TOPS-10
Monitor Calls Manual
Volume 2

AA-K039D-TB

October 1988

This manual describes the monitor calls used by TOPS-10
MACRO programmers to request services that are controlled
by the TOPS-10 monitor. The TOPS-10 Monitor Calls Manual
consists of two volumes. Volume 1 is an overview of the
services avallable to the programmer. Volume 2 is a detailed
list of the calls and coding sequences that are used to invoke
those services.

Operating System: TOPS-10 Version 7.04
Software: GALAXY Version 5.1

digital equipment corporation
maynard, massachusetts

First Printing, August 1980
Updated, December 1981
Revised, February 1984
Revised, April 1986
Revised, October 1988

The information in this document is subject to change .without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.
Copyright ©1980, 1981, 1984, 1986, 1988 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The Reader’'s Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

Cl DECtape LA50 SITGO-10
DDCMP DECUS LNO1 TOPS-10
DEC DECwriter LNO3 TOPS-20
DECmail DELNI MASSBUS TOPS-20AN
DECnet DELUA PDP UNIBUS
DECnet-VAX HSC PDP-11/24 UETP
DECserver HSC-50 PrintServer VAX
DECserver 100 KA10 PrintServer 40 VAX/VMS
DECserver 200 Kl Q-bus VTS50
DECsystem-10 KL10 ReGIS

DECSYSTEM-20 KS10 RSX mﬂaﬂuan ™

PREFACE

CHAPTER 22

WOLANNNNNAR T B WNNNE

©dad D WN

HERPERRPE R RS
BAEBBAEDONHO

U WN

CONTENTS

MONITOR CALL DESCRIPTIONS

ACCLG. [CALLI 204]
ACCT. [CALLI 167]

Function 0 (.ACTCH)
Function 1 (.ACTRD)
APRENB [CALLI 16]
ATTACH [CALLI 104]
CALLI [OPCODE 047]
CAL11l. [CALLI 125] .
FUNCTION 0 (.Cl1l1DP)
FUNCTION 1 (.Cl1EX)
FUNCTION 2 (.C1l1QU)
FUNCTION 3 (.C1l1NM)
FUNCTION 4 (.C1l1UP)
FUNCTION 5 (.Cl1SM)
FUNCTION 6 (.Cl1RM)
FUNCTION 7 (.Cl1l1TY)
CHGPPN {CALLI 74]
CHKACC [CALLI 100]
CHTRN. [CALLI 223]
CLOSE [OPCODE 070]
CLRBFI [TTCALL 11,]
CLRBFO [TTCALL 12,]
CLRST. [CALLI 134]
CMAND. [CALLI 211] .
1 FUNCTION O (.CMINT)
2 FUNCTION 1 (.CMADD)
3 FUNCTION 2 (.CMDEL)
4 FUNCTION 3 (.CMLST)
5 FUNCTION 4 (.CMRET)
6 FUNCTION 5 (.CMDMP)
CNECT. (CALLI 130]
CORE [CALLI 11]
CTLJOB [CALLI 65]
CTX. [CALLI 215] .
1 -FUNCTION O (.CTSVH)
2 FUNCTION 1 (.CRSVR)
3 FUNCTION 2 (.CVSVT)
4 FUNCTION 3 (.CT8VS)
5 FUNCTION 4 (.CTSVD)
6 FUNCTION 5 (.CTRDB)
7 FUNCTION 6 (.CTWDB)
8 FUNCTION 7 (.CTRQT)
9 FUNCTION 10 (.CTSQT)
10 FUNCTION 11 (.CTDIR)
11 FUNCTION 12 (.CTINF)
DAEFIN [CALLI 105]
DAEMON [CALLI 102]
FUNCTION 1 (Obsolete)
FUNCTION 2 (.CLOCK)
FUNCTION 3 (Obsolete)
FUNCTION 4 (.DMQUE)
FUNCTION 5 (.DMERR)
FUNCTION 6 (.DMCTL)
DATE [CALLI 14] .
DEBRK. [CALLT 137]
DEQ. [CALLI 152] .
.1 FUNCTION O (.DEQDR)

iii

22-2

22-3

22-3

22-3

22-5

22-17

22-9
22-13
22-14
22-15
22-15
22-15
22-15
22-15
22~-16
22-16
22-17
22-18
22-21
22-23
22-25
22-26
22-27
22-29
22-29
22-30
22-30
22-30
22-31
22-31
22-33
22-35
22-37
22-38
22-39
22-39
22-39
22-39
22-~-40
22-40
22-40
22-40
22-40
22-40
22-41
22-43
22-44
22-44
22-44
22-45
22-45
22-45
22-47
22-48
22-49
22-50
22-50

WoOo~JoaUd Wwh K

odoUd WK

w N

FUNCTION 1 (.DEQDA)
FUNCTION 2 (.DEQID)

DEVCHR [CALLI 4]

DEVLNM [CALLI 107]

DEVNAM [CALLI 64]

DEVOP. [CALLI 171] .
FUNCTION 1 (.DFLLV)
FUNCTION 2 (.DFENV)
FUNCTION 3 (.DFDVL)
FUNCTIONS 4-10 .
FUNCTION 11 (.DFLR2)
FUNCTION 12 (.DFLV2)
FUNCTION 13 (.DEFMDC)
FUNCTION 14 (.DEMDS)
FUNCTIONS 15-777
FUNCTION 1000 (.DFPCT)
FUNCTION 2000 (.DFPCT)
FUNCTION 1002 (.DFHCW)
FUNCTION 2002 (.DFHCW)
FUNCTION 1003 (.DFRES)
FUNCTION 1004 (.DFRDS)
FUNCTION 1005 (.DFFRM)
FUNCTION 1006 (.DFDTI)

DEVPPN [CALLI 55]

DEVSIZ [CALLI 101]

DEVSTS [CALLI 54]

DEVTYP [CALLI 53]

DIAG. [CALLI 163]
FUNCTION 1 (.DIASU)
FUNCTION 2 (.DIAAU)
FUNCTION 3 (.DIARU)

FUNCTION 4 (.DISCP)

5
6
7

FUNCTION .DIRCP)
FUNCTION .DIGCS)
FUNCTION .DIAKU)
FUNCTION 10 (.DIACS)
FUNCTION 11 (.DIADS)
FUNCTION 12 (.DISCR)
FUNCTION 13 (Obsolete)
FUNCTION 14 (.DIGUI)

FUNCTION 15 (Obsolete)
FUNCTION 16 (Obsolete)
FUNCTION 17 (.DIELD)
FUNCTION 20 (.DIDLD)
FUNCTION 21 (.DILOD)
FUNCTION 22 (.DISSM)
FUNCTION 23 (.DIICM)
FUNCTION 24 (.DISBD)
FUNCTION 25 (.DIDSN)
FUNCTION 26 (.DIRUR)
FUNCTION 27 (.DIADB)
FUNCTION 30 (.DIOKI)
FUNCTION 31 (.DIOUI)
FUNCTION 32 (.DILKU)
FUNCTION 33 (.DISDS)

FUNCTION 34 (.DIDVR)
FUNCTIONS 35-77 (Reserved for DIGITAL)
FUNCTION 100 (.DIGTM) e e e ..
FUNCTION 101 (.DIGVM) .

FUNCTIONS 102-104 (Reserved)

FUNCTION 105 (.DIRRS)

FUNCTION 106 (.DISRS)

FUNCTION 107 (.DIACC) . e e e e e
FUNCTIONS 110-111 (Reserved for DIGITAL)

iv

22-50
22-51
22-53
22-56
22-58
22-59
22-60
22-60
22-60
22-60
22-60
22-60
22-60
22-61
22-61
22-61
22-61
22-61
22-62
22-62
22-63
22-63
22-63
22-65
22-66
22-68
22-170
22-73
22-74
22-74
22-74
22-74
22-74
22-75
22-175
22-75
22-75
22-76
22-176
22-76
22-176
22-76
22-76
22-76
22-76
22-171
22-71
22-1717
22-77
22-77
22-78
22-18
22-79
22-79
22-79
22-80
22-80
22-80
22-80
22-80
22-80
22-80
22-80
22-81

ww

WoJdondWwdhE

SWN P

7
8

WP

FUNCTION 112 (.DIWCM)
FUNCTION 113 (.DIRCM)
DISK. [CALLI 121]

FUNCTION 0 (.DUPRI)
FUNCTION 1 (.DUSEM)
FUNCTION 2 (.DUSTM)
FUNCTION 3 (.DUUNL)
FUNCTION 4 (.DUOLS)
FUNCTION 5 (.DUOLN)
FUNCTION 6 (.DUONL)
FUNCTION 7 (.DUUED)
FUNCTION 10 (.DUSWP)
FUNCTION 11 (.DUASW)
FUNCTION 12 (.DUASD)
FUNCTION 13 (.DURSD)
FUNCTION 14 (.DULEN)
FUNCTION 15 (.DUCLM)
FUNCTION 16 (.DUFRE)

DNET. [CALLI 207] .
FUNCTION 1 (.DNLNN)
FUNCTION 2 (.DNNDI)
FUNCTION 3 (.DNSLS)

DSKCHR [CALLI 45]

DTE. [CALLI 170] .

DVPHY. [CALLI 164]

DVRST. [CALLI 122]

DVURS. [CALLI 123]

ENQ. [CALLI 151]

ENQC. [CALLI 153]

FUNCTION O (.ENQCé).

FUNCTION 1 (.ENQCG)

FUNCTION 2 (.ENQCC)

FUNCTION 3 (.ENQCD)
ENTER [OPCODE 077] .
ENTVC. [CALLI 225]
ERLST. [CALLI 132]
ERRPT. [CALLI 160]
ETHNT. [CALLI 223]
EXIT [CALLI 12] .
FILOP. [CALLI 155]

FILOP. Extended Argument LlSt

FILOP. Functions

Simultaneous File Access w1th FILOP

FRCUUO [CALLI 106]
GETLCH [TTCALL 6,]
GETLIN [CALLI 34]
GETPPN [CALLI 24]
GETSEG [CALLI 40]
GETSTS [OPCODE 062]
GETTAB [CALLI 41]
GOBSTR [CALLI 66]
GTNTN. [CALLI 165]
GTXTN. [CALLI 166]
HIBER [CALLI 72]
HPQ [CALLI 71]

IN [OPCODE 056] .
INBUF [OPCODE 064]
INCHRS [TTCALL 2,]
INCHRW [TTCALL 0,]
INCHSL [TTCALL 5,]
INCHWL [TTCALL 4,]
INIT [OPCODE 041]
INPUT [OPCODE 066]
IONDX. [CALLI 127]

22-81
22-81
22-82
22-83
22-83
22-83
22-84
22-84
22-84
22-85
22-85
22-85
22-86
22-86
22-86
22-86
22-87
22-87
22-88
22-89
22-89
22-90
22-93
22-99

"22-105

22-107
22-108
22-109
22-119
22-119
22-120
22-120
22-121
22-122
22-124
22-125
22-127
22-129
22-139
22-141
22-143
22-146
22-152
22-155
22-157
22-159
22-160
22-161
22-163
22-165
22-166
22-168
22-169
22-170
22-172
22-173
22-175
22~-177
22-178
22-179
22-180
22-181
22-182
22-183

RPOoo~JaU & W=

woJdJoUh W

0

IONEOQOU
IPCFM.
IPCFQ.
IPCFR.
IPCFS.
JBSET.
JOBPEK
JOBSTR
JOBSTS

[TTCALL 15,]

[CALLI
[CALLI
[CALLI
[CALLI
[CALLI
[CALLI
[CALLI
[CALLI

217]
144]
142]
143]
113]
103]
471

61]

KDp. [CALLI 200}

LATOP. [CALLI 221]
FUNCTION O (.LASET)
FUNCTION 1 (.LACLR)
FUNCTION 2 (.LASCH)
FUNCTION 3 (.LASTC)
FUNCTION 4 (.LASAS)
FUNCTION 5 (.LASCO)
FUNCTION 6 (.LAZCO)
FUNCTION 7 (.LARHC)
FUNCTION 10 (.LATHC)
FUNCTION 11 (.LASHC)

LLMOP. [CALLI 220]
FUNCTION 0 (.ELDIR)
FUNCTION 1 (.ELAST)
FUNCTION 2 (.ELRPY)
FUNCTION 3 (.ELAIC)
FUNCTION 4 (.ELABT)
FUNCTION 5 (.ELSTS)
FUNCTION 6 (.RCRID)
FUNCTION 7 (.RCRCT)
FUNCTION 10 (.RCIDS)
FUNCTION 11 (.RCRBT)
FUNCTION 12 (.RCRPY)
FUNCTION 13 (.RCRSV)
FUNCTION 14 (.RCREL)
FUNCTION 15 (.RCSND)
FUNCTION 16 (.RCPOL)
FUNCTION 17 (.RCAIC)
FUNCTION 20 (.RCABT)
FUNCTION 21 (.RCSTS)
FUNCTION 22 (.RCADR)

LOCATE [CALLI 62]

LOCK [CALLI 60]
LOGIN [CALLI 15]
LOGOUT [CALLI 17]
LOOKUP [OPCODE 076]
[CALLI 173]
[CALL 1,12]
MSTIME [CALLI 23]
[CALLI 126]

MERGE .
MONRT .

MTAID
MTAPE
MTBLK.
MTBSF.
MTBSR.
MTCHR.
MTDEC.
MTEOF .
MTEOT.
MTIND.
MTLTH.
MTREW.
MTSKEF .
MTSKR.
MTUNL.

[OPCODE
[MTAPE
[MTAPE
[MTAPE
[CALLI
[MTAPE
[MTAPE
[MTAPE
[MTAPE
[MTAPE
[MTAPE
[MTAPE
[MTAPE
[MTAPE

072]
13]
17]
71 .
112]
100]
3] .
10]
101]
200]
11 .
16]
6] .
11]

22-184
22-185
22-187
22-188
22-192
22-194
22-195
22-198
22-200
22-202
22-204
22-204
22-206
22-207
22-208
22-209
22-210
22-211
22-212
22-214
22-214
22-217
22-217
22-218
22-218
22-218
22-219
22-219
22-220
22-220
22-220
22-220
22-221
22-221
22-221
22-222
22-222
22-223
22-223
22-223
22-223
22-225
22-226
22-231
22-232
22-233
22-235
22-237
22-238
22-239
22-240
22-241
22-242
22-243
22-244
22-247
22-248
22-249
22-250
22-251
22-252
22-253
22-254
22-255

.105
.106
.107
.108
.108.
.108.
.108.
.108.
.108.
.108.
.108.
.108.
.108.
.108.
.108.
.108.
.109
.110
111
111,
111
111,
112
.113
.114
.115
116
117
.118
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
.118.
119
.120
121
.122
.123
.124
.125
.126
127
.128
.129
.130
.131
.132
.133
.134
.135
.136
.137
.138

MTWAT .
MVHDR.
NETOP.
NODE.

LCodoaoUdbwiNE

10
11
12

NSP.
NTMAN.

1

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

1
2
3
4
5
6
7
1

0

1

N o~

[MTAPE 0]

[CALLI 131]
[CALLI 226]
[CALLT

57]
.NDALN)
.NDRNN)
.NDSSM)
.NDRBM)
.NDRCI)
.NDOUT)
.NDIN)

(.NDTCN)

11 (.NDTDS)

12

(.NDLND)

13 (.NDNDB)

14

(.NDGNF)

[CALLI 205]

[CALLI 206]
OPEN [OPCODE 050]
ARGUMENT WORD 0
.2 ARGUMENT WORD 1
3 ARGUMENT WORD 2
OTHUSR [CALLI 77]

OUT [OPCODE 057]
OUTBUF [OPCODE 065]
OUTCHR [TTCALL 1,] .
OUTPUT [OPCODE 067]
OUTSTR [TTCALL 3,]

PAGE. [CALLI 145]

1 FUNCTION 0 (.PAGIO)
2 FUNCTION 1 (.PAGCD)
3 FUNCTION 2 (.PAGEM)
4 FUNCTION 3 (.PAGAA)
5 FUNCTION 4 (.PAGWS)
6 FUNCTION 5 (.PAGGA)
7 FUNCTION 6 (.PAGCA)
8 FUNCTION 7 (.PAGCH)
9 FUNCTION 10 (.PAGCB)
10 FUNCTION 11 (.PAGSP)
11 FUNCTION 12 (.PAGSC)
12 FUNCTION 13 (.PAGBM)
13 FUNCTION 14 (.PAGAL)
14 FUNCTION 15 (.PAGLP)
15 FUNCTION 16 (.PAGWL)
PATH. [CALLI 110]

PEEK [CALLI 33]

PERF. [CALLI 162]
PIBLK. [CALLI 212]
PIFLG. [CALLI 216]
PIINI. [CALLI 135]
PIJBI. [CALLI 175]
PIRST. [CALLI 141]
PISAV. [CALLI 140]
PISYS. [CALLI 136]
PITMR. [CALLI 203]
PJOB [CALLI 30]

POKE. [CALLI 114]
QUEUE. [CALLI 201]

REASSI [CALLI 21]

RECON.

[CALLI 202]

RELEAS [OPCODE 071]
REMAP [CALLI 37]

RENAME [OPCODE 055]
RESCAN [TTCALL 10,]

vii

(.OPMOD)
(.OPDEV)
(. OPBUF)

22-257
22-258
22-259
22-261
22-261
22-261
22-261
22-262
22-263
22-263
22-263
22-263
22-264
22-264
22-264
22-266
22-267
22-269
22-272
22-272
22-275
22-275
22-2717
22-278
22-280
22-281
22-282
22-283
22-284
22-285
22-285
22-286
22-286
22-287
22-287
22-287
22-288
22-288
22-289
22-289
22-290
22-291
22-291
22-291
22-293
22-302
22-303
22-307
22-308
22-309
22-312
22-314
22-315
22-317
22-322
22-324
22-325
22-326
22-338
22-340
22-346
22-347
22-349
22-351

CHAPTER

23

23.
23.
23.
23.

23.

.139
.140
.141
2.142
.143
2.144
2.145
.1l46
.147
.148
.148.
.148.
.148.
2.148.
.148.
.148.
.148.
.149
.150
.151
.152
.153
.154
.155
.156
.157
.158
.159
.160
.161
.162
.163
.164
.165
.166
.167
.168
.169
.170
.171
172
.173
.174
.175
.176
L1777
.178
.179
.180
.181
.182
.183
.184
.185

AU WN R

N WP

RESDV. [CALLI 117]
RESET [CALLI 0]
RTTRP [CALL1l 57]
RUN [CALLI 35]
RUNTIM [CALLI 27]
SAVE. [CALLI 210]
SCHED. [CALLI 150]
SCS. [CALLI 213]
SEBLK. [CALLI 214]
SEGOP. [CALLI 230]

FUNCTION 0 (.SGINF)
FUNCTION 1 (.SGGET)
FUNCTION 2 (.SGREL)
FUNCTION 3 (.SGRMP)
FUNCTION 4 (.SGSWP)
FUNCTION 5 (.SGCOR)
FUNCTION 6 (.SGDMP)

SENSE. [CALLI 133]
SETDDT [CALLI 2]
SETLCH [TTCALL 7,]
SETNAM [CALLI 43]
SETSTS [OPCODE 060]
SETUUO [CALLI 75]
SETUWP [CALLI 36]
SKPINC [TTCALL 13,]
SKPINL [TTCALL 14,]
SLEEP [CALLI 31]
SNOOP. [CALLI 176]
SPPRM. [CALLI 172]
SPY [CALLI 42] .
STATO [OPCODE 061]
STATZ [OPCODE 063]
STRUUO [CALLI 50]
SUSET. [CALLI 146]
SYSPHY [CALLI 51]
SYSSTR [CALLI 46]
TAPOP. [CALLI 154)
TIMER [CALLI 22]
TMPCOR [CALLI 44]
TRMNO. [CALLI 115]
TRMOP. [CALLI 116]
TRPSET [CALLI 25]
TSK. [CALLI 177]
TTCALL [OPCODE 051]
UGETF [OPCODE 073]
UJEN [OPCODE 100]
UNLOK. [CALLI 120]
USETI [OPCODE 074]
USETO [OPCODE 075]
UTPCLR [CALLI 13]
UTRP. [CALLI 174]
WAIT [CALLI 10}
WAKE [CALLI 73]
WHERE [CALLI 63]

GETTAB TABLES

HOW TO USE GETTAB TABLES . .
HOW TO USE GETTAB SUBTABLES

ADDING ITEMS TO THE MONITOR’S GETTAB TABLES

ADDING NEW GETTAB TABLES TO THE MONITOR
ALPHABETIC LISTING
TOPS-10 GETTAB TABLES

viii

22-352
22-353
22-355
22-35¢6
22-358
22-359
22-360
22-366
22-373
22-374
22-375
22-376
22-3717
22-377
22-378
22-378
22-379
22-380
22-382
22-383
22-384
22-385
22-386
22-396
22-397
22-398
22-399
22-400
22-404
22-406
22-407
22-408
22-409
22-421
22-423
22-424
22-425
22-435
22-436
22-438
22-439
22-452
22-453
22-458
22-459
22-460
22-461
22-463
22-465
22-467
22-468
22-470
22-471
22-472

23-1
23-2
23-3
23-3
23-3
23-5

APPENDIX

A

Al

APPENDIX

GLOSSARY

INDEX

FIGURES

TABLES

B

Twow
B WN e

22-1

.EXE FILES

THE DIRECTORY

FILE DAEMON

USER INTERFACE

THE FILE DAEMON

ACCESS.USR

MONITOR INTERFACE TO A FILE DAEMON

QUEUE .

Error
FILOP

LATOP.
LATOP.
LATOP.
LATOP.
LATOP.
LATOP.
LATOP.
LATOP.
LATOP.

PATH.

PISYS.

