
TOPS-10
Monitor Calls Manual
Volume 2
AA-K039D-TB

October 1988

This manual describes the monitor calls used by TOPS-10
MACRO programmers to request services that are controlled
by the TOPS-10 monitor. The TOPS-10 Monitor Calls Manual
consists of two volumes. Volume 1 is an overview of the
services available to the programmer. Volume 2 is a detailed
list of the calls and coding sequences that are used to invoke
those services.

Operating System:

Software:

TOPS-10 Version 7.04

GALAXY Version 5.1

digital equipment corporation
maynard, massachusetts

First Printing, August 1980
Updated, December 1981
Revised, February 1984
Revised, April 1986
Revised, October 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the termS of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1980, 1981, 1984, 1986, 1988 Digital Equipment Corporation

A" Rights Reserved.
Printed In U.S.A.

The Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CI DECtape LA50 SITGO-10
DDCMP DEC US LN01 TOPS-10
DEC DECwriter LN03 TOPS-20
DECmail DELNI MASSBUS TOPS-20AN
DECnet DELUA PDP UNIBUS
DECnet-VAX HSC PDP-11/24 UETP
DECserver HSC-50 PrintServer VAX
DECserver 100 KA10 PrintServer 40 VAXNMS
DECserver 200 KI Q-bus VT50
DECsystem-10 KL10 ReGIS

~DmDDmDTM DECSYSTEM-20 KS10 RSX

CONTENTS

PREFACE

CHAPTER 22 MONITOR CALL DESCRIPTIONS

22:1' ACCLG. [CALLI 204] 22-2
22:2 ACCT. [CALLI 167] 22-3
22 ~ 2 '.1 Function 0 (. ACTCH) 22-3
22.2~2 Function 1 (. ACTRD) 22-3
22.3' APRENB [CALLI 16] 22-5
22.4 ATTACH [CALLI 104] 22-7
22.5 CALLI [OPCODE 047] 22-9
22.6 CALlI. [CALLI 125] 22-13
22.6.1 FUNCTION 0 (.C11DP) 22-14
22'.6'.2 FUNCTION 1 (. C11EX) 22-1.5
22.6.3 FUNCTION 2 (.C11QU) 22-15
22.6'.4 FUNCTION 3 (. C11NM) 22-15
22.6.5 FUNCTION 4 (. C11UP) 22-15
22.6.6 FUNCTION 5 (.C11SM) 22-15
22.6'.7 FUNCTION 6 (. C11RM) 22-16
22.6.8 FUNCTION 7 (.C11TY) 22-16
22'.7 CHGPPN [CALLI 74] 22-17
22.8 CHKACC [CALLI 100] 22-18
22.9 CHTRN. [CALLI 223] 22-21
22.10 CLOSE [OPCODE 070] 22-23
22.11 CLRBFI [TTCALL 11,] 22-25
22.12 CLRBFO [TTCALL 12,] 22-26
22.13 CLRST. [CALLI 134] 22-27
22.14 CMAND. [CALLI 211] 22-29
22.14.1 FUNCTION 0 (. CMINT) 22-29
22.14.2 FUNCTION 1 (. CMADD) 22-30
22.14.3 FUNCTION 2 (. CMDEL) 22-30
22.1:4.4 FUNCTION 3 (. CMLST) 22-30
22.14.5 FUNCTION 4 (. CMRET) 22-31
'22.14.6 FUNCTION 5 (. CMDMP) 22-31
22.15 CNECT. [CALLI 130] 22-33
22.16 CORE [CALLI 11] 22-35
22.17 CTLJOB [CALLI 65] 22-37
22.18 CTX. [CALLI 215] 22-38
22.18.1 FUNCTION 0 (. CTSVH) 22-39
22.18.2 FUNCTION 1 (. CRSVR) 22-39
22.18.3 FUNCTION 2 (. CVSVT) 22-39
22.18.4 FUNCTION 3 (.CTSVS) 22-39
22.18.5 FUNCTION 4 (.CTSVD) 22-40

'22.18.6 FUNCTION 5 (. CTRDB) 22-40
22.18.7 FUNCTION 6 (. CTWDB) 22-40
22.18.8 FUNCTION 7 (. CTRQT) 22-40
22.18.9 FUNCTION 10 (. CTSQT) 22-40
22.18.10 FUNCTION 11 (. CTDIR) 22-40
22.18.11 FUNCTION 12 (. CTINF) 22-41
22.19 DAEFIN [CALLI 105] 22-43
22.20 DAEMON [CALLI 102] 22-44
22.20.1 FUNCTION 1 (Obsolete) 22-44
22.20.2 E'UNCTION 2 (. CLOCK) 22-44
22.20.3 FUNCTION 3 (Obsolete) 22-45
22.20.4 FUNCTION 4 (. DMQUE) 22-45
22.20.5 FUNCTION 5 (. DMERR) 22-45
22.20.6 FUNCTION 6 (. DMCTL) 22-47
22.21 DATE [CALLI 14] 22-48
22.22 DEBRK. [CALLI 137] 22-49
22.23 DEQ. [CALLI 152] 22-50
22.23.1 FUNCTION 0 (. DEQDR) 22-50

iii

22.23.2 FUNCTION 1 (.DEQDA) 22-50
22.23.3 FUNCTION 2 (.DEQID) 22-51
22.24 DEVCHR [CALLI 4] . 22-53
22.25 DEVLNM [CALLI 107] . . 22-56
22.26 DEVNAM [CALLI 64] 22-58
22.27 DEVOP. [CALLI 171] 22-59
22.27.1 FUNCTION 1 (.DFLLV) ... 22-60
22.27.2 FUNCTION 2 (.DFENV) 22-60
22.27.3 FUNCTION 3 (.DFDVL) 22-60
22.27 . 4 FUNCTIONS 4 -10 22-60
22.27.5 FUNCTION 11 (.DFLR2) 22-60
22.27.6 FUNCTION 12 (.DFLV2) 22-60
22.27.7 FUNCTION 13 (.DFMDC) 22-60
22.27.8 FUNCTION 14 (.DFMDS) . 22-61
22.27 . 9 FUNCTIONS 15-777 22-61
22.27.10 FUNCTION 1000 (.DFPCT) 22-61
22.27.11 FUNCTION 2000 (.DFPCT) 22-61
22.27.12 FUNCTION 1002 (.DFHCW) 22-61
22.27.13 FUNCTION 2002 (.DFHCW) ...•. 22-62
22.27.14 FUNCTION 1003 (.DFRES) 22-62
22.27.15 FUNCTION 1004 (.DFRDS) 22-63
22.27.16 FUNCTION 1005 (.DFFRM) . 22-63
22.27.17 FUNCTION 1006 (.DFDTI) . 22-63
22.28 DEVPPN [CALLI 55] 22-65
22.29 DEVSIZ [CALLI 101] 22-66
22.30 DEVSTS [CALLI 54] 22-68
22.31 DEVTYP [CALLI 53] 22-70
22.32 DIAG. [CALLI 163] 22-73
22.32.1 FUNCTION 1 (.DIASU) . 22-74
22.32.2 FUNCTION 2 (.DIAAU) . 22-74
22.32.3 FUNCTION 3 (.DIARU) 22-74
22.32.4 FUNCTION 4 (.DISCP) 22-74
22.32.5 FUNCTION 5 (.DIRCP) 22-74
22.32.6 FUNCTION 6 (.DIGCS) . 22-75
22.32.7 FUNCTION 7 (.DIAKU) 22-75
22.32.8 FUNCTION 10 (.DIACS) 22-75
22.32.9 FUNCTION 11 (.DIADS) . 22-75
22.32.10 FUNCTION 12 (.DISCR) 22-76
22.32.11 FUNCTION 13 (Obsolete) 22-76
22.32.12 FUNCTION 14 (.DIGUI)•.. 22-76
22.32.13 FUNCTION 15 (Obsolete) 22-76
22.32.14 FUNCTION 16 (Obsolete) 22-76
22.32.15 FUNCTION 17 (.DIELD) . 22-76
22.32.16 FUNCTION 20 (.DIDLD) 22-76
22.32.17 FUNCTION 21 (.DILOD) 22-76
22.32.18 FUNCTION 22 (.DISSM) 22-77
22.32.19 FUNCTION 23 (.DIICM) . 22-77
22.32.20 FUNCTION 24 (.DISBD) 22-77
22.32.21 FUNCTION 25 (.DIDSN) 22-77
22.32.22 FUNCTION 26 (.DIRUR) 22-77
22.32.23 FUNCTION 27 (.DIADB) 22-78
22.32.24 FUNCTION 30 (.DIOKI) 22-78
22.32.25 FUNCTION 31 (.DIOUI) 22-79
22.32.26 FUNCTION 32 (.DILKU) . 22-79
22.32.27 FUNCTION 33 (.DISDS) 22-79
22.32.28 FUNCTION 34 (.DIDVR) 22-80
22.32.29 FUNCTIONS 35-77 (Reserved for DIGITAL) 22-80
22.32.30 FUNCTION 100 (.DIGTM) 22-80
22.32.31 FUNCTION 101 (.DIGVM) . 22-80
22.32.32 FUNCTIONS 102-104 (Reserved) .. 22-80
22.32.33 FUNCTION 105 (.DIRRS) . 22-80
22.32.34 FUNCTION 106 (.DISRS) 22-80
22.32.35 FUNCTION 107 (.DIACC) . 22-80
22.32.36 FUNCTIONS 110-111 (Reserved for DIGITAL) . 22-81

lV

22.32.37 FUNCTION 112 (.DIWCM)
22.32.38 FUNCTION 113 (.DIRCM)
22.33 DISK. [CALLI 121]
22.33.1 FUNCTION 0 (.DUPRI)
22.33.2 FUNCTION 1 (.DUSEM)
22.33.3 FUNCTION 2 (.DUSTM)
22.33.4 FUNCTION 3 (.DUUNL)
22.33.5 FUNCTION 4 (.DUOLS)
22.33.6 FUNCTION 5 (.DUOLN)
22.33.7 FUNCTION 6 (.DUONL)
22.33.8 FUNCTION 7 (.DUUFD)
22.33.9 FUNCTION 10 (.DUSWP)
22.33.10 FUNCTION 11 (.DUASW)
22.33.11 FUNCTION 12 (.DUASD)
22.33.12 FUNCTION 13 (.DURSD)
22.33.13 FUNCTION 14 (.DULEN)
22.33.14 FUNCTION 15 (.DUCLM)
22.33.15 FUNCTION 16 (.DUFRE)
22.34 DNET. [CALLI 207]
22.34.1 FUNCTION 1 (.DNLNN)
22.34.2 FUNCTION 2 (.DNNDI)
22.34.3 FUNCTION 3 (.DNSLS)
22.35 DSKCHR [CALLI 45]
22.36 DTE. [CALLI 170] .
22.37 DVPHY. [CALLI 164]
22.38 DVRST. [CALLI 122]
22.39 DVURS. [CALLI 123]
22.40 ENQ. [CALLI 151] .
22.41 ENQC. [CALLI 153]
22.41.1 FUNCTION 0 (.ENQCS)
22.41.2 FUNCTION 1 (.ENQCG)
22.41.3 FUNCTION 2 (.ENQCC)
22.4l.4 FUNCTION 3 (.ENQCD)
22.42 ENTER [OPCODE 077]
22.4·3 ENTVC. [CALLI 225]
22.44 ERLST. [CALLI 132]
22.45 ERRPT. [CALLI 160]
22.46 ETHNT. [CALLI 223]
22.47 EXIT [CALLI 12]
22.48 FILOP. [CALLI 155]
22.48.1 FILOP. Extended Argument
22.48.2 FILOP. Functions
22.48.3 Simultaneous File Access
22.49 FRCUUO [CALLI 106]
22.50 GETLCH [TTCALL 6,]
22.51 GETLIN [CALLI 34]
22.52 GETPPN [CALLI 24]
22.53 GETSEG [CALLI 40]
22.54 GETSTS [OPCODE 062]
22.55 GETTAB [CALLI 41]
22.56 GOBSTR [CALLI 66]
22.57 GTNTN. [CALLI 165]
22.58 GTXTN. [CALLI 166]
22.59 HIBER [CALLI 72] .
22.60 HPQ [CALLI 71] . .
22.61 IN [OPCODE 056]
22.62 INBUF [OPCODE 064]
22.63 INCHRS [TTCALL 2,]
22.64 INCHRW [TTCALL 0,]
22.65 INCHSL [TTCALL 5,]
22.66 INCHWL [TTCALL 4,]
22.67 lNlT [OPCODE 041]
22.68 INPUT [OPCODE 066]
22.69 lONDX. [CALLI 127]

v

List

with FILOP. UUO

22-81
· 22-81

. . . 22-82
· 22-83

22-83
22-83
22-84

· . 22-84
22-84

· . 22-85
22-85
22-85

· . 22-86
· 22-86
· 22-86
· 22-86

22-87
· 22-87

22-88
22-89
22-89
22-90

· 22-93
22-99

22-105
22-107
22-108
22-109
22-119
22-119
22-120
22-120
22-121
22-122
22-124
22-125
22-127
22-129
22-139
22-141
22-143
22-146
22-152
22-155
22-157
22-159
22-160
22-161
22-163
22-165
22-166
22-168
22-169
22-170
22-172
22-173
22-175
22-177
22-178
22-179
22-180
22-181
22-182
22-183

22.70 IONEOU [TTCALL 15,]
22 . 71 IPCFM. [CALLI 217]
22.72 IPCFQ. [CALLI 144]
22.73 IPCFR. [CALLI 142]
22 . 7 4 I P CF S. [CALL I 1 43]
22.75 JBSET. [CALLI 113]
22.76 JOBPEK [CALLI 103]
22.77 JOBSTR [CALLI 47]
22.78 JOBSTS [CALLI 61]
22 . 79 KDP. [CALL I 200] .
22.80 LATOP. [CALLI 221]
22.80.1 FUNCTION 0 (.LASET)
22.80.2 FUNCTION 1 (.LACLR)
22.80.3 FUNCTION 2 (.LASCH)
22.80.4 FUNCTION 3 (.LASTC)
22.80.5 FUNCTION 4 (.LASAS)
22.80.6 FUNCTION 5 (.LASCO)
22.80.7 FUNCTION 6 (.LAZCO)
22.80.8 FUNCTION 7 (.LARHC)
22.80.9 FUNCTION 10 (.LATHC)
22.80.10 FUNCTION 11 (.LASHC)
22.81 LLMOP. [CALLI 220] ...
22.81.1 FUNCTION 0 (.ELDIR)
22.81.2 FUNCTION 1 (.ELAST)
22.81.3 FUNCTION 2 (.ELRPY)
22.81.4 FUNCTION 3 (.ELAIC)
22.81.5 FUNCTION 4 (.ELABT)
22.81.6 FUNCTION 5 (.ELSTS)
22.81.7 FUNCTION 6 (.RCRID)
22.81.8 FUNCTION 7 (.RCRCT)
22.81.9 FUNCTION 10 (.RCIDS)
22.81.10 FUNCTION 11 (.RCRBT)
22.81.11 FUNCTION 12 (.RCRPY)
22.81.12 FUNCTION 13 (.RCRSV)
22.81.13 FUNCTION 14 (.RCREL)
22.81.14 FUNCTION 15 (.RCSND)
22.81.15 FUNCTION 16 (.RCPOL)
22.81.16 FUNCTION 17 (.RCAIC)
22.81.17 FUNCTION 20 (.RCABT)
22.81.18 FUNCTION 21 (.RCSTS)
22.81.19 FUNCTION 22 (.RCAD~)
22.82 LOCATE [CALLI 62]
22.83 LOCK [CALLI 60]
22.84 LOGIN [CALLI 15] ..
22.85 LOGOUT [CALLI 17]
22.86 LOOKUP [OPCODE 076]
22.87 MERGE. [CALLI 173]
22.88 MONRT. [CALL 1,12]
22.89 MSTIME [CALLI 23]
22.90 MTAID [CALLI 126]
22.91 MTAPE [OPCODE 072]
22.92 MTBLK. [MTAPE 13]
22.93 MTBSF. [MTAPE 17]
22.94 MTBSR. [MTAPE 7 J .
22.95 MTCHR. [CALLI 112]
22.96 MTDEC. [MTAPE 100]
22.97 MTEOF. [MTAPE 3] .
22.98 MTEOT. [MTAPE 10J
22.99 MTIND. [MTAPE 101J
22.100 MTLTH. [MTAPE 200]
22.101 MTREW. [MTAPE 1] .
22.102 MTSKF. [MTAPE 16]
22.103 MTSKR. [MTAPE 6] .
22.104 MTUNL. [MTAPE 11]

vi

22-184
22-185
22-187
22-188
22-192
22-194
22-195
22-198
22-200
22-202
22-204
22-204
22-206
22-207
22-208
22-209
22-210
22-211
22-212
22-214
22-214
22-217
22-217
22-218
22-218
22-218
22-219
22-219
22-220
22-220
22-220
22-220
22-221
22-221
22-221
22-222
22-222
22-223
22-223
22-223
22-223
22-225
22-226
22-231
22-232
22-233
22-235
22-237
22-238
22-239
22-240
22-241
22-242
22-243
22-244
22-247
22-248
22-249
22-250
22-251
22-252
22-253
22-254
22-255

22.105 MTWAT. [MTAPE 0] ..
22.106 MVHDR. [CALLI 131]
22.107 NETOP. [CALLI 226]
22.108 NODE. [CALLI 157]
22.108.1 FUNCTION 1 (.NDALN)
22.108.2 FUNCTION 2 (.NDRNN)
22.108.3 FUNCTION 3 (.NDSSM)
22.108.4 FUNCTION 4 (.NDRBM)
22.108.5 FUNCTION 5 (. NDRCI)
22.108.6 FUNCTION 6 (.NDOUT)
22.108.7 FUNCTION 7 (.NDIN) .
22.108.8 FUNCTION 10 (.NDTCN)
22.108.9 FUNCTION 11 (.NDTDS)
22.108.10 FUNCTION 12 (.NDLND)
22.108.11 FUNCTION 13 (. NDNDB)
22.108.12 FUNCTION 14 (.NDGNF)
22.109 NSP. [CALLI 205] . . .
22.110 NTMAN. [CALLI 206] ..
22.111 OPEN [OPCODE 050]
22.111.1 ARGUMENT WORD 0 (.OPMOD)
22.111.2 ARGUMENT WORD 1 (.OPDEV)
22.111.3 ARGUMENT WORD 2 (.OPBUF)
22.112 OTHUSR [CALLI 77]
22.113 OUT [OPCODE 057] .. .
22.114 OUTBUF [OPCODE 065]
22.115 OUTCHR [TTCALL 1,] .
22.116 OUTPUT [OPCODE 067]
22.117 OUTSTR [TTCALL 3,]
22.118 PAGE. [CALLI 145]
22.118.1 FUNCTION 0 (.PAGIO)
22.118.2 FUNCTION 1 (.PAGCD)
22.118.3 FUNCTION 2 (.PAGEM)
22.118.4 FUNCTION 3 (.PAGAA)
22.118.5 FUNCTION 4 (.PAGWS)
22.118.6 FUNCTION 5 (.PAGGA)
22.118.7 FUNCTION 6 (.PAGCA)
22.118.8 FUNCTION 7 (.PAGCH)
22.118.9 FUNCTION 10 (.PAGCB)
22.118.10 FUNCTION 11 (.PAGSP)
22.118.11 FUNCTION 12 (.PAGSC)
22.118.12 FUNCTION 13 (.PAGBM)
22.118.13 FUNCTION 14 (.PAGAL)
22.118.14 FUNCTION 15 (.PAGLP)
22.118.15 FUNCTION 16 (.PAGWL)
22.119 PATH. [CALLI 110]
22.120 PEEK [CALLI 33]
22.121 PERF. [CALLI 162]
22.122 PIBLK. [CALLI 212]
22.123 PIFLG. [CALLI 216]
22 . 12 4 P I I N I. [CALL I 135]
22.125 PIJBI. [CALLI 175]
22 . 12 6 PI RS T . [CALL I 141]
22.127 PISAV. [CALLI 140]
22.128 PISYS. [CALLI 136]
22.129 PITMR. [CALLI 203]
22.130 PJOB [CALLI 30]
22.131 POKE. [CALLI 114]
22.132 QUEUE. [CALLI 201]
22.133 REASSI [CALLI 21]
22.134 RECON. [CALLI 202]
22.135 RELEAS [OPCODE 071]
22.136 REMAP [CALLI 37] ..
22.137 RENAME [OPCODE 055]
22.138 RESCAN [TTCALL 10,]

vii

22-257
22-258
22-259
22-261
22-261
22-261
22-261
22-262
22-263
22-263
22-263
22-263
22-264
22-264
22-264
22-266
22-267
22-269
22-272
22-272
22-275
22-275
22-277
22-278
22-280
22-281
22-282
22-283
22-284
22-285
22-285
22-286
22-286
22-287
22-287
22-287
22-288
22-288
22-289
22-289
22-290
22-291
22-291
22-291
22-293
22-302
22-303
22-307
22-308
22-309
22-312
22-314
22-315
22-317
22-322
22-324
22-325
22-326
22-338
22-340
22-346
22-347
22-349
22-351

22.139 RESDV. [Cl\LLI 117] 22-352
22.140 RESET [CALLI 0] 22-353
22.141 RTTRP [CALLl 57] 22-355
22.142 RUN [CALLI 35] 22-356
22.143 RUNTIM [CALLI 27] 22-358
22.144 SAVE. [CALLI 210] 22-359
22.145 SCHED. [CALLI 150] 22-360
22.146 SCS. [CALLI 213] 22-366
22.147 SEBLK. [CALLI 214] 22-373
22.148 SEGOP. [CALLI 230] 22-374
22.148.1 FUNCTION 0 (. SGINF) 22-375
22.148.2 FUNCTION 1 (. SGGET) 22-376
22.148.3 FUNCTION 2 (. SGREL) 22-377
22.148.4 FUNCTION 3 (. SGRMP) 22-377
22.148.5 FUNCTION 4 (. SGSWP) 22-378
22.148.6 FUNCTION 5 (. SGCOR) 22-378
22.148.7 FUNCTION 6 (. SGDMP) 22-379
22.149 SENSE. [CALLI 133] 22-380
22.150 SETDDT [CALLI 2] 22-382
22.151 SETLCH [TTCALL 7,] 22-383
22.152 SETNAM [CALLI 43] 22-384
22.153 SETSTS [OPCODE 060] 22-385
22.154 SETUUO [CALLI 75] 22-386
22.155 SETUWP [CALLI 36] 22-396
22.156 SKPINC [TTCALL 13,] 22-397
22.157 SKPINL [TTCALL 14,] 22-398
22.158 SLEEP [CALLI 31] 22-399
22.159 SNOOP. [CALLI 1 76] 22-400
22.160 SPPRM. [CALLI 172] 22-404
22.161 Spy [CALLI 42] 22-406
22.162 STATO [OPCODE 061] 22-407
22.163 STATZ [OPCODE 063] 22-408
22.164 STRUUO [CALLI 50] 22-409
22.165 SUSET. [CALLI 146] 22-421
22.166 SYSPHY [CALLI 51] 22-423
22.167 SYSSTR [CALLI 46] 22-424
22.168 TAPOP. [CALLI 154] 22-425
22.169 TIMER [CALLI 22] 22-435
22.170 TMPCOR [CALLI 44] 22-436
22.171 TRMNO. [CALLI 115] 22-438
22.172 TRMOP. [CALLI 116] 22-439
22.173 TRPSET [CALLI 25] 22-452
22.174 TSK. [CALLI 177] 22-453
22.175 TTCALL [OPCODE 051] 22-458
22.176 UGETF [OPCODE 073] 22-459
22.177 UJEN [OPCODE 100] 22-460
22.178 UNLOK. [CALLI 120] 22-461
22.179 USETI [OPCODE 074] 22-463
22.180 USETO [OPCODE 075] 22-465
22.181 UTPCLR [CALLI 13] 22-467
22.182 UTRP. [CALLI 174] 22-468
22.183 WAIT [CALLI 10] 22-470
22.184 WAKE [CALLI 73] 22-471
22.185 WHERE [CALLI 63] 22-472

CHAPTER 23 GETTAB TABLES

23.1 HOW TO USE GETTAB TABLES 23-1
23.2 HOW TO USE GETTAB SUBTABLES 23-2
23.3 ADDING ITEMS TO THE MONITOR'S GETTAB TABLES 23-3
23.4 ADDING NEW GETTAB TABLES TO THE MONITOR 23-3
23.5 ALPHABETIC LISTING 23-3
23.6 TOPS-I0 GETTAB TABLES 23-5

viii

APPENDIX A

A.l

APPENDIX B

GLOSSARY

INDEX

FIGURES

TABLES

B.l
B.2
B.3
B.4

22-1

22-1
22-2
22-3
22-4
22-5
22-6
22-7
22-8
22-9
22-10
22-11
22-12
22-13
22-14
22-15
22-16
B-1
B-2
B-3
B-4

.EXE FILES

THE DIRECTORY

FILE DAEMON

USER INTERFACE .
THE FILE DAEMON
ACCESS.USR
MONITOR INTERFACE TO A FILE DAEMON

QUEUE. Argument List .

Error File Entry Types .
FILOP Argument Block .
LATOP. Show Buffer Format
LATOP. Service Block.
LATOP. Short Connect Block
LATOP. Extended Connect Block
LATOP. Show Adjacent Servers Full-Format Block
LATOP. Show Adjacent Servers Short-Format Block
LATOP. Counter Block Format
LATOP. Rejection Codes ...
LATOP. Status Block
PATH. Functions and Flags
PISYS. Function Flags
PSI Interrupt Codes (Non-I/O Interrupts)
PSI Reason Codes (I/O-Related Interrupts)
SEGOP. UUO Flags ..
ACCESS.USR Switches
Access Codes .
File Daemon Codes
File Daemon Flags

ix

.. A-I

· B-1
· B-1
· B-3
· B-9

22-326

. 22-45
22-143
22-207
22-208
22-209
22-209
22-210
22-210
22-211
22-213
22-215
22-297
22-318
22-318
22-320
22-375

· B-4
B-ll
B-ll
B-13

P~FACE

This is the second volume of the 2-volume TOPS-IO Monitor Calls
Manual. Volume 1 describes the facilities offered by the monitor for
assembly language programs. You can use the information in Volume 1
to learn how to implement these facilities in your programs.

Volume 2 contains a detailed description of each monitor call, its
calling sequence, functions, and error codes, if any. It is the
definitive list of the monitor call functions. For information on
using these calls, you should read Volume 1 before attempting to use
Volume 2.

Not all devices are supported under current versions of TOPS-IO. In
the interest of providing useful information, this manual includes
references to unsupported and obsolete hardware. For support status
of hardware and software, please refer to the current TOPS-IO Software
Product Description.

Obsolete monitor calls are marked, either in the CALLI UUO, or in the
chapter in which they were previously described. Appropriate
substitutes, (if any), for obsolete calls are also indicated. Section
23.5 lists the GETTAB Tables, and notes any obsolete tables.

CONVENTIONS

This version of the Monitor Calls Manual,
notation to identify the following:

Vol. 2 contains special

Notation

underscore

/ \ / \
I I or \ /
\ /

Meani~

Indicates a type of information that your
program must supply. For example, addr must
be replaced by a location in your program.

braces define a choice of argument types that
you can supply.

If you find any errors or have any 'suggestions for improving this
manual, please fill out the Reader's Reply Form at the end of this
manual and mail it to the address shown on the back of the form.

All reported errors will be corrected as soon as possible and
distributed with the next revision of the manual.

xi

CHAPTER 22

MONITOR CALL DESCRIPTIONS

This chapter describes each of the TOPS-10 monitor calls. For each
description the following information is included, if applicable:

o FUNCTION: briefly describes the general use of the call.

o CALLING SEQUENCE: shows the format for the
where a word may contain one of a number
information are indicated by the presence
containing the options. Braces are included as:

/ \ / \
I I or \ /
\ /

call. Cases
of types of
of braces

o RESTRICTIONS: describes any unusual conditions that might
affect the operation of the call or its effect on the calling
program.

o SKIP RETURN: describes the result of a skip return from the
call and any operational aspects with which you should be
concerned.

o ERROR RETURN: describes the result of an error on return.

o EXAMPLE: shows one or more examples of the call.

o RELATED CALLS: lists other, related monitor calls.

o COMMON PROGRAMMING ERRORS: describes common user errors.

In the calling sequences shown,
throughout this section:

the following definitions apply

o ac: an arbitrary
arguments to the
from a call.

accumulator; often used for passing
call and to store an error code returned

o return: the statement to which control passes on return from
a call.

0 skip return: the statement to which control passes if no
error occurs in executing a call.

0 error return: the statement to which control passes if an
error occurs in executing a call.

The monitor call names are defined in the file UUOSYM.MAC; the CALLI,
MTAPE, and TTCALL monitor calls offer extensions through parameters
passed to the monitor.

22-1

ACCLG. [CALLI 204]

22.1 ACCLG. [CALLI 204]

FUNCTION

Used by the LOGIN system program to increment LOGNUM and ensure
LOGIN does not exceed the maximum number of logged-in jobs.
monitor performs the following functions for the ACCLG. call:

that
The

1. Increments LOGNUM (a word containing the number of logged-in
jobs) .

2. Checks the LOGNUM against the appropriate access maximum
(LOGMAX for timesharing jobs or BATMAX for batch jobs) .

CALLING SEQUENCE

MOVSI ac, (flags)
ACCLG. ac

error return
skip return

In the calling sequence, you can supply the flags indicated by the
following bit settings:

Bit

o
1
2

Symbol

AC.MAX
AC.BMX
AC.DCR

SKIP RETURN

Meaning

Check LOGMAX.
Check BATMAX.
Decrement LOGNUM count.

On a skip return, LOGNUM has been incremented and the maximum is not
exceeded. If the LOGIN program is halted before the LOGIN UUO has
successfully completed, however, the program should trap the CTRL/C
exit and perform another ACCLG. call, setting the AC.DCR flag to
decrement the LOGNUM count before allowing the program to exit.

ERROR RETURN

When this call takes the error return, one of the following error
codes will be returned in the accumulator:

Code Symbol Error

1 ACLMX% LOGMAX check failed. That is, to log in this job
would exceed LOGMAX.

2 ACLBM% BATMAX check failed.
3 ACLIL% Invalid argument to ACCLG. call.
4 ACLJL% ACCLG. with AC.DCR set produced an invalid value

after decrementing.
5 ACLDC% An ACCLG. with AC.DCR had been attempted when the

LOGNUM had not been incremented.

22-2

22.2 ACCT. [CALLI 167]

FUNCTION

Reads or changes the account string for a job.

CALLING SEQUENCE

addr:

MOVE ac, [XWD function,addr]
ACCT. ac,

error return
skip return
EXP length
argument list

ACCT. [CALLI 167]

In the calling sequence, you may supply the following variables:

o function, as one of the function codes described below.

o addr, as the location of the argument block.

o length, as the length of the argument block
this word)

(not including

o argument list, which is specific to the function.

22.2.1 Function 0 (.ACTCH)

Changes the account string for the specified job.

You must have JACCT privileges to use Function O. Note that [1,2]
privileges alone do not provide ability to perform this function.

The argument list is formatted as:

Word Contents

o Must contain a 1.

1 A byte pointer to the ASCIZ account string, or the word
[-l"address], where address is the' location of the account
string. In the latter case, account strings must be
left-justified on a word boundary.

22.2.2 Function 1 (.ACTRD)

Reads the account string for the specified job.

The maximum length for account strings is set by the system
administrator when the monitor is generated by MONGEN (symbol name
MLACTS). This default can be changed if your installation uses fewer
than 39 characters in its account strings.

22-3

ACCT. [CALLI 167]

Word Contents

o Must contain a 2.

1 The job number for the desired account string
calling job).

(-1 for the

2 The location where the monitor should return the account
string.

SKIP RETURN

For Function .ACTCH, the account string is changed.

For Function . ACTRD, the account string for the job is in the location
pointed to by addr+2, and addr+1 contains the job number.

ERROR RETURN

An error code is returned in the accumulator.
their meanings are:

Code Symbol Error

The error codes and

1

2

ACTTL%

ACTAC%

Account string too long for the monitor's buffer;
only the leftmost characters have been stored.
Address check error.

3
4
5

EXAMPLE

ARGLST:
JOBNO:
ACCADR:
ACCSTR:

ACTIL%
ACTNJ%
ACTPS%

MOVE
ACCT.

JRST
JRST

EXP
EXP
EXP
BLOCK

Illegal argument.
Nonexistent job number.
JACCT privileges required.

Tl, [XWD .ACTRD,ARGLST]
Tl,
ERROR
CONTIN

2
-1
ACCSTR
"08

ERROR:
CaNTIN:

error routine
success routine

This code sequence places the ASCIZ account string for the calling job
into the locations starting at ACCSTR.

RELATED CALLS

o GETPPN

o PJOB

22-4

APRENB [CALLI 16]

22 • 3 APRENB [CALLI 16]

FUNCTION

Enables trap servicing for a program. When a condition enabled for
trap servicing occurs, control is transferred to the address given by
.JBAPR in the job data area. See Chapter 6 for more information about
handling traps.

CALLING SEQUENCE

MOVE I
APRENB.
return

ac,flags
ac,

In the calling sequence, you can supply the following flags, indicated
by these flag bits:

Bit . Symbol

18 AP .REN

19 AP .,POV

21 AP.ABK

22 AP. ILM

23 AP.NXM

24 AP.PAR

26 AP .CLK

29 AP .FOV

32 AP.AOV

Trap Condition

Repetitive enable.

Pushdown list overflow.

Reserved.

Memory protection violation.

Nonexistent memory.

Memory parity error.

Clock tick. The clock ticked while your program
was actively running; this trap does not occur for
every clock tick.

Floating-point overflow.

Arithmetic overflow.

When one of these conditions occurs whil~ the processor is in user
mode, the monitor:

1. Stores the PC in location .JBTPC in the Job Data Area. If
the PC is equal to the first or second location in your trap
servicing routine, the program is terminated.

2. Clears the arithmetic and floating-point overflow flags.

3. Transfers control to your trap-servicing routine; the
location is given by the right half of location .JBAPR in the
Job Data Area.

Your program must place the address of the trap-servicing routine into
.JBAPR before executing the APRENB monitor call.

22-5

APRENB [CALLI 16]

EXAMPLE

OVERFL:

CONTIN:

NOTES

o If your trap-servicing routine
instruction

contains the

JRSTF @.JBTPC

the processor bits are cleared and the stat~ of
the CPU is restored; control resumes where the
interrupt occurred.

o The APRENB monitor call clears the trap after an
occurrence of any selected condition; therefore
your program must call APRENB after each trap
occurs.

o To enable repeated trap interceptions, your

o

program should set AP.REN (bit 18) when executing
the APRENB call; however, clock interrupts must be
reenabled after each trap occurs.

If your
overflow
but the

program does not enable for traps,
conditions and clock ticks are ignored,

other conditions listed above produce
fatal errors.

MOVE I
MOVEM
MOVE I
APRENB
JRST
OUTSTR
JRSTF

TI,OVERFL ;Get address of overflow handler
TI, .JBAPR ;Put into .JBAPR
TI,AP.AOV ;Arithmetic overflow flag
TI, ;To .JBAPR on arith ovflw
CONTIN iOn to something else
[ASCIZ /ARITHMETIC OVERFLOW ERROR/]
@.JBTPC ;Resume execution

;Something else

This code sequence sets up an overflow. message for the first
arithmetic overflow; note that this example will not handle more than
one arithmetic overflow.

COMMON PROGRAMMING ERRORS

o Not reenabling the interrupt after each trap has occurred.

o Failing to set up .JBAPR prior to the APRENB call.

RELATED CALLS

o PISYS.

o UTRP.

22-6

ATTACH [CALLI 104]

22.4 ATTACH [CALLI 104]

FUNCTION

Attaches a terminal line to a job. For example, this call is used by
the BATCON program to attach and detach jobs from their terminals at
system shutdown. This call is more powerful than the ATTACH monitor
command. .

An unprivileged job can use
terminal is in user mode,
controlling terminal.

the ATTACH
and it

monitor
can only

call only if its
detach from its own

CALLING SEQUENCE

MOVE ac, [EXP <flag>+<lineno>B17+<jobno>B35]
ATTACH ac,

error return
skip return

In the calling sequence, you can supply the following variables:

o flag is one of the bits described below.

o lineno is a line number (restricted to 16 bits) .

o jobno is the number of a logged-in job
current job).

(use -1 for the

If jobno is -1, your job is detached from the current line
and attached to the specified line; if jobno is 0, the job
attached to the line specified by lineno is detached; if
jobno is positive (requires JACCT or [1,2] privileges), the
monitor detaches the specified job from its current line and
attaches it to the specified line.

Flags you can supply in the accumulator are:

Bit Terminal Mode

o

Symbol

AT.UMM Puts terminal in monitor (command) mode. However,
.STPGR of the SETUUO may force the terminal into
user mode.

1 AT.UUM Puts terminal in· user mode'.

If neither flag is set, the terminal mode is not changed.
this is the terminal mode, not the job mode.

Note that

Using the ATTACH UUO, you perform the following functions with the
following information:

To attach an arbitrary job to a terminal:

jobno should be the number of the job to be attached.

lineno should be the number of the terminal to which the
job is to be attached.

flag is the mode to which the new terminal will be set.

The previous terminal will be left in monitor mode.

22-7

ATTACH [CALLI 104]

To attach your current job to a terminal,
definitions, with the following exception:

follow the above

jobno should be less than 0 (-1 is reco~nended).

To detach an arbitrary terminal:

jobno

lineno

flags

must be zero.

should be the number of the terminal to be
detached.

will be ignored.
monitor mode.

The terminal will be left in

To detach your job's controlling terminal:

jobno

lineno

flags

SKIP RETURN

must be zero.

should be -lor 777777. If you explicitly include
777777, the first two bits of the value are
ignored, producing 177777 (both flag bits are
off) .

are ignored.
mode.

The terminal is placed in monitor

The job is attached or detached as specified, and the terminal is in
the specified mode.

ERROR RETURN

The accumulator is cleared. An error return occurs only if you use an
illegal line or job number, or if you do not have the required
privileges for the call.

EXAMPLE

ATTERR:
CONTIN:

MOVSI
ATTACH

JRST
JRST

T1,-1
Tl,
ATTERR
CONTIN

error routine
success routine

This example detaches the current job from its terminal line; the mode
is not changed.

22-8

CALLI [OPCODE 047]

22.5 CALLI [OPCODE 047]

FUNCTION

Passes the monitor a function-index for an extended set of monitor
calls, called CALLIs. The negative CALLI indexes are reserved for
customer-defined monitor calls. All non-negative codes are reserved
for use by DIGITAL. Obsolete CALLIs. are marked as such, and they are
not described further in this manual.

The defined CALLIs also have symbolic function-names; in this chapter
they are listed in alphabetical order by symbol name. For example,
CALLI 215 is the CTX. UUO, described in this chapter under "CTX.".

CALLING SEQUENCE

CALLI ac,function-index
error return

skip return

In the calling sequence, you can supply the function-index. The
alternate method of specifying a monitor call is to use the following
syntax:

function-name ac,
error return

skip return

The function-name is the name of the monitor call. For example,
is the function-name for the CALLI with function-index 215.

CTX.

You can use the UU.PHY bit in the ac to indicate that addresses you
specify are physical references.--For monitor calls that take device
names, this bit indicates that physical device referencing is being
used.

To indicate physical references, rather than virtual or logical, set
Bits 18 and 19 in the ac, or include the symbolic representation
(UU. PHY) .

For example, to indicate physical referencing in DIGITAL CALLIs,
as the CTX. UUO, use the following CALLI syntax:

CALLI ac,215!UU.PHY

such

Or you can specify UU.PHY in symbolic representation of the CALLI
using the following syntax:

CTX. ac,UU.PHY

For customer-supplied CAllIs,
representation of UU.PHY:

CALLI ac,-l,-UU.PHY

remember to use the negative

22-9

CALLI [OPCODE 047]

Or, in symbolic representation:

LIGHTS ac,-UU.PHY

The UU.PHY symbol represents the settings of Bits 18 and 19 in the ac.
When the settings of these bits differ, physical referencing is
assumed by the monitor. For DIGITAL-supplied CALLIs, Bit 18 is clear
and Bit 19 is set to indicate physical referencing. For customer
CALLIs, Bit 18 is set; therefore, Bit 19 must be cleared to indicate
physical referencing.

The CALLI "function-index" is one of the following:

Function-Index Name Meaning

-n through -1 Reserved for customer definition.

o RESET Refer to the description of the monitor call.

n DIGITAL-supplied CALLI functions.

The CALLIs and their symbolic names are listed in numerical order on
the following pages.

22-10

CALLI [OPCODE 047]

Symbol CALLI Function Symbol CALLI Function

LIGHTS (Obsolete) FRECHN (Obsolete)
RESET [CALLI 0] DEVTYP [CALLI 53]
DDTIN (Unsupported) DEVSTS [CALLI 54]
SETDDT [CALLI 2] DEVPPN [CALLI 55]
DDTOUT (Unsupported) SEEK (Obsolete)
DEVCHR [CALLI 4] RTTRP [CALLI 57]
DDTGT (Obsolete) LOCK [CALLI 60]
DDTRL (Obsolete) JOBSTS [CALLI 61]
GETCHR (Obsolete; use DEVCHR) LOCATE [CALLI 62]
WAIT [CALLI 10] WHERE [CALLI 63]
CORE [CALLI 11] DEVNAM [CALLI 64]
EXIT [CALLI 12] CTLJOB [CALLI 65]
MONRT. [CALLI 1,12] GOBSTR [CALLI 66]
UTPCLR [CALLI 13] ACT IVA (Unimplemented)
DATE [CALLI 14] DEACTI (Unimplemented)
LOGIN [CALLI 15] HPQ [CALLI 71]
APRENB [CALLI 16] HIBER [CALLI 72]
LOGOUT [CALLI 17] WAKE [CALLI 73]
SWI'l'CH (Obsolete) CHGPPN [CALLI 74]
REASSI [CALLI 21] SETUUO [CALLI 75]
TIMER [CALLI 22] DEVGEN (Unimplemented)
MSTIME [CALLI 23] OTHUSR [CALLI 77]
GETPPN [CALLI 24] CHKACC [CALLI 100]
TRPSET [CALLI 25] DEVSIZ [CALLI 101]
TRPJEN [CALLI 26] DAEMON [CALLI 102]
RUNTIM [CALLI 27] JOBPEK [CALLI 103]
PJOB [CALLI 30] ATTACH [CALLI 104]
SLEEP [CALLI 31] DAEFIN [CALLI 105]
SETPOV (Unsupported) FRCUUO [CALLI 106]
PEEK [CALLI 33] DEVLNM [CALLI 107]
GETLIN [CALLI 34] PATH. [CALLI 110]
RUN [CALLI 35] METER. (Unsupported)
SETUWP [CALLI 36] MTCHR. [CALLI 112]
REMAP [CALLI 37] JBSET. [CALLI 113]
GETSEG [CALLI 40] POKE. [CALLI 114]
GETTAB [CALLI 41] TRMNO. [CALLI 115]
Spy [CALLI 42] TRMOP. [CALLI 116]
SETNAM [CALLI 43] RESDV. [CALLI 117]
TMPCOR [CALLI 44] UNLOK. [CALLI 120]
DSKCHR [CALLI 45] DISK. [CALLI 121]
SYSSTR [CALLI 46] DVRST. [CALLI 122]
JOBSTR [CALLI 47] DVURS. [CALLI 123]
STRUUO [CALLI 50] XTTSK. (Unsupported)
SYSPHY [CALLI 51] CAL11. [CALLI 125]

22 11

CALLI [OPCODE 047]

Symbol

MTAID.
IONDX.
CNECT.
MVHDR.
ERLST.
SENSE.
CLRST.
PIINI.
PISYS.
DEBRK.
PISAV.
PIRST.
IPCFR.
IPCFS.
IPCFQ.
PAGE.
SUSET.
COMPT.
SCHED.
ENQ.
DEQ.
ENQC.
TAPOP.
FILOP.
CAL78.
NODE.
ERRPT.
ALLOC.
PERF.
DIAG.
DVPHY.
GTNTN.
GTXTN.
ACCT.
DTE.
DEVOP.
SPPRM.
MERGE.
UTRP.
PIJBI.
SNOOP.
TSK.
KDP.

CALLI Function

[CALLI 126]
[CALLI 127]
[CALLI 130]
[CALLI 131]
[CALLI 132]
[CALLI 133]
[CALLI 134]
[CALLI 135]
[CALLI 136]
[CALLI 137]
[CALLI 140]
[CALLI 141]
[CALLI 142]
[CALLI 143]
[CALLI 144]
[CALLI 145]
[CALLI 146]
(Reserved)
[CALLI 150]
[CALLI 151151]
[CALLI 152]
[CALLI 153]
[CALLI 154]
[CALLI 155]
(Unsupported)
[CALLI 157]
[CALLI 160]
[CALLI 161]
[CALLI 162]
[CALLI 163]
[CALLI 164]
[CALLI 165]
[CALLI 166]
[CALLI 167]
[CALLI 170]
[CALLI 171]
[CALLI 172]
[CALLI 173]
[CALLI 174]
[CALLI 175]
[CALLI 176]
[CALLI 177]
[CALLI 200]

Symbol

QUEUE.
RECON.
PITMR.
ACCLG.
NSP.
NTMAN.
DNET.
SAVE.
CMAND.
PIBLK.
SCS.
SEBLK.
CTX.
PIFLG.
IPCFM.
LLMOP.
LATOP.
KNIBT.
CHTRN.
ETHNT.
ENTVC.
NETOP.
DDP.
SEGOP.

22-12

CALLI Function

[CALLI 201]
[C.A.LLI 202]
[CALLI 203]
[CALLI 204]
[CALLI 205]
[CALLI 206]
[CALLI 207]
[CALLI 210]
[CALLI 211]
[CALLI 212]
[CALLI 213]
[CALLI 214]
[CALLI 215]
[CALLI 216]
[CALLI 217]
[CALLI 220]
[CALLI 221]
(Obsolete)
[CALLI 223]
[CALLI 224]
[CALLI 225]
[CALLI 226]
(Unsupported)
[CALLI 230]

CAL11. [CALLI 125]

22.6 CALlI. [CALLI 125]

FUNCTION

Performs front-end testing and debugging functions. Using this call,
you can obtain information about PDP-11 based front end nodes, send
and receive front-end messages, and examine and deposit into the
front-end software.

CALLING SEQUENCE

addr:

MOVE ac; [XWD length,addr]
CAL11. ac,

error return
skip return

XWD port,function
address
value
qstart

In the calling sequence, you may supply the following variables:

o length is the length of the argument block.

o addr is the location of the argument block. Starting at this
address, the call accepts one to four words, depending on the
function code.

The format of the argument list for CAL11. is:

Offset

o

1

2

3

Symbol

.C11FC

.C11AD

.C1lCN

.Cl1EN

Contents

Function word, containing the port specification
and the function code. The left half of this word
contains the type of port. The right half must
contain a function code. The argument list
following the function word may include the
following words, depending on the function.

Address of a buffer where the monitor will store
requested data.

A value that the function uses as data to deposit
in memory.

Address of a buffer where the monitor will store
information about a device.

The first word of the argument list (.C11FC) is required for all
functions. The left half of this word specifies the type of port by
which the~front end is connected to the central processor. The port
specification can take either of the following formats. The first
format is old, and may be used by existing programs. However, the new
format is recommended for new programs.

22-13

CAL11. [CALLI 125]

The old format for the port specification is:

Bits

9-17

9-14

15-17

Symbol

C1.1NO

C1.1NT

C1.1NN

Meaning

Port identifier, made up of the following fields:

Type of port (see .C11TY below) .

Port number.

The new format is signified by the setting of Bit 0, the sign bit.
With the new format, the following fields are defined:

Bits

o

1-8

9-11

12-14

15-17

18-35

Symbol

C1.1NF

C1.1XX

C1.1TY

C1.1CN

C1.1PN

C1.1FC

Meaning

New format for port specification.

Reserved for use by DIGITAL.

Type code, one of the following:

Code

o
1
2
3

Symbol

.C11DL

.C11DT

.C11KD

.C11DR

CPU number.

Port number.

Function code.

Meaning

DL-10
DTE-20
KMC/DUP
DMR-11

The arguments following .C11FC depend on the function. Therefore, the
argument lists are described for each function code listed below.

The function codes and their meanings are described in the following
sections:

22.6.1 FUNCTION 0 (.C11DP)

Deposits the specified data in the specified ~ocation.
block for this function is:

The argument

Word Symbol

o . C11FC

1 . C11AD

2 .C11CN

Contents

Port specification in the left half .

Function name (.C11DP) in the right half.

Address where the data will be deposited .

Value, or data, to be deposited at location
specified in .C11AD.

This function requires the JP.POK privilege, and works for DN60 and
DN8x front ends only.

22-14

CALlI. [CALLI 125]

22.6.2 FUNCTION 1 (.CIIEX)

Examines the specified location.
is:

The ~rgument list for this function

Word

o

1

Symbol

.CllFC

. CllAD

Contents

Left half contains the port specification.

Right half contains .CllEX.

The address to be examined .

The data at the specified location is returned in the accumulator.

This function requires the JP.POK privilege and works for DN60 and
DN8x front ends only.

22.6.3 FUNCTION 2 (.CIIQU)

The argument list for this function is:

Word Contents

o

Symbol

.CllFC Left half contains the port specification.

Right half contains .CllQU .

1 . CllAD Zero

2 .Cl1CN Zero

3 .C11EN . The address of a data block containing information
regarding the front end function.

This function requires the JP.POK privilege and works only for DN60
front ends.

22.6.4 FUNCTION 3 (.CIINM)

For DL10-based ANF-10 front ends, returns the. name of the program
running on the PDP-11. The SIXBIT program name is returned in ac.
For all other front ends, .C11NM returns the name of the protocol
enabled by the monitor for a given front end. The argument list for
this function contains only the function word, .CllFC.

22.6.5 FUNCTION 4 (.CIIUP)

This function is obsolete.

22.6.6 FUNCTION 5 (.CllSM)

This function is obsolete.

22-15

CALlI. [CALLI 125]

22.6.7 FUNCTION 6 (.CIIRM)

Receives a message from a DN8x type of front end. This function
requires only the first word of the argument list, .CllFC.

22.6.8 FUNCTION 7 (.CIITY)

Returns the node type and node number of the PDP-II. This function
requires only the first word of the mrgument list, .CllFC.

For DECnet and ANF-IO front ends, the node number is returned in the
left half of the ac. The node type is returned in the right half, as
one of the following type codes:

Code

1
2
3
4
5
6

Symbol

. ClD76

.ClD75

. ClD60

. ClD8S

. ClCFE

.ClMCB

ERROR RETURN

Meaning

DC76 .
DC75/DN87.
DN60 .
DN87S .
Console front end .
DECnet-l0 MCB front end.

One of the following error codes is returned in the ac:

Code

1
2
3
4
5
6
7
10
11
12
13

14
15
16
17
20
21
22
23
24

Symbol

CllNP%
CIIUF%
CllND%
CllIU%
CllNA%
CllTS%
CllNE%
CllIA%
CllIQ%
CllIC%
CllRP%

CIIIE%
CllIL%
CllNC%
CllIT%
CllIP%
CllDL%
CllDT%
CllKD%
CllDR%

Error

Job not privileged.
Unknown function.
Wrong type of PDP-II specified.
Examine/deposit function already in use.
No answer to examine/deposit.
Queue entry too short.
Not enough arguments.
Invalid address specified for examine/deposit.
Invalid argument for queue request function.
Insufficient core.
DTE-reload bit is set, or primary protocol is not
running.
Insufficient exec virtual memory.
Illegal packet length.
CPU is not running.
Illegal type code specified.
Illegal port number specified.
No DLIO support in this monitor.
No DTE support in this monitor.
No KDP support in this monitor.
No DMR support in this monitor.

22-16

CHGPPN [CALLI 74]

22.7 CHGPPN [CALLI 74]

FUNCTION

Changes the project-programmer number (PPN) for the current job. This
call is reserved for the exclusive use of the LOGIN and INITIA
programs.

CALLING SEQUENCE

MOVE ac, [XWD projno,progno]
CHGPPN ac,

error return
skip return

In the calling sequence, you can supply projno,progno as the new
project-programmer number (PPN).

SKIP RETURN

The PPN for the current job is changed to the given number. This call
always takes the skip return when the calling program has [1,2],
JACCT, or POKE privileged, or if the program has CHGPPN privileges as
set by MONGEN.

ERROR RETURN

Occurs if the calling job is already
project or programmer number is zero.

EXAMPLE

MOVE T1, [XWD 27,5031]
CHGPPN T1,

JRST ERROR

logged in, or if either
The ac is unchanged.

This code sequence changes the PPN for the current job to 27,5031.

RELATED CALLS

o GETPPN

o LOGIN

22-17

the

CHKACC [CALLI 100]

22.8 CHKACC [CALLI 100]

FUNCTION

Determines whether a file may be accessed, based on your job's current
PPN and the file access protection code. Your programs should not
make assumptions concerning the access codes associated with a file;
they should use the CHKACC monitor call to determine if access is
permitted to that file. This is especially true for privileged
programs that are constrained by the access privileges of a
non-privileged project-programmer number for which they are performing
a task.

The CHKACC call does not function correctly on systems that are
running a file daemon program, such as FILDAE. So, if your system is
runnlng a FILDAE type program, use the FILOP. call. The
FILOP. monitor call allows a privileged program to specify that an
operation is to be performed only when the operation would be legal if
performed by a specified project-programmer number. In most cases,
the FILOP. function eliminates the need for the CHKACC monitor call.
New programs should be written using the FILOP. "in your behalf"
capability (.FOPPN)

CALLING SEQUENCE

addr:

MOVE I ac,addr
CHKACC ac,

error return
skip return

XWD
XWD
XWD

fcn-code, <ufdprot>B26+<filprot>B35
projno,progno ;For file
projno,progno ;For accessing program

In the calling sequence, you can provide the following information:

o addr is the address of the argument block.

o fcn-code is one of the function codes described below.

o ufdprot is a directory protection code.

o filprot is a file protection code.

o projno, progno is a project-programmer, number (PPN).

NOTE

When your program specifies Function codes a through
6, the monitor ignores the directory protection. When
your program specifies function codes 7 and 10, the
monitor ignores the file protection.

The function codes and their meanings are:

Code Symbol Access

a . ACCPR Checks whether your job can change the protection
for the file.

1 . ACREN Checks whether your job can rename the file.

2 . ACWRI Checks whether your job can write the file.

22-18

CHKACC [CALLI 100]

3 . ACUPD Checks whether your job can update the file (in
old update mode) .

4 . ACAPP Checks whether your job can append to the file.

5 . ACRED Checks whether your job can read the file.

6 . ACEXO Checks whether your job can execute the file.

7 . ACCRE Checks whether your job can create the file in the
user's UFD.

10 . ACSRC Checks whether your job can read the directory as
a file.

The right to access a file is determined by:

o The type of access desired.

o The project-programmer number of the user desiring access to
the file.

o The project-programmer number of the directory containing the
file.

o The protection field of the file or tne protection field of
the directory.

Note that access to a file is not dependent on the file name.
However, the file name is needed if your program is going to perform a
LOOKUP.

The owner of a UFD or an SFD can always read the UFD or SFD as a
directory.

SKIP RETURN

The monitor returns 0 in the ac if access to the file is allowed, or
-1 if access is not allowed.

ERROR RETURN

The ac is unchanged; this occurs only if you gave an invalid function
code-or CHKACC is not implemented on your system.

EXAMPLE

The following code checks to see if the user logged in as [11,315] can
change a file with protection <055> in the directory area [27,5031].

ARGLST:

MOVE I
CHKACC

JRST
JRST
XWD
XWD
XWD

T1,ARGLST
T1,
ERROR
CONTIN
. ACCPR, <775>B26+<055>B35
27,5031 ;For files
11,315 ;For accessing program

22-19

CHKACC [CALLI 100]

RELATED CALLS

FILOP.

COMMON PROGRAMMING ERRORS

Assuming that the CHKACC call grants access to a file. Remember that
it only tests the accessibility of the file. FILDAE can still deny
access to the file on a LOOKUP, ENTER, RENAME, or FILOP. call. The
File Daemon program is described in Appendix C.

22-20

CHTRN. [CALLI 223]

22.9 CHTRN. [CALLI 223]

FUNCTION

CHTRN. is used to translate characters from one
be used

representation to
to convert 8-bit another. For instance, CHTRN. may

characters to 7-bit characters.

CALLING SEQUENCE

addr:

XMOVEI ac,addr
CHTRN. ac,

error return
skip return

XWD
EXP
EXP
XWD
EXP
EXP

flags, source count
source byte pointer (first word)
source byte pointer (second word)
reserved, destination count
destination byte pointer (first word)
destination byte pointer (second word)

In the calling
argument list.

sequence, you specify addr, the location of the
Suppy the argument list in the following format:

Word

o

I

2

3

4

5

Symbol

.CHFLG

.CHSCT

.CHSBI

.CHSB2

.CHDCT

.CHDBI

.CHDB2

Contents

Bits 0-17 (CH.FLG)
below.

contain the flags described

Bits 18-35 (CH.SCR) contain the source count,
which is the number of bytes stored where the
source byte pointer indicates.

The source byte pointer is a two-word byte pointer
to the location where the characters are stored.
This is the first word.

This is the second word of the source byte
pointer.

destination count is the number of bytes available
at the location the destination byte pointer
indicates.

destination byte pointer is a two-word byte
pointer to the buffer reserved for storing the
translated characters. This is the first word.

This is the second word of the destination byte
pointer.

22-21

CHTRN. [CALLI 223]

The flag bits are:

Flag Symbol

a CH.FBR

1 CH.OVR

2 CH.RAI
3 CH.6BT
4 CH. IGN

5 CH.ESC

6 CH.X6B

SKIP RETURN

Meaning

Fallback representation (translates 8-bit to
7-bit) .
Includes overprinting in the fallback
representation.
Changes lower case to upper case.
Converts ASCII characters to SIXBIT.
Ignores extra bits; does not range-check
characters.
Maps 7-bits ESCape sequences to 8-bit wherever
possible.
Expands SIXBIT source to ASCII destination.

The ac is unchanged. The monitor returns the byte pointers in the
argument list with all indirection and indexing resolved. If you
specify one-word global byte pointers, the pointers will be expanded
from one-word global format to two-word global format.

ERROR RE TURN

One of the following codes is returned in the ac~

Code Symbol.

1 CHADC%
2 CHBYP%
3 CHINV%
4 CHILC%
5 CHDCE%
6 CHIBC%

Error

Address check while reading or writing arguments.
Illegal byte pointer.
Unknown or reserved flag bit specified.
Illegal character encountered during translation.
Destination count exhausted prematurely.
Invalid bit combination specified.

22-22

CLOSE [OPCODE 070]

22.10 CLOSE [OPCODE 070]

FUNCTION

Terminates transmission of data to or from a file. Closes the file
for both input and output. The default functions of the CLOSE call
for unbuffered data modes are:

o The output side of the channel is closed. In unbuffered data
modes, the effect is to execute a device-dependent function.

o The input side of the channel is closed. The end-of-file
flag is cleared. Further actions depend on the data mode.
The effect is to execute a device-dependent function.

In buffered data modes, the following operations are performed on the
output side of the channel:

o All data in the buffers that have not been transmitted to the
the device is written to the device.

o Device-dependent functions are performed.

o The ring use bit is set to 1, indicating that the ring is not
in use.

o The buffer byte count, the third word'of the buffer header,
is set to O.

o Control returns to the user program when transmission is
complete.

In buffered data modes, if a ring buffer exists, the following
operations are performed to close the input side of the channel:

o The monitor waits until the device is inactive.

o The use bit of each buffer is cleared, to indicate that the
buffer is empty.

o The use bit of the buffer ring is set to 1, to indicate that
the ring is not in use.

o The buffer byte count is set to O.

o Control returns to the user program.

If a file is being written to disk at the time of the output CLOSE,
the unwritten blocks at the end of the disk file are deallocated. On
input CLOSE, the access date of a disk file is updated if any data was
actually read. (LOOKUP followed by CLOSE does not change the access
date.)

If the file is being output to the card punch, the last card lS

punched, followed by an end-of-file card. This end-of-file card and
the header card contain the file identification punch in column 1,
which is ignored by the card reader service routine.

If a file is being output to magtape, two EOF marks are written and
the tape position is backspaced over one EOF.

If a file is being output to the line printer, a form-feed character
is appended to the last block of data.

22-23

CLOSE [OPCODE 070]

CALLING SEQUENCE

CLOSE
return

channel, flags

In the calling sequence, you can supply the following information:

o channel is the channel number for the file.

o flags are one or more of the function flags described below.

The function flags and their meanings are:

Bits

29

30

31

32

33

34

35

RETURN

Symbol

CL.DAT

CL.RST

CL.NMB

CL.ACS

CL.DLL

CL. IN

CL.OUT

Function

Deletes the name block and access tables from the
disk data base and the space is returned to
monitor free core. For example, this function is
used by BACKUP on a RESTORE operation.

Inhibits deletion of the original file, if any,
for an ENTER call that creates or supersedes the
file. The new copy of the file is discarded.

Inhibits deletion of the name
tables in monitor memory;
effective only if a LOOKUP call
the channel, but no subsequent
channel was executed.

block and access
this function is
was executed for
INPUT call for the

Prevents updating of the file access date. For
example, this feature is used by BACKUP, to save
files on magtape without changing their access
dates.

Inhibits deallocation of any unwritten blocks at
the end of a disk file.

Inhibits closing of the input side of the channel.

Inhibits closing of the output side of
channel.

the

The function is performed.

EXAMPLE

See Chapter 11, Monitor Calls Manual Vol. 1.

RELATED CALLS

o ENTER

o FILOP.

o LOOKUP

o RENAME

22-24

CLRBFI [TTCALL 11,]

22.11 CLRBFI [TTCALL 11,]

FUNCTION

Clears text from the terminal input buffer. This call is often used
to clear any further user commands when an error occurs; otherwise,
incorrect processing (due to user type-ahead) could follow the error.

CALLING SEQUENCE

RETURN

CLRBFI
return

All text is cleared from the input buffer.

RELATED CALLS

o CLRBFO

o TTCALLs

o TRMOP.

22-25

CLRBFO [TTCALL 12,]

22.12 CLRBFO [TTCALL 12,]

FUNCTION

Clears the terminal output buffer.
equivalent to typing CTRL/O.

CALLING SEQUENCE

RETURN

CLRBFO
return

This monitor call is normally

The terminal output buffer is cleared.

RELATED CALLS

o CLRBFI

o TTCALLs

o TRMOP.

22-26

CLRST. [CALLI 134]

22.13 CLRST. [CALLI 134]

FUNCTION

Clears or sets the I/O status bits for a device. This enables your
program to continue after an I/O error has occurred. The CLRST. UUO
functions like SETSTS, taking the list of devices and I/O status bits
for each device, with the additional ability to specify devices not
explicitly OPENed on an I/O channel.

You can examine the current setting of the I/O status bits by using
the SENSE. monitor call.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
CLRST. ac,

error return
skip return
..

/ SIXBIT/device/ \
addr: I EXP channo I

\ EXP udx /
addr+l: XWD O,setsts-value

/ SIXBIT/device/ \
addr+2: I EXP channo I

\ EXP udx /
addr+3: XWD O,setsts-value

In the calling sequence, you can supply the following information:

o len is the length of the argument list.

o addr is the address of the argument list, containing one or
more 2-word entries. Each two-word entry contains the
following information:

o In the first word of the pair (.CLRSX), store
specification, in the form of a SIXBIT device name,
a channel number, or the device udx.

a device
channo as

o In the second word of the pair (.CLRST), store the
setsts-value, or the halfword value of the I/O status nits
for the given device, channel, or udx. This word specifies
the new settings for the I/O status bits.

Your program can clear the I/O status bits for more than one device.
The argument block contains a 2-word entry for each device.

For a complete list of I/O status bits, see Chapter 11. Each type of
device has a unique set of I/O status bits, which are described in the
chapter about the appropriate device.

SKIP RETURN

The I/O status bits for each specified device are cleared or set as
specified.

22-27

CLRST. [CALLI 134]

ERROR RETURN

One of the following error codes is returned ln the ac:

Code

1
2

EXAMPLE

ARGLST:

CaNTIN:

Symbol

CLRID%
CLRNO%

MOVE
CLRST.

JRST
JRST
SIXBIT
EXP
EXP
EXP

Error

Illegal device specified.
Specified device does not belong to your job.

T1, [XWD
T1,

ERROR
CaNTIN
/DTAO/
o
CHANNa
o

<CONTIN-ARGLST>,ARGLST]

This code sequence clears the I/O status bits for DTAO and the device
associated with the channel whose number is the value of CHANNa.

RELATED CALLS

o ERLST.

o GETSTS

o SENSE.

o SETSTS

22-28

CMAND. [CALLI 211]

22.14 CHAND. [CALLI 211]

FUNCTION

Defines commands that run specified programs, and manipulates the
job's user-defined command list. In the argument list to this call,
your program defines a command name that, when typed as a monitor
command, will run the program specified by the file specification that
is also inc,luded in the command list. The CMAND. UUO allows you to
define multiple command names in the argument list, and allows you to
read the command list that is already defined for your job.

CALLING SEQUENCE

addr:

MOVE ac, [XWD fcn-code,addr]
CMAND. ac,

error return
skip return
argument-list

In the calling sequence, you can supply the following information:

o fcn-code is the function code.
in the following sections.

The function codes are listed

o addr is the address of the argument list. The argument list
for each function code is described in the following list of
function codes.

22.14.1 FUNCTION 0 (.CMINT)

Initializes (clears) any current command definitions and creates a new
command list as specified at addr. The argument list stored at addr,
you supply the command flags;- the command name, and the file
specification of the program to run when the command is invoked.

The argument list for this function is formatted as follows:

Word Symbol

0 .CMFLA

1 .CMNAM
2 .CMDVC
3 .CMFLE
4 .CMEXT
5 .CMPPN
6 .CMSFD
7-10

Contents

In the left half, one or more of the flags
described below. In the right half (CM.COU),
store the length of this definition.
Command name
Device name
File name
File extension
Project-programmer number
First SFD name
Remaining SFD names

In argument list, you can supply the following flags to indicate the
number of characters in the command that must be input to define the
command uniquely. The flags are:

Mask

10B17

4B17

Symbol

CM.UN1

CM.UN2

Meaning

Command is uniquely identified by the
character of its name.

first

Command is uniquely identified by the first two
characters.

22-29

CMAND. [CALLI 211]

2B17 CM.UN3

1B17 CM.UN4

1B12 CM.AUT

Command is uniquely identified by the first three
characters.

Command is uniquely identified by the first four
characters.

Command is defined as automatically saving the
job's current context. The command will create a
new context, in which the called program will run.
The original context is restored when the program
terminates.

You can define more than one command by including a command block for
each command, and storing them in contiguous blocks. The last word,
where the next .CMFLA might be expected, must be set to zero.

22.14.2 FUNCTION 1 (.CHADD)

Adds one or more command definitions to the current command list. The
argument block for this function is identical to that used by Function
o (. CMINT) .

22.14.3 FUNCTION 2 (.CMDEL)

Deletes one or more commands from the current list of defined
commands. The argument list for this function is formatted as:

Word

o
1
n

Symbol

.CMSIZ

.CMCMN

Contents

Length of the argument list
Command name to be deleted
More command names.

The length of the argument list is equal to the entire length of the
argument list, including . CMSIZ. .The commands to be deleted are
listed in the following words, and each must be equivalent to the
.CMNAM word where the command was defined (see .CMINT argument list).
Note that commands in the command list that are not listed in the
.CMDEL argument list are not affected by this function.

22.14.4 FUNCTION 3 (.CMLST)

Lists all the currently defined command names.
this function is formatted as:

addr: length
BLOCK length-1

The argument list for

In the argument list, you supply the following information:

o length is the length of the argument block

a length-1 is the number of commands to return.

22-30

CMAND. [CALLI 211]

On a successful skip return, the argument block appears as:

Word

o
1
n

Symbol

.CMSIZ

.CMNAM

Contents

Length of returned list
First command in the list
Remaining commands in the list

The monitor returns, in .CMSIZ, the total number of defined commands.
The command names are returned starting at .CMNAM. If the reserved
block is not long enough, the list of command names is limited to the
reserved space.

22 . 14 .5 FUNCTION 4 (. CMRET)

Returns information about a command.
list as:

You must include the argument

Word Contents

Length of argument list o
1

Symbol

.CMSIZ

.CMCNM Command name for which information is to be
returned.

In this argument list, specify the length of the block to be returned
in .CMSIZ, and the name of the defined command for which information
is desired, in .CMCNM. The information is returned in the form of a
command block (same as argument list for .CMINT), for the command
name.

22.14.6 FUNCTION 5 (.CMDMP)

Dumps the entire command definition data base.
following argument list:

Word

o
1-n

Symbol

.CMSIZ

Contents

Length of argument list
BLOCK length-1 to reserve
information.

This function uses the

space to return

After the call returns successfully, a list
for defined commands will be returned
Function 0 (.CMINT) for the format of the
Note that the last command block will be
indicate the end of the commarid list.

of all the command blocks
starting at Word 1. See
returned command blocks.
followed by a zero word to

SKIP RETURN

The state of a return from CMAND. UUO is described for each function
listed above.

22-31

CMAND. [CALLI 211]

ERROR RETURN

On an error return, the CMANO. DUO takes the non-skip return and
returns the appropriate code from the following list of error codes:

Code

1

2
3

4

5

EXAMPLE

CMBLK:

Symbol

CMIAL%

CMADC%
CMNER%

CMONF%

CMNSN%

Error

Your program specified an illegal argument list.
The argument list length was either too long or
too short.
Address check occurred.
Not enough room to define commands in your job's
per-process space.
Your program did not finish reading the command
list. The buffer size you allowed at addr was not
enough to contain all the information to be
returned.
No such command
function, you
defined.

name. On
specified a

a .CMRET
command

or .CMDEL
that is not

MOVE AC, [XWO .CMADO,CMBLK]
CMANO. AC,

error return
skip return ;Command has been defined

CM.UN3!6
SIXBIT /XDDT/
SIXBIT /OSKA/
SIXBIT /OOT/
EXP 0
XWO 1,4

;/UNIQUE:3, and 6 words in b~ock
;Command name
;Device name
;File name
;Extension (assumed to be EXE)
;PPN

This coding sequence will define
DSKA:OOT[1,4]

the XODT command to run

COMMON PROGRAMMING ERRORS

Assuming that .CMFLA in .CMINT or .CMADD specifies the length of the
entire argument list.

22-32

CNECT. [CALLI 130]

22.15 CNECT. [CALLI 130]

FUNCTION.

Connects or disconnects a device associated with an MPX channel. You
can use CNECT. only with devices that are MPX-controllable
(specifically, terminals, pseudo-terminals, line printers, card
readers, paper tape punches, and remote data terminals) .

CALLING SEQUENCE

addr:

MOVE I ac,addr
CNECT. ac,

error return
skip return

XWD
I SIXBIT
\ EXP

fcn-code, channel
Idevicel \
udx I

In the calling sequence, you can supply the following variables:

o addr is the address of the argument block.

o fcn-code is one of the function codes described below.

o channel is the number of an initialized MPX channel.

o device is the SIXBIT physical, generic, or logical name of a
device.

o udx is the Universal Device Index for the device.

Your program must initialize an MPX channel for the device using an
OPEN call, before using the CNECT. call to connect the device to an
MPX channel. The device must be initialized and connected to the MPX
channel before it can be used for any I/o.

The function codes and their meanings are:

Code Symbol Function

1 .CNCCN Connects the device to an MPX channel.

2 .CNCDC Equivalent to CLOSE and disconnect from MPX
channel.

3 .CNCDR Equivalent to RESET and disconnect from MPX
channel.

4 .CNOFE Determines output feasibility.

22-33

CNECT. [CALLI 130]

SKIP RETURN

The specified device is connected, disconnected, reset, and/or closed,
as appropriate for the given function code. For the .CNCCN function,
the Universal Device Index for the device is returned in the ac.

For the .CNOFE function, two values are returned in the ac. The left
half of the ac contains the user address of the current output buffer,
or 0 if none. The right half of the ac contains the number of data
requests for a network device (except terminals, which return a 1 if
output is possible), 0 if there are no data requests for the network
device, or -1 if the device is local. The number of data requests
indicates the number of buffers that the remote device can accept
before your job will block in output wait state.

Your program can perform an output UUO to the device if the left half
of the ac contains 0 and the right half is non-zero.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

1
2
3
4
5
6
7
10
11
12

EXAMPLE

ARGLST:

Symbol

CNCNM%
CNCUD%
CNCCM%
CNCNF%
CNCNC%
CNCNO%
CNCII%
CNCUF%
CNCDU%
CNCSD%

Error

MPX channel not initialized.
Nonexistent device.
Illegal device for MPX.
Not enough memory for control blocks.
Device not connected.
Device illegal or not initialized.
Invalid Universal Device Index.
Invalid function code.
Device is not available to your job.
Device is spooled; not MPX-controllable.

MOVE I T1,ARGLST
CNECT. T1,

JRST ERROR
JRST CONTIN

XWD
SIXBIT

.CNCDC,CHANNO
/TTY111/

This code sequence disconnects the device TTY111, which is associated
with the MPX channel given by CHANNO, from an MPX channel.

22-34

CORE [CALLI 11]

22.16 CORE [CALLI 11]

FUNCTION

Allows your program to dynamically expand
allocat~on in either or both segments.
segments may be locked in core.

or contract its core
Note that neither of the

The program with JACCT privileges expands the
memory. A program without JACCT privileges
indicate physical addressing.

CALLING SEQUENCE

MOVE ac, [XWD hiseg,lowseg]
CORE ac,flag

error return
skip return

segment
must

in
use

physical
UU.PHY to

In the calling sequence, you can supply the following variables:

o hiseg is the highest relative address to be used in the
program's high segment. If hiseg = 0, the core assignment
for the high segment is left unchanged.

o lowseg is the highest relative address to be used in the
program's low segment. If lowseg = 0, the core assignment
for the low segment is left unchanged.

o flag is the physical flag bit (UU.PHY) to indicate that the
core assignment applies to physical memory. Refer to the
CALLI UUO for more information.

Note that if the CORE UUO is executed in a non-zero section, all core
address arguments will be interpreted as section-relative values.
That is, all references are assumed to be relative to the current
section.

If you give a non-zero hiseg that is less than 400000 or the length of
the low segment (whichever is greater), the high segment is
eliminated. Doing this from the high segment causes an illegal memory
reference.

If your program has no high segment, or if you give a CORE call that
eliminates the high segment, you can create a new, non-sharable high
segment by giving hiseg greater than 400000. You can make the new
high segment sharable by doing the following:

o Giving it a .EXE extension.

o Writing it onto a storage device.

o Closing the file.

o Using the SSAVE monitor command, or the SAVE. UUO with the
SS%SSH flag, to save the entire core image.

o Initializing the program with a GET, R, or RUN monitor
command, or with a RUN, MERGE., or GETSEG monitor call.

If you use the CORE monitor call giving a value for lowseg that is
less than or equal to .JBREL, the monitor removes any noncontiguous
pages from your address space; these pages may include the page fault
handler (PFH) or VMDDT. To avoid this, use the PAGE. monitor call to
choose only the needed pages.

22-35

CORE [CALLI 11]

Before expanding core, you should compare the highest required address
with the highest legal address (stored in .JBREL). The example below
shows how to expand core only if necessary.

You can specify the beginning of your program's high segment by using
the REMAP monitor call, the /NEWPAGE or /SET switches to LINK, or the
TWOSEG pseudo-op to MACRO.

SKIP RETURN

The ac contains the current virtual memory limit in lK blocks.
However, if the CORE monitor call is issued from a non-zero section,
the virtual memory limit is not returned in the ac.

ERROR RE TURN

The error return occurs if any of the following conditiqns occurs:

a You give hiseg a value less than 400001 (or the ~iseg
origin), but you do not have write-access privileges.

a You give both hiseg and lowseg as zero. In this case, the
number of free 1K blocks is returned in the ac.

a The sum of the requested new low segment and the previously
existing high segment exceeds your allowed program size.
Core assignment is not changed; the maximum allowed program
size (in IK blocks) is returned in the ac.

a The sum of the requested new low and high segments exceeds
your allowed program size. Core assignment is not changed;
the maximum allowed program size (in 1K blocks) is returned
in the ac.

a You give a lowseg argument that would extend the low segment
into the high segment.

a One or both segments are locked.

EXAMPLE

CHKCOR:

RELATED

a

a

MOVE
PUSHJ
JRST

TI,NEWSIZ ;Set up for call
P,CHKCOR ;Call for core
CONTIN

;Subroutine to get core only if needed

CAMG
POPJ
CORE

JRST
POPJ

CALLS

PAGE.

SEGOP.

TI, .JBREL## ;Core size OK?
P,
TI,
ERROR
P,

;Yes
;Get more core
;To error routine
;Core increase OK

22-36

CTLJOB [CALLI 65]

22.17 CTLJOB [CALLI 65]

FUNCTION

Obtains the number of the job that is controlling a specified subjob.
The subjob must be attached to a pseudo-terminal.

CALLING SEQUENCE

MOVE I ac,jobno
CTLJOB ac,

error return
skip return

In the calling sequence, you supply jobno, which is the number of the
controlled job, or -1 to specify your current job.

SKIP RETURN

The number of the controlling job is returned in the ac. If the job
given by jobno is not controlled by a pseudo-terminal (PTY) , the
number returned in the ac is -1.

ERROR RETURN

Occurs if the job number is illegal.

EXAMPLE

MOVNI
CTLJOB

JRST

Tl,l
Tl,
ERROR

This code sequence returns the number of the controlling job in Tl.

RELATED CALLS

PJOB

22-37

CTX. [CALLI 215]

22.18 CTX. [CALLI 215]

FUNCTION

CTX. allows you to manipulate contexts. (For a discussion of
contexts, see Volume 1.) Since the argument block of CTX. is never
written by the monitor, it may reside in a write-protected page or in
a literal.

CALLING SEQUENCE

addr:

XMOVEI
CTX.

ac,addr
ac

error return
skip return
argument-list

In the calling sequence, you supply addr
argument list. The argument block--r8
fashion:

as the location of the
formatted in the following

o 1---------8 9------17 18----------------------35
+===+

P 1 Reserved 1 Length 1 Function code 1

---------------~---------------------------------------I
Data buffer length 1

---I
Data buffer address 1

---\
SIXBIT context name 1

---I
Reserved 1 RUN UUO offset 1

---I
RUN UUO block address 1

---I
TMPCOR length 1 SIXBIT name 1

---I
TMPCOR buffer address 1

+===+

The format of the argument block is:

Word

o

1

2

Symbol

.CTFNC

.CTDBL

.CTDBA

Contents

The function code word. It also contains
the following flags, and the length
argument block, in the fo~lowing format:

one of
of the

Bits

o
1-8
9-17

18-35

Symbol

CT.PHY

CT.LEN

CT.FNC

Meaning

Physical-only RUN UUO.
Reserved for DIGITAL.
Specifies the length of the
argument block, including
.CTFNC.
Contains one of the function
codes listed below.

Holds the data buffer length in words.
decimal words is the maximum.

510

Contains the full 30-bit address of
buffer. If the IFIW (sign bit) is on,
local address, relative to the section
executed in, is referenced.

22-38

the data
a section
CTX. is

3 .CTNAM

4 .CTRNO

5 .CTRNB

6 .CTTMN

7 . CTTMB

CTX. [CALLI 215]

Used to hold a context name when creating a new
context. When manipulating contexts, this word
may contain a context name or context number.

(RUN UUO word) This holds the
normally go into the left
accumulator (0 for terminal
indirect command file input).

offset that would
half of the RUN UUO
input, or 1 for

Holds the 3D-bit block address that would
ordinarily go into the right half of the RUN UUO
accuI'(l.ulator.

Contains the TMPCOR length in the left half (Bits
0-17), and its SIXBIT name in the right half (Bits
18-35) .

Contains the 3D-bit TMPCOR buffer address .

Valid function codes you can specify for .CTFNC and their argument
lists are described in the following. sections.

22.18.1 FUNCTION 0 (.CTSVH)

Saves the current context and halts the job. This has the effect of a
PUSH command (refer to the TOPS-I0 Operating System Commands Manual) .

The context created is inferior. The inferior context is deleted as
soon as you switch from it back to the superior one.

22.18.2 FUNCTION 1 (.CRSVR)

Saves the current context,
This is the equivalent
level.

and runs a program in an inferior context.
of an auto-save, then a restore, at monitor

22.18.3 FUNCTION 2 (.CVSVT)

Creates a parallel context by saving the current one and creating a
new top level context. The new context is different from one formed
by a PUSH chain, as it is not inferior, nor is· it associated with a
chain of PUSHed contexts.

22.18.4 FUNCTION 3 (.CTSVS)

Saves the current context, and switches to another (already existing)
parallel context.

For instance, you could use .CTSVR to create a new context running a
program, and switch back to the previous context using .CTSVS. You
could later return to the context created by .CTSVR (using the .CTSVS
function), and restart the program in that context, without waiting
for it to re-initialize.

22-39

CTX. [CALLI 215]

22.18.5 FUNCTION 4 (.CTSVD)

Switches to the specified context, deletes it, and returns to the
previous (saved) context. You need to specify this function for
parallel contexts only, since inferior contexts are automatically
deleted when you return to its superior

22.18.6 FUNCTION 5 (.CTRDB)

Reads the data buffer without changing the information. An inferior
context uses this to read data when a superior context passes to it.

22.18.7 FUNCTION 6 (.CTWDB)

writes the data buffer. An inferior context writes data to its
superior using this. Once data has been written, the old data in the
superior context is lost.

22.18.8 FUNCTION 7 (.CTRQT)

Reads the context quota and saved-page quota for a job. The following
data buffer is returned for this function and for Function 10
(.CTSQT)

Word Contents

o
1
2

Symbol

.CTJOB

.CTCTQ

.CTPGQ

Job number, supplied by program.
Returned context quota.
Returned saved-pages quota.

22.18.9 FUNCTION 10 (.CTSQT)

Sets the context quota and saved-pages quota.
the same as the buffer returned for Function 7

22.18.10 FUNCTION 11 (.CTDIR)

The argument
(.CTRQT) .

list is

Returns a directory map of all contexts. (GETTAB Table 175 (.GTCTX)
word %CTBDM contains the byte pointer to the directory byte-stream.)
The data buffer is returned in the following format:

Offset

o
1
2

Symbol

.CTJOB

.CTWCT

.CTFDW

Contents

Target job number.
Word count of byte-stream data.
First data word of the directory byte-stream.

22-40

CTX. [CALLI 215]

22.18.11 FUNCTION 12 (.CTINF)

Returns information about a particular context.
returned in the following format:

The data buffer is

Offset

o
1
2
3
4
5

6

Symbol

.CTJOB

. CTCNO

.CTCNM

.CTSNO

.CTSNM

.CTPGM

.CTITM

SKIP RETURN

Contents

Target job number.
Number of target context .
Name of target context.
Superior context's number.
Superior co~text's name.
Program running or saved in target context,
any.
Idle time (in clock ticks) .

if

On all returns, the ac contains the following information:

Bits

0
1
2
3
18-27
28-35

Symbol

CT.DAT
CT.DBT
CT.ETX
CT.RUN
CT.RDL
CT.ERR

Meaning

Set if data returned to the buffer.
Returned if the buffer is truncated.
Set if UUO error text in the buffer.
Set for a RUN UUO error.
Count of words returned in the buffer.
CTX. or RUN UUO error code. This code is
returned regardless of whether or not the data
buffer contains error text.

On the skip return, no flags are set in the ac fields CT.ETX, CT.RUN,
and CT.ERR. If any information is returned, it is stored in data
buffers.

ERROR RETURN

The ac contains the information described for the skip return. An
error code is returned in CT.ERR (Bits 28 through 35) If a data buffer
is specified, error text is returned in the data buffer.

Code Symbol

0 CXIFC%
1 CXACR%
2 CXACS%
3 CXNEA%
4 CXNLI%
5 CXLOK%
6 CXDET%
7 CXSCE%
10 CXSPE%
11 CXJCE%
12 CXJPE%
13 CXNCS%
14 CXNCD%
15 CXICN%
16 CXNSC%
17 CXNPV%
20 CXIJN%
21 CXCSI%
22 CXCDI%
23 CXCDC%
24 CXCNP%

Error

Illegal function code.
Address check performed while reading arguments.
Address check performed while storing answers.
Insufficient number of arg.uments.
User not logged in.
Program locked in core.
Job detached.
System context quota exceeded.
System page quota exceeded.
Job context quota exceeded.
Job page quota exceeded.
Insufficient core to save context.
Not enough core to return data block.
Illegal context number.
No superior context.
No privileges to set quotas.
Illegal job number.
Users cannot switch to an intermediate context.
Users cannot delete an intermediate context.
Users cannot delete-the current context.
Context not privileged.

22-41

C T X . [CALL I 2 15]

25
26

CXNDA%
CXCCC%

No data block is available.
Cannot create context from captive program.
program has not issued a RUN UUO.)

22-42

(The

DAEFIN (CALLI 105]

22.19 DAEFIN [CALLI 105]

FUNCTION

Indicates that a request to the DAEMON program has been completed.
This monitor call is reserved for the exclusive use of the DAEMON
program.

If the specified job was in the DAEMON wait state,
requeues the specified job to the run queue.

CALLING SEQUENCE

addr:

MOVE ac, [XWD length,addr]
DAEFIN ac,

error return
skip return

jobno

the monitor

In the calling sequence, you can specify the following information:

o length is the length of the argument block.

o addr is the address of the argument block.

o jobno is the number of the logged-in job to be restarted.

SKIP RETURN

The monitor leaves the ac unchanged, requeues the specified job, and
clears the JDC bit in the job status word JBTSTS (refer to the TOPS-10
Monitor Tables Descriptions)

ERROR RETURN

The monitor clears the ac. This occurs if you are not privileged, if
the job number is illegal or zero, or if the request could not be
completed.

EXAMPLE

ARGLST:

MOVE
DAEFIN

JRST
JRST
EXP

RELATED CALLS

DAEMON

T1, [XWD 1,ARGLST]
T1,
ERROR
CONTIN
JOBNO

22-43

DAEMON [CALLI 102]

22.20 DAEMON [CALLI 102]

FUNCTION

Invokes the system program DAEMON. When a job executes the DAEMON
monitor call, the monitor puts the job into JD wait (sets the JDC bit
in the job table JBTSTS) and wakes DAEMON. DAEMON examines the status
word .GTSTS for each job in the system; for each job in the JDC wait
state, DAEMON performs the requested function. When the specified
function has been completed, DAEMON issues a DAEFIN monitor call to
make the job runnable.

CALLING SEQUENC~

MOVE ac, [XWD length,addr]

addr:

DAEMON ac,
error return

skip return

EXP fcn-code
argument-list

In the calling sequence, you can supply the following information:

o addr is the address of the argument block.

o fcn-code is the function code in the first word of the
argument block.

o argument-list depends on the function code.

The function codes and argument lists are described in the following
sections.

22.20.1 FUNCTION 1 (Obso1ete)

22.20.2 FUNCTION 2 (.CLOCK)

Enters a request in the clock queue to wake your job after a specified
number of seconds has elapsed. As soon as the request has been
entered in the queue, you should issue a call to HIBER with no time
argument. An argument of zero clears the job's entry in the clock
queue and wakes the job.

The argument list for the .CLOCK function is:

addr: . CLOCK
EXP seconds

In this argument list, you supply seconds as the number of seconds
before the job DAEMON should wake the program. The preferred method
for awakening the program after a short amount of time is by using the
HIBER. call.

22-44

DAEMON [CALLI 102]

22.20.3 FUNCTION 3 (Obsolete)

22.20.4 FUNCTION 4 (.DMQUE)

Reserved for use by DIGITAL.

22.20.5 FUNCTION 5 (.DMERR)

Makes an entry in the error file; the third and following words of the
argument block are written into the error file SYS:ERROR.SYS. Your
job must have JACCT or [1,2] privileges.

The argument block for the .DMERR function is:

addr: .DMERR
EXP error-type
argument-list

In addr+1, error-type is the type of entry to be entered into the
sytem error file. The error types you can supply are listed below.

Words of data to be included in the error record are stored in the
argument-list.

Table 22-1: Error File Entry Types

Type Symbol

1 . ESWHY

2 .ESMSE
3 .ESMPE
4 . ESNXM
5 . ESCIN
6 .ESCPE

7 . ESDRE
10 .ESHDE
11 . ESMDE
12 . ESDXE
14 .ESSWE

Meaning

Answer to ONCE's Why Reload question, and
comment, if any.
Continuable stopcode.
KI memory parity error.
KI non-existent memory error.
Information extracted from a crash .
Channel-detected memory parity error or
non-existent memory.
DAEMON restarted .
Hardware-detected device error.
Massbus device error .
DX20 device error.
Software event. The events are:

Code

1
2
3
4
5

6

Symbol

.SWEPK

. SWESN

.SWETP

. SWERT

.SWMS1

.SWMS2

22-45

Event

POKE. function.
SNOOP. function .
TRPSET function.
RTTRP. function.
Miscellaneous
event number 1.
Miscellaneous'
event number 2.

debugging

debugging

DAEMON [CALLI 102]

15

16
17
21
30
31
33
42

43
44
45
46
47
50
51
52
54
55
56
57
61
62
63
64
67
71
72
73
74
75
100
201
202
203
210
211
220
221
230
231
377
775

777

.ESCSE

.ESSLM

. ESDEB

. ESTAP

.ESKLE

. ESFER

.ESHSB

.ESTPS

.ESCFG

. ESMRV

.ESDSC

. ESBAV

. ESEAV

.ESDLE

.ESKIP

.ESKLP

.ESKSN

.ESKPT

.ESSNX

.ESSPR

.ESKDT

.ESMOT

.ESCSB

.ESDSB

.ESKAE

.ESLPT

.ESHCC

.ESULD

.ESCIE

.ESICD

.ESDTC

.ESNUS

.ESNDL

. ESNUD

. ESNHE

. ESNSE

. ESNOE

. ESNTC

.ESNLC

.ESNNS

.ESHIA

.ESOFF

.ESEOF

Configuration status change.
change codes are listed below:

Code Symbol Status Change

The condition

o
1
2
3
4
5
6
7
10
11

.CSCAT

. CSCDT

.CSCXC

.CSCTC

. CSCCF

. CSCCO

.CSCNF

. CSCNO

.CSCMO

.CSCMF

Attach function
Detach function .
Exchange function.
Date/time change.
DETACH CPU function .
ATTACH CPU function .
Node off-line.
Node on-line .
Set memory on-line.
Set memory off-line.

System log message.
Software requests data .
Magnetic tape errors (see TAPSER) .
KL processor error data from RSX-20F front end.
Front end reload .
KS processor halt status block.
Magnetic tape performance statistics code (see
TAPSER) .
Maximum configuration in AVAIL.SYS.
Monitor run values in AVAIL.SYS.
Disk statistics (usually from a crash)
Beginning of AVAIL.SYS time stamp.
End of AVAIL.SYS time stamp.
DL10 hardware error.
KI parity/non-existent memory interrupt.
KL parity/non-existent memory interrupt.
KS non-existent memory trap.
KL/KS parity trap.
Non-existent memory scan.
Parity memory scan.
KL data parity trap.
KL data parity interrupt.
CPU status block.
Device status block.
KL addressing failure.
Line printer error.
Hard copy controller entry.
Microcode load.
CI disk error
IPA20 channel dump.
Date/time change (obsolete)
Network utility started.
Network down-line load.
Network up-line dump.
Network hardware error .
Network software error .
Network operator entry .
Network topology change .
Network line counter.
Network node statistic entry.
Hiatus in ERROR.SYS.
Marker for first word of block as pointer to
start of first entry.
End-of-file flag.

22-46

DAEMON [CALLI 102]

.DMERR is a privileged function; to use it you must have the JACCT
privilege, or be logged in under [1,2].

NOTE

For a complete description
SYS:ERROR.SYS file, refer
Reference Manual.

of
to

the
the

format of the
TOPS-10/20 SPEAR

22.20.6 FUNCTION 6 (.DMCTL)

Reserved for use by DIGITAL.

SKIP RETURN

The monitor performs the specified function and issues a DAEFIN
monitor call to make the job runnable. The ac is cleared.

ERROR RETURN

If DAEMON is not running, control returns to the error return, but the
ac is unchanged.

If DAEMON is running, an error code is returned in the ac, and control
returns to the error return. The error codes and their-meanings are:

Code

1
2
3
4

5
6
7
10

EXAMPLE

ADDR:

Symbol

DMILF%
DMACK%
DMWNA%
DMSNH%

DMCWF%
DMNPV%
DMFFB%
DMPTH%

Error

Illegal function code.
Address check.
Incorrect number of arguments.
Impossible error. If this occurs, please report
it to your Software Support Specialist.
File cannot be written.
Not enough privileges.
Incorrect format for FACT file entry.
Invalid path.

MOVE Tl, [2"ADDR]
DAEMON Tl,

JRST ERROR
JRST CONTIN

.CLOCK
EXP 5

This code queues a request for a WAKE. UUO from the system DAEMON on
this job in 5 seconds.

RELATED CALLS

DAEFIN

22-47

DATE [CALLI 14]

22.21 DATE [CALLI 14]

FUNCTION

Returns a code giving the system date.
by the formula:

The code is an integer given

code = 31[12(year-1964)+(month-1)]+(day-l)

You can obtain the current day, month, and year using the formulas:

day
month
year

mod(code,31)+1
mod(code/31,12)+1
(code/372)+1964

The DATE call is equivalent to using GETTAB to obtain item %CNDAT.
The day, month, and year are stored in GETTAB items %CNDAY, %CNMON,
and %CNYER, respectively. Your program can avoid the computations
needed to interpret the data returned from the DATE call by GETTABing
the specific items, but the efficient program will avoid performing
three separate GETTAB calls by GETTABing %CNDAT and then dividing the
data into its appropriate components.

CALLING SEQUENCE

DATE ac,
return

EXAMPLE

The following macro computes the current day, month, and year.

DEFINE CURDAT(DAY,MONTH,YEAR)<
DATE T1,
IDIVI T1,AD31
ADDI T2,1
MOVEM T2,DAY
IDIVI Tl,AD12
ADDI T2,1
MOVEM T2,MONTH
ADDI TI,AD1964
MOVEM T1,YEAR
>

RELATED CALLS

TIMER

22-48

DEBRK. [CALLI 137]

22.22 DEBRK. [CALLI 137]

FUNCTION

Dismisses a PSI, software interrupt, reenabling any conditions disabled
by the interrupt. See Chapter 6 for a discussion of the software
interrupt system.

On a DEBRK. monitor call, the monitor scans the queue of pending
interrupts, looking for conditions requiring service by an interrupt
routine. If one is found, the interrupt occurs and control passes to
the interrupt routine. If no such condition is found, DEBRK. restarts
the interrupted process beginning at the point within your job where
the interrupt occurred (usually the instruction after the last:
instruction that was executed) .

CALLING SEQUENCE

DEBRK.
error return

skip return

SKIP RETURN

The DEBRK. call normally returns to the location before the interrupt
occurred. The skip return is taken if there is no interrupt in
progress. The PSI interrupt system is restored if the PS.VTO flag is
set in the PSI interrupt vector block (refer to PISYS. UUO).

ERROR RETURN

The error return is taken if the DEBRK. UUO is not implemented.

RELATED CALLS

oPIBLK.

o PIINI.

o PIRST.

o PISAV.

oPISYS.

22-49

DEQ. [CALLI 152]

22.23 DEQ. [CALLI 152]

FUNCTION
i

Dequeues one or more requests for enqueued resources, or relinquishes
ownership of one or more enqueued resources. See Chapter 8 for a
discussion of the ENQ/DEQ facility.

CALLING SEQUENCE

addr:

MOVE ac, [XWD function,argument]
DEQ. ac,

error return
skip return
argument-list

In the calling sequence, you provide the following information:

o function is one of the following function codes:

.DEQDF to dequeue a lock request .

. DEQDA to dequeue all lock requests for this job .

. DEQID to dequeue all lock requests related to the
specified request-ide

o argument-list depends on the function code.

Functions and their arguments are described in the following sections.

22.23.1 FUNCTION 0 (.DEQDR)

This function dequeues a specific request. Specify this function by
placing the following information into the ac:

[XWD .DEQDR,addr]

The argument addr is the address of the ENQ. argument block.
to the ENQ. UUO for the format of this block.

Refer

After a skip return, the monitor has removed the specified request
from the specified queue, or the monitor has dissolved the lock
between the job and the specified resource. The error return is taken
if you set up the call in an incorrect format, or if you have no
pending requests and you are not the·owner of the specified resource.
On an error return, the monitor returns an error code in the ac.

22.23.2 FUNCTION 1 (.DEQDA)

This function removes all of your requests for ownership and dissolves
all of your resource locks. Specify this function by placing the
following information into the ac:

[XWD .DEQDA, 0]

22-50

DEQ. [CALLI 152]

The error return is taken if you write the call in an incorrect
format, or if you do not have any pending requests or locks. On an
error return, the monitor returns an error code in the ac. You should
perform this function before EXITing; otherwise, when-you perform a
CLOSE, the function will fail but the nature of the failure will be
difficult to determine. The monitor automatically performs the .DEQDA
function when you issue a LOGOUT monitor call.

22.23.3 FUNCTION 2 (.DEQID)

This function requires the request-id in the right half of the ac.
Specify this function by placing the following information into the
ac:

[XWD .DEQID,request-id]

The request-id is the request-identifier that you specify in the ENQ.
argument block. Refer to the ENQ. UUO for more information.

The monitor removes all requests of yours with the specified
request-id from resource queues, and it dissolves all locks of yours
with the specified request-id. You should specify this function when
you are dequeueing requests that were made in the same ENQ. argument
block. The error return is taken if you have set up the call
incorrectly, if you have no pending requests, or if you are not the
owner of a resource.

SKIP RETURN

The specified requests are dequeued and the specified locks are
dissolved.

ERROR RETURN

If an error is found in one of the requests in a multiple request DEQ.
monitor call, the error return is taken and the monitor returns an
error code in the ac. However, the ENQ/DEQ facility continues
processing until all of the dequeue requests have been performed.
Therefore, the monitor will have dequeued all valid requests whether
or not an error resulted from another request in the same monitor
call. If errors are found in several requests of the same monitor
call, the error code returned in the ac reflects the last error fo~nd.

If you specify that you want to dequeue a request or dissolve a lock
associated with a pooled resource, the monitor will return an error
code if you attempt to dequeue more resources ·than you own wi thin the
pool. However, you can dequeue a subset of those resources that you
own within a pool, still retaining ownership of those you did not
dequeue. Therefore, you cannot dequeue more resources than you own,
but you do not have to dequeue all that you own in one request.

The error codes for the DEQ. call are identical to those of the ENQ.
call. They are listed in the description of the ENQ. call.

22-51

DEQ. [CALLI 152]

EXAMPLE

DEQ. monitor calls that specify multiple requests are treated as
multiple DEQ. monitor calls, each specifying a single request. This
is not true for the ENQ. monitor call. For example:

MOVE Tl [XWD .DEQDR,DEQBLK]
DEQ. Tl,

JRST ERROR
JRST SUBR

DEQBLK: 2,,"D8
0,,400000
0, , 2
POINT 7, [ASCIZ/TEST/]
"DI0,,1
0, , 4
POINT 7, [ASCIZ/TESER/]
"DI0,,1

The above code is, in effect, identical to the following, but the
following is less efficient:

DEQ:

DEQl:

DEQ2:

MOVE
DEQ.

Tl, [XWD .DEQDR,DEQl]
Tl,

JRST
MOVE
DEQ.

ERROR
Tl, [XWD .DEQDR,DEQ2]
Tl,

JRST
JRST

ERROR

1,,"D5
0,,400000
0, , 2

SUBR

POINT 7, [ASCIZ/TEST/]
"DI0,,1
1, , "D5
0,,400000
0, , 4
POINT 7, [ASCIZ/TESER/]
"DI0,,1

RELATED CALLS

o ENQ.

o ENQC.

22-52

DEVCHR [CALLI 4]

22.24 DEVCHR [CALLI 4]

FUNCTION

Returns the physical characteristics of a specified device.

CALLING SEQUENCE

/ MOVE
I MOVE I

\ MOVEI
DEVCHR
return

ac, [SIXBIT/device/] \
ac,channo I
ac,udx /
ac,

In the calling sequence, you can provide the following information:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

RETURN

If the device is not found, or if your program has not initialized the
device, the monitor clears the ac. Otherwise, the ac contains flags
giving the physical characteristics of the device. --The flags and
their meanings are:

Bits Symbol

o DV.DRI

I DV.DSK

2 DV.CDR

3 DV.LPT

4 DV.TTA

5 DV.TTU

6 DV.2IO

7 DV.DIS

8 DV.LNG

9 DV.PTP

10 DV.PTR

11 DV.DTA

12 DV.AVL

Device or Mode ----
DECtape whose directory is in memory; you can
clear this bit by using the REASSI monitor call
for the device.

Disk.

Card device. If DV.IN is set, it is a card
reader; if DV.OUT is set, it is a card punch.

Line printer.

Terminal that is currently controlling a job.

Terminal that is in use.

Device can do input and output at the same time.

Special display device. Note that this does not
indicate the "display" terminal characteristic.

Device with long dispatch table; this means that
monitor calls other than INPUT, OUTPUT, CLOSE, and
RELEAS can perform real functions.

Papertape punch.

Papertape reader.

DECtape.

The device is available or is assigned to your
job.

22-53

DEVCHR [CALLI 4]

13 DV.MTA

14 DV.TTY

15 DV.DIR

16 DV. IN

17 DV.OUT

18 DV.ASC

19 DV.ASP

Magnetic tape.

Terminal.

The device is a directory device. You can test
this bit to determine whether ENTER/LOOKUP must be
done before you can start I/O to the device.

Input device.

Output device.

The device has been initialized by the ASSIGN
monitor command.

The device has been assigned by the INIT, OPEN, or
FILOP. monitor call.

Bits 20-35 specify the modes that are legal for the device.

20 DV.M17 Mode 17, dump. This is the same as IO.MOD
. IODMP returned from a GETSTS monitor call.

21 DV.M16 Mode 16, dump records. This is the same as IO.MOD
= . IODPR returned from a GETSTS monitor call.

22 DV.M15 Mode 15, image dump. This is the same as IO.MOD
.IOIDP returned from a GETSTS monitor call.

23 DV.M14 Mode 14, binary. This is the same as IO.MOD
. IOBIN returned from a GETSTS monitor call.

24 DV.M13 Mode 13, image binary. This is the same as IO.MOD
= . IOIBN returned from a GETSTS monitor call .

25 DV.M12 Mode 12, reserved for use by DIGITAL.

26 DV.M11 Mode 11, reserved for use by DIGITAL.

27 DV.M10 Mode 10, image. This is the same as IO.MOD
. IOIMG returned from a GETSTS monitor call.

28 DV.M7 Mode 7, reserved fO:1::" use by customers.

29 DV.M6 Mode 6, reserved for use by customers.

30 DV.M5 Mode 5, reserved for use by DIGITAL.

31 DV.M4 Mode 4, reserved for use by DIGITAL.

32 DV.M3 Mode 3, byte. This is the same as IO.MOD . IOBYT
returned from a GETSTS monitor call.

33 DV.M2 Mode 2, packed image. This is the same as IO.MOD
= .IOPIM returned from a GETSTS monitor call.

34 DV.M1 Mode 1, ASCII line. This is the same as IO.MOD
. IOASL returned from a GETSTS monitor call.

35 DV.MO Mode 0, ASCII. This is the same as IO.MOD
. IOASC returned from a GETSTS monitor call.

22-54

DEVCHR [CALLI 4]

NOTE

To check for the NUL device, use DEVCHR to see if both
DV.DSK and DV.TTY are set.

EXAMPLE

MOVE
DEVCHR
TLNN

JRST
JRST

TI, [SIXBIT/DEV/]
TI,
TI, (DV. DSK)
NOTDSK
ISDSK

This example checks to see if device DEV (assumed to be a logical
name) is a disk. The call returns to NOTDSK if it is not and returns
to ISDSK if it is.

RELATED CALLS

o DEVLNM

o DEVTYP

22-55

DEVLNM [CALLI 107]

22.25 DEVLNM [CALLI 107]

FUNCTION

Assigns (or clears) a logical device name to a device.

CALLING SEQUENCE

/ MOVE
I MOVE I

\ MOVEI
MOVE

ac, [SIXBIT/device/] \
ac,channo I
ac,udx /
ac+1, [SIXBIT/name/]

DEVLNM ac,
error return

skip return

In the calling sequence, you can provide the following information:

o device is the SIXBIT physical or logical name of a device to
which you wish to assign a logical name.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

o name is the logical name to be assigned to the device. If
name is binary zero, any existing logical name assignment
will be cleared.

SKIP RETURN

The logical name is assigned to the device; the contents of the ac and
the following word are unchanged.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

-3
-2
-1

RELATED

0

0

0

0

0

0

0

0

Symbol

DVLNA%
DVLIU%
DVLNX%

CALLS

DEVCHR

DEVNAM

DEVOP.

DEVPPN

DEVSIZ

DEVSTS

DEVTYP

REASSI

Error

Device not assigned to your job.
Logical name already in use.
No such device or channel.

22-56

DEVLNM [CALLI 107]

COMMON PROGRAMMING ERRORS

Assuming that DEVLNM also causes the device to become associated with
your job. Use the REASSI call to actually obtain the device.

22-57

DEVNAM [CALLI 64]

22.26 DEVNAM [CALLI 64]

FUNCTION

Returns the physical name of a device.

CAL_LING !3EQUENCE

/ MOVE
I MOVE I

\ MOVEI

ac, [SIXBIT/device/] \
ac,channo I
ac,udx /

DEVNAM ac,
error return

skip return

In the calling sequence, you can provide the following information:

o device is the logical device name whose physical name is
desired.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

SKIP RETURN

The SIXBIT physical name of the device is returned in the ac.

The skip return is also taken if a device has been partially
deassigned. For example, if the user halts the program before the
deassignment operation is complete. In this case, the ac is returned
clear.

ERROR RETURN

If the specified device does not exist or if the specified channel is
not initialized, the ac is cleared.

RELATED CALLS

o DEVCHR

o DEVLNM

o DEVOP.

o DEVPPN

o DEVSIZ

o DEVSTS

o DEVTYP

22-58

DEVOP. [CALLI 171]

22.27 DEVOP. [CALLI 171]

FUNCTION

Performs miscellaneous device functions for devices other than
terminals, tapes, disks, or TSKs. Use TRMOP. for terminal functions,
TAPOP. for tape functions, DISK. for disk functions, or TSK. for TSK
functions.

CALLING SEQUENCE

MOVE ac, [XWD length,addr]
DEVOP. ac,

error return
skip return

addr: EXP fcn-code
/ SIXBIT /device/ \

I EXP channo I
\ EXP udx /

addr+2: argument-list

In the calling sequence, the following variables are supplied by the
program:

o length is the length of the argument block.

o addr is the address of the argument block.

o fen-code is one of the function codes described below.

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

o arglst begins the list of arguments for the given function.

All function codes listed below use the two-word argument list shown
above. Additionally, some function codes accept a longer argument
list. For those codes that accept an argument list longer than two
words, the argument list format is shown with the description of the
function code.

The function codes are defined within the following four ranges:

Range

0000-0777
1000-1777
2000-2777
3000-3777

Usage

Performs a specific action.
Reads a parameter.
Sets a parameter.
Reserved for customer definition.

The Read/Set function codes are parallel (for example, function code
1002 reads a parameter and code 2002 sets the same parameter). The
symbol .DFSET is equal to 1000, and can be added to the read parameter
to establish the offset for the set parameter. Therefore, to read the
page counter, use function .DFPCT. To set the page counter, use
.DFPCT+.DFSET.

The monitor returns values in the ac for the Read functions.

The function codes, their calling sequences, and the actions taken are
listed in the following sections.

22-59

DEVOP. [CALLI 171]

22.27.1 FUNCTION 1 (.DFLLV)

Loads the standard vertical forms control unit.

22.27.2 FUNCTION 2 (.DFENV)

Enables the system to load a non-standard vertical forms control unit.

22.27.3 FUNCTION 3 (.DFDVL)

Disables loading non-standard vertical forms control unit.

22.27.4 FUNCTIONS 4-10

Reserved for use by DIGITAL.

22.27.5 FUNCTION 11 (.DFLR2)

Loads a translation RAM into LP20. This function takes a four-word
argument list of the form:

addr: .DFLR2
/ SIXBIT /device/ \

I EXP channo I
\ EXP udx /

8-bit byte count for RAM
address of RAM buffer

22.27.6 FUNCTION 12 (.DFLV2)

Loads a VFU through LP20. This function takes a four-word argument
list of the form:

addr: ~DFLV2

/ SIXBIT /device/ \
I EXP channo I

\ EXP udx /
7-bit byte count of VFU
address of VFU data

22.27.7 FUNCTION 13 (.DFMDC)

Clears DVCMDA. This is the flag indicating whether the device is
controlled by MDA (in GALAXY Version 4.1 and later). This function
requires privileges.

22-60

DEVOP. [CALLI 171]

22 .. 27.8 FUNCTION 14 (.DFMDS)

Sets DVCMDA. This is the flag indicating whether the device is
controlled by MDA (in GALAXY Version 4.1 and later). This function
requires privileges.

22.27.9 FUNCTIONS 15-777

Reserved for use by DIGITAL.

22.27.10 FUNCTION 1000 (.DFPCT)

Returns the line printer's page counter in the ac.

22.27.11 FUNCTION 2000 (.DFPCT)

Sets the page counter value in addr+2. The page counter is limited to
12 bits. The argument list for .DFPCT is:

addr: .DFPCT
/ SIXBIT

I EXP
\ EXP

EXP

/device/ \
channo I
udx /
counter

22.27.12 FUNCTION 1002 (.DFHCW)

Reads the line printer characteristics. The printer characteristics
are returned in the ac in the form:

Bits

o

1

2

3-5

Symbol

DF.LCP

DF .,PGC

DF.VFT

6-8

Meaning

Lowercase capability.

Has page counter.

Reserved.

Code for type of vertical forms control
(VFU) .

Code

0
1
2

DF.TYP
codes

Code

o
1
2
3

The type

Symbol

.DFVTO

. DFVTD

.DFVTN

Code for
are:

Symbol

. DFC64

. DFC95

.DFC28

.DFVAR

22-61

codes are:

~

Papertape VFU.
DAVFU .
No VFU.

character set codes.

Character set

Set of 64 characters .
Set of 95 characters .
Set of 128 characters.
Variable size set.

The

unit

set

DEVOP. [CALLI 171]

9-11 DF.CLS Code for line printer class. The class codes are:

Code Symbol Class

0 .DFSUK Unknown.
1 . DFSBX BA10 .
2 . DFSLC LP100 .
3 .DFS20 LP20 (2 OF) .
4 .DFSA1 LPl1.
5 .DFSA2 LP20 (ANF DN8X)

12-14 DF.CLU Line printer class, as the type of unit. The unit
codes are:

Code Symbol ~

0 .DFUUK Unknown.
1 . DFUFG LP05-type .
2 .DFULN LN01-type.

18-35 DF.CSN Character set name, in SIXBIT.

22.27.13 FUNCTION 2002 (.DFHCW)

Sets the line printer characteristics. The argument list for .DFHCW
is:

addr: .DFHCW
/ SIXBIT /device/ \

I EXP channo I
\ EXP udx /

EXP characteristics

Defines the characteristics using the definitions listed above for the
Read function.

22.27.14 FUNCTION 1003 (~DFRES)

The extended I/O error status for the given device is returned in the
ac.

The error status is returned as one of the following codes:

Code Symbol

1 IOPLE%
1 IONOP%
2 IOVFE%
2 IOEOF%
3 IOLTE%
4 IOHLE%
5 IOTLE%
6 I OVLE %
7 IODER%
10 IOPAR%
11 IOWLE%
12 IOIPO%
13 IOBOT%
14 IOIOP%
15 IOFNF%

Device

LPT
MTA
LPT
MTA
MTA
MTA
MTA
MTA

MTA
MTA
MTA
MTA

Error

Page limit exceeded.
Monitor Continued operation.
VFU format error'.
Tape at end-of-file.
Label Type error.
Header Label error.
Trailer Label error.
Volume Label error.
Hard device error.
Parity error.
write-lock error.
Illegal positioning error.
Beginning of tape.
Illegal operation.
File not found.

22-62

16

17
20
21
22
23

24
25
26
27

IOCAN%

IOTMV%
IONND%
IOUNC%
IORPE%
IOLRA%

IOVPF%
IOFPF%
IOUEF%
IONDD%

MTA

MTA

LP20
LP20
MTA

MTA
MTA
MTA

DEVOP. [CALLI 171]

operator cancelled volume switch
request.
Too many volumes in the volume set.
Network node down.
Undefined Character interrupt.
RAM Parity error.
Tape labelling request was aborted by a
RESET UUO.
Volume Protection error.
File protection failure.
Unexpired file.
Network device is disconnected.

22.27.15 FUNCTION 1004 (.DFRDS)

Reads the device status for a specified device. A status code for the
specified device is returned in the ac.

The,status codes and their meanings are:

Bit

o
34
35

Symbol

DF.OFL
DF.LLE
DF.LVE

Status

Device off-line.
DAVFU load-enabled.
A VFU error occurred.

The bits returned in the left half of the ac are device-independent;
the bits returned in the right half are device-specific.

