. Its core
limits are:
7, 40-61; 5600-7577

PACKAGE 2—DEC-08-YQ2B-PB
This is the basic package, but with the output modified by the
output controller to allow for formatting of output. Its core
limits are:
7; 40-62; 5400-7577

PACKAGE 3—DEC-08-YQ3B-PB
This is the basic package plus the extended functions. Its core
limits are:
7; 40-61; 5100-7577

PACKAGE 4—DEC-08-YQ4B-PB
This is the basic package plus the output controller and the ex-

. s .
tonded functinne Tte nare limite are-
SV EANAMW WL LM RIA/LANILLIT e ALY WS il s

7; 40-62; 4700-7577

In ali versions of the fioating-point package, the input and output
routines may be called interpretively (see User Subroutines).

16-10

Assembly Instructions

The various versions of the floating point package are assembled
from the floating point source tapes by the following methods:
PACKAGE 1—(DEC-08-YQI1B-PB)—Assemble together, using
PAL-3, source tapes 1 (Basic I/O) and 4 (Interpreter) in that
order.
PACKAGE 2—(DEC-08-YQ2B-PB)—Assemble together, using
PAL-3, source tapes 2 (Basic I/O plus Controller) and 4 (Interpre-
ter), in that order. . '
PACKAGE 3—(DEC-08-YQ3B-PB)—Assemble together, using
PAL-3, source tapes 1 (Basic I/0), 3 (Extended Functions) and
4 (Interpreter) in that order.
PACKAGE 4—(DEC-08-YQ4B-PB)—Assemble together, using
PAL-3, source tapes 2 (Basic I/O plus Controller) 3 (Extended
Functions), and 4 (Interpreter), in that order.

NOTE

Assembly of PACKAGES 3 and 4 yields five
PAL-III RD diagnostics—one each for the
symbols PSINF, PCOSF, PATANF, PEXPF,
and PLOGF. These symbols are used to
insert the proper address constants for the
extended functions into the interpreter’s ex- -
tended op code calling table—see User Sub-
routines.

INPUT ROUTINE

The basic floating-point package contains an input routine to
read characters from the Teletype keyboard. Input format is float-
ing decimal which is converted to floating-point binary format.
The number 726.7 may be typed in any of the following forms: -

726.7
7267E3
1267E+03
+7267E-1
etc.

Input is terminated when a character is typed that is not a part
of a format. The conversion of “12.0.” would be terminated on the
second “.”

16-11

The input routine is entered with an effective JMS 7400. It
returns control to the instruction following the calling JMS upon
receipt of a terminator. The floating accumulator contains the
input number in normalized floating-binary. Register 0057 con-
tains the terminating character in ANSCI], and C(0060) indicates
whether or not there was a valid input.

Example:
*5
7400
*7
567
*2010
J¥S I 5 /INPUT ROUTINE
JaMs 1 7 /CALL FLOATING POINT
FPUT A
FEIXT
JMS I 5
Jvs 17
FPUT 3
FEXT
HLT
As 3
o)
?
g

When this program is started at 0200 and the following is typed:
X2.0Y

The program will halt at location 0210, and A and B will contain

A, O

0

0 and C(57) = (0331, the second TERMINATOR
B, 0002

o T4V TA!

FAYIY IV

00060

The first input was considered a 0 because an “X” terminator

Y

7
was used initially.

16-12

This program could be written to 1gf10re the non-numeric infor-
mation as follows:.

*5
T40 7D
*7
. 5600
*200
JMS 1 5 /CALL INPUT ROUTINE
TAD 60 - /ANY VALID INPUT?
S5NaA CLA ‘ .
JMP « -3 /NO - IGNCRE
JMS 1 7 /YES
FPUT A /STORE IT
FEXT
JMS I 5 /CGET NEXT
TAD 69
5NA CLa ’ /VALID?
JMP «=~3 /NO - ICNORE
JVS I 7 _ “/YES
FPUT 3 ‘ /STCRE IT
FEXT
T _ /HALT
A, 2
0]
: 4]
B @ -
]

A

Register 57 may be used for integrating control characters into
the input. Register 56 is a switch that has the following meaning:

If C(56) = 0, do not type a line-feed after a carriage-return is read.
If C(56) #0, type a line-feed when a carriage-return is input.
This switch is mmally set to 7777.

Overflow

The input conversion routine halts on overflow during calcula-
tion of the mantissa. Typing RUBOUT and pressing CONTINUE
on the console will restart the routine.

Overflow during exponent calculation yields an unpredictable
result; the package may halt in which case it may be restarted as
above.

16-13

"h

b

Capacity of the input routine is approximately from .999999E—
615 to 999999E~|—615

The overflow halt may be eliminated by depositing 7000 (NOP)
into location 7564. If this is done or if the user continues from
the overflow halt without typing RUBOUT, the contents of the
ﬂoatlng accumulator will be unpredictable.

RUBOUT
If RUROUT is struck before an input delimiter, the input rou-
tine is restarted and previous numbers ignored.

¥

The input routine exits with 1 in the floating accumulator.

OUTPUT ROUTINE

The output routine is entered with an effective JMS 7200. Upon
entry the contents of the floating accumulator are converted to
floating-point decimal and typed out in the following format:

= 0.XXXXXXE = XX
If the floating accumulator contained:

44/ 0002
2000 -
0000

and the outpﬁt routine were entered,
+ 0.200000E + 01

would be typed. Control returns to the instruction following the
calling JMS instruction. The contents of the floating accumulator
are lost.

The ﬂeagnn_mvt?_p‘ routine has a switch in location 0055 on

page O: if not equal to 0, carriage-return/line feed follows each

printout (initial value 7777.)
Output scaling errors can cause 2 floating point number, stored

[Ty

A-14
TR Y

correctly in core, to be output incorrectly. Users should preserve
the core image of data to be used in further calculations in a save
area, using the FPUT instruction. Subsequent routines. reference
this save area for needed data. :

The save area can also be punched, via ODT or a binary punch
routine, and loaded when needed.

‘The range of the output conversion routine is pproximately -
the same as that of the input routine. - '

Output Controller

This is an additional routine that modifies the basic output rou-
tine to enable it to format output. It is incorporated in floating point
packages 2 and 4.

The controller is called, like the basic output routine, by an ef-
fective JMS 7200. It requires two pre-set parameters:

C(62) = total number of digits to be output. If C(62) = 0, output
in E format. C(62) is initially set to 0.

C(AC) = number of digits to the right of the decimal point. If
C(AC) =0, do not type a “.” '

If the number in the FAC is larger than the field width allowsﬁ
the sign of the number is typed and the field filled with “X’s”; if
smaller, the field is filled with spaces. |

User Subroutines

When the floating-point interpreter encounters a 0 op code, it
further decodes bits 8-11. If these bits equal 0O, the interpreter
exits. If the bits are nonzero, they are used in a table look-up to
specify the address of a subroutine. The called subroutine may
use the floating-point interpreter, the input, or the output, but it
may not use bits 8-11 to call another subroutine.

For example, the interpreter has a subroutine to negate the
floating accumulator. TIts entry point is 6000. If the negate sub-
routine were to be calted by 0010 in the interpreter mode, 6000
would be placed in address 6554 of the calling table. Input and
output could be called in the interpreter mode if 7400 were placed
in 6555 (0011) and 7200 were placed in 6556 (0012).

16-15

YEGQTE-@.l@
OUTPUT—@@IE
SQUARE=2001

*7

5620

*200
KCC
TLS
Jvs I 7 /ENTER INTERPRETER
lVHUT /CaLl INPUT ROUTINE

QUARE /SQUARE IT

VLGATE /CALL QUTPUT RCUTINE
QUTPUT /CALL QUTPUT ROUTIN
FEXT . /EXIT
HLT /HALT

s .

~ To avoid timing errors the user. must pattern his typeout rou-
tines after that in the floating point packages:

TSF
JMP -1
TLS
This routine waits for the Teletype flag to be set before executing

of
ENTRY POINTS

S Lnn A
JUVVY ax

7400 Floating Input
7200 Floating Output

NOTE
Both the input and the output routines
require that register 7 contain the interpreter
entry point: 5600.

FLAGS

55 If # 0, type carriage-return/line-feed after output.

56 If = 0, follow each input carriage-return by a line-feed.
57 Contains the nput terminating character

60 Equals 0 if no valid input.

o1 Is nonzero if (a) divide by O or (b) squarc root of a

COMMANDS .

FADD 1000 Floating Add
FSUB 2000 Floating Subtract
FMPY 3000 Floating Multiply
FDIV . -4000 Floating Divide
FGET 5000 Floating Get
FPUT 6000 Floating Put
FNOR 7000 Floating Normalize
FEXT 0000 Floating Exit

SQUARE 0001 Square
SQROOT 0002 Square Root

0003
........ } Expandable

STORAGE

The floating accumulator is in registers:
44 — Exponent
45 — High Order Mantissa -
46 — Low Order Mantissa

Floating Point Algorithms

ADDITION

Floating-point addition is carried out by first aligning the binary
points of the two numbers. This is accomplished by scaling the ~
smaller number to the right. Then the mantissas are both scaled
right once so that overflow will not occur into the sign bit. A 2’s
complement addition of the mantissas is then ‘made. The result is
normalized and control returns to the interpreter. This may be
represented as:

Can operands be aligned? —l

Yes No
Align Exponents v
Add Mantissas Put larger number in FAC
Normalize

Return to Interpreter <

16-17

SUBTRACTION
Floating-point subtraction is accomplished by negating the op-
erand, and then calling the addition subprogram.

Negate Operand
Call Addition

MULTIPLICATION

Floating-point maultiplication is accomptlished by adding the
ponents together and then performing a double-precision maltl-
plication. The result is normalized and control returns to the in-

terpreter.

Add Exponents

Multiply Mantissas carrying result to 35 bits
‘Normalize

Return to Interpreter

DIVISION

Floating-point division is accomplished by subtracting the ex-
ponent of the divisor from the exponent of the dividend. The
mantissa is divided and the resuit is normalized. Conirol returns
to the interpreter.

.. o
Is divisor = (7 —_

¥ v

No Yes
i, i
Subtract Exponents l,
Divide Mantissas +1 to error flag
Norm;ﬂize Leave FAC unchanged.
| Retum to glterpreter <—_!
SQUARE

The square routine calls the muliiplication routine internally.

SQUARE ROOT

The square root is calculated using Newton’s method in which
an initial appro xmatzep is made and then each succeeding ap-
proximation is calculated. The routine exits when two successive
approximations are equal to within the least significant bit of the

mantissas.

Form first approximation, X;, of /N:
then:

N
F_>Xi+1 =15 (Xl + _X—

is |X;— Xi+; | <least significant bit?

/

Yes

No

Return to interpreter

ERROR FLAG ,

Division by 0 causes C(61) to be incremented by 1. The FAC
is unchanged.

Attempting to extract the square of a megative number causes
C(61) to be incremented by 1. The root of the absolute value is
taken.

The contents of 61 are set to 0 at the beginning of each sq.uare'

root operation (but not at the beginning of each divide operation).

EXPONENT UNDERFLOW
The FAC is set to zero on the occasion of exponent underflow.

Fixed to Floating/Floating to Fixed
Since the floating-point package stores numbers in the following
format:

SIGNED EXPONENT 2's COMPLEMENT SIGNED MANTISA

——IMPLIED BINARY POINT

and since the exponent indicates where the real binary point is,
this information may be used to convert a fixed point number to
floating point or a floating point number to fixed point.

