RSX-11M-PLUS and Micro/RSX

Error Logging Manual
Order No. AA-JS19A-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First printing, January 1982
Revised, April 1983
Revised, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1982, 1983, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS dlilgi|t/a]l]
DIBOL RSX

ZK3076

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager

P.O. Box CS2008 100 Herzberg Road c/o Digital's local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

l"Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster,
Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TeX, the typesetting system developed by Donald E. Knuth at Stanford University. TeX is a trademark of the
American Mathematical Society.

Contents

Preface xi

Summary of Technical Changes xv

Chapter 1 Introduction

1.1

1.2

Error Logging Operationttt 1-1
1.1.1 Executive Routines i e 1-3
1.1.2 ERRLOG and ELI.ot i i e e 1-4
1.1.3 RPT .. e e e 1-4
1.14 1) 1-5
Error Logging OpHONS o ittt e 1-5
1.2.1 Unexpected Traps or Interruptsot 1-6
1.2.2 Device BITOrS . . o o o o it e e e e e e e e 1-6
1.23 Interrupt Timeouts 1-6
124 Memory Errors 1-6

Chapter 2 Error Logger Task (ERRLOG) and Error Log Interface

(ELD

2.1 Installing ERRLOG and ELI 2-2
22 Using ERRLOGand ELI 2-2
23 ELISWItches oottt e 2-3
231 The Logging Switches 2-5
23.1.1 The /LOG Switch e 2-5

23.1.2 The /NOLOG Switch. i 2-7

2.4 Error Logging Devices 2-7

iii

241 The Error Limiting Switches 2-8

2411 The /LIMIT Switch 2-9
24.1.2 The Hard Limit Switch 2-9
2.4.1.3 The Soft Limit Switch. 2-10
2414 The /RESET Switch 2-10
242 The File-Naming Switches 2-10
2421 The /LOGSwitch 2-10
2422 The /APPEND Switch 2-11
2423 The /SWITCH Switch 2-11
2424 The /BACKUP Switch 2-12
243 The /SHOW Switch i 2-12
25 ERRLOG and ELIMessages 2-15
25.1 ELIMessages.o v it ittt e e e 2-15
25.2 ERRLOG Messagesttt i it 2-16

Chapter 3 Report Generator Task (RPT)

3.1 Installing and Running RPT 3-2
3.2 Using RPT to Create Error Log Reports 3-2
3.21 The RPT Command Line 3-2

3.2.2 Using the Default MCR RPT Command Line 3-4

323 Using Multiple Arguments in RPT Command Lines 3-5

33 RPTReportSwitches. 3-5
3.3.1 Packet Selection Switches. L. 3-8
3.3.1.1 The /DATE Switch 3-8

3312 The /DEVICE Switch 3-9

3.3.1.3 The /PACKET Switch 3-10

3.314 The /SERIAL Switch 3-11

33.15 The /TYPE Switch. 3-11

3.31.6 The /VOLUME Switch 3-12

332 The /FORMAT Switch 3-13
3.32.1 Brief Reports 3-13

3322 FullReports 3-16

3.3.2.3 RegisterReports e 3-19

3324 NoReport 3-19

333 The /SUMMARY Switch 3-21
3.3.3.1 The ALL Argument, 3-21

3.33.2 The ERROR Argument, .. 3-21

3.33.3 The GEOMETRY Argument, 3-23

3.3.3.4 The HISTORY Argument0.u.u..... 3-23

3.33.5 The NONE Argumentuiuinininnnno... 3-23

3.34 The /REPORT Switch 3-23

3.3.4.1 Predefined Switch Strings 3-26

3.3.4.2 User-Defined Switch Strings 3-26

3.35 The /WIDTH Switch. 3-27

34 ERLCNF Report Messagest 3-27
3.4.1 ERLCNF Fatal Errorso oo e 3-27

3.4.2 ERLCNF Warning Message, 3-32

3.4.3 ERLCNF Informational Messages 0 3-32

35 ERLRPT Report Messageso ittt ettt e 3-33

Chapter 4 Error Log Control File Architecture

41 Termsand Concepts e 4-2
4.2 Control File Module Architecture 4-2
4.21 The Control File Modules 4-4

4.2.2 Program Control Flow 4-9

4.2.3 Compilation Paths e 4-11

424 Modification and Recompilation L L. 4-12

4.3 Interaction Between Dispatcher and Device-Level Modules 4-12
44 Dispatching e 4-15
4.4.1 Event-Level Dispatching 4-15

442 Device-Level Dispatching 4-17

4.43 CPU-Level Dispatching 4-21

45 Support of Non-DIGITAL Devices 4-21
4.5.1 Error Logging of Unknown Devices 4-21

452 Providing Driver Support for a Non-DIGITAL Device. 4-21
4521 The$BMSET Routine 4-21

45.2.2 The $DVTMO and $DTOER Routines 4-22

45.2.3 The $DVERR ($DVCER) Routine. 4-23

4524 The$NSIER Routine, 4-23

4525 The$FNERLRoutinet 4-24

4526 The$LOGERRoutine. 4-24

45.2.7 The LOGTST Routine. 4-25

4528 The$CRPKTRoutine, 4-25

4529 The CALDEV Routine, 4-26

45210 The $QUPKT Routine 4-26

45.2.11 The $QERMV Routinet 4-27

453 Providing Error Logging Support for a Non-DIGITAL Device 4-27
4.5.3.1 Writing a Device-Level Module 4-28

453.2 WritingaNotes Module 4-34

45.3.3 MASSBUS and Non-MASSBUS Device Considerations 4-35

4.6 Code Examples 4-36

4.6.1 The RM02/03 Device-Level Module ERM23 4-36

4.6.2 The DSP2P1 Dispatcher Module 4-50
4.6.3 The RM02/03 Notes Module NRM23 4-60
4.6.4 Subpacket Definitions oo 4-61
4.6.4.1 Subpackets Declared by DSP1P1 4-65
4.6.4.2 Subpackets Declared by DSP2P1 4-66
4.6.4.3 Subpackets Declared by DSP3P1 4-66
4.6.4.4 Subpackets Declared by DSP4P1 4-66
4.6.4.5 Subpackets Declared by DSP5P1. 4-66
4.6.4.6 Subpackets Declared by DSP6P1 4-67
4.6.4.7 Subpackets Declared by DSP7P1 4-67
4.6.4.8 Subpackets Declared by DSP8P1. 4-68

Chapter 5 Control File Language Guide

5.1

5.2

5.3

Control File Overview i e e e 5-1
5.1.1 The Report Generator—General Processing 5-1
512 The General Format of an Error Log Packet 5-2
51.3 The Control File Language it 5-2
51.4 The General Format of Control File Modules 5-3
5.1.5 Files e e 5-3
Types and EXpressions. e 5-4
5.2.1 Data Types . . . v v v vt e e e 5-4
5.2.1.1 TheLOGICAL Type. i e e 5-4
5212 TheSTRING Type., 5-4
5.2.1.3 The ASCIIType i i i 5-5
5.2.1.4 Numeric Types e e 5-5
5215 TheFIELD Type i i 5-7
52.1.6 The POINTERTYpeottt i 5-7
52.1.7 TheRSX_TIME Typettt 5-8
52.1.8 The VMS_TIME Type i, 5-8
52.2 Variables e 5-8
5.2.3 Literals.o e e e 5-9
524 EXPressions v v v ittt e e e 5-9
5.24.1 String Operatorsottt 5-10
5.2.4.2 Logical Operatorsttt 5-11
5.2.4.3 Relational Operators. i 5-11
5.2.44 NumericOperators iy 5-13
5.2.4.5 Bitwise Logical Operators 5-14
5.2.5 Operator Precedence 5-15
Functions e e e 5-16
5.3.1 %CND Functions—Conditional Functions 5-17

vi

5.3.2 9%CNV Functions—Conversion Functions 5-17

5.3.2.1 9%CNV Functions—Numeric Conversion Functions 5-18

5.3.2.2 9%CNV Functions—Miscellaneous Conversion Functions 5-19
5.3.3 %COD Functions—Encoding Functions, 5-19
5.3.4 %COM Functions—Computational Functions 5-20
5.3.5 9%CTL Functions—RPT Control Functions 5-20
5.3.6 %LOK Functions—Look-Ahead Functions 5-21
5.3.7 %PKT Functions—Packet Information Functions522
5.3.8 %RPT Functions—Report Control Functions 5-22
5.3.9 %STR Functions—String-Handling Functions e 5-23
53.10 %TIM Functions—Time-Handling Functions. DT 5-24
5.3.11 The %USR Function—User I/O Function 5-25
Declarations . . . v vt e e e e e e e e e e e 5-25
54.1 Scope of Declarations 5-25
5.4.2 The DECLARE Statement« v vt it e e it it e e e 5-25
5.4.3 The PACKET Statement . . . v v o v v vt oot i e e e i e e it e ee e e e e 5-27
5.4.4 The SUBPACKET Statement o v v v v e v ot et e e it e e ae e e e e 5-28
5.4.5 Conditional Declarations o vttt it i e 5-28
AcCHON SHAtEIMENES . & v o o v v e e et et e e e e e e e e e e 5-30
5.5.1 The SET Statement o o v v vt e vt e e e et e e e e 5-30
5.5.2 The INCREMENT and DECREMENT Statements 5-30
5.5.3 The WRITE Statement o . v v v vt i et e et ettt et e e et e s 5-30
5.5.4 The WRITE_GROUP Statement v v v vt vt iiien oo 5-31
5.5.5 The DECODE Statement v v v v v v v e e e ettt et e e oo e 5-31
Control StateMENES . . « ¢ v v v v et e e e e e e e e e 5-31
5.6.1 The MODULE Statement o v v v v v vt e e et o it a e e e e e e e e 5-31
5.6.2 The LITERAL Statement o v v v v vt oo it e it e ettt eas 5-32
5.6.3 The CALL Statement v v v v e ot e e e e e e et e et e e e e e et e 5-32
5.6.4 The RETURN Statement v v vt v it i e et it it e et e e ee e e e ee e 5-33
5.6.5 The PROCEDURE Statemento vt i vttt iin o oo 5-33
5.6.6 The IF-THEN-ELSE Statement.« oo v vt i it e it e e e e oo 5-33
5.6.7 The CASE Statement v v v v v it et e ettt et e e 5-34
5.6.8 The SELECT Statement o v v vt it e e e ettt e it e oo e e 5-34
5.6.9 The WHILE, UNTIL, and DO Statements 5-34
5.6.10 The LEAVE Statement o vt vttt it et e e 5-35
5.6.11 The BEGIN-END Statementot i v v mnnnee oo, 5-35
5.6.12 Lexical Conditionals e 5-35
1) - T 5-36
5.7.1 Table Structure e e e 5-36
5.7.2 The TABLE Statement o v v v v v et e et e et i et e e e oo e 5-36
5.7.3 The DYNAMIC_TABLE Statement« oo vt oottt e e oo e e 5-37
5.7.4 The FILE Statement . . - . v v v v v e e e e et et e ettt e e e e 5-37

vii

5.7.5 The POINTER Statement 5-37

5.7.6 The FIND Statement 5-38

5.7.7 The PUT Statement 5-38

5.8 Lists 5-38

5.8.1 The LIST Statement 5-39

5.8.2 The SEARCH Statement, 5-39

5.9 Signalling 5-39

5.9.1 The ENABLE Statement 5-39

5.9.2 The SIGNAL Statement 5-40

5.9.3 The SIGNAL_STOP Statement, ... 5-40

5.9.4 The MESSAGE Statement 5-40

5.9.5 The CRASH Statement 5-40

5.10 Print Formatting 5-40

5101 The FORMAT String 5-41

5.10.1.1 Control Directives 5-41

5.10.1.2 Formatting Directives 5-41

5.10.1.3 Data-Formatting Directives 5-42

5.11 User-Interface Handling 5-42

5111 Command Mode 5-42

5112 Option Mode. 5-43

5.12 ERLCFL Report Messagesv it 5-44
Appendix A Tuning the Error Logging Universal Library

A1 Using the TUNE Command File A-1

A.2 DIGITAL-Supplied Error Logging Modules A-5

Appendix B Drive Serial Numbers

Appendix C Error Log Packet Format

Index

viii

Examples

2-1 Error Logging Status 2-14
3-1 Error Log Brief Report 3-14
3-2 EmorLog FullReport 3-17
3-3 Error Log Register Report. 3-20
3-4 ERROR Summary Report 3-22
3-5 GEOMETRY Summary Report 3-24
3-6 HISTORY Summary Report 3-25
A-1 Sample Execution of TUNE.CMD A-3
C-1 Ermror Log Packet Format C-2
Figures
1-1 Error Logging System 1-2
4-1 Structure of Error Logging Packet 4-3
4-2 Compilation Path for Control File Modules 4-11
Tables
2-1 ELI Switches and Subswitches 2-4
2-2 Error Logging Devices 2-7
3-1 RPT File Specification Defaults 3-4
3-2 RPT Report Switches and Arguments 3-6
4-1 Error Logging Device-Level Modules 4-8
4-2 Error Logging Notes Modules 4-9
4-3 Error Logging Code and Subcode Combinations 4-15
4-4 Event Types, Codes, and Their Dispatcher Modules 4-17
4-5 The DEVICE_INFO Table 4-18
A-1 Modules in ERRLOG.ULB0. ... A-5
B-1 Significant Digits in Drive Serial Numbers B-1

ix

Preface

Manual Objectives

This manual contains information about operating the RSX-11M-PLUS and Micro/RSX error
logging system. It explains how the Error Logger collects information on system events and
errors and how the Report Generator and control file produce various kinds of reports on those
events and errors. It also includes information on the control file architecture and on how to
add user-written modules. The error logging system allows you to monitor the reliability of
the hardware on your system by setting error limits and displaying messages on the console
terminal if the number of errors on a device exceeds those limits.

Intended Audience

This manual is intended for Field Service personnel, system managers, and others responsible for
maintaining the integrity of hardware devices connected to an RSX-11M-PLUS or Micro/RSX
operating system.

In addition to understanding the RSX-11M-PLUS or Micro/RSX operating system and the
error logging system, you need a thorough knowledge of the hardware devices that the error
logging system is monitoring. This manual does not attempt to describe or explain the hardware
information that appears in the error log reports. For information about a specific device, consult
the hardware documentation for that device.

Structure of This Document

Chapter 1 provides an overview of the purpose and function of the error logging system.
It describes some features and limitations of the system and explains the operating system
resources that error logging requires.

Chapter 2 describes the procedures for operating the Error Logger and explains the Error Log
Interface (ELI) commands to control logging and limiting.

Chapter 3 describes the procedures for operating the Report Generator task (RPT) and describes
the report formatting that is available.

xi

Chapter 4 explains the control file modules in detail, including the flow of program control,
interfaces between modules, and module dispatching. A knowledgeable system programmer
can use the information presented to add user-written modules to the error logging system. The
chapter includes extensively annotated examples of DIGITAL-supplied modules.

Chapter 5 describes the Control File Language (CFL), which is used to write control file modules.

Appendix A describes the indirect command file, TUNE.CMD, that you can use to remove
devices from the error logging universal library and make it smaller.

Appendix B describes the formats used for drive serial numbers on DIGITAL devices.

Appendix C describes the formats for standard error log subpackets.

Associated Documents
This manual assumes you are familiar with the following documents:
* The RSX-11IM-PLUS Command Language Manual
* The Micro/RSX User’s Guide

The RSX-11M-PLUS Information Directory and Master Index defines the intended readership for
each manual in the documentation set and provides a synopsis of each manual’s contents.
When this manual refers to other documents, consult the appropriate information directory for
information about the document.

Conventions Used in This Document

The following conventions are used in this manual:

Convention Meaning

> A right angle bracket is the default prompt for the Monitor
Console Routine (MCR), which is one of the command interfaces
used on RSX-11M-PLUS systems. All systems include MCR.

$ A dollar sign followed by a space is the default prompt of
the DIGITAL Command Language (DCL), which is one of the
command interfaces used on RSX-11M-PLUS and Micro/RSX
systems. Many systems include DCL.

XXX> Three characters followed by a right angle bracket indicate the
explicit prompt for a task, utility, or program on the system.

UPPERCASE Uppercase letters in a command line indicate letters that must be
entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications.

xii

Convention

Meaning

command abbreviations

lowercase

/keyword,
/qualifier,
or

/switch

parameter

[option]

L]

{}

:argument

Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase letters. The following
example shows the minimum abbreviation allowed for the DCL
command DIRECTORY:

$ DIR

Any command in lowercase must be substituted for. Usually
the lowercase word identifies the kind of substitution expected,
such as a filespec, which indicates that you should fill in a file
specification. For example:

filename.filetype;version

This command indicates the values that make up a file
specification; values are substituted for each of these variables
as appropriate.

A command element preceded by a slash (/) is an MCR
keyword; a DCL qualifier; or a task, utility, or program switch.

Keywords, qualifiers, and switches alter the action of the
command they follow.

Required command fields are generally called parameters. The
most common parameters are file specifications.

Square brackets indicate optional entries in a command line or
a file specification. If the brackets include syntactical elements,
such as periods (.) or slashes (/), those elements are required
for the field. If the field appears in lowercase, you are to
substitute a valid command element if you include the field.
Note that when an option is entered, the brackets are not
included in the command line.

Square brackets around a comma and an ellipsis mark indicate
that you can use a series of optional elements separated
by commas. For example, (argument,[,..]) means that you
can specify a series of optional arguments by enclosing the
arguments in parentheses and by separating them with commas.

Braces indicate a choice of required options. You are to choose
from one of the options listed.

Some parameters and qualifiers can be altered by the inclusion
of arguments preceded by a colon. An argument can be either
numerical (COPIES:3) or alphabetical (NAME:QIX). In DCL, the
equal sign (=) can be substituted for the colon to introduce
arguments. COPIES=3 and COPIES:3 are the same.

xiii

Convention

Meaning

0

[g,m]
[directory]

KEYNAME

”

“print” and “type

black ink

red ink

Parentheses are used to enclose more than one argument in a
command line.

SET PROT = (S:RWED,O:RWED)

Commas are used as separators for command line parameters
and to indicate positional entries on a command line. Positional
entries are those elements that must be in a certain place in the
command line. Although you might omit elements that come
before the desired element, the commas that separate them must
still be included.

The convention [g,m] signifies a User Identification Code (UIC).
The g is a group number and the m is a member number. The
UIC identifies a user and is used mainly for controlling access
to files and privileged system functions.

This may also signify a User File Directory (UFD), commonly
called a directory. A directory is the location of files.

Other notations for directories are: [ggg,m], [gggmmm], [ufd],
[name], and [directory].
The convention [directory] signifies a directory. Most directories

have 1- to 9-character names, but some are in the same [g,m]
form as the UIC.

Where a UIC, UFD, or directory is required, only one set of
brackets is shown (for example, [g,m]). Where the UIC, UFD,
or directory is optional, two sets of brackets are shown (for
example, [[gm]]).

A vertical ellipsis shows where elements of command input or
statements in an example or figure have been omitted because
they are irrelevant to the point being discussed.

This typeface denotes one of the keys on the terminal keyboard;
for example, the RETURN key.

The term “print” refers to any output sent to a terminal by
the system. The term “type” refers to any user input from a
terminal.

In examples, what the system prints or displays is printed in
black.

In interactive examples, what the user types is printed in red.
System responses appear in black.

xiv

Summary of Technical Changes

The following sections list features, qualifiers, and restrictions that are new to the error logging
system or have been modified for the RSX-11M-PLUS and Micro/RSX Version 4.0 operating
systems. These new or modified features are documented in this revision of the RSX-11M-PLUS
and Micro/RSX Error Logging Manual.

New Hardware Support
RSX-11M-PLUS and Micro/RSX Version 4.0 support the following new hardware:
e The PDP-11/73, PDP-11/83, and PDP-11/84 processors
e The RA70, RD52, RD53, RD54, and RX33 disk drives
* The TK50 and TUSIE tape drives

New or Modified Features
The error logging system has the following new or modified features:
¢ Internal I/O Features
* Non-DIGITAL Device Recognition
* Error Logging Control Files
¢ DCL Support for ELI and RPT Commands
¢ Independent Hard and Soft Limits
* New Control File Modules

Internal I/O Features

The error logging system supports error logging for internal I/O operations such as data caching.

X0

Non-DIGITAL Device Recognition

You no longer need to add a record to the DEVICE_INFO table in the DEVSM1 module for
the error logging system to recognize a user-written device level module. After you write the
device level module for your devices, compile the module or modules with the DSP2P1.5YM
file. Next, insert your module in ERRLOG.ULB. The name of a user-written module must be in
the following form:

ExxUSR

The letters xx stand for the device mnemonic. Your device mnemonic cannot be the same as
any DIGITAL-supplied device mnemonic.

Specify your module name in the MODULE statement as follows:
MODULE ExxUSR

In your module, you must set the variable INDICATE.TAPE_FLAG to false if the device you
specify is a disk.

If the device you specify is not a disk, set the variable INDICATE.TAPE_FLAG to true.
Remember to set your INTERMOD_DEVERR variables accordingly.
If there is a NOTES module, its name must be in the following form:

NxxUSR

DCL Support for ELI and RPT Commands

The ELI and RPT commands can be entered at the DCL level. This manual documents the DCL
command equivalent for each MCR-level ELI and RPT command.

Independent Hard and Soft Limits

Error logging allows hard and soft error limits to be reached independently. Previously, reaching
one of the limits would disable logging of either kind of error on that device. Now, reaching
the soft limit does not affect the logging of hard errors and vice versa.

Device timeouts are logged as hard errors if unrecoverable and as soft errors if recoverable.

New Control File Modules
The error logging system contains the following new control file modules:
* The DSP8P1 dispatcher module for CPU-detected errors

e The E118x CPU-level module to process memory parity errors for the PDP-11/73,
PDP-11/83, and PDP-11/84 processors

xvi

New or Modified Qualifiers

The DCL ELI command SHOW ERROR_LOG displays error logging information for the specified
device or, if you do not specify a device, displays error logging information for all devices.

Micro/RSX supports the following qualifiers for the SHOW ERROR_LOG command:

e /CURRENT
e /HISTORY
e /NEW

The qualifiers for the SHOW ERROR_LOG command have the following functions:

/CURRENT

Displays errors that have occurred on all devices since the last time the error logging
system was started using the /UPDATE or /ZERO switch. This qualifier provides the same
functionality as the MCR ELI/SH/CU command.

/HISTORY
Displays a summary of errors that have occurred on all devices since the last time the error

logging system was started using the /ZERO qualifier. This qualifier provides the same
functionality as the MCR ELI/SH/HI command.

/RECENT

Displays a brief description of errors (in chronological order) that have been recorded by the
error logging system. This qualifier provides the same functionality as the MCR ELI/SH/NE
command.

New Error Messages
The Report Generator task (RPT) uses the following new error messages:
* ERLCNF-F-ILLPACSPC
e ERLRPT-F-FORINVCHR

ERLCNF-F-ILLPACSPC

ERLCNEF-F-ILLPACSPC occurs when you use an invalid packet specification with an RPT
report-generating command.

ERLRPT-F-FORINVCHR

ERLRPT-F-FORINVCHR occurs when a control file module executes a WRITE or WRITE_
GROUP statement with a 'DP directive that contains an invalid character.

xvii

Restriction

Error logging has the following restriction:

Data Subpacket Address Restriction

Because the error logging routines have been moved to the Executive common, the following
restriction now applies: if a driver of an error logging device calls the $CRPKT routine to create
an error logging packet, the data address for the data subpacket must not be an address within
the driver. Specifically, the address must not be mapped by APR 5, as this APR is used to map
the common. Any user-written driver that performs such a function must allocate a piece of
pool, fill in the appropriate information, and pass the pool address to the Create Packet routine.

xviii

Chapter 1
Infroduction

The RSX-11M-PLUS and Micro/RSX error logging system records information about errors and
events that occur on your system hardware, either for immediate action or for later analysis and
reporting. Error logging handles mass storage device (disk and tape) errors, as well as memory
errors. Since error logging is a part of the RSX-11M-PLUS and Micro/RSX operating systems,
it is most effective for hardware errors that allow the system to continue functioning.

Error logging is not used to detect information about operating system failures or about device
problems that cause the system to fail. However, it does provide information about what 1/0
activities occurred on a device at the time of an I/O failure, and it detects errors in internal
I/0 operations such as data caching. If your system includes the Crash Dump Analyzer (CDA),
CDA can provide reports on operating system failures.

You can use error log reports to determine that a device is having problems before the device
actually fails and causes you to lose data. For example, a report showing a pattern of recurring
errors from different blocks on a single disk head may indicate that the head needs to be
replaced.

1.1 Error Logging Operation
The complete error logging system is composed of the following four tasks:
* The Error Logger (ERRLOG)
* The Error Log Interface (ELI)
¢ The Report Generator (RPT)
¢ The Control File Language (CFL) compiler

When the Executive or a device driver detects an error, Executive routines create an error log
packet in pool to describe the event. (See Appendix C for a description of the error log packet.)
ERRLOG then writes the packet from pool into the error log file on disk, usually within a few
seconds of when the packet is created.

Figure 1-1 shows the interaction of the error logging system tasks with routines in the Executive.

Introduction 1-1

18-66v-4Z 310
AQOW
ERIE]
JOHLINOD

214 mﬂ.__n_s_S .
JOHINOD 40 .
sjnpow
g7N'D07HH3 HO"HH3

H3AIHA

1%id NVIWWNOD
_ 2-13%0vd _ W-»uxoé_
1004

1d aNvWwoo |

3
1id ANYWNOD w
HO1vyINID I\E
1HOd3y \
}-13M0Vd

1dd

907543

1H0d3Y
D01 HOHYI 2114 DO HOHY3 3AILND3X3

wajsAs Buibbo 1013 -1 9Inbi4

1-2 Introduction

1.1

ERRLOG receives user commands from the Error Log Interface (ELI) to control ERRLOG
operation. These commands send error log packets called command packets to the ERRLOG
task.

The Report Generator (RPT) generates reports from the information in the error log file.

RPT uses a library of modules written in the Control File Language (CFL) to interpret data
from the error log file and from user commands. The CFL compiler is also part of the error
logging system. You can use CFL to recompile DIGITAL-supplied control file modules to include
patches to the modules supplied in the future. You can also use CFL to create and compile
control file modules for devices other than those DIGITAL supplies. Chapter 4 explains the
control file module architecture and includes annotated DIGITAL control file modules. Chapter
5 documents the Control File Language.

1 Executive Routines

Whenever the RSX-11M-PLUS or Micro/RSX system is running and error logging is active,
routines in the Executive collect information from device drivers and other tasks and write the
information into error log packets in system pool.

The Executive gathers information on the state of the registers when a device error occurs,
and includes information on system events such as device mounts and dismounts. You can
also insert a text message into the error log file using the MCR command System Service
Message (SSM) or the DCL command MESSAGE /ERROR_LOG. (See the RSX-11M-PLUS MCR
Operations Manual.)

If error logging is not active on the system, the device drivers still detect each hardware error,
but the Executive does not create error log packets.

The error logging system makes a distinction between hard errors and soft errors. Hard errors
are those that cause an I/O operation to be aborted because the device driver cannot recover
from the error. The task that issued the I/O request receives an error code indicating that the
operation failed. Soft errors are those from which the device driver can recover. The task that
issued the I/O request does not receive an error notification because the request eventually
succeeds.

The error logging system logs both hard and soft errors. Thus, you can have a system functioning
properly, with no errors reported to any tasks in the system, with errors still being encountered
and logged. For this reason, error logging terminology sometimes refers to errors as events;
they do not always mean an actual failure.

When error logging is active, the Executive writes the data from a single event into one error
log packet and assigns a sequence number unique to that event to the packet. The Resource
Monitoring Display (RMD) shows the highest assigned sequence number as ERRSEQ, the total
number of errors since error logging operations began.

When ERRLOG writes the packet in a file, the packet gets a number that describes its location in
the file relative to other packets. RPT uses this number to refer to the event in later operations.
The number does not change unless the organization of the file changes. For example, if an
earlier error log file is appended to the current error log file, the packet numbers in the appended
file will change.

Introduction 1-3

Thus, you can generate a brief format RPT report to determine the packet numbers of the most
significant errors on your system, and then generate a full format report, by packet number, of
only those errors.

The Executive includes a directive for error logging (SMSG$) that sends error log packets directly
to the Error Logger. (See the RSX-11IM-PLUS and Micro/RSX Executive Reference Manual for an
explanation of how to use this directive.) User tasks can use SMSG$ to communicate with the
Error Logger.

1.1.2 ERRLOG and ELI

ERRLOG writes the error log packets from pool to the error log file in binary format. Only RPT
can interpret and format data from the error log file.

To issue a command to ERRLOG, type an ELI command to perform one of the ERRLOG functions
(logging, limiting, or file naming). ELI sends an error log command packet to ERRLOG with
instructions on the function to be performed, and ERRLOG returns the results, if any, to ELL

The ERRLOG task allows you to specify two files to contain the error log packets written to
disk. ERRLOG uses the first file, the error log file, unless an error is detected while ERRLOG
writes to the file. If an error is detected, ERRLOG switches to the second file, the backup file.
ELI commands allow you to establish or change the names of the error log file and backup file.

The error logging system automatically limits the number of events it logs on a given device.
This error limit can be changed dynamically by ELI commands while error logging is running.
The system uses limits in case the device starts to accumulate a large number of errors. Without
limits in these cases, the error log file would quickly become large and difficult to analyze.
Error limiting does not lose useful information because, usually when a large number of events
occurs on a device, most of them are the same and you can generalize from a report on a small
number of the events.

After a device reaches a particular error limit, logging of that type of error on the device stops
until you reset the error count to zero or raise the error limit.

ERRLOG sends a message to the console terminal or to any terminal that has allocated the
device, explaining that the device reached the error limit. Error limiting does not affect the
operation of the device itself; it only starts or stops error logging on the device.

1.1.3 RPT

RPT creates reports on the data in the error log file, based on information in the error log
control file and commands supplied by the user. Modules in the error log control file tell RPT
how to interpret and print entries from the error log file for a specific operating system.

When you are ready to generate an error log report, you can run RPT to select the information
you want to include in the report. RPT can generate reports in brief and full format on any
collection of error log packets you select. For example, you can select reports on a specific
device by device name, device type, volume label, pack identification, or drive serial number.
You can also select reports of a specific error type or you can select a full report of all the error
log packets in the error log file.

Error log reports can contain both context information and device-supplied information.

1-4 Introduction

Context information, which appears in full format reports, contains operating system version
information and some information about the CPU model. Context information on the I/O
operation that encountered the failure is recorded for device errors. This information allows you
to correlate events recorded in the error log file with other events in the system. For example,
hard 1/0 errors often cause the task issuing the 1/O request to exit with an error, since many
tasks cannot recover from I/O errors. You can also use information about the I/O operation to
determine what operation the device driver attempted at the time of the failure.

Error logging records information on each I/O operation that takes place when an error occurs
on other system error logging devices. This information is useful if you have a failure that may
be related to interactions between devices. For example, I/O bus timing problems may show
up as a problem only when more than one I/O operation takes place at the same time on the
system.

In a full report, RPT also includes all device-supplied information, including the status of registers
and any other information the device provides. Each device supplies one or more machine
words of information when an error occurs. RPT decodes each item of device information
according to the terminology used in the device maintenance manual. Additional information
may be listed in parentheses to help you understand the significance of a decoded item.

In RPT reports, decoded items that are abnormal are flagged with an asterisk (*). These items
may or may not represent error conditions, depending on the state of the device. You should
interpret an asterisk flag as a “look at me first” message. RPT reports flag more than one item
on most devices.

RPT reports also flag more than one item if a device encounters an error or cannot perform an
operation because of another error condition. This condition occurs when an abnormal device
status condition causes an I/O function to fail. The RPT report flags both the I/O function
failure and the abnormal device status.

An error definition in the RPT report then compresses all the device-supplied information to a
single item reflecting the most probable error reported by the device.

1.1.4 CFL

The error logging system includes a Control File Language (CFL) compiler that is used
to recompile patched DIGITAL-written control file modules or user-written modifications or
additions to modules. Chapters 4 and 5 describe the operation of the CFL compiler and the
DIGITAL-supplied control file module for the RM02/RMO03 disk drive.

1.2 Error Logging Options
Routines in the Executive respond to the following four types of errors:
* Unexpected traps or interrupts
® Device errors
* Device timeouts

* Memory errors

Introduction 1-5

1.2.1 Unexpected Traps or Interrupts

When your system includes error logging support, all unused system vectors are filled with
pointers to routines in the Executive. Therefore, routines in the Executive are called if a trap or
interrupt occurs to one of these unused vectors. For example, a noisy electrical environment or
a static discharge may cause an unexpected trap or interrupt to one of the unused vectors, or a
valid interrupt may be vectored to the wrong address. In these cases, the Executive records this
information.

1.2.2 Device Errors

Device errors are problems that a device encounters while carrying out a software-requested
operation. When a device error occurs and error logging is active, the device driver calls
Executive routines to record the contents of the device registers or other hardware-supplied
information. The registers indicate the state of the device and its controller. The routines also
record information found in the actual I/O request to the driver, such as the type of operation
attempted. This information can help you interpret the device error.

1.2.3 Interrupt Timeouts

Interrupt timeouts occur when the device that initiated an operation fails to complete the
operation within the length of time the driver specified. When the transfer starts, software
timers detect interrupt timeouts. The system records the same information for timeouts that it
records for device errors.

1.2.4 Memory Errors

Memory errors occur when the parity bit stored with the data during a write operation does
not match the parity calculated when the data is read. Some types of main memory use parity
to ensure integrity of the information. All RSX-11M-PLUS systems (except the pregenerated
systems and Micro/RSX) include support for logging memory parity errors.

1-6 Introduction

Chapter 2

Error Logger Task (ERRLOG) and Error Log Interface
(ELD)

This chapter describes how to use the Error Logger task (ERRLOG) and the Error Log Interface
(ELI). Chapter 1 provided a general overview of how ERRLOG and ELI work, along with the
Report Generator (RPT), to form the complete error logging system.

ERRLOG gets event and status information from device drivers and the Executive in the form of
error log packets and writes the packets in an error log file on disk. The Executive also performs
error limiting to allow a maximum number of errors to be logged on each device before logging
stops.

ELI the user interface to ERRLOG, includes switches to perform the following operations:
® Start or stop logging or limiting

¢ Change device error limits or error counts

® Establish or change log file names

* Display information about the error logging status of any device or of the entire system

ERRLOG is the only part of the error logging system that must be installed for error logging to
occur. You can install ELI when you issue commands to ERRLOG and install RPT when you
create reports.

MCR and DCL Equivalents

If your system supports DCL, you can use DCL error logging commands in place of most MCR
ELI switches. Where ELI commands or their formats are listed in this chapter, the MCR form
is listed first and the DCL equivalent is listed directly underneath. For example, the following
format line shows an MCR ELI command, and then the DCL command that performs the same
operation.

Format
[filespec]/LOG [/subswitch[es]]
START/ERROR_LOG [/qualifier[s]] [filespec])

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-1

2.1 Installing ERRLOG and ELI

To install the ERRLOG task, enter the following command from a privileged terminal or as an
entry in the system startup command file (both the MCR and DCL commands are shown):

> INS $ERL
$ INSTALL $ERRLOG

To install ELI, enter the following command from a privileged terminal or as an entry in the
system startup command file:

>INS $ELI
$ INSTALL $ELI

To invoke ELI after it is installed, issue the following MCR command from any terminal:

>ELI

If ELI is not installed, you can invoke it from a privileged terminal using the following command:

>RUN $ELI

$ RUN $ELI

When ELI is invoked, your terminal will display the following prompt:
ELI>

2.2 Using ERRLOG and ELI

You can use the ELI /SH switch to display error logging information from any terminal.
However, you must use a privileged terminal to execute any other ELI commands.

Enter each command on a separate line unless the command description specifies otherwise.
The general MCR format of an ELI command is as follows:

ELI>filespec [device:[:...]1]1/switch[/...]

The general DCL format of an ELI command is as follows:

$ command [/qualifier(s]] [device[s]] filespec

Parameters
filespec
The name of an error log file or file to append to the current error log file.

device
A device mnemonic indicating the device for which you want to perform error logging.

switches
Switches to set, change, or display ERRLOG operation. (You must specify at least one
switch on each ELI command line.)

2-2 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

If you want to start error logging and use only the ERRLOG defaults, enter the following ELI
command:

ELI> /LOG
$ START/ERROR_LOG

This command starts ERRLOG, using LB:[1,6]LOG.ERR as the default log file and
LB:[1,6]BACKUP.ERR as the default backup file. Specify the /LOG switch to use ERRLOG
defaults.

The /LOG switch also starts error limiting to limit the number of hard and soft errors ERRLOG
records on each device before it stops logging on that device. The default error limit, used
when you begin limiting with the /LOG switch, is five hard errors and eight soft errors for each
device. You can change these limits with the /HL or /SL switches described in Section 2.4.1.
However, you cannot use the switches to change limits on the same command line as the /LOG
switch.

2.3 ELI Switches

This section describes the following four types of ELI switches and subswitches:
* Logging switches

® Error limiting switches

¢ File-naming switches

* The display switch

Remember that these switches only control operation of the Error Logger. Chapter 3 describes
the RPT commands that generate actual error log reports. Chapter 5 describes the commands
that control the Control File Language (CFL) compiler.

Table 2-1 summarizes the ELI switches and subswitches and their equivalent DCL commands.
ELI syntax requires that you specify at least two characters of a switch name and as many
additional characters as it takes to make the switch unique. Refer to the ELI switch descriptions
in this section for the exact syntax and use of each command.

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-3

Table 2-1:

ELI Switches and Subswitches

MCR
ELI Switches

and Arguments

DCL Commands
and Qualifiers

Function

/LOG
/TY:arg[s]
ALL

M

PE
PR
SY

/NV
/-LIM
/UP[DATE]
/ZE[RO]
/NOLOG
/I-LIMIT]
/HL
/SL
/RE[SET]
/AP[PEND]
/DE[LETE]
/SWIITCH]
/DE
/NV
/BA[CKUP]

/SH[OW]
filespec

START/ERROR_LOG
/INCLUDE=arg[s]
ALL

CONTROL
ERRORS

MEMORY

PERIPHERAL
PROCESSOR
SYSTEM_INFORMATION

/NEW_VERSION
/NOLIMITING
/UPDATE (Micro/RSX only)
/ZERO (Micro/RSX only)
STOP/ERROR_LOG
SET ERROR_LOG/[NO]JLIMITING
SET ERROR_LOG/HARD_LIMIT
SET ERROR_LOG/SOFT_LIMIT

Begins error logging operation
Specifies type of error logging

Includes all information in error log
file

Includes ELI control packets

Includes peripheral, processor, and
memory errors

Includes errors in memory
Includes information from peripherals
Includes events in CPU

Includes system information, not
device-specific

Creates a new file version

Starts logging without error limiting
Updates ERRORS.ACC file

Clears ERRORS.ACC file

Stops all error logging and limiting
Starts or stops use of error limiting
Sets limit for hard errors

Sets limits for soft errors

SET ERROR_LOG/RESET_COUNTS Resets QIO and error counts to 0

APPEND ERROR_LOG
/DELETE

Appends specified file to error log file
Deletes specified file after appending

SET ERROR_LOG/NEW_LOG_FILE Copies current file to new file

/DELETE
/NEW_VERSION

SHOW ERROR_LOG
/OUTPUT

2-4 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

Deletes old logging file
Creates new version of logging file

Sets name of backup file to next-
highest version of named file

Displays error logging on all devices

Writes display to a file

2.3.

Table 2-1 (Cont.): ELl Switches and Subswitches

MCR
ELI Switches DCL Commands
and Arguments and Qualifiers Function
/CU[RRENT] /CURRENT Shows error counts since last time
JUPDATE was used (Micro/RSX
only)
/HI[STORY] /HISTORY Shows error counts from ERRORS
.ACC (Micro/RSX only)
/NEW /RECENT Shows most recent errors (Micro/RSX
only)

1 The Logging Switches

ELI logging switches start or stop logging on all error logging devices in the system. (See
Table 2-2, Error Logging Devices.)

2.3.1.1 The /LOG Switch

Format
[filespec] /LOG [/subswitch[/...]]
START/ERROR_LOG [/qualifier[/...]] [filespec]

The /LOG switch begins error logging operation and optionally allows you to specify a file in
which the Error Logger writes the data it collects (see Section 2.4.2). If you specify an existing
file, the /LOG switch appends new data to that file unless you also specify the New Version
switch (/NV) in the command line.

The /LOG switch also turns on error limiting by default, unless you specify the No Limiting
(/-LIM) switch to override it.

You can use the following subswitches with the /LOG switch:

/-LIM[IT]

/NOLIMITING
The No Limiting (/-LIM) subswitch begins logging with no error limiting. This subswitch
overrides the default ERRLOG operation in which /LOG automatically turns on error
limiting.

/NV

/NEW_VERSION
The New Version (/NV) subswitch causes the Error Logger to create a new version of
the error log file (either the file you specify in the command line or the default error log

file, LB:[1,6]LOG.ERR). This subswitch overrides the default operation in which the /LOG
switch appends data to the current version of the error log file.

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-5

/TY[PEL:argl,...]

/INCLUDE=[arg],...]]
The /TYPE subswitch selects error log packets based on their packet type. The packets
included in the report are determined by the following arguments:

MCR Arguments DCL Arguments

ALL ALL

C[ONTROL] CONTROL

E[RROR] ERRORS

M[EMORY] MEMORY

PE[RIPHERAL] PERIPHERAL
PR[OCESSOR] PROCESSOR
SY[STEM_INFO] SYSTEM_INFORMATION

The /TYPE subswitch arguments are described as follows:

ALL
Selects all error log command packets in the error log file. This is the default.

CONTROL
Selects error log command packets that control the Error Log Interface task (ELI).

ERROR
Selects error log packets from system peripherals, the processor, and memory.

MEMORY
Selects error log packets from events that occur in memory (such as memory parity errors).

PERIPHERAL

Selects error log packets from all peripheral devices that support error logging. This
argument does not display system information (such as mounts and dismounts) for the
devices.

PROCESSOR
Selects error log packets from events that occur in the CPU, such as unknown interrupts.

SYSTEM_INFO

Selects error log packets from events that occur on the system but are not specifically tied
to errors on a single piece of hardware, such as time changes and system service messages,
as well as some device-specific events such as mounts and dismounts.

/UP[DATE]

/UPDATE (Micro/RSX only)
The /UPDATE subswitch updates the historical part of the file of accumulated errors
(ERRORS.ACQ) to reflect the latest information in ERRORS.LOG. It then creates a new
version of ERRORS.LOG that contains no error events. You cannot use the /UPDATE
subswitch on the same command line with the /ZERO subswitch.

2-6 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

/ZE[RO]
/ZERO (Micro/RSX only)

The /ZERO subswitch erases all the accumulated errors in ERRORS.ACC. It then creates a
new version of ERRORS.LOG that contains no error events. You cannot use the /ZERO
subswitch on the same command line with the /UPDATE subswitch.

