March 1980

This manual is a reference document for advanced RT-11 users, including
FORTRAN-IV and MACRO-11 assembly language programmers.

RT-11
Programmer’s Reference Manual
Order No. AA-H378A-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes the RT-11
Advanced Programmer’s Guide.
(Order No. AA-5280B-TC).

OPERATING SYSTEM AND VERSION: RT-11 V4.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, 1980

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright (© 1980 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 08/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS PDT
DATATRIEVE TRAX

Contents

Preface

Chapter 1 Introduction to Advanced RT-11 Programming

1.1

1.2

Programmed Requests

1.1.1

1.1.2

1.1.3

1.1.6

Using the System Subroutine Library

1.2.1

Programmed Request Implementation

EMT Instructions« « .« o o o o« . ..
System Control Path Flow

1.1.1.1
1.1.1.2

System Conventions

1.1.2.1
1.1.2.2
1.1.23
1.1.24
1.1.2.5
1.1.2.6
1.1.2.7
1.1.28

Using Programmed Requests

1.1.3.1
1.1.3.2
1.1.3.3
1.1.3.4
1.1.3.5
1.1.3.6
1.1.3.7
1.1.3.8
1.1.3.9
1.1.3.10
1.1.3.11
1.1.3.12

Compatibility with Previous RT-11 Versions

1.14.1
1.1.4.2
1.1.4.3
1.1.4.4

Programmed Request Conversion

1.1.5.1
1.1.5.2

System Conventions

izi11
1.2.1.2
1.2.1.3
1.2.1.4

Programmed Request Format.
Blank Arguments
Addressing Modes e e e e e e e
Keyword Macro Arguments.
Channels and Channel Numbers
Device Blocks oo
Programmed Request Errors
User Service Routine (USR) Requirement

Initialization and Control.

Allocating System Resources and Reporting Status

Command Interpretation.
File Operations« . .«
Input/Output Operations.
Foreground/Background Communications
Timer Support. oo
Program Termination or Suspension
System Job Communications.
Extended Memory Functions.
Interrupt Service Routines
Device Handlers e

Version 1 Programmed Requests
Version 2 Programmed Requests
Version 3 Programmed Requests
Version 4 Programmed Requests

Macro Calls Not Requiring Conversion
Macro Calls That Can Be Converted

Programmed Request Summary

Channel Numbers
Completion Routines.
Device Blocks
INTEGER*4 Support Functions

14}

1.2.1.5 User Service Routine (USR) Requirements 1-40
1.2.1.6 Subroutines Requiring Additional Queue Elements. . . 1-43

1.2.1.7 System Restriction. 1-43
1.2.2 Calling SYSLIB Subroutines 1-44
1.2.3 FORTRAN/MACRO Interface. 1-45
1.2.3.1 Subroutine Register Usage 1-46

1.2.3.2 FORTRAN Programs Calling MACRO Subroutines . . 1-46
1.2.3.3 MACRO Routines Calling FORTRAN Programs. . . . 1-48

1.24 FORTRAN Programs in a Foreground/Background Environment 1-50
1.2.4.1 Calculating Workspace for a FORTRAN

Foreground Program 1-51
1.2.4.2 Running a FORTRAN Program in a
Foreground/Background Environment. 1-52
1.2.5 Linking with FORLIB. 1-54
1.2.6 SYSLIB Services Not Provided by Programmed Requests. . . . 1-54
1.2.6.1 Time Conversion and Date Access 1-54
1.2.6.2 Program Suspension 1-54
1.2.6.3 Two-Word Integer Support (INTEGER*4) 1-55
1.2.6.4 Radix-50 Conversion. 1-55
1.2.6.5 Character String Operations 1-55
1.2.7 Character String Functions 1-56
1.2.7.1 Allocating Character String Variables. 1-57
1.2.7.2 Passing Strings to Subprograms 1-58
1.2.7.3 Using Quoted-String Literals. 1-59
1.2.8 System Subroutine Summary 1-59

Chapter 2 Programmed Request Description and Examples

v

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

2.10 .

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

CDFN 2-2
CHAIN. o 2-3
CHCOPY. 2-5
CLOSE. 2-7
CMKT 2-8
CNTXSW Lo 2-9
CRAW Lo 2-11
CRRG . . oo 2-14
CSIGEN 2-15
2.9.1 Passing Option Information 2-18
CSISPC 2-21
CSTAT. 2-23
CTIMIO . . . Lo 2-24
DATE 2-25
DELETE. 2-26
DEVICE s, 2-28
DRAST. 2-30
DRBEG 2-31
DRBOT 2-31
DRDEF. 2-32
DREND 2-33

221 DRFIN. o o e e e e e e e e e 2-34
222 DRSET. e e e e 2-34
223 DRVTB o e e e e 2-35
224 DSTATUS e e e e 2-3
225 ELAW o e e e e e e 2-38
226 .ELRG i e e e e e 2-39
9227 .ENTER o i e e e e e e e 2-39
228 EXIT. o o i e e e e e e e e 2-42
9.29 FETCH/RELEAS. v oo 2-44
230 FORK e e 2-46
231 .GMCX e e e e e e e e e e e e 2-48
2.32 .GTIM e e e e e 2-49
2.33 .GTIB e e e e e 2-50
234 .GTLIN o e e e e e e e e e e e e e e e e 2-52
235 .GVAL e e e e e e e 2-53
236 .HERR/.SERR. i i 2-54
237 HRESET i e e e e e e e e e 2-56
238 INTEN. o e e e e e e e e e 2-57
239 LOCK/UNLOCK. o i ittt e e 2-58
240 LOOKUP. e e e e e e e 2-60
2.40.1 Standard Lookup. oo 2-61
2.40.2 System Job Lookup.o 2-63
241 MAP. e e e e e e 2-64
2.42 MFPS/MTPS e e 2-65
243 MRKT e e e e 2-67
244 MTATCH o e e e e e e e e 2-69
245 MTDTCH e e e e 2-71
246 MTGET e e e 2-72
247 MTIN . . . o e e e e e e e e e 2-75
248 MTOUT o e e e e e e e e 2-76
249 MTPRNT e e e 2-T7
250 MTRCTO o o e e e e e e e e e e 2-18
251 .MTSET e e e 2-79
252 MTSTAT. o o e e e e e 2-80
253 MWAIT e 2-81
254 PRINT o o e e e d e e e e e 2-82
2.55 .PROTECT/.UNPROTECT 2-83
256 .PURGE e e 2-85
2.57 .QELDF. 2-86
258 QSET e 2-87
259 RCTRLO. i e e e e 2-89
2.60 .RCVD/.RCVDC/RCVDW oo 2-90
261 .RDBBK e e 2-94
262 RDBDF. e e e e 2-94
2.63 .READ/.READC/READW 2-94
264 RELEAS e 2-102
265 RENAME e e e e e 2-103
266 .REOPEN. e e 2-104
267 RSUM e e e e e 2-105
268 .SAVESTATUS o e i e e e e 2-105
269 .SCCA e e 2-107
2.70 .SDAT/.SDATC/SDATW v v 2-109
271 SDTTM o e e e e e e e e e e e e e e 2-112

Chapter 3

272 SERR 2-114
2.73 SETTOP 2-114

2.73.1 .SETTOP in an Extended Memory Environment. 2-116
274 SFPA., 2-117
275 SPCPS. 2-119
276 SPFUN. 2-121
277 SPND/RSUM 2-124
278 SRESET, 2-126
279 SYNCH, 2-127
280 TIMIO 2-129
281 . TLOCK 2-131
282 TRPSET 2-132
283 . TTYIN/TTINR. 2-134
284 TTYOUT/TTOUTR 2-136
285 TWAIT. 2-138
286 .UNLOCK. 2-139
287 .UNMAP 2-139
288 .UNPROTECT 2-140
289 WAIT, 2-140
290 WDBBK 2-141
291 WDBDF, 2-142
2.92 WRITE/WRITC/WRITW. 2-142

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

AJFLT . .o o 3-1
CHAIN o 3-1
CLOSEC/ICLOSE 3-2
CONCAT e, 3-4
CVTTIM o 3-5
DEVICE 3-5
DIFLT oo, 3-6
GETSTR 317
GTIM. e 3-8
GTIB/AIGTIB 3-8
GTLIN 3-10
IADDR 3-11
IAJFLT . . o o oo 3-11
IASIGN o 3-12
ICDFN 3-13
ICHCPYo 3-14
ICLOSE. o 3-15
ICMKT 3-15
ICSI 3-16
ICSTAT. 3-18
IDELET 3-19
IDJFLT o 3-20
IDSTAT. 3-21
IENTER 3-21
IFETCH o 3-23
IFREEC. 3-24
IGETC o e, 3-24
IGETSP. 3-25

3.29 IGTIB e e e e 3-26

330 TICVT . o o oo 3-26
331 TLUN .« o o oot 3-27
332 INDEX . . o o o ot 3-27
333 INSERT . . o o ottt e 3-28
334 INTSET . . o o ot e e e e 3-28
335 TPEEK . . . o o oo i e 3-30
336 IPEEKB o o oot e 3-30
337 TPOKE . . . o o o oo e e 3-31
338 TPOKEB o oo vt 3-31
339 TQSET . . o o o oo e 3-32
340 TRADBO . . o o o o 3-33
3.41 IRCVD/IRCVDC/IRCVDF/IRCVDW 3-34
3.42 TREAD/IREADC/IREADF/IREADW 3-36
343 TRENAM it e e e e 3-41
344 TREOPN it e e 3-42
345 ISAVES. . o o o i i 3-43
346 ISCHED . . . o it 3-44
347 ISCOMP . . o o i 3-45
3.48 ISDAT/ISDATC/ISDATF/ASDATW. 3-45
349 ISLEEP. . . o o o it 3-48
350 ISPFN/ISPFNC/ISPENF/ISPENW 3-48
351 ISPY . o o o et e 3-54
352 ITIMER. . . . o ittt e 3-55
353 ITLOCK . . o o o o ooe e e e e e e 3-56
354 TITINR. . o o o e e e e e 3-57
355 ITTOUR . . o o v e e e e e e 3-58
356 TTWAIT. it 3-59
357 TUNTIL. . . o o ottt 3-60
358 IVERIF . . . o o i e 3-61
359 IWAIT . . o o o o i e et e e e e 3-61
3.60 IWRITE/[WRITC/AWRITFAWRITW 3-61
361 JADD. . . o o o e e 3-64
362 JAFIX e 3-65
363 JOMP. . . o e 3-65
364 JDFIX . . o o e e 3-66
365 JDIV . . o o o 3-67
8366 JICVT . o o o oot 3-67
367 JICVT . o o o 3-68
368 JMOV . . o o o 3-68
369 JMUL. . . o o o et 3-69
370 JSUB . © o o oo 3-70
371 JTIME .« o o o 3-7
372 LEN . o o ot e 3-71
373 LOCK . . o o i 3-72
374 LOOKUP . . . o o it e e e 3-73
375 MRKT . . o o ottt e 3-76
376 MTATCH. o o ettt e e 3-76
377 MIDTCH. .« o o ot e e 3-79
378 MTGET. . . o it e 3-79
379 MTIN. .« o ot 3-80
380 MTOUT . . . o ottt e e 3-81
381 MTPRNT. . . . o o ottt e e e 3-81
382 MTRCTO . . . o o o ittt 3-82

vit

383 MTSET. 3-82

384 MTSTAT 3-83
38 MWAIT. 38
386 PRINT 3-84
387 PURGE. 3-85
388 PUTSTR 3-85
389 R50ASC. 3-86
390 RADBO 3-86
391 RCHAIN 3-87
392 RCTRLO 3-87
393 REPEAT 3-88
394 RESUME. 3-89
395 SCCA. 3-89
396 SCOMP/ISCOMP 3-90
397 SCOPY, 3-91
398 SECNDS, 3-91
399 SETCMD, 3-92
3100 STRPAD, 3-93
3101 SUBSTR oo 3-94
3102SUSPNDo 3-94
3103 TIMASC o 3-95
314 TIME. o 3-96
3105 TRANSL 3-97
3106 TRIM. o 3-98
3I0TUNLOCK oo 3-99
3108 VERIFY. 3-99

Appendix A Display File Handler

Appendix B System MACRO Library

Index

Figures
1-1 System Flow During Programmed Request Execution 1-5
1-2 EMT 374 Argument 1-6
1-3 Stack Set by .CSIGEN Programmed Request 1-7
1-4 EMT 375 Argument Block 1-8
1-5 Subroutine Argument Block 1-45
1-6 Argument Block for Program INIARR. 2-47

Tables
I-1 EMT Codes, 1-3
1-2 Program Requests Requiring the USR. 1-13
1-3 Programmed Request Conversions (Version 1 to Version 2). 1-29

2422

[y

—
| I

=1 O T

fa—y

P

— DO — O Q0

(™)

Programmed Requests for All RT-11 Environments 1-30
Foreground/Background and Extended Memory Programmed Requests . .1-34

FORTRAN Program PSECT Ordering 1-41
Return Value Conventions for Function Subroutines 1-46
SYSLIB Conversion Calls 1-55
Summary of SYSLIB Subroutines 1-59
Timer Block Formato 2-25
Soft Error Codes (SERR)o 2-55
Functions and Function Codes (Octal) 3-50

X

Preface

The RT-11 Programmer’s Reference Manual describes the programmed
requests and subroutines that are available in the system macro library
(SYSMAC.SML) and system subroutine library (SYSLIB.OBJ). It
provides programming examples that show how to use programmed requests and
subroutines.

Chapter 1, Introduction to Advanced RT-11 Programming, describes the
implementation and use of the programmed requests and the FORTRAN-

callable subroutines.

Chapter 2, Programmed Request Description and Examples, describes the
individual programmed requests in detail. Program examples are included for
each request. In addition, macros and subroutines that are used in imple-
menting device handlers and interrupt service routines are described.

Chapter 3, System Subroutine Description and Examples, describes in detail
all the RT-11 FORTRAN-callable subroutines. This chapter also contains
examples of the use of the calls to the system subroutine library.

Appendix A, Display File Handler, describes the graphics support for the
RT-11 operating system. Program examples are included to help you develop
your own display program.

Appendix B, System Macro Library, is a listing of the RT-11 System Macro
Library (SYSMAC.SML).

This manual is written for an advanced-level user. If you have no RT-11
experience, or very little, read:

Introduction to RT-11
RT-11 System User’s Guide

PDP-11 MACRO-11 Language Reference Manual
In addition, FORTRAN programmers should read:

RT-11/RSTS/E FORTRAN IV User’s Guide
PDP-11/FORTRAN Language Reference Manual

If you are interested in additional programming techniques or other system
programming topics, read the RT-11 Software Support Manual.

Xl

Chapter 1
Introduction to Advanced RT-11 Programming

Programmed requests and system subroutines are available as part of the
RT-11 Operating System and can aid you in writing reliable and efficient

programs.
Programmed requests provide a number of services to application programs.
The requests function as calls to routines in the RT-11 monitor that perform

these services. As system macros, they are defined in a system macro library
that is stored on the system volume and named SYSMAC.SML. In addition,
macro routines are available in the system macro library that can help you
write device handlers and interrupt service routines.

If you are a FORTRAN programmer, you can access the RT-11 monitor
services through calls to the system subroutine library called SYSLIB.OBJ,
which is stored on the system volume. A character string manipulation pack-
age and two-word integer support routines are included in this library. The
SYSLIB subroutines allow you to write almost all application programs in
FORTRAN without having to do any assembly language coding.

This chapter tells you how to use programmed requests and subroutines effec-
tively in your programs. Examples are provided to demonstrate their flexibil-
ity and value in working programs.

1.1 Programmed Requests

You issue a programmed request in your source program when a certain moni-
tor service is required. The programmed request expands into the appropriate
machine language code during assembly time. During program execution, this
code requests the resident monitor to supply the service represented by the
programmed request.

The services involve the following processes:

1. Initialization and control of operating system characteristics
2. Allocating system resources and reporting status
3. Command interpretation

4. File operations

5. Input/output operations

6. Foreground/background communications

Timer support

~1

8. Program termination or suspension
9. System job communications

10. Extended memory functions

1-1

The system macro library (SYSMAC.SML) also contains several macros that
are not programmed requests. These macros are provided to aid you in writ-
ing:

1. Interrupt service routines

2. Device handlers

They are described in Chapter 2 along with the programmed requests.

Components of the RT-11 Operating System that support programmed re-
quests are as follows:

1. Single-Job Monitor
The single-job (SJ) monitor supports most of the programmed requests.
Table 1-4 lists the programmed requests that are supported by the SJ
monitor. These programmed requests can manipulate files, perform input
and output, set timer routines, check system resources and status, and
terminate program operations.

2. Foreground/Background Monitor
Some programmed requests are provided for the foreground/background
(FB) monitor only. Table 1-5 lists the programmed requests that are
supported by the FB monitor in addition to those listed in Table 1-4.
These programmed requests allow a program to set timer routines, sus-
pend and resume jobs, and send messages and data between foreground
and background jobs.

3. Extended Memory Monitor
The extended memory (XM) monitor provides additional programmed
requests and features above those found in the FB monitor. The XM
monitor extends the memory support capability of RT-11 beyond the
28K-word (plus I/O page) restriction (imposed by the 16-bit address size)
up to 124K words. The XM monitor’s programmed requests extend a
program’s effective logical addressing space (see Table 1-5).

4. Multi-terminal Feature
The multi-terminal feature of RT-11 allows your program to perform
character input/output on up to 16 terminals. Programmed requests are
available to perform input/output, attach and detach a terminal for your
program, set terminal and line characteristics, and return system status
information.

5. System Job Support

System job support allows users in a foreground/background or extended
memory environment to extend the present standard foreground/back-
ground system to include up to eight jobs. Two system jobs are presently
provided with the RT-11 system: the error logger and device queue pro-
gram. Programmed requests aillow programs to copy channeis from other
jobs, obtain job status information about jobs in the system, and send
messages and data between any jobs in the system. The RT-11 Software
Support Manual describes the system job feature in more detail.

Programmed requests perform most system resource control and interrogation
functions. However, some communication is accomplished by directly access-

1-2 Introduction to Advanced RT-11 Programming

1051

ing two memory areas: the system communication area and the monitor fixed-
offset area.

The system communication area resides in locations 40 to 57(octal) and con-
tains parameters that describe and control execution of the current job. This
area holds information such as the Job Status Word, starting address of the
job, User Service Routine (USR) swapping address, and the address of the
start of the resident monitor. Some of this information is supplied by your
program to the monitor, while other data is supplied by the monitor and may
not be changed.

fixed-offset area, is accessed

m 1 S s
I ne second memory ¢commaiin 1 iscl d, 1s AULEsdoU Uy

a fixed address offset from the start of the resident monitor. This area con-
tains system constants used to control monitor operation. Your program can
interrogate these constants to determine the condition of the operating envi-
ronment while a job is running, but it may not change any of these values.
The RT-11 Software Support Manual describes in detail both the system

communication area and the fixed-offset area.

s PR
ation area

This manual specifically describes programmed requests for RT-11 Version 4.
Programmed requests for earlier versions of RT-11 and guidelines for their
conversion are treated in Sections 1.1.4 and 1.1.5.

1.1.1 Programmed Request Implementation

1.1.1.1 EMT Instructions — A programmed request is a macro call followed by
the necessary number of arguments. The macro code that corresponds to the
macro call of a programmed request is expanded by the MACRO assembler
when the programmed request appears in your program. The expansion nor-
mally arranges the arguments of the programmed request for the monitor and
generates an EMT (emulator trap) instruction.

When an EMT instruction is executed, control passes to the monitor. The
low-order byte of the EMT code provides the monitor with the information

that tells it what monitor service is being requested.

The execution of the EMT generates a trap through vector location 30 in low
memory. This vector location is loaded at boot time with an address pointing
to a location in the monitor. The monitor location contains the EMT process-
ing code that services the interrupt caused by the EMT instruction.

Table 1-1 shows the codes that may appear in the low-order byte of an EMT
instruction and the interpretation of these codes by the monitor.

Table 1-1: EMT Codes

Low-Order Byte Interpretation

377 Re y It

program immediately.
376 Used internally by the RT-11 monitor; your programs should
never use this EMT since their use would lead to unpredictable
results.

(continued on next page)

Introduction to Advanced RT-11 Programming 1-3

1-4

Table 1-1: EMT Codes (Cont.)

Low-Order Byte Interpretation

375 Programmed request with several arguments; RO points to a block
of arguments that supports the user request.

374 Programmed request with one argument; RO contains a function
code in the high-order byte and a channel code in the low-order
byte.

360-373 Used internally by the RT-11 monitor; your programs should

never use these EMT codes since their use would lead to unpre-
dictable results.

340-357 Programmed requests with the arguments on the stack and/or in

RO.
0-337 Version 1 programmed requests with arguments both on the stack

and in RO. They are supported for binary compatibility with Ver-
sion 1 programs.

EMT instructions should never appear in your programs except through pro-
grammed requests.

1.1.1.2 System Control Path Flow — Figure 1-1 shows system flow when a
programmed request is executed.

In Figure 1-1, a programmed request in an application (or system utility)
program is implemented with an EMT instruction. When your program is
executed, the EMT instruction transfers control to the EMT processor code in
the monitor. The user PC and PS are pushed onto the stack, and the contents
of location 30 are placed in the program counter. Location 30 points to the
EMT processor code in the monitor. This location is loaded during bootstrap.
Location 32 contains the Processor Status Word for the EMT trap. Byte 52 of
the system communications area is loaded with an error code by the monitor if
the monitor detects any errors during the EMT processing. In addition, the
EMT processor uses RO to pass back information to the program. All other
registers are preserved.

The monitor either processes a programmed request entirely when it is issued
or it performs partial processing and queues the request for further processing.
The requests that require queued processing support completion routines (see

Section 1.1.3.5). If a request results in an error prior to being queued, the

completion routine is not entered, and the monitor returns to the user pro-
gram with the carry bit set. If the request is queued, the completion routine is
entered upon completion of further processing, regardless of the outcome.

Introduction to Advanced RT-11 Programming

Figure 1-1: System Flow During Programmed Request Execution

USER PROGRAM

Programmed
Request

|
!

SYSTEM TRAP AREA

Points to EMT

30
Processor Code

PSw 32

RMON

EMT
Processor

RTI Instruction

SYSCOM AREA

EMT

Error 52

User Program

Introduction to Advanced RT-11 Programming 1-

[

i-6

1.1.2 System Conventions

This section describes the system conventions that must be followed for the
correct operation of programmed requests.

1.1.2.1 Programmed Request Format — To issue programmed requests from
assembly language programs, you must set up the arguments in correct order
and issue the appropriate EMT instruction. Macros have been created to help
you do this. They are contained in the system macro library named
SYSMAC.SML. Their use is recommended for maintaining program compati-
bility with future releases of RT-11 and for program readability. The macro
names for all programmed requests start with a period (.) to distinguish them
from symbols and macros you define.

Arguments supplied to a programmed request must be valid assembler ex-
pressions since the arguments are used as source fields in the instructions
(such as a MOV instruction) when the macros are expanded at assembly time.
All programmed requests that appear in your program must appear in a
.MCALL directive to make the macro definition available from the system
macro library, SYSMAC.SML. If the programmed request is specified by a
.MCALL directive, the programmed request is obtained from the system
macro library at assembly time.

Programmed requests have two formats that are accepted by the monitor. The
first format specifies the programmed request followed by the arguments re-
quired by the request. The second format specifies the programmed request,
the address of the argument block, and the arguments that will be contained
in the argument block. Because the way you can set up the argument block
and specify arguments to a programmed request can vary, read the sections on
programmed request format and on blank arguments to be sure of correct
programmed request operation.

FORMAT 1
The first format for programmed requests is as follows:

.PRGREQ Argl,Arg2,...,Argn
where:

.PRGREQ is the name of the programmed request
Argl,Arg2,...,Argn are the arguments used with the request

Programmed requests using this format generate either an EMT 374 or EMT
340 through 357 instructions.

Programmed requests that use an EMT 374 instruction set up RO with the
channel number in the even (low-order) byte and the function code in the odd
(high-order) byte, as shown in Figure 1-2.
Figure 1-2: EMT 374 Argument

15 87 0

Channel Number

RO = i
0 Function Code (if applicable)

Introduction to Advanced RT-11 Programming

One programmed request that generates an EMT 374 is .DATE. The macro
for this programmed request appears in the system macro library as:

sMACRO .DATE
MOV #1C,#*°0400 %0
EMT ~0374

JENDM

The function code, which in this case is 10 (decimal) is placed in the
high-order byte of RO. A channel code of 0 is placed in the low-order byte.

Y I 4

T TIRAT 94 Trmas ol EF SR R P 3 i T o
For EMT 340 through 357, if there are arguments, they are placed either on

the stack, in RO, or in RO and on the stack.

The programmed request .CSIGEN is an example of a programmed request
that generates an EMT 344. A simplified macro expansion of this pro-
grammed request is:

+MACRO LCSIGEN DEVSPC,DEFEXTCSTRMGLINBUF

LIIF NB <LINBUF: MO LINBUF +-(B.)
MOu DEUSPC - (B,
LIIF NB <LINBUF: INC (B}
MOy DEFEXT +-(B.)
.IF B CSTRNG
CLR ~(B.}
. IFF
LIF IDN CSTRNG #0
CLR -(B.)
JIFF :
MO CSTRNG - (B.)
LENDC
JENDC
EMT “0344 _
LENDM :

When this programmed request is executed, all the specified arguments are
placed on the user stack. Thus, the user stack would appear as shown in
Figure 1-3.

Figure 1-3: Stack Set by .CSIGEN Programmed Request

High Addresses

LINBUF

DEVSPC

DEFEXT

Stack Pointer => CSTRING

Low Addresses

The EMT processor then uses these arguments in performing the function of
the programmed request .CSIGEN.

Introduction to Advanced RT-11 Programming 1-7

1-8

FORMAT 2
The second format for programmed requests is as follows:

.PRGREQ Area,Argl,Arg2,...,Argn

where:
.PRGREQ is the name of the programmed request
Area is the address of an argument block

Argl ,Arg2,...,Argn are the arguments that will be contained in the
argument block

This format generates an EMT 375 instruction. Programmed requests that
call the monitor via an EMT 375 use RO as a pointer to an argument block. In
general, the argument block appears as shown in Figure 1-4.

Figure 1-4: EMT 375 Argument Block

RO => AREA: Function code Channel

Argument 1

Argument 2

Argument n

The programmed request format uses Area as a pointer to the argument block
that contains the arguments Argl through Argn.

.PRGREQ Area,Argl,...,Argn

Blank fields are permitted. However, if the Area argument is empty, the
macro assumes that RO points to a valid argument block. If any of the fields
Argl to Argn are empty, the corresponding entries in the argument list are left
untouched. Thus,

.PRGREQ Area,Argl,Arg2

points RO to the argument block at Area and fills in the first and second
arguments, while

.PRGREQ Area

points RO to the block and fills in the first word - that is, the function code
and channel number — without filling in any other arguments. Arguments
that are left blank are discussed in the following section.

Introduction to Advanced RT-11 Programming

1.1.2.2 Blank Arguments — Any programmed request that uses an argument
block assumes that any argument left blank has been previously loaded by
your program into the appropriate memory location (exceptions to this are the
.CHCOPY and .GTJB requests). For example, when the programmed request

PRGREQ Area, Argl, Arg2

is assembled, RO will point to the first word of the argument block. The first
word has the function code in the high-order byte and the channel number in
the low-order byte. Argl is in the second word of the argument block (that is,
in address RO plus 2), while Arg2 is in RO plus 4.

There are two ways to account for arguments. You can let the MACRO assem-
bler generate the instructions needed to fill up the argument block at run
time, or you can write these instructions in your program, leaving the argu-
ments in the programmed request blank for those that you have written in.

The following examples are all equivalent in that the arguments have been
accounted for either in the program instructions or in the programmed
request.

Moy #ARGL sAREA+Z
Moy #ARGE sAREA+4

. PRGREQ =AREA
is equivalent to

MOY #AREA RO
+PRGREWG »#ARGL »#ARGE

and also to

MOV #AREA RO

MOV #ARG1 .2 (RO)

MOV #ARGZ 4 (RO}

MOY #CODE!CHANNEL » (RO}

+PRGREG

This last example sets up all the arguments for the programmed request prior
to executing the programmed request.

The following example shows how arguments are specified to the .TWAIT
programmed request.

s TITLE EXWAIT.MAC
+MCALL JPRINT » TWAIT
START:
WATTs CTWATT #FMTLST
+PRINT #M5G
BR WAIT
EMTLST: +BYTE 0424
+WORD TIME
TIME: +WORD 010, %60
MSG: +ASCIZ /JPRINT THIS EVERY TEN SECONDS/
+END START

Introduction to Advanced RT-11 Programming 1-9

1-10

The .TWAIT programmed request suspends a program and requires two argu-
ments. The first argument is area, which points to the address of a two-word
EMT argument block; the second argument is Time, which is a pointer to two
words of time (high-order first, low-order second) expressed in ticks. In the
example shown above, EMTLST is specified as an argument with the pro-
grammed request that points to the address of the EMT argument block. The
first word of the argument block has a zero stored in the low-order byte
representing the channel number and a function code of 24 stored in the high-
order byte. The second word contains a symbolic pointer to the location (the
second argument), which specifies the amount of time that the program will
be suspended. It is defined as two words, and in this example, represents a 10-
second interval. When run, the example program prints its message every ten
seconds. Note that the .TWAIT programmed request requires the FB monitor
for proper operation.

1.1.2.3 Addressing Modes — You must make certain that the arguments
specified are valid source fields and that the address accurately represents the
value desired. If the value is a constant or symbolic constant, use the immedi-
ate addressing mode [#]. If the value is in a register, use the register symbol
[(Rn]. If the value is in memory, use the label of the location whose value is the
argument.

For example, when a direct numerical argument is required, the immediate
mode causes the correct value to be put into the argument block. Thus

.PRGREQ #Area,#4
is correct, while

.PRGREQ #Area,4

1s not correct since the contents of location 4 are placed into the argument
block instead of the desired value 4.

However, the form

+PRGREGD LIST :NUMBER

+
+

+

LIST: «WORD AREA

NUMBER: .WORD 4

is correct since the contents of LIST are the argument block pointer and the
contents of NUMBER are the data value.

NOTE

All registers except RO are preserved across a programmed
request. In certain cases, RO contains information passed back
by the monitor; however, unless the description of a request
indicates that a specific value is returned in R0, the contents of
RO are unpredictable upon return from the request. Also, with
the exception of calls to the Command String Interpreter, the
position of the stack pointer is preserved across a programmed
request.

Introduction to Advanced RT-11 Programming

You must be sure that the selected mode generates the correct value as a
source operand in a MOV instruction. Check the programmed request macro
in the Macro Library (SYSMAC.SML) and expand the programmed request
by hand or with the macro assembler (by using the .LIST MEB directive) to
be sure of correct results.

1.1.2.4 Keyword Macro Arguments — The RT-11 MACRO assembler supports
keyword macro arguments. All the arguments used in programmed request
calls can be encoded in their keyword form (see the PDP-11 MACRO-11

Language Reference Manual for details).

The argument code for all EMT 375 programmed requests is used for explicit
control in expanding an EMT programmed request. In EMT 375 programmed
requests, the high byte of the first word of the area (pointed to by RO) contains
an identifying code for the request. Normally, this byte is set if the macro
invocation of the programmed request specifies the area argument, and it
remains unaffected if the programmed request omits the area argument. If the
macro invocation contains CODE=SET, the high byte of the first word of the
area is always set to the appropriate code, whether or not area is specified.

If CODE=NOSET is in the macro invocation, the high byte cf the first word
of area remains unaffected. This is true whether or not area is specified. This
allows you to avoid setting the code when the programmed request is being set
up. This might be done because it is known to be set correctly from an earlier
invocation of the request using the same area, or because the code was stati-
cally set during the assembly process.

1.1.2.5 Channels and Channel Numbers — A channel is a data structure that
is a logical connection between your program and a file on a mass storage
device. The system provides 16 channels by default. When a file is opened on
a particular device, a channel number is assigned to that file. The channel
number can have an octal value from 0 to 377 (0 to 255 decimal). Thus, your
program first opens a channel through a programmed request by specifying
the device and/or file name, file type, and a channel number to the monitor.
Your program refers to that file or device in all I/O operations thereafter by
the assigned channel number. You can specify a device (non-file-structured)
or a device and file name (file-structured).

1.1.2.6 Device Blocks — A device block is a four-word block of Radix-50
information. You set up the block to specify a physical or logical device name,
file name, and file type for use with a programmed request. This information
is passed to the monitor when your program opens a file to locate the refer-
enced device and the file name in the corresponding directory.

For example, a device block representing the file FILE.TYP on device DK:
could be written as

+RADSO /DK /
+RADSO /FIL/
+RADSO /E /
{RADSO /TYPR/

Introduction to Advanced RT-11 Programming 1-11

1-12

The first word contains the device name, the second and third words contain
the file name, and the fourth word contains the file type. Device, file name,
and file type must each be left-justified in the appropriate field. This string
could also have been written as

+RADSO /DK FILE TYPR/

Spaces must fill out each field. Also, the colon and period separators must not
appear in the string since they are only used by the Command String Inter-
preter to delimit the various fields.

1.1.2.7 Programmed Request Errors — Programmed requests use three meth-
ods of reporting errors detected by the monitor:

1. Setting the carry bit of the processor status word (PS)
2. Reporting the error code in byte 52 of the system communications area

3. Generating a monitor error message

If a programmed request has been executed unsuccessfully, the monitor re-
turns to your program with the carry bit set. The carry bit is returned clear
after the normal termination of a programmed request. Almost all requests
should be followed by a Branch Carry Set (BCS) or Branch Carry Clear
(BCC) instruction to detect a possible error.

Because some programmed requests have several error codes — that is, errors
can be generated for different reasons — byte 52 in the system communica-
tions area is used to receive the error code. Thus, when the carry bit is set,

. check byte 52 to find out the kind of error that occurred in the program. The

meanings of values in the error byte are described individually for each re-
quest. The error byte is always zero when the carry bit is clear. Your program
should reference byte 52 with absolute addressing. Always address location 52
as a byte, never as a word, since byte 53 has a different usage. The following
example shows how byte 52 can be tested for the error code.

ERRBYT=52
+PRGREQ AREA+ARG1 +. .. +ARG2

B5CE ERROR

+
*

+

ERROR: TSTB B#ERRBYT

Error messages generated by the monitor are caused by fatal errors, which
cause your program to terminate immediately. Some fatal errors can be inter-
cepted and have their values returned in byte 52 (see the .HERR/.SERR
programmed requests).

1.1.2.8 User Service Routine (USR) Requirement — Many
programmed requests require the USR to be in memory. Some of these re-
quests always require a fresh copy of the USR to be read in because the code

Introduction to Advanced RT-11 Programming

to execute them resides in the USR buffer area. Since the buffer area gets
overlaid by data used to perform other system functions, the USR must be
read in from the system device even if there is a copy of the USR presently in
memory. Table 1-2 shows the programmed requests that require the USR.

Table 1-2: Programmed Requests Requiring the USR

Monitor
Request

SJ FB XM
.CDFN yes* no no
.CLOSE (see Note 1) yes yes yes
.CSIGEN yes yes yes
.CSISPC yes yes yes
.DELETE ves yes ves
DSTATUS yes ves yes
.ENTER yes yes yes
.EXIT yes yes yes
.FETCH ves yes yes
.GTLIN yes yes yes
HRESET ves no no
.LOCK (see Note 2) yes yes yes
.LOOKUP ves yes yes
.QSET yes* yes* yes
.RELEAS yes yes yes
.RENAME yes yes ves
.SRESET yes* no no
.TLOCK (see Note 3) yes ves yes

Note 1: Only if channel was opened with an .ENTER pro-
grammed request

Note 2: Only if the USR is in a swapping state
Note 3: Only if the USR is not in use by another job

* The requests marked with an asterisk always require a
fresh copy of the USR to be read in before they can be
executed.

USR requirements for programmed requests differ between the SJ and FB
monitors as shown in the table. The .CLOSE programmed request on non-file-
structured devices, such as a line printer or terminal, does not
require the USR under any monitor.

The USR is not reentrant and cannot be shared by concurrent jobs. Thus,
when the USR is in use by one job, another job requiring it must queue up for
it. This is particularly important for concurrent jobs when devices such as
magnetic tape or cassette are active. For example, USR file operations on tape
devices require a sequential search of the tape. When a background program
is running the USR, the foreground job is locked out until the tape operation
is completed. You should be aware that this operation may take considerable
time. The .SPFUN request can be used to perform asynchronous directory
operations on tape. In the FB and XM monitors, the .TLOCK request can be
used by a job to check USR availability.

Introduction to Advanced RT-11 Programming 1-13

1-14

Any request that requires the USR to be in memory can also require that a
portion of your program be saved temporarily in the system device swap file
(that is, “swapped out” and stored in the file SWAP.SYS to provide room for
the USR). The USR is then read into memory. This swapping is invisible to
you in normal operation. However, you can optimize programs so that they
require little or no swapping, thereby saving time.

Consider the following items if a swap operation is necessary.

1. The background job
If a .SETTOP request in a background job specifies an address beyond the
point at which the USR normally resides, a swap is required when the
USR is called. Section 2.4.50 details the operation of the .SETTOP re-
quest. This case is not encountered in XM because the USR is always
resident.

2. The value of location 46
If you assemble an address into word 46 or move a value there while the
program is running, RT-11 uses the contents of that word as an alternate
place to swap the USR. If location 46 is zero, this indicates that the USR
will be at its normal location in high memory. If the USR does not require
swapping, this value is ignored.

A foreground job must always have a value in location 46 unless it is
certain that the USR will never be swapped. If the foreground job does not
allow space for the USR and a swap is required, a fatal error occurs. The
SET USR NOSWAP command makes the USR permanently resident.

If you specify an alternate address in location 46, the SJ monitor does not
verify the validity of the USR swap address. Thus, if the area to be
swapped overlays the resident monitor, the system is destroyed.

3. Monitor offset 374
The contents of monitor offset 374 indicate the size of the USR in bytes.
Programs should use this information to dynamically determine the size of
the region needed to swap the USR.

4. Protecting program areas
Make sure that certain areas of your program do not get overlaid when you
swap in the USR. These areas are the program stack, any parameter block
for calls to the USR, the EMT instruction that invoked the USR, I/O
buffers, device handlers, interrupt service routines, queue elements, de-
fined channels, and completion routines in use when the USR is being
called.

The RT-11 Software Support Manual provides additional information on the
USR.

1.1.3 Using Programmed Requests

This section describes how to use and implement programmed requests to
access the various monitor services. Chapter 2 contains, in alphabetical order,
detailed descriptions of each request, including examples.

Introduction to Advanced RT-11 Programming

1.1.3.1 Initialization and Control — Typically, you use several programmed
requests to control the operating environment in which your program is run-
ning. These requests can include control of memory allocation, I/O access,

devices, and error processing.

MEMORY ALLOCATION

The memory needs of a program are specified to the monitor by the .SETTOP
request. When loaded, a program occupies the memory specified by its image
created at link time. To obtain more memory, a .SETTOP request is exe-
cuted, with RO containing the highest address desired. The monitor returns
the highest address available. Resident handlers or foreground jobs can pre-
vent all the memory that is desired from being available to the program. If the
memory requirements of the running program permit, the monitor retains the
User Service Routine (USR) in memory, which reduces swapping. Otherwise,
the monitor will automatically swap part of the user program to the swap file
called SWAP.SYS on the system device. The .SETTOP request then allows
you to determine how much memory is available and to control monitor
swapping characteristics. See the .SETTOP programmed request in Chapter
2 for special optional features provided in an extended memory environment.
Additional information on the .SETTOP request is also given in the RT-11
Software Support Manual.

If a program needs so much memory that the USR must swap, swapping will
automatically occur whenever a USR call is made. However, if a program
knows what file operations are necessary, and these operations can be consoli-
dated and performed in localized areas, the efficiency of the system can be
enhanced in the following manner: request the USR to be swapped in, have it
remain resident while a series of consecutive USR operations is performed,
then swap the USR out when the sequence of operations is completed.

Three programmed requests control USR swapping. The request .LOCK
causes the USR to be made resident for a series of file operations. It can
operate either by: (1) requiring a portion of your program to be written to the
swap blocks prior to reading in the USR; (2) only requiring a fresh copy of
the USR if the USR buffer is overwritten; or (3) not requiring the USR to
be read in if it finds the USR intact. The request
JUNLOCK swaps your program back in if it was swapped out and the USR is
overwritten; otherwise, no swapping occurs. The request .TLOCK makes the
USR resident in foreground/background programs, but only if the USR is not
currently servicing another job’s file requests at the time the .TLOCK request
is issued. This check prevents a job from becoming blocked while the USR is
processing another job’s request. When a .TLOCK succeeds, the USR is ready
to perform an operation immediately. In a single-job environment, the
.TLOCK request performs exactly like the .LOCK request.

....... Faly g 3 s~

nTm 11 . 10 o : ’
ni-1li proviaes 10 (Ged ual) ob’s

c S rt ejon’s
is, 16 files can be active at one time. Up to 256 (decimal) channels can be
activated with the .CDFN request. This request sets aside memory inside the
job area to provide the storage required for the status information on the
additional channels. Once the .CDFN request has been executed, as many

channels as specified can be active simultaneously. Use the .CDFN request

impure area — that

Introduction to Advanced RT-11 Programming 1-15

1-16

during the initialization phase of your program. The keyboard monitor com-
mand CLOSE does not work if you define new input or output channels with
the .CDFN programmed request.

The .CNTXSW request allows the job to add memory locations to the list of
items to be context-switched. The request itself does not cause a context
switch to occur.

INPUT/OUTPUT ACCESS

Each pending I/O, message, or timer request must be placed into one of the
monitor queues which is then processed on a first-in first-out basis by the
monitor. In RT-11, all I/O transfers are queued to allow asynchronous pro-
cessing of the request. A queue is a list of elements, each element being seven
words long (ten words [decimal] long when using the extended memory moni-
tor). When your program issues a data transfer programmed request, the
information specifying the transfer is stored by the monitor in a queue ele-
ment. This information is passed to the device handler, which then processes
the I/O transfer.

Each job, whether background or foreground, initially has only a single queue
element available. Additional queue elements may be set aside with a .QSET
request. The .QSET request declares where in memory the additional queue
elements will go and how many elements there will be. If you do not include a
-QSET request in your program, the monitor uses the queue element set aside
in the job’s impure area. In this case, since only one element is available for
each job, all operations would be synchronous. That is, any request issued
when the available queue element list is empty has to wait for that element to
become free. The number of queue elements necessary equals the number of
asynchronous operations pending at any time.

DEVICES

The .DEVICE request turns off any special devices that are being used by the
running program upon program termination. This request (available only in
FB or XM) allows you to specify a set of device control register addresses and
a value to be set in each register on job exit. When a job is
terminated — either normally, by an error condition, or by a CTRL/C — the
specified values are set in the specified locations.

Loading a background job with a GET, R, or RUN command, or loading a
foreground or system job with a FRUN and SRUN command, respectively,
alters most locations in the vector area 0 to 476. RT-11 automatically pre-
vents alteration of all locations used by the system, such as the clock, the
console terminal, and all vectors used by handlers that are loaded. If a fore-
ground job in a foreground/background environment accesses a device directly
through an in-line interrupt service routine, the foreground job must notify
the monitor that it must have exclusive use of the vectors. You use the
PROTECT programmed request to allow the foreground job to gain exclusive
use of a vector or set of vectors. The .PROTECT request can also be used by
either the foreground or background job, prior to setting the contents of a
vector, to test whether the vectors are already controlled by a job. This
serves as further protection against jobs interfering with each other. An

Introduction to Advanced RT-11 Programming

.UNPROTECT programmed request relinquishes control of a vector, making
the vector available to both the background and foreground jobs.

The request .SPFUN is available for performing special functions on devices
such as magnetic tape. .SPFUN requests are used for such functions as rewind
or space-forward operations.

ERROR PROCESSING

During the course of program execution, errors can occur that cause the moni-
tor to stop and print a MON-F error message. Examples include directory 1/0
errors, monitor I/O errors on the system device, or 1/0 requests to nonexistent
devices. Some programs cannot afford to allow the monitor to abort the job
because of such errors. For example, in the case of RT-11 multi-user BASIC, a
directory I/O error affecting only one of the users should not cause the whole
program to abort. For such applications, a pair of requests is provided, . HERR
and .SERR. A .HERR request (normal default) indicates that the monitor
will handle severe errors and stop the job. A .SERR request causes the moni-
tor to return most errors to your program in byte 52 for appropriate action.

In addition to processing 1/O errors through .HERR and .SERR requests, you
can also handle certain fatal errors through the . TRPSET or .SFPA requests.
You use these requests to prevent your program from aborting due to a trap to
location 4 or 10 (octal), or to the exception traps of the Floating Point Proces-
sor (FPP) or Floating Point Instruction Set (FIS). A TRPSET request speci-
fies the address of a routine that the monitor enters when a trap to location 4
or 10 occurs. A .SFPA request specifies the address of a floating-point excep-
tion routine that is called when an exception trap occurs.

1.1.3.2 Allocating System Resources and Reporting Status — Several pro-
grammed requests interrogate the system for specific details about a device or
file that your program may be using.

The .DATE request obtains the system date, which then can be printed on a
report or entered as a data record in a file. The time-of-day can be obtained
with a .GTIM request and used in the same way. A program can set the
system date and/or time by using the .SDTTM programmed request. Chang-
ing the date or time has no effect on any outstanding mark time or timed wait
requests.

With a .GTJB request you can obtain information on whether the job is
running in the foreground or background, the memory limits of the job, the
virtual high limit for a job created with the linker /V option (XM only), the
unit number of the job’s console terminal (if you are using the multi-terminal
feature), the address of the job’s channel area, the address of the job’s impure
area, and the job’s logical job name (if you are using a monitor with the
system job feature).

Status information on a file — such as its starting block, its length, and the
device it is located on — can be obtained with a .CSTATUS request (avail-
able only in FB and XM). Status information on a device — such as its block

length and controller-assighment number — can be obtained with a
.DSTATUS request.

Introduction to Advanced RT-11 Programming 1-17

1-18

The .MTSTAT programmed request provides multi-terminal status informa-
tion when the multi-terminal feature is being used.

The programmed requests .MFPS and .MTPS read the priority bits and set
the priority and T-bits in the processor status word (PSW). These requests
allow a program to run without change on any processor from an LSI-11 to a
PDP-11/60.

1.1.3.3 Command Interpretation — Two of the most useful programmed re-
quests are .CSIGEN and .CSISPC. These requests call the Command String
Interpreter (CSI), which is part of the USR. They are used to process standard
RT-11 command strings in the general form

*Dev:Output/Option=Dev:Input/Option

The asterisk is printed on the terminal by the monitor’s programmed request
processor. The RT-11 system programs use the same command string (see the
RT-11 System User’s Guide).

Use the .CSIGEN request to enter a command string at the terminal. The CSI
analyzes the string for correct syntax, automatically loads the required device
handlers into memory, opens the files specified in the command, and returns
to your program with option information. Thus, with one request, a language
processor such as the FORTRAN compiler is ready to input from the source
files and output the listing and binary files. You can specify the available
options in the command string to control the operation of the language proces-
sor. The .CSIGEN request uses channels 0 through 2 to accommodate three
output file specifications and channels 3 through 10 (octal) to accommodate
six input file specifications.

The programmed request .CSISPC provides you with the services of the com-
mand processor, but allows you to do your own device and file manipulation.
When you use .CSISPC, the CSI obtains a command string, analyzes it syn-
tactically, places it into tabular form, and passes the table to your program for
appropriate action.

The .GTLIN request obtains one line of input at a time instead of one charac-
ter. This request supports the indirect file function and allows your program
to obtain one line at a time from an indirect file. Thus, if your program was
started through an indirect file, the line is taken from the indirect file and not
the terminal.

1.1.3.4 File Operations — A device handler is the normal RT-11 interface
between the monitor and the peripheral device on which file operations are
performed. The console terminal handlers (in FB and XM) and the interjob
message handlers are part of the resident moniteor and require no attention on
your part. All other device handlers are loaded into memory with either a
.FETCH request from the program or a LOAD command from the keyboard
before any other request can access that device. Section 1.1.3.5 of this manual
describes the use of programmed requests for performing I/O operations. The
RT-11 Software Support Manual describes how to write device handlers for
RT-11.

Introduction to Advanced RT-11 Programming

Once the handler is in memory, a .LOOKUP request can locate existing files
and open them for access. New files are created with an .ENTER request.
Space for the file can be defined and allocated as:

1. One-half the size of the largest unused space or all of the second largest
space, whichever is larger (the default)

2. A space of a specific size
3. As much space as possible
The way the system allocates the space depends upon the parameter specified

by you to the file size argument of the .ENTER request.

When file operations are completed, a .CLOSE request makes the new file
permanent in the directory, or a .PURGE request can free the channel with-
out making the file permanent in the directory. Existing permanent files can
be renamed with a .RENAME request or deleted with a .DELETE request.

Two other requests, .SAVESTATUS and .REOPEN, add to the flexibility of
file operations. The .SAVESTATUS request remembers the current status of
a file that has been opened with a .LOOKUP request and makes the file
temporarily inactive, thus freeing the channel for use by another file. The
REOPEN request causes the inactive file to be reactivated on any free chan-
nel, and I/O continues on that channel. In this manner, you can open more
files than there are channels. If, in addition, you lock the USR in memory, you
can open all the files your job needs while maintaining system swapping
efficiency. The procedure is:

1. Lock the USR in memory, and open the files that are needed.
2. Issue the .SAVESTATUS request. '
3. Release the USR.

4. Tssue a .REOPEN request each time a file is needed.

5. Lock USR, and use the .CLOSE request to make the files permanent.

Because a .REOPEN request does not require any I/0, all USR swapping and
directory motion can be isolated in the initialization code for an application,
and many files can be manipulated at one time.

1.1.3.5 Input/Output Operations — You can perform I/O in three different
modes:

¢ synchronous
e asynchronous
¢ event-driven
These modes allow you to optimize the overiap of CPU and 1/0 processing.

The programmed requests .READW and .WRITW perform synchronous
I/0 — that is, the instruction following the request is not executed until the

Introduction to Advanced RT-11 Programming 1-19

1-20

I/O transfer is completely finished; thus the program and the I/0 process are
synchronized.

The program requests .READ, .WRITE, and .WAIT perform asynchronous
I/O — that is, the .READ or .WRITE request adds the transfer request to the
queue for the device; if the device is inactive, the transfer begins; control
returns to the user program before the transfer is completed. The .WAIT
programmed request, however, blocks the program until the transfer is com-
pleted. This allows the I/O operation to be completed before any further
processing is done. Asynchronous I/O is most commonly used for double
buffering.

Program requests such as .READC and .WRITEC perform event-driven
I/O — that is, they initiate a completion routine when the transfer is fin-
ished.

Event-driven I/O is practical for conditions where system throughput is im-
portant, where jobs are divided into overlapping processes, or where processor
timings are random. The last condition is the most attractive case for using
event-driven I/O because processor timing may range up to infinity in that a
process is never completed.

Since the completion routine is essential to event-driven I/O, the next section
presents general guidelines for writing completion routines.

COMPLETION ROUTINES

Completion routines are part of your program. They execute following the
completion of some external operation, interrupting the normal program flow.
On entry to an I/O completion routine, Registeér 0 contains the contents of the
Channel Status Word and Register 1 contains the channel number for the
operation. The carry bit is not significant.

Completion routines are handled differently, depending on whether the pro-
gram is being run under the SJ monitor or the FB and XM monitors. Under
the SJ monitor, completion routines are totally asynchronous and can inter-
rupt each other. An interrupted completion routine is resumed when the
interrupting routine is finished. Under the FB and XM monitors, completion
routines do not interrupt one another. Instead, they are queued, and the next
routine is not entered until the first is completed.

If the foreground job is running and a foreground I/O transfer completes and
wants a completion routine, that routine is entered immediately if the fore-
ground job is not already executing a completion routine. If it is in a comple-
tion routine, that routine continues to termination, at which point other com-
pletion routines are entered in a first-in first-out order. If the background job
Is running (even in a completion routine) and a foreground I/O transfer com-
pletes with a specified completion routine, execution of the background job is
suspended and the foreground routine is entered immediately.

Also under the FB monitor, it is possible to request a completion routine from
an in-line interrupt service routine through a .SYNCH programmed request.
This allows the program to issue other programmed requests to the monitor.

Introduction to Advanced RT-11 Programming

Restrictions that must be observed when writing completion routines are as
Ff\]] TETCY

i01i0OWS!

1. Requests that require the USR should not be issued within a completion
routine. A fatal monitor error is generated if the USR is called from a
completion routine.

2. Completion routines should never reside in memory space that is used for
the USR, since the USR can be interrupted when I/O terminates and the
completion routine is entered. If the USR has overlaid the routine, control
passes to a random place in the USR, with a HALT or error trap being the
likely result.

3. Registers other than RO or R1 must be saved upon entry to completion
routines and restored upon exiting. Other registers cannot transfer data
between the mainline program and the completion routine.

4. Under the XM monitor, completion routines must remain mapped while
the request is active and the routine can be called.

5. The completion routine must exit with an RTS PC instruction because the
routine was called from the monitor with a JSR PC,ADDR, where ADDR
is the user-supplied entry point address. If you exit completion routines
with an .EXIT request, your job will abort. An exit from a completion
routine can be done by using an .SPCPS request to change the mainline
PC to point to an .EXIT in the main code. As soon as all completion
routines are done, the exit will be executed.

6. Under the XM monitor, completion routines scheduled as a result of a
.SYNCH run in kernel mapping, not user mapping.

Frequently, a program’s completion routine needs to change the flow of con-
trol of the mainline code. For example, you may wish to establish a schedule
among the various tasks of an application program after a certain time has
elapsed, or after an I/O operation is complete. Such an application needs to
redirect the mainline code to a scheduling subroutine when the application’s
timer or read/write completion routine runs. The .SPCPS programmed re-
quest, which can only be used in a foreground/background or extended mem-
ory environment, saves the mainline code program counter and processor
status word, and changes the mainline code program counter to a new value.
If the mainline code is performing a monitor request, that request finishes
before rerouting can occur.

TERMINAL INPUT/OUTPUT

Several programmed requests are available to provide an I/O capability with
the console terminal: a . TTYIN request obtains a character from the console;
a .TTYOUT request prints a character on the terminal; long strings of
characters — even muitiple lines — are output with the .PRINT request.
Programs can also issue .TTINR and .TTOUTR requests, which indicate that
a character is not available or that the output buffer is fuii. The program can
then resume operation and try again at a later time. A .RCTRLO request
forces the terminal output to be reactivated after a CTRL/O has been typed to
suppress it, so that urgent messages will be printed.

Introduction to Advanced RT-11 Programming 1-21

1-22

You can use the .TTYIN/. TTINR requests in special (single-character) mode
by setting bit 12 of the Job Status Word. See the .TTYIN programmed re-
quest for a description of special mode.

MULTI-TERMINAL REQUESTS

The RT-11 multi-terminal feature allows your program to perform input/out-
put on up to 16 terminals. Several programmed requests allow you to perform
I/0 on these terminals. Before issuing any of these programmed requests to a
terminal, you must issue the .MTATCH request, which reserves the specified
terminal for exclusive use by your program. The terminal cannot then be used
by any other job until you issue the .MTDTCH request to detach the
terminal.

The .MTIN request returns to a program characters that are typed at the
terminal, while the .MTOUT and .MTPRNT requests send characters to a
terminal. These requests are analogous to the .TTYIN, .TTYOUT, and
.PRINT requests. Note that the .TTYIN/ TTINR, .TTYOUT/. TTOUTR, and
PRINT requests can only be used with the console terminal.

You can set terminal and line characteristics with the .MTSET request. You
provide a four-word status block that contains the terminal status word, the
character of the terminal requiring fillers and the number of fillers required
for this character, the width of the carriage (80 characters by default), and
system terminal status. The status of a terminal can be obtained by issuing
the .MTGET request. The . MTSTAT request provides multi-terminal system
status information.

1.1.3.6 Foreground/Background Communications — Communication between
foreground and background jobs is obtained through the programmed re-
quests .SDAT and .RCVD. These requests also have three modes (synchro-
nous, asynchronous, and event-driven) that allow transfer of buffers between
the two jobs as if I/O were being done. The sending job treats a .SDAT request
as a write, and the receiving job treats .RCVD as a read. In the case of . RCVD
requests, the receiving buffer must be one word longer than the number of
words expected. When the data transfer is completed, the first word of the
buffer contains the number of words actually sent.

Jobs receiving messages can be activated when messages are sent through
.RCVDC completion routines, while the sending jobs use .SDATC completion
routines. The .MWAIT request is used for synchronizing message requests. It
is similar to the .WAIT request that is used for normal I/O.

If you want one job in a foreground/background environment to read or write
data in a file opened by the other job, use the .CHCOPY request. For exam-
ple, when the background job is processing data that is being collected by the
foreground job, the .CHCOPY request allows you to obtain channel informa-
tion from the foreground job and to use that channel information to control a
read or write request.

The foreground/background monitor always causes a context switch of critical
items such as machine registers, the job status area, and floating-point proc-

Introduction to Advanced RT-11 Programming

essor registers when a different job is scheduled to run because it has a higher
priority, or because the current job is blocked and a lower priority job is
runnable. When the monitor saves a job’s context, it saves the job-dependent
information on the job’s stack so that this information can be restored when

the job is runnable again.

1.1.3.7 Timer Support — Timer support by the monitor is provided through
the .MRKT request. With the .MRKT request, you specify the address of a
routine that is to be entered after a specified number of clock ticks. Like I/0
completion routines, .MRKT routines are asynchronous and independent of
the main program. After the specified time elapses, the main program is
interrupted, the timer completion routine executes, and control returns to the
interrupted program.

Pending .MRKT requests — as many as the queue can hold — are identified
by number. Pending timer requests can be canceled with a .CMKT request.
.MRKT requests are normally used as a scheduling tool where jobs are sched-
uled on the basis of clock events, detected by timer completion routines.

A job can be suspended for a specified time interval with a .TWAIT request.
For example, the . TWAIT request will allow a compute-bound job to relin-
quish CPU time to the rest of the system, permitting other jobs to run. The
.TWAIT request does not work under the SJ monitor.

1.1.3.8 Program Termination or Suspension — Many jobs come to an execu-
tion point where there is no further processing necessary until an external event
occurs. In the FB or XM environment such a job can issue a .SPND request to
suspend the execution of that job. While the foreground job is suspended, the
background job runs. When the desired external event occurs, it is detected by
a previously requested completion routine, which executes a .RSUM request
to continue the job at the point where it was suspended.

When a job is ready to terminate or reaches a serious error condition, it can
reset the system with the .SRESET and .HRESET requests. .SRESET is a
soft reset. That is, the monitor data base is reinitialized, but queued I/O is
allowed to run to completion. .HRESET is a hard reset where all I/O for the
job is stopped (by a RESET instruction in the SJ monitor or by calls to the
handlers in an FB environment).

Use the programmed request .EXIT in a background job to return control to
the keyboard monitor by causing program termination. If Register 0 contains
a zero upon execution of this request, a hard reset is performed, and the
commands REENTER, CLOSE, and START are disabled. If Register 0 con-
tains a non-zero value upon exit from your program, a soft reset is done, and
these commands are not disabled. In a foreground job, an .EXIT programmed
request stops the job but does not return control to the keyboard monitor. The
job can be removed from memory by the UNLOAD command.

You may initiate the execution of another program with a .CHAIN request
from a background job. Files remain open across a .CHAIN request and data
is passed in memory to the chained job, so that it can adjust processing. In
FORTRAN, channel information is stored in the impure area, and this infor-

Introduction to Advanced RT-11 Programming 1-23

1-24

mation is not preserved across a .CHAIN request. Thus, close any channels in

the first program, and reopen them in the program being chained to. /

1.1.3.9 System Job Communications — System job support allows communi-
cations between any two jobs in the system. The background job, designated
by the logical job name ‘B’, and the foreground job, designated by the logical
job name ‘F’, can send and receive messages between each other by using the
.RCVD and .SDAT programmed requests.

All jobs (that is, background, foreground, and system jobs) can communicate
with each other by using the Message Handler (MQ). The MQ handler per-
forms like an ordinary RT-11 device handler in the way it accepts and
dispatches I/O requests from the queued I/0 system. This permits all . READ
and .WRITE requests to send messages between any two jobs as if they were
data transfers to files. Both the sending and receiving job must issue a
.LOOKUP request on a channel and use ‘MQ’ as the device specification and
the logical job name of the job with which they are communicating as the file
specification. In the case of . READ requests, the receiving buffer must be one
word longer than the number of words expected. When the data transfer is
completed, the first word of the buffer contains the number of words actually
sent (identical to the .RCVD requests). This does not apply to the . WRITE
requests; the first word of the sending buffer is the first word of the message to
be sent. Note that the Message Handler (MQ) can also be used under the
distributed FB monitor; it does not require the system job special feature.

Care should be taken when assigning logical job names to system jobs. Pre-
grammed requests such as .LOOKUP, .CHCOPY, and .GTJB must use the
job’s current logical job name (see the RT-11 System User’s Guide).

1.1.3.10 Extended Memory Functions — The RT-11 extended memory (XM)
monitor permits MACRO programs to access extended memory by mapping
their virtual addresses to physical locations in memory. This is done in con-
junction with a hardware option called the Memory Management Unit that
converts a 16-bit virtual address to an 18-bit physical address. You access
extended memory in a program through programmed requests.

In accessing extended memory, you must first establish window and region
definition blocks. Next, you must specify the amount of physical memory the
program requires and describe the virtual addresses you plan to use. Do this
by creating regions and windows. Then, associate virtual addresses with phys-
ical locations by mapping the windows to the regions. You can remap a win-
dow to another region or part of a region, or you can eliminate a window or a
region. Once the initial data structures are set up, you can manipulate the
mapping of windows to regions that best meet your requirements.

There are four types of extended memory programmed requests:
1. Window requests 3. Map requests

2. Region requests: 4. Status requests

The window and region requests have their own data structures. RT-11 pro-
vides the macro .WDBBK to create a window definition block and the macro

Introduction to Advanced RT-11 Programming

.RDBBK to create a region definition block. Both macros automatically de-
fine offsets and bit names. Two other macros, .WDBDF and .RDBDF, define
only the offsets and bit names.

The programmed request .CRAW is used to create a window. To eliminate a
window, use the .ELAW request. A region is created using the .CRRG request.
You return a region to the free list of memory with the .ELRG request.

You map a window to a region with the .MAP request. If a window is already
mapped to a region, this window is unmapped and the new one is mapped.

D
Use the .UNMAP request to unmap a window. You obtain the mapping status

of a window 1t the .GMCX request.

Certain programmed requests are restricted when they are in an extended
memory environment. These programmed requests and their restrictions are
as follows:

.CDFN All channels must be in the lower 28K of memory (but
not in the PARI region, 20000-37776 octal).

.QSET All queue elements must be 10 (decimal) words long and
in the lower 28K of memory (but not in the PAR1 region,
20000-37776 octal).

.SETTOP Effective only in the virtual address space that is mapped
at the time the request is issued, unless the job was linked
with the /V option (see the RT-11 System User’s Guide).

.CNTXSW Not usable in virtual jobs.

Detailed information on programmed requests in an extended memory envi-
ronment is given in the RT-11 Software Support Manual.

1.1.3.11 Interrupt Service Routines — The system macro library
(SYSMAC.SML) contains some macros that are not programmed requests,
but are used like programmed requests in interrupt service communication to
the monitor. The tirst macro call in every interrupt routine is .INTEN, which
causes the system to use the system stack for interrupt service and allows the
monitor scheduler to make note of the interrupt. If device service is all the
routine does, .INTEN is the only call it need make. If you need to issue one or
more programmed requests, such as .READ or .WRITE from the interrupt
service routine, you must issue the .SYNCH call. The .INTEN call described
above switched execution to the system state, and since programmed requests

can only be made in the user state the .SYNCH call handles the switch back
atatn MTha anda £A114 thea QUNOLT A0l Ao

tU thc uDC.L DLG.(.C Lllc MUuC LUALUVVAILS L11T W 14NV 1i LaAilx LAC\/\A‘\ZDB (AD (L VVLLA}IID’
tion routine. When the .SYNCH is finished, the completion routine can exe-
cute programmed requests, initiate I/0, and resume the mainline code. The
first word after the .SYNCH call is the return address on error, while the
second word is the return on success. The RT-11 Software Support Manual
contains a detailed description of interrupt service routines.

Introduction to Advanced RT-11 Programming 1-25

26

1.1.3.12 Device Handlers — The system macro library (SYSMAC.SML) con-
tains several macros that simplify the writing of a device handler. A device
handler is divided into several sections. These sections are as follows:

¢ Preamble section ¢ Interrupt service section
¢ Header section ¢ I/O completion section
¢ [/O initiation section e Termination section

The .DRDEF macro is used near the beginning of your device handler, and
performs much of the work in the preamble section. The .DRBEG macro sets
up the first five words in the header section, stores five words of information in
block 0 of the handler file, and creates some global symbols. The .DRAST
macro sets up the interrupt entry point and the abort entry point in the
interrupt service section, and lowers the processor priority. The .DRFIN
macro generates the instructions for the jump back to the monitor at the end
of the handler I/O completion routine. The .DREND macro generates handler
termination code. The .DRBOT macro sets up the primary driver. A primary
driver must be added to a standard handler for a data device to create a
system device handler. In addition, the .DRSET macro sets up the option
table for the SET command in block 0 of the device handler file. The DRVTB
macro sets up a table of vectors for devices that require more than one vector.

Each of the device handler macros is described in Chapter 2. The RT-11
Software Support Manual details the use of these macros in writing a device
handler.

1.1.4 Compatibility with Previous RT-11 Versions

Programmed requests were implemented differently in each major release of
RT-11. The following sections outline the changes that were made to the
programmed requests from version to version.

1.1.4.1 Version 1 Programmed Requests — Programmed requests provided
with the first release of RT-11, such as .READ and .WRITE, were designed
for a single-user, single-job environment. As such, they differ significantly
from the programmed requests of the later versions. For Version 1 requests,
arguments were pushed on the stack instead of being stored, as they are
presently, in an argument block. The channel number was limited to the
range 0 through 17 (octal), while later versions can allocate an additional
number of channels. Also, no arguments could be omitted in the macro call.

Programs written for use under Version 1 assemble and execute properly
under Versions 3 and 4 when the ..V1.. macro call is used. The RT-11 overlay
handler uses Version 1 calls because they take less memory. (See Chapter 11,
Linker [LINK], of the RT-11 System User’s Guide.) The ..V1.. macro call
causes all Version 1 programmed requests to expand exactly as they did in
Version 1. However, it is to your advantage to convert Version 1 programs to
the current format for programmed requests (see Section 2.7).

1.1.4.2 Version 2 Programmed Requests — The release of RT-11 Version 2
included new programmed requests and a different way of handling argu-
ments. The new programmed requests reflected RT-11’s ability to run a fore-

Introduction to Advanced RT-11 Programming

ground job as well as a background job. They included requests to suspend/re-
sume the foreground job and to share messages and data between the two
jobs.

Arguments in Version 2 programmed requests were stored in an argument
block instead of on the stack. Another difference in Version 2 was that argu-
ments could be omitted from macro calls. If the Area argument — that is, the
pointer to the argument block — was omitted, the macro assumed that RO
pointed to a valid argument block. If any of the optional arguments were not
present, the macro placed a zero in the argument block for the corresponding
argument. Version 1 programmed requests were modified to incorporate these
changes, and the ..V1.. macro was provided to allow Version 1 programmed
requests to execute under Version 2 without further modification.

Programs written for use under Version 2 assemble and execute properly
under Version 3 and 4 when the ..V2.. macro call is used. The ..V2.. macro call
causes all programmed requests prior to Version 3 to expand in Version 2
format.

1.1.4.3 Version 3 Programmed Requests — The programmed requests for Ver-
sion 3 provide means for user programs to access regions in extended memory
and to use more than one terminal. The chief difference between Version 2
and Version 3 programmed requests is the way in which omitted arguments
are handled. In Version 3 and 4, blank arguments in the macro calls do not
cause zeros to be entered into the argument block, but leave the corresponding
argument block entry for the missing argument untouched.

This change can have a significant impact on user programs. If an argument
block within a program is to be used many times for similar calls, you can
save instructions by setting up the argument block entries only once (at
assembly or run time), and leaving the corresponding fields blank in the
macro call.

However, you should keep in mind that you may not substitute zeroes for
missing fields. Programs written with this assumption operate incorrectly and
exhibit a wide range of symptoms that can be hard to diagnose. Therefore, you
must write the necessary instructions to fill the argument block if a pro-
grammed request is issued with fields left blank in the argument list.

Programmed requests from previous versions were modified to incorporate
this change, and the ..V2.. macro call was provided so that Version 2 programs
could execute properly under Version 3 without further modification.

1.1.4.4 Version 4 Programmed Requests — Certain programmed requests
have taken on additional functions to support the system job feature. These
programmed requests and their additional functions follow:

Programmed Request Added Function
.GTJB Returns logical job naine.
.CHCOPY May specify logical job name.
.LOOKUP Opens message channel to any job; issues

.READ/C/W, .WRITE/C/W, and .WAIT re-
quests to communicate between jobs.

Introduction to Advanced RT-11 Programming 1-27

1-28

1.1.5 Programmed Request Conversion

The previous sections describe the modified format of programmed requests
that were developed after those of Version 1. This section describes the con-
version process from the Version 1 format to Version 3.

1.1.5.1 Macro Calls Not Requiring Conversion — Version 1 macro calls that do
not require any conversion are as follows:

.CSIGEN .RCTRLO
.CSISPC .RELEAS

.DATE SETTOP (Note 1)
.DSTATUS SRESET

EXIT TTINR (Note 2)
FETCH .TTOUTR (Note 2)
.HRESET TTYIN

.LOCK TTYOUT

.PRINT .UNLOCK

.QSET

Note 1: Provided that location 50 is examined for the maximum value.

Note 2: Except in FB or XM systems.

1.1.5.2 Macro Calls That Can Be Converted — Version 1 macro calls that can
be converted are as follows:

.CLOSE .RENAME
.DELETE .REOPEN
.ENTER SAVESTATUS
.LOOKUP WAIT

.READ WRITE

The general format of the ..V1.. system macro is
PRGREQ Chan,Argl,...,Argn

In this form, Chan is an integer between 0 and 17 (octal) and is not a general
assembler argument. The channel number is assembled into the EMT in-
struction itself. The arguments ArgI through Argn are either moved into RO or
pushed on the stack.

The ..V2.. equivalent of the above call is
PRGREQ Area,Chan,Argl,...,Argn

In this form, the Chan argument can be any legal assembler argument and
can be in the range from 0 to 377 (octal). Area points to an argument block
where the arguments Argl through Argn will be placed.

Introduction to Advanced RT-11 Programming

For example, consider a .READ programmed request in both forms:

Version 1: JREAD S#BUFF #2565, (BLOCK

Version 2: JREAD #AREAs#5 . #BUFF #2536, +BLOCK

+
+

+

AREA: LJHORD O SCHANNEL/FUNCTION CODE HERE

JWORD 0 3BLOCK NUMBER HERE
JWORD 0 3BUFFER ADDRESS HERE
JWORD O 3WORD COUNT HERE
JWORD © A 1 GOES HERE

Thus, the difference in the two macro calls is that Version 2 declares the
channel number as a legal assembler argument and adds an Area argument.

Table 1-3 shows a complete list of conversions for the programmed requests
that can be converted. Version 1 and Version 2 formats are given. In Version 3,
this function is performed automatically. The arguments shown inside the
square brackets ([1) are optional. Refer to the appropriate section in Chapter 2
for more details on each request.

Table 1-3: Programmed Request Conversions (Version 1 to Version 2)

Version Programmed Request
Vi: .DELETE chan,dblk
V2: .DELETE area,chan,dblk[,count]
Vi: .LOOKUP chan,dblk
V2: .LOOKUP area,chan,dblk[,count)
V1. .ENTER chan,dblk[,length]
V2: .ENTER area,chan,dblk[,length[,count]]
VL RENAME chan,dblk
v RENAME area,chan,dblk
Vi1: .SAVESTAT chan,cblk
V2: .SAVESTAT area,chan,cblk
V1: .REOPEN chan,cblk
V2. REOPEN area,chan,cblk
Vi: .CLOSE chan
V2: .CLOSE chan
Vi: READ/READW chan,buff,went,blk
V2. READ/.READW area,chan,buff,went,blk
Vi: READC chan,buff,went,crtn,blk
V2. .READC area,chan,buff,went,crtn,blk
V1: WRITE/.WRITW chan,buff,went,blk
V2. WRITE/.WRITW area,chan,buff,went,blk
V1: WRITC chan,buff,went,crtn,blk
Va: .WRITC area,chan,buff,went,crtn,blk
Vi: WAIT chan
V2. WAIT chan

Introduction to Advanced RT-11 Programming 1-29

Several important features of Version 3 calls to be kept in mind when using
them are as follows:

1. Version 3 calls require the area argument, which points to the area where
the other arguments will be (unless RO already points to it and the first
word is set up).

2. Enough memory space must be allocated to hold all the required argu-
ments.

3. The chan argument must be a legal assembler argument, not just an
integer between 0 and 17 (octal).

4. Blank fields are permitted in the Version 3 calls. Any field not specified
(left blank) is not modified in the argument block.

1.1.6 Programmed Request Summary

Many programmed requests operate only in a specific RT-11 environment,
such as under a foreground/background monitor or when using a special fea-
ture such as multi-terminal operation. Table 1-4 lists the programmed re-
quests that can be used in all RT-11 environments, including multi-terminal
operation. Table 1-5 lists the additional programmed requests that can be
used under the foreground/background monitor and extended memory moni-
tor. The EMT and function code for each request are shown in octal. Although
only the first six characters of the programmed request are significant to the
Macro assembler, the longer forms are shown to provide a better understand-
ing of the request function. Also, the purpose of each request is described.

Macros that are used in interrupt service routines and in writing device han-
dlers are listed since they are a part of the system macro library.

Table 1-4 summarizes the programmed requests that work in all RT-11 envi-
ronments. The programmed requests followed by (MT) work only under the
multi-terminal feature of RT-11.

Table 1-4: Programmed Requests for All RT-11 Environments

Name EMT Code Purpose

.CDFN 375 15 Defines additional channels for I/0

.CHAIN 374 10 Chains to another program (in background job only)

.CLOSE 374 6 Closes the specified channel

.CMKT 375 23 Cancels an unexpired mark time request (special
feature in single-job environment)

.CSIGEN 344 — Calls the Command String Interpreter (CSI) in gen-
eral mode

.CSISPC 345 — Calls the Command String Interpreter (CSI) in the
special mode

(continued on next page)

1-30 Introduction to Advanced RT-11 Programming

Table 1-4:

Programmed Requests for All RT-11 Environments (Cont.)

Name EMT Code Purpose

.CTIMIO — — Used within a device handler as a macro call to
cancel a mark time request (special feature)

.DATE 374 12 Moves the current date information into RO

.DELETE 375 0 Deletes the file from the specified device

DRAST — — Used with device handlers to create the asynchro-
nous entry points to the handler

.DRBEG — — Used with device handlers to create a five-word
header, and .ASECT locations 52 through 60

.DRBOT — — Used with system device handlers to set up the pri-
mary driver

DRDEF — — Used with device handlers to set up handler param-
eters, call driver macros from the library, and define
useful symbols

.DREND — — Used with device handlers to generate the table of
pointers into the resident monitor

.DRFIN — — Used with device handlers to generate the code re-
quired to exit to the completion code in the resident
monitor

.DRSET — — Used with device handlers to create or extend the
list of SET options for a device

DRVTR — — Used with multi-vector device handlers to generate
a table that contains the vector location, interrupt
entry point, and processor status word for each de-
vice vector

.DSTATUS 342 — Returns the status of a particular device

.ENTER 375 2 Creates a new file for output

.EXIT 350 — Exits the user program

.FETCH 343 — Loads a device handler into memory

.FORK — — Generates a subroutine call in an interrupt service
routine that permits long but not critical processing
to be postponed until all other interrupts are dis-
missed

.GTIM 375 21 Gets the time of day

.GTJB 375 20 Gets parameters of a job

.GTLIN 345 — Accepts an input line from either an indirect com-
mand file or from the console terminal

.GVAL 375 34 Returns monitor fixed offsets

.HERR 374 5 Specifies termination of a job on fatal errors

HRESET 357 — Terminates I/O transfers and does a .SRESET oper-
ation

(continued on next page)

Introduction to Advanced RT-11 Programming 1-31

]

2

Table 1-4: Programmed Requests for All RT-11 Environments (Cont.)

Name EMT Code Purpose
INTEN — — Generates a subroutine call to notify the monitor
that an interrupt has occurred, requests system
state, and sets processor priority to the specified
value
.LOCK 346 — Makes the monitor User Service Routine (USR) per-
manently resident until an .EXIT or .UNLOCK is
executed; the user program is swapped out, if neces-
sary
.LOOKUP 375 1 Opens an existing file for input and/or output via
the specified channel; opens a message channel to a
specified job
-MFPS — — Reads the priority bits in the processor status word,
but does not read the condition codes
.MRKT 375 22 Marks time, that is, sets an asynchronous routine to
be entered after specified interval (special feature in
single-job environment)
.MTATCH (MT) 375 37 Attaches a terminal for exclusive use by the request-
ing job
.MTDTCH (MT) 375 37 Detaches a terminal from one job and frees it for use
' by other jobs
MTGET (MT) 375 37 Returns the status of a specified terminal to the user
MTIN (MT) 375 37 Operates as a .TTYIN request for a multi-terminal
. configuration
.MTOUT (MT) 375 37 Operates as a .TTYOUT request for a multi-termi-
nal configuration
.MTPRNT (MT) 375 37 Operates as a .PRINT request for a multi-terminal
configuration
MTPS Sets the priority bits, condition codes, and T-bit in
the processor status word
.MTRCTO (MT) 375 37 Resets the CTRL/O flag for the designated terminal
MTSET (MT) 375 37 Modifies terminal status in a multi-terminal config-
uration
MTSTAT (MT) 375 37 Provides multi-terminal system status
.PRINT 351 — Outputs an ASCII string terminated by a zero byte
or a 200 byte
.PURGE 374 3 Clears out a channel for reuse
.QELDF Used with device handlers to define offsets in the
I/0 queue element
.QSET 353 — Increases the size of the monitor I/O queue
.RCTRLO 355 — Enables output to the terminal, overriding any pre-

vious CTRL/O

(continued on next page)

Introduction te Advanced RT-11 Programming

Table 1-4: Programmed Requests for All RT-11 Environments (Cont.)

Name

EMT

Code

Purpose

.READ

.READW

.RELEASE

.RENAME

.REOPEN

.SAVESTATUS

.SCCA
.SDTTM
.SERR

.SFPA

.SPFUN

.SRESET

.SYNCH

.TIMIO

.TLOCK

375

o)
=3
o

315

375
375
374

354

375

375

352

10,

10

35
40

Transfers data on the specified channel to a mem-
ory buffer and returns control to the user program
when the transfer request is entered in the I/O
queue; no special action is taken upon completion of

I/0

Transfers data on the specified channel to a mem-
ory buffer and returns control to the user program
when the transfer request is entered in the I/O
queue; upon completion of the read, control trans-
fers asynchronously to the completion routine speci-
fied in the .READC request

Transfers data via the specified channel to a mem-
ory buffer and returns control to the user program
only after the transfer is complete

Removes a device handler from memory

Changes the name of the indicated file to a new
name; if this request is attempted when using mag-
tape, the handler returns an illegal operation code

Restores the parameters stored via a .SAVES-
TATUS request and reopens the channel for I/0

Saves the status parameters of an open file in user
memory and frees the channel for use

Enables intercept of CTRL/C commands

Sets the system date and/or time .

Inhibits most fatal errors from aborting the current
job

Specifies the highest memory location to be used by

the user program

Sets user interrupt for floating-point processor ex-
ceptions

Performs special functions on magtape, cassette.
diskette, and some disk devices

Resets all channels and releases the device handlers
from memory

Generates a subroutine call that enables your pro-
gram to perform programmed requests from within

an interrupt service routine

Generates a subroutine call in a handler to schedule
a mark time request (special feature in all environ-
ments)

Indicates if the USR is currently used by another
job and performs exactly as a .LOCK request in a
single-job environment

(continued on next page)

Introduction to Advanced RT-11 Programming 1-33

Table 1-4: Programmed Requests for All RT-11 Environments (Cont.)

Name EMT Code Purpose

.TRPSET 375 3 Sets a user intercept for traps to monitor locations 4
and 10

.TTINR 340 — Reads none character from the keyboard buffer

TTYIN

.TTYOUT 341 — Transfers none character to the terminal input

.TTOUTR buffer -

.UNLOCK 347 — Releases the USR after execution of a .LOCK and
swaps in the user program, if required

V1L — — Provides compatibility with Version 1 format

V2. — — Provides compatibility with Version 2 format

WAIT 374 0 Waits for completion of all I/O on a specified chan-
nel

.WRITC 375 11 Transfers data on the specified channel to a device

and returns control to the user program when the
transfer request is entered in the I/O queue; upon
completion of the write, control transfers asynchro-
nously to the completion routine specified in the
.WRITC request

-WRITE 375 11 Transfers data on the specified channel to a device
and returns control to the user program when the

transfer request is entered in the I/O queue; no spe-
cial action is taken upon completion of the I/O

WRITW 375 11 Transfers data on the specified channel to a device
and returns control to the user program only after
the transfer is complete

Table 1-5 lists the additional programmed requests that can be used only in a
foreground/background and extended memory environment. The programmed
requests followed by XM in parentheses ((XM)) operate only in an extended
memory environment.

Table 1-5: Foreground/Background and Extended Memory
Programmed Requests

Name EMT | Code Purpose
.CHCOPY 375 13 Allows one job to access another job’s channel
.CNTXSW 375 33 Requests that the indicated memory locations be
part of FB context switch process
.CRAW (XM) 375 36 Creates a window in virtual memory
.CRRG (XM) 375 36 Creates a region in extended memory
.CSTAT 375 27 Returns the status of the channel indicated

(continued on next page)

1-34 Introduction to Advanced RT-11 Programming

Table 1-5: Foreground/Background and Extended Memory
Programmed Requests (Cont.)

Name EMT | Code Purpose

.DEVICE 375 14 Allows device interrupts in FB to be disabled upon
program termination

ELAW (XM) 375 36 Eliminates an address window in virtual memory

.ELRG (XM) 375 36 Eliminates an allocated region in extended memory

.GMCX (XM) 375 36 Returns mapping status of a specified window

.MAP (XM) 375 36 Maps a virtual address window to extended memory

MWAIT 374 11 Waits for messages to be processed

PROTECT 375 31 Requests that specified vectors in the area from 0 to
476 be given exclusively to the current job

.RCVD 375 26 Receives data — allows a job to read messages or

.RCVDC data sent by another job in an FB environment. The

RCVDW three modes correspond to the .READ, .READC,
and .READW requests

.RDBBK (XM) — — Reserves space in a program for a region definition
block and sets up the region size and region status
word

.RDBDF (XM} — — Defines the offsets and bit names associated with a
region definition block

.RSUM 374 2 Causes the mainline code of the job to be resumed
after it was suspended by a .SPND request

SDAT 375 25 Sends messages or data to the other job in an FB

.SDATC environment. The three modes correspond to the

.SDATW .WRITE, .WRITC, and .WRITW requests

.SPCPS 375 41 Used in a completion routine to change the flow of
control of the mainline code (special feature)

.SPND 374 1 Causes the running job to be suspended

TWAIT 375 24 Suspends the running job for a specified amount of
time

.UNMAP (XM) 375 36 Unmaps a virtual address memory window

.UNPROTECT 375 31 Cancels the .PROTECT vector protection request

WDBBK (XM) — — Reserves space in a program for a window definition
block and sets up the associated data

.WDBDF (XM) — — Defines the offsets and bit names associated with a
window definition block

1.2 Using the System Subroutine Library
The system subroutine library is a collection of FORTRAN-callabie routines
that allow various RT-11 system features to be used by a FORTRAN pro-
grammer. There are no FORTRAN routines to manipulate extended memory
under the extended memory (XM) monitor.

Introduction to Advanced RT-11 Programming 1-35

This collection of subroutines is placed in a system library called
SYSLIB.OBJ. This library file also contains the overlay handlers, utility func-
tions, a character string manipulation package, and two-word integer support
routines. The linker uses this library to resolve undefined globals. It is resi-
dent on the system device (SY:).

You should be familiar with the PDP-11 FORTRAN Language Reference
Manual and the RT-11/RSTS/E FORTRAN IV User’s Guide before using the
material in this chapter.

The system subroutine library provides the following capabilities:

1.

Complete RT-11 I/O facilities, including synchronous, asynchronous, and
event-driven modes of operation. FORTRAN subroutines can be activated
upon completion of an input/output operation.

Timed scheduling of completion routines. This feature is standard in the
FB and XM monitors, and is a special feature in the SJ monitor.

Facilities for communication between foreground and background jobs.
FORTRAN language interrupt service routines for user devices.

Complete timer support facilities, including timed suspension of execution
in a FB or XM environment, conversion of different time formats, and
time-of-day information. The timer support facilities can use either 50- or
60-cycle clocks.

All RT-11 auxiliary input/output functions, including the capabilities of
opening, closing, renaming, and creating or deleting files on any device.

All monitor-level information functions, such as job partition parameters,
device statistics, and input/output channel statistics.

. Access to the RT-11 command string interpreter (CSI).

A character string manipulation package supporting variable-length char-
acter strings.

10. INTEGER*4 support routines that allow two-word integer computations.

NOTE

When variables are described or mentioned, and unless other-
wise specified, INTEGER means INTEGER*2, (16-bit integer)
and REAL means REAL*4 (single-precision floating point). In-
teger and real arguments to subprograms are indicated in this
section as follows:

i = INTEGER*2 arguments
j = INTEGER*4 arguments
a= REAL*4 arguments
d= REAL*8 arguments

1-36 Introduction to Advanced RT-11 Programming

In general, the routines in SYSLIB were written for use with RT-11 V2 or later
and FORTRAN IV V1B or later versions. The use of SYSLIB with prior
versions of RT-11 or FORTRAN may lead to unpredictable results.

1.2.1 System Conventions

This section describes system conventions that must be followed for proper
operation of calls to the system subroutine library. Certain restrictions that
apply are described in Section 1.2.1.7.

1.2.1.1 Channel Numbers — A channel number is a logical identifier for a file
or for a set of data used by FORTRAN. Thus, when you open a file on a
particular device, you assign a channel number to that file. To refer to an
open file, it is only necessary to refer to the appropriate channel number.

The FORTRAN system has 16(decimal) channels available for your use. The
call IGETC assigns a channel to your program and notifies the FORTRAN I/O
system, which also uses these channels, that the channel is in use. When there
is no longer need for a channel, the program should close the channel with a
CLOSEC, ICLOSE or a PURGE SYSLIB call. The channel shouid be freed
and returned to the FORTRAN I/O system with a IFREEC call.

Up to 255(decimal) channels can be activated with the ICDFN call. This
function sets aside memory in the job area to accommodate status informa-
tion for the extra channels. Use the ICDFN call during the initialization phase
of your program. You can use all channels numbered higher than 15(decimal).
The FORTRAN I/O system uses channels 0 through 15(decimal).

Channels must be allocated in the main program routine or its subprograms.
Do not allocate channels in routines that are activated as the result of 1/0
completion events or ISCHED or ITIMER calls.

1.2.1.2 Completion Routines — Completion routines can be written in FOR-
TRAN or assembly language, depending upon the function called.

A completion routine is a subprogram that executes asynchronously with a
main program and is scheduled to run as soon as possible after the completion
of an associated event, such as an I/O transfer or the passing of a specified
time interval. All completion routines of the current job have higher priority
than other parts of the job. Therefore, once a completion routine becomes
runnable because of its associated event, it interrupts execution of the job and
continues to execute until it relinquishes control.

Completion routines are handled differently in the SJ and the FB and XM
monitors. In the SJ monitor, these routines are totally asynchronous and can
interrupt one another. In the FB and XM monitors, completion routines do
not interrupt each other but are queued and have to wait until the correct job

is running. They are then scheduled on a first-in, first-out basis.

Assembly language completion routines exit with an RTS PC instruction.
FORTRAN completion routines exit by the execution of a RETURN or END
statement in the subroutine. All names of completion routines external to the

Introduction to Advanced RT-11 Programming 1-37

1-38

routine being coded that are passed to scheduling calls must be specified in an
EXTERNAL statement in the FORTRAN program unit issuing the call.

A completion routine written in FORTRAN can have a maximum of two
arguments as follows:

Form: SUBROUTINE crtn [(iargl,iarg2)]

where:
crtn is the name of the completion routine

largl is equivalent to RO on entry to an assembly language comple-
tion routine

larg2 is equivalent to R1 on entry to an assembly language comple-
tion routine

If an error occurs in a completion routine or in a subroutine at completion
level, the error handler traces back through to the original interruption of the
main program. Thus, the traceback is shown as though the completion routine
were called from the main program. This lets you know where the main
program was executing, so that when an error is fatal, it can be diagnosed and
corrected.