Argument List

File Entry Types
Argument Block
Show Buffer Format
Service Block .
Short Connect Block
Extended Connect Block .
Show Adjacent Servers Full- Format Block
Show Adjacent Servers Short-Format Block
Counter Block Format
Rejection Codes
Status Block .
Functions and Flags
Function Flags

PSI Interrupt Codes (Non- I/O Interrupts)
PSI Reason Codes (I/O-Related Interrupts)

SEGOP .

UUO Flags

ACCESS.USR Switches
Access Codes .
File Daemon Codes
File Daemon Flags

ix

22-326

22-45

'22-143

22-207
22-208
22-209
22-209
22-210
22-210
22-211
22-213
22-215
22-297
22-318
22-318
22-320
22-375

. B-4

B-11

B-11

B-13

PREFACE

This is the second volume of the 2-volume TOPS-10 Monitor Calls
Manual. Volume 1 describes the facilities offered by the monitor for
assembly language programs. You can use the information in Volume 1
to learn how to implement these facilities in your programs.

Volume 2 contains a detailed description of each monitor c¢all, its
calling sequence, functions, and error codes, if any. It is the
definitive list of the monitor call functions. For information on

using these calls, you should read Volume 1 before attempting to use
Volume 2.

Not all devices are supported under current versions of TOPS-10. In
the interest of providing useful information, this manual includes
references to unsupported and obsolete hardware. For support status
of hardware and software, please refer to the current TOPS-10 Software
Product Description.

Obsolete monitor calls are marked, either in the CALLI UUO, or in the
chapter in which they were previously described. Appropriate
substitutes, (if any), for obsolete calls are also indicated. Section
23.5 lists the GETTAB Tables, and notes any obsolete tables.

CONVENTIONS

This version of the Monitor Calls Manual, Vol. 2 contains special
notation to identify the following:

Notation Meaning

underscore Indicates a type of information that your
program must supply. For example, addr must
be replaced by a location in your program.

N/ braces define a choice of argument types that
you can supply.

If you find any errors or have any 'suggestions for improving this
manual, please fill out the Reader’s Reply Form at the end of this
manual and mail it to the address shown on the back of the form.

All reported errors will be corrected as soon as possible and
distributed with the next revision of the manual.

xi

CHAPTER 22

MONITOR CALL DESCRIPTIONS

This chapter describes each of the TOPS-10 monitor calls. For each
description the following information is included, if applicable:

o FUNCTION: briefly describes the general use of the call.

o CALLING SEQUENCE: shows the format for the call. Cases
where a word may contain one of a number of types of
information are indicated by the presence of braces
containing the options. Braces are included as:

/N / 0\
l | oxr \ /
N/

o RESTRICTIONS: describes any unusual conditions that might
affect the operation of the call or its effect on the calling
program.

o SKIP RETURN: describes the result of a skip return from the
call and any operational aspects with which you should be
concerned.

o ERROR RETURN: describes the result of an error on return.

o EXAMPLE: shows one or more examples of the call.

o RELATED CALLS: 1lists other, related monitor calls.

o COMMON PROGRAMMING ERRORS: ‘describes common user errors.

In the ; calling sequences shown, the following definitions apply
throughout this section:

o ac: an arbitrary accumulator; often used for passing
arguments to the call and to store an error code returned
from a call.

o return: the statement to which control passes on return from
a call.

o skip return: the statement to which control passes if no
error occurs in executing a call.

o error return: the statement to which control passes if an
error occurs in executing a call.

The monitor call names are defined in the file UUOSYM.MAC; the CALLI,
MTAPE, and TTCALL monitor calls offer extensions through parameters
passed to the monitor.

22-1

ACCLG. [CALLI 204]

22.1 ACCLG. [CALLI 204]

FUNCTION

Used by the LOGIN system program to increment LOGNUM and ensure that
LOGIN does not exceed the maximum number of logged-in jobs. The

monitor performs the following functions for the ACCLG. call:

1. 1Increments LOGNUM (a word containing the number of logged-in
jobs) .

2. Checks the LOGNUM against the appropriate access maximum
(LOGMAX for timesharing jobs or BATMAX for batch jobs).

CALLING SEQUENCE

MOVSI ac, (flags)
ACCLG. ac

error return
skip return

In the calling sequence, you can supply the flags indicated by the
following bit settings:

Bit Symbol Meaning

0 AC.MAX Check LOGMAX.

1 AC.BMX Check BATMAX.

2 AC.DCR Decrement LOGNUM count.

SKIP RETURN

On a skip return, LOGNUM has been incremented and the maximum is not
exceeded. If the LOGIN program is halted before the LOGIN UUO has
successfully completed, however, the program should trap the CTRL/C
exit and perform another ACCLG. call, setting the AC.DCR flag to
decrement the LOGNUM count before allowing the program to exit.

ERROR RETURN

When this call takes the error return, one of the following error
codes will be returned in the accumulator:

-

Code Symbol Error

1 ACLMX$% LOGMAX check failed. That is, to log in this job
would exceed LOGMAX.

2 ACLBM% BATMAX check failed.

3 ACLIL% Invalid argument to ACCLG. call.

4 ACLJL% ACCLG. with AC.DCR set produced an invalid wvalue
after decrementing.

5 ACLDCS% An ACCLG. with AC.DCR had been attempted when the

LOGNUM had not been incremented.

22-2

ACCT. [CALLI 167]

22.2 ACCT. [CALLI 167]
FUNCTION -
Reads or changes the account string for a job.

CALLING SEQUENCE

MOVE ac, [XWD function, addr]
ACCT. ac,
error return
skip return
addr: EXP length
argument list

In the calling sequence, you may supply the following variables:
o function, as one of the function codes described below.
o addr, as the location of the argument block.

o length, as the length of the argument block (not including
this word)

o argument list, which is specific to the function.

22.2.1 Function 0 (.ACTCH)
Changes the account string for the specified job.

You must have JACCT privileges to use Function 0. Note that [1,2]
privileges alone do not provide ability to perform this function.

The argument list is formatted as:

Word Contents

0 Must contain a 1.

1 A byte pointer to the ASCIZ account string, or the word
[-1, ,address], where address is the location of the account
string. In the latter case, account strings must be

left~-justified on a word boundary.

22.2.2 Function 1 (.ACTRD)

Reads the account string for the specified job.

The maximum length for account strings is set by the system
administrator when the monitor is generated by MONGEN (symbol name
MLACTS) . This default can be changed if your installation uses fewer

than 39 characters in its account strings.

22

!
w

ACCT. [CALLI 167]

Word Contents
0 Must contain a 2.
1 The job number for the

calling job).

2 The location where the
string.

SKIP RETURN
For Function .ACTCH, the account

For Function .ACTRD, the account
pointed to by addr+2, and addr+l

ERROR RETURN

desired account string (-1 for the

monitor should return the account

string is changed.

string for the job is in the location
contains the job number.

An error code is returned in the accumulator. The error codes and
their meanings are:
Code Symbol Error
1 ACTTLS Account string too long for the monitor’s buffer;
only the leftmost characters have been stored.

2 ACTACS Address check error.
3 ACTIL% Illegal argument.
4 ACTNJ% Nonexistent job number.
5 ACTPS% JACCT privileges required.
EXAMPLE

MOVE T1, [XWD .ACTRD,ARGLST]

ACCT. T1,

JRST ERROR

JRST CONTIN
ARGLST: EXP 2
JOBNO: EXP -1
ACCADR: EXP ACCSTR
ACCSTR: BLOCK ~“D8
ERROR: error routine
CONTIN: success routine

This code sequence places the ASCIZ account string for the calling job
into the locations starting at ACCSTR.

RELATED CALLS

o GETPPN

o PJOB

22-4

APRENB [CALLI 16]

22.3 APRENB [CALLI 16]

FUNCTION

Enables trap servicing for a program. When a condition enabled for
trap servicing occurs, control is transferred to the address given by
.JBAPR in the job data area. See Chapter 6 for more information about
handling traps.

CALLING SEQUENCE

MOVEI ac, flags
APRENB ac,
return

In the calling sequence, you can supply the following flags, indicated
by these flag bits:

Bit . Symbol Trap Condition

18 AP .REN Repetitive enable.

19 AP .POV . Pushdown list overflow.

21 AP.ABK = Reserved.

22 AP .ILM Memory protection violation.

23 AP .NXM Nonexistent memory.

24 AP.PAR Memory parity error.

26 AP .CLK Clock tick. The clock ticked while your program

was actively running; this trap does not occur for
every clock tick.

29 AP .FOV Floating-point overflow.
32 AP .AOV Arithmetic overflow.

When one of these conditions occurs while the processor is in user
mode, the monitor:

1. Stores the PC in location .JBTPC in the Job Data Area. If
the PC is equal to the first or second location in your trap
servicing routine, the program is terminated.

2. Clears the arithmetic and floating-point overflow flags.

3. Transfers control to your trap-servicing routine; the
location is given by the right half of location .JBAPR in the
Job Data Area.

Your program must place the address of the trap-servicing routine into
.JBAPR before executing the APRENB monitor call.

22-5

APRENB [CALLI 16]

NOTES

o If vyour trap-servicing routine contains the
instruction

JRSTF @.JBTPC

the processor bits are cleared and the state of
the CPU is restored; control resumes where the
interrupt occurred.

o The APRENB monitor call clears the trap after an
occurrence of any selected condition; therefore
your program must call APRENB after each trap
occurs.

o To enable repeated trap interceptions, your
program should set AP.REN (bit 18) when executing
the APRENB call; however, clock interrupts must be
reenabled after each trap occurs.

o If your program does not enable for traps,
overflow conditions and clock ticks are ignored,
but the other conditions 1listed above produce
fatal errors.

EXAMPLE
MOVEI T1l,0VERFL ;Get address of overflow handler
MOVEM T1l, .JBAPR ;Put into .JBAPR
MOVEI T1,AP.AQOV ;Arithmetic overflow flag
APRENB T1, ;To .JBAPR on arith ovflw
JRST CONTIN ;On to something else
OVERFL: OUTSTR [ASCIZ /ARITHMETIC OVERFLOW ERROR/]
JRSTF @.JBTPC ; Resume execution
CONTIN: ; Something else

This code sequence sets wup an overflow. message for the first
arithmetic overflow; note that this example will not handle more than
one arithmetic overflow.

COMMON PROGRAMMING ERRORS

o Not reenabling the interrupt after each trap has occurred.
o Failing to set up .JBAPR prior to the APRENB call.

RELATED CALLS

o PISYS.

o UTRP.

22-6

ATTACH [CALLI 104]

22.4 ATTACH [CALLI 104]
FUNCTION

Attaches a terminal line to a job. For example, this call is used by
the BATCON program to attach and detach jobs from their terminals at
system shutdown. This call is more powerful than the ATTACH monitor
command.

An unprivileged job can use the ATTACH monitor <call only if its
terminal is in wuser mode, and it can only detach from its own
controlling terminal.

CALLING SEQUENCE

MOVE ac, [EXP <flag>+<lineno>Bl7+<jobno>B35]
ATTACH ac,

error return
skip return

In the calling sequence, you can supply the following variables:
o flag is one of the bits described below.
o lineno is a line number (restricted to 16 bits).

o Jjobno is the number of a logged-iﬂ job (use -1 for the
current job).

If jobno is -1, your job is detached from the current 1line
and attached to the specified line; if jobno is 0, the job
attached to the line specified by 1lineno is detached; if
jobno is positive (requires JACCT or [1,2] privileges), the
monitor detaches the specified job from its current line and
attaches it to the specified line.

Flags you can supply in the accumulator are:

Bit Symbol Terminal Mode

0 AT .UMM Puts terminal in monitor (command) mode. However,
.STPGR of the SETUUO may force the terminal into
user mode.

1 AT.UUM Puts terminal in user mode.

If neither flag is set, the terminal mode is not changed. Note that
this is the terminal mode, not the job mode.

Using the ATTACH UUO, you perform the following functions with the
following information:

To attach an arbitrary job to a terminal:

jobno should be the number of the job to be attached.
lineno should be the number of the terminal to which the

job is to be attached.
flag is the mode to which the new terminal will be set.

The previous terminal will be left in monitor mode.

22-17

ATTACH [CALLI 104]
To attach your current Job to a terminal, follow the above
definitions, with the following exception:

jobno should be less than 0 (-1 is recommended) .

To detach an arbitrary terminal:

jobno must be zero.

lineno should be the number of the terminal to be
detached.

flags will be ignored. The terminal will be left in

monitor mode.

To detach your job’s controlling terminal:

Jjobno must be zero.
lineno should be -1 or 777777. 1If you explicitly include

777777, the first +two bits of the wvalue are
ignored, producing 177777 (both flag bits are

off) .
flags are ignored. The terminal is placed in monitor
d
mode .

SKIP RETURN

The job is attached or detached as specified, and the terminal is in
the specified mode.

ERROR RETURN

The accumulator is cleared. An error return occurs only if you use an
illegal 1line or Jjob number, or if you do not have the required
privileges for the call.

EXAMPLE
MOVSI T1, -1
ATTACH T1,
JRST ATTERR
JRST CONTIN
ATTERR: error routine
CONTIN: success routine

This example detaches the current job from its terminal line; the mode
is not changed.

22-8"

CALLI [OPCODE (47]

22.5 CALLI [OPCODE 047]
FUNCTION

Passes the monitor a function-index for an extended set of monitor
calls, called CALLIs. The negative CALLI indexes are reserved for
customer-defined monitor calls. All non-negative codes are reserved
for use by DIGITAL. Obsolete CALLIs. are marked as such, and they are
not described further in this manual.

The defined CALLIs also have symbolic function-names; in this chapter
they are listed in alphabetical order by symbol name. For example,
CALLI 215 is the CTX. UUO, described in this chapter under "CTX.".

CALLING SEQUENCE

CALLI ac, function-index
error return
skip return

In the calling sequence, you can supply the function-index. The
alternate method of specifying a monitor call is to use the following
syntax:

function-name ac,
error return
skip return

The function-name is the name of the monitor call. For example, CTX.
is the function-name for the CALLI with function-index 215.

You can use the UU.PHY bit in the ac to indicate that addresses you
specify are physical references. For monitor calls that take device
names, this bit indicates that physical device referencing is being
used.

To indicate physical references, rather than virtual or logical, set
Bits 18 and 19 in the ac, or include the symbolic representation
(UU.PHY) .

For example, to indicate physical referencing in DIGITAL CALLIs, such
as the CTX. UUO, use the following CALLI syntax:

CALLI ac,215!UU.PHY

Or you can specify UU.PHY in symbolic representation of the CALLI
using the following syntax:

CTX. ac, UU.PHY

For customer-supplied CAllIs, remember to use the negative
representation of UU.PHY:

CALLI ac,-1,-UU.PHY

22-9

CALLI [OPCODE 047]

Or, in symbolic representation:
LIGHTS ac, ~UU.PHY

The UU.PHY symbol represents the settings of Bits 18 and 19 in the ac.
When the settings of these bits differ, physical referencing is
assumed by the monitor. For DIGITAL-supplied CALLIs, Bit 18 is clear
and Bit 19 is set to indicate physical referencing. For customer
CALLIs, Bit 18 is set; therefore, Bit 19 must be cleared to indicate
physical referencing.

The CALLI "function-index" is one of the following:

Function-Index Name Meaning
-n through -1 Reserved for customer definition.
0 RESET Refer to the description of the monitor call.
n DIGITAL-supplied CALLI functions.

The CALLIs and their symbolic names are listed in numerical order on
the following pages.

22-10

Symbol CALLI Function
LIGHTS (Obsolete)
RESET [CALLI 0]
DDTIN (Unsupported)
SETDDT [CALLI 2]
DDTOUT (Unsupported)
DEVCHR [CALLI 4]
DDTGT (Obsolete)
DDTRL (Obsolete)
GETCHR (Obsolete; use DEVCHR)
WAIT [CALLI 10]
CORE [CALLI 117
EXIT [CALLI 12]
MONRT. [CALLI 1,12]
UTPCLR [CALLI 13]
DATE [CALLI 14)]
LOGIN [CALLI 15]
APRENB [CALLI 16]
LOGOUT [CALLI 17]
SWITCH (Obsolete)
REASSI [CALLI 21]
TIMER [CALLI 22]
MSTIME [CALLI 23]
GETPPN [CALLI 24]
TRPSET [CALLI 25]
TRPJEN [CALLI 26]
RUNTIM [CALLIL 27]
PJOB [CALLI 30]
SLEEP [CALLI 31]
SETPOV (Unsupported)
PEEK [CALLI 33]
GETLIN [CALLI 34]
RUN [CALLI 35]
SETUWP [CALLI 36]
REMAP [CALLI 37]
GETSEG [CALLI 40]
GETTAB [CALLI 41]
SPY [CALLI 42]
SETNAM [CALLI 43}
TMPCOR [CALLI 44]
DSKCHR [CALLI 45]
SYSSTR [CALLI 46]
JOBSTR [CALLI 47]
STRUUO [CALLI 50]
SYSPHY [CALLI 51]

CALLI [OPCODE 047]

Symbol CALLI Function
FRECHN (Obsolete)
DEVTYP [CALLI 53]
DEVSTS [CALLI 54]
DEVPPN [CALLI 55]
SEEK (Obsolete)
RTTRP [CALLI 57]
LOCK [CALLI 60]
JOBSTS [CALLI 61]
LOCATE [CALLI 62]
WHERE [CALLI 63]
DEVNAM [CALLI 64]
CTLJOB [CALLI 65]
GOBSTR [CALLI 66]
ACTIVA {(Unimplemented)
DEACTI (Unimplemented)
HPQ [CALLI 71]
HIBER [CALLI 72]
WAKE [CALLI 73]
CHGPPN [CALLI 74)
SETUUO [CALLI 75]
DEVGEN (Unimplemented)
OTHUSR [CALLI 77]
CHKACC [CALLI 100]
DEVSIZ [CALLI 101]
DAEMON [CALLI 102]
JOBPEK [CALLI 103]
ATTACH [CALLI 104]
DAEFIN [CALLI 105]
FRCUUO [CALLI 106]
DEVLNM [CALLI 107]
PATH. [CALLI 110]
METER. (Unsupported)
MTCHR. [CALLI 112]
JBSET. [CALLI 113]
POKE. [CALLI 114]
TRMNO . [CALLI 115]
TRMOP . [CALLI 116]
RESDV. [CALLI 117]
UNLOK. [CALLI 120]
DISK. [CALLI 121]
DVRST. [CALLI 122]
DVURS. [CALLI 123]
XTTSK. (Unsupported)
CAL11. [CALLI 125]

22-11

CALLI [OPCODE 047]

Symbol CALLI Function Symbol CALLI Function
MTAID. [CALLI 126] QUEUE . [CALLI 201]
JONDX. [CALLI 127] RECON. [CALLI 202]
CNECT. [CALLI 130] PITMR. [CALLI 203]
MVHDR. [CALLT 131] ACCLG. [CALLI 204]
ERLST. [CALLI 132] NSP. [CALLTI 205]
SENSE. [CALLTI 133] NTMAN . [CALLI 206]
CLRST. [CALLI 134] DNET. [CALLI 207]
PIINI. [CALLI 135] SAVE. [CALLI 210]
PISYS. [CALLI 136] CMAND . [CALLI 211]
DEBRK. [CALLI 137] PIBLK. [CALLI 212]
PISAV. [CALLI 140] SCS. [CALLI 213]
PIRST. [CALLI 141] SEBLK. [CALLI 214]
IPCFR. [CALLI 142] CTX. [CALLT 215]
IPCFS. [CALLI 143] PIFLG. [CALLI 216]
IPCFQ. [CALLI 144] IPCFM. [CALLI 217]
PAGE. [CALLI 145] LILMOP. [CcALLI 220]
SUSET. [CALLTI 146] LATOP. [CALLI 221}
COMPT. (Reserved) KNIBT. (Obsolete)
SCHED. [CALLI 150] CHTRN. [CALLI 223]
ENQ. [CALLI 151151] ETHNT . [CALLT 224]
DEQ. [CALLI 152] ENTVC. [CALLI 225]
ENQC. {CALLI 153] NETOP . [CALLI 226]
TAPOP . [CALLT 154] DDP. (Unsupported)
FILOP. [CALLI 155] SEGOP. [CALLI 230}
CAL78. (Unsupported)

NODE . [CALLI 157]

ERRPT. [CALLTI 160}

ALLOC. [CALLI 161]

PERF. [CALLI 162]

DIAG. [CALLI 163]

DVPHY . [CALLTI 164]

GTNTN. [CALLI 165]

GTXTN. [CALLI 166]

ACCT. [CALLTI 167]

DTE. [CALLI 170]

DEVOP . [CALLI 171]

SPPRM. [CALLI 172]

MERGE . [CALLI 173]

UTRP . [CALLI 174]

PIJBI. {CALLT 175]

SNOOP . [CALLI 176]

TSK. [CALLI 177]

KDP . [CALLI 200]

22-12

CAL11l. ([CALLI 125]

22.6 CALl1l. [CALLI 125]

FUNCTION

Performs front-end testing and debugging functions. Using this call,
you can obtain information about PDP-11 based front end nodes, send
and receive front-end messages, and examine and deposit into the
front-end software.

CALLING SEQUENCE

MOVE ac; [XWD length, addr]
CALl1l. ac,

error return
skip return

addr: XWD port, function
address
value
gstart

In the calling sequence, you may supply the following variables:
o length is the length of the argument block.
o addr is the location of the argument block. Starting at this

address, the call accepts one to four words, depending on the
function code.

The format of the argument list for CALll. is:

Offset Symbol Contents

0 .Cl1FC Function word, containing the port specification
and the function code. The left half of this word
contains the type of port. The right half must
contain a function code. The argument 1list
following the function word may include the
following words, depending on the function.

1 .C1l1AD Address of a buffer where the monitor will store
requested data.

2 .C11CN A value that the function uses as data to deposit
' in memory.

3 .C1l1EN Address of a buffer where the monitor will store
information about a device.