2.3.1.2 The /NOLOG Switch

Format
/NOLDOG or /-LOG
STOP/ERROR_LOG

The /NOLOG switch stops error logging and error limiting on all devices.

2.4 Error Logging Devices

Table 2-2 lists the

device modules included in the original version of the file

LB:[1,6]JERRLOG.ULB, as distributed with the error logging system. However, if you have
deleted any device modules from the universal library using the indirect command file described
in Appendix A, your system will not include support for those devices. If you want error
logging support for the devices listed in Table 2-2, include the control file module listed with
the device in the universal library. See Appendix A for information on how to include and
delete modules from the universal library.

Table 2-2: Error Logging Devices

Device

Control File Module

ML11
RA60

RA80 /RA81

RC25

RD50 /RD51 /RD52
RD53 /RD54

EML11

MSCP60

MSCPAT
MSCPCE
MSCPEN
MSCPTO

DEVUDA
MSCP5X

MSCPAT
MSCPCE
MSCPEN

MSCPSD
MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA

MSCPTO
DEVUDA

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-7

Table 2-2 (Cont.): Error Logging Devices

Device Control File Module
RKO03 /RK05 ERKO05
RK06 /RK07 ERK67
RLO1 /RLO2 ERL12
RM02 /RMO03 ERM23
RMO05 ERMO05
RM80 ERMS80
RP02 /RP03 ERP23
RP04 /RP05 /RP06 ERP456
RP07 ERP0O7
RS11 ERS11
RS03 /RS04 ERS34
RX01 ERX01
RX33 /RX50 MSCP5X
TA11 ETA11
TC11 ETC11
TK50 ETK50
TS03 /TE10 /TT10 ET0310
TS11 /TU8O ETS11
TSV05 ETSV05
TU16 /TEl6 /TU45 ET1645
TU58 ETUS58
TU60 ETU60
TU77 ETU77
TUS1E ETUS81

2.4.1 The Error Limiting Switches

The limiting switches control the error limiting operation of ERRLOG. You can use them to
start or stop error limiting or to change error limits on specific devices. When a device reaches
the user-specified error limit or the default error limit, ERRLOG displays the following warning
message on the console terminal or on any terminal that has allocated or attached the device:

ERRLOG - - **WARNING: Device dd: Exceeded (xxxx) Limit (n)

2-8 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

In the warning message, xxxx is the type of limit (hard or soft) and n is the number to which
the limit is set.

When the device reaches an error limit, error logging for that type of error stops on the device
until you reset the error and QIO counts to 0 or raise the error limit.

You can reset the error and QIO counts to 0 with the ELI /RESET switch. Mounting or
dismounting the device or rebooting the system also resets the error and QIO counts to 0.
However, using the /-LOG switch to stop logging does not reset the error and QIO counts.

Logging on a device stops only when the device reaches both of the limits set for hard and soft
errors. If, for example, the device reaches its limits for hard errors but not for soft errors, it will
continue to log soft errors until the soft error limit is also reached.

2.4.1.1 The /LIMIT Switch

Format

/[-1LIM[IT] or /[NOILIM

SET ERROR_LOG/ [NO]LIMITING

The /LIMIT and No Limit (/-LIM) switches start and stop the use of error limits, respectively.
These limits are set by default for all devices on the system when you enable error logging or

they are set for individual devices with the hard and soft limit switches described below. The
/LIM switch does not activate error logging if it is not currently active on the system.

When you specify the /LOG switch to begin error logging, it automatically starts error limiting
on all error logging devices unless you inhibit limiting with the /-LIM switch.

The /-LIM switch inhibits the incrementing of hard and soft error counts, which are displayed
by the ELI /SH switch and in the RMD “I” page.

Note

If you start error logging with no limiting and the error counts happen to be at
zero when error logging is started, ELI displays the counts as zeros even though
errors continue to be logged. To check the number of errors that occur when
limiting is off, you must use RPT to generate an error report.

2.4.1.2 The Hard Limit Switch

Format
ddnn:[,...]J/HL:n[/SL:n]
SET ERROR_LOG/HARD_LIMIT:n[/SOFT_LIMIT:n] ddnn:[,...]

The Hard Limit (/HL) switch sets limits for the number of hard errors that error logging records
on the device specified. Hard errors occur on a device when an I/O operation fails and cannot
be recovered by the device driver. You can set hard error limits for more than one device in
the same command line, as long as the limits are the same. The default hard error limit on
each device is five.

The value for n can be 0 to 255. If you set the limit to 255, logging continues without stopping
(the limit is infinite). If the limit is set to 0, no errors will be logged.

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-9

You can use the Soft Limit (/SL) switch on the same command line with the /HL switch,
thereby controlling both hard and soft device error limits on the same command line. You can
specify different limits for hard and soft errors.

2.4.1.3 The Soft Limit Switch

Format
ddnn:[,...]/SL:n[/HL:n]
SET ERROR_LOG/SOFT_LIMIT:n[/HARD_LIMIT:n] ddnn:[,...]

The Soft Limit (/SL) switch sets limits for soft errors. Soft errors occur on a device when an
I/0 operation fails, but succeeds in a subsequent retry attempt. You can set soft error limits for
more than one device in the same command line, as long as the limit is the same. The default
soft error limit for each device is eight.

The value for n can be 0 to 255. If you set the limit to 255, logging continues without stopping
(the limit is infinite). If the limit is set to 0, no errors will be logged.

You can use the Hard Limit (/HL) subswitch on the same command line with the /SL switch,
thereby controlling both hard and soft device error limits on the same command line. You can
specify different limits for hard and soft errors.

2.4.1.4 The /RESET Switch

Format
ddnn:{,...]/RE[SET]
SET ERROR_LOG/RESET_COUNTS ddnn:[,...]

The /RESET switch resets the QIO count and error count for the specified devices to 0. You
can specify up to 14 devices in one command line. You cannot reset QIO and error counts on
all devices in the system at once by specifying the /RE switch without specifying devices.

When ERRLOG resets the counts to 0, it displays the following message on the console terminal:

ERRLOG - - Error and QIO counts reset for ddnn:

2.4.2 The File-Naming Switches

The file-naming switches establish and change the names of error log files.

2.4.2.1 The /LOG Switch

Format
[filespec] /LOG
START/ERROR_LOG {[filespec]

The /LOG switch, which also initializes the Error Logger, sets the name of the error log file
that the Error Logger uses. If you specify an existing error log file, the default operation is
to append data to the current version of that file. To override the default, specify the New
Version (/NV) subswitch. The Error Logger then creates and writes data in a new version of
the file. The /LOG switch does not work when error logging is already active on your system.

2-10 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

The default error log file specification is LB:{1,6]JLOG.ERR. The /LOG switch also specifies
LB:[1,6]BACKUP.ERR as the backup file.

2.4.2.2 The /APPEND Switch

Format
filespec/AP[PEND] [/D[ELETE]]
APPEND/ERROR_LOG[/DELETE] filespec

The /APPEND switch appends the specified file to the end of the current log file. Error logging
must be active for this switch to work.

The default operation is to append the specified file to the current error log file and to keep the
appended file.

You can use the following subswitch with the /APPEND switch:

/DE[LETE]

/DELETE
The /DELETE subswitch causes the Error Logger to delete the specified file after it is copied
to the end of the current error log file.

2.4.2.3 The /SWITCH Switch

Format
filespec /SW[ITCH] [/subswitch]
SET ERROR_LOG /NEW_LOG_FILE:filespec [/qualifier]

The /SWITCH switch copies the current error log file to the file you specify and begins logging
in that file. The default operation appends data to an existing version of the file and preserves
the old version of the error log file.

You can use the following ELI subswitches or DCL qualifiers on the command line with the
/SWITCH switch:

/NV
/NEW_VERSION

The New Version (/NV) subswitch creates a new version of the file you specify. This
subswitch overrides the default operation in which the /SW switch appends data to the
latest version of the file.

/DE[LETE]

/DELETE
The /DELETE subswitch causes the Error Logger to delete the current error log file after it
copies the file to the new file you specify.

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-11

2.4.2.4 The /BACKUP Switch
Format
filespec /BA[CKUP]

The /BACKUP switch specifies the file to be used as a backup file if the Error Logger cannot
write to the current log file. By default, the backup file is LB:[1,6]BACKUP.ERR.

The backup file specification is kept, but no file is created until needed. You may wish to have
your backup file on a different device from the current log file. By default, both files are on
pseudo device LB:.

When the Error Logger cannot write to the current log file, it creates and opens the backup file
and writes to it. At that point, you no longer have a backup file, and the Error Logger displays
the foliowing message on the console terminal:

ERRLOG - - Log file error - logging continuing on backup file
After error logging switches to the backup file, there is no longer a backup file available.

The Error Logger uses the specified backup file as the current error log file. It does not rename
the file to LOG.ERR, even though the file is now the error log file.

At this point, you should specify a new backup file, using the /BACKUP switch. Otherwise, if
the Error Logger cannot write to the new log file, it will not be able to continue by writing in
a backup file.

If the Error Logger tries to switch logging to a nonexistent backup file, it displays the following
message:

ERRLOG - - Backup file error - logging discontinued

When that happens, logging stops and must be restarted.

If you create the backup file on a disk other than the disk containing the error log file, this
ensures that logging will continue even if the disk with the error log file develops problems.

2.4.3 The /SHOW Switch

Format
[filespec=] [ddnn:[,...]11/SH[OW] [/subswitch]
SHOW ERROR_LOG[/qualifier(/...]] [ddnn:[,...]]

The Display (/SHOW) switch provides a brief display of error logging information on the
devices specified (up to 14). The default is to display this report on your terminal. If the
command does not specify devices, the Error Logger displays information on all error logging
devices in the system by default.

The display shows the total number of errors that have occurred since error logging was started
in the current ERRORS.LOG file. The display includes only errors from devices that are on line.
It does not show the time or order in which the errors occurred.

2-12 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

The /SHOW switch uses the following arguments and subswitches:-

filespec

/OUTPUT[:flespec]
The filespec argument allows you to specify that the output from the /SHOW switch be
written in a file instead of displayed on your terminal. In DCL, if you use the /OUTPUT
qualifier without a file specification, the system uses the file name ERRORS.LST. If you
specify a file name, the system uses that name.

/CIURRENT](Micro/RSX only)

/CURRENT
The /CURRENT subswitch displays the error counts that have occurred on all devices since
error logging was started using the /LOG/UPDATE switch. The /CURRENT subswitch
displays the current section of the ERRORS.ACC file.

/HIISTORY J(Micro/RSX only)

/HISTORY
The /HISTORY subswitch displays the error counts from the historical part of the file
ERRORS.ACC. This includes hard and soft errors from the last time the file was set to zero
through the last time the file was updated. Errors that occurred after the file was updated
are not included in the historical display, but rather in the current display. To see them,
use the /CURRENT subswitch.

/NIEWI(Micro/RSX only)
/RECENT

The /NEW subswitch displays the information in the ERRORS.LOG file to show only the
most recent errors. It also shows the time and order in which they occurred. This display
automatically includes all error logging devices.

Example 2-1 illustrates the output from the operation of the /SH switch.

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-13

Example 2-1: Error Logging Status

Error Logging Status 12-AUG-87 00:51:54
Logging: On Limiting: On

Log File: LB:[1,6]L0G.ERR File ID: DR3: 32,252
Backup File: LB:[1,6]BACKUP.ERR

Device Hard Error Soft Error QIO
Name Count/Limit Count/Limit Count
MMO : 0./5. 0./8. 23.
MM1: 0./5. 0./8. 9776.
MM2: 0./5. 0./8. 0.

MM3: 0./5. 0./8. 0.

DBO: 0./5. 0./8. 14144.
DB1: 0./5. 0./8. 0.

DB2: 0./5. * 8./8. 46528.
DRO: 0./5. 0./8. 0.

DR1: 0./5. 0./8. 0.

DR2: 0./5. 0./8. 164234.
DR3: 0./5. 0./8. 625364 .
DS: 0./5. 0./8. 130.
DS1: 0./0. 0./0. 0. (0ffline)
DKO: 0./5. 0./8. 1.

DK1: 0./5. 0./8. 0.

DMO: 0./5. 0./8. 0.

DM1: 0./5. 0./8. 0.

DLO: 0./5. 0./8. 0.

DL1: 0./5. 0./8. 0.

DTO: 0./5. 0./8. 0.

DT1: 0./5. 0./8. 0.

DT2: 0./5. 0./8. 0.

DT3: 0./5.

DYO: 0./5. 0./8. 1

DY1: 0./5. 0./8. 1

DDO: 0./5. 0./8. 0.

DD1: 0./5. 0./8. 0

If you specify device names with the /SHOW switch, the output is the same as shown in
Example 2-1, except that the display only includes information on the devices you specified.

The asterisk next to the soft error limit for DB2 indicates that DB2 reached the soft error limit
and logging of soft errors stopped. Note that the logging of hard errors will continue on DB2
until the hard error limit is reached.

The display continues to record additional QIOs on the device, even after logging stops, because
the Executive maintains the QIO count. Therefore, the ratio of errors to QIOs on the device
does not necessarily give you an accurate statistical error percentage.

2-14 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

2.5 ERRLOG and ELI Messages

2.5.

ERRLOG displays messages on the console terminal when errors occur during an operation.
In some cases, ERRLOG displays messages on any terminal that has allocated or attached the
device on which the error occurs. ELI displays messages on the terminal that invoked it. This
section describes the messages, their causes, and possible user responses.

1 ELI Messages
ELI—ERRLOG not installed
Explanation: ERRLOG is not installed on the system.

User Action: Install ERRLOG from a privileged terminal and issue the ELI command again.

ELI—Failed to communicate with ERRLOG
Explanation: ELI could not communicate with ERRLOG using the Executive directive SMSG$.

User Action: Fatal error. No user action is possible.

ELI—File name must be specified

Explanation: You used a /BACKUP, /APPEND, or /SWITCH switch without specifying a
file name.

User Action: Reenter the ELI command with an appropriate file specification.

ELl—Get Command Line error
Explanation: The Get Command Line procedure failed.

User Action: This may be a temporary condition. Retry the operation.

ELI—Illlegal switch combination

Explanation: You used an ELI switch in combination with subswitches other than those
allowed on a command string with that switch. (See Table 2-1.)

User Action: Reenter the command string, specifying a valid combination of switches on
each string. Use a separate command string for additional switches, if necessary.

ELI—Maximum number of devices exceeded

Explanation: You attempted to reset QIO and error counts on more than 14 devices in one
command string.

User Action: Specify the /RESET switch again, with 14 or fewer devices.

ELI—Switch requires device name ddnn: only

Explanation: You specified both a device name and a UFD and/or a file name with an ELI
switch that accepts only a device name.

User Action: Reenter the command line, specifying only a device name.

Error Logger Task (ERRLOG) and Error Log Interface (EL) 2-15

ELI—Syntax error

Explanation: You used an invalid switch or file specification or made some other syntactical
error.

User Action: Reenter the command line, using the proper command string syntax.

2.5.2 ERRLOG Messages
ERRLOG—Backup file error - logging discontinued

Explanation: ERRLOG encountered an error when it wrote in the log file. It then tried to
write in the backup file, but could not. This error occurs if you fail to establish a new
backup file after ERRLOG switches logging to the backup file.

User Action: Issue an ELI /BACKUP command to establish a new backup file and restart
logging.

ERRLOG—Device not in system
Explanation: ERRLOG tried to use a device that is not in the system configuration.

User Action: Check to be sure you specified the correct device and reenter the command. If
the device is correct, no user action is possible.

ERRLOG—Error and QIO counts reset for ddnn:
Explanation: The error and QIO counts for a given device were reset.

User Action: No user action is necessary. This is an informational message.

ERRLOG—Error log packet too long

Explanation: ERRLOG encountered an error log packet that was too large. The error log
packet was corrupt.

User Action: If the error logging system includes user-generated error log packets, check
the code to make sure none of the packets are too long. Otherwise, submit a Software
Performance Report (SPR).

ERRLOG—Failed to assign LUN

Explanation: ERRLOG tried to assign a logical unit number (LUN) to a terminal to send a
notification message and the assignment failed. This occurs when a device exceeds the error
limit set for it and ERRLOG tries to notify the terminal or task that has the device allocated
or attached.

User Action: No user action is necessary. The error limiting operation succeeded. This
informational message tells you ERRLOG was unable to notify the allocating terminal.

2-16 Error Logger Task (ERRLOG) and Error Log Interface (ELI)

ERRLOG—File 1/O error

Explanation: ERRLOG tried to execute an ELI /SWITCH or /APPEND command and could
not open the new file or copy the old file to the new one. When this error occurs, logging
continues in the original log file.

User Action: No action is required to continue logging. Retry the ELI /SWITCH or
/APPEND command.

ERRLOG—Log file error - logging continued on backup file

Explanation: An error occurred when ERRLOG tried to write in the error log file. The
logging operation transferred to writing in the backup file. The backup file becomes the log
file, but retains the given name.

User Action: Issue an ELI command to establish a new backup file. Otherwise, if ERRLOG
gets an error when it writes in the new file (the previous backup file), it will not find a
backup file to use.

ERRLOG—Logging already active

Explanation: ERRLOG received an ELI command to begin logging when logging was already
running.

User Action: No user action is necessary to continue logging.

ERRLOG—Logging initialized

Explanation: ERRLOG displays this message on the console terminal when ELI starts
ERRLOG operation using the /LOG switch.

User Action: No user action is necessary. This is an informational message.

ERRLOG—Logging not active
Explanation: The ERRLOG task is not currently running on your system.

User Action: Issue an ELI /LOG command from a privileged terminal and retry the operation.

ERRLOG—Logging stopped

Explanation: When ELI stops ERRLOG operation, using the /-LOG switch, ERRLOG displays
this message on the console terminal.

User Action: No user action is necessary. This is an informational message.

ERRLOG—No data subpacket
Explanation: ERRLOG tried to use a corrupted data subpacket.

User Action: If the error logging system includes a user-written control file module to
generate error log packets, check the code. Otherwise, submit an SPR.

Error Logger Task (ERRLOG) and Error Log Interface (ELI) 2-17

ERRLOG—No device subpacket
Explanation: ERRLOG tried to use a corrupted device subpacket.

User Action: If the error logging system includes a user-written control file module to
generate error log packets, check the code. Otherwise, submit an SPR.

ERRLOG—Privilege violation

Explanation: You tried to issue a privileged ELI command (to set or change ERRLOG
operations) from a nonprivileged terminal. Nonprivileged users can only issue ELI /SHOW
commands.

User Action: Log in to a privileged terminal and issue the commands.

ERRLOG—Task subpacket corrupted
Explanation: ERRLOG tried to use a corrupted task subpacket.
User Action: Submit an SPR.

ERRLOG—Unable to open file

Explanation: ERRLOG could not open the log file to begin logging. ERRLOG then transfers
logging to the backup file immediately.

User Action: Issue an ELI command to establish a new backup file.

ERRLOG—Unknown command packet subtype
Explanation: ERRLOG encountered an unknown command packet subtype.

User Action: If the error logging system includes a user-written control file module to
generate error log packets, check the code. Otherwise, submit an SPR.

ERRLOG—+WARNING: Device ddnn: exceeded xx Limit (x)

Explanation: Device ddnn exceeded the error limit set with an ELI Hard Limit (/HL) or Soft
Limit (/SL) switch or the default error limit of five hard errors and eight soft errors.

User Action: Check to see if the number of errors indicates a serious hardware malfunction.
To continue logging on the device, reset the QIO and error counts to zero with the /RESET
switch or change the limits using the /HL or /SL switch.

2-18 Error Logger Task (ERRLOG) and Error Log Interface (ELD)

Chapter 3
Report Generator Task (RPT)

This chapter describes how to use the Report Generator task (RPT) to create error log reports.

Chapter 1 provided an overview of the interaction of elements in the error logging system (the
error log control file and the Control File Language (CFL) compiler). The RPT switches described
in this chapter use modules from the error log control file to determine how to interpret and
format information from the error log file. (See Chapter 2 for a description of how the Error
Logger creates the error log file.) RPT and modules in the error log control file work together
to interpret the information in the error log file and define an event that occurs on a device.
They do not analyze the event itself or attempt to diagnose hardware failures.

All RPT reports use the same entry number to refer to the same error log packet, so you can
use RPT brief reports to isolate a device or specific events occurring on that device, and then
specify entry numbers to generate a full report on only the specific events you want to look
at in more detail. Note, however, that some ELI commands may change the packet number
associated with an event. For example, appending a file to the error log file will change the
packet numbers in the appended file.

MCR and DCL Equivalents

If your system supports DCL, you can use DCL ANALYZE/ERROR_LOG commands instead
of MCR RPT switches. Where RPT commands or their. formats are listed in this chapter, the
MCR form is listed first and the DCL equivalent is listed directly underneath. For example,
the following format line shows an MCR RPT command, and then the DCL command that
performs the same operation:

Format
/DA[TE] :argument
ANALYZE/ERROR_LOG/qualifier

Report Generator Task (RPT) 3-1

3.1 Installing and Running RPT

Since RPT is a nonprivileged task, anyone can use it to create error log reports when it is
installed on the system. To install RPT, enter the following MCR or DCL command from a
privileged terminal or as an entry in the system startup command file:

>INS $RPT

$ INSTALL $RPT

To invoke RPT after it is installed, issue the following MCR command from any terminal:
SRPT

If RPT is not installed, you can invoke it from any terminal, using the following MCR or DCL
command:

SRUN $RPT
$ RUN $RPT
When RPT is invoked, your terminal will display the following prompt:

RPT>

3.2 Using RPT to Create Error Log Reports

The error log control file needs at least three types of information from RPT switches to generate
error log reports, as follows:

e How to select which error log packets to analyze
e How to format the error log packets
¢ How to summarize the information from the error log packets
Switches on the RPT command line provide this information, which is independent of the file
specification they accompany.
3.2.1 The RPT Command Line

This section describes the general MCR RPT command line format and the general DCL
ANALYZE/ERROR_LOG command line format. Note that the default parameters of the MCR
RPT command line and the DCL ANALYZE/ERROR_LOG command line are different. This
does not prevent DCL users from duplicating any MCR command, but you should be aware
that the following MCR and DCL command formats are not exactly equivalent.

The MCR RPT Command Line

The only element you must specify in an MCR RPT command line is the equal sign (=). All
other file and switch specifications in the command line are optional.

The general MCR format of an RPT command line is as follows:

RPT> [reportfile] [/switch[/...11=[inputfile] [/switch[/...]]

3-2 Report Generator Task (RPT)

reportfile
The name of the listing file that contains the error log report. If you do not specify the
reportfile parameter, RPT sends the file by default to ERRREPORT.LST in your current
directory.

Instead of a report file, you can specify TI: to send the report to your terminal. On systems
with transparent spooling, you can specify LP: to send the report to the line printer.

switch(es)
Optional switches to control how RPT selects, formats, and summarizes information from
the error log file. You can use the same switches with either the report file specification
or the input file specification on the command line. For example, if your command line
specifies “input file/WIDE,” RPT will apply the wide format to the output file. In this case,
the format width cannot apply to the input file. RPT uses the switches in the order you
specify, but ignores which file specification they accompany.

input file

The only input file you can specify in the command line is the error log file, the disk file
that the Error Logger creates in LB:[1,6]JLOG.ERR.

RPT also uses a universal library of compiled control file modules as input. RPT looks
first for the file LX:[1,6]JERRLOG.ULB. If it does not find it, RPT looks for the file
LB:[1,6]JERRLOG.ULB. (Use pseudo device LX if you wish to save space on LB.) RPT
includes this file by default and you cannot specify or change it from the command line, so
it is not part of the format described previously.

RPT can, however, prompt for the name of a universal library. If you want RPT to prompt
you for the universal library name, you must edit the RPTBLD.BLD file and make the value
of USERCM nonzero, then relink RPT. If you do make this alteration, note that it has the
additional effect of preventing you from issuing an RPT command line from the MCR level.
Instead, invoke RPT as follows:

>RPT
CTL>universal library filespec
RPT>command line

The MCR RPT input and output files assume the defaults listed in Section 3.2.2, unless you
specify otherwise in the command line.

The DCL ANALYZE/ERROR_LOG Command Line

The general DCL format of an RPT command line is as follows:

$ ANALYZE/ERROR_LOG [/OUTPUT[:reportfilel] [/qualifier[s]] [inputfile]

The default parameters are similar to those of the general MCR RPT command line, except for
the reportfile parameter.

In DCL, you use the /OUTPUT qualifier to specify the report file. If you do not specify the
/OUTPUT qualifier, the RPT report is displayed on your terminal in narrow format and no
output file is created. If you use the /OUTPUT qualifier with no report file name specified, RPT
creates a report in a file called ERRREPORT.LST. By default, the /OUTPUT qualifier creates a
file in wide format.

Report Generator Task (RPT) 3-3

3.2.2 Using the Default MCR RPT Command Line
To use the default RPT command line, enter the following MCR-level command:
RPT> = [RET

The equal sign (=) causes RPT to use the file specification defaults and switch defaults listed in
this section. This command creates a brief format report without any summaries, using all of
the error log packets in the error log file. The file specification defaults are listed in Table 3-1.

Table 3-1: RPT File Specification Defaults

Universal
Parameter Report File Input File Library File!
Device SYO0 LB LX,LB
UIC Current UIC [1,6] [1,6]
File name ERRREPORT LOG ERRLOG
File type LST ERR ULB
Version New Latest Latest

INot specified by the user

The default RPT command line invokes the following switches:

/FORMAT:BRIEF
Creates a brief format report that contains one line for each error log packet described in
the report. (See Section 3.3.2.)

/TYPE:ALL
Creates a report on packets describing all types of events: peripheral, processor, memory,
control, and system information packets. (See Section 3.3.1.5.)

/DATE:RANGE:*:*
Creates a report on packets of all dates. (See Section 3.3.1.1.)

/DEVICE:ALL
Creates a report on all error logging devices in the system. (See Section 3.3.1.2.)

/PACKET::
Creates a report for all packet numbers. (See Section 3.3.1.3.)

/SUMMARY:NONE
Does not create summary reports of statistical information on packets included in the report.

/WIDTH:WIDE
Creates a wide (132-column) report.

3-4 Report Generator Task (RPT)

3.2.3 Using Multiple Arguments in RPT Command Lines

You can specify each RPT switch only once in a command line. However, some switches
provide an alternative syntax that allows you to specify more than one argument for the switch,
as follows:

/switch: (arg,argl,...])
ANALYZE/ERROR_LOG/qualifier: (arg,arg[,...])

The parentheses, which are a required part of the command syntax, allow RPT to use more
than one argument for the switch. If you do not specify the parentheses, RPT displays the
following message on your terminal and exits:

ERLCNF-F-SYNTAXERR command line syntax error
As an example, to specify a report on more than one device, use the following RPT switch:

/DE: (DB,DM2:,DR)
ANALYZE/ERROR_LOG/DEVICES: (DB,DM2:,DR)

RPT generates a report on all the DB and DR devices in your system, as well as device DM2.
The switches that permit you to specify multiple arguments in this way are the following:

®* The /DEVICE switch

* The /PACKET switch

* The /SERIAL switch (one drive and one pack serial number)

® The /TYPE switch

¢ The /SUMMARY switch

3.3 RPT Report Switches

This section describes the RPT switches according to the RPT requirement that they fulfill.
These switches tell RPT how to perform the following tasks:

® Selecting packets
* Formatting packets
* Summarizing information from packets

RPT syntax requires only that you specify enough characters of a command or qualifier to make
it unique. For example, you can specify /T for the MCR /TYPE switch, but you must specify
/SU for the /SUMMARY switch to distinguish it from the /SERIAL switch.

The command line examples used throughout this chapter highlight the command they describe.
Any switches not explained in the command descriptions assume the default values described
in Section 3.2.2.

Report Generator Task (RPT) 3-5

Table 3-2 summarizes the RPT report switches in alphabetical order.

Table 3-2: RPT Report Switches and Arguments

MCR DCL
RPT Switches ANALYZE/ERROR_LOG
and Arguments Qualifiers and Arguments Function
reportfile parameter ~ /OUTPUT Specifies the output file for the RPT
report
/DA[TE]: Selects packet based on date
P:n /PREVIOUS_DAYS:n Specifies packets from previous n
days
R /SINCE:date/THROUGH:date Specifies starting and ending dates
T /TODAY Specifies packets created on current
day
Y /YESTERDAY Specifies packets created yesterday
/DE|VICE]: /DEVICES: Selects packets based on device
device name(s) device name(s) Specifies devices
ALL ALL Selects all devices on the system
/F[ORMAT]: Describes how RPT formats the error
log packets
/BRIEF Displays each packet on one line
/FULL Displays all of the information in the
specified packet
N /NODETAIL Does not display information packet-
by-packet
R /REGISTERS Displays the same information as
the /FULL qualifier, but shows only
the device registers on packets for
peripheral errors
/P[ACKET]: /ENTRY: Selects packets based on packet num-
ber
start[:end] start[:end] Selects one or a range of packets
*ow ALL Selects all packets
/R[EPORT]: /COMMAND: Invokes a predefined string of switches
D DAY Displays full format reports based on

current day’s packets

3-6 Report Generator Task (RPT)

Table 3-2 (Cont.):

RPT Report Switches and Arguments

MCR
RPT Switches
and Arguments

DCL
ANALYZE/ERROR_LOG
Qualifiers and Arguments

Function

w

Sy

user string
/SE[RIAL]:
D:n

P:n
D:n:P:n

/SUIMMARY]:
A
E

G
H

N
/TIYPE]:
A
C
E

WEEK

MONTH

SYSTEM

user string
/SERIAL _NUMBER:
DRIVE:n

PACK:n
DRIVE:n,PACK:n

/STATISTICS:
ALL
ERROR .

DISK_GEOMETRY
HISTORY

NONE
/INCLUDE:
ALL
CONTROL
ERRORS

MEMORY

Displays summary reports sorted by
device error history based on previ-
ous seven days’ packets

Displays summary reports sorted by
device error history based on previ-
ous 31 days’ packets

Displays summary reports sorted by
device error history for all packets in
the system

Invokes a user-defined switch string
Select packet based on serial number

Selects packet based on drive serial
number

Selects packet based on pack serial
number

Selects packets based on both drive
and pack serial numbers

Selects the type of summary report
Selects all summary reports

Creates a report based only on device
errors

Creates a report based on disk geom-
etry

Creates a report based on device error
history

Creates no summary report

Selects packets based on packet type
Selects all packets in the error log file
Selects command packets from ELI

Selects packets from processor, mem-
ory, and peripherals

Selects packets from events in mem-
ory

Report Generator Task (RPT) 3-7

Table 3-2 (Cont.): RPT Report Switches and Arguments

MCR DCL
RPT Switches ANALYZE/ERROR_LOG
and Arguments Qualifiers and Arguments Function
PE PERIPHERAL Selects packets from all peripheral
devices
PR PROCESSOR Selects packets from events in CPU
S SYSTEM_INFORMATION Selects from system events, not
hardware-specific
/V[OLUME] /VOLUME_LABEL Selects packets for peripheral errors
based on the volume label
/WI[IDTH]: [NOJWIDE Selects the width of RPT report
N 80 columns (ignored on summary
reports)
W 132 columns

3.3.1 Packet Selection Switches

The following switches tell RPT how to select which error log packets to report on. (This
selection is based on an attribute of the device or the packet or on the date and time that the

packet was created.)

3.3.1.1 The /DATE Switch
Format
/DA[TE] : argument
ANALYZE/ERROR_LOG/qualifier

The /DATE switch allows you to select packets based on the date that an event occurred. This
switch allows arguments to specify a range of dates or to specify a particular day. You can
also use the /DATE switch with another switch, the /REPORT switch, to create reports for the

previous week or month (see Section 3.3.4).

You can use the following arguments with the /DATE switch:

MCR Arguments DCL Qualifiers

P[REVIOUS]:n days /PREVIOUS_DAYS:n
R[ANGE]:start_date:end_date = /SINCE:start_date/THROUGH:end_date
T[ODAY] /TODAY

Y[ESTERDAY] /YESTERDAY

3-8 Report Generator Task (RPT)

The /DATE switch arguments are described as follows:

PREVIOUS
Allows you to specify packets from the previous n days.

RANGE
Accepts starting and ending dates in the following standard RSX formats:
DD-MMM-YY
(DD-MMM-YY HH:MM:SS)

If you specify the second format, with time as well as date, the parentheses are a required
part of the syntax.

When you use the starting date and ending date format, the starting date rounds off to a
time of 00:00:00 and the ending date rounds off to 23:59:59.

The asterisk (*) used at the beginning of a range specification indicates any date through
the specified ending date. For example, *:12-AUG-87 specifies all of the packets from the
beginning of the error log file through August 12, 1987.

The asterisk used at the end of a range specification indicates any date since the specified
beginning date. For example, 4-FEB-87:* specifies all of the packets from 00:00:00 on
February 4, 1987, through the end of the error log file.

TODAY
Creates reports on error log packets created during the current day; that is, since midnight.

YESTERDAY
Generates reports on packets created during the previous day.

When you use the default RPT command line (see Section 3.2.2), RPT invokes the /DATE
switch as follows:

/DATE :RANGE : *: *

3.3.1.2 The /DEVICE Switch

Format
/DE[VICE] :device[s]=inputfile
ANALYZE/ERROR_LOG/DEVICES:device[s] [inputfile]

The /DEVICE switch allows you to select packets for a particular device, for more than one
device, or for all the devices on the system. You can specify more than one device with the
/DEVICE switch by using the special syntax described in Section 3.2.3.

MCR Arguments DCL Arguments
device_list device_list
ALL ALL

The default argument is ALL.

Report Generator Task (RPT) 3-9

RPT uses the following conventions for device names with the /DEVICE switch:

Mnemonic Meaning

dd Selects all devices with the mnemonic dd

ddnn: Selects the device with the mnemonic dd and the unit number nn

For example, /DE:DM selects all DM devices, and /DE:(DM,DB2:) selects all DM devices and
device DB2.

When you use the default RPT command line (see Section 3.2.2), RPT invokes the /DEVICE
switch as follows:

/DEVICE:ALL

3.3.1.3 The /PACKET Switch

Format
/P[ACKET] : packet_number [s]
ANALYZE/ERROR_LOG/ENTRY : packet_number [s]

The /PACKET switch allows you to select a packet or range of packets by specifying the packet
identification numbers. You can determine the packet numbers you want to see by examining
a brief report of all packets.

To select just one packet, you specify one packet number. For example, /PA:123.4 selects only
packet number 123.4. To select a range of packets, you specify the first and last packet numbers
of that range. For example, /PA:123.4:432.1 selects all the packets from packet 123.4 through
packet 432.1.

MCR Arguments DCL Arguments
mmm.mmm[:nnn.nnn| mmm.mmm[:nnn.nnnj
i ALL

You can specify more than one packet or packet range by using the special syntax described in
Section 3.2.3.

The asterisk (*) indicates an open-ended number. You can select all the packets before a
particular number (*:235.3), or all the packets after a particular number (235.3:*).

When you use the default RPT command line (see Section 3.2.2), RPT invokes the /PACKET
switch as follows:

/PACKET: *: %

3-10 Report Generator Task (RPT)

3.3.1.4 The /SERIAL Switch

Format
/SE[RIAL] :argument
ANALYZE/ERROR_LOG/SERIAL_NUMBER:argument

The /SERIAL switch allows you to select packets based on their drive or pack serial number
or both. This switch only applies to peripheral errors. You can select packets from any device
that has a serial number by drive serial number, but you can only select packets from MSCP
and last-track devices by pack serial number. Appendix B explains where RPT gets drive serial
numbers and lists the significant digits in serial numbers for each error logging device.

The arguments for the /SERIAL switch allow you to specify one drive or one pack serial
number, or both, in the same command line.

You can use the following arguments with the /SERIAL switch, where n is the drive or pack
serial number:

MCR Arguments DCL Arguments

D[RIVE]:n DRIVE:n

P[ACK):n PACK:n

D[RIVE]:n,P[ACK]:n DRIVE:n,PACK:n
3.3.1.5 The /TYPE Switch

Format

/T[YPE] :argument
ANALYZE/ERROR_LOG/INCLUDE:argument

The /TYPE switch selects error log packets based on their packet type. Use one or more of the
following arguments with the /TYPE switch:

MCR Arguments DCL Arguments
A[LL] ALL

C[ONTROL] CONTROL
E[RRORS] ERRORS
M[EMORY)] MEMORY
PE[RIPHERAL] PERIPHERAL
PR[OCESSOR] PROCESSOR

S[YSTEM_INFORMATION] SYSTEM_INFORMATION
The /TYPE switch arguments are described as follows:

ALL
Selects all error log packets in the error log file.

CONTROL
Selects error log command packets that control the Error Log Interface task (ELI).

ERRORS
Includes information on all peripheral, processor, and memory errors in the error log file.

Report Generator Task (RPT) 3-11

MEMORY
Includes information from all events that occur in memory, such as memory parity errors.

PERIPHERAL
Includes information from all peripheral devices in the system that support error logging.
This argument does not include logging of system information, such as mounts and
dismounts, for the devices. (Use the SYSTEM_INFORMATION argument to display that
information.)

PROCESSOR
Includes information from events that occur in the CPU itself, such as unknown interrupts.

SYSTEM_INFORMATION
Includes information from events that occur on the system, but are not specifically tied
to a single piece of hardware. For example, if you use the SYSTEM_INFORMATION
argument, error logging includes information on time changes, system service messages,
and device-specific events (such as mounts and dismounts).

You can specify more than one type of packet by using the special syntax for the /TYPE switch,
described in Section 3.2.3. However, note that the ALL argument and the ERRORS argument
cannot be used with other arguments, but must be specified alone.

When you use the default RPT command line (see Section 3.2.2), RPT invokes the /TYPE
switch as follows:

/TYPE:ALL

3.3.1.6 The /VOLUME Swiich
Format
/V[OLUME] : volume_label
ANALYZE/ERROR_LOG/VOLUME_LABEL : volume_label

The /VOLUME switch selects packets based on the specified volume label, as illustrated in the
following example:

RPT>=/T:PE/V:ERRLOGSYS

This command line specifies that RPT find the device or devices that contain a volume with the
label ERRLOGSYS, and generate a report of peripheral errors on those devices. Since the /TYPE
switch specification did not include system information, the report will not include mounts or
dismounts for the devices.

3-12 Report Generator Task (RPT)

3.3.2 The /FORMAT Switch

Format
/F [ORMAT] : argument
ANALYZE/ERROR_LOG/qualifier

The /FORMAT switch tells RPT how to format a report from packets in the error log file. You
can select reports in brief format (one line for each error), in full format (all the information
from the error log packets specified), or in register format (dumping only the registers for device
errors).

Note that there is no single DCL command equivalent to the MCR /FORMAT switch. Instead,
DCL uses qualifiers to the ANALYZE/ERROR_LOG command.

MCR Arguments DCL Qualifiers
B[RIEF] /BRIEF

F[ULL] /FULL
R[EGISTER] /REGISTERS
N[ONE] /NODETAIL

The following sections describe the /FORMAT arguments in detail.

3.3.2.1 Brief Reports
Brief reports are short, one-line-per-packet reports on selected packets.

The brief report shown in Example 3-1 displays one line of information about each of the
error log packets specified in the RPT command line. The annotated list following the example
describes the sections in the brief report. The numbers in the list correspond to the numbers of
the sections in Example 3-1 .

The following RPT command line generated the brief report in Example 3-1:

RPT>EXMBRIEF1.RPT=RAISIN.LOG/PA:(2.1,6.1,56.2,6.4,10.3,42.2)

Report Generator Task (RPT) 3-13

(38ed 1xau uo panunuo))

OH-1/80€9-)Z

B®lBg 23LJM = UOL3IdUNg
Bjeq peay = uoL3}duny
B3EQ 93LJM = uUOL3IdUNg
e3eQ 83LJM = uOL3IduUNg

BIBQ 93LJM = UOL3Idungy
B3BQ 83LJ4M = UOL}IDUNS

UO|3BWIO4UT |BUOL3ILPPY

©

i sbeq

AJ32W0895 ON

40443 ON
AJO3SLH ON
1SU0L3029[9s Adewwns ¢ 1]
(pasn 3jou) tyoeqd
(Pasn 3j0u) :dALUQ
1SUOL308(3S Jaqunu |BLJ3S D
(pasn jou)
IUOL3D9 (@S (3ge| JWN|OA [11]
* UbNOUYL 4 wWoug
1SUOL3D@|[8S BwLl 3184ded Q@
30IM
43148
1UOL3}D8(8S jewuoy juoday [c)
LiD0T'NISIVY[9'1L]:0¥Q :@1:34 3Indul

LiLldy” 1d31HBNX3[0Y04avyE] iSHa o1ty 3s0day (&)
(2°2p'€°01'P"9°2°G'1°6'1L"2):Vd/D0T NISIVY=1dd L 43I¥EWX3 F8UL| PUBWWO) 0

IUDLIBWUO4UL UOL}DB (8BS

83e7 eiegQ ‘E00Wa 40443 330§ 83LABQ 9P:9Z: Sl LBBL-AVAN-LO0 Z°2Z¥
2ie7 ejeQ v00Wa 40443 3408 83LA8Q ZECiEEEL LBGL-AYW-LO E£°0L
@3eq ejeg 00Wa 40443 3405 82LABQ ZO*vP:ZiL LBEL-AVAN-I0 Z°9
@3eq eBiea ‘v0OOWa 40443 3405 8D2iABQ (OSEV:ZI LEBBL-AVW-IO0 Z°S
@31e7 ejeg :py00Wa J0JJ3 33408 BILABQ LPiEPIZL LBBI-AYW-L0 L°S
punod4 3jou Japesad :i007Q J40J4J3 PJBH BDLABQ E€Z:BELL LBBL-AVW-I0 1°Z
8dA| Jouu3z ddiA2aQ adAj Aujul dwe3s awyi) AJa3zuz
(S (+] e (] (]

BL G011l LB8BL-AVN-LL 00°ZA we3isAS BuL6607 40443 SNId-WL L-XSH

yodaey Jjeug 607 Jou3 :|-¢ o|dwpx]

3-14 Report Generator Task (RPT)

OH-Z/80€9-)Z

b4 abed

v2:G0: L1 LBBIL-AVW-Ll 3I® papuad Buissadoud
€Z:v0: Ll LBBL-AVA-LL 3e uebaq Buissadoud [51]

‘9 / 9
1passadoud ; pajuiJd s3ayded j0 Jaqunp e
(1)
:SU0L3}DA|3S BILAdQ @
22y
€°01
v°o
Z°S
[}
1°2
$SUCL 309 9s JIAqQwNU 3j38nded e
{oJd3u0)

tedaydLJag

04U WAYSAS

Asows

408882044
1SU0L3}08|98s 8adAy 3axnoed [v1)

8L:G0:LL LB6L-AVA-LL 00 ZA wa3isAs 6urB607 J0JJ3 SNId-WL L-XSYH

fodey jeug 6011043 ((‘JU0D) |-¢ 8jdwpx]

Report Generator Task (RPT) 3-15

@ The error log packet Entry Number, which describes the relative position in the error log file.
This number does not change unless the file is changed; for example, by an ELI/APPEND
command. It is not changed by normal logging into the file.