For example, assume that there is an integer in the accumulator

16-19

1

that is less in magnitude than 2047. To float this number, the fol-
lowing sequence of steps may be employed:

DCA 45 /PUT INTO HICH-ORDER MANTISSA
DCA 46 /PUT # INTC LOW-ORDER MANTISSA
TAD i3 /i1 (12 INTC

Cs DCA 44 /EXPONENT
JMS 1 7 /CALL INTERPRETER
FNOR NORMALIZE
FEXT /LEAVE INTERPRETER

Cl3> 913 /11 (DECIMAL)D

At point C, we have set the binary point of the integer to the right
end of the high order mantissa word, or eleven (decimal) locations
to the right of the implicit binary point.

To float this number, the floating accumulator is scaled right
until the exponent contains the location of the desired binary point.
To fix the floating accumulator as an 11-bit signed integer, the
following sequence of coding may be empioyed:

CLA
TAD 4y /FETCH EXPONENT
SZA SMA /1S THE NUMBER<1?
JmP .+3 /NO:
CLA /YES: FIX IT TO O
JMP DONE+1
TA M13 /NO: SET BINARY POINT AT
sNA /11¢18> PLACES TO RIGHT OF CURRENT POINT
JMP DONE /IT IS ALREADY THERE: ALL DONE
sMA /TEST TO SEE IF IT IS TOO LARGE
JMP ERROR /YES: NUMBER >2%%i]
DCA 44 /NO: SET SCALE COUNT
GO CLL /8 TO C(L)
TAD 45 /FETCH MANTISSA
SPA /1S IT <B?
CML /YESt PUT A ! IN LEFT BIT
RAR /SCALE RIGHT
DCA 45 /RESTORE IT
15z a4 /TEST IF SHIFTED ENOUGH
JMP oz /NC: CONTINUE
DONEs TAD 45 /ANSWER IN C(AC)
Ml 3, -13 /-11 (DECIMAL)

10 AN
10-4U

This may be coded as a subroutine.

EXTENDED FLOATING POINT PACKAGE
The extended floating point package prov1des the following addi-
tlonal operations:

0003

0004

0005

0006

0007

SINE

Stne: take the trigonometric sine of the floating ac-
cumulator (radian measure); return the result in the
floating accumulator.

Cosine: take the trigonometric cosine of the floating
accumulator (radian measure); return the result 111
the floating accumulator.

Arctangent: compute the angle whose tangent is in
the floating accumulator; return the result (radian
measure) in the floating accumulator.

Exponential: compute e(=2.71828 . . .) raised to the
power contained in the floating accumulator; return
the result in the floating accumulator.

Logarithm: take the natural ogaruhm (base=2.71828

.) of the posmve number in the floating accumu-
Iator return the result in the floating accumulator
(N.B.—attempts to take the logarithm of a negative

or zero argument yield an error halt.

The sine routine makes use of the identity:

SIN(X)=COS(21’ ~X)

and subsequently calls the cosine routine.

COSINE

The argument is first brought within the range:

—-2—-<X<-§—

by use of the identity:

COS(X) =—COS(X—=)
16-21

The cosine of the resulting angle is computed using a sufﬁment
number of terms of the series:

X2 X-.L X(i

COSX) =l=—5r+ 775

+...

ARCTANGENT :

The arctangent is computed using a sufficient number of te
of the appropriate series, depending on the sign and magmtud
the argument:

TiIl

S
of

XC{ X;—v X7
ATAN(X)=X — . (X2 < 1)
35 g
TA‘ X)=— L2 : X > 1
ATAN)=o ozt -+ (X> D)
1 1 1

ATAN(X)= ——— —

et ... (-13X)

- EXPONENTIAL
The exponential is computed using a sufficient number of terms
of the series:

EXP(X)=1+X+—m +=—+—+ -

LOGARITHM
The logarithm (natural) of the argument is computed using a
sufficient number of terms of the imbedded series:

!
LOG(X)= 2§ (X>0)
I

]
N

SAMPLE PROGRAM
Input is A and B. Output is Y=LOG(COS(A/ B)+ /AB)

16-22

SQROOT=P022 /DEFINITIONS TO ASSEMBLER
COS=0004

LOC=0087

*5

7400

7200

5600

/USES EXTENDED INTERPRETER

*20 0

KCC

TLS :

BEGINs, JMS I 5 /INPUT A
J¥S 1 7. /ENTER INTERPRETER
FPUT A /STORE A
FEXT : JEXIT
JMS I 5 /INPUT B
JMS 1T 7 /ENTER INTERPRETER
FPUT B © /STORE B
FMPY A /6.8
SQROOT /EXTRACT ROOT
FPUT TEMP /STORE IT
FGET A /LOAD FAC WITH A
FDIV B /DIVIDE BY B
COS /TAKE COSINE
FADD TEMP /ADD
LOG /TAKE LOG.
FEXT _
JMS I 6 /0UTPUT ANSWER
JMP BEGIN

As 4
2
4

B» 2
o
0

MP, D

o
0

$

16-23

Using extende
rewritten as:

2

LoG=

INPUT=13

OUTPUT=14

*7

5630

*200

KCC

TLS

BEGIN, JMS I
INPUT
FPUT
INPUT
FPUT
FMPY
SQROOT
FEUT
FGET
FDIY
FCOS
FADD
FLOG
OUTPUT
FEXT
JMp

A, o
o
2

B o
o
0

TEMP, 0
Y
o

$

o
—h,

BEGIN

Uy

(@)

N

unctions the previous sample program can be

/CALL INTERPRETER
/READ A

/STORE 1IT

/READ B

/8.8

S{ABI®R*%e D

Extended Function Operating Domains

SINE, COSINE
‘Trigonometric sine and cosine are designed for:

argument < 10°

No guarantee is made for arguments which lie outside this range;
the user is moreover cautioned that as the argument becomes large
compared with =/2, significance will be lost in the result.

ARCTANGENT |
- Trigonometric sine and cosine are designed to operate for: ‘

argument < 10300
No guaranteé is made for arguments which lie outside this range.

EXPONENTIAL
Exponential is designed to operate for:

argument < 75 (approximately)

No guarantee is made for arguments which lie outside this range.

LOGARITHM . ,

Naperian (or natural) logarithm is designed to operate with all
positive arguments. Negative or zero arguments result in an error
halt, at Loc. 4715 (Package 4) or 5115 (Package 3). Continuing
from the halt will yield unpredictable results. Storing 5700 in place
of the halt will cause LOG to return the argument when the argu-
ment is negative or zero. Because of the methods used, some sig-
nificance will be lost for arguments very close to -+ 1.0.

16-25

16-26

MATH ROUTINES

This chapter outlines the use of the following routines:

Single Precision
Square Root (DEC-08-FMAA-D)
Multiply (DEC-08-FMBA-D)
Divide (DEC-08-FMCB-D)

Double Precision
Multiply (DEC-08-FMDA-D)
Divide (DEC-08-FMEB-D)
Sine (DEC-08-FMFC-D)
Cosine (DEC-08-FMGB-D)

In addition to the above, the following routines are also avail-
able: o

Four-Word Floating Point Package (DEC-08-FMHA-D) -
Logical Subroutines (DEC-08-FMIA-D)

Arithmetic Shift Subroutines (DEC-08-FMJA-D)

Logical Shift Subroutines (DEC-08-FMKA-D)

IMPLEMENTATION NOTES

The following mathematical subroutines may be used, in gen-
eral, by preparing a brief program identifying the routine symbol
- and allocating any registers required for inputting data and storing
answers. The program is assembled along with the desired sub-
routine.

Tape Format
Each of the routines is supplied on an ANSCII-coded tape:
formats are as follows:

Routine Origin Setting "~ Ending
Square Root none $
Multiply (Single Precision) none $
Divide (Single Precision) none PAUSE
Multiply (Double Precision) none (see Note) $

16-27

Routine Origin Setting Ending

Divide (Double Precision) none v PAUSE

Sine *400 _ PAUSE

Cosine | *1000 $
NOTE

The Sine routine calls the Multiply rou-
tine {dou‘jle nremc on) an
has been 1Gaded starting at . :
It Multiply is loaded elsewhere the pointers

to it on page 1 of the Sine routi

changed. u

If a tape ending with a PAUSE pseudo-operator is to be as-
sembled alone, it must be followed by a tape containing a dollar
sign only.

Signs
The multiply and divide routines assign swns to products and
dividends algebraically.

In the divide routines, remainders are given the sign of the

External Calls

The sine routine makes use of the muitiply routine (double
precision). The multiply routine must be in core when the sine
routine is used, or must be assembled with the sine routine in user
programs.

The cosine routine makes use of the sine routine. Both the sine
and multiply (double precision) routines must be in core when
cosine is used, or must be assembled with the cosine routine in
USer programs.

Program Control ‘
When a routine has been executed program contro! returns to
the next sequential location to the last argument following a JMS
or JMS I instruction.
As an example, in the Divide routine (single precmon see

Py at st Tt - ~ .y RACT ”
Table 16-1) control returns to JMS I + 3.

If nc arguments follow the jump instruction, as in the sauare
root routine, control returns to the jump instruction —§~1.

16-28

Errors

" The Divide routines, both single and double precision, make
certain error checks and return identical codes in the link and
accumulator. ‘

Errors for which checks are made are zero divisor, quotient over-
flow and fractional quotient. The double precision routine checks,
additionally, for non-identical signs in the d1v1dend

Error codes are as follows:

~Error - _ Link Accumulator
Zero Divisor 1 7777
~ |Quotiént Overflow 1 0000
{Fractional Quotient 1 7776
Non-identical signs 1 ST77
in dividend (double '
Precision only)

16-29

Table 16-1.

‘Mathematical Routines
SINGLE PRECISION

PV

Calling } Location &
Name Mnentonic Sequence /\I‘é;llmcnls Limits Sign Result Accuracy Sign
Square SQRT TAD addressX | X. Number]O<N<21'«5](Abso- Closest] AC: 6 bits | Assumed +
Root JMS I SQRTFYT for root lute root
Size: 27* . extrac- | value) . :
. tion Remainder SQR1: 12 bits| Assumed 4~
L]
HLT l I :
SQRTPT, SQRT I) l
X, 0000 |
Multiply MULT TAD addressX | X, Multi-]:22047,, Bit0 Product | AC:: 10 bitsV AC bits 0
) JMS MULT plier of AC , ' and 1
Size: 54 argumenty Y, Multi- {:£2047,, "IMS-1 MPI1: 12 bitsl each con-
X, 0000 plicand bit 0 l . | tain sign
Divide TAD addressX | X. Dividendy+223—1 [Bit 0 of |Quotient; AC: 11 bits} AC bit O-
Size: 130] DIVIDE IMS 1 DIVDP " high order high order
argument (Y) | Y. Dividend]::2047,,, |word Remainder HDIVND: 11| HDIVND
argument (Z) low order bits bit O
. Z. Divisor Bit 0 of I I
, . 1IMSE4-2
L]
r | |
DIVDP, DIVIDE
X, 0000 |
DOUBLE PRECISION
Multiply | DMUL TMS T DMULTE X Mult. TE3ET B 0 of | Product T AC ™15 bits| AC bits 0
Size: 175 addressX plicand IMS—1 : B: 12 bits and 1
addressY Y. Multi- Bit 0 of I C: 12 bits] each con-
. plier IMS4-2 D: 12 bits! tain sign
[]
; | | |
HLT :
X, 0000 l I
0000
Y, 0000
0000 I
DMULTP, DMUL l 1

*Core spaée requirement (octal)

1€-91

Table 16-1. Mathematical Routines (Cont.)
DOUBLE PRECISION

Calling Location &
Name Mnemonic Sequence Arguments Limits Sign Result Accuracy Sign
Divide - DUBDIV - TAD addressX | X, Dividend|:+2%7—1 [Bit 0 of Quotient |AC: [1 bits IAC bit 0
Size: 307* JMS 1 DDIV Y. Divisor high order DIVND-}-4: 12
addressY word bits
. Remainder DIVND+-1: 11 DIVND-1
. bits bit 0
.
HLT
X, 1
0000
0000
0000
0000
Y, 0000
0000
DDIV, DUBDIV
Sine DSIN IMS T SINP X. Radian —4<X<4IBit 0 of [Sine AC: 12 bits { Assumed +
Size: 337 addressX value of high order, (implied bi- (angle
. angle word nary point adjusted
. after bit 0) to first
. ARG+H+1: 12 jquadrant)
HLT bits
SINP, DSIN
X, 1000
0000
Cosine DCOS JMS I DCOSP | X. Radian —4<X<4Bit 0 of [Cosine (See above. (See
Size: 100 addressX value of high ‘orded] Cosine uses above)
. angle word same regis-
. ter as
. Sine)
. HLT
DCOSP, DCOS
X, 1000
0000

*Core spuace requirement (octal)

16-32

 Appendices _

Appendix A2

Permanent Symbol Table
for PDP-8 Assemblers

PAL III, 4K PAL-D, 8K PAL-D, and 8K SABR

The following are the most commonly used elements of the
PDP-8 instruction set. For that reason they are found in the per-
manent symbol table within the assemblers. These instructions
are already defined within the computer. For additional informa-
tion on these instructions and for a description of the symbols
used when programming other, optional, I/O devices, see the
1970 Small Computer Handbook, available from the DEC Pro-
gram Library.