Certain restrictions apply to completion routines that are activated by the
following calls:

INTSET ISDATF
IRCVDC ISPFNC
IRCVDF ISPFNF
IREADC ITIMER
IREADF IWRITC
ISCHED IWRITF
ISDATC MRKT

The restrictions that apply when using these calls are as follows:

* No channels can be allocated by calls to IGETC or freed by calls to IFREEC
from a completion routine. Channels to be used by completion routines
should be allocated and placed in a COMMON block for use by the routine.

® The completion routine cannot perform any call that requires the use of the
USR, such as LOOKUP and IENTER. See section 1.2.1.5 for a list of the
SYSLIB functions that call the USR.

* Files that are used by the completion routine must be opened and closed by
the main program. There are, however, no restrictions on the input or out-
put operations that can be performed in the completion routine. If many
files must be made available to the completion routine, they can be opened
by the main program and saved for later use (without tying up RT-11
channels) by an ISAVES call. The completion routine can later make them
available by reattaching the file to a channel with an IREOPN call.

Even if the completion routine itself does not issue any programmed re-
quests, but does perform I/O to a logical unit number through the OTS, that

Introduction to Advanced RT-11 Programming

logical unit number must be opened from the main level. To accomplish
this, either the first I/O access or an OPEN statement must be issued from
main level. A completion routine may not call CLOSE to close a logical
unit.

e FORTRAN subroutines are reusable but not reentrant. That is, a given
subroutine can be used many times as a completion routine or as a routine
in the main program, but a subroutine executing as main program code does
not work properly if it is interrupted and then called again at the comple-
tion level. This restriction applies to all subroutines that can be invoked at
the completion level while they are active in the main program.

e Under the SJ monitor, only one completion function should be active at any
time.

1.2.1.3 Device Blocks — A device block is a four-word block of RAD50 infor-
mation that specifies a physical device and a file name. In FORTRAN, you
can use one of three different methods to set up this block as follows:

1. You can use the DIMENSION and DATA statements. For exampie,

DIMENSION IFILE (4}
DATA IFILE/3RSY +3RFIL3RE 3RXYI/

2. You can translate the available ASCII file description string into RAD50
format, using the SYSLIB calls IRAD50, R50ASC, and RADS50. For
example,

REAL*2 FSPELD
CALL IRADSO (12, /SY FILE HYZ' s FSPED)

3. You can use the SYSLIB call ICSI to call the Command String Interpreter
(CSI) to accept and parse standard RT-11 command strings.

1.2.1.4 INTEGER*4 Support Functions — This section discusses the initializa-
tion of INTEGER*4 variables for the FORTRAN programmer. Section 1.2.6.3
describes the use of INTEGER*4 functions for use by the MACRO program-
mer.

When the DATA statement is used to initialize INTEGER*4 variables, it
must specify both the low- and high-order parts. For example, the code

INTEGER*4 J
DATA J/3/

Initializes only the first word. The correct way to initialize an INTEGER*4
variable to a constant such as 3 is as follows:

INTEGER*4 J

INTEGER*2 I1(2)

EQUIVALENCE (JsI)

DATA 1/3+0/ VINITIALIZE 4 TO 3

Introduction to Advanced RT-11 Programming 1-39

If you are initializing an INTEGER*4 variable to a negati
the high-order (second word) part must be the continuatic
plement of the low-order part. For example,

INTEGER*4 J

INTEGER*Z I1(Z)

EQUIVALENCE (J.10

DATA I/-4:-1/ PINITIALIZE J 7O -4

The following example is suitable for initializing INTEG:
subprograms:

INTEGER*Z J(2)
DATA J/3:0/ 'L.OW ORDER:HIGH ORDER

1.2.1.5 User Service Routine (USR) Requirements — Us
that interface to the FORTRAN Object Time System (OT¢
the location of the RT-11 User Service Routine (USR). Th:
words. When your program calls a SYSLIB routine ths
function (such as IENTER or LOOKUP), or when the USI
FORTRAN OTS, the USR is swapped into memory if it i
FORTRAN OTS is designed so that the USR can swap o

If you permit the USR to swap over certain kinds of data
obtain unpredictable results. In particular, you should res
vice routines and completion routines to locations outside
area. To find the limits of this swapping area, examine tt
necessary, change the order of object modules and libraries
Linker.

Subroutines that require the USR are as follows:

CLOSEC,ICLOSE

GETSTR (only if first [/O operation on logical uni
ICDFN (single job only)

GTLIN

ICSI

IDELET

IDSTAT

IENTER

IFETCH

IQSET

IRENAM

ITLOCK (only if USR is not in use by the other jo
LOCK (only if USR is in a swapping state)
LOOKUP

PUTSTR (only if first I/O operation on logical unit

CONTROLLING USR SWAPPING

You can control USR swapping by using the KMON com
NOSWAP and SET USR SWAP. The SET USR NOSW,
vents swapping and freezes the USR in memory just below
tor or the foreground job. The command SET USR SW
allowing the USR to swap under program control.

1-40 Introduction to Advanced RT-11 Programming

logical unit number must be opened from the main level. To accomplish
this, either the first I/O access or an OPEN statement must be issued from
main level. A completion routine may not call CLOSE to close a logical
unit.

e FORTRAN subroutines are reusable but not reentrant. That is, a given
subroutine can be used many times as a completion routine or as a routine
in the main program, but a subroutine executing as main program code does
not work properly if it is interrupted and then called again at the comple-
tion level. This restriction applies to all subroutines that can be invoked at
the completion level while they are active in the main program.

e Under the SJ monitor, only one completion function should be active at any
time.

1.2.1.3 Device Blocks — A device block is a four-word block of RAD50 infor-
mation that specifies a physical device and a file name. In FORTRAN, you
can use one of three different methods to set up this block as follows:

1. You can use the DIMENSION and DATA statements. For example,

DIMENSION IFILE (4}
DATA IFILE/3RSY s3RFIL:3RE »3RXYI/

2. You can translate the available ASCII file description string into RAD50
format, using the SYSLIB calls IRAD50, R50ASC, and RAD50. For
example, ‘

REAL*S FSPEL
CALL IRADSO (12,°SY FILE XYZ', FSPED)

3. You can use the SYSLIB call ICSI to call the Command String Interpreter
(CSI) to accept and parse standard RT-11 command strings.

1.2.1.4 INTEGER*4 Support Functions — This section discusses the initializa-
tion of INTEGER*4 variables for the FORTRAN programmer. Section 1.2.6.3
describes the use of INTEGER*4 functions for use by the MACRO program-
mer.

When the DATA statement is used to initialize INTEGER*4 variables, it
must specify both the low- and high-order parts. For example, the code

INTEGER*4 J
DATA J/37

Initializes only the first word. The correct way to initialize an INTEGER*4
variable to a constant such as 3 is as follows:

INTEGER*4 J

INTEGER*Z I1(2)

EQUIVALENCE (J+1)

DATA I/3:+0/ PINITIALIZE J TO 3

Introduction to Advanced RT-11 Programming 1-39

1-40

If you are initializing an INTEGER*4 variable to a negative value such as -4,
the high-order (second word) part must be the continuation of the two’s com-
plement of the low-order part. For example,

INTEGER*4 J

INTEGER#*Z I1(2)

EQUIWVALENCE (J:1)

DATA I/-4.-17 PINITIALIZE 4 TO -4

The following example is suitable for initializing INTEGER*4 arguments to
subprograms:

INTEGER*Z J(2)
DATA J/3.0/ 'LOW ORDER.HIGH ORDER

1.2.1.5 User Service Routine (USR) Requirements — User-written routines
that interface to the FORTRAN Object Time System (OTS) must account for
the location of the RT-11 User Service Routine (USR). The USR occupies 2K
words. When your program calls a SYSLIB routine that requests a USR
function (such as IENTER or LOOKUP), or when the USR is invoked by the
FORTRAN OTS, the USR is swapped into memory if it is nonresident. The
FORTRAN OTS is designed so that the USR can swap over it.

If you permit the USR to swap over certain kinds of data and code, you will
obtain unpredictable results. In particular, you should restrict interrupt ser-
vice routines and completion routines to locations outside the USR swapping
area. To find the limits of this swapping area, examine the link map and, if
necessary, change the order of object modules and libraries as specified to the
Linker.

Subroutines that require the USR are as follows:

CLOSEC,ICLOSE

GETSTR (only if first I/O operation on logical unit)
ICDFN (single job only)

GTLIN

ICSI

IDELET

IDSTAT

IENTER

IFETCH

IQSET

IRENAM

ITLOCK (only if USR is not in use by the other job)
LOCK (only if USR is in a swapping state)
LOOKUP

PUTSTR (only if first I/O operation on logical unit)

CONTROLLING USR SWAPPING

You can control USR swapping by using the KMON commands SET USR
NOSWAP and SET USR SWAP. The SET USR NOSWAP command pre-
vents swapping and freezes the USR in memory just below the resident moni-
tor or the foreground job. The command SET USR SWAP reverses this,
allowing the USR to swap under program control.

Introduction to Advanced RT-11 Programming

Alternatively, you can compile your FORTRAN main program with the
/NOSWAP option in order to be sure that there is space just below the fore-
ground partition or RMON to make the USR permanent for the duration of
your program. Use this option if your program does not need the 2K words of
memory that the USR occupies. If the /NOSWAP option is not specified, the
USR swaps over the 2K words of your program above the base
address — that is, from location 1000{octal) to 11000(octal), which is the part
of a FORTRAN program least likely to violate the USR restrictions.

To prevent USR swapping for part of the program execution time and allow
the USR to swap out at other times, use the LOCK, UNLOCK, and ITLOCK
calls.

The LOCK call locks the USR into main memory and attaches it to the
requesting job. The UNLOCK call allows the USR to swap again and to be
used by another job. The ITLOCK call is used to determine whether another
job is already using the USR. If so, the ITLOCK call returns immediately
with an error code. This allows the program to try for a lock, but to continue
with other action if it fails. The LOCK and UNLOCK calls are used in a
foreground program to prevent interference from the background during ini-
tialization and completion phases and to minimize the number of swaps.

STRATEGIES IN USR SWAPPING

If you decide to change the position of code or data to avoid the USR swap-
ping area, or if you want to move the USR itself, you must consider the
concept of PSECT (program section) ordering.

PSECTSs contain code and data and are identified by unique names as seg-
ments of the object program. The attributes associated with each PSECT
direct the Linker to combine several separately compiled FORTRAN program
units, assembly language modules, and library routines into an executable
program.

The order in which program sections are allocated in the executable progra

is the order that they are presented to the Linker. Applications that are
sensitive to this ordering typically separate those sections containing read-
only information (such as executable code and pure data) from impure sec-
tions containing variables.

The main program unit of a FORTRAN program (normally the first object
module in sequence presented to LINK) declares PSECT ordering as shown in
Table 1-6.

Table 1-6: FORTRAN Program PSECT Ordering

Section Name Attributes
OTSS$I RW,I.LCL,REL,CON
OTS$P RW,D,GBL,REL,OVR
SYSSI RW,ILCL,REL,CON
USERS$I RW,ILLCL,REL,CON

(continued on next page)

Introduction to Advanced RT-11 Programming 1-41

Table 1-6: FORTRAN Program PSECT Ordering (Cont.)

Section Name Attributes
$CODE RW,ILL.CL,REL,CON
0TS3$0 RW,[LLCL,REL,CON
SYS$0 RW,LLCL,REL,CON
$DATAP RW,D,LCL,REL,CON
OTS$D RW,D,LCL,REL,CON
OTS$S RW,D,LCL,REL,CON
SYS$S RW,D,LCL,REL,CON
$DATA RW.D,LCL,REL,CON
USERS$D RW,D,LCL,REL,CON
.$333. RW,D,GBL,REL,OVR
Other COMMON Blocks RW,D,GBL,REL,0VR

The USR can swap over pure code, but must not be loaded over constants or
impure data that can be used as arguments to the USR. The ordering shown
in Table 1-6 collects all pure sections before impure data in memory. The
USR can safely swap over sections OTSI, OTSP, SYS$I, USERS$I, and
$CODE. The default is to swap at the base of section OTSS$I. Location 46 of
the System Communication Area contains the address where the USR will
swap. If location 46 is zero, the USR will swap at its default location.

See the RT-11/RSTS/E FORTRAN IV User’s Guide for more information on
program sections. The RT-11 Software Support Manual also contains infor-
mation on USR swapping and PSECT ordering.

USR LOCKOUT AND TIMING

If one job is using the USR and another job requests it, the second job will
become blocked until the first job releases the USR. The second job may be
locked out for seconds or minutes at a time. Interrupt service and completion
routines can run, but not the mainline code. The timing problems that arise
as a result can be eliminated, or minimized, in one of the following four ways:

1. Do not use devices with slow directory operations, such as cassettes and
magtapes.

2. Code real-time operations as completion and interrupt service routines in
your foreground job so that a locked out mainline program does not im-
pact real-time operations.

3. Separate USR and real-time operations.

4. Use the ITLOCK call and avoid SYSLIB calls that request the USR while
the USR is owned by another job.

Typically, a real-time foreground job can be constructed of (1) an initializa-
tion phase that opens all required channels and begins a real-time operation,
(2) a real-time phase that performs interrupt service and I/O operations, and
(3) a completion phase that halts real-time activity and then closes the chan-
nels. Maintaining this structure in the foreground allows the background task
to do USR operations during the real-time phase without locking out the

i-42 Introduction to Advanced RT-11 Programming

foreground. This also simplifies USR swapping since the USR can swap over
he interrupt routines and I/O buffers as long as they are inactive.

jo1%

«t+

1.2.1.6 Subroutines Requiring Additional Queue Elements — Certain
subroutines require queue elements for their proper operation. These
subroutines are as follows:

IRCVD/IRCVDC/IRCVDF/IRCVDW
IREAD/IREADC/IREADF/IREADW
ISCHED

A
ISDAL/ISPA

ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ITIMER

ITWAIT

TUNTIL
IWRITC/IWRITE/IWRITF/IWRITW
MRKT

MWAIT

One queue element per job is automatically allocated. Issuing more than one
request from the list requires extra queue elements. Additional queue ele-
ments can be allocated through a call to the IQSET function.

1.2.1.7 System Restriction — The following restrictions must be considered
when coding a FORTRAN program that uses SYSLIB.

1. Programs using IPEEK, IPOKE, IPEEKB, IPOKEB, or ISPY to access
system-specific addresses, such as FORTRAN, monitor, or hardware ad-
dresses, are not guaranteed to run under future releases or on different
configurations. When using these functions, you should document their
use precisely so that you can check your references against the current
documentation. Also, these routines may act differently under the XM.
monitor.

9. Various functions in SYSLIB return values that are of type integer, real,
and double precision. If you specify an implicit statement that changes
the defaults for external function types, you must explicitly declare the
type of those SYSLIB functions that return integer or real results. You
must also be sure that the arguments to the SYSLIB routines are the
correct type for the routine. Double-precision functions must always be
declared to be type DOUBLE PRECISION (or REAL*8). Failure to ob-
serve this restriction leads to unpredictable results.

3. All names of completion routines external to the routine being coded that
are passed to scheduling calls (such as ISCHED, ITIMER, and IREADC)
must be specified in an EXTERNAL statement in the FORTRAN pro-
gram issuing the call.

4. Certain arguments to SYSLIB calls must be located in such a manner as
to prohibit the RT-11 User Service Routine (USR) from swapping over
them at execution time. This kind of swapping can occur when the OTSSI

Introduction to Advanced RT-11 Programming 1-43

section (which contains the all-pure code and data for the module) is less
than 2K words in length. Swapping in this uncommon situation can be
avoided either by typing the SET USR NOSWAP command to make the
USR resident before starting the job, or by compiling the mainline routine
with a /NOSWAP option. You can also use the linker /BOUNDARY op-
tion to make OTS$O start at word boundary 11000(octal). (This problem
generally occurs only with small FORTRAN programs.)

In FORTRAN IV, program sections (PSECTSs) are used to collect code and
data into appropriate areas of memory. If the RT-11 USR is needed and is
not resident, it swaps over a FORTRAN program starting at the symbol
OTSS$I for 2K words of memory.

5. Certain restrictions apply when using completion or interrupt routines.
See Section 1.2.1.2 for a description of these restrictions.

6. Unless explicitly stated, null arguments should not be used in calls to
SYSLIB routines.

7. If several arguments to a call are listed as being optional, they must either
be all present or all omitted.

1.2.2 Calling SYSLIB Subroutines

SYSLIB includes both function subprograms and callable subroutines, which
are called in the same manner as user-written subroutines.

Function subprograms receive control by means of a function reference as
follows:

1 = function name ([arguments])

The returned function value may be an error code, or it may be information
that is useful to the calling routine. See the description of the particular
function for the meaning of the returned function value.

Call subroutines are invoked by means of a CALL statement as follows:
CALL subroutine name [(arguments)]

All subroutines in SYSLIB can be called as FUNCTION programs if a return
value is desired, or as SUBROUTINE programs if no return value is desired..
For example, the LOCK subroutine can be referenced as either

CALL LOCK
or
I = LOCKO)

Some subroutines have two acceptable formats. For example, the subroutine
CLOSEC can also be specified as ICLOSE because error codes have been
added to the subroutine and require an integer return to be useful.

1-44 Introduction to Advanced RT-11 Programming

Quoted-string literals are useful as arguments of calls to routines in SYSLIB,
notably the character string routines. These literals are allowed in subroutine
and function calls (see Section 3.7.3).

1.2.3 FORTRAN/MACRO Interface

FORTRAN calling routines and subroutines follow a well-defined set of con-
ventions regarding transfer of control, transfer of information, memory usage,
and register usage. By adhering to these conventions a MACRO programmer
can write FORTRAN-callable routines such as those in SYSLIB.

Control is transferred to a subroutine by
JSR PCSUBR

When control passes to the subroutine SUBR, Register 5 (R5) points to an
argument block that has the format shown in Figure 1-5.

Figure 1-5: Subroutine Argument Block

No. of

R5 => 0
arguments

Address of Argument 1

Address of Argument 2

Address of Argument n

Null arguments in CALL statements must be entered with successive com-
mas, for example, CALL SUBR (A,,B). The value -1 is stored in the argument
block as the address of a null argument.

The lower byte of the first word of the argument block contains the number of
arguments that are passed to the subroutine. The rest of the argument block
contains the addresses of those arguments. The argument block is n+1 words
long for n arguments.

The program counter is the linkage register. The subroutine obtains its
arguments through R5. In FORTRAN, the calling program saves the registers,
and the subroutine leaves the contents of the stack pointer intact before
returning to the calling program. The RETURN statement of the subroutine is
replaced by

RTS PC

Introduction to Advanced RT-11 Programming 1-45

1-46

The name of the subroutine must be declared global with the .GLOBL direc-
tive in the calling program or with the double colon (::) construction in the
called program.

NOTE

You must make sure that the called program does not modify
the argument block passed by the calling program to a sub-
program.

1.2.3.1 Subroutine Register Usage — A subroutine that is called by a FOR-
TRAN program does not have to preserve any registers. However, each push
onto the stack must be matched by a pop off the stack before exiting from the
routine.

User-written assembly language programs must preserve any pertinent regis-
ters before calling FORTRAN subprograms or SYSLIB routines. They must
then restore registers, if necessary, after the subroutine returns.

Function subroutines return a single result in a register. Table 1-7 shows the
register assignments for returning the different variable types.

Table 1-7: Return Value Conventions for Function Subroutines

Type Result Placed In

INTEGER*2 RO

LOGICAL*1

INTEGER*4 RO low-order result

LOGICAL*4 R1 high-order result

REAL RO high-order result (including sign and exponent)
R1 low-order result

DOUBLE PRECISION RO highest-order result (including sign and exponent)

R1 next higher order
R2 next higher order
R3 lowest-order result

COMPLEX RO high-order real result
R1 low-order real result
R2 high-order imaginary result
R3 low-order imaginary result

Note that floating-point results are returned in the general purpose registers
and not in the FPU registers. Assembly language subprograms that use the
FP11 Floating Point Unit may be required to save and restore the FPU status.

1.2.3.2 FORTRAN Programs Calling MACRO Subroutines — FORTRAN pro-
grams can call MACRO subroutines, but several rules must be followed. For
example, the following program named INIARR is a MACRO subroutine that
can be called from a FORTRAN program.

Introduction to Advanced RT-11 Programming

+TITLE INMIARR

+GLOBL INIARR

H FILENAME INIARR.MAC
INIARR: TST (RE)+ PSKIP ARGUMENT COUNT
Moy (RB1++R2 JPUT ADDRESS OF ARRAY INTO RE
Mo BIRSI+:R1 PPUT IWAL IN BRI
Moy B{RS)+RO TAND COUNT INTO RG
BLE RETURN $OUIT IF COUNT IS NOT POSITIVE
1%: Moy R1IR21+ PINITIALIZE ARRAY
DEC RO PDECREMENT COUNT
BNE 1% FCONTINUE UNTIL ZERD
RETURN: RTS pC :
«END

A FORTRAN program calls the preceding routine with
CALL INIARR (IAR,IVAL,N)

where:
INIARR is the name of the subroutine
JIAR is the name of the array to initialize
IVAL is the value the array is initialized to
N is the number of elements to initialize

This program illustrates the rules that must be observed when calling a
MACRO program. The name of the subroutine is made global by using the
.GLOBL directive.

Register 5 (R5) is used to pass the arguments. Thus, in the program INIARR,
the argument block would appear as shown in Figure 1-6.

§: Argument Block for Program INTARR

Address of IAR

Address of IVAL

Address of N

Registers RO through R4 can be freely used since the calling program saves
them. Once the arguments are retrieved, you can also use R5.

Introduction to Advanced RT-11 Programming 1-47

On completion, the subroutine returns to the calling program through an RTS
PC. If your MACRO program pushes data on the stack, you must make sure
that all data is popped off the stack before the RTS PC is executed.

The following FORTRAN program named DOFOR calls the subroutine
INIARR.

PROGRAM DOFOR

INTEGER#*2 ARRAY

DIMENSION ARRAY (10

N=2

DO Z0 IVAL=1,10

CALL INIARR (ARRAY :IVAL N}

WRITE (5+100) (ARRAY(I}sI=1:N)
20 CONTINUE
100 FORMAT (I3)

STOP

END

After you compile and link both programs, run the program by typing

+RUN DOFOR @ED

The initialized array will be output to the terminal as follows:

Aappeeiyeniyun BRN RN oy B wy B A TR w6 B PN o N O B E

—_
=

10
STOP --

1.2.3.3 Macro Routines Calling FORTRAN Programs — If you want to cail
FORTRAN subroutines from a MACRO program, create a dummy main pro-
gram such as

PROCRAM FORINT
CALL CALMAC
STOPR

END

1-48 Introduction to Advanced RT-11 Programming

where CALMAC is the name of a MACRO program that can call FORTRAN
or MACRO routines.

Creating a dummy program causes the FORTRAN main program to perform
the initialization necessary for FORTRAN subroutines.

The following MACRO program named CALMAC calls a FORTRAN subrou-
tine named MAXMIN.

,TITLE CALMAC
(GLOBL MAXMIN

CALMAC:
Moy #ARGBLK +R3 sPOINT RS TO ARGUMENT BLOCK
JASR PCMAKMIN s0ALL MAMMIN
RTS PC
I: +HWORD 28, sUALUE OF FIRST ARGUMENT
Jz +WORD 76 sUALUE OF SECOND ARGUMENT
ARGBLK: WORD 2 PNUMBER OF ARGUMENTS
+WORD I SADDRESS OF FIRST ARGUMENT
s WORD J sADDRESS OF SECOND ARGUMENT
LEND

You must set up the argument block either on the stack or in a separate area
in your MACRO program. You then point R5 to the top of the argument block
prior to calling the FORTRAN subroutine with a JSR PC,MAXMIN. In the
above program, the argument block is set up in an area of your program.

The following program named STAKEM performs the same operation as the
program CALMAC, except that it places the arguments on the stack.

+TITLE STAKEM
+GLOBL MAXMINSTAKEM

STAKEM: MOU #.1s-(5F)
MGy #1:+-(5P)
Moy #2,:-(5P)
Moy S5P:R3
JSR PCsMAXMIN
ADD #G 5P
RTS PC

I: »WORD Z8.

: +HWORD 7G.

+END

If the argument block is set up on the stack, be sure that you remove the
arguments from the stack prior to the execution of the RTS PC. In general,
before calling the FORTRAN subroutine, you must save all pertinent regis-
ters. You do not know which registers the FORTRAN subroutine is using. The
contents of the stack pointer remain unchanged across the call.

The name of the FORTRAN subroutine that the MACRO program calls must
be defined as a global. In the FORTRAN subroutine, execute normal FOR-
TRAN statements and return to the MACRO program with a RETURN state-

ment.

Introduction to Advanced RT-11 Programming 1-49

The following program is the FORTRAN subroutine MAXMIN.

SUBROUTINE MAXMIN{INT (INZ)
INTEGER BIG:5MALL
IF (INI.LT.INZ)Y GO TO 10
BIG=INI
SMALL=INZ
TYPE 20.BIG
TYPE 30.5MALL
FETURN
10 BIG=INZ
SMALL=INI
TYFE Z0:BIG
TYPE 30.,5MALL

20 FORMAT (' THE BIGGER NUMBER IS 7 .IZ}
30 FORMAT (' THE SHMALLER NUMBER IS ‘.IZ2)
RETURN
END

After assembling and linking the programs, using either the program
CALMAC or STAKEM, type

+RUN FORINT
The program executes as follows:

THE BIGGER NO. IS 76
THE SHMALLER NO. IS5 28
5TOP --

1.2.4 FORTRAN Programs in a Foreground/Background
Environment

FORTRAN programs can be run in a foreground/background environment,
which permits efficient use of CPU execution time. (See Chapter 15 of Intro-
duction to RT-11 for a description of running in an FB environment.) The
basic steps in running FORTRAN programs that use the FB monitor are
described in this section.

Before running your foreground program, you must use the LOAD command
to load the device handlers required by the foreground job. The device
handlers are placed in memory between RMON and the USR and KMON,
which causes USR and KMON to move down in memory.

Next, you use the FRUN command to load your foreground program in mem-
ory between the device handlers and the USR, which causes the USR and
KMON to move further down in memory. It is important that you allocate
workspace when running a FORTRAN program in the foreground. You do this
with the /BUFFER:n option of the FRUN command. Also make sure that any
FORTRAN program you run in the foreground has adequate stack space. You
can use one of the options supported by the linker (see the RT-11 System
User’s Guide).

The background area must be at least 4K words long to accommodate the
USR and KMON. Until you run a background job with the RUN command,
KMON is the background job.

When the USR is required, a 2K-word area must be set up in each job for the
swapping to occur correctly — that is, there must be space for 2K words in
the background area and 2K words in the foreground area. The foreground job
reserves 2K words of memory even if the complete task size is less than 2K
words, and the background has a minimum size of 4K words for the USR and
KMON. USR swapping is explained in Section 1.2.1.5.

1.2.4.1 Calculating Workspace for a FORTRAN Foreground Program — Addi-
tional workspace must be allocated in memory when running a FORTRAN
program in the foreground of a foreground/background environment. For a
foreground job, the space is allocated by the /BUFFER:n option of the FRUN
command. (A background job uses whatever space is available between its
high limit and the system’s low limit.) When you allocate additional work-
space in memory to run a FORTRAN program in the foreground, calculate the

space required by using the following formula:
n = [1/2[504+(33*N) +(R-136) +A*512)]]
where:
n = number of decimal words

A = the maximum number of files open at any one time. If double
buffering is used, A should be multiplied by 2

N = the maximum number of simultaneously open channels (logical

unit numbers); the default is 6

R = maximum formatted record length; the default is 136 characters
This formula must be modified for certain SYSLIB functions.

The IQSET function requires the formula to include additional space for
queue elements (gcount) as follows:

n = [1/2[504+(33*N)+(R-136) +A*512]]+[10*gcount]

The ICDFN function requires the formula to include additional space for the
integer number of channels (num) as follows:

n = [1/21504+(33*N)+(R-136)+A*512]1+[6*num]

The INTSET function requires the formula to include additional space for the
number of INTSET calls issued in the program as follows:

n = [1/2[504+(33*N)+(R-136)+A*512]]+[25* INTSET]

Any calls, including INTSET, that invoke completion routines must include
64[decimal] words plus the number of words needed to allocate the second
record buffer (default is 68[decimal] words). The length of the record buffer is
controlled by the /RECORD option to the FORTRAN compiler. If the
/RECORD option is not used, the allocation in the formula must be 136(deci-
mal) bytes, or the length that was set at FORTRAN instaliation time. This
modifies the formula as follows:

n = [1/2[504+(33*N)+(R-136) +A*512]1+[64+R/2]

Introduction to Advanced RT-11 Programming 1-51

1-52

If the /BUFFER option does not allocate enough space in the foreground on
the initial call to a completion routine, the following message appears:

TERR O+ NON-FORTRAN error call

This message also appears if there is not enough free memory for the back-
ground job or if a completion routine in the single-job monitor is activated
during another completion routine. In the latter case, the job aborts; you
should use the FB monitor to run multiple active completion routines.

1.2.4.2 Running a FORTRAN Program in a Foreground/Background
Environment — This section briefly describes the procedure for running two
FORTRAN programs, one in the background and one in the foreground.

The background program named BACK is as follows:

PROGRAM BACKGROUND

IMPLICIT INTEGER(O)

CALL IPOKE("44,:"10000.0R,IPEEK{"44d):
100 CALL PRINT('HELLO FROM THE BACKGROUND '}

ICHAR=ITTINR()

OCHAR=ITTOUR(ICHAR)

GO TO 100

END

This program prints the message “HELLO FROM THE BACKGROUND”
and will print the message each time you input a character at the terminal.

The foreground program named FORE is as follows:

PROGRAM FOREGROUND

IMPLICIT INTEGERC(O)

CALL IPOKE("44.:"10000,0R.IPEEK{"44))
100 CALL PRINT('HELLO FROM THE FOREGROUND ')

ICHAR=ITTINR()

OCHAR=ITTOUR(ICHAR)

GO TO 100

END

After compiling both programs, link them. Link the foreground program using
the LINK command with the /FOREGROUND option. This option produces
a load module with a .REL file type that signifies to the system that the file is
a foreground program and is to be run as a priority job. For example,

+LINK/FOREGROUND FORE

Then you can assign the device that will be used for the output of the fore-
ground program. You must also load into memory the peripheral device
handlers needed by the foreground program.

The command FRUN loads and starts execution of the foreground job. This
command is similar to the RUN command except that the system automati-

Introduction to Advanced RT-11 Programming

cally loads and starts the execution of the foreground .REL program. If the
command

+FRUN FORE GO

is typed at this point, the error message

PErr GZ FORTRAN start fail

will be displayed. This message indicates that additional workspace allocation
is required and that the /BUFFER option must be used. (Refer to the previous
section for the formula to calculate the additional space needed.) Thus, the
command would be typed as follows:

+FRUN FORE/BUFFER:7G0

Execution of this command results in the following output at the terminal:

-

=

HELLD FROM THE FOREGROUND

B

+

The system first identifies the message as foreground output. Then the fore-
ground job executes and outputs its message. The background monitor next
prints the characters B> and a period, indicating that control has returned to
monitor command mode. Command input remains directed to the back-
ground job. By typing

+RUN BACK

the message from the background job will be displayed

HELLD FROM THE BACKGROUND

Each time a character is input to the terminal, say an “L”, the message will
be repeated.

LHELLO FROM THE BACKGROUND

Use the CTRL/F command to direct terminal input to the foreground job. The
system prints F> to remind you that you are now directing input to the
foreground job. When you type a character, say a “Y”, the foreground job
message will be displayed.

Type a CTRL/B to return to the background job or a CTRL/C to return to
monitor command mode. If you are returning to a background environment,

Introduction to Advanced RT-11 Programming 1-53

you should unload the foreground job and any handlers to reclaim memory
space for background use.

1.2.5 Linking with FORLIB

Normally, the default system library file (SYSLIB.OBJ) also includes the
overlay handlers and the appropriate FORTRAN run-time system routines.

To add FORLIB.OBJ modules to the default library SYSLIB.OBJ, use the
following command:

LLIBRARY/INBERT/REMOVE SYSLIE FORLIB
Global? $0VRH
Global® RET)

1.2.6 SYSLIB Services Not Provided by Programmed Requests

SYSLIB provides many services that are not provided by programmed
requests. Such services are as follows:

e Time conversion and date access

® Program suspension

¢ Two-word integer support INTEGER*4)
¢ Radix-50 conversion

e Character string manipulation

1.2.6.1 Time Conversion and Date Access — Several calls allow you to per-
form time conversions and access the system date.

You use the CVTTIM call to convert a two-word internal format time to
hours, minutes, seconds, and ticks. The JTIME call converts a time given in
hours, minutes, seconds, and ticks into the internal two-word time format.

If you need to output the time on a printout, the TIMASC call converts the
time returned by the .GTIM programmed request into an eight-character
ASCII string; the TIME call returns the current time of day as an eight-
character ASCII string.

The current system date can be accessed by your program with a DATE call.
The date is returned as a string value. IDATE performs similarly, but returns
an integer value.

1.2.6.2 Program Suspension — You suspend execution of a running program
for a specified number of ticks with the ITWAIT call. You use the ISLEEP
call to suspend a running program for a specified number of hours, minutes,
seconds, and ticks. The IUNTIL call allows you to suspend job execution until
a specific time of day, which is given to the routine in hours, minutes, sec-
onds, and ticks. You can use this function to periodically collect data and to
stop processing between acquisitions.

1.2.6.3 Two-Word Integer Support (INTEGER*4) — You can make calls to
SYSLIB to manipulate a 32-bit integer that uses two words of storage. The
first word contains the low-order part of the value and the second word con-
tains the sign and the high-order part of the value. The range of numbers that
is represented is -2(31) to 2(31)-1. This format differs from the two-word
internal time format that stores the high-order part of the value in the first
word and the low-order part in the second word. Table 1-8 shows the calls
that you can use to convert from one format to another.

Table 1-8: SYSLIB Conversion Calls

From To Call
INTEGER*2 (16-bit integer) INTEGER*4 JICVT
INTEGER*4 (32-bit integer) INTEGER*2 LJCVT
INTEGER*4 REAL*4 AJFLT/IAJFLT
INTEGER*4 REAL*8 DJFLT/IDJFLT
REAL*4 (2-word floating point) INTEGER*2 JAFIX
REAL*8 (4-word floating point) INTEGER*4 JDFIX

Calls are also available for you to perform arithmetic operations on
INTEGER*4 values, move a value to a variable, and convert a two-word
internal time format to and from an INTEGER*4 value.

1.2.6.4 Radix-50 Conversion — You can convert ASCII characters to or from
Radix-50.

IRADA50 converts a specified number of characters of Radix-50 and returns the
number of characters converted as a function result. RAD50 encodes RT-11
file descriptors in Radix-50 notation. R50ASC converts a specified number of

Radix-50 characters to ASCII.

1.2.6.5 Character String Operations — SYSLIB provides character string
functions that perform string operations such as concatenation, comparison,
copying, replacing, and computing the number of characters in a string. For

example, the following program will concatenate two character strings.

+TITLE GETTOO
+GLOBL CONCAT
+MCALL S PRINT L EXIT

5TART: MOV #ARGBLK +RE
J8R PC +CONCAT
+PRINT #S5TRCON
CEXIT

ARGBLK: WORD 3

+WORD STRNGL

+WORD STRNGZ

+WORD STRCON
STRNG1: AGCIY /RESEARCH AND/
STRNGZ2: ,ASCIZ / DEVELOPMENT/
STRCON: LBLKB 31

+EVEN

+END START

Introduction to Advanced RT-11 Programming 1-55

Running this program results in the concatenation of string 1 and string 2, and
the output at the terminal is

RESEARCH AND DEVELOPMENT

The following section describes character string functions in detail.

1.2.7 Character String Functions

The SYSLIB character string functions and routines provide variable-length
string support for RT-11 FORTRAN and for MACRO programs. SYSLIB
calls perform the following character string operations:

Call . Operation
GETSTR Reads character strings from a specified FORTRAN logical unit
PUTSTR Writes character strings to a specified FORTRAN logical unit
CONCAT Concatenates variable-length strings
INDEX Returns the position of one string in another
INSERT Inserts one string into another
LEN Returns the length of a string
REPEAT Repeats a character string
SCOMP Compares two strings
SCOPY Copies a character string
STRPAD Pads a string with blanks on the right
SUBSTR Copies a substring from a string
TRANSL Performs character modification
TRIM Removes trailing blanks
VERIFY Verifies the presence of characters in a string

Strings are stored in LOGICAL*1 arrays that you define and dimension.
These arrays store strings in ASCII format as one character per array element
plus a zero element to indicate the current end of the string.

The length of a string can vary at execution time from zero characters to one
less than the size of the array that stores the string. The maximum size of any
string is 32767 characters. Strings can contain any of the seven-bit ASCII
characters except null(0), since the null character is used to mark the end of
the string. The inclusion of a terminating zero byte constitutes an “ASCIZ”
format, which is the format set up by a MACRO assembler directive .ASCIZ.
This directive automatically sets up strings with a terminating zero byte. Bit
7 of each character must be cleared. Therefore, the valid characters are those
whose decimal representations range from 1 to 127, inclusive.

The ASCII code used in this string package is the same as that employed by
FORTRAN for A-type FORMAT items, ENCODE/DECODE strings, and ob-
ject-time format strings. Whenever quoted strings are used as arguments in
the CALL statement, ASCIZ strings are generated for these routines by the
FORTRAN compiler. Note that a null string (a string containing no charac-
ters) can be represented in FORTRAN by a variable or constant of any type
that contains the value zero, or by a LOGICAL variable or constant with the
FALSE. value.

In many routines, it is difficult to predict the length of the string produced. To
nrovent a qfring from nvprﬂnwing the array that contains its you can SpeCify

MHITVYUTLIU & Suiiil aastiia UVOLIAUWALL LA alla 1lal LUl

an optional integer argument to the subroutine. This argument, called len,
limits the length of an output string to the value specified for len plus one (for
the null terminator), so that the array receiving the result must be at least len
plus one elements in size.

NOTE

If the string is larger than the array, other data may be de-
stroyed and cause unpredictable results.

When len is specified, you can also include the optional argument called err.
Err is a logical variable that should be initialized by the FORTRAN program
to the .FALSE. value. If a string function is given the arguments len and err,
and len is actually used to limit the length of the string result, then err is set
to the .TRUE. value. If len is not used to truncate the string, err is
unchanged — that is, it retains a .FALSE. value.

The argument len can appear alone. However, len must appear if err is speci-
fied. The err argument should be used for GETSTR and PUTSTR.

Several routines use the concept of character position. Each character in a
string is assigned a position number. The first character in a string is in
position one. Each subsequent character has a position number one greater
than the character that precedes it.

1.2.7.1 Allocating Character String Variables — A one-dimensional
LOGICAL*1 array can contain a single string whose length can vary from
zero characters to one fewer than the dimensioned length of the array. For
example,

LOGICAL*1 A045) 'ALLOCATE SPACE FOR STRING WARIABLE A

allows array A to be used as a string variable that can contain a string of 44 or
fewer characters. Similarly, a two-dimensional LOGICAL*1 array can be used
to contain a one-dimensional array of strings. Each string in the array can
have a length up to one less than the first dimension of the LOGICAL*1 array.
There can be as many strings as the number specified for the second dimen-
sion of the LOGICAL*1 array. For example,

LOGICAL*1 W(Z21,10) IALLOCATE AN ARRAY OF STRINGS

creates string array W that has ten string elements, each of which can contain
up to 20 characters. String I in array W is referenced in subroutine or function
calls as W(1,I).

Introduction to Advanced RT-11 Programming 1-57

i-58

The following example allocates a two-dimensional string array.

LOGICAL*1 T(14.5.7) 'ALLOCATE A 5 BY 7 STRING ARRAY

Each string in array T may vary in length to a maximum of 13 characters.
String I,J of the array can be referenced as T(1,1,J). Note that T is the same as
T(1,1,1). This dimensioning process can create string arrays of up to six
dimensions (represented by LOGICAL*1 arrays of up to seven dimensions).

1.2.7.2 Passing Strings to Subprograms — There are three ways to pass strings
to subprograms.

1. LOGICAL*1 arrays that contain strings can be placed in a COMMON
block and referenced by any or all routines with a similar common decla-
ration. However, when you place a LOGICAL*1 array in a common block,
make sure that the array is even in length or that the strings are together
as the last elements in the COMMON block. Otherwise, all succeeding
variables in the COMMON block may be assigned odd addresses.

A LOGICAL*1 array has an odd length only if the product of its dimen-
sions is odd. For example,

LOGICAL*1 B(10.:7) PC10%*7) = 703 EVEN LENGTH
LOGICAL*1 H (Z21) 121 IS AN ODD LENGTH

If odd-length arrays are to be placed in a COMMON block, either they
should place them at the end of the block or pair them to result in an
effective even length. For example,

COMMON A1 :AZ,A3(10),H(Z21) IPLACE ODD-SIZED ARRAY AT END

or

COMMON A1 A2 H(21) yH1(7),A3(10) IPAIR ODD-SIZE ARRAYS H AND HI1
These restrictions apply only to LOGICAL*1 variables and arrays.

2. A single string can be passed by using its array name as an argument. For
example,.

LOGICAL*1 A(Z1) !STRING VARIABLE A, 20 CHARACTERS MAXIMUM
CALL SUBRCA)

passes string A to subroutine SUBR.

3. If the calling program has declared a multi-dimensional array, and only
one string of that array is to be passed to a subroutine, then the subroutine
call should specify the first element of the string to be passed (this re-
quires that the first dimension of the array equals the maximum length of
each string).

i
For example,

LOGICAL*1 NAMES (81:20) 1Z0 NAMESs B0 CHARACTERS EACH
LOGICAL*1 ERR

+

DO 10 NAMNUM=1.Z0 IGET ALL 20 NAMES
10 CALL GETS5TR (S :NAMES(1 NAMNUM) +BOERR) !FROM TT

Introduction to Advanced RT-11 Programming

If the maximum length of a string argument is unknown in a subroutine or
function, or if the routine is used to handle many different lengths, the
dummy argument in the routine should be declared as a LOGICAL*1 array
with a dimension of one, such as LOGICAL*1 ARG(1). In this case, the string
routines correctly determine the length of ARG whenever it is used, but it is
not possible to determine the maximum size of any string that can be stored
in ARG. If a multidimensional array of strings is passed to a routine, it must
be declared in the called program with the same dimensions that were speci-
fied in the calling program.

4

FI‘
i

|

AV

(-
P

The length argument specified in many of the character string
functions refers to the maximum length of the string excluding
the necessary null byte terminator. The length of the
LOGICAL*1 array to receive the string must be at least one
greater than the length argument.

1.2.7.3 Using Quoted-String Literals — You can use quoted strings as argu-
ments to any of the string routines that are invoked as functions or with the
CALL statement. For example,

CALL SCOMP(NAME, 'SMYTHE: R’ M}

compares the string in the array NAME to the constant string SMYTHE, R
and sets the value of the integer variable accordingly.

1.2.8 System Subroutine Summary

Table 1-9 lists the SYSLIB subroutines alphabetically within categories, the
sections in which they are located, and a brief description of each subroutine.
Those subroutines prefaced with an asterisk (*) are allowed only in a
foreground/background environment, under either the FB or XM monitor.
The SYSLIB subroutines do not support the XM monitor mapping pro-
grammed requests. Use FORTRAN virtual arrays to access extended memory.

Table 1-9: Summary of SYSLIB Subroutines

Name Section Description
File-Oriented Operations
CLOSEC, 3.3 Closes the specified channel.
ICLOSE
IDELET 3.21 Deletes a file from the specified device.
IENTER 3.24 Creates a new file for output.
IRENAM 3.43 Changes the name of the indicated file.
LOOKUP 3.74 Opens an existing file for input and/or output via the specified
channel.

(continued on next page)

Introduction to Advanced RT-11 Programming 1-59

1-60

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Description

Name Section
Data Transfer Operations
GTLIN 3.11
*IRCVD 3.41
*IRCVDC
*IRCVDF
*IRCVDW
IREAD 3.42
IREADC 3.42
IREADF 3.42
IREADW 3.42
*ISDAT 3.48
*ISDATC
*ISDATF
*ISDATW
ITTINR 3.54
ITTOUR 3.55
IWAIT 3.59
IWRITC 3.60
IWRITE 3.60
IWRITF 3.60
IWRITW 3.60

Transfers a line of input from the console terminal or indirect
file (if active) to the user program.

Receives data. Allows a job to read messages or data sent by
another job in an FB environment. The four modes correspond
to the IREAD, IREADC, IREADF, and IREADW modes.

Transfers data from a file to a memory buffer and returns
control to the user program when the request is entered in the
1/0 queue. No special action is taken upon completion of I/O.

Transfers data from a file to a memory buffer and returns
control to the user program when the request is entered in the
I/0 queue. Upon completion of the read, control transfers to
the assembly language routine specified in the IREADC func-
tion call.

Transfers data from a file to a memory buffer and returns
control to the user program when the request is entered in the
1/0 queue. Upon completion of the read, control transfers to
the FORTRAN subroutine specified in the IREADF function
call.

Transfers data from a file to a memory buffer and returns
control to the program only after the transfer is complete.

Allows the user to send messages or data to the other job in an
FB environment. The four functions correspond to the
IWRITE, IWRITC, IWRITF, and IWRITW modes.

Gets one character from the console keyboard.
Transfers one character to the console terminal.

Waits for completion of all I/O on a specified channel (com-
monly used with the IREAD and IWRITE functions).

Transfers data to a file and returns control to the user program
when the request is entered in the I/O queue. Upon completion
of the write, control transfers to the assembly language routine
specified in the IWRITC function call.

Transfers data to a file and returns control to the user program |’
when the request is entered in the I/O queue. No special action
is taken upon completion of the 1/0.

Transfers data to a file and returns control to the user program
when the request is entered in the I/0 queue. Upon completion
of the write, control transfers to the FORTRAN subroutine
specified in the IWRITF function call.

Transfers data to a file and returns control to the user program
only after the transfer is complete.

" FB and XM monitors only.

(continued on next page)

Introduction to Advanced RT-11 Programming

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section Description

Data Transfer Operations (cont.)

MTATCH 3.76 Attaches a particular terminal in a multi-terminal environ-
ment

MTDTCH 3.77 Detaches a particular terminal in a multi-terminal environ-
ment

MTGET 3.78 Provides information about a particular terminal in a multi-
terminal system.

MTIN 3.79 Transfers characters from a specific terminal to the user pro-
gram in a multi-terminal system.

MTOUT 3.80 Transfers characters to a specific terminal in a multi-terminal
system.

MTPRNT 3.81 Prints a message to a specific terminal in a multi-terminal
system.

MTRCTO 3.82 Enables output to terminal by canceling the effect of a previ-
ously typed CTRL/O.

MTSET 3.83 Sets terminal and line characteristics in a multi-terminal sys-
tem.

MTSTAT 3.84 Returns multi-terminal system status.

*MWAIT 3.85 Waits for messages to be processed.

PRINT 3.86 Outputs an ASCII string to the console terminal.

Channel-Oriented Operations

ICDFN 3.15 Defines additional I/O channels.

*ICHCPY 3.16 Allows access to files currently open in the other job’s environ-
ment.

*ICSTAT 3.20 Returns the status of a specified channel.

IFREEC 3.26 Returns the specified RT-11 channel to the available pool of
channels for the FORTRAN I/O system.

IGETC 3.27 Allocates an RT-11 channel and informs the FORTRAN I/O
system of its use.

ILUN 3.31 Returns the RT-11 channel number with which a FORTRAN
logical unit is associated.

IREOPN 3.44 Restores the parameters stored via an ISAVES function and
reopens the channel for I/O.

ISAVES 3.45 Stores five words of channel status information into a user-
specified array and deactivates the channel.

PURGE 3.87 Deactivates a channel.

Device and File Specifications

TASIGN 3.14 Sets information in the FORTRAN logical unit table.

1CSI 3.19 Calls the RT-11 CSI in special mode to decode file specifica-

tions and options.

" FB and XM monitors only.

(continued on next page)

Introduction to Advanced RT-11 Programming 1-61

"

o

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section Description

Timer Support Operations

CVTTIM 3.5 Converts a two-word internal format time to hours, minutes,
seconds, and ticks.

GTIM 3.9 Gets time of day.

ICMKT 3.18 Cancels an unexpired ISCHED, ITIMER, or MRKT request
(valid under FB and XM, and for SJ monitors with timer
support, a SYSGEN option).

ISCHED 3.46 Schedules the specified FORTRAN subroutine to be entered
at the specified time of day as an asynchronous completion
routine (valid under FB and XM, and for SJ monitors with
timer support, a special feature).

*ISLEEP 3.49 Suspends main- program execution of the running job for a
specified amount of time; completion routines continue to run.

ITIMER 3.52 Schedules the specified FORTRAN subroutine to be entered
as an asynchronous completion routine when the time interval
specified has elapsed (valid under FB and XM, and for SJ
monitors with timer support, a special feature).

*ITWAIT 3.56 Suspends the running job for a specified amount of time; com-
pletion routines continue to run.

*ITUNTIL 3.57 Suspends the main program execution of the running job until
a specified time of day; completion routines continue to run.

JTIME 3.7 Converts hours, minutes, seconds, and ticks into two-word in-
ternal format time.

MRKT 3.75 Schedules an assembly language routine to be activated as an
asynchronous completion routine after a specified interval
(valid under FB and XM, and for SJ monitors with timer
support, a special feature).

SECNDS 3.98 Returns the current system time in seconds past midnight
minus the value of a specified argument.

TIMASC 3.103 Converts a specified two-word internal format time into an
eight-character ASCII string.

TIME 3.104 Returns the current system time of day as an eight-character
ASCII string.

RT-11 Services

CHAIN 3.2 Chains to another program (from the background job only).

*DEVICE 3.6 Specifies actions to be taken on normal or abnormal program
termination, such as turning off interrupt enable on user-pro-
grammed devices.

GTJB,IGTJB 3.10 Returns the parameters of the specified job.

IDSTAT 3.23 Returns the status of the specified device.

IFETCH 3.25 Loads a device handler into memory.

* FB and XM monitors only.

(continued on next page)

Introduction to Advanced RT-11 Programming

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

AJFLT

DJFLT

IAJFLT

IDJFLT

IJCVT
JADD
JAFIX

Name Section Description

RT-11 Services (cont.)

IQSET 3.39 Expands the size of the RT-11 monitor queue from the free
space managed by the FORTRAN system.

ISPFN 3.50 Issues special function requests to various handlers, such as

ISPFCN magtape. The four modes correspond to the IWRITE,

ISPFNF IWRITC, IWRITF, and IWRITW modes.

ISPFNW

*ITLOCK 3.53 Indicates whether the USR is currently in use by another job
and performs a LOCK if the USR is available.

LOCK 3.73 Makes the RT-11 monitor User Service Routine (USR) perma-
nently resident until an UNLOCK function is executed. If
necessary, a portion of the user’s program is swapped out to
make room for the USR.

RCHAIN 3.91 Allows a program to access variables passed across a chain.

RCTRLO 3.92 Enables output to the terminal by canceling the effect of a
previously typed CTRL/O.

*RESUME 3.94 Causes the main program execution of a job to resume at the
point it was suspended by a SUSPND function call.

SCCA 3.95 Intercepts a CTRL/C command initiated at the console termi-
nal.

SETCMD 3.99 Passes command lines to the keyboard monitor for execution
after the program exits.

*SUSPND 3.102 Suspends main program execution of the running job; comple-
tion routines continue to execute.

UNLOCK 3.107 Releases the USR if a LOCK was performed; the user program

INTEGER*4 Support Fun

3.1

3.7

3.13

3.22

3.30
3.61
3.62
3.63

ctions

is swapped in if required.

Converts a specified INTEGER*4 value to REAL*4 and re-
turns the result as the function value.

Converts a specified INTEGER*4 value to REAL*8 and re-
turns the result as the function value.

Converts a specified INTEGER*4 value to REAL*4 and stores
the result.

Converts a specified INTEGER*4 value to REAL*8 and stores
the result.

Converts a specified INTEGER*4 value to INTEGER*2.
Computes the sum of two INTEGER*4 values.
Converts a REAL*4 value to INTEGER*4.

Compares two INTEGER*4 values and returns an
INTEGER*2 value that reflects the signed comparison result.

* FB and XM monitors only.

{continued on next page)

Introduction to Advanced RT-11 Programming 1-63

1-64

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name

Section

Description

JDFIX
JDIV

JICVT
JJCVT

JMOV
JMUL
JSUB

CONCAT
GETSTR

INDEX

INSERT
ISCOMP
IVERIF
LEN
PUTSTR

REPEAT

SCOMP
SCOPY
STRPAD

SUBSTR
TRANSL

3.64
3.65

3.66
3.67

3.68
3.69
3.70

Character String Functions

3.4
3.8

3.32

3.33
3.47
3.58
3.72
3.84

3.93

3.96
3.97
3.100

3.101
3.105

3.104
3.106

INTEGER*4 Support Functions (cont.)

Converts a REAL*8 value to INTEGER*4.

Computes the quotient and remainder of two
INTEGER*4 values.

Converts an INTEGER*2 value to INTEGER*4.

Converts the two-word internal time format to
INTEGER*4 format, and vice versa.

Assigns an INTEGER*4 value to a variable.
Computes the product of two INTEGER*4 values.

Computes the difference between two INTEGER*4
values.

Concatenates two variable-length strings.

Reads a character string from a specified FORTRAN logical
unit.

Returns the location in one string of the first occurrence of
another string

Replaces a portion of one string with another string.
Compares two character strings.

Indicates whether characters in one string appear in another.
Returns the number of characters in a specified string.

Writes a variable-length character string on a specified FOR-
TRAN logical unit.

Concatenates a specified string with itself to provide an indi-
cated number of copies and stores the resultant string.

Compares two character strings.
Copies a character string from one array to another.

Pads a variable-length string on the right with blanks to create
a new string of a specified length.

Copies a substring from a specified string.

Replaces one string with another after performing character
modification.

Removes trailing blanks from a character string.

Indicates whether characters in one string appear in another.

" FB and XM monitors only.

Introduction to Advanced RT-11

(continued on next page)

Programming

Table 1-9: Summary of SYSLIB Subroutines (Cont.)

Name Section

Description

IRAD50 3.40
R50ASC - 3.89
RAD50 3.90

Miscellaneous Services

IADDR 3.12
IGETSP 3.28
INTSET 3.34
IPEEK 3.35
IPEEKB 3.36
IPOKE 3.37
IPOKEB 3.38
ISPY 3.561

Radix-50 Conversion Operations

Converts characters in ASCII format to Radix-50,
returning the number of characters converted.

Converts characters in Radix-50 format to ASCII.
Converts six ASCII characters, returning a REAL*4

Obtains the memory address of a specified entity.

Returns the address and size (in words) of free space obtained
from the FORTRAN system.

Establishes a specified FORTRAN subroutine as an interrupt
service routine with a specified priority.

Returns the value of a word located at a specified absolute

memory address.

Returns the value of a byte located at a specified byte address.
Stores an integer value in an absolute memory location.
Stores an integer value in a specified byte location.

Returns the integer value of the word located at a specified
offset from the beginning of the RT-11 resident monitor.

" FB and XM monitors only.

Introduction to Advanced RT-11 Programming 1-65

Chapter 2

Programmed Request Description and Examples

This chapter presents the programmed requests alphabetically, describing
each one in detail and providing an example of its use in a program. Also
described are macros and subroutines that are used to implement device
handlers and interrupt service routines. The following parameters are com-
monly used as arguments in the various calls:

addr

area

blk

buf

cblk

chan
chrent

code
crtn

dblk

func
jobblk

jobdev

num

an address, the meaning of which depends on the request
being used.

a pointer to the EMT argument block for those requests that
require a block.

a block number specifying the relative block in a file or de-
vice where an I/O transfer is to begin.

a buffer address specifying a memory location into which or
from which an I/O transfer will be performed; this address
has to be word-aligned — that is, located at an even address
and not a byte or odd address.

the address of the five-word block where channel status infor-
mation is stored.

a channel number in the range 0-377(octal).

a character count in the range 1-255(decimal).

a flag used to indicate whether the code is to be set in an

EMT 375 programmed request.
the entry point of a completion routine.

a four-word Radix-50 descriptor block that specifies the phy-
sical device, file name, and file type to be operated upon (see
Section 1.1.2.6).

a numerical code indicating the function to be performed.
a pointer to a three-word ASCII system job name.

a pointer to a four-word system-job descriptor where the first
word is a Radix-50 device name and the next three words

contain an ASCII system-job name (for keyword argument
use, refer to this as a “dblk”).

a number, the value of which depends on the request.

2.1

2-2

seqnum a file number.

For cassette operation, a value of 0 is assumed if this argu-
ment is blank.

For magtape operation, this argument describes a file se-
quence number. The values that the argument can have are
described under the applicable programmed requests.

unit the logical unit number of a particular terminal in a multi-
terminal system.

went a word count specifying the number of words to be trans-
. ferred to or from the buffer during an I/O operation.

Many programmed requests are qualified as special features. These requests
are enabled only if you performed a system generation process, that is, they
are not available in a distributed monitor.

.CDFN

The .CDFN request redefines the number of I/O channels. Each job, whether
foreground or background, is initially provided with 16(decimal) I/O channels
numbered 0-15. .CDFN allows the number to be expanded to as many as 256
(decimal) channels (0-255).

The space for the new channels is taken from within the user program. Each
I/O channel requires five words of memory. Therefore, you must allocate 5*n
words of memory, where n is the number of channels to be defined.

It is recommended that you use the .CDFN request at the beginning of a
program before any 1/O operations have been initiated. If more than one
.CDFN request is used, the channel areas must either start at the same
location or not overlap at all. The two requests .SRESET and .HRESET
cause the channels to revert to the original 16 channels defined at program
initiation. Hence, you reissue any .CDFNs after using .SRESET or
-HRESET. The keyboard monitor command CLOSE does not work if your
program defines new input or output channels with the .CDFN request.

The .CDFN request defines new channels so that the space for the previously
defined channels cannot be used. Thus, a .CDFN for 20(decimal) channels
(while 16 original channels are defined) creates 20 new I/O channels; the space
for the original 16 is unused, but the contents of the old channel set are copied
to the new channel set.

If a program is overlaid, the overlay handler uses channel 15 (decimal) and
this channel should not be modified. (Other channels can be defined and used
as usual.)

If an XM monitor environment, the area supplied for additional channels
specified by the .CDFN request must lie in the lower 28K words of memory. In
addition, it must not be in the virtual address space mapped by Kernel PARI,
specifically the area from 20000 to 37776(octal). If you supply an invalid area,
the system generates an error message.

Programmed Request Description and Examples

Macro Call: .CDFN area,addr,num

where:
area is the address of a three-word EMT argument block
addr is the address where the I/O channels begin
num is the number of I/O channels to be created

Request Format:

RO - area: 15 | 0
addr
num
Errors:
Code Explanation
0 An attempt was made to define fewer channels than already
exist. In an XM environment, an attempt to violate the PARI
restriction sets the carry bit and returns error code 0 in byte 52.
Example:

+TITLE CDFN.MAC

+

.CIOFN - This is an examrle in the use of the .CIOFN recuest., The
examrle defines 32 new channels to reside in the body of the
FTOSTam,

ws s wr s s

+MCALL L COFNs PRINTy.EXIT

START: JCIDFN $AREA»#¥CHANL » #32, jUse .CDFN to define 32. new channels
RCC 1¢ jBranch if successful
+FPRINT #BALCD iFrint fzilure message on console
+EXIT fExit rrodram

143 +FRINT #GOOICD iPrint success message
JEXIT $Thern exit

AREA: +BLKW 3 FEMT Argument EBlock

CHANL! +BLKW S5%32, iSrace for new channels

BALICD! LJASCIZ /7 CDFN Failed 7/ iFailure messade

Gooncon: +ASCIZ /.CDFN Successful/ $Success messade
+END START

2.2 .CHAIN

The .CHAIN request allows a background program to pass control directly to
another background program without operator intervention. Since this pro-
cess can be repeated, a long “chain” of programs can be strung together.

The area in low memory from locations 500-507 contains the device name and
file name (in Radix-50) to be chained to. The area from locations 510-777 is
used to pass information between the chained programs.

Programmed Request Description and Examples 2-3

Macro Call: .CHAIN

Request Format:

RO=| 10 | 0 |

Notes:

1.

Make no assumptions about which areas of memory remain intact across a
.CHAIN. In general, only the resident monitor and locations 500-777 are
preserved across a .CHAIN. In a .CHAIN from a virtual job, locations
500-777 are not preserved.

1I/O channels are left open across a .CHAIN for use by the new program.
However, new I/O channels opened with a .CDFN request are not avail-
able in this way. Since the monitor reverts to the original 16 channels
during a .CHAIN, programs that leave files open across a .CHAIN should
not use .CDFN. Furthermore, nonresident device handlers are released
during a .CHAIN request and must be fetched again by the new program.
Note that FORTRAN logical units do not stay open across a .CHAIN.

An executing program determines whether it was chained to or RUN from
the keyboard by examining bit 8 of the Job Status Word. The monitor sets
this bit if the program was invoked with .CHAIN request. If the program
was invoked with R or RUN command, this bit remains cleared. If bit 8 is
set, the information in locations 500-777 is preserved from the program
that issued the .CHAIN and is available for the currently executing pro-
gram to use. Again, locations 500-777 are not preserved in a .CHAIN from
a virtual job.

An example of a calling and a called program is MACRO and CREF.
MACRO places important information in the chain area, locations
500-777, then chains to CREF. CREF tests bit 8 of the JSW. If it is clear,
it means that CREF was invoked with the R or RUN command and the
chain area does not contain useful information. CREF aborts itself imme-
diately. If bit 8 is set, it means that CREF was invoked with .CHAIN and
the chain area contains information placed there by MACRO In this case,
CREF executes properly.

Errors:

.CHAIN is implemented by simulating the monitor RUN command and
can produce any errors that RUN can produce. If an error occurs, the
.CHAIN is abandoned and the keyboard monitor is entered. Since vir-
tual jobs must be run with the R command, a .CHAIN to a virtual job is
illegal.

When using .CHAIN, be careful with initial stack placement. The
linker normally defaults the initial stack to 1000(octal); if caution is not
observed, the stack can destroy chain data before it can be used.

Example:

+TITLE CHAIN.MAC

,CHAIN - This examsrle demonstrates the use of the CHAIN

~rosram reauest. I+ chains to srogram ‘CTEST.S5AV’ and rasses it

2 command line tured in a3t the console terminal. As an exercise
Wwrite the =rogram ‘CTEST’ - in its check to see if it was chained
toy and if sos echo the datz rzssed to its otherwise erint the
messasde "Was not chsined to'

oAb cae e e me MR R

+MCALL JCHAINs . TTYIN, .FRINT

START: MOV $#3500:R1 iR1 =» Chain ares

MOV #CHPTRYR2 $R2 = RADGO Frodgram Filesrer

+REFPT 4 jMove the FProgram Fllesrec

Moy (R2)+s (R1)+ sinto the Chain aresa...

+ENDR H

+PRINT #FROMT sAsk for the data to be rassed
LOGF ¢ +TTYIN tNow dget 2 "command® line

MOVE ROs (R1)+ sto pass to the chained Frodram

CMFER RO»#12 iin locations 510 and ur.

ENE LOOF jLoor until line feed.

CLRE BR1 sPut im 8 null bute as a terminator.

+CHAIN iChain to the next rFrosram.
CHFTR? .RABSO /OK/ FRANSO File srec..s

+RADS JCTEST 7/

+RADS 0 /8AV/
FROMT WASCII /Enter date to be rassed to CTEST » /<200
+END START

R332 3323333333203 3802323322303 380288328 02303 8

% IN CASE YOU DON'T HAVE TIME HERE’S AN EXAMFLE X

ix ‘CTEST.MAC’ FROGRAM... X

§RO0RR KKK KKK R KOO KOKK K KO000KK0K KKK KOO K KKK KRR KK
+TITLE CTEST.MAC

SMCALL WPRINTyEXIT

JSW = 44 iLocation of JSW
CHAINS$ = 400 $CHAIN bit in JSW
CTEST: RIT $CHAINS 2% .JSU tdere we chained to?
REQ 1% fBranch if not
LFRINT #CHAIND iSay Wwe Wwere...
MoV #510sR0O iGet addr of start of data
+FRINT sFrint it out
JEXIT tExit Frodram
14¢ +FPRINT #NOCHN iSav we weren’t cheined to
JEXIT tThen exit

CHAIND?! .ASCIZ /CTEST was chained to - and here’s the data rassed.../
NOCHN: JASCIZ /CTEST was not chained ta/
+END CTEST

2.3 .CHCOPY (FB, XM, and System Jobs Only)

The .CHCOPY request opens a channel for input, logically connecting it to a
file that is currently open by another job for either input or output. This
request can be used by either a foreground, background, or system job and
must be issued before the first .READ or .WRITE request.

.CHCOPY is valid only on files on disk (including diskette} or DECtap
However, no errors are detected by the system if another device is used. (0

close a channel following use of .CHCOPY, use either the .CLOSE or .PURGE
request.)

Programmed Request Description and Examples 2-5

(3%

Macro Call: .CHCOPY area,chan,ochan [,jobblk]

where:
area is the address of a three-word EMT argument block
chan is the channel the current job will use to read the data
ochan is the channel number of the other job’s channel to be copied

jobblk is a pointer to a three-word ASCII logical job name that repre-
sents a system job (see the RT-11 System User’s Guide)

Request Format:

RO - area: 13 | chan
ochan
jobblk

Notes:

1. If the other job’s channel was opened with .ENTER in order to create a
file, the copier’s channel indicates a file that extends to the highest block
that the creator of the file had written at the time the .CHCOPY was
executed.

2. A channel open on a non-file-structured device should not be copied,
because intermixture of buffer requests can result.

3. A program can write to a file (that is being created by the other job) on a
copied channel just as it could if it were the creator. When the copier’s
channel is closed, however, no directory update takes place.

4. Foreground and background jobs may optionally leave the jobblk argu-
ment blank or set it to zero. This causes the job name to default to F if the
background job issued the request, or to B if the foreground job issued the

request.
Errors:
Code Explanation
0 Other job does not exist, does not have enough channels de-

fined, or does not have the specified channel (ochan) open.
1 Channel (chan) already open.

Example:

+

+CHCOFY - This is an examrle in the use of the .CHCOFY request.
The examrle consists of two rrosramsi s Foreground Job which
creates 8 file and sends 3 messaZe to a Backdround rrogram
which cories the FG channel and reads 3 record from the file.
Both srodgrams must be assembled and linked seraratelu.

P L T

+TITLE CHCOFF.MAC
IR
i This is the Foredround rFrodgram ...
;_

+MCALL JENTER» .FRINT,.SDATWy EXITy RCVDWy . CLOSE> WRITW

Programmed Request Description and Examples

STARTF: MOV

+ENTER

=TT
CUWRITH

BCS
+SDATW
H

+RCYLDW
+CLOSE
+ERINT
JEXIT

ENTERR?! +FRINT

FILE:

. AREA!

BUFR:

RECRD?
ERMSG:
FEXIT:

JEXIT
+RADSO
«RALDSO
+BLKW
LWORD
+UWORD
+BLKYW
+ASCIZ
+ASCIZ
+END

+TITLE

is the Backdground erodgram

+MCALL

STARTER! MOV

AREA?
MSG 3
EUFF
BREXIT?
NOJOE:
NOCH?
RDERR:

2.4 .CLOSE

#AREAYRS
RSs#0,#FILE»#5
RS+$0+¥RECRED,
ENTERR

RS #BUFR 32

+
RSy #BUFR, #1

$0

$FEXIT

$ERMSG

/0K QUFILE/

/TMF/
S

o

4
256.

/?Enter Error?/
/FG Job exiting/

STARTF

CHCOFE.HAC

iRS =>x EMT ardument block

iCreate 3 5 block file

jUrite 2 record RG is interested in
iBranch on error

iSend messade with info to BG

ilio some other rrocessing

jWhen it’s time to exitrmake sure
$BG is done with the file

$Tell user we‘re doindg bue-bue
$Exit the rrodram

iFrint error messade

ithern exit

iFile srec for ENTER

FEMT argument block
iChannel %

iBlochk #

iFile record

sError messade text
jExit messade

«CHCOFYy RCVYDWs +REATIIWy sEXITs» FRINT, .SDATH

#FAREAIRD .

5 =» EWMT ard blochk
ait for messade from FG

R

W

Eranch if no FG

Charnnel # is 1st word of messade
B

ranch if FG channel not oren

b oy W e s

iRead block which is 2nd word of msd
iBranch if read error
sContinue rFrocessing...

iTell FG we’re thru with file
iTell user we’re thru

tthen exit rrodram

sRO =+ No FG error mssg
ikranch to Frint mss

3RO =+ FG ch not oFen msg
iBranchess

iRO => Read err ms¢g

tFrint rrorer error msd

sthen exit.

JEMT argument blhk

iMessade buffer

iFile buffer

sError messages. ..

+RCVDW RS #MSGs #2

BCS 1%

+CHCOFY RS $0:MSG+2

BCS 2%

JREADW FR5+#0+#RUFF,#256. M56+4
RCS 3¢

y .

+SDATW RS, #MSGr#1

+FRINT #BEXIT

JEXIT

MoV #NOJOERRO

BR 44

MOV $NOCHsRO

RR 4%

MoV #RDERR RO

LFRINT

JEXIT

+BLKW 5

+BLKYW 3

+BLKW 256,

+ASCIZ /Channel-Record corw successful/
+ASCIZ /7?No FG Jok?/

+AS8CIZ /7FG channel rnot oren?®/
+ASCIZ /?Resd Error?s

+END STARTER

The .CLOSE request terminates activity on the specified channel and frees it
for use in another operation. The handler for the associated device must be in
memory if the file was created with a .ENTER programmed request.

Macro Call:

.CLOSE chan

Request Format:

RO = |

6

l chan |

A .CLOSE request specifying a channel that is not open is ignored.

Programmed Request Description and Examples 2-7

A file opened with .LOOKUP does not require any directory operations when
a .CLOSE is issued, and the USR does not have to be in memory for such a
.CLOSE. The USR is required if, while the channel is open, a request was
issued that required directory operations. The USR is always required for
special structured devices such as magtape.

A .CLOSE is required on any channel opened with .ENTER if the associated
file is to become permanent.

NOTE

Do not close channel 17 (octal) if your program is overlaid,
because overlays are read on that channel.

A .CLOSE performed on a file opened with .ENTER causes the device direc-
tory to be updated to make that file permanent. The first file in the directory
with the same name, if one exists, is deleted, provided that it is not protected.
When a file that is opened with an .ENTER request is closed, its permanent
length reflects the highest block written since it was entered. For example, if
the highest block written is block number 0, the file is given a length of 1; if
the file was never written, it is given a length of 0. If this length is less than
the size of the area allocated at .ENTER time, the unused blocks are re-
claimed as an empty area on the device.

In magtape operations, the .CLOSE request causes the handler to write an
ANSI EOF1 label in software mode (using MM.SYS, MT.SYS, or MS.SYS)
and to close the channel in hardware mode (using MMHD.SYS, MTHD.SYS,
or MSHD.SYS).

Errors:

Code Explanation

3 A protected file with the same name already exists on the de-
vice. The .CLOSE is performed anyway, resulting in two files
with the same name on the device.

.CLOSE does not return any other errors unless the .SERR request has
been issued. If the device handler for the operation is not in memory,
and the .CLOSE request requires updating of the device directory, a
fatal monitor error is generated.

Example:

Refer to the examples for the .CSISPC and .WRITW requests, which
show typical uses for .CLOSE.

2.5 .CMKT (FB and XM. SJ Monitor Special Feature)

2-8

The .CMKT request causes one or more outstanding mark time requests to be
canceled (see the .MRKT programmed request). The .CMKT request is a
special feature in the SJ monitor, and is selected with the timer support
during the system generation process.

Programmed Request Description and Examples

~
L.

~n

o)

Macro Call: .CMKT area,id[,time]

where:

area is the address of a three-word EMT argument block

id is a number that identifies the mark time request to be can-
celed. If more than one mark time request has the same id, the
request with the earliest expiration time is canceled. If id = 0,
all non-system mark time requests (those in the range 1-177377)
for the issuing job are canceled

time is the address of a two-word area in which the monitor returns
the amount of time (clock ticks) remaining in the canceled re-
quest. The first word contains the high-order time, the second
contains the low-order. If an address of 0 is specified, no value is
returned. If id = 0, the time parameter is ignored and need not
be indicated ’

Request Format:

RO - area: 23 0
id

time

Notes:

Canceling a mark time request frees the associated queue element.

A mark time request can be converted into a timed wait by issuing a
.CMKT followed by a .TWAIT, and by specifying the same time area.

If the mark time request to be canceled has already expired and is waiting
in the job’s completion queue, .CMKT returns an error code of 0. It does
not remove the expired request from the completion queue. The comple-

..... 1 st

1A 43emn wxr at ally,
tion routine will eventually be run.

Errors:

Code Explanation
0 The id was not zero and a mark time request with the specified
identification number could not be found (implying that the
request was never issued or that it has already expired).

Example:

Refer to the example for the .MRKT request.

.CNTXSW (FB and XM Onily)

A context switch is an operation performed when a transition is made from
running one job to running another. The .CNTXSW request is used to specify

Programmed Request Description and Examples ~ 2-9

locations to be included in a list when jobs are switched between background
and foreground. Refer to the RT-1I1 Software Support Manual for further
details.

The system always saves the parameters it needs to uniquely identify and
execute a job. These parameters include all registers and the following loca-
tions:

34,36 Vector for TRAP instruction
40-52 System Communication Area

If an .SFPA request has been executed with a non-zero address, all floating-
point registers and the floating-point status are also saved.

It is possible that both jobs want to share the use of a particular location not
included in normal context-switch operations. For example, if a program uses
the IOT instruction to perform an internal user function (such as printing
error messages), the program must set up the vector at 20 and 22 to point to
an internal IOT trap handling routine. If both foreground and background
wish to use IOT, the IOT vector must always_point to the proper location for
the job that is executing. Including locations 20 and 22 in the .CNTXSW list
for both jobs before loading these locations accomplishes this. This procedure
18 not necessary for jobs running under the XM monitor. In the XM monitor,
both IOT and BPT vectors are automatically context-switched.

If .CNTXSW is issued more than once, only the latest list is used; the previ-
ous address list is discarded. Thus, all addresses to be switched must be
included in one list. If the address (addr) is 0, no extra locations are switched.
The list cannot be in an area into which the USR swaps, nor can it be
modified while a job is running.

In the XM monitor, the .CNTXSW request is ignored for virtual jobs, since
they do not share memory with other jobs. For virtual jobs, the IOT, BPT,
and TRAP vectors are simulated by the monitor. The virtual job sets up the
vector in its own virtual space by any of the usual methods (such as a direct
move or an .ASECT). When the monitor receives a synchronous trap from a
virtual job that was caused by an IOT, BPT, or TRAP instruction, it checks
for a valid trap vector and dispatches the trap to the user program in user
mapping mode. An invalid trap vector address will abort the job with the
following fatal error message:

?MON-F-11I sst (illegal synchronous system trap)
Macro Call: .CNTXSW area,addr
where:
area is the address of a two-word EMT argument block

addr is a pointer to a list of addresses terminated by a zero word. The
addresses in the list must be even and be one of the following:

a. in the range 2-476
. in the user job area
c. in the I/O page (addresses
160000-177776)

Request Format:

RO - area: 3 | 0
addr
Errors:
Code Explanation
0 One or more of the conditions specified by addr was violated.

-+

T R R T A T 1Y

START?

1¢2

SWLIST?

AREA?

ADDERR?
CNTOK?

switched,
wvet inderendentlu.

+JTITL

E CNTXSW.MAC

and 22 (I0OT vectors) and certain
This allows both Jobs to

+CNTXSW - This is an examele in the use of the .CNTXSW recuest.
In this examrles 2 .CNTXSW reauest is used to srecifw that location 20
necessary EAE resisters be context

use I0T and the EAE simultaneously

L +CNTXSWs .FRINT, .EXIT

+CNTXSW #AREAF¥SWLIST ilssue the CNTXS5W request

+MCAL

BCC 1¢
+PRINT #ADDERK
JEXIT

+FRINT #CNTOK
+JEXIT

+WORD 20
+WORL 22
+WORD 177302
+WORD 177304
+WORD 177310
+WORD 0
+BLKW 2
+ASCI

+ASCI

VEND

LR =41

sBranch if successful
jAddress error{should not occur)
sExit the rrodram

jAcknowledde success with 3 messade

sthen exit the rrogram

jAddresses to include in context switch

+I0T & EAE vectors...
JEAE redisters...

’
H
ilist terminator ! !!

JEMT argument block

Z /% .CNTXSW Addressing Error 7/
Z /.CNTXSW Successful/

START

2.7 .CRAW (XM Only)

The .CRAW request defines a virtual address window and optionally maps it
into a physical memory region. Mapping occurs if you set the WS.MAP bit in-
the last word of the window definition block before you issue .CRAW. Since
the window must start on a 4K word boundary, the program only has to
specify which page address register to use and the window size in 32-word
increments. If the new window overlaps previously defined windows, those
windows are eliminated before the new window is created (except the static
window reserved for a virtual program’s base segment).

Macro Call:

where:

area

.CRAW areal,addr]

is the address of a two-word EMT argument block

Programmed Request Description and Examples

2-11

addr is the address of the window definition block. This argument is
optional if you have filled in the second word of the area argu-
ment block with the address pointer

The window status word (W.NSTS) of the window definition
block may have one or more of the following bits set on return
from the request:

WS.CRW set if address window was successfully created

WS.VNM set if one or more windows were unmapped to cre-
ate and map this window

WS.ELW set if one or more windows were eliminated

Request Format:

RO - area: 36 [2
addr
Errors:
Code Explanation
0 Window alignment error: the new window overlaps the static

window for a virtual job. The window is too large or W.NAPR is
greater than 7.

1 An attempt was made to define more than seven windows in
your program. You should eliminate a window first (ELAW),
or redefine your virtual address space into fewer windows.

If the WS.MAP bit was set in the window definition block status word, the
following errors can also occur:

Code Explanation
2 An invalid region identifier was specified.
4 The combination of the offset into the region and the size of the

window to be mapped into the region is invalid.

Example:

+TITLE XMCOFY

This is an examrle in the use of the RT~11 Extended Memoru reauests.
The rrogram is 3 file cory with verify utility that uses extended
memory to imrlement 4k trarnsfer buffers, The examrle utilizes most
the Extended Memorwy recuests and demonstrates other srodramming
technigues useful in utilizing the reeuests.

b ab ae s er ar er

+NLIST BREX
+MCALL JUNMAFs ,ELRGs .ELAWs .CRRG».CRAWs ,MAF» ,FRINTs JEXIT».CLOSE
+MCALL WRLBBK, .WDREBKy . TTYOUTs.WDOEDF, .RDBDF,» . CSIGENy .READWs WRITW

JSW = 44 iJSW location

JJVIRT = 2000 iVirtual Job bit in JSW
ERRRYT = 52 iError byte loacation

AFPR = 2 tPAR/FDR for 1st window
AFR1 = 4 i . * 2nd .

RUF = WOE+W. NBAS iVirtual addr of 1st buffer
BUF1 = WDE1+W.NEAS i . * ' 2nd *
CORSIZ = 4096, iSize of buffer in words
FAGSIZ = CORSIZ/256., iFade size in blocks

2-12 Programmed Request Description and Examples

START 3

1043

30%3

READ?

WRITE:

ADDIT?

FASS2:

30%1

ix EXAMFLE USING THE

¥ IMFLI

VERIFY:?

GETERLK?

40%:

ENDIT?

WRNID
WRNID1

+ASECT
= JSW
+WORD
+FSECT

JWIBDF
+RDBDF

+CSIGEN
BCS
INCE
+CRRG
ECC
JMP
MoV
INCE
+CRAUW
ECC
JMF
INCE
+MAF
BCC
JMF
CLR
MOV
INCE
+READW
rCC
TSTR
REQ
JMF
MOV
JWRITW
ECC
INCE
JHF
AN
RR
INCE
+CRRG
ECC
JHF
MOow

EDl . MAF

INCE
.CRAW
BCC
JHF

INCE
CLR
MOV
.READW
ECC
TSTE
BEQ
JHF
¥OU
+READW
ECC
INCE
JuP
Hov
MoV
cHP
ENE
DEC
BNE
ADD
BR

+FRINT

WOR+W.NRID
WIE1+W.NRID

JJVIRT

$ENDCRE» #DEFLT %0
START

ERRNO

$CAREA #RDE
104

ERROR
RDBWRNID
ERRNO

$CAREA $UDER
20¢

ERROR

ERRNO

$CAREA #WDER
30%

ERROR

R1
#$CORSIZsR2
ERRNO
$RAREAY#3yBUF s R2yR1
WRITE
R¥ERREYT
FASSZ

ERROR

ROsR2
$RAREA,#0,RBRUFyR2,R1
ADDIT

ERRNO

ERROR
$FAGSIZsR1
READ

ERRNO

$CAREA #RIOEL
IS¢

ERROR
ROB1»WRNIDE

REQUEST.

ERRNO
$CAREAs #WIER1
VERIFY

ERROR

ERRNO

Rl
$CORSIZ,R2
$RAREA,$#3sBUF1sR2,R1
40%

@#ERREYT
ENDIT

ERROR

ROsR2
#RAREA»#0sRUFsR2,R1
S0%

ERRNO

ERROK

BUF s R4
BUF1,R3
(R4a)+s (R3) +
ERRDAT

R2

70%
$#FPAGSIZyR1
GETBLK

$ENDFRG

Programmed Request Description and Examples

jRegion ID addr of 1st redgion
;o . = v 2nd .
jAssemble in the Virt Job Bit
tMake this a ®"virtuasl®' Job
iStart code now
iCreate Window Def Blk Sumbols
it Region ' ‘ "
3Get filesrpecsr handlerss oren files
iBranch if error

FERR = 1x

iCreate & redion

iBranch if successful
jRerort error (JHP due to
iMove redion id to Window
$ERR = 2x

iCreate window. ..

iBranch if no error
iReport error...

SERR = 3x

FExrlicitls mar windowe..
ikranch if no error
sRerort error

range!)

Def Blk

#R1 = RT11 BRlock # for I/0

3R2 = # of words to read

JERR = 4x

iTry to read 4k worth of blocks

iEranch if no error

FEOFT

iBranch if des

iMust be hard errors rerort it
iR2 = size of buffer Just read
jWrite out the buffer

iBrarnch if no error

SERR = Sx

iRerort error

iAddust block #

iThen €¢o get another buffer
tERR = éx

iCresate 3 region

sBranch if no error

iRerort error

;Get region id to window def blk

{CRAW REQUEST [OING X

X

SERR = 7x

iCreate window using imrlied
sBranch if no error

iRerort error

JERR = Bx

#R1 = RT11 block # adgain

iR2 = 4k buffer size

iTry to det 4K worth
iBranch if no error
$yEOF7

iBranch if ges
iRerort hard error
$R2 = size of buffer read

5Try to Zet same size from outrut file
iBranch if no error

SERR = 9%

iRerort error

iGet outrut buffer address

iGet input buffer address

iVerify that data is the same

iIt’s nots» rerort error

iAre we finished?

iBranch if we aren‘t

iAdJust block # for rade size

3Go dget another buffer rair

+ MAF

of inrut file

$Announce we’re finished

2-13

XCLOS:

ERROR?

ERRDAT

RIOR3
WDR?
RDE1:
Woe1?

CAREA:
RAREA?
DEFLT:
ENDFRG?
ERR?
ERRNO?
ERRBUF?
ENDCRE

+CLOSE
+ UNMAFP
+ELAW
+ELRG
+ELRG
+EXIT

MOVB
ADD
MOVB
+PRINT
BR
+FRINT
BR

+ROERBK
+ WDEBK
+RIBRK
+WOBEK

+BLKW
+BLKW
+WORD
+ASCIZ
+ASCII
+ASCIZ
+ASCIZ

= s

+ENI

0

#CAREAY$#WDE
#CAREA, #WDE
#CAREA» #RDE
#CAREA,#RDEBL

@#ERREYTsRO
$/0:,RO
ROSERRNO+1
$ERR

XCLOS
$ERRBUF
XCLOS

CORSIZ/32,

APRsCORSIZ/32,

CORSIZ/32.

iClose ocutrut file

$Exrlicitly unmas ist window
iExplicitly eliminate 1st window
iElimimate 1st redgion
iUnmarreliminate 2ngd window & redgion
FExit srodgram

iMake error byte code 2nd disgit
iof error code...

iPut it in error messade

iPrint it...

6o close outrut file

iRerort verifws failed...

36o close outrut file

i +RDDBK defines Resion Def Rlk
+WDDBK defines Window Def Blk
ilefine 2nd redion same way

AFR1,CORSIZ/32,,0+0,CORSIZ/32, WS.MAF 5 and 2nd Window

o~

0205090

F(but with maerring status set!)
JEMT ardument blocks

iNo default extensions

/ X% End of XM Examsle Frodram %/
/?XM Request or I-0 Error % /

/00/

/?hats Verification Error?/

START

iFor CSIGEN - XM handlers loaded !

2.8 .CRRG (XM Only)

The .CRRG request directs the monitor to allocate a dynamic region in physi-
cal memory for use by the current requesting program.

Macro Call: .CRRG areal,addr]
where:
area is the address of a two-word EMT argument block
addr is the address of the region definition block for the region to be

created

Request Format:

RO - area 36 | 0
addr
Errors:
Code Explanation
6 No region control blocks are available. You eliminate a region

to obtain a region control block (.ELRG), or you can redefine
your physical address space into fewer regions.

7 A region of the requested size cannot be created because not
enough memory is available. The size of the largest available
region is returned in RO.

10 An invalid region size was specified. A value of 0, or a value
greater than 96K words, is invalid.

Example:

Refer to example for the .CRAW

2.9 .CSIGEN

The .CSIGEN request calls the Command String Interpreter (CSI) in general
mode to process a standard RT-11 command string. In general mode, file
.LOOKUP and .ENTER requests as well as handler .FETCH requests are
performed.

The .CSIGEN request gets the command string dev:output-filespec=dev:
input-filespec/options into the program, and the following operations occur:

1. The handlers for devices specified in the command line are fetched.
2. .LOOKUP and/or .ENTER requests on the files are performed.

3. The option information is placed on the stack. See the end of this section
for a description of the way option information is passed. Note that this
call always puts at least one word of information on the stack.

When called in general mode, the CSI closes channels 0-10 (octal).

.CSIGEN loads all necessary handlers and opens the files as specified. The
area specified for the device handlers must be large enough to hold all
the necessary handlers simultaneously. If the device handlers exceed the
area available, your program can be destroyed. (The system, however, is
protected.)

The three possible output files are assigned to channels 0, 1, and 2, and the six
possible input files are assigned to channels 3 through 10(octal). A null speci-
fication causes the associated channel to remain inactive. For example, the

following string

#2LP:=F14+F2

causes channel 0 to be inactive since the first specification is null. Channel 1
is associated with the line printer, and channel 2 is inactive. Channels 3 and 4
are associated with two files on DK:, while channels 5 through 10 are inactive. .
Your program can determine whether a channel is inactive by issuing a
.WAIT request on the associated channel, which returns an error if the
channel is not open.

Macro Call: .CSIGEN devspc,defext,cstrng(,linbuf]

where:

devspc is the address of the memory area where the device handlers
(if any) are to be loaded

defext is the address of a four-word block that contains the Radix-50

Programmed Request Description and Examples 2-15

default file types. These file types are used when a file is
specified without a file type (see Note 1)

cstrng is the address of the ASCIZ command string or a 0 if input is
to come from the console terminal. (In an FB or XZ environ-
ment, if the input is from the console terminal, an .UNLOCK
of the USR is automatically performed while the string is
being read, even if the USR is locked at the time.) If the string
is in memory, it must not contain a (octal 15 and 12),
and must terminate with a zero byte. If the cstring field is
blank, input is automatically taken from the console terminal.
This string, whether in memory or entered at the console,
must obey all the rules for a standard RT-11 command string

linbuf is the storage address of the original command string. This is
a user-supplied area, 81 decimal bytes in length. The com-
mand string is terminated with a zero byte instead of
(octal 15 and 12). If this argument is omitted, the input com-
mand string is not copied to user memory

On return, RO points to the first available location above the handlers, the
stack contains the option information, and all the specified files have been
opened.

Notes:
1. The four-word block pointed to by defext is arranged as:

Word 1: default file type for all input channels

Words 2,3,4: default file types for output channels 0,1, and 2, re-
spectively

If there is no default for a particular channel, the associated word must
contain 0. All file types are expressed in Radix-50. For example, the
following block can be used to set up default file types for a macro assem-

bler:

DEFEXT: .RADS0O “MAC"
,RADSO "OBJ"
.RADSO YLGT"
,WORD 0

In the command string:

*DTO:ALPHADT1:BETA=DTZ: INPUT

the default file type for input is MAC; for output, OBJ and LST. The
following cases are valid:

#*DTO:0UTPUT=
*DTZ2:INPUT

In other words, the equal sign is not necessary if only input files are
specified.