The first word of the argument 1list (.Cl1FC) 1is required for all
functions. The left half of this word specifies the type of port by
which the front end is connected to the central processor. The port
specification can take either of the following formats. The first
format is old, and may be used by existing programs. However, the new
format is recommended for new programs.

22-13

CAL1l. [CALLI 125]

The old format for the port specification is:

Bits Symbol Meaning
9-17 Cl.1NO Port identifier, made up of the following fields:
9-14 Cl.1NT Type of port (see .ClL1TY below).

15-17 Cl.1NN Port number.

The new format is signified by the setting of Bit 0, the sign bit.
With the new format, the following fields are defined:

Bits Symbol Meaning
0 C1l.1NF New format for port specification.
1-8 Cl.1XX Reserved for use by DIGITAL.
9-11 Cl.1TY Type code, one of the following:
Code Symbol Meaning
0 .Cl11DL DL-10
1 .C11DT DTE-20
2 .C1l1KD KMC/DUP
3 .C11DR DMR-11
12-14 Cl.1CN CPU number.
15-17 Cl.1PN Port number.
18-35 Cl.1FC Function code.

The arguments following .Cl11FC depend on the function. Therefore, the
argument lists are described for each function code listed below.

The function codes and their meanings are described in the following
sections:

22.6.1 FUNCTION 0 (.C11DP)

Deposits the specified data in the specified location. The argument
block for this function is:

Word Symbol Contents

0 .C11FC Port specification in the left half.

Function name (.C11DP) in the right half.
1 .C1l1aD Address where the data will be deposited.

2 .C11CN Value, or data, to be deposited at location
specified in .C1l1AD.

This function requires the JP.POK privilege, and works for DN60 and
DN8x front ends only.

22-14

CAL1l. [CALLI 125]

22.6.2 FUNCTION 1 (.Cl1EX)

.

Examines the specified location. The argument list for this function
is: ' :

Word Symbol Contents

0 .Cl1FC Left half contains the port specification.

Right half contains .Cl1EX.
1 ~.Cl1aDp The address to be examined.
The data at the specified location is returned in the accumulator.

This function requires the JP.POK privilege and works for DN60 and
DN8x front ends only.

22.6.3 FUNCTION 2 (.C11QU)
The argument list for this function is:

Word Symbol Contents

0 .Cl1FC Left half contains the port specification.

Right half contains .C11QU.

1 .Cl1aD Zero
2 .Cl1CN Zero
3 .CL11EN " The address of a data block containing information

regarding the front end function.

This function requires the JP.POK privilege and works only for DN60O
front ends. ’

22.6.4 FUNCTION 3 (.Cl1NM)

For DL1l0-based ANF-10 front ends, returns the name of the program
running on the PDP-11. The SIXBIT program name is returned in ac.
For all other front ends, .Cl11INM returns the name of the protocol

enabled by the monitor for a given front end. The argument list for
thig function contains only the function word, .C11FC.

22.6.5 FUNCTION 4 (.Cl1l1UP)

This function is obsolete.

22.6.6 FUNCTION 5 (.C11SM)

This function is obsolete.

22-15

CAL1l. [CALLI 125]

22.6.7 FUNCTION 6 (.Cl11RM)

Receives a message from a DN8x type of front end. This function
requires only the first word of the argument list, .Cl1FC.

22.6.8 FUNCTION 7 (.C11TY)

Returns the node type and node number of the PDP-11. This function
requires only the first word of the .argument list, .Cl1FC.

For DECnet and ANF-10 front ends, the node number is returned in the
left half of the ac. The node type is returned in the right half, as
one of the following type codes:

Code Symbol Meaning

1 .C1D76 DC76.

2 .C1D75 DC75/DN87.

3 .C1D60 DN6O.

4 .C1D8S DN87S.

5 .C1CFE Console front end.

6 .C1MCB DECnet-10 MCB front end.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

1 Cl1NP% Job not privileged.

2 Cl1UF% Unknown function.

3 Cl11ND% Wrong type of PDP-11 specified.

4 Cl1IU% Examine/deposit function already in use.

5 Cl1NA% No answer to examine/deposit.

6 Cl1TS% Queue entry too short.

7 Cl1NES% Not enough arguments.

10 Cl1IA% Invalid address specified for examine/deposit.

11 Cl1IQ% Invalid argument for queue request function.

12 Cl1lICS% Insufficient core.

13 Cl1RP% DTE-reload bit is set, or primary protocol is not
running.

14 Cl1IES% Insufficient exec virtual memory.

15 Cl1IL% Illegal packet length.

16 C1l1NCS% CPU is not running.

17 Cl1IT% Illegal type code specified.

20 CllIP% Illegal port number specified.

21 Cl1DL% No DL10 support in this monitor.

22 Cl1iDT% No DTE support in this monitor.

23 Cl1KD% No KDP support in this monitor.

24 C1l1DR% No DMR support in this monitor.

22-16

CHGPPN [CALLI 74]

22.7 CHGPPN [CALLI 74]

FUNCTION

Changes the project-programmer number (PPN) for the current job. This
call is reserved for the exclusive wuse of the LOGIN and INITIA

programs.

CALLING SEQUENCE

MOVE ac, [XWD projno,progno]
CHGPPN ac,

error return
skip return

In the calling sequence, you can supply projno,progno as the new
project-programmer number (PPN).

SKIP RETURN

The PPN for the current job is changed to the given number. This call
always takes the skip return when the calling program has [1,2],
JACCT, or POKE privileged, or if the program has CHGPPN privileges as
set by MONGEN.

ERROR RETURN

Occurs if the calling job is already 1logged in, or 1if either the

project or programmer number is zero. The ac is unchanged.
EXAMPLE

MOVE T1l, [XWD 27,5031]

CHGPPN T1,

JRST ERROR
This code sequence changes the PPN for the current job to 27,5031.

RELATED CALLS

o GETPPN

o LOGIN

22-17

CHKACC [CALLI 100]

22.8 CHKACC [CALLI 100]
FUNCTION

Determines whether a file may be accessed, based on your job’s current
PPN and the file access protection code. Your programs should not
make assumptions concerning the access codes associated with a file;
they should use the CHKACC monitor call to determine if access is
permitted to that file. This 1is especially true for privileged
programs that are constrained by the access privileges of a
non-privileged project-programmer number for which they are performing
a task.

The CHKACC call does not function correctly on systems that are
running a file daemon program, such as FILDAE. So, if your system is
running a FILDAE type program, use the FILOP. call. The
FILOP. monitor <call allows a privileged program to specify that an
operation is to be performed only when the operation would be legal if
performed by a specified project-programmer number. In most cases,
the FILOP. function eliminates the need for the CHKACC monitor call.
New programs should be written wusing the FILOP. "in your behalf"
capability (.FOPPN) .

CALLING SEQUENCE

MOVEI ac, addr
CHKACC ac,

error return
skip return

addr: XWD fcn-code, <ufdprot>B26+<filprot>B35
XWD projno,progno ;For file
XWD projno,progno ;For accessing program

In the calling sequence, you can provide the following information:
o addr is the address of the argument block.
o fcn-code is one of the function codes described below.
o ufdprot is a directory protection code.
o filprot is a file protection code.

o projno,progno is a project-programmer number (PPN).

NOTE

When your program specifies Function codes 0 through
6, the monitor ignores the directory protection. When
your program specifies function codes 7 and 10, the
monitor ignores the file protection.

The function codes and their meanings are:

Code Symbol Access

0 .ACCPR Checks whether your job can change the protection
for the file.

1 .ACREN Checks whether your job can rename the file.

2 .ACWRI Checks whether your job can write the file.

22-18

CHKACC [CALLI 100]

3 .ACUPD Checks whether your job can update the file (in
old update mode) .

4 .ACAPP Checks whether your job can append to the file.

5 .ACRED Checks whether your job can read the file.

6 .ACEXO Checks whether your job can execute the file.

7 .ACCRE Checks whether your job can create the file in the
user’s UFD.

10 .ACSRC Checks whether your job can read the directory as
a file.

The right to access a file is determined by:
o The type of access desired.

o The project-programmer number of the user desiring access to
the file.

o The project-programmer number of the directory containing the
file.

o The protection field of the file or the protection field of
the directory.

Note that access to a file 1is not dependent on the file name.
However, the file name is needed if your program is going to perform a
LOOKUP .

The owner of a UFD or an SFD can always read the UFD or SFD as a
directory.

SKIP RETURN

The monitor returns 0 in the ac if access to the file is allowed, or
-1 if access is not allowed.

ERROR RETURN

The ac is unchanged; this occurs only if you gave an invalid function
code or CHKACC is not implemented on your system.

EXAMPLE

The following code checks to see if the user logged in as [11,315] can
change a file with protection <055> in the directory area [27,5031].

MOVETI T1,ARGLST
CHKACC T1,
JRST ERROR
JRST CONTIN
ARGLST: XWD .ACCPR,<775>B26+<055>B35
XWD 27,5031 ;For files
XWD 11,315 ;For accessing program

22-19

CHKACC [CALLI 100}

RELATED CALLS

FILOP.

COMMON PROGRAMMING ERRORS

Assuming that the CHKACC call grants access to a file. Remember that
it only tests the accessibility of the file. FILDAE can still deny
access to the file on a LOOKUP, ENTER, RENAME, or FILOP. call. The
File Daemon program is described in Appendix C.

22-20

CHTRN. [CALLI 223}

22.9 CHTRN. [CALLI 223]

FUNCTION

CHTRN. 1is used to translate characters from one representation to

another. For

instance, CHTRN. may be used to convert 8-bit

characters to 7-bit characters.

CALLING SEQUENCE

XMOVEI
CHTRN.

ac, addr

error return
skip return

addr: XWD
EXP
EXP
XWD
EXP
EXP

In the calling
argument list.

flags, source count

source byte pointer (first word)
source byte pointer (second word)
reserved, destination count
destination byte pointer (first word)
destination byte pointer (second word)

sequence, you specify addr, the location of the
Suppy the argument list in the following format:

Contents

Word Symbol
0 .CHFLG

.CHSCT
1 .CHSB1
2 .CHSB2
3 .CHDCT
4 .CHDB1
5 .CHDB2

Bits 0-17 (CH.FLG) contain the flags described
below.

Bits 18-35 (CH;SCR) contain the source count,
which 1is the number of bytes stored where the
source byte pointer indicates.

The source byte pointer is a two-word byte pointer
to the 1location where the characters are stored.
This is the first word.

This is the second word of the source byte
pointer.

destination count is the number of bytes available
at the location the destination byte pointer
indicates.

destination byte pointer is a two-word byte
pointer to the buffer reserved for storing the
translated characters. This is the first word.

This is the second word of the destination byte
pointer.

22-21

CHTRN. [CALLI 223]

The flag bits are:

Flag Symbol Meaning

0 CH.FBR Fallback representation (translates 8-bit to
7-bit) .

1 CH.OVR Includes overprinting in the fallback
representation. .

2 CH.RAI Changes lower case to upper case.

3 CH.6BT Converts ASCII characters to SIXBIT.

4 CH.IGN Ignores extra bits; does not range-check
characters.

5 CH.ESC Maps 7-bits ESCape sequences to 8-bit wherever
possible.

6 CH.X6B Expands SIXBIT source to ASCII destination.

SKIP RETURN

The ac is unchanged. The monitor returns the byte pointers in the
argument list with all indirection and indexing resolved. If you
specify one-word global byte pointers, the pointers will be expanded
from one-word global format to two-word global format.

ERROR RETURN

One of the following codes is returned in the ac:

Code Symbol Error

1 CHADCS% Address check while reading or writing arguments.
2 CHBYP% Illegal byte pointer.

3 CHINVS Unknown or reserved flag bit specified.

4 CHILCS% Illegal character encountered during translation.
5 CHDCE% Destination count exhausted prematurely.

6 CHIBC% Invalid bit combination specified.

22-22

CLOSE [OPCODE 070]

22.10 CLOSE [OPCODE 070]
FUNCTION

Terminates transmission of data to or from a file. Closes the file
for both input and output. The default functions of the CLOSE call
for unbuffered data modes are:

o The output side of the channel is closed. 1In unbuffered data
modes, the effect is to execute a device-dependent function.

o The input side of the channel is closed. The end-of-file
flag 1is cleared. Further actions depend on the data mode.
The effect is to execute a device-dependent function.

In buffered data modes, the following operations are performed on the
output side of the channel:

o All data in the buffers that have not been transmitted to the
the device is written to the device.

o Device-dependent functions are performed.

o The ring use bit is set to 1, indicating that the ring is not
in use.

o The buffer byte count, the third word-of the Dbuffer header,
is set to 0.

o Control returns to the user program when transmission 1is
complete.

In buffered data modes, if a ring buffer exists, the following
operations are performed to close the input side of the channel:

o The monitor waits until the device is inactive.

0 The use bit of each buffer is cleared, to indicate that the
buffer is empty.

o The use bit of the buffer ring is set to 1, to indicate that
the ring is not in use.

o The buffer byte count is set to 0.
o Control returns to the user program.

If a file is being written to disk at the time of the output CLOSE,
the unwritten blocks at the end of the disk file are deallocated. On
input CLOSE, the access date of a disk file is updated if any data was
actually read. (LOOKUP followed by CLOSE does not change the access
date.)

If the file is being output to the card punch, the 1last card is
punched, followed by an end-of-file card. This end-of-file card and
the header card contain the file identification punch in column 1,
which is ignored by the card reader service routine.

If a file is being output to magtape, two EOF marks are written and
the tape position is backspaced over one EOF.

If a file is being output to the line printer, a form-feed character
is appended to the last block of data.

22-23

CLOSE [OPCODE 070]

CALLING SEQUENCE

CLOSE
return

channel, flags

In the calling sequence, you can supply the following information:

@]

o}

channel is the channel number for the file.

flags are one or more of the function flags described below.

The function flags and their meanings are:

Bits

29

30

31

32

33

34

35

RETURN

Symbol

Function

CL.

CL.

CL.

CL.

CL.

CL.

CL.

The function

EXAMPLE

DAT

RST

NMB

ACS

DLL

IN

ouT

Deletes the name block and access tables from the
disk data base and the space is returned to
monitor free core. For example, this function is
used by BACKUP on a RESTORE operation.

Inhibits deletion of the original file, if any,
for an ENTER call that creates or supersedes the
file. The new copy of the file is discarded.

Inhibits deletion of the name block and access
tables in monitor memory; this function is
effective only if a LOOKUP call was executed for
the channel, but no subsequent INPUT call for the
channel was executed.

Prevents updating of the file access date. For
example, this feature is used by BACKUP, to save
files on magtape without changing their access
dates.

Inhibits deallocation of any unwritten blocks at
the end of a disk file.

Inhibits closing of the input side of the channel.

Inhibits closing of the output side of the
channel.

is performed.

See Chapter 11,

RELATED CALLS
o ENTER
o FILOP.
o LOOKUP
o RENAME

Monitor Calls Manual Vol. 1.

22-24

CLRBFI [TTCALL 11,]

22.11 CLRBFI [TTCALL 11,]

FUNCTION
Clears text from the terminal input buffer. This call is often used

to clear any further user commands when an error occurs; otherwise,
incorrect processing (due to user. type-ahead) could follow the error.

CALLING SEQUENCE

CLRBFI
return

RETURN
All text is cleared from the input buffer.

RELATED CALLS

o CLRBFO
o TTCALLs
o TRMOP.

22-25

CLRBFO [TTCALL 12,]

22.12 CLRBFO [TTCALL 12,]
FUNCTION

Clears the terminal output buffer. This
equivalent to typing CTRL/O.

CALLING SEQUENCE

CLRBFO
return

RETURN
The terminal output buffer is cleared.

RELATED CALLS

o CLRBFI

o TTCALLs

o TRMOP.

22-26

monitor

call

is

normally

CLRST. [CALLI 134}

22.13 CLRST. [CALLI 134]
FUNCTION

Clears or sets the I/0 status bits for a device. This enables your
program to continue after an I/O error has occurred. The CLRST. UUO
functions like SETSTS, taking the list of devices and I/0 status bits
for each device,. with the additional ability to specify devices not
explicitly OPENed on an I/0 channel.

You can examine the current setting of the I/0 status bits by using
the SENSE. monitor call.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
CLRST. ac,

error return
skip return

/ SIXBIT/device/ \
addr: | EXP channo |

\ EXP udx /
addr+1: XWD 0, setsts-value

/ SIXBIT/device/ \
addr+2:| EXP channo |

\ EXP udx /

addr+3: XWD 0, setsts-value

In the calling sequence, you can supply the following information:
o len is the length of the argument list.
o addr is the address of the argument list, containing one or

more 2-word entries. Each two-word entry contains the
following information:

o In the first word of the pair (.CLRSX), store a device
specification, in the form of a SIXBIT device name, channo as
a channel number, or the device udx.

o In the second word of the pair (.CLRST), store the
setsts-value, or the halfword value of the I/0 status bBits
for the given device, channel, or udx. This word specifies
the new settings for the I/0 status bits.

Your program can clear the I/0 status bits for more than one device.
The argument block contains a 2-word entry for each device.

For a complete list of I/O status bits, see Chapter 11. Each type of
device has a unique set of I/0O status bits, which are described in the
chapter about the appropriate device.

SKIP RETURN

‘The I/O status bits for each specified device are cleared or set as
specified.

22-27

CLRST.

[CALLI 134]

ERROR RETURN

One of the following error codes is returned in the ac:

Code

1
2

EXAMPLE

ARGLST:

CONTIN:

Symbol Error
CLRID% Illegal device specified.
CLRNO% Specified device does not belong to your job.
MOVE T1, [XWD <CONTIN-ARGLST>,ARGLST]
CLRST. T1,
JRST ERROR
JRST CONTIN
SIXBIT /DTAOQ/
EXP 0
EXP CHANNO
EXP 0

This code sequence clears the I/0O status bits for DTAO0 and the device
associated with the channel whose number is the value of CHANNO,

RELATED

CALLS

O

ERLST.

GETSTS

SENSE.

SETSTS

22-28

CMAND. [CALLI 211]

22.14 CMAND. [CALLI 211]
FUNCTION

Defines commands that run specified programs, and manipulates the
job’s user-defined command list. In the argument list to this call,
your program defines a command name that, when typed as a monitor
command, will run the program specified by the file specification that
is also included in the command list. The CMAND. UUO allows you to
define multiple command names in the argument list, and allows you to
read the command list that is already defined for your job.

CALLING SEQUENCE

MOVE ac, [XWD fcn-code, addr]
CMAND . ac,
error return
skip return
addr: argument-list

In the calling sequence, you can supply the following information:

o fcn-code is the function code. The function codes are listed
in the following sections.

o addr is the address of the argument list. The argument 1list
for each function code is described in the following list of
function codes.

22.14.1 FUNCTION 0 (.CMINT)

Initializes (clears) any current command definitions and creates a new
command list as specified at addr. The argument list stored at addr,
you supply the command flags, the command name, and the file
specification of the program to run when the command is invoked.

The argument list for this function is formatted as follows:

Word Symbol Contents

0 .CMFLA - In the left half, one or more of the flags
described below. In the right half (CM.COU),
store the length of this definition.

1 . CMNAM Command name

2 .CMDVC Device name

3 .CMFLE File name

4 .CMEXT File extension

5 .CMPPN Project-programmer number

6 .CMSFD First SFD name

7-10 Remaining SFD names

In argument list, you can supply the following flags to indicate the
number of characters in the command that must be input to define the
command uniquely. The flags are:

Mask Symbol Meaning

10B17 CM.UN1 Command is wuniquely identified by the first
character of its name.

4B17 CM.UN2 Command is uniquely identified by the first two
characters.

22-29

CMAND. [CALLI 211]

2B17 CM.UN3 Command is uniquely identified by the first three
characters.

1B17 CM.UN4 Command is uniquely identified by the first four
characters.

1B12 CM.AUT Command is defined as automatically saving the
job’s current context. The command will create a

new context, in which the called program will run.
The original context is restored when the program
terminates.

You can define more than one command by including a command block for

each command, and storing them in contiguous blocks. The last word,
where the next .CMFLA might be expected, must be set to zero.

22.14.2 FUNCTION 1 (.CMADD)
Adds one or more command definitions to the current command list. The

argument block for this function is identical to that used by Function
0 (.CMINT) .

22.14.3 FUNCTION 2 (.CMDEL)

Deletes one or more commands from the current list of defined

commands. The argument list for this function is formatted as:
Word Symbol Contents

0 .CMSIZ Length of the argument list

1 . CMCMN Command name to be deleted

n More command names.

The length of the argument list is equal to the entire length of the
argument list, including .CMSIZ. .The commands to be deleted are
listed in the following words, and each must be equivalent to the
.CMNAM word where the command was defined (see .CMINT argument list).
Note that commands in the command list that are not 1listed in the
.CMDEL argument list are not affected by this function.

22.14.4 FUNCTION 3 (.CMLST)

Lists all the currently defined command names. The argument list for
this function is formatted as:

addr: length
BLOCK length-1

In the argument list, you supply the following information:
o length is the length of the argument block

o length-1 is the number of commands to return.

22-30

CMAND. [CALLI 211}

On a successful skip return, the argument block appears as:

Word Symbol Contents

0 .CMSIZ Length of returned list

1 . CMNAM First command in the list

n Remaining commands in the list

‘The monitor returns, in .CMSIZ, the total number of defined commands.
The command names are returned starting at .CMNAM. If the reserved
block is not long enough, the list of command names is limited to the
reserved space.

22.14.5 FUNCTION 4 (.CMRET)

Returns information about a command. You must include the argument
list as:

Word Symbol Contents

0 .CMSIZ Length of argument list

1 . CMCNM Command name for which information 1s to be
returned.

In this argument list, specify the length of the block to be returned
in .CMSIZ, and the name of the defined command for which information
is desired, in .CMCNM. The information is returned in the form of a
command block (same as argument list for .CMINT), for the command
name.