MACRO

MACRO has, at present, 174 symbols in its permanent symbol
table. Because many of these instructions are not used by every
user and take up valuable space, it is recommended that you delete
the present MACRO permanent symbol table with the EXPUNGE
pseudo-op and recreate it to correspond with the PAL III and
PAL-D permanent symbol table (below) as explained under the
FIXTAB pseudo-op, including in the new table any additional
instructions that are needed for optional equipment.

- INSTRUCTION CODES

Mnemonic Code Operation Event Time
Memory Reference Instructions

AND 0000 Logical AND

TAD 1000 Two’s complement add

ISZ 2000 Increment and skip if zero

INC! 2000 Nonskip ISZ

DCA 3000 Deposit and clear AC

IMS 4000 Jump to subroutine

IMP 5000 Jump

1 Not present in PAL III, 4K PAL-D or 8K PAL-D.
A2-1

Mnemonic Code Operation ' "Event Time

Floating-Point Instructions?

FEXT 0000 Floating exit
FADD 1000 Floating add

FSUB 12000 Floating subtraction
FMPY 3000 Floating muitiply
FDIV 4000 Floating divide
FGET 5000 Floating get

EPUT 6000 Floating put

FNOR 7000 Floating normalize

Group 1 Operate Microinstructions

OPR® 7000 Same as NOP
NCP 7000 No operation
1AC 7601 ﬂiCi‘cmcuL AC 3
RAL 7004 Rotate AC and link left one 4
RTL 7006 Rotate AC and link left two 4
RAR 7010 Rotate AC and link right one 4
RTR 7012 Rotate AC and link right two 4
CML 7020 Complement link 2
CMA 7040 Complement AC 2
CLL 7100 Clear link 1
CLA 7200 Clear AC 1
Group 2 Operate Microinstructions _
HIT 7402 Halts the computer 3
OSKR 7404 Inclusive OR SR with AC 3
SKP 7410 Skip unconditionally 1
SNL 7420 Skip on nonzero link 1
SZL 7430 Skip on zero link 1
SZA 7440 Skip on zero AC 1
SNA 7450 Skip on nonzero AC 1
SMA 7500 Skip on minus AC 1
SPA 7510 Skip on positive AC (zero is 1
CIA _ positive)
Combined Operate Microinstructions

7041 Complement and increment AC 2,3
STL 120 Set link to 1 1,2
GLK* 204 Get link (put }ink in AC, bit 11} 1,4
STA 24 Set AC to — 2
LAS 7604 Load AC v'nt’} SR i,3
2 Not present in 4K PAL-D or 8K SABR
3 Not present in PAL 1ii or 8K SABR.

4 Not present in 8K SABR.

Mnemonic Code

Program Interrupt

IOT> 6000
ION 6001
IOF 6002
Keyboard/Reader
KSF 6031
KCC 6032
KRS 6034
KRB 6036
Teleprinter/ Punch
TSF 6041
TCF 6042
TPC 6044
TLS 6046

High Speed Reader

RSE 6011
RRB 6012
REC 6014

High Speed Punch

PSF 6021
PCF 6022
PPC 6024
PLS 6026

Operation

Turn interrupt processor on
Disable interrupt processor

Skip on keyboard flag

Clear keyboard flag and AC

Read keyboard buffer (static)
Read keyboard buffer (dynamic)

Skip on teleprinter flag
Clear teleprinter flag
Load teleprinter and print
Load teleprinter sequence

Skip on reader flag ’
Read reader buffer and clear

reader flag

Reader fetch character

Skip on punch flag
Clear on punch flag

Load punch buffer and punch

character

Load punch buffer sequence

Event Time

DECtape Transport Type TUSS5 and DECtape Control Type TCO016

DTRA 6761

DTCA 6762

Contents of status register
is ORed into AC bits 0-9
Clear status register A, all

flags undisturbed

5 Not present in PAL IIT or 8K SABR.
6 Not present in 8K SABR.

A2-3

Mnemonic Code Operation Event Time

DTXA 6764 Status register A loaded by
exclusive OR from AC. If
AC bit-10=0, clear error
flags; if AC bit 11=0, DEC-
tape control fiag is cleared

DTLAT 6766 Combination of DTCA and

DTXA |
DTSF 6771 Skip if error flag is 1 or if
DECiape controi flag is 1
DTRB 6772 Contents of status register B is
ORed into AC
DTLB 6774 Memory field portion of status
register B loaded from AC
bits 6-8
Disk File and Control, Type DF328
DCMA 6601 Clear disk memory request 1
. and interrupt flags
DMAR 6603 Load disk from AC, clear 1,2

AC read into core, clear
) interrupt flag
DMAW 6605 Load disk from AC, write 1,3
onto disk from core, clear
erTu p t flag.
sk extended address
and memory address extension
register
Skip if address confirmed
flag =1
DEAL 6615 Clear disk extended address , 1,3
and memory address extension
register and load same from
AC
DEAC 6616 Clear AC, load AC from disk 2,3
extended address register,
skip if address confirmed
flag=1
DFSE 6621 Skip if parity error, data
request late, or write lock
switch flag = 0 (no error)

o
N
®
D e
A
b

DCEA

N
@)
¥
(R

DSAC

o

DFSC 6622 Skip if completion flag = 1 2
(date transfer completed)
DMAC 6626 Clear AC, load AC from disk 2,3

memory address register

7 Not present in 4K PAL-D, 8K PAL-D, or 8K SABR.
8 Not present in 8K SABR.

A2-4

Mnemonic Code

bperation ' Event Time

Memory Extension Control, Type 1839

CDF NO 6201
CIF NO 6202

Change to data field N
Change to instruction field N
Read data field

Read: instruction field

Read interrupt buffer
Restore memory field

Memory Parity Type MP8/1 (MP8/L)1®

RDF 6214
RIF 6224
RIB 6234
RMF 6244
SMP 6101
CMP . 6104

Skip if memory parity error

flag =0 '

Clear memory parity error

flag

% Not present in 8K SABR.
1 Not present in 4K PAL-D, 8K PAL-D, or 8K SABR.

A2-5

Do 7nn MNODLTY A TNADC
IILUDUUL LNALURDY

The following is a list of the 4K and 8K assembler pseudo-ops.
The first section consists of those pseudo-ops which have counter-
parts in the other assemblers. Below the blank space are the vari-
ous pseudo-ops individual to the particular assembler.

PAL III MACRO 4K PAL-D 8K PAL-D 8K SABR
DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL
OCTAL CTAL OCTAL OCTAL OCTAL
FIELD FIELD FIELD FIELD
PAUSE ‘PAUSE PAUSE PAUSE PAUSE
I I I I I
Z Z Z Z
$ $ $ $ $
EXPUNGE EXPUNGE EXPUNGE EXPUNGE
FIXTAB FIXTAB FIXTAB FIXTAB -
PAGE PAGE PAGE PAGE
FIXMRI DEFINE XLIST XLIST ABSYM
DUBL TEXT IFDEF - ARG
FLTG IFZERO BLOCK
TEXT ENPUNCH CALL
NOPUNCH COMMN
ZBLOCK CPAGE
EJECT DUMMY
TEXT EAP
END
ENTRY
FORTR
IF
LAP
OPDEF
REORG
RETRN
SKPDEF
NOTE: The symbols ACH, ACM, and ACL are also present in
the permanent symbol table for 8K SABR. For details, see Chap-
teri4

AN L
AL~

4K PAL-D 10T MICROINSTRUCTIONS
FOR TSS/8 MONITOR
The following instructions are permanent symbols in addition

to those already mentioned, and are unique to 4K PAL-D on
TSS/8.

Mnemonic Code Operation | ~Event Time
Keyboard/Reader .

KSB 6400 Set keyboard break

SBC 6401 Set buffer control flags

KSR 6030 Read keyboard string

Teleprinter/ Punch

SAS 6040 Send a string

High-Speed Reader (Type PC02)
RRS 6010 Read reader string

High-Speed Punch (Type PC03)
PST 6020 Punch string

Program Control _
URT 6411 User run time

TOD 6412 Time of day

. RCR 6413 Return clock rate
DATE 6414 Date
SYN 6415 Quantum synchronization
STM 6416 Set timer
TSS 6420 Skip on TSS/8
USE 6421 User
SSwW 6430 Set Switch Register
CKS . 6200 Check status
ASD 6440 Assign device
REL 6442 Release device
DUP 6402 Duplex
CON 6422 Console

A2-7

Mnemonic Code Operation Event Time'

File Control

REN 6600 Rename file
OPEN 6601 Open file

CLOS 6602 Close file
RFILE 6603 Read file
PROT 6604 Protect file
WEILE 6605 Write file

CRF 6610 Creaie fiie
EXT 6611 Extend fle
RED 6612 Reduce file
FINF 6613 File information
SIZE 6614- Segment size
SEGS 6406 Segment count
ACT 6617 Account number
WHO 6616 Who

PAL III EXTENDED SYMBOLS TAPE
The PAL III Extended Symbols Tape, available from the Pro-
gram Library, contains symbols for the following hardware options

(which are further described in the 1970 Small Computer Hand-

LAanl
OO .