2. An optional argument (linbuf) is available in the .CSIGEN format that
provides the user with an area to receive the original input string. The

Programmed Request Description and Examples

input string is returned as an ASCIZ string and can be printed through a
.PRINT request.

3. The .CSIGEN request automatically takes its input line from an indirect
command file if console terminal input is specified (cstring = #0) and
the program issuing the .CSIGEN is invoked through an indirect
command file.

Errors:

If CSI errors occur and input was from the console terminal, an error
message describing the fault is printed on the terrr‘“a‘n and the CSI
retries the command. If the input was from a string, the carry bit is set
and byte 52 contains the error code. In either case, the options and
option-count are purged from the stack. The errors are:
Code Explanation
0 Invalid command (such as bad separators, invalid file names,
and commands that are too long).
1 A device specified is not found in the system tables.
2 A protected file of the same name already exists. A new file was
not opened.
3 Device full
4 An input file was not found in a .LOOKUP.
Example:
JTITLE CSIGEN.MAC
+

I

T YA TR IR TR TY

+MCALL

ERREBYT=3

START! .CSIGEN

Mov
CLR
MoV

READ +READW

188

2%

BCC
TSTER
BEG
MOV
«PRINT
CLR
JEXIT
+WRITW
BCC
MoV

BR

NOERR: INC

BR

via the generzl mode of the CSI.
/0y and the outrut file is made rermanent viaz the

JCSIGEN - This is a2n examrle in the use of the .CSIGEN request.
The examrle is & single file corw =rodram. The file srecs are

+CSIGENs +READWs s FRINT» (EXIT» WRITW, .CLOSE,.SRESET

2

#DSPACE » #DEXT
RO BUFF

INBLK

$LISTsRS

RS> #3sBUFF #2564,
2%

@3ERRBYT

EOQF

$INERRRO

RO

RS+ #0sBUFF - ¥256.
NOERR

#NTERRsRO

1%

INELK

READ

iError Bute Loacation

iGet string from terminsal

iR0 has first free location
tInrFut block #

FEMT Arsument list

y INRLK iRead 2 block on Channel 3
tBranch if no errors

yEOF error 7

FYeSe e

$RO =» Read Error Messade

iPrint the messade

iClear RO for hard exit

jExit the rrosram

s INELK sWrite the block Just read
$Branch if no error

RO => Write error messade
sBranch to outrut the messade
i0therwises increment block #
jand loor to read next block

Programmed Request Description and Examples

inrut from the console terminals and the inrut & outrut Tiles orened
The file is coried using swnchronous
+CLOSE request.

EOF ! +CLOSE #%0 iEnd-of-File,..CLose outrut channel

+CLOSE #3 iAnd inFut channel
+SRESET iRelease handler(s) from memors
JEXIT jExit the rprodram

DEXT: «WORD 0505040 iNo default extensions

BUFF +WORD 0 i1/0 Buffer start
INELK: +WORD 0 iRelative block to read/write
LIST? + BLKW S FEMT ardument list

INERR:! .ASCIZ /7 Inrut error 7/
WTERR: LASCIZ /7% Outrut error 7/
+EVEN

DSFACE=, iHandler(s) can be loaded starting here

+END START

2.9.1 Passing Option Information

In both general and special modes of the CSI, options and their associated
values are returned on the stack. A CSI option is a slash (/) followed by any
character. The CSI does not restrict the option to printing characters, al-
though you should use printing characters wherever possible. The option can
be followed by a value, which is indicated by a : separator. The : separator is
followed by an octal number, a decimal number, or by one to three alphanu-
meric characters, the first of which must be alphabetic. Decimal values are
indicated by terminating the number with a decimal point (/N:14.). If no
decimal point is present, the number is assumed to be octal. Options can be
associated with files. For example, the command string

*DK:FOO/ADT4:FILE.OBJ/A:100

has two A options. The first is associated with the input file DK:FOO. The
second is associated with the input file DT4:FILE.OBJ and has a value of
100(octal). The format of the stack output of the CSI for options is as follows:

Word # Value Meaning
1 N Number of options found in command
(top of string. If N=0, no options were found.
stack)
2 Option character Even byte = seven-bit ASCII option
and file number character
Bits 8-14 = number (0-10) of the file
with which the option is as-
sociated
Bit 15 = 1 if the option had a value
= 0 if the option had no value
3 Option value If bit 15 of word 2 is set, word 3 contains the
or next option option value. If bit 15 is not set, word 3 con-
tains the next option character and file num-
ber, if any.

Programmed Request Description and Examples

For example, if the input line to the CSI is

*FILE/B:20, sFIL2/E=DT3:INPUT/¥:58Y:20

on return, the stack is:

Stack Pointer - 4 Three options appeared (X option has two
values and is treated as two options).
101530 Last option=X; with file 3, has a value.
20 Value of option X=20 (octal)

101530 Next option =X; with file 3, has a value.
075250 Next value of option X=RAD50 code for SY.

505 Next option=E; associated with file 1, no value.
100102 Option=B; associated with file 0 and has a
value of 24

24 (octal).

As an extended example, assume the following string was input for the CSI in
general mode:

#FILELB.I+LP:»8Y:FILEZLZ20,1=PC:sDT1:INL/BDTZ:INZ/M:7

Assume also that the default file type block is:

DEFEXT: +RADSG ‘MAC SINPUT FILE TYPE
+RADSO ‘OP1” PFIRST DUTPUT FILE TYPE
+RADSO ‘OP2C 1SECOND QUTPRUT FILE TYPE
+RADSO ‘OP37 iTHIRD DUTPUT FILE TYPE

The results of the above CSI call are as follows:

1. An eight-block file named FILE.OP1 is entered on channel 0 on device
DK:; channel 1 is open for output to the device LP:; a 20-block file named
FILE2.0P3 is entered on the system device on channel 2.

2. Channel 3 is open for input from paper tape; channel 4 is open for input
from a file IN1.MAC on device DT1:; channel 5 is open for input from
IN2.MAC on device DT2:.

3. The stack contains options and values as follows:

Contents Explanation

2 Two options found in string.
102515 Second option is M, associated with channel 5; has a value.
7 Numeric value is 7 (octal).
2102 Option is B, associated with channel 4; has no value.

If the CSI were called in special mode, the stack would be the same as for the
general mode call, and the descriptor table would contain:

DUTSFC: 153270 i RADSO ‘DR
23364 1, RADSO ‘FILS

Programmed Request Description and Examples 2-19

17300 i.RADSO =

BO137 i RADSO ‘apPle
10 JLENGTH OF 8 BLOCKS (DECIMAL?
46G00 i, RADSO ‘LR

O iND NAME OR LENGTH SPECIFIED

73250 i RADSO =A
23364 1. RADSO ‘FILS
22100 i.RADSO ‘E2Y
Botdl i RADSO ‘OP3’
24 SLENGTH OF 20 (DECIMAL)
B2170 1. RADSO ‘PCY

0 iND NAME OR LENGTH SPECIFIED
0
0]

16077 1. RADSO ‘DTLY
35217 i, RADGC TIMLS

"] . RADSO ! ‘
50553 5. RADSO ‘MAC Y
16100 ;. RADSO ‘DTZ !
35220 . RADSO CINZ

4] P RADSO ! !
S0553 P RADSO ‘MACc”’

0 (12 more zero words are returned)

Keyboard error messages that can occur when input is from the console key-
board include:

Message Meaning
?CSI-F-Illegal command Syntax error.
?CSI-F-file not found Input file was not found.
?CSI-F-Device full Output file does not fit.
?CSI-F-Illegal device Device specified does not exist.
?CSI-F-Protected file Output file specified already

exists and is protected.

Notes:

1. In many cases, your program does not need to process options in CSI calls.
However, you could inadvertently enter options at the console. In this
case, it is wise to save the value of the stack pointer before the call to the
CSI, and restore it after the call, so that no extraneous values are left on
the stack. Note that even a command string with no options causes a word
to be pushed onto the stack. This word indicates the number of options to
follow.

2. Under an FB monitor, calls to the CSI that require console terminal input
always do an implicit .UNLOCK of the USR while the string is being
gathered. This should be kept in mind when using .LOCK calls.

mmed Request Description and Examples

2.10 .CSISPC

The .CSISPC request calls the Command String Interpreter in special mode
to parse the command string and return file descriptors and options to the
program. In this mode, the CSI does not perform any .CLOSE, .ENTER,
.LOOKUP, or handler .FETCH requests.

Options and their associated values are returned on the stack. The optional
argument (linbuf) can provide your program with the original command
string.

console terminal input is specified (cstrng = #0) and the program issuing the
.CSISPC is invoked through an indirect command file.

Note that in a foreground/background environment, calling the CSI performs
a temporary and implicit .UNLOCK while the command line is being read.

Macro Call: .CSISPC outspc,defext,cstrng(,linbuf]
where:

outspc is the address of the 39-word block to contain the file descrip-
tors produced by .CSISPC. This area can overlay the space
allocated to cstring, if desired

defext is the address of a four-word block that contains the Radix-50
default file types. These file types are used when a file is
specified without a file type

cstrng is the address of the ASCIZ input string or a #0 if input is to
come from the console terminal If the string is in memory, it
must not contain a (octal 15 and 12), and must termi-
nate with a zero byte. If cstrng is blank, input is automatically
taken from the console terminal or indirect file, if one is active

linbuf is the storage address of the original command string. This is a
user-specified area, 81 bytes in length. The command string is
terminated with a zero byte instead of (octal 15 and 12)

Notes:

1. The file description consists of 39 words, comprising nine file descriptor
blocks (five words for each of three possible output files; four words for
each of six possible input files), which correspond to the nine possible files
(three output, six input). If any of the nine possible file names are not
specified, the corresponding descriptor block is filled with zeroes.

2. The five-word Dblocks hold four words of Radix-50 representing
dev:file.type, and one word representing the size specification given in
the string. (A size specification is a decimal number enclosed in square

ts (H) tha* £l v aaprminter) FOT v o

+han Atitnait fila A nla-
U 1ULIUYYD L1110 Uuuyub Llle uCDbLleUl) CAGLLL}JLC-

#DT3:LIST.MACL151=PC:

Programmed Request Description and Examples 2-21

Using special mode, the CSI returns in the first five-word slot:

16101 Radix-50 for DT3

46173 Radix-50 for LIS

76400 Radix-50 for T

50553 Radix-50 for MAC

00017 Octal value of size request

In the fourth slot (starting at an offset of 36 bytes (octal) into outspc), the
CSI returns:

62170 Radix-50 for PC

0 No file name
0 specified
0 No file type given

Since this is an input file, only four words are returned.
Errors:

Errors are the same as in general mode except that invalid device speci-
fications are checked only for output file specifications with null file
names. Since .LOOKUP and .ENTER requests are not done, the valid

error codes are:

Code Explanation
0 Invalid command line.
1 Invalid device.
Example:

+TITLE CSISFC.MAC

-+

+CSISPC - This is an examrle in the use of the .CSISPC reauest.

The exasmrle uses the "srecizl® mode of CSI to get an inrut
specification from the console terminals then uses the ,DSTATUS
reauest to determine if the outrut device’s handler is loadedi

if nots 3 .FETCH request is issued to load the handler into

memory, Finallw 8 .DELETE reauest is issued to delete the srecified
file.

D I P A 13

+MCALL .DSTATUS» .FRINT».EXIT:.FETCHy.CSISFC,».DELETE

START: .CSISPC #0UTSPs#DEFEXT i#Use .CSISPC to det outrut srec

+DSTAT #STAT,» #0UTSF iCheck on the outrut device
$ (CSISFC catches illedal devices!)
TST STAT+4 $See if the device is resident
BNE 2% $Branch if 3alreadws loaded
+FETCH #HANLOD,#INSPEC It‘s not loaded...bring it into memorwu
RCC 2% sBranch if successful
+PRINT #FEFAIL iFetch fsiled.,.,.print error messadge
JEXIT sthen exit eprogram
2% +DELETE #AREA#0,#INSFEC 7 Now delete the file
BCC 3% iBranch if successful
+PRINT #NOFIL iFrint error messade
BR START iThe try adain
3% +FRINT #FILDEL iAcknowledde successful deletion
+EXIT ithen exit errogram
AREA? + ELKW 2 FEMT Argument block
STAT? +BLKW 4 iBlock for status
DEFEXT: .WORLD 0+090,0 iNo default extensions

2-22 Programmed Request Description and Examples

FEFAIL: .ASCIZ /7.FETCH Failed?/ iFetch failed messade

NOFIL: .ASCIZ /7File Not Found?/ iFile mot found

FILDEL: .ASCIZ /iFile Leleted!/ ilelete acknowleddement
+EVEN iFix boundary

QUTSF =, j0utrut srec aoes here

INSPEC = .+436 $1nFut srec is here

HANLOD = .+39. tHandler loaded here (if necessary)
SEND START

A
b
B Y

.CSTAT (FB and

<

| nlu)
1wl | | ’

iy

This request furnishes you with information about a channel.

Macro Call: .CSTAT area,chan,addr

where:

area is the address of a two-word EMT argument block
chan is the number of the channel ahout which information is desired

addr is the address of a six-word block to contain the status

Request Format:

RO - area: 27 | chan
addr

Notes:

The six words passed back to the user correspond to the following six points of

information:

1. Channel status word (see the RT-11 Software Support Manual for details)

9. Starting block number of file (0 if sequential-access device, or if channel
was opened with a non-file-structured .LOOKUP or .ENTER)

3. Length of file (no information if non-file-structured device, or if channel
was opened with a non-file-structured .LOOKUP or .ENTER)

4. Highest relative block written since file was opened (no information
if non-file-structured device). This word is maintained by the
WRITE/ WRITC/.WRITW requests

5. Unit number of device with which this channel is associated

6. Radix-50 of the device name with which the channel is associated (this is
a physical device name, unaffected by any user name assignment in
effect).

BErrors:

Code Explanation
0 The channel is not open.

Programmed Request Description and Examples 2-23

Example:

+TITLE CSTAT.MAC

-+

+CSTAT - This is an examrle in the use of the .CSTAT request.
In this examrler .CSTAT is used to determine the .RADSO
rerresentation of the device with which the channel is sssocizted.

- wr wr W s

+MCALL JCSTAT,».CSIGENs .PRINT»,EXIT

START: CSIGEN #DEVSDC,#DEFEXT i0ren files
+CSTAT #AREA#0:#ADDR ;iGet the status

BCS NOCHAN iChannel 0 not oren

MOV #ADDR+10+RS $tFoint to unit #

MOV (RS)Y+sRO iUnit # to RO

ADD (PCY++RO iMake it RADSO

+RADSO / 0O/

ADD (R3)sRO iGet device name

MOV ROs DEVNAM # DEVNAM’ has RADSO device name

+EXIT yExit the erogram
NOCHAN: ,PRINT #MSG sPrint error messadge

+EXIT ithen exit srodram
MSG? +ASCIZ /7No Outrut File?/ iError messade

+EVEN iFix boundaryg
AREA? + BLKW S FEMT arg list
ADDR: + BLKW & iArea for channel status
DEVNAM! ,WORD 0 iStorade for device name
DEFEXT: .WORID 0:0,0,0 iNo default extensions
DEVSDC=, 3iStart CSI tables here,..

+END START

2.12 .CTIMIO (Device Handler Only)

The .CTIMIO macro cancels the device time-out request in the handler inter-
rupt service section. It is used when an interrupt occurs to disable the comple-
tion routine (see .TIMIO).

If the time interval has already elapsed and the device has, therefore, timed
out, the .CTIMIO request fails. The completion routine has already been
placed in the queue. The .CTIMIO call returns with the C bit set when it fails
because the completion routine was already queued.

The device time-out feature must have been selected during the system gener-
ation process.

Macro Call: .CTIMIO tbk

where:

tbk is the address of the seven-word timer block shown in Table 2-1

2-24 Programmed Request Description and Examples

Table 2-1: Timer Block Format

Offset | Filled in By Contents
0 .TIMIO High-order time word (expressed in ticks).
2 TIMIO Low-order time word {expressed in ticks).
4 monitor Link to next queue element; 0 indicates none.
6 user Owner s job number; 0 for background job, MAXJOB for fore-

ground job, and joh priority *2 for system jobs. MAXJOB is
equal to (the number of jobs in the system * 2)-2. The job
number for the foreground job is 2 in a system without system
jobs, and 16 for a system with system jobs. The job number is
set from the queue element.

10 user Sequence number of timer request. The valid range of sequence
numbers is from 177400 to 177477.

12 monitor -1

14 user Address of the completion routine to execute if timeout occurs.
The monitor zeroes this word when it caiis the completion rou-
tine, indicating that the timer block is available for reuse.

The .CTIMIO macro expands as follows:

+CTIMIC thBK

JSR RS +BETIMIT IPOINTER AT END OF HANDLER
+ “DR D t t' "(- +

+WORD 1 sCODE FOR CTIMIO

Example:

Refer to the example for the .TIMIO request.

2.13 .DATE

This request returns the current date information from the system date word
in RO. The date word returned is in the following format:

BIT: 1514 13..10 9..5 4..0

0 0 MONTH DAY YEAR

The year value in bits 4-0 is the actual year minus 1972. The day in bits 9 to 5
is a number from 1 to the length of the month. The month in bits 13 to 10is a
number from 1 to 12.

NOTE

RT-11 support of month and year rollover is a system genera-
tion special feature; otherwise, the keyboard monitor DATE
command must be issued to change the month and year.

Programmed Request Description and Examples ~ 2-25

Macro Call: .DATE
Request Format:
RO-[12 T 0]

Errors:

No errors are returned. A zero result in RO indicates that the user has
not entered a date.

Example:

+TITLE DATE.MAC

-+

+DATE - This is an examrle in the use of the .DATE reguest.
This examrle m3y be assembled seraratelw and linked with
user written rrodgrams

INPUT? none

OuUTPUT RO = MONTH (1-12)

R1 = DAY (1-31)

R2 = YEAR (Modulus 100)

0 if no date entered

W s Wh EE WP WK WP R NP W e e

ERRORS? RO

+MCALL .DATE

DATES: LDATE iGet date in RO via .DATE reauest
MOV ROR2 iCosy RO
BEQ 1% $If zeror no date was entered
BIC $~C37»R2 iClear 811 but wear bits
ADD $72.1R2 iMake it current vear
MOV ROsR1 iCory date word adgain
ASL R1 iGet daw bits
ASL R1 ion 2 bute boundary...
ASL R1 #
SWAB R1 iPut day bits in low order bute
BIC $7C37+R1 iClear 311 but day bits
SWAB RO iPut month bits in low bute
ASR RO fRight addust
ASR RO imonth bits,..
BIC $"C37+RO iClear 211 but month bits
1% RETURN iReturn to calling eprodgram

+END DATE

2.14 .DELETE

The .DELETE request deletes a named file from an indicated device. The
.DELETE request is illegal for magtapes. The .SERR programmed request
can be used to allow the program to process any errors.

Macro Call: .DELETE area,chan,dblk,seqnum
where:

area is the address of a three-word EMT argument block

chan is the device channel number in the range 0-377 (octal)

2-26 Programmed Request Description and Examples

dblk is the address of a four-word Radix-50 descriptor of the file to
be deleted

seqnum file number for cassette operations: if this argument is blank,
a value of 0 is assumed

Request Format:

RO - area: 0 chan
dblk

seqnum

Notes:

The channel specified in the DELETE request must not be open when the
request is made, or an error will occur. The file is deleted from the device, and
an empty (UNUSED) entry of the same size is put in its place. A .DELETE
issued to a non-file-structured device is ignored. .DELETE requires that the
handler to be used be in memory at the time the request is made. When the
.DELETE is complete, the specified channel is left inactive.

Errors:

Code Explanation
0 Channel is active.
1 File was not found in the device directory.
2 Invalid operation.
3 The file is protected and cannot be deleted.
Example:

sTITLE DELETE.MAC

+

+DELETE - This is an examele in the use of the .DELETE request,

The examrle uses the "srecial® mode of CSI to det an inrut
srecification from the console terminals thern uses the .DSTATUS
reaquest to determine if the outrut device’s handler is loadeds

if nots a .FETCH request is issued to load the handler into

memory. Finsllyw a2 DELETE reauest is issued to delete the srecified
file.

L . e L 1

+MCALL .DSTATUS» .FRINTs.EXITs . .FETCH,» .CSISFCs.DELETE

START! .CSISPC #0UTSP,#DEFEXT jUse .CSISPC to set outrut srec

+DSTAT #STAT,»#0UTSF $Check on the outrut device
$(CSISPC catches illegal devices!)

TST STAT+4 iSee if the device is resident
BNE 2% $Branch if alreads loaded
+FETCH #HANLOD,#INSFEC #It‘s not lozded...bring it into memory
BCC 2% iBranch if successful
+FRINT #FEFAIL iFetch fasiled+sssPrint error messade
JEXIT ithen exit rrosgranm

2¢: +DELETE #AREAs#0s#INSFEC 3 Now delete the file
BCC 3s sEranch if successful
+PRINT #NOFIL iFrint error messade
RR START iThe try adain

3¢ JFRINT 4#FILDEL jAcknowledge successful deletion
+JEXIT fthen exit rrosgram

Programmed Request Description and Examples 2-27

AREA? + BLKW 2 FEMT Ardument block

STAT: +BLKW 4 iBlock for status

DEFEXT: .WORD 0s0:0,0 iNo default extensions

FEFAIL: .ASCIZ /?.FETCH Failed?/ iFetch failed messade

NOFIL: JASCIZ /7?File Not Found?/ iFile not found

FILDEL?! .ASCIZ /!File Deleted!/s ilelete acknowledgement
+EVEN iFix boundary

QuUTSFP = i0utrut srec a@oes here

INSPEC = .+36 tInrut srec is here

HANLOD = ,+39. iHandler loaded here (if necessary)
+END START

2.15 .DEVICE (FB and XM Only)

2-28

This request allows your program to load device registers with any necessary
values when the program is terminated. You set up the list of addresses with
the specified values. Upon issuing an .EXIT request or a CTRL/C from the
terminal, this list is picked up by the system and the designated addresses are
loaded with the corresponding values. This function is primarily designed to
allow your program to turn off a device’s interrupt enable bit when the pro-
gram servicing the device terminates. Successive calls to .DEVICE are al-
lowed when you need to link requested tables. When the job is terminated for
any reason, the list is scanned once. At that point, the monitor disables the
feature until another .DEVICE call is executed. Thus, background programs
that are reenterable should include .DEVICE as a part of the reenter code.

The .DEVICE request is ignored when it is issued by a virtual job running
under the XM monitor.

Macro Call: .DEVICE area,addrl,link]

where:

area is the address of a two-word EMT argument block

addr is the address of a list of two-word elements, each composed of a
one-word address and a one-word value to be put at that ad-
dress. If addr is #0, any previous list is discarded; in this form,
the argument LINK must be omitted

link is an optional argument that, if present, specifies linking of
tables on successive calls to .DEVICE. If the argument is omit-
ted, the list referenced in the previous .DEVICE request is re-
placed by the new list. The argument must be supplied to cause
linking of lists; however, linked and unlinked list types cannot
be mixed

Request format:
Nonlinking Linking

RO - area: 14 | O RO - area: 14 | 1
addr addr

Programmed Request Description and Examples

NOTE

The list referenced by addr must be either in linking or non-
linking format. The different formats are shown below. Both
formats must be terminated with a separate, zero-value word.
Linking format must also have a zero-value word as its first

word.
Nonlinking Linking
addr: address addr: 0
value address
address value
value address
. value
address
value address
0 value
0 0
Errors:
None.
Example:

+TITLE DEVICE.MAC

+
.DEVICE - This is an examele in the use of the .DEVICE reauest.
The examrle shows how +DEVICE is used to disable interrurts from
a device uron termination of the program. In this case the device
is a3 DL11 Serial Line Interface.

- e s W b e

JMCALL .DEVICE»s.EXIT».PROTECT» UNFROTECT .PRINT

START: DEVICE #AREA,#LIST iSetur to disable DL11 interrusts on
$+EXIT or "C°C
+PROTECT #AREA,#300 iFrotect the DL11 vectors
BCS BUSY iBranch if already rrotected
i . $Set ur dats to transmit over DL11
v .
JSR RSsDL1L sUse DL11 xfer routine (see INTEN examrle)
+WORD 128, sArduments.,..Word count
+WORD BUFFR $Data buffer addr
§ . sContinue rrocessing...

a

1)

FINI? +UNPROTECT #AREA:#300 isieeventually to exit erodram

JEXIT

BUSY? +PRINT #NOVEC iFrint error message. ..
JEXIT ithen exit

AREA? +BLKW 3 $EMT Ardgument block

LIST! +WORD 176500 5CSR of DL11
+WORD 0 $Stuff it with ‘0’
+WORD 0 iList terminator

BUFFR? jbata to send over DL11
JREPT 8. 8 lines of 32 characters...
+ASCIZ /Hello DL1i1 ... Are You There 77/
+ENDR

NOVEC: .ASCIZ /?Vector zlreadu protected?/ 3 Error messadge text

+END START

Programmed Request Description and Examples — 2-29

2.16 .DRAST (Device Handler Only)

30

The .DRAST macro sets up the interrupt and abort entry points, lowers the
processor priority, and references a global symbol $INPTR, which contains a
pointer to the INTEN routine in the resident monitor. This pointer is filled in
by the bootstrap (for a system device) or at .FETCH time (for a data device).

Macro Call: .DRAST name,pril,abo]

where:

name is the two-character device name

pri is the priority of the device, and also the priority at which the
interrupt service code is to execute

abo is an optional argument that represents the label of an abort
entry point. If you omit this argument, the macro generates an
RTS PC instruction at the abort entry point, which is the word
immediately preceding the interrupt entry point

Example:
«TITLE SF.MAC

-+

SF.MAC - This is an examrle of 3 simrley RT-11 device driver to illustrate
the use of the ,DORBEG».DRAST, . .DRFIN, .DREND,,.FORK & .GQGELDF reauests,

This driver could be used to outsut to a2 serial ASCII rrinter-terminal
over s DL11 Serial Line Interface. To use this driver as am RT~11 device
handler, simply install it via the INSTALL command (es. ‘INSTALL SP’).

. e W ws s s

+MCALL . DRBEG,.DIRASTs ,DIRFINs,DRENDs.QELDF» .FORK

+IIF NDF MMG$T» MMGS$T=0 ilefine these in case not

+IIF NDF ERL$Gs ERL$G=0 iassembled with SYSCND.MAC

+IIF NDF TIMSIT, TIM$IT=0

+IIF NDF SF$VECs SF$VEC=304 ilefine default vector

+IIF NDF SP$CSR» SP$CSR=1746504 iDEfine default CSK addr

+IIF NDF SF$PRI» SP$FRI=4 illefine default device priority
I0ERR = 1 fHard I/0 error bit definition
SPSTS = 20000 iDevice Status = Write onlw
SPSIZ = 0 iDevice Size = 0 (Char device)
+QELDF iUse .QELDF to define Q-Elem offsets

iAmong others & of interest to us are!

FG.BLKN = 4 70ffset to Block # (SPCRE => Q.BLKN)
Ja$CSW = -2 i0ffset from Q.BLKN to CSW rointer
iQ$BUFF = 4 5" . . * User buffer str
FASWCNT = 6 it . . ' Word count

+DRBEG SPsSPS$VEC,SPSI1Z,SPSTS iBedin driver code with .DRBEG
$MACRD exransion is...

§ +WORD {SFEND-SPSTRT> #Size of driver (handler)
i +«WORD 0 iSize of device
§ +WORD 20000 tDevice status (Write only)
§ +WORD ERL$GH<MMGSTX2>+<TIM$ITX4> jDefault ortions
FSPSTRT:: (Bedinning of driver
[+WORD SFVEC+4 iInterrurt vector
H +WORD SPINT-,s"0340 i0ffset to Int svc rtne & Prioritu
§SPCRE:: . WORD 0 iQueue element rointers
$SPLQE: . WORD 4] #(Point to 3rd word in element!)
MOV SPCOEsR4 iR4 => Current Q-Element
ASL Q$WENT(R4) iMake word count bute count
BCC SFERR iA read from 2 write/only device?
BEQ SPDUN iZero word count...Jjust exit
SPRET! RIS $100,@#SFSCSR iEnable DL-11 interrust
RETURN iReturn to monitor

Programmed Request Description and Exampies

3 INTERRUFT SERVICE ROUTINE

+DRAST SPySF$FRI jUse ,DRAST to define Int Svc Sect.
JHACRO exeansion...
] RTS FC jAbort Entrs Foint
$SPINTI USSR RE,@$INFTR ilo 2 +INTEN to aslert monitor
i +WORD ~C<SP$FPRIX"040x8"0340 jand dror processor Priority
MoV SFCREsRA4 ik4 =» Q-Element
TS8T P¥SP$CSR fErraor?
BMI SPRET $Yes..s"hang’ until ready
RIC $100,245F$CSKR jhisable interrurts
+FORK SFFORK iContinue at FORK level
SENXT: TSTR 24SP$CSR ils device readu?
RFL SFRET sNo...d0 wait 7till it is
MOVE @Q$BUFF(R4) s@#5F$CSRK+2 iXfer byte from buffer to DL-11
INC Q$RUFF(R4) i Bumre the buffer rointer
INC QSUCNT(RA) sand the word count (it’‘s nedgativel)
REQ SFOUN iBranch if done
ER SFENXT 3Tre to outsut another character
SFERR! RIS $#I0ERR»@Q$CSW(R4) iSet error bit in CSW
SFOUNS +ORFIN SF sUse .DRFIN to return to Monitor
$MACRO exransion...
H MOV FCsR4 $iCzlculate PIC addr of current
§ ADD 4#SFCRE-.»R4 jiaueue element rointer
§ MoV @#54sRS $Put addr of base of RMON in RS
§ JMF @"0270(RS5) $Jumr to handler comrletion in monitor
SPFORK?! LWORD 0¢0y050 iFork Queue Element
+ORENDN 5P jUse LOREND to end code
$MACRO exFr3nsiofiv..
$$INFTR: ! WORD O ;addr of INTEN code in RMON
§$FKFTR:: WORD © $}Addr of FORK rrocessor in RMON

FSPEND == .

+END

2.17 .DRBEG (Device Handler Only)

fEnd of driver

The .DRBEG macro sets up the information in block 0 and the first five words
of the handler. This macro also generates the appropriate global symbols for
your handler. Before you use .DRBEG, invoke .DRDEF to define xx$CSR,
xx$VEC, xxDSIZ, and xxSTS (see Section 2.19).

Macro Call: .DRBEG name
where:

name is a two-character device name
Example:

Refer to the example for . DRAST.

2.18 .DRBOT (Device Handler Only)

The .DRBOT macro sets up the primary driver. A primary driver must be
added to a standard handler for a data device to create a system device
handler. The .DRBOT macro invokes the .DREND macro (see Section 2.20)
to mark the end of the handler so that the primary driver is not loaded into
memory during normal operations.

Programmed Request Description and Examples ~ 2-31

Macro Call: .DRBOT name,entry,read

where:

name is the two-character device name
entry is the entry point of the software bootstrap routine
read is the entry point of the bootstrap read routine

The .DRBOT macro puts a pointer to the start of the primary driver into
location 62 of the handler file. It puts the length (in bytes) of the primary
driver into location 64. Location 66 of the handler file contains the offset from
the start of the primary driver to the start of the bootstrap read routine. The
DRBOT macro is called before the .DREND macro that you issue. The code
for the primary driver is placed between the .DRBOT and .DREND calls.

Example:

Refer to the RT-11 Software Support Manual for an example showing
the use of .DRBOT.

2.19 .DRDEF (Device Handler Only)

The .DRDEF macro sets up handler parameters, calls the driver macros from
the library, and defines useful symbols.

Macro Call: .DRDEF name,code,stat,size,csr,vec

where:

name is the two-character device name

code is the numeric code that is the device identifier value for the
device

stat is the device status bit pattern. The value for stat may use the
following symbols:

FILST$ = 100000 SPECL$ = 10000

RONLY$ = 40000 HNDLR$ = 4000

WONLY$ = 20000 SPFUN$ = 2000
size is the size of the device in 256-word blocks
csr is the default value for the device’s control and status register
vec is the default value for the device’s vector

The .DRDEF macro performs the following operations:

1. A MCALL is done for the following macros: .DRAST; .DRBEG;
.DRBOT; .DREND; .DRFIN; .DRSET; .DRVTB; .FORK; .QELDF.

2. If the system generation conditionals TIMSIT, MMGST, or ERLS$G are
undefined in your program, they are defined as zero. If time-out support is

2-32 Programmed Request Description and Examples

9.
10.
11.

selected, the .DRDEF macro does a .MCALL for the .TIMIO and
.CTIMIO macros.

The .QELDF macro is invoked to define symbolic offsets within a queue
element.

The symbols listed above are defined for the device status bits.

. The following symbols are defined:

HDERR®=1 {HARD ERROR BIT IN THE CSH
EQOF$=20000 END OF FILE BIT IN THE CSH

. The symbol xxDSIZ is set to the value specified in size.

The symbol xx$COD is set to the specified device identifier code.

. The symbol xxSTS is set to the value of the device identifier code plus the

status bits.

If the symbol xx$CSR is not defined, it is set to the default csr value.
If the symbol xx$VEC is not defined, it is set to the default vector value.
The symbols xx$CSR and xx$VEC are made global.

You should invoke the .DRDEF macro near the beginning of your handler,
after all handler specific conditionals are defined.

Example:

Refer to the RT-11 Software Support Manual for an example showing
the use of .DRDEF.

*

2.20 .DREND (Device Handler Only)

The .DREND macro generates the termination table for the termination sec-
tion of the device handler.

Macro Call: .DREND name

where:

name is the two-character device name

The generation of the termination table, dependent upon certain conditions,
is as follows:

Label Addresses
SRLPTR: .WORD 0 ($RELOC)
SMPPTR: WORD 0 ($MPPHY)
SGTBYT: WORD 0 ($GETBYT)
$PTBYT: WORD 0 ($PUTBYT)
SPTWRD: WORD 0 ($PUTWRD)
SELPTR: WORD 0 ($ERLOG)

Programmed Request Description and Examples ~ 2-33

Label Addresses

$TIMIT: .WORD 0 ($TIMIO)
SINPTR: WORD 0 (SINTEN)
SFKPTR: .WORD 0 ($FORK)

The generation of the labels depends upon the special features chosen during
the system generation process. All the pointers in the termination section are
initialized when the handler is loaded into memory with the .FETCH request.
If the device handler is a system device, the pointers are initialized at boot
time with the addresses shown in the address column. The addresses are
located within the monitor. The first five addresses are the locations of
subroutines in the resident monitor that are available to device handlers in an
extended memory environment. Device 1/O time-out service is provided by
$TIMIO and error logging is provided by $ERLOG. The $INPTR and
$FKPTR labels are always filled in by a .FETCH or LOAD command.

Example:

Refer to the example for .DRAST.

2.21 .DRFIN (Device Handler Only)

The .DRFIN macro generates the instructions for the jump back to the moni-
tor at the end of the handler I/O completion section. The macro makes the
pointer to the current queue element a global symbol, and it generates posi-
tion-independent code for the jump to the monitor. When control passes to
the monitor after the jump, the monitor releases the current queue element.

Macro Call: .DRFIN name

where:

name is the two-character device name
Example:

Refer to the example for .DRAST.

2.22 .DRSET (Device Handler Only)

2-34

The .DRSET macro sets up the option table for the SET command in block 0
of the device handler file. The option table consists of a series of four-word
entries, one entry per option. Use this macro once for each SET option that is
used. When used a number of times, the macro calls must appear one after
another.

Macro Call: .DRSET option,val,rtn[,mode]

where:

option is the name of the SET option, such as WIDTH or CR. The

Programmed Request Description and Examples

name can be up to six alphanumeric characters long and
should not contain any embedded spaces or tabs

val is a parameter that is passed to the routine in Register R3. It
can be a numeric constant, such as minimum column width,
or an entire instruction that is substituted for an existing one
in block 1 of the handler. It must not be a zero.

rtn is the name of the routine that modifies the code in block 1 of
the handler. The routine must follow the option table in block
zero and must not go above address 776

mode is an optional argument to indicate the type of SET parame-
ter. A NO indicates that a NO prefix is valid for the option.
NUM indicates that a decimal numeric value is required.
OCT indicates that an octal numeric value is required. Omit-
ting this argument indicates that the option takes neither a
NO prefix nor a numeric argument

The .DRSET macro does an .ASECT and sets the location counter to 400 for
the start of the table. The macro also generates a zero word for the end of the
table and leaves the location counter there. Thus routines to modify codes are
placed immediately after the .DRSET calls in the handler, and their location
in block zero of the handler file is made certain.

Example:

Refer to the RT-11 Software Support Manual for an example of
.DRSET.

2.23 .DRVTB (Device Handler Only)

The .DRVTB macro sets up a table of three-word entries for each vector of a
multi-vector device. The table entries contain the vector location, interrupt
entry point, and processor status word. You must use this macro once for each
device vector. The .DRVTB macros must be placed consecutively in the de-
vice handler between the . DRBEG macro and the . DREND macro. They must
not interfere with the flow of control within the handler.

Macro Call: .DRVTB name,vec,int,ps]

where:

name is the two-character device name. This argument must be
blank except for the first-time use of .DRVTB.

vec is the location of the vector, and must be between 0 and 474
int is the symbolic name of the interrupt handling routine. It must

appear elsewhere in the handler code. It generally takes the
form ddINT, where dd represents the two-character device
name

Programmed Request Description and Examples ~ 2-35

ps is an optional value that specifies the low-order four bits of the
new Processor Status Word in the interrupt vector. This argu-
ment defaults to zero if omitted. The priority bits of the PSW
are set to 7 even if you omit this argument

Example:

Refer to the RT-11 Software Support Manual for an example of
.DRVTB.

2.24 .DSTATUS

This .DSTATUS request obtains information about a particular device.
Macro Call: .DSTATUS retspc,dnam

where:

retspc is the address of a four-word block that stores the status infor-
mation

dnam is the address of a word containing the Radix-50 device name

.DSTATUS looks for the device specified by dnam and, if successful, returns
four words of status starting at the address specified by retspc. The four words
returned are as follows:

Word 1 Status Word
Bits 0-7: The low-order byte contains a number that identifies the
device in the system. The values are currently defined in
octal as follows:

0 = RKO05 Disk
1 = TC11 DECtape
2 = Reserved

3 = Line Printer

4 = Console Terminal or Batch Handler
5 = RLO1/RL02 Disk

6 = RX02 Diskette

7 = PC11 High-speed Paper Tape Reader and Punch
10 = Reserved

11 = TU10 Magtape

12 = RF11 Disk

13 = TA11 Cassette

14 = Card Reader (CR11,CM11)

15 = Reserved

16 = RJS03/RJS04 Fixed-head Disk

17 = Reserved

20 = TJU16 Magtape

21 = RP02/RP03 Disk

22 = RX01 Diskette

23 = RK06/RK07 Disk

£,

Request Description and Examples

mme

24 = Reserved
25 = Null Handler
26-30 = Reserved (DECnet)
31-33 = Reserved (CTS-300,LQ,LR,LS)
34 = TU58 DECtape II ‘
35 = TS11 Magtape
36 = PDT-11/130
37 = PDT-11/150
40 = Reserved
41 = Serial Line Printer Handler (LS)

RV Tat

Bit 10: 1= Handler accepts .SPFUN requests (for example, MT,
CT, DX)
0= No .SPFUN requests accepted

Bit 11: 1= Enter handler abort entry every time a job is aborted
0= Handler abort entry taken only if there is an active
queue element belonging to aborted job

Bit 12: 1= Non RT-11 directory-structured device (magtape, cas-
sette) .
Bit 13: 1= Write-only device (line printer, serial line printer)

Bit 14: 1= Read-only device (card reader, paper tape reader)

Bit 15: 1= Random-access device (disk, DECtape)
0= Sequential-access device (line printer, paper tape, card
reader, magtape, cassette, terminal)

Word 2 Handler Size
The size of the device handler in bytes.
Word 3 Load Address +6
Non-zero implies the handler is now in memory: zero implies that it

must be fetched before it can be used. The address returned is the load
address of the handler +6.

Word 4 Device Size
The size of the device (in 256-word blocks) for block-replaceable de-
vices; 0 for sequential-access devices. The last block on the device is the
device size -1.

The device name can be a user-assigned name. .DSTATUS information is
extracted from the device handler. Therefore, this request requires the han-
dler for the device to be present on the system device and installed on the
system.

Errors:

Code Explanation

0 Device not found in tables.

Programmed Request Description and Examples 2-37

Example:

+TITLE DSTAT.MAC

-+

+OSTATUS - This is an examrle in the use of the ,DSTATUS reauest.
The examrle uses the "srecizl® mode of CSI to get anm inrut
srecification from the console terminaly then uses the .DSTATUS
reauest to determine if the outrut device’s handler is losdeds;

if nots 3 .FETCH reauest is issued to load the handler into

memors., Finally a .DELETE recuest is issued to delete the srecified
file.

wr wr ar wr W ar W e W

+MCALL . DSTATUSs JFPRINT: JEXITs».FETCHs .CSISFC» . .DELETE

START: .CSISPC #0OUTSF,s#DEFEXT #Use .CSISFC to set outsut srec

+OSTAT #STAT,#0UTSF iCheck on the outrut device
3 (CSISFPC catches illedgal devices!t)
TST STAT+4 iSee if the device is resident
BNE 2% iBranch if 2lreadws loaded
+FETCH #HANLOL,#INSPEC 3I1t’s not loaded...bring it into memorw
BCC 2% iBranch if successful
+PRINT #FEFAIL iFetch fziled...print error messasge
JEXIT ithen exit rrodram
2% +INELETE #AREAs#0,#INSFEC ; Now delete the file
RCC 3% iBranch if successful
+FRINT #NOFIL iFrint error messadge
ER START iThe tru adain
3% +PRINT #FILDEL iAcknowleddge successful deletion
+EXIT ithen exit srodgram
AREA? +BLKW 2 $EMT Argument block
STAT? +BLKW 4 iBlock for status
DEFEXT: WORD 050+0+0 iNo default extensions
FEFAIL? .ASCIZ /7?.FETCH Failed?/ iFetch failed messadge
NOFIL: +ASCIZ /7?File Not Found?/ iFile not found
FILDEL?: ,ASCIZ /!File Deleted!/ illelete acknowledgement
+EVEN iFix boundary
OuUTSP =, i0utrut srec coes here
INSPEC = .+36 tInrut srec is here
HANLOD = ,+439, jHandler loaded here (if rnecessary)

+END START

2.25 .ELAW (XM Only)

The .ELAW request eliminates a virtual address window. An implied unmap-
ping of the window occurs when its definition block is eliminated.

Macro Call: .ELAW areal,addr]
where:
area is the address of a two-word EMT argument block

addr is the address of the window definition block for the window to
be eliminated

Request Format:

RO - area: 36 | 3
addr

2-38 Programmed Request Description and Examples

Errors:

Code Explanation
3 An invalid window identifier was specified.
Example:

Refer to the example for the .CRAW request.

2.26 .ELRG (XM Only)

The .ELRG request directs the monitor to eliminate a dynamic region in
physical memory and return it to the free list where it can be used by other
jobs.

Macro Call: .ELRG area [,addr]

where:

area is the address of a two-word EMT argument block

addr is the address of the region definition block for the region to be
eliminated. Windows mapped to this region are unmapped. The
static region cannot be eliminated

Request Format:

RO - area: 36 | 1
addr
Errors:
Code Explanation
2 An invalid region identifier was specified.
Example:

Refer to the example for the .CRAW request.

2.27 .ENTER

The .ENTER request allocates space on the specified device and creates a
tentative entry in the directory for the named file. The channel number speci-
fied is associated with the file.

Macro Call: .ENTER area,chan,dblk,len,seqnum

where:

area is the address of a four-word EMT argument block

chan is a channel number in the range 0-377 (octal)

Programmed Request Description and Examples 2-39

dblk is the address of a four-word Radix-50 descriptor of the file to
be operated upon

len is the file size specification. If the argument is omitted, it is
not set to 0 in area. The 0 must be specified to accomplish
this. If an argument is left blank, the corresponding location
in area is assumed to be set

The value of this argument determines the file length alloca-
tion as follows:

0 either half the largest empty entry or the entire second-
largest empty entry, whichever is larger. (A maximum
size for nonspecific . ENTER requests can be patched in
the monitor by changing resident monitor offset 314.)

m a file of m blocks. The size, m, can exceed the maximum
mentioned above.

-1 the largest empty entry on the device.

seqnum is a file number for magtape or cassette. Programming for
specific devices such as magtape or cassettes is discussed in
detail in Chapter 10 of the RT-11 Software Support Manual.
For cassette operation, if this argument is blank, a value of 0
is assumed.

For magtape, segnum describes a file sequence number. The
action taken depends on whether the file name is given or is
null. The sequence number can have the following values:

0 Rewind the magtape and space forward until the file
name is found or until logical end-of-tape is detected. If
the file name is found, an error is generated. If the file
name is not found, then enter file. If the file name is a
null, a non-file-structured lookup is done (tape is
rewound).

n Position magtape at file sequence number n if n is
greater than zero and the file name is not null.

-1 Space to the logical end-of-tape and enter file

-2 Rewind the magtape and space forward until the file
name is found, or until logical end-of-tape is detected.
The magtape is now positioned correctly. A new logical
end-of-tape is implied.

Request Format:

RO - area: 2 | chan

dblk
len
seqnum

On return from this call, RO contains the size of the area actually allocated for
use.

2-40 Programmed Request Description and Examples

The file created with an .ENTER request is not a permanent file until a
.CL,OSE request is given on that channel. Thus, the newly created file is not
available to .LOOKUP, and the channel cannot be used by .SAVESTATUS
requests. However, it is possible to read data that has just been written into
the file by referencing the appropriate block number. When the .CLOSE to
the channel is given, any existing permanent unprotected file of the same
name on the same device is deleted and the new file becomes permanent.
Although space is allocated to a file during the .ENTER operation, the actual
length of the file is determined when .CLOSE is requested.

Each job can have up to 256 files open on the system at any time. If required,
all 256 can be opened for output with the .ENTER function.

When an .ENTER request is made, the device handler must be in memory.
Thus, a .FETCH should normally be executed before an .ENTER can be
done.

Notes:

When using the zero-length feature of .ENTER, keep in mind that the space
allocated is less than the largest empty space. This can have an important
effect in transferring files between devices (particularly DECtape and disk-
ette) that have a relatively small capacity. For example, transferring a 200-
block file to a DECtape, on which the largest available empty space is 300
blocks, does not work with a zero-length .ENTER. Since the .ENTER allo-
cates half the largest space, only 150 blocks are really allocated and an output
error occurs during the transfer. When transferring from A to B, with the
length of A unknown, do a .LOOKUP first. This request returns the length so
that value can be used to do a fixed-length . ENTER. If a specific length of 200
(or more) is requested, the transfer proceeds without error. The .ENTER
request generates hard errors when problems are encountered during directory
operations. These errors can be detected after the operation with the .SERR
request.

A

Errors:
Code Explanation

0 Channel is in use.

1 In a fixed-length request, no space greater than or equal to m
was found; or in a nonspecific request, the device or the direc-
tory was found to be full.

3 A file by that name already exists and is protected. A new file
was not opened.

Example:

TITLE ENTER .MAC

it
i JENTER - This is an examele in the use of the .ENTER reauest.
i The examrle makes 3 coes of the file ’‘TEC0.SAV’ on device DK!

N
i

Programmed Request Description and Examples 2-41

+MCALL +LOOKUFs .ENTERs .WRITWs .,READWs .CLOSE
+MCALL .PRINT».EXIT

START?! LOOKUF #AREA:#0:#TECO iLookur file TECO.SAV
BCS 5% iBranch if not there!
MoV ROYR3 iCory size of file to R3
+ENTER #AREA+#1,#TFILE,R3 iEnter 3 new file of same size
ECS 6% iBranch if failed
CLR RLK ilnitialize block # to zero
143 +READW #AREA,#0,#BUFFRs#256.yBLK $Read 3 block
BCC 2% iBranch if successful
TSTE G¥ERRERYT iWss error EOF?
BEQ 3s iBranch if ues
MOV $RERRsRO iHard read error messade to RO
BR 7% iBranch to eprint messade
2% +WRITW $AREA+#1,#BUFFRy@256.,»BLK sWrite a block
INC BLK sBumr block # (doesn’t affect C bit)
BCC 1% iBranch if write was ok
MOV #WERR RO iRO => Write error messade
BR 7% iBranch to print messade
3% +CLOSE #1 iMake new file rermanent
Hov $DONEsRO iR0O => Done message
BR 7% iBranch to errint messade
G5%3 MoV #NOFILsRO fRO => File not found messade
BR 7% iBranch to eprint it
&%13 MOV #NOENT,RO iR0 = Enter Failed messade
7% +PRINT iPrint messade on console terminal
JEXIT ithe exit rprodgram
AREA: +WORD 0 FEMT Argument block
BLK? +WORD 0s0+0+0 H
BUFFR: .BLKW 256, i1/0 Buffer
TECO: +RADS0 /DK/ iFile descrirtors...

+RADS0 /TECO/
+RADGO /SAV/
TFILE: .RADS50 /DK/
+«RADS0 /OLDTEC/
»RADS0 /S5AV/

NOFIL?Y LASCIZ /7PFile not found?/ iMessade text...
NOENT: .ASCIZ /7.ENTER Failed?/
WERR? +ABCIZ /7Write Error?/
RERR ! +ASCIZ /7?Read Error?/
DONE$ +ASCIZ /TECO Corw Comrlete/
+END START
2.28 .EXIT

2-42

The .EXIT request causes the user program to terminate. When used from a
background job under the FB monitor or XM monitor, or in SJ, .EXIT causes
KMON to run in the background area. All outstanding mark time requests
are canceled. Any I/O reguests and/or completion routines pending for that
job are allowed to complete. If part of the background job resides where
KMON and USR are to be read, the user job is written onto the system swap
blocks (the file SWAP.SYS). KMON and USR are then loaded and control
goes to KMON in the background area. If RO = 0 when the .EXIT is done, an
implicit .HRESET is executed when KMON is entered, disabling the subse-
quent use of REENTER, START, or CLOSE.

The .EXIT request allows a user program to pass command lines to KMON in
the chain information area (locations 500-7777[octal]) for execution after the
job exits. This is performed under the following conditions:

1. The word (not byte) location 510 must contain the total number of bytes
of command lines to be passed to KMON.

Programmed Request Description and Examples

2.

3.

The command lines are stored beginning at location 512. The lines must
be .ASCIZ strings with no embedded carriage return or line feed. For
example:

/=510
WORD B-A
A: LASCIZ /COPY A.MAC B.MAC/

+ASCIZ /DELETE A.MAC/
B:

The user program must set bit 11 in the Job Status Word immediately
before doing an .EXIT, which must be issued with RO = 0.

When the .EXIT request is used to pass command lines to KMON, the follow-
ing restrictions are in effect:

1.

If the feature is used by a program that is invoked through an indirect file,
the indirect file context is aborted before executing the supplied command
lines. Any unexecuted lines in the indirect file are never executed.

An indirect file can be invoked, using the steps described above, only if a
single line containing the indirect file specification is passed to KMON.
Attempts to pass multiple indirect files or combinations of indirect com-
mand files and other KMON commands yield incorrect results. An indi-
rect file must be the last item on a KMON command line.

The .EXIT request also resets any .CDFN and .QSET calls that were done
and executes an .UNLOCK if a .LOCK has been done. Thus, the .CLOSE
command from the keyboard monitor does not operate for programs that
perform .CDFN requests.

An

nt4

attempt to use a .EXIT from a completion routine aborts the running job.

NOTE
You must make sure that the data being passed to KMON is

not destroyed during the .EXIT request. Extreme care should
be exercised so that the user stack does not overwrite this data
area. If the user passes command lines to KMON, the stack

pointer should be reset to 1000(octal) before an exit is made.

Macro Call: .EXIT

Errors:

None.

Example:

it

WTITLE EXIT.MAC

3 «EXIT - This is an .example in the use of the (EXIT reauest.
3 The examrle demonstrates how a command line maw be rassed to
i Keuboard Monitor after Job execution is storred.

-
¥

CHNIF$

JSW

+MCALL JEXIT

4000 sChain bhit in JSW
44 ¥J5W location

on

Programmed Request Description and Examples 2-43

START: MOV $510sR0 $RO => Communication ares

MOV #$CHMDSTRsR1 iR1 =3 Command strind

Mov $START»SF iMake sure that the stachk is
inot in the communication area...

10¢: Mav (R1)+s(RO)+ iCorw command string

CMFP R1,»#CMDEND ilone?

BLOD 10¢ iBranch if not

RIS #CHNIF$,@%J5U 3Set the *chain® bit to alert KMON that
ithere’s a3 command in the communication area

CLR RO iR0O must be zero !

JEXIT fExit the rrodgram

CMDSTR: .WORD CHDEND-CHDSTR
+ASCIZ "DIRECT/FULL ¥%.MAC"
CMDEND?
+EVEN
+END START

2.29 .FETCH/.RELEAS

2-44

The .FETCH request loads device handlers into memory from the system
device.

Macro Call: .FETCH addr,dnam

where:

addr is the address where the device handler is to be loaded

dnam is the pointer to the Radix-50 device name

The storage address for the device handler is passed on the stack. When the
.FETCH is complete, RO points to the first available location above the han-
dler. If the handler is already in memory, RO contains the same value that was
initially specified in the argument addr. If the argument on the stack is less
than 400(octal), it is assumed that a handler .RELEAS is being done.
(.RELEAS does not dismiss a handler that was LOADed from the KMON; an
UNLOAD must be done.) After a .RELEAS, a .FETCH must be issued in
order to use the device again.

Several requests require a device handler to be in memory for successful
operation. These include:

.CLOSE .READC .READ
.LOOKUP WRITC .WRITE
.ENTER .READW .SPFUN

.RENAME WRITW .DELETE

To use device handlers under the XM monitor, load them into memory
through the keyboard monitor LOAD command. Also, when running under
the foreground/background monitor, handlers for the foreground program or a
system job must be loaded with the LOAD command before execution.

NOTE

I/O operations cannot be executed on devices unless the han-
dler for that device is in memory.

Programmed Request Description and Examples

Errors:

Code Explanation
0 The device name specified is not installed in the system, or
there is no handler for that device in the system.
Example:
JTITLE FETCH.MAC

-+

+FETCH - This

file.

LT R I U T T

+MCALL

START: .CSISFC
+DOSTAT

787
ENE
+FETCH
RCC
+PRINT
JEXIT
+IELETE
ECC
+PRINT
RR
3% +FPRINT
JEXIT

[]
*»
-

AREA? +RLKW
STAT: +BLKUW
DEFEXT?! .WORD

FEFAIL: .ASCIZ
NOFIL: .ASCIZ
FILDEL: .ASCIZ

+EVEN
OUTSF =
INSFEC = 434
HANLODI = .+39.

+END

memory, Finalls 3

is an examPle in

The examrle uses the *srecial’
srecification from the console terminals thenm uses the .OSTATUS
reauest to determine if the outrut device’s handler is loadeds
if noty 3 .FETCH request is issued to load the handler into
+DELETE reauest is issued to delete the srecified

+OSTATUSs +FRINT

#OUTSF s #DEFEXT
#$STAT$#0OUTSF

$HANLOD » #INSFEC
2%
¥FEFAIL

$AREAs $¥0» #INSFEC
3%

FNOFIL

START

$FILDEL

2
4
0r0y0+0

/*.FETCH Failed?

the wuse of the .FETCH reaquest.
mode of CSI to dget am insut

+EXITs .FETCHs .CSISFCs .DIELETE

jUse JCSISPC to get outrut srec
$Check on the outrut device

$ {CSISFC catches illedal devices!)
$See if the device is resident
iBranch if alreadws loaded

iIt’s not loaded...brind it into memorw
iBranch if successful

jFetch failed,..rrint error messade
sthen exit rFrosram

i Now delete the file

iBranch if successful

iPrint error messade

iThe try adgain
jAcknowledge successful deletion
ither exit srodram

$EMT Argument block
iRlock for status
iNo default extensions

/ iFetch failed mescsasge

/?File Not FOund?/ iFile rnot found

/1File Deleted!/

START

ihelete acknowleddement
i i% boundary

j0utrut srec qoes here
iInrut srec is here
iHandler loaded here (if necessary)

The .RELEAS request notifies the monitor that a fetched device handler is no
longer needed. The .RELEAS is ignored if the handler is (1) the system
device, (2) not currently resident, (3) resident because of a LOAD command
to the keyboard monitor. .RELEAS from the foreground or system job under
the FB monitor or from any job under the XM monitor is always ignored,
since the foreground job in a FB environment and all jobs in an extended
memory environment can only use handlers that have been loaded by the
LOAD command.

Macro Call: .RELEAS dnam

where:

dnam is the address of the Radix-50 device name

Programmed Request Description and Examples 2-45

Errors:

Code Explanation
0 Device name is invalid.
Example:

+TITLE RELEAS.MAC
iln this example: the DECtare handler (DT} is loaded into memory .
juseds then released. If the svstem device is DECtares the handler is
falways residents and FETCH will returw HSPACE in RO,

+MCALL +FETCH+,RELEAS»,EXIT

START: +FETCH #HSPACE «#DTNAME ilLoad DT handler
BCS FERR iMoot available

i Use handler

+RELEAS #DTNAME iMark DT no londer in
imemory
BR START
FERF: HALT iDT not available
DTNAME: JRADSO /DT 7 iName for OT handler
HSPACE: iBedinning of handler
iarea
+END START

2.30 .FORK (Device Handler and Interrupt Service Routine Only)

The .FORK call is used when access to a shared resource must be serialized or
when a lengthy but non-time-critical section of code must be executed.
FORK issues a subroutine call to the monitor and does not use an EMT
instruction request.

Macro call: .FORK fkbik

where:

fkblk is a four-word block of memory allocated within the driver
Errors:

None.
The .FORK macro expands as follows:

.FORK fkblk
JSR %5,@$FKPTR
.WORD fkblk-.

The .FORK call must be preceded by an .INTEN call, and the address of a
four-word block must be supplied with the request. Your program must not
have left any information on the stack between the .INTEN and the FORK
call. The contents of registers R4 and R5 are preserved through the call, and
on return registers R0O-R3 are available for use.

2-46 Programmed Request Description and Examples

If you are using a .FORK call from a device handler, it is assumed that you
are also using the other macros (.QELDF, .DRBEG, .DRAST, .DRFIN, and
.DREND) provided for handlers.

The .DREND macro allocates a word for $FKPTR. This word is filled in at
bootstrap time for a system device or at LOAD or .FETCH time for a non-
system device.

If you want to use the .FORK macro in an in-line interrupt service routine
rather than in a device handler, you must set up $SFKPTR. The recommended
+n An 4—]«;5 is as fallawea-

wayv
way 10 G0 uni i01i10WS!:

Mou B#54d R4
ADnD doZ2{R4) R4
Moy R4 :$FKPTR iSet up Pointer

+

+

$FKPTR . WORD Q

Once the pointer is set up, use the macro in the usual way as follows:
.FORK fkblk
This method permits you to preserve both R4 and R5 across the fork.

The .FORK request is linked into a queue and serviced on a first-in first-out
basis. On return to the driver or interrupt service routine following the call,
the interrupt has been dismissed and the processor is executing at priority 0.
Therefore, the .FORK request must not be used where it can be reentered
using the same fork block by another interrupt. It also should not be used with
devices that have continous interrupts that cannot be disabled. The RT-11
Software Support Manual gives additional information on the .FORK
request.

Notes:

For use within a user interrupt service routine, monitor fixed offset 402
(FORK) contains the offset from the start of the resident monitor to the
FORK request processor. A .FORK can be done by computing the address of
the .FORK request processor and using a subroutine instruction. (Under the
XM monitor, only privileged jobs can contain user interrupt service routines.)
For example:

May Budd R4 iGET BASE OF RMOWN

abD 4qo2 (R4 R4 30OFFSET TO FORK PROCESSOR
JER RS :BR4 iCALL FORK PROCESS

+WORD BLOCK-. iFORK BLOCK

This method destroys the contents of R4.
Example:

Refer to the example following the description of .DRAST.

Programmed Request Description and Examples = 2-47

2.31

.GMCX (XM Only)

The .GMCX request returns the mapping status of a specified window. Status
is returned in the window definition block and can be used in a subsequent
mapping operation. Since the .CRAW request permits combined window cre-
ation and mapping operations, entire windows can be changed by modifying
certain fields of the window definition block.

The .GMCX request modifies the following fields of the window definition
block:

W.NAPR base page address register of the window
W.NBAS window virtual address

W.NSIZ window size in 32-word blocks

W.RID region identifier

If the window whose status is requested is mapped to a region, the .GMCX
request loads the following additional fields in the window definition block:

W.NOFF offset value into the region
W.NLEN length of the mapped window

W.NSTS state of the WS.MAP bit is set to 1 in the window status
word.

Otherwise, these locations are zeroed.
Macro Call: .GMCX areal,addr]
where:
area is the address of a two-word EMT argument block

addr is the address of the window definition block where the specified
window’s status is returned

Request Format:

RO - area: 36 | 6
addr
Errors:
Code Explanation
3 An illegal window identifier was specified.
Example:

Refer to the example for the .CRAW request.

Programmed Request Description and Examples

2.32 .GTIM

.GTIM allows user programs to access the current time of day. The time is
returned in two words and given in terms of clock ticks past midnight.

Macro Call: .GTIM area,addr

where:
area is the address of a two-word EMT argument block

addr is the address of the two-word area where the time is to be
returned

Request Format:

RO - area: 21 | 0
addr

The high-order time is returned in the first word, the low-order time in the
second word. Your program must account for the conversion from clock ticks
to hours, minutes, and seconds.

The basic clock frequency (50 or 60 Hz) can be determined from the configura-
tion word in the monitor (offset 300 relative to the start of the resident moni-
tor). In the FB monitor, the time of day is automatically reset after 24:00,
when a .GTIM request is done and the date is changed if necessary. In the SJ
monitor, the time of day is not reset. The month is not automatically updated
in either monitor. (Proper month and year rollover is a special feature that
you enable through the system generation process.)

The default clock rate is 60 cycles, that is, 60 ticks per second. Consult the
RT-11 Installation and System Generation Guide if conversion to a 50-cycle
rate is necessary.

Because day rollover is done only through a .GTIM request, make sure that
your program receives the correct time and day by issuing a .GTIM request
before using the .DATE request. Nearly all RT-11 system utility programs
issue a .GTIM request to make sure that rollover occurs daily. If you do not
use a system utility program regularly, issue a .GTIM request at least once
during a 24-hour period.

NOTE

There are also several SYSLIB routines that perform time con-
version (see Chapter 3). They are CVTTIM, TIMASC, TIME,
and SECNDS.

Errors:

None.

Example:
+TITLE GTIM.MAC
i
i +OTIM - This is an examrle in the use of the .GTIM recuest.

$ This examrle is 2 subroutine that can be assembled seraratelw
$# and linked with a3 user program.

Programmed Request Description and Examples 2-49

INFUT:

OUTFRUT?

ERRORS?

s M WE b R vk s W M W s e Er

+GLOBL
+MCALL

TIME:: MOV
+GTIM
MOV
MOV
CALL
MoV
SWAR
caLL
RISE
CaLL
MOV
SWAE
RISE
RETURN

AREA: +ELKW
TICKS: .WORD

+END

2.33 .GTJB

The .GTJB request returns information about a job in the system.

o

<

*d

»
1

o~
v

Macro Call:
where:

area

addr

CALLING SEQUENCE? CALL TIME

nhone

R4 = Minutes in hi bute / hours in lo bute

RS = Ticks in hi bute / seconds in lo bute
(in that order for ease of removal !)

none rossitle

NOTE! This examrle calls SYSLIE functions ‘$DIVTK’ % ‘$DIV40’

$DNIVTK,$DIVEO

+GTIM
#$TICKS»R1 iRl roints to where to rut time
¥AREAYR1 iGet ticks since midnight via .GTIM
(R1)+sRO iRO = lo order time
@R1sR1 iRl = hi order time
$OIVTK #iCall SYSLIE 32 bit divide by clk frea
R3s/RS iSave ticks (theu don’t bute!)
RS iFut them in hi bute
$0IVSE0 iCall SYSLIER divide bw 40. routine
R3I»RS iFut seconds in lo bute
$DIVS0 ilivide bw 40, ornce adain
R3sR4 iFut minutes in R4
R4 iMove them to hi bute
R1:R4) iFut hours in lo bute
iand return
2 FEMT ardument area
00 iTicks since midnight returned here
TIME

.GTJB area,addrl,jobblk]

is the address of a three-word EMT argument block

is the address of an eight-word or twelve-word block into which
the parameters are passed. The values returned are:

Word 1 Job Number = priority level *2 (background job is
0; system jobs are 2, 4, 6, 10, 12, 14; and foreground
job is 16 in system job monitors; background job is 0°
and foreground job is 2 in FB and XM monitors; job
number is 0 in a SJ monitor)

2 High-memory limit of job partition (last location

plus 2)

Low-memory limit of job partition (first location)

Pointer to I/0 channel space

5 Address of job’s impure area in FB and XM moni-

tors

6 Low byte: unit number of job’s console terminal

(used only with multi-terminal option; 0 when

>~ W

grammed Request Description and Examples

multi-terminal feature is not used)

High byte: reserved for future use

Virtual high limit for a job created with the linker

/V option (XM only; 0 when XM monitor or if /V

option is not used)

8-9 Reserved for future use

10-12 ASCII logical job name (system job monitors only;
contains zeroes for non-system jobs in FB and XM,
not defined in SJ)

-~

Word 4 of addr, which describes where the I/O channel words begin, normally
indicates an address within the job’s impure area. However, when a .CDFN is
executed, the start of the I/O channel area changes to the user-specified area.

If the jobblk argument to the .GTJB request is between 0 and 16 when the
status of a job is requested, it is interpreted as a job number. If the jobblk
argument is ‘ME’, or equals -1, information about the current job is returned.
If the jobblk argument is omitted, or equals -3 (a VO3B-compatible parameter
block), only eight words of information (corresponding to words 1-8 of addr)
are returned.

In an F/B environment without the system job feature, you can get another
job’s status only by specifying its job number (0 or 2).

Request Format:

RO - area: 20 | 0O
addr
jobblk

Errors:
Code Explanation
0 No such job currently running.

Example:

+TITLE GTJR.MAC

“+

+BTJBE - This is an examrle in the use of the .GTJE recuest., The
examrle issues the request to determine if there is an active
Foredround Job in the sustem.

. W W we W

+MCALL +GTJR» +PRINTy EXIT

START: .GTJR #LISTs#JOBARG iFind out if FG is asctive
BCS is #No active FG Job
+PRINT #FGACT sAnnounce that FG is active
JEXIT $Then exit rrodram

1% +PRINT #NOFG jAnnounce that there’s no FG Job
+EXIT iThen exit rrodram

LIST: +BLKW 2 $EMT Arsument block

JORARG: .BLKW 8. iJob rarameters rassed back here

Programmed Request Description and Examples 2-51

FGACT? +ASCIZ /! FG is active !/ iFG active messade

NOFG: +ASCIZ /7 No FG6 Job ?/ iNo FG messade
+EVEN
+END START

2.34 .GTLIN

The .GTLIN request collects a line of input from either the console terminal
or an indirect command file, if one is active. This request is similar to
.CSIGEN and .CSISPC in that it requires the USR, but no format checking is
done on the input line. Normally, .GTLIN collects a line of input from the
console terminal and returns it in the buffer specified by you. However, if
there is an indirect command file active, .GTLIN collects the line of input
from the indirect command file just as though it were coming from the
terminal.

When bit 3 of the Job Status word is set, the .GTLIN request collects a line
from the terminal if there is no line available in the current indirect command
file. When bit 14 of the Job Status Word is set, the .GTLIN request passes
lower-case letters.

An optional prompt string argument (similar to the CSI asterisk) allows your
program to query for input at the terminal. The prompt string argument is an
ASCIZ character string in the same format as that used by the .PRINT
" request. If input is from an indirect command file and the SET TT QUIET
option is in effect, this prompt is suppressed. If SET TT QUIET is not in
effect, the prompt is printed before the line is collected, regardless of whether
the input comes from the terminal or an indirect file. The prompt appears
only once. It is not reissued if an input line is-canceled from the terminal by

CTRL/U or multiple DELETE characters.

If your program requires a nonstandard command format, such as the user
identification code (UIC) specification for FILEX, you can use the .GTLIN
request to accept the command string input line. .GTLIN tracks indirect
command files and your program can do a pre-pass of the input line to remove
the nonstandard syntax before passing the edited line to .CSIGEN or
.CSISPC.

NOTE

In an F/B environment, .GTLIN performs a temporary implicit
unlock while the line is being read from the console.

Macro Call: .GTLIN linbuf[,prompt]
where:

linbuf is the address of the buffer to receive the input line. This area
must be 81 bytes in length. The input line is stored in this
area and is terminated with a zero byte instead of
(octal 15 and 12)

2-52 Programmed Request Description and Examples

2

.35

prompt

Krrors:

is an optional argument and is the address of a prompt string

to be printed on the console terminal. The prompt string has
the same format as the argument of a .PRINT request. Usu-
ally, the prompt string ends with an octal 200 byte to sup-
press printing the carriage return/line feed at the end of the

prompt
NOTE

The only requests that can take their input from an indirect
command file are .CSIGEN, .CSISPC, and .GTLIN. The

TTYIN and TTINR reguests cannot get characters from an

indirect command file. They get their input from the console
terminal (or from a BATCH file if BATCH is running). The
TTYIN and .TTINR requests are useful for information that is
dynamic in nature — for example, when all files with a .MAC
file type need to be deleted or when a disk needs to be initial-
ized. In these circumstances, the response to a system query is
usually collected through a .TTYIN so that confirmation can
be done interactively, even though the process may have been
invoked through an indirect command file. However, the re-
sponse to the linker’s Transfer Symbol? query would normally
be collected through a .GTLIN, so that the LINK command
could be invoked and the start address specified from an indi-
rect file. Also, if there is no active indirect command file,
.GTLIN simply collects an input line from the console terminal
by using .TTYIN requests.

None.

Example:

4

e er

START?

1¢:
BUFF?
PROMT:

.GVAL

+TITLE GTLIN.MAC

LGTLIN - This is =n examrle in the use of the .GTLIN recuest.
The examrle merely acerts insut from the console terminal and
echoes it back.

+MCALL JGTLINsFRINT».EXIT

+GTLIN #BUFF s #PRONT 3Get a8 line of inrput from kesboard

TSTR BUFF iNothing entered?

BEQ 1% sBranch if nothing entered

+FRINT #BUFF iEcho the inrFut back

CLRRB BUFF iClear first char of buffer

ER START iGo back for more

JEXIT $Exit esrogram on null inFut

+BLKW 41, 80 character buffer (ASCIZ for JFRINT)

+ASCII /Enter something/<123<15x/>/<200%
+END START

The .GVAL request returns a monitor offset value in R0. This request must be
used in an XM monitor environment to access the monitor’s fixed offset

Programmed Request Description and Examples

2-53

locations. It should also be used in other RT-11 monitors. The .GVAL request
1s a read-only operation and protects the information obtained from the moni-
tor. A table of the fixed offset locations can be found in Chapter 2 of the
RT-11 Software Support Manual.

Macro Call: .GVAL area,offse

where:

area is the address of a two-word EMT argument block

offse is the displacement from the beginning of the monitor to the

word to be returned to RO

Request Format:

RO - area: 34 | 0
offset

Errors:

Code Explanation

0 The offset requested is beyond the limits of the resident
monitor.

Example:

»TITLE GVAL.MAC

-+

+BVAL - This is an examrle in the use of the .GVAL reauest, The
examrle is an alternative method of finding out whether the FG
is active to the method shown in the .GTJR examrle.

. as W e Wk

+MCALL JGVALs .PRINTy EXIT
CONFIG = 300 i0ffset in Monitor of Confiduration
iword
FJOBS = 200 iBit in Confis Word is on if FG active
START?! .GVAL #AREAr#CONFIG iGet Monitor CONFIG word in RO
BIT $FJOB$ RO iSee if FG Active bit is on
BEQ 1% iBranch if not
«PRINT #FGACT FAnnounce FG is active
JEXIT ithen exit rrogram
1% +FPRINT #NOFG iAnnounce there’s no FG Job
JEXIT ithen exit rrodram
AREA: +BLKW 2 FEMT Argument block
FGACT: JASCIZ /! FG is asctive 1/ iFG active messasge
NOFG! +ASCIZ /7 No FG Job 7/ iNo FG message
»EVEN iFix boundary
JEND START

2.36 .HERR/.SERR

.HERR and .SERR are complementary requests used to govern monitor be-
havior for serious error conditions. During program execution, certain error

2-54 Programmed Request Description and Examples

conditions can arise that cause the executing program to be aborted (see
Table 2-2).

Normally, these errors cause program termination with one of the ?MON-
error messages. However, in certain cases it is not feasible to abort the pro-
gram because of these errors. For example, a multi-user program must be able
to retain control and merely abort the user who generated the error. .SERR
accomplishes this by inhibiting the monitor from aborting the job and causing
an error return to the offending EMT. On return from that request, the carry
bit is set and byte 52 contains a negative value indicating the error condition
that occurred. In some cases (such as the .LOOKUP and .ENTER requests
the .SERR request leaves channels open. It is your responsibility to perform
PURGE or .CLOSE requests for these channels, otherwise subsequent
.LOOKUP/.ENTER requests will fail.

HERR turns off user error interception. It allows the system to abort the job
on fatal errors and generate an error message. ((HERR is the default case.)

Macro Cails: .HERR
.SERR

Request Formats:

.HERR Request RO =
.SERR Request RO = 4

|
o

[wn] Lem)

Errors:

Table 2-2 contains a list of the errors that are returned if soft error
recovery is in effect. Traps to locations 4 and 10, and floating-point
exception traps are not inhibited. These errors have their own recovery
mechanism.

Table 2-2: Soft Error Codes (.SERR)

Code Explanation
-1 Called USR from completion routine.
-2 No device handler; this operation needs one.

-3 Error doing directory 1/0.

-4 FETCH error. Either an I/O error occurred while the handler was being used, or an
attempt was made to load the handler over USR or RMON.

-5 Error reading an overlay.
-6 No more room for files in the directory.

-7 Illegal address (FB only); tried to perform a monitor operation outside the job
partition.

-10 Illegal channel number; number is greater than actual number of channeis that
exist.

-11 Illegal EMT); an illegal function code has been decoded.

Programmed Request Description and Examples ~ 2-55

Example:

+TITLE HERR.MAC

- ar s w e
-+

+HERR /7 +SERR - This is an examrle in the use of the .HERR & .SERR
reauests. Normallys fatal errors will csuse a3 return to the user
Frogram for rrocessing and rrinting of an arprorriate error messade.

+MCALL . HERRy .SERFR,.LOOKUFy.FURGE
+MCALL +EXITs .FPRINT,».CSISFC
START! LSERR ilet rrodram handle fatazl errors
+CSISPC #0UTSP.#DEFEXT jsUse .CSISPC to det filesrec
+PURGE %0
+LOOKUF #AREA»#0+#0UTSF+36
BCS ERROR iBranch if there was an error
+HERR iNow rermit ‘7?MON-F-’ errors.
+PRINT #LUPOK iAnnounce successful LOOKUFP
+EXIT iExit Frodgram
ERROR: MOVE @$52,R0 iwas the error fatal?
BMI FTLERR iBranch if ues
+PRINT #NOFIL
BR START iTre 3gain. ..
FTLERR?: NEG RO iMake error # rositive
DEC RO iAdJust by one
ASL RO iMultirly by 2 to make an index
MOV TBL(RO) RO #Put messade address into RO
+PRINT tand print it.
BR START iGo try some more errors
TBL: M1 iTable of Error Messade Addresses
M2
M3
M4
M5
Mé
M7
M10
M11
fError Messages...
M1: iNot rossible in this rrodram
M2: +ASCIZ /7?Illedal Device -or- No Handler?/
M3 +ASCIZ /7?Directory I-0 Error?/
LEX iNot rossible in this prodram
M5 iNot rossible in this rrodram
M6 iNot rossible in this rrodram
M7 +ASCIZ /TAddress Check Error?/
M10: +ASCIZ /7?Illedal Channel?/
M11: +ASCIZ /7?Illegsl EMT?/
NOFIL! .ASCIZ /%?File Not Found?/
LUPOK? +ASCIZ /Lookur succeeded/
+EVEN iFix boundary
AREA: + BLKW 4 JEMT Ardument block
DEFEXT! .WORD 0504040 iNo default euxtensions
OUTSP = i0utrut srec soes here
HANLOD = , + 36 iHandlers Loaded here
+END START

2.37 .HRESET

The .HRESET request stops all 1/O transfers in progress for the issuing job,
and then performs an .SRESET request. (HRESET is not used to clear a
hard-error condition.) In an SJ environment, a hardware RESET instruction
is used to terminate I/0. In an FB or XM environment, only the I/O associ-

2-56

Programmed Request Description and Examples

ated with the job that issued the .HRESET is affected by entering active
handlers at the abort entry point of the handler. All other transfers continue.

Macro Call: .HRESET
Errors:

None.
Example:

Refer to the example for .SRESET for format.

2.38 .INTEN

JINTEN is used by interrupt service routines to:

1. Notify the monitor that an interrupt has occurred and to switch to system
state.

2. Set the processor priority to the correct value.
3. Save the contents of R4 and R5 before returning to the Interrupt Service

Routine. Any other registers must be saved by you.

INTEN issues a subroutine call to the monitor and does not use an EMT
instruction request.

All external interrupts must cause the processor to go to priority level 7.
INTEN is used to lower the priority to the value at which the device should
be run. On return from .INTEN, the device interrupt can be serviced, at
which point the interrupt routine returns with an RTS PC.

NOTE

An RTI instruction does not return correctly from an interrupt
routine that specifies an INTEN.

Macro Call: .INTEN priol,pic]
where:

prio is the processor priority at which to run the interrupt routine,
normally the priority at which the device requests an interrupt

pic is an optional argument that should be non-blank if the interrupt
routine is written as a PIC (position-independent code) routine.
Any interrupt routine written as a device handler must be a PIC
routine and must specify this argument

Errors:

None.

Programmed Request Description and Examples 2-57

Example:

«TITLE SL11.MAC

-+

SL11.MAC - This is an examerle in the use of the +INTEN reauest.
The examrle is an in-lines interrusrt service routines which maw
be assembled serarately and linked with 2 mainline FTOSTam,

The routine transfers data from a user srecified buffer to 3 DLI11
Serial Line Interface.,

CALLING FORMAT! JSR RSySL11 iIlnitiste Outrut
+WORD wordcount i+ words tao transfer
+WORD EUFFER iAddress of Data Ruffer

)

BUFFER: ,BLKW wordcount

N NP R W e WP WR W W e S M Y W

+MCALL . INTEN

DLVEC = 304 fIL11 Vector XXX
DLCSR = 1746504 L1l Outrut CSR XXXk
DLPRI = 4 i0L11 Prioritw for RT-11
SL11!: MOV (RS)+s (PCH+ $1/0 Initiation - Get word count
WCNT: +WORD [
MoV (RSY+y (FCH + iGet address of Data Ruffer
BUFALN! .WORLD 0
ASL WCNT iMake word count bute count
REQ 1% #Just leave if zero word count
MoV #OLINT@#DLVEC iInitialize DL11 interrust vector
RIS #100,@4#DLCSR tEnable interrurts
1% RETURN iReturn to caller
DLINT: LINTEN [DLPRI ilnterrurt service - Notifu RT-11
iand dror rrioritu to that of DL1i
MOVEB @PRUFADs@#DLCSRE2 iTransfer a bute
INC RUFAD iRums buffer rointer
nec WCNT ?All butes transfered?
REQ DLIDUN $Eranch if wes
RETURN iNo return from intervurt thru RT-11
DLDUN? ERIC $100y@#DLCSK iAll done - disable DL11 interrusrts
RETURN iReturn thru RT-11
+END sttt

2.39 .LOCK/.UNLOCK

2-58

.LOCK

The .LOCK request keeps the USR in memory to provide any of its services
required by your program. If all the conditions that cause swapping are satis-
fied, the part of the user program over which the USR swaps is written into
the system swap blocks (the file SWAP.SYS) and the USR is loaded. Other-
wise, the copy of the USR in memory is used, and no swapping occurs. (Note
that certain calls always require a fresh copy of the USR.) A .LOCK request
always causes the USR to be loaded in memory if it is not already in memory.
The USR is not released until an .UNLOCK request is given. (Note that
under an FB monitor, calling the CSI can also perform an implicit and
temporary .UNLOCK.) A program that has many USR requests to make can
.LOCK the USR in memory, make all the requests, and then .UNLOCK the
USR.

In a FB environment, a .LOCK inhibits the other job from using the USR.
Note that the .LOCK request reduces time spent in file handling by eliminat-

Programmed Request Description and Examples

ing the swapping of the USR in and out of memory. .LOCK causes the USR to
be read into memory or swapped into memory. After a .LOCK has been
executed, an .UNLOCK request must be executed to release the USR from
memory. The .LOCK/.UNLOCK requests are complementary and must be
matched. That is, if three .LOCK requests are issued, at least three
.UNLOCK requests must be done, otherwise the USR is not released. More
.UNLOCK than .LOCK requests can be issued without error.

Macro Call: .LOCK
Notes:

1. It is vital that the .LOCK call not come from within the area into which
the USR will be swapped. If this should occur, the return from the .LOCK
request would not be to the user program, but to the USR itself, since the
.LOCK function inhibits the user program from being re-read. Also, none
of the executable code should be in the area that the USR will occupy
while it is locked.

2. Once a .LOCK has been performed, it is not advisable for the program to
destroy the area the USR is in, even if no further use of the USR is
required, because this causes unpredictable results when an .UNLOCK is
done.

3. If a foreground job performs a .LOCK request while the background job
owns the USR, foreground execution is suspended until the USR is avail-
able. In this case, it is possible for the background to lock out the fore-
ground (see the .TLOCK request).

Errors:
None.
Example:
Refer to the example for the .UNLOCK request.

.UNLOCK

The .UNLOCK request releases the User Service Routine (USR) from mem-
ory if it was placed there with a .LOCK request. If the .LOCK required a
swap, the .UNLOCK loads the user program back into memory. There is a
.LOCK count. Each time the user does a .LOCK, the lock count is incre-
mented. When the user does an .UNLOCK, the lock count is decremented.
When the lock count goes to 0, the user program is swapped back in (see
note 1).

Macro Call: .UNLOCK
Notes:

1‘ Tl\e numbn nf' ITNT ﬂc roon aSuS Yn‘nsf at]uasf rr\af coh]-\e ninmhar of

e -~ sa LI \1 A AV 1vaQaouv 111 vLw il vl AALLLLINICL UL
.LOCK requests that were issued. If more .LOCK requests are done, the
USR remains locked in memory. Extra .UNLOCK requests in your pro-
gram do no harm since they are ignored.

Programmed Request Description and Examples 2-59

2. With two running jobs in an FB environment use .LOCK/.UNLOCK pairs
only where absolutely necessary. When a job locks the USR, the other
job cannot use it until it is unlocked, which can degrade performance in
some cases.

3. In an FB environment, calling the CSI with input coming from the console
terminal results in an implicit (though temporary) .UNLOCK.

4. Make sure that the .UNLOCK request is not in the area that the USR
swaps into. Otherwise, the request can never be executed.

Errors:
None.

Example:
JTITLE LOCK.,HAC

+

+LOCK / JUNLOCK - This is an examrle in the use of the .LOCK and .UNLOCK
reauests. This examele tries to obtzin as much memory 8s rossible (using

the .SETTOF recuest)s which will force the USR into 3 swarring mode. The
.LOCK reauest will bring the USR into memorw (over the high 2k of our little
rrogram !) and force it to remazin there until an ,UNLOCK is issued.

w e s es e W W

+MCALL .LOCK».UNLOCK,.LDOKUF
+MCALL SETTOFs.FRINTy .EXIT

SYSPTR=54 iFPointer to bedinning of RMON
START: +SETTOP @#SYSPTR $Try to allocate 311 of memory (ur to RMON)
+LOCK ibring USR into memory
,LOOKUF #AREA-#0,#FILE1 ;LOOKUP & file on channel 0
BCC is $Branch if successful
2% +PRINT #LMSG jPrint Error Messade
JEXIT sthen exit rrodram
1%: +PRINT #F1FND JAnnounce OUr success
MoV $#AREAsRO $RO =» EMT Arsument Rlock
INC R0 iIncrement low bute of 1st ard (chan #)
MoV $FILE2y2(RO) iFill in rointer to new filesrec
+ LOOKUP 3Do the .LOOKUP from filled in arsg block
irointed to by RO.
BCS 23 iBranch on error
+PRINT #F2FND iSay we found it
+UNLOCK inow release the USR
JEXIT iand exit rrodram

AREA? + BLKW 3
FILELI:? «RADSOG /IOR/
+RADSO /PIP /
+RADS0 /SAV/
FILE2: «RADS0O /DK/ jAdnother file we might find
+RADS0 /TECO /
+RADSO /SAV/
LMSG?: +ASCIZ /7Error on LOOKUF?/ sError messade
FIFND! JASCIZ /...Found FIP.SAV/
F2FNDR: ASCIZ /...Found TECO.SAV/
+EVEN
+END START

gument Block

r
e we’'rTe sure Lo

- e

EMT A
Fil

A
(2]

2.40 .LOOKUP

A .LOOKUP request can be used in two different ways. The first way is to use
the request as a standard lookup, which occurs under the SJ, FB, and XM

2-60 Programmed Request Description and Examples

monitors. The second way is to use the request when the system job feature is
implemented. Both ways are described in this section.

2.40.1 Standard Lookup

The .LOOKUP request associates a specified channel with a device and exist-
ing file for the purpose of performing 1/0 operations. The channel used is then
busy until one of the following requests is executed:

.CLOSE

SAVESTATUS

.SRESET

HRESET

.PURGE

.CSIGEN (if the channel is in the range 0-10 octal)

Note that if the program is overlaid, channel 17 (octal) is used by the overlay
handler and should not be modified.

If the first word of the file name (the second word of dbik) is 0 and the device
is a file-structured device, absolute block 0 of the device is designated as the
beginning of the file. This technique is called a non-file-structured .LOOKUP
and allows I/O operations to access any physical block on the device. If a file

name is specified for a device that is not file structured (such as
PC:FILE.TYP), the name is ignored.

The handler for the selected device must be in memory for a .LOOKUP. On
return from the .LOOKUP, RO contains the length in blocks of the file just
opened. On a return from a .LOOKUP for a non-directory, file-structured
device, RO contains 0 for the length.

NOTE

Care should be exercised when doing a non-file-structured
.LOOKUP on a file-structured device, since if your program
writes data, corruption of the device directory can occur and
effectively destroy the disk. (The RT-11 directory starts in ab-
solute block 6.)

In particular, avoid doing a .LOOKUP or .ENTER with a file
specification where the file value is missing. If the device type
is not known in advance and is to be entered from the key-
board, include a dummy file name with the .LOOKUP or
.ENTER, even when it is assumed that the device is always
non-file structured.

Macro Call: .LOOKUP area,chan,dblk[,seqnum]

where:

area is the address of a three-word EMT argument block

chan is a channel number in the range 0-377(octal)

Programmed Request Description and Examples 2-61

2-62

dblk 1s the address of a four-word Radix-50 descriptor of the file to
be operated upon

seqnum is a file number for magtape and cassette.

For cassette operations, if this argument is blank, a value of 0
is assumed.

For magtape, it describes a file sequence number. The action
taken depends on whether the file name is given or is null.
The sequence number can have the following values:

-1 means suppress rewind and search for a file name from
the current tape position. If a file name is given, a file-
structured lookup is performed (do not rewind). It is im-
portant that only -1 be specified and not any other num-
ber. If the file name is null, a non-file-structured lookup
is done (tape is not moved).

0 means rewind to the beginning of the tape and do a non-
file-structured lookup.

n where n is any positive number. This means position the
tape at file sequence number n and check that the file
names match. If the file names do not match, an error is
generated. If the file name is null, a file-structured
lookup is done on the file designated by seqnum.

Request Format:

RO - area: 1 | chan
> - dblk
seqnum
Errors:
Code Explanation

0 Channel already open.

1 File indicated was not found on the device.

Example:
JTITLE LOOKUP.MAC

i+

§ +LOOKUP - This is an examrle in the use of the .LOOKUP reauest.
} This examrle determines whether or not the RT-11 Device Queue

} Workfile exists on device DK:! and if sos prints its size in

} blocks on the console terminal.