22.14.6 FUNCTION 5 (.CMDMP)

Dumps the entire command definition data base. This function uses the
following argument list:

Word Symbol Contents

0 .CMSIZ Length of argument list

1-n BLOCK length-1 to reserve space to return
information.

After the call returns successfully, a list of all the command blocks
for defined commands will be returned starting at Word 1. See
Function 0 (.CMINT) for the format of the returned command blocks.
Note that the last command block will be followed by a zero word to
indicate the end of the command list.

SKIP RETURN

The state of a return from CMAND. UUO is described for each function
listed above.

22-31

CMAND. [CALLI 211)

ERROR RETURN

On an error return,

the CMAND. UUO takes the non-skip return and

returns the appropriate code from the following list of error codes:

Code Symbol Error

1 CMIAL% Your program specified an illegal argument list.
The argument 1list length was either too long or
too short.

2 CMADCS% Address check occurred.

3 CMNERS% Not enough room to define commands in your job’s
per-process space.

4 CMDNF' % Your program did not finish reading the command
list. The buffer size you allowed at addr was not
enough to contain all the information to be
returned.

5 CMNSN% No such command name. On a .CMRET or .CMDEL
function, vyou specified a command that is not
defined.

EXAMPLE

MOVE AC, [XWD .CMADD,CMBLK]
CMAND. AC,
error return
skip return ;Command has been defined
CMBLK: CM.UN3!6 ; /JUNIQUE:3, and 6 words in block
SIXBIT /XDDT/ ;Command name
SIXBIT /DSKA/ ;Device name
SIXBIT /DDT/ ;File name
EXP O ;Extension (assumed to be EXE)
XWD 1,4 ;PPN

This coding sequence will define the XDDT command to run

DSKA:DDT[1,4].

COMMON PROGRAMMING ERRORS

Assuming that .CMFLA in .CMINT or .CMADD specifies the length of the
entire argument list.

22-32

CNECT. [CALLI 130]

22.15 CNECT. [CALLI 130]

FUNCTION.

Connects or disconnects a device associated with an MPX channel. You
can use CNECT. only with devices that are MPX-controllable
(specifically,: terminals, pseudo-terminals, 1line printers, card

readers, paper tape punches, and remote data terminals).

CALLING SEQUENCE

MOVEI ac, addr

CNECT. ac,
error return

skip return

addr: kWD fcn-code, channel
/ SIXBIT /device/ \
\ EXP udx /

In the calling sequence, you can supply the following variables:
o addr is the address of the argument block.
o fcn-code is one of the function codes described below.
o channel is the number of an initialized MPX channel.

o device is the SIXBIT physical, generic, or logical name of a
device.

o udx is the Universal Device Index for the device.
Your program must initialize an MPX channel for the device using an
OPEN call, before wusing the CNECT. call to connect the device to an
MPX channel. The device must be initialized and connected to the MPX
channel before it can be used for any I/0.

The function codes and their meanings are:

Code Symbol Function

1 .CNCCN Connects the device to an MPX channel.

2 .CNCDC Equivalent to CLOSE and disconnect from MPX
channel.

3 .CNCDR Equivalent to RESET and disconnect from MPX
channel.

4 .CNOFE Determines output feasibility.

22-33

CNECT. [CALLI 130}

SKIP RETURN

The specified device is connected, disconnected, reset, and/or closed,
as appropriate for the given function code. For the .CNCCN function,
the Universal Device Index for the device is returned in the ac.

For the .CNOFE function, two values are returned in the ac. The Ileft
half of the ac contains the user address of the current output buffer,
or 0 if none. The right half of the ac contains the number of data
requests for a network device (except terminals, which return a 1 if
output is possible), 0 if there are no data requests for the network
device, or -1 if the device is local. The number of data requests
indicates the number of buffers that the remote device can accept

before your job will block in output wait state.

Your program can perform an output UUO to the device if the left half
of the ac contains 0 and the right half is non-zero.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error
1 CNCNM$% MPX channel not initialized.
2 CNCUD% Nonexistent device.
3 CNCCM$% Illegal device for MPX.
4 CNCNF$% Not enough memory for control blocks.
5 CNCNC$% Device not connected.
6 CNCNO% Device illegal or not initialized.
7 CNCII% Invalid Universal Device Index.
10 CNCUF'$% Invalid function code.
11 CNCDU% Device is not available to your job.
12 CNCSD% Device is spooled; not MPX-controllable.
EXAMPLE

MOVEI T1,ARGLST

CNECT. T1,

JRST ERROR

JRST CONTIN
ARGLST: XWD .CNCDC, CHANNO

SIXBIT /TTY111/

This code sequence disconnects the device TTY1l1ll, which is associated
with the MPX channel given by CHANNO, from an MPX channel.

22-34

CORE [CALLI 11]

22.16 CORE [CALLI 11]

FUNCTION

Allows your program to dynamically expand or contract its core
allocation in either or both segments. Note that neither of the
segments may be locked in core.

The program with JACCT privileges expands the segment in physical
memory. A program without JACCT privileges must wuse UU.PHY to
indicate physical addressing.

CALLING SEQUENCE

MOVE ac, [XWD hiseg, lowseg]
CORE ac, flag

error return
skip return

In the calling sequence, you can supply the following variables:

o hiseg is the highest relative address to be wused in the
program’s high segment. If hiseg = 0, the core assignment
for the high segment is left unchanged.

o lowseg is the highest relative address to be wused in the
program’s low segment. If lowseg = 0, the core assignment
for the low segment is left unchanged.

o flag is the physical flag bit (UU.PHY) to indicate that the
core assignment applies to physical memory. Refer to the
CALLI UUO for more information.

Note that if the CORE UUO is executed in a non-zero section, all core
address arguments will be interpreted as section-relative values.
That is, all references are assumed to be relative to the current
section.

If you give a non-zero hiseg that is less than 400000 or the length of
the low segment (whichever 1is greater), the high segment is
eliminated. Doing this from the high segment causes an illegal memory
reference.

If your program has no high segment, or if you give a CORE call that
eliminates the high segment, you can create a new, non-sharable high
segment by giving hiseg greater than 400000. You can make the new
high segment sharable by doing the following:

o Giving it a .EXE extension.
o Writing it onto a storage device.
o Closing the file.

o Using the SSAVE monitor command, or the SAVE. UUO with the
38%SSH flag, to save the entire core image.

0 Initializing the program with a GET, R, or RUN monitor
command, or with a RUN, MERGE., or GETSEG monitor call.

If you use the CORE monitor call giving a value for lowseg that is
less than or equal to .JBREL, the monitor removes any noncontiguous
pages from your address space; these pages may include the page fault
handler (PFH) or VMDDT. To avoid this, use the PAGE. monitor call to
choose only the needed pages.

22-35

CORE [CALLI 11]

Before expanding core, you should compare the highest required address
with the highest legal address (stored in .JBREL). The example below
shows how to expand core only if necessary.

You can specify the beginning of your program’s high segment by using
the REMAP monitor call, the /NEWPAGE or /SET switches to LINK, or the
TWOSEG pseudo-op to MACRO.

SKIP RETURN

The ac contains the current virtual memory limit in 1K blocks.
However, if the CORE monitor call is issued from a non-zero section,
the virtual memory limit is not returned in the ac.

ERROR RETURN

The error return occurs if any of the following conditigns occurs:

o You give hiseg a value less than 400001 (or the hiseg
origin), but you do not have write-access privileges.

0 You give both hiseg and lowseg as zero. In this case, the
number of free 1K blocks is returned in the ac.

o The sum of the requested new low segment and the previously
existing high segment exceeds your allowed program size.
Core assignment is not changed; the maximum allowed program
size (in 1K blocks) is returned in the ac.

o The sum of the requested new low and high segments exceeds
your allowed program size. Core assignment is not changed;
the maximum allowed program size (in 1K blocks) is returned
in the ac.

o You give a lowseg argument that would extend the low segment
into the high segment.

o One or both segments are locked.

EXAMPLE

MOVE T1,NEWSIZ ;Set up for call

PUSHJ P,CHKCOR ;Call for core

JRST CONTIN

; Subroutine to get core only if needed
CHKCOR: CAMG T1l, .JBREL## ;Core size OK?

POPJ P, ; Yes

CORE T1, ; Get more core

JRST ERROR ;To error routine
POPJ P, ;Core increase OK

RELATED CALLS

o PAGE.

o SEGOP.

22-36

CTLJOB [CALLI 65]

22.17 CTLJOB [CALLI 65}
FUNCTION

Obtains the number of the job that is controlling a specified subjob.
The subjob must be attached to a pseudo-terminal.

CALLING SEQUENCE

MOVETI ac, jobno
CTLJOB ac,

error return
skip return

In the calling sequence, you supply jobno, which is the number of the
controlled job, or -1 to specify your current job.

SKIP RETURN
The number of the controlling job is returned in the ac. If the job
given by Jjobno is not controlled by a pseudo-terminal (PTY), the

number returned in the ac is -1.

ERROR RETURN

Occurs if the job number is illegal.

EXAMPLE
MOVNI T1,1
CTLJOB T1,
JRST ERROR

This code sequence returns the number of the controlling job in T1.

RELATED CALLS

PJOB

22-37

CTX.

[CALLI 215]

22.18 CTX. [CALLI

FUNCTION

CTX.

allows you t

contexts, see Volu
written by the monitor, it may reside in a write-protected page or in
a literal.

CALLING SEQUENCE

XMOVEI
CTX.

error re
skip retur

215]

o manipulate contexts. (For a discussion of
me 1.) Since the argument block of CTX. is never

ac,addr
ac

turn

n

addr: argument-list
In the calling sequence, you supply addr as the 1location of the
argument list. The argument block 1is formatted in the following
fashion:
0 lemmmm——— 8 9~---—- 17 18-—=---==—mm e 35
a3t 3 3] ——1 === +
P | Reserved | Length | Function code |
___ l
Data buffer length]
——— l
Data buffer address |
___ l
SIXBIT context name |
——— I
Reserved | RUN UUO offset |
___ I
RUN UUO block address]
___ I
TMPCOR length | SIXBIT name
___ l
TMPCOR buffer address]
oo —mmama = e S s RS =4
The format of the argument block is:
Word Symbol Contents
0 .CTFNC The function code word. It also contains one of
the following flags, and the 1length of the
argument block, in the following format:
Bits Symbol Meaning
0 CT.PHY Physical-only RUN UUO.
1-8 Reserved for DIGITAL.
9-17 CT.LEN Specifies the 1length of the
argument block, including
.CTFNC.
18-35 CT.FNC Contains one of the function
codes listed below.
1 .CTDBL Holds the data buffer Jlength in words. 510
decimal words is the maximum.
2 .CTDBA Contains the full 30-bit address of the data

buffer. If the IFIW (sign bit) is on, a section
local address, relative to the section CTX. is
executed in, is referenced.

22-38

CTX. [CALLI 215]

3 . CTNAM Used to hold a context name when creating a new
context. When manipulating contexts, this word
may contain a context name or context number.

4 .CTRNO (RUN UUO word) This holds the offset that would
normally go into the 1left half of the RUN UUO
accumulator - (0 for terminal input, or 1 for

indirect command file input).

5 .CTRNB Holds the 30-bit block address that would
ordinarily go into the right half of the RUN UUO
accumulator.

6 .CTTMN Contains the TMPCOR length in the left half (Bits
0-17), and its SIXBIT name in the right half (Bits
18-35) .

7 .CTTMB Contains the 30-bit TMPCOR buffer address.

Valid function codes you can specify for .CTFNC and their argument
lists are described in the following sections.

22.18.1 FUNCTION 0 (.CTSVH)

Saves the current context and halts the job. This has the effect of a
PUSH command (refer to the TOPS-10 Operating System Commands Manual) .

The context created is inferior. The inferior context is deleted as
soon as you switch from it back to the superior one.

22.18.2 FUNCTION 1 (.CRSVR)

Saves the current context, and runs a program in an inferior context.
This i1s the equivalent of an auto-save, then a restore, at monitor
level.

22.18.3 FUNCTION 2 (.CVSVT)

Creates a parallel context by saving the current one and creating a
new top level context. The new context is different from one formed
by a PUSH chain, as it is not inferior, nor is it associated with a
chain of PUSHed contexts.

22.18.4 FUNCTION 3 (.CTSVS)

Saves the current context, and switches to another (already existing)
parallel context.

For instance, you could use .CTSVR to create a new context running a
program, and switch Dback to the previous context using .CTSVS. You
could later return to the context created by .CTSVR (using the .CTSVS
function), and restart the program in that context, without waiting
for it to re-initialize.

22-39

CTX. [CALLI 215]

22.18.5 FUNCTION 4 (.CTSVD)

Switches to the specified context, deletes it, and returns to the
previous (saved) context. You need to specify this function for
parallel contexts only, since inferior contexts are automatically

deleted when you return to its superior

22.18.6 FUNCTION 5 (.CTRDB)

Reads the data buffer without changing the information. An inferior
context uses this to read data when a superior context passes to it.

22.18.7 FUNCTION 6 (.CTWDB)

Writes the data buffer. An inferior context writes data to its
superior wusing this. Once data has been written, the old data in the
superior context is lost.

22.18.8 FUNCTION 7 (.CTRQT)

Reads the context quota and saved-page quota for a job. The following
data buffer is returned for this function and for Function 10
(.CTSQT) .

Word Symbol Contents

0 .CTJOB Job number, supplied by program.
1 .CTCTQ Returned context quota.

2 .CTPGQ Returned saved-pages quota.

22.18.9 FUNCTION 10 (.CTSQT)

Sets the context quota and saved-pages quota. The argument 1list is
the same as the buffer returned for Function 7 (.CTRQT).

22.18.10 FUNCTION 11 (.CTDIR)

Returns a directory map of all contexts. (GETTAB Table 175 (.GTCTX)
word %CTBDM contains the byte pointer to the directory byte-stream.)
The data buffer is returned in the following format:

Offset Symbol Contents

0 .CTJOB Target job number.

1 .CTWCT Word count of byte-stream data.

2 .CTFDW First data word of the directory byte-stream.

22-40

CTX. [CALLI 215}

22.18.11 FUNCTION 12 (.CTINF)

Returns information about a particular context. The data buffer is
returned in the following format:

Offset Symbol Contents

0 .CTJOB Target job number.

1 .CTCNO Number of target context.

2 .CTCNM Name of target context.

3 .CTSNO Superior context’s number.

4 .CTSNM Superior context’s name.

5 .CTPGM Program running or saved in target context, if
any.

6 .CTITM Idle time (in clock ticks).

SKIP RETURN

On all returns, the ac contains the following information:

Bits Symbol Meaning

0 CT.DAT Set if data returned to the buffer.

1 CT.DBT Returned if the buffer is truncated.

2 CT.ETX Set if UUO error text in the buffer.

3 CT.RUN Set for a RUN UUO error.

18-27 CT.RDL Count of words returned in the buffer.

28-35 CT.ERR CTX. or RUN UUO error code. This code 1is

returned regardless of whether or not the data
buffer contains error text.

On the skip return, no flags are set in the ac fields CT.ETX, CT.RUN,
and CT.ERR. If any information is returned, it is stored in data
buffers.

ERROR RETURN

The ac contains the information described for the skip return. An
error code is returned in CT.ERR (Bits 28 through 35) If a data buffer
is specified, error text is returned in the data buffer.

Code Symbol Error

0 CXIFC% Illegal function code.

1 CXACR% Address check performed while reading arguments.
2 CXACS% Address check performed while storing answers.
3 CXNEAS% Insufficient number of arguments.

4 CXNLI% User not logged in.

5 CXLOK% Program locked in core.

6 CXDET% Job detached.

7 CXSCE% System context quota exceeded.

10 CXSPE% System page quota exceeded.

11 CXJCE% Job context quota exceeded.

12 CXJPES% Job page quota exceeded.

13 CXNCS$% Insufficient core to save context.

14 CXNCD$% Not enough core to return data block.

15 CXICN$% Illegal context number.

16 CXNSC% No superior context.

17 CXNPV$% No privileges to set quotas.

20 CXIJN% Illegal job number.

21 CXCSI% Users cannot switch to an intermediate context.
22 CXCDI% Users cannot delete an intermediate context.
23 CXCDC% Users cannot delete.the current context.

24 CXCNP$% Context not privileged.

22-41

CTX. [CALLI 215]

25 CXNDA% No data block is available.
26 CXCCC% Cannot create context from captive program. (The

program has not issued a RUN UUO.)

22-42

DAEFIN [CALLI 105]

22.19 DAEFIN [CALLI 105]

FUNCTION

Indicates that a request to the DAEMON program has been completed.
This monitor call is reserved for the exclusive use of the DAEMON

program.

If the specified job was in the DAEMON wait state, the monitor
requeues the specified job to the run queue.

CALLING SEQUENCE

MOVE ac, [XWD length, addr]
DAEFIN ac,
error return
skip return
addr: jobno
In the calling sequence, you can specify the following information:
o length is the length of the argument block.
o addr is the address of the argument block.
o Jjobno is the number of the logged-in job to be restarted.
SKIP RETURN
The monitor leaves the ac unchanged, requeues the specified Jjob, and

clears the JDC bit in the job status word JBTSTS (refer to the TOPS-10
Monitor Tables Descriptions).

ERROR RETURN

The monitor clears the ac. This occurs if you are not privileged, if
the Jjob number is illegal or zero, or if the request could not be
completed.

EXAMPLE
MOVE T1, [XWD 1,ARGLST]
DAEFIN T1,
JRST ERROR
JRST CONTIN
ARGLST: EXP JOBNO

RELATED CALLS

DAEMON

22-43

DAEMON [CALLI 102]

22.20 DAEMON [CALLI 102]
FUNCTION

Invokes the system program DAEMON. When a job executes the DAEMON
monitor call, the monitor puts the job into JD wait (sets the JDC bit
in the job table JBTSTS) and wakes DAEMON. DAEMON examines the status
word .GTSTS for each job in the system; for each job in the JDC wait
state, DAEMON performs the requested function. When the specified
function has been completed, DAEMON issues a DARFIN monitor call to
make the job runnable.

CALLING SEQUENCE

MOVE ac, [XWD length,addr]
DAEMON ac,

error return
skip return

addr: EXP fcn-code
argument-list

In the calling sequence, you can supply the following information:
o addr is the address of the argument block.

o fcn-code is the function code in the first word of the
argument block.

o argument-list depends on the function code.

The function codes and argument lists are described in the following
sections.

22.20.1 FUNCTION 1 (Obsolete)

22.20.2 FUNCTION 2 (.CLOCK)

Enters a request in the clock queue to wake your job after a specified

number of seconds has elapsed. As soon as the request has been
entered in the queue, you should issue a call to HIBER with no time
argument . An argument of zero clears the job’s entry in the clock

queue and wakes the job.
The argument list for the .CLOCK function is:

addr: .CLOCK
EXP seconds

In this argument list, you supply seconds as the number of seconds
before the job DAEMON should wake the program. The preferred method
for awakening the program after a short amount of time is by using the
HIBER. call.

22-44

DAEMON [CALLI 102]

22.20.3 FUNCTION 3 (Obsolete)

22.20.4 FUNCTION 4 (.DMQUE)

Reserved for use by DIGITAL.

22.20.5 FUNCTION 5 (.DMERR)

Makes an entry in the error file; the third and following words of the
argument block are written into the error file SYS:ERROR.SYS. Your
job must have JACCT or [1,2] privileges.

The argument block for the .DMERR function is:
addr: .DMERR
EXP error-type

argument-list

In addr+l, error-type is the type of entry to be entered into the
sytem error file. The error types you can supply are listed below.

Words of data to be included in the error record are stored in the
argument-list.

Table 22-1: Error File Entry Types

Type Symbol Meaning
1 .ESWHY Answer to ONCE’s Why Reload question, and
comment, if any.
2 .ESMSE Continuable stopcode.
3 .ESMPE KI memory parity error.
4 .ESNXM KI non-existent memory error.
5 .ESCIN Information extracted from a crash.
6 .ESCPE Channel-detected memory parity error or
non-existent memory.
7 .ESDRE DAEMON restarted.
10 .ESHDE Hardware-detected device error.
11 .ESMDE Massbus device error.
12 .ESDXE DX20 device error.
14 .ESSWE Software event. The events are:
Code Symbol Event
1 . SWEPK POKE. function.
2 . SWESN SNOOP. function.
3 . SWETP TRPSET function.
4 . SWERT RTTRP. function.
5 . SWMS1 Miscellaneous debugging
event number 1.
6 . SWMS2 Miscellaneous debugging

event number 2.

22-45

DAEMON [CALLI 102]

15

775

777

.ESCSE

.ESSLM
.ESDEB
.ESTAP
.ESKLE
.ESFER
.ESHSB
.ESTPS

.ESCFG
.ESMRV
.ESDSC
.ESBAV
.ESEAV
.ESDLE
.ESKIP
.ESKLP
.ESKSN
.ESKPT
.ESSNX
.ESSPR
.ESKDT
.ESMOT
.ESCSB
.ESDSB
.ESKAE
.ESLPT
.ESHCC
.ESULD
.ESCIE
.ESICD
.ESDTC
.ESNUS
.ESNDL
.ESNUD
.ESNHE
.ESNSE
.ESNCE
.ESNTC
.ESNLC
.ESNNS
.ESHIA
.ESOFF

.ESEOF

Configuration status change. The condition

change codes are listed below:

Code Symbol Status Change

0 .CSCAT Attach function

1 .C3SCDT Detach function.

2 .C3CXC Exchange function.

3 .CSCTC Date/time change.

4 .CSCCF DETACH CPU function.
5 .CSCCO ATTACH CPU function.
6 .CSCNF Node off-line.

7 .CSCNO Node on-line.

10 .CSCMO Set memory on-line.
11 .CSCMF Set memory off-line.