22.27.16 FUNCTION 1005 (.DFFRM)

Reads and sets the names of forms types. The name of the form type is
stored at addr+2.

22.27.17 FUNCTION 1006 (.DFDTI)

Reads and sets DECtape information. For example,
read/write counts. Use this function to
information. This DEVOP. function requires the
list:

addr: .DFDTI
/ SIXBIT /device/ \

I EXP channo I
\ EXP udx /

SIXBIT /reelid/
EXP n (no. of words read)
EXP m (no. of words written)

SKIP RETURN

The specified function is executed.

22-63

you can read the
set DECtape reelid
following argument

DEVOP. [CALLI 171]

ERROR RETURN

One of the following error codes is returned in the ac:

Code

-1
o
1
2
3
4
5
6
7
10
11
12
13

DFACS%
DFIE'C%
DFPRV%
DFIFD%
DFNLR%
DFNXD%
DFNDV%
DFNIA%
DFDOL%
DFCNS%
DFNPC%
DFENI%
DFNVC%

Error

Address check.
Illegal function code.
Not enough privileges.
Function invalid for device.
Value out of range.
Nonexistent device.
No DAVFU (LPT only) .
Device not initialized.
Device off-line.
Page counter not set (LPT only) .
No page counter (LPT only) .
Extended error recovery not implemented.
Non-variable character set.

If the monitor call has not been implemented on your system, the error
return is taken and the monitor leaves the ac unchanged.

RELATED CALLS

o DEVCHR

o DEVLNM

o DEVNAM

o DEVPPN

o DEVSIZ

o DEVSTS

o DEVTYP

22-64

DEVPPN [CALLI 55]

22.28 DEVPPN [CALLI 55]

FUNCTION

Returns the project-programmer number (PPN) associated with a disk
device or an ersatz device. Note that the DEVPPN UUO does not return
SFD names. It is recommended that programs use the PATH. call to
return complete directory names.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
I MOVE I ac,channo I
\ MOVEI ac,udx /

DEVPPN ac,
error return

skip return

In the call1ng sequence, the program supplies the following variables:

o,d~;ice is the SIXBIT physical, logical, or ersatz name of a
disk device.

o channo is a channel number for a disk device.

o udx is the Universal Device Index for a disk device.

SKIP RETURN

The PPN for the ~pecified device is returned in the ac. Note that if
you have enabled /NEW in your search list, the returned PPN for SYS
will be [1,5] instead of [1,4].

ERROR ~TURN,

The er~or ~eturn occurs ip two cases.
indicated by the valu~, returned:

The cause of the error is

o If zero is returned in the ac; the device does not exist, or
you have not initialized it-.-

. . , '

o If your own PPN is returned; the device is not a disk device.

RELATED CALLS

0 DEVCHR

0 DEVLNM.

0 DEVNAM

. 0 DEVOP ..

0 DEVSIZ

0 DEVSTS

0 DEVTYP

0 PATH.

22-65

DEVSIZ [CALLI 101]

22.29 DEVSIZ [CALLI 101]

FUNCTION

Returns the buffer size and standard number of buffers for a device.

CALLING SEQUENCE

addr:

MOVE I ac,addr
DEVSIZ ac,

error return
skip return

EXP status
/ SIXBIT/device/ \

I EXP channo I
\ EXP udx /

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument
address points to the OPEN block
device.

block. Normally, the
used to initialize the

o status is the I/O status word, which must match the
information given when the channel was initialized with INIT,
OPEN, or FILOP.

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

Note that the format for the argument block is identical to the format
used for the OPEN monitor call and that the OPEN block is ordinarily
used as the DEVSIZ block. The number and sizes of buffers differ
among different data modes, and depending on mode modifier bits.

SKIP RETURN

The ac contains the default number of buffers in its left half, and
the default buffer size (including a 3-word header) in its right half.
If you specify a device that was initialized in dump mode, the monitor
clears the ac and takes the skip return.

ERROR RE TURN

One of the following error codes is returned in the ac:

Code Symbol Error

0 DVSDM% Dump mode specified; there.f ore, buffer size is not
applicable.

-1 DVSNX% Nonexistent device.
-2 DVSIM% Illegal data mode.

22-66

DEVSIZ [CALLI 101]

RELATED CALLS

0 DEVCHR

0 DEVLNM

0 DEVNAM

0 DEVOP.

0 DEVPPN

0 DEVSTS

0 DEVTYP

22-67

DEVSTS [CALLI 54]

22.30 DEVSTS [CALLI 54]

FUNCTION

Returns the device status word from the device data block (DDB). This
call returns the last CONI performed for the device, which is
different for each device type and model. To interpret the device
status word, refer to the hardware manual for the specific device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
I MOVE I ac,channo I
\ MOVEI ac,udx /

DEVSTS ac,
error return

skip return

In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of a channel.

o udx is the Universal Device Index for a deviceJ

You can specify any device on an I/O bus. Where multiple units are on
a single controller, the status of the controller is returned.

SKIP RETURN

The device status word is returned in the ac. If the service routine
for the device does not store a CON~ the returned word may be
useless. Devices having both a controller and data interrupt store
the controller CONI.

ERROR RETURN

If the device does not exist or is not initialized, the ac is cleared.

RELATED CALLS

o DEVCHR

o DEVLNM

o DEVNAM

o DEVOP.

o DEVPPN

o DEVSIZ

o DEVTYP

The device status block is also returned by the .SNSDS function of the
SENSE. UUO.

22-68

DEVSTS [CALLI 54]

COMMON PROGRAMMING ERRORS

o Confusing "device status" (DEVSTS) with "I/O status"
(GETSTS) . GETSTS returns the file (I/O) status bits, which
are documented in Volume 1. DEVSTS returns the hardware
device status.

o Confusing the "device status" returned by DEVSTS with the I/O
error status that is returned by the DEVOP. UUO.

22-69

DEVTYP [CALLI 53]

22.31 DEVTYP [CALLI 53]

FUNCTION

Returns the physical properties for a device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
I MOVE I ac,channo I

\ MOVEI ac,udx /
DEVTYP ac,

error return
skip return

In the calling sequence, the program provides the following variables:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

To specify physical device searching, use UU.PHY (Bit 19) in the ac.
(More information about UU.PHY is included in the description-of
CALLI.)

SKIP RETURN

If the ac is 0, there was no such device; otherwise, the device type
bits are-returned in the ac as follows:

Bits Symbol

o TY.MAN

1-7

8 TY.GEN

9 TY.MDA

10 TY.EHF

11 TY.MPX

12 TY.AVL

13 TY.SPL

14 TY. INT

15 TY.VAR

16 TY. IN

17 TY.OUT

Characteristic

Directory device; a LOOKUP/ENTER is mandatory.

Reserved.

If the argument is a SIXBIT name, this bit is set
if the device is generic.

Controlled by MDA (mountable device allocator)

Extended hardware features; for example, this bit
is set for a line printer with lowercase
capability.

MPX-controllable.

Available to your job.

Spooled.

Interactive; there is output after each break
character.

Capable of variable buffer size.

Input capability.

Output capability.

22-70

18-26 TY.JOB

27-28

29 TY.RAS

30-35 TY.DEV

ERROR RETURN

DEVTYP [CALLI 53]

Job number to which the device is currently
assigned.

Reserved.

Restricted; assigned only to privileged job or by
MOUNT command.

One of the following device type codes:

Code

o
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37
40
41-57
60-77

Symbol

.TYDSK

. TYDTA

. TYMTA

.TYTTY

. TYPTR

. TYPTP

.TYDIS

. TYLPT

. TYCDR

. TYCDP

. TYPTY

. TYPLT

. TYEXT

. TYMPX

. TYPAR

. TYPCR

. TYPAP

. TYLPC

. TYPCP

. TYWTY

.TYTSK

.TYD78

. TYRDA

. TYMCR

. TYDRA

. TYKDP

.TYDTE

. TYDDP

. TYDMR

. TYRX2

. TYKLP

. TYKNI

. TYSAX

Device ~

Disk.
DECtape.
Magnetic tape.
Terminal.
Papertape reader.
Papertape punch.
Display unit.
Line printer.
Card reader.
Card punch .
Pseudo-terminal.
Plotter.
External task.
MPX-controlled.
PA611R on a DC44.
PC11(R) on a DC44.
PA611P on a DC44.
LPC-ll on a DC44.
PC-l1(P) on a DC44.
WTY device on a DC44.
Network task.
DAS78 device.
Remote data entry device.
Monitor command int~erpreter
(MCR) device.

DTROI/DROI device.
KMC/DUP interface.
DTE interface.
ANF-10 DDCMP device.
DMR11 as a network device.
RX02 floppy disk controller .
CI20 (KLIPA) device.
NIA20 (KLNI) device.
SAI0 device.
Reserved for use by DIGITAL.
Reserved for use by customers.

The DEVTYP monitor call should never take the error return.

22-71

DEVTYP [CALLI 53]

RELATED CALLS

o DEVCHR

o DEVLNM

o DEVNAM

o DEVOP.

o DEVPPN

o DEVSIZ

o DEVSTS

COMMON PROGRAMMING ERRORS

Assuming that a skip return indicates that the device exists.

22-72

DIAG. [CALLI 163]

22.32 DIAG. [CALLI 163]

FUNCTION

Provides diagnostic functions for devices, device controllers, and
CPUs.

CALLING SEQUENCE

addr:

MOVE ac, [-length"addr]
DIAG. ac,

error return
skip return

function-code
argument-list

In the calling sequence, you can provide the following information:

o -length is the negative integer of the length of the argument
list.

o addr is the address of the argument list.

o function-code is one of the function codes listed below.

o argument-list is different for each function code. The
argument lists are documented with the functions, below.

Most DIAG. UUO functions request a device specification in the second
word of the argument list (addr+1), as:

SIXBIT /device/

The device name can be anyone of the following:

o CPU name (as SIXBIT /CPUO/)

o Controller name (as SIXBIT /MTA/)

o DDB n~me (as' SIXBIT /MTAO/)

o Controller and drive name, formatted as shown below.

Bits

0-6
7-8
27-29
33-35

Contents

Controller device code
Ignored
Unit number
Slave unit number (for multi-unit controllers)

The DIAG. functions and their arguments. are described in the
following sections.

22-73

DIAG. [CALLI 163]

22.32.1 FUNCTION 1 (.DIASU)

Assigns a single unit on the channel or controller. The format of the
argument list is:

addr: EXP .DIASU
SIXBIT /device/
timeout value

In the argument list, you supply an optional timeout value, which is
the number of milliseconds to wait for the assignment to be completed.

22.32.2 FUNCTION 2 (.DIAAU)

Assigns all units on the channel or controller.
argument list is:

addr: EXP .DIAAU
SIXBIT /device/
timeout value

The format of the

In the argument list, you supply an optional timeout value, which is
the number of milliseconds to wait for the assignment to be completed.

22.32.3 FUNCTION 3 (.DIARU)

Releases all units on the channel or controller. The format of the
argument list is:

addr: EXP
SIXBIT

.DIARU
/device/

22.32.4 FUNCTION 4 (.DISCP)

Specifies a channel program. The format of the argument list is:

addr: EXP .DISCP
SIXBIT /device/
I/O word (IOWD format)

On a successful return, the address of the initial channel command
word is returned in the accumulator.

22.32.5 FUNCTION 5 (.DIRCP)

Releases a channel program. The format of the argument list is:

addr: EXP
SIXBIT

.DIRCP
/device/

22-74

22.32.6 FUNCTION 6 (.DIGCS)

Gets the channel status.

addr: EXP
SIXBIT

.DIGCS
/device/

DIAG. [CALLI 163]

On a successful return, up to four words of channel logout data may be
returned in the argument block at addr+2 through addr+6.

22.32.7 FUNCTION 7 (.DIAKU)

Returns the controller and unit numbers for a device. The format of
the argument list is:

addr: EXP
SIXBIT

.DIAKU
/device/

On a skip return, the accumulator contains the following information:

Bits Contents

Zero. 0-8
9-17
30-32
33-35

Controller device code.
unit number.
Slave unit number.

22.32.8 FUNCTION 10 (.DIACS)

Forces a CPU status
error entry (code
Table 22-1 with the
you have JP.POK,
argument list is:

block read on a CPU and forces DAEMON to make an
63) in ERROR.SYS. (The error types are listed in

DAEMON monitor call.) This function requires that
[1,2], or JACCT privileges. The format of the

addr: EXP .DIACS
EXP CPU-number

22.32.9 FUNCTION 11 (.DIADS)

Reads the device status for all devices on the specified CPU into a
GETTAB table in the monitor and forces DAEMON to make an error entry
(code 64) in ERROR.SYS. (The error codes and entry types are listed
with the DAEMON call.) This function requires that you have JP.POK,
[1,2], or JACCT privileges. The format for the argument list is:

addr: EXP .DIADS
EXP CPU-number

22-75

DIAG. [CALLI 163]

22.32.10 FUNCTION 12 (.DISeR)

Specify channel program for read-reverse (RH20 devices only) .

addr: EXP .DISCR
SIXBIT /device/
I/O word (IOWD format)

On a successful return, the address of the initial channel command
word is returned in the accumulator.

22.32.11 FUNCTION 13 (Obsolete)

22.32.12 FUNCTION 14 (.DIGUI)

Sets the user-I/O mode bit in the PC word.

addr: EXP .DIGUI

On a successful return, the program is enabled
operations, such as CONSO, DATAO, and so forth.

22.32.13 FUNCTION 15 (Obsolete)

22.32.14 FUNCTION 16 (Obsolete)

22.32.15 FUNCTION 17 (.DIELD)

for

Enables microcode loading. The argument list is formatted as:

addr: XWD
SIXBIT

CPUno, .DIELD
/device/

22.32.16 FUNCTION 20 (.DIDLD)

user-I/O

Disables microcode loading. The format of the argument list is:

addr: XWD
SIXBIT

CPUno, .DIDLD
/device/

22.32.17 FUNCTION 21 (.DILOD)

Loads ~he microcode. The format of the argument block is:

addr: XWD
SIXBIT

CPUno, .DILOD
/device/

22-76

DIAG. [CALLI 163]

22.32.18 FUNCTION 22 (.DISSM)

Sets IPA channel (CI20 or NIA20) maintenance mode. The format of the
argument block is:

addr: XWD CPUno, .DISSM
controller-device-code (Bits 0-6)

22.32.19 FUNCTION 23 (.DIICH)

Clears IPA channel maintenance mode. The format of the argument block
is:

addr: XWD CPUno, .DIICM
controller-device-code (Bits 0-6)

22.32.20 FUNCTION 24 (.DISBD)

Execute S-bus diagnostic function (SBDIAG).
argument block is:

addr: XWD CPUno, .DISDB
To-memory word
From-memory word

The format of the

In the argument list, you can supply the following information:

o CPUn is the CPU number.

o To-memory word, where, on a successful return from the UUO,
the monitor places the updated word into this argument.

o The monitor writes the From-memory word into addr+2.

22.32.21 FUNCTION 25 (.DIDSN)

Returns a unit's device serial number.

addr: EXP .DIDSN
SIXBIT /device/
Serial number (word 0)
Serial number (word 1)

The monitor returns the serial number in addr+2 and addr+3.

22.32.22 FUNCTION 26 (.DIRUR)

Reads the UNIBUS register.

addr: EXP .DIRUR
register-address

In the argument list, you supply the address of the UNIBUS register.
The monitor returns the contents of the UNIBUS register in the ac.

22-77

DIAG. [CALLI 163]

22.32.23 FUNCTION 27 (. DIADB)

Allocates a buffer for dumping the contents of the IPA20 DRAM. (The
IPA20 is the microprocessor controlling CI20 and NIA20 interface
hardware.)

addr: EXP .DIADB SIXBIT /controller/

The monitor returns the address of the buffer containing the IPA20
DRAM in the ac.

22.32.24 FUNCTION 30 (.DIOKI)

Obtains controller information.

addr: EXP
SIXBIT
BLOCK n

.DIOKI
/controller/

In the argument list, you reserve 2- word for information returned, on
a KL system. On a KS system, reserve 3 words.

On a successful return, the monitor fills controller information into
the argument list starting at addr+2. The information is returned in
the following format.

At addr+2:

Bits

o
1
2-5
6-11

12-17

18-23
24-29
30-35

At addr+3:

24-26

27-35
27-35

Symbol

DI.MUK
DI.CLM

DI.CAM

DI.CKX

DI.KUX
DI.KTY
DI.DTY

DI.CUN

DI.DVC
DI.IVI

Meaning

Multi-unit controller.
Can load microcode.
Reserved for DIGITAL.
CPU accessibility mask (one bit per CPU that can
access the controller) .
Maximum number of controllers on this CPU or
channel (reserved).
Maximum number of units on this controller.
Type of controller.
Type of device.

Channel unit number (indicated if DI.MUK is set,
above) .
Device code (KL systems) .
Interrupt vector address (KS systems).

At addr+4 (returned for KS systems only) :

Bits Symbol Contents

14-35 01. UBA UNIBUS address.

22-78

22.32.25 FUNCTION 31 (.DIOUI)

Obtains information about a specific device unit.
is:

addr: EXP
SIXBIT
BLOCK 5

.DIOUI
/unit/

DIAG. [CALLI 163]

The argument list

The information is returned by the monitor in the words you reserved
in the argument list. The format of the information returned in Words
2-7 of the argument list is:

Word

2

3
4
5

Contents

Program specifies -n"addr1; where addr1 contains the KDB
names.
High-order word of drive serial number.
Low-order word of drive serial number.
In the left half, the CPU-accessibility mask.
half, the physical drive number.

In the right

22.32.26 FUNCTION 32 (.DILKU)

Lists names of units on a controller . The argument list is:

addr: EXP
SIXBIT
BLOCK n

. DILKU
/controller/

In the argument list, you supply n as the number of units on the
controller. Use the DIAG. UUO function .DIOKI to determine the
number of words to reserve in the argument list for this function.
The monitor returns the device unit names, in SIXBIT, in the argument
list starting at addr+2. The actual number of units retul:ned is
stored in the accumulator.

22.32.27 FUNCTION 33 (.DISDS)

Sets the status of a device. Using this function, a device can be set
to be attached or detached. This function also provides an "Ignore"
state, where the device service routine will ignore the unit until the
operator performs an explicit ATTACH function. The argument list for
this function is:

addr: EXP .DISDS
SIXBIT /device/
state-code

In the argument list, you can supply any of the following state-codes:

Code

a
1
2
3

Symbol

.DISSI

.DISCI

.DISSD

.DISSA

Meaning

Set the Ignore flag.
Clear the Ignore flag.
Set the Detached flag.
Set the Attached flag.

22-79

DIAG. [CALLI 163]

22.32.28 FUNCTION 34 (.DIDVR)

Reads the device status registers of devices that yield
information.

The argument list for this function is:

addr: EXP
SIXBIT
-n"offset

.DIDVR
/device/

this

In the argument list, you can supply the unit or controller name at
addr+1. At addr+2, you supply a negative expression of the number of
words to return, in the left half. In the right half, you can include
the offset into the appropriate data block.

22.32.29 FUNCTIONS 35-77 (Reserved for DIGITAL)

22.32.30 FUNCTION 100 (.DIGTM)

Gets MaS memory (defined in MOSSER)

22.32.31 FUNCTION 101 (.DIGVM)

Sets MaS memory (defined in MOSSER)

22.32.32 FUNCTIONS 102-104 (Reserved)

22.32.33 FUNCTION 105 (.DIRRS)

Resets remote CI node (defined in KLPSER) .

22.32.34 FUNCTION 106 (.DISRS)

Starts remote CI node (defined in KLPSER) .

22.32.35 FUNCTION 107 (.DIACC)

Manipulates the CI port counters (defined in K"LPSER). The format of
the argument list is:

addr: XWD
XWD

CPUno, .DIACC
channo, sub-function

In the argument list you supply the following information:"

o channo is the channel number. The only valid channel number
is 7.

o sub-function is a function code for manipulating counters.

22-80

The sub-function codes are:

Code

o
1
2
3

Symbol

. DICGT

.DICRL

.DICPT

. DICRO

Function

Gets counters .
Releases counters.
Points to counters.
Reads counters .

22.32.36 FUNCTIONS 110-111 (Reserved for DIGITAL)

22.32.37 FUNCTION 112 (.DIWCM)

writes CI maintenance data (defined in KLPSER) .

22.32.38 FUNCTION 113 (.DIRCM)

Reads CI maintenance data (defined in KLPSER) .

SKIP RETURN

DIAG. [CALLI 163]

The specified function has been performed. Information returned in
the argument list and/or the accumulator is described for each
function listed above.

ERROR RETURN

The ac is unchanged if the DIAG. monitor call is not implemented on
the -System. Otherwise, one of the following error codes is returned
'in the ac:

Code

1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30

Symbol

DIANP%
DIAIA%
DIAIC%
DIAIU%
DlAAA%
DIADM%
DIAAJ%
DIAFC%
DlAAU%
DIACP%
DIAIF%
DIAVC%
DIANC%
DIANR%
DIABA%
DIACI%
DIATO%
DIANK%
DIARF%
DIANM%
DIAPN%
DIANU%
DlAAF%
DIADF%

Meaning

Not enough privileges.
Illegal number of arguments.
Illegal controller number.
Illegal unit number.
Some units already assigned.
Unit not in diagnostic mode.
Unit assigned to another job.
Not enough free core.
No assigned units.
IOWD crosses page boundary.
Illegal function.
Job must not be virtual.
No such CPU.
CPU not running.
Invalid argument list.
No CI port on specified CPU.
The Read Port Counters function timed out.
No NI port on specified CPU.
Microcode reload failed.
No microcode available.
CI or NI port not running.
Non-existent UNIBUS address.
Attach function failed.
Detach function failed.

22-81

DISK. [CALLI 121]

22.33 DISK. [CALLI 121]

FUNCTION

Performs miscellaneous disk functions.

CALLING SEQUENCE

addr:

MOVE ac, [XWD function-code,addr]
DISK. ac,

error return·
skip return
argument-list

In the calling sequence, you can supply the following information:

o function-code is one of the function codes described below.

o addris the address of the argument list.

o argument-list depends on the function code.

The function codes and their arguments are described below.

SKIP RETURN

On a successful return from the call, the function you specified is
accomplished, and neither the ac nor the argument list is affected.

ERROR RETURN

Each function can produce its own set of error codes on an error
return from the DISK. call. The error code is returned in the ac. A
negative error code is one of the following, general-purpose error
codes:

Code

-1
-2

DUILF%
DUINP%

Meaning

Illegal function requested.
Not enough privileges to perform the function.

A positive error code indicates an error that
function code. The ac is unchanged if DISK.
your system.

is specific to the
is not implemented on

In the argument lists described in the following sections,
supply the following informatron:

you can

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel. You can use
-2 to indicate all channels for the job, or -1 for all
explicitly initialized channels for this job

o udx is the Universal Device Index for a device.

o structure is the SIXBIT name of a file structure.

The function codes, their meanings, argument lists,
are described in the following sections.

22-82

and error codes

DISK. [CALLI 121]

22.33.1 FUNCTION 0 (.DUPRI)

Sets the disk priority level. The argument list for .DUPRI is:

addr: XWD channo, priority

In the argument, priority is in the range -3 to +3
priority and +3 is the highest priority) .

(0 is normal

If you set the priority for
setting for the job, and
release the channel.

a channel, the setting overrides the
remains in effect until you change it or

If you set the priority for the entire job, the setting remains in
effect until you change it with another DISK. call or with a SET
DSKPRI monitor command.

The maximum priority level you can use for your job is stored in Bits
1-2 (JP.DPR) of the job privilege table (GETTAB Table 6, .GTPRV)

On an error return from this function,
codes may be stored in the ac:

Code Symbol Meaning

one of the following error

1
2
3

DUPIP%
DUPNO%
DUPIA%

Priority higher than JP.DPR.
Channel not initialized.
Illegal channel number or code.

22.33.2 FUNCTION 1 (.DUSEM)

Sets PDP-IO/PDP-ll compatibility mode (22-sector mode on the
RP04/RP06) for the channel. .DUSEM is a privileged function. The
argument list for .DUSEM is:

addr: EXP channo

On an error return from this function,
codes may be returned in the ac:

Code Symbol Meaning

Illegal device.

one of the following error

1
2

DUSID%
DUSCM% The device does not support 22-sector mode.

22.33.3 FUNCTION 2 (.DUSTM)

Clears PDP-IO/PDP-l1 compatibility mode.
function. The argument list for .DUSTM is:

addr: EXP channo

.DUSTM 1S a privileged

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code

1
2

Symbol

DUSID%
DUSCM%

Meaning

Illegal device.
The device does not support 22-sector mode.

22-83

DIS K . [CALL I 12 1]

22.33.4 FUNCTION 3 <.DUUNL}

Unloads an RP04 or RP06 drive.
argument list for .DUUNL is:

addr: SIXBIT /device/

.DUUNL is a privileged function. The

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code

1
2
3

Symbol

DUUIU%
DUUNI%
DUUNU%

Meaning

Illegal unit name.
Structure is illegal or not available.
Device cannot be unloaded.

22.33.5 FUNCTION 4 <.DUOLS}

Takes a controller/channel off-line soon. The monitor will continue
I/O that is in progress, but will not use the controller for new I/O
requests. .DUOLS is a privileged function. The argument list for
.DUOLS is:

addr: SIXBIT /controller/

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code Symbol Meaning:

1 DUOIP% Specified controller/channel is being put
off-line.

2 DUOSK% Nonexistent controller.
3 DUOSS% If controller were set off-line, there would not

be enough swapping space.
4 DUOIS% Unit in structure cannot be set off-line.
5 DUOES% Not enough space for IOWDs.
6 DUOPI% Obsolete

22.33.6 FUNCTION 5 <.DUOLN}

Takes a controller/channel off-line now. The monitor stops current
I/O on that controller and will not use the controller for new I/O
requests. .DUOLN is a privileged function. The argument list for
.DUOLN is:

addr: SIXBIT / con'troller /

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code Symbol

1 DUOIP%

2 DUOSK%
3 DUOSS%

4 DUOIS%
5 DUOES%
6 DUOPI%

Meaning

Specified controller/channel is being put
off-line.
Nonexistent controller.
If controller were set off-line, there would not
be enough swapping space.
Unit in structure cannot be set off-line.
Not enough space for IOWDs.
Obsolete

22-84

DISK. [CALLI 121]

22.33.7 FUNCTION 6 (.DUONL)

Puts a controller/channel on-line. This function makes the controller
available for I/O. .DUONL is a privileged function. The argument
list for .DUONL is:

addr: SIXBIT /controller/

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code Symbol Meaning

1 DUOIP% Specified controller/channel is being put
off-line.

2 DUOSK% Nonexistent controller.
S DUOES% Not enough space for IOWDs.
6 DUOPI% Obsolete

22.33.8 FUNCTION 7 (.DUUFD)

Sets call for UFD compressor. The argument list for .DUUFD is:

addr: EXP channo

In the argument, you specify the channo of the channel on which a file
is open. The UFD in which the file exists will be compressed.

This function does not force the compression to take place
immediately, but sets the compression to be performed on the next
output CLOSE for a file in this UFD. By default, the compress~on is
performed on an output CLOSE only if the directory contains an empty
block.

22.33.9 FUNCTION 10 (.DUSWP)

Removes a disk unit from the active swapping list.
privileged function. The argument list for .DUSWP is:

. DUSWP is a

addr: SIXBIT /device/

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code Symbol Meaning

1 DUOIP% Specified controller/channel is being put
off-line.

2 DUOSK% Nonexistent controller.
3 DUOSS% If controller were set off-line, there would not

be enough swapping space.
4 DUOIS% unit in structure cannot be set off-line.
5 DUOES% Not enough space for IOWDs.
6 DUOPI% Obsolete

22-85

DISK. [CALLI 121]

22.33.10 FUNCTION 11 (.DUASW)

Adds a disk unit to the active swapping list.
function. The argument list for .DUASW is:

.DUASW is a privileged

addr: SIXBIT /device/

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code Symbol Meaning

1 DUANU% No such unit.
2 DUAAI% Unit already in active swapping list.
3 DUASF% SWPTAB is full.
4 DUAN4% This error code is obsolete.
5 DUANS% No swapping space (SWAP. SYS) on pack.

22.33.11 FUNCTION 12 (.DUASD)

Adds a structure to the system dump list .
. DUASD is:

The argument list for

addr: SIXBIT /structure/

On an error return from this function,
codes may be returned in the ac:

one of the following error

Code Meaning

No such structure.
No crash space on structure.

1
2
3
4

DUDND%
DUDNC%
DUDAD%
DUDDF%

Structure already on system dump list.
System dump list full.

22.33.12 FUNCTION 13 (.DURSD)

Removes a structure from the system dump list .
. DURSD is:

The argument list for

addr: SIXBIT /structure/

On an error return from this function, the following error code may be
returned in the ac:

Code Meaning

1 DUDNS% Structure not in system dump list.

22.33.13 FUNCTION 14 (.DULEN)

Returns the number of written blocks in the file in ac.
list for .DULEN is:

addr: EXP channo

22-86

The argument

DISK. [CALLI 121]

22.33.14 FUNCTION 15 (.DUCLM)

Clears MDA wait for the specified unit. The argument list for . DUCLM
is:

addr: SIXBIT /device/

This function is used by the GALAXY batch and spooling system and
requires [1,2] or JACCT privileges.

22.33.15 FUNCTION 16 (.DUFRE)

Returns the amount of free space in a given UFD before the logged in
quota is exhausted. The argument list for .DUFRE is:

addr: SIXBIT
XWD p,pn

/structure/

If there is no job logged in with the specified PPN, the skip return
is taken with bit 0 set. This bit setting is returned by the DSKCHR
call, when DC.NPA is returned in .DCUFT (arg+1). This signifies the
fact that the quota is not available.

On an error return from this function, the following error code may be
returned in the ac:

Code Symbol Meaning

1 DUFND% No such structure.

RELATED CALLS

DSKCHR

22-87

DNET. (CALLI 207]

22.34 DNET. [CALLI 207]

FUNCTION

Obtains information about DECnet network nodes and environment in your
network area only. This monitor call is for use in system programs
associated with DECnet-10 Versions 3.0 and 4.0.

NOTE

In a multi-area DECnet environment, the DNET.UUO only
returns information about nodes in the same area as
the DECnet-10 host.

If DECnet-10 is running as an Ethernet endnode, the
DNET.UUO only returns information about the DECnet-10
host node.

CALLING SEQUENCE

addr:

XMOVEI ac,addr
DNET. ac,

error return
skip return
argument-list

In the calling sequence, you provide the following information:

o addr is the address of the argument list.

o argument-list depends on the function code you specify in the
first word of the argument list (.DNFFL), which is provided
in the following format:

addr: flags+function-code, ,length

In this word, the following flags are defined:

Bit

o

1

2

3

Symbol

DN.FLS

DN.FLK

DN.FLR

DN.FLE

Meaning

Used with functions that return information about
single entities (a node or link). Indicates that
the function should step through the list,
returning information about the next entity in the
list.

List information only about known nodes.

List information only about reachable nodes.

List information only about EXECUTOR nodes. Refer
to the TOPS-10 DECnet-10 User's Guide for more
information.

The function codes and argument lists are described in the following
sections.

22-88

DNET. [CALLI 207]

22.34.1 FUNCTION 1 (.DNLNN)

Lists node names. You specify the following at addr:

addr: flag+<.DNLNN, ,length>
BLOCK length-l

In the argument list, you must include one of the following flags:

o DN.FLK to list known nodes.

o DN.FLR to list reachable nodes.

o DN.FLE to list EXECUTOR nodes.

And length is the length of the block to reserve.

The monitor returns the argument list in the following form:

Word Contents

1

Symbol

. DNCNT Number of node names returned in the list .

2 .DNNMS First node name

3 Second node name

4-n Remaining node names

22.34.2 FUNCTION 2 (.DNNDI)

Returns information about a node. You specify the following at addr:

addr: flag+<.DNNDI, ,length>
node-name
BLOCK length-2

You must include one of the following flags:

o DN.FLS to step through list of nodes. If you set this flag,
you must be sure that addr+l will contain 0 on the first
call, to start at the first node in the node list. The nodes
are listed in numerical order, by address.

o DN.FLK to list only known nodes.

o DN.FLR to list only reachable nodes.

a DN.FLE to list only EXECUTOR nodes.

And length is the length of the argument block returned.
not specify step mode by setting DN.FLS, you must
node-name in addr+l.

22-89

If you do
specify the

DNET. [CALLI 207]

The monitor returns the argument list in the following form:

Word

1
2

3

4

5-10

. DNNAM

.DNRTR

.DNLLI

.DNADR

.DNCKT

Contents

Node name .
Router information, in the following format:

Bits Symbol Meaning

0 DN.RCH Set if the node is reachable.
1-17 DN.HOP The number of hops to the

specified node.
18-35 DN.CST The cost of the path to the

specified node.

Link information, in the following format:

Bits Symbol Meaning

0 DN.VLD On if the word contains valid
information.

1-17 DN.LNK The number of active links to
the node.

18"":35 DN.DLY The message delay
node.

Node address.

Circuit name, up to 4 ASCIZ words.
may contain up to 16 characters.

time to the

This string

22.34.3 FUNCTION 3 (.DNSLS)

Shows link status. You must specify the following at addr:

addr: DN.FLS+<.DNSLS"length>
jobno"channo

In the argument list, you can supply the following information:

o The optional flag, DN.FLS, to step through the node list. If
you set DN.FLS, be sure that addr+l is 0 on the first call,
so that the information is returned starting at the first
node in the node list.

o length is the number of words reserved for the returned
argument list.

The monitor returns the argument list in the following form:

Word

1

2

3

Symbol

.DNJCN

. DNNOD

.DNOBJ

Contents

Currently displayed job number (DN.JOB)
number (DN. CRN) .

and link

Remote node name, in SIXBIT .

Object types, where the left
contains the destination object
right half (DN.SOB) contains the
type.

22-90

half (DN.DOB)
type, and the
source object

4 . DNSTA

5 .DNQUO

6 .DNSEG

7 .DNFLO

10 .DNMSG

11 .DNMPR

DNET. [CALLI 207]

Status word .
contains the
status code.

The left half of this word (DN.LSW)
status variable bits and the link

The variable bits are:

Bit

o
1
2
3

Symbol

NS. IDA
NS. IDR
NS .NDA
NS.NDR

Meaning

Interrupt data is available.
Interrupt data may be sent.
Normal data is available.
Normal data may be sent.

The remainder of the left half contains a numeric
code associated with the symbol that is stored in
the right half.

The right half of this word (DN.STA) contains a
SIXBIT symbol representing the status of the link.
The status codes and associated SIXBIT symbols
are:

Code

1
2
3
4

5
6
7
10

11
12
13

14

Symbol

CW
CR
CS
RJ

RN
DR
DS
DC

CF
LK
CM

NR

State

Connect wait.
Connect message received.
Connect message sent.
Remote task rejected connect

message. initiation
Link is up
Disconnect
Disconnect
Disconnect
confirmed.

and running.
message received.
message sent.

message has been

No confidence in link.
No link exists.
No communication has
place.
No resources exist.

taken

Quota word, where the left half (DN.IQT) contains
the input quota, and the right half (DN.OQT)
contains the output quota.

Segment size.

Flow control option, where the left half (DN.XMF)
contains the flow control option used for
transmission, and the right half (DN.RCF) contains
the flow control option used for receiving
messages.

Message count word, where the left half (DN.MRC)
contains the number of messages received, and the
right half (DN;MXM) contains the number of
messages transmitted.

Monitor process word. If the job number at .DNJCN
is -1, this is the terminal number that NRTSER has
been given for this particular link. This word is
o for any job number other than -1.

22-91

DNET. [CALLI 207]

ERROR RE TURN

On an error, one of the following error codes is returned in the ac:

Code

1
2
3
4
5
6
7
10

DNADE%
DNWNA%
DNIDN%
DNFNE%
DNILF%
DNNSN96

DNNSC%
DNNDA%

Error

Address error.
Wrong number of arguments.
Illegal job number.
Illegal function number.
Illegal flag set.
No such node name.
No such channel.
Node is in a different DECnet area.

SKIP RETURN

Function has been performed successfully.

EXAMPLE

The following example shows the programming sequence used to list
known nodes, up to the specified length, starting at location DNARG.

DNARG:

MOVE
MOVEM
MOVE I
DNET.

HALT
BLOCK

T1, [DN.FLK+<.DNLNN,,100>]
T1,DNARG
T1,DNARG
T1,

;Error return
100

On a skip return, the argument block is filled with the following
information:

DNARG: DN.FLK!<.DNLNN,,100>
20
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT

/ONE/
/TWO/
/THREE/
/KL1026/
/JINX/
/GNOME/

22-92

;Function-code+flags
;Number of nodes
;Node names

DSKCHR [CALLI 45]

22.35 DSKCHR [CALLI 45]

FUNCTION

Returns the characteristics of a disk device. These characteristics
are needed to allocate storage efficiently on the disk.

CALLING SEQUENCE

addr:

MOVE ac, [XWD len,addr]
DSKCHR ac,

error return
skip return

SIXBIT
BLOCK

/name/
length-l

In the calling sequence, you can provide the following information:

o name is the SIXBIT name of a file structure, a controller
type, a controller, a logical unit, a physical unit, a
physical device, or a channel number.

o length-l is the number of words in the argument list.

If more than one unit was specified, the monitor returns values in the
ac and the argument block, pertinent to the first unit specified. If
more than one file structure was specified, the monitor returns values
in the ac and argument block, pertinent to the first unit on the first
file structure.

SKIP RETURN

On a successful return, the disk characteristics are returned in
addr+l through addr+<length-l>, and disk status flags are returned in
the ac.

The contents of the returned argument block are:

Word

o

1

2

3

4

Symbol

. DCNAM

. DCUFT

. DCFCT

. DCUNT

. DCSNM

Contents

The argument supplied for the call. This is the
only word in the argument block that the user
program supplies. The .DCNAM argument may be a
channel number.

The number of blocks left in your job's quota
before the UED is exhausted. If this value is
negative (DC.NPA==lBO), the UFD has not been
accessed since the job logged in, and the quota is
not available. To obtain this information for
jobs other than your own, use the .DUFRE function
of the DISK. UUO.

The number ot first-come,
available to all users.

first-served blocks

The number of blocks available to all users on
this file structure.

SIXBIT name of the structure to which this unit
belongs.

22-93

DSKCHR [CALLI 45]

5 . DCUCH

6 .DCUSZ

7 .DCSMT

10 .DCWPS

11 . DCSPU

12 . DCK4S

13 .DCSAJ

14 . DCULN

15 . DCUPN

16 .DCUID

17 .DCUFS

20 . DCBUM

21 . DCCYL

22 . DCBUC

23 .DCLPQ

24 . DCLTQ

25 . DCALT

26 . DCOWN

27 . DCPAS

The size characteristics are:

Bits Symbol Meaning:

0-8 DC.UCC Number of blocks per cluster.
9-17 DC.UCT Number of blocks per track.
18-35 DC.UCY Number of blocks per cylinder.

Number of 128-word blocks on the unit.

Mount count for the structure. This count 1S the
number of jobs that performed a MOUNT command for
this file structure without executing a DISMOUNT
command. Note that LOGIN performs an implied
MOUNT of all structures in DSK, the default job
search list.

Number of words per SAT block.

Number of SAT blocks for each unit .

Space (in K) allocated for swapping .

Mount word for the structure:

Value

0, , 0

-1, ,n

Meaning

No job or more than one
structure mounted.

has

job

the One job (number n)
mounted and the
single-access.

structure

0, ,n One job (number n) has the

has the

structure
is not

structure
mounted and -the structure is
single-access.

SIXBIT logical name of the unit .

SIXBIT physical name of the unit.

SIXBIT identification of the unit.

First logical block to be used for swapping.

Number of blocks per unit
cylinders) .

Current cylinder number.

(including maintenance

Number of blocks per unit in PDP-II compatibility
mode.

Length of the position wait queue.

Length of the transfer wait queue.

Unit name for alternate port.

Owner PPN of structure .

Position in active swapping list if argument was a
physical unit; -1 if not in list.

22-94

30 .DCPSD

31 .DCBSC

32 . DCXCH

33 .DCDET

34 . DCNUS

35 . DCBRC

36 . DCBWC

37 . DCDRC

40 . DCDWC

41 . DCMRC

42 . DCMWC

43 . DCSRC

44 . DCSWC

45 . DCPRC

46 . DCPWC

47 . DCFKS

50 . DCCBK

51 . DCCRC

52 . DCCRH

53 . DCCWC

54 . DCCWH

55 .DCSDV

56 .DCSDT

57 . DCHDV

60 . DCHDT

61 .DCECT

DSKCHR [CALLI 45]

position in system dump list if argument was a
structure; -1 if not in list.

Blocks per super-cluster.

The extended unit characteristics:

Bits Meaning

0-8
9-17
18-26
27-35

Symbol

DC.XCC
DC.XCK
DC.XCU
DC.XCA

Data channel number
Unit controller number
Physical unit number
Bit mask of accessible CPUs
(1B35=CPUO, 1B34=CPU1, etc.)

Name of the alternate port.
have to be attached.

The port does not

The name of the next unit in the specified file
structure.

Count of blocks read by buffered I/O.

Count of blocks written by buffered I/O.

Count of blocks read by dump I/O.

Count of blocks written by dump I/O.

Count of blocks read by monitor I/O .

Count of blocks written by monitor I/O.

Count of blocks read by swap I/O.

Count of blocks written by swap I/O .

Count of blocks read by paging I/O.

Count of blocks written by paging I/O.

Remaining swap space.

Count of disk cache blocks in use.

Count of disk cache read calls.

Count of disk cache read hits.

Count of disk cache write calls.

Count of disk cache write hits.

Count of soft device/search errors.

Count of soft data errors.

Count of hard device/search errors.

Count of hard data errors.

Count of retries on last error.

22-95

DSKCHR [CALLI 45]

62 .DCSER Count of SAT errors.

63 . DCRER Count of RIB errors.

64 . DCCER Count of software checksum/consistency errors.

65 . DCRBN Logical block number of last error (within unit)

66 . DCERR Last error status.

67 .DCSDF Last error status.

70 .DCHDI Last error status.

71 .DCSDI Last error status.

72 . DCNHG Count of non-recoverable transfer-hung errors.

73 .DCTHG Count of transfer-hung errors.

74 .DCPRG Count of position-hung errors.

75 .DCSHG Count of software-hung errors.

76 .DCXSF Status flags:

Bits Symbol Contents

0-1 DC.FES Front end port status code.
The port status codes are:

Code Symbol Meaning

a Monitor cannot determine the
status.

1 . DCFEN Not accessible from this front
end.

1 .DCFEA Accessible from this front
end.

2 .DCFEB This is the front-end boot
device.

SKIP RETURN

The flags returned in the ac are as follows:

Bits

a

1

2

3

4

Symbol

DC.RHB

DC.OFL

DC.HWP

DC. SWP

DC.SAF

Meaning

Disk pack off-line; the monitor must reread the
home block before the next operation to verify the
pack identification.

Unit is off-line.

Hardware write-protected.

Belongs to write-protected file structure.

Belongs to single-access file structure.

22-96

5 DC.ZMT

6 DC.PRV

7-8 DC.STS

9 DC.MSB

10 DC.NNA

11 DC.AWL

12-13 DC.CPU

14 DC.ALT

15-17 DC.TYP

18-20 DC.DCN

21-26 DC.CNT

27-29 DC.CNN

DSKCHR [CALLI 45]

Mount count is zero.

Belongs to private file structure.

Status code for unit:

Code

o
2
3

Symbol

. DCSTP

. DCSTN

.DCSTD

Status

Has pack mounted .
No pack mounted .
unit down.

unit has more than one SAT block.

Belongs to a structure that has a lock to prevent
further INIT, LOOKUP, ENTER, OPEN, and
FILOP. calls (NNA indicates "no new access").
This lock is set by a privileged STRUUO function.

write-locked for all jobs.

CPU number of the CPU to which the
in word . DCXCH

device is
supersedes connected. DC.XCC

DC.CPU.

Dual-ported device.

Type of argument passed with the DSKCHR call:

Code

o
1

2

3

4

5
6

Symbol

.DCTDS

. DCTAB

.DCTFS

. DCTUF

. DCTCN

. DCTCC

.DCTPU

Meaning

Generic name, such as DSK.
File structure subset, because
of abbreviation, such as D.
File structure name, such as
DSKA.
Unit within file structure,
such as DSKAO.
Controller class name, such as
FH.
Controller name, such as RPA.
Physical unit, such as RPAO.

Data channel number that software lists as
connected to hardware; first data channel is O.
Controller type:

Code

1
2
4
5

6
7
10

Symbol

. DCCFH

. DCCDP

.DCCFS

. DCCRP

. DCCRN

. DCCRA

.DCCSX

Controller ~

RC10 for RD10 and RM10-B .
RP10 for RP02 and RP03.
RH10 for fixed head disk.
RH10/RH20/RH11 for moving head
disk (RP04, RP06, RP07, and
RM03) .
RH20 for RP20.
HSC for CI disks.
SA10 for IBM disks (3330, for
example) .

Controller number; first one of each type is o.

22-97

DSKCHR [CALLI 45]

30-32 DC.UNT Unit type:

Code Symbol Meaning: When

0 . DCUFD RD10 (DC. CNT=l)
0 .DCUS4 RS04 (DC. CNT=4)
0 . DCUR4 RP04 (DC. CNT=5)
0 . DCUNO RP20 (DC. CNT=6)
0 .DCU80 RA80 (DC. CNT=7)
0 .DCUSO 3330 (DC. CNT=l 7)
1 . DCUFM RM10-B (DC. CNT=l)
1 .DCUD2 RP02 (DC. CNT=2)
1 .DCUR6 RP06 (DC. CNT=5)
1 .DCU81 RA81 (DC. CNT=7)
1 .DCUS1 3331 (DC. CNT=l 7)
2 .DCUD3 RP03 (DC. CNT=2)
2 . DCUR3 RM03 (DC. CNT=5)
2 .DCU60 RA60 (DC. CNT=7)
3 . DCUR7 RP07 (DC. CNT=5)

33-35 DC.UNN Physical unit number within the controller; first
one is o.

ERROR RE TURN

The error return occurs under one of the following conditions:

o The argument at addr is O.

o The device does not exist or channel is not initialized.

o The argument is illegal.

EXAMPLE

The following example checks a user's logged-in quota on structure
DSKB:

ADDR:

MOVE
DSKCHR

JRST
SKIPGE

JRST

SIXBIT
BLOCK 1

T1, [2, ,ADDR]
T1,
NOQTA
ADDR+.DCUFT
NOQTA

/DSKB/

This code tests the value returned from the DSKCHR call. When DSKCHR
fails, or when no quota is returned at ADDR+1, the program jumps to
NOQTA, where it must act on the possibility that the structure is not
mounted or there is no quota on the structure.

22-98

DTE. [CALLI 170]

22.36 DTE. [CALLI 170]

FUNCTION

Performs functions for the DTE (KL systems only), and is not
recommended for customer programs. To use the DTE. monitor call, you
must have the JP.POK or JACCT privilege, or be logged in under [1,2].

CALLING SEQUENCE

addr:

MOVE ac, [fcn-code,addr]
DTE. ac,

error return
skip return

argument-list

In the calling sequence, the program provides the following variables:

In the

o fcn-code is one of the function codes described below.

o addr is the address of
requires a different
below.

following discussion of

0 cEuno is the number of

0 dteno is the number of

the argument list. Each function
argument list. These are described

the DTE. functions,

a CPU.

a DTE.

0 fedno is the unit number of a front-end device.

The function codes and their meanings are:

Code

o

1

2

3

Symbol

.DTECL

.DTEST

.DTETB

.DTEEB

Function

Clears a PDP-lIon a DTE.
the .DTECL function is:

The argument list for

addr: XWD cpuno,dteno

Starts primary protocol on a DTE.
list for the .DTEST function is:

The argument

addr: XWD cpuno,dteno

Sets the byte pointer for messages being
transferred to the DECsystem-lO. The argument
list for the .DTETB function is:

addr: XWD
EXP

cpuno,dteno
<byte pointer to DECsystem-lO>

Sets the byte pointer for messages transmitted to
the PDP-II. The argume?t list for the .DTEEB
function is:

addr: XWD
EXP

cpuno,dteno
<byte pointer to PDP-II>

22-99

DTE. [CALLI 170]

4 .DTERW

5 .DTEMN

6 .DTEPR

7 .DTEGS

10 .DTERJ

11 .DTEGF

Returns the PDP-II reload ROM word in the ac.
argument list for the .DTERW function is:

addr: XWD cpuno,dteno

The

If bit 4 (DT.RP4) is set on return, the PDP-II got
code from the disk.

Return (in ac) the master DTE number for the CPU.
The argumen~list for the .DTEMN function is:

addr: XWD cpuno,dteno

Presses the PDP-II reload button.
list for the .DTEPR function is:

addr: XWD cpuno,dteno

The argument

Returns the status word for the DTE. The status
word for the specified DTE is returned in ac. The
argument list for the .DTEGS function is:

addr: XWD cpuno,dteno

The status flags that can be returned are:

Flag Symbol Meaning

6 DT.DTX DTE exists.
7 DT.DTM DTE is master DTE.
8 DT.PPC DTE is running primary protocol.
9 DT.SPC DTE is running secondary

protocol.
10 DT.RLD DTE needs reloading.

Sets reload job number.
.DTERJ function is:

The argument list for the

addr: EXP jobno

In the argument word, jobno is the job number for
the reload.

Assigns the specified Front End Device (FED) to
the current job in its current job context. The
FED can then be operated using the DTE. functions
for FEDs (.DTEIF, .DTEOF, .DTEFG., .DTEFS, and
.DTEFR). Privileged programs can use the FED
functions to communicate with the software running
on PDP-II devices connected to the system with a
DTE. That software includes GALAXY, DDTll, and
the FE program.

To assign a FED, use the following argument block:

addr: XWD
EXP

cpuno,dteno
fedno

22-100

12 .DTEIF

13 .DTEOF

14 .DTEFG

15 .DTEFS

DTE. [CALLI 170]

In the argument word:

o cpuno, is the CPU number.

o dteno is the number of the DTE to which the
FED is connected.

In addr+1, specify the unit number of the FED.
On a successful return from the DTE.
function, the contents of the ac are
indeterminate.

You can use this function to assign the first
free FED unit on the specified CPU and DTE by
specifying -1 for fedno. In this case, the
FED unit number will be returned in the ac.

Front-end device input. The argument list for the
.DTEIF function is:

addr: XWD
EXP
XWD

cpuno,dteno
fedno
byte-count, addr-of-input-buffer

Front-end device output. The argument list for
the .DTEOF function is:

addr: cpuno,dteno XWD
EXP
XWD

fedno
byte-count,addr-of-output-buffer

Returns (in ac) the front-end device status.
argument list for the .DTEFG function is:

addr: XWD
EXP

cpuno,dteno
fedno

The returned device status flags are:

Flag

28
29
30
31
32
33
34
35

Symbol

DT.FER

DT.EOF
DT. lOP
DT.SER
DT.HER
DT.OFL
DT.NXD

Meaning

Fatal error.
Reserved.
End of file.
I/O in progress.
Soft error.
Hard error.
Off-line.
Nonexistent device.

The

Sets front-end device status. The argument list
for the .DTEFS function is:

addr: ' XWD
EXP
EXP

cpuno,dteno
fedno
status

In the argument word, status is the status word
for the front-end device.

22-101

DTE. [CALLI 1 70]

16 .DTEFR

17 .DTERC

20 .DTERT

21 .DTEDT

22 .DTESU

23 .DTERU

Releases a front-end device.
for the .DTEFR function is:

addr: XWD
EXP

cpuno,dteno
fedno

The argument list

Releases KL error chunks. The argument list for
the .DTERC function is:

addr: XWD cpuno,O

Releases the KL error timer.
for the .DTERT function is:

addr: XWD cpuno, a

The argument list

Returns Universal Device Indexes for terminal
lines leading to the DL11s on the specified DTE.
The argument list for this function is:

addr: XWD cpuno,dteno

On a successful return, the UDX is returned in the
ac. However, for DTE 0, which is dedicated to the
console front end (RSX-20F), the ac contains the
KLINIK line's UDX in the left half, and the CTY's
UDX in the right half.

Specifies the type of protocol that will run on
the DTE. The argument list for this function is:

addr: XWD cpuno,dteno
SIXBIT/user-name/

where the user-name is one of the following
protocol types:

DECNET for DECnet-10.
ANF for ANF-10.
IBM for IBM communications.
NOBODY if the DTE is not running a

protocol.
PROGRA if the DTE is dedicated to a job.

Reads the protocol type of the protocol that is
running on the DTE. The argument list is:

addr: XWD
BLOCK

cpuno,dteno
2

The information is returned in the following
format:

addr: XWD cpuno,dteno
SIXBIT/user-name/
EXP jobn

where user-name is the name of the protocol
running on the DTE (refer to .DTESU above). The
job number (jobn) is returned in addr+2 only if
user-name is PROGRA.

22-102

24 .DTELS

25 .DTEDM

26 .DTKPS

27 .DTKPR

SKIP RETURN

DTE. [CALLI 170]

Loads a secondary bootstrap from your job's memory
area, using the PDP-11 bootstrap ROM. This
function must be preceded by the .DTECL (clear)
and .DTEPR (press reload) functions. You must
also use function .DTEDM (dump) before you can
load any bootstrap. The argument list for this
function is:

addr: XWD
POINT
EXP

cpuno,dteno
16,addr1
length

where addr+l contains a byte pointer indicating
the location of the secondary loader, and length
is the length of the loader, in 16-bit bytes.

Dumps PDP-II memory, using the PDP-l1 bootstrap
ROM. Before you use this function, be sure to use
functions .DTECL (clear) and .DTEPR (press
reload) . You must always dump the PDP-II memory
before you can load a program into its memory.
The argument list for this function is:

addr: XWD
POINT
EXP

cpuno,dteno
16,addr1
count

where addr+l contains a byte-pointer to the memory
that must be dumped, and where count is the number
of 16-bit bytes to dump from the PDP-11.

Set KLINIK parameters.
use.)

(Not intended for customer

Read KLINIK parameters.
customer use.)

(Not intended for

The function is performed, and any requested value is stored in the
ac.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

1 DTENP%
2 DTEUF%
3 DTEDC%
4 DTEAP%
5 DTEPT%
6 DTEDE%
7 DTTTE%
10 DTEDD%
11 DTEIJ%
12 DTEIB%
13 DTENI%
14 DTEFB%
15 DTENF%
16 DTEFE%
17 DTESE%
20 DTENC%

Error

Not enough privileges.
Illegal function code.
Illegal CPU or DTE number.
Primary protocol already running.
Power fail did not come up.
Doorbell did not clear.
To TOPS-I0 error during BOOT sequence.
No response from PDP-II after BOOT sequence.
Illegal job number.
Illegal byte count. .
Front-end device not initialized.
Front-end device in use by another job.
Nonexistent front-end device.
Fatal error on front-end device.
Error starting primary protocol.
No free core for front-end device buffers.

22-103

DTE. [CALLI 170]

21 DTETE%
22 DTECM%

23 DTEIU%
24 DTEWU%
25 DTEEV%
26 DTEIP%

KL error data timer expired.
The FEDSER monitor module was told not to send
messages to the PDP-II.
Tried to set line to illegal user value.
Wrong line user for function.
No exec virtual memory to perform function.
Illegal byte pointer.

22-104

DVPHY. [CALLI 164]

22.37 DVPHY. [CALLI 164]

FUNCTION

Returns the physical names of devices and controllers
pseudo-terminals, terminals, MPX devices, and disks) .

(except

By specifying the device type (as returned by DVTYP. UUO), you can
return all the physical device names for a specific device or all
devices.

CALLING SEQUENCE

addr:

MOVE ac, [XWD len,addr]
DVPHY. ac,

error return
skip return

/ EXP
\ EXP

BLOCK

device-type \
-1 /
1

In the calling sequence, the program supplies the following variables:

o len is the length of the argument block (must be 2) .

o addr is the address of the argument block. The first word of
the argument list specifies the devices to list:

o device-type is one of the device type codes returned from the
DEVTYP monitor call, such as .TYLPT for a line printer.

To list all the devices, use -1 instead of the device type.

To list all controllers for a specific type of device, use the [-n"m]
format, where n is the number device types to return, and m is the
device type code.
On the first DVPHY. call, addr+1 should contain O. The monitor
returns the name of the first device. If you leave this name in
addr+l, the next DVPHY. call returns the name of the next device, and
so forth. When all devices have been returned (by several calls), the
monitor returns 0 in addr+1.

SKIP RETURN

For 0 in addr+1, the monitor returns the name of the first device; for
a device name in addr+l, the monitor returns the name of the next
device, or, if there are no more devices, O. The ac is unchanged.

ERROR RE TURN

One of the following error codes is returned in the ac:

Code

1
2
3
4

Symbol

DVPIA%
DVPIT%
DVPNP%
DVPNT%

Error

Illegal argument length.
Illegal device type.
Nonexistent physical device.
Nonexistent device type.

22-105

DVPHY. [CALLI 164]

EXAMPLE

The following example shows how to obtain the physical names of all
line printers on the system:

TAG1:

TAG2:

NLPT:
LPTNAM:
ADDR:

CONTIN:

SETZB
MOVE
DVPHY.

JRST
SKIPN

JRST
MOVEM
AOJA
MOVEM
JRST
BLOCK
BLOCK
EXP
EXP

RELATED CALLS

o SYSPHY

o SYSSTR

T1,ADDR+1 ;Initialize counter and device name
T2, [XWD 2,ADDR] ;Set ,up call
T2, ;Get name
ERROR ;Error
T3,ADDR+1 ;Get name, skip if not at end
TAG2 ;0 means we're done
T3,LPTNAM(T1) ;Save in next block-slot
T1,TAG1 ;Increment count and loop
T1,NLPT ;Save count
CONTIN
1
10
.TYLPT
o

;Type is LPT
;Start with first device

COMMON PROGRAMMING ERRORS

Using a SIXBIT name for device type.

22-106

DVRST. [CALI,I 122]

22.38 DVRST. [CALLI 122]

FUNCTION

Restricts the use of a device. Once restricted, the device is then
assignable only by the operator;. unprivileged users must request
assignment through the MOUNT monitor command before using the
OPEN/INIT monitor call. (See the 'Commands Manual.) Privileged users
(JACCT or [1,2]) can still use the OPEN or INIT monitor call, or the

ASSIGN command, if the device is not controlled by MDA.

The DVRST. monitor call requires the JACCT privilege or that you be
logged in under [1,2].

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
. I MOVE I ac, channo I

\ MOVEI ac,udx /
DVRST. ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device to
be designated as being restricted.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

SKIP RETURN

The device is restricted.

ERROR RE TUfu'!

The error return occurs if any of the following conditions is found
(the ac is unchanged) :

o You do not have the JACCT privilege or are not logged in
under [1,2].

o The specified device does not exist.

o The device is a disk.

RELATED CALLS

DVURS.

22-107

DVURS. [CALLI 123]

22.39 DVURS.

FUNCTION

Removes the
DVURS. requires
[1,2] .

[CALLI 123]

restriction
the JACCT

CALLING SEQUENCE

created
privilege

/ MOVE ac, [SIXBIT/device/] \

by a DVRST. monitor call.
or that you be logged in under

I MOVE I ac,channo I
\ MOVEI ac,udx /

DVURS. ac,
error return

skip return

In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device
that is to be returned to unrestricted status.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

SKIP RETURN

The restriction is removed. The device is available for public use
and returned to the monitor's pool of available devices.

ERROR RETURN

The error return occurs if any of the following conditions is found
(the ac is unchanged) :

o You do not have the JACCT privilege or are not logged in
under [1,2].

o The given device does not exist.

RELATED CALLS

DVRST.

22-108

ENQ. [CALLI 151]

22.40 ENQ. [CALLI 151]

FUNCTION

Requests access to resources that are defined by cooperating user
programs. The ENQ. call is one of three monitor calls that provide
control over the ENQ/DEQ facility, which provides resource definition,
control over access to resources, and deadlock detection for ~he
resources. The ENQ/DEQ facility is described in Chapter 8.

CALLING SEQUENCE

addr:

MOVE ac, [XWD fcn-code,addr]
ENQ. ac,

error return
skip return

EXP
XWD
XWD
<lock
<lock

<size>B5+<number>B17+<len>B35
O,request-id
time-limit

block>
block>

;header block

In the calling sequence, the program supplies the following variables:

o fcn-code is one of the function codes listed below.

o addr is the address of the argument block, which consists of
a header block followed by one or more lock blocks.

The header block contains 1 to 3 words, in the following order:

Offset

o

Symbol

.ENQLL

Contents

The header size, the number of lock requests, and
the total length of the argument, including the
header and all the words in all the lock blocks.
Specifically, the .ENQLL word is formatted as
follows:

Bits

0-5

6-17

18-35

Symbol

EQ.BHS

EQ.LNL

EQ.LLB

Value

Size of the header block. This
value is between 1 and 3, because
the second and third words are
optional. If you omit this
value, the default is 2.

Number of lock blocks following
the header block. Include one
lock block for each resource
requested.

Total length (in words) of the
argument block. All the lock
blocks in a single request must
be the same length. Thus, the
value of EQ.LLB is the header
block length (EQ.BHS) plus the
length of each lock block times
the number of resources requested
(EQ. LNL)

22-109

ENQ. [CALLI 151]

1 .ENQRI

2 .ENQTL

An 18-bit request-id identifying this request.
This optional value identifies the ENQ. request,
enabling you to identify it when it causes a
software interrupt. This is useful when you use
the ENQ/DEQ facility in conjunction with the
software interrupt (PSI) system. After an
interrupt is generated, the request-ids of the
granted requests are inclusively ORed into the
status word of the interrupt block. To receive a
software interrupt, use function code 2 (.ENQSI)
when you issue the ENQ. monitor call. The
request-id can also be used with the DEQ. call to
dequeue a specific request.

Time limit specifying the number of seconds to
wait for each request in the call to be granted.
If any resource is not available within that time
limit, the call takes the error return with the
ENQTL% error code in the ac. This word is
optional. If you include the time limit in the
header block, specify 3 for size in word O.

Each lock block represents a separate ENQ. request. There is no
limit to the number of locks that can be requested, but multiple
requests in the same ENQ. call must be given level numbers. The
locks will be granted in the order of the level numbers.

The format of a lock block is shown here and described in more detail
on the following pages

Word Symbol

o .ENQFL

1 .ENQBP

2 .ENQPS

3 .ENQMS

4 .ENQTB

Contents

flags+<level>B17+channo

/ flags+user-code \
I user-code I

\ string-pointer /

/ pool-size"number \
\ O"sharer-group /

mask-length"mask-addr

block-length"block-addr

A lock block is two to five words long, identifying the resource to be
locked and describing the characteristics of the lock. The first
requestor of a resource defines lock characteristics. Subsequent
requests for the same resource must conform to those characteristics
or wait until the resource is released by the first requestor.

22-110

ENQ. [CALLI 151]

In the case of multiple-lock requests, all the lock blocks in a single
ENQ. request must be the same length. Specifically, a lock block can
contain the following words:

Offset

o

Symbol

.ENQFL

Contents

Contains the flag bits, level number, and channel
number. The flags are:

Bit Symbol - Meaning

o EQ.FSR The lock request allows sharers.
If you do not set this bit, the
monitor assumes that you require
exclusive access to the resource.
Unless the first requestor for
the resource sets this flag, no
requests for the same resource
(specified in the next word,
.ENQBP) can be granted until the
first requestor dequeues it
(using DEQ. or RESET) . If the
first requestor sets this bit,
other programs with the same
sharer group number as that
specified in .ENQPS can obtain
access to the resource while it
is locked for your job.

1 EQ.FLB Bypass level checking. When
multiple request blocks are made
in a single ENQ. call, you must
assign a level number to each
request. When EQ.FLB is not set,
lower-level resources will be
granted before higher-level
resources are considered. The
EQ.FLB flag prevents this
level-checking, allowing
resources to be granted
regardless of their order by
level number.

2 EQ.FLT Grant a long-term lock. That is,
after the resource is dequeued by
all users, the lock data i~
preserved for about 5 minutes.

3 EQ.FEL Grant an eternal lock. This
prevents the resources from being
dequeued automatically when your
program performs a RESET
function.

4 EQ.FAB Abort the resource. This
prevents the resource from being
accessible to any other user. A
request for an aborted lock
causes error code ENQAB% to be
returned in the ac. The resource
cannot be grantectto another user
until it is dequeued.

22-111

ENQ. [CALLI 151]

5

6

7-8

9-17

18-35

EQ.FDD

EQ.FCW

EQ.FLV

EQ.FCC

Set deadlock detection. This
flag prevents your request from
causing a deadlock among resource
users. If this flag is set, and
granting your request would cause
a deadlock, the ENQ. call takes
the error return with error code
ENQDD% in the ac.

Specifies that a 36-bit user code
is included in the next word
(.ENQBP). This is the preferred
method of specifying a user code
in the lock block.

Reserved for use by DIGITAL.

9-bit level-number that you
assign to each request in a
multiple-lock request. In a
multiple-lock request (a single
ENQ. call containing multiple
lock blocks), each lock block
must be assigned a level number;
the locks will be granted in
ascending numerical order
according to level number, unless
you set EQ.FLB (bypass level
checking) in the flag word.

The number of the channel on
which the resource is being
accessed (positive integer), to
associate the lock with the file
that is open on that channel.
Alternatively, you can specify a
negative number indicating one of
the following conditions:

Code

-3

Symbol

.EQFPL

Meaning

The lock
requested is a
privileged global
lock and the
resource is
available only to
[1,2] or JACCT
jobs. This code
allows privileged
jobs to define
locks on
resources to
prevent access
from unprivileged
jobs.

22-112

1 .ENQBP

ENQ. [CALLI 151]

-2 .EQFGL The lock you are
requesting is a
global lock.
Specifying this
code prevents
access to the
resource from any
other job. To
use this code,
your job must
have JP.ENQ set
in its privilege
word.

-1 .EQFJB The lock is a
job-wide lock,
preventing access
to the resource
from any other
requests by your
job.

Specifies the resource to be locked. You can use
a pointer to an ASCIZ string, or a user-code in
this word (more on this later). You must include
this word in every lock block because it defines
the resource you are requesting.

When the first program to request the resource is
granted a lock, it is said to have ownership of
the resource. When a second program makes an ENQ.
call with the same value in this word (if a
user-code is specified) or the same ASCIZ string
(if a byte pointer is used), the request is for
the same resource that was granted to the first
job.

The contents of the word to which the byte pointer
refers, or the user code itself, are purely
arbitrary values to the monitor. The monitor only
checks lock requests for matches, granting or
preventing locks on the basis of matching strings.
This is the key to the ENQ/DEQ access-checking
mechanism.

If the flag EQ.FCW is set in the previous word
(.ENQFL), .ENQBP must contain a 36-bit value as a
user-code.

If EQ.FCW is not set, and the flag EQ.BUC is set
in .ENQBP (that is, a value of 5 is placed in bits
0-2), the rest of the word must contain a j3-bit
user-code.

If neither flag is set, this word (.ENQBP) must
contain a pointer to an ASCIZ text string. This
may be either a standard byte pointer in the form:

POINT 7,address,bit-Iocation

22-113

ENQ. [CALLI 151]

2 .ENQPS

Or, if the ASCIZ string is stored in 7-bit bytes,
starting at the first byte of the location being
referenced, the pointer can take the form:

XWD -1, address

The ASCIZ string at address can be up to 30
(decimal) words. The maximum string length for
your system is stored in %EQMSS in GETTAB table
.GTENQ.

Cooperating programs (those requesting the same
resources) must specify exactly the same user code
or ASCIZ string.

Specifies
resource,
resource.
O.

either a pool number for a pooled
or a sharer group number for a sharable
This word is optional and defaults to

For a pooled resource, the word contains the
pool-size in the left half and the number of
resources requested from the pool in the right
ha~f. For a sharable resource, the left half is
zero, and the right half contains the sharer-group
number. Thus, a resource cannot be pooled and
also be accessible to a sharer group.

A pooled resource is defined by the first
requestor of the resource. By specifying the
number of resources in the pool, the requestor is
defining the number of "copies" of the resource to
be made available. Each copy of the resource can
be requested for exclusive access by specifying
the same resource identifier in word .ENQBP and
the same pool-size in word .ENQPS. The requestor
must also specify, in the right half of .ENQPS
(EQ.PPR), the number of copies of the resource to
lock.

If the left half of .ENQPS (EQ.PPS) is 0, the
right half (EQ.PPR) specifies the sharer-group
number, thus defining a group of jobs that can
simultaneously share the resource. Any program
that sets the flag EQ.FSR and specifies the same
resource and the same sharer group number will be
granted its request. Therefore, when you share
the ownership of a resource, only other jobs in
the same sharer group are allowed ownership of the
resource. The sharer group number defaults to O.
Therefore, if the first requestor specifies a
sharable resource but omits the sharer group
number, all subsequent sharable requests for the
resource that also omit the sharer group number,
or that set it to 0, will be granted immediately.

22-114

3 .ENQMS

4 .ENQTB

ENQ. [CALLI 151]

Contains a pointer to the bit mask representing
the portions of a resource to be locked. The
pointer consists of the mask-len stored in the
left half, and the mask-addr in the right half.
The bit mask, describing fields of bits to be
locked, is stored at the location specified in
mask-addr, and the length of the bit mask (in
words) is stored in the mask-len. This provides a
facility for partitioning the resource, allowing
locks on portions of a resource. This word is
optional and defaults to o.

Contains the block-length and block-addr of a
lock-associated data block. This data block can
be used to pass information to subsequent users of
a resource. To use this facility, you should set
EQ.FLT, thus preserving all lock request data for
the resource for at least 5 minutes after you
dequeue the resource. This word is optional and
defaults to O.

The function codes and their meanings are:

Code

o

1

Symbol

.ENQBL

.ENQAA

Function

Requests ownership of a resource. Your job will
block if the resource is not available. Your
request is placed in a queue associated with the
specified resource. If more than one request was
included in your ENQ. call, your job will block
until all the requests have been granted. After
all requests have been granted, the skip return is
taken and the monitor clears the ac. If you set
the flag EQ.FBL in .ENQFL of the request block (to
bypass level checking), the monitor could return a
nonzero value. A nonzero value indicates that a
level number sequencing error occurred, but it was
ignored because you specified that level numbers
were to be bypassed.

Requests ownership of a resource and returns
immediately if the resource is unavailable. If
all requests specified in this argument cannot be
granted immediately, the system will not enter any
requests in the queues associated with those
resources and the error return is taken with error
code 1 (ENQRU%) in the ac. However, if the system
can grant all of your-requests immediately, the
skip return is taken and the monitor leaves the ac
unchanged.

22-115

ENQ. [CALLI 151]

2 .ENQSI

3 .ENQMA

SKIP RETURN

Requests ownership of a resource and, if the
resource is not immediately available, causes a
software interrupt when the resource becomes
available. You can use this function when the
Programmable Software Interrupt (PSI) system is
enabled, to prevent your job from blocking while
waiting for the requests to be granted.

If all the requests in the call can be granted
immediately, this function is equivalent to
function code 0 (.ENQBL). If any of the requests
are not available, the call takes the error return
with error code 1 (ENQRU%) in the ac. In this
case, your job can continue processing until it
receives a .PCQUE software interrupt. The
interrupt control block will contain the
request-ids of the requests that are granted,
inclusively ORed into the status word. The PSI
system is described in Chapter 6.

Modifies an existing request made by your job. If
the modification you specify in this request lS

identical to the request you made earlier, no
action is taken and the skip return is taken from
the call. If you do not have a request in any
queue, the error return is taken and the monitor
returns error code 24 (ENQNE%) in the ac. If you
specify more than one request with this function
code and the error return is taken, you must issue
the ENQC. monitor call to determine which (if
any) modification request was granted. The error
code that the monitor returns in the ac reflects
only the last error that occurred as the-result of
this call.

You can modify a request from exclusive ownership
to shared ownership, but you will receive an error
code if you attempt to modify a request from
shared to exclusive ownership if other jobs are
also sharing the resource. To modify a request
from shared to exclusive ownership when other jobs
are sharing the resource, you must first DEQ. the
request. Then, enqueue it again as an exclusive
ownership request.

All requests in the call are granted, and the resources are locked for
your program.

22-116

ENQ. [CALLI 151]

ERROR RETURN

One of the following error codes is returned in the ac on an error
return. These error codes are also returned on an error from a DEQ.
or ENQC. call. They are described in more detail in Chapter 8.

Code

1

2

3
4

5

6
7

10
11
12

13

14
15

16

17
20

21

22

23

24
25
26

27
30
31

32

33
34

Symbol

ENQRU%

ENQBP%

ENQBJ%
ENQBB%

ENQST%

ENQBF%
ENQBL%

ENQIC%
ENQBC%
ENQPI%

ENQNC%

ENQFN%
ENQIN%

ENQNO%

ENQLS%
ENQCC%

ENQQE%

ENQPD%

ENQDR%

ENQNE%
ENQLD%
ENQED%

ENQME%
ENQTE%
ENQAB%

ENQGF%

ENQDD%
ENQTL%

Error

At least one of the requested resources is not
available.
You requested an illegal number of pooled
resources.
You specified an illegal job number.
You specified an illegal byte size for the byte
pointer. The byte size must be between 1 and 36,
inclusive.
The ASCIZ string is too long. It must be less
than 30 (decimal) words. (Refer to GETTAB table
.GTENQ, item %EQMSS for current maximum message
length.)
You specified an illegal function code.
You specified an illegal argument list length.
The total argument list for the call must be
header-block-size plus (request-block-size times
number-of-requests) .
You specified an illegal number of requests.
You specified an illegal channel number.
Your program does not have enough privileges for
the given function.
Not enough core available, or the maximum number
of active locks (item %EQMAQ in GETTAB table
.GTENQ) has been exceeded.
Device is not initialized or is not a disk.
The address for the byte pointer is indirect or
indexed; this is not allowed.
Your program cannot dequeue resources it does not
own.
Levels are not specified in ascending order.
Illegal modification of ownership; you cannot
change a request from shared to exclusive
ownership. You must DEQ. the request, then
ENQ. it with EQ.FSR set.
Your ENQ quota has been exceeded; your quota is
set by the system administrator.
The number of resources in the pool disagrees with
the number in your request.
Duplicate request; identical to a request already
in the queue.
Not enqueued on this lock.
Level in request does not match lock.
Insufficient privileges for this function; you
must have JP.ENQ set.
Mask too long or lengths do not match.
Lock-associated table is too long.
A resource that was requested has been marked as
aborted.
Attempt to ENQ. with EQ.FEL option on a ghost
file.
Deadlock detected.
Time limit exceeded.

22-117

ENQ. [CALLI 151]

EXAMPLE

MOVE T2, [XWD 10,ADDR]

ADDR:

ADDR1:

FILOP. T2,
JRST ERROR1

JRST ENQ
XWD CHAN, 1
EXP MODE
SIXBIT/DSK/
0, , 0
0, , 0
0, ,ADDR1
0, , 0
0, , 0
SIXBIT/FILE/
SIXBIT/EXT/
XWD 0,0
XWD 27,4072

ENQ: MOVE T3, [XWD O,ADDR3]

ADDR3:
block

ERROR1:

ERROR3:

ENQ. T3,
JRST ERROR3

JRST NORM
XWD 1,5

XWD 0,1
XWD O,CHAN
POINT 7, [ASCIZ/NAME/]
0, , 0

OUTSTR ERROR2
JRST DONE

OUTSTR ERROR4
JRST DONE

ERROR2: ASCIZ/ERROR WITH FILOP./

ERROR4: ASCIZ/ERROR WITH ENQ./

DONE: EXIT

RELATED CALLS

o DEQ.

o ENQC.

22-118

iInitialize channel

iError return
iSkip return
iChannel and LOOKUP
;Data mode
;Device
iBuffer addresses

;LOOKUP block

;File name
;Extension

;PPN
;Function and address

;Error return
;Skip return
;Number of locks, length of

;Request identifier
;Resource on chan
;Pointer to resource
iNot a pooled resource

ENQC. [CALLI 153]

22.41 ENQC. [CALLI 153]

FUNCTION

Returns information about the current state of ENQ/DEQ requests and
sets access rights for the ENQ/DEQ facility (privileged). Refer to
Volume 1 for more information about using the ENQ/DEQ calls. For more
information about the contents of the argument block, refer to the
ENQ. call.

CALLING SEQUENCE

Each function of the ENQC. call requires a different calling
sequence. The calling sequence for each ENQC. function is described
below, for the appropriate function.

The ENQC. function codes and their meanings are:

22.41.1 FUNCTION 0 (.ENQCS)

Returns a 3-word status block for each specified lock.
sequence for the .ENQCS function is:

The calling

addr:

MOVE ac, [XWD .ENQCS,addr]
MOVE I ac+l,buffer
ENQC. ac,

error return
skip return

EXP parameters
XWD O,request-id
EXP time limit
first word of first lock block

buffer:
last word of last lock block
BLOCK <locks>*3

In the argument word:

a addr is the address of the argument list.

a buffer is the address of a buffer (of length locks*3) for
storing the returned three-word status blocks.

a parameters is a word of t~e form:

<size>B5+<locks>BI7+<length>B35

a size is the size of the header block (1 to 3) .

a locks is the number of lock blocks in the argument list.

a length is the length of each lock block (size plus number of
locks times the length of each lock block) .

The right half of addr+l may contain request-id, an optional
request identifier.

a time limit is an optional time limit for the request to be
granted.

22-119

ENQC. [CALLI 153]

On a skip return, the monitor returns a three-word status block for
each request, at buffer. The format of each block is:

Offset Symbol

0 .ENQCF

1 .ENQCT

2 .ENQCI

Meaning:

Flags:

Bits

0
1
2

3
4-8
9-17
18-26
27-35

Symbol

EQ.CFI
EQ.CFO
EQ.CFQ

EQ.CFX

EQ.CFL
EQ.CFC
EQ.CFJ

Meaning:

Invalid lock.
This user is owner.
This user is in queue for
specified resource.
Owner's access is exclusive.
Reserved.
Level number.
The owner's context number.
The owner's job number or an
error code.

A time stamp, in universal date-time format,
indicating the time that the lock was granted; or
0, indicating that the resource is available.

The left half (EQ.CIQ) contains the number of
users sharing the resource. The right half
(EQ.CID) contains the r~quest-id of the owner of
the lock.

22.41.2 FUNCTION 1 (.ENQCG)

Returns user's quota in ac.
function is:

The calling sequence for the .ENQCG

MOVE ac, [XWD .ENQCG,addr]
ENQC. ac,

error return
skip return

addr: XWD O,jobno

In the argument word, jobno is the number of the job whose ENQ quota
is required. If jobno is -1, your own job is assumed.

22.41.3 FUNCTION 2 (.ENQCC)

Changes user's quota.
is:

The calling sequence for the

addr:

MOVE ac, [XWD .ENQCC,addr]
ENQC. ac,

error return
skip return

XWD quota,jobno

22-120

.ENQCC function

ENQC. [CALLI 153]

In the argument word:

o quota is the new ENQ/DEQ quota.

o jobno is the number of the job whose quota is to be changed.
If jobno is -1, your own job is assumed.

This function sets the lock quota for a specific job. To perform this
function, you must have POKE privileges, be a [1,2] job, or be running
with the JACCT bit set. The ENQ/DEQ quota for the specified job will
be set to the value you specify in the left half of the argument word
on a normal return. On a skip return, the ac is cleared. If you
attempt to use this function without the-required privileges, the
error return is taken and the monitor returns an error code in the ac.

22.41.4 FUNCTION 3 (.ENQCD)

Dumps the data base. The calling sequence for the .ENQCD function is:

MOVE ac, [XWD .ENQCD,addr]

addr:

ENQC. ac,
error return

skip return

XWD O,len

In the argument word:

o addr is the address of a buffer to receive the returned data.

o len is the length of the data block to be returned, minus one
word.

This function dumps the data base (all lock and queue entries). The
entire data base is placed in your area, beginning with addr+1. If
this length is not large enough to accommodate the entire data base,
the monitor returns as much as possible of the data base. The end of
the data base is indicated by a word containing -1. You must have Spy
privileges to specify this function code. The format of the returned
data is described in Chapter 8.

SKIP RETURN

The requested function is performed.

ERROR RETURN

The error codes that can be returned in the ac on an error return are
identical to those that can be returnea- from the ENQ. and DEQ.
calls. The error codes are listed in the description of the ENQ.
call.

RELATED CALLS

o DEQ.

o ENQ.

22-121

ENTER [OPCODE 077]

22.42 ENTER [OPCODE 077]

FUNCTION

Specifies an output file to create, supersede, or update a file. Use
FILOP. to perform an ENTER for an extended I/O channel.

CALLING SEQUENCE

The ENTER monitor call has two types of argument lists: one using a
four-word argument list and one using an extended argument list. The
extended argument list offers many additional options for ENTERing a
file. For complete information about the argument lists, refer to
Section 11.13.

The calling sequence for the ENTER UUO is:

ENTER channo,addr
error return

skip return

In the call sequence, the program supplies
address of the argument list. Refer
information about the argument list.

SKIP RETURN

the addr,
to Section

which is the
11.13 for more

When you use the short form of the argument block, the monitor returns
a four-word argument block at addr.

Refer to Section 11.13.1 for information about the argument block that
is returned.

When you use the extended argument list, the monitor returns the
information that is listed on Section 11.13.2.

ERROR RETURN

On an error return from ENTER, the monitor returns an error code in
either of the following:

o For the short-form argument block, the error code is stored
in the right half of addr+l of the 4-word argument block

o For the extended-form argument block,
returned in the right half of addr+3.

the error code is
",

It is possible to LOOKUP/RENAME a file after using an ENTER to specify
the argument list, referring to the same "argument list with subsequent
calls. Note, however, that on an error return from the ENTER, the
error code overwrites the high-order three bits of the creation date
and the entire access date. Because most programs recover from these
errors by either aborting or by reinitializing the entire argument
block, this overwriting of data normally does not cause any problems.
However, a program may attempt to recover from an error by fixing only
the incorrect portion of the argument block and then reexecuting the
monitor call. These programs should always initialize the contents of
these locations before reexecuting the ENTER monitor call.

Error codes are restricted to a maximum of 15 bits to eliminate
problems when recovering from an error in a file with a zero creation
date. The error codes are described in Section 11.14.

22-122

ENTER [OPCODE 077]

EXAMPLES

See Chapter 11.

RELATED CALLS

0 CLOSE

0 FILOP.

0 INIT

0 LOOKUP

0 OPEN

0 RENAME

22-123

ENTVC. [CALLI 225]

22.43 ENTVC. [CALLI 225]

FUNCTION

Reads or sets an entry vector. An entry vector indicates the entry
point for a program. (Refer to the TOPS-I0 LINK Reference Manual and
the TOPS-I0 MACRO Assembler Manual for more--Information on entry
vectors.)

CALLING SEQUENCE

addr:

XMOVEI ac,addr
ENTVC. ac,

error return
skip return

flag"function
length
vector-addr

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument list.

o flag indicates whether the vector is read
(EN. SET) .

o function is the function code described below.

(0) or set

o length is a value returned by the monitor on a read, and
supplied by you on a set. A (JRST) in the right half
indicates that you are supplying a start address only in
vector-addr (if setting), or that the monitor is returning
the start address in vector-addr (if reading). Otherwise,
you supply a length for the entry vector (0-37 words, octal),
or the monitor returns the length of the entry vector.

o vector-addr contains the 30-bit address of the entry vector,
or the start address, returned on a read, or to be set for
the set function. The vector-addr is a user address.

The function code for ENTVC. is:

Code Symbol

o .ENVRS

SKIP RETURN

Meaning

Reads or sets the entry vector. Set the EN.SET
flag in the left half of the first word of the
argument block to perform a set. 0 in the left
half indicates a read should be performed.

The specified function lS performed.

ERROR RETURN

One of the following error codes is returned in the ae:

Code

1
2
3

EVIAL%
EVIFC%
EVADR%

Error

Illegal argument list.
Illegal function code.
An address check was encountered.

22-124

ERLST. [CALLI 132]

22.44 ERLST. [CALLI 132]

FUNCTION

Returns data giving the status of aach device on an MPX channel that
has errors.

CALLING SEQUENCE

addr:

MOVE I ac,addr
ERLST. ac,

error return
skip return

XWD
BLOCK

length,channo
length-1

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument block.

o length is the length of the argument block; the length should
be the number of devices connected to the channel plus two.

o channo is the number of an initialized channel.

SKIP RETURN

The monitor returns data at addr+1 for devices on the channel that
have errors. The data at addr is in the format:

addr: XWD
EXP
XWD

length,channo
number of devices
udx,status

XWD udx, status

In the argument list, the program supplies the following variables:

o length and channo were given in the call.

o number of devices is the number of devices on the channel
that have encountered errors.

o udx is the Universal Device Index of a device having errors.

o status is a halfword
device. These bits
GETSTS monitor call.

containing I/O status bits for the
are identical to those returned for a

The monitor continues to return device error information in the
argument block until all space allocated by your program has been
filled. Your program should check the value of addr+1. If addr+1 is
greater than the length of the argument block minus two, the device
error list is incomplete because of lack of space.

For a list of I/O status bits, see the appropriate device in Volume 1.

22-125

ERLST. [CALLI 132]

ERROR RETURN

One of the fOllowing error codes is returned in the ac:

Code

1
2

Symbol

ERLBC%
ERLNM%

RELATED CALLS

o CLRST.

o GETSTS

o SENSE.

Error

Illegal channel number.
Not an MPX-channel.

22-126

ERRPT. [CALLI 160]

22.45 ERRPT. [CALLI 160]

FUNCTION

ERRPT. is a privileged monitor call used only by the DAEMON program to
ask the monitor for the next error condition to be logged in the error
file.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
ERRPT. ac,

error return
skip return

addr: BLOCK. 4

In the calling sequence, the program supplies the following variables:

o len is the length

o addr is the address of the argument list that is filled in by
the monitor on a skip return.

SKIP RETURN

If an error condition (such as a stopcode or a hardware error) is
found, the monitor places values in the locations at addr as follows:

Offset

o

1

2

3

Symbol

.ERPTO

. ERP'I'l

. ERPT2

. ERP'l~3

Contents

Address, job number, and error code:

Bits Meaning

Address used by DAEMON.
Job number.

0-17
18-26
27-35

Symbol

ER.PAD
ER.PJN
ER.PCD Error code for the error file.

Two monitor internal addresses:

Bits Symbol Meaning

0-17 ER.PDA Address of DDB for device with
error condition.

18-35 ER.PUA Address of UDB for device with
error .

CPU number.

Bits Symbol Meaning:

0-14 Reserved for use by DIGITAL.
15-17 ER.CPU CPU number on which error was

detected.
18-35 Reserved for use by DIGITAL .

Reserved for use by DIGITAL.

22-127

ERRPT. [CALLI 160]

ERROR RE TURN

One of the following conditions occurred:

o The ERRPT. call is not implemented.

o The calling sequence was improper.

o No appropriate error condition was found. In this case, the
values of the words at addr are unchanged.

22-128

ETHNT. [CALLI 223]

22.46 ETHNT. [CALLI 223]

FUNCTION

The ETHNT. monitor call accesses the Ethernet. ETHNT. allows you to
read the Ethernet configuration, enable and disable protocols, enable
and disable multicast addresses, and send and receive datagrams. For
an overview of Ethernet, as well as a full description of datagram
bu£fer~ (addressed using .ETUBL) and function buffers (addressed
using .ETBFL and .ETBFA), refer to Chapter 5, Volume 1.

CALLING SEQUENCE

XMOVEI ac,addr
ETHNT. ac,

error return
skip return

In the calling sequence, the program supplies the addr, which is the
address of the ETHNT. argument block.

The format of the argument block is:

Offset

a

1

Symbol

.ETFCN

.ETPSW

Contents

Function code word for the argument block. This
word contains the length of the argument block,
and may also contain a flag. Its format is:

Bits

0-8

Symbol

ET.FFL

9-17 ET.FFN

18-35 ET.FLN

Meaning

Function-specific flags.

Bit

1

Symbol

ET.FZC

Meaning

Zero counters
after they have
been read. Use
this flag with
functions .ETRCC,
.ETRPC, and
.ETRKC.

One of the function codes listed
at the end of the argument block
description.

Length of the argument block.

Contains the portal status and the assigned portal
ID. ET.PST (Bits 0-8) may contain one or more of
the following flags:

Bit

a

1

2

Symbol

ET.PON

ET.PXB

ET.PRB

Meaning

Portal is online.

Transmit buffers available.

Receive buffers available.

The rest of .ETPSW contains the portal ID, .ETPID,
assigned by the monitor.

22-129

ETHNT. [CALLI 223]

1 . ETCSW

1 .ETKSW

2 .ETAR1

3 . ETAR2

Contains the channel status and channel ID .
ET.CST (Bits 0-8) contains the channel status. If
the ET.CON flag in ET.CST is on, the channel is
online. ET.CID (Bits 9-35) contains the channel
ID.

Contains the status and ID of a controller.
ET.KST (Bits 0-8) contains the controller status.
If the ET.KON flag in ET.KST is on, the controller
is online. ET.KID (Bits 9-35) contains the
controller ID.

Contains the first function-specific argument.
Function-specific arguments are described in each
of the function codes below.

Contains the second function-specific argument .

Valid function codes for .ETFCN are:

Code

1

2

Symbol

.ETOPN

.ETCLS

~eaning

Opens a user portal. This function requires
JP.POK privileges. This function specifies the
protocol type to be enabled, and protocol specific
flags. The argument block is:

Word

a

1

2

3

Symbol

.ETFCN

.ETPSW

.ETCIW

.ETPIW

Contents

Contains the function code .ETOPN
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Identifies the Ethernet channel
on which the protocol should be
enabled.

Identifies the protocol type to
be enabled on the Ethernet
channel. Set the ET.PAD flag in
the left half of .ETPIW to enable
padding for the protocol.

Closes a user portal and releases all resources
associated with it. The argument block contains:

Word

a

1

Symbol

.ETFCN

.ETPSW

Contents

Contains the function code .ETCLS
in Bits 9-17, and the length of
the argument block, 2, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

22-130

3 .ETQRB

4 .ETRRQ

ETHNT. [CALLI 223]

Queues receive datagram buffers.
block contains:

The argument

Word

o

1

2

Symbol

.ETFCN

.ETPSW

.ETUBL

Contents

Contains the function code .ETQRB
in Bits 9-17, and the length of
the argument block, 3, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the address of
buffer descriptor list.
Chapter 5, Volume 1
format of the user
descriptor list.

the user
Refer to

for the
buffer

Reads receive queue. This function fills each
block in the buffer descriptor list with data
appropriate to a received datagram. The argument
block contains:

Word

o

1

2

Symbol

.ETFCN

.ETPSW

.ETUBL

Contents

Contains the function code .ETRRQ
in Bits 9-17 and the length of
the argument block, 3, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the address of the user
buffer descriptor list. Refer to
Chapter 5, Volume 1 for the
format of the user buffer
descriptor list. The status
field in .UBSTS of the buffer
descriptor contains zero if the
datagram was received
successfully.

22-131

ETHNT. [CALLI 223]

5 .ETQXB

6 .ETRXQ

7 .ETEMA

Transmits datagram
Ethernet address
descriptor block.

buffer to the destination
specified in the buffer

The argument block contains:

Word

a

1

2

Symbol

.ETFCN

.ETPSW

.ETUBL

Contents

Contains the function code .ETQXB
in Bits 9-17, and the length of
the argument block, 3, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the address of
buffer descriptor list.
Chapter 5, Volume 1
format of the user
descriptor list.

the user
Refer to

for the
buffer

Returns
datagrams.

data associated with transmitted
The argument block contains:

Word

a

1

2

Symbol

.ETFCN

.ETPSW

.ETUBL

Contents

Contains the function code .ETRXQ
in Bits 9-17, and the length of
the argument block, 3, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the address of the user
buffer descriptor list. Refer to
Chapter 5, Volume 1 for the
format of the user buffer
descriptor list. On a successful
transmission, the returned status
is zero.

Enables a portal to receive datagrams destined for
an Ethernet multicast address. .ETEMA may not be
used while a promiscuous receiver is active. The
argument block for .ETEMA contains:

Word

a

1

2

Symbol

.ETFCN

.ETPSW

.ETMCA

Contents

Contains the function code .ETEMA
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the two word Ethernet
multicast address.

22-132

10 .ETDMA

11 .ETRCL

12 .ETRCI

ETHNT. [CALLI 223]

Disables a portal
for a multicast
you disable must
using the .ETEMA
contains:

from receiving datagrams bound
address. The multicast address
have been previously enabled
function~ The argument block

Word

o

1

2

Symbol

.ETFCN

.ETPSW

.ETMCA

Contents

Contains the function code .ETDMA
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the two word Ethernet
multicast address.

Returns a list of all known channels.
argument block contains:

The

Word

o

1

2

3

Symbol

.ETFCN

. ETCSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRCL
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Reserved .

Contains the length
destination buffer.

Contains the address
destination buffer.

of the

of the

Returns information about a specific channel.
argument block contains:

The

Word

o

1

2

3

Symbol

.ETFCN

.ETCSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRCI
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the channel-id in Bits
9-35. Returns an updated channel
status in Bits 0-8. Flag ET.CON
indicates whether the channel is
on- or off-line.

Contains the length
destination buffer.

Contains the address
destination buffer.

of

of

the

the

22-133

ETHNT. [CALLI 223]

13 .ETRCC

14 .ETSCA

Returns a list of the counters associated with a
channel, and (optionally) zeroes them. Zeroing
the counters requires JP.POK privileges. The
argument block contains:

Word

a

1

2

3

Symbol

.ETFCN

.ETCSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRCC
in Bits 9-17, and the length of
the argument block, 4, in the
right half. Set the ET.FZC flag
of .ETFCN if you want the
counters zeroed after information
is returned.

Contains the channel-id in Bits
9-35. Returns an updated channel
status in Bits 0-8. Flag ET.CON
indicates whether the channel is
on- or off-line.

Contains the length
destination buffer.

Contains the address
destination buffer.

of

of

the

the

Sets the physical address associated with
channel. The argument block contains:

a

Word

a

1

2

Symbol

.ETFCN

.ETCSW

.ETEAD

Contents

Contains the function code .ETSCA
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the channel-id in Bits
9-35. Returns an updated channel
status in Bits 0-8. Flag ET.CON
indicates whether the channel is
on- or off-line.

Specifies the physical address.
.ETEAD is two words long. It may
not be a multicast address.

22-134

15 .ETRPL

16 .ETRPI

ETHNT. [CALLI 223]

Returns a list of all portals on a channel.
argument block contains:

The

Word

a

1

2

3

Symbol

.ETFCN

.ETCSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRPL
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the channel-id in Bits
9-35. Returns an updated channel
status in Bits 0-8. Flag ET.CON
indicates whether the channel is
on- or off-line.

Contains the length
destination buffer.

Contains the address
destination buffer.

of

of

the

the

The list is returned in the specified buffer, with
each portal ID occupying a full word, right
justified (.ETPSW format) .

Returns all information (except counters) about a
specific portal. The argument block contains:

Word

a

1

2

3

Symbol

.ETFCN

.ETPSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRPI
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the length
destination buffer.

Contains the address
destination buffer.

of

of

the

the

The information is returned in the specified
buffer.

22-135

ETHNT. [CALLI 223]

17 .ETRPC

20 .ETRKL

Returns a list of the counters associated with a
portal, and (optionally) zeroes them. Zeroing the
counters requires JP.POK privileges. The argument
block contains:

Word

a

1

2

3

Symbol

.ETFCN

.ETPSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRPC
in Bits 9-17, and the length of
the argument block, 4, in the
right half. Set the ET.FZC flag
if you want the counters zeroed
after the information is
returned.

Contains the portal-id in Bits
9-35. Returns an updated portal
status in Bits 0-8.

Contains the length
destination buffer.

Contains the address
destination buffer.

of the

of the

Returns a list of all controllers on a channel.
The argument block contains:

Word

a

1

2

3

Symbol

.ETFCN

.ETCSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRKL
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the channel-id in Bits
9-35. Returns an updated channel
status in Bits 0-8. Flag ET.CON
indicates whether the channel is
on- or off-line.

Contains the length
destination buffer.

Contains the address
destination buffer.

of the

of the

The list is returned in the specified buffer, with
each portal ID occupying a full word, right
justified (.ETKSW format).

22-136

21 .ETRKI

22 .ETRKC

SKIP RETURN

ETHNT. [CALLI 223]

Returns all information (except counters) about a
specific controller. The argument block contains:

Word

o

1

2

3

Symbol

.ETFCN

.ETKSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRKI
in Bits 9-17, and the length of
the argument block, 4, in the
right half.

Contains the controller-id in
Bits 9-35. Returns an updated
controller status in Bits 0-8.
Flag ET.KON indicates whether the
controller is on- or off-line.

Contains the length
destination buffer.

Contains the address
destination buffer.

of the

of the

The information is returned in the specified
buffer.

Returns a list of the counters associated with a
controller, and (optionally) zeroes them. Zeroing
the counters requires JP.POK privileges. The
argument block contains:

Word

o

1

2

3

Symbol

.ETFCN

.ETKSW

.ETBFL

.ETBFA

Contents

Contains the function code .ETRKC
in Bits 9-17, and the length of
the argument block, 4, in the
right half. Set the ET.FZC flag
if you want the counters zeroed
after the information is
returned.

Contains the controller-id in
Bits 9-35. Returns an updated
controller status in Bits 0-8.
Flag ET.KON indicates whether the
controller is on- or off-line.

Contains the length
destination buffer.

Contains the address
destination buffer.

of the

of the

The requested function is performed, and information is returned as
specified in the description of the function.

22-137

ETHNT. [CALLI 223]

ERROR RE TURN

One of the following codes is returned in the ac:

Code Symbol

1 ETPRV%
2 ETADC%
3 ETIAL%
4 ETILF%
5 ETUEE%
6 ETRES%
7 ETIPI%
10 ETICI%
11 ETIPT%
12 ETPIU%
13 ETPRA%
14 ETBAC%
15 ETIBS%
16 ETIBP%
17 ETIEA%
20 ETPQE%
21 ETBQE%
22 ETPWS%
23 ETIKI%

Error

Program has insufficient privileges.
Address check attempting to read argument block.
Illegal argument list length.
Illegal function code specified.
Unexpected Ethernet error.
Insufficient resources.
Invalid portal 10.
Invalid channel 10.
Invalid protocol type.
Protocol type already in use.
Promiscuous receiver active.
Buffer address check.
Invalid buffer size.
Invalid byte pointer.
Invalid Ethernet address.
Portal quota exceeded.
Buffer quota exceeded.
Protocol in wrong state.
Invalid controller 10.

22-138

EXIT [CALLI 12]

22.47 EXIT [CALLI 12]

FUNCTION

stops job execution and optionally resets the job.

CALLING SEQUENCE

EXIT fen-code,
continue return

In the calling sequence, the program supplies the following variables:

o fen-code is one of the function codes described below.

For either code, when you EXIT from a job in an auto-pushed
context, you are returned to the superior context and the
inferior one is deleted.

o continue return is the instruction to be executed if the user
issues a valid CONTINUE monitor command.

The function codes and their meanings are:

Code

o

1

2-17

Function

Performs the following:

o Releases all I/O devices, closing files if necessary.

o Unlocks the job from core.

o Sets the user-mode write-protect bit for the
segment.

o Resets APR traps to zero.

o Clears PC flags.

o Performs a RESET and stops the job.

high

If timesharing was stopped by a TRPSET monitor call, the
monitor resumes timesharing. A RESET monitor call is
executed, and the word EXIT is typed on your terminal, and
the terminal is left in monitor mode. You cannot continue
with the CONT or CCONT monitor command.

Performs the following:

o Clears PC flags.

o stops the job.

EXIT is not printed on your terminal, and you can continue
program execution with the CONT or CCONT monitor command. If
you use function code 1, you should first RELEASE all devices
and channels; a convenient way to do this is to use the RESET
monitor call. The symbol for EXIT 1, is MONRT.

Reserved for use by DIGITAL.

22-139

EXIT [CALLI 12]

RELATED CALLS

o LOGOUT

o MONRT.

22-140

FILOP. [CALLI 155]

22.48 FILOP. [CALLI 155]

FUNCTION

Performs various file operations, including initializing channels and
creating, deleting, writing, reading, renaming, appending to, and
superseding files.

CALLING SEQUENCE

MOVE ac, [XWD length,addr]
FILOP. ac,

error return
skip return

addr: argument-list

In the calling sequence, you supply the following information:

o length is the length of the argument list.

o addr is the address of the argument list.

o argument-list format depends on the function specified in the
right half of the first word of the argument list.

The FILOP. functions are:

Function
Code Symbol

1 . FORED

2 . FOCRE

3 . FOWRT

4 . FOSAU

5 . FOMAU

6 . FOAPP

7 . FOCLS

10 . FOURB

11 .FOUSI

12 .FOUSO

13 . FORNM

Meaning

Opens a file. Uses the FILOP. extended argument
list.

Creates a file. Uses theFILOP. extended argument
list.

write a file. Uses the FILOP. extended argument
list.

Updates a file in exclusive access mode. Uses the
FILOP. extended argument list.

Updates a file in multiple-access mode. Uses the
FILOP. extended argument list.

Appends data to a file. Uses the FILOP. extended
argument list.

Closes a file associated with a specified channel .
This function requires a special argument list.

Checkpoints a file. This function requires a
special argument list.

Performs a USETI function. This function requires
a special argument list.

Performs a USETO function. This functions
requires a special argument list.

Renames a file. Uses the FILOP. extended argument
list.

22-141

FILOP. [CALLI 155]

14 .FODLT

15 . FOPRE

16 .FOSIO

17 .FOINP

20 .FOOUT

21 .FOSET

22 .FOGET

23 . FOREL

24 . FOWAT

26 . FORRC

27 .FOGTF

30 . FOMTP

31 . FOUTP

32 . FORAW

33 .FOFIL

34 . FOFXI

35 . FOFXO

Deletes a file.
list.

Uses the FILOP. extended argument

Allocates disk space for a file.
FILOP. extended argument list.

Opens a device for super-I/O.
FILOP. extended argument list.

Performs an INPUT function. This
requires a special argument list.

Performs an OUTPUT function. This
requires a special argument list.

Performs a SETSTS function. This
requires a special argument list.

Performs a GETSTS function. This
requires a special argument list.

Performs a RELEAS function. This
-requires a special argument list.

Uses the

Uses the

function

function

function

function

function

Waits for I/O to finish.
special argument list.

This function requires a

Updates a file's RIB. This function requires a
special argument list.

Gets the block number of the first
DECtape. This function requires

file on a
a special

argument list.

Performs a MTAPE function with extended channels.
This function requires a special argument list.

Clears a DECtape. This function requires
special argument list.

a

Renames a file with allocation specified in words.
This function requires a special argument list.

Obtains the file specification of any file.
function requires a special argument list.

This

Performs a IN function .
special argument list.

This function requires a

Performs an OUT function.
a special argument list.

This function requires

The FILOP. extended argument list is described below,
detailed descriptions of the each FILOP. function.

followed by

22-142

FILOP. [CALLI 155]

22.48.1 FILOP. Extended Argument List

The argument block for FILOP. Functions 1 through 6, and Functions 13
through 15, looks like this:

Table 22-2: FILOP Argument Block

0------8 9-----------------17 18-------------------------35
+===+

Flags! FO.CHN Function Code (.FOFNC)

I/O mode

Device name or UDX

Output buffer header Input buffer header

Number of output buffers! Number of input buffers

Ptr to RENAME block Ptr to LOOKUP block

Length of PATH block Ptr to PATH block

Project number Programmer number

Length of filespec block Ptr to filespec block

Output buffer starting addr ! Input buffer starting addr

(.FOIOS)

(. FODEV)

(. FOBRH)

(. FONBF)

(. FOLEB)

(. FOPAT)

(. FOPPN)

(. FOFSP)

(. FOBSA)

Output buffer size Input buffer size (.FOBSZ)
+===+

The format of the argument list (for Functions 1-6 and 13-15) is:

Word

o

Symbol

. FOFNC

Contents

Flags, channel number, and function code:

Flag
Bits

o

Symbol

FO.PRV

22-143

Meaning

Indicates that the program
with appropriate privileges
([1,2] or JACCT) will perform
privileged FILOP. functions.
You must set this bit to use
privileged FILOP. functions.

FILOP. [CALLI 155]

1 FO.ASC

2 FO.UOC

3 FO.CFW

4-8

9-17 FO.CRN

18-35 FO.FNC

22-144

Assigns an extended channel
number, one that is greater
than 17. When you set this
bit for an OPEN function
(function codes 1 through 6)
the monitor assigns the next
available channel number. It
then performs the requested
function. On return, the
monitor returns the assigned
channel number in FO.CRN in
the argument block or, if
FO.CFW is set, in the address
pointed to by the left half of
the word at the location
specified in FO.FNC. The
number will be equal to or
greater than 20 so that
existing channel number
allocations will not be
affected.

Specifies the file that is
open on the indicated channel.
Normally, a RENAME function is
performed on the file
specified in the right half of
.FOLEB, and after it is
completed successfully, the
1/0 channel is automatically
closed.

When you set FO.UOC, however,
the right half of .FOLEB is
ignored, and the function is
performed on the file that is
open on the specified channel.

Indicates that the right half
of this function word contains
an address. At that address,
you must store the following
information:

channel-addr"function-code

In the word pointed-to by
FO.CFW, you specify the
address of the channel number
in the left half, and the
function code in the right
half. For this format, the
field FO.CRN is ignored.

Reserved for use by DIGITAL.

Channel number.

Function code. The FILOP.
functions are described
following the argument list
definition.

1 .FOIOS

2 . FODEV

3 . FOBRH

4 . FONBF

5 . FOLEB

6 . FOPAT

FILOP. [CALLI 155]

I/O status (open mode). Note that any bits
appearing here may also be set by OPEN call (see
.OPMOD in OPEN call) .

SIXBIT device name or Universal Device Index.

Buffer ring header pointers:

Bits

0-17
18-35

Meaning

Address of output buffer ring header.
Address of input buffer ring header.

If the value of this word is 0, there is no
corresponding buffer ring header.

Number of buffers needed. The left half is the
number of output buffers needed. The right half
is the number of input buffers needed. If zero
buffers are requested in a FILOP. monitor call,
the monitor does not set up any buffers. It also
does not clear any buffer ring that is already set
up, and does not clear the first word of the
buffer ring header. Thus, a FILOP. causing an
OPEN allows an old buffer ring to be recycled.

This word allows a user program to set up its own
buffer ring. If you specify 777777 octal, the
monitor sets up a ring of 2 buffers for non-disk
devices. If no default has been set for this job,
the monitor uses the system default for non-disk
devices, or a ring of n buffers for disk devices,
where n is specified by the SET DEFAULT BUFFERS
monitor command or SETUUO. This argument to
FILOP. performs the same action as the INBUF and
OUTBUF monitor calls and is needed only for
buffered I/O.

Pointers to RENAME and LOOKUP/ENTER blocks:

Bits Meaning

0-17 Address of RENAME block (see RENAME monitor
call) .

18-35 Address of LOOKUP/ENTER block (see
LOOKUP/ENTER monitor call) .

Length of, and pointer to PATH. block (see PATH.
monitor call). The actual path of the file found
or created is returned in this block. A specific
path for finding or creating the file must still
be specified in the LOOKUP, ENTER, or RENAME
argument block.

22-145

FILOP. [CALLI 155]

7 .FOPPN

8 .FOFSP

9 .FOBSA

10 .FOBSZ

Project-programmer number. Set the FO.PRV flag if
you include this word and want it to take effect.
The monitor then performs the file operation as if
the current job were logged in under the given
PPN. If FO.PRV is set in Word 0 (.FOFNC), and a
PPN is supplied in this word, your program
acquires the file access rights and restrictions
of that PPN. This allows you to do file
operations in behalf of the user whose PPN you
include here. If you specify [1,2] in this word,
you lose full file access. This word is ignored
if the job is not logged in under [1,2] or does
not have JACCT privileges.

Length of and pointer to a block in which the full
file specification of the new file should be
stored. If you include this word, the file
specification is returned automatically.
Alternatively, you can specify Function 33
(.FOFIL) to only return the file specification.
Refer to the SKIP RETURN section for the format of
the returned block.

Buffer starting address. The left half contains
the starting address of the output buffer ring,
(FO.OSA) the right half holds the starting address
of the input buffer ring, (FO.ISA).

Size of the input and output
half, FO.OSZ, contains the
FO.ISZ, the right half, holds
input buffer.

buffers. The left
output buffer size.
the size of the

22.48.2 FILOP. Functions

The function codes and their meanings are described below.

Code

1

2

3

Symbol

. FORED

. FOCRE

. FOWRT

Function

Opens the file described by the LOOKUP/ENTER block
for reading (duplicates LOOKUP call). You must
include the LOOKUP/ENTER block pointer for
directory devices when you are using this
function.

Creates the file described by the LOOKUP/ENTER
block. This function strictly requires creation
of the file; if a matching file is found in the
directory, the error return is taken. The
LOOKUP/ENTER block pointer is required for the
.FOCRE function.

Writes the file described by the LOOKUP/ENTER
block. This function supersedes any matching file
in the directory, or creates a new file. The
LOOKUP/ENTER block pointer is required for the
. FOWRT function .

22-146

4 . FOSAU

5 . FOMAU

6 . FOAPP

7 .FOCLS

10 . FOURB

FILOP. [CALLI 155]

Updates the file described by the LOOKUP/ENTER
block in exclusive access mode. No other user can
write to this file until it is closed. The
LOOKUP/ENTER block pointer is required for the
.FOSAU function. If the specified file does not
exist, it will be created automatically for this
function.

Updates the file described by the LOOKUP/ENTER
block, in multi-access mode. This allows other
users to read and write the file. The
LOOKUP/ENTER block pointer is required for the
.FOMAU function.

Appends to the file described in the LOOKUP/ENTER
block. Note that if the buffers were built by
this FILOP. call, th~ last block of the file will
be read into the first buffer. The byte count and
byte pointer are set to write data immediately
after the last word of the file. The LOOKUP/ENTER
block pointer is required for the .FOAPP function.

Closes the file associated with the channel
specified in the word at addr. This function
requires a special argument list:

addr: EXP channo
EXP CLOSE-flags

Include the CLOSE flags from the CLOSE UUO in
addr+l.

The monitor executes a GETSTS call for the file.
The I/O status bits are returned in the ac. For a
list of I/O status bits, refer to the appropriate
device chapter in Volume 1.

Checkpoints the file associated with the channel
specified in the word at addr. Only the function
word of the FILOP. argume~block is required.
The monitor writes all output buffers to disk,
updates directories, updates checksums in RIB
pointers, and updates the end-of-file pointer.
The file remains open for further I/O.

The .FOURB function is meaningful only for files
that are being written.

NOTE

If output is not complete, the monitor
writes the last partially filled word;
this may leave null bytes in the word.

22-147

FILOP. [CALLI 155]

11 .FOUSI

12 .FOUSO

13 . FORNM

14 . FODLT

Performs a USETI monitor call (specifies next
block number to be input) for a specified block of
the file associated with the channel specified at
addr, setting that block for next input. The
format of the argument list for the .FOUSI
function ~s:

addr: XWD
EXP

channo, . FOUSI
blockno

In the argument list, channo and blockno give the
channel number and block number of the file.
Refer to the USETI call for more information.

On a skip return, the I/O status bits are returned
in the ac. The monitor takes the error return if
the bloc~number is larger than the specified file
or no previous LOOKUP was executed. .FOUSI
returns error code %ERILU if the argument block is
not exactly two words long.

Performs a USETO monitor call for a specified
block of the file associated with the channel
specified at addr, setting that block for next
output. The~rmat of the argument list for the
.FOUSO function is:

addr: XWD
EXP

channo, .FOUSO
blockno

In the argument list, channo and blockno give the
channel number and block number of the file.
Refer to the USETO call for more information.

The monitor takes the error return if not enough
space is available or no previous ENTER was
executed. The I/O status word is returned in the
ac for a successful return. .FOUSO returns error
code %ERILU if the argument block is not exactly
two words long.

Renames the file described by the RENAME block.
The LOOKUP/ENTER block pointer and the RENAME
block pointer are required for the . FORNM
function, unless the file is already open on the
specified channel. However, if a file is open on
the channel specified in . FOFNC, and if you set
the flag FO.UOC in the same word, then the right
half of . FOLEB is ignored, and the function is
performed on the open file.

Deletes the file described by the LOOKUP block.
Pointers to both LOOKUP and RENAME blocks are
required for this function, unless you set the
flag FO.UOC, and a file is open on the channel
specified in .FOFNC. In this case, the right half
of .FOLEB is ignored and the function is performed
on the open file.

22-148

15 . FOPRE

16 .FOSIO

17 .FOINP

20 . FOOUT

21 .FOSET

FILOP. [CALLI 155]

Preallocates space for the file described by the
LOOKUP/ENTER block. This function is most useful
for batch jobs. If a preallocated file is entered
but not written, the space is still allocated; a
CLOSE for the file will not deallocate the space.

If the file is entered immediately after being
preallocated, it is not superseded; any subsequent
ENTER to the file will supersede it. The
LOOKUP/ENTER block pointer is required for the
.FOPRE function.

Opens a device for super-I/O (refer to the
SUSET. UUO). The first four words of the argument
list are required for this function. This
function does not require .FOLEB.

Performs INPUT monitor call. Reads data from
file opened on the specified channel.
argument list is:

addr: XWD
addr1
addr2

channo, . FO INP

In the argument list:

the
The

o addr1 is the address of the next buffer to be
used in non-dump I/O, or the address of the
dump mode command list if using dump I/O.
This word is optional for non-dump I/O.

o addr2 is the optional address of a word
containing the block number of the file to
perform a USETI to before writing.