,_

+MCALL .LOOKUF» .PRINT» . EXIT

START: .LOOKUP #AREA,#0,#QUSFEC iSee if there’s a3 DKIQUFILE.TMP
BCC 1s iBranch if there is
+PRINT #NOFIL iPrint ‘File Not Found’ messade
JEXIT ithen exit prodram

isd L, {1LY) #SIZESRI iR1 => where to sput ASCII size
CALL CNV10 iConvert size (in RO) to ASCII
+PRINT #BUFF iPrint size of QUFILE.TMP on console
<EXIT ithen exit eprogram

Programmed Request Description and Examples

CNV10: MOV
CLR

1s: INC
SUB
BGE
ADD
DEC
BEQ
CALL

2% MOVE
RETURN

AREA: +BLKW
QUSPEC? .RADSO

+RADSO
BUFF: +ASCII
SIZE! +ASCIZ
NOFIL: .ASCIZ

+EVEN

+END

ROy~ (SP) $Subroutine to convert Binary # in RO
RO ito Decimal ASCII by reretitive

RO fsubtraction. The remainder for each
#10.s@SF iradix is made into ASCII and spushed
is son the stacks then the routine calls
#72,@SP jitself. The code at 2¢ pors the ASCII
RO jdidits of the stack and into the out-
2s jrut bufferr eventuzlly returning to
CNV10 ithe ca2llind rprodgram. This is a VERY
(SPY+r(R1)+ juseful routines is short and is

imemory effecient.

3 FEMT Ardument Rlock
/DK QUFILE/

/THP/

/DKIQUFILE.TMP = 7

/ Blocks/

/?File Not Found DK!QUFILE.TMP %/

START

2.40.2 System Job Lookup

The foreground and background jobs can send messages to each other via the
existing .SDAT/RCVD/.MWAIT facility. A more general message facility is
available to all jobs through the message queue (MQ) handler. By turning
message handling into a formal “device” handler, and treating messages as
1/0 to jobs, the existing .READ/C/W-.WRITE/C/W-.WAIT mechanism can
be used to transmit messages. A channel is opened to a job via a .LOOKUP
request, after which standard I/O requests are issued to that channel.

Macro Call:

where:

.LOOKUP area,chan,jobdes

is the address of a three-word EMT argument block
is the number of the channel to open

is the address of a four-word descriptor of the job to which

Vil pAV LSS I~ 2 33 2

messages will be sent or received

jobdes - .RAD50 /MQ/
.ASCII /logical-job-name/

where logical-job-name can be from one to six characters long.
It must be padded with zeroes if less than six characters long.
If logical-job-name is zero, the channel will be opened for
.READ/C/W requests only and such requests will accept mes-
sages from any job

Request Format:

RO - area: 1 | chan

jobdes
seqnum

The .LOOKUP request associates a channel with a specified job for the pur-
poses of sending inter-task messages. RO is undefined on return from the

.LOOKUP.

Programmed Request Description and Examples 2-63

2.41

2-64

Errors:

Code Explanation
0 Channel already open.
1 No such job.
Example:

+TITLE SJLOOK.MAC

- e W e e
-+

1

+LOOKUF - This is an examrle in the use of the ,LOOKUF request
to oren 2 messase channel to 3 Sustem Jobr srecificallys the
RT-11 Device Queuve Foresground rrogram.
it will be run under an FE Monitor denerated with Szsstem Job
Surrort and thet QUEUE.REL has been successfully FRUN/SRUN 111

NOTE! This examrle assumes

iTry to oren 3 channel to QUEUE
iBranch if successful

jError...rrint error messade

ithern exit srodram

iSend 3 meanindless messade to QUEUE
sRranch if error

iWait for an acknowleddgement messade
iBranch if error

jAnnounce QUEUE alive and well

fThen exit

iPrint error messade

iThen exit

JEMT Arsument Block
iJob Descrirtor Elock for ,LOOKUF
illumme messasge...

tError Messadess etc.

+MCALL JLOOKUFy ,FPRINT» .EXITs .WRITWs,READIW
START! .LOOKUFP #AREA:#0,%#0MSG
RCC is
+FRINT #NOJOR
JEXIT
1%: +WRITW #AREAr#0s#RNSGs#4
RCS 23
+READW #AREA,#0,#RMSG»$6
BCS 2%
+FRINT #QRUN
JEXIT
2% +PRINT #MSGERK
JEXIT
AREA: +BLKW S
OMSG: +RADS0 /MQ/
+ASCIZ /QUEUE/
+WORD 0:0
RMSG: +WORD 0
+ASCII /SJLOOK/
MSGERR: .ASCIZ /7Hessade Error?/
NOJOE: L.ASCIZ /7?QUEUE is not running?/
QRUN: +ASCIZ /! QUEUE is alive and running !/
»EVEN
+END START

.MAP (XM Only)

The .MAP request maps a previously defined address window into a dynamic
region of extended memory or into the static region in the lower 28K words of
memory. If the window is already mapped to another region, an implicit
unmapping operation is performed (see the .UNMAP programmed request).

Macro Call: .MAP areal,addr]
where:
area

addr

is the address of a two-word EMT argument block

is the address of the window definition block containing a de-

scription of the window to be mapped and the region to which it

will map.

Programmed Request Description and Examples

Request Format:

RO - area: 36 | 4

addr
Errors:
Code Explanation

2 An invalid region identifier was specified.

3 An invalid window identifier was specified.

4 The specified window was not mapped because the offset is
beyond the end of the region, the region is larger than the win-
dow, or the window would extend beyond the bounds of the
region.

Example:

Refer to example for the .CRAW request.

2.42 .MFPS/.MTPS

The .MFPS and .MTPS macro calls allow processor-independent user access
to the processor status word. The contents of RO are preserved across either
call.

The .MFPS call is used to read the priority bits only. Condition codes are
destroyed during the call and must be directly accessed (using conditional
branch instructions) if they are to be read in a processor-independent manner.

In the XM monitor, MFPS and .MTPS can be used only by privileged jobs
and are not available for use by virtual jobs.

Macro Call: .MFPS addr

where:

addr is the address into which the processor status is to be stored; if
addr is not present, the value is returned on the stack. Note that
only the priority bits are significant

The .MTPS call is used to set the priority condition codes and to trace the
trap bit with the value designated in the call.

Macro Call: .MTPS addr
where:

addr is the address of the word to be placed in the processor status
word. If addr is not present, the processor status word is taken
from the stack. Note that the high byte on the stack is set to 0
when maryaddr is present. If addr is not present, you should set

Programmed Request Description and Examples 2-65

66

the stack to the appropriate value. In either case, the lower byte
on the stack is put in the processor status word

Note:

It is possible to perform MTPS and MFPS operations and access the condi-
tion codes by following this special technique:

1. In the beginning of your program, set up the IOT trap vector as

follows:
,ASECT SSET UP 10T
. = z0
JWORD GETPS $10T SERVICE ADDRESS IN ‘MFPS’ SUBROUTINE
JWORD 340 5 PRIORITY 7

2. Elsewhere in your program place the following routines:

+
i MFPS5/MTPS ROUTINES ...

3 -

MFPG: 107 FEXECUTE 10T
WILL RETURWM TO CALLER W/ PS ON STACK
GETPS: May 4(5P) »@EP iPUT USER RETURN ON TOP
Mo 2(8P) +4(8P) iMOVE PS SAVED BY 107
MTPS: RTI FWILL RETURN TO CALLER W/ NEW FS

3. To get the PS or to set the PS to a desired value, follow this sequence
of instructions:

+

TO GET PS

- aw

J5R

5+
i TO PUT PS

Moy
J8R

Errors:
None.

Example:

+TITLE

it
i +MFFS /
i

+MTFS - This is an

PC :MFPS

NEWPS s - (5P)
PCMTPS

MFFS

examrle in the use of the MFFS and

iGET PS

SCONTINUEs PS5 IS ON STACK .

iPUT DESIRED PS ON STACK ..
iCALL MTSP

SCONTINUE PROCESS W/ NEW PE

reauests, The examrle is a skeleton mzinline rrodgram which calls a3

i subroutine to det the next free element in an RT11-like linked ausue.

a
-

+MCALL

+MFFSs JMTFSy JEXITy PRINT» TTINR

Programmed Request Description and Examples

¢

+

+

LR

+MTFS

+

JSW = 44

jJob Status Word location

TTSPC$ = 10000 sTTY Srecial bit
START! $iSkeleton mainline Program...
RIS $TTSPCS,@#JSH iSet TTY Srpecial bit
1 [
; *
CALL GETQUE 3Call subroutine to return next free
telement - on return RS => element
RCC 1s iBranch if no error
+PRINT #NOELEH iNo more elements available
BIC F¥TTSPCS$»@¥JSW iReset srecizl bit
JEXIT jExit rrodgram
12 NOF ifrogram continues
NOP H
+PRINT #GOT1 }Anncounce SUCCessS
2% »TTINR jWait for a kew to be hit on console
BCS 2¢
ER START
GETRUE: MOV ¥QHEAD s R4 iFoint to aueue head
18T @R4 iQueue exhausted?
REQ 114 iYes...set error on leaving
+MFPS jSave status on stack
+MTPS $£340 iRaise epriority to 7
MOV BR4¢RS RS roints to next element
MoV #R5:@RA iRelink the cueue
+HTFPS iRestore srevious status
TST (FCY+ $This clears carry & skirs next instruction
1182 SEC $Set carry bit (to flasg error)
RETURN iReturn to caller
QHEAD: WORD Q1 i Queue head
Q13 +WORD Q2+0:0 i3 linked queue elements
a2 +WORD Q3,050
Q3 +WORD 0:0+0
NOELEM: .ASCIZ /7?No more Queue Elements Available?/
GOT1: LASCIZ /Element acauired...rress zans key to continue/
+END START

2.43 .MRKT (FB and XM : SJ Monitor Special Feature)

The .MRKT request schedules a completion routine to be entered after a
specified time interval (measured in clock ticks) has elapsed. The .MRKT
request is an optional feature in the SJ monitor, and is selected as a system
generation option.

A MRKT request requires a queue element taken from the same list as the
1/O queue elements. The element is in use until either the completion routine
is entered or a cancel mark time request is issued (see .CMKT request). The
user should allocate enough queue elements to handle at least as many mark
time and I/O requests that are expected to be pending simultaneously.

Macro Call: .MRKT area,time,crtn,id
where:
area is the address of a four-word EMT argument block
time is the address of a two word-block containing the time interval

(high order first, low order second), specified as a number of
clock ticks

Programmed Request Description and Examples — 2-67

2-68

crtn is the entry point of a completion routine

id is a non-zero number or memory address assigned by the user to
identify the particular request to the completion routine and to
any cancel mark time requests. The number must not be within
the range 177400-177777, which is reserved for system use. The
number need not be unique (several MRKT requests can spec-
ify the same id). On entry to the completion routine, the id
number is in RO

Request Format:

RO - area: 2 | 0
time
crtn
id
Errors:
Code Explanation
0 No queue element was available.
Example:

+TITLE TREAD.MAC
+
+MRKT/.CHKT - This is an examrle in the use of the MRKT/.CMKT recuests
The examrle illustrates a user imrlemented *Timed Read' to cancel an
inFut reeuest sfter 2 srecified time interval,

LT TR T

+MCALL MRKT» .TTINRy.EXITs» . FPRINTs . TTYOUT» .CMKTs,TWAIT, ,QSET

LF = 12 ftLine Feed

JSW = 44 sJob Status Word location

TCERITS = 100 tReturn C-bit bit in JSW

TTSFC$ = 10000 $TTY Srecizl Mode bit in JSW
START: .QSET $XQUEr #1 iNeed an extra B-Elem for this
1$: Mov #FROMT RO iMainline - RO => Frompt

MOV #RBUFFRYR1 iR1 =% Inrut buffer

CaLL TREADS illo 2 "timed read®

RCS 24 iC-bit set = Timed out

+FRINT #LINE i"Frocess® data...

BR i% iGo back for more
2% +FRINT #TIMOUT iRead timed out - could rrocess

JEXIT irartial dats but we’ll Just exit

iX TREAD$ - "Timed Read" Subroutine X
i¥ Inrut? RO => Promrt String / RO = 0 if no rrompet X
ix R1 => Inrut Buffer X
i% Outreut! PRuffer contains inrut chars, if 2nesy terminated X
Px by & null char, C-Rit set if timed out X
TREADS$: TST RO $See if we have to rromst
BEQ 1% iBRranch if no...
+FRINT §0utrut Ppromet
1¢¢ CLR TRYT iClear time-out flag
+MRKT $TAREA3TIME-#TOUT s #1 iIssue 3 +MRKT for 10 sec
RIS $TCRITS@$JSUW iSet C-Rit bit in JSW (for F/R}
CLRR @RrR1 iStart with "emrty’® buffer
TTINS +TWAIT 2AREA iWait so we don‘t lock out RG
+TTINR iLook for a character
RIT #1,(PCH+ iTimed out?
TBYT: +WORD 0 iTime-out flag
BNE 2% sBranch if uves
RCS TTIN iBranch if inerut not comrlete

Programmed Request Description and Examples

MOVEB ROs(R1)+ iXfer 1st character
+CMKT $#$TAREA #0 iCancel «MRKT
2%: RIS $TTSFC$C#JISU $Turn on TT! Srecial mode
3% »TTINR jFlush TT: ring buffer
MOVE ROs (R1)+ sputting characters in user buffer
BCC 3% $If more chars do det ‘em
CLRE -(R1) sTerminate inrput with null bute
BIC $TCRITS$!TTSPCS,23JSW iClear bits in JSUW
ROR TBYT $Set carry if timed out
RETURN iReturn to caller
TOUT INC TBYT
RETURN iLeave comrletion code
XQUE?$ +BLKW 10, jExtra G-Element
AREA: +WORD 0 WAIT JEMT Argument block for (TWAIT
TAREA! BLKW 4 $EMT Arsument block for JHMRKT
TIME? +WORD 0+600. $Time-out interval (10 sec)
WAIT? +WORD Or1 §1/60 sec wait between TTINRs
LINE? +ASCII /MNot in stock - Part # / $iDumme resronse
BUFFR: +BLKE 81, jUser input buffer
PROMT! ASCIZ /Enter Part # >/<200> iPromprt
TIMOUT: .ASCIZ /Timed read exrired!/ iToo bad messade
+END START

2.44 .MTATCH (Special Feature)

The .MTATCH request attaches a terminal for exclusive use by the request-
ing job. This operation must be performed before any job can use a terminal
with multi-terminal programmed requests. If MTATCH request fails because
the terminal is owned by another job, the job number of the owner is returned

in RO.
Macro Call: .MTATCH area,addr,unit
where:
area is the address of a three-word EMT argument block
addr is the optional address of an asynchronous terminal status word,
or it must be 0. (The asynchronous terminal status word is a
special feature that you can select during the system generation
process.)
unit is the logical unit number of the terminal. (The logical unit

number is the number assigned by the system to a particular
physical unit during the system generation process.)

Request Format:

RO — area: 37 | 5
addr
0 | unit
Errors:
Code Explanation
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.

Programmed Request Description and Examples ~ 2-69

Code Explanation

4 Unit attached by another job (job number returned in RO).

5 In the XM monitor, the optional status word address is not in
valid user virtual address space.

Example:

MTHAMP.MAC - The followindg is an examrle prodram that
demonstrates the use of the multi-terminal

rrodrammed requests, The prodram attaches all the
terminals on a diven svystem:s then pProceeds with an
inpPut/echo exercise on all attached terminals until
CTRL/C is sent to it.

B LI LB TRRPT Ty

+MCALL sMTATCH» o MTPRNT + » MTGET + +MTIN MTOUT
+MCALL «PRINT:.MTRCTO s MTSET + . MTSTAT +, EXIT

HNGUPs = 4000 iTerminal off-line bit
TTSPCs = 10000 iSrecial mode bit
TTLC$ = 40000 iLower-case mode bit
AS, INP = 40000 slnPut available kit
M: TSTS = O iTerminal status word
M, TSTW = 7 tTerminal state bvte
M.NLUN = 4 i# of LUNs word
MTXAMP: iStart of prodram

+MTSTAT =#MTA#MSTAT iGet MTTY status

Moy MSTAT+M.NLUN.R4 R4 = # LUNs

BED MERR iNome? Mot MTTY LI

CLR R1 sInitial LUN = #0

Moy BAST +R2 iRZ - AST word arrav
10%: +HMTATCH #MTASRZ sR1 iAttach terminal

BCC 20% iSuccess!

CLRB TAT(R1) i5et attach failed

BR 30¢ iProceed with next LUN
20%: MOVEB #1,TAI(R1L) iAttach successful

Moy R1sR3 iCopy LUN

ASL R3 iMultiely by 8 for offset

ASL R3 ito the terminal status

ASL R3 ibhlaocka. ..

AabD #T8B +R3 iR3 - LUN’s TSB

HMTGET ®MTAWRI R iGet LUN's status

BIS #TTSPC$+TTLCH M, TSTS(R3) iSet srecial

imode and lower case

+MTSET #MTAR3 R iSet LUN‘s status

BITB #HNGUPS/400M, TSTW(R3) i0n line?

BNE 30% iNope!

+HMTRCTO #MTAR1 iReset CTRL/O0

SMTPRNT #MTA,#HELLOsR1 iSay hellao...,
30% ADD #2R2 iR2 > Next AST word

INC R1 iGet mext LUN

CMP R1:R4 iDone?

BLO 10% iNorPe: do attach another
LOGP: ilneput & echo forever

CLR R1 ilnitial LUN = O

Moy #AST +R2 iRZ - AST words
104 TS8TB TAI(RL: iTerminal attached?

BEQ 20% iNope ...

2-70 Programmed Request Description and Examples

BIT #AS, INP,(R2} iAny inPut’T

BEQ 20% iNoPE .
SHMTIN #MTA s#MTCHAR sR1 +#1 3Input & character
BCS ERR i0oops! Error aon inpPut
JMTOUT #MTA#MTCHAR (R1 %1 iEcho the character
BCS ERRE i0ooers! Error on outeut
Z0%: abD #2RE iPoint to next AET word
INC Rl iGet next LUN
CMP R1R4 iDone them all?
BLO 10% iNo: do check another
BR Lane i¥ez: repeat (foreuver!)
ERR: LPRINT #UNEXP iUnexpected error...
JEXRIT 3Prinit message & exitl
MERR = JPRINT #NOMTTY iMoot multi-terminal
JEMIT iPrint messade & exit
AST: sBLKHW 16, iAsynchronous Terminal
5Status Words (1/LUND
TAL: +BLKB 1G. iTerminal attached list
il Byte per LUN...
50 = Not attached
MSTAT: JBLEW 2. PMTTY status block
TEB: JBLEHW 16.%4, iTermivnal status blocks
iiG. blocks of 4 words
MTA: JBLEW 4 PEMT ardument block
MTCHAR: .BYTE . iCharacter stored here

HELLG: JASCITI <33 :"HE433x0d0 3UTSZ Home + Erase to EUE
LASCIZ /Hello! Characters tyred will be echoed/
NOMTTY: .A5CIZ /7Not multi-terminal svstem?/

UNEXP: JASCIZ /7Unexpected error,..prodram aborting?/

»END MTHAMP iEnd of prodram

2.45 .MTDTCH (Special Feature)

The .MTDTCH request detaches a terminal from one job and makes it avail-

able for other jobs. When a terminal is detached, it is deactivated, and unsoli-
cited interrupts are ignored. Input is disabled immediately, but any charac-
ters in the output buffer are printed. Attempts to detach a terminal attached
by another job result in an error.

Macro Call: .MTDTCH area,unit
where:
area is the address of a three-word EMT argument block
unit is the logical unit number (lun) of the terminal to be detached

Request Format:

RO - area: 37 | 6
unused
— | unit

Programmed Request Description and Examples ~ 2-71

Errors:
Code
1
2
3

Example:

Explanation
Invalid unit number, unit not attached.
Nonexistent logical unit number.

Invalid request; function code out of range.

+MCALL MTDTCH» MTPRNT + »MTATCH +» ,EXIT . PRINT

START:
+MTATCH #MTA #0583 SATTACH TO LUN 3
BCC 1% iATTACH ERROR
+MTPRNT #MTA #MESS 23 iPRINT MESSAGE
+MTDTCH #MTA %3 SDETACH LUN 3
JEXIT

1%: +PRINT #ATTERR PATTACH ERROR

F{PRINTED ON CONSOLE)

JEXIT

ATTERR: .ASCIZ/ATTACH ERROR/

MESS: +ABCIZ/DETACHING TERMINAL/
+EVEN

MTA: +BLKW 3
+END START

2.46 .MTGET (Special Feature)

The .MTGET request returns the status of the specified terminal unit to the
caller. If a .MTGET request fails because the terminal is owned by another
job, the job number of the owner is returned in RO.

2-72

Macro Call:

where:

area

addr

unit

.MTGET area,addr,unit

is the address of a three-word EMT argument block

is the address of a four-word status block where the status infor-
mation is returned

is the logical unit number (lun) of the terminal whose status is
requested. A unit need not be attached to the job issuing a
-MTGET request. If the unit is attached to another job (error
code 4), the terminal status will be returned and the job number
will be contained in R0. In any other error condition, the con-
tents of RO are undefined

Request Format:

RO » area: 37 | 1

addr
— | unit

Programmed Request Description and Examples

The status block has the following structure:

addr- M.TSTS
M.TST2

M.FCNT [M.TFIL

M.TSTW|{M.TWID

The following information is contained in the status block:

Byte Offset Description
0 (M.TSTS) Terminal configuration word 1
2 (M.TST2) Terminal configuration word 2
4 (M.TFIL) Character requiring fillers
5 (M.FCNT) Number of fillers

6 (M.TWID) Carriage width
7 (M.TSTW) Terminal status byte

Note that if an error occurs, and the error code is not 1 or 4, the status block
will not have been modified.

NOTE

Use the Bit Set (BIS) and Bit Clear (BIC) instructions instead
of Move (MOV) and Clear (CLR) instructions when setting
terminal and line characteristics. This avoids changing other
bits inadvertently.

The bit definitions for terminal configuration word 1 (M.TSTS) are as follows:

Value Bit , Meaning

0 Terminal has hardware tab
2 1 Output RET/LF when carriage width exceeded

2 Terminal has hardware form feed

3 Process CTRL/F and CTRL/B (and CTRL/X if system job)
as special command characters (if clear, CTRL/F and
CTRL/B are treated as ordinary characters)
100 6 Inhibit TT wait (similar to bit 6 in the Job Status Word)
200 7 Enable CTRL/S - CTRL/Q processing
7400 8-11 Line speed (baud rate) mask. Bits 8 through 11 indicate the
terminal baud rate (DZ11 and DZV11 only). The values are
as follows:

Octal Value of
Line Speed Mask

(M.TSTS bits 11-8) Baud Rate

0000 50

0400 5
1000 110
1400 134.5
2000 150
2400 300
3000 600

Programmed Request Description and Examples ~ 2-73

2-74

Octal Value of
Line Speed Mask

(M.TSTS bits 11-8) Baud Rate
3400 1200
4000 1800
4400 2000
5000 2400
5400 3600
6000 4800
6400 7200
7000 9600
7400 (unused)

10000 12 Character mode input (similar to bit 12 in the Job Status
Word)
20000 13 Terminal is remote (Read Only bit)
40000 14 Lower to upper case conversion disabled
100000 15 Use backspace for rubout (video type display)
The bit definitions for terminal configuration word 2 (M.TST?2) are as follows:
Value Bit Meaning
3 0-1 Character length, which can be 5(00), 6(01), 7(10), or 8(11)
bits (DZ only)
4 2 Unit stop, which sends one stop bit when clear, two stop
bits when set (DZ only)
10 3 Parity enable (DZ only)
20 4 Odd parity when set; even parity when clear
140 5-6 Reserved
200 7 Read pass all
77400 8-14 Reserved
100000 15 Write pass all
The bit definitions for terminal status byte (M.TSTW) are as follows:
Value Bit Meaning
2000 10 Terminal is shared congole
4000 11~ Terminal has hung up
10000 12 Terminal interface is DZ11
40000 14 Double CTRL/C was struck (the .MTGET request resets
this bit in the terminal control block if it is on)
100000 15 Terminal is acting as console (local DL11 only)
Errors:
Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.

Programmed Request Description and Examples

Code Explanation
4 Unit attached by another job (job number returned in RO).

5 In the XM monitor, the status block address is not in valid user
virtual address space.

Example:

Refer to the example for the .MTATCH request.

2.47 .MTIN (Special Feature)

The .MTIN request reads characters from the keyboard buffer. It is the multi-
terminal form of the .TTYIN request. The .MTIN request moves one or more
characters from the input ring buffer to a buffer specified by you. The termi-
nal must be attached and an updated user buffer address is returned in RO if
the request is successful. If bit 6 is set in the M.TSTS word (see the MTSET
request), the .MTIN request returns immediately with the carry bit set (code
0) if there is no input available. Operation is similar for the system console if
bit 6 is set in the JSW. If bit 12 in M.TSTS is clear, no line is available; if bit
12 is set, there are no characters in the buffer. If these conditions do not exist,
the .MTIN request waits until input is available, and the job is suspended
until input is available.

The meaning of bits 6 and 12 in the terminal configuration word (M.TSTS)
for the programmed request .MTIN is as follows:

Bit 6 Bit 12 Meaning
0 0 Normal mode of input (echo provided); wait for line
1 0 Carry bit set: no line available
1 1 Carry bit set: no character available; no echo pro-
vided
0 1 No echo provided

If a multiple-character request was made and the number of characters re-
quested are not available, the request can either wait for the characters to
become available, or it can return with a partial transfer. If bit 6 of M. TSTS
is clear, the request waits for more characters. If bit 6 is set, the request
returns with a partial transfer. In the latter case, RO contains the updated
buffer address (pointing past the last character transferred), the C bit is set,
and the error code is 0.

The .MTIN request has the following form:
Macro Call: .MTIN area,addr,unit[,chrent]

where:

area is the address of a three-word EMT argument block

Programmed Request Description and Examples 2-75

addr is the byte address of the user buffer
unit is the logical unit number of the terminal input

chrent is a character count indicating the number of characters to
transfer. The valid range is from 1 to 255 (decimal). A charac-
ter count of zero means one character

Request Format:

RO - area: 37 | 2
addr
chrent | unit

Errors:

Code Explanation

0 No input available — bit 6 is set in the Job Status Word (for
the system console) or in M.TSTS by the MTSET request.

1 Illegal unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
5 In the XM monitor, the user buffer address is not in valid user
virtual address space.
Example:

Refer to the example for the . MTATCH request.

2.48 .MTOUT (Special Feature)

2-76

The .MTOUT request transfers characters to the terminal output buffer. This
request is the multi-terminal form of the .TTYOUT request. The MTOUT
request moves one or more characters from the user’s buffer to the output ring
buffer of the terminal. The terminal must be attached. An updated user
buffer address is returned in RO if the request is successful. When there is no
room in the output ring buffer, the carry bit is set and an error code of 0 is
returned in byte 52 if bit 6 is set in M. TSTS. Otherwise, the job is suspended
until room becomes available.

If a multiple-character request was made and there is not enough room in the
output ring buffer to transfer the requested number of characters, the request
can either wait for enough room to become available, or it can return with a
partial transfer. If bit 6 in M.TSTS is clear, the request waits until it can
complete the full transfer. If bit 6 is set, the request returns with a partial
transfer. In the latter case, RO contains the updated buffer address (pointing
past the last character transferred), the C bit is set, and the error code is 0.

Programmed Request Description and Examples

The meaning of bit 6 in the terminal configuration word (M.TSTS) for the

.MTOUT request is as follows:

Bit 6 Meaning
0 Normal mode for output; wait for room in buffer
1 Carry bit set: no room in output ring buffer
Macro Call: .MTOUT area,addr,unit[,chrent]
where:
area is the address of a three-word EMT argument block

addr is the address of the caller’s input buffer
unit is the unit number of the terminal

chrent is a character count indicating the number of characters to
transfer. The valid range is from 1 to 255 (decimal)

Request Format:

RO - area: 37 | 3
addr
chrent | unit
Errors:
Code Explanation
0 No room in output buffer.
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
5 In the XM monitor, the user buffer address is not in valid user
virtual address space.
Example:

Refer to the example for the . MTATCH request.

2.49 .MTPRNT (Special Feature)

This .MTPRNT request allows one or more lines to be printed at the specified
terminal in a multi-terminal environment. It is equivalent to the .PRINT
request (see .MTSET request for more details). The string to be printed must
be terminated with a null byte or a 200 byte, similar to the string used with
the .PRINT request as follows:

ASCIZ /string/

or
.ASCII /string/<200>

Programmed Request Description and Examples 2-77

The null byte causes a carriage return/line feed combination to be printed
after the string. The 200 byte suppresses the carriage return/line feed combi-
nation and leaves the carriage positioned after the last character of the string.
The request does not return until the transfer is complete.

Macro Call: .MTPRNT area,addr,unit

where:

area is the address of a three-word EMT argument block
addr is the starting address of the character string to be printed
unit is the unit number associated with the terminal

Request Format:

RO - area: 37 | 7
addr
— | unit
Errors:
Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
5 In the XM monitor, the character string address is not in valid

user virtual address space.
Example:

Refer to the example for the MTATCH request.

2.50 .MTRCTO (Special Feature)

The .MTRCTO request resets the CTRL/O switch of the specified terminal
and enables terminal output in a multi-terminal environment. It is equivalent

to the .RCTRLO request.
Macro Call: .MTRCTO area,unit

where:

area is the address of a three-word EMT argument block

unit is the unit number associated with the terminal

Request Format:

RO - area: 37 | 4
unused
— | unit

2-78 Programmed Request Description and Examples

Errors:

Code Explanation
1 Invalid unit number, unit not attached.
2 Nonexistent logical unit number.
3 Invalid request; function code out of range.
Example:

2.51 .MTSET (Special Feature)

This multi-terminal request sets terminal and line characteristics. It also
determines the input/output mode of the terminal service requests for the
specified terminal.

Macro Call: .MTSET area,addr,unit

where:
area is the address of a three-word EMT argument block

addr is the address of a four-word status block containing the line and
terminal status being requested

unit is the logical unit number associated with the line and terminal

Request Format:

RO - area: 37 | 1

When the program returns from the request, the status block contains the
following information:

Byte Offset Contents

0 Terminal configuration word 1 (The bit definitions are
the same as those for the MTGET request.)

2 Terminal configuration word 2 (The bit definitions are
the same as those for the .MTGET request.)

4 Character requiring fillers
5 Number of fillers
6 Carriage width (byte)

Programmed Request Description and Examples ~ 2-79

NOTE

The .MTSET request sets all of the parameters listed above.
The recommended procedure for using .MTSET is: (1) precede
it by an .MTGET request; (2) use BIS or BIC instructions to
set or clear bit fields (modify only the bits or bytes that you
intend to change); (3) issue the .MTSET request to replace the
previous terminal status with the updated status.

Note that if an error occurs, and the error code is not 1 or 4, the status block
will not have been modified.

Errors:
Code Explanation
1 Illegal unit number, lun not attached.
2 Nonexistent logical unit number.
3 Illegal request, function code out of range.
5 In the XM monitor, the status block address is not in valid user
virtual address space.
Example:

Refer to the example for the .MTATCH request.

2.52 .MTSTAT (Special Feature)

The .MTSTAT request returns multi-terminal system status information.

Macro Call: .MTSTAT area,addr

where:

area is the address of a three-word EMT block

addr is the address of an eight-word status block where multi-termi-
nal status information is returned. The status block contains the
following information:

Byte Offset Contents

0 Offset from the base of the resident monitor to
the first terminal control block (TCB)

2 Offset from the base of the resident monitor to
the terminal control block of the console termi-
nal for the program

4 The number of terminal control blocks built into
the system (1-17 decimal)

2-80 Programmed Request Description and Examples

Byte Offset Contents

6 The size of the terminal control block in bytes
10-17 Reserved

Request Format:

RO - area: 37 | 10

addr
0

Errors

Code Explanation

5 In XM, the status block address is not in valid user address
space.

Example:

Refer to the example for the .MTATCH request.

2.53 .MWAIT (FB and XM Only)

This request is similar to the .WAIT request. . MWAIT, however, suspends
execution of the job issuing the request until all messages sent to the other job
or requested from the other job have been received. It should be used prima-
rily in conjunction with the .RCVD or .SDAT modes of message handling,
where no action is taken when a message is completed.

Macro call: MWAIT

Request Format:

Rn_' 11 | n [
U= 11 | O |

Errors:
None.

Example:

+

+HMWAIT - This is an examrle in the use of the ,MWAIT reauest.
The examrle is actually two rrodramss 3 Rackdound Jdob

which sends messadess and 8 Foredground Job: which receives them.
NOTE: Each erodgram should be assembled and linked serarately,

. W e s e e

+TITLE MWAITF.MAC
+

Foreground Frogram ...

- e

+MCALL JRCVD,» .MWAIT» .FRINT» .EXIT

MWAITF: .RCVD $AREA» #MRUFF r #40. iReauest 3 message ur to 80 char.
H . iNo error rossible - 2lwaus a BG
¥ f H
i . illo some other Frocessing

Programmed Request Description and Examples 2-81

+PRINT
4
4
+MUAIT
187
RER
+FRINT
+PRINT
ER
FEXIT: LJEXIT
AREA: +BLKW
MBUFF! .BLKW

$FGJOR

.

MBUFF+2
FEXIT
$FNHSG
$MBUFF+2
MWAITF

S

41,

slike announcing FG active.,..
H
3

sWait for messade to arrive...
sNull messade?

iYes,..exit the rrodgram
$Announce we dot the messade...
jand echo it bachk

iLoos to get aznother one

iExit rrogram

FEMT Argument Rlock

jRuffer - Msdg length + 1

+WORD 0 iMake sure 80 char message ends ASCIZ
FGJOE? +ASCIZ /Hi - FG alive and well and waiting for 3 messade!/
FMSG3 +ASCIZ /Hew BG - Got uyour messade it readsi/

+END MWAITF

JTITLE MWAITE,MAC
+
Backdground Frogram - Send 3 ‘null’ messade to stor both rrodrams

+MCALL SDATy MWAIT, GTLINy JEXIT» .PRINT

iClear 1st word

iGet something to send to FG from TTY
+SDAT #AREA»#RUFF, $40. iSend inrut 35 messasge to FG

RCS 1% iBranch on error - No FG

+HWAIT iait for messade to be sent

MWAITE! CLR RUFF
+GTLIN #BUFF»#FROMT

18T RUFF iSent 2 null messade?
BNE MWAITE iNOos++loor to send another messade.
JEXIT iYes...exit Frosgram
1%¢ +FRINT #NOFG iNo FG !
JEXIT $Exit Frodram

AREA} +BLKW S SEMT Ardument Rlock

RUFF ¢ +BLKW 40, iUr to BO char messadge

FROMT! JASCII /Enter message to be sent to FG Job/<15x<123/x/<200>

NOFG? +ASCIZ /7No FG?/ ' .
+END MWAITE

2.54 .PRINT

2-82

The .PRINT request causes output to be printed at the console terminal. The
string to be printed can be terminated with either a null (0) byte or a 200 byte.
If the null (ASCIZ) format is used, the output is automatically followed by a
carriage return/line feed combination. If a 200 byte terminates the string, no
carriage return/line feed combination is generated.

'ontrol returns to the user program after all characters have been placed in
the output buffer.

When a foreground job is running and the job that is producing output
changes, a B> or F> appears. Any text following the message has been printed
by the job indicated (foreground or background) until another B> or F> is
printed.

When a system job prints a message to the terminal, the message is preceded
by logical-job-name.

If the foreground job issues a message using .PRINT, the message is printed
immediately, no matter what the state of the background job. Thus, for ur-
gent messages, the .PRINT request should be used (rather than .TTYOUT or
.TTOUTR). The .PRINT request forces a console switch and guarantees

printing of the input line. If a background job is doing a prompt and has
printed an asterisk but no carriage return/line feed combination, the console
belongs to the background and .TTYOUTs from the foreground are not
printed until a carriage return is typed to the background. The foreground job
can force its message through by doing a .PRINT instead of the .TTYOUT.

Macro Call: .PRINT addr
where:

addr is the address of the string to be printed
Errors:

None.
Example:

JTITLE FPRINT.MAC

i+
+PRINT - This is an examrle in the use of the .FRINT request.

The examrle merelw acests inrut from the console terminal and
echoes it back.

- e wr e w

+MCALL GTLIN».PRINT,.EXIT

START? GTLIN #BUFF,#PROMT iGet 3 line of inFPut from keuboard
TSTB BUFF iNothing entered?
BEQ 1s iBranch if nothing entered
+PRINT #BUFF iEcho the inrut back
CLRB BUFF $Clear first char of buffer
BR START i6o back for more
1% JEXIT $Exit eprodram on null ineut
BUFF ¢ +BLKW 41, i80 character buffer (ASCIZ for .PRINT)

PROMT? JASCII /Enter somethind/<12><13>/>/<200>
+END START

2.55 .PROTECT/.UNPROTECT (FB and XM Only)

.PROTECT

The .PROTECT request allows a job to obtain exclusive control of a vector
(two words) in the region 0-476. If the request is successful, it indicates that
the locations are not currently in use by another job or by the monitor. The
job then can place an interrupt address and priority into the protected loca-
tions and begin using the associated device.

Macro Call: .PROTECT area,addr
where:
area is the address of a three-word EMT argument block

addr is the address of the word pair to be protected

NOTE

The argument addr must be a multiple of four, and must be
less than 476 (octal). The two words at addr and addr+2 are
protected.

Programmed Request Description and Examples 2-83

2-84

Request Format:

RO - area: 31 | 0
addr
addr+2
Errors:
Code Explanation
0 Protect failure; locations already in use.

1 Address (addr) is

Example:

+TITLE FPROTEC.MAC

+FPROTECT / .UNFROTECT - This
and JUNPROTECT recuests.
vectors of 3 device while zan
a2 data transfer (in this case
When the rrodram is finisheds
use by another .ob.

L R e e

+MCALL
START! .DEVICE #AREA,#LIST
+PROTECT #AREA,%#300
BCS BUSY
i .
; .
JSR RS»DL11
«WORD 128.
+WORD BUFFR
; *
H .
FINIZ +UNFROTECT #AREA,#300
EXIT
BUSY! +PRINT #NOVEC
JEXIT
AREA?: +BLKW 3
LIST: + WORD 176500
+WORD 0
+WORD 0
BUFFR:
+REPT 8.
+ASCIZ /Hello DL11 ...
+ENDR
NOVEC: .ASCIZ
+END START
.UNPROTECT

/?Vector azlready rrotected?/ §

greater than 476 or is not a multiple of 4.

is an examrle in the use of the .PROTECT

The examrle illustrates how to rrotect the

inline interrurt service routine does
the device is a2 DL11 Seriazl Line Interface).
the vectors are unrrotected for rossible

+DEVICEy EXITy .FROTECT» .UNPROTECT s .FRINT

iSetur to disable DL1I1 interrurts on
3 +EXIT or "C~C

iProtect the DL11 vectors

tBranch if alreads rrotected

iSet ur data to transmit over DLI11
jUse DL11 xfer routine (see INTEN examrle)
fArguments...lord count

ibata buffer addr

iContinue Processing...

iesoeventually to exit rrosgram

iPrint error messade...
ithen exit

SEMT Argument bloch

sCSR of DL11

iStuff it with 707

iList terminator

iiatea to send over NL11

8 lines of 32 characters...
Are You There 77/

Error messade text

The .UNPROTECT request is the complement of the .PROTECT request. It
cancels any protected vectors in the 0 to 476 area. An attempt to unprotect a
vector that a job has not protected is ignored.

Macro Call:
where:

area

Programmed Request Description and Ex

.UNPROTECT area,addr

is the address of a two-word EMT argument block

amples

addr is the address of the protected vector pair that is going to be
canceled. The argument addr must be a multiple of four, and
must be less than 476 (octal)

Request Format:

RO - area: 31 | 1
addr

Krrors:

Code Explanation

1 Address (addr) is greater than 476 (octal) or is not a multiple of
four.

Example:

Refer to the example for the .PROTECT request.

2.56 .PURGE

The .PURGE request deactivates a channel without performing a .HRESET,
.SRESET, .SAVESTATUS, or .CLOSE request. It frees a channel without
taking any other action. If a tentative file has been entered on the channel, it
is discarded. An attempt to purge an inactive channel is ignored.

NOTE

Do not purge channel 17 (octal) if your program is overlaid
because overlays are read on that channel.

Macro Call: .PURGE chan
where:

chan is the number (octal) of the channel to be freed
Request Format:

RO:| 3 Ichanl

Errors:

None.

Example:
JTITLE PURGE.MAC

it
3 .PURGE - This is an examele in the use of the FURGE reauest.
$ This examrle merdes 2-é files into 1 files, making use of (SAVESTATUS

4 and REOFEN to read all inrut files on one channel. The .PURGE reauest
i is used to free the input channel sfter each transfer.

+MCALL JCSIGEN».SAVESTATUS,.REOFEN,.CLOSE,». EXIT
+MCALL LREADW, .WRITWs.PRINT:.PURGE

Programmed Request Description and Examples ~ 2-85

ERREYT = 52 JError bute loc in SYSCOM

START?! .CSIGEN #DSFACE,#DEFEXT sGet file srecsroren filesrload handlers

MOV #31R4 R4 = 1st inrut channel
Moy #AREASR3 sR3 => EMT Arsument block
MOV #SAVRLKsRS iRS =>» Channel savestatus blocks
1% +SAVEST R3sR4sRS iSave channel status
ECS 2% iBranch if channel never orened
ADD #12/RS iAddust RS to roint to next status block
INC R4 iBumr R4 to = next inrut channel
CMP ¥#8.+R4 ilone 311 inrPut channels?
EGE 1% iBranch if not
2% MOV #SAVBLK RS iRS =3 to 1st saved channel status
BEQ 7% iBranch if no inrut files
4% +REOFEN R3:#3yR5 iRe-oren inrput channel on Ch 3
CLR RLK iStart reading with block 0
5k 3¢ +READW R3s#3,#BUFFR,#2546.,sBLK iRead s block
RCC 6% $Branch if no error
TSTR @#ERRRBYT iCheck if error = EOF
BNE 8% iBranch if not EOF
+FURGE #3 iClear inrput channel for re-use
ADD #12sRS iFoint RS to next saved ch status
TST @RS $Any more inrut channels?
BNE 43 sBRranch if uwes
+.CLOSE #%0 iWe’re done...close outrput channel
+PRINT #DONE {Announce merde comrlete
+JEXIT tExit rrogram
6% +WRITW R3:#0,#BUFFR:#2546.sWBLK jWrite block .Just read
INC WBLK FRume to next outrput block
INC BLK isame for inrFut blk (doesn’t affect C bit)
ECC 5S¢ iBrarnch if no error on write
Moy $WERR RO iWrite error - RO = messade
BR ?% fmersge. ..
7%: Mov ¥NOINFsRO iRO =% No inrput files messade
ER 7% imerge...
8% MoV $RERRRO #RO =+ Read error messade
% +PRINT iRerort error
+EXIT ithen exit rrodgram
AREA: +BLKW S FEMT Ardument block
BLK: +WORD 0 iCurrent read block
WRLK +WORD 0 iCurrent write blcck
SAVRLK? ! . RLKW 30. t8aved channel status area
DEFEXT: .WORD 0:05050 iNo default extensions for CSIGEN
NOINF?: +ASCIZ /7No inrut files?/ iError messades
WERR? +ASCIZ /7Write Error?/

RERR ¢ +ASBCIZ /7Read Error?/
DONE ¢ +ASCIZ /I-0 Transfer Comrleted/

+EVEN

BUFFR! JELKW 256, $1/0 buffer

DSFACE = iHandlers start here...
+END START

2.57 .QELDF (Device Handlers Only)

The .QELDF macro symbolically defines queue element offsets for the speci-
fied set of system generation special features. The queue element offsets gen-
erated by this macro are as follows:

Q.LINK=0 (Link to next queue element)
Q.CSW=2, (Pointer to channel status word)
Q.BLKN=4. (Physical block number)
Q.FUNC=6. (Special function code)

Q. INUM=7, (Job number)

Q.UNIT=7. (Device unit number)

Q.BUFF="010 (User virtual memory buffer address)

2-86 Programmed Request Description and Examples

Q.WCNT="012 (Word count)
Q.COMP="014 (Completion routine code)

Since the handler usually deals with queue element offsets relative to
Q.BLKN, the .QELDF macro also defines the following symbolic offsets:

QSLINK=-4
Q3CSW=-2
Q$BLKN=0
Q3FUNC=2
Q3$JNUM=3
Q3UNIT=3
Q$BUFF=4
QSWCNT=6
Q3COMP="010

For SJ and FB systems:
Q.ELGH="016 (End of queue element; used to find length)
For XM systems:

Q.PAR="016 (PART1 relocation bias)
Q$PAR="012
Q.ELGH="024 (End of queue element; used to find length)

NOTE

Be sure to invoke .QELDF after you specify the system condi-
tional defaults, because the queue element offsets are different
if you select memory management by setting MMGS$T = 1. The
.DRDEF macro automatically invokes .QELDF in a handler.

Example:

Refer to the example following the description of .DRAST.

2.58 .QSET

The .QSET request allows additional entries to be made to the RT-11 I/O
queue. A general rule to follow is that each program should contain one more
queue element than the total number of I/O requests that will be active
simultaneously on different channels. Timing and message requests such as
.MRKT, .TWAIT, .SDAT/C, and .RCVD/C also require queue elements and
must be considered when allocating queue elements for a program. Note that
if synchronous I/O is done (such as .READW/ WRITW) and no timing re-
quests are done, no additional queue elements need be allocated.

Each time .QSET is called, a specified contiguous area of memory is divided
into seven-word segments (10-word [decimal] segments for the XM monitor)
and is added to the queue for that job. .QSET can be called as many times as
required. The queue set up by multiple .QSET requests is a linked list. Thus,

.QSET need not be called with strictly contiguous arguments. The space used

ITLILS 1V

Programmed Request Description and Examples ~ 2-87

for the new elements is allocated from your program space. Care must be
taken so that the program in no way alters the elements once they are set up.
The .SRESET and .HRESET requests discard all user-defined queue ele-
ments; therefore any previous .QSET requests must be reissued. However,
you must not specify the same space in two separate .QSET requests if there
has been no intervening .SRESET or .HRESET request.

Care should also be taken to allocate sufficient memory for the number of
queue elements requested. The elements in the queue are altered asynchro-
nously by the monitor; if enough space is not allocated, destructive references
occur in an unexpected area of memory. The monitor returns the address of
the first unused word beyond the queue elements. Other restrictions on the
placement of queue elements are that the USR must not swap over them and
they must not be in an overlay region. For jobs that run under the XM
monitor, queue elements must be allocated in the lower 28K words of mem-
ory, since they must be accessible in kernel mapping. In addition, the ele-
ments must not be in the virtual address space mapped by kernel PARI,
specifically the area from 20000 to 37776(octal).

NOTE

Programs that are to run in both FB and XM environments
should allocate 10 (decimal) words for each queue element.
Alternatively, a program can specify the start of a large area
and use the returned value in RO as the top of the queue ele-
ment.

The following programmed requests require queue elements:

TWAIT RCVDW
MRKT .WRITE
.READ WRITC
.READC .WRITW
.READW .SDAT
.RCVD .SDATC
.RCVDC .SDATW

Macro Call: .QSET addr,len
where:
addr is the address at which the new elements are to start

len is the number of entries to be added. In the SJ and FB monitor,
each queue entry is seven words long; hence the space set aside
for the queue should be len*7 words. In the XM monitor, 10
(decimal) words per queue element are required

On completion, RO contains the address of the first word beyond the aliocated
queue elements.

Errors:

In an extended memory environment, an attempt to violate the PARI
restriction results in a ?MON-F-addr error, which can be intercepted
with a .SERR programmed request.

2-88 Programmed Request Description and Examples

Example:

»TITLE QSET.MAC
+
«QSET - This is an examrle in the use of the .GSET recuest.
The examrle illustrates a user imrlemented °Timed Read' to cancel an
inrFut reeguest after 3 srecified time interval.

ar e ar e e

+MCALL JMRKTs TTINRs .EXITy FRINT,.TTYDOUT» .CHKT» . TWAIT,.QSET

LF = 12 iline Feed
JSW = 44 jJob Status Word location
TCRITS 100 jReturn C-bit bit in JSW

TTSFC$ = 10000 5TTY Srecial Mode bit in JSW

START: QSET #XQUE s ¥1 iNeed an extra G-Elem for this
1% MoV $FROMT» RO iMainline - RO =* Fromrt
MOV $RUFFRsR1 $R1 =» Inrut buffer
CALL TREAD$ illo 2 "timed read"
RCS 2% iC-bit set = Timed out
+PRINT #LINE i*Frocess" data...
BRR i¢ iGo back for more
2% +FRINT #TIMOUT tRead timed out - could Frocess
JEXIT jrartial data but we’ll Just exit
iX TREAD$ - "Timed Read" Subroutine b
%X Inrput? RO => Promrt String / RO = 0 if no Fromri X
X R1 =» Ineut Buffer X
$% Outrut! Buffer contains inrut charss if anwy terminated 4
ik by 2 null char: C-Bit set if timed out *
TREADS$: TST RO iSee if we have to rromrt
BER 13 tBranch if no...
+PRINT i0uterut rPromrt
142 CLR TRYT iClear time-out flasg
+MRKT $TAREA#TIME $TOUT s #1 $Issue a +MRKT for 10 sec
RIS $TCRITS$,2#J5H $Set C-Eit bit in JSW (for F/R)
CLRE @Rr1 iStart with "emrts® buffer
TTIN? +TWAIT #AREA tWait so we don’t lock out EG
+TTINR ilook for 3 character
BRIT #1y(FCO+ iTimed out?
TBYTS +WORD Q iTime-out flas=
BNE 2% sBranch if ues
BRCS TTIN $Branch if infrut not comrlete
MOVE ROs(R1)+ iXfer 1st character
+CMKT #TAREAs#0 iCancel .MRKT
2%3 RIS ¥TTSFCSs2%JSH $Turn on TT: Srecial mode
3% s TTINR tFlush TT! ring buffer
MOVE ROy (R1)+ srputting characters in user buffer
BCC 33 iIf more chary g0 det ‘em
CLRE -(R1) iTerminate inrut with null bute
RIC $TCRIT$!TTSFCS$»2FJSW iClear bits in JSW
ROR TEYT $Set carry if timed out
RETURN iReturn to caller
TOUT: INC TEYT
RETURN iLeave comrletion code

XQuE: +BLKW 10,
AREA: +WORD 0 WAIT
TAREA? BLKW 4

$Extra G-Element
SEMT Arsument block for TWAIT
JEMT Arsument block for MRKT
TIME! +WORD 0600, sTime-out interval (10 sec)
WAIT: +WORD 0s1 $1/60 sec wait between TTINRs
LINE? LASCII /Not in stock - Fart # / illummg resronse
RUFFR? +BLKE 81. iUser inrsut buffer
FROMT: +ASCIZ /Enter Fart # >/<200> sFromet
TIMOUT: .ASCIZ /Tiwmed read exrired!/ iToo bad message

JENI START

2.59 .RCTRLO

The .RCTRLO request makes sure that the console terminal is able to print
by resetting the CTRL/O switch for the terminal. A CTRL/O typed while

Programmed Request Description and Examples 2-89

output is directed to the console terminal inhibits the output from printing
until either another CTRL/O is struck or until the program resets the
CTRL/O switch. Therefore, a program with a message that must appear at
the console should reset the CTRL/O switch.

Macro Call: .RCTRLO
Errors:
None.

Example:

+TITLE RCTRLO.MAC
+

+RCTRLO - This is an examrle in the use of the .RCTRLO recuest.

In this examrles the user srodram first calls the CSI in deneral moder
ithen processes the command., When finished, it returns to the CSI for
ianother command line. To make sure that the =romrting ‘%X’ tured bu
ithe CSI is not inhibited by 2 CTRL-0 in effect from the last oreration:
iterminal outrut is assured via the .RCTRLO reauest srior to the
§CSI call.

a
R

- . .

+MCALL RCTRLO» .CSIGENs EXIT

START:! +RCTRLO iMake sure TT! outrut is enabled
+CSIGEN #DSFACEs#DEXTs#0 3Issue 2 ,CSIGEN recquest to get command
$(CSI will rromet with “X%x’)

§ . iProcess the command...
§ . i '
§ . §
JMP START iGet another command...
DEXT: + WORD 0s0:0+0 iNo default entensions
DSPACE: = , $Seace for handlers starts here

+END START

2.60 .RCVD/.RCVDC/.RCVDW (FB and XM Only)

2-90

The .RCVD (receive data) request allows a job to read messages or data sent
by another job in an FB environment.

There are three forms of the .RCVD request, and they are used with the
.SDAT (send data) request. The send data-receive data request combination
provides a general data/message transfer system for communication between
a foreground and a background job. .RCVD requests can be thought of as
.READ requests where data transfer is not from a peripheral device but from
the other job in the system. Additional queue elements should be allocated for
buffered I/0 operations in .RCVD and .RCVDC requests (see the .QSET
request). Under an FB monitor with the system job feature, .RCVD/C/W
requests and .SDAT/C/W requests remain valid for sending messages between
background and foreground jobs in addition to the general read and write
capability available to all jobs.

.RCVD
This request is used to receive data and continue execution. The request is
posted and the issuing job continues execution. When the job needs to have

Programmed Request Deseription and Examples

i = 1

the transmitted message, an MWAIT should be executed. This causes the job
to be suspended until the message has been received.

Macro Call: .RCVD area,buf,went

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message length/mes-
sage data is to be placed

went is the number of words to be transferred
Request Format:

RO - area: 26 | 0
reserved
buf
went
1

Upon completion of the .RCVD, the first word of the message buffer contains
the number of words transmitted. Thus, the space allocated for the message
should always be at least one word larger than the actual message size ex-
pected. If the sending job attempts to send more words than the receiver
specified in the went argument of the .RCVD request, the first word of the
buffer will contain the number of words that the sender specified, but only
went words will be actually transferred. The rest of the sender’s message will
be ignored.

The word count is a variable number, and as such, the .SDAT/.RCVD combi-
nation can be used to transmit a few words or entire buffers. The .RCVD
operation is only complete when a .SDAT is issued from the other job.

Programs using .RCVD/.SDAT must be carefully designed to either aiways
transmit/receive data in a fixed format or to have the capability of handling
variable formats. Messages are all processed in first-in first-out order. Thus,
the receiver must be certain it is receiving the message it actually wants.
Message handling in the FB monitor does not check for a word count of zero
before queuing a send or receive data request. Since RT-11 distinguishes a
send from a receive by complementing the word count, a .SDAT of zero words
is treated as a .RCVD of zero words. Avoid a word count of zero at all times
when using a .RCVD request.

Errors:
Code Explanation
0 No other job exists in the system.
Example:

Refer to the example for the .SDAT request.

Programmed Request Description and Examples 2-91

2-9

D)

&

.RCVDC

The .RCVDC request receives data and enters a completion routine when the
message is received. The .RCVDC request is posted and the issuing job con-
tinues to execute. When the other job sends a message, the completion routine
specified is entered.

Macro Call: .RCVDC area,buf,went,crtn

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message length/mes-
sage data is to be placed

went s the number of words to be transmitted
crtn is the address of a completion routine to be entered

As in the .RCVD request, word 0 of the buffer contains the number of words
transmitted when the transfer is complete.

Request Format:

RO - area: 26 | 0
reserved
buf
went
crtn
Errors:
Code Explanation
0 No other job exists in the system.
Example:

+TITLE RCVDC.MAC

-

+«RCVDC - This is an examrle in the use of the ,RCVDC recuest. The examrle
is 8 simulation of 3 mainline Foresground rrogram which is currently
susrended waitindg for 2 messade from the Rackground: but which needs

to close a3 file (rerhars orened bw 3 .ENTER 7) before aborting from
CTRL-C Bction. A comrletion routine reriodically insrects the CTRL-C
status word and resumes the mainline if double CTRL-C is entered.

NOTE: This examrle MUST be rum 2s a3 FG Job under an FB monitor.

s v we e We W W e e

+MCALL .SCCAs .RCVDC, .EXITs .PRINT, .MRKT
+MCALL ,QSET,.SPNDs.RSUM

START?! JOSET $QELEM s #1 iAllocate another G-Element
+SCCA $#MAREA» #SCCA $Inhibit "C7C action by monitar
142 CaLL CWATCH iStart "watchdog® comrletion rtre
+RCVUDC #MAREA,#MEUFFs#40.s#MESG iLook for 3 messade
§ . iNo errors - there’s alwaus BG
H . i0Other rrocessing here..,
¥ + ’
+PRINT #SLEEP $Announce we’re doing to susrend
+SPND tSusrend to wait for messade
TST SCCA iWe’ve been .RSUMed..."C"C hit??
BNE CLOSE iBranch if yes
[. jotherwise a3ssume messade came in...

Programmed Request Description and Examples

<{process messagse here>
.

s
y
H
BR is iLoor.s.

CWATCH: TST SCCA iCheck if "C"C entered...
BEQ MARK sBranch if no

MESG: +RSUN iYes...wake up the mainline
RETURN sthen leave comrletion code

MARK? +MRKT $CAREA»#TIME s #CWATCHs#1 3Schedule to run adain in 10 sec.
RETURN sthen leave comrletion code

CLOSE? PRINT #ABORT jAnnounce we’re aborting

. jrroceed with "orderlu® short
<0utrut file(s) closed here>

+

v s e er o

-
i

-

EXI Exit the rrodram

QELEM: LBLKW 7 iExtra Q-Element

MBUFF?: BLKW 41, iMessade buffer

MAREA! BLKW 3 JEMT Argument blocks
CAREA? .BLKW 4 H

TIME? +HWORD 01600, $Time out in 10 seconds
SCCA: +WORD 0] i7C™C Status wordg

ARORT!: .ASCIZ /7! Abort Acknowleddged...Closing Outrut File(s) 17/
SLEEF? +ASCIZ /! Mainline Susrending !/

JEND START

.RCVDW

RCVDW is used to receive data and wait. A message request is posted and
the job issuing the request is suspended until the other job sends a message to
the issuing job. When the issuing job runs again, the message has been
received, and word 0 of the buffer indicates the number of words transmitted.

Macro Call: .RCVDW area,buf,went
where:
area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message length/mes-
sage data is to be placed

went is the number of words to be transmitted

Request Format:

RO - area: 26 | 0
reserved
buf
wcent
0
Errors:
Code Explanation
0 No other job exists in the system
Example:

Refer to the example for the .SDATW request.

Programmed Request Description and Examples ~ 2-93

2.61

.RDBBK (XM Only)

The .RDBBK macro defines symbols for the region definition block and
reserves space for it. The .RDBBK automatically invokes .RDBDF.

Macro Call: .RDBBK rgsiz
where:

rgsiz is the size of the dynamic region needed (expressed in 32-word
units)

Example:

See Chapter 4 of the RT-11 Software Support Manual for an example
that uses the .RDBBK macro and a detailed description of the extended
memory feature.

2.62 .RDBDF (SM Only)

The .RDBDF macro defines the symbolic offset names for the region defini-
tion block and the names for the region status word bit patterns. In addition,
this macro also defines the length of the region definition block by setting up
the following symbol:

R.GLGH =6
The .RDBDF macro does not reserve space for the region definition block.
Macro Call: .RDBDF
The .RDBDF macro expands as follows:

R.GID =0
R.GSIZ =2
R.GSTS =14
R.GLGH =6
RS.CRR = 100000
RS.UNM = 40000

RS.NAL = 20000

2.63 .READ/.READC/.READW

2-94

Read operations for the three modes of RT-11 I/O are done using the .READ,
.READC, and READW programmed requests.

In the case of .READ and .READC, additional queue elements should be
allocated for buffered I/O operations (see the .QSET request).

Upon return from any .READ, .READC, or .READW programmed request,
RO contains the number of words requested if the read is from a sequential-
access device (for example, paper tape). If the read is from a random-access

Programmed Request Description and Examples

device (disk or DECtape), RO contains the actual number of words that will be
read (.READ or .READC) or have been read ((READW). This number is less
than the requested word count if an attempt is made to read past end-of-file,
but a partial transfer of one or more blocks is possible. In the case of a partial
transfer, no error is indicated if a read request is shortened. Therefore, a
program should always use the returned word count as the number of words
available.

For example, suppose a file is five blocks long (it has block numbers 0 to 4)
and a request is issued to read 512 words (decimal), starting at block 4. Since
512 words is two blocks, and block 4 is the last block of the file, this is an
attempt to read past end-of-file. The monitor detects this and shortens the
request to 256 words (decimal). On return from the request, RO contains 256,
indicating that a partial transfer occurred. Also, since the request is shortened
to an exact number of blocks, a request for 256 words either succeeds or fails,
but cannot be shortened.

An error is reported if a read is attempted starting with a block number that is
beyond the end-of-file. The carry bit is set, and error code 0 appears in byte
52. No data is transferred in this case, and RO contains a zero.

.READ

The .READ request transfers to memory a specified number of words from the
device associated with the specified channel. The channel is associated with
the device when a .LOOKUP or .ENTER request is executed. Control returns
to the user program immediately after the .READ is initiated, possibly before
the transfer is completed. No special action is taken by the monitor when the
transfer is completed.

Macro Call: .READ area,chan,buf,went,blk
where: |

area is the address of a five-word EMT argument block

o

chan is a channel number in the range 0-377 (octal)
buf is the address of the buffer to receive the data read
went is the number of words to be read

blk is the block number to be read. For a file-structured .LOOKUP,
the block number is relative to the start of the file. For a non-
file-structured .LOOKUP, the block number is the absolute
block number on the device. Note that the first block of a file or
device is block number 0. The user program normally updates
blk before it is used again. If input is from TT: and blk=0, TT:
issues an uparrow (") prompt (This is true for all .READ
requests.)

Notes:

1. .READ and .READC requests instruct the monitor to do a read from the
device by queuing a request for the device and immediately returning
control to your program.

Programmed Request Description and Examples 2-95

2-96

2.

.READ and .READC requests execute as soon as all previous I/O requests
to the device handlers have been completed. Note that a read from RK1:
must wait for a previous read to RKO: to complete. This is a hardware
restriction because the controller looks at all I/O operations sequentially.

Read errors are returned from the .READ and .READC or the .WAIT
request. Errors can occur on the read or on the wait, but only one error is
returned. Therefore, the program must check for an error when the read is
complete (.READ/BCS) and after the wait (WAIT/BCS). The wait re-
quest returns an error, but it does not indicate which read caused the
error.

Errors reported on the return from the read request are as follows:

a. Nonexistent device/unit
b. Nonexistent block

c. In general, errors that do not require data transfers but are controller
errors or EOF errors

During the .READ and .READC requests, the monitor keeps track of
errors in the channel status word. If an error occurs before the monitor can
return to the caller, the error is reported on the return from the read
request with the carry bit set and the error value in RO. If the error occurs
after return from the read request, the error is reported on return from the
next .WAIT, or the next .READ/ READC. Some errors can be returned
from .READ/.READC requests immediately, before any I/O operation
takes place. One condition that causes an immediate error return is an
attempt to read beyond end-of-file.

If .READ/C/W requests are used to receive messages under a system job
monitor, the buffer must be one word longer than the number of words
expected to be read. Upon completion of the data transfer, the first word
of the buffer will contain a value equal to the number of words actually
transferred (as for . RCVD/C/W),

Request Format:

RO - area: 10 | chan
blk

buf
went

1

When the user program needs to access the data read on the specified chan-
nel, a .WAIT request should be issued as a check that the data has been read
completely. If an error occurred during the transfer, the .WAIT request indi-
cates the error.

Programmed Request Description and Examples

Errors:

Code

Explanation

0 Attempt to read past end-of-file.

1 Hard error occurred on channel.
2 Channel is not open.
Example:
LTITLE READ.HMAC
+
.READ /7 .WRITE - This is an examrle in the use of the READI / .WRITE

- ws Wb ws e s as es eb W

START?

1%

2%

AREA??
IOBLK:

BUFF?
DEFEXT?:
DONE ¢
MESSG!
WERR:
RERR?

DSFACE

PTOLST M

file srecsy

+MCALL
+MCALL

ERRBYT

+ENABL
+CSIGEN
MOV
CLR
+READ
BCS

§

BIT
BNE
+PRINT
’

+WAIT
BCS
+WRITE
BCS
INC

H

.

’

JHAIT
BCC
MOV
+PRINT
BR

MOV

BR
TSTR
BNE
+PRINT
+CLOSE
+SRESET
JEXIT
+WORD
+WORD
+WORD
+WORD
+ WORD
+BLKW
+WORD
+ASCIZ
+ASCIZ
+ASCIZ
+ASCIZ
+EVEN

= e

+END

initistes inrut via
makes sure inrut has comrleted vis the
the block Just read. Another .WAIT is issued before the next read

is issued to make sure the eprevious write has finished. This exanmrle
is another sindgle file cory Frodrams
load the required handlers and oren the files.

requests. The example demonstrates asscnhronous I/0 where 3 mainline
+READ recuests» does some other rrocessing

+WAIT reauests then outeuts

utilizing .CSIBGEN to ineput the

+READs JWRITEs .CLOSEs .FRINT
L,CSIGENs EXITs WAIT,.SRESET

= 52

LSB
$DSPACE » #DEFEXT
#AREARS

IDBLK

RS, #3

6%

#1+I0BLK
23
$MESSE
#3

S¢

RSy %0

3

I0OBLK

¥0

1s
$WERRsRO

7%
#RERR»RO
44
PFERRBYT
o

$DONE

#0

0

0

BUFF

256,

0

256,

0r090:0

/1-0 Transfer Comrlete/

sError Bute location in SYSCOM

$Enable local swmbol block

jUse CSIGEN to det handlerss files
RS => EMT Ardument list

iStart reads with Rlock #0

iRead a block...

iBranch on error

iThen simulate

isome other

imeanindful (?)

fFrocess. ..

iDid read finish OK?

$Branch if not (must be hard error!)
iNow write the block Just read

iBranch on error

jBume Block #

$We could do some more Processing here

jWait for write to finish
3Branch if write was successful
$RO => Write error mss
iRerort error

jMerge to exit prodram

iRO => Read error mssg
$Branch to rerort error
iRead error...EOF7

$}Branch if not
iYes...announce comrletion
iMake output file rermanent
iDismiss fetched handlers
sthen exit rrodram

SEMT Area block

iBlock #»

jBuffer addr & word count
jalready fixed in block...

y

$1/0 buffer

iNo default extensions for CSIGEN
iMessages. .

£12><15>/< Simulating Mainline Frocessing >/

/?Write Error?/
/?Read Error?/

START

jHandlers may be loaded startindg here

Programmed Request Description and Examples — 2-97

2-98

.READC

The .READC request transfers a specified number of words from the indicated
channel to memory. Control returns to the user program immediately after
the .READC is initiated. Attempting to read past end-of-file also causes an
immediate return, in this case with the carry bit set and the error byte set to
0. Execution of the user program continues until the .READC is complete,
then control passes to the routine specified in the request. When an RTS PC is
executed in the completion routine, control returns to the user program.

Macro Call: .READC area,chan,buf,went,crtn,blk

where:

area is the address of a five-word EMT argument block
chan is a channel number in the range 0-377 (octal)

buf is the address of the buffer to receive the data read
went is the number of words to be read

crtn is the address of the user’s completion routine. The address of
the completion routine must be above 500 (octal)

blk is the block number to be read. For a file-structured .LOOKUP,
the block number is relative to the start of the file. For a non-
file-structured .LOOKUP, the block number is the absolute
block number on the device. The user program normally updates
blk before it is used again

When a completion routine is called, error or end-of-file information for a
channel is not cleared. The next .WAIT or .READ/.READC on the channel
(from either mainline code or a completion routine) produces an immediate
return with the C bit set and the error code in byte 52. The completion routine
will never be entered if the .READC request returns an error.

Request Format:

RO - area: 10 chan
blk
buf
went
crtn

When a .READC completion routine is entered, the following conditions are
true:

1. RO contains the contents of the channel status word for the opera-
tion. If bit 0 of RO is set, a hardware error occurred during the
transfer; consequently, the data may not be reliable. The end-of-file
bit may be set.

2. R1 contains the channel number of the operation. This is useful
when the same completion routine is to be used for several different
transfers.

Programmed Request Description and Examples

Errors:

Cod

On a file-structured transfer, a shortened read is reported when the
.READC request is returned, not when the completion routine is
called.

Registers RO and R1 can be used by the routine, but all other regis-
ters must be saved and restored. Data cannot be passed between the
main program and completion routines in any register or on the
stack.

a
)]
4
k=
ot
-]
=3
-]
[
@
=3

0 Attempt to read past end-of-file; no data was read.
1 Hard error occurred on channel.
2

Channel is not open.

Example:

-+

while

> e s s e es W

i

START:

143

WERR?

RERR?

GRYE!?

WRIONE$

IOXFER:?

+TITLE FREADC.MAC

+READC / JWRITC - This is an examrle in the use of the +REAIC / JWRITC
recuests, The examrle demonstrates event-driven I/0 where a3 mainline
rrogram initistes 2 file transfer and comeletion routines continue it

the mainline rroceeds with other #rocesses. The examrle is ancther

single file cors rrofgrame utilizing (CSIGEN to inrut the file srecss lozd
the reguired handlers znd oren the filec.

+MCALL JREAIC: .WRITC».CLOSE, .FRINT, .CSIGEN,. .EXIT,» WAIT,»,SRESET

ERREYT = §2 sError Bute location inm SYSCOM
+ENAEL LSEH

+CSIGEN #DSFACEs#DEFEXT jUse CSIGEN to dget handlers, files
CALL IOXFER +Start I/0

JPRINT #MESSG. sNow simulate other mainline rrocess
MoV $#-1sR5 5

nEC RS 3 (kill some time)

ENE 1% H

TSTR EOF s0id I/0 comrlete?

REQ 1% iNo...do some more mainline work
INCE EGF iCheck for read/write error

BREQ WERR sEOF = 0 = Write error

BLT RERR $EOF < 0 = Read error

.CLOSE #%0 FEOF > 0 = End of File

MoV $00ONESRO iR0 =3 We’re done messg

RR GRYE iMerde to exit rrodram

MOV $WRERR RO iSet ur error messages heres..

ER GRBYE

MOV #RIERR RO

+FRINT iFrint messade

+SRESET ilismiss fetched handlers

+JEXIT sExit program

+WAIT $0 jWrite comel rtne..,write successful?
ECS 3% $tBranch if not...

+READRC #AREA#3rss%4% iQueue urF a3 read

ECC 7% sBranch if ok...

TSTR C#ERRRYT fError - is it EOF?

BEQ 6% fBranch if wes

DECE EOF iUse EOF Flasg to indicate hard error
LECER EOF JEQOF = -2 Read err / = -1 Write err
RETURN iLeave comrletion code

WAIT $3 iComrl rtrne #¥2 - was read ok?

BCS 24 iBranch if not

WWRITC #AREA:¥#0, sy #WRDONE tQueue ur 3 write...

ECS 3% iBranch if error

INC ELOK iBume block # for next read

RETURN iLeave Comrletion code...

INCR EOF iSet EOF flas

Programmed Request Description and Examples 2-99

7%
AREA: !
BLOK?

BUFF?
NEFEXT?
OONE ¢
MESSG!
WRERR:
RIERRS
EOF:

DSFACE

L T R

+MCALL
+MCALL
HNGUF$
TTSFC%
TTLCS

AS. INF
M. TSTS
M.TSTUW
M.+ NLUN

MTXAMF

10%:

3042

LOOF:

10¢:

RETURN
+WORD
+WORD
+WORD
+WORD
+WORD
+ BLKW
+WORD
+ASCIZ
+ASCIZ
+ASCIZ
+ASCIZ
+BYTE
+EVEN

+END

terminsls on

ithen return

0 SEMT Area block

0 iRlock #»

RUFF tBuffer addr & word count

256, izlready fixed in block...

o] fComeletion rtne addr

256, i1/0 buffer

0:010:0 iNo default extensions for CSIGEN

/1-0 Transfer Comrlete/ iMecsades...
/< Simulating Mzinline Frocessing &/
/?Write Error?/

/TResd Error?/

Q $EOF flag

jHandlers may be loaded starting here
START

MTXAMF.MAC - The following is an examrle rrogram that
demonstrztes the use of all the Hulti-terminasl
srogrammed reauests. The srogrem a2ttaches 211 the

3 given s<stems then srocedes with an
ineut/echo exercise on 311 attsched terminels until
double CTRL/C is sent to it.

+MTATCHy (MTFRNT» . MTGET » . MTINy ,HTOUT
CFRINT \MTRCTOs MTSETy MTSTAT» JEXIT

: 4000
10000
40000
40000
0

7

4

+MTSTAT
MOV

BEQ

CLR

KOV
+MTATCH
ECC
CLRB

ER

MOVE
MOV

ASL

ASL

ASL

ADD
+MTGET
RIS

JHTSET
RITE
ENE
«MTRCTO
+MTFRNT
ADD

INC

CMF

ELO

CLR
MOV
TSTR
REQ
BIT
REQ
+MTIN
BCS
+MTOUT

iTerminal offline bit
3Srecial mode bit
iLower case mode bit
#Inrut availsble bit
iTerminal status word
iTerminal state bute
3% of LUNs wordg

iStart of rFrogram

FMTAYEMSTAT iGet MTTY status
MSTATH+M.LUNsR4 R4 = ¥ LUNs

MERFR iNorne? Not MTTY!!!

R1 $Initisl LUN = 0
$#ASTR2 sR2 -* AST word array
#MTAPR2yR1 jAattach terminal

20% iSuccess!

TAI(R1) iSet attach failed

30¢ iFroceed with next LUN
$#1,TAI(RL) jAttach successful
R1+R3 iCory LUN

R3 fMultirly by 8 for offset
R3 +1To the terminal status
R3 tblock...

$#TSRyR3 #R3 ~> LUN‘s TSE
$#MTA'R3sR1 iGet LUN’s status

$TTSFCH$+TTLCS$yM. TSTS(R3) $Set srecial
imode and lower case

FHTAIRIIRIL iSet LUN's sletus
$HNGUF$/400yM. TSTW(R3) 3$0nline?

30% iNorel

#MTA-R1 jReset CTRL/O0
#MTA,#HELLOYR1 $S3w hellos..

$2yR2 iR2 -» Next AST word

R1 iGet next LUN

R1sR4 iflone?

10% iNores g0 attach another

sInFut & echo forever

suntil "C7Csus

R1 #Imitial LUN = O
#ASTsR2 iR2 ~> AST words
TAI(R1) iTerminal attached?
20¢ iNOFE«os

$A4S5,INF(R2) FANY inrFut?

20¢ iNore, ..,
#MTA#MTCHARR1,#1 #InrFut 3 character
ERR " §0oors! Error on inrut

#MTAs#MTCHAR:R1:s#1 JjEcho the character

D
a9
]
2
B
2]
<
(o]
o)
D
fin}
for
D
0
=
v
D
R
[}
=,
kol
g
[}
>
w
=
(o9
o]
i
fav)
3
=
D
wmn

RCS ERR i0oors! Error on outrut

20%; ADD $#2/R2 iFoint to next AST word
INC R1 fGet next LUN
CHF R1:R4 illone them 2117
ELD 10% iNos so check another
ER LOGF iYess rereat (forever!)
ERR? JFRINT #UNEXF iUnexrected error...
JEXIT iFrint messadge & exiti
MERR ! +PRINT #MOMTTY iNot multi-terminal
JEXIT iFrint messade & exit
AST? +BLKW 16, sAsznchronous Terminal
iStatus Words (1/LUN)
TAI: +BRLKEB 14, fTerminal attached list
il Bete rer LUN...
70 = Not asttatched
MSTAT: BLKW 8. sMTTY status block
TSE? +BLKW 16.%4., FTERMINAL STATUS BLOCKS 1é6. ELOCKS OF 4 WORDS
MTat +BLKW 4 FEMT 2rgument block
MTCHAR? .BYTE 0 jCharacter stored here

HELLO! +ASCIZ /Hello! Charascters tuyred will be echoed/
NOMTTY?: +ASCIZ /7TNot Multi-terminszl sustem?/
UNEXF ¢ +ASCIZ /?Unexrected errov...srodram aborting?/

«END MTXAMF 5Erd of srodram
.READW
The .READW request transfers a specified number of words from the indi-

cated channel to memory. When the .READW is complete and/or an error is
detected, control returns to the user program.

Macro Call: .READW area,chan,buf,went,blk

where:

area is the address of a five-word EMT argument block
chan is a channel number in the range 0-377 (octal)
buf is the address of the buffer to receive the data read

went is the number of words to be read; each .READ request can
transfer a maximum of 32K words

blk is the block number to be read. For a file-structured .LOOKUP,
the block number is relative to the start of the file. For a non-
file-structured .LOOKUP, the block number is the absolute
block number on the device. The user program normally updates
blk before it is used again

Request Format:

RO - area: 10 | chan
blk

buf
wcent

0

If no error occurred, the data is in memory at the specified address. In an FB
environment, the other job can be run while the issuing job is waiting for the
I/0O to complete.

Programmed Request Description and Examples 2-101

Errors:

Code Explanation

0 Attempt to read past end-of-file.

1 Hard error occurred on channel.
2 Channel is not open.
Example:

+TITLE READW.MAC
+
JREADW / WRITW - This is an examrle in the use of the .READW / WRITW
reaquests., The examrle is 3 single file corw rrodgram. The file srecs
are inrPut from the console terminal: and the inrut % outrut files orened
via the deneral mode of the CSI, The file is coried using swnchronous
1/0y and the outrut file is made rermanent viz the .CLOSE recuest.

-y wr s er as s

+MCALL CSIGEN:.READWy sFRINT» EXIT» .WRITHWs.CLOSE,.SRESET

ERREYT=52 iError Bute Loacation
START: LCSIGEN #DSFACE»#DEXT iGet string from terminal
CLR IORLK #InFut block # starts with 0O
MOV #AREARS RS =% EMT Ardument list
READ? +READW RS,#3 iRead a block on Chennel 3
iBlk#r Buff addr & WC slreads in ard blk!
RCC 2% sBranch if no errors
TSTER @#ERRBYT $+Is error EOF?
BEQ 3% iYes. ..
MOV #RERR+RO $RO = Read Error Messade
1%: +FRINT iFrint the messade
BR 4% $Exit Pprodgram
2% JHRITW RS:%0 tWrite the block Just read
INC IORLK iBumr block # (doesn’t affect C bit)
BCC READ iBranch if no error ‘
MOV $WERRRO tRO => Write error messade
BR 1% iBranch to outrut the messade
3%: +CLOSE %0 iEnd-of-File.,,.CLose outrut channel
+FRINT #DONE iAnnounce successful cory
4% +«SRESET tRelease handler(s) from memory
+EXIT $Exit the rProdram
DEXT: +WORD 0+s0+0+0 iNo default extensions
AREA?: +WORD] JEMT Ardument blochk
IOBLK? +WORD 0 tBlock #
+WORD RUFFR $I/0 Buffer addr
+WORD 296, iWord Count
+WORD [¢]
RUFFR: BLKW 256. $1/0 Buffer

RERR? +ASCIZ /7 Read error T/
WERR?$ +ASCIZ /7 Write errvor 7/
DONE ¢ +ASCIZ /I-0 Transfer Comrlete/s
+EVEN
DSFACE=., jHandler(s) can be loaded startind here

+END START

2.64 .RELEAS
(See .FETCH programmed request.)

2-102 Programmed Request Description and Examples

2.65 .RENAME

The .RENAME request changes the name of the file specified and gives that
file the current date in its directory entry. An error occurs if the channel
specified is already open.

Macro Call: .RENAME area,chan,dblk

where:

area is the address of a two-word EMT argument block
chan is a channel number in the range 0-377 (octal)

dblk is the address of a block that specifies the file to be renamed
followed by the new file name

Request Format:

RO - area: 4 | chan

Avyu 11821

The dblk argument consists of two consecutive Radix-50 device and file speci-
fications. For example:

+RENAME #AREA +#7 »#DBLK PUSE CHAMNEL 7

BCS RFNMERRE FMOT FOUND
DBLK: +RADSO /DT3RS

+RADSO JOLDFILY/

+RADSO FMAC/

+RADSO iDT3/

s RADGO SNEWETL S

+RADDO FMACY/

The first string represents the file to be renamed and the device where it is
stored. The second represents the new tile name. If a file with the same name
as the new file name specified already exists on the indicated device, it is
deleted. The second occurrence of the device name DT3 is necessary for
proper operation and should not be omitted. The specified channel is left
inactive when the . RENAME is complete. . RENAME requires that the han-
dler to be used be resident at the time the RENAME request is made. If it is
not, a monitor error occurs. Note that .RENAME is legal only on files on
block-replaceable devices (disks and DECtape). In magtape operations, the
handler returns an illegal operation code in byte 52 if a .RENAME request is
attempted. A .RENAME request to other devices is ignored.

Files may not be protected or unprotected using the . RENAME request. To
change the protection status of a file, use the PROTECT/NOPROTECT op-
tion of the RENAME command.

Programmed Request Description and Examples ~ 2-103

Errors:

Code

0

Example

-+

- e er ws e

START:

4]
>
..

ool

$
$

. e

AREA?
DEFEXT?
NOFIL:
ILLOF:
NOHAN?

FILESF?
HANLOD

2.66 .REOPEN

Explanation

Channel open.

File not found.

Invalid operation.

A file by that name already exists and is protected.

A RENAME was not done.

+TITLE

+RENAME - This is an
The examrle rensmes a file according to filesrecs inrut thru the
+CSISFC recuest.

+MCALL
+MCALL

ERREYT

+CSISPC
+FETCH
ECS

MoV

MOV

MOV
+REFT
MOV
»ENDR

+ RENAME
RCC
DECE
EEQ

MoV

BR
+SRESET
JEXIT
MoV

ER

MoV
+FPRINT
ER

« BLKW
+WORD
+ASCIZ
+ASCIZ
+ASCIZ
+EVEN
+BLKW

+END

RENAME . MAC

examrle in

+RENAME» s FRINT» .EXIT
+CSISFC, .FETCH:, .SRESET

52

¥FILESF s #DEFEXT
#HANLOD s #FILESF
2%

#FILESFsR2
FFILESF+46,R3
@PR2,FILESF+36

4

(R2)+» (R34

$AREAY#0»¥FILESF+36
1s

@#ERREYT

3%

$#ILLOFsRO

5S¢

#NOHAN:RO

5%
ENOFILSRO

3

"

pv]
020+0+0
/TFile not found?/

/?Illedal Oreration?/

/P.FETCH Failed?/

3.

START

the use of the

+RENAME request.

iError bzte locstion

iUse ,CSISFC to get file srecs
iGet Handler from outsrec
sEranch if failed

$R2 => Dutsrec

yR3 =* Insrec

$Cory device srec to insrec
iCory outsrec behind insrec
ifor .RENAME...

$Rename inrut file

sOreration successful

iMake error code -1+0 or +1
$Branch if File-Not-Founsii
$iI1legzl oreration-set ur msg
tBRranch to rerort error
iDismiss handlers

sExit rrodram

iFetch fziled-set ur messade
iBranch to rerort error

$File not found-setur messade
tFrint error messade

sThen exit wvia SRESET

FEMT Ardument block

$No default extensions

iError messade text

fCSISFC InFut Ares
iHandlers can load here...

The .REOPEN request associates the channel that was specified with a file on
which a .SAVESTATUS was performed. The .SAVESTATUS/.REOPEN

04 Programmed Request Description and Examples

combination is useful when a large number of files must be operated on at one
time. As many files as are needed can be opened with .LOOKUP, and their
status preserved with .SAVESTATUS. When data is required from a file, a
'REOPEN enables the program to read from the file. The REOPEN need not
be done on the same channel as the original .LOOKUP and .SAVESTATUS.

Macro Call: .REOPEN area,chan,cblk

where:
area is the address of a two-word EMT argument block
chan is a channel number in the range 0-377 (octal)

cblk is the address of the five-word block where the channel status
information was stored

Request Format:

RO - area: 6 | chan
cblk
Errors:
Code Explanation
0 The specified channel is in use. The .REOPEN has not been
done.
Example:

Refer to the example for the .SAVESTATUS request.

2.67 .RSUM (FB and XM Only)

(See .SPND programmed request.)

2.68 .SAVESTATUS

The .SAVESTATUS request stores five words of channel status information
into a user-specified area of memory. These words contain all the information
RT-11 requires to completely define a file. When a .SAVESTATUS is done,
the data words are placed in memory, the specified channel is freed, and the
file is closed. When the saved channel data is required, the .REOPEN request
is used.

SAVESTATUS can only be used if a file has been opened with .LOOKUP. If
.ENTER was used, .SAVESTATUS is illegal and returns an error. Note that
SAVESTATUS is not legal for magtape or cassette files.

The .SAVESTATUS/.REOPEN requests are used together to open many files
on a limited number of channels or to allow all .LOOKUPs to be done at once
to avoid USR swapping.

Programmed Request Description and Examples 2-105

2-106

While the .SAVESTATUS/.REOPEN combination is useful, care must be
observed when using it. In particular, the following cases should be avoided:

1. If a .SAVESTATUS is performed and the same file is then deleted
before it is reopened, it becomes available as an empty space that
could be used by the .ENTER command. If this sequence occurs,
the contents of the file supposedly saved changes.

2. Although the device handler for the required peripheral need not be
in memory for execution of a .REOPEN, the handler must be in
memory when a .READ or .WRITE is executed, or a fatal error is
generated.

One of the more common uses of .SAVESTATUS and .REOPEN is to consoli-
date all directory access motion and code at one place in the program. All files
necessary are opened and their status saved, then they are re-opened one at a
time as needed. USR swapping can be minimized by locking in the USR,
doing .LOOKUP requests as needed, using .SAVESTATUS to save the file
data, and then unlocking the USR. The user should be aware of the conse-
quences of locking in the USR in a foreground/background environment. If the
background job locks in the USR when the foreground job requires it, the
foreground job is delayed until the background job unlocks the USR.

Macro Call: .SAVESTATUS area,chan,cblk

where:

area is the address of a two-word EMT argument block
chan is a channel number in the range 0-377 (octal)

cblk is the address of the five-word user memory block where the
channel status information is to be stored

Request Format:

RO - area: 5 | chan
cblk
Errors:
Code Explanation
0 The channel specified is not currently associated with any files:

that is, a previous .LOOKUP on the channel was never done.

1 The file was opened with an .ENTER request, or a .SAVE-
STATUS request was performed for a magtape or cassette file.

Example:

+TITLE SAVEST.,MAC
it
+SAVESTATUS / .REOFEN - This is an examrle in the use of the ,SAVESTATUS
/ +REOPEN requests. These reauests arz most commonly used tosether to
consolidate access to the USR at one rlace in the rrodgram or if the
Frogram must access more files than there are I/0 channels available.
Once 2 channel has been oreneds its status may be saveds to be re-orened

- e we e e e

Programmed Request Description and Examples

i and used later as needed. This examrle merses 2-6 files into 1 files
$-reading 311 inerut files on one channel.

JMCALL LCSIGEN:.SAVESTATUS:. REOFENs.CLOSEs.EXIT

+MCALL READWy ,WRITWs . FRINT, ,FPURGE

ERRBYT = 52 $Error bute loc in SYSCOM
START: .CSIGEN #DSFPACE,#DEFEXT iGet file srecssoren filessload handlers
MOV $3+'R4 $R4 = ist inrut channel
MOV $AREASRI $R3 =x EMT Argument block
MOV $#SAVEBLK RS RS =» Channel savestatus blocks
1% +SAVEST R3:R4sRS iSave chamnnel status
BCS 2% iBranch if channel never orened
ADD #$12sRS jaddust RS to roint to next status block
INC R4 jBume R4 to = next inrut channel
CHP #8.sR4 sDone a3ll inerut channelsT
BGE i% iBranch if not
2% MoV $#SAVELK RS $RS =» to 1st saved channel status
REQ 7% $Eranch if no inerut files
442 +REOFEN R3:%#3,RE jRe-oren inrut channel on Ch 3
CLR BLK iStart reading with block 0
9% +READW R3,33,3BUFFR,#2546,sBLK iRead a block
RCC -3 jBranch if no error
TSTB @#ERRBYT tCheck if error = EOF
BNE 8% iBranch if not EOF
+PURGE $3 iClear inrut channel for re-use
ADD $12:R5 $tFoint RS to mext saved ch status
TST BRS iAne more inrut channels?
BNE 4% ikranch if uwes
.CLOSE %0 jWe’re done...close outrut channel
+PRINT #DONE jAnnounce merde comrlete
JEXIT fExit FProdgram
6%1 JURITW FR3,#0s#BUFFR#256.WEBLK jWrite block Just read
INC WBLK jBums to next outrut block
INC ELK tjsame for inrut blk (doesn’t affect C bit)
BCC 5% $Rranch if no error on urite
MOV $WERRRO sWrite error - RO = messade
BR 9% imerde. ..
7%3 MOV ENOINFIRO $RO =» No input files messase
ER % Fmerge. . ..
8¢%? MoV $RERRsRO iRO =>» Read error msg
o8 +PRINT iRerort error
JEXIT sthen exit Frodram
AREA? +BRLKW S SEMT Argument block
BLK +WORD [} iCurrent read block
WRLK? +WORD 0 jCurrent write btlochk
SAVEBLK: ! . BLKW 30, iSaved channel status arez
DEFEXT?: WORD 0s0s0+0 iNo default extensions for CSIGEN

NOINF: .ASCIZ /%No inrut files?/ jiError messages
WERR?: +ASCIZ /?Write Error?/

RERR? +ASCIZ /?Read Error?/

DONE +ASCIZ /I-0 Transfer Comrleted/

+EVEN

EUFFR! +BLKW 256, 51/0 buffer

nSPACE = jHandlers start here. ..
+END START

2.69 .SCCA
The .SCCA request:
1. Inhibits a CTRL/C abort

9. Indicates when a double CTRL/C is initiated at the keyboard

3. Distinguishes between single and double CTRL/C commands

Programmed Request Description and Examples 2-107

2-108

CTRL/C characters are placed in the input ring buffer and are treated as
normal control characters without specific system functions. The request re-
quires a terminal status word address that is used to report consecutive
CTRL/C input sequences. Bit 15 of the status word is set when consecutive
CTRL/C characters are detected. The program must clear the bit.