‘Extended Arithmetic Element, Type KE8/I, KE8/L
Power Fail Detection and Restart, Type KP8/1, KP8/L
Disk File, Type RS08 and Control, Type RFO8

Card Reader and Control, Type CRR/T CR&/I.
-General Purpose Converter and Multiplexor Control, Type

AF01A

Guarded Scanning Digital Voitmeter, Type AFO4A
Real Time Clocks. Type KW8/I, KW§/L

Storage Tube Display Control, Type KV8/I, KV8/L
Incremental Magnetic Tape Controller, Type TRO02
Oscilloscope Display, Type VC8/1, VC8/L
Incremental Plotter and Control, Type VP8/I, VP8/L.
Automatic M agxetic Tape Control, Type TCS58

Time Sharing Hardware Modification, Type KT8/1

_____ .] TX Ly A _. A SNt A
n 5 !ir{! !u—* \Anl'} e And nnuz g nhafgs _-_)/pt: AL A

Digital to Anak)g Converter, Type AAO1A, AAOSC/AAQ7
Synchronous Modem Interface Ty ype DPO1AA

swarlvy

Lme Printer, Type LP08

A2-8

Appendix B2
Character Codes

ANSCIH-1 Character Set

: 8-Bit 6-Bit 8-Bit 6-Bit
Character { Octal QOctal Character Octal Octal
A 301 01 ! 241 41
B 302 02 ” 242 42
C 303 03 # - 243 43
D 304 04 $ 244 44
E 305 05 | % 245 45
F 306 06 & ' 246 46
G 307 07 i 247 47
H 310 10 (250 50
I 311 11) 251 51
J 312 12 * 252 52
K 313 13 + 253 53
L 314 14 ’ 254 54
M 315 15 : - 255 55
N- 316 16 . 256 56
0] 317 17 o/ 257 57
P 320 20 ' : 272 72
Q 321 21 ; 273 73
R 322 22 < 274 74
S 323 23 = 275 75
T 324 24 > 276 76
U 325 25 ? 277 77
v 326 26 @ 300
w 327 27 [333 33
X 330 30 \ 334 34
Y 331 31] 335 35
¥4 332 32 0 336 36
0 260 60 « 337 37
1 261 61 Leader/Trailer ;200
2 262 62 LINE FEED Po212
3 263 63 Carriage RETURN 215
4 264 64 SPACE . 240 40
5 265 65 RUBOUT 377
6 266 66 Blank | 000
7 267 67 BELL I 207
8 270 70 TAB b 211
9 271 71 FORM 214

1 An abbreviation for American National Standard Code for Information
Interchange.

B2-1

B2-2

- Appendix C2

Loadi ng Procedures

Initializing the System

Before using the computer system, it is good practice to initialize
all units. To initialize the system, ensure that all switches and con-
trols are as specified below.

Main power cord is properly plugged in.
Teletype is turned OFF.

Low-speed punch is OFF.

Low-speed reader is sét to FREE.
Computer POWER key is ON.
PANEL LOCK is unlocked.

Console switches are set to

DF =000 IF =000 SR = 0000
SING STEP and SING INST are not set.
8. High-speed punch is OFF.

9. DECtape REMOTE lamps OFF.

The system is now-initialized and ready for your use.

ARG e

Loaders
READ-IN MODE (RIM) LOADER

When a computer in the PDP-8 family is first received, it is noth-
ing more than a piece of hardware; its core memory is completely
demagnetized. The computer “knows” absolutely nothing, not even
how to receive input. However, the programmer knows from
Chapter 4 that he can manually load data directly into core using
the console switches. :

The RIM Loader is the very first program loaded into the com-
puter, and it is loaded by the programmer using the console

C2-1

switches. The RIM Loader instructs the computer to receive and
store, in core, data punched on paper tape in RIM coded format
(see Chapter 4, Vol. 1). (RIM Loader is used to load the BIN
Loader described below.)

There are two RIM loader programs: one is used when the in-
put is to be from the low-speed paper tape reader, and the other
is used when input is to be from the high-speed paper tape reader.
The locations and'corresponding instructions for both loaders are

The “*ocedure For loading ffogtﬂmo\ the RIM Loader into core
is illustrated in Flgure C2-1.

Table C2-1. RIM Loader Programs

Instruction _
Location Low-Speed Reader High-Speed Reader
7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 5031 6011
7770 5367 5367
7771 6034 ' - 6016
7772 7420 7420
7773 ' 3776 3776
7774 3376 3376
77175 5356 5357
7776 _ 0000 06000

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done

Wy nerf : tha + H
by performing the steps illustrated in Figure C2-2, which also

shows how to correct an incorrectly stored mstructmn
When loaded, the RIM Loader occupies absolute locations 7756

through 7776.

ral s
i

——>(Initialize)

Using

Extended

Memory
?

Yes Set *
DF = Desired Field
1F=Desired Fieid

No

Set SR=7756 |j@¢—— —

'

Depress
LOAD ADD
* DECtape users should
load RIM into field O.
No
Yes
Set SR=First

Instruction

'

Depress DEP

'

Set SR=Next
Instruction

'

Depress DEP

C RIM Is Loaded)

Figure C2-1. Loading the RIM Loader
C2-3

a
_/

Using

Extended

Memory
7

Yes Set”’
DF = Correct Field
IF =Correct Field

*No

Set SR = 7756 e ——

Depress LOAD ADD

I

¥

Depress EXAM

MB =
Instruction
7.

No Yes

'

Set SR=MA

'

Depress LOAD ADD

H
i
i

Set SR=Correct
Instruction
1

|
4

Depress DEP

'i
b4

T
!
|
§
i
i

ati
Instructions
Checked

e e et tmnt it et e

C RIM Is Looded j
Figure C2-2. Checking the RIM Loader

BINARY (BIN) LOADER : _

The BIN Loader is a short utility program which, when in core,
instructs the computer to read binary-coded data punched on paper
tape and store it in core memory. BIN is used primarily to load the
programs furnished in the softwaré package (excluding the loaders
~and certain subroutines) and the programmer’s binary tapes.

BIN is furnished to the programmer on punched paper tape in

1 . k] ~ TETRT

T P T™L . TITAX .
RiM-coded format, lhci‘tzuffs, MIN MUSL 82 1IN COIC DeIGTe BIN

can be loaded. Figure C2-3 illustrates the steps necessary to prop-
d

erly load BIN. And when loading, the input device (low- or high-

erly load when loading,
h

speed reader) must be that which was SCieCted when loading RIM.

C2-4

' @-—DL Load RIM 7— —————— tSee Figures C2-1,C2-2

Using

Extended

Memory
?

Set *
DF = Correct Field
IF = Correct Field

Set SR=7756

'

Depress LOAD ADD

Which
Reader
?

High-Speed Reader Low-Speed Reader

Put BIN Tape _ L Turn TTY To LINE 1
In HSR ¢
Put LSR To FRE
L Depress START] ? lo E
Put BIN Tape
In LSR
L J
Put LSR To START
HSR Stops At l
End Of Tape

L Depress START 1

Reads In
?

L SR Stops At
f T
——“’L Depress STOP ‘}11 End O' e
—
l * Same field settings
as RiM

Remove Tape
From Reader

(BIN Is Loaded)

Figure C2-3. Loading the BIN Loader
C2-5

cupymg absolme locatlons 76”5 throug‘l 775” and 777

BIN was purposely placed on the last page of core so that it
would always be available for use—the programs in DEC’s soft-
ware package do not use the last page.of core (excluding the Disk
Monitor, discussed in Chapter 7 Vol. 1). The programmer must
be aware that if he writes a program which uses the last page of

core, BIN will be wiped out when that program runs on the com-
. rwnter When thic hannpnt the nfﬁmﬂmmer must Ioad REM and

t}u LA Y TY LIN/RE VLKA xa Prwaas, =AW o S

- then BIN before he can load another binary tape.
Figure C2-4 illustrates the procedure for loading binary tapes

into core.

@)
k‘ls.)
(=2

@-—DL Lood BIN 1— ————— —{ See Figure C2-3

Using
Set
tended
E‘::::,'e DF = Desired Field
¥ IF =Field Of BIN

LDepress LOAD ADD]

%8
High-Speed Reader Low-Speed Reoder

L Turn TTY Yo LINE]

'

L Put Tape In HSR] L Put Tope InLSR]

L Set SR=3777]

! LSef LSR To START]

L——ﬁ—,—u{ Depress START 14——————J

Tope Stops
At Beginning Of
Trailer Tape

?

[Depress CONT l

Figure C2-4. Loading A Binary Tape Using BIN
C2-7

C2-8

S A
Absolute address: A binary number
that is permanently assigned as

the address of a storage location.

Absolute value function, FOCAL,
11-25

ABSYM Pseudo-op, SABR, 14-23

Accumulator: A 12-bit register in
which the result of an operation
is formed; abbreviation: AC.

- Accumulator, floating, 16-17
Accuracy, Increased FOCAL, 11-34
Addition, 16-17 -
Additional FOCAL Segments, 11-34

Address: A label, name, or number
which designates a location where
information is stored.

Address assignments
4K Assemblers, 13-21
8K Assemblers, 14-37
Algorithm: A prescribed set of weil-
defined rules or processes for the

solution of a problem in a finite
number of steps.

Algorithms, Floating-Point, 16-17

Alphanumeric: Pertaining to a char-
acter set that contains both letters
and numerals, and usually other
characters.

Alphanumeric data, 15-22, 15-60
Alphanumerics

SABR, 14-11

FOCAL, 11-29
ALT MODE key

BASIC, 12-50

FOCAL, 11-17
ANSCII character set, B2—1
Arctangent, 16-21; FOCAL, 11-26
ARG pseudo-op, SABR, 14-26
Argument:

1. A variable or constant which
is given in the call of a sub-
routine as information to it;

2. A variable upon whose value

the value of a function de-
pends;

Array storage

Index/Glossary

3. The known reference factor
necessary to find an item in
. a table or array (i.e., the in-
dex).
Arguments, passing
SABR, 14-30
Arithmetic expressions
FORTRAN, 15-11
FOCAL, 11-6
Arithmetic operators
BASIC, 12-12
FOCAL, 11-74
Arithmetic statements
FORTRAN, 15-6, 15-8
Arithmetic unit: The component of
a computer where arithmetic and
logical operations are performed.

Array: A set orllist of elements,
usually variables or data.

FORTRAN, 15-54
Array variables,

FORTRAN, 15-11, 15-33, 15-53,
15-54

FOCAL, 11-14
BASIC, 12-11

ASCII: An abbreviation for Amer-
ican Standard Code for Informa-
tion Interchange. See ANSCII,

- A2-1.

ASK statement, FOCAL, 11-17

Assemble: To translate from a sym-
bolic program to a binary pro-
gram by substituting binary oper-
ation codes for symbolic operation
codes and absolute or relocatable
addresses for symbolic addresses.

Assembled binary code

8K FORTRAN, 14-49
SABR, 14-38

Assembler: A program which trans-
lates symbolic op-codes into ma-
chine language and assigns mem-
ory locations for- variables and
constants.

Assembler output,
BLERS, 13-33

4K ASSEM-

Index—1

SABR, 14-38
Assemblers, PDP-8
4K, 13-5

8K, 14-5
MACROQ, 13-41
PAL III, 133

4K PAL-D, 13-65
8K PAL-D, 14-5
8K SABR, 14-9
Assembly
Floating-Point Package, 16-i1
SABR, 14-47

Auto-indexing: When an absolute

M Y i N
location 0010 through 0017 is

addressed indirectiv, the content
cf that location is incremented by
one, rewritten In that same loca-
tion. and used as the effective ad-
dress of the current instruction.

Auto-indexing, 13-23
Automatic paging mode,
SABR, 14-33
Auxiliary storage: Storage that sup-
plements core memory such as
disk or DECtape.
B

Background processing: The auto-
matic execution of a low priority

computer program when higher .

priority programs are not using
the system resources.

Base address: A given address from
which an abscluic address is
derived by combination with a
relative address. Synonymous with
address constant,

BASIC

see Table of Contents, 12-3

error messages, 12-60

example programs,
12-25, 12-31, 12-40

summary of Edit and Control com-
mands, 12-58
summary of functions, 12-58
summary of statements, 12-56
BASIC commands
ALT MODE key, 12
BYE, 12-50
CATALOQG, 12-49
COMPILE, 12-54
DELETE, 12-49

12-7, 12-21,

bl

g
=2

<

EDIT, 12-53
LIST, 12-48
NEW, 12-49
OLD. 12-49
‘REPLACE, 12-48
RUN, 12.46
SAVE, 12-47
UNSAVE, 12-48
BASIC statements
DATA, 12-23
DEF, 12-19
DIM, 12-33
END, 12-41
FOR, 12-34
GOSUB, 12-39
GOTO, 12-37
IF-GOTO, 12-38
IF-THEN, 12-38
INPUT, 12-25
LET, 12-11
NEXT, 12-35
PRINT, 12-27
RANDOMIZE, 12-17

READ, 12-22
REM. 120

1
ANALiYE, L =T

RESTORE, 122
RETURN, 12.40
STOP, 1241 ¢

TAB function, 12-30

Beginning programming

BASIC, 12-5

FOCAL, 11-5

Binarv: Pertaining to the number
system with a radix of two.