The I/O status bits are returned in the ac.
Performs OUTPUT monitor call. writes data ·to
file opened on the specified channel.
argument list is:

addr: XWD
addr1
addr2

channo, . FOOUT

In the argument list:

the
The

o addr1 is the address of the next buffer to be
used in non-dump I/O, or the address of the
dump mode command list.

o addr2 is the optional address of a word that
contains the block number of the file to
perform a USETO to before reading.

The I/O status bits are returned in the ac.
Performs SETSTS monitor call. The forma~ of the
argument list is:

addr: XWD
EXP

channo, .FOSET
setsts-bits

This function returns error code %ERILU if the
argument block is not exactly two words long.

22-149

FILOP. [CALLI 155]

22 .FOGET

23 . FOREL

24 . FOWAT

25 .FOSEK

26 . FORRC

27 .FOGTF

30 . FOMTP

31 . FOUTP

32 . FORAW

Performs GETSTS monitor call.
are returned in the ac.
argument list is:

The I/O status bits
The format of the

addr: XWD channo, . FOGET

Performs RELEAS monitor call. The format of the
argument list is:

addr: XWD channo, . FOREL

waits for I/O to finish.
argument list is:

The format of the

addr: XWD channo, . FOWAT

Obsolete.

Rewrites the RIB of a file if it has changed.
This function is ignored and the skip return is
taken if the channel is not a disk or if the RIB
has not changed. The argument list for this
function is:

addr: XWD

Returns the block
DECtape. If the
DECtape, the ac is
the UGETF call,
channel numbers.
function is:

addr: XWD

channo, . FORRC

number of the first file on a
device on the channel is not a

not changed. This duplicates
but allows you to use extended

The argument list for this

channo, .FOGTF

Performs the function of an MTAPE. call, but
allows you to use extended channel numbers. The
MTAPE. code is included in the FILOP. argument
list as shown:

addr: XWD
EXP

channo, . FOMTP
n

In the argument list shown here, the value of n is
equivalent to the MTAPE. code for the function to
be employed. For example, EXP 1 would perform the
MTREW. function.

This function returns error code %ERILU if the
argument block is not two or more words long.

Clears a DECtape directory. Duplicates the UTPCLR
call. The argument list for this function is:

addr: XWD channo, .FOUTP

This function returns the
successful.

ac unchanged if

Renames the file with the specified number of
words for allocation. Same function as . FORNM,
but allocation in words is specified in .RBSIZ of
extended RENAME argument block.

22-150

33 .FOFIL

34 .FOFXI

FILOP. [CALLI 155]

Returns the file specification of the file that is
open on this channel. To return the file
specification as well as to perform another
function, include' Word 10 (.FOFSP) in the argument
block instead of using the .FOFIL function. The
argument list for this function is:

addr: XWD
XWD

channo, .FOFIL
len,addr2

The second word contains the length (len) and
address (addr2) of the block where the file
specification should be stored. This block format
is described in the SKIP RETURN section.

Performs an IN
addressing and
is:

monitor call,
dump mode I/O.

using extended
The argument list

addr: XWD
addrl
addr2

channo, .FOFXI

In the argument list:

o channo is the channel number from which data
is read from the opened file.

o addrl is the address of the command list,
which has a two-word format:

1. The first word of each command word pair
contains the length of the command list.

2. The second
holds the
performed.
address in
of the next
length and
of the list

word of. each command word pair
address where I/O should be
If the length is zero, the

the second word is the location
command list. When both the
the address are zero, the end

has been encountered.

o addr2 is the optional address of a word
containing the block number of the file to
perform a USETI to before reading.

The I/O status bits are returned in the ac.

22-151

FILOP. [CALLI 155]

35 . FOFXO Performs an OUT monitor call, using extended
addressing and dump-mode I/O. The argument list
is:

addr: XWD
addr1
addr2

channo, .FOFXO

In the argument list:

o channo is the channel number on which data is
written to the opened file.

o addr1 is the
Conunand list
.FOFXI.

address
format

of
is

the conunand list.
described above in

o addr2 is the (optional) address of a word
containing the block number of the file to
perform a USETO to before writing.

The I/O status bits are returned in the ac.

22.48.3 Simu1taneous Fi1e Access with FILOP. UUO

Multiple channels of a single job and/or multiple jobs can update a
file simultaneously using FILOP. The monitor imposes no restrictions
or interlocks when a file is being simultaneously updated. Therefore,
users must ensure that separate jobs do not update the same block of
the same file at the same time. The ENQ/DEQ Facility (refer to
Chapter 8) may be used to ensure that such interference does not
occur, but the monitor does not require its use when simultaneously
updating a file.

To update a file simultaneously, your program performs a
FILOP. monitor call using function code 5 (.FOMAU). A file can be
updated in thi~ manner when the file is idle, when it is being read,
or when it 1S being updated by other jobs. A file cannot be
simultaneously updated if the file is in single-access update mode;
that is, when a LOOKUP and an ENTER have been performed or a
FILOP. has been performed with Function code 4 (.FOSAU) or Function 6
(. FOAPP) .

Note that although an extended LOOKUP/ENTER/RENAME block can be
specified by the FILOP. monitor call, your program cannot change the
file attributes of a simultaneously updated file. The FILOP. monitor
call uses the first four words of the extended argument list.

In order to prevent excessive monitor overhead, files that are to be
simultaneously updated should be pre-allocated into contiguous blocks,
if possible. This will prevent the creation of inefficient retrieval
pointers, and will lessen the chance that extended RIBs will be
created.

22-152

FILOP. [CALLI 155]

SKIP RETURN

The requested function has been performed.

The file specification is returned when you use function .FOFIL or
when you specify an address in .FOFSP (Word 10 in the argument block) .
For .FOFSP, the following data block is returned at the address you
specify in the right half of the word. For .FOFIL, this data is
returned in the argument block at addr2.

Word

0
1
2
3
4
5
6-10

Symbol Contents

. FOFND Reserved for use by DIGITAL.

. FOFDV Device name.

. FOFFN File name.

. FOFEX File extension.

. FOFPP PPN.

. FOFSF First SFD .
Subsequent levels

Words 5 through
appropriate.

10

NOTE

are

of SFDs.

returned only where

The returned block is ended by a zero word. When you
reserve the block for the file specification, be sure
to include space for this zero word.

ERROR RE TURN

Error codes are returned in the ac for the FILOP. call. If -1 is
returned in the ac, an invalid argument list was supplied. Other
error codes are identical to those used by LOOKUP/ENTER. These are
listed in Section 11.14, in Volume 1. Several functions return the
I/O status word, as mentioned in the function ~escriptions.

RELATED CALLS

0 CLOSE,

0 ENTER

0 GETSTS

0 IN/INPUT

0 LOOKUP

0 MTAPE

0 OPEN

0 OUT/OUTPUT

0 PATH.

0 RELEAS

0 RENAME

0 SETSTS

22-153

FILOP. [CALLI 155]

o SUSET.

o UGETF

o USETI/USETO

o UTPCLR

o WAIT

22-154

FRCUUO [CALLI 106]

22.49 FRCUUO [CALLI 106]

FUNCTION

Forces a monitor command for a job or a terminal.
requires JP.POK, JACCT, or [1,2] privileges.

This monitor call

CALLING SEQUENCE

addr

MOVE ac, [XWD len,addr]
FRCUUO ac,

error return
skip return

SIXBIT /command/
/ XWD O,jobno \ ;optional arguments
\ XWD O,udx /

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.
len, the default is 1.

o addr is the address of the argument list.

If you give a zero

o command is the name of a command (from the list below) .

o jobno is the number of a logged-in job. If you omit the
jobno, or specify it as zero, the current job is assumed.

o udx is the Universal Device Index for the terminal.

The names of the commands that can be forced are:

Command

. BPT

.BYE

. FCONT

. HALT

. HELLO

.NETLD

. RESTA

.TYPE

HALT

INITIA

Meaning

Forces a DDT breakpoint trap, simulating <CTRL/D> .

Detaches the job, this command is forced when a dataset
disconnects.

Continues the job; this command is forced when a job is
continued after it was halted by "Waiting for operator
action." (Refer to JCONTINUE monitor command in the
Commands Manual.)

Stops the job; this command is forced when you type
CTRL/C.

Connects (greets) the job; this command is forced when
a dataset or network connect occurs, and runs INITIA.

Invokes execution of the program which does automatic
down-line loading for ANF-10 series remote software.

Greets the job but does not run INITIA .

Types the current input buffer; this is equivalent to
typing CTRL/R.

Stops the job (regardless of CTRL/C trapping) .

This command is forced when the system is initialized
and is used to run INITIA for certain terminals.

22-155

FRCUUO [CALLI 106]

KJOB Kills the job; this command is used to force a job to
terminate.

USESTA Types status information; this is equivalent to typing
either CTRL/T or the USESTAT command.

SKIP RETURN

The command is executed; the ac is unchanged.

ERROR RETURN

The ac is cleared.

EXAMPLES

ADDR:

MOVE
FRCUUO

JRST
JRST
SIXBIT
XWD

T1, [XWD 2, ADDR]
T1,
FRCERR
CONTIN
/.TYPE/
0,0

This code sequence displays the contents of the terminal input buffer
for the current job, as though the user had typed <CTRL/R>.

22-156

GETLCH [TTCALL 6,]

22.50 GETLCH [TTCALL 6,]

FUNCTION

Returns the line characteristics for a terminal line.

CALLING SEQUENCE

addr:

GETLCH addr
return

XWD O,lineno

In the calling sequence, the program supplies the following variables:

RETURN

o addr is the address of the argument list.

o lineno is the line number
characteristics are required.

for the terminal whose

If the job is detached and addr contained -1, the monitor returns a 0
word. On a skip return, the monitor returns the terminal's UDX in the
right half of addr (.UXTRM + lineno).

The following line characteristics are returned in the left half of
the word at addr:

Bit Symbol

0 GL. ITY
1 GL.CTY
2 GL.DSP
3 GL.DSL
4 GL.CNE
5 GL.HDP
6 GL.REM
7 GL.RBS
8-9
10 GL.8BM
11 GL.LIN
12 GL. SLV
13 GL.LCM
14 GL.TAB
15 GL.LCP
16 GL.PTM

17 GL.NEC

Characteristic

Pseudo-terminal (PTY).
Operator's terminal (CTY).
Display console (DIS).
Dataset line.
No characters are echoed.
Half-duplex line.
Remote terminal.
Remote batch terminal.
Reserved for use by DIGITAL.
Terminal is open in 8-bit I/O mode.
User has typed some input ..
TTY SLAVE is in effect.
Terminal in lowercase mode.
Terminal has tab capability.
Local copy only (no echo) .
Papertape mode is on (CTRL/Q, CTRL/S, and so
forth, control papertape motion instead of
terminal output) .
Terminal is in no-echo mode. This characteristic
is set by setting IO.SUP in the OPEN call, or by
SETSTS, or by TRMOP function .TOECH. This setting
is overridden when the job goes to monitor level,
and echoing resumes. You can clear this bit using
a RESET call.

If you use an invalid line number, the monitor returns 0 in the left
half of the word at addr.

22-157

GETLCH [TTCALL 6,]

RELATED CALLS

0 GETLIN

0 SETLCH

0 SETSTS

0 TRMOP.

0 TTCALL

COMMON PROGRAMMING ERRORS

Typing a corruna after addr.

22-158

GETLIN [CALLI 34]

22.51 GETLIN [CALLI 34]

FUNCTION

Returns the SIXBIT monitor-assigned name of the terminal attached to
your job.

CALLING SEQUENCE

RETURN

GETLIN ac,
return

The SIXBIT name of the terminal is in"the ac, left-justified, in the
form TTYnnn, where nnn is the dynamic terminal number associated with
your job's terminal.---

If your job is not attached to any terminal, the ac contains:

XWD O,'nnn'

In this format, nnn is the right half of the name of the terminal to
which your job was-last attached '(that is, nnn in TTYnnn)

EXAMPLES

GETLIN T1, ;Get terminal name
TLNN T1,-1 ; Job detached?
JRST NOTTY ;Yes

;No

This sequence gets the name of the terminal for the job and checks
whether the job is currently detached.

COMMON PROGRAMMING ERRORS

Omitting the comma after the ac.

22-159

GETPPN [CALLI 24]

22.52 GETPPN [CALLI 24]

FUNCTION

Returns the project-programmer number (PPN) for your job.

CALLING SEQUENCE

GETPPN ac,
normal return

skip return

NORMAL RETURN

The GETPPN monitor call returns the project number in the left half of
the ac, and the programmer number in the right half of the ac.

SKIP RETURN

The skip return is taken if your program has the JACCT bit set and
another job is logged in under the same PPN.

EXAMPLES

GETPPN TI,
JFCL
MOVEM T1,MYPPN

This code gets the PPN regardless of whether the program is JACCTed.

RELATED CALLS

OTHUSR

COMMON PROGRAMMING ERRORS

Forgetting the sequence of skip return followed by alternate return.

22-160

GETSEG [CALLI 40]

22.53 GETSEG [CALLI 40]

FUNCTION

Replaces the current program high segment with a given high segment.
Refer to Chapter 2 for specific information about the implementation
of this call and the state of memory during the GETSEG operation.

CALLING SEQUENCE

addr:

/
\
/
\

MOVE I ac,addr
GETSEG ac,

error return
skip return

SIXBIT/device/
SIXBIT/filename/
SIXBIT/extension/
EXP 0
XWD proj,prog
XWD 0,addr2
EXP 0
XWD -1,addr3

\ ;or PATH. pointer
/ ;core argument

\
/

In the calling sequence, the program supplies addr, which is is the
address of the argument block. This argument block is identical to a
LOOKUP/ENTER argument block. These types of argument blocks are
described in Chapter 11 (Volume 1) of the TOPS-I0 Monitor Calls
Manual. .

The core argument word
is placed into the
address containing the
placed.

is optional. If it is zero, the high segment
current PC section. Otherwise, addr3 is the
section number where the high segment will be

The GETSEG monitor call allows your program to initialize
segment from a file or from a currently-loaded sharable
without affecting your program's low segment. This facility
used for shared data segments, shared program overlays, and
routines (such as FORTRAN and COBOL object-time systems) .

a high
segment
can be
runtime

On KL processors, if the high segment obtained by the GETSEG monitor
call is an execute-only segment, it is a concealed high segment. You
can give zeros for any argument except the file name or device. The
defaults are:

extension
PPN

SKIP RETURN

.EXE
default directory path

The monitor replaces the current high segment with the given high
segment.

NOTES

If the given file contains both a high and a low
segment, the monitor brings in only the high segment.

The contents of the accumulators are not preserved
(this aspect varies from monitor version to monitor
version) .

The left half of .JBHRL is cleared.

22-161

GETSEG [CALLI 40]

The right half of .JBHRL is set to the new highest
legal user address in the high segment .

. JBSA and .JBREN are cleared if they contain addresses
in the new high segment. This removes the program's
start address, so that an error will occur on a START
or REENTER command.

Channel 0 is released by
channels are not released.

the GETSEG call. Other
Refer to the RELEAS UUO.

A GETSEG call made from the current program's high segment can succeed
only if the start of the new high segment coincides with the skip
return for the call. Program execution returns to the user program at
the PC corresponding to the skip return from the GETSEG UUO in the
previous segment. It is the user's responsibility to ensure that this
PC contains instructions he wishes to be executed.

ERROR RETURN

See Section 11.14 for a list of GETSEG errors.

If the segment already exists in the user's address space, error code
70 is returned in the ac.

RELATED CALLS

o MERGE.

o RELEAS

o RUN

o SEGOP.

COMMON PROGRAMMING ERRORS

o Forgetting to save the acs over the GETSEG.

o Forgetting that channel 0 is destroyed.

o Forgetting that a GETSEG from a high .segment returns control
to the PC in the new high segment.

22-162

GETSTS [OPCODE 062]

22.54 GETSTS [OPCODE 062]

FUNCTION

Returns the I/O status bits for a
GETSTS on an extended I/O channel.
each device are listed in Volume 1 in
device.

device. Use FILOP. to perform
The specific I/O status bits for
the chapter specific to the

CALLING SEQUENCE

addr:

GETSTS channo,addr
return

BLOCK 1

In the calling sequence, the program supplies the following variables:

RETURN

o channo is the channel number of the channel for which the I/O
status word is desired.

o addr is the address of the word to receive the I/O status
word.

The monitor returns the I/O stat~s bits in the right half of the word
at addr, and the data mode for I/O in the left half of the word at
addr~he I/O status bits that are possible are:

Bits Symbol

18-21 IO.ERR

18 IO.IMP

19 IO.DER

20 IO.DTE

21 IO.BKT

22 IO.EOF

23 IO.ACT

24-29

30 IO.SYN

31 IO.UWC

32-35

Meaning

Bit mask for device-independent I/O error flags.

Software detected improper data mode, or checksum
error occurred.

Device error. Refer to specific device for cause
of this error.

Data error.

Block too large, quota exceeded, or file structure
is full.

End of file was reached.

Device is active.

Device-dependant error flags. These are listed
for each device in the appropriate chapter in
Volume 1.

Synchronous mode I/O.

Use user's word count.

Data mode of the I/O, indicated by one of the
codes that are listed in Table 11-2 in Volume 1.

22-163

GETSTS [OPCODE 062]

RELATED CALLS

0 CLRST.

0 ERLST.

0 FILOP.

0 SENSE.

0 SETSTS

0 STATO

0 STATZ

COMMON PROGRAMMING ERRORS

o Forgetting that there is only one return from the call.

o If you give a nonexistent or uninitialized channel number,
the monitor stops your job and prints the following message
on your terminal:

?I/O to unassigned channel at user PC address

where address gives the program counter for your job at the
time of the failure.

o Forgetting to clear the error status bits before retrying the
GETSTS function. An INPUT function followed by GETSTS will
not clear previously set bits. You should use SETSTS to
clear the I/O error bits before attempting to read the new
I/O error status.

22-164

GETTAB [CALLI 41]

22.55 GETTAB [CALLI 41]

FUNCTION

Returns a word from one of the monitor's GETTAB tables, allowing your
program to read many types of job and system information. The GETTAB
tables are listed in Chapter 23.

CALLING SEQUENCE

MOVE ac, [XWD index, table]
GETTAB ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o index is an index into the specified table. If the table is
indexed by job number, you can use -1 to obtain information
about your own job.

If the table is indexed by job number or segment number, you
can use -2 to return information about your own high segment.

o table gives the number of the GETTAB table.

SKIP RETURN

The requested word from the table is returned in the ac.

ERROR RETURN

The index or the table number was invalid.

EXAMPLES

See Chapter 23 for examples.

22-165

GOBSTR [CALLI 66]

22.56 GOBSTR [CALLI 66]

FUNCTION

Returns file structure names from a job search list or the system
search list. Privileges are not requires to examine the search list
of any job with your PPN or to examine the system search list.

To use the GOBSTR call for other jobs, you must have either the JP.SPA
privilege or the JP.SPM privilege set in your .GTPRV word, or you must
have JACCT privileges, or the job must be logged into [1,2].

For a discussion of file structures in a search list, see the SETSRC
program in the TOPS-10 User Utilities Manual.

CALLING SEQUENCE

addr:

MOVE ac, [XWD len,addr]
GOBSTR ac,

error return
skip return

EXP jobno
XWD projno,progno

/ EXP -1 \
I EXP a I
\ SIXBIT/structure/ /

EXP a
BLOCK 1

; .DFGJN
; .DFGPP
; .DFGNM for first in list
; .DFGNM for first after FENCE
; .DFGNM for next in list
; .DFGDR

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.

o addr is the address of the argument list.

o addr+2 contains the structure name, or 0, or -1. Therefore
you can begin with the first name in the list by using -1 at
addr+2; then when the monitor returns the first name in the
list, you can leave the name in addr+2 to call for the second
name, and so forth. If the next item in the list is FENCE,
the monitor returns O. If there are no more items in the
list, the monitor returns -1.

o jobno is the number of a logged-in job (use -1 for the
current job; use a for the system search list) .

o projno,progno is a project-programmer number (PPN)

o structure is the SIXBIT name of a file structure.

GOBSTR status bits are returned at addr+4 as follows:

Bits

a

1

Symbol

DF.SWL

DF.SNC

Meaning

If on, software write-protect is set.

If on, creation of files is not allowed on this
structure, unless the structure name is explicitly
included in the file specification. Refer to
Chapter 12 for more information.

22-166

GOBSTR [CALLI 66]

SKIP RETURN

The monitor returns the required SIXBIT structure name (or 0 or -1) at
addr+2, and the GOBSTR status word at addr+4.

ERROR RETURN

The monitor returns one of the following error codes in the ac:

Code

3

6

10
12

EXAMPLES

Symbol

DFGIF%

DFGPP%

DFGNP%
DFGLN%

Meaning

File structure name is not
structure name in SIXBIT.
The specified job number and
number do not correspond.
Your job is not privileged.
The specified length of the
invalid.

0, -1, or a file

project-programmer

argument block is

The following code reads all the structures in the job search list.

LOOP:

ADDR:

MOVE I
MOVE
GOBSTR

STRTAB:

JRST
MOVE
MOVEM
AOJE
AOJA
EXP
XWD
EXP
EXP
EXP
BLOCK

RELATED CALLS

o DSKCHR

o JOBSTR

o STRUUO

o SYSSTR

T1,0
T2, [.DFGST+1"ADDR]
T2,
ERROR
T2,ADDR+.DFGNM
T2,STRTAB{T1)
T2,CONTIN
T1,LOOP
JOBNO
PROJ,PROG
-1
o
o
30

22-167

;Initialize counter

;Get next structure

;Get structure name
;Save in table
;Last one if -1
;Bump table pointer and loop
;Job number
;PPN
;Get first one in list

;Space to store search list

GTNTN. [CALLI 165]

22.57 GTNTN. [CALLI 165]

FUNCTION

Returns the node number and line number for a terminal.
applicable to network systems only.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/terminal-name/] \
I MOVE I ac,channo I

\ MOVEI ac,udx /
GTNTN. ac,

error return
skip return

This call is

In the calling sequence, the program supplies the following variables:

o terminal-name is the monitor-assigned name of the terminal,
returned when you use the GETLIN monitor call.

o udx is the Universal Device Index for the terminal.

o channo is the channel number of the channel to which the
terminal is connected.

SKIP RETURN

The monitor returns the node number and the line number in the ac in
the form:

node-number"line-number

The node-number is the number of the node at which the specified
terminal is located. The line-number on non-network systems is
equivalent to the terminal number. On a network system, line-number
is the physical line number of the terminal on the node to which the
terminal is connected.

Networked terminals are assigned logical line numbers from a pool of
network terminal numbers when they connect to a host. Therefore, the
logical line number will change as the particu'lar node to which the
terminal is attached comes on-line, and as the terminal connects to,
and disconnects from a host.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

a
1
2

Symbol

NTNSD%
NTNAT%
NTTNC%

RELATED CALLS

o GTXTN.

o NETOP.

Error

Nonexistent device.
Device is not a terminal.
Terminal is not connected.

22-168

GTXTN. [CALLI 166]

22.58 GTXTN. [CALLI 166]

FUNCTION

Returns the physical name of the terminal for a given node and line
number. This call applies to network systems only.

CALLING SEQUENCE

MOVE ac, [XWD nodeno,lineno]
GTXTN. ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o nodeno is the node number for a terminal.

o lineno is the physical line number for the terminal at the
node.

SKIP RETURN

The physical name of the terminal is returned in ac in the form:

SIXBIT/name/

In the argument list, the program supplies the name, which is the
physical name of the terminal (such as TTY427).

ERROR RETURN

One of the following error codes is returned in the ac:

Code

0

1

RELATED

0

0

Symbol

XTUNT%

XTNLT%

CALLS

GTNTN.

NODE.

Error

Unknown terminal (node number or the line number
specified is not known or node or line is not
connected to the DECsystem-10) .
Not a legal terminal.

22-169

HIBER [CALLI 72]

22.59 HIBER [CALLI 72]

FUNCTION

Suspends execution of the job until a specified event occurs.

CALLING SEQUENCE

MOVE ac, [flags+sleeptime]
HIBER ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o flags specify conditions described below.

o sleeptime gives the amount of time for the job to sleep. If
HB.SEC is set in flags, the sleeptime is specified in
seconds; otherwise, it is specified in milliseconds.

The sleeptime is rounded upward to the next larger jiffy, with a
maximum of 262 seconds. If you set HB.SEC, the maximum sleeptime is
about 72 minutes (at 60 Hz) or 87 minutes (at 50 Hz). If you need a
longer sleeptime, use the .CLOCK function of the DAEMON UUO. If you
give the sleeptime ~s 0, the job sleeps until awakened by one of the
specified events, or by a WAKE monitor call.

If your job is hibernating, it can be woken by another job if that job
has sufficient privileges. Refer to the WAKE UUO.

To prevent your job from oversleeping and missing an event, the
monitor sets the wakeup bit even if the job is already awake. You can
use another HIBER call to clear the bit. You cannot assume that any
of the specified events actually occurred to WAKE your job; therefore
you should test for all the events that may have caused your job to
awaken, and explicitly execute another HIBER call if you were WAKEd
unexpectedly.

You can also clear the wake-enable bit for your job by using the RESET
monitor call. Note that until the first HIBER call 1S executed, there
is no protection against wakeup commands from other jobs. To
guarantee your job's protection, you should execute a WAKE monitor
call for your job, followed by a HIBER call giving the protection you
want. The HIBER will return immediately, having set the protection
codes as desired.

The bits and their meanings are:

Bits Symbol

o HB.SWP

1 HB.SEC

9 HB.DIN

10 HB.IPC

Meaning

Clear the in-core protect time,
available for swapping out.

making the job

The sleeptime is specified in seconds.

When set in conjunction with HB.RTL and/or HB.RTC,
enables the JB.UHI bit in JOBSTS, which allows
terminal input from programs such as BAT CON and
OPR. The job is awakened on input to the
terminal.

Wake the job when an IPCF packet is placed in its
input queue.

22-170

11 HB.RIO

12 HB.RPT

13 HB.RTL

14 HB.RTC

15 HB.RWJ

16 HB.RWP

17 HB.RWT

HIBER [CALLI 72]

Wake the job when asynchronous I/O is completed.

Wake the job for PTY activity.

Wake the job when a line of terminal input is
typed on any terminal assigned to your job, or if
there is a rescanable line available on the job's
controlling terminal.

Wake the job when a character of terminal input is
ready.

Wake the job only on a WAKE monitor call from the
job itself. Setting this bit prevents other jobs
from waking your job, unless the other job is
privileged.

Wake the job only on a WAKE monitor call from a
job having the same programmer number.

Wake the job only on a WAKE monitor call from a
job having the same project number.

SKIP RETURN

When an enabled HIBER condition occurs,
normal return.

ERROR RE TURN

execution resumes at the

The HIBER call takes the error return only if it is not implemented on
your system.

EXAMPLES

MOVSI Tl, (HB.RWP+HB.RWT)
HIBER Tl,

JRST ERROR

This code sequence causes the job to sleep until awakened by a WAKE
monitor call from another job having the same project-progra~ner
number. See also RTTRP call.

RELATED CALLS

o SLEEP

o WAKE

COMMON PROGRAMMING ERRORS

o Forgetting to protect against WAKEs from other jobs.

o Assuming a particular event woke your job, without actually
checking.

22-171

HPQ [CALLI 71]

22.60 HPQ [CALLI 71]

FUNCTION

Places your job in, or removes your job from a high-priority scheduler
queue.

You cannot use HPQ unless your system administrator has set the
privilege value JP.HPQ to a nonzero value. This value is the highest
priority queue you can request. This monitor call is primarily
intended for real-time programs where fast response time is critical.
Refer to Chapter 9 of the Monitor Calls Manual, Volume 1, for more
information.

CALLING SEQUENCE

MOVE I aC,queue
HPQ ac,

error return
skip return

In the calling sequence, the program supplies the queue, which is the
number of the required high priority queue. The lowest queue number
is 1; the highest is a system parameter. If you give queue as 0, your
job returns to the normal scheduler queue.

SKIP RETURN

The monitor places your job in the given queue.

ERROR RETURN

The ac contains -1, you gave an illegal value for queue,
not a-privileged user.

RELATED CALLS

o RTTRP

o TRPSET

o UJEN

22-172

or you are

IN [OPCODE 056]

22.61 IN [OPCODE 056]

FUNCTION

Reads data from an initialized channel into memory.
perform an IN for an extended I/O channel.

Use FILOP. to

CALLING SEQUENCE

IN channo,addr
success return

skip return

In the calling sequence, the proram supplies the following variables:

o channo is the number of an initialized I/O channel.

o addr is one of the following:

If the channel was initialized for dump mode,
gives the address of an I/O command list.

then addr

If the channel was initialized for buffered mode, then
addr gives the address of the second word of the next
buffer to be used; if you give 0 (the normal case), the
next buffer in the ring is used.

Note that the return locations for this call are in the
reverse order from the convention for other calls, because
the success return follows the calling instruction and the
error return follows the success return.

SUCCESS RETURN

Data is input from the channel.

SKIP RETURN

The monitor found an end-of-file mark or errors in the data (reflected
in the I/O status word). If using non-blocking I/O mode, the error
return could indicate no available data. This is indicated by no
error bits set in the I/O status word. Use the GETSTS call to read
the I/O status bits.

EXAMPLES

See LOOKUP call.

RELATED CALLS

o FILOP.

o INPUT

o OUT

o OUTPUT

22-173

IN [OPCODE 056]

COMMON PROGRAMMING ERRORS

o If the channel was not initialized, the monitor stops the job
and prints:

?I/O to unassigned channel at user PC xxxxx

o If the specified address is illegal, the monitor stops the
job and prints:

?Address check for device yyyyyy: UUO at user PC xxxxx

o If the monitor cannot allocate buffers in your address space,
the monitor stops the job and prints (see INBUF):

?Address check for device yyyyyy: UUO at user PC xxxxx

22-174

INBUF [OPCODE 064]

22.62 INBUF [OPCODE 064]

FUNCTION

Sets up an input buffer ring with the specified number of buffers for
a given initialized channel. Use FILOP. to perform an INBUF on an
extended I/O channel.

NOTE

Buffers are allocated by the monitor in the user's
address space starting at the location pointed to by
the contents of .JBFF. This symbol represents a word
in the Job Data Area. As the JDA exists only in
Section 0, you cannot initialize a buffer in a
non-zero section, unless that section is mapped to
section O. Use the FILOP. monitor call to specify
buffer starting addresses in a non-zero section.

CALLING SEQUENCE

INBUF
return

channo, buffers

In the calling sequence, the program supplies the following variables:

RETURN

o channo is the number of an initialized channel.

o buffers is the number of buffers to set up in the ring. For
disk devices, if you give buffers as 0, the monitor uses the
value given in the SET DEFAULT BUFFERS monitor command or
SETUUO. If no value has been set, the system default (a
MONGEN parameter) is used. For non-disk devices, 2 buffers
are assumed.

The buffer ring is set up.

RELATED CALLS

o FILOP.

o OUTBUF

COMMON PROGRAMMING ERRORS

o If the channel was not initialized, the monitor stops the job
and prints:

?I/O to unassigned channel at user PC xxxxx

o If the monitor cannot allocate buffers in your address space,
the monitor stops the job and prints:

?Address check for device yyyyyy: UUO at user PC xxxxx

22-175

INBUF [OPCODE 064]

o If your program tries to use INBUF or OUTBUF to create
buffers outside the job's core image, the job cannot expand
because the system runs out of virtual memory and the monitor
stops the job and prints:

?Illegal address in UUO at user PC xxxxx

o If you use INBUF or OUTBUF to, set up a buffer ring in a
non-zero section, the monitor stops the job and displays the
following error message:

?Illegal INBUF/OUTBUF for device [name]; UUO at user PC [loc]

22-176

INCHRS [TTCALL 2,]

22.63 INCHRS [TTCALL 2,]

FUNCTION

Reads an ASCII character from the job's controlling terminal's input
buffer, skipping on return if a character was available. INCHRS also
sets "character mode," in which the program will not wait for the end
of the line of input from the terminal. Therefore, CTRL/U, DELETE,
and other line-editing characters will not function as they do for the
monitor. See Chapter 15 for more specific information.

CALLING SEQUENCE

addr:

INCHRS addr
return 1
return 2

BLOCK 1

;no character in buffer
;character read from buffer

In the calling sequence, the program supplies the addr, which is the
address of a word to contain the input character.

RETURN

If a character has been input, the monitor copies it, right-justified,
into the word at addr. The remainder of the word is cleared.

RELATED CALLS

o TRMOP.

o TTCALL

COMMON PROGRAMMING ERRORS

Typing a comma after addr.

22-177

INCHRW [TTCALL 0,]

22.64 INCHRW [TTCALL 0,]

FUNCTION

Inputs an ASCII character from the terminal's input buffer. The
monitor waits for a character if none is available. INCHRW inputs the
character regardless of whether a complete line has been typed. If
the program is not prepared to handle every possible control
character, you should consider using the INCHWL call instead of
INCHRW.

CALLING SEQUENCE

INCHRW addr
return

In the calling sequence, the program supplies the addr, which is the
address of the word to receive the ASCII input character.

If no character has been input, the monitor waits for a character.

RETURN

If a character has been input, the monitor places the character,
right-justified, ~rito the word at addr. The remainder of the word is
cleared.

RELATED CALLS

o TRMOP.

o TTCALL

COMMON PROGRAMMING ERRORS

Typing a comma after addr.

22-178

INCHSL [TTCALL 5,]

22.65 INCHSL [TTCALL 5,]

FUNCTION

Inputs a character in line mode from the terminal's
skipping on return if the input was terminated
character such as carriage-return/line-feed.

CALLING SEQUENCE

INCHSL addr
return 1
return 2

input buffer,
by a line break

In the calling sequence, the program supplies the following variables:

RETURN

o addr is the address of the word to receive the character
(right-justified; the rest of the word is cleared) .

o return 1 is the return instruction when a line break has not
been input from the terminal

o return 2 is the return instruction when a line break
character has been input from the terminal.

If a line break has been input from the terminal, the monitor returns
at return ~ with the next character of the line, right-justified in
addr; if not, it returns at return 1.

RELATED CALLS

o TRMOP.

o TTCALL

COMMON PROGRAMMING ERRORS

Typing a comma after addr.

22-179

INCHWL [TTCALL 4,]

22.66 INCHWL [TTCALL 4,]

FUNCTION

Inputs a character from the terminal input buffer, waiting until a
break character is encountered. With this type of input, the monitor
handles line-editing characters like DELETE, CTRL/R, and so forth.

See Chapter 15 for a discussion of break characters.

CALLING SEQUENCE

INCHWL addr
return

In the calling sequence, the program supplies the addr, which gives
the address of the word to contain the input character.

RETURN

The character is right-justified in the word at addr.
of the word is cleared.

RELATED CALLS

o TRMOP.

o TTCALL

COMMON PROGRAMMING ERRORS

Typing a comma after addr.

22-180

The remainder

INIT [OPCODE 041]

22.67 INIT [OPCODE 041]

Obsolete; use OPEN or FILOP. monitor calls.

22-181

INPUT [OPCODE 066]

22.68 INPUT [OPCODE 066]

FUNCTION

Inputs data from an initialized
perform an INPUT on an extended
except INPUT does not give an
condition occurs. The user
GETSTS, STATZ, or STATO.

channel to memory. Use FILOP. to
I/O channel. INPUT is the same as IN,
error return if an error or EOF

must check for such conditions with

NOTE

Programs doing non-blocking I/O should use the IN
monitor call or FILOP. function .FOINP.

CALLING SEQUENCE

INPUT
return

channo,addr

In the calling sequence, the program supplies the following variables:

RETURN

o channo is the number of an initialized channel.

o addr is one of the following:

If the channel is initialized for dump mode, then addr
gives the address of an I/O command list.

If the channel is initialized for buffered mode, then
addr gives the address of the second word of the next
buffer to be used; if you give 0 (the default), the next
buffer in the ring is used.

Data is input from the channel.

RELATED CALLS

o FILOP.

o IN

o OUT

o OUTPUT

COMMON PROGRAMMING ERRORS

o If the channel was not initialized, the monitor stops the job
and prints:

?I/O to unassigned channel at user PC [addr]

o If the specified address is illegal, the monitor stops the
job and prints:

?Illegal address in UUO as user PC [addr]

o If the monitor cannot allocate buffers in your address space,
the monitor stops the job and prints:

?Address check for device [name]: UUO at user PC [addr]

22-182

22.69 IONDX. [CALLI 127]

FUNCTION

Returns the Universal Device Index (UDX)
information about terminal names and
TRMNO. UUO.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
\ MOVEI ac,channo /

IONDX. ac,
error return

skip return

IONDX. [CALLI 127]

for a device or channel.
their UDXs, refer to

For
the

In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device for
which its UDX is desired.

o channo is the number of an initialized channel.

SKIP RETURN

The Universal Device Index for the specified device or current device
on the specified channel is returned in the ac.

ERROR RETURN

If the ac is cleared, you specified a nonexistent device or
SIXBIT/MPX7 as a device name.

22-183

IONEOU [TTCALL 15,]

22.70 IONEOU [TTCALL 15,]

FUNCTION

Sends an 8-bit image character to the terminal's output buffer.

CALLING SEQUENCE

IONEOU
return

addr

In the calling sequence, the program supplies the addr, which contains
the 8-bit character in bits 28 to 35.

RETURN

The 8-bit character is output to the terminal in image mode.

RELATED CALLS

OUTCHR

COMMON PROGRAMMING ERRORS

Typing a comma after addr.

22-184

IPCFM. [CALLI 217]

22.71 IPCFM. [CALLI 217]

FUNCTION

Communicates with [SYSTEM] INFO and [SYSTEM] IPCC, replacing a message
exchange.

CALLING SEQUENCE

addr:

addrl:

XMOVEI ac,addr
IPCFM. ac,

error return
skip return
flags dest"len
addrl
optional in-your-behalf process ID (PID)
message block

In the calling sequence, the program supplies the following variables:

o addr is the address of the packet header block.

o flags are one or both of the flags in the packet header
block.

o dest is the destination PID.

o len is the length of the packet header block.

The argument block at addr is:

Word

o

Symbol

. IPCMF

Contents

Flags, destination, and length fields,
following format:

in the

Bits

o

1

2-14

Symbol

IP.CMP

IP.CMI

15-17 IP.CMD

18-26

27-35 IP.CML

Meaning

Invoking privileges. The job
must have IPCF privileges to use
this bit.

Indirect sender's PID.

Reserved for DIGITAL.

Destination process code, one of
the following:

Code Symbol Meaning

1 . IPCCC [SYSTEM] IPCC
2 . IPCCF System-wide

[SYSTEM] INFO
3 . IPCCP Receiver's

[SYSTEM] INFO

Reserved for DIGITAL.

Total length of argument block,
including . IPCMF.

22-185

IPCFM. [CALLI 217]

1 . IPCMP

2 . IPCMI

Pointer to [SYSTEM]IPCC or [SYSTEM]INFO message
block detailed below. The pointer may be a 30-bit
address or a section address (if an IFIW is
given), relative to the section the message block
is in. No indexing or indirection is allowed.

In-your-behalf word; the PID on whose behalf to
perform this operation, 0 for your own job. If
this word is non-zero, IPCF privileges must be
enabled or the given PID must belong to your
current JCH. If .IPCMI is on, it contains the
address (30-bit or IFIW) of the PID.

The message block at addr1 for [SYSTEM]IPCC is:

Word

o

1

2

3

Symbol

.IPCSO

. IPCS1

.IPCS2

. IPCS3

Contents

Holds the message length identifier in the left
half, and one of the [SYSTEM]IPCC function codes
in the right half. The [SYSTEM]IPCC functions
codes are documented in Chapter 7.

First argument .

Second argument.

Third argument .

The message block for [SYSTEM]INFO is:

Word

o

1

2

Symbol

.IPCIO

.IPCI1

.IPCI2

SKIP RETURN

Contents

The left half holds the message block length; the
right half contains one of [SYSTEM]INFO function
codes documented in Chapter 7.

First argument.

Second argument.

The system process returns data in a packet to the user's message
block.

ERROR RETURN

The ac will contain one of the error messages documented under
IPCFR. UUO.

RELATED CALLS

o . IPCFQ

o . IPCFR

o . IPCFS

22-186

IPCFQ. [CALLI 144]

22.72 IPCFQ. [CALLI 144]

FUNCTION

Returns information about a job's IPCF input queue. The information
returned is the packet header block for the next (if any) packet in
the queue of packets sent by the inter-process communication facility.
The IPCF calls are described in Chapter 7.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
IPCFQ. ac,

error return
skip return

addr: BLOCK len

In this calling sequence, the program supplies
variables:

the following

o len is the length of the block (4 to 6 words) at addr to
receive returned data.

o addr is the address of the block to receive the data.

SKIP RETURN

The ac is not changed. . The packet header block for the next packet in
the queue is returned at addr. The format of the information returned
is described in Chapter 7-.---

Word

o

1

2

3

4

5

Symbol

. IPCFL

. IPCFS

. IPCFR

. IPCFP

. IPCFU

. IPCFC

ERROR RETURN

Contents

Flag word of the next packet in the queue.

Sender's PID .

Receiver's PID.

Length of next message and number of packets:

Bits

0-17
18-35

Meaning

Length of next message.
Number of packets in your input queue.

Sender's PPN .

Sender's capability word. The format of this word
is documented with the IPCFR. UUO.

If there is no packet in the input queue, IPCFQ. takes the error
return and returns an error code in the ac. The error codes for all
IPCF calls are listed under the IPCFR. cal~

RELATED CALLS

o IPCFM.

o IPCFR.

o IPCFS.

22-187

IPCFR. [CALLI 142]

22.73 IPCFR. [CALLI 142]

FUNCTION

Retrieves a packet from the IPCF input queue for the calling process.
The IPCF facility and the format of the argument blocks are described
in Chapter 7.

CALLING SEQUENCE

addr:

addr:

MOVE ac, [XWD len,addr]
IPCFR. ac,

error return
skip return

EXP
BLOCK
XWD

flags
2
len2,addr2

BLOCK len2

In the calling sequence, the program supplies the following variables:

o len is the length of the packet header block.

o addr is the address of the packet header block.

o flags is the flag word (.IPCFL) in the packet header block.

o len2 is the length of the packet to be retrieved. If the
packet is going to be a page of data, this field must contain
512 or an error code is returned in the ac and the IPCFR.
monitor call takes the error return.

o addr2 is the address of the packet message block.

The retrieving process should check the contents of the flag word. If
there is an error condition associated with the packet, it will be
indicated in bits 24-29. Error codes rece~ved in the ac indicate an
error with the monitor call (for example, if the-packet was not
received) .

If the IPCFR. monitor call is issued but there are no packets in the
input queue, the job cannot continue executing until a packet is
placed in the input queue. To prevent the job from blocking, bit 0
(IP.CFB) should be set in the flag word. When IP.CFB is set and there
are no packets in the input queue when the IPCFR. call is issued, the
call will take the error return and the monitor will return error code
3 (IPCNT%) in the ac.

When a process is retrieving a page of data, bit 19 (IP.CFV) in the
flag word must be set and the length of the data message block (left
half of . IPCFP) must contain 1000 or the IPCFR. monitor call fails
and the monitor returns error code 21 (IPCPR%) in the ac.

If the retrieved packet is shorter than the number of reserved words
(that is, len2), the packet is retrieved and the extra words are left
unchanged. -rt; however, the number of reserved words is not long
enough to store the packet, the IPCFR. monitor call takes the error
return and the monitor returns error code 5 (IPCTL%) in the ac. To
prevent this error, the receiver can set bit 4 (IP.CFT) in the flag
word indicating that, if the packet is too long for the reserved
space, the message should be truncated.

22-188

IPCFR. [CALLI 142]

SKIP RETURN

On a skip return, the monitor returns the associated variable (see
Chapter 7) in the ac indicating that there is another packet waiting
in the queue. If there are no more packets in the queue, the monitor
clears the ac. The packet retrieved from the process' input queue is
returned to--the address specified in the IPCFR. monitor call
(beginning with addr). The packet header block is filled in as
follows: ----

Word Symbol

0 . IPCFL

1 . IPCFS

2 . IPCFR

3 . IPCFP

4 . IPCFU

5 . IPCFC

ERROR RETURN

Contents

The left half remains the same, the right. half
contains flags (see Chapter 7) .

Sender's PID .

Receiver's PID.

Length

Bits

0-17
18-35

and location of data:

Contents

Message length.
Address of message, for short-form
messages (default), or page number of
long-form messages. If the page number
refers to an existing page, error code
IPCUP% is returned.

Sender's PPN. If the argument block length is
less than 5, this word is not returned.

Sender's capability word:

Bits Symbol Meaning

0 IP.JAC Sending program has JACCT
privileges.

1 IP.JLG Sender is logged in.
2 IP.SXO Sender is execute-only.
3 IP.POK Sender has POKE. privilege

(JP. POK) .
4 IP.IPC Sender has IPCF privilege

(JP. IPC) .
5-17 Reserved.
18-26 IP.SCN Sender's context number.
27-35 IP.SJN Sender's job number.

If the argument block length is less than 6, this
word is not returned.

The packet is not retrieved and one of the following error codes is
returned in the ac:

Code

1
2
3
4
5

Symbol

IPCAC%
IPCNL%
IPCNP%
IPCIU%
IPCTL%

Error

Address check.
Packet header not long enough.
No packet in receiving queue.
Page is in use (locked in core) .
Data too long for user's buffer.

22-189

IPCFR. [CALLI 142]

6 IPCDU%
7 IPCDD%
10 IPCRS%
11 IPCRR%
12 IPCRY%
13 IPCUP%
14 IPCIS%
15 IPCPI%
16 IPCUF%
17 IPCBJ%
20 IPCPF%
21 IPCPR%
22 IPCIE%
23 IPCBI%
24 IPCUI%
25 IPCRU%
26 IPCRP%
27 IPCRV%

70 IPCFU%
71 IPCCF%
72 IPCFF%
73 IPCQP%
74 IPCBP%
75 IPCDN%
76 IPCNN%
77 IPCBN%

EXAMPLES

Receiver's PID unknown.
Receiver disabled.
No room in sender's quota.
No room in receiver's quota.
No room in system storage.
Unknown page (send) or duplicate page (receive).
Invalid sender PID.
Not enough privileges.
Unknown function code.
Illegal job number.
PID table full.
Page requested, normal text.
Paging I/O error.
Bad index for system PID table.
Undefined PID in system table.
Receiver PID unknown or does not match job.
Insufficient physical memory space available.
Insufficient virtual memory space available to
receive page.
[SYSTEM] INFO has unknown internal error.
[SYSTEM]IPCC request from [SYSTEM] INFO failed.
[SYSTEM]INFO failed to complete an ASSIGN.
PID quota exceeded.
Unknown PID.
Duplicate name.
No such name.
Name has illegal characters.

An example of the IPCFR. monitor call is shown below.

PHB:

PMB1:

MOVE T2, [XWD 6,PHB]
IPCFR. T2,

JRST ERR
JRST NORM
EXP 0
EXP 0
EXP 0
10"PMB1

EXP 0
EXP 0
EXP 0
EXP 0
EXP 0

EXP 0

;Length and address of packet
; To be retrieved.

;No flags.
;Sender's PID
;Receiver's PID

;Length and address of packet
;Message block to be retrieved
;PPN of sender
;Capabilities of sender

On a skip return from the IPCFR. monitor call, the packet has been
retrieved from the input queue.

Below is an example of what a response from [SYSTEM]INFO could be
after a request for a PID.

PHB
PHB+1
PHB+2
PHB+3
PHB+4
PHB+5

20
2001
31
4"PMB1
1, , 2
260000,,1014

;The packet was sent by [SYSTEM]INFO
; [SYSTEM] INFO's PID
;Job number of receiver
;Length and address of packet message block
;PPN of sender
;Capabilities of sender

22-190

PMBI
PMBl+l
PMBl+2
PMBl+3

32,,3
400004,,1001
ASCIZ/CORP/
o

IPCFR. [CALLI 142]

;User code and function code
;The requested PID
;The symbolic name

The IPCFR. monitor call can take the skip return and return an error
code in the flag word of the packet header block. For example, word 0
of the packet header block could contain the following:

PHB/ 0520

This means that the length of the packet message block specified in
the IPCFR. monitor call was not long enough, so the monitor returned
error code 5 in the flag word. The 20 in the flag word indicates that
the message in the receiver's input queue is from [SYSTEM] INFO.

If a process sends a request to [SYSTEM]INFO to obtain the PID
associated with the symbolic name "FRED," the following could result:

Location Contents

AC

PHB
PHB+l
PHB+2
PHB+3

PMB
PMB+l
PMB+2

o

7620
2,,1003
164,,1011
10"PMB

11, , 1
o
ASCIZ/FRED/

;indicating a skip return and no
;errors set in the AC; no more packets
;in queue.
;t;.he flag word
;the sender's PID
;the receiver's PID
;length and addr of message block

;user code and function code
;no response
;symbolic name

The first word of the packet,
indicates the following:

PHB, contains 7620. This value

o 76 is the error code indicating that the symbolic name "FRED"
is not associated with any currently assigned PID.

o 2 indicates that the call to [SYSTEM]INFO succeeded, and a
normal return was taken. The number of packets still in the
queue is stored in the ac.

o 0 indicates that the packet is not a "returned to sender"
packet.

The call to [SYSTEM]INFO successed, and a normal return was taken.
The number of packets still in the queue is stored in the ac.

RELATED CALLS

o IPCFM.

o IPCFQ.

o IPCFS.

22-191

IPCFS. [CALLI 143]

22.74 IPCFS. [CALLI 143]

FUNCTION

Sends an IPCF packet to the specified process.

By giving the receiver's PIO as the PIO of [SYSTEM] INFO or
[SYSTEM] IPCC, you can obtain information from the IPCF facility itself
(see Chapter 7) .

CALLING SEQUENCE

addr:

addr2:

MOVE ac, [XWO len,addr]
IPCFS. ac,

error return
skip return

flags
sender's PIO
receiver's PIO
XWO len,addr2

message-word-O

message-word-(len-1)

In the calling sequence, the program suppies the following variables:

o len is the length of the packet header block. The length of
this block must be equal to or greater than 4 or the monitor
returns error code 2 (IPCNL%) in the ac.

o addr is the address of the packet header block.

o flags is the flag word in the packet header block.

o sender's PIO is Word 1 of the packet header block.

o receiver's PIO is Word 2 in the packet header block.

o len2 is the length of the packet message block. When sending
ashort-form message, this value should not exceed 12 octal.
The limit may be GETTABed in %IPCML.

o addr2 is the address of the packet message block.

o message-word-O through message-word-n are the words making up
the packet message block. Refer to Chapter 7 for more
information.

SKIP RETURN

On a skip return, the ac is unchanged and the packet described by the
packet header block at-addr has been placed in the intended receiver's
queue.

22-192

Word

o

1

2

3

Symbol

. IPCFL

. IPCFS

. IPCFR

. IPCFP

IPCFS. [CALLI 143]

Contents

Flags are the same as those described in Chapter
7.

Sender's PIO .

Receiver's PIO. If you use the PIO for
[SYSTEM]INFO or for [SYSTEM] IPCC, you can retrieve
information from the IPCF facility itself (see
Chapter 7) .

Length and location of data:

Bits

0-17
18-35

Contents

Message length.
Address of message.

ERROR RETURN

On an error return, an error code is returned in the ac and the packet
is not sent. The error codes are listed under the IPCFR. call.

EXAMPLES

This code fragment sends a packet to [SYSTEM] INFO, asking that a PID
be assigned with the symbolic name LJC.

MOVE T1, [XWD
IPCFS. T1,

JRST ERROR
JRST NORMAL

PHB: 0
0
0
XWD 3,PMB

PMB: XWD 234, .IPCII
0
ASCIZ/LJC/

RELATED CALLS

0 IPCFM.

0 IPCFQ.

0 IPCFR.

4,PHB] ;Length and address of packet
; header block

;This is a packet header
;Sender's PID
;Receiver's PID (your [SYSTEM] INFO)
;Length and addr of message block
;Ack code and function (assigns PID)
;No duplicate PID
;Symbolic name

22-193

JBSET. [CALLI 113]

22.75 JBSET. [CALLI 113]

FUNCTION

Sets system or job parameters for another job. Your job must have the
JACCT bit set, or must be logged in under [1,2]. You can use the
SETUUO monitor call to set parameters for your current job.

CALLING SEQUENCE

addr:

MOVE ac, [XWD len,addr]
JBSET. ac,

error return
skip return

XWD
XWD

O,jobno
fcn-code, argument

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.

o addr is the address of the argument list.

o jobno is the number of the job for which the SETUUO function
is to be performed.

o fcn-code is one of the function codes described under SETUUO.

o argument is an argument for the given function code.

Refer to the SETUUO description for a list of all function codes and
their meanings.

SKIP RETURN

The function has been performed and the ac is left unchanged.

ERROR RETURN

The error return is taken if the calling job is not privileged, the
specified job number is illegal, or the SETUUO function failed.

22-194

JOBPEK [CALLI 103]

22.76 JOBPEK [CALLI 103]

FUNCTION

Reads from or writes into another job's memory space.

To read the contents of another
program have Spy ALL privileged.
you need POKE privileges.

job's memory requires that your
To write into another job's memory,

Use the Format 1 calling sequence with 18-bit addresses. Use the
Format 2 calling sequence if the core being read or written is either
in a non-zero section or in a context other than the current one.

CALLING SEQUENCES

Format 1:

addr:

MOVE I ac,addr
JOBPEK ac,

error return
skip return

EXP
XWD

<flags>+jobnoB17+countB35
readaddr,writeaddr

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument list.

o flags are one or more of the optional flags listed below.

o jobno (JK.JOB) is the number of the logged-in job whose core
is to be read or written, stored in Bits 9-17.

o count (JK.WCT) is the number of words to be read or written
(the maximum can be obtained using GETTAB to read item %CNJPK
from table .GTCNF), stored in Bits 18-35.

o readaddr is the location of the first word to be read.

o writeaddr is the location of the first word to be written.

Format 2:

addr:

MOVE ac, [length"addr]
JOBPEK ac,

error return
skip return

EXP
EXP
XWD
XWD

<flags>+countB17+JCHB35
o
readaddr
writeaddr

22-195

JOBPEK [CALLI 103]

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument list.

o flags are one or more of the flags listed below.

o count (JK.EWC) is the number of words to be read or written
(refer to GETTAB table .GTCNF, item %CNJPK), stored in Bits
8-17.

o JCH (JK.JCH) is the job/context handle of the job whose core
is to be read or written, stored in Bits 18-35.

o readaddr is the 30-bit address giving the location of the
first word to be read.

a writeaddr is the 30-bit address giving the location of the
first word to be written.

The flags and their meanings are:

Bit

o

1

2

3

Symbol

JK.WRT

JK.UPM

JK.EVA

JK.AIO

Meaning

write the other job's core; if not set, read the
other job's core. When this bit is 0, the UUO
requires Spy privileges only.

Read the other job's UPMP (user page map page or
user page table). JK.WRT must not be set.

Source address is between .MCFV and .UUPMP; treat
it as if it were an executive virtual address
mapped through the specified job's UPMP. Both
JK.WRT and JK.UPM must be off.

Do not block if data is inaccessible (due to the
state of cache on SMP systems); set this bit only
if you set either JK.UPM or JK.EVA.

Notice that if the other job's core is to be read (JK.WRT is cleared),
then readaddr is a location in the other job and writeaddr is a
location in the current program. If the other job's core is to be
written (JK.WRT is set), then readaddr is a location in the current
program and writeaddr is a location in the other job.

SKIP RETURN

The specified words are transferred between the other job and the
current job.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

1 JKNPV%
2 JKIJN%
3 JKSWP%
4 JKIAD%
5 JKDNA%
6 JKPNC%
7 JKIOE%
10 JKABZ%

Meaning

Job not privileged.
Illegal job number.
Job swapped out or in transit.
Illegal address (source or destination) .
Data not addressable (if JK.AIO is set).
Page not in core.
I/O error occurred.
Target address is in an "allocated but zero" page.

22-196

EXAMPLES

ADDR:

MOVE I
JOBPEK

JRST
JRST

EXP
XWD

T1,ADDR
T1,
ERROR
CONTIN

14B17+1000B35
10000,12000

JOBPEK [CALLI 103]

This example reads 1000 (octal) words from the core of job 14 into the
current job's core. Reading begins at location 10000 in the other
job; writing begins at location 12000 in the current job.

22-197

JOBSTR [CALLI 47]

22.77 JOBSTR [CALLI 47]

FUNCTION

Returns names of file structures in your job's
discussion of file structures in a search list,

search list. For
see Chapter 11.

a

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
JOBSTR ac,

error return
skip return
..

addr: SIXBIT/str/
EXP 0
EXP 0

; .DFJNM
; reserved
; . DFJST

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list (.DFJBL).

o addr is the address of the argument list. You can include a
structure name (str) at addr to obtain the name of the next
structure in your job search list, or -1 to obtain the first
structure in your active search list, or 0 to obtain the
first structure in your job's passive search list (after
FENCE in search list returned by SETSRC program) .

o addr+l (.DFJDR) is reserved.

At addr+2 (.DFJST), the
flag for the structure.

monitor returns
The flags are:

the write-protect

Bits

o
1

SKIP RETURN

Symbol

DF.SWL
DF.SNC

Meaning

Software write-protect.
Do not create files on this structure; create
only if specified as file structure or a
physical device name.

If you give 0 at addr, the monitor returns the first structure in the
search list after the FENCE.

If you give -1, the monitor returns the first structure in the list.

If you give a SIXBIT structure name (or leave the one the monitor last
entered), the monitor returns the next structure name in the search
list. When there are no more structures in the list, the monitor
returns -1 at addr. If the next item in the list is FENCE, the
monitor returns 0-.---

Therefore you can begin with the first name in the list by using -1 at
addr. When the monitor returns the first name in the list, you can
leave the name in addr to call for the second name, and so forth.

22-198

JOBSTR [CALLI 47]

ERROR RETURN

One of the following error code~ is returned in the ac:

Code

3
12

EXAMPLES

Symbol

DFGIF%
DFGLN%

Error

Illegal file structure name.
Illegal argument length.

The following example reads all structures in the job's search list:

LOOP:

ADDR:

MOVE I
MOVE
JOBSTR

STRTAB:

JRST
MOVE
MOVEM
AOJE
AOJA
EXP
EXP
EXP
BLOCK

CONTIN:

RELATED CALLS

o DVPHY.

o GOBSTR

o SYSPHY

o SYSTR

Tl,O
T2, [.DFJBL, ,ADDR]
T2,
ERROR
T2,ADDR+.DFJNM
T2, STRTAB (Tl)
T2,CONTIN
T1,LOOP
-1
o
o
30

22-199

;Initialize counter
;Pointer to argument block
;Get next structure (on 0 or -1)

;Get structure
;Save in table
;AIl done if -1
;Bump table pointer and loop
;Start with the first one

;Where to store search list

JOBSTS [CALLI 61]

22.78 JOBSTS [CALLI 61]

FUNCTION

Provides information (including checking statistics) about terminal
devices, pseudo-terminals, and software states associated with
terminals. For more information about terminals and pseudo-terminals,
refer to Chapter 15.

CALLING SEQUENCE

/ MOVNI ac,jobno \
I MOVE I ac,channo I

\ MOVEI ac,udx /
JOBSTS ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o udx is the Universal Device Index of the pseudo-terminal for
which information is desired.

o channo is the number of an I/O channel on which a terminal
device has been opened.

o jobno is the number of a logged-in job associated with
terminal. To obtain status of a pseudo-terminal, provide
job number of the controlled job. Note that the negative
the job number is used because positive values
interpreted as channels or UDXs.

the
the
of

are

SKIP RETURN

The monitor returns a status word for the job,
flags set from the following list.

with the appropriate

Bits Symbol

0 JB.UJA

1 JB.ULI

2 JB.UML

3 JB.UOA

4 JB.UDI

5 JB.UJC

6 JB. URN

7 JB.UFC

Meaning

The given job number is assigned.

The job is logged in.

Terminal is at monitor level.

Terminal output is available.

The terminal is at user level and is in the input
wait state, or the terminal is at monitor level
and can accept a command. There is no command
waiting to be decoded, the job is not running, and
the job is not stopped waiting for operator
intervention.

JACCT is set for the job. Note that this means
that two CTRL/Cs will not stop the job.

The job is running.
is in a wait state.

This bit is zero if the job

The terminal device is in "full character set"
mode. This characteristic can be set using the
TRMOP. UUO.

22-200

8

9-10

11

12

13

14

15

16-26

27-35

JB.UBK

JB.UNE

JB.UTO

JB.UCC

JB.UNT

JB.UHI

JB. UJN

JOBSTS [CALLI 61]

The terminal device is in "break on all
characters" mode. This characteristic can be set
using the TRMOP., OPEN, or FILOP. UUOs.

Reserved for use by DIGITAL.

The terminal device is in "no echo" mode. This
characteristic can be set using the TRMOP., OPEN,
or FILOP. UUOs.

The terminal is in
other words, the
terminal output.

terminal output
job is blocked

state.
waiting

In
for

The terminal characteristics have changed since
last JOBSTS.

The terminal connected to the pseudo-terminal has
used SET HOST to connect to another system.

The terminal is HIBERing for input. If a program
such as OPR or MIC is running under batch, and
JB.UHI is set, the job will awaken on input to the
terminal. (Refer to the HB.DIN bit in the HIBER
monitor call.)

Reserved for use by DIGITAL.

Bit mask to contain job number
assigned) .

(0 if none

Since JB.UOA will be set if any output is pending, but JB.UTO will be
set if the output buffer for the terminal is full, you can make each
INPUT UUO transfer more data, by testing for JB.UTO before JB.UOA,
then doing an INPUT for a PTY.

ERROR RETUR...'"\I

One of the following occurred:

o The specified job number or channel number is invalid.

o There was no terminal on the specified channel.

22-201

KD P. [CALL I 2 0 0]

22.79 KDP. [CALLI 200]

FUNCTION

Loads, dumps, and starts the KMC-ll (KS systems only) .

CALLING SEQUENCE:

addr:

MOVE ac, [XWD len,addr]
KDP. ac,

error return
skip return

EXP fcn-code
argument 1
argument 2
argument 3

In the calling sequence, the program supplies the following variables:

o len is the length of the argument block.

o addr is location of the argument block. At addr, store the
function code (fcn-code). The remainder--oI the argument
block depends on the function to be performed.

The function codes are:

Code Symbol

1 .KDPKN

2 .KDPDN

3 .KDPSS

4 .KDPHA

5 . KDPMC

6 .KDPST

7 .KDPRE

10 .KDPWR

101 .KDLRS

102 .KDLHA

Meaning

Returns in argument 1 the number of KMC-lls on the
system.

Returns in argument 2 the count of DUP-lls on the
KMC that you specify in argument 1.

Returns in argument 2 the status of KMC specified
in argument 1.

Halts the KMC-ll specified in argument 1.

Master-clears the KMC specified in argument 1 .

Starts the KMC specified in argument 1.

Reads the CRAM location from the KMC specified in
argument 1 and pointed to by the address in
argument 2. The CRAM location is stored in
argument 3.

Writes in CRAM location from the KMC specified in
argument 1, at the address specified in argument
2, from the value stored in argument 3.

Reads line status of KMC specified in argument 1,
on line of DUP specified in argument 2. The line
status is returned in the address pointed to by
argument 3. Argument 3 must be specified as
[len, ,addr] , where len is the length and addr is
the address of the block where status is to be
stored.

Stops DDCMP on a line specified by the KMC in
argument 1 and the DUP in argument 2.

22-202

103 .KDLST

104 .KDLSU

105 .KDLRU

ERROR RETURN

KDP. [CALLI 200]

Starts DDCMP on a line specified by the KMC in
argument 1 and the DUP in argument 2.

Sets the line's user. Specify the KMC in argument
1, the DUP in argument 2, and the SIXBIT/user/ in
argument 3. Refer to the DTE. call for more
information about line users.

Returns the line's user in argument 3. You must
specify the KMC in argument 1 and the DUP in
argument 2.

One of the following error codes may be returned:

Code

1
2
3
4
5
6
7
10
11
13

Symbol

KDILF%
KDILK%
KDALS%
KDIWR%
KDICA%
KDILL%
KDKNR%
KDLNS%
KDLAS%
KDUNP%

Meaning

Illegal function code.
Illegal KMC-11 number.
Argument list too short.
Function is illegal when KMC-11 is running.
Illegal CRAM address (.KDPRE or .KDPWR).
Illegal line (DUP-11) number.
Function is illegal when KMC-11 is not running.
DDCMP was not started on the line.
DDCMP was already started on the line.
User not privileged to perform this function.

22-203

LATOP. [CALLI 221]

22.80 LATOP. [CALLI 221]

FUNCTION

Performs Local Area Terminal (LAT) functions.
intended for customer use.

This function is not

CALLING SEQUENCE

addr:

MOVE I ac,addr
LATOP. ac,

error return
skip return
EXP length
function-code
argument list

In the calling sequence,
information:

the program supplies

o addr is the address of the argument list.

the following

o length is the total length of the argument list including
this word

o function-code is one of the following codes or symbols:

Function Code Symbol

o .LASET
1 .LACLR
2 . LASCH
3 .LASTC
4 .LASAS
5 . LASCO
6 .LAZCO

Meaning

Sets a LAT parameter.
Clears a LAT parameter.
Shows LAT characteristics.
Shows terminal connects.
Shows adjacent servers.
Shows LAT counters.
Clears LAT counters.

7 . LARHC
10 .LATHC

Requests host-initiated connect.
Terminates a host-initiated connect.

11 .LASHC Shows information about host-initiated
connects.

The argument list is different for each function code.
arguments are desribed for each function code in
sections.

22.80.1 FUNCTION 0 (.LASET)

Therefore, the
the following

Sets LAT parameters for the local node. The parameters you set using
this function are dynamic parameters stored only in the host software.
Your program must have JACCT or [1,2] privileges to set LAT
parameters.

The parameters you can set with .LASET are:

Code

1
2
3
4
5

Symbol

. LPMAC

. LPMCO

. LPNUM

. LPLAS

. LPRLI

Meaning

Maximum number of active circuits.
Maximum number of simultaneous connections.
Host number .
LAT access state.
Circuit retransmit limit.

22-204

6
7
10
11
12
13

.LPTIM

. LPMTI

. LPCOD

. LPNNM

. LPNID

. LPSRV

Retransmit initial value.
Multicast timer initial value.
Group access codes.
Host node name.
Host node identification string.
Service rating and description.

LATOP. [CALLI 221]

To set the parameters, use one of the following argument lists to
.LASET:

Word Symbol

0 . LAACT
1 . LAFCN
2 .LAPRM

3 . LAVAL

4 . LAQUA

5 .LADSC

Contents

Argument list length .
EXP .LASET .
Parameter code identifying the parameter to be
set.
Contents depend on the parameter code:

For Codes

1 through 7
10
11 through 13

.LAVAL Contains

New parameter value
Address of a bit mask
ASCIZ string pointer

Qualifier (required for Parameter Code 13 only) .

ASCIZ string pointer to service description
string. (Required only for Parameter Code 13 when
LA%DSC is set in . LAQUA.)

Depending on the parameter to be set, the argument list must be
formatted appropriately.

o Parameter Codes 1 through 7.accept an argument directly from
. LAVAL. On a successful return, the parameter you specify
will be set to the value you include in . LAVAL.

o Parameter Code 10 (Group Codes) requires the address of a bit
mask in . LAVAL. The Group Codes Bit Mask is 8 words long,
representing the group codes of terminals that can access the
host. The bit mask is numbered decimally from 0 to 255,
signified by Bits 0 through 31 of each of eight words. Each
bit you set represents a group number that is allowed to
access the system.

Each word in the Group Code Bit Mask is formatted as:

0------------------------------------31 32-----35
+--+
I Each bit represents a group number I Ignored I
+--+

The group numbers that are represented by each word, starting
at the address stored in . LAVAL, are: are:

Word

addr:
addr+l:
addr+2:
addr+3:
addr+4:
addr+5:
addr+6:
addr+7:

§roup Numbers

o through 31
32 through 63
64 through 95
96 through 127
128 through 159
160 through 191
192 through 223
224 through 255

22-205

LATOP. [CALLI 221]

To specify a group code number, set the corresponding bit in
the bit mask. For example, to set Group 64, set Bit 0 in the
addr+2 of the bit mask.

o Parameter Codes 11 and 12 (Host Node Name and Host Id String)
require an ASCIZ string pointer in . LAVAL. The pointer may
be specified as a byte pointer, or in the form -l"addr,
where addr is the address of the ASCIZ string.

o For Parameter Code 11, the .LAVAL contains a pointer to an
ASCIZ string specifying the name of the host node.

o For Parameter Code 12, .LAVAL points to a string specifying
the Host Identification String.

o Parameter Code 13 (Service Rating and Description) requires
that flags be set in . LAVAL, and, depending on the setting of
the flags, an optional pointer in the following argument
word, .LADSC.

The flags you can set in .LAVAL for Parameter Code 13 are:

1. LA%RAT sets the rating as specified in the right half of

2.

this word. If this bit is
rating has been set, then the
reset to the default value.

not set, and no previous
rating is automatically

LA%DSC sets the service description.
description is stored in an ASCIZ string.

The service

If Bit 1 (LA%DSC) is set in . LAVAL, the following argument
word (.LADSC) may contain an ASCIZ pointer to a service
description string. If LA%DSC is set but .LADSC contains 0,
the service description string is cleared.

22.80.2 FUNCTION 1 (.LACLR)

Clears specified LAT node parameters. The parameter codes and
information required by each, are described for .LASET, Function Code
O.

This function requires JACCT or [1,2] privileges.

The argument list for .LACLR consists of the following words:

Word

o
1
2
3

Symbol

.LAACT

.LAFCN

.LAPRM

. LAVAL

Contents

EXP len
EXP .LACLR
Parameter code
Required only for Parameter Codes 10 and 13 .

For Parameter Code lQ, this word contains the address of the Group
Code Bit Mask.

For Parameter Code 13, this word contains the ASCIZ pointer to the
service name to clear.

This word is ignored for all other parameters.

22-206

LATOP. [CALLI 221]

22.80.3 FUNCTION 2 (. LASCH)

SholN's the LAT characteristics. The monitor returns a Show Buffer
containing the values of both permanent and dynamic parameters.

The argument block for this function is:

Word Symbol

.LAACT

.LAFCN

.LABCT

.LABFA

Contents

o
1
2
3

EXP
EXP
EXP
EXP

len
. LASCH
buffer-length
buffer-addr

Where len is the length of the argument block. Specify the number of
words reserved for the Show Buffer in .LABCT, and the location of the
ShOlN' Buffer in . LABFA.

The Show Buffer is returned at the location you specified, and the
contents of .LABCT are adjusted by the monitor to reflect the actual
number of words used.

The Show Buffer is formatted as shown below.

Tab:le 22-3: LATOP. Show Buffer Format

0------------------------17 18----------------------------35
+--.--------------------~-------------------------------------+
1 Maximum alloc. circuits 1 Number of alloc. circuits
1--·--
1 Maximum active circuits 1 Number of active circuits
1--
\ Mamimum connects \ Number of connects

Host-number LAT terminal access status

Host retransmit limit Host-circuit timer

Host-multicast timer Reserved

High-protocol version \ Low-protocol version
--\
Protocol ECO \ Current-protocol version

Maximum slot size Maximum slots

Frame size Maximum services

Host group codes (8 words)

Host-name count Host-id count

Host name (2 words)

Host-id (13 words)

Service Blocks (19 words per service, described below)
+-_._---+

22-207

LATOP. [CALLI 221]

Each Service Block is formatted as shown below:

Tab1e 22-4: LATOP. Service B10ck

0------------------------17 18-----------------------------35
+--+
I Host service name rating I
1--1
1 Service-name count 1 Service-description count 1
1--1
I Service name (4 words) 1

1--1
1 Service description (13 words) I

+--+

22.80.4 FUNCTION 3 (.LASTC)

Shows information about current terminal connections. This function
returns the Connect Block for each active LAT connection at the local
node.

The argument list is:

Word

o
1
2

3

Symbol

.LAACT

.LAFCN

.LABCT

.LABFN

Contents

Length of the argument block
Function code (.LASTC)
Length of the buffer reserved for the returned

can include the block. In this word, you
following information:

Bits

o

1-17

Symbol

LA.ECB

18-35 LA.BCT

Contents

If this bit is set, this function
returns an extended connect block
for each LAT connect. If the bit
is clear, the short connect block
is returned. (Refer to Tables
22-6 and 22-5, respectively.)

Reserved for use by DIGITAL.

Number of words reserved for the
returned connect block. On a
skip return from the monitor
call, this field will be filled
in with actual number of words
used.

Address of the reserved buffer space.

The monitor returns the Connect Block for each active connection
starting at the address you specify in .LABFN. The contents of .LABCT
are adjusted to reflect the actual number of words returned.

Each connect block returned starting at the location specified in
.LABFN will take the form of a Short Connect Block, unless Bit 0
(LA.BCT) was set in the first word of the argument list. Table 22-6
describes the Extended Connect Block. In this case, the extended
connect block format is returned for each active connection.

22-208

LATOP. [CALLI 221]

The Short Connect Block is described in Table 22-5.

Table 22-5: LATOP. Short Connect Block

0--------------------------17 18--------------------------35
+--+
1 Terminal Number 1
1--1 1 Server name count 1 Indeterminate 1
1--1 1 Server Name (4 words) 1
+--+

Table 22-6: LATOP. E.xtended Connect Block

0--------------------------17 18--------------------------35
+--+
1 Terminal number 1
1--1 1 Server name count 1 Port type 1
1--1
1 Server name (4 words) 1

1--,--1
1 Port name count 1 Server name Gount 1

1----------------------7---------------------------------------1
1 Port name (4 words) 1

1--,--1
1 Service name (4 words) 1

+--,---~----+

The Port Type returned in the right half of addr+1 may be one of the
following:

1
2
3

Symbol

. LATTY

.LADLP

.LAAPP

Standard LAT terminal connection
Dial-up LAT terminal connection
LAT application terminal

22.80.5 FUNCTION 4 (.LASAS)

Shows adjacent servers. This function returns information about LAT
servers that are able to access the local node. The function can be
used to obtain information about all the servers, or only information
about a specific server.

The argument block for this function is:

Word

o
1
2
3
4

Symbol

.LAACT

.LAFCN

.LABCT

.LABFA

.LAQUA

Contents

EXP len
EXP .LASAS
EXP buffer-length
Buffer-addr
Buffer-pointer (optional)

22-209

LATOP. [CALLI 221]

Where len is the length of the argument list.

The buffer-length contains the number of words reserved for the Show
Adjacent Servers Block. Buffer-addr is the location where the block
is returned.

The Buffer-pointer (.LAQUA) is an optional word that may contain an
ASCIZ string pointer to a location containing the server name. You
specify .LAQUA to receive information about a specific LAT server.
This returns a Full-format Server Block.

To return a summary of all servers, place a zero in .LAQUA. This
returns the Short-format Server Block at the location in .LABFA.

Table 22-7: LATOP. Show Adjacent Servers Full-Format Block

0----------------------------17 18---------------------------35
+--+

Server Ethernet Address (2 words)

Frame size 1 Server version

Maximum slots 1 Indeterminate

Circuit timer 1 Keep-alive timer

Product type 1 State

Server-number 1 Server-name count

Server-location count 1 Unused

Server name (4 words)

Server location (4 words)
+--+

Table 22-8: LATOP. Show Adjacent Servers Short--Format Block

0-----------------------17 18--------------------------35
+--+
1 Server number I Server-name count I

1--1 1 Server name (4 words) 1
1--1
1 Ethernet-address (2 words) 1

+--+

22.80.6 FUNCTION 5 (.LASCO)

Shows counters. This function
counters in the Counter Block.

returns information
The argument list is:

Word

o
1
2

Symbol

.LAACT

.LAFCN

.LABCT

Contents

EXP
EXP
EXP

len
. LASCO
buffer-length

22-210

about the LAT

LATOP. [CALLI 221]

3
4

. LAB FA

.LAQUA
Buffer-addr
Buffer-pointer (optional)

Where len is the length of the argument block.

The number of words reserved for the Counters Block is specified in
.LABCT, and the location where the buffer should be returned is in
.LAB.FA.

You can obtain counters information about a specific LAT
including an optional ASCIZ string pointer in .LAQUA.
must point to an ASCIZ string containing the server name.
the counter totals for all servers, leave this word zero.

server by
The pointer

To obtain

The monitor returns a Counter Block at the address Buffer-addr, and
adju.sts the value in' . LABCT to reflect the actual number of words
retu.rned. The format of the Counter Block is show below.

Table 22 - 9: LATOP. Counter Block Format

0----------------------------17 18--------------------------35
+---+ 1 Messages Received 1
1--~--I 1 Messages Sent 1
1---1
1 Messages Retransmitted 1

1---1
1 Receive Sequence Errors 1

1---1
1 Illegal Messages Receiv.ed 1

1---1
1 Resource Failures 1

+---+

22. a:o . 7 FUNCTION 6 (. LAZCO)

Zeroes counters. This function, which requires JACCT or [1,2]
privileges, can be used to clear the counters reported in the Show
Counters Block, returned by Function Code 5 (.LASCO).

The argument list is:

Word

o
1
2
3
4

Symbol

.LAACT

.LAFCN

.LABCT

. LAB FA

.LAQUA

Contents

EXP length
EXP .LAZCO
EXP buffer-length
Buffer-address
Buffer-pointer

Where length is the length of the argument block.

Specify the number of words containing the Show Counters Block for
buffer-length and the location of the block for buffer-address. You
can use the argument block returned by the monitor from the Show
Counters function (.LASCO) to set up the argument list for this
function. Use the returned Counters Block to clear the counters
before performing this function.

22-211

LATOP. [CALLI 221]

As with . LASCO, this function allows an optional ASCIZ string pointer
in the argument list in the word .LAQUA. This string point, if
included, points to a word containing the server name. The counters
specific to the server are returned when this pointer is specified in
the Show Counters function. By including this word in the argument
block for the Zero Counters function, you can clear counters for a
specific server only.

22.80.8 FUNCTION 7 (.LARHC)

Request host-initiated connect. This function requires JACCT or [1,2]
privileges. The argument list is:

Word

o
1
2

3

4
5
6

Symbol

.LAACT

.LAFCN

.LAPRM

. LAVAL

.LASVR

.LASVC

. LAPRT

Contents

EXP len
EXP .LARHC
Parameter word.
as follows:

Bits Symbol

o LA.WAI

1 LA. QUE

2-17
18-35 LA.CID

The parameter word is formatted

Meaning

Blocking request. When this bit
is set, the request will block
until the connection is either
made or rejected. When this bit
is clear, the status must be
checked repeatedly, or the
program may use the PSI System
(Software Interrupt System) to

,detect a ,completed connection.
Queued request. The request for
the application terminal will be
queued at the LAT server.
Reserved for DIGITAL.
Contains the Connect-Id on the
return.

Contains the terminal number and UDX on a
successful return. If the return is unsuccessful,
this word contains a rejection code. Rejection
codes are listed in Table 22-10.
Server name.
Service name.
Port name .

Each of the last three words of the argument list specify:

1. the server name to connect to

2. the service name requested

3. the port name to be connected to

Each of these words may contain a byte pointer to an ASCIZ string,
where the server name, service name, or port name are stored. These
arguments are optional.

22-212

LATOP. [CALLI 221]

You need not include all three arguments. If you include the server
name, service name, and port name in the argument list, the connection
request will fail if the specified port does not support the specified
service. To initiate a connection successfully, you should supply the
arguments required by the program, as described here:

o

o

o

To request a connection to any port on the
offering the specified service, include
(.LASVR) and service name (.LASVC).

specified server
the server name

To request a connection
specified server, include
port name (. LAPRT) .

to the specified port on the
the server name (.LASVR) and the

If you specify the
service name or
with Error Code 6
(LASVC%» .

server Name (.LASVR) only, without a
port name, the call takes the error return

(Invalid or unknown LAT service name

o If you specify the service name (.LASVC) only, without a
server name or port name, the call takes the error return
with Error Code 3 (Invalid or unknown LAT server name
(LASVR%)) .

o If you specify port name (.LAPRT) only, without a server name
or service name, the call takes the error return with Error
Code 3 (Invalid or unknown LAT server name (.LASVR%».

~ejection codes are returned in the .LAVAL word (if LA.WAI is set) and
1n the Status Block of the .LASHC function (described below). The
possible rejection codes are:

Table 22-10: LATOP. Rejection Codes

Code Symbol

0 .LAUNK
1 .LAURD
2 .LASSP
3 .LAISR
4 . LAISC
5 . LAIRS
6 .LASIU
7 . LANSS
10 .LASDI
11 . LASNP
12 .LANSP
13 .LAIPW
14 . LAENQ
15 .LAIAR
16 .LAACD
17 . LACSR
20 .LACTI
21 .LASCS
22 .LAQED
23 .LAIRP

Meaning

Unknown error.
User requested disconnect.
System shutdown in progress.
Invalid slot received.
Invalid service class .
Insufficient resources .
Service is in use.
No such service .
Service is disabled.
Service is not offered by requested port .
No such port name.
Invalid password.
Entry is not in the queue .
Immediate access rejected.
Access denied.
Corrupted solicit request .
Command type code is illegal
Start slot can't be sent
Queue entry deleted by local node
Inconsistent or illegal request parameters

22-213

LATOP. [CALLI 221]

22.80.9 FUNCTION 10 (.LATHC)

Terminates a host-initiated connection. This function requires JACCT
or [1,2] privileges. The argument list is:

Word

a
1
2

Symbol

.LAACT

.LAFCN

.LAPRM

Contents

EXP length
EXP .LATHC
Parameter word (described below)

Where the parameter word contains the following
information:

Bits

a
1
2
3

4-17
18-35

Symbol

LA.WAI
LA. QUE
LA. SYS
LA. JOB

LA.CID

Meaning

Ignored.
Ignored.
Ignored.
If this bit is set, the
LATOP. UUO will terminate all
host-initiated requests for this
job.
Reserved for Digital.
Connect-Ide If LA. JOB
cleared, then terminate
host-initiated request for
connect-id (returned by
.LARHC function) .

is
the

this
the

22.80.10 FUNCTION 11 (.LASHC)

Shows information about host-initiated connections. This function
requires JACCT or [1,2] privileges. The argument list is:

Word

a

1

2

3

4

Symbol

.LAACT

.LAFCN

.LABCT

.LABFA

.LAQUA

Contents

EXP length

EXP .LASHC

Buffer count word. Store the length of the buffer
reserved for the information in the right half of
this word. The monitor will return the number of
words actually used in the left half of this word.

Address of the buffer where the information will
be returned

The information returned at the address specified
in .LABFA takes the form of one Status Block for
each pending connection. The format of the Status
Block is shown in Table 22-11.

Connect-id word. The word is formatted as
follows:

Bits Symbol Meaning

0-1 Ignored.
2 LA.SYS Returns information on

host-initiated connects.
18-35 LA.CID Connect-id, or zero.

22-214

LATOP. [CALLI 221]

Tab.Ie 22-11: LATOP. Status Block

+---+
Job number I Connect - id

Status Field (below) I Queue depth

Server-name count I Port-name count

Server-name (4 words)

Port-name (4 words)

Service-name count I Indeterminate

Service-name (4 words)
+---+

The status field in the left half of addr+1 may contain any of the
following:

o A rejection code (described in Table 22-10)

o A Universal Device Index for a terminal

o One of the following status codes:

Code Symbol Meaning

377777 .LASOL Soliciting.
377776 .LAQUE Queued.
377775 .LACAN Cancelled.
377774 . LATMO Timed out .

SKIP RETURN

On a successful completion of the monitor call, the skip return is
taken, the requested information is stored in the locations described
in the argument list for each function, and the ac contains the
address of the argument list.

Several LATOP. functions return information in a buffer
the address stored in Word 3 of the argument block,
functions and the format of the information returned are
the function codes.

starting
.LABFA.
listed

at
The

with

ERROR RETURN

On an error return, the non-skip return is taken, and the ac contains
an error code. The error codes are:

CodE~

o

1
2
3
4
5

Symbol

LABTS%

LAVOR%
LALNO%
LASVR%
LAIPN%
LAIPV%

Meaning

The buffer size you allocated was too small for
the amount of information available. The actual
number of words that are required is stored in the
left half of .LABCT.
Value of a parameter is outside the allowed range.
LAT is not operational.
Invalid or unknown LAT server name.
Invalid LAT parameter.
Invalid LAT parameter value.

22-215

LATOP. [CALLI 221]

6 LASVC%
7 LAILR%
10 LAHAS%
11 LAIVF%
12 LAABS %
13 LAADC%

14 LAPRV%
15 LAPRT%
16 LACID%
17 LAABL%

Invalid or unknown LAT service name.
Insufficient LAT resources.
LAT host name already set.
Invalid function code.
Argument list too small.
Address check for argument list (specified address
not in memory)
Not enough privileges.
Invalid or unknown LAT port name.
Invalid or unknown LAT connect-id.
Argument list too large.

22-216

LLMOP. [CALLI 220]

22.81 LLMOP. [CALLI 220]

FUNCTION

Performs functions for the network management layer of DECnet. This
call is used only by the NML program and is not intended for use in
cust:omer programs. The LLMOP. UUO may change at any time without
notice. This call requires [1,2], JP.POK, or JACCT privileges.

CALl~ING SEQUENCE

MOVE ac1,fcncode
XMOVEI ac2,addr
LLMOP. ac2,
error return
skip return

In the calling sequence, the program supplies the following variables:

o fcncode is the function code. The argument block found at
addr is specific to the function code contained in ac1.

o addr is the address of the argument block.

Function codes for LLMOP. are described in the following subsections.

22.81.1 FUNCTION 0 (.ELDIR)

Builds an Ethernet loopback message from data supplied in the argument
block, and transmits it to the destination address. The argument
block is:

Word Symbol

0 .LMCID

1-2 . LMDST

3 .LMREQ

4 .LMRBL

5 .LMRBP

Contents

Channel ID. Bits 34 and 35 (LM. CID) contain the
value of the Ethernet port to use.

Destination address .

Request number, containing:

Bits Symbol

0 LM.AIC

12-17 LM. ICH

18-35 LM.REQ

Meaning

Assigns interrupt channel
specified in LM. ICH.

Contains PSI channel to
interrupt when the message
arrives.

Contains the request number
returned by LLMOP. This value
is used in function .ELRPY.

Length of the loopback request data buffer. The
right half (LM.MBL) contains the length of the
data portion of the loopback message.

Pointer to loopback request data buffer.

22-217

LLMOP. [CALLI 220]

22.81.2 FUNCTION 1 (.ELAST)

Builds an Ethernet loopback message, and transmits it according to the
type of assistance required. The first words in the argument block,
.LMCID, .LMDST, .LMREQ, .LMRBL, and .LMRBP, are described in function
.ELDIR. The remainder of the argument block is:

Word

6-7

10

Symbol

.LMAST

.LMHLP

Contents

Address of the node used as the assistant in the
loopback request. This may not be a multicast
address.

Assistance level. Levell, .LMXMT, forwards the
loopback message to both the destination and local
nodes. Level 2, .LMRCV, forwards the loopback
message to assistant and local nodes. Level 3,
.LMFUL, forwards the message to destination,
assistant, and local nodes.

22.81.3 FUNCTION 2 (.ELRPY)

Reads the loopback reply message. The argument block is:

Word

o

1-2

3

4

5

Symbol

.LMCID

.LMSRC

.LMREQ

.LMRBL

.LMRBP

Contents

Channel ID. Bits 34 and 35 (LM.CID)
value of the Ethernet port to use.

contain the

Address of the remote system that satisfied a loop
assisted operation.

Request number. The right half (LM.REQ) contains
the request number of the reply to be read. The
caller is blocked until the reply arrives.

Length of the loop response buffer. The left half
(LM.RML) contains on return the length of the
received loop reply message data. The right half
(LM.MBL) holds the maximum length of the loop
response message buffer that you supply.

Pointer to loop reply buffer.

22.81.4 FUNCTION 3 (.ELAIC)

Assigns interrupt channel for Ethernet loopback reply.
block is:

The argument

Word

o

Symbol

.LMCID

Contents

Channel ID, where Bits 34 and 35 (LM.CID)
the value of the Ethernet port to use.

22-218

contain

1 .LMICF

LLMOP. [CALLI 220]

Interrupt channel flags, in the form:

Bits

o

12-17

Symbol

LM.AIC

LM. ICH

Meaning

Assigns the interrupt channel
given in LM.ICH when lit.

Contains the PSI channel to
interrupt when the loopback
message arrives.

22.81.5 FUNCTION 4 (.ELABT)

Aborts the loop request. The argument block is:

Word

o

3

Symbol

.LMCID

.LMREQ

Contents

Channel ID, where bits 34 and 35 contain the value
of the Ethernet port to use.

Request number. The right half, LM.REQ, contains
the number of the request to be aborted.

22.81.6 FUNCTION 5 (.ELSTS)

Obtains status of Ethernet loopback requests. The argument block is:

Word

o

1

2

3

Symbol

.LMCID

. LMSTF

. LMCST

.LMREQ

Contents

Channel ID, where bits 34 and 35 contain the value
of the Ethernet port to use.

Status code for the request .
LM.RTC, contains one of the
codes:

The right half,
following status

Code Symbol Status

0 .LMPND Request pending, incomplete.

1 .LMSUC Request was completed
successfully.

2 .LMABT Request aborted.

3 .LMTXF Transmit failed.

4 .LMCCE Channel communication error.

Status returned from the KLNI port driver .

Request number. The right half, LM.REQ, contains
the number of the request to be aborted.

22-219

LLMOP. [CALLI 220]

22.81.7 FUNCTION 6 (.RCRID)

Transmits a Read Identify protocol message to the destination address
node on the Ethernet. Use the .RCRPY function to read the System ID
reply message. The argument block is identical to that of function
.ELDIR. The value returned in LM.REQ of .LMREQ must be used in any
subsequent . RCRPY, . RCABT, or .RCSTS calls.

22.81.8 FUNCTION 7 (.RCRCT)

Transmits a Read Counters protocol message to the destination address
node on the Ethernet. Use the .RCRPY function to read the System ID
reply message. The argument block is identical to that of function
.ELDIR.

22.81.9 FUNCTION 10 (.RCIDS)

Transmits a System ID protocol message to the destination address node
on the Ethernet. This function blocks the program until the transmit
is completed. The argument block is:

Word

o

1-2

Symbol

.LMCID

.LMDST

Contents

Channel ID, where bits 34 and 35 (LM.CID)
the value of the Ethernet port to use.

Destination address.

contain

22.81.10 FUNCTION 11 (.RCRBT)

Transmits a Boot protocol message to the destination address node on
the Ethernet. .RCRBT blocks the issuing process until the transmit is
completed. The argument block is:

Word Symbol

o .LMCID

1-2 .LMDST

3-4 .LMPWD

Contents

Channel ID, where bits 34 and 35 (LM.CID)
the value of the Ethernet port to use.

Destination node address.

contain

8-byte verification code. The code is transmitted
to the remote system, which uses it in deciding
whether to allow the boot request. The 8-bit
bytes are packed four to a word.

22-220

LLMOP. [CALLI 220]

5 .LMCIF Control information, in the form:

Bits

26

27

28-35

Symbol

LM.BDV

LM.BSV

LM.PRO

Meaning

Specifies the boot device,
where 0 indicates the system
default, and 1 represents a
specified device.

Specifies the boot server,
where 0 is the system default,
and 1 indicates requesting a
system.

Specifies the processor to
boot. 0 indicates the system
processor, and 1 represents
the communication processor.

6 .LMDID Device ID in an 8-bit byte string.

7 . LMSID Software ID in an 8-bit byte string .

22.81.11 FUNCTION 12 (.RCRPY)

Reads the response to a request ID or Read Counters function. The
format of the argument block is the same as for .ELRPY. .LMSRC
contains the address of the responding node. .LMRBL contains the
returned message length, and .LMRBP contains a pointer to the response
buffer.

22.81.12 FUNCTION 13 (.RCRSV)

Transmits a reserve remote console MOP message. The argument block
contains .LMCID, .LMDST, and .LMPWD, as described in function . RCRBT.

22.81.13 FUNCTION 14 (.RCREL)

Transmits a release remote console MOP message.
contains .LMCID and .LMDST.

22-221

The argument block

LLMOP. [CALLI 220]

22.81.14 FUNCTION 15 (.RCSND)

Sends ASCII console command data to a remote console and polls for
response data. If no command data is included, the function only
polls for response data. The argument block is:

Word

o

1-2

3

4

5

Symbol

.LMCID

.LMDST

.LMREQ

.LMRBL

.LMRBP

Contents

Channel ID, in the form:

Bits Symbol

16 LM.CBF

17 LM.MNO

34-35 LM.CID

Destination address.

Meaning:

Command break flag. If this
bit is set, a break condition
in the serial byte stream
precedes the corrunand data
buffer.

Message number, which is a
one-bit sequence number,
indicating the current Console
Requestor command message.

Channel ID.

Request number, as described in .ELDIR.

Length of console request buffer. The right half,
LM.MBL, contains the maximum buffer length.

Pointer to the remote console data buffer.

22.81.15 FUNCTION 16 (.RCPOL)

Polls for completion of the Send Console Command function. The
argument block is:

Word

o

Symbol

.LMCID

Contents

Channel ID and returned flags, in the form:

Bits

7

15

16

Symbol

LM.RDL

LM.RDO

LM.CDL

22-222

Meaning

Indicates that received data
was lost. The flag is set by
the local requestor if the
response data buffer was too
small to receive the data from
the remote node.

Indicates that response data
was lost, due to a buffer
overrun or error condition.

Indicates that command data
was lost. This flag is set if
command data in the Console
Command message was lost. The
remote server sets this bit.

1-2 .LMSRC

3 .LMREQ

4 .LMRBL

5 .LMRBP

17 LM.MNO

34-35 LM.CID

LLMOP. [CALLI 220]

Message number, which is a
one-bit sequence number,
indicating the current Console
Requestor command message.

Channel ID.

Source node and physical address of the node that
sent this reply.

Request ID, assigned by .RCSND.

Length of console response buffer. The format of
the buffer is described in .ELRPY

Pointer to the remote console data buffer.

22.81.16 FUNCTION 17 (.RCAIC)

Assigns an interrupt channel to a remote console. Argument block is
identical to that of .ELAIC.

22.81.17 FUNCTION 20 (.RCABT)

Aborts an outstanding remote console request. The argument block is
idE:!ntical to that of . ELABT .

22.81.18 FUNCTION 21 (.RCSTS)

Obtains status of a remote console request.
identical to that of .ELSTS.

22 <. 81.19 FUNCTION 22 (.RCADR)

The argument block is

Obtains a channel address. The argu~ent block is:

Word

o

1-2

3-4

Symbol

.LMCID

.LMHWA

.LMPYA

SKIP RETURN

Contents

Channel ID, where bits 34 and 35 contain the value
of the Ethernet port to use.

Hardware address.

Physical address.

On a successful completion, the requested functions are performed, and
any returns are made as specified in the description of the function
code.

22-223

LLMOP. [CALLI 220]

ERROR RETURN

One of the following codes is returned in the ac:

Code Symbol

1 LMPRV%
2 LMIIF%
3 LMICN%
4 LMOFF%
5 LMADC%

Error

Program has insufficient privileges.
Program specified an illegal function.
Program specified an illegal channel number.
LLMOP. is off.
An address check was performed.

22-224

LOCATE [CALLI 62]

22.82 LOCATE [CALLI 62]

FUNCTION

Changes the logical node number for the current job. This call
functions in the ANF-I0 network to allow you to route device I/O to
devices at other nodes. Subsequent references to output devices (such
as line printers) and input devices (such as card readers), when
implicitly requested or generically referenced, will be assumed to
refer to devices on the node you specify with this call.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/nodename/] \
\ MOVEI ac,nodenumber /

LOCATE ac,
error return

skip return

In the calling sequence, the program supplies the following variables:

o nodename is the SIXBIT physical name of a node.

o nodenumber is one of the following:

-1 Changes your job's location to the physical node of
your terminal.

o Changes your job's location to that of the host
computer.

n Changes your job's location to node number n, where n
is a positive integer.

SKIP RETURN

The location of your job is changed as specified. Any subsequent
generic de'vice specifications are associated with the new node number
and node name.

ERROR RETURN

The error return occurs if the LOCATE monitor call is not implemented
on your system, or if you specified an invalid node number or node
name.

EXAMPLES

MOVE I
LOCATE
JRST

TI,3
Tl,
ERROR

Locates your job at node number 3.

REL1~TED CALLS

WHERE

22-225

LOCK [CALLI 60]

22.83 LOCK [CALLI 60]

FUNCTION

Locks the current job into user memory. Note that there are two
calling sequences for LOCK. The standard calling sequence is
described under Calling Sequence I and the extended calling sequence
is described under Calling Sequence 2. The extended calling sequence
locks a segment starting at a specified page in physical memory.

The default function of this call locks the segments of the program as
set by bits 17 and 35 in the accumulator. Bit 17 must be set to lock
the high segment; bit 35 must be set to lock the low segment. The
specified segment(s) is locked into physically contiguous memory in
contiguous executive virtual memory space, unless you set flags in the
accumulator to specify otherwise.

NOTE

Programs using user mode extended addressing cannot
use the LOCK monitor call.

For more informat{on about locking jobs, refer to Chapter 9.

CALLING SEQUENCE 1

MOVE ac, [flags]
LOCK ac,
error return
skip return

In the calling sequence, the program supplies the flags, which include
one or more of the following bits:

Bit

13

15

16

Symbol

LK.HHP

LK.HNP

LK.HNE

Function

Allows locking the high segment in core above the
first 256K of physical core, if LK.HNP is not set.
Without this provision, the UUO will fail if the
high segment cannot be fit entirely within the
first 256K of core. 14 LK.HLC Locks the high
segment in user core and sets its cache bit. If
this bit is off, the high segment is locked with
its cache bit off. KL10 processors will run your
program faster ~f you use ~K.HLC; however, for a
real-time program that has direct access to
memory, you should not set LK.HLC.

Locks the high segment without forcing the job to
be locked into physically contiguous locations.
If this bit is not set, physical contiguity for
the locked high segment is required. To expand
the physically contiguous high segment segment
beyond 256K, set the LK.HLP bit (Bit 13) instead
of LK.HNP.

Locks the high segment without forcing it to
reside in executive virtual memory. If this bit
is not set, the locked high segment must reside in
executive virtual memory.

22-226

17 LK.HLS

31 LK.LLP

32 LK.LLC

,33 LK.LNP

34 LK.LNE

35 LK.LLS

LOCK [CALLI 60]

NOTE

For executive-mode, real-time trapping,
your high segment must be locked into
contiguous executive virtual memory.

Locks the high segment. without this bit set, the
high segment will not be locked, and bits 14-16
will be ignored.

Allows locking the low segment in core above the
first 256K of addressing space, if LK.LNP is not
set. If you do not set LK.LLP, locking of
physically contiguous memory is limited to 256K of
core memory.

Locks the low segment in user core and sets its
cache bit. If this bit is off, the low segment is
locked with its cache bit off. Processors will
run your program faster if you use LK.LLC;
however, for a real-time program that has direct
access to memory, you should not set LK.LLC.

Locks the low segment without requiring physically
contiguous locations for the low segment. If this
bit is not set, the low segment must be locked
into physically contiguous locations. In this
case, the low segment is restricted to 256K of
memory. To expand beyond 256K, set the LK.LLP
flag (Bit 31) instead of LK.LNP.

Locks the low segment without requiring the
segment to reside in executive virtual memory.
this bit is not set, the low segment must
locked into executive virtual memory.

NOTE

For executive-mode, real-time trapping,
your low segment must be locked into
contiguous executive virtual memory.

low
If
be

Locks the low segment. If this bit is clear, the
lowseg will not be locked, and bits 32-35 will be
ignored.

CALLING SEQUENCE 2

addx-:

MOVE ac, [XWD -n,addr]
LOCK ac,

error return
skip return

argument-list

In the calling sequence, the program supplies the following variables:

o n is the number of arguments plus one,
negative value.

expressed as a

o addr is the address of the argument list. The argument list
depends on the function code you specify in this word.

o fen-code is one of the function codes described below.

22-227

LOCK [CALLI 60]

o hiseg is set if the high segment is to be locked.
set if the low segment is to be locked.

lowseg is

Code

°

1

If you use
KL-paging
page.

Symbol

.LKPPN

.LKSGL

Calling
the low

Meaning

Locks the high and/or the low segment into
contiguous physical pages, starting at the
physical page number specified in the
argument-list. The argument list is formatted as
follows:

addr: EXP
XWD

.LKPPN
high-seg,lowseg

The contents of addr+1 specify the pages to lock.
The left half of addr+1 contains the starting page
number of the high segment; if this halfword is 0,
the high segment is not locked. The right half of
addr+1 contains the starting page number of the
low segment; if this halfword is 0, the low
segment is not locked.

Locks a list of segments. This function is used
for locking multiple high segments for the same
job. The argument-list for this function is
formatted as follows:

addr: EXP
EXP

.LKSGL
flags+segment-no

The contents of addr+1 include flag bits in the
left half and the segment number of the segment to
be locked in the right half. If you specify the
segment number as 0, the low segment will be
locked.

The flags you can include in the right half are:

Bits

1

2

6-17

26-35

Symbol

LK.2PC

LK.2EV

LK.2PP

LK.2SN

Meaning

Lock the segments into
physically contiguous memory.
The physical page number is
returned in Bits 6-17
(LK. 2PP) .
Lock the segments into Exec
virtual Memory (EVM). On a
skip return, the virtual page
number will be returned in
Bits 6-17 (LK.2PP).
Physical page number where the
segments are to be locked in
memory. This field requires
that you also set Bit 1
(LK.2PC) .
This field specifies the
segment number that you want
locked. If this field is
zero, the low segment is
assumed.

Sequence 2 when the system is running with
segment is locked into the second higher physical

22-228

LOCK [CALLI 60]

SKIP RETURN

When using Calling Sequence 1, the monitor has locked the program into
core. If physical or executive virtual contiguity is required, the
following information is stored in the ac:

XWD hiseg,lowseg

In this format, the left half of the ac is the page number of the high
segment (0 if no high segment exists). The right half contains
lowseg, the page number of the low segment.

If no contiguity is required, the ac is cleared.

The monitor will lock your program into memory and take the skip
return if all of the following conditions are met:

o The lock privilege bit (JP.LCK) is set for your job.

o The locked job would not prevent any other job from expanding
to its guaranteed minimum (CORMIN).

o The locked job would not prevent any other current job from
running. (Note that unlocked jobs can exceed CORMIN.)

o For executive virtual
exceed the maximum
available for locking.

mapping, the locked
amount of executive

job would not
virtual memory

o The job either has no high segment, has a sharable high
segment, or both segments were locked.

o The job is not virtual and has a contiguous core image.

When using Calling Sequence ~, the monitor locks the specified segment
(contiguously and physically) starting at the page in physical memory
specified in your program. If you specify that the low segment is to
be locked, the monitor locks your job into the next higher physical
page location than the one you specified in the right half of your
argument.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

0 LKNIS%

1 LKNLP%
2 LKNCA%

3 LKNCM%

4 LKNEM%

Error

The LOCK call, or a feature you requested, is not
implemented on your system; or you attempted to
lock a nonsharable high segment.
No locking privilege.
Not enough core available; your locked job would
prevent running an unlocked job.
Not enough core for CORMIN; your job would prevent
maintaining CORMIN for unlocked jobs.
Not enough core for executive virtual memory; your
locked job would exceed the maximum allowable
executive virtual memory. You can obtain the
executive virtual memory maximum and in-use values
from the GETTAB table .GTCnV, where n is the CPU
number. The maximum is in word 43 (%CVEVM) of the
table and the in-use value is in word 44 (%CVEVU).

22-229

LOCK [CALLI 60]

5
6

7

LKNIA%
LKNPU%

LKNAL%

RELATED CALLS

o RESET

o UNLOK.

Illegal flags specified.
Specified page not available. You would receive
this error on an extended LOCK call if the two
segments would overlap, one or both segments would
overlap another locked job or the monitor, or one
or both segments would be outside the range of
on-line memory.
Illegal movement specified. You tried to move a
locked segment or place a segment into executive
virtual memory.

22-230

LOGIN [CALLI 15]

22.84 LOGIN [CALLI 15]

FUNCTION

Informs the monitor that a job ~as successfully logged in, and passes
certain parameters to the monitor (including the project-programmer
number). The calling job must not be logged in.

The LOGIN monitor call is used by the LOGIN and INITIA programs and is
not intended for customer use.

CALLING SEQUENCE

addr:

MOVE
LOGIN
return

ac, [XWD -len,addr]
ac,

proj"prog
privilege bits
user-name
user-name
charge :It

; JBTPPN (. GTPPN)
; JBTPRV (. GTPRV)
;first half, .PDNMI (.GTNM1)
; second half, .PDNM2 (.GTNM2)
; . PDCNO (. GTCNO)

In the calling sequence, the program supplies the following variables:

RETURN

o len is the length of the argument list.

o addr is the address of the argument list. The data in the
argument list is to be passed to the monitor.

The job is logged in, if it is not already logged in.

RELATED CALLS

o ACCLG.

o CHGPPN

o LOGOUT

22-231

LOGOUT [CALLI 17]

22.85 LOGOUT [CALLI 17]

FUNCTION

Releases all I/O devices associated with the calling job and returns
them to the monitor's pool of available devices, along with the job's
allocated core and its job number.

To perform this call, the user program should use the RUN UUO to call
SYS:LOGIN.EXE, where SYS is the [1,4] area.

The LOGOUT UUO has no error return. If the calling program has JACCT
privileges and is named LOGIN.EXE, this call logs out the job.
Otherwise, the call functions like an EXIT UUO.

CALLING SEQUENCE

LOGOUT
return

RELATED CALLS

EXIT

22-232

LOOKUP [OPCODE 076]

22.86 LOOKUP [OPCODE 076]

FUNCTION

Selects a file for input. Use FILOP. to pe~form a LOOKUP for an
extended I/O channel. The LOOKUP call 1S meaningful only for
directory devices (disk, DECtape, labelled magnetic tape), and for TSK
devices (initiated for task-to-task communication). It is a no-op for
other devices, always taking the skip return for these.

CALLING SEQUENCE

The LOOKUP monitor call, like the ENTER call, has two calling
sequences: one using a 4-word argument list and one using an extended
argument list. The argument lists for LOOKUP, ENTER, and RENAME UUOs
are identical. These are described in Section 11.13. The four-word
argument list is detailed in section 11.13.1. The extended argument
list is described in Section 11.13.2.

The calling sequence for the LOOKUP UUO is:

LOOKUP channo,addr
error return

skip return

In the call sequence, the program s'upplies the addr, which is the
address of the argument list. R~fer to Volume--l-,-Section 11.13 for
more information about the argument,list.

SKIP RETURN

For DECtape, the monitor returns a 4-word block at addr in the
following form:

Word

o

1

2

3

Contents

The SIXBIT file name.

The extension, creation date, and first block number:

Bits

0-17
18-20

21-25
26-35

Contents

The SIXBIT file extension.
The high-order three bits of the file creation
date.
Reserved.
The first physical (data) block number.

Remainder of creation date:

Bits

0-23
24-35

Contents

Reserved.
The low-order 12 bits of the file creation date.

Length and address of file:

Bits

0-17

18-35

Contents

Negative of number of words in zero-compressed
file.
Address of word preceding the first word of the
file.

22-233

LOOKUP [OPCODE 076]

For disk files, and labelled magtape files, refer to Sections 11.13.1
and 11.13.2 for the argument blocks returned by LOOKUP, ENTER, and
RENAME UUOs.

ERROR RE TURN

The error codes for LOOKUP are the same as those for ENTER,
documented in Section 11.14.

EXAMPLES

and are

For more information about doing I/O and examples using the LOOKUP
call, refer to Chapter 11.

22-234

MERGE. [CALLI 173]

22.8:7 MERGE. [CALLI 173]

FUNCTION

Merges an .EXE file or a portion of an .EXE file into the currently
loaded low segment in memory.

CALI.ING SEQUENCE

addr:

addr2:

MOVE I ac,addr
MERGE. ac,

error return
skip return

SIXBIT/device/
SIXBIT/filename/
SIXBIT/extension/
EXP a
XWD / proj,prog \

\ O,addr1 /
/ low-page"hi-page \

I -n"addr2 I
I EXP a I
\ a (reserved) /

section-offset
low-page"high-page*.(n-1 times)

In t:he calling sequence, you supply addr, which is the address of
argument block (identical to the LOOKUP/ENTER argument block) .
argument block is described more fully in Volume 1, Chapter 11.

the
This

At addr+5, however, the last word of the argument block has three
possible forms:

1. low-page and hi-page specify the lower-bound virtual page
number and the upper-bound virtual page number of the .EXE
file to be loaded into your low segment.

2. -n"addr2 indicates that each of the n ranges of pages
in addr2 (in low-page"hi-page form) are to be MERGEd.
format saves you from performing multiple MERGEs.

given
This

3. Placing zero in the last word causes the low-segment pages in
the .EXE file to be merged.

The last word of the argument-list is reserved and must be zero.

SKI1? RETURN

The .EXE file pages are merged into the current low segment in memory.
The accumulators are destroyed and channel a is released.

ERROR RETURN

The error return is taken if any
returns an error code in the ac.
in Chapter 11.

RELJ\.TED CALLS

GETSEG, RUN

errors are detected; the monitor
The possible error codes are listed

22-235

MERGE. [CALLI 173]

COMMON PROGRAMMING ERRORS

o Forgetting to save the acs over the MERGE.

o Forgetting that channel 0 is destroyed.

o Attempting to MERGE high segment data.

22-236

MONRT. [CALL 1,12]

22.88 MONRT. [CALL 1,12]

FUNCTION

Identical to the call:

EXIT 1,

See the EXIT monitor call. Note that this function does not perform a
RESET for your job.

22-237

MSTIME [CALLI 23]

22.89 MSTIME [CALLI 23]

FUNCTION

Returns the current time of day.

CALLING SEQUENCE

RETURN

MSTIME ac,
return

The time elapsed (in milliseconds) since midnight is returned in the
ac.

RELATED CALLS

o DATE

o RUNTIM

o TIMER

22-238

MTAID [CALLI 126]

22.90 MTAID [CALLI 126]

FUNCTION

Associates a SIXBIT reel identifier with a specified magnetic tape
drive. This call requires JACCT or [1,2] privileges.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/]\
I MOVE I ac,channo I
\ MOVEI ac,udx /

MOVE ac+1, [SIXBIT/reelid/]
MTAID. ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

0 device is the SIXBIT physical or logical name of a device.

0 channo is the number of an initialized channel.

0 udx is the Universal Device Index for a device.

0 reelid is the SIXBIT tape reel identifier, or 0 to clear the
current reelid..

Note that your program can also clear the reel identifier by using
function code 11 (MTUNL.) to the MTAPE monitor call; or by deassigning
the drive, using the REASSI UUO. All reel-specific error counts are
cleared by the MTAID. call in order that all accumulated data for the
specific reel is accurate.

SKIP RETURN

The monitor has associated the tape reel identifier with the specified
magtape device; the reel identifier is included in all media reports.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

-2 MTINA%

-1 MTINX%

EXAMPLES

MOVE
MOVE
MTAID.
JRST

RELATED CALLS

o MTAPE

o MTCHR.

o TAPOP.

Error

Specified device is not available to your job or
your job is not privileged.
Specified device'is nonex~stent or not a magtape
device.

TI, [SIXBIT/MTAO/]
TI+I, [SIXBIT/REELI/]
TI,
ERROR

22-239

MTAPE [OPCODE 072]

22.91 MTAPE [OPCODE 072]

FUNCTION

Passes the monitor a code for an extended set of calls; these calls
perform functions for magnetic tapes and are usually called MTAPEs.
Use FILOP. or TAPOP. to perform magnetic tape functions on extended
I/O channels.

Each defined MTAPE code also has a symbolic name; in this chapter the
MTAPEs are discussed ln alphabetical order by their names. For
example, MTAPE 3 has the name MTEOF.; its function is discussed under
the name MTEOF.

Magtape I/O is described in Chapter 14.

The MTAPEs are:

MTWAT.
MTREW.
MTEOF.
MTSKR.
MTBSR.
MTEOT.
MTUNL.
MTBLK.
MTSKF.
MTBSF.
MTDEC.
MTIND.
MTLTH.

[MTAPE 0]
[MTAPE 1]
[MTAPE 3]
[MTAPE 6]
[MTAPE 7]
[MTAPE 10]
[MTAPE 11]
[MTAPE 13]
[MTAPE 16]
[MTAPE 17]
[MTAPE 100]
[MTAPE 101]
[MTAPE 200]

After your program issues the MTAPE monitor call, the monitor waits
for the magnetic tape to complete any action in progress. The monitor
then clears bits 18-25 of the file status word, initiates the
indicated MTAPE function, and returns control immediately to your
program.

The I/O service routine may be reading several blocks ahead of your
program when performing I/O in buffered mode. The execution of the
MTAPE monitor call affects only the physical position of the magnetic
tape and does not change the data that has already been read into the
buffer. Therefore, when your program issues either an IN, INPUT, OUT,
or OUTPUT call after the MTAPE monitor call, the monitor may not
retrieve the buffer containing the block requested. To guarantee that
the requested block will be in the buffer, your program can set up a
single buffer ring. with a single buffer ring the monitor is
prohibited from reading ahead, and it stops the device after every IN,
INPUT, OUT, or OUTPUT monitor call. Alternatively, your program can
set bit 30 (IO.SYN) in the I/O status word. Setting this bit causes
the monitor to stop the device after each buffer is filled on an IN,
INPUT, OUT, OUTPUT, or FILOP. monitor call. Note that the
FILOP. monitor call provides the functions of the MTAPE calls.