System log message.
Software requests data.
Magnetic tape errors (see TAPSER).

KL processor error data from RSX-20F front end.

Front end reload.

KS processor halt status block.

Magnetic tape performance statistics code
TAPSER) .

Maximum configuration in AVAIL.SYS.
Monitor run values in AVAIL.SYS.

Disk statistics (usually from a crash).
Beginning of AVAIL.SYS time stamp.

End of AVAIL.SYS time stamp.

DL10 hardware error.

KI parity/non-existent memory interrupt.
KL parity/non-existent memory interrupt.
KS non-existent memory trap.

KL/KS parity trap.

Non-existent memory scan.

Parity memory scan.

KL data parity trap.

KL data parity interrupt.

CPU status block.

Device status block.

KL addressing failure.

Line printer error.

Hard copy controiler entry.

Microcode load.

CI disk error

IPA20 channel dump.

Date/time change (obsolete).

Network utility started.

Network down-line load.

Network up-line dump.

Network hardware error.

Network software error.

Network operator entry.

Network topology change.

Network line counter.

Network node statistic entry.

Hiatus in ERROR.SYS.

Marker for first word of block as pointer
start of first entry. ’
End-of-file flag.

(see

to

22-46

DAEMON [CALLI 102}
.DMERR is a privileged function; to use it you must have the JACCT
privilege, or be logged in under [1,2].
NOTE
For a complete description of the format of the

SYS:ERROR.SYS file, refer to the TOPS-10/20 SPEAR
Reference Manual.

22.20.6 FUNCTION 6 (.DMCTL)
Reserved for use by DIGITAL.
SKIP RETURN -

The monitor performs the specified function and issues a DAEFIN
monitor call to make the job runnable. The ac is cleared.

ERROR RETURN

If DAEMON is not running, control returns to the error return, but the
ac is unchanged.

If DAEMON is running, an error code is returned in the ac, and control

returns to the error return. The error codes and their meanings are:
Code Symbol Error
1 DMILF$% Illegal function code.
2 DMACKS% Address check.
3 DMWNA% Incorrect number of arguments.
4 DMSNH% Impossible error. If this occurs, please report
it to your Software Support Specialist.
5 DMCWE % File cannot be written.
6 DMNPV$% Not enough privileges.
7 DMEFFEFB% Incorrect format for FACT file entry.
10 DMPTH% Invalid path.
EXAMPLE
MOVE T1, [2,,ADDR]
DAEMON T1,

JRST ERROR
JRST CONTIN

ADDR: .CLOCK
EXP 5

This code queues a request for a WAKE. UUO from the system DAEMON on
this job in 5 seconds.

RELATED CALLS

DAEFIN

22-47

DATE [CALLI 14]

22.21 DATE [CALLI 14]
FUNCTION

Returns a code giving the system date. The code is an integer given
by the formula:

code = 31[12(year-1964)+ (month-1) 1+ (day-1)

You can obtain the current day, month, and year using the formulas:

day = mod(code,31)+1
month = mod(code/31,12)+1
year = (code/372)+1964

The DATE call is equivalent to using GETTAB to obtain item $CNDAT.
The day, month, and year are stored in GETTAB items $%$CNDAY, $%$CNMON,
and $%CNYER, respectively. Your program can avoid the computations
needed to interpret the data returned from the DATE call by GETTABing
the specific items, but the efficient program will avoid performing
three separate GETTAB calls by GETTABing %CNDAT and then dividing the
data into its appropriate components.

CALLING SEQUENCE

DATE ac,
return

EXAMPLE

The following macro computes the current day, month, and year.

DEFINE CURDAT (DAY, MONTH, YEAR) <
DATE T1,
IDIVI T1, D31
ADDT T2,1
MOVEM T2,DAY
IDIVI T1,~D12
ADDI T2,1
MOVEM T2, MONTH
ADDI T1,~D1964
MOVEM T1, YEAR
>

RELATED CALLS

TIMER

22-48

DEBRK. [CALLI 137]

22.22 DEBRK. [CALLI 137]
FUNCTION

Dismisses a PSI.software interrupt, reenabling any conditions disabled
by the interrupt. See Chapter 6 for a discussion of the software
interrupt system.

On a DEBRK. monitor call, the monitor scans the gqueue of pending
interrupts, looking for conditions requiring service by an interrupt
routine. If one is found, the interrupt occurs and control passes to
the interrupt routine. If no such condition is found, DEBRK. restarts
the interrupted process beginning at the point within your job where
the interrupt occurred (usually the instruction after the 1last
instruction that was executed).

CALLING SEQUENCE

DEBRK.
error return
skip return

SKIP RETURN

The DEBRK. call normally returns to the location before the interrupt
occurred. The skip return is taken if there is no interrupt in
progress. The PSI interrupt system is restored if the PS.VTO flag is
set in the PSI interrupt vector block (refer to PISYS. UUOQ).

ERROR RETURN

The error return is taken if the DEBRK. UUO is not implemented.

RELATED CALLS

o PIBLK.
o PIINT.
o PIRST.
o0 PISAV.
o PISYS.

22-49

DEQ. ([CALLI 152]

22.23 DEQ. [CALLI 152]

FUNCTION

R el

Dequeues one or more requests for enqueued resources, or relingquishes
ownership of one or more enqueued resources. See Chapter 8 for a

discussion of the ENQ/DEQ facility.

CALLING SEQUENCE

MOVE ac, [XWD function, argument]
DEQ. ac,
error return
skip return
addr: argument-list
In the calling sequence, you provide the following information:
o function is one of the following function codes:
- .DEQDR to dequeue a lock request.
- .DEQDA to dequeue all lock requests for this job.

- .DEQID to dequeue all 1lock requests related to the
specified request-id.

o argument-list depends on the function code.

Functions and their arguments are described in the following sections.

22.23.1 FUNCTION 0 (.DEQDR)

This function dequeues a specific request. Specify this function by
placing the following information into the ac:

[XWD .DEQDR, addr]

The argument addr is the address of the ENQ. argument block. Refer
to the ENQ. UUO for the format of this block.

After a skip return, the monitor has removed the specified request
from the specified queue, or the monitor has dissolved the lock
between the job and the specified resource. The error return is taken
if you set wup the call in an incorrect format, or if you have no
pending requests and you are not the owner of the specified resource.
On an error return, the monitor returns an error code in the ac.

22.23.2 FUNCTION 1 (.DEQDA)

This function removes all of your requests for ownership and dissolves
all of vyour resource locks. Specify this function by placing the
following information into the ac:

[XWD .DEQDA, 0]

22-50

DEQ. [CALLI 152]

The error return is taken if you write the <call in an incorrect
format, or if you do not have any pending requests or locks. On an
error return, the monitor returns an error code in the ac. You should
perform this function before EXITing; otherwise, when you perform a
CLOSE, the function will fail but the nature of the failure will be
difficult to determine. The monitor automatically performs the .DEQDA
function when you issue a LOGOUT monitor call.

22.23.3 FUNCTION 2 (.DEQID)

This function requires the request-id in the right half of the ac.
Specify this function by placing the following information into the
ac:

[XWD .DEQID, request-id}

The request-id is the request-identifier that you specify in the ENQ.
argument block. Refer to the ENQ. UUO for more information.

The monitor removes all requests of yours with the specified
request-id from resource queues, and it dissolves all locks of yours
with the specified request-id. You should specify this function when
you are dequeueing requests that were made in the same ENQ. argument
block. The error return is taken if you have set up the call
incorrectly, if you have no pending requests, or if you are not the
owner of a resource.

SKIP RETURN

The specified requests are dequeued and the specified locks are
dissolved.

ERROR RETURN

If an error is found in one of the requests in a multiple request DEQ.
monitor call, the error return is taken and the monitor returns an
error code in the ac. However, the ENQ/DEQ facility continues
processing until all of the dequeue requests have been performed.
Therefore, the monitor will have dequeued all valid requests whether
or not an error resulted from another request in the same monitor
call. If errors are found in several requests of the same monitor
call, the error code returned in the ac reflects the last error found.

If you specify that you want to dequeue a request or dissolve a lock
associated with a pooled resource, the monitor will return an error
code if you attempt to dequeue more resources than you own within the

pool. However, you can dequeue a subset of those resources that you
own within a pool, still retaining ownership of those you did not
dequeue. Therefore, you cannot dequeue more resources than you own,

but you do not have to dequeue all that you own in one request.

The error codes for the DEQ. call are identical to those of the ENQ.
call. They are listed in the description of the ENQ. call.

22-51

DEQ. [CALLI 152]

EXAMPLE

DEQ. monitor calls that specify multiple requests are treated as
multiple DEQ. monitor calls, each specifying a single request. This
is not true for the ENQ. monitor call. For example:

MOVE Tl [XWD .DEQDR,DEQBLK]
DEQ. T1,
JRST ERROR
JRST SUBR
DEQBLK : 2,,"D8
0,,400000
0,,2
POINT 7, [ASCIZ/TEST/]
~D10,,1
0,,4
POINT 7, [ASCIZ/TESER/]
~D10,,1

The above code is, in effect, identical to the following, but the
following is less efficient:

MOVE T1l, [XWD .DEQDR,DEQ1]
DEQ. T1,
JRST ERROR
DEQ: MOVE T1, [XWD .DEQDR,DEQZ2]
DEQ. T1,
JRST ERROR
JRST SUBR
DEQ1: 1,,"D5
0,,400000
0,,2
POINT 7, [ASCIZ/TEST/]
~D10,,1
DEQ2 : 1,,"D5
0,,400000
0,,4
POINT 7, [ASCIZ/TESER/]
~D10,,1

RELATED CALLS

o ENQ.

o ENQC.

22-52

DEVCHR [CALLI 4]

22.24 DEVCHR [CALLI 4]
FUNCTION
Returns the physical characteristics of a specified device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
| MOVEIL ac,channo |
\ MOVEI ac,udx /
DEVCHR ac,
return

In the calling sequence, you can provide the following information:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

0 udx is the Universal Device Index for a device.
RETURN
If the device is not found, or if your program has not initialized the
device, the monitor clears the ac. Otherwise, the ac contains flags
giving the physical characteristics of the device. The flags and

their meanings are:

Bits Symbol Device or Mode

0 DV.DRI DECtape whose directory is in memory; you can
clear this bit by using the REASSI monitor call
for the device.

1 DV.DSK Disk.

2 DV.CDR Card device. If DV.IN is set, it is a card
reader; if DV.OUT is set, it is a card punch.

3 - DV.LPT Line printer.

4 DV.TTA Terminal that is currently controlling a job.

5 DV.TTU Terminal that is in use.

6 bV.2I0 Device can do input and output at the same time.

7 DV.DIS Special display device. Note that this does not

indicate the "display" terminal characteristic.

8 DV.LNG Device with long dispatch table; this means that
monitor calls other than INPUT, OUTPUT, CLOSE, and
RELEAS can perform real functions.

9 DV.PTP Papertape punch.

10 DV.PTR Papertape reader.

11 DV.DTA DECtape.

12 DV.AVL Thg device is available or 1is assigned to your
job.

22-53

DEVCHR ([CALLI 4]

13
14

15

16
17

18

19

DV.

DV.

DV.

DV.

DV.

DV.

DV

MTA

TTY

DIR

IN

ouT

ASC

.ASP

Magnetic tape.

Terminal.

The device is a directory device. You can test
this bit to determine whether ENTER/LOOKUP must be
done before you can start I/0 to the device.

Input device.

Qutput device.

The device has been initialized by the ASSIGN
monitor command.

The device has been assigned by the INIT, OPEN, or
FILOP. monitor call.

Bits 20-35 specify the modes that are legal for the device.

20

21

22

23

24

25
26

27

28
29
30
31

32

33

34

35

DVv.

DV.

DV.

DV.

DV.

DV.

DV.

DV.

DV

DV.

DV.

DV.

DV.

DV.

DVv.

DV.

M17

M16

M15

M14

M13

M12
M11

M10

M7

M6
M5
M4

M3

M2

M1

MO

Mode 17, dump. This is the same as TIO.MOD =
.IODMP returned from a GETSTS monitor call.

Mode 16, dump records. This is the same as I0.MOD
= ,IODPR returned from a GETSTS monitor call.

Mode 15, image dump. This is the same as IO.MOD
.I0IDP returned from a GETSTS monitor call.

Hi

Mode 14, binary. This is the same as I0.MOD
.IOBIN returned from a GETSTS monitor call.

Mode 13, image binary. This is the same as IO.MOD
= .IOIBN returned from a GETSTS monitor call.

Mode 12, reserved for use by DIGITAL.
Mode 11, reserved for use by DIGITAL.

Mode 10, image. This is the same as IO.MOD =
.IOIMG returned from a GETSTS monitor call.

Mode 7, reserved for use by customers.
Mode 6, reserved for use by customers.
Mode 5, reserved for use by DIGITAL.
Mode 4, reserved for use by DIGITAL.

Mode 3, byte. This is the same as IO,MOD = .IOBYT
returned from a GETSTS monitor call.

Mode 2, packed image. This is the same as I0.MOD
= .IOPIM returned from a GETSTS monitor call.

Mode 1, ASCII line. This is the same as I0.MOD
.IOASL returned from a GETSTS monitor call.

Mode 0, ASCII. This is the same as IO0O.MOD
.IOASC returned from a GETSTS monitor call.

22-54

DEVCHR [CALLI 4]

NOTE

To check for the NUL device, use DEVCHR to see if both
DV.DSK and DV.TTY are set.

EXAMPLE
MOVE T1, [SIXBIT/DEV/]
DEVCHR T1,
TLNN T1, (DV.DSK)
JRST NOTDSK
JRST ISDSK

This example checks to see if device DEV (assumed to be a logical
name) 1is a disk. The call returns to NOTDSK if it is not and returns

to ISDSK if it is.

RELATED CALLS

o DEVLNM

o DEVTYP

22-55

DEVLNM [CALLI 107]

22.25 DEVLNM [CALLI 107]
FUNCTION
Assigns (or clears) a logical device name to a device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \

| MOVEI ac, channo |

\ MOVEI ac, udx /
MOVE ac+1l, [SIXBIT/name/]
DEVLNM ac,

error return
skip return

In the calling sequence, you can provide the following information:

o device is the SIXBIT physical or logical name of a device to
which you wish to assign a logical name.

o channo is the number of an initialized channel.
o udx is the Universal Device Index for a device.
o name is the logical name to be assigned to the device. If

name 1s Dbinary =zero, any existing logical name assignment
will be cleared.

SKIP RETURN

The logical name is assigned to the device; the contents of the ac and
the following word are unchanged.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

-3 DVLNA% Device not assigned to your job.
-2 DVLIUS% Logical name already in use.

-1 DVLNX% No such device or channel.

RELATED CALLS

o DEVCHR
o DEVNAM
o DEVOP.
o DEVPPN
o DEVSIZ
o DEVSTS
o DEVTYP
o REASSI

22-56

DEVLNM [CALLI 107]

COMMON PROGRAMMING ERRORS

Assuming that DEVLNM also causes the device to become associated with
your job. Use the REASSI call to actually obtain the device.

22-57

DEVNAM [CALLI 64]

22.26 DEVNAM [CALLI 64]
FUNCTION
Returns the physical name of a device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \

| MOVEI ac, channo |

\ MOVEI ac,udx /
DEVNAM ac,

error return
skip return

In the calling sequence, you can provide the following information:

o device is the logical device name whose physical name is
desired.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.
SKIP RETURN
The SIXBIT physical name of the device is returned in the ac.

The skip return is also taken if a device has been partially

deassigned. For example, 1if the user halts the program before the
deassignment operation is complete. 1In this case, the ac is returned
clear.

ERROR RETURN

If the specified device does not exist or if the specified channel is
not initialized, the ac is cleared.

RELATED CALLS

o DEVCHR
o DEVLNM
o DEVOP.
o DEVPPN
o DEVSIZ
o DEVSTS
o DEVTYP

22-58

DEVOP. [CALLI 171]

22.27 DEVOP. [CALLI 171]

FUNCTION

Performs miscellaneous device functions for devices other than
terminals, tapes, disks, or TSKs. Use TRMOP. for terminal functions,
TAPOP. for tape functions, DISK. for disk functions, or TSK. for TSK
functions.

CALLING SEQUENCE

MOVE ac, [XWD length, addr]
DEVOP. ac,

error return
skip return

addr: EXP fcn-code

/ SIXBIT /device/ \

| EXP channo |

\ EXP udx /
addr+2: argument-list

In the calling sequence, the following variables are supplied by the
program:

o length is the length of the argument block.

o addr is the address of the argument block.

o fcn-code is one of the function codes described below.

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

o arglst begins the list of arguments for the given function.
All function codes listed below use the two-word argument 1list shown
above. Additionally, some function codes accept a longer argument
list. For those codes that accept an argument list longer than two
words, the argument list format is shown with the description of the

function code.

The function codes are defined within the following four ranges:

Range Usage

0000-0777 Performs a specific action.
1000-1777 Reads a parameter.

2000-2777 Sets a parameter.

3000-3777 Reserved for customer definition.

The Read/Set function codes are parallel (for example, function code
1002 reads a parameter and code 2002 sets the same parameter). The
symbol .DESET is equal to 1000, and can be added to the read parameter
to establish the offset for the set parameter. Therefore, to read the
page counter, use function .DFPCT. To set the page counter, wuse
.DFPCT+.DFSET.

The monitor returns values in the ac for the Read functions.

The function codes, their calling sequences, and the actions taken are
listed in the following sections.

22-59

DEVOP. [CALLI 171]

22.27.1 FUNCTION 1 (.DFLLV)

Loads the standard vertical forms control unit.

22.27.2 FUNCTION 2 (.DFENV)

Enables the system to load a non-standard vertical forms control unit.

22.27.3 FUNCTION 3 (.DFDVL)

Disables loading non-standard vertical forms control unit.

22.27.4 FUNCTIONS 4-10

Reserved for use by DIGITAL.

22.27.5 FUNCTION 11 (.DFLRZ2)

Loads a translation RAM into LP20. This function takes a four-word
argument list of the form:

addr: .DFLR2
/ SIXBIT /device/ \
| EXP channo |
\ EXP udx /

8-bit byte count for RAM
address of RAM buffer

22.27.6 FUNCTION 12 (.DFLVZ2)

Loads a VFU through LP20. This function takes a four-word argument
list of the form:

addr: .DFLV2
/ SIXBIT /device/ \
| EXP channo]
\ EXP udx /

7-bit byte count of VFU
address of VFU data

22.27.7 FUNCTION 13 (.DFMDC)
Clears DVCMDA. This is the flag indicating whether the device is

controlled by MDA (in GALAXY Version 4.1 and later). This function
requires privileges.

22-60

DEVOP. [CALLI 171]

22.27.8 FUNCTION 14 (.DFMDS)
Sets DVCMDA. This is the flag indicating whether the device 1is

controlled by MDA (in GALAXY Version 4.1 and later). This function
requires privileges.

22.27.9 FUNCTIONS 15-777

Reserved for use by DIGITAL.

22.27.10 FUNCTION 1000 (.DFPCT)

Returns the line printer’s page counter in the ac.

22.27.11 FUNCTION 2000 (.DFPCT)

Sets the page counter value in addr+2. The page counter is limited to
12 bits. The argument list for .DFPCT is:

addr: .DFPCT
SIXBIT /device/ \
| EXP channo |
\ EXP udx /
EXP counter

22.27.12 FUNCTION 1002 (.DFHCW)

Reads the line printer characteristics. The printer characteristics
are returned in the ac in the form:

Bits Symbol Meaning

0 DF .LCP Lowercase capability.

1 DF.PGC Has page counter.

2 Reserved.

3-5 DF .VFT Code for type of vertical forms control unit
(VFU) . The type codes are:

Code Symbol Type

0 .DEVTO Papertape VFU.
1 .DEVTD DAVFU.
2 .DFVTN No VFU.
6-8 DF.TYP Code for character set codes. The set
codes are:
Code Symbol Character set
0 .DFCo64 Set of 64 characters.
1 .DFC95 Set of 95 characters.
2 .DFC28 Set of 128 characters.
3 .DFVAR Variable size set.

22-61

DEVOP. [CALLI 171]

9-11 DF.CLS Code for line printer class. The class codes are:
Code Symbol Class
0 .DF3SUK Unknown.
1 .DFSBX BA1O.
2 .DFSLC LP100.
3 .DFS520 LP20 (20F).
4 .DFSAl LP11.
5 .DFSA2 LP20 (ANF DN8X) .
12-14 DF.CLU Line printer class, as the type of unit. The unit

codes are:

Code Symbol Type

0 .DFUUK Unknown.

1 .DFUFG LPO5-type.

2 .DFULN LNOl-type.
18~35 DF .CSN Character set name, in SIXBIT.

22.27.13 FUNCTION 2002 (.DFHCW)

Sets the line printer characteristics. The argument list for .DFHCW
is:

addr: .DFHCW
/ SIXBIT /device/ \
| EXP channo |
\ EXP udx /
EXP characteristics

Defines the characteristics using the definitions listed above for the
Read function.

22.27.14 FUNCTION 1003 (.DFRES)

The extended I1/0 error status for the given device is returned in the
ac.