® The date and time the packet was logged.

© The type of entry in the error log file; for example, hard or soft device errors or system
information.

©® The device on which the error occurred.

© The error type as defined by the hardware information. RPT does not do any interpretation
of these errors; it merely reports the hardware information.

O Any other information error logging gathers on the error, such as the I/O function that
occurred at the time of the error.

© The RPT command line that generated the report.

© Input and report file specifications.

© The format selection.

® The packet time-range selection (the time the packets were created).

® The volume label selection.

® The drive and pack serial number selections.

® The types of summary reports selected.

@ The packet type selections.

® The packet number selections.

® The device selections.

® The number of packets printed and processed.

® The time RPT report generation began and ended.

3.3.2.2 Full Reports

Full reports provide a detailed listing of device events. They list and interpret all of the
information collected in the error log packets they specify.

The full report shown in Example 3-2 displays the complete contents of error log packet number
2.1, a header-not-found error described in the brief report in Example 3-1. The annotated list
following the example describes the sections of the full report. The numbers on the list
correspond to the numbered sections in Example 3-2.

The following RPT command line generated the full report in Example 3-2:
RPT>EXEMPF . RPT=RAISIN .LOG/PA:2.1/F:F

3-16 Report Generator Task (RPT)

(38ed 3xau uo panunuo))

OH-1/60€9-32
punog4 30u uapesy e3eqg ajLJm

40443 40 adAj uoL3}dung a8odinsqQ

TUOL3BWJO4U] uOL3eIBd) O/ (o]

4dS 01 V/N V/N €1nyg [920'1€0]) ‘80041 0 0 1 AW 000NN
g7y 01 ‘LS 09€zizi 1400¥0 [(920°1€0] $00002 V/N 0 RER-1¢} :000ya
uoijeuadQ y3buan ssaJlppy Rsej 310 P11 3Lungng 3tun 43| |0J3u0) 82(A8Q

tA3LALIOY Q/1 3Iudu4NdU0) [G)

X'0I i 8IM°01 '8 ‘8 '089L 0veEQEI! vylave [v90°'L00] fPpOLL

uotyedsado Buiutewsy satJiay SaLJ3ay wnwixey yirbuen ss8Jppy sweN)%sej 21N SIL

TUOL3IEIL4LIUBP] UOL3RUAHO O/1I @

‘0 ‘0 /E6E2 ‘B8vrB886€£Z1 ‘oLe2

S40443 3408 SJ0443 pueH Pass04) SJ3puUL (A paJJajsued | SPJOM juno) 0/1

V/N Y/N V/N i v Ja <l®8ge| ||nu> 207y 10070

NS ®ALJg NS %oed 1Lungng 1tun 43 (|043u0) 19qe awn oA adA asiAag

UOL3BWIO4UT UOLIBILJLIUBP] @diA8Q €]

'z vdd 3tg-22 04/i1-dGd LE SNId-WL L-XSYH

JewJso4 ndd 6uiddey 408S8004d juspl waysAs
1UOL3IBDLLIUBP] Wa3SAS (2]
€Zi6E: L1 LB-AVW-10 (PUNO4 30U JBpeEBH) 40443 pdeH 8diLAag ({0070 ©| @duenbas 'z Aaju3 (1)

i abed LIPSO LBBL-AVA~LL 00°'ZA wa3sAs BuLB607 J0J4d3 SNId-WiL-XSY

poday [Ind 607 1013 :Z-¢£ o|dwDX]

Report Generator Task (RPT) 3-17

OH-2/60€9-%2Z

z abed

QwWoH s8ysnug
peay Jaddn = sSsaJppy peay

pesay Jsddn = paIdIa |8 peay

Apeay aaLuqQ

(8) 10 = 9iva“Live

Apeay 48| {0J43U0)

puUNo4 30U J8peaH = 8pPO) J0J4J3

o m

o <
[sp Rl ToN =)

uQ %207 = 83e3s aaiLd4g (0 ¢
nxmmvwcuLw>ovu30mvmeﬁ
h

2074 = ®dAL B8ALJQg

Z
v
L
paul japun sjuajuod Jaisibay [0 :GL]
‘O = SS9JPPVY 4031235 [0 :§
*6PE = SSIJPPY JBPULAD [L S
m

J931st16ay sseoduppy sng [0 ¢

ejeQ ®3LJM = UOL3IdUNg [| :g
pa|qgeu3y 3jdnuuajul | 9

| = p@3da(as 2ALJg [B8 6
40443 83 Lsodwo) [[

uoijeyaddualjul

G€2000 LdWd
L90€EE | LdWY
JszZLei vay
0o0L1L0 valy
EELZ LI S
an|eA aweN

tuoijewWJO4uU] Pai{ddng 83LAaQg [s)

"086€E1L ‘oY ‘0

%20 (@ 40308§ peay

V/N ‘6ve
danouy Jeput | A)

fUOL}BWUOSUT UOL3}SOd J04s3 @dtAeg O

(pPe®nui3juod) 12 Aaju3z

L13S13:91 (B6L-AVA-Ll 00 2ZA we3sAs BuUL6607 J40J4J3 SNId-WIL-XSY

yodey |In4 601 10413

('juod) z-¢ ejdwoxy

3-18 Report Generator Task (RPT)

@ The same identification information listed in items 1 through 5 of the brief report description.

© System identification information including operating system and base level, CPU type, and
address mapping type.

® Device identification information including the device name, device type, volume label,
controller, unit number, pack and drive serial numbers, total I/O count on the device,
the amount of data transferred in decimal words, the number of cylinders crossed while
accessing data, and the number of hard and soft errors logged previous to this device.

© 1/0 operation identification includes the terminal and UIC that initiated the operation, the
task name, the beginning physical memory address of the I/O buffer, the length of the
1/0 request (in bytes), the maximum number of retries the device driver allows for an 1/O
operation, the number of retries remaining, and the actual I/O operation taking place.

©® Concurrent I/O activity occurring on other devices when this error occurred. This section is
present only when concurrent 1/O activity takes place; otherwise, the section is suppressed.

® 1/0 operation information includes the device I/O function and type of error as defined by
the hardware.

@ The device error position information locates the error by cylinder, group, head, sector, and
logical block number.

O The device-supplied information includes a dump of the device registers according to name,
contents, and interpretation of the bits in the registers. The asterisk (*) beside some bit
interpretations means that the condition is likely to have contributed to the error. It is a
sign that you may want to examine the condition.

3.3.2.3 Register Reports

Register reports contain the same information as full reports for all events except those that
occur on peripherals. Register reports list the contents of all device registers for peripherals, but
contain no other information.

The register report in Example 3-3 includes only the register section of the full report (see
Example 3-2) for packet 2.1 (the header-not-found error).

The following RPT command line generated the register report shown in Example 3-3:

RPT>EXEMPN .RPT=RAISIN .LOG/F :R/PA:2.1

3.3.2.4 No Report

RPT does not generate a formatted output report on event information. The NONE argument
causes RPT not to format the packets or produce a packet-by-packet report. The NONE
argument is useful when you want to generate only a summary report.

When you use the default RPT command line (see Section 3.2.2), RPT invokes the /FORMAT
switch as follows:

/FORMAT : BRIEF

Report Generator Task (RPT) 3-19

JH-0LE9-4Z UQ %207 = 83e3S BALJg [0 7)
QwoH saysnug [>] (%SLtP 843} J48A0) INnQ spesdH [v]
L]

—_——
©

peay Jaddn = ssaJppy pesy Z0y = 8dAp aaiug | GEZ000 LdWY
PaAuUL $BPUN S3UB3U0D JB3ISLBAY [0 :Gi) 190€€1 LWy

‘Op = SS8Jppy 403285 {0 G]
pesy Jaddn = pa3ide|a8s peaH | 9] "BYE = SSBJUPPVY JBPULLIAD (L iG] ogzLzd vay
Je3sibay ssaJppy sng [0 iGl] 000s10 valy

Apeay 8Aaidqg | 0] B3BQ 834JM = uoL3dung [g]

(8) 10 = 9iva‘sivae (v :g] pa|qeusy 3dnauejul [9]

Apeay 48| |0J43u0) | L] | = pe3ida(8g aALug (8 6)
PunoOg 30U JBpeay = BP0) JO0Ju] [OL:E€1]« 40443 ®83i1s0dwo) | Sl)x* £€E€LZL L SOy
uotjeieJsdaaizul an(ep aweN

fuOL3lewLOju] padL|ddng adiAag
€2:6E€:11 LB-AVW-10 (punoy 3ou sapeay) 40443 pJeHd 2inAeQ (1007Q *y ®douenbas |Z Ad3ug

L abed EViSLi91 [BBI-AVA-LL 00°'ZA wd3sAS BuB607 J0ud3 SNId-WL L -XSY

poday 19s1b6ay B601 10113 g-¢ o|dwpXx3

3-20 Report Generator Task (RPT)

3.3.3 The /SUMMARY Switch

Format
/SU[MMARY] : argument [s]
ANALYZE/ERROR_LOG/STATISTICS :argument [s]

The /SUMMARY switch tells RPT how to summarize the information from packets in the error
log file. Since the summaries are compilations of the data gathered from the individual packets,
the /SUMMARY switch tells RPT what particular piece of information from the packets to use
as the basis for a summary report.

RPT cannot create summary reports in narrow width. If you specify narrow width by using
the /W:N switch, RPT formats the packet-by-packet display in narrow format, but formats the
summary in wide format.

You can use the following arguments with the /SUMMARY switch to generate summary reports:

MCR Arguments DCL Arguments
ALL ALL

ERROR ERROR
GEOMETRY DISK_GEOMETRY
HISTORY HISTORY

NONE NONE

To generate more than one summary report from the same command line, use the special syntax
described in Section 3.2.3. For example, the following command produces an ERROR report
and a GEOMETRY report:

RPT>=/SU: (ERROR, GEOMETRY)
Note, however, that the ALL and NONE arguments may not be specified with other arguments.
The /SUMMARY switch arguments are described in the following sections.

3.3.3.1 The ALL Argument
RPT generates summary reports sorted by error, geometry, and history. These summary reports
are described in Sections 3.3.3.2 through 3.3.3.4.

3.3.3.2 The ERROR Argument

RPT generates a summary report sorted by error type. The ERROR summary, sorted by device,
shows the number of times each error occurred on the device. The Count column of the
summary tells the number of times the error occurred. Example 3-4 shows the summary section
of an ERROR summary report.

The following RPT command generated the report in Example 3-4:
>RPT ERRORRPT.LOG=/SU:E/F:N

When you specify /FORMAT:NONE, RPT does not display packets on a packet-by-packet basis
as shown in the previous examples.

Report Generator Task (RPT) 3-21

OH-LLE9-%Z
L"pvOL
L'vy0lL
[A-T4
bA T4

TN~OONN———N
ONOOITITOOMN~D
—r e T NNWOW

mMmoMoM
0w o
T T 0w

€9y
1792
1" GY
z°2¢
Lig
v o€
[-1-1

Ai3jul

£€:2€:60
€€:2€°60

s0+62:¢1
S0:62: 21

8Z:6€°01
zz:6eg: 01
92:9€°91
9Z:9€:91
OL:0L*Ld
oL:otstt
prileiG:
E1:90¢11
82:¥0: 1L
vZivoilLlL

SYiEE9L
6lL:PE:GL
€G6:02:6G1
€5:0Z:Sl
8L:1Z:61
v0:9E:ZH
Ly:i0Z:GH
LE:ZG L
€L:zoel
ZL:20%€ElL
vLIGL 9L
ZriveE:OlL

LB6L-AVA-LO
LBBL-AVA-LO

LB61 -¥dV~-0€E
L861-ddV-0€E

LB6I-Y¥dV-0F
LB6L~¥dV-0€E
L8861 -HdV-0€
LB6L-4dV-0E
LB6L-¥dV-0€
L8661 -¥dV-0€E
£L861-4dV-0€
LB61-~-¥dV-0€
LB861-¥dV-0€
4861 -ddv-0¢€

L861-ddVv-0¢
L8611 -ddV-0€
L861-4dV-0€
L8861 -¥dV-0€
LB61-ddV-0¢F
L861-ddV-0€
L861-¥dVv-0¢
L8611 -d4dV¥-0¢E
L861-¥dV-0F
1861 -4dV¥-0¢€
LB61-¥dV-0€
LB61-¥dV-0¢E

82U83NIDQ 3Se/3SJLg

obey

40443 SSaJppy Pt [BAUL

J40JJ3 X207 B3LJM

ajeq ejeq
aieq eieq
¥28y) eijeg
ajeq ejeg

pJeH UO0L308440) J0JJT

ajen ejegQ

speay BuipeoT
pUNOy 3LQq JOJUd ON
punoy 3i1G 40Jud ON

pJeH U0(328440) JOJJ]

8i1e7 ejeg

adA} Jouu3

V/N

JZ€e08

LvZL32

LEZTL

V/N

8L10¢€

V/N

NS %oed

91:91'91 LB6L-AVW-10

<|3qe| |[{nu>

A3QLS3L

¥3sn

W31SAS

<idqe| {i{nu>

A3SANIVAN

<|®qe| ||Nnu>

|age awn|[OoA

Hodey AIowuwing JONA3

[24%]

ZSEY

98

oLs

NS @AtiJg

COWY £00¥Q
£OWY :Z00YQ
L0¥Y¥ 0OWG
LOWY E00NWa
TRy s51n8g

rAdeuwwns JouJd3l

00°ZA waisAg BULB607 40443 SNTd-WILL-XSH

‘p-¢ o|dwpx]

3-22 Report Generator Task (RPT)

3.3.3.3 The GEOMETRY Argument

RPT generates a summary report based on device geometry (logical block or sector, for example).
The error count column of the summary tells how many times an error occurred in that device
location.

The following RPT command generated the report in Example 3-5:
>RPT ERRORRPT.L0OG=/SU:G/F:N

3.3.3.4 The HISTORY Argument

RPT generates a summary report sorted by device error history. It displays the hard and soft
error count and QIO count for every volume used on each device.

The following RPT command line generated the report in Example 3-6:
>RPT ERRORRPT.LOG=/SU:H/F:N

3.3.3.5 The NONE Argument

The NONE argument is invoked when you use the RPT default command line. It causes RPT
to generate no summary report. RPT invokes this argument to satisfy the requirement that the
command line specify how to summarize the information from error log packets.

3.3.4 The /REPORT Switch

Format
/R[EPORT] : defined_report_string
ANALYZE/ERROR_LOG/COMMAND=defined_report_string

The /REPORT switch invokes a predefined string of switches for RPT to use. The switch string
usually defines a particular type of report, such as a report for a particular time period. The
string contains any valid combination of RPT switches. The string cannot include the /REPORT
switch.,

The /REPORT switch allows you to access a file that contains the switch combinations you use
frequently and lets you invoke the switches by using the string name, instead of reentering the
switches explicitly.

RPT uses the normal default values described in Section 3.2.1 for all switches not defined in
the switch string, if the switches have defaults.

The DIGITAL and user-defined switch strings are found in a control file module, PARSEM,
or in a disk file, LB:[1,6JERRDEFINE.CFS, respectively. The /REPORT switch first searches
PARSEM, where it finds DIGITAL-defined strings. If the string is not defined there, RPT
searches ERRDEFINE.CFS.

Since RPT looks in the control file module first, you cannot redefine the DIGITAL-supplied
strings unless you alter the control file module. DIGITAL does not recommend that you alter
control file modules. You can change the definitions for DIGITAL-supplied strings by slightly
altering their names and inserting the switch under the new name in ERRDEFINE.CFS.

Report Generator Task (RPT) 3-23

OH-ZLES-NZ

{ abey

ht "6z ‘oe ‘0 V/N
t “8L91S ‘LE "zZzZe V/N
4 *0ZS6E ‘8 ‘865 V/N
1 T1ZS6E 6 ‘865 Y/N
A 2413 ‘ol 868G V/N
it ATA)) > =134 Y/N
L ‘v96L2 x4 ‘ezy V/N
Tl ‘65961 ‘gl A4 V/N
it "99661 ‘L -15t4 V/N
"1 tL182 ‘1 44 V/N
L ‘0LEZ ‘9t ‘Ge V/N
‘i YA 'S A V/N
L "S5B06 ‘e TLEL Y/N
1 ‘€10z T ‘0g V/N
t ‘8l8l vl ‘Lz V/N
1 “£801L ‘S ‘91 V/N
‘ez ‘ZEVE e ‘Zs V/N
"1 '90L2 "0 4 V/N
"1 1198 ‘6 el v/N
it ‘v6L x4 "zt V/N
it -1%4 ‘0z ‘e v/N
‘1 ‘0 "0 ‘0 V/N
3uno) Jouugm Ng1 403235 Japul (A) dnoun

<

OCOOO0OO00CO ===~ NNNNNNONNN

peay

V/N <i®Qej | (nu> 13 4%°] E0OWY £00y¥a

Jzeos8 A3CLS31L Zsey E0WY $Z00y¥d
LvZL32 ¥3asn
LEZCL W3LSAS

V/N <l3ge| | |nu> 0Ls LOMY ‘E0OWa

NS %oed {9geT awn| oA NS aALdq adA] ad1AaQ

PAdewwns Au3awoan

LG 661Gl LBG6L-AVW-10 00 'ZA wd3sAs BuULB607 J0J4J3 SNId-WL LI -XS¥

poday Aiowuwing Ad1INO3IS :g-¢ oldwpx]

3-24 Report Generator Task (RPT)

OH-ELEI-NZ

e
‘0s

S$40443 3408

1 abey

‘BOBLL

TLE9Y

161l

‘oL

“ZoLt

‘Ggziz

"Z6vi

iy "ZeLve

it TEL9G!
x4 K4%44°]

‘01
‘6EVE

‘609
"EviB

‘voe

SJ0J43 pdey SQOID L(e3ol

60:vZ:9L LBBL-AVAN-LO

V/N
V/N

Y/N
Y/N

24v91L
Jzeos
LvZL32
LEZZL
£3av
3€LEZ
v/N

as10¢€
V/N

6E0€
V/N

66v¢E
V/N

V/N

NS ¥2ed

ANIVAXUOM

A3Q0I

A3GLS3L

¥3asn

W3LSAS

S3ivadn

AIOANIVW

o¥avd

JI¥3N39

AIAAYOM

|agen 8wn | oA

00°'ZA wd3isAs BuLB607

LL/G8Y/91N/3L TOOWW

LL/SP/910/3L *LOOWW

LITW *000W3
£€0/20Wy *€00¥Q

€0/20Wy

+Z00oya

LO%Y ‘¥ 0O0Wa

LOMY¥ *€0Q0Wa

207y 10070

Z07¥ 00074

S$0/v0d¥ :zZ008d

9dA asiaag
tAdewwns AJ031StH

40443 SNAd-Wi L -XSY

Hodey Alpwwing AYOISIH :9-¢ oldwpx3

Report Generator Task (RPT) 3-25

3.3.4.1 Predefined Switch Strings
DIGITAL supplies the following four predefined switch strings to use with the /REPORT switch:

Predefined

Switch String Switches Defined

DAY /FO:FULL/SU:ALL/DA:TODAY

WEEK /SU:(HISTORY,ERROR)/DA:PREVIOUS:7
MONTH /SU:(HISTORY,ERROR)/DA:PREVIOUS:31
SYSTEM /SU:(HISTORY,ERROR)

Note that the names of the predefined switch strings must be entered in full. They cannot be
abbreviated.

3.3.4.2 User-Defined Switch Strings

You can name and define your own switch strings to use with the /REPORT switch by creating
and editing LB:[1,6]JERRDEFINE.CFS and inserting the switch strings you want to define.

Entries in this file must be in the following form:
'switchname', 'switchstring'

switchname

The name of the switch string you are defining. This name becomes the argument to the
/REPORT switch when you want to invoke the string. (The name must be nine or fewer
characters in length.)

switchstring
The RPT switches you select to generate the report. (The switch string must be 80 or fewer
characters in length.)

Note

The single quotation marks are a required part of the syntax. You also must
enter the full switch string name when you invoke a user-defined string.

For example, if you want to generate a brief report of peripheral errors on all the DB devices
on your system, edit ERRDEFINE.CFS and insert the following line:

'DB',!'/F0:B/TY:PE/DE:DB'
You can then create this report with the following RPT command:

RPT> outfile=infile/R:DB

3-26 Report Generator Task (RPT)

3.3.5 The /WIDTH Switch

Format
/W[IDTH] : argument
ANALYZE/ERROR_LOG/qualifier

The /WIDTH switch allows you to set the line width of the report RPT generates to narrow (80
columns) or wide (132 columns). The basic report format does not change when RPT creates a
narrow report. Instead, each long line of the report wraps onto the next line at an appropriate
place.

Summary reports do not honor the /WIDTH switch. The summary portion of these reports is
always in the wide format.

Note that there is no DCL command equivalent to the MCR /WIDTH switch. Instead, DCL
uses qualifiers to the ANALYZE/ERROR_LOG command.

You can use the following arguments with the /WIDTH switch:

MCR Arguments DCL Qualifiers
N[ARROW] /NOWIDE
WIIDE] /WIDE

When you use the default RPT command line (see Section 3.2.2), RPT invokes the /WIDTH
switch as follows:

/WIDTH:WIDE

3.4 ERLCNF Report Messages

The error log control file displays messages on your terminal if errors occur during report
generation. The messages include an abbreviation, a severity level code for the error (warning,
informational, or fatal), and text describing the error.

In some cases, RPT also writes the message in the error log report, if it explains an error that
appears in the report. For example, when RPT fails to find a control file module for a device
you specify, it displays a message on your terminal and in the report that includes the error
message.

The following sections list the ERLCNF messages, along with possible causes and methods for
recovery.

3.4.1 ERLCNF Fatal Errors
ERLCNF-F-ARGNOTUNQ, Argument specification <argument> is not unique

Explanation: You did not specify enough characters in a switch argument to make it unique.
It will be confused with another argument.

User Action: Check the argument syntax and reenter the command.

Report Generator Task (RPT) 3-27

3-28

ERLCNF-W-BADSUBPKT, Possible corruption in the <packetname> subpacket in item
<item label>

Explanation: RPT found something in the subpacket that appeared to be abnormal. The file
may be corrupted or it may be an internal error within RPT.

User Action: You should never see this message. If you do, send in a Software Performance
Report (SPR) along with a dump of the packet that generated the message and any other
information you have. You can create a dump of the packet using the starting virtual block
number of the packet (the nnn portion of the packet number nnn.m).

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNF-W-DUILLFORM, MSCP format code <code> is undefined

Explanation: This may be an internal error within RPT. It indicates a format code in the
RAB80 packet that is corrupted.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

ERLCNF-F-ILLARGCOM, lllegal argument combination
Explanation: You specified an illegal combination of arguments with a switch.

User Action: Check the syntax and reenter the command.

ERLCNF-F-ILLFILSPC, lllegal file specification - <filename>
Explanation: You used an illegal file specification with an RPT report-generating command.

User Action: Check the syntax and try the operation again.

ERLCNF-W-ILLPACCOD, lllegal code in packet <packetid> , Code = <xx>

Explanation: The major code for the indicated packet is beyond the range that RPT can
handle.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNF-F-ILLPACRAN, lllegal packet range - LOW = <xx> , HIGH = <xx>

Explanation: The RPT Packet Selection (/PACKET) switch requires arguments to be packet
numbers in a specific format.

User Action: Determine the correct number for the packet you want to display, check the
syntax, and reenter the command.

Report Generator Task (RPT)

ERLCNF-W-ILLPACSBC, lllegal subcode in packet <packetid> , Code = <xx>, Subcode =
<xXxX>

Explanation: The subcode for the indicated packet is beyond the range that RPT can handle.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNF-F-ILLPACSPC, lllegal packet specification <packetid>

Explanation: You used an invalid packet specification with an RPT report-generating
command.

User Action: Resubmit the command file with the correct packet specification.

ERLCNF-F-ILLSWTARG, lllegal switch argument - <argument>

Explanation: RPT recognized the switch argument, but determined that the argument is
incorrect in the context given.

User Action: Check the syntax and reenter the command.

ERLCNF-F-INTERROO1, Internal error detected at position number <n>

Explanation: This is an internal RPT error. It occurs with the PARSECLST and PARSECTION
error messages.

User Action: You should never see this message. If you do, send in an SPR and the
command line that generated the message and any other information you have.

ERLCNF-F-MODNOTFND, Module not found - <module>
Explanation: RPT searched ERRLOG.ULB for the module and did not find it.

User Action: You should never see this message. If you do, send in an SPR and the
command line that generated the message. Be sure to include the name of the module that
was missing.

ERLCNF-F-MULARGSPC, Argument <argument> specified multiple times
Explanation: You specified an RPT switch argument more than once.
User Action: Check the syntax and reenter the command.

ERLCNF-F-MULSWTSPC, Switch <switch> specified multiple times

Explanation: You entered the specified switch more than once on the same RPT command
line. RPT allows you to specify each switch only once.

User Action: Check the syntax and reenter the command. Use the special syntax for multiple
switch specifications described in Section 3.2.3, if the switch allows it.

Report Generator Task (RPT) 3-29

ERLCNF-F-NODIDPACK, No DEVICE_ID subpacket
Explanation: This is an internal error within RPT.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have.

ERLCNF-W-NODRIVSZ, No drive of size <size> for mnemonic <ddnn> ; using EUNKWN
Explanation: This may be an internal error within RPT.

User Action: You should never see this message if you have only DIGITAL hardware. If you
have non-DIGITAL hardware and you receive this message, it is caused by a disagreemént
between RPT's table of device sizes and the actual size of the device. See Section 4.4.2 for
information on changing the table of device sizes.

ERLCNF-W-NODRIVTYP, No drive type <type> for mnemonic <dd> using EUNKWN

Explanation: This may be an internal error within RPT. From the mnemonic, the drive
appears to be a MASSBUS device. However, RPT does not recognize the device type as a
MASSBUS device.

User Action: You should never see this message if you have only DIGITAL hardware. If
you have non-DIGITAL hardware, the error is caused by a disagreement between RPT'’s
table of device sizes and the size of the actual device. See Section 4.4.2 for information on
changing the table of device sizes.

ERLCNF-F-NOINPFILE, No input file specified

Explanation: RPT did not find an input file on the command line. This message occurs
when you fail to specify an equal sign (=) in the command.

User Action: Check the syntax and reenter the command.

ERLCNF-W-NONOTES, No notes available for device <devicename>

Explanation: RPT includes a facility for displaying notes at the bottom of Full or Register
reports. This internal error message indicates that a device did not have an associated
NOTES module.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNF-F-NOREMATCH, No predefined switch string for <string>

Explanation: RPT did not find the defined report string you used in a /REPORT command,
either in ERRDEFINE.CFS or among the DIGITAL-defined report strings. Remember to use
the entire name of the DIGITAL or user-defined string.

User Action: Check the syntax and reenter the command.

3-30 Report Generator Task (RPT)

ERLCNF-F-OPNINPFIL, Failed to open the input file

Explanation: RPT could not open the input file specified. This message is accompanied by
the FILERRCOD information message, which displays the FCS error code from the file.

User Action: Check the FCS error code and retry the command after correcting the indicated
condition.

ERLCNF-F-OPNREPFIL, Failed to open the report file

Explanation: RPT could not open the report (output) file specified. This message is
accompanied by the FILERRCOD information message, which displays the FCS error code
from the report file.

User Action: Check the FCS error code and retry the command after correcting the indicated
condition.

ERLCNF-F-OPNUSRFIL, Failed to open the user file

Explanation: RPT could not open the user file specified. This message is accompanied by
the FILERRCOD information message, which displays the FCS error code from the file.

User Action: Check the FCS error code and retry the command after correcting the indicated
condition.

ERLCNF-F-SWTNOTUNQ, Switch specification <switch> is not unique

Explanation: You did not specify enough characters of a switch to make it unique. It will
be confused with another switch.

User Action: Check the switch syntax and reenter the command.
ERLCNF-F-SYNTAXERR, Command line syntax error
Explanation: Some element of the command line does not have the correct syntax.
User Action: Check the syntax and reenter the command.
ERLCNF-F-TOOFEWARG, Too few arguments in switch <switchname>

Explanation: You specified a switch that requires one or more arguments without specifying
enough arguments.

User Action: Check the syntax and reenter the command.

ERLCNF-F-UNKNWARG, Unknown argument - <argumeni>
Explanation: You specified an argument that is unknown to RPT.

User Action: Check the syntax and reenter the command.

Report Generator Task (RPT) 3-31

ERLCNF-W-UNKNWNDEV, Device mnemonic <dd> is unknown; using EUNKWN
Explanation: This may be an internal error within RPT.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNE-W-UNKNWNNOT, No nhote number <number> for device <devicename>

Explanation: RPT includes a facility for displaying notes at the bottom of reports. This
internal error message indicates that a device tried to print a note that was not available.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNF-F-UNKNWSWT, Unknown switch - <switchname>
Explanation: You specified an unknown RPT switch.

User Action: Check the syntax and reenter the command.

3.4.2 ERLCNF Warning Message
ERLCNF-W-USEEUNKWN, Module <modulename> not found; using EUNKWN

Explanation: RPT was not able to find the module specified in the error logging universal
library and went to the EUNKWN module instead. This causes a formatted dump of the
device register to appear in the report. This message usually occurs if you tune your
universal library and eliminate the module for a device you want to use.

User Action: Retune the universal library to include the missing module.

3.4.3 ERLCNF Informational Messages

These messages accompany other ERLCNF messages to give you additional information. They
do not affect RPT operation.

ERLCNF-I-FILERRCOD, File error code = <errorcode>

Explanation: This message displays the FCS error code for a file. It accompanies messages
on file-access failures.

User Action: None is necessary. This is an informational message.

3-32 Report Generator Task (RPT)

ERLCNF-I-PARSECLST, PARSE.SECTION_LIST = <buf>

Explanation: This is an internal error within RPT. This message accompanies the INTERR001
message described previously.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

ERLCNF-I-PARSECTION, PARSE.SECTION = <buf>

Explanation: This is an internal error within RPT. It accompanies the INTERR001 message
described previously.

User Action: You should never see this message. If you do, send in an SPR along with a
dump of the packet that generated the message and any other information you have. (See
the BADSUBPKT description.)

If the message refers to a packet that you have altered or a module that you wrote, correct
the module, recompile, and add it to the library.

3.5 ERLRPT Report Messages

Most of the following error messages are either associated with errors in the control file module
that RPT is interpreting or are internal RPT errors.

If the message refers to a control file module that you have altered or a module that you wrote
and added to the error logging system, correct the error, recompile the module, and add it to
the library. The module in which the error occurred is specified in the first (or top) line of the
execution stack dump produced by RPT. This information appears on the report file and on the
terminal from which RPT is being run.

If the message refers to a DIGITAL-supplied module or is an internal RPT error, please submit
a Software Performance Report (SPR) and include a listing of the error log report file produced
by RPT.

ERLRPT-F-ACCUDFVAR, Attempt to access undefined variable.
Explanation: A control file module attempted to access a variable that had not been defined.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-BADDIGIT, Invalid numeric digit in conversion.

Explanation: A numeric literal or the ASCII string argument for the %COD$OCTAL,
%COD$DECIMAL, %CODS$HEX, %COD$BCD, %COD$BINARY, or %COD$MACHINE
function contained an invalid character for the specified radix or was null or blank.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

Report Generator Task (RPT) 3-33

ERLRPT-F-BITFLDSIZ, Bit or field too large in extraction operation.

Explanation: The bit or field in an extraction operation exceeded the size of the value on
which the extraction was performed.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-BITTOOHIG, Bit number too large for specified storage unit.

Explanation: The bit number specified by the character string portion of a #BI, #WI, #LI,
#QI, or #VI numeric literal was too large for the specified value size.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-CASENOMAT, CASE selection expression has no matching value.

Explanation: No match was found for the value of the selector expression in a CASE
statement, and no ELSE clause was specified in the CASE statement.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-CONTROLFI, Could not open control file.
Explanation: The control file module could not be opened.

User Action: If you are using the default control file library, check to see that it is in either
LX:[1,6] or LB:[1,6] and is not locked, and that you have read access to it. If you are using a
user-specified control file, check to see that it is not locked and that you have read access.

ERLRPT-F-COROUMIS, COROUTINE statement executed with no COROUTINE stack frame.

Explanation: A COROUTINE statement was executed without specifying a coroutine in the
corresponding CALL statement.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-CRASH, Control file requested abort.
Explanation: The CRASH statement was executed by a control file module.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DATNOTEXI, Data declaration is longer than data.

Explanation: The amount of data specified in a PACKET or SUBPACKET declaration was
larger than the amount of data in the packet or subpacket. This condition may be due to
an error in the control file module or an error in the error log packet being analyzed.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-34 Report Generator Task (RPT)

ERLRPT-F-DECAGAIN, Group in declaration aiready declared. Redeciaration illegal.

Explanation: A DECLARE, PACKET, SUBPACKET, TABLE, or DYNAMIC_TABLE statement
was executed with a group name that was already defined.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DECGRPCTX, Group in DECODE statement has no context.

Explanation: The group in the DECODE statement was a TABLE, DYNAMIC_TABLE, or
PACKET or SUBPACKET with the REPEATED attribute for which the current record context
was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DECNOBIT, No BIT declaration corresponding to DECODE list item.

Explanation: The bit number specified for a data item in the DECODE statement had no
corresponding BIT declaration for the data item in the specified group.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DECNOTEXT, No bit to text transiation for DECODE list item.

Explanation: The BIT declaration corresponding to the bit number specified for a data item
in the DECODE statement had no print expression.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DEFCASELS, No match for control expression in CASE conditional definition.

Explanation: No match was found for the value of the selector expression in a CASE
conditional definition and no ELSE clause was specified.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DEFNOCONT, Attempt to access data in variable in group with nuli context.

Explanation: The control file module attempted to access a variable in a TABLE, DYNAMIC_.
TABLE, or PACKET or SUBPACKET with the REPEATED attribute for which the current
record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-DEFNOSTAK, Declaration stack overflow.
Explanation: The stack used for processing declarations has overflowed.

User Action: Edit RPTBLD.CMD to increase the extension for program section DCSTKO0, and
rebuild RPT.

Report Generator Task (RPT) 3-35

ERLRPT-F-DEFSTKUND, Internal error - Declaration stack underfiow.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-DIVZERO, Aitempt to divide by zero.
Explanation: A control file module attempted to divide by zero.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-EXEINVCOD, Internal error - Execution stack entry has invalid code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-EXEINVPOS, Internal error - Input file has invalid position value.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-EXPGRPNOC, Attempt to reference POINTER for group without context.

Explanation: A control file module attempted to reference the POINTER special variable for
a TABLE, DYNAMIC_TABLE, or PACKET or SUBPACKET with the REPEATED attribute
for which the current record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-EXPINVCOD, Internal error - Invalid expression item code in expression.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-EXPINVTYP, Internal error - Invalid symbol data type in expression.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-EXPNORSYM, Symbol without read access referenced in expression.

Explanation: A control file module attempted to read a variable defined in a DECLARE
statement that had not been initialized.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-EXPUDFGRP, Undefined group referenced in expression.
Explanation: A control file module attempted to reference a group that had not been defined.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-36 Report Generator Task (RPT)

ERLRPT-F-EXPUDFSYM, Undefined symbol referenced in expression evaluation.
Explanation: A control file module attempted to access an undefined symbol.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-EXPVALOVR, Value stack overflow during expression evaluation.
Explanation: The stack used for processing values and expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the extension for program section VLSTKO, and
rebuild RPT.

ERLRPT-F-EXPVARNOC, Attempt to access variable without context in expression.

Explanation: A control file module attempted to reference a variable in a TABLE, DYNAMIC_
TABLE, or PACKET or SUBPACKET with the REPEATED attribute for which the current
record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FILERCLOS, File close error.
Explanation: An error occurred when RPT attempted to close a file.

User Action: Check for file access conflicts, device errors, or low pool condition.

ERLRPT-F-FILERREAD, File read error.
Explanation: An error occurred when RPT attempted to read a file.

User Action: Check for file access conflicts, device errors, or low pool condition.

ERLRPT-F-FILERSPAN, Records in file are not allowed to span blocks.

Explanation: The span block attribute of the error log file being analyzed was set. ELI creates
the error log file with this attribute set, and neither ELI, ERRLOG, nor RPT will modify it,
but some other task may have.

User Action: Use ELI to start or restart error logging with a new version of the error log
file, then use the Peripheral Interchange Program (PIP) to append the previous version to
the new version. PIP may produce the following warning message:

PIP -- Input files have conflicting attributes

This message can be ignored.
ERLRPT-F-FILERWRIT, File write error.

Explanation: An error occurred when RPT attempted to write to a file.

User Action: Check for file access conflicts, device errors, or low pool condition.
ERLRPT-F-FILINTOPN, Internal error - File already open.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

Report Generator Task (RPT) 3-37

ERLRPT-F-FILINVCOD, Internal error - Invalid file code for specified operation.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FILINVMOD, Control file library has invalid module nhame table format.

Explanation: The control file library has an invalid module name table format. The control
file must be a universal library.

User Action: Ensure that the control file is a valid universal library and rerun RPT.

ERLRPT-F-FILNOTCTX, Operation requires that dynamic file have context.

Explanation: A control file module executed a POINTER DELETE or POINTER MOVE
statement on a DYNAMIC_TABLE for which the current record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FILNOTEXI!, Internal error - Declared dynamic file does not exist.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FILNOTVIR, Could not create virtual address space for module table.

Explanation: RPT could not dynamically extend its address space to create room for the
module table.

User Action: If the maximum task size for the partition is less than 32K words, use the
MCR command SET /MAXEXT or DCL command SET SYSTEM/EXTENSION_LIMIT to
increase the maximum task size, or run RPT in a different partition.

ERLRPT-F-FILTOOBIG, File too large to read.
Explanation: RPT cannot analyze error log files that are larger than 65,5359 blocks.

User Action: Use ELI to create new error log files more often.

ERLRPT-F-FINDFIELD, FIELD in FIND statement does not have valid data type.

Explanation: A control file module executed a FIND statement where the specified FIELD
was not NUMERIC, STRING, ASCII, RSXTIME, VMSTIME, or LOGICAL.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FINDNOCON, FIND statement not valid on a group with no context.

Explanation: A control file module executed a FIND statement for a TABLE or DYNAMIC_
TABLE attribute for which the current record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-38 Report Generator Task (RPT)

ERLRPT-F-FORCLSNUL, FORMAT clause nulil.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
null FORMAT clause.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORFIELDS, FORMAT error - Field too narrow for variable to print.

Explanation: A control file module executed a WRITE_GROUP statement where the width
specified by a !DP directive was too short for the corresponding variable.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORFIELDW, FORMAT error - Name too long for field in !DF directive.

Explanation: A control file module executed a WRITE_GROUP statement where the width
specified in a !DF directive was less than the length of the name of the corresponding
variable.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORINVCHA, FORMAT error - Invalid character in FORMAT clause.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
FORMAT clause that contains a nonprinting character.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORINVCHR, FORMAT error - Invalid character in string in IDP directive.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
IDP directive that contains an invalid character.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORINVDIR, FORMAT error - Invalid format directive code.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
FORMAT clause that contains an invalid format directive.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORINVVTY, FORMAT error - Attempt to output invalid variable type.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
FORMAT clause that contains a !DP directive for which the corresponding variable is the
wrong type.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

Report Generator Task (RPT) 3-39

ERLRPT-F-FORLINEOV, FORMAT error - Line overflow in FORMAT clause.

Explanation: A control module executed a WRITE or WRITE_GROUP statement during
which the output buffer overflowed while processing the FORMAT clause. The output
buffer is 132 characters wide.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORNOARG, FORMAT error - Format directive missing required argument.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
FORMAT clause that contains an 'FC or !FS directive with no numeric argument.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORNONAME, FORMAT error - Request to print a field name for a vaiue.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
FORMAT clause that contains a 'DF directive matched with a value rather than a variable.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORNOREAD, FORMAT error - Attempt to print a variable without read access.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement that
attempted to print a variable without read access.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FORNOTASC, FORMAT clause not ASCII.

Explanation: A control file module executed a WRITE or WRITE_GROUP statement with a
non-ASCII FORMAT clause.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FUNDATNOT, Specified (sub)packet is hot large enough for offset.

Explanation: A control file module executed a look-ahead function where the value of the
offset argument was larger than the specified packet or subpacket.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FUNFIELDS, Invalid conversion code argument to time conversion function.

Explanation: A control file module executed a time conversion function with an invalid value
for the conversion code argument.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-40 Report Generator Task (RPT)

ERLRPT-F-FUNINVPOI, Invalid string pointer value in string function.

Explanation: A control file module executed a %STR$PARSE or %STR$QUOTE function
where the value of the pointer argument was larger than the length of the string argument.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FUNNOTCHA, Argument to %STR$CHAR is not in valid range for character.

Explanation: The value of the argument for the %STR$CHAR function must be in the range
0 to 1274p.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FUNNOTIMP, Function not implemented.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FUNQUOODD, Quote string in %STRSQUOTE function must have even length.

Explanation: A control file module executed a %STR$QUOTE function, where the quote
string argument was not an even length.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FUNSTRSIZ, Output string from string function too large.

Explanation: A control file module executed a string function that resulted in a string longer
than 255 characters.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-FUNWRONGA, Incorrect number of arguments in function cail.

Explanation: A control file module executed a function call with the wrong number of
arguments.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-GROUPDEF, Attempt to reference undefined group.
Explanation: A control file module attempted to reference an undefined group.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

Report Generator Task (RPT) 3-41

ERLRPT-F-GROUPNOC, POINTER statement executed on a group without context.

Explanation: A control file module executed a POINTER statement on a TABLE or
DYNAMIC_TABLE for which the current record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-HEAPOVERF, Heap too small to hold value. Overflow.
Explanation: The heap used for processing values and expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the extension for program section VHEAPO, and
rebuild RPT.

ERLRPT-F-INCFORWRI, Too few FORMAT expressions in WRITE_GROUP statement.

Explanation: A control file module executed a WRITE_GROUP statement that did not have
two FORMAT expressions in the FORMAT clause.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-INCRDECRL, Numeric variable in INCREMENT or DECREMENT larger than value.

Explanation: A control file module executed an INCREMENT or DECREMENT statement on
a variable that was larger than a word.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-INCRDECRN, Variable in INCREMENT or DECREMENT statement not humeric.

Explanation: A control file module executed an INCREMENT or DECREMENT statement on
a nonnumeric variable.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-INCRDECRYV, Variable in INCREMENT or DECREMENT not valid or read-only.

Explanation: A control file module executed an INCREMENT or DECREMENT statement on
a variable that was not both readable and writable.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-INTINVDEC, Internal error - Invalid declaration entry type in WRITEGROUP.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-INTVALSTK, Internal error - Statement left information on value stack.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

3-42 Report Generator Task (RPT)

ERLRPT-F-INVRADCNYV, Internal error - Invalid radix code for conversion.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-LEAVENOC, LEAVE statement executed outside of a conditional block.