22-240

MTBLK. [MTAPE 13]

22.92 MTBLK. [MTAPE 13]

FUNCTION

writes three inches of blank tape. Use FILOP. to perform an MTBLK. on
an extended I/O channel.

CALLING SEQUENCE

MTBLK. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

Three inches of blank tape are written ori the device associated with
the given channel.

EXAMPLES

MTBLK. 5,

Three inches of blank tape is written to the magtape on the unit
associated with channel 5.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including ,an error return where none exists.

Forgetting to include a comma after the channel number.

22-241

MTBSF. [MTAPE 17]

22.93 MTBSF. [MTAPE 17]

FUNCTION

Backspaces one file on a magtape. Use FILOP. to perform an MTBSF. on
an extended I/O channel.

CALLING SEQUENCE

MTBSF. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor backspaces over one file on the device associated with the
given channel. The monitor moves the tape in the reverse direction
until the tape has passed a tape mark or reached the beginning of the
tape. The backspace operation positions the tape heads either
immediately in front of a tape mark or at the beginning of the tape.

In most cases, your program should skip forward over the file mark to
the beginning of the file. However, when you have backspaced to the
beginning of the tape and when your program issues the MTSKF. call,
the monitor skips the entire first file on the tape, stopping at the
beginning of the second file rather than leaving the tape positioned
at the beginning of the first file. Therefore, a correct sequence for
backspacing a file is:

1. MTBSF. to backspace the file.

2. MTWAT. to wait for completion

3. STATO MT,IO.BOT to determine whether this is the beginning of
the tape.

4. MTSKF. to skip over the file mark if it is not the beginning
of the tape.

It is necessary to wait after the MTBSF. instruction to ensure that
the move is complete before testing to see whether or not this is the
beginning of the tape, but your program can use the MTWAT. call to
wait for the spacing operation to be completed.

EXAMPLES

MTBSF. 5,

Backspaces over 1 file on the tape associated with channelS.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-242

MTBSR. [MTAPE 7]

22.94 MTBSR. [MTAPE 7]

FUNCTION

Backspaces one record on a magtape device. Use FILOP. to perform an
MTBSR. on an extended I/O channel.

CALLING SEQUENCE

MTBSR. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor backspaces over one record on the device associated with
the given channel.

EXAMPLES

MTBSR. 7,

This call backspaces over a record on the magtape associated with
channel 7.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return where none exists.

Forgetting to include a comma after the channel number.

22-243

MTCHR. [CALLI 112]

22.95 MTCHR. [CALLI 112]

FUNCTION

Returns information about the state of a magtape drive.

CALLING SEQUENCE

addr:

/ MOVE ac, [SIXBIT/device/] \
I MOVE I ac,channo I
I MOVE I ac,udx I

\ MOVE ac, [XWD len,addr] /
MTCHR. ac,

error return
skip return

device-identifier
BLOCK 20

In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

Optionally, you can specify the length and location of the argument
list where the device identifier is stored. In this case, the
accumulator contains len"addr, where len is the length of the
argument list and addr is the address of the argument list.

At addr, specify the device-identifier. The device-identifier
contains the device name, UDX, or channel number. On a successful
return, the monitor will fill in the words starting at addr+1.

SKIP RETURN

The monitor returns a value in the ac, and, if you used the optional
argument list, the monitor returns values beginning at addr+1.

The word returned in the ac is in the format:

Bits

0-17
18-26

27-29

30
31
32

Symbol

MT.AWC
MT.CRC

MT.NCR

MT.7TR
MT.WLK

Meaning

The word count of the last record read or written.
If a 9-track NRZI tape, this field contains the
last cyclic redundancy ch~racter (CRC); otherwise,
this field contains O.
The number of characters not accounted for in
MT.AWC, read from the tape into the last addressed
location during the last read.
Reserved for use by DIGITAL. Should contain O.
The unit is a 7-track unit.
The tape transport is write-locked.

22-244

MTCHR. [CALLI 112]

33-35 MT.DEN The tape density code:

Code Symbol Density

1 .MTDN2 200 bits per inch (8.1 rows per
mm) .

2 .MTDN5 556 bits per inch (22.5 rows per
mm) .

3 .MTDN8 800 bits per inch (32.2 rows per
mm) .

4 .MTD16 1600 bits per inch (65.3 rows per
mm) .

5 .MTD62 6250 bits per inch (255.5 rows per
mm) .

When the monitor determines the value of the density indicator to be
returned, it examines the I/O Istatus bits you set in the OPEN call.
The monitor returns the density identifier you set in the OPEN call.
If you did not use OPEN to specify a density indicator, the monitor
determines whether or not you issued the SET DENSITY monitor command.
If you did, the monitor returns, in the ac, the same value you
specified in the monitor command; If neither, the monitor returns the
system-default density. (Note that when you issue a GETSTS, the
monitor examines only the I/O status bits set by the OPEN. If you did
not specify a density indicator with OPEN, the monitor returns a 0
when you issue a GETSTS. Therefore, when you issue a GETSTS, the
monitor does not further investigate the density indentifier or supply
the system-default density indicator.)

If you use the optional argument list, the monitor returns data at
addr and the subsequent locations. The information, starting addr, is
returned as:

Word Symbol Contents

0 . MTCHN Channel number .

1 .MTRID SIXBIT reel identifier of the tape.

2 .MTWRD Number of files read since the beginning of the
tape.

3 .MTREC Number of records since last end-of-file.

4 .MTCRD Number of characters read since last tape unload.

5 .MTCWR Number of characters written since last tape
unload.

6 .MTSRE Number of soft read errors since last unload.

7 . MTHRE Number of hard read errors since last unload .

10 .MTSWE Number of soft write errors since last unload.

11 .MTHWE Number of hard write errors since last unload.

12 .MTTME Total number of read and write errors since last
tape unload.

13 .MTTDE Number of device errors since system startup.

14 .MTTUN Number of unloads since system reload.

22-245

MTCHR. [CALLI 112]

15 .MTRTY

16 .MTCCR

17 .MTPBE

20 .MTFES

ERROR RETURN

Number of retries to resolve last error; if bit 1
is set, the error is a hard error.

Character count of the last record read
written.

or

position before error. The file number before
last error (right half), and record number before
last error (left half) .

Final error state. Refer to the TOPS-I0/TOPS-20
SPEAR Manual.

The error return is taken and -1 returned in the ac if the device you
specified was not a magnetic tape unit or was nonexistent.

RELATED CALLS

TAPOP.

22-246

MTDEC. [MTAPE 100]

22.96 MTDEC. [MTAPE 100]

FUNCTION

Initializes a channel for DIGITAL-compatible mode tape handling. Use
FILOP. to perform an MTDEC. on an extended I/O channel.

In DIGITAL compatible mode, the monitor writes or reads 36 bits in 5
frames of a 9-track magnetic tape. The tape can be any density or
parity and is not industry-compatible. DIGITAL compatible mode is the
default mode that is set when the channel is opened.

The DIGITAL-compatible mode remains in effect until the channel is
released, or until you issue the MTIND. monitor call for the channel.

CALLING SEQUENCE

MTDEC. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The device associated with the given channel is initialized for
DIGITAL-compatible mode handling.

EXAMPLES

MTDEC. 11,

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return where none exists.

Forgetting to include a comma after the channel number.

22-247

MTEOF. [MTAPE 3]

22.97 MTEOF. [MTAPE 3]

FUNCTION

Writes an end-of-file mark on a magtape.
MTEOF. on an extended I/O channel.

CALLING SEQUENCE

MTEOF. channo,
return

Use FILOP. to perform an

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor writes an end-of-file mark on the specified device.

EXAMPLES

MTEOF. 10,

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-248

MTEOT. [MTAPE 10]

22.98 MTEOT. [MTAPE 10]

FUNCTION

Advances a magtape device to the logical or physical end-of-tape. Use
FILOP. to perform an MTEOT on an extended I/O channel.

The logical end-of-tape is indicated by two consecutive end-of-file
marks. The MTEOT. call positions the tape between these two marks,
allowing files to be appended to the tape.

CALLING SEQUENCE

MTEOT. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor positions the tape between the two end-of-file marks that
indicate the end-of-tape.

EXAMPLES

MTEOT. 6,

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-249

MTIND. [MTAPE 101]

22.99 MTIND. [MTAPE 101]

FUNCTION

Initializes a channel for industry-compatible mode tape handling. Use
FILOP. to perform an MTIND. on an extended I/O channel.

In industry-compatible mode, the monitor writes or reads 32 bits in 4
frames of a 9-track magnetic tape, ignoring the low-order 4 bits of
each PDP-10 word. MTIND. will set a default density to 1600 BPI, or
the highest density allowed on the drive.

The industry-compatible mode remains in effect until the channel is
released, or until you issue the MTDEC. monitor call for the channel.

CALLING SEQUENCE

MTIND. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The device associated with the given channel is initialized for
industry-compatible mode handling.

EXAMPLES

MTIND. 10,

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-250

MT~TH. [MTAPE 200]

22.100 MTLTH. [MTAPE 200]

FUNCTION

Sets a flag to read the
threshold (TM10 only).
I/O channel.

CALLING SEQUENCE

MTLTH. channo,
return

next r~cord on the given device at low
Use FILOP. to perform MTLTH. on an extended

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor sets a flag to read the next record from the given device
at low threshold.

EXAMPLES

MTLTH. 5,

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-251

MTREW. [MTAPE 1]

22.101 MTREW. [MTAPE 1]

FUNCTION

Rewinds a magtape. Use FILOP. to perform MTREW. on an extended I/O
channel.

CALLING SEQUENCE

MTREW. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor rewinds the tape on the specified device.

EXAMPLES

MTREW. 5,

Rewind the magtape associated with channel 5.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-252

22.102 MTSKF. [MTAPE 16]

FUNCTION

Skips forward one file on a magtape device.
MTSKF on an extended I/O channel.

CALLING SEQUENCE

MTSKF. channo,
return

MTSKF. [MTAPE 16]

Use FILOP. to perform

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor skips forward one file on the specified device, using a
series of skip record operations.

EXAMPLES

MTSKF. 7,

This call skips over a file on the magtape associated with channel 7.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-253

MTSKR. [MTAPE 6]

22.103 MTSKR. [MTAPE 6]

FUNCTION

Skips forward one record on a magtape device. Use FILOP. to perform
MTSKR. on an extended I/O channel.

CALLING SEQUENCE

MTSKR. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor skips forward one record on the specified device.

EXAMPLES

MTSKR. 7,

This call skips a record on the magtape associated with channel 7.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-254

MTUNL. [MTAPE 11]

22.104 MTUNL. [MTAPE 11]

FUNCTION

Unloads a magnetic tape. Use FILOP. to perform MTUNL. on an extended
I/O channel. If the drive is under the control of MDA (under GALAXY
Version 4.1 and later), this call only rewinds the tape.

CALLING SEQUENCE

MTUNL. channo,
return

In the calling sequence, the program supplies channo, which is the
number of a channel initialized for a magtape device.

The MTUNL. call initializes all automatic error reporting.
Therefore, reel-specific errors can be summarized regardless of the
method used to change reels. An entry into the system error log file
(refer to the TOPS-10/TOPS-20 SPEAR Manual) is written in the
following format:

Drive number (in the form MTxn)
SIXBIT/reelid/
Number of characters read since last MTUNL.
Number of characters written since the last MTUNL.
Number of soft-read errors since the last MTUNL.
Number of hard-read errors since the last MTUNL.
Number of soft-write errors since the last MTUNL.
Number of hard-write errors since the last MTUNL.

These numbers will be output on both the operator's terminal and your
terminal (if WATCH MTA is set) in the following format:

[MTxn:reelid READ (c/h/s)=a/b/c WRITE (c/h/s)=d/e/f]

In the message, the following variables are supplied by the monitor:

o x is an alphabetic representing the tape controller.

0 n is a number representing the drive number.

0 reelid is the reel identification.

0 a is the number of characters read.

0 b is the number of hard-read errors.

0 c is the number of soft-read errors.

0 d is the number of characters written.

0 ~ is the number of hard-write errors.

0 f is the number of soft-write errors.

When a, ~, and c are 0,
printed.

the information pertaining to READ will not be

When d, e, and fare 0, the information pertaining to WRITE will not
be prInted.

22-255

MTUNL. [MTAPE 11]

To prevent this message from being printed, you can use SETUUO, or
type the .STWTC function of the following monitor command:

.SET WATCH NO MTA

RETURN

The monitor rewinds the tape on the specified device.

EXAMPLES

MTUNL. 7,

This call rewinds the tape associated with channel 7.

RELATED CALLS

o FILOP.

o TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return when none exists.

Forgetting to include a comma after the channel number.

22-256

MTWAT. [MTAPE 0]

22.105 MTWAT. [MTAPE 0]

FUNCTION

Stops program execution until all spacing and I/O operations for a
magnetic tape device are completed. Use FILOP. to perform MTWAT. on
an extended I/O channel. Your program should execute this call after
all tape-positioning operations.

CALLING SEQUENCE

MTWAT. channo,
return

In the calling sequence, the program supplies the channo, which is the
number of a channel initialized for a magtape device.

RETURN

The monitor resumes execution at return after all spacing and I/O
operations for the specified device are completed.

RELATED CALLS

TAPOP.

COMMON PROGRAMMING ERRORS

Including an error return.

Forgetting to include a comma after the channel number.

22-257

MVHDR. [CALLI 131]

22.106 MVHDR. [CALLI 131]

FUNCTION

Allows you to move the buffer ring control block for an initialized
channel from one location to another. This move is accomplished by
changing the monitor's pointer to the ring control block.

CALLING SEQUENCE

MOVE I ac,channo
MOVE ac+1, [XWD outring,inring]
MVHDR. ac,
error return
skip return

In the calling sequence, the program supplies the following variables:

o channo is the number of an initialized channel.

o outring is the new address of the output buffer ring control
block, or O.

o inring is the new address of the input buffer ring control
block, or O. outring and inring must be in your current low
segment.

If you give 0 as the address of either buffer ring control
block, the address is not changed.

SKIP RETURN

The pointers to the specified control blocks are changed.

ERROR RETURN

The following error code is returned in the ac:

Code

1

Symbol

MVHDR%

Error

Channel not initialized.

Ii you specify an illegal address, the monitor halts your job and
displays the following error message:

?Illegal address in UUO at user PC nnnnnn

22-258

NETOP. [CALLI 226]

22.107 NETOP. [CALLI 226]

FUNCTION

Indicates the node name and port name to which a terminal is
connected.

CALLING SEQUENCE

XMOVEI ac,arglst
NETOP. ac,

error return
skip return

In the calling sequence, the program supplies the arglst, which is the
address of the argument list described below:

Word

o

1

2

3

4

5

6

Symbol

. NOFCN

. NOFLG

. NODEV

. NODCH

.NODTY

. NONOD

. NOPNM

Meaning

Contains the length of the argument block in the
left half, and a function code in the right half.
You supply this information. The only valid code
is .NOGDI, function 1. .NOGDI obtains information
about the specified terminal's connection.

Returns flags that indicate how your terminal is
connected. If no flag is returned, the terminal
is on a local line. Flags are:

Bit

o

1

2

Symbol

NO.ANF

NO.DCN

NO.LAT

The SIXBIT device
number of the TTY.

Meaning

The terminal is on an ANF-10
node.
The terminal is hosted through
DECnet.
The terminal is on a LAT
terminal server.

name, UDX, or open channel
You supply this information.

Returns the physical characteristics of the
terminal, in the same format as the return from a
DEVCHR monitor call. Refer to the DEVCHR
description for more information.

Returns the physical properties of the terminal,
in the same format as the return from a DEVTYP
monitor call. Refer to the DEVTYP description for
more information~

The user-supplied address of a string block that
contains the node name string on return. The left
half of the string block's first word contains the
length of the returned string. The block will
contain up to 16 characters of node name.

The user-supplied address of a string block which
contains the port name string on return. The left
half contains the length of the returned block.
ANF port names are returned as TTYnnn, where nnn
is the node-local line number in octal. CTERM
returns nnnnnn, which is a left-justified (octal)
line number. NRT does not report a port name.
LAT port names can be a maximum of 16 characters.

22-259

NETOP. [CALLI 226]

SKIP RETURN

Information about the terminal connection is returned as indicated in
the argument block description.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

1
2
3
4
5
6

EXAMPLE

Symbol

NOADC%
NOILF%
NOLTS%
NONSD%
NODNC%
NONTY%

Error

An address check was encountered.
An illegal function code was specified.
The argument list is too short.
No such device.
The specified device is not connected.
Device is not a TTY.

Example of the NETOP.UUO, which indicates where your own job's
terminal is connected.

ARGBLK:
ARGFLG:
ARGDEV:

ARGDCH:
ARGDTY:
ARGNOD:

ARGPNM:

NODSPC:

PORSPC:

SETO
TRMNO.

HALT
MOVEM
MOVE I
NETOP.

HALT

XWD
BLOCK
BLOCK

BLOCK
BLOCK
EXP

EXP

XWD

BLOCK
XWD
BLOCK

Tl,
Tl,

;Refers to your job
;Get the TTY's UDX

Tl,ARGBLK+.NODEV
Tl,ARGBLK

;Put into arg block
;Point to arg block

or CALLI AC,226 Tl,

7, .NOGDI ;Length"function code
1 ;Flags returned from NETOP.
1 ;User supplies device specifier

; here
1 ;NETOP. returns DEVCHR UUO info here
1 ;NETOP. returns DEVTYP UUO info here
NODSPC ;Address of string block to receive

; node name
PORSPC ; Address of string block to receive

; port name
0,5 ;Left half will receive string

; length and 4 words (16 chars)
4 ; worth of node name
0,5 ;Left half will receive string length
4 ; and 4 words worth of port name

22-260

NODE. [CALLI 157]

22.108 NODE. [CALLI 157]

FUNCTION

Performs miscellaneous functions associated with ANF-10 network nodes.

CALLING SEQUENCE

MOVE ac, [XWD fcncode,addr]
NODE. ac,

error return
skip return

addr: EXP len
first argument

last argument

In the calling sequence, the program supplies the following variables:

o fcncode is one of the function codes described below.

o addr is the address of the argument list.

o len is the length of the argument list (including this word);
and the words up through last argument are arguments for the
specified function.

The function codes and their meanings are described in the following
sections.

22.108.1 FUNCTION 1 (.NDALN)

Reserved for use by DIGITAL.

22.108.2 FUNCTION 2 (.NDRNN)

Given either a node number or a node name, returns the other in the
ac. The argument list for .NDRNN is:

addr: EXP
node-id

2

In the argument word, node-id is the SIXBIT name or the octal node
number of the node. If you specify a node name, the node number is
returned in the ac. If you specify the node number, the node name is
returned in the ac.

22.108.3 FUNCTION 3 (.NDSSM)

Sends special network station control (maintenance) messages. This
function requires that the calling job be logged-in under [1,2] or
have POKE. privileges. The argument list for .NDSSM is:

addr: XWD
node-id
XWD
XWD

seconds, 4

send-bytes, send-buffer
receive-bytes, receive-buffer

22-261

NODE. [CALLI 157]

In the argument word:

o seconds is the number of seconds to wait before a timeout
error (NDTOE%) occurs. This field is ignored if an input
buffer is not specified; the default is eight seconds if 0 is
specified.

o node-id is the SIXBIT node name or octal node number of the
node.

o send-bytes is the number of 8-bit bytes to be sent.

o send-buffer is the address of the first byte of the message.

o receive-bytes is the number of bytes in the receive buffer.
When the receive buffer is filled, the monitor will set
receive-bytes to the number of bytes actually stored in the
buffer.

o receive-buffer is the address of the buffer to store the
response.

If the value .for both receive-bytes and receive-buffer is 0,
the monitor· returns control to your program without waiting
for a response from the node.

22.108.4 FUNCTION 4 (.NDRBH)

Receives bootstrap messages from a remote node. This function
requires that the calling job be logged-in under [1,2] or have POKE.
privileges. The argument list for .NDRBM is:

addr: EXP
o
o

4

XWD count,addr

;returned node number
;not used

In the argument word:

o count is the number of 8-bit bytes to be received.

o addr is the first address of the buffer. If there is a boot
message to be read, the following occurs:

1. The second word of the argument block is filled in with
the number of the node that sent the boot request station
control message.

2. The boot request message is copied into the input buffer.

3. The count field is updated to reflect the actual number
of bytes stored.

22-262

NODE. [CALLI 157]

22.108.5 FUNCTION 5 (.NDRCI)

Returns the number of devices at each node for a list of device types.
The argument list for .NDRCI is:

addr: EXP
node-id
EXP
BLOCK

len

o ;reserved
buflength

In the argument word:

o len is the length of the argument list
following arguments} .

(len-l number of

o node-id is the SIXBIT name of the node or the octal node
number.

The word following the node-id must be zero because it is
reserved for use by DIGITAL.

o buflength is the number of words to reserve for the returned
data.

Your program must supply the device types in the right half of each
word starting at addr+3. The device types are returned by the DEVTYP
call and are documented under that call. The monitor returns, in the
left halves of these words, the count of devices whose type is given
in the right half. Each word returned will appear as:

XWD device-count, device-type

22.108.6 FUNCTION 6 (.NDOUT)

Obsolete.

22.108.7 FUNCTION 7 (.NDIN)

Obsolete.

22.108.8 FUNCTION 10 (.NDTCN)

Connects remote terminals to the local system. The argument list for
.NDTCN is:

addr: EXP 2
XWD node, line

In the argument word:

o node is the octal number of the node to which the terminal is
connected.

o line is the remote line number of the terminal to be
connected. On a skip return, the monitor returns the SIXBIT
terminal number in the ac. The skip return is taken if the
terminal is connected~o the system on which the program is
running. Therefore, a skip return from this call does not
mean that the terminal is connected to your job.

22-263

NODE. [CALLI 157]

22.108.9 FUNCTION 11 (.NDTDS)

Disconnects a remote terminal from the local system and, optionally,
reconnects it to another host system. The argument list is:

addr: EXP m
SIXBIT/TTYnnu/
EXP node-number

In the argument word:

o ~ is the length of the argument block (either 2 or 3) .

o TTYnnu is the terminal name of the local terminal to be
reconnected or disconnected.

o node-number is the number of the node to which you wish the
terminal to be reconnected. This word is optional.

On a skip return, the terminal specified by TTYnnu is
disconnected from the local system. If a node-number is
specified, the terminal will be connected to that host. In
this case, the action performed is the same as if you issued
a SET HOST monitor command.

22.108.10 FUNCTION 12 (.NDLND)

Returns the list of defined nodes. The argument list is:

addr: EXP n
arg1

argn

In the argument word, n is the length of the argument list.

On a skip return, the ac contains the number of known nodes and arg1
through argn contain---the node numbers of the known nodes. If the
argument block is not long enough to return the complete list of known
nodes, the list is truncated.

22.108.11 FUNCTION 13 (.NDNDB)

Returns the specified type of information about a specified node. The
argument list is:

addr: EXP n
node-id
EXP sub-fcn-code
arg1

argn

In the argument word:

o ~ is the length of the argument block.

o node-id is either an octal node number or a SIXBIT node name.

22-264

Code

1

2

3

4

5

6

7

10

11

12

13

14

15

16

NODE. [CALLI 157]

o sub-fcn-code is the sub-function code that specifies the type
of information to be returned.

o argl through argn are words that your program reserves for
the information returned by the monitor.

Symbol

ND.NNM

ND.SNM

ND.SID

ND.DAT

ND.LMA

ND.LMS

ND.LAR

ND.LAP

ND.LMR

ND.LMP

ND.LAS

ND.MOM

ND.TOP

ND.CNF

Meaning

Returns the number of the node.

Returns the SIXBIT name of the node.

Returns the software ID as an ASCIZ string.

Returns the date the NODE software was generated
as an ASCIZ string.

Returns the last NCL (Network Command Language)
message assigned (on output) .

Returns the last NCL message sent (on output)

Returns the last NCL ACK received (on output) .

Returns the last NCL ACK processed (on output) .

Returns the last NCL message processed (on input) .

Returns the last NCL message received (on input) .

Returns the last NCL ACK message sent.

Returns the counter for
messages.

maximum outstanding

Returns a list of network link descriptors of the
form:

XWD cost,node

In the argument word:

o cost is the line cost.

o node is the name of a node that is connected
~ the node specified in addr+l. One
descriptor is returned for each--n9ighboring
node. A zero word signifies the end of the
list.

Returns the device configuration for a node in the
following format:

XWD obj-type,number

In the argument word:

o obj-type is the NCL device type.

o number is the count of devices.

One such descriptor is returned for each type
of device on the node.

22-265

NODE. [CALLI 157]

17 ND.CTJ Returns the station control job number.

20 ND.OPR Returns the terminal number of the OPR terminal.

21 ND.NVR Returns the NCL version number of the remote node.

22.108.12 FUNCTION 14 (.NDGNF)

Sets or reads the "greeting" node flag. The format of the argument
list is:

addr: EXP 2
node-number
arg

In the argument word, node-number is the number of the node for which
the "greeted" node flag is to be set and/or read. The flag may be
specified in arg and is returned in argo If the node-number is
specified as 0, the node number of the first "ungreeted" node is
returned in addr+1. This function is intended to be used by
privileged programs that perform a node-specific function to a node
when it comes on line.

SKIP RETURN

The function is performed.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

1 NDIAL%
2 NDINN%
3 NDPRV%
4 NDNNA%
5 NDNLC%
6 NDTOE%
7 NDRNZ%
10 NDNND%
11 NDIOE%

12 NDNFC%
13 NDIAJ%
14 NDNMA%
15 NDTNA%
16 NDNLT%
17 NDISF%
20 NDRBS%
21 NDNUG%
22 NDILN%
23 NDADC%

Error

Illegal argument list.
Illegal node name or node number.
Not enough privileges.
Node not available.
Job not locked in core.
Timeout error.
Reserved word is not zero.
Channel not initialized or not a network device.
I/O error occurred. The left half of ac contains
I/O status bits. For a list of I/O status bits,
see Volume 1.
No free core.
In use by another job.
No message available.
Terminal not available.
Not a legal terminal.
Illegal sub-function.
Receive buffer too small.
No ungreeted nodes.
Illegal line number in station-control message.
Address check performed while reading or writing
arguments.

22-266

NSP. [CALLI 205]

22.109 NSP. [CALLI 205]

FUNCTION

The NSP. monitor call enables task-to-task communication between
programs running on nodes in DECnet-l0 networks. The communicating
programs may be on separate nodes or the same node. For information
on using this call, refer to Chapter 5.

CALLING SEQUENCE

addr:

XMOVEI ac,addr
NSP. ac,

error return
skip return

argument 1
argument 2
argument 3

In the calling sequence, the program supplies addr, the address of an
argument list appropriate to the function code given in bits 9-17 of
argument 1. The function codes are:

Code

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

Symbol

. NSFEA

. NSFEP

.NSFRI

. NSFAC

. NSFRJ

. NSFRC

. NSFSD

. NSFAB

. NSFRD

. NSFRL

. NSFRS

.NSFIS

. NSFIR

.NSFDS

. NSFDR

. NSFSQ

. NSFRQ

. NSFJS

.NSFJR

. NSFPI

Meaning

Enter active state.

Enter passive state .

Read connect information.

Accept connection .

Reject connection .

Read connect confirm information.

Synchronous disconnect .

Abort connection.

Read disconnect data .

Release the channel.

Read the channel status.

Send interrupt data.

Receive interrupt data .

Send normal data.

Receive normal data .

Set quotas .

Read quotas .

Set job quotas .

Read job quotas.

Set PSI reasons for software interrupts .

22-267

NSP. [CALLI 205]

SKIP RETURN

The specified function has been performed and the ac is not changed.

ERROR RETURN

On an error return from NSP., one of the following error codes is
returned in the ac:

Code

1
2
3
4

5
6

7
10
11
12
13
14
15

16
17
20
21
22
23
24
25
26
27
30
31
32
33

Symbol

NSABE%
NSALF%
NSBCN%
NSBFT%

NSCFE%
NSIDL%

NSIFM%
NSILF%
NSJQX%
NSLQX%
NSNCD%
NSPIO%
NSPRV%

NSSTB%
NSUKN%
NSUXS%
NSWNA%
NSWRS%
NSCBL%
NSPBL%
NSSBL%
NSUDS%
NSUDC%
NSUCF%
NSULK%
NSUCM%
NSUNR%

Error

The argument block was formatted incorrectly.
An allocation attempt failed.
An invalid channel number was specified.
An illegal format type was specified in the
process descriptor block.
The connect block was formatted incorrectly.
Interrupt data block pointed to a string block
that was too long.
Illegal flow control.
Illegal function code specified.
Job quota exhausted.
Link quota exhausted.
No connect data to read.
Percentage input out of bounds.
Insufficient privileges to perform specified
function.
Segment size too big.
Unknown node name was specified.
Unexpected or unspecified state.
Wrong number of arguments.
Function call while connected in wrong state.
Wrong length for connect block.
Wrong length for process block.
Wrong length for string block.
Unexpected state: disconnect sent.
Unexpected state: disconnect confirmed.
Unexpected state: no confidence.
Unexpected state: no link.
Unexpected state: no communication.
Unexpected state: no resources.

NSP. error codes 34 and up co~respond to DECnet disconnect codes.

34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60

NSRBO%
NSDBO%
NSRES%
NSUNN%
NSRNS%
NSURO%
NSIOF%
NSOTB%
NSABM%
NSABO%
NSINF%
NSLNS%
NSACR%
NSNRO%
NSNUR%
NSNLK%
NSDSC%
NSIMG%
NSREJ%
NSBCF%
NSADE%

Rejected by object.
Disconnected by object when running.
No resources.
Unrecognized node name.
Remote node shut ,down.
Unrecognized object.
Invalid object name format.
Object too busy.
Abort by management.
Abort by object.
Invalid node name format.
Local node shut down.
Access control rejection.
No response from object.
Node unreachable.
No link.
Disconnect complete.
Image field too long.
Reason for rejection was not specified.
Invalid combination of NS.EOM and NS.WAI flags.
Address error.

22-268

NTMAN. [CALLI 206]

22.110 NTMAN. [CALLI 206]

FUNCTION

Performs various functions for the network management layer of the
DECnet-10 network product. This call is used only by the NML program
and is not intended for use by cust.omer programs. The NTMAN. call is
common to both DECnet-10 and DECnet-20 products, and therefore may
change at any time without notice. This call requires JACCT, [1,2],
or JP.POK privileges.

CALLING SEQUENCE

addr:

MOVE I ac,addr
NTMAN. ac,
error return
skip return

len
entity
ptr to entity-id
fcn-code
info-type
EXP 0
ptr to data
len of data
BLOCK 1

In the calling sequence, the program supplies the addr, which is the
address of the argument block.

Word

o

1

2

Symbol

.NTCNT

. NTENT

.NTEID

Contents

The number of words in the argument block (len).

The entity on which the action is to be performed .
The types of entities are:

Code

o
1
2
3

Symbol

.NTNOD

.NTLIN

.NTLOG

.NTCKT

Meaning

Network node.
Communications line.
Reserved for DIGITAL use.
Circuit.

A byte pointer to an entity
byte pointer must point
number, or circuit number.

identification.
to a node number,

22-269

The
line

NTMAN. [CALLI 206]

3 .NTFCN

4 .NTSEL

5

6

7

10

SKIP RETURN

Contains the function code.
are:

The function codes

Code

-2

-1

o
1
2
3
4
5
6

Symbol

.NTMAP

.NTREX

.NTSET

.NTCLR

.NTZRO

.NTSHO

.NTSZC

.NTRET

.NTEVQ

Function

Returns node number for node
name, or node name for node
number.
Returns the node-id of the
local node.
Sets a parameter.
Clears a parameter.
Zeroes counters.
Shows selected items.
Shows and zeroes counters.
Returns a list of entities.
Removes an item from the event
queue.

Selection criteria for function. The following
allow you to select the item on which the function
is to be performed:

Code
-3 to -1
-3
-2
-1
o to 4
o
1
2
3
4

code.

Symbol

. NTLOP

.NTACT

.NTKNO

. NTSUM

.NTSTA

.NTCHA

. NTCOU

.NTEVT

. NTQUA

.NTBPT

.NTBYT

.NTERR

Meaning
Used by .NTRET:
Loop .
Active items.
Known items.
Used by .NTSHO:
Summary .
Status.
Characteristics.
Counters .
Reserved for DIGITAL use.

Reserved for DIGITAL use .

Byte pointer to data.

Byte count for data.

Returned information or error

The requested information is returned in the address pointed to by
.NTERR, or data is changed according to the function code. On a
successful return, error code 1 (NESUC%) is re.turned in . NTERR.

22-270

NTMAN. [CALLI 206]

ERROR RETURN

The error code is returned in the ac and in the .NTERR Word into the
argument block. Note that a sucgessful return from the call places
error code 1 (NESUC%) into the offset .NTERR into the argument block,
and error NEADC% is returned only in the ac. The error codes for
NTMAN. are defined with decimal values and are:

Code

1
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12 to -14
-15
-16
-17 to -19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30 to -46
-47

Symbol

NESUC%
NEUFO%
NEIMF%
NEPRV%

NEMPE%
NEUPT%

NEURC%
NTINI%
NELCE%
NECWS%

NERES%
NEIPV%

NENRM%

NEPNA%
NEPVL%

NEOPF%
NEFNS%
NEIP'G%

NEPAM%

NEADC%

Error

Successful call.
Invalid function or option.
Invalid message format.
Insufficient privileges.
Reserved for use by DIGITAL
Management program error.
Invalid parameter.
Reserved for use by DIGITAL
Invalid entity.
Invalid entity identifier.
Line communication error.
Component in wrong state.
Reserved for use by DIGITAL.
Resource error.
Invalid parameter value.
Reserved for use by DIGITAL.
No room, or slot already taken.
Reserved for use by DIGITAL.
Parameter not applicable to entity.
Parameter value too long.
Reserved for use by DIGITAL.
Operational failure.
Function not supported.
Invalid parameter grouping.
Reserved for use by DIGITAL.
Parameter missing from argument list.
Reserved for use by DIGITAL.
Address check (returned in ac only) .

22-271

OPEN [OPCODE 050]

22.111 OPEN [OPCODE 050]

FUNCTION

Initializes a channel for I/O operation.
extended I/O channel.

Use FILOP. to assign an

CALLING SEQUENCE

OPEN channo,addr
error return

skip return

addr: argument list

In the calling sequence, the program supplies the following variables:

o channo is the number of a channel.

o addr is the address of the argument list.

The argument list is described in the following subsections.

22.111.1 ARGUMENT WORD 0 (.OPMOD)

Contains flags and status bits. The I/O status bits are a set of 18
bits (right halfword) that reflect the current state of a file
transmission. They are initially set by your program with the OPEN
monitor call. Thereafter, the monitor sets the bits, but your program
can test and reset them using any of several monitor calls.

Bits

o

1

1

2

2

2

Symbol

UU.PHS

UU.DEL

UU.FSP

UU.DER

UU.BJP

UU.DMR

Meaning

Only physical device names will be used in the
search. All logical names defined by the job will
be ignored.

Disables error logging; only user-mode diagnostic
programs may set this bit.

Specifies a full SCNSER PTY (pseudo-terminal).
That is, all terminal characteristics that are
normally ignored for PTYs will be set and
enforced. Refer to Chapter 15.

Disables error retry; only user-mode diagnostic
programs may set this bit.

If the given device is a PTY, and if the calling
program is privileged, this bit specifies that
jobs logging on this PTY are to be treated as
batch jobs.

Disables message re-assembly. This bit is used in
ANF-I0 intertask communication to allow the
receipt of messages that do not have the EOM bit
set. This flag should be set if UU.AIO is set for
TSK devices. (Refer to Chapter 5.)

22-272

3 UU.AIO

4 UU. IBC

5 UU. SOE

6 UU.RRC

7 UU.LBF

8-14 UU.DEC

15-17 UU.CUS

18-21 IO.ERR

22 IO .. EOF

23 IO.ACT

24-29

OPEN [OPCODE 050]

I/O is nonblocking.
from stopping your
completed.,

This prevents
job to wait

the monitor
for I/O to be

Disables clearing of buffers after each output.
Your program must also set BF.IBC in the .BFADR
word of the buffer ring header. (This is
applicable to buffered I/O only. Refer to Chapter
11.)

Enables synchronization on each I/O error. The
monitor does not perform more I/O until your
program clears the error bits.

Enables automatic rewrite of RIB on change. This
bit pertains only to disk devices, causing the
monitor to rewrite the file's RIB whenever a
change to the file requires it. This is used to
ensure file integrity in the event of system
failure.

Allows the use of large buffers (multiples of one
block) for disk

Reserved for use

Reserved for use

Error flags:

Flag

18
19
20
21

Symbol

IO. IMP
IO.DER
IO.DTE
IO.BKT

I/O

by

by

End-of-file reached.

I/O active.

on this channel.

DIGITAL.

customers.

Error

Improper mode flag.
Error detected by device.
Hard data error.
Block too large.

Device-dependent flags (some flags are repeated
for different devices). Refer to the appropriate
device chapter in Volume 1 for more information.

Flag Symbol

24 IO.BOT

24 IO.PTI

25 IO.EOT

25 IO.PTO

25 IO.ABS

25 IO.SVF
26 IO.PAR

22-273

Meaning

Beginn~ng of tape encountered
(magtape only) .
Subjob is in terminal input
wait state (PTY only) .
End of tape encountered
(magtape only) .
Subjob is in terminal output
wait state (PTY only) .
Enable user break mask
(terminals only) .
Suppress VFU (LPT only)
Parity of tape, where IO.PAR=l
for even parity. Odd parity
(IO.PAR=O) is used only for

EBCDIC labelled tapes (magtape
only) .

OPEN [OPCODE 050]

30 IO.SYN

31 IO.UWC

32-35 IO.MOD

26 IO.PTM

26 IO.BKA

27 IO.TEC

27 IO.MAI

27-28 IO.DEN

28 IO.SSD

28 IO.SUP

29 IO.D29
29 IO.SIM

29 IO.WHD

29 IO.NSD

29 IO.SFF

29 IO.NRC

29 IO.FCS
29 IO.LEM

Synchronous input.

Subjob is in monitor mode (PTY
only) .
Break on all characters
(terminals only) .
Truth in echoing mode
(terminals only) .
Maintenance DMR mode (KDP and
DTE devices only).
Bit mask for tape density,
where:

o standard
1 200
2 556
3 800

For densities of 1600 and
6250, IO.DEN=O (magtape only) .
This flag is obsolete. Use
TAPOP. to set tape density.
Semi-standard data mode
(DECtape devices only) .
Suppress echoing (terminals
only) .
DEC029 mode (card punch only) .
Super-image mode (card reader
only) .
write disk-pack headers (disk
only) .
Non-standard data mode
(DECtape devices only) .
Suppress form feeds (line
printers only) .
Read with no reread check
(magtape only) .
Obsolete (terminals only) .
Line editor mode (terminals
only) .

Uses user word count. By default this bit is
.set, and the monitor computes the amount of
to be transmitted using the byte pointer in
buffer header. If this flag is set, however,
monitor uses the byte count. Meaningful
output only.

not
data
the
the
for

Data mode. In general, modes 0-14 are considered
"buffered I/O modes" and modes 15-17 are "dump I/O
modes." The possible values for the data mode
(IO.MOD) in .OPMOD are:

Value Symbol Meaning

0 . IOASC ASCII mode (for any device
except display) .

1 . IOASL ASCII line mode (for any
device except display) .

2 . IOPIM Packed image mode (terminal
only) .

3 . IOBYT Byte mode (magtape device
only) .

22-274

4

5
6-7
10

11-12
13

14

15

16

17

. IOAS8

. IOIMG

. IOIBN

. IOBIN

.TOIDP

. IODPR

. IODMP

OPEN [OPCODE 050]

8-bit ASCII mode (terminal,
pseudo-terminal, and line
printers only) .
Reserved for use by DIGITAL.
Reserved for use by customers.
Image mode (for any except
display device) .
Reserved for use by DIGITAL.
Image binary mode (for disk,
DECtape, magtape, plotter,
card device, or papertape
device) .
Binary mode (for same devices
as . IOIBN) .
Image dump mode (for display
devices only).
Dump record mode (for disk,
DECtape, or magtape devices) .
Dump mode (for disk, DECtape,
or magtape devices) .

22.111.2 ARGUMENT WORD 1 (.OPDEV)

SIXBIT physical or logical name or UDX of the device to be initialized
on the channel.

22.111.3 ARGUMENT WORD 2 (.OPBUF)

Buffer addresses (used for buffered I/O only) :

Bits

0-17

18-35

Meaning

Address of the
given channel.
for the buffer
Address of the
given channel.
for the buffer

SKIP RETURN

control block for the output buffers for the
If buffered I/O is not to be used, specify 0

control block address.
control block for the input buffers for the
If buffered I/O is not to be used, specify 0

control block address.

The specified channel is initialized.

ERROR RETURN

The monitor takes the error return if the specified device is in use,
if the device does not exist, or if the device is restricted. To
assign a restricted device, use the MOUNT monitor command before
running the program, or use the .QUMNT function of the QUEUE. call.

22-275

OPEN [OPCODE 050]

EXAMPLES

iSubroutine to OPEN the disk in dump mode
iCall with:

PUSHJ
RETURN

DMPINI: OPEN
JRST
ENTER
JRST

POPJ

P,DMPINI
HERE

DSK,OPNBLK
NOTAVL
DSK,FILE
FILBAD

P,

iOPEN the disk on channel "DSK"
iDevice is busy
iCreate a new file
iCannot ENTER file name in
i disk directory.
iReturn - file is now open for

Dump mode output.
iHere if device DSK: cannot be OPENed
NOTAVL: OUTSTR [ASCIZ n?CANNOT OPEN DSK:
n]

EXIT
iHere if file cannot be created

iPrint an error message
iReturn to the monitor

FILBAD: OUTSTR [ASCIZ n?CANNOT CREATE DSK:DUMP.BIN
n]

EXIT
OPNBLK: EXP

SIXBIT
EXP

FILE: SIXBIT
SIXBIT
EXP
EXP

. IODMP
/DSK/
a
/DUMP/
/BIN/
a
a

iPrint an error message
iReturn to the monitor
iSelect dump mode
iDevice name
iNo buffers
iFile name
iFile name extension
iDefault protection
iDefault directory

iSubroutine
iCall with:

to write data in buffer

FILL BUFFER WITH DATA
PUSHJ P,DMPOUT
RETURN HERE

DMPOUT: OUT DSK,OUTLST iWrite data
POPJ P,
OUTSTR [ASCIZ

iNo errors - Return to caller
n?OUTPUT ERROR FOR DSK:DUMP.BIN

n]

EXIT
iCommand list for output
OUTLST: IOWD BUFSIZ, BUFFER

EXP 0
BUFFER: BLOCK BUFSIZ
iSubroutine to close out file
iCall with:

PUSHJ P,DMPDON
RETURN HERE

iOutput error message
iReturn to monitor

iWrite BUFSIZ words from buffer
iEnd of command list
iOutput buffer

DMPDON: CLOSE
STATO
POPJ
OUTSTR

DSK, iWrite the end of file

n]

EXIT

RELATED CALLS

o FILOP.

o INIT

DSK,IO.ERR iAre there any errors?
P, i No-return
[ASCIZ n?ERROR CLOSING DSK:DUMP.BIN

iPrint error message
iReturn to the monitor

22-276

22.112 OTHUSR [CALLI 77]

FUNCTION

Determines whether other jobs
project-programmer number (PPN).

CALLING SEQUENCE

OTHUSR ac,
error return

skip return

SKIP RETURN

OTHUSR [CALLI 77]

are logged in under your

The ac contains your project-programmer number; the skip return occurs
only--if there are other jobs logged in under your project-programmer
number.

ERROR RETURN

The alternate return is taken if no other jobs are logged in under
your project-programmer number.

EXAMPLES

OTHUSR Tl,
JRST ONLYl

If other jobs are logged in
execution continues. If not,

under your project-programmer
control is passed to ONLY1.

22-277

number,

OUT [OPCODE 057]

22.113 OUT [OPCODE 057]

FUNCTION

Transmits data from your job's physical memory area to the file
selected for the given channel. Use FILOP. to perform an OUT UUO on
an extended I/O channel.

CALLING SEQUENCE

OUT channo,addr
success return

error return

In the calling sequence, the program supplies the following variables:

o channo is the number of an initialized channel.

o In buffered mode, addr contains the address of the .BFHDR
(header) word of the buffer to be used. If you give addr as
0, the next buffer is used.

o In dump mode, addr is the address of the first word of the
command list. See IN call.

SUCCESS RETURN

The data in the buffer at addr+l is transferred.

ERROR RETURN

If an error occurs, you should examine the I/O status bits to
determine the cause of the error. Use the GETSTS call to obtain I/O
status bits.

EXAMPLES

NOTE

If, while using non-blocking I/O, your program takes
the error return with no error bits set, that
indicates you have exhausted all of the output
buffers. You must wait until a buffer becomes
available. The program at this point should not
attempt to store any more data based on the state of
the use bit. Instead, keep trying the OUT call until
it succeeds.

See Chapter 11.

RELATED CALLS

o FILOP.

o IN

o INPUT

o OUTPUT

22-278

OUT [OPCODE 057]

COMMON PROGRAMMING ERRORS

o If the specified address is illegal, the monitor stops the
job and prints:

?Address check for device yyyyyy: UUO at user PC xxxxx

o Failure to supply a command list address in dump mode.

o Forgetting to initialize the channel.

22-279

OUTBUF [OPCODE 065J

22.114 OUTBUF [OPCODE 065]

FUNCTION

Sets up an output buffer ring with the specified number of buffers for
the specified initialized channel. Use FILOP. to perform an OUTBUF
for an extended I/O channel.

NOTE

The monitor allocates buffers in the user's address
space starting at the location pointed to by the
contents of .JBFF. This has no meaning in a non-zero
section, unless that section is mapped to section O.
Use the FILOP. monitor call to specify buffer
starting addresses in a non-zero section.

CALLING SEQUENCE

OUTBUF channo,bufcnt
return

In the calling sequence, the program supplies the following variables:

RETURN

o channo is the number of an initialized channel.

o bufcnt is the number of buffers to set up in the ring. If
you give buffers as 0, the monitor uses its default number of
buffers for the ring. This default varies according to the
device. For disks, the number of buffers is a MONGEN
parameter that can also be set with the SET DEFAULT BUFFERS
monitor command.

The buffer ring is set up.

RELATED CALLS

o FILOP.

o INBUF

COMMON PROGRAMMING ERRORS

See the INBUF call for some common errors and their explanations.

22-280

OUTCHR [TTCALL 1,]

22.115 OUTCHR [TTCALL 1,]

FUNCTION

Sends an ASCII character to the job's controlling terminal.

CALLING SEQUENCE

OUTCHR location
return

In the calling sequence, the program supplies the location, which is
the address of the word containing the output character; the ASCII
code for the character is right justified in bits 28-35 of location.

RETURN

The monitor takes a right-justified ASCII code from bits 28-35 of
location and displays the character on the user terminal.

o OUTSTR

o TRMOP.

COMMON PROGRAMMING ERRORS

o Typing a comma after location.

o Assuming OUTCHR takes an immediate value in the effective
address field.

22-281

OUTPUT [OPCODE 067]

22.116 OUTPUT [OPCODE 067]

FUNCTION

Sends data from memory to an initialized channel. Use FILOP. to
perform an OUTPUT for an extended I/O channel. The OUTPUT monitor
call is the same as the OUT monitor call, except that OUT takes the
error return if any error bits are set in the I/O status word, and
OUTPUT ignores the error bits and has only~one return location.

CALLING SEQUENCE

OUTPUT channo,addr
return

In the calling sequence, the program supplies the following variables:

RETURN

o channo is the number of an initialized channel.

o addr is one of the following:

If the channel was initialized for dump mode, then addr
is the address of an I/O command list.

In buffered mode, addr contains the address of the .BFHDR
(header) word of the buffer to be used. If you give addr
as 0, the next buffer is used.

If the channel was initialized for buffered mode, then
addr is the address of the second word of the next buffer
to be used; if you give 0 (the normal case), the next
buffer in the ring is used.

Data is output to the device on the channel.

RELATED CALLS

o FILOP.

o IN

o INPUT

o OUT

COMMON PROGRAMMING ERRORS

Same as IN call.

22-282

22.117 OUTSTR [TTCALL 3,]

FUNCTION

·Sends an ASCIZ string to the user terminal.

CALLING SEQUENCE

addr:

OUTSTR addr
return

ASCIZ/string/

OUTSTR ETTCALL 3,]

In the calling sequence, the program supplies the following variables:

o addr is the address of the ASCIZ string to be displayed on
the terminal.

o string is the string to be sent.

RETURN

The string is displayed on the user terminal.

EXAMPLES

See OPEN Qi\ll.

RELATED CALLS

o OUTCHR

o TRMOP.

COMMON PROGRAMMING ERRORS

Typing a comma after addr.

22-283

PAGE. [CALLI 145]

22.118 PAGE. [CALLI 145]

FUNCTION

Manipulates pages and the data associated with those pages in your
job's address space.

CALLING SEQUENCE

MOVE ac, [XWD fcncode,addr]
PAGE. ac,

error return
skip return

addr: length
first argument

last argument

In the calling sequence, the program
information:

supplies the following

o fcncode is one of the function codes described below.

o addr is the address of the argument list.

o length is the number of words that follow in the argument
list; and the words up through last argument are arguments
for the given function, usually page numbers of memory pages
being manipulated. The value of length cannot be O.

The length can be specified as a negative value. In this
case, the argument is the page number of the first page in a
set, where the set contains that page plus the number of
consecutive pages indicated by the value of length.

For example, when length contains a negative value (such as
-3), the argument (for example, page number 401), is the
first of 3 consecutive pages (for this example, pages 401,
402, and 403), to be manipulated.

Therefore, in functions such as .PAGEM, where the argument
word contains two page numbers, a negative value in length
indicates the number of pages in both halves of the argument
word. For example, a value of -2 in length, for a PAGEM.
function on the argument word [400,,200] includes the page
numbers [401,,201].

The pages you can specify are restricted by the following attributes:

o Page zero cannot be paged out or destroyed.

o Page numbers must be specified in numerically increasing
order.

o If the high segment is sharable, it cannot be paged out.

o If the page is a Spy page, it cannot be paged out.

o If a page is locked in core, it cannot be paged out.

The function codes and their meanings are described in the following
sections.

22-284

PAGE. [CALLI 145]

22.118.1 FUNCTION 0 (.PAGIOl

Swaps a page in or out. Pages swapped in are added to the working
set; pages swapped out are moved to secondary storage.

Use one word in the argument list for each page to be swapped, or
specify a negative list length to specify a set of consecutive pages.
If you use more than one argument word, the page numbers must be in
ascending order. Each argument word is in the form:

XWD flags,pageno

In the argument word:

o pageno is the number of the page to be swapped (in the range
0-511 on a KS, or 0-16383 on a KL) .

o flags are optional and may include:

Bit

o

1

2

Symbol

PA.GAF

PA.GSL

PA.GDC

Meaning

Swap the page out if this bit is set; swap
it in if not set.
Swap to slow swapping space if this bit is
set; swap to fast space if not set.
Suppresses error codes PAGCE%, PAGME%,
PAGSC%, and PAGSM%.

22.118.2 FUNCTION 1 (.PAGeD)

Creates or destroys a specified page. Use one argument word for each
page to be created or destroyed. If you use more than one word, the
specified pages must be in ascending order. Each argument word is of
the form:

XWD flags,pageno

In the argument word:

o pageno specifies the number of the page (in the range 0-511
on a KS, or 0-16383 on a KL) to be created or destroyed.

o flags are optional and may include:

Bit Symbol Meaning

0 PA.GAF Destroy the page if this bit is set; create
the page if this bit is not set.

1 PA.GCD Create the page on disk if this bit is set;
create a page in the working set if this
bit is not set.

2 PA.GDC Ignores the fact that the page does not
exist, suppressing error codes PAGME% and
PAGCE%.

22-285

PAGE. [CALLI 145]

22.118.3 FUNCTION 2 (.PAGEM)

Moves or exchanges a page. The page·is moved ·from one virtual address
to another, or two pages exchange locations. You cannot move a page
to a location that is allocated to another page and you cannot
exchange pages unless the source pages are allocated.

Use one argument word for each page to be moved or exchanged. If you
use more than one argument word, the specified pages must be in
ascending order. Each argument word is of the form:

<flag>+<source>B17+<destination>B35

In the argument word:

o source is the page number of the page to be moved.

o destination is the page number of the location to receive the
page.

o The following flag can be set:

Flag

o

Symbol

PA.GAF

Meaning

Exchange the pages if this bit is set; move
the source page if this bit is not set.

22.118.4 FUNCTION 3 (.PAGAA)

Sets or clears the access-allowed bit for a page. The access-allowed
bit may be changed for any page in the working set. If a page is
accessed that has this bit off, a page fault occurs.

Use one argument word for each page whose access-allowed bit is to be
changed. If you use more than one argument, the specified pages must
be in ascending order. Each argument word is of the form:

XWD flags,pageno

In the argument word:

o pageno is the page number of the page whose bit is to be
changed.

o flags are optional and may include:

Flag

o

1

2

Symbol

PA.GAF

PA.GSA

PA.GDC

Meaning

Clear acce~s-allowed for the page if this
bit is set; set access-allowed if this bit
is not set.

Automatically sets access-allowed on page
fault; dispatch to page handler on page
fault if this bit is not set.
Ignores the fact that the page does not
exist, suppressing error codes PAGME% and
PAGCE%.

22-286

PAGE. [CALLI 145]

22.118.5 FUNCTION 4 (.PAGWS)

This function returns a bit map of those pages in the current working
set. In the PAGE. call, you specify the number of words that are to
be returned. There is one bit for each possible page. If a bit is
set, the page associated with that bit is a part of the working set.
For example, Word 1 contains the bits associated with pages 0 through
35; Word 2 contains the bits associated with pages 36 through 71, and
so on. The end of the bit map does not end on an integral word
boundary, so the last word in the map is padded with zeroes. The bit
map for another section begins on a new word.

22.118.6 FUNCTION 5 (.PAGGA)

'Returns a bit map indicating which pages have their access-allowed
bits set. This bit map has the same format as the one returned for
function code 4 (.PAGWS). If a bit in the map is set, the page
associated with that bit is accessible. In the PAGE. monitor call,
you specify the number of words in the bit map that are to be
returned.

22.118.7 FUNCTION 6 (.PAGCA)

Determines the type of access allowed for a given page. There is no
argument block; instead, you specify the function code in the left
half of the ac (bits 0-17) and the page number in the right half of
the ac (bitS-18-35): [function"page-number]. On a skip return, the
monitor will set one or more of the bits (in the accumulator) that are
listed below:

Bits

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14

15
16-20

21

Symbol

PA.GNE
PA.GWR
PA.GRD
PA.GAA
PA.GAZ
PA.GCP
PA.GPO
PA.GHI

PA.GSH
PA.GSP

PA.GLK
PA.GNC
PA.GSN
PA.GVR
PA.GIN

PA.GSC

Meaning

Page does not exist.
writable page.
Readable page.
Access allowed.
Allocated page, but zero.
Page cannot be paged out.
Page is paged out.
Page is in high segment. If this bit is set and
PA.GSP is clear, the high segment number is stored
in Bits 25-35 (PA.GSG).
Page is sharable.
Page is SPYing (mapped onto running monitor) . If
this bit is set, the Spy page number is stored in
Bits 22-35 (PA.GSC).
Page is locked in memory.
Page is not cached.
Section does not exist.
Page is virtual (Spy page) .
Page is in an indirect section, that is, a section
mapped onto another section. If this bit is set,
the new section number is stored in Bits 16-20
(PA.GSC) .
Reserved for use by DIGITAL.
Indirect section number; that is, a section that
another section is mapped onto. PA.GIN is set to
indicate that a section number is stored in
PS.GSC.
Reserved for use by DIGITAL.

22-287

PAGE. [CALLI 145]

22-35 PA.GPN

25-35 PA.GSG

Page number of the Spy page which the specified
user page is SPYing on. If PA.GSP and PA.GVR are
set, then this field conta~ns a monitor virtual
page number.

If PA.GSP is set but PS.GVR is clear, then PA.GPN
contains a physical memory address.
Segment number of the segment that the page is in,
if PA.GHI (Bit 7) is set and PA.GSP is clear.

22.118.8 FUNCTION 7 (.PAGCH)

Changes the pages in a high segment, or creates a high segment from a
contiguous collection of pages. The argument block is written in the
following format:

addr:
addr+l:
addr+2:
addr+3:

Number of words following.
Number of pages to be remapped.
Start page number.
Destination page number.

addr+3 is an optional word of the argument block. If not specified,
page 400 is assumed. This function waits for all I/O to stop before
creating the high segment. On a skip return, the specified pages are
REMAPped into the high segment, which begins at destination page
number. The error return is taken if all of the pages specified by
start page number and number of pages to be remapped do not exist, or
if a page included in the list already exists in your program's
address space. If the number of pages specified is negative, those
pages are remapped from the low segment to the high segment, and
appended to the existing high segment.

Note that a sharable high segment cannot be created or affected with
this function code. If only one argument is given, the number of
pages specified is deleted from the end of the high segment.

This function deletes any high segments existing in the current PC
section that are overwritten by the new high segment area.

22.118.9 FUNCTION 10 (.PAGCB)

Sets or clears the cache bit for the page.

This function sets or clears the cache bit on a per-page basis
and KSlO only). The argument word format is as follows:

(KLlO

Bits

o

1
2

3-26
27-35

Meaning

If this bit, PA.GAF, is set, the cache bit is
corresponding entry in the job's page map.
cache bit is clear.
Reserved.
This bit, PA.GDC, ignores the fact that a
exist, suppressing error code PAGME%.
Reserved.
The page number.

set in the
If clear, the

page doesn't

If there is more than one argument word in the argument block, the
page numbers specified in those words must be in ascending numeric
order.

22-288

PAGE. [CALLI 145]

The error return is taken if any of the following are true:

o The function or call is not" implemertt'ed.

o A high segment page is specified in the argument list.

o The argument list is not set up properly.

o The job is not locked in core and does not have JACCT
privileges.

22.118.10 FUNCTION 11 (.PAGSP)

Allows your program to map an arbitrary set of pages from memory or
from the monitor's virtual address space into the program's address
space. Use one argument word for each page to be mapped. If you use
more than one argument word, you must specify the pages in ascending
order. The argument word is formatted as follows:

<flags>+<source>B17+<destination>B35

In the arguments,

o flags are optional and may include:

Bit

o

2

Symbol

PA.GAF

PA.GDC

Meaning

Remove the page from the user's addressing
space. If not set, add the monitor page to
the user's addressing space at the
specified page number.

On a create, this bit will overlay an
already existing page. On a delete, if the
page does not exist, it is ignored and
error code PAGME% is suppressed.

o source is the page number of the source page. If UU.PHY is
set in the PAGE. monitor call itself, source is a physical
page in memory. If UU.PHY is not set, source is a monitor
virtual address ,mapped through the executive page map.

o destination is the page number of the page to be mapped into
your address space.

This function requires that the calling job have PEEK
privileges on all of core.

22.118.11 FUNCTION 12 (.PAGSC)

Creates or destroys a specified section.
each section to be created or destroyed.
sections or arguments must be specified
argument word is of the form:

Use one argument word for
For more than one word, the

in ascending order. Each

XWD <flag>+<source>B17+<destination>B35

22-289

PAGE. [CALLI 145]

In the argument, flag is one of the following:

Bits Symbol

0 PA.GSF

1 PA.GMS

2 PA.GDC

Meaning

Delete the section if this bit is on, create the
section if this bit is off.

On a create, map the sections specified in PA.GSS
and PA.GDS together.

On a create, any existing section is emptied. On
a delete, ignore a non-existant section.

If PA.GMS is set, give the source and destination sections using the
following format:

Bits

4-17

18-22

22-35

Symbol

PA.GSS

PA.GDS

Meaning

The section number of the source section.

Reserved for use by DIGITAL.

T.he section number of the destination section.

22.118.12 FUNCTION 13 (.PAGBM)

Returns a bit map that indicates whether specified page accessibility
attributes belong to a certain page. If, in the return, the bit map
is set on, the page has the specified attributes.

The argument list is of the form:

EXP count
EXP attribute-settings
EXP care-mask
EXP starting-page-no

In the argument list:

o count is the number of arguments.

o attribute-settings is the word indicating the desired state
of the given attribute. The page accessibility attribute
bits are the same as those given for .PAGCA.

o care-mask is the word specifying which
attribute-settings word should be examined.

bits of the

Note that PA.GSC, the independent section number, is checked
only when PA.GIN is turned on in both .PAGCA and in the care
mask in .PAGBM.

Likewise, PA.GPN, the Spy page number, is checked only when
PA.GSP is on in .PAGCA and in the care mask in .PAGBM.

o starting-page-no specifies the page number of the page that
is mapped to Bit 0 of the mask.

The bit map is returned starting at addr+4.

22-290

PAGE. [CALLI 145]

22.118.13 FUNCTION 14 (.PAGAL)

Determines the type of access allowed for a given page. The argument
block is:

EXP count
EXP starting-page

In the argument word:

o count is the number of arguments.

o starting-page is the starting page
information is to be returned.
same as for .PAGCA.

of the area in which
The bits returned are the

This function returns the access type starting at addr+3.

22.118.14 FUNCTION 15 (.PAGLP)

Locks and unlocks the specified pages in core. The argument word is
formatted as:

Bits Symbol

0 PA.GAF

1 PA.GEV

2 PA.GDC

3-17 PA.GVP
21-35 PA.GPP

Meaning

Locks the page.

Modifier bit. If set, this function is for Exec
Virtual Memory.
Suppresses errors PAGWL% (already write-locked)
and PAGWE% (already write-enabled) .
Virtual page number to be locked into core.
Physical page number where the virtual page will
be locked.

22.118.15 FUNCTION 16 (.PAGWL)

write-locks and write-enables low-segment pages. The argument list is
formatted as:

Bits

o

2

27-35

Symbol

PA.GAF

PA.GDC

SKIP RETURN

Meaning

If set, write-locks the page. If clear,
write-enables the page.
Disables the error return in the case that the
page is already write-locked (if PA.GAF is set) or
write-enabled if PA.GAF is clear.
Page number of page to be write-locked or
write-enabled.

The specified function has been performed; the ac is unchanged.

To perform paging functions without undue interruption, the monitor
places pages in a private queue for the job. Thus, if the job blocks
without successfully completing this call, the pages cannot be removed
from the job. On a successful return from this monitor call, the
pages are removed only as requested.

22-291

PAGE. [CALLI 145]

ERROR RETURN

On an error return, the pages are returned to the system queues.

One of the following error codes is returned in the ac:

Code Symbol

0 PAGUF%
1 PAGIA%
2 PAGIP%
3 PAGCE%
4 PAGME%
5 PAGMI%
6 PAGCI%
7 PAGSH%
10 PAGIO%
11 PAGNS%
12 PAGLE%
13 PAGIL%
14 PAGNX%
15 PAGNP%
16 PAGSC%
17 PAGSM%
20 PAGIS%
21 PAGAL%
22 PAGAU%
23 PAGNA%

24 PAGNR%

25 PAGNE%

26 PAGNN%
27 PAGNC%
30 PAGWL%
31 PAGWE%

Error

Function not implemented.
Illegal argument.
Illegal page number.
Page should not exist, but does.
Page should exist, but does not.
Page should be in core, but is not.
Page should not be in core, but is.
Page is in sharable high segment.
Paging I/O error.
No swapping space available.
Core limit exceeded.
Function illegal if page locked.
Cannot allocate zero page with virtual limit zero.
Not enough privileges.
Section should not exist, but does.
Section should exist, but does not.
Illegal section.
Page is already locked in core.
Page is already unlocked in core.
Page is not available. (For example, the physical
page requested is already locked for a job.)
Not enough memory space was reserved for the
request to lock pages.
Insufficient Exec Virtual Memory (EVM) space is
available for locking the requested pages.
There are no free high segment numbers.
There is no free core available.
A specified page is already write-locked.
A specified page is already write-enabled.

22-292

PATH. [CALLI 110]

22.119 PATH. [CALLI 110]

FUNCTION

Sets or reads a user's default directory path, reads the default
directory path for a device or channel, or sets or reads pathological
device name definitions. A pathological device name is a logical name
defining a directory search path in the form:

dev:file.ext[UFD,SFDl,SFD2, ... SFD5].

Refer to Section 12.6.5 for more information.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
PATH. ac,

error return
skip return

addr: argument list

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list. The value in this
word must be at least 3. If you specify 0, the length
defaults to 3.

o addr is the address of the argument list.

There are two types of argument blocks for the PATH. monitor call.
Type 1 is used for reading and setting default directory paths for
users, channels, or devices. Type 2 is used for reading or defining
pathological names.

ARGUMENT BLOCK TYPE 1

Argument Block Type 1 is used for reading and setting default
directory paths for users, channels, or devices. This argument type
is used for all functions (specified in .PTFCN), except functions -6
and -5 (.PTFRN and .PTFSN). The function codes are listed below.

Offset

o

Symbol

.PTFCN

Contents

A SIXBIT device name; or a job number in the left
half and a function code or channel number in the
right half.

If you specify a device name, the monitor returns
the default path for that device.

If you specify a job number and function code, or
a job number and channel number, the word is
formatted as follows:

Bits Symbol

0-17 PT.JBN

Contents

Job number. This job number
defaults to your job number if
not in the range of 1 to the
highest legal job number.

22-293

PATH. [CALLI 110]

18-35 PT.FCN Function code or channel number.
The function codes and their
meanings are listed below.

If you specify a channel number
instead of a function code, the
monitor returns the default path
for the device currently open on
that channel. If accessing a
file that is open on the
specified channel, the monitor
returns the actual path for the
file.

The function codes are:

Code Symbol

-6 .PTFRN

-5 .PTFSN

-4 .PTFRL

-3 .PTFSL

Function

Reads a
pathological
name. Refer to
Argument Block
Type 2.

Sets a
pathological
name. Refer to
Argument Block
Type 2.

Returns an
additional path
to be searched
when a fi.le is
not in your
directory path.
(For example, the
monitor returns
SYS, NEW, or LIB,
if appropriate.
See word .PTSWT
below.)

Sets an
additional path
to be searched
when a file is
not found in your
directory path.
(See . PTFRL.)

When you specify
this function
code, you must
supply the
following words
in the argument
block:

.PTFCN

.PTSWT

.PTPPN

22-294

1 .PTSWT

-2 .PTFSD

-1 .PTFRD

PATH. [CALLI 110]

Sets the default
path to search if
no path is
specified.

Reads the default
path that is
searched if no
path is
specified.

Flags. The flags are only applicable to specific
functions. All flags apply if you specify a
device name or channel number in the previous word
(. PTFCN) .

Bits Symbol

25 PT.EDA

26 PT.DLN

27-29 PT.SLT

30

Meaning

Returned to indicate that the
device or channel number was both
a pathological name and an ersatz
device name. This flag is
ignored for all functions that
set the path.

Returned to indicate that the
device or channel specified in
.PTFCN is a pathological name.
Therefore, this flag is
applicable only when a device or
channel number is specified in
.PTFCN.

Returned to indicate the type of
search list associated with a
device or channel. The search
list types are:

Code Symbol

o .PTSLN

1 .PTSLJ
2 .PTSLA
3 .PTSLS

No search list is
associated with
the specified
device or
channel.
Job search list.
ALL search list.
SYS search list.

PT.SLT is applicable only when a
device name or channel number is
specified in .PTFCN.

Returned to indicate that the
device specified in .PTFCN has an
implied PPN, as in the case of an
ersatz device name. The implied
PPN is returned in the following
word, . PTPPN .

22-295

PATH. [CALLI 110]

30 PT.DTL

31 PT. I ... IB

32 PT.NEW

33 PT.SYS

34-35 PT.SCN

Set to prevent any change to the
status of LIB, allowing changes
to NEW and SYS without changing
LIB. This flag is useful only
for function code .PTFSL.

Returned to indicate that LIB: is
def1ned for your job. If LIB: is
defined, it will be searched on
~ach structure in your job search
list, after your default path for
each structure in the job search
list has been exhausted in the
attempt to find a file. The LIB
ersatz device name can be defined
using function .PTFSL, or by
setting flag PT. SEA in the LIB
pathological name definition
using function .PTFSN.

Returned to indicate that, when
SYS is specified or implied, the
NEW area [1,5] will be searched
before the SYS area [1,4].

Returned to indicate that SYS
(ersatz device name for [1,4])
will be searched on each
structure in your job search list
after your default path to each
stDucture in the search list has
been exhausted in the attempt to
find a file.

Controls searching of
higher-level directories.
'(Similar to /SCAN switch to
SETSRC program, but overrides the
setting of /SCAN.) The values of
this field can be 0 (use same
scanning st~tus as before the
PATH. call), or one of the

"following:

Value Symbol Switch Setting

0 Use default
setting.

1 .PTSCN Turns scanning
off.

2 .PTSCY Turns scanning
on.

The scanning status is returned
if you specify a device or
channel number in .PTFCN, or if
you use function .PTFRD. The
status is set using 'function
.PTFSD. These bits are checked
when the path block is given for
LOOKUP, GETSEG, RUN, MERGE., and
FILOP. calls.

22-296

34 PT.SNW

35 PT.SSY

PATH. [CALLI 110]

Set to indicate that NEW (ersatz
~evice name for [1,5]) will be
searched . before [1, 4] whenever
SYS is specified or implied.

Returned to indicate that SYS
(ersatz device name for [1,4])
will be searched on each
structure in your job search list
after your default path to each
structure in the search list has
been exhausted in the attempt to
find a file.

Table 22-1 lists the information that can be stored in .PTFCN and
indicates the flags in .PTSWT that apply to each of the functions
.PTFRD, .PTFSD, .PTFSL, and .PTFRL:

Table 22-12: PATH. Functions and Flags

+---+
1 1 1 Functions 1
1 1 Device 1------------------------------------+
IFlag 1 or Channel 1 .PTFRD 1 .PTFSD 1 .PTFSL 1 .PTFRL 1
+---+

PT. EDA 1 X I 1 I 1

PT.DLN I X

PT.SLT I X

PI.IPP I X

PT.DTL 1 X

PT.LIB I X X

PT.NEW 1 X X

PT.SYS 1 X X

PT.SCN 1 X X X

PT.SNW 1 X X

PT.SSY 1 X X
+-------------------------------------_._--------------------+

22-297

PATH. [CALLI 110]

Offset

2

3

4-10

11

Symbol

.PTPPN

.PTSFD

.PTMAX

Contents

The PPN (UFD) of the path. For function .PTFRL,
the library PPN, if any, is returned here. For
function .PTFSL, the library PPN is set from this
word unless PT.DTL is set in .PTSWT.

The first level of SFD, as the SFD name, stored in
SIXBIT. Subsequent words contain lower levels of
SFDs. TOPS-10 allows up to 5 nested levels of
SFDs, but MONGEN allows this value to be set at
less than 5. You can obtain the maximum number of
SFD levels allowed, from the right half of the
item %LDSFD in GETTAB table .GTLVD.

Name of the following SFD levels.

Maximum length. Contains a 0 to end the PATH.
block.

ARGUMENT BLOCK TYPE 2

This argument block is used to read and define pathological names
(logical names for'directory paths) using functions .PTFSN to set the
pathological name and .PTFRN to read the pathological name. The
offsets into the argument block are:

Offset

o

Symbol

.PTFCN

Contents

Job number and function code in the following
format:

Bits

0-17

18-35

Symbol Contents

PT.JBN Ignored for functions .PTFSN and

PT.FCN

.PTFRN.

Function code.
codes and their

Code Symbol

-6 .PTFRN

-5 .PTFSN

22-298

The function
meanings are:

Function

Returns
information (in
.PTLNM) about the
current
pathological name
or returns the
next pathological
name in the list
of defined names.

Defines or
deletes a
pathological
name. To delete
a name, you must
also set flag
PT.UDF in .PTLNF
and specify the
name to be
deleted in
.PTLNM.

1 .PTLNF

2 .PTLNM

PATH. [CALLI 110]

Pathological name flags:

Bits

o

1

2

3

4

Symbol

PT.SEA

PT.UDF

PT.RCN

PT.OVR

Meaning

The directories included in the
definition of this pathological
name will be searched when a file
is not found in the default
directory path when you issue a
LOOKUP monitor call. (This is
similar to .PTFSL, but allows
more flexibility.) PT.SEA can be
set for only one pathological
device. However, several
directories can be specified for
a single pathological name.

Deletes the definition of the
pathological name specified in
.PTLNM. You must also specify
function code -5 (.PTFSN) above.

Returns data about the
pathological name specified in
.PTLNM when you specify function
code -6 (.PTFRN). If this flag
is 0 for function .PTFRN, the
monitor returns, in .PTLNM, the
next pathological name defined in
the list.

-Reserved for use by DIGITAL.

Indicates that the file name and
extension specified in the
definition of the pathological
device should override those in
the argument block for
LOOKUP/ENTER calls. Used with
both .PTFRN and .PTFSN.

For example, when FOO/OVERRIDE is
defined as DSKA:FOO.DAT[1,2], a
LOOKUP of FOO:BAR.DAT will not
find BAR.DAT; it will find
FOO.DAT. When PT.OVR is not set,
the pathological name is used to
define defaults. For example,
when FOO is defined as
DSKA:FOO.DAT[1,2], a LOOKUP for
FOO:BAR would find BAR.DAT

For function .PTFRN, set this word to 0 to return
the first pathological name in the list of names
defined for your job, or the next path name in
this word. For the .PTFSN function, this word
contains the path name (in SIXBIT) that you wish
to define or delete.

22-299

PATH. [CALLI 110]

3 .PTLSB

Offset Symbol

0 .PTNOD
1 . PTLSL
2 .PTFIL
3 .PTEXT
4 . PTLPP
5 .PTLSF
6-11
12 .PTLEL
13 .PTLZT

First word of the pathological name sub-block.

Each sub-block is in the format shown below.
Offsets are from the start of the sub-block. The
SFD list for the path begins at Word 5 and is
terminated with a zero word. The zero word must
not be past Word 12 (.PTLEL).

The entire list of sub-blocks must be terminated
by two zero words following the last sub-block.
These must be reserved in addition to .PTLEL.

Each path sub-block is formatted as:

Contents

Reserved to DIGITAL for future expansion.
SIXBIT device (such as DSKB, DSK, ALL, or SSL) .
File name.
File extension.
PPN .
Start of SFD list.
Subsequent SFD levels.
Zero word, to terminate SFD list.
First of the two-word zero terminator for the
entire list of path blocks.

You can include as many sub-blocks as you wish, except that the length
of the entire list of sub-blocks (including the header) may not exceed
144 octal words.

SKIP RETURN

For Read functions, the argument block is filled in;
functions, the function is completed.

for Set

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

-1 PTNSS%
0 PTNDD%

1 PTTME%
2 PTTMN%
3 PTNSN%
4 PTNFS%
5 PTANE%

6 PTNEN%

7 PTNSJ%

10
11 PTNAI%

Error

No such SFD as that specified in search list.
Specified channel was not OPEN, or specified
device was not a disk device.
Too many entries in PATH. block.
Too many pathological names defined.
Attempt to delete nonexistent name.
No per-process free core.
Tried to define a pathological name that already
exists.
Non-existent pathological name used in argument
block for .PTFRN and .PTFSN.
No such job as the job number you specified in the
argument block.
Reserved for use by DIGITAL.
Invalid number of arguments specified. You must
include 3 words in the block for calling sequence
1; 5 words in the block for calling sequence 2.

22-300

PATH. [CALLI 110]

EXAMPLES

This example defines the following pathological name:

FOO/SEARCH=DSKB: [10,10,MON,NEW],DSKC: [10,11,OLD]

The code to define the pathological name FOO is:

ARGLST:

MOVE T1, [XWD
PATH. T1,

JRST ERROR
JRST CONTIN
EXP .PTFSN
EXP PT. SEA
SIXBIT/FOO/
EXP °
SIXBIT/DSKB/
o
o
XWD 10,10
SIXBIT/MON/
SIXBIT/NEW/
EXP 0
EXP 0
SIXBIT/DSKC/
o
o
XWD 10,11
SIXBIT/OLD/
EXP 0
EXP 0
EXP 0

ARGLEN,ARGLST]

;Function code
;/SEARCH attribute
;Logical path name to define
;Start of first group

;File name
;Extension

;Word terminating PATH spec
;Start of second group

;File name
;Extension

;Word terminating PATH spec
;Two words terminating PATH block

ARGLEN==.-ARGLST ;Length of arg list

22-301

PEEK [CALLI 33]

22.120 PEEK [CALLI 33]

FUNCTION

Returns the contents of any location in the monitor. The PEEK monitor
call requires that your program have bit 16 (JP.SPA) or bit 17
(JP.SPM) set in the GETTAB table .GTPRV, or your program must have
JACCT privileges. If you do not have the proper privileges, the ac is
cleared.

CALLING SEQUENCE

MOVE
PEEK
return

ac,addr
ac,

In the calling sequence, the program supplies the addr, which is the
30 bit address of the word in the monitor virtual address space to be
returned.

If you set UU.PHY in this call, using the instruction:

PEEK ac,UU.PHY

the specified address is assumed to be a physical memory address
instead of a virtual address.

RETURN

On return, the contents of the monitor location given by addr is
returned in the ac. If the calling job does not have the required
privileges, the monitor clears the ac.

RELATED CALLS

o PAGE.

o POKE.

o Spy

22-302

PERF. [CALLI 162]

22.121 PERF. [CALLI 162]

FUNCTION

Allows privileged programs to perform system measurements over a
period of time. The PERF. call works only on the KL10 processor.
Note that only one job at a time may uS'e the performance meter on each
cpu. The PERF. functions are discussed in Chapter 10.

CALLING SEQUENCE

MOVE ac, [XWD fl, addr]
PERF. ac,

error return
skip return

addr: XWD fcncode,faddr

XWD fcncode,faddr

In the calling sequence, the program supplies the following variables:

o n is the number of function words specified in the argument
block, which begins at addr.

o addr is the address of the argument block. The argument
block is a list of the functions to be enabled and the
address of the argument list that defines each function,
allowing you to specify multiple functions in a single
monitor call.

o fcncode is one of the function codes described on the
following pages of this manual.

o faddr is the address of the function code argument
Each function must have a corresponding argument list.
argument lists are described with the function codes.

list.
These

The function codes and their meanings are:

Code

1
2
3
4
5
6
7

Symbol

. PRSET

.PRSTR

.PRRED

.PRSTP

.PRRES

.PRBPF

.PRBPN

Function

Sets up the performance meter .
Starts the performance meter.
Reads the performance meter.
Stops the performance meter.
Releases the performance meter.
Turns background PERF analysis off.
Turns background PERF analysis on.

22-303

PERF. [CALLI 162]

The argument list at

Offset Symbol

0 .PMLEN

1 .PMCPU

2 .PMMOD

3 .PMCSH

4 .PMPIE

faddr for the

Contents

Length of the

CPU

Bit

0
1
2
3
4

CPU

Bits

0-17
18

19

type:

Symbol

PM.PD6
PM.KA
PM.KI
PM.KL
PM.KS

number and

Symbol

PM.CPN
PM.MOD

PM.CLR

.PRSET func'tion is:

argument list.

CPU ~

PDP-6.
KA10.
KIlO.
KL10.
KS10.

mode:

Meaning

CPU number.
Interval mode. If this bit is
not set, a count of the enabled
events (specified in following
words) is kept. If on, the
duration of the enabled event (in
clock ticks) is kept.
Clears performance meter counts.
Resets the counters when the call
is issued. If you clear this
bit, the meter will be set but
any values currently in the
counters are left unchanged.

Cache enable flags:

Flag

o
1
2
3
4

Symbol

PM.CCR
PM.CCF
PM.EWB
PM. SWB
PM. SYN

Meaning

Count references.
Count fills.
Count EBOX writebacks.
Count sweep writebacks.
Synchronize performance
accounting meters.

Priority interrupt enable flags:

Flag

o
1
2
3
4
S
6
7
8

Symbol

PM.PIO
PM.Pl1
PM.PI2
PM.PI3
PM.PI4
PM. PIS
PM.PI6
PM.PI7
PM.NPI

Meaning

Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable

for channel
for channel
for channel
for channel
for channel
for channel
for channel
for channel
for no

progress.

22-304

o (DTE)
1.
2.
3.
4.
S.
6.
7.
interrupt

and

in

PERF. [CALLI 162]

5 .PMPCE

6 .PMMPE

7 .PMHPE

10 .PMJOB

11 .PMCHN

Program counter enable flags:

Flag

o
1

Symbol

PM.UPC
PM.XPC

Meaning

User-mode enable.
Executive-mode enable.

Microcode probe enable flags:

Flag

o

Symbol

PM.MPE

Meaning

Enable microcode probe.

Hardware probe enable flags:

Flag

o
1

Symbol

PM. POL
PM.POH

Job enable flag:

Value Symbol

-2 .PMNUL
-1 .PMSLF

Meaning

Probe zero low.
Probe zero high.

Meaning

Enable for null job.
Enable for calling job.

Channel enable flags:

Flag Symbol Meaning

0 PM.ECO Enable for channel O.
1 PM.EC1 Enable for channel 1.
2 PM.EC2 Enable for channel 2.
3 PM.EC3 Enable for channel 3.
4 PM.EC4 Enable for channel 4.
5 PM.EC5 Enable for channel 5.
6 PM.EC6 Enable for channel 6.
7 PM.EC7 Enable for channel 7.

The arguments at faddr and following for the .PRSTR,
and .PRRES functions are:

.PRRED,

Offset

o
1
2
3
4
5
6
7

Symbol

.PMLEN

.PMCPN

.PMHTB

.PMLTB

.PMHPM

.PMLPM

.PMHMC

.PMLMC

Contents

Length of the argument list.
CPU number.
High-order word of time-base.
Low-order word of time-base.
High-order word of performance counter.
Low-order word of performance counter.
High-order MBOX reference count.
Low-order MBOX reference count.

The argument offsets for the .PRBPF and .PRBPN functions are:

Offset

o
1
2
3

Symbol

.PMLEN

.PMCPU

.PMMOD

.PMBPI

Contents

Length of argument block.
CPU type (same as .PRSET).
CPU and flags (same as .PRSET).
Sample interval in ticks.

22-305

.PRSTP,

PERF. [CALLI 162]

SKIP RETURN

For the .PRSET function, the performance meter is set.

For the .PRSTR function, the monitor starts the performance meter.

For the .PRRED function, the monitor has supplied the updated values
for faddr+2 through faddr+7.

For the .PRSTP and .PRRES functions, the monitor stops the performance
meter or releases the performance meter, respectively.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

1 PRCPU% Invalid CPU specified.
2 PRNXC% Nonexistent CPU specified.
3 PRMOD% Improper mode specified.
4 PRSET% Meter not set up.
S PRUSE% Meter already in use.
6 PRRUN% Meter already running.
7 PRJOB% I"nvalid job number.
10 PRNRN% Meter not running.
11 PRNIM% Function not implemented.
12 PRFUN% Invalid function code.
13 PRPRV% Not enough privileges.

22-306

PIBLK. [CALLI 212]

22.122 PIBLK. [CALLI 212]

FUNCTION

Returns the address of the 4-word interrupt control block for the
current interrupt in progress on the Programmable Software Interrupt
(PSI) system. Refer to Chapter 6 for more information about using the
(PSI) system.

This call is used by generic interrupt processes that service multiple
interrupt conditions. Note that this call will not generate an
interrupt when UUO interrupts are enabled.

CALLING SEQUENCE

PIBLK. ac,
error return

skip return

SKIP RETURN

On a successful return from this call, the address of the interrupt
control block is stored in the ac.

ERROR RETURN

The call can take the error return with one of the following error
codes stored in the ac:

Code

o

1

RELATED

0

0

0

0

0

0

0

0

Symbol

PSNIN%

PSNIP%

CALLS

DEBRK.

PIFLG.

PIINI.

PIJBI.

PIRST.

PISAV.

PISYS.

PITMR.

Error

The PSI system has not been initialized for this
job.

No interrupt is in progress.

22-307

PIFLG. [CALLI 216]

22.123 PIFLG. [CALLI 216]

FUNCTION

The PIFLG. monitor call allows you to retrieve the PC flags of the
highest level pending interrupt that have been stored in the monitor.
Flags are stored in the monitor if you are using extended addressing
format, set by the PS.IEA bit of the PIINI. monitor call.

This call does not cause an interrupt when UUO interrupts are enabled.

CALLING SEQUENCE

/ MOVEI ac, .PSFRD \
\ MOVE ac, [flags" .PSFWT] /

PIFLG. ac,
error return

skip return

In the calling sequence, the program supplies the flags, which are one
or more of the interrupt PC flags. The function codes are:

Code

o

1

Symbol

.PSFRD

. PSFWT

SKIP RETURN

Function

Read interrupt flags.

write interrupt flags .

The requested action is performed. Flags, are returned in the ac.

ERROR RETURN

One of the following codes in returned in the ac:

Code Symbol Error

0 PSFNI% PSI system not initialized.
1 PSFNP% No interrupt in progress.
2 PSFEA% Extended addressing format for PI system not

use.
3 PSFIF% Illegal function code.

RELATED CALLS

0 DEBRK.

0 PIBLK.

0 PIINI.

0 PIJBI.

0 PIRST.

0 PISAV.

0 PISYS.

0 PITMR.

22-308

in

PIINI [CALLI 135]

22.124 PIINI. [CALLI 135]

FUNCTION

Initializes the programmable software interrupt (PSI) facility by
clearing any old interrupts and storing the base address of the
interrupt vector block. Refer to Chapter 6 for more information about
using the PSI system.

CALLING SEQUENCE

MOVE ac, [flag + addr]
PIINI. ac,

error return
skip return

addr: interrupt vector block address

In the calling sequence, the program supplies the following variables:

o flag is one or more of the following:

Bits

o

1

Symbol

PS.UCS

PS.IEA

Meaning

Use the current (PC) section for the vector
section. (IFIW) If PS.UCS is not set, addr
is treated as a 30-bit address. This bit
is ignored if PS.IEA is not set.

Use extended addressing format. A 30-bit
PC word is stored in the old PC location in
the PSI block when an interrupt occurs. No
flags are stored in the PC. Flags are
stored in the monitor, and may be returned
using the PIFLG. UUO.

If PS.IEA is clear, the entire contents of
the left half of the ac will be ignored.

o addr is the base address of the first interrupt vector block
(described below) .

The interrupt vector block is a list of one or more sub-blocks, each
of which is formatted as follows:

Offset

o

1

Symbol

.PSVNP

.PSVOP

Contents

New program counter; this is the address of the
interrupt service routine. This value is set by
the prog~m. The program supplies a 30-bit
address if you have not set PS.IEA (above). If
PS.IEA is not set, the left-hand half of this word
is ignored.

Old program counter; this is the address of the
next instruction after the instruction that was
being executed when the interrupt occurred. This
value is returned by the monitor on a interrupt.

If the instruction was a monitor call, .PSVOP
contains the return address for the calli however,
if the monitor terminated the call, .PSVOP
contains the address of the call itself.

22-309

PIINI [CALLI 135]

2 .PSVFL

3 .PSVIS

SKIP RETURN

Control flags, and either device
or a non-I/O condition code.
are set by the user.

condition flags
The control flags

The control flags are:

Bits

1

2

3

4

5

6

18-35

Symbol

PS.VPO

PS.VTO

PS . VAl

PS.VDS

PS. VPM

PS. VIP

Meaning

Disable all interrupts; they can
be reenabled by a PISYS. monitor
call.

Disable all interrupts of higher
priority until the program gives
a DEBRK. monitor call.

Allow control block to accept
additional interrupts. Use
DEBRK. to dismiss interrupts.

Dismiss any additional interrupt
requests for this condition or
device until this interrupt is
dismissed (using DEBRK.).

Print any standard message that
is relevant to this interrupt
condition.

Obsolete.

The right half of .PSVFL contains
the condition (reason) for the
interrupt. These are divided
into device I/O conditions and
non-I/O conditions, and are
described under the PISYS.
monitor call. The reason code is
returned by the monitor on an
interrupt.

Interrupt status. When this auxiliary word is
returned by a device I/O interrupt, it contains:

udx"file-status

The program can use the PISYS. call to add or delete interrupt
conditions.

ERROR RETURN

The call can take the error return with one of the following error
codes stored in the ac:

Code

1
2
3

Symbol

PIIBC%
PIADC%
PINFS%

Meaning

Illegal bit or section number given.
Address check occurred.
The monitor does not have ~ufficient free core.

22-310

PIINI [CALLI 135]

EXAMPLES

See Chapter 6.

RELATED CALLS

0 DEBRK.

0 PIBLK.

0 PIFLG.

0 PIJBI.

0 PIRST.

0 PISAV.

0 PISYS.

0 PITMR.

22-311

PIJBI [CALLI 175]

22.125 PIJBI. [CALLI 175]

FUNCTION

The PIJBI. monitor call allows one job to interrupt another with a
software interrupt. The interrupted job must be waiting for the
interrupt; it cannot be busy handling a previous interrupt. The
receiver enables cross-job interrupts by using the PISYS. UUO (non-I/O
condition .PCJBI).

CALLING SEQUENCE

MOVE ac, [XWD target,status]
PIJBI. ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o target is either the job context number of the job to
interrupt, or the job number of the job to interrupt.

o status is the status of the interrupt. The status word is
described in Volume 1.

Specifically, the ac contains the following:

Bits

0-8

9-17

18-35

Symbol

PS.CTX

PS.JOB

PS.STS

Contents

Context number or zero.

Job number. (A -1 in the left half of this
word indicates the job that is executing
the monitor call.)

status.

The job to be interrupted must be enabled for cross-job interrupts or
else the call will fail. Note that this situation requires
cooperation between two jobs, much like ENQ/DEQ or IPCF. If the
target job is processing an interrupt, the sender must try again
because requests are not queued.

SKIP RETURN

The interrupted job will receive a word of the following form:

[source"status]

In the argument word:

o source is the job context number of the job that performed
the PIJBI. call.

o status is the status that the job included in the call.

22-312

PIJBI [CALLI 175]

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Meaning

0 PSJNE% Job not enabled or the program specified an
invalid job number.

1 PSJOP% Job has an interrupt in progress. Try to
interrupt again.

RELATED CALLS

0 DEBRK.

0 PIBLK.

0 PIFLG.

0 PIINI.

0 PIRST.

0 PISAV.

0 PISYS.

0 PITMR.

22-313

PIRST. [CALLI 141]

22.126 PIRST. [CALLI 141]

FUNCTION

Restores the saved state of the interrupt facility.
restore any pending interrupts.

CALLING SEQUENCE

MOVE I ac,buffer
PIRST. ac,

error return
skip return

This does not

In the calling sequence, the program supplies the buffer, which is the
address of the data saved by a PISAV. monitor call.

SKIP RETURN

The state of the interrupt facility as saved by PISAV. is restored.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

o
1

RELATED

0

0

0

0

0

0

0

0

Symbol

PSNRS%
PSNME%

CALLS

DEBRK.

PIBLK.

PIFLG.

PIINI.

PIJBI.

PISAV.

PISYS.

PITMR.

Error

Not restoring what was saved.
Not enough monitor core to contain data base.

22-314

PISAV. [CALLI 140]

22.127 PISAV. [CALLI 140]

FUNCTION

Returns the monitor's data for the current state of the software
interrupt facility. Use PIRST. to restore this data to current state.

CALLING SEQUENCE

MOVE ac, [XWD buflength,buffer]
PISAV. ac,

error return
skip return

buffer: BLOCK buflength

In the calling sequence, the program supplies the following variables:

o buflength is the length of the buffer for returned data
(buflength 2 + (3 * blocks». The data is returned in a
series of 3-word blocks, one block for each interrupt vector.

o buffer is the address of the buffer.

SKIP RETURN

The interrupt data is returned at buffer in the format:

Offset

o

1

2

Symbol

.PSSFC

. PSSIV

. PSSBL

Contents

Flags and count:

Bits Symbol

o PS.SON
1
2 PS.SEA
3-17
18-35

Meaning

The interrupt facility is on.
Reserved.
System using extended addressing.
Reserved.
Count of words returned. If
error code PSBTS% (0) is
returned, this count is the
number of words required to save
the current interrupt system.

Address of interrupt control block vector .

Address of first 3-word argument block .

Each 3-word argument block is in the form:

Offset

o
1
2

Symbol

. PSECN

. PSEOR

.PSEPR

Contents

Condition or device .
Offset"reasons .
Priority"O.

Refer to the PISYS. UUO for lists of device conditions and reason
codes.

22-315

PISAV. [CALLI 140]

ERROR RETURN

One of the following error codes is returned in the ac:

Code

o
1

EXAMPLES

Symbol

PSBTS%
PSBSZ%

Error

Block too small.
Buffer size is 0 words.

See Chapter 6 for more information.

RELATED CALLS

o DEBRK.

o PIBLK.

o PIFLG.

o PIINI.

o PIJBI.

o PIRST.

o PISYS.

o PITMR.

22-316

PISYS. [CALLI 136]

22.128 PISYS. [CALLI 136]

FUNCTION

Controls the program interrupt facility during execution.

CALLING SEQUENCE

addr:

MOVE ac, [EXP flags+addr]
PISYS. ac,

error return
skip return
. .

I SIXBIT/devicel \
I EXP channo I
I EXP udx I

\ EXP condition I
XWD vector-offset,reasons
XWD priority, 0

In the calling sequence, the program supplies the following variables:

o flags are one or more of the function flags described below.

o addr is the address of the argument list.

o device is the SIXBIT physical or logical name of an
initialized device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

o condition is one of the non-I/O condition codes described
below. (See Table 22-14.)

o vector-offset is the relative address of the control block
for the interrupt (maximum value for this is stored in GETTAB
table .GTCNF, item %CNMVO) .

o reasons are flags (described below) specifying the device I/O
conditions that can cause an interrupt.

o priority is the priority level assigned to the interrupt.
Priority 0 is the lowest level. Higher values indicate which
events may interrupt other events. The maximum priority
level is available in GETTAB table .GTCNF, item %CNMIP
(normally 3) .

22-317

PISYS. [CALLI 136]

The function flags and their meaning~ are list~d below.

Table 22-13: PISYS. Function Flags

Bits Symbol

1 PS.FOF

2 PS.FON

3 PS.FCP

4 PS.FCS

5 PS.FRC

6 PS .FAC

Meaning

Turns off the interrupt facility.

Turns on the interrupt facility.

Clears all pending interrupts.

Clears all pending interrupts for a given device
or condition.

Removes the specified device or condition.

Adds the specified device or condition.

The non-I/O condition codes and their meanings are listed in the
following table. You can include these codes in addr to enable PISYS.
interrupts.

Table 22-14: PSI Interrupt Codes (Non-I/O Interrupts)

Code Symbol

-1 .PCTLE

-2 .PCTMR

-3 .PCSTP

-4 .PCUUO

-5 .PCIUU

-6 .PCIMR

Meaning

Time limit exceeded for non-batch job. The job
run time (in milliseconds) is returned in the
status word. You can change the job's time
limit with the SET TIME monitor command.

Timer interrupt occurred.
condition with PISYS.,
control timer interrupts.

After you enable this
use the PITMR. call to

CTRL/C received from user terminal. If the job
was in terminal input wait state, bit 0 of the
status word is set.

A monitor call is about to be processed; the
status word contains the monitor call.

An illegal monitor call has been processed; the
status word contains the monitor call.

An illegal memory reference occurred; the status
word contains the effective address.

22-318

-7 .PCACK

-10 .PCARI

-11 .PCPDL

-12 .PCNSP

-13 .PCNXM

-14 .PCAPC

-15 . PCUEJ

-16 .PCXEJ

-17 .PCKSY

-20 .PCDSC

-21 .PCDAT

-22 .PCWAK

-23 .PCABK

-24 .PCIPC

-25 .PCDVT

-26 .PCQUE

-27 .PCNET

-30 .PCJBI

-31 .PCDTC

PISYS. [CALLI 136]

An address check occurr.ed; the status word
contains the device name.

An exceptional arithmetic condition occurred.

A pushdown list overflow occurred.

The DECnet NSP. monitor
occurred. Refer to the NSP.

call
UUO.

interrupt

A reference to nonexistent memory occurred.

A line-frequency clock tick occurred while the
job was running. Note that this does not mean
an interrupt occurs on every clock tick, but
only on those that occur while the job is being
serviced by the CPU. The status word contains
the date and time in universal format.

A fatal error occurred for the job .

An external condition caused a fatal error for
the job.

A KSYS (end of timesharing) warning occurred;
the status word contains the number of minutes
left until KSYS.

The dataset status changed.

An ATTACH or DETACH monitor call was executed.
For ATTACH the status word contains the
Universal Device Index number for the terminal.
For DETACH the status word contains -1.

A WAKE monitor call was executed; the status
word contains the job number of the waker.

An address break condition occurred.

An IPCF packet is in your job's input queue; the
status word contains the associate variable.

DECnet logging event occurred. Returns DR. xxx
conditions, indicating that an event occurred
that the DECnet management layer must handle.

One or more resources requested by an
ENQ. monitor call is now available; the status
word contains the inclusive OR of the
request-ids of the granted requests.

The ANF-10 network topology changed.
obtain the state of the network
NODE. monitor call.

Cross-job interrupt.

You can
using a

Date/time changed. The offset from the previous
UDT is returned in the status word. This offset
should be added to a previously stored UDT.

22-319

PIS Y S. [CALL I 136]

-32 .PCOOB An out-of-band character was received.

-33 .peRC1 Reserved for customer use.

-34 .PCRC2 Reserved for customer use.

-35 .PCSCS SCS event.

-36 .PCETH ETHERNET event.

-37 .PCLLM LLMOP. event.

-40 .PCLVT LAT event.

The device interrupt reason flags and their meanings are listed in the
following table:

Table 22-15: PSI Reason Codes (I/O-Related Interrupts)

Bit

19
20
21
22
23
24
25
26
27
28
29
30
31
32

Symbol

PS .RID
PS . ROD
PS.REF
PS .RIE
PS.ROE
PS.RDO
PS .RDF
PS.RQE
PS.RWT
PS.ROL
PS.RRC
PS.RDH
PS.RSW
PS.RIA

SKIP RETURN

Device Condition

Input done.
Output done.
End-of-file.
Input error.
Output error.
Device off-line.
Device full.
Quota exceeded.
I/O wait.
Device on-line.
RIB has changed.
Device hung.
Reel switch.
Input available.

The specified function is executed or the condition is enabled.

22-320

PISYS. [CALLI 136]

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

0 PSTMA%

1 PSNFS%
2 PSUKF%
3 PSOOF%
4 PSUKC%
5 PSDNO%
6 PSPRV%
7 PSIVO%

10 PSUKR%
11 PSPTL%

12 PSNRW%
13 PSPND%
14 PSARF%

EXAMPLES

Error

Although no bits in the left half of the ac
require an argument list, the right half is
nonzero.
The left half of the ac is zero.
Unknown function flag-.-
Both the on and off function flags are set.
Address check for addr.
Device not initialized.
Privilege failure.
Invalid vector offset; not a multiple of 4, or too
large. This value may not be larger than the
limit given in the item %CNMVO in the GETTAB table
.GTCNF.
Nonzero value at addr+2.
Priority too large. Highest priority allowed can
be obtained from GETTAB table %CNMIP.
Nonzero right halfword in control block.
Facility not initialized by PIINI.
Function flags for both "add" and "remove" are
set.

See Chapter 6, Monitor Calls Manual, Volume 1.

RELATED CALLS

o DEBRK.

o PIBLK.

o PIFLG.

o PIINI.

o PIJBI.

o PIRST.

o PISAV.

o PITMR.

22-321

PITMR. [CALLI 203]

22.129 PITMR. [CALLI 203]

FUNCTION

Enables the PSI system to interrupt after an interval of time. The
PSI system must be initialized with the PIINI. call.

CALLING SEQUENCE

MOVE ac, [XWD flag,interval]
PITMR. ac,

error return
skip re'turn

In the calling sequence, the program supplies the following variables:

o flag is Bit 0 (PS.TMS), which can be set to indicate that the
interval is specified in milliseconds. If Bit 0 is off, the
interval is assumed to be the number of seconds.

o interval is the number of seconds to wait, then interrupt
this jOb; if bit 0 is set, then the interval is taken as the
number of milliseconds. If interval is specified as 0, the
default is 1 clock tick.

RESTRICTIONS

o The job must enable the timer condition
PISYS.

(. PCTMR) , us ing

o A second request will override the first, because the job can
have only one timer interrupt request pending at a time.

o Specified in milliseconds, the maximum interval is 262.143
seconds.

o In seconds, the maximum interval is 1 hour, 12 minutes, 49
seconds (at 60 Hz); or 1 hour, 27 minutes, and 22 seconds (at
50 Hz) .

SKIP RETURN

The program continues at the skip return and is interrupted with the
timer condition after the specified interval.

ERROR RETURN

The program receives one of the following error codes in the ac:

Code

o

1

Symbol

PSTNE%

PSUFB%

Error

Timer interrupts are not enabled for your job.
Use PISYS. call to enable for these types of
interrupts.
Unknown function bit. The only bit that may be
set in the left half of the ac is bit O.

22-322

PITMR. [CALLI 203]

RELATED CALLS

0 DEBRK.

0 PIBLK.

0 PIFLG.

0 PIINI.

0 PIJBI.

0 PIRST.

0 PISAV.

0 PISYS.

22-323

PJOB [CALLI 30]

22.130 PJOB [CALLI 30]

FUNCTION

Returns the job number of your job.

CALLING SEQUENCE

RETURN

PJOB ac,
only return

Your job number is returned in the ac.

RELATED CALLS

CTLJOB

22-324

POKE. [CALLI 114]

22.131 POKE. [CALLI 114]

FUNCTION

Changes the value of a word in monitor core.
requires [1,2], JACCT, or JP.POK privileges.

Using the POKE. call

CALLING SEQUENCE

addr:

MOVE ac, [XWD 3,addr]
POKE. ac,

error return
skip return

monitor-addr
old-value
new-value

In the calling sequence, the program supplies the following variables:

o addr is the address of the argument list.

o monitor-addr is the address of the monitor word to be
changed.

o monitor-addr is assumed to be an executive
unless you set UU.PHY to indicate
referencing.

virtual address,
physical memory

o old-value is the value of the word before the change.

o new-value is to be the value of the word after the change.

You can set UU.PHY using the instruction:

POKE. ac,UU.PHY

SKIP RETURN

The value of the specified monitor word is changed.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

0
1

2

RELATED

0

0

0

Symbol

PKNPV%
PKDIF%

PKBAD%

CALLS

PAGE.

PEEK.

Spy

Error

Your job is not properly privileged.
The value of the given word is different from the
value of old-value.
The value of monitor-addr is not a valid monitor
address.

22-325

QUEUE. [CALLI 201]

22.132 QUEUE. [CALLI 201]

FUNCTION

Allows your program to communicate with system components. The actual
communication is accomplished by QUEUE., using IPCF in your behalf,
but the QUEUE. call allows you to communicate with system components
using standard argument block formats. Some functions provided by
system components are not accessible through QUEUE., and in these
cases you must format your own IPCF. messages. For example, QUEUE.
allows you to send messages to the GALAXY batch and spooling system,
the accounting system, and site-specific components.

Many of the implemented functions relate directly to monitor commands.
Therefore, information about these functions can be obtained from the
Commands Manual.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
QUEUE. ac,

error return
skip return

addr: argument list

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list, and must be 3 or
greater.

o addr is the address of the argument list, which is formatted
as follows:

Argument ==1
Block . QUFNC QF.FLG 1 QF.HLN 1 QF.FNC 1
Header --1

. QUNOD Node-id 1

--1
Length of (QR.LEN) 1 Pointer to (QR.BLK) 1

. QURSP Response Block 1 Response Block 1

--1
.QUTIM 1 QT. TIM 1

--1
. QUPID Process-indentifier Word 1

==!
Argument 1 1 1
Block 1 1 1

.QUARH I 1 QA.LEN 1 QA.TYP 1
--1

.QUARD Value or Pointer 1

==1

Figure 22-1: QUEUE. Argument List

22-326

QUEUE. [CALLI 201]

Each word of the argument block header is described below:

Word

o

1

2

~mbol

. QUFNC

. QUNOD

. QURSP

Contents

Flags, header block length, and function code .
The flag field (QB.FLG) is in Bits 0-11 of the
left half of the word, in which you can set any of
the following flags:

Bit Symbol

o QF.RSP

1 QF.PIP

2 QF.NBR

3-16

12-17 QB.HLN

18-35 QU.FNC

Meaning

User wants acknowledgement text
returned at the address specified
in Word 2 of this block, .QURSP.

Your privileged job is invoking
privileges to perform privileged
QUEUE. call functions. You must
set this flag to use privileged
functions of QUEUE.

return. The call
automatically, and
will be performed

Non-blocking
will return
the function
while your
flag 1S
function .QUWTO
privileges.

program runs. This
useful with

and requires

Reserved.

Contains the length of the header
block. If you specify 0, the
length defaults to 3.

Contains the function code.
Function codes are listed at the
end of the argument header block
description.

Optional ANF-10 network node identifier. You must
specify whether the function is to be performed at
the central site (where the program is running) or
at a remote station. If this word is 0, the
central site is assumed. If you set this word to
-1, the located node (defined by a LOCATE command
or monitor call) is used.

Optional pointer to the first word of a block
reserved for acknowlegement response from the
system component. Data is read from this word if
Bit 0 (QF.RSP) is set in the function word. If
the .QURSP word is not zero, it must be formatted
as follows:

Bits

9-17
18-35

Symbol

QR.LEN
QR.BLK

Contents

Length of the response block.
Address of the response block.

22-327

QUEUE. [CALLI 201]

3 . QUTIM

4 .QUPID

This optional he~der worq contains the maximum
number of seconds to wait for a response. The
number of seconds is stored in Bits 26-35
(QT. TIM) . If the time is exceeded, the ~all
returns error code 11. If this word contains 0,
or is non-existent, there is no implied time limit
on the request.

Optional argument list word containing the
Process-ID of the process to receive messages from
[SYSTEM] GOPHER. If this word is 0, use the PID
implied by the function code.

The function codes that you can specify in Word 0 (.QUFNC) are:

Code Symbol

-n
1 . QUPRT
2 . QUCDP
3 . QUPTP
4 . QUPLT
5 . QUBAT

6 . QUALC
7 . QUDAL
10 . QUMNT
11 . QUDIS
12 . QUWTO
13 . QUWTR
14 . QUVAL
15 .QUMAE

16 . QUCAT
17 . QUMAI
20 . QUEVT

Function

Reserved for use by customers.
Prints a file.
Punches a file on cards.
Punches a file on paper tape.
Plots a file.
Processes the file under BATCON, the batch
controller.
Allocates a volume set.
Deallocates a volume set.
Mounts a volume set.
Dismounts a volume set .
Writes to operator.
Writes to operator with reply.
Validates an account .
Makes an accounting entry by sending a message to
the ACTDAE program. Refer to ACTSYM.MAC for the
format of accounting entries.
Makes a CATALOG validation request.
Delivers a mail message.
Creates an entry in the Event Queue.

Each argument block header is followed by one or more argument blocks.
An argument block contains one header word and one or more data words.

The argument block is formatted as follows:

Word

o

Symbol

.QUARH

Contents

Argument block header word, which contains
information about the subsequent data word(s) .
The header word contains the following
information:

Bits

o

9-17

Symbol

QA. IMM:

QA.LEN

Contents

If this bit is set, data for the
function starts at .QUARD. If
this bit is clear, .QUARD
contains the address of the data
block.

This field contains the number of
words in the data block. A value
of zero is assumed to indicate a
one-word data block.

22-328

1 .QUARD

18-35 QA.TYP

QUEUE. [CALLI 201]

This field contains the code for
the type' of data block that the
data word points to. The data
block types are listed below.

When QU.IMM is set, this word is used to contain a
second argument word. When QU.IMM is clear, this
word is the address of the data block.

NOTE

The former symbol for Word 1 (.QUARV) is obsolete.

Each function can be described by one or more types of data blocks.
The data blocks are listed below in the order of their type codes.
Include all the data block types that specify information that is
needed to perform the function you specified in .QUFNC.

Use the value of QA.IMM to specify the location of
QA.IMM=I, .QUARD and the following words contain
QA.IMM=O, .QUARD points to a data block.

the
the

data.
data.

If
If

For the allocation, mounting, dismounting, and deallocation of volume
sets (Functions 6-11), you must first specify Block Type 37 (.QBVSN)
to specify the magtape volume set name or disk structure name. Then
list the data blocks that contain or point to data about the request.

The data block types are:

~

10

11

12

Symbol

.QBFIL

.QBCOP

.QBFRM

Contents

File specification block.
type of data block for
(such as printing a file) .

You must include this
any function on a file

Offset Symbol Contents

0 . QBFSR SIXBIT structure name .
1 .QBFFL SIXBIT file name.
2 .QBFEX SIXBIT extension. The right half

of this word must be O.
3 .QBFPP UFD number (PPN) .
4 .QBFSI First level of SFD ln SIXBIT.
5 .QBFS2 Second level of SFD.
6 .QBFS3 Third level of SFD.
7 .QBFS4 Fourth level of SFD.
10 .QBFS5 Fifth level of SFD.

Number of copies block:

Offset Symbol

o .QBCNO

Forms type block:

Offset Symbol

o .QBFTY

Contents

Number of copies of the file to
be output.

Contents

Forms type in SIXBIT.

22-329

QUEUE. [CALLI 201]

13 .QBPTP

14 .QBODP

15 .QBUNT

16 .QBAFT

Print file type block (for function .QUPRT only)

Offset Symbol

o .QBPCD

Contents

File format code. Include one of
the following codes:

Code Symbol Format

1 . QBPAS ASCII .
2 .QBPFR FORTRAN.
3 . QBPCB COBOL .
4 . QBPAI Augmented image .
5 .QBPSA Stream ASCII.
6 . QBP11 Eleven .
7 .QBPIM Image.
10 . QBP8B 8-bit ASCII .

Output disposition block. Specifies the fate of
the file after the file is spooled.

Offset Symbol

0 .QBODB

Code Symbol

0 .QBODK

1 .QBODD

2 .QBODR

Unit type:

Offset Symbol

o .QBUDA

Code Symbol

1
2
3

4

.QBULC

. QBUUC

.QBUPH

.QBUGN

Contents

Output file disposition, one of
the following:

Meaning

Preserve the file after
processing it.
Delete the file after processing
it.
Rename the file into the spooling
area, effectively deleting it
from the original area
immediately.

Contents

Device attributes in the left
half. If .QBUPH is specified in
the left half, you must specify
the unit number in the right half
of this word. The device
attribute codes are:

Meaning

Lowercase printer.
Uppercase printer .
Physical device (specify
number in right half) .
Generic device.

unit

Specifies the date and time at which the request
should be processed.

Offset Symbol

o .QBADT

Meaning

Time in
format.

22-330

universal date/time

17 .QBLIM

20 .QBUNI

21 .QBRES

22 .QBLOG

23 .QBACT

24 . QBFNC

QUEUE. [CALLI 201]

Specifies the max~mum number of units to which the
job is limited. For printer requests, this is the
number of pages. For batch processing, this
refers to number of seconds of processing time,
and so forth.

Offset Symbol

o .QBLNO

Contents

Number of pages, seconds,
appropriate limit.

or

Specifies whether a batch job can be processed at
the same time as others from the same PPN, or if
only one batch job from this PPN can run at a
time.

Offset Symbol

o .QBNVL

Code Symbol

1 .QBNNO
2 .QBNYE

Contents

Uniqueness code:

Meaning

Does not need to be unique.
Must be unique.

Specifies whether a batch job should be restarted
by the operator if the job is terminated
unexpectedly (by a system failure, for example) .

Offset Symbol

o .QBRVL

Code Symbol

1 .QBRNO
2 .QBRYE

Contents

Restart code:

Meaning

Do not restart the job.
Restart the job.

Specifies the circumstances under which to print a
log file of the batch job.

Offset Symbol

o .QBLVL

Code Symbol

1 .QBLNL
2 .QBLLG
3 .QBLLE

Contents

Output type code:

Meaning

Never print a log file.
Always print a log file.
Print a log file only when the
batch job is terminated with an
error.

Account string block. Specifies the ASCIZ account
string for a batch job. Argument words .QBAC1
through .QBAC8 contain the ASCIZ string.

Reserved for use by DIGITAL .

22-331

QUEUE. [CALLI 201]

25 .QBNOD

26 .QBNAM

27 .QBOID

30 .QBNOT

31 .QBBLT

32 .QBJBN

Specifies the node at which the actual job
processing should be done (destination node).
Node number must be a remote non-host station in
an ANF-10 network.

Offset

o

Symbol

.QBNND

Contents

Destination node number or SIXBIT
node name.

User's name block:

Offset Symbol

o .QBNN1
1 .QBNN2

Contents

First word of SIXBIT user name.
Second word of SIXBIT user name.

Specifies the owner's PPN:

Offset Symbol

o .QBOPP

Contents

Owner's PPN.

Specifies whether to notify the job when the
request is finished.

Offset Symbol

0 .QBNTL

Code Symbol

1 .QBNTY

2 .QBNML
3 .QBNJB

Specifies the
file:

Offset Symbol

0 .QBBVL

Code Symbol

1 .QBBND

2 . QBBDE
3 .QBBSP

Contents

Notify value:

Meaning

Notify job
complete.
Reserved for
Reserved for

action to take

Contents

when request

use by DIGITAL.
use by DIGITAL.

is

on the batch log

One of the following:

Meaning

Append output log file to
existing log file.
Supersede existing log file .
Spool log file to printer without
preserving it in your area.