The error status is returned as one of the following codes:

Code Symbol Device Error

1 IOPLE% LPT Page limit exceeded.

1 IONOP% MTA Monitor Continued operation.
2 IOVFES$% LPT VFU format error.

2 IOEOF% MTA Tape at end-of-file.

3 IOLTE% MTA Label Type error.

4 IOHLE% MTA Header Label error.

5 IOTLE% MTA Trailer Label error.

6 IOVLE% MTA Volume Label error.

7 IODER% Hard device error.

10 IOPARS% Parity error.

11 IOWLE% Write-lock error.

12 IOIPO% MTA Illegal positioning error.
13 IOBOT% MTA Beginning of tape.

14 IOIOP% MTA Illegal operation.

15 IOFNF% MTA File not found.

22-62

DEVOP. [CALLI 171]

16 IOCAN% MTA Operator cancelled volume switch
request.

17 IOTMV% MTA Too many volumes in the volume set.

20 IONND$% Network node down.

21 IOUNC% LP20 Undefined Character interrupt.

22 IORPE% LP20 RAM Parity error.

23 IOLRA% MTA Tape labelling request was aborted by a
RESET UUO.

24 IOVPFS MTA Volume Protection error.

25 IOFPF% MTA ‘ File protection failure.

26 IOUEF$% MTA Unexpired file.

27 IONDD$% Network device is disconnected.

22.27.15 FUNCTION 1004 (.DFRDS)

Reads the device status for a specified device. A status code for the
specified device is returned in the ac.

The, status codes and their meanings are:

Bit Symbol Status

0 DF .OFL Device off-line.

34 DF .LLE DAVFU load-enabled.
35 DF .LVE A VFU error occurred.

The bits returned in the left half of the ac are device-independent;
the bits returned in the right half are device-specific.

22.27.16 FUNCTION 1005 (.DFFRM)

Reads and sets the names of forms types. The name of the form type is
stored at addr+2.

22.27.17 FUNCTION 1006 (.DFDTI)

Reads and sets DECtape information. For example, you can read the
read/write counts. Use this function to set DECtape reelid
information. This DEVOP. function requires the following argument
list:
addr: .DFDTI
/ SIXBIT /device/ \
| EXP channo |
\ EXP udx /
SIXBIT /reelid/
EXP n (no. of words read)
EXP m (no. of words written)

SKIP RETURN

The specified function is executed.

22-63

DEVOP. [CALLI 171]

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

-1 DFACS% Address check.

0 DFIFC% Illegal function code.

1 DFPRV$% Not enough privileges.

2 DFIFD% Function invalid for device.

3 DEFNLR% Value out of range.

4 DEFNXD% Nonexistent device.

5 DFNDV$% No DAVFU (LPT only).

6 DFNIAS% Device not initialized.

7 DFDOL% Device off-line.

10 DFCNS% Page counter not set (LPT only).
11 DFNPC$% No page counter (LPT only).

12 DFENI% Extended error recovery not implemented.
13 DENVC% Non-variable character set.

If the monitor call has not been implemented on your system, the error
return is taken and the monitor leaves the ac unchanged.

RELATED CALLS

o DEVCHR
o DEVLNM
o DEVNAM
o DEVPPN
o DEVSIZ
o DEVSTS
o DEVTYP

22-64

DEVPPN [CALLI 55]

22.28 DEVPPN [CALLI 55]

FUNCTION

Returns the project—programmer number (PPN) associated with a disk
device or an ersatz device. Note that the DEVPPN UUO does not return
SFD names. It is recommended that programs use the PATH. call to
return complete directory names.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
| MOVEI ac, channo |
\ MOVEI ac,udx /

DEVPPN ac,

error return
skip return

In the céiling seqﬁence, the program supplies the following variables:

oy‘dévice,is the SIXBIT physical, logical, or ersatz name of a
disk device.

o channo is a channel nunmber for a disk device.

o udx is the Universal Device Index for a disk device.
SKIP RETURNk
The PPN for the specified device is returned in the ac. Note that if
you have enabled /NEW in your search list, the returned PPN for SYS
will be [1,5] instead of [1,4].

ERROR RETURN

The error xétu?n occurs in two cases. The «cause of the error is
indicated by the value returned:

o If zero is returned in the ac; the device does not exist, or
you have not initialized it.

o JIf your,oWn PPN is retﬁrned; the device is not a disk device.

RELATED CALLS

o DEVCHR
o DEVLNM
o DEVNAM
.o. DEVOP.
o DEVSIZ
o DEVSTS
o DEVTYP
o PATH.

22-65

DEVSIZ [CALLI 101]

22.29 DEVSIZ [CALLI 101}
FUNCTION
Returns the buffer size and standard number of buffers for a device.

CALLING SEQUENCE

MOVEI ac,addr

DEVSIZ ac,
error return

skip return

addr: EXP status

/ SIXBIT/device/ \
| EXP channo |
\ EXP udx /

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument block. Normally, the
address points to the OPEN block used to initialize the
device.

o status 1is the I/0 status word, which must match the
information given when the channel was initialized with INIT,
OPEN, or FILOP.

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.
Note that the format for the argument block is identical to the format
used for the OPEN monitor call and that the OPEN block is ordinarily
used as the DEVSIZ block. The number and sizes of buffers differ
among different data modes, and depending on mode modifier bits.

SKIP RETURN

The ac contains the default number of buffers in its left half, and
the default buffer size (including a 3-word header) in its right half.
If you specify a device that was initialized in dump mode, the monitor
clears the ac and takes the skip return.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

0 DVSDM% Dump mode specified; therefore, buffer size is not
applicable.

-1 DVSNX% Nonexistent device.

-2 DVSIMS% Illegal data mode.

22-66

DEVSIZ [CALLI 101]

RELATED CALLS

o DEVCHR ’
o DEVLNM
o DEVNAM
o DEVOP.
o DEVPPN
o DEVSTS
o DEVTYP

22-67

DEVSTS [CALLI 54]

22.30 DEVSTS [CALLI 54]

FUNCTION

Returns the device status word from the device data block (DDB). This
call returns the last CONI performed for the device, which is
different for each device type and model. To interpret the device
status word, refer to the hardware manual for the specific device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
| MOVEI ac, channo]
\ MOVEI ac,udx /

DEVSTS ac,

error return
skip return

In the calling sequence, the program supplies the following variables:
o device is the SIXBIT physical or logical name of a device.
o channo is the number of a channel.
o udx is the Universal Device Index for a device.s

You can specify any device on an I/O bus. Where multiple units are on
a single controller, the status of the controller is returned.

SKIP RETURN

The device status word is returned in the ac. If the service routine
for the device does not store a CONI, the returned word may be
useless. Devices having both a controller and data interrupt store
the controller CONI.

ERROR RETURN

If the device does not exist or is not initialized, the ac is cleared.

RELATED CALLS

o DEVCHR
o DEVLNM
o DEVNAM
o DEVOP.
o DEVPPN
o DEVSIZ
o DEVTYP

The device status block is also returned by the .SNSDS function of the
SENSE. UUO.

22-68

DEVSTS [CALLI 54]

COMMON PROGRAMMING ERRORS

(¢]

Confusing "device status" (DEVSTS) with "I/0 status"
(GETSTS) . GETSTS returns the file (I/0) status bits, which
are documented in Volume 1. DEVSTS returns the hardware

device status.

Confusing the "device status" returned by DEVSTS with the I/0
error status that is returned by the DEVOP, UUO.

22-69

DEVTYP [CALLI 53]

22.31 DEVTYP [CALLI 53]
FUNCTION
Returns the physical properties for a device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \

| MOVEI ac,channo |

\ MOVEI ac,udx /
DEVTYP ac,

error return
skip return

In the calling sequence, the program provides the following variables:
o device is the SIXBIT physical or logical name of a device.
o channo is the number of an initialized channel.
0 udx is the Universal Device Index for a device.
To specify physical device searching, use UU.PHY (Bit 19) in the ac.
(More information about UU.PHY is included in the description of
CALLI.)
SKIP RETURN

If the ac is 0, there was no such device; otherwise, the device type
bits are returned in the ac as follows:

Bits Symbol Characteristic

0 TY .MAN Directory device; a LOOKUP/ENTER is mandatory.

1-7 Reserved.

8 TY.GEN If the argument is a SIXBIT name, this bit is set
if the device 1s generic.

g TY .MDA Controlled by MDA (mountable device allocator).

10 TY.EHF Extended hardware features; for example, this bit
is set for a line printer with lowercase
capability.

11 TY .MPX MPX-controllable.

12 TY.AVL Available to your 3job.

13 TY.SPL Spooled.

14 TY.INT Interactive; there 1is output after each break
character.

15 TY . VAR Capable of variable buffer size.

16 TY.IN Input capability.

17 TY.OUT Output capability.

22-70

DEVTYP [CALLI 53]

18-26 TY.JOB Job number to which the device is currently

assigned.
27-28 Reserved.
29 TY.RAS Restricted; assigned only to privileged job or by
MOUNT command.
30-35 TY.DEV One of the following device type codes:
Code Symbol Device Type
0 . TYDSK Disk.
1 . TYDTA DECtape.
2 . TYMTA Magnetic tape.
3 LTYTTY Terminal.
4 .TYPTR Papertape reader.
5 . TYPTP Papertape punch.
6 .TYDIS Display unit.
7 .TYLPT Line printer.
10 . TYCDR Card reader.
11 . TYCDP Card punch.
12 .TYPTY Pseudo-terminal.
13 .TYPLT Plotter.
14 . TYEXT External task.
15 . TYMPX MPX-controlled.
16 . TYPAR PA611R on a DC44,.
17 . TYPCR PC1l1(R) on a DC44.
20 . TYPAP PA611P on a DC44.
21 .TYLPC LPC-11 on a DC44.
22 . TYPCP PC-11(P) on a DC44.
23 .TYWTY WTY device on a DC44.
24 .TYTSK Network task.
25 . TYD78 DAS78 device.
26 . TYRDA Remote data entry device.
27 . TYMCR Monitor command interpreter
(MCR) device.
30 . TYDRA DTR01/DRO1 device.
31 . TYKDP KMC/DUP interface.
32 .TYDTE DTE interface.
33 . TYDDP ANF-10 DDCMP device.
34 . TYDMR DMR11l as a network device.
35 .TYRX2 RX02 floppy disk controller.
36 . TYKLP CI20 (KLIPA) device.
37 . TYKNI NIA20 (KLNI) device.
40 .TYSAX SAl10 device.
41-57 Reserved for use by DIGITAL.
60-77 Reserved for use by customers.

ERROR RETURN

The DEVTYP monitor call should never take the error return.

22-71

DEVTYP [CALLI 53]

RELATED CALLS

0 DEVCHR
o DEVLNM
o DEVNAM
o DEVOP.
o DEVPPN
o DEVSIZ
o DEVSTS

COMMON PROGRAMMING ERRORS

Assuming that a skip return indicates that the device exists.

22-172

DIAG. [CALLI 163]

22.32 DIAG. [CALLI 163]
FUNCTION-

Provides diagnostic functions for devices, device controllers, and
CPUs.

CALLING SEQUENCE

MOVE ac; [-length, ,addr]
DIAG. ac, -

error return
skip return

addr: function-code
argument-list

In the calling sequence, you can provide the following information:

o -length is the negative integer of the length of the argument
list.

o addr is the address of the argument list.

o function-code is one of the function codes listed below.

o argument-list is different for each function code. The
argument lists are documented with the functions, below.

Most DIAG. UUO functions request a device specification in the second
word of the argument list (addr+l), as:

SIXBIT /device/
The device name can be any one of the following:
o CPU name (as SIXBIT /CPUQ/)
o Controller name (as SIXBIT /MTA/)
o DDB name (as SIXBIT /MTAO0/)

o Controller and drive name, formatted as shown below.

Bits Contents
0-6 Controller device code
7-8 Ignored
27-29 Unit number
33-35 Slave unit number (for multi-unit controllers)
The DIAG. functions and their arguments . are described in the

following sections.

22-173

DIAG. [CALLI 163]

22.32.1 FUNCTION 1 (.DIASU)

Assigns a single unit on the channel or controller. The format of the
argument list is:

addr: EXP .DIASU
SIXBIT /device/
timeout wvalue

In the argument list, you supply an optional timeout value, which is
the number of milliseconds to wait for the assignment to be completed.

22.32.2 FUNCTION 2 (.DIAAU)

Assigns all units on the channel or controller. The format of the
argument list is:

addr: EXP .DIAAU
SIXBIT /device/
timeout value

In the argument list, you supply an optional timeout value, which is
the number of milliseconds to wait for the assignment to be completed.

22.32.3 FUNCTION 3 (.DIARU)

Releases all units on the channel or controller. The format of the
argument list is:

addr: EXP .DIARU
SIXBIT /device/

22.32.4 FUNCTION 4 (.DISCP)
Specifies a channel program. The format of the argument list is:
addr: EXP .DISCP

SIXBIT /device/

I/0 word (IOWD format)

On a successful return, the address of the initial channel command
word is returned in the accumulator.

22.32.5 FUNCTION 5 (.DIRCP)

Releases a channel program. The format of the argument list is:

addr: EXP .DIRCP
SIXBIT /device/

22-174

DIAG. [CALLI 163]

22.32.6 FUNCTION 6 (.DIGCS)
Gets the channel status.

addr: EXP .DIGCS
SIXBIT /device/

On a successful return, up to four words of channel logout data may be
returned in the argument block at addr+2 through addr+6.

22.32.7 FUNCTION 7 (.DIAKU)

Returns the controller and unit numbers for a device. The format of
the argument list is:

addr: EXP .DIAKU
SIXBIT /device/

On a skip return, the accumulator contains the following information:

Bits Contents

0-8 Zero.

9-17 Controller device code.
30-32 Unit number,

33-35 Slave unit number.

22.32.8 FUNCTION 10 (.DIACS)

Forces a CPU status block read on a CPU and forces DAEMON to make an

error entry (code 63) in ERROR.SYS. (The error types are listed in
Table 22-1 with the DAEMON monitor call.) This function requires that
you have JP.POK, 1,23, or JACCT privileges. The format of the

argument list is:

addr: EXP .DIACS
EXP CPU-number

22.32.9 FUNCTION 11 (.DIADS)

Reads the device status for all devices on the specified CPU into a
GETTAB table in the monitor and forces DAEMON to make an error entry
(code 64) in ERROR.SYS. (The error codes and entry types are 1listed
with the DAEMON call.) This function requires that you have JP.POK,
[1,2], or JACCT privileges. The format for the argument list is:

addr: EXP .DIADS
EXP CPU-number

22-75

DIAG. [CALLI 163]

22.32.10 FUNCTION 12 (.DISCR)

Specify channel program for read-reverse (RH20 devices only).

addr: EXP .DISCR
SIXBIT /device/
I/0 word (IOWD format)

On a successful return, the address of the initial channel command
word is returned in the accumulator.
22.32.11 FUNCTION 13 (Obsolete)
22.32.12 FUNCTION 14 (.DIGUI)
Sets the user-I/0 mode bit in the PC word.
addr: EXP .DIGUI
On a successful return, the program is enabled for user-I/0
operations, such as CONSO, DATAO, and so forth.
22.32.13 FUNCTION 15 (Obsolete)
22.32.14 FUNCTION 16 (Obsolete)
22.32.15 FUNCTION 17 (.DIELD)
Enables microcode loading. The argument list is formatted as:
addr: XWD CPUno, .DIELD
SIXBIT /device/
22.32.16 FUNCTION 20 (.DIDLD)
Disables microcode loading. The format of the argument list is:
addr: XWD CPUno, .DIDLD
SIXBIT /device/

22.32.17 FUNCTION 21 (.DILOD)

Loads the microcode. The format of the argument block is:

addr: XWD CPUno, .DILOD
SIXBIT /device/

22-76

DIAG. [CALLI 163}

22.32.18 FUNCTION 22 (.DISSM)

Sets IPA channel (CI20 or NIA20) maintenance mode. The format of the
argument block is:

addr: XWD CPUno, .DISSM
controller-device-code (Bits 0-6)

22.32.19 FUNCTION 23 (.DIICM)

Clears IPA channel maintenance mode. The format of the argument block
is:

addr: XWD CPUno, .DIICM
controller-device-code (Bits 0-6)

22.32.20 FUNCTION 24 (.DISBD)

Execute S-bus diagnostic function (SBDIAG). The format of the
argument block is:

addr: XWD CPUno, .DISDB
To-memory word
From-memory word
In the argument list, you can supply the following information:

o CPUn is the CPU number.

o To-memory word, where, on a successful return from the UUO,
the monitor places the updated word into this argument.

o The monitor writes the From-memory word into addr+2.

22.32.21 FUNCTION 25 (.DIDSN)
Returns a unit’s device serial number.
addr: EXP .DIDSN
SIXBIT /device/
Serial number (word 0)
Serial number (word 1)

The monitor returns the serial number in addr+2 and addr+3.

22.32.22 FUNCTION 26 (.DIRUR)
Reads the UNIBUS register.

addr: EXP .DIRUR
register-address

In the argument list, you supply the address of the UNIBUS register.
The monitor returns the contents of the UNIBUS register in the ac.

22-71

DIAG. [CALLI 163]

22.32.23 FUNCTION 27 (.DIADB)

Allocates a buffer for dumping the contents of the IPA20 DRAM. (The
IPA20 1is the microprocessor controlling CI20. and NIA20 interface
hardware.)

addr: EXP .DIADB SIXBIT /controller/

The monitor returns the address of the buffer containing the IPA20
DRAM in the ac.

22.32.24 FUNCTION 30 (.DIOKI)

Obtains controller information.

addr: EXP .DIOKI
SIXBIT /controller/
BLOCK n
In the argument list, you reserve 2 word for information returned, on

a KL system. On a KS system, reserve 3 words.

On a successful return, the monitor fills controller information into
the argument list starting at addr+2. The information is returned in
the following format.

At addr+2:

Bits Symbol Meaning

0 DI.MUK Multi-unit controller.

1 DI.CLM Can load microcode.

2-5 Reserved for DIGITAL.

6-11 DI.CAM CPU accessibility mask (one bit per CPU that can
access the controller).

12-17 DI .CKX Maximum number of controllers on this CPU or
channel (reserved).

18-23 DI.KUX Maximum number of units on this controller.

24-29 DI.KTY Type of controller.

30-35 DI.DTY Type of device.

At addr+3:

24-26 DI.CUN Channel unit number (indicated if DI.MUK is set,
above) .

27-35 DI.DVC Device code (KL systems).

27-35 DI.IVI Interrupt vector address (KS systems).

At addr+4 (returned for KS systems only):

Bits Symbol Contents

14-35 DI .UBA UNIBUS address.

22-178

DIAG. [CALLI 163]

22.32.25 FUNCTION 31 (.DIOUI)

Obtains information about a specific device unit. The argument list
is:
addr: EXP .DIOUI

SIXBIT /unit/

BLOCK 5

The information is returned by the monitor in the words you reserved
in the argument list. The format of the information returned in Words
2-7 of the argument list is:

Word Contents

2 Program specifies -n,,addrl; where addrl contains the KDB
names.

3 High-order word of drive serial number.

4 Low-order word of drive serial number.

5 In the left half, the CPU-accessibility mask. In the right

half, the physical drive number.

22.32.26 FUNCTION 32 (.DILKU)

Lists names of units on a controller. The argument list is:
addr: EXP .DILKU

SIXBIT /controller/

BLOCK n

In the argument list, you supply n as the number of wunits on the
controller. Use the DIAG. UUO function .DIOKI to determine the
number of words to reserve in the argument 1list for this function.
The monitor returns the device unit names, in SIXBIT, in the argument
list starting at addr+2. The actual number of wunits returned is
stored in the accumulator.

22.32.27 FUNCTION 33 (.DISDS)

Sets the status of a device. Using this function, a device can be set
to be attached or detached. This function also provides an "Ignore"
state, where the device service routine will ignore the unit until the
operator performs an explicit ATTACH function. The argument list for
thisg function is:

addr: EXP .DISDS
SIXBIT /device/
state-code

In the argument list, you can supply any of the following state-codes:

Code Symbol Meaning

0 .DISSI Set the Ignore flag.

1 .DISCI Clear the Ignore flag.
2 .DISSD Set the Detached flag.
3 .DISSA Set the Attached flag.

22-79

DIAG. [CALLI 163]

22.32.28 FUNCTION 34 (.DIDVR)

Reads the device status registers of devices that yield this
information.

The argument list for this function is:
addr: EXP .DIDVR
SIXBIT /device/

-n, ,offset

In the argument list, you can supply the unit or controller name at

addr+1. At addr+2, you supply a negative expression of the number of

words to return, in the left half. In the right half, you can include
the offset into the appropriate data block.

22.32.29 FUNCTIONS 35-77 (Reserved for DIGITAL)

22.32.30 FUNCTION 100 (.DIGTM)

Gets MOS memory (defined in MOSSER) .

22.32.31 FUNCTION 101 (.DIGVM)

Sets MOS memory (defined in MOSSER) .

22.32.32 FUNCTIONS 102-104 (Reserved)

22.32.33 FUNCTION 105 (.DIRRS)

Resets remote CI node (defined in KLPSER) .

22.32.34 FUNCTION 106 (.DISRS)

Starts remote CI node (defined in KLPSER) .

22.32.35 FUNCTION 107 (.DIACC)

Manipulates the CI port counters (defined in KLPSER) . The format of
the argument list is:

addr: XWD CPUno, .DIACC
XWD channo, sub-function

In the argument list you supply the following information:

o channo is the channel number. The only valid channel number
is 7.

o sub-function is a function code for manipulating counters.

22-80

DIAG. [CALLI 163]

The sub-function codes are:

Code Symbol Function

0 .DICGT Gets counters.

1 . .DICRL Releases counters.
2 .DICPT Points to counters.
3 .DICRD Reads counters.

22.32.36 FUNCTIONS 110-111 (Reserved for DIGITAL)

22.32.37 FUNCTION 112 (.DIWCM)

Writes CI maintenance data (defined in KLPSER) .

22.32.38 FUNCTION 113 (.DIRCHM)

Reads CI mainténance data (defined in KLPSER) .

SKIP RETURN

The specified function has been performed. Information returned in
the argument list and/or the accumulator is described for each

function listed above.

ERROR RETURN

The ac is unchanged if the DIAG. monitor call is not implemented on
the system. Otherwise, one of the following error codes is returned

in the ac:

Code Symbol Meaning

1 DIANPS% Not enough privileges.

2 DIAIA% Illegal number of arguments.
3 DIAICS% Illegal controller number.

4 DIAIU% Illegal unit number.

5 DIAAAS% Some units already assigned.
6 DIADMS Unit not in diagnostic mode.
7 DIAAJS Unit assigned to another job.
10 DIAFC% . Not enough free core.