Explanation: A control file module executed a LEAVE statement that was not inside a loop
statement block.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-LISTNOEXP, No expression in LIST for corresponding SEARCH variable.

Explanation: A control file module executed a SEARCH statement in which a match was
found, but there were not enough expressions in the list element for the number of variables
specified in the GET clause of the SEARCH statement.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-LISTNOMAT, Too many expressions in SEARCH statement for referenced LIST.

Explanation: A control file module executed a SEARCH statement in which there were too
many search expressions for the specified LIST.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-LISTNOTDF, Group referenced in SEARCH statement is not defined.

Explanation: A control file module executed a SEARCH statement in which the name
specified for the LIST was not defined.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-LISTNOTLS, Group referenced in SEARCH statement is not a LIST.

Explanation: A control file module executed a SEARCH statement in which the name
specified for the LIST was not defined as a list.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-MATDIFTYP, Values of differing type cannot be matched.

Explanation: A control file module executed a MATCH statement that tried to match values
of differing types.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

Report Generator Task (RPT) 3-43

ERLRPT-F-MATVALSIZ, Values of different size cannot be maiched.

Explanation: A control file module executed a MATCH statement that tried to match values
of differing sizes.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-MEMALLFAI, Memory allocation failure - Insufficient virtual memory.

Explanation: RPT could not dynamically extend its address space to create room for
DYNAMIC_TABLEs or control file modules.

User Action: If the maximum task size for the partition is less than 32K words, use the MCR
command SET /MAXEXT or DCL command SET SYSTEM/EXTENSION _LIMIT to increase
the maximum task size, or run RPT in a different partition. If this occurs while generating
summaries for large numbers of packets, try reducing the amount of data needed by using
RPT switches to reduce the number of packets analyzed for each summary.

ERLRPT-F-MEMINIFAI, Memory allocation initialization failure.

Explanation: RPT could not dynamically extend its address space to create room for its data
structures,

User Action: If the maximum task size for the partition is less than 32K words, use the
MCR command SET /MAXEXT or DCL command SET SYSTEM/EXTENSION _LIMIT to
increase the maximum task size, or run RPT in a different partition.

ERLRPT-F-MODLOAGRP, Undefined group referenced by module to be loaded.

Explanation: The control file module being loaded attempted to reference an undefined
group.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-MODLOASYM, Undefined symbol in module to be loaded.

Explanation: The control file module being loaded attempted to reference an undefined
symbol.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-MODNAMENL, Module name cannot be null.

Explanation: A control file module attempted to access another control file module that had
a null or blank name.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-44 Report Generator Task (RPT)

ERLRPT-F-MODNOMEM, Insufficient free memory to load module.

Explanation: RPT could not dynamically extend its address space to create room for control
file modules.

User Action: If the maximum task size for the partition is less than 32K words, use the MCR
command SET /MAXEXT or DCL command SET SYSTEM/EXTENSION_LIMIT to increase
the maximum task size, or run RPT in a different partition. If this occurs while generating
summaries for large numbers of packets, try reducing the amount of data needed by using
other switches to reduce the number of packets analyzed for each summary.

ERLRPT-F-MODSTART, Starting module for execution not found.
Explanation: The control file library must contain a module named DISPATCH.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-MODZERO, Attempt to modulus by zero.
Explanation: A control file module attempted to perform a MOD by zero.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-NOMORESTK, Execution stack overfiow.
Explanation: RPT’s execution stack has overflowed.

User Action: Edit RPTBLD.CMD to increase the extension for program section XCSTKO, and
rebuild RPT.

ERLRPT-F-NOSTACKE, Internal error - Pop from execution stack with empty stack.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-NOTDYNFIL, Dynamic file operation performed on invalid group.

Explanation: A control file module specified a group that was not defined as DYNAMIC_
TABLE in a statement or operation requiring a DYNAMIC_TABLE.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-NOTPOINT, POINTER LOAD or MOVE executed with a non-pointer variable.

Explanation: A control file module executed a POINTER LOAD or MOVE with a variable
that was not a pointer.

User Action: Correct the user-written module or submit an SPR for, DIGITAL-supplied
modules.)

Report Generator Task (RPT) 3-45

ERLRPT-F-NOTPOIVAR, POINTER LOAD with no pointer variable specified.

Explanation: A control file module executed a POINTER LOAD or MOVE with no variable
specified.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-NUMINVOPR, Invalid numeric double-operand operation code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-OPRINVLOG, Attempt to perform logical operation on an invalid type.

Explanation: A control file module attempted to perform a logical operation with operands
that were neither NUMERIC nor LOGICAL.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-OPRNOTIMP, Operation not implemented.

Explanation: A control file module attempted to perform a multiplication where both
operands were larger than a word value.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-PACKETSIZ, lllegal packet size.

Explanation: The size of an error log packet was zero or would cause the packet to cross a
block boundary.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-POISETGRP, POINTER variable is not from correct group in POINTER ... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or MOVE statement in
which the optional pointer variable was not a pointer to the specified DYNAMIC_TABLE.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-POISETMOD, POINTER variable is from wrong module in POINTER ... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or MOVE statement in
which the DYNAMIC_TABLE pointed to by the optional pointer variable was not in the
same module as the DYNAMIC_TABLE specified in the POINTER statement.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-46 Report Generator Task (RPT)

ERLRPT-F-POISETSIZ, Group too small for POINTER in POINTER ... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or MOVE statement in which
the optional pointer variable was pointing past the end of the specified DYNAMIC_TABLE.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-PROCNAMEN, Null procedure name.

Explanation: A control file module specified a null or blank procedure name in a CALL or
ENABLE statement.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-RADSOBYTE, Cannot convert a byte using Radix-50 conversion.

Explanation: A control file module attempted to convert an ASCII string or numeric literal
to a BYTE using Radix-50 conversion.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-RELINVCOD, Invalid relational operator.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-RETURNNOC, A RETURN was executed with no corresponding CALL.

Explanation: A control file module executed a RETURN statement outside of a procedure or
coroutine.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-SELECTNOM, SELECT statement index has no matching statement block.

Explanation: A control file module executed a SELECT statement with no statement block
to match the value of the numeric control expression.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-SIGNOTASC, Parameter or message in SIGNAL-class statement not ASCII.

Explanation: A control file module executed a SIGNAL, SIGNAL_STOP, or MESéAGE
statement with a non-ASCII argument.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

Report Generator Task (RPT) 3-47

ERLRPT-F-SIGTOOBIG, Message and parameters in SIGNAL-class statement too long.

Explanation: A control file module executed a SIGNAL, SIGNAL_STOP, or MESSAGE
statement in which the length of the concatenated message and parameters was longer than
255 characters.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-SIGTOOMAN, Cannot issue a SIGNAL during SIGNAL processing.

Explanation: A control file module executed a SIGNAL or SIGNAL _STOP statement while
processing a previous SIGNAL or SIGNAL _STOP.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-STANOTIMP, Statement not implemented.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-STANOTVAL, Internal error - Invalid statement code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-SUBEXTBIG, Substring exiraction end element exceeds string.

Explanation: A control file module attempted to perform a substring extraction in which the
substring exceeded the end of the string.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-SUBPKTSIZ, lilegal subpacket size.
Explanation: The current subpacket exceeded the bounds of the packet.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-UNDEFPROC, Specified procedure not found.

Explanation: A control file module has executed a CALL statement, and the specified
procedure was not found.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-UNDMODULE, Specified module not found.

Explanation: A control file module has executed a CALL statement, and the specified module
was not found.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

3-48 Report Generator Task (RPT)

ERLRPT-F-VALSTKOVR, Value stack overfiow.
Explanation: The stack used for processing values and expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the extension for program section VLSTKO, and
rebuild RPT.

ERLRPT-F-VALUESIZE, Value in expression is too large.

Explanation: A control file module evaluated an expression in which an intermediate value
or the final value was too large.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-VALUETYPE, Value in expression is wrong type.

Explanation: A control file module evaluated an expression in which an intermediate value
or the final value was of the wrong type.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-VARNOCONT, Attempt to access variable in group without context.

Explanation: A control file module attempted to reference a variable for a TABLE,
DYNAMIC__TABLE, or PACKET or SUBPACKET with the REPEATED attribute for which
the current record context was not valid.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-VARNODATA, Attempt to access variable in group with no data.

Explanation: A control file module attempted to reference a variable for a TABLE,
DYNAMIC_TABLE, or PACKET or SUBPACKET with no data.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-VARNOTDAT, Attempt to load data into a BIT or FIELD variable.

Explanation: A control file module attempted to load a value into a BIT or FIELD in a group,
rather than into the data item for which the BIT or FIELD was defined.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLRPT-F-WRITEACCYV, Attempt to load a value into a non-writeable variable.

Explanation: A control file module attempted to load a value into a data item in a PACKET,
SUBPACKET, or TABLE.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

Report Generator Task (RPT) 3-49

Chapter 4
Error Log Control File Architecture

This chapter describes the architecture of error log control files. A knowledgeable system
programmer can use the information presented here to add user-written modules to the error
logging system.

This chapter includes the following sections:
® Section 4.1 defines the most important terms and concepts presented in this chapter.

® Section 4.2 describes the control file modules, the flow of program control through
the modules, module compilation paths, and how to recompile modules after making
modifications.

® Section 4.3 describes the interaction between a dispatcher module and a device-level module.
* Section 4.4 explains event-level and device- or CPU-level dispatching,

* Section 4.5 provides the information you need to include error logging support for non-
DIGITAL devices.

® Section 4.6 includes annotated listings of source code for three modules: ERM23, DSP2P1,
and NRM23. The source code is keyed to discussions in Sections 4.3 and 4.5 of this chapter.

Error Log Control File Architecture 4-1

4.1 Terms and Concepts
The following are definitions of the most important terms and concepts presented in this chapter:

Control file A collection of modules that together perform a function, such as
processing error log files.

Module A component of the error logging system. There are three kinds of
modules: source modules, which have the file type CNF, object modules,
which have the file type ICF, and listing modules, which have the file
type LST.

Control File Language The language in which control files are written. The Control File
Language (CFL) is described in Chapter 5.

Error log file The file that contains the raw error logging data. One record in the
file corresponds to one event. The default specification for this file is
LB:[1,6]LOG.ERR.

Event Something that is logged in the error log file. An event may be the

recording of an actual device error or it could be some informational
data, such as a device mount or a change in system time.

Packets, subpackets ~ Each record (or event) is also a packet. A packet begins with a length
word and is followed by data, which can consist of zero or more
subpackets. A subpacket also consists of a length word followed by
data. Every packet in the error logging system contains at least one
subpacket.

Note

The packet length word begins the packet, but it is not part of the packet; the
packet length word is kept by FCS. Therefore, the packet length word is not
included in the length of the packet. However, the subpacket length words are
part of the packet and are included in its length. This is consistent throughout
the error logging system. See Figure 4-1 for the general structure of an error
logging packet.

4.2 Control File Module Architecture

The error logging system is modular; that is, information and dependencies specific to different
devices are isolated in modules written for each device. This section describes the architecture
of the control file modules: the modules themselves, the flow of program control through the
modules, the compilation paths, and how you can modify and recompile the modules.

4-2 Error Log Control File Architecture

Figure 4-1: Structure of Error Logging Packet

PACKET LENGTH

SUBPACKET LENGTH

HEADER SUBPACKET

SUBPACKET LENGTH

TASK SUBPACKET

SUBPACKET LENGTH

DEVICE IDENTIFICATION SUBPACKET —

SUBPACKET LENGTH

DEVICE OPERATION SUBPACKET

SUBPACKET LENGTH

DEVICE ACTIVITY SUBPACKET

SUBPACKET LENGTH

DATA SUBPACKET

ZK-1111-82

Error Log Control File Architecture 4-3

4.2.1 The Control File Modules

The following descriptions briefly explain the function of each of the control file modules:

DISPATCH

The DISPATCH module (the root module for the error logging system) declares all commonly
used variables, calls the INITM1 module to initialize the system, and calls the PARSEM
module to obtain and parse the command line. DISPATCH then requests the records
from the input log file, declares the common subpackets (HEADER, TASK, DEVICE_ID,
DEVICE_OPERATION, and DEVICE_ACTIVITY) for each record, computes the correct
dispatcher module name, and calls that module. When all the records are processed, it calls
the summary modules (if requested) and then calls the FINLP1 module to clean up.

See Section 4.6.4 for the definitions of the standard DIGITAL subpackets. Dispatching is
described in more detail in Section 4.4.

PARSEM
The PARSEM module declares variables local to the processing of the command line and
calls the PARSIM module to obtain the command line. It then calls the PARS2M module
to process any switches and the PARS3M module to open the various files. PARSEM also
provides commonly used parsing routines to the other parsing modules.

PARS 1M
The PARSIM module initializes parsing variables and gets the command line from RPT. It
then breaks all of the file specifications out of the command line, leaving all of the switches.
PARS1M then searches for the /REPORT switch. If it finds the switch, PARSIM replaces
it with the specified string of predefined switches.

PARS2M
The PARS2M module gets a switch from the string of switches produced by the PARSIM
module. It then checks the switch for ambiguity and calls the PRS2AM module to process
the switch. If PRS2AM does not recognize the switch, it is passed to the PRS2BM module.
PARS2M repeats this process until all switches have been processed.

PRS2AM
The PRS2AM module processes the following switches: /DATE, /DEVICE, and /PACKET.

PRS2BM
The PRS2BM module processes the following switches: /FORMAT, /SERIAL, /SUMMARY,
/TYPE, /VOLUME, and /WIDTH.

PARS3M
The PARS3M module applies the default values to any switches that were not specified and
opens the specified files.

SELTM1
The SELTM1 module is called by the DISPATCH module to determine if the current packet
meets the selection criteria of the command line switches.

4-4 Error Log Control File Architecture

DSP1P1
The DSP1P1 module processes error log control events (see Section 4.4.1). These modules
declare the DATA subpacket for each type of event and process the event to completion,
calling the formatter modules to print the common data if the FULL report format is
specified. A

DSP2P1
The DSP2P1 module processes device error events (see Section 4.4.1). These modules call
the DEVSM1 module to determine the name of the device-level module required to process
the event and then calls that module as a coroutine and passes control to it. The device-level
module declares the DATA subpacket and then extracts information from the registers of
the logged device so it can provide additional selection information.

When the device-level module returns control to DSP2P1, it performs the last of the selection
tests and makes the decision whether to continue with this event or not. If DSP2P1 decides
to continue, and if the FULL report format has been specified, DSP2P1 calls the formatter
modules to print the common information. Once printing is completed, control returns to
the device-level module, which prints the device registers.

If the BRIEF report has been specified, DSP2P1 still must decide whether to continue, but
there is no need for the formatter modules: DSP2P1 does its own printing.

Once all the printing is completed, the error logging system tests to see if this entry belongs
in any summaries. If so, DSP2P1 places the data relevant to each requested summary in
the summary files.

DSP3P1
The DSP3P1 module processes device information events (see Section 4.4.1). It performs
the same function as the DSP2P1 module, but only for device errors not related to 1/0.
This module is required only if you have a TU78 or Mass Storage Control Protocol (MSCP)
device.

DSP4P1

The DSP4P1 module processes device control information events (see Section 4.4.1). DSP4P1
calls the DEVSM1 module to get the type of device associated with the device mnemonic.

Mount, dismount, and reset operations have no DATA subpacket. The formatter modules
print the information if the FULL report mode is specified; otherwise, the module does all
the printing itself. As with the DSP2P1 and DSP3P1 modules, DSP4P1 records summary
information if requested.

The block replacement event does have a DATA subpacket, which is processed entirely by
this module. This type of event does not contribute to summaries.

DSP5P1
The DSP5P1 module processes events detected by the CPU (see Section 4.4.3). DSP5P1
gets the CPU type from the HEADER subpacket declared by DISPATCH and calls the
appropriate CPU-level module as a coroutine if the event was a memory parity error. The
processing then proceeds much like that for device errors.

If the event was an unknown interrupt, the module declares and processes the DATA
subpacket itself.

Error Log Control File Architecture 4-5

DSP6P1
The DSP6P1 module processes system control information events (see Section 4.4). There is
no DATA subpacket associated with the power recovery event. DSP6P1 calls the formatter
modules to print the common data if the FULL report format is specified; otherwise, the
module does all the printing itself.

DSP7P1
The DSP7P1 module processes control information events (see Section 4.4). This module
declares the DATA subpacket for each type of event and processes the event to completion,
calling the formatter modules to print the common data if the FULL report format is
specified.

DSP8P1
The DSP8P1 module processes control information events (see Section 4.4). This module
uses the DATA subpacket to extract information for unknown interrupts. It also formats the
output for unknown interrupt CPU-detected error packets.

FINLP1

The FINLP1 module is called by the DISPATCH module to perform cleanup operations
after all the error log events are processed.

FINLP1 also creates the final page of the error log report. This page contains such
information as the command line entered by the user, the files used, the switch states, the
number of events processed, and how long it took to generate the report.

FMTNP1 and FMTWP1
FMTNP1 and FMTWP1 are formatter modules that print the first page of a full report; that is,
all of the information from the HEADER, TASK, DEVICE_ID, DEVICE_OPERATION, and
DEVICE_ACTIVITY subpackets. FMTNP1 prints reports in narrow format, and FMTWP1
prints reports in wide format.

DEVSMI1
The DEVSM1 module is called by the DSP2P1, DSP3P1, and DSP4P1 modules to provide
certain device-related information. DSP2P1 and DSP3P1 call it to find, among other things,
the name of the device-level module that should help process the event. DSP4P1 calls
DEVSM1 to find out the name of the device associated with a device mnemonic.

If the device mnemonic is DU, DEVSM1 then calls DEVUDA to do most of the processing.

DEVUDA
The DEVUDA module is called only by DEVSMI1. It assists DEVSM1 in the processing of
events on MSCP DU-type devices.

ERRORM
The ERRORM module is the error processor for the error logging system. Whenever a
SIGNAL or SIGNAL_STOP procedure occurs, ERRORM processes the error.

SMRYEP
The SMRYEP module prints ERROR summaries. DISPATCH calls SMRYEP after all packets
have been processed if an ERROR summary was requested.

4-6 Error Log Control File Architecture

SMRYGP

The SMRYGP module prints GEOMETRY summaries. DISPATCH calls SMRYGP after all
packets have been processed if a GEOMETRY summary was requested.

SMRYHP

The SMRYHP module prints HISTORY summaries. DISPATCH calls SMRYHP after all
packets have been processed if a HISTORY summary was requested.

CPU-level modules
There are four CPU-level modules, all with names derived from their associated processors.
They are called as coroutines by DSP5P1 to process memory parity errors. The modules
are as follows:

E1144 Processes errors from the PDP-11/44 processor
E117X Processes errors from the PDP-11/70 and PDP-11/74 processors
E118X Processes errors from the PDP-11/73, PDP-11/83, and PDP-11/84 processors
E11XX Processes errors from all other PDP-11 processors
EUNKWN

EUNKWN is a universal device-level or CPU-level module. EUNKWN is called if a
particular device-level module is unavailable or if the device mnemonic is unknown to the
error logging system. EUNKWN is also called if the CPU type is unknown.

EUNKWN produces a formatted dump of the data, showing the relative offset within the
data, and the data itself in octal word, octal high-byte, octal low-byte, and binary word
format. See Section 4.5 for more information on error logging from unknown devices.

DMPALL

The DMPALL module is similar to EUNKWN. DMPALL is called if the packet cannot be
processed due to an error in format or structure. DISPATCH calls DMPALL if the packet
fails any sanity check.

DMPALL produces a formatted dump of the data, showing the relative offset within the
data, and the data itself in octal word, octal high-byte, octal low-byte, and binary word
format.

Device-level modules

Device-level modules contain details of the bit-to-text translation for all supported error
logging devices. The DSP2P1 and DSP3P1 modules call them as coroutines. Their names
are derived from the names of the associated devices.

See Section 4.5 for information on how these modules are constructed and how you can
write device-level modules for unsupported devices.

Table 4-1 lists the standard error logging device-level modules.

Error Log Control File Architecture 4-7

Table 4-1: Error Logging Device-Level Modules

Module Name Module Description

EML11 Processes ML11 errors

ERKO05 Processes RK03 and RKO05 errors

ERK67 Processes RK06 and RK07 errors

ERL12 Processes RLO1 and RL0O2 errors

RMO05 Processes RMO05 errors

ERM23 Processes RM02 and RM03 errors

ERMBS0 Processes RM80 errors

ERPO7 Processes RP07 errors

ERP23 Processes RP02 and RPO03 errors

ERP456 Processes RP04, RP05, and RP0é6 errors

ERS11 Processes RS11 errors

ERS34 Processes RS03 and RS04 errors

ERX01 Processes RX01 errors

RX02 Processes RX02 errors

ET0310 Processes TS03, TE10, and TU10 errors

ET1645 Processes TE16, TU16, and TU45 errors

ETA11 Processes TA11 errors

ETC11 Processes TC11 errors

ETK50 Processes TK50 errors

ETK70 Processes TK70 errors

ETS11 Processes TS11, TU8O errors

ETSVO05 Processes TSV05 errors

ETUS8 Processes TU58 errors

ETU77 Processes TU77 errors

ETUS81 Processes TU81 errors

MSCP5X Processes errors for RD50, RD51, RD52, RD53, RD54, RX33, and RX50
devices

MSCP60 Processes MSCP RA60 errors

MSCP80 Processes MSCP RA80, RA81, and RAS82 errors

MSCPAT Processes MSCP attention errors

4-8 Error Log Control File Architecture

Table 4-1 (Cont.): Error Logging Device-Level Modules
Module Name Module Description

MSCPCE Processes MSCP controller errors
MSCPEN Processes MSCP end packets
MSCPSD Processes MSCP RC25 errors
MSCPTO Processes MSCP timeout errors
TMSCPE Processes TMSCP end packets

Notes modules

Notes modules contain notes for error conditions that need additional explanation. Notes
modules are device-specific and have names derived from the names of the associated
device-level module. See Section 4.5.3.2 for more information on how these modules are
constructed.

Table 4-2 lists the standard error logging notes modules.

Table 4-2: Error Logging Notes Modules
Module Name Module Description

NML11 Processes ML11 notes

NRK67 Processes RK06 and RK07 notes
NRMO05 Processes RM05 notes

NRM23 Processes RM02 and RM03 notes
NTO0310 Processes TS03, TE10, and TU10 notes
NTS11 Processes TS11 and TU80 notes

4.2.2 Program Control Flow
The general flow of program control through the control file modules is as follows:

1. RPT opens the control file. In most cases, this is the default control file LX or
LB:[1,6]JERRLOG.ULB. If you wish to use some other filespec, RPT must be rebuilt to
prompt for the new name of the file.

2. RPT creates the module table in its dynamic work space. This table contains an entry for
each module in the control file universal library.

3. RPT loads the DISPATCH module and transfers control to the ENTRY procedure.

4. The ENTRY procedure is similar to the root module in most MACRO-11 programs. The
general flow of the ENTRY procedure is as follows:

a. Declares most of the commonly used data structures.

b. Enables the ERROR_1 procedure in the ERRORM module as an error handler.

Error Log Control File Architecture 4-9

c. Fetches and parses the command line by calling the SETUP procedure in the PARSEM
module.

d. Performs some general initialization with the INIT_1 procedure from INITM1.

e. Sets up a loop to step through the PACKET_RANGE file, extracting pairs of packet
ranges which are fed back to RPT.

f. Loops through the current packet range, requesting each packet in turn and calling
the DISPATCH procedure in the DISPATCH module. This step is performed for each

packet range.

g. When all packets and packet ranges have been requested, ENTRY generates summaries,
if requested, by calling the SUM_ERROR, SUM_GEOMETRY, and SUM_HISTORY
procedures from SMRYEP, SMRYGP, and SMRYHP, respectively.

h. Calls the FINAL _1 procedure in FINLP1 to perform cleanup operations.

5. The DISPATCH procedure in the DISPATCH module declares all of the common subpackets.
In order of appearance, these are the HEADER, TASK, DEVICE_ID, DEVICE_OP, and I0_
ACTIVITY subpackets.

Each of these subpackets has a mask bit in the HEADER subpacket to indicate the presence
of the subpacket. If the bit is set, the subpacket is present and therefore declared. If the bit
is not set, the subpacket is not present and consequently not declared.

Note that the HEADER subpacket must always be present.

As each subpacket is declared, various tests are performed that must be passed. (These tests
are for the various selection criteria that you can specify using command line qualifiers.)
If one subpacket fails the tests, the entire packet is rejected. If the tests are passed, the
procedure then computes the name of the appropriate dispatcher module.

The dispatcher module name is concatenated from the following elements:

* The string “DSP”

* The event code (HEADER.CODE_TYPE) converted to ASCII decimal

* The string “P1”

For example, an event with a code of 5 would be dispatched to the DSP5P1 module.

6. The dispatcher modules (or the modules they may call) handle the declaration of the DATA
subpacket if one is present. The dispatcher modules also perform further selection tests
as needed to determine whether or not information about the event should be printed.
Brief format reports are printed entirely by the dispatcher module. Full and register format
reports are printed by a combination of the following modules:

¢ One of the formatter modules (FMTNP1 or FMTWP1)
* The appropriate dispatcher module

* A device-level module (if it is a device error) or a CPU-level module (if it is a processor
Or memory error)

4-10 Error Log Control File Architecture

4.2.3 Compilation Paths

The DISPATCH module must be compiled first. The next modules to be compiled are at the
next level. These modules — ERRORM, DSP2P1, DSP1P1, DSP5P1, SMRYEP, and PARSEM
— all use the symbol file produced from the compilation of DISPATCH as input. Modules in
the same group (for example, ERRORM, INITP1, SELTM1, and FINLP1) all use the same input
symbol file (in this case, DISPATCH) and can be compiled in any order.

Figure 4-2 illustrates the compilation paths for the control file modules.

Figure 4-2: Compilation Path for Control File Modules

DISPATCH
ERRORM DSP2P1 DPS1P1 DSP5P1 SMRYEP PARSEM
INITP1 DSP3P1 SMRYGP
SELTM1 DSP4P1 SMRYHP
FINLP1 DSP6P1
DSP7P1
| l |
DEVSM1 FMTNP1 DEVICE E11XX PARS1M PARS2M PARS3M
FMTWP1 LEVEL E1144 |
MODULES E117X PRS2AM
. PRS2BM
DEVUDA

ZK-1113-82

Where modules in the figure are connected by vertical lines, the upper module is compiled first.
The lower module or modules are then compiled using the symbol file produced by the module
at the next higher level. Therefore, the DSP2P1 module is compiled using the symbol file from
DISPATCH, the DEVSM1 module is compiled using the symbol file from DSP2P1, and so on.

Modules used in the error logging system must be compiled using the following compile-time
literal declarations: :

Option>LITERAL SUPPORT.RSX_1iM = FALSE
Option>LITERAL SUPPORT.RSX_11M_PLUS = TRUE
Option>LITERAL SUPPORT.IO_ACTIVITY = TRUE
Option>/

See Chapter 5 for a description of the Control File Language (CFL), which is used in these
declarations.

Error Log Control File Architecture 4-11

4.2.4 Modification and Recompilation

You can modify any control file module. After doing so, you must recompile the module and
replace it in the control file library.

Caution

You must recompile all modules on the same branch of the tree at levels lower
than the modified module if your modification includes any of the following
changes:

* Creates new groups, tables, or dynamic tables
* Creates a new variable within any of these structures
* Reorders a variable within any of these structures

Note that you need not recompile lower-level modules if you modify the run-time logic. For
example, suppose you want to modify the following statement in the PARSEM module:

IF %STR$LENGTH(PARSE.SWITCH_LIST) EQ O
Your modification is as follows:
IF %STR$LENGTH(PARSE.SWITCH_LIST) EQ 1

This modification in the PARSEM module would not require recompiling any of the lower-level
modules (PARS1M, PARS2M, PARS3M, PRS2AM, or PRS2BM).

Now, suppose you modify the same statement as follows:
IF %STR$LENGTH(PARSE.SWT_LIST) EQ 1

In this example, you created the variable SWT_LIST in the PARSE group. Therefore, you must
recompile the lower-level modules. This is because the information in the symbol file consists
of group names (in alphabetical order) and the variables defined within the group (in the order
declared). The compiler uses the information from the input symbol file to compute relative
group and variable numbers for use when a module references a group or variable declared in
a higher-level module. These group and variable numbers (rather than the names) are used to
resolve references to groups and variables when a module is loaded. Defining new groups, or
variables within a group, changes the relative order of these symbols.

4.3 Interaction Between Dispatcher and Device-Level Modules

The following section describes in detail the interaction between a dispatcher module and a
device-level module, using the processing of an RM03 error as an example.

The following discussion refers to the ERM23 device-level module code in Section 4.6.1 and
the DSP2P1 dispatcher module code in Section 4.6.2. Both the discussion here and the code in
those two sections are keyed to each other by the module names (either ERM23 or DSP2M1)
and numbers that look like this: @.

You may wish to remove the pages for Sections 4.6.1 and 4.6.2 from your book for easier
reference in following the interaction between these two modules.

Processing in DSP2P1 begins when the DISPATCH module has declared all subpackets except
for the DATA subpacket. All subpackets except for the TASK subpacket are needed for a device
error.

4-12 Error Log Control File Architecture

DSP2P1 first declares the logical variable INDICATE.TAPE_FLAG (DSP2P1). This variable
is set by DEVSMI1 to indicate whether or not the device is a magnetic tape. The variable is
used later in processing summary information.

DSP2P1 determines that peripheral errors are requested and that the subcode is valid. Having
completed these checks, DSP2P1 calls DEVSM1 (DSP2P1 ®). DEVSMI returns device
information in the following three variables:

e INTERMOD_DEVERR.DISP_NAME contains the name of the device-level module needed
to process the DATA subpacket, in this case ERM23.

e INTERMOD_DEVERR.DRIVE_TYPE contains the string RM03 for the drive type.

e INTERMOD_DEVERR.ALT_NAME contains the string RM02/03 for the alternate drive
type. (The alternate name variable is not used during device error processing.)

After returning from DEVSM1, the NOTE_NUMBERS file is cleared (DSP2P1 ©). Clearing the
file deletes any records that may remain there from previous events.

The next step establishes the coroutine relationship with the device-level module (DSP2P1 ©).
The DEVICE_ERROR procedure in the DSP2P1 module is one partner, while the DEVICE
ENTRY procedure in the ERM23 module is the other. Control passes to the DEVICE_ERROR
procedure.

The first thing the DEVICE_ERROR procedure does is pass control to its partner (DSP2P1 ©).
Module ERM23 receives control at the beginning of the DEVICE_ENTRY procedure (ERM23
Q).

The DEVICE_ENTRY procedure declares the DATA subpacket (ERM23 ©). Once this is
completed, the INTERMOD_DEVERR variables are filled in (ERM23 @ and @). All of the
variables must be filled in. If the information for a particular variable is unavailable or not
applicable, use the string N/A. For the variable INTERMOD_DEVERR.ERROR_CYLINDER,
the string ??? also has a special meaning;: It indicates to DSP2P1 that the section titled Device
Error Position Information is to be suppressed.

Once the INTERMOD_DEVERR variables are all filled in, a coroutine statement returns control
to DEVICE_ERROR (ERM23 @©). DEVICE_ERROR regains control where it left off (DSP2P1
0).

DSP2P1 then performs the serial number tests, if required, after having first initialized the
variable INTERMOD_DEVERR.REJECT_FLAG to false. If the serial number test is failed, the
variable INTERMOD_DEVERR.REJECT_FLAG is set to true.

The path through the two modules now depends on the report format, either BRIEF, FULL,
REGISTER, or NONE. The following paragraphs explain these paths:

BRIEF
The REJECT_FLAG variable is tested (DSP2P1 @). If true, there is no output. If false, one

line is printed which contains the information required for a BRIEF report. In either case,
the variable INTERMOD_DEVERR.PRINT_FLAG is set to false.

If the packet is not rejected and if the report format is not NONE, the variable REPORT.
PRINT_COUNT is incremented. This variable keeps a count of how many events were
printed (as opposed to how many were looked at, which is a separate tally).

Error Log Control File Architecture 4-13

FULL
The REJECT_FLAG variable is tested (DSP2P1 @). If it is set to true, there is no output
and the PRINT_FLAG variable is set to false.

If REJECT_FLAG is set to false, the formatter modules are called to print the information
from the common subpackets. The DSP2P1 module then prints (still on the first page)
the information passed back in the INTERMOD_DEVERR variables filled in by ERM23.
DSP2P1 generates a page break, then prints a header on the second page. When done,
DSP2P1 sets the PRINT_FLAG variable to true.

REGISTER
The REGISTER path is almost identical to the FULL path. The only difference is that the
page containing all of the common information is not printed. The header on the page
containing the register translation supplies a summary of the information instead.

NONE
The NONE path sets the PRINT_FLAG variable to false (DSP2P1 ©).

All of these paths converge again at DSP2P1 (®), where control once again passes to the
DEVICE_ENTRY procedure in ERM23.

The first thing the DEVICE_ENTRY procedure does upon regaining control is to test the
PRINT_FLAG variable (ERM23 @). If it is set to FALSE, the module exits (ERM23 ®).

If the PRINT_FLAG variable is set to true, ERM23 performs the bit-to-text translation of the
registers. Following that, any required notes are indicated by PUT statements to the NOTE _
NUMBERS file specifying the note index (ERM23 ®). The module then exits (ERM23 ®).

When ERM23 exits, the DSP2P1 module regains control and the coroutine partnership is broken
(DSP2P1 ®).

After the device-level module has printed (if instructed to) and has exited back to the DSP2P1
module, the UPDATE_RECORD procedure in DSP2P1 is called (DSP2P1 ®).

The UPDATE_RECORD procedure tests to see if an ERROR summary was requested (DSP2P1
®). If none was requested, processing goes on to the GEOMETRY section.

If an ERROR summary was requested, the DSP2P1 module searches the ERROR_INFO_E file
to see if an error having the same error type has been encountered. If the same error type has
been encountered, the record in the file describing that type of error is updated to show that
one more error occurred, and when it occurred. If no such error is found in the file, a new
record that describes the error is added to the file and processing goes on to the GEOMETRY
section.

The UPDATE_RECORD procedure then tests to see if a GEOMETRY summary was requested
(DSP2P1 @). If not, the procedure exits.

Updating the ERROR_INFO_G file is much the same as updating the ERROR_INFO_E file,
but the information recorded is somewhat different. In particular, the GEOMETRY summary
indicates where on the device the error occurred. Since magnetic tapes have no valid geometry
information, when updating the ERROR_INFO_G file you need to know whether or not the
device is a magnetic tape.

4-14 Error Log Control File Architecture

Finally, the DEVICE_ERROR procedure checks for entries in the NOTE_NUMBERS file. If
there are any entries, DSP2P1 computes the name of the notes file. The name of a notes
module is the same as its corresponding device-level module, except that the first character of
the module name is the letter N. In this case, the module name is NRM23. The notes module

is called to print the requested notes.

4.4 Dispatching

This section discusses module dispatching. There are two levels of dispatching: event-level
dispatching and device- or CPU-level dispatching.

4.4.1 Event-Level Dispatching

All events that occur in the error logging system are assigned a unique combination of code
and subcode. These code and subcode combinations can be found in the file EPKDF.MAC
(EPKDF$ macro in EXEMC.MLB) along with the definition of the structure of error log packets.
See Appendix C for a listing of EPKDF$. Table 4-3 summarizes the error logging code and

subcode combinations.

Table 4-3: Error Logging Code and Subcode Combinations

Code

Subcode

1. Error Log Control

2. Device Errors

3. Device Information

4. Device Control Information

AR

1. Error Log Status Change
2. Switch Logging Files

3. Append File

4.
5
6

Declare Backup File

. Show (not logged)
. Change Limits

Device Hard Error

Device Soft Error

Device Interrupt Timeout (hard)
Spurious Interrupt

Device Interrupt Timeout (soft)

Device Information Message

Device Mount

Device Dismount

Error Log Control File Architecture

4-15

Table 4-3 (Cont.): Error Logging Code and Subcode Combinations
Code Subcode

3. Device Counts Reset

4. Block Replacement

5. Memory_Info Errors 1. Memory Error

6. System Control Information 1. Power Recovery

7. Control Information Time Change
System Crash
Device Driver Load

. Device Driver Unload

S N

. Message

8. CPU-Detected Errors 2. Unexpected Interrupt

Each code group is processed by one of the dispatcher modules. These modules are named
DSP1P1 through DSP7P1. The name of the dispatcher module is concatenated in the DISPATCH
module’s DISPATCH procedure from the following elements:

* The string “DSP”
* The event code (HEADER.CODE_TYPE) converted to ASCII decimal
* The string “P1”

The single-digit ASCII conversion of the code value (obtained from the HEADER subpacket)
is required because the Librarian Program Ultility (LBR) allows a maximum of six Radix-50
characters for a module name. The code value 9 is currently unused; values 0 and 8 are
reserved.

Once the dispatcher module has been called, it checks to see if this type of event was requested.
If the event type was not requested, the module returns, effectively ignoring the entry. Event
types are requested by using the /TYPE switch. The event types, codes, and the dispatcher
modules that process them are listed in Table 4-4.

4-16 Error Log Control File Architecture

Table 4-4: Event Types, Codes, and Their Dispaticher Modules

Type Codes Dispatcher Modules

ALL 1-7 DSP1P1, ..., DSP7P1
CONTROL 1 DSP1P1

ERRORS 2,3,5 DSP2P1, DSP3P1, DSP5P1
MEMORY 5 DSP5P1

PERIPHERAL 2,3 DSP2P1, DSP3P1
PROCESSOR 5 DSP5P1

SYSTEM_INFO 4,6,7 DSP4P1, DSP6P1, DSP7P1
CPU_INFO 8 DSP8P1

Once the dispatcher module determines that this type of event was requested, it checks to see
if the subcode is in range. If it is not, the event is rejected with an error message.

At this point, dispatcher modules may declare and print the DATA subpacket themselves or
they may call lower-level modules to do so. The error logging dispatcher modules handle all
of the printing for the brief report mode. If the full report mode is specified, the dispatcher
modules call one of the following modules to print the common portions of the event:

Width Formatter Module
NARROW FMTNP1
WIDE FMTWP1

The dispatcher module may print the rest of the event itself or work with a lower-level module.

4.4.2 Device-Level Dispatching

Device-level dispatching is performed with the assistance of the DEVSM1 module. This module
is called by the DSP2P1, DSP3P1, and DSP4P1 modules and determines, among other things,
the correct device-level module for the event.

The following paragraphs describe how the DEVSM1 module works (see the source code for
exceptional cases; this discussion addresses only common cases).

The first thing DEVSM1 checks is whether there is a DEVICE_ID subpacket. If no DEVICE_ID
subpacket is found, an error results. Once past that check, DEVSM1 uses the device mnemonic
to search the DEVICE_INFO table. If the device is not found, DEVSM1 specifies the EUNKWN
module in the variable INTERMOD_DEVERR.DISP_NAME.

Assuming that the mnemonic is recognized, the DEVSM1 module tests to see if (a) the mnemonic
is that of a MASSBUS device, and (b) there is a DATA subpacket. Assuming both are true,
DEVSM1 looks ahead into the DATA subpacket to obtain the MASSBUS Drive Type from the
logged registers.

Error Log Control File Architecture 4-17

The drive-type value is unique for each MASSBUS device. Once this value is obtained, the
DEVICE_INFO table is searched again, this time using the drive-type value as the key. If this
search succeeds, the INTERMOD_DEVERR.DISP_NAME variable is filled in with the module
name specified by the resulting record in the table.

If there is no DATA subpacket, or if the device is not a MASSBUS device, the search of the table
is left pointing to the first record that matched on the specified mnemonic. DEVSM1 performs a
further search of the table based on the mnemonic as well as the device size (which is provided
in the DEVICE _ID.DEV_TYPE variable). The INTERMOD_DEVERR.DISP_NAME variable is
then filled in with the module name specified in the record (the result of this search).

The search proceeds in the following order:

1. When a device’s mnemonic is found in the DEVICE_INFO table in module DEVSM1, the
MASSBUS_FLAG is checked. If it is true, a look-ahead into the device registers returns the
device’s DRIVE_TYPE.

2. The DEVICE_INFO table is then searched again to find a record having that drive type.

3. The error logging system then dispatches to the module corresponding to the actual registers
logged, rather than dispatching to the module indicated by the mnemonic provided in the
Executive.

For MASSBUS devices, the error logging system uses the device name provided by the DEVICE _
INFO table. This name will always be correct, since each MASSBUS device has a unique drive-
type value. If there is a mismatch between the mnemonic supplied and the device type as
determined by examining the registers, the device-type field in the printed report is preceded
by an asterisk (*).

You make the error logging system aware of a new device-level module by adding a record
to the DEVICE_INFO table in the DEVSM1 module. A section of the table is reproduced in
Table 4-5.

Table 4-5: The DEVICE_INFO Table

TABLE DEVICE_INFO;

MNEMONIC :ASCII 2] ; ! Device mnemonic
PRINT_NAME :ASCII [6] ; ! Name for printing
ALT_PRINT_NAME :ASCII [12] ; ! Alternate name for printing
DISP_NAME :ASCII [6] ; ! Name of device module

SIZE :‘LONGWORD ; ! Size of device
MASSBUS_FLAG :LOGICAL ; ! True if a MASSBUS device
DRIVE_TYPE :BYTE ; ! MASSBUS device-type number

BEGIN_TABLE

4-18

Error Log Control File Architecture

Table 4-5 (Cont.): The DEVICE_INFO Table

'CT’, 'TU60', "TU60’,
‘DB’, 'RP04’, ‘RP04/05’,
‘DB, ‘RP0Y’, 'RP04/05’,
'DB’, 'RP06’, 'RP06’,
'DD’, 'TU58/, '"TUS8',
‘DF’, 'RF1Y, ‘RF11/,
'DK’, 'RK05’, 'RK03 /05,
‘DL’, 'RLOY, ‘RLOY’,
‘DL, 'RLO2, ‘RLO2’,
'DM’, 'RKO§€’, ‘RK06’,
'DM’, 'RKO7, 'RK07,
'DP’, 'RP03/, ‘RP03’,
‘DR, '/RM02, 'RM02/03’,
'DR’, '/RMO03’, ‘RM02/03’,
'DR’, '/RM05’, 'RMO5’,
‘DR’, '/RM80’, 'RMS80’,
‘DR’, 'RP07’, ‘RPO7’,
'DS’, 'RS03’, 'RS03/04,
'DS’, 'RS03’, '‘RS03/04,
'DS’, ‘RS04, ‘RS03/04’,
'DS’, 'RS04/, 'RS03 /04,

‘ETA11’,

'ERP456’,
'ERP456/,
‘ERP456/,

'ETU58’,

‘ERS1Y,

'ERKO05’,

'ERL12’,
'ERL12’,

‘ERK67,
'ERK67,
'ERP23’,

'ERM23’,
'ERM23’,
'RMO5’,
'ERMS80’,
'ERP07’,

‘ERS34/,
'ERS3¢4/,
'ERS34/,
'ERS34/,

#LD'0', FALSE, #BO'0' ;
#LD'171798', TRUE, #BO'20’ ;
#LD'171798', TRUE, #BO'21' ;
#LD’'340670’, TRUE, #BO'22' ;
#LD'512, FALSE, #BO'0’ ;
#LD'-1', FALSE, #BO'0’ ;
#LD’4800’, FALSE, #BO'0’ ;
#1.D'10240’, FALSE, #BO'0" ;
#L.D'20480, FALSE, #BO'0’ ;
#1.D'27126/, FALSE, #BO'0" ;
#L.D'53790', FALSE, #BO'0’ ;
#LD’'80000’, FALSE, #BO'0’ ;
#L.D'131680’, TRUE, #BO'25' ;
#L.D131680’, TRUE, #B0O'24’ ;
#LD'500384’, TRUE, #BO'27' ;
#L.D'242606', TRUE, #BO'26' ;
#1.D'1008000°, TRUE, #BO'42" ;
#LD'1024, TRUE, #BO'0’ ;
#LD'1024/, TRUE, #BO'l" ;
#LD'2048’, TRUE, #BO'2' ;
#L.D'2048’, TRUE, #BO'3’ ;

Error Log Control File Architecture 4-19

Table 4-5 (Cont.): The DEVICE_INFO Table

'DT’, 'TUS6/, "TUS56’, ‘ETC11, #LD'576’, FALSE, #BO'0’ ;

The columns of the table, read from left to right, correspond to the declared items MNEMONIC,
PRINT_NAME, ALT_PRINT_NAME, DISP_NAME, SIZE, MASSBUS_FLAG, and DRIVE_
TYPE. The following descriptions explain each of these declared items:

MNEMONIC
The mnemonic is a 2-character ASCII field that is listed as the device mnemonic in the
Device Control Block (DCB). Records should be kept in alphabetical order by mnemonic.