Specifies the job name:

Offset Symbol

o .QBJNM

Contents

SIXBIT job name.

22-332

33 .QBCDI

34 .QBNTE

35 .QBBGN

36 .QBPRI

37 .QBVSN

40 .QBMSG

QUEUE. [CALLI 201]

Contains the batch job's default path block for
batch requests.

Offset Symbol

o .QBCPP
1 .QBCS1
2 . QBCS2
3 . QBCS3
4 . QBCS4
5 . QBCS5

Contents

PPN.
First word of PATH block.
Second word of PATH block.
Third word of PATH block.
Fourth word of PATH block.
Fifth word of PATH block.

Specifies a note to include on output header
pages.

Offset Symbol

o
1

.QBNM1

.QBNM2

Contents

1 to 6 SIXBIT characters.
1 to 6 SIXBIT characters (maximum
of 12 characters)

Specifies the page number of the file to begin
printing, or the line number or tag in a batch
file where processing should begin.

Offset Symbol

o .QBBPN

Contents

Beginning page number (for
printing), line number (for batch
jobs), or tag (in SIXBIT) at
which to begin processing a batch
job.

Specifies the relative priority of the request.
Unprivileged users can specify priorities between
1 and 20, and privileged users can specify a
priority in the range of 1 to 62. These limits
can be changed by GALGEN, the GALAXY generation
program. If you specify priority 0 or 63, the
default priority is assumed.

Offset Symbol Contents

o .QBPVL Priority value (1 to 62).

Contains the ASCIZ volume set name. This block
must precede all other mount-specific blocks when
you perform a disk or tape mount.

Offset

o

Symbol

.QBVAS

Contents

Beginning of ASCIZ volume set
name.

Contains the WTO/WTOR message block:

Offset

o

Symbol

.QBMAS

Contents

Beginning of the ASCIZ message
for the operator.

22-333

QUEUE. [CALLI 201]

41 .QBTYP

42 .QBDEN

43 .QBTRK

44 . QBLTP

45 .QBRMK

46 .QBVOL

47 .QBLNM

Contains the privileged WTO/WTOR message type
block. WTO sends message to operator without
requiring response. WTOR requires response from
operator.

Offset Symbol

o .QBTAS

Contents

Beginning of ASCIZ message for
the operator.

Specifies the tape density:

Offset Symbol

o .QBTDN

Contents

Tape density code. Refer to the
.TFDEN function of the TAPOP.
call.

Specified the tape track code:

Offset Symbol Contents

0 .QBDRV Tape track request code:

Code Symbol Meaning

1 .QBDR9 9-track tape.
2 .QBDR7 7-track tape.

Specifies the tape label type .

Offset Symbol

o .QBLAB

Contents

Label type code. Refer to the
.TFLBL function of the TAPOP.
call.

Specifies the remark text:

Offset Symbol

o .QBREM

Meaning

Start of ASCIZ remark to be sent
to operator with request.

Specifies the tape volume list:

Offset Symbol

o .QBVLS

Meaning

Start of list of SIXBIT tape
volume identifiers. A maximum of
63 volumes is allowed.

Specifies the volume set logical name:

Offset Symbol

o .QBLGN

Meaning

SIXBIT logical name for
volume set.

22-334

this

50 .QBMFG

51 .QBAFN

52 .QBAET

53 .QBTTY

54 .QBFNT

QUEUE. [CALLI 201]

Specifies MOUNT/DISMOUNT flags, indicated
setting/clearing bits in the following word:

by

Offset Symbol

o

Flag

o

1

2

3

4
5

6

7

8

9
10

.QBMDF

Symbol

QB.PAS

QB.EXC

QB.NOC

QB.DSK

QB.TAP
QB.WLK

QB.WEN

QB.REM

QB. SCR

QB.ARD
QB.DTA

Meaning

Flags to control the MOUNT or
DISMOUNT request:

Meaning

Add the structure to the passive
search list (active search list
is default) .
Exclusive/sharable access
(sharable is default for disk,
exclusive is default for tapes) .
Prevent files from being created
on the volume set. (The default
is to allow file creation.)
This is a disk file structure
request.
This is a magtape request.
write-lock the volume set
(default for magtapes) .
Write-enable the volume set
(default for disk) .

Ask operator to remove the
structure when you dismount it.
Ask the operator to mount a
scratch tape.
Always recompute disk usage.
This is a DECtape request.

Specifies the accounting daemon (ACTDAE)
subfunction. .QBAFN is not intended for customer
use.

Specifies the usage entry type.
intended for customer use.

This type is not

Terminal name used by monitor for "SEND OPR"
commands. This block is not intended for customer
use. The two-word argument is formatted as
follows:

Word

o
1

Symbol

. QBTTN

.QBTNL

Contents

SIXBIT terminal name of sender .
In the left half of this word,
the ANF-10 node number of the
user sending the message. In the
right half of this word, the line
number of that user.

Contains a six-word (maximum) argument block that
specifies a font name. LPTSPL uses this ASCIZ
string to locate the requested font file.
Argument words are .QBFNO to .QBFN5.

22-335

QUEUE. [CALLI 201]

55 .QBEVT

56 .QBREP

57 .QBESW

Specifies an event to take place at
requested in .QBREP (Type 56).
argument word containing one of
event codes:

the interval
.QBEVO is the
the following

Code

2
4
5
6
7

Symbol

EV.KSY
EV.ATO
EV.USG
EV.BIL
EV.OPR

Event

KSYS
Time-of-day (TAKE file)
Usage file closure
Billing file closure
ORION log file closure

Repeats the event requested in .QBEVT
interval given in the .QBRPO argument
.QBRPO contains one of the following flags:

Flag Symbol Meaning

0 QB.NOW Event happens now.
1 QB.DLY Event happens daily.
2 QB.WKY Event happens weekly.
3 QB.TIM Event happens at specified

at the
word.

time

An alternative form of
to specify a day of
should be scheduled,
Universal Date/Time.

this data block allows you
the week on which the event
based on the system's

The day of the week
[day,,-l], where day is
indicates the day of the

(symbolized by QB.DAT) is
a number (from 0-6) that
week. Specifically:

Number Day

o Wednesday
1 Thursday
2 Friday
3 Saturday
4 Sunday
5 Monday
6 Tuesday

Contains the eve~t switch block. This block holds
two words.

Word Symbol Contents

0 .QBESD Event-dependent switches.
1 .QBESI Event-independent switches

(listed below)

Flag Symbol Meaning:

0 QB.FSF Failsoft option, which retains
the event in the queue after a
system reload.

1 QB.NFS No failsoft.

22-336

60 .QBAST

61 .QBPRC

62 .QBOPT

63 .QBDIS

64 .QBUSR

65 .QBUTY

SKIP RETURN

QUEUE. [CALLI 201]

Sets the OPR intervention bit to one of the
following:

Bit Meaning

1
2

Symbol

. QBOIY

.QBOIN
Enable OPR intervention .
Disable OPR intervention.

Sets the IBM /PROCESSING node.

Specifies a SIXBIT batch option name.
the offset to the option name.

.QBOPO is

Specifies text to be printed for a
DISTRIBUTION: header. .QBDIO is the offset to the
first word of ASCIZ data.

Specifies text to be printed for a
USERNAME: header. .QBUSO is the offset to the
first word of 8-bit ASCIZ data.

Specifies a SIXBIT unit name, such as "LN01" to
queue to an LN01 laser printer.

On the return from QUEUE., the IPCF messages have been sent to
appropriate components. If you requested a response by setting
QF.RSP, the following information is returned in the ac:

Bits Symbol Meaning:

18 QU.RBT Response from GALAXY was too long for reserved
space (as specified in . QURSP) and had to be
truncated.

19 QU.RBR Response from GALAXY was returned.
26-35 QU.RBL Contains the length of the returned response from

GALAXY.

ERROR RETURN

The error codes and their meanings are:

Code Symbol

1 QUIAL%
2 QUILF%
3 QUNFS%
4 QUADC%
5 QUCNR%
6 QUFER%
7 QUSOC%
10 QUNPV%
11 QUTMO%

Meaning:

Illegal argument list.
Illegal function.
No monitor free core.
Address check.
Component not running or has no system PID.
Fatal error returned from ORION.
Invalid message from ORION.
Insufficient privileges.
Timeout limit exceeded.

22-337

REASSI [CALLI 21]

22.133 REASSI [CALLI 21]

FUNCTION

Reassigns or deassigns a device for a job. Your program can reassign
a device if the device is assigned to your job, or if it is not
assigned to any job. Restricted devices cannot be reassigned by
unprivileged jobs. The logical name assignment is also cleared,
unless the calling job has JACCT privileges or is logged in under
[1,2] .

CALLING SEQUENCE

MOVE I
/ MOVE

I MOVE I
\ MOVEI

REASSI
return

ac,jobno
ac+l, [SIXBIT/device/]
ac+l,channo
ac+l,udx
ac,

\
I

/

In the calling sequence, the program supplies the following variables:

RETURN

o jobno is the number of a logged-in job to which the device is
to be reassigned. Use -1 to indicate the current job or 0 to
deassign the device.

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an init.ialized channel.

o udx is the Universal Device Index for a device.

If the ac is unchanged on the return from the call, the device is
reassigned as requested.

If the device is restricted and you specified 0 for jobno to deassign
the device, it is returned to the system's pool of restricted devices.

A restricted device can be reassigned to an unprivileged job only by a
privileged job.

On the return from this call, the monitor performs an implicit RELEAS
monitor call for the device, if you specified 0 for the jobno.

If the ac is cleared on the return, the jobno was not a valid job
number.

If the ac contains -Ion the return, the device is not assigned to the
specified job. The device is your job's controlling terminal, or the
device name given is a duplicate of an existing logical device name.

If ac+l is cleared on a return from the call, the device is not
assigned to your job, or the device you specified was a disk or your
job's controlling terminal.

22-338

REASSI [CALLI 21]

COMMON ERRORS

o Forgetting that there is only one return location from the
call.

o Attempting to assign a restricted device.

RELATED CALLS

DEVLNM

22-339

RECON. [CALLI 202]

22.134 RECON. [CALLI 202]

FUNCTION

Performs tasks to aid system reconfiguration and diagnosis. This call
is not recommended for use by customer programs and requires [1,2] or
JACCT privileges. It is used by the CONFIG system facility to take
system snapshots, suspend the system, and other system-wide functions.
To perform the functions offered by the RECON. call, use the CONFIG
command level from the OPR program (documented in the TOPS-10
Operator's Command Language Reference Manual), because the functions
must be performed in the correct order or the system will fail to
continue.

CALLING SEQUENCE

addr:

MOVE ac, [fcncode"addr]
RECON. ac

error return
skip return
argument-block

In the calling sequence, the program supplies the following variables:

o fcncode is one of the functions described below.

o addr contains an argument block. The data in the argument
block depends on the function code. For functions that do
not require an argument, use ° for addr.

The function codes, their meanings, and argument blocks are:

Code

°
1

Symbol

. RCROM

. RCSPN

Meaning

Unsupported .

Causes an orderly suspension of system operations,
through the following process:

1. The monitor sends the following message to all
users:

"Expect an interruption of service."

2. The monitor performs an orderly shutdown of
services.

3. The monitor writes a copy of memory to
CRASH.EXE on disk.

4. The system is halted.

This function does not require an argument block.
The calling sequence is:

MOVE ac, [.RCSPN"O]
RECON. ac,

error re'turn
skip return

22-340

2 .RCCI7

3 . RCNAR

4 . RCBTX

RECON. [CALLI 202]

Causes the monitor to perform a continuable
stopcode (stopcode CI7), take a dump of memory,
and continue automatically. This dump is called a
"snapshot," and allows you to diagnose problems by
obtaining a dump without halting the system. The
.RCCI7 function does not require an argument
block, so the calling sequence looks like:

MOVE ac, [.RCCI7,,0]
RECON. ac,

error return
skip return

Clears and sets the DF.NAR bit in the DEBUGF word,
which controls whether the system should
automatically reload on non-continuable stopcodes.

bb When this bit is set, the auto-reload function
is disabled and the system will not automatically
reload. When this bit is clear, auto-reload is
enabled. (This default can be changed in the
MONGEN dialog.)

The DEBUGF word is defined in the monitor symbol
file S.MAC, and is manipulated during analysis of
system errors.

You can clear this bit to prevent automatic
reloads when you are debugging the system. This
function requires that you be logged in under
[1,2] .

The DF.NAR bit is set/cleared according to the
second word in the argument block. If Word 1 of
the argument is 0, the DF.NAR is cleared, and
automatic reload is enabled (default state). If
you place a non-zero value in Word 1, DF.NAR is
set, and the system will not automatically reload
on a non-continuable stopcode. The calling
sequence for this function is:

MOVE ac, [.RCNAR"addr]
RECON. ac,

error return
skip return

addr: 2
-1

;length of argument block
;to disable auto-reload

Changes the BOOTXT command string to
string you specify in the argument.
sequence for this function is:

MOVE ac, [.RCBTX"addr]
RECON. ac,

error return
skip return

the command
The calling

addr: n ;length of argument block
command-list ;first word

22-341

RECON. [CALLI 202]

5 . RCRLD

6 . RCRAC

7 . RCDET

10 . RCATT

11 . RCMON

In the argument list, n is the length of the
command string (in words) + 1. The command string
cannot exceed 16 words, and cannot include
line-feeds; therefore, the maximum value for n is
17. For information about the BOO TXT command
string, refer to BTXLEN in the COMMON monitor
source file.

Causes the system to be reloaded. The monitor
will be reloaded from the file specified in
BOOTXT, and a crash dump may be taken. You must
be logged into [1,2] to use this function (JACCT
privileges alone are not sufficient) . This
function causes an RLD stopcode and does not
require an argument list. The calling sequence
for this function is:

MOVE ac, [.RCRLD"O]
RECON. ac,

error return
skip return

Causes auto-configuration (AUTCON) to run on the
specified CPU(s) to automatically configure disks
and tapes into the monitor's data base. You must
be logged in as [1,2] to use this function. The
calling sequence for this function is:

MOVE ac, [.RCRAC"addr]
RECON. ac,

error return
skip return

addr: 2 ;length of argument block
n ;CPU number

In the argument list, n specifies the CPU number.
If n = -1, AUTCON will-run on all CPUs.

Obsolete .

Obsolete

Sets a given range of memory on-line.
is given in two words of the argument
first word specifies the first page of
and the second word indicates the
beyond the range. The calling sequence

MOVE ac, [.RCMON"addr]
RECON. ac,

error return
skip return

The range
block. The
the range,
first page
is:

addr: 3 ;length of argument block
first page in range
last page in range +1

22-342

12 . RCMOF

13 . RCCPU

14 . RCIOW

15 . RCSDF

RECON. [CALLI 202]

Sets a given range of memory off-line. You
specify the range the same way as for . RCMON. The
calling sequence is:

MOVE ac, [.RCMOF"addr]
RECON. ac

error return
skip return

addr: 3 ;length of argument block
first page in range
last page in range +1

Returns the CPU accessibility mask. The mask
indicates which CPU is using the specified device.
The calling sequence for .RCCPU is:

MOVE ac, [.RCCPU"addr]
RECON. ac,

error return
skip return

addr: 2 ;length of argument block
SIXBIT device name

The bit mask returned in the ac indicates which
CPUs can access the device. The bits are defined
as follows:

Bit Symbol Meaning

30 SP.CR5 CPU5 can access the device.
31 SP.CR4 CPU4 can access the device.
32 SP.CR3 CPU3 can access the device.
33 SP.CR2 CPU2 can access the device.
34 SP.CRI CPUI can access the device.
35 SP.CRO CPUO can access the device.

These bits are also defined for SETUUO function
.STCPU.

Obsolete

Sets bits in DEBUGF that cause the monitor to
reload for a CPU, DEBUG, or JOB stopcode. This
function is used by ORION for the CONFIG program.
The calling sequence is:

MOVE ac, [.RCSDF"addr]
RECON. ac,

error return
skip return

addr: 2 ;length of argument block
DEBUGF bits

22-343

RECON. [CALLI 202]

16 . RCCDF

17 . RCRBM

Clears DEBUGF bits so that the monitor takes a
continuable dump on a CPU, DEBUG, or JOB stopcode.
This function is not intended for customer use.
The calling sequence is:

MOVE ac, [.RCCDF"addr]
RECON. ac,

error return
skip return

addr: 2 ;length of argument block
DEBUGF bits

Reads the bootstrap microcode information.
function is not intended for customer use.

This

MOVE ac, [.RCRBM"addr]
RECON. ac,

error return
skip return

addr: n ;length of argument block
o
BLOCK m

The argument block consists of two words, the
length of the argument block (n) followed by a
zero word. After the zero word, -reserve enough
space for a two-word pair for each microcode
supported by the BOOT program (m). The number of
words you reserve should allow-two returned words
for each microcode. Since the maximum is 5
microcodes, you should reserve 12 (octal) words
for microcode data.

The argument
information on
function:

block contains the
a successful return

following
from this

addr: 2 ; length
count
two-word pair

In the returned block, the monitor fills
number of microcode entries that it
addr+1. Following the count word, the
includes the following two-word pair
microcode entry:

XWD
EXP

ucode-index, length
version

in the
found at
monitor

for each

o . The ucode-index is the microcode name in the
form .BTxxx.

o The length is the number of words in the
microcode.

o The version is the microcode version number.

The two-word pair is repeated for each microcode
entry.

22-344

20 . RCSBM

SKIP RETURN

RECON. [CALLI 202]

Supplies information about new bootstrap microcode
entries in the BOOT program. This function (which
is not intended to be used in customer programs)
provides a mechanism for the monitor to replace
microcode. The new microcode can only replace an
older version of the microcode that is the same
length.

addr:

MOVE ac, [.RCRBM"addr]
RECON. ac,

error return
skip return

3
XWD
EXP

;length of argument block
ucode-index,length
ucode-addr

The information in the argument block that is
supplied for this function consists of three
words. The information at addr+l is the microcode
index, in the form of .BTxxx. The length of the
microcode is specified in the right half of this
word. The address of the new microcode is stored
in addr+2.

The specified function is performed.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

1 RCIAL%
2 RCNPU%
3 RCNTS%
4 RCNIJ%
5 RCNCD%
6 RCNAC%
7 RCNIS%
10 RCICN%
11 RCNCR%
12 RCNCA%
13 RCNDS%
14 RCNAA%
15 RCNID%
16 RCNDU%
17 RCNND%
20 RCNNL%
21 RCNMM%
22 RCNTB%
23 RCNLJ%
24 RCNBN%
25 RCNEM%
26 RCMLD%

RELATED CALLS

SETUUO

Error

Illegal argument list.
Not privileged.
Timesharing already stopped on some CPU.
Illegal job number.
This function cannot be performed.
Address check.
Illegal command string for BOOTXT.
Illegal CPU number.
CPU still running.
Can't attach disk.
Device is spooled.
Device is already attached.
Illegal device.
Device is in use.
Can't detach disk.
Can't set memory off-line.
Can't remove monitor memory.
Job or jobs too big.
Can't move locked job(s) .
Bootstrap not available.
Non-existent microcode was specified.
Microcode lengths are different.

22-345

RELEAS [OPCODE 071]

22.135 RELEAS [OPCODE 071]

FUNCTION

Releases an I/O channel.
extended I/O channel.

CALLING SEQUENCE

RELEAS channo,
return

Use FILOP. to perform a RELEAS on an

In the calling sequence, the program supplies the channo, which is the
number of an initialized channel.

RETURN

The device: is released, the channel is closed, any device-dependent
operations are performed, and any enqueue locks are released.

If the given channel is not initialized, the monitor takes no action.

EXAMPLES

See Chapter 11, Volume 1.

COMMON PROGRAMMING ERRORS

Forgetting the comma after the channel number.

RELATED CALLS

FILOP.

22-346

REMAP [CALLI 37]

22.136 REMAP [CALLI 37]

FUNCTION

Moves the specified portion of a program's low segment into the high
segment, discarding the old high segment from the user addressing
space. The new low segment will be the previous low segment minus the
amount remapped. This monitor call is used by the LINK program when
you use the EXECUTE monitor command.

The .PAGCH function of the PAGE UUO has the same capability as REMAP,
but is more flexible.

CALLING SEQUENCE

MOVE ac, [XWD origin,addr]
REMAP ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o addr is the highest address in the low segment (that is, the
first address of the new high segment) .

o origin is the origin of the high segment.

The monitor waits until all I/O is completed in the low segment before
executing the REMAP monitor call. Then the monitor rounds the address
to the nearest core allocation unit (512 decimal words) .

SKIP RETURN

The monit:or performs the following functions for this monitor call:

o Stores the value of addr in the location .JBREL in the job
data area.

o Sets the left half of .JBHRL to zero (it deletes the previous
high segment) .

o Stores the highest legal user address for the high segment in
the right half of .JBHRL.

o Changes the hardware mapping.

o Sets the user-mode write-protect bit (the new high segment is
non-sharable) .

o Preserves the contents of the ac.

o Deletes any high segments that already exist in the current
PC section.

22-347

REMAP [CALLI 37]

ERROR RETURN

The monitor takes the error return under the following conditions:

o A negative argument is specified.

o The requested remapping would cause the high and t:he low
segments to overlap.

o The sum of the high segment origin plus its length would
cause the high segment to start (or end) at an address
outside the program's virtual address space (that is, greater
than or equal to 256K) .

o The specified argument exceeds the length of the low segment.
Also, remapping will not occur, and the high segment will
remain unchanged in the user's address space.

o The segment is locked in memory.

RELATED CALLS

o CORE

o GETSEG

o MERGE.

o PAGE.

22-348

RENAME [OPCODE 055]

22.137 RENAME [OPCODE 055]

FUNCTION

Performs one or more of the following functions:

o Alters file attributes, including the file name,
extension, and access privilege code of the file.

file

o Changes an SFD name.

o Deletes the specified file.

o Performs an implicit CLOSE.

Use FILOP. to perform a RENAME on an extended I/O channel.

CALLING SEQUENCE

RENAME channo,addr
error return

skip return

In the calling sequence, the program supplies the following variables:

o channo is the number of an initialized channel. If the
channel is an extended channel, use FILOP. function . FORNM.

o addr is the address of the argument list.
rs--equivalent to that of LOOKUP and
described in Section 11.13.

The argument list
ENTER calls and is

RENAME has two forms of argument block: the four-word block and the
extended argument block. The short-form (4-word) argument list is
described in Section 11.13.1. The extended argument list is described
in section 11.13.2. For DECtape files, refer to Chapter 13 for
descriptions of the arguments.

The only way that your program can RENAME a file into or out of an SFD
1S to refer to an explicit path using the PATH. argument block (by
including an [XWD O,addr] instruction as the PPN argument). If a
RENAME is given that attempts to move a file into or out of an SFD
without specifying an explicit path, it will take the skip return
(assuming no other errors), but the file will not change directories.

To delete a file after all read references have been made, your
program should specify the value of zero in the address of the file
name word in the RENAME block.

A delete function on a channel that is open for output, to supersede a
file, simply aborts the creation of the new file. This is equivalent
to a CLOSE with CL.RST set.

Although only a privileged job can delete a UFD, an unprivileged job
can delete an empty SFD. Note that you must set your path to a
different area before you can delete the current SFD. If the
directory is not empty or if a job is currently using the directory,
the monitor returns the DIRECTORY NOT EMPTY error code.

A CLOSE is optional after a RENAME because a RENAME implicitly
performs a CLOSE. A CLOSE should not be issued between a LOOKUP and a
RENAME if the file is not in the def~ult direc,tory path, because the
CLOSE erases all memory of the path. If RENAME is performed and the
file is not in the default path, the monitor returns the FILE NOT
FOUND error in the right half of addr+l.

22-349

RENAME [OPCOOE 055]

RESTRICTION

If your program attempts to change the extension of an SFO, a
protection error results. An error also results if your program
attempts to alter the name, extension, or PPN associated with a UFO or
the PPN associated with an ersatz device name.

SKIP RETURN

On a skip return, the monitor returns the same information on a RENAME
as on a LOOKUP and ENTER. Refer to Section 11.13.

ERROR RETURN

The error return is taken under the following conditions:

o No file has been opened on the specified channel.

o The specified file cannot be found.

o The specified file is currently in the process of being
written, superseded, or renamed.

o Your program does not have the appropriate privileges to
RENAME the file.

o The new file name already exists (occurs when changing file
names) .

The monitor returns the error code for the RENAME monitor
right half of addr+1 of the 4-word argument block, or
half of addr+3 in the extended argument block. The
overwrites the high-order three bits of the creation
entire access date.

call in the
in the right
error code

date and the

This overwriting of data does not cause any problems for programs that
recover from RENAME errors by aborting or by re-initializing the
argument list. However, programs that attempt to recover from an
error by fixing only the incorrect portion of the argument block and
then reexecuting the monitor call should restore the right half of
addr+1 or addr+3 before reexecuting the RENAME monitor call. Error
codes are restricted to a maximum of 15 bits to allow programs to
recover from an error in a file with a zero creation date. See
Section 11.14 for a list of error codes.

22-350

RESCAN [TTCALL 10,]

22.138 RESCAN [TTCALL 10,]

FUNCTION

Resets the input buffer pointer to point to the beginning of the
previous command. Note that if the RESCAN UUO is issued after the
first terminal input or output instruction, the command is no longer
in the buffer.

CALLING SEQUENCE

RESCAN flag
return 1
return 2

In the calling sequence, the program supplies the flag, which controls
the action of returning from the call. The flag is bit 35 of the
word. If the flag is not set, the call always returns at return 1.
If the flag is set, the call returns at return 2 when no command is Tn
the input buffer, otherwise, the call takes return 1.

EXAMPLE

RESCAN 1
SKPINL

JRST PROMPT

COMMON PROGRAMMING ERRORS

;Read TTY input
;Is anything there?
;No, must be typeahead
;Read command line

Placing a comma after the flag.

22-351

RESDV. [CALLI 117]

22.139 RESDV. [CALLI 117]

FUNCTION

Resets a specified channel. RESDV. is similar to RESET, except that
only one channel is reset and any outstanding data is discarded. If
RESDV. is performed on a disk device, the file is discarded (refer to
the CLOSE function CL.RST) .

CALLING SEQUENCE

MOVE I ac,channo
RESDV. ac,

error return
skip return

In the calling sequence, the program supplies the channo, which is the
number of an initialized channel.

SKIP RETURN

The channel is reset. Files that were being created on the channel
are deleted; any older files with the same name remain. All I/O for
the channel is stopped, and device allocations made on the channel by
INIT, OPEN, or FILOP. are closed. If the device was not assigned by
ASSIGN, ALLOCATE, REASSI, or MOUNT, it is returned to the monitor's
pool of available devices. (See the TOPS-I0 Operating System Commands
Manual for descriptions of these user commands.)

ERROR RETURN

If the ac contains -1, no device was associated with the channel.

RELATED CALLS

o CLOSE

o RELEASE

o RESET

COMMON PROGRAMMING ERRORS

Placing the channel number in the ac field.

22-352

RESET [CALLI 0]

22.140 RESET [CALLI 0]

FUNCTION

Initializes a program. Resets the program's runtime environment to
its initial state.

CALLING SEQUENCE

RETURN

RESET
return

The monitor initializes the program.
functions:

This includes the following

o Clears all device allocations except those for devices
assigned by ASSIGN, REASSI, or MOUNT.

o Sets the job's first free location (right half of .JBFF) to
its starting value (left half of .JBSA). This allows buffer
space to be reclaimed when the program is restarted.

o Clears the left half of .JBFF
location) .

(the job's first free

o Aborts processing of any files that have not been closed to
release the associated I/O channels.

o Sets the user-mode write-protect bit for the high segment.
This prevents inadvertent data storage in the high segment,
and is done even if the segment is nonsharable.

o Unlocks your program, if it is locked in core.

o Releases any realtime devices.

o Resets any high-priority queue values to the value given in
the last HPQ command.

o Resumes timesharing if it was stopped by a TRPSET monitor
call.

o Resets any actions taken by APRENB, HIBER, or UTRP.
calls in your program.

monitor

o Clears all program counter flags for your program (except
USRMOOE and PUBLIC) that may be set.

o Clears any process identifications
except job-wide PIOs.

(PIOS) for your job,

o Clears the software interrupt facility for your job.

o Releases and dequeues any enqueue locks or requests for your
job.

o Clears all of the data mode bits and the noecho bit for a
terminal. However, if the RESET is executed for a
not-Iogged-in job, whose program name is LOGIN, the noecho
bit will not be cleared. This allows- noecho to be set by the
LOGIN command.

22-353

RESET [CALLI 0]

o Removes and undefines all SNOOP. breakpoints.

o Releases the performance meter.

o Clears any large disk buffers set by a UUO.

o Clears any address breaks set by a UUO.

22-354

22.141 RTTRP [CALLI 57]

FUNCTION

Connects a device to or releases it from the
facility. For a discussion of realtime devices,
traps, refer to Chapter 9, Volume 1.

RTTRP [CALLI 57]

realtime interrupt
interrupt modes, and

To use the RTTRP call, your job must have the JP.RTT privilege. To
use an EPT-mode trap, your job must have the JP.TRP privilege. Your
job must also have the JP.LCK privilege in order to lock itself in
core on the correct CPU.

CALLING SEQUENCE

addr:

MOVE I ac,addr
RTTRP ac,

error return
skip return

argument list

In the calling sequence, the program supplies the addr, which is the
address of the argument list.

The contents of the argument list depend on the interrupt mode your
program is setting up.

SKIP RETURN

The device is connected to or released from the realtime interrupt
facility.

ERROR RETURN

The monitor returns one or more of the following error flags in the
ac. Before returning, the monitor scans the entire argument list to
discover as many errors as possible.

Bit Symbol

23 RTNEC%
24 RTJNP%
25 RTNCO%
26 RTDIU%
27 RTIAU%

28 RTJNL%
29 RTSLE%
30 RTILF%
31 RTPWI%
32 RTEAB%
33 RTTAB%
34 RTPNB%
35 RTPNA%

RELATED CALLS

0 HPQ

0 TRPSET

0 UJEN

Error

Nonexistent CPU.
Not enough privileges.
Not runnable on CPUO.
Device in use by another job.
Illegal accumulator used during RTTRP at
interrupt.
Job not locked (or not privileged) .
System limit for realtime devices exceeded.
Illegal format for I/O instruction.
Pointer word illegal.
Error address out of bounds.
Trap address bad.
PI channel not currently available for BLKI/BLKO.
PI channel not available.

22-355

RUN [CALLI 35]

22.142 RUN [CALLI 35]

FUNCTION

Transfers execution control from the current program to another
program. The monitor replaces both the high and low segments of your
address space with the segments of the called program. The function
of the RUN UUO is described in more detail in Chapter 2 Volume 1.

CALLING SEQUENCE

addr:

MOVSI ac,start-addr-increment
HRRI ac,addr
RUN ac,

error return

SIXBIT/device/
SIXBIT/filename/
SIXBIT/extension/
EXP 0

/ XWD proj,prog \
\ XWD O,addrl /
/ XWD O,core \
\ XWD -1"addr2 /

ior zero

iPPN word

icore word

In the calling sequence, the program supplies the following variables:

o start-addr-increment is an increment to the starting address
of the called program. This increment is used to call
indirect command files and should be 0 or 1. If any other
value is used, the meddling bit is set for the job, unless
the program is execute-only. For an execute-only program,
this value can be only 0 or 1.

o addr is the address of the argument block, which is formatted
like the ENTER argument block. See Volume 1, Chapter 11 for
a description of ENTER/LOOKUP argument blocks.

o core is the total amount of core to be reserved for the
called program. This word must be included, but may be zero.
For a program that contains both low and high segments, the
amount of core required to load the high segment is
subtracted from the core assignment first. The amount
reserved for the low segment is the remainder.

o addr2 contains a section offset indicating where the image
should be loaded. Using this argument results in an error if
the resulting section number is illegal.

When the monitor returns control to the program after RUN monitor
call, the accumulators are overwritten and Channel 0 is cleared.

SUCCESS RETURN

The new program is started at its new address plus
start-addr-increment. The contents of ac may be changed on the
return, and the new contents are unpredictable, because they vary from
one monitor release to the next. The RUN call also performs an
implicit RESET call.

22-356

RUN [CALLI 35]

ERROR RETURN

The error return is taken if any errors are detected; the monitor
returns an error code in the ac. Your program can attempt to recover
from an error and continue the-Program's execution. If you set the
left half of the error return location to a HALT, the monitor will not
return to the program but will print an error message. Your terminal
will be at monitor level.

If you do not include a HALT in the left half of the error return
location, your program can analyze the error code returned in the ac.
If the error code indicates an error from which you can recover, your
program can issue another RUN monitor call, possibly including a HALT
instruction in the error return location.

If your program is using overlays, the monitor will not attempt to
return to your program. Therefore, you should place the RUN monitor
call in the low segment of your program, in case the error is
discovered after the high segment has been released. If the call is
issued from the low segment and an error occurs, the high segment of
the program is cleared and must be re-initialized.

If the call is issued from the high segment and an error occurs, the
monitor may halt the job and print the following message:

?Illegal address in UUO at user PC xxxxxx

For this reason, the RUN call should be given from the low segment.

See Section 11.14 for a list of error codes.

RELATED CALLS

o GETSEG

o MERGE.

o SEGOP.

22-357

RUNTIM [CALLI 27]

22.143 RUNTIM [CALLI 27]

FUNCTION

Returns the cumulative runtime (in milliseconds or ten microsecond
units) for a specified job.

CALLING SEQUENCE

MOVE I
HRLI
RUNTIM
return

ac,jobno
ac, (RN. PCN)
ac,

;optional for high precision

In the calling sequence, the program supplies the jobno, which is the
number of a logged-in job (use 0 for your own job). You may
optionally set the sign bit lBO (RN.PCN), to return the runtime for
the specified job in ten microsecond units (high-precision runtime) .

RETURN

The ac contains the cumulative runtime (in milliseconds)
specified job. If no such job exists, the ac contains O.

EXAMPLES

MOVE I Tl,O
RUNTIM Tl,

for the

This code returns the cumulative runtime for the current job in Tl.

22-358

22 . 144 SA"\i~ • [CALLI 210]

FUNCTION

Saves the program in memory as an executable (.EXE)
This call i.s similar to the SAVE monitor command.

CALLING SEC!UENCE

addr:

~[OVE ac, [flag"addr]
SAVE. ac,

error return
skip return
..
SIXBIT/device/
SIXBIT/filename/
SIXBIT/extension/
E:XP °

/ XWO proj,prog \
I XWO 0"addr1 I

\ XWO 0,0 /
BLOCK °

;or zero

;PPN argument

SAVE. [CALLI 210]

file on disk.

In the calling sequence, the program supplies the following variables:

o fl~ is bit ° of the ac. When set, this bit (SS%SSH)
indicates that the program should be saved with a sharable
hi.gh segment (similar to SSAVE monitor command) .

o addr is the address of the argument block, which is formatted
lIke the ENTER argument block. See Volume 1, Chapter 11 for
a description of ENTER/LOOKUP argument blocks.

When the monitor returns control to
monitor call, the accumulators are
cleared.

Remember to leave addr+5 clear.

SKIP RETURN

your program after a SAVE.
overwritten and Channel 0 is

The program in memory is written to disk in executable format. The
contents of all accumulators may be changed; the new contents are not
reliable and are subject to change from~one monitor release to the
next. The SAVE. call releases channel ° implicitly.

On any return from this call, if the left half of the return location
contains H1~LT, the job is stopped and the appropriate error message is
issued to the job.

ERROR RETUHN

If an error occurs in the process of executing the SAVE. call, the
non-skip return is taken and an error code is returned in the ac.
Refer to Section 11.14 for the list of error codes.

The error return is taken if any errors are detected; the monitor
returns an error code in the ac. Your program can attempt to recover
from an error and continue theprogram's execution. If you set the
left half of the error return location to a HALT, the monitor will not
return to t:he program but will print an error message. Your terminal
will be at monitor level.

22-359

SCHED. [CALLI 150]

22.145 SCHED. [CALLI 150]

FUNCTION

Reads or sets system scheduling parameters. JACCT or [1,2] privileges
are required to issue the SCHED. monitor call. However, the read
functions may be used by a user with Spy privileges, and the write
functions are available to users with POKE privileges.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
SCHED. ac,

error return
skip return

addr: XWD fcncode,fcnarg

XWD fcncode,fcnarg

In the calling sequence, the program supplies the following variables:

o len, which is the length of the argument list.

o addr is the address of the argument list.

o fcncode is one of the function codes described below.

o fcnarg is the address of
corresponding function code.
formatted as:

fcnarg: length

the argument list for the
Each argument list at fcnarg is

function-specific information

The function codes, their meanings, and their arguments are:

Code

o

400000

1

400001

Symbol

.SCRSI

.SCSSI

.SCRMI

.SCSMI

Function

Reads the micro scheduling interval. The monitor
returns the scheduling interval at fcnarg.

Sets the micro scheduling interval. The word at
fcnarg should contain:

Word

o

Symbol

. SCBSI

Contents

Scheduling interval .

Reads the minimum core usage function evaluation
interval. The monitor returns the interval at
fcnarg.

Sets the minimum core usage evaluation interval.
The word at fcnarg should contain:

Word

o

Symbol

.SCBMI

Contents

Minimum core usage inte!val.

22-360

2 .SCRCQ

400002 .SCSCQ

3 .SCRTS

400003 .SCSTS

4 .SCRUF

400004 .SCSUF

SCHED. [CALLI 150]

Reads class quotas and flags. The monitor returns
the quotas and flags at fcnarg and following in
the form:

Word

o
1

Symbol

.SCBCT

.SCBCQ

Contents

Count of following words.
Class and quota:

Bits Symbol Meaning:

0 SC.FCQ Set if quota
fixed.

1-17 SC.CLN Class number.
18-35 SC.CLQ Class quota.

is

There is one word of the form of .SCBCQ for each
word specified in .SCBCT.

Sets class quotas and flags. The data
is the same as that returned by
function.

at
the

fcnarg
.SCRCQ

Reads the base quantum runtime. The monitor
returns the time slices at fcnarg in the form:

Word

o
1
2

Symbol

.SCBCT

. SCBP1

. SCBP2

Contents

Count of following words.
Base quantum runtime for PQ1 .
Base quantum runtime for PQ2 .

Sets the base quantum runtime for one or both
queues. The data at fcnarg is the same as that
returned by the .SCRTS function.

Reads the desired channel use fraction. This
fraction is the swapping channel utilization
percentage. The monitor returns the channel use
fractions at fcnarg in the form:

Word

o
1

Symbol

.SCBCT

.SCBUF

Contents

Count of following words.
Channel number in left half; use
fraction in right half.

There is one word of the form of .SCBUF for each
word specified in .SCBCT.

Sets the desired channel use fraction. The data
at fcnarg is the same as that returned by the
.SCRUF function.

22-361

SCHED. [CALLI 150]

5 .SCRJC

400005 .SCSJC

6 .SCRMC

400006 .SCSMC

7 .SCRCU

10 . SCREF

400010 . SCSEF

11 .SCRMM

400011 .SCSMM

12 .SCRDC

400012 .SCSDC

13 .SCRRC

400013 .SCSRC

Reads the scheduler class for a
arguments at fcnarg are of the form:

Word . Contents

job.

Count of following words.

The

o
1

Symbol

.SCBCT

.SCBJC Job. number in the left half;
class in the right half.

There is one word of the form of .SCBJC for each
word specified in .SCBCT. The monitor returns the
scheduler class number for each given job.

Sets the scheduler class for a job. The arguments
at fcnarg are the same as those for the .SCRJC
function.

Reads the minimum core usage per job. The total
number of jobs is returned at .SCBCT. The monitor
returns the minimum core usage for each job
starting at fcnarg (.SCBMC). There is one word
for each job specified in .SCBCT.

Sets the minimum core usage per job. Store the
number of jobs in .SCBCT. The monitor reads the
core usage for each of these jobs starting at
f cnarg (. SCBMC) .

Reads the class usage since startup. The monitor
returns the class runtimes at fcnarg in the form:

Word

o
1

Symbol

.SCBCT

.SCBCU

Contents

Count of following words.
Runtime for class O.

There is one word of the form of .SCBCU for each
word specified in .SCBCT.

Obsolete .
obsolete.

The offset symbol .SCBEF is also

Obsolete .

Reads the minimum core usage multiplier. The
monitor returns the multiplier at fcnarg (.SCBMM).,

Sets the minimum core usage multiplier. The
monitor reads the multiplier from fcnarg (.SCBMM).

Reads the default class for new jobs. The monitor
returns the default class at fcnarg (.SCBDC).

Sets the default class for new jobs. The monitor
reads the default class from fcnarg (.SCBDC).

Reads the minimum core
The monitor returns
(. SCBRC) .

usage requeue constant.
the constant at fcnarg

Sets the minimum core usage requeue constant,. The
monitor reads the constant from fcnarg (.SCBRC).

22-362

14 . SCRPM

400014 .SCSPM

15 .SCRML

400015 .SCSML

16 .SCRMX

400016 .SCSMX

17 .SCRSQ

400017 .SCSSQ

SCHED. [CALLI 150]

Reads the minimum core usage maximum. The monitor
returns the maximum (in microseconds) at fcnarg
(. SCBPM) .

Sets the minimum core usage maximum. The monitor
reads the maximum (in microseconds) from fcnarg
(. SCBPM) .

Reads quantum multipliers for PQ1, PQ2, and scale
factor. The monitor returns the values at fcnarg
in the format:

Word

o
1

2

3

Symbol

.SCBCT

.SCBMP

.SCBMQ

. SCBMR

Contents

Count of the following words.
For PQ1, the queue number in left
half, quantum multiplier in right
half.
For PQ2, the queue number in left
half, quantum multiplier in right
half.
3 in left half, scale factor in
right half (SC.BMR==3,,0).

Sets quantum multipliers for PQ1, PQ2, and scale
factor. The data at fcnarg must the the same as
that returned by the .SCRML function.

Reads the maximum quantum run for PQ1 and/or PQ2.
The monitor returns the maximum quantum run at
fcnarg in the format:

Word

o
1

Symbol

.SCBCT

.SCBMX

Contents

Count of the following words.
Queue number in left half,
maximum time slice (in
milliseconds) in right half. The
returned block contains one word
of the form of .SCBMX for each
word specified in the word count.

Sets the maximum quantum run for PQ1 and/or PQ2.
The data at fcnarg must be in the same format as
that returned by the .SCRMX function.

Reads secondary class quotas. The monitor returns
the quotas at fcnarg in the format:

Word

o
1

Symbol

.SCBCT

.SCBSQ

Contents

Count of following words.
Class in left half, quota in
right half.

The data at fcnarg contains one word of the form
of .SCBSQ for each word indicated by the word
count.

Sets secondary class quotas. The data at fcnarg
must be in the same form as that returned by the
.SCRSQ function.

22-363

SCHED. [CALLI 150]

20 .SCRIQ

400020 .SCSIQ

21 .SCRSS

400021 .SCSSS

22 .SCRBB

400022 .SCSBB

23 .SCRBS

400023 .SCSBS

24 .SCRSF

400024 .SCSSF

25 .SCRSW

400025 .SCSSW

26 .SCRIO

400026 .SCSIO

27 .SCRSC

400027 .SCSSC

30 .SCRSO

Reads the time percentage to scan queue just
swapped in before subqueues. The monitor returns
the time percentage at fc~arg (.SCBIQ).

Sets the time percentage to scan queue just
swapped in before subqueues. The monitor reads
the time percentage from fcnarg (.SCBIQ).

Reads swap scan time. The monitor returns the
swap scan time at fcnarg (.SCBSS).

Sets swap scan time.
scan time from fcnarg

The monitor reads
(. SCBSS) .

the swap

Reads number for background batch subqueue. The
monitor returns the number at fcnarg (.SCBBB).

Sets number for background batch subqueue. The
monitor reads the number from fcn~ (.SCBBB)

Reads background batch swap time interval. The
monitor returns the interval at fcnarg (.SCBBS).

Sets background batch swap time interval. The
monitor reads the interval from fcnarg (.SCBBS).

Reads scheduler fairness factor. The monitor
returns the fairness factor at fcnarg (.SCBSF).

Sets scheduler fairness factor. The monitor reads
the fairness factor from fcnarg (.SCBSF).

Reads swapper fairness factor. The monitor
returns the fairness factor at fcnarg (.SCBSW).

Sets swapper fairness factor. The monitor reads
the fairness factor from fcnarg (.SCBSW).

Reads in-core fairness. The monitor returns the
fairness at fcnarg (.SCBIO).

Sets in-core fairness. The monitor reads the
fairness from fcnarg (.SCBIO).

Reads SCDCOR. The monitor returns the value of
SCDCOR at fcnarg (.SCBSC).

Sets SCDCOR. The monitor reads the value for
SCDCOR from fcnarg (.SCBSC)

Reads the CPU scan order. The monitor returns the
scan order for each CPU at fcnarg+l. The argument
block at fcnarg is the same as the information you
give to set the scan order in function 400030
(. SCSSO) .

22-364

400030 .SCSSO

31 .SCRRT

400031 .SCSRT

32 .SCRFG

400032 .,SCSFG

SKIP RETURN

SCHED. [CALLI 150]

Sets the CPU scan order.
fcnarg should appear as:

The argument list at

Word

o
1

Symbol

. SCBC'r

.SCBSO

Con'tents

Word coun't .
Scan order for CPUO.

The number of CPUs is spec'ified in . SCBCT . A word
for each CPU follows the count (starting at
fcnarg) containing a code that specifies the scan
order for the cPU. A 0 indicates that the scan
order is [HPQ,PQl,PQ2]. A 1 indicates that CPU
has the scan order [HPQ,PQ2,PQl].

Reads dormant segment retention time (in jiffies) .
The monitor returns retention time at fcnarg
(. SCBRT) .

Sets dormant segment retention time. The monitor
reads retention time from fcnarg (.SCBRT).

Reads the free core goal. The monitor returns the
free core goal at fcnarg in the following format:

\'1ord Symbol Meaning:

0 .SCBFG Minimum free core size (goal) .

1 .SCBFL Maximum free core size.

Both .SCBFG and .SCBFL are percentages of user
core as determined when the system was booted.

Sets the free core goal. The monitor reads the
goal from fcnarg: in the format given in function
.SCRFG.

The function has been performed.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

1 SCHAC%
2 SCHUF%
3 SCHUJ%
4 SCHNP%
5 SCHUC%
6 SCHUQ%
7 SCHNC%
10 SCHEB%
11 SCHMI%
12
13 SCHNH%
14 SCHFN%
15 SCHIC%
16 SCHUO%

Error

Address check.
Unknown function code.
Unknown job.
Not enough privileges.
Unknown class.
UnknovTn queue.
Nonexistent channel.
Bad exponential factor.
Cannot set protection if MCUINT is nonzero.
Obsolete.
Not 100%.
Fairness not positive.
Illegal CPU number specified in function .SCSSo.
Unknown scan order specified in function .SCSSo.

22-365

SCS. [CALLI 213]

22.146 sese [CALLI 213]

FUNCTION

Provides the diagnostic interface to the Systems Communications
Service layer of the System Comrnunications Architecture, allowing
information to be exchanged between jobs on different systems
connected over a CI20.

KS systems do not support System Communications Architecture.

This monitor call is used in DIGITAL-suppl~ed hardware diagnostic
programs and is not intended to be used in customer programs. The
calling sequences and arguments of SCS. are subject to change without
notice. The program must be run under [1,2] or have JACCT privileges
to use the SCS. UUO.

CALLING SEQUENCE

addr:

/ XMOVEI ac,addr
\ MOVEI ac,addr

SCS. ac,
error return

skip return

len"function

\;for extended addressing
/

In the calling sequence, the program supplies the addr, which is the
starting address of the argument block, len specifies the total length
of the argument block, and function is one of the function codes
described below. The function word is formatted as follows:

Word
Symbol

.SQFNC

Function

Code

o
1
2
3
4
5
6
7
10

11
12
13
14
15
16
17

Bits

0-5
6-8
9-17

18-35

codes are:

Symbol

.SSCON

.SSLIS

.SSREJ

.SSDIS

. SSSDG

. SSQRD

. SSSMG

.SSQRM

.SSCSP

.SSRCD

.SSSTS

.SSRMG

.SSMAP

.SSUMP

. SSSND

.SSREQ

Field
Symbol Contents

Reserved
SS.CPU CPU number.
SS.LEN Length of argument block,

word.
SS.FNC One of the function codes

Meaning

Requests a connection.
Listens for a connection.
Rejects a connection request.
Disconnects and closes a connection.
Sends a datagram .

including this

listed below.

Queues buffer(s) to receive datagram .
Sends a message .
Queues buffer(s) to receive message.
Returns information about a status of a
connection.
Returns configuration data for a remote system.
Returns information about status of a connection.
Receives a message.
Maps a buffer for DMA transfer.
Unmaps a buffer for DMA transfer.
Sends data to remove host .
Requests delivery of data.

22-366

20-21
22
23
24
25
26
27
30
31-34
35
36

.SSRDG

.SSACC

.SSGDE

.SSEVT

.SSCRD

.SSCRM

.SSGLN

.SSRBS

.SSRPS

SCS. [CALLI 213]

Reserved.
Receives a datagram.
Accepts a connection request.
Returns entry from data request complete queue.
Returns entry from event queue.
Cancels datagram receive.
Cancels message receive.
Gets local node number.
Reserved.
Returns minimum buffer sizes.
Returns path status.

Each function requires a special form of argument block. The
followirig pag~s list the argument b16cks for each function:

1. Argument list for function .SSCON:

Word Symbol Contents

Byte pointer to source process name 1
2
3
4
5
6
7

.SQSPN

.SQDPN

.SQSYS

.SQCDT

.SQAMC

.SQADC

.SQRCI

Byte pointer to destination process name
Node number"connect-id bits
Address of initial connection data
Address of message buffer chain
Address of datagram buffer chain
Returned connect-id

2. Arguments for function .SSLIS:

Word Symbol Contents

1 .SQSPN Byte pointer to source process name
2 .SQDPN Byte pointer to destination process
3 .SQSYS Node number"connect-id
4 .SQLCI Returned connect-id

3. Arguments for function .SSREJ:

Word

1
2

Symbol

.SQCID

.SQREJ

Contents

Connect-id
Rejection reason code

4. Arguments for function .SSDIS:

Word

1
2

Symbol

.SQCID

.SQDIS

Contents

Connect-id
Disconnect reason code

22-367

bits
name

SCS. [CALLI 213]

5. Arguments for functions .SSSDG and .SSSMG:

Word Symbol

1 .SQCID
2 .SQAPT
3 .SQLPT
4 .SQFLG

Contents

Connect-id
Address of datagram/message text
Length of datagram/message text
Flags and optional path specification,
form:

Bits Symbol Contents

a Reserved

in the

1 SC%MOD Mode flag. Set if

3-29
33-35

Code

a
1
2

SC%FLG
SC%OPS

Symbol

. SSAPS

.SSPTA

.SSPTB

industry-compatible, clear if
high-density.
Reserved.
Optional path
code.

Meaning

Auto path select
Use Path A
Use Path B

specification

6. Arguments for function .SSQRD and .SSQRM:

Word

1
2

Symbol

.SQCID

.SQAFB

Contents

Connect-id
Address of first buffer in chain. The buffer
contains a pointer to the next queue buffer, or
zero.

7. Arguments for function .SSCSP:

Word

1
2
3
4
5
6

Symbol

.SQCID

.SQCST

.SQDCI

.SQBDN

.SQNOD

. SQREA

Contents

Connect-id
Connection state
Destination connect-id
Byte pointer to destination process name
Node number
Source, ,destination disconnect codes

22-368

SCS. [CALLI 213]

8. Arguments for function .SSRCD:

Word

1
2
3
4
6
7
10
11
12
14
15
20
22
23

Symbol

.SQCID

.SQOND

.SQVCS

.SQSAD

.SQMDD

. SQMDM

.SQDST

.SQDSV

.SQDSE

.SQDHT

.SQDHV

.SQNNM

.SQPCW

.SQLPN

Contents

Connect-id (or zero to use node number)
Node number (used if .SQCID is zero)
virtual circuit state"destination node number
System address (2 words)
Maximum datagram size at destination
Maximum message size at destination
Software type code at destination
Software version at destination
Software edit level at destination (2 words)
Hardware type code at destination
Hardware version at destination (3 words)
Destination node name (2 words)
Port characteristics
Local channel number

9. Arguments for function .SSSTS:

Word

1
2

3

Symbol

.SQCID

.SQFST

.SQSBR

Contents

Connect-id
Status flags"connection state

Bits

o
1
2
3

Symbol

SC%MSA
SC%DGA
SC%DTA
SC%EVA

Meaning

Message available
Datagram available
DMA transfer complete
Event pending

Destination node number

10. Arguments for functions .SSRMG and SSRDG:

Word Symbol

1 .SQCID
2 .SQARB
3 .SQDFL

4 .SQLRP

Contents

Connect-id
Address of returned buffer
Flags and node number of remote system. (See
.SSSDG for definition of flag bits.)
Length of returned message/datagram. (Words if
high density, bytes if industry-compatible.)

22-369

SCS. [CALLI 213]

11. Arguments for function .SSMAP:

Word Symbol

1 .SQXFL

2 .SQBNA

Contents

Flags:

Bits

32

33
34-35

Code

1
2

Symbol

SQ%CVD

SQ%WRT
SQ.DMD

Symbol

SQ%DCD
SQ%DHD

Meaning

Do not clear the valid bit if
set
If set, host memory is writable
Code for mode field. If clear,
this field indicates
Industry-compatible mode.

Mode

Core dump mode
High den~ity mode

Returned buffer name

Buffer length and address parts:

Word

o
1

Symbol

.SQBLN

.SQBAD

Contents

Length of buffer segment
Address of buffer segment

12. Arguments for function .SSUMP:

Word

1

Symbol

.SQNAM

Contents

Buffer name

13. Arguments for functions .SSSND and .SSREQ:

Word

1
2
3
4

Symbol

.SQCID

.SQSNM

.SQRNM

.SQOFS

Contents

Connect-id
Send buffer name
Receive buffer name
Transmit"receive buffer offsets

14. Arguments for function .SSACC:

Word

1
2

Symbol

.SQCID

.SQCDA

Contents

Connect-id
Pointer to connection data

15. Arguments for function .SSGDE:

Word

1
2

Symbol

.SQCID

.SQBID

Contents

Connect-id
Buffer id offset

22-370

SCS. [CALLI 213]

16. Arguments for function .SSEVT:

Word

1
2
3

4

Symbol

.SQCID

.SQESB

.SQEVT

.SQDTA

Contents

Connect-id
Node number of remote system
Event code:

Code

1
2
3
4
5
6
7
10
11
12
13
14
15

Symbol

.SEVCC

.SECTL

.SECRA

.SECRR

.SEMSC

.SELCL

.SENWO

.SENCO

.SEOSD

.SERID

.SEPBC

.SECIA

.SEMDC

Event

VC broken
Connect to listen
Connection was accepted
Connection was rejected
Message/Datagram send complete
Little credit left
Node went offline
Node came online
OK to send data
Remote initiated disconnect
Port broke connection
Credit is available
Maintenance data transfer
complete

Offset to event data (zero to four words)

17. Arguments for functions .SSCRD and .SSCRM:

Word

1
2

Symbol

.SQCID

.SQADB

Contents

Connect-id
Address of buffer to dequeue

18. Arguments for function .SSGLN:

Word

1

Symbol

.SQLNN

Contents

(Returned) local node number

19. Arguments for function .SSRBS:

Word

1
2

Symbol

.SQLMG

.SQLDG

Contents

Length of message buffer
Length of datagram buffer

20. Arguments for function .SSRPS:

Word

1
2

Symbol

. SQRPN

. SQRPS

Contents

Node number
Path status (A"B)

22-371

SCS. [CALLI 213]

SKIP RETURN

The function is performed successfully and the program continues at
the skip return.

ERROR RETURN

The function is not performed, and the error code is returned in the
ac. The error codes and their meanings are:

Code Symbol

0 SSNPV%
1 SSIFC%
2 SSARG%
3 SSACR%
4 SSACS%
5 SSCPN%
6 SSNPC%
7 SSNNK%
10 SSINN%
11 SSNFC%
12 SSVNO%
13 SSICI%
14 SSRQE%
15 SSNBQ%
16 SSRCF%
17 SSDCF%
20 SSNFB%
21 SSQBF%
22 SSCBF%
23 SSPSF%
24 SSDQE%
25 SSEQE%
26 SSCRB%
27 SSCUB%
30 SSNSB%
31 SSTMS%
32 SSIDM%
33 SSSCP%
34 SSSTL%

Error

Insufficient privileges.
Illegal functi6n code.
Bad argument list length.
Address check reading argument block.
Address check storing data.
CPU number is out of range.
No CI port on specified CPU.
CI node number on specified CPU is not known.
Invalid CI node number.
No free core.
virtual circuit is not open.
Invalid connect identification.
Receive queue is empty.
No buffer queued for packet reception.
Reject connection failed.
Disconnect connection failed.
No free buffers to send packet.
Queue buffers failed.
Cancel buffers failed.
Packet send failed.
Data entry queue empty.
Event queue empty.
Can't remove buffer from database.
Can't unmap buffer.
No such buffer name.
Too many buffer segment descriptions.
Illegal data mode.
Segment crosses page boundary.
Segment is greater than 1 page.

22-372

SEBLK. [CALLI 214]

22.147 SEBLK. [CALLI 214]

FUNCTION

SEBLK. is a privileged monitor call used only by DAEMON. It returns
system error block data.

CALLING SEQUENCE

MOVE ac, [arg1en"arglst]
SEBLK. ac

error return
skip return

In the calling sequence, the program supplies the arglen, which is
length of the argument list stored at arglst.

SKIP RETURN

The monitor returns information about system errors in the block
starting at arglst. The number of words stored in the monitor's error
block is returned in the ac. This tells you whether your block was
long enough to hold the information; if the block was not long enough,
the monitor truncated the information.

ERROR RETURN

One of the following codes is returned in the ac:

Code

o
1

Symbol

SBNPV%
SBNEQ%

Error

Job not privileged.
No error blocks on queue.

22-373

SEGOP. [CALLI 230]

22.148 SEGOP. [CALLI 230]

FUNCTION

Provides functions by which an assembly-language program
manipulate high segments in the program's address
Specifically, the SEGOP. UUO allows you to:

can
space.

o Put multiple high segments into a single program section.

o Remove some or all of the high segments in the program's
address space.

o Read and write monitor data about high segments in sections
other than that which is the PC origin. The monitor data
describes the size of the segments, their origin sections,
their sharable characteristics, and their write-only
protection status.

o Read and set writable characteristics of any high segment in
the program's address space~

o Translate segment names to segment numbers or numbers to
names.

o Change the size of any high segment in the program's address
space.

o List all of the high segments in the program's address space.

o Remaps program segments in the program's address space.

CALLING SEQUENCE

addr:

XMOVEI ac,addr
SEGOP. ac,

error return
skip return
length"function
flags word
segment-number
segment-name
segment-origin
segment-size
filespec-pointer

For the SEGOP. UUO, store the address of the argument list in the
accumulator. The argument list (beginning at addr above), is
formatted differently depending on the function. The--functions and
their appropriate argument lists are described below.

The flags-word contains the SEGOP. fla.gs and f~elds appropriate to
the function. The following table shows the flags that can be set for
each function and which flags may be returned by the monitor.

22-374

SEGOP. [CALLI 230]

Table 22-16: SEGOP. 000 Flags

Functions Flag Word
+------------------- ------- ------- ------- ------- ------- ------- -------+

Flags: I SG. STP SG.USN SG.FFS SG.NSR SG. SEC SG.CTX SG.JOB SG.UWP
------- ------- ------- ------- ------- ------- -------

Bits: 0 1 2 6--17 12-17 18-26 27-35 35
=========== ======= ======= ======= ======= ======= ======= ======= =======
.SGINF (0) set set/ret set/ret

------- ------- ------- ------- ------- ------- -------
.SGGET (1) set/ret set set/ret ret' d ret' d

------- ------- ------- ------- ------- ------- -------
.SGREL (2) set set

------- ------- ------- ------- ------- ------- -------
. SGRMP (3)

.SGSWP (4) set/ret
----------- ------- ------- ------- ------- ------- ------- ------- -------1
. SGCOR (5) 1
----------- ------- ------- ------- ------- ------- ------- ------- -------1
.SGDMP (6) set ret'd set set 1

+---+

22.148.1 FUNCTION 0 (.SGINF)

Returns information about a specified high segment. The argument list
for this function is:

addr: length, , . SGINF
flag-word
BLOCK 4
filespec-pointer

The flags that can be set in the the flag-word for this function are:

Bits

0

1

12-17

18-26

27-35

Symbol

SG.STP

SG.USN

SG.SEC

SG.CTX

SG.JOB

Meaning

If set, the function will step through the list of
high segments.
If set, the SG.SEC field contains an offset to the
program section of the specified high segment.
Contains the offset to the section number of the
high segment.
Contains the context number of the job context
that owns the high segment.
Contains the job number of the job that owns the
high segment.

Use these flags and fields to perform the following operations:

o To step through a list of all segments, starting with the
first, set SG.STP and put a zero in addr+2 (.SGSGN).

o To step through the list beginning at a specified point, set
SG.STP and include the segment number in .SGSGN that is
previous to the first segment that you want to return
information on. ST.STP always returns the next segment in
the list.

22-375

SEGOP. [CALLI 230]

o To obtain information about a segment specified by name,
clear ST.STP and do not specify the segment number in .SGSGN.
Include the segment name in addr+3 (.SGSNM).

o To obtain information about the segments owned by a specific
job or job context, include the job/context handle in SG.CTX
and SG.JOB.

On a skip return from this function, the monitor fills in the contents
of the argument list.

This function will take the error return and error code ERSII% will be
returned if the segment number and segment name specified in the
argument list do not match.

22.148.2 FUNCTION 1 (.SGGET)

Obtains a new high segment without affecting current high segments.
The argument list for this function is:

addr: length" .SGGET
flags-word
BLOCK 4
filespec-pointer

In the flags-word, you can specify the following flags for this
function:

Bits

1

2

12-17

Symbol

SG.USN

SG.FFS

SG.SEC

Meaning

When set, indicates that a section number is
stored in SG.SEC.
If non-zero, the new high segment is placed into
the first free section.
If SG.USN is set, contains the section number
where the new segment should be created.

On a skip return from this function, one of the following functions
has been accomplished:

o If SG.USN is set and SG.FFS is clear, the contents of SG.SEC
indicate the section number to store the new high segment in.

o If both SG.USN and SG.FFS are clear, the same section from
which the argument list is given (usually the PC section) .

o If SG.FFS is set, the section number that is actually used
will be returned in the SG.SEC field of the Flags-word. In
addition, the SG.USN flag is set and the SG.FFS flag is
cleared after the return.

The monitor fills in the argument list with information about the new
high segment on a successful return from this call.

22-376

SEGOP. [CALLI 230]

22.148.3 FUNCTION 2 (.SGREL)

Releases a segment or a list of segments. The argument list for this
function is:

addr: length, , . SGREL
flags-word
segment-number
segment-number

o

In the flags-word, you can specify the following flags for this
function:

Bits Symbol Meaning:

1 SG.USN Indicates that a section number is in the field
SG.SCN

12-17 SG.SEC Specifies the section number of the section from
which to release high segments.

On a skip return from this function, one of the following functions
has been accomplished:

o To delete all high segments in the program's address space,
clear SG.USN and specify 0 for the segment-number (.SGSGN).

o To delete only specified high segments, clear SG.USN and
specify the segment numbers of the segments to release
starting at .SGSGN. Terminate the list of segment numbers
with a zero word.

o To delete all high segments from a specific program section,
set SG.USN and include the section number in SG.SEC. You can
also specify additional segments to be released by including
their segment numbers starting at .SGSGN.

22.148.4 FUNCTION 3 (.SGRMP)

Maps a local segment into high segment address space (similar to
REMAP. UUO). The format of the argument list for this function is:

addr: length" .SGRMP
o
BLOCK 1
new-segment name
segment-origin
segment-size

22-377

SEGOP. [CALLI 230]

In the argument list, the following information is stored in each
word:

Word Symbol

0 .SGFNC
1 .SGFLG
2 .SGSGN

3 .SGSNM
4 . SGORG

5 .SGSIZ

6 .SGFSP

Contents

Length, , . SGRMP
Zero
Segment number of the local segment returned
(GETTAB .GETSGN).

Name for the new high aegment.
Segment origins .
In the left half (SG.HSO), specify the origin
address for the new high segment.
In the right half (SG.LSO), specify the current
low-segment origin for the local segment.
Specify the number of pages in the segment to
remap, starting at the location in SG.HSO above.
Include a pointer to a file specification block
that specifies the program in the segment.

22.148.5 FUNCTION 4 (.SGSWP)

Sets the user-write-protection bit for specified segments (similar to
SETUWP UUO). The argument list for this function is:

addr: length, , . SGSWP
SG.UWP
segment-number

In the flags-word, you can specify the SG.SWP bit. This bit specifies
whether to set user-write-protection, or to clear the protection. On
a success return, this bit reflects the previous setting for the
segment.

22.148.6 FUNCTION 5 (.SGCOR)

Changes the length of an existing high segment. The argument list for
this function is:

addr: length" .SGCOR
o
segment-number
segment-name
segment-origin
segment-size

The segment-number indicates the specified high segment.

The segment-size indicates the number of pages to be allocated for the
high segment.

22-378

SEGOP. [CALLI 230]

22.148.7 FUNCTION 6 (.SGDMP)

Returns the entire list of segments for the specified job/context.
The argument list for this function is:

addr: length, , . SGDMP
flags-word
segment-number
BLOCK n

In the flags-word, you can specify the following flags for this
function:

Bits

o

18-26
27-35

Symbol

SG.STP

SG.CTX
SG.JOB

Meaning

Indicates that the call will step through the list
starting at the beginning.
Specifies the job context.
Specifies the job number.

At addr+2 (.SGSGN), specify the segment number to begin returning, if
SG.STP is not set.

On a skip return from this function, one of the following functions
has been accomplished:

o To return the segments starting at a specific segment,
include the first segment number in .SGSGN. The segment
numbers are returned starting at addr+3. The list is
terminated with a zero word.

o On a success return, the monitor stores the total number of
segments in the flags-word in Bits 6-17 (SG.NSR).

On an error
accumulator
zero.

SKIP RETURN

return, the error code ERFNF% is returned
if SG.STP is clear and segment-number (.SGSGN)

in the
contains

On a skip return, the monitor performs the requested function and
information is returned in the argument list as described above.

ERROR RETURN

On an error return, one of the LOOKUP/ENTER/RENAME extended error
codes is returned in the accumulator. Refer to_ Chapter 11 for the
list of extended error codes.

RELATED CALLS

o CORE.

o FILOP.

o GETSEG

o REMAP.

o SETUWP

22-379

SENSE. [CALLI 133]

22.149 SENSE. [CALLI 133]

FUNCTION

Returns the I/O status bits for a device. I/O status bits can be
cleared individually using the CLRST. monitor call.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
SENSE. ac,

error return
skip return
...

addr: / SIXBIT/device/ \
I EXP channo I

\ EXP udx /
XWD length, status

status:
status+1:
status+2:

SIXBIT/name/
XWD O,GETSTS-bits
DEVSTS-word

In the calling sequence, the program supplies the following variables:

o len is the length of the argument lis't, which must be 2.

o addr is the address of the argument list.

o device is the SIXBIT physical or logical name of an
initialized device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device.

Device, channo, and UDX are alternate ways of specifying the
device for which you desire the status bits.

o length specifies the number of words in the status block.
This value should equal the number of devices multiplied by
3.

o status is the address of the status block.

The status block is returned in the form:

Offset

o

1

2

Symbol

. SNSDV

.SNSST

.SNSDS

Contents

The SIXBIT name of the device .

The status bits for the device (GETSTS).

The device status (DEVSTS) bits for the device.
DEVSTS bits are from the device DDB, and are
different for each device.

22-380

SENSE. [CALLI 133]

SKIP RETURN

The name and status bits for the device are returned at status.

ERROR RETURN

If the SENSE. monitor call is not implemented on your system, the ac
is unchanged; otherwise, the following error code is returned in the
ac:

Code

1

Symbol

SNSBD%

RELATED CALLS

o CLRST.

o ERLST.

Error

Illegal device specified.

22-381

SETDDT [CALLI 2]

22.150 SETDDT [CALLI 2]

FUNCTION

Sets the value of .JBDDT in the Job Data Area. Note that .JBDDT is
protected from a direct MOVEM because the monitor has its own copy of
.JBDDT and restores its value at every context switch.

CALLING SEQUENCE

MOVE ac, [last-addr"start-addr]
SETDDT ac,
return

In the calling sequence, the program supplies the following variables:

o last-addr is the last address for DDT.

o start-addr is the new start address.

RETURN

The start address and last address for DDT are set.

22-382

SETLCH [TTCALL 7,]

22.151 SETLCH [TTCALL 7,]

FUNCTION

Sets the line characteristics for your job's controlling terminal.
The line characteristics can be read using the GETLCH call.

CALLING SEQUENCE

SETLCH [XWD flags,lineno]
return

The flags, stored in Bits 0-17, are described below.

The lineno, stored in Bits 18-35, is the numeric portion of the
terminal name, (such as 37 for TTY37) or a UDX (such as .UXTRM+37 for
TTY37) .

If you give a negative number for lineno, the current user terminal is
assumed. Flags can be changed only for the job's controlling
terminal.

The flags are:

Bit

2
13
14
15
16
17

RETURN

Symbol

GL.DSP
GL.LCM
GL.TAB
GL.LCP
GL.PTM
GL.NEC

Characteristic

Terminal is a display (CRT) terminal.
Terminal in lowercase mode.
Terminal has tab capability.
Local copy only (no echo) .
The CTRL/Q papertape switch is on.
No echo from program.

The line characteristics are set as requested. The argument block is
not changed.

RELATED CALLS

o GETLCH

o TRMOP.

COMMON PROGRAMMING ERRORS

Using an ac in the calling sequence.

22-383

SETNAM [CALLI 43]

22.152 SETNAM [CALLI 43]

FUNCTION

Changes the name of the current program in the monitor's job table.
This name is used by some monitor commands, such as USESTAT (CTRL/T)
and SYSTAT.

The SETNAM monitor call also clears the SYS program bit (which is used
by GALAXY), clears the execute-only and JACCT bits, and causes a
version typeout if a version watch has been set with the SET WATCH
VERSION monitor command or with the .STWTC, ST.WVR function of SETUUO.

CALLING SEQUENCE

MOVE ac, [SIXBIT/name/]
SETNAM ac,
return

In the calling sequence, the program supplies the name, which is the
new program name for the job.

RETURN

The new program name is entered in the monitor's job table.

EXAMPLE

MOVE TI, [SIXBIT/NEWNAM/]
SETNAM TI,

This code changes the program name for the job to NEWNAM.

22-384

SETSTS [OPCODE 060]

22.153 SETSTS [OPCODE 060]

FUNCTION

Sets bits in the file status word for a device. Use FILOP. to perform
a SETSTS for an extended I/O channel.

CALLING SEQUENCE

SETSTS channo,bits
return

In the calling sequence, the program supplies the following variables:

RETURN

o channo is the number of an initialized channel.

o bits are I/O status bits. For a complete list of I/O status
bits, see the appropriate device chapter in Volume 1.

The I/O status bits are set.

EXAMPLE

GETSTS
TRZ
SETSTS

RELATED CALLS

o CLRST.

o ERLST.

o FILOP.

o GETSTS

o SENSE.

CHN,Tl
Tl,IO.ERR
CHN, (Tl)

COMMON PROGRAMMING ERRORS

;get status in Tl
;keep mode and device-status
;clear errors

1. If the SETSTS monitor call is done for a channel that has not
been initialized, the monitor stops the job and prints:

?IO to unassigned channel at user PC nnnnnn

2. If the data mode is illegal for the device, the monitor
prints:

?Illegal data mode for device xxxnnn; UUO at user PC
nnnnnn

3. Forgetting that bits is an immediate argument, not an address
as in GETSTS.

22-385

SETUUO [CALLI 75]

22.154 SETUUO [CALLI 75]

FUNCTION

Sets system or job parameters. To set system parameters, your job
must have the JACCT bit set, or must be logged in under [1,2], and may
not be a batch job.

CALLING SEQUENCE

MOVE ac, [XWD fcncode,argument]
SETUUO ac,

error return
skip return

In the calling sequence, the program supplies the following variables:

o fcncode is one of the function codes described below.

o argument is an argument for the given function code.

The function codes and their meanings are:

Code

o

1

2

3

4

Symbol

.STCMX

.STCMN

.STDAY

.STSCH

.STCDR

Function

Sets the maximum core size that a user job may use
(the sum of the high and low segments, CORMAX).
The minimum value is set by MONGEN. The maximum
value is the size of user core in words.

Sets the guaranteed amount of contiguous core that
a single unlocked job can use (CORMIN). The valid
values are in the range 0 to CORMAX. This
argument is referred to as CORMIN.

Obsolete (use the .STTIM function) .

Sets parameters in the %CNSTS word in GETTAB Table
11. The argument gives the flags. The flags and
their meanings are:

Bit Symbol Meaning

26 ST%NDL No automatic down-line load of
DC72, DC71, or DAS80-series
remote station.

27 ST%NOP No operator coverage.
28 ST%NSP Allow device unspooling.
29 ST%ASS Allow device assignment and

initialization.
32 ST%NRT No remote TTYs.
33 ST%BON LOG INs for batch jobs only.
34 ST%NRL No remote LOGINs.
35 ST%NLG No LOG INs except CTY.

Specifies the input name for the card reader job,
which is stored in the GETTAB Table .GTSPL. The
argument is given in single quotes that contain
three SIXBIT characters forming the job name. For
example, the MOVE statement in the calling
sequence might be:

MOVE AC1, [XWD .STCDR,'XYZ']

to specify the input name XYZ.

22-386

5 .STSPL

6 .STWTC

7 . STOAT

10 .STOPR

11 .STKSY

12 . STCLM

13 .STTLM

SETUUO [CALLI 75]

Sets or clears the spooling state for the job's
devices. You specify the flag bits in the ac and
they are set in bits 31 to 35 of .GTSPL. The
flags and their meanings are:

Bit

31
32
33
34
35

Symbol

JS.PCR
JS.PCP
JS.PPT
JS.PPL
JS.PLP

Meaning

Spool card reader.
Spool card punch.
Spool paper tape punch.
Spool plotter.
Spool line printer.

Sets flags for SET WATCH routine (refer to monitor
command SET WATCH). The argument gives one or
more of the flags, which are:

Bits

9
10
11
9-11
18
19
20
21
22
23
24
25
26
18-26

Symbol

ST.WCN
ST.WFL
ST.WPR
ST.WMS
ST.WCX
ST.WOY
ST.WRN
ST.WWT
ST.WOR
ST.WOW
ST.WVR
ST.WMT
ST.WFI
ST.WAL

Meaning

/MESSAGE:CONTINUATION.
/MESSAGE:FIRST.
/MESSAGE:PREFIX.
/MESSAGE:ALL (bit mask).
Watch contexts.
Watch daytime at start.
Watch runtime.
Watch wait time.
Watch disk reads.
Watch disk writes.
Watch versions.
Watch statistics for magtapes.
Watch file accessed.
Watch all.

Sets the system date as the number of
January 1, 1964, in IS-bit form.
gives the number of days as:

days since
The argument

({year-1964)*12+(month-l»*31+{day-l)

Sets the SIXBIT name of the terminal to be used as
the operator terminal. The argument gives the
address of the word containing the name.

Sets the decimal number of minutes until
timesharing ends; this value is stored in SYSKTM.
If SYSKTM is 0, timesharing is continued
indefinitely. If SYSKTM is -1, timesharing ends
immediately.

Obsolete. Use .STCVM instead .

Sets the maximum number of seconds the job can
run. The argument is the number of seconds
permitted. This function cannot be used by batch
jobs that already have a time limit. However,
this function is allowed for non-batch jobs, batch
jobs with no time limit, and privileged batch jobs
with or without a time limit.

22-387

SETUUO [CALLI 75]

14 .STCPU

15 .STCRN

16 .STLMX

17 .STBMX

20 .STBMN

Specifies the CPU on which the job is to run. The
argument gives any of the following flags:

Bit Symbol Meaning

30 SP.CR5 Run on CPU5.
31 SP.CR4 Run on CPU4.
32 SP.CR3 Run on CPU3.
33 SP.CR2 Run on CPU2.
34 SP.CR1 Run on CPU1.
35 SP.CRO Run on CPUO.

.STCPU is a privileged function, requiring JP.CCC
privileges. The error return is taken if you
attempt to change the CPU specification on a
single-CPU system.

Sets runnability for CPUs. The argument gives one
or more of the following flags:

Bit Symbol Meaning

30 SP.CR5 CPU5 is runnable.
31 SP.CR4 CPU4 is runnable.
32 SP.CR3 CPU3 is runnable.
33 SP.CR2 CPU2 is runnable.
34 SP.CR1 CPU1 is runnable.
35 SP.CRO CPUO is runnable.

The error return is taken if you attempt to issue
this function on a single-CPU system.

Sets the maximum number of jobs that can be logged
in at anyone time; this value is stored in
location LOGMAX. The argument gives the maximum
number of jobs; this number must be at least 1,
but no more than the system maximum, which is
defined by the symbol JOBN. JOBN is the system
limit defined when the monitor is generated by
MONGEN.

If you give a number smaller than the number of
jobs currently logged in, no new jobs can log in
until the number of jobs falls below LOGMAX.

You can obtain the number of jobs currently logged
in from the location %CNLNM in GETTAB table
.GTCNF.

Sets the maximum number of batch jobs that can be
logged in at anyone time; this value is stored in
location BATMAX' The argument gives the maximum
number of batch jobs; this number must be less
than the system maximum, which is defined by the
symbol JOBN.

You can obtain the number of batch jobs currently
logged in from the location %CNBNM in GETTAB table
.GTCNF.

Sets the number of jobs reserved for
processing (BATMIN) . The argument gives
minimum number of jobs reserved. The value
be in the range 1 to the value of BATMAX-1.

22-388

batch
the

must

21 .STDFL

22 .STMVM

23 .STMVR

24 .STUVM

25 .STCVM

SETUUO [CALLI 75]

Sets the action to occur if the user disk space is
filled for the job. The argument is one of the
following codes:

Code Symbol Meaning

° .DFPSE Pause when disk filled for job.
1 .DFERR Error when disk filled for job or

the user's quota has been
exceeded.

Any other value for argument returns the current
setting for .STDFL in the ac; the initial default
setting is .DFERR.

Sets the system-wide virtual memory limit (GVPL).
The value returned in ac depends on the given
argument:

o If the given argument is less than the current
virtual memory page count, the value returned
is the total amount of virtual memory in use
by all virtual memory users.

o If the given argument is greater than the
current available swapping space, the value
returned is the total amount of available
swapping space.

o If the given argument is greater than the
total amount of virtual memory currently in
use, the value returned is the given argument.

Obsolete. This his~orical SETUUO function always
takes the error return and clears the ac.

Sets the maximum virtual memory page limit and the
maximum physical memory page limit. The argument
gives the address of the word whose format is:

LH maximum virtual page limit (MVPL)
RH maximum physical page limit (MPPL)

If the left half of the word (MVPL) is 0, the user
cannot use the virtual memory option. When MVPL
is set to 0, MPPL should also be set to 0. If the
right half (MPPL) is 0, the user can use all of
the system's physical memory.

Sets the current memory maximum. The argument is
the address of a word whose format is:

LH current virtual page limit (CVPL)
RH current physical guideline or limit

(CPPL)

The left half of the word at the indicated address
sets the current virtual page limit (CVPL). The
right half sets the current physical page limit
(CPPL) . If you leave the entire word zero, both
limits are cleared, and the job has no constraints
of memory use. If one half of the argument word
is zero, only the limit for the non-zero half is
changed.

22-389

SETUUO [CALLI 75]

26 .STTVM

27 .STABK

30 .STPGM

If Bit 18 (ST.VSG) is 0, the right half (CPPL)
contains the current physical page guidelinei if
Bit 18 is 1, CPPL contains the current physical
page limit. A guideline is an approximate
physical page limit.

The guideline algorithm allows you to set a memory
limit that will not be strictly enforced. The
page fault handler will attempt to meet the page
limit within a window of approximation, allowing
slight over-allocation to accommodate the program.
If you set the ST.VSG bit, the allocation is taken
as a limit, and that limit is strictly enforced.

Sets the time interval between virtual time traps
in milliseconds. A virtual time trap causes a
Code 4 page fault to the page fault handler each
time the time interval has elapsed. The argument
gives the number of milliseconds between traps.

Sets the address break condition. On a skip
return, the new address break condition and the
break address have been set. The address
conditions are specified in the word pointed to by
the argument. These conditions are:

Bits

o
1
2
3

Symbol

ST.AEX
ST.ARn
ST.AWR
ST.AUU

, ,Contents

Set to break on EXECUTE.
Set to break on READ.
Set to break on WRITE.
Set to break on monitor
reference.

4-8 ST.ASN Specify the section number for
the break address.

9-17 ST.ACT The number of times the break
address is to be referenced
before an interrupt occurs.

18-35 ST.ADR Sets the break address.

To clear the address break, clear Bits 0 through
3.

If you have enabled for address break interrupts,
the P~I system will interrupt on an address break.
If the PSI system is not enabled, the monitor will
stop your job and display the following message on
your terminal:

%Address break at user PC xxxxxx

Sets the name of a program that will run when
current program session finishes executing.
must run the program executing this SETUUO
SYS:, under [1,2], or with JACCT privilege
The argument block is:

the
You

from
set.

EXP flag
SIXBIT /progra/

iBits 1-35 reserved
iprogra is program name

22-390

31 .STDFR

32 .STHST

SETUUO [CALLI 75]

The monitor does an implied RUN UUO on
SYS:progra.EXE when the current program session
ends. Program session termination occurs under
one of the following conditions:

o When Bit 0 of the flag is set, the session
terminates whenever the job would otherwise
enter monitor mode (for instance, EXIT UUO,
AC, illegal memory reference, or swap read
error). If the job becomes detached, issuing
the unprivileged ATTACH command (or the ATTACH
UUO) does not attach you to the job in monitor
mode. You will attach in user mode instead.
The DETACH function of the ATTACH UUO allows
you to detach, leaving your terminal in
monitor mode.

o When Bit 0 of the flag is clear, the session
terminates whenever you execute a command that
destroys the core image. The RUN UUO executes
SYS:progra.EXE instead of whatever command you
issued. You can still enter monitor mode when
your program terminates, or when you issue an
ATTACH command. You may then execute any
command that does not change the core image,
as well as the KJOB command. Commands that
automatically save the current context and
push to a new one do not change the core
image.

The status of .STPGM remains in effect until it is
explicitly cleared by a privileged program, or the
job logs out. Whenever .STPGM is in effect, the
program may execute RUN UUOs on any file. Control
may even transfer to a program that is not
privileged to execute this SETUUO.

If .STPGM specifies an inaccessible file, the job
will be logged out when the program session
terminates.

Sets deferred spooling. If argument is non-zero,
spooled output will not be queued until the job
logs out. If argument is zero, spooled output
will be queued as each file is closed.

Sets the host system. This function logically
attaches the controlling terminal to the specified
host system in an ANF-10 network, and requires
your program to have JACCT privileges or to run
under [1,2]. When this call is returned, the job
on the previous system becomes detached.

The calling sequence is:

MOVE ac, [.STHST"addr]
SETUUO ac,

error return
skip return

addr: node number or SIXBIT node name

22-391

SETUUO [CALLI 75]

33 .STDEF Sets default values for job-wide parameters.
calling sequence for the .STDEF function is:

The

addr:

MOVE ac, [XWD .STDEF,addr]
SETUUO ac,

error return
skip return

XWD arglen,subfcncode
argument

In the argument word:

o arglen gives the number of arguments to
follow.

o subfcncode is one of the following subfunction
codes:

Code

o

1

2

3

Symbol Subfunction

.STDPe Set default protection code.
addr+l contains the new
default protection code .

. STDNB Set default number of disk
buffers. addr+l contains
the new default number of
disk buffers .

. STDAD Cont'rols whether LOGIN will
ask you about attaching to
this job should you
previously have detached
from it. JD.DAD in .GTDFL
contains the value of this
flag. If this flag is
clear, LOGIN will ask about
this job. If the flag is
set, LOGIN does not ask if
you want to attach to this
job .

. STDSB Sets the default size of a
disk buffer. Refer to SET
BIGBUF monitor command. The
new disk buffer size is
stored in addr+l. The value
of the buffer size is
specified in terms of the
number of blocks per
buffer) . Big buffers are
used until the program
performs a RESET or halts.

22-392

If the right half of this
word is zero and the left
half is non-zero, the buffer
size definition remains
constant until the job is
logged out or the buffer is
explicitly redefined.

34

35

36

37

40

41

.STPRV

SETUUO [CALLI 75]

Sets the privilege and capability words.
calling sequence for the .STPRV function is:

The

MOVE ac, [XWO .STPRV,arglst]
SETUUO ac,

arglst: XWO O,subfcncode
argument

subfcncode is one of the following subfunction
codes:

Code Symbol

0 . STCPW
1 .STCPS

2 .STCPC

3 . STCCW
4 .STCCS

5 .STCCC

NOTE

Subfunction

Sets entire privilege word .
Sets specified bits of privilege
word.
Clears specified bits of
privilege word.
Sets entire capability word .
Sets specified bits of capability
word.
Clears specified bits of
capability word.

You can always clear bits in the privilege word.
However, you can set only those bits in the privilege
word that are set in the c~pability word, unless you
are a privileged job.

.STBSN

.STWTO

.STCON

.STCSB

.STFPS

Sets batch stream number (settable only once per
instance) .

Sets write-to-operator values.
Table .GTOBI.

Refer to GETTAB

Sets CPU up/down status. To control the CPU
up/down status, set the appropriate bits in the
argument, from the following list:

Bit

18
19

Symbol

ST.URE
ST.USU

Function

Remove CPU from system.
Suspend the CPU.

If both Bits 18 and 19 are clear, the CPU is added
to the configuration.

The CPU number must be stored in Bits 33-35 of the
argument.

Sets or clears cache bits. The cache can be
enabled or disabled for the monitor's low segment
by setting the argument to 1 to enable cache, or 0
to disable cache.

Sets or clears
(unsupported) .

22-393

floating point simulation

SETUUO [CALLI 75]

42 .STOPP

43 .STQST

44 .STCSZ

45 .STEBP

46 .STBPT

47 .STTMS

50 .STCXP

51 .STCNP

52 .STPCP

Allows various levels of operators to run OPR
without [1,2] privileges and without having full
file access. This value may be read from GETTAB
Table .GTOBI, and w~ll be be used by LOGIN.

Sets queue structure. This sets the file
structure on which GALAXY queues will be stored.
Refer to GETTAB Table .GTLVD, item %LDQUS.

Sets the size of the software disk cache in
blocks. This value can be set with MONGEN symbol
M.CBMX. The default value of M.CBMX is the number
of jobs on the system. The .STCSZ function is
illegal if M.CBMX=O. The argument for this
function specifies the number of disk blocks for
the cache. Refer to GETTAB Table .GTLVD, item
%LDCSZ.

Sets the EDDT breakpoint facility. The argument
to this function is either 0 (to disable the
facility) or 1 (to enable the facility) .

Sets the DDT breakpoint facility. The argument to
this function is either a (to disable the
facility) or 1 (to enable the facility). .STEBP
requires [1,2] or JACCT privileges.

Sets the system time of day. Specify the time as
the number of seconds past midnight.

Sets the maximum number of pages of memory that a
user job may use (CORMAX). Set Bit 18 of this
word to reduce the maximum size gradually ("soft
CORMAX") . Larger jobs will continue to run until
they contract below the soft CORMAX limit, then
will not be allowed to expand beyond this size
again.

Sets the guaranteed amount of contiguous core that
a single unlocked job can use (CORMIN), with the
argument in pages.

Changes the policy CPU. The policy CPU is the
processor in a multi-processor system that will
boot the software on a system crash. The calling
sequence for this function is:

MOVSI ac, .STPCP
HRRI ac,CPUn
SETUUO ac,

error return
skip return

The value of CPUn is the CPU number of the CPU
that will become the policy CPU. The monitor call
takes the error return if there is no such CPU or
the specified CPU is not running.

22-394

SETUUO [CALLI 75]

SKIP RETURN

The function is performed and the ac is unchanged.

ERROR RETURN

If the ac is cleared, you do not have sufficient privileges or you
gave an-rllegal job number, CPU number, or argument.

If the ac is not changed on an error return, the function you
requested is not implemented in the monitor.

For functions .STQST, .STCPU, .STPCP, and .STCRN, one of the following
error codes may be returned in the ac:

Code Symbol

a STNAR%
1 STDHP%

2 STISN%
3 STITM%

RELATED CALLS

JBSET.

Error

Specified CPU(s) not running.
Insufficient privileges to perform specified
function.
Illegal structure name.
Illegal time (resulting time would be greater than
23:59:59) .

22-395

SETUWP [CALLI 36]

22.155 SETUWP [CALLI 36]

FUNCTION

Sets or clears user-mode write protection for the job's high segment.
You must use the SETUWP call to clear write protection before your
program can modify its high segment.

Because the previous setting of this bit is returned in ac, you can
write subroutines that preserve the previous setting and-restore them
before returning.

CALLING SEQUENCE

MOVE I ac,fcncode
SETUWP ac,

error return
skip return

In the calling sequence, the program supplies the fcncode, which is
one of the following function codes:

Code

o
1

Function

write-enables the high segment.
Write-protects the high segment.

SKIP RETURN

The user-mode write protection bit is set as specified,
previous setting is returned in the ac.

ERROR RETURN

The error return is taken under the following conditions:

o If the high segment is a Spy segment.

o If the high segment has been meddled.

and the

o If the user does not have the access privileges required to
access the specified high segment.

o If there are multiple high segments in the PC section, the ac
contains 0 on an error return. (Use the SEGOP. UUO.)

RELATED CALLS

SEGOP.

22-396

SKPINC [TTCALL 13,]

22.156 SKPINC [TTCALL 13,]

FUNCTION

Skips the next program instruction if at least one character can be
input from the job's controlling terminal. The SKPINC call does not
input a character. SKPINC clears the CTRL/O output state and sets the
terminal to "character mode", preventing the monitor from processing
control characters, such as DELETE and CTRL/U, as input line editing
commands.

This call is useful in a compute-bound program that should check
occasionally for user input.

CALLING SEQUENCE

SKPINC
return 1
return 2

In the calling sequence, the program supplies the call, which returns
to return 1 if there is no user input, or to return 2 is there is user
input.

RELATED CALLS

SKPINL

22-397

SKPINL [TTCALL 14,]

22.157 SKPINL [TTCALL 14,]

FUNCTION

Skips the next instruction if at least one line can be input from the
job's controlling terminal. SKPINL sets the terminal to "line mode"
and clears the CTRL/O output state.

In deferred-echo mode, SKPINL allows the first line of unprocessed
input from the terminal.

CALLING SEQUENCE

SKPINL
return 1
return 2

In the calling sequence, the program supplies the call, which returns
to return 1 if a complete line has not been typed, or to return 2 if a
complete lIne has been typed.

RELATED CALLS

SKPINC

22-398

SLEEP [CALLI 31]

22.158 SLEEP [CALLI 31]

FUNCTION

Causes your program to become dormant for a specified number of
real-time seconds.

CALLING SEQUENCE

MOVE I
SLEEP
return

ac,seconds
ac,

In the calling sequence, the program supplies the seconds, which gives
the number of seconds that the job is to sleep. If you give seconds
as 0, the program will sleep for one clock tick. The maximum sleep
time is 68 seconds (or 82 seconds for systems using 50 Hz frequency) .
If you require a longer sleep period, use the HIBER monitor call.

RETURN

Your job becomes dormant and the monitor sets the JBTST2 bit, JS.SLP.
The monitor will clear this bit when the specified time has elapsed
and your job becomes runnable again. All potential job-wakers should
check this bit and wake a job only if the bit is cleared.

EXAMPLES

MOVE I
SLEEP

T1,1
T1,

This code puts your job to sleep for 1 second.

RELATED CALLS

HIBER

22-399

SNOOP. [CALLI 176]

22.159 SNOOP. [CALLI 176]

FUNCTION

Allows privileged programs to insert breakpoints in the monitor
trap to a user program. The user program must be locked in core
the trap occurs (refer to LOCK monitor call). This feature is
for fault insertion, performance analysis, and trace functions.
one job can use SNOOP. at any time.

CAUTION

Improper use of the SNOOP.
to fail in a number of
require special code for
because the monitor may
simultaneously on several
interrupt levels.

call can cause the system
ways. User programs may
multiprocessor systems

be executing the same code
systems and at different

that
when
used
Only

Refer to Chapter 10 for more information about the SNOOP. monitor
call. Do not attempt to use this call until you are familiar with its
operation.

CALLING SEQUENCE

MOVE ac, [XWD fcncode,addr]
SNOOP. ac,

error return
skip return

addr: argument list

In the calling sequence, the program supplies the following variables:

o fcncode is one of the function codes described below.

o addr is the address of the argument list. The words at addr
depend on the given function.

The function codes and their meanings are:

Code

o

Symbol

.SODBP

Function

Defines breakpoints. This function is illegal if
breakpoints have been inserted.

The argument list for the .SODPB function is:

arglst: EXP arglength
EXP symbol checksum
EXP address
instruction

EXP address
instruction

In the argument word:

o arglength is the length of the argument list.
This must be 2 + the number of
address-instruction pairs in the argument list
times 2 .

22-400

1 .SOIBP

2 .SORBP

3 .SOUBP

SNOOP. [CALLI 176]

o symbol checksum is the checksum from th~
current monitor's symbol table.

The checksum is required to ensure that the user
is setting breakpoints in the intended monitor.

Specifically, the argument
Function 0 is:

list for SNOOP.

Word

o

1

2

3

Symbol.

. SOLEN

.SOMSC

.SOMVA

.SOBPI

Contents

The length of the argument list,
(the number of breakpoints being
defined times two, plus two) .

The checksum of
symbol table.

the monitor

Monitor virtual address where new
instruction is to be inserted.

New instruction.

.SOMVA and .SOBPI are repeated for each replaced
instruction.

Your program can obtain the version of the monitor
that is read in by BOOTS from GETTAB table .GTCNF,
where the relevant items are:

Offset Item

137
140
141
142
143
144
145
155
156
157
160
161

%CNBCP
%CNBCL
%CNNCR
%CNMBS
%CNMBF
%CNMBX
%CNMBD
%CNSF1
%CNSF2
%CNSF3
%CNSF4
%CNSF5

Contents

Bootstrap CPU number.
Bootstrap line number.
Number of CPUs allowed to run.
Bootstrap file structure.
Bootstrap file name.
Bootstrap file extension.
Bootstrap file directory.
Bootstrap first SFD.
Bootstrap second SFD.
Bootstrap third SFD.
Bootstrap fourth SFD.
Bootstrap fifth SFD.

The checksum is followed by a series of word
pairs, each of which defines a breakpoint by
specifying, in the first word of each pair, the
monitor virtual address where the new instruction
is to be placed, and, in the second word of the
pair, the new instruction to be inserted.

Inserts all breakpoints that have been defined
using function O. Your program must be locked in
contiguous executive virtual memory to use this
function (see the LOCK monitor call) .

Removes inserted breakpoints from monitor code.

Undefines breakpoints that have been removed using
function 2.

22-401

SNOOP. [CALLI 176]

4 .SONUL

SKIP RETURN

Null function. This function allows you to
execute code inserted at label BP$OOO, after
ensuring that your job owns the SNOOP resource.
This may be used by a program that must execute
code in monitor context and wants to ensure that
only this program can invoke the inserted code.

If you do not own the SNOOP resource, the
instruction at BP$OOO is not executed, and the
error code SOSAS% is returned.

The indicated function has been performed.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

1
2
3
4
5
6
7
10

11

EXAMPLES

Symbol

SOIAL%
SONPV%
SOSAS%
SOMBX%
SOIBI%
SONFS%
SOADC%
SOINL%

SOWMS%

Error

Illegal argument list.
Not enough privileges.
Another program already snooping.
Maximum number of breakpoints exceeded.
Breakpoints already inserted.
No monitor free core available.
Address check.
Program not locked in contiguous executive virtual
memory.
Monitor symbol table checksum does not match.

The monitor computes the symbol table checksum in the following
manner:

LOOP:

PUTEM:

MOVE
SETZM
MOVE
EXCH
ROT
ADD
EXCH
AOBJN

MOVE
SNOOP.

JRST
MOVE
SNOOP.

JRST

EXP
EXP
EXP
JRST
EXP
JRST

T1, .JBSYM
CHKSUM
T2, (T1)
T2,CHKSUM
T2,1
T2,CHKSUM
T2,CHKSUM
T1,LOOP

T1, [XWD .SODBP,PUTEM]
T1,
NOGOOD
T1, [XWD .SOIBP,O]
T1,
NOBTTR

6
MONITOR-CHECKSUM
12345
HOOK1
12355
HOOK2

22-402

SNOOP. [CALLI 176]

At this point the breakpoints have been inserted. To remove them:

MOVE T1, [XWD .SORBP, 0]
SNOOP. T1,

JRST BUMMER
MOVE T1, [XWD .SOUBP, 0]
SNOOP. T1,

JRST LOSTIT

22-403

SPPRM. [CALLI 172]

22.160 SPPRM. [CALLI 172]

FUNCTION

Sets parameters for spooled files.

CALLING SEQUENCE

addr:

MOVE ac, [length,addr]
SPPRM. ac,

error return
skip return

function code
device-id
parameters

In the calling sequence, the program supplies the following variables:

o length is the length of the argument list.

o addr is the address of the argument list;
addr is listed below.

o function code specifies the type of file.

o device-id identifies the device.

and the data at

o parameters describes the
processing to be performed.

characteristics of the file
These parameters are optional.

Specifically, the argument list is:

Word

o

1

2

3

4

Symbol

.SPPFN

.SPPDN

.SPPCP

.SPPFM

.SPPLM

Contents

Function code, one of the following:

Code Function

1
2

Symbol

.SPSFP

.SPSPR
Sets spooled file parameters.
Sets spooled parameters for
renamed files.

SIXBIT name of spooled device, channel number
spooled file, or the UDX of the device.
following words are optional

Number of copies.

SIXBIT forms name.

Limit.

22-404

of
The

5 . SPPSF

6 .SPPDA

7 .SPPND

10 .SPPAF

11 .SPNM1

12 .SPNM2

13 . SPMAX

SKIP RETURN

SPPRM. [CALLI 172]

Spooling flags and device type .
Bits 1-2 (SP.DFR) contain the "deferred request"
flag. This field contains a 1 (.SPDFD) to
indicate the request should be deferred. A
deferred request is queued only after the user
logs out. If this field contains a 2 (.SPDFI),
the request is queued immediately. The device
type is stored in Bits 30-35 (SP.TYP) as returned
by the DEVTYP monitor call.

Device attributes:

Bits

o
1
18
28-35

Symbol

SP.UPC
SP.LWC
SP.PHY
SP.UNI

Attribute

Uppercase (LPT).
Lowercase (LPT).
Physical unit is given in SP.UNI.
Physical unit number (if SP.PHY
set) .

Node at which processing is to be done.

Time at which to begin processing (similar to
/AFTER switch) .

In-your-behalf user name (word 0 of word pair) in
SIXBIT.

Second word of user name, in SIXBIT.

Maximum length of argument block .

The specified parameters are set.

ERROR RETURN

One of the following error codes is returned in the ac:

Code

-1
o
1
2
3
4
5

Symbol

SPPAC%
SPPIA%
SPPID%
SPPNA%
SPPNS%
SPPNC%
SPPIF%

Error

Address check.
Illegal length for argument list.
Illegal device.
Device not assigned or initialized.
Device not spooled.
No free core for spooled parameter block.
Illegal function code.

22-405

Spy [CALLI 42]

22.161 Spy [CALLI 42]

FUNCTION

Maps the monitor's Section 0 low-segment address space into your
program's high segment. Your program must have Bit 16 (JP.SPA) or Bit
17 (JP.SPM) set in the privilege word (.GTPRV).

The Spy segment cannot be write-enabled.

The SPY monitor call can be used to examine the monitor during
timesharing; it allows read-only access to monitor locations.

The Spy segment size cannot be changed by a CORE monitor call; if you
attempt to do this, the CORE call will take its error return.

CALLING SEQUENCE

MOVE I ac,monitoraddr
Spy ac,

error return
skip return

In the calling sequence, the program supplies the monitoraddr, which
is the highest exec virtual (monitor) address desired.' Monitor
low-segment core from 0 to monitoraddr is mapped into user
high-segment core from Page 400 or the first free page above that,
within the same program section. Therefore, the value of monitoraddr
can be any value between 0 and 377777.

Note that you cannot save this portion of memory with the SAVE.
monitor call.

SKIP RETURN

The desired monitor core is mapped into your program's high segment.
This call deletes all high segments that already exist in the current
PC section.

ERROR RETURN

The error return occurs if you use an invalid value for monitoraddr,
or if your program does not have the required privileges.

EXAMPLE

This code maps some of the monitor's section zero low segment.

MOVE
GETTAB

HALT
SUBI
Spy

JRST

RELATED CALLS

o PAGE.

o PEEK

o POKE.

o SEGOP.

T1, [%CNSIZ]
T1,

T1,1
T1,
ERROR

22-406

STATO [OPCODE 061]

22.162 STATO [OPCODE 061]

FUNCTION

Tests the I/O status word for a device and skips if any of the
specified bits are set. Use FILOP. to perform a STATO for an extended
I/O channel. The I/O status bits are defined differently for each
device. Therefore, the bits appropriate to each device are described
in Volume 1 in the chapter on that device.

CALLING SEQUENCE

STATO channo, mask
return 1
return 2

In the calling sequence, the program supplies the following variables:

o channo is the number of an initialized channel.

o mask is a halfword of bits, where each bit sets a
corresponding bit in the I/O status word. The I/O status
word is described in Volume 1, in each chapter that pertains
to a specific device.

The I/O status bits are a set of 18 bits (right half) that reflect the
current state of a file transmission. They are initially set by your
program with the INIT/OPEN monitor call. Thereafter, the monitor sets
the bits, but your program can test and reset them with any of several
monitor calls.

RETURN

The call returns to return 1 if all of the specified bits are 0, or to
return 2 if any of the specIfied bits are set to 1.

EXAMPLES

See OPEN call.

RELATED CALLS

o FILOP.

o GETSTS

o SETSTS

o STATZ

COMMON PROGRAMMING ERRORS

Forgetting to initialize the I/O channel.

22-407

STATZ [OPCODE 063]

22.163 STATZ [OPCODE 063]

FUNCTION

Tests the I/O status (also called "file status") word for a device and
skips if all of the specified bits are cleared. Use FILOP. to perform
a STATZ on an extended I/O channel. For a complete list of I/O status
bits, refer to the appropriate device chapter in Volume 1.

CALLING SEQUENCE

STATZ channo,mask
return 1
return 2

In the calling sequence, the program supplies the following variables:

o channo is the number of an initialized channel.

o mask is a halfword in which each bit that you set corresponds
to a bit in the I/O status word.

The I/O status bits are a set of 18 bits (right half) that reflect the
current state of a file transmission. They are initially set by your
program with the INIT/OPEN monitor call. Thereafter, the monitor sets
the bits, but your program can test and reset them with any of several
monitor calls.

RETURN

The call returns to return 1 if one or more of the specified bits is
1, or to return 2 if all of-the specified bits are O.

RELATED CALLS

o FILOP.

o SETSTS

o STATO.

COMMON PROGRAMMING ERRORS

Forgetting to initialize the I/O channel.

22-408

STRUUO [CALLI 50]

22.164 STRUUO [CALLI 50]

FUNCTION

Modifies the search list for a job or for the system. Except for
function 0, the functions and calling sequence for the STRUUO monitor
call are subject to change; therefore you should not use anything but
function 0 in user programs. Most functions require privileges.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
STRUUO ac,

error return
skip return

addr: fcncode
first argument

last argument

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.

o addr is the address of the argument list. The format of the
argument block is different depending on the function code
specified in the first word of the argument block.

o fcncode is one of the function codes described in the
following subsections. The words up through last argument
are arguments for the given function.

The functions for STRUUO are:

o .FSSRC Defines a new job search list.
privileges.

Never requires

The format of the argument block is shown below:

Word

o

1

Symbol

.FSFCN

.FSCSO

Contents

The function code (.FSSRC)

Offset to first word of file
structure block, as used for
argument list to JOBSTR monitor
call.

The first word of the argument block is followed
by blocks of three words each. Each three-word
block contains, in the first word, the structure
name; in the second word, zero; and in the third
word, flags that are described for the JOBSTR
monitor call.

22-409

STRUUO [CALLI 50]

1 .FSDSL

Your program cannot create files on a file
structure unless it has access to the file
structure. However, by using the .FSSRC function
your program can add a file structure to its
search list. If your program attempts to delete a
file structure from its search list, the monitor
moves the file structure's name from the job's
active search list to its passive search list. To
remove the file structure from the active or
passive search list, issue the DISMOUNT monitor
conunand.

Defines a new search list for a job or for SYS.
PULSAR uses this function to complete the mounting
or dismounting procedures and to add or delete
file structures from another job's search list .
. FSDSL requires privileges to define the search
list for another job or if you set DF.SRM (in word
3 below) . The argument block for the .FSDSL
function is shown below:

Word Symbol Contents

0 . FSFCN Function code (. FSDSL)

1 .FSDJN The number of the job whose
search list is to be defined.

2 .FSDPP The project-progranuner number of
the job.

3 . FSDFL The flag word . If bit 35 is set,
(OF. SRM) , the monitor removes all
deleted f.ile structures from the
job's search list and decrements
the file structure's mount count.
If bit 35 is not set, the monitor
places all deleted file
structures in the passive search
list. To delete a file
structure, it must have been
present in the current search
list and not listed in the
argument block.

4 .FSDSO Offset to first word of JOBSTR
argument block.

The argument block contains as its first four
words: the function code, a job number, a
project-progranuner number, and a flag word. These
four words are followed by one or more three-word
entries (each is an argument block like that used
by the JOBSTR call). The entries specify the file
structures to be included in the search list. The
order in which the file structures appear in the
argument block is the order in which they will
appear in the search list.

22-410

2 .FSDEF

STRUUO [CALLI 50]

If the job number and the project-programmer
number are both -1, the monitor assumes the search
list for your job is to be defined. If the job
number is 0, the monitor ignores the
project-programmer number and modifies the system
search list (SYS). If a value other than -lor °
is specified, the monitor defines the search list
of the job with the specified job number and
project-programmer number. To indicate the FENCE,
your program must substitute XWD 0,0 for
SIXBIT/name/ in the first word of the three-word
entry. When your program specifies the FENCE
there will be three consecutive zero words in the
three-word entry.

Makes a new file structure available to users (for
example, defines a new file structure). The file
structure name, status, list of drives and their
associated units (packs), and information for
initializing components of the monitor data base
are specified in the argument block. .FSDEF
requires privileges. Specifically, the function
does the following:

o Builds a prototype structure data block.

o Links and initializes all necessary Unit Data
Blocks.

o Allocates core and initializes the SPT tables
and SAB rings.

o Sets the state of the units to PACK MOUNTED.

o Creates a TABSTR entry (assigns a number to
the file structure) .

The argument block for the
shown below:

.FSDEF function is

Word

°
1

2

3

Symbol

.FSFCN

.FSNST

. FSNUN

Contents

Function code (. FSDEF)

Pointer to the structure
parameter block,
(length, ,address)

Pointer to the
block for unit
(length"address)

in the form

unit parameter
0, in the form

Pointer to the unit parameter
block for unit 1, in the form
(length"address) .

22-411

STRUUO [CALLI 50]

The structure parameter block is formatted as
follows:

Word

o

1

2

3

4

5

6

7

10

11

12

13

14

15

16

Symbol

.FSSNM

. FSSNU

.FSSHL

.FSSSZ

. FSSRQ

.FSSRF

.FSSTL

.FSSOD

.FSSMP

.FSSML

.FSSUN

.FSSTR

.FSSBU

.FSSBC

.FSSSU

Contents

File structure name in SIXBIT
(word HOMSNM in the HOME block) .

Number of units in the structure .

Highest logical
(that is, .FSSBU
- 1.).

block
times

number
.FSSNU

Size (in blocks) of the file
structure. (That is, the sum of
the values of UNIBPU for each
unit. The value of UNIBPU can be
found in word .DCUSZ returned by
the DSKCHR. call).

Reserved-quota word (not used) .

Reserved free space (not used) .

Number of FCFS (first-come,
first-served) blocks left. (That
is, the sum of the values of
.FSUTL for each unit) .

Number
overdraw
number)
block.

of blocks allowed for
(stored as a negative
See HOMOVR in t.he HOME

First retrieval pointer to Master
File Directory. See HOMPTI in
the HOME block.

-1 if .FSSMP is the only
retrieval pointer to MFD. To set
this word, you must read the RIB
and test its contents. Do not
use COPIPT from HOMUNI in the
HOME block.

Logical unit number within the
file structure where MFD begins.
(See HOMUNI from the HOME block.)

Number of retries on an error.
The suggested value for this word
is 10 (decimal).

Largest block on unit. (Largest
value of UNIBPU, returned in
.DCUSZ by DSKCHR.)

Number of
super-cluster
HOME block) .

blocks per
(see HOMBSC in the

Number of super-clusters per unit
(see HOMSCU in the HOME block) .

22-412

17

20

21

22

23

24

25

26

27

The

Word

0

1

2

3

. FSSIG

.FSSCC

.FSSCK

.FSSCA

. FSPVT

.FSPPN

.FSSCR

.FSK4C

.FSSET

format of

Symbol

. FSUNM

.FSUID

. FSULN

. FSULU

STRUUO [CALLI 50]

Obsolete .

Byte pointer to cluster count
(see HOMCNP in the HOME block) .

Byte pointer to retrieval pointer
checksum (see HOMCKP in the HOME
block) .

Byte pointer to retrieval pointer
cluster address (see HOMCLP in
the HOME block) .

-1 if this is a private structure
(see the HOPPVS bit in HOMPVS in
the HOME block) .

PPN of file structure owner (each
half is -1 if wild) (see HOMOPP
in the HOME block) .

Block in structure containing RIB
for CRASH.EXE (see HOMCRS in the
HOME block) .

Number of K to reserve for
CRASH.EXE on disk (see HOMK4C in
the HOME block) .

Set number.

the unit parameter block is:

Contents

Unit name in SIXBIT (such as
RPAO) .

Pack identifier (that is, the
pack serial number in SIXBIT; see
HOMHID in the HOME block) .

Logical name within file
structure (such as DSKBO,
DSKB1, ... DSKB77; see HOMLOG in
the HOME block) .

Logical unit-number within file
structure (0, 1,2, FSSNU-l)
(see HOMLUN in the HOME block) .

22-413

STRUUO [CALLI 50]

4 .FSUDS

5 . FSUGP

6 .FSUTL

7 . FSUBC

10 .FSUCS

11 . FSUWS

12 .FSUSC

13 .FSUSU

14 .FSUSP

Status bits. These are:

Bit

o

1

2

Symbol

FS.UWL

FS.USA

FS.UNC

Meaning

Software
write-lock.
(Meaningful only
for the first
unit in the
structure.)
Single-access
(not used) .
Prevent monitor
I/O on this
structure from
being cached.

Number of sequential blocks to
try for on sequential output (see
HOMGRP in the HOME block) .

Number of free blocks on unit,
minus a safety factor. The
suggested safety factor is one
block of safety for every 500
(decimal) blocks of disk. Do not
allocate safety blocks for the
swapping space. Thus, the
suggested safety factor is
(UNIBPU-HOMK4S*8)/500. This
value should be truncated to less
than 500 (decimal) blocks per
unit.

Number of blocks per clust:er (see
HOMBPC in the HOME block) .

Number of clusters per SAT (that
is, (UNIBPU/HOMBPC-l)/HOMSPU+l).

Number of words per SAT (t:hat is,
(.FSUCS-l) /36 + 1).

Number of SATs in core
HOMSIC in the HOME block) .

Number of SATs per unit
HOMSPU in the HOME block) .

Pointer to SPT
(length"address) .

(see

(see

table

The format of the SPT table is:

Word

o
1

n-l

Contents

Pointer to 1st SAT block.
Pointer to 2nd SAT block.

Pointer to nth SAT block.

22-414

3 . FSRDF

4 .FSLOK

STRUUO [CALLI

15 .FSUSB First block for swapping
HOMSLB in the HOME block) .

16 . FSUKS Number of K for SWAP.SYS.
HOMK4S in the HOME block.)

Each word in the SPT table is in the form:

Bits

0-12
13-35

Contain

Number of free clusters in this SAT.
Address of SAT (as a cluster number) .

50]

(see

(See

Allows your program to change the status of a file
structure if its mount count is 0 or 1. If the
mount count is 1, the job number and
project-programmer number arguments must be those
for the job that has the structure mounted (in its
search list) : If the job number and
project-programmer number are both -1, the search
list for your job is assumed. .FSRDF requires
privileges.

The argument block for the . FSRDF function is
listed below.

Word Symbol Contents

0 . FSFCN The function code (.FSRDF)

1 . FSRJN The job number or -1 .

2 .FSRPP The pro j e.ct -progr ammer number or
-1.

3 . FSRNM The file structure name.