There are three cautions to observe when using .SCCA. First, the request can
cause CTRL/C to appear in the terminal input stream, and therefore the
program must provide a way to handle it. Second, the request makes it impos-
sible to terminate program loops from the console, and therefore it should be
used only in thoroughly tested, reliable programs. When .SCCA is in effect
and the program enters an interminable loop, the system must be halted and
re-bootstrapped. Third, a CTRL/C from indirect command files is not inter-
cepted by the .SCCA request.

A .SCCA request with a status word address of zero disables the intercept and
re-enables CTRL/C system action.

Macro Call: .SCCA area,addr

where:

area is the address of a two-word parameter block

addr is the address of a terminal status word (an address of 0 re-
enables the CTRL/C command)

Request Format:

RO - area: 35 | 0
addr

Errors:
None.
Example:

+TITLE SCCA.MAC

-+

+8CCA - This is an examrle in the use of the .SCCLCA recuest. The

examrle is 3 simulation of 3 mainline Foreground rrosram which is
currently susrended waiting for 3 messade from the HEacksroundy but which
needs to close 3 file (rerhars orened bw a8 .ENTER 7?) before sborting

from CTRL-C action. A comrletion routine reriodically insrects the CTRL-C
status word and resumes the mainline if double CTRL-C is entered.

NOTE! This examrle MUST be rum a3s a2 FG Job under an FE monitor,

N A . T T A)

+MCALL .SCCAs .RCVDC, JEXITs +FRINTs . MRKT
+MCALL .QSET,.SPND».RSUM

START: .QSET $QELEM» #1 iAllocate snother O-Element
+8CCA #MAREA#SCCA sInhibit "C7C action bw monitor
1¢: CALL CWATCH $Start "watchdos' comrletion rtne
+RCVDC #MAREA»¥MBUFF»#40,»$#MESG jLook for z messade
H ' iNo errors - there’s zlwaus EG
H . i0ther eprocessing here...
¥ + s
+FRINT #SLEEF fAnnournce we’'re doing to susrend
+SFND iSusrend to wait for messade

Programmed Request Description and Examples

TST SCCA iWe’ve been RSUMed..."C"C hit??
BNE CLOSE EBranch if ues
] . sctherwise assume mescade came in...

ruise as
<rrocess messade herel

e e

ws e

BR i% iLoor...

CWATCH?: TST SCCA iCheck if ~C"C entered...
REQ MARK tBRranch if no

MESG$ +RSUM iYes...wake ur the mainline
RETURN jthen leave comrletion code

MARK S +HRKT $CAREAs#TIMEs#CWATCHs#1 3Schedule to run again in 10 sec.
RETURN - $then leave comrletion code

CLOSE: FRINT #ABORT

jAnnounce we’re aborting
JFT

rroceed with "orderlu® asbort

.

§ .
$ <0utrut file(s) closed hereX
§

EXIT sExit the rrodgram
RELEM: JELKUW 7 $Extras G-Element
MRUFF ¢ +BLKW 41, iMessadge buffer
MAREA: +RLKW S FEMT Argument blocks
CAREA:! .BLKW 4 H
TIME: +WORD 0600, iTime out in 10 secoands
SCCA? +WORD 0 $°C"C Status word

ARORT: .A8CIZ /7! Abart Ackrowledded...Closing Outsut Filels) !'?/
SLEEF: LASCIZ /! Mainline Susrending !/

LEND START

2.70 .SDAT/.SDATC/.SDATW (FB and XM Only)

The .SDAT/.SDATC/SDATW requests are used with the .RCVD/
RCVDW/.RCVDC calls to allow message transfers between a foreground job
and a background job under the FB or XM monitors. .SDAT transfers can be
considered as similar to .WRITE requests, where data transfer is not to a
peripheral but from one job to another. Additional I/O queue elements should
be allocated for buffered I/O operations in .SDAT and .SDATC requests (see
.QSET).

Message handling in the FB monitor does not check for a word count of zero
before queuing a send or receive data request. Since RT-11 distinguishes a
send from a receive by complementing the word count, a .SDATW of zero
words is treated as a .RCVDW of zero words. Thus, avoid a word count of zero
at all times when using a .SDATW request.

.SDAT
Macro Call: .SDAT area,buf,wcnt

where:

area is the address of a five-word EMT argument block

buf is the buffer address of the beginning of the message to be trans-
ferred

went is the number of words to transfer

Programmed Request Description and Examples ~ 2-109

Request Format:

RO - area: 25 | 0
unused
buf
went
1
Errors:
Code Explanation

0 No other job exists.

Example:

+
+SDAT/.RCVD - This is an examrle in the use of the .SDAT/.RCVD
reauests, The examrle is actuslly two rrosramss s Rackdgound .ob
which sends messadgesr and a Foreground .Joby which receives them.
NOTE: Esch srodram should be assembled and linked serarately,

ar wr e e e er

+TITLE SDATF.MAC
+
Foredround Frogram ...

[

+MCALL «RCVIy MWAIT, FRINT» EXIT

STARTF! JRCVD $AREAr #MBUFF, $40. iReauest 2 messadge ur to 80 char,
¥ . iNo error rossible - alwaus a RG
y * T
§ . illo some other rFrocessinsg
+PRINT #FGJOR ilike announcindg FG active...,
Y * ’
§ . H
JHWAIT fWsit for messade to arrive...
TST MBUFF+2 iNull message?
REQ FEXIT iYes...exit the rrodgram
+FPRINT #FMNSG jAnnounce we dot the messade.,..
+FRINT $#MERUFF+2 $and echo it back
ER STARTF iLoor to det another one

FEXIT? <EXIT fExit rrodram

AREA: +BLKW S JEMT Ardgument Rlochk

MEUFF +BRLKW 41, iBRuffer - Msd lensgth + 1
«WORD 0 iMake sure 80 char messade ends ASCIZ

FGJOR? (ASCIZ /Hi - FG zlive and well and waiting for = messade!/
FMSG? +ASCIZ /Hew BRG - Got dour messade it readsi/

+END MUAITF
STITLE STARTR.MAL
it
i Backdground Frosram - Send 3 ‘null’ message to stor both errograms
;_
+MCALL SDAT» MWAITy GTLIN» +EXITs ,FRINT
STARTR: CLR RUFF iClear 1st word
+GTLIN #EBUFF+#FRONMT iGet something to send to FG from TTY
+SDAT $AREAs#RUFF» %40, iSend inrut a3s messade to FG
ECS 1% iBrarnch on error - No FG
+MUWAIT iWait for messade to be sent
18T BUFF 3Sent 2 null messade?
ENE STARTR iNo...loor to send snother messade.
LEXIT iYes,..exit rrodgram
143 +FRINT #NOFG iNo FG !
JEXIT $Exit srodram
AREA? +BLKW S FEMT Arsument Rlock
BUFF? +BLKW 40, iUr to 80 char messade

FROMT:! JASCII /Enter messade to be sent to FG Job/<1S><12>/%/<200>
NOFG? +ASCIZ /7?No FG?/
JEND MWAITH

.SDATC
Macro Call: .SDATC area,buf,went,crtn

where:
area is the address of a five-word EMT argument block

buf is the buffer address of the beginning of the message to be trans-
ferred

went is the number of words to transfer

crtn is the address of the completion routine to be entered when the
message has been transmitted

Request Format:

RO - area: 25 | 0
unused
buf
went
crin
Errors:
Code Explanation

0 No other job exists.
Example:
See the example following .SDATW.

.SDATW
Macro Call: .SDATW area,buf,went

where:
area is the address of a five-word EMT argument block

buf is the buffer address of the beginning of the message to be trans-
ferred

went is the number of words to transfer

Request Format:

RO — area: 25 | 0
unused
buf
went
0
Errors:
Code Explanation

0 No other job exists.

Programmed Request Description and Examples ~ 2-111

2.71

2-112

Example:

-+

W W v e s ws s

+

. - e

STARTF?

ENTERR:
FILE?

AREA:?
BUFR?

RECRD?

ERMSG?
FEXIT?

This

[T

STARTR:

ROERK

SDTTM

The .SDTTM (Set date and time) request allows your program to set the

which creates
which cories the FG channel and reads a record from the file., Roth
Frograms must be assembled and linked sersratelwu.

+TITLE

+MCALL

MOV
+ENTER
+WRITW
BCS
+SDATW
y
+RCVDW
+CLOSE
+FRINT
+EXIT
+FRINT
+EXIT
+RADSO
+RADGO
+ BLKW
+WORD
+WORD
+BLKW
+ASCIZ
+ASCIZ
+END

+TITLE

+MCALL

MoV
+RCVDW
BCS
+CHCOPY
BCS
~READW
BCS

;
.SDATH
+PRINT
JEXIT
MoV

BR

MoV

ER

Moy
+PRINT
JEXIT
+BLKW
+BLKW
+BLKY
,ASCIZ
+ASCIZ
+ASCIZ
LASCIZ
JENDI

+8DATW/RCYIW ~ This is an examele in the use of the +SOATW/ .RCVDW
reauests. The examrle consists of two s=rogramss 3 Foresround Jdob

8 file and sends 2 message to a EKackground rrogram

SDATWF . MAC

This is the Foredround rrodram ..

+ENTERy .FRINT, .SIATWs EXITy ,RCYDKWy , CLOSE s +WRITW

#AREASRS

RS+ #0#FILE %5

RS, ¥0s#RECRD #2546, /%4
ENTERR

RS #BRUFR 42

Ry #RUFRs#1
#0
#FEXIT

$ERMSG

/DK QUFILE/
/TMP/

5

0

4

254,

/?Enter Error?/
/FG Job exitins/
STARTF

SDATWR. MAC

is the Backsround rrodram ...

iR => EMT argument block

iCreate 3 5 block file

iWrite 3 record BG is interested in
#Eranch on error

iSend messade with info to BG

illo some other rrocessing

iWhen it‘’s time to exitsmake sure
iEG is done with the file

iTell user we’re going buwe-bue
fExit the srodram

tPrint error message

ithen exit
iFile serec for .ENTER
FEMT argument block
iCharnel #

iBlock #

iFile record

iError message text
VExit messade

+CHCOFY s sRCYDWy .READW» EXITs .PRINT:,SDATW

$AREAIRS
RT» #MSGs #2
1s

RS, #0,MSG4+2
2%

RGs#0, #BUFF » $256, yHSG+4

3%

R3s#MSGr#1
#REXIT

#NOJORsRO
4%
#NOCHsRO
4%
#RUERR RO

SRR
[&]

256,

iRS => EMT ars block

iWsit for messzse from FG
iBranch if no FG

iChannel # is 1st word of messasge
iBranch if FG channel not oren
iRead block which is 2nd word of mss
iBranch if read error
iContinue rrocessing,..

iTell FG we’re thru with file
iTell user we’re thru

ithen exit erodram

iRO => No FG error msg

iBranch to srint msg

iRO => FG ch not oren mss=
iBranch...

#RO =% Read err msg

iFrint rsrorer error msd

sthen exit.,

FEMT ardument blk

iMessadge buffer

iFile buffer

/Channel-Record cory successful/

/TNo FG Job?/

/?FG channel not oren?/

/?Read Error?/
STARTE

system date and time.

Programmed Request Description and Examples

JError messasges...

Macro Call: .SDTTM area,addr
wnere:
area is the address of a two-word EMT argument block

addr is the address of a three-word block in user memory that con-
tains the new date and time

Request Format:
RO - area: 40 [0

EPE]
aaar

The first word of the three-word parameter block contains the new system
date in internal format (see the .DATE programmed request). If this word is
negative (represents an illegal date), the monitor ignores it. Put a negative
value in the first word of the parameter block if you want to change only the
system time. If the first parameter word is positive, it becomes the new system
date. Note that the monitor does no further checking on the date word. To be
sure of a valid system date, you must specify a value between 1 and 12
(decimal) in the month field (bits 13-10) and a value between 1 and the
month length in the day field (bits 9-5). Bits 14 and 15 must be zero.

The second and third words of the parameter block are the new high-order
and low-order time values, respectively. This value is the double-precision
number of ticks since midnight. If the high-order time word is negative, the
monitor ignores the new time. Put a negative value in the second word of the
parameter block if you want to change only the system date. If the second
parameter word is positive, the new time becomes the system time. The
monitor does no further checking on the new time. To be sure of a valid
system time, you must specify a legal number of ticks for the system line
frequency. For a 60 Hz clock, the high-order time may not be larger than 117
(octal), and if it is equal to 117, the low-order time may not be equal to or
larger than 15000 (octal). For a 50 Hz clock, the high-order time may not be
larger than 101 (octal), and if it is equal to 101, the low-order time may not be
equal to or larger than 165400 (octal).

Changing the date and/or time has no effect on any outstanding mark time or
timed wait requests.

Errors:
None.
Example:

«TITLE SDTTHM.MAC

it

i SDOTM.MAC - This is an exsmrle in the use of the .SDTTM recuest.
; The example is a Dauwlight/Standard Time utility - to switch the

$ current sustem time from Standard to Dawlisht or vice versas call
; the Frogram as @ subroutine st the rrorer entrs Foint.

e
’

+MCALL +SDTTMs.PRINTs EXIT,.GTIM
+GLOBL STDsDALITE

Programmed Request Description and Examples ~ 2-113

sTD: coM HR iSwitch to STD time...

NEG HR+2 iMake one hr in clock ticks

DALITE: .GTIM $#AREA #TIME iGet the current time
CAaLL JADD JAdJdust +/~- 1 hour
+SDTTM #AREA#NEWDT iSet the new sustem time
+GTINM #AREA #TIME iForce date rollover (if anw)
RETURN iReturn to caller

NEWDT: ,WORD -1 5.SOTTM arguments - No new date

TIME? +WORD 0s0 iNew time

HR? +WORD 3 i0ne hour in clock ticks (60 cucle clock!)
+WORD 45700

AREA? +WORD 0s0 SEMT Ardgument Elock

JADRD} tllouble rrecision intesger addg
MOV #HR R4 iR4 = Low order of Sustem time + 2
MoV #AREASR3 #R3 => Low order of One hour + 2
MOV #HRsR1 iRl =* Low order of new time
MOV ~(R4)sR2 iFut low order of 1st orerand in R2
AR -(R3)sR2 iAdd in low order of orerand #2
MOV -(R4) RS iFut hizgh order of oserand #1 in RS
AlIC RS iAdd in carrg (no ovrflow rossible 1)
ADD -{R3)> RS iAdd in high order of orerand #2 (ditto!)
MOV R2s-(R1) iStore result where wanted
MOV RSs-(R1)
RETURN iReturn to caller
<ENT

2.72 .SERR

(See .HERR programmed request.)

2.73 .SETTOP

2-114

The .SETTOP request specifies a new address as a program’s upper limit.
The monitor determines whether this address is legal and whether or not a
memory swap is necessary when the USR is required. For instance, if the
program specified an upper limit below the start address of USR (normally
specified in offset 266 in the resident monitor), no swapping is necessary, as
the program does not overlay the USR. If .SETTOP from the background
specifies a high limit greater than the address of the USR and a SET USR
NOSWAP command has not been given, a memory swap is required. The use
of .SETTOP in an extended memory environment is described at the end of
this section.

Careful use of the .SETTOP request provides a significant improvement in
the performance of your program. An approach that is used by several of the
system-supplied programs is as follows:

1. A .SETTOP is done to the high limit of the code in a program before
buffers or work areas are allocated. If the program is aborted, mini-
mal writing of the user program to the swap blocks (SWAP.SYS)
occurs. However, the program is allowed to be restarted success-
fully.

2. A user command line is now read through .CSISPC or .GTLIN. An
appropriate USR swap address is set in location 46. Successive

Programmed Request Description and Examples

DSTATUS, .SETTOP, and .FETCH requests are performed to
ISR

A

-

load necessary device handlers. This attempts to keep the

This attempts to keep

resident as long as possible during the procedure.

(

3. Buffers and work areas are allocated as needed with appropriate
.SETTOP requests being issued to account for their size. Fre-
quently, a .SETTOP of -2 is performed to request all available
memory to be given to the program. This can be more useful than
keeping the USR resident.

4. 1If the process has a well-defined closing phase, another .SETTOP
can be issued to cause the USR to become resident again to close
files (the user should remember to set location 46 to zero if this is
done, so that the USR again swaps in the normal area). On return
from .SETTOP, both RO and the word in location 50 (octal) contain
the highest memory address allocated for use. If the job requested
an address higher than the highest address legal for the requesting
job, the address returned is the highest legal address for the job
rather than the requested address.

When doing a final exit from a program, the monitor writes the
program to the file SWAP.SYS and then reads in the KMON. A
SETTOP 0 at exit time prevents the monitor from swapping out
the program to the swap blocks (SWAP.SYS) before reading in the
KMON, thus saving time. This procedure is especially useful on a
diskette system when indirect command files are used to run a
sequence of programs.

Macro Call: .SETTOP addr

where:
addr is the address of the highest word of the area desired (the last
word the program will modify, not the first word it leaves un-
touched)
Notes:

1. A program should never do a .SETTOP and assume that its new upper
limit is the address it requested. It must always examine the returned
contents of RO or location 50 to determine its actual high address.

2. It is imperative that the value returned in RO or location 50 be used as the
absolute upper limit. If this value is exceeded, vital parts of the monitor
can be destroyed.

Errors:
None.
Example:

+TITLE SETTOF.MAC

it
+SETTOF - This is an examrle in the use of the SETTOFP reauest. The
i examrle tries to obtain as much memory as rossible using the .SETTOP

Programmed Request Description and Examples ~ 2-115

2-116

- as ws

+MCALL +LOCK, ,UNLOCK».LOOKUF
+«MCALL SETTOF,.PRINTs.EXIT

requests which will force the USR into 2 swarring mode., The .LOCK reauest
will bring the USR into memorw (over the hisgh 2k of our little rrosgram !)
and force it to rem2in there until an

+UNLOCK is issued,

SYSPTR=54 iFointer to begsinning of RMON
START! JSETTOF @#SYSFTR iTre to 3llocate 311 of memorw (ur to RMON)
+LOCK fbring USR into memory
+LOOKUP #AREA,#0,#FILE1l ;LOOKUF & file on channel 0O
RCC 1% iBranch if successful
2% +PRINT #LMSG iPrint Error Messade
JEXIT ithen exit rrodram
142 +PRINT #F1FND FANNOUNCE OUr SUCCEeSS
MOV $AREARO §RO =» EMT Ardument Rlock
INC @RO j}Increment low bute of 1st ardg (chan #)
MoV #FILE2,2(RO) $Fill in rointer to new filesrec
+LOOKUP Do the .LOOKUP from filled in ardg block
irointed to bw RO.
BCS 2% iBranch on error
+FRINT #F2FND iSay we found it
+UNLOCK snow release the USR
JEXIT iand exit Frodram
AREA: +BLKW 3 FEMT Arsument Block
FILE1: JRADSO /DK/ iA File we’re sure to find

+RADSO /PIF /
+RADNSO /SAV/

FILE2: JRADSO /DK/ sAnother file we might find

+RADSO /TECO /

+RADSO /SAV/
LMSG: +ASCIZ /?Error on ,LOOKUF?/
FIFND! LASCIZ /.. Found FIP.SAV/
F2FND: .ASCIZ /...Found TECOD.SAV/

+EVEN

+END START

iError messade

2.73.1 .SETTOP in an Extended Memory Environment

You can enable the extended memory feature of the .SETTOP programmed
request with the linker /V option or the LINK command with the /XM option
(see Chapter 11 in the RT-11 System User’s Guide). The RT-11 Software
Support Manual describes in detail the .SETTOP request in an extended
memory environment. The .SETTOP request operates in privileged and

virtual jobs as follows:

Privileged Jobs

1. A .SETTOP that requests an upper limit below the virtual high
limit of the program will always return the virtual high limit of the
program. The virtual high limit is the last address in the highest
PAR that the program uses. In this case, a value can never be
returned below the job’s virtual high limit.

2. A .SETTOP that requests a job’s upper limit above the program’s
virtual high limit will return the highest available address as fol-

lows:

a. Either the address requested or SYSLOW-2 (last used address,
SYSLOW is next address available) is returned, whichever is

Programmed Request Description and Examples

lower. SYSLOW is defined as the start of the USR in the XM
monitor.

b. If the program’s virtual high limit is greater than SYSLOW (the
user program maps over the monitor or USR), the virtual high
limit of the program will always be returned.

Virtual Jobs
1. Asin privileged jobs, a .SETTOP request can never get less than the
virtual high limit of the job.

2. If a .SETTOP requests an upper limit greater than the virtual high
limit, the following occurs:

a. If the virtual high limit equals 177776, this value is returned
since this is the address limit in virtual memory. Otherwise, a
new region and window will be created. The size of the region
and window will be determined by the argument specified to the
SETTOP or by the amount of extended memory that is avaii-
able, whichever value is smaller. The .SETTOP argument
rounded to a 32-word boundary minus the high .LIMIT value for
the program equals the size of the region and window (see the
LINK chapter of the RT-11 System User’s Guide and the RT-11
Software Support Manual for a description of the .LIMIT direc-
tive in extended memory). If there are no region control blocks,
window control blocks, or extended memory available, the pro-
gram’s virtual high limit is returned. The .SETTOP request
uses one of the region and window control blocks allocated to the
user, thus one less block is available to the program if the linker
/V option is used.

b. Additional .SETTOP requests can only remap the original win-
dow created by the first .SETTOP. Thus, additional requests
will return an address no higher than that established by the
first request and no lower than the program virtual high limit.
An additional .SETTOP request whose argument is higher than
the first request will cause the entire first window to be mapped.
An additional .SETTOP request whose argument specifies a
value below the virtual high limit eliminates the region and
window. If another .SETTOP request then follows, it may create
a new region and window.

2.74 .SFPA (Special Feature)

QT A ;

The .SFPA request allows users with floating-point hardware to set trap ad-
dresses to be entered when a floating-point exception occurs. If no user trap
address is specified and a floating-point (FP) exception occurs, a
¢MON-F-FPU trap occurs, and the job is aborted.

Programmed Request Description and Examples 2-117

2-118

Macro Call: .SFPA area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the routine to be entered when an exception
occurs

Request Format:

RO - area: 30 | 0
addr

Notes:

1.

The user trap routine must save and restore any registers it uses. It exits
with a RTI instruction.

If the address argument is 0, user floating-point routines are disabled and
the fatal ?MON-F-FPU trap error is produced by any further traps.

In the FB environment, an address value of 1 indicates that the FP regis-
ters should be switched when a context switch occurs, but no user traps
are enabled. This allows both jobs to use the FP unit. An address of 1 to
the SJ monitor is equivalent to an address of 0.

When the user routine is activated, it is necessary to re-execute an .SFPA
request, as the monitor disables user traps as soon as one is serviced. It
does this to prevent a possible infinite loop from being set up by repeated
floating-point exceptions.

If the FP11 is being used, the instruction STST -(SP) is executed by the
monitor before entering the user’s trap routine. Thus, the trap routine
must pop the two status words off the stack before doing an RTI. The
program can tell if FP hardware is available by examining the configura-
tion word in the monitor.

Errors:

Nore.

Example:

+

T T L

+TITLE SFFA.MAC

+8FFA - This is an examrle in the use of the .SFFA reauest, This
examrle is 3 skeleton rrogram which demosntrates how to set ur =
Floating Foint trar routine, and the minimum action that routine
must take before dismissing the error trar.

+MCALL SFFA» EXIT

SYSFTR = 04 ilLoc of bedinning of Monitor
CONFIG = 300 i0ffset to Monitor configuration wd
FP11 = 100 iFFU rresent bit

Programmed Request Description and Examples

START?: § N sMainline rrogram...
H .
§ .
+SFFA $AREA» ¥FFTRAF iSet ur FFU error trar
§ .
; + tcontinue mainline rrosram
; *
JEXIT iExit rFrodgram
FFTRAF? #FFU excertion routine
i ’ tHandle excertion...
; +*
; +
CKFPU: MOV @¥SYSFTRsRO $iRO =*> base of RMON
RIT #FFL11sCONFIG(RO) iCheck for FFU hdue
BEQ i% siBranch if none
CMF (SPY+,(SP)+ iMust ror status reds off stachk!
1%3 RTI iBefore returning from interrurt

+END START

2.75 .SPCPS (FB and SM SYSGEN Option)

The .SPCPS (save/set mainline PC and PS) request allows a program’s com-
pletion routine to change the flow of control of the mainline code. .SPCPS
saves the mainline code PC and PS, and changes the mainline PC to a new
value. If the mainline code is performing a monitor request, the monitor
allows that request to finish before doing any rerouting. The actual rerouting
is deferred until the mainline code is about to run. Therefore, the .SPCPS
request returns an error if it is reissued before an earlier request has been
honored. Furthermore, the data saved in the user block is not valid until the
new mainline code is running.

The .SPCPS request is a system generation feature and is available only in FB
and XM. If a program issues this call under SJ or under a monitor not
generated for the call, no action is taken and no error is returned.

Macro Cali: .SPCPS area,addr
where:
area is the address of a two-word EMT argument block

addr is the address of a three-word block in user memory that con-
tains the new mainline PC, and that is to contain the old main-
line PC and PS

Request Format:

RO - area: 41 | 0
addr
Errors:
Code Explanation

0 The program issued the .SPCPS call from the mainline code
rather than a completion routine.

Programmed Request Description and Examples 2-119

Code

Explanation

1 A previous .SPCPS request is outstanding.

When the program issues the .SPCPS request, the monitor saves the old
mainline PS in the third word of the three-word block and the old mainline

PC in the
PC to the
Example:
+TITLE SPCPS.MAC
+ENABL LC
+
+SPCPS - This is an examrle in
examprle +SPCPS is

+MCALL
+MCALL

ERRBY

+ENABL
+C5IGEN
CALL
+vPRINT
DEC

BR
+CLOSE
Mou

BR

MowY

BR

Moy
+PRINT
+SRESET
JEXIT

START:

WERR z

RERR:
GBYE:

WRDONE: WAIT
BCS
+READC
BCC
TSTB
BEQ
Mow

BR

Moy
TSTB
BNE
+8PCPS
INCB
BCS
RETURN
JHWATT
BCS
+WRITC
BCS
INC
RETURN
+PRINT
RETURN

IOXFER:

5%:
B%:

7%

AREAT: @
BLOK :

+WORD
+WORD
+WORD
+HWORD
+WORD
+WORD
SBLKW
+WORD
+BYTE

SBLOK:
BUFF:
DEFEXT:
SPCALL:

error or EOF is

the

use of the
used to reroute the mainline code after an
detected by a completion

second word of the block. The monitor then changes the mainline
contents of the first word of the block.

+SPCPS resuest. In this
1/0

routine.

+READC + , WRITC:+,.CLOSE + (PRINT + . CSIGEN . EXIT+.WAIT . ERESET

+SPCPS

= sz

LSB
#DSPACE »#DEFEXT
I0OXFER
#MESSG

RS

1%

#0

#DONE 1RO
GBYE
#HRERR +RO
GBYE
#RDERR +RO

#0

3%

#AREA :#3 : 5 14269
o%

@#ERRBYT

4%

#RERR »SBLOK
4%

#WERR +SBLOK
SPCALL

5%

#AREA »#SBLOK
SPCALL

7%

#3

2%
#AREA »#0 » y#WRDONE
3%

BLOK

#SPERR

Q

4]

BUFF
256,

8]

FINI +0+0
258,
O,0,30,0
Q

Error Bvte location in SYSCOM

jUse CSIGEN to det handlers:
iS8tart I/0

iNow simulate other
i (Kill some time)

files

mainlivne Process

SEOF * O = End of File
RO - MWe’'re done messyd
iMerde to exit Prodram
iS5et up error messades here. ..

iPrint messade
iDismiss fetched handlers
iEx1t Prodram

iWrite compPl rtrnes.,write successful?
iBranch if not...

fQuene ur a read

iBranch if oK...

iError - is it EOF?

iBranch if ves
tMove Read err
iMerde. ..
iMove Write err rtne addr to ard block
jAlready done a SPCPS?

i¥Yes+.sedon’t do another

iDe-rail mainline code

iFlad we've done this

i0oors! Something’s amiss!

iLeave completion code

iCompl rtne #2 - was read ok?

iBranich if not

iQueuwe UP a Write...

iBranch if error

iBume block # for next read

jLeave Completion code.,..

iPrint +SPCPS failed messade

rtme addr to arg klock

iEMT Area blockK

iBlock #.
iBuffer addr & word count
jalready fixed in block...

iCompletion rtne addr
i+SPCPS Ardument block
FI/0 buffer

iNo default extensions
i+SPCPS called flag in
i{compl rtme dets sched.

(FINI default?
for CEIGEN

case I/0 error
redardless!)

«NLIST

CONE: +ASCIZ
MESSG: +ASCTIZ
WRERR = +ASCIZ
RDERR: +ASCIZ
SPERR: +ASCIZ
+EVEN
DSPACE = .

+END

BEX

/I1-0 Transfer Complete/ iMessades. ..
/< 8imulatind Mainline Processing »/
/?Write Error?/

/?Read Error?/

/7 GPCPS Errar?/

sHandlers mavy be loaded starting here
START

2.76 .SPFUN

;o

This request is used with certain device handlers to do devicedependent func-
tions, such as rewind and backspace. It can be used with diskettes and some
disks to allow reading and writing of absolute sectors. this request can deter-
mine the size of a volume mounted in a particular device unit for RX02
diskettes, RK06/RKO07 disks, and RLO1 disks.

Macro Call:

where:
area
chan

func

buf

went

blk

crtn

.SPFUN area,chan,func,buf,went,blk[,crtn]

is the address of a six-word EMT argument block
is a channel number in the range 0 to 377 (octal)

is the numerical code of the function to be performed; these
codes must be negative

is the buffer address; this parameter must be set to zero if no
buffer is required

is defined in terms of the device handler associated with the
specified channel and in terms of the specified special function
code

is also defined in terms of the device handler associated with the
Spe&ﬁaﬂr%nnneland n

ified channel an terms of the specified special function
code

1
j 381 pa st Ty CVLiti suaiivvavas

is the entry point of a completion routine. If left blank, 0 is
automatically inserted. This value is the same as for .READ,
.READC, and .READW.

0 = wait I/O (READW)
1 = real time (.READ)

Value >500 = completion routine

Request Format:

RO - area: 32 | chan

blk
buf
went
code 377
crtn

Programmed Request Description and Examples 2-121

2-122

The chan, blk, and wcnt arguments are the same as those defined for
.READ/.WRITE requests. They are only required when doing a .WRITE with
extended record gap to magnetic tape. If the crtn argument is left blank, the
requested operation completes before control returns to the user program.
Specifying crtn as #1 is similar to executing a .READ or .WRITE in that the
function is initiated and returns immediately to the user program. A ‘WAIT
on the channel makes sure that the operation is completed. The crtn argu-
ment is a completion routine address to be entered when the operation is
complete.

The available functions and function codes for magtape and cassette are as
follows:

Function MT CT
Forward to last file 377
Forward to last block 376
Forward to next file 375
Forward to next block 374
Rewind to load point 373 373
Write file gap 372
Write EOF 377
Forward one block 376
Backspace one block 375
Write 371
Read 370
Write with extended

file gap 374
Off-line rewind 372

The available functions and function codes for diskettes, RK06/RK07 disks,
and RLO1 disks are as follows:

Function DX DM DY DL
Read 377 377 377 377
Write 376 376 376 376
Write with deleted

data mark 375 375

Force a read by the

handler of the bad

block replacement

table from block 1

of the disk 374 374
Return device size 373 373 373

To use the .SPFUN request, the handler must be in memory and a channel
must be associated with a file via a .LOOKUP request.

A .SPFUN request to write absolute blocks on a diskette should not write
anything in track 0 if you want to use DUP or the COPY/DEVICE command
to back up the volume. DUP does not copy data in track 0. Also, you should
be careful to specify a valid buffer address and word count. The monitor

Programmed Request Description and Examples

checks that the buf argument is in the job area, but it does not check buf +
went. If you use the .SPFUN request, and the device handler for that device
does not support special functions, the call simply returns to the program
without reporting an error.

For the RK06/07 handler (DM), special function codes 377 and 376 require the
buffer size to be one word larger than necessary for the data. The first word of
the buffer contains the error information returned as a result of the .SPFUN
request. The data transferred as a result of the read or write request is found
in the second and following words of the buffer. The error codes and informa-
tion are as follows:

Code Meaning
100000 The I/O operation is successful.
100200 A bad block was detected (BSE error).
100001 An ECC error is corrected.
100002 An error recovered on retry.
100004 An error recovered through an offset retry.
100010 An error recovered after recalibration.
1774xx An error did not recover.
Other device-specific information is included in the RT-11 Software Support
Manual.
Errors:
Code Explanation
0 Attempt to read or write past end-of-file.
1 Hard error occurred on channel.
2 Channel is not open.

Additional qualifying information for these errors is returned in the first
two words of the blk argument status block. This information is given in
Chapter 10 of the RT-11 Software Support Manual.

Example:

CTITLE

it

SFFUN.MAC

i JSFFUN - This iz an examrle in the use of the .SFFUN recuest. The
; ewamrle rewinds a cassette and writes out a 2%546-word buffer and

3 then a file gar,

+MCALL FETCHs.LOOKUF»s . .SFFUNy WRITHW
JMCAlL JEXIT. . FRINT..WAIT,.CLOSE
START: .FETCH #HSFC,#CT iFetch the CT Handler
RCS 1% jBranch if failed
+LOOKUF #AREAs#4,#CT s0ren channel 4 for outrut

Programmed Request Description and Examples 2-123

RCS 2% tBranch if error (should never harren!)
+SFFUN #AREA,$#4,#373:#0 jRewind to BOT using Sunchronous I/0

RCS 3% sBranch on error
+MWRITW #AREAs#4,y#BUFF»#256.,yEBLK $Write orne block
ECS 4% sBEranch on error
+SFFUN #AREA $#4,#372:40,,41 sWrite 3 file gar with Asscnh 1/0
+FRINT #DONE tAnnounce that we’re done
LWAIT ¥4 iWait for file dgar oreration to finish
+CLOSE %4 iClose the file
JEXIT ithen exit the rrosram

16} MoV #FERRKO iFrocess errors here...
ER 5%

2% My $#LKERRsRO
ER 5%

3¢ MOV #SPERR RO
ER 53

4% MOV $WERR /RO

5% +PRINT iFrint error messade
JEXIT ithen exit rrodram

AREA! +WORD © " FEMT Argument block

RLK?$ +WORD 0:0+0:0+0

CT: +RADSO /CT / sCassette DNevice Descrirtor
+WORD 0,050 sNull filesrec

RUFF$ + BLKW 256, j0utrut buffer

DONE +ASCIZ /All done 1/ iMessade text...

FERR? +ASCIZ /?.FETCH Error?/

LKERR: ,ASCIZ /7?.LOOKUF Error?/

SPERR: +ASCIZ /7?Srecial Function Error?/

WERR: +ASCIZ /7Hrite Error?/
+EVEN
HSFC = , iHandler can load in here...
+END START

2.77 .SPND/.RSUM (FB and XM Only)

2-124

The .SPND/.RSUM requests control execution of a job’s mainline code (the
code that is not executing as a result of a completion routine). .SPND
suspends the mainline and allows only completion routines (for I/O and mark
time requests) to run. .RSUM from one of the completion routines resumes
the mainline code. These functions enable a program to wait for a particular
I/O or mark time request by suspending the mainline and having the selected
event’s completion routine issue a .RSUM. This differs from the .WAIT re-
quest, which suspends the mainline until all I/O operations on a specific
channel have completed.

Macro Calls: .SPND
.RSUM

Request Formats:
(SPND) RO=| 1 |
(RSUM) RO=[_2]
Notes:

0 |
0]

1. The monitor maintains a suspension counter for each job. This counter is
decremented by .SPND and incremented by .RSUM. A job is suspended
only if this counter is negative. Thus, if a .RSUM is issued before a
.SPND, the latter request returns immediately.

Programmed Request Description and Examples

2. A program must issue an equal number of .SPND and .RSUM requests.

W

A RSUM request from the mainline code increments the suspension
counter.

4. A .SPND request from a completion routine decrements the suspension
counter, but does not suspend the mainline. If a completion routine does a
.SPND, the mainline continues until it also issues a .SPND, at which time
it is suspended and requires two .RSUMs to proceed.

5. Since a .TWAIT is simulated in the monitor using suspend and resume, a
RSUM issued from a completion routine without a matching .SPND can
cause the mainline to continue past a timed wait before the entire time
interval has elapsed.

6. A .SPND or .RSUM, like most other programmed requests, can be issued
from within a user-written interrupt service routine if the

INTEN/.SYNCH sequence is followed. All notes referring to
.SPND/.RSUM from a completion routine also apply to this case.

Errors:
None.

Example:

+TITLE SPND.MAC

-+

,SPNII/ +RSUM- This is an examrle in the use of the .SFNI/.RSUN recuests.
The examrle is a simulation of 3 mainline Foresround rrogram which is
currently susrended waiting for 2 messadge from the Backsgrounds but which
needs to close z file (rerhars orened by 2 LENTER 7) before aborting

from CTRL-C action. A comrletion routine reriodicaslls insrects the CTRL-C
status word and resumes the mainline if double CTRL-C is entered.

NOTE! This examrle MUST be rum as a FG Job under an FB monitor.

- e wr er ek s cer W W

+MCALL ,SCCA» RCVDCs EXITs» PRINT» . HRKT
+MCALL +QSETs.SPNDs.RSUM

START! QSET #QELEMs #1 jAlliocate another G-Element
+SCCA #MAREA»¥5CCA iInhibit "C"C action by monitor
182 CALL CWATCH $Start *watchdog® comrletion rine
LRCVUDC #MAREAs#MBUFF,$40.,,#MESG iLook for 2 message
[. iNo errors - there’s alwauws BG
§ . j0ther rrocessing here...
H ' $
+PRINT #SLEEF jAnnounce we’re going to susrend
+SPND iSusrend to wait for messadge
TST SCCA sWe’ve been .RSUMed...”C"C hit7??
BNE CLOSE iBRranch if ues
. jotherwise assume messade Ca3me in. ..

{process messade herer

.

W e e e

[1% FLODF. v
CWATCH: TST SCCA iCheck if "C"C entered...
REQ MARK $Branch if no
MESG? +RSUM iYes...wake ur the mainline
RETURN ithen leave coesrletion code
MARK +MRKT $CAREA,#TIMEs#CWATCH:#1 iSchedule to run adain in 10 sec.
RETURN jthen leave comrletion code
CLOSE: PRINT #ARORT jAnnounce we’re aborting

$ <0Outrut file(s) closed here> srroceed with 'orderlu’ sbort

’ .

JEXIT tExit the Prodram

Programmed Request Description and Examples — 2-125

QELEM?
MEUFF ¢
MAREA:
CAREA?
TIME?
SCCA?

ABORT:
SLEEF:

2.78 .SRESET

+BLKUW 7 iExtra Q-Element

+BLKW 41, iMessade buffer

+ BLKW 5 VEMT Argument blocks
+BLKW 4 §

+WORD 014600, iTime out in 10 seconds
+WORD (¢} i"C"C Status word

+ASCIZ /71 Abort Acknowleddged...Closing Qutrut File(s) 17/
+ASCIZ /! Masinline Susrending t/

+END START

The .SRESET (software reset) request:

1.
2.

-1

8.

Cancels any messages sent by the job.

Waits for all job I/O to complete, which includes waiting for all
completion routines to run.

Dismisses any device handlers that were brought into memory via
.FETCH calls. Handlers loaded via the keyboard monitor LOAD
command remain resident, as does the system device handler (only
for background jobs).

Purges any currently open files. Files opened for output with
.ENTER are never made permanent.

Reverts to using only 16(decimal) 1/O channels. Any channels de-
fined with .CDFN are discarded. A .CDFN must be reissued to open
more than 16{(decimal) channels after a .SRESET is performed

Clears the]Ob s .SPND/.RSUM counter.

Resets the 1/0 queue to one element. A .QSET request must be
reissued to allocate extra queue elements.

Cancels all outstanding .MRKT requests.

Macro Call: .SRESET

Errors:
None.
Example:
+TITLE SRESET.HMAC
+
+SRESET -~ This is an ewxsmerle in the use of the .SRESET reauest.

s we s ar

The examrle renames 3 file according to filesrecs imnerut thru the
+CSISFC reauest.

+MCALL JRENAME» .FRINT»,EXIT
+HCALL JCSISFCs.FETCH» .SRESE]

ERRRYT = 52 iError bute location

2-126 Programmed Request Description and Examples

START: CSISFC #FILESPs#DEFEXT ilse .CSISFC to dget file srecs

+FETCH #HANLOD,#FILESF iGet Handler from outsrec
RCS 2% tBranch if feziled
MOV $FILESFsR2 sR2 = Dutsrec
Moy #FILESF+46+R3 iR3 =» Insrec
MOV @R2sFILESF+36 jCore device srec to insrec
+REFT 4 iCory outsrec behind insrec
MOV (R2)+»(R3)+ ifor +RENAME...
+ENDR
sRENAME #AREA»#0,#FILESF+36 jRename inrput file
RCC i¢ i0reration successful
DECE C#ERREYT iMake error code -1:0 or +1
BEQ 3% $Branch if File-Not-Found
MOV $ILLOF.RO $4Illedal oreration-set ur mss
BR 5% iBranch to rerort error
1%t + SRESET illismiss handlers
JEXIT $Exit Frodram
2% MOV $NOHANRO iFetch failed-set ur messzde
BR 5% iBranch to rerort errorv
kS MoV #NOFILRO 3File not found-setur messade
5% +FRINT jFrint error messade
ER 1% iThen exit vis LSRESET
AREA? +BLKW 5 . FEMT Ardument block
DEFEXT: JWORD 0r0+0+0 iNo default extensions
NOFIL: .ASCIZ /7?File rnot found?/ sError messade text
ILLOF? +ASCIZ /7Illegszl Oreration?/
NOHAN T VASCIZ /F7.FETUH Failed?/
+EVEN
FILESF! RLKW 9. yCSISFC Inrut Ares
HANLOD = . sHandlers can load here...
JENT START

2.79 .SYNCH (Device Handler and Interrupt Service Routine
Only)

This macro call enables your program to issue programmed requests from
within an interrupt service routine. Code following the .SYNCH call runs at
priority level 0 as a completion routine in the issuing job’s context. Pro-
grammed requests issued from interrupt routines are not supported by the
system and should not be performed uniess a .SYNCH is used. .SYNCH, like
INTEN, is not an EMT monitor request, but rather a subroutine call to the
monitor.

Macro Call: .SYNCH areal,pic]
where:

area is the address of a seven-word block that you must set aside for
use by .SYNCH. This argument, area, represents a special
seven-word block used by .SYNCH as a queue element. This is
not the same as the regular area argument used by many other
programmed requests. The user must not confuse the two; he
should set up a unique seven-word block specifically for the
.SYNCH request. The seven-word block appears as:

Word 1 RT-11 maintains this word; its contents shouid not be
altered by the user

2 The current job’s number. This must be set up by the
user program. It can be obtained by a .GTJB call

Programmed Request Description and Examples 2-127

2-128

3 Unused

4 Unused

5 RO argument. When a successful return is made from
.SYNCH, RO contains this argument

6 Must be -1

7 Must be 0

pic is an optional argument that, if non-blank, causes the .SYNCH
macro to produce position-independent code for use by device
drivers

.SYNCH assumes that the user has not pushed anything on the stack
between the INTEN and .SYNCH calls. This rule must be observed for
proper operation.

Errors:

The monitor returns to the location immediately following the SYNCH
if the .SYNCH was rejected. The routine is still unable to issue pro-
grammed requests, and R4 and R5 are available for use. An error is
returned if another .SYNCH that specified the same seven-word block
is still pending.

NOTE

The monitor dismisses the interrupt without returning to the
.SYNCH routine if one of the following conditions occur:

1. You specified an illegal job number.

2. The job number does not exist (for example, you specify 2,
and there is no foreground job).

3. The job is exited or terminated with an .EXIT programmed
request.

You can find out if the block is in use by:

Vet Vi

1. Checking location Q.COMP (offset 14 octai). If this location con-
tains a zero, the block is available.

2. Performing a .SYNCH call. If the block is busy, an error return will
be performed.

Normal return is to the word after the error return. At this point, the
routine is in user state and is thus allowed to issue programmed re-
quests. RO contains the argument that was in word 5 of the block. RO
and R1 are free for use without having to be saved. R4 and R5 are not
free, and do not contain the same information they contained before the
.SYNCH request. A long time can elapse before the program returns
from a .SYNCH request since all interrupts must be serviced before the
main program can continue. Exit from the routine should be done via

an RTS PC.

Programmed Request Description and Examples

Example:

+TITLE SYNCH.MAC

-+

+SYNCH - This is an examrle in the use of the .S5YNCH reauest.
The examrle is 3 skeleton of 3 rrosgram which could inrut data
from the outside world via an in-line interrurt service routines
buffer it until 2 whole block’s worth has been inrutsy then use
a3 +WRITE reaquest to store the data on an RT-11 device.

P . L

+MCALL GTJR» ,INTENs (WRITE> .WAITy . SYNCHs .EXIT» .FRINT

START: WOV $J0BsRS jouteut of .GTJB sces here
«GTJR #AREA SRS iGet Job number (could be either FG or EG)
Mov (RS)»SYNBLK+2 $Stare the Job number into sench block
i . iHere we oren an RT-11 outrut devices
H . $then imitiate ineput from a3 'foreisdn®
H . jdevicer interrurts to be handled bw our
§ . jin-line service routine...

INTRPT? $ INTERRUFT SERVICE ROUTINE

+INTEN S $Notifue RT-11 and dros to Priorite S
¥ . iFrocess interrurt...buffer inrut
H . iTime to write 2 buffer - switch buffers
§ . $(should be double buffered so interrurts
$. scan continue while in WRITE oreration!)
+SYNCH #SYNBLK s00 A ,SYNCH so we can use WRITE request
BR SYNFAIL $Returns here if .SYNCH block in use
§ . tReturns here if OK.,.,.
+WAIT 1 iSee if error on last write
RCS WTFAIL sBranch if there was...
JWRITE #AREAs#1,0RUFF,»#256,BLK ;Queue ur 3 WRITE to store data
INC BLK sBumr block #
§ . iRe-enable interrurts and leave.
RETURN '
SYNBRLK! ,WORD 0 3 +SYNCH Rlock
+WORD 0 sJob Number goes here
+WORD 0 inext 2 words reserved
+WORD 0 H '
+WORD S RO contains S on successful (SYNCH
+WORD -1+0 FMUST BE values for Monitor
SYNFAIL? $+SYNCH Failed...
Mov #SYNER RO iRO => Error messade
BR ERRM iBranch to rerort error
j{!¥as be from wrons context!)
WTFAIL: MOV $WERR RO #RO => Write error messasge
ERRM? +PRINT iRerort error
+EXIT iThen exit
BLK? +WORD iklock to write

0
AREA! +BLKW S JEMT Argument Rlock
JOR? JRLKW e, sarea for .GTJIR data
OBUFF: JWORD] iFointer to current outrut buffer
IBUFF: JWORD 0 jFointer to current inrPut buffer
BUFF1!: +BLKW 256, iBuffer #1
BUFF2{ .BLKW 256, ikuffer $2
WERR +A8CIZ /7Write Error?/
SYMER! +ASCIZ /7SYNCH Fziled?/

JEVEN

LEND START

2.80 .TIMIO (Device Handler Only)

The .TIMIO macro issues the device time-out call in the handler I/O initia-
tion section. This request schedules a completion routine to run after the
specified time interval has elapsed. The completion routine runs in the con-

Programmed Request Description and Examples 2-129

2-130

text of the job indicated in the timer block. In XM systems, the completion
routine executes with kernel mapping, since it is still a part of the interrupt
service routine. (See the RT-11 Software Support Manual for more informa-
tion about interrupt service routines and the XM monitor.) As usual with
completion routines, R0 and R1 are available for use. When the completion
routine is entered, RO contains the sequence number of the request that timed
out.

Macro Call: .TIMIO tbk,hi,lo

where:

tbk is the address of the timer block, a seven-word pseudo timer
queue element. (The timer block format is shown in Table 2-1
under the .CTIMIO request.) You must set up the address of the
completion routine in the seventh word of the timer block in a

position-independent manner
hi is the high-order word of a two-word time interval

lo is the low-order word of a two-word time interval

Example:

+TITLE

+

]

T L TR T TR

TIMIO.MAC~ This is an

successfully transmitted in
examrle the comrletion

TIKIO.MAC

examrle of 2 simrles RT-11 device drivers

to illustrate the use of the .TIMIO/.CTIMIO recuests. The timeout
comrpletion routine will be entered if a character hasn’t been

1/10 sec (arsrox. 110 baud), In this
routine tzkes no exrlicit actioni the fact
that the timeout occurred is enoush to be considered s “"hard® error.

+MCALL DRBEG, .DRASTs .DRFIN, .DRENIy .QELDFs.TIMIO,.CTIMIO
+IIF NDF MMGT, MMGT=0Q iDefine these in case not
+IIF NDF ERL$G: ERL%$G=0 iassembled with SYSCND.MAC

+IIF NDF TIM$ITs TIMS$IT=0
+IIF NDF SFSVEC, SPSVEC=304 iDefine default vector
+IIF NDF SP$CSRs SF$CSR=176504 tDEfine default CSR addr
+JIIF NDF SP$FRIs SF$FRI=4 ilefine default device rriority
IOERR = 1 iHard 1/0 error bit definition
SFSTS = 20000 iDevice Status = Hrite cnlwe
SFSIZ = 0 tDevice Size = 0 (Char device)
TIME = & tTimeout interval = 1/10 sec
+QELDF iUse ,QELDF to define Q-Elem offsets
+DRBEG SFsySP$VEC»SFSIZ»SFSTS jBedin driver code with ,DRBEG
MOV SFCAErR4 R4 => Current Q-Element
ASL QSWCNT (R4) iMake word count bute count
RCC SPERR iA read from a3 write/only device?
REQ SPDUN iZero word count..,Jjust exit
SPRET: MOV PCsRS iCalculate PIC 3ddress
ADD #SPTOUT-, :RE fcemrletion routine
MoV RSy TELK+14 iMove it to ardument block
+TIKIO TELK»O»TIME iSchedule 3 marktime
RIS $100,@4#5P$CSR iEnable DL~11 interrurt
RETURN iReturn to monitor

§# INTERRUPT SERVICE ROUTINE

+DRAST SFySP$FRI iUse .DRAST to define Int Svc Sect.
MOV SPCREsR4 iR4 => Q-Element
TST @#SF$CSR iError?

Programmed Request Description and Examples

EMI SFRET iYes..+’'hand’ until readv

TSTR @#S5F$CSR ils device readu?

BFL SFRET FNO++ 50 wait ‘till it is

+CTIMIO TRLK iCancel comrletion routine

RCS SPERR iToo late - it timed out!

MOVE @Q$RBUFF(R4) s @#SF$CSR+2 iXfer bute from buffer to DL-11

INC Q$BUFF(R4) sBumr the buffer rointer

INC QEWCNT (R4} iand the word count (it’‘s negative!)

REQ SPOUN iBranch if done

BR SPRET iGo wait ‘till char xmitted
SPTOUT: B iTimeout comrletion routine

] . $In this examrles it does nothinsg,

§ ' ' 7In real life it maw want to tru

RETURN ito take some corrective action...
SPERR: RIS #I0ERRBQ$CSW(RSA) #8et error bit in CSW
SFOUN! JDORFIN SF iUse .DRFIN to return to Monitor

TELK: +WORD Or»TIMEsO+09177845-1+0 i+ TIMIO ardgument block
+ORENDN SP sUse (DREND' to end code

+END

2.81 .TLOCK

The .TLOCK (test lock) request is used in an FB environment to attempt to
gain ownership of the USR. It is similar to .LLOCK in that, if successful, the
user job returns with the USR in memory (it is identical to .LOCK in the SJ
monitor). However, if a job attempts to .LOCK the USR while another job is
using it, the requesting job is suspended until the USR is free. With .TLOCK,
if the USR is not available, control returns immediately with the C bit set to
indicate the .LOCK request failed.

Macro Call: . TLOCK

Request Format:

Ro=] 7 | o |

L i H

Errors:

Code Explanation
0 USR is already in use by another job.

Example:

+TITLE TLOCK.MAC

-+

+TLOCK ~ This is an examrle in the use of the ,TLOCK reauest.

In this examrler the user rrosram needs the USR for a sub-Job it is
executing, If it fails to get the USR it "susrends" that sub-Job and
runs ancther sub-Jjob (that rerhars doesn’t need the USR for execution).
This ture of erocedure is useful to schedule severasl subh-Jobs within

3 sindle backsround or foredground rFrogram.

W W W wp we e e e

+MCALL .TLOCK, .LODOKUF . .UNLOCKs JEXITs .PRINT

START? iBedirm Mainline rrodram
+«TLOCK #iTry to det the USR for 1st "Job*
BCS SUSFND $Failed...branch to "susrend® 1st Job

Programmed Request Description and Examples 2-131

+LOOKUP #AREA>#4y#FILE #Succeeded...rroceed with 1st Job

BCS LKERR iBranch if error on LOOKUP
§ . ilst Job invovles file rprocessing,..do it!
+PRINT #J1MSG iTell user we executed...
+UNLOCK t1st Job finmished...release USR
TSTB J2SW iCheck if we ran Job #2 while USR busy
ENE is $Yur - we did
CALL JOR2 iNore - do it now
1¢: +JEXIT
SUSPND: i *Susrend® current ®Jodb’
TSTB Ja2su iDid we zalreadw run Job #2
BNE START iYes - don’t do it adgain
JSR PCrJOBZ $*"Run" other ".ob"
INC J25u iSet switch that savs we ran Job #2
BR START sWhen it’s finishedr trg 1st Job agazin
AREA? +BLKW S5 $EMT arsument block
FILE? +RADS0 /DK/ iFile srec for Job #1
+RADSO /QUFILE/ i
+RADS0 /THFP/ §
LKERR:! +FRINT #LKMSG iError on .LOOKUF - Rerort it!
JEXIT
LKMSG: J+ASCIZ /7?File Not Found?/
J1MSG! JASCIZ /Job #1 Executed/
J2MSG: JASCIZ /Job #2 Executed/
J25W; +BYTE] iSwitch to control Job #2 execution
+EVEN
JOR2: +FRINT $J2MS6 i2nd "Job" - Doesn’t need USR
RTS PC iReturn when done
+END START

2.82 .TRPSET

2-132

.TRPSET allows the user job to intercept traps to 4 and 10 instead of having
the job aborted with a M ON-F-Trap to 4 or ’MON-F-Trap to 10 message. If
.TRPSET is in effect when an error trap occurs, the user-specified routine is
entered. The status of the carry bit on entry to the routine determines which
trap occurred: carry bit clear indicates a trap to 4; carry bit set indicates a
trap to 10. The user routine should exit with an RTT instruction. Traps to 4
can also be caused by user stack overflow on some processors (check your
processor handbook). These traps are not intercepted by the .TRPSET re-
quest, but they do cause job abort and a printout of the message
!MON-F-Stack overflow in the SJ monitor or ZMON-F-Trap to 4 in the FB
and XM monitors (see the RT-11 System Message Manual).

Macro Call: .TRPSET area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the user’s trap routine. If an address of 0 is
specified, trap interception is disabled

Request Format:

RO - area: 3 | 0
addr

Programmed Request Description and Examples

Notes:

1.

Reissue a .TRPSET request whenever an error trap occurs and the user
routine is entered. The monitor disables user trap interception prior to
entering the user trap routine. Thus, if a trap should occur from within the
user’s trap routine, an error message is generated and the job is aborted.
The last operation the user routine should perform before an RTI is to
reissue the .TRPSET request.

In the XM monitor, traps dispatched to a user program by .TRPSET
execute in user mode. They appear as interrupts of the user program by a
synchronous trap operation. Programs that intercept error traps by trying
to steal the trap vectors must be carefully designed to handle two cases
accurately: programs that are virtual jobs and programs that are privi-
leged jobs.

If the program is a virtual job, the stolen vector is in user virtual space
that is not mapped to kernel vector space. The proper method is to use
.TRPSET; otherwise interception attempts fail and the monitor continues
to handle traps to 4 and 10.

If the program is a privileged job, it is mapped to the kernel vector page.
The user can steal the error trap vectors from the monitor, but the benefits
of doing so must be carefully evaluated in each case. Trap routines run in
the mapping mode specified by bits 14 and 15 of the trap vector PS word.
With both bits set to 0, kernel mode is set. However, kernel mapping is not
always equivalent to user mapping, particularly when extended memory is
being used. With both PS word bits set to 1, user mode is set, and the trap
routine executes in user mapping.

Errors:

-+

.- e e e e e

+TITLE TRPSET.MAC

+TRFSET - This is an examrle in the use of the .TRFSET request.

In this examrle 3 user trar routine is sets then deliberate
trars to 4 & 10 are caused (not very rractical but it demonstrates
that .TRPSET reallw worksl!).

+MCALL TRPSET+.EXIT» .FRINT

DIVZ = 67 shivide bw zero - illegzl instruction

START! iBedin examrle

+TRPSET #AREAs$#TRFLOC iSet ur 3 trar routine to handle trars
ito 4 & 10...

nIvZ 3Illegal imstruction - Trar to 10
78T B¥166666 iAddress non-existent memory - Trar to 4
+EXIT fExit Frodram
TRFLOC? iTrar routine
RCS is iC bit set = TRAF 10
+FRINT #TRP4 iRerort Trar to 4
ER 2% iBranch to reset trar routine
14 +FRINT #TRP10O iRerort trar to 10

+TRPSET #AREA»#TRFLOC iReset trar routine address

Programmed Request Description and Examples 2-133

2% RTI sReturn to offending code
AREA?: +WORL 020 FEMT ardument block

TRF43 +ASCIZ /7?Trar to 47/ JError messages. ..

TRF10¢! J+ASCIZ /7?Trar to 107/

»END START

2.83 .TTYIN/.TTINR

2-134

The requests .TTYIN and .TTINR transfer a character from the console ter-
minal to the user program. The character thus obtained appears right-justi-
fied (even byte) in RO. The user can cause the characters to be returned in R0
only, or in RO and other locations.

The expansion of .TTYIN is:

EMT 340
BCS .-2

The expansion of .TTINR is:
EMT 340

If no characters or lines are available when an EMT 340 is executed, return is
made with the carry bit set. The implication of these calls is that .TTYIN
causes a tight loop waiting for a character/line to appear, while the user can

either wait or continue processing using .TTINR.

If the carry bit is set when execution of the .TTINR request is completed, it
indicates that no character was available; the user has not yet typed a valid
line. Under the FB or XM monitor, .TTINR does not return the carry bit set
unless bit 6 of the Job Status Word (JSW) was on when the request was
issued.

There are two modes of doing console terminal input. The choice is governed
by bit 12 of the job status word. If bit 12 is 0, normal I/O is performed. In this
mode, the following conditions apply:

1. The monitor echoes all characters typed.

2. CTRL/U and the DELETE key perform line deletion and character
deletion, respectively.

3. A carriage return, line feed, CTRL/Z, or CTRL/C must be struck
before characters on the current line are available to the program.
When one of these is typed, characters on the line typed are passed
one by one to the user program.

If bit 12 is 1, the console is in special mode. The effects are:

1. 'The monitor does not echo characters typed except for CTRL/C and
CTRL/O.

2. CTRL/U and the DELETE key do not perform special functions.

3. Characters are immediately available to the program.

Programmed Request Description and Examples

In special mode, the user program must echo the characters received. How-
ever, CTRL/C and CTRL/O are acted on by the monitor in the usual way. Bit
12 in the JSW must be set by the user program. This bit is cleared when the
program terminates.

Regardless of the setting of bit 12, when a carriage return is entered, both
carriage return and line feed characters are passed to the program; if bit 12 is
0, these characters will be echoed.

Lower-case conversion is determined by the setting of bit 14 in the JSW. If bi
14 is 0, lower-case characters are converted to upper-case before being ec
(if bit 12 is 0) and passed to a program,; if bit 14 is 1, lower-case characters a
echoed (if bit 12 is 0) and passed as received. Bit 14 is cleared when the

program terminates.

CTRL/F and CTRL/B (and CTRL/X in system job monitors) are not affected
by the setting of bit 12. The monitor always acts on these characters (unless
the SET TT NOFB command is issued).

CTRL/S and CTRL/Q are intercepted by the monitor (uniess, under the FB or
XM monitor, the SET TT NOPAGE command is issued).

Under the FB or XM monitor, if a terminal input request is made and no
character is available, job execution is blocked until a character is ready. This
is true for both .TTYIN and .TTINR, and for both normal and special modes.
If a program requires execution to continue and the carry bit to be returned, it
must set bit 6 of the Job Status Word before the .TTINR request. Bit 6 is
cleared when a program terminates.

NOTE

The .TTYIN request does not get characters from indirect files.
If this function is desired, the .GTLIN request must be used.

Macro Calls: .TTYIN char
.TTINR

where:

char is a pointer to the location where the character in RO is to be
stored. If char is specified, the character is in RO and the address
is pointed to by char. If char is not specified, the character is in

RO
Errors:
Code Explanation
0 No characters available in ring buffer.
Example:

Refer to the example following the description of . TTYOUT/ TTOUTR.

Programmed Request Description and Examples 2-135

2.84 .TTYOUT/.TTOUTR

The requests . TTYOUT and .TTOUTR cause a character to be transmitted to
the console terminal. The difference between the two requests, as in the
.TTYIN/.TTINR requests, is that if there is no room for the character in the
monitor’s buffer, the . TTYOUT request waits for room before proceeding,
while the .TTOUTR does not wait for room and the character is not output.

If the carry bit is set when execution of the . TTOUTR request is completed, it
indicates that there is no room in the buffer and that no character was output.
Under the FB or XM monitor, . TTOUTR normally does not return the carry
bit set. Instead, the job is blocked until room is available in the output buffer.
If a job requires execution to continue and the carry bit to be returned, it must
turn on bit 6 of the Job Status Word before issuing the request.

The .TTINR and .TTOUTR requests have been supplied to help those users
who do not need to suspend program execution until a console operation is
complete. With these modes of I/O, if a no-character or no-room condition
occurs, the user program can continue processing and try the operation again
at a later time.

NOTE

If a foreground job leaves bit 6 set in the Job Status Word, any
further foreground .TTYIN or .TTYOUT requests cause the
system to lock out the background until a character is avail-
able. Note also that each job in the foreground/background
environment has its own Job Status Word, and therefore can be
in different terminal modes independently of the other job.

Macro Call: .TTYOUT char
.TTOUTR

where:

char is the location containing the character to be loaded in RO and
printed. If not specified, the character in RO is printed. Upon
return from the request, RO still contains the character

Errors:

Code Explanation

0 Output ring buffer full.

Example:

+TITLE TTYIN.MAC
+TTYIN 7/ JTTYOUT - This is 2n examrle in the use of the .TTYIN
& .TTYOUT recuests., The examrle accerts 2 line of insrut from the
console kevboardr, then echoes it on the terminal., Using .TTYIN &
+TTYOUT recuests illustrate Suwnchronous terminal 1/0% i.e.» the

Mornitor retains control (the Job is blocked) until the reauests
are satisfied.

wr ap e e e ar car ek

+MCALL TTYIN..TTYOUT

2-136 Programmed Request Description and Examples

START! MOV

$BUFFERsR1

CLR R2
INLOOP?! TTYIN (R1D+

INC R2

CHFE #125R0O

RNE INLOOP

MOV $BUFFERsR1
QUTLOOF: .TTYOUT (R1I)+

IEC R2

REQ START

ER QUTLOOF

BUFFER? ,ELKW 64,
+END START

+TITLE TTINR.MAC

T T e T

LHMCALL JTTYINSTTY

+MCALL TTINRs.TTO

JSW = 44
START: MOV #BUFFER,R1

CLR R2

BIS $100,C%#JSUW
INLOOP: JTTINR

BCS NOCHAR
CHRIN: MOVE ROy (R1)+

INC R2

CMPE RO %12

BNE INLOOF

MoV #BUFFERsR1
OUTLOOFP: MOVE (R1):RO

+TTOUTR

BCS NOROOM
CHROUT: DEC R2

BEQ START

INC R1

BR OUTLOOF
NOCHAR?

+TTINR

BCC CHRIN

§ .

i .

; *

ER NOCHAR
NOROOM?

MOVE (R1)sRO

+TTOUTR

ECC CHROUT

i .

; L

; .

RIC $100,@0%JSW

LTTYOUT (R1)

EIS $i00r@%#45u

ER CHROUT

RUFFER?: BLKW 64,
JEND START

+TTINR /7 TTOUTR - This is an

-4

iRl => Character buffer

iClear character count

iRead char into buffer

fBumr count

iWas last char 3 LF 7

iNo.,..get next character
iYes.,.ro0int R1 to bedinning of buffer
iFrint 2 character

illecrease count...

shone if count = 0

ilLoor to #rint another character

iCharacter buffer...

examrle in the use of the .TTINR &
+TTOUTR recuests. Like TTYIN.MAC» this examrle accerts lines of
input from the console kewboardr then echoes it on the terminal.
Rut rather than waiting for the user to ture something at “INLOOF’
or wait for the outrut buffer to have availasble srazce 2t ‘OUTLOOFP’,
the routine has been recoded using .TTINR and .TTOUTR to allow
other srocessing to be carried out if 2 wait condition is reached.

Rs JEXIT

jLocation of Job Status Word in SYSCOM

iFoint R1 to buffer

iClear character count

iSet bit #6 in JSW so .TTINR/.TTOUTR will
ireturn C bit set if no char/no room...
iGet char from terminal

iNone available

iFut char in buffer

iIncrease count

iWass last char = LF?

iNO.. g€t next char

iYes...p0int R1 to bedinning of buffer
iPut char in RO

iTre to #rint it

sBranch if no room in outrut buffer
illecrease count

ibone if count=0

sBumr buffer rointer

jthern branch to rrint next char

sComes here if no char avail
itry to adain to det one
iThere’s one avail this time!

-

ilo other rrocessing
§
iTre adgain

iComes here if no room in buffer
tFut char in RO

iTry to erint it again

iSuccessful !

iCode to be executed while w2iting
y

iNow we must handg to wait...
iClear bit #46 in JSW

jUse ,TTYOUT to w2it for room
fFinally successful - reset bit #4
ithern return to outrut loor

yBuffer

Programmed Request Description and Examples 2-137

2.85 .TWAIT (FB and XM Only)

2-138

The .TWAIT request suspends the user’s job for an indicated length of time.
.TWAIT requires a queue element and thus should be considered when the
.QSET request is issued.

Macro Call: . TWAIT area,time

where:

area is the address of a two-word EMT argument block

time is a pointer to two words of time (high order first, low order
second), expressed in ticks

Request Format:

RO - area: 24 | 0
time

Notes:

1. Since a .TWAIT is simulated in the monitor using suspend and resume, a
.RSUM issued from a completion routine without a matching .SPND can
cause the mainstream to continue past a timed wait before the entire time
interval has elapsed. In addition, a .TWAIT issued within a completion
routine is ignored by the monitor, since it would block the job from ever
running again.

2. The unit of time for this request is clock ticks, which can be 50 Hz or 60
Hz, depending on the local power supply. ThlS must be kept in mind when
the time interval is specified.

Errors:
Code Explanation
0 No queue element was available.
Example:

+TITLE TWAIT.MAC

+

+TWAIT - This is an examrle in the use of the .TWAIT recuest.

+TWAIT is useful in arrlications where 3 srogram must be onlwy
activated reriodically. This examerle will ‘wake ur’ everuy five seconds
to rerform 3 simulated "task'"s and then “sleer’ adgain. (For examrle

rurroses this cucle will be rereated for a maximum of about 35 sec).

W e W wh e W ws

+MCALL .TWAIT,y.QSET».EXIT» .FRINT

START: CALL TASK iFerform task...
1% +TWAIT #AREA»#TIME 36o to sleer for 5 seconds
BCS NOG iBranch if no queue element
CALL TASK sFerform task adain
DEC COUNT jBums counter - examrle dood for 35 sec
ENE i3 iBranch if time’s not ur
+FRINT #BYE iSaw we’'re thru
CEXIT FExit srodram

Programmed Request Description and Examples

TASK? jFeriodic task simulated here

INC TCNT $Bums 2 counter
RIT #15,TCNT ils it odd?
REQ is sBranch if not
+PRINT #TICK i0dd counter srints "tick...®
RETURN iReturn to caller
1% +FRINT #¥TOCK iEven counter rrints "tock"®
RETURN jReturn to caller
NOQ? +PRINT #QERR iFrint error messade
+EXIT $Exit rrosram
AREA? +WORD 0:0 $EMT Argument bloch
TINMES +WORD 0260.%5. 60 ticks/sec ¥ 5 seconds (= 300 Rites!)
COUNT?! JWORD 7 jMaximum cucles for examrle
TCNT? »WORD 0 iTickstock count

TICK?: ASCII /Tick.../<200> jMessage text
TOCK?$ +ASCIZ /Tock/

BYE? .ASCIZ /Euxamrle Concluded/
QERR? ,ASCIZ /?Nc G-Element Available?/
+END START

2.86 .UNLOCK

el T

(See .LOCK programmed request.)

2.87 .UNMAP (XM Only)

The .UNMAP request unmaps a window and flags that portion of the pro-
gram’s virtual address space as being inaccessible. When an unmap operation
is performed for a virtual job, attempts to access the unmapped address space
cause a memory management fault. For a privileged job, the default (kernel)
mapping is restored when a window is unmapped.

Macro Call: .UNMAP area,addr

where:
area is the address of a two-word argument block

addr is the address of the window control block that describes the
window to be unmapped

Request Format:

RO - area: 36 | 5
addr
Errors:
Code Explanation
3 An illegal window identifier was specified.
5 The specified window was not already mapped.
Example:

Refer to the example following the description of .CRAW.

Programmed Request Description and Examples ~ 2-139

2.88 .UNPROTECT
(See .PROTECT programmed request.)

2.89 .WAIT

The .WAIT request suspends program execution until all input/output re-
quests on the specified channel are completed. The .WAIT request, combined
with the .READ/.WRITE requests, makes double buffering a simple process.

.WAIT also conveys information through its error returns. An error is returned
if either the channel is not currently open or the last I/O operation resulted in
a hardware error.

In an FB system, executing a .WAIT when I/O is pending causes that job to be
suspended and another job to run, if possible.

Macro Call: .WAIT chan
Request Format:
RO=| 0 | chan |

Errors:
Code Explanation
0 Channel specified is not open.
1 Hardware error occurred on the previous 1/0 operation on this
channel.
Example:
+TITLE WAIT.MAC
+

+WAIT - This is an examrle in the use of the ,WAIT reauest. The
examrle demonstrates sswconhronous I/0 where @ mainline =rogram
initisztes inrut viaz (READ recuestsy does come other rrocessing
mskes sure inrFut hes comrleted via the ,WAIT recuest, thern out-
Futs the block Just read. Another .WAIT is issued before the next
resd is issued to meke sure the rrevious write has finished. This
examrle is 8 single file corv rrogramy utilizing .CSTIGEN to ineut
the file srecss load the recuired handlers snd orern the files,

R L LI L IS TR IRty

+MCALL JREADy .WRITE».CLOSE»,FRINT
«MCALL .CSIGENs .EXIT,.WAIT,»,SRESET

ERRBYT = 52 iError Rute location in SYSCOM
+ENARL LSE iEnable local sumbol block
START! JCSIGEN #DSFACE,»#LEFEXT iUse CSIGEN to det handlerss files
MoV ¥AREASRS RS => EMT Argument list
14 +READ RS 43 iRead a8 block.s.
ECS &% iBranch on error
H B
RIT $1+sI0ERLK iThen simulate
BNE 2% isome other
+PRINT #MESSG imeanindful (?) rrocess...
H B
2% JWAIT #3 illid read finish OK?
ECS 5% iBranch if not
+WRITE RS:#0 iNow write the block Just read

2-140 Programmed Request Description and Examples

ECS 3% $Branch on error

H . iCould do some more srocessing heres..
’ +
INC IDELK jEume block # for next read
JWAIT ¥0 sWait for write to finish
RCC it $Branch if successful

3% MoV $WRERR RO FRO =x Write error mss

4% +FRINT jRerort error
JEXIT jthen exit rrodram

5% MOV $ROERRsRO $RO => Read error mss
ER 4% ikranch to rerort error

6%1 TSTE @#ERRRYT jRead error...EOF7
BNE 5% jEBranch if not
JFRINT #DOONE iYes...announce comrletion
.CLOSE #0 iMake outrut file rFermanent
.SRESET ;Dlismiss fetched handlers
JEXIT ithen emit rrodram

AREA:: JWORD 0 SEMT Aresz block

IOBLK?: JWORD 0 sElock *»
+WORD RUFF tRuffer addr & word count
sWORD 256+ jalreade fixed inm block...
+WORD 0 i

BUFF ¢ +BLKUW 256, 3170 buffer

DEFEXT?! LWORD 030200 iNo default extensions for CSIGEN

DONE ¢ LASCIZ /I-0 Trznsfer Comrlete/ iMessades...

MESSG! .ASCIZ <123<15-/< Simulating Msinline Frocessing >/
WRERR: LASCIZ /?Write Error?/

ROERK: JASCIZ /7?Read Error?/

EOQF ¢ +BYTE [0} fEOF flsd
+TVEN

DSFACE = . tHandlers mas be loaded starting here
+END START

2.90 .WDBBK (XM Only)

The .WDBBK macro defines symbols for the window definition block and
reserves space for it. Information provided to the arguments of this macro

permits the creation and mapping of a window through the use of the .CRAW
request. Note that .\WDBBK automatically invokes .WDBDF.

Macro Call: .WDBBK wnapr,wnsiz[,wnrid,wnoff,wnlen,wnsts]

where:

wnapr is the number of the Active Page Register set that includes the
window’s base address. A window must start on a 4K word
boundary. The valid range of values is from 0 through 7

wnsiz is the size of this window (expressed in 32-word units)

wnrid is the identification for the region to which this window maps.
This argument is optional; supply it if you need to map this
window. Use the value of R.GID from the region definition
block for this argument after you create the region to which
this window must map

wnoff is the offset into the region at which to start mapping this
window (expressed in 32-word units). This argument is op-
tional; supply it if you need to map this window. The default is
0, which means that the window starts mapping at the region’s
base address

Programmed Request Description and Examples 2-141

wnlen is the amount of this window to map (expressed in 32-word
units). This argument is optional; supply it if you need to map
this window. The default value is 0, which maps as much of
the window as possible

wnsts is the window status word. This argument is optional; supply
it if you need to map this window when you issue the .CRAW
request. Set bit 8, called WS.MAP, to cause .CRAW to per-
form an implied mapping operation

Example:

See Chapter 4 of the RT-11 Software Support Manual for an example
that uses the .WDBBK macro and a detailed description of the ex-
tended memory feature.

2.91 .WDBDF (XM Only)

The .WDBDF macro defines the symbolic offset names for the window defini-
tion block and the names for the window status word bit patterns. In addition,
this macro also defines the length of the window definition block by setting up
the following symbol:

W.NLGH = 16

The .WDBDF macro does not reserve any space for the window definition
block (see .WDBBK).

Macro Call: .WDBDF
The .WDBDF macro expands as follows:

W.NID =0
W.INAPR =1
W.NBAS =2
W.NSIZ =14
WNRID =6
W.NOFF =10
W.NLEN =12
W.NSTS =14
W.NLGH =16
WS.CRW = 100000
WS.UNM = 40000
WS.ELW = 20000
WS.MAP = 400

2.92 .WRITE/.WRITC/.WRITW

Write operations for the three modes of RT-11 I/O are done using the
-WRITE, .WRITC, and .WRITW programmed requests.

2-142 Programmed Request Description and Examples

Note that in the case of .WRITE and .WRITC, additional queue elements
should be allocated for buffered I/O operations (see .QSET programmed
request).

Under an FB monitor with the system job feature, .WRITE/C/W requests may
be used to send messages to other jobs in the system.

.WRITE
The .WRITE request transfers a specified number of words from memory to
the specified channel. Control returns to your program immediately after the

request ie auened

LTYUTIU 1D YuUurutu.

Macro Call: .WRITE area,chan,buf,went,blk

where:
area is the address of a five-word EMT argument block

chan is a channel number in the range 0-377 (octal)

buf is the address of the memory buffer to be used for output

went is the number of words to be written

blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the start
of the file. For a non-file-structured .LOOKUP or .ENTER, the
block number is the absolute block number on the device. The
user program should normally update blk before it is used
again. If blk = 0, LP: issues a form feed (This is true for all
.WRITE requests.)

Request Format:

RO - area: 11 | chan

NOTE

When any .WRITE, .WRITC, or .WRITW programmed request
is returned, RO contains the number of words requested if the
write is to a sequential-access device (for example, magtape). If
the write is to a random-access device (disk or DECtape), RO
contains the number of words that will be written (. WRITE or
.WRITC) or have been written (. WRITW). If a request is made
to write past the end-of-file on a random-access device, the
word count is shortened and an error is returned. The shortened
word count is returned in RO. Note that the write is done and a
completion routine, if specified, is entered, unless the request
cannot be partially filled (shortened word count = 0).

Programmed Request Description and Examples 2-143

2-144

Errors:
Code Explanation

0 Attempted to write past end-of-file.

1 Hardware error.
2 Channel was not opened.
Example:

Refer to the example following .READ.

WRITC

The .WRITC request transfers a specified number of words from memory to a
specified channel. Control returns to the user program immediately after the
request is queued. Execution of the user program continues until the .WRITC
is complete, then control passes to the routine specified in the request. When
an RTS PC is encountered in the completion routine, control returns to the
user program.

Macro Call: .WRITC area,chan,buf,went,crtn,blk

where:

area is the address of a five-word EMT argument block

chan 1is a channel number in the range 0 to 377 (octal)

buf is the address of the memory buffer to be used for output
went is the number of words to be written

crtn is the address of the completion routine to be entered

blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the start
of the file. For a non-file-structured .LOOKUP or .ENTER, the
block number is the absolute block number on the device. Your
program should normally update blk before it is used again. See
the RT-11 Software Support Manual for the significance of the
block number for devices such as line printers, and paper tape
readers

Request Format:

RO - area: 11 | chan
blk
buf
went
crtn

NOTE

When any .WRITE, .WRITC, or .WRITW programmed request
is returned, RO contains the number of words requested if the

Programmed Request Description and Examples

write is to a sequential-access device (for example, magtape). If

th
co

e write is to a random-access device (disk or DECtape), RO

>

ntains the number of words that will be written (WRITE or

.WRITC) or have been written (WRITW). If a request is made

to

write past the end-of-file on a random-access device, the

word count is shortened and an error is returned. The shortened
word count is returned in RO. Note that the write is done and a

co
ca

When a .

true:

Errors:

mpletion routine, if specified, is entered, unless the request
nnot be partially filled (shortened word count = 0).

RO contains the contents of the channel status word for the opera-
tion. If bit 0 of RO is set, a hardware error occurred during the
transfer: Consequently, the data may be unreliable.

R1 contains the octal channel number of the operation. This is
useful when the same completion routine is to be used for several
different transfers.

Registers RO and R1 are available for use by the routine, but all
other registers must be saved and restored. Data cannot be passed
between the main program and completion routines in any register
or on the stack.

Code Explanation

0
1
2

Example:

End-of-file on output. Tried to write outside limits of file.
Hardware error occurred.

Specified channel is not open.

Refer to the example following .READC.

WRITW

The .WRITW request transfers a specified number of words from memory to
the specified channel. Control returns to your program when the .WRITW is

complete.

Macro Call: .WRITW area,chan,buf,wcnt,blk

where:

area is the address of a five-word EMT argument block

cha

buf

n is a channel number in the range 0-377 (octal)

is the address of the buffer to be used for output

went is the number of words to be written. The number must be

positive

Programmed Request Description and Examples 2-145

blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the start
of the file. For a non-file-structured .LOOKUP or .ENTER, the
block number is the absolute block number on the device. Your
program should normally update blk before it is used again. See
the RT-11 Software Support Manual for the significance of the
block number for devices such as line printers and paper tape
readers.

Request Format:

RO - area: 11 | chan
blk

buf
went

0

NOTE

When any .WRITE, .WRITC, or WRITW programmed request
is returned, RO contains the number of words requested if the
write is to a sequential-access device (for example, magtape). If
the write is to a random-access device (disk or DECtape), RO
contains the number of words that will be written (. WRITE or
.WRITC) or have been written (.WRITW). If a request is made
to write past the end-of-file on a random-access device, the
word count is shortened and an error is returned. The shortened
word count is returned in R0O. Note that the write is done and a
completion routine, if specified, is entered, unless the request
cannot be partially filled (shortened word co unt = 0).

Errors:

Code Explanation

0 Attempted to write past EOF.

1 Hardware error.
2 Channel was not opened.
Example:

Refer to the example following .READW.

-y P ey - I
2-146 Programmed Request Description and Examples

Chapter 3
System Subroutine Description and Examples

This chapter presents all SYSLIB functions and subroutines in alphabetical
order and provides a detailed description of each one. An example of each call
in a FORTRAN program is given.

3.1 AJFLT

The AJFLT function converts an INTEGER*4 value to a REAL*4 value and
returns that result as the function value.

Form: a = AJFLT (jsrc)
where:
jsrc is the INTEGER*4 variable to be converted

Function Results:
The function result is a REAL*4 value.
Errors:

None.

Example:

The following example converts the INTEGER*4 value contained in
JVAL to single precision (REAL*4), multiplies it by 3.5, and stores the

mnmiild S YTAT TR
Tesuil in vALLUELR,

REAL*d UALUE +AJFLT
INTEGER*4 JUAL

+

VALUE=AJFLT (JUAL)*3.5

3.2 CHAIN

The CHAIN subroutine allows a background program (or any program in the
single-job system) to transfer control directly to another background program
and pass specified information to it. CHAIN cannot be called from a comple-
tion or interrupt routine. The FORTRAN impure area is not preserved across
a chain. Therefore, when chaining from one program to another, the informa-
tion must be reset in the program being chained to. When chaining to any

other program, the user should explicitly close the opened logical units with

3-1

calls to the CLOSE routine. Any routines specified in a FORTRAN USEREX
library call are not executed if a CHAIN is accomplished (see Appendix B in
the RT-11/RSTS/E FORTRAN IV User’s Guide).

Form: CALL CHAIN (dblk,var,wcnt)

where:

dblk is the address of a four-word Radix-50 descriptor of the file
specification for the program to be run (see the PDP-11 FOR-
TRAN Language Reference Manual for the format of the file
specification).

var is the first variable (which must start on a word boundary) in a
sequence of variables with increasing memory addresses to be
passed between programs in the chain parameter area (absolute
locations 510 to 777). A single array or a COMMON block (or
portion of a COMMON block) is a suitable sequence of variables

went is a word count specifying the number of words (beginning at
var) to be passed to the called program. The argument wcnt
may not exceed 60. If no words are passed, then a word count of
0 must be supplied

If the size of the chain parameter area is insufficient, it can be increased by
specifying the /B (or /BOTTOM) option to LINK for both the program exe-
cuting the CHAIN call and the program receiving control.

The data passed can be accessed through a call to the RCHAIN routine. For
more information on chaining to other programs, see the .CHAIN pro-
grammed request (Section 2.2).

Errors:

None.

Example:

The following example transfers control from the main program to
PROG.SAV on DTO0, and passes it variables.

DIMENSION SPEC(Z}

INTEGER*Z DATA(10)

DATA SPEC/BRDTOPRO: BRG SAU/
CALL CHAIN (SPEC:DATA.10?

3.3 CLOSEC/ICLOSE

LY

The CLOSEC subroutine terminates activity on the specified channel and
frees it for use in another operation. The handler for the associated device
must be in memory. CLOSEC cannot be called from a completion or interrupt
routine.

System Subroutine Description and Examples

Form: CALL CLOSEC (chanl,i})
1 = CLOSEC(chan)
CALL ICLOSE (chanl,i])
i = ICLOSE(chan)

where:

chan is the channel number to be closed. This argument must be
located so that the USR cannot swap over it

i is the error return if a protection violation occurs

A CLOSEC or PURGE must eventually be issued for any channel opened for
input or output. A CLOSEC call specifying a channel that is not open is
ignored.

A CLOSEC performed on a file that was opened via an IENTER causes the
device directory to be updated to make that file permanent. If the device
associated with the specified channel already contains a file with the same
name and type, the old copy is deleted when the new file is made permanent.
If the file already open is protected, then a protection error is generated.
A CLOSEC on a file opened via LOOKUP does not require any directory
operations.

When an entered file is closed, its permanent length reflects the highest block
of the file written since the file was entered; for example, if the highest block
written is block number 0, the file is given a length of 1; if the file was never
written, it is given a length of 0. If this length is less than the size of the area
allocated at IENTER time, the unused blocks are reclaimed as an empty area
on the device.

Errors:
i =0 Normal return.
= -4 A protected file with the same name already exists on a device.
The CLOSEC is performed, resulting in two files on the device
with the same name.
Example:

The following example creates and processes a 56-block file.

FEAL*4 DBLK(Z)
DATA DBLK/GRSYONEW:GRFILDAT/
DATA ISIZE/SG/

+

+

ICHAN=IGETC ()
IF(ICHAN.LT.0} GOTO 100
IERR=IENTER(ICHAN+DBLK s ISIZE)
IF(IERR.LT.QIGOTO Z0

20 COTO¢110,120,120YABS(TER)
CALL ICLOSE (ICHAN:I)
IF(I.EQ.-4) GOTO 200
CALL IFREEC{ICHAN)
CALL EXIT

System Subroutine Description and Examples 3-3

100 STOP ‘ND AUVATLABLE CHANNELSS
110 S5TOF ‘CHANNEL ALREADY IN UBE-
120 BTOP “NOT ENOUGH ROOM ON DEVICES
130 BTOP ‘DEVICE IM USE’
200 STOP 'PROTECTION ERRORC

END

3.4 CONCAT

The CONCAT subroutine concatenates two character strings.
Form: CALL CONCAT (a,b,out[,len[,err]})

where:

a is the array containing the left string. The string must be termi-
nated with a null byte

b is the array containing the right string. The string must be termi-
nated with a null byte

out is the array into which the concatenated result is placed. This
array must be at least one element longer than the maximum
length of the resultant string (that is, one greater than the value of
len, if specified)

len is the integer number of characters representing the maximum
length of the output string. The effect of len is to truncate the
output string to a given length, if necessary

err is the logical error flag set if the output string is truncated to the
length specified by len

CONCAT sets the string in the array out to be the string in array a immedi-
ately followed on the right by the string in array b and a terminating null
character.

NOTE
Any combination of string arguments is allowed, so long as b

and out do not specify the same array.

Concatenation stops when a null character is detected in b, or when the
number of characters specified by len has been moved.

If either the left or right string is a null string, the other string is copied to out.
If both are null strings, then out is set to a null string. The old contents of out
are lost when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and the
output string would have been longer than len characters, then err is set
to .TRUE.; otherwise, err is unchanged.

3-4 System Subroutine Description and Examples

Example:

The following example concatenates the string in array STR and the
string in array IN and stores the resultant string in array OUT. OUT
cannot be larger than 29 characters.

LOGICAL*1 IN(ZZ).0UT(3G) 5TR{7D

+

CALL CONMCATI(STR «INM.OUT .28}

3.5 CVTTIM

The CVTTIM subroutine converts a two-word internal format time to hours,
minutes, seconds, and ticks.

Form: CALL CVTTIM (time,hrs,min,sec,tick)

where:

time is the two-word internal format time to be converted. If time is
considered as a two-element INTEGER*2 array, then:

time (1) 1is the high-order time
time (2) is the low-order time

hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second for 60-cycle
clocks; 1/50 of a second for 50-cycle clocks)

Errors:
None.

Example:

INTEGER#*4 ITIME

+

+

CALL GTIM(ITIME? IGET CURRENT TIME-OF-DAY

CALL CYUTTIMUITIME »IHRS +IMINISECITCK)
IF{IHRS.GE.12,AND, IHRS.LT.13} GOTO 100 !TIME FOR LUNCH

3.6 DEVICE (FB and Xi Oniy)

The DEVICE subroutine allows you to set up a list of addresses to be loaded
with specified values when the program is terminated. If a job terminates or is

System Subroutine Description and Examples ~ 3-5

aborted with a CTRL/C from the terminal, this list is picked up by the system
and the appropriate addresses are set up with the corresponding values.

This function is primarily designed to allow user programs to load device
registers with necessary values. In particular, it is used to turn off a device’s
interrupt enable bit when the program servicing the device terminates.

Only one address list can be active at any given time; hence, if multiple
DEVICE calls are issued, only the last one has any effect. The list must not be
modified by the program after the DEVICE call has been issued, and the list
must not be located in an overlay or an area over which the USR swaps.

The second argument of the call (link) provides support for a linked list of
tables. The link argument is optional and causes the first word of the list to be
processed as the link word.