PRINT_NAME
This 6-character ASCII field identifies the particular device. This field is used in the printing
of the Device Identification Information section of FULL or REGISTER reports whenever the
device registers are available. Normally this field is used, unless devices are being mounted
or dismounted. In such cases, the device registers are not available and, depending on the
device, there may be insufficient information to completely identify a device. When this
occurs, the ALT_PRINT_NAME field is used instead.

ALT_PRINT_NAME
This 12-character ASCII field identifies the device when the device registers are not available,
usually for mounts and dismounts. When this happens (depending on the device), there
may be insufficient information to identify a device completely. For example, when an RP04
is mounted, the only information available that can identify the device is the mnemonic DB
and the device size. This information is the same for an RP04 and an RP05. In this case
the ALT_PRINT_NAME field is used, which identifies the device as an RP04/05.

DISP_NAME
This 6-character ASCII field identifies the name of the device-level module used to process
error logging entries for the particular device.

SIZE
This longword specifies the number of blocks on the device. There are two special values
associated with this field, as follows:

e A value of zero (0) indicates that the device is a magnetic tape.

e A value of -1 indicates there is no fixed size for the device. DEVSM1 will not correctly
handle combinations of fixed- and variable-size devices having the same mnemonic.

MASSBUS_FLAG
This logical value indicates whether or not the device is a MASSBUS device. It is set to
true for MASSBUS devices and false for any other devices.

4-20 Error Log Control File Architecture

DRIVE_TYPE

This byte specifies the MASSBUS drive-type value. Each MASSBUS device has a unique
value which is available in the low byte of the drive-type register. If the record is not for a
MASSBUS device, this field should be zero (0).

4.4.3 CPU-Level Dispatching

CPU-level dispatching is performed by DSP5P1. The HEADER subpacket contains a variable
called PROC_TYPE that indicates the type of processor the error was logged on. DSP5P1 uses
that variable to search a table that contains module names associated with the CPU-type value.

4.5 Support of Non-DIGITAL Devices

This section explains what you have to do to provide error logging support for non-DIGITAL
devices.

Adding error logging support for a non-DIGITAL device consists of either one or three of the
following steps, depending on the desired level of support:

1. The first step is to include error logging support in the driver. Without this support, no
information can be logged for the device. For full error logging support, you must perform
the following additional steps.

2. Write a device-level module for the new device.

Add the new module to the control file library and make the error logging system aware of
the new module.

4.5.1 Error Logging of Unknown Devices

The error logging system can handle entries from devices unknown to the system. Entries
from an unknown device are handled by the EUNKWN module, which functions as a universal
device-level module. For a brief report, EUNKWN will pass back the value N/A in the
INTERMOD_DEVERR variables to indicate that the information is not available. For a full
report, EUNKWN prints the device registers in a dump-style format where the bit-to-text
translation would normally take place. The rest of the report is unchanged.

4.5.2 Providing Driver Support for a Non-DIGITAL Device

The Executive module ERROR contains the routines to be used by a driver to log device errors.
A device error in this sense can be a real error, a timeout, or perhaps an informational message.
The following sections discuss the routines in general. See the code in [11,10[ERROR.MAC for
more detail.

4.5.2.1 The $BMSET Routine

The $BMSET coroutine raises the processor priority to 7 (to lock out interrupts), sets the S2.ACT
interrupt active bit in 5.5T2 of the SCB, and then calls the caller to start the I/O function. When
the re-called caller returns, $SBMSET lowers the processor priority to 0, thus allowing interrupts
once again.

Error Log Control File Architecture 4-21

Parameters
Input

R4

Output

SCB address

The S2.ACT interrupt active bit is set.

4.5.2.2 The $SDVIMO and $DTOER Routines

The $DVTMO routine logs device timeouts at PRO, and the $DTOER routine logs device
timeouts at device priority. The routines behave identically except that $DTOER disables the
device interrupt and lowers the processor priority to 0.

The routines set S2.ACT, the interrupt active bit in the SCB word S.ST2. They then test to see
if the timeout is a diagnostic function. Diagnostic functions are never logged.

The routines load the error code and subcode in RO and the routine passes control to the

$DVCER routine.

Parameters
Input

R2

R4
R5

Output

RO
R1

Address of a block of registers to log (must be the CSR address if KS.MBC is
set)

SCB address
UCB address

IE.DNR and 377 (Device not Ready)
I/0 packet address

0, if not a diagnostic function.

User response: Create an error log packet and fill it in. Put a pointer to the
packet (5.BMSV) in the SCB and set the error in progress bit SP.EIP in S.PRI.
1, if a diagnostic function.

User response: Do not create an error log packet.

4-22 Error Log Control File Architecture

4.5.2.3 The SDVERR ($DVCER) Routine

$DVERR and $DVCER are the same routine; $DVCER is the routine name, and $DVERR is a
synonym. This routine logs device errors. If an error is already in progress on the device, it
will be ignored. If not, DVCER allocates an error log packet and fills it in with the context of
the current transfer. Note that this routine requires that there be an I/O packet associated with
this error. See Section 4.5.2.6 to log an error where there is no I/O active on the device.

Note that the system also logs information about concurrent I/O activity on other devices.

Parameters

Input

R2

R4
R5

Output

Address of a block of registers to log (must be the CSR address if KS.MBC is
set)

SCB address
UCB address

If no error is already in progress on this device, allocate an error log packet, fill it in, point
the SCB to the packet, and set the error in progress bit.

If an error is in progress on this device, this routine is a no-op.

4.5.2.4 The $NSIER Routine

The $NSIER routine logs nonsense interrupts.

When you assign interrupt vectors for a device, you do not expect interrupts from the remaining,
unused vectors. The $NSIER routine allows you to detect interrupts from unused vectors and
log the errors as nonsense interrupts.

Parameters

Input

@(SP)

Output

Contains bits 06:04 of the unused vector number.

If a nonsense interrupt is in the process of being logged, increment the interrupt count.

If this is the beginning of the processing of a nonsense interrupt, identify the vector and
create and queue an error log packet.

Error Log Control File Architecture 4-23

4.5.2.5 The SFNERL Routine

The $FNERL routine is called at I/O completion or when it is necessary to queue an error log
packet after a successful recovery of a mid-transfer error. This routine effectively completes the
processing of an error.

The routine first inserts the error retry information. It then tests to see if this was a hard
(unrecoverable) error or a soft (recoverable) error and updates the packet accordingly. (All
errors are assumed to be hard up to this point.) Depending on the result of that test, $FNERL
tests against the appropriate limit to see if the limit has already been met. If the limit had been
previously met, the packet is discarded. If not, $FNERL updates the appropriate error count,
logs the packet, and sets the SCB to show that the processing of this error has been completed.

Parameters
Input
RO = First I/O status word
R2 = Starting and final error retry counts (if 0, do not update limits)
R3 = Error log packet address (if R4 = 0)
R4 = SCB address or 0
R5 = UCB address
Output

Either queue or discard the error log packet (depending on the limits) and set the SCB to
indicate that no error is being processed.

4.5.2.6 The SLOGER Routine

Drivers use the $LOGER routine to create an error log packet when no I/O is present, such
as when a driver receives an unsolicited interrupt from a device that contains information that
should be logged. $LOGER creates the packet normally, but the driver is responsible for filling
in the DATA subpacket information. Otherwise, processing is similar to the $DVERR routine.

Parameters

Input
R1 = Length of data to be logged (in bytes)
R4 = SCB address (if 0, then no I/O packet is present)
R5 = UCB address

4-24 Error Log Control File Architecture

Output

C = 1; error cannot be logged for some reason
C = 0; error can be logged

R1 = Address of DATA area in the packet

R3 = Address of error log packet

4.5.2.7 The LOGTST Routine

The LOGTST routine is not for use by drivers. Other routines in the ERROR module call
LOGTST to see if an error can or should be logged.

4.5.2.8 The $SCRPKT Routine

The $CRPKT routine creates an error log packet. It is called as part of the $SMSG directive
processing, and by other Executive routines as part of the processing of a memory error,
nonsense interrupt, time change, powerfail recovery, or device error.

The $CRPKT routine determines the required format and size of the packet, allocates the
required amount of pool, and then fills in the packet. It obtains information from SYSCOM,
the appropriate DCBs, UCBs, SCBs, TCBs, VCBs, and the I/O packet, as required.

Note that a HEADER subpacket is always required. A forced system failure will result if
$CRPKT detects the “no HEADER subpacket” condition.

If a driver of an error logging device calls the $CRPKT routine to create an error logging packet,
the data address for the data subpacket must not be an address within the driver. Specifically,
the address must not be mapped by APR 5, as this APR is used to map the common. Any
user-written driver that performs such a function must allocate a piece of pool, fill in the
appropriate information, and pass the pool address to the $CRPKT routine.

Note that information about concurrent I/O activity on other devices is always logged in
addition to the activity on the device in question.

Parameters

Input
RO = Packet code and subcode (see EPKDF for details)
R1 = Length of DATA subpacket
R2 = Control mask word (see EPKDF for details)
R3 = Beginning address of data for DATA subpacket
R4 = TCB address (for TASK subpacket)
R5 = UCB address (for DEVICE_ID subpacket)

Error Log Control File Architecture 4-25

Output

RO
R1
R2
R3
R4
R5
C

C

Unchanged

Beginning address of data in the DATA subpacket
Unchanged

Beginning address of error log packet

Unchanged

Unchanged

0 if a packet was created

1 if a packet was not created

4.5.2.9 The CALDEV Routine
The CALDEV routine calculates the logical unit number for the given UCB.

Parameters

Input

RO
R3
R5

Output

(RO)

RO

Pointer into the error log packet
DCB address
UCB address

Unit number stored in the error log packet at the byte (R0)
Updated to point to next byte in error log packet

4.5.2.10 The $QUPKT Routine

The $QUPKT routine queues an error log packet. If there is no other packet in the queue,
$QUPKT requests the Error Logger task (ERRLOG) with a delay of 2 seconds. If there is another
entry in the queue, $QUPKT requests ERRLOG to run immediately. Command packets from
ELI always cause ERRLOG to run immediately.

Parameters

Input

R3

Pointer to packet for insertion in queue

4-26 Error Log Control File Architecture

Output

None

4.5.2.11 The $QERMV Routine

The $QERMYV routine removes an entry from the error log queue and transfers it to a user
buffer. It is called only by ERRLOG.

Parameters
input
R4 = Length of user buffer
R5 = Address of user buffer
Output
R1 = Length of packet (if R1 # 0)
R4 = Unchanged
R5 = Unchanged
C = 0 if packet was successfully removed
C = 1 if there was no packet to remove or packet was too long. If R1 # 0, the

packet was too long and R1 contains the packet length. If R1 = 0, then there
was no packet to remove.

4.5.3 Providing Error Logging Support for a Non-DIGITAL Device

In addition to requiring that you correctly provide driver support, full error logging support for
a non-DIGITAL device requires the following two extra steps:

1. Write the device-level module for the new device. This module contains the detailed
instructions on how to interpret the logged information; that is, the bit-to-text translation
information for the device registers. The information common to all events is interpreted
by the DIGITAL-supplied modules.

2. Add the new module to the control file library and make the error logging system aware of
the new module.

Error Log Control File Architecture 4-27

4.5.3.1 Writing a Device-Level Module

This section explains the general structure of device-level modules, using the RM02/03 module
ERM23 as an example. Section 4.6.1 is an annotated listing of ERM23 and Section 4.6.3 is an
annotated listing of the notes module for the RM02/03 driver. Both the discussion here and
the code in those two sections are keyed to each other by the module names (either ERM23 or
DSP2P1) and numbers that look like this: @.

You may wish to remove the pages for Sections 4.6.1 and 4.6.3 from your book for easier
reference in following the interaction between these two modules.

In general, the flow of a device-level module proceeds as follows:
©® MODULE statement followed by module header
PROCEDURE statement

SUBPACKET declaration

Register definitions

Declaration of local work variables and table declarations
Intermodule variable loading

Error-type determination

Coroutine back to caller

Bit-to-text translation and register printing

Note requirements indicated

© 6000006 6 0690

Exit the module

Each of these procedures is described in the following subsections.

The MODULE Statement ©@
The name of a user-written module must be in the following form:
MODULE ExxUSR ident

Generally, the module name begins with the letter E, followed by five or fewer letters indicating
the device or devices served by the module. For example, the ERM23 module handles the
RMO02 and RM03 disks, while the ERP456 module serves the RP04, RP05, and RP06 disks.

The letters xx are the 2-character device mnemonic. Your device mnemonic cannot be the same
as any DIGITAL-supplied device mnemonic.

The ident field is an identification value that is stored in the module. Usually, the ident begins
with a letter that identifies the operating system the module is intended to be used with (such
as P for RSX-11M-PLUS), followed by a version and update number in the standard DIGITAL

style.

The module header follows. This includes the copyright statement, author, date written, and
audit trails of modifications.

4-28 Error Log Control File Architecture

The PROCEDURE Statement @

The PROCEDURE statement for a user-written module must be in the following form:
PROCEDURE DEVICE_ENTRY

The procedure name must be DEVICE_ENTRY. This name is hard-coded into the DSP2P1 and

DSP3P1 dispatcher modules.

The SUBPACKET Declaration ©

The device-level module is responsible for the declaration of the device data (usually in the
form of registers). The SUBPACKET declaration defines the number of registers, how they are
printed, and the bit-to-text translations for the various bits and fields of the registers.

The following code example is a segment of the ERM23 device-level module for the RM02/03
disk drives:

SUBPACKET subpacket_name = DISP.NEXT_PACKET NAMED ;

reg_name: WORD MACHINE ;
: BIT [15]: 'true_text' ;
BIT [14]: 'true_text',
‘false_text' ;
aux_label: FIELD [12:2]: 'Bits 12 and 13 = '
| %CNV_$BINARY (Subpacket_name.aux_label, 2, '0')
(L ¢ :) I
BIT [11]: 'true_text' ;
reg_name: WORD MACHINE ;
END_PACKET ;

The following comments explain some of the key elements in the preceding example:
¢ The subpacket name is usually REGISTER, although this name is not required.

e DISP.NEXT_PACKET is a variable that contains the subpacket number of the data subpacket
and has been set up by the preceding modules.

e The NAMED qualifier indicates to RPT that the register labels are to be saved for later
printing.

» Following the SUBPACKET declaration are the definitions of the registers and their bits and
fields.

¢ The statement END_PACKET indicates the end of the subpacket declaration.

Error Log Control File Architecture 4-29

Register Definitions @

The label assigned to a register provides both a reference to the register (a variable name) and
a name for the register when printing. The register name is printed later on (if you specified a
full format report). In most cases, the error logging system uses the same register names used
by DIGITAL Field Service hardware documents.

For the RM02/03 device-level module, the first register declared looks like the following:

RMCS1 : WORD MACHINE ;
: BIT [15]: 'xSpecial Condition set' ;
RMCS1_TRE: BIT [14]: '*Transfer Error' ;
: BIT [13]: '*MASSBUS Control Bus Parity Err' ;
BIT [12]: '*Unused bit set' ;
BIT [11]: ' Drive Available',
'#Drive not Available (other port using it)' ;
BIT [10]: ' UNIBUS B Selected for Data Transfer',
' UNIBUS A Selected for Data Transfer' ;
RMCS1_BA: FIELD [8:2]: ' BA17,BA16 = '
| %CNV_$BINARY(REGISTER.RMCS1_BA, 2, '0O')
I ®:
BIT [7]: ' Controller Ready',
' Controller not Ready' ;
BIT [6]: ' Interrupt Enabled’,
1

Interrupt not Enabled' ;

The following comments explain some of the key elements in the preceding example:

* The first line indicates that the name of the register is RMCS1 and that it is a word (16
bits) in length.

* The MACHINE qualifier states that, when printed, the register is to be formatted in the
native radix for the machine that the report is being generated on. The native radix for
a PDP-11 processor is octal, and for a VAX processor, hexadecimal. Other print qualifiers
are available to change the radix, such as HEX, OCTAL, DECIMAL, BCD, BINARY, and
RAD50.

* The second line defines bit 15 of the register RMCS1, including when it is to be printed
and what is to be printed. Only one text string is provided. This indicates that the bit is to
be printed only when set to true. Otherwise, nothing is printed for that bit.

* Bit 14 has the label RMCS1_TRE. Labels assigned to bits and fields are never printed. They
are allowed so you can reference the bit or field as a variable. As with bit 15, the text for
this bit is printed only if the bit is set to true.

® Bit 11 has two text arguments. The first argument is printed if the bit is set and the second
argument is printed if the bit is reset. In other words, this bit will always be printed.

* Bits 8 and 9 are defined to be a FIELD with the variable name RMCS1_BA. The general
format for a field definition is as follows:

4-30 Error Log Control File Architecture

FIELD [starting_bit_number:number_of_bits]: 'other_string',
'O_string',
'1_string’',
'2_string’,

'N_string' ;

In the field definition, the O_string is printed if the value of the field is 0. The 1_string is
printed if the value of the field is 1, and so on. The other_string is printed if the field has
a value that has no corresponding text string. Note that for the field RMCS1_BA there is
only an other_string. Therefore, this field is always printed.

A technique that is used in the DIGITAL device-level modules is to declare a field over
any contiguous unused bits. The other_string is defined to be 'Unused bits set’, and the
0_string is defined to be null (the null, or zero_length, string). If the field has the value 0,
nothing is printed. If, however, any of the bits are set, the field appears in the report.

Note that all of the text strings associated with bits and fields have as their first character
either a space or an asterisk. When printing the text for a bit or field, RPT removes the first
character of the string and places it in front of the bit or field position indicator. An asterisk
signals some kind of special condition. For example, bit 11 of RMCS1 can print one of the
following ways:

[11] Drive Available

*[11] Drive not Available (other port using it)

Remember that the asterisk does not necessarily indicate an error, just something interesting.
A blank in front of the position indicator means a normal or status condition.

You can use IF..THEN..ELSE, CASE, and SELECT statements to conditionalize the
declaration of the subpacket. The statement blocks in these structures must be enclosed
by BEGIN and END. You can use variables previously declared in the subpacket even
though the declaration of the subpacket is not complete. Also note the use of the %LOK
(look-ahead) functions in various device-level modules. They look into a subpacket before
it is declared, usually to produce variables to control the declaration.

Note the variable REGISTER.LENGTH towards the end of the subpacket declaration in
ERM23. This variable was created when the SUBPACKET statement was executed. The
variable name is of the form subpacket_name.LENGTH and contains the number of bytes
in the subpacket.

Declaration of Local Work Variables and Tables @

The device-level module often needs some local variables and tables. These are usually defined
after the end of the subpacket declaration, although this is not required. However, remember
that variables must be declared in a module before they can be used.

If the device specified in your module is a disk, you must set the INDICATE.TAPE_FLAG to
false. If the device is not a disk, set the INDICATE.TAPE_FLAG to true.

Error Log Control File Architecture 4-31

Loading of the Intermodule Variables @

The DISPATCH module declares a collection of variables having the group name INTERMOD_
DEVERR. Some of these ASCII string variables pass information from the device-level modules
back to their caller. The variables that must be filled in are as follows:

* INTERMOD_DEVERR.DRIVE_SN

e INTERMOD_DEVERR.DEV_FUNCTION

* INTERMOD_DEVERR.PHYS_UNIT

* INTERMOD_DEVERR.ERROR_CYLINDER

* INTERMOD_DEVERR.ERROR_SECTOR

* INTERMOD_DEVERR.ERROR_HEAD

¢ INTERMOD_.DEVERR.ERROR_GROUP

* INTERMOD_DEVERR.BLOCK_NUMBER

* INTERMOD_DEVERR.ERROR_TYPE

* INTERMOD_DEVERR.DRIVE_TYPE (see Section 4.5.3.3 for more details on this variable)

This section of the module is where these variables are filled in. Use the string N/A if the
information is either not applicable or not available. Note that for certain devices, most notably
magnetic tapes, the ERROR_CYLINDER variable is filled in with the ??? string. This flag tells
the dispatcher module to suppress the printing of the section entitled Device Error Position
Information. Note that one of the variables to be filled in contains the error type. See the
following subsection for more details on how the error type is determined.

Determination of the Error Type @

The error-type definition is a determination of the most likely problem as indicated by the error
bits for a given event. It is not a determination of what failed, but rather an indication of what
events occurred that could be associated with the failure. The error type is determined solely
on the basis of the bits in the current event; no interevent analysis is performed.

The error type is determined by a precedence parse of the various error bits found in the device
registers. The DECODE statement, in conjunction with IF..THEN...ELSE-type constructs, is
used to search the bits in a specific order. The first condition found to be true stops the search.

Coroutine Back to Caller ©

Once all the intermodule variables have been filled in, a coroutine statement returns control
to the device module’s caller. The caller examines the returned information and determines
whether to continue processing the event. Nothing has been printed up to this point in the
processing of this event.

If the decision is not to proceed, but to reject the event, the caller (a) sets the INTERMOD_
DEVERR.PRINT_FLAG variable to false, and (b) returns control, through a coroutine statement,
to the device-level module.

4-32 Error Log Control File Architecture

If the decision is to proceed, the caller performs some or all of the printing, depending on
whether the print format is FULL or BRIEF. If the FULL format is specified, the caller (a) prints
everything except the device registers, (b) sets the INTERMOD_DEVERR.PRINT_FLAG variable
to true, and (c) returns control, through a coroutine statement, to the device-level module. If
the format is brief, the caller (a) performs all required printing, (b) sets the INTERMOD_
DEVERR.PRINT_FLAG variable to false, and (c) returns control, through a coroutine statement,
to the device-level module.

When the device-level module regains control, it examines the print flag. If the flag is set to
true, the module prints the device registers and generates any required note indicators. If the
print flag is false, the module exits.

Perform the Bit-to-Text Translation and Register Printing ©

If the INTERMOD_DEVERR.PRINT_FLAG variable is true, the device-level module prints the
device registers and performs the required bit-to-text translation. This is done by executing
a WRITE statement (to produce column headers) followed by a WRITE_GROUP statement.
The WRITE_GROUP statement references the subpacket name specified in the SUBPACKET
statement. It also uses two variables, REPORT.W_G_F_1 and REPORT.W_G_E_2, as format
strings. These variables are initialized by the INITM1 module and contain the format strings
for printing the register data in either wide or narrow format. If you need to print data that
does not conform to the formats defined by these variables, you can define your own format.
You can test the logical variable REPORT.WIDE to determine whether a wide or narrow report
was requested.

If the INTERMOD_DEVERR.PRINT_FLAG variable is false, the device-level module exits.

Indicate Any Notes That Are Required ®

The error logging system can print notes for certain conditions that need additional explanation.
If you need such notes, you can create a notes module (see Section 4.5.3.2 for details) and
include it in the library. You can then request a note by referencing it from the device-level
module.

You request a note by inserting a PUT statement in the NOTE_NUMBERS file that specifies the
note number in the NOTE_NUMBERS.INDEX variable. For example, the RM02/03 device-level
module can optionally generate a note if certain unused bits in the RMDA register are set. This
is done by using the following code:

1t If the unused bits 5 to 7 are set in the RMDA register.
!

IF (REGISTER.RMDA [5:3] NE #BB'0')

THEN

!
! Print the note saying that it may cause an invalid
! gector address to be recognized resulting in a
! possible invalid address error.
!
PUT NOTE_NUMBERS INDEX = 1 ;

END_IF ;

Error Log Control File Architecture 4-33

When the device-level module exits, the caller tests to see whether any notes were requested.
If notes were requested, the dispatcher strips the first character from the device-level module’s
name and replaces it with the letter N. For example, the notes module for ERM23 (the RM02 /03
device-level module) is NRM23. The dispatcher calls the notes module, which determines which
notes were requested and prints them.

Multiple notes can be requested. They are printed in the order requested.

Exit the Module ®
When everything is done, the device-level module exits. Exiting a module implies a RETURN
instruction to the module’s caller. Exiting from a device-level module also breaks the coroutine
relationship.

4.5.3.2 Writing a Notes Module

This section explains the structure of a notes module using the RM02/03 notes module as an
example. Section 4.6.3 contains an annotated listing of this module.

The general flow of a notes module is as follows:
MODULE statement followed by module header
PROCEDURE statement

Notes heading

Selection of a note for printing

Handling of an unknown note number

Getting the next note

Q0060600 o

Exit the module

The MODULE Statement ©@
The MODULE statement for a notes module must be in the following form:
MODULE NxxUSR ident

The module name of a notes module is related to its corresponding device-level module name
by replacing the first letter of the device-level module’s name with the letter N to get the notes
module name. This convention must be foilowed because the notes module name is derived
from the name of the device-level module and is never looked up in a table.

See Section 4.5.3.1 for an explanation of the ident field of the MODULE statement.

The PROCEDURE Statement ©
The PROCEDURE statement for a notes module must be in the following form:
PROCEDURE NOTES

The procedure name must be NOTES. This is coded into the DSP2P1 and DSP3P1 dispatcher
modules.

4-34 Error Log Control File Architecture

The Notes Heading ©

The notes heading declares what is about to be printed. Notice that notes appear directly
following the register interpretation in FULL and REGISTER reports only.

Selecting a Note for Printing © -

Notes are selected for printing by testing the NOTE_NUMBERS file for context after performing
a POINTER NOTE_NUMBERS FIRST operation. If records remain (that is, if there is context),
a SELECT statement is performed on the variable NOTE_NUMBERS.INDEX. This variable
indicates which note to print.

Handling an Unknown Note Number ©

The ELSE clause of the SELECT statement traps unknown note numbers. A SIGNAL operation
is performed using the UNKNWNNOT error indication. The note number and the drive type
are passed to the error handler as string arguments.

Getting the Next Note @

The next note is obtained by POINTER NOTE_NUMBERS NEXT. This causes RPT to point to
the next record in the NOTE_NUMBERS file. If another record exists, the NOTE_NUMBERS
file has context at the top of the WHILE...DO loop. If no other record exists, there will be no
context; hence, there will be no more notes.

Exit the Module @

When everything is done, the notes module exits. Exiting a module implies a RETURN
instruction to the module’s caller.

4.5.3.3 MASSBUS and Non-MASSBUS Device Considerations

All device-level modules work essentially the same way; the only exception is that MASSBUS
modules are not required to fill in the INTERMOD_DEVERR.DRIVE_TYPE variable, whereas
non-MASSBUS modules must fill in this variable.

This requirement has to do with mixed MASSBUS configurations. With mixed configurations,
the Executive’s database may not match the actual configurations if unit plugs have been
inadvertently swapped.

To avoid unwanted results in case of such a mismatch, the error logging system performs the
following operations:

1. When a device’s mnemonic is found in the DEVICE_INFO table in module DEVSM1, the
MASSBUS_FLAG is checked. If it is true, a look-ahead into the device registers returns the
device’s DRIVE_TYPE.

2. The DEVICE_INFO table is then searched again to find a record having that drive type.

3. The error logging system then dispatches to the module corresponding to the actual registers
logged, rather than dispatching to the module indicated by the mnemonic provided in the
Executive.

Error Log Control File Architecture 4-35

For MASSBUS devices, the error logging system uses the device name provided by the DEVICE _
INFO table. This name will always be correct, since each MASSBUS device has a unique drive-
type value. If there is a mismatch between the mnemonic supplied and the device type as
determined by examining the registers, the device-type field in the printed report is preceded
by an asterisk.

It is the device-level module’s responsibility to supply correct drive-type information for non-
MASSBUS devices. The DEVSM1 module fills in the value based on the device’s mnemonic
and size, but sometimes this information is not accurate. The RK03 and RK05 are examples of
where this is necessary. Both RK03 and RKO05 device errors are processed by the ERK05 module.
The ERKO5 module identifies the drive type by its device registers, and fills in the DRIVE_TYPE
variable accordingly. Another example of where the correct drive-type information is necessary
is DU devices, where the error logging system is only concerned that the device mnemonic be
DU. It is up to the modules that handle these devices to provide the drive-type information.

4.6 Code Examples

This section provides examples of source code from the error logging system. These examples
are annotated for use with previous sections of this chapter. They are written in the Control
File Language (CFL), which is documented in Chapter 5. The examples in this chapter are as
follows:

¢ The ERM23 device-level module for RM02 and RMO03 drivers
* The DSP2P1 dispatcher module
e The NRM23 notes module for RM02 and RMO03 drivers

4.6.1 The RM02/03 Device-Level Module ERM23

The following example is an annotated listing of ERM23.MAC, the device-level module for the
RMO02 and RMO3 disk drives:

o
MODULE ERM23 'M01.01' ;

ERROR LOG CONTROL FILE MODULE: RMO2, RMO3

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE, OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND

!
!
!
!
!
!
!
!
!
!
!
!
! OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

4-36 Error Log Control File Architecture

- tem s tem cem tm s cmm tem e

-t e tm em s vem

THE INFORMATION 1IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

VERSION 01.01

ROBERT E. LI 08-JAN-81
This is one of the many device modules, which is called by the device
error dispatcher (DSP2P1) or device information dispatcher (DSP3P1)
to process all the device dependent information.
Modified by:

CBP Correct BAE/CS3 register logic

PROCEDURE DEVICE_ENTRY

This procedure, which is called via a COROUTINE statement from a dispatch
module, declares and translates all device registers or data fields of
the data subpacket. The intermodule variables required by the dispatch
modules are stuffed with the appropriate values, followed by a COROUTINE
back to the dispatch module. The dispatch module then COROUTINEs back to
this routine a second time, at a point where a write group is used to
print the details of a FULL or REGISTER report.

BEGIN

Declare a variable to hold the length of the subpacket.

DECLARE PACKET_LENGTH ;

TEMP :BYTE ;

END_DECLARE ;

!
!
!
1

Now get the length of the DATA subpacket. Remember that the returned value
is in bytes and includes two bytes for the length word.

SET PACKET_LENGTH.TEMP TO %LOK_$LENGTH(DISP.NEXT_PACKET) ;

Define the data subpacket offsets and all the print information.

(3]

SUBPACKET REGISTER = DISP.NEXT_PACKET NAMED ;

Error Log Control File Architecture

4-37

(4]

RMCS1: WORD MACHINE ;
: BIT [15]: '*Special Condition set'
RMCS1_TRE: BIT [14]: '*Transfer Error' ;
: BIT [13]: '*MASSBUS Control Bus Parity Erxr' ;
BIT [12]: '*Unused bit set' ;
BIT [11]: ' Drive Available',
'*Drive not Available (other port using it)' ;
BIT [10]: ' Unibus B Selected for Data Transfer',

! Unibus A Selected for Data Transfer' ;

RMCS1_BA: FIELD [8:2]: ' BA17,BA16 = '
| %CNV_$BINARY (REGISTER.RMCS1_BA, 2, '0')
I+ ®;
BIT [7]: ' Controller Ready',
' Controller not Ready' ;
BIT [6]: ' Interrupt Enabled',
' Interrupt not Enabled' ;
RMCS1_FN: FIELD [1:5]: ' Function = '
| INTERMOD_DEVERR.DEV_FUNCTION ;
: BIT [0]: '*Go bit on' ;
RMWC: WORD MACHINE ;

FIELD [0:16]: %CNV_$DECIMAL_P (%COM_$NEGATE (REGISTER.RMWC), 6)
| ' words remaining' ;

RMBA : WORD MACHINE ;
: FIELD [0:16]: ' Bus Address Register' ;
RMDA : WORD MACHINE ;
: FIELD [13:3]: '*Unused bits set', NULL ;
RMDA_HD: FIELD [8:5]: ' Track Address = '
| %CNV_$DECIMAL_P(REGISTER.RMDA_HD, 2) ;
FIELD [5:3]: '*Unused bits set (see note)', NULL ;
RMDA_SEC: FIELD [0:5]: ' Sector Address = '
| %CNV_$DECIMAL_P(REGISTER.RMDA_SEC, 2) ;
RMCS2: WORD MACHINE ;
: BIT [15]: 'xData Late' ;
RMCS2_WC: BIT [14]: 'sWrite Check Error' ;
: BIT [13]: 'xParity Error';
BIT [12]: '*Nonexistent Drive' ;
BIT [11]: '*Nonexistent Memory' ;
BIT [10]: '*Program Error' ; '
BIT [9]: '*Missed Transfer' ;
BIT [8]): '*MASSBUS Data Bus Parity Error' ;
BIT [7]: ' Output Ready (silo contains data)',
' Output not Ready (silo empty)' ;
BIT [6]: ' Input Ready (silo not full)',
' Input not Ready (silo full)' ;
BIT [5]: ' Controller Clear '
| '(clears all drives as well)' ;
BIT [4]: '*Parity Test set (even parity)',
' Parity Test reset (odd parity)'
: BIT [3]: '*Bus Address Increment Inhibit' ;
RMCS2_UN: FIELD [0:3]: ' Drive Selected = '

| INTERMOD_DEVERR.PHYS_UNIT ;

4-38 Error Log Control File Architecture

RMDS:

RMDS_ERR:

RMER1:
RMER1_DCK:

RMER1_ECH:

RMAS:

RMLA:

RMLA_ANG:

WORD MACHINE ;
[15]:
[14]):
[13]:
[12]:
[11]:

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT

BIT

BIT

WORD MACHINE ;
[15] :
[14]) :
[13]:
[12]:
[11]:

[10]:
[9]:
[8]:
[{71:

[6]:
[5]:
[4]):
[3]:

[2]:
[1]:
[0]:

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT

BIT
BIT
BIT

WORD MACHINE ;
FIELD [8:8]):

BIT
BIT

BIT
BIT
BIT

BIT
BIT
BIT

FIELD [0:6]:

[10]:
[9]:
[8]:
[73:

[6]:
FIELD [1:5]:
[0]:

L B e W W B |
N O wbho N

[1):
[0]:

WORD MACHINE ;
FIELD [11:5]):
FIELD [6:5]:

e b bd e

' Attention Active' ;

txError (RMER1,2 have bits set)' ;

' Position in Progress' ;

' Medium Online', '#*Medium not Online' ;
' Drive is Write Locked',

' Drive is Write Enabled' ;

' Last Sector Transferred (last of the pack)' ;
' Programmable (ports program selectable)' ;

' Drive Present', '*Drive not Present' ;

' Drive Ready’,

' Drive not Ready' ;

' Volume Valid', '*Volume not Valid' ;
'*Unused bits set', NULL ;

' Drive in Offset Mode',

' Drive not in Offset Mode' ;

'xData Check' ;

'#*Drive Unsafe' ;
'¥Operation Incomplete' ;
'¥Drive Timing Error' ;
'sWrite Lock Error'

'*Invalid Address Error' ;
'xAddress Overflow Error' ;
'x*Header CRC Error' ;
'+*Header Compare Error' ;

'*ECC Hard Error' ;
'*Write Clock Fail' ;
'xFormat Error' ;
'xParity Error' ;

'*Register Modification Refused' ;
'*I1legal Register' ;
'¥I1legal Function' ;

%CND_$IF (REGISTER.RMDT [11],
NULL, '#Unused bits set'),
NULL ;

' Unit #7 Attention' ;
' Unit #6 Attention' ;

' Unit #5 Attention' ;
' Unit #4 Attention' ;
' Unit #3 Attention' ;

' Unit #2 Attention' ;
' Unit #1 Attention' ;
' Unit #0 Attention' ;

'*Unused bits set', NULL ;

' Sector Count = '

| %CNV_$DECIMAL_P(REGISTER.RMLA_ANG, 2) ;
'*Unused bits set', NULL ;

Error Log Control File Architecture

4-39

RMDB: WORD MACHINE ;

FIELD ([0:16]:

WORD MACHINE ;

RMMR1:
: BIT [15]:

BIT [14]:

BIT [13]:

BIT [12]:

BIT [11]:

BIT [10]:

BIT [9]:

BIT [8]:

BIT [7]:
BIT [6]:

BIT [5]:

BIT [4]:
BIT

' Data Buffer contents' ;

%CND_$IF (REGISTER .

' Debug Clock

%CND_$IF (REGISTER.

' Debug Clock

%CND_$IF (REGISTER.

' Debug Clock

%CND_$IF (REGISTER.

' Debug Clock

%CND_$IF (REGISTER.
' Diagnostic End of Block set', NULL),
%CND_$IF (REGISTER.
' Diagnostic End of Block reset',6NULL) ;

%CND_$IF (REGISTER.

' Search Time
%CND_$1IF (REGISTER
' Search Time

%CND_$IF (REGISTER.

' Maintenance
%CND_$IF (REGISTER
' Maintenance

%CND_$IF (REGISTER
' Maintenance

%CND_$IF (REGISTER.

' Maintenance

%CND_$1IF (REGISTER.

' Maintenance

%CND_$IF (REGISTER.

' Maintenance

%CND_$IF (REGISTER.

' Maintenance
%CND_$IF (REGISTER
' Maintenance
%CND_$IF (REGISTER

'*Maintenance

%CND_$1F (REGISTER.

'*Maintenance

%CND_$IF (REGISTER
' Maintenance

%CND_$IF (REGISTER.

' Maintenance

'*nused bit set'

%CND_$IF (REGISTER.

' Maintenance

%CND_$IF (REGISTER.

' Maintenance

4-40 Error Log Control File Architecture

RMMR1_MM,
set', NULL),

RMMR1_MM,

reset', NULL) ;
RMMR1_MM,
Enabled', NULL),
RMMR1_MM,
Disabled', NULL) ;

RMMR1_MM,

RMMR1_MM,

RMMR1_MM,

Out disabled', NULL),

.RMMR1_MM,
Out enabled', NULL)

RMMR1_MM,
Clock set', NULL),

.RMMR1_MM,
Clock reset', NULL)

.RMMR1_MM,
Read Data set', NULL),

RMMR1_MM,
Read Data

RMMR1_MM,

Unit Ready', NULL),

RMMR1_MM,

Unit Not Ready', NULL)

RMMR1_MM,

On Cylinder', NULL),

.RMMR1_MM,
not On Cylinder', NULL)
.RMMR1_MM,

Seek Error', NULL)
RMMR1_MM,
Drive Fault',NULL)

.RMMR1_MM,
Sector Pulse set', NULL),

RMMR1_MM,

Sector Pulse reset', NULL)

RMMR1_MM,

Write Protect', NULL),

RMMR1_MM,

»

reset' NULL)

Write Enabled', NULL)

»

RMMR1_MM:

RMDT:

RMDT_TYP:

RMSN :

RMOF :

RMDC:

RMDC_DC:

RMHR :

RMMR2:

BIT [2]:

BIT [1]:

BIT [0]:

WORD MACHINE ;
BIT [15]:
BIT [14]:
BIT [13]:

BIT [12]}:
BIT [11):

FIELD [9:2]:
FIELD [0:8]:

WORD MACHINE ;
FIELD [0:16]:

WORD MACHINE ;
FIELD [13:3]:
BIT [12]:

BIT [11]:
BIT [10]:

FIELD [8:2]:
BIT [7]:

FIELD [0:7]:

WORD MACHINE ;
FIELD [10:6]:
FIELD [0:10]:

WORD MACHINE ;
FIELD [0:16]:

WORD MACHINE ;
BIT [15]:
BIT [14]:
BIT [13]:
BIT [12]:

%CND_$IF (REGISTER.RMMR1_MM,

' Maintenance Index Pulse set', NULL),
%CND_$IF (REGISTER.RMMR1_MM,

' Maintenance Index Pulse reset', NULL) ;

%CND_$IF (REGISTER .RMMR1_MM,
' Maintenance Sector Compare set', NULL),

%CND_$IF (REGISTER.RMMR1_MM,

' Maintenance Sector Compare reset', NULL);
' Diagnostic Mode on',
' Diagnostic Mode off' ;

'*Drive not Sector Addressable' ;
'*Unit is a Tape Drive' ;
NULL, '*Unit is not a Moving Head Device' ;

'*Unused bit set' ;

' DRQ on (dual port umnit)',

' DRQ off (single port unit)' ;
'*Unused bits set', NULL ;

' Drive Type = '
| INTERMOD_DEVERR.DRIVE_TYPE ;

' Drive Serial Number = '
| %CNV_$BCD(REGISTER.RMSN,4) | ' (BCD)' ;

'*Unused bits set', NULL ;
' 16 Bit Data Format',
'%18 Bit Data Format' ;

' ECC Inhibit', ' ECC enabled' ;
' Header Compare Inhibit',
' Header Compare Enabled' ;

'*Unused bits set', NULL ;
' Offset Direction = Forward',
' Offset Direction = Reverse' ;

'*Unused bits set', NULL ;

'*Unused bits set', NULL ;
' Desired Cylinder = '
| %CNV_$DECIMAL_P(REGISTER.RMDC_DC, 4) ;

' Holding Register contents' ;

! Port A Request for Service'

' Port B Request for Service'

' Control Select Tag on' ;

%CND_$IF (REGISTER.RMMR1_MM,

' Test Sequencer Branching on', NULL) ;

Error Log Control File Architecture

4-41

BIT [11]: ' Control or Cylinder Tag on' ;
BIT [10]: ' Control or Head Tag on' ;

RMMR2_MBL: FIELD [0:10]): %CND_$IF (REGISTER.RMMR1_MM,
' Maintenance Bus Lines = '
| %CNV_$BINARY (REGISTER.RMMR2_MBL, 10, '0')

I ' (®)
, NULL) ;
RMER2: WORD MACHINE ;
: BIT [15]: '¥Bad Sector Detected (hdr bit)' ;
BIT [14]: '*Seek Incomplete' ;
BIT [13]: ‘*Operator Plug Error (removed)' ;
BIT [12]: '¥Invalid Command (VV bit reset)'
BIT [11]: '*Loss of System Clock' ;
BIT [10]: 'xLoss of Bit Clock' ;
FIELD [8:2]: '*Unused bits set', NULL ;
BIT [7]: *¥Device Check' ;
FIELD [4:3]: '*Unused bits set', NULL ;
BIT [3]: 'xData Parity Error' ;
FIELD [0:3]: '*Unused bits set', NULL ;
RMECH : WORD MACHINE ;

: FIELD [13:3]: '*Unused bits set', NULL ;
RMEC1_PS: FIELD [0:13]: ' ECC Position = ' | VAR.ECCPS ;
RMEC2: WORD MACHINE ;

: FIELD [11:5]: '+*Unused bits set', NULL ;

FIELD [0:11]: ' ECC Pattern = ' | VAR.ECCPAT ;

IF DEVICE_OP.FLG_BAE AND (PACKET_LENGTH.TEMP EQ #BD'46')

!