4 .FSRST The new status bits to be
assigned:

Bits Symbol Meaning:

0 FS.RWL Write-lock all users.
1 FS.RSA Single-access.

Allows your program to place a file structure in a
state where no new LOOKUPs or ENTERs are allowed.
The monitor will allow current reading and writing
to continue until a CLOSE is issued. This
function can be used to force a file structure
into a dormant state so that it can be removed
from the system with minimal damage to its users.
For example, this function could be followed by
.FSREM. .FSLOK requires privileges. The argument
block for this function is described below:

Word

o

1

Contents Symbol

.FSFCN The function code (.FSRDF).

.FSLNM The file
SIXBIT.

22-415

structure name in

STRUUO [CALLI 50]

5 . FSREM Removes a file structure from the system. This
removal takes place immediately, with no regard
for the users of the file structure. Normally,
this function is preceded by the .FSLOK function
to prepare the structure for removal. . FSREM
requires privileges. Specifically, the . FSREM
function does the following:

o Takes the non-error return if
structure does not exist.

the file

o Removes the
search list
search list.

file structure name from the
of all jobs and from the system

o Unlinks and returns to the free core pool any
UFB or access blocks.

o For every unit, sets
MOUNTED and returns
free core pool.

the state to NO PACK
any core taken from the

o Clears KNOWLEDGE bits in the PPB and NMB
blocks.

o Unlinks STR data blocks and returns its core
if taken from the free core pool.

o Deletes (or marks for deletion) all
high segments initialized from
structure.

o Clears the TABSTR entry.

o Takes the non-error return.

sharable
t:he file

The .FSREM function fails if any unit in the
structure is in the active swapping list .

The argument block for the
shown below:

Word Contents

. FSREM function is

o

Symbol

.FSFCN The function code (.FSREM).

1 . FSMNM The file
SIXBIT.

22-416

structure name in

6 . FSULK

7 . FSUCL

10 .FSETS

STRUUO [CALLI 50]

Tests and sets the software interlock bit
associated with each UFO. This function is used,
along with the . FSUCL function, to control
programs (such as PULSAR and LOGIN) attempting to
modify a UFO at the same time. .FSULK requires
privileges. The argument block for the .FSULK
function is shown b~low.

Word Symbol

. FSFCN

Contents

o

1 .FSINM

2 .FSIPP

The function code (.FSULK).

The file
SIXBIT.

structure

The PPN of the UFO.

name in

If the interlock bit is set, your program takes
the error return.

Clears the software interlock associated with a
UFO. Once a program has cleared the interlock,
another program may set the interlock (function
. FSULK) and modify the UFO. .FSUCL requires
privileges. The argument block for the .FSUCL
function is shown below:

Word Symbol Contents

0 .FSFCN The function code (.FSUCL) .

1 . FSGNM The file structure name in
SIXBIT.

2 .FSGPP The PPN of the UFO.

Tests error recovery procedures for the monitor
and your programs by causing hard and soft errors
to be simulated on the specified disk unit of the
system. .FSETS requires privileges.

NOTE

This function is obsolete and applies only
to RP10 and RC10 controllers.

All error recovery and reporting procedures are
followed through by the monitor as if a real error
had occurred. This function causes the monitor to
enter the simulated hard errors in the BAT block
just as it would enter a real error. Therefore,
field service should be notified of any error
simulations that are being done.

This
and
disk
When
test

function is implemented only for disk packs
should not be attempted for the fixed-head
because the counts will not be decremented.

a unit is removed from the system, the error
sequence is terminated.

22-417

STRUUO [CALLI 50]

11 . FSMNW

The argument block for the .FSETS function is
listed below.

Word Symbol

0 .FSFCN

1 . FSEUN

2 .FSEGT

3 .FSEDB

4 .FSEDO

5 . FSEDA

6 .FSECB

7 .FSECO

10 . FSECA

Contents

The function code (. FSETS) .

The disk pack name.

The number of good transfer
interrupts before simulation of
error.

The number of bad DATAl
operations before the end of the
simulated error.

Error DATAl bits are combined
with DATAl bits received from the
hardware, using OR operation.

Error DATAl bits are combined
with DATAl bits received from the
hardware, using ANCAM operation.

The number of bad CONI operations
before terminating simqlated
error sequence.

Error CONI bits are combined with
CONI bits received from the
hardware, using OR operation.

Error CONI bits combined with
CONI bits received from the
hardware, using ANDCAM operation.

Note that
after a
mentioned
the unit
operation.

the CONI mentioned above is executed
data transfer interrupt; the DATAl

above is executed before connecting to
to initiate a position or transfer

Modifies the 'nocreate' and 'write-lock' status of
a file structure. . FSMNW never requires
privileges. The argument block for this function
is shown below.

Word Symbol Contents

0 . FSFCN The function code (.FSNMW) .

1 . FSMFS The file structure name.

2 . FSMFL The flag word:

Bit Symbol Meaning

0 FS.MWL Write-lock bit.
1 FS.MNC No-create bit.

22-418

12 .FSCLR

13 .FSRSL

SKIP RETURN

STRUUO [CALLI 50]

Unlocks a file structure. This function requires
privileges. The argument list is:

Word

o

1

Symbol

.FSFCN

.FSCFS

Contents

The function code (.FSCLR).

The file
SIXBIT.

structure name in

Returns the job search list. .FSRSL requires no
privileges to read the system search list or the
search list of a job which has your PPN.

Word Symbol Contents

0 . FSFCN Function code (.FSRSL)
1 . FSDJN Job number. (Specify 0 for

system search list.)
2 .FSDPP Job's PPN (ignored if .FSDJN=O) .
3 .FSDNS Number of structures in search

list, including FENCE. (Returned
for this function) .

4 .FSDSO Start of returned structures.

The structures in the specified search list are
returned starting at .FSDSO, in three-word
triplets that reflect the following words ·from the
JOBSTR UUO:

Word

o
1
2

Symbol

.DFJNM

.DFJDR

.DFJST

Contents

Structure. name.
Directory name.
Status (accessibility bit) .

The value of .FSDNS is always returned, regardless
of whether enough space was reserved for all the
triplets to be returned. Thus, a program could
issue this call with a short argument list to get
the count, then reissue the monitor call with
adequate space for all the structures to be
listed.

Alternatively,
words, which
reserved.

the program can reserve 37.*3
will guarantee that enough space is

The FENCE is returned as three zero words.

The function is performed.

22-419

STRUUO [CALLI 50]

ERROR RETURN

Before the monitor accepts the newly-defined search list by copying it
in the PDB, it checks that the number of structures defined is less
than the system-defined maximum limit for the job. This limit is
stored in GETTAB table %LDMSS. If the number exceeds the maximum, the
error return is taken and the ac is cleared.

Otherwise, one of the following error codes is returned in thE~ ac:

Code Symbol

0 FSILF%
1 FSSNF%

2 FSSSA%

3 FSILE%

4 FSTME%
5 FSUNA%

6 FSPPN%

7 FSMCN%
10 FSNPV%
11 FSFSA%
12 FSILL%

13 FSUNC%
14 FSNFS%

15 FSNCS%
16 FSUNF%
17 FSRSL%
20 FSASL%
21 FSISN%

RELATED CALLS

0 DISK.

0 DSKCHR

0 GOBSTR

0 JOBSTR

Error

An illegal function code was specified.
One or more of the specified file structures were
not found.
One or more of the specified file structures are
in single-access mode.
One or more illegal entries are in the argument
block.
There are too many entries in the search list.
One or more of the specified units are not
available.
The specified job number and project-programmer
number do not match.
The mount count is greater than 1.
Your job is not privileged but should be.
The specified file structure already exists.
The argument block length has been specified
incorrectly.
Unable to complete the call.
The system has reached the maximum number of file
structures.
There is not enough free core for the data block.
An illegal unit has been specified.
A file structure name is repeated in a search list
Structure contains units in active search list.
An illegal structure name was specified.

22-420

SUSET. [CALLI 146]

22.165 SUSET. [CALLI 146]

FUNCTION

Selects a logical block number to be either read or written on
subsequent IN/INPUT or OUT/OUTPUT monitor calls relating to either a
file structure or a unit name. This call requires your program to
have ownership of the disk.

The block number is relative to a file structure if the channel was
initialized with a structure name (such as DSKB) and no file is open
on the channel (that is, no LOOKUP or ENTER was performed) .

The block number is relative to a unit number if the channel was
initialized with a physical or logical unit name (such as RPA4 or
DSKBO) and no file is open on the channel (that is, no LOOKUP or ENTER
was performed) .

Refer to Section 11.7.5 for more detailed discussion of SUSET.

CALLING SEQUENCE

MOVE ac, [EXP flags]
SUSET. ac,

error return
skip return

In the calling sequence, the program supplies the flags, which ,are as
follows:

Bits

o
1
2

3
4-12

13-35

Symbol

SU.SOT
SU.SMN

SU.SCH

SU.SBL

SKIP RETURN

Meaning

Reserved.
Output (input if not set).
Maintenance cylinder. You can set this bit only
if your job is logged in under [6,6]. SU.SBL
(below) must contain the maintenance cylinder.
Reserved.
Channel number. The channel number may be an
extended channel number obtained from the FILOP.
monitor call.
Block number or maintenance cylinder (if SU.SMN is
on) .

The specified block will be the next one read/written on a subsequent
IN/OUT monitor call. The SUSET. monitor call returns with the I/O
status bit IO.BKT set if your job does not have enough privileges, or
if the given block number is too large.

22-421

SUSET. [CALLI 146]

ERROR RETURN

The following error code is returned in the ac:

Code Symbol Error

-1 SUSNP% Not enough privileges.

RELATED CALLS

o FILOP.

o USETI

o USETO

22-422

22.166 SYSPHY [CALLI 51]

FUNCTION

SYSPHY [CALLI 51]

Returns the name of a physical disk unit on the system.

CALLING SEQUENCE

/ MOVEI ac,O \
\ MOVE ac, [SIXBIT/device/] /

SYSPHY ac,
error return

skip return

In the calling sequence, the program supplies the device, which is the
physical unit name returned by a previous call '(such as SIXBIT/RPAO/).

SKIP RETURN

If you set ac to 0, the monitor returns the first physical disk name
in ac. I~you gave the name of a disk, the monitor returns the next
physICal disk name, or, if there are no more disks, the monitor
returns 0 in the ac.

ERROR RETURN

The monitor takes the error return if the device you gave was neither
o nor the name of a disk unit.

EXAMPLES

Example to get all unit names in system

LOOP:
SETZB
SYSPHY

PHYTAB:

JRST
JUMPE
MOVEM
AOJA
BLOCK

RELATED CALLS

o DVPHY.

o SYSSTR

T1,T2
T2,
ERROR
T2,CONTIN
T2,PHYTAB (T1)
T1,LOOP
"D64

;T1=Table pointer, T2=unit name
;Get next one

;Done if zero
;Save in table

22-423

SYSSTR [CALLI 46]

22.167 SYSSTR [CALLI 46]

FUNCTION

Returns the name of a file structure on the system.

CALLING SEQUENCE

/ MOVEI ac,O \
\ MOVE aCT [SIXBIT/device/] /

SYSSTR aCT
error return

skip return

In the calling sequence, the program supplies the device, which is the
structure name returned by a previous call.

SKIP RETURN

If you set ac to 0, the monitor returns the first structure name in
ac. If you-gave the name of a structure, the monitor returns the next
structure name in ac, or if there are no more structures, the monitor
returns a 0 in the-ac.

ERROR RETURN

The monitor takes the error return if the device you gave was neither
o nor the name of a structure.

EXAMPLES

Example to get all file structure names on system

SETZB

LOOP: SYSSTR

STRTAB:

JRST
JUMPE
MOVEM
AOJA
BLOCK

RELATED CALLS

o DVPHY.

o SYSPHY

Tl,T2

T2,
ERROR
T2,CONTIN
T2, STRTAB (Tl)
Tl,LOOP
"036

;Use Tl as table index, T2 as
; structure name
;Get next structure

;Done if structure is zero
;Save in table
;Get next one
;Where to put structures

22-424

TAPOP. [CALLI 154]

22.168 TAPOP. [CALLI 154]

FUNCTION

Performs various magnetic tape operations. Several TAPOP. functions
are identical to or extensions of other monitor calls such as MTAPE
and MTCHR. All TAPOP. functions assume that the specified device has
been assigned to your job by the ASSIGN monitor command or the
OPEN/INIT monitor call or that the calling job has Spy privileges.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
TAPOP. ac,

error return
skip return

addr: EXP fncode
/ SIXBIT/device/ \

I EXP channo I
\ EXP udx /

first argument

last argument

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.

o addr is the address of the argument list.

o fcncode is one of the function codes described below.

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal Device Index for a device and the words
up through last argument are arguments for the given
function.

The function codes fall into four groups:

Codes

o - 777

1000 - 1777

2000 - 2777

3000 - 3777

Functions

Perform specific actions.

Read parameters.

Set parameters. These function codes are not
explicitly listed in the descriptions below. To set a
parameter, use the corresponding read function name
plus the offset .TFSET (=1000). For example, to set
the density indicator, use the read density indicator
mnemonic plus .TFSET:

.TFDEN+.TFSET

Reserved for customer-defined functions.

22-425

TAPOP. [CALLI 154]

The function codes and their meanings are:

Code Symbol

1 . TFWAT

2 . TFREW

3 .TFUNL

4 .TFFSB

5 .TFFSF

6 .TFSLE

7 .TFBSB

10 .TFBSF

11 .TFWTM

12 . TFWLG

13 .TFDSE

14 .TFWLE

15 .TFLBG

16 .TFLRL

17 .TFLSU

20 .TFLDD

21 .TFFEV

22 .TFURQ

23 . TFSMM

Function

Waits for I/O to be completed .

Rewinds tape to load point.

Rewinds and unloads tape.

Skips forward one block.

Skips forward one file.

Skips to logical end-of-tape.

Skips backward one block.

Skips backward one file.

writes a tape mark.

Writes 3 inches of blank tape .

Erases entire tape for purposes of data security.
This feature is supported on TXOl/TX02 (on
DXI0/DX20 only) and on TU78/TM78 tape drives~

writes logical end-of-tape
unlabeled tapes) .

(two tape marks for

Gets the tape label device data block. Returns
the name in ac. This is a privileged function for
use by the label processor.

Releases the tape label device data block. This
is a privileged function for use by the label
processor.

Swaps units. This is a privileged function for
use by the label processor.

Destroys the tape label
privileged function
processor.

data base.
for use by

This
the

is a
label

Forces end-of-volume processing. This allows your
program to write the end-of-volume label before
PULSAR finds the end-of-tape. The monitor assumes
a multivolume file and automatically issues an
operator MOUNT request for the next volume.

Requests label processing. To clear a tape
labelling error, include a value (. TFCLE) in
addr+2. This function causes the tape to be
positioned at BOT.

Sets maintenance mode on the tape controller .
This is a privileged function.

22-426

24 .TFCMM

25 .TFCEC

1000 .TFTRY

1001 .TFDEN

1002 .TFKTP

1003 .TFRDB

1004 .TFLTH

1005 .TFPAR

1006 .TFBSZ

TAPOP. [CALLI 154]

Clears maintenance mode on the tape controller.
This is a privileged function.

Clears error counters. This privileged function
is restricted for use by the tape label processor.

Returns in the ac the number of retries on the
last error.

Returns in ac the density code for the tape. To
set the density code, use .TFDEN+.TFSET; the
monitor reads the new density code from addr+2.
Note that in order to set the density with this
function code, IO.DEN must be zero. The density
codes and their meanings are:

Code

o
1
2
3
4
5

Symbol

. TFDOO

. TFD20

. TFD55

. TFD80

. TFD16

. TFD62

Density

unit default .
200 bits/inch (8.1 rows/mm) .
556 bits/inch (22.5 rows/mm) .
800 bits/inch (32.2 rows/mm) .
1600 bits/inch (65.3 rows/mm) .
6250 bits/inch (255.5 rows/mm) .

Returns in the ac the controller type code for the
tape. The controller type codes and their
meanings are:

Code Symbol Controller ~

0 .TFKTA TM10A
1 .TFKTB TM10B
2 .TFKTC TM10C
3 .TFKTX TX01/TX02/TX03
4 .TFKTM TM02/TM03
5 .TFKRH TM02/TM03
6 .TFKD2 TX02
7 .TFK78 TM78
17 .TFKSX SA10 IBM channel magtape

Returns in the ac the read-backwards bit (TM02,
TX01, and TX02 only). The bit is on if the tape
is set for read-backwards, or off for normal read.
See Chapter 14. To set the read-backwards bit,
use .TFRDB+.TFSET; the monitor reads the bit from
addr+2.

Returns in the ac the bit for read next record at
low threshold (TM10A/B/C only). The bit is on if
the tape is set for low threshold, or off if not.
To set the bit, use .TFLTH+.TFSET; The monitor
reads the bit from addr+2.

Returns in the ac the status of the even parity
bit (for 7-track tapes only). To set the status
of the even parity bit, use . TFPAR+.TFSET; the
monitor reads the status from addr+2.

Returns in the ac the block size for the tape.
The returned value is one greater than the number
of data words per record. To set the block size,
use .TFBSZ+.TFSET; the monitor reads the block
size from addr+2.

22-427

TAPOP. [CALLI 154]

1007 .TFMOD

1010 .TFTRK

1011 .TFWLK

1012 .TFCNT

1013 .TFRID

1014 .TFCRC

1015 .TFSTS

Returns in the ac the data mode code for the tape.
To set the datamode code, use .TFMOD+.TFSET; the
monitor reads the data mode code from addr+2. The
data mode codes and their meanings are-:------

Code

a

1

2

3

4

5

Symbol

.TFMDD

.TFMID

.TFM8B

.TFM6B

.TFM7B

.TFM7T

Data Mode

DIGITAL-compatible core dump mode
for 7-track and 9-track tapes.
The- monitor uses the default
mode, either code 1 (.TFMID) or
code 5 (. TFM7T) .

DIGITAL-compatible core dump mode
for 9-track tapes. The monitor
reads and writes 36-bit words in
5 frames. This mode is also
settable with MTDEC. monitor
call.

Industry-compatible 8-bit mode,
with 4 bytes per word. This mode
is also settable with the .MTIND
monitor call, except that the
default density for this mode is
1600 BPI.

6-bit mode, 6 bytes per word
(9-track, TU70 only) .

ANSI/ASCII 7-bit mode, 5 bytes
per word (TU70 only) .

DIGITAL-compatible 7-track core
dump mode (SIXBIT) .

Returns in the ac the track status bit for the
tape (0 for 9-track, 1 for 7-track) .

Returns in the ac the write-lock bit for the tape
(1 if write-locked, a if not) .

Returns in the ac the character count of the last
record (the actual record length) .

Returns in the ac the SIXBIT reel identification
for the tape. To se-t the reel identification, use
.TFRID+.TFSET; the monitor reads the SIXBIT reel
identification from addr+2.

Returns in the ac the last cyclic redundancy
character (9-trac~NRZI only) .

Returns in the ac the unit status flags :Eor the
tape. The unit status flags and their meanings
are:

Bit

18
19
20
21

Symbol

TF.UNS
TF.BOT
TF.WLK
TF.REW

Meaning

Unit is not schedulable.
Beginning-of-tape mark.
Write-lock.
Unit is rewinding.

22-428

1016

1017

1020

.TFSTA

.TFIEP

.TFFEP

22-32
33
34
35

TF.STA
TF.SEL
TF.OFL

TAPOP. [CALLI 154]

Reserved.
Unit is started.
Unit is selected.
Unit is off-line.

Returns unit statistics for the tape device. Your
program supplies the function code and device at
addr and addr+l. (These values are identical to
those returned for the MTCHR. monitor call.) The
monitor returns the device statistics at addr in
the format:

Offset Symbol

o
1
2
3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

. TSFUN

. TSDEV

.TSRID

.TSFIL

. TSREC

. TSCRD

. TSCWR

. TSSRE

. TSHRE

.TSSWE

. TSHWE

. TSTME

.TSTDE

. TSTUN

. TSRTY

. TSCCR

. TSPBE

.TSFES

Contents

Function code (user-supplied).
Device (user-supplied).
SIXBIT reel identifier.
Number of files read since the
beginning of the tape.
Number of records since last tape
unload.
Number of characters read since
last tape unload.
Number of characters written
since last tape unload.
Soft read errors since last tape
unload.
Hard read errors since last tape
unload.
Soft write errors since last tape
unload.
Hard write errors since last tape
unload.
Total number of errors since last
tape unload.
Total device errors since system
.3tartup.
Total unloads since last system
reload.
Number of retries to resolve last
error.
Character count of last record
read or written.
position before last error: file
number (in left half); record
number (in right half) .
Final error state. See the
TOPS-I0/TOPS-20 SPEAR Manual.

Returns in the ac the initial error pointer.

Returns in the ac the final error pointer.

NOTE

Function codes 1021 and 1022 return the blocks pointed
to by 1017 and 1020. These blocks are for
communication of errors to DAEMON and may change
without notice.

22-429

TAPOP. [CALLI 154]

1021 . TFIER

1022 .TFFER

1023 . TFFED

1024 .TFLBL

1025 .TFPLT

1026 .TFLTC

Returns in the ac the initial error status.

Returns in the ac the final error status.

Returns in the ac the final error disposition.

Returns in the ac the label processing type code.
To set the label processing type code, use
.TFLBL+.TFSET; the monitor reads the new code from
addr+2. The label processing type codes and their
meanings are:

Code

o

1
2
3
4
5
6
7

10
11
12

Symbol

.TFLBP

.TFLAL

.TFLAU

.TFLIL

.TFLIU

.TFLTM

.TFLNS

.TFLNL

.TFCBA

.TFCBS

.TFLNV

Label Processing ~

Bypass label processing. To set
this value, the job must be
privileged.
ANSI labels.
ANSI labels with user labels.
IBM labels.
IBM labels with user labels.
Leading tape mark.
Nonstandard labels.
No labels. When tapes are
processed with no labels, the
label processor is used only to
verify that the tape does not
contain a tape label. Unlabeled
tapes can be copied to create a
labeled tape.
DIGITAL COBOL ASCII labels.
DIGITAL COBOL SIXBIT labels.
Same as .TFLNL except that user
program is responsible for
dealing with an EOT. This type
is the default. To switch reels
after end-of-tape, use TAPOP.
function .TFFEV.

Performs functions identical to the .TFLBL
function 1024 above, except that it allows access
to files and tape labels. Using this function,
you can examine and modify the contents of a
label. The .TFPLT function requires the JP.POK,
[1,2], or JACCT privilege.

Returns the last tape label termination code from
the tape label processor. It is recommended that
you use DEVOP. function .DFRES, because more
information can be returned by that function. The
return codes are:

Code Symbol Error

1 .TFTCP Continue processing.
2 . TFTRE Returned EOF .
3 .TFTLT Label type error.
4 .TFTHL Header label error.
S .TFTTL Trailer label error.
6 .TFTVL Volume label error.
7 .TFTDV Device error.
10 .TFTDE Data error.

22-430

1027 .TFDMS

1030 .TFFSO

1031 .TFMFC

1032 .TFPDN

11
12
13
14
15
16
17

.TFTWL

.TFPSE

.TFBOT

.TFIOP

.TFFNF

. TFCAN

.TFTMV

TAPOP. [CALLI 154]

Write lock error.
Positioning error.
Beginning of tape.
Illegal operation.
File not found.
Operator cancelled request .
Too many volumes requested.

Returns in the ac the diagnostic mode set bit
(TXOl/TX02 on -oXI0 only). This bit is 1 for
diagnostic mode, otherwise O. To set this bit,
use .TFDMS+.TFSET; the monitor reads the new bit
from addr+2.

Returns in the ac the bit showing whether a forced
SENSE command -Will be issued to the controller
(TXOl/TX02 on DXI0/DX20 only) after the completion
of every operation. To set the bit, use
.TFFSO+.TFSET; the monitor reads the new bit from
addr+2. This bit should be set by diagnostic
programs only, because it slows down tape
operations considerably.

Returns in the ac the maximum frame count. To set
the count, use .TFMFC+.TFSET; the monitor reads
the new count from addr+2. Use this function to
speed tape throughput for a TUI6, or TU45, TU70,
TU71, or TU72 that does not have an integral
number of bytes per word. The count stays in
effect until your program performs a RESET,
another TAPOP. monitor call, or until the tape is
RELEASed (if the device was ASSIGNed). This
function allows a TU70 or a TU16 to read and write
tapes that do not have an integral number of bytes
per word. This function provides tape
compatibility with other systems.

Returns in
densities

the
for

meanings are:

Bit Symbol

31 TF.DN5
32 TF.DN4
33 TF.DN3
34 TF.DN2
35 TF.DNI

ac -a
flags

tape.
showing the possible
The flags and their

Density

6250 bits/inch (255.5 rows/mm) .
1600 bits/inch (65.3 rows/mm) .
800 bits/inch (32.2 rows/mm) .
550 bits/inch (22.5 rows/mm) .
200 bits/inch (8 .1 rows/mm) .

22-431

TAPOP. [CALLI 154]

1033 .TFLPR Returns at addr+2 the tape label parameters. This
function causes the first input label processing
if there is no file open for input. To set the
parameters, use .TFLPR+.TFSET; the monitor reads
the parameters beginning at addr+2. This set
function is legal only if there is no file open
for output on the given channel. The parameters
given apply to the next file to be written. The
format of the parameters at addr is:

Offset Symbol

a
1
2

3
4
5

. TPFUN

. TPDEV

. TPREC

. TPRSZ

. TPBSZ

. TPEXP

Contents

Function code (user-supplied).
Device (user-supplied).
Record format and form control:

Bits Symbol Meaning:

0-17 TR.FCT Forms control
byte; one of the
followinq codes:

Code Symbol Meaning:

1 .TFCNO Records on tape
do not contain
form control
characters ..

2 .TFCAS First character
of each record is
a form control
character.

3 .TFCAM Records on tape
contain all
required form
control
characters.

Bits Symbol Meaning:

18-35 TR.RFM Record format
byte; one of the
following codes:

Code Symbol Meaning:

0 .TRFDF Default (Fixed)
1 . TRFFX Fixed (F) .
2 . TRFVR Variable (D) .
3 . TRFSP Spanned (S) .
4 . TRFUN Undefined (U) .

Record size in characters .
Block size in characters .
Expiration date in 15-bit format.

Bits Symbol Meaning:

0-17 TP.ECR Creation date.
18-35 TP.EEX Expiration date.

22-432

SKIP RETURN

6
7
10

14

. TPPRO

.TPSEQ

. TPFNM

. TPGEN

TAPOP. [CALLI 154]

Protection code .
File sequence number.
File name (17 ASCII characters
maximum) .
Generation and version numbers.

Bits Symbol

0-17 TP.GEN

18-35 TP.VER

Meaning

Generation
number.
Generation
version number.

Function code 1033 (to read label parameters)
always returns these numbers and causes the first
input label processing if there is no file open
for input:

The function is performed.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

-1 TPACS% Address check while storing answer.
0 TPIFC% Illegal function code.
1 TPPRV% Not enough privileges.
2 TPNMT% Not a magtape device.
3 TPVOR% Specified value out of range.
4 TPACR% Address check reading arguments.
5 TPCBS% Parameter cannot be set.
6 TPNIA% Tape not initialized or assigned.
7 TPNLP% No label processor.
10 TPETC% Termination code error.
11 TPIJN% Illegal job number.
12 TPLRF% Label release function required.
13 TPLSI% Set label parameter function illegal after first

output.
14 TPLOE% Attempted to read information from a label DDB

owned by someone else.
15 TPDNC% Drive not capable of specified density.
16 TPWWL% write attempted to write-locked tape.

22-433

TAPOP. [CALLI 154]

EXAMPLES

ARGLST:

DSELST:

MOVE
TAPOP.

JRST
MOVSI
CAME

AOBJN
JUMPGE
MOVE
TAPOP.

JRST
JRST
EXP

SIXBIT
EXP

Tl, [XWD 2,ARGLST]
Tl,
ERROR
T2,-DSEKTN
Tl,DSEKTB(T2)
T2, .-1
T2,NODSE
Tl, [XWD 2,DSELST]
Tl,
ERROR
CONTIN
.TFKTP

/TAPE/
.TFDSE

SIXBIT /TAPE/
DSEKTB: EXP .TFKD2

EXP .TFKTX
EXP .TFK78

DSEKTN==.-DSEKTB

CONTIN:

;Pointer to arg list
;Get controller type
;Error
;Length of table
;Is this controller
, in the table?

type

;No, don't try it
;Pointer to arg list
;Erase the entire tape
;Error
;Skip argument blocks
;Function to read
; controller types
;Device is "TAPE"
;Function to do
; data security erase
;Device is "TAPE"
;Data security erase works

for DX20, DXI0,
, and TM78
;Number of table entries

; Continue

This example performs a data security erase on the logical device
"TAPE" if and only if the controller is capable of doing so.

RELATED CALLS

o MTAID.

o MTAPE

o MTCHR.

22-434

TIMER [CALLI 22]

22.169 TIMER [CALLI 22]

FUNCTION

Returns the time of day since midnight (00:00) in jiffies.
is 1/60 second.)

NOTE

(A jiffy

For systems usi~g 50 Hz power, jiffy 1/50 second.
Therefore it 1S good programming practice to use the
MSTIME monitor calIon any system, because MTSIME call
gives the time of day in milliseconds and is
independent of the type of power used.

CALLING SEQUENCE

RETURN

TIMER ac,
only return

The number of jiffies since midnight is returned in the ac.

RELATED CALLS

o DATE

o MSTIME

22-435

TMPCOR [CALLI 44]

22.170 TMPCOR [CALLI 44]

FUNCTION

Creates, reads, writes, or manipulates temporary files left in core
from the running of one program to another. Those files are
referenced by a three-character file name. All files are deleted when
the job is logged out. If the monitor call fails, your program should
write DSK:nnnNAM.TMP, where nnn is the job number. This arrangement
improves response time and minimizes the number of disk reads.

CALLING SEQUENCE

addr:

MOVE ac, [XWD fcncode,addr]
TMPCOR ac,

error return
skip return

XWD
IOWD

'nam',O
buflength,buffer

In the calling sequence, the program supplies the following variables:

o fcncode is one of the function codes described below.

o addr gives the address of the argument list.

o nam is a 3-character SIXBIT string that is the file name.

o buflength is the length of the buffer for the call.

o buffer gives the address of the buffer for the call.

The function codes and their meanings are:

Code

°

1

2

Symbol

. TCRFS

.TCRRF

. TCRDF

Function

Obtains free space. For this function, set the ac
to 0 before the call; no argument list IS
required. On a skip return, the ac contains the
number of free words available-to your program
(510 decimal) .

Reads a file. The length of the file is returned
in the ac, and as much of the file as possible is
copied into the buffer for the call. You can
check for truncation by comparing the ac to
buflength.

The error return occurs if the specified file is
not found; in this case, the number of free words
available to your program is returned in the ac.

Reads and deletes a file. Performs all the same
functions as .TCRRF and in addition deletes the
file. Note that the file is deleted even if it is
too long to fit in the buffer for the call.

22-436

3

4

5

EXAMPLES

ARGLST:

BUFFER:
BUFEND:
CONTIN:

. TCRWF

.TCRRD

. TCRDD

MOVE
TMPCOR

JRST
JRST

TMPCOR [CALLI 44]

Writes the contents of the buffer into a file .
The requested length of the file is the value of
buflen~th. If there is already a file of the
specif~ed name, it is deleted and the space is
reclaimed.

The requested size of the file "is specified by
buflength. If there is not enough space to write
the entire file, nothing is written, the ac is set
to the number of free words of space available to
the user, and the error return is taken.

If there is enough space, the file is written.
The ac is set to the amount of space left after
the file has been written and the skip return is
taken.

If insufficient space is available, none of the
file is written, the error return occurs, and the
number of free words available to your program is
returned in the ac.

Reads a directory. The number of .TMP files in
your directory is returned in the ac, and their
file names are written into the buffer for the
call. You can check for truncation of the
directory list by comparing the ac to buflength.

Each entry in the buffer is of the form:

XWD 'nam',length

In the argument word:

o length is the length of the file in words.

o nam is the file name.

The error return occurs only if the call is not
implemented.

Reads and deletes from directory. This performs
all the same functions as .TCRRD and in addition
deletes all files from your directory.

TI, [XWD . TCRWF,ARGLST]
TI,
TMCERR
CONTIN

XWD 'XYZ',O
IOWD <BUFEND-BUFFER>,BUFFER
ASCIZ /THIS IS THE TEXT FOR THE FILE./

This example writes the text at BUFFER into the file XYZ if space is
available.

22-437

TRMNO. [CALLI 115]

22.171 TRMNO. [CALLI 115]

FUNCTION

Returns the number of the terminal controlling a specified job.

CALLING SEQUENCE

/ MOVEI ac,jobno \
\ MOVNI ac,l /

TRMNO. ac,
error return

skip return

In the calling sequence, the program supplies the jobno, which is the
number of a logged-in job (use -1 for the current job).

SKIP RETURN

Returns the UDX for the controlling terminal in the ac. The format of
Universal Device Index names is .UXxxx. The range o~values is 200000
through 200777 (octal) The symbol .UXTRM (200000) is the offset for
the terminal indexes.

ERROR RETURN

Zero is returned in the ac and indicates one of the errors listed
below:

o The job is currently detached (that is, there is no
controlling terminal) .

o The job number specified is unassigned.

o The job number specified is illegal.

o The job number specified is a negative number other than -1.

EXAMPLES

Your program can determine which of the above error conditions
occurred by using the JOBSTS monitor call. An example of a program
using this call for this purpose is shown below.

MOVE
TRMNO.

JRST
JRST
MOW
JOBSTS

JRST
JUMPL
JRST

RELATED CALLS

TRMOP.

T1,JOBN
T1,
.+2
OK
T1,JOBN
T1,
ILLNUM
T1,DETJOB
NOJOB

COMMON PROGRAMMING ERRORS

iNo error

;Job number illegal
iJob is detached
;No such job

Using .UXTRM as a mask instead of an offset.

22-438

TRMOP. [CALLI 116]

22.172 TRMOP. [CALLI 116]

FUNCTION

Performs various operations for terminals. Several TRMOP. functions
are identical to, or extensions of, TTCALL monitor calls.

CALLING SEQUENCE

MOVE ac, [XWD len,addr]
TRMOP. ac,

error return
skip return

addr: EXP fcncode
EXP udx
first argument

last argument

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.

o addr is the address of the argument list.

o fcncode is one of the function codes described below.

o udx is the Universal Device Index for a terminal, or -1 can
be used to indicate the program's controlling terminal. The
words up through last argument are arguments for the given
function.

The argument list is formatted as follows:

Word Symbol Contents

0 . TOFNC Function code.

1 . TOUDX Universal Device Index or -1.

2 . TOAR2 Argument word.

3 . TOAR3 Argument word.

4 . TOAR4 Argument word.

S . TOARS Argument word.

6 . TOAR6 Argument word.

The argument words contain values that are read or set by the function
code, and they differ for each function. The function codes fall into
four groups:

Codes Symbol

0-777

1000-1777

1000 .TOSET

Actions

Perform a specific action.

Read parameters.

Add this value (symbol .TOSET) to the read
function, thus setting the specified parameter(s).

22-439

TRMOP. [CALLI 116]

2000-2777

3000-3777

Set parameters. These functions are not
explicitly listed in the descriptions below. To
set a parameter, use the corresponding Read
function plus the offset .TOSET (=1000). For
example, to set a terminal's receive speed, use
the receive speed function plus .TOSET:

.TORSP + .TOSET

Reserved for customer-defined functions.

The function codes and their meanings are:

Code

1

2

3

4

5

6

7

10

11

12

13

14

Symbol

.TOSIP

. TOSOP

.TOCIB

. TOCOB

. TOOUC

.TOOIC

. TOOUS

. TOINC

.TOIIC

. TODSE

. TODSC

. TODSF

Function

Takes the error (non-skip) return if the
terminal's input buffer is empty. The ac is
unchanged.

Takes the error (non-skip) return if the
terminal's output buffer is empty. The ac is
unchanged.

Clears the terminal's input buffer.

Clears the terminal's output buffer .

Outputs a character to the terminal; the cha~acter
is right-justified in bits 28 to 35 of .TOAR2.

Outputs an image-mode character to the terminal;
the character is in bits 28 to 35 of .TOAR2.

Outputs an ASCIZ string to the terminal; the
address of the string is in .TOAR2. If the job
number at the receiving terminal is different from
your job number, the character string is limited
to 128 characters. If you attempt to send more
than 128 characters to a job other than your own,
characters may be lost.

Inputs a character from the terminal in line mode;
the character is stored right-justified in bits 28
to 35 of the ac.

Inputs an image-mode character from the terminal;
the character is stored in bits 28 to 35 of the
ac. This function is not implemented by the
monitor.

Enables a modem (dataset) for outgoing calls.
This function always takes the skip return, but it
is not implemented by the monitor.

Enables and places outgoing calls on a modem with
a dialer. A telephone number of up to 17 decimal
digits is stored in 4-bit bytes 1n . TOAR2 and
. TOAR3 (terminated by a 17). If the caller must
wait for a second dial tone (for example, after
dialing 9), a 5-second wait is indicated by a 16
byte.

Disconnects a call
modem) .

22-440

(for example, hangs up a

15 . TORSC

16 . TOELE

17 . TOEAB

20 .TOISC

21 . TOTYP

22 . TOGMS

23 . TOSMS

24 . TOCLR

25 . TODSP

26 . TOGMR

27 . TOLOG

TRMOP. [CALLI 116]

Rescans an input line .

Sets the terminal element to the number stored in
.TOAR2 (obsolete).

Enables autobaud detection .

Inputs a character from the terminal to
waiting in character mode if no
available.

the ac;
input is

Puts an ASCIZ string into the terminal's input
buffer; the address of the string is in .TOAR2. A
string of more than 300 characters results in a
range error.

Returns terminal's MIC status bits in addr+2. If
MIC is not controlling the job, addr+2 contains O.
The status bits are as follows:

Bits Symbol

o TO.CHK

1 TO.CCT
2 TO.OCS

3 TO.ECS
4 TO.CPT
5 TO.CBT
6 TO.STL
7 TO.LMM
8 TO.LUM
9 TO.C10
10 TO.CAT
11 TO.RSP
12 TO.RSY
13 TO. LOG
14 TO.LUI

15-21 TO.AOC

22-28 TO.AEC

29-35 TO.MMJ

Meaning

Flag bit for word. If this bit
is set, there are other set bits
in the word.
A CTRL/C was typed.
An operator-sent character was
received.
An error character was received.
A CTRL/P was typed.
A CTRL/B was typed.
Silence this line.
Line is in monitor mode.
Line is in user mode.
Line is in column 1 on output.
A CTRL/A was typed.
Error response.
Response code sync.
MIC is logging.
Controlling job should do a
JOBSTS UUO for the controlled job
or terminal.
The received operator character
(ASCII) .
The received error character
(ASCII) .

MIC master job number.

Sets the terminal's MIC status bits to the
contents of .TOAR2. The bits are the same as
those returned by the .TOGMS function above.

Clears the MIC status bits.

Displays an ASCIZ string on the terminal.
address of the string is in .TOAR2.

The

Returns the MIC response buffer. The address of
the 21-word buffer is in .TOAR2.

Returns the MIC log buffer. The address of the
21-word buffer is in .TOAR2.

22-441

TRMOP. [CALLI 116]

30 .TODSS

31 . TOSBS

32 . TORBS

33 .TOISO

34 . TOFLM

A modem is present if the call takes a normal
return. Bit 0 of the ac is set on return if a
carrier is present. Bits r-to 35 are reserved.
If the line is not a dataset line, the monitor
takes the error return and returns the TOIMP%
error in ac.

Sets the terminal break character set. Using this
function, you can define the characters that, when
typed on the terminal, will be interpreted by the
monitor as break characters, indicating the end of
the input line. In the argument block, you must
specify the following:

addr: .TOSBS
udx
field-width
break mask

break mask

ifunction code
iterminal's UDX
iauto-break
ifirst word
i of break table
ilast word

Where the field-width defines the number of
characters to be accepted on an input line. After
the specified number of characters are typed, a
break is automatically made. The field width must
be between 1 and 255.

The break mask is an optional 4-word block
indicating the mask of bits (in the left-hand 32
bits of each word from .TOAR3 through . TOAR6) that
indicate the octal representation of characters to
be defined as break characters. You must enable
break set mode.by setting flag IO.ABS in the I/O
status word. Refer to Volume 1 for more
information.

Reads the terminal break character set. The field
width is returned in .TOAR2 of the argument block,
and the break mask is returned in words . TOAR3
through . TOAR6. Refer to .TOSBS.

Sets counted image output string mode. This
function allows your program to output a specified
number of characters in a single sequence. This
function allows screen editors and
display-oriented programs to update the terminal
screen more efficiently. The argument block for
this function is:

addr: .TOISO ifunction
udx iterminal's UDX
byte-size, ,byte-count
string-address

Where the size of each byte (1-36 bits) is
specified in byte-size, and the length of the
string is specified in byte-count. The string
address is a pointer to the location of the output
string.

Returns the carriage to the left margin .

22-442

35 . TOGCS

36 .TOSCS

TRMOP. [CALLI 116]

Reads the special character status. The
conditions read are set in the TC.VAL field.
Function 36 (.TOSCS) contains the explanation of
TC.VAL. The argument block for .TOGCS is:

addr: . TOGCS
udx
len2"addr2

addr2: characters to read

The number of words given in len at addr2 have the
TC.VAL field filled in (right-justified) from the
current settings described in .TOSCS.

Sets the special character status.
argument block is:

The .TOSCS

addr: .TOSCS
udx
len2"addr2

addr2: mask + values + character

The fields in addr2 are:

Bits Symbol

0-13 TC.MOD
14-27 TC.VAL

28-35 TC.CHR

Meaning

The mask of the fields to change.
The conditions read or set. See
below for a list of condition
bits.
The ASCII character code to which
the condition(s) applies.

Bits which may be selected for special conditions
are:

Bit

31

32

33

34
35

Symbol

TC.CLR

TC.DFR

TC.OOB

TC.NSA
TC.BRK

Meaning

For control characters only,
clears the input buffer when the
character's interrupt is posted.
Defer the character's interrupt
type.
An out-of-band character. This
character causes an interrupt
when received.
Disable special action.
Line break character.

Note that bit locations documented here are
relevant to Function 36 (.TOSCS) only. The bit
locations of this field are right-justified in the
designated field; therefore, the specific bit
locations will differ depending on the field
defined for the specific function.

LSH offsets TC.MDO and TC.VLO are defined to shift
bits into the correct positions for use in TC.MOD
and TC.VAL (respectively).

22-443

TRMOP. [CALLI 116]

37 . TOUNR

40 . TOASO

41 . TODNT

1000 .TOOIP

1001 . TOCOM

1002 . TOXON

1003 . TOLCT

1004 . TOSLV

1005 . TOTAB

1006 . TOFRM

1007 . TOLCP

Allows reading of only already echoed characters.
No further echoing occurs until an empty buffer is
returned, a no input available return is taken, or
a null character is returned. The argument block
is:

addr: . TOUNR
udx ;terminal UDX

Sets counted ASCII output string mode. The
argument block is identical to .TOISO, function
33, except for the function code.

Disconnects a network terminal, without hanging up
the dataset.

Returns,
in Bit
ac=O) .

in the ac, the output-in-progress bit (1
35- if -Output is in progress, otherwise

Returns, in the ac, the monitor-mode bit (1 in bit
35 if terminal---is in monitor mode, otherwise
ac=O) .

Returns, in the ac, the papertape bit (1 in bit 35
if terminal is in-papertape mode, otherwise ac=O) .
To set the bit, use .TOXON+.TOSET; the monitor
reads the bit from .TOAR2. When this bit is set,
the functions of CTRL/S and CTRL/Q are defined to
control the papertape. If CTRL/S and CTRL/Q were
defined previously for stopping and continuing
terminal output, these functions are temporarily
superseded by the papertape function. When you
clear . TOXON, the terminal output function is
restored.

Returns, in the ac, the lowercase translation bit
(1 in bit 35 if no lowercase capability, otherwise
ac=O). To set the bit, use .TOLCT+.TOSET; the
monitor reads the bit from .TOAR2.

Returns, in the ac, the slave bit (1 in bit 35 if
the terminal is-slaved, otherwise ac=O). To set
the bit, use . TOSLV+.TOSET; the monitor reads the
bit from .TOAR2.

Returns, in the ac, the tab-capability bit for the
terminal (1 in---bit 35 if the terminal has tab
capability, otherwise ac=O). To set the bit, use
. TOTAB+.TOSET; the monitor reads the bit from
.TOAR2.

Returns, in the ac, the formfeed-capability bit
for the terminal (1 in bit 35 if the terminal
performs formfeeds, otherwise ac=O). To set the
bit, use . TOFRM+.TOSET; the monitor reads the bit
from .TOAR2.

Returns, in the ac, the local-copy bit for
terminal (1 in bit 35 if .the monitor is
echoing characters; otherwise, ac=O). To set
bit, use .TOLCP+.TOSET; the monitor reads the
from .TOAR2.

22-444

the
not
the
bit

1010 . TONFC

1011 . TOHPS

1012 . TOWID

1013 . TOSND

1014 . TOHLF

1015 . TORMT

1016 .TODIS

1017 . TOFLC

TRMOP. [CALLI 116]

Returns, in the ac, the free CRLF bit for the
terminal (1 - in-bit 35 if free CRLFs are not
performed, otherwise ac=O). To set the bit, use
. TONFC+. TOSET; the monitor reads the bit from
.TOAR2. The free CRLF (carriage-return/line-feed)
is placed in the terminal output buffer when the
maximum width of the line is reached. Set the
terminal line' width using .TOWID, SET TTY WIDTH
monitor command, or by setting the terminal type.
The default setting depends on the terminal type.

Returns, in the ~, the horizontal position of the
carriage or cursor (in the range 0 to octal 377) .

Returns, in the ac, the carriage width for the
terminal (in the-range 16 to 255 decimal). To set
this value, use .TOWID+.TOSET; the monitor reads
the width from .TOAR2.

Returns, in the ac, the GAG bit for the terminal
(1 in bit 35 If NOGAG, otherwise ac=O). To set
this bit, use .TOSND+.TOSET; the monitor reads the
bit from .TOAR2. Refer to the SET TTY monitor
command in the Commands Manual.

Returns, in the ac, the half-duplex
terminal (1 in bit 35 if the
half-duplex mode, otherwise ac=O) .

bit for the
terminal is in
(Obsolete.)

Returns, in the ac, the remote bit for the
terminal (1 in bi~35 if the terminal is remote,
otherwise ac=O) . To set this bit, use
. TORMT+.TOSET; the monitor reads the bit from
. TOAR2. Your program must' have [1,2], JACCT, or
POKE privileges to set this bit. This bit cannot
be set through FRCLIN or on the CTY.

Refer to the SET TTY monitor command in the
Commands Manual.

Returns, in the ~, the display bit for the
terminal (1 in bit 35 if the terminal is a display
device, otherwise ac=O). To set this bit, use
.TODIS+.TOSET; the monitor reads the bit from
.TOAR2. You may set this bit to indicate that the
terminal is a display terminal if the following
are true:

o The terminal can backspace the cursor.

o A space character on the terminal erases the
character pointed to by the cursor.

Refer to the SET TTY monitor' command in the
Commands Manual.

Returns, in the ac, the filler class code for the
terminal (in the-range 0 to 3). To set the code,
use .TOFLC+.TOSET; the monitor reads the code from
. TOAR2. Refer to the SET TTY monitor command in
the Commands Manual.

22-445

TRMOP. [CALLI 116]

1020

1021

1022

1023

1024

1025

1026

1027

1030

. TOTAP

. TOXNF

.TOSTP

.TOPSZ

. TOPCT

. TOBLK

. TOALT

. TOAPL

. TORSP

Returns, in the ac, the papertape-enable bit for
the terminal (1 In bit 35 if papertape is enabled,
otherwise ac=O) . To set this bit, use
. TOTAP+. TOSET; the monitor reads the bit from
.TOAR2. Refer to the SET TTY monitor command in
the Commands Manual.

Process XON/XOFF signals from the terminal.
Returns, in the ac, the bit setting for paged
display mode (1 in bit 35 if the terminal is in
paged display mode, otherwise ac=O). To set this
bit, use .TOXNF+.TOSET; the monitor reads the bit
from .TOAR2.

Returns, in the ac, the output-stopped bit for the
terminal (1 in bit 35 if output has stopped,
otherwise ac=O). The output-stopped bit is set
when, for example, the terminal reaches its page
limit.

Obsolete. Use .TOLNB or .TOSSZ instead.

Returns, in the ac, the value of the page counter
(in the range 0 to 63).

Returns, in the ac, the bit setting for blank line
handling (1 in bit 35 if multiple blank lines are
to be reduced to one blank line, otherwise ac=O).
To set the bit, use . TOBLK+.TOSET; the monitor
reads the bit setting from .TOAR2.

Returns, in the ac, the bit setting for ESCape
(altmode) character handling (1 in bit 35 if no
conversion, 0 if the ASCII codes 175 and 176 are
converted to 033) . To set the bit, use
.TOALT+.TOSET; the monitor reads the bit setting
from .TOAR2.

Returns, in the ac, the bit setting for APL mode
(1 in bit 35 if-rn APL mode, otherwise ac=O). To
set the bit, use .TOAPL+.TOSET; the monitor reads
the bit setting from .TOAR2.

Returns, in the ac, the code for the terminal's
receive speed-.- To set the code, use
.TORSP+.TOSET; the monitor reads the code from
.TOAR2. The codes and their meanings ~re:

Code Symbol Speed

1 .TOO05 50 baud.
2 .TOO07 75 baud .
3 . T0011 110 baud.
4 .TOO13 134.5 baud.
5 .TOO15 150 baud.
6 .T0020(200 baud.
7 .T0030 300 baud.
10 .T0060 600 baud.
11 .T0120 1200 baud.
12 .T0180 1800 baud .
13 . T0240 2400 baud.
14 .T0480 4800 baud .
15 . T0960 9600 baud.
16 . TOEXA External A.
17 . TOEXB External B.

22-446

1031 . TOTSP

1032 . TODBK

1033 .T0274

1034 . TOTDY

1035 . TOACR

1036 . TORTC

1037 . TOPBS

1040 . TODEM

1041 . TOTRM

1042 . TOBCT

1043 .TOICT

TRMOP. [CALLI 116]

Returns, in the ac, the code for the terminal's
transmit spee~ To set the code, use
.TORSP+.TOSET; the monitor reads the code from
.TOAR2. The codes and their meanings are the same
as those for the .TORSP function above.

Returns, in the ac, the bit setting for the
terminal's debreak capability (1 in bit 35 if
debreak is enabled, otherwise ac=O). To set the
bit, use . TODBK+.TOSET; the monitor reads the bit
setting from .TOAR2. (Obsolete: meaningful for
model 2741 terminals only.)

Returns, in the ac, the bit to show whether the
terminal is a 2741 (1 in bit 35 if so, otherwise
ac=O). To set the bit, use .T0274+.TOSET; the
monitor reads the bit from .TOAR2. Obsolete,
because the 2741 terminal is no longer supported.

Returns, in the ac, the terminal's TIDY setting (1
in bit 35 if ~IDY, 0 if NOTIDY). (Obsolete:
meaningful for model 2741 terminals only.)

Returns, in the ac, the auto-CRLF column number.
If this value is not zero, the first space
character received from the terminal, after the
specified column, is converted to a
carriage-return/line-feed sequence. If the value
in the ac is zero, no automatic conversion on
input is performed. To set this value, use
. TOACR+.TOSET. Include the column number in
.TOAR2 as a decimal value from 0 to 255.

Returns, in the ac, the bit for CTRL/R and CTRL/T
compatibility (0 in bit 35 if compatibility is
enabled, otherwise ac=l). To set the bit, use
. TORTC; the monitor reads the bit from .TOAR2.

Returns, in the ac, the word containing the PIM
(packed image mode) break set (four 9-bit bytes) .
To set this word, use .TOPBS+.TOSET; the monitor
reads the word from .TOAR2. If the ninth bit of
the argument is set, the bytes are compared as
7-bit bytes. If the ninth bit is clear, the bytes
are compared as 8-bit bytes.

Returns, in the ac, the bit showing the
deferred-echo mode (1 in bit 35 if echo is
deferred until input is required, otherwise ac=O) .
To set this bit, use . TODEM+.TOSET; the monitor
reads the bit from .TOAR2.

Returns, in the ac, the SIXBIT terminal type. To
set the terminal~ype code, use .TOTRM+.TOSET; the
monitor reads the SIXBIT name of the terminal type
from .TOAR2. The valid terminal types may be
obtained from GETTAB table .GTTNM.

Returns, in the ac, number of commands
in the left half, and the number
characters received in the right half.

processed
of break

Returns, in the ac, number of input characters
received.

22-447

TRMOP. [CALLI 116]

1044 . TOOCT

1045 . TOOSU

1046 . TOFCS

1047 . TOBKA

1050

1051

1052 .TOTIC

1053

1054 . TOBKC

1055 . TOECC

1056 .TOTTC

1057 . TOTOC

1060 . TOLNB

1061 . TOLNC

1062 .TOSSZ

1063 . TOSTC

1064-1066

1067 .TOSTO

1070 .TOSST

1071 .TOSBL

1072 . TOFSP

Returns, in the ac, number of output characters
sent.

Returns,
(CTRL/O)
. TOAR2.)

in the
(This

~~, output suppression state
is Bit 35 in the argument word

Returns, in the ac, Full Character Set bit.
bit can be set bY-the user.

This

"Break on all characters" mode. If this is off,
the break occurs on each line. If it is set,
breaks occur on each character.

Reserved for use by DIGITAL.

Reserved for use by DIGITAL.

Returns number of characters in input buff~=r.

Reserved for use by DIGITAL.

Returns number of break characters in
buffer.

input

Returns number of unprocessed (unechoed)
characters in input buffer.

Returns total number of characters in monitor's
input buffer.

Returns total number of characters in monitor's
output buffer.

Returns length of terminal form/page. This bit
can be set by the user.

Returns number of lines remaining in page. This
bit can be set by the user.

Returns stop size (number of lines to output) for
automatic CTRL/S. This can be set by the user.

Returns page stop
remaining on page) .

counter (number of lines
This can be set by the user.

Reserved for use by DIGITAL.

Specifies that output will stop after the number
of lines specified for .TOSSZ. This can be set by
the user.

Does not reset page stop counters after CTRL/S and
CTRL/Q. This can be set by the user.

Sounds terminal bell on automatic page stop.
can be set by the user.

This

Provides pseudo-terminals with the sceen-editing
facilities of a physical terminal. This is a
read-only function.

22-448

1073 . TOOFL

1074 . TOECH

1075 . TOAPC

1076 . TOUNP

1077 . TOESC

1100 . TOSWI

1101 . T08BT

1102 . T08BI

1103 . TOQOT

1104 . TOMXT

1105 . TOADT

1106 . TOCLE

1107 . TOEDT

1110 . TOTTN

1111 . TOTCN

TRMOP. [CALLI 116]

Returns offline bit. If 0 is returned in the ac,
the terminal exists. This is a read-only
function.

Returns echo status. If set, echoing is enabled.
This can be set by the user.

Returns asynchronous port characteristics.
is a read-only function.

Code Symbol Meaning:

0 . TOUNK Unknown.
1 . TOHWD Hard-wired.
2 . TODSD Dataset line.
3-4 Reserved
5 . TOADL Auto-dial.
6 Reserved.
7 . TONRT NRTSER line.
10 . TOLAT LAT line.
11 . TOCTM CTERM line.

This

Enables unpause character; continues output after
CTRL/S. (The enabled character is interpreted, on
input, like CTRL/Q.)

Enables ESCape character (behaves like ESC key).
In other words, the enabled character is
interpreted, on input, as the ESCape character,
(ASCII character 033) .

Enables two-character switch sequence.

Enables 8-bit terminal processing .

Enables 8-bit I/O mode on a terminal .

Enables the terminal quote (AV) character. This
character, when combined with any other character,
behaves as a single character. A AV-character
combination is deleted by a single rubout, and
echoes as one character. AV suppresses special
action on the next character you type. The
character is echoed without being processed.

Returns maximum idle time before an
disconnect. This can be set by a
[1,2]/JACCT or POKE. privileges.

Returns time remaining before
disconnect. This cannot be set by the

Enables command-level echoing.

automatic
user with

automatic
user.

Enables edit buffer (reserved for DIGITAL) .

Returns the terminal type name (model name) .

Returns the terminal class name (read-only)

22-449

TRMOP. [CALLI 116]

1112 . TOATR Reads and sets terminal attributes (bit
definitions) The attributes are indicated by the
bit settings in addr+2 of the argument list. The
following attributes are defined:

Bits

o
1
2
3

4

5
6

7

8
9

10
11

12
13

14
15
16

17
18
19
20
21
22

23

24

25
26

27
28

29
30
31

Symbol

TA.8BT
TA.DIS
TA.OVR
TA.8BA

TA.NRC

TA. ISO
TA.LID

TA.CID

TA. SRM
TA.GAT

TA.SEM
TA.AVO

TA.PPO
TA.GPO

TA. SXL
TA.TEK
TA.RCS

TA.UDK
TA.VFW
TA.VFL
TA.V52
TA.ESL
TA.JTK

TA.TCS

TA.TSI

TA.BMT
TA.BTA

TA.HSR
TA.UWN

TA. SSU
TA.CLR
TA.NKB

Meaning

Eight-bit terminal
Display terminal
Overprinting is supported.
Eight-bit architecture is
supported.
National replacement character
sets are supported.
Eight-bit represents ISO/LATIN-I.
Line insertion/deletion are
supported.
Character insertion/deletion are
supported.
Scrolling regions are supported.
Guarded area transport is
supported.
Selective erase is supported.
VT100 AVO option is supported or
emulated.
Printer port option is supported.
Regis or graphics optio~ is
supported.
Sixel graphics are supported.
Emulates Tektronix 4010/4014.
Dynamically redefinable character
sets
User-definable keys
Variable forms width
Variable forms length
Emulates the VT52 model t:.erminal.
Contains an extra status line.
Contains the Katakana character
set.
Contains the DEC technical
character set.
Provides response to DEC terminal
status interrogation.
Allows bloQk-mode transfers.
Allows block-mode tranfers in
ANSI-mode.
Allows horizontal scrolling.
User-definable windows are
supported.
Multiple sessions are supported.
Supports a color terminal screen.
Terminal has no keyboard (such as
the LN03 asynchronous printer) .

22-450

1113 . TOAT2

1114 . TOAT3

SKIP RETURN

TRMOP. [CALLI 116]

Reads and sets terminal attributes (stored in
bytes). The argument word is formatted as:

Bits

0-2

3-6

7-10

Symbol

T2.LDT

T2.ACL

T2.DCL

Reads and sets
customer-site.
T3.xxx.

Contents

Type of locator device:

Code Symbol

o .T2UNK
1 .T2MOU
2 .T2TAB

Meaning

Unknown
Mouse
Tablet

ANSI level to which the terminal
conforms.

DEC-conformance level.

terminal-attributes
Symbols should be

defined at
defined as

The monitor performs the function.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol

0 TOILF%
1 TOPRC%
2 TORGB%
3 TOADB%
4 TOIMP%
5 TODIL%
6 TOTNA%
7 TONBM%

10 TONIB%
11 TONET%

Error

Illegal function 'code.
Not privileged.
Illegal range.
Illegal argument list address or length.
Line is not a dataset line.
Error in dialing routine.
Terminal not available.
Terminal is not in break set mode. You must set
IO.ABS with the OPEN UUO before you can define and
enable break characters.
Illegal byte size specified.
Not a network-based terminal (not on a LAT, a
DECnet node, or and ANF-10 remote station).

22-451

TRPSET [CALLI 25]

22.173 TRPSET [CALLI 25]

FUNCTION

Prevents jobs other than the calling job from running. You can (if
you have the JP.TRP privilege) use this call to guarantee fast
response to realtime interrupts.

For a complete discussion of realtime traps and related programming
practices, see Chapter 9, Volume 1.

CALLING SEQUENCE

addr:

MOVE ac, [XWD len,addr]
TRPSET ac,

error return
skip return

JSR
BLKI

address
address

In the calling sequence, the program supplies the following variables:

o len is the length of the argument list.

o addr is the address of the argument list.

o address is the address of a location to be patched to' trap
directly to your program. This address must be in the range
40 to 57 (octal).

SKIP RETURN

The monitor has suspended execution of other jobs.

ERROR RETURN

The error return occurs if the TRPSET call is not implemented, or if
your job is not privileged.

RELATED CALLS

o HPQ

o LOCK

o RTTRP

o UJEN

22-452

TSK. [CALLI 177]

22.174 TSK. [CALLI 177]
. .

FUNCTION

Performs miscellaneous functions for network nodes. This monitor call
can be used by applications that wish to perform non-blocking connects
and disconnects. Also, it can be used by applications translating
ANF-IO protocol into another protocol. These applications usually
require more control over the connect message than that provided by
the standard LOOKUP/ENTER sequence.

The TSK. monitor call is an alternative to using the LOOKUP/ENTER
method for opening/defining network links. Once the link enters the
run state (.TKSOK), the norma: OUT and IN monitor calls can be used to
send or receive data over the network link. The TSK device cannot be
designated as an MPX-controlled device, but asynchronous I/O can be
performed.

Refer to Chapter 5 for more information about using the TSK.
call.

monitor

CALLING SEQUENCE

MOVE ac, [XWD length,addr]
TSK. ac,

error return
skip return

addr: EXP func-code ; . TKAFN
EXP channo ;.TKACH
EXP argl ; . TKAAl
EXP arg2 ; . TKAA2
EXP arg3 ; . TKAA3

In the calling sequence, the program supplies the following variables:

o function is one of the function codes listed below.

o channo is the I/O channel number on which the device TSK has
been opened.

Each argument is an argument for the specified function code.

Most arguments will be pointers to Network
Descriptors (NPDS), having the following format:

XWD length,addr

o length is the length of the NPD (must be at least 3).

o addr is the location of the NPD.

Process

Associated with each task link are two processes: the local process
and remote process. The processes are named by the NPD. The format
of the NPD is:

Offset

o

1

2

Symbol

.TKNND

.TKNLN

.TKNPN

Meaning

Node number (-l implies any node, but is not valid
when used in the remote passive NPD) .

Length of ASCII process name that follows
of characters) .

First word of the ASCII process name.

22-453

(number

TSK. [CALLI 177]

The following lists the function codes for TSK.:

Code

1

2

Symbol

.TKFRS

.TKFEP

Meaning

Returns the state of the link in arg~.
possible states are:

The

Code State Meaning

o .TKSID

1 .TKSCI

2 .TKSCC

3 .TKSOK

4 .TKSDC

The link is idle. The call
destroys the contents of arg2 and
stores the reason for the
disconnect. a:g3 is unchanged.
The link is wa~ting for a connect
initiate message. It returns the
local NPD in the area pointed to
by arg2/. It returns the remote
NPD in the area pointed to by
arg3.
The link is waiting for a connect
confirmation message. It returns
the local NPD at the location
specified in arg2 and the remote
NPD at the location specified in
arg3.
The link is operational. It
returns the local NPD at the
location specified in ar~ and
the remote NPD at the location
specified in arg3.
The link is waiting
disconnect confirmation
It returns the local NPD
location specified in
the remote NPD at the
specified in arg3.

for a
message.
at the
a~ and
location

You may include a pointer (len"addr) to the local
NPD in arg2. You can include the pointer to the
remote NPD in arg3. These words, however, are
optional.

Enters the link into the passive state. The link
must be in the .TKSID state. (If not, the error
return includes the TKILS% error code.) The
monitor reads and stores the local and remote NPDs
pointed to by arg2 and arg3.

If, at a later time, the monitor receives a
Connect Initiate message that "matches" the remote
NPD, the following occurs:

o The monitor deletes the remote NPD.

o The monitor builds a new remote ~PD from the
information given in the connect message. The
job can read the new NPD by using the .TKFRS
function to determine the process that
initiated the connection.

22-454

3 .TKFEA

4 .TKFEI

TSK. [CALLI 177]

o The monitor enters the link into the .TKSOK
state.

o The monitor issues a device on-line interrupt
to the job if the job enabled this condition
using the PSI system.

Enters the link into the active state. Before
issuing this function the link must be in the
.TKSID state. All other states cause an error
code (TKILS%) to be returned. When this code is
issued, the monitor reads the local NPD pointed to
by argl and the remote NPD pointed to by arg2. It
then sends a Connect ~nitiate request to the
node/task specified in the remote NPD. It puts
the link into the .TKSCC state and takes the skip
return. The link remains in the TKSCC state until
a Conneot Confirm or Disconnect function is
issued.

If a Connect Confirm is issued, the monitor
discards the remote NPD pointed to by arg2. It
builds a new remote NPD using the information in
the Connect Confirm message (so that it can be
read by a .TKFRS function). The link is placed in
the .TKSOK state and the controlling job is given
a device on-line interrupt (if the condition was
enabled using the PSI system).

If a Disconnect function is issued, the monitor
discards both the local and remote NPD
specifications. It places the link into the
.TKSID (idle) state and gives the controlling job
a device off-line interrupt (if the job enabled
this condition using the PSI system).

Enters the link into the idle state. This
function is illegal for those tasks in .TKSDC or
.TKSCC states and is a no-op for those already in
the idle state (.TKSID). The monitor performs the
following for those links in .TKSCI and .TKSOK
states:

State

.TKSCI

.TKSOK

Function

Both NPDs are released. The link state
is set to .TKSID.

A Disconnect Initiate is sent. The link
state is set to .TKSDC.

When Disconnect Confirmed message is issued at a
later time, the monitor frees both NPDs, sets the
link state to .TKSID, and issues a "device
off-line" interrupt.

22-455

TSK. [CALLI 177]

5 .TKFWT

6 .TKFOT

7 .TKFIN

10 .TKFRX

SKIP RETURN

Puts the link into the wait state. If the link is
in either the .TKSID or .TKSOK state, the monitor
takes the skip return immediately. The monitor
performs the following for those links in the
other states:

State

.TKSCI

.TKSCC

.TKSDC

Function

Waits for a transition to the .TKSOK
state and then returns.

Waits for a transition to either the
.TKSOK or .TKSID states, then returns.

Waits for a transition to .TKSID and
then returns.

Performs output with control of message
disassembly. This function is valid only for
links in the .TKSOK state. This function performs
an OUT monitor calIon the specified channel. If
the OUT is successful, the contents of the buffer
will be sent without an EOF bit. If unsuccessful,
the monitor places error code TKUDW% in the ac and
returns the device status word in arg1.

Performs input with message reassembly. This
function is valid only for those links in the
.TKSOK state. It performs an IN monitor calIon
the specified channel. If the IN is successful
(non-skip return), and UU.DMR was not set on the
OPEN, the monitor reads the message as one entire
buffer and takes a skip return. If UU.DMR was
set, the message is read without reassembly. If
the IN fails, the monitor places error code TKUDW%
in the ac and stores the device status word in
ac+1.

Returns the status of the link in arg1 (see .TKFRS
for a list of codes) and the "segment size," or
the maximum message size, in arg2. Note that the
segment size is only returned if the link is in
"OK" state (. TKSOK) .

The specified function has been performed.

22-456

TSK. [CALLI 177]

ERROR RETURN

One of the following error codes is returned in the ac.

Code

1

2
3
4
5

6
7
10
11

12
13
14

Symbol

TKTNL%

TKATS%
TKUNP%
TKILF%
TKILC%

TKILN%
TKNTS%
TKILS%
TKNFC%

TKNFL%
TKNXN%
TKUDW%

RELATED CALLS

NODE.

Meaning

TSKSER not loaded (intertask communication is not
supported) .
Argument list was too short.
Insufficient privileges.
Illegal function.
Illegal channel (not a TSK device or channel not
open) .
Illegal NPD.
NPD too short.
Function is illegal in this state.
Not enough monitor free-core to perform this
function.
No free links. (NETLAT is full.)
Attempt to connect to a non-existent node.
IN or OUT UUO (.TKFOT or .TKFIN) did not skip.

22-457

TTCALL [OPCODE 051]

22.175 TTCALL [OPCODE 051]

FUNCTION

Passes the monitor a code for an extended set of calls; these calls
perform terminal functions and are usually called TTCALLs.

Each defined TTCALL code also has a symbolic name; the TTCALLs are
discussed in alphabetical order by their symbolic names in this
section. For example, TTCAJ~L 1, has the symbolic name OUTCHR; its
function is discussed under the name OUTCHR in this section.

The TTCALLs and their symbolic names are:

Symbol TTCALL Function

INCHRW [TTCALL 0,]
OUTCHR [TTCALL 1,]
INCHRS [TTCALL 2,]
OUTSTR [TTCALL 3,]
INCHWL [TTCALL 4,]
INCHSL [TTCALL 5,]
GETLCH [TTCALL 6,]
SETLCH [TTCALL 7 ,]
RESCAN [TTCALL 10,]
CLRBFI [TTCALL 11,]
CLRBFO [TTCALL 12,]
SKPINC [TTCALL 13,]
SKPINL [TTCALL 14,]
IONEOU [TTCALL 15,]

Note that TTCALL operations are performed only on physical terminals,
not on a device with the logical name TTY.

22-458

22.176 UGETF [OPCODE 073]

FUNCTION

Returns the block number of the next free
UGETF call is a no-op for other devices.
for an extended I/O channel.

CALLING SEQUENCE

addr:

UGETF
return

BLOCK

channo,addr

1

UGETF [OPCODE 073]

block on a DECtape; the
Use FILOP. to perform UGETF

In the calling sequence, the program supplies the following variables:

o channo is the channel number of an initialized device.

o addr is the address of the location where the monitor will
return a block number at addr.

RETURN

The block number of the
call precedes an ENTER,
is reduced to that used
reduce the number of
reading a large file.

RELATED CALLS

FILOP.

next free block is returned at addr. If this
the inter-block spacing factor used for output
for .SAV files. This function is used to
times the tape must reverse direction when

22-459

UJEN [OPCODE 100]

22.177 UJEN [OPCODE 100]

FUNCTION

Dismisses a realtime interrupt from a user-supplied service routine,
if such a routine is in progress.

CALLING SEQUENCE

RETURN

UJEN
return

The monitor restores all accumulators and executes the instruction

JEN @counter

In the calling sequence, the program supplies the counter, which is
the address of the program counter stored by a JSR instruction when
the interrupt occurred.

Note that you can dismiss a user-mode interrupt with a JRST 12,
instruction.

RELATED CALLS

o RTTRP

o TRPSET

22-460

UNLOK. [CALLI 120]

22.178 UNLOK. [CALLI 120]

FUNCTION

Unlocks one or both segments for the current job. Your job can also
be unlocked when the monitor implicitly executes a RESET for your
program. This occurs in any of the following cases:

o Your program executes a RUN monitor call.

o You issue any of the monitor commands that invoke a program.

CALLING SEQUENCES

The UNLOK. monitor call allows two alternate calling methods. Format
1 is useful for unlocking a single segment or a low segment. Format 2
is used to unlock a list of multiple high segments.

Format 1

MOVE ac, [XWD high, low]
UNLOK. ac,

error return
skip return

In the accumulator, the left half (high) contains 1 to unlock the
program's high segment. The right half (low) is set to unlock the low
segment. If either half is 0, the segment's status is not changed.

Format 2

MOVE ac, [-n"addr]
UNLOK ac,

error return
skip return

addr: EXP .UGSGL
EXP segment-number

In the accumulator, specify -n as the negative value of the number of
words in the argument list and addr is the address of the argment
list.

The first word of the argument list contains a function code (.ULSGL),
followed by the list of segment numbers, stored in Bits 27-35
(UL.2SN). If UL.2SN is zero, the low segment is unlocked.

A high segment shared by several jobs cannot be unlocked unless the
SN%LOK bit is off for all those jobs. This bit is bit 5 in GETTAB
table 14, .GTSGN. This bit will be on for each job that issued the
LOCK monitor call for the high segment, but has not issued a
subsequent UNLOK. call for the high segment.

SKIP RETURN

The specified segments are unlocked and become eligible for swapping.
Any existing meter points (set by the METER. monitor call) are
cleared, and any real-time devices are reset. CORMAX is changed to
show the newly available pages, if any.

22-461

UNLOK. [CALLI 120]

ERROR RETURN

The error return with the ac unchanged occurs if the UNLOK. monitor
call is not implemented on your system. You must use either a RESET
or an EXIT monitor call instead.

The error return is taken with error code 0 (ULNSH%) returned in the
accumulator, if the indicated low segment requires non--sharable
high-segments to be locked in memory.

RELATED CALLS

o LOCK

o SEGOP.

o PAGE.

22-462

USETI [OPCODE 074]

22.179 USETI [OPCODE 074]

FUNCTION

Specifies a block on disk or DECtape to be read, written, or updated.
This function can also be performed by SUSET. and FILOP calls. (Use
FILOP. to perform USETI on an extended I/O channel.)

The monitor call sequence for reading a file starting at a specific
block is listed below:

LOOKUP
USETI
INPUT

The monitor call sequence for writing a file starting at a specific
block is shown below:

ENTER
USETO
OUTPUT

The monitor call sequence for updating a file is:

LOOKUP
ENTER
USE TO
OUTPUT

;or USETI
;or INPUT

If your job is privileged (that is, running with the JACCT bit set or
running under [1,2]) and your program does not perform an ENTER before
a USETO or a LOOKUP before a USETI, the monitor performs super I/O.

This function is enabled and disabled with MONGEN symbol M.DSIO at the
end of the SYSGEN dialog. The IO.IMP bit is set in the I/O status
word if you attempt this call when the function has been disabled.
You can use FILOP. function .FOUSI to perform the function regardless
of whether it was disabled with MONGEN.

If your job is not privileged and your program does not perform an
ENTER before a USETO or a LOOKUP before a USETI, the monitor sets
IO.BKT in the I/O status word.

The OPEN-ENTER-USETI sequence does not perform super I/O. It returns
an IO.IMP error. Likewise, an IO.IMP error results from
OPEN-LOOKUP-USETO. Refer to Chapter 11, Volume 1, for more
information about using file positioning calls.

CALLING SEQUENCE

USETI
return

channo,n

In the calling sequence, the program supplies the following variables:

o channo is the channel number for an initialized device.

o n is the number of the block to be used for I/O.

For DECtape, the block number is relative to the beginning of the
tape.

22-463

USETI [OPCODE 074]

For disk, n is a block number, when the file is open. When the call
is not preceded by a LOOKUP, n is the address of a word where the
block number is stored. This is a super-USETI call, because this
method allows you to specify a block number, greater than 18 bits,
relative to the beginning of the structure.

The action of the USETI calIon disk devices is determined by the
value of n as follows:

Value

-n, n 2 to 10 (octal)

-1

o

1 to file size

file size to 777770

RELATED CALLS

o FILOP.

o SUSET.

o USETO

COMMON PROGRAMMING ERRORS

Meaning

The nth extended RIB is read.

IO.EOF is set in the I/O status word,
an end-of-file on the next INPUT.
next OUTPUT, the data is appended
file.

causing
On the

to the

The prime RIB is read on the next INPUT.

The block specified is read on next INPUT.
If the file size is greater than or equal to
777770, it is recommended that you use
FILOP. function .FOUSI.

The IO.EOF bit is set in the I/O status word,
causing an end-of-file on the next INPUT.

o Not synchronizing I/O with USETI or USETO.

o Not initializing a device on channo.

22-464

USETO [OPCODE 075]

22.180 USETO [OPCODE 075]

FUNCTION

Selects a block on disk or DECtape to be written by an OUT monitor
call. This function can be performed by SUSET. and FILOP. (Use
FILOP. to perform USETO on an extended I/O channel.) Refer to the
USETI UUO and Chapter 11, Volume 1, for more information.

CALLING SEQUENCE

USETO
return

channo,n

In the calling sequence, the program supplies the following variables:

o channo is the channel number for an initialized device.

o n is the number of the I/O block.

For DECtape, n is the block number relative to the beginning
of the tape. -

For disk, ~ is a block number if a previous ENTER has been
used to open a file. Otherwise, n is the address of a word
that contains the block number relative to the beginning of
the structure or unit (super-USETO), allowing you to specify
a block number greater than 18 bits.

The action of the USETO call for disk is determined by the value of n
as follows:

Value

-n for n 2 to 10 (octal)

-1

o

1 to file size

file size to 777776

RELATED CALLS

a FILOP.

o SUSET.

o USETI

Meaning

Equivalent to a USE TO 777776 to 777770;
you may not write to the RIBs of a file.

The most recently input or output block
is re-written on the next OUTPUT.

The IO.BKT is set in the file status
word.

The specified block is
next OUTPUT. If the
greater than or equal to
recommended that you use
.FOUSO.

written on the
file size is

777777, it is
FILOP. function

The monitor allocates all blocks from
the block after file size to the block
before the one specified. Each block
allocated is written with zeros. The
block specified is the next block
written in the next OUTPUT.

22-465

USETO [OPCODE 075]

COMMON PROGRAMMING ERRORS

a Not synchronizing I/O with USETI or USETO.

a Not initializing a device on channa.

22-466

UTPCLR [CALLI 13]

22.181 UTPCLR [CALLI 13]

FUNCTION

Clears a DECtape directory. Use FILOP. to perform UTPCLR on an
extended I/O channel. The UTPCLR monitor call is a no-op for other
devices.

CALLING SEQUENCE

UTPCLR channo,
return

In the calling sequence, the program supplies the channo, which is the
channel number for an initialized device.

SKIP RETURN

The monitor clears the
(except those 7-bit
through 1105 octal) .

directory by clearing the first 83 words
bytes describing blocks 0, 1, 2, 100, and 1102

COMMON PROGRAMMING ERRORS

o I/O to unassigned channel at user PC xxxxxx.

o Forgetting to place the channel number in
forgetting the comma after channo.

o Not initializing a DECtape on channo.

22-467

channo or

UTRP. [CALLI 174]

22.182 UTRP. [CALLI 174]

FUNCTION

Sets or reads user trap instructions. This UUO allows a user to
handle non-zero section LUUOs, arithmetic overflows, or pushdown list
overflows by depositing instructions in locations 420, 421 and 422 in
the UPMP. Usually these instructions are calls to user-supplied
subroutines.

CALLING SEQUENCE

addr:

MOVE ac, [XWD fcncode,addr]
UTRP. ac,

error return
skip return

length
trapno
trapinstr

trapno
trapinstr

In the calling sequence, the program supplies the following variables:

o fcncode is one of the function codes described below.

o addr is the address of the argument list.

o length is the number of words in the argument list.

o trapno is the number of a trap.
below.

Trap numbers are listed

o trapinstr is the instruction to call the trap routine.

The function codes and their meanings are:

Code

°

1

Symbol

.UTRED

.UTSET

Meaning

Reads the contents of the trap location. A zero
opcode cannot be used as a trap instruction, but a
zero fullword here will restore monitor handling
of the specific condition.

Sets the contents of the trap location.

22-468

UTRP. [CALLI 174]

The trap numbers are:

Code

o

1

2

Symbol

.UTLUU

.UTAOF

.UTPOV

SKIP RETURN

Meaning

Stores the address of the 4-word LUUO trap block
in the UPT.

Arithmetic overflow trap instruction (location 421
in the UPMP) .

Pushdown list overflow trap instruction (location
422 in the UPMP) .

The specified traps are cleared or set.

ERROR RETURN

One of the following error codes is returned in the ac:

Code Symbol Error

1 UTIAD% Illegal address.
2 UTUKF% Unknown function.
3 UTITN% Illegal trap number.
4 UTIUT% Illegal user trap instruction.

RELATED CALLS

o ABRENB

o .JBINT trapping

o PSI system

22-469

WAIT [CALLI 10]

22.183 WAIT [CALLI 10]

FUNCTION

C~uses program execution to wait until all data
g~ven channel are completed. Use FILOP. to
extended I/O channel.

CALLING SEQUENCE

WAIT
return

channo,

transmissions
perform WAIT

on a
on an

In the calling sequence, the program supplies the channo, which is the
channel number for an initialized device.

SKIP RETURN

The monitor stops your program's execution until transmissions on the
channel are completed.

COMMON PROGRAMMING ERRORS

o Using WAIT on a tape which is spacing (see MTWAT.).

o Not initializing a device on channo.

o Omitting the comma after channo.

22-470

22.184 WAKE [CALLI 73]

FUNCTION

Sets the wake bit for a specified job.

CALLING SEQUENCE

MOVE I ac,jobno
WAKE ac,

error return
skip return

WAKE [CALLI 73]

In the calling sequence, the program supplies the ~obno, which is the
number of a logged-in job (use -1 for the current Job).

You can design a real-time process control job to run other process
control jobs when specific alarm conditions occur. WAKE can be called
from an RTTRP job running at interrupt level; this allows the
real-time job to wake its background quickly when necessary. See the
RTTRP monitor call for restrictions on accumulators when calling from
the interrupt level.

If your job does not have the required privileges, the error return
occurs and the monitor clears the ac. A JACCT or [1,2] job may WAKE
any job. If any condition enabled in the last HIBER call occurs, the
wake bit for the job is set. At the next HIBER call, the wake bit is
cleared and the monitor returns at the skip return immediately. The
wake bit prevents the job from oversleeping a wake condition. .

SKIP RETURN

The specified job is awake and resumes execution at the skip return
for the HIBER call that made the job dormant.

ERROR RETURN

Your job did not have the required privileges. The ac is cleared.

RELATED CALLS

Refer to the HIBER monitor call.

22-471

WHERE [CALLI 63]

22.185 WHERE [CALLI 63]

FUNCTION

Returns the node number for a device.

CALLING SEQUENCE

/ MOVE ac, [SIXBIT/device/] \
I MOVE I ac,channo I
\ MOVEI ac,udx /

WHERE ac,
error return

skip return

In the calling sequence, the program supplies the following variables:

o device is the SIXBIT physical or logical name of a device.

o channo is the number of an initialized channel.

o udx is the Universal-Device Index for a device.

When your program specifies OPR as the device, the monitor returns the
node number at which your job is logically located. Refer to the
LOCATE corcunand description in the Commands ManuaJ,...

When your program specifies CTY as the device, the monitor returns the
node number of your job's host system.

When your program specifies TTY as the device, the monitor returns the
node number to which your terminal is physically located.

SKIP RETURN

The monitor returns the status flags for the node and the node number
for the given device in the ac. The format of the returned word is:

Bits

0-12
13

14-17

18-35

Symbol

RM.SDU

RM. SUP

ERROR RETURN

Meaning

Reserved for use by DIGITAL.
Dial-up node.

Status of the node:

Value Symbol Status

1 . RMSUN Not in contact
2 .RMSUD Down.
4 .RMSUG Loading.
10 . RMSUL Loaded .

Node number for device.

A nonexistent device was specified.

RELATED CALLS

o LOCATE

o NODE.

o NETOP.

22-472

with central site .

CHAPTER 23

GETTAB TABLES

The TOPS-10 monitor maintains tables that contain system and job
information. Values from some of these tables can be retrieved by a
program using the GETTAB monitor call.

23.1 HOW TO USE GETTAB TABLES

The calling sequence for GETTAB is:

MOVE ac, [XWD index, table]
GETTAB ac,

error return
normal return

In the calling sequence, you provide the following variables:

o ac is an accumulator.

o index is the index into the 'table, wh'ich may be a job number,
a table item number, a high-segment number, or a class code,
depending on the organization of the table.

o table is the symbolic name of the desired table.

For those tables indexed by table item numbers, it is easier and more
reliable tb use the calling sequence:

MOVE ac, [item]
GETTAB ac,

error return
normal return

In this form of the calling sequence, item is the symbolic name of the
desired item as defined in UUOSYM-.---Using this calling sequence
eliminates the need to name both the table and the item desired.

For tables indexed by job or segment number, use the index -1 to
specify the current job; use the index -2 to specify the job's current
high segment.

In the following table descriptions, items marked by a number or a
star in parentheses (such as (1) or (*)) are described in more detail
at the end of the table.

23-1

GETTAB TABLES

23.2 HOW TO USE GETTAB SUBTABLES

This chapter describes the GETTAB subtables after each GETTAB table
that points to them, including the calling sequence for reading the
subtable.

Each subtable has a single entry in the GETTAB table. This entry
returns <length>BS+offset, where length is the length of the subtable
and offset is the first entry in the GETTAB table that corresponds to
the subtable.

An example of the use of GETTAB subtables follows below:

TI=1
T2=TI+I
PI=5
P=17

PLN=IOO

NCPUS==6

GTRSP:

LOOP:

TITLE GTRSP - Example of CPU response sub-GETTAB
SUBTTL Hanley A. Strappman 13-June-SO /HAS

SEARCH UUOSYM

ARRAY

JFCL
RESET
MOVE
MOVSI
HRRZ
PUSHJ

JRST

PDL[PLN]

P, [IOWD PLN,PDL]
PI,-NCPUS
TI,PI
P,GETIT
NEXT

;Use standard symbols

;Accumulators

;Length of program stack
;The program stack

;How many CPUs this program allQws

;In case of CCL RUN
;Reset the world
;Set up stack
;For loop control
;Get number of next CPU
;Get the data
;No such table

;Insert here the code to process the data, then:

NEXT: AOBJN
EXIT

PI, LOOP ;Go on to next CPU
;Done

;Subroutine to return in T2 the number of TTY input-to-input
;UUO responses for the CPU specified by TI.

GETIT:

CPOPJ:

LSH

MOVE
ADD
GETTAB

POPJ
JUMPE
ADD I
HRL
HRRI
ADD
GETTAB

POPJ
AOS
POPJ
END

TI,1

T2, [%CCRSP]
T2,TI
T2,
P,
T2,CPOPJ
T2,%CVRNI
T2,T2
T2, .GTCOV
T2,TI
T2,
P,
(P)
P,
GTRSP

;Variables table numbers go up by twos
(for example, .GTCIV=.GTCOV+2)

;CPUO's subtable pointer
;CPUn's subtable pointer
;Get base index of subtable
; ??? Must be an old monitor
;No such subtable
;Add entry offset to subtable base
;This becomes the item number
;Right half is table number which
; equals <CPUO index> + 2*<CPU number>
;Finally get the subtable entry
; ???Must be an old monitor
;Skip return means good data in T2
;All done

23-2

GETTAB TABLES

23.3 ADDING ITEMS TO THE MONITOR'S GETTAB TABLES

System programmers can add words (items) to the monitor's GETTAB
tables. The items added must have negative indexes, and must be added
at the top of the table in the order -n, -(n-1), -(n-2), ... -2, -1.
When the monitor is assembled, the range of valid indexes for each
table must begin with the lowest (most negative) index, and proceed to
the highest index.

It is good programming practice to use a .UNV file containing symbols
for these items for use in programs. This usage is similar to that of
searching UUOSYM.UNV.

23.4 ADDING NEW GETTAB TABLES TO THE MONITOR

System programmers can add completely new GETTAB tables to the
monitor. These tables must have negative table numbers, and must be
added at the beginning of COMMON.MAC in the order -n, -(n-1), -(n-2),
... -2, -1. When the monitor is assembled, the range of valid table
numbers must begin with the lowest (most negative) table number, and
proceed to the highest table number. within these added tables, items
must be indexed sequentially.

For example, the system programmer can add a new table with the number
-1. This table must be added to the source code in the monitor module
UUOCON. The items in this table could begin and end with negative
indexes; for example, the indexes could begin with -14 and end with
-1. The items could begin with a negative index and end with a
positive index; for example, the indexes could begin with -10 and end
with 27. Or the items could begin and end with nonnegative indexes;
for example the indexes could begin with 0 and end with 15.

23.5 ALPHABETIC LISTING

Because GETTAB tables are often referred to by symbolic name, the
following list of GETTAB tables is provided in alphabetical order:

Symbol Table No. DescriEtion

.GTABS 111 Address Break Word

.GTADR 1 Job Relocation and Protection

.GTBTX 206 BOOT Text String

.GTCOC 55 CPUO CPU Data Block Constants

.GTCOV 56 CPUO CPU Data Block Variables

.GTCIC 57 CPUI CPU Data Block Constants

.GTCIV 60 CPUI CPU Data Block Variables

.GTC2C 61 CPU2 CPU Data Block Constants

.GTC2V 62 CPU2 CPU Data Block Variables

.GTC3C 63 CPU3 CPU Data Block Constants

.GTC3V 64 CPU3 CPU Data Block Variables

.GTC4C 65 CPU4 CPU Data Block Constants

.GTC4V 66 CPU4 CPU Data Block Variables

.GTC5C 67 CPU5 CPU Data Block Constants

.GTC5V 70 CPU5 CPU Data Block Variables

.GTCAP 153 Job Capability Word

.GTCCM 204 Site-Specific Commands

.GTCHN 207 Channel Data Block Offsets

.GTCM2 43 SET Command Names

.GTCMP 112 Obsolete

.GTCMT 75 SET TTY Command Names

23-3

GETTAB TABLES

.GTCMW

.GTCNF

.GTCNO

.GTCOJ

.GTCOM

.GTCOR

.GTCQP

.GTCRS

.GTCRT

.GTCTX

.GTCVL

.GTDBS

.GTDCD

.GTDCF

.GTDCN

.GTDDB

.GTDDH

.GTDEV

.GTDFL

.GTDVL

.GTEBR

.GTEBT

.GTEDN

.GTENQ

.GTEQJ

.GTETH

.GTFET

.GTGTB

.GTIDX

.GTIMI

.GTIMO

.GTIPA

.GTIPC

.GTIPI

.GTIPP

.GTIPQ

.GTISC

.GTJLT

.GTJTC

.GTKCT

.GTKDB

.GTLIM

.GTLOC

.GTLBS

.GTLVD

.GTMBR

.GTMBT

.GTMVL

.GTNDB

.GTNM1

.GTNM2

.GTNSW

.GTNSP

.GTNTP

.GTNXM

.GTOBI

.GTODP

.GTOSC

.GTPC

.GTPDB

.GTPID

.GTPPN

.GTPRG

.GTPRV

101
11
33

122
30
27

121
44

123
175
102

21
160
116
164
200
211

24
140
110
132
131

72
127
163
202

71
155
154
176
177
104

77
106
105
107

45
130
120

5
210

40
26

165
16

134
133
103
161

31
32
12

172
141
205
157

15
46

152
162

76
2
3
6

SET WATCH Command Names
System Configuration Table
Charge Number
Obsolete
Monitor Command Names
Obsolete
Scheduler Class Quota
Hardware Status After Crash
Class Runtime
Context Table
Current Page Limits
Obsolete
CONI/DATAl To Device Status Block
Obsolete
SET DEFAULT Command Argument(s)
I/O Wait DDB
Device Data Block Chain Headers
Segment Device or Structure
User Defaults for Job
Obsolete
EBOX Jiffy Remainder
KLI0 EBOX Time
Ersatz Device Names
ENQ/DEQ Statistics
ENQ/DEQ Queue Header
Ethernet Information
Feature Test Settings
GETTAB Immediate
Range of GETTAB Tables
Job Page Count
Swapped-Out Page Count
IPCF Statistics
IPCF Miscellaneous Data
PID for [SYSTEM]INFO
IPCF Pointers and Counts
IPCF Flags and Quotas
Swap-In Scan Tables
LOGIN Time for Job
Job Type and Scheduler Class
Job Kilo-Core Ticks
Controller Data Block Chain Headers
Time Limit and Batch Status
Remote Station Number
Large Buffer Size
Level D Disk Parameters
MBOX Jiffy Remainder
KL10 MBOX Time
Maximum Page Limits
Byte Pointers to Node Data Block
User Name (first 6 characters)
User Name (last 6 characters)
Nonswapping Data Table
Obsolete
Network Performance Data
Nonexistent Memory Bit Table
WTO and Batch Data
ONCE-only Disk Parameters
Swap-Out Scan Tables
Wait DDB and User PC
Job PDB Word
Process Communication ID (IPCF)
Job's PPN
User Program Name
Job Privilege Flags

23-4

.GTPTR

.GTQJB

.GTQQQ

.GTRCT

.GTRDl

.GTRDV

.GTRFN

.GTRSO

.GTRS1

.GTRS2

.GTRS3

.GTRS4

.GTRSP

.GTRTD

.GTSCN

.GTSDT

.GTSGN

.GTSG2

.GTSlD

.GTSLF

.GTSNA

.GTSPA

.GTSPL

.GTSPS

.GTSQ

.GTSQH

.GTSSC

.GTSST

.GTST2

.GTSTS

.GTSWP

.GTSYS

.GTTCN

.GTTDB

.GTTlM

.GTTMP

.GTTNM

.GTTRQ

.GTTTY

.GTUPM

.GTUUC

.GTVlR

.GTVKS

.GTVM

.GTVRT

.GTWCH

.GTWCT

.GTWHY

.GTWSN

166
42
41
17

136
135
137
145
146
147
150
151

50
37
73
13
14

203
126

23
74

142
36
54

125
124

47
115
117

o
7

51
212

22
4

34
156

53
10

100
144
201
143
113
114

35
20
52
25

Program To Run
Obsolete
Obsolete
Disk Blocks Read
Program Run Directory
Program Run Device
Program Run File name
First SFD in Run Path
Second SFD in Run Path
Third SFD in Run Path
Fourth SFD in Run Path
Fifth SFD in Run Path
Response Counter Table
Realtime Status Words
Scanner Data
Swapping Data Table
High Segment Parameters
Obsolete
Special PlD Table
GETTAB Table Data
Last SEND ALL in 9-bit
Scheduler Performance Data
Spooling Control Flags
Status of Subsequent Processors
Obsolete
Obsolete
Scheduler Scan Tables
Scheduler Statistics
Second Job Status Word
Job Status Word
Job Swapping Parameters
System-Wide Data
Terminal Class Names
Obsolete
User Runtime
Obsolete
Terminal Type Names
Time in Run Queue
Job's Controlling Terminal
Physical Page Number of UPMP
Monitor Calls Executed
Job's Virtual Size
virtual Kilo-Core Ticks
Virtual Memory Data
Paging Rage
Watch Bits
Disk Blocks Written
Operator Reload Comments
Names of Wait States

23.6 TOPS-IO GETTAB TABLES

GETTAB TABLES

The remainder of this chapter describes the TOPS-10 GETTAB tables.
For each table, the contents of the table, the indexing scheme, the
GETTAB calling sequence, and a word map for the table are described.
The description of each GETTAB table also includes the associated
monitor table. The monitor tables are described in the TOPS-10
Monitor Tables descriptions, available in the TOPS-10 Software
Notebook Set.

23-5

GETTAB TABLES

CONTENTS

.GTSTS - Job Status Word
GETTAB Table 0

One word for each job running on the system, giving the status word
for the job. (There 1S a second job status word in GETTAB table
.GTST2, Number 117.) The bits in the job status word may vary from
monitor to monitor; therefore you should not reference .GTSTS in a
program that is monitor-independent.

INDEXED BY

Job number or segment number

Monitor Table: JBTSTS

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSTS]
GETTAB ac.,.

error return
normal return

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job) or a high-segment number (use -2 for·the
current high segment) .

1===1
1 Job status 1

1===1

The only documented bit in this word is JS.XO (Bit 25), which
indicates a program that is execute-only. Refer to the Monitor Tables
descriptions for more information about the job status bits.

23-6

CONTENTS

.GTADR - Job Re1ocation Word
GETTAB Table 1

GET TAB TABLES

One word for each job running on the system, giving the relocation
memory address and the length of each job. vary from monitor to
monitor; therefore you should not reference .GTADR in a program that
is monitor-independent.

INDEXED BY

Job number or segment number.

Monitor Table: JBTADR

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTADR]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job) or a high-segment number (use -2 for the
current high segment) .

\===\
\ Length-1 \ Job Relocation address \
\===\

23-7

GETTAB TABLES

.GTPPN - Project-programmer Number
GETTAB Table 2

CONTENTS

One word for each job running on the
project-programmer number (PPN) for the job.

INDEXED BY

Job number or segment number.

Monitor Table: JBTPPN

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTPPN]
GETTAB ac,

error return
normal return

system, giving the

In the calling sequence jobno is the number of a logged-in job (use -1
for the current job) or a high-segment number (use -2 for the current
high segment) .

1===1
1 Project-programmer number 1
1===1

The project-programmer number is the job's PPN or the segment owner's
PPN.

If the high segment's file is in an SFD, this word is returned as
O"path-pointer, where path-pointer is a pointer to a path block in
monitor memory. PEEK privileges are required to read the monitor's
path block.

23-8

CONTENTS

.GTPRG - User Program Name
GETTAB Table 3

GETTAB TABLES

One word for each job running on the system, giving the SIXBIT name of
the current user program.

INDEXED BY

Job number or segment number.

Monitor Table: JBTPRG

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTPRG]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job) or a high-segment number (use -2 for the
current high segment) .

1===1
1 SIXBIT program name 1

1===1

For jobs, this is the program name that can be set by SETNAM. The
default is the file name of the runnable program (.EXE file). For
segments, this is the segment name. 'If the segment is not sharable, 0
is returned. If sharable, it is the file name of the .EXE file.

23-9

GETTAB TABLES

CONTENTS

.GTTIM - User Runtime
GETTAB Table 4

One word for each job running on the system, giving the total runtime
(in jiffies) for the job.

INDEXED BY

PDB Word

Monitor Table: .PDTTM

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTTIM]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job).

1===1
1 Total runtime in ticks 1

1===1

23-10

CONTENTS

.GTKCT - Job Kilo-Core Ticks
GETTAB Table 5

GET TAB TABLES

One word for each job running on the system, giving the total
kilo-core ticks for the job. This value is equivalent to the product
of the number of clock ticks in the job's runtime and the average
number of Ks of core used in each tick.

INDEXED BY

PDB Word

Monitor Table: .PDKCT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTKCT]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Kilo-core ticks 1

1===1

23-11

GETTAB TABLES

CONTENTS

.GTPRV - Job Privilege Flags
GETTAB Table 6

One word for each job running on the system, giving the privilege bits
for the job.

INDEXED BY

Job number.

Monitor Table JBTPRV

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTPRV]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1==1
1 Job privilege bits I

1==1

Privilege bits for each job are as follows:

Bits

o
1-2

3
4
5

6-9

10
11

12

13
14
15
16
17

Symbol

JP. IPC
JP.DPR

JP.MET
JP.POK
JP.CCC

JP.HPQ

JP.NSP
JP.ENQ

JP . ADM

JP.RTT
JP.LCK
JP.TRP
JP.SPA
JP. SPM

Privilege

IPCF privilege.
Highest disk priority for the job (a value in the
range 0 to 3) .
METER. privilege.
POKE. privilege.
Privilege to change CPU specification with either a
command or a monitor call.
Highest high-priority queue available to the job (a
value in the range 0 to 17 octal) .
Device unspooling privilege.
ENQ/DEQ privilege (allows you to use -2 (.EQFGL) in
the ENQ. block to set global privileges) .
System Administrator privilege (job can change REACT
accounting files) .
RTTRP privilege.
LOCK privilege.
TRPSET privilege.
PEEK and Spy privilege for any core.
PEEK and Spy privilege for monitor core.

Bits in the right half are reserved for customer definition.

23-12

GETTAB TABLES

CONTENTS

.GTSWP - Job Swapping Parameters
GETTAB Table 7

One word for each job running on the system, giving the swapping
parameters for the job.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Job number or segment number

Monitor Table: JBTSWP

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSWP]
GETTAB ac,

error return
normal return

In the calling sequence,
program segment number.

jobno is the number of a logged-in job
Use -1 for the current job.

\===\
I Swapping parameters \
\===\

23-13

or a

GETTAB TABLES

CONTENTS

.GTTTY - Job's Controlling Terminal
GETTAB Table 10

One word for each job running on the system,
terminal for the job.

giving the controlling

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Job number.

Monitor Table: TTYTAB

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTTTY]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Reserved 1 Controlling terminal's DDB 1
1===1

The right half contains the address of the DDB for the
controlling TTY. This is always the address of the DDB, even
job is detached. If 0, there is no such job number.

23-14

job's
if the

CONTENTS

.GTCNF - System Configuration Table
GETTAB Table 11

Data describing the current configuration of the system.

GETTAB TABLES

INDEXED BY

Item number.

Monitor Table: CNFTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below. When an item name is followed by a *, that item is more
fully described at the end of the table.

Word Symbol

+===+
0, , 11 %CNFGO System name (1st of 5 ASCIZ words) 1

---I
1, , 11 %CNFG1 System name (2nd of 5 ASCIZ words) 1

---I
2,,11 %CNFG2 System name (3rd of 5 ASCIZ words) 1

---I
3, , 11 %CNFG3 System name (4th of 5 ASCIZ words) 1

---I
4, , 11 %CNFG4 System name (5th of 5 ASCIZ words) 1

===1
5,,11 %CNDTO System creation date (1st of 2 ASCIZ words) 1

---I
6, , 11 %CNDT1 System creation date (2nd of 2 ASCIZ words) 1

===1
7, , 11 %CNTAP SIXBIT name of system device 1

===1
10,,11 %CNTIM Encoded time of day in jiffies 1

===\
11,,11 %CNDAT Encoded date (15-bit binary format)

===
12,,11 %CNSIZ System memory size (in words)

===
13,,11 %CNOPR SIXBIT name of operator TTY

===
14,,11 %CNDEV Start of DDB chain Reserved

===
15, ,11 %CNSJN \-(Max number of high segs) IMax number of current jobs

\===
16,,11 %CNTWR 1 Two-register hardware and software flag

\===
17,,11 %CNSTS* 1 Feature test switches 1 Switch states

\===

23-15

GETTAB TABLES

==1
20,,11 %CNSER CPUO serial number 1

===1
21,,11 %CNNSM Number of nanoseconds per memory cycle 1

===1
22,,11 %CNPTY Number of 1st PTY (CTY+1) 1 Number of PTYs in system 1

===1
23,,11 %CNFRE Pointer to bit map of core blocks 1

===
24,,11 %CNLOC Address of low-segment core blocks

===
25,,11 %CNSTB Obsolete

===
26,,11 %CNOPL Pointer to line data block (LDB) of OPR TTY

===
27,,11 %CNTTF Pointer to TTY free chunks

===
30,,11 %CNTTC Number of TTY chunks 1 Address of 1st TTY chunk

===
31,,11 %CNTTN Number of free TTY chunks

===
32,,11 %CNLNS Pointer to current command TTY

===
33,,11 %CNLNP -Number of TTY+PTY+CTY lines 1 Addr of LINTAB

===
34,,11 %CNVER Monitor version number

===~=======1
35,,11 %CNDSC -Len of dataset ctrl tbl 1 Address of control table

===
36,,11 %CNDLS Obsolete

===:==========
37,,11 %CNCCI Obsolete

===:==========
40,,11 %CNSGT Ptr to last dormant seg deleted to free a seg number

===
41,,11 %CNPOK Last location' changed b'y a POKE. monitor call

===:==========
42, ,11 %CNPUC Job that made last POKE. Number of POKE.s made

===
43,,11 %CNWHY SIXBIT reason. for last reload (operator input)

===:==========
44,,11 %CNTIC Number of clock ticks per second

===
45,,11 %CNPDB Pointer to process data block (PDB) pointer tables

===
46,,11 %CNRTC Resolution of runtime clock (units/sec)

===
47,,11 %CNCHN Ptr to channel data block 1 Reserved

===
50,,11 %CNLMX Maximum number of logged-in jobs allowed

===:==========
51, , 11 %CNBMX Maximum number of batch jobs allowed

===
52,,11 %CNBMN Minimum number of jobs reserved to batch

==
53,,11 %CNDTM Date/time in universal date/time format

===:==========/
54,,11 %CNLNM Number of jobs logged in /

==================~====================================1
55,,11 %CNBNM Number of batch jobs logged in 1

===:==========1

23-16

56,,11 %CNYER

57,,11 %CNMON

60, ,11 %CNDAY

61,,11 %CNHOR

62,,11 %CNMIN

63,,11 %CNSEC

64,,11 %CNGMT

65,,11 %CNDBG *

66,,11 %CNFRU

67,,11 %CNTCM

70,,11 %CNCVN

71,,11 %CNDVN

72,,11 %CNDFC

73,,11 %CNRTD

74,,11 %CNHPQ

75,,11 %CNLDB

76,,11 %CNMVO

77,,11 %CNMIP

100,,11 %CNMER

101,,11 %CNETI

102,,11 %CNLSD

103,,11 %CNLLD

104,,11 %CNLDD

1.05,,11 %CNEXM

106,,11 %CNST2*

107,,11 %CNPIM

110,,11 %CNPIL

111,,11 %CNPIA

112,,11 %CNMNT*

113,,11 %CNOCR

114,,11 %CNOCP

GETTAB TABLES

===
Current year

===
Current month

===
Current day of the month

===
Current hour (0-23)

===
Current minute (0-59)

===
Current second (0-59)

===
Offset from Greenwich Mean Time
(such that %CNGMT +%CNDTM = GMT)

===
Debug status

=======================~===============================
Number of free core blocks in use by monitor

===
Addr of last TTY chunk

===
Customer version number (JOBDAT loco 136)

DIGITAL version number (JOBDAT loco 137)
===

Number of DF10 data channels on the system
===

Number of realtime devices \
===\

Number of high-priority queues 1

===\
TTY device data blk wrd pointing to line data blk \

===\
Maximum vector offset for PISYS.

Maximum priority for PISYS.
===

\Offset of MTA err rep word \ Address of 1st MTA DDB
===

User address of exec AC T1 (for DAEMON)
===

Length of short device data block

Length of long device data block

Length of disk device data block \
===\

Addr in JOBDAT of last Examine or Deposit command \
===\

Software configuration flags \
===\

\ Minumum condition in PISYS.
1===
\ Length of internal PITs
1===
1 Address of JBTPIA
1===
1 Monitor type
\===
1 Addr of 1st CDR DDB 1 Offset to card count
\---
\ Addr of 1st CDP DDB 1 Offset to card count
\===

23-17

GETTAB TABLES

115,,11 %CNPGS

116,,11 %CNMMX

117,,11 %CNNSC

120,,11 %CNUTF

121,,11 %CNHSO

122,,11 %CNHSL

123,,11 %CNNWC

124,,11 %CNNXM

125,,11 %CNNDB

126, ,11 %CNTKB

127,,11 %CNDDC

130,,11 %CNHDL

131,,11 %CNBTX

132,,11 %CNTDB

133,,11 %CNMTK

134,,11 %CNCPU

135,,11 %CNDJB

136,,11 %CNSUP

137,,11 %CNBCP

140,,11 %CNBCL

141,,11 %CNNCR

142,,11 %CNMBS

143,,11 %CNMBF

144,,11 %CNMBX

145",,11 %CNMBD

146,,11 %CNBPM

147,,11 %CNMXF

150,,11 %CNLVO

151,,11 %CNHXC

152,,11 %CNVSH

153,,11 %CNRST

1===1
1 Unit of core allocation (in words) 1
1---I
IMaximum allowable CORMAX (total phys mem for all jobs 1

1===1
Number of scheduler classes 1

==1
Exponential user time factor 1

===1
Address of start of monitor high segment 1

==1
Length of monitor high segment 1

===:============1
Number of words in core (highest addr of on-line mem) 1

===:============1
AOBJN pointer to NXMTAB used to scan for zeros 1

===:============1
Addr of 1st network node data block 1

===1
Offset in MTA KDB of addr of CDB

===:============
Offset into TTY DDB of character counts (Obsolete)

===
Obsolete

1===
1 Address of reload .CCL text for BOOT
I==~========

Offset in MTA UDB of addr of DDBs
===

Address of first MTA KDB in system (Obsolete)
===

Number of CPUs monitor was built for
===

Byte pointer to jobno in DDB
===

System uptime 1

===1
Bootstrap CPU number 1

===1
Bootstrap CTY line number 1

===1
Number of CPUs allowed to run 1

===1
Monitor bootstrap file structure (from BOOT) 1

---I
Monitor bootstrap file name 1

---I
Monitor bootstrap file extension 1

---I
Monitor bootstrap file directory 1

===/
1 Maximum number of SNOOP. breakpoints allowed
===

First free virtual address above the monitor
===

Virtual address where LDBs start
===

Maximum number of FILOP. extended channels
===

Monitor virtual start address of high segment
==

Universal date/time of last role switch
on multiple CPU systems

===

23-18

154,,11 %CNDCH

155,,11 %CNSFI

156,,11 %CNSF2

157,,11 %CNSF3

160,,11 %CNSF4

161,,11 %CNSF5

162,,11 %CNFLN

163,,11 %CNPNP

164,,11 %CNCAT

165,,11 %CNLPD

166,,11 %CNJPK*

167,,11 %CNDAE*

170,,11 %CNHSH

171,,11 %CNACS

172,,11 %CNTOP

173,,11 %CNSFD

174,,11 %CNCIP

175, ,11 %CNPRV

176,,11 %CNCVl

177,,11 %CNCV2

200, ,11 %CNLHN

201,,11 %CNIVM

202,,11 %CNACB

203,,11 %CNAHB

204,,11 %CNIDB

205,,11 %CNDTT

206, ,11 %CNSUM

207,,11 %CNREM

210,,11 %CNK4S

211,,11 %CNOPT

GETTAB TABLES

===
Offset into LDB of LDBDCH

===
Monitor bootstrap 1st SFD

===
Monitor bootstrap 2nd SFD

===
Monitor bootstrap 3rd SFD

===
Monitor bootstrap 4th SFD

===
Monitor bootstrap 5th SFD

===
\ TTY number of FRCLIN
\===\
\ Pointer to PTY table I
1===\
1 Pointer t.O network link address table \
\===1
\ Length of PDB
1===
1 Max. size of JOBPEK transfers
1===
\ Previous and current monitor versions
\===
\ AOBJN pointer to ENQ. HSHTAB
\===
\ Offset to PDB for account string .
1===
\ Pointer to TRMOP. dispatch table
===

Pointer to JBTSFD
===

Pointer to CIPWT
===

Privilege word to be used by privileged jobs
(FRCLIN, INITIA)

=================~===============================~=====

First word of CTERM version string (8-bit)
===\

Second word of CTERM version string (8-bit) I
===\

Pointer to LAT host node data base I
\===\
I "AND" mask for .GTIMI/.GTIMO/.GTVIR \
\===\
\ Address of first Allocation Control Block \
1===\
\ Address of first Allocation Header Block \
\===
1 Address of IPA20 DRAM dump buffer
1===
\ System-default terminal type
1===
\ System update, in milliseconds
\===
I Offset of LDBREMs in Line Data Blocks
1===
\ Offset of UNIK4S in Line Data Blocks
1===
\ SIXBIT startup option
+===+

23-19

GETTAB TABLES

The items in the configuration table are defined below:

Item

17

Symbol Contains

%CNSTS Feature test switch flags and switch state flags are as
follows:

Bits

o
1
2
3
4
5
6
9

10
11
12
13
14

15

16
17
18-25
26

27
28

29

32
33
34
35

Symbol

ST%DSK
ST%SWP
ST%LOG
ST%FTT
ST%PRV
ST%TWR
ST%CYC
ST%TDS

ST%IND
ST%IMG
ST%DUL
ST%MRB
ST%HPT

ST%EMO

ST%RTC
ST%MBF

ST%NDL

ST%NOP
ST%NSP

ST%ASS

ST%NRT
ST%BON
ST%NRL
ST%NLG

Feature or State

Disk system.
Swapping system ..
LOGIN system.
Full duplex TTY software.
Privileged features exist.
Software is two-segment (reentrant)
System clock runs at 50 Hz.
Type of disk system:

o 4-series
1 = 5-series
2 = spooled disk

Independent PPNs on disk.
Image mode supported on TTYs.
Dual-processor system.
Multiple RIBs supported.
High-precision time accounting
supported.
Monitor overhead excluded from
accounting.
System has realtime clock (DK10).
System supports FOROTS.
Reserved.
No automatic down-line load of DC72,
DC71, and DAS80 series remote
stations.
No operator coverage.
Device unspooling allowed without
privilege.
System assigning/initializing
restricted devices allowed.
No remote TTYs.
Batch jobs only.
No remote logging-in.
No logging-in except operator CTY.

65 %CNDBG Debugging flags are as follows:

Bits Symbol

o ST%DBG
1 ST%RDC
2 ST%RJE
3 ST%NAR
4 ST%CP1
5 ST%DDC

6 ST%DJE

7 ST%DCP

15 ST%RLD
16-17
18 ST%BPO

Meaning

System debugging allowed.
Reload system on DEBUG stopcode.
Reload system on JOB stopcode.
No automatic reloading.
Reload on CPU stopcode.
Disable the dump function on a DEBUG
stopcode.
Disable the dump function on a JOB
stopcode.
Disable the dump function on a CPU
stopcode. 8-14 Reserved.
Last stopcode that caused a reload.
Reserved.
CPUO can enter EDDT mode using XCT
.CODDT.