Form: CALL DEVICE (ilist[,link])

where:

ilist is an integer array that contains two-word elements, each com-
posed of a one-word address and a one-word value to be put at
that address, terminated by a zero word. On program termina-
tion, each value is moved to the corresponding address

link is an optional argument that can be any value. This indicates
that a linked list table is to be used

If the linked list form is used the first word of the array is the link
list pointer

For more information on loading values into device registers, see the .DEVICE
programmed request (Section 2.15).

Errors:
None.
Example:
INTEGER*Z IDR11(3) IDEVICE ARRAY SPEC
DATA IDRI1(1)/"1B7770/ IDR11 CSR ADDRESS (OCTAL)
DATA IDR11(Z)/0/ IUALUE TO CLEAR INTERRUPT ENGBLE
DATA IDRI11(3)/0/ IAND END-OF-LIST FLAG
CALL DEVICE(IDR11) ISET UP FOR ABORT
3.7 DJFLT

3-6

The DJFLT function converts an INTEGER*4 value into a REAL*S
(DOUBLE PRECISION) value and returns that result as the function value.

Form: d = DJFLT (jsrc)

where:

jsrc specifies the INTEGER*4 variable to be converted

System Subroutine Description and Examples

Notes:

If DJFLT is used, it must be defined in the FORTRAN program, either
explicitly (REAL*8 DJFLT) or implicitly IMPLICIT REAL*8 (D)). Without
a definition, DJFLT is assumed to be REAL*4 (single precision).

Function Results:
The function result is the REAL*8 value that is the result of the operation.
Errors:

None.
Example:

INTEGER#4 JUAL
REAL*E DJFLT.D

+

+

D=DJFLT (JUAL)

3.8 GETSTR

The GETSTR subroutine reads a formatted ASCII record from a specified
FORTRAN logical unit into a specified array. The data is truncated (trailing
blanks removed) and a null byte is inserted at the end to form a character
string.

GETSTR can be used in main program routines or in completion routines, but
it cannot be used in both at the same time. If GETSTR is used in a comple-
tion routine, it cannot be the first I/O operation on the specified logical unit.

Form: CALL GETSTR (lun,out,len,err)

where:

lun is the integer FORTRAN logical unit number of a formatted se-
quential file from which the string is to be read

out is the array to receive the string; this array must be at least one
element longer than len

len is the integer number representing the maximum length of the
string that is allowed to be input

err is the LOGICAL*1 error flag that is set to .TRUE. if an error
occurred. If an error did not occur, it is .FALSE.
Errors:

Error conditions are indicated by err. If err is .TRUE., the values re-
turned are as follows:

err = -1 End-of-file for a read operation.
err = -2 Hard error for a read operation.
err = -3 More than len bytes were contained in a record.

System Subroutine Description and Examples ~ 3-7

3.9 GTIM

Example:

The following example reads a string of up to 80 characters from logical
unit 5 into the array STRING.

LOGICAL*1 STRING(81) +ERR

CALL GETSTR(5:STRING 80 ,ERR)

The GTIM subroutine returns the current time of day. The time is returned in
two words and is given in terms of clock ticks past midnight. If the system
does not have a line clock, a value of 0 is returned. If an RT-11 monitor TIME
command has not been entered, the value returned is the time elapsed since
the system was bootstrapped, rather than the time of day.

Form: CALL GTIM (itime)

where:

itime is the two-word area to receive the time of day

The high-order time is returned in the first word, the low-order time in the
second word. The CVTTIM routine (see Section 3.5) can be used to convert
the time into hours, minutes, seconds and ticks. CVTTIM performs the con-
version based on the monitor configuration word for 50- or 60-cycle clocks.
Under an FB or XM monitor, the time-of-day is automatically reset after
24:00 when a GTIM is executed; under the single-job monitor, it is not.

Errors
None.

Example:

INTEGER*4 JTIME

+

+

CALL GTIM(JTIME)

3.10 GTJB/IGTJB

The GTJB subroutine returns information about a job in the system.

Form: CALL GTJB (addr,[jobblk [,i]])
i = GTJB (addr,[jobblk))
CALL IGTJB (addr,[jobblk [,i]])
1 = IGTJB (addr,[jobblk])

3-8 System Subroutine Description and Examples

where:

addr is the address of an eight- or twelve-word block into which the
parameters are passed

The parameters returned are as follows:

Word 1

=~ W

=1

8-9
10-12

Job Number = priority level*2 (background job is
0, system jobs are 2, 4, 6, 10, 12, 14, foreground
job is 16 in system job monitors; background job
is 0, foreground job is 2 in FB and XM monitors;
job number is 0 in SJ monitor)

High-memory limit of job partition (last location
plus 2)

Low-memory limit of job partition (first location)
Pointer to I/O channel space

Address of job’s impure area in FB and XM moni-
tors (0 in SJ)

Low byte: unit number of job’s console terminal
(only if the multi-terminal option is present; 0 in
SJ and when the multi-terminal feature is not
used)

Virtual high limit for a job created with the linker
/V option (XM only; 0 in SJ and FB and where
the Linker /V option is not used)

Reserved for future use

ASCII logical job name (system job monitors
only)

jobblk is a pointer to a three-word ASCII job name for which data is
being requested. Do not specify this argument when requesting
the eight-word block

i is an error return if the job is not running

If one argument is used with the call, only the first eight parameters will be

passed. For example,

INTEGER IJPARM(8)
CALL GTJB (IJPARM)

I = GTJB (IJPARM)

At least a comma must follow the argument to pass the information into a
12-word block. For example,

INTEGER IJPARM(12)
CALL GTJB (IJPARM,)
I = GTJB (IJPARM,)

Errors:

i

I

0 Normal return.
-1 No such job currently running.

System Subroutine Description and Examples 3-9

Example:

C THIS IS5 AN EXAMPLE UNDER & SYSTEHM

C JOB MOMITOR TO SEE IF THE FOREGROUMD
C J0B IS RUNNING

DIMENSION JDATACLIZS

I = GTJB (JDATA, 1B}
IF (I.EQ.0) GOTO 20
TYFE 10

10 FORMAT('NO FG JOB! ")
sSTOP

+

3.11 GTLIN

The GTLIN subroutine transfers a line of input from the console terminal or
an active indirect command file to the user program. This request allows you
to input information at the console terminal, and it allows the program to
operate through indirect files. This subroutine requires the USR. The maxi-
mum size of the input line is 80 characters. See the .GTLIN programmed
request for setting bits in the Job Status Word to pass lower-case letters and
to establish a nonterminating condition.

Form: CALL GTLIN (result[,prompt])

where:

result is the array receiving the string. This LOGICAL*1 array con-
tains a maximum of 80 characters plus 0 as the end indicator,
and therefore must be dimensioned to at least 81 elements

prompt is a LOGICAL*1 array containing an optional prompt string
to be printed before the input line is received. The string
format is the same as that used by the PRINT subroutine. If
this argument is not present, no prompt is printed

Errors:
None.

Example:

LOGICAL* INP(BO),PROMTIG)
DATA PROMT /N7 /A7 /M E’ 77, 200/

+

CALL GTLINCINP .PROMT)

+
+

+

3-10 System Subroutine Description and Examples

3.12

3.13

IADDR

The TADDR function returns the 16-bit absolute memory address of its argu-
ment as the integer function value.

Form: i=IADDR (arg)
where:

arg is the variable or constant whose memory address is to be ob-
tained. The value obtained by passing an expression as arg is
unpredictable
Errors:
None.
Example:

IADDR can be used to find the address of an assembly language global
area. For example:

EXTERNAL CAREA
J=TADDR{CARER)

IAJFLT

The IAJFLT function converts an INTEGER*4 value to a REAL*4 value and
stores the result.

Form: 1= IAJFLT (jsrc,ares)

jsrc is the INTEGER*4 variable to be converted

ares is the REAL*4 variable or array element to receive the converted
value

Function Results:

i = -1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.

Errors:
i = -2 Significant digits were lost during the conversion.
Example:
INTEGER*4 JUAL
REAL*4 RESULT
IF(IAJFLT(JUAL +RESULT) EQ.-2) TYPE 29
99 FORMAT (’ OVERFLOW IN INTEGER#4 TO REAL CONVERSION'?

System Subroutine Description and Examples 3-11

3.14 |ASIGN

The IASIGN function sets information in the FORTRAN logical unit table
(overriding the defaults) for use when the FORTRAN Object Time System
(OTS) opens the logical unit. This function can be used with ICSI (see
Section 3.19) to allow a FORTRAN program to accept a standard CSI input
specification. [ASIGN must be called before the unit is opened; that is, before
any READ, WRITE, PRINT, TYPE, ACCEPT, or OPEN statements are
executed that reference the logical unit.

Form: i = IASIGN (lun,idevl,ifiltypl,isizel,itype]l])

where:
lun is an INTEGER*2 variable, constant, or expression specifying
the FORTRAN logical unit for which information is being
specified
idev is a one-word Radix-50 device name; this can be the first word

of an ICSI input or output file specification

ifiltyp is a three-word Radix-50 file name and file type; this can be
words 2 through 4 of an ICSI input or output file specification

isize is the length (in blocks) to allocate for an output file; this can
be the fifth word of an ICSI output specification. If 0, the
larger of either one-half the largest empty segment or the en-
tire second largest empty segment is allocated. If the value
specified for length is -1, the entire largest empty segment is
allocated

itype is an integer value determining the optional attributes to be
assigned to the file. This value is obtained by adding the val-
ues that correspond to the desired operations:

1 Use double buffering for output.

2 Open the file as a temporary file.

4 Force a LOOKUP on an existing file during the first I/O
operation. (Otherwise, the first FORTRAN I/O operation
determines how the file is opened. Normally if the first I/
operation is a write, an IENTER would be performed on
the specified logical unit. A read always causes a
LOOKUP.)

8 Expand carriage control information (see Notes below).

16 Do not expand carriage control information.
32 File is read only.

Notes:

Expanded carriage control information applies only to formatted output files
and means that the first character of each record is used as a carriage control
character when processing a write operation to the given logical unit. The first
character is removed from the record and converted to the appropriate ASCII
characters to simulate the requested carriage control.

3-12 System Subroutine Description and Examples

If carriage control information is not expanded, the first character of each
record is unmodified and the FORTRAN OTS outputs a line feed, followed by
the record, followed by a carriage return.

If carriage control is unspecified, the FORTRAN OTS sends expanded car-
riage control information to the terminal and line printer and sends unex-
panded carriage control information to all other devices and files. See the
PDP-11 FORTRAN Language Reference Manual for further carriage control
information.

Errors:

i =0 Normal return.
<> 0 The specified logical unit is already in use, or there is no
space for another logical unit association.

Example:

The following example (1) creates an output file on logical unit 3, using
the first output file given to the RT-11 Command String Interpreter
(CSI), (2) sets up the output file for double buffering, (3) creates an
input file on logical unit 4, based on the first input file specification
given to the RT-11 CSI, and (4) makes the input file available for read-
only access.

INTEGER*Z SPEC(33)
REAL*4 EXT(2)

DATA EXT/GRDATDAT «BRDATDAT/ IDEFAULT FILE TYPE IS DAT
10 IFCICSI(SPECTYP 4,00 NE,Q)Y GOTO 10
C
C DO NOT ACCEPRT ANY SWITCHES
C
CALL IASIGN{3:SPEC(1):5PEC(Z} +SPEC(3) 1}
Coll IASIGN(A.SPECCIRY +SPECIL1T) «0.321

3.15 ICDFN

The ICDFN function increases the number of input/output channels. Note
that ICDFN defines new channels; any channels defined with an earlier
ICDFN function are not used. Thus, an ICDFN for 20 (decimal) channels
(while the 16 [decimal] original channels are defined) causes only 20 I/O chan-
nels to exist; the space for the original 16 is unused. The space for the new
channel area is allocated out of the free space managed by the FORTRAN
system.

Form: i = ICDFN (numl,areal)

where:

num is the integer number of channels to be allocated. The number of
channels must be greater than 16 and can be a maximum of 256.

System Subroutine Description and Examples 3-13

The program can use all new channels greater than 16 without a
call to IGETC; the FORTRAN system input/output uses only
the first 16 channels. This argument must be positioned so that
the USR cannot swap over it

area is the space allocated from within the calling program. Under FB
and SJ monitors; be sure that the space is outside the USR

swapping area. If this argument is not specified, the space for
the channels is allocated in the FORTRAN OTS work area

Notes:

1. ICDFN cannot be issued from a completion or interrupt routine.

2. It is recommended that the ICDFN function be used at the beginning of
the main program before any I/O operations are initiated.

3. If ICDFN is executed more than once, a completely new set of channels is
created each time ICDFN is called.

4. ICDFN requires that extra memory space be allocated to foreground pro-
grams (see Section 1.2.4.1).

5. Any channels that were open prior to the ICDFN are copied over to the
new set of channel status tables.

Function Results:

1=0 Normal return.
=1 An attempt was made to allocate fewer channels than already
exist.
=2 Not enough free space is available for the channel area.

Example:

IFCICDFN(Z24) ,EQ.2) STOP 'NOT ENQUGH MEMORY’

3.16 ICHCPY (FB and XM Only)

3-14

The ICHCPY function opens a channel for input, logically connecting it to a

file that is currently open by another job for either input or output. This
function can be used by either the foreground or the background job. An
ICHCPY must be done before the first read or write for the given channel.

Form: i= ICHCPY (chan,ochanl,jobblk])

where:

chan is the channel the job will use to read the data. You must
obtain this channel through an IGETC call, or you can use
channel 16 or higher if you have done an ICDFN call

ochan is the channel number of the other job that is to be copied

jobblk is a pointer to a three-word ASCII job name

System Subroutine Description and Examples

Notes:

1. If the other job’s channel was opened with an IENTER function or a
.ENTER programmed request to create a file, your channel indicates a file
that extends to the highest block that the creator of the file had written at
the time the ICHCPY was executed.

2. A channel that is open on a sequential-access device should not be copied,
because buffer requests can become intermixed.

3. Your program can write to a file (that is being created by the other job) on
Ay

s 11 1 e s (9 1100 11 . 4. YATL.
a COpi a cnannei, _}USE as 1t coulg ir 1t Were tne Creavdr, vy ney

is closed, however, no directory update takes place.

RV VAVAVE LV ¥ B Y2 1T viiv viT&

Errors:

Normal return.

Specified job does not exist or does not have the specified
channel (ochan) open.

Channel (chan) is already open.

._,
Il
— o

Il
)

3.17 ICLOSE
See the SYSLIB subroutine CLOSEC.

3.18 ICMKT

The ICMKT function cancels one or more scheduling requests (made by an
ISCHED, ITIMER, or MRKT routine). Support for ICMKT in SJ requires
that timer support be created through SYSGEN.

Form: i=ICMKT (id,time)
where:

id is the identification integer of the request to be canceled. If id is
equal to 0, all scheduling requests are canceled

time is the name of a two-word area in which the monitor returns the
amount of time remaining in the canceled request

For further information on canceling scheduling requests, see the .CMKT
programmed request (Section 2.5).

Errors:

i =0 Normal return.
=1 id was not equal to 0 and no scheduling request with that
identification could be found.

System Subroutine Description and Examples 3-15

3.19

3-16

ICSI

Example:

INTEGER*4 J

+

+

CALL ICMKT(O.0)

+

4

END

The ICSI function calls the RT-11 Command String Interpreter in special
mode to parse a command string and return file descriptors and options to the
program. In this mode, the CSI does not perform any handler IFETCHes,
CLOSECs, IENTERs, or LOOKUPs. This argument is allowed only when the
input is from the console terminal. ICSI cannot be called from a completion or

TABORT ALL TIMER

REGUESTS NOW

interrupt routine. This subroutine requires the USR.

Form: i = ICSI (filspc,deftyp,lcstring],loption],n)

where:
filspc
array)

Word

is:

output file number 1
specification

is the 39-word area to receive the file specifications. The for-
mat of this area (considered as a 39-element INTEGER*2

output file number 1 length

output file number 2
specification

output file number 2 length

output file number 3
specification

output file number 3 length

input file number 1
specification
input file number 2
specification
input file number 3
specification
input file number 4
specification
input file number 5
specification
input file number 6
specification

System Subroutine Description and Examples

deftyp

cstring

option

n

Notes:

is the table of Radix-50 default file types to be assumed when
a file is specified without a file type:

deftyp(1) is the default for all input file types

deftyp(2) is the default file type for output file number 1
deftyp(3) is the default file type for output file number 2
deftyp(4) is the default file type for output file number 3

is the area that contains the ASCIZ command string to be
interpreted; the string must end in a zero byte. If the argu-
ment is omitted, the system prints the prompt character (*)
at the terminal and accepts a command string. If input is
from an indirect command file, the next line of that file is
used

is the name of an INTEGER*2 array dimensioned (4,n) where
n represents the number of options defined to the program.
This argument must be present if the value specified for n is
non-zero. This array has the following format for the jth op-
tion described by the array:

option(1,j) is the one-character ASCII name of the option

option(2,j) is set by the routine to 0, if the option did not
occur; to 1, if the option occurred without a
value; to 2, if the option occurred with a value

option(3,j) is set to the file number on which the option is
specified

option(4,j) is set to the specified value if option(2,n) is equal
to 2

is the number of options defined in the array option

1. The array option must be set up to contain the names of the valid options.
For example, use the following to set up names for five options:

QlllTs 10V 21VE LUPLIVLES.

........ v2iis

INTEGER*2Z SW{4:33
DATA SWIL1+13/757/7 +8BW{1 237 M7/ +BWIL131/°17/
DATA SBWIL «4) /7L 7/ +BWI1.8y/'E"/

N

Multiple occurrences of the same option are supported by allocating an

entry in the option array for each occurrence of the option. Each time the
option occurs in the option array, the next unused entry for the named
option is used.

3. The arguments of ICSI must be positioned so that the USR cannot swap
over them. For more information on calling the Command String Inter-
preter, see the .CSISPC programmed request (Section 2.10).

Errors:

I
WK O

Il

Normal return.

Iliegal command line; no data was returned.

An illegal device specification occurred in the string.

An illegal option was specified, or a given option was specified
more times than were allowed for in the option array.

System Subroutine Description and Examples 3-17

Example:

The following example causes the program to loop until a valid com-
mand is typed at the console terminal.

INTEGER*Z SPEC(33)
REAL*4 EXT(2)
DATA EXT/GRDATDAT BRDATDAT/

+

+

10 TYPE 89
98 FORMAT (' ENTER WALID CSI STRING WITH NO OPTIONS
IF(ICSI(SPEC+EXT»+:+0).NE.0O) GOTD 10

3.20 ICSTAT (FB and XM Only)

The ICSTAT function obtains information about a channel. It is supported

only in the FB or XM environment; no information is returned under the
single-job monitor.

Form: i = ICSTAT (chan,addr)

where:

chan is the channel whose status is desired

addr is a six-word area to receive the status information. The area, as
a six-element INTEGER*2 array, has the following format:

Word 1 channel status word

starting absolute block number of file on this channel
length of file

highest block number written since file was opened

unit number of device with which this channel is asso-
ciated

6 Radix-50 of device name with which the channel is
associated

U o N

Errors:

i=0 Normal return.
=1 Channel specified is not open.

Example:

The following example obtains channel status information about
channel I.

INTEGER*Z AREA(G)
1=7
IF(ICSTAT(IAREA) \NE,0) TYPE 99,1
899 FORMAT (13X, ‘CHANNEL‘,14,'IS§ NOT OPEN‘)

3-18 System Subroutine Description and Examples

3.21

IDELET

The IDELET function deletes a named file from an indicated device.
IDELET requires the USR and cannot be issued from a completion or inter-

rupt routine.

Form: i = IDELET (chan,dblkl,seqnum])

where:

chan

dblk

seqnum

is the channel to be used for the delete operation. You must
obtain this channel through an IGETC call, or you can use
channel 16 (decimal) or higher if you have done an ICDFN
call

is the four-word Radix-50 specification (dev:filnam.typ) for
the file to be deleted

is the file number for cassette operations: if this argument is
blank, a value of 0 is assumed

For magtape operation, it describes a file sequence number
that can have the following values:

Value Meaning

-1 This value suppresses rewinding and searching for a
file name from the current tape position. Note that if
the position is unknown, the handler executes a posi-
tioning algorithm that involves backspacing until an
end-of-file label is found. The user should not use any
other value since all other negative values are re-
served for future use.

0 This value rewinds the magtape and spaces forward
until the file name is found.

n Where n is any positive number. This value positions
the magtape at file sequence number n. If the file
represented by the file sequence number is greater
than two files away from the beginning of the tape, a
rewind is performed. If not, the tape is backspaced to
the file.

NOTE

The arguments of IDELET must be located so that the USR
cannot swap over them.

ararifiad

M ~
1 1€ Specitiead ©

<
requires that the handler to be used be resident

r\v\v\r\]
1aliiiici 1d 1T

ooy 1 TNRT '
compiete. 1ML 1

IFETCH call or a

s left inactive when the IDELET i

(via an
LOAD command from KMON) at the time the IDELET is issued. If the
handler is not resident, a monitor error occurs.

System Subroutine Description and Examples 3-19

3.22

3-20

For further information on deleting files, see the .DELETE programmed
request (Section 2.14).

Errors:
i=0 Normal return.
=1 Channel specified is already open.
= 2 File specified was not found.
=3 Device in use.
=4 The file is protected and cannot be deleted.
Example:

The following example deletes a file named FI'N5.DAT from SYO.

REAL#4 FILNAM{Z)
DATA FILMNAM/GBREYOFTN:BRE DAT/

+

I=IGETC()

IF{ILLT.0) STOP ‘NO CHANNEL'
CALL IDELET(I:FILNAM)

CALL IFREEC{I)

IDJFLT

The IDJFLT function converts an INTEGER*4 value into a REAL*8
(DOUBLE PRECISION) value and stores the result.

Form: i = IDJFLT (jsrc,dres)

where:
jsrc specifies the INTEGER*4 variable that is to be converted

dres specifies the REAL*8 (or DOUBLE PRECISION) variable to
receive the converted value

Function Results:

i=-1 Normal return; the result is negative.
= 0 Normal return; the result is 0.
= 1 Normal return; the result is positive.

Errors:
None.
Example:
INTEGER*4 JJ
REAL*8 DJ
IF(IDJFLT(JJDJYLE. 0O} TYPE 99
99 FORMAT (’ YALUE IS NOT POSITIVE)

System Subroutine Description and Examples

3.23

IDSTAT

The IDSTAT function obtains information about a particular device. It
requires the USR and cannot be issued from a completion or interrupt routine.

Form: i = IDSTAT (devnam,cblk)

where:

devnam is the Radix-50 device name

cblk is the four-word area used to store the status information.
The area, as a four-element INTEGER*2 array, has the fol-
lowing format:

Word 1 device status word (see Section 2.24)
2 size of handler in bytes
3 entry point of handler (non-zero implies that the
handler is in memory)
4 size of the device (in 256-word blocks) for block-
replaceable devices; zero for sequential-access
devices

NOTE

The arguments of IDSTAT must be positioned so that the USR
cannot swap over them.

IDSTAT looks for the device specified by devnam and, if found, returns four
words of status in cblk.

Errors:

1 =0 Normal return.
=1 Device not found in monitor tables.

Example:

The following example determines whether the line printer handler is in
memory. If it is not, the program stops and prints a message to indicate
that the handler must be loaded.

INTEGER IDNAM

INTEGER*Z CBLK (41

DATA IDNAM/3RLE /

DATA CBLK/4%0/

CALL IDSTAT(IDNAM:CBLK)

IF(CBLK(3).,EQ.0) STOP ‘LOAD THE LP HANDLER AND RERUN

TER

The IENTER function allocates space on the specified device and creates a
tentative directory entry for the named file. If a file of the same name already

System Subroutine Description and Examples ~ 3-21

3-22

exists on the specified device, it is not deleted until the tentative entry is
made permanent by CLOSEC or ICLOSE. The file is attached to the channel
number specified. This routine requires the USR.

Form: i = IENTER (chan,dblk,length[,seqnum])

where:

chan

dblk

length

seqnum

Notes:

is the integer specification for the RT-11 channel to be asso-
ciated with the file. You must obtain this channel through an
IGETC call, or you can use channel 16 or higher if you have
done an ICDFN call

is the four-word Radix-50 descriptor of the file to be operated
upon

is the integer number of blocks to be allocated for the file. If
0, the larger of either one-half the largest empty segment or
the entire second largest empty segment is allocated. If the
value specified for length is -1, the entire largest empty seg-
ment is allocated (see the .ENTER programmed request,
Section 2.27).

is a file number for cassette. If this argument is blank, a
value of 0 is assumed.

For magtape, it describes a file sequence number that can
have the following values:

-2 Rewind the magtape and space forward until the file
name is found, or until logical end-of-tape is detected.
The magtape is now positioned correctly. A new logical
end-of-tape is implied.

-1 Space to the logical-end-of-tape and enter file.

0 Rewind the magtape and space forward until the file
name is found or the logical-end-of-tape is detected. If
the file name is found, an error is generated. If the file
name is not found, then enter file.

n Position magtape at file sequence number n if n is
greater than zero and the file name is not null.

1. IENTER cannot be issued from a completion or interrupt routine.

[}

IENTER requires that the appropriate device handier be in memory.

3. The arguments of IENTER must be positioned so that the USR does not
swap over them.

System Subroutine Description and Examples

For further information on creating tentative directory entries, see the
.ENTER programmed request (Section 2.27).

Errors:
i = n Normal return; number of blocks actually allocated (n =0
for non-file-structured IENTER).
= -1 Channel (chan) is already in use.
— -2 In a fixed-length request, no space greater than or equal to
length was found.
= -3 Device in use.
= -4 A file by that name already exists and is protected.
= -5 File sequence number not found.
Example:

The following example allocates a channel for file TEMP.TMP on SYO0.
If no channel is available, the program prints a message and halts.

REAL*4 DBLRK(Z)

DATA DBLK/GRSYOTEMBRP TMP/

ICHAN=IGETC(}

IF(ICHAN,LT.0Q) STOF ‘N0 AVAILABLE CHANNEL'

CREATE TEMPORARY WORK FILE

(et R

IF(IENTER{ICHAN sDBLK »20),LT,0} STOP ‘ENTER FAILURES

CALL PURGE(ICHAN?
CALL IFREEC(ICHAN)

3.25 IFETCH

The IFETCH function loads a device handler into memory from the system
device, making the device available for input/output operations. The handler
is loaded into the free area managed by the FORTRAN system. Once the
handler is loaded, it cannot be released and the memory in which it resides
cannot be reclaimed. IFETCH requires the USR and cannot be issued from a
completion or interrupt routine.

Form: i=IFETCH (devnam)

where:

devnam is the one-word Radix-50 name of the device for which the
handler is desired. This argument can be the first word of an
ICSI input or output file specification. This argument must
be positioned so that the USR cannot swap over it

System Subroutine Description and Examples 3-23

For further information on loading device handlers into memory, see the
FETCH programmed request (Section 2.29).

Errors:
i=0 Normal return.
=1 Device name specified does not exist.
=2 Not enough room exists to load the handler.
=3 No handler for the specified device exists on the system
device.
Example:

The following example requests that the DX handler be loaded into
memory; execution stops if the handler cannot be loaded.

REAL*4 IDNAMW
DATA IDNAM/3RDX/

IF (IFETCH(IDNAM) ,NE.O) STOP ‘FATAL ERROR FETCHING HANDLER®

3.26 IFREEC

The IFREEC function returns a specified RT-11 channel to the available pool
of channels. Before IFREEC is called, the specified channel must be closed or
deactivated with a CLOSEC or ICLOSE (see Section 3.3) or a PURGE (see
Section 3.87) call. IFREEC cannot be called from a completion or interrupt
routine. IFREEC calls must be issued only for channels that have been suc-
cessfully allocated by IGETC calls; otherwise, the results are unpredictable.

Form: i = IFREEC (chan)

where:

chan is the integer number of the channel to be freed

Errors:

i=0 Normal return.
=1 Specified channel is not currently allocated.

Example:

See the example under IGETC.

3.27 IGETC

The IGETC function allocates an RT-11 channel, in the range 0-17 (octal), to
be used by other SYSLIB routines and marks it in use so that the FORTRAN

3-24 System Subroutine Description and Examples

3.28

I/0 system will not access it. IGETC cannot be issued from a completion or
interrupt routine.

Form: i=IGETC()
Function Result:

i =n Channel n has been allocated.

Error:
i = -1 No channels are available.

Example:
ICHAN=IGETC () IALLOCATE CHANNEL
IF(ICHAN.LT.0) STOP ‘CANNOT ALLOCATE CHANMEL
CALL IFREEC{ICHAN) IFREE IT WHEN THROUGH
END

The IGETSP subroutine obtains free space from the FORTRAN system and
returns the address and size (in number of words) of the allocated space.
When this space is obtained, it is allocated for the duration of the program.

Form: i = IGETSP (min,max,iaddr)
where:

min is the minimum space to be obtained without an error indicat-
ing that the desired amount of space is not available

max is the maximum space to be obtained

iaddr is the integer specifying the address of the start of the free space
(buffer). Note that iaddr does not directly denote the storage
area as a standard FORTRAN variable would. Rather, it de-
notes a word that contains the address of the storage space. It is
most useful with IPEEK and IPOKE, or with assembly
language subroutines

NOTE

Extreme caution should be exercised to avoid using all of the
free space allocated bv the FORTRAN system. If the FOR-

€ 3padic €4 Oy une rfurviivsuN 8y N1, 11 TAC ULV
TRAN system runs out of dynamic free space, fatal errors
(Error 29, 30, 42, and so forth) occur. See the RT-11 System
Message Manual.

System Subroutine Description and Examples 3-25

3.29

Function Results:

i =n The actual size allocated whose value is min .LE. n .LE. max.
The size (min, max, n) is specified in words.

Error:

i=-1 Not enough free space is available to meet the minimum re-
quirements; no allocation was taken from the FORTRAN sys-
tem free space.

Example:

N=IGETSP(Z3B.,256:IBUFF) 'GET 256 WORD BUFFER
IF{N,LT.0) STOP ‘CANNODT GET BUFFER SPACE!’ 'ND SPACE AVAILABLE

IGTJB

(See the SYSLIB subroutine GTJB.)

3.30 JCVT

The IJCVT function converts an INTEGER*4 value to INTEGER*2 format.
If ires is not specified, the result returned is the INTEGER*2 value of jsrc. If
ires is specified, the result is stored there.

Form: i = IJCVT (jsrcl,ires])
where:

jsrc specifies the INTEGER*4 variable or array element whose value
is to be converted

ires specifies the INTEGER*2 entity to receive the conversion result
Function Results (if ires is specified):

i=-2 An overflow occurred during conversion.
-1 Normal return; the result is negative.

0 Normal return; the result is 0.

=1 Normal return; the result is positive.

Errors:
None.
Example:
INTEGER*4 JVAL
INTEGER*2 IVAL

+

+

IF(IJCYT(JVAL »IVAL) VEQ, -2 TYPE 99
g9 FORMAT(NUMBER TOO LARGE IN IJCVUT CONVERSION’)

Subroutine Description and Examples

3.31

3.32

ILUN

The ILUN function returns the RT-11 channel number with which a FOR-
TRAN logical unit is associated.

Form: i = ILUN (lun)
where:

lun is an integer expression whose value is a FORTRAN logical unit
number in the range 1-99

Function Resuits:

= +n RT-11 channel number n is associated with lun.

Errors:
i = -1 Logical unit is not open.
= -2 Logical unit is opened to console terminal.
Example:
PRINT 289
99 FORMAT(’ PRINT DEFAULTS TO LOGICAL UNIT G+ WHICH FURTHER DEFAULTS TO LP: ')
ICHAN=TLUN(G) IWHICH RT-11 CHANNEL IS RECEIVING I/07

The INDEX subroutine searches a source string for the occurrence of a pat-
tern string and returns the character position of the first occurrence of the
pattern within the source.

Form: CALL INDEX (a,pattrn,[i],m)
or
m = INDEX (a,pattrnl,i])
where:

a is the array containing the source string to be searched; it
must be terminated by a null byte

pattrn is the string being sought; it must be terminated by a null byte

i is the integer starting character position of the search in a. If:
is omitted, a is searched beginning at the first character
position

m is an integer variable to store the result of the search; m is set

to the starting character position of pattrn in a, if found;
otherwise m is 0

Errors:

None.

System Subroutine Description and Examples 3-27

Example:

The following example searches the array STRING for the first occur-
rence of strings EFG and XYZ and searches the string ABCABCABC
for the occurrence of string ABC after position 5.

CaLL
CaLL
CaLL
CALL

SCOPY('ABCDEFGHI ' +STRING)
INDEX(STRING, 'EFG” + M}
INDEX{(STRING s "¥YZ 7+ +N)

INDEX("ABCABCABC’ » "ABC " +5.L)

FINITIALIZE STRING
IM=Z
IN=0C
=7

The INSERT subroutine replaces a portion of one string with another string.

Form: CALL INSERT (in,out,i[,m])

is the array containing the string being inserted. The string must
be terminated with a null if the number of characters is less than
the value of m (below), or if m is not specified

is the array containing the string being modified. The string must

be terminated with a null

is the integer specifying the character position in out at which the

insertion begins

is the integer maximum number of characters to be inserted

If the maximum number of characters (m) is not specified, all characters to
the right of the specified character position (i) in the string being modified are
replaced by the string being inserted. The insert string (in) and the string
being modified (out) can be in the same array only if the maximum number of
characters (m) is specified and is less than or equal to the difference between
the position of the insert (i) and the maximum string length of the array.

SCOPY ('ABCDEFGHIJ :81)
SCOPY(51.:82)
INSERT(1237:81:6.:3}
INSERT(7123’ :+82:4)

PINITIALIZE STRING 1
PINITIALIZE STRING 2
{681 = ‘ABCDE1Z23IJ7
62 = 'ABC1Z237

The INTSET function establishes a FORTRAN subroutine as an interrupt
service routine, assigns it a priority, and attaches it to a vector. INTSET

3.33 INSERT
where:
in
out
1
m
Errors:
None.
Example:
CALL
CALL
caLL
CALL
3.34 INTSET
3-28

System Subroutine Description and Examples

requires that extra memory be allocated to foreground programs that use it

(s

ee Section 1.2.4.1).

TT W T.1)

Form: i = INTSET (vect,pri,id,crtn)

where:

vect is the integer specifying the address of the interrupt vector to
which the subroutine is to be attached

pri is the integer specifying the actual priority level (4-7) at which
e

P 3
device interrupts

id is the identification integer to be passed as the single argument
to the FORTRAN routine when an interrupt occurs. This allows
a single crtn to be associated with several INTSET calls

ertn is a FORTRAN subroutine to be established as the interrupt
routine. This name should be specified in an EXTERNAL state-
ment in the FORTRAN program that calls INTSET. The sub-
routine has one argument:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the integer argument is
the value specified for id in the appropriate INTSET call

Notes:

1.

The id argument can be used to distinguish between interrupts from dif-
ferent vectors if the routine to be activated services multiple devices.

When using INTSET in FB or XM, the SYSLIB call DEVICE must be
used in almost all cases to prevent interrupts from interrupting beyond
program termination.

If the interrupt routine (crtn) has control for a period of time longer than
the time in which two more interrupts using the same vector occur, inter-
rupt overrun is considered to have occurred. The error message:

?7SYSLIB-F-Interrupt overrun

is printed and the job is aborted. Jobs requiring very fast interrupt re-
sponse are not viable with FORTRAN, since FORTRAN overhead lowers
RT-11’s interrupt response rate.

The interrupt routine (crtn) is actually run as a completion routine by the
RT-11 .SYNCH macro. The pri argument is used for the RT-11 INTEN
macro.

A .PROTECT request is issued for the vector, but no attempt is made to
report an error if the vector is already protected; furthermore, the vector is
taken over unconditionally. See the .PROTECT programmed request
(Section 2.55) for more information.

The FORTRAN interrupt service subroutine (crtn) cannot call the USR.

System Subroutine Description and Examples ~ 3-29

7. INTSET cannot be called from a completion or interrupt routine.

8. Interrupt enable should not be set on the associated device until the
INTSET call has been successfully executed.

Errors:
1 =0 Normal return.
=1 Invalid vector specification.
= 2 Reserved for future use.
= 3 No space is available for the linkage setup.
Example:
EXTERNAL CLKSUB ISUBR TO HANDLE KW11-P CLOCK
I=INTSET("104:6:0,CLKSUB) 'ATTACH ROUTINE
IF (I.NE.O) GOTO 100 IBRANCH IF ERROR
END

SUBRODUTINE CLKSUB(ID:

+

+

END

3.35 IPEEK

The IPEEK function returns the contents of the word located at a specified
absolute 16-bit memory address. This function can examine device registers or
any location in memory.

Form: i = IPEEK (iaddr)
where:

iaddr is the integer specification of the absolute address to be
examined. If this argument is not an even value, a trap results
(except on LSI-11 or a PDP-11/23)

Function Result:

The function result (i) is set to the value of the word examined.
Example:

ISWIT = IPEEK("177570) 'GET VALUE OF CONSOLE SWITCHES

3.36 IPEEKB

The IPEEKB subroutine returns the contents of a byte located at a specified
absolute byte address. Since this routine operates in a byte mode, the address

3-30 System Subroutine Description and Examples

supplied can be odd or even. This subroutine can examine device registers or
any byte in memory. The return is zero extended, that is, the high byte is 0.

Form: i = IPEEKB (iaddr)
where:

iaddr is the integer specification of the absolute byte address to be
examined. Unlike the IPEEK subroutine, the IPEEKB subrou-
tine allows odd addresses

Function Result:
The function result (i) is set to the value of the byte examined.

Example:

IERR = IPEEKB{("33} 1Get error bvte

3.37 IPOKE

The IPOKE subroutine stores a specified 16-bit integer value into a specified
absolute memory location. This subroutine can store values in device
registers.

Form: CALL IPOKE (iaddr,ivalue)
where:

iaddr is the integer specification of the absolute address to be modi-
fied. If this argument is not an even value, a trap results
(except on LSI-11 or PDP-11/23)

ivalue is the integer value to be stored in the given address specified
by the iaddr argument

Errors:
None.
Example:

The following example displays the value of IVAL in the console display
register (this is possible only on certain processors).

CALL IPORE("177370:IUAL)

To set bit 12 in the JSW without zeroing any other bits in the JSW, use
the following procedure.

CALL IPOKE("44,"10000,0R.IPEEK("44))

3.38 IPOKEB

The IPOKEB subroutine stores a specified eight-bit integer value into a speci-
fied byte location. Since this routine operates in a byte mode, the address

System Subroutine Description and Examples 3-31

3.39

3-3

2

supplied can be odd or even. This subroutine can store values in device
registers.

Form: CALL IPOKEB (iaddr,ivalue)

where:

iaddr is the integer specification of the absolute address to be modi-
fied. Unlike the IPOKE subroutine, the IPOKEB subroutine
allows odd addresses

ivalue is the integer value to be stored in the given address specified
by the iaddr argument

Errors:
None.

Example:

CALL IPOKEB("S3:"20) ! Tell KMON urceonditionally fatal BETror

IQSET

The IQSET function is used to make the RT-11 I/O queue larger — that is,
to add available elements to the queue. These elements are allocated out of
the free space managed by the FORTRAN system. IQSET cannot be called
from a completion or interrupt routine.

Form: i = IQSET (qglengl,area])
where:

gleng is the integer number of elements to be added to the queue.
This argument must be positioned so that the USR does not
swap over it

area is the space allocated from within the calling program. Under
FB and SJ monitors, make sure that the space is outside the
USR swapping area. If this argument is not specified, the space
for the elements is allocated in the FORTRAN OTS work area

All RT-11 I/O transfers are done through a centralized queue management
system. If I/O traffic is very heavy and not enough queue elements are avail-
able, the program issuing the I/O requests is suspended until a queue element
becomes available. In an FB or XM system, the other job can run while the
first program waits for the element. When IQSET is used in a program to be
run in the foreground, the FRUN command must be modified to allocate
space for the queue elements (see Section 1.2.4.1).

A general rule to follow is that each program should contain one more queue
element than the total number of I/0 and timer requests that will be active
simultaneously. Timing functions such as ITWAIT and MRKT also cause
elements to be used and must be considered when allocating queue elements

System Subroutine Description and Examples

for a program. Note that if synchronous I/O is done (for example,
IREADW/IWRITW) and no timing functions are done, no additional queue
elements need be allocated. Note also that FORTRAN IV allocates four queue
elements by default.

The following subroutines require queue elements:

IRCVD/IRCVDC/IRCVDF/IRCVDW ITIMER
IREAD/IREADC/IREADF/IREADW ITWAIT

ISCHED TUNTIL
ISDAT/ISDATC/ISDATF/ISDATW IWRITE/IWRITC/IWRITF/IWRITW
ISLEEP MRKT

ISPFN/ISPFNC/ISPFNF/ISPEFNW ~ MWAIT

For further information on adding elements to the queue, see the .QSET
programmed request.

Errors:
i =0 Normal return.
- T 1 o : : 1. £ 4 -) A, £ izanas
=1 Not enough free space is available for the number of queue
elements to be added; no allocation was made.
Example:
IF(IQSET(5),NE.O) STOP ‘NOT ENOUGH FREE SPACE FOR QUELE ELEMENTS'

3.40 IRADS50

The IRAD50 function converts a specified number of ASCII characters to
Radix-50 and returns the number of characters converted. Conversion stops
on the first non-Radix-50 character encountered in the input, or when the

LANTT

specified number of ASCII characters have been converted.

Form: n = IRAD50 (icnt,input,output)

where:
n is the integer number of input characters actually connected
icnt is the number of ASCII characters to be converted
input is the area from which input characters are taken

output is the area in which Radix-50 words are stored

Three characters of text are packed into each word of output. The number of
output words modified is computed by the expression (in integer words):

J

{iecnt+2)/3

Thus, if a count of 4 is specified, two words of output are written even if only a
one-character input string is given as an argument.

System Subroutine Description and Examples 3-33

Function Result:

The integer number of input characters actually converted (n) is returned as
the function result.

Example:

REAL*8 FSPEC
CALL IRADSO(L1Z2'SYOTEMP DAT',FSPEL)

3.41 IRCVD/IRCVDC/IRCVDF/IRCVDW (FB and XM Only)

3-34

There are four forms of the receive data function; these are used in conjunc-
tion with the ISDAT (send data) functions to allow a general data/message
transfer system. The receive data functions issue RT-11 receive data pro-
grammed requests (see Section 2.60). These functions require a queue
element; this should be considered when the IQSET function (Section 3.39) is
executed.

IRCVD

The IRCVD function receives data and continues execution. The operation is
queued and the issuing job continues execution. When the job has to receive
the transmitted message, an MWAIT should be executed. This causes the job
to be suspended until the message has been received.

Form: i = IRCVD (buff,wcnt)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received
because the first word contains the integer number of words
actually transmitted when IRCVD is complete

went is the maximum integer number of words that can be received
Errors:

i =0 Normal return.
=1 No such job exists in the system.
Example:

INTEGER*Z MEG(41)

+

CALL IRCYD(MBG.40)

+

CALL MWAIT

IRCVDC
The IRCVDC function receives data and enters an assembly language comple-
tion routine when the message is received. The IRCVDC is queued, and

System Subroutine Description and Examples

program execution stays with the issuing job. When the other job sends a
message, the completion routine specified is queued and run according to
standard scheduling of completion routines.

Form: i = IRCVDC (buff,went,crtn)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received because
the first word contains the integer number of words actually

24 h] 1 TN T
fransmifted when IRCUVDU 1s complete

went is the maximum integer number of words to be received

crtn is the assembly language completion routine to be entered. This
name must be specified in a FORTRAN EXTERNAL statement
in the routine that issues the IRCVDC call

Errors:

i =0 Normal return.
=1 No such job exists in the system.

IRCVDF

The IRCVDF function receives data and enters a FORTRAN completion sub-
routine when the message is received. The IRCVDF is queued, and program
execution continues with the issuing job. When the other job sends a message,
the FORTRAN completion routine specified is entered.

Form: i = IRCVDF (buff,went,area,crtn)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received because
the first word contains the integer number of words actually
transmitted when IRCVDF is complete

went is the maximum integer number of words to be received

area is a four-word area to be set aside for linkage information. This
area must not be modified by the FORTRAN program and the
USR must not swap over it. This area can be reclaimed by other
FORTRAN completion routines when crtn has been entered

crtn is the FORTRAN completion routine to be entered. This name
must be specified in an EXTERNAL statement in the
FORTRAN routine that issues the IRCVDF call

™ .
LLITOTS:

i =0 Normal return.
=1 No such job exists in the system.

System Subroutine Description and Examples 3-35

3.42

3-36

Example:

INTEGER*Z MSG(41) +AREA(4)
EXTERNAL RMSGRT

e

+

CALL IRCUDF{MBG:40.:AREA :RMSGRT?

IRCVDW

The IRCVDW function receives data and waits. This function queues a mes-
sage request and suspends the job issuing the request until the other job sends
a message. When execution of the issuing job resumes, the message has been
received, and the first word of the buffer indicates the number of words
transmitted.

Form: i = IRCVDW (buff,wcnt)

where:

buff is the array to be used to buffer the data received. The array
must be one word larger than the message to be received
because the first word contains the integer number of words
actually transmitted when IRCVDW is complete

went is the maximum integer number of words to be received
Errors:

1 =0 Normal return. ,
1 No such job exists in the system.

I

Example:

INTEGER*2 MEG(41)
IF{IRCUDHW{MSG +40) . NE,O) STOP ‘UNEXPECTED ERROR'’

IREAD/IREADC/IREADF/IREADW

The functions IREAD, IREADC, IREADF, and IREADW transfer a specified
number of words from a file into memory. These functions require a queue
element, which should be considered when the IQSET function (Section 3.39)
is executed.

IREAD

The IREAD function transfers into memory a specified number of words from
the file associated with the indicated channel. Control returns to the user
program immediately after the IREAD function is initiated. No special action
is taken when the transfer is completed.

System Subroutine Description and Examples

Form: i= IREAD (wecnt,buff,blk,chan)
where:
went is the relative integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain at
least wcnt words

blk is the relative integer block number of the file to be read. The
first block of a file is block number 0. The blk argument must be
updated when necessary. For example, if the program is reading
two blocks at a time, blk should be updated by 2

chan is the relative integer specification for the RT-11 channel to be
used

When the user program needs to access the data read on the specified chan-
nel, an IWAIT function should be issued. This makes sure that the IREAD
operation has been completed. If an error occurred during the transfer, the
IWAIT function indicates the error.

Errors:

i =n Normal return; n equals the number of words requested (0 for
non-file-structured read, multiple of 256[decimal] for file-struc-
tured read). If the read is from a magtape, the number of words
requested is returned. For example:

If went is a multiple of 256 and less than that number of
words remain in the file, n is shortened to the number of
words that remain in the file; thus, if went is 512 and only
256 words remain, | = 256.

If went is not a multiple of 256 and more than wcent words
remain in the file, n is rounded up to the next block; thus, if
went is 312 and more than 312 words remain, : = 512, but
only 312 are read.

If went is not a multiple of 256 and less than wcent words
remain in the file, n equals a multiple of 256 that is the
actual number of words being read.

= -1 Attempt to read past end-of-file; no words remain in the file.
= -2 Hardware error occurred on channel.
= -3 Specified channel is not open.

NOTE

If an asynchronous operation on a channel (for example,
IREAD) results in end-of-file, the following IWAIT will not
detect it. IWAIT detects only hard error conditions. A subse-
quent operation on that channel will detect end-of-file and re-
turns to the user with the end-of-file error code. Under these
conditions, the subsequent operation is not initiated.

System Subroutine Description and Examples 3-37

3-38

Example:

10

1000
C

1010

IREADC

INTEGER#Z BUFFER(Z5G) +RCODE +BLK

+

+

RCODE = IREAD(Z5G:BUFFERBLK,ICHAN)
IF(RCODE+1) 1010:1000,10
IF NO ERROR: START HERE

+

IFCIMAIT(ICHAN) W NE.O)Y GOTO 1010

+

+

CONTINUE
END OF FILE PROCESSING

+

CALL EXIT 'NORMAL END OF PROGRAM
STOP ‘FATAL READ’
END

The IREADC function transfers a specified number of words from the indi-
cated channel into memory. Control returns to the user program immediately
after the IREADC function is initiated. When the operation is complete, the
specified assembly language routine (crtn) is entered as an asynchronous
completion routine.

Form: i = IREADC (went,buff,blk,chan,crtn)

where:

wcent

buff

blk

chan

crtn

Errors:

is the integer number of words to be transferred

is the array to be used as the buffer; this array must contain at
least went words

is the integer block number of the file to be read. The user
program normally updates blk before it is used again. The first
block of a file is block number 0

is the integer specification for the RT-11 channel to be used

is the assembly language routine to be activated when the trans-
fer is complete. This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues the IREADC
call

See the errors under IREAD.

System Subroutine Description and Examples

Example:

INTEGER#Z2 IBUF (256) +RCODE+IBLK
EXTERNAL RDCHMP

+

+

RCODE=IREADC (256 IBUF +IBLK s ICHAN sRDCMP}

IREADF

The IREADF function transfers a specified number of words from the indi-
cated channel into memory. Control returns to the user program immediately
after the IREADF function is initiated. When the operation is complete, the
specified FORTRAN subprogram (crtn) is entered as an asynchronous com-
pletion routine (see Section 1.2.1.2).

Form: i = IREADF (went,buff,blk,chan,area,crtn)

where:

went

buff

blk

chan

area

crtn

Errors:

is the integer number of words to be transferred

is the array to be used as the buffer; this array must contain at
least went words

is the integer block number of the file to be used. The user
program normally updates blk before it is used again. The first
block of a file is block number 0

is the integer specification for the RT-11 channel to be used

is a four-word area to be set aside for link information; this area
must not be modified by the FORTRAN program or swapped
over by the USR. This area can be reclaimed by other FOR-
TRAN completion functions when crtn has been activated

is the FORTRAN routine to be activated on completion of the
transfer. This name must be specified in an EXTERNAL state-
ment in the routine that issues the IREADF call. Section 1.2.1.2
describes completion routines

See the errors under IREAD.

Example:

INTEGER#*#2 DBLK(4) ,BUFFER(236) +BLKND
DATA DBLK/3RDX0,3RINP.3RUT 3RDAT/:BLKND/O/
EXTERNAL RCMPLT

+

4

+

ICHAN=IGETC()

IF(ICHAN,LT.0) STOP ‘NO CHANNEL AVAILABLE’
IF(IFETCH{(DBLK).,NE.Q) STOP ‘BAD FETCH~’
IF(LODKUP{ICHAN DBLK).LT.0) STOP ‘BAD LOOKUFP-

System Subroutine Description and Examples 3-39

3-40

+

+

20 IF(IREADF (256 :BUFFER »BLKNO s ICHAN +DBLK sRCMPLT) .LT.0) GOTO 100
C PERFORM OVERLAP PROCESSING

+

i

C SYNCHRONIZER

CALL IWAIT(ICHAN) '"WAIT FOR COMPLETICON ROUTINE TO RUN
BLENO=BLKND+1 'UPDATE BLOCK NUMBER
GOTO 20

3

+

C END OF FILE PROCESSING
100 CALL ICLOSE(ICHAN,I)
I=ICLOSE()
CALL IFREEC(ICHAN)

+

+

CALL EXIT
END
SUBROUTINE RCMPLT(I.d)

C THIS IS THE COMPLETION ROUTINE
RETURN
END

IREADW

The IREADW function transfers a specified number of words from the indi-
cated channel into memory. Control returns to the user program when the
transfer is complete or when an error is detected.

Form: i = IREADW (wcnt,buff,blk,chan)

where:

went 1s the integer number of words to be transferred

buff is the array to be used as the buffer; this array must contain at
least went words

blk is the integer block number of the file to be read. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used
Errors:
See the errors under IREAD.

Example:

INTEGER#*#Z IBUF (1024}

+

System Subroutine Description and Examples

3.43

ICODE=IREADW(1024 IBUF +IBLK s ICHAN)

IF({ICODE.EQ.-1) GOTD 100G 'END OF FILE PROCESSING AT 100
IF{ICODE.LT.-13 GOTO 200 TERROR PROCESSING AT 200

C

C MODIFY BLOLCKS

C

C

C WRITE THEM OUT

C
ICODE=TWRITW(1024,IBUF +IBLK sICHAN)

IRENAM

The IRENAM function causes an immediate change of the name of a speci-
fied file.

Form: i = IRENAM (chan,dblk)

where:

chan is the integer specification for the RT-11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call. The channel is again available for use once
the rename operation is completed

dblk is the eight-word area specifying the name of the existing file
and the new name to be assigned. If considered as an eight-
element INTEGER*2 array, dblk has the form:

Words 1-4 specify the Radix-50 file descriptor for the old

Fih D 2
11iC 11lalilc

Words 5-8 specify the Radix-50 file descriptor for the new
file name

NOTE

The arguments of IRENAM must be positioned so that the
USR does not swap over them.

If a file already exists with the same name as the new file on the indicated
device, it is deleted. IRENAM requires that the handler to be used be resident
at the time the IRENAM is issued. If it is not, a monitor error occurs. The
device names specified in the file descriptors must be the same.

For more information on renaming files, see the . RENAME programmed re-
quest (Section 2.65).

System Subroutine Description and Examples 3-41

3.44

2
D

-42

Errors:

i

(T
L= O

Example:

REAL*B8 NAME(Z)

Normal return.

Specified channel is already open.

Specified file was not found.

A file by that name already exists and is protected.

DATA NAME/1ZRDKOFTNZ DAT.12RDKOFTNZ OLD/

+

3

ICHAN=IGETC()

IF{ICHAN.LT.0) STOP ‘NO CHARNNEL'
CALL IRENAM{ICHAN :NAME} 'PRESERVE OLD DATA FILE
CALL IFREEC(ICHAN)

IREOPN

The IREOPN function reassociates a specified channel with a file on which an
ISAVES was performed. The ISAVES/IREOPN combination is useful when a
large number of files must be operated on at one time. Necessary files can be
opened with LOOKUP and their status preserved with ISAVES. When data is
required from a file, an IREOPN enables the program to read from the file.
The IREOPN need not be done on the same channel as the original LOOKUP

and ISAVES.

Form: i = IREOPN (chan,cblk)

where:

chan is the integer specification for the RT-11 channel to be
associated with the reopened file; this channel must be initially

inactive

cblk is the five-word block where the channel status information was
stored by a previous ISAVES. This block, considered as a five-
element INTEGER*2 array. has the following format:

Word 1
2

3
4

Errors:

i

Channel status word.

Starting block number of the file; zero for non-file-
structured devices.

Length of file (in 256-word blocks).

Reserved for future use.

Two information bytes. Even byte: I/O count of the
number of requests outstanding on this channel.
Odd byte: unit number of the device associated with
the channel.

0 Normal return.
1 Specified channel is already in use.

System Subroutine Description and Examples

3.45

Example:

INTEGER#*Z SAVES(3.:10)
DATA ISVUPTR/1/

+

CALL ISAVES({ICHAN.SAVES(1,IGUFTR}I
C

AlLL IREOPN(ICHAN:SAVES(1 . ISUPTR)}?

ISAVES

The ISAVES function stores five words of channel status information into a
user-specified array. These words contain all the information that RT-11
requires to completely define a file. When an ISAVES is finished, the data
words are placed in memory and the specified channel is closed, so that it is
again available for use. When the saved channel data is required, the
IREOPN function (Section 3.44) is used.

ISAVES can be used only if a file was opened with a LOOKUP call (see
Section 3.74). If IENTER was used, ISAVES returns an error. Note that
ISAVES is not legal on magtape or cassette files.

Form: 1 = ISAVES (chan,cblk)
where:

chan is the integer specification for the RT-11 channel whose status
is to be saved. You must obtain this channel through an IGETC
call, or you can use channel 16 or higher if you have done an

ICDFN call

cblk is a five-word block in which the channel status information
describing the open file is stored (see Section 3.44 for the format
of this block).

The ISAVES/IREOPN combination is very useful, but care must be exercised
when using it. In particular, the following cases should be avoided.

1. If an ISAVES is performed on a file and the same file is then deleted
before it is reopened, the space occupied by the file becomes avail-
able as an empty space which could then be used by the IENTER
function. If this sequence occurs, there is a change in the contents of
the file whose status was supposedly saved.

2. Although the handler for the required peripheral need not be in

memory for execution of an IREOPN, a fatal error is generated if the
handler is not in memory when an IREAD or IWRITE is executed.

System Subroutine Description and Examples 3-43

Errors:

i =0 Normal return.
=1 The specified channel is not currently associated with any file.
= 2 The file was opened with an IENTER call.

Example:

INTEGER*Z BLK(3)

+

IF(ISAVES(ICHANBLK) ,NE. O} STOP ‘ISAVES ERRORS

3.46 ISCHED

The ISCHED function schedules a specified FORTRAN subroutine to be run
as an asynchronous completion routine at a specified time of day. Support for
ISCHED in SJ also requires timer support.

Form: i = ISCHED (hrs,min,sec,tick,area,id,crtn)
where:

hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle
clocks; 1/50 of a second on 50-cycle clocks)

area is a four-word area that must be provided for link information;
this area must never be modified by the FORTRAN program,
and the USR must not swap over it. This area can be reclaimed
by other FORTRAN completion functions when crtn has been
activated

id is the identification integer to be passed to the routine being
scheduled

crtn is the name of the FORTRAN subroutine to be entered at the
time of day specified. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the ISCHED call. The subroutine has one argument. For
example:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the integer argument is
the value specified for id in the appropriate ISCHED call

3-44 System Subroutine Description and Examples

Notes:

1. The scheduling request made by ISCHED can be canceled at a later time
by an ICMKT function call.

2. If the system is busy, the actual time of day that the completion routine is
run may be later than the requested time of day.

3. A FORTRAN subroutine can periodically reschedule itself by issuing its
own ISCHED or ITIMER calls from within the routine.

4., ISCHED regui

FRDA S I B A7

element; this should be considered when the

339 is executed.

lires a
IQSET function (Se

aue
MuT
ctio

Errors:

i =0 Normal return.
=1 No queue elements available; unable to schedule request.

Example:
INTEGER®*2 LINK(4} TLINKAGE AREA
EATERNAL NOON INAME OF ROUTINE TO RUN
I=ISCHED{12 0,00 LINK CNOOMN? IRUNM SUBR NOON AT 12 PHM
s (rest of main Prodram)
END

SUBROUTINE NOONCID)

C
C THIS ROUTINE WILL TERMINATE EXECUTION AT LUNCHTIME .
C IF THE J0B HAS NOT COMPLETED BY THAT TIME.
C
STOP "ABORT JOB -- LUNCHTIMES
END

3.47 ISCOMP
(See SYSLIB subroutine SCOMP.)

3.48 ISDAT/ISDATC/ISDATF/ISDATW (FB and XM Only)

The functions ISDAT, ISDATC, ISDATE, and ISDATW are used with the
IRCVD/IRCVDC/IRCVDF, and IRCVDW calls to allow message transfers
under the FB or XM monitor. Note that the buffer containing the message
should not be modified or reused until the message has been received by the
other job. These functions require a queue element, which should be consid-
ered when the IQSET function (see Section 3.39) is executed.

ISDAT

The ISDAT function transfers a specified number of words from one job to the

other. Control returns to the user program immediately after the transfer is
queued. This call is used with the MWAIT routine (see Section 3.85).

System Subroutine Description and Examples 3-45

Form: i = ISDAT (buff,wcnt)

where:
buff is the array containing the data to be transferred
went is the integer number of data words to be transferred

Errors:

i =0 Normal return.
= 1 No such job currently exists in the system.

Example:
INTEGER*Z MSG(40)
CALL ISDAT(MSG:40)
CALL MWAIT
C PUT NEW MESSAGE IN BUFFER
ISDATC

The ISDATC function transfers a specified number of words from one job to
another. Control returns to the user program immediately after the transfer is
queued. When the other job accepts the message through a receive data
request, the specified assembly language routine (crtn) is activated as an
asynchronous completion routine.

Form: i = ISDATC (buff,went,crtn)

where:
buff is the array containing the data to be transferred
went is the integer number of data words to be transferred

crtn is the name of an assembly language routine to be activated on
completion of the transfer. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the ISDATC call

Errors:

i =0 Normal return.
=1 No such job currently exists in the system.

Example:
INTEGER*2 M5G(40)
RTERNAL RTN

+

+

CALL ISDATC(MSG.40,RTN)

6 System Subroutine Description and Examples

ISDATF

The ISDATT function transfers a specified number of words from one job to
the other. Control returns to the user program immediately after the transfer
is queued and execution continues. When the other job accepts the message
through a receive data request, the specified FORTRAN subprogram (crtn) is
activated as an asynchronous completion routine (see Section 1.2.1.2).

Form: i = ISDATF (buff,wcnt,area,crtn)

where:
buft is the array containing the data to be transferred
went is the integer number of data words to be transferred

area is a four-word area to be set aside for link information; this area
must not be modified by the FORTRAN program and the USR
must not swap over it. This area can be reclaimed by other
FORTRAN completion functions when crtn has been activated

crtn is the name of a FORTRAN routine to be activated on comple-
tion of the transfer. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the ISDATF call

Errors:

i =0 Normal return.
=1 No such job currently exists in the system.

Example:

INTEGER*2 MS5G(40) +5POT(4)
EXTERNAL RTN

+

+

CALL ISDATF(MSG.40.,5POT . RTN?

ISDATW

The ISDATW function transfers a specified number of words from one job to
the other. Control returns to the user program when the other job has ac-
cepted the data through a receive data request.

Form: i =ISDATW (buff,went)

where:
buff is the array containing the data to be transferred
went is the integer number of data words to be transferred

Hrrors:

i =0 Normal return.
=1 No such job currently exists in the system.

System Subroutine Description and Examples 3-47

Example:

INTEGER*2Z MS5G{40)

+

+

IF (ISDATW(MSG+40),NE.0) STOP ‘FOREGROUND JOB NOT RUNNINGS

3.49 ISLEEP

The ISLEEP function suspends the main program execution of a job for a
specified amount of time. The specified time is the sum of hours, minutes,
seconds, and ticks specified in the ISLEEP call. All completion routines con-
tinue to execute.

Form: i1 = ISLEEP (hrs,min,sec,tick)
where:
hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle clocks;
1/50 of a second on 50-cycle clocks)

Notes:

1. SLEEP requires a queue element, which should be considered when the
IQSET function (Section 3.39) is executed.

2. If the system is busy, the time in which execution is suspended may be
later than that specified.

Errors:

i =0 Normal return.
=1 No queue element available.

Example:

+

+

CALL IQSET(Z)

+

+

CALL ISLEEP(Q,0.,0.4) IGIVE BACKGROUND JOB SOME TIME

3.50 ISPFN/ISPFNC/ISPFNF/ISPFNW

The functions ISPFN, ISPFNC, ISPFNF, and ISPFNW are used in conjunc-
tion with special functions to various handlers. They provide a means of doing

3-48 System Subroutine Description and Examples

device-dependent functions, such as rewind and backspace, to those devices.
If ISPFN function calls are made to any other devices, the function call is
ignored. For more information on programming for specific devices, see the
RT-11 Software Support Manual.

To use these functions, the handler must be in memory, and a channel must
be associated with a file via a non-file-structured LOOKUP call. These func-
tions require a queue element; this should be considered when the IQSET
function (Section 3.39) is executed.

ISPFN

The ISPFN function queues the specified operation and immediately returns
control to the user program. The IWAIT function can be used to ensure
completion of the operation.

Form: i = ISPFN (code,chan{,went,buff,blk])

where:

code is the integer numeric code of the function to be performed (see
Table 3-1)

chan is the integer specification for the RT-11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16 (decimal) or higher if you have
done an ICDFN call

went is the integer number of data words in the operation. This
parameter is optional with some ISPFN calls, depending on the
particular function. Default value is 0. In magtape operations, it
specifies the number of records to space forward or backward.
For a backspace operation (went=0), the tape drive backspaces
to a tape mark or to the beginning-of-tape. For a forward space

operation (wcnt=0), the tape drive forward spaces to a tape
mark or the end-of-tape

buff is the array to be used as the data buffer. This parameter is
optional with some ISPFN calls, depending on the particular
function. Default value is 0

blk is the integer block number of the file to be operated upon. This
parameter is optional with some ISPFN calls, depending on the
particular function. Default value is 0.

When this argument is supplied by magtape, it is the address of
a four-word error and status block used for returning the excep-
tion conditions. The four words must be initialized to zero.

The error and status block must always be mapped when run-
ning in the XM monitor, and the USR must not swap over it. To
obtain the address of the error block, execute the following

13 50 SRV 8 L V) Lo 5 U5 S V) LV 103 N s LAY S Y

instructions:
INTEGER*Z ERRADR + ERRBLK (4)
DATA ERRBLK I05050,04/

System Subroutine Description and Examples 3-49

3-50

ERRADR = IADDR (ERRBLK)
'GET THE ADDRESS 0OF THE 4-WORD ERROR BLOCK
ICODE = ISPFN (CODEICHANWDCT.BUF JERRADR)

The three optional arguments (wcnt, buff, blk) are not individually optional.
You must have all or none present.

Table 3-1: Functions and Function Codes (Octal)

Function MT,MM CT DX DM DY DL
Read absolute 377 377 377 377
Write absolute 376 376 376 376
Write absolute with
deleted data 375 375
Forward to last file 377
Forward to last block 376
Forward to next file 375
Forward to next block 374
- Rewind to load point 373 373
Write file gap 372
Write end-of-file 377
Forward 1 block 376
Backspace 1 block 375
Initialize the bad
block replacement table 374 374
Write with extended
record gap 374
Offline 372
Return volume size 373 373 373
Write variable size blocks 371
Read variable size blocks 370
Errors:
i =0 Normal return.
=1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
= 3 Channel specified is not open.
Ezample
CALL ISPFN("373:;ICHAN) IREWIND
ISPFNC

The ISPFNC function queues the specified operation and immediately
returns control to the user program. When the operation is complete, the
specified assembly language routine (crtn) is entered as an asynchronous com-
pletion routine.

Form: i = ISPFNC (code,chan,went,buff,blk,crtn)

where:

code is the integer numeric code of the function to be performed (see
Table 3-1)

System Subroutine Description and Examples

chan is the integer specification for the RT-11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16 (decimal) or higher if you have
done an ICDFN call

went is the integer number of data words in the operation; the default
value for this argument is 0

buff is the array to be used as the data buffer; the default value for
this argument is 0

(=N
et
W

is the integer block number of the file to be operated upon; this

nbe
argument must be 0 if not required.

When this argument is supplied by magtape, it is the address of
a four-word error and status block used for returning the excep-
tion conditions. The four words must be initialized to 0.

The error and status block must always be mapped when run-
ning in the XM monitor, and the USR must not swap over it. To
obtain the address of the error block execute the following

instructions:
INTEGER*?2 ERRADR , ERRBLEK(4)
DATA ERRBLK 700400,/

+

4

IGET ADDRESS OF 4-WORD ERROR BLOCK
ERRADR = IADDR (ERRBLK)
ICODE = ISPFNC (CODE,ICHAN:WBCT:BUF ERRADR:

crtn is the name of an assembly language routine to be activated on
completion of the operation. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the ISPFNC call

Errors:
i =0 Normal return.
=1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
= 3 Channel specified is not open.
Example:
EXTERNAL SFCOMP {NAME OF ASSEMBLY LANGUAGE COMPLETION RTN

+

+

ICODE = ISPFNC(CODEsICHAN+WDCT :BUF +BLK .SFCOMP)

ISPFNF
The ISPFNF function queues the specified operation and immediately returns
control to the user program. When the operation is complete, the specified
FORTRAN subprogram (crtn) is entered as an asynchronous completion
routine.

System Subroutine Description and Examples 3-51

3-52

Form: i = ISPFNF (code,chan,went,buff,blk,area,crtn)

where:

code

chan

went

buff

blk

area

crtn

Errors:

i

i
W N = O

is the integer numeric code of the function to be performed (see
Table 3-1)

is the integer specification for the RT-11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16(decimal) or higher if you have
done an ICDFN call

is the integer number of data words in the operation; this argu-
ment must be 0 if not required

is the array to be used as the data buffer; this argument must be
0 if not required

is the integer block number of the file to be operated upon; this
argument must be 0 if not required.

When this argument is supplied by magtape, it is the address of
a four-word error and status block used for returning the excep-
tion conditions. The four words must be initialized to 0.

The error and status block must always be mapped when run-
ning in the XM monitor, and the USR must not swap over it. To
obtain the address of the error block, execute the following in-
structions:

INTEGER*2 ERRADR + ERRBLK (4)
DATA ERRBLK 000,04/

[}

'GET THE ADDRESS OF THE 4-WORD ERROR BLOCK
ERRADR = IADDR (ERRBLK)
ICODE = ISPFNF (CODEsICHAN,WDCTBUF ERRADR)

is a four-word area to be set aside for linkage information; this
area must not be modified by the FORTRAN program, and the
USR must not swap over it. This area can be reclaimed by other
FORTRAN completion functions when crtn has been activated

is the name of a FORTRAN routine to be activated on comple-
tion of the operation. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the ISPFNF call (Section 1.2.1.2 describes completion
routines).

Normal return.

Attempt to read or write past end-of-file.
Hardware error occurred on channel.
Channel specified is not open.

System Subroutine Description and Examples

Example:

REAL*4 MTHNAME(Z) sAREA(Z)
DATA MTNAME/J3RMTO,0./
HTERNAL DONSUB

+

+

I=IGETC) PALLOCATE CHANNEL

CALL IFETCH(MTNAME) TFETCH MT HANDLER
CALL LOOKUP(I,MTNAME) INON-FILE-STRUCTURED LOOKUP ON MTO
IERR=ISPFNF{"373+1.:0,0.:0+AREADONSUB} IREWIND MAGTAPE
END
SUBROUTINE DONSUB
C
C RUNS WHEN MTO HAS BEEN REWOUND
C
END
ISPFNW

The ISPFNW function queues the specified operation and returns control to
the user program when the operation is complete.

Form: i = ISPFNW (code,chan[,went,buff,blk})

where:

code

chan

went

buff

blk

is the integer numeric code of the function to be performed (see
Table 3-1)

is the integer specification for the RT-11 channel to be used for
the operation. You must obtain this channel through an IGETC
call, or you can use channel 16{(decimal) or higher if you have

done an ICDFN call

is the integer number of data words in the operation. This
parameter is optional with some ISPFNW calls, depending on
the function

is the array to be used as the data buffer. This parameter is.
optional with some ISPFNW calls, depending on the function

is the integer block number of the file to be operated upon. This
parameter is optional with some ISPFNW calls, depending on
the function.

When this argument is supplied by magtape, it is the address of
a four-word error and status block used for returning the excep-
tion conditions. The four words must be initialized to .

The error and status block must always be mapped when run-
ning in the XM monitor, and the USR must not swap over it. To

System Subroutine Description and Examples 3-53

3.51

3-54

Form:

Errors:
1 =

WM O

Example:

o B |

where:

ioff

obtain the address of the error block execute the following in-
structions:

INTEGER*2Z2 ERRADR + ERRBLK (4)
DATA ERRBLK 700 40,04/

+

'GET THE ADDRESS OF THE 4-WORD ERROR BLOCK
ERRADR = IADDR (ERRBLK)
ICODE = ISPFN (CODE:ICHAN:WDCT :BUF sERRADR)

Normal return.

Attempt to read or write past end-of-file.
Hardware error occurred on channel.
Channel specified is not open.

INTEGER*Z BUF(BS) »TRACK sSECTOR sDBLK (4)
DATA DBLK/3RDX0O040,0/

+

ICHAN=IGETC()
IF(ICHAN.,LT.0) STOP ’‘NO CHANNEL AVAILABLE-
IF(LOOKUP(ICHAN,DBLK).LT.0) STOP ‘BAD LOOKUP’

+

4

READ AN ABSOLUTE TRACK AND SECTOR FROM THE FLOPPY
ICODE=ISPFNW("377ICHAN +TRACK +BUF SECTOR)

BUF(1) IS5 THE DELETED DATA FLAG
BUF(Z2-65) IS THE DATA

The ISPY function returns the integer value of the word at a specified offset
from the RT-11 resident monitor. This subroutine uses the .GVAL pro-
grammed request to return fixed monitor offsets. (See the RT-11 Software
Support Manual for information on fixed offset references.)

i = ISPY (ioff)

is the offset (from the base of RMON) to be examined

Function Result:

The function result (i) is set to the value of the word examined.

Example:

C
C

BRANCH TO 200 IF RUNNING UNDER FB MONITOR

System Subroutine Description and Examples

]

IF(ISPY("300).,AND.1) GOTO Z0O0

WORD AT OCTAL 300 FROM RMON IS
THE CONFIGURATION WORD.

Moo

3.52 ITIMER
The ITIMER function schedules a specified FORTRAN subroutine to be run

as an asynchronous completion routine after a specified time interval has
elapsed. This request is supported by SJ when the timer support special
feature is included during system generation.

Form: i = ITIMER (hrs,min,sec,tick,area,id,crtn)
where:

hrs is the integer number of hours
min s
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle
clocks; 1/50 of a second on 50-cycle clocks)

area is a four-word area that must be provided for link information;
this area must never be modified by the FORTRAN program,
and the USR must never swap over it. This area can be re-
claimed by other FORTRAN completion functions when crtn
has been activated

id is the identification integer to be passed to the routine being
scheduled

crtn is the name of the FORTRAN subroutine to be entered when the
specified time interval elapses. This name must be specified in
an EXTERNAL statement in the FORTRAN routine that refer-
ences ITIMER. The subroutine has one argument. For example:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the integer argument is
the value specified for id in the appropriate ITIMER call

Notes:
1. This function can be canceled at a later time by an ICMKT function call.

2. If the system is busy, the actual time interval after which the completion
routine is run can be longer than the time interval requested.

3. FORTRAN subroutines can periodically reschedule themselves by issuing
ISCHED or ITIMER calls.

System Subroutine Description and Examples ~ 3-55

4. ITIMER requires a queue element, which should be considered when the
IQSET function (Section 3.39) is executed.

For more information on scheduling completion routines, see Section 1.2.1.2
and the MRKT programmed request, Section 2.43.

Errors:

i =0 Normal return.
=1 No queue elements available; unable to schedule request.

Example:

INTEGER*Z AREA(4)
EXTERNAL WATCHD

+

+

IF THE CODE FOLLOWING ITIMER DOES NOT REACH THE ICHMKT CALL

C
C IN 12 MINUTES. WATCH DOG COMPLETION ROUTINE WILL BE
C ENTERED WITH ID OF 23
C
CALL ITIMER{O,12+0+0,AREA 3 WATCHD)
CALL ICMKT(3:8REA)
END
SUBROUTINE WATCHD(ID)
C
C THIS IS CALLED AFTER 12 MINUTES

+

+

RETURN
END

3.53 ITLOCK (FB and XM Only)

3-56

The ITLOCK function is used in an FB or XM system to attempt to gain
ownership of the USR. It is similar to LOCK (Section 3.73) in that, if success-
ful, the user job returns with the USR in memory. However, if a job attempts
to LOCK the USR while the other job is using it, the requesting job is sus-
pended until the USR is free. With ITLOCK, if the USR is not available,
control returns immediately and the lock failure is indicated. ITLOCK cannot
be called from a completion or interrupt routine.

Form: 1 = ITLOCKJ()

For further information on gaining ownership of the USR, see the .TLOCK
programmed request (Section 2.81).

System Subroutine Description and Examples

Errors:

i =0 Normal return.
=1 USR is already in use.

Example:

IFCITLOCK () «NELO)Y GOTO 100 IGOTO 100 IF UBR BUSY

The ITTINR function transfers a character from the console terminal to the
user program. If no characters are available, system action is determined by
the setting of bit 6 of the Job Status Word.

Form: i = ITTINR()

If the function result (i) is less than 0 when execution of the ITTINR function
is complete, it indicates that no character was available. Under the FB or XM
monitor, ITTINR does not return a result of less than zero unless bit 6 of the
Job Status Word was on when the request was issued.

There are two modes of doing console terminal input, and they are governed
by bit 12 of the Job Status Word (JSW). The JSW is at octal location 44. If bit
12 is 0, normal I/O is performed under the following conditions:

1. The monitor echoes all characters typed.

2. CTRL/U and RUBOUT perform line deletion and character dele-
tion, respectively.

3. A carriage return, line feed, CTRL/Z, or CTRL/C must be struck
before characters on the current line are available to the program.
When one of these is typed, characters on the line typed are passed
one by one to the user program.

If the console is in special mode (bit 12 set to 1), the following conditions
apply:

1. The monitor does not echo characters typed except for CTRL/C and
CTRL/O.

2. CTRL/U and RUBOUT do not perform special functions.
3. Characters are immediately available to the program.
4. No ALTMODE conversion is done.

In special mode, the user program must echo the characters desired. However,
CTRL/C and CTRL/O are acted on by the monitor in the usual way.

Bit 12 in the JSW must be set by the user program if special console mode is
desired. Bit 14 in the JSW must be set if lower-case characters are desired.
These bits are cleared when control returns to RT-11.

System Subroutine Description and Examples 3-57

3.55

3-58

Regardless of the setting of bit 12, when a carriage return is entered, both
carriage return and line feed characters are passed to the program; if bit 12 is
0, these characters will be echoed.

Lower-case conversion is determined by the setting of bit 14. If bit 14 is 0,
lower-case characters are converted to upper case before being echoed (if bit
12 is 0) and passed to a program; if bit 14 is 1, lower-case characters are
echoed (if bit 12 is 0) and passed as received. Bit 14 is cleared when the
program terminates.

NOTE

To set and/or clear bits in the JSW, do an IPEEK and then an
IPOKE (see example under IPOKE). In special terminal mode
(JSW bit 12 set), normal FORTRAN formatted I/O from the
console is undefined.

In the FB or XM monitor, CTRL/F and CTRL/B (and CTRL/X in monitors
with the system job feature) are not affected by the setting of bit 12. The
monitor always acts on these characters if the SET TT FB command is in
effect.

Also under the FB or XM monitor, if a terminal input request is made and no
character is available, job execution is normally suspended until a character is
ready. If a program requires execution to continue and ITTINR to return a

- result of less than zero, it must turn on bit 6 of the JSW before the ITTINR.

Bit 6 is cleared when a program terminates. The results of ITTINR must be
stored in an INTEGER type variable for the purposes of error checking. Once
it is known that the call did not have an error return, the result can be moved
into a LOGICAL*1 variable or array element. Direct placement into a
LOGICAL*1 variable will lead to incorrect results, because the negative flag
(bit 15 set) is lost in conversion to a LOGICAL*1 variable.

Function Results:

i >0 Character read.
<0 No character available.

Example:
ICHAR=ITTINR () IREAD A CHARACTER FROM THE CONSOLE
IF(ICHAR,LT.0) GOTD 100 ICHARACTER NOT AVAILABLE

ITTOUR

The TTTOUR function transfers a character from the user program to the
console terminal if there is room for the character in the monitor buffer. If it is
not currently possible to output a character, an error flag is returned.

System Subroutine Description and Examples

Form: i = ITTOUR (char)

where:

char is the character to be output, right-justified in the integer (can
be LOGICAL*1 entity if desired)

If the function result (i) is 1 when execution of the ITTOUR function is
complete, it indicates that there is no room in the buffer and that no character
was output. Under the FB or XM monitor, ITTOUR normally does not return
a result of 1. Instead, the job is blocked until room is available in the output
buffer. If a job requires execution to continue and a result of 1 to be returned,
it must turn on bit 6 of the JSW (location 44) before issuing the request.

NOTE

If a foreground job has characters in the TT output buffer, they
are not output under the following conditions:

1. If a background job is doing output to the console TT, the
foreground job cannot output characters from its buffer un-
til the background job outputs a line feed character. This
can be troublesome if the console device is a graphics termi-
nal and the background job is doing graphic output without
sending any line feeds.

2. If no background job is running (that is, KMON is in con-
trol of background), the foreground job cannot output its
characters until the user types a carriage return or a line
feed. In the former case, KMON gets control again and
locks out foreground output as soon as the foreground out-
put buffer is empty.

Note that the use of PRINT eliminates these problems.

Function Results:

i = 0 Character was output.
= 1 Ring buffer is full.

Example:
DO 20 I=1,5
10 IFCITTOUR(C"GO7).NE.O) GOTO 10 IRING BELL 5 TIMES
20 CONTINUE

3.56 ITWAIT (FB and XM Only)

The ITWAIT function suspends the main program execution of the current
job for a specified time interval. All completion routines continue to execute.

System Subroutine Description and Examples 3-59

Form: i = ITWAIT (itime)
where:

itime is the two-word internal format time interval

itime (1) is the high-order time
itime (2) is the low-order time

Notes:

1. WAIT requires a queue element, which should be considered when the
IQSET function (Section 3.39) is executed.

2. If the system is busy, the actual time interval during which execution is
suspended may be longer than the time interval specified.

Errors:

i =0 Normal return.
=1 No queue element available.

Example:

INTEGER*Z TIME(Z)

+

CALL ITWAIT(TIME) TWAIT FOR TIME

3.57 IUNTIL (FB and XM Only)

The IUNTIL function suspends main program execution of the job until the
time of day specified. All completion routines continue to run.

Form: i = JUNTIL (hrs,min,sec,tick)
where:
hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second on 60-cycle clocks;
1/50 of a second on 50-cycle clocks)

Notes:

1. TUNTIL requires a queue element, which should be considered when the
IQSET function (Section 3.39) is executed.

2. If the system is busy, the actual time of day that the program resumes
execution may be later than that requested.

3-60 System Subroutine Description and Examples

Errors:

0 Normal return.
1 No queue element available.

i

Example:

C TAKE A LUNCH BREAK
CALL TUNTIL(13:0.:0,0) ISTART UP AGAIN AT 1 P.M.

3.58 IVERIF
(See SYSLIB subroutine VERIFY.)

3.59 IWAIT

The IWAIT function suspends execution of the main program until all
input/output operations on the specified channel are complete. This function
is used with IREAD, IWRITE, and ISPFN calls. Completion routines con-

tinue to execute.
Form: i = IWAIT (chan)

where:

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call

For further information on suspending execution of the main program, see the
.WAIT programmed request (Section 2.89).

Errors:

i =0 Normal return.

Channel specified is not open.

= 2 Hardware error occurred during the previous I/O operation on
this channel.

It
ot

Example:

IF(IWAIT(ICHAN) . NE.D) CALL IDERR(4)

3.60 IWRITE/IWRITC/IWRITF/IWRITW

The functions IWRITE, IWRITC, IWRITF, and IWRITW transfer a specified
number of words from memory to the specified channel. The IWRITE func-
tions require queue elements; this should be considered when the IQSET
function (Section 3.39) is executed.

System Subroutine Description and Examples ~ 3-61

3-62

IWRITE

The IWRITE function transfers a specified number of words from memory to
the specified channel. Control returns to the user program immediately after
the request is queued. No special action is taken upon completion of the
operation.

Form: i = IWRITE (went,buff,blk,chan)

where:

went is the integer number of words to be transferred
buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an

ICDFN call
Errors:
1 =n Normal return; n equals the number of words written, rounded
to a multiple of 256 (0 for non-file-structured writes).
NOTE
If the word count returned is less than that requested,
an implied end-of-file has occurred although the
normal return is indicated.
= -1 Attempt to write past end-of-file; no more space is available in
the file.
= -2 Hardware error occurred.
= -3 Channel specified is not open.
Example:

Refer to the exampie for IREAD.

IWRITC

The IWRITC function transfers a specified number of words from memory to
the specified channel. The request is queued and control returns to the user
program. When the transfer is complete, the specified assembly language
routine (crtn) is entered as an asynchronous completion routine.

Form: i=IWRITC (wcnt,buff blk,chan,crtn)
where:
went is the relative integer number of words to be transferred

buff is the array to be used as the output buffer

System Subroutine Description and Examples

blk is the relative integer block number of the file to be written. The
user program normally updates blk before it is used again (for
example, if the program is writing two blocks at a time, blk
should be updated by 2)

chan is the relative integer specification for the RT-11 channel to be
used. You must obtain this channel through an IGETC call, or

you can use channel 16(decimal) or higher if you have done an
ICDFN call

crtn is the name of the assembly language routine to be activated
upon completion of the transfer. This name must be specified in
an EXTERNAL statement in the FORTRAN routine that
issues the IWRITC call

Errors:
See the errors under IWRITE.

Example:

CODE=IWRITC(256+IBUF +IBLK +ICHANCRTN)

IWRITF

The IWRITF function transfers a number of words from memory to the speci-
fied channel. The transfer request is queued and control returns to the user
program. When the operation is complete, the specified FORTRAN subpro-

gram (crtn) is entered as an asynchronous completion routine (see Section
1.2.1.2).

Form: i=IWRITF (went,buff,blk,chan,area,crtn)

where:
went is the integer number of words to be transferred
buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16 or higher if you have done an ICDFN call

area is a four-word area to be set aside for link information; this area
must not be modified by the FORTRAN program, and the USR
must not swap over it. This area can be reclaimed by other
FORTRAN completion functions when crtn has been activated

crtn is the name of the FORTRAN routine to be activated upon
completion of the transfer. This name must be specified in an

System Subroutine Description and Examples ~ 3-63

EXTERNAL statement in the FORTRAN routine that issues
the IWRITF call (Section 1.2.1.2 describes completion
routines).

Errors:
See the errors under IWRITE.
Example:

Refer to the example under IREADF, Section 3.42.

IWRITW
The IWRITW function transfers a specified number of words from memory to
the specified channel. Control returns to the user program when the transfer is
complete.

Form: i=IWRITW (went,buff,blk,chan)

where:

went is the integer number of words to be transferred
buff is the array to be used as the output buffer

blk is the integer block number of the file to be written. The user
program normally updates blk before it is used again

chan is the integer specification for the RT-11 channel to be used.
You must obtain this channel through an IGETC call, or you
can use channel 16(decimal) or higher if you have done an
ICDFN call

Errors:
See the errors under IWRITE.
Example:

Refer to the example under IREADW, Section 3.42.

3.61 JADD
The JADD function computes the sum of two INTEGER*4 values.
Form: i= JADD (joprl,jopr2,jres)
where:
joprl is an INTEGER*4 variable
jopr2 is an INTEGER*4 variable

jres is an INTEGER*4 variable that receives the sum of jopr! and
jopr2

3-64 System Subroutine Description and Examples

Function Results:

i = -1 Normal return; the result is negative.
0 Normal return; the result is zero.
=1 Normal return; the result is positive.

Errors:

i = -2 An overflow occurred while computing the result.
Example:

INTEGER*4 JOP1,J0PZ,JRES

IF(JADD(JOP1 ,JOFZ,JRES) EQ. -2} GOTO 100

The JAFIX function converts a REAL*4 value to INTEGER*4.
Form: i= JAFIX (asrc,jres)

where:

asrc is a REAL*4 variable, constant, or expression to be converted to
INTEGER*4

jres is an INTEGER*4 variable that is to contain the result of the
conversion

Function Results:

i = -1 Normal return; the result is negative.
0 Normal return; the result is zero.

1 Normal return; the result is positive.

I

Errors:

i = -2 An overflow occurred while computing the result.
Example:

INTEGER*4 J0OP1

C READ A LARGE INTEGER FROM THE TERMINAL
ACCEPT 89.4

85 FORMAT (F15.0)
IF(JAFIX(A,JOPL1)EQ.-2) GOTO 106

+

3.63 JCwP

The JCMP function compares two INTEGER*4 values and returns an
INTEGER*2 value that reflects the signed comparison result.

System Subroutine Description and Examples ~ 3-65

Form: i= JCMP (joprl,jopr2)
where:

joprl is the INTEGER*4 variable or array element that is the first
operand in the comparison

jopr2 is the INTEGER*4 variable or array element that is the second
operand in the comparison

Function Results:

i=-1 1If joprl is less than jopr2.
0 If joprl is equal to jopr2.
=1 If joprl is greater than jopr2.

Errors:
None.

Example:

INTEGER+4 JOPX,JOPY

[

+

IFCICMPOJOPRX »JOPY Y)Y 104+20,30

3.64 JDFIX

3-66

The JDFIX function converts a REAL*8 (DOUBLE PRECISION) value to
INTEGER*4.

Form: i = JDFIX (dsrc,jres)

where:

dsrc is a REAL*8 variable, constant, or expression to be converted to
INTEGER*4
jres is an INTEGER*4 variable to contain the conversion result
Function Results:

i =-1 Normal return; the result is negative.
=0 Normal return; the result is zero.
=1 Normal return; the result is positive.