! If the RH70 flag is true and the packet length is 22 registers,

! declare the BAE and CS3 registers. Note that the packet length check
! is necessary because unmapped RSX systems will not log BAE and CS3
! even if the controller is an RH70.

THEN
BEGIN
RMBAE: WORD MACHINE ;
: FIELD [6:10]: '*Unused bits set', NULL ;
RMBAE_EXT: FIELD [0:6]: ' BA21 through BA16 = '
| %CNV_$BINARY(REGISTER.RMBAE_EXT, 6, '0') ;
RMCS3: WORD MACHINE ;
: BIT [15]: 'xAddress Parity Error’' ;
BIT [14]: 'xData Parity Error, 0dd Word' ;
BIT [13]: '*Data Parity Error, Even Word' ;
BIT [12]: '¥Write Check Error, 0dd Word' ;
BIT [11]: '#Write Check Error, Even Word'
BIT [10]: ' Double Word Transferred' ;
FIELD [7:3]: '+*Unused bits set', NULL ;
BIT [6]: ' Interrupt Enabled',
' Interrupt not Enabled' ;
FIELD [4:2]: '¥Unused bits set', NULL ;

4-42 Error Log Control File Architecture

RMCS3_IPC :FIELD [0:4]: ' Inverse Parity Check Bits = '
| %CNV_$BINARY (REGISTER.RMCS3_IPC, 4, '0')

N ¢:) A
END ;
END_IF ;
END_PACKET ;
5]
!
! Declare all variables needed for the subpacket print information.
!
DECLARE VAR ;
ECCPS: ASCII [22] ; ! ECC position.
ECCPAT: ASCII [22] ; ! ECC pattern.
END_DECLARE ;

! Create the device function code conversion table.
1

TABLE FUNCTION ;

FUN_CODE: BYTE MACHINE ;

FUN_TEXT : ASCII [27] ;
BEGIN_TABLE

#B0'00"', 'No Operation' ;

#B0'02', 'Seek Command' ;

#B0'03", 'Recalibrate' ;

#B0'04', 'Drive Clear' ;

#B0'05', 'Release (dual port)' ;

#B0'06°, '‘0ffset Command' ;

#B0'07', 'Return to Centerline' ;

#B0'10', 'Read_in Preset' ;

#B0'11"', 'Pack Acknowledge' ;

#B0'14"', ‘Search Command' ;

#B0'24"', 'Write Check Data' ;

#B0'25", 'Write Check Header and Data' ;

#B0'30', 'Write Data' ;

#B0'31°, 'Write Header and Data' ;

#B0'34', 'Read Data' ;

#B0'35"', 'Read Header and Data' ;
END_TABLE ;

Calculate the ECC Position.

!
!
!
! Determine if the ECC position is normal (not used), has an illegal

! value, points to the starting bit within the sector or is irrelevant.

IF REGISTER.RMEC1_PS LE #WD'4128'

THEN
!
! At this point, the ECC position is within range (0. to 4128.).
! Next, find out if the ECC position counter (register) was used.

! If the ECC position register value equals an octal 4066, it
! indicates the register was initialized but not used.

!

SET VAR.ECCPS TGO %CND_$IF(REGISTER.RMEC1_PS EQ #W0'4066',
'Normal', %CNV_$DECIMAL_P(REGISTER.RMEC1_PS, 6)) ;

Error Log Control File Architecture

4-43

ELSE
SET VAR.ECCPS TO 'Outside of legal range' ;
END_IF ;

! If the error was a non-correctable hard error or Error Correction

! was inhibited, then the ECC position and ECC pattern are irrelevant.
!

IF (REGISTER.RMER1_ECH EQ TRUE)

THEN

BEGIN

SET VAR.ECCPS TO 'Irrelevant (ECH set)' ;
SET VAR.ECCPAT TO 'Irrelevant (ECH set)’
END ;

END_IF ;

IF (REGISTER.RMOF ([11] EQ TRUE)
THEN

BEGIN
SET VAR.ECCPS TO 'Irrelevant (ECI set)' ;
SET VAR.ECCPAT TO 'Irrelevant (ECI set)' ;
END ;

ELSE
SET VAR.ECCPAT TO %CNV_$0CTAL(REGISTER.RMEC2 [0:11]}, 4, '0') | ' (0)' ;
END_IF ;
6]

The following will use the register information to determine the
value of the intermodule variables, which are needed by the
dispatcher and stuff these accordingly.

The variables are:

INTERMOD_DEVERR.DRIVE_SN
INTERMOD_DEVERR.DEV_FUNCTION
INTERMOD_DEVERR.PHYS_UNIT

! INTERMOD_DEVERR.ERROR_CYLINDER
! INTERMOD_DEVERR.ERROR_SECTOR
! INTERMOD_DEVERR.ERROR_HEAD

! INTERMOD_DEVERR.ERROR_GROUP (not applicable to this device)
! INTERMOD_DEVERR. BLOCK_NUMBER
! INTERMOD_DEVERR.ERROR_TYPE

! Return the drive serial number.

SET INTERMOD_DEVERR.DRIVE_SN TO %CNV_$BCD(REGISTER.RMSN, 12, ' ') ;

4-44 Error Log Control File Architecture

! Look up the function code in the function table.
!

FIND FUNCTION FUN_CODE = REGISTER.RMCS1_FN ;

! Check if a match is found between the register and the table,
!

IF FUNCTION.CONTEXT

THEN
!
! Yes, return the associated function text in the variable.
]

SET INTERMOD_DEVERR.DEV_FUNCTION TO FUNCTION.FUN_TEXT ;

ELSE
!

! Otherwise, return text indicating an invalid function.
!

SET INTERMOD_DEVERR.DEV_FUNCTION TO 'Invalid function' ;
END_IF ;

! Return the physical unit number.
1

SET INTERMOD_DEVERR.PHYS_UNIT TO %CNV_$DECIMAL (REGISTER.RMCS2_UN, 1) ;
!

! DISK GEOMETRY INFORMATION.
!

! Calculate the intermodule variables for LBN, GROUP, CYLINDER, TRACK,
! and SECTOR address, initially assuming the error packet was NOT caused
! by a data error.

!

! Calculate LBN using the formula...

!

! LBN = (CYLINDER_ADRS * number of SECTORS/CYL +
! HEAD_ADRS * number of SECTORS/TRACK +

! SECTOR_ADRS)

SET INTERMOD_DEVERR.BLOCK_NUMBER TO
%CNV_$DECIMAL_P(
(REGISTER.RMDC_DC * #LD'160' +
REGISTER.RMDA_HD * #WD'32' +
REGISTER.RMDA_SEC),

9) ;
1

! Initialize GROUP. (not applicable to this device)

!
SET INTERMOD_DEVERR.ERROR_GROUP TO 'N/A' ;

! Initialize CYLINDER.
!

SET INTERMOD_DEVERR.ERROR_CYLINDER TO
%CNV_$DECIMAL_P (REGISTER.RMDC_DC, 3) ;

Error Log Control File Architecture

4-45

!

! Initialize TRACK (head).

1

SET INTERMOD_DEVERR.ERROR_HEAD TO
%CNV_$DECIMAL_P(REGISTER.RMDA_HD, 2) ;

!

! Initialize SECTOR.

!

SET INTERMOD_DEVERR.ERROR_SECTOR TO
%CNV_$DECIMAL_P (REGISTER.RMDA_SEC, 2) ;

! Correct the geometry information if necessary.

Upon a data error, the hardware will update the GROUP, CYLINDER, TRACK and
SECTOR to point to the sector following the sector in error. In order to
make the intermodule variables for GROUP, CYLINDER, TRACK, SECTOR and LBN
point to the media address causing a data error, they are corrected (backed
off by 1) using the following algorithm.

!

! Was it a data error ? (check error bits)

! Yes, it was a data error. (correction (backoff) is needed)

! Decrement LBN. (recalculate pointing to previous BLK)
! Was SECTOR = 0 ? (sector underflow boundary?)

! Yes, SECTOR = O. (underflow sector and borrow from TRK)
! SECTOR = SECTORMAX. (underflow the sector)

! Was TRACK = 07 (track underflow boundary?)

! Yes, TRACK = 0. (underflow TRK and borrow from CYL)

! TRACK = TRACKMAX. (underflow the track)

! Decrement CYLINDER. (borrow from CYL for TRK)

! No, TRACK NOT = 0. (no underflow of TRK)

! Decrement TRACK. (simply, with no borrow from CYL)

! No, SECTOR NOT = O. (no underflow at all)

! Decrement SECTOR. (point to the previous block)

! No, it was not a data error. (no correction (backoff) needed)

! Was it a data error?

IF REGISTER.RMER1_DCK OR REGISTER.RMER1_ECH OR REGISTER.RMCS2_WC
THEN

!
! Yes, it was a data error. (LBN and geometry information needs correction)

BEGIN
t

! Correct the LBN by recalculating (backed off by one block).
!
SET INTERMOD_DEVERR.BLOCK_NUMBER TO
%CNV_$DECIMAL_P(
(REGISTER.RMDC_DC * #LD'160' +
REGISTER.RMDA_HD =* #WD'32' +

4-46 Error Log Control File Architecture

REGISTER.RMDA_SEC) -1,
9) ;

| Was the sector address zero? (sector underflow?)

IF REGISTER.RMDA_SEC EQ #BD'00’

THEN

! Yes, it was zero.

BEGIN

! Underflow the sector.

SET INTERMOD_DEVERR.ERROR_SECTOR TO '31.' ;

(so underflow the sector and borrow from track)

! Was track (head) address zero? (track underflow?)

IF REGISTER.RMDA_HD EQ #BD'00'

THEN

BEGIN

SET INTERMOD_DEVERR.ERROR_HEAD TO '4.' ;

Yes, the track was O, so underflow the track

and borrow from the cylinder.

! Underflow the track (head).

! Borrow from the cylinder.

SET INTERMOD_DEVERR.ERROR_CYLINDER TO

%CNV_$DECIMAL_P (REGISTER.RMDC_DC - 1, 3) ;

! No, the track was not zero. Simply decrement it. (no track underflow)

END ;
ELSE
!
!
SET INTERMOD_DEVERR.ERROR_HEAD TO
%CNV_$DECIMAL_P(REGISTER.RMDA_HD - 1, 2) ;
END_IF ;
END ;
ELSE
!
! No, the sector address was not zero. Simply decrement it.
! (no sector underflow)
!
SET INTERMOD_DEVERR.ERROR_SECTOR TO
%CNV_$DECIMAL_P (REGISTER.RMDA_SEC - 1, 2) ;
END_IF ;
END ;
END_IF ;

Error Log Control File Architecture 4-47

Find the reason causing this error packet and set the variable

accordingly.

IF REGISTER.RMCS1_TRE
THEN

BEGIN
IF NOT REGISTER.RMDS_ERR
THEN
DECODE

INTERMOD_DEVERR .ERROR_TYPE = REGISTER ;

RMCS2 [15]
RMCS2 [14]
RMCS2 [13]
RMCS2 [12]
RMCS2 [11]
RMCS2 [10]
RMCS2 [9]
RMCS2 [8]

END_DECODE ;

ELSE
DECODE

Data Late

Write Check Error

U.B. Parity Error
Nonexistent Drive
Nonexistent Memory

Program Error

Missed Transfer

MASSBUS Data Bus Parity Error

/

INTERMOD_DEVERR.ERROR_TYPE = REGISTER ;

RMER2
RMER2
RMER2
RMER2
RMER2
RMER2
RMER2
RMER2
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1
RMER1

END_DECODE ;
END_IF ;
END ;

[15]
[14]
[13]
[12]
[11]
[10]
[7]
[3]
[6]
[15]
[14]
[13]
[12]
[11]
{10]
[9]
[8]
[71
[51
[4]
[3]
[2]
[1]
[01

ELSE

DECODE

Bad Sector Detected (Hdr bit)
Seek Incomplete

Operator Plug Error (removed)
Invalid Command (VV bit reset)
Lost of System Clock

Lost of Bit Clock

Device Check

Data Parity Error

ECC Hard Error

Data Check

Drive Unsafe

Operation Incomplete

Drive Timing Error

Write Lock Error

Invalid Address Error
Address Overflow Error
Header CRC Error

Header Compare Error

Write Clock Fail

Format Error

Parity Error

Register Modification Refused
Illegal Register

Illegal Function

INTERMOD_DEVERR.ERROR_TYPE = REGISTER ;

4-48 Error Log Control File Architecture

NOT RMDS [12]
NOT RMDS [8]
NOT RMDS [6]

RMCS1 [13]
NOT RMCS1 {11]
NOT RMCS1 [7]

END_DECODE ;
END_IF ;

i we o we me ws W

Medium not Online

Drive not Present

Volume not Valid

MASSBUS Control Bus Parity Error
Drive not Available

Controller not Ready

IF (INTERMOD_DEVERR.ERROR_TYPE EQ NULL)

THEN

SET INTERMOD_DEVERR.ERROR_TYPE TO 'No error bit found' ;

END_IF ;

o

! All the intermodule variables have been stuffed, so return to the
! coroutine caller (calling dispatch module).

COROUTINE ;
!

IF INTERMOD_DEVERR.PRINT_FLAG

THEN

BEGIN
!

The dispatcher returns control to this module here, with the flag
INTERMOD_DEVERR.PRINT_FLAG set to either TRUE or FALSE. If the
flag is TRUE, a FULL or REGISTER report is in progress, the banner
has been printed, and this module prints device registers (or data
fields for packet oriented devices). Otherwise, this module does
not print anything, and simply exits back to the dispatcher. The
width of the report (80/132)
format variables REPORT.W_G_F_1 and REPORT.W_G_F_2 based on the
user-specified /WIDTH switch.

is controlled by dispatcher-defined

]

! Print the header for the Name, Value and Interpretation fields.

WRITE
FORMAT

' 16FCName! 13FCValue!25FCInterpretation!2FL' ;

WRITE_GROUP REGISTER

FORMAT
!

Print the registers according to the format variable (80/132)
provided by the dispatcher.

! Print format for the register name
! and its associated value.

REPORT.W_G_F_1,
1

! Print format for the exploded bits and fields.

Error Log Control File Architecture

4-49

4-50

REPORT.W_G_F_2 ;

If there are any NOTES to be printed, this is where the
PUT of note indices is done on the note file. When the
return from this module is done, the dispatching module
examines the note file to determine if the note module
NRM23 should be called to print the notes specified by
index number.

B T S U —

! If the unused bits 5 to 7 are set in the RMDA register.

®

IF (REGISTER.RMDA [5:3] NE #BB'O')
THEN

!
! Print the note saying that it may cause an invalid
! sector address to be recognized resulting in a

! possible invalid address error.

!

PUT NOTE_NUMBERS INDEX = 1 ;
END_IF ;
END ;

END_IF ;
END ;

o

END_MODULE ;

4.6.2 The DSP2P1 Dispatcher Module

The following example is an annotated listing of the DSP2P1 dispatcher module:

MODULE DSP2P1 'P01.00' ;

ERROR LOG CONTROL FILE MODULE: DSP2P1

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE, OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

VERSION 01.00
C. PUTNAM 22-SEP-80

Error Log Control File Architecture

This module is called to process Device Error packets.

Module Name: DSP 2 P 1

[}
]
t
[}

!

!

!

!

1 “ aaoa
! Module Prefix: ---------- [A

! 1
! Error Code: -~----===---c--- 1t
! !
!
!
!

Operating System: ------------ !

Packet Format: ----------------- !

The following Error Subcodes are defined:

!
!

! Subcode Mnemonic Meaning

| ccmcccae || mmmcteee ccmeme—-

!

! 1 E_$SDVH Device Hard Error

! 2 E_$sDVS Device Soft Error

! 3 E_$STMO Device Interrupt Timeout
! 4 E_$SUNS Unsolicited Interrupt

1

! Define any literals used in this module.

!

LITERAL DSP2_SUB_ANY.FORMAT_1 =
'I/0 Operation Information:!1FL' |
tome mommeoem cemem e 12FL' |
'156FCDevice Function!38FCType of Error!2FL' |
' I5FC!30DP!38FC!30DP!3FL'

LITERAL DSP2_SUB_ANY.FORMAT_2 =
'Device Error Position Information:!1FL' |
Pommmme mmmme e mmmeeee - 12FL' |
' 16FCCylinder!15FCGrou} ! 22FCHead ! 28FCSector ! 36FCBlock! 2FL' |
' 15FC!8DP!15FC!5DP!22FC!4DP ! 28FC!6DP ! 36FC! 10DP ! 2FL '

PROCEDURE START_MOD
BEGIN
1

! Create the Subcode Conversion table.
!
TABLE SUBCODE ;

NUMBER :WORD ;

TEXT :ASCII [18] ;
BEGIN_TABLE

1, 'Device Hard Error' ;

2, '‘Device Soft Error' ;

3, 'Device Timeout' ;

4, 'Spurious Interrupt' ;
END_TABLE ;

! Create a flag that indicates whether the device is a magtape or not.

DECLARE INDICATE ;
TAPE_FLAG :LOGICAL ;
END_DECLARE ;

Error Log Control File Architecture 4-51

! First check to see if PERIPHERAL errors are selected. If they are not,
! simply return. Also determine the packet subtype. If it is a known
! subtype code, then proceed. Otherwise it is an error.

IF NOT REPORT.PERIPHERAL
THEN
!

! This type of packet has not been selected for printing.
1

RETURN ;
END_IF ;
FIND SUBCODE NUMBER = HEADER.CODE_SUBTYPE ;
IF NOT SUBCODE.CONTEXT
THEN

BEGIN

SIGNAL 'ILLPACSBC' PARAMETERS
REPORT .PACKET_IDENT,
%CNV_$DECIMAL (HEADER .CODE_TYPE, 3),
%CNV_$DECIMAL (HEADER . CODE_SUBTYPE, 3) ;

RETURN ;
END ;

END_IF ;
2]

! Now find the device name by calling the DEVICE_NAME procedure.
!

CALL MODULE 'DEVSM1' PROCEDURE 'DEVICE_NAME' ;
3]

! Prepare the NOTE_NUMBERS file for any notes that may be requested.
!

POINTER NOTE_NUMBERS CLEAR ;
o

!
! Now set up the procedure DEVICE_ERROR and the appropriate device-level
! module as a coroutine pair.
!
CALL MODULE INTERMOD_DEVERR.DISP_NAME PROCEDURE 'DEVICE_ENTRY'

COROUTINE 'DEVICE_ERROR' ;
END ;

PROCEDURE DEVICE_ERROR

BEGIN

!

! The following is used to format the output for the

! 'Device Hard Error', 'Device Soft Error', 'Device Interrupt Timeout'
! and 'Spurious Interrupt' Device Error packets.

! The DEVICE_ID subpacket contains information about the
! device on which the error occurred.

! The IO_ACTIVITY subpacket contains information about all
! other concurrent I/0 in the system.

4-52 Error Log Control File Architecture

The DEVICE_OP subpacket contains information about the I/0
Operation in progress on the device at the time of the error.

Obtain information from the coroutine partner.

COROUTINE ;

6

! Assume the serial number test will succeed or be irrelevant.

SET INTERMOD_DEVERR.REJECT_FLAG TO FALSE ;

! Now test to see if this device passes the drive serial number test.

iF REPORT.DRIVE_SN_VALID AND
(INTERMOD_DEVERR .DRIVE_SN NE %CNV_$BCD(REPORT.DRIVE_SN, 12))

THEN

! Indicate that the test failed.
1

SET INTERMOD_DEVERR.REJECT_FLAG TO TRUE ;

END_IF ;

! Determine the type of report and format the output

accordingly.

CASE REPORT.MODE OF

[*BRIEF']:
1

! The BRIEF report is one line long.
!

BEGIN
!

! Now output the information based on the result of the test.

o
IF NOT INTERMOD_DEVERR.REJECT_FLAG

THEN

!
! Now output the brief report.

BEGIN
WRITE
REPORT .PACKET_IDENT,

%CNV_$RSX_TIME (HEADER . TIME_STAMP, 0),

SUBCODE . TEXT,
DISP.DEVICE_STRING,
INTERMOD_DEVERR.ERROR_TYPE,

'Function = ' | INTERMOD_DEVERR.DEV_FUNCTION

FORMAT
REPORT.BRIEF_FORMAT ;

Error Log Control File Architecture

4-53

! Now increment the printed packet count.
!

INCREMENT REPORT.PRINT_COUNT ;

END ;

END_IF ;

!

! Now go back to the partner. It will simply return
! without printing.

!

SET INTERMOD_DEVERR.PRINT_FLAG TO FALSE ;

END ;

['FULL', 'REGISTERS']:
'

! The FULL report contains detailed information
! about the error.
!

BEGIN
!

! Now output the information based on the result of the test.

o

!
IF NOT INTERMOD_DEVERR.REJECT_FLAG

THEN
1

! Output the first page if the report type is 'FULL'.

BEGIN
IF REPORT.MODE EQ 'FULL'

THEN
!

! Now output the information for the standard subpackets.
!

BEGIN

CALL MODULE REPORT.FULL_MOD PROCEDURE 'OUTPUT_PACKETS' ;
!

! Now output the Data subpacket information.

WRITE
INTERMOD_DEVERR .DEV_FUNCTION,
INTERMOD_DEVERR.ERROR_TYPE
FORMAT
DSP2_SUB_ANY.FORMAT_1 ;

Now output the Device Error Position information
if it is applicable.

IF INTERMOD_DEVERR.ERROR_CYLINDER NE '?77'

4-54 Error Log Control File Architecture

THEN
WRITE
INTERMOD_DEVERR . ERROR_CYLINDER,
INTERMOD_DEVERR.ERROR_GROUP,
INTERMOD_DEVERR.ERROR_HEAD,
INTERMOD_DEVERR . ERROR_SECTOR,
INTERMOD_DEVERR . BLOCK_NUMBER
FORMAT
DSP2_SUB_ANY.FORMAT_2 ;

END_IF ;

!

! A full report is wanted, so print the record I.D.
! and header.

WRITE
REPORT . PACKET_IDENT
FORMAT
'11FP!6FCEntry !DP!22FC(continued) !3FL' |
'Device Supplied Information:!FL' |
P mmmo emmmmeeee 12FL"
END ;

ELSE
!
! Only a register dump is requested, therefore print
! the banner from the full report.

WRITE

REPORT . PACKET_IDENT,

%CNV_$DECIMAL_P (HEADER . ERROR_SEQ, 8),

DISP.DEVICE_STRING,

SUBCODE. TEXT,

%CND_$IF ((INTERMOD_DEVERR.ERROR_TYPE NE NULL),
' (* | INTERMOD_DEVERR.ERROR_TYPE | ')',
NULL),

%CNV_$RSX_TIME(HEADER.TIME_STAMP, 0)

FORMAT

! Select the format statement
! based on the desired width.
1

%CND_$IF (REPORT.WIDE,
1

! WIDE is selected.

''1FP!S6FCEntry !7DP!20FCSequence !9DP' |
'140FC!6DP!48FC! 18DP!DP!2FS!20DP!3FL' |
'‘Device Supplied Information:!FL' |
R R 12FL',

! NARROW is selected.
1

'11FP!5FCEntry !7DP!20FCSequence !9DP!40FC!6DP!FL' |
'16FC!18DP!DP!2FS!20DP!3FL' |

'Device Supplied Information:!FL' |

fommmmmn oo e 12FL') ;

END_IF ;

Error Log Control File Architecture 4-55

! Now increment the printed packet count and tell the device

! module we want it to print.
!

INCREMENT REPORT.PRINT_COUNT ;

SET INTERMOD_DEVERR.PRINT_FLAG TO TRUE ;
END ;

ELSE
1

! We don't want to print because the packet was rejected.
!

éET INTERMOD_DEVERR .PRINT_FLAG TO FALSE ;
END_IF ;

! Now go back to the partner. It will output the device registers

! if the print flag is true.
!

END ;
©

['NONE'] :
1

! If the report type is NONE, output nothing.
]

éET INTERMOD_DEVERR .PRINT_FLAG TO FALSE ;
END_CASE ;
1)

! Now COROUTINE back to the partner. It will print if instructed to do so.
1

COROUTINE ;
®

! Test to see if the packet was accepted. If it was, update the files.
1

iF NOT INTERMOD_DEVERR.REJECT_FLAG THEN

!
! Update the files.

!
CALL PROCEDURE 'UPDATE_RECORD' ;

END_IF ;

! Now see if any notes were requested and print them if there were.
!

iF NOTE_NUMBERS . CONTEXT THEN

BEGIN
SET INTERMOD_DEVERR.DISP_NAME TO 'N' |
%STR_$REMAINING (INTERMOD_DEVERR.DISP_NAME, 2) ;

IF %PKT_$MODULE (INTERMOD_DEVERR .DISP_NAME)
THEN
CALL MODULE INTERMOD_DEVERR.DISP_NAME PROCEDURE 'NOTES' ;

4-56 Error Log Control File Architecture

ELSE
SIGNAL 'NONOTES' PARAMETERS INTERMOD_DEVERR.DRIVE_TYPE ;

END_IF ;
END ;

END_IF ;
END ;

PROCEDURE UPDATE_RECORD

BEGIN

! This procedure is used to update an error type record if a record for the
! type of error exists. If it does not exist, a record is created.

! First see if a record exists in the ERROR_INFO_E file that matches
! on the following keys:

]
! Device name
! Device type
! Pack SN

! Drive SN

! Volume label
! Error type

IF REPORT.ERROR

THEN
!

! This type of summary is desired.
1

BEGIN
POINTER ERROR_INFO_E FIRST ;
!

! Now try to find a record that matches on all of the keys.
!
FIND ERROR_INFO_E
NAME = DISP.DEVICE_STRING,
DEVICE_TYPE = Y%CND_$IF (INTERMOD_DEVERR.MISMATCH_FLAG, '*', NULL) |
INTERMOD_DEVERR.DRIVE_TYPE,
PACK_SN = DEVICE_ID.PACK_SN,
DRIVE_SN = INTERMOD_DEVERR.DRIVE_SN,
VOLUME_LABEL = DEVICE_ID.VOLUME_LABEL,
ERROR_TYPE = INTERMOD_DEVERR.ERROR_TYPE ;

! See if there was a match.
1

IF ERROR_INFO_E.CONTEXT

THEN
1

! There was a match. Update the record to
! show that this error occurred.

BEGIN
INCREMENT ERROR_INFO_E.ERROR_COUNT ;

IF DISP.PACKET_DATE LT ERROR_INFO_E.FIRST_DATE
THEN

Error Log Control File Architecture 4-57

END_I
IF DI
THEN

BEGIN
SET ERROR_INFO_E.FIRST_DATE TO DISP.PACKET_DATE ;

SET ERROR_INFO_E.FIRST_PACKET TO REPORT.PACKET_IDENT ;

END ;
F
SP.PACKET_DATE GT ERROR_INFO_E.LAST_DATE

BEGIN
SET ERROR_INFO_E.LAST_DATE TO DISP.PACKET_DATE ;

SET ERROR_INFO_E.LAST_PACKET TO REPORT.PACKET_IDENT ;
END ;

END_IF ;

END ;
ELSE

! This is the first error of this kind. Create a record in the

! ERROR_INFO_E file that describes this error.

PUT ERROR_INFO_E
NAME = DISP.DEVICE_STRING,

DEVICE_TYPE =)CND_$IF (INTERMOD_DEVERR .MISMATCH_FLAG, '*',

INTERMOD_DEVERR.DRIVE_TYPE,
PACK_SN = DEVICE_ID.PACK_SN,
DRIVE_SN = INTERMOD_DEVERR.DRIVE_SN,
VOLUME_LABEL = DEVICE_ID.VOLUME_LABEL,
ERROR_TYPE = INTERMOD_DEVERR.ERROR_TYPE,
ERROR_COUNT = 1,
FIRST_DATE = DISP.PACKET_DATE,
LAST_DATE = DISP.PACKET_DATE,
FIRST_PACKET = REPORT.PACKET_IDENT,
LAST_PACKET = REPORT.PACKET_IDENT ;

END_IF ;

END ;
END_IF ;

! First see if a record exists in the ERROR_INFO_G file that matches

! on the following keys:

Device name
Device type

Pack

SN

Volume label
Block number

!
!
!
! Drive SN
!
!

IF REPORT.GEOMETRY AND NOT INDICATE.TAPE_FLAG

THEN
!

! This type of summary is desired.

BEGIN
POINTER

ERROR_INFO_G FIRST ;

4-58 Error Log Control File Architecture

NULL)

! Now try to find a record that matches on all of the keys.
1
FIND ERROR_INFO_G
NAME = DISP.DEVICE_STRING,
DEVICE_TYPE = %CND_$IF (INTERMOD_DEVERR .MISMATCH_FLAG, '#', NULL) |
INTERMOD_DEVERR.DRIVE_TYPE,
PACK_SN = DEVICE_ID.PACK_SN,
DRIVE_SN = INTERMOD_DEVERR.DRIVE_SN,
VOLUME_LABEL = DEVICE_ID.VOLUME_LABEL,
BLOCK_NUMBER = INTERMOD_DEVERR.BLOCK_NUMBER ;

! See if there was a match.
1

IF ERROR_INFO_G.CONTEXT

THEN

[}
! There was a match. Update the record to
! ghow that this error occurred.

!

INCREMENT ERROR_INFO_G.ERRCR_COUNT ;

ELSE
!
| This is the first error of this kind. Create a record in the
{ ERROR_INFO_G file that describes this error.

PUT ERROR_INFO_G

NAME = DISP.DEVICE_STRING,

DEVICE_TYPE = %CND_$IF (INTERMOD_DEVERR.MISMATCH_FLAG, '*', NULL) |
INTERMOD_DEVERR .DRIVE_TYPE,

PACK_SN = DEVICE_ID.PACK_SN,

DRIVE_SN = INTERMOD_DEVERR.DRIVE_SN,

VOLUME_LABEL = DEVICE_ID.VOLUME_LABEL,

ERROR_HEAD = INTERMOD_DEVERR.ERROR_HEAD,

ERROR_GROUP = INTERMOD_DEVERR.ERROR_GROUP,

ERROR_CYLINDER = INTERMOD_DEVERR.ERROR_CYLINDER,

ERROR_SECTOR = INTERMOD_DEVERR.ERROR_SECTOR,

BLOCK_NUMBER = INTERMOD_DEVERR.BLOCK_NUMBER,

ERROR_COUNT = 1 ;

END_IF ;
END ;

END_IF ;
END ;

END_MODULE ; ! DSP2P1.CNF

Error Log Control File Architecture 4-59

4.6.3 The RM02/03 Notes Module NRM23

The following example is an annotated listing of the notes module for the RM02 and RM03
disk drives:

o
MODULE NRM23 'M01.00' ;

ERROR LOG CONTROL FILE MODULE: RMO2, RMO3 Notes

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE, OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

! THE INFORMATION 1IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
! NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
! EQUIPMENT CORPORATION.

! DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
! ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

! VERSION 01.00

! R. Ryan 30-Jun-81

! This is one of the many device modules, which is called by the device
! error dispatcher (DSP2P1) or device information dispatcher (DSP3P1)
! to process notes for all the device-dependent information.

PROCEDURE NOTES
!

! This procedure, which is called from the DSP2P1 module, processes any
! requests for notes.

BEGIN
!

! Print the NOTE header and define the format for the NOTE section.
©

WRITE FORMAT
'13FLNotes on RM02, RMO3 errors:!2FL' ;

POINTER NOTE_NUMBERS FIRST ;
WHILE NOTE_NUMBERS.CONTEXT DO

BEGIN

SELECT NOTE_NUMBERS._INDEX OF
!

! Note number 1.

4-60 Error Log Control File Architecture

BEGIN

WRITE FORMAT

¥ RMDA bits 5,6,7 are unused, however if they are' ;
WRITE FORMAT

! set, they will be interpreted as the high order’' ;
WRITE FORMAT

! bits of the sector address. This may result in' ;
WRITE FORMAT

! an Invalid Address Error.!3FL' ;
END ;

ELSE

e

1 This is an unknown note number.

!

SIGNAL 'UNKNWNNOT' PARAMETERS
%CNV_$DECIMAL_P (NOTE_NUMBERS .INDEX, 3),
INTERMOD_DEVERR .DRIVE_TYPE ;

END_SELECT ;
(6
POINTER NOTE_NUMBERS NEXT ;
END ;
END ;
(7]
END_MODULE ; ! NRM23.CNF

4.6.4 Subpacket Definitions

This section lists the DIGITAL-standard subpackets. These subpackets are declared by the
following modules:

e The HEADER subpacket contains information largely from SYSCM. It describes the
characteristics of the system and packet. This subpacket is always required.

SUBPACKET HEADER = DISP.NEXT_PACKET ;

SUBPKT_FLAGS :WORD ; ! E$HSBF
SFLG_HDR :BIT [0] ; ! HEADER Subpacket
SFLG_TSK :BIT [1] ; ! TASK Subpacket
SFLG_DID :BIT [2] ; ! DEVICE_ID Subpacket
SFLG_DOP :BIT [3] ; ! DEVICE_OP Subpacket
SFLG_DAC :BIT [4] ; ! DEVICE_AC Subpacket
SFLG_DAT :BIT (5] ; ! DATA Subpacket
SFLG_MBC :BIT [13] ; ! 22-bit MASSBUS Controller
SFLG_CMD :BIT [14] ; ! Command Subpacket
SFLG_ZER :BIT [15] ; ! I/0 counts zeroed

OP_SYS :BYTE ; ! E$HSYS

FORMAT_ID :BYTE ; ! E$HIDN

OP_SYS_ID :ASCII [4] ; ! E$HSID

Error Log Control File Architecture 4-61

CONTEXT_CODE :BYTE ; ! E$HCTX
CC_NOR :BIT [0] ; ! Normal Entry
CC_STA :BIT [1] ; ! Start Entry
CC_CDA :BIT [2] ; ! CDA Entry
FLAGS :BYTE ; ! E$HFLG
FLG_ADR :FIELD [0:2] ; ! Addressing mode
FLG_COU :BIT [2] ; ! Error Counts supplied
FLG_QBS :BIT [3] ; ! Q-BUS system
ENTRY_SEQ :WORD ; ! E$HENS
ERROR_SEQ :WORD ; ! E$HERS
CODE_TYPE :BYTE ; ! E$HTYC
CODE_SUBTYPE :BYTE ; ! E$HTYS
TIME_STAMP :RSX_TIME ; ! E$HTIM
PROC_TYPE :BYTE ; ! E$HPTY
RESERVED :BYTE ; ! Reserved byte
PROC_ID :WORD ; ! E$HURM
URM_CPU :FIELD [0:4] ; ! Processor Identifier
END_PACKET ;

* The TASK subpacket contains information about either the task that logged the packet or
the task that caused the packet to be logged.

SUBPACKET TASK = DISP.NEXT_PACKET ;

TASK_NAME :LONGWORD ; ! E$TTSK

UIC :WORD ; ! E$TUIC)
UIC_MEMBER :FIELD [0:8] ; ! Member number in UIC
UIC_GROUP :FIELD [8:8] ; ! Group number in UIC

TI_DEV :ASCII [2] ; ! E$TTID

TI_UNIT :BYTE ; ! E$TTIU

FLAGS :BYTE ; ! E$TFLG
FLG_PRV :BIT [0] ; ! Privileged Task
FLG_PRI :BIT [1] ; ! Privileged Terminal

* The DEVICE_ID subpacket contains information about the device on which the error
occurred.

SUBPACKET DEVICE_ID = DISP.NEXT_PACKET ;

MNEMONIC :ASCII [2] ; ! E$ILDV
LOGICAL_UNIT :BYTE ; ! E$ILUN
CONTROLLER_NUM :BYTE ; ! E$IPCO
PHYS_UNIT :BYTE ; ! E$IPUN
PHYS_SUB_UNIT :BYTE ; ! E$IPSU
$IF SUPPORT.RSX_11M_PLUS
$THEN
IF OP_SYS.SUFFIX EQ 'P'
THEN
BEGIN
PHYS_DEV_MNEMON :ASCII [2] ; ! E$IPDV
END ;
END_IF ;
$END_IF
DEV_FLAGS :BYTE ; ! E$IFLG
DFLG_SUB :BIT [0] ; ! Subcontroller device

4-62 Error Log Control File Architecture

$1F SUPPORT.RSX_11M_PLUS

$THEN

DFLG_NUX :BIT [1] ; ! No UCB extension
$END_IF
RESERVED :BYTE ; ! Reserved byte
VOLUME_LABEL :ASCII [12] ; ! E$IVOL
PACK_SN :LONGWORD ; ! E$IPAK
DEV_TYPE_CLASS :WORD ; ! E$IDCL
DEV_TYPE :LONGWORD ; ! E$IDTY
I0_COUNT :LONGWORD ; ! E$IOPR
SOFT_ERCNT :BYTE ; ! E$IERS
HARD_ERCNT :BYTE ; ! E$IERH
$IF SUPPORT.RSX_11M_PLUS
$THEN

IF OP_SYS.SUFFIX EQ 'P'

THEN
BEGIN
WRD_XFR_COUNT :LONGWORD ; ! E$IBLK
CYL_CRS_COUNT :LONGWORD ; ! E$ICYL
END ;

END_IF ;
$END_IF

END_PACKET ;

e The DEVICE_OP subpacket contains information about the requested 1/O operation.
SUBPACKET DEVICE_OP = DISP.NEXT_PACKET ;

XFER1_HIGH_2 :FIELD [4:2] ;
XFER1_HIGH 6 :FIELD [0:6] ;

High Order 2 bits of address
High Order 6 bits of address

TASK_NAME :LONGWORD ; ! E$0TSK
vuIC :WORD ; ! E$0UIC
UIC_MEMBER :FIELD [0:8] ; ! Member number in UIC
UIC_GROUP :FIELD [8:8] ; ! Group number in UIC
TI_DEV :ASCII [2] ; ! E$0TID
TI_UNIT :BYTE ; ! E$0TIU
RESERVED :BYTE ; ! Reserved Byte
I0_FUNCTION :WORD ; ! E$OFNC
SF_IQX :BIT [0] ; ! IQ.X subfunction bit
SF_IQQ :BIT [1] ; ! IQ.Q subfunction bit
SF_IQUMD :BIT [2] ; ! IQ.UMD subfunction bit
FLAGS :BYTE ; ! E$0FLG
FLG_TRA :BIT [0] ; ! Transfer operation
FLG_DMA :BIT [1] ; ! DMA device
FLG_BAE :BIT [2] ; ! 22-bit addressing device
RESERVED :BYTE ; ! Reserved Byte
XFER_ADDRESS_1 :WORD ; ! E$0ADD + O
!
!

XFER_ADDRESS_2 :WORD ; ! E$OADD + 2

XFER2_TAUB :FIELD [0:13] ; ! T. A. in units of bytes

XFER_BYTE_COUNT :WORD ; ! E$0SIZ

RETRIES_LEFT :BYTE ; ! E$ORTY

MAX_RETRIES :BYTE ; ! E$ORTY+1
END_PACKET ;

Error Log Control File Architecture 4-63

* The IO_ACTIVITY subpacket contains information about other I/0 occurring in the system
at the time the error was detected.

SUBPACKET I0Q_ACTIVITY = DISP.NEXT_PACKET REPEATED ;

XFER1_HIGH.2 :FIELD [4:2] ;
XFER1_HIGH_ 6 :FIELD [0:6] ;

High Order 2 bits of address
High Order 6 bits of address

MNEMONIC :ASCII [2] ; ! E$ALDV
LOGICAL_UNIT :BYTE ; ! ESALUN
CONTROLLER_NU :BYTE ; ! E$APCO
PHYS_UNIT :BYTE ; ! E$APUN
PHYS_SUB_UNIT :BYTE ; ! E$APSU
$IF SUPPORT.RSX_1i1iM_PLUS
$THEN
IF OP_SYS.SUFFIX EQ 'P'
THEN
BEGIN
PHYS_DEV_MNEMON :ASCII [2] ; ! E$IPDV
END ;
END_IF ;
$END_IF
DEV_FLAGS :BYTE ; ! E$IFLG
DFLG_SUB :BIT [0] ; ! Subcontroller device
$IF SUPPORT.RSX_11M_PLUS
$THEN
DFLG_NUX :BIT [1] ; ! No UCB extension
$END_IF
TI_UNIT :BYTE ; ! E$ATIU
TASK_NAME :LONGWORD ; ! E$ATSK
UIC :WORD ; ! E$AUIC
UIC_MEMBER :FIELD [0:8] ; ! Member number in UIC
UIC_GROUP :FIELD [8:8] ; ! Group number in UIC
TI_DEV :ASCII [2] ; ! E$ATID
IO_FUNCTION :WORD ; ! E$AFNC
SF_IQX :BIT [0] ; ! IQ.X subfunction bit
SF_IQQ :BIT [1] ; ! IQ.Q subfunction bit
SF_IQUMD :BIT [2] ; ! IQ.UMD subfunction bit
FLAGS :BYTE ; ! E$AFLG
FLG_TRA :BIT [0] ; ! Transfer operation
FLG_DMA :BIT [1] ; ! DMA device
FLG_BAE :BIT [2] ; ! 22-bit addressing device
RESERVED :BYTE ; ! Reserved Byte
XFER_ADDRESS_1 :WORD ; ! E$AADD + O
!
!
XFER_ADDRESS_2 :WORD ; ! E$AADD + 2
XFER2_TAUB :FIELD [0:13] ; ! T. A. in units of bytes
XFER_BYTE_COUNT :WORD ; ! E$ASIZ
END_PACKET ;

4-64 Error Log Control File Architecture

4.6.4.1 Subpackets Declared by DSP1P1
This section describes the DATA subpackets declared by DSP1P1.

e The following DATA subpacket (Code = 1, Subcode = 1) contains information about a
status-change operation:

SUBPACKET DATA = DISP.NEXT_PACKET ;

LIMIT_CODE :BYTE ;
LOG_CODE :BYTE ;
FLAGS :BYTE ;
FLG_CRE :BIT [0] ;
FILE_SPEC_LEN :BYTE ;
FILE_SPEC :ASCII [80] ;
END_PACKET ;

e The following DATA subpacket (Code = 1, Subcode = 2) contains information about a
switch-logging-files operation:

SUBPACKET DATA = DISP.NEXT_PACKET ;

RESERVED :WORD ;
FLAGS :BYTE ;
FLG_CRE :BIT [0] ;
FLG_DEL :BIT [1] ;
FILE_SPEC_LE :BYTE ;
FILE_SPEC :ASCII [80] ;
END_PACKET ;

e The following DATA subpacket (Code = 1, Subcode = 3) contains information about an
append-to-file operation:

SUBPACKET DATA = DISP.NEXT_PACKET ;

RESERVED :WORD ;
FLAGS :BYTE ;
FLG_CRE :BIT [0] ;
FLG_DEL :BIT [1] ;
FILE_SPEC_LEN :BYTE ;
FILE_SPEC :ASCII [80] ;
END_PACKET ;

e The following DATA subpacket (Code = 1, Subcode = 4) contains information about a
set-backup-file operation:

SUBPACKET DATA = DISP.NEXT_PACKET ;

RESERVED :WORD ;

FLAGS :BYTE ;

FILE_SPEC_LEN :BYTE ;

FILE_SPEC :ASCII [80] :
END_PACKET ;

Error Log Control File Architecture 4-65

* The following DATA subpacket (Code = 1, Subcode = 6) contains information about a
change-limits operation:

SUBPACKET DATA = DISP.NEXT_PACKET REPEATED ;

HARD_LIM_FLAG :BYTE ;

NEW_LIMH :BIT [0] ;
HARD_LIMIT :BYTE ;
SOFT_LIM_FLAG :BYTE ;

NEW_LIMS :BIT [0] ;
SOFT_LIMIT :BYTE ;
MNEMONIC :ASCII [2] ;
LOGICAL_UNIT :BYTE ;
RESERVED :BYTE ;

END_PACKET ;

4.6.4.2 Subpackets Declared by DSP2P1

The DATA subpackets for device errors (Code = 2, Subcodes = 1, 2, 3) contain information that
is specific to each device. See the appropriate device-level module for the format of the DATA
subpacket.