Binary code: A code that makes use
of exactly two distinct characters,
0 and 1. Same as object code.

Binary Loader.C2-1;*OCAL, 11-42
Binary output
FORTRAN, 14-38, 14-49
Bir: A binary digit. In PDP-8 com-
puters each word is composed of
12 bits.
Blank lines, 8K ASSEMBLERS,

£ A TN
14-1u

1N A4
L~L5%

Blanks in output

FORTRAN, 15-25

Block: A set of consecutive machine
words, characters, or digits han-

Index—2

dled as a unit, particularly® with

reference to 1/0.
BLOCK pseudo-op, SABR, 14-25

Bootstrap: A technique or device
designed to bring itself into a de-
snred state by means of its own
action, e.g., a routine whose first
few instructions are sufficient to
bring the rest of itself into the
computer from an input device.

Branch: A point in a routine where
one of two or more choices is
made under control of the routine.

Bug: A mistake in the design or im-
plementation of a program result-
1ng In erroneous results.”

Byte: A group of binary digits usu-
ally operated upon as a unit.

C

Cqll: To transfer control to a speci-
fied routine.

CALL pseudo-op, SABR, 14-26

Calling sequence: A specified set of
instructions and ~data necessary
to set up and call a given routine.

CALL statement,

FORTRAN, 15-29, 15-38

Carriage return: The Teletype opera-
tion that causes the next character
to be printed at the left margin.
A non-printing character.

Cairlage return/line feed: Two
Teletype functions often done to-
gether; rolls paper up one line
and moves the printing head to
the left margin.

CDF current data field, SABR,

- 14-40 -

CDFSKP Linkage routine, 14-34

CDISK routine, SABR, 14-82
FORTRAN, 15-31
CDZSKP Linkage routine, 14-35

Central processing wunit: The unit of
a computing system that includes
the circuits controlling the inter-
pretation and execution of instruc-
tions—the computer proper, ex-

cluding 1/0 and other peripheral
devices.

Chaining, SABR, 14-69

Character: A single letter. numeral,

" Command decoder:

~

or symbol used io represent n-

formation.
Character set
ANSCII, A2-1
FORTRAN, 15-8
MACRO, 13-44
PAL 111, 13-7, 13-8
8K PAL-D. 14-5
SABR, 14-11
Clear: To erase the contents of a
storage location by replacing the
contents, normally with zeros or
spaces; to set to zero.
Cline, FOCAL, 11-34
Coding: To write instructions for a
computer using symbols meaning-
ful to the computer, or to an
assembler, compller or other lan-
guage processor.
Coding practices
4K and 8K Assemblers, 13-11
Commniand: A user order to a com-
puter system. Usually given
thrcugh a Teletype keyboard.
That part of a
computer system which interprets

user commands. Also called com-
mand-string decoder.
Commands, Floating-Point, 16-8,

16-17
Comment statements

4K Assemblers, 13-11

BASIC (REM), 12-9
FORTRAN, 15-7

SABR, 14-16

FOCAL, 11-13
COMMN pseudo-op, SABR, 14-24
COMMON statement
FORTRAN, 15-33,
COMMON storage

15-37

SABR, 14-24
FORTRAN, 153-56
Compatability: The ability of an

instruction or source language to
be used on more than one com-
puter. -

Compile: To produce a binary-coded
program from a program written
in source (svmbolic) language, by
selecting appropriate subroutines
from a subroutine library, as di-
rected by the instructions or other

Index—3

symbols of the source program.
The linkage is supplied for com-
bining the subroutines into a
workable program, and- the sub-
routines and linkage-are translated
into binary code.

COMPILE command

BASIC, 12-54
Compiler: A program which trans-
lates statements and formulas

written in a source language into

G diaGviiiav aGuaguase

a FORTRAN bomplier Dsually

generates more than one machine

instruction for each statement.
Compiler error messages
FORTRAN, 15-41

anﬁ:]xng a program

AAAAAAAA

BASIC, 12- 34

Complement (one’s): To replace all
bits in a binary word with 1 bits
and vice versa.

Complement (two’s): To form the

one’s complement and add 1.

Computed GO TO, FORTRAN 15-
16

Conditional assembly: Assembly of
certain parts of a symbolic source
program only if certain conditions
have been met.

Conditional skip: Depending upon
whether & condition within the
program is met, control may
transfer 1o another point in the
program. See Operate micro in-
structions.

Conditional transfer
BASIC, 12-38

Console: Usually the external front

side of a device where controls.

and indicators are available for
manual operation of the device.

Constant: Numeric data used but
not changed by the program.
Constants
ANSCII. 14-16
FORTRAN, 15-8, 13-9,
Numeric, 14-15

14 1&
1==12

15-33

CADIDY
D2ADN,
Continuation lines
FORTRAN, 15-7

CONTINUE statement
F_ORTRAN, 15-18

etk
W

Confroller, output, i6-

Conirol statements
FORTRAN, 15-6, 15-16

Conversational languages

BASIC, 12-5

FOCAL, 11-5

Conversational program: A program
which interacts dynamicaliy with
on-line users, FOCAL, 11-5

Conversion decimal to-binary, 16-11-

| o S 1£ 10
.lU iz

Fioat:ng-to-F:xed, 16-19
Conversion, Numeric, SABR, 14-77

Convert:
1. To change numerical data from
one radix to another.

2. To transfer data from one re-
corded format to another.

Core availability, SABR,
fields, 14-53
Linking Loader option, 14-52
Core mentory: The main high-speed
storage of a computer in which
binary data is represented switch-
ing polarity of magnetic cores.
Correction of errors

BASIC, 12-42
FOCAL, 11-9

Cosine, Fl. Pi. Package, 16-21, 16-
29; FOCAL, 11-27

Count: The successive increase Or
decrease of a cumulative total of
thie number of times an cvent oc-
curs.

Counter: A register or storage loca-
tion (variable) used to represent
the number of occurrences of an
operation (see Loop).

CPAGE pseudo-op, SABR, 14-21

Current address indicator

4K Assemblers, 13-22

Current location counter: A counter
kept by an assembler to determine
the address assigned an instruction
or constant being assembled. 4K
Assemblers, 13-19, 13-21.

Current page or page 0 bit: Bit 4 of
a PDP-8 memory reference in-
struction.

Cycle time: The length of time it
takes the computer to reference
one word of memory.

Index—4

D

Data: A general term used to denote
any or all facts, numbers, letters,
and symbols. It connotes basic
elements of information which can
be processed or produced by a
computer. .

Data break: A facility which permits
I/0 transfers to occur on a cycle-
stealing basis without disturbing
program execution.

Data generating, SABR, 14-25

DATA statement

BASIC, 12-23
Data output, FOCAL, 11-7
Data transmission statements
FORTRAN, 15-26

Debug: To detect, 'locate, and cor-
rect mistakes in a program.

DECIMAL pseudo-op, 4K Assem-
blers 13-28

SABR, 14-20

DECtape I/0

FORTRAN, 15-28
SABR, 14-80

DECtape instructions, A2-3

DEF statement, BASIC, 12-19

Deleting a command

BASIC, 12-50
Deleting a program on Disk
BASIC, 12-48

Delimiter: A character that sep-
arates, terminates, and organizes
elements of a statement or pro-
gram.

Demonstration programs,
14-84 FOCAL, 11-45

Device designator

FORTRAN, 15-28

Device selection code: A 6-bit num-
ber which is used to specify the
device referred to by an IOT in-
struction.

Diagnostic: Pertaining to the detec-
tion and isolation of a malfunc-
tion or mistake.

Diagnostics, see Error Messages.

Digit: A character used to represent
one of the non-negative integers
smaller than the radix, e.g. in
binary notation, either 0 or 1.

Digitul computer: A device that op-

SABR,

erates on discrete data, performing
sequences of arithmetic and log-
ical operations on this data.
DIM statement, BASIC, 12-33
DIMENSION statement
FORTRAN, 15-33, 15-37
Direct address: An address that spec-
ifies the location of an instruction
operand.
Direct Assignment statement, As-
semblers, 13-16
Directory device: A device (such as
a disk) which is partitioned by
software into several distinct files.
A directory of these files (e.g., an

index) is maintained on the device - -

to locate the individual files.
Disk instructions, A2-4
DISKIN, FOCAL, 11-45
Disk I/0

FORTRAN, 15-30

SABR, 14-82
Disk Linking Loader, 14-56
normal loading, 14-62
overlay loading, 14-64, 14-67
error messages, 14-73
Disk Monitor System
FORTRAN, 15-40

4K PAL-D, 13-68

FOCAL, 8K, 11-49
Division, floating-point, 16-18
DO statement,

FORTRAN, 15-17

FOCAL, 11-19, 11-12
Dollar sign ($), 13-30

Double precision: Pertaining to the
use of two computer words to rep-
resent one number. In the PDP-8
a double precision result is stored
in 24 bits. See Chapter 16.

Double precision integers, 13-41

Downtime: The time interval during
which a device is inoperative.

Dummy: Used as an adjective to in-
dicate an artificial address, in-
struction, or record of information
inserted solely to fulfill prescribed
conditions, as in a “dummy” vari-
able. E.g., in the BASIC function
RND(x). where x has no signif-
icance. See also DUMMY pseudo-
op in 8K SABR.

Index—>5

Dummy

arguments, 15-18

statement, 15-36

variables, 14-28

DUMMY pseudo-op, SABR, 14-28

Dump: To copy the contents of ail
or part of core memory, usually
onto an external storage medium.

DUMSUB Linkage routine, 14-36°

E
e, raising to power, 16-21
EAP pseudo-op, SABR, 14-20
Page escapes, 14-33
EDIT command
BASIC, 12-53
Editing command
BASIC, 12-53
Editing phase
BASIC, 12-47
Editor, see Symbolic Editor

Effective address: The address ac-
tually used in the execution of a
computer *nstmct:on

8K, FOCAL, 11-34; loading proce-
dures. 11-49

End of Program, 13-30

End of Tape, 13-30

END pseudo-op, SABR,

END statement
FORTRAN, 1520

LN SN L W)

14-19

Entry pomts, floating-point,
input routine, 16-12

interpreter, 16-9

listed, 16-16

negate subroutine, 16-15

output routine, 16-14
ENTRY pseudo-op, SABR, 14-28
Equal sign, explanation of, 12-11

a LA

Equate statements, 4K Assemblers,

13-16

Equipment requxremems
11-53
EQUIVALENCE statement,
FORTRAN, 15-34, 15-37
Equivalent symbols, SABR, 14-13
ERASE coimimnaind, FOCAL, 11-16
ALL command, FOCAL,

T1._399
Pims L

» A Ei7L

rOGCAL,

Erasing a program in core
BASIC, 12-43
Error flag, floating-point, 16-19
Error correction, FOCAL, 11-15,
11-21
Error messages
BASIC, 12-42
Disk Linking Loader, 14-61, 14-65
Floating Point, 16-11, 16-19, 16-27
FORTRAN, 15-41
Library programs, 14-73
Linking Loader, 14-72

¢¢¢¢ Al AN

PAL !Il, 13 38

4K PAL-D, 13-70

SABR, 14-71

FOCAL, 11-15, 11-5

Escapes. page, 14-33

Estimating program length, FOCAL
11-40

Evaluation of expressions
4K Assemblers, 13-14

Execute: To carry out an instruction
or run a program on the com-

-y F

PULCI.