23-20

19 ST%BPI

20 ST%BP2

21 ST%BP3

22 ST%BP4

23 ST%BPS

77B23 ST%BPT

106 %CNST2 Configuration

Bits Symbol

S ST%NSE

6 ST%END

7 ST%NPP

8 ST%RCM
9 ST%EXA
10 ST%D36
11 ST%KLP
12 ST%MDA

13 ST%LSC
14 ST%ACV
15 ST%NER
16 ST%NCS

17 ST%ITA
18 ST%NDN

19 ST%XPI
20 ST%ERT
21 ST%EXE
22 ST%NJN
23 ST%EER
24 ST%TAP
2S ST%MBE
26 ST%GAL
27 ST%ENQ
28 ST%SHC
29 ST%NSE
30 ST%MSG
31 ST%PSI
32 ST%IPC
33 ST%VMS
34 ST%MER
3S ST%SSP

GETTAB TABLES

CPUI can enter EDDT mode using XCT
.CIDDT.
CPU2 can enter EDDT mode using XCT
.C2DDT.
CPU3 can enter EDDT mode using XCT
.C3DDT.
CPU4 can enter EDDT mode using XCT
.C4DDT.
CPUS can enter EDDT mode using XCT
.CSDDT.
Mask for all CPU breakpoint bits.

feature flags are as follows:

Feature

Disable KSI0 soft memory error
messages.
DECnet is running as an Ethernet end
node.
Disabled starting primary protocol on
DTEs.
Restricted commands monitor.
Extended addressing in effect.
Monitor has DECnet Phase III code.
Monitor uses KL-paging.
Mountable device allocation is in
effect.
Low segment of monitor is cached.
Account validation.
version 6.03 error reporting.
Scheduler is not a class system
scheduler.
Interval timer available.
Network devices have names of the form
gggnnu, where ~ is a generic device
name (such as TTY), nn is the last two
digits of the node-number, and u is
the unit number.
PI time excluded from runtime.
EBOX/MBOX runtime (KLI0 only) .
.EXE files written by SAVE and SSAVE.
System uses 9-bit job numbers.
Extended error reporting.
TAPSER included in monitor.
Massbus error reporting.
GALAXY supported.
ENQ./DEQ. monitor calls included.
Scheduler is a class type scheduler.
Nonsuperseding ENTER call.
MPX channels supported.
Software interrupt supported.
IPCF supported.
VMSER included in monitor.
Magtape error reporting.
Swapping done in page units.

23-21

GETTAB TABLES

112

166

%CNMNT Monitor type flags are as follows:

Bits Symbol Monitor ~

0 CN%MNX Unknown monitor.

77B23 CN%MNT Monitor type:

Value Symbol ~

1 .CNT10 TOPS-10
2 .CNITS ITS
3 .CNTNX TENEX
4 .CNT20 TOPS-20
5 .CNTCX TYMCOM-X

24-29 CN%MNS DIGITAL monitor subtype.

30-35 CN%MNC customer monitor subtype.

This word is used by operating systems that have
TOPS-20 UUO compatibility
packages.

For example, a calling sequence to read this word may
be:

MOVE ac, [112,,11]
GETTAB ac,

MOVEI ac,O
LDB ac, [POINT ac,CN%MNT]
CAIN ac,1

JRST TOPS10
CAIN ac,4

JRST TOPS20
JRST UNKNOWN

%CNJPK Bit 0 of this word is a flag. If not set, this
indicates that JOBPEK transfers cannot cross
boundaries.

flag
page

167 %CNDAE In the left half is the previous version of the monitor
in SIXBIT. In the right half is the current version of
the monitor in binary.

23-22

CONTENTS

.GTNSW - Nonswapping Data Table
GETTAB Table 12

GETTAB TABLES

Data about nonswapping memory utilization.

INDEXED BY

Item number.

Monitor Table: NSWTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the
map below.

word

Some of this data is CPU-specific and exists in CDBs.

Word Symbol

1===~=
10,,12 %NSCMX 1 System CORMAX (largest user job + 1)

1==~=
11, ,12 %NSCLS 1 Byte pointer to last free core area

1===
12,,12 %NSCTL 1 virtual core tally

1===
13,,12 %NSSHW 1 Obsolete

1===
14,,12 %NSHLF 1 Obsolete

1===
15,,12 %NSUPT 1 System uptime (in ticks)

1===
16, , 12 %NSSHF 1 Obsolete

===1
17,,12 %NSSTU Obsolete

===================~===================================

20,,12 %NSHJB Highest job number in use
===

21,,12 %NSCLW Words cleared by system
===

22,,12 %NSLST Lost time
===

23,,12 %NSMMS Memory size in words
==~======

24,,12 %NSTPE Total memory parity errors

25,,12 %NSSPE Spurious memory parity errors

26,,12 %NSMPC Multiple memory parity errors
1===

27,,12 %NSMPA 1 Absolute addr of last memory parity error
1---

23-23

GETTAB TABLES

1==:=============
30,,12 %NSMPW 1 Contents of 1st bad wd on parity sweep

1---
31,,12 %NSMPP PC where last MEM PAR error was detected

==:=============
32,,12 %NSEPO Number of exec PDL overflows not recovered

33,,12 %NSEPR Number of exec PDL overflows recov.~red
==:=============

34,,12 %NSMXM Maximum value of CORMAX
===

35,,12 %NSKTM KSYS timer
==

36,,12 %NSCMN Arnt of memory guaranteed to non-locked jobs (COPMIN)
===

37,,12 %NSABC Count of address breaks
--.-------------I

40,,12 %NSABA Address break addresses 1

===1
41,,12 %NSLJR Last job run 1

===1
42,,12 %NSACR Obsolete 1

43,,12 %NSNCR
--.-------------I

Obsolete 1

1---_·_------------I
44,,12 %NSSCR 1 Obsolete 1

1==1

23-24

CONTENTS

.GTSDT - Swapping Data Table
GETTAB Table 13

GETTAB TABLES

Contains data pertinent to swapping.

INDEXED BY

Item number.

Monitor Table: SWPTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, is one of the symbols given in the word map
below.

Word

0, , 13

1, , 13

2,,13

3, , 13

4, , 13

5, ,13

6, , 13

7, , 13

Symbol

%SWBGH

%SWFIN

%SWFRC

%SWFIT

%SWVRT

%SWERC*

%SWPIN*

%SWEUJ

1===1
1 Size (in pages) of biggest hole in core 1

1===1
\ Job number of job Being swapped \
\ (Positive if swapping in, negative if swapping out) \
\===\
\ Job number of job being forced to swap out \
1===1
1 Job number of job waiting to swap in 1
1===1
\ Number of IP blocks of virtual core left in system \
\===1
1 Swap error count and flags \
\===1
1 PDB swapping flag \
\===\
\ Segment"UDB-address \
1===\

%SWERC contains the count of swap read or write errors in its left
half; bits 18 to 21 of the right half are the same as status bits
returned by a GETSTS monitor call for the disk; bits 22 to 35 contain
the count of bad 1K blocks.

%SWPIN is -1 if the monitor swaps Process Data Blocks and a swap-in is
in progress.

23-25

GETTAB TABLES

.GTSGN - High Segment Parameters
GETTAB Table 14

CONTENTS

One word for each job running on the system, giving parameters for the
job's high segment.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Job number.

Monitor Table: JBTSGN

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSGN]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

Word Symbol

1===:==========1
0, ,14 .GTSGN* 1 High segment parameters 1

1===1

.GTSGN parameters are as follows:

Bits Symbol Meaning:

0 SN%SPY Job is spying. See bits 18-35 below.
1 SN%SHR Job high segment is sharable.
2 SN%UWP Job high segment is write-enabled.
3 SN%MDL Job high segment has been meddled.
4 Reserved.
5 SN%LOK Job high segment is locked into memory.
6 SN%NCS Job high segment is not cached.

7-9 Reserved.
10 SN%GTS Job high segment was obtained by GETSEG.

18-35 Defined as described below:

The right half of .GTSGN contains one of the following:

o If bit 0 = 0, then the right half contains the job high
segment index number.

o If bit 0 = 1, then the job is spying and the right half
contains the maximum exec virtual address that can be spied
upon.

23-26

CONTENTS

.GTODP - ONCE-On1y Disk Parameters
GETTAB Table 15

GETTAB TABLES

Disk parameters that are established at monitor generation time.

INDEXED BY

Item number.

Monitor Table: ODPTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

1===1
1 Obsolete 1
I==~========1

1,,15 %ODK4S 1 Number of K of disk words available for swapping 1

1===1
2,,15 %ODPRT I In-core protect time multiplier 1

1===1
3,,15 %ODPRA 1 In-core protect time offset 1

1===1
4,,15 %ODPMN 1 Minimum ICPT after requeue to back of PQ2 1

1===1
5,,15 %ODPMX 1 Maximum value of IePT 1

1===1

23-27

GETTAB TABLES

CONTENTS

.GTLVD - Level D Disk Parameters
GETTAB Table 16

Project-programmer numbers for libraries, file data, and other data.
These PPNs are established at monitor generation time.

INDEXED BY

Item number.

Monitor Table: LVDTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

1===1
0, , 16 %LDMFD I MFD PPN [1 , 1] . 1

1==1
1, , 16 %LDSYS I SYS PPN [1,4] I

1===1
2, , 16 %LDFFA I Full file access PPN [1,2] 1

1===1
3, , 16 %LDHLP I Not-logged-in PPN [2,5] 1

1===1
4, , 16 %LDQUE I Queue area PPN [3,3] 1

1===1
5,,16 %LDSPB Addr of first PPB 1 Addr of next PPB to scan 1

===1
6, , 16 %LDSTR First structure data block IOffset to next str data blkl

===1
7, , 16 %LDUNI First unit data block IOffset to nxt unit data blkl

===1
10,,16 %LDSWP First swap unit 1 Offset to next swap unit 1

==1
11,,16 %LDCRN Number of 4-wd blks allocated at ONCE-only 1

===1
12,,16 %LDSTP Standard file protection

==
13,,16 %LDUFP Standard UFD protection

===
14,,16 %LDMBN Obsolete

==~==

15,,16 %LDQUS SIXBIT queue structure name
===

16,,16 %LDCRP CRASH PPN [10,1]
===

17,,16 %LDSFD Maximum depth of .SFDs to write
==

23-28

GETTAB TABLES

===
20,,16 %LDSPP Spooled file protection

===
21,,16 %LDSYP Standard SYS: protection

===
22,,16 %LDSSP Standard SYS:filename.SYS protection

===
23,,16 %LDMNU Maximum negative USETI that reads extended RIBs

===
24,,16 %LDMXT Maximum blocks to transfer with 1 I/O operation

===
25,,16 %LDNEW Experimental SYS PPN [1,5]

===
26,,16 %LDOLD Old SYS PPN [1,3]

===
27,,16 %LDUMD User-mode diagnostics PPN [6,10]

1===
30,,16 %LDNDB Default disk buffers in ring

===
31,,16 %LDMSL Maximum units in active swapping list

===
32,,16 %LDALG ALGOL library PPN [5,4]

===
33,,16 %LDBLI BLISS library PPN [5,5]

===
34,,16 %LDFOR FORTRAN library PPN [5,6]

===
35,,16 %LDMAC MACRO source library PPN [5,7]

===
36,,16 %LDUNV UNIVERSAL file library PPN [5,17]

===
37,,16 %LDPUB Public user library PPN [1,6]

===
40,,16 %LDTED Text editor library PPN [5,10]

1===
41,,16 %LDREL 1 .REL file library PPN [5,11]

1===1
42,,16 %LDRNO 1 RUNOFF library PPN [5,12]

1===
43,,16 %LDSNO 1 SNOBOL library PPN [5,13]

1===
44,,16 %LDDOC 1 .DOC file library PPN [5,14]

1===
45,,16 %LDFAI 1 FAIL library PPN [5,15]

1===
46,,16 %LDMUS 1 Music library PPN [5,16]

\===
47,,16 %LDDEC 1 Standard DIGITAL software [10,7]

1===
50,,16 %LDSLP 1 AOBJN pointer to active swap list·

\===
51,,16 %LDBAS 1 BASIC library PPN [5,1]

1===
52,,16 %LDCOB 1 COBOL library PPN [5,2]

\===
53,,16 %LDMXI \ PDP-11 library PPN [5,3]

1===
54,,16 %LDNEL 1 NELIAC library PPN [5,20] 1

1===1
55,,16 %LDDMP 1 Dump PPN [5,21] 1

1===1

23-29

GETTAB TABLES

56,,16 %LDPOP

57,,16 %LDTST

60,,16 %LDLSO*

61,,16 %LDMBR*

62,,16 %LDBBP*

63,,16 %LDDBS

64,,16 %LDEXP*

65,,16 %LDMIC

66,16 %LDTPS

67, , 16 %LDCTL

70,,16 %LDGAM

71,,16 %LDACT

72,,16 %LDAPL

73,,16 %LDECT

74,,16 %LDTOT

75,,16 %LDDOR

76, ,16 %LDCOR

77,,16 %LDINT

100,,16 %LDD60

101,,16 %LDERT

102,,16 %LDPT1

103,,16 %LDPT2

104,,16 %LDLTH

105,,16 %LDCDA

106,,16 %LDDES

107,,16 %LDPTR

110,,16 %LDMSS

111,,16 %LDSLB

112,,16 %LDUTP

113,,16 %LDINI

114,,16 %LDESZ

===
POP2 library PPN [5,22]

===
TEST library PPN [5,23]

===
If nonzero, call DAEMON to log soft overruns

===
Massbus register pointers

===~===

Pointer to BAT pointer IChannel terminal fail count
===

DBMS library PPN [5,24]
===:==========

Offset of expected channel term word in CDB
===

MIC macro library PPN [5,25]
===:==========

Text processing system library PPN [5,26]
===:==========

.CTL file library PPN [5,27]
===

Games library PPN [5,30]
===

System accounting PPN [1,7]
===:==========

APL library PPN [5,31]
===

RIB error threshold
===:==========

Total RIB errors
===

Addr of first dormant acc table"addr
of last dormant acc table

===
Addr first free 4-wd core blk"O

===
Disk interference count

===
D60 library PPN [5,32]

===
Address of queue table for DAEMON error reporting

Pointer to extract entries for DAEMON queu.e table

Pointer to insert entries for DAEMON queue table

Length of DAEMON queue table
===

Offset of UNICDA in UDB
===

Offset of UNIDES in UDB
===

Pointer to in-core copies of retrieval pointers
===
Max strs in sys search listlMax strs in job search list
===

Offset of UNISLB in UDB
===

Define ersatz device UTP
===

IN! PPN
===

I Size of 1. entry in ERPTBK
1===

23-30

GETTAB TABLES

===
115,,16 %LDKON Pointer to first controller's data block

===
116,,16 %LDLBF Default number of disk buffers

===
117,,16 %LDDVU Offset to device unit number

===
120,,16 %LDCSZ Size of disk cache, in blocks

===
121, ,16 %LDRDC Monitor cache block read calls

===
122,,16 %LDRDH Monitor cache block read hits

===
123,,16 %LDWRC Monitor cache block write calls

===
124,,16 %LDWRH Monitor cache block write hits

===
125,,16 %LDHSF CSHFND calls

===
126, ,16 %LDHSC CSHFND collisions in hash table

===
127,,16 %LDHSL Length of cache hash table

===
130,,16 %LDHST Address of cache hash table

===
131,,16 %LDCHD Address of cache list header

===
132,,16 %LDSPN DDB offset for spooled file name

===
133,,16 %LDSPM DDB offset for spooled parameter block pointer

1===
134,,16 %LDBLK 1 DDB offset for I/O block number

1===
135,,16 %LDRSU 1 DDB offset to retrieval/acc blocks

1===
136,,16 %LDNMB 1 DDB offset for NMB of father SFD

1===
137,,16 %LDUPS 1 PPN for use by mail programs (UPS: device)

1===
140,,16 %LDSEB 1 Address of pointer to first system error block

I===~========

·1 141,,16 %LDROD INumber of times a Data Request Block was not available
1 1===
1 142,,16 %LDFNT 1 Library PPN for printer fonts (FNT:)
1 1===
1 143,,16 %LDSET 1 Bit mask of disk sets mounted on the system.
1 1===
1 144,,16 %LDDET 1 First detached UDB 1 Offset to next UDB
1 I===========~===

1 145,,16 %LDOCS 1 Original (configured) size of disk cache
1 I==================================~====================

1 146, ,16 %LDSRT 1 Swap read error threshold (compare with %LDEcr,)
1 1===:========
1 146,,16 %LDSRC 1 Swap read error count (compare with %LDTOT)
1 +===+

23-31

GETTAB TABLES

Item

60

61

62

64

Symbol

%LDLSO

%LDMBR

%LDBBP

%LDEXP

Contains

A flag for DAEMON. If %LDLSO is nonzero, and if an
overrun is recovered on the first retry, then DAEMON
is called.

Massbus register pointers. The left half contains
the offset into KBD of the number of registers. The
right half contains the offset into UBD of the number
of registers.

Pointers. The left half contains the address of a
byte pointer to the number remaining in the block
access table. The right half contains the offset
into the UDB of the channel terminal fail count.

The offset of the expected channel terminal word in
the channel data block.

23-32

CONTENTS

.GTRCT - Disk Blocks Read
GETTAB Table 17

GETTAB TABLES

One word for each' job running on the system, giving the number of disk
blocks read by the job.

INDEXED BY

Job number.

Monitor Table: JBTRCT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTRCT]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Disk blocks read 1
1===1

The word contains the number of incremental disk block reads in Bits a
to 11 (RC.INC==7777Bll in UUOSYM), and the total number of disk block
reads in Bits 12 to 35 (RC.TTL==77777777 in UUOSYM) .

23:-33

GETTAB TABLES

.GTWCT - Disk Blocks written
GETTAB Table 20

CONTENTS

One word for each job running on the system, giving the number of disk
blocks written by the job.

INDEXED BY

Job number.

Monitor Table: JBTWCT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTWCT]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Disk blocks written 1
1===1

The word contains the number of incremental disk block writes in Bits
o to 11 (WC.INC==7777B11 in UUOSYM), and the total number of disk
block writes in Bits 12 to 35 (WC.TTL==?7777?77 in UUOSYM) .

23-34

.GTSLF - GETTAB Table Data
GETTAB Table 23

GETTAB TABLES

CONTENTS

Data for each GETTAB table.

INDEXED BY

GETTAB table number.

Monitor Table: NUMTAB

CALLING SEQUENCE

MOVE ac, [XWD table, .GTSLF]
GETTAB ac,

error return
normal return

In the calling sequence, table is the symbolic name of the table whose
data is required.

Word Symbol Map

I===~====I

0,,23 .GTSLF 1 GETTAB table data 1
1===1

The word contains one word for each GETTAB table. The word gives the
following information:

Bits

0-8

9-11

Symbol

SL.MAX

SL.TYP

Meaning

If SL.TYP is 1, 2, 3, or 4, this field is the largest
item number in the table. If SL.TYP is 5, this field
is the index into the range table.

Type of

Value

0
1
2
3

4
5

12-13

14-17

18-35

table.

Symbol

.SLNIC

. SLIXI

.SLIXJ

.SLIXS

. SLIXP

.SLIXR

SL.MAC

SL.ADR

Not included in this system.
Indexed by item number .
Indexed by job number.
Indexed by job number or segment
number.
Indexed by job number; data in PDB .
Indexed by negative and positive
offsets (item numbers) .

Reserved for DIGITAL.

A monitor accumulator number.

If SL.TYP=l, 2, or 3, this halfword
contains the executive mode address
of the table. If SL.TYP=4, this
halfword contains the offset in
job's PDB. If SL.TYP is 5, this
halfword is the executive mode
address that would correspond to
offset 0 in the table.

23-35

GETTAB TABLES

.GTDEV - Segment Device or Structure
GETTAB Table 24

CONTENTS

One word for each high segment running on the system, giving the
device or file structure for the sharable high segment.

INDEXED BY

Job number or segment number

Monitor Table: JBTDEV

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTDEV]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is a job number or high-segment number.
Use -2 for the current high segment. For the high segment of a
different job, obtain the segment number using a GETTAB to .G~?SGN.

1===1
1 Device or structure (segments only) 1

1===1

This returns 0 if there is no such segment or if the segment is not
sharable.

23-36

CONTENTS

.GTWSN - Names of wait states
GETTAB Table 25

Names of wait states used in job queues.

GETTAB TABLES

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Item number.

Monitor Table: STSTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the status names in t'he word
map below.

+==+ 1 SIXBIT /namel/ 1 SIXBIT /name2/ 1 SIXBIT /name3/ I
1--1 1 SIXBIT /name4/ 1 SIXBIT /name4/ 1 SIXBIT /name5/ 1
1--1

Each SIXBIT name consists of two characters; three names are stored in
each word. The names are defined in COMMON at STSTBL.

23-37

GETTAB TABLES

.GTLOC - Remote Station Number
GETTAB Table 26

CONTENTS

One word for each job running on the system, giving the station
(ANF-10 network node) number for the job. This is the node at which
the job is logically located (LOCATE call and monitor command) .

INDEXED BY

Job number.

Monitor Table: JBTLOC

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTLOC]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job or use 0 for the ANF-10 node number of the
central station.

1===1
1 Network node number I

1===1

23-38

CONTENTS

.GTCOM - Monitor Command Names
GETTAB Table 30

Monitor command names as SIXBIT words.

INDEXED BY

Item number.

Monitor Table: COMTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

GET TAB TABLES

In the calling sequence, item is the position in the table of the
required command name.

1===1
1 SIXBIT monitor command name 1

1---I
1---I
1 SIXBIT monitor command name 1

1===1

The HELP * command displays a list of these command names.

23-39

GETTAB TABLES

CONTENTS

. GTNMI and . GTNM2 - User Name
GETTAB Tables 31 and 32

Two words for each job running on the system, giving the user's name
in SIXBIT (up to 12 characters).

INDEXED BY

PDB word

Monitor Table: .PTNM1, .PDNM2

CALLING SEQUENCE

uname1:
uname2:

MOVE ac, [XWD jobno, .GTNM1]
GETTAB ac,

error return
MOVEM ac,uname1
MOVE ac, [XWD jobno, .GTNM2]
GETTAB ac,

error return
MOVEM ac,uname2

block 1
block 1

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job); and uname1 and uname2 are locations for
storing the user name.

1===1
I First 6 SIXBIT chars of user name I
1---I
1 Last 6 SIXBIT chars of user name 1

1===1

23-40

CONTENTS

.GTCNO - Charge Number
GETTAB Table 33

GETTAB TABLES

One word for each job running on the system, giving the accounting
charge number for the job.

INDEXED BY

PDB word

Monitor Table: .PDCNO

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTCNO]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 User charge number 1
1===1

23-41

GETTAB TABLES

CONTENTS

GTWCH - Watch Bits
GETTAB Table 35

One word for each job running on the system, giving the watch bits for
the job. These bits are set by defaults, by the SETUUO or
JBSET. monitor call, or by the SET WATCH monitor command.

INDEXED BY

Job number.

Monitor Table: JBTWCH

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTWCH]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Watch flags 1

1===1

Watch flags are as follows:

Flag

0-8
o
1
2
3
4
5
6
7
8
9

10
11

7Bll

12-35

Symbol

JW.WAL
JW.WCX
JW.WDY
JW.WRN
JW.WWT
JW.WDR
JW.WDW
JW.WVR
JW.WMT
JW.WFI
JW.WCN
JW.WFL
JW.WPR
JW.WMS

Meaning

Watch all of the following:
Watch context changes.
Watch daytime at start.
Watch runtime.
Watch wait time.
Watch disk reads.
Watch disk writes.
Watch versions.
Watch magtape statistics.
Watch file.
Message continuations.
First line of message.
Message prefixes.
Message level:

Value

1
2
3
6
7

Symbol

.JWWPR

.JWWOL

.JWWPO

.JWWLG

.JWWPL

Reserved.

Message level

Prefix only.
One line.
Prefix and first line.
Long without prefix.
Prefix and long.

23-42

CONTENTS

.GTSPL - Spooling Control Flags
GETTAB Table 36

GETTAB TABLES

One word for each job running on the system, giving the file spooling
flags for the job. These flags are set by the SETUUO or
JBSET. monitor call, or by the SET SPOOL monitor command.

INDEXED BY

Job number.

Monitor Table: JBTSPL

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSPL]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
\ Spooling control flags \
\===\
Spooling control flags are as follows:

Flag

24-26
27
30
31
32
33
34
35
31-35

Symbol

JS.PRI
JS.DFR

JS.PCR
JS.PCP
JS.PPT
JS.PPL
JS.PLP
JS . PAL

Meaning

Disk priority (spooling).
Deferred spooling (old MPB style) .
Reserved.
Spool card reader.
Spool card punch.
Spool papertape punch.
Spool plotter.
Spool line printer.
Spool all devices.

23-43

GETTAB TABLES

CON'I'ENTS

.GTRTD - Realtime Status Word
GETTAB Table 37

One word for each job running on the system, giving the realtime
status word for the job.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Job number.

Monitor Table: JBTRTD

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTRTD]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Realtime status 1
1===1

23-44

CONTENTS

.GTLIM - Time Limit and Batch Status
GETTAB Table 40

GET TAB TABLES

One word for each job running on the system, giving the time limit and
batch status for the job.

INDEXED BY

Job number.

Monitor Table: JBTLIM

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTLIM]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Time and batch status 1

1===1

Time and batch status flags are as follows:

Bits

o
0-9
10
11
12-35

Symbol

JB.LTL
JB.LCR
JB.LBT
JB.LSY
JB:LTM

Meaning

Time limit set from forced DETACH command.
Core limit (obsolete).
Batch job.
Job using program from system area (SYS:).
Time to go, in jiffies

23-45

GETTAB TABLES

CONTENTS

. GTCM2 - SET Command Names
GETTAB Table 43

The SIXBIT names of all SET monitor commands.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Item number.

Monitor Table: COMTB2

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the command word in the following
table of SET commands.

1===1
1 SET command name in SIXBIT 1

1---I
1---I
1 SET command name in SIXBIT 1

1===1

These names are defined by the SNAMES macro in COMCON and will be
displayed if you type the monitor command HELP *

23-46

CONTENTS

.GTCRS - Hardware Status After Crash
GETTAB Table 44

GETTAB TABLES

Hardware status words after a crash.
subtable for the CDB Variables area.

(Refer to the CPU status block

INDEXED BY

Item number.

Monitor Table: APRSTS

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

\===\
0,,44 CR.SAP \ APR CONI \

\===\
1, ,44 CR.SPI \ PI CONI I

\===1
2,,44 CR. SSW 1 APR DATAl switches 1

\===1

23-47

GETTAB TABLES

CONTENTS

.GTISC - Swap In Scan Tab1es
GETTAB Table 45

Swapper input scan list of queues.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Queue number.

Monitor Table: Queue table for job scanning

CALLING SEQUENCE

MOVE ac, [XWD index, .GTISC]
GETTAB ac,

error return
normal return

1===1
1 Queue-name 1 Addr of ISCAN routine 1
1===1

23-48

CONTENTS

.GTOSC - Swap Out Scan Tab1es
GETTAB Table 46

Swapper output scan list of queues.

GETTAB TABLES

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Item number.

Monitor Table: ISCAN

CALLING SEQUENCE

MOVE ac, [XWD index, .GTOSC]
GETTAB ac,

error return
normal return

1===1
1 Queue-name 1 Addr of OSCAN routine I
1===1

23-49

GETTAB TABLES

CONTENTS

.GTSSC - Scheduler Scan Tables
GETTAB Table 47

Scheduler scan list of queues.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Item number.

Monitor Table: SSCAN

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

1===1
1 Queue-name 1 Ptr to scheduler table 1

1===1

23-50

CONTENTS

.GTRSP - Response Counter Table
GETTAB Table 50

GETTAB TABLES

One word for each job running on the system, giving the system time
when the job began its wait for running. This field is cleared when
the job is placed in the run queue by the scheduler.

INDEXED BY

Job number.

Monitor Table: JBTRSP

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTRSP]
GETTAB ac,

error return
normal return

The value of jobno is the number of a logged-in job. Use -1 for the
current job.

1===1
1 Response bits 1 Time job started waiting 1
1===1

23-51

GETTAB TABLES

CONTENTS

.GTSYS - System-Wide Data
GETTAB Table 51

System-wide data concerning errors and stopcodes.

INDEXED BY

Item number.

Monitor Table: SYSTBL (COMMON)

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol Map
===1

0,,51 %SYERR System-wide hardware error count . 1

===1
1, ,51 %SYCCO Number of times COMCNT was wrong 1

===1
2,,51 %SYDEL Disabled hardware error count 1

===1
3, ,51 %SYSPC Last 3-char stopcode I Last stopcode addr+1 I

===1
4,,51 %SYNDS Number of DEBUG stopcodes 1

===1
5,,51 %SYNJS Number of JOB stopcodes . (+ DEBUGs if stopped) I

===
6,,51 %SYNCP Number of commands processed

===
7,,51 %SYSJN Last stopcode job number

10,,51 %SYSTN Last stopcode TTY name

11,,51 %SYSPN Last stopcode program name

12,,51 %SYSUU Last stopcode monitor call

13,,51 %SYSUP Last stopcode user PC

14,,51 %SYSPP Last stopcode user PPN

15,,51 %SYSCD Last stopcode stopcode name

16,,51 %SYNCS Total number of CPU stopcodes

17,,51 %SYNIS Number of No Dump (INFO) stopcodes

20,,51 %SYSTY Type of last stopcode

21,,51 %SYSUD Date/time of last stopcode

22,,51 %SYSCP CPU number of last stopcode
===

23-52

CONTENTS

.GTWHY - Operator Reload Comments
GETTAB Table 52

ASCIZ string giving the operator's reason for reloading.

INDEXED BY

Word of ASCIZ string.

Monitor Table: WHYTXT

CALLING SEQUENCE

MOVE ac, [XWD word, .GTWHY]
GETTAB ac,

error return
normal return

1===1
1 Operator input, in ASCIZ 1

1===1

23-53

GET TAB TABLES

GETTAB TABLES

.GTTRQ - Time in Run Queues
GETTAB Table 53

CONTENTS

One word for each job running on the system, giving the total time the
job was in the run queues (even if not running all the time) .

NOTE

This table is usually set to 0, because it is
expensive for the CPU to maintain.

INDEXED BY

Job number.

Monitor Table: JBTRQT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTTRQ]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Total time in RUN queues (whether or not running) 1

1===1

23-54

GETTAB TABLES

.GTSPS - Status Word for Subsequent Processors
GETTAB Table 54

CONTENTS

Status bits for processors other than CPUO.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Job number.

Monitor Table: JBTSPS

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSPS]
GETTAB ac,

error return
normal return

1===1
1 Second processor status 1

1===1

Status flags are as follows:

Bits Symbol Meaning:

28 SP.SCI Can use SET CPU monitor command for CPUl.

29 SP.SCO Can use SET CPU monitor command for CPUO.

34 SP.CRl Can run on CPUl.

35 SP.CRO Can run on CPUO.

23-55

GETTAB TABLES

CONTENTS

.GTCnC - CPUn CPU Data Block Constants
GETTAB Tables 55, 57, 61, 63, 65, 67

CPU data block constants for CPUn, where n is a CPU number from a to
5. For CPUs a to 5, respectively, these tables are called .GTCOC,
.GTC1C, .GTC2C, .GTC3C, .GTC4C, and .GTC5C.

INDEXED BY

Item number.

Monitor Table: .CnCDB

CALLING SEQUENCE

MOVE ac, [item + <2 * n>]
GETTAB ac,

error return
normal return

where item is one of the symbols given in the word map below; and n is
the number of a CPU (from a to 5) .

Word Symbol

===
0,,55 %CCPTR Pointer to next CDB Reserved

===
1,,55 %CCSER APR serial number

===
2,,55 %CCOKP Jiffies CPU has been down (OK if less than/equal to 0)

===
3,,55 %CCTOS EPT address for this CPU

==:===========
4,,55 %CCLOG Logical name (CPUn)

=============================~=========================

5,,55 %CCPHY Physical name (CPxn) (x is I, L, or S; n is CPU number)
===

6,,55 %CCTYP* Customer processor code DIGITAL processor code
===

7,,55 %CCMPT* Pointer to bad address subtable in variable area
==

10,,55 %CCRTC Addr of realtime clock (DK10) DDB
===

11,,55 %CCRTD Addr of realtime clock DDB (if precision accounting)
===

12,,55 %CCPAR* Pointer to parity subtable in variable area
===

13,,55 %CCRSP* Pointer to response subtable in variable area
===

14,,55 %CCDKX Number of DK10s on this CPU
====================~=======================:===========

15,,55 %CCEBS Number of EBOX ticks/second on KL10
===

16,,55 %CCMBS Number of MBOX ticks/second on KL10
===

17,,55 %CCNXT* Pointer to NXM subtable in variable area
===

23-56

20,,55 %CCCSB*

21,,55 %CCDSB*

22,,55 %CCSDP*

23,,55 %CCBPA

24,,55 %CCCIP

25,,55 %CCNIP

26,,55 %CCMSS*

Word Symbol

6 %CCTYP

7 %CCMPT

12 %CCPAR

13 %CCRSP

GET TAB TABLES

===
Pointer to CPU status block subtable in variable area

===
Ptr to device status block subtable in variable area

===
Ptr to SBDIAG subtable in variable area

===
Pointer to PERF. counts in variable subtable

===
CI port control block

===
NI port control block

===
Pointer to KS10 memory error subtable

===

Contains

Processor types are as follows:

Value

1
2
3
4
5

Symbol

.CC166

.CCKAX

.CCKIX

.CCKLX

.CCKSX

Processor ~

PDP-6
KA10
KIlO
KL10
KS10

The pointer to the bad address subtable is of the
form:

Bits

0-8
9-17
18-35

Symbol

CC%BLN

CC%BRA

Meaning

Length-1 of bad address subtable.
Reserved.
Offset into .GTCnV of bad address
subtable. The subtable is
documented after the CDB Variables
Table.

The pointer to the parity subtable is of the form:

Bits

0-8
9-17
18-35

Symbol

CC%PLN

CC%PRA

Meaning

Length-1 of parity subtable.
Reserved.
Offset into .GTCnV of parity
subtable. The subtables are
documented after the CDB Variables
Table.

The pointer to the response subtable is of the form:

Bits

0-8
9-17
18-35

Symbol

CC%RLN

CC%RRA

Meaning

Length-1 of response
Reserved.
Offset into .GTCnV
subtable. The
documented after the
Table.

23-57

subtable.

of response
subtables are

CDB Variables

GETTAB TABLES

17 %CCNXT is of the form:

Bits Symbol Meaning

0-8 CC%NLN Length-1 of NXM subtable.
9-17 Reserved.
18-35 CC%NRA Offset into . GTCnV of NXM subtable .

20 %CCCSB is of the form:

Bits Symbol Meaning

0-8 CC%CLN Length-1 of CPU status block
subtable.

9-17 Reserved.
18-35 CC%CRA Offset into .GTCnV of CPU status

block subtable.

21 %CCDSB is of the form:

Bits Symbol Meaning:

a-a CC%DLN Length-1 of device status block
subtable.

9-17 Reserved.
18-35 CC%DRA Offset into .GTCnV of device status

block subtable.

22 %CCSDP is of the form:

Bits Symbol Meaning:

0-8 CC%SLN Length-1 of SBDIAG subtable.
9-17 Reserved.
18-35 CC%SRA Offset into .GTCnV of SBDIAG

subtable.

23 %CCMSS is of the form:

Bits Symbol Meaning:

0-8 CC%MLN Length-1 of KS memory error
subtable.

9-17 Reserved.
18-35 CC%MRA Offset into .GTCnV of KS memory

error subtable.

23-58

CONTENTS

.GTCnV - CPUn CPU Data B10ck Variab1es
GETTAB Tables 56, 60, 62, 64, 66, 70

GETTAB TABLES

CPU data block variables for CPUn, where n is a CPU number (from 0 to
5) . For CPUs 0 to 5, respectively, these tables are called .GTCOV,
.GTC1V, .GTC2V, .GTC3V, .GTC4V and .GTC5V.

INDEXED BY

Item number.

Monitor Table: .CnVBG

CALLING SEQUENCE

MOVE ac, [item + <2 * n>]
GETTAB ac,

error return
normal return

where item is one of the symbols given in the word map below and n is
a CPU number (from 0 to 5) .

Words Symbol

===1
0-4,,56 Reserved 1

===1
5,,56 %CVUPT Uptime in jiffies 1

===1
6-11,,56 Reserved 1

===1
12,,56 %CVLST Lost time 1

===1
13,,56 Reserved I

===========================~==========================='

14,,56 %CVTPE Total memory parity errors
===

15,,56 %CVSPE Spurious memory parity errors
===

16,,56 %CVMPC Multiple memory parity errors
===

17,,56 %CVMPA Absolute addr of last MEM PAR error
===

20,,56 %CVMPW Contents of 1st bad wd on parity sweep
===

21,,56 %CVMPP PC where last MEM PAR was found
===

22-26,,56 Reserved
===

27,,56 %CVABC Address break count
===

30,,56 %CVABA Address break address
===

31,,56 %CVLJR Last job run (obsolete)
===

32-34,56 Reserved
===

23-59

GETTAB TABLES

==:=============
35,,56 %CVSTS Number of job that stopped timesharing on this CPU

===
36,,56 % CVRUN * Operator-controlled scheduling

==:=============
37,,56 %CVNUL Null time

===
40,,56 %CVEDI PC INo. of exec don't care interrupts

===
41,,56 %CVJOB Current job

===
42,,56 %CVOHT Overhead time in jiffies (exec UUOs)

===
43,,56 %CVEVM Max exec virtual memory for LOCK mapping

44,,56 %CVEVU Exec virtual memory used for .LOCK mapping
===

45,,56 %CVLLC No. of times CPU has looped waiting for interlock
==:=============

46,,56 %CVTUC Total monitor call count
===

47,,56 %CVTJC Total job context switch count
===

50,,56 %CVTNE Total nonexistent memory errors
===

51,,56 %CVSNE Total nonreproducible NXM errors
===

52,,56 %CVNJA Number of jobs affected by this NXM'
===

53,,56 %CVMNA First memory address with NXM
===

54,,56 %CVETJ EBOX ticks/jiffy (computed)
===

55,,56 %CVNTJ MBOX ticks/jiffy (computed)
===

56,,56 %CVBPA Phys addr of bad parity word on last AR/ARX trap (KL)
====================================~==================

57,,56 %CVTBD Bad data on last AR/ARX trap
===

60,,56 %CVTGD Good data after recovery from AR/ARX trap
===

61,,56 %CVNPT Number of AR/ARX traps since reload
===

62,,56 %CVAER RDERA results after unusual APR interrupt
===

63,,56 %CVPCN CONI APR after parity interrupt
===

64,,56 %CVSBO SBUS diagnostic function 0, word 0

65,,56 %CVSOA SBUS diagnostic function 0, word 1
===

66,,56 %CVSBI SBUS diagnostic function 1, word 0

67,,56 %CVS1A SBUS diagnostic function 1, word 1
===

70,,56 %CVPPC PC on AR/ARX trap
===

71,,56 %CVPFW Page fail word on last AR/ARX trap
===

72,,56 %CVHPT Number of hard AR/ARX traps
===

73,,56 %CVSPT Number of soft AR/ARX traps
===

74,,56 %CVPTP Number of page table parity errors
===

23-60

75,,56 %CVCSN

76,,56 %CVCLN

77,,56 %CVCLT

100,,56 %CVCSD

101,,56 %CVCRN

102,,56 %CVCEC

103,,56 %CVPTR

104,,56 %CVTSD

105,,56 %CVREP

106,,56 %CVNDB

107,,56 %CVSBR

110,,56 %CVBPF

111,,56 %CVFBI

112,,56 %CVFBO

113,,56 %CVSBI

114,,56 %CVSBO

115,,56 %CVSNC

116,,56 %CVSND

117,,56 %CVSNJ

120,,56 %CVSJN

121,,56 %CVSNM

122,,56 %CVSPN

123,,56 %CVSPP

124,,56 %CVSTN

125,,56 %CVSUP

126,,56 %CVSUU

127,,56 %CVEJN

130,,56 %CVEPN

131,,56 %CVPPI

132,,56 %CVTPI

133,,56 %CVRQS

GETTAB TABLES

===
Number of cache sweeps since reload

(cache sweep serial number)
===

Number of times a job couldn't run due to cache state
===

Lost time accrued due to cache state
===

Incr on swapper wait for cache sweep by another cpa
===

Cache sweep request sweep count (see COMMON.MAC)
===

Count nonrecoverable AR/ARX prty errs involving cache
===

Retry word for AR/ARX parity error trap routine
===

AR/ARX trap routine has saved APR ERA.SB Diags
===

Used by NXM/parity recovery routines
===

Number of times this CPU's doorbell was rung
===

Status blocks read on this CPU
===

o if performance counts being kept (%CCBPA)
===

Number of file blocks input (read)
===

Number of file blocks output (written)
===

Number of swapping blocks input (read)
===

Number of swapping blocks output (written)
===

Number of CPU stopcodes on this CPU
===

Number of DEBUG stopcodes on this CPU
===

Number of JOB stopcodes on this CPU
===

Last stopcode on this CPU - job number
===

Last stopcode name Last stopcode PC+1
===

Program running at last stopcode
===

PPN of user running at last stopcode
===

TTY name of user running at last stopcode
===

User PC at last stopcode
===

UUO at last stopcode
===" ===

Last parity/NXM error on this CPU - job number
===============:===================================~:===

Last parity/NXM error on this CPU - job name
===

CONI PI, at last parity/NXM interrupt
===

CONI PI, at last error trap
===

Requests for scheduler interlock
==~==

23-61

GETTAB TABLES

1===:============1
134,,56 %CVTFI 1 Number of magnetic tape frames read 1

1===1
135,,56 %CVTFO 1 Number of magnetic tape frames wri.tten /

/===/
136,,56 %CVSNI / Number of INFO stopcodes (no dumps) 1

1===1
137,,56 %CVSTY 1 Type of last stopcode on this CPU 1

1===:============1
140,,56 %CVSUD 1 Date/time of last stopcode on this CPU 1

/===1

Notes:

The contents of Offset 36 (%CVRUN) include the following flag bits:

Bit Symbol Meaning

° CV%RUN Don't run jobs.
1 CV%RMV Removed CPU.
2 CV%DET Detached CPU.
3 CV%SPD Suspended CPU.

23-62

CONTENTS

Subtable: Bad Addresses
Subtable of .GTCnV

GETTAB TABLES

Addresses generating parity errors on CPUn.

INDEXED BY

Sequence of bad addresses found.

CALLING SEQUENCE

MOVE ac, [%CCMPT+<2*n>]
GETTAB ac,

error return
ADD I ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

where n is the number of the required CPU (from 0 to 5); and item is
the item number of ' the required item in the subtable.

Word

1===1
o 1 First bad address found 1

1---I
/---I

last 1 Last bad address found 1

1===1

In the data block, last is the sequence number of the last bad address
found. The value of last+l is stored in location %CVPTS in the parity
subtable for the CPU.~e maximum length for the bad address subtable
is stored in bits 0-8 of %CCMPT in table .GTCnC.

23-63

GETTAB TABLES

Subtab1e: Parity
Subtable of .GTCnV

CONTENTS

Parity error data for CPUn, where n is a CPU number (from 0 to 5) .

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%CCPAR+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

where n is the number of the required CPU (from 0 to 5); and item is
one of-the symbols given in the word map below.

Word Symbol

===
0 % CVP LA Last (highest) address of parity error

===
1 %CVPMR Relative (not virtual) addr

in low or high segment of last PAR ERR
===

2 %CVPTS Number of PAR errors found on last sweep
===

3 %CVPSC Number of parity sweeps by monitor
===

4 %CVPUE Number of user-enabled parity errors
==============================~========================

5 %CVPAA AND of bad address on last parity sweep
===

6 %CVPAC AND of bad contents last sweep
===

7 % CVP OA lOR of bad address on last parity sweep
===

10 %CVPOC lOR of bad contents last sweep
===

11 %CVPCS Number of spurious channel errors
===

12 %CVMET MOS errors this minute
===

13 %CVMEC MOS errors sent to TGHA
===

14 %CVTME Total MOS errors
===

23-64

Subtable: Responses
Subtable of .GTCnV

GETTAB TABLES

CONTENTS

Response data.

INDEXED BY

Item number.

CALLING SEQUENCE

In the
to 5) ;

Word

0

1

2

3

4

5

6

7

10

11

12

13

14

MOVE ac, [%CCRSP+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

calling sequence, n is the number of the required CPU (from 0
and item is one of-the symbols given in the word map below.

Symbol Map

1===1
%CVRSO* 1 Sum of all terminal OUT UUO responses 1

1===1
%CVRNO 1 Number of terminal OUT UUO responses 1

1===1
%CVRHO 1 High-sum square of terminal OUT UUO responses 1

1===1
%CVRLO 1 Low-sum square of terminal OUT UUO responses 1

I==============================~========================1
%CVRSI* Sum of terminal IN uua responses 1

===1
% CVRN I Number of terminal IN UUO responses 1

===1
% CVRH I High-sum square of terminal IN uua responses 1

===1
%CVRLI Low-sum square of terminal IN uua responses 1

===1
%CVRSR Sum of CPU quantum requeue responses 1

===1
%CVRNR Number of quantum requeue responses 1

===1
%CVRHR High-sum square of quantum requeue responses 1

===1
%CVRLR Low-sum square of quantum requeue responses 1

===1
%CVRSX* Sum of one of responses terminated by 1 of 3 above 1

===1

23-65

GETTAB TABLES

15

16

17

20

21

22

23

24-31

32

33

34

%CVRNX

%CVRHX

%CVRLX

%CVRSC*

%CVRNC

%CVRHC

%CVRLC

%CVNRI

%CVNXI

%CVNEI

==
Number of responses reflected in %CVRSX

===
High-sum square of responses in %CVRNX

===
Low-sum square of responses in %CVRNX

===
Sum of CPU responses

===
Number of CPU responses

===
High-sum square of CPU responses

===
Low-Sum Square of CPU Responses

===
Obsolete

==:=========
Number of characters received

===
Number of characters sent

==:=========
Number of characters echoed

===

The Responses Subtable contains information concerning
times calculated for user jobs, on a per-CPU basis.
subtable is made up of blocks of four words each. Each
information pertaining to a type of response that is
following format is used for each block:

the response
The responses

block contains
measured.' The

Word 1:

Word 2:

Words 3 - 4:

Sum of responses, where response time is measured in
ticks

Number of responses

A double-word integer containing the sum of squares of
response times.

%CVRSI is the input response time. This value is increased every time
a job runs a program whose first event (of those measured and stored
in %CVRSI, %CVRSO, and %CVRSR) is a terminal input operation. Note
that the input response time is calculated only once for this program,
the first time it does input from the terminal, and is measured from
the time that the monitor receives the command to run the program, to
the time the program does its first terminal input UUo.

%CVRSO is the output response time and is similar to the input
response time. Only the first terminal output done by the program is
calculated and added to this word.

%CVRSR is the quantum requeue response time. This time is measured
for compute-bound jobs (jobs that finish a CPU quantum without
performing a terminal input or output operation), and measures the
amount of time from the time the monitor receives the command to run
the program, to the time the program must be rescheduled for more CPU
time. Again, this time is calculated only once for each program
execution.

%CVRSX is the response time for the first of the above three events to
occur for the job. If a program does an input operation before an
output and before a quantum expires, the input response time (also
calculated in %CVRSI) is stored in %CVRSX. If a second job runs a
program that does an output operation first, the response time for the
output is stored in %CVRSO and added to %CVRSX.

23-66

GET TAB TABLES

Before the values in these locations can be used, however, it is
important to understand the way that response time is calculated. The
intention of counting response time is to understand the amount of
time it takes to reach one of the three measured events (input
operation, output operation, or quantum expiration) . The user may,
for example, type a command. The response time is the lag between the
time the monitor accepts the command and the time it takes to reach
one of the three events. Note that this does not include the time the
user spends typing the command. The response time is counted in
jiffies (ticks).

The Responses Subtable collects response times for the first event for
a job when it begins running a program. If the first event for a
program is to output a * as a command prompt, the amount of time
between the time the "RUN program" command is accepted by the monitor
and the time the monitor sends the * to the user's terminal is
measured as the response time for that program. If a job runs a
program that immediately begins input from the terminal, the response
time for that action is the amount of time between the time the "RUN
program" command is accepted by the monitor and the time the terminal
input operation is attempted. The response times are accumulated for
all the jobs as they are scheduled to run.

23-67

GETTAB TABLES

Subtab1e: Nonexistent Memory
Subtable of .GTCnV

CONTENTS

Nonexistent memory data.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%CCNXT+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

In the calling sequence, n is the number of the required CPU (from a
to 5); and item is one of-the symbols given in the word map below.

Word Symbol

1===1
a %CVNLA 1 Last NXM address

1===
1 %CVNMR 1 Last NXM relative address

1==:=========
2 %CVNTS 1 Number of NXMs found this sweep

1===
3 %CVNSC 1 Number of NXM sweeps done

1===
4 %CVNUE I Number of user-enabled NXMs

1===
5 %CVNAA 1 AND of blad addresses

1===
6 %CVNOA 1 IOR of bad addresses

1==:=========
7 %CVNCS 1 Number of spurious channel NXMs

1==:=========

23-68

Subtable: CPU Status Block
Subtable of .GTCnV

GETTAB TABLES

CONTENTS

CPU status block data.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%CCCSB+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

In the calling sequence, n is the number of the required CPU (from 0
to 5); and item is one of-the symbols given in the word map below.

Word Symbol Map

1===
o %CVSAI 1 APRID

1---
1 %CVSAP 1 CONI APR,

1---
2 %CVSPI 1 CONI PI,

1---
3 %CVSPD 1 DATAl PAG,

1---
4 %CVSPC 1 CONI PAG,

1===
5-10 1 Reserved

1===
11 %CVSER 1 RDERA

1===
12 %CVSRD 1 CONI RH20 for First RH

1---
1---I
1 CONI RH20 for eighth RH 1

1===1
22 %CVSDT 1 Four words for 1

1---I
1 the 4 DTEs 1

1---I
1 on a 1

1---I
1 CPU 1

1===1

23-69

GETTAB TABLES

1===1
26 %CVSEO 1 EPT location 0 1

1---I
1---I
1 EPT location 37 1

1==:=========1
66 %CVSEI 1 EPT location 140 1

1---I
1---I
1 EPT location 177 1

1===1
126 %CVSUI 1 UPT location 500 1

\---I

UPT location 503
===

132 %CVSA6 AC block 6, register 0

133 AC block 6, register 1

134 AC block 6, register 2

135 AC block 6, register 3

136 AC block 6, register 12
===

137 %CVSA7 AC block 7, register 0

140 AC block 7, register 1

141 AC block 7, register 2
===

142(1) %CVSSB First word of SBDIAG data

1---I
1 Up to"50 words -of SBDIAG data \
1==:=========\

Notes:

1. Each SBDIAG Block has the format:

Number of sub-block blocks"offset to first

2. Each sub-block has the format:

Number of words"logical
controller#
function 0 word 1
function 1 word 1

23-70

GETTAB TABLES

Subtable: Device Status Block
Subtable of .GTCnV

CONTENTS

Device status block data.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%CCDSB+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

In the calling sequence, n is the number of the required CPU (from 0
to 5); and item is tEe item number of the required it,em in the
subtable.

The table of device status for devices
results of executing the instructions
.GTDCD (GETTAB 17,,16Table 160).

on this CPU contains the
in the table obtained with

This table and .GTDCD are parallel tables with a one-for-one mapping
of instructions in .GTDCD and resumes here. Intentionally, there is
no order specified. It is intended that a program (such as DAEMON or
SPEAR) should get one instruction from .GTDCD, display its symbol and
device code in octal, and then display the value from this table.

23-71

GETTAB TABLES

Subtable: Background Perfo.rmance Analysis
Subtable of .GTCnV

CONTENTS

Disk/PI usage.

INDEXED BY

Item number.

CALLING SEQUENCE

Word

0

4

10

14

20

24

30

34

40

44

50

54

60

64

70

74

MOVE ac, [%CCSDP+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

Symbol

==
% CVCH 0 RH20 #0 usage

==
%CVCHI RH20 #1 usage

==
%CVCH2 RH20 #2 usage

==
%CVCH3 RH20 #3 usage

==
%CVCH4 RH20 #4 usage

==
%CVCH5 RH20 #5 usage

==
%CVCH6 RH20 #6 usage

==
%CVCH7 RH20 #7 usage

==
%CVPIO PI level 0 (DTE, KLIPA, and KLINI) usage

==
%CVPII PI level 1 usage

==
%CVPI2 PI level 2 usage

==
%CVPI3 PI level 3 usage

==
%CVPI4 PI level 4 usage

==
%CVPI5 PI level 5 usage

==
%CVPI6 PI level 6 usage

==
%CVPI7 PI level 7 usage

==

23-72

Subtable: KS Memory Errors
Subtable of .GTCnV

GETTAB TABLES

CONTENTS

Count of soft and hard memory errors on KS processors.

INDEXED BY

Item number.

CALLING SEQUENCE

Word

o

1

2

3

MOVE ac, [%CCMSS+<2*n>]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
HRRI ac, .GTCOV+<2*n>
GETTAB ac,

error return
normal return

Symbol Map

I==~=========1
%CVKSE 1 Total number of soft memory errors 1

1==1
%CVKSS 1 Memory status register at last soft error I

1==1
%CVKHE 1 Total number of hard memory errors 1

1==1
%CVKHS 1 Memory status register at last hard error 1

1==1

23-73

GETTAB TABLES

CONTENTS

.GTFET - Feature Test Settings
GETTAB Table 71

Feature test settings that describe the features included in the
current monitor.

INDEXED BY

Item number.

Monitor Table: FETTBL

CALLING SEQUENCE

MOVE
GETTAB

error
TLNN

JRST
TRNN

JRST
JRST

ac, [item]
ac,
return
ac,<bit+777777>
not-available-address
ac;,<bit+777777>
feature-test-off-address
feature-test-on-address

In the calling sequence, item is one of the symbols given in the word
map below, and bit is-one of the feature test bits given below the
word map.

Word Symbol

==::============/
0,,71 %FTUUO* Monitor call features

==:=============
1, , 71 %FTRTS* Realtime and scheduler features

===
2,,71 %FTCOM* Command features

===
3, , 71 %FTACC* Accounting features

===
4, ,71 %FTERR* Error control and option features

==
5,,71 %FTDEB* Debugging features

===
6, , 71 %FTSTR* File structure features and parameters

===
7,,71 %FTDSK* Internal disk features and parameters

===
10,,71 %FTSCN* Scanner option features

===
11,,71 %FTPER* I/O features and parameters

===
12,,71 %FTPE2* More I/O features and parameters

===
13,,71 %FTDS2* More internal disk features and parameters

===
14,,71 %FTST2* More file structure features and parameters

===
15,,71 %FTUU2* More monitor call features

===

23-74

GETTAB TABLES

%FTUUO monitor call feature test flags (more at %FTUU2 below) are as
follows:

Bits

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Symbol

F%MDA
F%MLOG
F%MIC
F%EQDQ
F%GALA
F%PI
F%IPCF
F%CCIN
F%PTYU
F%PEEK
F%POKE
F%JCON
F%SPL
F%PRV
F%DAEM
F%GETT
F%2REL

Feature

Mountable device allocator.
MIC log file support.
MACRO command processor.
ENQ./DEQ. monitor calls.
GALAXY (always set).
Software PI system.
IPCF.
CTRL/C intercept.
JOBSTS and CTLJOB monitor calls (always set).
PEEK monitor call.
POKE. monitor call~
Job continuation (always set).
Spooling.
Job privileges (always set).
DAEMON monitor call.
GETTAB monitor call.
2-register relocation (obsolete).

%FTRTS realtime and scheduler feature test flags are as follows:

Bits

23
24
25
26
27
28
29
30
31
32
33
34
35

Symbol

F%CMSR
F%PSCD
F%NSCH
F%VM
F%SWAP
F%SHFL
F%RTC
F%LOCK
F%TRPS
F%RTTR
F%SLEE
F%HIBW
F%HPQ

Feature

Communication measurement.
Scheduler performance gathering.
New scheduler.
Virtual memory (always on) .
Swapper (defined in Sf always on).
Shuffler (obsolete).
DK10 service.
LOCK monitor call.
TRPSET monitor call.
RTTRP monitor call.
SLEEP monitor call (always set).
HIBER and WAKE monitor calls (always set) .
HPQ monitor call.

%FTCOM command feature test flags are as follo·ws:

Bits

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Symbol

F%PJOB
F%EXE
F%MOFF
F%MONL
F%CCL
F%CCLX
F%QCOM
F%SET
F%VERS
F%BCOM
F%SEDA
F%WATC
F%FINI
F%REAS
F%EXAM
F%TALK
F%ATTA

Feature

Extended PJOB command (always set).
.EXE file format.
Set memory off-line.
Set memory on-line.
COMPILE commands (defined in Sf always on).
COMPILE-class commands (always set).
QUEUE and related commands (always set).
SET command and SETUUO monitor call (always set) .
Version.
Batch control files (always set) .
Set daytime and date (always set).
SET WATCH command and monitor call.
FINISH and CLOSE commands (always set) .
REASSIGN command and monitor call (always set) .
E and D commands (always set) .
SEND command (always set).
ATTACH command and monitor call (always set) .

23-75

GETTAB TABLES

%FTACC accounting feature test flags are as follows:

Bits

28
29
30
31
32
33
34
35

Symbol

F%ACCT
F%EMRT
F%FDAE
F%TLIM
F%CNO
F%UNAM
F%KCT
F%TIME

Feature

Accounting support (always set).
KL10 EBOX/MBOX user runtime capability.
File DAEMON.
Limits for time, core, and so forth (always set).
Accounting charge numbers (always set).
User names (always set).
Kilo-core ticks (always set).
Run time (always set).

%FTERR error control and option feature test flags are as follows:

Bits

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Symbol

F%SCA
F%KLP
F%KS10
F%MNXM
F%KL10
F%KA10
F%22BI
F%PDBS
F%KI10
F%METR
F%EXON
F%KII
F%BOOT
F%2SWP
F%EL
F%MS
F%MEMP

Feature

Systems Communication Architecture is supported.
KL-paging is enabled.
KS10 processor.
Nonexistent memory error recovery (always set).
KL10 processor.
KA10 processor (obsolete, always off)
22-bit channel (DF10C) (always set) .
Swapping PDB (obsolete, always off).
KIlO processor.
METER. monitor call.
Execute-only files (always on) .
KIlO instruction check on KA10 (always set) .
BOOT bootstrap (always set).
Multi-swapping devices (always set).
DAEMON error logging.
Multi-processors.
Memory parity error recovery (always set) .

%FTDEB debugging feature test flags are as follows:

Bits

27
28
29
30
31
32
33
34
35

Symbol

F%2SEG
F%RSP
F%WHY
F%PATT
F%TRAC
F%HALT
F%RCHK
F%MONP
F%CHEC

Feature

2-segment monitor (always on).
Response time.
Why reload logging (always set).
Patch space in tables.
Back-tracking features (obsolete, always off) .
Halts in monitor (always set).
Internal redundancy checks (always set).
Monitor write-protected (obsolete, always off) .
Monitor check-summed (obsolete, always off) .

%FTSTR file structure feature test flags (more at %FTST2 below) are as
follows:

Bits Symbol

19 F%DHIA
20 F%DSIM
21 F%NUL
22 F%LIB
23 F%DPRI
24 F%APLB
25 F%AIR
26 F%GSRC
27 F%DRDR
28 F%DSEK

Feature

High availability features.
Simultaneous file update.
NUL: device.
LIB/SYS/OLD/NEW, and other device names (always set).
Disk priority transfers.
Append to last file block.
Append implies read (always set).
Generic device searching.
Rename across directories.
SEEK monitor call (obsolete, always off) .

23-76

29 F%DSUP
30 F%DQTA
31 F%STR
32 F%5UUO

33 F%PHYO
34 F%SFD
35 F%MOUN

Super USETI/USETO monitor calls.
Disk quotas.
Multiple structures (always set).

GETTAB TABLES

Miscellaneous 5-series monitor calls (always set).

Physical devices only (always set).
Subfile directories (SFDs) (always set).
STRUUO monitor call functions (always set).

%FTDSK internal disk parameter flags (more at %FTDS2 below) are as
follows:

Bits

19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35

Symbol

F%SLCK
F%2ATB
F%CBDB
F%LOGI
F%DISK
F%FFRE
F%SWPE
F%DBBK
F%DUFC
F%DETS
F%DMRB
F%DSMC

F%DALC
F%DSTT
F%DHNG
F%DBAD
F%DOPT

Feature

Debug search list code.
2-part access blocks (obsolete, always off)
Debug CB interlock.
LOGIN (defined in S, always on) .
Disk system (defined in S, always on) .
Prevent races in FILFND (obsolete, always off) .
Swap read error recovery (always set).
Bad block marking.
UFD compressing.
Disk error simulator (obsolete, always off).
Multi-RIBs.
Smaller allocation of disk core blocks (obsolete,
always off)
Allocation optimization.
Disk-usage statistics.
Hung disk recovery (always set) .
Disk offline recovery.
Latency optimization (always set).

%FTSCN scanner option feature test flags are as follows:

Bits

20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35

Symbol

F%RP04
F%BDX
F%DCXH
F%TVP
F%TYPE
F%2741

F%CAFE
F%TBLK
F%TPAG
F%DIAL
F%SCLC
F%SCNR
F%MODM
F%630H
F%GP02
F%HDPX

Feature

RP04 support (always set) .
Remote data-entry service.
DC10-H (2741 on DC10) support (obsolete, always off) .
Fancy vertical positioning.
TYPESET-10 features on DC76 (obsolete, always off) .
Support for 2741-like termirials (obsolete, always
off) .
DC76 support (always set).
TTY BLANK command.
PAGE and display knowledge.
Auto-dialer.
Special line control (always set) .
Hardware scanner (always set.)
Modem control.
Single-scanner 630.
Modem support (obsolete, always off).
Truly half-duplex terminals (obsolete, always off) .

23-77

GETTAB TABLES

%FTPER I/O parameter feature test £lags (more at %FTPE2 below) are as
follows:

Bits

19
20
21
22
23
24
25
26
27
28
29
30
30
31
32
33
34

35

Symbol

F%RDBA
F%TAPO
F%TLAB
F%TASK
F%DAS7
F%XTC
F%MSGS
F%HSLN
F%CPTR
F%CRTR
F%CTY1
F%NET
F%REM
F%LPTR
F%OPRE
F%CDRS
F%MTSE

F%TMP

Feature

Read backwards on TU70 (always set).
TAPOP. monitor call (always set).
Tape label support.
Task-to-task network support.
DAS78 (remote 360/370/2780) support.
DA28-C network support.
MSGSER (MPX device) monitor module.
High-speed logical device search (always set).
CDP trouble intercept (always set) .
CDR trouble intercept (always set).
Support device CTY1 (always on) .
Network software.
Remote-station software.
LPT-device error recovery (always set).
Device errors to operator (always set).
CDR superimage mode (always set) .
Magnetic tape SET DENSITY/BLOCK commands (always
set) .
TMPCOR area (always on).

%FTPE2 I/O parameter feature test flags (more at %FTPER above) are as
follows:

Bits

35

Symbol

F%DX10

Feature

DX10 device-chaining (magtapes).

%FTDS2 internal disk parameter feature test flags (more at: %FTDSK
above) are as follows:

Bits

35

Symbol

F%DUAL

Feature

Dual-ported disks (RP04, RP06).

%FTST2 file structure parameter feature test flags (more at %FTSTR
above) are as follows:

Bits

34
35

Symbol

F%SETS
F%PSTR

Feature

Disk sets.
Private file structures.

%FTUU2 monitor call feature test flags (more at %FTUUO above) are as
follows:

Bits

35

Symbol

F%MPB

Feature

MPB batch code.

23-78

.GTEDN - Ersatz Device Names
GETTAB Table 72

GETTAB TABLES

CONTENTS

SIXBIT names of ersatz devices. The first blank name is the end of
the table.

INDEXED BY

Item number.

Monitor Table: SDVTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the item number of the required name.

Word

1===1
o 1 First ersatz device name 1

1---I
1---I

last 1 Last ersatz device name 1

1===1

In this data block, the entry following last is blank (0).

The ersatz device names are defined in the EDEVS macro in COMMOD.

23-79

GETTAB TABLES

CONTENTS

Scanner data.

INDEXED BY

Item number.

Monitor Table:

CALLING SEQUENCE

.GTSCN

.GTSCN - Scanner Data
GETTAB Table 73

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

===
0,,73 %SCNRI Number of receive interrupts

===
1,,73 %SCNXI Number of transmit interrupts

===
2,,73 %SCNEI Number of echo interrupts (in %SCNXI)

===
3,,73 %SCNMB Maximum buffer size

===
4,,73 %SCNAL Number of active lines

===
5,,73 %SCNPS Size of buffer for PIM mode

===
6,,73 %SCNRA Address of receive interrupt routine

===
7,,73 %SCNXA Address of transmit interrupt routine

===
10,,73 %SCNTA Obsolete

===
11,,73 %SCTFT Address of first TTY chunk on free list

==:===========
12,,73 %SCTFP Address of last TTY chunk on free list

===
13,,73 %SCRCQ Number of characters queued or deferred

===
14,,73 %SCRQF Number of characters lost for queue overflow

==:===========
15,,73 %SCNTW Number of time LDBTIC was wrong

==

23-80

CONTENTS

.GTSNA - Last SEND ALL in 9-Bit
GETTAB Table 74

GETTAB TABLES

Data for last send-all message.

INDEXED BY

Item number.

Monitor Table: SNDTMP

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol Map

1===1
0,,74 %SCNAE 1 Byte pointer to end byte in message 1

1===1
1,,74 %SCNAS 1 Byte pointer to first-1 byte in message 1

1===1
2,,74 %SCNAM 1 First word of data in message 1

1===1

1===1
1 Last word of data in message 1

1===1

23-81

GETTAB TABLES

CONTENTS

.GTCMT - SET TTY Command Names
GETTAB Table 75

The SIXBIT names of the SET TTY monitor commands. The last name
followed by a blank word.

INDEXED BY

Item number.

Monitor Table: TTCWDT

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the number of the name to
returned.

Word

1===1
a 1 First SET TTY command name 1

1---I
1--I

last 1 Last SET TTY command name 1

1==1

is

be

In this data block, last is the number-l of SET TTY commands in the
table.

The SET TTY command names are defined with the TTNAME macro in COMCON
and will be displayed if you type the HELP * monitor command,.

23-82

.GTPID - Process Communication ID (IPCF)
GETTAB Table 76

GETTAB TABLES

CONTENTS

All process communication identifiers (PIDs) that have been assigned
by the system. The default length of the table is twice the number of
jobs that can run.

INDEXED BY

Item number.

Monitor Table: PIDTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the number of the desired item in the
table. The entry after the last PID in the table is O.

Word

1===1
o 1 First IPCF PlD 1

1---I
1---I

last 1 Last lPCF PID 1

1===1

In the data block, last is the number-l of PIDs in the table.

23-83

GETTAB TABLES

CONTENTS

.GTIPC - IPCF Misce11aneous Data
GETTAB Table 77

Miscellaneous IPCF data.

INDEXED BY

Item number.

Monitor Table: IPCTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

==1
0,,77 %IPCML Maximum IPCF packet length 1

==1
1, , 77 %IPCSI PID of system-wide [SYSTEM]lNFO I

==1
2,,77 %IPCDQ Default data

==:===========
3,,77 %IPCTS Total packets sent

==:===========
4, , 77 %IPCTO Total packets outstanding

===
5,,77 %IPCCP PlD of [SYSTEM1IPCC

===
6, , 77 %IPCPM PlD mask

==:===========
7, , 77 %IPCMP Length of PlD table

===
10,,77 %IPCNP Number of PIDs now defined

==:===========
11,,77 %IPCTP Total PlDs defined since reload

===
12,,77 %IPCIC Number of IPCF pages currently in core

==:===========
13,,77 %IPCSP PlD of [SYSTEM]GOPHER

==
14,,77 %IPTWT Total number of word transferred

==
15,,77 %IPTPT Total number of pages transferred (word-mode packets)

==
16,,77 %IPOPP Overhead per packet (page-mode packets)

==
17,,77 %IPDPQ Default PID quota

==

23-84

CONTENTS

.GTUPM - Physical Page of User Page Map
GETTAB Table 100

GETTAB TABLES

One word for each job running on the system, giving the physical page
number of the job's page map.

INDEXED BY

Job number or segment number.

Monitor Table: JBTUPM

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTUPM]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job) or a high-segment number (use -2 for the
current high segment) .

For high segment entries, this is the page number of the start of the
high segment. Note that only the left half contains the page number.
The right half contains other data and should be ignored.

1===1
1 User page map page number I

1===1

23-85

GETTAB TABLES

CONTENTS

. GTCMW - SET WATCH Command Names
GETTAB Table 101

The SIXBIT names of the SET WATCH monitor commands.

INDEXED BY

Item number.

Monitor Table: WATTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the number of the desired item in the
table.

Word

1==:=====1
a 1 First SET WATCH command name 1

1--'-----I
1--'-----I

last 1 Last SET WATCH command name 1

1===1

In this data block, last is the number-1 of command names in the
table.

The SET WATCH conunand names are defined with the WATTAB macro in
COMCON and will be displayed if you type the HELP * monitor command.

23-86

CONTENTS

.GTCVL - Current Virtual and Physical Limits
GETTAB Table 102

GETTAB TABLES

One word for each job running on the system, giving the current
virtual and physical page limits for the job.

INDEXED BY

PDB word.

Monitor Table: .PDCVL

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTCVL]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Current virtual limit 1 Current physical limit 1
1===1

23-87

GETTAB TABLES

.GTMVL - Maximum virtual. and Physical Limits
GETTAB Table 103

CONTENTS

One word for each job running on the system,
virtual and physical page limits for the job.

INDEXED BY

PDB word.

Monitor Table: .PDMVL

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTMVL]
GETTAB ac,

error return
normal return

giving the maximum

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Maximum virtual limit 1 Maximum physical limit 1
1===1

23-88

CONTENTS

.GTIPA - IPCF Statistics for Job
GETTAB Table 104

GET TAB TABLES

One word for each job running on the system, giving the IPCF
statistics for the job.

INDEXED BY

PDB word.

Monitor Table: .PDIPA

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTIPA]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 IPCF statistics for job 1

1===1

IPCF statistics bits are as follows:

Bits Symbol

0-17 IP.CQD
18-35 IP.CQC

Meaning

Count of sends since the job logged in.
Count of receives since the job logged in.

23-89

GETTAB TABLES

.GTIPP - IPCF Pointers and Counts
GETTAB Table 105

CONTENTS

IPCF pointers and counts for the system.

INDEXED BY

PDB word.

Monitor Table: .PDIPC

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTIPP]
GETTAB ac,

error return
normal return

1===1
I IPCF pointers and counts I
1===1

IPCF pointer and count bits are as follows:

Bits Symbol Meaning

0-17 Reserved.
18-26 IP.CQP Outstanding sends.
27-35 IP.CQO Outstanding receives.

23-90

CONTENTS

.GTIPI - PID for Job's [SYSTEM]INFO
GETTAB Table 106

GET~AB TABLES

One word for each job running on the system, giving the process
communication identifier for the job's [SYSTEM] INFO.

INDEXED BY

PDB word.

Monitor Table: .PDIPI

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTIPI]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 PID for [SYSTEM]INFO for job 1

1===1

23-91

GETTAB TABLES

.GTIPQ - IPCF Flags and Quotas for Job
GETTAB Table 107

CONTENTS

One word for each job running on the system, giving the IPCF quotas
and flags for the job.

INDEXED BY

PDB word.

Monitor Table: .PDIPQ

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTIPQ]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 IPCF flags and quotas for job 1

1===1

Quota and flag bits are as follows:

Bits Symbol Meaning:

0 IP.CQX Disabled.
1 IP.CQQ Quota set.
3-17 PID quota.

18-26 IP.CQS Send quota.
27-35 IP.CQR Receive quota.

23-92

CONTENTS

.GTABS - iAddress Break Word
GETTAB Table 111

The address break word.

GETTAB TABLES

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

PDB word.

Monitor Table: .PDABS

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTABS]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Address break word 1

1===1

23-93

GETTAB TABLES

CONTENTS

.GTVM - General virtual Memory Data
GETTAB Table 113

Data about virtual page handling.

INDEXED BY

Item number.

Monitor Table: .GTVM

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

1===
0,,113 %VMSWP 1 Swap count

1===
1,,113 %VMSCN 1 Scan count

1===:============
2,,113 %VMSIP 1 Swaps and page operations in progress

1===
3,,113 %VMSLE 1 Number of SWPLST entries

1===
4,,113 %VMTTL 1 Total virtual memory in use

1===
5,,113 %VMCMX I Maximum value of %VMTTL allowed

==
6,,113 %VMRMX Obsolete

==
7,,113 %VMCON Constant used in swap rate computation

===
10,,113 %VMQJB Obsolete

===
11,,113 %VMRMJ Obsolete

===:======~=====

12,,113 %VMTLF Time of last fault
===

13, ,113 %VMSPF System page fault counts
===

14,,113 %VMSW1 Address of SWPLST
===

15,,113 %VMSW2 Address of SW2LST
===

16,,113 %VMSW3 Address of SW3LST
==

17,,113 %VMEXP Time constant exponent
===

23-94

GETTAB TABLES

===
20,,113 %VMDIF Difference between %VMEXP and %VMCON

===
21,,113 %VMMXI Maximum interval for fault-rate computation

===
22,,113 %VMIPC Count of IPCF pages being swapped out

===
23,,113 %VMUPJ Offset of job number in UPMP

===
24,,113 %VMUPR Offset of end of low segment in UPMP

===
25,,113 %VMLST Offset of pointer to swappable DDBs in UPMP

===
26,,113 %VMUPM Virtual address of UPMP

===
27,,113 %VMLNM Offset of pointer to logical names in UPMP

===
30,,113 %VMIC1 Number of swap input requests in SWPLST

===
31,,113 %VMHUA Highest unmapped EXEC address

===
32,,113 %VMPPB Address of beginning of per-process space

===
33,,113 %VMPPE Address of end + 1 of per-process space

===
34,,113 %VMPPJ Address of per-process user JOBDAT

===
35,,113 %VMFCC Offset in UPMP for TMPCOR

===
36,,113 %VMCTA Offset in UPMP for extended channel table pointer

===
37,,113 %VMJDA EXEC virtual address of USRJDA

===
40,,113 %VMRMC Real maximum CORMAX

===
41,,113 %VMMPC Number of modified pages (write-locked page faults)

===

23-95

GETTAB TABLES

CONTENTS

.GTVRT - Paging Rate for Job
GETTAB Table 114

One word for each job running on the system, giving the page rate for
the job.

INDEXED BY

PDB word.

Monitor Table: .PDVRT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTVRT]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Paging rate for job 1 Reserved 1
1===1

23-96

CONTENTS

.GTSST - Schedu1er Statistics
GETTAB Table 115

GETTAB TABLES

Statistics kept by and for the job scheduler.

INDEXED BY

Item number.

Monitor Table: .GTSST

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the
map below.

word

Word Symbol

0,,115 %SSOSO

1,,115 %SSORJ

2,,115 %SSNUL

3,,115 %SSLOS

4,,115 %SSRQC

5,,115 %SSICM

6,,115 %SSMSI

7,,115 %SSAJS

10,,115 %SSTQT

11,,115 %SSEAF

12,,115 %SSEAT

13,,115 %SSRSS

14,,115 %SSCLS

15,,115 %SSJIL

16, ,115 %SSSWP

17,,115 %SSBBQ

1===1
1 Number of jobs run out-of-order to allow them 1

1 to give up resources for swap-out 1

1===1
1 Number of jobs run out-of-order to allow them
1 to give up resources required to run a job
1===
1 Swapper null time
1===
1 Swapper lost time
1===
1 Total number of requeues
1===
1 Obsolete
1===
1 Medium-term scheduling interval
1===
1 Average job size
1===
1 Total runtime quota given to each subclass 1
1===

Obsolete
===

Obsolete
===

Total user time since SCHED. set class parameters
===

Default class for new jobs
===

Percentage of time scheduler scans just-swapped
in list before subqueues

===
Min. no. of ticks swapper scans same primary subqueue

1===1
1 Background batch subqueue 1

1===1

23-97

GETTAB TABLES

20,,115 %SSBBS

21,,115 %SSIOF

22,,115 %SSSET

23,,115 %SSFLG

24,,115 %SSCOR

===
No. of ticks between background batch swaps

===
% of time swapper scans PQ2 incore chain before outcore
=== ° if round-robin scheduling;

date/time when class runtime scheduling initiated
if class scheduling.

==:=========== ° if round-robin scheduling;
Count of CPU classes with nonzero quota

if class scheduling
===

Seconds to wait after swapping out a runnable
job before ignoring incore protect time

===

23-98

CONTENTS

.GTST2 - Second Job Status Word
GETTAB Table 117

GETTAB TABLES

One word for each job running on the system, giving the second job
status word for the job. (The first job status word is in GETTAB
table 0 (.GTSTS).)

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

Job number.

Monitor Table: JBTST2

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTST2]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job).

1===1
1 Second job status word 1

1===1

23-99

GETTAB TABLES

.GTJTC - Job Type and Schedu1er C1ass
GETTAB Table 120

CONTENTS

One word for each job running on the system, giving the job type and
scheduler class for the job. The bits in this word may vary from
monitor to monitor; therefore you should not reference .GTJTC in a
program that is monitor-independent.

INDEXED BY

Job number.

Monitor Table: JBTSCD

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTJTC]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Job type and scheduler class 1

1===1

23-100

CONTENTS

.GTCQP - Scheduler Quota Percent for Class
GETTAB Table 121

The scheduler class quota in percent for each class.

INDEXED BY

Item number.

Monitor Table: CLSSTS

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

GETTAB TABLES

In the calling sequence, item is the class number of the class whose
quota percentage is required.

1===1
1 Class quota in percent for class 1

1===1

23-101

GETTAB TABLES

.GTCRT - Class Runtime Since Quota Set
GETTAB Table 123

CONTENTS

The runtime for each class since the class quotas were set.

INDEXED BY

Scheduler class.

Monitor Table: SIDOFS

CALLING SEQUENCE

MOVE ac, [XWD class, .GTCRT]
GETTAB ac,

error return
normal return

In the calling sequence, class is the class number of the class whose
runtime is required.

1===1
1 Class runtime since quotas set for class 1

1===1

23-102

CONTENTS

.GTSID - Specia1 PID Tab1e
GETTAB Tabl~ 126

GETTAB TABLES

A list of the defined system process identifiers (PIDs) used by the
IPCF facility.

INDEXED BY

Item number.

Monitor Table: .GTSID

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

===
0,,126 %SIIPC [SYSTEM] IPCC

===
1,,126 %SIINF [SYSTEM] INFO

===
2,,126 %SIQSR [SYSTEM] QUASAR

===
3,,126 %SIMDA Mountable device allocator

===
4,,126 %SITLP Magtape labeling process

=======================================~===============

5,,126 %SIFDA File Daemon
===

6,,126 %SIMDC Mountable device coordinator (historical)
===

6,,126 %SITOL Tape AVR process
===:==========

7,,126 %SIACT [SYSTEM] ACCOUNTING
===

10,,126 %SIOPR Operator interface
===

11,,126 %SISEL System error logger
===================================~===================

12,,126 %SIDOL Disk AVR process
===

13,,126 %SITGH [SYSTEM]TGHA
===

14,,126 %SINML DECnet NML listener
===

15,,126 %SIGFR [SYSTEM] GOPHER
===

16,,126 %SICAT [SYSTEM] CATALOG
===

17,,126 %SIMAI [SYSTEM] MAILER
===

23-103

GETTAB TABLES

CONTENTS

. GTENQ - ENQ. IDEQ. S'tatistics
GETTAB Table 127

Statistics and quotas for the ENQ. and DEQ. monitor calls.

INDEXED BY

Item number.

Monitor Table: .EQTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

1===1
0,,127 %EQMSS Maximum string size 1

===1
1,,127 %EQNAQ Number of active queues 1

==1
2,,127 %EQESR Total ENQ. since reload 1

===1
3,,127 %EQDSR Total DEQ. since reload 1

==1
4,,127 %EQAPR Number of active pooled resources

==
5,,127 %EQDEQ Default ENQ. quota

===
6,,127 %EQMMS Maximum pie-slice lock mask block size

===
7,,127 %EQMTS Maximum lock-associated table size

==
10,,127 %EQLTL Minutes that unused lock data is kept

==
11,,127 %EQNDD Number of deadlocks detected

==
12,,127 %EQNTO Number of timeouts

===:==========
13,,127 %EQMAQ Maximum number of active queues

===

23-104

CONTENTS

.GTJLT - LOGIN Time for Job
GETTAB Table 130

GETTAB TABLES

One word for each job running on the system, giving the date/time (in
universal format) that the job logged in.

INDEXED BY

Job number.

Monitor Table: JBTJLT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTJLT]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 LOGIN date/time in universal format 1
1===1

NOTE

This table is adjusted retroactively whenever the
current system date/time is changed with the SET DATE
monitor command, the SET DAYTIME monitor command, or
the appropriate SETUUO function. Subtracting values
in this table from %CNDTM will result in the elapsed
time since the job logged in.

23-105

GETTAB TABLES

CONTENTS

.GTEBT - KLIO EBOX Time in Jiffies
GETTAB Table 131

The number of jiffies of KL10 EBOX time used.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

PDB word.

Monitor Table: .PDEBT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTEBT]
GETTAB ac,

error return
normal return

1===1
1 Jiffies of KL10 EBOX time 1

1===1

23-106

CONTENTS

.GTEBR - EBOX Jiffy Remainder
GETTAB Table 132

GETTAB TABLES

The remainder resulting from dividing the contents of .GTEBT by RTUPS.

The number of jiffies of KL10 EBOX time used.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

PDB word.

Monitor Table: .PDEB2

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTEBR]
GETTAB ac,

error return
normal return

1===1
1 Jiffy remainder - mod(.GTEBT,RTUPS) 1

1===1

23-107

GETTAB TABLES

CONTENTS

.GTMBT - KLIO MBOX Time in Jiffies
GETTAB Table 133

The number of jiffies of KL10 MBOX time used.

Restrict.ion: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

POB word.

Monitor Table: .PDMBT

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTMBT]
GETTAB ac,

error return
normal return

1===:==========1
0,,133 .GTMBT 1 Jiffies of KL10 MBOX time 1

1===1

23-108

CONTENTS

.GTMBR - MBOX Jiffy Remainder
GETTAB Table 134

GETTAB TABLES

The remainder resulting from dividing the contents of .GTMBT by RTUPS.

Restriction: The definitions of the bits in this table may vary
from monitor release to monitor release; therefore you
should not reference this GETTAB in a program that is
monitor-independent.

INDEXED BY

PDB word.

Monitor Table: .PDMB2

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTMBR]
GETTAB ac,

error return
normal return

1===1
1 Jiffy remainder - mod(.GTMBT,RTUPS) 1

1===1

23-109

GETTAB TABLES

.GTRDV - Program Run Device
GETTAB Table 135

CONTENTS

One word for each job running on the system, giving the device the
program is run from.

INDEXED BY

PDB word.

Monitor Table: .PDSTR

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTRDV]
GETTAB ac,

error r~turn
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Device program is run from 1

1===1
NOTE

GETTAB Tables 135, 136, and 137
specification of the last program
Therefore, these words change when you
GET, SAVE, or CORE 0 command.

23-110

store the file
run by the job.
issue a RUN,

CONTENTS

.GTRDI - Program Run Directory
GETTAB Table 136

GETTAB TABLES

One word for each job running on the system, giving the
project-programmer number (PPN) of the directory from which the job's
program is being run.

INDEXED BY

PDB word.

Monitor Table: .PDDIR

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTRDI]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Directory program is run from 1

1===1

NOTE

GETTAB Tables 135, 136, and 137
specification of the last program
Therefore, these words change when you
GET, SAVE, or CORE 0 command.

23-111

store the file
run by the job.
issue a RUN,

GETTAB TABLES

CONTENTS

.GTRFN - Program Run File name
GETTAB Table 137

One word for each job running on the system, giving the SIXBIT name of
the file from which the job's program is being run.

INDEXED BY

PDB word.

Monitor Table: .PDNAM

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTRFN]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 File program is run from 1

1===1

NOTE

GETTAB Tables 135, 136, and 137 store the file
specification of the last program run by the job.
Therefore, these words are changed when you issue a
RUN, GET, SAVE or CORE 0 command.

23-112

CONTENTS

.GTDFL - User Defaults for Job
GETTAB Table 140

GETTAB TABLES

One word for each job running on the system, giving the user defaults
for the job as set by the SET DEFAULT command or SETUUO call.

INDEXED BY

PDB word.

Monitor Table: .PDDFL

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTDFL]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 User defaults 1

1===1

User default bits are as follows:

Bits Symbol

0-8 JD.PRT
9 JD.SDP

12 JD.DAD
13-26 JD.MSK
27-35 JD.BUF

Meaning

Default file protection.
Set if user has set default protection.
Set if LOGIN shouldn't ask about detached jobs.
Reserved for use by DIGITAL.
Number of default disk buffers.

23-113

GETTAB TABLES

CONTENTS

.GTNTP - Network Performance Data
GETTAB Table 141

Data for network performance analysis.

INDEXED BY

Item number.

Monitor Table: NETGTT

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
rr.ap below.

Word Symbol

1===
O! , 141 %NTCOR 1 Number of words of free space now in use

1===
1,,141 %NTMAX Maximum value %NTCOR has reached

===
2,,141 %NTAVG Exponential average of %NTCOR (in K words)

===
3,,141 %NTBAD Number of bad messages received and ignored

===
4,,141 %NTRTP* Ptr to received NCL message type subtable

==:===========
5,,141 %NTRMT* Ptr to received NCL numbered message type subtable

===
6,,141 %NTRDL* Ptr to received NCL data message lengths subtable

===
7,,141 %NTXTP* Ptr to transmitted NCL message type subtable

===
10,,141 %NTXMT* Ptr to transmitted NCL numbered message type subtable

===
11,,141 %NTXDL* Ptr to transmitted NCL data message lengths subtable

===
12,,141 %NTBLC PC of detection IPDB adr of last bad message

==:===========1
13, ,141 %NTBYI Number of input bytes processed 1

===1
14,,141 %NTBYO Number of output bytes processed 1

===1
15,,141 %NTNIP ANF-10/Ethernet Protocol Number 1

(0 if f~nction ii not enabled) 1

==:===========1

23-114

GETTAB TABLES

1===1
16,,141 %NTNIA 1 ANF-10/Ethernet Multicast Address 1

I (Four highest bytes) 1

1===1
17,,141 %NTNIM 1 ANF-10 Ethernet Multicast Address 1

I (Low four bytes, or 0) 1

1===1
20,,141 %NTNII 1 ANF-10/Ethernet broadcase interval maximum 1

1===1
21,,141 %NTNIJ 1 ANF-10/Ethernet FEK Keep-Alive Timer value 1

1===1

The pointers %NTRTP, %NTRMT, %NTRDL, %NTXTP, %NTXMT, and %NTXDL are of
the form:

<length-1>B8+<offset>B35

In this format, length is the maximum length of the subtable; and
offset is the offset into .GTNTP of the start of the subtable.
Subtables are documented on the following pages.

23-115

GETTAB TABLES

CONTENTS

Subtable: Received NCL Message Types
Subtable of .GTNTP

Received NCL message types.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%NTRTP]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
ADDI ac, .GTNTP
GETTAB ac,

error return
normal return

In the calling sequence, item is the number (starting with 0)
required entry in the subtable.

of the

Word

1===:====1
o 1 First received NCL message type 1

1---I
1---'----I

last 1 Last received NCL message type 1

1===1

23-116

CONTENTS

Subtable: Received NeL Numbered Message Types
Subtable of .GTNTP

GETTAB TABLES

Received NCL numbered message types.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%NTRMT]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
ADDI ac, .GTNTP
GETTAB ac,

error return
normal return

In the calling sequence, item is the number (starting with 0) of the
required entry in the subtable.

Word

1===1
o 1 First received NCL numbered message type 1

1---I
1---I

last 1 Last received NCL numbered message type 1

1===1

23-117

GETTAB TABLES

CONTENTS

Subtable: Received NCL Data Message Lengths
Subtable of .GTNTP

Received NCL message lengths by powers of 2.

0 0 bytes, and message too long
1 1 byte
2 2 to 3 bytes
3 4 to 7 bytes

n 2(n-1) to (2*n) -1 bytes

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%NTRDL]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
ADDI ac, .GTNTP
GETTAB ac,

error return
normal return

In the calling sequence, item is the number (starting with 0) of the
required entry in the subtable.

Word

1===:====1
a 1 First received NCL data message length 1

1---I
1---I

last 1 Last received NCL data message length 1

1===:====1

23-118

CONTENTS

Subtab1e: Transmitted NCL Message Types
Subtable of .GTNTP

GETTAB TABLES

Transmitted NCL message types.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%NTXTP]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
ADDI ac, .GTNTP
GETTAB ac,

error return
normal return

In the calling sequence, item is the number (starting with 0) of the
required entry in the subtable.

Word

1===1
o 1 First transmitted NCL message type 1

1---I
1---I

last 1 Last transmitted NCL message type 1

1===1

23-119

GETTAB TABLES

CONTENTS

Subtable: Transmitted NCL Numbered Message Types
Subtable of .GTNTP

Transmitted NCL numbered message types.

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%NTXMT]
GETTAB ac,

error return
ADDI ac,item
HRLZS ac
ADDI ac, .GTNTP
GETTAB ac,

error return
normal return

In the calling sequence, item is the number (starting with 0)
required entry in the subtable.

of the

Word

1===1
o 1 First transmitted NCL numbered message type 1

1---I
1---I

last 1 Last transmitted NCL numbered message type 1

1===1

23-120

CONTENTS

GETTAB TABLES

Subtab1e: Transmitted BeL Data Message Lengths
Subtable of .GTNTP

Transmitted NCL me'ssage lengths by powers of 2.

0 0 bytes, and message too long
1 1 byte
2 2 to 3 bytes
3 4 to 7 bytes

n 2**(n-1) to (2**n) -1 bytes

INDEXED BY

Item number.

CALLING SEQUENCE

MOVE ac, [%NTXDL]
GETTAB ac,

error return
ADD I ac,item
HRLZS ac
ADDI ac, .GTNTP
GETTAB ac,

error return
normal return

In the calling sequence, item is the number (starting with 0) of the
required entry in the subtable.

Word

1===1
o 1 First NCL data message length 1

1---I
1---I

last 1 Last NCL data message length 1

1===1

23-121

GETTAB TABLES

CONTENTS

.GTSPA - Scheduler Performance Data
GETTAB Table 142

Data for analysis of scheduler performance.

INDEXED BY

Item number.

Monitor Table: SCDPER

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

===1
0,,142 %SPDGS DECtape-generated sleeps 1

---I
1,,142 %SPMGS Magtape-generated sleeps 1

===1
2,,142 %SPEWS Event-wait satisfied 1

===1
3,,142 %SPTIS Terminal input satisfied 1

--.---------I
4,,142 %SPTOS Terminal output satisfied 1

===1
5,,142 %SPPIS Pseudo-terminal input satisfied 1

6,,142 %SPPOS Pseudo-terminal output satisfied
===

7, , 142 %SPRS1 Requeues from SS into PQ1

10,,142 %SPRW1 Requeues from WAKE into PQ1

11,,142 %SPRD1 Requeues from DAEMON-satisfied into PQ1

12,,142 %SPR01 Other requeues into PQ1
===

13,,142 %SPQR1 Number of PQ1 jobs that expired quantum runtime

14,,142 %SPQR2 Number of PQ2 jobs that expired quantum runtime

15,,142 %SPQRH Number of HPQ jobs that expired quantum runtime
===

23-122

16,,142 %SPIP1

17,,142 %SPIP2

20,,142 %SPIPH

21,,142 %SPKS1

22,,142 %SPKS2

23,,142 %SPKSH

24,,142 %SPNJ1

25,,142 %SPNJ2

26,,142 %SPNJH

27,,142 %SPTC1·

30,,142 %SPTC2

31,,142 %SPTCH

32,,142 %SPNRS

33,,142 %SPNTS

34,,142 %SPSSS

35,,142

36,,142 %SPMWC

37,,142 %SPSWC

40,,142 %SPSSC

GETTAB TABLES

===
PQl jobs that expired in-core protect time

PQ2 jobs that expired in-core protect time

HPQ jobs that expired in-core protect time
===

Number of swapped in for PQ1 jobs

Number of swapped in for PQ2 jobs

Number of swapped in for HPQ jobs
===

Number of PQ1 jobs swapped in
===

Number of PQ2 jobs swapped in
===

Number of HPQ jobs swapped in
===

Clock ticks charged to PQ1

Clock ticks charged to PQ2

Clock ticks charged to HPQ
===

Number of responses for PQ1/CMQ swap-in

Total ticks of response for PQ1/CMQ swap-in

Sum of squares of PQ1/PQ2 swap-in (2-Word integer)
===

Reserved
===

Number of measurements of wasted core

Sum of wasted core (pages)

Sum of squares of wasted core (2-word integer)
===

23-123

GETTAB TABLES

CONTENTS

.GTVKS - virtual Kilo-Core Ticks for Job
GETTAB Table 143

One word for each job running on the system, giving the number of
virtual kilo-core ticks for the job.

INDEXED BY

PDB word.

Monitor Table: .PDVKC

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTVKS]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 virtual kilo-core ticks 1

1===1

23-124

CONTENTS

.GTUUC - Monitor Calls Executed for Job
GETTAB Table 144

GETTAB TABLES

One word for each job running on the system, giving the number of
monitor calls executed for the job.

INDEXED BY

PDB word.

Monitor Table: .PDUNC

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTUUC]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Count of monitor calls done for job 1

1===1

23-125

GETTAB TABLES

.GTRSn - Next sm Level in Job Run Path
GETTAB Tables 145 through 151

CONTENTS

One word for each job running on the system, giving the SFD level in
the run path for the job. Specifically, the GETTABs for each SFD
level are:

INDEXED BY

GETTAB Name

.GTRSO

.GTRS1

.GTRS2

.GTRS3

.GTRS4

Job number.

CALLING SEQUENCE

Number Monitor

145 .PDSFD
146 .PDSFD+1
147 .PDSFD+2
150 .PDSFD+3
151 .PDSFD+4

MOVE ac, [XWD jobno, .GTRSn]
GETTAB ac,

error return
normal return

Table

In the calling sequence, jobno is the number of a logged-in job (use
-1 for the current job), and .GTRSn is .GTRSO through .GTRS4 for the
appropriate SFD level.

1===1
1 SFD in path program was run from 1

1===1

23-126

CONTENTS

.GTPC - User PC
GETTAB Table 152

GETTAB TABLES

One word for each job running on the system, giving its user program
counter.

INDEXED BY

Job number.

Monitor Table: JBTPC

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTPC]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is' the number of a logged-in job. Use
-1 for the current job.

1===1
1 User PC 1

1===1

23-127

GETTAB TABLES

CONTENTS

.GTCAP - Job Capability Word
GETTAB Table 153

One word for each job running on the system, giving the maximum
privileges that can be enabled for the job.

INDEXED BY

PDB word.

Monitor Table: .PDCAP

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTCAP]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Job capability word (maximum privileges) 1

1===1

Capability bits are as follows:

Bits

o
1-2

3
4
5

6-9

10
11
12
13
14
15
16
17

18-35

Symbol

JP. IPC
JP.DPR

JP.MET
JP.POK
JP.CCC

JP.HPQ

JP.NSP
JP.ENQ
JP . ADM
JP.RTT
JP.LCK
JP.TRP
JP.SPA
JP.SPM

Privilege

IPCF privilege.
Highest disk priority for the job (n is in the range
o to 3) .
METER. privilege.
POKE. privilege.
Privilege to change CPU specification with a command
or a monitor call.
Highest high-priority queue available to the job (n
is in the range 0 to 17 octal).
Device unspooling privilege.
ENQ/DEQ privilege.
System administrator privileges.
RTTRP privilege.
LOCK privilege.
TRPSET privilege.
PEEK and SPY- privilege for any core.
PEEK and Spy privilege for monitor core.
Reserved for users.

23-128

GETTAB TABLES

CONTENTS

.GTIDX - Range of Each GETTAB Table
GETTAB Table 154

The entry numbers of the minimum and maximum entries for each GETTAB
table.

INDEXED BY

Item number

Monitor Table: RNGTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
HLREM ac,minent
HRREM ac,maxent

In the calling sequence, item is the symbol for the table whose range
is required; minent is a memory location for the minimum entry number;
and maxent is a memory location for the maximum entry number.

1===1
1 Min table index (ID.MIN) 1 Max table index (ID.MAX) 1
1===1

.GTIDX contains one word for each GETTAB table. The word gives the
following information:

Bits Symbol Meaning:

0-17 ID.MIN Minimum programs should do a HLRE in case negative

18-35 ID.MAX Maximum programs should do a HRRE in case negative.

23-129

GETTAB TABLES

CONTENTS

.GTGTB - GETTAB Immediate Using Range Tab1e
GETTAB Table 155

Data for each GETTAB table.

INDEXED BY

Item number.

Monitor Table: NUMTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the mnemonic name of the table whose
data is required.

1===1
I GETTAB table data 1
1===1

The word gives the following information for each GETTAB table:

Bits

0-8

9-11

12-13

Symbol

SL.MAX

SL.TYP

14-17 SL.MAC
18-35 SL.ADR

Meaning

If SL.TYP is 1, 2, 3, or 4, this field is the largest
item number in the table. If SL.TYP is 5, this field
is the index into the range table.
Type of table:

Value

o
1
2
3

4
5

Symbol

.SLNIC

.SLIXI

.SLIXJ

.SLIXS

.SLIXP

.SLIXR

Not included in this system.
Indexed by item number.
Indexed by job number.
Indexed by job number or segment
number.
Indexed by job number; data in PDB.
Indexed by item number. Range may
not be 0 to length -1.

Reserved for use by DIGITAL.
A monitor accumulator number.
If SL.TYP=I,2,3,5, this halfword contains the
executive mode address of the table; if SL.TYP=4,
this halfword contains the offset to PDB. If SL.TYP
is 5, this halfword is the executive mode address of
offset 0 into the table.

23-130

GETTAB TABLES

CONTENTS

.GTTNK - Terminal Type Names
GETTAB Table 156

The SIXBIT names of those terminals that may be specifed in
TTY TYPE monitor command or in TRMOP. monitor call
.TOTRM + .TOSET.

INDEXED BY

Item number.

Monitor Table: TTTWDT

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

the SET
functions

In the calling sequence, item is the number of the desired entry in
the table.

1===1
1 First SIXBIT terminal name 1

1---I
1---I
1 Last SIXBIT terminal name 1

1===1

The terminal names are defined with the TTTWDT macro in COMCON.

23-131

GETTAB TABLES

CONTENTS

.GTOBI - Write-to-Operator and Batch Data
GETTAB Table 157

One word for each job running on the system, giving flags defining the
write-to-operator capabilities and batch stream numbers and sets for
the job.

INDEXED BY

PDB word.

Monitor Table: .PDOBI

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTOBI]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the number of a logged-in job. Use
-1 for the current job.

1===1
1 Operator batch data 1

1===1

Operator and batch flags are as follows:

Flag

3B1

7B4

Symbol

OB.WTO

OB.OPR

10 OB.BSS
177B17 OB.BSN

Meaning

Write-to-operator capabilities:

Value

o
1
2

Symbol

. OBALL

. OBNWR

.OBNOM

Meaning

WTO and WTOR allowed .
No WTOR allowed; WTO only .
No messages to operator allowed.

Operator privileges:

Value

o
1
2
3

Symbol

.OBNOP

.OBSOP

.OBHOP

.OBROP

Meaning

No operator privileges
System-wide privileges
Host system privileges
Remote operator privileges

Batch stream number set.
Batch stream number.

23-132

.GTDCD - CONI/DATAI Corresponding to DSB
GETTAB Table 160

CONTENTS

Device status block subtable.

INDEXED BY

Item number.

Monitor Table: DVSXCT

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

1===1
ICONI/DATAI corresp to device status block (see %CCDSB) I
1===1

23-133

GETTAB TABLES

GETTAB TABLES

CONTENTS

.GTNDB - Byte Pointers Into Node Data B10ck
GETTAB Table 161

Pointers into an NDB to facilitate the retrieval of data.

INDEXED BY

Item number.

Monitor Table: NDBTBL

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word Symbol

1===:==========
0, ,161 %NDLEN 1 Length of NDB (not a byte pointer)

1===
1,,161 %NDNXT 1 Address of next NDB

1===
2,,161 %NDNNM 1 Node number

1===:==========
3,,161 %NDSNM 1 Address of SIXBIT station name

I=====================~=================================
4,,161 %NDTIM 1 Timer

===
5,,161 %NDNGH First neighbor entry

===
6,,161 %NDNGL Last neighbor entry

===
7,,161 %NDNGN Node number from %NDNGH (address = 0)

===:==========
10,,161 %NDOPR Address of CPR LDB

===
11,,161 %NDCTJ Station control job number

===
12,,161 %NDLAR Last ACK received

===:==========
13,,161 %NDLAP Last output message acknowledged

===
14,,161 %NDLMS Last message sent

===
15,,161 %NDLMA Last message number assigned

===

23-134

GETTAB TABLES

===
16,,161 %NDLAS Last ACK sent

===
17,,161 %NDLMR Last message received

===
20,,161 %NDLMP Last message processed

===
21,,161 %NDSDT Address of system build date

===
22,,161 %NDSID Address of system identification

===
23,,161 %NDMOM Maximum number of outstanding messages allowed

===
24,,161 %NDDEV First device

===
25,,161 %NDNVR NCL version number of remote node

===

23-135

GETTAB TABLES

CONTENTS

.GTPDB - Job PDB Word
GETTAB Table 162

Number of monitor per process pages, and monitor address of the job's
PDB.

INDEXED BY

Job number.

Monitor Table: JBTPDB

CALLING SEQUENCE

MOVE ac, [XWD jobno, .. GTPDB]
GETTAB ac

error return
normal return

1---1 1 Reserved INumber of monitor INumber of monitor IAddress (monitor) 1
1 Iper-process pages Iper-process pages. lof job's PDB 1

1 1 swapped-in 1 (total) 1 I
1---1
0--------5 6---------------11 12-------------17 18-------------35

The left half of this word is divided into 6-bit fields. Bits 0-5 are
reserved for use by DIGITAL. Bits 6-11 contain the number of
per-process pages to be swapped in, and Bits 12-17 contain the total
number of per-process pages. This word does not include section maps
for non-zero sections.

23-136

.GTEQJ - ENQ./DEQ. Queue Header
GETTAB Table· 163

CONTENTS

ENQ/DEQ queue header.

INDEXED BY

PDB word.

Monitor Table: .PDEQJ

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTEQJ]
GETTAB ac

error return
normal return

1==1
1 ENQ/DEQ queue header 1

1==1

23-137

GETTAB TABLES

GETTAB TABLES

.GTDCN - Default Command Arguments
GETTAB Table 164

CONTENTS

One word for each job running on the system, giving the SET DEFAULT
monitor command argument for the job.

INDEXED BY

Item number.

Monitor Table: DFLTTB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac

error return
normal return

In the calling sequence, item is the number of the command in the list
of SET DEFAULT commands. Use the HELP * monitor command to obtain the
list of SET DEFAULT commands for your system.

1==1
1 Set default command arguments 1

1==1

23-138

CONTENTS

.GTLBS - Large Buffer Size
GETTAB Table 165

GETTAB TABLES

Size of disk buffers as adjusted by program and SET BIGBUF monitor
command. The program sets the buffer size with the SETUUO; this
setting overrides any that might have been set with the monitor
command. The monitor command setting takes precedence when the
program is halted.

INDEXED BY

PDB word.

Monitor Table: .PDL.BS

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTLBS]
GETTAB ac

error return
normal return

1==1
1 Set by program 1 Set by user command 1
1==1

In this data block, the data in the left half (LB.PGM) is the buffer
size as set by the program. The right half (LB.CMD) contains the
buffer size as set by the monitor command SET BIGBUF.

23-139

GETTAB TABLES

CONTENTS

GTPTR - Program To Run
GETTAB Table 166

The name of the program to run. Refer to the .STPGM function of the
SETUUO UUO.

INDEXED BY

PDB word.

Monitor Table: .PDPGM

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTPTR]
GETTAB ac

error return
normal return

1==1
1 SIXBIT program name 1
1==1

23-140

.GTSTM - TiD}e. of Last Reset
GETTAB Table 167

CONTENTS

Time the program was last RESET.

INDEXED BY

PDB word.

Monitor Table: .PDSTM

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSTM]
GETTAB ac

error return
normal return

1==1
1 Universal date/time of last RESET 1
1==1

23-141

GETTAB TABLES

GETTAB TABLES

CONTENTS

.GTDNT - DECnet Queue Headers
GETTAB Table 170

Pointers to tables and information about DECnet-10 Version 3.

INDEXED BY

Item number.

Monitor Table: DCNGTB

CALLING SEQUENCE

Word

0,,170

1,,170

2,,170

3,,170

4,,170

5,,170

6,,170

7,,170

10,,170

11,,170

12,,170

13,,170

14,,170

15,,170

MOVE ac, [item]
GETTAB ac

error return
normal return

Symbol

%DNRCH*

%DNNPH*

%DNETH*

%DNNSJ*

%DNNCH*

%DNNDQ*

%DNLOC

%DNPTR

%DNCHB*

%DNKON*

%DNNRV*

%DNOFS*

%DNRMX

%DNCST

==
Queue header for circuit blocks

==
Queue header for port blocks

DTE control block table
==

Pointer to session control job block for NRTSER
==

Pointer to NRTSER's internal channel table
==

Queue block header for LLINK's node blocks

Obsolete
==

Obsolete
==

Pointer to start of blocks describing DECnet's
fixed-size freecore

==
Pointer to table of DECnet controller names

==
Pointer to current routing vector (indexed by
node number)

==
Pointer to offset from routing vector to
secondary vector

==
Pointer to address of router maximum node number

==
Address of byte pointer to cost

==

23-142

GET TAB TABLES

===;==========
16,,170 %DNHOP Address of byte pointer to hops

==
17,,170 %DNLCL* Address of byte pointer to LOCAL bit

==
20,,170 %DNACT Address of byte pointer to ACTIVE bit

==
21,,170 %DNNDT Obsolete

==
22,,170 %DNSMX Obsolete

==
23,,170 %DNACB Address of DECnet Allocation Control Block

==

For additional information (format of blocks pointed to by this
table), refer to code as follows:

Item Module Label

o D36PAR BEGSTR RC

1 D36PAR BEGSTR EL

2 DTEPRM DTEGEN

3 Format returned is similar to that returned by GETTAB .GTSJB.

4 NRTSER BEGSTR NR

5 D36PAR BEGSTR NN

10 D36COM BEGSTR CH

11 Device names are listed in ASCII.

12 ROUTER BEGSTR RN

13 Contains pointers to output adjacency block for this node.

17 Set only for executor (local host) node.

23-143

GETTAB TABLES

CONTENTS

.GTSJB - DECnet Session Control Block Pointer
GETTAB Table 171

Pointer to DECnet session control job block.

INDEXED BY

PDB word.

Monitor Table: .PDSJB

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTSJB]
GETTAB ac

error return
normal return

1==1
1 Pointer 1
1==1

23-144

CONTENTS

.GTNDA - NOB" Address
GETTAB Table 173

GETTAB TABLES

Pointers into the DECnet-10 node data block address table. This table
contains the address of the NDB for each node.

INDEXED BY

Item number.

Monitor Table: .GTNDA

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac

error return
normal return

In the calling sequence, item is the number of the node in this table.

1==1
1 Node data block address 1
1==1

23-145

GETTAB TABLES

.GTAOT - ANF-IO Object Translation Table
GETTAB Table 174

CONTENTS

The ANF-IO object translation table for each DECnet object type.

INDEXED BY

Item number.

Monitor Table: OBJTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac

error return
normal return

In the calling sequence, item is the NCL object type.

o 11 17 35
1==1
1 Reserved 1 AO. TYP 1 AO . NAM 1
1==1

Bits Symbol Contents

0-11 AO.XXX Reserved for use by DIGITAL.

12-17 AO.TYP Device type (refer to DEVTYP UUO) .

18-35 AO.NAM Device name (in SIXBIT) .

23-146

CONTENTS

GTCTX - Context Tab1e
GETTAB Table 175

GETTAB TABLES

Information about contexts.

INDEXED BY

Item number.

Monitor Table: CTXTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac

error return
normal return

In the calling sequence, item is one of the symbols given in the word
map below.

Word

0,,175

1,,175

2,,175

3,,175

4,,175

5,,175

6,,175

7,,175

10,,175

11,,175

12,,175

13,,175

Symbol Map

%CTJCQ

%CTJPQ

%CTSCQ

%CTSPQ

%CTSCU

%CTSPU

%CTTCS

%CTACE

%CTAPE

%CTPCE

%CTPPE

%CPBDM

===1
Default job context quota 1

===1
Default job saved-pages quota 1

===1
System-wide context quota 1

===1
System-wide saved-pages quota I

===1
System-wide count of contexts in use 1

===1
System-wide count of currently saved pages

===
Total context saves done

===
No. of times auto-push exceeded context quota

===
No. of times auto-push exceeded saved-pages quota

===
No. of times a privileged program exceeded

context quota
===

No. of times a privileged program exceeded
pages-saved quota

===
Byte pointer to returned context directory map

===

23-147

GETTAB TABLES

CONTENTS

.GTIMI - Job Page Count
GETTAB Table 176

Number of memory pages in use by each job.

INDEXED BY

Job number or segment number.

Monitor Table: JBTIMI

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTIMI]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the job number of a logged·-in job
(-1 for your current job), or the segment number of the program.

o 2 3 8 9 14 15 35
1==1
1 1 NZSICN 1 NZSSCN 1 Page Count 1
1==1

Bit definitions:

Bits

0-2
3-8

9-14

Symbol

NZSICN

NZSSCN

15-35 IMGIN

Contents

Reserved
Number of pages to allocate on swap-in for non-zero
section maps.
Number of pages currently allocated to non-zero
section maps.
Number of physical pages in user portion of job.

23-148

CONTENTS

.GTIMO - Swapped-Out Page Count
GETTAB Table 177

Number of physical pages in swapped-out job, on disk.

INDEXED BY

Job number or segment number.

Monitor Table: JBTIMO

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTIMO]
GETTAB ac,

error return
normal return

GET TAB TABLES

In the calling sequence, jobno is the job number of a logged-in job
(-1 for the current job), or the segment number of the program.

o 17 18 35
1==1
1 1 Number of pages on disk 1
1==1

23-149

GETTAB TABLES

CONTENTS

.GTDDB - I/O wait DDB
GETTAB Table 200

Device data block for devices in I/O wait state.

INDEXED BY

Job number.

Monitor Table: JBTDDB

CALLING SEQUENCE

MOVE ac, [XWD jobno, .GTDDB]
GETTAB ac,

error return
normal return

1==1
I Pointer to DDB 1

1==1

23-150

CONTENTS

.GTVIR - Job's Virtua1 Size
GETTAB Table 201

virtual size of program.

INDEXED BY

Job number.

Monitor Table: JBTVIR

CALLING SEQUENCE

MOVE ac, [XWD jobno,. GTVIR]
GETTAB ac,

error return
normal return

GET TAB TABLES

In the calling sequence, jobno is the job number, or -1 for current
job.

The virtual size is returned with Bits 6-14 containing the high
segment size and Bits 15-35 containing the low segment size.

23-151

GETTAB TABLES

CONTENTS

.GTETH - Ethernet Information
GETTAB Table 202

Data about Ethernet configuration.

INDEXED BY

Item number.

Monitor Table: ETHGTB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the symbol representing one of the
words in the following word map.

Word Symbol

1===1
0,,202 %EINEC 1 Number of Ethernet channels on system 1

1===1
1,,202 %EICHN 1 Address of first Ethernet channel block 1

1===1
2,,202 %EINEK 1 Number of Ethernet controllers on system 1

1===1
3,,202 %EIKON 1 Address of first Ethernet controller block 1

1===1
4,,202 %EISYS 1 Offsets to .ECBSYS" .EKBSYS 1

1:==1
5,,202 %EISTS 1 Offsets to .ECBSTS" .EKBSTS 1

1===1
6,,202 %EIBYR 1 Total bytes received 1

1===1
7,,202 %EIBYX 1 Total bytes transmitted 1

1===1
10,,202 %EIDGR 1 Total datagrams received 1

1===1
11,,202 %EIDGX 1 Total datagrams transmitted 1

1===1

23-152

CONTENTS

.GTCCM - Site-specific Commands
GETTAB Table 204

GETTAB TABLES

Site-specific commands, defined using the MONGEN dialog. (See the
Software Installation Guide for information on defining commands with
MONGEN.)

INDEXED BY

Item number.

Monitor Table: CSTTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the table position of the command
name.

1==1
1 MONGEN-defined command name 1

1==1

1==1
1 MONGEN-defined command name 1

1==1

When the user issues a monitor command, the monitor first searches the
table of commands defined using the DECLARE command. If an exact
match is not found, the table of MONGEN-defined commands is searched
next. The HELP * command displays a list of these command names.

23-153

GETTAB TABLES

.GTNXM - Nonexistent Memory Bit Table
GETTAB Table 205

CONTENTS

Bit table for tracking nonexistent memory errors.

INDEXED BY

Item number.

Monitor Table: NXMTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the page number divided by 36.

1==1
IPage 0 1 Page 1 I Page 2 1 Page 3 1 Page 4 1 Page 5 1 ... 1
1==1
IPage 361 Page 371 Page 381 Page 391 Page 401 Page 411 ... 1
1==1

1==1

Each bit in the table represents a page number, where the bit is set
when that page causes a nonexistent memory error. Thus, Word 0
represents Pages 0 through 35, Word 1 represents Pages 36 through 71,
and so forth.

Item %CNNXM in the CPU Data Block points to this table.

23-154

CONTENTS

.GTBTX - BOOT Text String
GETTAB Table 206

GETTAB TABLES

Auto-reload command string to be read by the BOOT program.

INDEXED BY

Item number.

Monitor Table: BOOTXT

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the offset into this table.

1==1
1 First 5 ASCII characters of the BOO TXT command string 1
1==1
1 Next 5 ASCII characters 1
1==1

23-155

GETTAB TABLES

CONTENTS

.GTCHN - Channel Data Block Offsets
GETTAB Table 207

Offsets to information in the channel data block.
used by the DAEMON system utility.