Errors:
1=-2 An overflow occurred while computing the result.
Example:

INTEGER*4 JNUM
REAL*8 DPNUM

System Subroutine Description and Examples

[}

+

20 TYPE 98

a8 FORMAT ('’ ENTER POSITIUE INTEGER'}
ACCEPT 99.:DPNUM

99 FORMAT(FZ20.0)
IF{JDFIX(DPNUM+JNUM).LT.0} GOTO Z0Q

+
+

&

3.65 JDIV
The JDIV function computes the quotient of two INTEGER*4 values.
Form: i = JDIV (joprl,jopr2,jres[,jrem])
where:
joprl is an INTEGER*4 variable that is the dividend of the operation
jopr2 is an INTEGER*4 variable that is the divisor of joprl

jres is an INTEGER*4 variable that receives the quotient of the
operation (that is, jres=joprl/jopr2)

jrem is an INTEGER*4 variable that receives the remainder of the
operation. The sign is the same as that for joprl

Function Results:

i = -1 Normal return; the quotient is negative.
0 Normal return; the quotient is 0.
— 1 Normal return; the quotient is positive.

il

Errors:

i = -3 An attempt was made to divide by 0.
Example:

INTEGER#*#4 JN1 s JNZ,JQUD

+

CALL JDIVCINT »JNZ.dQU0)

+
+

+

3.66 JICVT
The JICVT function converts a specified INTEGER*2 value to INTEGER*4.

System Subroutine Description and Examples ~ 3-67

Form: i=JICVT (isrc,jres)
where:

isrc is the INTEGER*2 quantity to be converted

jres is the INTEGER*4 variable or array element to receive the result
Function Results:

i =-1 Normal return; the result is negative.
0 Normal return; the result is 0.
=1 Normal return; the result is positive.

Errors:
None.

Example:

INTEGER*4 JualL
CALL JICUT(478.JUAL) 'FORM A 32-BIT CONSTANT

3.67 JJCVT

The JJCVT function interchanges words of an INTEGER*4 value to form an
internal format time or vice versa. This procedure is necessary when the
INTEGER*4 variable is to be used as an argument in a timer-support func-
tion such as ITWAIT. When a two-word internal format time is specified to a
function such as ITWAIT, it must have the high-order time as the first word
and the low-order time as the second word.

Form: CALL JJCVT (jsrc)

where:
jsrc is the INTEGER*4 variable whose contents are to be inter-
changed
Errors:
None.
Example:

INTEGER#*4 TIME

+

+

CALL GTIM(TIME? IGET TIME OF DAY
CALL JJCYT(TIME) 'TURN IT INTO INTEGER*4 FORMAT

3.68 JMOV

The JMOV function assigns the value of an INTEGER*4 variable to another
INTEGER*4 variable and returns the sign of the value moved.

3-68 System Subroutine Description and Examples

Form: i=JMOV (jsrc,jdest)

where:

jsrc is the INTEGER*4 variable whose contents are to be moved
jdest is the INTEGER*4 variable that is the target of the assignment
Function Results:

The value of the function is an INTEGER*2 value that represents the sign of
the result as follows:

i = -1 Normal return; the result is negative.
= 0 Normal return; the result is 0.
= 1 Normal return; the result is positive.

Errors:
None.
Example:

The JMOV function allows an INTEGER*4 quantity to be compared
with 0 by using it in a logical IF statement. For example:

INTEGER*4 INTI1

+

IFCOMOV(INTL sINT1} . NE.CY GOTO 200 (GO TO §TMT 300 IF INTL NOT o

3.69 JMUL

The JMUL function computes the product of two INTEGER*4 values.
Form: i= JMUL (joprl,jopr2,jres)
where:
joprl is an INTEGER*4 variable that is the multiplicand
jopr2 is an INTEGER*4 variable that is the multiplier

jres is an INTEGER*4 variable that receives the product of the
operation

Function Results:

i = -1 Normal return; the product is negative.
=0 Normal return; the product is 0.
1 Normal return; the product is positive.

Errors:

i = -2 An overflow occurred while computing the resulit.

System Subroutine Description and Examples 3-69

Example:

INTEGER*4 J1,J2,JRES

+

+

IF(JIMUL (UL 2 JZ2 s JRESY+1) 100,10 4+20

GOTO 160 IF OUVERFLOW

GOTO 10 IF RESULT IS5 NEGATIVE

GOTO 20 IF RESULT IS POSITIVE OR ZEROD

a0

3.70 JSUB

The JSUB function computes the difference between two INTEGER*4
values.

Form: i = JSUB (joprl,jopr2,jres)

where:

joprl is an INTEGER*4 variable that is the minuend of the operation

jopr2 is an INTEGER*4 variable that is the subtrahend of the
operation

jres is an INTEGER*4 variable that is to receive the difference
between ioprl and iopr2 (that is, jres=jopri-jopr2)

Function Results:

i = -1 Normal return; the result is negative.
0 Normal return; the result is 0.

=1 Normal return; the result is positive.

Errors:
1 =-2 An overflow occurred while computing the result.
Example:

INTEGER=*4 JOP1,JOPZ,J3

+

+

CALL JSUB(JOP1.JOPZ,43)

3.71 JTIME

The JTIME subroutine converts the time specified to the internal two-word
format time.

3-70 System Subroutine Description and Examples

Form: CALL JTIME (hrs,min,sec,tick,time)

where:

hrs is the integer number of hours
min is the integer number of minutes
sec is the integer number of seconds

tick is the integer number of ticks (1/60 of a second for 60-cycle
clocks; 1/50 of a second for 50-cycle clocks)

time is the two-word area to receive the internal format time:
time(1) is the high-order time; time(2) is the low-order time

Errors:
None.
Example:
INTEGER*4 1
C CONVERT 3 HRS,» 7 MIN, 23 SECONDS TO INTEGER #4 VALUE
CALL JTIME(3:7:23:0,J1)
CALL JJCUT(J1
3.72 LEN

The LEN function returns the number of characters currently in the string
contained in a specified array. This number is computed as the number of
characters preceeding the first null byte encountered. If the specified array
contains a null string, a value of 0 is returned.

Form: i= LEN (a)
where:

a specifies the array containing the string, which must be terminated
by a null byte

Errors:
None.
Example:
LOGICAL*1 STRNG(73)
TYPE 99, (STRNG(1)+I=1 LEN(STRNG))
9g FORMAT(‘0’ ,132A1)

System Subroutine Description and Examples 3-71

3.73 LOCK

3-72

The LOCK subroutine keeps the USR in memory for a series of operations
involving various RT-11 file management functions.

If all the conditions that cause swapping are satisfied, a portion of the user
program is written out to the disk file SWAP.SYS and the USR is loaded.
Otherwise, the USR in memory is used, and no swapping occurs. The USR is
not released until an UNLOCK (see Section 3.109) is given. (Note that in an
FB system, calling the CSI can also perform an implicit UNLOCK.) To save
time in swapping, a program that has many USR requests to make can LOCK
the USR in memory, make all the requests, and then UNLOCK the USR.

In an FB or XM environment, a LOCK inhibits another job from using the
USR. Thus, the USR should be locked only for as long as necessary.

NOTE

If any job does a LOCK, it can cause the USR to be unavailable
for other jobs for a considerable period of time. The USR is not
reentrant and only one job has use of the USR at a time, which
should be considered for systems requiring concurrent fore-
ground and background jobs. This is particularly true when
magtape and/or cassette are active.

File operations by the USR require a sequential search of the
tape for magtape and cassette. This could lock out the fore-
ground job for a long time while the background job does a tape
operation. The programmer should keep this in mind when
designing such'systems. The FB and XM monitors supply the
ITLOCK routine, which permits the foreground job to check for
the availability of the USR.

Form: CALL LOCK

After a LOCK has been executed, the UNLOCK routine must be executed to
release the USR from memory. The LOCK/UNLOCK routines are comple-
mentary and must be matched. That ig, if three LOCKs are issued, at least
three UNLOCKs must be done, otherwise the USR is not released. More
UNLOCKSs than LOCKs can occur without error; the extra UNLOCKs are

ignored.

Notes:

1. It is vital that the LOCK call not come from within the area into which
the USR will be swapped. If this should occur, the return from the USR
request would not be to the user program, but to the USR itself, since the
LOCK function causes part of the user program to be saved on disk and
replaced in memory by the USR. Furthermore, subroutines, variables, and
arrays in the area where the USR is swapping should not be referenced
while the USR is locked in memory.

System Subroutine Description and Examples

2. Once a LOCK has been performed, it is not advisable for the program to
destroy the area the USR is in, even though no further use of the USR is
required. This causes unpredictable results when an UNLOCK is done.

3. LOCK cannot be called from a completion or interrupt routine.

4. If a SET USR NOSWAP command has been issued, LOCK and UN-
LOCK do not cause the USR to swap. However, in FB, LOCK still inhi-
bits the other job from using the USR, and UNLOCK allows the other job
access to the USR.

5. The USR cannot accept argument lists, such as device file name specifica-
tions, located in the area into which it has been locked.

Errors:
None.

Example:

INTEGER#*Z DBLK(4)
DATA DBLK /3RDK +3RDT3RFIL3RF4 /

+

CALL LOCK ILOCK THE USR IN MEMORY

ICHN=GETC{? IGET A CHANNEL TO USE
IF(LOOKUP(ICHN DBLK).LT.0Q) BTOP ‘7LOOKUP FAILED'
CALL UNLQOCK IRELEASE THE USR

+

¢

3.74 LOOKUP

The LOOKUP function associates a specified channel with a device and/or
file for the purpose of performing I/O operations. The channel used is then
busy until one of the following functions is executed.

CLOSEC or ICLOSE
ISAVES
PURGE

Form: i = LOOKUP (chan,dblk(,count,seqnum,])
i = LOOKUP (chan,jobdes)

chan is the integer specification for the RT-11 channel to be asso-
ciated with the file. You must obtain this channel through an
IGETC call, or you can use channel 16 or higher if you have

done an ICDFN call

System Subroutine Description and Examples 3-73

3-74

dblk is the four-word area specifying the Radix-50 file descriptor.
Note that unpredictable results occur if the USR swaps over
this four-word area

count is an optional argument used for the cassette handler; this
argument defaults to 0

seqnum is a file number. For cassette operations, if this argument is
blank, a value of 0 is assumed.

For magtape, it describes a file sequence number. The action
taken depends on whether the file name is given or null. The
sequence number can have the following values:

-1 Suppress rewind and search for the specified file name
from the current tape position. If a file name is given, a
file-structured lookup is performed (do not rewind). If
the file name is null, a non-file-structured lookup is
done (tape is not moved). You must specify a -1 and no
other negative number.

0 Rewind to the beginning of the tape and do a non-file-
structured lookup.

n Where n is any positive number. Position the tape at
file sequence number n and check that the file names
match. If the file names do not match, an error is gener-
ated. If the file name is null, a file-structured lookup is
done on the file designated by seqnum.

jobdes Is an argument that allows communication between jobs in a
system job environment. It is a pointer to a four-word job
descriptor of the job to which messages will be sent or
received.

jobdes - .RAD50 /MQ/
.ASCII /logical-job-name/

where the logical-job-name is six characters long. If the
logical-job-name is zero,the channel will be opened only
for .READ/C/W requests, and such requests will accept
messages from any jobs.

NOTE

The arguments of LOOKUP must be positioned so that the
USR does not swap over them.

The handler for the selected device must be in memory for a LOOKUP. If the
first word of the file name in dblk is 0 and the device is a file-structured
device, absolute block 0 of the device is designated as the beginning of the file.
This technique, called a non-file-structured lookup, allows I/O to any physical
block on the device. If a file name is specified for a device that is not file
structured (such as LP:FILE.TYP), the name is ignored.

System Subroutine Description and Examples

NOTE

Since a non-file-structured lookup allows I/O to any physical
block on the device, the user must be aware that, in this mode,
it is possible to overwrite the RT-11 device directory, thus de-
stroying all file information on the device.

Function Results:

i =n Normal return; n equals the number of blocks in the file (0 for

non-file-structured lockups on a cassette and magtape).

Errors:

i = -1 Channel specified is already open.

File specified was not found on the device.
Device in use.

= -4 Tape drive is not available.

m
1ol
VOl)

Example:

INTEGER*Z DBLK (4)
DATA DBLK/3RDKO:3RFTN:3R44 3RDAT/

4

ICHAN=IGETC()

IF{ICHAN.,LT.0}) STOP ‘NO CHANNEL’
IF{IFETCH(DBLK).NE,O) STOP 'BAD FETCH’
IF(LOOKUP(ICHANDBLK) . LT.0Q} STOP ‘BAD LOOKUP’

+

CALL ICLOSE(ICHAN:I)
I = ICLOSEQO)
CALL IFREEC{ICHAN)

or using LOOKUP with a system job

LOGICAL*1 JNAM(B)

DIMENSION JBLK(4)

EQUIVALENCE (JNAMC1) yJBLK(Z2))
DATA JNAM /°Q7 /U’ ’E'» U+ E7+0/
DATA JBLK{1) /3RME /

¥

C OPEN A MESSAGE CHANNEL TO ‘QUEUE’
ICHN=GETC ()
IF(LOOKUP(ICHN »JBLK).LT.0) STOP ‘QUEUE IS5 NOT RUNNING-’

+

System Subroutine Description and Examples ~ 3-75

3.75 MRKT

The MRKT function schedules an assembly language completion routine to
be entered after a specified time interval has elapsed. Support for MRKT in
SJ requires timer support.

Form: i= MRKT (id,crtn,time)
where:

id is an integer identification number to be passed to the routine
being scheduled

crtn is the name of the assembly language routine to be entered when
the time interval elapses. This name must be specified in an
EXTERNAL statement in the FORTRAN routine that issues
the MRKT call

time is the two-word, internal format time interval; when this interval

elapses, the routine is entered. If considered as a two-element
INTEGER*2 array:

time (1) is the high-order time.
time (2) is the low-order time.

Notes:

- 1. MRKT requires a queue element, which should be considered when the
IQSET function (Section 3.39) is executed.

2. Ifthe system is busy, the time interval that elapses before the completion
routine is run can be greater than that requested. 4

For further information on scheduling completion routines, see the . MRKT
programmed request (Section 2.43).

Errors:

i =0 Normal return.
=1 No queue element was available; unable to schedule request.

waminlas

v
nXailijpic.

INTEGER*Z TINT(Z2)
ATERNAL ARTN

+

+

CALL MREKT(4:ARTNTINT)

3.76 MTATCH (Special Feature)

The MTATCH subroutine attaches a terminal for exclusive use by the re-
questing job. This operation must be performed before any job can use a
terminal with multi-terminal programmed requests.

3-76 System Subroutine Description and Examples

]

%1

Form: i = MTATCH (unitl,addr,],jobnum])

where:
unit is the logical unit number (lun) of the terminal

addr is the optional address of an asynchronous terminal status
word. Omit this argument if the asynchronous terminal
status word is not required by specifying a comma. For
example:

I = MTATCH (unit,,jobnum)

jobnum is the job number associated with the terminal if the termi-
nal is not available

Errors:
1 =0 Normal return.
= 3 Nonexistent unit number. _
— 5 Unit attached by another job (job number returned in jobnum)
6 In XM monitor, the optional status word address is not in a
valid user virtual address space
Example:

SYSLIBE MULTI-TERMIMAL ROUTINES

INTEGER*2 UNIT,SBLOK(4) ,STAT(E) ASKW STRING(A1Y FPROMPT (8}
LOGICAL*1 TEND(11}
REAL*4 TESTM(Z)

DATA PROMT/EN‘+‘TE’ 'R 74 /ST 'RI/NG s 572 200/
DATA TEND/ %7 ¢ "EF /N /DY e T W B 8" T 7% 0
CATA TESTM/ /STAT’ +'ATCH s /CET/ +/SET s/ 7+ /s /7 /DTCH"S

USE MTSTAT TO GET & DISPLAY NO. OF UNITS

TYPE 108

L=1

IF(MTSTAT(STAT) NE.0Q)GOTO 9898
TYPE 99+8TAT(3)

ANNOUNCE TEST

L = FUNC CODE

GET MTTY STATUS
T

T v
DISPLAY = UNITS

GET UNIT # TO TEST

TYPE 100 I TYPE PROMPT
ACCERPT 101 UNIT I GET UNIT #
IF(UNIT.EQ.99) STOP ‘END OF MULTI-TERMIMAL TEST'! UNIT #8339 STOPS TEST

ATTACH UNIT TO THIS JOB THEN GET TCB STATUS WORDS

TYPE 110 ! SEE IF ASW TEST
ACCEPT 111,IAEH I I8 TO BE DONE
IF(IASW.EQ, 'Y ' YIER=MTATCH(UNIT sASW,J0OB) I ATT W/ ASW IF YES
IF(IASW.NE, 'Y/)IER=MTATCH(UNIT .0 ..JOB) I ATT W/0 ASW IF NO
L=2

IF(IERIGOTO 999 I REPORT ERROR IF ANY
L=3

IF(MTGET(UNIT,SBLOK (1)) .NE.D)GOTO 933 ! GET TCB WORDS

TYPE 10Z»UNIT,SBLOK I DISPLAY CONTENTS

GET NEW STATUS: PUT IT IN TCB,s THEN DISPLAY IT

CALL SETUP(SBLOK sUNIT) I GET CHANGES IF ANY

L=4

System Subroutine Description and Examples 3-77

0

30

[}

LA S |
oo

999

99

100
101
102
103
104
103
106
108
109
110
111
908

3-78

IF(MTSET(UNITSBLOK(1)),NE,0)GOTOD 9399 ' GET NEW TCB STATUS
TYPE 10Z:UNITSBLOK ! THEN DISPLAY IT...

PERFORM TEST - FIRST ECHO INPUT THEN REPEAT IT USING MTIN & MTOUT

TYPE 103 ! ANNOUNCE RULES OF
TYPE 104 ' THE TEST. ..
TYPE 105

CaLL MTINCUNIT . ! GET LINE OF INPUT
CALL MTOUT(UNIT,J) ! REPEAT 1ST/ECHO ZND
IF(JWNE.10)GOTO 30 I LF = END OF LINE
CALL MTRCTO(UNIT) ! RESET CTRL/O

NOW TEST W/ TTSPC% BIT ON - ECHO INPUT WITH MTOUT (DON'T REPEAT)
THEN TURN TTSPC$ BIT OFF...

IF(SBLOK(1).AND,"10000)G0OTO 40
SBLOK(1)=8BLOK(1).0R,"10000
IF(MTSET(UNIT »SBLOK(1)),NE,0}GOTO 9399
GOTO 30

SBLOK(1)=8BLOK(1).AND. .NOT."10000
IF(MTSET(UNIT ,SBLOK(1}).NE.0)GOTO 999
IFCIASWLWNE, ‘Y)GOTO BO

IF TTSPC$ ON BRAMNCH
SET TTSPC% BIT
UPDATE TCB

GO DO 2ND TEST

TURN OFF TTSPC% BIT
UPDATE TCB

SKIP ASW TEST?

ASYNCHRONOUS STATUS WORD TEST - "POLL"™ TERMINAL UNTIL INPUT
AVAILABLE - ECHO INPUT THEN REPEAT IT ON NEXT LINE

TYPE 109 | ANNOUNCE TEST

IF (ASH,AND, ,NOT. "40000)G0T0 50 I WAIT FOR INPUT
CALL MTIN(UNIT+J) GET CHAR

CALL MTOUT(UNIT »J) DUTPUT CHAR
IF(J,NE,10)GOTO 55 END ON LINE FEED
CALL MTRCTO(UNIT) RESET CTRL/O

TEST MTPRNT BY OUTPUTTING 2 STRINGS:, 1 FROM USER & 1 INTERNAL

CALL GTLIN(STRING,PROMT) ' GET STRING VIA GTLIN
CALL MTPRNT(UNIT:STRING) ' QUTPUT TO TERMINAL
CALL MTPRNT(UNIT,TEND) ! ANNOUNCE END OF TEST

DETACH UNIT FROM JOB AND START OVER

L=9
TYPE 10BUNIT I DETATCH UNIT
IF(MTDTCH(UNIT).EQ.0)GOTO S ! FROM JOB THEN LOOP

ERROR REPORTING

TYPE 9089,:TESTM(L) ,IER ! ANNOUNCE ERROR
GOTO S ' THEN START OVER

FORMAT(‘OTHERE ARE’ I3+’ UNITS ON THIS SYSTEM')

FORMAT(“$UNIT # TO BE TESTED?')

FORMAT(IZ)

FORMATC'OUNIT+I3," STATUS =',408)

FORMAT{ "OGD TO TERMINAL BEING TESTED...ENTER 2 LINES + <RET:")

FORMATC? 18T LINE: INPUT WILL BE ECHOED THEN REPEATED’)
FORMAT (' ZND LINE: TEST TTSPC#% ON - INPUT ECHOED VYIA MTOUT'/)
FORMAT("1 SYSLIB MULI-TERMINAL ROUTINE TEST PROGRAM’)

FORMAT(’ ABOUT TO DETATCH UNIT # ,IZ)

FORMAT(’ TEST ASW - INPUT WILL BE ECHOED: THEN REPEATED'/)
FORMAT(“4TEST ASYNCH STATUS WORD FUNCTION?')

FORMAT (A1)

FORMAT("OMT ' +Ad,y* ERROR CODE =',+I3)

END

System Subroutine Description and Examples

100
101
102
103
104
105

SUBROUTINE 7O GET NEW STATUS WORD VALUES

SUBROUTINE SETUP(SBLOK »UNIT)
INTEGER SBLOK(4) ,UNIT
TYPE 100

ACCEPT 101 +d
IF(BISBLOK(1)=J

TYPE 102

ACCEPT 10144

TYPE 103

ACCEPT 101.,1
IF{I,0R,J)SBLOK(3)=1%#256+d
TYPE 104

ACCEPT 1035.1
IF¢I)SBLOK(4)=8BLOK(4)/256#256+1

FROMPT FOR NEW CONFIG WORD
ACCEPT INPUT

UPDATE IF ANY INPUT

ASK FOR FILL CHAR

ACCEPT IT

ASK FOR # OF FILL CHARS
ACCEPT IT TOO

PHIT Th DRMODER RYTEC
[S U B R % = O = =)

ASK FOR CARRIAGE WIDTH
ACCEPT IT
SET BUT DON‘T MESS WITH

RETURN STATE WORD ... RETURN
FORMAT("$CONFIG BIT MASK: ")

FORMAT(OB)

FORMAT(‘$CHAR REQUIRING FILLER: ")

FORMAT(“$# OF FILL CHARS:’)

FORMAT("$CARRIAGE WIDTH:)

FORMAT(I3)

END

3.77 MTDTCH (Special Feature)

The MTDTCH subroutine is the complement of the MTATCH subroutine. Its
function is to detach a terminal from a particular job and make it available

for other jobs.
Form: i = MTDTCH(unit)

where:

unit is the logical unit number (lun) of the terminal to be detached

Errors:

i =0 Normal return.
= 2 Invalid unit number; terminal is not attached.
= 3 Nonexistent unit number.

Example:
Refer to the example under MTATCH.

3.78 MTGET (Special Feature)

The MTGET subroutine furnishes the user with information about a specific

terminal in a multi-terminal system.
Form: i = MTGET (unit,addr[,jobnum])

where:

unit is the unit number of the line and terminal whose status is

desired

System Subroutine Description and Examples

addr is the four-word area to receive the status information. The
area is a four-element INTEGER*2 array (see the MTSET
programmed request, Section 2.51, for area format).

jobnum is the job number associated with the terminal if the terminal
is not available

Status information including bit definitions for the terminal configuration
words and the terminal state byte are described in detail under the . MTGET
programmed request.

Errors:

Normal return.

Unit not attached.

Nonexistent unit number.

Unit attached by another job (job number returned in jobnum).
In XM monitor, the address of the terminal buffer is outside the
valid program limits.

1

I

I
DB WO

{

Example:
Refer to the example under MTATCH.

3.79 MTIN (Special Feature)

3-80

- The MTIN subroutine transfers characters from a specified terminal to the

user program. This subroutine is a multi-terminal form of ITTINR. If no
characters are available, an error flag is set to indicate an error upon return
from the subroutine. If no character count argument is specified, one charac-
ter is transferred. ‘

Form: i = MTIN (unit,char[,chrent 1[,ocnt])

where:
unit is the unit number of the terminal

char is the variable to contain the characters read in from the ter-
minal indicated by the unit number

chrent is an optional argument that indicates the number of charac-
ters to be read

ocnt is an optional argument that indicates the number of charac-
ters actually transferred

When a request for a multiple-character transfer is requested, if the optional
fourth argument (ocnt) is specified and bit 6 of the M. TSTS word is set, the
variable specified as the argument will have a value equal to the actual
number of characters transferred upon return from the subroutine.

Errors:
0 Normal return.
=1 No input available.

i

System Subroutine Description and Examples

2 Unit not attached.
= 3 Nonexistent unit number.

Il

Example:

Refer to the example under MTATCH.

3.80 MTOUT (Special Feature)

The MTOTIT 1hroutin
4 llv LLLU S ARTL

erminal.

»—a

1. 5
nis

e+

I utine transfers characters to a sr;egfe:{
subroutine is a multi-terminal form of ITTOUR. If no room is available in the
output ring buffer, an error flag is set to indicate an error upon return from
the subroutine. If no character count argument is specified, one character is

transferred.
Form: i = MTOUT (unit,char[,chrent][,ocnt])

where:

unit is the unit number of the terminal

char is the variable or array containing the characters to be output,
right-justified in the integer (can be LOGICAL*1 if desired)

chrent s an optional argument that indicates the number of charac-
ters to be output

ocnt is an optional argument that indicates the number of charac-
ters actually transferred

When a request for a multiple-character transfer is requested, if the optional .
fourth argument (ocnt) is specified and bit 6 of the M.TSTS word is set, the
variable specified as the argument will have a value equal to the actual
number of characters transferred upon return from the subroutine.

Errors:
1 =0 Normal return.

=1 No room in output ring buffer.

= 2 Unit not attached.

= 3 Nonexistent unit number.

5 In the XM monitor, the address of the user buffer is outside the
valid program limits.

Example:

Refer to the example under MTATCH.

3.81 MTPRNT (Special Feature)

The MTPRNT subroutine allows output to be printed at any terminal in a
multi-terminal environment. This subroutine has the same effect as the
PRINT subroutine (Section 3.86).

System Subroutine Description and Examples 3-81

Form: i = MTPRNT (unit,string)

where:

unit is the unit number associated with the terminal

string is the character string to be printed. Note that all quoted liter-
als used in FORTRAN subroutine calls are in ASCIZ format,
which ends in zero for a CR/LF or a 200 if no action is to be
taken

Errors:

Normal return.

Unit not attached.

Nonexistent unit number.

In the XM monitor, the address of the character string is out-
side the valid program limits.

i

o
T1 oo O

3.82 MTRCTO (Special Feature)

The MTRCTO subroutine resets the CTRL/O command typed at the speci-
fied terminal in a multi-terminal environment. This subroutine has the same
effect as the .RCTRLO programmed request (Section 2.59).

Form: i = MTRCTO(unit)

where:
unit is the unit number associated with the terminal

Errors:

1 =0 Normal return.
= 2 Unit not attached.
= 3 Nonexistent unit number.
Example:

Refer to the example under MTATCH.

3.83 MTSET (Special Feature)

The MTSET subroutine sets terminal and line characteristics. The set condi-
tions remain in effect until the system is booted or the terminal and line
characteristics are reset. See the MTSET programmed request (Section 2.51)
for more detaiis.

Form: i = MTSET (unit,addr)

where:

unit is the unit number of the line and terminal whose characteristics
are to be changed

3-82 System Subroutine Description and Examples

addr is a four-word area to pass the status information. The area is a
four-element INTEGER*2 array

Errors:

i

I
D WO

Normal return.

Unit not attached.

Nonexistent unit number.

In the XM monitor, the address of the status block is outside

the valid program limits.

Exampie:

Refer to the example under MTATCH.

3.84 MTSTAT (Special Feature)

The MTSTAT subroutine returns multi-terminal system status in an eight-

word status block.

Form: i = MTSTAT (addr)

where:

addr is the address of an eight-word array where multi-terminal
status information is returned. The status block contains the
following information:

addr(1)

addr(3)

addr(4)
addr(5)-(8)

Errors:

Contents

Offset from the base of the resident monitor to
the first Terminal Control Block (TCB).

Offset from the base of the resident monitor to

UIIset Iirom i e Ol U € ent monitor

the terminal control block of the console terminal
for the program.

The number of terminal control blocks built into
the system (1-17 decimal).

The size of the terminal control block in bytes.

Reserved.

i =0 Normal return.
= 5 In the XM monitor, the address of the status block is not in
valid user address space.

Example:

Refer to the example under MTATCH.

System Subroutine Description and Examples 3-83

3.85 MWAIT (FB and XM Only)

The MWAIT subroutine suspends main program execution of the current job
until all messages sent to or from the other job have been transmitted or
received. It provides a means for ensuring that a required message has been
processed. MWAIT is used primarily in conjunction with the IRCVD and
ISDAT calls, where no action is taken when a message transmission is com-
pleted. This subroutine requires a queue element, which should be considered
when the IQSET function (Section 3.39) is executed.

Form: CALL MWAIT
Errors:

None.
Example:

Refer to the example under ISDAT, Section 3.48.

3.86 PRINT

0

4

The PRINT subroutine prints output from a specified string at the console
terminal. This routine can be used to print messages from completion routines
without using the FORTRAN formatted I/O system. Control returns to the
user program after all characters have been placed in the output buffer.

The string to be printed can be terminated with either a null (0) byte or a 200
(octal) byte. If the null (ASCIZ) format is used, the output is automatically
followed by a carriage return/line feed pair (octal 15 and 12). If a 200 byte
terminates the string, no carriage return/line feed pair is generated.

In the FB monitor, a change in the job that is controlling terminal output is
indicated by a B> or F>. Any text following the message has been printed by
the job indicated (foreground or background) until another B> or F> is
printed. When PRINT is used by the foreground job, the message appears
immediately, regardless of the state of the background job. Thus, for urgent
messages, PRINT should be used rather than ITTOUR.

Form: CALL PRINT (string)

where:

string is the string to be printed. Note that all quoted literals used in
FORTRAN subroutine calls are in ASCIZ format, as are all
strings produced by the SYSLIB string-handling package (The
CONCAT routine can be used to append an octal 200 to an
ASCIZ string; see example.)

Errors:

None.

System Subroutine Description and Examples

Example:

CALL PRINT (‘THE COFFEE IS5 READY ')
or

BYTE QUESTION(BO)

PAPREND BYTE 200

CALL CONCAT('WHAT IS YOUR NAME?T ' »Z0C.QUESTION?
CaLL PRINT(QUESTION) !QUESTION PRINTS WITHOUT CR:LF

3.87 PURGE

The PURGE subroutine deactivates a channel without performing an
ISAVES, CLOSEC, or ICLOSE. Any tentative file currently associated with
the channel is not made permanent. This subroutine prevents entered
(IENTER or .ENTER) files from becoming permanent directory entries.

Form: CALL PURGE (chan)

where:

chan is the integer specification for the RT-11 channel to be deac-
tivated

Errors:
None.
Example:

Refer to the example under IENTER, Section 3.24.

3.88 PUTSTR

The PUTSTR subroutine writes a variable-length character string to a speci-
fied FORTRAN logical unit. PUTSTR can be used in main program routines
or in completion routines but not in both in the same program at the same
time. If PUTSTR is used in a completion routine, it must not be the first I/0
operation on the specified logical unit.

Form: CALL PUTSTR (lun,in,char,err)

where:

Jun is the integer specification of the FORTRAN logical unit num-
ber to which the string is to be written

in is the array containing the string to be written

char is an ASCII character that is appended to the beginning of the
string before it is output. If 0, no extra character is output. This
character is used primarily for carriage control purposes

System Subroutine Description and Examples 3-85

err is a LOGICAL*1 variable that is .TRUE. for an error condition
and .FALSE. for a no-error condition

Errors:

err = -1 End-of-file for write operation.
-2 Hardware error for write operation.

Example:
LOGICAL*1 STRNG(B1) ,ERR

+

+

'OUTPUT STRING WITH DOUBLE SPACING
CALL PUTSTR(7:5TRNG:’0’ ERR)

3.89 R50ASC

THE R50ASC subroutine converts a specified number of Radix-50 characters
to ASCII.

Form: CALL R50ASC (icnt,input,output)

where:

icnt is the integer number of ASCII characters to be produced

input is the area from which words of Radix-50 values to be

converted are taken. Note that (icnt+2)/3 words are read for
conversion

output is the area into which the ASCII characters are stored
Errors:

If an input word contains illegal Radix-50 codes — that is, if the input

word is greater (unsigned) than 174777(octal) — the routine outputs
question marks for the value.

Example:

REAL*8 NAME
LOGICAL*1 OUTP(12Z)

+

+

CALL RSOASBC(1ZsNAME .QUTP)

3.90 RAD50

The RAD50 function provides a method of encoding RT-11 file descriptors in
Radix-50 notation. The RAD50 function converts six ASCII characters from

the specified area, returning a REAL*4 result that is the two-word Radix-50
value.

3-86 System Subroutine Description and Examples

Form: a = RAD50 (input)
where:
input is the area from which the ASCII input characters are taken
The RAD50 call:
A = RADS0O (LINE)
is exactly equivalent to the IRAD50 call:
CALL IRADS0 (B,LINEA)

Function Results:

The two-word Radix-50 value is returned as the function result.

3.91 RCHAIN

3.92

The RCHAIN subroutine allows a program to determine whether it has been
chained to and to access variables passed across a chain. If RCHAIN is used,
it must be used in the first executable FORTRAN statement in a program.

Form: CALL RCHAIN (flag,var,went)

where:
flag is an integer variable that RCHAIN will set to -1 if the program
has been chained to; otherwise, it is 0
var is the first variable in a sequence of variables with increasing
memory -addresses to receive the information passed across the
chain (see Section 3.2)
went is the number of words to be moved from the chain parameter
area to the area specified by var. RCHAIN moves wcnt words
into the area beginning at var
Errors:
None.
Example:
INTEGER*2 PARMS({50)
CALL RCHAIN(IFLAG:PARMS50)
IF(IFLAG) GOTO 10 IGOTO 10 IF CHAINED TO
RCTRLO

The RCTRLO subroutine resets the effect of any console terminal CTRL/O
command that was typed. After an RCTRLG call, any output directed to the
console terminal prints until another CTRL/O is typed.

System Subroutine Description and Examples 3-87

Form: CALL RCTRLO
Errors:
None.

Example:

CALL RCTRLD
CALL PRINT ('PRINT UNTIL ANOTHER CTRL/O TYPED

3.93 REPEAT

The REPEAT subroutine concatenates a specified string with itself to pro-
duce the indicated number of copies. REPEAT places the resulting string in a
specified array.

Form: CALL REPEAT (in,out,i[,len[,err]])

where:

in is the array containing the string to be repeated; it must be termi-
nated with a null byte

out is the array into which the resultant string is placed. This array
must be at least one element longer than the value of len, if len is
specified. It also must be terminated with a null byte if len is
specified

i is the integer number of times to repeat the string

len is the integer number representing the maximum length of the
output string

err is the logical error flag set if the output string is truncated to the
length specified by len

Input and output strings can specify the same array only if the repeat count
(1) is 1 or 0. When the repeat count is 1, this routine is the equivalent of
SCOPY; when the repeat count is 0, out is repiaced by a nuil string. The oid
contents of out are lost when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given and the
output string would have been longer than len characters, then err is set
to .TRUE.; otherwise, err is unchanged.

Example:

LOGICAL*1 SINCZ1),50UT(101)

+

CALL REPEAT(SIN,50UT.:5)

3-88 System Subroutine Description and Examples

3.94 RESUME (FB and XM Only)

The RESUME subroutine allows a job to resume execution of the main pro-
gram. A RESUME call is normally issued from an asynchronous FORTRAN
routine entered on I/O completion or because of a schedule request (see the
SUSPND subroutine, Section 3.102, for more information).

Form: CALL RESUME
Errors:

.
\NOne.

7

Example:

Refer to the example under SUSPND.

3.95 SCCA
The SCCA subroutine provides a CTRL/C intercept to:

1. Inhibit a CTRL/C abort
9. Indicate that a CTRL/C command is active

3. Distinguish between single and double CTRL/C commands

Form: CALL SCCA [(iflag)]
where:

iflag is an integer terminal status word that must be tested and
cleared to determine if two CTRL/Cs were typed at the console
terminal; the iflag must be an INTEGER*2 variable (not
LOGICAL*1)

When a CTRL/C is typed, the SCCA subroutine places it in the input ring
buffer. While residing in the buffer, the character can be read by the program.
The program must test and clear the iflag to determine if two CTRL/C com-
mands were typed consecutively. The iflag is set to non-zero when two
CTRL/Cs are typed together. It is the responsibility of the program to abort
itself, if appropriate, on an input of CTRL/C from the terminal. The SCCA
subroutine with no argument disables the CTRL/C intercept. A CTRL/C from
indirect command files is not intercepted by SCCA.

Errors:
None.
Example:
PROGRAM SCCA
C 5CCA.FOR SYSLIB TEST FOR SCCA
C

System Subroutine Description and Examples 3-89

CALL PRINT (‘PROGRAM HAS STARTED, TYPE')

IFLAG=0
CALL SCCA (IFLAG)

10 I = ITTINR(} 'GET A CHARACTER
IF (I +NE. 3} GOTO 10

C A CTRL/C WAS TYPED

CALL PRINT (’A CTRL/C WAS TYPED')
IF (IFLAG .EQ. 0) GOTO 10
CALL PREINT (‘A DOUBLE CTRL/C WAS TYPED')
TYPE 18:IFLAG
19 FORMAT (7 IFLAG = ‘,06:/)

CaLL SCCA 'DISABLE CTRL/C INTERCEPT
CALL PRINT (‘TYPE A CTRL/C TO EXIT')

20 GOTOD 20 'LOOP UNTIL CTRL/C TYPED
END

3.96 SCOMP/ISCOMP

The SCOMP routine compares two character strings and returns the integer
result of the comparison.

Form: CALL SCOMP (a,b,i)
or
i = ISCOMP (a,b)
where:

a is the array containing the first string; it must be terminated with a
null byte

b is the array containing the second string; it must be terminated
with a null byte

1 is the integer variable that receives the result of the comparison

The strings are compared from left to right, one character at a time, using the
collating sequence specified by the ASCII codes for each character. If the two
strings are not equal, the absolute value of variable i (or the result of the
function ISCOMP) is the character position of the first inequality found.
Strings are terminated by a null (0) character.

If the strings are not the same length, the shorter one is treated as if it were
padded on the right with blanks to the length of the other string. A null string
argument is equivalent to a string containing only blanks.

Function Results:

i <0 If ais less than b.
=0 If ais equal to b.
>0 If a is greater than b.

Example:

DCICAL*1 INSTR(E1}

+
+
+

3-90 System Subroutine Description and Examples

CALL GETSTR(5+INSTR B0}
CALL SCOMP(’YES’ INSTR:IVAL)

[R

IF{IVAL.NE.O) GOTO 10 IIF INPUT STRING IS NOT YES GOTO 12

3.97 SCOPY

The SCOPY routine copies a character string from one array to another.
Copying stops either when a null (0) character is encountered or when a
specified number of characters have been moved.

Form: CALL SCOPY (in,out[,len[,err]])
where:

in is the array containing the string to be copied; it must be termi-
nated with a null byte if len is not specified, or if the string is
shorter than len

)
ct

is the array to receive the copied string. This array must be at
least one element longer than the value of len, if len is specified.
It also must be terminated with a null byte if len is specified

len is the integer number representing the maximum length of the
output string. The effect of len is to truncate the output string to
a given length

err s a logical variable that receives the error indication if the output
string was truncated to the length specified by len

The input (in) and output (out) arguments can specify the same array. The
string previously contained in the output array is lost when this subroutine is
called.

Error conditions are indicated by err, if specified. If err is given and the
output string was truncated to the length specified by len, then err is set
to .TRUE.; otherwise, err is unchanged.

Example:

SCOPY is useful for initializing strings to a constant value, for example:

LOGICAL*1 STRING(8O)
CALL SCOPY('THIS IS THE INITIAL VALUE’ :STRING)

3.98 SECNDS

The SECNDS function returns the current system time, in seconds past mid-
night, minus the value of a specified argument. Thus, SECNDS can be used
to calculate elapsed time. The value returned is single-precision floating point
(REAL*4).

System Subroutine Description and Examples 3-91

Form: a = SECNDS (atime)
where:

atime is a REAL*4 variable, constant, or expression whose value is
subtracted from the current time of day to form the result

Notes:

This function does floating-point arithmetic. Elapsed time can also be calcu-
lated by using the GTIM call and the INTEGER*4 support functions.

Function Result:

The function result (a) is the REAL*4 value returned.

Errors:
None.
Example:
C START OF TIMED SEGUENCE
T1=8ECNDS(0,)
C
C CODE TO BE TIMED GOES HERE
C
DELTA=SECNDS(T1) IDELTA IS ELAPSED TIME

3.99 SETCMD

3-92

The SETCMD routine allows a user program to pass a command line to the
keyboard monitor to be executed after the program exits. The command lines
are passed to the chain information area (500-777, octal) and stored beginning
at location 512(octal). No check is made to determine if the string extends
into the stack space. For this reason, the command line should be short and
the subroutine call should be made in the main program unit near the end of
the program just before completion. When several commands are involved, an

indirect command file that contains several command lines should be used.

The monitor commands REENTER, START, and CLOSE are not allowed if
the SETCMD feature is used.

Form: CALL SETCMD (string)
where:

string is a keyboard monitor command line in ASCIZ format with no
embedded carriage returns or line feeds

Errors:

None.

System Subroutine Description and Examples

Example:

LOGICAL#*1+INPUT(134) :PROMPT (8}

DATAE PROMPT/ P/ /R0 M 7P Ty 7y 2007
CALL GTLIN (INPUT.PROMPT)

CaLL SETCMD (INPUT)

END

NOTE

Set USR NOSWAP, or specify /NOSWAP with the COMPILE,
FORTRAN, or EXECUTE command to control the swapping
state of the USR. A LOCK would inhibit another job from
using the USR.

A STOP or CALL EXIT must also be issued for the SETCMD to cause an
exit.

3.100 STRPAD

The STRPAD routine pads a character string with rightmost blanks until that
string is a specified length. This padding is done in place; the result string is
contained in its original array. If the present length of the string is greater
than or equal to the specified length, no padding occurs.

Form: CALL STRPAD (a,lenl,err])

where:

a is the array containing the string to be padded. This array must
be one element longer than the value of len if len is specified. It
will be terminated by a null byte

len is the integer length of the desired result string

err is the logical error flag that is set to .TRUE. if the string specified
by a exceeds the value of i in length

Errors:

Error conditions are indicated by err, if specified. If err is given and the
string indicated is longer than i characters, err is set to .TRUE.; other-
wise, the value of err is unchanged.

Example:

This routine is especially useful for preparing strings to be output in
A-type FORMAT fields. For example:

LOGICAL*1 STR(B81)

+

+

CALL STRPAD(STR 807 IASSURE 80 WALID CHARACTERS
PRIMT 100:(STR(I)sI=1:80) !PRINT STRING OF 80 CHARACTERS
100 FORMAT(BOAL)}

System Subroutine Description and Examples 3-93

3.101 SUBSTR

The SUBSTR routine copies a substring from a specified position in a charac-
ter string. If desired, the substring can then be placed in the same array as the
string from which it was taken.

Form: CALL SUBSTR (in,out,il,len])

where:

in is the array from which the substring is taken; it is terminated by
a null byte

out is the array to contain the substring result. This array must be
one element longer than len, if len is specified. It also is termi-
nated by a null byte if len is specified

i is the integer character position in the input string of the first
character of the desired substring

len is the integer number of characters representing the maximum
length of the substring

If a maximum length (len) is not given, the substring contains all characters
to the right of character position i in array in and is not terminated by a null
byte. If len is given, the string is copied and terminated with a null byte. If len
is equal to zero, out is replaced by the null string. The old contents of array
out are lost when this routine is called.

Errors:
None.

3.102 SUSPND (FB and XM Only)

3-94

S

y

s

t.

e

The SUSPND subroutine suspends main program execution of the current job
and allows only completion routines (for I/O and scheduling requests) to run.

Form: CALL SUSPND

Notes:

1. The monitor maintains a suspension counter for each job. This count is
decremented by SUSPND and incremented by RESUME (see Section
3.94). A job will actually be suspended only if this counter is negative.

Thus, if a RESUME is issued before a SUSPND, the latter routine will
return immediately.

2. A program must issue an equal number of SUSPND and RESUME calls.

3. A SUSPND subroutine call from a completion routine decrements the
suspension counter but does not suspend the main program. If a comple-
tion routine does a SUSPND, the main program continues until it also

issues a SUSPND, at which time it is suspended. Two RESUME calls are
then required to proceed.

Subroutine Description and Examples

4. Because SUSPND and RESUME are used to simulate an ITWAIT (see
Section 3.56) in the monitor, a RESUME issued from a completion rou-
tine and not matched by a previously executed SUSPND can cause the
main program execution to continue past a timed wait before the entire
time interval has elapsed.

For further information on suspending main program execution of the current
job, see the .SPND programmed request (Section 2.77).

Errors:
None.
Example:

INTEGER IAREA(4)

COMMON /RDBLK/ IBUF(Z36)

HTERNAL RDFIN

IF(IREADF (256 +IBUF +IBLK yICHAN»IAREARDFIN)WNE.OY GOTD 1000

GOTO 1000 FOR ANY TYPE OF ERROR

s RNl

DO OVYERLAPPED PROCESSING

+

+

CALL SUSPND ISYNCHRONIZE WITH COMPLETION ROUTINE

END

SUBROUTINE RDFIN(IARGLIARGZ)

COMMON /RDBLK/ IBUF(Z3G)

CALL RESUME ICONTINUE MAIN PROGRAM
END

3.103 TIMASC

The TIMASC subroutine converts a two-word internal format time into an
ASCII string of the form:

hh:mm:ss

where:
hh is the two-digit hours indication
mm is the two-digit minutes indication

ss is the two-digit seconds indication

System Subroutine Description and Examples 3-95

Form: CALL TIMASC (itime,strng)

where:

itime is the two-word internal format time to be converted. itime (1)
is the high-order time, itime (2) is the low-order time

strng is the eight-element array to contain the ASCII time

Errors:
None.
Example:
The following example determines the amount of time from the time

the program is run until 5 p.m. and prints it.

INTEGER*4 J1.,42+J43
LOGICAL*1 STRNG(8)

+

+

CALL JTIME(17.,0.:0,0,J1)
CALL GTIMOJZ)
CALL JJCUTCJ1)
CALL JJCUT(JZ2)
CALL JSUB(J1.J2.,43)
CALL JJCUT (U3
CALL TIMASC(J3:5TRNG)
TYPE 99,(S5TRNG(I) . I=1.:8)
g8 FORMAT(’ IT IS ‘:8BA1,° TILL 5 P.M,")

+
+

+

3.104 TIME

The TIME subroutine returns the current system time of day as an eight-
character ASCII string of the form:

hh:mm:ss

where:
hh is the two-digit hours indication
mm is the two-digit minutes indication
ss is the two-digit seconds indication
Form: CALL TIME (strng)
where:
strng is the eight-element array to receive the ASCII time
Notes:

A 24-hour clock is used (for example, 1:00 p.m. is represented as 13:00:00).

3-96 System Subroutine Description and Examples

Errors:
None.

Example:

LOGICAL+1 STRNG(E}
.

+

CALL TIME(STRNG?
TYPE 99, (STRNG{TIY I=1.8}
39 FORMAT ¢ IT IS NOW ‘84813

3.105 TRANSL

The TRANSL routine performs character translation on a specified string and
requires approximately 64 decimal words on the R6 stack for its execution.
This space should be considered when allocating stack space.

Form: CALL TRANSL (in,out,rl,pl)
where:

in is the array containing the input string; it is terminated by a null
byte

out is the array to receive the translated string: it is not terminated
by a null byte

r is the array containing the replacement string; it is terminated by
a null byte
p is the array containing the characters in in to be translated; it is

terminated by a null byte

The string specified by array out is replaced by the string specified by array
in, modified by the character transiation process specified by arrays r and p. If
any character position in in contains a character that appears in the string
specified by p, it is replaced in out by the corresponding character from string
r. If the array p is omitted, it is assumed to be the 127 seven-bit ASCII
characters arranged in ascending order, beginning with the character whose
ASCII code is 001. If strings r and p are given and differ in length, the longer
string is truncated to the length of the shorter. If a character appears more
than once in string p, only the last occurrence is significant. A character can
appear any number of times in string r.

Errors:

None.

Examples:

The following example causes the string in array A to be copied to array
B. All periods within A become minus signs, and all question marks
become exclamation points.

CALL TRANSL(AGB -1 747,77}

System Subroutine Description and Examples 3-97

The following is an example of TRANSL being used to format character
data.

LOGICAL#*1 STRING(27) RESULT(27)PATRN(Z27)
c SET UP THE STRING TO BE REFORMATTED

[
CALL SCOPY(’'THE HDRN BLOMWS AT MIDNIGHT ' STRING)
C SET UP NUMBER-CHARACTER DATA RELATIONSHIP
C
C Q0000000011 111111112222222
C 12345678B8901234567890123456
C THE HORN BLOWS AT MIDNIGHT
[NOW SET UP PATRN TO CONTAIN THE FOLLOWING PATTERN:
C 16417 +18,18+20+21 222 +23+24,3259268,15+132+3:4+5,6:7:8:9,10:11 172412 :14.:0
[

DO 10 I=1B:26
10 PATRN(I-15)=1

PATRN(1Z2)=15

DO 20 I=1.14
20 PATRN{I+1Z)=1]

PATRN(27)=0
C
C THE FOLLOWING CALL TO TRANSL REARRANGES THE CHARACTERS OF
C THE INPUT STRING TO THE ORDER SPECIFIED BY PATRN:
C
CALL TRANSL(PATRN:RESULT:STRING)
C
C RESULT NOW CONTAINS THE STRING ‘AT MIDNIGHT THE HORN BLOMWS
c IN GENERAL s THIS METHOD CAN BE USED TD FOURMAT INPUT STRINGS
C OF UP TO 127 CHARACTERS, THE RESULTANT STRING WILL BE
C AS LONG AS THE PATTERN STRING (AS IN THE ABOVE EXAMPLE).

The TRIM routine shortens a specified character string by removing all trail-
ing blanks. A trailing blank is a blank that has no non-blanks to its right. If
the specified string contains all blank characters, it is replaced by the null
string. If the specified string has no trailing blanks, it is unchanged.

Form: CALL TRIM (a)
where:

a is the array containing the string to be trimmed; it is terminated by
a null byte on input and output

Errors:

None.
Example:

LOGICAL*1 STRING(B1)

ACCEPT 100 (STRING{I) »I=1.:801
100 FORMAT(BOAIL)
CALL SCOPY(STRING,STRING,80) 'MAKE ASCIZ
CALL TRIM(STRING) TTRIM TRAILING BLANKS

3-98 System Subroutine Description and Examples

3.107 UNLOCK

The UNLOCK subroutine releases the User Service Routine (USR) from
memory if it was placed there by the LOCK routine. If the LOCK required a
swap, the UNLOCK loads the user program back into memory. If the USR
does not require swapping, the UNLOCK involves no I/0. The USR is always
resident in XM.

Form: CALL UNLOCK
Notes:

1. It is important that at least as many UNLOCK calls are given as LOCK
calls. If more LOCK calls were done, the USR remains locked in memory.
Extra UNLOCK calls are ignored.

2. When running two jobs in the FB system, use the LOCK/UNLOCK pairs
only when absolutely necessary. If one job locks the USR, the other job
cannot use the USR until it is unlocked.

In an FB system, calling the CSI (ICSI) with input coming from the

console terminal performs a temporary implicit UNLOCK.

(VN

For further information on releasing the USR from memory, see the
.LOCK/.UNLOCK programmed requests (Section 2.39).

Errors:
None.
Example:
C GET READY TO DD MANY USR DPERATIONS
CALL LOCK IDISABLE USR SWAPPING
C PERFORM THE USR CALLS
C FREE THE USR

CALL UNLOCK

+

+

3.108 VERIFY

The VERIFY routine checks that a given string is composed entirely of char-
acters from a second string. If a character does not exist in the string being
examined, VERIFY returns the position of the first character in the string
being examined that is not in the source string. If all characters exist,
VERIFY returns a 0.

System Subroutine Description and Examples 3-99

3-100

Form: CALL VERIFY (a,b,i)
or
i = IVERIF (a,b)

where:

a is the array containing the string to be scanned; it is terminated by
a null byte

b is the array containing the string of characters to be accepted in a;
it is terminated by a null byte

Function Result:

i =0 If all characters of a exist in b; also if a is a null string.
=n Where n is the character position of the first character in array
a that does not appear in array b; if b is a null string and a is
not, i equals 1.

Example:

The following example accepts a one- to five-digit unsigned decimal
number and returns its value.

LOGICAL*1 INSTR(B1)

+

CALL VERIFY(INSTR, 01234567897 ,1)
IF(I.EQ.1) STOP 'NUMBER MISSING’
IFCTILWEQ.O) I=LENCINSTR)
IF(I.GT.5)y STOP 'TOD MANY DIGITS’
NUM=IVALUE(INSTR 1)

+

END

System Subroutine Description and Examples

Appendix A
Display File Handler

This appendix describes the assembly language support provided under
RT-11 for the VT11 graphic display hardware systems.

The following manuals are suggested for additional reference:

GT40/GT42 User’s Guide
EK-GT40-0P-002

GT44 User’s Guide
EK-GT44-0OP-001

VT11 Graphic Display Processor
EK-VT11-TM-001

DECGRAPHIC-11 GT Series Reference Card

EH-02784-73

DECGraphic-11 FORTRAN Reference Manual
DEC-11-GFRMA-A-D

BASIC-11 Graphics Extensions User’s Guide
DEC-11-LBGEA-A-D

A.1 Description

The graphics display terminals have hardware configurations that include a
display processor and CRT (cathode ray tube) display. All systems are
equipped with light pens and hardware character and vector generators, and
are capable of high-quality graphics. The Display File Handler supports this
graphics hardware at the assembly language level under the RT-11 monitor.

A.1.1 Assembly Language Display Support

The Display File Handler is not an RT-11 device handler, since it does not use
the I/0O structure of the RT-11 monitor. For example, it is not possible to use a
utility program to transfer a text file to the display through the Display Fiie
Handler. Rather, the Display File Handler provides the graphics programmer
the means for the display of graphics files and the easy management of the
display processor. Included in its capabilities are such services as interrupt
handling, light pen support, tracking object, and starting and stopping of the
display processor.

The Display File Handler manages the display processor by means of a base
segment (called VIBASE) which contains interrupt handlers, an internal
display file and some pointers and flags. The display processor cycles through
the internal display file; any user graphics files to be displayed are accessed

by display subroutine calls from the Handler’s display file. In this way, the
Display File Handler exerts control over the display processor, relieving the
assembly language user of the task.

Through the Display File Handler, the programmer can insert and remove
calls to display files from the Handler’s internal display file. Up to two user
files may be inserted at one time, and that number may be increased by re-
assembling the Handler. Any user file inserted for display may be blanked
(the subroutine call to it bypassed) and unblanked by macro calls to the
Display File Handler.

Since the Handler treats all user display files as graphics subroutines to its
internal display file, a display processor subroutine call is required. This
is implemented with software, using the display stop instruction, and
is available for user programs. This instruction and several other extended
instructions implemented with the display stop instruction are described in
Section A.3.

The facilities of the Display File Handler are accessed through a file of macro
definitions (VTMAC) which generate calls to a set of subroutines in VTLIB.
VTMAC'’s call protocol is similar to that of the RT-11 macros. The expansion
of the macros is shown in Section A.6. VIMAC also contains, for convenience
in programming, the set of recommended display processor instruction
mnemonics and their values. The mnemonics are listed in Section A.7 and are
used in the examples throughout this appendix.

VTCAL1 through VTCAL4 are the set of subroutines which service the
VTMAC calls. They include functions for display file and display processor
management. These are described in detail in Section A.2. VT'CAL1 through
VTCAL4 are distributed, along with the base segment VIBASE, as a file of
five object modules called VTHDLR.OBJ. VTHDLR is built into the graphics
library VTLIB by using the monitor LIBRARY command. VTHDLR only
supports VT'11 hardware. Section A.4.2 shows an example.

A.1.2 Monitor Display Support

The RT-11 monitor, under Version 03 and later, directly supports the display
as a console device. A keyboard monitor command, GT ON (GT OFF) per-
mits the selection of the display as console device. Selection results in the
allocation of approximately 1.25K words of memory for text buffer and code.
The buffer holds approximately 2000 characters.

The text display includes a blinking cursor to indicate the position in the text
where a character is added. The cursor initially appears at the top left corner
of the text area. As lines are added to the text the cursor moves down the
screen. When the maximum number of lines are on the screen, the top line is
deleted from the text buffer when the line feed terminating a new line is
received. This causes the appearance of “scrolling,” as the text disappears off
the top of the display.

When the maximum number of characters have been inserted in the text
buffer, the scroller logic deletes a line from the top of the screen to make room

A-2 Appendix

for additional characters. Text may appear to move (scroll) off the top of the
screen while the cursor is in the middle of a line.

The Display File Handler can operate simultaneously with the scroller pro-
gram, permitting graphic displays and monitor dialogue to appear on the
screen at the same time. It does this by inserting its internal display file into
the display processor loop through the text buffer. However, the following
should be noted. Under the SJ Monitor, if a program using the display for
graphics is running with the scroller in use (that is, GT ON is in effect), and
the program does a soft exit ((EXIT with RO not equal to 0) with the display
stopped, the display remains stopped until a CTRL/C is typed at the key-
board.

This can be recognized by failure of the monitor to echo on the screen when
expected. If the scroller text display disappears after a program exit, always
type CTRL/C to restore. If CTRL/C fails to restore the display, the running
program probably has an error.

Four scroller control characters provide the user with the capability of halting
the scroller, advancing the scrolling in page sections, and printing hard copy
from the scroller.

NOTE

The scroller logic does not limit the length of a line, but the
length of text lines affects the number of lines which may be
displayed, since the text buffer is finite. As text lines become
longer, the scroller logic may delete extra lines to make room
for new text, temporarily decreasing the number of lines dis-
played.

A.2 Description of Graphics Macros

The facilities of the Display File Handler are accessed through a set of macros,
contained in VITMAC, which generate assembly language calls to the Handler
at assembly time. The calls take the form of subroutine calls to the sub-
routines in VTLIB. Arguments are passed to the subroutines through register
0 and, in the case of the . TRACK call, through both register 0 and the stack.

This call convention is similar to Version 1 RT-11 I/O macro calls, except that
the subroutine call instruction is used instead of the EMT instruction. If a
macro requires an argument but none is specified, it is assumed that the
address of the argument has already been placed in register 0. The program-
mer should not assume that RO is preserved through the call.

A.2.1 .BLANK

The .BLANK request temporarily blanks the user display file specified in the
request. It does this by bypassing the call to the user display file, which
prevents the display processor from cycling through the user file, effectively

Appendix A-3

blanking it. This effect can later be canceled by the .RESTR request, which
restores the user file. When the call returns, the user is assured the display
processor-is not in the file that was blanked.

Macro Call:

where:

faddr

Errors:

.BLANK faddr

is the address of the user display file to be blanked

No error is returned. If the file specified was not found in the Handler
file or has already been blanked, the request is ignored.

A.2.2 .CLEAR

The .CLEAR request initializes the Display File Handler, clearing out any
calls to user display files and resetting all of the internal flags and pointers.

After initialization with .LNKRT (Section A.2.4), the .CLEAR request can be
used any time in a program to clear the display and to reset pointers. All calls
to user files are deleted and all pointers to status buffers are reset. They must
be re-inserted if they are to be used again.

Macro Call:

Errors:
" None.

Example:

.CLEAR

This example uses a .CLEAR request to initialize the Handler then
later uses the .CLEAR to re-initialize the display. The first .CLEAR is
used for the case when a program may be restarted after a CTRL C or

other exit.

EX1:
RSTRT:

143

FILELS

A-4 Appendix

BR RSTRT

BIS #20000-@%44 sSET REENTER RIT IN JSW

+ UNLNK sCLEARS LINK FLAG FOR RESTART
+LNKRT #SET UF VECTORS, START DIGFRLAY
+CLEAR sINITIALIZE HANDLER

+«INSRT #FILE1 SDISPFLAY A PICTURE

+TTYIN sWALT FOR A KEY STRIKE

CMFE #12yRO sLINE FEED?

ENE 14 sNO» LOOF

+CLEAR sYESs CLEAR DISFLAY

+ INSRT #FILEZ2

+

sDISFLAY NEW FICTURE

FOINT

0

300
LONGY
SO0TINTX
0

ORET

0

$AT FPOINT (025000

sDRAW A LINE
FTO (500535000

FILEZ2: FOINT $AT FOINT (500+0)
500
0
LONGV fDRAW A LINE

O INTX STO (S5005500)
500

DRET

0

JEND EX1

A.2.3 .INSRT

The INSRT request inserts a call to the user display file specified in the
request into the Display File Handler’s internal display file. INSRT causes
the display processor to cycle through the user file as a subroutine to the
internal file. The handler permits two user files at one time. The call inserted
in the handler looks like the following:

nJsk sDISPLAY SURROUTINE
++4 $RETURN ADDRESS
+ Paddr FSUBRDUTINE ADDRESS

The call to the user file is removed by replacing its address with the address of
a null display file. The user file is blanked by replacing the DJSR with a
DJMP instruction, bypassing the user file.

Macro Call: .INSRT faddr

where:

faddr is the address of the user display file to be inserted
Errors:

The .INSRT request returns with the C bit set if there was an error in
processing the request. An error occurs only when the Handler’s display
file is full and cannot accept another file. If the user file specified exists,
the request is not processed. Two display files with the same starting
address cannot be inserted.

Example:

See the examples in Sections A.2.2 and A.2.4.

A.2.4 .LNKRT

The .LNKRT request sets up the display interrupt vectors and possibly links
the Display File Handler to the scroll text buffer in the RT-11 monitor. It
must be the first call to the Handler, and is used whether or not the RT-11
monitor is using the display for console output (that is, the KMON command
GT ON has been entered).

The .LNKRT request used with Version 03 and later RT-11 monitors enables
a display application program to determine the environment in which it is
operating. Error codes are provided for the situations where there is no display

Appendix A-5

A-6 Appendix

hardware present on the system or the display hardware is already being used
by another task (for example, a foreground job in the foreground/background
version).

The existence of the monitor scroller and the size of the Handler’s subpicture
stack are also returned to the caller. If a previous call to .LNKRT was made
without a subsequent .UNLNK, the .LNKRT call is ignored and an error code
is returned.

Macro Call: .LNKRT
Errors:

Error codes are returned in RO, with the N condition bit set.

Code Meaning
-1~ No VT11 display hardware is present on this system.
-2 VT11 hardware is presently in use.

-3 Handler has already been linked.

On completion of a successful .LNKRT request, RO will contain the
display subroutine stack size, indicating the depth to which display
subroutines may be nested. The N bit will be zero.

If the RT-11 monitor scroll text buffer was not in memory at the time of
the .LNKRT, the C bit will be returned set. The KMON commands GT
ON and GT OFF cannot be issued while a task is using the display.

Example:
START? +LNKRT FLINK TO MONITOR
EMI ERROR fERROR DOING LINK
BCS CONT $NO SCROLL IF C SET
+SCROL *SBUF FANJUST SCROLL FARAMETERS
CONT: + INSRT $FILEL FDISFLAY & FICTURE
1¢: +TTYIN fWAIT FOR KEY STRIKE
CMFE %12sR0O sLINE FEED?
BNE 1% sNOy LOOF
+UNLNK FYESy UNLINK AND EXIT
JEXIT
SERUF +RBYTE 5 FLINE COUNT OF 5
+BYTE 7 FINTENSITY 7 (SCALE OF 1-8)
+WORD 1000 sFOSITION OF TOF LINE
FILEL: FOINT $AT FOINT (S500:500)
S00
500
CHAR sDISFLAY SOME TEXT
+ASCII /FILE1 THIS IS FILEl. TYFE CR TO EXIT/
+EVEN
ORET
]
ERROR Error routine

A.2.5 .LPEN

The .LPEN request transfers the address of a light pen status data buffer to
VTBASE. Once the buffer pointer has been passed to the Handler, the light
pen interrupt handler in VTBASE will transfer display processor status data
to the buffer, depending on the state of the buffer flag.

The buffer must have seven contiguous words of storage. The first word is the
buffer flag, and it is initially cleared (set to zero) by the .LPEN request. When
a light pen interrupt occurs, the interrupt handler transfers status data to the
buffer and then sets the buffer flag non-zero. The program can loop on the
buffer flag when waiting for a light pen hit (although doing this will tie up the
processor; in a foreground/background environment, timed waits would be
more desirable). No further data transfers take place, despite the occurrence
of numerous light pen interrupts, until the buffer flag is again cleared to zero.
This permits the program to process the data before it is destroyed by another
interrupt.

The buffer structure looks like this:

Buffer Flag

Name

Subpicture Tag

Display Program Counter (DPC)
Display Status Register (DSR)
X Status Register (XSR)

Y Status Register (YSR)

The Name value is the contents of the software Name Register (described in
A.3.5) at the time of interrupt. The Tag value is the tag of the subpicture
being displayed at the time of interrupt. The last four data items are the
contents of the display processor status registers at the time of interrupt. They
are described in detail in Table A-1.

Macro Caill: .LPEN baddr

where:

baddr is the address of the 7-word light pen status data buffer
Errors:

None.

If a .LPEN was already issued and a buffer specified, the new buffer
address replaces the previous buffer address. Only one light pen buffer
can be in use at a time.

Example:
. INSRT $LFILE $DISFLAY LFILE
JLPEN $LRBUF $GET UP LFEN RBUFFER
LOOF 3 TST LLRUF STEST LEUF FLAG» WHICH
EEQ LOOF SWILL BE SET NON-ZERO

FON LIGHT FEN HIT.
$FROCESS DATA IN LRUF HERE.

Appendix A-7

A-8 Appendix

sUATA IN LBUF

CLR LLEUF sCLEAR THE RUFFER FL.AG
SFERMITTING ANDTHER “HIT"
RR L.OOF G0 WAIT FOR IT
LEUF? +BLKW 7 $SEVEN WORD LFEN RUFFER

LFILE?

Table A-1: Description of Display Status Words

Bits Significance
Display Program Counter (DPC=172000)
0-15 Address of display processor program
counter at time of interrupt.
Display Status Register (DSR=172002)
0-1 Line Type
2 Spare
3 Blink
4 Italics
5 Edge Indicator
6 Shift Out
7 Light Pen Flag
8-10 Intensity
11-14 Mode
15 Stop Flag
X Status Register (XSR=172004)
0-9 X Position
10-15 Graphplot Increment
Y Status Register (YSR=172006)
0-9 Y Position
10-15 Character Register

A.2.6 .NAME

The .NAME request has been added to the Version 03 and later Display File
Handler. The contents of the name register are now stacked when a subpic-
ture call is made. When a light pen interrupt occurs, the contents of the name

register stack may be recovered if the user program has supplied the address
of a buffer through the .NAME request.

The buffer must have a size equal to the stack depth (default is 10) plus one
word for the flag. When the .NAME request is entered, the address of the
buffer is passed to the Handler and the first word (the flag word) is cleared.
When a light pen hit occurs, the stack’s contents are transferred and the flag
is set non-zero.

Macro Call: .NAME baddr

baddr is the address of the name register buffer

Errors:
None.

If a .NAME request has been previously issued, the new buffer address
replaces the previous buffer address.

A.2.7 .REMOV

The .REMOV request removes the call to a user display file previously in-
serted in the handler’s display file by the .INSRT request. All reference to the
user file is removed, unlike the .BLANK request, which merely bypasses the
call while leaving it intact.

Macro Call: .REMOYV faddr
where:
faddr is the address of the display file to be removed

Errors:

No errors are returned. If the file address given cannot be found, the
request is ignored.

A.2.8 .RESTR

The .RESTR request restores a user display file that was previously blanked
by a .BLANK request. It removes the by-pass of the call to the user file, so
that the display processor once again cycles through the user file.

Macro Call: .RESTR faddr

where:

faddr is the address of the user file that is to be restored to view
Errors:

No errors are returned. If the file specified cannot be found, the request
is ignored.

A.2.9 .SCROL

This request is used to modify the appearance of the Display Monitor’s text
display. The .SCROL request permits the programmer to change the maxi-
mum line count, intensity and the position of the top line of text of the
scroller. The request passes the address of a two-word buffer which contains
the parameter specifications. The first byte is the line count, the second byte
is the intensity, and the second word is the Y position. Line count, intensity
and Y position must all be octal numbers. The intensity may be any number
from O to 7, ranging from dimmest to brightest. (If an intensity of 0 is speci-
fied, the scroller text will be almost unnoticeable at a BRIGHTNESS knob
setting less than one-half.) The scroller parameter change is temporary, since
an .UNLNK or CTRL/C restores the previous values.

Appendix A-9

Macro Call: .SCROL baddr
where:
baddr is the address of the two-word scroll parameters buffer

Errors:

No errors are returned. No checking is done on the values of the param-
eters. A zero argument is interpreted to mean that the parameter value
is not to be changed. A negative argument causes the default parameter
value to be restored.

Example:
. SCROL #SCEUF $ADJUST SCROLL FARAMETERS
SCRUF $ +BYTE S #DECREASE #LINES TO 5.
+BYTE © $LEAVE INTENSITY UNCHANGEI.
+WORD 300 $TOP LINE AT Y=300.

A.2.10 .START

The .START request starts the display processor if it was stopped by a .STOP
directive. If the display processor is running, it is stopped first, then restarted.
In either case, the subpicture stack is cleared and the display processor is
started at the top of the handler’s internal display file.

Macro Call: .START

Errors:

None.

A.2.11 .STAT

The .STAT request transfers the address of a seven-word status buffer to the
display stop interrupt routine in VIBASE. Once the transfer has been made,
display processor status data is transferred to the buffer by the display stop
interrupt routine in VIBASE whenever a .DSTAT or .DHALT instruction is
encountered (see Sections A.3.3 and A.3.4). The transfer is made only when
the buffer flag is clear (zero). After the transfer is made, the buffer flag is set
non-zero and the .DSTAT or .DHALT instruction is replaced by a .DNOP
(Display NOP) instruction.

The status buffer must be a seven-word, contiguous block of memory. Its
contents are the same as the light pen status buffer. For a detailed description
of the buffer and an explanation of the status words, see Section A.2.5 and
Table A-1.

Macro Call: .STAT baddr

where:

baddr is the address of the status buffer receiving the data

A-10 Appendix

Errors:

No errors are indicated. If a buffer was previously set up, the new buffer
address is replaced as the old buffer address.

A.2.12 .STOP

The .STOP request “stops” the display processor. It actually effects a stop by
preventing the DPU from cycling through any user display files. It is useful for
stopping the display during modification of a display file, a risky task when
the display processor is running. However, a .BLANK could be equally useful
for this purpose, since the .BLANK request does not return until the display
processor has been removed from the user display file being blanked.

Macro Call: .STOP
Errors:
None.
NOTE

Since the display processor must cycle through the text buffer
in the Display Monitor in order for console output to be pro-
cessed, the text buffer remains visible after a .STOP request is
processed, but all user files disappear.

A.2.13 .SYNC/.NOSYN

The .SYNC and .NOSYN requests provide program access to the power line
synchronization feature of the display processor. The .SYNC request enables
synchronization and the .NOSYN request disables it (the default case).

Synchronization is achieved by stopping the display and restarting it when
the power line frequency reaches a trigger point, e.g., a peak or zero-crossing.
Synchronization has the effect of fixing the display refresh time. This may be
useful in some cases where small amounts of material are displayed but the
amount frequently changes, causing changes in intensity. In most cases, how-
ever, using synchronization increases flicker.

Macro Calls: .SYNC
.NOSYN

Errors:

None.

A.2.14 .TRACK

The .TRACK request causes the tracking object to appear on the display CRT
at the position specified in the request. The tracking object is a diamond-
shaped display figure which is light-pen sensitive. If the light pen is placed
over the tracking object and then moved, the tracking object follows the light

pen, trying to center itself on the pen.

Appendix A-11

The tracking object first appears at a position specified in a two-word buffer
whose address was supplied with the . TRACK request. As the tracking object
moves to keep centered on the light pen, the new center position is returned
to the buffer. A new set of X and Y values is returned for each light pen
interrupt.

The tracking object cannot be lost by moving it off the visible portion of the
display CRT. When the edge flag is set, indicating a side of the tracking object
is crossing the edge of the display area, the tracking object stops until moved
toward the center. To remove the tracking object from the screen, repeat the
.TRACK request without arguments.

The .TRACK request may also include the address of a completion routine as
the second argument. If a . TRACK completion routine is specified, the light
pen interrupt handler passes control to the completion routine at interrupt
level. The completion routine is called as a subroutine and the exit statement
must be an RTS PC. The completion routine must also preserve any registers
it may use.

Macro Call: .TRACK baddr, croutine

where:

baddr is the address of the two-word buffer containing the X and Y
position for the track object

croutine is the address of the completion routine

Errors:

None.

Example:

See Section A.10.

A.2.15 .UNLNK

The .UNLNK request is used before exiting from a program. In the case where
the scroller is present, .UNLNK breaks the link, established by .LNKRT,
between the Display File Handler’s internal display file and the scroll file in
the Display Monitor. The display processor is started cycling in the scroll text
buffer, and no further graphics may be done until the link is established
again. In the case where no scroller exists, the display processor is simply left
stopped.

Macro Call: .UNLNK

Errors:

No errors are returned. An internal link flag is checked to determine if
the link exists. If it does not exist, the request is ignored.

A-12 Appendix

A.3 Extended Display Instructions

The Display File Handler offers the assembly language graphics programmer
an extended display processor instruction set, implemented in software
through the use of the Load Status Register A (LSRA) instruction. The ex-
tended instruction set includes: subroutine call, subroutine return, display
status return, display halt, and load name register.

A.3.1 DJSR Subroutine Call Instruction

The DJSR instruction (octal code is 173400) simulates a display subroutine
call instruction by using the display stop instruction (LSRA instruction with
interrupt bits set). The display stop interrupt handler interprets the non-zero
word following the DJSR as the subroutine return address, and the second
word following the DJSR as the address of the subroutine to be called. The
instruction sequence is:

DJSR
Return address
Subroutine address

Example:
To call a subroutine SQUARE:
FOINT $FOSITION EEAM
100 $AT (1005100)
100
DJSK $ THEN CALL SUEROUTINE
Y
SQUARE $TO DRAW A SQUARE
DRET
0

The use of the return address preceding the subroutine address offers
several advantages. For example, the BASIC-11 graphics software uses
the return address to branch around subpicture tag data stored follow-
ing the subpicture address. This structure is described in Section A.5.3.
In addition, a subroutine may be temporarily bypassed by replacing the
DJSR code with a DJMP instruction, without the need to stop the
display processor to make the by-pass.

The address of the return address is stacked by the display stop inter-
rupt handler on an internal subpicture stack. The stack depth is condi-
tionalized and has a default depth of 10. If the stack bottom is reached,
the display stop interrupt handler attempts to protect the system by
rejecting additional subroutine calls. In that case, the portions of the
display exceeding the legal stack depth will not be displayed.

A.3.2 DRET Subroutine Return Instruction

The DRET instruction provides the means for returning from a display file
subroutine. It uses the same octal code as DJSR, but with a single argument
of zero. The DRET instruction causes the display stop interrupt handler to
pop its subpicture stack and fetch the subroutine return address.

Appendix A-13

Example:

SQUARE$ LONGV sIRAW A SQUARE
100TINTX
0
OPINTX
100
100 INTX IMINUSX

0
OIINTX
100 I MINUSX

LRET FRETURN FROM SURFICTURE
0

A.3.3 DSTAT Display Status Instruction

The DSTAT instruction (octal code is 173420) uses the LSRA instruction to
produce a display stop interrupt, causing the display stop interrupt handler to
return display status data to a seven-word user status buffer. The status
buffer must first have been set up with a .STAT macro call (if not, the
DSTAT is ignored and the display is resumed). The first word of the buffer is
set non-zero to indicate the transfer has taken place, and the DSTAT is
replaced with a DNOP (display NOP). The first word is the buffer flag and
the next six words contain name register contents, current subpicture tag,
display program counter, display status register, display X register, and dis-
play Y register. After transfer of status data, the display is resumed.

A.3.4 DHALT Display Halt Instruction

The DHALT instruction (octal code is 173500) operates similarly to the
DSTAT instruction. The difference between the two instructions is that the
DHALT instruction leaves the display processor stopped when exiting from

the interrupt. A status data transfer takes place provided the buffer was
initialized with a .STAT call. If not, the DHALT is ignored.

Example:
«STAT #SRUF $INIT BUFFER
MOV $DHALTySTFLOC 5 INSERT DHALT
+ INSRT #DFILE $DISPLAY THE FICTURE
1% TST SEUF $DHALT FROCESSED?
REQ 1% $NOy WAIT
SEUF ¢ +BLKW 7 i STATUS RUFFER
DFILE? FOINT $FOSITION NEAR TOF OF 12' TUEE
+WORD 50051350
LONGY $DRAW A LINE, MAYBE OVER EDGE
+WORD 0,400 $IF IT IS A 12* SCOFE.
STPLOC: DNOF $STATUS WILL EE RETURNED AT
DRET $THIS FOINT
0

A.3.5 DNAME Load Name Register Instruction

The Display File Handler provides a name register capability through the use
of the display stop interrupt. When a DNAME instruction (octal code is
173520) is encountered, a display stop interrupt is generated. The display stop
handler stores the argument following the DNAME instruction in an internal

A-14 Appendix

software register called the ‘“name register.” The current name register con-
tents are returned whenever a DSTAT or DHALT is encountered, and more
importantly, whenever a light pen interrupt occurs. The use of a “name”
(with a valid range from 1 to 77777) enables the programmer to label each
element of the display file with a unique name, permitting the easy identifica-
tion of the particular display element selected by the light pen.

The name register contents are stacked on a subpicture call and restored on
return from the subpicture.

Example:

The SQUARE subroutine with “named” sides.

SQUARE DNAME iNAME IS
10 10
LONGV iORAW A SIDE
1001 INTX
0
DNAME $THIS SIDE IS NAMED
11 i1l
OVINTX $STILL IS LONG VECTOR MODE

100

DNAME

12

100 INTXIMINUSX
o

DINAME

13

OTINTX

100 ! MINUSX

DRET §RETURN FROM SURFICTURE
0

A.4 Using the Display File Handler

Graphics programs which intend to use the Display File Handler for display
processor management can be written in MACRO assembly language. The
display code portions of the program may use the mnemonics described in
Section A.7. Calls to the Handler should have the format described in
Section A.6.

The Display File Handler is supplied in two pieces, a file of MACRO defini-
tions and a library containing the Display File Handler modules.

MACRO Definition File: VTMAC.MAC
Display File Handler: VTLIB.OBJ (consisting of:)

VTBASE.OBJ
VTCAL1.0BJ
VTCAL2.0BJ
VTCAL3.0BJ
VTCAL4.0BJ

Appendix A-15

A.4.1 Assembling Graphics Programs

To assemble a graphics program using the display processor mnemonics or the
Display Handler macro calls, the file VTMAC.MAC must be assembled with
the program, and must precede the program in the assembler command
string.

Example:

Assume PICTUR.MAC is a user graphics program to be assembled. An
assembler command string would look like this:

MACRO VTMAC+FICTUR/ORJECT
A.4.2 Linking Graphics Programs

Once assembled with VTMAC, the graphics program must be linked with the
Display File Handler, which is supplied as a single concatenated object mod-
ule, VTHDLR.OBJ. The Handler may optionally be built as a library, follow-
ing the directions in A.8.5. The advantage of using the library when linking is
that the Linker will select from the library only those modules actually used.
Linking with VTHDLR.OBJ results in all modules being included in the link.

To link a user program called PICTUR.OBJ using the concatenated object
module supplied with RT-11:

LINK PICTURsVTHDLR
To link a program called PICTUR.OBJ using the VTLIB library built by
following the directions in A.8.5, be sure to use the Version 03 Linker:

LINK PICTURsVTLIE

VTLIB (Handler Modules):

Module CSECT Contains Globals
VTCAL1 $GT1 .CLEAR SVINIT
.START $VSTRT
.STOP $VSTOP
INSRT $VNSRT
.REMOV $VRMOV
VTCAL2 $GT2 BLANK $VBLNK
.RESTR $VRSTR
VTCALS3 $GT3 .LPEN $VLPEN
.NAME SNAME
STAT $VSTPM
.SYNC $SYNC
NOSYN $SNOSYN
.TRACK $VTRAK
VTCAL4 $GT4 .LNKRT $VRTLK
.UNLNK $VUNLK
.SCROL $VSCRL
VTBASE SGTR Interrupt handlers $DFILE

and internal
display file

A-16 Appendix

The file modules in VTHDLR can be used in three different ways. When space
is not critical, the most straightforward way is to link VTHDLR directly with
a display program. The following command is an example.

LINK PICTURyVTHILR

It is often necessary to conserve space, however, and selective loading of

modules is possible by first creating an indexed object module library from

VTHDLR and then by making global calls within the display program. The

following command creates an indexed object module library.
LIBRARY/CREATE VTLIE VTHILR

To further conserve space with overlays, it is also possible to extract individ-
ual object modules from a library and create separate object module files. For
example, to link a display program using overlays, the following statements
are a typical sequence of creating, extracting and linking commands. (NOTE:
the modules VTCAL1 and VTCAL?2 must be in the same overlay if any global
in either one is used.)

.

*

+LIBRARY/CREATE VTLIR VTHDLR

*

+

LIBRARYZEXTRACT VTLIR VTCAL1

GLORAL? $VSTRT Imoves entire module with $VSTRT to VTCAL1
GLOBAL? !Terminates rromrting secuence
+LIBRARY/ZEXTRACT VTLIER VTCALZ2

GLOBRALT $VRLNK !Moves the entire module to VTCALZ2
GLOBALT

+LIBRARY/ZEXTRACT VTLIE VTCAL3

GLORAL? $VLPEN IMoves the entire module

GLORAL?

+LIBRARY/EXTRACT VTLIR VTCAL4

GLORAL? $VRTLK !Moves the entire module

GLOBAL?
+LIBRARY/EXTRACT VTLIE VTERASE

GLOBRAL? $DFILE !Moves the entire module
GLORAL?

.

*

+LINK/FROMFT PICTURYVTEASE
¥VTCALL»VTCALZ2,VTCAL3/021
*XVTCAL4/031

Xx//

A.5 Display File Structure

The Display File Handler supports a variety of display file structures, takes
over the job of display processor management for the programmer, and may
be used for both assembly language graphics programming and for systems
program development. For example, the Handler supports the tagged subpic-
ture file structure used by the BASIC-11 graphics software, as well as simple

file structures. These are discussed in this section.

Appendix A-17

A.5.1 Subroutine Calls

A subroutine call instruction, with the mnemonic DJSR, is implemented us-
ing the display stop (DSTOP) instruction with an interrupt. The display stop
interrupt routine in the Display File Handler simulates the DJSR instruction,
and this allows great flexibility in choosing the characteristics of the DJSR
instruction.

The DJSR instruction stops the display processor and requests an interrupt.
The DJSR instruction may be followed by two or more words, and in this
implementation the exact number may be varied by the programmer at any
time. The basic subroutine call has this form:

DJSR
Return Address
Subroutine Address

In practice, simple calls to subroutines could look like:

DJSR
+WORD ++4
+WORD SUB

where SUB is the address of the subroutine. Control will return to the display
instruction following the last word of the subroutine call. This structure per-
mits a call to the subroutine to be easily by-passed without stopping the
display processor, by replacing the DJSR with a display jump (DJMP) in-

struction:

DJMF

+WORD .44

+WORD SUR
A more complex display file structure is possible if the return address is
generalized:

+DJSR

+WORD NEXT

+WORD SUR
where NEXT is the generalized return address. This is equivalent to the
sequence:

DJSR

<WORD Y

+WORD SUEB

DJMP

+WORD NEXT

It is also possible to store non-graphic data such as tags and pointers in the
subroutine call sequence, such as is done in the tagged subpicture display file
structure of the BASIC-11 graphics software. This technique looks like:

DJSKR
+WORD NEXT
+WORD SUR
DATA

NEXT? .

.

.

For simple applications where the flexibility of the DJSR instruction de-
scribed above is not needed and the resultant overhead is not desired, the

A-18 Appendix

Display File Handler (VTBASE.MAC and VTCALL.MAC) can be condition-
ally re-assembled to produce a simple DJSR call. If NOTAG is defined during
the assembly, the Handler will be configured to support this simple DJSR
call:

DJSK
<WORD SUE
where SUB is the address of the subroutine. Defining NOTAG will eliminate
the subpicture tag capability, and with it the tracking object, which uses the
tag feature to identify itself to the light pen interrupt handler.

Whatever the DJSR format used, all subroutines and the user main file must
be terminated with a subroutine return instruction. This is implemented as a
display stop instruction (given the mnemonic DRET) with an argument of
zero. A subroutine then has the form:

SUER! Disrlaw Code

DORET
+WORD O

A.5.2 Main File/Subroutine Structure

A common method of structuring display files is to have a main file which
calls a series of display subroutines. Each subroutine will produce a picture
element and may be called many times to build up a picture, producing
economy of code. If the following macros are defined:

+MACRO CALL <ARG:

nJSK

+ WORD ++4
+WORD ARG

+ ENDIM

+MACRO RETURN
DRET

+WORD 0
+ENDM

then a main file/subroutine file structure would look like:

$MAIN DISFLAY FILE

¥
MAIN? Nisrlaw Code
CALL SUR1 sCALL SUBROUTINE 1
Nisrlay Code
CALL SUR2 sCALL SUBROUTINE 2
. FETC
RETURN
H
sDISFLAY SUBROUTINES
$
SURL: Disrlay Code sSUBROUTINE 1
RETURN
¥
SUR2? Disrlaw Code FSUBROUTINE 2
RETURN
. JETC.

.

.

Appendix A-19

A.5.3 Basic-11 Graphic Software Subroutine Structure

An example of another method of structuring display files is the tagged sub-
picture structure used by BASIC-11 graphic software. The display file is
divided into distinguishable elements called subpictures, each of which has its
own unique tag.

The subpicture is constructed as a subroutine call followed by the subroutine.
It is essentially a merger of the main file/subroutine structure into an in-line
sequence of calls and subroutines. As such, it facilitates the construction of
display files in real time, one of the important advantages of BASIC-11
graphic software.

The following is an example of the subpicture structure. Each subpicture has
a call to a subroutine with the return address set to be the address of the next
subpicture. The subroutine called may either immediately follow the call, or
may be a subroutine defined as part of a subpicture created earlier in the
display file. This permits a subroutine to be used by several subpictures
without duplication of code. Each subpicture has a tag to identify it, and it is
this tag which is returned by the light pen interrupt routine. To facilitate
finding subpictures in the display file, they are made into a linked list by
inserting a forward pointer to the next tag.

SUR1: DJSR sSTART OF SUBFICTURE 1
+WORD SuUB2 $NEXT SURPICTURE
+WORD SUER1+12 #JUMP TO THIS SUBFICTURE
+WORD 1 $TAG = 1
+WORD SUR2+6 FOINTER TO NEXT TaG

§BODY OF SUBFICTURE 1

DRET $RETURN FROM
0 s SURFICTURE 1
SURZ2: ISR $START SURFICTURE 2
+WORD SUER3 #NEXT SURFICTURE
+WORD SUB2+12 $ JUMF TO THIS SUBFICTURE
+WORD 2 yTAG 2
+WORD SUEB3+6 sFTR TO NEXT TAG
$BODY OF SUBPICTURE 2
DRET FRETURN FROM
+WORD 0 sSUBFICTURE 2
SUR3: DJSR #START SUBFICTURE 3
+WORD SUR4 FNEXT SURFICTURE
+WORD SURL1+12 sCOFY SUBFICTURE 1
sFOR THIS SURFICTURE
+WORD 3 sBUT TAG IT 3.
+ WORD SURAt+S sFTR TO NEXT TAG
SUR4: DJSkR #START SURFICTURE 4
B FETC.

+

*

A-20 Appendix

A.6 Summary of Graphics Macro Calls

Mnemonic

.BLANK

.CLEAR

INSRT

.LNKRT

.LPEN

.NAME

.NOSYN

.REMOV

RESTR

.SCROL

Function

Temporarily blanks
a user display file.

Initializes handler.

Inserts a call to
user display file

in handler’s master
display file.

Sets up vectors and
links display file
handler to RT-11
scroller.

Sets up light pen
status buffer.

Sets up buffer to
receive name
register stack
contents.

Disables power line
synchronization.

Removes the call to
a user display file.

Unblanks the user
display file.

Adjusts monitor
scroller parameters.