Executing FORTRAN programs, 1
46

Exit functions

Disk Linking Loader,

Exponent, 16-3, 16-8

in Fioaiing-Foini {ormai, 16-6, 10-
19

routines, SABR, 14-79

storage, 16-6

14-67

" FOCAL, 11-26

Expressions
4K Assembler, 13-18, 13-44

EXPUNGE pseudo-op, 4K Assem-
blers, 13-31

Extended Floating-Point package,
16-21

Extended memory

4K Assembler, 13-28

Extended svmbols

tape, A2-8

External Calls

P PPN

External smiage A sepa

Ao
(623 us.\l.\,\. on ‘\'”h'

Index—6

by the computer is stored (such as
paper tape, DECtape, or disk).
External subroutines
SABR, 14-26

FADD, 16-7

FDIV, 16-7

FGET, 16-7

Field:

1. One or more characters treated
as a unit. .
2. A specified -area of a record
used for a single type of data.

3. A division of memory on a’
PDP-8 computer referring to a 4K
section of core.

FIELD pseudo-op, 4K Assemblers,
13-28 ,

File: A collection of related records
treated as a unit.

File assignment

Disk Linking Loader, 14-60

Filename: Alphanumeric characters
used ‘to identify a particular file.

Filename extension: A short appen-
dage to the filename to identify
the type of data in the file. e.g.,
“BIN” signifying a binary pro-
gram.

File structured device: A device such
as disk or DECtape which con-
tains records organized into files
and accessible thraugh file names
found in a directory file. See di-
rectory device.

Fixed point: The position of the
radix point of a number system is
constant according to a predeter-
mined convention.

Fixed-to Floating-Point Format, 16-
19

FIXMRI pseudo-op, 4K Assemblers,
13-32

FIXTAB pseudo-op, 4K Assemblers,
13-31

Flag: A variable or register used to
record the status of a program
or device. In the latter case, some-
times called a device flag.

Flags, Floating-Point, 16-16

SABR, 14-13

Flip-flop: A device with two stable
states.

Floating-point: A number system in
which the position of the radix

_ “point is indicated by one part (the -

- exponent-part), and another part
represents the significant digits
(the fractional part).

Floating-Point
algorithms, 16-17
extended package, 16-21
input routine, 16-11
instructions, 16-8
packages, assembly, 16-11
package versions, 16-10
operations, 16-9
output controller; 16-15
output routine, 16-14
representation, 16-5
storage, 16-6
summaries, 16-15, 16-16, 16-21
Floating-Point accumulator, 14-74

Floating-Point arithmetic,
subprograms, 14-75

Floating-Point constants, 13-42

Floating-Point instructions, A2-2
FORTRAN, 16-16

Floating-Point- Package, 16-16

Fl(l)gting-to Fixed-Point Format, 16-

Flowchart: A graphical representa-
tion of the sequence of operations
required to carry out data pro-
cessing. See Appendix C of Intro-
duction to Programming.

FMPY, 16-7

FNOR, 16-7
FOCAL, 11-5

ASK, 11-17
COMMENT, 11-13
Current tapes, 11-39

- DO, 11-12, 11-19

ERASE, 11-16, 11-22
FOR, 11-20

GO, 11-11

GOTO, 11-11, 11-19

1F, 11-18

Loading Procedures, 11-42
LOCATIONS, 11-50

Index—7

Library =

MODIFY, 11-21, 11-22
RETURN, 11-13
Systems, 11-30
Techniques, 11-29

Trace, 11-23

TYPE, 11-6

WRITE, 11-13, 11-16

FOR statement, FOCAL,
BASIC, 12-34

Formai: The arrangement of data.
Also a FORTRAN statement.

FORMAT fields, FORTRAN, 15-23

Format handling

FORTRAN, 15-58

LS Sy

FORMAT statement

‘DnR‘TD AN 18 9590
LUNINAIN, LJLy

11-20;

Form feed
PAL III, 13-8
FORTRAN
demonstration program, 15- 47
features, 15-5
Pass, 2,
assembly methods, 14-49
operating procedures, 14-51
specifications, format, 15-52
statement summary. 15-50
FORTRAN statements, 15-6
CALL, 15-29, 15-38
CDISK, 15-30

FNR AR EANT 5 3

CUNVLIVIVIIN, .l
f‘n}TTY\‘TT TE‘ 1

<_

DIMENSION 1
- DO, 15-17
END, 15-19
EQUIVALENCE, 15-34
FORMAT, 15-20

GO TO, 13-16 -

1F, 15-17

ODISK, 15-30

PAUSE, 15-19
RDISK, 15-32

READ, 15.27

RTAPE, 15-28
WDISK, 15-32
WKITE, 15-27
WTAPE, 15-28

FORTR pseudo-op, SABR, 14-50

~
D
1Q
-10
-
-3

5-33

Four-user FOCAL, 11-31

4 WORD, FOCAL, 11-34
FPUT, 16-7

Free core, Page (SABR), 14- 52
FSUB, 16-7

Full duplex: Describes a communi-
cations channel capable of simul-
taneous and independent trans-
mission and reception. Same as
duplex.

cnthnro-

rerrtio chnraooram- A
SUopro

©
£ il ouuyrusluul in

gram which returns a single value
result usually in the accumulator

Functions

BnSn/, i2-14

FORTRAN, 15-14, 15-35

Functions, Library subprograms,
14-74

FOCAL, 11-24

G
GET (FGET), 16-7
GO statement, FOCAL, 11-11
GOSUB statement
BASIC, 12-39
GOTO statement
BASIC, 12-37
FORTRAN, 15-16
FOCAL, 11-15
GRAPH, FOCAL, 11.37, 11-47
Graphics package, FOCAL, 11-34
Group 1 operate microinstructions,
13-25, A2-2
Group 2 operate microinsiructions,
13-26, A2-2

H

Half duplex: Describes a system per-
mitting communication in - only
one direction at a given instant.

Hardware: Physical equipment, e.g.,

mechanical, -electrical, or elec-
tronic devices. Disk Linking
Loader, 14-58; Linking Loader,

14-5; SABR, 14-9.
Heud: A component that reads, re-
cords, or erases data on a storage
© device.
High order (register), 16-17
umh enppﬂ Ppar]pr/pnnnh
tlons A2-3
Hollerith fields, 15-23

Index—S8

»

I

I pseudo-op, 4K Assemblers, 13-22
Idezritities, Floating Point, 16-21, 16-
IF-GOTO statement.

BASIC, 12-38
IF pseudo-op, 14-22

IF statement

FORTRAN, 15-17

FOCAL, 11-18

IF-THEN statement
BASIC, 12-38
Hlegal characters
PAL I1I, 13-8
Implementation notes
BASIC, 12-52
Implementation Notes (Math rou-
tines), 17-25 -
Implied DO loops
FORTRAN, 15-57

_ Incrementing operands .

SABR, 14-17

Index

FORTRAN, 15-18

Indirect address: An address in a
computer - instruction which - indi-
cates a location where the address
of the referenced operand is to be
found. '

Indirect addressing, 13-22

Indirect mode, FOCAL, 11-11

Initial Dialogue

BASIC, 12-45
FOCAL, 11-54

Initialize: To set counters, switches,
and addresses to zero or other
starting values at the beginning of,
or at presqribed points in, a com-
puter routine.

Input: The transferring of data from
auxiliary or external storage into
the core memory of the computer.

Input/Ouput (see also I/0)

BASIC, 12-22 to 12-31
Library subprograms, 14-74
FORTRAN, 15-6, 15-20
Floating-point, 16-11, 16-14

Instruction: A command which
causes the computer or system to
perform an operation. Usually
one line of a source program. -

Instructions
Assembler, ~13-11, 13-24
Floating-Point, 16-7
SABR
10T, A2-1 ,
Memory Reference, A2-1
Micro, A2-1
Multiple word, 14-34, 14:45
Skip, 14-23, 14-37
Integer arithmetic; Library subpro-
grams, 14-77 '
Integer constants
FORTRAN, 15-9
FOCAL, 11-25
Integer function
BASIC, 12-15
Integer variables
FORTRAN' 15-10
Interactive, see conversational

Internal storage: The storage facil-
ities forming an integral physical
part of the computer and directly
contolled by the computer. Also

called main memory and core

memory. .
Internal symbol representation
MACRO, 13-41, 13-42, 13-57
PAL III, 13-12

Interpage references, 13-23

Interpreter: A program that trans-
lates and executes source language
statements at run time. 16-9

I/0: Abbreviation for input/output
I/0 devices, spectal

FORTRAN, 15-61

I/0 list

FORTRAN, 15-26

1/0 records

FORTRAN, 15-26

170 routines, DECtape, 14-80
IOH routines, SABR, 14-74

 IOH instructions, SABR, 14-12, A2
_ Iteration: Repetition of a group of

instructions.

J

Job: A unit of code which solves a
problem, i.e., a program and all
its related subroutines and data.

Index—9

Jump: A departure from the normal
sequence of executing instructions
-In a computer.

K

K: An abbreviation for the prefix
kilo, i.e., 1000 in decimal nota-
tion. In the computer field, loosely,
two to the tenth power, which is
1024 in decimal notation. Hence,
a 4K memory has 4096 words.

8K. FOCAL,

R VA T

Keyboard/ Reade

et
[T
s}
[Vl
-t
]
=

L
Label: One or more characters used

+t~ 3 aﬂf;{"‘(" 41 TAIITr, S ‘Q?"ﬂﬁ”‘)(’e
v AT it y wu SUuLive 1dasn iy

statement or line. SABR
4K Assemblers, 13-11.

Language, assembly: The machine-
oriented programming language
belonging to an assembly system,
e.g.. PAL I, PAL-D, and SABR.

Language, computer: A systematic
means of communicating instruc-
tions and information to the com-
puter.

Language machine: Information that
can be directly processed by the
computer, expressed in binary.

Language, sonree: A computer lan-
guage, such as PAL 1l or FO-
CAL, in which programs are writ-
ten and which require a translation
in order to be execuied by the
computer.

LAF pseudo-op,
Page escapes, 14-33

Leader: The blank section of tape
at the beginning of the tape.

Least significant digit: The right-
most digit of a number.

Legal characters
8K PAL-D, 14-5
SABR, 14-11

LET statement
BASIC, 12-11

LiBRA, FOCAL
commands, 11-3

=)

~OomMmmon cf
LUV S

limitations 1
Tnading 4/1

AUGRLEG, |
stop and restart, 11-48
Library subprograms

oA Ty 44 AN

O

e A A

demonsiration program, 14-84
error messages, 14-73
floating-point arithmetic, 14-75
functions, 14-78
input/output, 14-74
integer arithmetic, 14-77
organization, 14-74
powers, 14-79
subscripting, 14-78

A collection of

Library routines: Ile of
standard routines which can be
incorporated into larger routines.
FORTRAN, 15-15.

Line feed: The Teletype operation
which advances thie paper by one
line.

Line nwmber: In source languages

such as FOCAL, BASIC, and

FORTRAN, a number which be-

gins a line of the source program

for purposes of identification. A

numeric label. BASIC, 12-9; FOR-

TRAN, 15-6, 15-7; FOCAL. 11-
11]
Link:
I. A one bit register in the
PDP-8.
2. An address poimer Uenercueu

oy e

auiomaticany t‘v' the PAL-D
or MACRO-8 Assembler to in-
directly address an off page
Symuool.