4.6.4.3 Subpackets Declared by DSP3P1

The DATA subpackets for device information messages (Code = 3, Subcode = 1) contain
information that is specific to each device. See the appropriate device-level module for the
format of the DATA subpacket.

4.6.4.4 Subpackets Declared by DSP4P1

There is no DATA subpacket for mount, dismount, and device-information reset events (Code
= 4, Subcodes = 1, 2, 3).

The following DATA subpacket (Code = 4, Subcode = 4) contains information about a block-
replacement operation:

SUBPACKET DATA = DISP.NEXT_PACKET ;

FLAGS :WORD ;
PRIMARY_RBN :BIT [0] ;
SUCCESS :BIT [1] ;

LBN :LONGWORD ;

NEW_RBN :LONGWORD ;

OLD_RBN :LONGWORD ;

END_PACKET ;

4.6.4.5 Subpackets Declared by DSP5P1

The following DATA subpacket (Code = 5, Subcode = 1) contains information about a memory
parity error event:

SUBPACKET REGISTER = DISP.NEXT_PACKET NAMED ;

RESERVED :WORD ; ! Mask for Cache Registers
RESERVED :WORD ; ! Mask for Parity CSRs
P_CSROO :WORD ; ! Memory Parity CSR 00
P_CSRO1 :WORD ; ! Memory Parity CSR 01
P_CSRO2 :WORD ; ! Memory Parity CSR 02

4-66 Error Log Control File Architecture

P_CSRO3 :WORD ; Memory Parity CSR 03

1
P_CSRO4 :WORD ; ! Memory Parity CSR 04
P_CSRO5 :WORD ; ! Memory Parity CSR 05
P_CSRO06 :WORD ; ! Memory Parity CSR 06
P_CSRO7 :WORD ; ! Memory Parity CSR 07
P_CSRO8 :WORD ; ! Memory Parity CSR 08
P_CSR0O9 :WORD ; ! Memory Parity CSR 09
P_CSR10 :WORD ; ! Memory Parity CSR 10
P_CSR11 :WORD ; ! Memory Parity CSR 11
P_CSR12 :WORD ; ! Memory Parity CSR 12
P_CSR13 :WORD ; ! Memory Parity CSR 13
P_CSR14 :WORD ; ! Memory Parity CSR 14
P_CSR15 :WORD ; ! Memory Parity CSR 15
LOW_ERR :WORD ; ! Low Error Address Register
HIGHERR :WORD ; ! High Error Address Register
CACHERR :WORD ; ! Cache Error Register
CSHCTRL :WORD ; ! Cache Control Register
CSHMAIN :WORD ; ! Cache Maintenance Register
CACHET :WORD ; ! Cache Hit/Miss Register

END_PACKET ;

The following DATA subpacket (Code = 5, Subcode = 2) contains information about an unknown
interrupt event:

SUBPACKET DATA = DISP.NEXT_PACKET ;
VECTOR_OVER_FOUR :BYTE ;
LOST_INT :BYTE ;

END_PACKET ;

4.6.4.6 Subpackets Declared by DSP6P1
The power recovery event (Code = 6, Subcode = 1) has no DATA subpacket.

4.6.4.7 Subpackets Declared by DSP7P1

The following DATA subpacket (Code = 7, Subcode = 1) contains information about a time-
change event:

SUBPACKET DATA = DISP.NEXT_PACKET ;
NEW_TIME :RSX_TIME ;
END_PACKET ;

The following DATA subpacket (Code = 7, Subcode = 2) contains information about a system-
crash event:

SUBPACKET DATA = DISP.NEXT_PACKET ;

CRASH_TIME :RSX_TIME ;
0P_SYS :BYTE ;
FORMAT_ID :BYTE ;
OP_SYS_ID :ASCII [4] ;
TASK_NAME :LONGWORD ;
TI_DEV :ASCII [2] ;
TI_UNIT :BYTE ;
FLAGS :BYTE ;
KERNEL_APRS :LONGWORD ;
URM :WORD ;
URM_CPU :FIELD [0:4] ;
END_PACKET ;

Error Log Control File Architecture 4-67

The following DATA subpacket (Code = 7, Subcodes = 3, 4) contains information about a
driver-load or driver-unload event:

SUBPACKET DATA = DISP.NEXT_PACKET ;
DRIVER_NAME :ASCII [2] ;
END_PACKET ;

The following DATA subpacket (Code = 7, Subcode = 6) contains information about a system-
message event:

SUBPACKET DATA = DISP.NEXT_PACKET ;

MESSAGE_LEN :WORD ;
MESSAGE_TEXT :ASCII [80] ;
END_PACKET ;

4.6.4.8 Subpackets Declared by DSP8P1

The following DATA subpacket (Code = 8, Subcode = 2) contains information about an
unexpected interrupt:

SUBPACKET DATA = DISP.NEXT_PACKET ;

VECTOR_OVER_FOUR :BYTE ;
LOST_INT :BYTE ;
END_PACKET ;

4-68 Error Log Control File Architecture

Chapter 5

Control File Language Guide

This chapter describes the Control File Language used by the Report Generator of the error
logging system.

5.1 Control File Overview

5.1.

The control file for the Report Generator task (RPT) describes the format of the error log file
and the format of reports based on the file. The actions specified are executed for each event
to produce a report. The control file specifies the format of the data in an error log packet
and the output format of the report. In addition, the control file specifies information on the
accumulation of summary information, how to derive additional information, and the handling
of selection criteria for reports.

Control file modules are ASCII text files containing a series of statements written in the Control
File Language (CFL). The CFL compiler produces intermediate-form modules to be placed in a
universal library. This library is the control file.

1 The Report Generator—General Processing

The Report Generator is an interpreter for the intermediate-form modules contained in the
control file. RPT processes control file modules which can, in turn, process error log files. The
control file module, written in CFL, specifies the processing to be performed on the current
packet. The processing usually involves calling subroutines from other modules.

CFL includes primitives that stop packet processing because of an error or because the packet
does not meet specified selection criteria.

Control File Language Guide 5-1

5.1.2 The General Format of an Error Log Packet

The following diagram illustrates how data is organized in a typical error log packet:

B ettt +
| Packet Length I
o e - +
| Length of Subpacket 1 |
e e T ——. +

B ettt L +
I |
I I
E R et T T TR +
| Length of Subpacket n]
o el +

Each subpacket contains a different type of data. The information in the subpackets, taken
together, describes an event logged by the error logging system. The control file contains
primitives for describing a subpacket so that its contents can be manipulated symbolically.
Other primitives describe the entire packet as a unit.

5.1.3 The Control File Language

CFL is a specialized language designed for this application. It is a statement-oriented, block-
structured language similar in concept to PASCAL and ALGOL. Unlike BLISS, CFL is not
expression-oriented; it differentiates between statements and expressions.

CFL has some of the other capabilities of BLISS, however. For example, expressions can contain
conditionals. This feature handles the more complex data formats of error log files. CFL does
not include the full set of primitives required of an ordinary general-purpose language, but a
number of specialized primitives speed up and simplify the handling of common error log data
formats.

5-2 Control File Language Guide

5.1.4 The General Format of Control File Modules

Each control file module contains lines of ASCII text. Each line is a sequence of elements, such
as keywords, variable names, numbers, and operators. Spaces and tabs separate atomic items,
such as keywords or names. Excess spaces and tabs are ignored and can be used freely for
formatting.

You can insert comments in the module text by prefixing them with an exclamation point (!).
The compiler ignores any text on a line following an exclamation point.

The three basic elements of CFL are statements, expressions, and declarations, as follows:

® A statement describes an action. Statements begin with a keyword and are terminated by
a semicolon (;).

® An expression describes a computation. Expressions are terminated by any nonexpression
keyword or by a comma (,). A nonexpression keyword is a keyword that is not valid in an
expression. Expressions can also be terminated with a semicolon (;). You can also include
an expression in an expression list, using conditionals to determine whether or not a given
statement or expression is to be executed. Expression lists consist of a fixed number of
expressions, separated by commas.

* A declaration defines the contents of packets and subpackets and defines groups of tables
for evaluating packets and subpackets. The syntax of a declaration differs for each use.
Group declarations start with the DECLARE string and end with the END_DECLARE string.
Table declarations begin with the TABLE string and end with END_TABLE. Dynamic table
declarations begin with the DYNAMIC_TABLE string and end with END_TABLE. Packet
and subpacket declarations begin with the PACKET and SUBPACKET strings, respectively,
and end with END_PACKET.

5.1.5 Files

CFL can obtain input from and direct output to any one of a set of files. The files have the
following internal names:

INPUT

The data input file. Data packets are read from the file. The control file can open this file,
close it, and read packets from it.

REPORT

The report output file. Lines of ASCII text are written to this file. The control file can open
this file, close it, and write ASCII text to it. Automatic paging is available for this file.

USER

The user-prompting file. The user can be prompted for input, and input read from this file.
The control file can open this file, close it, and read ASCII data from this file, with optional
prompting.

COMMAND

The command input file. The user can be prompted for input, and input read from this file.
The control file can read ASCII data from this file, with optional prompting.

Control File Language Guide 5-3

ERROR
The error output file. The control file can write ASCII data to this file.

5.2 Types and Expressions

RPT types data to allow easy manipulation of error log information. Expressions describe data
values used by RPT. This section describes the attributes of supported data types and the format
of expressions.

5.2.1 Data Types

CFL supports the following eight data types: logical, string, numeric, ASCII, field, pointer,
RSX_.TIME, and VMS_TIME. The evaluation of an expression results in a value, which is one
of the supported data types. The data type of an expression is determined from its context.

The only automatic conversions are from string values to numeric values, and conversions of
numeric values between different numeric types and field types.

The following sections describe the data types in detail.

5.2.1.1 The LOGICAL Type

The LOGICAL type expresses the Boolean values true and false. A LOGICAL type is equivalent
to a BIT type. No other automatic conversions are performed to or from LOGICAL types. You
express the literal values for this type with the keywords TRUE and FALSE.

5.2.1.2 The STRING Type

The STRING type represents strings of binary bytes. Literal values for the STRING type cannot
be represented. String operations must be used to construct string literals.

For purposes of conversion, numeric values are considered exactly equivalent to strings. (See
Section 5.2.1.4.) The length of the string is the number of bytes used to represent a value of
the numeric type. For example, a WORD is equivalent to a string of length 2. The following
equivalences are used:

Type Equivalent String
BYTE String of length 1
WORD String of length 2

LONGWORD String of length 4
QUADWORD String of length 8

Strings of length 4 or less are converted to numeric types by appending leading zero bytes to
form a longword. Strings of length 5 to 8 are converted to numeric types by appending leading
zero bytes to form a quadword. Strings greater than length 8 are not converted to numeric

types.

String declaration requires that you specify the maximum size of the string. The syntax for
string declaration is as follows:

STRING[size]

5-4 Control File Language Guide

If the string is a variable, it can contain any number of elements up to and including the
specified maximum. If the string is part of a data declaration, it contains exactly the number of
characters specified.

5.2.1.3 The ASCII Type

The ASCII type represents character strings. ASCII string literals are represented by character
strings enclosed in a pair of apostrophes (‘string’). Two successive apostrophes in a quoted
string represent a single apostrophe. Therefore, the string "ABC"DE' represents the string literal
ABC’'DE. The keyword NULL represents the null string. There is no automatic conversion to
or from ASCII strings. You cannot use the quotation mark (“) to enclose such strings, nor does
the quotation mark require flagging.

ASCII string declaration requires specification of the maximum length of the string. Specify the
maximum string length as follows:

ASCII[size]

If the ASCII string is a variable, it can contain any number of characters up to the specified
maximum. If the ASCII string is a data item, it must contain exactly the number of characters
specified.

5.2.1.4 Numeric Types

Numeric data types represent numbers for computation. The numeric types are distinguished
only by the length of the bit field used to contain the number. A BYTE is a 1-byte field, a
WORD a 2-byte field, a LONGWORD a 4-byte field, and a QUADWORD an 8-byte field. For
purposes of conversion, the numeric types are considered equivalent to strings, with the length
determined by the type. (See Section 5.2.1.2.)

The special numeric type VALUE indicates a natural machine value. A VALUE is a WORD on
a PDP-11 processor and a LONGWORD on a VAX processor.

Numeric types have a default output radix of decimal. The syntax for expressing a numeric
type is as follows:

type [optionl[,...1]

The valid options are radix options and attribute options. The radix options determine the print
radix. They are DECIMAL, OCTAL, HEX, BCD, BINARY, and RAD50. The attribute options
are WIDTH and FILL.

The WIDTH option specifies the print field width and has the following format:
WIDTH=n
The FILL option specifies the fill character and has the following format:

FILL='character'

Control File Language Guide 5-5

The default print field width and fill character for each choice of radix are as follows:

Radix Fill Print Field Width
BYTE WORD LONGWORD QUADWORD

DECIMAL space 3 5 10 20
OCTAL 0 3 6 11 22
HEX 0 2 4 8 16
BCD 0’ 2 4 8 16
BINARY 0 10 20 40 80
RADS50 space N/A 3 6 12

The default radix is DECIMAL.

As an example, the specification for a LONGWORD to be printed in BCD using leading spaces
and a field six characters wide is as follows:

LONGWORD BCD,WIDTH=6,FILL=' '

The special radix MACHINE is the normal radix used to express values for the host machine.
The MACHINE radix is OCTAL for a PDP-11 processor and HEX for a VAX processor.

You can express numeric literals in a number of ways. A sequence of digits is, by default,
interpreted as a VALUE numeric literal. The number is assumed to be decimal. You express a
numeric literal of a specified type and radix as follows:

(# type_indicator 'character_string')

The character string is interpreted according to the specification given by the type indicator.
The type indicator is a 1- or 2-character string specifying the type of the number and the radix
in which to interpret the character string. The first character of the type indicator is the type of
the number, as follows:

B Byte

w Word

L Longword
Q Quadword
A% Value

The second character of the type indicator is the radix in which to interpret the character string.
If the radix is not specified, the character string is assumed to be decimal. The valid radix
indicators are the following:

5-6 Control File Language Guide

A ASCII

B Binary

D Decimal

I Bit value

0] Octal

R Radix-50

X Hexadecimal

A minus sign (-) preceding any character string interpreted as a number indicates the two’s
complement of that number in the indicated radix; that is, binary, octal, decimal, and
hexadecimal.

As an example, the following character string represents a byte that contains the octal value 17:
#B0'17'

The following character string represents a word containing the value -161o:

#W'-16"'

The bit-value radix indicator specifies that the quoted number is a decimal number representing
a bit position. The value of the literal is 2 raised to the power of the bit position.

5.2.1.5 The FIELD Type

The FIELD type represents a field of numeric types. The BIT type represents a single bit of a
numeric type and is equivalent to a LOGICAL type. The FIELD type represents a 1-or-more-bit
field of a numeric type and is equivalent to a numeric type. A FIELD type is always a field of
a numeric variable. There are no literal values for FIELD types.

The syntax for expressing a BIT type is as follows:
BIT[bit_number]

The syntax for expressing a FIELD type is as follows:
FIELD [low_bit_number:field_length in bits]

In either case, a FIELD type is declared directly following the numeric type of which it is a field.

5.2.1.6 The POINTER Type

The POINTER type is a table pointer. You use it to declare variables that temporarily store
pointers for later use. The POINTER type cannot be converted to or from any other type. There
is no literal representation of the POINTER type.

The value of the POINTER type is specific to a given table. A POINTER variable containing a
value specifying a table entry for a given table cannot be used to reference an entry in another
table. The variable can, however, be loaded with another value that references an entry in
another table.

Control File Language Guide 5-7

5.2.1.7 The RSX_TIME Type

The RSX_TIME type represents a time in RSX format. RSX time is represented as six sequential
bytes containing the year since 1900, the month, day, hour, minute, and second in that order.
This is a compression of the format returned by the Executive directive GTIMS.

The RSX_TIME type can only be printed or compared to other RSX_-TIME types, or converted
using one of the %TIM functions.

5.2.1.8 The VMS_TIME Type

The VMS_TIME type represents a time in VMS format. VMS time is represented as a quadword
containing the time in hundreds of nanoseconds since 17 November 1858.

The VMS_TIME type can only be printed or compared to other VMS_TIME types, or converted
using one of the %TIM functions.

5.2.2 Variables

The named variable is the fundamental unit for data manipulation. Named variables are defined
in a given module, and available to that module and any modules called by the module. Named
variables are declared in named groups. The full name of a variable is the name of the group,
a period (.), and the name of the variable in the group, as follows:

group_name.variable_name

The group and variable names cannot be more than 15 characters in length. Names can include
the letters A to Z, the numbers 0 to 9, the dollar sign ($), and the underscore (—). The leading
character of a name must be alphabetic. You use the same syntax to reference data in either
packets or subpackets.

The CFL compiler assigns each variable a type through declarations. (See Section 5.4 for a
description of the declaration process.) Variables that are not fixed length, such as ASCII and
STRING type variables, are assigned a maximum length as well. The variable can contain any
amount of data that fits in its specified maximum length.

A field in the current record of a table can be referenced in the same manner as a variable, as
follows:

table_name.field_name

The field value referenced is the specified field in the current record of the table. If there is no
current record for the table, an error results.

Several special variables provide information about a group, packet, subpacket, or table. You
reference the special variables in the following format:

group, [sublpacket or table_name.special_variable_name

The special variables are described as follows:

5-8 Control File Language Guide

LENGTH
The length .of the data in the group in addressable units of the host machine (bytes for
PDP-11 and VAX processors). LENGTH includes all repetitions for repeated data or records
for tables.

POINTER

Returns the current pointer for the specified group. POINTER is not valid for any data
structure that would not have a current record context. This includes variables and non-
repeated data. There is a current record context for tables and repeated data.

CONTEXT
Returns a logical value. If the specified group has a current record context, the value is set
to true. If the specified group has no current record context, the value is set to false.

COUNT
Returns a numeric value representing the number of records in a group. For groups of
variables, the value is always 1. For packets or subpackets, the value is the number of
repetitions of the data. For tables, it is the number of records in the table.

5.2.3 Literals

Literal values can be assigned symbolic names. These symbolic names have the same syntax
restrictions as variable names. Literal names are considered equivalent to their values in
expressions. See Section 5.6.2 for information on the LITERAL statement.

5.2.4 Expressions

Expressions describe a computation through a sequence of operands and operators. Operands
are variables or literals. Operators direct the computation. Expression evaluation is from left to
right, and operator precedence is observed. Use open parentheses (() and close parentheses ())
to override precedence.

Operators are either unary, which means that they take one operand, or binary, which means
that they take two operands. Unary operators that precede the operand are called prefix
operators; when they succeed the operand, they are called suffix operators. Binary operators
are always specified between the two operands.

Operators are type-specific; that is, they operate between two elements of a specific type to
produce a result of a specific type. The elements of an expression can be any of the following
kinds:

literals
Literals express fixed values of a given type.

variables
Variables reference previously computed values.

(subexpressions)
Any valid expression enclosed in parentheses can be used as an element to an operator.

Control File Language Guide 5-9

functions

A function is a predefined computation. (See Section 5.3.)

The following sections describe the various operators.

5.2.4.1 String Operators

String operators produce either binary or ASCII string results. The result is a string with the
same type as the operand string or strings. The string operators are as follows:

String concatenation (|) binary operator

The string concatenation operator concatenates the first operand with the second. Both
strings must be of the same type, as in the following expression:

'ABC' | 'DEF'

This expression produces the following string:

' ABCDEF'

Substring extraction (n:m) unary suffix operator

The substring extraction operator produces the string formed by character n and the next
m elements. String element numbers start with 1. For example, consider the following
expression:

'ABCDEFGH'<4: 3>

This expression produces the following string:
'DEF

CFL treats both n and m as word values.
Element extraction (n) unary suffix operator

The element extraction operator is a special case of the substring extraction operator. It
extracts the nth element as a single-character substring. For example, consider the following
expression:

' ABCDEFGH ' <4>
This expression produces the following string:

IDI

5-10 Control File Language Guide

5.2.4.2 Logical Operators

Logical operators perform operations on logical variables, or compare string or numeric variables
to yield logical results.

The logical operators are as follows:

Logical AND binary operator

The logical AND operator does a logical AND of the two expressions. For example, the
following expression produces the logical value false:

TRUE AND FALSE
Logical OR binary operator

The logical OR operator does a logical OR of the two expressions. For example, the
following expression produces the logical value true:

TRUE OR FALSE
Logical exclusive-OR (XOR) binary operator

The logical exclusive-OR operator does a logical exclusive-OR of the two expressions. For
example, the following expression produces the logical value false:

TRUE XOR TRUE
Logical NOT unary prefix operator

The logical NOT operator produces the logical complement of a single variable. For example,
the following exoression produces the logical value false:

NOT TRUE
Bit extraction ([n]) unary suffix operator

The bit extraction operator produces a logical result from numeric expressions. It is set
to true if and only if bit n of the longword expression operand is set. For example, the
following expression produces the logical value false:

#W0'305' [4]

The binary value of octal 305 is 011000110, with the fourth bit clear. Bits are numbered
from 0.

5.2.4.3 Relational Operators

Relational operators compare string, time, or numeric operands. The comparisons are string
comparisons if both operands are string or ASCII string operands. The comparisons are numeric
comparisons if one operand is numeric and the other is either numeric or string. You cannot
compare ASCII string operands and numeric operands. The comparisons are time comparisons
if both operands are times of the same type. You cannot compare different types of time.

In numeric comparisons, the larger numeric value is greater.

Control File Language Guide 5-11

In string comparisons, CFL stops at the first two characters that do not match and performs an
ASCII sort. That is, CFL compares the ASCII values of the characters.

Note

Although Z is greater than A in ASCII, an ASCII sort is not the same as an
alphabetic sort. Any lowercase letter has greater value than any uppercase letter,
for instance, but any alphabetic character has greater value than any numeric
character, and so forth.

If one string is longer than the other and the shorter string has the same leading elements as
the longer, the longer string is greater.

In time comparisons, later times are greater.

The relational operators are as follows:

Equality binary operator

The equality (EQ) operator is set to true if and only if the operands are equal. For example,
the following expression produces the logical value false:

#WD'123' EQ #WD'355'
Inequality binary operator

The inequality (NE) operator is set to true if and only if the operands are not equal. For
example, the following expression produces the logical value true:

'ABCDEF' NE 'ABC'
Greater-than binary operator

The greater-than (GT) operator is set to true if and only if the first operand is greater than
the second operand. For example, the following expression produces the logical value false:

123 GT 355
Less-than binary operator

The less-than (LT) operator is set to true if and only if the first operand is less than the
second operand. For example, the following expression produces the logical value true:

'ABCDEF' LT 'ABCZZZ'
Greater-than-or-equal binary operator

The greater-than-or-equal (GE) operator is set to true if and only if the first operand is greater
than or equal to the second operand. For example, the following expression produces the
logical value true:

45 GE 45
Less-than-or-equal binary operator

The less-than-or-equal (LE) operator is set to true if and only if the first operand is less than
or equal to the second operand. For example, the following expression produces the logical
value false:

IZ| LE IAI

5-12 Control File Language Guide

String-matching binary operator

The string-matching (MATCH) operator compares strings. The strings are examined to
determine which is shorter. The shorter string is compared character-by-character to the
longer string. If all characters in the shorter string match with characters in the longer
string, then the strings are equal and the value is set to true. This means a null string
always matches any other string. For example, the following expression produces the logical
value true:

'ABCDEF' MATCH 'AB'
The following expression produces the logical value false:

'ABCDEF' MATCH 'ABCX'

5.2.4.4 Numeric Operators

Numeric operators operate on numeric variables as unsigned longwords. The numeric operators
are as follows:

Field extraction suffix unary operator

The field extraction ([n:m]) operator produces the longword formed by taking the m-bit
field beginning at bit n in the longword. Bit positions are numbered from least significant
to most significant, beginning with 0. For example, the following expression produces the
octal value 35:

#W0'357' [3:6]

Octal 357 has the binary value 011101111. Bit 3 and the next six bits have the binary value
011101, or octal 35.

Logical SHIFT binary operator

The logical SHIFT operator produces the first operand shifted by the number of bit positions
specified by the second operand. Each left shift of one bit is the equivalent of multiplying
by 2 and each right shift of one bit is the equivalent of dividing by 2. Indicate a left shift
by making the second operand positive, and a right shift by making the second operand
negative. If the second operand is zero, nothing shifts. The shifting is logical shifting; there
is no sign extension on right shifts.

For example, the following expression produces decimal 820, which is decimal 205 multiplied
by 4:

#WD'205' SHIFT 2
Multiplication binary operator

The multiplication (*) operator produces the product of the two operands. The result of
the multiplication is truncated to the 32 low-order bits.

For example, the following expression produces the decimal value 15:
6 x 3

Division binary operator

Control File Language Guide 5-13

The division (/) operator produces the integer quotient of the two operands. For example,
the following expression produces the decimal value 7:

15 / #B'2!
Modulus binary operator

The modulus (MOD) operator produces the remainder of the integer division of the two
operands. For example, the following expression produces the decimal value 1:

156 MOD 2
A division or modulus operation with zero as the divisor causes an error.
Addition binary operator

The addition (+) operator produces the sum of the two operands. The sum is truncated to
the 32 low-order bits. For example, the following expression produces the decimal value
17:

5+ 12
Subtraction binary operator

The subtraction (-) operator, or minus sign, produces the difference of the two operands.
The difference is truncated to the 32 low-order bits. For example, the following expression
produces the decimal value 9:

12 - 3
Negation unary prefix operator

The negation (-) operator, or minus sign, produces the two’s complement of the operand.
For example, the following expression produces the decimal value -8:

- #B'8!'

The minus sign is both a unary and binary operator.

5.2.4.5 Bitwise Logical Operators

The bitwise numeric operators perform bitwise logical operations between two numeric operands.
Rather than comparing the numeric operands as numbers, these operators compare the numeric
operators bit by bit.

The bitwise logical operators are as follows:

Bitwise AND binary operator

The bitwise AND operator produces the bitwise logical AND of the two operands. For
example, the following expression produces the octal value 1:

#B0'41' AND #B0O'3'

The binary value of octal 41 is 00100001 and the binary value of octal 3 is 00000011. The
bitwise AND operation determines that the least significant bit is set in both operands and
returns the binary value 0000001, or octal 1.

Bitwise OR binary operator

5-14 Control File Language Guide

The bitwise OR operator produces the bitwise logical OR of the two operands. For example,
the following expression produces the octal value 43:

#B0'41' OR #B0'3'
The bitwise OR of the binary values returns the binary value 00100011, or octal 43.
Bitwise exclusive-OR (XOR) binary operator

The bitwise XOR operator produces the bitwise logical exclusive-OR of the two operands.
For example, the following expression produces the octal value 42:

#B0'41' XOR #B0O'3'

The bitwise exclusive-OR of the binary values returns the binary value 00100010, or octal
42.

Bitwise complement unary operator

The bitwise complement (NOT) operator produces the bitwise complement (logical negation)
of the operand. For example, the following expression produces the octal value 336:

NOT #BO'41!’
The binary value of octal 41 is 00100001 and its comp:ement is 11011110, or octal 3360.

5.2.5 Operator Precedence

Operations occur in the order defined by operator precedence unless overridden by parentheses.
Operator precedence in CFL is the same as in most other languages (such as FORTRAN).
Operators with higher precedence are evaluated before operators with lower precedence. For
example, the following expression is evaluated as A + (B * C):

A+B=x*C

The expression is not evaluated as (A + B) * C because the multiplication operator (*) has
higher precedence than the addition operator (+). In general, expressions are evaluated from
left to right, taking into account operator precedence unless overridden by parentheses.

Operators are classified in the categories shown in the following table, and are listed in order
of decreasing precedence. (The order in which operators are listed within a category is not
significant.)

Highest ‘
Precedence Class Prefix/Suffix Unary Operators

Numeric negation

NOT Logical or numeric bitwise negation
[n:m] Numeric field extraction

[n] Logical value extraction

<n:m> Substring extraction

<n> Element extraction

Control File Language Guide 5-15

Multiplication
Precedence Class Numeric Binary Operators

* Numeric multiplication
/ Numeric division
SHIFT Numeric logical shifting
MOD Numeric modulus
Addition

Precedence Class Numeric Binary Operators

+ Numeric addition

- Numeric subtraction

Logical

Operation Class Logical /Bitwise Logical Operators
AND Logical and bitwise logical AND
OR Logical and bitwise logical OR
XOR Logical and bitwise logical XOR
Relational

Class Logical Comparison Operators
EQ Equality

NE Inequality

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

5.3 Functions

Functions provide special computations or special values not otherwise available to a program
written in CFL.

A reference to a function in an expression has the following format:

%function [(argument[=valuel[,...]1)]

5-16 Control File Language Guide

Function names have the format %class name$function name. Some functions require
arguments. Note that the parentheses are a required part of the syntax when arguments are
specified. Functions return a value of a type that is fixed for a given function. For example, the
following function returns the identification code of the current data packet as an ASCII string:

%PKT$IDENT

The following sections list the CFL functions by class name. The listings show the required
syntax and are followed by descriptions of the values they return.

5.3.1 %CND Functions—Conditional Functions

The %CND functions select one of a set of expressions for evaluation. You can state criteria to
select one of the arguments to be evaluated in a given context.

Note
All expressions are evaluated before determining a result. This means all
expressions must be valid for any possible value of the logical expression. That

is, %CNDS$IF is not entirely equivalent to an IF-THEN-ELSE statement, and
9%CNDS$SELECT is not entirely equivalent to a SELECT statement.

The %CND functions are as follows:

%CNDSIF(logical, true exp, false exp)
This function evaluates the specified logical expression. If the expression is true, the true
expression is returned as the value of the function. If the expression is false, the false
expression is returned as the value of the function.

%CNDSSELECT(selector, exp else, exp 0, [exp 1 ,...])
This function evaluates the specified selector expression. If the value of the expression is 0,
the exp 0 expression is returned as the value of the function. If the value of the expression
is 1, the exp 1 expression is returned as the value of the function. In general, if the value
of the selector expression is n, the value of exp n is returned as the value of the expression.
If no expression is provided corresponding to the value of the selector expression, the value
of exp else is returned as the value of the expression.

5.3.2 %CNV Functions—Conversion Functions

The %CNV functions convert expressions to ASCII strings, primarily for printing. The
conversions allow specification of the output radix, leading fill character (if any), and number
of digits converted.

Control File Language Guide 5-17

5.3.2.1 %CNV Functions—Numeric Conversion Functions

The numeric conversion functions convert numeric values to ASCII strings in the radix of the
specific function. The syntax of these functions is as follows:

%CNV$xxx (numeric_value [,field_width [,fill_character]])

In this format, xxx is the radix. If no field width is specified, the default is 0. If no fill character
is specified, the default is the null character. The field width and the fill character control the
length of the returned string and justification of the digits in the string.

The numeric conversion functions behave as follows: CFL converts the numeric value to an
ASCII string using the appropriate radix, and calculates the number of resulting digits. The
following algorithm formats the returned string:

if field_width = O then
return a string of length number_of_digits containing only the
converted digits

else
if number_of_digits > field_width then
return a string of length field_width filled with asterisks

else
if fill_character = null_character then
return a string of length field_width with the digits left
justified and pad the string with trailing blanks

else
return a string of length field_width with the digits right
justified preceded by the specified fill_character

The numeric conversion functions are as follows:

%CNV$OCTAL(numeric value[field width[fill character]])
Converts the number from binary to ASCII octal representation.

%CNVSDECIMAL(numeric valuel,field width[,fill character]])
Converts the number from binary to ASCII decimal representation.

%CNVSDECIMAL_P(numeric valuel field width[,fill character]])

This function is identical to the %CNV$DECIMAL function, except that it appends a decimal
point to the end of the output ASCII string. The decimal point is not counted in the field
width.

%CNVSHEX(numeric valuel,fleld width[,fill character]])
Converts the number from binary to ASCII hexadecimal representation.

%CNV$BCD(numeric valuel,field width[,fll character])
This function is identical to the %CNV$HEX function. It converts the number from binary
to ASCII hexadecimal representation.

%CNVSBINARY(numeric valuel,field width[fill character]])
Converts the number from binary to ASCII binary representation.

5-18 Control File Language Guide

%CNV$MACHINE(hnumeric valuel,field width[fill character]])

Converts the number from binary to ASCII representation in the natural machine radix,
which is octal for a PDP-11 processor and hexadecimal for a VAX processor.

%CNV$SRADS0(numeric valuel,fleld width,fill character]])

Converts a numeric type to an ASCII string using Radix-50 conversion. The numeric value
must be a word, longword, or quadword.

5.3.2.2 %CNV Functions—Miscellaneous Conversion Functions

The following miscellaneous conversion functions are available:

%CNV$STRING(string)
Performs a hexadecimal conversion of the specified string to ASCII.

%CNV$RSX_TIME(RSX_time_valuel[flelds])

Converts the RSX time value to a string in the format yy-mmm-dd hh:mm:ss. The optional
fields parameter specifies the number of fields of the date to be converted. To convert only
the date, specify 3. To convert the date and time (excluding the seconds), specify 5. The
default is the full date and time expressed in six fields.

%CNV$VMS_TIME(VMS_time_valuel fields])
Converts the VMS time value to a string in the format yy-mmm-dd hh:mm:ss. The optional
fields parameter specifies the number of fields of the date to be converted. To convert only
the date, specify 3. To convert the date and time (excluding the seconds), specify 5. The
default is the full date and time expressed in six fields.

5.3.3 %COD Functions—Encoding Functions

The encoding functions convert ASCII strings into numeric values, using different radixes. The
encoding functions are as follows:

%CODS$OCTAL(string)
Converts the string to a value using octal radix. The string may contain only the digits 0 to
7 and optional leading spaces or the minus sign (-).

% CODSDECIMAL(string)
Converts the string to a value using decimal radix. The string may contain only the digits
0 to 9 and optional leading spaces or the minus sign (-).

%CODSHEX(string)
Converts the string to a value using hexadecimal radix. The string may contain only the
digits 0 to 9, the letters A through E, and optional leading spaces or the minus sign (-).

%CODSBCD(string)
Same as %CODS$HEX. Converts the string to a value using hexadecimal radix. The string
may contain only the digits 0 to 9, the letters A through E, and optional leading spaces or
the minus sign (-).

Control File Language Guide 5-19

%CODS$BINARY(string)
Converts the string to a value using binary radix. The string may contain only the digits 0
and 1, and optional leading spaces or the minus sign (-).

%COD$MACHINE(string)
Converts the string to a value using the natural radix for MACHINE, which is octal for a
PDP-11 processor and HEX for a VAX processor.

%CODSRSX_TIME(string)
Converts the string to a date in RSX format. The string must be of the form dd-mmm-yy

[hh:mm{:ss]]. The date and time can occur in either order; the seconds (:ss) are optional.
The default for the time fields is 00:00:00.

% CODS$VMS_TIME(string)
Converts the string to a date in VMS format. The string must be of the form dd-mmm-yy
hh:mm:ss. The date and time can occur in either order; the seconds (:ss) are optional.

5.3.4 % COM Functions—Computational Functions

The computational functions are as follows:

% COMSAND(numeric expression, humeric expression)
Returns the logical AND of the two numeric expressions. Both expressions must be
machine values or shorter. This function is used primarily for overlay reasons on the
PDP-11 processor.

%COMSHARDWARE(numeric expression)

Returns the ASCII character corresponding to the numeric expression in the DIGITAL
hardware alphabet, which is ABCDEFHJKLMNPRSTUV, numbered from 0 to 17. For
example, %COM$HARDWARE(0) returns an A.

%COMSLONGWORD(value,bit [,value,bit [,...11)
Returns a longword value. Each value is shifted by the specified number of bits and then
the logical OR of all the values is returned.

%COMSNEGATE(value)
Returns the negative of the specified value. This is the two’s complement of the value.

%COMSNULL(expression)
Returns a true value if the result of the expression is a value of length zero, or a false value
if the result of the expression is a value with length other than zero.

5.3.5 %CTL Functions—RPT Control Functions

The RPT control functions are as follows:

5-20 Control File Language Guide

%CTLSOPEN(file,filespec,default_spec)
Opens the file using the file specification and the default file specification. The value of the
function is the fully qualified file specification for the file.

%CTLISTATUS(file)
Returns the value set to true if the file is open and set to false if the file is not open.

%CTLSFILE_STATUS
Returns the numeric status value returned by the file system after the last file-open operation.

%CTLSEOF(fiie)
Returns the value set to true if the specified file is at end-of-file (EOF), or set to false if the
file is not at EOF.

%CTLSCLOSE(file)
Closes the file. The value of the function is the number of records written to the file.

%CTLSINPUT(low,high) ‘
Sets the lowest and highest packets to be processed by RPT. Returns a true value if both
packet specifications are syntactically correct, and a false value if neither is syntactically
correct.

This implicitly sets the processing direction as well because, if the high packet is lower
than the low packet, the file is processed backwards. A null packet specification takes the
default: the beginning of the file for the low packet and the end of the file for the high
packet.

5.3.6 %LOK Functions—Look-Ahead Functions

The %LOK functions obtain information in undeclared data packets or subpackets. There is a
%LOK function for each of the data types supported for look-ahead operations. All offsets are
byte offsets. The %LOK functions are as follows:

%LOK$BYTE(subpacket_number,offset)
Returns the specified byte from the current data packet. The subpacket number is the
number of the subpacket from which the data is to be obtained. If the subpacket number is
0, the data is obtained from the packet itself. The offset is the byte offset in the subpacket
for the data item.

%LOKSWORD(subpacket_number,offset)
Returns the specified word from the current data packet. The subpacket number is the
number of the subpacket from which the data is to be obtained. If the subpacket number is
0, the data is obtained from the packet itself. The offset is the byte offset in the subpacket
for the data item.

%LOKSLONGWORD(subpacket_number,offset)
Returns the specified longword from the current data packet. The subpacket number is the
number of the subpacket from which the data is to be obtained. If the subpacket number is
0, the data is obtained from the packet itself. The offset is the byte offset in the subpacket
for the data item.

Control File Language Guide 5-21

%LOKSLENGTH(subpacket_number)
Returns the length of the data in the specified subpacket. The subpacket number is the
number of the subpacket whose length is to be returned. If the subpacket number is 0, the
length of the data packet is returned.

5.3.7 %PKT Functions—Packet Information Functions

The following %PKT functions obtain information about the current packet:

%PKT$MODULE(module_name)
Returns the value true if the specified module exists in the control file, and false if it does
not exist.

%PKTSIDENT
Attempts to get the next packet from the input file in the range specified by %CTL$INPUT
and makes it the current packet. If no more packets exist within that range, a null
string is returned. Otherwise, %PKT$IDENT returns the current packet identification as a
fixed-length ASCII string of eight characters.

5.3.8 %RPT Functions—Report Control Functions

The following %RPT functions control report generation:

%RPT$PAGE_SIZE(lines)
The default page size is 57; lines of text plus headers and a form feed. %RPT$PAGE_SIZE
changes the number of lines per page to the specified value. If the value is 0, the page size
is infinite. The function returns the previous number of lines per page before the function
was executed.

%RPT$PAGE_DEFAULT
Returns the default number of lines per page of RPT, which is 57;.

%RPT$PAGE_CURRENT
Returns the current number of lines per page.

%RPTSPAGE_REMAINING
Returns the number of lines remaining on the current page.

%RPTSLINE_SKIP(interval,lines)
Causes RPT to skip the specified number of lines for every interval number of lines. If
the interval is 0, automatic line skipping is suppressed. The function value is the previous
interval.

%RPTSLINE_REMAINING
Returns the number of lines remaining in the current interval.

%RPTSCOMMAND
Returns the command line as a string.

%RPTSIDENT
Returns the RPT identification as a string.

5-22 Control File Language Guide

%RPT$STATUS(status)
Sets the exit status of RPT to the specified status value if it is more severe than the current
exit status. If it is not more severe, no action is taken. The actual status value is determined
by the control files using this function, based on the value given by the status argument. A
status value is considered a SUCCESS, or true, status if the low bit is 1, and a FAILURE,
or false, status if the low bit is 0.

The following algorithm, where NEW_STATUS is the value of the status argument and
EXIT_STATUS is the current exit status, is used to update the exit status:

IF NEW_STATUS

THEN
BEGIN
IF EXIT_STATUS AND (NEW_STATUS GT EXIT_STATUS)
THEN
SET EXIT_STATUS TO NEW_STATUS ;
END ;
ELSE
BEGIN
IF EXIT_STATUS OR (NEW_STATUS GT EXIT_STATUS)
THEN
SET EXIT_STATUS TO NEW_STATUS
END ;

The function returns the original value of EXIT_STATUS rather than the potentially updated
EXIT_STATUS.

5.3.9 %STR Functions—String-Handling Functions
The following %STR functions manipulate ASCII and binary strings:

%STR$TRAIL(string,element)

Removes all trailing repetitions of the specified element from the specified string. The value
of the function is the original string without the trailing characters.

%STRSLENGTH(string)
Returns the length of the specified string as a numeric value.