MACRO Call
(see Note 1)

.BLANK faddr

.CLEAR

INSRT faddr

.LNKRT

.LPEN baddr

.NAME \baddr

.NOSYN

.REMOV faddr

.RESTR faddr

.SCROL baddr

Assembly Language
Expansion
(see Note 2)

.GLOBL $VBLNK
IF NB, faddr
MOV faddr, "100

.GLOBL $VINIT
JSR "07, $VINIT

.GLOBL $VNSRT
JF NB, faddr
MOV faddr, 00
.ENDC

JSR "07, $VNSRT

.GLOBL $VRTLK
JSR 07, $VRTLK

.GLOBL $VLPEN
JIF NB, baddr
MOV baddr, “0O0
.ENDC

JSR 07, SVLPEN

.GLOBL $NAME
JF NB, baddr
MOV .BEDDR, "00
.ENDC

JSR "07, SNAME

.GLOBL $NOSYN
JSR 07, $SNOSYN

.GLOBL $VRMOV
JF NB, faddr
MOV faddr, 00
.ENDC

JSR "07, $SVRMOV

.GLOBL $VRSTR
IF NB, faddr
MOYV faddr, "0O0
ENDC

JSR "07, 3VRSTR

.GLOBL $VSCRL
IF NB, baddr
MOV baddr, “00
.ENDC

JSR "07, $VSCRL

Appendix A-21

Mnemonic

.START

STAT

.STOP

.SYNC

TRACK

.UNLNK

A-22 Appendix

Assembly Language
MACRO Call Expansion
Function (see Note 1) (see Note 2)

Starts the display. .START .GLOBL $VSTRT
JSR 07, $VSTRT

Sets up status .STAT baddr .GLOBL $VSTPM
buffer. JIF NB, baddr
MOV baddr, "00
.ENDC
JSR "07, $VSTPM

Stops the display. .STOP .GLOBL $VSTOP
JSR "07, $VSTOP

Enables power line .SYNC .GLOBL $SYNC
synchronization. JSR "07, $SYNC

Enables the track .TRACK baddr, .GLOBL $VTRAK
object. croutine IF NB, baddr
MOV baddr, “00
.ENDC
IF NB, croutine
MOV croutine,-
(~06)
JFF
CLR-("06)
.ENDC
NARG T
JFEQ,T
CLR "00
.ENDC
JSR "07, $VTRAK

Unlinks display .UNLNK .GLOBL $VUNLK
handler from RT-11 JSR "07, SVUNLK
if linked (otherwise

leaves display stopped).

NOTE 1

baddr Address of data buffer.
faddr Address of start of user display file.
croutine Address of .TRACK completion routine.

NOTE 2

The lines preceded by a dot will not be assembled.
The code they enclose may or may not be assembled
depending on the conditionals.

A.7 Display Processor Mnemonics

Mnemonic Value Function

CHAR = 100000 Character Mode

SHORTV = 104000 Short Vector Mode

LONGV = 110000 Long Vector Mode

POINT = 114000 Point Mode

GRAPHX = 120000 Graphplot X Mode

GRAPHY = 124000 Graphplot Y Mode

RELATV = 130000 Relative Point Mode

INTO = 2000 Intensity 0 (Dim)

INT1 = 2200 Intensity 1

INT2 = 2400 Intensity 2

INT3 = 2600 Intensity 3

INT4 = 3000 Intensity 4

INT5 = 3200 Intensity 5

INT6 = 3400 Intensity 6

INT7 = 3600 Intensity 7 (Bright)

LPOFF = 100 Light Pen Off

LPON = 140 Light Pen On

BLKOFF = 20 Blink Off

BLKON = 30 Blink On

LINEO = 4 Solid Line

LINE1 = 5 Long Dash

LINE2 = 6 Short Dash

LINE3 = 7 Dot Dash

DJMP = 160000 Display Jump

DNOP = 164000 Display No Operation

STATSA = 170000 Load Status A
Instruction

LPLITE = 200 Light Pen Hit On

LPDARK = 300 Light Pen Hit Off

ITALO = 40 Italics Off

ITAL1 = 60 Italics On

SYNC = 4 Halt and Resume
Synchronized

STATSB = 174000 Load Status B
Instruction

INCR = 100 Graphplot Increment

Vector/Point Mode

INTX = 40000 Intensity Vector or

Point
MAXX = 1777 Maximum X Component
MAXY = 1377 Maximum Y Component
MINUSX = 20000 Negative X Component
MINUSY = 20000 Negative Y Component

Appendix A-23

Mnemonic Value Function

Short Vector Mode

SHIFTX = 200

MAXSX = 17600 Maximum X Component
MAXSY = 77 Maximum Y Component
MISVX = 20000 Negative X Component
MISVY = 100 Negative Y Component

A.8 Assembly Instructions

A.8.1 General Instructions

All programs can be assembled in 16K, using RT-11 MACRO. All assemblies
and all links should be error free. The following conventions are assumed:

1. Default file types are not explicitly typed. These are .MAC for source files,
.OBJ for assembler output, and .SAV for Linker output.

2. The default device (DK) is used for all files in the example command
strings.

3. Listings and link maps are not generated in the example command
strings.
A.8.2 VTBASE

To assemble VI'BASE with RT-11 link-up capability.
MACRO VTEASE

A.8.3 VTCAL1 - VTCAL4

To assemble the modules VICAL1L through VICAL4:

MACRO VTCAL1sVTCAL2yVTCAL3»VTCAL A

A.8.4 VTHDLR

To create the concatenated handler module:

COFY/BINARY VUTCAL1.0ORJsVTCAL2,0BJ»VTCAL3.0RJy—
VTCAL4,O0RBJsVTBASE.OR.}) VTHOLR.ORJ

A.8.5 Building VTLIB.OBJ

To build the VTLIB library:
LIBRARY/CREATE VTLIB VTHDLR

A-24 Appendix

A.9 VTMAC

+TITLE VTMAC

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY ONLY EE USED
OR COPIED IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

COPYRIGHT (C) 1978, DIGITAL EQUIFMENT CORFORATION.
UTMAC IS A LIBRARY OF MACRO CALLS AND MNEMONIC DEFINITIIONS WHICH

FROVIDE SUFPORT OF THE VT11 DISPLAY PROCESSOR. THE MACROS FRODUCE
CALLS TO THE VT11 DEVICE SUFFORT PACKAGEs USING GLOBAL REFERENCES.

- wr er Er MR R G W

i MACRO TO GENERATE A MACRO WITH ZERO ARGUMENTS.
+«MACRO MACO NAMEsCALL
+MACRD NAME
+GLOEL CALL
JSR FCyCALL
+ ENDM
+ ENDM

$ MACRO TO GENERATE A MACRO WITH ONE ARGUMENT

+MACRO MAC1 NAMEsCALL
+MACRO NAME ARG

+IF NEsARG

MOV ARG X700
+ENDC

+GLOBL CALL

JSR FCyCALL
+ENDM

+ ENDIM
MACRO TO GENERATE A MACRO WITH TWO OFTIONAL ARGUMENTS

+MACRO MAC2 NAMEsCALL
+MACRO NAME ARG1sARG2

+GLOBL CALL
+IF NEsARG1L

MOV ARG1,»Z700
+ENDC

+IF NEsARGZ

MOV ARG2y -~ (SF)
+IFF

CLR -(8F)
+NARG T

«IF EQsT

CLR %00
+ENDC

+ENDC

JSR PCsCALL

+ ENDIM

+ ENDM
§ MACRO LIBRARY FOR VT11:
MACO “+CLEAR s <$VINIT:

MACO s STOF >y T$VUSTOF
MACO <+ START =9y “SVUSTRT =

MAC1 + s INSRT >y T$VNSRT
MAC1 < REMOV = » CSURMOV
MAC1 %« BLANK s “$VBLNK
MAC1 + +RESTR> s T$VRSTR
MAC1 o« STAT >y “$VSTFM >
MAC1 e LPEN> s “$VLFEN>

Appendix A-25

MACL <+ SCROL > » </$VSCRL >
MAC2 o TRACK >y SV TRAK:
MACO A \RT 9 $URTLK =
MACO o UNLNK y S VUNL K

MNEMONIC DEFINITIONS FOR THE VT11 DISFLAY FROCESSOR

DIMF=160000 sDISFLAY JUMF

ONOF=144000 sDISFLAY NOF

DJSR=173400 sDISFLAY SUBROUTINE CALL
DRET=173400 sOISFLAY SUBROUTINE RETURN

INAME=173520 $SET NAME REGISTER
DSTAT=173420 FRETURN STATUS DATA
IHALT=173500 $STOF DISFLAY AND RETURN STATUS DATA

CHAR=100000 s CHARACTER MODE
SHORTV=104000 $SHORT VECTOR MODE
LONGV=110000 FLONG VECTOR MODE
FOINT=114000 FFOINT MODE
GRAFPHX=120000 $GRAFH X MODE
GRAPHY=124000 sGRAFH Y MODE
RELATV=130000 JRELATIVE VECTOR MOIE

INTO=2000 FINTENSITY 0

INT1=2200

INT2=2400

INT3=2600

INT4=3000

INTS=3200

INT6=3400

INT7=3600

LPOFF=100 sLIGHT PEN OFF

LFON=140 FLIGHT FEN ON

BLKOFF=20 BLINK OFF

BLKON=30 #BLINK ON

LINEO=4 $SOLID LINE

LINE1=5 §LONG DASH

LINE2=6 #SHORT DASH

LINE3=7 iDOT DASH

STATSA=170000 sLOAD STATUS REG A
LFLITE=200 FINTENSIFY ON LPEN HIT
LFDARK=300 FNON’T INTENSIFY
ITALO=40 $ITALICS OFF

ITAL1=60 $ITALICS ON

SYNC=4 sFOWER LINE SYNC
STATSE=174000 sLOAD STATUS REG R
INCR=100 FGRAPH PLOT INCREMENT
INTX=40000 FINTENSIFY VECTOR OR FOINT
MAXX=1777 FMAXIMUM X INCR. = LONGY
MAXY=1377 FMAXIMUM Y INCR. = LONGV

MINUSX=20000 FNEGATIVE X INCREMENT
MINUSY=20000 FNEGATIVE Y INCREMENT

MAXSX=17600 FMAXIMUM X INCR, = SHORTV
MAXSY=77 FMAXIMUM Y INCR. = SHORTV
MISVX=20000 FNEGATIVE X INCR. = SHORTV
MISVY=100 sNEGATIVE Y INCR. = SHORTV

A-26 Appendix

NOdTIT 440X BTN INTTHYHD ayom® 121

NOJTINONTETISINT THYHD gdom® il
di44ng SN1IVLIS NI L My 4ngn
lrxa*
HOLINOA WOBd MNIINNC ANNA®
H43IHIONY L399 fONS 1817 INg
40334 IANIT ay’21% dwd 11IX3
NIVOY d007¢ lsl9 N8
“LIH d7 43AHLIONV 378VN3Y
9L 9v14 s3d44n8 ¥v3oL FhR e}
3G0D AVHL A4IQ0W! didl»‘’I] ADW
HldI 04NI ¥AQY 3IA0WS MldlI 2 (1y) AOW
*9vid 379ve 4408 e ="10av 108 aqgy
X30~1 0L 3snd 1¥40d aqgy
Ol A8 ATNdILNKS Ty agv
IN0 lovalensd 14 730
INTYA IWYN 1394 184244080 ADW
3009 SNNIAIHd 3401834!¢ didle?2l AOKW 181
NIVOY 4007 ‘Ond 1911 L]
1Ix3 ‘83l L1x3 J236
LLndNI L1 ANv ‘ON{ anIiL®
CEY $1 aNeg
ELIM N3d LHBIT! 4nen 181 11siT
dNILL 804 mSP 138! MSPER ARl H g18
»344N3 NI4T dn L3gd 4ANEIn N3dT"*
3714 AvidS1a LyaSNIE 31140% L¥gNI®
9EnE ANINd®
T1083s Lsnravd 4n83IS# 0428 ° 151
lIX3 Onvd lrxa
39vSSAA INTHd 7S3AS 9Sw3x LNTHd®
L40883 dn ¥NITY 31 148
Y0LINQW OL »¥NITH LYyN1® 3 LHVLS
INIMa" 4 LIX3*‘ynIli® MvIn’
gHOM SNLvVLSs gord ntr=Mgr
Lx=ad
1%21y
2%=pY

*43d 14917 I4L HLIM 3714 AvIdSIa V A4IGOW OL 83L8I93y 3Iwwn 4
340 ONYV H344N8 SNLVLS N3IdI* 3FHL §3SN 30dwyx3 SIHL 4

T# 37dw9x3 37LI1°

2lupan

910002
250000 2n0000
090000
290000

aspoee
2utano nlaoee

Lo
o3y vatend

291¢01
alesal

ShEton
eaLe2n
aslopo

L93590
LLL919
L91t1a
1el290
18LV90
Teg900
108500
1eLlote
LLLlola
2LLe00
2080l

gaptova
L9LSan
LEL2an

naeaet

nnaken
Loooae
1A000¢@
d02ved

& 39vd hnlehinl Li=AVWeBl nO°EAX DHIVW

SL1088 €0
hi1200 2h
951008 10
ns1ded ah
PS1000 6%
In1300 B¢
eniond Lt
antaee 9¢

neEtove he
9210008 £t
g2tevd 2%
911902 1%
h1lagd 0%
ettoee 62
211020 8¢
nateed le
SL0209 92
nlpRon §2
2ldoed he
2LovRY L
99pnpn 22
2onpea 1e
nSkady ée
nHUN0e 61
neEoone 81
92An0e L1
912000 91
n10008 St
INpaee nl
he@aed &1t
460208 21

—“NMJIT NO~0OG
-

T# 37dWVX3

NOLD Buisn sajdwex3y oLV

Appendix A-27

3goves3w ‘1!

19vES3N HOUHIL

*SUd A dol 0¥ISS

LyN02 3AnIT 11082364

031410099 NOILVIDY SNOTATHLS
Q3I4103w 48 0L SNOILVIOOS
3114 AvId4SIQ 40 374vit

13u0

AFTEITWANE S G I-I'A
NOdWItninT i d440%T18T MY HD
g

IWYNG

et

ap1

InNTOd

/*0wl/s 1198y*
MOdTIRINTT 4409780V
4

ANTNQ

2pg

2971

INTOA

730/ 1128w
ANCAITRLINTIT 44008 HYH)D
1

IWYNC

©2S

egt

INIpnd

1£Q

$20

37140
{

T2 37awvx3d %04 3714 AvdsSla
!

1=S 39vyd nhienin]

N3IAZ®

/T4 37dwyx3a/ Z213Sv*
/180u¥3Y /s Z138v"
2ol a¥om*

l ONOM®

1a axom®

g4201q guom®

198w
N3IAZ®
198K

240838
tdlal

178via

2ongLT
950 sa1 581
221 2Tl net
09101
tAgra2
225§L1
01200
TATLL
neantl
959
LTy L2t n2t
491501
2020e0
228541
APL00Y
so10u2
9AART 1T
952
521 911 L1t
291501
122009
82sgL1
435920
201000
PPLLER

Li=Avn=81 N2°TdX QHIVW

429 192
gno Bho sel
it pel Sit
191 ot s21

aee (32
22l L1l 22t
et cal ing

Q01000
2upie
2252001

218080 ,2.2020 ,25244@

1# 37dwvx3

c2gnae LU
L15000
higneo 9L
2150103 SL
1eRRd he
99¢aga gL
hagaon 2L
eorovd 1L
boEA2d AL
LL2wa0
nleavd 69
2L2009 89
0.2049 L9
992204 99
7920408 S9
292800 n9
n9gana £9
LS2090
ns2d8d 29
252a492 19
252200 V9
9hedaa 6%
hh2ane 85
engepe LS
Ah2va2 9%
Ss
s
£s
28
S¢ecou?
2g2evn
L2249a@
n22deed 1s
s
222ene
L12neo
h120ed 6n
212208 8n
ni2ved Ln
902040 9N
Sn
pu2uee nn

1X

A-28 Append

Qae2é
gpatagn
PREREE
Ivgndlt
4dangt
5 oxXyyxxw
Wanh Ll
Avneall
42G¢d o
gaen2l
Ligtev
@usEIN
Haneend

w

= XASIW
e 4349d7
= LHENASR
ZAHGY 49
=XHAV D
2IHIGAE
=gS1vis
=¢Sivis
10
=ALY¥OHS
T AXVW
= LIUINI]
7140

Ly0¥Y3 dn ANIT¢
HOLINOW OL ¥NITY
INIHd®INIALL®?LIX3®

LR

a8
LusNT®
Tivow*
L%m3d
9XE 48
Tty
X2y

11dvis

H

*(00S9BS) LV INIDd L3S v wodd N3d LN9I7 3HL ¢
01104 0L ¥0L23A Vv 3SNYI 01 3INILNOY NOTLINawDD

¥IAvHL 3HL ONV 123080 ONINIVval IHL 836N 3TdWyx3 SIHL

9 wxewx¥
HORVEPV
Liltew
nhaeon
ganean
[F21xYd
Ho12000
nehell
H922800
49L102072
p02€90
u2920080
490002

=HINIAS
IR-A PR

2 XAVH
z Msr
= 9INI
= INAS
4N¥IS

= lv18Q
didl

21

= SINI
1817

za 1VLI

2# 3INdWvX3

a0an9l
agseLl
9 wmmxgn
2donsEll
2Zpoae
9 wuywun
yt/1800
anhgbne
rieoue
asontl
8e8ee
2epo2e
2n1200
200800

LY4vis

ERIR I

neganl

L2voee
902209
1471111
aA002¢

G 39vd LSeninl Ll=Ave=81 HA°E€AX O¥IVW

® d0NQ
=z JWYNQ
zXTLHAS
= M¥SCQ
=440
eNddAg
11

s Bvil
O8W3

= INIOd
SASNNIW
eXSNNIW
s NQOd"
e ah7u

(839vd

$39vd b9

vl) S0MDM H9SK
duveoew =3117d"0
221200 & AHINI
¥961002 4087
LD22Be = £3INIT
AORELT = 13NUQ
d0R0ET1 BALVIIM
2092028 = S UNI
S8r0Ye = 23INIT
2PE0RG =M¥VQALT
288011 = AONDT
20089t = dWld
spReze = TIANIN
apheer = 2iNI
Paephe = XAINI

heQYee &1
onegenr 21
11
2t

“UMI NO~ OO0

2% 37dwvX3

IXINVW IVHLASE 4"

=5 39yd hn36nInt Li=AvW=B1 HQ@°EAX 0¥IVW

an3*
a

H0d4 3I8VIIVAV A¥0W3IN JIWYNAQ

103SN AMOW3W TVNLUIA
2 1¢3103L1340 Sy0HH3
140 92¢a@20

3@ ?Queee *sAv *

yapneed q4avid

Q00RAT = HYHD

@3¢l = BA3INIT

duSell = LTvka

PT00d0 = NOXTE

Q02200 = TUINI

yneevne OSW

A01RA8 =2 AASINW

LLOQY® = ASXVW

yelgeve ¢€a

209LT¥v = XSXVW

P20220b = QUINI

yanteao 1Ix3

yelLaewve 2a

3789v.L 108RKAS

T 37dwyx3
+008000 6L
200000 h2€@P0 6L

Appendix A-29

aN3d 3914 AvidsIlal 1340 dongll 2L1dve LS

e QuOM® 1AQ 204208 BLIARO 95

ANIHMON ATIVILINTY ¢ Gaom"® txa 200008 991823 S§S
H01J23A ¥V MyNGgl hINITA9NDO d20ETT notaea nsg
(rus’ons) ! oes 2 A0 005309 291222 §£§

a9s X0 02SABE B9TRRO 2§

lv INIGd L1384 InIDd ,m.:um 224antT 951040 1S

25

27 3Ndwvx3 ¥C4 3714 AvIdSIQ ” bh

an

ANILPON NOTL3Nd400 wONSd LIXat 2d S1y L02608 nSsTABD Lh
T8 380183y TH4(48) AW 129218 251eue On

37140 NI 32048 MAWLS A 1Y ADW 182 9122€@ L91013 9nh1amd &h
LT snNNIW L3S Qgnwd [HIXSNNTWE S18 uwaeaz2a 19Lese 2nteee hn
IATLISOd d¥V¥w OS ‘0Nt £:] 93N tansAe ohlovd g»
£3INIHTIL4T0 IATLIS0al g2 48 £0048T 9€1089 21
A Q70 = A MING THA0 ans h2onge 14L991 251800 In

A mant Ty2+4dn8l ADW OnLLLt 104918 921047 an

3140 NI 3IN0LS NIAWLS Xg1¥u ADW 200007 LRI 221008 6f
118 A4ISNILINT L3S 0Sv¢ THIxINIR s18 t1g1 80udnY 12.2%% 91ia22 8f
118 SNNIw L3868 ingd THIXSANTIWY 818 229228 12/2S0 glipem Lg
INILISOd I¥vw 08 ,0ONE 1Y 93N lenSea ov11002 9%
$3IN3IWI4410 3AILISOM! $1 48 €0020221 9a124@ S§
X 270 = x M3In{ TyX0 fans 2S22¢0 InL991 201008 nE

X MING T¥44nB1 ADW 99LLLT 10L910 9.d00d §§

Ty 3Avst (dS)=’1y AOW .zouw IrINT3 niowved 2%

1€

"4NYLl A0¥d4 VAIVQ HLIIW 3114 AVI4SIQ 3Lvadn oL 03sn ¢ . 1
"034d0LS AVIdSIQ HWLIIM ¥3TONYH 3714 AVIdSIO WO¥d ¢ 62
T3AIT LdNHHILINT LY QIuIUING INILNOY NOILINdWDD NIVil “ 82
L2

(62972438) Lv %JvHL Ldvisd 92
01 Q3LINI MH3I4dna wIvyLl 285 ‘90S Quom* 14n01 PRS00 0ASON0 QL2000 S2
Jd SiyH Lo2060 9900008 h?2

43IHLONY 139 ‘ON! LIVM ane tLE10@ thoveRe €2
0334 INIT pu‘atw dnd 210088 200220 0290000 22

ALL WOMd4 °*¥YHI Ld9¢ NIALL® $1IVM nS0000 12
i1x3* 250000 02

HOLINOW WOMd NNIINN{ ANINN® 9N3aen o
<€¥I> H0d4 LIVMS lIvmidg depr 900002 (9Lhop 200000 91

L3310 »ovyl AvIdSIqQH WOJL®’4NBI% NIVML® 922000 Lt
3714 AVI4SIO L¥ISNIY 31140% LHENT® 1t 910000 91
LIX3 Qnvié kixa® hleand &1

HISN WHOANI *83Af 98WaANX ININd® 900022 Nl

A-30 Appendix

dnedagd
AT AA
CEELIEEEY)
Aden2l
wAvaiel
darnLl

UanaLl
vwaghal
LLgT ¢
ABGE AN
4G 1 2a0
g o wkERAN

= XASIw
= 44047
= LMSNAY
SAHdT YD
SXHAYHO
=g81vLs

BYSLYLS
3ALEGHS
= AXWH
= LiNI

37140
EXINOAC

/'

y2otdne AQ
HINBAaL lyvis
Ha9t1eow X0
LLLiTBe = XXVW
odngod = 9INI
n@3200 = INAS
ve2nell = Llvisd
wAZgaw = SINI
2920806 = 17VLI
v%0h91 = dONQ
22SELl = AWYNQ
O xxpxxyx BXTJLHAS

d1608d v 38 Ol SW3IIS 3IN3IAL

aonell
A28
wnaaee
¥9li2e@
a2aentl
ddpeee

1174
anteoe
QonLee
9 wuy¥xx
yhsege
JBzene

luvis

AuN0S/

g A48fQ
2440%76
2 2IvLI

IenW3
= IN]IOd
=ASNNIW

EXSNNIW
2 NQOd"
= hINI
EXYHIXS

LIvm
311749

$39vd

(839vd S1)

A218A0
2 Ledide
deLlere

Lovve2

aoheLt
Ah L0208

agnoet
po92aw
¥991020
920BdY
#0800
opvR11

SGHOM LILE

s NINI
4ngL

AQ

g §3INIT
= 1340
w0dl

=ALVI3Y
2 gIUNIT

XqQ
z 23INTT
=) H¥VQAd
2 A9NOT

2XINVW IVHIABE 4"
N9 HO0d4 IFIAVIIVAV AHOWIAW JIWVYNAO
1036N AHOW3IW TVNLATIA

4]
14w
24

$03133130 Sy¥0u¥3

eneane
223820

d20e91
Sg0euvve
Qan2av
neaphp
poaaal
horeee
peselLl

agavoe
ag2209
dotaan
Livpde
peILte
oor2ae

sav °*

dnla
13ANIT
2INI
XINI
HYHI
23NIT
LvYHQ

NOX18
TINI
AASINW
ASXYHW
XSXVYNW
BANI

374YL 0EWAS

2= 39vd LStehthl Li=Ave=8l N2°SOX OUIVW 2# 37dWYX3
GN3 +330200 19
N3A3Z® 29
200 slt L£2000
sat ntiy 2ot n§2000
L1t 22t gt te2008
oho 1¢1 gha 922002
st 2ot 2he §22000
L1 n2l ane #22000
g2t it sS4t c12000
(1.} g2t ong c1éean
Sot 221 et Le2rae
2t netl onn hyeRes
L 2°1%] 1et 221 102000
ZIJsv"* t9swa 22l L1t §21 9.1p02 6S
2 ne0eey hilo0d 8S
1= 39yd LSieninT LLl=AYA<QT] HB°CAX 0HIVW 2# ANdWvx3

Appendix A-31

Appendix B

System

J R . T TR TR IO TR AR TR IR AL DR TR T L L 1

Macro Library

This appendix contains the listing of the system macro library (SYS-
MAC.SML) for Version 4 of RT-11. This library is stored on the system
device. It is used by MACRO when expanding the programmed requests and
calling the subroutines that are described in Chapter 2.

SYSMAC.MAC - SYSTEM MACRO LIBRARY
RT-11 V04.00

COPYRIGHT (c) 1979 1980 BY
DIGITAL EQUIFMENT CORFORATION, MAYNARD, MASS.

THIS SOFTWARE IS5 FURNISHED UNDER A LICENSE AND MAY BE USED AND COFIED
ONLY 1IN ACCORDANCE WITH THE TERMS OF UCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COFYRIGHT NOTICE. THIS SOFTWARE DR ANY OTHER
COPIES .THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILAELE TO ANY
OTHER PERSON, NO TITLE TO AND OWNERSHIF OF THE SOFTWARE IS HERERY
TRANSFERREL,

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT RE CONSTRUED AS A COMMITMENT BY OIGITAL EQUIFMENT
CORFORATION,

NIGITAL ASSUMES NO RESFONSIBILITY FOR THE USE OR RELIABRILITY OF ITS
SOFTWARE ON EQUIFMENT WHICH IS NOT SUFFLIED BY LIGITAL.

+MACRO ..V1..

+MCALL oooCﬁO!uooCHi'oo0Cﬁ2’o&cCH3!oo;CH4ioooCHSinn'cﬁé
vaa¥l=1

+ENDIH

+MACRO ,.V2..,
QMCALL ...CMO;...CHIy.».CHE;...CM3;...CM4:.».CMS;...CMé
v VL=2,

+ENDM

+MACRO .MACS

JMCALL ++«oCMOs+ s CMLs.0 . CM25 ¢4 CM3s..,CH4y.. .CHM5r...CHE
veeV1=3,

+ENDM

+MACRO ...CMO STARG
+IF B <STARG:

CLR ~(64)
JIFF
+IF IDN <STARG»»#0
CLR =-(&)
+ IFF
MOV STARG»-(64)
+ENDC
+ENDC
+ENDM

+MACRO ,..CM1 AREAs ICsCHANYFLAG
+++CHS <AREA>
2y e U2=0
+IF B <FLAG>»
+IIF B <AREAZ>y» .,.V2=1
+IFF
+IIF DIF <FLAG>sSETs ...V2=1
+ENDC
«IF NE +..V2
+IF IDN <CHAN>s<$0>
CLRE Q)
+IFF
+IF NRE <CHAN>»
MOVE CHAN»y (0)
+ENDC
+ENDC
+IFF
+IF B <CHAN>
MOVR $IC,1(0)
+ IFF
+NTYPE ...V2sCHAN
+IF EQ o4 V2-7027

MoV CHAN+<ICX"0400> (0)
+IFF
Mov #ICX"0D400,(0)
MOVE CHAN» (0)
+ENDC
+ENDC
+ENDC
+ENDHM

+MACRO ..,.CHM2 ARG»OFFSE+» INS»CSET,RE
+IF B <ARG>»
+IF NB <CSETX
«IF NE ve V13,
CLR‘BE OFFSE(0)
LENDC
+ENDC
+IFF
«IF IDN <ARG>»»#%0
CLR’BR OFFSE(¢0)

JIFF
MOV‘BE ARGOFFSE(0)
+ENDC
+ENDC
»IF NB <INS:>
ENT ~0375
+ENDC
+ENDM

+MACRO ...CHM3 CHAN,IC
+«IF B <CHaAN:
MoV #I1Cx"0400,%0
+IFF
+NTYFE ...V2yCHAN
+IF EQ ...V2-"027

MOV CHAN+<ICX~0400>,%0
+IFF
MOV #ICk"0400+%0
BISB CHAN» X0
+ENDC
+ENDC
ENMT ~0374
+ ENDM

+«MACRO ...CM4 AREAs CHAN»BUF yWCNT»BLK»CRTN+ IC»CODE
+++CH1 <AREA>s<IC>»<CHAN>»<CODE>

v e s CM2 {BLK>!20

v+ +CM2 <BUF>,4,

oooC"2 <UCNT>!6'

B-2 Appendix

#..CHQ <CRTN>!801X
+ENDH

+MACRO ...CHMS SRCyBB

+IF NB <SRC>

+IF DIF <SRC>:RO
MOV’RB SRC»ZO

+ENDC

+ENDC

+ENDHM

+MACRO ...CHé AREAsICsCHAN:FLAG
+++CMS <AREA>
+IF B <FLAG>

+IF NB <AREA>

MOV $ICX"0400+CHAN» (0)
+ENDC
+IFF
+IF IDN <FLAG>sSET

MoV #ICX~0400+CHANy (0)
+ENDC
+ENDC
+ENDM

+MACRO .CDFN AREAsADDR» NUM, CODE
+IF NDF +..V1

+MCALL .HACS

+MACS

+ENDC

+++CM6 <AREA»»13.,0s<CODEX

¢+ oCH2 <ADDR>s2.

+o o CHM2 <NUM>s 449X

+ ENDIIM

+MACRO .CHAIN
MOV $8.,%70400,%0
EMT ~0374

+ENDM

.MACRO ,CHCOF AREA s CHANy OCHAN» JOBBLK»CODE
+IF NDF +..V1

+MCALL .MACS

+MACS

+ENDC

.. +CM1 <AREA>»11.,s<CHAN>,<CODE>
000CM2 <OCHAN}!20

+IF NE <JOBBLK>

+esCM2 <JOBBLK>s4.sX

+IFF

0;00”2 #014.!X

+ENDC iNB <JOBBLKD

+ENDM

+MACRO .CLOSE CHAN
+IF NDF +..V1
+MCALL .MACS
+MACS
+ENDC
+IF EQ eeeV1-1
ENMT ~04<160+CHAN>
+IFF
v+ «CM3 <CHAN>s+6.
+ENDC
+ENDM

+HACRO +CNTXS AREAsADDRsCODE
OIF N[IF .0’”1

+MCALL MACS

+MACS

+ENDC

Appendix B-3

+++CM6 <AREAZ»y27,50,<CODE>
v oo CHM2 <ADDR>$2,+X
+ENDH

+MACRO CMKT AREAsID, TIME»CODE
+IF NIF ...V1

+MCALL .MACS

+MACS

+ENDC

+++CM6 <AREA>»19.50y<CODE>

s+ e s CM2 SIN=,2,

vo o CM2 TIME>»d,.9%XsX

+ENDM

+MACRO .CRAUW AREAADDRyCODE
+IF NDF ..,V1

+MCALL MACS

+MACS

+ENDC

v CM6 CAREA>930,,2.5<CODE>
+++CM2 CADDR>,2.9X

+ENDM

+MACRO .CRRG AREAsADDRyCODE
«IF NDF ,.,V1

+MCALL .MACS

+MACS

+ENDC

++esCMé <AREA»s30,,0,<CODE>
+++CH2 <ADDR>»2,4X

+ENDM

+MACRO .CSIGE DEVSPCyDEFEXTsCSTRNGLINEUF
+IF NDF ., .V1

+MCALL .MACS

+MACS

+ENDC

+IF NB <LINRUF>

+++CMO <LINBUF>

+NTYFE ...,V2yDEVSFC

+IF EQ ...V2-"027

+++CMO <DEVSFC 41>

+IFF

...CNO {DEUSPC}
INC (64)

+ENDC

JIFF

++«+CMO <DEVSFC>

+ENDC

+++CHO <DEFEXT>
++ o CMO <CSTRNG>

EMT ~0344
+ENDM

+MACRO ,CSISP OUTSPCsyDEFEXT»CSTRNGsL INBUF
+IF NDF ...Vl

+MCALL .MACS

+MACS

+ENDC

+IF NB <LINBUF>

+++CMO <LINERUF>

+NTYPE ...VZyDUTSPC

yIF EQ 00;02‘”027

«++CMO <OUTSPC’+1>

+IFF
+»+CMO <OUTSPC>
INC (6.
+ENDC
+IFF

v+ CMO <OUTSPC>

B-4 Appendix

+ENDC
+++CHO <DEFEXT>
.+ .CMO <CSTRNG>
EMT ~0345
+ENDM

+MACRO .CSTAT AREAYCHANsADDR»CODE
+IF NDF +..V1

+MCALL .MACS

+MACS

+JENDC

+++CM1 <AREA>»»23,s<CHAN>,<CODE>
++oCM2 <ADDR>»2.9X

+ENDM

+MACRO .CTIMI TEK
JSK Sy @STIMIT
+WORD TBK-.
«WORD 1

+ENDHM

+MACRO JDATE
MOV $10.%70400,%0
EMT ~0374

+ENDM

+MACRD JLELET AREA; CHAN;DELK,SEQNUN.CODE
+IF NDF ...V1
+MCALL .MACS
+MACS
+ENDC
«IF E@ +..V1-1
++:CMS <CHAN>
EMT “D{AREAX>
+IFF
++«CMS <AREA>
+IF IDN <CHAN>,#%0
CLR 0)
+ IFF
e e W2=0
+IF B <CODE>
+IIF B <AREA>y ...V2=1
+ IFF
+IIF DIF <CODE>sSET» veeV2=1
+ENDC
+IF NE +40V2
+IF NB <CHAN>
MOVB CHAN» (0)
+ENDC
+IFF
+IF B <CHAN>
CLREB 1¢(0)
+IFF
ONTYF.E oooUZDCHAN
eIF EQ ...UZ-"‘OZ?

MOV CHANy (0]
+IFF

CLR)

MOVER CHAN»s (0Q)
+ENDC
+ENDC
+ENDC
+ENDC

+++CM2 <DBLK:»2.
v+ o CM2 {SEQNUM>s4.»XsX
+JENDC

+ENDM

.MACRO .DEVIC AREAsADDR,LINKyCODE
+IF NDF ...V1

Appendix B-5

+MCALL .MACS

+MACS

+ENDC

+IF B LINK

+o+CM& <AREA>»12,0,<CODE>
+IFF

+++CMé6 <AREA>»12.y1,<CODE>
+ENIC

+2sCM2 <ADDR>22,4X

+ENDIM

+MACRO JDRAST NAMEyFRIyART
+GLOEL $INFTR
+IF B <ABTX>
RTS L7
+IFF
ER ART
JENDC
NAME’INTI! JSR ZSs@3INFTR
+WORD TC<PRIX"040:-8"0340
+ENDM

+MACRO .DREBEG NAME»VEC,DSIZyDSTS,VTEL
+ASECT

» = 52

+GLOBL NAME“ENDyNAME’INT
+WORD “NAME’END~NAME/STRT>
+IF E <DSIZx
+WORD NAME’'DSIZE
+IFF
+WORD DsIz
+ENDC
+IF B “NET8>
+WORD NAME’STS

W IFF
+WORD DSTS
+ENDC .
+WORD ERL$GH<MNGSTR2>+<TIMNSITRA>
v = 176
+IIF DF NAME‘$CSRs .WORD NAME ' $CSR

+PSECT NAME’DVR
NAME‘STRT !¢
+IF NB VTEL
+GLOEL VTEBL
+WORD “VTBL-.>/2, -1 + "0100000

+ IFF

+IF NB <VEC>

+IIF NE VECI3 +ERROR VEC #0DD OR ILLEGAL VECTOR SPECIFIED
+WORD VEC:"C3

+IFF

«IF DF NAME‘SVUTB
+GLOBL NAME $VTB
+WORD <NAME‘$VTB-.>/2, ~1 + "0100000

. IFF

+IIF NE NAME’$VECt3 +ERROR NAME’$VEC 0DD OR ILLEGAL VECTOR SPECIFIED
+WORD NAME‘$VECE"C3

\ENDC

+ENDC

JENDC

+WORD NAME’' INT-.»"0340
NAME'SYS!?

NAME’LBE S +WORD 0
NAME‘CQE ! +WORD 0
+ENDM

+MACRO ,DRROT NAME»ENTRYREAD
+DREND NAME

+1IF NDF TPSy TPS=177544

+IIF NDF TPB» TPB=177566

LF=12

B-6 Appendix

CR=15
BE$ROOT=1000
BE$DEVN=4716
B$DEVU=4722
B$READ=4730
+IF EQ MMGST
B$DNAM="R’NAMNE
+IFF
E$DNAM="R/NAME’X
+ENDC
+ASECT
e =62

+WORD NAME BOOT » NAME RENII-NAME / BOOT y READ-NAME ' BOOT
+PSECT NAME/BOOT
NAME/BOOTIINOF

BR ENTRY
+ENDM

.MACRO .DRDEF NAME,CODE,STAT»SIZE,CSR,VEC
.MCALL .DRAST,.DRBEG».DRBOT, ,DREND,.DRFINs .DRSETs . DRVTB» .FORK,.QELDF
LIIF NDF TIMSIT, TIM$IT=0

JIIF NE TINSIT, TIMIT=1

.IIF NDF MMG$T,» HMG$T=0

LIIF NE MMGT, MMGT=1

,IIF NDF ERL$G» ERL$G=0

JIIF NE ERLG, ERLG=1

JIIF NE TIW$IT, .MCALL TIKIO».CTIHI
+QELDF

HDERR$=1

EOF$=20000

SPFUN$=2000

HNDLR$=4000

SPECL$=10000

WONLY$=20000

RONLY$=40000

FILST$=100000

NAME ' DSIZ=SIZE

NAME / $COD=CODE

NAME / ST8=<CODE> ! <STAT>

LIIF NDF NAME’$CSR» NAME’S$CSR=CSR
.IIF NDF NAME‘$VEC, NAME’S$VEC=VEC
.GLOBL NAME’$CSRsNAME’$VEC

+ENDM

+MACRO .DREND NAME

+PSECT NAME’DVR

+IIF NDF NAME’SEND» NAME’S$END?
+IF EQ +—-NAME’S$END
NAME“$ENDZ
+IF NE MMGS$T
$RLPTR:: +WORD
$MFPPTR:! WORD
$GTRYT:!! .WORD
$PTRYT!?: JWORD
$FPTWRDI! (WORD
+ENDC

+IF NE ERLS$G
$ELPTR!: WORD O
+ENDC

+IF NE TIMS$IT
$TIMIT:: JWORD O
+ENDC

$INFTR!! .WORD O
$FKPTR:: .WORD O
+GLOBL NAME'STRT
NAME'END == .
+IFF

+PSECT NAME’BOOT

SO0 OC O

+IIF LT <NAME’BOOT-.+664>» .ERROR $PRIMARY BOOT TOO LARGE

Appendix B-7

, = NAME’ROOT+464
BIOERR?: JSR R1,REFORT
«WORD IOERR-NAME‘ROOT

REFORT: MOV #BOOTF-NAME'ROOT RO
JSR R1,REP
MOV (Ri)+:RO
JSR R1,REF
MoV #CRLFLF-NAME’ROOTsRO
JSR R1sREF
RESET
HALT
RR -2

REFOR! MOVE (RO)+,@4TFE
REF? TSTR @#TFS

BFL REF
TSTE ERO
BNE REFOR
RTS R1

BOOTF: JASCIZ <CR><LF>*?BOOT-U-*<200>
CRLFLF?! .ASCIZ <CR><LF><LF>
ITOERR: .ASCIZ *I/0 error*®

+EVEN
NAME‘BEND? !
+ENDC
+ENDM

+MACRO ,DRFIN NANE
+GLOBL NAME‘CQE

Mov X7+%4
ADD #NAME'CQE-. 24
MOV @$7054,%5
JHP @"0270(%5)
+ ENDIM
+MACRO .DRSET OPTION» VAL »RTNsMODE
+ASECT
+IF LT .-400
«=400
+IFF
22,2
+ENDC
VAL
v e e V2=,

+RADS0 N\OPTION\
e =4 4.V244
+BYTE <RTN-400>/2
e e U2=0
+IRF Xs<MODE>
»IF IDN <X>y<NUM>
v e V2=,,.021100
+IFF
«IF IDN <X>y<NO>
e d¥2=,,,V21200
+IFF
+IF IDN <X>,»<0CT>
v e s V2=,,,V21140
JIFF
+ERROR #ILLEGAL PARAMETER X
+ENDC
+ENIC
+ENDC
+ENDR
+BYTE vee V2
+WORD 0
»ENDM

+MACRO .DRVTER NAMEs»VEC» INTsFS=0

B-8 Appendix

+IF NB NAME
NAME ‘' $UTR::
+IFF
s =42
+ENRC

+WORD

+ENDNM

+MACRG .DSTAT
+IF NDF ...V1
«MCALL .MACS
+MACS

+ENLC

+CMS CDNAM:

v+

+++CMO “RETSFPC>

EMT
+ENDM

+MACRO .ELAW
+IF NDF ...Vl
+MCALL .MACS
+MACS
+ENDC

VECE"C3»INT-.»340!FS»0

RETSFCyDINAM

~0342

AREAsADDRyCODE

+++CMé6 <AREA>+30.+3.y<CODE>
..-CﬂZ <ADDR>!ZQDX

+ENDH

+MACRO JELRG
+IF NDF +..V1
+MCALL J.MACS
+MACS
+ENDC

AREA»ADDR»CODE

++oCH6 <AREA>+30.r1,<CODE>
0006“2 <ﬁDDR>;2'1X

+ENDNM

+MACRO (ENTER
+IF NDF ...Vl
«MCALL .MACS
+MACS

+ENDC

+IF EQ veeVi-1
+++CHMS <CHAN>
+++CMO <DBLK>

ENT

+IFF

AREAsCHAN»DBLK,LEN»SEQNUM,CODE

~0<40+AREA>

+++CM1 <AREA>s2.,y<CHAN>,»<CODE>
» 0 s CM2 <DBLK>s2.

e oo CM2 <LEN>94‘7!X

+++CM2 <SEQNUM>s6. 9 XX

+ENDC
+ENDM

+MACRO JEXIT
EMT
+ENDM

+MACRO .FETCH
+IF NOF .. V1
+MCALL +MACS
+MACS

+ENDC

+++CHS <DONAM>
+++CMO <ADDR>

EMT
+ENDM
+MACRO .FORK
JSR
+WORD

~0350
ADDR» DNAM
~0343
FKBLK
L5,@$FKFTR
FKBLK - .

Appendix B-9

+ENDM

+MACRO ,GMCX AREAsADDR,CODE
+IF NDF ..,V1

+MCALL ,MACS

+MACS

+ENDC

s+ s CM6 <AREA}!3°0’60!<CODE>
v+ s CM2 <ADDR>1201X

+ENDM

+MACRO .GTINM AREA»ADDR» CODE
+IF NDF ,.,.V1

+MCALL .MACS

+MACS

+ENDC

+++CHMé <AREA>+17.,0y<CODE>
+2+CM2 <ADDR>:2,,X

+ENDHM

+MACRO .GTJB AREA>ADDRy JORELK» CODE
+IF NDF ...V1

+MCALL .MACS

+MACS

+ENDC

+1eCM6 <AREA>»16,+1+<CODE>
¢+ +CM2 <ADDR>,2,

+«IF NB <JOBBLK>

+IF IDN <JOBBLK>,<ME>

s CM2 $-154,9X%

IFF

+eCM2 <JOBBLK>s4.9X

+ENDC 3IDN <JOBBLK>s<ME>
+IFF

s s CM2 $#-3+4,9X

+ENDC iNB <JOBBLK>

+ENDM

+MACRO .GTLIN LINBUF s FROMFT
+IF NDF ...V1
+MCALL .MACS

+MACS
+ENDC
+++CMO <LINBRUF>
QOQCHO #1
+2+CHMO <FPROMFT:
CLR =(64)
EMT ~034%5
+ENDM

+MACRO ,GVAL AREA»OFFSEyCODE
+IF NDF ,,.V1

+MCALL .MACS

+MACS

+ENIC

+++CM6 <AREA>»28,,0,<CODE>
+++CM2 <OFFSE>s2,9X

+ENDM

+MACRO .HERR
MoV $#5.%70400,%0
EMT ~0374

+ENDI'M

+MACRD .HRESE
EMT ~0357
+ENDM

+MACRO JINTEN FRIOsFIC
+IF B FIC

B-1¢ Appendix

+IFF

JENDC

+ENDM

+MACRO

+ENDM

+MACRO

+IF NDF

AL
OHDHLL

+MACS
+ENDC
+IF EQ
OOQCHS

+IFEM1
s+ s CH2
0000"2
+ENDC
+ENDM

+MACRO

+IF NDF

+MCALL
+MACS
+ENDC
v e s CHS
L) OCMQ
+ENDM

+MACRO

+IF NDF

+MCALL
+MACS
+ENDC
s CHME
OO'CHQ
0‘00"2
+ENDHM

+MACRO

+IF NDF

+MCALL
+MACS
+ENDC
PRSI
'OOCHZ
+ENDM

+«MACRO

+IF NDF

+MCALL
+MACS
+ENDC
000CH6
QO.CM:"-’

+ o CM2
+ENDM

+MACRO

+IIF NE <ADDRX

+ENDM

JSR S.,2°054

MOy 24°054:-(4.)

JSR 5,18(6.)+

JMORD ~C<PRIOK32.%3224,
.LOCK

ENT ~0346

,LOOKU AREAsCHAN»DELK s SEQNUM, CODE
T

JHACS

) oUl’l

ZCHAN

EMT ~0<20+AREAS
<AREA>s1s <CHAN> y <CODE>
<DELK>»2,

<SEQNUM>» 4.9 Xs X

+HMAF
00&U1
+MACS

AREA+ADDR, CODE

<AREA>s30.+4,y<CODE*
“ADDR> 2249 X

+MTATC
QOOvi
«MACS

AREAY ADDRHYUNIT,CODE

<AREAX»31.+5,»<CODE>
<ADDR>s2,
SUNITH>94,9Xss R

+MTDTC
00!”1
+MACS

AREASUNIT,CODE

<AREA> s3It 96, »CODRE™
SUNIT>s44 0 X

+MTFPRN

vea V1
+MACS

AREA» ADDR»UNIT»COLE

AREA?31.27,s<CODRE>
ADDRY 2.
SUNITHvsd4,9 Xy R

+MFFS ALDR
MOV BET0534,-(64)
ADD $#70362y(44)
JSR 7v0@06.04
MOVE (6.)+»ADDR

Appendix B-11

+MACRO MTRCT AREASUNIT,CODE
+IF NDF ...V1

+MCALL .MACS

+MACS

+ENDC

+++CH6 <AREA>+»31,54,,<CODE>
v oCM2 UNITHr4,5X%

+ENDHM

+MACRO MRKT AREA»TIMEsCRTNs I,y CODE
+IF NDF ..,.V1

+MCALL .MACS

+MACS

+ENDC

«++CMé <AREA>»18,,0,<CODE>

s+ o CM2 <TIME>,2,

+ s CM2 <CRTN>14,

veoCM2 <ID>ré.9X

+ENDNM

+MACRO MTGET AREAYADDIRYUNIT»CORE
+IF NDF ., .V1

+MCALL .MACS

+MACS

+ENDC

+++CM6 AREA»31,,1,<CODE>

+ e s CM2 ADDR, 2,

+s+CM2 <UNIT>!4;!X!!B

» ENDM
+MACRO MTPS ADDR
+IIF NB <ADDR> CLR ~(&.)
+IIF NB <ADDR> MOVE ADDRy (64
MoV 2$7054,-(6.)
ADD $#703560r(6.)
JSR 74000604
+ENDHM

+«MACRO .MTSET AREA»ADDRYUNITsCODE
+IF NDF ,.,V1

+MCALL .MACS

»MACS

+ENDC

+++CMé6 AREA»31,:0,<CODE>

,..CHQ ADDR!Z.

+++sCM2 <UNIT>!40!X!!B

+ENDM

+MACRO MTIN AREAsADDRyUNITCHRCNT+COLE
+IF NDF .. .V1

+MCALL ,MACS

+MACS

+ENDC

+ e s CME AREA!319!20!<CODE}

o s CM2 ADDR:?.

+s s CM2 <UNIT>!40!!!B

+++CM2 <CHRCNT>»S.sXs»B

+ENDM

+MACRD .MTOUT AREA»ADDRyUNIT»CHRCNT yCOLE
+IF NDF ...V

+MCALL .MACS

+MACS

+ENDC

+++CM6 AREA»31,+3.,<CODE>

+++CH2 ADDR,2Z2,

+s ¢ CM2 <UNIT>r4.51+B

+++CM2 {CHRCNT>sSesXssB

+ENDM

B-i2 Appendix

+MACRDO .MTSTA AREAsADDR»CODE
+IF NDF ...V1

+MCALL .MACS

+MACS

+ENDC

+++.CM6 AREA+31.+8.,<CODE>

v+ CM2 ADDRs 2.

v+ o CH2 $0r4.9X

+ ENDM

+MACRO MWAIT
MoV $#9.%70400+20
EMT ~0374

+ENDM

+MACRO +FRINT ADDR
+IF NB <ADDR>
+IF DIF <ADDR>sRO

MOV ADDR: %0
+ENDC
+ENIDC

EMT ~0351
+ENDHM

+MACRO .PROTE AREA,ADLR,CODLE
+IF NDF ...Vl

+MCALL .MACS

+MACS

+ENDC

+++CM6 CAREA»925.+05<CODE>
+++CM2 <ADDR>»2.9X

+ENDM

+MACRO FURGE CHAN
+IF NDF +..V1

+MCALL .MACS

+MACS

+ENDC

++sCM3 <CHANX, 3,
+ENDN

+MACRO JQELDF
Q.LINK=0
Q.COU=2,

R.UNIT=7.

Q.BUFF="010
Q.WCNT="012
Q.COMFP="014

+IRF Xy “LINKyCSWoBLKNsFUNC JNUMsUNITsBUFF s WCNT » COMF >
A% 'X=0.,"X-4
+ENDR

+IF EQ MMGST
G.ELGH="016

+IFF
Q.FAR="016
QsFAR="012
Q.ELGH="024
+ENDC

+ENIM

+MACRO L QSET ADDRY LEN

JIF NDF ...Vl
JMCALL . MACS

+ENDC

v+ oCHMS <LEN:
+++CHO <ADDR>

Appendix B-13

EMT ~0353
+ENDM

+MACRO RCTRL
EMT ~0355
+ENDNM

+MACRO .RCVD AREAsBUF yWCNTsCRTN=4#1,+CODE

+IF NDF ..,.V1

+MCALL .MACS

+MACS

+ENDC

«IIF IDN <CODE>syNOSETs ...CM4 <AREA>s»<BUF>y<WCNT>»s<CRTN>»22,s<CODE>
+«IIF DIF <CODE>sNOSET, ..,.CM4 <AREA>»#0s<BUF>,<WONT>,s<CRTN>s22,s<CODRE>
+ENDNM

+MACRO .RCVDC AREAYBUF yUCNTsCRTN,CODRE

+IF NDF ...V1

+MCALL .MACS

+MACS

+ENDC

«IIF IDN <CODE>sNOSETy +..CM4 <AREAM>s s Z{BUF>s<WCNT>y s <CRTN> 22
+IIF DIF <CODE>syNOSETs ,..CH4 <AREA>»#0,<BUF >y <WCNT>s s <CRTN>»
+ENDM

+ 7 <CODE>
22.,<CODE>

+MACRO .RCVIW AREA» RUF s WCNT+CRTN=#0,CODE

+IF NDF ,..V1

+MCALL .MACS

+«MACS

+ENDC

+IIF IDN <CODE>yNOSETs ...CM4 <AREAXy s CBUF> s SWCNT>y s SCRTN>s 22, s <CODE
+IIF DIF <CODE>,NOSETy ...CM4 <AREA:s30»<BUF>y<WCNT>s s <CRTN>»22,s<CONE"
+ENDN

+MACRO RDEEK RGSIZ
+MCALL .RDBDF

+RDRBDF
JWORT
JWORD RGSIZ
JWORT

LENDH

+MACRO .RDEDF

R.GID =

R.GSIZ =2,

R.GSTS =4.

R.GLGH =6,

RS.CRR ="0100000

RS,UNM ="040000

RS.NAL ="020000

JENDM

+MACRO ,READ AREA s CHAN» BUF MCNT y ELK s CRTN=#1, COIE

+IF NDF ... V1
+MCALL .MACS
+MACS

JENDIC

+IF EQ sraVi-1
v o CHMS CWCNT:-
+2.CHO #1

+ s+ CMO “<BUF >
v OHC CCHAN:

EMT ~0<200+AREA>
IFF
v+ +CH4 <AREAZ s <CHAN>» <BUF >y <WCNT> s BLK3 y <CRTN>1 8. s SCODE >
JENDC
VENDM

+MACRO JREAIC AREAs CHANyBUF y WCNT s CRTNs ELK» CODE
«IF NDF ...Vl

B-14 Appendix

+MCALL +MACS
+MACS
+ENDC
JIF EQ oo 0VI-1
+ 0 s CMS “<CRTNX
+e+CHO WCNT>
+++CHO <BUF>
+ 2+ CHMO <CHAN>»

EMT ~0<200+AREA>
+IFF
»++CM4 <AREA> s <CHANZ>s <BUF> s <WCNT> s <BLK>; <CRTN>s8.,«CODE>
+ENDC
+ENDHM
+MACRO .REALDW AREAYCHANYBRUF s WCNT s RLKs CRTN=%0,CODE
+IF NDF ...V1
+MCALL .MACS
+MACS
+ENDC
+IF EQ ++.V1-1
+ oo CMS {WONTX
LR OCHO
++CMO <BUF:
+ e CHO <CHAN

EMT ~0<200+AREA>
.IF
v+ CMA <AREAZ » CCHANZ» “RUF > » <WCNT > s <RLK: s CRTNX» 8.y <CODE
+ENDC
+ENDH
+MACRD JREGDEF
+ENDM
+MACRO RELEA LiNAM
+IF NDOF ...V1
+MCALL .HMACS
+MACS
+ENDC
s+ oo CHMS SIINAMY
L) QCMO

EMT ~0343
+ENDM
+MACRO JRENAM AREAYyCHAN» DELK,CODE
sIF NIOF 40Vl
+MCALL +MACS
+MACS
+ENDC
+IF EQ 44 aV1-1
v+ + CM3 < CHANX

EMT “0<100+AREA
+IFF
++sCM1 <AREAXr4.» “CHANZ»<CODE>
v o o CHM2 SDORLK>92,9X
+ENDC
+ENDM
+MACRO .REOFE AREAyCHANsCRLK,CODE
+IF NDF ...V1
+MCALL +MACS
+MACS
+ENDC
+IF EQ +.4.V1-1
v+ +CMS <CHANX

MT ~0<140+AREA:

+IFF
+++CM1 <AREAZ>»6, s CCHAN>»<CODE>
.-.CHZ’ {CBLK"'Q&!X
+ENDC

Appendix B-15

B-16

A

"3
"3
@

+ENDHM

+MACRO .SAVES AREA»CHAN,CELKsCODE
+IF NDF ., V1
+MCALL . MACS
+MACS
+ENDC
+IF EQ +..V1-1
+ oo CMS <CHAN>
EMT ~0<120+AREA:
+IFF
++oCH1 CAREA>»S. s “CHAN> s <CODE >
0}00”2 {CBLN}’209X

+ENDC
+ENDM
+MACRO L RSUM
MoV ¥2.%70400,%0
EMT “0374
cENDM
+HACRO LSDAT AREAyBUF »WCHNT»CRTN=#1,COLE

SIF NDF .0Vl
+MCALL MACS
+MACS
+ENDC

+IIF IDN <CODEX>sNOSETs ...CM4 <AREAZ»» “RBUF >y <WCNT>s s “CRTN=s21.»<COQUE>

+IIF DIF <CODE>sNOSETs ...CM4 <AREA>s#0» “BUF s “WCNT>

+ENDIM

+MACRO .SDATC AREAYBUF yUCNTyCRTMsCODE
+IF NDF ...Vl

+MCALL . MACS

+MACS

+ENDC

y CRTNX 21 < CODE

«IIF IDN <CODE>»NOSETy ...CM4 ~AREAX»y s “BUF>»<WCNT>y»<CRTN>y21,»<CODE>

+«IIF DIF <CODE:>»NOSET» ...CM4 <AREA: »#0s BUF >y <WCHNT .-

+ENDIM

+MACRO .SDATW AREAs BUF » WCNTsCRTN=#0,CODE
+IF NDF ., .V1

+MCALL JHACS

+MACS

+ENDC

rCRTNE21, 9 SCODE

+IIF IDN <CODE:s,NOSET» ...CM4 <AREA>» y “RUF> s <WCMNT> s » SCRTN>»21 ., <CODE

+«IIF DIF <CODE:>sNOSETys ...CM4 <AREAZ»#0s TBUF s JUCNT

+ENDIM

+MACRO .SDTTH AREA,ADDR,CODE
+IF NDF ...V1

+MCALL .MACS

+MACS

+ENDC

+++CH6 <AREAX»32,:0,<CODEX
oo CM2 {ADDRX>»2.9X

+ENDM

+MACRO SERR
MOV $£4,%70400,%0
EMT “0374

+ENDHM

+MACRO LSETTO ADDR
+IF NDF ..,.V1
+MCALL .MACS

+MACS
+ENDC
v s o CMS “ADDR>
EMT ~0354

ndix

y CRTNF 201, o CODE

+BFFUN AREAsCHANSFUNC»BUF yWCNT s BLK»CRTN,CODE

$°0377+8.99: R

+MACRG +SCCA AREA,ADDRSCODE
+IF NDF ...V1
+MCALL «MACS
+MACS
+ENDC
++sCM6 <AREA» 129,50, <CODE>
v+ o CM2 CADDOR>s2.9X
+ENDM
+MACRO .SFFA AREAsADDR,CODE
+IF NDF +..V1
+MCALL +MACS
+MACS
+ENDC
+++CM6 <AREAX+24,,0,<CODE>
+ 2o CHM2 SADDR> 92,49 X
+ENDM
+MACRO .SFCFS AREA»ADDR,y CODE
+IF NDF ...V1
+MCALL JMACS
+MACS
+ENDC
+esCM& <AREAZ933.,0,<CODE>
v 2o CM2 <ADDRX»2. 95X
+ENDM
+MACRO
+IF NDF +..V1
+MCALL .MACS
+MACS
+ENDC
+++CM1 <AREAX+26.3 < CHANZ»<CODE>
+ 0 e CM2 “RLKZ>92.
. OCHZ <BUF:"!4Q
0000”2 <UCNT>;6.
«IF NB FUNC
+NTYPE +.V2sFUNC
+IF NE . 0‘)2"'"027
+IIF DIF <CODE>,NOSET»..,.CM2
v+ e CM2 LFUNC>sQ@+22 R
+IFF
+ e+ CM2 <FUNC X"04004703775+8.
+ENDC
+ENDC
+++sCM2 <CRTN>»10.9XsX
+ENDM
+MACRO .SRESE
EMT ~03s52
+ENDM
+MACRO . SFND
MOV $#1%70400,20
EMT ~0374
+ENDM
+MACRO .SYNCH AREASFIC
+IF B PIC
+IIF NB <AREA> MOV AREA» %4
+IFF
+IF NB AREA
Moy X7+ %4
ADD #AREA- .1 Z4
+ENDC
+ENDC
MOV e$#7054,%5

Appendix B-17

JSR

+ENDM

+MACRO .TIMIO
JSR
+WORD
+WORD
+WORD
+WORD

+ENDHM

+MACRO LTLOCK
MOV
EMT

+ENDIM

+»MACRO .TRFSE

+IF NDF ...V1

+MCALL .MACS

+MACS

+ENDC

v CMS

v+ CH2

+ENDIIM

+MACRO TTINR
EMT

+ENDM

+MACRO LTTYIN
ENT
ECS

+IF NB <{CHAR>

Je9@70324(5.)

TEKsHI»LOD
Z3r@STIMIT
TERK=-.

0

HI

LO

#7.%70400:%0
~0374

AREA>ADDR,CODE

<AREA>+s3. 90+ <CODE>
SANDR> 2. ¢ X

~0340

CHAR
~0340

=2

+«IF DIF <CHARX»sRO

MOVE
+ENDC
+ENDC
+ENDM
+MACRO . TTOUT
EMT
+ENDM
+MACRO .TTYOU

+IF NB <CHAR>

%0 CHAR

~0341

CHAR

+IF DIF <CHARX RO

MOUR
+ENDC
+ENDC
EMT
BCS
+ENDM
+MACRO .TWAIT
+IF NDF ...V1
+MCALL .MACS
+MACS
+ENDC

CHAR 20

~0341

v =2

AREAY TIMEsCODE

+++CM6 <AREAZ>»20.,0,<CODE>
vooCM2 <TIMEZ»2.5X

+ ENDM
+MACRO .UNLOC
EMT
+ENDM

+MACRO
+IF NDF
+MCALL

+UNMAF
'OQvl
+MACS

B-18 Appendix

~0347

AREAYADDR,CODE

+MACS

+ENDC

«+:CM4 <AREA>:30.:5.s<CODE>
...CﬁZ <ADDR}!20’X

sENDM

+MACRO .UNFRO AREA»ADDRyCODE
«IF NDF +..V1

+MCALL .MACS

+MACS

+ENDC

vesCHE <AREA»+25.,s1,<COIE>
9006"2 {ADDR>12.1X

+ ENDM

+MACRO .WAIT CHAN
+IF NDF ...Vl
+MCALL .MACS

+MACS
+ENDC
LIF EQ 444 V11
EMT “0<240+CHAN
+IFF
+IF B <CHAN:
CLR %0
. IFF

+NTYPE +.+.V2sCHAN
+IF EQ ,..V2~7027
+IF IDN <CHAN>:%0

CLR %0
JIFF

MOV CHANY %0
JENDC
JIFF

CLR %0

EISE CHAN» %0
VENDC
JENDC

EMT ~0374
VENDC
JENDIM

+MACRO WDEBEK WNAFRsWNSIZ»WNRID WNOFF s WNLENsWNSTS
+MCALL JWDRBRDF

+WDBDF
+BYTE
+BYTE WNAFR
+WORD
+WORD WNSIZ
+WORD WNRID
JHORD MNOFF
+WORD WNLEN
+WORD WNSTS

+ENDM

+MACRO .WDRDF

W.NID =0

W.NAPR =1

W.NBAS =2,

W.NSIZ =4,

W.NRID =6,

W.NOFF ="010

W.NLEN ="012

W.NSTS ="014

W.NLGH =7014

WS.CRW ="0100000

WS.UNM =7040000

WS.ELW ="020000

WS.MAP ="0400

Appendix B-19

+ENDHM

+MACRO

+IF NDF

+MCALL
+MACS

+ENDC

+IF EQ
LR OCMS
+ oo CHO
+ 4+ CHMO
¢+ CHMO

+IFF
+eoCHA
+ENDC
+ENDM

+MACRO

+IF NDF

+MCALL
+MACS

+ENDC

+IF EQ
OOOCHS
0.08“0
v+ CHO
++ s CMO

+IFF
0008"4
+ENDC
+ENDH

+MACRO

«IF NDF

+MCALL
+MACS

+ENIC

+IF ERQ
++ s CMS
+ ¢+ CMO
+ 2+ CHO
«++CHMO

+IFF

+ oo CM4
+ENDC
+ENDM

B-20 Appendix

+WRITC
00‘\)1
+MACS

v V1-1
“CRTN
“WCNT
SRUF
“CHANX
EMT

<AREAX,

+WRITE
OOQU].
+MACS

vseV1-1
LWCNT =
$1

< RUF >
“~CHAN
EMT

“AREAZ,

+WRITW
v V1
+MACS

. toUi"I
“WCNT>
“BUF >
<CHAN>
EMT

<AREAXy

AREAYCHANYBUF »WCNT s CRTNs BELK»CODE

"04220+AREA>

<CHANZ » <BUF>» <WCNT >y “BLK> sy <CRTN>s 9.+ » <CODE>

AREAs CHANy BUF y WCNT s BLKyCRTN=#%#1,CODE

“0<220+AREAX

“CHAN s TBUF >y <WCNT>» <BLK>y “CRTNX>+ %, » <CODE>

AREAsCHANsBUF yWCNT»BLKsCRTN=#0,CODE

~0<220+AREA>

SCHAN>» <BUF >y <WCNT>y BLK>y “CRTN:+ 9. y {CODE>

INDEX

A

Abort entry points, 2-30
Addressing modes, 1-10
AJFLT system subroutine, 3-1
Argument block, 1-8
Argument parameters,

programmed requests, 2-1
Arguments,

blank, 1-9
Assembly language,

display support, A-1
Asynchronous I/0, 1-19
Attaching a terminal, 2-69

Background job,

directing control to, 2-3
Blank arguments, 1-9
.BLANKS graphics macro, A-3

C

CALL statement, 1-44
.CDFN programmed request, 2-2
.CHAIN programmed request, 2-3
CHAIN system subroutine, 3-1,
See Also .CHAIN programmed
request.
Channel,
freeing, 2-85
Channel status information, 2-23
Channels and channel numbers;
1-37
Character string functions, 1-55,
1-56
allocating character string
variables, 1-57
passing strings, 1-58
using quoted-string literals,
1-59
.CHCOPY programmed request, 2-5
.CLEAR graphics macro, A-4
.CLOSE programmed request, 2-7
CLOSEC system subroutine, 3-2
.CMKT programmed request, 2-8
.CNTXSW programmed request, 2-9
Command interpretation, 1-18
Completion routines, 1-20, 1-37
CONCAT system subroutine, 3-4
Console terminal character input,
2-134
Console terminal character
output, 2-136
Context switching, 2-9

.CRAW programmed request, 2-11
.CRRG programmed request, 2-14
csI, 1-18

special mode, 2-21
CSI option information,

passing, 2-18
.CSIGEN programmed request, 2-15
.CSISPC programmed request, 2-21
.CSTAT programmed request, 2-23
.CTIMIO macro, 2-24
CTRL/C, 2-107
CTRL/D, 2-89
CVTTIM system subroutine, 3-5

D

Date,
setting, 2-112
Date information, 2-25
.DATE programmed request, 2-25
.DELETE programmed request, 2-26
Detaching a terminal, 2-71
Device, 1-16
status information, 2-36
Device blocks, 1-11, 1-39
Device handler macro,
.CTIMIO, 2-24
.DRAST, 2-30
.DRBEG, 2-31
.DRBOT, 2-31
.DRDEF, 2-32
.DREND, 2-33
.DRFIN, 2-34
.DRSET, 2-34
.DRVTB, 2-35
.QELDF, 2-86
.TIMIO, 2-129
Device handlers, 1-26
releasing, 2-45
special functions, 2-121
termination table, 2-33
time-out calls, 2-129
.DEVICE programmed request, 2-28
DEVICE system subroutine, 3-5,
See Also .DEVICE programmed
request.
DHALT display halt instruction,
A-14
Display file handler,
description, A-1
using, A-15
Display file structure,
BASIC-11 graphics software,
A-20
main file/subroutine, A-19
subroutine calls, A-18

Index-1

INDEX

Display processor mnemonics, A-23
DJFLT system subroutine, 3-6
DJSR subroutine call instruction,
A-13
DNAME load name register
instruction, A-14
.DRAST device handler macro,
2-30
.DRBEG device handler macro, 2-31
+.DRBOT device handler macro, 2-31
.DRDEF device handler macro, 2-32
.DREND device handler macro, 2-33
DRET subroutine return
instruction, A-13
.DRFIN device handler macro, 2-34
.DRSET device handler macro, 2-34
.DRVTB device handler macro, 2-35
DSTAT display status instruction,
A-14
.DSTATUS programmed request, 2-36
Dynamic region,
creating, 2-14

E

.ELAW programmed request, 2-38
.ELRG programmed request, 2-39
EMT codes, 1-3
EMT instructions, 1-3
.ENTER programmed request, 2-39
Entry point,
abort, 2-30
interrupt, 2-30
Error processing, 1-17
.EXIT programmed request, 2-42
Extended display instructions,
A-13
Extended memory,
programmed requests, 1-24
Extended memory monitor,
See XM monitor.

F

FB monitor, 1-2
FORTRAN IV programs, 1-50
.FETCH programmed request, 2-44
Files,
deleting, 2-26
Foreground/background
communications, 1-22
Foreground/background
environment,
running a FORTRAN IV program,
1-59
.FORK macro, 2-46
Format,
programmed requests, 1-6

FORTRAN 1V,
PSECT ordering, 1-41
running a program, 1-59
FORTRAN IV programs,
foreground/background
environment, 1-50
FORTRAN programs,
calculating workspace, 1-51
FORTRAN/MACRO interface, 1-45
calling FORTRAN programs, 1-48
calling MACRO subroutines, 1-46
subroutine register usage, 1-46
Function reference, 1-44

G
GETSTR system subroutine, 3-7
.GMCX programmed request, 2-48
Graphics macro calls,
summary, A-21

Graphics macros, A-3
.GTIM programmed request, 2-49
GTIM system subroutine, 3-8
.GTJB programmed request, 2-50
GTJB system subroutine, 3-8
.GTLIN programmed request, 2-52
GTLIN system subroutine, 3-10,

See Also .GTLIN programmed

request.
.GVAL programmed request, 2-53

H

.HERR programmed request, 2-54
High limit,

setting program, 2-114
.HRSET programmed request, 2-56

1/0,
event driven, 1-19
I/0 channels,
defining additional, 2-2

IADDR system subroutine, 3-11

IAJFLT system subroutine, 3-11

IASIGN system subroutine, 3-12

ICDFN system subroutine, 3-13

ICHCPY system subroutine, 3-14

ICLOSE system subroutine, 3-2

ICMKT system subroutine, 3-15,
See Also .CMKT programmed
request.

ICSI system subroutine, 3-16,
See Alsoc .CSISPC programmed
request.

ICSTAT system subroutine, 3-18

Index-2

INDEX

IDELET system subroutine, 3-19,
See Also .DELETE programmed
request.

IDJFLT system subroutine, 3-20

IDSTAT system subroutine, 3-21

IENTER system subroutine, 3-21,
See Also .ENTER programmed
request.

IFETCH system subroutine, 3-23,
See Also .FETCH programmed
request.

IFREEC system subroutine, 3-24

IGETC system subroutine, 3-24

IGETSP system subroutine, 3-25

IGTIJB system subroutine, 3-8

IJCVT system subroutine, 3-26

ILUN system subroutine, 3-27

INDEX system subroutine, 3-27

Initialization and control, 1-15

devices, 1-16

error processing, 1-17

input/output access, 1-16

memory allocation, 1-15
Input/output access, 1-16
Input/output operations,

completion routines, 1-20

multi-terminal programmed

requests, 1-22

terminal input/output, 1-21

INSERT system subroutine, 3-28

.INSRT graphics macro, A-5

INTEGER*4 support functions, 1-39

.INTEN macro, 2-57

Interrupt entry points, 2-30

Interrupt service routine macro,

.FORK, 2-46
.INTEN, 2-57
.SYNCH, 2-127

Interrupt service routines, 1-25

INTSET system subroutine, 3-28

IPEEK system subroutines, 3-30

IPEEKB system subroutines, 3-30

IPOKE system subroutine, 3-31

IPOKEB system subroutine, 3-31

IQSET system subroutine, 3-32,
See Also .QSET programmed
request.

IRAD50 system subroutine, 3-33

IRCVD system subroutine, 3-34

IRCVDC system subroutine, 3-34

IRCVDF system subroutine, 3-35

IRCVDW system subroutine, 3-36

IREAD system subroutine, 3-36

IREADC system subroutine, 3-38

IREADF system subroutine, 3-39

IREADW system subroutine, 3-40

IRENAM system subroutine, 3-41,
See Also .RENAME programmed
request.

IREOPN system subroutine, 3-42

ISAVES system subroutine, 3-43
ISCHED system subroutine, 3-44
ISCOMP system subroutine, 3-90
ISDAT system subroutine, 3-45
ISDATC system subroutine, 3-46
ISDATF system subroutine, 3-47
ISDATW system subroutine, 3-47
ISLEEP system subroutine, 3-48
ISPFN system subroutine, 3-48
ISPFNC system subroutine, 3-50
ISPFNF system subroutine, 3-51
ISPFNW system subroutine, 3-53
ISPY system subroutine, 3-54
ITIMER system subroutine, 3-55
ITLOCK system subroutine, 3-56,
See Also .TLOCK programmed
request.
ITTINR system subroutine, 3-57
ITTOUR system subroutines, 3-57
ITWAIT system subroutine, 3-59
IUNTIL system subroutine, 3-560
IWAIT system subroutine, 3-61
IWRITC system subroutine, 3-62
IWRITE system subroutine, 3-61
IWRITF system subroutine, 3-63
IWRITW system subroutine, 3-64

J

JADD system subroutine, 3-64
JAFIX system subroutine, 3-65
JCMP system subroutine, 3-65
JDFIX system subroutine, 3-66
JDIV system subroutine, 3-67
JICVT system subroutine, 3-67
JJCVT system subroutine, 3-68
JMOV system subroutine, 3-68
JMUL system subroutine, 3-69
Job communication,
message transfers, 2-109
reading data, 2-90
Job status information, 2-50
Job suspension,
I/0 completion, 2-140
period of time, 2-138
JSUB system subroutine, 3-70
JTIME system subroutine, 3-70

K

Keyword macro arguments, 1-11

L

LEN system subroutine, 3-71
Linking,

graphics programs, A-16
Linking with FORLIB, 1-54

Index~-3

Listing,

System Macro Library, B-1
.LNKRT graphics macro, A-5
Loading device handlers, 2-44
Loading values into device

registers, 2-28
.LOCK programmed request, 2-58
LOCK system subroutine, 3-72
.LOOKUP programmed request,

standard lookup, 2-61

system job lookup, 2-63
LOOKUP system subroutine, 3-73
.LPEN graphics macro, A-7

Main-line code,
change flow of control, 2-119
resume flow, 2-124
suspend flow, 2-124
.MAP programmed request, 2-64
Mapping a window to a region,
2-64
Memory,
allocation, 1-15
.MFPS programmed request, 2-65
Monitor display support, A-2
Monitor fixed-offset area, 1-3
Monitor offset values,
obtaining, 2-53
.MRKT programmed request, 2-67
MRKT system subroutine, 3-76
-MTATCH programmed request, 2-69
MTATCH system subroutine, 3-76
.MTDTCH programmed request, 2-71
MTDTCH system subroutine, 3-79
.MTGET programmed request, 2-72
MTGET system subroutine, 3-79,
See Also .MTSET programmed
request,
.MTIN programmed request, 2-75
MTIN system subroutine, 3-80
.MTOUT programmed request, 2-76
MTOUT system subroutine, 3-81
«MTPRNT programmed request, 2-77
MTPRNT system subroutine, 3-81
.MTPS programmed request, 2-65
«MTRCTO programmed request, 2-78
MTRCTO system subroutine, 3-82,
See Also .RCTRLO programmed
request,
.MTSET programmed request, 2-79
MTSET system subroutine, 3-82,
See Also .MTSET programmed
request.
«MTSTAT programmed request, 2-80

MTSTAT system subroutine, 3-83

Multi-terminal,
feature, 1-2

INDEX

Multi-terminal, (Cont.)
line and terminal
characteristics, 2-79
programmed requests, 1-22
Multi-terminal programmed
request,
.MTATCH, 2-69
+MTDTCH, 2-71
«MTGET, 2-72
.MTIN, 2-75
.MTOUT, 2-76
.MTPRNT, 2-77
.MTRCTO, 2-78
«MTSET, 2-79
+MTSTAT, 2-80
-MWAIT programmed request, 2-81
MWAIT 'system subroutine, 3-84

N

.NAME graphics macro, A-8
.NOSYN graphics macro, A-11

P

Primary driver macro, 2-31
-PRINT programmed request, 2-82
PRINT system subroutine, 3-84
Program,

suspension, 1-54

termination or suspension, 1-23
Programmed request,

.CDFN, 2-2

.CHAIN, 2-3

.CHCOPY, 2-5

.CLOSE, 2-7

.CMKT, 2-8

.CNTXSW, 2-9

.CRAW, 2-11

.CRRG, 2-14

.CSIGEN, 2-15

.CSISpC, 2-21

.CSTAT, 2-23

.DATE, 2-25

.DELETE, 2-26

.DEVICE, 2-28

.DSTATUS, 2-36

.ELAW, 2-38

.ELRG, 2-39

.ENTER, 2-39

.EXIT, 2-42

.FETCH, 2-44

.GMCX, 2-48

.GTIM, 2-49

.GTJdB, 2-50

.GTLIN, 2-52

.GVAL, 2-53

.HERR, 2-54

Index-4

INDEX

Programmed request, (Cont.) Programmed request, (Cont.)
.HRESET, 2-56 .WDBDF, 2-142
.LOCK, 2-58 .WRITC, 2-144
.LOOKUP, 2-60 .WRITE, 2-143
.MAP, 2-54 WRITW, 2-145
.MFPS, 2-65 Programmed requests,
.MRKT, 2-67 allocating system resources,
.MTATCH, 2-69 1-17
.MTDTCH, 2-71 argument block, 1-8
-MTGET, 2-72 argument parameters, 2-1
.MTIN, 2-75 command interpretation, 1-18
.MTOUT, 2-76 conversion, 1-28
.MTPRNT, 2-77 EMT codes, 1-3
.MTPS, 2-65 errors, 1-12
.MTRCTO, 2-78 extended memory function,
.MTSET, 2-79 1-24
+MTSTAT, 2-80 extended memory monitor, 1-2
+MWAIT, 2-81 file operations, 1-18
.PRINT, 2-82 foreground/background
.PROTECT, 2-83 communications, 1-22
.PURGE, 2-85 foreground/background moniter
.QSET, 2-87 1-2
.RCTRLO, 2-89 format, 1-6
.RCVD, 2-90 implementation, 1-3
.RCVDC, 2-92 initialization and control,
.RCVDW, 2-93 1-15
.RDBBK, 2-94 input/output operations, 1-19
.RDBDF, 2-9%4 multi-terminal, 1-2, 1-22
.READ, 2-94 program termination or
.READC, 2-98 suspension, 1-23
.READW, 2-101 gueue elements, 2-87
.RELEASE, 2-44 reporting status, 1-17
.RENAME, 2-103 services, 1-1
.REOPEN, 2-104 single-job monitor, 1-2
.RSUM, 2-124 summary, 1-30
.SAVESTATUS, 2-105 system control path flow, 1-4
.Scca, 2-107 system job communications,
.SDAT, 2-109 1-24
.SDATC, 2-111 system job support, 1-2
.SDATW, 2-111 timer support, 1-23
.SDTTM, 2-112 use of .MCALL directive, 1-6
.SERR, 2-54 user stack, 1-7
.SETTOP, 2-114 using, 1-14
.SFPA, 2-117 .PROTECT programmed request,
.SPCPS, 2-119 2-83
.SPFUN, 2-121 PS,
.SPND, 2-124 accessing, 2-65
.SRESET, 2-126 .PURGE programmed request, 2-85
.TLOCK, 2-131 PURGE system subroutine, 3-85
.TRPSET, 2-132 PUTSTR system subroutine, 3-85

.TTINR, 2-134
.TTOUTR, 2-136

JTTYIN, 2-134 Q

.TTYOUT, 2-136

.TWAIT, 2-138 .QELDF macro, 2-86

LUNLOCK, 2-58 .QSET programmed request, 2-87
.UNMAP, 2-139 Queue element,

.UNPROTECT, 2-83 requirement, 1-43

.WAIT, 2-140 Queue element offsets,

.WDBBK, 2-141 defining, 2-87

Index-5

INDEX

R

R50ASC system subroutine, 3-86
RAD50 system subroutine, 3-86
Radix-50,

conversion, 1-55
RCHAIN system subroutine, 3-87
.RCTRLO programmed request, 2-89
RCTRLO system subroutine, 3-87
«RCVD programmed request, 2-90
.RCVDC programmed request, 2-92
.RCVDW programmed request, 2-93
-RDBBK programmed request, 2-94
.RDBDF programmed request, 2-94
.READ programmed request, 2-94
-READC programmed request, 2-98
Reading into memory, 2-94
.READW programmed request,

2-101

Region,

eliminating, 2-39
Region definition block,

defining symbols, 2-94

symbolic offset names, 2-94
+-RELEASE programmed request, 2-44
.REMOV graphics macro, A-9
-RENAME programmed request, 2-103
Renaming files, 2-103
-REOPEN programmed request, 2-104
REPEAT system subroutine, 3-88
Reporting status, 1-17
.RESTR graphics macro, A-9
Restrictions,

completion routines, 1-21, 1-38

extended memory programmed

requests, 1-25

FORTRAN 1V programs, 1-43
RESUME system subroutine, 3-89
Routines,

completion, 1-22
.RSUM programmed request, 2-124

S

.SAVESTATUS programmed request,
2-105
.SCCA programmed request, 2-107
SCCA system subroutine, 3-89
SCOMP system subroutine, 3-90
SCOPY system subroutine, 3-91
.SCROL graphics macro, A-9
.SDAT programmed request, 2-109
.SDATC programmed request, 2-111
.SDATW programmed request, 2-111
«.SDTTM programmed request, 2-112
SECNDS system subroutine, 3-91
.SERR programmed request, 2-54
SET command option table, 2-34
SETCMD system subroutine, 3-92

.SETTOP programmed request,
extended memory environment,
2-116, 2-114
.SFPA programmed request, 2-117
SJ monitor, 1-2
Soft error codes, 2-55
Software reset, 2-126
+.SPCPS programmed request, 2-119
.SPFUN programmed request, 2-121
.SPND programmed request, 2-124
-SRESET programmed request, 2-126
.START graphics macro, A-10
.STAT graphics macro, A-10
Status information,
channels, 2-23
devices, 2-36
multi-terminal system, 2-80
system jobs, 2-50, 3-8
terminal unit, 2-72
window mapping, 2-48
.STOP graphics macro, A-11
Stopping in-progress I/0
transfers, 2-56
STRPAD system subroutine, 3-93
Subroutine,
register usage, 1-46
SUBSTR system subroutine, 3-94
Suspending execution of a job,
2-81, 2-138, 2-140
SUSPND system subroutine, 3-94
Swapping the USR, 1-14, 1-40
.SYNC graphics macro, A-11
.SYNCH macro, 2-127
Synchronous I1/0, 1-19
SYSLIB,
conversion calls, 1-55
System communication area, 1-3
System conventions,
addressing modes, 1-10
blank arguments, 1-9
channels and channel numbers,
1-11
device blocks, 1-11
keyword macro arguments, 1-11
programmed request errors, 1-12
programmed request format, 1-6
USR requirement, 1-12
System jobs,
communications, 1-24
inter-job communications, 2-90,
2-109, 3-34, 3-45
status information, 2-50, 3-8
support, 1-2
System macro library, 1-1
System Macro Library listing, B-1
System subroutine,
AJFLT, 3-1
CHAIN, 3-1
CLOSEC, 3-2
CONCAT, 3-4

Index-6

System subroutine,

CVTTIM, 3-5
DEVICE, 3-5
DJFLT, 3-6
GETSTR, 3-7
GTIM, 3-8
GTJB, 3-8
GTLIN, 3-10
IADDR, 3-11

TAJFRLT 2-11

ULldl gy ST 4

IASIGN, 3-12
ICDFN, 3-13
ICHCPY, 3-14
ICLOSE, 3-2
ICMKT, 3-15
ICSI, 3-16
ICSTAT, 3-18
IDELET, 3-19
IDJFLT, 3-20
IDSTAT, 3-21
IENTER, 3-21
IFETCH, 3-23
IFREEC, 3-24
IGETC, 3-24
IGETSP, 3-25
IGTJB, 3-8
IJCVT, 3-26
ILUN, 3-27
INDEX, 3-27
INSERT, 3-28
INTSET, 3-28
IPEEK, 3-30
IPEEKB, 3-30
IPOKE, 3-31
IPOKEB, 3-31
IQSET, 3-32
IRAD50, 3-33
IRCVD, 3-34
IRCVDC, 3-34
IRCVDF, 3-35
IRCVDW, 3-36
IREAD, 3-36
IREADC, 3-38
IREADF, 3-39
IREADW, 3-40
IRENAM, 3-41
IREOPN, 3-42
ISAVES, 3-43
ISCHED, 3-44
ISCOMP, 3-90
ISDAT, 3-45
ISDATC, 3-46
ISDATF, 3-47
ISDATW, 3-47
ISLEEP, 3-48
ISPFN, 3-48
ISPFNC, 3-50
ISPFNF, 3-51
ISPFNW, 3-53
ISPY, 3-54

(Cont.)

INDEX

System subroutine,

ITIMER, 3-55
ITLOCK, 3-56
ITTINR, 3-57
ITTOUR, 3-57
ITWAIT, 3-59
IUNTIL, 3-60
IWAIT, 3-61
IWRITC, 3-62
IWRITE, 3-61
IWRITF, 3-63
IWRITW, 3-64
JADD, 3-64
JAFIX, 3-65
JCMP, 3-65
JDFIX, 3-66
JDIV, 3-67
JICVT, 3-67
JJCVT, 3-68
JMOV, 3-68
JMUL, 3-69
JSUB, 3-70
JTIME, 3-70
LEN, 3-71
LOCK, 3-72
LOOKUP, 3-73
MRKT, 3-76
MTATCH, 3-76
MTDTCH, 3-79
MTGET, 3-79
MTIN, 3-80
MTOUT, 3-81
MTPRNT, 3-81
MTRCTO, 3-82
MTSET, 3-82
MTSTAT, 3-83
MWAIT, 3-84
PRINT, 3-84
PURGE, 3-85
PUTSTR, 3-85
R50ASC, 3-86
RAD50, 3-86
RCHAIN, 3-87
RCTRLO, 3-87
REPEAT, 3-88
RESUME, 3-89
scca, 3-89
SCOMP, 3-90
scopy, 3-91
SECNDS, 3-91
SETCMD, 3-92
STRPAD, 3-93
SUBSTR, 3-94
SUSPND, 3-94
TIMASC, 3-95

TTMRE 2-06
S—2°C

4 & iiiup

TRANSL, 3-97
TRIM, 3-98

UNLOCK, 3-99
VERIFY, 3-99

Index-7

(Cont.)

System subroutine library, 1-1
capabilities, 1-36
channel numbers, 1-37
completion routines, 1-37
device blocks, 1-39
FORTRAN IV restrictions, 1-43
INTEGER*4 support, 1-39, 1-55
queue element requirement, 1-43
system conventions, 1-37
using, 1-35
USR requirements, 1-40

System subroutine summary, 1-59

System subroutines, 3-1

T

Terminal input/output, 1-21
Terminating a program, 2-42
TIMASC system subroutine, 3-95
Time,

obtaining, 2-49

setting, 2-112
Time conversion and date access,

1-54

TIME system subroutine, 3-96
Timer support, 1-23
.TIMIO macro, 2-129
.TLOCK programmed request, 2-131
.TRACK graphics macro, A-11
TRANSL system subroutine, 3-97
Trap,

interception, 2-132
Trap addresses,

setting, 2-117
TRIM system subroutine, 3-93
.TRPSET programmed request, 2-132
.TTINR programmed request, 2-134
.TTOUTR programmed request, 2-136
.TTYIN programmed request, 2-134
.TTYOUT programmed request, 2-136
.TWAIT programmed request, 2-138
Two-word integer support

(INTEGER*4), 1-55

U

.UNLNK graphics macro, A-12
.UNLOCK programmed request, 2-58
UNLOCK system subroutine, 3-99

INDEX

.UNMAP programmed request, 2-139
Unmapping a window, 2-139
.UNPROTECT programmed request,
2-83
USR,
locking in memory, 2-58
releasing from memory, 2-59
USR requirements, 1-12, 1-40
strategies in USR swapping,
1-41
USR lockout and timing, 1-42

\'J

Vector control protection, 2-83
Vector tables for multi-vector
device, 2-35

VERIFY system subroutine, 3-99
Version 1,

programmed requests, 1-26
Version 2,

programmed requests, 1-26
Version 3,

programmed requests, 1-27
Version 4,

programmed requests, 1-27

w

.WAIT programmed request, 2-140
.WDBBK programmed request, 2-141
.WDBDF programmed request, 2-142
Window, 2-11

eliminating, 2-38
Window definition block,

symbol definition, 2-141

symbolic offset names, 2-142
Workspace,

FORTRAN programs, 1-51
.WRITC programmed request, 2-144
.WRITE programmed request, 2-143
Writing from memory, 2-143
.WRITW programmed request, 2-145

X

XM monitor, 1-2
extended memory functions, 1-24

Index-8

RT-11 Programmer’s
Reference Manual
No.AA-H378A-TC
READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
0 Occasional programmer (experienced)
O User with little programming experience
0O Student programmer
O Other (please specify)
Name Date
Organization
Street
City State— ZipCode

or
Country

- — — — DoNotTear- Fold Here and Tape — — — — — — — — — . . _ _ _ _ _

_ — Do Not Tear - Fold Here

dlilgliltlall

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

dlilgliltall

digital equipment corporation