3. An address pointer to the next
element of a list, or the next
block number of a file.

Linkage: In programming, code that
connects two separately coded

routines.
Linkage routines, runtime {SABR},
14-34, 14-32, 14 56

Link generation
MACRO, 13-46
Linking Load

34, 14-50
error messages, 14-72

M Ff\ ¥
XL Uu 1g \J;\l 1%}\

15-46 ‘
FORTRAN disk 1/0, 15-30
information options, 14-52
loading, 14-54
memory map opiion, 14-52
relocation codes, 14-39

(Paper Tape), 14-

programs,

Index—10

" system requirements, 14-9, 14-51
LINK Linkage routine, SABR, 14-36
List:

1. A set of items.

2. To print out a listing on the
line printer or Teletype.

3. See pushdown list.
Listing

8K PAL-D, 14-6, 14-7

Pass 2, assembly, 14-47

SABR, 14-43, 14-48

Unloaded Program, 14-67
Listing controi

PAL-D, 13-65
Listing Files

BASIC, 12-49
Listing a paper tape

BASIC, 12-51
Listing a program’

BASIC, 12-48 ‘
Literal: A symbol which defines it-
sleif. MACRO, 13-48; SABR, 14-

Load: To place data into internal
storage.

. Loader, Binary (BIN), C2-4 _
Disk Linking, see Disk Linking

"~ Loader

Paper tape, see Linking Loader
Read-in Mode (RIM), C2-1

Logding procedures; see Appendix

2

Disk Linking Loader, 14-57
FOCAL, 11-42

FORTRAN, 15-39

Linking Loader, 14-54

programs and subprograms, 14-54
overlay, 14-56

SABR, 14-9, 14-46

Switch register options, 14-52

Location: A place in storage or

memory where a unit of data or
an instruction may be stored.

Location counter, see current loca-
tion counter

LOCATIONS command, FOCAL,
11-50

Logarithm, 16-21; FOCAL, 11-26

Lookup table, 16-15

‘Loop: A sequence of instructions

that is executed repeatedly until
a terminal condition prevails.
BASIC, 12-34

[.ow order (register), 16-17
M

Machine language-programming: In
this text, synonymous with as-
sembly language programming
(the term is sometimes used to
mean the actual binary machine
instructions).

Muacro -instruction: An instruction in
a source language that is equiv-
alent to a specified sequence of
machine instructions.

MACRO

see Table of Contents, 13-3
Link generation, 13-46
literals, 13-48

switch options, 13-60
symbol table, A2-1
versions, 13—?8

Macros, 13-52
calling, 13055
defining, 13-53

macro table, 13-55

restrictions on, 13-54

Mantissa, 16-5
binary point relative position, 16-6,
16-19 ~ .
storage, 16-6

Moanual input: The entry of data by

hand into a device at the time of
processing.

Manual operation: The processing of -
data in a system by direct manual
techniques.

Muask: A bit pattern which selects
those bits from a word of data
which are to be used in some sub-
sequent operation. '

Mass storage: Pertains to a device
such as DECtape or disk which
stores large amounts of data read-
ily accessible to the central pro-
cessing unit.

Math routines, 16-16; FOCAL, 11-
24

Matrix: A rectangular array of ele-
ments. A table can be considered
to be a matrix.

Index—11

. Memory:
1. The aiterable storage in the
computer.

2. Pertaining to a device in which
data can be stored and from
which it can be retrieved.

Memory extension control instruc-

tions, A2-5

Memory map)
Loader, 14-52

ATTI AT s sadur semofora ks o

}V’I\.«lllul)’ pcuuy T UL LIV, n275

Memory protection: A method of
preventing the contents of some
part of main memory from being
destroyed or aitered.

Memory reference instructions, 13-
i4, to 13-21, 13-24, A2-1

Methods, FORTRAN pass 2 assem-
bly, 14-44

Micro instructions

4K Assemblers 13-25

Munemonics, 16-8

Mode. numeric conversion, 14-77

MODIFY command, FOCAL, 11-
21, 1122

option,

Monitor: The master control pro-
gram that observes, supervises,
controls, or verifies the operations
of a system. In TSS/8, controls
the sequencing of user programs.

Most signiﬁcant digit: The leftmost

nonzers Aot
lelele ulcl‘-

Multiple record formats
FORTRAN, 15-24
Multiple word instructions
SABR, 14-34

in listing, 14-45
Multiplication, 16-18

Multiprocessing: Utilization of sev-
eral computers or processors to
logically or functionally . divide
jobs or processes. and to execute
them simultaneously.

Mu.’zrprog;mmmng Pertains to the

gxecution of # vG Of moéic pro-

grams kept in core at the same

| = 5
LXeCution

programs.
Multi-user FOCAL Segments, 11-31

fime FEvaontinn cuclee Latias
e,

Arralaa

cycies

Linking

N
Negting:

1. Including a program loop
within another prcgram loop.
Note special rules for nesting
FORTRAN DO-loops.

2. Algebraic nesting, such as
(A+B* (C+D)), where ex-
ecution proceeds from inner-
most to outermost level.

Nesting literals

MACRG, 13-45

Nesting loops
BASIC, 12-36

NEXT statement

BASIC, 12-35

NOP: An instruction that specif-
ically instructs the computer to
do nothing (control proceeds to
the next instruction in sequence).

Normalization, 16-6

Normalize: To adjust the exponent
and fraction of a floating-point
quantity so that the fraction ap-
pears in a prescribed format,

Null lines, 14-10

Number base, see Radix.

Number formats

BASIC, 12-10

FOCAL, 11-

MACRO, 13-41, 13-42
PAL 111, 13-8

Numeric conversion mode, SABR,
14-77

Numeric input conversion

FORTRAN, 15-60

0O

OBISUB Linkage routine, SABR
14-35

Object program: The binary coded
program which is the output after
translation from the source lan-
guage. The binary program which
runs on the computer.

Octal: Pertaining to the number sys-
tem with a radix of eight.

OCTAL pseudo-op, 13-28, 14-20

ODiSK rouiine, SABR 14-82

FORTRAN, 15-31

Off-line: Pertaining to equipment or
“devices not under direct control of
the computer.

Index—12

One’s complement, see Complement,
(one’s), (two’s).

On-iiné® Pertaining to equipment or
devices under direct control of the
computer; also to programs op-
erating directly and immediately
to user commands, e.g., FOCAL
and DDT.

OPDEF pseudo-op, SABR, 14-23

Operand: That which is affected,
manipulated, or operated upon.
The address or symbolic name,
portion of .a PAL-IIT instruction:

Assembler, 13-11

SABR, 14-12
incrementing, 14-17

Operate micro instructions,
A2-2

Operating instructions
BASIC, 12-45, 12-50
FORTRAN, 15-40, 14-49
MACRO, 13-58

PAL IH, 13-36

SABR with FORTRAN, 15-43, 14-
49

SABR, 14-47
Linking Loader, 14-59

FOCAL, 11-42

13-25,

Operator: That symbol' or code

which indicates an action (or

operation) to be performed, e.g.,

-+ or TAD: SABR, 14-12
OPISUB linkage routine, 14-35

Options, switch register See Switch
Register Options.

OR: (Inclusive) A logical operation
such that the result is true if either
or both operands are true, and
false if both operands are false.
(Exclusive) A logical operation
such that the result is true if
either operand is true, and false
if both operands are either true or
false when neither is specifically
indicated, the default case is in-
clusive OR.

Order of operator evaluation

BASIC, 12-13
Origin: The absolute address of the
beginning of a section of code.
Origin setting
MACRO, 13-21, 13-45

Output: Information transferred

from the. internal storage of a -
computer to output devices or ex-
ternal storage.

Output controller, 16-15
Output formats, 14-38
BASIC, 12-28

Overflow: A condition that occurs
when a mathematical operation:
yields a result whose magnitude is
larger than the program is capa-
ble of handling. Floating-point,
16-13

Overlay Combinations, FOCAL, 11-.
38, 11-39 '

P

Page: A 128-word section of core
memory, beginning at an address
which is a multiple of 200.

Paging, SABR, 14-32
escapes, 14-33

format, 14-33

PAGE pseudo-op, 4K Assemblers,

13-45; SABR, 14-21

PAL III

.see Table of Contents, 13-2
extended symbols tape, A2-8
programming, 13-7°
symbol table, A2-1

PAL-D, 4K

see Table of Contents, 13-3
programming, 13-65
symbol table, A2-1
PAL-D, 8K, 14-5

see Table of Contents, 15-3
symbol table, A2-1
requirements, 14-9
Paper tape system
FORTRAN, [5-39
Parameters, SABR, 14-16
Parentheses

BASIC, 12-13

MACRO, 13-48

FOCAL, 11-6

Pass: One complete cycle during
which a body of data is processed.
An assembler usually requires two
passes during which a source pro-

gram is translated into binary
code. SABR, 14-47; 4K Assem-
blers, 13-35

Index—13

"Procedure:

‘Pseuwdo-operation :

‘.

P{l te 11

To modify a routine in a

rough or expedxent way.
PAUSE statement
FORTRAN, 15-19

PAUSE pseudo-op, 4K Assemblers,
13-30, SABR, 14-19

Period (.), 4K Assembiers 13-22

Percent sign, FOCAL,-11-8

Peripheral equipment: In a data pro-
cessing system, any unit of equip-
ment, distinct from the central
processing unit, which may pro-
vide the system with outside stor-
age or communication.

Permanent- symbols, A2-1

Permanent Symbol Table,
altering, 13-31
MACRO, 13-56

PLOTR, FOCAL, 11-37

Pointer address: Address of a core
memory location containing the
actual (effective) address of de-
sired data.

Priority interrupt: An interrupt
which is given preference over
other interrupts within the system.

Priority of operators
BASIC, 12-13

The course of action
taken for the solution of a prob-
lem; also called an algorithm.

Progmm The complete sequence of

famra b e ..‘_

Program addresses

-SABR, 14-37

Prg%ram conirol math routines,
Program execution, SABR, 14-70
Program interrupt instructions, A2-3
Program Length, FOCAL, 11-40
Program Listing, Unloaded, 14-67

Program preparation, 4K Assem-
blers, 13-33. 13-66

Pseudo floating accumulator, 16-6

An 1instruction to
the assembler; an Operanon code
ithat Is noi pqrr of the compt nter’s
operation repertoire as reahzed by
the hardware. Also pseudo-op.

i6-

seudo-ops, AZ-6

SK PAL-D, 14-6

- Raindom access:

SABR. 14

External -subroutine, 14-26
Pseudo-ops, A2-6
DECIMAL, 13-28
DEFINE, 13-33
DUBIL, 13-41 :
EXPUNGE, 13-31, 13-56
FIELD, 13-28, 13-65
FIXMRI, 13-32
FIXTAB, 13-31,
FLTG, 13-43

I, 13-22, 13.27
OCTAL, 13-28
PAGE. 13-45
PAUSE, 13-30
TEXT, 13-51
XLIST, 13-65
Z, 13-23, 13-27

Punched paper tape: A paper tape
on which a pattern of holes is
used to represent data.

Punching paper tape
BASIC, 12-50

Pushdown list: A list constructed
and maintained so that the next
item. to be retrieved is the item
most recently stored in the list.

Q

QUAD, FOCAL, 11-31

error. procedures, 11-51

ioading procedures,

*
1
Talatvma smenhla 11
l.k-l\-l.]y }nvuu.ula, L

Quene: A 'waiting list. In time-
sharing, the Monitor maintains a
queue of user programs waiting
for processing time.

4-18

13-56

"QUIT: command, FOCAL, 11-13

Quote (*), 13-51

R

Radix: The base of a number sys-
tem. the nomber of digit symbols
required by a number system. See

- Binary, Octal.

A storage device In
which the accessibility of data is
effectively independent of the Io-
cation of the data. Synony
with direct access.

Random number function

BASIC, 12-16, 12-17
FOCAL, 11-26

Index—14

Range, FORTRAN 15-18
*RDISK routine, SABR, 14-83
'FORTRAN, 15-32

Read: To transfer information from
an input device to core memory.