11 DIAAU% No assigned units.

12 DIACP% IOWD crosses page boundary.
13 DIAIFS Illegal function.

14 DIAVCS Job must not be virtual.

15 DIANCS No such CPU.

16 DIANRY CPU not running.

17 DIABAS% Invalid argument list.

20 DIACI% No CI port on specified CPU.
21 DIATO% The Read Port Counters function timed out.
22 DIANKS No NI port on specified CPU.
23 DIARFS Microcode reload failed.

24 DIANMS No microcode available.

25 DIAPN% CI or NI port not running.
26 DIANU% Non-existent UNIBUS address.
27 DIAAFS Attach function failed.

30 DIADF% Detach function failed.

22-81

DISK. [CALLI 121]

22.33 DISK. [CALLI 121}
FUNCTION
Performs miscellaneous disk functions.

CALLING SEQUENCE

MOVE ac, [XWD function-code, addr]
DISK. ac, :
error return
skip return
addr: argument-list

In the calling sequence, you can supply the following information:

o function-code is one of the function codes descxibed below.

o addr is the address of the argument list.

o argument-list depends on the function code.

The function codes and their arguments are described below.
SKIP RETURN

On a successful return from the call, the function you specified 1is
accomplished, and neither the ac nor the argument list is affected.

ERROR RETURN

Each function can produce its own set of error codes on an error
return from the DISK. <call. The error code is returned in the ac. A
negative error code is one of the following, general-purpose error
codes:

Code Symbol Meaning
-1 DUILF$% . Illegal function requested.
-2 DUINP$% Not enough privileges to perform the function.

A positive error code indicates an error that 1is specific to the
function code. The ac is unchanged if DISK. 1is not implemented on
your system.

In the argument lists described in the following sections, you can
supply the following information:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel. You can use
-2 to indicate all channels for the Fjob, or -1 for all
explicitly initialized channels for this job

o udx is the Universal Device Index for a device.

o structure is the SIXBIT name of a file structure.

The function codes, their meanings, argument lists, and error codes
are described in the following sections.

22-82

DISK. [CALLI 121}

22.33.1 FUNCTION 0 (.DUPRI)
Sets the disk priority level, The argument list for .DUPRI is:
addr: XWD channo,priority

In the argument, priority is in the range -3 to +3 (0 4is normal
priority and +3 is the highest priority).

If you set the priority for a channel, the setting overrides the
setting for the 3job, and remains in effect until you change it or
release the channel.

If you set the priority for the entire job, the setting remains in
effect wuntil you change it with another DISK. call or with a SET
DSKPRI monitor command.

The maximum priority level you can use for your job is stored in Bits
1-2 (JP.DPR) of the job privilege table (GETTAB Table 6, .GTPRV).

On an error return from this function, one of the following error
codes may be stored in the ac:

Code Symbol Meaning

1 DUPIP% Priority higher than JP.DPR.

2 DUPNO% Channel not initialized.

3 DUPIA% Illegal channel number or code.

22.33.2 FUNCTION 1 (.DUSEM)

Sets PDP-10/PDP-11 compatibility mode (22-sector mode on the
RP04/RP06) for the channel. .DUSEM is a privileged function. The
argument list for .DUSEM is:

addr: EXP channo

On an error return from this function, one of the following error
codes may be returned in the ac:

Code Symbol Meaning
1 DUSID% Illegal device.
2 DUSCM% The device does not support 22-sector mode.

22.33.3 FUNCTION 2 (.DUSTM)

Clears PDP-10/PDP-11 compatibility mode. .DUSTM 1is a privileged
function. The argument list for .DUSTM is:

addr: EXP channo

On an error return from this function, one of the following error
codes may be returned in the ac:

Code Symbol Meaning
1 DUSID% Illegal device.
2 DUSCM% The device does not support 22-sector mode.

22-83

DISK. [CALLI 121]

22.33.4 FUNCTION 3 (.DUUNL)

Unloads an RP04 or RP06 drive. .DUUNL is a privileged function. The
argument list for .DUUNL is:

addr: SIXBIT /device/

On an error return from this function, one of the following error
codes may be returned in the ac:

Code Symbol Meaning

1 DUUIU% Illegal unit name.

2 DUUNI% Structure is illegal or not available.
3 DUUNU% Device cannot be unloaded.

22.33.5 FUNCTION 4 (.DUOLS)

Takes a controller/channel off-line soon. The monitor will continue
I/0 that is in progress, but will not use the controller for new I/0
requests. .DUOLS is a privileged function. The argument 1list for
.DUOLS 1is:

addr: SIXBIT /controller/

On an error return from this function, one of the following error

codes may be returned in the ac:

Code Symbol Meaning

1 DUOIP% Specified controller/channel is being put
off-line.

2 DUOSK% Nonexistent controller.

3 DUOCSSS% If controller were set off-line, there would not
be enough swapping space.

4 DUOIS% Unit in structure cannot be set off-line.

5 DUOQES% Not enough space for IOWDs.

6 DUOPI% Obsolete

22.33.6 FUNCTION 5 (.DUOLN)

Takes a controller/channel off-line now. The monitor stops current
I/0 on that controller and will not use the controller for new I/O

requests. .DUOLN is a privileged function. The argument list for
.DUOLN is:
addr: SIXBIT /controller/

On an error return from this function, one of the following error
codes may be returned in the ac:

Code Symbol Meaning

1 DUCIP% Specified controller/channel is being put
off-line.

2 DUOSK$% Nonexistent controller.

3 DUOSS% If controller were set off-line, there would not
be enough swapping space.

4 DUOIS% Unit in structure cannot be set off-line.

5 DUOES% Not enough space for IOWDs.

6 DUOPI% Obsolete

22-84

DISK. [CALLI 121]

22.33.7 FUNCTION 6 (.DUONL)

Puts a controller/channel on-line. This function makes the controller
available for 1I/O. .DUONL is a privileged function. The argument
list for .DUONL is:

addr: SIXBIT /controller/

On an error return from this function, one of the following error
codes may be returned in the ac:

Code Symbol Meaning

1 DUOIP% Specified controller/channel is being put
off-line.

2 DUOSK$% Nonexistent controller.

5 DUOES% Not enough space for IOWDs.

6 DUOPI% Obsolete

22.33.8 FUNCTION 7 (.DUUFD)

Sets call for UFD compressor. The argument list for .DUUFD is:

addr: EXP channo

In the argument, you specify the channo of the channel on which a file
is open. The UFD in which the file exists will be compressed.

This function does not force the compression to take place

immediately, but sets the compression to be performed on the next
output CLOSE for a file in this UFD. By default, the compression 1is
performed on an output CLOSE only if the directory contains an empty
block.

22.33.9 FUNCTION 10 (.DUSWP)

Removes a disk unit from the active swapping 1list. .DUSWP 1is a
privileged function. The argument list for .DUSWP is:

addr: SIXBIT /device/

On an error return from this function, one of the following error

codes may be returned in the ac:

Code Symbol Meaning

1 DUOIP% Specified controller/channel is being put
off-line.

2 DUOSK% Nonexistent controller.

3 DUOSS% If controller were set off-line, there would not
be enough swapping space.

4 DUOIS% Unit in structure cannot be set off-line.

5 DUOES$ Not enough space for IOWDs.

6 DUOPI% Obsolete

22-85

DISK. [CALLI 121}

22.33.10 FUNCTION 11 (.DUASW)

Adds a disk unit to the active swapping list. .DUASW is a privileged
function. The argument list for .DUASW is:

addr: SIXBIT /device/

On an error return from this function, one of the following error

codes may be returned in the ac:

Code Symbol Meaning

1 DUANU% No such unit.

2 DUAAIS% Unit already in active swapping list.
3 DUASF % SWPTAB is full.

4 DUAN4 % This error code is obsolete.

5 DUANSS% No swapping space (SWAP.SYS) on pack.

22.33.11 FUNCTION 12 (.DUASD)

Adds a structure to the system dump 1list. The argument list for
.DUASD 1is:
addr: SIXBIT /structure/

On an error return from this function, one of the following error
codes may be returned in the ac:

Code Symbol Meaning

1 DUDND% No such structure.

2 DUDNC#% No crash space on structure.

3 DUDADS% Structure already on system dump list.
4 DUDDF% System dump list full.

22.33.12 FUNCTION 13 (.DURSD)

Removes a structure from the system dump list. The argument list for
.DURSD 1is:
addr: SIXBIT /structure/

On an error return from this function, the following error code may be
returned in the ac:

Code Symbol Meaning

1 DUDNS% Structure not in system dump list.

22.33.13 FUNCTION 14 (.DULEN)

Returns the number of written blocks in the file in ac. The argument
list for .DULEN is:

addr: EXP channo

22-86

DISK. [CALLI 121]

22.33.14 FUNCTION 15 (.DUCLM)

Clears MDA wait for the specified unit. The argument list for .DUCLM
is:
addr: SIXBIT /device/

This function is used by the GALAXY batch and spooling system and
requires [1,2] or JACCT privileges.

22.33.15 FUNCTION 16 (.DUFRE)

Returns the amount of free space in a given UFD before the 1logged in
quota is exhausted. The argument list for .DUFRE is:

addr: SIXBIT /structure/
XWD p,pn

If there is no job logged in with the specified PPN, the skip return
is taken with bit 0 set. This bit setting is returned by the DSKCHR
call, when DC.NPA is returned in .DCUFT (arg+l). This signifies the
fact that the quota is not available.

On an error return from this function, the following error code may be
returned in the ac:

Code Symbol Meaning
1 DUFND% No such structure.

RELATED CALLS

DSKCHR

22-87

DNET. [CALLI 207]

22.34 DNET. [CALLI 207]
FUNCTION
Obtains information about DECnet network nodes and environment in your
network area only. This monitor call is for use in system programs
associated with DECnet-10 Versions 3.0 and 4.0.
NOTE

In a multi-area DECnet environment, the DNET.UUO only

returns information about nodes in the same area as

the DECnet-10 host.

If DECnet-10 is running as an Ethernet endnode, the

DNET.UUO only returns information about the DECnet-10

host node.

CALLING SEQUENCE

XMOVEI ac, addr
DNET. ac,
error return
skip return
addr: argument-list

In the calling sequence, you provide the following information:
o addr is the address of the argument list.
o argument-list depends on the function code you specify in the

first word of the argument list (.DNFFL), which is provided
in the following format:

addr: flags+function-code,, length

In this word, the following flags are defined:

Bit Symbol Meaning
0 DN.FLS Used with functions that return information about
single entities (a node or link). Indicates that

the function should step through the list,
returning information about the next entity in the

list.

1 DN.FLK List information only about known nodes.

2 DN.FLR List information only about reachable nodes.

3 DN.FLE List information only about EXECUTOR nodes. Refer
to the TOPS-10 DECnet-10 User’s Guide for more
information.

The function codes and argument lists are described in the following
sections.

22-88

DNET. [CALLI

22.34.1 FUNCTION 1 (.DNLNN)
Lists node names. You specify the following at addr:

addr: flag+<.DNLNN, , length>
BLOCK length-1

In the argument list, you must include one of the following flags:
o DN.FLK to list known nodes.
o DN.FLR to list reachable nodes.
0 DN.FLE to list EXECUTOR nodes.

And length is the length of the block to reserve.

The monitor returns the argument list in the following form:

Word Symbol Contents

1 .DNCNT Number of node names returned in the list.
2 . DNNMS First node name

3 Second node name

4-n Remaining node names

22.34.2 FUNCTION 2 (.DNNDI)

207)

Returns information about a node. You specify the following at addr:

addr: flag+<.DNNDI,, length>
node—-name
BLOCK length-2

You must include one of the following flags:

o DN.FLS to step through list of nodes. If you set this flag,
you must be sure that addr+l will contain 0 on the first
call, to start at the first node in the node list. The nodes

are listed in numerical order, by address.
o DN.FLK to list only known nodes.
o DN.FLR to list only reachable nodes.
o DN.FLE to list only EXECUTOR nodes.
And length is the length of the argument block returned. If you

not specify step mode by setting DN.FLS, you must specify
node-name in addr+l.

22-89

do
the

DNET. [CALLI 207]

The monitor returns the argument list in the following form:

Word Symbol Contents
1 . DNNAM Node name.
2 .DNRTR Router information, in the following format:
Bits Symbol Meaning
0 DN.RCH Set if the node is reachable.
1-17 DN . HOP The number of hops
specified node.
18-35 DN.CST The cost of the path to
specified node.
3 .DNLLI Link information, in the following format:
Bits Symbol Meaning
0 DN.VLD On if the word contains
information.
1-17 DN.LNK The number of active links
‘ the node.
18-35 DN.DLY The message delay time to
node.
4 .DNADR Node address.
5-10 .DNCKT Circuit name, up to 4 ASCIZ words. This

may contain up to 16 characters.

22.34.3 FUNCTION 3 (.DNSLS)
Shows link status. You must specify the following at addr:

addr: DN.FLS+<.DNSLS, , length>
jobno, ,channo

In the argument list, you can supply the following information:

o The optional flag, DN.FLS, to step through the node list.
you set DN.FLS, be sure that addr+l is 0 on the first call,

so that the information is returned starting at the
node in the node 1list.

o length is the number of words reserved for the
argument list.
The monitor returns the argument list in the following form:
Word Symbol Contents
1 .DNJCN Currently displayed job number (DN.JOB) and 1link
number (DN.CHN) .

2 .DNNOD Remote node name, in SIXBIT.
3 .DNOBJ Object types, where the 1left half

contains the destination object type,
right half (DN.SOB) contains the source
type.

22-90

returned

10

11

.DNSTA

.DNQUO

.DNSEG

.DNFLO

.DNMSG

.DNMPR

DNET. [CALLI 207]

Status word. The left half of this word (DN.LSW)
contains the status wvariable bits and the link

status code. The variable bits are:

Bit Symbol Meaning

0 NS.IDA Interrupt data is available.
1 NS.IDR Interrupt data may be sent.
2 NS.NDA Normal data is available.

3 NS .NDR Normal data may be sent.

The remainder of the left half contains a numeric
code associated with the symbol that is stored in
the right half.

The right half of this word (DN.STA) contains a
SIXBIT symbol representing the status of the link.
The status codes and associated SIXBIT symbols
are:

Code Symbol State

1 CW Connect wait.

2 CR Connect message received.

3 Cs Connect message sent.

4 RJ Remote task rejected connect
initiation message.

5 RN Link is up and running.

6 DR Disconnect message received.

7 DS Disconnect message sent.

10 DC Disconnect message has been
confirmed.

11 CF No confidence in link.

12 LK No link exists.

13 CM No communication has taken
place.

14 NR No resources exist.

Quota word, where the left half (DN.IQT) contains
the input quota, and the right half (DN.OQT)
contains the output quota.

Segment size.

Flow control option, where the left half (DN . XMF')

contains the flow control option wused for
transmission, and the right half (DN.RCF) contains
the flow control option wused for receiving
messages.

Message count word, where the left half (DN .MRC)
contains the number of messages received, and the
right half (DN:MXM) contains the number of
messages transmitted.

Monitor process word. If the job number at .DNJCN
is -1, this is the terminal number that NRTSER has
been given for this particular link. This word is
0 for any job number other than -1.

22-91

DNET. [CALLI 207]

ERROR RETURN

On an error, one of the following error codes is returned in the ac:

Code Symbol Error

1 DNADE% Address error.

2 DNWNA% Wrong number of arguments.

3 DNIDN% Illegal job number.

4 DNFNES% Illegal function number.

5 DNILF% Illegal flag set.

6 DNNSN% No such node name.

7 DNNSC% No such channel.

10 DNNDA% Node is in a different DECnet area.

SKIP RETURN
Function has been performed successfully.
EXAMPLE

The following example shows the programming sequence used to list
known nodes, up to the specified length, starting at location DNARG.

MOVE T1, [DN.FLK+<.DNLNN, ,100>]
MOVEM T1, DNARG
MOVEI T1, DNARG
DNET. T1,
HALT ;Error return
DNARG: BLOCK 100

On a skip return, the argument block is filled with the following
information:

DNARG: DN.FLK!<.DNLNN, , 100> ;Function-code+flags
20 ;Number of nodes
SIXBIT /ONE/ ;Node names
SIXBIT /TWO/
SIXBIT /THREE /
SIXBIT /KL1026/
SIXBIT /JIINX/

SIXBIT / GNOME /

22-92

DSKCHR [CALLI 45]

22.35 DSKCHR [CALLI 45]
FUNCTION

Returns the characteristics of a diék device. These characteristics
are needed to allocate storage efficiently on the disk.

CALLING SEQUENCE

MOVE ac, [XWD len, addr]
DSKCHR ac,

error return
skip return

addr: éIXBIT /name/
BLOCK length-1

In the calling sequence, you can provide the following information:

o name is the SIXBIT name of a file structure, a controller
type, a controller, a logical wunit, a physical unit, a
physical device, or a channel number.

o length-1 is the number of words in the argument list.

If more than one unit was specified, the monitor returns wvalues in the
ac and the argument block, pertinent to the first unit specified. If
more than one file structure was specified, the monitor returns values
in the ac and argument block, pertinent to the first unit on the first
file structure.

SKIP RETURN
On a successful return, the disk characteristics are returned in

addr+l through addr+<length-1>, and disk status flags are returned in
the ac.

The contents of the returned argument block are:

Word Symbol Contents

0 .DCNAM The argument supplied for the call. This is the
only word 1in the argument block that the user
program supplies. The .DCNAM argument may be a
channel number.

1 .DCUFT The number of blocks left in your Job’s quota
before the UED is exhausted. If this value is
negative (DC.NPA==1B0), the UFD has not been
accessed since the job logged in, and the quota is
not available. To obtain this information for
jobs other than your own, use the .DUFRE function
of the DISK. UUO.

2 .DCFCT The number of first-come, first-served blocks
available to all users.

3 .DCUNT The number of blocks available to all users on
this file structure.

4 .DCSNM SIXBIT name of the structure to which this unit
belongs.

22-93

DSKCHR [CALLI 45]

5 .DCUCH
6 .DCUSZ
7 .DCSMT
10 .DCWPS
11 .DCSPU
12 .DCK4S
13 .DCSAJ
14 .DCULN
15 .DCUPN
16 .DCUID
17 .DCUF'S
20 .DCBUM
21 .DCCYL
22 .DCBUC
23 .DCLPQ
24 .DCLTQ
25 .DCALT
26 .DCOWN
27 .DCPAS

The size characteristics are:

Bits Symbol Meaning

0-8 DC.UCC Number of blocks per cluster.
9-17 DC.UCT Number of blocks per track.
18-35 DC.UCY Number of blocks per cylinder.

Number of 128-word blocks on the unit.

Mount count for the structure. This count is the
number of jobs that performed a MOUNT command for
this file structure without executing a DISMOUNT
command. Note that LOGIN performs an implied
MOUNT of all structures in DSK, the default job
search list.

Number of words per SAT block.

Number of SAT blocks for each unit.

Space (in K) allocated for swapping.

Mount word for the structure:

Value Meaning

0,,0 No job or more than one Jjob has the
structure mounted.

-1,,n One job (number n) has the structure
mounted and the structure 1is not
single-access.

0,,n One job (number n) has the structure
mounted and the structure is

single-access.
SIXBIT logical name of the unit.
SIXBIT physical name of the unit.
SIXBIT identification of the unit.

First logical block to be used for swapping.

Number of blocks per unit (including maintenance
cylinders).

Current cylinder number.

Number of blocks per unit in PDP-11 compatibility

mode .

Length of the position wait queue.
Length of the transfer wait queue.
Unit name for alternate port.
Owner PPN of structure.

Position in active swapping list if argument was a
physical unit; -1 if not in 1list.

22-94

30

31
32

33

34

35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61

.DCPSD

.DCBSC

.DCXCH

.DCDET

.DCNUS

.DCBRC

.DCBWC

.DCDRC

.DCDWC

.DCMRC

.DCMWC

.DCSRC

.DCSWC

.DCPRC

.DCPWC

.DCFKS

.DCCBK

.DCCRC

.DCCRH

.DCCWC

.DCCWH

.DCSDV

.DCSDT

.DCHDV

.DCHDT

.DCECT

DSKCHR [CALLI 45]
Position in system dump list if argument was a
structure; -1 if not in list.
Blocks per super-cluster.

The extended unit characteristics:

Bits Symbol Meaning

0-8 DC.XCC Data channel number

9-17 DC.XCK Unit controller number

18-26 DC.XCU Physical unit number

27-35 DC.XCA Bit mask of accessible CPUs

(1B35=CPUO, 1B34=CPUl, etc.)

Name of the alternate port. The port does not
have to be attached.

The name of the next unit in the specified file
structure.

Count of blocks read by buffered I/O.
Count of blocks written by buffered I/O.
Count of blocks read by dump I/O.

Count of blocks written by dump I/O.
Count of blocks read by monitor I/O.
Count of blocks written by monitor I/0.
Count of blocks read by swap I/O.

Count of blocks written by swap I/0.
Count of blocks read by paging I/0.
Count of blocks written by paging I/O.
Remaining swap space.

Count of disk cache blocks in use.
Count of disk cache read calls.

Count of disk cache read hits.

Count of disk cache write calls.

Count of disk cache write hits.

Count of soft device/search errors.
Count of soft data errors.

Count of hard device/search errors.
Count of hard data errors.

Count of retries on last error.