%STR$PARSE(string,pointer,control)
Performs a simple parse by returning a pointer to the end of the substring, -beginning at
the specified pointer position in the string and terminated by any of the characters in the
control string or by the end of the string.

%STR$QUOTE(string,pointer,control,quote)

Performs a simple parse with quote characters. STR$QUOTE works the same way as
STR$PARSE except that STREQUOTE handles quote characters. The quote argument is a
character string of two characters. For clarity, the two characters should match in some
way, but this is not required. If the first character of the pair is encountered, checking for
control characters stops until the second character of the pair appears. For example, the
quote string ' <> ' causes anything between a left angle bracket (<) and a right angle
bracket (>) to be considered as “quoted” and treated as a unit.

Control File Language Guide 5-23

%STRSREMAINING (string,pointer)

Returns the substring of the specified string consisting of all characters including and
following the specified pointer position.

%STRSMATCH(string,string)

Performs an element-by-element comparison of the two strings. The comparison continues
only as long as there are elements to compare. That is, with strings of different lengths,
the comparison stops with the last element in the shorter string. %STR$MATCH returns a
value set to true if the elements match, and false if they do not.

%STRSSEARCH(string,pointer,string)
Searches the first string, beginning at the specified pointer position, for the second string.
The pointer returns to the position in the first string at which the second string begins. If
the second string is not found, %STR$SEARCH returns a zero.

%STRSPAD(string,paddingstring,lead,trail)
Creates a new string consisting of the specified string padded with the single-character
padding string. The lead and trail numeric expressions specify how many padding characters
you want to lead or trail the original string.

%STRSFILE(string,pointer)
Assumes the pointer is at the beginning of the file specification. It returns a pointer to
the character following the file specification. If the string pointed to is not a valid file
specification, %STRS$FILE returns a zero.

%STRSUPCASE(value)
Returns the specified string with all lowercase letters converted to uppercase.

%STRSCHAR(value)
Returns the character corresponding to the specified value.

5.3.10 %TIM Functions—Time-Handling Functions

The %TIM functions manipulate times. The time values include both date and time unless
otherwise noted. The RSX and VMS %TIM functions are as follows:

RSX Time Functions

%TIMSRSX_CURRENT
Returns the current date and time as a value in RSX format.

%TIMSRSX_DATE(RSX_time_vaiue)
Returns the date only in RSX format.

%TIMSRSX_VMS(VMS_time)
Returns an RSX time value corresponding to the specified VMS time.

%TIMSRSX_NULL
Returns a null RSX time value. This value prints as all blank spaces.

5-24 Control File Language Guide

VMS Time Functions

%TIMSVMS_CURRENT
Returns the current date and time as a value in VMS format.

%TIM$VMS_DATE(VMS_time_value)
Returns the date only in VMS format.

%TIM$VMS_PLUS(VMS_time,days)
Returns a VMS time value containing the specified time plus the specified number of days.

%TIM$VMS_MINUS(VMS_time,days)
Returns a VMS time value containing the specified time minus the specified number of days.

%TIM$VMS_RSX(RSX_time)
Returns a VMS time value corresponding to the specified RSX time.

%TIM$VMS_NULL
Returns a null VMS time value. This value prints as all blank spaces.

5.3.11 The %USR Function—User |I/O Function

The %USR function performs input and output to and from the user of RPT, as follows:

%USRSSTRING (file, prompt,maximum_length)
Writes out the prompt string if the specified file is a terminal, and reads a string input
whose maximum length is specified by the length parameter. If the specified output file is
not a terminal, there is no prompt and only the read is performed.

5.4 Declarations

This section describes the declaration of variables and data items. A declaration includes print-
formatting information along with the definition of data items; it is different from declarations
in most languages.

5.4.1 Scope of Declarations

Data items can be referred to during the scope of the declaration; that is, from the point they
are declared until the declaration is discarded. If a declaration is made in a given procedure,
data items can be referenced in the defining procedure or any procedure called by it.

5.4.2 The DECLARE Statement

The DECLARE statement begins the declaration of a block of variables. The format of the
DECLARE statement is as follows:

DECLARE group name [NAMED] ;
variable_name : type [: print_expressions] ;
variable_name : type [: print_expressions] ;
variable_name : type [: print_expressions] ;
END_DECLARE ;

Control File Language Guide 5-25

group hame
The group name is the prefix name by which the DECLARE statement identifies the group
variables. The name of each group variable is in the following format:

group_name.variable_name

type
The variable type is one of the RPT data types: LOGICAL, STRING, ASCII, NUMERIC,
FIELD, RSX_TIME, or VMS_TIME.

NAMED
The optional NAMED qualifier specifies that the symbol names are to be kept and used
with the WRITE_GROUP statement FORMAT clause qualifiers that print a symbol name.

print_expressions
The optional print expressions specify expressions to be evaluated and printed if the group
is printed using the WRITE_GROUP statement. If you spec1fy more than one expression,
separate them by commas.

The print information consists of one or more expressions separated by commas. If the
WRITE_GROUP statement is used to print the data group, the print expressions are
evaluated and printed.

Declaration of a numeric type can be followed by declaration of one or more field types.
The field types are considered fields of the preceding numeric type declaration.

Print information for field types is handled specially. The variable names for field types
do not appear when the WRITE_GROUP statement is used, and the print expressions
following a field type declaration are considered to apply to the preceding numeric type.
Of the print expressions following a field type, one is selected based on the field value.

For BIT fields, the first print expression is used if the BIT is set to true, and the second if
the BIT is set to false.

For FIELD fields, the first print expression is used if no other print expression applies. The
second print expression is used if the FIELD value is 0, the third if the FIELD value is 1,
the fourth if the FIELD value is 2, and so on.

When a print expression is printed for a field type, it is printed in the following format:

plh:1] [...1)

Parameters

P The leading character of the print expression. This appears as a prefix to the print
field.

h The high-bit number of the FIELD, or the bit number of the BIT field. The square
brackets are printed.

1 The low-bit number of the FIELD. The “1” field and the leading colon are printed

as blanks for BIT fields.

5-26 Control File Language Guide

t The trailing characters of the print expression. The trailing characters are any
characters following the first character.

The following example illustrates a print expression:

DECLARE EXAMPLE :

VARIABLE_1 : WORD :

. FIELD [6:2] : '*The value of this field is 2 or 3',
' The value of this field is O' ,

' The value of this field is 1' ;

When EXAMPLE is printed with a WRITE_GROUP statement, the field will be printed as
follows, depending on whether bits 6 and 7 contain the value 0, 1, 2, or 3:

[7: 6] The value of this field is O
[7: 6] The value of this field is 1
*[7: 6] The value of this field is 2 or 3

Note

The field is declared in the form [6:2], meaning that it starts at bit 6 and
is 2 bits long. However, the print format is expressed in the form [7: 6],
meaning that it consists of bits 6 and 7.

5.4.3 The PACKET Statement

The PACKET statement declares an input data packet. The format is as follows:

PACKET name [REPEATED] [NAMED] ;
name : type : print_information ;
name : type : print_information ;
name : type : print_information ;

END_PACKET ;

The REPEATED data attribute is optional. A PACKET statement without this attribute specifies
a single packet. The REPEATED attribute specifies that the data in the packet is repeated. The
number of repetitions is computed by dividing the packet length by the length of the data items.
Note that the items must be referenced as for a DYNAMIC_TABLE statement; they cannot be
referenced directly.

The optional NAMED qualifier specifies that the symbol names are to be kept and used with
the WRITE_GROUP statement FORMAT clause qualifiers that print a symbol name.

The declaration of data defines the special variable LENGTH, referenced as the data items
themselves would be referenced, as follows:

data_group_name.LENGTH
Note that the length can be referenced directly, even for a REPEATED data group.

Each of the data item names is declared, along with the type and print information. The name
is the name by which the data element is referenced.

The format for a data element reference is as follows:
data_group_name.data_element_name

The data item type is declared as specified in Section 5.2.1.

Control File Language Guide 5-27

The special variable name RESERVED in place of an element declaration specifies a sequence of
undefined values. The type declaration specifies the length of the undefined area. This cannot
be a field type. The syntax is as follows:

PACKET name data organization ;
name : type : print_information ;
RESERVED : type ;
name : type : print_information ;
END_PACKET ;

A RESERVED declaration in a PACKET or SUBPACKET statement indicates to the compiler
(and RPT) that the area is currently unused, but to use its length in determining the size of the

packet or subpacket and the offsets of elements following the RESERVED declaration. You use
RESERVED either to reserve space for future use or to force word-boundary alignments.

Note that an element name could be used in these situations, but that RESERVED serves as
a documentation aid and saves having to define unique element names if there are multiple
unused areas in a packet or subpacket.

5.4.4 The SUBPACKET Statement
The SUBPACKET statement declares an input data subpacket. The format is as follows:

SUBPACKET name = expression <data attribute> [NAMED] ;
name : type [: print_information] ;
name : type [: print_information] ;
name : type [: print_information] ;

END_PACKET ;

The attribute, if present, is REPEATED. A SUBPACKET statement without an attribute specifies
a single subpacket. The leading REPEATED attribute specifies that the data in the subpacket
is repeated. The number of repetitions is computed by dividing the subpacket length by the
length of the data items. Note that the items must be referenced as for a DYNAMIC_TABLE
statement; they cannot be referenced directly.

The optional NAMED qualifier specifies that the symbol names are kept and used with the
WRITE _GROUP statement FORMAT clause qualifiers that print a symbol name.

The handling of a SUBPACKET statement is otherwise the same as for a PACKET statement.

5.4.5 Conditional Declarations

RPT provides a mechanism for the conditional declaration of data items. Conditional declaration
can only be used for data; that is, PACKET and SUBPACKET declarations. FIELD and BIT
declarations cannot cross conditionals. All FIELD and BIT declarations must be in the same
conditional as their data item.

The conditionals allowed in declarations are as follows:

¢ IF has the following syntax:

5-28 Control File Language Guide

name
name
name

IF expression

THEN
BEGIN
name @ type
name : type
name : type
END

ELSE
BEGIN
name : type
name : type
name : type
END

END_IF ;

name

name :

name

e

e

: type [: print_information] ;
: type [: print_information] ;
: type [: print_information] ;

: print_information]
: print_information]
: print_information]

: print_information] ;
: print_information] ;
: print_information] ;

: type [: print_information] ;
type [: print_information] ;
: type [: print_information] ;

If the expression is set to true, the THEN clause is defined. If the expression is set to false,

the ELSE clause is defined. The ELSE clause is optional.

CASE has the following syntax:

name
name
name :

CASE expression OF

type [: print_information] ;
: type [: print_information] ;
type [: print_information] ;

[expression [,...]1]
BEGIN
name : type [: print_information]
name : type (: print_information]
name : type [: print_information]
END

[expression [,...]1]
BEGIN
name : type [: print_information]
name : type [: print_information]
name : type [: print_information]
END

[expression , expression , ...]
BEGIN
name : type [: print_informationl]
name : type [: print_information]
name : type [: print_information]
END

ELSE

Control File Language Guide 5-29

BEGIN

name : type [: print_information] ;
name : type [: print_information] ;
name : type [: print_information] ;
END

END_CASE ;

name : type [: print_information] ;
name : type [: print_information] ;
name : type [: print_information] ;

The expression in the CASE statement is evaluated and the expression lists searched to find
a matching expression value. If a match is found, the declaration is made. If no matching
expression value is found, the optional ELSE clause is executed. Otherwise, an error occurs.

5.5 Action Statements

Action statements perform processing. CFL has a limited set of action statements because it is a
simple, special-purpose language. The statements provided have capabilities designed to make
the handling of error log data as simple as possible.

5.5.1 The SET Statement
SET sets the value of a variable to the results of a computation. The format is as follows:
SET variable_name TQ expression ;

The expression is evaluated using the type of the specified variable, and the variable is set to
the value of the expression.

5.5.2 The INCREMENT and DECREMENT Statements

INCREMENT and DECREMENT adjust the value of numeric variables of length VALUE (a
word on a PDP-11 processor, a longword on a VAX processor) or less by a value. The value
defaults to 1. The format of the statements is as follows:

INCREMENT variable_name [BY numeric_expression] ;
DECREMENT variable_name [BY numeric_expression] ;
The value of the variable is increased by the value of the numeric expression for the INCREMENT
statement, and decreased by the value of the numeric expression for the DECREMENT statement.

5.5.3 The WRITE Statement
WRITE writes information to a specified output location. The format is as follows:
WRITE (expression [,...]) TO output FORMAT format ;

The expressions are printed in the order specified. The optional output clause can contain
either the specifications REPORT or ERROR. ERROR directs output to the invoking terminal.
REPORT is the default and directs output to the output report. The REPORT file must be
open. The ERROR file is always open. The format for printing the output report is described
in Section 5.10.

5-30 Control File Language Guide

5.5.4 The WRITE_GROUP Statement

WRITE_GROUP writes a decoded block of data. The data definitions define the formatting.
The format is as follows:

WRITE_GROUP group_name TO output FORMAT format, format ;

The group name is the name of the group of variables or data items to be written. The optional
output specification is the same as for the WRITE statement and has the same defaults. The
format for printing the output data is described in Section 5.10.

The group name can be followed by a symbol list, as follows:

group_name (symbol_namel,...])

In this case, only the specified symbols are listed.

The first FORMAT clause is for printing all data items, the second FORMAT clause is for printing
all BIT and FIELD items.

5.5.5 The DECODE Statement

The DECODE statement performs specialized declaration-to-text translation. The statement has
the following form:

DECODE variable_name = group name ;
<data-item> [<bit-number>] ;
<data-item> [<bit-number>] ;
<data-item> [<bit-number>] ;

END_DECODE ;

Each of the data items must be a data item in the specified group. The bit numbers are numbers
of bits in the data item. The DECODE statement processes the data items in the order specified,
checking the specified bits. If a bit is found to be set to true, the corresponding bit-to-text
translation for that bit is performed, and the result returned in the specified variable. This
completes the statement. A data item can be preceded by a NOT, which indicates the specified
bit must be set to false for the bit-to-text translation to be performed. If no bit-to-text translation
is found, the null string is returned.

5.6 Control Statements

Control statements direct RPT by defining and invoking procedures and controlling termination
of the procedure. Other control statements also conditionally control the execution of statements
in a procedure. These are called conditional statements.

5.6.1 The MODULE Statement
MODULE declares the name of the module being compiled. The format is as follows:

MODULE name ident ([attribute [,...]1]) ;

Control File Language Guide 5-31

Parameters

MODULE
MODULE must be the first statement in any module. Each module must end with an
END_MODULE ; statement.

name
The module name specifies the name to be used when the module is inserted into the
control file library.

ident
The module ident is a quoted string to be inserted in the module header.

attribute
The optional module attributes specify information to be used in processing the module.
The following two attributes are recognized:

KEEP
Specifies that if a module cache is used by RPT, the module should be kept because it is
likely to be used again.

FLUSH
Specifies that if a module cache is used by RPT, the module should be flushed because it
is unlikely to be used again.

5.6.2 The LITERAL Statement

The LITERAL statement assigns a name to a literal value. All LITERAL statements in a module
must precede any PROCEDURE statement. The format of a LITERAL statement is as follows:

LITERAL group.name = compiletime_constant_expression ;

The name is equivalent to the value of the compiletime constant expression, and can be used
in any expression or compiletime constant expression to represent the specified value.

5.6.3 The CALL Statement
CALL invokes a subroutine. CALL has the following format:

CALL [MODULE module_name_expression]
PROCEDURE procedure_name_expression
[COROUTINE procedure_name_expression] ;

Parameters

MODULE
The optional module name expression specifies the module to be called. If the module
name is not specified, the specified procedure is assumed to be in the current module.

PROCEDURE
The procedure name specifies the procedure to call.

5-32 Control File Language Guide

COROUTINE
The optional COROUTINE argument specifies that the two called procedures are coroutines.
The first called procedure is specified as in the normal form of a CALL statement. The
procedure specified using the COROUTINE argument is executed first. That procedure can
then execute a statement that passes control to the other procedure specified in the CALL
statement. None of the declarations is lost.

The two procedures can trade control back and forth using the COROUTINE statement.
Each time a COROUTINE statement is executed, the other procedure resumes execution
from the point of the last COROUTINE statement. If one of the procedures returns, control
passes to the other procedure as if a COROUTINE statement were executed. When both
procedures have completed, the coroutines exit to the caller.

5.6.4 The RETURN Statement

The RETURN statement forces a return from a procedure to the calling procedure. RETURN is
optional at the end of a procedure. The format of the RETURN statement is as follows:

RETURN ;

The RETURN statement terminates the current procedure and returns control to the calling
procedure.

5.6.5 The PROCEDURE Statement
The PROCEDURE statement declares the beginning of a procedure. It has the following format:

PROCEDURE procedure_name statement_block ;

Parameters

procedure hame
The procedure name cannot be more than 15 characters in length. Names can include the
letters A to Z, the numbers 0 to 9, the dollar sign ($), and the underscore (). The leading
character of a name must be alphabetic.

statement block
The statement block is executed as the named procedure.

5.6.6 The IF-THEN-ELSE Statement

The IF-THEN-ELSE statement is the most basic conditional statement. (Other conditional
statements are provided to simplify the handling of common situations that would be
cumbersome with IF-THEN-ELSE.) The IF-THEN-ELSE statement has the following format:

IF logical_expression THEN block ;
[ELSE block;] END_IF ;

If the logical expression is set to true, the block following the THEN statement is executed. If
the logical expression is set to false, the block following the ELSE statement is executed. The
ELSE clause is optional. If it is not specified, no action is performed if the expression is set to
false.

Control File Language Guide 5-33

Each block consists of a single statement. Using BEGIN-END statements, a block can contain a
compound statement. See Section 5.6.11 for a description of how to make multiple statements
appear as a single logical entity to conditional statements by using BEGIN-END statements.

5.6.7 The CASE Statement

The CASE statement selects one of a set of possible outcomes based on an expression. The
format of a CASE statement is as follows:

CASE expression OF

[expression ,...] : block ;
[expression ,...] : block ;
[expression ,...] : block ;
[ELSE block ;]
END_CASE ;

CASE executes the block corresponding to the first expression equal to the numeric expression.
If ELSE is specified and no expression matches, it is executed.

5.6.8 The SELECT Statement

The SELECT statement is a variation of CASE. SELECT selects one of a given set of blocks.
The general format is as follows:

SELECT numeric_expression OF
block ;
block ;
block ;

[ELSE block ;]

END_SELECT;

SELECT selects the nth block, where n is the value of the numeric expression and is greater
than or equal to 1. If the last block is preceded by ELSE, the block is executed if and only if
the value of the numeric expression exceeds the number of blocks supplied.

5.6.9 The WHILE, UNTIL, and DO Statements

The WHILE, UNTIL, and DO statements control conditional looping. To specify a conditional
loop, specify a block of statements to be conditionally executed and an expression to control
the execution. The following conditions apply to these statements:

* The DO statement specifies the block of statements to be conditionally executed.
¢ The WHILE statement specifies an expression to be considered satisfied if it is set to true.
¢ The UNTIL statement specifies an expression to be considered satisfied if it is set to false.

e A DO statement must be specified with a WHILE or UNTIL statement. The block of
statements specified by the DO statement is executed until the condition specified by the
WHILE or UNTIL statement is no longer satisfied.

e If a DO WHILE or DO UNTIL statement is specified, the DO statement is executed once
before testing the condition. If a WHILE DO or UNTIL DO statement is specified, the
condition is tested first before executing the DO statement.

You can use the WHILE, UNTIL, and DO statements in the following combinations:

DO block WHILE expression ;

5-34 Control File Language Guide

5.6.

5.6.

5.6.

Executes the block once, then evaluates the expression. If the expression is set to true, the
block is repeated. If the expression is set to false, execution continues following the WHILE
statement.

DO block UNTIL expression ;

Executes the block once, then evaluates the expression. If the expression is set to false, the
block is repeated. If the expression is set to true, execution continues following the UNTIL
statement.

WHILE expression DO block

Evaluates the expression. If the expression is set to true, the block is executed and the process
repeated. If the expression is set to false, execution continues following the DO statement.

UNTIL expression DO block

Evaluates the expression. If the expression is set to false, the block is executed and the process
repeated. If the expression is set to true, execution continues following the DO statement.

10 The LEAVE Statement

The LEAVE statement immediately terminates the current DO statement. The control expression
in the associated UNTIL or WHILE statement is considered satisfied and is not reevaluated.

11 The BEGIN-END Statement

The BEGIN-END statement forces a compound statement to be treated as one statement for
purposes of conditionals. For example, to process two statements in the THEN clause of an IF
statement, use the the following construct:

IF logical expression
THEN
BEGIN
statement 1 ;
statement 2 ;
END ;
ELSE
statement ;
END_IF ;

12 Lexical Conditionals

Lexical conditionals perform conditional handling at compilation. A lexical conditional is valid
wherever a statement is valid. Lexical conditionals have the following format:

$1IF compiletime_constant_expression
$THEN
statement_block
[$ELSE
statement_block]
$END_IF

The $ELSE block is optional. If the compiletime constant expression is set to true, everything in
the $THEN block is compiled and the $ELSE block is not compiled. If the compiletime constant
expression is set to false, the $THEN block is not compiled and the $ELSE block, if present, is
compiled.

Control File Language Guide 5-35

Lexical conditionals can be nested to any level.

5.7 Tables

The table is one of the fundamental units of data organization for RPT. Tables are used to
structure large amounts of data to be referenced during report generation.

5.7.1 Table Structure

Tables are sets of similar records containing fields by which the records can be referenced.
Tables and the data in them can either be declared statically as part of the definition of a
given control file module, or they can be declared dynamically during the operation of RPT.
Static tables hold reference data, while dynamic tables store information computed during the
operation of RPT.

Each record in a table is a sequence of named fields. The definition of the table defines the
names of the fields and their sequence.

You refer to tables by name. Table names follow the ordinary rules for naming groups. The
name cannot be more than 15 characters in length. Names can include the letters A to Z, the
numbers 0 to 9, the dollar sign ($), and the underscore (—). The leading character of a name
must be alphabetic.

Fields in a table are also named. Field names follow the same rules.

Table entries are manipulated by setting the current entry pointer for a table, and then using
either the table manipulation statements or simple variable references to read or modify the
data in the table.

The following sections describe each of the table-definition and table-manipulation statements
in detail.

5.7.2 The TABLE Statement

The TABLE statement defines a static table. The format of the statement is as follows:

TABLE table name ;
name : type [: print_expressionms] ;
name : type [: print_expressions] ;
name : type [: print_expressions] ;
BEGIN_TABLE
value, value, [,...] ;
value, value, [,...] ;
value, value, [,...] ;
END_TABLE ;

The declaration list following the TABLE statement specifies each of the fields, their types, and
print information. The format is the same as for the DECLARE statement. The list values are
individual compile-time constant expressions separated by commas. Each sequence of list values
separated by commas (,) and terminated by a semicolon (;) represents one TABLE record. Each
table value must be of the same type as the corresponding declaration from the declaration list.
TABLE records cannot be modified at run time.

5-36 Control File Language Guide

5.7.3 The DYNAMIC_TABLE Statement

The DYNAMIC_TABLE statement declares a dynamic table. The format of a DYNAMIC_TABLE
statement is as follows:

DYNAMIC_TABLE table name ;
name : type [: print_expressions] ;
name : type [: print_expressions] ;
name : type [: print_expressions] ;
END_TABLE ;

Records are placed in the dynamic table at run time through the use of the PUT statement, and
can be modified by some of the POINTER statements. (See Sections 5.7.5 and 5.7.7.)
5.7.4 The FILE Statement

The FILE statement is identical to the DYNAMIC_TABLE statement. It is included for
compatibility only. You should use DYNAMIC_TABLE because the FILE statement may be
removed in a future release.

FILE declares a dynamic table. The format of a FILE statement is as follows:

FILE table name ;
name : type [: print_expressions] ;
name : type [: print_expressions] ;
name : type [: print_expressions] ;
ENDFILE

Records are placed in the file dynamically at run time through use of the PUT statement and
can be modified by some of the POINTER statements.

5.7.5 The POINTER Statement
The POINTER statement adjusts the current pointer for a table. It uses the following syntax:
POINTER table_name action [pointer_variable] ;
The argument action can be one of the following:

FIRST

Sets the current table pointer to the first record of the table. If there is no next record, then
the current table pointer is set to null (see RESET).

NEXT

Sets the current table pointer to the next record of the table. If there is no next record, then
the current table pointer is set to null (see RESET).

PREVIOUS

Sets the current table pointer to the previous record of the table. If you back up past the
beginning, then the table pointer is set to null (see RESET).

RESET
Sets the current table pointer to null; that is, there is no table pointer.

LOAD pointer variablie
Sets the current table pointer to the value of the pointer variable.

Control File Language Guide 5-37

CLEAR
The specified table must be a dynamic table (see Section 5.7.3). Deletes all records from
the dynamic table and sets the current table pointer to null (see RESET).

DELETE

The specified table must be a dynamic table. Deletes the current record and advances the
pointer to the next record. If there is no next record, then the current table pointer is set to
null (see RESET).

MOVE pointer variable

The specified table must be a file (see Section 5.7.4). The record pointed to by the pointer
variable is moved to the current record position, and the current record and all following
records are moved up one record. This is used mainly for sorting records in a file.

5.7.6 The FIND Statement

The FIND statement finds a record in a table using one or more key values. The format of the
FIND statement is as follows:

FIND table_name field=valuel[,...]SELECT expression ;

The table is searched until an entry with all specified fields having the specified value is
encountered. Tables are searched sequentially from the current pointer position. If no record is
found, the current pointer for the table is set to null.

If you specify the optional SELECT clause, a record does not satisfy the search criteria unless
the select expression, evaluated with the current record for the table set to the specified record,
is set to true.

5.7.7 The PUT Statement

The PUT statement creates a new record in a table. The specified table must be a dynamic table
(see Section 5.7.3). The PUT statement has the following format:

PUT table_name field=expression ,

Sets the specified fields of the record to the values of the specified expressions. Note that all
fields must be specified; none of the fields of the record is optional.

5.8 Lists

This section describes how CFL handles expression lists.

5-38 Control File Language Guide

5.8.1 The LIST Statement

The LIST statement declares a list of expression groups. The format of the LIST statement is as
follows:

LIST list_name ;

expression [,...] ;

expression [,...] ;
expression [,...] ;
END_LIST ;

The expression lists can then be referenced by the SIGNAL, SIGNAL_STOP, and MESSAGE
statements, which are described in Section 5.9.

5.8.2 The SEARCH Statement

SEARCH locates a specific entry in a list. The SEARCH statement has the following format:

SEARCH list_name expression [,...]
GET variable [,...]
FLAG variable ;

The specified list is searched sequentially until an entry is found where each of the SEARCH
expressions is equal in value to the corresponding LIST expression in the same expression list.
The variables in the GET clause are then set to the corresponding remaining expressions of
the expression list, and the FLAG variable is set to true. If no match is found, the variables
specified in the GET clause are unchanged, and the FLAG variable is set to false.

5.9 Signalling
This section describes the signalling facilities of CFL.

Signalling breaks the control flow in the report to handle special conditions. Control goes to a
special routine established by the user called a handler routine. When you signal a condition
using the signalling statements, the most recently declared handler routine is called. The handler
routine can then take the appropriate action.

Any routine can establish a handler routine. When you signal a condition, you can optionally
suppress the change in the flow of control, and cause the handler to return to the routine
executing the signal.

When a condition is signalled, a message describing the event is appended to the file ERROR, if
the file exists. The message inserted in the ERROR file consists of a sequence of comma-delimited
quoted strings, corresponding to the arguments to the SIGNAL-class statements.

5.9.1 The ENABLE Statement
The ENABLE statement has the following format:
ENABLE [MODULE expression] PROCEDURE expression ;

The procedure becomes the condition handler for this procedure and all called procedures,
unless a called procedure in turn contains an ENABLE statement.

Control File Language Guide 5-39

5.9.2 The SIGNAL Statement
The SIGNAL statement has the following format:
SIGNAL message_code PARAMETERS expression_list ;

The message code and expressions in the expression list are ASCII strings. When the SIGNAL
statement is executed, these expressions are evaluated and the resulting ASCII strings are
appended to the ERROR file as quoted strings separated by commas. The format is as follows:

'message code', 'expressionl'[, 'expression2'[,...]]

The signal-handling routine is then called. After execution of the signal-handling procedure,
execution resumes following the statement.

5.9.3 The SIGNAL_STOP Statement

The SIGNAL _STOP statement is the same as the SIGNAL statement, except that after execution
of the signal-handling procedure, execution resumes following the call to the procedure that
executed the ENABLE statement. The format is as follows:

SIGNAL_STOP message_code PARAMETERS expression_list ;

5.9.4 The MESSAGE Statement

The MESSAGE statement has the same format as the SIGNAL statement. It causes the appended
string to be placed in the ERROR file, but does not cause any signal processing. The format is
as follows:

MESSAGE message_code PARAMETERS expression_list ;

5.9.5 The CRASH Statement

The CRASH statement causes an immediate abort of RPT. You use it in cases of error handling
where the signalling mechanism is inadequate. The CRASH statement has the following format:

CRASH

CRASH causes a detailed dump of many of RPT’s internal data structures.

5.10 Print Formatting

This section describes the output-formatting facilities of CFL.

5-40 Control File Language Guide

5.10.1 The FORMAT String

The FORMAT parameter in the WRITE and WRITE_GROUP statements expresses output-
formatting information. The FORMAT parameter has the following syntax:

FORMAT format_string

The format string can be any ASCII string. The string is printed after substitution specified by
output directives. The directives have the following format:

! [n] [m]dd

In this format, dd is the 2-character directive, m is the optional argument, and n is the optional
repeat count. The square brackets need not be included if there is no repeat count. This syntax
is the same as that for the VMS %FAO facility. A double exclamation point (!!) prints as a
single exclamation point.

Multiple format strings can be specified by separating them with the concatenation operator,
the vertical bar (1), which is ASCII 174. They are treated as one concatenated string.

The allowed directives are described in the following sections.

5.10.1.1 Control Directives

The control directives control the processing of the format string. The control directives are as

follows:
'nCE Repeat the FORMAT clause.
InCF When used with a WRITE statement, this directive terminates output if the values

of all expressions have been output. When used with a WRITE_GROUP statement,
this directive terminates output if all fields in the specified group have been output.
The effect in both cases is to terminate evaluation and output of the format string
if there are no more values to be output.

5.10.1.2 Formatting Directives

The formatting directives output carriage-control information. The formatting directives are as

follows:

InFC Print following output beginning at column n.

InFS Space the current output print column forward n columns.

'nFL Output n-1 blank lines. Printing resumes on the line following the blank lines.
The default, n=1, causes output to begin on the line following the current line.

InFP Output a page break.

Control File Language Guide 5-41

5.10.1.3 Data-Formatting Directives

The data-formatting directives control the output of data. The data-formatting directives are as

follows:

'nDF Print the field name of the current output field. The argument specifies the field
width to be used for the name. The name is printed left-justified.

InDP Print the current output field.

The argument specifies the field width to be used for the field. For numeric fields,
the field width n must be greater than the field width specified when the field was
defined. If all fields have been printed, output terminates.

5.11 User-Interface Handling

The CFL compiler implements two user-interface modes: command mode and option mode. In
command mode, you specify the input and output files to be processed, using either the MCR
CFL command or the DCL CREATE/CFL command. In option mode, the compiler prompts
you for option lines before compilation takes place.

You do not need to invoke the option mode if you are in the MCR command mode. The
compiler automatically prompts you for option lines after you have entered your command line.
In DCL, however, you must explicitly invoke option mode from the command line by using the
/OPTIONS qualifier.

5.11.1 Command Mode

Format
CFL>output_file[,list_file] [,symbol_file]=input_file[,symbol_file]
$ CREATE/CFL[/[NO] INTERMEDIATE_FORM] [/LIST] input_file[/OPTIONS] [/SYMBOL]

In the MCR command line, all files to the left of the equal sign (=) are output files, and all files
to the right of it are input files.

The MCR arguments and DCL qualifiers to the command mode are as follows:

output file
/INOJINTERMEDIATE_FORM[:iform.__file]

The output file is the compiled intermediate form (IFORM) output file. It has the default
file type ICF. In MCR syntax, you must specify the output file.

The DCL CREATE/CFL command assumes that the output file has the same name as the
input file, unless you use the /INTERMEDIATE_FORM qualifier to specify another name.
The /NOINTERMEDIATE_FORM qualifier suppresses the creation of an IFORM (object)
file.

listing file
/LISTL:list_file]
The compiler listing file has the default file name input_file.LST.

In DCL, you use the /LIST qualifier to generate a compiler listing file. The default is not
to create a listing file.

5-42 Control File Language Guide

symbol file
/SYMBOL[:symbol_file]

The symbol output file is a compilation symbol table. The symbol file must be specified
as an argument whenever you compile a module that will be called from this module at
execution time. It has the default file name input_file.SYM.

The symbol input file is the compilation symbol table from the module that calls the module
being compiled at execution time.

In DCL, you use the /SYMBOL qualifier to create an output symbol file. The default is not
to create a symbol file.

input file

The input file is the CNF source file.

/OPTIONS

In the DCL CREATE/CFL command line, you use the /OPTIONS qualifier to invoke the
option mode of the CFL compiler. If you do not specify the /OPTIONS qualifier, the
compiler does not implement the option mode, but proceeds to execute your command line.

In the MCR command line, there is no /JOPTIONS qualifier. The compiler invokes the
option mode before it executes your command line.

5.11.2 Option Mode

Option mode uses MCR only. When you enter the MCR CFL command line or the DCL
command line with the /OPTIONS qualifier, the compiler requests options with the following
option-mode prompt:

Option>

Press the RETURN key after each option you enter, and the Option> prompt reappears. Options
are terminated when a line beginning with a slash (/) is entered, at which point the compilation
takes place. See Section 4.2.3 for an example of CFL option-mode declarations.

In option mode, the compiler accepts the LITERAL option in the following format:

Option>LITERAL group.name = value

This is the same syntax as for the LITERAL statement in the source file. The LITERAL option
is declared for the duration of the compilation. The only valid values are the following items:

Quoted strings
Numeric values
Logical true values

False values

Numeric values must be positive decimal values that are treated as machine values.

Control File Language Guide 5-43

5.12 ERLCFL Report Messages

ERLCFL-F-ASCIIBIG, ASCI literal quoted string too long for type.

Explanation: An ASCII radix numeric literal in a control file source module contains too
many characters for the specified numeric type.

User Action: Correct the user-written module or submit a Software Performance Report
(SPR) for DIGITAL-supplied modules.

ERLCFL-F-BADDIGIT, Invalid numeric digit in conversion.

Explanation: A numeric literal or the ASCII string argument for the %COD$OCTAL,
%COD$DECIMAL, %CODS$HEX, %COD$BCD, %COD$BINARY, or %COD$MACHINE
function contains an invalid character for the specified radix or was null or blank.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-BITFLDSIZ, Bit or field too large in extraction operation.

Explanation: The bit or field in an extraction operation exceeds the size of the value on
which the extraction is performed.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-BITNOPREC, A BIT or FIELD must have a preceding data item.

Explanation: A BIT or FIELD declaration in a control file source module must be preceded
by a data item within the declaration.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-BITNOTVAR, A BIT or FIELD not allowed on variable-length data item.

Explanation: A BIT or FIELD declaration in a control file source module is not allowed on a
variable-length data item.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-BITNUMINV, BIT number outside the declared data item.

Explanation: The bit number in a BIT declaration for a data item is too large for the data
item.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-BITTOOHIG, Bit number too large for specified storage unit.

Explanation: The bit number specified by the character string portion of a #BI, #WI, #LI,
#QI, or #VI numeric literal is too large for the specified value size.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

5-44 Control File Language Guide

ERLCFL-F-BYTERADS0, A BYTE data item cannot print in Radix-50 format.
Explanation: The print radix for a BYTE declaration cannot be Radix-50.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-CASENOTDAT, A declaration clause must be in a data declaration.

Explanation: A declaration CASE clause attempted to declare data but was not contained
within a declaration.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-CFLINPUT, Could not open input source file.
Explanation: CFL could not open the input source file specified on the command line.
User Action: Check the file specification, and make sure that you have access to the specified
file.
ERLCFL-F-CFLISTING, Could not create listing output file.
Explanation: CFL could not create the listing output file specified on the command line.

User Action: Check the file specification, and make sure that you have access to the specified
file.

ERLCFL-F-CFLMODULE, Could not create module output file.
Explanation: CFL could not create the module output file specified on the command line.

User Action: Check the file specification, and make sure that you have access to the specified
file.

ERLCFL-F-CFLSYMBOL, Could not open symboil file for input.
Explanation: CFL could not open the input symbol file specified on the command line.

User Action: Check the file specification, and make sure that you have access to the specified
file.

ERLCFL-F-CFLSYMOUT, Could not create symbol output file.
Explanation: CFL could not create the output symbol file specified on the command line.

User Action: Check the file specification, and make sure that you have access to the specified
file.

ERLCFL-F-CMDOPTERR, Option line syntax error.
Explanation: CFL encountered a syntax error on the option line input.

User Action: Correct the error and run CFL again, or submit an SPR for DIGITAL-supplied
command files.

Control File Language Guide 5-45

ERLCFL-F-CMDSPCERR, Command line syntax error.
Explanation: CFL encountered a syntax error on the command line input.

User Action: Correct the error and run CFL again, or submit an SPR for DIGITAL-supplied
command files.

ERLCFL-F-DECTOOBIG, Declaration too large, too many symbols.
Explanation: A declaration in a control file is too large to be compiled.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-DIVZERO, Attempt to divide by zero.

Explanation: A control file module contains a division by zero in a compile-time constant
expression.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-EXPTOOBIG, Operator stack overflow. Expression foo complex.
Explanation: An expression in a control file source module is too complex to be compiled.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-EXPTOOLAR, Operator stack overflow. Expression too complex.
Explanation: An expression in a control file source module is too complex to be compiled.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FIELDBIG, FIELD exceeds size of the declared data item.

Explanation: A FIELD declaration in a control file source module exceeds the bounds of its
corresponding data item.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FIELDBITI, FIELD starting bit is outside the declared data item.

Explanation: A FIELD declaration in a control file source module exceeds the bounds of its
corresponding data item.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FIELDSMAL, FIELD width must be at least one bit.

Explanation: A FIELD declaration in a control file source module did not have a width
specified.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

5-46 Control File Language Guide

ERLCFL-F-FILERCLOS, File close error.

Explanation: An error occurred when CFL attempted to close a file.

User Action: Check for file access conflicts, device errors, or low pool condition.
ERLCFL-F-FILERREAD, File read error.

Explanation: An error occurred when CFL attempted to read a file.

User Action: Check for file access conflicts, device errors, or low pool condition.
ERLCFL-F-FILERWRIT, File write error.

Explanation: An error occurred when CFL attempted to write to a file.

User Action: Check for file access conflicts, device errors, or low pool condition.
ERLCFL-F-FILINTOPN, Internal error - File already open.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.
ERLCFL-F-FILINVCOD, Internal error - Invalid file code for specitied operation.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-FLUSHINV, FLUSH attribute not allowed with KEEP attribute.

Explanation: A control file source module specified both the FLUSH and KEEP module

attributes.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied

modules.

ERLCFL-F-FUNFIELDS, Invalid conversion code argument to time conversion function.

Explanation: A control file source module contains a time conversion function with an invalid

value for the conversion code argument.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied

modules.

ERLCFL-F-FUNINVPOI, Invalid string pointer value in string function.

Explanation: A control file source module contains a %STR$PARSE or %STR$QUOTE
function where the value of the pointer argument is larger than the length of the string

argument.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied

modules.

Control File Language Guide 5-47

ERLCFL-F-FUNNOTCHA, Argument to STRSCHAR is not in valid range for character.

Explanation: The value of the argument for the %STR$CHAR function must be in the range
0 to 1274.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FUNNOTCOM, Function call not allowed in compile-time constant expression.

Explanation: A control file source module contains a function call that could not be evaluated
at compile time, where a compile-time constant expression was required.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FUNQUOODD, Quote string in STR$QUOTE function must have even length.

Explanation: A control file source module contains a %STR$QUOTE function, where the
quote string argument is not an even length.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FUNSTRSIZ, Output string from string function too large.

Explanation: A control file source module executed a string function that resulted in a string
longer than 255 characters.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FUNWRONGA, Incorrect number of arguments in function call.

Explanation: A control file source module contains a function call with the wrong number
of arguments.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-FUNWRONGC, Incorrect number of arguments in function call.

Explanation: A control file source module contains a function call with the wrong number
of arguments.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-HEAPOVERF, Heap too small to hold value. Overflow.
Explanation: The heap used for processing values and expressions has overflowed.

User Action: Edit CFLBLD.CMD to increase the extension for program section VHEAP(, and
rebuild CFL.

5-48 Control File Language Guide

ERLCFL-F-IFNOTDATA, A declaration IF clause must be in a data declaration.

Explanation: An IF clause cannot be used to declare data outside of a declaration in a control
file source module.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-ILLCHAR, Illegal character in input.
Explanation: An invalid character was found in a control file source module.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-INTEOTMAN, Internal - More than one operator on stack at term end.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTEOTNUL, Internal - End of term reached with null operator stack.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTEXPNOO, internal - Operator missing from operator stack.
Explanation: This is an internal error within CFL.
User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTFUNEND, Internal - Stack entry missing at function termination.
Explanation: This is an internal error within CFL.
User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTFUNMIS, Internal - Function code missing from operator stack.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTFUNNOT, Internal - Function code missing at function termination.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTOPRNOT, Internal - Operator outside of an expression term.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

Control File Language Guide 5-49

ERLCFL-F-INTPROUND, Internal - Compiler internal production stack underfiow.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTSYMLNK, Internal error - Invalid symbol linkage setup in module.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTWRONGP, Internal - Wrong production popped internal production.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INVFUNCT, Invalid function name specified.
Explanation: A control file source module specified an invalid function name.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-INVNUMSIZ, Internal - A numeric variable has an invalid size.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INVPOIACT, Invalid POINTER-statement action name.

Explanation: A control file source module specified an invalid action for a POINTER
statement.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules. ‘

ERLCFL-FIINVRADCNYV, Internal error - Invalid radix code for conversion.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-KEEPINV, KEEP attribute not allowed with FLUSH attribute.

Explanation: A control file source module specified both the FLUSH and KEEP module
attributes.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-LITINVTYP, Internal error - Literal in literal table has invalid type.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

5-50 Control File Language Guide

ERLCFL-F-LITNOVALU, Internal error - No value to load into literal value.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-MODATTRIN, Invalid module attribute hame specified.
Explanation: A control file source module specified an invalid module attribute.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-MODZERO, Attempt to modulus by zero.

Explanation: A control file source module contains a modulus by zero in a compile-time
constant expression.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-NOQUOTE, String literal missing closing quote.

Explanation: A string literal in a control file source module was not terminated by a closing
apostrophe.

User Action: Correct the user-written module or submit an SPR for DIGITAL-supplied
modules.

ERLCFL-F-NULLOPERA,