The offsets are

INDEXED BY

Item number.

Monitor Table: .GTCHN

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is the offset in this table.

Word Symbol

1===
0,,207 %CHSYS I Link to next channel data block in system

===
1,,207 %CHLUE Last UDB with hard or soft errors

===
2,,207 %CHICW Initial control word on last error

===
3,,207 %CHICL Number of words pointed to by %CHICW

==
4,,207 %CHMPE Number of memory parity errors

===
5,,207 %CHDPE Number of data parity errors from the device

==
6,,207 %CHNXM Number of NXM errors or Data Late (overrun) errors

===
7,,207 %CHTCW Expected termination control word

==

23-156

CONTENTS

.GTKDB - Controller Data Block Chain Headers
GETTAB Table 210

Address of first KDB for each device type.

INDEXED BY

Item number.

Monitor Table: KDBTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

GETTAB TABLES

In the calling sequence, item is .TYxxx (a device type as defined for
the DEVTYP UUO) .

1==1
1 Address of first KDB for device .TYxxx 1

1==1
1 Address of first KDB for device .TYxxx 1

1==1

23-157

GETTAB TABLES

.GTDDH -- Device Data Block Chain Headers
GETTAB Table 211

CONTENTS

Addresses of the first DDB for each device type.

INDEXED BY

Item number.

Monitor Table: DDBTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

In the calling sequence, item is .TYxxx (the device symbol as obtained
with the DEVTYP UUO) .

1==1
1 Address of first DDB for device .TYxxx I

1==1
1 Address of first DDB for device .TYxxx 1

1==1

23-158

CONTENTS

.GTTCN -- Terminal Class Names
GETTAB Table 212

Names of terminal classes.

INDEXED BY

Item number.

Monitor Table: TCNTAB

CALLING SEQUENCE

MOVE ac, [item]
GETTAB ac,

error return
normal return

GETTAB TABLES

In the calling sequence, item is the terminal class number.

1==1
1 Terminal classes 1
1==1

23-159

GETTAB TABLES

.GTLPN -- Logged-In Project-Programmer Numbers
GETTAB Table 213

CONTENTS

Returns the PPN used by the job for logging in.

INDEXED BY

Job number.

Monitor Table: PDB Word .PDLPN

CALLING SEQUENCE

MOVE ac, [jobno]
GETTAB ac,

error return
normal return

In the calling sequence, jobno is the job number, or -1 for the
current job.

1======================================1
1 Logged-in PPN 1

1======================================1

23-160

APPENDIX A

.EXE FILES

An .EXE file consists of a directory page followed by one or more
pages of data.

The data in the directory page consists of a variable number of
chunks. Each chunk starts with a word containing a code in the left
half and a count of the number of words in the chunk in the right
half. The following codes are defined:

1775 .SVSTA Entri vector block.

1776 .SVDIR Directory.

1777 .SVEND End of directory.

A. 1 THE DIRECTORY

The directory for an .EXE file starts with a .SVDIR header word and
contains one or more 2-word entries that map the pages of the .EXE
file into a process' address space. This format is represented in the
following diagram.

1===1
1 1776 1 Short Count 1
1===1

.SVFPF IFlags 1 1 Page Number 1
1---I

.SVPPC IRepeat Cnt 1 IProcess Page 1
1===1
\ \

\ \
1===1

.SVFPF IFlags I 1 Page Number 1
1---I

.SVPPC IRepeat Cnt 1 IProcess Page 1

1===1

A-I

.EXE FILES

The format of each .SVFPF word is as follows:

Bits Symbol Meaning:

BO SV%HIS Page is in high segment.
Bl SV%SHR Page is sharable.
B2 SV%WRT Page is writable.
B3 SV%CON Page is concealed.
B4 SV%SYM Page is part of symbol table.

5-22 Reserved.
23-35 The page number in the .EXE file at which the

page starts.

The format of each .SVPPC word is as follows:

Bit.s Symbol Meaning

0-8 SV%REP Repeat count (the number of contiguous pages
minus 1 that are described by this entry) .

9-22 Reserved.
23-35 SV%PPN The process page number into which the page

should be loaded.

A-2

APPENDIX B

FILE DAEMON

The File Daemon provides extended file protection. The File Daemon
described in this appendix is a prototype that you may use to help you
in understanding the monitor support for this feature. The File
Daemon is supplied only to serve as a prototype for the File Daemon
you may desire at your installation.

Each installation will have varying types of accounting and file
security measures. Therefore, each installation's File Daemon may be
written to account for these differences and varying requirements.
The DIGITAL-supplied, prototype File Daemon supports access lists and
access logging that is performed on a user's or a system
administrator's request.

B.l USER INTERFACE

The File Daemon allows any user to specify who can and who cannot
access his files. Each user may create a file named ACCESS.USR (which
is described in Section C.3). This file optionally lists the names of
some or all of that user's files and specifies, on an individual file
basis, the users who can and cannot access those files. Under
specific conditions, the File Daemon examines the user's ACCESS.USR
file and may record information, in a separate file called ACCESS.LOG,
regarding specific access requests to the listed files. Note that
ACCESS.USR can be created only by the owner of the particular
directory or by a job logged in under [1,2].

B.2 THE FILE DAEMON

The monitor calls the File Daemon (only if the monitor feature
switch F%FDAE = -1) each time that someone tries to·access a file
has a 4, 5, 6, or 7 protection code in the owner's protection
field and the access fails due to a file protection error or due
directory protection error.

test
that
code
to a

For example, if you protect a file against a specific user and that
user attempts to access your file (with a LOOKUP, ENTER, RENAME, or
FILOP. monitor call), the monitor suspends the execution of the
accessing user's program and it sends a message to the File Daemon.
This message includes the type of access the user is attempting and
that user's project-programmer number. The monitor gives control to
the File Daemon, which looks for your file called ACCESS.USR.
ACCESS.USR must be on the same file structure and in the same
directory area as the file being accessed.

B-1

FILE DAEMON

After examining ACCESS.USR, the File Daemon returns to the monitor the
highest type of access you have specified that the user attempting
access to your file may have. Then, the File Daemon logs the access
request in ACCESS.LOG (if you set the /LOG switch in your ACCESS.USR
file; refer to Table C-1) .

All of this occurs, even when you attempt to access your own files, if
a file has a 4, 5, 6, or 7 protection code in the owner's protection
code field. However, as the file's owner, you can read your file and
change the file's protection code without having the File Daemon
called. Depending on the information you specified in your ACCESS.USR
file, the File Daemon either grants or denies access to the accessing
user.

If the monitor attempts to pass control to the File Daemon, but the
File Daemon is not running, the monitor denies access to the file
unless the program attempting access has full' file access rights
([1,2] or JACCT). The same result occurs when one of the following
conditions occurs:

1. The File Daemon cannot find ACCESS.USR in the same path as
the file being accessed.

2. The File Daemon cannot find ACCESS.USR in a higher-level
directory, when it scans up the directory structure.

If the File Daemon finds ACCESS.USR but cannot find the name of the
accessed file in ACCESS.USR, the File Daemon denies file access to the
accessing user. The File Daemon also denies access to the accessing
user if the File Daemon finds he specified filename in ACCESS.USR but
the project-programmer number does not match any of the
project-programmer numbers you have specified that may access your
file.

All files listed in your ACCESS.USR are assumed to be in the same User
File Directory (UFD) as the file named ACCESS.USR. However, if your
ACCESS.USR is in your UFD and it describes the type of accesses to be
allowed to files contained in the SFDs, the accessing user must
specify the full path to the file in the SFD before the File Daemon
will consider the file specification to match.

The File Daemon treats all file accessors the same. All accesses to a
file having a 4, 5, 6, or 7 protection code in the owner's protection
code field cause the File Daemon to be called when a protection error
results. The File Daemon is always called when a protection error
occurs as a result of the directory protection code. Because of this
equal treatment, you should not do the following:

1. If a [1,2] job attempts to access a file that is protected
such that the File Daemon is called, that job may be denied
access to the file. This is a possible problem, for example,
if the [1,2] job is BACKUP and you have denied (either
implicitly or explicitly) these programs access to your
files. When you do this, your file will not be backed up on
magnetic tape. Therefore, you must accept the responsibility
of backing up your own files.

2. In general, full file access programs will not be allowed to
read your files. Therefore, under most circumstances, QUEUE
would not be allowed to queue a file that was protected such
that the File Daemon was called.

B-2

FILE DAEMON

3. If the file's owner protection code field is such that the
File Daemon is called and the owner has neglected to include
his own project-programmer number in ACCESS.USR for this
file, the File Daemon grants the owner the same type of
access as if a 7 were in the owner's protection code field
(that is, the owner can only read the file or change the

4.

file's protection code.)

ACCESS.USR files may be restored at
Therefore, operators should not perform a
disk using BACKUP when the File Daemon is
full restore is done, the action may
restore files that ACCESS.USR allows them

arbitrary times.
full restore of the
running. If such a
not allow BACKUP to
to BACKUP.

5. The CHKACC monitor call tells a program what a user's file
access privileges are. Therefore, by using CHKACC, a program
can tell if the File Daemon will be called, but it will not
know the access privileges returned by the File Daemon.

B.3 ACCESS.USR

Every user can create his own ACCESS.USR file. Note that ACCESS.USR
files can be created only by the owner of the specific directory or a
[1,2] job. ACCESS.USR is made up of one or more 'command lines'. You
must write each command line in the following format:

file-spec/switches=[ppn]/switches, ... , [ppn]/switches

The file-spec is a full file specification (that is, device:
filename.extension [path]). The File Daemon scans each line in
ACCESS.USR until it matches a file specification on the left of the
equal sign and a project-programmer number on the right. All access
rights will then be determined by that line (there will be no
continued scan). The user should minimally specify one of the
switches synonymous with protection codes (such as, READ, EXECUTE,
ALL, ...) for that file specification; refer to Table C-1. If you do
not specify a switch, a default of /NONE is provided. The possible
switches are listed in Table C-1.

B-3

Table B-1:

Switch

/LOG
/NOLOG

/LOG:n

FILE DAEMON

ACCESS.USR Switches

Meaning

This switch causes the File Daemon to log any
access attempt in the file named ACCESS.LOG. If
you specify this switch, the File Daemon appends
a LOG entry to the end of ACCESS.LOG, which is
found in the same directory as your ACCESS.USR.
The log entry includes the following:

o the date of the access

o the time of the access

o the job number of the accessing job

o the project-programmer number and
associated with the accessing job

o the name of the accessing program

o the type of access attempted

name

o the full file specification of the access
file

o the access permitted, detailing
access was permitted to the file

whether

If you also specify the /EXIT or /CLOSE switch,
the File Daemon includes the following
information in the LOG entry (both the initial
entry and when the file is closed:

o the accessing job's run time

o kilo-core-seconds

o disk reads

o disk writes

If the File Daemon cannot find ACCESS.LOG in
your area, it creates one, giving it the same
protection code as your ACCESS.USR. Note that
the File Daemon can always access ACCESS.USR and
ACCESS.LOG.

This switch allows the File Daemon to log access
attempts based on the switch value. The
following are the legal switch values:

ALL

NONE

B-4

Log all accesses
(same as /LOG).

attempted

Do not log any accesses
as /NOLOG).

(same

/CLOSE
/NOCLOSE

/EXIT
/NOEXIT

/CREATE
/NOCREATE

/PROT:nnn

FILE DAEMON

SUCCESSES

FAILURES

Log only . those accesses that
were permitted.

Log only those accesses that
were not permitted.

If you specify the /LOG switch and the /CLOSE
switch, the File Daemon makes the log entry when
the file is closed.

If the accessing program is executing and you
have specified the /LOG and /EXIT switches, the
File Daemon makes the log entry when the program
has finished execution.

This switch allows a user who would ordinarily
not be allowed to create files in your directory
to do so. This switch is used in conjunction
with one of the ACCESS.USR switches that are
synonymous with protection codes (such as
/RENAME). This switch can appear on either side
of the equal sign. An example of a command line
with the /CREATE switch is as follows:

WONDER.TST=[10,3333]/CREATE/NONE

This command line allows any user to create a
file called WONDER.TST in your directory, but
none of these users may have any other access to
that file.

Another example is

WOND.TST=[10,10]/CREATE/READ, [*,*]/NONE

This command line prevents all users from
accessing the file WOND.TST, but allows user
[10,10] to create a file called WOND.TST.

This switch specifies the protection code with
which a file will be created. This switch is
allowed only on the left side of the equal sign.
The value nnn must be an octal number in the
range 0-777. The file is created with the
specified protection code if the following
conditions occur:

1. You specify the /PROTECTION switch.

2. The File Daemon is called because a user
attempted to create a file in a directory
protected against that user.

3. The File Daemon allows the user to create
the file (determined by the contents of
ACCESS.USR) .

B-S

/PROG:file

/XONLY

/ALL

/RENAME

/WRITE

/UPDATE

/APPEND

/READ

FILE DAEMON

This switch allows the specified program to have
the desired type of access to the file. This
switch can appear only on the right side of the
equal sign in the command line. For example:

ONE. TST/READ= [10,10], [10,65] /WRITE, [1,2]­

#/PROGRAM:SYS:BACKUP

This command line specifies that [10,10] jobs
can read ONE.TST, and [10,65] jobs can read and
write ONE.TST, a job logged in under [1,2]
running BACKUP can read the file. No one else
can access ONE.TST.

You may omit the device specification or you may
specify DSK: or ALL: in the filespec argument
to the /PROGRAM switch. However, this is not a
recommended procedure because there may be
potential security violations. The File Daemon
has no knowledge of your search list; therefore,
the File Daemon treats DSK: identically to
ALL:. It is recommended that the device name be
either a file structure name or an ersatz device
name (LIB: is not allowed, however).

This switch, when it appears in conjunction with
the PROGRAM switch, considers the specified
program to match the program doing the
accesslng, only if the accessing program is
Execute-only.

This switch specifies that ALL access to the
file is allowed. Specified accessors of this
file can change the protection code for the
file, rename, write, execute, update, and append
to the file. (This is equal to protection code
O.)

This switch specifies that rename access is
allowed. Specified accessors of this file can
rename, execute, write, read, update, or append
to the file. (This is equal to protection code
1.)

This switch specifies that write access is
allowed. Desired accessors of this file can
write, read, execute, update, and append to the
file. (This is the same as protection code 2.)

This switch specifies that update access is
allowed. Specified accessors of the file can
update, append, read, and execute the file.
(This is equal to protection code 3.)

This switch specifies that append access is
allowed. Specified accessors of this file can
append, read, or execute the file. (This is the
same as protection code 4.)

This switch specifies that read access is
allowed. Specified accessors of this file can
read or execute the file. (This is the same as
protection code 5.)

B-6

IEXECUTE

INONE

FILE DAEMON

This switch specifies that execute access is
allowed. Specified accessors of this file can
only execute the file. (This is the same as
protection code 6.)

This switch specifies that no access is allowed
to the file. (This is the same as protection
code 7.)

You create an ACCESS.USR file to specify for each file which
project-programmer numbers can access the file and what type of access
those accessors can have. The switches indicate the type of access
allowed.

Switches appearing on the left side of the equal sign affect all
project-programmer numbers appearing on the right side of the equal
sign. However, with the exception of the /PROTECTION switch, the
switch on the left side can be overridden for one or more
project-programmer numbers specified on the right side of the equal
sign. You can override the switches by explicitly specifying another
switch. For example, if the following line appeared in your
ACCESS.USR file:

T ST. T S T / ALL= [10, *] , [11, *] , [27, *] , [1 7 , *] INONE

The File Daemon would allow all members of projects 10, 11, and 27
complete access to the file TST.TST. However, the File Daemon would
not allow members of project 17 to access TST.TST. For
project-programmer numbers other than 10, 11, 27, 17, the File Daemon
will search for a later TST.TST that contains the accessing job's
project-programmer number. If no match is found, the File Daemon
denies the accessing user's request.

Full wildcard specifications are allowed both on the left and right
sides of the equal sign. Comments and continuation lines are allowed
in ACCESS.USR. A comment must begin with a semicolon or an
exclamation point. A continuation line is indicated by inserting a
hyphen (minus sign) immediately proceeding the carriage return that
terminates a line. If there is a syntax error in a line in
ACCESS.USR, the File Daemon ignores that line. You should insure the
accuracy of your own ACCESS.USR files by proofing carefully. If the
following line were in your ACCESS.USR file:

FOO.BAR+[*,*]

The File Daemon would ignore the line because a + sign appears where
an sign should appear. The File Daemon would deny access to all
users desiring access to FOO.BAR, since the File Daemon denies access
to all files whose names do not appear in ACCESS.USR. Since the File
Daemon ignores the line, it does not know that FOO.BAR is listed in
the file.

B-7

FILE DAEMON

The following is an example of an ACCESS.USR file that uses most of
the features of the File Daemon.

Directory user = [13,675]

Directory protection = <700>

File

ACCESS.USR
ACCESS.LOG
F1.TST
F2.TST

F3.TST

F4.TST

ACCESS.USR

Protection

<777>
<777>
<077>
<457>

<477>

<777>

ACCESS.*/NONE=[*,*]

File Daemon will not be called.
Project members may READ, otherwise
call File Daemon.
Only owner may access without File
Daemon.
Call File Daemon on all accesses.

;No one can touch ACCESS.USR and
ACCESS.LOG including [1,2] and
JACCT users. Note that these files
cannot be backed up if the File
Daemon is running.

ALL:*.*/READ/LOG=[1,2]/PROGRAM:SYS:BACKUP/XONLY

;Allow access from BACKUP (from
SYS, execute only, and running
under [1,2] to read the file and to
make LOG entry.

F?TST/LOG=[10,11]/NONE, [10,*]/EXECUTE/EXIT

;Log all access attempts. No
access allowed to [10,11], but
other project members [10,*] can
execute the file. Log entries are
made when the accessing program
exits.

./CREATE/PROTECTION:055=[12,21]/ALL, [12,17]

; [12,21] has privileges for all
files (except ACCESS.*) and may
create files that have a protection
of 055. [12,17] cannot access any
file (/NONE is a default) but may
create files. No log entries will
be made.

./CREATE/PROTECTION:777/LOG=[123,456]/NONE

; [123,456] may create files at will
but may not access them (such as a
student turning in homework) .

B-8

FILE DAEMON

File Protection

.[13,675,A]/ALL/PROTECTION:057/CREATE=[1,2]/LOG

[13,675] .UFD/LOG/READ=[*,*]

F3.TST/LOG=[12,3]/EXECUTE
./LOG=[12,3]/NONE

.=[*,*]/NONE

; [1/2] has all privileges in this
SFD and may create files with a
protection code of 057.

;Anyone may read this directory as
a file.

; [12,3] can only execute F3.TST.

;No other access is granted and no
LOG entry is made.

Note that entries are scanned from left to right and top to bottom.
The scan stops on the first match of a file name on the left side of
the equal sign and a project-programmer number on the right side of
the equal sign.

When you create your ACCESS.USR file, you should take care to see that
a wild card specification will not match in a line earlier than a
specific specification in a later line. As a general rule, place
specific statements first in the ACCESS.USR file, followed by more
general "catch all" statements. If you want to log entries, you must
use the /LOG switch (and any of the other switches) on every line for
which that switch applies.

B.4 MONITOR INTERFACE TO A FILE DAEMON

A File Daemon is a privileged program that can be used for the
following purposes:

1. Overseeing file accesses.

2. Aiding in proprietary billing.

3. Tracking program usage.

The interface between the monitor and the File Daemon that is
described in this section is supplied and supported by Digital.

There is a privileged program called the File Daemon. Digital
supplies one unsupported version of a File Daemon, which is described
in the preceding sections of this appendix. But, each installation
should write its own File Daemon, because each installation will vary
on its requirements for such a program.

B-9

FILE DAEMON

When a File Daemon is running, the monitor calls it every time someone
tries to access a file or a directory that has a 4, 57 6, or 7 code in
the owner's protection code field and the access fails due to a
protection error. So that the monitor knows there is a File Daemon,
the following must occur:

1. The feature test switch F%FDAE must be set to -1,
the condition.

to enable

2. The program that will be the File Daemon must be privileged
(that is, it must be running under [1,2] or running with the
JACCT bit set).

3. This program must send an IPCF request to [SYSTEM] IPCC (code
6, .IPCSC) requesting a special PID.

4. This program must then send a request to [SYSTEM] IPCC
specifying code 24 (.IPCWP). This code requests that the
File Daemon's PID be entered in the Special PID table.

After each request to [SYSTEM] IPCC, the File Daemon receives
verification that the function occurred. After the verification
resulting from the File Daemon specifying code 24, the monitor sends
an IPCF packet to the File Daemon each time that a protection failure
occurs on a file or a directory.

The message portion of the IPCF packet that the monitor sends to the
File Daemon when a protection failure occurs has the following format:

+---+
Type of access I Code

File structure name

File name

File name extension

Project number Programmer number

Sub-file directory 1 or 0

Sub-file directory 2 or 0

Sub-file directory 3 or 0

Sub-file directory 4 or 0

Sub-file directory 5 or 0
+---------------------------------------_._----------------------------+

In this data block, the type of access is the type of access being
attempted to the file. The Access Type Codes are listed in Table C-2.
And code is a File Daemon Code, which are listed in Table C-3.

The remaining words in the IPCF packet message are the full file
specification for the file being accessed.

B-10

FILE DAEMON

Table B-2: Access Codes

+--+
I Code I Symbol I Meaning I
+-------+------------+---------------------------+

o I FNCNAA I No access is allowed.

1 FNCEXE Execute.

2 FNCRED Read.

3 FNCALL Allocate.

4 FNCDLL Deallocate.

5 FNCAPP Append.

6 FNCUPD Update.

7 FNCCRE Create.

10 FNCSUP Supersede.

11 FNCTRN Truncate.

12 FNCCAT Change attributes.

13 FNCDEL Delete.

14 FNCCNM Change name.

15 I FNCCPR Change protection.
+--+

Table B-3: File Daemon Codes

Code Mnemonic

1 .FLDCA

2 .FLDIC

3 .FLDOC

Meaning

This code is set when the
has performed a LOOKUP,
FILOP monitor call and a
occurred.

accessing program
ENTER, RENAME, or

protection failure

This code is set as a result of a previous
call to the File Daemon, the File Daemon
requested that it be called when the program
issues a CLOSE. This code is set as the
result of the program issuing an input CLOSE.
Refer to Table C-4, flag bit 1.

As a result of a previous call to the File
Daemon, the File Daemon requested that it be
called when the program issues a CLOSE. This
code is set as the result of the program
issuing an output CLOSE. Refer to Table C-4,
flag bit 1.

B-ll

4 .FLDXT

5 .FLDPG

6 .FLDDA

7 .FLDPS

10 .FLDPR

FILE DAEMON

This code is set as a result of a previous
call to the File Daemon, which occurred
because a job tried to issue a R, RUN, or GET
command or a RUN monitor call and a protection
error resulted. The File Daemon requested
that the monitor call it when the accessing
program terminates execution. The termination
of a program's execution is defined by the
terminal user or by the batch .CTL file,
either of which may type something that
logically supersedes the core image. The
program may also terminate its own execution
by performing a RUN monitor call. Refer to
Table C-4, flag bit 2.

This code is set because a job tried to
execute a protected program by issuing a R,
RUN, or GET command or a RUN monitor call.

This code is set because a directory
protection failure occurred.

This code is set when a PUSH occurs from a
program that has /EXIT specified.

This code is set when a suspended program
(with /EXIT) resumes with a POP.

The File Daemon responds to the monitor by sending the monitor an IPCF
packet. The packet's message is in the following format:

+---+
1 reserved 1 reserved 1 job number 1

1---I
1 flags 1 0 1 create 1 access 1

+---+
0-----3 4---8 9-------17 18-------27 28----------35

Where:

job number is the number of the job attempting to access a file.

flags are bits 0 through 3 which are described in Table C-4.

create is the protection code at which the file will be created
if the specified job is creating a file.

access is the highest access this job is allowed to this file.
Refer to Table C-3.

The monitor grants or denies the job's access to the file based on the
access value and the type of access specified by the accessing job.
If the access value in the packet from the File Daemon to the monitor
is greater than or equal to the type of access the accessing job
desired, the monitor grants the job access to the file.

B-12

FILE DAEMON

Tab1e B-4: Fi1e Daemon F1ags

+--+
I Code I Symbol I Meaning I
+-----------+----------+----~------------------------------------+

a I FL.DAA I The monitor is to call the File Daemon

1

2

3

777B17

I I every time this file is accessed.
I I For example, if this bit is not set
I I and the program did a RENAME before a
I I LOOKUP, the File Daemon would get
I I called only on the LOOKUP.

FL.DCL I The File Daemon is called when the file
I is CLOSED.

FL.DXT I The File Daemon is called when this
I program terminates execution.

FL.DSP If the program is attempting to create
a file and this bit is set, the monitor
assumes that the protection code for
the file is in bits 9 through 17 of
this word.

FL.DPT I Protection code supplied by File Daemon.

777777B35 I FL.DHA I Highest access allowed.
+--+

B-13

GLOSSARY

Absolute virtual address

AC

A fixed location in user virtual address space that cannot be
relocated by the software. However, it can be translated to a
physical address by the hardware. For example, locations 0 - 17
are mapped into the current AC block by the hardware. The
corresponding locations in physical memory are never referenced.

Refer to accumulator.

ACCESS.USR

Each user can create his own ACCESS.USR file to specify who can
and cannot access his files. See Appendix C.

Access date

The date on which a file on disk was last read or written. If a
file has not been read or written since it was created, the
creation date and the access date are the same. The access date
is kept in the Retrieval Information Block (RIB) for the file.

Access privileges

Attributes of a file that specify the class of users allowed to
access the file and the type of access they are allowed.

Access table

A table stored in the monitor that reflects the status of a file.
There is one access table for each file that is open for reading
or writing, in addition to those files that were recently closed.
This information is kept in the monitor in order to decrease the
time needed to access the files.

Accumulator

One of the registers and associated equipment in the arithmetic
unit in which data can be placed while it is being examined or
manipulated (for example, the 16 high-speed registers at address
locations 0 through 17).

Gloss-1

GLOSSARY

Active search list

An ordered list of file structures established for each job
running on the system. This list is used to translate references
to the generic device DSK into the actual file structures to be
used. This means if a user reads a file on device DSK, the
system will look for the file on structures contained in the
active search list. The active search list is separated from the
passive search list by the FENCE. The SETSRC program ca.n be used
to alter the contents of the job's active search list.

Address

1. An identification represented by a name, label, or number for
a register, a location in storage, or any other da.ta source
or destination in memory or on an addressable storage device.

2. The part of an instruction that specifies the location of an
operand of the instruction (also called "effective a.ddress") .

?ADDRESS CHECK Error

This error can occur when a dump mode I/O command list or
LOOKUP/ENTER/RENAME block is not in your low segment. It can
also occur when an invalid address is encountered during any I/O
UUo processing.

Address mapping

The assignment of user virtual address
address space in computer memory.
performed by the TOPS-I0 monitor and
programs.

ALL search list

space to the physical
This is automatically

is transparent to user

The list of all structures currently
physically mounted. This list is
monitor call.

known to the system and
the output from the SYSSTR

Alphanumeric

The set of characters that includes the letters of the alphabet
(A through Z), and the numerals (0 through 9).

Arithmetic unit

The portion of the central processing unit in which arithmetic
and logical operations are performed.

ASCII code

American Standard Code for Information Interchange. A 7-bit code
in which textual information is recorded. The ASCII code can
represent 128 distinct characters. These characters are the
upper and lower case letters, numbers, common punctuation marks,
and special control characters.

Assembly language

The machine-oriented symbolic programming language specific to a
given computing system. The assembly language for TOPS-I0 is
MACRO.

Gloss-2

GLOSSARY

ASCIZ

A 7-bit ASCII string terminated by a zero byte. The string is
word aligned (left justified) unless specified by a byte pointer.
The zero byte is not included in the string length, but must be
present.

Assigning a device

Associating an I/O device to the user's job either for the
duration of the job or until the user relinquishes it.

Associated variable

Returned in the AC on a normal return for the IPCFR monitor call
and returned to the status word when a IPCF-related software
interrupt is generated.

Associative memory

High-speed, 32-word memory that is used by the KIlO processor to
provide address mapping information for the operating system and
user programs·.

Asynchronous

1. Pertaining to the procedure by which the hardware can begin a
second operation before waiting for the first operation to be
completed.

2. Pertaining to the method of data transmission in which each
character is sent with its own synchronizing information and
no fixed time between consecutive characters.

Backspace

To move back the logical position in a file or on a line
according to a prescribed format. For example, magnetic tape
units can be backspaced over a file or a record. Some terminals
allow backspacing in order to permit over-printing.

Bad Allocation Table (BAT) block

A block written on every disk unit to enumerate the bad regions
of consecutive bad blocks on that unit so that they are not
reused. The BAT blocks appear in the HOME.SYS file.

BADBLK.SYS

Baud

The file that contains all bad blocks. It may be read but not
deleted and is useful for testing error recovery.

A unit of signalling speed equal to the number of discrete
conditions or signal events per second.

Binary code

A code that uses two distinct characters only; usually these
characters are 0 and 1.

Gloss-3

Bit

GLOSSARY

A binary digit (that is, a or 1). Usually refers to the smallest
unit of information storage, which can be on or off. A word on
TOPS-10 has 36 bits.

Block

A set of records, words, characters, or digits handled as a unit.
On the TOPS-la, a 128-word unit of disk storage allocated by
hardware and software; 128 words are always written ff adding
zeroes as necessary, although fewer than 128 words can be read.

Bootstrap

A routine designed to bring itself into a desired state by means
of its own action (for example, a machine routine whose first
instructions are sufficient to bring the rest of itself into the
computer from an input device) .

Breakpoint

A location at which program operation is suspended in order to
examine partial results. Breakpoints are used in the debugging
process.

Break Set

The set of characters used by the monitor to determine the end of
a command line typed on the terminal. The default terminal break
set includes <ESC> and <RET>, but your program can be enabled to
recognize any set of characters as break characters.

Buffer

A device or area used to temporarily hold information being
transmitted between two processes, such as external and internal
storage devices or I/O devices and internal high-speed storage.
A buffer is often a special register or a designated area of
internal storage.

Buffer pointer

A position indicator that is located between two charactE~rs in a
buffer, before the first character in the buffer, or after the
last character in the buffer, to indicate the position at which
the next operation will begin.

Buffer Ring

Bug

A ring of buffers used to allow a program to
efficiently. In a buffer ring, the program
instructions while the monitor is filling buffers.

perform I/O
can execute

A deficiency in a program that causes it to execute incorrectly,
or a mistake made by a person when writing a program or designing
hardware.

Any contiguous set of bits within a word.

Gloss-4

Call

Call

GLOSSARY

(verb) To transfer control to a specified closed subroutine.

(noun) An instruction used to pass control to another program,
such as a "monitor call."

Caller

The program or routine which calls another program or routine.
The person who invoked the caller is referred to as the user. As
an example, the user types commands to SCAN which stores them in
core. The caller then calls WILD to study this block and select
files. Thus the user has specified the request but the caller
actually invoked WILD.

Calling sequence

Card

A specified arrangement of instructions, pointers, and data
necessary to pass parameters and control to, and return from, a
given subroutine.

A punched card with 80 vertical columns, each containing 12
vertical rows. Also, a unit of computer circuitry.

Card column

One of the vertical lines of 12 punching positions on a punched
card.

Card field

A fixed number of consecutive card columns assigned to a unit of
information.

Card hopper

The tray on a card processing machine that holds the cards to be
processed and makes them available to the card feed mechanism.

Card row

One of the horizontal lines of punching positions on a punched
card. A row is 80 columns long.

Card stacker

The tray on a card processing machine that receives processed
cards.

Carriage return

CDP

1. The operation that prepares for the next character to be
printed or displayed at the first position on the same
(current) line on a terminal or line printer.

2. The ASCII character with the octal code 015.

The generic device name for the card punch device.

Gloss-5

GLOSSARY

CDR

The generic device name for the card reader device.

Central processing unit (CPU)

The portion of the computer that contains the arithmetic and
logical facilities, control circuits, and basic I/O and memory
interfaces. There can be more than one CPU in a computing
system.

Central site

CFP

The location of the central computer in a computer network. This
term is used in conjunction with remote communications to mean
the location of the TOPS-10 central processor as distinguished
from the location of the remote station. Refer to "Host."

See Compressed File Pointer.

Charmel

1. A path along which signals can be sent,
channel.

such as an output

2. A portion of TOPS-10 that can overlap I/O transmission while
computations proceed simultaneously (such as a data channel) .

Character

Clear

One symbol of a set of elementary symbols such as those
corresponding to the keys on a typewriter. The characters
usually include the decimal digits 0 through 9, the letters A
through Z, punctuation marks, operation symbols, and any other
special symbols which a computer may read, store, or write.

To erase the contents of a location, a block of memory, or a mass
storage device by replacing the contents with blanks or zeroes.

Cluster

A single- or multi-block unit of disk
number of blocks per cluster is
structure.

Command

storage assignment. The
a parameter of each file

The part of an instruction that ca.uses the computer to execute a
specified operation.

Command List

Specifies the memory area to be read or written when performing
dump I/O.

Communication link

The physical means of connecting one device to another for the
purpose of transmitting and receiving data.

Gloss-6

GLOSSARY

Compressed file pointer

An l8-bit pointer to the unit within the file structure and to
the first super-cluster of the file. This pointer is stored in
the UFD for each file in that UFD. It points to the retrieval
information block, which contains the information necessary to
access the desired file.

Computer operator

A person who manipulates the controls of a computer and performs
all functions that are required to maintain and operate the
system, such as adjusting parameters which affect the operation
of the system, loading tape and disk drives, placing cards in the
input hopper, and removing listings from the line printer.

Computer program

A series of instructions or statements prepared in order to
achieve a specific result and intended for execution by a
computer. A program can be in either the binary form in which it
can be directly executed by a computer or a symbolic form that
must be compiled and/or assembled before it can be executed.

Concatenation

The joining of two strings of characters to produce a longer
string, often used to create symbols in macro definitions, or
combining two or more files into one larger file.

Concealed mode

The user submode on the KI or KL processor that may contain
proprietary coding. Sections of proprietary code are
hardware-protected from access by public mode programs except
through predefined entry points (PORTAL instructions) .

Console

The part of a computer used by the operator to determine the
status of, and to control the operation of, the computer (CTY).
Also informally used to refer to the user's terminal.

Context switching

The saving of sufficient hardware and software information for a
process so that it may be continued at a later time, and the
restoring of similar information relevant to another process. A
common use of context switching is the temporary suspension of a
user program so that the monitor can execute a function.

Continued directory

The collection of all directories with a particular name and path
on all file structures in the job's search list.

Continued MFD

The MFDs on all file structures in the job's search list.

Continued SFD

The SFDs on all file structures in the job's search list which
have the same name and path.

Gloss-7

GLOSSARY

Continued UFD

The UFDs for the same project-programmer number on all file
structures in the job's search list.

Control character

A character whose purpose is to control an action, such as line
spacing on the line printer, rather than to pass data to a
program. An ASCII control character has an octal representation
of 0-37. It is typed by holding down the CTRL key on the
terminal while striking a character key. It can be punched on a
card using the multi-punch key.

Controller

The device or portion of a device which controls the operation of
connected units. Some controllers can initiate simultaneous
positioning commands to some of its units and can then perform a
transfer for one of its units.

Controller class name

All file structures residing on all controllers of a given type.

Controller name

All file structures residing on a specific controller.

Core

Physical memory.

Core storage

A storage device normally used for main memory in a computer.

CORMA}(

The maximum amount of core memory that a single job can use at
one time. This value can range from MINMAX to total user core.

CORMIN

The amount of core guaranteed to unlocked jobs.
limited to total user core minus CORMIN.

Locked jobs are

Counter

CPU

A device, such as a register or storage location,
represent the number of occurrences of a certain event.
program counter.

See central processing unit.

used to
Refer to

Create

To open, write, and close a file for the first time. Only one
user at a time can create a file with a given name and extension
in the same directory or subdirectory of a file structure.

Gloss-8

CRLF

CTY

CUSP

GLOSSARY

Carriage-return/line-feed sequence. A "free CRLF" can be enabled
for terminal output. An "automatic CRLF" can be enabled for
terminal input.

Console terminal used to load, control, and debug the system.

A Commonly Used System Program, such as LOGIN, that works closely
with the monitor to perform system functions.

Customer

A customer of Digital Equipment Corporation who has purchased a
DECsystem-10 as distinguished from a user at a terminal who may
be purchasing time from a customer.

Cylinder

The hardware-defined region of consecutive logical disk blocks
which can be read or written without repositioning. A cylinder
usually consists of tracks in the same physical position on
different disk surfaces.

DAEMON

Data

A program for writing all or parts of a job's core area and
associated monitor tables onto disk.

A general term used to denote any or all information (facts,
numbers, letters, and symbols that refer to or describe an
object, idea, condition, or situation). It represents basic
elements of information which can be processed by a computer.

Data channel

DDB

DDT

The device which passes data between the memory system and a
controller.

A device data block.

The Dynamic Debugging Technique program used for on-line
checkout, testing, examination, modification, and program
composition of object programs. Various types of DDT programs
are available, such as DDT11 for debugging PDP-1I remote stations
and the RSX-20F front end, and EDDT for debugging the monitor.

Deadlock

The situation where two or more jobs are waiting for each other
to complete use of a resource, but neither of the jobs can obtain
a lock on the resource it needs for completion.

GIoss-9

GLOSSARY

Debug

To detect,
program.

locate, and correct any mistakes in a computer

DEctape

A convenient, pocket-sized reel of random access
developed by Digital Equipment Corporation.
consists of 578 (decimal) blocks, each capable
(decimal) words of data.

Default directory

magnetic tape
A standard reel

of storing 128

The directory that monitor
been specified by the
(user-file directory)
project-programmer number
(sub-file directory) .

searches when a disk directory has not
user. Typically, this is the UFD

corresponding to the user's
but it may be another UFD or a SFD

Demand paging

The operation in which all pages of a program are not resident in
core during execution. References to non-resident pages initiate
the actions of moving in additional pages or replacing inactive
pages.

Dequeue

The function of releasing or relinquishing ownership of a
resource. Refer to "Enqueue."

Device substitution

Your program can be written for one device, and, before your
program is executed, you can substitute another device by using
the ASSIGN command.

Device routines

Routines that perform I/O for specific hardware devices. They
usually translate logical block numbers to physical addr~~sses for
those devices that associate addresses with data. These routines
also handle error recovery and ensure ease of programming through
device independence.

Diagnostic

Digit

Pertaining to the detection and
malfunction or bug. A program
isolates any faults.

isolation of a hardware
which tests the hardware and

A symbol that represents one of the nonnegative integers smaller
than the base of the system. For example, in the decimal system,
a digit is one of the characters from 0 to 9.

Direct address

An address that specifies the loca.tion of an operand.
with indirect address.

Gloss-10

Contrast

GLOSSARY

Directory

A file that contains the names and pointers to other files on the
device. The MFD, UFDs, and SFDs are directory files. The MFD is
the directory containing all the UFDs. The UFD is the directory
containing the files existing in a given project-programmer
number area. The SFD is a directory pointed to by a UFD or a
higher-level SFD. The SFDs exist as files under the UFD. The
DIRECT monitor command lists a directory.

Directory device

A storage retrieval device, such as disk, DECtape, or labelled
magnetic tape, that contains information describing the names of
files and the layout of stored data (programs and other files).
A directory device is randomly accessible.

Directory path

The ordered list of directory names, starting with a UFD name,
which uniquely specifies a directory without regard to a file
structure. A file structure name, a path, and a file name and
extension are needed to uniquely identify a file in the system.

Directory specification

DIS

Disk

The way that the user specifies the directory to the SCAN
program. It is always typed within square brackets. Fields are
separated by commas. The first two fields are the project and
programmer numbers which are octal. They specify the particular
UFD. Additional fields are SFDs in order from the UFD down. The
following notations are allowed:

[PPN] UFD
[PPN,sfd, ... sfd] full path to directory
[-] default directory
[,] your UFD

Display light pen.

A form of mass storage device in which information is stored on
rotating magnetic platters. A disk is a directory device.

Disk address

All references to disk addresses refer to a logical or relative
address; they do not refer to any physical addressing scheme.
The basic addressable unit is a 200 (octal) 36-bit word block.

Dismounting a fi1e structure

Deleting a file structure from a user's active search list by
using the DISMOUNT command. It does not necessarily imply
physical removal of the file structure from the system.

Dormant fi1e structure

A file structure that is physically mounted but has no current
users; that is, when the mount count is zero.

Gloss-II

GLOSSARY

Dormant segment

A sharable high segment kept on a swapping space, and possibly in
core, which is in no user's addressing space.

Double precision

DSK

The use of two computer words to represent a number.

The generic device name for disk-like devices. The generic
device DSK is translated by the system into actual file structure
names which are defined for each job by the file structure search
list.

DSKLST

A program that gives the status and statistics of all user disk
files at a given time.

DSKRAT

DTA

Dump

A damage assessment program that scans a file structure and
reports any inconsistencies detected.

The generic device name for DECtape.

A listing of variables and their values,
values of locations in core.

or a listing of the

Echoing

Edit

A method of data transmission in
returned to the sending end.
terminal I/O.

which the received data is
Usually used in discussions of

To modify the content or format of a program or data file (as to
insert or delete characters) .

Effective address

The actual address used; that is, the specified address as
modified by any indexing or indirect addressing rules.

ENQ/DEQ

A facility that ensures that resources such as files are shared
correctly.

Enqueue

The function of storing requests for ownership of some limited
resource in lists or queues until the requests can be granted.

Entry point

A point in a subroutine to which control ~s transferred when that
subroutine is called.

Gloss-12

GLOSSARY

Error Interception

When an error occurs, the monitor intercepts control of the
program, examines location .JBINT, and transfers control to an
error intercepting routine.

Ersatz device name

A device name that may not refer to an actual device, but
represents a UFO. Ersatz device names are a specific set of such
logical names, recognized by the monitor.

Execute

To interpret an instruction or command and perform the indicated
operation(s)

Executive mode

A central processor mode characterized by the lack of memory
protection and relocation and by the normal execution of all
defined operation codes.

Extended file

A file that has more than one RIB in which to record the
retrieval pointers.

Extended argument block for LOOKUP, ENTER, and RENAME

A detailed argument block for each of these calls that describes
information from the file's RIB.

Extended RIBs

Additional retrieval information blocks (RIBs) required when the
retrieval pointers in a file overflow the prime RIB.

External symbol

A global symbol which is referenced in one module but defined in
another module. The EXTERN statement in MACRO-IO is used to
declare a symbol to be external. A subroutine name referenced in
,a CALL statement in a FORTRAN module is automatically declared
external.

FENCE

File

The boundary between the active and passive search lists.
distinction is maintained by the SETSRC program.

This

An ordered collection of characters or 36-bit words con'taining
computer instructions and/or data. A file is stored on a device,
such as disk or magnetic tape, and can be of any length, limited
only by the available space on the device and the user's maximum
space allotment on that device. A file is uniquely identified in
the system by a file structure name or directory name, a
directory path, and a file name and extension.

Gloss-13

GLOSSARY

File Daemon

The monitor calls the File Daemon (if F%FDAE=l) every time that
someone tries to access a file that has a 4, 5, 6, or 7 code in
the owner's protection field and the access fails due to a
protection error. Refer to Appendix C.

File directory

See Direct.ory.

File extension

One to three alphanumeric characters usually chosen by the
program to describe the class of information in a file. The
extension is separated from the file name by a period.

File name

One to six alphanumeric characters chosen by the user to identify
a file.

File specification

A list of identifiers which uniquely specifies a particular file.
A complete file specification consists of: the name of the
device on which the file is stored, the name of the file
including its extension, and the name of the directory in which
the file is contained. File specifications are ignor€d for
non-file-oriented devices, such as cards and paper tape. Your
program specifies a file name and directory name in a LOOKUP,
ENTER, RENAME, or FILOP. monitor call.

File specification area

The area of core in which SCAN stores the result of scannlng the
user's file specification. This instructs WILD as to the files
to select.

File status word

See I/O status word.

File structure

The logical arrangement of blocks (which are normally 128 words
long) on one or more disk units of the same type to form a
collection of files and directories.

File structure abbreviation

An abbreviation of one or more file structures. This refers to
all those structures in the ALL search list whose names match the
abbreviation. For example, if there were structures "PRIV" and
"PACK," "P" would refer to both structures but "PR" would mean
just "PRIV."

File structure owner

The user whose project-programmer number is associated with the
file structure in the administrative file STRLST.SYS. The CATLOG
program is used to enter or delete this project-programmer number
or any of the other information that is contained in an
STRLST.SYS entry.

Gloss-14

Flag

GI .. OSSARY

An indicator that signals the occurrence of some condition,
as the end of a word.

such

Fragmentation

The state existing when swapped segments cannot be allocated in
one contiguous set of blocks on the swapping space and therefore
must be allocated in separate sections.

Full-SCNSER PTY

A pseudo-terminal (PTY) that contains the full terminal
characteristic set, allowing echoing to the controlled job and a
full break set. Refer to "PTY."

Fullword

A contiguous sequence of bits or characters that comprises a
single computer word, or describing a word that can be referred
to as a single unit. On TOPS-la, a word is 36 bits long.

Funny space

Refer to "Per-process space."

Generic device name

The name of a class of physical units. This abbreviation is
usually three characters. As an example, DTA is the generic name
for DECtapes, and DTAO, DTA1, and so forth, are specific unit
names.

Global symbol

A symbol that is accessible to modules other than the one in
which it is defined. The value of a global symbol is placed in
the loader's global symbol table when the module containing the
symbol definition is loaded.

Group

A contiguous set of disk clusters allocated as a single unit of
storage and described by a single retrieval pointer.

Halfword

A contiguous sequence of bits or characters which comprises half
of a computer word and may be addressed as a unit. On TOPS-la,
bits a through 17 comprise the left half word and bits 18 through
35, the right half word. Each half word is 18 bits long.

Hardware

Physical equipment of the computer (such as magnetic, mechanical,
and electronic devices), as contrasted with the computer program
(software) or method of use.

Gloss-15

GLOSSARY

High segment

That portion of the user's addressing space, usually beginning at
virtual address 400000, which generally is used to contain pure
code that can be shared by other users. This segment is usually
write-protected in order to protect its contents. The user can
place information into a high segment with the TWOSEG pseudo-op
in MACRO-10. Higher-level languages, such as COBOL and FORTRAN,
also have provisions for loading code into the high segment.

HOME.SYS

The file that contains a number of special blocks for system use.
These blocks are the home blocks, the BAT blocks, the ISW blocks,
and block zero.

HOME block

Host

I/O

The block written twice on every unit that identifies the file
structure the unit belongs to and its position on the file
structure. This block specifies all the parameters of the file
structure along with the location of the MFD. The home block
appears in the HOME.SYS file.

A processor or system in a computer network that processes and
executes user commands and programs. For example, this term is
used to distinguish a DECsystem-10 from a PDP-11 remote station.

An abbreviation for input or output, or both. Pertaining to all
equipment and activity that transfers information into or out of
a computer.

I/O status word

ICPT

Sometimes called "file status word," this word contains I/O error
bits and data modes for the device that is OPEN for I/O.

In-core protect time. Minimum amount of time that a job is
guaranteed to reside in core.

Idle segment

A sharable segment that is referenced by one or more swapped-out
jobs, but not by any jobs currently in core.

Idle time

That part of uptime in which no job could run because all jobs
were HALTed or waiting for some external action such as I/O.

Immediate mode addressing

The interpretation of certain instructions in which the effective
address of the instruction is used as the value of an operand
(rather than the address of an operand) .

Gloss-16

GLOSS.ARY

Impure code

The code that is modified by a program.

Indexed address

An address that is formed by adding the content of an index
register to the content of an address field prior to or during
the execution of a computer instruction.

Index register

A register whose contents may be added to the operand address
prior to or during the execution of a computer instruction.
Accumulators 1 through 17 (octal) may be used as index registers.
(Accumulator 0 may not be used as an index register.)

Indirect address

An address which indicates a storage location where the
of the referenced operand (or another indirect address)
found. Contrast with direct address.

address
is to be

Initialize

To set counters, switches, or addresses to zero or other starting
values at prescribed points in the execution of a computer
routine, particularly in preparation for reexecution of a
sequence of code.

Initialize a device

Input

A device must be initialized on a software I/O channel to do I/O.

1. Pertaining to a device, process, or channel involved in the
acquisition of data.

2. Information that is read by a computer.

Instruction

A bit pattern which, when interpreted by the computer, directs
the computer to execute a specific operation. An instruction
generally contains the values or locations of its operands.

Interleaving

The process of configuring the memory addressing so that
consecutive addresses are not stored in the same memory module.
This allows the possibility of increasing memory speed by
overlapping part of the operation of different memory modules.

Gloss-17

GLOSSARY

Internal date-time format

The format for storing a combined date and time internally. This
format is used by SCAN and other programs. It has thE~ property
that it is one 35-bit ("integer") quantity such that the
difference between two points in time in internal format is
constant if they are a constant time apart. The format is:

In the left halfword, the number of days since November 17, 1858.

In the right half a fraction of the day s~nce midnight.

This results in a resolution of approximately one third of a
second. The date field will not be exceeded until 2217 A.D.
(November 17, 1858, is the origin date used by the Smithsonian
calendar. This calendar is in use by several computer systems
and many astrophysics programs. Its origin was selected because
November 18, 1858 was the date of the first "Harvard Plates,"
which were the first accurate astronomical photographs. Hence,
this date standard minimizes the date field while leaving all
astrophysical measurements as positive dates) .

Internal storage

Addressable high speed storage directly controlled by the central
processing unit.

Internal symbol

A global symbol located in the module in which it is defined. In
a MACRO-10 program, a symbol is declared internal with t:he INTERN
or ENTRY pseudo-ope These pseudo-ops generate a global
definition which is used to satisfy all global requests for the
symbol.

Interrupt

IPCF

A signal which, when activated, causes a transfer of control to a
specific location in memory thereby breaking the normal flow of
control of the routine being executed. An interrupt is caused by
an external event such as a done condition in a peripheral. It
is distinguished from a trap which is caused by the execution of
a processor instruction.

The Inter-Process Communications Facility,
communication among jobs and system processes.

which allows

JACCT program

A program running with the JACCT privilege bit. This is set by
the monitor for special system programs such as LOGIN. This bit
gives the caller full file access; that is, it allows the caller
to LOOKUP and read any file in the system regardless of the
file's protection code.

Jiffy

A period of time equal to 1/60 of a second (for 60 Hz power) or
1/50 of a second (for 50 Hz power), used to count CPU cycles.
Synonym for "tick."

Gloss-18

Job

GLOSSARY

The entire sequence of steps from-beginning to end, that the user
initiates from his interactive terminal or batch control file or
that the operator initiates from his operator's console. Thus,
it is a specific group of ~teps presented as a unit of work for
the computer. A job usually includes all necessary computer
programs, files, linkages and instructions to the operating
system.

Job Data Area (JOBDAT)

The first 140 octal locations of a user'g virtual address space.
This area provides storage for certain data items used by both
the monitor and the user's program.

Job search list

K

The ordered list of file st~uctures for your job that are
searched automatically when the generic device name DSK is
specified or implied in the file spBcification.

A symbol used to represent 1024 (2000 octal); for example, 32K is
equivalent to 32,768.

Kernel mode

The executive submode in the
system-wide functions operate.
access and alter all of memory.

processor under which I/O and
Code executed in kernel mode can

KL-paging

Label

The method of paging memory used by the hardware of the KL
processor to extend the virtual memory space of the program to a
multiple of 256K. Refer to the Processor Reference Manual.

A symbolic name used to identify a statement or an item of data
in a program.

Leader

A blank section of tape at the beginning of a reel of magnetic
tape or the beginning or end of a stack of paper tape.

Library

A file containing one or more relocatable binary modules which
may be loaded in Library Search Mode. MAKLIB is a system utility
program which enables users to merge and edit a collection of
relocatable binary modules into a library file. PIP can also be
used to merge relocatable binary modules into a library, but it
has no facilities for editing libraries.

Library search mode

The mode in which a module (one of many in a library) is loaded
only if one or more of its declared entry points satisfy an
unresolved global request.

Gloss-19

GLOSSARY

Library search symbol (entry symbol)

Line

A list of symbols that are matched against unresolved symbols in
order to load the appropriate modules. This list is used only in
library search mode. A library search symbol is defined by an
ENTRY statement in MACRO-10.

A string of characters terminated with a vertical tab, form feed,
or line feed. The terminator belongs to the line that it
terminates.

Line feed

1. The operation that prepares for the next character to be
printed or displayed at the same (current) position on the
next line on a terminal or line printer.

2. The ASCII character with the octal code 012.

Line printer

Line

Load

.An electro-mechanical computer peripheral which accepts a line of
characters from the computer at a high speed and then prints the
entire line in one operation.

To combine independently--translated modules into one module in
which all relocation of addresses has been performed relative to
·that module and all external references to symbols have been
resolved based on the definition of internal symbols.

To produce a core image and/or a saved file from one or more
relocatable binary files (REL files) by transforming relocatable
addresses to absolute addresses. This operation is not to be
confused with the GET operation, which initializes a core image
from a saved file (refer to GET) .

Local peripherals

The I/O devices and other data processing equipment and memory,
excluding the central processor and memory, located at the
central site.

Local symbol

Lock

A symbol known only to the module in which it is defined.
Because it lS not accessible to other modules, the same symbol
name with different values can appear in more than one module.
These modules can be loaded and executed together without
conflict. Local symbols are primarily used when debugging
modules; symbol conflicts between different modules arE~ resolved
by mechanisms in the debugging program.

An association between a,job and a resource.

Gloss-20

GLOSSARY'

Locked job

A job in core that is never a candidate for swapping or
shuffling.

Logged-in UFD

The UFD that corresponds to the project-programmer number under
which the user is logged in.

Logical device name

An alphanumeric name you choose to represent a physical device.
This name can be used synonymously with the physical device name
in all references to the device. Logical device names allow
device independence in that the most convenient physical device
can then be associated with the logical name at run time.
Logical names take precedence over physical names. With the
exception of disks, only one logical name can be associated with
a physical name.

Logical record

A collection of related items stored together.
have:

It is possible to

LOGIN

1. Several logical records stored in a single physical record.

2. Each logical record stored in a single physical record.

3. Each logical record occupy one or more physical records.

4. Logical records span several physical records, and at the
same time, have more than one logical record in a single
physical record.

The system program by which the system users gain access to the
computing system.

Lost time

The time that the null job was running, while at least one other
job wanted to run (was not waiting for a device) but could not
because one of the following was true:

1. The job was being swapped out.

2. The job was being swapped in.

3. The job was on disk waiting to be swapped in.

4. The job was momentarily stopped so devices could become
inactive in order to shuffle jobs in core.

Low segment

The segment of user virtual address space beginning at zero. It
contains the Job Data Area and I/O buffers. The length of the
low segment is stored in location .JBREL of the Job Data Area.
When writing two-segment programs, it is advisable to place data
locations and impure code in the low segment.

Gloss-21

GLOSSARY

LPT

The generic device name for line printers.

MACRO

The symbolic assembly program on the TOPS-IO.

Macro

A portion of code that is substituted for its name whenever its
name is invoked.

Magnetic tape

A tape with a magnetic surface on which data can be stored by
magnetizing selective portions of the surface.

MAINT.SYS

Mask

The area of the disk reserved for maintenance use only.

1. A combination of bits that is used to control the
or elimination of portions of any word, character,
memory.

retention
or byte in

2. On half-duplex circuits, the characters typed on the terminal
to make the password unreadable.

Master/slave system

A specific type of multiprocessing system involving two
processors where one processor has a more important role than the
other.

Master file directory (MFD)

The file created when the disk is refreshed, which contains the
names of all user file directories including itself.

Meddling

The action of attempting to modify code in a sharable high
segment.

Memory cycle overlap

The hardware feature that allows a second memory reference to be
made before data from the first reference has been received by
the processor.

Memory protection

A scheme for preventing read and/or write access to certain areas
of storage.

Metering

A technique used to perform performance analysis.

Gloss-22

GLOSSARY

MINMAX

The minimum value for CORMAX.

Mnemonic symbol

Modes

A symbolic representation for a
numeric item. All defined
UUOSYM.MAC.

computer instruction
monitor symbols are

The data modes that can be used when performing I/O.

Module

or other
listed in

entity that can be loaded by the loader. It is The smallest
composed of
code between
In FORTRAN,
statement is
IDENTIFICATION
module.

Module origin

a collection of control sections. In MACRO-I ° , the
the TITLE and END statements represents a module.
the code between the first statement and the END

a module. In COBOL, the code between the
DIVISION statement and the last statement is a

The first location occupied by the module in user virtual address
space.

MONGEN

The monitor generator dialogue program that enables the system
programmer to define the hardware configuration of his individual
installation and the set of software options that he wishes to
select for his system.

Monitor

The collection of programs which schedules and controls the
operation of user and system programs, performs overlapped I/O,
provides context switching, and allocates resources so that the
computer's time is efficiently used. Also called the operating
system.

Monitor command

An instruction to the monitor to perform an operation.

Mount count

The count of the number of jobs that have a
structure in their active or passive search lists
structure is in the system search list) .

Mounting a device

certain file
(plus 1 if the

To request both the system to assign an I/O unit and the operator
to physically place the specified medium (for example, magnetic
tape reel or disk pack) on that unit.

Gloss-23

GLOSSARY

Mounting a file structure

The process of adding a file structure to a search list. If the
file structure is not already defined and mounted, this action is
requested of the operator.

MPX-controlled device

A device connected to a multiplexed channel.

MPXable Devices

MTA

The devices that can be connected to an MPX
printers, terminals, paper-tape punches,
devices, and pseudo-TTYs.

channel are
remote data

The generic device name referring to a magnetic tape unit.

line
entry

Multiprocessing

Simultaneous execution of two or more computer programs by two or
more processors.

Multiprogramming

A technique that allows scheduling in such a way that more than
one job is in an executable state at anyone time. TOPS-IO is a
multiprogramming operating system in which there are two or more
independent instruction streams that are simultaneously active
but are not necessarily simultaneously executed.

Nesting

To include a loop, a macro definition, a routine, or a block of
data within a larger loop, macro definition, routine, or block of
data.

No-op

An instruction that specifically instructs the computer to do
nothing. The next instruction in sequence is then executed.

Non-blocking I/O

In buffered modes, the program does not block while waiting for a
buffer to be filled or emptied.

Non-directory device

A device,
does not
files.

such as unlabelled magnetic tape or paper tape, that
contain a file describing the names and layout of data

Non-sharable segment

A segment for which each user has his own copy. This segment can
be created by a CORE or REMAP UUO or initialized from a file.

Gloss-24

GLOSSARY

Octal

1. Pertaining to a characteristic or property in which there are
eight possibilities.

2. Pertaining to the number system with a radix of eight.

Offset

The number of locations or bytes relative to the base of an
array, string, or block. For example, the number of locations
relative to zero that a Control Section must be moved before it
can be executed.

ONCE-only time

The time at which the operator can change a number of monitor
parameters when the monitor is started up. This is done prior to
scheduling any jobs, when the ONCE program is run at system
startup.

Operand

1. The data that is accessed when an operation (either a Inachine
instruction or a higher level operation) is executed.

2. The symbolic expression representing that data or the
location in which that data is stored, for example, the input
data or arguments of a pseudo-op or macro instruction.

Operating system

OPR

The collection of programs that adIninister the operation of the
computing system by scheduling and controlling the operation of
user and system programs, performing I/O and various utility
functions, and allocating resources for efficient use of the
hardware.

The operator's control program to monitor and maintain the GA.LAXY
batch and spooling system (Version 4.1 and later), and the DECnet
network environment (Version 3 or later) .

OPSER

The OPerator SERvice program that allows multiple job control
from a single terminal.

Output

1. Pertaining to a device, process, or channel involved in an
output process (that is, the process of transferring data
from memory to a peripheral device) .

2. The data that has been transferred from memory to a medium
readable by a person (such as line printer listings) .

Gloss-25

Pack

GLOSSARY

1. To compress data in memory or on a peripheral storage device
by taking advantage of known characteristics of the data so
that the original data can be recovered.

2. A disk pack (that is, a removable set of disks mounted on a
common shaft) .

Packet

A group of words or block of data passed from one program to
anothers cooperating program. This is accomplished through use
of the IPCF facility or through task-to-task network
communication.

Pack-ID

Page

A 6-character SIXBIT name or number used to uniquely identify a
disk pack.

1. Any number of lines terminated with a form feed character.

2. The smallest mappable unit of core storage. On the KLI0
processor, a page is 512 continuous words in core starting on
boundaries which are even multiples of 512. It is also the
smallest allocatable unit of memory. KLI0 operations allow
programs to be composed of up to 512 pages scatterE~d within
core.

3. To selectively remove parts of a user's program from core
memory.

Paper tape

A tape on which data is represented by specific patterns of
punched holes.

Parameter

A variable that is given a constant value for a specific purpose
or process, for example, an input argument to a subroutine or
command, or a value specifically assigned to a symbol in an
assembly in order to control exactly what code is assew)led.

Parity bit

A binary digit attached to a group of bits to make the sum of all
the bits always odd (for odd parity) or always even (for even
parity) .

Parity check

A check that tests whether the number of ones or zeros in an
array of binary digits is correct. This check helps ensure that
the data read has not been unintentionally altered.

Gloss-26

GLOSSARY

Passive search list

An unordered list of the file structures that have been in the
job's active search list but have been removed without ever
having been dismounted. This list is maintained by the SETSRC
program and is use for accounting purposed when you log out.

Password

Path

The character string assigned to a user; it is known only to the
user, the installation aruninistration, and the monitor system.
The password is used to verify that a user is entitled to run a
job under a specific project-programmer number.

See directory path.

Pathological name

PC

The logical name associated with a directory path.
pathological. name refers to the list of structures
directories (STR: [UFD,SFD1,SFD2, ... ,SFD5]) to be searched
time the pathological name is specified as the device in the
specification. .

See "program counter."

The
and
any

file

Peripheral equipment

Any unit of equipment, distinct from the central processing unit,
the console, and the memory, that can provide input to, or accept
output from, the computer.

Per-process space

PHB

The portion of monitor memory used to store data specific to user
jobs. Also called "funny space."

Packet Header Block used to store information when using IPCF.

Physical address space

A set of physical memory locations where information is actually
stored for the purpose of program execution. (As opposed to
virtual memory addresses, which may be mapped, relocated, or
translated to produce a physical memory address in the hardware
memory units. This physical address is 22 bits long on the
DECsystem-10.

Physical device name

The name of a specific peripheral unit. It is a SIXBIT name
consisting of 3 to 6 characters. Examples: FHAO, FHA1, DPAO,
DPA7, LPTO, DTA3.

Gloss-27

PI

PID

PIT

PLT

PHS

GLOSSARY

See "priority interrupt."

A Process IDentifier is used to identify a system program that is
the target of communication using the IPCF facility.

PSI system's internal data base.

The generic device name for plotter.

The Packet Message Block where user data is stored to be sent to
another program, using IPCF.

Pointer

1. A location or register
data. A pointer may
indexing.

containing an address rather than
be used in indirect addressing or in

2. An instruction indicating the address, position, and length
of a byte of information (such as a byte pointer) .

Policy CPU

Pool

In a symmetric multi-processing system, the CPU that provides
system initialization and other overhead functions for the rest
of the central processors.

One or more logically complete file structures that provide file
storage for the users and that require no special action on the
part of the user.

Pooled Resource

A pooled resource occurs when multiple
exist. You specify that a resource is
with the ENQ. monitor call.

Positioning operation

copies of a resource
to be a pooled resource

On the TOPS-10, the operation of moving the read-write heads of a
disk to the proper cylinder prior to a data transfer. This
operation requires the control for several micro-seconds to
initiate activity, but does not require the channel or memory
system.

Prime RIB

The first retrieval information block (RIB) of a file. This
block contains all file attributes and pointers to data blocks on
disk. Refer to RIB definition.

Gloss-28

GLOSSARY

Priority interrupt

An interrupt that usurps control of the computer from the program
or monitor and jumps to an interrupt service routine if its
priority is higher than the interrupt currently being serviced.

Privileged program

1. Any program running under prcject number 1, progranuner number
2.

2. A monitor support program executed by a monitor conunand which
has the JACCT (job status) bit set, for example, LOGOUT.

Process

A collection of segments that perform a particular task.
synonymous with "job," "program," or "task."

Program

Usually

1. The complete plan for the solution of a problem, more
specifically the complete sequence of machine instructions
and routines necessary to solve a problem.

2. A collection of routines which have been linked and loaded to
produce a saved file or a core image. These routines
typically consist of a main program and a set of subroutines,
some of which may have come from a library.

Program counter (PC)

A register that contains the address from which the next
instruction to be executed is fetched. At the beginning of each
instruction on a PDP-10, the PC normally contains an address that
is one greater than the location of the previous instruction.

Programmed operators

Instructions which, instead of performing a hardware operation,
cause a jump into the monitor system or the user area at a
predetermined point and perform a software operation. The
monitor (or special user code) interprets these entries as
conunands from the user program to perform specified operations.

Program origin

The location assigned by LINK to relocatable zero of a program.

Program trap

One of the software-defined operation codes which, when decoded
by the processor, causes the next instruction to be executed from
a specified address.

Project-programmer number

Two octal numbers,
a unit, identify
structure.

separated by conunas, which, when considered as
the user and his file storage area on a file

Gloss-29

GLOSSARY

Protected location

1. A storage location which cannot be accessed in a certain
context. For example, a write-protected location cannot be
written into.

2. A storage location reserved for special purposes in which
data cannot be stored without undergoing a screening
procedure to establish suitability for storage therein.

Protection address

The maximum relative address that the user can reference.

Protection code

Each file has a protection code that indicates who mayor may not
access the file, in the form <opa>, where 0 is an octal digit
representing accessability to the owner of the file, p is the
digit for members of the same project (possessing the same
project number in their PPN), and a is the digit for all other
users. Each octal digit represents the level of access allowed
to the appropriate type of user, from 0, allowing any type of
access, to 7, allowing no access to other users. Note that the
owner can always change the protection code associated with the
file.

PSI System

Programmable software interrupt system.

Pseudo-op

An operation that is not part of the computer's operation
repertoire as realized by hardware; hence, an extension of the
set of machine operations. In MACRO, pseudo-ops are directions
for assembly operations.

Pseudo-terminal

PTP

PTR

PTY

A simulation of a terminal device generated by the software to
accept commands from a data base rather than a physical input
device.

The generic device name used to refer to the paper tape punch.

The generic device name used to refer to the paper tape reader.

The generic device name used to refer to a pseudo-terminal.

Public disk pack

A disk pack belonging to the storage pool and whose storage is
available to all users who have quotas on it.

Gloss-30

GLOSSARY

Pub1ic mode

The user submode on the processor.

Pure code

Code which is
Therefore, it
of a program.

never modified in the process of execution.
is possible to let many users share the same copy

Pushdown 1ist

A list that is constructed and maintained so that the next to be
retrieved is the most recently stored item in the list. Also
called "stack" and first-in/last-out (FILO) list.

Pushup 1ist

A list that is constructed and maintained so that the next
to be retrieved and removed is the oldest item in the list.
known as a first-in/first-out (FIFO) list.

item
Also

Quantum time

The processor time given to each job when it is assigned to run.

Queue

A list of items waiting to be scheduled or processed according to
system, operator, or user-assigned priorities. Examples: batch
input queue, spooling queues, monitor scheduling queues.

QUOTA.SYS

The file that contains a list of users and their quotas for the
private file structure on which the file resides. Created using
PULSAR.

Random access

RDA

Read

A process having the characteristic that the access time is
effectively independent of the location of the data.

The generic device name used to refer to a Remote Data terminal.

Input data from a £ile.

Record

A collection of adjacent related items of data treated as a
logical unit.

Record gap

An area on a data medium between consecutive records.
sometimes used to indicate the end of a block or record.

Gloss-31

It is

GLOSSARY

Recursive

A repetitive process in which the result of each process is
dependent upon the result of the previous one.

Reentrant program

,A program consisting of sharable code which can have several
simultaneously independent users.

Refresh

To remove all files from a file structure and to build the
initial set of files based on information in the HOME block.

Relative address

The address before hardware or software relocation is added.

REL file

A file containing one or more relocatable object modules.

Relocatable address

An address within a module which is specified as an offset from
the first location in that module.

Relocate

1. To move a routine from one portion of storage to another and
to adjust the necessary address references so that the
routine can be executed in its new location.

2. To convert a relocatable binary module to an absolute binary
module.

Relocation counter

1. The number assigned by LINK-10 as the beginning address of a
Control Section. This number is assigned in the process of
loading specific Control Sections into a saved file or a core
image and is transformed from a relocatable quantity to an
absolute quantity.

2. The address counter that is used during the assembly of
relocatable code.

Relocation factor

The contents of the relocation counter for a control section.
This number is added to every relocatable reference within the
Control Section. The relocation factor is determined from the
relocatable base address for the control section (usually 0 and
400000) and the actual address in user virtual address space at
which the module is being loaded.

Remote access

Pertaining to communication with a data processing facility by
one or more stations that are distant from that facility.

Gloss-32

GLOSSARY

Remote peripherals

The I/O devices and other data processing equipment that are
located at the site of the remote station.

Removing a file structure

The process of physically removing a file structure from the
system. This is requested with the REMOVE switch in the DISMOUNT
command string and requires the operator's approval.

Resource

Any entity within the system. The actual definition of a
resource is defined by the job(s) using that resource. Refer to
ENQ/DEQ.

Response time

The time between the generation of an inquiry or request and the
receipt of the response or the accomplishment of the requested
action.

Restricted device

Your program can use a restricted device only if it is assigned
to you by a privileged job. You ask for this assignment by
issuing the MOUNT command.

Retrieval Information Block (RIB)

The block that contains pointers to all the groups in a specific
file. Each file has two copies of the RIB, one in the first
block of the first group and the second in the block following
the last data block in the last group of the file.

Return

RIB

1. The set of instructions at the end of a subroutine that
transfers control to the proper point in the calling program.

2. The point in the calling program to which control is
returned.

3. Informally, the carriage-return/line-feed sequence. Refer to
CRLF.

See Retrieval Information Block.

Routine

Run

A set of instructions and data for performing one or more
specific functions.

To transfer a save file from a device into core and to begin
execution.

Gloss-33

GLOSSARY

SAT.SYS

Save

Scan

The Storage Allocation Table file which contains a bit for each
cluster in the file structure. Clusters which are free are
indicated by zero and clusters which are bad, allocated, or
nonexistent are indicated by one.

To produce a file from a core image of a program in memory. This
results in an executable file that can be loaded and run without
relocation.

The process of examining and parsing a text string.
program parses commands for the monitor.

The SCAN

Search

1. The process of locating an object by examining each object in
the set to determine if it is the desired object or if the
desired object exists.

2. The process by which the disk controller reads sector heads
to find the correct sector. The second step in the transfer
operation.

Search List

A list of the file structures that may be searched when files are
referenced. (One of the ALL Search List, Job Search List, or SYS
Search List.)

Secondary storage

Low speed magnetic storage such as disks or drums.

Sector

A physical portion of a mass storage device.

Segment

An absolute Control Section. A logical collection of data,
either program data or code, that is the building block of a
program. The monitor keeps a segment in core and/or on the
swapping device.

Segment resident block

A block that contains all the information that the monitor
requires for a particular segment.

Service routine

A routine in general support of the operation of a computer.

SETSRC

A program that allows the user to list or change his search list.

Gloss-34

GLOSSARY

SFD (sub-file directory)

A directory pointed to by a UFO or a higher-level SFO. Each user
has a UFO. within that, he may have as many SFOs as he wishes.

Sharable segment

A high segment that can be used by several programs at a time.

Shared code

Pure code residing in a shared segment.

Sharer's Group

A subset of those jobs desiring shared ownership of a particular
resource.

Simultaneous Update

Allowing more than one cooperating job to update a file.

Single access

The status of a file structure that allows only one particular
job to access the file structure. This job is the one whose
project number matches the project number of the owner of the
file structure.

SIXBIT code

Skip

A 6-bit code in which textual information is recorded. It is a
compressed form of the ASCII character set, and thus not all of
the characters in ASCII are available in SIXBIT, notably the
nonprinting characters and the lower case letters are omitted.
The range of SIXBIT code is 00 to 77 (octal) which is equal to 40
through 137 (octal) in ASCII.

The process by which an instruction, macro or subroutine causes
control to bypass one instruction and proceed to the next
instruction.

Soft CORMAX

Gradual reduction of CORMAX (see SETUUO function 50) .

Software Interrupt System

Interrupts the sequential flow of program execution under a
variety of conditions. Also called PSI system.

Spooling

The technique by which output to slow-speed devices
into queues on faster devices (such as disk)
transmission to the slower devides; this allows more
use of the computer.

Storage Allocation Table

is placed
to await
efficient

A file reflecting the status of every addressable block on the
disk (SAT.SYS).

Gloss-35

GLOSSARY

String

A set of contiguous items of a similar type. Generally strings
are sequences, of variable or arbitrary length; of bits, digits,
or characters.

STRLST.SYS

The administrative file that describes each file structure in the
system. This file is used by the MOUNT command.

Structure

A File structure.

Sub-File Directory

An extension of the user-file directory that allows the user to
categorize his files into sub-groups.

Subroutine

A routine designed to be used by other routines to accomplish a
specific task.

Super-cluster

A contiguous set of one or more clusters introduced to compress
the file pointer for large units into 18 bits. Refer to
compressed file pointer.

Super-USETI

A style of reading a disk unit or file structure by giving
absolute addresses rather than locations within a file.

Supersede

To open a file for writing, write the file, and close the file
when an older copy of the same name already exists. Only one
user at a time may supersede a given file at anyone time. The
older copy of the file is deleted when all users are finished
reading it.

Supervisor mode

The executive submode of the processor. Similar to public mode;
however, code executed in supervisor mode is able to access, but
not alter, concealed mode code.

SWAP.SYS

The file containing the swapping area on a file structure.

Swapping

1. The technique in multiprogramming of running more jobs than
there is physical memory for, by storing some of the jobs on
secondary storage when they are not executing.

2. The action of moving user p~ograms between core and secondary
storage.

Gloss-36

GLOSSARY

Swapping class

A category of swapping units distinguished from other categories
of swapping units according to speed. Class 0 contains the
fastest swapping units.

Swapping device

Secondary storage that is suitable for swapping, usually a
high-speed disk or drum.

Switch

1. The part of a file specification which is preceded by a
slash.

2. One of several physical controls on the operator's console.

3. A flag used to control the path of execution within programs.

Symbol

Any identifier used to represent a value that mayor may not be
known at the time of its original use in a source language
program. Symbols appear in source language statements as lables,
addresses, operators, and operands.

Symbolic address

An address used to specify a storage location in the context of a
particular program. Symbolic addresses must then be translated
into relocatable (or absolute) addresses by the assembler.

Symbol table

SYS

A table containing entries and binary values for each symbol
defined or used within a module. This table generally contains
additional information about the way in which the symbol was
defined in the module.

A system-wide logical name for the system library. This is the
area where the standard programs of the system are maintained.

SYS search list

The file structure search list for device SYS. This is also used
for several of the ersatz devices because it is a constant,
well-ordered list.

SYSTAT

A program that outputs to the user's terminal status information
on the system as a whole, on selected aspects of the system, or
on a selected job or set of jobs.

Terminal

A device, normally consisting of both a keyboard and printing (or
display) mechanism, that is used to enter information into a
computer and to accept output from a computer. When it is used
as a timesharing terminal, the computer to which it is connected
can be very close or many miles away.

Gloss-37

GLOSSAR'i

Tick

See Jiffy.

Total user core

The amount of physical core which can be used for locked and
unlocked jobs. This is all of the physical core minus the core
size of the monitor.

Track

The portion of a moving storage medium, such as disk, drum, or
tape, that is accessible to a given reading head position.

Transfer operation

The hardware operation of connecting a channel to a controller
and a controller to a unit for passing data between the memory
and the unit. The transfer operation involves verification,
search, and actual transfer.

Translate

Trap

To compile or assemble a source program into a machine language
program, usually in the form of a (relocatable) object module.

An unprogrammed conditional jump to a known
automatically activated by a side effect of executing a
instruction. The location from which the jump occurred
recorded. It is distinguished from an interrupt which
by an external event.

location,
processor
is then

is caused

Trap Servicing Routines

TSK

Allow programs to handle errors while a program is running. Some
of the errors that can be handled in this manner are illegal
memory references, and pushdown list overflows.

The generic device name for the device used to
program involved in inter-task communication
program.

refer
with

to one
another

Two's complement

UFD

A number used to represent the negative of a given valuE~. This
number is obtained by substituting a zero for each one and a one
for each zero in the bit configuration of the binary number and
adding one to the result.

1. A file whose entries are the names of files existing in a
given project-programmer number area within a file st:ructure.

2. The top-level directory for each user.
directory for the ersatz devices
directory.

Gloss-38

Also,
which

the t.op-Ievel
appear as one

GLOSSARY

Unconditional transfer

unit

An instruction which transfers control to a specified location.

The smallest portion of a device
independently from all other units.
are: a disk, a disk pack, and a drum.

that can be positioned
Several examples of units

Universal Device Index (UDX)

A number used to identify any device on the system. The monitor
assigns the device a UDX when your program issues an IONDX.
monitor call.

Update

To open a file for reading and writing simultaneously on the same
software channel, rewrite one or more blocks in place, and close
the file.

User's program

All of the data and code running in a user virtual address space.

User file directory

See UFD.

User I/O mode

1. The central processor mode that allows a user program to be
run with automatic protection and relocation in effect, as
well as the normal execution of all defined operation codes
(including I/O instructions) .

2. The monitor mode which allows a job to run with the I/O mode
hardware on.

User library

Any user file containing one or more relocatable binary modules
of which some or all can be loaded in library search mode.

User mode

A central processor mode during which instructions are executed
normally except for all I/O and HALT instructions, which return
control to the monitor. This makes it possible to prevent the
user from interfering with other users or with the operation of
the monitor. Memory protection and relocation are in effect so
that the user can modify only his area of core.

User virtual address space

A set of memory addresses within the range of 0 to 256K-1 words.
These addresses are mapped into physical core addresses by the
paging or relocation-protection hardware when a program is
executed.

Gloss-39

GLOSSARY

000

Refer to programmed operators (Unimplemented User Operations) .

Variable

Any entity that can assume any of a given set of values. When
stored in core, a variable can occupy part of a core location,
exactly one core location, or more than one core location.

Vestigial job data area

The first 10 (octal) locations of the high segment used to
contain data for initializing certain locations in the job data
area. These locations are usually 400000-400007 (octal)
inclusive.

Wildcard construction

Word

A technique used to designate a group of files without
enumerating each file separately. The file name, extension, or
project-programmer number in a file specification can be replaced
totally with an asterisk or partially with a question mark to
represent the group of files desired.

An ordered set of bits which occupies one storage location and is
treated by the computer circuits as a unit. The word length of
the DECsystem-10 is 36 bits. This means that it is possible to
store 36 bits of information at each memory address and to
transfer all 36 bits between memory and the CPU at the same time.

Working set

The collection of pages in physical core immediately accessible
to a job. Pages in core, but with the accessiblity bit 6ff are
also included in the working set.

Zero compression

The technique of compressing a core image by eliminating
consecutive blocks of zeros and replacing them with an indication
of the number of words of zeros that were removed.

Zero length module

A module containing symbol definitions but no instruction or data
words (for example, JOBDAT). Note that the word "length" in this
context refers to the program length of the module after loading.

Gloss-40

INDEX

-A-

Access types, 22-287
Access-allowed bit, 22-286
Accessing files, 22-19
ACCLG. UUO, 22-2
Account strings, 22-3
ACCT. UUO, 22-3
Accumulators, 22-1
Active swapping list, 22-85
Address break condition, 22-390
ANF-10

intertask communication, 22-453
nodes, 22-261

Appending to files, 22-147
APRENB UUO, 22-5
Assigning

logical names, 22-56
reel identifiers, 22-239

ATTACH UUO, 22-7
Auto-CRLF, 22-447

-B-

Backspacing magtape
files, 22-242
records, 22-243

BATMAX, 22-2
setting, 22-388

BATMIN, 22-388
Blank tape, 22-241
Block pointer positioning, 22-421
Break characters, 22-442
Breakpointing the monitor, 22-400
Buffer rings

control block, 22-258
for input, 22-175
for output, 22-280
recycling, 22-145

Buffers, 22-66

-c-

Cache bit, 22-288, 22-393
CAL11. UUO, 22-13
CALLI UUO, 22-9
Cancelling enqueued requests,

22-50
Capability bits, 22-393, 23-128
Changing

accounting strings, 22-3
file attributes, 22-349
high segments, 22-161
memory space, 22-35
PPNs, 22-17
search lists, 22-409

Channels
closing, 22-23
extended, 22-144

Channels (Cont.)
initializing, 22-272
releasing, 22-346
resetting, 22-352

Character mode, 22-397
input, 22-177

Characteristics of disk devices,
22-93

Checking
file access, 22-18
PPNs, 22-277

Checkpointing files, 22-147
CHGPPN UUO, 22-17
CHKACC UUO, 22-18
Clearing

DECtape directories, 22-150
DTEs, 22-99
DVCMDA, 22-60
I/O status bits, 22-27
logical names, 22-56
terminal input buffer, 22-25
terminal output buffer, 22-26

CLOSE bits, 22-24
CLOSE UUO, 22-23
Closing files, 22-147
CLRBFI UUO, 22-25
CLRBFO UUO, 22-26
CLRST. UUO, 22-27
CMAND. UUO, 22-29
CNECT. UUO, 22-33
Command list creation, 22-29
Commands

defining, 22-29
forcing, 22-155

Communicating with system
programs, 22-326

Completing magtape I/O, 22-257
Concealed high segment, 22-161
Condition codes, 22-318
CONFIG. program, 22-340
Connecting MPX devices, 22-33
Contracting core, 22-35
Controller numbers, 22-75
Controller types

for disk, 22-97
for magtape, 22-427

Controlling job number, 22-37
Controlling PSI interrupts,

22-317
CORE UUO, 22-35
CORMAX, 22-386, 22-394
CORMIN, 22-386, 22-394
CPU diagnostics, 22-73
Creating

command lists, 22-29
.EXE files, 22-359
files, 22-122, 22-146
pages, 22-285

Cross-job interrupts, 22-312

Index-1

CTLJOB UUO, 22-37
CTX. UUO, 22-38

-D-

DAEFIN UUO, 22-43
DAEMON program, 22-127

invoking, 22-44
requesting, 22-43

DAEMON UUO, 22-44
DAP messages, 22-456
Data base, 22-121
Data mode specification, 22-274
Data output, 22-278
Dataset lines, 22-440
DATE UUO, 22-48
DDBs, 22-68
DDT

addresses, 22-382
breakpoints, 22-394

Deassigning devices, 22-338
DEBRK. UUO, 22-49
Debugging

flags, 23-20
front ends, 22-13

DECnet, 22-88
link status, 22-90

DECnet-l0
intertask communication, 22-267
network management, 22-269

DECtape
blocks, 22-459
LOOKUPs, 22-233
on extended channels, 22-150

DECtape directories
clearing, 22-467

Deferred spooling, 22-391
Defining

commands, 22-29
symbols, 22-1

Deleting
commands, 22-30
files, 22-148

Density codes for magtape, 22-427
DEQ.

error codes, 22-117
UUO, 22-50

Dequeuing enqueued requests,
22-50

Destroying pages, 22-285
Detaching terminals, 22-8
DEVCHR UUO, 22-53
Device

characteristics, 22-70
reading, 22-53

diagnostics, 22-73
initialization, 22-272
node numbers, 22-472

Device interrupt codes, 22-320
Device names

physical, 22-105
reading, 22-58

Device status, 22-68
on MPX devices, 22-125

Devices
realtime, 22-355
reassigning, 22-338
removing restrictions, 22-108
restricting, 22-107

DEVLNM UUO, 22-56
DEVNAM UUO, 22-58
DEVOP. UUO, 22-59
DEVPPN UUO, 22-65
DEVSIZ UUO, 22-66
DEVSTS UUO, 22-68
DEVTYP UUO, 22-70
DIAG. UUO, 22-73
Diagnostics, 22-73
Directory path, 22-293
Disconnecting MPX devices, 22-33
Disk

cache, 22-394
characteristics, 22-93
compatibility, 22-83
controller types, 22-97
I/O priority, 22-83
mount count, 22-94
names, 22-423
unit types, 22-98

DISK. UUO, 22-82
Dismissing

interrupts, 22-49
realtime interrupts, 22-460

DNET. UUO, 22-88
Dormant programs, 22-399
DSKCHR UUO, 22-93
DTE

protocol type, 22-102
status, 22-100

DTE. UUO, 22-99
DVCMDA, 22-60
DVPHY. UUO, 22-105
DVRST. UUO, 22-107
DVURS. UUO, 22-108

-E-

EDDT breakpoints, 22-394
Enabling

dataset lines, 22-440
traps, 22-5

Ending I/O, 22-23
ENQ.

data base, 22-121
error codes, 22-117
quotas, 22-120
UUO, 22-109

ENQ/DEQ
lock block format, 22-110

ENQC.
error codes, 22-117
UUO, 22-119

ENTER
error codes (see Chapter 11)
UUO, 22-122

Index--2

EOF mark, 22-248
EOT mark, 22-249
ERLST. UUO, 22-125
Error file

entries, 22-45
logging, 22-127

ERRPT. UUO, 22-127
Ersatz devices, 22-65
Eternal locks, 22-111
Ethernet protocols, 22-129
Examining

front ends, 22-15
monitor, 22-406

Exchanging pages, 22-286
Execute-only

bit, 23-6
segment, 22-161

Execution
suspending, 22-170
terminating, 22-139

EXIT UUO, 22-139
Expanding core, 22-35
Extended channels,.'22-144

for DECtape, 22-150
for magtape, 22-150

-F-

FCFS blocks, 22-93
Feature test flags, 23-20
FILDAE, 22-18
File

input, 22-233
operations, 22-141
protection, B-1

File access
checking, 22-18
simultaneous, 22-152

File specifications, 22-151
File structures, 22-409
Files

creating, 22-122, 22-146
merging, 22-235

FILOP.
error codes (see Chapter 11),

22-153
UUO, 22-141

Forcing commands, 22-155
FRCUUO, 22-155
Free CRLF, 22-445
Free space in UFDs, 22-87
Front end

testing, 22-13
types, 22-16

-G-

GALAXY requests, 22-326
GETLCH UUO, 22-157
GETLIN UUO, 22-159
GETPPN UUO, 22-160
GETSEG

error codes (see Chapter 11)

GETSEG (Cont.)
UUO, 22-161

GETSTS UUO, 22-163
GETTAB UUO, 22-165
GOBSTR UUO, 22-166
GTNTN. UUO, 22-168
GTXTN. UUO, 22-169
Guideline, 22-390
GVPL, 22-389

-H-

Header block for ENQ., 22-109
HIBER UUO, 22-170
Hibernating jobs, 22-471
High priority scheduler queue,

22-172,
High segment origin, 22-347
High segments

changing, 22-161
write protection, 22-396

Host system, 22-391
HPQ UUO, 22-172

-I-

I/O
MPX status, 22-125
terminating, 22-23

I/O status bits, 22-163, 22-272,
22-380, 22-385

clearing, 22-27
Implied PPNs, 22-295
IN UUO, 22-173
In-behalf-of PPN, 22-146
In-your-behalf function, 22-18
INBUF UUO, 22-175
INCHRS UUO, 22-177
INCHRW UUO, 22-178
INCHSL UUO, 22-179
INCHWL UUO, 22-180
Incrementing LOGNUM, 22-2
Initializing

devices, 22-272
magtape channels, 22-247,

22-250
programs, 22-353
PSI system, 22-309

Input buffer rings, 22-175
INPUT UUO, 22-182
Interrupt codes, 22-320
Interrupt control block, 22-307
Interrupting jobs, 22-312
Intertask communication

ANF-10, 22-453
DECnet-10, 22-267

Invoking DAEMON, 22-44
IONDX. UUO, 22-183
IONEOU UUO, 22-184
IPCFQ.

Index-3

error codes, 22-187, 22-189
UUO, 22-187

IPCFR.
error codes, 22-189
UUO, 22-188

IPCFS.
error codes, 22-189
UUO, 22-192

-J-

JBSET. UUO, 22-194
Job

capability word, 23-128
number, 22-324
privilege word, 23-12
resetting, 22-139

Job contexts, 22-38
Job search list, 22-198

reading, 22-166
Job status word, 23-6
JOBPEK UUO, 22-195
JOBSTR UUO, 22-198
JOBSTS UUO, 22-200

-K-

KDP. UUO, 22-202
Kilo-core ticks, 23-11
KL error

chunks, 22-102
timer, 22-102

KMC-11, 22-202
KSYS, 22-387

-L-

Limit, 22-390
Line characteristics, 22-157
Line mode input, 22-179
Line printer characteristics,

22-61
Link status

ANF-I0, 22-454
reading, 22-90

Listing
ANF-I0 nodes, 22-264
commands, 22-30
DECnet nodes, 22-89
devices, 22-105

Loading
RAM, 22-60
VFU, 22-60

LOCATE UUO, 22-225
Lock

block, 22-111
status, 22-119

LOCK UUO, 22-226
Lock-associated data block,

22-115
Locking jobs, 22-226
Logging errors, 22-127
Logical name assignment, 22-56
Logical node number, 22-225
LOGIN UUO, 22-231

LOGMAX, 22-2
setting, 22-388

LOGNUM, 22-2
LOGOUT UUO, 22-232
Long-term locks, 22-111
LOOKUP

error codes (see Chapter 11)
UUO, 22-233

-M-

Magtape
controllers, 22-427
densities, 22-427
drive status, 22-244
functions, 22-240
labels, '22-430
operations, 22-425
reel identifiers, 22-239

Magtapes on extended channels,
22-150

Mapping
pages, 22-289
segments, 22-347

Master DTE number, 22-100
MDA

setting control, 22-60
wait, 22-87

Measuring performance, 22-303
Memory space, 22-35
MERGE.

error codes (see Chapter 11)
UUO, 22-235

MIC status bits, 22-441
Monitor

breakpoints, 22-400
checksum, 22-401

MONRT. UUO, 22-139, 22-237
Mount count

for disk, 22-94
Moving pages, 22-286
MPX devices

connecting, 22-33
status, 22-125

MSTIME UUO, 22-238
MTAID. UUO, 22-239
MTAPE UUO, 22-240
MTBLK. UUO, 22-241
MTBSF. UUO, 22-242
MTBSR. UUO, 22-243
MTCHR. UUO, 22-244
MTDEC. UUO, 22-247
MTEOF. UUO, 22-248
MTEOT. UUO, 22-249
MTIND. UUO, 22-250
MTLTH. UUO, 22-251
MTREW. UUO, 22-252
MTSKF. UUO, 22-253
MTSKR. UUO, 22-254
MTUNL. UUO, 22-255
MTWAT. UUO, 22-257
Multi-plexed devices, 22-33,

22-125

Index-4

Multiple high segments, 22-228
MVHDR. UUO, 22-258

-N-

NOB, 23-134
Network information, 22-88
/NEW searching, 22-65
NODE. UUO, 22-261
Non-blocking ENQ. requests,

22-115
Non-I/O interrupt codes, 22-318
NSP. UUO, 22-267
NTMAN. UUO, 22-269
NUL device, 22-55

-0-

OPEN UUO, 22-272
Opening files, 22-146
OTHUSR UUO, 22-277
OUT UUO, 22-278
OUTBUF UUO, 22-280
OUTCHR UUO, 22-281
Output buffer rings, 22-280
OUTPUT UUO, 22-282
OUTSTR UUO, 22-283
Owner PPN, 22-94

-p-

Packet header block, 22-189
PAGE. UUO, 22-284
Partitioned resources, 22-115
PATH.

block, 22-300
UUO, 22-293

Pathological names, 22-293
PC flags, 22-308
PDB, 23-136
PDP-II compatibility

for disks, 22-83
PEEK UUO, 22-302
PERF. UUO, 22-303
Performing measurements, 22-303
Physical

device names, 22-105
unit names, 22-423

PIBLK. UUO, 22-307
PIFLG. UUO, 22-308
PIINI. UUO, 22-309
PIJBI. UUO, 22-312
PIRST. UUO, 22-314
PISAV. UUO, 22-315
PISYS. UUO, 22-317
PITMR. UUO, 22-322
PJOB UUO, 22-324
POKE. UUO, 22-325
Policy CPU, 22-394
Pooled ENQ. resources, 22-114
Positioning block pointers,

22-421

PPNs
changing, 22-17
checking, 22-277
for disk devices, 22-65
implied, 22-295
owner, 22-94
reading, 22-160

Preallocating space, 22-149
Primary protocol for DTEs, 22-99
Privilege bits, 23-12
Privileges

setting, 22-393
Program execution, 22-470
Programs

name, 22-384
stopping, 22-139

Protect ing.
files, B-1
high segments, 22-396

Pseudo-terminals, 22-37
PSI interrupts controlling,

22-317
PSI state

restoring, 22-314
saving, 22-315

PTYs, 22-37

-Q-

Quantum requeue response, 23-66
Querying IPCF input queue, 22-187
QUEUE. UUO, 22-326

-R-

RAM loading, 22-60
Reading

account strings, 22-3
data, 22-173
date, 22-48
device characteristics, 22-53
device names, 22-58
ENQ. quotas, 22-120
file specifications, 22-151
files, 22-149, 22-233
GETTAB tables, 22-165
I/O status, 22-380
I/O status bits, 22-163
IPCF packets, 22-188
job search lists, 22-166,

22-198
lock status, 22-119
monitor locations, 22-302
physical unit numbers, 22-75
PPNs, 22-65, 22-160
runtimes, 22-358
terminal input, 22-177
terminal line characteristics,

22-157
terminal names, 22-159
time, 22-238

Realtime
interrupt facility, 22-355

Index-5

Realtime (Cont.)
interrupts, 22-460
traps, 22-452

REASSI UUO, 22-338
RECON. UUO, 22-340
Recycling buffer rings, 22-145
Reel identifiers, 22-239
RELEAS UUO, 22-346
Relinquishing requests, 22-50
Reload ROM word, 22-100
REMAP UUO, 22-347
RENAME

error codes (see Chapter 11)
UUO, 22-349

Renaming files, 22-148
Requesting

ENQ. resources, 22-115
resources, 22-109

RESCAN UUO, 22-351
RESDV. UUO, 22-352
RESET UUO, 22-353
Resetting jobs, 22-139
Resources

releasing, 22-50
requesting, 22-109

Responses, 23-66
Restoring PSI state, 22-314
Restricting devices, 22-107
Rewinding magtape, 22-252
Rewriting RIBs, 22-150
ROM word, 22-100
RTTRP UUO, 22-355
RUN

error codes (see Chapter 11)
UUO, 22-356

RUNTIM UUO, 22-358

-s-

SAVE. UUO, 22-359
Saving PSI state, 22-315
SCHED. UUO, 22-360
Scheduler queue, 22-172
Search lists, 22-295

changing, 22-409
Secondary bootstrap, 22-103
22-sector mode, 22-83
Segments, 22-461
Sending

characters, 22-281
data, 22-282
IPCF packets, 22-192
strings, 22-283

SENSE. UUO, 22-380
SET WATCH bits, 22-387
SETDDT UUO, 22-382
SETLCH UUO, 22-383
SETNAM UUO, 22-384
SETSTS UUO, 22-385
Setting

controllers off-line, 22-84
controllers on-line, 22-85
disk I/O priority, 22-83

Setting (Cont.)
DVCMDA, 22-60
ENQ. quotas, 22-120
I/O status bits, 22-27
.JBDDT, 22-382
job parameters, 22-194
terminal speed rate, 22-446

SETUUO UUO, 22-386
SETUWP UUO, 22-396
Sharable resources, 22-111
Sharer group, 22-114
Simultaneous file access, 22-152
Skipping

magtape files, 22-253
magtape records, 22-254
on input, 22-397, 22-398

SKPINC UUO, 22-397
SKPINL UUO, 22-398
SLEEP UUO, 22-399
Sleeping, 22-44
SNOOP. UUO, 22-400
Soft CORMAX, 22-394
Software disk cache, 22-394
Specifying

data mode, 22-274
ENQ. resources, 22-113

Spooled files, 22-404
Spooling

deferred, 22-391
Spooling bits, 22-387
SPPRM. UUO, 22-404
Spy UUO, 22-406
STATO UUO, 22-407
Status

DECnet links, 22-90
I/O, 22-272, 22-380, 22-385
MIC, 22-441
of DTEs, 22-100

STATZ UUO, 22-408
Stopping programs, 22-139
Structure parameter block, 22-412
STRUUO UUO, 22-409
Subjobs, 22-37
Super-mode

input, 22-463
output, 22-465

Super-USETI/USETO, 22-421
Superseding files, 22-122
SUSET. UUO, 22-421
Suspending execution, 22-170
Swapping pages, 22-285
Symbolic definition, 22-·1
SYSPHY UUO, 22-423
SYSSTR UUO, 22-424
System

date, 22-387
dump list, 22-86
file structures, 22-424
scheduling, 22-360

-T-

Tape labels, 22-430

Index-6

TAPOP. UUO, 22-425
Tasks, 22-453
Temporary files, 22-436
Terminal

operations, 22-439
speeds, 22-446
status, 22-200
UDX, 22-438

Terminal break character sets,
22-442

Terminal input
buffer, 22-25
rescanning, 22-351

Terminal line
characteristics, 22-157, 22-383
numbers, 22-168

Terminal names, 22-169
reading, 22-159

Terminal output buffer, 22-26
Terminals, 22-7
Terminating

data transmission, 22-23
execution, 22-139

Testing
clear bits, 22-408
front ends, 22-13
set bits, 22-407

Timed interrupts, 22-322
TIMER UUO, 22-435
TMPCOR UUO, 22-436
Trap

conditions, 22-5
instructions, 22-468

Traps
enabling, 22-5
virtual time, 22-390

TRMNO. UUO, 22-438
TRMOP. UUO, 22-439
TRPSET UUO, 22-452
TSK. UUO, 22-453
TTCALL UUO, 22-458

-u-

UFD
compression, 22-85
quota, 22-93

UGETF, 22-459
UJEN UUO, 22-460
unit numbers, 22-75
unit parameter block, 22-413
Unit types, 22-98
Universal Device Index, 22-183
Unloading

disk, 22-84
magtapes, 22-255

UNLOK. UUO, 22-461
Unrestricting devices, 22-108
Updating files, 22-122, 22-147
USETI UUO, 22-463
USETO UUO, 22-465
UTPCLR UUO, 22-467
UTRP. UUO, 22-468

UUOs
ACCLG., 22-2
ACCT., 22-3
APRENB, 22-5
ATTACH, 22-7
CAL11., 22-13
CHGPPN, 22-17
CHKACC, 22-18
CLOSE, 22-23
CLRBFI, 22-25
CLRBFO, 22-26
CLRST., 22-27
CMAND., 22-29
CNECT., 22-33
CORE, 22-35
CTLJOB, 22-37
DAEFIN, 22-43
DAEMON, 22-44
DATE, 22-48
DEBRK., 22-49
DEQ., 22-50
DEVCHR, 22-53
DEVLNM, 22-56
DEVNAM, 22-58
DEVOP., 22-59
DEVPPN, 22-65
DEVSIZ, 22-66
DEVSTS, 22-68
DEVTYP, 22-70
DIAG., 22-73
DISK., 22-82
DNET., 22-88
DSKCHR, 22-93
DTE., 22-99
DVPHY., 22-105
DVRST., 22-107
DVURS., 22-108
ENQ., 22-109
ENQC., 22-119
ENTER, 22-122
ERLST., 22-125
ERRPT., 22-127
EXIT, 22-139
FILOP., 22-141
FRCUUO, 22-155
GETLCH, 22-157
GETLIN, 22-159
GETPPN, 22-160
GETSEG, 22-161
GETSTS, 22-163
GETTAB, 22-165
GOBSTR, 22-166
GTNTN., 22-168
GTXTN., 22-169
HIBER, 22-170
HPQ, 22-172
IN, 22-173
INBUF, 22-175
INCHRS, 22-177
INCHRW, 22-178
INCHSL, 22-179
INCHWL, 22-180
INPUT, 22-182

Index-7

UUOs (Cont.)
IONDX., 22-183
IONEOU, 22-184
IPCFQ., 22-187
IPCFR., 22-188
IPCFS., 22-192
JBSET., 22-194
JOBPEK, 22-195
JOBSTR, 22-198
JOBSTS, 22-200
KDP., 22-202
LOCATE, 22-225
LOCK, 22-226
LOGIN, 22-231
LOGOUT, 22-232
LOOKUP, 22-233
MERGE., 22-235
MONRT., 22-237
MSTIME, 22-238
MTAID., 22-239
MTAPE, 22-240
MTBLK., 22-241
MTBSF., 22-242
MTBSR., 22-243
MTCHR., 22-244
MTDEC., 22-247
MTEOF., 22-248
MTEOT., 22-249
MTIND., 22-250
MTLTH., 22-251
MTREW., 22-252
MTSKF., 22-253
MTSKR., 22-254
MTUNL., 22-255
MTWAT., 22-257
MVHDR., 22-258
NODE., 22-261
NSP., 22-267
NTMAN., 22-269
OPEN, 22-272
OTHUSR, 22-277
OUT, 22-278
OUTBUF, 22-280
OUTCHR, 22-281
OUTPUT, 22-282
OUTSTR, 22-283
PAGE., 22-284
PATH., 22-293
PEEK, 22-302
PERF., 22-303
PIBLK., 22-307
PIINI., 22-309
PIJBI., 22-312
PIRST., 22-314
PISAV., 22-315
PISYS., 22-317
PITMR., 22-322
PJOB, 22-324
POKE., 22-325
QUEUE., 22-326
REASSI, 22-338
RECON., 22-340
RELEAS, 22-346

UUOs (Cont.)
REMAP, 22-347
RENAME, 22-349
RESCAN, 22-351
RESDV., 22-352
RESET, 22-353
RTTRP, 22-355
RUN, 22-356
RUNTIM, 22-358
SAVE., 22-359
SCHED., 22-360
SENSE., 22-380
SETDDT, 22-382
SETLCH, 22-383
SETNAM, 22-384
SETSTS, 22-385
SETUUO, 22-386
SETUWP, 22-396
SKPINC, 22-397
SKPINL, 22-398
SLEEP, 22-399
SNOOP., 22-400
SPPRM., 22-404
SPY, 22-406
STATO, 22-407
STATZ, 22-408
STRUUO, 22-409
SUSET., 22":421
SYSPHY, 22-423
SYSSTR, 22-424
TAPOP., 22-425
TIMER, 22-435
TMPCOR, 22-436
TRMNO., 22-438
TRMOP., 22-439
TRPSET, 22-452
TSK., 22-453
TTCALL, 22-458
UGETF, 22-459
UJEN, 22-460
UNLOK., 22-461
USETI, 22-463
USETO, 22-465
UTPCLR, 22-467
UTRP., 22-468
WAIT, 22-470
WAKE, 22-471
WHERE, 22-472

-v-

variable bits for DECnet links,
22-91

VFU loading, 22-60
virtual time trap, 22-390

-w-

WAIT UUO, 22-470
WAKE UUO, 22-471
WHERE UUO, 22-472
Working set, 22-287
Writing files, 22-146, 22-149
written blocks, 22-86

Index--8

READER'S COMMENTS

TOPS-tO
Monitor Calls Manual

Volume 2
AA-K039D-TB

Your comments and suggestions help us to improve the quality of our publications.
For which tasks did you use this manual? (Circle your responses.)
(a) Installation (c) Maintenance (e) Training
(b) Operation/use (d) Programming (f) Other (Please specify.) --___________ --~ ________ _

Did the manual meet your needs? Yes D No D Why? - _________ _

Please rate the manual in the following categories. (Circle your responses.)

Accuracy (product works as described)
Clarity (easy to understand)
Completeness (enough information)
Organization (structure of subject
matter)
Table of Contents, Index (ability to
find topic)

Excellent Good Fair Poor Unacceptable
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1

5 4 3 2 1

Illustrations, examples (useful) 5 4 3 2
2
2
2

1
1
1
1

Overall ease of use 5 4 3
Page Layout (easy to find information) 5 4 3
Print Quality (easy to read) 5 4 3

What things did you like most about this manual? _____________ _

What things did you like least about this manual? ______________ _

--~------- - ------------------------- ---

Please list and describe any errors you found in the manual.
Page Description/Location of Error

Additional comments or suggestions for improving this manual: ________ _

Name _____________ _ Job Title --____________ _
Street _____________ _ Company ______________ _
City ______________ _ Department _____________ _
State/Country ____ ________________________ __ _ _ __ Telephone NUlnber _
Postal (ZIP) Code _________ _ Date ________________ _

- - - - - - - - - - - - Fold Here and Tape - - - - - - - - - - - -

DIGITAL EQUIPMENT CORPORATION

CORPORATE USER PUBLICATIONS

200 FOREST STREET MR01-3/L 12

MARLBOROUGH, MA 01752-9101

- - - - - - - - - - - - - Fold Here

Affix
Stamp
Here

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	22-001
	22-002
	22-003
	22-004
	22-005
	22-006
	22-007
	22-008
	22-009
	22-010
	22-011
	22-012
	22-013
	22-014
	22-015
	22-016
	22-017
	22-018
	22-019
	22-020
	22-021
	22-022
	22-023
	22-024
	22-025
	22-026
	22-027
	22-028
	22-029
	22-030
	22-031
	22-032
	22-033
	22-034
	22-035
	22-036
	22-037
	22-038
	22-039
	22-040
	22-041
	22-042
	22-043
	22-044
	22-045
	22-046
	22-047
	22-048
	22-049
	22-050
	22-051
	22-052
	22-053
	22-054
	22-055
	22-056
	22-057
	22-058
	22-059
	22-060
	22-061
	22-062
	22-063
	22-064
	22-065
	22-066
	22-067
	22-068
	22-069
	22-070
	22-071
	22-072
	22-073
	22-074
	22-075
	22-076
	22-077
	22-078
	22-079
	22-080
	22-081
	22-082
	22-083
	22-084
	22-085
	22-086
	22-087
	22-088
	22-089
	22-090
	22-091
	22-092
	22-093
	22-094
	22-095
	22-096
	22-097
	22-098
	22-099
	22-100
	22-101
	22-102
	22-103
	22-104
	22-105
	22-106
	22-107
	22-108
	22-109
	22-110
	22-111
	22-112
	22-113
	22-114
	22-115
	22-116
	22-117
	22-118
	22-119
	22-120
	22-121
	22-122
	22-123
	22-124
	22-125
	22-126
	22-127
	22-128
	22-129
	22-130
	22-131
	22-132
	22-133
	22-134
	22-135
	22-136
	22-137
	22-138
	22-139
	22-140
	22-141
	22-142
	22-143
	22-144
	22-145
	22-146
	22-147
	22-148
	22-149
	22-150
	22-151
	22-152
	22-153
	22-154
	22-155
	22-156
	22-157
	22-158
	22-159
	22-160
	22-161
	22-162
	22-163
	22-164
	22-165
	22-166
	22-167
	22-168
	22-169
	22-170
	22-171
	22-172
	22-173
	22-174
	22-175
	22-176
	22-177
	22-178
	22-179
	22-180
	22-181
	22-182
	22-183
	22-184
	22-185
	22-186
	22-187
	22-188
	22-189
	22-190
	22-191
	22-192
	22-193
	22-194
	22-195
	22-196
	22-197
	22-198
	22-199
	22-200
	22-201
	22-202
	22-203
	22-204
	22-205
	22-206
	22-207
	22-208
	22-209
	22-210
	22-211
	22-212
	22-213
	22-214
	22-215
	22-216
	22-217
	22-218
	22-219
	22-220
	22-221
	22-222
	22-223
	22-224
	22-225
	22-226
	22-227
	22-228
	22-229
	22-230
	22-231
	22-232
	22-233
	22-234
	22-235
	22-236
	22-237
	22-238
	22-239
	22-240
	22-241
	22-242
	22-243
	22-244
	22-245
	22-246
	22-247
	22-248
	22-249
	22-250
	22-251
	22-252
	22-253
	22-254
	22-255
	22-256
	22-257
	22-258
	22-259
	22-260
	22-261
	22-262
	22-263
	22-264
	22-265
	22-266
	22-267
	22-268
	22-269
	22-270
	22-271
	22-272
	22-273
	22-274
	22-275
	22-276
	22-277
	22-278
	22-279
	22-280
	22-281
	22-282
	22-283
	22-284
	22-285
	22-286
	22-287
	22-288
	22-289
	22-290
	22-291
	22-292
	22-293
	22-294
	22-295
	22-296
	22-297
	22-298
	22-299
	22-300
	22-301
	22-302
	22-303
	22-304
	22-305
	22-306
	22-307
	22-308
	22-309
	22-310
	22-311
	22-312
	22-313
	22-314
	22-315
	22-316
	22-317
	22-318
	22-319
	22-320
	22-321
	22-322
	22-323
	22-324
	22-325
	22-326
	22-327
	22-328
	22-329
	22-330
	22-331
	22-332
	22-333
	22-334
	22-335
	22-336
	22-337
	22-338
	22-339
	22-340
	22-341
	22-342
	22-343
	22-344
	22-345
	22-346
	22-347
	22-348
	22-349
	22-350
	22-351
	22-352
	22-353
	22-354
	22-355
	22-356
	22-357
	22-358
	22-359
	22-360
	22-361
	22-362
	22-363
	22-364
	22-365
	22-366
	22-367
	22-368
	22-369
	22-370
	22-371
	22-372
	22-373
	22-374
	22-375
	22-376
	22-377
	22-378
	22-379
	22-380
	22-381
	22-382
	22-383
	22-384
	22-385
	22-386
	22-387
	22-388
	22-389
	22-390
	22-391
	22-392
	22-393
	22-394
	22-395
	22-396
	22-397
	22-398
	22-399
	22-400
	22-401
	22-402
	22-403
	22-404
	22-405
	22-406
	22-407
	22-408
	22-409
	22-410
	22-411
	22-412
	22-413
	22-414
	22-415
	22-416
	22-417
	22-418
	22-419
	22-420
	22-421
	22-422
	22-423
	22-424
	22-425
	22-426
	22-427
	22-428
	22-429
	22-430
	22-431
	22-432
	22-433
	22-434
	22-435
	22-436
	22-437
	22-438
	22-439
	22-440
	22-441
	22-442
	22-443
	22-444
	22-445
	22-446
	22-447
	22-448
	22-449
	22-450
	22-451
	22-452
	22-453
	22-454
	22-455
	22-456
	22-457
	22-458
	22-459
	22-460
	22-461
	22-462
	22-463
	22-464
	22-465
	22-466
	22-467
	22-468
	22-469
	22-470
	22-471
	22-472
	23-001
	23-002
	23-003
	23-004
	23-005
	23-006
	23-007
	23-008
	23-009
	23-010
	23-011
	23-012
	23-013
	23-014
	23-015
	23-016
	23-017
	23-018
	23-019
	23-020
	23-021
	23-022
	23-023
	23-024
	23-025
	23-026
	23-027
	23-028
	23-029
	23-030
	23-031
	23-032
	23-033
	23-034
	23-035
	23-036
	23-037
	23-038
	23-039
	23-040
	23-041
	23-042
	23-043
	23-044
	23-045
	23-046
	23-047
	23-048
	23-049
	23-050
	23-051
	23-052
	23-053
	23-054
	23-055
	23-056
	23-057
	23-058
	23-059
	23-060
	23-061
	23-062
	23-063
	23-064
	23-065
	23-066
	23-067
	23-068
	23-069
	23-070
	23-071
	23-072
	23-073
	23-074
	23-075
	23-076
	23-077
	23-078
	23-079
	23-080
	23-081
	23-082
	23-083
	23-084
	23-085
	23-086
	23-087
	23-088
	23-089
	23-090
	23-091
	23-092
	23-093
	23-094
	23-095
	23-096
	23-097
	23-098
	23-099
	23-100
	23-101
	23-102
	23-103
	23-104
	23-105
	23-106
	23-107
	23-108
	23-109
	23-110
	23-111
	23-112
	23-113
	23-114
	23-115
	23-116
	23-117
	23-118
	23-119
	23-120
	23-121
	23-122
	23-123
	23-124
	23-125
	23-126
	23-127
	23-128
	23-129
	23-130
	23-131
	23-132
	23-133
	23-134
	23-135
	23-136
	23-137
	23-138
	23-139
	23-140
	23-141
	23-142
	23-143
	23-144
	23-145
	23-146
	23-147
	23-148
	23-149
	23-150
	23-151
	23-152
	23-153
	23-154
	23-155
	23-156
	23-157
	23-158
	23-159
	23-160
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	Gloss-01
	Gloss-02
	Gloss-03
	Gloss-04
	Gloss-05
	Gloss-06
	Gloss-07
	Gloss-08
	Gloss-09
	Gloss-10
	Gloss-11
	Gloss-12
	Gloss-13
	Gloss-14
	Gloss-15
	Gloss-16
	Gloss-17
	Gloss-18
	Gloss-19
	Gloss-20
	Gloss-21
	Gloss-22
	Gloss-23
	Gloss-24
	Gloss-25
	Gloss-26
	Gloss-27
	Gloss-28
	Gloss-29
	Gloss-30
	Gloss-31
	Gloss-32
	Gloss-33
	Gloss-34
	Gloss-35
	Gloss-36
	Gloss-37
	Gloss-38
	Gloss-39
	Gloss-40
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	replyA
	replyB