22-95

DSKCHR [CALLI 45]

62 .DCSER Count of SAT errors.
63 .DCRER Count of RIB errors.
64 .DCCER Count of software checksum/consistency errors.
65 .DCHBN Logical block number of last error (within unit).
66 .DCERR Last error status.
67 .DCSDF Last error status.
70 .DCHDI Last error status.
71 .DCSDI Last error status.
72 .DCNHG Count of non-recoverable transfer-hung errors.
73 .DCTHG Count of transfer-hung errors.
74 .DCPHG Count of position-hung errors.
75 .DCSHG Count of software-hung errors.
76 .DCXSF Status flags:
Bits Symbol Contents
0-1 DC.FES Front end port status code.
The port status codes are:
Code Symbol Meaning
0 Monitor cannot determine the
status.
1 .DCFEN Not accessible from this front
1 .DCFEA zggéssible from this front
2 .DCFEB gﬁ?é is the front-end boot
device.

SKIP RETURN
The flags returned in the ac are as follows:

Bits Symbol Meaning

0 DC.RHB Disk pack off-line; the monitor must reread the
home block before the next operation to verify the
pack identification.

1 DC.OFL Unit is off-line.

2 DC.HWP Hardware write-protected.

3 DC. SWP Belongs to write-protected file structure.
4 DC.SAF Belongs to single-access file structure.

22-96

10

11

12-13

14

15-17

18-20

21-26

27-29

DC.

DC.

DC.

DC.

DC.

DC.

DC.

DC.

DC.

DC.

DC.

DC.

ZMT

PRV

STS

MSB

NNA

AWL

CPU

ALT

TYP

DCN

CNT

CNN

DSKCHR [CALLI 45]

Mount count is zero.
Belongs to private file structure.

Status code for unit:

Code Symbol Status

0 .DCSTP Has pack mounted.
2 .DCSTN No pack mounted.
3 .DCSTD Unit down.

Unit has more than one SAT block.

Belongs to a structure that has a lock to prevent
further INIT, LOOKUP, ENTER, OPEN, and
FILOP. calls (NNA indicates "no new access").
This lock is set by a privileged STRUUO function.
Write-locked for all jobs.

CPU number of the CPU to which the device is
connected. DC.XCC in word .DCXCH supersedes
DC.CPU.

Dual-ported device.

Type of argument passed with the DSKCHR call:

Code Symbol Meaning

0 .DCTDS Generic name, such as DSK.

1 : .DCTAB File structure subset, because
of abbreviation, such as D.

2 .DCTFS File structure name, such as
DSKA.,

3 .DCTUF Unit within file structure,
such as DSKAO.

4 .DCTCN Controller class name, such as
FH.

5 .DCTCC Controller name, such as RPA.

6 .DCTPU Physical unit, such as RPAO.

Data channel number that software lists as
connected to hardware; first data channel is 0.
Controller type:

Code Symbol Controller Type

1 .DCCFH RC10 for RD10 and RM10-B.

2 .DCCDP RP10 for RP02 and RPO03.

4 .DCCFsS RH10 for fixed head disk.

5 .DCCRP RH10/RH20/RH11 for moving head
disk (RP04, RPO06, RP07, and
RMO03) .

6 .DCCRN RH20 for RP20.

7 .DCCRA HSC for CI disks.

10 .DCCSX SAl10 for IBM disks (3330, for
example) .

Controller number; first one of each type is 0.

22-97

DSKCHR [CALLI 45]

30-32 DC.UNT Unit type:
Code Symbol Meaning When
0 .DCUFD RD10 (DC.CNT=1)
0 .DCUS4 RS04 (DC.CNT=4)
0 .DCUR4 RPO4 (DC.CNT=5)
0 .DCUNO RP20 (DC.CNT=6)
0 .DCU80 RAB0 (DC.CNT=7)
0 .DCUSO0 3330 (DC.CNT=17)
1 .DCUFM RM10-B (DC.CNT=1)
1 .DCUD2 RPO2 (DC.CNT=2)
1 .DCURG6 RPO6 (DC.CNT=5)
1 .DCU81 RAB1 (DC.CNT=7)
1 .DCUS1 3331 (DC.CNT=17)
2 .DCUD3 RPO3 (DC.CNT=2)
2 .DCUR3 RMO03 (DC.CNT=5)
2 .DCU60 RA60 (DC.CNT=7)
3 .DCUR7 RPO7 (DC.CNT=5)

33-35 DC.UNN Physical unit number within the controller; first

one is 0.

ERROR RETURN

The error return occurs under one of the following conditions:
o The argument at addr is 0.
o The device does not exist or channel is not initialized.
o The argument is illegal.

EXAMPLE

The following example checks a user’s logged-in quota on structure
DSKB:

MOVE T1, [2,,ADDR]
DSKCHR T1,
JRST NOQTA
SKIPGE ADDR+.DCUFT
JRST NOQTA
ADDR: SIXBIT /DSKB/
BLOCK 1

This code tests the value returned from the DSKCHR call. When DSKCHR
fails, or when no quota is returned at ADDR+1l, the program jumps to
NOQTA, where it must act on the possibility that the structure is not
mounted or there is no quota on the structure.

22-98

DTE. [CALLI 170]

22.36 DTE. [CALLI 170}

FUNCTION
Performs functions for the DTE (KL systems only), and is not
recommended for customer programs. To use the DTE. monitor call, you

must have the JP.POK or JACCT privilege, or be logged in under [1,2].

CALLING SEQUENCE

MOVE ac, [fcn-code, addr]
DTE. ac,
error return
skip return
addr: argument-list
In the calling sequence, the program provides the following variables:

o fcn-code 1s one of the function codes described below.

o addr is the address of the argument 1list. Each function
requires a different argument 1list. These are described
below. '

In the following discussion of the DTE. functions,
o cpuno is the number of a CPU.
o dteno is the number of a DTE.
o fedno is the unit number of a front-end device.

The function codes and their meanings are:

Code Symbol Function
0 .DTECL Clears a PDP-11 on a DTE. The argument 1list for
the .DTECL function is:
addr: XWD cpuno, dteno
1 .DTEST Starts primary protocol on a DTE. The argument
list for the .DTEST function is:
addr: XWD cpuno, dteno
2 .DTETB Sets the byte pointer for messages being
transferred to the DECsystem-10. The argument
list for the .DTETB function is:
addr: XWD cpuno,dteno
EXP <byte pointer to DECsystem-10>
3 .DTEEB Sets the byte pointer for messages transmitted to
the PDP-11. The argument list for the .DTEEB
function is:
addr: XWD cpuno, dteno
EXP <byte pointer to PDP-11>

22-99

DTE.

10

11

[CALLI 170]

.DTERW

.DTEMN

.DTEPR

.DTEGS

.DTERJ

.DTEGF

Returns the PDP-11 reload ROM word in the ac. The
argument list for the .DTERW function is:

addr: XWD cpuno, dteno

If bit 4 (DT.RP4) is set on return, the PDP-11 got
code from the disk.

Return (in ac) the master DTE number for the CPU.
The argument list for the .DTEMN function is:

addr: XWD cpuno, dteno

Presses the PDP-11 reload button. The argument
list for the .DTEPR function is:

addr: XWD cpuno,dteno

Returns the status word for the DTE. The status
word for the specified DTE is returned in ac. The

argument list for the .DTEGS function is:
addr: XWD cpuno, dteno

The status flags that can be returned are:

Flag Symbol Meaning

6 DT.DTX DTE exists.

7 DT.DTM DTE is master DTE,.

8 DT.PPC DTE is running primary protocol.

9 DT.SPC DTE is running secondary
protocol.

10 DT.RLD DTE needs reloading.

Sets reload job number. The argument list for the
.DTERJ function is:

addr: EXP jobno

In the argument word, jobno is the job number for
the reload.

Assigns the specified Front End Device (FED) to
the current 3job in its current job context. The
FED can then be operated using the DTE. functions
for FEDs (.DTEIF, .DTEOF, .DTEFG., .DTEFS, and
.DTEFR) . Privileged programs can use the FED
functions to communicate with the software running
on PDP-11 devices connected to the system with a
DTE. That software includes GALAXY, DDT11l, and
the FE program.

To assign a FED, use the following argument block:

addr: XWD cpuno, dteno
EXP fedno

22-100

12

13

14

15

.DTEIF

.DTEOF

.DTEFG

.DTEFS

DTE. [CALLI 170]

In the argument word:
o cpuno is the CPU number.

o dteno is the number of the DTE to which the
FED i1s connected.

In addr+l, specify the unit number of the FED.
On a successful return from the DTE.
function, the contents of the ac are
indeterminate. _—

You can use this function to assign the first
free FED unit on the specified CPU and DTE by
specifying -1 for fedno. In this case, the
FED unit number will be returned in the ac.

Front-end device input. The argument list for the
.DTEIF function is:

addr: XWD cpuno,dteno
EXP fedno
XWD byte-count, addr-of-input-buffer

Front-end device output. The argument 1list for
the .DTEOF function is:

addr: XWD cpuno,dteno

EXP fedno

XWD byte-count, addr-of-output-buffer
Returns (in ac) the front-end device status. The

argument list for the .DTEFG function is:

addr: XWD cpuno, dteno
EXP fedno

The returned device status flags are:

Flag Symbol Meaning

28 DT.FER Fatal error.

29 Reserved.

30 DT .EOF End of file.

31 DT.IOP I/0 in progress.

32 DT.SER Soft error.

33 DT .HER Hard error.

34 DT.OFL Off-line.

35 DT .NXD Nonexistent device.

Sets front-end device status. The argument list

for the .DTEFS function is:

addr:- XWD cpuno, dteno
EXP fedno
EXP status

In the argument word, status is the status word
for the front-end device.

22-101

DTE.

16

17

20

21

22

23

[CALLI 170]

.DTEFR

.DTERC

.DTERT

.DTEDT

.DTESU

.DTERU

Releases a front-end device. The argument list
for the .DTEFR function is:

addr: XWD cpuno, dteno
EXP fedno
Releases KL error chunks. The argument 1list for

the .DTERC function is:
addr: XWD cpuno, 0

Releases the KL error timer. The argument 1list
for the .DTERT function is:

addr: XWD cpuno, 0

Returns Universal Device Indexes for terminal
lines leading to the DLlls on the specified DTE.
The argument list for this function is:

addr: XWD cpuno, dteno

On a successful return, the UDX is returned in the
ac. However, for DTE 0, which is dedicated to the
console front end (RSX-20F), the ac contains the
KLINIK line’s UDX in the left half, and the CTY's
UDX in the right half.

Specifies the type of protocol that will run on
the DTE. The argument list for this function is:

addr: XWD cpuno, dteno
SIXBIT/user-name/

where the user-name 1is one of the following
protocol types:

DECNET for DECnet-10.

ANF for ANF-10.

IBM for IBM communications.

NOBODY if +the DTE 1is not running a
protocol.

PROGRA if the DTE is dedicated to a job.

Reads the protocol type of the protocol that is

running on the DTE. The argument list is:
addr: XWD cpuno, dteno
BLOCK 2

The information is returned in the following
format:

addr: XWD cpuno, dteno
SIXBIT/user-name/
EXP jobn

where user-name is the name of the protocol
running on the DTE (refer to .DTESU above). The
job number (jobn) is returned in addr+2 only if
user-name is PROGRA.

22-102

24 .DTELS
25 .DTEDM
26 .DTKPS
27 .DTKPR

SKIP RETURN

DTE. [CALLI 170]

Loads a secondary bootstrap from your job’s memory
area, using the PDP-11 bootstrap ROM. This
function must be preceded by the .DTECL (clear)
and .DTEPR (press reload) functions. You must
also use function .DTEDM (dump) before you can
load any bootstrap. The argument list for this
function is: .

addr: XWD cpuno,dteno
POINT 16,addrl
EXP length

where addr+l contains a byte pointer indicating
the 1location of the secondary loader, and length
is the length of the loader, in 16-bit bytes.

Dumps PDP-11 memory, using the PDP-11 bootstrap
ROM. Before you use this function, be sure to use
functions .DTECL (clear) and .DTEPR (press
reload) . You must always dump the PDP-11 memory
before you can load a program into its memory.
The argument list for this function is:

addr: XWD cpuno, dteno
POINT 16,addrl
EXP count

where addr+l contains a byte-pointer to the memory
that must be dumped, and where count is the number
of 16-bit bytes to dump from the PDP-11.

Set KLINIK parameters. (Not intended for customer
use.)
Read KLINIK parameters. (Not intended for

customer use.)

The function is performed, and any requested value is stored in the

ac.

ERROR RETURN

One of the following error codes is returned in the ac:

Error

Code Symbol
1 DTENP %
2 DTEUF%
3 DTEDCS%
4 DTEAP%
5 DTEPT%
6 DTEDES%
7 DTTTES%
10 DTEDD%
11 DTEIJS%
12 DTEIB%
13 DTENI%
14 DTEFB%
15 DTENF %
16 DTEFE%
17 DTESES%
20 DTENCS%

Not enough privileges.

Illegal function code.

Illegal CPU or DTE number.

Primary protocol already running.

Power fail did not come up.

Doorbell did not clear.

To TOPS-10 error during BOOT sequence.

No response from PDP-11 after BOOT sequence.
Illegal job number.

Illegal byte count.

Front-end device not initialized.
Front-end device in use by another job.
Nonexistent front-end device.

Fatal error on front-end device.

Error starting primary protocol.

No free core for front-end device buffers.

22-103

DTE.

21
22

23
24
25
26

[CALLI 170]

DTETE%
DTECM%

DTEIU%
DTEWU%
DTEEV$%
DTEIP%

KL error data timer expired.

The FEDSER monitor module was told not to
messages to the PDP-11.

Tried to set line to illegal user value.
Wrong line user for function.

No exec virtual memory to perform function.
Illegal byte pointer.

22-104

send

DVPHY. [CALLI 164]
22.37 DVPHY. [CALLI 164]
FUNCTION
Returns the physical names of devices and controllers (except
pseudo-terminals, terminals, MPX devices, and disks).
By specifying the device type (as returned by DVTYP. UUO), you can

return all the

devices.

CALLING SEQUENCE

physical device names for a specific device or all

MOVE ac, [XWD len, addr]
DVPHY. ac,
error return
skip return
addr: / EXP device-type \
\ EXP -1 /
BLOCK 1

In the calling sequence, the program supplies the following variables:
o len is the length of the argument block (must be 2).

o addr is the address of the argument block. The first word of
the argument list specifies the devices to list:

o device-type is one of the device type codes returned from the
DEVTYP monitor call, such as .TYLPT for a line printer.

To list all the devices, use -1 instead of the device type.
To list all controllers for a specific type of device, use the [-n,,m]
format, where n is the number device types to return, and m is the

device type code.

On the first DVPHY. call, addr+l should contain 0. The monitor
returns the name of the first device. If you leave this name in
addr+l, the next DVPHY. call returns the name of the next device, and
so forth. When all devices have been returned (by several calls), the
monitor returns 0 in addr+l.

SKIP RETURN

For 0 in addr+l, the monitor returns the name of the first device; for

name in addr+l, the monitor returns the name of the next
if there are no more devices, 0. The ac is unchanged.

a device
device, or,

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

1 DVPIAS Illegal argument length.

2 DVPITS% Illegal device type.

3 DVPNP% Nonexistent physical device.
4 DVPNT$% Nonexistent device type.

22-105

DVPHY. [CALLI 164]

EXAMPLE

The following example shows how to obtain the physical

line printers on the system:

SETZB T1,ADDR+1 ;Initialize counter and device name
TAGL : MOVE T2, [XWD 2,ADDR] ;Set .up call
DVPHY. T2, ; Get name
JRST ERROR ;Error
SKIPN T3,ADDR+1 ;Get name, skip if not at end
JRST TAG2 ;0 means we’re done
MOVEM T3,LPTNAM(T1l) ;Save in next block-slot
AOJA T1l, TAG1 ; Increment count and loop
TAGZ2: MOVEM T1l,NLPT ; Save count
JRST CONTIN
NLPT: BLOCK 1
LPTNAM: BLOCK 10
ADDR: EXP .TYLPT ; Type is LPT
EXP 0 ;Start with first device

CONTIN:

RELATED CALLS

o SYSPHY

o SYSSTR

COMMON PROGRAMMING ERRORS

Using a SIXBIT name for device type.

22-106

all

DVRST. [CALLI 122]

22 .38 DVRST. [CALLI 122]
FUNCTION

Restricts the use of a device. Once restricted, the device is then
assignable- only by the operator; unprivileged wusers must request
assignment through the MOUNT monitor command before using the
OPEN/INIT monitor call. (See the Commands Manual.) Privileged users
(JACCT or [1,2]) can still use the OPEN or INIT monitor call, or the
ASSIGN command, if the device is not controlled by MDA,

The DVRST. monitor call requires the JACCT privilege or that you be
logged in under [1,2].

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
| MOVEI ac, channo |
\ MOVEI ac,udx /

DVRST. ac,
error return
skip return
In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device to
be designated as being restricted.

o channo is the number of an initialized channel.
o udx is the Universal Device Index for a device.
SKIP RETURN
The device is restricted.

ERROR RETURN

The error return occurs if any of the following conditions is found
(the ac is unchanged) : .

o You do not have the JACCT privilege or are not logged in
under [1,2].

o The specified device does not exist.
o The device is a disk.

RELATED CALLS

DVURS.

22-107

DVURS. [CALLI 123]

22.39 DVURS. [CALLI 123]

FUNCTION

Removes the restriction created by a DVRST. monitor call.
DVURS. requires the JACCT privilege or that you be logged in under
(1,2].

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
| MOVEI ac,channo
\ MOVEI ac,udx /

DVURS. ac,
error return
skip return
In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device
that is to be returned to unrestricted status.

o channo is the number of an initialized channel.
o udx is the Universal Device Index for a device.
SKIP RETURN

The restriction is removed. The device is available for public use
and returned to the monitor’s pool of available devices.

ERROR RETURN

The error return occurs if any of the following conditions is found
(the ac is unchanged) :

o You do not have the JACCT privilege or are not logged in
under [1,2].

o The given device does not exist.

RELATED CALLS

DVRST.

22-108

ENQ. [CALLI 151}

22.40 ENQ. [CALLI 151]
FUNCTION

Requests access to resources that are defined by cooperating user
programs. The ENQ. call is one of three monitor calls that provide
control over the ENQ/DEQ facility, which provides resource definition,
control over access to resources, and deadlock detection for *the
resources. The ENQ/DEQ facility is described in Chapter 8.

CALLING SEQUENCE

MOVE ac, [XWD fcn-code, addr]
ENQ. ac,

error return
skip return

addr: éxé. <size>B5+<number>Bl7+<len>B35 ;header block
XWD 0, request-id
XWD time-limit

<lock block>
<lock block>

In the calling sequence, the program supplies the following variables:
o fcn-code is one of the function codes listed below.

o addr is the address of the argument block, which consists of
a header block followed by one or more lock blocks.

The header block contains 1 to 3 words, in the following order:

Offset Symbol Contents
0 .ENQLL The header size, the number of lock requests, and

the total 1length of the argument, including the
header and all the words in all the 1lock blocks.
Specifically, the _.ENQLL word is formatted as

follows:

Bits Symbol Value

0-5 EQ.BHS Size of the header Dblock. This
value is between 1 and 3, because
the second and third words are
optional. If you omit this
value, the default is 2.

6-17 EQ.LNL Number of lock blocks following
the header Dblock. Include one
lock Dblock for each resource
requested.

18-35 EQ.LLB Total length (in words) of the
argument Dblock. All the 1lock
blocks in a single request must
be the same length. Thus, the
value of EQ.LLB 1is the header
block 1length (EQ.BHS) plus the
length of each lock Dblock times
the number of resources requested
(EQ.LNL) .

22-109

ENQ. [CALLI 151}

1 .ENQRI An 18-bit request-id identifying this request.
This optional value identifies the ENQ. request,
enabling you to identify it when it causes a

software interrupt. This is useful when you use
the ENQ/DEQ facility in conjunction with the
software interrupt (PSI) system. After an

interrupt is generated, the request-ids of the
granted requests are inclusively ORed into the
status word of the interrupt block. To receive a
software interrupt, use function code 2 (.ENQSI)
when vyou issue the ENQ. monitor call. The
request-id can also be used with the DEQ. call to
dequeue a specific request.

2 .ENQTL Time limit specifying the number of seconds to
wait for each request in the call to be granted.
If any resource is not available within that time

limit, the call takes the error return with the
ENQTL% error code in the ac. This word is
optional. If you include the time limit in the

header block, specify 3 for size in word 0.

Each lock block represents a separate ENQ. request. There is no
limit to the number of 1locks that can be requested, but multiple
requests in the same ENQ. call must be given level numbers. The

locks will be granted in the order of the level numbers.

The format of a lock block is shown here and described in more detail
on the following pages

Word Symbol Contents
0 .ENQFL flags+<level>Bl7+channo
1 .ENQBP / flags+user-code \
| user-code |
\ string-pointer /
2 .ENQPS / pool-size,,number \
\ 0,,sharer-group /
3 .ENQMS mask-length, ,mask~addr
4 .ENQTB block~-length, ,block~addr
A lock block is two to five words long, identifying the resource to be
locked and describing the characteristics of the lock. The first
requestor of a resource defines lock characteristics. Subsequent

requests for the same resource must conform to those characteristics
or wait until the resource is released by the first requestor.

3

22-110

ENQ. [CALLI 151]

In the case of multiple-lock requests, all the lock blocks in a single
ENQ. request must be the same length. Specifically, a lock block can
contain the following words:

Offset Symbol Contents

0 .ENQFL Contains the flag bits, level number, and channel
number. The flags are:
Bit Symbol - Meaning
0 EQ.FSR The lock request allows sharers.

If you do not set this bit, the
monitor assumes that you require
exclusive access to the resource.
Unless the first requestor for
the resource sets this flag, no
requests for the same resource

(specified in the next word,
.ENQBP) can be granted until the
first requestor dequeues it
(using DEQ. or RESET). If the

first requestor sets this bit,
other programs with the same
sharer group number as that
specified in .ENQPS can obtain
access to the resou