Reading a paper tape
BASIC, 12-51
FOCAL, 11-52, 11-54
(silent)
READ statement
BASIC, 12-22
FORTRAN, 15-27
- ‘Real constants
FORTRAN, 159
Real-time: Pertaining to computa-
tion performed while the. related
physical process is taking place
“so that results of the computation
can be used in guiding the phys-
ical process.
Real variables
FORTRAN, 15-10

Record: A collection of related items
of data, treated as a unit.

“Recursive subroutine: A subroutine
capable of calling itself and re-
turning; at some later point, to

* the program which initially called
it.

Register: A device capable of storing
a specified amount of data, usu-
ally one word.

Register, 16-12 17.
Relative address:

I. The number that specifies the
difference between the actual
address and a base address.

2. In the PDP-8 the character
period (.) is used to represent
the current location counter;
. addresses can be indicated rel-
ative to the current location
counter (.45 indicates five
‘locations from the current lo-
cation), or-relative to an or-
igin assigned by use of the
asterisk.

Relocatable:: Used to describe a
routine whose instructions are
written so that they can be lo-
cated and executed in different

parts of core memory. SABR, 14-9 ,

Relocation codes, Loader, 14-39

REM statement
BASIC, 12-9
Removing a line of code
BASIC, 12-42
"Removing program lines
BASIC, 12-49
REORG pseudo-op, 14-21
Replacement operator, (=), 12-11
Replacing a program on Disk
BASIC, 12-47

Response time: Time between initi-
ating some operation from a ter-
minal and obtaining results. In-
cludes transmission time to the
computer, processing time, access
-time to file records needed, and
transmission time back to the ter-
minal.

Restart: To resume the execution of

' .a program.

FOCAL, 11-43
RESTORE statement
BASIC, 12-24
RETRN pseudo-op, SABR, 14-29

“RETURN statement K T

BASIC, 12-40
FOCAL, 11-13

Routine: A set of instructions ar- .
ranged in proper - sequence to
cause the computer to perform a
desired task.

RTAPE statement

FORTRAN, 15-28

- RTN linkage routine, 14-36

Run: A single continuous execution
-of a program.

RUN command
" BASIC, . 12-46

«Run time: The time in which a pro-
gram 1s executed.

Run:time linkage routines
Disk Linking Loader, 14-56
Linking Loader, 14-34, 14-52

S

-SABR

€rror “messages, 14-71
language, 14-9

operating procedures, 14-46
statements, 14-9 to 14-16
symbol table, A2-1

Index—15

system requirements, 14-9
Sample of assembly listing, 14-43
SAVE command

BASIC, 12-47
Saving a program on Disk

RASIC, 12-47
Saving FOCAL Programs, . 11-43
‘Scalar variables

FORTRAN 15-10
Segment:

1. That part of a long program
which may be resident in core

at any one time.

2. To divide a program as in 1.
into-two or more segments or
to store part of a program o1
routine on an exlernal siorage
device to be brought into core
as needed.

3. A unit of disk storage on
TSS/8, generally 400, words.

FOCAL, 11-34

Serial access: Pertaining to the se-
quential or consecutive transmis-
sion of data to or from core, for
example, paper tape. Contrast
with random access.

SET statement, FOCAL. 11-7

Seven-user FOCAL, 11-32

Shift: A movement of bits to the
left or right frequently performed
in the accumulator.

Sign function

BASIC, 12-15

FOCAL, 11-25

Signs, math routines, 17-26

Simple programming languages
BASIC, 12-5

FOCAL, 11-5

Simulate: To represent the function-
ing of a device, system, or com-
puter program with another sys-
tem or program.

Sine. Floating-Point, Package, 16-21,
i6-29; FOCAL, 1i-27

Single step: Operation of the com-
puter in which each instruction is
performed by setting the singie-
step or single instruction switch

raras N

and repeatediy depressing CON-
Tinue.

SKIP instructions

SABR, 14-37
SKPDF pseudo-op, SABR, 14-23

Software: The collection of pro-
grams and routines associated with
the computer.

Source language: See
source.

Source program: A computer pro-
gram written in a source language.
Spaces
BASIC. 12-13
FORTRAN, 15-6
Special characters
8K PAL-D, 14-5
SABR, 14-ii
Specification codes
FORTRAN, 15-21
Specification statements
FORTRAN, 15-6, 15-33
Square. Floating-Point, 16-8
Square brackets
MACRO, 13-48
Square root, Floating-Point, 16-8,
16-28; FOCAL, 11-25
Statement: An expression or instruc-
tion in a source language.
STOP statement
FORTRAN. 15-20
Stopping a run
BASIC, 12-44
Storage allocation: The assignment
of blocks of data and instructions
to specified blocks of storage.
Storage allocation
FORTRAN, 15-53
Storage capacity: The amount of

data that can be contained in a
storage device. :

Storage, COMMON (SABR), 14-24
Storage device: A device in which
data can be entered, retained, and
retrieved.
torage, Floating-Point, 16-6, 16-17
Storage map option, SABR, 14-52,
14-66
device.

String: A connected sequence of en-
tities, such as characters m a
command string.

language,

Index—16

Subprogram arguments, picking up,
14-30
Subprogram statements
FORTRAN, 15-6, 15-35

Subroutine, closed: A subroutine not
stored in the main part of a pro-
gram. Such a subroutine is nor-
mally called or entered with a
JMS ~instruction and provision is
made to return control to the
main routine at the end of the
subroutine.

Subroutine, open: A subroutine that
must be relocated -and inserted
into a routine at each place it is
used.

Subroutines, external, 14-26
BASIC, 12-37
external, 14-26
FORTRAN, 15-37

~user, 16-15

Subscript: A value used to specify
a particular item in an array.
Subscripted variables
BASIC, 12-31
" FOCAL, 11-14
FORTRAN, 15-11
Library subprograms, 14-78
Subtraction, Fl. pt., 16-18
Swapping: In a time-sharing environ-
ment, the action of either tem-
porarily bringing a user program
into core or storing it on the disk
or other system device.

Switch: A device or programming
technique for making selections.

Switch register options

Linking Loader
core availability, 14-52, 14-55
storage map, 14-52, 14-55
tape reader, 14-46, i4-34
SABR,
core availability, 14-52
overlay, 14-67
storage map, 14-52, 14-55
tape reader, 14-46, 14-54

. Symbol definition, SABR, 14-23

Symboljc address: A set of charac-
ters used to specify a memory lo-
cation within a program. 4K
Assembler, 13-13

Symbolic code, see Language, Source
Symbolic Editor: A PDP-8 System
Library program which helps
users in the preparation and modi-
fication of source language pro-
grams by adding, changing, or
deleting lines of text. 15-6
Symbolic instructions
4K Assembler, 13-15
Symbolic tape format
8K FORTRAN output, 14-48
Symbols
4K Assemblers, 13-12
SABR, 14-12
equivalent, 14-13
flags, 14-13
permanent, 14-12
storage, 14-38
user defined, 14-13
FOCAL, 11-13, 11-14
Symbol table: A table in which

symbols and their corresponding
values are recorded.

4K Assemblers: altering, 13-31, As-
sembler, A2-1, MACRO, 13-56,. .-

PAL I, 13-16.
8K Assemblers: 8K PAL-D, 14-7,
SABR, 14-38, 14-47
System: A combination of software
and hardware which performs
specific processing operations.
System configuration
Disk Linking Loader, 14-51
Linking Loader, 14-9
12K PAL-D, 14-7
SABR, 14-9
T
TAB character.
4K Assemblers, 13-7
TAB function
BASIC, 12-30

Table: A collection of data stored
for ease of reference, generally an
array.

Tabulations
4K Assemblers, 13-8
Tag: See Label
Tangent, 16-21
Tape Format,
FORTRAN, 14-49
SABR, 14-38

Index—17

Teleprinter/punch instructions, A2-3

Temporary storage: Storage loca-
tions reserved for intermediate re-
sults.

Terminal: A peripheral device in a
system through which data can
- either enter or leave the computer.

Terminator. 16-11

Text facility

MACRO, 13-51

SABR. 14-27

Time sharing: A method of ailocat-
ing central processor time and
other computer services to mul-
tiple users so that the computer,
in effect, processes a number of
programs simultaneously.

Time quantum: In time-sharing, a
unit of time allotted to each user
by the Monitor. (quanta, pl.)

Toggle: Using switches to enter data
into the computer memory.

Trace feature, FOCAL, 11-23

Transfer of control

BASIC, 12-37

Translate: To convert from one
language to another.
Trig funciions, FOCAL, 11-28

Truncation: The reduction of preci-
sion by dropping one or more of
the least significant digits: e.g.,
3.141592 truncated to 4 decimai
digits is 3,141,

TSS/8

BASIC, 12-5

LOGIN procedure, 12-45

PAL-D. 13-67

Microinstructions, A2-7

TYPE statement, FOCAL, 11-6

Typeout subroutine, Floating-Point,
16-14, 16-15 timing, 16-16

U
Unconditional GOTO, FORTRAN,
i5-16)
Unconditional trans
RASIC, 12-37
.................. , 13-15

Undezﬂow. A condmon that occurs
when a floating point operation

yieids a resuit whose magnitude is
smaller than the program is capa-
ble of handling.

Unloaded program listing, SABR,
14-67
Up arrow (1), BASIC, 12-44

User: Programmers and operators of
PDP-8 computer systems. '

User-defined functions
BASIC, 12-19
User-defined macros, 13-52

User-defined svmbols, SABR, 14-13
User program execution, SABR,
14-70
User subroutines, Floating-Point,
16-15
Utility Package loading procedures,
FOCAL 11-46
A%
Variable: A symbol whose value

changes during execution of a
program.

BASIC, 12-11

Dummy, 14-28

FORTRAN, 15-8, 15-10, 15-53
FOCAIL, 11-14, 11-13

W
WDISK routine, 14-83
WDISK statement
FORTRAN, 15-32

Word In the PDP 8, a 12-bit umt

PP, |

Ul Udld W“lbll llld.y UC StUICU ill
one addressable location.

4WORD, see Four (4) WORD.

Write: To transfer information from
core memory to a peripheral de-
vice or to auxiliary storage.

WRITE statement
FORTRAN, 15-27
FOCAL, 11-13, 11-16

WTAPE statement
FORTRAN, 15-28 S

X

XLIST pseudo-op, 13-65

£
Z pseudo-op, 13-23

Index—18

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	11-63
	11-64
	11-65
	11-66
	11-67
	11-68
	11-69
	11-70
	11-71
	11-72
	11-73
	11-74
	11-75
	11-76
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	12-51
	12-52
	12-53
	12-54
	12-55
	12-56
	12-57
	12-58
	12-59
	12-60
	12-61
	12-62
	12-63
	12-64
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	13-53
	13-54
	13-55
	13-56
	13-57
	13-58
	13-59
	13-60
	13-61
	13-62
	13-63
	13-64
	13-65
	13-66
	13-67
	13-68
	13-69
	13-70
	13-71
	13-72
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	14-55
	14-56
	14-57
	14-58
	14-59
	14-60
	14-61
	14-62
	14-63
	14-64
	14-65
	14-66
	14-67
	14-68
	14-69
	14-70
	14-71
	14-72
	14-73
	14-74
	14-75
	14-76
	14-77
	14-78
	14-79
	14-80
	14-81
	14-82
	14-83
	14-84
	14-85
	14-86
	14-87
	14-88
	14-89
	14-90
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	15-52
	15-53
	15-54
	15-55
	15-56
	15-57
	15-58
	15-59
	15-60
	15-61
	15-62
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	A0-00
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	B2-01
	B2-02
	C2-01
	C2-02
	C2-03
	C2-04
	C2-05
	C2-06
	C2-07
	C2-08
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18

